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occasionallycalled modern algebra, is the studyof algebraic structures.Algebraic  structures include groups, rings, fields, modules, vector spaces, lattices, and  
36

algebras. The term abstract algebra was coined in the early 20th century to  
distinguish this area of study from older parts of algebra, and more specifically  
from elementaryalgebra, the use of variables to represent numbers in computation  
and reasoning.  

Algebraic structures, with their associated homomorphisms, form  
mathematical categories. Category theory is a formalism that allows a unified way  
for expressing properties and constructions that are similar for various structures.  
Universal algebra is a related subject that study the different types of algebraic  
structures as single objects. For example, the structure of groups is a single object  
in universal algebra, which is called the varietyof groups.  

Major themes in algebraic equations include, solving of systems of linear  
equations which led to linear algebra, attempts to find formulas for solutions of  
general polynomial equations of higher degree that resulted in discoveryof groups  
as abstract manifestationsof symmetryand arithmetical investigations of quadratic  
and higher-degree forms and diophantine equations that directly produced the  
notions of a ring and ideal.  

In mathematics, a canonical, normal or standard form of a mathematical  
object is a standard wayof presenting that object as a mathematical expression. It  
provides the simplest representation of an object which allows it to be identified in  
a unique way. The distinction between ‘Canonical’and ‘Normal’ forms varies  
from subfield to subfield. In most fields, a canonical form specifies a unique  
representation for every object, while a normal form simply specifies its form,  
without the requirement of uniqueness. Thecanonical form of a positive integer in  
decimal representation is a finite sequence of digits that does not begin with zero.  

A ‘Ring’ is a set equipped with two operations, called addition and  

some of the properties of a group for multiplication.A‘Field’is a ‘Group’under  
both additionand multiplication.  

Artinian and Noetherian rings have some measure of finiteness associated  
with them. In fact, the conditions for Artinian and Noetherian rings, called  
respectively, the descendingand ascending chain conditions, are often termed the  
minimumandmaximumconditions.  

Leonhard Euler considered algebraic operations on numbers modulo an  

investigations were further analysed byCarl Friedrich Gauss, who considered the  
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multiplication. Fundamentally, the ‘Ring’is a ‘Group’under addition and satisfies  

integer—modulararithmetic—inhisgeneralizationofFermat's little theorem.These  



modules and rings, and fundamental structure theorem.  
The book follows the self-instruction mode or the SIM format where in  

each unit begins with an ‘Introduction’ to the topic followed by an outline of the  
‘Objectives’. The content is presented ina simple and structured form interspersed  

‘Summary’along with a ‘Key Terms’and a set of ‘Self-Assessment Questions  
and Exercises’ is provided at the end of each unit for effective recapitulation.  

Self - Learning  
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with Answers to ‘Check Your Progress’ for better understanding. A list of  



1.0 Introduction  1.1 Objectives  
1.2 Groups  

1.2.1 Normal and Subnormal Series  
1.2.2 Composition Series  
1.2.3 Jordan-Holder Theorem  

1.3 Solvable Groups  
1.3.1 Nilpotent Groups  

1.5 Summary  
1.6 Key Terms  
1.7 Self-Assessment Questions and Exercises  
1.8 Further Reading  

1.0 INTRODUCTION  

In mathematics, a group is a set equipped with an operation that combines any  
two elements to form a third element while being associative as well as having an  
identityelementand inverseelements.These threeconditions, calledgroupaxioms,  
hold for number systems and manyother mathematical structures.  

A group is an algebraic structure consisting of a set together with a binary  
operation known as the group operation that combines any two of its elements to  
form a third element.Asubgroup series is a chain of subgroups which simplifies  
the studyof a group to the studyof simpler subgroups and their relations.ASylow  
subgroup is a subgroup having order which is a power of a prime number and  

Sylow theorems concern subgroups with maximal prime power size.  
A composition series provides a way to break up an algebraic structure,  

such as, a group or a module, into simple pieces. The need for considering  
compositionseries inthecontextofmodulesarises fromthefact thatmanynaturally  
occurring modules are not semisimple, hence cannot be decomposed into a direct  
sum of simple modules.Acomposition series of a moduleM is a finite increasing  
filtration of M by submodules such that the successive quotients are simple and  
serves as a replacement of the direct sum decomposition of M into its simple  
constituents.  

