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s‘#ﬁctures' include groﬁps, rinés, ﬁelds, modulehs,‘ve‘ctor spaces, lattiées; and
algebras. The term abstract algebra was coined in the early 20th century to
distinguish this area of study from older parts of algebra, and more specifically
from elementary algebra, the use of variables to represent numbers in computation
and reasoning.

Algebraic structures, with their associated homomorphisms, form
mathematical categories. Category theory is a formalism that allows a unified way
for expressing properties and constructions that are similar for various structures.
Universal algebra is a related subject that study the different types of algebraic
structures as single objects. For example, the structure of groups is a single object
inuniversal algebra, which is called the variety of groups.

Major themes in algebraic equations include, solving of systems of linear
equations which led to linear algebra, attempts to find formulas for solutions of
general polynomial equations of higher degree that resulted in discovery of groups
as abstract manifestations of symmetry and arithmetical investigations of quadratic
and higher-degree forms and diophantine equations that directly produced the
notions of a ring and ideal.

In mathematics, a canonical, normal or standard form of a mathematical
object is a standard way of presenting that object as a mathematical expression. It
provides the simplest representation of an object which allows it to be identified in
aunique way. The distinction between ‘Canonical’ and ‘Normal’ forms varies
from subfield to subfield. In most fields, a canonical form specifies a unique
representation for every object, while a normal form simply specifies its form,
without the requirement of uniqueness. The canonical form of a positive integer in
decimal representation is a finite sequence of digits that does not begin with zero.

A ‘Ring’ is a set equipped with two operations, called addition and
multiplication. Fundamentally, the ‘Ring’is a ‘Group’under addition and satisfies
some of the properties of a group for multiplication. A ‘Field’ is a ‘Group’ under
both addition and multiplication.

Artinian and Noetherian rings have some measure of finiteness associated
with them. In fact, the conditions for Artinian and Noetherian rings, called
respectively, the descending and ascending chain conditions, are often termed the
minimum and maximum conditions.

Leonhard Euler considered algebraic operations on numbers modulo an
integer—modular arithmetic—in his generalization of Fermat's little theorem. These
investigations were further analysed by Carl Friedrich Gauss, who considered the
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1.0 INTRODUCTION

In mathematics, a group is a set equipped with an operation that combines any
two elements to form a third element while being associative as well as having an
identity element and inverse elements. These three conditions, called group axioms,
hold for number systems and many other mathematical structures.

A group is an algebraic structure consisting of a set together with a binary
operation known as the group operation that combines any two of its elements to
form a third element. A subgroup series is a chain of subgroups which simplifies
the study of a group to the study of simpler subgroups and their relations. A Sylow
subgroup is a subgroup having order which is a power of a prime number and
which is not strictly contained in any other subgroup with the same property. The
Sylow theorems concern subgroups with maximal prime power size.

A composition series provides a way to break up an algebraic structure,
such as, a group or a module, into simple pieces. The need for considering
composition series in the context of modules arises from the fact that many naturally
occurring modules are not semisimple, hence cannot be decomposed into a direct
sum of simple modules. A composition series of a module M is a finite increasing
filtration of M by submodules such that the successive quotients are simple and
serves as a replacement of the direct sum decomposition of M into its simple
constituents.

In this unit, you will learn about the groups, normal and subnormal,
composition series, Jordan-Holder Series, solvable groups, nilpotent groups,
conjugate elements, Sylow p-subgroups and Sylow’s theorems and their simple
applications.
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o Know about the Jordan-Holder theorem and solvable groups
o Describe about the nilpotent groups
o Explain class equation for a finite group

o Know the properties of finite groups up to order 15

1.2 GROUPS

Definition: A non-empty set G, together with a binary compsition * (star) is
said to form a group, if it satisfies the following postulates
(i) Associativity: a x (bxc) =(axb)xc, foralla,b,ce G
(ii) Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(e is then called identity)
(iii) Existence of Inverse: For every a € G, 3 a' € G (depending upon
a) such that,
axa =a xa=e
(a' is then called inverse of a)

Notes:

1. Since = is a binary composition on G, it is understood that for all
a,b € G, a « bis aunique member of G. This property is called closure
property.

2. If, in addition to the above postulates, G also satisfies the commutative
law
asb=bsxa foralla,be G
then G is called an abelian group or a commutative group.

3. Generally, the binary composition for a group is denoted by .” (dot)
which is so convenient to write (and makes the axioms look so natural
t00).

This binary composition °.” is called product or multiplication (although
it may have nothing to do with the usual multiplication, that we are so familiar
with). In fact, we even drop °.” and simply write ab in place of a . b.

In future, whenever we say that G is a group it will be understood that
there exists a binary composition ‘.” on G and it satisfies all the axioms in the
definition of the group.




We now consider a few cases of systems that form groups (or do not
form groups).

Case 1: The set Z of integers forms an abelian group v@h respect to the usual
addition of integers.

It is easy to verify the postulates in the definition of a group as sum of
two integers is a unique integer (thus closure holds). Associativity of addition
is known to us. 0 (zero) will be identity and negatives will be the respective
inverse elements. Commutativity again being obvious.

Case 2: One can easily check, as in the previous case, that sets Q of rationals,
R of real numbers would also form abelian groups with respect to addition.

Case 3: Set of integers, with respect to usual multiplication does not form a

group, although closure, associativity, identity conditions 1@
Note 2 has no inverse with respect to multiplication as thi€fe does not exist
any integer a such that,2.a=a.2=1.

Case 4: The set G of all +ve irrational numbers together with 1 under multiplication

does not form a group as closure does not hold. Indeed +3.43 =3 ¢ G,

although one would notice that other conditions in the definition of a group are
satisfied here.

Case 5: Let G be the set {1, — 1}. Then it ﬁns an abelian group under
multiplication. It is again easy to check the properties.
1 would be identity and each element is its own inverse.

Case 6: Set of all 2 x 2 matrices over integers under matrix addition would be
another example of an abelian group.

Case 7: Set of all non zero complex numbers forms a group under multiplication
defined by

(a +ib) (c tid) = (ac — bd) + i (ad + bc)
1 =1 +i.0 will be identity,

a

. b . . .
il will be inverse of a + ib.
a”+b a - +b

Note: g + ib non zero means that not both ¢ and b are zero. Thus, a® + b? # 0.
Case 8: The set G of all nth roots of unity, where n is a fixed positive integer
forms an abelian group under usual multiplication of complex numbers.

We know that complex number z is an nth root of unity if z” = 1 and also
that there exist exactly » distinct roots of unity.
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Ifa, b € G be any two members, then a” = 1, " = 1 thus (ab)" = a"
=1,
= ab is an nth root of unity
= ab € G = closure holds.
Associativity of multiplication is true in complex numbers.
Again, since 1.a=a.1=aqa, 1 willbe identity.
Also for any a € G, 1 will be its inverse as (l) =1 - 1.
a a
So, inverse of €277/ is 2™ (=11 and identity is e>70" = 1
Commutativity being obvious, we find G is an abelian group.
As a particular case, if n =4 then G is {1,— 1, i, — i}
Case 9: (i) Let G= {£ 1, + i, +j, + k}. Define product on G by usual
multiplication together with
P==kK=-1,ij=—ji=k
Jk=—ki =i
ki=—ik=j
then G forms a group. G is not abelian as ij # ji.
This is called the Quaternion Group.
(i) If set G consists of the eight matrices

o o Akl S LS oL

0 il [o —i o
{. 0}, [—i 0},wherez—\||'—_1

l
then G forms a non abelian group under matrix multiplication. (Compare
with part (7)).
Case 10: Let G = {(a, b) | a, b rationals, a # 0}. Define % on G by
(a, b) * (c, d) = (ac, ad + b)
Closure follows as a, ¢ #0 = ac #0
[(a, b) = (c, d)] * (e, f) = (ac, ad + b) * (e, [)
= (ace, acf + ad + b)
(a,b) = [(c,d) = (e, /)] =(a, b) = (ce, cf +d)
= (ace, acf + ad + b)

proves associativity.




(3,4) «(1,2)=(3,6+4)=(3, 10).

a

Case 11 (a): The set G of all 2 x 2 matrices of the form { ﬂ over reals,

c
where ad — bc # 0, forms a non abelian group under matrix multiplication.

Itis called the general linear group of 2 x 2 matrices over reals and is
denoted by GL(2,

. (U A
The matrix {0 | will act as identity and

d -b
. d —b d—b . . b
the matrix agmoc admhe will be inverse of {a } .
-c a c d
ad —-bc ad—-bc

One can generalize and prove.

(b) If G be the set of all # x n invertible matrices over reals, then G forms
a group under matrix multiplication.

Case 12: Let G= {2"|r=0, £1, £2, ...}

We show G forms a group under usual multiplication.

Forany 2/,25e¢ G,2.25=2""5¢e¢ G

Thus closure holds.

Associativity is obvious.

Againas1 € G, and x.1=1.x=x forallxe G

1 is identity.

Forany 2’ € G,as2" e Gand 2". 27 =20=1,

We find each element of G has inverse. Commutativity is evidently true.

Case 13: Group of Residues : Let G= {0, 1, 2, 3, 4}. Define a composition
@ on G by a @, b =c where c is the least non negative integer obtained as
remainder when a + b is divided by 5. For example, 3®54 =2,3®,1 =4,
etc. Then @, is a binary composition on G (called addition modulo 5). It is easy
to verify that G forms a group under this.

One can generalize this result to

G={0,1,2,..,n-1}
under addition modulo n where 7 is any positive integer.
We thus notice

Self - Learning
Material




Case 14: Let G = {x € Z | 1 <x <n, x, n being co-prime} where Z = set
of integers and x, n being co-prime means H.C.F of x and # is 1.

We define a binary composition ® on G by a ® b =c where c is the least
+ve remainder obtained when « . b is divided by #. This composition ® is
called multiplication modulo 7.

We show G forms a group under ®.

Closure: Fora, b € G,leta ® b= c. Then ¢ # 0, because otherwise
n | ab which is not possible as a, n and b, n are co-prime.
Thus ¢ # 0 and also then 1 < ¢ <n.
Now if ¢, n are not co-prime then 3 some prime number p such that, p|c
and p|n.
Again as ab = nq + ¢ for some ¢
We getplab  [p|n = p|nq, p|c = p|ng + ]
= plaorp|b (as p is prime)
If p|a then as p|n it means a, n are not co-prime.
But a, n are co-prime.
Similarly p| b leads to a contradiction.
Hence c, n are co-prime and thus ¢ € G, showing that closure holds.
Associativity: Let a, b, ¢ € G be any elements.
Leta®b=r,(a®b)®c=r®c=r,
then r, is given by r,c = nq, + r,
Also a ® b =r, means
ab=gqn+r,
thus ab—gqn=r,
=(ab—-qmn)c=ric=nqg,+r,
= (ab)c =ry + nq, + nq,c =n(g,c +q,) +r,
or that r, is the least non-negative remainder got by dividing (ab)c by n.
Similarly, if a ® (b ® ¢) = r; then we can show that r; is the least non-
negative remainder got by dividing a(bc) by n.
But since a(bc) = (ab)c, ry =14
Hence a ® (b ® ¢) = (a&® b) ® c.
Existence of Identity: IU1s easy to see that
a®l1=1®a=a forallae G
or that 1 will act as identity.
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= ax=aqn + ar
= ax + ny=aqn + ar + ny
= 1=agn + ar + ny
or that ar=1+ (—aq — y)n
i.e.,a®r=1.Similarly » ® a=1.If r, n are co-prime, » will be inverse
of a.
If 7, n are not co-prime, we can find a prime number p such that, p | r,
pln
= plgnandp|r
=>plgn+r
= plx
= plax also p|ny
= plax+ny=1
which is not possible. Thus 7, n are co-prime and so » € G and is the
required inverse of a.

It is easy to see that G will be abelian. We denote this group by U, or
U(n) and call it the group of integers under multiplication modulo 7.

Note: Suppose n = p, a prime, then since all the integers 1,2, 3, ..., p— 1 are
co-prime to p, these will all be members of G. One can show that
G=1{2,4,6,..2(p-1)}

where p>2 is a prime forms an abelian group under multiplication modulo
2p.
Case 15: Let G = {0, 1, 2} and define * on G by

axb=|a-">|
Then closure is established by taking a look at the composition table

N T ol ©
[==3 Bl I \S) I \S)

1
1
0
1

N =] O] *

Sincea+*0=|a—0|=a=0xa, Oisidentity

and a=xa=|a—a|=0shows each element will be its own inverse.
But the system (G, =) fails to be a group as associativity does not hold.
Indeed 1x(1%2)=1=%x1=0

but Qx1)*x2=0%x2=2
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Note: Let X be a non-empty set and let M(X) = set of all maps from X to X,
then A(X) ¢ M(X). M(X) forms a semi group under composition of maps. Identity
map also lies in M(X) and as a map is invertible iff it is 1-1, onto, i.e., a permutation,
we find A(X) the subset of all permutations forms a group, denoted by S and
is called symmetric group of X. If X is finite with say, n elements then

o(M(X)) =n" and o(Sy) = |» and in that case we use the notation S, for Sy.

In the definition of a group, we only talked about xistence of identity
and inverse of each element. We now show that these elements would also be
unique, an elementary but exceedingly useful result. We prove it along with
some other results in
Lemma: /n a group G,

(1) [Identity element is unique.
(2) Inverse of each a € G is unique.

(3) (aYy'=a, forall a € G, where a”' stands for inverse of a.
4 (aby'=b"'a foralla, beG
(5) ab=ac =b=c

ba =ca = b=cforalla b,ceG

(called the cancellation laws).

Proof: (1) Suppose e and e’ are two elements of G which act as identity.
Then, since e € G and €' is identity,
ee=¢ee =e
and as ¢’ € G and e is identity
ee=ee =¢'
The two = e =¢’
which establishes the uniqueness of identity in a group.
(2) Leta € Gbe any element and let @’ and a”’ be two inverse elements of
a, then
aa' = ad'a = e
aad" = ad'"'a = e
Now, a' =de=ad'(aa")=(da)a"’ =ea" =a".
Showing thereby that inverse of an element is unique. We shall denote
inverse of a by al.




(4) We have to prove that ab is inverse of 5~'a~! for which we show
(ab) (b7'a™y = (b7'a™") (ab) = e.
Now, (ab) (b7'a™") = [(ab) b'] a”!
= [(a(bb )] a!
=(@e)al=aa'=e
Similarly (b~'a™!) (ab) = e
and thus the result follows.
(5) Let, ab = ac, then
b=eb=(a'a)b
=aY(ab)=a' (ac)
=(@'ac=e=c
Thus ab=ac=b=c
Which is called the left cancellation law.
One can similarly, prove the right cancellation law.

Case 17 (a): LetX={1,2,3} and letS;=A(X) be the group of all permutations
on X. Consider f, g, h € A(X), defined by
sm=2,  f@=3  f03)=1
g=2, g@=1, gB)=3
h(l)=3, h(2)=1, h(3)=2
It is easy then to verify that fog = goh
But f#h.
(b) If we consider the group in case 10, we find
1,2) *(3,4)=(3,6)=(3,0) «(1,2)
But (3,4)#(3,0)
Hence we notice, cross cancellations may not hold in a group.
Theorem 1.1: For elements a, b in a group G, the equations ax = b and
ya = b have unique solutions for x and y in G.
Proof: Now, ax=1»5b
= al(ax)=a'b
= ex=a'b
or x=a'b

which is the required solution of the equation ax = b.
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Showing that the solution is unique.

Similarly y = ba~! will be unique solution of the equation ya = b.
Theorem 1.2: A non-empty set G together with a binary composition *.’
is a group if and only if

(1) a(bc) = (ab)c foralla, b,c € G
(2) Forany a, b € G, the equations ax = b and ya = b have solutions in

G

Proof: If G is a group, then (1) and (2) follow by definition and previous theorem.

Conversely, let (1) and (2) hold. To show G is a group, we need prove existence
of identity and inverse (for each element).

Let a € G be any element.
By (2) the equations ax = a

ya=a
have solutions in G.
Let x=e and y =f be the solutions.
Thus 3 e, f € G, such that, ae =a

fa=a
Let now b € G be any element then again by (2) 3 some x, y in G such
that,

ax=b>b
ya=b.
Now, ax=b = fi(a.x)=f.b
= (f.a).x=f.b
= a.x=f.b
=b=f.b
Again, y.a=b = (y.a).e=b.e
= y.(a.e)=b.e
= y.a=be
= b=be
thus we have b=fb (1.1)
b=be ..(1.2)
for any be G

Putting b=e in Equation (1.1)and b=/ in Equation (1.2) we get
e=fe




Again, for:gmf/las led%l,t la{Xd (the identity) e € G, the equations ax =e and
ya = e have solutions.

Let the solutionsbe x =a;, and y = a,

then aa, =e, a,a=e
Now, a, = ea, = (aya)a, = a,(aa,) = a,e = a,.
Hence, aa, =e=aa foranyae G

i.e., forany a € G, 3 some a, € G satisfying the above relations = a
has an inverse. Thus each element has inverse and, by definition, G forms a
group.
Note: While proving the above theorem we have assumed that equations of the

type ax = b and ya = b have solutions in G. The result may fail, if only one type
of the above equations has solution. Consider for example:

G to be a set with at least two elements. Define .’ on Gbya.b=5
foralla, b € G.
then a.(b.cy=a.c=c
(a.b)y.c=b.c=c
shows associativity holds.
Againas ab=>b, the equation ax=», hasasolution foranya, b € G.
We notice that G is not a group, as cancellation laws do not hold in G.
Asleta, b € G be any two distinct members, then
ab=">b
bb=b= ab=>bb
But, a+#b.
Definition: A non empty set G together with a binary composition *.” is called
a semi-group if
a.(b.c)=(a.b).cforalla,b,ce G
Obviously then every group is a semi-group. That the converse is not
true follows by considering the set N of natural numbers under addition.
The set G in Case 15 is not a semi group.

Theorem 1.3: Cancellation laws may not hold in a semi-group

Proof: Consider M the set of all 2 x 2 matrices over integers under matrix
multiplication, which forms a semi-group.
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Set of natural numbers under addition is an example of a semi-group
in which cancellation laws hold.
Theorem 1.4: A finite semi-group in which cancellation laws hold is a
group.
Proof: Let G= {a,, a,, ..., a,} be a finite semi-group in which cancellation
laws hold.

Let @ € G be any element, then by closure property

aa,, aa,, ..., aa
areallin G.

n

Suppose any two of these elements are equal
say, aa;=aa; forsomei#j
then a;=a; by cancellation
But, a;,#a;, asi#j
Hence no two of aa|, aa,, ..., aa, can be equal.
These being 7 in number, will be distinct members of G (Note o(G) =n).
Thus, if b € G be any element then
b=aa; forsomei
i.e., for a, b € G the equation ax = b has a solution (x =g,) in G.
Similarly, the equation ya=>5 will have a solution in G.
G being a semi-group, associativity holds in G.
Hence G is a group (by Theorem 1.2).
Note: The above theorem holds only in finite groups. The semi-group of natural
numbers under addition being an example where cancellation laws hold but
which is not a group. :
Theorem 1.5: 4 finite semi-group is a group @md only if it satisfies
cancellation laws.

Proof: Follows by previous theorem.

Definition: A non-empty set G together with a binary composition *.” is said
to form a monoid if

(@) a(bc)=(ab)c Va b,ceG




both as a right as well as a left identity and each element has both sided inverse.
We show now that it is not really essential and only one sided identity and the
same sided inverse for each element could also make the system a group.
Theorem 1.6: A system < G, . > forms a group if and only if
(@) a(bc)=(ab)c foralla, b,c e G
(@) e € G, such that,ae=a  foralla e G
@@ii) for all a € G, 3 a' € G, such that, aa' = e.

Proof: If G'is a group, we have nothing to prove as the result follows by definition.
Conversely, let the given conditions hold.

All we need show is that ea=a foralla e G
and a'a=a foranyae G
Let a € G be any element.
By (iii) Ja' € G, such that, aa' = e
". For a' € G, 1a" € G, suchthat, a'a’’ =e (using (iii))
Now a'a= d'(ae)=(a'a)e=(a'a)(a'a'")
= d'(aa")a" =ad'(e)a"’ = (d'e)a’' =ad'a" =e.

Thusforany a € G, 3 a' € G, suchthat, aa’'=d'a=e
Again ea = (aa")a=a(d'a)=ae=a
. ae=ea=a forallae G
i.e., e isidentity of G.
Hence G is a group.
(Refer Example 1.6 for another proof).
Theorem 1.7: 4 system < G, . > forms a group if and only if

@) a(bc) = (ab)c foralla, b, c e G

(@) 3 e € G such that, ea=a foralla e G

(iii) for all a € G, 3 some a' € G such that, a'a = e.

Proof: A natural question to crop up at this stage would be what happens,
when one sided identity and the other sided inverse exists. Would such a system
also form a group? The answer to which is provided by the following illustration.

Let G be a finite set having at least two elements. Define ‘.” on G by
ab=>b foralla,be G
then clearly associativity holds in G.
Let e € G by any fixed element.

4
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But we know G is not a group (cancellation laws do not hold in it).

Hence for a system < G, . > to form a group it is essential that the same
sided identity and inverse exist.

A Notation: Let G be a group with binary composition ‘.. If a € G be any
element then by closure property a . a € G. Similarly (a . a) . a € G and so
on.

It would be very convenient (and natural!) to denote a . a by a* and
a.(a.a)or(a.a). abyad and so on. Again a'. a' would be denoted by
a2 Andsince a . a”! = e, it would not be wrong to denote e = a°. It is now
a simple matter to understand that under our notation

am.a"=qg""
(am)n = g"n

where m, n are integers.

In case the binary composition of the group is denoted by +, we will talk
of sums and multiples in place of products and powers. Thus here 2a=a + a,
andna=a+a+ ... +a (ntimes), if n is a +ve integer. In case 7 is negative
integer then n =— m, where m is positive and we define na =—ma = (—a) +
(—a) t ...+ (- a) m times.

Example 1.1: If G is a finite group of order n %show that for any
a € G 3 some positive integer v, 1 < r < n, such that, a" = e.
Solution: Since o(G) = n, G has n elements.

Leta € G be any element. By closure property a2, @, ... all belong to G.

Consider e, a, d, ..., a"
These are n + 1 elements (all in G). But G contains only » elements.

= at least two of these elements are equal. If any of a, a?, ..., a"
equals e, our result is proved. If not, then a’ = & for some i, j, 1 <i,j <n.
Without any loss of generality, we can take i > j

then a'=da

= d.al=d.a’

= a7 =e where 1 <i—j<n.
Putting, i —j =rgives us the required result.

Example 1.2: Show that a finite semi-group in which cross cancellation
holds is an abelian group.




Since G is abelian, cross cancellation laws become the cancellation laws.
Hence G is a finite semi-group in which cancellation laws hold.

Thus G is a group.

Example 1.3: If G is a group in which (ab)’ = a'b’ for three consecutive
integers i and any a, b in G, then show that G is abelian.

Solution: Let n, n + 1, n + 2 be three consecutive integers for which the given
condition holds. Then for any a, b € G,

(aby'= a'b" (1)
(ab)”” = g"tlpntl (2)
(ab)n+2 = g"t2pnt2 (3)
NOW, (ab)n+2 — an+2bn+2

= (ab)ab)™' = q""? b2
= (ab)(anﬂbnﬂ) = g2 pnt2

= ba' = a"1b (using cancellation) (4
Similarly, (ab)n-H = g"tlpntl
gives (ab)(ab)'= a™1b"!
ie., (ab)(@'b") = a1 p"H!

= ba"= a"b

= ba""'= a"ba

= a""'b = a"ba using Equation (4)

= ab=ba.

Hence G is abelian.
Note: Conclusion of the above result may not follow if the given result holds
only for two consecutive integers.
Consider, for example, the Quaternion group. One can check that
(ab) = a'b' for i =4, 5 but the group is not abelian.
Example 1.4: Suppose (ab)" =a"b" foralla, b € G wheren > 1 is a fixed
integer.
Show that, (a) (ab)"' = b"'a"!
(b) a’ bn—l — bn—lan
(¢) (aba'bytn-D=¢ foralla, b e G
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(aby'ab = b \(b"a")b
(aby' = blgn! foralla,be G
(b) NOW, (a_lb_lab)” = g "bg"h"

U

and (a”'blab)" = a"(b-lab)"
= afnbflanb
a b "a"b" = af”b*la"b

= a"b"! = prlgn foralla,b e G

(c) Consider (aba'b~1y -1
= [(aba—lb—l)n—l]n
= [(ba—lb—l)n—lan—l]n by (l)
= [ba " Vp g1 = [b(a Db gn )]
= bn(a—(n—l)b—lan—l)n = prg-(-Dpngn-1
a " Dprp gt by (i)
e foralla,b e G.

Example 1.5: Let G be a group and suppose % exist two relatively
prime positive integers m and n such that a™b™ = b™a™ and a"b" = b"a"
for all a, b € G. Show that G is abelian.
Solution: Since m, n are relatively prime, there exist integers x and y such that,
mx +ny = 1.
For any a, b we have
(a”b"y™ = (a"b")(a™b")......(a"b") mx times
= a"™(b"a"b".....b"a")b"
= a"(b"a"™y" b
— am(bnam)mx(bnam)—lbn
= g"c"(b"a™)'b" where ¢ = (b"a™)*
= c"a"(b"a")'b"
=" a"a"b"b" = " = (ba")™
Similarly, (a™b")" = (b"a™)"™
glVll'lg (ambn)mx +ny — (bnam)mx +ny
= am"b"=b"a" foralla,be G (D
Now, ab= g™t pmxtwy

= g™ (any bmx)bny




= ()" (@) () (@)
(@ B @ = B (B am™) | a

pmx -ty gmxtny — o

Hence G is abelian.

Note: In the following Theorem, we give another proof'to Theorem 1.6 done
carlier.

Subgroups

We have seen that R, the set of real numbers, forms a group under addition,
and Z, the set of integers, also forms a group under addition. Also Z is a subset
of R. It is one of the many situations which prompts us to make

Definition: A non empty subset H of a group G is said to be a subgroup of
G, if H forms a group under the binary composition of G.

Obviously, if H is a subgroup of G and K is a subgroup of H, then K is
subgroup of G.

If G is a group with identity element e then the subset {e¢} and G are
trivially subgroups of G and we call them the #rivial subgroups.All other subgroups
will be called non-trivial (or proper subgroups).

Notice that Zs = {0, 1, 2, 3, 4} mod 5 is not a subgroup of Z under
addition as addition modulo 5 is not the composition of Z. Similarly, Z is not
a subgroup of Z, etc.

We sometimes use the notation H < G to signify that A is a subgroup of
G and H < G to mean that H is a proper subgroup of G.

It may be a little cumbersome at times to check whether a given subset
H of a group G is a subgroup or not by having to check all the axioms in the
definition of a group. The following two theorems (especially the second one)
go along way in simplifying this exercise.

Theorem 1.8: A non-empty subset H of a group G is a subgroup of G iff
(@)a,be H=>abe H
(i)ae H=>a' e H.

Proof: Let H be a subgroup of G then by definition it follows that (7) and (i7)

hold.

Conversely, let the given conditions hold in H.

Closure holds in H by (7).

Again, a,bce H=>a,b,c e G = a(bc)=(ab)c

Self - Learning
Material

19




20

Self - Learning
Material

Inverse of each element of H is in H by (ii).
Hence H satisfies all conditions in the definition of a group and thus it forms a
group and therefore a subgroup of G.

Theorem 1.9: A non-void subset H of a group G is a subgroup of G iff a,
beH=ab'eH.
Proof: If H is a subgroup of G then, a, b € H=>ab™' € H (follows easily by
using definition).
Conversely, let the given condition hold in A.
That associativity holds in H follows as in previous theorem.
Let a € H be any element (H # @)
thena,a e H>aa! e H=> e € H.
So H has identity.
Again, foranya € H,ase € H
ea'eH=>a'eH
i.e., H has inverse of each element.
Finally, for any a,beH,
a,bleH
= albY'eH=abec H

i.e., His closed under multiplication.

Hence H forms a group and therefore a subgroup of G.
Note: If the binary composition of the group is denoted by +, the above condition
would read as a, b € H = a — b € H. Note also that e is always in H.

The following theorem may not prove to be very useful in as much as it
confines itself to finite subsets only but nevertheless it has its importance.

Theorem 1.10: 4 non empty finite subset H of a group G is a subgroup
of G iff H is closed under multiplication.

Proof: If His a subgroup of G then it is closed under multiplication by definition,
so there is nothing to prove.

Conversely, let H be a finite subset such that,

a,be H=> abe H
Now, a,bce H=>a,b,ce G
= a(bc) = (ab)c
.. Associativity holds in H.
= Hisasemi-group.




Ifa=ethena'=ae H
Let a # e, then by closure a, a2, a®... € H
Since H is finite, for some n, m, a"=a", n>m
ie., am™=e, n-m>lasa#e
ie., amml g =e
= gl = gl

where n—m—1 > 1 and therefore,
a" ! ¢ H. Hence a € H= a! € H and thus H is a subgroup of G
(Theorem 1.8).
Definition: Let G be a group. Let

Z(G)={x e G|xg=gx forall g € G}

then Z(G) is called centre of the group G.

Theorem 1.11: Centre of a group G is a subgroup of G.

Proof: Let Z(G) be the centre of the group G.
Then Z(G) # ¢ as e € Z(G)

Again, x,y € Z(G) = xg = gx

yg =gy forallge G
= glxl=xlgl
glyl=ylgl forallge G

Now, gl = (g = (g
(g (g9
xgv g g = xglg” y g
= x(gg ' )'g
(xyHg forallge G

= xy ! e Z(G)
Hence Z(G) is a subgroup.
Note: Obviously, G is abelian iff Z(G) = G.

Definition: Let G be a group. a € G be any element. The subset

N(a) = {x € G | xa = ax} is called normalizer or centralizer of a
inG.
It is easy to see that normalizer is a subgroup of G.

4
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(13)(12) = (123)

We find (12), (13) do not commute.
= (12) and (13) do not belong to Z(S;)
Again, (23)(132) = (12)

(132)(23) = (13)
= (23), (132) do not belong to Z(S;)
Also, (123)(12) = (13)

(12)(123) = (23)
Shows (123) ¢ Z(S;)
Hence Z(S;) contains only /.

Example 1.7: Let G be the group of all 2x2 non singular matrices over
the reals. Find centre of G.

U

b .
Solution: If L d} be any element of the centre Z(G) of G then it should

commute with all members of G. In particular we should have,
[a b}[o 1}_ [0 IMG b}
lc d]|1 0 1 O0jle d
= b=c¢ua=d
(a b \mé 1 0l[a b] .
Also, E d“l - —L JL d} gives

fa+b b _a b
lc+d d atc b+d

=>at+tb=a, b=c=0

Hence any member {j Z} of Z(G) turns out to be of the type {g ﬂ .
In other words, members of the centre Z(G) are the 2x2 scalar matrices of G.
Example 1.8: Let G be a group in which
(ab)? = a°p?
(ab)’ = a’b’, foralla,b e G
Show that G is abelian.
Solution: We first show that b € Z(G) forall b € G.
We know (@ 'ba)® =a' ba
By givencondition (¢ 'ba)} = a3 (ba)® = a3 b’a?




al ba=adba’

z a*h’ = ba* = a*b’p* = ba*
= (@7 BB = b5a* = ba'h? = bSab
= a*b? = b*a* = aa’h?® = b*a*
= ab’*a® = b*a*
= ab? =b%q foralla,be G
i b* € Z(G) forallb e G
Now, (ab)* = (ab)’ (ab)' = &b’ a!
= b*a! = da'bt, as b? € Z(G)
= a*b*

. (ab)' = a'b' for three consecutive integers i = 3, 4, 5
So, ab=ba forall a, b € G, by example done earlier.
Hence G is abelian.

Example 1.9: Show that union of two subgroups may not be a subgroup.
Solution: Let, H,={2n|n e Z}
Hy={3n|nel}
where (Z, +) is the group of integers. H, and H; will be subgroups of Z.
Indeed
2n—2m=2(m —m) € H,
Now H, U Hj is not a subgroup as 2, 3 € H, U H,
but 2-3=-1¢ H, U H,
Theorem 1.12: Union of two subgroups is a subgroup iff one of them is
contained in the other.
Proof: Let H, K be two subgroups of a group G and suppose H € K
then H U K = K which is a subgroup of G.
Conversely, let H, K be two subgroups of G such that, H U K is also
a subgroup of G. We show one of them must be contained in the other. Suppose
itis not truei.e.,
Hz K, Kz H
Then, Ix e H suchthat, x¢ K
3y e K suchthat, yg¢ H
Also thenx, y € H U K and since H U K is a subgroup, xy € H U K
=>xyeHorxyek

4
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Thus one of the two is contained in the other. )
Definition 1: Let A be a subgroup of a group G. Fora, b € G, we say a is

congruent to b mod Hifab™! € H.

In notational form, we write a = b mod H.

Itis easy to prove that this relation is an equivalence relation. Corresponding
to this equivalence relation, we get equivalence classes. For any a € G, the
equivalence class of a, we know will be given by

clla)={x € G|x=amod H}.
Definition 2: Let H be a subgroup of G and let a € G be any element.
Then Ha = {ha | h € H} is called a right coset of H in G.

We show in the following theorem that any right coset of H in G is an
equivalence class. To be exact we state:

Theorem 1.13: Ha = {x € G | x=a mod H} = cl(a) foranya €G.

Proof: Let, x € Ha
Then, x=ha forsomeh e H
= xa'=h

= xaleH
= x=amod H

= x € cl(a)
Thus, Ha c cl(a).
Again let x € cl(a) be any element.
Then, x=amod H
= xa'eH
= xa'=h forsomehe H
= x=ha € Ha
thus cl(a) c Ha
and hence Ha = cl(a).

Having established that right cosets are equivalence classes, we are free
to use the results that we know about equivalence classes. We can, therefore,
say now that any two right cosets are either equal or have no element in
common and also that union of all the right cosets of H in G will equal G.

Note: Note that a coset is not essentially a subgroup. If G be the Quaternion
group then H = {1, — 1} is a subgroup of G. Take a = i, then Ha = {i, — i}
which is not a subgroup of G. (it doesn't contain identity). Refer Theorem 1.15
ahead.




f(ha)=hb
Then ha=ha = h=hy, = hb=hyb
= f(ha)=f(ha)
ie., fiswell defined.
f(hya) =f(hya) = hb=hb=h =h, = ha=h,a

Showing fis 1-1.

That fis onto, is easily seen, as for any kb € Hb, ha would be its pre
image.

The imm " te utility of this lemma is seen, if the group G happens to be
finite, because iit that case the lemma asserts that any two right cosets of Hin
G have the same number of elements. Since H = He is also a right coset of
in G, this leads us to state that all right cosets of H in G have the same number
of elements as are in H (G, being, of course, finite). We are now ready to prove
Theorem 1.14 (Lagrange’s): If G is a finite group and H is a subgroup of
G then o(H) divides o(G).

Proof: Let o(G) = n.
Since corresponding to each element in G, we can define a right coset of H in
G, the number of distinct right cosets of H in G is less than or equal to n.
Using the properties of equivalence classes we know
G=Ha, U Ha, U ..U Ha,
where, t = Number of distinct right cosets of Hin G.
= o(G)=o(Ha,) + o(Ha,) + ... + o(Ha,)

(Reminding ourselves that two right cosets are either equal or have no

element in common).
= o(G)=o0(H)+o(Ha) +...+ o(H) usingthe above lemma

¢ times
= o(G)=t. o(H)

orthat o(H) | o(G)

and we have proved a very important theorem.

But a word of caution here. Converse of Lagrange's theorem does not
hold.
Note: If G is a group of prime order, it will have only two subgroups G and
{e}. Refer Theorem 1.25 also.

ave been talking about right cosets of H in G all this time. Are there
left cosets also? The answer should be an obvious yes. After all we can similarly
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It would indeed be an interesting ‘brushing up’ for the reader, by proving these
results independently.
We now come to %ple but very important

Theorem 1.15: Let H be a subgroup of G then,
()Hi=H< aeH,aH=H<aceH
(i Ha=Hb = ab' e H, aH=bH=a'be H
(iii) Ha (or aH) is a subgroup of G iff a € H.
Proof: (i) Let Ha=H
Since e € H,ea € Ho = ea € H=a € H.
Let aeH, we show Ha= H.
Let xe€ Ha=x=ha forsomehe H
Now he HacH= hacH=>xecH=HacH
Again, let ye H,sinceae H

ya'e H
= yal'=h forsomeheH
= y=ha € Ha
= Hc Ha
Hence Ha=H.
(if) Ha=Hb

< (Ha)b™ = (Hb)b™!
< Hab™'=He
< Hab'=H
& ab™' e H using (i)
(iii) If a € H then Ha = H which is a subgroup. Conversely, if Ha is a

subgroup of G then e € Ha and thus the right cosets Ha and He have
one element e in common and hence Ha = He=H = a € Hby (i).

Corresponding results for left cosets can be tackled similarly.

Definition: Let G be a group and H, a subgroup of G. Then index of Hin G
is the number of distinct right (left) cosets of / in G. It is denoted by i () or
[G:H].

Alook at the proof of Lagrange's theorem suggests that if G is a finite
0(G)
o(H)’

It is, of course, possible for an infinite group G to have a subgroup
H (#G) with finite index.

group, then i;(H) =




a=3n+r, 0<r<3
which gives
H+a=H+@n+r)y=(H+3n)+r=H+r
where 0<r<3
Hence H has only 3 right cosets in Z and thus has index 3.
Notice, H—1=(H+3)-1=H+ B3 -1)=H+ 2, etc.
Case 19: Let G=<R - {0}, . >, i.e., let G be the group of non zero real
numbers under multiplication. Let H= {1, —1}. Then H is a subgroup of G
where i;(H) is infinite. Notice / has infinite number of right cosets in G, these
being {2, -2}, {3, -3}, {4, -4}, ..., etc.
Definition: Let A be a subgroup of a group G, we define
C(H)= {x € G|xh=hx for all h € H} then C(H) is called centralizer of H
inG.
Also the set
NH)= {x € G | xH = Hx}
= {xeG|xHx'=H}
is called normalizer of Hin G.
It is an easy exercise to see that both C(H) and N(H) are subgroups of G.
Againas, xe C(H) = xh=hx forallhe H

= xH = Hx
= x € N(H)
we notice C(H) < N(H).

However, C(H) need not be equal to N(H) as consider the Quaternion
group G = {*l1, £i, &, +k} and let H = {1, +i}.

Then N(H) = G and C(H) = {*1, +i}.

Showing that C(H) = N(H)

Note: One can define C(H) or N(H) in the same way even if H happens to be
only a non-empty subset of G.

Example 1.10: Show that C(H) = G < H < Z(G).

Solution: Let C(H) = G. Let h € H be any element. Then,x € G = x € C(H)
= xh=hx = anyelement/ in H commutes with all elements of G=h €
Z2(G) = H < Z(G).

Conversely, let HZ Z(G). Letx € G. Since H  Z(G) each element of
H commutes with every element of G.
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H is a subgroup of a group G.
Solution: Let, 3 = Set of all left cosets of Hin G.
R = Set of all right cosets of Hin G.
Define a mapping 6 : 3 — R, such that,
0@H)=Ha' acG
0iswell definedas  aH =bH
= a'beH
= Ha'=Hp"'
= 0(aH) =0(bH)
Taking the steps backwards, we find 0 is 1-1. Again, for any Ha € ‘R,
a'H is the required pre-image under 0 proving that 0 is onto.
If G is finite, then the above result reduces to saying that number of left
cosets of Hin G is same as the number of right cosets of Hin G.
Example 1.12: Let H be a subgroup of a group G and N(H) = {a € G |
aHa' = H}. Prove that N(H) is a subgroup of G which contains H.

Solution: N(H) # ¢ subset of G as
eHe™' = H= e € N(H)
Let now a, b € N(H) be any two elements, then

aHa ' =H
bHb '=H
then, bHb ' =H = b1 (bHb )b = b'Hb
= (b"'b)Hb'b = b"'Hb

= H=b"Hb
= aHa'=a(b™! Hb)a!
= aHa'=ab'Hba!
- H = (ab™) H(ab™")"!
= ab!' e N(H) ie., N(H)is asubgroup of G.
Sincehe H= hHh''=H (Ha=H < a € H, etc.)
we find & € N(H) showing that H c N(H).

Example 1.13: Suppose that H is a subgroup of a group G such that whenever
Ha # Hb then aH # bH. Prove that gHg'  H for all g € G

Solution: Itis given that if Ha # Hb then aH+#bH
thus if aH = bH then Ha= Hb. (1)
Letnow g € G, h € H be any elements, then

(g WH=g\(hH)=g'H (h e H)




Example 1.14: [f G = S; and H = {1, (13)}, write all the left cosets of H

in G

Solution:

anH = {(12)1, (12)(13)} = {(12), (132)}
= (23H (Show!)
antl = {(23)L, (23)(13)} = {(23), (132)} = (13
a3l = Has(13) e H
IH=H

are all the left cosets of Hin G.

Definition: Let H and K be two subgroups of a group G. We define
HK={hk|h € H, k € K} then HK will be a non-empty subset of G (Sometimes,
called the complex of H and K). Will it form a subgroup? The answer is provided by

Theorem 1.16: HK is a subgroup of G iff HK = KH.
Proof: Let HK be a subgroup of G. We show HK = KH

Let, x € HK be any element

Then, x'e HK (as HK is a subgroup)
= x'=hk forsomehe H kekK
= x=0k'=k"r'eKH

Thus, HKc KH

Again let y € KH be any element

Then, y=kh forsomeke K he H
= yl=hn'k'e HK
= yeHK (as HK is a subgroup)
= KHc HK

Hence, HK=KH.

Conversely, let HK = KH.
Let, a, b € HK be any two elements, we show ab~! € HK
a,b e HK = a=hk, forsomeh,, h, e H

Then,

Now,

Thus,

b= hk, ky ke K
ab™'= (hik)) (hyk)) = (hk)) (k3'hy")
= h(kky") by

(k"' e KH= HK
(kik;“Yhy' = hk  for some h € H, k € K
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soggf, & flals(bairrll%r}}l/lcgn]l{position +, we define

H+K={h+k|heHkeK}.

Theorem 1.17: If H and K are finite subgroups of a group G then
_ o(H).o(K)

o(HK) o HAK) ’
Proof: Let D = H N K then D is a subgroup of K and @n the proof of
Lagrange's theorem, 3 a decomposition of K into disjoint right cosets of D in
K and

K= Dk, v Dk, U ... U Dk,

o(K)
andalso t¢= oD)

t
Again, HK= H(u Dk;) and since D c H, HD =H
i=1

t
Thus, HK= U Hk; = Hk; O Hk, U ... U Hk,

i=1
Now no two of Hk,, Hk,, ..., Hk, can be equal as if Hk; = ij for i, j
then kk;' € H = kk;' e HNK = kk;' € D = Dk;= Dk;
which is not true.
Hence, o(HK) = o(Hk)) + (Hk,) + ... + o(Hk)
= o(H)+ o(H) + ... + o(H)
t.o(H)
_ o(H).o(K)
o(H NK)
which proves the result.
Aliter: We have HK = {hk | h € H, k € K}.
Let H N K = {x, x,, ..., x,,} and suppose o(H) =r, o(K) = s
Now hk = (hxi)(xl-‘lk) eHK Vi=1,2,..,n
Also, hx;e H, x'ke K asx; € Hand K

Thus, hk= (hx) (' k) € HK ¥ i=1,2, ., n

or that 4k can be written in at least n different ways. We show these are
the only n ways that ik can be expressed as an element of HK.

Suppose hk= hk,




| ‘
k,= x,»’llk

and thus hk= hk, = (hx))(x7'k)

Hence each Ak can be written in exactly n different ways.

Since 4 can be chosen in r ways, £ can be chosen in s ways, we find 7k

. IS
can be chosen in — ways.
n

Thus, o(HK) = % = %.

Noteo(HNK)>2lasHNnK=#@pasee HNK.
Corollary: If H and K are subgroups of a finite group G such that o(H) >
4f0(G), o(K) > .fo(G) then o(H N K) > 1.
Proof: We have,

0(G) > o(HK) = 2UNK) _ oG) Ao(@) _ _o(@)
> o(HNK) o(H N K) o(H NK)

= o(HNK)> 1.

Example 1.15: Suppose G is a finite group of order pq, where p, q are
primes and p > q. Show that G has at most one subgroup of order p.

Solution: Suppose H, K are two subgroups of order p.
Then, as o(H N K) | o(H) = p, we find
o HNK)=1orp
If, o(HnNK)=1,then

_oH).oK) _ pp _ > _
o(HK) m == =p°>pq=0(G)

[p>q = p*>pql
which is not possible. Hence o(H N K) = p = o(H)
andas HNnKc H,wefind HNK=H
Similarly, H n K = K and hence K = H.
There exists at least one subgroup of order p. A group of order 15 will
have only one subgroup of order 5.

Note: We have defined the product HK of two subgroups H and K. The same
definition can be used for the product, even if H, K happen to be subsets of G.

Example 1.16: Let H, K be subgroups of G. Show that HK is a subgroup
of G if and only if HK = KH.
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(HK) (KH) = HKK)H
= H(KH)=H(HK)
(HH)K = HK

Then, HK is a subgroup of G.

Cyclic Groups

Definition: Order of an element : Let G be a group and @ € G be any element.
We say a is of order (or period) n if n is the least +ve integer such that,
a" = e. If binary composition of G is denoted by +, this would read as na =
0, where 0 is identity of G.

Ifit is not possible to find such n, we say a has infinite order. Order of a will
be denoted by o(a). It is obvious that o(a) = 1 iffa = e.

Cyclic Group: A group G is called a cyclic group if 3 an element a € G, such
that every element of G can be expressed as a power of a. In that case a is
called generator of G. We express this fact by writing G=<a > or G = (a).

Thus G is called cyclic if 3 an element a € G such that, G= {a" |n € Z}.
Again, if binary composition of G is denoted by +, the words 'power of a'
would mean multiple of a.

Note we are not saying that generator is unique. Indeed if a is generator so
would be a!. A simple example of a cyclic group is the group of integers under
addition, 1 being its generator.

Again the group G = {1, -1, i,—i} under multiplication is cyclic as we can
express its members as i, i2, i, i*. Thus i (or — i) is a generator of this group.
Case 20: The group Z, = {0, 1, 2, ... , n — 1} addition modulo n(n > 1) is
acyclic group. 1 and —1 =n — 1 will be its generators. But it can have more
generators besides these. (Refer Theorem 1.30 ahead).

Consider, Zg = {0, 1, 2,...7} addition modulo 8

Then we can check that 1, 3, 5, 7 will be generators of Zg

Notice that,

31=3,32=3®3=6, 33=303®@3=1

3#=3@®3®3®3=4andsoon

ie.,<3>=1{3,6,1,4,7,2,5,0} or that 3

is a generator of Zg. Observe also that 1, 7 and 3, 5 are each others
inverses.

On the other hand, U, , the group under multiplication modulo # is not
cyclic for every n. For instance Us is cyclic. But Uy is not cyclic.




These are all elements of G and are »# in number.

Suppose any two of the above elements are equal

say a =a withi>j

Then, a'.a7=e = a7 =e

But 0 <i—j<n-1<n,thus 3 a positive integer i — j, such that,
a7 = e and i —j < n, which is a contradiction to the fact that o(a) = n.

Thus no two of the above n elements can be equal, i.e., G contains at
least n elements. We show it does not contain any other element. Letx € G
be any element. Since G is cyclic, generated by a, x will be some power of a.

Let x=a"

By division algorithm, we can write

m= nqg+r where0<r<n
Now, am=a"""=(a".a"=el. a" =a"
= x=a" where 0 < r<n

i, xisoneofa’=e, a, d? ..., a"!

or G contains precisely n elements

= o(G) =n=o(a)
Case (ii): o(a) is infinite.
In this case no two powers of a cangp equal as if a” = a” (n > m)
then a"™ = e, i.e., it is possible to find @ positive integer » — m such that,
a" ™= e meaning thereby that a has finite order.

Hence no two powers of a can be equal. In other words G would contain
infinite number of elements.

Example 1.17: If a € G be of finite order n and also a™ = e then show
that n | m.

Solution: Let o(a) = n, then by definition # is the least positive integer such
that, " = e.

Suppose a™=e forsomem
By division algorithm, m =ng +r, where 0 <r<n
am=q"tr
= e=d".a=@).a=¢el.a"=a"
where 0<r<nm

Since # is such least positive integer, we must have »=0
ie., m=ng or thatn|m.
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%en mglln|l,_” . = [=mr, [ =nr,
ow, (ab) =a'b' (G is abelian)
= agMpl=¢. e=¢
= o(ab) |1
= k|l

Example 1.19: Ifin a group G @’ = e, aba™' = b* for a, b € G then show
that o(b) = 31.
Solution: We have »* = aba™!
= b*= (aba™) (aba™)
= ab(a'a)y"b* ab™" = ab®a™!

= a(aba™') a’!
= b*=a?ba?
= b8 = (a’ba?) (a*ba?®) = a’b’a’?

= a*(abaMa? = a*ba

= b'% = a*ba* (as above)
= b?=adba’=b asa’=e
= b'=e = 31 is amultiple of o(b)

Since 31 is a prime number, it is the least positive integer such that »>' = e
= o(b) =31.

We are, of course, taking b # e.

Theorem 1.19: 4 sii group of a cylic grm%is cyclic.

Proof: Let G=<a >and let H be a subgroup of G. If H= {e}, there is nothing
to prove. Let H # {e}. Members of H will be powers of a. Let m be the least
positive integer such that, «” € H. We claim H=<a" >.

Letx € Hbe any element. Then x = a* for some k. By division algorithm,
k=mqg+rwhere 0 <r<m

= r=k—mq
=a" =d.amM=x.(a)eH
But m is the least positive integer such that, a” € H, meaning thereby that
r=0.
Thus, k= mq
orthat  x = akF= (a")




Also mZ c nZ ifand only if #n|m.SomZ =nZ if and only if
m = £n.
Case2l: Let H=<a>={an|n € Z} = dZ

K=<b>={bm|m e Z} =bZ
be two subgroups of < Z, + >, then Z being abelian, H + K=K + H
= H+ K is a subgroup of Z.
[Note here HK = H + K].
We show H + K = <d > = dZ, where d = g.c.d.(a, b)

Now, xe H+ K

= xe<a>+<b>

= x=an + bm, n,meZ

= xe<d>lasd|a,d|b=d|an+bm = d|x]
Thus H+ K c <d>.

Again,y € <d > =>y=td

= y=tax+by)=atx+btye H+K
Hence H+K=<d>
ie., al + bZ = (a, b)Z.
Theorem 1.20: 4 cyclic group is abelian.

Proof: Let G=<a>.Ifx, y € G be any elements then x = a”", y = a™ for
some integers m, n.

Now xy=a".a" =a"™"" =a""=qa" . a"=y.x

Hence G is abelian.

Note: In view of the above result, all non abelian groups are non-cyclic.
< Q, +> the group of rationals under addition serves as an example of an

abelian group which is not cyclic. For, suppose . € Q is a generator of Q,
n

then any element of Q should be a multiple of 2 Now 3i € Q,andif 2 is
n n n

a generator, we should be able to write 3i =k, for some k
n n

Which is not possible as &, m are integers, whereas % is not. Hence no

element can act as generator of Q.
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Theorem 1.21: If G is a finite group, then order of any element of G divides
order of G
Proof: Let a € G be any element.
Let H= {a" | n an integer}
then H is a cyclic subgroup of G, generated by a, as
x,ye H=x=ad"y=ad"
xy‘1 =ag".am"=a"" e H
By Lagrange’s theorem o(H) | o(G). But o(H) = o(a)
: o(a) | o(G).
Corollary: If G is a finite group then forany a € G
a’® =¢

Proof: o(a) | o(G) = o(G) = o(a)k For some k
Now, a®@ = qo@k = (gol@k = ok = ¢
Thus any element of a finite group, has finite order (which is less than or
equal to the order of the group). Converse is, however, not true.

Case 22: The group < Z, +> of integers is an example of a group in which
each non identity element is of infinite order.
As another example consider G= {2": r=0, £1, ...}

then we know G forms a group under multiplication. No non-identity element
in G has finite order as

@y =1 iff 2" =1
iffr=0o0rn=0.
Note: If G is a finite group of order n and 3 an element a € G, such that,
o(a) = n then G is cyclic, generated by a. Clearly o(a) = n gives a” = e, and
lesser powers not equal to e and thus G = {a, @, ..., a" = e}.
Example 1.20: Let G be a finite group whose order is not divisible by 3.
Suppose (ab)® = a’b> for all a, b € G, then show that G is abelian.
Solution: Let a, b € G be any elements.
Then as, (ab)® = a*b®
we get ababab = a’b’
= baba =a*b* (cancellation)
= (ba)* = a*b? (D)




Considernow,  (a'b72ab?’= (a")? (b2ab?)? = a3 (b~2ab?)?
a> (b2a*h?)
= a3 (b ?h*a’) from Equation (2)
=a’d=e
= o(a'b?ab?) |3
= o(a'b2ab?) =1 or 3
If o(a'b2ab?) = 3 then 3 | o(G) which is not true.

Hence o(a'b2ab?) =1
=  a'bab*=e
= ab’ = b%a ..(3)

Again from, (1)  (ba)*=a*bh*>=a(ab?®)=a(b’a) using Equation (3)
= (ba) (ba) = ab*a
= bab = ab* = ba = ab
or that G is abelian.
Theorem 1.22: Converse of Lagrange's theorem holds in finite cyclic groups.

Proof: Let G = < a > be a finite cyclic group of order 7.