In this unit, you will learn about the groups, normal and subnormal,  
composition series, Jordan-Holder Series, solvable groups, nilpotent groups,  
conjugate elements, Sylow p-subgroups and Sylow’s theorems and their simple  
applications.  
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1.4 Answers to ‘Check Your Progress’  

which is not strictlycontained in anyother subgroup with the same property. The  



 Know about the Jordan-Holder theorem and solvable groups  
 Describe about the nilpotent groups  
 Explain class equation for a finite group  
 Know the properties of finite groups up to order 15  

1.2 GROUPS  

Definition: A non-empty set G, together with a binary compsition  (star) is  *
said to form a group, if it satisfies the following postulates  

(i) Associativity: a (b c) = (a b) c, for all a, b, c  G  * * * *
(ii) Existence of Identity:  an element e  G, such that,  

a e = e a = a for all a  G  * *
(e is then called identity)  

(iii) Existence of Inverse: For every a  G,  a  G (depending upon  
a) such that,  

a a = a a = e  *

Notes:  
1. Since  is a binary composition on G, it is understood that for all  *

a, b  G, a b is a unique member of G. This property is called closure  *

2. If, in addition to the above postulates, G also satisfies the commutative  
law  
a b = b   a* for all a, b  G  *
then G is called an abelian group or a commutative group.  

3. Generally, the binary composition for a group is denoted by ‘.’ (dot)  
which is so convenient to write (and makes the axioms look so natural  
too).  
This binary composition ‘.’ is called product or multiplication (although  

it may have nothing to do with the usual multiplication, that we are so familiar  
with). In fact, we even drop ‘.’ and simply write ab in place of a . b.  

In future, whenever we say that G is a group it will be understood that  
there exists a binary composition ‘.’ on G and it satisfies all the axioms in the  
definition of the group.  
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*
(a is then called inverse of a)  

property.  



We now consider a few cases of systems that form groups (or do not  
form groups).  

Case 1: The set Z of integers forms an abelian group with respect to the usual  
83

addition of integers.  
It is easy to verify the postulates in the definition of a group as sum of  

two integers is a unique integer (thus closure holds).Associativity of addition  
is known to us. 0 (zero) will be identity and negatives will be the respective  
inverse elements. Commutativity again being obvious.  

Case 2: One can easily check, as in the previous case, that sets Q of rationals,  
R of real numbers would also form abelian groups with respect to addition.  

Case 3: Set of integers, with respect to usual multiplication does not form a  
group, although closure, associativity, identity conditions hold.  

Note 2 has no inverse with respect to multiplication as there does not exist  
142

any integer a such that, 2 . a = a . 2 = 1.  

Case 4:ThesetG ofall+ve irrationalnumbers togetherwith 1undermultiplication  
does not form a group as closure does not hold. Indeed  3 .  3 = 3  G,  
although one would notice that other conditions in the definition of a group are  
satisfied here.  

Case 5: Let G be the set {1, – 1}. Then it forms an abelian group under  
75

multiplication. It is again easy to check the properties.  
1 would be identity and each element is its own inverse.  

Case 6: Set of all 2 × 2 matrices over integers under matrix addition would be  
another example of an abelian group.  

Case 7: Set of all non zero complex numbers forms a group under multiplication  
defined by  

(a + ib) (c + id) = (ac – bd) + i (ad + bc)  

a b i    will be inverse of a + ib.  
a2   b2   a2   b2  

Note: a + ib non zero means that not both a and b are zero. Thus, a + b  0.  2 2 

forms an abelian group under usual multiplication of complex numbers.  
We know that complex number z is an nth root of unity if z = 1 and also  n 
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1 = 1 + i.0 will be identity,  

Case 8: The set G of all nth roots of unity, where n is a fixed positive integer  

that there exist exactly n distinct roots of unity.  



If a, b  G be any two members, then a = 1, b = 1 thus (ab) = an n n n  

b = 1.  n 

 ab is an nth root of unity  
 ab  G  closure holds.  

Associativity of multiplication is true in complex numbers.  

n 1
an  

1 1Also for any a  G, will be its inverse as   = = 1.  
a

So, inverse of e is e and identity is e = 1  2 ir/n 2i(n –r)/n 2 i0/n 

Commutativity being obvious, we find G is an abelian group.  
As a particular case, if n = 4 then G is {1, – 1, i, – i}  

Case 9: (i) Let G = {± 1, ± i, ± j, ± k}. Define product on G by usual  
multiplication together with  

i = j = k = – 1, ij = – ji = k  2 2 2 

jk = – kj = i  
ki = – ik = j  

then G forms a group. G is not abelian as ij  ji.  
This is called the Quaternion Group.  

(ii) If set G consists of the eight matrices  

1
0

0 1   0 i 0 i 0 0 1 0
1

1  
,

,

, , , , ,
1 0 1 0  i    0 i 1 0 0

0 i 0  i   
, where i = 1  

i 0  i    0

then G forms a non abelian group under matrix multiplication. (Compare  
with part (i)).  

Case 10: Let G = {(a, b) | a, b rationals, a  0}. Define  on G by  *
(a, b) (c, d) = (ac, ad + b)  *

Closure follows as a, c  0  ac  0  
[(a, b) (c, d)] (e, f ) = (ac, ad + b) (e, f )  * * *

= (ace, acf + ad + b)  
(a, b) [(c, d ) (e, f )] = (a, b) (ce, cf + d )   * * *

= (ace, acf + ad + b)  
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Again, since 1. a = a . 1 = a, 1 will be identity.  

 
 
 a   

           
           
           

   
   
   

proves associativity.  



(3, 4)  (1, 2) = (3, 6 + 4) = (3, 10).  *
a
c

b
d

Case 11 (a): The set G of all 2 × 2 matrices of the form   over reals,  

where ad – bc  0, forms a non abelian group under matrix multiplication.  
It is called  the general linear group of 2 × 2 matrices over reals and is  

denoted by GL(2, R).  
1
100

0
0

The matrix   will act as identity and  
1

d b  
ad  bc ad  

a
bc   a

c
b
d

the matrix   will be inverse of   .
c   
ad   bc ad  bc  

One can generalize and prove.  
(b) If G be the set of all n × n invertible matrices over reals, then G forms  

a group under matrix multiplication.  

Case 12: Let G = {2 | r = 0, ±1, ±2, ...}  r 

We show G forms a group under usual multiplication.  
For any  2 , 2  G, 2 . 2 = 2  G  r s r s r + s 

Thus closure holds.  
Associativity is obvious.  
Again as 1  G, and x . 1 = 1 . x = x for all x  G  

For any 2  G, as 2  G and 2 . 2 = 2 = 1,  r –r r –r 0 

We find each element of G has inverse. Commutativity is evidently true.  

Case 13: Group of Residues : Let G = {0, 1, 2, 3, 4}. Define a composition  
 on G by a  b = c where c is the least non negative integer obtained as  5 5 
remainder when a + b is divided by 5. For example, 3 4 = 2, 3 1 = 4,  5 5 
etc. Then  is a binary composition on G (called addition modulo 5). It is easy  5 
to verify that G forms a group under this.  

One can generalize this result to  
G = {0, 1, 2, ..., n – 1}  

We thus notice  
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 
 
 

 
 
 

 
 
 
 
 
 

 
 
 

1 is identity.  

under addition modulo n where n is any positive integer.  



Case 14: Let G = {x  Z | 1  x < n, x, n being co-prime} where Z = set  
of integers and x, n being co-prime means H.C.F of x and n is 1.  