Then, o(G)=o(a)=n
Suppose m | n. We show 3 a subgroup of G having order m.
Since m | n, 3 k such that, n = mk

Let H be the cyclic group generated by a*
then H is a subgroup of G and o(H) = o(a")

We show o(a) =m
Now, @y =a"=a"=e,  aso(a)=n
Suppose now, that (@ =e
Then, aft=e

= ola) |kt = n|kt
= km|kt = m|t
thus o(ay=m
which proves the result.
Note: One can go a step further here and show that such a subgroup (as taken
above) would also be unique. Suppose H' is another subgroup of G such that,
o(H") = m. Since H' is a subgroup of a cyclic group G = <a >, H' will be
generated by some power of a.
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= g"’ = amkq +mr — (amk)q anr

a™ (o(a) =n = mk)

Now, o(H)=o0(a?)=m
= (aP)"=e
thus a"'=e where 0 < mr<n
Butthis = mr=0 (as o(a) =n)
= r=0 asm=0
hence p=kq
Thus H'=<a?>=<gli>c<agk>=H
But o(H")= o(H)
= H=H'.
We thus conclude:

Theorem 1.23: If G is a finite cyclic group of order n then the number of
distinct subgroups of G is the number of distinct divisors of n, and there
is at most one subgroup of G of any given order.

Proof: So subgroups of G are of the type < a* > where k is a divisor of n and
< a"™ > is the unique subgroup of order m. As a particular case, suppose
G = <a > has order 30. Since divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30, 3
eight subgroups of G, namely

<a>={e,a,d* ..,a? =G
<a*>={e, a* a*, ..., a*®}
<a*>={e a’ a° ..., a*}

<a’>,<a> <a'%> <a>and <a* >= {e} having order
30, 15, 10, 6, 5, 3, 2, 1.

Consider again, the cyclic group Z,, = {0, 1, 2, ..., 29} under addition
modulo 30 . 0(Z,,) = 30 and as 30 has 8 divisors 1, 2, 3, 5, 6, 10, 15, 30,
Z,, will have eight subgroups namely

<1>={0,1,2,..,29} =7Z,,
<2>=1{0,2,4,..28}
<3>={0, 3,6, .., 27}
<5>,<6><10> <15> <30>= {0}
having order 30, 15, 10, 6, 5, 3, 2, 1.
In view of the above theorem these would be the only subgroups of Z,.




and let H = {a" | n an integer} then H 1s a cyclic subgroup ot G.
o(H)[o(G) = o(H)=1orp
But, olHy#1asa e H,a+e,

Thuso(H)=p = H=G,i.e., Gisacyclic group generated by a. Since
a was taken as any element (other than e), any element of G can act as its
generator.
Corollary: A group of prime order is abelian.

Theorem 1.25: 4 group G of prime order cannot have any non-trivial
subgroups.

Proof: If H is any subgroup of G then as o(H) | o(G) = p, a prime
Wefind o(H)=1orp
ie., H={e} or H=G.

Theorem 1.26: 4 group of finite composite order has at least one non-
trivial subgroup.

Proof: Let o(G) =n=rs where 1 <r,s<n
Sincen>1,3e#a e G. Consider a’.

Case (i): a" =¢

then o(@)<r,leto(a)=k
then I <k<r<n (k>1,as a#e)
Let, H={a,a% a ..,d"=¢}

then H is anon-empty finite subset of G and it is closed under multiplication,
thus H is a subgroup of G. Since o(H) = k < n, we have proved the result.
Case (ii): a’ # e, then since (a”y’ =a™ =a"=a° 9 =¢
o(@) <s.Leto(a)y=tthen 1 <t<s<n.
If we take K = {a’, a”..., a” = e} then K is a non empty finite subset
of G, closed under multiplication and is therefore a subgroup of G. Its order
being less than n, it is the required subgroup.

Theorem 1.27: If G is a group having no non-trivial subgroups then G
must be finite having prime order.
Proof: Suppose G has infinite order.

Then we can find a € G, such that, a = e.

Let H=<a >, then H is a cyclic subgroup of G and H # {e}. But G has
no non-trivial subgroups.

Thus, H=G

= G=<a>
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Again < a?> > # {e}, because then a*> = e would again mean that o(a) is
finite (£ 2).

Thus < @® > is a non-trivial subgroup of G which is not possible. Hence
o(G) cannot be infinite.

So o(G) is finite and as it cannot be composite by previous theorem, it
must be prime.

Summing up, what we have done above proves

Theorem 1.28: The only groups which have no non-trivial subgroups are
the cyclic groups of prime order and the group {e}.

All this time we have been talking about cyclic groups and their generators
without being very sure as to how many generators a cyclic group could have.
To resolve this, we consider

Theorem 1.29: An infinite cyclic group has precisely two generators.

Proof: Let G =< a > be an infinite cyclic group.

As mentioned earlier, if @ is a generator of G then so would be a™'.

Let now b be any generator of G,

Then as b € G, a generates G, we get b = a" for some integer n

Again as a € G, b generates G, we get a = b™ for some integer m
= a=b"=(a")"=a™
= a"!'=e = o(a) is finite and < nm — 1

Since o(G) = o(a) is infinite, the above can hold only if
nm—-1=0= nm=1

1 .
= m=— orn=x=1 as m, n are integers.
n

ie., b=agora’l

In other words, a and a ! are precisely the generators of G.

Question to be answered now is how many generators a finite cyclic
group would have. Before we come to the answer we first define what is popularly
known as the Euler's @ function (or Euler's totient function).

For any integer n, we define @(1) = 1 and for n > 1, @(n) to be the
number of positive integers less then # and relatively prime to n. As an example
o(6) =2, ¢(10) = 4, etc.

Note 1, 5 are less than 6 and relatively prime to 6 and 1, 3, 7, 9 (four
in number) are less than 10 and relatively prime to 10, etc. Obviously, ¢(p) =
p—1,if pisaprime. The following two results can be helpful at times.




¢(mn) = o(m) ¢(n), (m, n =2 1)
We are now ready to prove

Theorem 1.30: Number of generators of a finite cyclic group of order n

is @(n).
Proof: Let G = < a > be a cyclic group of order n
then o(a)=0(G)=n

We claim a™ is generator of G iff (m, n) = 1, i.e., m, n are relatively
prime.

[For instance, if n = 8, then @(8) =4 will be number of generators as
we will show a, a3, @’, a” will generate G and no other element can generate
G. So here m can have values 1, 3, 5, 7].

Let now a™ be a generator of G for some m

Since ae G, a=(a™)' for some i

=a"l=e = o(a) | mi -1

=n|mi—-1

=>mi—1=nj for some integer j
ie., mi—nj=1

= (m,n)=1.

Conversely, let (m, n) =1
Then 3 integers x and y such that,
mx +ny =1
=gt =g
=a™.a% =a
=>a™ (@Y =a
=>a™=a as ola)=n
=a=(a")
Since every element of G is a power of @ and a itself is a power of a”,
we find @™ generates G, which proves our result.

Note: We thus realize that if a is a generator of a finite cyclic group G
of order n, then other generators of G are of the type a” where m and n are
coprime.

In fact an integer & will be a generator of Z,, if and only if k and # are
coprime, and thus generators of Z, would indeed be the elements of U,,.
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Then U, is a group under multiplication modulo .
By definition of Euler’s ¢-function,

o(U,) = ¢(n).
Ifn=1, then p(n)=@(1)=1and a®” =a' =1 (mod 1) (as 1 divides
a-1)
Let n>1
Now by Euclid's algorithm

a = nq + r, for some integers ¢, r where 0 < r <n.
Ifr=0thena=nq = n|a = (a,n)=n>1, a contradiction

S 1<r<n
Also (r,m)=d = dl|r,d|n = d|a-nq,d|nq
= dla,d|n
= d|(a,n)=1
= d=1
(r,nm)=land 1 <r<n
=>rel,
Also a=nq+r = a=r(modn)

It follows from Lagrange's theorem that,
r®r®..®r=identity of U, =1 [a” = ¢]
where ® is composition multiplication modulo # in U, and ¢(n) is order
of group U,,.
: " —ng, =1, for some integer ¢,
= %M =1 (mod n)
= %" =1 (mod n)
s0, a=r(modn)= a®” =r°" (mod n).
Theorem (Fermat’s) 1.32: For any integer a and prime p,
a? = a (mod p).
Proof: If (¢, p) = 1, then by Euler's theorem
a®? = 1 (mod p)
= a’'=1(modp) asop) =p-1
= a?=a(modp)
If (a,p)=p,thenp|a = p|a’

pla’—a




Solution: By Lagrange's theorem such a subgroup can exist.
We first claim that all elements of G cannot be of order 2. Suppose it is so.
Let a, b € G be two different elements with order 2.
Let H=<a>, K=<b> be the cyclic subgroups generated by a and b
then o(H)y=2,0(K)=2
Since all elements of G are of ordes2, it must be abelian.

HK = KH = HK 15a subgroup of G
o(H).o(K)  2x2
oHNK) 1
[Note H N K = {e} as a = b]
By Lagrange's theorem o(HK) would divide o(G)
i.e.,4 | 10 which is not true hence our assumption is wrong and thus all elements
of G cannot have order 2.
Again, since G is finite, o(a) | o(G) foralla € G

=4

and as o(HK) =

= 3 at least one element a € G, such that, o(a) =5 or 10.
If o(a) = 5, then H=< a > is a subgroup of order 5.
If o(a) = 10, then H = < a? > is a subgroup of order 5.
In any case our result is proved.
Example 1.22: Let G be a group such that intersection of all its subgroups
which are different from {e} is a subgroup different from {e}. Prove that
every element of G has finite order.
Solution: Let @ € G be any element.
Ifa=e, 0(a)=1
Let a # e and suppose o(a) is not finite.
Consider the cyclic subgroups <a >, <a’>>,<a>>, ...
Since each < a’ > # {e} as o(a) is not finite
<a>n<a’>n<a’>n..# {e} by given condition.
As intersection of cyclic subgroups is cyclic subgroup
n< a' > =< g™ > for some integer m

Again, <a">c <a > forall i
In particular, <a”> c <a’" >
But <g?m>c <a">

(multiples of 2m are multiples of m)
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= o(a) is finite, a contradiction.
Hence the result follows.

Theorem 1.33: If G is a finite group of order n and for every divisor d of
n 3 unique subgroup of order d, then G is cyclic.
Proof: Let d | n.

Define A(d) = {x € G| o(x) = d}

Suppose A(d) # ¢. Then 3 x € G such that, o(x) = d.

Let H=<x>. Then o(x) = o(H) = d. This gives ¢(d) generators of H
or ¢(d) elements of order d in H. If 3y € G,y ¢ H such that, o(y) = d, then

K=<y>isasubgroup of order d. It is given that G has unique subgroup of
orderd. So, K=H = y € H, acontradiction. Thus, the number of elements

in G of order d is ¢(d).
So, o(A(d)) = o(d) ifAd)# ¢
and o(A(d)=0 ifA(d)=¢foralld|n
Clearly, G = ;‘J A(d)

Letd|, ..., d, be all divisors of n.

Suppose A(d)) = o, ..., A(d) = ¢

and Ad; )20, .., Ad)# ¢

(Note, if A(d) = ¢ for all d | n, then o(G) =0, a contradiction. So, A(d)
# ¢ for some d | n)

o(A(d)) = ... = o(4(d;)) = 0
and  o(d(d;.)) = @(d; 1 ) .., 0(A(d)) = 9(d,)
Now G-= ;‘iA(aO = 0(G) = Y o(A(d))

din
= n=09d;)+t..1+ed)

D o(d)

dln
= @)t .. o) T o(di )+t o(d)=9(d; )+ ...+ o(d)
= ¢(d)) + ...+ ¢(d,) =0, a contradiction
So, A(d) # ¢ for all d | n. In particular
An)#¢ = dx € A(n) = Jx € Gsuchthat,o(x)=n=0(G) = G
is a cyclic group.

By Example 1.21, n

Example 1.23: Show that in a cyclic group of order n, 3 ¢(m) elements of

order m for every divisor m of n. Deduce that n = Z(p(d).
dln




The ber of elements of order m in H equals the number of generators
of H. But umber of generators of H is (). So, the number of elements
of order m in His @(m). If k € G such that, o(k) =m, then K = < k > has order

m. Since G, has unique subgroup of order m, K = H.
. k € H. So, all elements of order m belong to H.
This gives total number of elements of order m in G to be (m).
Let a € G such that, o(a) = d. Then d | o(G) = n.
From above 3 ¢(d) elements of order d in G. In this way, count all elements

of G to get n =Y o(d).
din

Example 1.24: Let G be a group.

Show that o(a") = % foralla e G
o(a),n

where n is an integer and (o(a), n) = g.c.d. (o(a), n).
Solution: Let o(a) = m.
Let d=(m,n) = %, % are integers

(an)m/d — (am)n/d — en/d =e
Let @)y =e=> d"=e
= o(a) | nr
= m|nr

= =

m m n
= —r as( j=l

>
= rz-
o m__oa
=T e
Example 1.25: Let G be a group. Suppose a, b € G, such that,
(a) ab = ba
(b) (o(a), o(b)) = 1.
Show that o(ab) = o(a) o(b).

Solution: Let o(a) = m, o(b) =n
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= ar=b"

= (ar)n = (b—r)n — (bn)—r =e

= o(a)|rn

= m|rn

=>m|r as (m, n) =1
Similarly, nl|r

Le.m. of (m & n) | r
mn|r = mn<r

Uy

o(ab) = mn.

1.2.1 Normal and Subnormal Series
)

Definition: ﬂormal subgroup H of a group G is called a maximal normal
subgroup of G if H# G and there exists no normal subgroup K of G such that,
HcKcG.

Thus H# G is a maximal normal subgroup of G if whenever K < G such
that, H € K < G then cither K= H or K= G.

In fact, a subgroup H # G is called maximal subgroup of G if whenever
H < K < G then either K= G or K = H.

Case 23: 4, is a maximal normal subgroup of S;. 0(4;) = 3 whereas o(S;)
= 6. Clearly there cannot be any subgroups of order 4 or 5 in S;. We also notice

$3 . S
that 0(73} =2, aprime and thus A_3 is a simple group.

Case 24: If Gis asimple group then it has no non-trivial normal subgroups and
so {e} will be a (and only) maximal normal subgroup in G.

Theorem 1.34: H is a maximal normal subgroup of G iff G/H is simple.

Proof: Let H be maximal normal in G. Any subgroup of G/H is of the form
K/H where K < G and H < K and also K/H is normal in G/H < K 2 G.

Thus any subgroup K/H will be non trivial normal subgroup of G/Hif H <
K <1 G, whichis not true as H is maximal normal. So G/H has no non trivial normal
subgroup and is, therefore, simple.
Conversely: Let G/H be simple. Suppose H is not maximal normal, then 3 a
normal subgroup K of G such that,

H c K c G and thus K/H will be normal subgroup of G/H where K/H —
G/H, a contradiction as G/H is simple.




Suppose G is not simple. Then it has at last one normal subgroup N # G,
N=# {e}.If Nis maximal normal, we are done. If not, then 3 at least one normal
subgroup M where N EM gG. If M is maximal normal, we are done. If not, we
continue like this. Since G is finite, it can have finite number of subgroups and
hence the above process must end after a finite number of steps. Hence G will
have a maximal normal subgroup.

Example 1.27: Let H, K g two distinct maximal normal subgroups of G
then G = HK and H N K is a maximal normal subgroup of H as well as K.
Solution: Since H, K are normal, HK is normal in G.

Since H ¢ HK < G and HK is maximal normal.

We must have HK=H or HK=G

Similarlly, HK =K or HK =G

Hence HK=G (as HK # G = HK = H, HK = K = H = K).

Again by isomorphism theorem

"H HNK

. . . G . .
Since H is maximal normal, 7 s simple

ie., is simple

NK
= Hn Kis maximal normal in K
Similarly, it is maximal normal in H.

Example 1.28: Show that (Q, +) has no maximal normal subgroup.
Q

Solution: Suppose H is a maximal normal subgroup of (Q, +), then i is simple

Q

and so i has no non trivial normal subgroup i.e., it will have no non trivial subgroup

(Q being abelian, all subgroups are normal). Thus % is a cyclic group of

prime order p.
LetH+x e % be any element

Then pH+x)=H
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p
Qc Hc Q = H=Q, a contradiction.
Hence the result follows.

Definition: Let G be a group. A sequence of subgroups
{e}=Gyc G, cG,C ... cG,=G ..(1.3)
is called a normal series of G if G, is a normal subgroup of G,, ,,
vVi=0,12,.,n-1.
Gi+1

The factor (quotient) groups o (V i) are called the factors of the normal
series.

Here each G, is normal in G,, |, although it may not be normal in G. Also
itis possible that G, = G, , for some i. The number of distinct members of Equation

(1.3) excluding G is called the length of the normal series.

The above is expressed in short by saying that N= (G, G, ......... ,G,)
is a nom@al series of G. If N and M are two normal series of G such that,
N < M then M is called a refinement of N (a proper refinement if N - M).

Note: Some authors prefer to call the above a subnormal series. It is then called
anormal series if G, is normal in G V i.

If G is any group then
{e} =G, G, =G
is an obvious example of a normal series.
Case 25: {I} < Ay < S, is a normal series of S;.
{I} cEcK,c 4, S,is anormal series of S,, where
E= {1, (12)(34)}, K, = {1, (12)(34), (13)(24), (14)(23)}

1.2.2 Composition Series
Definition: Let G a group. A sequence of subgroups
{fe} =G,c G, cG,C ... cG,=G
of G is called a composition series of G if
(i) Each G; is normal subgroup of G,,, (i=0, 1, ....... n—1),
(@) G;# G, for any i and
G

(i) is a simple group V i.

1




We notice that a composition series is a normal series (converse being not
true) andg a composition series has no ‘Gaps’.

A p can have more then one composition series.
Case 26: {0} c<8>c<4>cZ
is a normal series of the group (Z, +), but it is not a composition series as <4 >
is not maximal normal in Z. Notice <4 >c<2>c Z.

Case 27: Consider the quaternion group G. Then
{1} c{l,-l}c{l,-1,i,-i} <G
{I} c{l,-1} c{1,-1,j,—j} G
{1} c{l,-1} c{l, -1,k -kl cG
are all composition series of G. If we write the first series as G, < G, < G,

c G then
o£=§=2, ogz-=i=2, 0£L=2
G,) 4 G) 2 Go

i.e., all the factor groups are of prime order and thus have no trivial normal subgroups
and hence are simple.

The existence of a composition series is ensured by
Theorem 1.35: Every finite group G (with more than one element) has a
composition series.
Proof: We use induction on o(G).

If o(G) = 2 then {e} = G, < G, = G is (only) composition series of G.

Notice G _G = G and as o(G) =2, a prime it is simple group and, therefore,

Gy fe}

G is simple
Go pie.

Suppose now that the result holds for groups with order less than o(G). We
show result holds for G. If G is a simple group then {e} — G is the composition
series for G. Suppose G is not simple.

Since G is finite, it has a maximal normal subgroup N # G and as o(N)
< 0(G), result holds for N which then has a composition series, say,

{e}cN, cN,c..cN

Then the series

{e} €N, c N, c...c N c G will be a composition series for G.

Hence the result holds.

Self - Learning
Material

49




group of Equation (1.5).

relation.

1.2.3 Jordan-Holder Theorem

C,:{e}=Nyc N, c..
Cy:{e}=HycH c..
be two composition series of G. Then m

Ni+1

i—>iof0,1,2,.., -1 such that,

i
i.e., C, and C, are equivalent.

Proof: Let o(G) =n. We use induction o

Hence result holds in this case.

Then these are composition series

Thus, t-1=m-1 = t=m

some permutation.
N, G G
NOW = = =
’ N t-1 N t-1 H m—1
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Then K is a finite group and has a composition series. Let

factors of Equation (1.4) and factors of Equation (1.5) such that the corresponding
factor groups are isomorphic. In other words (1.4) and (1.5) will be equivalent
if t=m and each factor group of Equation (1.4) is isomorphic to some factor

Also in this case, we write C; ~ C,. It is easy to see that ~ is an equivalence

We have seen that a finite group can have more than one composition series.
The next theorem shows the equivalence of any two such composition series.

Theorem 1.36 (Jordan-Holder): Let G be a finite group. Let

cN_,cN,=G ..(1.6)
cH, cH,=G (L7
= t and there exists a permutation

H

g <i<tl
H,

1

nn.

Ifn=2, we have seen (Theorem 1.35) G has only one composition series.

Let now the result hold for groups with order less than o(G).

Case (i) N_, =H,,_,. Consider the series
{fe} =Nyc N, c..cN_ ..(1.8)
{e}=HycH c..cH, =N, ..(1.9)

for finite group N, | and as o(NV,_ )

< 0(G), the result holds for Equation (1.8) Equation and Equation (1.9), i.e.,
Equation (1.8) and Equation (1.9) are equivalent.

and also factors of Equation (1.8) and Equation (1.9) are isomorphic under

H,
Hmfl




{e} =K, c K, ... c K, = K be a composition series of K.
Since N, ;, H,, , arenormalin G,K=N, ;" H,_, will be normal subgroup
of G
Again,as N, |, H,, | are maximal normal subgroups of G
N ,H, =G
and N_, N H,_; = K is maximal normal subgroup of N,_, and H,,_,.
(Refer Example 1.27)
So, KcN,_,, KcH,_,
Consider now the series,
{fe} =K,c K, c ... cK,=KcN_,cN=G ..(1.10)
{fe} =K, c K, c.... cK=KcH, cH,=G..(.11)

We show these are composition series of G. For this we need show that

-1 H,_ .
—— and I’; L are simple.

K
By isomorphism theorem
N s NaHyy G
Ny Hyy Hyy Hy
N, .. H
So, o 2 Y andsimilady —22t = 9 (1.12)
Ny Hyy Hyy NeynHyy o Ney
G H, . . . . - .
Now, = is simple as Equation (1.7) is a composition series
Hyy Hpyy
of G
N
= NoinH, 18 simple
- me
ie Mot is simple
€., X ple.
Similarly, I'?l is simple.

Now Equation (1.10) and Equation (1.11) would be equivalent as
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N}_,#’G‘S\Hm
Ni-1 Hm-1
| e K ~

N2 K¢ | Hy

N H
A
No={e}=Ho =Ko

they are equivalent. Hence they have same length, i.e., =5 +2
Similarly, (1.7) and (1.11) give m=s+2
= t=m

(1.11) = (1.6) ~Equation (1.11)

as ~ is an equivalence relation.
Hence the theorem is proved.

of order 6 and show they are equivalent.

= {e, @’}
Composition series of G will be
{ec<a*>cG

{et c<a*’>cG

3

<a’ > 2

{e}
and so the factors are simple groups.

3
Again, G =7, 42 x<gd>=21,
<a*> {e}
¢ =z, 4 x<>27,
2
<a®> {e}
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Example 1.30: Find all the composition series of Ly, and show they are

Now Equation (1.6) and Equation (1.10) are two composition series of N,
= G and applying case (i) to these (second last terms are equal =N, ;) we find

Now  Equation (1.6) ~ Equation (1.10), Equation (1.10) ~ Equation

Also Equation (1.7)~(1.11) thus Equation (1.6) ~ Equation (1.7)

Example 1.29: Find all the composition series of G = < a >, a cyclic group

Solution: G = {e, a, a> @*, a*, a°}. Since o(G) = 6 has four divisors 1, 2, 3,
6, G will have four subgroups, namely {e}, G and < a®> >= {e, a?, a*},<a> >

3
Notice o[ G ] =6 =3, 0(<a >] = o(< @® >) =2 which are primes




jvalent.
g% lll‘ﬁlofl’? Z5,=1{0,1,2,...,29} addition modulo 30. Besides {0} and Z,, the

other subgroups of Z are
<2>={0,2,4,6,..28}
<3>={0,3,6,..,27}
and  <5><6><10><15>

Composition series will be

{0} c<15>c<5>c G
{0} c<10>c<5>c G
{0} c<6>c<3>c G

{0} c<15>c<3>c G
{0} c<10>c<2>c G
{0} c<6>c<2>cG

G, .o
Here each —(‘;’-L, factor group is simple.

1

<5>
<15>

. <5> o(<5>)
For instance, o =

S =3, aprime and so
<15>) o<15>) 2 4P
is simple.

Equivalence of any two composition series can be shown as in the previous
example.
Theorem 1.37: An abelian group G has a composition series iff G is finite.

Proof: If G is finite, we have already shown that (Theorem 1.35) G has a

composition series.

Conversely, let G be an abelian group and suppose it has a composition series
{e} =G,c G, cG,C ... cG,=G

i

then since G is an abelian simple group Vi=1,2, ... k

it will be a group of prime order, say, p;

(G _
Thus, OLGH) e

and by above problem then o(G) =p,p, ... p;
Hence G is a finite group.

Corollary: An infinite abelian group has no composition series.

Hi+1
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such that, each /; is a normal subgroup of /;,; and H; is abelian
vVi=0,1,2,..,n-1.
Also then, the series Equation (1.13) is referred to as solvable series of G.

Thus G is solvable if it has a normal series (H,, H,, ..., H,) such that, its
factor groups are abelian.

Case 28: Any abelian group G is solvable. Since {e} = G, G, = Gis anormal

series for G where, % =~ (G is abelian.
e

Case 29: Every cyclic group is solvable.
Case 30: S;and S, are solvable. Since {/} — A, = S, is a normal series for S

. N 4 . .
where its factor groups A—3 and Ty are abelian as these are of prime order.
3

So S5 is an example of a non abelian group that is solvable.

{I} =K, c A4, S, will serve as the required normal series for S,. Notice
Ky
w

Note: Any non abelian simple group is not solvable. If G is simple, it has no
proper normal subgroup except {e}. So {e} < G is the only normal series of G

thatﬁsl( = 0(
3

4 ] =0(K,) =4 and we know a group of order 4 is abelian.

G G . . . . .
andas — =G, H is not abelian as G is non abelian. Hence G is not solvable.
e

{e}
We have defined commutator subgroup G’ of a group G.

Now let G’ be commutator subgroup of a group G.

And let (G') = G" = G be commutator subgroup of G’ and G® be
commutator subgroup of G») and so on then G™ is called the nth commutator
subgroup of G We use this to provide us with an equivalent definition of a solvable
group. ;

Theorem 1.38: A group G is solvable iff G = {e} ]@ some positive
integer n.

Proof: Let G be solvable. Then there exists a normal series




G

n—-1

G

n—1
= (@) cq,
ie., GYcda,

Againas 2L s abelian, we get G ,cG,, =G9cqG,,
n—-2

Continuing like this, we will get G < G, = {e}
which gives G = {e}.
Conversely, let G™ = {e}. Consider the series
{e} = G c Go-D c G2 c..C G® c G c GO =G
which will be a normal series for G, where
GGT(:) = (GGT(:))), is abelian V i
and, of course, G® < G¥D v
= Gissolvable
That solvabili Y is hereditary follows by.
Theorem 1.39: A subgroup of a solvable group is solvable.
Proof: Let H be any subgroup of a solvable group G.
Since, G is solvable, G™ = {e} for some positive integer .
Now, Hc G = H c G' = (H') c (G, i.e., H?Y ¢ G?
Continuing like this, we get H") G = {e}
= H" = {e}
= Hissolvable.
Theorem 1.40: Homomorphic image of a solvable group is solvable.

Proof: Letf: G— Hbe an onto homomorphism, where G is solvable. Then 3
a positive integer n such that, G™ = {e}

Leta, b € G be any elements, then f (@), f (b) € H
= f@f®) (f@)" (F) "' e H

Also, a,b e G=aba'b' € G' and as
flaba™ b7 =f(a) (&) (f (@) ()" € H', we find
f(G) < H as aba'b™! € G
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So H =f(G)
= (HY = (f(@) =[/(G)]=f(G") = f(G?)
or that H® = £(G®)
Continuing like this we get
H®™ = f(G™) =f({e}) = {e,} where ¢, is identity of H
i.e., His solvable.
Theorem 1.41: Quotient group of a solvable group is solvable.

Proof: Follows from above as a quotient group is a homomorphic image of the
group under the natural homomorphism.

Example 1.31: Let H be a subgroup of a solvable group G. If
{e} =Nyc N, c..cN,,cN,=G bea solvable series of G then
show that
{e}=NynHc N nHc..cN, ,nHcN,nNH=His asolvable
series of H. Hence show that H is solvable.
Solution: Letusput /,=N,nH, i=0,1,2,..,n.
Then we show that
{e}y=HycH cH,C ... cH,_ cH,=H (1)

is a solvable series for H.
Since N, S N,y we find NN H S Ny " H
ie., H <H, i=0,1,2,..,n-1

We show now — is abelian Vi = 0,1,2,..,n—1
i+l

N.
Defineamap 6:H,, — —N‘-"'-]-, such that,

0x)=xN, (i=0,1,2,..,n-1)
xeH, =NynH =>xeN,,xeH

Ni
Thus xN, € TH and 0 is well defined

Now 6(xy) = xyN, = xN, yN; = 0(x) 0(y) shows 6 is a homomorphism
Again, x e Ker6 < 0(x) =N,




H.
O(H,.) = 7k

ie. = 0(H,.,)

where 0(#,,,) is a subgroup of %, which is abelian and so 6(#,,,) is

1

. . . Hpyy .
abelian and hence because of the above isomorphism H;H is abelian.
i

Thus series Equation (1) is a solvable series of H.

Example 1.32: Let G be a solvable group and suppose H# {e} is a subgroup
of G then show that H' # H.

Solution: Suppose H' = H, then
HO = (HY =H = H # {e}
If H™ = H, then H") = H' = H # {e}
Thus by induction H" # {e} Vr>1

But G solvable = H is solvable => H") = {e} for some r> 1, a contradiction.
Hence H' # H.

Example 1.33: Show that a simple group is solvable if and only if it is abelian.

Solution: Let G be a simple group. Since G’ < G we find either G' = {e} or

G' = G. If G is solvable then G' # G so G' = {egThus G is abelian.
Conversely, if G is abelian then G’ = {e} and so G is solvable.
Example 1.34: Show that S, (n > 5) is not solvable.

Solution: IfS, is solvable then 4, is solvable. But 4, (n > 5) is simple. Thus by
above problem A4,, is abelian which is not true. [Notice (123)(234) # (234)(123)].

Hence S, is not solvable for n > 5.

Theorem 1.42: Let N be a normal subgroup of G such that, N and % are

solvable then G is solvable.

Proof: Let {e}=N,cN,c..cN, =N ~(1.14)
G G G G G G
=02 no— —

and {N} N ENENE S N N ..(1.15)
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which gives G, 2 G, Vi

Again by Third theorem of Isomorphism we have

Gi+1 ~ Gi+1/N
G; G;/N
G;y/N Giy

is abelian V i. Consider now the

Since -2 js abelian, we find
G,/N ;
series
{fe} =NycNc..cN,=N=G,cG,c..cG,=G
then it satisfies all conditions in the definition ofa ﬁvable series and hence it is
required solvable Equation of G showing thereby that G is solvable.

When we consider the series Equation (1.15), it is clear that G, G, ...,
are all subgroups of G containing H.

Note: We thus conclude that a group G with a normal subgroup N is solvable
if both N and G/N are solvable.

Example 1.35: Show that a finite p-group is solvable, where p is prime.
Solution: Let G be the given finite p-group, then o(G) = p" for some n > 0.

(
=1, then G is a group of prime order and thus it is abelian and so G
is solvable.

Suppose now 7> 1. We use induction on . Suppose that the result holds
for all groups with order p™ where m < n, then o(Z(G)) > 1.
Let o(Z(G)) = p', t > 1 (Notice o(Z(G)) | o(G) = p")
G

n
Thus, 0(—] =2 =p"~'=p* where s <n

26)

Since result holds for groups with order p™” where m <n we find %G)
is solvable.

Also Z(G) is solvable as it is abelian.

Hence by above theorem G is solvable.

Example 1.36: Show that a solvable group contains at least one normal
abelian subgroup H.




Now G’ # {e} asif G’ = {e} then G is abelian, which is not true. Hence
G"M={e},n=1
Let H= GV then H is a subgroup of G.

and as H' = G" = {e}, we find H is abelian and also as G"1 is normal
subgroup of G, we find H is the required subgroup.

Example 1.37: Show that a group of order pq is solvable, where p, q are
primes.

Solution: Let o(G)=pq.If p=gqthen o(G)=p? and thus G is an abelian group.
Hence G is solvable. Let now p > ¢g. Then number of Sylow
p-subgroups of G is 1 + kp where (1 + kp) | q,ie., 1 +kp=1orgq.

Ifl1+kp=¢q ‘enkp=q71:>p\(qf1)whichisnottrue,asp>q.

Hence 1 + kp =1 and there exists a unique normal Sylow p-subgroup, say
H, of order p.

Since p is prime, H will be cyclic and so abelian and hence solvable.
. G G . . G . .
Again o [—j =g = — isabelian= — issolvable => Gis solvable.
H H H

Example 1.38: Show that the following two statements are equivalent:
(a) Every group of order p™q", where p, q are primes, is solvable.
(b) Simple groups of order p®q” are cyclic groups of order p or q.

Solution: (a) = (b)

Let G be a simple group of order p%¢P. Since G’ is normal in G, we find
either G' = {e} or G' = G.

Since G is solvable, by (¢) G’ = {e} and so G is abelian.

Let Hbe a Sylow p-subgroup of G. Then H will be normal as G is abelian
and o(H) = p*

Again, G simple means either H= G or H = {e}

If H= G, there a =1, B = 0 and so G is cyclic of order p

If H= {e} then if K is sylow g-subgroup of G, it will be normal and as
before, either, K = G or K = {e}

If K= G, then a=1, p =0 and so G is cyclic of order g.

If K = {e}, we get the case where oo = 0, B = 0 forcing G = {e} which
isnot true as G is simple. Hence the result follows.
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o, B. Bﬁ (b), each factor would, therefore, be cyclic and so abelian. Hence G
is solvabl

Note: There is a famous theorem of Burnside in which it is proved that every
group of order p”'q" where p, q are primes, is solvable.
1.3.1 Nilpotent Groups

Definition I: A group G is called nilpotent if it has a normal series

e} =GycG cG,c ... cG =G

such that, igz{i] Vi=1,2,..,n
Gi—l i-1

Definition II: We first define what we mean by nth centre of a group. Let G be

a group and Z(G) be its centre. We call Z(G) the first centre of G and put

, then centre Z[ G ] of G
G)’ Z(G) 7Z(G)

Z(G)=Z,(G). Consider now the group ZG
G
is a normal subgroup of ——
2(G)

(G\ G

So, LZI(G)J 7,(G)

Since any normal subgroup of % is of the form % for aunique normal

is of the type

subgroup H of G, we find any normal subgroup of G
1

Z,(G) Z,(G)

where H 2 G
We write H = Z,(G) (Called second centre of G)

Then Zy(G) < G such that, z[ G ]= 29

Z(G))  Z(6)

Continuing like this we get Z (G) 2 G, (called nth centre)

Z,(G) G
h that, =7 > 1
such thai 7. [Z,,_I(G)J n

Let us write Z(G) = {e}, and thus




@ say a group G is nilpotent if Z,,(G) = G for some m. Also in that case
the smallest m such that, Z, (G) = G is called the class of nilpotency of G.

We first show the equivalence of the two definitions.
Definition I = Definition I1

Let G be nilpotent according to Definition I. Thien G has a normal series

{e}=Gyc G, cG,c..cG, =G

such that, C?i gZ[ g J Vi=1,2,..,n

i-1 i-1

Leti=1, then
G, \G,
If x € G, be any element, then

G
Gy

)

Gyx € = Gyx € Z{Gijl
0

= Gyx.Gyy= GGy ¥ Gy e Gﬁ
0

Gyxy = Gyyx

=

= xxlyleG,= {e

= xy=yx VyeG

= x € Z(G) = Z,(G)
Hence, G, c Z,(G)

Let, i=2, then

G Z( G)
o~ G
If x € G, be any element then proceeding as above we get
xyxy e G
and as G, c Z,(G)
xwxlyleZ(G VyeG
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z
Hence, G, c Z,(G) =x € 4(0)

Continuing like this, we get
G,cZ(G) Vi=1,2,.,n

Hence, G=G, c Z,(G)

or that G is nilpotent according to Definition II.

Definition II = Definition I

Suppose G is nilpotent of class n then Z, (G) = G. Consider the series

{e} =Zy(G) < Z,(G) c Z,(G) C ....... cZ(G) =G

which is a normal series and Zi(G) =7 (G |
7@ 7.0

i.e., G is nilpotent according to Definition I.
Case 31: Anabelian group is nilpotent. Since G abelian
= G=Z2(G),ie., Z,(G)=G.
Also then all cyclic groups will be nilpotent.
However, a nilpotent group need not be abelian and thus cyclic. Consider

G, the quaternion group. Then

GO:{I}QG1:{17_1}QG2:{1a_lala_l}gG
G G G G .
| = —|=4=" =
and O[Gz] 2, O[Gl] = GG are abelian
G G G G G .
= Z[—J =__, Z[—j=—.Also Z[—]= Goa), Go-n} 1s
YA Go {Go, Goe-n}
abelian
G G .. .
Thus Z [aJ = — and so G is nilpotent but not abelian.
0

Case 32: A finite p-group is nilpotent.
Theore ‘ 1.43: Every nilpotent gr@ is solvable. Converse is not true.
Proof: Let G be a nilpotent group, then G has a normal series

{fe} =Gyc G, cG,c..cG,=G
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G
Hence Gissolvable.

S, is solvable but not nilpotent. Notice that Z(S;) = {/} and so Z,(G) =G
holds for no m.

(In fact S, is not nilpotent, for n > 3).
Theorem 1.44: Any subgroup of a nilpotent group is nilpotent.

Proof: Let H be asubgroup of a nilpotent group G. Since G is nilpotent, there
exists anormal series

such that, Gi CZ{ G j, i=1,2,...n
G G

i-1

Consider the series
{fe}=GoN"nHc G N"nHcG,NnHc..cG,nH=GNnH=H

(
seasy toseethat G_, " H 2 G, H Vi We show

Gt _ [l GoH ],‘v’i=1,2,...,nwhichwouldestablish
G_ NH G_ NnH

1

that H is nilpotent.

Let (G, nH)x e

i
G H be any element

thenx e GG H=x € G,;and x € H.

Now, (G, nHx e z[ GoH ]

G NH

GnH
if (G,_; N H)x commutes with all elements of GonH

e, (G NHx(G_ NnHy=(G_NnHy(G_ NnHx Vye
GNnH

ie., (G N Hyxy = (G, N Hyyx

ie., wxlyleG ,nH VyeGnH

ie., wxlyleG andxyxy'eH VyeGnH
Now, xeHyeH=xyxy'eH
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G \G—)
< G axGay=G6,yG, x VyeG
< Gy =G x
cxyxlyleG, VyeG
and hence over assertion is proved.
Theorem 1.45: Homomorphic image of a nilpotent group is nilpotent.

Proof: Let 0 : G — H be an onto homomorphism and suppose G is nilpotent.
Then there exists a normal series

{fe} =Gyc G, cG,C ... cG,=G
G

A (
Gy = ZL

such that,

Gj Vi=1,2,..n
Gi—l

We claim

0(e) =0(Gy) < B(G,) < 8(G,) < ... < 6(G,) = 6(G) = H is the required
0(G;) c Z( 0(G) )

0G0~ oG )

normal series for H where

Itis easy to see that 0(G,_ ;) 2 6(G;) V iand we leave it for the reader
to try and prove it.
Let 0(G)=H, i=1,2,.,n

H, ( H)
weshow ——cZ _J
H; Hi,

H.

Let H,  x € H—’ be any element,
i-1

H )

H,-_]J

we have to show that H, ,x € Z {

. H
Le, (Hyx) (H ) =H ) (Hyx) VHye H_l

ie.  Hyyxy=Hyx

ie., xyxyl e H | VyeH

Now, xeH, =>xe€06(G) =3aeG, suchthat 6(a)=
yveH =y=06(G) = 3be(G, suchthat, 8(b)=




andso G_,a.G_b=G_bG_ a
ie., G_,ab=G,_, ba
ie., abal'b! e G,
ie., &ab a”'b") € KG, ) = H.
Hence the result follows.
Theorem 1.46: Any quotient group of a nilpotent group is nilpotent.

Proof: Follows from above theorem as any quotient group of a group is its
homomorphic image.

. Sy . . .
Converse is, however, not true as A—3 is abelian and so nilpotent, but S,
3

is not nilpotent.

Example 1.39: If H and K are nilpotent groups then show that H x K is also
nilpotent.

Solution: Let A and K be nilpotent. Then 3 normal series

H ()

=H,cH cH,C... cH =H suchthat, — L czj—

{el} 0= 1 =2 = = n Hi*l < LHI—IJ
i=1,2,.,n

K, (K

{e;) =Ky K, cK, ... c K, =K such that, X QZLK,-_l/I

We can repeat terms in the series with lesser terms.

Consider the series

{e)} x{e)} =HyxKycH xK cH,xK,c....c H xK =HxK
Then one can check that this is a normal series in which

H, x K, ( HxK )
gZL
Hi <Ky Hi_ | x Kj1

1

Let (H, , x K. ) (h k) € —28i (e any el
et (H, | x K;_y) (h, )Em e any element

then (H, | x K, ,) (h, k) will belong to z{%}
i-1 X K
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ie,if hxh'x'eH
ky k'y e K
which s true.
We leave the first part (that A, x K; < H,, | x K,,,) for the reader to try
as an exercise.

Example 1.40: If H is a proper subgroup of a nilpotent group G then show
that H is a proper subgroup of N(H).

Solution: Since G is nilpotent, it has upper central series
{e} =Z)(G) < Z)(G) € Z,(G) C ....... cZ(G)=G
Now H - G, let i be the largest integer such that, Z(G) c H
Then we get
Z(G)cHcZ,,(G)c ..

Zn@ _ [ G )

Again since 7.6 zZ 7 G)J

Zi1(G)
Z;(G)

is abelian.
Let g € Z,,,(G) and he H be any elements, then

Zi+1 (G)
heHcZ,,(G) and so Z(G)g, Z(G)h 7). and thus

Z(G)g Z(G)h = Z(G)h Z(G)g
= Z(G)gh = Z(G)hg
= ghg'h! e Z(G)c H
= ghg'eH VgeZ,,(G),heH
= gHg'cH VgeZ,y0)
ie., gHg'=H VgeZ,(G)
= any g € Z;,,(G) is such that g € N(H)

or that Z,,,(G) < N(H)
But H = Z..,(G) and hence H is a proper subgroup of N(H).




NS A

Define subgroup.
When a group G is called cyclic?
When maximal normal subgroup of G no exists normal subgroup of K?

When can you say that a group of order pq is solvable?

What is a nilpotent group?

14

ANSWERS TO ‘CHECK YOUR PROGRESS’

. A group satisfies the following postulates.

(1) Associativity: a * (bxc) =(axb)xc, foralla, b,ce G
(i) Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(eis then called identity)
(7if) Existence of Inverse : Forevery a € G, 3 a’ € G (depending upon
a) such that,
axa =a xa=e
(a' is then called inverse of @)

. Ifthe set G is finite (i.e., has finite number of elements) it is called a finite

group otherwise, it is called an infinite group.

. A non empty subset H of a group G is said to be a subgroup of G if H

forms a group under the binary composition of G.

. A group G is called a cyclic group if Jan element a G such that every

element of G can be expressed as a power of a.

. A normal subgroup H of a group G is called a maximal normal subgroup

of G if H# G and there exists no normal subgroup K of G such that, H
KcG.

6. A group of order pq is solvable if p and g are primes.

7. A group G s called nilpotent if it has a normal series

{e}=G, <G, c....c G, =G suchthat,
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and existence of inverse.

o Let G be a group. A sequence of subgroups
{e}=Gyc G, G, C........ cG,=G
is called a normal series of G if G; is a normal subgroup of G, |,

e Agroup Gis called a cyclic group if 3 an element a € G, such that every
element of G can be expressed as a power of a. In that case a is called
generator of G. We express this fact by writing G =<a > or G=(a).

o Let G a group. A sequence of subgroups
{e}=Gyc G, cG,C..... cG,=G
of G'is called a composition series of G if
(i) each G;is normal subgroup of G;;; (i=0, 1, ....... n—1),

@) G;# G,y foranyiand
(@ii) isasimple group Vi.

o If Gis afinite group, then order of any element of G divides order of G.

o A normal subgroup H of a group G is called a maximal normal subgroup
of G if H# G and there exists no normal subgroup K of G such that, H
cKcaG.

o A group G'is called nilpotent if it has a normal series
{e}=GycG,cG,C...... cG,=G
such that, Vi=1,2,...,n

o A group G is called nilpotent if it has a normal series

1.6 KEY TERMS

o Finite group: If a group has finite number of elements then it is called finite
group.

¢ Subgroup: A non-empty subset of a group is said to be a subgroup if it
forms a group under the binary composition of the group.

e Cyclic group: A group G is called a cyclic group if 3 an element a
G, such that every element of G can be expressed as a power of a. In
that case a is called generator of G. We express this fact by writing G
=<a>or G =(a).




EXERCISES

[« N, B NS I ]

Short-Answer Questions

1. Define a group.

. Specify the term cycle group.

. What is the difference between normal and subnormal series?
. Define the term composition series?

. State the Jordan-Holder theorem.

. Define the term solvable group.

7. What can you say about the nilpotency is an abelian group?

Long-Answer Questions

1. Check whether the following systems form a group (a semi-group) or not
(@) G =Set ofrational numbers under composition * defined by a *
b= ﬂ, a,beG
2
() G={x1,+i}, wherei= .J'—_l under multiplication.
(¢) G={1,w,w?}, where wis cube root of unity under multiplication.
(d) Setofall2 x 2 matrices over integers under matrix multiplication.

cos O sin O

(e) Setofall matrices of the form {_ sin® cos O

},9 € R, under matrix
multiplication.

() ©O=Setofall rational numbers under * where a * b=a +b—ab.

(g9 G=1{2,4,6,8} under multiplication modulo 10.

(h) G=1{1,2,3} under multiplication modulo 4.

@ G={(a,b)|a,b e Z}under * defined by

(a, b) * (c, d) = (ac + bd, ad + bc).

2. Let G be the set {+ e, = a, + b, + ¢} where

[ hee[o sl e[

Show that G forms a group under matrix multiplication.
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[°)

10.

11

12.

13.

14.

15.
16.

17.

18.

19.

#e) which is ifs own inverse . . . .
. Ea) how that the power set of a finite set X is a finite semi group under

intersection, has identity and all elements are idempotent.
(b) Show that a finite semi-group G with identity is a group iff G contains
only one idempotent.
. Show that a monoid is a group if and only if cancellation laws hold in it.
. Let G be the Quaternion group. Find centre of G. Find also the normalizer
ofiin G.
. If H is a subgroup of G, show that
g 'Hg={g'hg | h € H} is a subgroup of G.
Show further that g Hg is abelian if H is abelian.

Let G be the group of all 3 x 3 invertible matrices over reals. Show that
1 a b

H=14|0 1 c|ab,ceR; isasubgroup of G.
00 1

If N(H) be the normalizer of H in a group G then show that Z(G) < N(H),
where H< G.

If o(G) =6 and H # K are subgroups of G each of order 2 then show
that HK cannot be a subgroup of G. Show also that G cannot have two
subgroups of order 3.

If a finite group possesses an element of order 2, show that it possesses
an odd number of such elements.

Show that every element in Uy is its own invgzse and hence Uy is not
cyclic and let G be a finite group. Let a € G b€such that o(a) = o(G).
Show that G is cyclic, generated by a. Hence show that a group of order
nis cyclic iff it has an element of order n.

Show that a subgroup (# {e}) of an infinite cyclic group is infinite.

If Gis acyclic group of order p, a prime then show that any non identity
element of G is of order p.

Find all the subgroups of the quaternion group G and show that 3 no two
non-trivial subgroups H, K of G such that, H " K is identity only.

Show that a finite cyclic group with three or more elements has even
member of generators.

Write down all the 12 subgroups of Z,. How many generators it has?




21.

22.

23.
24.

25.
26.

27.

Show that 4, is maximal normal in S, and write all the maximal normal and
maximal sbgroups of S;.

Let G be a finite p-group of order p”. Show that it has a normal series
e} =GycGc..cG, =G

where o(G)=p" i=0,1,2,...,n

Show that a simple group is solvable iff it is cyclic.

If all proper subgroups of a non solvable group G are solvable, show that
G =G'. (A group G such that G = G’ is called a perfect group).

Show that a finite p-group is nilpotent.

Suppose that in a non abelian simple group, {e} is the only conjugate class
whose order is prime power. Show that a group of order p”¢" (p, g primes)
is a solvable group.

Show that every sylow subgroup of a nilpotent group G is normal in G.

1.8
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NN Tteadiintine

2.1 Objectives
2.2 Similarity of Linear Transformations
2.3 Invariant Subspaces and Reduction to Triangular Form
2.4 Nilpotent Transformations
2.4.1 Index of Nilpotency
2.4.2 Invariants of Nilpotent Transformations
2.5 Primary Decomposition Theorem
2.6 Jordan Blocks and Jordan Forms
2.7 Cyclic Modules
2.7.1 Simple Modules
272 Semi-Simple Modules
2.7.3 Schur’s Lemma
2.7.4 Free Modules Fundamental Structure Theorem
2.8 Answers to ‘Check Your Progress’
2.9 Summary
2.10 Key Terms
2.11 Self-Assessment Questions and Exercises
2.12 Further Reading

2.0 INTRODUCTION

In mathematics, a module is one of the fundamental algebraic structures used in
abstract algebra. A module is an additive abelian group. In a simple module the
submodules are the module itself and the module that consists of the element zero.

A canonical, normal, or standard form of a mathematical object is a standard
way of presenting that object as a mathematical expression. Often, it is one which
provides the simplest representation of an object and which allows it to be identified
in aunique way. The distinction between ‘Canonical’ and ‘Normal’ forms varies
from subfield to subfield. In most fields, a canonical form specifies a unique
representation for every object, while a normal form simply specifies its form,
without the requirement of uniqueness.

Linear transformation is a function between two vector spaces that preserves
the operations of vector addition and scalar multiplication. Transformations satisfying
these two conditions simultaneously are called similarity transformations. Anilpotent
transformation is one with a power that is the zero map. AJordan block is a matrix
having zeros everywhere except along the diagonal and superdiagonal with each
element of the diagonal consisting of a single number and each element of the
superdiagonal consisting of a 1. A Jordan form consists of one or more Jordan
blocks.
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After going through this unit, you will be able to:

o Know about the similarity of linear transformations
¢ Define invariant subspaces and reduction to triangular form

o Describe the nilpotent transformations, index of nilpotency and invariants of
nilpotent transformations

o Analyse the primary decomposition theorem

o Explain about the Jordan blocks and Jordan forms
o Elaborate on the cyclic modules

o Understand the simple modules and schur’s lemma

o State and prove fundamental structure theorem for modules

2.2 SIMILARITY OF LINEAR TRANSFORMATIONS

In mathematics and comp _r science, a ‘Canonical, Normal’, or ‘Standard
Form’ of a mathematical object is a standard way of presenting that object as a
mathematical expression. Often, it is one which provides the simplest representation
of an object and which allows it to be identified in a unique way. The distinction
between ‘Canonical’ and ‘Normal’ forms varies from subfield to subfield. In most
fields, a canonical form specifies a unique representation for every object, while a
normal form simply specifies its form, without the requirement of uniqueness. The
canonical form of a positive integer in decimal representation is a finite sequence
of digits that does not begin with zero. More generally, for a class of objects on
which an equivalence relation is defined, a canonical form consists in the choice of
a specific object in each class. For example:

o Jordan normal form is a canonical form for matrix similarity.

o The row echelon form is a canonical form, when one considers as equivalent
amatrix and its left product by an invertible matrix.

In computer science, and more specifically in computer algebra, when representing
mathematical objects in a computer, there are usually many different ways to
represent the same object. A canonical form is a representation such that every
object has aunique representation (with canonicalization being the process through
which a representation is put into its canonical form). Thus, the equality of two
objects can easily be tested by testing the equality of their canonical forms. Canonical
forms frequently depend on arbitrary choices (like ordering the variables), which




Given a set S of objects with an equivalence relation R on S, a canonical
form is given by designating some objects of S'to be canonical form, such that
every object under consideration is equivalent to exactly one object in canonical
form. In other words, the canonical forms in S represent the equivalence classes,
once and only once. To test whether two objects are equivalent, it then suffices to
test equality on their canonical forms.Acanonical form thus provides a classification
theorem and more, in that it not only classifies every class, but also gives a
distinguished (canonical) representative for each object in the class.

Formally, a canonicalization with respect to an equivalence relation R on a
set Sis amapping c: S — S'such that forall s, s, s, € S:

1. c(s)=c(c(s)) (Idempotence),
2.5, Rs,ifand only ifc(s,) = c(s,) (Decisiveness), and
3.sRc(s) (Representativeness).

In practical terms, it is often helpful to be able to recognize the canonical
forms. There is also a practical, algorithmic question to consider: how to pass
from a given object s in S'to its canonical form s *? Canonical forms are generally
used to make operating with equivalence classes more effective. For example, in
modular arithmetic, the canonical form for a residue class is usually taken as the
least non-negative integer in it. Operations on classes are carried out by combining
these representatives, and then reducing the result to its least non-negative residue.
The uniqueness requirement is sometimes relaxed, allowing the forms to be unique
up to some finer equivalence relation, such as allowing for reordering of terms (if
there is no natural ordering on terms).

A canonical form may simply be a convention, or a deep theorem. For
example, polynomials are conventionally written with the terms in descending
powers: it is more usual to write x2 + x + 30 than x + 30 + x2, although the two
forms define the same polynomial.