We define a binary composition  on G by a  b = c where c is the least  
+ve remainder obtained when a . b is divided by n. This composition  is  
called multiplication modulo n.  

We show G forms a group under .  
Closure: For a, b  G, let a b = c. Then c  0, because otherwise  

n | ab which is not possible as a, n and b, n are co-prime.  
Thus c  0 and also then 1  c < n.  
Now if c, n are not co-prime then  some prime number p such that, p |c  

and p |n.  
Again as ab = nq + c for some q  
We get p |ab   [p |n  p |nq, p |c  p |nq + c]  
 p |a or p |b (as p is prime)  
If p |a then as p |n it means a, n are not co-prime.  
But a, n are co-prime.  
Similarly p |b leads to a contradiction.  
Hence c, n are co-prime and thus c  G, showing that closure holds.  
Associativity: Let a, b, c  G be any elements.  
Let a  b = r , (a  b)  c = r  c = r1 1 2  

then r is given by r c = nq + r2 1 2 2  

Also  

thus  

a b = r means  1 

ab = q n + r1 1  

ab – q n = r1 1  

 (ab – q n)c = r c = nq + r1 1 2 2  

 (ab)c = r + nq + nq c = n(q c + q ) + r2 2 1 1 2 2  

or that r is the least non-negative remainder got by dividing (ab)c by n.  2 

negative remainder got by dividing a(bc) by n.  
But since a(bc) = (ab)c, r = r2 3  

Hence a  (b  c) = (a b)  c.  
Existence of Identity: It is easy to see that  

78

a  1 = 1 a = a for all a  G  
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Similarly, if a  (b c) = r then we can show that r is the least non-  3 3 

or that 1 will act as identity.  



 ax = aqn + ar  
 ax + ny = aqn + ar + ny  
 1 = aqn + ar + ny  

ar = 1 + (–aq – y)n  or that  
i.e., a  r = 1. Similarly r  a = 1. If r, n are co-prime, r will be inverse  

of a.  

p | n  
If r, n are not co-prime, we can find a prime number p such that, p | r,  

 p | qn and p | r  
 p | qn + r  
 p | x  
 p | ax also p | ny  
 p | ax + ny = 1  

which is not possible. Thus r, n are co-prime and so r  G and is the  
required inverse of a.  

It is easy to see that G will be abelian. We denote this group by U or  n 
U(n) and call it the group of integers under multiplication modulo n.  

Note: Suppose n = p, a prime, then since all the integers 1, 2, 3, ..., p – 1 are  
co-prime to p, these will all be members of G. One can show that  

G = {2, 4, 6, ..., 2(p – 1)}  
where p > 2 is a prime forms an abelian group under multiplication modulo  

2p.  

Case 15: Let G = {0, 1, 2} and define  on G by  *
a b = | a – b |  *

Then closure is established by taking a look at the composition table  

0 1  
0 1  

2
2

*
0
1
2

1 0 1  
2 1  0

Since a 0 = | a – 0 | = a = 0  a, 0 is identity  * *
and a a = | a – a | = 0 shows each element will be its own inverse.  *
But the system (G, ) fails to be a group as associativity does not hold.  *
Indeed 1  (1 2) = 1  1 = 0  * * *
but   (1 1) 2 = 0  2 = 2  * *  *  
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group. That it is not abelian follows  by the fact that fog  gof. This would, in  fact, be the smallest non abelian group.  

Note: Let X be a non-empty set and let M(X) = set of all maps from X to X,  
then A(X)  M(X). M(X) forms a semi group under composition of maps. Identity  
map also lies inM(X) andas a map is invertible iff it is 1-1, onto, i.e., a permutation,  
we find A(X) the subset of all permutations forms a group, denoted by S and  X 

o(M(X)) = n and o(S ) =  n 
X n and in that case we use the notation S for S .  n X

In the definition of a group, we only talked about the existence of identity  
111

and inverse of each element. We now show that these elements would also be  
unique, an elementary but exceedingly useful result. We prove it along with  
some other results in  

Lemma: In a group G,  
(1) Identity element is unique.  
(2) Inverse of each a  G is unique.  
(3) (a ) = a, for all a  G, where a stands for inverse of a.  –1 –1 –1 

(4) (ab) = b a for all a, b  G  –1 –1 –1 

(5) ab = ac  b = c  
ba = ca  b = c for all a, b, c  G  
(called the cancellation laws).  

ee = ee = e  
and as e  G and e is identity  

ee = ee = e  
The two  e = e  
which establishes the uniqueness of identity in a group.  

(2) Let a  G be any element and let a and a be two inverse elements of  
a, then  

aa = aa = e  
aa = aa = e  

Now,   a = ae = a(aa) = (aa)a = ea = a.  
Showing thereby that inverse of an element is unique. We shall denote  
inverse of a by a .  –1
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is called symmetric group of X. If X is finite with say, n elements then  

Proof: (1) Suppose e and e are two elements of G which act as identity.  
Then, since e  G and e is identity,  



(4) We have to prove that ab is inverse of b a for which we show  –1 –1 

(ab) (b a ) = (b a ) (ab) = e.  –1 –1 –1 –1

Now,   (ab) (b a ) = [(ab) b ] a–1 –1 –1 –1  

= [(a(bb )] a–1 –1  

= (ae) a = aa = e  –1 –1 

Similarly (b a ) (ab) = e  –1 –1

and thus the result follows.  
(5) Let,   ab = ac, then  

b = eb = (a a)b  –1

= a (ab) = a (ac)  –1 –1 

= (a a)c = ec = c  –1 

Thus   ab = ac  b = c  

on X. Consider f, g, h  A(X), defined by  
f (1) = 2,  
g (1) = 2,  
h (1) = 3,  

f (2) = 3,  
g (2) = 1,  
h(2) = 1,  

f (3) = 1  
g(3) = 3  
h(3) = 2  

It is easy then to verify that  fog = goh  
But f  h.  
(b) If we consider the group in case 10, we find  

(1, 2)  (3, 4) = (3, 6) = (3, 0)  (1, 2)  * *
But   (3, 4)  (3, 0)  

Hence we notice, cross cancellations may not hold in a group.  

ya = b have unique solutions for x and y in G.  




a (ax) = a b  –1 –1

ex = a b  –1

or   x = a b  –1

which is the required solution of the equation ax = b.  
Self - Learning  
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Which is called the left cancellation law.  
One can similarly, prove the right cancellation law.  

Case 17 (a): Let X = {1, 2, 3} and let S = A(X) be the group of all permutations  3 

Theorem 1.1: For elements a, b in a group G, the equations ax = b and  

Proof: Now, ax = b  

1 2



Showing that the solution is unique.  
Similarly y = ba will be unique solution of the equation ya = b.  –1 

Theorem 1.2: A non-empty set G together with a binary composition ‘.’  
is a group if and only if  

(1) a(bc) = (ab)c for all a, b, c  G  
(2) For any a, b  G, the equations ax = b and ya = b have solutions in  

Proof: If G is a group, then (1) and (2) follow bydefinition and previous theorem.  
Conversely, let (1) and (2) hold. To show G is a group, we need prove existence  
of identity and inverse (for each element).  

Let a  G be any element.  
By (2) the equations  ax = a  

ya = a  
have solutions in G.  
Let x = e and y = f be the solutions.  
Thus  e, f  G, such that, ae = a  

fa = a  
Let now bG be any element then again by (2)  some x, y in G such  

that,  
ax = b  
ya = b.  

Now,   ax = b  f. (a . x) = f . b  
 (f . a) . x = f . b  
 a . x = f . b  
 b = f . b  

Again,   y . a = b  (y . a) . e = b . e  
 y . (a . e) = b . e  
 y . a = be  
 b = be  

thus we have  

for any  

b = f b   ...(1.1)  
...(1.2)  b = be  

b  G  
Putting b = e in Equation (1.1) and  b = f in Equation (1.2) we get  

e = fe  
Self - Learning  
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G.  