Definition: Let / and U be two vector spaces over the same field F, then a
mapping 7': VV— U'is called a homomorphism or a linear transformation if

Tx+y)=T(x)+ T(y) forallx,yeV
Tlox) = al(x) o e F

One can combine the two conditions to get a single condition
T(ox + By) = oT() + BTG) x,y e Vi BeF

It is easy to see that both are equivalent. If a homomorphism happens to
be one-one onto also we call it an isomorphism, and say the two spaces are
isomorphic. (Notation V= U).
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are clearly linear transformations.
Case 2: For a field F, consider the vector spaces 2 and F*. Define a map
T:F > F, by
T(a, B, v) = (a, P)
then 7'is a linear transformation as
forany x,y € F3,if x = (o, By» vy)

= (0 By 12)

then T(x+y)= T(oy + 0y By + By 11 T1)=(0 t 0y By+py)
= (o, By) + (ap, By) = T(x) + T(»)
and T(ax) = T(a (o, By, 1) = T((aoy, afy, ay)

= (a0y, afy) = alay, By) = aT(@)
Case 3: Let V'be the vector space of all polynomials in x over a field F. Define
T:V — V, such that,

TYe) = <10
_d _d d __
then  T(f+g)=—(ftg=—/+-—g=T(/)+T(g)

Tof) = & (af) = af = al(f)

shows that T'is a linear transformation.
In fact, if 8: V' — V be defined such that

o) = [, 1@ dr
then @will also be a linear transformation.

Case 4: Consider the mapping
T:R3 > R, such that,

T(x), Xy, X3) = xf +x3 +x§
then T'is not a linear transformation.
Consider, for instance,
7((1,0,0) + (1,0, 0)) = T(2, 0, 0) = 4
7(1,0,0) + 7(1,0,0) =1 + 1 = 2.




A'=BAB,
where 4 and A" are called similar matrices. Similarity transformations
transform objects in space to similar objects.
Hypercompanion Matrix: Let {p(A)}¢be one of the elementary divisors of the
characteristic matrix of some A-matrix and C(p) be the companion matrix of p(L.).
The hypercompanion matrix H associated with the elementary divisor {p(A)}¢1is
given by

Cp) M 0 .. 0 0
0 Cp) M .. 0 0

I S R S S A
0 0 0 .. 0 Cp

where M is a matrix of the same order as C(p) having the element 1 in the
lower left-hand corner and zeros elsewhere. The diagonal of the hypercompanion
matrix H consists of ¢ identical C(p) matrices. There is a continuous line of 1s just
above the diagonal.
Note: Every square matrix 4 over F is similar to the direct sum of the
hypercompanion matrices of the elementary divisors over F of AL/ — A.
Jacobson Canonical Form: The Jacobson canonical form of a square matrix A

consists of the direct sum of the hypercompanion matrices of the elementary divisors
over Fof AI—A4,1i.e., the matrixJ,

H 0 0 0 0
0 H, 0 .. 0 0
5@0 0 .. H, 0
0 0 0 .. o @A

where H. is the hypercompanion matrix associated with the i-th elementary
divisor.
Jordan Canonical Form: Let the elementary divisors of the characteristic matrix
of a matrix 4 be powers of linear polynomials. Then the canonical form is the
direct sum of hypercompanion matrices of the form
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[0 0 0 .. 0 q

corresponding to the elementary divisor {p(A)}1=(A—a,)?. The diagonal
contains ¢ identical a,’s. This special case of the Jacobson canonical form is known
as the Jordan or classical canonical form.

o Let F'bethe field in which the characteristic polynomial of a matrix A4 factors
into linear polynomials. Then 4 is similar over F to the direct sum of
hypercompanion matrices of the form in Equation (2.1), each matrix
corresponding to an elementary divisor (A —a,)?.

e An n-square matrix 4 is similar to a diagonal matrix if and only if the
elementary divisors of L/ — 4 are linear polynomials, i.e., if and only if the
minimum polynomial of 4 is the product of distinct linear polynomials.

Rational Canonical Form: Let 4 be an nxn matrix 4 and let C;, C;, Ciyy, ..., C,

be the companion matrices of the non-trivial invariant factors of AL/— A. Then the
rational canonical form for all matrices similarto 4 is

c 0 0
O Ci+l 0
S =
0 0 C,

In other words, the rational form is the direct sum of the companion matrices
C,C, Ciy, ..., Cy:
S=diag (C,C, C,, ... C,)
o Every square matrix 4 is similar to the direct sum of the companion matrices
of the non-trivial invariant factors of A/— 4.
Second Canonical Form: Given an nxn matrix 4, let be the companion matrices

of the elementary divisors of A/— A. Then a canonical form for all matrices similar
toAis

0 .. 0
S: 0 Ci+] 0
0 0 C

We can say that, the form is the direct sum of the companion matrices
G, G, Ciy, o, Gy,

S=diag (C,C, C,,,, ... C))




TRIANGULAR FUORM

Definition: Let 7'be a linear operator on a vector space V. If Wis a subspace
of V' such that, T(W) c W, we say W is invariant under T or is T-invariant.

Case 5: Since 7(0) = 0 and 7(V) = V, both zero subspace and J are invariant
subspaces of V.

Case 6: Let v € Ker T'then 7(v) =0 € Ker T = Ker T is invariant subspace
of V.Alsow € ImT => w=TW) = Tw=T(Tv), Tv € V= Tw € ImT.

ImTis an invariant subspace of V.
Case 7: Let f(¢) be any polynomial. Let v € Ker (f(7)) then f(T) v=0

Since f@) . t=tf(0)
SADT=TAD)
Thus, (D) Iv=TAT)v=20
= Tv e Ker f(T)

= Ker f(7) is invariant under 7.

Example 2.1: Let T be a linear operator on R?, the matrix of which in the
standard ordered basis is

A= {1 1}
2 2

Prove that the only subspaces of R? invariant under T are R* and

zero subspaces.
x —1 1
-2 x-2
whose roots are not real. Thus eigen values of 4 (or 7)) do not exist in R. If W
is an invariant subspace of R? such that, ' # 0, R then dim W= 1. Let W be

spanned by v. Then 7v € W= Tv=ay, v# 0 = o is an eigen value of 7' (a.
€ R), a contradiction. Hence O and R? are only invariant subspaces of R,

Solution: Characteristic polynomial of 4 (or 7) is =x2-3x+4,

Theorem 2.1: Let W be an invariant subspace of linear operator T on V.

A B
Then T has a matrix representation {0 C} , Where A is matrix of restriction

T,of Ton W.
Proof: Let {w,, .., w,} beabasisof W.Let B = {w, .., w, v, .., v} bea
basis of V, obtained by extending basis of V.

Since T(w) € Wiorallw € W, we define T, : W — Wby T, (x) = I(x)
forallx e W.
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%g, oo r Ir 1 ror
) =byw + .o baw,. v+ ey

Tv)=bw +..+bw +c v +..tecyw

A

_ | a, bll bﬂ
. . . . Ay o Gy brl e brs
Thus matrix of 7 with respect to basis B is
0 -« 0 ¢ - o
0 - 0 ¢y - Cssj

A B]
{O P where A= (a,). B~ (b,). C~(c;)

are of order » X r, r X 5,5 X 5 respectively

Clearly, A is matrix of 7, with respect to {w,, ..., w,} =basisof W. T is
called restriction of 7on W.

‘We now show that the matrix C obtained in Theorem 2.1 is the matrix of

. V.
some linear operator on I induced by T.

Define 7T : 7 - Y such that,
w w

]A’(W-i- vy =W+T(v), veV

Then % is well defined as W+v= W+
= v—Vv eWw

= Tv-V)eWw

=>TW)-T0") e W

= W+ T(v) =W+ 10"

Since T'is linear transformation, so is f" .Let {w,,...,w } beabasis of W.
Then it can be extended to form a basis of V. Let {w,, ..., w,, v, ..., v}

be a basis of V. Then {W+v,, ..., W+ v} is a basis of %




YA"(W+ v)=W+Tv)=W+bw +..+bw +cw + ..

1

+ Cy Ve

=W+c v+ ..+ (asin Theorem 2.1)

. matrix of T with respect to basis {W +v,, ..., W+ v} of % is

Cp t ot C

A special situation where B = 0 in theorem is obtained when Vis a direct
sum of two invariant subspaces under 7.

Example 2.2: If W and U are invariant subspaces of a linear operator on a
Finite Dimensional Vector Space (F.D.V.S). Vover Fand V=U® W, then 3

.14 0
a basis B of V such that the matrix of T with respect to § 1S {0 C} , where

A is the matrix of T,, on W and C is the matrix of T, on U.
Solution: Let {w, ..., w,} be abasis of Wand {u,, ..., u} be abasis of U. Then
Wi, s W g, ., u b isabasisof WO U= V.

Now T, (wy) =T(w)) = ayyw; + ... - a,w,
T(wy) = T(wy) = ajw; + ... t a,w,
T, (w,)=Tw,) =ay,w, + .. +a,w,
as Tw) e Wioralli=1, .., r
Similarly,  T,(u;) = T(u;) = cyyu; + ... + ¢,
T (uy) = T(uy) = cpputy + ... + cli

T, (u,) = T(uy) = cju; + ... ﬁ u,
as T(uy) € Uforallj=1, ..,
So matrix of T with respect to B = {wy, ..., w,, Uy, ..., u,} of Vis
given by
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Lo w6 & mdl
where 4 = (a;), C=(c;) are r X r and s x s matrices, respectively. Clearly 4 is

the matrix of 7}, on /¥ and C is the matrix of 7, on U.

Example 2.3: Let V be the vector space of all polynomials in x over F, of
degree < 5. Let T : V — V be defined by T(1) = x*> + x*, T(x) = x + 1, T(x?)
=1, T =x3+x2+ 1, Tx* = x*, T() = 0. If W is the linear span of
11, 2 x4,

(a) Show that Wis invariant under 7.
(b) Find the matrix of 7, in a suitable basis of .

A Vv
(¢) Find the matrix of 7 in a suitable basis of 7

(d) Find the matrix of T'in a suitable basis of V.
Solution (a): Let w € W. Then w = a + bx> + cx* where a, b, ¢ € F.
T(w)=a . T(1) + bt(x?) + cT(x*)
=a(x*+xH) + b+ oxt
=b+ax®>+ (a+c)x
e Wiorallwe W
W is invariant under 7.

(b): Notice that {1, x?,x*} is linearly independent set over F and so forms a
basis of ¥, and it can be extended to form a basis, namely {1, x2, x*, x,
X3, x°} of V.

Now, T(H=T)=x>+x*=0.1+1.x2+1.x*
T,)=Tx)=1=1.1+0.x>+0.x*
TOH=TaxH=x*=0.1+x2+1.x*

- matrix of T, with respect to basis {1, x%, x*} of W is given by

1 0
A= @0 0].
1 01
(©): Now {W+x, W+ x3, W+ x°} is basis of %

YA"(W+x) =W+ Tx)y=W+x+1
=W+x=1.W+x)+0W+x+0W+x)




TW+55) =W+ ()
4
=W+0= W=zeroofW
=0(W+x)+ 0(W+x3 + 0(W + x°)
A V
. matrix of T with respect to basis {W+x, W+x3, W+x°} of i

given by

c

1 00

010

0 00

d: Tx)=x+1=1.1+0.24+0.x*+1.x+0.3+0.x°

T =x+x+1 =1.14+1.2+0.x*+0.x+1.x%+0.x°
Tx) =0=0.14+0.x*+0.x*+0.x+0.x*+0.x°

. matrix of T with respect to basis {1, x%, x*, x, x3, x°} of Vis given by

[0 1 0 : 1 1 0]
0 0 0 1 0
1 0 1 0 0 0
0 0 go
0 0 0 0 1 0
0 0 0 0 0 0]
B 110
=1 C},whereB= 01 0f.
- 00 0

Example 2.4: Let T be a linear operator on a FD.V.S. V over F. Let W be
an invariant subspace of T. Show that the characteristic polynomial p; (x)
of T is given by

pr® = pr(» P, (%), where pr (x), pj (x) are the characteristic

polynomials of T, and JA"W respectively.
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=||A=xI B . N
0 C—xI C =matrix of 7 on —
w
= |4 —xI||C x|
= (characteristic polynomial of 7, )

x (characteristic polynomial of 7')

=P, (0 pp(w).

A natural question arises ‘What is the minimal polynomial for 7'in terms of
minimal polynomial for 7', ’? As we saw in above problem that the characteristic
polynomial of T, divides the characteristic polynomial of 7, we have a similar
result about minimal polynomial of 7. We prove

Theorem 2.2: The minimal polynomial of T, divides the minimal polynomial
for T, where W is an invariant subspace of V and T is a linear operator on
V.

Proof: Let p(x) be the minimal polynomial for 7.
Let p(x)=a0+a1x+...+ocn71x”*1+x”
Since T(w)=T,(w)forallwe W
T2(w) = T(T, ()

=T (T, w)asT, (w)eW

Inthisway T'(w)=T, (w)forallwe W
p(T,)(w)=p(T) (w) forallw e W
=0asp(T)=0forallwe W

pT,)=0
Let g(x) be the minimal polynomial for 7', Then p(x) = ¢(x) r(x) + h(x)
where h(x) = 0 or deg A(x) < deg g(x).
: 0=p(T,)=q(T,) «(T,)+ KT,)
nT,) =0

If h(x) # 0, then A(x) is non zero polynomial satisfied by T, of degree less
than deg ¢g(x), a contradiction as g(x) is minimal.
h(x) = 0 = g(x) divides p(x).
Definition: A linear operator 7 on a F.D.V.S. V(F) is said to be triangulable or
triangularizable over F if there exists an ordered basis 5 of V'such that [7]g is

triangular.




Proof: Let the characteristic polynomial of 7'be product of linear factors in F[x].
Let ¢, ¢y, ..., ¢, be eigen fues of T'in F.
We use induction on 7.
Ifn=1, then the result is obvious as 1 x 1 matrix is always triangular.

Let n> 1. Assume that the result is true for all vector spaces over F' of
dimension less than 7.

Letdim V= n. Let v, be an eigen vector of 7 with respect to c;, then
v, = cv,
Let W=<v >

Then Wis T-invariant subspace of V. Consider % . dim % =n-1

A

V V
Then T : — — — such that,
w w

T (W+v) =W+ T(v)

is well defined linear operator on % . Let f(x) be the characteristic polynomial

for T'and g(x) be the characteristic polynomial for 7. Then 2(x) divides fix) by
Example 2.4.

So, g(x) is also product of linear factors in F[x].

By induction hypothesis 3 a basis B = {W+v,, ..., W+v,} of % such

that,
ay axn
A
Tl _ 0
{ L =1 . , 4 € F
0 0 a

TW+ vj) = a,, W+v)+ ..+ anj(W+ v,)
= WH+Tv) =ay(W+v)+..+a,(W+v)

=Wtayv,+.. ta,w,
= T(v) =ayv, + .. ta, v, ta;v, , a;€ F
Now, B ={v, vy ..., v,} is a basis of V'
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which is triangular matrix and so 7'is triangulable. So, result follows by
induction.

Conversely, if T'is triangulable then 3 a basis  of V' such that, [T]; =4
is triangular and eigen values of T are diagonal entries in 4.

.. Characteristic polynomial for A or T'is product of linear factors in Fx].

Note: We thus realise that 7'is triangulable if and only if minimal polynomial for
T is product of linear factors in F'[x].

Corollary.: If 4 is n x n matrix over the field of complex numbers, then A4 is
triangulable.

Proof: By fundamental theorem of algebra (i.e., Every polynomial over the field
C of complex numbers has all roots in C), the minimal polynomial p(x) of 4 has
the form p(x) = (x —¢;)'1 ... (x — ¢;) ", where ¢; € C. By above theorem 4 is
triangulable.

Example 2.5: Let T be a linear operator on a finite dimensional vector space
V(F). Suppose all eigen values of T are in F. Show that every non zero.
T-invariant subspace of V contains an eigen vector of T.

Solution: Let #be a non-zero T-invariant subspace of V. Then the restriction
T, of Ton Wis alinear operator on . Since the characteristic polynomial of
T, divides the characteristic polynomial of 7, eigen values of T, also belong to F.
Let ¢ € F'be an eigen value of 7. Then 3 0 # x € Wsuch that T, (x) = cx =
T(x) = cx = x is also an eigen vector of T.

Example 2.6: Let T be a linear operator on V. If every subspace of V is
invariant under T, show that T is a scalar multiple of the identity operator.

Solution: Let 0 # v € V. Let W be a subspace of V' spanned by V. Since W'is
invariantunder 7,ve W=T(v) e W=T(v)=owv.w e W=w=av= T(w)
=al(v)=aov=oaav=oaw. LetVv' ¢ W,v' € V. Then, v, V' are linearly inde-
pendent. Let 7" be the subspace spanned by v'. Since W’ is invariant under
T, T(V') e W'.
T(v") = a/v'. Let V' be the subspace spanned by v — v'. Then as
before T(v —v') = (v — V')
=>TW)-TV)=Bv—-pV = av—-aV' =pBv - v
= (a—B)yv=(a'—B' = a =P =0a'asv,V are linearly independent
= T(") = a().
forallv e V, T(v) = av
= T=ol




T. By theorem 10 p(x) has distinct roots and p(7) = 0.

Conversely, let g(x) be a polynomial over C such that, g(7) = 0 and roots
of g(x) are distinct.

p(x) divides g(x)
and thus roots of p(x) are distinct.
Hence T'is diagonalizable.

Example 2.8: If A is nilpotent, show that A is similar to a triangular matrix
whose entries on the diagonal are all zero.

Solution: 4 is nilpotent = 4" = 0 = the minimal polynomial p(x) of 4 is x”,
r<m. So, 0is only eigen value of 4. Since 0 € F, by theorem 2.3, 4 is similar
to a triangular matrix B. .. 4=P~'BP

Since eigen value of 4 is only 0, eigen value of B is only 0 and these are
diagonal entries on B.

Projections

We recall, by a projection E of a vector space V, we mean a linear operator on
V such that, 2 = E.

Let now E be a projectionon V, then E: V— V.
We show V=R @ N, where R = Range of £ and
N = Null space of £ = Ker E.

Let v € V' be any element, then

E’=E
= E*(v) = E(v)
= EVv-EWv)=0
= v—EW) e Ker E=N
Thus v=EWw)+(WV—-EWV) eR+N
1e., V=R+N

Again, letx e RN Nthenx e Randx € N
xeR = Jy € Vsuch that, E(y) =x
xeN = Ex)=0

So, E*y)=EEY») =Ex)=0
= E())=0=>x=0=RnNN={0}
Hence V=R®®N.
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Then E is easily seen to be a linear operator
Also B’ (V) =EE(v) =E(@)=E(a+0)=a=E(v) VveV
shows that £2 = E and thus E is a projection.
We claim 4 = range of £ and B = Ker £
veKerE=EWV)=0=FE@a+b)=0wherev=a+b
=>a=0=>v=a+b=beB
Agan be B=>b=0+b =Eb)=E0+b)=0=>becKerE

% B =Ker E
is easy to see that 4 = range of E.

We thus notice that when there is projection £ on ¥, then Vis direct sum
of range E and Ker E and convepszly, if V'is direct sum of two subspaces then
there exists a projection £ on V' that these subspaces are range and Ker of
E.

If V=R @ N corresponding to a projection E, we say E is projection on
R along N (R =range E, N = Ker E).
Suppose again that = A4 @ B and let's define
F: V— Vsuch that,
F(v)=b where v € Vis such that, v=a + b

then as before we can check that F is a projection on ¥ and 4 = Ker F, B =
Range F.

Hence if E was projection on 4 along B, then F'is projection on B along
A. Is there a direct relation between £ and F?

Consider (E+F)(v)=EW)+FW)=a+b=yv,
=Iv) Vv

andthus E+F=1

or that E=1-F

We can sum up and say that E is a projection iff /— E is a projection and
if E is a projection on R along N then 7 — E is a projection on N along R.

We give another ‘Proof” of this result in Example 2.9.
Let us now consider the general result through

Theorem 2.4: If V=W, ® ... ® W, then 3 k linear operators E,, ..., E, on
V such that,




t L

and conversely.

Proof: Letv e V' be any element then

v=x, +x,+..+x, x; € W, being uniquely determined
Define E,: V= V, such that,
E(x;+..+x)=x foralli
Then E; is linear operator such that,
ES (v + o+ x) = Efx) = x; = Ex; + ... +x))
= E}=E foralli
This proves (7).
Leti#j. Then EE(x; + ... +x,) = E(x;) =0
EE;=0foralli=].
This proves (if).
Let veV.Thenv=x,+..+x,x;, €W,
(E,+. .. +EN=Eyv+ . +tEy

=x;t..tx
=v=1v)
E +.+E=1I

This proves (iii).

By definition of £, range of £, is W; which proves (iv).

Conversely, letv e V. By (iii)) [=E, + ..+ E,

> v=IV)=EW+ . . +tEV)=x+ .. +x,x, € W, (x;=Ey)

V=W +..+ W,
Let v=y,+..+», ¥ € W,=Rangeof E,
= vi=Efz)

EW)=E)* ..+ EW
=E E\z)* ...+ EE(z)
= EJZ (Zj) = E](Zj) =)
x;=y;forallj=1, .. k
.. Each v € V' can be uniquely written as sum of elements of ¥, ..., W,.
Hence, V=W, @ .. @ W,.
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= x € null space of [ — F
Alsox e N= Ex=0
= ({-E)x=xforallx e N
velV=v=r+nreRneN
= ([-E)yv=(U-E)yr+(U-E)n
=0+n=n
.. Range space of I — E is N
Also (U-E?=I+FE*-2E=I-E
.. [— E is the projection on N along R.

Example 2.10: Let V(F) be a vector space. Let E, be a projection on R,
along N, and E, be a projection on R, along N,. Assuming that 1 +1 # 0
in E show that

(a) E; + E, is projection iff E,E, = E,E, = 0.
(b) E, + E, is a projection on R, © R, along N, "\ N,
Solution: (a) We have V=R, ® N, and V=R, ® N,
Let E, + E, be a projection. Then (E, + E,)* = E, + E,
= EX+E2+EE, +EE =E +E,
= E\E,+EE =0 ()
= E\E\E, +EEE =0= EE,=-EEFE,
and E\EE, + EyEE, =0 = E,)E, = — E,E,E,
Thus E\E,=E,E, and so (a) gives
(1+1)EE,=0= EE, =0
Hence E\E,=EFE =0
Conversely, E\E, = E,E, =0 gives
E\E, + E,E, =0
= E}+E3+EE,+EE =E +E,
= (E, +E,)* =E, +E,
(b)We have to show that Range of £, + E, is R; @ R, and Ker (£, + E,)
=N, NN,
Let x e Ker (B, +E) = (E, T E)x=0
= Ex+ E2@= 0= EE (X)) +EE)x)=0




andso x € N, "N, 5 Kér (E, + E) TN, "N,
Agan, yeN NN, =>yeN &yeN,
= E0)=0,E(0)=0
= (E,+tE)y=0=yeKer(E +E,)
So N, NN, c Ker (E, " E))
or that Ker (E, + E;)) =N, N\ N,
We leave the rest of the proof for the reader as an exercise.
Theorem 2.5: Any projection E on a vector space V is diagonalizable.

Proof: Suppose {v,, v,, ..., v} is a basis of range space R of £ and {v, , |,
..., v} 1s a basis of null space N of E.

Then {v|, vy, ..., Vi Vi 1 -or V) 1S a basisof RE@ N=V

Now, EWv)=E@r,+n) r,eRn eN
= EXv)) = E(v)) = E(ry + m)) = E(r) + E(m,) = E(r))
= E(v,) = E(ry)
= E(v,-r)=0=>v,-r, eKerE=N

Also vieR,rneR=v -r eR
and thus vi—r e RnN={0}

= vi=r
Again n=v,—-r=0

Thus E(v,) = v,. Similarly E(v)=v, Vi=1,2,..k
Also E(v)=0 Vj=k+1, .., n

. . . . .. |10
Showing matrix of £ with respect to this basis is L) 0}

which is clearly a diagonal matrix.
Hence the result follows.

Example 2.11: If diagonal operator has eigen values 0 and 1 only then %
that it is a projection.

Solution: Since T'is diagonal operator, 3 a basis B = {v,, ..., v,} of V"such that
[7], = diagonal. Since eigen values of T'are 0 and 1, let first m entries in diagonal
be 1 and others be 0.

Letve V.Thenv=ov, + ..+ a,v, T, Vs T ..Tqy,
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=Ty, + .ot oV, + 0, Vg T TV,
=T() forallve V

T>=T
Hence 7 'is a projection.
Theorem 2.6: Let T be a linear operator on the space Vand V=W, ® ...
@ W,. Define E(v) = E(x, + ...+ x,) =x;, € W,. Then each E, is a projection
on V such that, EE; = 0 for all i #j and I = E| + ... + Ey. Also then each
W, is invariant under T iff TE, = ET for alli =1, 2, ..., k.
Proof: Let TE,=E.T
Letx; € W,. Then by definition, E(x;) = x;
T(x,)= T(E;x)
= E(Tx))
= T(x,) € Range of E,= W,
- W,is invariant under T foralli=1, ..., k
Conversely, let W, be invariant under 7. Thenv € V'
= Iv)=(E,+..+E)WV)
= v=EW+..+E®W
= T(v)=TE,(v) + ..+ TE(v)
Since E(v) € W, and W, is T- invariant = T(E,(v)) € W,
So, E[TE(v)] = T(E(v)) ifj=i

=0ifj#1i
E(TOv) = T(E() YveV
= ET =TEV j.

Definition: Let /' be a vector space and £, E,, ..., E, be a collection of pro-
Jections on V, then this collection is called orthogonal collection if £, £,=0 'V
i # j. Consider the space R2. Define

E, : R? - R?, such that,and E, : R?> — R?, such that,
E\(a, b)=(a, 0) Ey(a, b)=(0, b)
thenclearly  E,, E, are projections and
E\Ey(a, b) = E|(0, b) = (0, 0)
E,E|(a, b) = E,(a, 0) = (0, 0)




each W, is T-invariant if and only if ET =TE, i = 1, 2, .
Theorem 2.7: Let T be a linear operator on a FDVS. V. If T is diagonal-

izable and c, ..., ¢, are distinct eigen values of T, then 3 linear operators E |,
L E onV such that,

@) T=cE +..+ gk,
(i) I=E, + .. +E,
(iii) Eys % 0 for all i #
(iv) E2=E
(v) Range of E, is the eigen space of T associated with eigen value
c;of T.
Conversely, if 3 distinct scalars c,, ..., ¢, and k non-zero linear opera-
tors E,, ..., E satisfying (i), (ii), (iii) then T is diagonalizable, c|, ..., ¢, are
eigen values of T and (iv) and (v) are also satisfied.

Proof: Let 7'be diagonalizable and ¢, ..., ¢, be distinct eigen values of 7. Let I¥
be eigen spaces of T'corresponding to eigen values c;.

Thendim V=dim W, + ... + dim W,
and V=W, + ..+ W,
Hence V=W, @ .. @W,

Asin Theorm 2.7, let E|, ..., E, be the projections associated with this
decomposition. Then (i) to (v) are satisfied. Letv € V'

Then, Iv)=v=(E, +..+TE)v
=EMW+ .. +E®W)
= Tv)=TE,(v) + .. + TE,(v)
=cE(v)+ ..+t E(v)as E(v) € Range of E; = W,
=(cE, + ..t E)v
= T=ck +.. .tk
This proves (7).

Conversely, suppose T along with distinct scalars ¢, and non-zero opera-
tors E; satisfy (i), (ii) and (iii). Also T=c,E, + ... + ¢, E,

Then  TE,=c,E,; foralli
= (T'-c)E;=0foralli
Since  E;#0 3 v, € Vsuch that, E;(v;) # 0
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(T-ch=(E +..+qE)—clE +..TE)
=(c;—oE, + ..+ (c, - OE,
If c is an eigen value of 7, then 3 0 # v € V' such that,
Tv=cv=>{T-cv=0
(¢, =) EE((v) + .. + (¢, — ) EEW(v) =0
= (- E(v)=0foral;j=1,..k
If E;(v) =0 forallj, then /= E, + ... + E;
=>v=IM=EW+..+tEMm=0
Ej(v) # 0 for some j
¢; = c for some j
.. €y, ..., ¢ are only eigen values of T.
Let W,=range of E,,i=1, ..., k.
By(@i) I=E +..+E,
> v=h=Eyv+.+EyveW +..+WforallveV
=>V=W+.+W
As in Theorem 2.4, V=W, @ ... ® W,

dim V'=dim W, + ... + dim. ¥,
= T'is diagonalisable if W,= eigen%ie of T corresponding to c;.
Let x € eigen space of 7. Then T(x) =cx, 1 <i<k
= (CE + .. T E)x=clx)=c(E, +..+E)x
= cE\(x)+ ...+ Ex) = cE/(x)+ ... + ¢ E(x)
= (-c)Ex)+ ..+ (c,—¢c) Efx)=0
= (¢-¢) E(x)=0forallj=1,.., k
as Ej(x) € Range of E=W,
and W,, ..., W, are independent.
we get Ej(x)=0,j¢iascj—ci¢0fora11j¢i
Since I=E + . +E,
x=Ex + ..+ E(x)=E(x)
= x € Range of E,= W,

.. eigen space corresponding to c; is contained in I¥,.
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i i
ﬁ= eigen space corresponding to c;.
Suppose 7'1s a linear operator with minimal polynomial p(x) = (x—c,) ...
(x—c;) such that, ¢, ..., ¢, € F are distinct. To show T'is diagonalizable.

Proof: Let p/(x) = I1 (x-6) j=1,..,k

izj (c;—¢)”
Then pj(ci) = 8,’]
Let V= space of all polynomials over F of degree less than k.
Then p,, ..., p; € V and are linearly independent as a,p; + ... + o, = 0
= o) ..t oy ple) =0
= o;=0foralli
Since dim V' =k, {p,, ..., p;} 1s a basis of V.
Now leV=1=op +..+op

Put X = c; on both sides to get
1 = o, forall i

= l=p+.+p ..(2.1)
xeV=x=Bp + ..+ By
Put X =g
Then  ¢; =P, foralli

= x=cpt..top, .(2.2)
Let pj(D = EJ

Put x =T in Equation (2.1) and Equation (2.2) above to get
I=p(D+..+p(D=E +..+E
T=ckE +.. ¢k
Since p(x) divides p(x)p,(x) forall i +
D1 = p(T)q(T) forall i+
= El-Ej=0foralli¢j
If E= 0 for some j, then p(7) = 0 and
degree of p(x) < deg p(x), a contradiction
Ej #0forallj=1, ..k

. T'is diagonalizable.
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Solution: Let R =range of £
N =null space of £
Then V=R®N

We have shown before that /— E is also a projection. x € N = Ex=0
= (- E)x=x = x e range of / — E. .. Range of E = R, Range of (/ — E)
=N

Also E(I-E)=E - E*=E—E=0. Suppose R is invariant under T then
S>TEVCEV=>TU-EYW=TV-EVYcV-EV=(I-EV=N-=
(I-E)Visinvariant under 7.

.. By Theorem2.6, TE =ET

= ETE = E’T =ET=TE.
Conversely, suppose ETE = TE

Let E(v) € R =range of £
Then E(TEW) eRasT: V>V, E: V>V
= TE(v) € R since ETE = TE

= Risinvariant under 7.

Further, if both R and N are invariant under 7, then by Theorem 2.7,
TE = ET.

Conversely, suppose TE = ET = ETE = TE
From above then, R is invariant under 7.
Also n e N= E@)=0= (ET)(n) = (TE)(n)
= T(E(n))
=T7T(0)=0
E(T(n))y=0foralln e N
= T(n) € null space of E foralln e N
= Nisinvariantunder 7.
Example 2.13: Let V= R? and T be the linear operator on V whose matrix
relative to standard ordered basis is [g ﬂ for same non-zero a, b € R.
Show that
(a) W, the subspace generated by (1, 0) is T-invariant
(b) W, the subspace generated by (0, 1) is not T-invariant
(¢) 3 no T-invariant subspace W of R* such that, R* = W, ® W.




Since dim W, =1, dim W must also be 1.
Define  E: R? = R2 such that,
) EGy) = (5 0)
then gs a projection of R? onto .
By Example 2.12, we should have TE = ET.
But TE(1, 1) =1(1, 0) = (a, 0)
ET(1,1)=E(@+b,a)=(a+b,0)
Showing that ET# TE and thus there does not exist any 7-invariant sub-

space W such that, R = W, @ W. We leave part (b) and (c) for students to
complete.

Theorem 2.8: Let T be a linear operator on the F.DgS. V(F). Suppose that
the minimal polynomial for T decomposes over F ihito a product of linear
polynomials. Then 3 a diagonalizable operator D on V and a nilpotent

operator N on V such that (i) T=D + N (ii) DN = ND.
Proof: Letp(x)=(x—c,)"! ... (x—c,)*be the minimal polynomial for 7where
¢y, ..., ¢ are distinct scalars in F.

By Primary decomposition theorem, V=W, @ ... ® W,, where W,=null
space of (T—c,[)"i. Let E|, ..., E, be the corresponding projections. Then W,=
range of E,.

Let D=cE +..+tc¢kE,
By Theorem 2.7, D is diagonalizable.
Since I=E +..+E
T=TE, +..+TE,D=cE +..+cE,
Let N=T-D=({T-cDE, +..+(T—-cE,
Then N2=(T-cIPE, + ..+ (T— ¢ E, asTE,=ET Y i

and in general that, N" = (T'—c,)'E, + ... + (T - ¢, /)" E,,
Since (x—¢;)"is the minimal polynomial of T'on W, (T—c,])"i=0on W,
forall i.
= (T-cdy=0on W, forallr>r,
: N7 =0 for all > r, for each i

éis nilpotent operator.
=D+ N, D is diagonalizable and N, nilpotent operator.
Now DT =(c,E, + ..+ ¢, E) (TE, + ... + TE)

= ,TE, + ... + ¢, TE,
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=TD
DD +N)= (D +N)D
= DN = ND.

2.4 NILPOTENT TRANSFORMATIONS

A linear transformation N : U— U'is called nilpotent if there exists ak € N such

that N*=0 for some positive integer k. The smallest such k is sometimes called the
degree of V.

A nilpotent transformation is a linear transformation L of a vector space
such that L* =0 for some positive integer k. A nilpotent transformation naturally
determines a flag of subspaces

{0} ckerN'c kerN? c .... kerN*!' c kerNf= U and a signature,

0=n,<n,<n,<n_, <n=dim U, n,= dim ker V"
The signature is governed by the following constraint, and characterizes N
up to linear isomorphism.

Theorem 2.9: A sequence of increasing natural numbers is the signature of a
nilpotent transformation if and only if

n—h, Sn—n,_

forallj=1,...., &1 . Equivalently, there exists a basis of U such that the matrix of
Nrelative to this basis is block diagonal

N O 0 .. 0
0 N, 0 .. 0
0 0 N, .. 0
0 0 0 .. N,

with each of the blocks having the form

10

0 01
! 000 .. 10
000 .. 01
000 .. 00

Letting d, denote the number of blocks of size i, the signature of Nis given by
n=n,+td+d, + +d,i=1,.. .k




understood to mean that if we have a specific matrix J, (0) ) then we need to
establish it is nilpotent of a specified index. The first column ofJ, is the zero vector,
and the remaining # — 1 columns are the standard unit vectorse, 1 <i<n—1.

which are also the first 7 — 1 columns of the size n identity matrix /,. As
shorthand, write J=J,

-~ [ﬂ |€1 |9: Iea I |9 -1}

We will use the definition of matrix multiplication together with a proof by
induction to study the powers of J. Our claim is that

J* = [E: |t_']I - |ID |el |1-:'2 | |e"_t:[

for 1 <k < n. For the base case, k=1 and the definition of J' = J (0)
establishes the claim. For the induction step, first note that.Je, =0 and Je,= ¢, , for
2 <i< n. Then, assuming the claim is true for k, we examine the k + 1 case,

7 =g
=J[C' 0] o le le, |... |£H:|
= [solso ... |0 e, Ve, |... Ve, ]

= [U' 0] oo ley fes |... h—H]

= [0l [0 ey ley |- [egen ]

This concludes the induction. So J, has a nonzero entry (a one) in row
n—kand column n, for 1 <k<n-1, and is therefore a nonzero matrix. However,

J*=[ofo|... |o] = 0. Jisnilpotent of index 7.
Theorem 2.11: ENLT
Eigenvalues of Nilpotent Linear Transformations

Suppose that T : V — V is a nilpotent linear transfromation and A is an eigenvalue
of T. Then A =0

Proof: Let x be an eigenvector of 7 for the eigenvalue A, and suppose that T'is
nilpotent with index p.
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Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV
tells us that A» =0 and so L =0.

Paraphrasing, all of#he eigenvalues of a nilpotent linear transformation are
zero. So in particular, the characteristic polynomial of a nilpotent linear
transformation, 7', on a vector space of dimension #, is simply p,(x) = x".

Theorem 2.12: DNLT

Diagonalizable Nilpotent Linear Transformations

Suppose the linear transformation 7': ¥ — Vis nilpotent. Then 7'is diagonalizable
ifand only 7'is the zero linear transformation.

Proof: We start with the easy direction. Let n = dim (V).

(«<=) The linear transformation Z : V' — V' defined by Z(v)=0forallv e V'
is nilpotent of index p =1 and a matrix representation relative to any basis of Vis
the n X n zero matrix, O. Quite obviously, the zero matrix is a diagonal matrix and
hence Z is diagonalizable.

(=) Assume now that T is diagonalizable, so y,(A) = a.()) for every
eigenvalue A.. By Theorem ENLT, T"has only one eigenvalue (zero), which therefore
must have algebraic multiplicity n (Theorem NEM). So the geometric multiplicity
of zero will be n as well y,(0) =n.

Let B be a basis for the eigenspace e,(0). Then B is a linearly independent
subset of V of size n, and by will be a basis for V. For any x € B we have

T(x) =0x
=0
So T'is identically zero on a basis for B, and since the action of a linear

transformation on a basis determines all of the values of the linear transformation,
it is easy to see that 7(v) =0 forevery v e V.

So, other than one trivial case (the zero matrix), every nilpotent linear
transformation is not diagonalizable.

Theorem 2.13: KPLT
Kernels of Powers of Linear Transformations

Suppose T': ¥ — Vis a linear transformation, where dim (V) = n. Then there is an
integer m, 0 < m < n, such that

{o} =k(T°) <k(T') =K(T7) & - SK(T") =K(T™") = K(T™") =




T E) =7 (T ()
=7(0)
=0
So by Definition KLT, _-ex(r**’] and by Definition SSET we have
-k Er1Y
K(T") ek (T5).
Second, we demonstrate the existence of a power m where consecutive

powers result in equal kernels. A byproduct will be the condition that m can be
chosen so that m < n. To the contrary, suppose that

{0} =k(r")ex(r") k(1) &~ k(T ek (T") Sk (1) & -
Since
K(r7) k(7). dim (K(T™')) zdim (K(TF)) +1.
Repeated application of this observation yields
dim (K(T™)) =dim (K(T")) +1
zdim (K(T"")) +2

= dim (K(Tﬂ)) +(n+1)
=dim ({0}) +n+1
=n+l

Thus, K (T "'H) has a basis of size at least # + 1, which is a linearly
independent set of size greater than # in the vector space of dimension 7.
This contradiction yields the existence of an integer & such that
K ( Tk :] = i (T“ 1), so we can define m to be lest such integer with this

property. From the argument above about dimensions res@ng from a strictly
increasing chain of subspaces, it should be clear thatm < n.
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Theorem 2.14: KPNLT
Kernels of Powers of Nilpotent Linear Transformations

Suppose T : V' — V' is a nilpotent linear transformaton with index p and
dim (V)=n. Then 0 <p <n, and

{0} =k(r°)ex(r") ex(r’) € - ek (77) = K(77") == ¥

Proof: Since 77 = 0 it follows that 777 =0 all j > 0 and thus K(77%) =V for
J 2 0. So the value of m guaranteed by Theorem KPLT is at most p. The only
remaining aspect of our conclusion that does not follows form Theorem KPLT is
that m = p. To see this we must show that K(T*) < K(T**") for 0 <k <p 1.
If K(T%) = 1. For some & < p, then K(7*) = K(7?) = V. This implies that 7 =0,
violating the fact that 7 has index p. So the smallest value of m is indeed p, and we
learn that p <n.

Theorem 2.15: CFNLT
Canonical Form for Nilpotent Linear Transformations

Suppose that ': V' — V'is a nilpotent linear transformation of index p. Then there
is a basis for ¥ so that the matrix representation M7, ;, is block diagonal with

eachblock being a Jardan block, J, (0). The size of the largest block is the ndex p,
and the total number of block si the nullity of 7, n(7).

Proof: We will explicitly construct the desired basis, so the proof'is constructive
and can be used in practice. As we begin, the basis vectors will not be in the
proper order, but we will rearrange them at the end of the proof. For convenience,
define n, = n(T"), so for example, n, = 0, n, = n(7), and n, = n(7,). Define
s,=n,—n,_, for 1<i<p, so we can think of as “how much bigger” K(T’) is than
K(T). In particular, Theorem KPNLT implies thatsi> 0 for 1 <i<p.

We are going to build a set of vectors z, , | <i<p, 1 <j<s, Eachz, , will
be an element of K(7") and not an element of K(7!). In total, we will obtain a

linearly independent set of T s, = £ n—n_, = n,=m, = dim {¥" ] vectors that form a
basis of V. We construct this set in pieces, starting at the “wrong” end. Our procedure
will build a series of subspaces, Z, , each lying in between K(7*") and K(T?),

having bases z, , 1 <j <+, and which together equal /"as a direct sum.
We build the subspace Z first (this is what we meant by “starting at the
wrong end”). K(77') is a proper subspace of K(77) = V' (Theorem KPNLT).

There is a subspace of V' that will pair with the subspace K(77!) to form a direct
sum of V. Call this subspace Zp, and choose vectors Z,p 1<5< s,asa basis of




have no nonzero vectors in common, for 1 </ <s,, z . € K(77"). That was
comparably easy.

If obtaining Z, was easy, getting Z _, will be harder. We will repeat the next
step p— 1 times, and so will do it carefully the first time. Eventually, Z, , will have
dimension S, |. However, the first s, vectors of a basis are straightforward. Define

z,,;,=1I(z,), 1 <j<s, Notice that we have no choice in creating these vectors,

they are a consequence of our choices for z, ;. In retrospect (i.e. on a second
reading of this proof), you will recognize this as the key step in realizing a matrix
representation of a nilpotent linear transformation with Jordan blocks. We need to
know that this set of vectors in linearly independent, so start with a relation of
linear dependence and massage it,

0 =aiZpy * GaZpqa V@i 3t - i
=mT (:Fk') +a,T (:F\_-.) +ayT (:Flg) +ome kg T [:_.,_,J,}
=T #4251 +|‘IIZZF: +;J_,_:F_3+ +{1;}.PJ’)

Define v =,z + a2, 5 +ayz, 4+ = +a. 7,5, The statement just above means
that »=x(7) =x(7"'). As defined, x is a linear combination of the basis vectors Bp,
and therefore x € Z,. Thus vek (1 ") riz,. Because » =&(r"") @z, thatx =0.
Now we recognize the definition of x as a relation of linear dependence on the

linearly independent set B , and therefore @, =a, == a,, = 0. This establishes the
linear independence of =, ;. 1575,

2.4.1 Index of Nilpotency

Nilpotent element is an element a of a ring or semi-group with zero 4 such that,
a" =0 for some natural number 7. The smallest such 7 is called the nilpotency
index of a. For example, in the residue ring modulo p” (under multiplication),
where p is a prime number, the residue class of p is nilpotent of index .

In the ring of (2%2) matrices with coefficients in a field K the matrix,

01
0 0

is nilpotent of index 2.

In the group algebra Fp[G], where £, is the field with p elements and G the
cyclic group of order p generated by o, the element 1—c is nilpotent of index p.
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Note: If 7184 square matrix with characteristic polynomial c(x) then ¢(T) = O.

Canonical form for nilpotent matrices is one that is all zeroes except for
blocks of subdiagonal ones. This can be made unique by setting some rules for the
arrangement of blocks.

Lemma 2: If the matrices 77— AJ and N are similar, then 7Tand N + A[ are also
similar, via the same change of basis matrices.

Proof: N=P (T—Al) P = PTP' - \I
= PTP'=N+ Ml

Definition: Invariant Subspace: Let ¢: V'— V' be a transformation. Then a
subspace M is t invariantifm ¢ M= t(m) e M

Example 2.14: N () and R () are both ¢ invariant.
Solution: If ve Noo(¢), then 3 k suchthat, t"(v)=0xn>k.
t W) =t"t(¥)=0 > t(v) € N (9.

If ve R (#), then 3w such that, v=1¢"(w).
Then z(v) =t (w) =t (¢t (w)) € R (¥).

Hence, N (t—X,)and R (t—A,) areboth ¢—A, invariant. By definition,
t—A, isnilpotenton N_(t—2,).
Lemma 3: A subspace M is ¢ invariant iff it is #—A invariant for any scalar A.
In particular, where A, is an eigenvalue of a linear transformation #, then for any
other eigenvalue 2. , the spaces N,(#—2,) and R (7 —2,) are both 7—A,
invariant.
Proof: If Mis t— A invariant for any scalar A, then setting A=0 means Wis ¢
invariant.

If Mis tinvariant, then meM = t(m) e M.

Since M is asubspace, it is closed under all linear combinations of its members.
Hence, t(m)Am € M, ie., meM = (t—-L)(m)eM.

Now since N (t—A,)and R (t—A;) are t—A, invariant, they are ¢
invariant and hence also 7-1; invariant.
Lemma 4: Givent: V— V' andlet Nand R be ¢ invariant complementary

subspaces of V. Then ¢ can be represented by a matrix with blocks of square
submatrices 7, and 7} :

T, | O) (dim N)rows
O |T,) (dimR)rows




Then 5,5 =(t01)5 | .| £(p, ) ») has the desired form.

15— | |0
Lemma 5: If matrix with submatrices 7', and 7, such that, T = olT
2

Then |T1=|T,||T,]
Proof: Let the dimensions of 7, 7, and T, be nx n, r X r and (n—r) x (n-r)
respectively.

Then

P
Z (_) th(l) ""trP(r)tr+1P(r+1) ""tnP(n)
P

P P,
= ;(_) ' th(l)-u-trpl(r);(_) 2tr+1pz(r+1)~~tnr; (n)
1 2

A0IT; |
200
0

Example 2.15: Solve m 3
0 0 0

w o 2O o

|2
1
0
0

=36

_ ‘2 0“3 0f

Solution: I 20 3

S o N o
o w o o
w o O o

Lemma 6: Ifalinear transformation ¢: ¥ — V has the characteristic polynomial
c(x)=(x—=A)".(x =),
Then,
V=N,t-1)®...®ON_ (t—\,)and dim N_(t—L,) = p;

Proof: Since dim(V)—p, +.... +p,

Therefore V=N_(t—L)®D...®N_ (t—A,)if dim N_(t—X;) = p, and

N (t=A)NN(t=)k;)={0} Vi#j
Accordingto Lemma 3, N, (t—2,)j and N, (t—%,)/ aretinvariant.
Since the intersect of ¢ invariant subspaces is ¢ invariant, the restriction of t

toM= N, (t=24)NN_(t=2;) isalinear transformation.

Now both 72, and /A, are nilpotent on M.
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1 k

From Lemma4 T = LO | T, J and from Lemma 5 | T—x/|=|T"—x{|| T>x]|

From the uniqueness clause of the fundamental theorem of arithmetic,
| T —xI|=(x=2A)" ....... (x=2,)"

And
| T, —xI |=(x—2)"....... (x=A)*

Then, ¢, +r,=p,j=1, ...k

i.e., the restriction of —Ai M to is N (1— ) nilpotent on M.

The only eigen value of f on M is hence Ai.

Hence c(x) = (x—2,)on M, i.e.,q;=0% j#i

Consider next the restriction of 1—A, to R=R (t—A4,).

Since ¢— A, is nonsingular on R, A, is not an eigenvalue of R.

Hence, ¢,=p, .

Check Your Progress

Define linear transformation.
Write the hypercompanion matrix.

What do you mean by rational cononical form?

Eall

‘What is nilpotent element?

2.5 PRIMARY DECOMPOSITION THEOREM

Theorem 2.16: Let T be a liner operator on a finite dimensional space V
over F. Let p(x) be the minimal polynomial for T such that,
PX)=p )71 oo pil)*
where the p(x) are distinct irreducible monic polynomials over F and
r; are +ve integers. Let W, be the null spaces of p(T)"i, i = 1, .. ., k. Then

@OV=we....ow
(i) Each W, is invariant under T (i.e., T(W) c W, Vi)

(i) If T,is operatow'wuced on W, by T, then the minimal polynomial q,(x)
Jor T, is p(x)".

g1 fix) + .+ gllx) filx) = 1
= gD +..+g(D) f(D)=1

Let, vevr,

then




v=g(1) (1)) + ... + (D) (D))
Now p(TYt f(T) g(T) = p(T) g(T) = 0

(D) /D) = [(DgD0)
pATYig(D) (D) =0
g(T) f(TY) € Ker p(TYi = W,
ve W +. .+ W,
V=w +.+W,
orthat V=W, @ .. ® W,
Forletx; +..+x,=0, x, €W,
then X =— (0t .. tx)

=>f(Dx=0asVizl, i(T)x,=0
Now g.c.d. (f(x), p,(x)'1) =1
So 3 ¢,(x), r,(x) € F[x] such that,

H®) ¢,x) + py)1 ryx) =1
= I'=q,(D f(T) + r(T) p(T)"

=x =0

uUu iU

Similarly x;=0 Vi
This proves (7).
Let x; € W, =Ker p(T)"
Then  p(1)1(x) =0
= Tp(T)i (x) = 0
= p(Ty (T()) = 0
= T(x)e W, Vi
= W,is T-invariant V/ i
which proves (i7).
Again,since  p(T)yi(x) =0 Vx, €W,
pATY' =0on W,

1 k
SDE) = f(D) pTyiw;
S(D) w; = 0 Vj#i
S(DO) = f(DgDw,
=fi(1) q(T) w;
=0as¢(T)=0
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= fU)=0
)| Ax)
=p(x)i]px)i
= <y
=5
So, g(x)= p(x)i
which proves (iii).

diagonalisable.

By primary decomposition theorem

veW, =T -cliv=0
=Tv)=cyp

a basis of V= T'is a diagonalisable.

eigen values in F such that, TS = ST.

Show that they have a common eigen vector.

space with respect to eigen value c.

Let vew.
Then T(S)) = (TS)(v)
= (ST)(v)
Self - Learning
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- Sis a linear operator on IV,
Let o € F be an eigen value of S as linear operator on /.
SLdwe WC such that,
S(w) =aw, w=0
we W = T(w)=cw
.. wis a common eigen vector of 7'and S.

Example 2.17: Let N be 2 x 2 complex matrix such that N> = 0. Prove that
rf\ f\j

Corollary: If T'is a linear operator on a finite dimensional space ¥ over F and
minimal polynomial p(x) of T is a product of distinct linear factors, then T'is

Proof: Let p(x) =(x—c,) ... (x —c,), where c; are distinct roots of p(x) in F.

V=W, ®..® W, where each W, = Null space of (T — ¢,/)

", every non-zero vector in J¥; is an eigen vector of T’ corresponding to
eigen value ¢; of . If B; is a basis of W, then {f3,, ..., B,.} is a basis of V. B, consists
of eigen vectors of 7= {B,, ..., B,} = P consists of eigen vectors of T and is

Example 2.16: Let T and S be linear operators on V(F), each having all its

Solution: Letc be an eigen value of . Let W= {v e V' ’ T(v)=cv} be the eigen




either N=0 or N is similar over C to [‘1} ;J

Solution: Let 7: V' — Vbe a linear operator such that,
[T]g=N, B = {v}, v,} is a basis of V.
Now, 0=N2=N.N=[T]B [T]B=[T2]ﬁ
= T?*=0.
Suppose N =0, i.e., T# 0.
Let A be an eigen value of T.
Then there exists 0 # v € V such that,

T(v) = Av
= T2v) = MT(W) = v
= 0=\
= AM=0asv=0
= A=0

= 0isthe only eigen value of T.
Let I, be the eigen space of T with respect to eigen value 0.
Then W= {x¢€ V|T(x)=0}=KerT
Since 0=ve W, W= {0}
So,dim W =1 or 2.
Ifdim W =2, then dim W = dim V'
= W=V = Ker T'=V = T=0, which is not true.
Therefore, dim W = 1.
Let W=<w,>

1
Then {w,, w,} is a basis of V.

Let  T(w)) = ow; + a,w,
T(w,) = Ow, + Ow, as w, € Ker T.
But ?’=0=0=T%*w)
= a,T(w;) + a,T(w,)
= o, T(w))

oy (0w + ayw,)

2
arwy o 0,w,
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L. 0
= A is similar over C to [g b

If the roots of f(x) are same, let f(x) = (x — @)?

Then  0=/(4)=(4—-al?
Let N=4—- ol

00
By above problem either N= 0 or N is similar over C to [1 0}.

o
0

o
0

IfN=0,then A=od ={

= A is similar over C to {

i v=0"lo

=>w el nW={0}

= w, = 0 which is not true).

So, T(w)) = a,w,.
Now  {o wy, w,y}=P'is also a basis of V"
as ao. 3w, + bw,=0
= aoc‘;= 0,b=0
=a=0=5b.
= {a 3wy, wy} =B isa L.l set
= B’ is a basis of V as dim V'=2
Therefore, T (003 wy) = o3 T (wy)
= ol aw, = w,
= 0o 3w, + 1w,
00
= [T]ﬁ =|:1 0:|
Also [Tl = N

L. 00
=> Nis similar to L 0} over C.

Example 2.18: Show that if A is a 2 x 2 matrix over C then A is similar to

. 0
a matrix of the type [z b} or ﬁ @over C.

|

i
L’J




~ o
Then A—OLI=Q’1[O %o
1 0]
Ja 0 0 0]
=yt
a 0] [0 0]
:Ql{{o 0L:|+|:1 | Q
a 0
=07 Vo

= A is similar over C to the matrix of the type ﬁ O} .
o

Example 2.19: Give an example to show that AB is diagonalisable and BA
is not diagonalisable, where 4 and B are n x n matrices over F.

Solution: Let A= { 1},3 = [1 0}
0 0 0 0

Then AB ={0 0}

0 0

So, AB is a diagonal matrix. AB is a diagonalisable matrix.

Now BA =B (ﬂ and (B4A)* =0
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that 0 or 1 are only eigen values of T and T is diagonalisable.
Solution: Let f)=x@x-1)=x>-x

then f(DH=T>-T=0

If p(x)is the minimal polynomial of 7, then p(x) | fx).

p(x)=xorx—1orx(x—1)

The eigen values of T are the roots of the minimal polynomial of 7.

. 0 or 1 are only eigen values of 7.

In each case p(x) =x or x — 1 or x(x — 1),

p(x) is product of distinct linear factors. So, T'is diagonalisable.

Example 2.21: Give an example of a linear operator T having eigen values
0 and 1 but T is not idempotent.

Solution: Let 7Tbe a linear operator on ¥ where dim V= 3 such that matrix of
T with respect to a basis of V'is

fo 1 1]




A=10 1 1
0 01
Then eigen values of 4 (or 7) are entries on the diagonal as 4 is a triangular
matrix.
.. eigen values of Tare 0, 1, 1.
011

But A2=10 1 1
0 0 1

(=K
oS = =
—_ = =

01 2
=01 2|#4
00 1

A &not idempotent.
So, is not idempotent.

2.6 JORDAN BLOCKS AND JORDAN FORMS

A Jordan block is a matrix with zeros everywhere except along the diagonal and
superdiagonal, with each element of the diagonal consisting of a single number A,
and each element of the superdiagonal consisting of a 1. For example,
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00 0 - 0 A
The degenerate case of a 1 X1 matrix is considered a Jordan block even

though it lacks a superdiagonal to be filled with 1s. Any Jordan block is thus
specified by its dimension » and its eigenvalue A and is indicated as J, .

For an arbitrary square matrix 4 over an algebraically closed field & there
always exists a square non-singular matrix C over ksuch that C'4C'is a Jordan
matrix or 4 is similar over k to a Jordan matrix. This assertion is valid under
weaker restrictions on k. For a matrix 4 to be similar to a Jordan matrix it is
necessary and sufficient that k contains @roots of the minimum polynomial of 4.
The matrix C-'4C mentioned above 15 Called a Jordan form or Jordan normal
form of the matrix A4.

The Jordan form of a matrix is determined only up to the order of the Jordan
blocks. More exactly, two Jordan matrices are similar over & if and only if they
consist of the same Jordan blocks and differ only in the distribution of the blocks
along the main diagonal. The number C, (A) of Jordan blocks of order m with
eigen value ) in a Jordan form of'a matrix 4 is given by the formula

C N =rk(A—AEV'-2rk(4A—-\EV+rk(4-\E)"L




where E is the unit matrix of the same order n as A4, rk B is the rank of the
matrix B, and rk (4 —\ E)°is n, by definition.

Theorem 2.17: There exists a basis of 7 such that the matrix of 7'is in block-
diagonal form with Jordan blocks. If @ is an eigenvalue of 7, ¢ the sequence (,,
tyewoisty....) With ¢, = dim ker(T — a) and (s, S 5., 8,,....) =—=R(L — 1)(?),
where R and L are the left and right-shift operators on R, then s, is the number of
Jordan blocks of size i with eigenvalue a.

As an illustration, let T'be the linear operator on F,° whose matrix with
respect the standard basis of F,°is

1 11100
01 1101
4o 001011
00 0111
000010
0000 0 1]
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A-1= (A-1)7°= , (A-1p=0.
000011 00 0O0O0O0
000 O0O00O0 000O0O0O0
000 O0O00O0 000O0O0O0

It follows that (7—1)*=0and 1 is the only eigenvalue of 7. We also have
rank(7— 1) =3, rank(7 — 1)? = 1, rank(7 — 1)* = 0 so that ¢, = dim ker(7— 1)
=3, t,=dimker(T— 1) =5, t,= dim ker(T— 1)} = 6. Hence ¢ is the sequence
(0,3,56,6, ..., 6,..).

Now (L-1)®=(3,2,1,0,0,..,0,..), L-1)*®)=(-1,-1-1,0,0, ..,
0,..)and so —R(L-1)(H)=(0, 1,1, 1,0, 0, ..., 0, ...) which, according to the
above Theorem , implies that there is one Jordan block of size 1, one of size 2 and
one of size 3. Hence there is a basis of F*,¢ such that the matrix of T with respect to
this basis is

> O O o O =
> O O o = O
> O O = = O
> O = O O O
> = = O O O
- - O O O O




LY v v v v |

If Wis a T-invariant subspace of Vand /= (f,, f,, ..., f,) is a basis of ¥, the
matrix (with respect to this basis) of the restriction of 7'to W is the Jordan matrix
J(a)ifE T(f) = of, T(f) =af, + 1, ... T(f)=af,+ f,, ..., I(f,)=af, + 1, or,
equivalently, (T'—a)(f) =0, (T—a)()) =f, ... T—a)f)=f, ... (T—a)
) =1,

For such a basis we have f; = (T —a)"(f,) with f ¢ Ker((T-a)")—-Ker((T-
a)~"). Conversely, if ge Ker((T — a)") — Ker((T — a)*") the sequence
g (T—a)(g), (T-a)X(g), ... (T—a)~'(g) is abasis for a T-invariant subspace of
¥ such that the matrix of this mapping with respect to the basis f, = (T—a)"'(g),
f,=T—-ay>g), ... (I'-a)g), gis the Jordan matrix Jn(a). The vector g is
called a cyclic vector of cycle length n for the eigenvalue a. Each Jordan block
corresponds to a cyclic vector. The subspace generated by a cyclic vector g and
its images under the powers of T'is called the cyclic subspace generated by g.

We now illustrate how to @ﬁ cyclic vectors that give decomposition into a
1

direct sum of cyclic subspaces e case of the above illustration. We first find
bases for ker(T — 1), ker(T — 1)?, ker(T— 1)’




We find that g, = e, completes the given basis of Ker((7-1)?) to a basis of Ker((T—
1)°). Now (T-1)(e,) = e,+e, e, is in the kernel of (7— 1)? but not in the kernel of
T-1.Thuse, e, te, e, te,Te,+e, e, +e,+e,islinearly independent and
we can complete this sequence to a basis of Ker((T— 1)) with the vector g, =e,.
Now (T'— 1)X(g,) = e, (T - 1)(g,) = e, + e, are in the kernel of 7— 1 and are
linearly independent. We complete these two vectors to a basis of ker(7—1) by
means of the vector

g,=e, T e, T e, +e. Now, the sequence of vectors

817 ¢ (T- 1)(g1) =e,te te, (T- 1)2(g1) =e,

g=e, (T-1)g)=e;te, g =e,te te te,

is linearly independent and the basis

fi=8 L=(T=1)g) fi,=8, f,=(T-1)(g). fs=(T-1)g) [, =g
yields the abgve Jordan canonical form for T If v, v,, ..., = Vand Wis

a subspace of V', We say that the sequence v, v,, ..., v, is linearly independent
mod Wif

av,tay,+...+ayv eW=a=a,=..=a,=0.

This is equivalent to saying that the images of the vectors v, in the quotient
space V=W form a linearly independent sequence. Similarly, we say thatv , v,
..., v, generate 'mod Wifeveryv e V canbe written in the formv=a,v, + a,v,
+....+ay, withw e W.This is equivalent to saying that the images of the
vectors v,in V=W span V=W.
Lemma 7: If Ker((T—a)) = Ker((T—a)*") then Ker((T—a)*') = Ker((T—a)*?).
Proof: Letv € Ker((T—a)*?). Then (T—a)(v) € Ker((T—ay*")= Ker((T—a)) which
implies that (T—a)*'(v)=(T—a)(T—a)(v)=0and hence thatv € Ker((T—a)™").

s lemma shows that, for an eigenvalue a of 7, there is an integer p > 0
such that

where ¢, = dim(T - a)'.

Lemma 8: If i >2 and v € Ker((T - a)’) — Ker((T— a)"") then
(T—a)v) € Ker((T-a)™") — ker((T — a)™2).

Proof: If v € Ker((T—a))) and (T—a)(v) € Ker((T —a)?) then
(T—a)y"'(v)=(T-ay*T-a)v)=0
which implies that v € Ker((T—a)").
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Lemma 9: Ifi>2 and v, v,, ..., v, € Ker(T-a)i is linearly independent mod
Ker((T-a)~") then

(T-a)v), (T-a)Wv), ... (T-a)v,) € Ker(T—a)™)

is a linearly independent sequence mod Ker((T— a)2).

Ifr=(r, r, ... r,..)=(L~-1){¢) then

r,=dim(Ker(T - a),,,) — dim(Ker(T — a)) = dim(Ker((T - a)*")=Ker((T
—a))).
Lemma 7 shows that r is a decreasing sequence of natural numbers which are zero
fori>p,ie.,

.=0.
The above Theorem states that the number of Jordan blocks of sizei > 1 is

—(r, —r~1) = r~1 —r, = dim(Ker((T-a))=Ker((T-a)")—-dim(Ker((T-
ay*)=Ker(T-a)))

Following is the proof of the above stated Theorem:

P2 212 o 28, =1, =T,,= .

Proof: Without loss of generality, we can assume that the minimal polynomial of 7is
(A-a)" (1-a))"..(2-a,), =0

By the primary decomposition theorem, Vis a direct sum of the subspaces
V(a)=Ker((T—a)i)with {a,, ..., a, } being the set of eigenvalues of 7. The
integer k, is the smallest integer > 0 such that, Ker (7T—a,f7) =Ker (T'—a,)""")

and so V(a,) = U ker(T — a,)/,
720

This subspace is called the generalized eigenspace for the eigenvaluea.,.
Let a be any eigenvalue of T If t,= dim ker(T—a)', then we have
0=t,<t,<...<t=t,

for auniquep > 1.

Given below is an algorithm for decomposing V' () into a direct sum of

cyclic Subspaces:
Step 1: Find a basis for Ker((T—ay’) mod Ker((T—ay '), 1i.e., find a sequence
of vectors in Ker((T — a)’) which complete some basis of ker
(T - a)' to a basis of Ker((T— a)’).
Step 2: If p =1 stop, if p > 1 take the image, under 7 — a, of the basis of
Ker((T—a)’) mod Ker((T—a) ') obtained in the previous step and
complete it to a basis of Ker((T— a)') mod Ker((T— a)*?).




cyclic vectors of cycle length i. The number of these cyclic vectors is dim(ker((T
—a))=Ker((T— a)")) — dim(Ker((T— a)*")=Ker((T — a))).

Moreover, V'is the direct sum of the cyclic subspaces generated by the
cyclic vectors so obtained.

Corollary 1: Let V' be a finite-dimensional vector space over a field K and let T’
be a linear operator on "' whose minimal polynomial is a product of linear factors.
If dim(V') =n, there are T-invariant subspaces

{0y=V,cV, cV,c.... c ¥V, =Vwithdim(V)=1i.
Corollary 2: If 4 isan n x n matrix over a field K whose minimal polynomial is a
product of linear factors then there is an invertible matrix P € K" such that
P-'4Pisupper triangular.
Corollary 3: (Cayley-Hamilton) If A (1) is the characteristic polynomial of the
matrix 4 € Cthen A (4)=0.

Corollary 3 is true for a matrix 4 over any field K since it is possible to find
afield F, containing K as a subfield, such that the minimal polynomial of 4 is a
product of linear factors A —c with¢ e F.

Let (A —a)" (A—a,)", ...(A—x,)" bethe characteristic polynomial of
a linear operator 7 on a finite-dimensional vector space V'witha,, a,, ..., a,distinct.
The integer n, is called the algebraic multiplicity of the eigenvalue a,. n, is the
dimension of the generalized eigenspace V' (a,) for the eigenvalue a,. The dimension
of the eigenspace Ker((T—a,)) is called the geometric multiplicity of the eigenvalue
a,. Thus T'is diagonalizable if and only if the geometric multiplicity of each eigenvalue
is equal to its algebraic multiplicity.

Example 2.22: [f A € C**° with characteristic polynomial A(A) = (2 — 1)?
(A — 2)3 and minimal polynomial m(A) = (A — 1)(A — 2)?, what is the Jordan
Sform for A?

Solution: The generalized eigenspace for the eigenvalue 2 has dimension 3 and
there is a cyclic vector of cycle length 2. It follows that there is one Jordan block
of'size 1 and one of size 2. On the other hand the cyclic vectors for the eigenvalue
1 have cycle length 1 and so there must be 2 Jordan blocks of size 1 for the
eigenvalue 1 since the generalized eigenspace for this eigenvalue has dimension 2.
The Jordan form (up to order of the blocks) is therefore

oS O o N O

00
10
20
0 1
00

== B =
—_ o o o O
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It follows that there must be either (1) 2 Jordan blocks of'size 3 or (i1) 1 of size 3,
one of size 2 and one of size 1 or (iii) one of size 3 and 3 of size 1. The corresponding
possible Jordan forms for 4 are:

01 0 00 0 000000 010000
000100 @ 000100 001000
00000 000000 000000
@) (i) (Un)
000010 000010 000000
0m001 0 0 00 0 0 0 gplE0 0 0
0 0™ o0 0 00 070 0 0 0 %00 0 o

Since the nullity of 4 is respectively 2, 3, 4 in cases (i), (i), (iii), we get that
two such matrices with the same nullity are similar.
Example 2.24: If Nis an n X n matrix withn 22, N* = 0, N! # 0, show that
there is no complex n x n matrix A with A> = N.
Solution: Suppose that 4>= N for some A. Then 4>’ = N*=( and so the characteristic
polynomial of 4 must be A”. Hence A" = 0 which implies N*!= 42 =0 since
2n—-22n.

This contradicts the assumption that N*-! = 0.

Check Your Progress

5. When is a linear operator on a finite dimensional space V over F'
diagonalizable?
6. Whatis Jordan block?

2.7 CYCLIC MODULES

A group we noticed is a system with a non-empty set and a binary composition.
One can of course talk about non-empty sets with two binary compositions also,
the set of integers under usual addition and multiplication being an example. Though
this set forms a group under addition and not under multiplication, it does have
certain specific properties satisfied with respectggmultiplication as well. We single
out some of these and generalize the concept 1t the form of aring. We start with
the formal definition.

D@nition 1: A non-empty set R, together with two binary compositions + and
.155aid to form a Ring if the following axioms are satisfied:

@Hha+tb+c)y=(a+b)+c foralla,b,ceRr
@ya+tb=b+a fora,beR




Wa.b.c)y=(a.b).c foralla,b,ceR
(vi)a.(btc)y=a.b+a.c
(btc).a=b.a+c.a forala,b,ceR
Notes: 1. Since we say that +and . are binary compositions on R, it is understood

that the closure properties with respect to these hold in R. In other words,
foralla,b € R,a+banda.bareuniqueinR.

2. One canuse any other symbol instead of + and ., but for obvious reasons,
we use these two symbols (the properties look so natural with these). In
fact, in future, the statement that R is a ring would mean that R has two
binary compositions + and . defined on it and satisfies the above axioms.

3. Axiom (v) is named associativity with respect to . and axiom (vi) is referred
to as distributivity (left and right) with respect to . and +.

4. Axioms (i) to (iv) could be restated by simply saying that <R, + > forms
an abelian group.
5. Since 0 in axiom (iif) is identity with respect to +, it is clear that this element
is unique (see groups).
Definitions 2: A ring R is called a commutative ring if ab = ba forall a, b
R. Againif Jan element e € R such that,
ae=ea=a foralla e R
we say, R is aring with unity. Unity is generally denoted by 1. (It is also
called unit element or multiplicative identity).
It would be easy to see that if unity exists in a ring then it must be unique.

Note: We recall that in a group by a*> we meant a . @ where °.” was the binary
composition of the group. We continue with the same notation in rings as well. In
fact, we also introduce similar notation for addition, and shall write na to mean
ata+t. ..+ c@n times), n being an integer.

Case 8: Sets of real numbers, rational numbers, integers form rings with respect
to usual addition and multiplication. These are all commutative rings with unity.

Case 9: Set E of all even integers forms a commutative ring, without unity (under
usual addition and multiplication).

Case 10: (a) Let M be the set of all 2 x 2 matrices over integers under matrix
addition and matrix multiplication. It is easy to see that M forms a ring with unity

10 . .
{ 0 J, but is not commutative.

Self - Learning
Material

119




120

Self - Learning
Material

multiplication modulo 7. (In fact, we could take # in place of 7).
Case 12: Let F be the set of all continuous functions /: R — R, where R = set

of real numbers. Then F forms a ring under addition and multiplication defined by:

for any f,geF

(f+ox=/(x) forallx € R

(f gx= f(x)g(x) forallx € R

zero of this ring is,the mapping O : R — R, such that,
O(x) gﬂ for all x € R

Also additive inverse of any f '€ F'is the function (—f) : R — R such that,
S/ x==f(x)

In fact, F' would have unity also, namely the function i : R — R defined
by i(x) =1 for all x € R.

Note: Although the same notation fg has been used for product here it should not
be mixed up with fog defined earlier.

Case 13: Let Z be the set of integers, then Z[i] = {a +ib | a,b € Z} forms a
ring under usual addition and multiplication of complex numbers. a + ib where a,
b € Zis called a Gaussian integer and ZJ[] is called the ring of Guassian integers.

We can similarly get Z, [i] the ring of Gaussian integers modulo . For
nstance,

ZJil={a+ib|a,beZ,= {0, 1,2} mod 3}
=40, 1,24, 1 +i,2+14,2i, 1 +2i,2 +2i}

Case 14: Let X be a non-empty set. Then . #(X) the power set of X (i.e., set of
all subsets of X) forms a ring under + and - defined by

A+B=AUB)-(ANB)
A.B= AnNB

In fact, this is a commutative ring with unity and also satisfies the property
A>=Aforall 4 e . ~(X).

Case 15: Let M =set of all 2 x 2 matrices over members from the ring of integers
modulo 2. It would be a finite non-commutative gg. M would have

. . |la b .
24=16 members as each element a, b, ¢, d in matrix L d} can be chosen in

2 ways. Compositions in M are given by

ab+xy:a®xb®y
c d z u c®z d®u




11 11
That M is non commutative follows as [1 J[O 0} = { }

11 11
0 OfjL 1] |0 O
R P
I 1j11 1] [0 0

Case 16: Let R = {0, a, b, c}. Define + and . on W

+ 0 a b c . a b ¢
0 0 a b ¢ 0 0 0 0 O
a a 0 ¢ b a 0 a b c
b b c a b 0 a b c
c ¢ b a 0 c 0 0 0 O

Then one can check that R forms a non commutative ring without unity. In
fact it is an example of the smallest non commutative ring.

Theorem 2.18: In a ring R, the following results hold
@Ha.0=0.a=0 foralla e R
(i) a(-b) = (—a)b =—-ab foralla,b € R
(i) (—a) (~b)=ab. ¥V a,b 1 R
(v)yab—-c)=ab—-ac.V a,b,c € R
Proof: (i) a.0=a.(0+0)
= a.0=a.0+a.0
=a.0+0=a.0+a.0

= 0=a.0
using cancellation w.r.t + inthe group <R, +>.
(i) a.0=0

= a(-b+b) =0

= a(-b)+ab=0

= a(—b) =—(ab)

similartly, (—a) b =— ab.

(iii) (—a)(=b) =—[a(=b)]=—[-ab]=ab
(v) ab-c) =ad+(0)
ab+a(-c)

=ab — ac.
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2. If n, m are integers and a, b elements of a ring, then it is easy to see that
n(ea +%%:na+n2 & Y

(n+m)a = na + ma
(nm)a = n(ma)
am a' = g™ +n

( am)n = g"n
We are so much used to the property that whenever ab = 0 then either

a =0 or b= 0 that it may need more than a bit of convincing that the result may

not always be true. Indeed in the ring of integers (or reals or rationals) this property

holds. Butif we consider the ring of 2 x 2 matrices over integers, we notice, we
can have two non zerz)ﬁlements A,Bs.t,AB=0,but A+ 0 B #0.In fact, take

0 1
A—{O 0} and B= [0

this notion through

g} then4#0,B#0. But AB= B g} We formalise

Definition 1: Let R be aring. An element 0 # a € R is called a zero-divisor,
if 3 an element O # » € R such that, ab =0 or ba = 0.

Definition 2: A commutative ring R is called an Integral domain if ab=01in R
= either a =0 or 5 =0. In other words, a commutative ring R is called an integral
domain if R has no zero divisors.

An obvious example of an integral domain is <Z, +, . > the ring of integers
whereas the ring of matrices, talked about above is an example of a ring which
is not an integral domain.

Note: Some authors do not insist upon the condition of commutativity as a part
of the definition of an integral domain. One can have non commutative rings without
zero divisors.

The following theorem gives us a necessary and sufficient condition for a
commutative ring to be an integral domain.

Theorem 2.19: A commutative ring R is an integral domain iff for all a, b,
ceR(a#0)

ab=ac = b=c.

Proof: Let R be an integral domain

Let ab=qc (a+0)
Then ab—ac=0
= ab-¢c)=0




Suppose ab =0

then ab=a.0

= b=0using given condition

Hence ab =0 = b =0 whenever a # 0 or that R is an integral domain.
Note: Aring R is said to satisfy left cancellation law if foralla,b,c € R,a# 0

ab=ac = b=c.

Similarly we can talk of right cancellation law. It might, of course, be

noted that cancellation is of only non zero elements.

Definition 1: An element ¢ in a ring R with unity, is called invertible (or a unit)
with respect to multiplication if 3 some b € R such that ab =1 = ba.

Notice, unit and unit element (unity) are different concepts and should not
be confused with each other.
Definition 2: A ring R with unity is called a Division ring or a skew field if non
zero elements of R form a group with respect to multiplication.

In other words, aring R with unity is a Division ring if non zero elements
of R have multiplicative inverse.

Definition 3: A commutative division ring is called a field.

Real numbers form a field, whereas integers do not, under usual addition
and multiplication. Since a division ring (field) forms groups with respect to two
binary compositions, it must contain two identity elements 0 and 1 (with respect
to addition and multiplication) and thus a division ring (field) has at least two
elements.

Case 17: A division ring which is not a field. Let M be the set of all 2 x 2 matrices

a

b — .
of the type{ N } where a, b are complex numbers and @,b are their
— a

. . - . . . . . 1 0
conjugates, i.e., ifa=x+iythen @ =x—iy. Then M is a ring with unity {0 J

under matrix addition and matrix multiplication.

Any non zero element of M will be { ey o lv}

—(u—iv) x-—iy

where x, y, u, v are not all zero.
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non zero matrix, showing that M is a division ring. But M will fidtbeafield as
itis not commutative as

il 315
) B T

Case 18: Consider
D={a+bi+cj+dk|a, b,c, de R} with i>=j*>=k? =1, then D
forms a ring under multiplication.
Since i=0+ 1i+0j + 0k, j =0+ 0i + 1 + Ok gives ij = k, ji = —k,
we find D is not commutative and hence is not a field. D hasunity 1 =1+ 0i +
0j + Ok.
If a + bi + ¢j + dk be any non zero element of D (i.e., at least one of «,
. . . (a—bi—cj—dk)
b, ¢, d is non zero) then (a + bi + ¢j + dk)—————==
) ( / ) a>+b* * +d?
Hence D is a division ring but not a field.
Theorem 2.20: A field is an integral domain.
Proof: Let<R,+,.>be afield, then R is a commutative ring.

Let ab =0 in R. We want to show either a =0 or b =0. Suppose a # 0,
then ¢! exists (definition of field)

thus ab =0
= a (ab) = a0
= b=0.

which shows that R is an integral domain.
A ‘Partial Converse’ of the above result also holds.
Theorem 2.21: A non-zero finite integral domain is a field.
Proof: Let R be anon zero finite integral domain.
Let R’ be the subset of R containing non zero elements of R.
Since associativity holds in R, it will hold in R'. Thus R’ is a finite semi group.

Again cancellation laws hold in R (for non zero elements) and therefore,
these holdin R'.




domain).
Aliter: Let R= {a,, a,, ...., a,} be a finite non zero integral domain. Let

0# a € R be any element then aa, aa,, ....., aa, are allin R and if aa, = aa;

for some i #/, then by cancellation we get a,= a; which is not true. Hence aa;,
aa,, ...., aa, are distinct members of R.

Since a € R, a = aa, for some i
Letx € R be any element, then x = aa; for some /
Thus ax = (aa)x = a(ax)
ie., X =ax
Hence using commutativity we find
X=ax = xa
or that g; is unity of R. Let a, = 1
Thus for 1 € R, since 1 = aa,, for some k

We find g, is multiplicative inverse of a. Hence any non zero element of R
has multiplicative inverse or that R is a field.
Case 19: An infinite integral domain which is not a field is the ring of integers.
Definition: A ring R is called a Boolean ring if x> = x for all x € R.
Case 20: Thering {0, 1} under addition and multiplication mod 2 forms a Boolean
ring.
Example 2.25: Show that a Boolean ring is commutative.
Solution: Let a, b € R be any elements
Then a+ b € R(closure)
By given condition
(@a+bP=a+b
> a+bh+ab+ba=a+b
=at+b+ab+ba=a+b
= ab+ba=0
= ab=-ba ..(D)
= a(ab) = a(-ba)
= a*bh = - aba
= ab =—aba -(2)
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) ab = ba (= — aba)
or that R is commutative.

Example 2.26: (a) Show that a non zero element a in Z,, is a unit iff a and
n are relatively prime.

(b) If a is not a unit then it is a zero divisor.
Solution: (a) Z,= {0, 1,2, ....,n—1} mod n
Let a € Z, be a unit, then 3 b € Z, such that,

a®b=1
i.e., when ab is divided by n, remainder is 1, in other words,
ab=ng +1

or ab—-ng =1
= aandn arerelatively prime.
Conversely, let (a, n) = 1, then 3 integers u, v such that,
au+nv=1
= au=n(-v)+1
Suppose, u=nqg+r, 0<r<n, rel,

Then au=ang +ar =n(-v)+1
= ar =n(-v-aq)t+l, rel,

ie., a®r=1, relk,

ie., a is a unit.

(b) Let a be not a unit and suppose g.c.d(a, n) =d > 1
Since d|a, a = dk for some k. Alsod |n = n=dt

:>a.t=dk§=kn=0modn

i.e., ais a zero divisor.
Example 2.27: Show that Z,,= {0, 1, 2, ....., p =1} modulo p is a field iff
p is a prime.
Solution: Let Z, be a field. Suppose p is not a prime, then 3 a, b, such that
p=ab,1<a,b<p

= a ® b =0 where a, b are non zero = z, has zero divisors.

i.e. Z,isnotan integral domain, a contradiction as Z, being a field is an
integral domain.

Then  abisamultiple of p




= plab

= plaorp|b (pbeing prime)

= a=0o0rb=0(Noticea,b € Z,=a,b<p)
= Z,isanintegral domain and hence a field.

Example 2.28: [fin a ring R, with unity, (xy)* = x*y* for all x,y € R then
show that R is commutative.

Solution: Letx, y € R be any elements
then y+1leR asleRr
By given condition
(v + D) = 2 (p 1)
= (y+x)P?=x>(+ 1)
= ) +x2 Fxx+ay =x20%+1+2y)
= AP+ +ox +ay =xH2 + 2+ Yy
= xyx = x%y (1)

Since Equation (1) holds for all x, y in R, it holds for x + 1, y also. Thus
replacing x by x + 1, we get

(D +1) = (x +1)%
= (@ +y) (x +1) = (@ +1 +2x)p
= xyx+xy+yx+y=x2y+y+2xy
= yx =xy using Equation (1)
Hence R is commutative.

Example 2.29: Show that the ring R of real valued continuous functions on
[0, 1] has zero divisors.

Solution: Consider the functions fand g defined on [0, 1] by

1
f(x)=§—x, 0<x<—

L) 2

ire.,  gf(x)=0forall x
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ie, gf=0butf=0,g=0.
Definition: A non-empty subset S of a ring R @aid to be a subring of R if S
forms a ring under the binary compositions of R.

The ring <Z, +, - > of integers is a subring of the ring <R, +, - > of real
numbers.

IfRis aringthen {0} and R are always subrings of R, called #rivial subrings
of R.

Itis obvious that a subring of an integral domain will be an integral domain.

Inpractice it would be difficult and lengthy to check all axioms in the definition
of aring to find out whether a subset is a subring or not. The following theorem
would make the job rather easy.

Theorem 2.22: A non-empty subset S of a ring R is a subring of R iff a, b
eS=ab,a-beS.

Proof: Let Sbe asubring of R
then a,b €S = ab e S (closure)
abeS=>a-bel
as < S, + > is a subgroup of <R, +>.
Conversely, since a, b € S= a—b € S, we find < §, + > forms a
subgroup of <R, +>. Again for any a, b € S, since S < R
a,beR
= atb=b+a
and so we find S is abelian.

Byasimilarargument, we find that multiplicative associativity and distributivity
holdin S.

In other words, S satisfies all the axioms in the definition of a ring.
Hence S'is a subring of R.

Definition: A non-empty subset S of a field F'is called a subfield, if S forms a
field under the operations in F. Similarly, we can define a subdivision ring of a
divisionring.

The simple modules over aring R are the (left or right) modules over R,
which have no non zero proper submodules.

Self - Learning
128  Material

Lrx+y)=m+ry
2. (r+s)x=rx+sx
3. (rs)x = r(sx)




4. 1,x=x,if R has multiplicative identity 1,.

A right R-module is defined in the similar way but the ring acts on the right, i.e.,
we have a scalar multiplication of the form M X R — M, and the axioms are
written with scalars » and s on the right of x and y. If R is commutative, then left R-
modules are the same as right R-modules and are called R-modules.

Submodule

Suppose Mis a left R-module and N is a subgroup of M. Then Nis a submodule
or R-submodule if, forany n € N and any » € R, the productrn € Nornr e N
in the case of right R-module.

Quotient Module
Given amodule 4 over aring R, and a submodule B of 4, the quotient space A/B
is defined by the equivalence relation
a~bifandonlyifb—a € B,

for any a and b € 4. The elements of A/B are the equivalence classes
[a]={a+b:binB}.

The addition operation on 4/B is defined for two equivalence classes as the
equivalence class of the sum of two representatives from these classes as,

[a] +[b]=[a+b]for a,b e Aandr € R

and the multiplication by elements of R as,

r-la]=[ra],foralla,b e Aandr € R

In this way, 4/B becomes itselfa module over R, called the quotient module.

2.7.1 Simple Modules

Definition 1: Amodule is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in a ring R then it is
called a module over R or an R-module. If @ and b are two integers then the
smallest module containing a and b is the module for their greatest common divisor.
Definition 2: The left R-module M is said to be finitely generated if there exist
m,y, ....,m, = Msuch that, M= z;@?mi.

mg,

a,...,a, Randx,...,x, € X
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the left ideal
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Am(m)={reR|rm=0}
is called the annihilator of m. The ideal

Anm (M)={reR|rm=0forallme M}.
is called the annihilator of M.
The module M is called faithful if Ann(M)=(0).

A module is simple if it is non-zero and does not admit a proper non-zero
submodule. If a module M is simple then the following are equivalent:

o Am= M for every m non-zero in M. simple module
o M ~~ A/m for some maximal left ideal of 4.

In particular, simple modules are cyclic and the annihilator of any non-zero
element of a simple module is a maximal left ideal.

The annihilator of a simple module is called a primitive ideal. The ring 4 is
primitive if the zero ideal is primitive or equivalently, if 4 admits a faithful simple
module.

¢ A module may have no simple submodules. Simple submodules of .4 are
minimal leftideals.

The module 4 is simple if and only if 4 is a division ring. In this case, any
simple module is isomorphic to 4.

The Z-module Z/p"Z where p is a prime is indecomposable. It is simple if
andonlyifn=1.

Let A=End, V' fora field k and a k-vector spaceV. The set a of finite rank
endomorphisms is a two-sided ideal of 4. Let B be the subring 4 generated
by the identity endomorphism and a. Then V is a simple B-module, in
particular a simple 4-module and B 4 if dim, V' is infinite. Let Wbe a
codimension 1 subspace of V. The endomorphisms killing /¥ form a minimal
leftideal in 4 and in B. Thus 4 and B when dim, Vis infinite give examples
of primitive rings that admit non-trivial proper two-sided ideals.

Definition 4: A uniform module is a non-zero module M such that the intersection
of any two non zero submodules of M is non-zero or equivalently such that every
non zero submodule of M is essential in M.

Note: An essential submodule of a module B is any submodule A which has non-
zero intersection with every non-zero submodule of B.

over itselfis known as an Artinian semi simple ring. Some important rings, such as
group rings of finite groups over fields of characteristic zero, are semi-simple rings.
An Artinian ring is initially understoﬁia its largest semi-simple quotient. The

structure of Artinian semi-simple

gs is well understood by the Artin—

Wedderburn theorem, which exhibits these rings as finite direct products of




matrix rings.
Definition: Amodule over a (not necessarily commutative) ring is said to be semi
simple (or completely reducible) if it is the direct sum of simple (irreducible)
submodules.

For amodule M, the following are equivalent:

1. M is semi-simple; i.e., a direct sum of irreducible modules.

2. Mis the sum of its irreducible submodules.

3. Every submodule of M is a direct summand: for every submodule N of
M, there is a complement P such that M=N @ P.

The most basigrexample of a semi simple module is a module over a field,
i.e., a vector space. On the other hand, the ring Z of integers is not a semi simple
module over itself, since the submodule 2Z is not a direct summand.

Semi-simple is stronger than completely decomposable, which is a direct
sum ofipdecomposable submodules.

A be an algebra over a field K. Then a left module M over 4 is said to

be absolutely semi simple if, for any field extension F of K, F — @ M is asemi-
simple module over F — @ ; A.

Properties of Semi-Simple Module

o If Mis semi simple and NV is a submodule, then N and M/N are also semi
simple.
o An arbitrary direct sum of semi-simple modules is semi-simple.

o Amodule M s finitely generated and semi-simple if and only if it is Artinian
and its radical is zero.

2.7.3 Schur’s Lemma

Schur’s lemma is a fundamental result in representation theory, an elementary
observation about irreducible modules, which is nonetheless noteworthy because
of its profound applications.

Lemma 10: Let G be a finite group and let /" and Wbe irreducible G-modules.
Then, every G-module homomorphism f: V— Wis either invertible or the trivial
Zero map.
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Given below is one of the most important consequences of Schur’s lemma:

Corollary: Let V' be a finite-dimensional, irreducible G-module taken over an
algebraically closed field. Then, every G-module homomorphism £V — Vis equal
to ascalar multiplication.

Proof: Since the ground field is algebraically closed, the linear transformation
f:V—V has an eigenvalue A, say. By definition, f—A is not invertible, and hence
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Proof: If n = 1, this is true, as R is a principal ideal domain. Now letn> 1. We

induct on n.

Amongst all possible set of generators of M having n elements choose one
which has an element m with least P(m). Let M = {m=m,, m',, ... ,m' }.If

M=R,® ;Rm} , then by induction the submodule ;Rm' has a basis {m,, ...,

m,}. Butthen {m, ..

equal to zero by Schur’s lemma. In other words, f=2 , i.e., a scalar.
2.7.4 Free Modules Fundamental Structure Theorem

In a principal ideal domain, the generators of an ideal is unique up to associates. If
a eR, then the generator of ann(a) (= {r € R|ra=0}) is called the order of a,
denoted by o(a). Now we attach a weight P(a) to a € R. Since R is a unique
factorization domain, we denote the number of prime factors (counting multiplicity)
of a by P(a). By convention, P(0) = 1. Thus, a|b in R implies that P(a) < P(b),
where the equality holds if and only if a, b are associates.

Lemma 11: Let M be a finitely generated module over a principal ideal domain R,

say M= {m,, ...,m,}. Suppose that there is a relationa,m, +...+a,m, =0,
where not all the a are zero. Then there are elements m', . .. ;m’, € M, such that,
M={m',...,m'},andthe order of m', divides every a,.

Proof: If one of the g, is a unit then the proof follows.

If a, is a unit, then m, is a linear combination of the other m,. So take
m',=0,m' =m,i>1.

Lets= Z P(a;)where a,# 0. We will prove this by induction onss. If s=0,
every g, is zero or a unit and at least one ¢, is a unit.

If only one a, is non-zero, the result is easy to establish, so let us assume a,,
a, are nonzero and non-unit. Letb=g.c.d.(a,, a,), a, = bc,, a,=bc,,and b c, +
b,c,=1.

Now,

M={m,m,, ... m}

n

¢, b
=4 (m,,m,) s Mgy 1,
-¢ b

0=">b(bm, +bm,)+am+...+am,
Now P(b) < P(a, <P(a,)+ P(a,). By induction, M= {m',, ... ,m' }, with

o(m'))| b, and o(m' )|a,, for i > 3. But b|a,, bja,, hence o(m’))|a,, for all .

..m,} is a basis of M.




We show that Rm is indeed a direct summand of M: If not, one has a
relationa,m, +...+am =0, witham #0.Letb=g.c.d.(a,o(m))=ca,+
c,0(m,). Since a,m, #0, a, and o(m,) are not associates. Hence, P(b) < P(o(m,)).

Note that bm +c,a,m,*. . +c,am, =0. By above Lemma M= {m',, ...
'}, with o(m' )b, o(m'))|c,a,, for i > 2. Since P(o(m',)) < P(b) < P(o(m,)),
this contradicts the minimality of {m,, ...,m,}. Thus, R, mis asummand of M and
the result follows.

Check Your Progress

7. When aoring R is called a Boolean ring?

8. State the Schur's lemma.

2.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let V'and U be two vector spaces over the same field , then a mapping
T: V— Uis called a linear transformation if

T(x+y)=T(x)+ T(y) forallx,y eV
T((X)C) = (XT()C), A e F
2. Let {p(A)}4be one of the elementary divisors of the characteristic matrix of

some A-matrix and C(p) be the companion matrix of p(A). The
hypercompanion matrix H associated with the elementary divisor {p(L)}¢

is given by
Cp) M 0 - 0 0
0 Cp) M - 0 0
H=c(p) ifq=1 H= IS if g>1
0 0 0 - Clp) M
0 0 0o -~ 0 C(p

matrices of the non-trivial invariant factors of AL/ —A.

that a” = 0 for some natural number 7.

diagonalizable.
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4. Nilpotent element is an element a of a ring or semi-group with zero 4 such

5. If T'is alinear operator on a finite dimensional space V over F'and minimal
polynomial p(x) of T is a product of distinct linear factors then T is

6. A Jordan block is a matrix with zeros everywhere except along the diagonal

and amerdiaconal with each element nfthe diaconal congcictinoe afa cinole
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number A, and each element of the superdiagonal consisting ofa 1.

. Aring R is called a Boolean ring if x> =x for all x € R.
. Let G be a finite group and let V" and Wbe irreducible G-modules. Then,

every G-module homomorphism f; V' — Wis either invertible or the trivial
Zero map.

2.9

SUMMARY

A similarity transformation is a conformal mapping whose transformation
matrix 4% can be written in the form

A'=BAB",
where 4 and 4? are called similar matrices.
Every square matrix 4 over F is similar to the direct sum of the
hypercompanion matrices of the elementary divisors over F' of AL/— A.
The Jacobson canonical form of a square matrix A consists of the direct
sum of the hypercompanion matrices of the elementary divisors over F of
M- A.
An n-square matrix A is similar to a diagonal matrix @nd only if the
elementary divisors of A/ — A are linear polynomials, i.e., if and only if the
minimum polynomial of 4 is the product of distinct linear polynomials.
Let T'be a linear operator on a vector space V. If Wis a subspace of V'such
that, T(W) c W, we say W is invariant under T or is T-invariant.
Every square matrix A4 is similar to the direct sum of the companion matrices
of the non-trivial invariant factors of AL/ — A4.
A linear transformation N : U — U'is called nilpotent if there exists ak € N
such that N¥=( for some positive integer k.




blocks of subdiagonal ones.

¢ A Jordan block is a matrix with zeros everywhere except along the diagonal
and superdiagonal, with each element of the diagonal consisting of a single
number A, and each el€ément of the superdiagonal consisting ofa 1.

e The Jordan form of a matrix is determined only up to the order of the
Jordan blocks. More exactly, two Jordan matrices are similar over k if and
only if they consist of the same Jordan blocks and differ only in the
distribution of the blocks along the main diagonal.

¢ A non empty set R, together with two binary compositions + and . is said
to form a Ring if the following axioms are satisfied:

@Ha+b+c)y=(@+b)+c foralla,b,ceR

@ya+b=b+a fora,beR

(iif) 3 some element O (called zero) in R, such that,a+0=0+a=a for
alla e R

(iv) For each a € R, 3 an element (—a) € R, such that, a + (—a) = (-
a)ta=0

Wa.(b.c)=(a.b).c foralla,b,c eR

viya.(b+tc)y=a.b+a.c
(b+tc).a=b.a+tc.a foralla, b,ceR

2.10 KEY TERMS

e Canonical form: The canonical form of a positive integer in decimal
representation is a finite sequence of digits that does not begin with zero.

¢ Jacobson canonical form: The Jacobson canonical form of a square matrix
A consists of the direct sum of the hypercompanion matrices of the elementary
divisors over F of AI—A

¢ Nilpotent froms formations: A linear transformation N: U — U'is called
nilpotent if there exists ak € N such that N*=0 for some positive integer k.
The smallest such k is sometimes caﬁf‘he degree of N.

e Jordan blocks: A Jordan block is a ix with zeros everywhere except
along the diagonal and superdiagonal, with each element of the diagonal
consisting of a single number A, and each element of the superdiagonal
consisting ofa 1.

Self - Learning
Material

135




2.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. What is the significance of linear transformations?
. What does Jordan canonical form
. How will you define a minimal polynomial?
. Define nilpotent transformations.
. State the primary decomposition theorem.
. What is Jordan blocks used for?
. What are simple modules?

. Specify the term submodule.

O 0 N9 N L B~ WD

. What is the significance of Schur’s lemma?
. State the fundamental structure theorem for modules.

—_
S

Long-Answer Questions

1. Let V'be the vector space of all polynomials of degree < 6 over F. Let W
be the subspace of ¥ spanned by {1,x%, x* x°}. Let D be the differential

. d . . .
operator on V. (i.e., D (f(x)) = Ef (x) . Show that W is not invariant

under D.

dZ
2. In (1) show that Wis invariant under D?> where D?(f (x)) = Ff (). LetT
X
= D?. Find
() The matrix of 7', in a suitable basis of V.

(i) The matrix of T in a suitable basis of %

(#i7) The m(@ix of T'in a suitable basis of V.
2 0 0

0012 0 LI A 0
N A= o P
@) B8 B 30 @i C 0| (iii) {0 C}
00 O
00 0 O

3. Let V'be the vector space of all polynomials over the field of real numbers
R. Let W be the subspace of ¥ spanned by {1, x, x*}. Let T be the linear




subspaces of V.

. Let ¢ be a characteristic value of T'and W be the space of characteristic

vectors associated with the characteristic value c. What is the restriction
operator T,,? (T,, = cl)

. Let Tbe alinear oper@r on a finite dimensional vector space V. Prove that

T is diagonalisable 1
T-invariant subspaces.

nd only if /' is a direct sum of one dimensional

. Let T'be a linear operator on a finite dimensional vector space V and let

Whbe a T-invariant subspace of V.
(/) Show thatif A is an eigen value of T, , then A is an eigen value of 7.

(i) Show that the eigen space of T, corresponding to eigen value A of
T, is W, N W, where W, denotes the eigen space of 7'corresponding
to A.

(i7) Prove thatif T'is diagonalizable, thensois T,,..

(Hint: T'is diagonalizable < V=W, + ... + W, where W, denotes
eigen space corresponding to eigen value A ; of 7. Use (ii)).

. Let Wbe a proper T-invariant subspace of ¥, where T'is a linear operator

on a finite dimensional vector space V.

Letn:V—> % such that,

N(v) = W+ v be a linear transformation. Show that W7 = 7 1 where 7
is a linear operator on % defined by T(W+v)=W+T(®).

Further, if T'is diagonalizable, show that 7 is also diagonalizable.
(Hint: T'is diagonalizable = J a basis {x,, ..., x,} of V consisting of eigen

vectors of 7. AlsonT'= 71 = {nx,, ..., nx,} are eigen vectors of 7 =

{W+x,, ..., W+x,} are eigen vectors of 7. If {W+v,, ..., W+v,} is

a basis of %, then it can be replaced by {W+ x,, ..., W+ x,} such that

. . V .. . 14
it forms a basis of 7 consisting of eigen vectors of W)'

. Let Tbe a linear operator on a finite dimensional vector space and suppose

that V=W, @ ... @ W,, where W, is a T-invariant subspace of V' for each
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18 also a projection.

11. Let T'be a linear operator on a finite dimensional vector space V. Let R be
the range of 7 and let N be the null space of 7. Prove that R and N are
independent ifand only if V=R @ N.

12. Let Tbe alinear operator on a F.D.V.S.V. Suppose T 'is diagonalizable.
Show that 7= Ker 7 ® ImT

1

13. Show that the eigen values of 4 = g g

0

01 are the fourth roots of unity.

= = S

1 000

14. Let T'be a linear operator on ¥ such that T'is diagonalizable. Show that
(T-AD)'v)=0,ve V,he F=(T-A)v)=0.

15. Let T'be a linear operator on V'such that, 7" =I. Let char F'=0. Suppose
Thas all eigenalues in F. Show that T'is diagonalizable.

[Hint: If g.c.d. (f, /") = 1, then roots of fare simple.]
16. Show that a ring R is commutative iff

(a+by=a*+b>+2abforalla,b eR.
17. If inaring R, x*> = x for all x then show that 2x=0and x+y=0=x=y.
18. If Ris aring with unity and (ab)?>= (ba)*foralla, b € R and 2x=0

= x= 0 tfi€n show that R is commutative.

2.12 FURTHER READING

Herstein, I.N. 1975. Topics in Algebra, 3rd Edition. New Delhi: Wiley Eastern
Ltd.

Khanna, V.K. and S.K. Bhambri. 2008. A Course in Abstract Algebra, 3rd
Edition. New Delhi: Vikas Publishing Hous Pvt. Ltd.

Bhattacharya, P.B., S.K. Jain and S.R. Nagpaul. 1997. Basic Abstract Algebra,
2nd Edition. New Delhi: Cambridge University Press.

Artin, M.1991. Algebra. New Delhi: Prentice-Hall of India.
Lang, S. 1993. Algebra, 3rd Edition. New York: Addison-Wesley.

Datta, K.B. 2000. Matrix and Linear Algebra. New Delhi: Prentice-Hall of
India.




3.0 Introduction
3.1 Objectives
3.2 Field Theory
3.2.1 Extension Field
3.3 Algebraic and Transcendental Extensions
3.3.1 Separable and Inseparable Extensions
3.4 Perfect Fields
3.4.1 Normal Extensions
3.4.2 Finite Fields
3.4.3 Algebraically Closed Fields
3.5 Automorphism of Extensions
3.5.1 Primitive Elements
3.6 Galois Extensions
3.6.1 Fundamental Theorem of Galois Theory
3.7 Solution of Polynomial Equations by Radicals
3.7.1 Insolvability of the General Equation of Degree 5
3.8 Answers to ‘Check Your Progress’
3.9 Summary
3.10 Key Terms
3.11 Self-Assessment Questions and Exercises
3.12 Further Reading

3.0 INTRODUCTION

In mathematics, a field theory studies the properties of fields. A field is a
mathematical entity for which addition, subtraction, multiplication and division are
well defined. Fields are important in algebra since they provide the proper
generalization of number domains, such as, the sets of rational numbers, real
numbers and complex numbers. Field extensions are an object of study in field
theory in which we start with a base field and construct a larger field containing the
base field and satisfying additional properties. A field extension L/K is called
algebraic if every element of L is algebraic over K, i.e., if every element of L is a
root of some non-zero polynomial with coefficients in K. Field extensions that are
notalgebraic, i.e., which contain transcendental elements, are called transcendental.

In this unit, you will study about the field theory, algebraic and transcendental
extensions, separable and inseparable extensions, normal extensions, finite fields,
algebraically closed fields, automorphism of extensions, Galois extension and solution
of polynomial equations by radicals.

Self - Learning
Material

139




140

Self - Learning
Material

¢ Define algebraic, transcendental, separable and inseparable extensions

o Describe perfect fields, normal extension, finite fields and algebraically closed
fields

o Understand automorphism of extensions, primitive elements, Galois
extensions and fundamental theorem of Galois theory

o Solve polynomial equations by radicals

o Justify the insolvability of the general equation of degree 5

3.2 FIELD THEORY

In mathematics, a field is a set on which addition, subtraction, multiplication, and
division are defined and behave as the corresponding operations on rational and
real numbers do. A field is thus a fundamental algebraic structure, which is widely
used in algebra, number theory, and many other areas of mathematics.

The best known fields are the field of rational numbers, the field of real
numbers and the field of complex numbers. Many other fields, such as fields of
rational functions, algebraic function fields, algebraic number fields, and p-adic
fields are commonly used and studied in mathematics, particularly in number theory
and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e.,
fields with finitely many elements.

The relation of two fields is expressed by the notion of a field extension.
Galois Theory, initiated by Evariste Galois in the 1830s, is devoted to
understanding the symmetries of field extensions. Among other results, this theory
shows that angle trisection and squaring the circle cannot be done with a compass
and straightedge. Moreover, it shows that quintic equations are, in general,
algebraically unsolvable.

Fields serve as foundational notions in several mathematical domains. This
includes different branches of mathematical analysis, which are based on fields
with additional structure. Basic theorems in analysis hinge on the structural properties
of the field of real numbers. Most importantly for algebraic purposes, any field
may be used as the scalars for a vector space, which is the standard general
context for linear algebra. Number fields, the siblings of the field of rational numbers,
are studied in depth in number theory. Function fields can help describe properties
of geometric objects.




also consider the so-called inverse operations of subtraction, a — b, and division,
a/ b, by defining:

a-b=a+(-b),

a/b=a.b-1.
3.2.1 Extension Field

Definition: Let K be a field and suppose Fis a subfield of K, then K is called an
extension of F.

Suppose S'is a non-empty subset of K. Let F(S) denote the smallest subfield
of K which contains both Fand S. (In fact F(.S) would be the intersection of all
subfields of K that contain /" and S). The following theorem is then an easy
consequence.

Theorem 3.1: If'S, T are non-empty subsets of a field K and K is an extension
of a field F then F(S U T) = F(S) (T) (where, of course, if F(S) = E, then by

F(S)(T) we mean E(T)).

Proof: F(Su T)is the smallest subfield of K containing S U T, F
ie., SST,FcFSuT

FSO) cFSuTD, TcFSuT

FS(T) c F(Su T)

Again, F, S, T < F(S(T)

F,.SuTcFO)

FISOT) < F(S(T)

or that FS U T)=FOS)T)

Corollary: F(SU T)=F(T w S) = F(S)(T) follows clearly as SU T=TU S.

Note: If S is a finite subset {a,, a,, ..., a,} of K we write F(S) = F(a,, a,,..., a,).
The order in which a; appear is immaterial in view of the above Corollary as
F(ay, ay ..., a,) =F({a,}{ay, a3, ..., a,})
=F({a, ay, ..., a,} U {a,})
= Fla,, ay, ..., a,, a,)
Also then, F(a)(b) = F(a, b) = F(b, a) = F(b)(a)
Again, if K = F(a), K is called simple extension of F and we say K is
obtained by adjoining the element a to F.
Example 3.1: Let Q be the field of rationals then show that

Q(2,4B) =Q(2+40).

=
=

=
=
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Bow,  QFLR 8B

= W2 +4B)? € Q2 +4B)
= 243+ 23243 € QW2++5)
Also 5 € QW2+4f)
= 5+ 24248 =5 = 2243 € QW2 +43)
Again, 2 e QW2+43)
2% S4B = V2B € QW)
= W2+BW23 = 23+3/2 € QW2+4B3) (1)
Also W2+ € QW2 +4B3)
= 22+4B) € QW2 +4B)
= 2W2+243 € QW2 +B)
= @3+32) — @2+23) € QW2+43) by using
Equation (1)
= V2 € QW2+4B)
Again, 2+ € Q2+43) = 302 +4B) € QW2 +43)

and using Equation (1) we get

G2 +3B)- 23 +3\2) € Q2 +43)
ie., B € QH2+HB)
Hence V2.4 € Q(2+43) = Q(2.45) QW2 +45)
or that QW2,43) =QW2+43).

If Kis an extension of F, then we know that K can be regarded as a vector
space over F. In that case dimension of K over Fis called degree of K over F
and we denote it by [K : F]. Our next theorem is about the degree of extension
fields. If [K : F] s finite, we say K is finite extension of F.

Theorem 3.2: Let K be i nite extension of F and L, a finite extension of
K. Then L is a finite extension of F and [L : F) =[L:K][K:F].
Proof: Let [L : K]=m, [K: F]=n

Let {a,, ..., a,} be a basis of L over K and {b, ...., b,} be a basis of
K over F.




Z(UJ =0, ZaubJEK

1

Ms

Then

Jj=
Since {ay, ...., a,,} are linearly independent over K,

=0 foralli=1,.

I M=

1//
1

Also by, ... b are linearly independent over F.
a; = =0 foralli=1,...m j=1,..,n
“Aapb;|1<i<m,1<j<n}isalinearly independent subset of L over
F.Leta e L. Since {a,, ..., a,,} is a basis of Lover K, a=oya, +... + a,a,,
o, € Kand {b,, ..., b,} is a basis of K over F

= o = ﬁilbl t. Bln n By EF

Z oa; = Z Babr---+Binby)a;
i=1

i=1

[
I

Z Z jaibj, Py € F
<m, 1<

“Aabi | 1< < n} spans L over F and so forms a basis of

Lover F.
[L:Fl=mn=[L:K][K:F]

Note: If[L : K] is infinite, then [L : F] is also infinite because [L : F]=r = every
subset of L having r + | elements is linearly dependent over F. Since [L : K] is
infinite, 3 @y, ..., a, . ; € L which are linearly independent over K. Now 1 € K
and 1 is linearly independent over F"as 1 # 0. As in Theorem 3.2, a,.1, a,.1, ...
a, , ;.1 are linearly independent over /. We find a, ..., a, , | € L are linearly
independent over F,, a contradiction.

. [L: F]isinfinite. Similarly, [K : F] is infinite.

Corollary 1: If L is a finite extension of F and K is a subfield of L which contains
F,then [K : F] divides [L : F].
Proof: Byremark above [K: F]is finite as [L : F] = finite. Also [L : K] is finite.
By Theorem 3.2, [L:F1=[L:K][K:F]
: [K : F]divides [L: F]
Corollary 2: If K is an extension of F, then K = F'ifand only if [K : F] = 1.
Proof: If K=F, then [K: F]=[K:K]=
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; = beF = KcF = K=F
Corollary 3: If L is an extension of F'and [L : F] is a prime number p, then there

is no field K such that, Fc K c L.
Proof: Suppose 3 a field K such that, Fc K c L.

Then p=I[L:F]=[L:K][K:F]by Theorem 3.2
= [L:K]=1 or [K:F]=1
= K =L or K=FbyCorollary?2 acontradiction.
Hence the result.

Trivially then, if K is an extension of F of prime degree then for every
aekK Fla=F or F(a)=K.

Example 3.2: Let D be an integral domain. Let F be a field such that,
F < D. Suppose unity 1 of F is also unity of D. Then D can be regarded as
a vector space over F. Show that D is a field if [D : F] = finite.
Solution: Let [D : F]=r. Let {a,, ..., a,} be a basis of D over F.

Let 0 # a € D. We show that a is invertible. Consider {aa,, ..., aa,}.

Let o,(aa;) + ... + o(aa,) =0, o, € F.
Then  a(oya; +..+aa)=0
= oya; +...+to,a.=0,asa#0and D is an integral domain.

= o,=0foralli=1,...,7as {a,, ..., a,} is linearly independent over F.
= {aa,, ..., aa,} is linearly independent over F.
But[D:F]=r = {aa,, ..., aa,} is a basis of D over F.
leD = 1=jaa, +..+B,aa, B,eF
=a(Ba, + ... B,a,
=ab, b=Ba, +..+Pa. €D
= aisinvertible.
= Disafield.

3.3 ALGEBRAIC AND TRANSCENDENTAL
EXTENSIONS

Suppose K is an extension of F and a € K.
Let Flal={(a)|fx)=ay+ax+..+ax" e Flx]}, a€F
then as f(a)=ay,+ aja + .. + a,a" € K, we find Fla] c K

One can show that F[«] is an integral domain.




a=0+1.a+0.d+ .. e Fla]
ie., ae FlalcE
Again if a € F'be any element then
a=o+0x+0x2+ .. e Flx]
gives o € Fla]l or that Fc Flalc E
Hence F(a) C E, as F(a) is the smallest field containing F and a.
If f(a) € F [a] be any member where
f@=ay+toa+..+tod, o eF
then as a € F(a), o, € F < F(a), we find f(a) € F(a)
Hence F[a] < F(a) and so
Flal]c F(a)c E
But £ is the smallest field containing F [a].
E < F (a). Hence F(a) = E.
So, we have explicitly determined the field F(a). It is the field of quotients
of Fla].

We write, F(a) = {MW) £0, /(). g eF[x]}
g(a)
I@eneral, one can show that

f(@, . ay) S y) eF[x]}
F(a,, .., a)= lg(ay, ...,a,) #0,
@ - @) {g(al, ty) g1 %, € Flx]
A natural question arises. When is F{a] = F(a)? To answer this, we first
define what is an algebraic element. Let K be an extension of F. @ € K is said
to be algebraic over F if 3 non-zero polynomial f(x) € F[x] such that,

f(a)=0. Otherwise, it is called transcendental element. For example, 2 eR=

real field, is algebraic over Q =rational field as +2 satisfies non-zero polynomial
f(x)=x>-2 e Q[x]. However, m, e € R are not algebraic over Q. An extension
K of F is called an algebraic extension if every a € K is algebraic over F.

If for some a € K, a is not algebraic over F, then K is called transcendental
extension of F. For example, R is transcendental extension of Q. We shall see in
the following theorem that finite extensions are algebraic. So, C =the field of
complex numbers is algebraic over Ras [C : R]=2, {1, i} being a basis of C
over R.

We sometimes use the notation K/F to express the fact that K is an extension
of F. Similarly, K/F'is algebraic would mean K is an algebraic extension of F.
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Let f(x) = oy + o;x + ... + o, x". Then f'(x) is non-zero polynomial in
F[x] as some a; # 0. Also f(a) =0y + oya + ... + a,a" =0
.. a is algebraic over F.
.. K'is algebraic over F.
Note: Converse of Theorem 3.3 is not true.
Corollary: a € K is algebraic over F' if [F(a) : F] = Finite.
Proof: By Theorem 3.3, F(a) is algebraic over F.
.. a € F(a) is algebraic over F.
Converse of the above corollary is also true. But we will prove it after the
next theorem.
Theorem 3.4: Let a € K be algebraic over F. Then
(@) 3 a unique monic irreducible polynomial p(x) € F[x] such that,
p@)=0
(#7) 3 non-zero polynomial q(x) € F[x] such that, g(a) =0, then p(x) divides
q(x),
(iii) F(a) = Fla].
Proof: (i) Since a is algebraic over F, 3 a non-zero polynomial f (x) € Fx], such
that,

f(a)=0.
Let #(x) be the non-zero polynomial of smallest degree over F such that,
t(a) = 0 and suppose
(x)=aytax+..+ax", aekF
If #(x) is not monic [ By monic polynomial, we mean a polynomial in which
coefficient of highest degree term is 1], then let
p(x)=alay + alax + ..+ x" = ai(x)
Now deg p(x) =n=deg t(x) and p(a) = 0 and p(x) is a monic polynomial.
Thus 3 a monic polynomial p(x) ast degree such that, p(a)=0.
Suppose p(x) = p,(x)p,(x), re p, and p, are polynomials with lesser
degree than deg p.

Then 0 = p(a) = py(a)py(a)

= pi(@=0 or pya)=0 [asF[a]isanl.D.]

But that would lead to a contradiction as p(x) is such polynomial with least
degree.

Hence p(x) is irreducible polynomial.




Now, 0 = g(a) = p(a)h(a) + r(a)
= na)=0 as p(a)=0

Since p(x) is of least degree such that, p(a) =0, we find deg r <deg p is
not possible. Hence 7(x) =0

ie., q(x) = p(x)h(x) ..(3.1)
Since g(x) is irreducible, 4(x) must be a constant polynomial, say /(x)=c
Then q(x) = cp(x)

Since ¢(x) is monic, coefficient of highest degree term in L.H.S. is 1 and
therefore it is 1 on R.H.S. also

R.H.S. being ¢p(x) = ca,'ay + ca,'a;x + ... + ex" gives ¢ = 1
Hence g(x) = p(x), proving the uniqueness of p(x)
(ii) Follows by Equation (3.1)
(#i7) Define a mapping 0 : F]x] — F[a], such that,
0(f(x)) =/ (a)
then 6 is onto homomorphism (verify!)
By fundamental theorem then

F
A = s

Since F[a] is an integral domain, so would be % which implies Ker 0
er

is a prime ideal. Since a is algebraic over K, 3 a non-zero polynomial f (x) €
F[x] such that, f'(a) = 0.

= 0(/(x)=/f(a)=0
= f(x) € Ker 8 = Ker 0 # (0)
i.e., Ker 0 is anon-zero prime ideal of F]x] which being a Euclidean domain
is a PID.

Thus Ker 6 is a maximal ideal.

= 1 s a field.
Ker 0
= F[a]isafield.
But F(a) is the smallest field containing F and @ and thus F(a) < Fla]
Also Fla] c F(a)
Hence F(a) = Fla].

Note F(a) is field of quotients of F]a] and when F[a] is itselfa field, Fla]
= F(a).
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le®)]| g=0
2. If a € K is transcendental over F'then F(x) = F(a).
Proof: Define ¢ : F(x) - F(a) such that,
[f(x)j _ Sl

g))  gla)’
Then ¢ is well defined onto homomorphism.
( ()
Al =0
0w
= fla) _ 0
g(a)
= f@=0
= f(x) =0, for otherwise a would be algebraic over F.
= S(x) _ 0
g(x)
= ¢is 1-1.
Hence F(x) = F(a).

Corollary 1: Let a € K be algebraic over F. Then [F(a) : F]= finite =deg Irr
(F, a) and so F(a) is an algebraic extension of F.
Proof: Let p(x) = Irr (F, a). Let n = deg p(x).
We show that 1, a, @2, ..., "' form a basis of F(a) over F.
Let0 # f(a) € Fla] = F(a). Then f(x) € F[x].
Now for f(x), p(x) € F[x], 3 q(x), r(x) € F[x] such that,
f(x) =px)g(x) + r(x) where either r(x) =0
or degr <degp.
But rx) =0 = f(x)=pK)q(x)

= f(a)=pa)g(a)=0 as p(a)=0
which is not possible as f'(a) # 0

Thus  r(x) # 0. Hence deg r < deg p.

Suppose r(x) = By + Bx + ... + B’HJHH, B,€F, where some B, could
be zero.
Again as f(a) =p(a) q(a) + r(a) and p(a) =0
we find f(a) =r(a)




Yot na+ya+ ..ty a7 =0

= Hx) =y Tyx+ ..+ ynflx’H
is non zero polynomial (some y; # 0) with #(a) = 0.

A contradiction to the fact that p(x) is such polynomial with least degree.
Hence 1, a, ..., "' are Linearly Independent (L.I.) and thus form a basis of F(a).

Hence [F(a): F] =n.
3. Using Corollary to theorem 3.3 we conclude a € K is algebraic over F iff
[F(a) : F]=finite.
Definition: An element a € K is said to be algebraic of degree n over F if it
satisfies a polynomial of degree n over F' and does not satisfy any polynomial of
lesser degree (than n).

Thus a is algebraic of degree n over F if deg Irr (F, a) = n. Also in that
case, [F(a) : Fl=nand {1, a, &, ..., a"'} is a basis of F(a) over F.
Corollary 2: Ifay, ..., a, € K are algebraic over F then F(a,, ..., a,) is finite
extension of F and so is algebraic over F.

Proof: We prove the result by induction on n. If n = 1, result follows from
Corollary 1. Assume it to be true for naturals less than n. Leta, ..., a, € K'be
algebrai cover F. Now a,, is algebraic over F' = g, is algebraic over F (ay, ...,
a, ) as F'c Fay, ay, ..., a, ).

.. ByCorollary 1, [F(a,, ...,a, ) (a,) : F(a,, ..., a,_,)] is finite. By induction
hypothesis, [F(ay, ..., a,_;) : F]is finite.

~ [y, .. a,) F1=[Fay, ..., a,) : Flay, ..., a, )] [Fla,, .., a, ) :
F]|=finite

.. Result is true for n also.

By induction, result is true forall n > 1.

Corollary 3: If a, b € K are algebraic over F, then a £ b, ab, ab™' (if b # 0)

are algebraic over F. In other words, the elements of K which are algebraic over
F form a subfield of K (and this subfield is called the algebraic closure of F

over K).

Proof: By Corollary 2, F(a, b) is algebraic over F.
. a+b,ab,ab! € F(a, b) are algebraic over F.
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Proof: Let L denote the R.H.S. We first show that L is a subfield of K.
Let fluy,.suy,) el S vy) cL
g(uy, .. uy,) g (Vs ey V)

Let y = f(ul,...,um)_fl(vl,...,v,,)

g(ula"'s um) gl(Vla"-avn)
— f(ula---aum)gl(vla-“avn) _fi(vla--wvn)g(uh---’ un)

g(ul’msum)gl(V17-"7vn)

Define  A(xy, ..., X, 0 ,) = S5 s X,) 81 (X415 wes Xy 1)

8 e 1) fi e Ty )

(X ey Xy i) = 801 ooy %) &1(X i1 woos Xy s )

Then Y= h(ul,...,um,vl,...,vn) c L

P(Uy oy Upys Vi ey V)

EIGTEEL DR

Suppose
&1 (Vl’ ey Vn)

Let 7 = f(ul"“’um) ,gl(vlama vn)
gy, stty) 1V s V)
Define  /1,(xX), cour X4 ,) =S (Xps wos X)) €1yt 15 wovs Xp i )

7y s Xy ) = 8y, s X,) [1(0, 4 s Xt )

Then 7 = Uy s Uy, Vs ey V) cL
ULy ooy Upy s Vi ooy V)

So, L is subfield of K.

Letu; € S. Define f(x) =x, g(x) = 1.

Then Suy) =uy, gluy) =1
J () el = YLep = u €L
gluy) 1

So, Sc L.

Leta € F. Define f(x) = a, g(x) = 1.
Letu € S. Then f(u) =a, g(u) = 1.
pAC]
g(u)

o

Now, el = T=aeL.

So, Fc L.
But F(S) is the smallest field containing F and S, F(S) L.




So, Y € F(S), then L < F(S).
Hence F(S) £ L.(S) en L < £(5)

2.If K is an extension field of 7, and K is generated by algebraic elements (i.e.,
K = F(S), where S < K is a set of algebraic elements over K), then K is an
algebraic extension of F.
Proof: Let C € K, then C = M, u; €S.
gluy, . uy)

where f(x,, ..., x,), g(x}, ..., x,) € F[x},..., x,].

Clearly C € F(uy, ..., u,). But u,, ..., u, are algebraic over F = F(u,,
.., u,,) is an algebraic extension of /"= C'is algebraic over F.

Hence K/F is algebraic.
Theorem 3.5: If L is an algebraic extension of K and K, an algebraic
extension of F, then L is an algebraic extension of F.
Proof: Let a € L. Since L is algebraic over K, a is algebraic over K.

530 =% f(x) € K[x] such that, f(a) = 0. Let f(x) =y + o, x + ... +
ox", o, € K.

Since K is algebraic over F, each o, € K is algebraic over F. By Corollary 2
Theorem 3.4, [F(ay, o, ..., o) : F] = finite.

Let M= F(ay, o, ..., 0,)

Then [M : F] is finite and so M is algebraic over F. Clearly, each o, € M.
Thus, f(x) € M[x].

i.e., a is algebraic over M.

By Corollary 1, M(a) is finite extension of M.

= [M(a): F]1=[M(a): M][M : F] = Finite.

= M(a)is algebraic over F.

= a € M(a) is algebraic over F.

Since a is an arbitrary element of , L is an algebraic extension of F.
Definition: A complex number is said to be an algebraic number if it is algebraic
over the field of rational numbers.

An algebraic number is said to be an algebraic integer if it satisfies an
equation of the form x" + o, x"! + ... + o, where o, ..., o, are integers (i.e.,
amonic polynomial over integers).

Example 3.3: [f a is any algebraic number, prove that 3 a positive integer
n such that na is an algebraic integer.
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Let o= 7;1; where p,, q; are integers, g, > 0

am + ﬂa’”’l + ...+ Pt gy P — 0
9 Im-1 qm
Letn=gq,... q,. Thenn is a positive integer
-1 -
and na” + p\q,..9,8" " + ...t p,4; - ¢ =0
= n"a" +pigy .. a" n" Lt gy e @™ =0
= na satisfies the polynomial
X Py e G DGy e G =

where coefficients are integers.
.. na is an algebraic integer.

Example 3.4: [fthe rational number r is also an algebraic integer, prove that
r must be an ordinary integer.

Solution: Let r = E, where ¢ >0, (p, q) =1
q

Since r is an algebraic integer
-1 -
Mmoo+t rta,=0
o8 are integers.




.. cos m® is algebraic number for all integers m.

Also cos == and cos—= +; sin 2~ is algebraic number = 7 sin T s
180 180 180

algebraic number = sin % is algebraic number as  is also algebraic number =

sin m° is algebraic number.

Example 3.6: Find a basis of Q (+f3,~5) over Q.

Solution: We have,

[Q&3.45) : Q] =[Q(3) 5): Q]
=[Q&3) (5) : QW [Q3 : Q]
=[L&5) :L1[Q(S) : Q] where L = Q(/3)
=deg Irr (L, f5) x deg Irr (Q, 3)
=deg (x> — 5) x deg (x> - 3)
=2x2=4
Thus basis has 4 elements.

Also if [(F(a): F)]=nthen 1,a, @, ..., a™ " is basis of F(a) over F, and
thus

Basis of L (+/5) over L is {1,+5}

Basis of Q (+/3) over Q is {1, v/3}

Thus basis of [L (+5) : L] [Q(+3) : Q] =[(Q(+3,+5) : Q]

is 1.1, 143, 14f5, 4f34f5 [Refer Theorem 3.2]

ie., 1, 3,465,405
Example 3.7: Find the minimal polynomial for 2 +-3 and use it to show
that Q({2,43) = Q2 +B3). Find a basis for Q:2.+B).
Solution: Now, W2+43)?2 =5+2406;

W2 +43)* =49 +204f6.
So, W2+ 1002 +43)2 +1=0

Therefore, a = /2 ++f3 satisfies
f(x) =x*—10x> + 1 over Q.
Let px) =1rr(Q, a)
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So, f(x) is the minimal polynomial for V2 + V3.
Therefore, [Q (2 ++/3): Q]=4.
Also, [QV2 : Q] =deg Irr (Q, \2)

=deg (x> - 2) = 2.
Now, Q cQ(V2)cQ(VZ, B).
Consider glx) =x* -3 € Q(«2) [x].

Then g+3) =0
deg Irr (Q(+2), 3) < deg g(x) =2
= [(Q(2,43):Q] =2
So, [Q(+2,43): Q] <4.
Clearly, Q<= QW2 +43) = Q((z, +f3).
[Q(VZ, ¥3)]: Q1 =[Q(+¥2, 43) : Q(V2 + 43)]
x[Q(W2 +43):Q]
= [Q(2,B): Q2 +B)]=1
= Q(2,3)=Q(2 +B)
Since  [Q(+2 +43): Q] =4
(L2 + 3B, (V2 + 3% (V2 + 3)°} is abasis for Q(+2 + 43)
=Q(+2, 4f3) over Q.

Example 3.8 : Let F(x) be the field of rational functions in an indeterminate
x. Show that every element of F(x) which is not in F is transcendental
over F.

Solution: Let0 # s € F(x),i g, (f,g)=1
g 8

f

Suppose = is not transcendental over F.
g
Then L is algebraic over F.
g
So F[ij - F[i}
4 g

Consider & e F [i} =F (LJ
7 g g




So, &' = (g toafg . af" f
Since (f,g) =1, flg" ' = f|g=f= unit

= g =unit=> S - unit € F, a contradiction.
4

f

So, £ is transcendental over F.
g

Example 3.9: Let K be an extension of F and let aeK. Then F[a] can be
regarded as a vector space over F. If the dimension of F[a] over F is finite,

show that Fla] = F(a).
Solution: Let 0 # ¢ € Fla]. Define
T : Fla] — Fla] such that,
T(b) = bc
Then T'is a linear transformation.

Leth € Ker 7. Then 7(b) =0 = bc =0 = b=0as ¢ # 0 and Fla] is
an integeral domain.

Thus Ker 7= {0} forcing 7 to be 1-1.

Since Fla] is a FDVS over F, T is also onto.

Nowl € Fla]= 3 b € Fla] st., T(b) =1

= bc =1 or that c is invertible.

So Fla] is a field containing F'and a. But F(a) is the smallest field containing
F & a and so F(a) c Fla], However Fla] c F(a) giving Fla] = F(a).
Example 3.10 : Let K be an extension of F. Show that K/F is algebraic if and
only if every ring R, such that, F c R c K is a field.
Solution: Let K/F be algebraic and let R be a ring such that, F < R c K.

Since R c K, R will be commutative and also unity of K will be unity of R
as Fc RcKk.

LetO#a e R thenae K=alek

K/F algebraic = a is algebraic over F

= 30 #f(x) € F(x) such that, f(a) =0

Let Sx) =05+ ox+ ... +oyx", o, eF

Then oy + oya + 0,a® + ...... + o,a" = 0 with some o, # 0. Suppose
a, =0

Then aja ' =— (0o + opa + ... + a,a™) € @
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Suppose a # 0, then a! € R = F[q]

Ths a'=ay+toa+..+ad, oeF
Let f(x) =ay+tox+ .. +ox"e Flx]
Now 1 = apa + aa® + ... + a,a™!

gives oga + 0@ + .. T o, —1=0
showing that a satisfies x f(x) — 1 € F[x].
Clearly x f'(x) — 1 is a non zero polynomial.
Hence, a is algebraic over F and so K/F is algebraic.

3.3.1 Separable and Inseparable Extensions

This section deals with those polynomials which have simple roots and the fields
generated by these simple roots.

A oot a.of f(x) € K[x] is called simple if x — o divides f(x) and (x — a)?
does not divide f(x). Similarly, a root a. of /(x) € K[x] is said to be a root with
multiplicity m, if (x — o) divides f(x) but (x — o) * ! does not divide f(x).

Let f(x) =a,+tax+..+ax" e K[x].

Define f'(x) = a, + 2a, + ... + nax""! e K[x].

Then f"(x) or f* is called the derivative of f.

Iff, g € K[x], then it can be easily proved that

O (fxg) =r=¢

@ (&) =f'g+sg

@) (af) =af',aekK

(iv) x' =1

It can be easily checked that o is a simple root of f(x) € K[x] iff

f'(a) #0. In other words, a is not a simple root of f € K[x] iff f'(at) = 0.

Theorem 3.6: Suppose all roots of f(x) € K[x] in a minimal spitting field of
fover K are simple. Then the roots of fin any minimal splitting field of f over
K are simple.
Proof: Let f(x) = ayx — o) ... x—0a,), o; € E.
where E=K(a,, ..., a,) is a minimal splitting field of fover K.

Suppose each a; is a simple root of 1.

Let £’ be another minimal splitting field of fover K.

Then E' = K(B,, ..., B,) where B are roots of 1.

Then there exists a K-isomorphism o : £ — E'.




Thus, the roots of fin £’ are also simple roots.

Note: By the above arguments, we can also prove that if there is aroot of mul-
tiplicity m in a minimal splitting field of fover K then every minimal splitting field
of fover K will have a root of f of multiplicity m.

Theorem 3.7: Let F be an extension of K. Let f, g € K[x]. Then the g.c.d.
of fand g regarded as polynomials in K[x] is same as that of fand g regarded
as polynomials in F[x)], upto associates.

Proof: Let d be the g.c.d. of f, g € K[x] and d, be the g.c.d. of f; g € F[x].

Now d|f,d|ginK[x] = d|f,d|gin F[x]
= d|d, in Flx] =d, =du, ue Flx].
Also, d=ffi +gg, [/, € Klx].

Since d\|fdy | g d |1, 4| g

Therefore, d, | ff; + gg, = d in Flx].

= d=dyv v e Flx].

So, d=duv = uv=1=> u,vare units in ' = d, d, are associates. Thus
d and d, are same upto associates.

Theorem 3.8: Let F be an extension of K.Then fand g are relatively prime
regarded as elements of K[x] iff f and g are relatively prime regarded as
elements of F[x].

Proof: Suppose fand g are relatively prime regarded as elements of F[x].
Then (f, g) =g.c.d. of f; g € Flx]isaunitd € F.

Let (f, g) =gc.d of f, g € K[x] be d|
Then d and d, are associates

= d =ud;,u="Unitin F

= d, =u'd=Unitin F

Since d, € K, d, is a unit in K.

The converse follows similarly.
Theorem 3.9: Let F be an extension of K. Let f(x) € K[x], o € F. Then f
can be written as f = (x — 0)’g + (x — ) f'(a) + f(a) for some g € F[x].
Proof: Now (x — o) € F[x].

Let f=@&-a)Yg+h, g heFlx]

and h=x-a)g +h, gh eF

So, f(a) =h(o) =h, (degh <2)
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Theorem 3.10: Let f € K[x]. Then the roots of f are simple iff f and ' are
relatively prime.
Proof: Suppose the roots of f are simple. Let (£, /') =d.

If d is a non-constant polynomial in K[x], then 4 has a root o in some
extension F of K.

Now f=df. ff=4dg. fi, & € KIA]
= flo)=da) fi(0), [(o)=d(a) g ()
= flo)=0=f"(a).

Using above result, we get

f=@-0)g+(x-a)f()+flo)

=(x—)’g
= o is not a simple root of f; a contradiction.
So, d = constant € K.

Since f#0,dis anon zero element in K.

Therefore, d is a unit = f, /" are relatively prime.

Conversely, let fand f' be relatively prime. Then (f, /') =d = unitin K.

Let o be a root of /' such that a is not a simple root of /. Let o € F o K.

Then f(a) =0 = f"(a)

= x — o divides fand /' in F[x] 2 K[x]

= x — o divides d

Butd € K= degd=0 (d#0).

and x — a divides d

= deg (x — o) < deg d =0, a contradiction.

So all roots of fare simple.
Definition: A polynomial is said to be separable if all its roots are simple. In view
of the above theorem, the following result follows.
Theorem 3.11: 4 polynomial f(x) € F[x] is separable iff f and f' are rela-
tively prime.

Corollary 1: If f(x) € F[x] is irreducible over F' such that, f’ # 0, then fis
separable.
Proof: Let g.c.d. (f; /') =d then deg d < deg /' < deg f.

Since f'is irreducible over F and d is a factor of f'such that deg d < deg
1, we find d is (non zero) constant and thus a unit. So, fand f” are relatively prime.




Proof: Letf=ay,+ax+ ..+ ax" e Flx].
Then f'=a, +2a, + ..+ nax"".
Iff"=0,thenra,=0forallr=1, 2, ..., n. Since char F =0, a,= 0 for
allr=1,2, .., n = f=a,, a contradiction as F is irreducible (deg /> 1).
Thus, ' # 0. By Corollary 1, f'is separable.

Theorem 3.12: Let F be a field of characteristic p. Then for any polynomial
f(x) € Flx], ' = 0 iff f(x) = g(xP) for some polynomial g(x) € F[x].
Proof: Let f(x) =a,+ ax+ ...+ a,x" and /' = 0.
Then ra, =0 Vr=1,2,..,n
= a, =0 or p divides r as char F' = p.
Thus, f=aytaxt+ .. +ax¥
= g(@), where g(x) = ay + a,x + ... + a x" € F[x].
Conversely,let f = g(x”), where
g(x) =by+ bx+ ..+ bx" e Flx]

Then, f=by+bx+..+b, x"

= [ =pb A phx =0 aspa=0VaekF.
Theorem 3.13: Let f(x) € F[x] be %ducible over F. Then all its roots have
the same multiplicity.

Proof: (i) Let char F=0. Then by corollary 2 to Theorem 3.11 fis separable.
So, all roots of fare simple.

(i1) Let char F = p. If f* # 0, then by corollary 1 to Theorem 3.11 fis
separable. So, all roots of fare simple.

If " =0, then f(x) = g(x”), for some g € F[x].
Since fis irreducible over F, so is g over F.
If g’ # 0, then g is separable over F. Let o be a root of /-
Then 0 =f(a) = g(o?) = g(x) = Irr (F, o?).
Now, g(x) = (x — o) h(x), h(o’) # 0 as o is a simple root of g(x).
So,  f(x) = g() = (" — o) h(x")
= (x— af Iy

[,(x) = h(x") = hy(o) = h(a?) = 0]
= x— o appears exactly p times in f(x).
This is true for all roots of f(x).

Self - Learning
Material

159




160

Self - Learning
Material

exactly p° times. L
ence all roots of fhave same multiplicity p¢ (e > 0).

Aliter: Let o be a root of fof multiplicity m.
Then f(x) = (x — @)" g(x), g(@) # 0 g(x) eK[x], K = k(@)
Let 3 the another root of /. Then 3 an F-isomorphism
6 : F(o) = F(B) such that,

o(a) =B
Now S =o(f) = (x - B)" o(g(x))
Let gx) =aytax+..+ax" a ek

Then  o(g(x)) =o(a) +ola) x + ... + o(a,) x"
= o(g(B)) =o(ag) + o(a)p + ... + o(a,) B"
= afay) + a(a;) o(a) + ... + o(a,) o(a”)
=o(ay + a0, + ..+ a,a")
=o(g(a)) # 0 as g(a) # 0
= PBisaroot of fof multiplicity m, showing that all roots of / have same
multiplicity.

Corollary: If /€ F,[x]is irreducible overl}“, and fis not separable, then p divides
n, where n = deg f. (F, deotes the field {0, 1, 2, ..., p— 1} mod p).
Proof: By above theorem, all roots of fhave same multiplicity p¢, e >0 as fis
not separable.

So, deg f =rp°

= pdividesn =deg /. (Note, char F, = p).
Theorem 3.14: Let X’ — a € F[x], where p = char F. Then either x — a is
irreducible over F or X’ — a is a p-th power of a linear polynomial in F.

Proof: Let fx) =x-a.
If b is a root of f(x), then f(b) =0 = a = b".
= fx) =xP—bP=(x—b).

If b € F, then f{(x) is p-th power of linear polynomial x — b € F[x].
Suppose b ¢ F. Let p(x) be a monic irreducible factor of f(x) in Fx].
Since p(x) divides f(x), p(x) = (x — b)" for some m, 1 <m < p.
So, p) =0. Thus, p(x) = Irr (F, b).
If g(x) is another monic irreducible factor of f(x) in F[x], then

q(x) =1Irr (F, b) = p(x).




Case 1: We give an example of an irreducible polynomial which does not have
distinct roots.

Let K = F,(t), F, = {0, 1} mod 2 and ¢ is an indeterminate over F,. Let
f(x) =x*—t e K[x].

If fis reducible over K, then there would be an element a € K such that,

fla)=0.

= t=a2.ButaeK:a=&.
7o)
So, ¢ = BO - deg (5(0)? = deg 1(h(1)).
(h(1))

= 2degg(t) =degt+2degh(t)=1+2deg h(t), which is not true.

So, fisirreducible over K.

If o is a root of f; then f"(o) = 0 (as char K =2 = char F,,) = o is not
a simple root of f.

So, f=(-a)

Thus, fis an irreducible polynomial having no simple roots.

Definition: Let 7 be an algebraic extension of K. Then a € F'is called separable
over K if Irr (K, a) is separable.

Thus, a € Fis separable over K iff a is a simple root of Irr (K, a). Further,
ifeach a € Fis separable over K, then F'is called a separable extension of K.
(We write F/K is separable).

In the case above, x*> — ¢ = Irr (K, o) and a. is not a simple root of x* — £.

If F is a minimal splitting field of /= x?> — ¢ over K, containing o then
F/K is algebraic and o € F'is not separable over K.

So, F'= K(a) is not separable over F.

However, if char K =0 then every algebraic extension of K is separable
by Corollary 2. to Theorem 3.11.

Theorem 3.15: Let char K = p. Then every algebraic extension of K is sepa-
rable iff K = KP.
Proof: Suppose every algebraic extension of K is separable. Let a € K. Let
f(x) =x” —a and b be a zero of f(x). Then 0 = f(h) =V —a > a=F =
fx)=x"—b"=(x—by.If b ¢ K then f(x) is irreducible over K.

So, X —a =1Irr(K, b).

But fx) =x2 - a@

= S = pxr !
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=pp P P
ﬁ%\z&g)eveer,K a%q, c IQ Seoﬁ =?(£((§o[§:,'KP = {a? | a € K}).
Conversely, let K = K?. Let F/K be algebraic.

Let o € F, f(x) = Irr (K, o). If fis not separable, then /' = 0. So,
f=g(x") for some g € K[x].

Let g=agytax+.. +tax" a €k
Then f=8xP)=ay+axP+..+ax"”
Since K =KP,a;=b", b, € K.

So, f=bf+bPx+ . +bPxP

=(by+bx+ .. +bxX"V, b ek
contradicting that fis irreducible over K.
Thus f'is separable = a is separable.
Since ais an arbitrary element of F, F/K is separable.

3.4 PERFECT FIELDS

Definition: 4 field K is called perfect field if every algebraic extension of K is
separable.

A field of characteristic zero is perfect by Corollary 2 to Theorem 3.11. So,
Q, R, C, are perfect fields.

Theorem 3.16: Let char K = p. Then the following are equivalent:
(i) K is perfect.
@ii) K = K?
(iii) Every element in K is a p-th power of some element in K.
(iv) 0 : K — K such that 0(a) = a” is an automorphism.
Proof: (i) = (i) follows by Theorem 3.15
(if) = (iif) obvious
(iif) = (iv): Since char K =p, 0 is clearly a homomorphism and is 1-1.
Also, be K=b =aP,a e Kby (iii).
= b=0(a) = 0 is onto. So, O is an automorphism.
@)= (): Now 0(K) = {0(a) |a € K}
={a?|a € K}
=K’




Proof: Leta € L,p(x) =1Irr (K, a)
q(x) =1Irr(F, a)

Then q(x) € K[x] and g(a) = 0.

So, p(x) divides g(x) in K[x]

= q(x) =p(x) r(x), r(x) € K[x]
= q'(x) =p'(x) r(x) + p(x) r'(x)
= q'(a) =p'(a) r(a).

Since L/F is separable, a is separable over F.
So a is a simple root of g(x) = ¢'(a) # 0
= p'(a) # 0= ais a simple root of p(x)
= a s separable over K

= L/Kisseparable.

Corollary: Every finite extension of a perfect field is perfect.

Proof: Let F'beaperfect field. Let K/F be finite extension. Then K/F'is algebraic.
Let L/K be algebraic. Then L/F is algebraic. Since F'is perfect, L/F is separable.
From above, L/K is separable. So, K is perfect.

Example 3.11: Let F be a perfect field. Show that the set of ents fixed
under all automorphisms of F is a perfect subfield.

Solution: Let char F=p, K= {a € F|6(a)=a ¥V 6 € G}, where G is the group
of all automorphisms of F. Then K is subfield of F.
Define 6 : F — Fsuch that,

0(a) = o?

Then 6 is a homomorphism. Since F is perfect, 0 is onto. So, 0 € G.

Leta € K. Theno(a)=a VoeG

= O =a=>o?=a=>a0 € KP = Kc K"

= K =K? = K is perfect.
Example 3.12: Let K/F be a finite extension and suppose K is perfect then
show that F is perfect.
Solution: Let char F' = p, then char K = p.

Let [K:F] =nand {0, a,, ..., o} be a basis of K over F.

Since K is perfect, K = K¥. We show F = FP.

Now, FP c F c K. So we show that

[K : FP] =[K : F] which would give F = FP.
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= a; =0 Vi
= Sis L.I setin K (over F?)

Let b eK,thenb=a”’, a € Kas K=K?
Now, aeK=a=bo, +bo,+..+ba,b cF
= b=a’=blal +bf oy +..+blarl

= Sspans K over F?

Hence S is a basis of K over F?

= [K:FPl=0S)=n=[K:F]
= F =FP? or that F is perfect.

3.4.1 Normal Extensions

Iff(x) € K[x] is irreducible over K, then 3 an extension £ of K containing a root
of f(xx). In this section we consider those extensions of K which contain all roots
of f(x) and study properties of such extensions.

Definition: Let £ be an extension of K. E is called normal extension of K if
(7)) E/K is algebraic (ii) o € E = p(x) = Irr (K, o) splits in E[x] or E.
Case 2: A quadratic extension is a normal extension.
Let £ be a quadratic extension of K. Then [E : K] =2.
Since E/K is finite, E/K is algebraic.
Let a € E, px) =Irr (K, ).
Now K c K(a) cE.Since2=[E: K] =[FE : K(a)] [K(c) : K].
Either [E:K(o)]=1or[K(a):K]=1.

If [K(o): K] =1, then K(a) =K = a € K

= p(x) = x — a splits in K[x] < E[x].

If [E: K(a)] =1, then E = K(a).

So, 2 =[E:K]=[K(a) : K]=deg Irr (K, o) = deg p(x).
Now a is a root of p(x) = x — a divides p(x) in E[x].

= px) = (x—a) q(x), q(x) € E[x].

Since deg p(x) =2, deg g(x) = 1. So g(x) = (x — B), B € E.
Therefore, p(x) = (x — ) (x — B) splits in E[x].

Thus, E/K is normal.

Case 3: Let f(x) = x> — 2 € Q[x]. Let a be the real root of f(x). Consider
Q(a)/Q. We show that Q(c.)/Q is not normal.




Iff(x) splits in Q(cv), then Q(cr) contains a minimal splitting field £ of f(x)
over Q.

So, Qc E c Qa).

But [£: Q] =06and [Q(a) : Q] = deg Irr (Q, o) = deg fix) = 3.

Since 3=[Q(a):Q]=[E:Q]=06,we get a contradiction.

So, Q(a)/Q is not normal.

Similarly, Q(ow)/Q and Q(own?)/Q are not normal extensions.

Note: We have seen in above case that an extension @iegree 3 need not be
normal. We can, however, have a normal extension of degree 3. Consider
S&x) =x¥+x2+ 1 e F,[x], where F, = {0, 1} mod 2. Let a be a root of f(x).
Then a?, 1 + o+ o? are also roots of f(x). So F,(a) is a minimal splitting field
of f(xx) over F,. Thus F,(a)/F, is normal and [F,(v) : F,] = deg Irr (F, o) =
deg f(x) = 3.

Theorem 3.18: Let F K C E be a tower of fields. If E/F is normal, then
so is E/K.

Proof: Since E/F is normal, E/F is algebraic. So, E/K is algebraic.

Let a € E, p(x) =Irr (K, ) , qg(x) = Irr(F, o).

Then ¢(x) € F[x] < K[x] = ¢(x) € K[x] and g(a) = 0.

So, p(x) divides g(x) in K[x].

Since E/F is normal and o € E, g(x) splits in E[x].

So, p(x) splits in E[x]. Thus, £/K is normal.
Note: In above theorem K/F need not be normal. Consider f(x) = x> — 2
€ Q[x]. Let o € R be a root of f(x). Then Q(a)/Q is not normal by Case 3.

However, Q(o., w)/Q is normal by Theorem 3.19 and Q < Q(a) < Q(a., w).
Notice Q(a, w) is a minimal splitting field of f(x) over Q.

Theorem 3.19: A minimal splitting field of a non-constant polynomial f(x)
€ K[x] over K is normal extension of K.

Proof: Let £ be a minimal splitting field of /(x) over K. Then E/K is algebraic
and finite. Let f(x) = oy(x — o)) ... (x — @), o; € E.

Then E = K(a, a,, ..., 0,)

Let o € E, p(x) = Irr (K, o) € K[x] < E[x].

Then p(x) splits in some extension of E.

Let B be a root of p(x) in some extension of £. We show that } € E.

Now a, B are roots of p(x) = 3 a K-isomorphism & : K(ar) = K(p3) such
that, o(a) = B.
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Also, aminimal splitting field of o(f) =fover K(B) is
KPB) (04, 0y, ..., O)
= K(G']s a29 cey G'n) ([3)

= EB).
So, 3 an isomorphism 0 : £ — E(B) such that, 6(a¢) = o(a) V a € K(a)
= 0(a) = o(a) =P.
Now, K < K(a) ¢ E < E(B)

= [E:K(@)] =[0(E) : O(K(a)]
= [E(B) : o(K ()]
=[E(P) : K(P)]
So, [E(B): K] =[E(B): K(B)] [K(P) : K]
= [E : K(a)] deg p(x)
= [E: K(a)] [K(a) : K]
=[E : K].
Since E ¢ E(B) and E, E(B) as vector spaces over K have same dimension,
E=E(). So, B € E. Thus, p(x) splits in E. This proves E/K is normal.

Theorem 3.20: 4 finite normal extension is a minimal splitting field of some
polynomial.

Proof: Let £/K be a finite normal extension.

E/K is finite = E = K(a,;, 0, ..., O,,).

Let p(x)=1Irr (K, o). Since a; € E and E/K is normal, each p(x) splits
ink.

Letf'=pp, ... p, € K[x].

Then, a minimal splitting field of fover K is

K(ay, o, ..., o, roots of p;s in E) = E.

So, E'is a minimal splitting field of fover K.

Corollary: Let K c E| c E, K c E, c E be towers of fields such that, £,/K,

E,/K are finite normal extensions. Then £ E,, the smallest subfield of £ containing
E| U E, is finite normal extension of K.

Proof: Since E,/K is finite, £, = K(a.,, ..., o).
So, E\E, =K(a, ..., 0 )E,
=Ey(oy, ..., 0,), as K C E,
= KE, = E,




=[E, : K].
Therefore,
[E,\ E,: K] = [E\E, : E5] [E, : K]
< [E, K] [E; : K] = Finite
= [E\E, : K] =Finite.
Now E /K is finite normal = £, is a minimal splitting field of f; over K
Also, E,/K is finite normal = E, is a minimal splitting field of £, over K

Let f=ht E =K, .., a,), E,=K(b,, .., b).
Then, a minimal splitting field of fover K is K(a;, ..., a,, b}, ..., by)
=E/b,, ... b))
=EK(b,, .., b)as EK=E,
= E\E,.

Thus, ExF5(K is finite normal extension.

(Note, ave also shown above that £,/K, E,/K are finite = E | E,/K
is finite).
Case 4: We now give an example to show that a normal extension of a normal
extension need not be a normal extension.

Consider the tower of fields Q = Q(+f2) = Q(214).

Now  [QW2):Q] =deg Irr (Q, V2) = deg(x® — 2) =2

and [QRY): Q1) = deg Ir(QWE), 21%) — deg (2 B)

S0, Q(,/2)/Q, Q(2"4)/Q(+/2 ) are normal.

If Q(2"#)/Q is normal, then

f(x) =11 (Q, 2% = x* — 2 must split in Q(214).

So, Q(2'4) contains a minimal splitting field £ of f(x).

But [E:Q] =8and Q c E < Q24

= [Q(2":Q] =4=>[E: Q] =8, a contradiction.

Therefore, Q(2"#)/Q is not normal, proving our assertion.

Theorem 3.21: Let K < F C E be a tower of fields such that, E/K is finite

normal. Then any K-homomorphism of F into E can be extended to K-au-
tomorphism of E.

Proof: Since E/K is finite, £ = K(a;, 0, ..., ). Also E/K is finite normal
= F is a minimal splitting field of some f(x) € K[x] over K. Let ¢ be a K-
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=E(roots of fin E)=E
(F =K(o, a,, ..., o) < Flay, 0y, ..., a,) € E
= E = Fo,, a,, ..., o))
Also, a minimal splitting field of o(f(x))=fover F' is
F'(ay, 0, ..., a, roots of fin E)

= E(roots of f(x) in E)
=E
[E = K(o, 0, ..., 0,) € F(a, 0y, ..., )
= F'(ay, 0y, ..., O,)
c Floy, ay, ..., a,)) = E
= E =F'(o, oy, ..., o,)]

Therefore, 3 an isomorphism 0 : £ — E such that,
0(a) =c(a)VaeF
= O(a) = o(a) =a V o € K= 0 is a K-automorphism of £
extending 6. This proves the result.
Normal Closure: Let £/K be a finite extension. Then E = K(a.;, o, ..., o).
Let p; =K, o) and f=p,p, ... p, € K[x].
Then E' the minimal splitting field of fover K is
K(ay, ..., o, root of fin some extension of E)
= E(roots of fin some extension of E)
= E c E' and E'/K is finite normal
(as aminimal splitting field of fover K is finite normal extension of K)
Suppose K ¢ E c F such that, F/K is finite normal.
We show that E' can be embedded in F.
o, € ECF=a; e FVi Also F/K is normal.
So, p(x) splits in F[x] V i = f'splits in F[x]
= F contains a minimal splitting field £, of fover K.
= E, c F.But £’ is also a minimal splitting field of f over K.
Therefore, £' = E| ¢ F = E' can be embedded in F.
Thus, £’ is the least finite normal extension of K such that, Kc EC E'.
E' is called the normal closure of £/K.
Case 5: Let fx) =x*-2
=(x—a)(x—ow) (x — aw?)




So, Q(aw)/Q is the normal closure of Q.
3.4.2 Finite Fields
A field having finite number of elements is called a finite field or a Galois field.

Theorem 3.22: If F is a finite field, then o(F) = p" for some prime p and an
integer n > 1.

Proof: Let P be the prime subfield of F.

Since F'is finite, so is P. Therefore, P = P for some prime p.
p
Z . - ~
But s ° {0,1,2, .,p-1} modp=F,=>P=F,

Since P ¢ F, we can regard F/ , © F.Now F' is a vector space over F/ =
Since F'is finite, [F: F, p] = n = finite.

Let {uy, ..., u,} be a basis of F/F,.

Then F = {oqu; + ... + a,u, | o € F,}.

Now each o, can be chosen in p ways and Zou, = ZBu; = o, = B,
therefore o(F) = p".

Theorem 3.23: Let p be a prime and n > 1 be an integer. Then there exists
a field with p" elements.

Proof: Let f(x) =x7—x € F,[x], g=p". Let F'be a minimal splitting field of
f(x) over F >

Then F =F, (zeros of fin F).

Let S = {zeros of fin F}.

Now [ =qi"'—1=—1aschar F=p
= g-1 =p'—1=-1.

Therefore, (f, f') =1
= all zeros of fin F" are simple and so distinct.

So, o(S) =gq.
Now 0 eS=S8=0.
Also a, b qu:aq=a,bq=b

= (axb)y =a?#bl=azbh,

(ab)? = aib? =ab, (ab )Y =ath 9=ab"!
= axb,ab,ab”! (ifb#0)eS.
Thus, S'is a subfield of F.
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But F'is the smallest field containing F, and S.
= Fc S AlsoScF.So,S=F= oF)=0(S)=q.
We now prove the following results from group theory.
Lemma 1: Let G be an abelian group under multiplication. Let a, b € G be
such that o(a) = m, o(b) = n and (m, n) = 1. Then o(ab) = mn
Proof: Now (ab)™ = a™" b™ = (a™)"(b")" = 1 = identity of G
If (ab) =1, thena’d’ = 1.
= a=b'=a"=p"=pM"=1
= b"=1=o00b)|mt=>n|mt=n|tas (n, m=1.
Similarly, m | t. So, mn | t = t > mn = o(ab) = mn.
Lemma 2: Let G be an abelian group under multiplication. Let a, b € G be

such that, o(a) = m, o(b) = n. Then there exists ¢ € G such o(c) =Lc.m. of
m and n.

Proof: Let (m, n)> 1.

Let m =p° . ..p%
n =pPt..ppr
where p,, ..., p, are distinct primes and o, 8, are non negative integers.
Let [ =p®™ ..p% pPy .. phr

where o, > B, fori=1, ..., s and Bj 2oy forj=s+1,..,r
Then [ is the l.c.m of m and n.

Let x =107 e piny = piP o pPs
Then ox) =p,*l..p%
0) = i o
and (0(x)), 0(1))= 1.
ByLemmal,

o(xy) =Lc.m.of mandn

=p® .. p% phrl oL p b

Lemma 3: With the hypothesis of lemma 2, if n + m, then the l.c.m. | of m
and n is greater than m.

Proof: Nowm | [ = m <. If m =1 then n |l = n | m, a contradiction.
So > m.




;ls|y < g} sg(('gﬂa%t (&Sy}:r la ﬁ ’6’ ceog.radicting a € G is of maximum order. So,

Theorem 3.24: Let F be a finite field. Then F*, the set of non zero elements
of F forms a cyclic group under multiplication in F.
Proof: Now F* is an abelian group under multiplication.
Let o € F* be an element of maximum order m.
Then by Lemma 4, o(B) | m for all B € F*.
So, m= o)
= B =p®r=1forall B e F*.
= [ satisfies x” — 1 over F.
Since F' can't have more than m zeros of x” — 1, o(F*) < m.
But o € F* and o(a) = m
=1, q, o, ..., o0 !are distinct elements of F*
= o(F¥)2m = o(F*) =m=o(a) = F*=<a>.
The generators of F* are called primitive elements of F.

Theorem 3.25: Let F be a finite field of order p". Then F is a minimal split-
ting field of X" — x over F,

Proof: We can regard F as an extension of F),. Let ¢ = p".

Now F* =<a>, o) =0(F*)=q—1.Alsoa? ' =1.
= a? =ao.

= Elements of F are zeros of f(x) = x? — x over F,

So, f(x) splits in F.

Therefore, f(x) = x(x — @) ... (x — a?™ 1)

= Minimal splitting field of f over F, is F (a, o, .., om 1 1,0)=
F(F)=F. , .
Theorem 3.26: % two finite fields with % same number of elements p"
are F,-isomorphic.

Proof: Let F'|, F, be finite fields such that o(F,) = p" = o(F,). Then, by above
theorem F,, F, are minimal splitting fields of /(x) =x"" — x over F, = F F

are F' p-’@wrphic.
above theorem shows that there is unique field of order g = p" upto
an isomorphism. It is denoted by GF(p") or GF(q) or Fgq.
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The x —1=xLl§éx J @ -+ -1

Therefore, x” — 1 divides x"— 1 ifand only if x"— 1 = 0.

Also x"— 1 =0 if and only if » = 0.

So x™ — 1 divides x” — 1 if and only if m divides n.
Example 3.14: Show that x’"—x divides x*"—x if m divides n.

Solution: Let n = mu.
Then p"'—-1=p™ -1
=y -1
= (" - 1) (integer)
= p" — 1 divides p" — 1

By above problem
xP™ =1 _ 1 divides x?" ' — 1
= xP™ — x divides x*™ — x.

Theorem 3.27: Let F be a field with p" elements. Then F has a subfield k
with p" elements if and only if m divides n.

Proof: Suppose kis a subfield of F. Then & can be regarded as an extension of
F such that [k: F ] =m. Similarly, F can be regarded as an extension of F/ »
such that [F: F,] =n. Now [F: F ] =[F : k] [k : F,] = m divides n.

Conversely, let F be a field such that, o(F) = p". Suppose m divides n.
Now F is a minimal splitting field of x”" —x over F,.

Let f(x) = x"" — x and g(x) = x"" — x.

Since m divides n, by above problem g(x) divides f'(x).

Consider F' = {zeros of g(x) in F7}.

Then F' is a subfield of F.

Since g(x) has p™ distinct zeros, F”' is a subfield of F with p” elements.

If k is another subfield of F' such that o(k) = p™, then o(k) = o(F") =p™.

= k, F" are F -isomorphic.

Thus, there is exactly one subfield of ' (up to isomorphism) with p™ elements.
Example 3.15: Determine the algebraic closure of F,,.
Solution: We know m! divides n! for all positive integers m < n. By above theorem
F,m!isasubfield of F n!. Thus, there is an ascending chain of subfields

F,cFncFpc..
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Then the minimal splitting field of fover F' is a finite field F . |




So, each f € S splits in £ .. r m
Thus, the minimal splitting field of S over F), is
Fp (zeros of f € S'in Fpoo) c pr.
Also,a € Fpw=a e Fo for some n = a is zero of X" — x over F,
Now f=x""-xeS=aiszeroof fe SinF,,
= FucF, (zeros of f € S'in pr)
= Minimal splitting field of S over Fp is pr
= Fis the algebraic closure of ),
Theorem 3.28: Every finite extension of a finite field is Galois.
Proof: Let K be a finite extension of a finite field k. Then K is also a finite field.
So, char k = char K = p, for some prime p. Let o(k) = p™, o(K) = p".

Now K is a minimal splitting field of X" —x over F,, = K/F, is finite
normal.

Also F), is finite = F), is perfect = every algebraic extension of F), is
separable = K/F » is separable = K/F » is Galois. Now, F' » < kc Kand K/F »
is Galois = K/k is Galois.

Corollary: F/F, is Galois, g = p".

Theorem 3.29: Let F be a finite field. Then there exists an irreducible poly-
nomial of any given degree n over k.

Proof: Let o(F) =p™, p being a prime.

Let g =p"™ and let f(x) =x7 — x

Then F is the minimal splitting field of /(x) over £,

Since m/nm, Fp,, =F canbe imbedded in F, .

Now Fng = Fpm € Fppn = E.

Then [E:F] =n.

Let E* be the multiplicative group of non zero elements of £ and let
E¥=<a>

Then E=Flo) aaFcE aeckE

So, n =[E: F]=[F(a): F]=degIrr (F, o)

= Irr (F, o) 1S an irreducible polynomial of degree » over F.

Theorem 3.30: Let G be the group of F,-automorphisms of F,. Then G is
a cyclic group generated by Frobenius map of order n, where q = p".
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glrﬁgee}?lqsié _f}r'lite, 0 is onto.

Ifb er,thean=b

= 0(b) =bforallb e F,

So, 6 is an Fp—automorphism of F/ = 0edG.

By Artin's theorem, o@= [F,:F,]asF,isthe fixed field of G.
= o(G) =n. show that o(0) = n.

Let 0" =Llet F*=<a>.
Then al~!' =1=adl=a=d" =a.
Now, 0" =I=0"(@=a=d"" =a=d" " '=1
= oa|p -1=>qg-1|p-1
= pt —-l|p-1=p'—-1<p-1=n<r
Also 07(b) =b""=bforallb e F,=0"=1
So, 00) =n=>G=<6>
Example 3.16: Show that for any integer a and prime p, a’ = a (mod p).
Solution: Let a=pqg+r, 0<r<p.
Then a =r (mod p)
Now, 0<r<p=reF,
2roro...or:r
p times
= w—pu=r
= r? =r (mod p)
= r? =a (mod p)
So, a =r (mod p)
= aP = rP (mod p)
= aP = a (mod p)

(The above result is known as Fermat's theorem)

Example 3.17: Show that every irreducible polynomial f(x) € F[x] is a
divisor of X" — x for some n.

Solution: Let deg f(x) = d and a be a zero of f(x) in an extension of F,.

Then, [F,(a):F,] =deglrr (F, o)=deg f(x) =d.
So, o(F, () =p®. Then a € F,(a)




»
Solution: Let f(x) =x7 — x, g = p". Let p(x) be a monic irreducible factor of
J(x)over F,. Let o.be a zero of p(x) in F, where /”is a minimal splitting field of
J(x) over F,. Then F' = F_ and p(x) = Irr (F,,, o)
Now F, cF(a)cF,
and n =[F,:F]=[F,: F(a)] [F(o):F)]
=[F,: F ()] deg Irr (F,, o)
= [F, : F,(&)] deg p(x)
= deg p(x) divides n.
= Any monic irreducible polynomial dividing ¥ — x is of degree
dividing n.
Example 3.19: Contruct a field of order 9.
Solution: Let Fy be the field of order 9. Let F; = {0, 1, 2} mod 3. Then
[Fy: F;]=2. Let f(x) =x° —x. Then F, is a minimal splitting field of /(x) over
Fj. Let p(x) be an irreducible factor of f(x) over @Let o be a zero of p(x) in
Fy. Then a is a zero of f(x). If a. € F;, then p(x)= x — oo = deg p(x) = 1. If
o ¢ Fy, then Fy € Fy(a) C Fy = [Fy: F3] S2=[Fy : Fy(a)] [F3(a) : Fj].
Since o ¢ Fy, [Fy(a) : F3] # 1
= [Fw):F] =2
But  [Fy(a) : Fy] =deg Irr (F;, o)
= deg p(x)
Thus deg p(x) =2.
Hence any irreducible factor of f(xx) over F; has degree 1 or 2.
Now, X —x =x(x%3-1)
=x(x* -+ 1)
=x(r-DE+DE@+ 1) -x-1) (FEx-1)
Note, x> + 1, x> —x — 1, x>+ x — 1 are irreducible over Fy as none of
0, 1, 2 are zeros of these factors.

Let p(x) =x*+ 1. Let a be a zero of p(x).
Then {1, .} is a basis of Fy = F;(a) over F;.
So, Fy ={a+ba|a b e Fs

={0,1,2,a,a+1,0+2, 20 20+ 1,20+ 2}.
Letu=o+ 1. Then v? =20, u* =—1,u = 1. So, o(u) = 8
= Fy* =<u>.
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If w+ 1 #0, let u” + 1 =420,
Define b =yFa Db ya-b 4 1 » 0 wherea > b

—0ifu b+1=0
Letsfind u’ + u!
Now w+1 =a+1=u20.
So, 2(6) = 1. Therefore, u” + u' = %O+ 1 =42

Also, u®+u?>=0asu*+ 1 =—1+1=0. In this way addition is defined
in terms of u/".

Leta=1/. Then write log a =i. If b=u/, then ab =’ ®/, where @ denotes
the addition modulo 9.

So, logab =i ®j=loga® logb.
Such a logarithm is known as Zech logarithm.

3.4.3 Algebraically Closed Fields

In this section, we give a characterization of normal extensions. Also, we show
that given a tower of fields k < ' < K such that K/k is normal, any ~-homomor-
phism of Finto K can be extended to a k-automorphism of K. We have already
seen this result when K/ is finite normal. We also show that given a field &, there
is an algebraic extension k of k such that k has no algebraic extension other that
k itself. % is called an algebraic closure of k. We define the product of two
subfields of a field and show that the product and the intersection of two normal
extensions of k is again a normal extension of £.
Let S be a set of polynomials over . Suppose each f € Ssplits in a field
E containing k. Then E is called a splitting field of S over k and k(zeros of
f € SinFE) is called a minimal splitting field of S over k. For a finite set S, it
is very easy to show the existence of a minimal splitting field of S over k. For, let

§= v So s S Iy € KIS

Let £, be a minimal splitting field off; over £, £, be a minimal splitting field
of f; over E; and so on, E, be a minimal splitting field of f, over E,_;. Then
E,cE,c..cE,andeach f splits in £, ¢ E, = S splits in E,. So, k(zeros
off;in E, ) is aminimal splitting field of S over £. It is also a minimal splitting field
of f=1, f5 .../, over k.

Definition: A field k is called algebraically closed if every polynomial fover k
splits in .

By fundamental theorem of algebra, every polynomial over C, the field of
complex numbers splits in C. So, C is an algebraically closed field. However, R
the field of reals is not algebraiclly closed as x> + 1 € R[x] does not split in R.
We have the following characteriszations of algebraically closed fields.




fsplits in £.
So, f= f, f, ... f,, where each f; is linear over k.
Since f'is irreducible over k, f= f; = fis linear over k = deg = 1.
Conversely, let g € k[x].
Then g = g,g, ... g,,, Where each g; is irreducible over £.
By hypothesis, deg g;= 1 = g; is linear over & for each i
= g s a product of linear factors over k = g splits in £.
So, k is algebraically closed.
Theorem 3.32: A field k is algebraically closed iff every algebraic extension
of k is k itself.
Proof: Let kbe algebraically closed. Let K/k be algebraic.
Let o € K, p(x) = Irr (k, o).
By above theorem deg p(x) = 1 = p(x) =x— o € k[x] = o €k =
K=k
Conversely, let f € k[x]. Let K be a minimal splitting field of fover £.
Then K/k is algebraic. By hypothesis, K =%.
So, f(x) splits in k[x] = k is algebraically closed.
Summarizing the last two results, we have the following

Theorem 3.33: Let k be a field. Then following are equivalent
(i) k is algebraically closed.
(it) Every irreducible polynomial over k has degree one.
(iii) Every algebraic extension over k is k itself.

Theorem 3.34: A finite field is not algebraically closed.

Proof: Let k be the finite field {a, a,, ..., a,}

Let f=l+@x—-a)x-ay)..(x-a,) e kx].

Since  f(a;) # 0 for all i, we find f'does not split in k.

Hence kisnotalgebraically closed.
Definition: Let & be a field. An extension E of & is called algebraic closure
of kif

(i) E/kis algebraic.

(ii) E is algebraically closed.

The following result is now an immediate consequence of Theorem 3.32.
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of Q as C/Q is not algebraic (1 € C is not algebraic over Q).
Theorem 3.36: Let K/k be algebraic. Let k denote an algebraic closure of
K. Then ¥ is an algebraic closure of k such that

kcKck.

Proof: Since % is an algebraic closure of K, k/K is algebraic. Also, K/k is algebraic.
So, k /kis algebraic. But k& is algebraically closed. Thus & is also an algebraic
closure of k.

Theorem 3.37: Let K be an algebraically closed field such that K is an ex-
tension of k. Let F = {a € K|a is algebraic over k}.
Then F is an algebraic closure of k.

Proof: We know that
k c F c K is a tower of fields.
Also, by definition of F, F/k is algebraic.
Let f'e Fx]. Thenf e K[x]. Since K is algebraically closed, fsplits in K.
Letf=a(x-a) .. x—0,), o, € K.
Since o, is algebraic over F, F(o,)/F is algebraic for all i.
Also F/kis algebraic. So, F(a,)/k is algebraic for all i.
o, € K is algebraic over k
o, € F
fsplitsin F
F'is algebraically closed

R A

F'is an algebraic closure of k.

From above theorem it follows that = {a € C | a is algebraic over Q}is
an algebraic closure of Q.

We now show the existence of aminimal splitting field of a set of polynomials
over k.

Theorem 3.38: Let S be a set of polynomials over k. Then there is a minimal
splitting field of S over k.
Proof: Suppose S = {f;|f; € k[x], i € I}.

Let A={i,, i,, ..., i,,} be a finite subset of /.

Put Ji=Fafo - f,, € Kx].

Let E ,be aminimal splitting field of f, over k.

Suppose B < 4. Then f; divides f;. So, f5 splits in E .




A, Bcl

Let C=A4 U B.Then 4, Bc C.

So, B, Egc Eo=a,beE,

= atb,ab,ab’, (ifb+0)arein E.c E

= Eisafield.

Therefore, for each f; € S, f; splits in E;, where 4 = {i}.

= each f; € Ssplits in E.

= E is a splitting field of S over .

= k(zero of f;in E) is a minimal splitting field of S over k.

Using Zorn's lemma or otherwise one can prove the following result.
Theorem 3.39: Any two minimal splitting fields of a set of polynomials over
k are isomorphic.

We can now show the existence of an algebraic closure of a field k.

Theorem 3.40: Let S be the set of all polynomials over k. Then a minimal
splitting field of S over k is an algebraic closure of k.

Proof: Let F be a minimal splitting field of S. Since F'is generated by zeros of
f €8, Fis generated by algebraic elements over k. So, F/k is algebraic.

Let f=a,tax+.. +ax"e Flx].

Let E =Kay ay, ..., a,) C F.

Then f e E[x]. Let £' be a minimal splitting field of fover E.
Let f=ax—-0a).. x-a,) o € E"

Then E'" = E(ay, ..., a,).

Since each a is algebraic over E, E'/E is algebraic. Also, each g, € F'is
algebraic over k = E/k is algebraic. So, E'/k is algebraic.

Let g =1Irr(k, o)

Let g =818 - &, < klx]

Now g =@ -y, f; € E'[x].

Therefore, g = (x — o) ... x —,)f; ... f,
=ox — ) .. (x-S S
=M = i fy € BT

Let g =2cx, 1 =2bx, f=Xax

where ¢; € k, b; € E', a; € F.

Now c, =;aibr_i
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= by =@ (¢ipi1 s oDy —a b)) € F
By induction, each b, € F = " € F[x].
By hypothesis, g € k[x] = g splits in F.

Let g=@-B)..x-B,) B, eF

Suppose f € F[x] splits in some extension F’ of F.

Let f=dx-d)..(x-d), d eF cF.

Now f' € Flx] < F'[x] = f" splits in some extension £ of F"'.
Let [ =e(x—e)..(x—e), e F'oF OF

So, g =" =gd)=0foralli

= d;—B; =0 forsome; depending on i

= d; =b eF

= d; € Fforalli

= fsplitsin F.

Thus, Fis algebraically closed.

Hence F is an algebraic closure of £.

Converse of above theorem is also true.
Theorem 3.41: Let F be an algebraic closure of k. Then F is a minimal
splitting field of the set S of all polynomials over k.
Proof: Now F'is an algebraic closure of &

= Fisalgebraically closed

= Eachfe Ssplitsin F.

Let F' = k(zeros of f € S'in F) c F.

Let a € F'. Then a is algebraic over k as F/k is algebraic.

Let p(x) = Irr(k, o)

Then a is a zero of p(x) € S'in F.

So, o F =>FcCF.

Therefore, F' = F = F'is a minimal splitting field of F' of the set of all
polynomials over &. The following is then immediate.

Theorem 3.42: Any two algebraic closures of a field are isomorphic.

Proof: Let kbe a field and F'}, I, be algebraic closures of k. Then F}, F, are
minimal splitting fields of the set of all polynomials over k. So, F'|, F', are isomorphic
by Theorem 3.39.




E,le}c} .O"Pﬁegvﬁi f?(l) EkEirht)I%lgl\fV%y, let £; be a minimal splitting field of f; over

So, E= k;En is a field = each f; splits in £

= Fisasplitting field of Sover £.

Let F = k(zeros of f;in E) C E.

Then k c F < E is atower of fields and F'is a minimal splitting field of S
over k. So, F'is an algebraic closure of k = F'is algebraically closed = Fis not
finite. Since E is countable, F'is also countable. Thus, any algebraic closure F”
of k being isomorphic to F'is also countable.

Lemma: Let E be an algebraic extension of k and let 6 : E — E be a
k-homomorphism. Then o is a k-automorphism.

Proof: Let a € E, p(x) = Irr (k, v).

Let o =0y, 0, ..., 0. be zeros of p(x) lying in E.
Let E' =Kka,, a,, ..., a,) C E.

Then E'/k s finite.

Let px) = (x - OL;') qi(x), qi(x) € k(ocl-)[x].

Since o(a) =a forall a € k, o(p(x)) = p(x).

Therefore, p(x) = o(p(x)) = (x — o(a;)) o(gLx))
= o(o,) is a zero of p(x) for all .

But 6:E - E=o() € Eforall i.
So, o(a,) is a zero of p(x) in £ for all i.

= o(a,) € E' foralli.

= 6 : E' — E'is k-homomorphism.

Also E'/k is finite. Since g is also 1 — 1, o : E’ — E' must be onto (See
below).

Therefore, E' =o(E') = a=0(p), forsomep € E'c F

= o :E — Eisonto = o is a k~-automorphism of E.

That o : E — E'isonto follows from the result

‘If V1572 finite dimensional vector space over Fand T': V' — Visalinear
transformaion, then 7'is 1-1 iff 7'is onto’. Here 6 : E' — E’ is a k-homomorphism
= o is a linear transformation as 6(af) = o(a) 6(B) =ac(B) foralla € k, B €
E'. Also E" as a vector space over k is finite dimensional.

We now give two characterizations of normal extensions. These are very
useful in finding whether the given extension is normal or not.
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Sigeq Kk i&@éﬁ}l?@iﬁ(ﬁ,i% alegbrais 8{’?@@3 ihe%pg)[f Irr (k, o). Let o(a)
Since K/k is normal, p(x) splits in K[x]. So, b € K.
Therefore, 6 : K — K is k~-homomorphism.
By above lemma, G is a k-automorphism of K.
Conversely, let o € K and p(x) = Irr(k, o).
Since & is an algebraic closure of k, p(x) splits in # [x].
Let B be a zero of p(x) in % .
Then there exists a k-isomorphism o : k(o) = k() such that (o) = .
Since B € &, k(B) < k. So, © is a k-homomorphism from (o) into %.
Thus o can be extended to ~-homomorphism 5 : K — K.
By hypothesis, 5 is a k~automorphism of K.
So, 5(K) = K. Also &(a) = o(a) for all a € k(a). In particular (o) =
o(o) = p.
Since a € K, 5(a) €5(K)=K = p € K.
Therefore, p(x) splits in K[x].
Hence K/k is normal.

Theorem 3.45: Let K be an algebraic extension of k. Then K/k is normal iff
K is a minimal splitting field over k of a set of polynomials in k[x].

Proof: Let K/kbe normal. Let a € K. Let f(x) = Irr (k, a). Then £, (x) splits
in K[x] for all & € K. Let S = {f, | a € K}. Let F' = k(zeros of £, in K,
a € K).

Then F is a minimal splitting field of S over £.

Clearly, F c K. Alsoo. € K= auis a zero of f, = a € F. So, F=K.
Thus K is a minimal splitting field of S over £.

Conversely, let K be a minimal splitting field of a set S of polynomials over
k. Let k be an algebraic closure of k such that, k< K < k.

Let o : K — [ be a k-homomorphism.

Let a € K be a zero of some f € k[x] in S.

Then o(a) is also a zero of fas G is a k-homomorphism.

As fsplits in K[x], we can write f= a(x — o)) ... (x—0a,), o, € K, o € k.

Since o(a,) is a zero of ffor all 7, () € &, {o, ..., o } = {G((xl), ces
o(a,)} as k can't have more than n zeros of f. So, o(a,) € K for all .

Let T= {zeros of fin K, f € S}.Thenc : T—>T.Alsoc: T — Tis
l-laso:K— kis1-1.




SO, b c K: G(K) c ﬁ(.G(Bl)a'"a cF(Bn)) g(Y]""’Yﬂ) i

Also deK = d =St
218y, ...,0m)
8 eT=>d = (o). ..ol ) ueT
’ £1(000),...,0(,) "
g = UG ) G[f](ul,...,um)J Ve
o(gi(uy, ..., uy)) gy, stty) )
= deoK)=K coK)=ooK)=K.
So, o : K — K is onto Thus, ¢ is a k-automorphism of K. By previous
result, K/k is normal.

=

Summarizing, the last two theorems we get

Theorem 3.46: Let K be an algebraic extension of k. Then following are
equivalent:

(i) K/k is normal.

(ii) Every k-homomorphism of K into % is a k-automorphism of K where
k is an algebraic closure of k.

(i) K is a minimal splitting field of a set of polynomials over k.

Theorem 3.47: Let F/k be algebraic. If every finite extension of k admis a
k-homomorphism into F, then F is an algebraic closure of k.

Proof: Letf=a,+ax+..+ax" € k[x]. Let E be a minimal splitting field
of fover k. Then E/k is finite.

By hypothesis, there is a k-homomorphism 6 : £ — F.

Let f=akx—-0)..(x—0a,), o, €E.

Then f =of=ax-o(a)) .. (x—o(a,)

= fsplitsin F

= every polynomial over & splits in F.

Let "' be aminimal splitting field of the set of all polynomials over £.

Then " =k(zeroof fe k[x] in F) c F

Also, o € F = ais algerbraic over k.

Let px) = Irr(k, o). Then a € F'is a zero of p(x) € k[x]
= o eF'=>FcF' =>F=F"

So, F'is an algebraic closure of k.

| Proof: Let a: K — Fbe a k-homomorphism.
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E is a subfield of k and K c E
g1 E — F is a homomorphism extending 5| *

Let S= {(E, 2)

Define arelation < on S as follows:
(E, g) £ (E,, go) if E|, C E, and g, is an extension of g, to E,.

Then < is a partial order on S.

Let {(E,, g,)};be achainin S. Let £ = kiJEi and define g : £ — F such
that, g(a) = g(a) if o € E,

Then (£, g) € Sand @n upper bound of the chain {(£,, g,)}.

By Zorn's lemma § has a maximal element, say (£, g,).

We show that £, = & . Suppose E # £ .

Thenwe canfinda € k suchthata ¢ E. Since k /k algebraic, a is algebraic
over k.

Let f'=Irr (k, a). Now k c E, = f € Ey[x]. Since F is algebraically
closed, g\(f) € F[x] splits in F[x].

Let b be a zero of g,( /) in F. Then there exists an isomorphism 6 : E(a)
— E(b) extending g, where Ej = g((E).

Butb € F, By c F = E(b) C F. So, 0 : Ey(a) — F'is a homomorphism
extending g,

Therefore, (£, g,) < (Ey(a), 0) and E, = Ey(a) = (Ey, &) #
(Ey(a), ©).This contradicts the maximality of (£, g).

So, E, = k. Therefore, g : k¥ — F is a homomorphism extending c.
Corollary: Let K/k be algebraic such that k < K < k . Then any k-homomor-
phism of K into k can be extended to a k-homomorphism of & into & .
Proof: Take F=k in above theorem.

Corollary: Any two algebraic closures of a field & are k-isomorphic.
Proof: Let K|, K, be algebraic closures of £.

Now kc K|, K,. Let 6 : k — K, be the inclusion map i.e., o(a) = a for

alla € k.

By taking K = & , k= K,, F'= k,, in above theorem, ¢ can be extended
to a k-homomorphism n : K, = K.




Since K /k is algebraic, K;/m(K,) is also algebraic.

But n(X,) is algebraically closed = n(K,) has no algebraic extension other
than itself = K, = n(K,) = n is onto = 1 is a k-isomorphism.

Hence, K, K, are k-isomorphic.
Theorem 3.49: Let k, E, K be fields such that, k  E c K and K/k is normal.
Then any k-homomorphism o : E — K can be extended to a k-automorphism
of K.
Proof: Since K/k is normal, K is minimal splitting field a set of polynomials over
k. Let £ denote an algebraic closure of .

Then & is aminimal splitting field of the set of all polynomials over k.

So K can be regarded as a subfield of %.

Now 6 : E — K is a k-homomorphism.

Thus 6 : £ — % is a k-homomorphism.

Since K/k is algebraic, so is E/k. Now k € E < k, E/k is algebraic.

By previous theorem, o can be extended to a k~-homomorphism 7 :
%k — & . Therefore, T : K — & is also a k-homomorphism.

Again, K/k is normal = 7 is a k-automorphism of K.

This proves the result.
Product of Fields: Let M, Nbe extensions of a field &k such that M, N are contained
in a field L. Then MN is defined as the smallest subfield of L containing M
and V.

Let MIN] ={a\b, +..+ab,|a;, € M, b, € N}.

n =Finite

Then M[N] is an integral domain. Let K be field of quotients of M[N].
Clearly, M = M[N], N < M[N].

So, M, N < M[N] c K.

But MN is the smallest field containing M, N, MN c K.

Also, > aib; eM[N], for all a, € M, b; e N
i=1

= Zaib,- €MN,as a;, eM = aq; eMN}
! b; €N = b; €MN.

= M[N] < MN.

But K is the smallest field containing M[N] = K < MN

= K =MN
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ab +...+a,b,

Proof: Let o = —
a'b'+ ..+a, b,

€K1K2

where a,a’ €K, b, b/ €K,
o(a)o(b) +...+o(a,) o(b,)
o(a)o(b) +...+o(a,’) o(b,")
4 o(K\K,) co(K)) o(Ky)
Let B e oK) oK.
_ oe)o(dy) + ..t (e, )o(d,)

Then o() =

ec(K;)o(K,)

Then
o(cNo(d)) +...+o(c,)o(d,”)
dy+ ... d
= o(at), where o = 2N TGN g g
Cl'dl' + ...+ cr’dr,
= B € o(KKy)

= oK)o(K,) < o(KK))

= 6(K\K,) =o(K))o(K,).
Theorem 3.50: If E, F are normal extensions of k, then EF and E N F are
normal over k.
Proof: (i) Let k denote an algebraic closure of k. Let 6 be a k-homomorphism
from EF into & such that, kc EF c k.

Now 6(EF) = 6(E)a(F) by above lemma.

Since E, F ¢ EF, o is also k-homomorphism from E into ¥ and F
into k. Also E, F are normal over k => ¢ : E - Eand ¢ : F — F are k-
automorphisms

= o(E)=FE,o(F)=F

= o(EF) = EF

Now o : EF — k is also a k-homomorphism from EF into EF. But

o(EF)=EF
= 6 : EF — EF is onto.
So, o : EF — EF is a k-automorphism.
= EF/kis normal.

(ii) Let © be a k-homorphism from £ N Finto k¥ suchthatkc ENF
C k. Then & can be extended to k -homomorphismn: &t — k.

Since E/k is normal, £ is a minimal splitting field of a set of polynomials over
k. However, k is a minimal splitting field of the set of all polynomials over k. So,
E can be regarded as a subfield of k. Therefore, k ¢ E < k. Similarly
kcFck.




Thus, nE N F) =n(E) nn(F)

=ny(E) N My(F)
=ENF.

But nENF=oc

= cENnF)=ENF

= o is a k-automorphism of E N F.
= E N F/k is normal.

Check Your Progress

What do you mean by extension of a field F?

When is a complex number said to be an algebraic number?
What is a prime subfield?

Define normal extension.

Whatis a finite field?

What is a splitting field?

A o e

3.5 AUTOMORPHISM OF EXTENSIONS

The purpose of this section is to find conditions under which a finite extension
F/K is separable in terms of k-automorphisms of 7. We first show that the number
of k-automorphisms of F'is at most n =[F': K]. We then show that the upper
bound 7 is achieved iff F/K is both normal and separable.

Deﬁnitio@et G|, Oy, ..., G, be homomorphisms from a field £ into a field £
Then, os ate called linearly independent over £’ if a6, + ... + 0,5, = 0, =
o, =0V iwhere a; € E".

Note, 0.0, : E — E' such that, (o,0)) (@) = o(c(a)) VaekE.

In the following result, we show that any family of homomorphisms from
a field into another field is linearly independent.

Theorem (Dedekind). 3.51: Let (6,), be a family of distinct homomorphism
Jfrom a field E into a field E'. Then {c,}, is linearly independent over L'.

Proof: Suppose {c,};is not linearly independent over £'. Then 3 finite subset
of {c,}; which is not linearly independent over £'. (i.e., it is linearly dependent
over £'.). Let {5}, 0,, ..., 0,} be aminimal linearly dependent subset of {c,},
over E'.
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1 1 ror

Suppose o, # 0.
Now  oy(a) = (—alay)oya) + .. + (- o'a)oa) VaeckE
o1(a) =Pyoy(@) + ... + B,o(a),

B, =-a;'o, e E,Vaeck ..(3.2)
So, c,(ab) =B,0,(ab) + ..+ B,o(ab) Va, bekE
= oy(@) oc,(b) =B,oxa),b)+..+Boaob)VabeE .(33)
Consider Equation (3.3) — o,(b) Equation (3.2).
Then 0 = B,0,(@) (0(b) ~ 6,(B) + ...+ B,5,(@) (0,(b) ~ (b))

= 3B, (0,(b) -0y (B oya) VaeE
2

N 0 = 3B, (6,() -5, b) 5,
2

= B(o(b) —o(b))=0 Vi=2,3,.,r,VbekE

as {o,, Oy, ..., 0,} is a minimal linearly dependent subset of {c,},.
Since 6; # 6, V i > 1, 3 ¢; € E such that, 6(c) # 5,(c)).
Now B(ofc)—oc) =0 Vi=23, ..,

= B, =0 Vi=2,3,..,r
So, c(a) =0 VaekE by(3.2)
= o) =0

= 1 =0, which is not true.
Thus {c,},1s a linearly independent set over £'.

Theorem 3.52: Let E, E' be extensions of K. Let [E : K| = n. Then, there are
at most n K-homomorphisms from E into E'.

Proof: Let {u,u,,...,u,} beabasis of £/K. Let, 5, ..., 5, be n+ 1 distinct
K-homomorphisms from E into £'.

n
Consider the system of equations z o;(u)x; =0, j=12,...n
i=0

Then, we have n equationinz + 1 unknowns x;s € E'. Since the number
of equations is less than number of unknowns, the above system of equations has
a non zero solution, say ¢, ¢, ..., ¢, € E' where some c; # 0.

Let a € E. Since {u,, uy, ..., u,} spans E/K, a = aqu; + ... + a,u,,
o, € K




= Zz(ajci(uj))ci
[

= Z%'(Zci(”j))ci)
J i
=0 as Zo;(u;)c =0
= icioi(a) =0 VaekE
i=0
= % ¢o; =0=¢;=0 Vibyabove theorem.
i=0

But some c; # 0. So, we get a contradiction. Thus, there are at most n
K-homomorphisms from £ into £.

Corollary: There are at most n K-automorphisms of E, where n = [E : K].

Proof: Take E' = E in above theorem. By automorphism of £, we mean
isomorphism of F into £. Now any K-homomorphism from F into E is a linear
transformation from E into E as vector space over K. Also, any homomorphism
from E into E is 1-1 and so onto as [E : K] = finite. By above theorem, there
are at most n K-automorphisms of £ where n =[E : K].

Case 6: Define 0 : C — C such that,
0(2) = 7, where z = Conjugate of z

Then 6 is R-homomorphism and 6 # /. So, 6, ] are two distinct R-homo-
morphisms of C into C. But [C : R]=2 = there are at most two R-automorphismss
of C. Also, any R-homomorphism of C into C is an R-automorphism of C. So,
0, I are only R-automorphisms of C. Note, C/R is normal as [C : R] =2 and
C/R is separable as char R=0 = R is perfect = Every algebraic extension of
R is separable.

Case 7: Let o be the real cube root of f(x) = x> — 2. Let F = Q(a) < R. Let
6 be a Q-automorphism of F.

Since a is a root of f(x) in R, 6(a) is a root of 6(f(x)) =f(x) in R.

So, 6(a) =a. But [Q(a) : Q] = deg Irr (Q, o) = deg f(x) = 3 and
{1, a, a2} is a basis of Q(a)/Q.

= Qo) ={a,+aa+a0?|a e Q}

Since 0(a,) = a, and 6(a) = a,, O fixes every element of Q(av).

So, 0 =1 = Identity map is the only Q-automorphism of F'=Q(a).

Note Q(a)/Q is separable as char Q =0 = Q is perfect = Every alge-
braic extension of Q is separable.
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Let a be a root of f{x) in some extension of F.
Now f(x) = x” — t is irreducible over F = [F(a) : F] =p.
= {1, q, ..., a”'} is a basis of F(a)/F.

p-1 .
So, Fla) = {3 ao'|a; e F}.
i=0

If 0 is F-automorphism of F(a), then 6(c) is a root of f(xx) = 6(f(x)) in
F(o).

But a is the only root of () in any extension of F.

= 0(a) = o = 0 fixes every element of F(a).

= 0 is the identity map.

Thus, identity map is the only F-automorphism of F(av).

Since o is not a simple root of f(x), a is not separable over F.

Therefore, if E/K is not sparable then one may not get [E : K],

K-auto hisms of E.

@Zbove two examples clearly demonstrate that in order that an exten-
sion £/K has [E : K], K-automomorphisms of E, E£/K should be both normal and
separable. In the first example, we saw that we do get [E : K], K-automorphisms
of £ when E/K is both normal and separable. We would like to prove this in
general.

Theorem 3.53: Let K = L  F C E be a tower of fields. Suppose E/K is finite
normal. If v is the number of K-homorphisms from L into E and s the number
of L-homomorphisms from F into E, then the number of K-homomorphisms
from F into E is rs.

Proof: Leto,, ..., 5, be the K-homomorphisms of L into £ and 7, T,, ..., T, be
the L-homomorphisms from F"into £. Since £/K is finite normal, each 6, can be
extended to K-automorphisms &; of E.

We show that {5,t. | 1 <i<r, 1 <j<s} is the set of distinct
K-homomorphisms from FintoE.

Suppose G; T;= 5, T Then Eirj(a) =5, 1(a), VaeF
= s1()=75, rq(D Viel
= 5(0=5,() Viel
= Gi=cp:i=p:>rj=rq:>j=q.
Let o be any K-homomorphisms from F into E. Then o |L is a
K-homomorphisms from L into E.




i

= o;!

c =1, for some j = 6 = &1,
Thus, 5,7.are the only K-homomorphisms from F'into £ and so, there are

exactly s K-homomorphisms from F'into E.

Theorem 3.54: Let K E C E' mLower of fields. Suppose E'/K is finite
normal. Then E/K is separable if and only if the number of K-homomor-
phisms from E into E' is [E : K].

Proof: Suppose E/K is separable. We prove the result by induction on n=[E
1 K].

Ifn=1,then E=Kand[: E— E'suchthat, /(a) = a is K-homomorphisms
from E into E'.

So, the result ;@rue forn=1.

Letn > 1. Assume that the result is true for all integers <.

Leta e E, a ¢ K.

Now K c K(a) € E < E' and E'/K is finite normal = E'/K(a) is finite
normal.

Also, [E:K] =[E:K(a)][K(a):K]and [K(a):K]>1

= [E:K@)] <[E:K]=n.

Since E/K is separable E/K(a) is also separable.

By induction hypothesis (applied to tower of fields K(a) c E < E"), the
number of K(a)-homomorphisms from E into £’ is [E : K(a)].

Let p(x) =Irr(K, a). Since a € E, a is separable over K. So, all roots of
p(x) are simple.

Let deg p(x) = r. Since E'/K is normal, p(x) splitsin E' asa € EC E'.

Leta=a,, a,, ..., a,be distinct roots of p(x) in £. Then 3 K-isomorphisms

c;: K(a) > K(a;) such that, o(a) =a; Vi=1,2,..,r 05, a} being
distinct.

Since a; € E', 6 s are r K-homomorphisms from K(a) into £".

Also as [K(a) : K] = deg Irr (K, a) = deg p(x) = r, these c's are only
K-homomorphisms from E(a) into E.

By previous theorem these are excatly [E : K(a)] [K(a) : K]=[E : K],
K-homomorphisms from E into £’

So, the result is true in this case. By induction the result is true foralln > 1.

Conversely, let there be n = [E : K] K-homomorphisms from E into £'.
Leta € E.
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s <[E: K(a)] :[—,[5%‘5%]=¢.

By above theorem, the number of K-automorphisms from E into E’ is

ms <rlt = n, acontradiction. So, m = r. That is, the number of K-homomorphisms
from Kr(a) into E' is [K(a) : K] =deg Irr (K, a).
Let p(x)=1Irr (K, a), deg p(x) =r.
Since E'/K is normal, p(x) splitsin £’ asa € EC E'.
Let a=a,,a,, ..., a, be distinct roots or p(x) in £'.
Then, for each 7 3 K-isomorphisms 6, : K(a) — K(a;) such that, 6,(a) =a;.
Since a; € E',K(a;)) 2 E'. So, 0, : K(a) > E' is K-homomorphism.
Again as a;s are distinct, 0 is are also distinct K-homomorphisms from
K(a) into E'.
If 0 is a K-homomorphisms from K(«) into E', then a is a root of p(x)
inkE
0(a) is a root of B(p(x)) = p(x) in E'
0(a) = a; for some i

Uuudu

0(a) = 0(a) for some i = 0 = 0, for some i.

So, 0,,0,,..., 0, are the only K-homomorphisms from K(a) into £
= t=[K(a): K]=degpx)=r.

= allroots of p(x) are distinct and so simple.

= ais separable over K. Thus, E/K is separable.

Corollary 1: Let £/K be finite normal. Then £/K is separable if and only if the
number of K-automorphisms of £ is [E : K] = n.

Proof: Since £/K is finite, a K-homomorphism of £ is K-automorphism of £ and
conversely. The result then follows by above theorem.

Corollary 2: Let K ¢ E — E' be a tower of fields such that, £/K and E'/E are
finite separable. Then £'/K is also finite separable.
Proof: Let [E: K]=r,[E': E] =s. Since E/K, E'/E are finite so is E'/K.
Thus 3 an extension F of K such that, F/K is finite normal and K c E
E'cF.
By above theorem since E/K is separable, there are » K-homomorphisms
from E into F.
Now F/K is normal = F/E is also normal.




over K. Then K(a,, a,, ..., a,)/K is separable.

Proof: We prove the result by induction on n. Since a,, a,, ..., a, are separable
overK, a,, a,, ..., a, are algebraic over K. So, K(a,, a,, ..., a,)/K is finite. Let
E'/K be finite normal extension such that, K  K(a,, ..., a,) < E'. Let
n=1.Let p(x) =Irr (K, a,), deg p(x) = r. Then 3 » K-homomorphisms from
K(a,) into E" as seen in above theorem. But »=[K(a,) : K]. By above theorem,
K(a,)/K is separable. So, the result is true forn=1. Let » > 1. Assume that the
result is true for all integers <#. By induction hypothesis, K(a;, ..., a,)/K is finite
separable. Also, a,, is separable over K and K c K(a,, ..., a, ) < K(a,, ..., a,)

=> a, is separable over K(ay, ..., a,_;)
= K(a,, ..., a,) | K(a,, ..., a,) is finite separable.

By above corollary, K(a,, ..., a,)/K is separable. By induction the result
istrue V>l

Corollary 4: Let F' K  E be a tower of fields such that, E/K and K/F are
separable. Then E/F is also separable.
Proof: Leta € E.

Let p(x)=1Irr (K, a)

=bytbx+..+bx, b ek
Let K'=F(by by, ...b)cK
b, € K= b, is separable over F'
= K'/F is separable by above Corollary

Since p(x) is irreducible over K, it is also irreducible over K.

So, px)=1Irr (K, a)

Now K'c Kc Eand a € F is separable over K = p'(a) #0 = a is
separable over K' = K'(a)/K’ is separable and finite. Also, K'/F is finite separable.

So, K'(a)/F is finite separable.

= ais separable over F.

Thus, E/Fis separable.
Theorem 3.55: Let K ¢ E C E' be a tower of fields such that, E'/K is finite

normal. Then following are equivalent:
(i) There are exactly n = [E : K] K-homomorphisms from E into E'.

(it) E/K is separable.
(iii) E/K is generated by separable elements.
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U, ..o U
g(uyy ..n
Uy, ..., U,). SINCE Uy, Uy, ..., U, are separable over K, K(u,, u,, ..., u,)/K is
separable. Therefore, a is separable over K. Thus, E/K is separable. This
proves (b).

Theorem (Artin’s) 3.56: Let E be a field, G the group of automorphisms of
E and suppose K is the set of elements of E fixed by G. Then K is a subfield
of E, called the fixed field of G. E/K is finite if and only if G is finite. In that
case, [E : K] = o(G).
Proof: K={a € E|c(a)=a Vo e G}

0,1e K=K=#o.

Leta,b € K. Thenc(axb)=c(a)to(b)=atb=a=xbh e K. Also
o(ab) = o(a) o(b) = ab = ab € K. If b # 0, then o(ab™!) = o(a) o(b) ' =
ab' = ab! € K. So, K is a subfield of E.

Clearly, G is a group of K-automorphism of E. If E/K is finite, then the
number of K-automorphisms of £ is at most [£ : K]. So, G is finite. Suppose o(G)
=r.Letugy,u, ...,u, € Ebelinearly independent over K. Consider the  equations
(in7+ 1 unknowns x5 in )

ics(uj)xj =0 forallceG

Jj=0

K. Leta € E, thena = ) g€ K[xy,....x,],u; € 8. So,a € K(uy,

Since the number of equations is less than the number of unknowns, the
system of equations has a non-zero solution.

Let(ay, ay, ..., a,, 0,0, ..., 0) be a non zero solution of least length s + 1
(@;20Vi=0,1,..5)

Then o(upa, =-o(u)a, +..+-o(u)a
= o(uy) =o(u)b, +...+o(u)b, forallce G ..(3.4)
Take 6 =1 Thenuy,=ub, +..+upb,

If b, € K for all 7, then (— 1)u, + byu, + ... + bu, =0, contradicting that
Ug, Uy, ..., U linearly independent over K.

So, some b; ¢ K. Let b, ¢ K.

Then 3 © € G such that, ©(b)) # b,.

Replace ¢ by o in (i) to get

Tlo(uy) = ir’lc(uj)bj forallc e G
j=1




> o(u)) (x(b;-b;) =0, foralloceG
j=1
= Zr:c(uj) ¢; =0, forallo e G, where ¢c;=1(b) -,
j=1
Since ¢, =1(by)—b, %0.
We have a non zero solution (0, ¢y, ..., ¢, 0, ..., 0) of length less than s +
1, a contradiction.

Therefore, 7 + 1 elements in £ are not linearly independenent over K

= [E: K] <r= E/Kis finite.
So, [E: K] <£0(G). But o(G) L [E : K]
= o(G) =[E:K].

Example 3.21: Let E be a field with n distinct automorphisms and suppose
K is the fixed field of the set of automorphisms. Show that [E : K] > n.

Solution: Let 5, 6,, ..., 5, be distinct automorphisms of £. Let G be the group
generated by 6, 05, ..., 6,. Then o(G) > n. If F'is the fixed field of G,

then K c F c E. By Artin's theorem, [E : F] = o(G) = n.

So, [E:K]>2[E:F]=n.
Example 3.22: Find the fixed field F of K(x) under the automorphisms x —

2 _ 3
l-x,x> L Show that the degree is 6. Verify that % lies in F
X (x*=Xx)

and use this to find an equation for x over F.
Solution: Let o(x)=1—-x,n(x)= —1 Then 6, n, on, no, onao, I are six distinct
X

automorphisms of £ = K(x). Let F"’ be the fixed field of these 6 automorphisms
of E. So, F c F' c E. By previous example, [E: F']>26 = [E: F]>6.

2417
Let g(x) = O oxtl o ;)12)
Then  n(glx)) = g(x), o(gx)) = g(x)
= gx) e F
Let L =KEgx)cFck

Then [E:L] =[E:F]|[F:L]>6.

Now L(x) =K(x)=E.

Also, @ —x+ 1P -—gx) ¥*x-12>=0

= x is aroot of a polynomial of degree 6 with coefficients in L
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- F =L =K(g®)
= (x> —x + 1)’ — g(x)x*(x — 1)*> = 0 is an equation for x over F.

3.5.1 Primitive Elements

Theorem 3.57: Let K/F be a finite separable extension. Then K = F (a) for
some a € K.

Proof: Since K/F'is finite, K= F(a,, ..., a,) forsome a,, ..., a, € K. It is enough
to prove the theorem for n = 2.

Let K = F(a, B). Then a, B are separable over F.
Case (i): Let F be an infinite field.

Let px)=1Irr (F, o)

4(x) = Irr (F, B)

Leta=ay, ..., a,, B =B, ..., B,, be the roots of p(x), g(x) respectively

in a splitting fields of p(x) and g(x). Since K is finite, there exists @ € K such that

o; —a

619'&021nd‘1¢'3 for1<i<m2<j<m.

J
Since a, 3 are separable over F, as and ;s are distinct roots of p(x), g(x)
respectively.

Let 0=af + o.

We show that F(0) = F(a, B).

Clearly F®) c F(a, P).

Define 2(x) = p(6 — ax).

Then g(B) = p(6 — aP) = p(a) = 0.

Also, gB)=pO—ap)=#0forallj=2,.. m

(For, p(8 —aP,) =0 = 6 — af}; — o, = 0 for some i
=>apt+ta —af-0;=0

= a , a contradiction

oo
= m
Now J is a root of g(x) and ¢g(x) and no ﬁj (j # 1) is a root of g(x)
= P is the only common root of g(x) and g(x). Let f(x) = Irr (F(©), B).
Since g(x) € F(0) [x] and g(B) = 0, f(x) divides g(x). Similarly f (x) di-
vides g(x)
So, f(x) divides g.c.d. of g(x) and g(x).
= f(x) divides x —




Thus,  F(0) = F(a, B).
Case (ii): K is finite. We shall prove later that K= K — {0} is a cyclic group.
If K" = <a>, then K = F(a).

Note: An extension K/F a called a simple extension if K = F(a) for some
a € K. In the above theorem, we have shown that a finite separable extension is
a simple extension. a is called a primitive element of K over F if K = F(a).

Example 3.23: Find a primitive element for Q(i, 2'?) over Q.

Solution: Since char Q =0, Q is perferct. So, Q(i, 2!/%)/Q is separable. There-
fore, primitive element of Q(i, 2'%) over Q exists.
Let px) =1Irr (Q,2"2) =x* -2 = (x - 212) (x + 21?)
qgx) =Irr (Q, i) =x*+1=(x—i) (x +i).

1 1 1

92 -92 92

Consider _2 2 = i =212
i—(=1) i

Take a =1.

Then 0 =ap+a=i+2"2

By above theorem Q(i, 2'?) = Q(0) = Q(i + 2'2).

3.6 GALOIS EXTENSIONS

Definition: An extension £ of F'is called a Galois extension if

(i) E/F is finite

(i1) Fis the fixed field of a group of automorphisms of £.

We first find a necessary and sufficient condition for a finite extension to be
Galois.

Theorem 3.58: Let E/F be a finite extension. Then E/F is a Galois extension
if and only if it is both normal and seperable.

Proof: Let £/F be a Galois extension.Then F'is the fixed field of a group G of
automorphisms of £. ByArtin's theorem, since E/F is finite, G is also finite.
Let G ={0,=1,0, ..,0,}.
Let a € E.
Let ofa) =a,i=1,2,..,n
Suppose a;, =a, a,,..., a, are distinct elements of {a,, a,, ..., a,}.
Let S ={a,a, ..,a}. ThenScE.
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Let f(x) =(x-a)..(x—-a,)
=x"+ox "+ L+ o

Nowo (f(x))= (x — o (a))) ... (x — cfa,))
=@x—-a,)..x—a)=f(x) forall .

So, X +ofo "+ . +tofa)=x"+tax "+ +ao

= ofa,) =q;forall tand i

= o, belongs to the fixed field of G

= a;€F, foralli

= f(x) € F[x].

Let g(x) be a monic irreducible factor of f(x) in F[x].

”

Let a; be a zero of g(x) in E.

Now a; =0ofa)=o; o, (a;) = o(a;)). So, a; is a zero of g(x) in E.

= o/a,;)isazero of 6(g(x)) =g(x)in E

= a;is a zero of g(x) in E for all j

= g =7k

= f(x) =1Irr (F, a).

Since a is a simple zero of f(x), a is separable over F'. So, E/F is separable.
Also, f(x) splits in E[x].

= E/Fis normal.

Conversely, let G be the group of all F-automorphisms of E. Let F’ be
the fixed field of G.

Then F < F' c F and o(G) = [E : F].

Since E/F'is finite, So is E/F".

Also, E/F is seperable normal = E/F" is separable, normal.

Therefore, there are exactly n=[E : F] F-automorphisms of E.

= oG =n=>[E:F'l=n

= [F':Fl=1=F=F.

= F'is the fixed field of G = E/F is Galois.

Corollary 1: Let E/F be finite extension. Then E/F is Galois if and only if F'is
the fixed field of the group of all F-automorphisms of £.

Proof: Let E/F be Galois. Then from above E/F is finite, normal, separable.
Again by converse part of the above result, F'is the fixed field of the group of all
F-automorphisms of E. Converse, follows by definition.




Note: When E/F'is Galois, the group of all F-automorphisms of £ is denoted by
Gal(E/F) or G(E/F) called the Galois group of E/F.

Theorem 3.59: Let E/F be a finite extension. Then E/F is contained in a

Galois extension if and only if it is separable.

Proof: Let E/F be a contained in a Galois extension E'/F. Then Fc EcC E'.
Now E'/F is Galois = E'/F is separable = E/F"' is separable.
Conversely, let E/F be separable. Since E/F is finite,

E = F(oy, oy, ..., a,).
Let p; =Irr(F, o), o, €kE
o; € E= a,is separable over F
= o, is a simple zero of p;, for all i
=> Each zero of p;in a splitting field is simple
Let /= ﬁ p;- Thenf'e k[x] < E[x], and fsplits in some extension of E.
i=1
Let L be aminimal splitting field of f(x) over F.
Then L = F (zeros of fin an extension of E)
=F (o, 0y, ..., &, zeros of fother than ous in an extension of £)
= E (zeros of fother than a5 in an extension of E)
= F cEcL

Also, L is generated by separable elements over F'(as each zero of fin an
extension of £ is simple and is a zero of an irreducible polynomial of p; € F[x])
= L/F is separable = E/F is contained in a separable extension L/F.

Theorem 3.60: Let E/k be Galois and F be any extension of k. Then EF/F
is Galois and G(EF/F) is isomorphic to a subgroup of G(E/k).

Proof: Since E/kis Galois, E/k is finite normal. So, £ is a minimal splitting field
of some polynomial f(x) € k[x].

Let Jx) =ax-o)(x-0ay)..(x—a,), o € E ack

Then E =k, 0, ..., Q).

Also, E/kisseparable

= Each a, is separable over k. Now k < F c EF and q, is separable
over k = q, is separable over F.

Again, E = ko, a,, ..., o).
= EF = FE = Fk(a,, a,, ..., a,)
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= EF/F is separable.

So, EF/F is Galois.

Let o € G(EFIF).

Let f =of, f,..f. where each;is monic irreducible polynomial
in k[x].

So, each o, is a zero of some ]; € k[x].
Since o, is separable over £, o, is a simple zero.
Let S ={o, &, ..., a,}. Then a; is a zero of fin £ < EF
= o(a,) is a zero of o(f) = fin EF = o(a,) € S.
So, {o(a,)), o(ay), ..., o(a,)} = {04, Oy, ..., O}
= o(E) =k(o(ay), o(ay), ..., o(a,))
=k(oy, oy, ..., o) = E

= o restricted to E belongs to G(E/k)
Define 6 : G(EF | F) — G(E/k) such that,

0o) =o|E
Then 6 is a homomorphism.
AlsoBisl—-lasoc|E=1
= o(a,) =o,foralli

= o(a) =aforall a € EF as EF = F(a,, 0, ..., a,) and o fixes
each element of ¥

= oc=1onkEF.

So, G(EF/F) = O(G(EF/F)) < G(E/F).

Corollary: If E/k is Galois and F, an extension of &, then [EF : F] divides
[E : k]
Proof: By above theorem, EF/F is Galois
= [EF : F] = o(G(EF/F))
Also, [E : k] = o(G(ETk))
But  O(G(EF/F)) < G(E/F)
= o(8(G(EF/F)) divides o(G(E/F))
= o(G(EF/F)) divides o(G(E/F))
= [EF : F] divides [E : k].
Note: The above corollary need not be true if E/k is not Galois. For example,

let k£ = Q, let a be the real cube root of 2. Then o, aw, aw? are roots of
fx)=x*-2inC.




while [E: k] =[Q(aw): Q] =degIrr (Q, aw)
= deg f(x) = 3.

3.6.1 Fundamental Theorem of Galois Theory
Theorem (The fundamental theorem of Galois Theory) 3.61: Let E/k be
Galois. Let G = G(E/k) be the group of all k-automorphisms of E. Then
(i) There is one-one correspondence between the sets
A={F|F=field kc FCFE}andB = {H|H <G} which is an order
inverting bijection.

(ii) F el is the fixed field of the subgroup H € B corresponding to F and
H eB is the group of H*-automorphisms of E, where H* is the fixed
field of H.

(iii) If H is the subgroup of B corresponding to the field F in B, then
oH)y=[E:Fland [G: H] = [F: k]

(iv) If H,, H, €B corresponding to F,, F, €A respectively, then F|, F,
are conjugate under an automorphism ¢ € G if and only if ' H,c
=H,

(v) If H €B corresponds to F €1, then F/k is normal if and only if H is
normal subgroup of G and in that case, G(F/k) = %

Proof: Define6 : 2 — B such that,
0(F)=F*
where F* = {c € G | o(x) =x forall x € F}. Then F* € B.
Similarly, define 6 : B — A such that,
O(H) = H*
where H* = {x € E|o(x)=xforall c € H}
Then H* € A is the fixed field of H.
Let F|, F, € A such that F, C F,.

Let 6 € Fy*. Theno(x)=xforallx € F,
= o(x) =xforallx e Fjas F, c F,
= c eFi*=> F*cCF*

=  O(F,) < 6(F)) = 0isan order inverting map.
Similarly, ¢ is an order inverting map.

Let He B. Thenoc e H=o(x)=xforallx e H* =>c e H* => H
c H**,
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Now H c H* = F*c F***forall F € A.

Also, F c F** = 0O(F**) c 6(F)

=  F*** c F*forall F € A. So, F* = F*** Similarly, H* = H***
for all H € B.

Now 0 is 1-1 onto if and only if 8¢ = Identity and (6 = Identity ifand only
if H=H** for all H € B and F = F** for all F € A.

Let H e B. Then H* = F is the fixed field of H.

By Artin's theorem o(H) = [E : F].

Also,o(H**) =[E: H**|=[E: H*]|=[E: F].

So, o(H) =o(H**). But Hc H**. Therefore, H= H**.

Let F eA Thenkc FcCE.

Now E/k is Galois = FE/F'is Galois = F'is the fixed field of the group H
of all F-automorphisms of E.

= H <G= HeB.

Now H* = fixed field of H=F

=  H¥F =¥ o JFY =R o F= ¥ forall F e A

Thus, 0 is 1-1 onto.

This proves (7).

(fiyLet F e A. LetO(F)=H. Then F*=H = F**=H* = = H* =
Fis the fixed field of H.

Let H € B. Then there exists F € A such that 0(F) = H = H = F*.

Letc € H. Then 6 € F* = o(x)=x forall x € F = ¢ isan F-automorphism
of E.

Conversely, let 6 be an F-automorphism of .
Then o(x)=xforallxe F=oce F*=H.
So, H is the group of all F'= H*-automorphisms of E.

(iii) ByArtin's theorem
o() =[E:H*]=[E:F]
o= 29 LEK
[G: 4] o(H) [E:F] [ 4

(iv) Suppose F|, F, € A are conjugate under ¢ € G. Then o(F)) = F,.
Let y € F,. Theny = o(z), z € F,. Therefore, o7!(y) = z.
= w6 l(y) =1(z), forallteH,




Let a € F|. Thenoc(a) =b € F,

= no(a) =n(b), forallne H,
= no(a) = b, forallm e H,
= ono(a) =c!(b)=a,foralln e Hy,a e F,
= ocmo eH, forallneH,
= o'H,o cH,
= H, c cHc'!
So, H, = cHc L
Conversely, let H, =cHic! forcegG.

Let y e F,. Now ot ! € H,, forallteH,

= oty =y
= w6l(y) =cl(y)=z2
= (z) =z, forallt e H,
= z e F|
= y =o0(2) € o(F))
= F, c o(F)
Let x € F;. Now o'no e H,, foralln e H,

= o 'mokx) =x
= no(x) = o(x) = x'
= nE) =x, forallm € H,
= x' er),
= o(x) € F,
= o(F) c £,
So, o(F,) =F, = F, are conjugate under o.

(v) Suppose F/k is normal. Since E/k is finite, so is F/k. Therefore, F/k
is finite normal = F'is a minimal splitting field of some ' k[ x].

Let f=ox—-0o)..(x-a,), o, €FE ack
Then  F = ko, 0y, ..., ).

Let 6 € G. Then o is a k-autmorphism of £ = o(f) = f.
= f= - o) ... (x - o(a,)

= o(a), ..., o(a,) are zeros of fin E

= o, oy, ..., o,} = {o(a,), ..., o(a,)}.
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all o Lenversely, let H=F* be normal subgroup of G. Then o' Ho = o for

=o()=F by(v)forallc e G
Let a € F, p(x) = Irr (k, o).
Since E/k is normal and o € E, we find p(x) splits in E.
Let B be a zero of p(x) in E.
Then a, B are zeros of p(x) in E.
= There is an isomorphism 0 : k(o) = k(B) such that,
O(a) =P, 0(a)=aforalla € k.
Since B € E, k(B) < E. So 0 is a k-homomorphisms from k() to E.

Since E/K is finite normal, 0 can be extended to k-automorphism c of £.
So,c € G.

Now o(a) =0(ar) =B and 6(a)) € 6(F)=F = B € F.
Thus, p(x) splits in F' = F/K is normal.

Let H be anormal subgroup of G. Then the corresponding field F'is normal
over k from above. Since E/k is Galois, so is F/k. Let N = Gal(F/k)

Define y : G — N such that,
y(c) =G, where G is the restriction of ¢ on F.
(Since H< G, 6 'Ho = H = o(F) = F)

Leto,m € G.

Thenc ma) =(on) (), aefF
—oMm(@),  n@eF
=5(n(o)
=5(M(a))
=1 (0, foralla € F

= SN =57

= y(on) = y(e@vMm)
= y is ahomomorphism

Let 6 € N. Then 0 can be extended to k-automorphism c of E = ¢ €
G
= y(o) =6=0. So, y is onto. Now ¢ € Ker y < y(c) = Identity of N <
G = Identity on F' < G(a) = o, forall @ € F.

The result now follows by using fundamental theorem of homomorphism.

Case 9: (i) Let E be a minimal splitting field of fix) =x* — 2 over Q. Let a. be
the real cube root of 2.




So, E£/Q is Galois.
Let G = G(E/Q) be the group of all Q-automorphisms of E.
Then Q is the fixed field of G. By Artin's theorem o(G) =[E : Q] =6.
Since o, aw are roots of f(x), there exists Q-isomorphism
G, : Q(a) = Q(aw) such that,
o) = ow
Let g(x) =x?+x+ 1, then g(x) is irreducible over Q(a)) = R
and 6,(g(x)) =g(x)is irreducible over Q(ow)
Since w, w are roots of g(x), there exists an isomorphism
o :Q(a, w) =E — Q(aw, w) = E such that,
o(w) =w
o(a) = oy(a) = aw
o(a) =cya)=a VaeQ
Thus o is Q-automorphism of £, 6 # .

Also w, w? are roots of g(x) which is irreducible over Q(o) and 3 Q(v)

isomorphism
7:Q(a, w) = E — Q(a, w?) = E such that,
T(w) =w 1(a) = a

and so 1 is Q-automorphism of £, t # G, 1 # [
Now cX(a) = aw?, 2(w) = w

(6 1) (o) = ow, (o1) (W?) = w?

(6*1) () = aw?, (c%1) (W?) = w2
Since o(G) =6, G={I, , 6% 1, o1, 5’1}

2,10 # o1

Also  (10) (o) = t(aw) = ow

So G is a non abelian group of order 6 and so G = ;.

Denote aw by 1, aw? by 2 and aw? by 3 and we get
1 =(12), 6T =(13), 6*T = (23),

G = (123), > = (132)

Write 1 =0,06=0;,0l=0,0>=0c5and o> T=cy
Then G = {I, 6,, 03, G4, G5, C¢}
Subgroups of G are:

Hy ={l,0,}, H,={l, 64},
Hy = {I, o5}, Hy = {I, 63, 65}, Hs = G, Hy = {1}.
Let F, = H*, the fixed field of H,.
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Then F, =Q(aw?) and F;, the fixed field of H; is Q(ouw)

Let F, =H,*, the fixed field of H,. Now H, fixes /3i

= Q cQ3)c FcE.

Since  [E: Fy] =3.[QW31): Q1=2,[E: Q] =6, F,= Q(51).
Clearly, Fs =Fixed field of G=Q

and F, =Fixed field of H, = E.

So, we have 6 intermediate fields between Q and £ corresponding to 6
subgroups of G.

Since H,, H,, Hy are not normal, F,/Q, F,/Q, F';/Q are also not normal.
Also H,, Hs, H, are normal subgroup of G, and thus F,/Q, F5/Q, F,/Q are
normal subgroups of G.

(if) Let E be a minimal splitting field of /(x) =x* + 1 over Q.

5 &7

Then a, o, o, o are roots of f(x), where a. = cos%+ isin%

and E = Q(a) = Q(c?)) = Q(&’) = Q(at)

Then  [E:Q] = [Q(e) : Q] = deg Irr (Q, &) = deg f(x) = 4.
Char Q =0= E/Q is separable.

Also E is a minimal splitting field of /(x) over Q implies £/Q is normal.
Hence E/Q is Galois.

Let G = G(E/Q) be the Galois group of £/Q.

By Artin's theorem, o(G) =[E : Q] =4
Since o and o are roots of an irreducible polynomial f(x) over Q, there
exists Q-automorphism
0;:Q(a) =E — Q(o®) = E, such that,
oy(0) = o’
Similarly, there exists Q-automorphisms
6s:Q(a) =E - Q(a®)=E such that,

o5 (a) = o’
c,:Q(a) =E - Q(a/)=E such that,
o,(a) = a’
So G = {l, 65, 05, 0}
Also 62 =0ct=0c2=1

3
Thus G is an abelian IlOfl cyclzc group of order 4 and so it is the Klein's four

group.




= o(2) =o(2)=2

= (oW =2=0

= o@R)isazeroof x>’ +2inEc C

= of =+4/2. Similarly 6(i) =+ i.

So, oy(a) = o = 03[L+Lj e S
S22 22
= 03(2) =2, 03() =~ i
= 03020 = 2i
= H, fixes 42 i
Let F, = H,", the fixed field of H,

Then QcQW2i)cF cE
But [Q(J'ZZ)Q] =2,[E:F|]=2,[E:Q]=4
So, F; =QW2i)

o5&2) =—2 and o5(i)) =i = H, fixes i.
Let F, = H,*, the fixed field of H,.

Then QcQickck

and [E:F] =2,[Q0): Q]=2,[E:Q]=4=F,=Q().
Now o, () =c’ = 05[%+fj = %—f

= os42) = 2

= H,fixes 2. Let Fy = Hy*, the fixed field of Hj.

Then QcQW2)cFcE

and  [E:F3] =2,[Q2):Q]1=2,[E: Q] =4 = F;=Q(:2).

Clearly F, = fixed field of H, (= G) is Q and F’; = fixed field of H = E.

So, F, F,, F5, F,, F5 are intermediate fields lying between Q and E.

Since F, F,, F; are quadratic extensions of Q, F,/Q, F,/Q, F5/Q are
normal. Also F,/Q, F'5/Q are normal. But G being abelian, all subgroup of G are
normal subgroups of G.
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polynomials of different degrees. Additionally, for polynomials which are solvable
through radicals we require the Galois theoretic derivation of the general solution
to the polynomial. The solvability through radicals can be revealed using the Galois
Theory and also the characteristics of Group and Field theory.

Polynomials of degree one and two are simply established to be solvable
by radicals because of the existence of similar general formula for both. Complex
formulas for cubic and quartic polynomials are solved by radicals. Though, general
polynomials of degree five are not solvable and so there is no general formula for
this.

Basically, the polynomials are functions of the type,

1

p(x¥)=a,x" +a, x" +---+ax+a,

where a, # 0. The root(s) of a polynomial are considered the value(s) of x which
satisfy the condition p(x) = 0. To solve the polynomial roots using radicals does
not mean to find a root, because as per the fundamental theorem of algebra any
polynomial of degree n has n complex roots which should not be distinct. Solving
apolynomial by radicals involves the expression of all roots of a polynomial including
the four basic operations: addition, subtraction, multiplication and division, and
also taking the radicals from the arithmetic grouping of coefficients of any given
polynomial. Solving for polynomial roots through radicals includes obtaining the
general solution to the general form of a polynomial of some specific degree. The
following analysis explains how all polynomials can be solved through radicals and
to prove the resultant of the solvability of polynomials.

Cubic Functions: Cubic functions can be solved with the help of Cardano’s
method in which the general cubic equation is transformed into a depressed cubic
without the x? term.

Consider the general form of a polynomial of degree three.

ax’> +bx? tex +d=0 ...(3.6)

It is easy to work using a polynomial of foremost coefficient one, hence we
divide a outside the entire equation to get,

b c d
P A=x+—x+—=0,
a a a

b
By substituting X =y — 3 into above equation the polynomial becomes,
a

(8485024
Y 3a a Y 3a a Y 3a a




32 3a> d " 274 94 3d* a
Such that,
w+v) =3uwu+v)— @ +v)=0 ...(3.8)

Equation (3.7) corresponds to Equation (3.8) so that,
w+v)=yp,3uv=—p,u* +v*=—¢q

Equation (3.8) can be solved for y as follows,

)

where i € {1,2,3} and w, is one of the 3rd roots of unity.

The general solutions for this equation is,

b 2 3 2 3
o bl (1} +(£] Lla (g) +(£j
3a 3a 2 2 3 2 2 3
Let us consider the Galois group of the irreducible depressed cubic equation.

The Galois group of the splitting field of a general cubic equation is.S; and also the
possible Galois group of any cubic is isomorphic to either S, or 4,.

Let f{x) =x3+ px + g be an irreducible cubic in the polynomial ring F[x]
over a field I of characteristic zero with roots y,, y, and y;.

We include the relations, y, + y, +y,=0,», ¥, + », ¥, Ty, ¥, =p and
Y = 4.
Hence we have the chain of fields F < F(y,) c K, where K= F(y,y,) =

F(y,y,). Hence, if two roots are in the field then the third root is automatically
there.

Also, either F(y,) =K or F(y,) <K.
Case (i): F(y) =K.
We know that K = F(y,) forany i = {1,2,3} or [K:F] =3.
Hence, Gal(K/F) = A,. The composition series of Gal(K/F) isthus 4, | 1.
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Since [K: F]=6and G=S§;, s0 §; has only one de ee3sub r0112pA This
implies that there exists a field L such that [K: Lf, 4= and Listhus

acquired by adjoining a square root of the discriminant D where,

D= H (yj _yi)2

1<i<<3
‘We comprehend that /T is fixed by any even permutation of the roots and
c (.J'B ) — /D for any odd permutation ¢ where G acts naturally on the
subscripts in the above expression of D. Thus D is fixed by all of S, so if D is not
asquare /) ¢ F,hence [F[:\,"ﬁ:]: F] =2 oris aradical extension. Since Ga/
(K/F) =S, it can be shown that L = I (v'I}).
Thus, K =F(v,.y,)= F(v/D, y, ) and the composition series of Gal(K/F):

S, >4, >1
This is so because,

Y (pY B b b d) (b 2 ¢
|+ =] =|- ——+—| + -t
2 3 27a* 9a° 3a* ¢ 9a> 9a®> 3a

1
T (b*c* —4db® — 4ac® +18abcd — 27d%a?)

= —ﬁ(% 1) (7 =1 (0 = »3)

Therefore, the adjoining of the square root of the discriminant gives rise to
the field L which contains the term,

44

Quartic Functions: Quartic polynomials can be solved using Ferrari’s
method which transforms a quartic polynomial into a depressed quartic which has
no x3 term.

We start with the general form of a quartic equation,

X*tad+bx’+cex+d=0 ....(3.9)




4
Vit gy +r=0 ...(3.10)

We can add 2zy? + 22 to the above equation to obtain,

Vit 22y +2=2z-p)y—qy +(Z—-7)

Since we would like the right hand side to be a square so we should let the
discriminant of the quadratic on the RHS be 0. Specifically, we assume that,

¢4(z2>-r)(2z-p)=0
Rearranging the terms we get a cubic inz as,
82 —dpz2 —8rz+4rp—q¢*=0 ...(3.11)

Thus we find the root z of this equation and solve for y by substituting that
value into Equation (3.10) to get a quadratic in)?. Solving the resultant quadratic
in)? gives the roots of the depressed quartic from which we can derive x.

Thus we get the solutions for the quartic Equation (3.9). One root of
Equation (3.9) is fixed in this formula,

1 1 1
x:E-.,JZpr i\(gzapi-#lzzr f%.

The Galois theoretic derivation of the formula is as follows.

Solving for the roots of a quartic involves solving of the cubic
Equation (3.11)inz:
8P —4p2—-8rz+4rp—q¢’=0
For a general irreducible quartic equation f in F[x], the Galois
group G = Gal(E/F)is S,
G =S, has the composition series as follows:
la<c>alV 44,48,
where Vis the Klein 4-group. o is any of the 3 order 2 involutions in V.
The corresponding field extension is,
EoSE;DE,DE4DF.

The part £, D F(corresponding to 4, < S,) is of degree two and

corresponds to the degree two extension in solving z. The element z is solved via
taking a degree two extension, i.e., square root of the discriminant and followed
by a cubic root (as explained eralier for cubic equations). Note that
Gal(E/F)=S,/V, which is isomorphic to S,. In fact, S, = VS,=gh {gin ¥, hin
S.}. The group Vacts on E trivially and hence S,/V (identified with ;) actson £,
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groups < ¢ > which correspond to thé adjoining of the 3 possible values of z as
solutions of the Equation (3.11). The last radical extension (£ > Es) corresponds
to,

11 > \( 11 >
—=z—= +1|Jz -r ——z——p—Az -7
\I 2747 R
Adjoining either of these two to Ec will give rise to the same field £ since
the degree [E: Ec] =2.

3.7.1 Insolvability %e General Equation of Degree 5

In algebra, the Abel-Ruffini theorem also known as Abel’s impossibility theorem
states that there is no general algebraic solution, i.e., solution in radicals to polynomial
equations of degree five or higher. This theorem states that every non-constant
polynomial equation in one unknown, with real or complex coefficients, has at
least one complex number as solution.

The theoremglefines the form that a solution must take. It a@ states that
not all solutions of higher degree equations can be obtained by starting with the
equation’s coefficients and rational constants, and repeatedly forming sums,
differences, products, quotients and radicals (zth roots for some integer 7) of
previously obtained numbers. In fact if the roots happen to be rational numbers,
they can trivially be expressed as constants. The simplest nontrivial example is the
monomial equation ax” = b, whose solutions are,

b .
}J:.e’z”k/” k=0,1,...n-1
a

Here the expression e™/" appears to involve the use of the exponential
function that gives the possible values of .’@’I (the nth roots of unity), so it involves
only extraction of radicals.

The Abel-Ruffini theorem states that there are some fifth-degree equations
whose solution cannot be so expressed, for example the equationx’—x+ 1 =0.
Some other fifth degree equations can be solved by radicals, for example x* — x*
—x + 1 =0, which factorizes to (x — 1) (x — 1)(x + 1)(x + {)(x — i) = 0. The
precise criterion that distinguishes between those equations that can be solved by
radicals and those that cannot be solved was given by E variste Galois and is
termed as Galois Theory. A polynomial equation can be solved by radicals if and
only if its Galois group (over the rational numbers or more generally over the base
field of admitted constants) is a solvable group.




the “general equation of the nth degree’. This remains true if the coefficients are
concrete but algebraically independent values over the base field.

The following proof'is based on Galois Theory. Historically, Ruffini and
Abel’s proofs precede Galois Theory. One of the fundamental theorems of Galois
theory states that an equation is solvable in radicals if and only if it has a solvable
Galois group, so the proof of the Abel-Ruffini theorem is based on the Galois
group of the general polynomial of the fifth degree.

Let y, be a real number transcendental over the field of rational numbers Q
and let y, be a real number transcendental over O(y,) and so on to y, which is
transcendental over Q(y,.y,.y,,v,). These numbers are called independent
transcendental elements over Q.

Let E= O(,,y,.V:.,.)5) and let,
J) =@ —y) x=y,) (x—y3) x=y,) (x =) € E[x]
Multiplying f(x) yields the elementary symmetric functions of the y :
Si=yn sty tys
S, =Yty T T ys
and so for,

S5 = yyyys

The coefficient of x” in f{x) is thus (- 1)*-"S, . Because our independent
transcendental y, act as indeterminate over Q, so every permutation c in the
symmetric group on 5 letters S; induces an automorphism ' on £ that leaves O
fixed and permutes the elements y, . An arbitrary rearrangement of the roots of the
product form produces the same polynomial of the form,

(y _y3)(y _yl)(y_yz)(y _ys)(y_y4)

This is same polynomial as,

O =)0 =)0 =) =y )0 —¥s)

The automorphism ¢’ also leave £ fixed, so they are elements of the Galois
group G(£/Q). Now, since | S;| = 5! so it must be | G(E/Q) | >51, as there could
possibly be automorphism there that is not in S,. However, since the splitting field
of a quintic polynomial has at most 5! elements because | G ( E/Q)| 5! and so
G(E£/Q) must be isomorphic to S;. Generalizing this argument shows that the Galois
group of every general polynomial of degree 7 is isomorphicto S,.

The only composition series of S, is S;>A, > {e}, where 4, is the alternating
group on five letters also known as the icosahedral group. However, the quotient
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says that the general polynomials of all degrees higher than the fifth also have no
solution in radicals. Note that the above construction of the Galois group for a fifth

degree polynomial only applies to the general polynomial. Specific polynomials
of the fifth degree may have different Galois groups with quite different properties,
for example x*— 1 has a splitting field generated by a primitive Sth root of unity
and hence its Galois group is abelian and the equation itself solvable by radicals.

Check Your Progress

7. Whenis an extension called a simple extension?
8.  Write about the quartic function.
9. State the Abel’s theorem.

3.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let K be a field and suppose F is a subfield of K then K is called the
extension of F.

2. A complex number is said to be an algebraic number if it is algebraic over
the field of rational numbers.

3. Let Fbeafield. The intersection of all subfields of F'is the smallest
subfield of F and is called the prime subfield of F.

4. Let E'be an extension of K. E'is called normal extension of K if £/K is
algebraicand a € E = p(x) = Irr(K,o)splits in E[x] or E.

5. A field having a finite number of elements is called a finite field or a Galois
field.

6. Let Sbe a set of polynomials over k. Suppose each f .S splits in a field
E containing k. Then £ is called a splitting field of S over £.

7. An extension K/F is called a simple extension if K=F(a) for some ac K.

8. Quartic polynomials can be solved using Ferrari’s method which transforms
a quartic polynomial into a depressed quartic which has no x® term.

9. Abel’s theorem states that the generic algebraic equation of degree higher
than four is not solvable by radicals.




¢ [f K'is an extension of F. a € K is said to be algebraic over F'if 3
non-zero polynomial f(x) € F[x] such that f'(a) = 0.

¢ Anelementa € K is said to be algebraic of degree n over F if it satisfies
a polynomial of degree n over F and does not satisfy any polynomial of
lesser degree (than n).

o A field Kis called perfect field if every algebraic extension of K is separable.

¢ If Eisan extension of K. E is called normal extension of K if
(i) E/K is algebraic (if) o € E = p(x) = Irr (K, o) splits in E[x] or E.

o A field kis called algebraically closed if every polynomial fover & splits in
k.

o Let 2, ...y 0, be homomorphisms from a field £ into a field £’. Then,
o8 a@alled linearly independent over £’ if a,;0, + ... + 0,6, = 0, = o;
=0 viwhereo, € E'.

¢ Anextension E of F'is called a Galois extension if

(1) E/Fis finite
(ii) Fisthe fixed field of a group of automorphisms of £.

¢ Cubic functions can be solved with the help of Cardano’s method in which
the general cubic equation is transformed into a depressed cubic without
the x? term.

¢ Quartic polynomials can be solved using Ferrari’s method which transforms
a quartic polynomial into a depressed quartic which has nox® term.

o The Abel-Ruffini theorem states that there are some fifth-degree equations

whose solution cannot be so expressed, for example the equationx® —x +
1=0.

3.10 KEY TERMS

¢ Algebraic number: Acomplex number is said to be an algebraic number if
itis algebraic over the field of rational numbers.

e Separable polynomial: A polynomial is said to be separable if all its roots
are simple.

o Finite field: A field having finite number of elements is called a finite field or
a Galois field.
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method which transforms a quartic polynomial into a depressed quartic
which has no x3 term.

3.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

. Define afield.

. What is algebraic extension?

. What is the difference between separable and inseparable extensions?
. When is a field said to be perfect?

. What do you mean by the term normal closure?

. Define product of fields.

. Define linear independence.

. What s primitive element?

O 0 9 & L A WL N =

. What is Galois group?

—_
=]

. What do you understand the solvability of a quadratic equation.

Long-Answer Questions

1. If a, b € K are algebraic over F of degrees m and n respectively and if
m and n are relatively prime, prove that F(a, b) is of degree mn over F.

2. If a € K is algebraic over F of odd degree, show that F (a) = F(a?).

3. Show that degree of +f2 +4/3 over Q is 4 and degree of +f2 +3f5 over Q
is 6.

4. If a is an algebraic integer and m is an ordinary integer, prove

(i) a+misan algebraic integer.
(#f) ma is an algebraic integer.

5. Prove that sum and product of two algebraic integers is an algebraic integer.

6. Find a basis of Q (+2,43) over Q. [1, +/2,4/3,4/6]

7. Let K be an extension of F. Suppose E|, E, are contained in K and are
extensions of F. If [E| : F] and [E, : F] are primes, show that either
E,NE,=ForE =E,.

8. If K is an extension of F, ¢ € K, a, b € F, a # 0 then show that F(c) =
F(ac + b).
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10. Let K be a finite extension of F. Suppose if F'; and F, are any two subfields
of K such that, ' F, and F  F, then either ', c F, or F,  F|. Show
that K will be a simple extension of F.
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4.0 INTRODUCTION

In mathematics, more specifically in the area of abstract algebra known as ring
theory, a Noetherian ring is a ring that satisfies the ‘ Ascending Chain Condition’
on leftand right ideals. In other hand the notion of a Noetherian ring is of fundamental
importance in both commutative and non-commutative ring theory, due to the role
it plays in simplifying the ideal structure of aring. In abstract algebra, a Noetherian
module is amodule that satisfies the ascending chain condition on its submodules,
where the submodules are partially ordered by inclusion.

In abstract algebra, an Artinian module is a module that satisfies the
descending chain condition on its poset of submodules. They are for modules
what Artinian rings are for rings, and a ring is Artinian iff it is an Artinian module
over itself (with left or right multiplication). Both concepts are named for Emil
Artin.

In algebra, the Wedderburn—Artin theorem is a classification theorem for
semisimple rings and semisimple algebras. The Wedderburn—Artin theorem reduces
the problem of classifying finite-dimensional central simple algebras over a field K
to the problem of classifying finite-dimensional central division algebras over K.
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(

mathematics, the Lasker—Noether theorem states that every Noetherian
ring is a Lasker ring, which means that every ideal can be decomposed as an
intersefcﬁ\, called primary decomposition, of finitely many primary ideals.

is unit, you will study about the rings and modules, simple modules,
Schur’s Lemma, free modules fundamental structure theorem, Noetherian and
Artinian module or ring, Hilbert’s basis theorem, Wedderburn—Artin theorem,
uniform module, primary module, Lasker—Noether theorem.

4.1 OBJECTIVES

After going through this unit, you will be able to:
o Define simple modules, uniform modules and Schur’s lemma
o Understand the fundamental structure theorem for modules
o Describe the Neotherian and Artinian rings as well as modules
o State the Hilbert basis and Wedderburn Artin theorem
o Elaborate on the primary modules and Noether-Lasker theorem

4.2 RINGS AND MODULES: INTRODUCTION

A group we noticed is a system with a non-empty set and a binary composition.
One can of course talk about non-empty sets with two binary compositions also,
the set of integers under usual addition and multiplication being an example. Though
this set forms a group under addition and not under multiplication, it does have
certain specific properties satisfied with respectg@multiplication as well. We single
out some of these and generalize the concept 1fi the form of a ring. We start with
the formal definition.

D@nition 1: A non-empty set R, together with two binary compositions + and
.158aid to form a Ring if the following axioms are satisfied:

Hha+tbB+tc)y=(a+b)+c foralla,b,ceRr

@yatb=b+a fora,beR

(iif) 3 some element 0 (called zero) in R, such that,a +0=0+a=a forall
aeR

(iv) for each @ € R, 3 an element (—a) € R, such that, a + (—a) =(-a) + a
=0




that the closure properties with respect to these hold in R. In other words,
foralla,b € R,a+banda.bareuniqueinR.

2. One can use any other symbol instead of + and ., but for obvious reasons,
we use these two symbols (the properties look so natural with these). In
fact, in future, the statement that R is a ring would mean that R has two
binary compositions + and . defined on it and satisfies the above axioms.

3. Axiom (v) is named associativity with respect to . and axiom (vi) is referred
to as distributivity (left and right) with respect to . and +.
4. Axioms (i) to (iv) could be restated by simply saying that <R, +> forms
an abelian group.
5. Since 0 in axiom (iif) is identity with respect to +, it is clear that this element
is unique (see groups).
Definitions 2: A ring R is called a commutative ring if ab = ba forall a, b
R. Againif Jan element e € R such that,
ae=ea=a foralla e R

we say, R is aring with unity. Unity is generally denoted by 1. (It is also
called unit element or multiplicative identity).

It would be easy to see that if unity exists in a ring then it must be unique.

Note: We recall that in a group by @ we meant a . a where °.” was the binary
composition of the group. We continue with the same notation in rings as well. In
fact, we also introduce similar notation for addition, and shall write na to mean
a+a+ ..+ a(ntimes), n being an integer.

Case 1: Sets of real numbers, rational numbers, integers form rings with respect
to usual addition and multiplication. These are all commutative rings with unity.

Case 2: Set E of all even integers forms a commutative ring, without unity (under
usual addition and multiplication).

Case 3: (a) Let M be the set of all 2 x 2 matrices over integers under matrix
addition and matrix multiplication. It is easy to see that M forms a ring with unity

10 . .
{0 J, but is not commutative.

a b . .
0 0} over integers under matrix

addition and multiplication. Then M forms a non commutative ring without unity.

(b) Let M be set of all matrices of the type {
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for any fgeF
(f+9x=f(x) forallx e R

(f @x= f(x)gx) forallx e R
zero of this ring is the mapping O : R — R, such that,
Ox)=0forallx e R
Also additive inverse of any f € F'is the function (—f) : R — R such that,
fx=-fx)
In fact, F would have unity also, namely the function i : R — R defined
by i(x) =1 for all x € R.

Note: Although the same notation fg has been used for product here it should not
be mixed up with fog defined earlier.

Case 6: Let Z be the set of integers, then Z[i] = {a +ib |a, b € Z} forms a
ring under usual addition and multiplication of complex numbers. a + ib where a,
b € Zis called a Gaussian integer and Z[{] is called the ring of Guassian integers.

We can similarly get Z,[i] the ring of Gaussian integers modulo . For
instance,

Zi| = {a+ib|a,b e Zy= {0, 1,2} mod 3}
=40, 1,24, 1 +4,2+14,2i, 1 +2i,2 +2i}

Case 7: Let X be a non-empty set. Then . A X) the power set of X (i.e., set of
all subsets of X) forms a ring under + and - defined by

A+B=AuUB)-(ANB)
A.B=A4nNnB

In fact, this is a commutative ring with unity and also satisfies the property
A?=Aforall 4 e . AX).

Case 8: Let M =set of all 2 x 2 matrices over members from the ring of integers
modulo 2. It would be a finite non-commutative ring. M would have

. . b .
24= 16 members as each element a, b, ¢, d in matrix {a d} can be chosen in
C
2 ways. Compositions in M are given by
ab+xy _|a®x b9y
c d zZ u c®z dDu

where @ denotes addition modulo 2 and




But {
1

That ]@
0

1

non-commutative followsas [1 1][1 1]=[1 1]

Ji

[ o

Case 9: Let R = {0, a, b, ¢}. Define + and . on R by

+
0
a

b

C

0
0

a

S

c

S Q 9

c

b

b ¢ .0 a b c
b ¢ 0 0 0 0 O
c b a 0 a b c
0 a b 0 a b ¢
a 0 c 0 0 0 O

Then one can check that R forms a non-commutative ring without unity. In
fact it is an example of the smallest non-commutative ring.

Theorem 4.1: In a ring R, the following results hold
@Ha.0=0.a=0 foralla e R
(i) a(-b) = (—a)b =-ab forall a,b € R
(i) (—a) (~b)=ab. ¥V a,b O R
(v)yab—-c)=ab—-ac.V a,b,c € R
a.0=a.(0+0)
a.0=a.0+a.0
=a.0+0=a.0+a.0

Proof: (i)
=

= 0=a.0
using cancellation w.r.t + inthe group<R,+>.
(i0) a.0=0

= a(=b+b)=0
= a(b)+ab=0
a(—b) =—(ab)
similatly (—a) b =— ab.

=

(iii) (—a) (=)
ab-—c)=ab+(-0)

()

—[a (=b)] =—[-ab] = ab

=abta(-c)
=ab — ac.
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| 2. Ifn, mare integers and a, b elements of a ring, then @asy to see that




n(a+ b) = na + nb
(n+m)a =na+ ma

(nm)a = n(ma)

am an — am +n

( am)n = g
We are so much used to the property that whenever ab = 0 then either a

=0 or b =0 that it may need more than a bit of convincing that the result may
not always be true. Indeed in the ring of integers (or reals or rationals) this property
holds. Butif we consider the ring of 2 X 2 matrices over integers, we notice, we
can haye two non-zero elements 4, Bs.t, AB=0, but 4 #0 B = 0. In fact, take

1 20 0 0
= = hen 4 B#0.ButdB= i
A {0 (] and B {0 O}t enA#0,B+0.But L) 0}.We formalise
this notion through

Definition 1: Let R be aring. An element 0 # a € R is called a zero-divisor,
if 3 an element 0 # b € R such that, ab =0 or ba = 0.

Definition 2: A commutative ring R is called an Integral domain ifab=01in R
= either a =0 or 5 =0. In other words, a commutative ring R is called an integral
domain if R has no zero divisors.

An obvious example of an integral domain i@Z, +, . >thering of integers
whereas the ring of matrices, talked about above 15an example of a ring which
is not an integral domain.

Note: Some authors do not insist upon the condition of commutativity as a part
of the definition of an integral domain. One can have non-commutative rings without
zero divisors.

The following theorem gives us a necessary and sufficient condition for a
commutative ring to be an integral domain.

Theorem 4.2: A commutative ring R is an integral domain iff for all a, b,
ceR(@=#0)

ab=ac =>b=c.
Proof: Let R be an integral domain
Let ab = qgc_(a#0)
Then ab—ac=0
= alb-¢c)=0




Suppose ab =0

then ab=a.0
= ﬁ 0 using given condition
Hence ab = 0 = b =0 whenever a # 0 or that R is an integral domain.
Note: Aring R is said to satisfy left cancellation law if forall a, b,c € R,a# 0
ab=ac = b=c.
Similarly we can talk of right cancellation law. It might, of course, be
noted that cancellation is of only non zero elements.

Definition 1: An element @ in aring R with unity, is called invertible (or a unif)
with respect to multiplication if 3 some b € R such that ab= 1= ba.

Notice, unit and unit element (unity) are different concepts and should not
be confused with each other.
Definition 2: A ring R with unity is called a Division ring or a skew field if non
zero elements of R form a group with respect to multiplication.

In other words, aring R with unity is a Division ring if non-zero elements
of R have multiplicative inverse.

Definition 3: Acommutative division ring is called a field.

Real numbers form a field, whereas integers do not, under usual addition
and multiplication. Since a division ring (field) forms groups with respect to two
binary compositions, it must contain two identity elements 0 and 1 (with respect
to addition and multiplication) and thus a division ring (field) has at least two
elements.

Case 10: A division ring which is not a field. Let M be the set of all 2 x 2 matrices

b — .
of the type{ L;_ _} where a, b are complex numbers and @,b are their
— a

. . g , — . . . . . 1 0
conjugates, i.e.,ifa=x+iy then @ =x—iy. Then M is a ring with unity L) J
under matrix addition and matrix multiplication.

. +1 +1
Any non-zero element of M will be * l),} ! fv
—(u—iv) x-iy

where x, y, u, v are not all zero.

4
% - Learning

Material

225




Self - Learning
226 Material

domain).

non-ze¥besatkix showingthat Mis adibésionliplicBivsdmitrao thdheiave
it is not commutative as

M M N
wo [0 s

Case 11: Consider

D={a+bi+cj+dk|a,b,c de R} with i* =j>=k?=—1, then D
forms a ring under multiplication.

Since i =0+ 1i +0j + 0k, j =0+ 0i + 1j + Ok gives ij = k, ji = —k,
we find D is not commutative and hence is not a field. D has unity 1 =1+ 0i +
0j + Ok.

If a + bi + ¢j + dk be any non-zero element of D (i.e., at least one of a,
. L (a—bi—cj—dk)
b,c,d th + bi+ ¢j + dk)—————=
¢, d is non zero) then (a + bi + ¢j )a2 T

Hence D is a division ring but not a field.
Theorem 4.3: A4 field is an integral domain.
Proof: Let<R,+,.>Dbe afield, then R isa commutative ring.

0
Let ab =0 in R. We want to show €ither a = 0 or b = 0. Suppose a # 0,
then a! exists (definition of field)

thus ab =10
= al (ab) =a'0
= b =0.

which shows that R is an integral domain.
A ‘Partial Converse’ of the above result also holds.
Theorem 4.4: A non-zero finite integral domain is a field.
Proof: Let R be anon-zero finite integral domain.
Let R’ be the subset of R containing non-zero elements of R.
Since associativity holds in R, it will hold in R'. Thus R’ is a finite semi group.

Again cancellation laws hold in R (for non zero elements) and therefore,
these holdin R'.




Aliter: LetR= {a,, a,, ...., a,} be a finite non-zero inteoral domain. Let

0+#a € Rbe any element then aay, aa,, ....., aa, areall in R and if aa; = aq;

for some i # j, then by cancellation we get a, = a; which is not true. Hence aa,,
aa,, ..., aa, are distinct members of R.

Since a € R, a = aa, for some i
Letx € R be any element, then x = aa; for some ;
Thus ax = (aa)x = a(ax)
ie., X =ax
Hence using commutativity we find
X=ax = xa
or that @, is unity of R. Let a; = 1
Thus for 1 € R, since 1 = aa,, for some k

We find g, is multiplicative inverse of a. Hence any non-zero element of R
has multiplicative inverse or that R is a field.

Case 12: An infinite integral domain which is not a field is the ring of integers.
Definition: A ring R is called a Boolean ring if x*> = x for all x € R.
Case 13: Thering {0, 1} under addition and multiplication mod 2 forms a Boolean
ring.
Example 4.1: Show that a Boolean ring is commutative.
Solution: Let a, b € R be any elements
Then a+ b e R(closure)
By given condition
(@a+bP=a+b
=>a*+bh+ab+ba=a+b
=at+b+ab+ba=a+b
=ab+ba=0
= ab=—ba (1)
= a(ab) = a(-ba)
= a’bh = - aba
= ab = - aba ..(2)

ab = ba (= — aba)
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or that R is commutative. ) ] o
Example 4.2: (a) Show that a non-zero element a in Z, is a unit iff a and n

are relatively prime.
(b) If a is not a unit then it is a zero divisor.
Solution: (a) Z,= {0, 1,2, ...... ,n—1} modn
Leta € Z, be a unit, then 3 b € Z, such that,

a®b=1
i.e., when ab is divided by n, remainder is 1, in other words,
ab=ng+1

or ab—ng =1
= aandn arerelatively prime.
Conversely, let (a, n) = 1, then 3 integers u, v such that,
au+tnv=1
= au=n(v)+1

Suppose, u=ng+r, 0<r<n, relk,

Then au=ang+ar =n(—v)+1
= ar =n(-v-aq)+l, relk,

ie., a®r=1, rel,

ie., ais aunit.

(b) Let a be not a unit and suppose g.c.d(a, n) =d > 1
Since d|a, a = dk for some k. Also d|n = n = dt

:a.t=dk§=kn=0modn

i.e., ais a zero divisor.
Example 4.3: Show that Z,= {0, 1,2, ....., p —1} modulo p'is a field iff p
is a prime.
Solution: Let Z,, be a field. Suppose p isnota prime, then 3 a, b, such that p
=ab,1<a,b<p

= a ® b =0 where a, b are non zero = Zp has zero divisors.

i.e. Z,isnotan integral domain, a contradiction as Z, being a field is an
integral domain.

Then  abisamultiple ofp

= plab




:> nr N | ;‘I (ﬂ 1 1
2 G R e 2 = 0 b < p)
= Z,isanintegral domain and hence %eld.

0
Example 4.4: [fin a ring R, with unity, (xy)* =x%? for all x, y € R then show
that R is commutative.

Solution: Let x, y € R be any elements
then y+leRasleRr
By given condition
(@ + 1))* = 2% (v +1)?
= (y+x)P=x2 @+ 1)
= () + 32 +xx+ay=x207+1+2y)
= 2+ xgx +xy =3+ X2+ 2%y
= xyx = x% (1)

Since Equation (1) holds for all x, y in R, it holds for x + 1, y also. Thus
replacing x by x + 1, we get

(x+ 1)y +1) = (x +1)%>y
= (y+y) (x+1) = (% +1 +2x)y
= xx+xytyx+y=xty+y+ 2y
= yx=xy using Equation (1)
Hence R is commutative.

Example 4.5: Show that the ring R of real valued continuous functions on
[0, 1] has zero divisors.

Solution: Consider the functions fand g defined on [0, 1] by

1 1
= ——x, <x<—
fx) 7 * 0<x >

Q, lesl

2
and g(x)=0, Ost%
=x—l, lesl

2 2

L) 2
ie.,  gf(x)=0forall x
ie., gf=0butf=0,g=0.
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Rsfinitian: depameisyReshSofaciie fis said to be asubring of Rif S

The ring <Z, +, - > of integers is a subring of the ring <R, +, - > of real
numbers.

IfRis aringthen {0} and R are always subrings of R, called trivial subrings
of R.

Itis obvious that a subring of an integral domain will be an integral domain.
In practice it would be difficult and lengthy to check all axioms in the definition

of aring to find out whether a subset is a subring or not. The following theorem
would make the job rather easy.

Theorem 4.5: A non-empty subset S of a ring R is a subring of R iff a, b
S
=ab,a-b e S.
Proof: Let Sbe asubring of R
then a,b €S = ab € S (closure)
a,beS=a-beS
as < §, + > is a subgroup of <R, +>.
Conversely, since a, b € S= a—b € §, we find < §, + > forms a
subgroup of < R, +>. Again forany a, b € S, since S € R
a,beR
= atb=b+a
and so we find S is abelian.
Byasimilarargument, we find that multiplicative associativity and distributivity
holdin S.
In other words, S satisfies all the axioms in the definition of aring.
Hence S'is a subring of R.

Definition: A non-empty subset S of a field F'is called a subfield, if S forms a
field under the operations in £ Similarly, we can define a subdivision ring of a
divisionring.

The simple modules over a ring R are the (left or right) modules over R,
which have no non-zero proper submodules.

Lrx+y)=m+ry

2. (r+s)x=rx+sx

3. (rs)x = r(sx)

4. 1,x=x,if R has multiplicative identity 1 .




A right R-module is defined in the similar way but the ring acts on the right, i.e.,
we gave a sca(liar mu t?p]llilcation ofs tﬁ% ﬁ)rm X}) X }3 - R/% and the axioms are
written with scalars 7 and s on the right of x and y. If R is commutative, then left R-
modules are the same as right R-modules and are called R-modules.

Submodule

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule
or R-submodule if, for any » € Nand any r € R, the productrn € Nornr e N
in the case of right R-module.

Quotient module
Given amodule 4 over aring R, and a submodule B of 4, the quotient space A/B
is defined by the equivalence relation
a~bifandonlyifb—a e B,

for any a and b € A. The elements of A/B are the equivalence classes
[al]={a+b:binB}.

The addition operation on 4/B is defined for two equivalence classes as the
equivalence class of the sum of two representatives from these classes as,

[a] t[b]=[a+b]for a,bec Aandr € R

and the multiplication by elements of R as,

r-la]l=[r-a],foralla,b e Aandr € R

In this way, 4/B becomes itself a module over R, called the quotient module.

4.3 SIMPLE MODULES

Definition 1: Amodule is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the @s of
manipulating vectors hold. If a module takes its coefficients in a ring R then it is
called a module over R or an R-module. If @ and b are two integers then the
smallest module containing @ and b ]@he module for their greatest common divisor.

Definition 2: The left R-module Ms said to be finitely generated if there exist

m,, m,, ....,m, « M such that M= Z;‘I}Rmi.

a,...,a, Randx,,...,x, € X

12

the leftideal
Ann(m)={reR|rm=0}

is called the annihilator of m. The ideal
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Definition 3: Let R be aring and let M be a left R-module. For any element m € M,
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of its profound applications.

Anmn (M)={reR|rm=0forallm e M}.
is called the annihilator of M.
The module M is called faithful if Ann(A)=(0).

A module is simple if it is non-zero and does not admit a proper non-zero
submodule. Ifa module M is simple then the following are equivalent:

o Am =M for every m non-zero in M. simple module
o M =~ A/m for some maximal left ideal of 4.

In particular, simple modules are cyclic and the annihilator of any non-zero
element of a simple module is a maximal left ideal.

The annihilator of a simple module is called a primitive ideal. The ring 4 is
primitive if the zero ideal is primitive or equivalently, if 4 admits a faithful simple
module.

¢ A module may have no simple submodules. Simple submodules of .4 are
minimal leftideals.

e Themodule ,4 is simple if and only if 4 is a division ring. In this case, any
simple module is isomorphic to 4.

o The Z-module Z/p"Z where p is a prime is indecomposable. It is simple if
andonly ifn=1.

o LetA=End, V' forafield k£ and a k-vector space V. The set a of finite rank
endomorphisms is a two-sided ideal of 4. Let B be the subring 4 generated
by the identity endomorphism and a. Then V'is a simple B-module, in
particular a simple A-module and B 4 if dim, Vis infinite. Let Wbe a
codimension 1 subspace of V. The endomorphisms killing / form a minimal
leftideal in 4 and in B. Thus 4 and B when dim, Vis infinite give examples
of primitive rings that admit non-trivial proper two-sided ideals.

Definition 4: A uniform module is a non-zero module M such that the intersection
of any two non-zero submodules of M is non-zero or equivalently such that every
non-zero submodule of M is essential in M.

Note: An essential submodule of a module B is any submodule A which has non-
zero intersection with every non zero submodule of B.

Lemma 1: Let G be a finite group and let /" and W be irreducible G-modules.
Then, every G-module homomorphism f:V— Wis either invertible or the trivial
zero map.

Proof: Both the kernel, ker f and the image, im f are G-submodules of V'and W,
respectively. Since Vis irreducible, ker fis either trivial or all of V. In the former

race im fic all af Walen hecance Wic irredncihle and hence fic invertihle Tn the




VULV, LI L0 QL UL 77 GAOU UNVGMUDY 77 10 LAV UVAULY WU LIV D LY VA WUV, 1L W

latter case, fis the zero map.
Given below is one of the most important consequences of Schur’s lemma:

Corollary: Let V'be a finite-dimensional, irreducible G-module taken over an
algebraically closed field. Then, every G-module homomorphismf: /' — Vis equal
to ascalar multiplication.

Proof: Since the ground field is algebraically closed, the linear transformation
f:V—>Vhas an eigenvalue A, say. By definition, f—A\ is not invertible, and hence
equal to zero by Schur’s lemma. In other words, f=1 , i.e., a scalar.

4.5 FREE MODULES FUNDAMENTAL STRUCTURE
THEOREM

In a principal ideal domain, the generators of an ideal is unique up to associates. If
a ¢ R, then the generator of ann(a) (= {r € R|ra=0})1is called the order of a,
denoted by o(a). Now we attach a weight P(a) to a € R. Since R is a unique
factorization domain, we denote the number of prime factors (counting multiplicity)
of a by P(a). By convention, P(0) = 1. Thus, a|b in R implies that P(a) < P(b),
where the equality holds if and only if a, b are associates.

Lemma 2: Let M be a finitely generated module over a principal ideal domain R,

say M= {m,, ...,m,}. Suppose that there is a relationa,m, +...+am, =0,
where not all the g, are zero. Then there are elements ', . . . ,m’, € M, such that
M={m', ... ,m'}, and the order of m', divides every a,.

Proof: If one of the g, is a unit then the proof follows.

If @, is a unit, then m, is a linear combination of the other m,. So take
m',=0,m' =m,i>1.

Let s= ZP(a, Ywhere a,# 0. We will prove this by induction on s. If s=0,

every g, is zero or a unit and at least one a, is a unit.

¢ b
=4 (m,m,) s My yeeeey M,
-¢ b

0=b(bm, +bm)+am,+...+am,
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Now P(b) < P(a, < P(a,) + P(a,). By induction, M= {m’ , ... ,m' }, with
o(m'))| b,and o(m'))\a, for i > 3. But b|a,, bla,, hence o(m',)|a,, for all i.

Thanwvam A Ae Fhinms v cnnovatod mndiidos M aviow a nvincinal idoal Aavsain P
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is a direct sum of n cyclic modules M == @', Rm, . Equivalently, M = {m,, .
...m}, and za,«mi =0 implies am, = 0, for all i.

Proof: If n =1, this is true, as R is a principal ideal domain. Now letn > 1. We
inducton n.

Amongst all possible set of generators of M having n elements choose one

which has an element m with least P(m). Let M = {m=m,,m',, ... jm’ }.If
M=R, ®§ng , then by induction the submodule ; Rm; has a basis {m,,...,

m,}.Butthen {m,,...,m,} is a basis of M.

We show that Rm is indeed a direct summand of M: If not, one has a
relationa,m, +...+am =0, witham, #0.Let b=g.c.d.(a, o(m,))=c,a, +
c,0(m,). Since a,m, # 0, a, and o(m,) are not associates. Hence, P(b) < P(o(m,)).

Note that bm +c,a,m,*. . +c,am, =0. By above Lemma M= {m',, ...
'}, with o(m' )b, o(m'))|c,a,, for i > 2. Since P(o(m',)) < P(b) < P(o(m,)),
this contradicts the minimality of {m,, ... ,m,}. Thus, Rm is a summand of M and
the result follows.

4.6 NOETHERIAN AND ARTINIAN MODULES

Amodule is Artinian/Noetherian if it satisfies either of the following equivalent
conditions:
o Everynon-empty collection of submodules contains a minimal/maximal
element with respect to inclusion.
o Any descending/ ascending chain of submodules stabilizes.

Aninfinite direct sum of non-zero modules is neither Artinian nor Noetherian.
A vector space is Artinian/ Noetherian if and only if its dimension is finite.
Submodules and quotient modules of Artinian modules are Artinian. Ifa submodule
N of amodule M and the quotient M/N by it are Artinian, then so is M.




subset of N will generate NV, we clearly can choose an infinite sequence of elements

from N,s,,s,,...e N, and get a proper ascending sequence of submodules:

,<{s,}>c<{s,s,} >C .... which contradicts with the fact that M is Noetherian.

Now, let N, © N, c...be an ascending sequence of submodules of M,

> N; is again a submodule of M which, by assumption, is finitely generated. Let

©

{v, v, ..., v} be aset of generators for - N, and N, be some submodule which

contains {v}. Letm=max{j,, j,, ...,jk} , since ...,

N,cN,c..,N,,=N,, =...=

PCs

N,.

i

Theorem 4.8: Given any short exact sequence 0—>Y —4—>X ——>7 -0,
X is Noetherian if and only if Y and Z are Noetherian.

Proof: Let Nbe any submodule of the Noetherian module X and every submodule
of Nis also a submodule of X, hence, is finitely generated. Then from the above
Theorem , Nis Noetherian.
Now, since Y is D-isomorphic to a Noetherian submodule of X, Yis thus Noetherian.
To conclude that Z is Noetherian, let us consider any ascending sequence of
submodulesof Z: Z, cZ, c ... . Clearly, v-' (Z)) c v (Z,) ... is a terminated
ascending sequence, since X is Noetherian. This implies Z, < Z, < ...also
terminates.
<:LetN N c.. be any ascending sequence of submodules of X, then
p'(V,) c p'(N,) < ... and v(N,) < v(I,) ... are ascending sequences in
Noetherian modules Y and Z, respectively.

There is m so that p'(N, ) =p'(N,,, ) =...and v(N, ) =v(N, ,,) = ... .We
claimthat N, =N, =...

For this claim to hold, we only need to show that N . N ,i.e. for any
we show thatz e N .

Wz) e v(N,.)=V(N ), thereisz' € N so that v(z) =v(z").

zeN

m+1?
ForzeN .,
Since the given sequence is exact, y Y such that u(y)=z-z'.
This impliesy € p'(z—z") c u'(N,,,) = '(&V,) . We thus have u(y) €
N,and z=p(y)+z € N,.

0
O
6@ - Learning

Material

235




Definition 1: A ring R is called a noetherian ring if every ideal of R is finitely
generated.

Definition 2: A ring R is called noetherain ring if every ascending chain of ideals
in R terminates after finite number of steps.

Before giving any examples let us first show the equivalence of the two
definitions.

Definition 1 = Definition 2

Let R be aring in which every ideal is finitely generated. Let
A,cA,cA;c ...
be any ascending chain of ideals in R,

Let A=u4

then A4 is an ideal of R

Thus 4 is finitely generated.

Let A=<ay, ay, ..., a,>

Consider any a;, then a; € 4 =4,
= a;€4; forsomei

Suppose  a; € 4;,a, € 4 ..., a, € 4

i1 n in
Let & be suchthatAl_ngk Vi=1,2,..,n
Then ay, Ay, oy 4, € Ay,
= AcA,cA

Hence A, =A orthat the chain terminates at 4, which proves the result.
Definition 1 = Deﬁnitio' 2

Let R be aring satisfying té condition of Definition 2.

Let I be any ideal of R. We show [ is finitely generated.

Let a, € Ibe any element.

If I =< a,>, we are done.

If I # <a, > then 3 same a, € [ such that, a, ¢ <a, >
Consider <a,, a,>. If I =<a,, a,> then the result is proved.

Ifnotthen 3 a; € I'such that, a5 ¢ <a,, a,> continuing like this we get
an ascending chain of ideals @

<a>cC<a,a>c<a,a, a;>c. ..




Z, 7[i], F[x] where F'is a field are all noetherian.

Case 15: A finite ring will be noetherian and so would be any field. Remeber a
field F has only two ideal {0} and F.

Remark: A ring R is defined to be right noetherian if every ascending
chain of right ideals in R terminates after finite number of steps. Similarly one can
talk of a left noetherian ring by considering left ideals.

Again the condition of termination of an ascending chain is also referred to
as ACC (Ascending Chain Condition). A ring in which ACC holds for right as well
as left ideals is called a noetherian ring.

One can have examples of right noetherian rings that are not left noetherian
and vice versa.

Theorem 4.9: Quotient ring of a noetherian ring is noetherian.
Proof: Let R/Ibe any quotient ring of a noetherian ring R.
Let f: R — R/I be the the natural homomorphism, where f(r) =7+ 1

Let J be any ideal of R/I. We show J is finitely generated.
LetJ={reR|f(r)el}

then it is easy to see that.J is an ideal of R Since R is noetherian, Jis finitely
generated.

Let J=<r, 1y .. r,>, then we can show that

s Ip ™

7:<f(l"1),f(7"2), """ Sf(rn)>

Let f(r) € J be any element then » € Jand as J is generated by |, r,,
..... , 7y WE get

F=ogF T oy, T, +a,r, o, € R

= f() = flo) f(r) + f(0) f(r) + oo + f(a,) f(1,), floy) € R

Showing that J = <f(r)), f(ry), «wecrr (1) >
Hence R/l is noetherian.

Theorem 4.10: Homomorphic image of a noetherian ring is noetherian
Proof: Letf: R — R'be an onto homomorphism and suppose R is noetherian.
By Fundamental theorem of ring homomorphism

R’ is isomorphic to a quotient ring of R, which will be noetherian by above
theorem. Hence R’ will be noetherian.
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islslfsushithindse oo fmend entinying s gibis e get an pegepding chain
ie., Iclhchc..cl,=1,=1,...
and thus /, will be maximal.

Example 4.7: Let R be a commutative ring with unity. Let R[x] be noetherian.
Show that R.is also noetherian.

Solution: know that

Rix] |
<x>
. . .. . . R[x]. .
Since R[x] is noetherian, its quotient ring P noetherian and therefore
X

sois R.

We use the famous Hilbert Basis theorem which says that polynomial ring
R[x] of anoetherian ring R is noetherian in proving the following
Example 4.8: Show by an example that subring of a noetherian ring may not
be noetherian.

Solution: Let Q be the field of rational numbers, then Q is a noetherian ring and
thus Q[x] is noetherian.

Let S={f(x) € Q[x]| f(x) =a, + ax + a,x* + ... + ax", a,€Z, a,
eQVvixl}
It is easy to see that S is a subring of Q[x].

We notice the chain

X X
<X>C<—>C<—>C..
= 2 # 4 =

is an ascending chain of ideals in S which does not terminate after finite

number of steps. Suppose for instance, equality holds at <x >= <§>, then

T e<x> = X = poox
2 2

for some A(x) = o + ox + ..... + a,, X" where o, € Z
= —;m agx + o + o+ oay, X

2 1

1
= O+§x+0x2+...=0+(x0x+a1x R L

= l:oco ButlséZ
2 2




terminates af‘cerla1 ﬁ?li{é I?ur{%bgr of'steps.

It is clear that any finite ring is artinian and so would be a field. The ringZ
of integers is not artinian as the decending chain

<n>>5<2n>>5<4n>> ...
* #* *

of ideals (for any +ve integer ») is infinite.

This also shows that subring of an artinian ring may not be artinian. Notice
Q the ring of rationals being a field is artinian. One can talk of left and right artinian
rings also by considering chain of left (right) ideals.

Check Your Progress

. What is commutative ring?

. What do you understand by submodule?
. State the Schur’s lemma.

. Define the simple modules.

. Give the statement of principal ideal domain.

AN N AW N =

. Write the necessary and sufficient condition for a Noetherian and Artinian
module.

7. Define Noetherian ring.

4.8 HILBERT BASIS THEOREM

In mathematics, specifically commutative algebra, Hilbert’s basis theorem says
that a polynomial ring over a Noetherian ring is Noetherian.

Theorem 4.11: Let R be a right (left) Noetherian ring. Then R[x] is also
right (left) Noetherian.

Proof: L€ R be a noetherian ring and let f{x)=a x"+ a, x"'+..+ax+a, € R[x]
witha, # 0. a, is the initial coefficient of /.

Let / be an ideal in R[x]. We will show that / is finitely generated, so that
Rla¥isnoetherian. Now let £, be a polynomial of least degree in /and if £, f,,. . ..,
i been chosen then choose f,,, from I\( £, f,,. ..., f,) of minimal degree.
Continuing inductively gives a sequence (f;) of elements of /.

I k=0 k k 1 2 N

0
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deg (f,.,)—deg(f). Thendeg (f,. —g) <deg (f,, ) andf,. —g € Iandf, —g ¢
(fofys- - --» /). But this contradicts minimality of deg(f,,. ).

Hence, R[x] is noetherian.

4.9 WEDDERBURN ARTIN THEOREM

Theorem 4.12: (Wedderburn): 4 finite division ring is a field.

Proof: Let R be a finite division ring.

Let Z(R) be the centre of R. Then Z(R) is a field and R can be regarded as a vector
space over Z(R). Since R is finite, R is finite dimensional over Z(R). Letdim R=n,
0(Z(R)) = g =power of aprime. Then o(R) = ¢". We show thatn = 1. Because
then dim R =1 would imply R=Z(R) = Ris afield. Letn> 1. Now N(a) = {x €
R|xa = ax} is a subring of R containing Z(R). So, N(a) can also be regarded as a

vector space over Z(R). Let o (N(a)) = ¢'« for some integer r,.

Let R* = R — {0}. Then R* is a multiplicative group and o(R*) = ¢" - 1.
Consider the class equation of R*.

R¥)
"1 = o(Z(R¥)+ o
K o@D

=qg-1+ qr !

aezkn g —1
Now g« =1|1q"-1=r,n, 1<r,<n
By above Lemma then
n_q
|©,(q)| j,a_l = |®,(g)]g-1

= |P.(9)|<q-1

But |, ()| = T lg-a|>Tlg-1|>¢-1
o o
o(o)=m
So, we get a contradiction =>n=1
Hence R is a field.
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ideals. The theorem was first established by Emanuel Lasker for the special case
of polynomial rings and convergent power series rings, and was verified by Emmy
Noether. Basically, the Lasker-Noether theorem is an extension of the fundamental
theorem of arithmetic and more specifically the fundamental theorem of finitely
generated abelian groups to all Noetherian rings.

It has an extension to modules and states that every submodule of a set
module over a Noetherian ring is a finite intersection of primary submodules. This
refers to the situation for rings as a special case considering the ring as a module
over itself such that ideals are submodules. This specifies the primary decomposition
structure of the structure theorem for set modules over a principal ideal domain
and for the special case of polynomial rings over a field.

Definitions

Write R for a commutatiye ring, and M and N for modules over it.

o A zero divisor 0f'a module M is an element x of R such that xm = 0 for
some non-zero m in M.

o Anelementx of R is called nilpotent in M if x”M = 0 for some positive
integer n.

o A module is called coprimary if every zero divisor of M is nilpotent in M.
For example, groups of prime power order and free abelian groups are
termed as coprimary modules over the ring of integers.

o A submodule M of amodule N is called a primary submodule if N/M is
coprimary.

o Anideal /is called primary ifit is a primary submodule of R. This is equivalent
to the statement that if @b is in / then either a is in / or »” is in / for some n
and to the condition that every zero-divisor of the ring R/ is nilpotent.

o Asubmodule M ofamodule Nis called irreducible if it is not an intersection
of two strictly larger submodules.

o Anassociated prime of a module M is a prime ideal that is the annihilator of
some element of M.

Statement

()
The Lasker-Noether theéorem for modules states that every submodule of a set
modmle-over a Noetherian ring is a finite intersection of primary submodules. For
the special case of ideals it states that every ideal of a Noetherian ring is a finite

4 :
elf - Learning

Material

intersection of a finite number of irreducible submodules.
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e If Mis an irreducible submodule of a finitely generated module N over a
Noetherian ring then N/M has only one associated prime ideal.

o A finitely generated module over a Noetherian ring is coprimary if and only
if it has at most one associated prime.

Irreducible Decomposition in Rings

The decomposition of ideals in rings was required when there was lack of unique
factorization in number fields like Z[+/-5], in which 6 = 2.3 =

it v/—5)(1 — +/=5). Ifanumber does not factor uniquely into primes, then
the ideal generated by the number may however factor into the intersection of
powers of prime ideals otherwise an ideal may at least factor into the intersection
of primary ideals. Consider the example given below:

Let R be a Noetherian ring and / an ideal in R. Then /has a unique irredundant
primary decomposition into primary ideals.

I:Qlﬂ...ﬂQ“

Irredundancy refers to:
e Removing any of the Q, changes the intersection, i.e.,

inN---N E?: M---NQ, 2 Q,foralli, where the symbol hat denotes
omission.

o The associated prime ideals R‘a are distinct.

Uniqueness refers to uniqueness for reordering the primary ideals. @e
case of the ring of integers 7, the Lasker-Noether theorem is equivalent to the
fundamental theorem of arithmetic. If an integer n has prime

factorizationn = + pf' e pf’_, en the primary decomposition of the ideal
generated by o{1t) C E, is

iy
(r)= (@) N---N(p)
Minimal Decompositions and Uniqueness

A primary decomposition of a submodule M of a module N is called minimal if it
has the smallest possible number of primary modules. Consider the case where all
modules will be finitely generated over a Noetherian ring R. For minimal
decompositions, the primes of the primary modules are uniquely determined as
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Then M has two different minimal primary decompositions M= (y) ) N (x, 1?) =




(»)) N (x +», »*). The minimal prime is (y) and the embedded prime is (x, ).

4.11 UNIFORM MODULES

In abstract algebra, a module is called a uniform module if the intersection of any
two non-zero submodules is non-zero. This is equivalent to saying that every non-
zero submodule of M is an essential submodule. A ring may be called a right (left)
uniform ring if it is uniform as a right (left) module over itself.

i

Uniform Dimension of a Module

The following theorem makes it possible to define a dimension on modules using
uniform submodules. It is a module version of a vector space Refer Theorem 4.13.
Theorem4.13: If U; and V; are members of a finite collection of uniform

submodules of amodule M such that @' | IJ; and 7" | Vi areboth essential
submodules of M, then n=m.

Alfred Goldie used the notion of uniform modules to construct a measure of
ension for modules, now known as the uniform dimension (or Goldie
dimension) of a module. Uniform dimension generalizes some, but not all, aspects
of the notion of the dimension of a vector space. Finite uniform dimension was a
key assumption for several theorems by Goldie, including Goldie’s theorem, which
characterizes which rings are right orders in a semi simple ring. Modules of finite
uniform dimension generalize both ‘Artinian Modules and Noetherian
Modules’. Uniform dimension is also referred to as simply the dimension of a
module or the rank of a module. Uniform dimension should not be confused with
the related notion, also due to Goldie, of the reduced rank of a module.

Properties and Examples of Uniform Modules

Being a uniform module is not usually preserved by direct products or
quotient modules. The direct sum of two non-zero uniform modules always contains
two submodules with intersection zero, namely the two original summand modules.
If ¥V, and IV, are proper submodules of a uniform module M and neither submodule
contains the other, then M/ (N, N N,) fails to be uniform, as

N,/ ¥V, " N,) n N,/ (N, " N,) = {0}.
Uniserial modules are uniform, and uniform modules are necessarily directly
indecomposable. Any commutative domain is a uniform ring, since ifa and b are

non-zero elements of two ideals, then the product ab is a non-zero element in the
intersection of the ideals.
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u.dim(R ) or rather u.dim(,,R) is being measured. It is possible to have two
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different uniform dimensions on the opposite sides of aring.

If Nis a submodule of M, then u.dim(V) < u.dim(M) with equality exactly
when N is an essential submodule of M. In particular, M and its injective hull E(M)
always have the same uniform dimension. It is also true that u.dim(M) = n if and
only if E(M) is a direct sum of n indecomposable injective modules.

It can be shown that u.dim(M) = o if and only if M contains an infinite direct

sum of non-zero submodules. Thus if M is either Noetherian or Artinian, M has
finite uniform dimension. If M has finite composition length &, then u.dim(M) < k
with equality exactly when M is a semi simple module. (Lam 1999)

A standard result is that a right Noetherian domain is a right Ore domain. In
fact, we can recover this result from another theorem attributed to Goldie, which
states that the following three conditions are equivalent for adomain D:

e Disright Ore
eu.dim(D,)=1
eu.dim(D,) <o

Check Your Progress

8. State the Hilbert basis theorem.
9. Define the Lasker-Noether theorem.

4.12 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Aring R is called a commutative ring if ab = ba for all a, b € R. Again if
3 an element e € R such that,

ae=ea=a forallaeR
we say, R is a ring with unity. Unity is generally denoted by 1. (It is also
called unit element or multiplicative identity).

2. Suppose M is a left R-module and N is a subgroup of M. Then N is a

submodule or R-submodule if, for any n € N and any r € R, the product
rn € Nor nr € N in the case of right R-module.

3. A module is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in a ring R then




every G-module homomorphism f: ¥— Wis either invertible or the trivial
zero map.

5. In a principal ideal domain, the generators of an ideal is unique up to
associates. If a ¢ R, then the generator of ann(a) (= {r € R|ra=0})is
called the order of a, denoted by o(a).

6. AmoduleisArtinian/Noetherian if it satisfies either of the following equivalent
conditions:

¢ Every non-empty collection of submodules contains a minimal/maximal
element with respect to inclusion.

® Any descending/ ascending chain of submodules stabilizes.

Aninfinite direct sum of non-zero modules is neitherArtinian nor Noetherian.
A-vector space is Artinian/ Noetherian if and only if its dimension is finite.
Submodules and quotient modules of Artinian modules are Artinian. Ifa
submodule N of a module M and the quotient M/N by it are Artinian, then
sois M.

7. Aring R is called a northerian ring if every ideal of R is finitelty generated.
8. Let Rbe aright (left) Noetherian ring. Then R[x] is also right (left) Noetherian.

9. The Lasker-Noether theorem states thgf=every Noetherian ring is a Lasker
ring which specifies that every ideal can be written as an intersection of
finitely many primary ideals which are related to but are not identical as
powers of prime ideals. The theorem was first established by Emanuel Lasker
for the special case of polynomial rings and convergent power series rings,
and was verified by Emmy Noether.

4.13 SUMMARY

e Sets of real numbers, rational numbers, integers form rings with respect to
usual addition and multiplication. These are all commutative rings with unity.

o A commutative ring R is called an Integral domain ifab =0 in R = either
a=0orb=0.In other words, a commutative ring R is called an integral
domain if R has no zero divisors.

¢ Anelementa inaring R with unity, is called invertible (or a unit) with respect
to multiplication if 3 some b € R such that ab=1 = ba.

e Real numbers form a field, whereas integers do not, under usual addition

and multiplication. Since a division ring (field) forms groups with respect to
two binary compositions, it must contain two identity elements 0 and 1
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A non-empty subset S of a field F'is called a subfield, if S forms a field
under the operations in F. Similarly, we can define a subdivision ring of a
division ring.

A right R-module is defined in the similar way but the ring acts on the right,
i.e., we have a scalar multiplication of the form M x R — M, and the axioms
are written with scalars  and s on the right of x and y. If R is commutative,
then left R-modules are the same as right R-modules and are called R-
modules.

A module is an algebraic object in which things can be added together
commutatively by multiplying coefficients and in which most of the rules of
manipulating vectors hold. If a module takes its coefficients in a ring R then
itis called a module over R or an R-module. If @ and b are two integers
then the smallest module containing a and b is the module for their greatest
common divisor.

A module is simple if it is non-zero and does not admit a proper non-zero
submodule.

Schur’s lemma is a fundamental result in representation theory, an elementary
observation about irreducible modules, which is nonetheless noteworthy
because of its profound applications.

Aninfinite direct sum of non-zero modules is neitherArtinian nor Noetherian.
A-vector space is Artinian/ Noetherian if and only if its dimension is finite.
Submodules and quotient modules of Artinian modules are Artinian. Ifa
submodule N of a module M and the quotient M/N by it are Artinian, then
so is M.

Homomorphic image of a noetherian ring is noetherian

The Lasker-Noether theorem states that every Noetherian ring is a Lasker
ring which specifies that every ideal can be written as an intersection of
finitely many primary ideals which are related to but are not identical as
powers of prime ideals.

4.14 KEY TERMS

Submodule: Suppose M is a left R-module and N is a subgroup of M. Then
Nis asubmodule or R-submodule if, for any ne N and any r € R, the product
rn € N or nreN in the case of right R-module.




together commutatively by multiplying coefficients and in which most of the
rules of manipulating vectors hold.

¢ Noetherian ring: Aring is called noetherian ring if every ideal of the ring is
finitely generated.

¢ Lasker-Noether theorem: The Lasker-Noether theorem states that every
Noetherian ring is a Lasker ring which specifies that every ideal can be written
as an intersection of finitely many primary ideals which are related to but are
not identical as powers of prime ideals.

4.15 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

. Give the axioms which are satisfied of aring.

. What are simple modules?

. What is the significance of Schur’s lemma?

. State the fundamental structure theorem for modules.

. What is the difference between noetherian rings and modules?
. Write the applications of Hilbert Basis theorem.

. State Wedderburn Artin theorem.

. Define Noether-Lasker theorem.

0 0 N U A W N

Long-Answer Questions

1. Show thataring R is commutative iff
(a+byP=a*+b*+2ab foralla, b €R.
2. 1If in a ring R, x> = x for all x then show that 2x=0 and x +y =0 = x
=.
3.1If % a ring with unity and (ab)? = (ba)? for all @, b € R and 2x =0
= x = 0 then show that R is commutative.

4. Let R be the set of real numbers. Show that RxR forms a field under
addition and multiplication defined by

(a,b) + (c,d)=(a+c, b+d)
(a, b) - (c, d) = (ac — bd, ad + bc).
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abelian group.

7. Give an example of a non commutative ring R in which (xy)? = x*?
forallx,y € R.

8. If<R,+,->beasystem satisfying all conditions in the definition of aring
with unity excepta + b= b+ a, then show that this condition is also satisfied.

9. Show that if 1 —ab is invertible in a ring with 1 then so is 1 — ba.

10. Show that a finite commutative ring R without zero divisors has unity.
(See theorem 4 page 261).

b
11. LetRbe @set of'all 2 x 2 matrices {: d} over Q such that, a=d and

¢=0. Let I be the set of all such matrices for which a =d =0. Show that
I1s an ideal of R.
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5.0 INTRODUCTION

In mathematics, finitely generated Abelian group is a non-empty set G, together
with a binary composition * (star) is said to form a group. Specifically in the field
of finite group theory. The rational canonical form of a square matrix 4 with entries
in a field F'is a canonical form for matrices formed by conjugation by invertible
matrices over F in linear algebra. The shape represents a simple decomposition of
the vector space into cyclic subspaces for 4. (i.e., spanned by some vector and its
repeated images under 4). Because a given matrix can only have one normal form
(thus the term ‘Canonical’), matrix B is identical to 4 ifand only if it has the same
rational canonical form as A. This form can be determined without any operations
that might change while extending the field 7' (thus the ‘Rational’), such as factoring
polynomials, demonstrating that whether two matrices are comparable does not
change when the field is extended. Ferdinand Georg Frobenius, a German
Mathematician, is the name of the form.

In this unit, you will learn about the finitely generated Abelian groups, rational
canonical form and generalised Jordon form over any field.

5.1 OBJECTIVES

After going through this unit, you will be able to:
o Know about the finitely generated Abelian groups
¢ Define rational canonical form
e Learn about the generalised Jordon form over any field
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(1) Associativity:a* (bxc) =(a* b)*c, foralla,b,ce G
(i) Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(e is then called identity)
(iii) Existence of Inverse: Foreverya € G, 3 a' € G (depending upon a)
such that,
axa =a xa=e
(a' is then called inverse of a)
Remarks: (i) Since * is a binary composition on G, it is understood that for
alla, b € G, a x b is aunique member of G. This property is called closure
property.
(i) I, in addition to the above postulates, G also satisfies the commutative
law
axb=bxa foralla,be G
then G is called an abelian group or a commutative group.

(iii) Generally, the binary composition for a group is denoted by .’ (dot)
which is so convenient to write (and makes the axioms look so natural too).

This bir%icomposition ¢’ is called product or multiplication (although it
may have ing to do with the usual multiplication, that we are so familiar
with). In fact, we even drop °.” and simply write ab in place of a . b.

In future, whenever we say that G is a group it will be understood that there
exists a binary composition ‘.” on G and it satisfies all the axioms in the definition
of'a group.

If the set G is finite (i.e., has finite number of elements) it is called a finite
group otherwise, it is called an infinite group.

We shall always (unless stated otherwise) use the symbols e for identity of
a group and ¢! for inverse of element @ of theéoup.

Definition: By order of a group, we will mean the number of elements in the

group and shall denote it by o(G) or | G |.
We now consider a few examples of systems that form groups (or do not
form groups).

Example 5.1: The set Z of integers forms an abelian group with respect to the
usual addition of integers.




EXamRles & Q9e5asas s shsict ARG RIS Y QU S5 AP ¥ with respect to
addition.

Example 5.3: Set of integers, with respect to usual multiplication does not
form a group, although closure, associativity, identity conditions hold.

Note 2 has no inverse with respect to multiplication as there does not exist
any integer a such that,2.a=a.2=1.

Example 5.4: The set G of all +ve irrational numbers together with 1 under

multiplication does not form a group as closure does not hold. Indeed +/3 .3

=3 ¢ G, although one would notice that other conditions in the definition of a
group are satisfied here.

Example 5.5: Let G be the set {1, — 1}. Then it forms an abelian group under
multiplication. It is again easy to check the properties.

1 would be identity and each element is its own inverse.

Example 5.6: Set of all 2 x 2 matrices over integers under matrix addition
would be another example of an abelian group.

Example 5.7: Set of all non-zero complex numbers forms a group under
multiplication defined by

(a +ib) (¢ + id) = (ac — bd) + i (ad + bc)
1 =1+ .0 will be identity,

a

i will be inverse of a + ib.

(12 +b2 a2 +b2
Note @ + ib non-zero means that not both a & b are zero. Thus a2 + b2
# 0.

Example 5.8: The set G of all nth roots of unity, where n is a fixed positive
integer forms an abelian group under usual multiplication of complex numbers.

We know that complex number z is an nth root of unity if z” = 1 and also
that there exist exactly » distinct roots of unity.
In fact the roots are given by >
where r =1, 2, ..., n and e* = cos x + i sin x.
If a, b € G be any two members, then a” = 1, " = 1 thus (ab)" = a" b"
= 1.
= ab is an nth root of unity
= ab € G = closure holds.
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So, inverse of 27" jg 2™~/ and identity is €™ = 1
Commutativity being obvious, we find G is an abelian group.
As a particular case, if n =4 then G is {1, -1, i, — i}

Example 5.9: (/) Let G= {+ |, £ i, +j,+ k}. Define product on G by usual
multiplication together with

P==kK=-1, i=—ji=k
jk=—k=i
ki=—ik=j

then G forms a group. G is not abelian as ij # ji.
This is called the Quaternion Group.
(ii) If set G consists of the eight matrices

BRI AR e
0 1|0 —1]]0 —i|"| 0 i|’|-1 0|1 oOFf
ﬁ (ﬂ [_(l) _(j, where i = J—_l
then G forms a non-abelian group under matrix multiplication.
Example 5.10: Let G = {(a, b) | a, b rationals, a # 0}. Define % on G by
(a, b) * (c, d) = (ac, ad + b)
Closure follows as a, ¢ #0 = ac # 0
[(a, b) * (¢, d)] * (e, f) = (ac, ad + b) * (e, f)
= (ace, acf+ ad + b)
(a, b) * [(c, d) = (e, /)] =(a, b) * (ce, cf+ d)
= (ace, acf + ad + b)
proves associativity.
(1, 0) will be identity and (1/a, — b/a) will be inverse of any element (a, b).
G is not abelian as
1,2) «(3,4)=3,4+2)=(3,06)
(3,4) % (1,2)=(3,6 +4)=(3, 10).




deIIltO I8 %1%769;21& ’gﬂ}.eral linear group of 2 X 2 matrices over reals and is

o) . . .
The matrix { 0 J will act as identity and

d -b

. d—b d —b . . b
the matrix “ c aambe will be inverse of [a d]
c

—C a

ad—bc ad-bc

one can generalise and prove

(b) If G be the set of all n x n invertible matrices over reals, then G forms
a group under matrix multiplication.

(c) The set of 2 x 2 matrices over R with determinant value 1 forms a non-
abelian group under matrix multiplication and is called the special linear group,
denoted by SL(2, R).

One can take any field (e.g., Q, C or Z,) in place of R in the above examples.
Example 5.12: Let G = {2"|r =0, 1, £2, ...}
We show G forms a group under usual multiplication.
Forany 2/,25e¢ G,2.25=2"'"5¢ G
Thus closure holds.
Associativity is obvious.
Againas 1 € G, and x.1=1.x=x forallxe G
1 is identity.
Forany2 € G,as 2" € Gand 2". 27 =20=1,
we find each element of G has inverse. Commutativity is evidently true.

Example 5.13: Group of Residues : Let G= {0, 1, 2, 3,4} . Define a composition
@, on G by a @5 b=cwhere cis the least non —ve integer obtained as remainder
when a + b is divided by 5. For example. 3®; 4 = 2, 3®4p= 4, etc. Then
@, is a binary composition on G (called addition modulo 5). ITTs easy to verify

that G forms a group under this.
One can generalise this result to
G={0,1,2,..,n-1}

under addition modulo # where 7 is any positive integer.
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simply write @. This group is generally denoted by Z,.
Example 5.14: Let G = {x € Z | 1 < x <n, x, n being co-prime} where
Z = set of integers and x, n being co-prime means H.C.F of x and n is 1.

We define a binary composition ® on G by a ® b = ¢ where c is the least
+ve remainder obtained when « . b is divided by n. This composition ® is
called multiplication modulo 7.

We show G forms a group under ®.

Closure: Fora,b € G,leta ® b=c. Then ¢ # 0, because otherwise n | ab
which is not possible as a, n and b, n are co-prime.

Thus ¢ # 0 and also then 1 < ¢ <n.

Now if ¢, n are not co-prime then 3 some prime no. p such that, p|c and
pln.
Again as ab = nq + ¢ for some ¢

We get p|ab [pln = plng, plc = plng + c]
= plaorpl|b (as p is prime)
If p|a then as p|n it means a, n are not co-prime.
But a, n are co-prime.
Similarly p|b leads to a contradiction.
Hence c, n are co-prime and thus ¢ € G, showing that closure holds.
Associativity: Let a, b, ¢ € G be any elements.
Leta®b=r,(a®b)®c=r®c=r,
then r, is given by r,c = ng, + r,
Also a ® b = r; means
ab=gqn+r,
thus ab—qn=r,
= (ab—qn)c=rc=ngq, +r,
= (ab)e = ry + ngy + ngyc = n(gyc + q,) + 1,
or that r, is the least non-negative remainder got by dividing (ab)c by n.
Similarly, if @ ® (b ® c) = r, then we can show that 7 is the least non —ve
remainder got by dividing a(bc) by n.
But since a(bc) = (ab)c, ry =1,
Hence a ® (b ® ¢)=(a ® b) ® c.
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and thus we can find integers x and y such that, ax + ny =1
By division algorithm, we can write
x=gn+r, where0<r<n
= ax =aqn + ar
= ax tny=aqn + ar + ny
= 1 =agn+ar+ny
or that ar =1+ (-aq — y)n
ie.,a®r=1.Similarly r ® a = 1. If r, n are co-prime, r will be inverse
of a.

If r, n are not co-prime, we can find a prime number p such that,p |7, p | n
= plgnandp|r
= plgn+r
= plx
= plax also p|ny
= plax+ny=1

%ch is not possible. Thus r, n are co-prime and so » € G and is the required
inverse of a.

It is easy to see that gvill be abelian. We denote this group by U, or U(n)
and call it the group of integers under multiplication modulo 7.

Remark: Suppose n = p, a prime, then since all the integers 1, 2, 3, ...,
p — 1 are co-prime to p, these will all be members of G. One can show that

'=1{2,4,6,...,2(p-1)}
where p > 2 is a prime ﬁs an abelian group under multiplication modulo 2p.
Since for any 2n € G, 2n(p + 1) =2np + 2n=2n
We noitce p + 1 will be identity of G'.
Again, for any 2 n € G', since 2n and p are co-prime 3 x, y, s, t, 2nx +
py=1
=py=1-2nx=o0dd
= yis odd as p is odd.
Lety=2k+ 1,then2nx+p 2k+1)=1
=>2nx+2py+2p=p+
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Example 5.15: Let G = {0, 1, 2} and define * on G by
axb=|a->b]|

Then closure is established by taking a look at the composition table

*

7]
RO
2

D= ol o
=
(=0 anll BN SN I 5]

Sincea*0=|a—0|=a=0 xa, O isidentity

and @ xa =| a—a | =0 shows each element will be its own inverse.

But the system (G, *) fails to be a group as associativity does not hold.

Indeed lx(1%2)=1%x1=0

but 1+1)*x2=0%x2=2
Example 5.16: Let S = {1, 2, 3} and let S, = A(S) = set all permutations
of S. This set satisfies associativity, existence of identity and existence of inverse
conditions in the definition of a group. Also clearly, since f, g permutations on
S'imply that fog is a permutation on S the closure property is ensured. Hence
S, forms a group. That it is not abelian follows by the fact that fog # gof". This

would, in fact, be the smallest non-abelian group and we shall have an occasion
to talk about this group again under the section on permutation groups.

Remark: Let X be a non-empty set and let M(X) = set of a// maps from Xto
X, then A(X) € M(X). M(X) forms a semi group under composition of maps.
Identity map also lies in M(X) and as a map is invertible iff itis 1-1, onto i.e.,
apermutation, we find 4(X) the subset of all permutations forms a group, denoted
by Sy or Sym(X) and is called symmetric group of X. If X'is finite with say,
n elements then o(M(X)) = n" and o(Sy) = |» and in that case we use the
notation S, for S.

In the definition of a group, we only talked about the existence of identity and
inverse of each element. We now show that these elementspweuld also be unique,
an elementary but exceedingly useful result. We prove it ' g with some other
results in




4) (aby'=b"'a foralla beG
(5) ab=ac = b=c
ba =ca = b=cforalla b,ce G
(called the cancellation laws).
Proof: (1) Suppose e and e’ are two elements of G which act as identity.
Then, since e € G and €' is identity,
ee=¢ee =e
and as ¢’ € G and e is identity
ee=ee =¢'
The two = e=¢'
which establishes the uniqueness of identity in a group.

(2) Leta € Gbe any element and let @’ and a'’ be two inverse elements of
a, then
aa' = ad'a = e
ad" = d'a = e
Now a' = de=ad'(ad’)=(da)a" =ed" =a".

Showing thereby that inverse of an element is unique. We shall denote
inverse of a by a”!.

(3) Since ¢! is inverse of a
aa’' = ala = €62

which also implies a is inverse of ¢!

Thus (a”))' =a.
(4) We have to prove that ab is inverse of 5'a! for which we show

(ab) (b'a™) = (b7'a™") (ab) = e.

Now  (ab) (b7'a™") = [(ab) b7'] a’!
[(a(bb )] a™!
(ae)a'=aa'l=e
Similarly (b~'a™") (ab) = e

and thus the result follows.

Self - Learning
Material

257




258

Self - Learning
Material

Thus ab = ac=>b=c
which is called the left cancellation law.
One can similarly, prove the right cancellation law.

Example 5.17 (a): Let X= {1, 2, 3} and let S; = A(X) be the group of all
permutations on X. Consider £, g, h € A(X), defined by

sm=2, f@=3 Q=1
g()=2, g2)=1, g(3)=3
h(l)=3, h(2) =1, hi3)=2
It is easy then to verify that fog = goh
But f#h.
(b) If we consider the group in Example 5.10, we find
(1,2) *(3,4)=3,6)=(3,0) (1, 2)
But (3,4)#(3,0)
Hence we notice, cross cancellations may not hold in a group.

Theorem 5.1: For elements a, b in a group G, the equations ax = b and
ya = b have unique solutions for x and y in G.

Proof: Now ax=1»
= al(ax) =a'b
= ex=a'b
or x=a'b
which is the required solution of the equation ax = b.
Suppose x = x, and x =x, are two solutions of this equation, then
ax; =band ax, = b
= ax; = ax,
= x,=x, by leftcancellation
Showing that the solution is unique.
Similarly y = ba! will be unique solution of the equation ya = b.

Theorem 5.2: 4 non-empty set G together with a binary composition °.’
is a group if and only if

(1) a(bc)=(ab)c foralla, b,ce G




of identity and inverse (for each element).
Let a € G be any element.
By (2) the equations ax =a
ya=a
have solutions in G.
Let x=e and y =f be the solutions.
Thus J e, f € G, such that, ae = a
fa=a

Let now b € G be any element then again by (2) 3 some x, y in G such that,

ax=1>
ya =b.

Now ax=b = f(a.x)=f.b
= (f.a).x=f.b
= a.x=f.b
= b=f.b

Again yv.a=b = (y.a).e=b.e
= y.(a.e)=b.e
= y.a=be
= b=be

thus we have b=fb

b= be
for any beG
Putting b=e in (i) and b=/ in (ii) we get
e=fe
f=re
= e=f
Hence ae=a=fa=ea

ie.,3e € G,suchthat, ae=ea=a
= eisidentity.

Again, for any a € G, and (the identity) e € G, the equations ax = e and
ya = e have solutions.
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) 1 1 o .
i.e., forany a € G, 3 some a, € G satisfying the above relations = a has
an inverse. Thus each element has inverse and, by definition, G forms a group.

Remark: While proving the above theorem we have assumed that equations
of the type ax = b and ya = b have solutions in G. The result may fail, if only
one type of the above equations has solution. Consider for example:

G to be a set with at least two elements. Define *.” on Gby a . b= b for
alla, b € G.

then a.(b.cy=a.c=c
(a.b).c=b.c=c
shows associativity holds.
Again as ab = b, the equation ax=>b has a solution for any a, b € G.
We notice that G is not a group, as cancellation laws do not hold in G.
Asleta, b € G be any two distinct members, then
ab=1">
bb=b= ab=>bb
But a#b.
Definition: A non-empty set G together with a binary composition ‘.’ is called
a semi-group if ;
a.(b.c)=(a.b).ctoralla,b,ce G
Obviously then every group is a semi-group. That the converse is not true
follows by considering the set N of natural numbers under addition.
Theorem 5.3: Cancellation laws may not hold in a semi-group.

Proof: Consider M the set of all 2 x 2 matrices over integers under matrix
multiplication, which forms a semi-group.

1 0 00 00
If we take A—{O 0},3—{0 2},C—{3 0}

00
thenclearly AB=AC = { 8 0}
But B+ C.

Set of natural numbers under addition is an example of a semi-group
in which cancellation laws hold.




Let a € G be any element, then by closure property
aa,, aa,, ..., aa,

areallin G.

Suppose any two of these elements are equal

say, aa; = aa; for some i # |
then a;=a; by cancellation
But a;#a; asi#j

Hence no two of aa,, aa,, ..., aa, can be equal.
These being # in number, will be distinct members of G (Note o(G) = n).
Thus if b € G be any element then
b =aa, forsomei
i.e., for a, b € G the equation ax = b has a solution (x = a,) in G.
Similarly, the equation ya=»5 will have a solutionin G.
G being,a semi-group, associativity holds in G.
Henceg@s a group (by theorem 5.2).

Remark: The above theorem holds only in finite semi-groups. The semi-group
of natural numbers under addition being an example where cancellation laws
hold but which is not a group.

Theorem 5.5: A finite semi-group is a group %nd only if it satisfies
cancellation laws.

Proof: Follows by previous Theorem 5.4.

Definition: A non-empty set G together with a binary composition *.” is said
to form a monoid if

@) a(bc)=(ab)c Ya, b,ceG

(@) Janclemente € G suchthat, ae=ea=a Yae G

e is then called identity of G. @é easy to see that e is unique.
So all groups are monoids and all monoids are semi-groups.

When we defined a group, we insisted that 3 an element e which acts both
as aright as well as a left identity and each element has both sided inverse. We
show now that it is not really essential and only one sided identity and the same
sided inverse for each element could also make the system a group.
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Proof: If G is a group, we have nothing to prove as the result follows by definition.
Conversely, let the given conditions hold.
All we need show is that ea=a foralla € G
and a'a=a foranyae G
Let a € G be any element.
By (i) Ja' € G, such that, aa' = e
*. For a'€ G, 3a" € G, suchthat, a'a’"=e (using (iii))
Now a'a= a'(ae)=(a'a)e=(a'a)(a'a")
= d'(aa")a" =ad'(e)a" = (d'e)a’’ =d'a" =e.
Thus foranya € G, 3 a' € G, such that, aa’ =d'a=e
Again ea = (aaya=a(d'a)=ae=a
ae=ea=a foralaeG
i.e., eisidentity of G.
Hence G is a group.
It would now be a routine exercise to prove .
Theorem 5.7: A system < G . > forms a group if and only if
@) a(bc)=(ab)cforalla, b, c € G
@) 3 e e G such that, ea = aforalla € G
(iii) for all a € G, 3 some a' € G, such that, a'a = e.

A natural question to crop up at this stage would be what happens, when one
sided identity and the other sided inverse exists. Would such a system also form
a group? The angyer to which is provided by

Example 5.18. L€t G be a finite set having at least two elements. Define ‘.’
on G by

ab=>bforalla,be G
then clearly associativity holds in G.
Let e € G by any fixed element.
Then as ea=a forallae G
e will act as left identity.
Again a.e=e¢ forallae G
= eis %’lt inverse for any element a € G.




ghement then by closure property a . a € G. Similarly (a . @) . a € G and so

It would be very convenient (and natural!) to denote @ . abya®anda . (a . a)
or (a . a). a by a® and so on. Again a”'. a”' would be denoted by a~2. And
since a . a' = e, it would not be wrong to denote e = a°. It is now a simple
matter to understand that under our notation

a" . a"=a""
( am)n = g"n
where m, n are integers.

In case the binary composition of the group is denoted by +, we will talk of
sums and multiples in place of products and powers. Thus here 2a =a + a,
andna=a+agm. +a (ntimes), if n is a +ve integer. In case n is —ve integer
then n =— m, where m is +ve and we define na=—ma=(-a)+(—a)+ ...
+ (— a) m times.

Example 5.19. If G is a finite group of order n %show that for any a
€ G 3 some positive integer v, 1 <r < n, such that, a”" = e.

Solution: Since o(G) = n, G has n elements.
Let a € G be any element. By closure property a?, a*, ... all belong to G.
Consider e, a, d, ..., a"
These are n + 1 elements (all in G). But G contains only »n elements.

= at least two of these elements are equal. If any of a, a2, ..., a" equals e,
our result is proved. If not, then @’ = & for some i, j, 1 <i, j < n. Without any
loss of generality, we can take i > j

then a=d

=>d.al=d.al

= g7=e wherel <i—j<n.
Putting i — j = r gives us the required result.

mple 5.20. Show that a finite semi-group in which cross cancellation holds
157an abelian group.

Solution: Let G be the given finite semi-group. Let a, b € G be any elements.
Since G is a semi-group, by associativity

a(ba) = (ab)a

By cross cancellation then ba=ab = G is abelian.
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integers i and any a, b in G, then show that G is abelian. . i
Solution: Let n, n+ 1, n + 2 be three consecutive integers tor which the given

condition holds. Then forany a, b € G,
(ab)" = a"b" (1)
(aby™! = g1 -(2)
(ab)™? = g 2pn2 (3

Now (ab)"*? = g"2pn+2

(ab)(aby™! = a2 pr*2

(ab)(@™ b1y = g2 pr2

ba""!' = a""'p (using cancellation) (4

Similarly (aby™! = g1l

gives (ab)(ab)" = a" b

e, (ab)(@"b") = a"1pm!

ba" = a'b

ba""' = a"ba

a""'b = a"ba using Equation (4)

udl

U

= ab = ba.
Hence G is abelian.

Remark: Conclusion of the above result may not follow if the given result
holds only for two consecutive integers.

Consider, for example, the Quaternion group. One can check that (ab) = a'b’
for i = 4, 5 but the group is not abelian.

Example 5.22. Suppose (ab)" = a"b" for all a, b € G where n > 1 is a
fixed integer.

Show that(i) (ab)™' = b"'a"!
Gi) a" b = bl
(i) (aba™'b )" =D =¢ foralla, b € G
Solution: (/) We have
[67'(ba)b]" = b~ (ba)"b
and [67'(ba)b]" = (ab)"
(ab)" = b~(ba)"b




=a"bla"b
a'b"a"h" = a"b'a"b

= a"p"!=prlg" foralla,be G
(iii) Consider (aba 'p~1y'*-D

= [(aba—lb—l)n—l]n

= [(ba 'y 1a"1]" by (i)
[ba—(n—l)b—lan—l]n = [b(a—(n—l)b—lan—l)]n
bn(a—(n—l)b—lan—l)n = pig(n=-Dp-ngn-1

= ﬁl)b”b"a"1 by (ii)
foralla, b € G.

Example 5.23. Let G be a group and suppose there exist two relatively
prime positive integers m and n such that a™b™ = b™a™ and a"b" = b"a"

foralla, b e G Sh(ﬁhat G is abelian.

Solution: Since m, n
mx + ny = 1.

For any a, b we have

(a™b™y™ = (a™b")(a™b")......(a"b") mx times

= a"(b"a"b"......b"a")b"
— am(bnam)mx—lbn

— am(bnam)mx(bnam)—lbn

= g"c"(b"a™)'b" where ¢ = (b"a™)*

- Cmam(bnam)—lbn
— Cm ama—mb—nbn — cm — (bnam)mx

Similarty ~ (a™b"yV = (b"a™)"Y

g1v1ng (ambn)mx +ny — (bnam)mx +ny
= a"b" = b"a™ foralla,be G
NOW ab — amx+ny bmx+ny

= g"x . (any bmx)bny
a™(a™ k™b" where d = &, k = b*
= a™ k™ d")b™ by (1)

am . p"™ . a" . pv”

elatively prime, there exist integers x and y such that

(1)
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Hence G is abelian.

Remark: In the following problem we give another proof'to Theorem 5.6 done

earlier.

Example 5.24. Let G be a semi-group, Suppose 3 e € G such that,
ae =a forall a € G and for each a € G, 3 a’ € G, such that, aa’ = e.

Show that G is a group.

Solution: We first show that G satisfies the right cancellation law.

Let ac = bc.
As given 3¢ e G, suchthat, cc' = e
(ac)c’ = (be)c!
= a(cc")=b(cc")
= ae=be = a=b.
We now show that e is left identity.
Consider, (ea)a’ =e(aa')=e.e=¢
Also aa'=e
aa' = (ea) =a’
By right cancellation law,
a=-ecaforallae G
" eisalso left identify of G.
Again (d'a)a’ =ad'(aa")y=d'e=d’
and ea’ = a’
= (d'a)a’ =ed
= a'a=-ebyright cancellation law
= da'isalso left inverse of a
So, G is a group.
Example 5.25. If in a semi-group S, x*y =y = yx’
S is abelian.
Solution: ¥y = y= x3? = y?
wr=y VxyelS
=>x?=x VxyeS

= 332 =2

VX, y, then show that




By Equation (1) and (2), xy*x = yx%y
Since y=y Vyes, weget
xy = () = xy xy xy
xy xy Xy = x(yx)*x(xy)
= ()x*(mx) (xy)
=y’ yxly = yxy Xy
= (yx)xy*x
= yx%px
= y07%) (as y = yx?)
=
=yx  (asy’=y)
Thusxy=yxVx,y e S

Hence S'is abelian.

Example 5.26. If G is a semi-group such that given a € G, 3 unique
a’ € G such that aa’ a = a, then show that G is a group.

Solution: Let e, fbe idempotents in G, i.e., & = e, %= f.
We show (ef)’ = ef.
Now e¢f € G = 3 g € G, such that,

(ef) g (ef) =ef (1)
Also ef (gefg) ef = (efgef) gef = (ef) gef = ef

= g=gefg -(2)
Again, (ef) (ge) (ef) = efgef = ef

= ge=g ...(3)
Also, ef(fg) ef = efgef = ef

= fg=g ..(4)

Now g> = (ge) (fg) by (3) and (4)
= glef) =g by (2)
i.e., g is an idempotent.
Also,  g=glg=gg=g = ggg=¢
But glef) g =g and so g = ef and
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Now aa'a=a = (a'a)* = a'a = a’a is an idempotent.

= da=e.
Similarly aa' = e
Now a=aa'a=ae

a=aa'a=ea
= ae=ea=a VaeG
= eisidentity of G.
Also given a € G, aa' = e = a’'a showing that a' is inverse of a.

Hence G is a group.

CHECK YOUR PROGRESS

Define binary composition.

What do you understand by quaternion group?
Write the statement of general linear group.
What is special linear group?

R

When G'is called semi-group?

5.3 RATIONAL NORMAL FORM

The rational canonical form of a square matrix 4 with entries in a field F'is a
canonical form for matrices formed by conjugation by invertible matrices over F'in
linear algebra. The shape represents a simple decomposition of the vector space
into cyclic subspaces for 4. (i.e., spanned by some vector and its repeated images
under 4). Because a given matrix can only have one normal form (thus the term
‘Canonical’), matrix B is identical to A if and only if it has the same rational canonical
form as A. This form can be determined without any operations that might change
while extending the field F (thus the ‘Rational’), such as factoring polynomials,
demonstrating that whether two matrices are comparable does not change when
the field is extended. Ferdinand Georg Frobenius, a German mathematician, is the
name of the form.

Some authors use the phrase rational canonical form to refer to a somewhat
different form, the primary rational canonical form. The fundamental form,
rather of decomposing into a small number of cyclic subspaces, decomposes into
alarge number of them. It is similarly defined over F, but with major differences:




Rational Normal Form Motivation

When determining whether two square matrices A and B are comparable, one
way is to deconstruct the vector space as far as possible into a direct sum of stable
subspaces for each of them and cgpanare the actions on these subspaces. If both
are diagonalizable, for example, man decompose them into eigenspaces (for
which the action is as basic as it gets, namely by a scalar), and then compare their
eigenvalues and multiplicities to determine similarity. While this is typically a very
illuminating strategy in practice, it has a number of limitations as a general method.

First, it necessitates the discovery of all eigenvalues, such as the roots of the
characteristic polynomial, but an explicit statement for them may not be attainable.
Second, a complete set of eigenvalues may exist only in a subset of the field under
consideration, in which case there is no proof of similarity to the original field.
Finally, even over this bigger field, A and B may not be diagonalizable, in which
case a decomposition into generalized eigenspaces, and potentially Jordan blocks,
must be used instead.

However, attaining such a detailed decomposition is not required to simply
determine if two matrices are comparable. Instead, the rational canonical form
relies on a direct sum decomposition into as many stable subspaces as possible,
while yet permitting a fairly basic description of the action on each of them. These
subspaces are called cyclic subspaces (by analogy with cyclic subgroups) and are
clearly stable under the linear operator. They are formed by a single nonzero
vector v and all of its images by repeated application of the linear operator associated
with the matrix. Taking v and its consecutive images as long as they are linearly
independent yields a basis for such a subspace. The companion matrix of a monic
polynomial is the matrix of the linear operator with respect to such a basis; this
polynomial (the minimal polynomial of the operator restricted to the subspace,
which is analogous to the order of a cyclic subgroup) determines the action of the
operator on the cyclic subspace up to isomorphism and is independent of the
vector v generate.

There is always a direct sum decomposition into cyclic subspaces, and
obtaining one does not necessitate factoring polynomials. However, cyclic subspaces
may allow a decomposition as the direct sum of smaller cyclic subspaces (essentially
by the Chinese remainder theorem). As a result, knowing the respective minimum
polynomials and having some decomposition of the space into cyclic subspaces
for both matrices is insufficient to determine their similarity. To verify that
decompositions into cyclic subspaces for similar matrices are same, an extra
requirement is imposed: in the list of associated minimum polynomials, each one
must divide the next (and the constant polynomial 1 is forbidden to exclude trivial
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two matrices are identical if and only if their rational canonical forms are the same.
Example 5.27

Consider the following matrix A, which is centered on Q:

A=

Solution: A has minimal polynomial p=X°—4X*—2X3+4X2+4X+ 1, so that
the dimension of a subspace generated by the repeated images of a single vector
is at most 6. The characteristic polynomial is y = X® — X7— 5X° +2X°5 + 10X* +
2X3—7X?—5X—1, which is a multiple of the minimal polynomial by a factor X*
—X~—1. There always exist vectors such that the cyclic subspace that they generate
has the same minimal polynomial as the operator has on the whole space; indeed
most vectors will have this pro , and in this case the first standard basis vector
e, does so: the vectors A¥(e,) =0,1,...,5 are linearly independent and
span a cyclic subspace with minimal polynomial p. There exist complementary
stable subspaces (of dimension 2) to this cyclic subspace, and the space generated
by vectors v=(3,4,8,0,-1,0,2,-1)Tand w= (5,4, 5,9, -1, 1, 1, -2)Tis an
example. In fact one has 4.v = w, so the complementary subspace is a cyclic
subspace generated by v; it has minimal polynomial X? — X — 1 must divided p
(and it is easily checked that it does), and we have found the invariant factors X>—
X—1land p=X°—4X*—-2X°+4X?>+4X+ 1 of 4. Then the rational canonical
form of Ais the block diagonal matrix with the corresponding companion matrices
as diagonal blocks, namely

lrta 1 & o 0 0 0 0\
i1 0 0 0 0 0 0
0 0 0 0 0 0 D 1
- O 0 1 0 0 0 O |
b0 o 1 0 0 0 -4
o0 8 0 1 0D D 2
0o ¢ 0 0 0 1 D 4
l\u @ 0o 0 0 o 1 o




] 5 :
- 1} o | 1] -2 0 i
1 1 0 o 1] 1 4
L[] 1 ] U] 1] a 1 1
2 1 i 1 1 1] 2 ]
I 2 0 o I -1 | -2

one has 4 = PCP-'.
General Case and Theory of Rational Normal Form

Fix a base field F"and a finite-dimensional vector space ¥ over F. Given a polynomial
P e F[X], there is associated to it a companion matrix C, whose characteristic
polynomial and minimal polynomial are both equal to P).

Theorem 5.8: Let /' be a finite-dimensional vector space over a field F,and 4 a
square matrix over F. Then V' (viewed as an F].X]-module with the action of X
given by A) admits a F].X]-module isomorphism

V= FIxllf, ® ... ® FIXIf,
where thef; € F1.X] may be taken to be monic polynomials of positive degree
(so they are non-units in F1X]) that satisfy the relations

AL A

where ‘a | b’ is notation for ‘a divides b’; with these conditions the list of
polynomials £is unique.
Proof: Apply the structure theorem for finitely generated modules over a principal
ideal domain to V, viewing it as an F[.X]-module. The structure theorem provides
adecomposition into cyclic factors, each of which is a quotient of F1.X] by a proper
ideal; the zero ideal cannot be present since the resulting free module would be
infinite-dimensional as F vector space, while V'is finite-dimensional. For the
polynomials f,one then takes the unique monic generators of the respective ideals,
and since the structure theorem ensures containment of every ideal in the preceding
ideal, one obtains the divisibility conditions for thef..

Given an arbitrary square matrix, the elementary divisors used in the
construction of the Jordan normal form do not exist over F[.X], so the invariant
factors £, as given above must be used instead. The last of these factors, is then
minimal polynomial, which all the invariant factors therefore divide, and the product
of'the invariant factors gives the characteristic polynomial. Note that this implies
that the minimal polynomial divides the characteristic polynomial (which is essentially
the Cayley-Hamilton theorem), and that every irreducible factor of the characteristic
polynomial also divides the minimal polynomial (possibly with lower multiplicity).
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invariant factors associated to A, and these invariant factors are independent of
basis, it follows that two square matrices 4 and B are similar if and only if they
have the same rational canonical form.

5.3.1 Generalised Jordon form over any Field

Even ifit exists over the ground field 7, the rational or Frobenius normal form does
not reflect any sort of factorization of the characteristic polynomial. This means
that when F'is substituted by a different field, it remains invariant (as long as it contains
the entries of the original matrix A). However, this distinguishes the Frobenius normal
form from other normal forms that rely on factoring the characteristic polynomial,
such as the diagonal form (if 4 is diagonalizable) or the Jordan normal form in general
(if the characteristic polynomial splits into linear factors). A diagonal matrix with
unique diagonal elements, for example, has a Frobenius normal form that is simply
the partner matrix ofits characteristic polynomial.

There is another way to define a normal form, that, like the Frobenius normal
form, is always defined over the same field F'as A, but that does reflect a possible
factorization of the characteristic polynomial (or equivalently the minimal polynomial)
into irreducible factors over F, and which reduces to the Jordan normal form when
this factorization only contains linear factors (corresponding to eigenvalues). This
form is sometimes called the generalized Jordan normal form, or primary
rational canonical form. It is based on the fact that the vector space can be
canonically decomposed into a direct sum of stable subspaces corresponding to
the distinct irreducible factors P of the characteristic polynomial (as stated by the
lemme des noyaux [fr]), where the characteristic polynomial of each summand is a
power of the corresponding P. These summands can be further decomposed, non-
canonically, as a direct sum of cyclic F]x]-modules (like is done for the Frobenius
normal form above), where the characteristic polynomial of each summand is still
a (generally smaller) power of P. The primary rational canonical form is a block
diagonal matrix corresponding to such a decomposition into cyclic modules, with
a particular form called generalized Jordan block in the diagonal blocks,
corresponding to a particular choice of a basis for the cyclic modules. This
generalized Jordan block is itself a block matrix of the form

o 0 D
r ¢ - 0
0 - I o




basis of the cyclic module giving rise to this form is obtained by choosing a generating
vector v (one that is not annihilated by P*'(4) where the minimal polynomial of
the cyclic module is P¥), and taking as basis

v, AW), A2(v), . .., A1 (), PA)W), APA)V)), . . ., A7 H(PA)W),
L P AW, . PEIA)W), L, AP (AN ()

where d =deg (P).

CHECK YOUR PROGRESS

6. Whatis rational cononical form of a square matrix?
7. Define generalised Jordon block in diagonal block.

5.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The binary composition for a group is denoted by °.” (dot) which is so
convenient to write (and makes the axioms look so natural too).

This binary composition ‘.’ is called product or multiplication (although
it may have nothing to do with the usual multiplication, that we are so

familiar with). In fact, we even drop ‘.” and simply write ab in place of
a.b.

2. Let G={£1,+1i,+j,+k}. Define product on G by usual multiplication
together with

P=pR=k=-1, ij=—ji=k
Jk=—k=i

ki=—ik=j

then G forms a group. G is not abelian as ij #i.

This is called the Quaternion Group.

b
3. The set G of all 2 x 2 matrices of the form {Z d} over reals, where ad

—bc#0,1.e., with non zero determinant forms a non abelian group under
matrix multiplication.

It is called the general linear group of 2 x 2 matrices over reals and is
denoted by GL(2, R).

| semi-group if
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a.(b.c)=(a.b).c foralla,b,ce G

Obviously then every group is a semi-group. That the converse is not
true follows by considering the set N of natural numbers under addition.

6. The rational canonical form of a square matrix 4 with entries in a field Fis a
canonical form for matrices formed by conjugation by invertible matrices
over F'in linear algebra. The shape represents a simple decomposition of
the vector space into cyclic subspaces for 4. (i.e., spanned by some vector
and its repeated images under A).

7. The primary rational canonical form is a block diagonal matrix corresponding
to such a decomposition into cyclic modules, with a particular form called
generalized Jordan block in the diagonal blocks, corresponding to a particular
choice of a basis for the cyclic modules.

5.5 SUMMARY

e Associativity: a « (b« c) =(ax b)xc, foralla,b,ce G
o Existence of Identity: 3 an element e € G, such that,
axe=exa=a forallae G
(e is then called identity)

o Existence of Inverse: Foreverya € G,3 a’ € G (depending upon a) such
that,

axa =a sa=e
(a' is then called inverse of a)

e Since = is a binary composition on G, it is understood that forall a, b €
G, a * bis aunique member of G. This property is called closure property.

e This binary composition ‘.’ is called product or multiplication (although
it may have nothing to do with the usual multiplication, that we are so
familiar with). In fact, we even drop °.” and simply write ab in place of
a.b.

e Set of all non-zero complex numbers forms a group under multiplication
defined by

(a + ib) (¢ + id) = (ac — bd) + i (ad + bc).

e The set G of all nth roots of unity, where # is a fixed positive integer
forms an abelian group under usual multiplication of complex numbers.




ki=—ik=j
then G forms a group. G is not abelian as ij # ji.
This is called the Quaternion Group.

e For elements a, b in a group G, the equations ax = b and ya = b have
unique solutions for x and y in G.

o Cancellation laws may not hold in a semi-group.
o A finite semi-group in which cancellation laws hold is a group.
o A finite semi-group is a group if and only if it satisfies cancellation laws.

o The rational canonical form of a square matrix 4 with entries in a field Fis a
canonical form for matrices formed by conjugation by invertible matrices
over F'in linear algebra. The shape represents a simple decomposition of
the vector space into cyclic subspaces for 4. (i.e., spanned by some vector
and its repeated images under 4).

o The primary rational canonical form is a block diagonal matrix corresponding
to such a decomposition into cyclic modules, with a particular form called
generalized Jordan block in the diagonal blocks, corresponding to a particular
choice of a basis for the cyclic modules.

5.6 KEY TERMS

o Closure property: Since = is a binary composition on G, it is understood
that for all a, b € G, a = b is a unique member of G. This property is
called closure property.

o Existence of identity: 3 anelement e € G, such that,
axe=exa=a forallae G
(eis then called identity)

o Existence of inverse: Forevery a € G, 3 a' € G (depending upon a)
such that,
axa =ad xa=e
(a' is then called inverse of a)

o Rational normal form: The rational canonical form of a square matrix A
with entries in a field F'is a canonical form for matrices formed by conjugation
by invertible matrices over F'in linear algebra. The shape represents a simple
decomposition of the vector space into cyclic subspaces for 4. (i.e., spanned
by some vector and its repeated images under 4).
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1. What do you mean by the finitely generated Abelian group?
2. Whatis rational normal form?

3. State the generalised Jordon form over any field.

Long-Answer Questions
1. Briefly discuss about the finitely generated Abelian group giving appropriate
examples.
2. Elaborate on the is rational normal form give appropriate examples.

3. Discuss in detail about the generalised Jordon form over any field with the
help of relevant examples.
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