Again, for any a  G, and (the identity) e  G, the equations ax = e and  
ya = e have solutions.  

Let the solutions be  x = a , and y = a1 2  

then   aa = e, a a = e  1 2

Now,  
Hence,  

a = ea = (a a)a = a (aa ) = a e = a .  1 1 2 1 2 1 2 2

aa = e = a a for any a  G  1 1

has an inverse. Thus each element has inverse and, by definition, G forms a  
group.  

Note: While proving the above theorem we have assumed that equations of the  
type ax = b and ya = b have solutions in G. The result may fail, if only one type  
of the above equations has solution. Consider for example:  

G to be a set with at least two elements. Define ‘.’ on G by a . b = b  
for all a, b  G.  

then   a . (b . c) = a . c = c  
(a . b) . c = b . c = c  

shows associativity holds.  
Again as  ab = b, the equation ax = b has a solution for any a, b  G.  
We notice that G is not a group, as cancellation laws do not hold in G.  
As let a, b  G be any two distinct members, then  

ab = b  
bb = b  ab = bb  

But,   a  b.  

Definition: Anon empty set G together with a binary composition ‘.’ is called  
a semi-group if  

a . (b . c) = (a . b) . c for all a, b, c  G  
Obviously then every group is a semi-group. That the converse is not  

true follows by considering the set N of natural numbers under addition.  
The set G in Case 15 is not a semi group.  

Theorem 1.3: Cancellation laws may not hold in a semi-group  

Proof: Consider M the set of all 2 × 2 matrices over integers under matrix  
multiplication, which forms a semi-group.  

Self - Learning  
Material   13  

 e is identity.  

i.e., for any a  G,  some a  G satisfying the above relations  a  1 



But,   B  C.  
Set of natural numbers under addition is an example of a semi-group  

in which cancellation laws hold.  

Theorem 1.4: A finite semi-group in which cancellation laws hold is a  
group.  

Proof: Let G = {a , a , ..., a } be a finite semi-group in which cancellation  1 2 n
laws hold.  

Let a  G be any element, then by closure property  
aa , aa , ..., aa1 2 n  

are all in G.  
Suppose any two of these elements are equal  

then a = a by cancellation  i j 

But, a  a as i  j  i j 

Hence no two of  aa , aa , ..., aa can be equal.  1 2 n 

These being n in number, will be distinct members of G (Note o(G) = n).  
Thus, if b  G be any element then  

b = aa for some i  i 
i.e., for a, b  G the equation ax = b has a solution (x = a ) in G.  i
Similarly, the equation  ya = b will have a solution in G.  
G being a semi-group, associativity holds in G.  

Hence G is a group (by Theorem 1.2).  

Note: The above theorem holds only in finite groups. The semi-group of natural  
numbers under addition being an example where cancellation laws hold but  
which is not a group.  

Theorem 1.5: A finite semi-group is a group if and only if it satisfies  
78

cancellation laws.  

Proof: Follows by previous theorem.  

Definition: A non-empty set G together with a binary composition ‘.’ is said  
to form a monoid if  

(i) a(bc) = (ab)c  a, b, c  G  

Self - Learning  
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say, aa = aa for some i  j  i j 



both as a right as well as a left identity and each element has both sided inverse.  
We show now that it is not really essential and only one sided identity and the  
same sided inverse for each element could also make the system a group.  

(i) a(bc) = (ab)c for all a, b, c  G  
(ii)  e  G, such that, ae = a   for all a  G  

(iii) for all a  G,  a  G, such that, aa = e.  

Proof: If G is a group, we have nothing to prove as the result follows bydefinition.  
Conversely, let the given conditions hold.  

All we need show is that  ea = a   for all a  G  
and   aa = a for any a  G  
Let a  G be any element.  
By (iii)  
 For  
Now  

 a  G, such that, aa = e  
a  G,  a  G, such that, aa = e (using (iii))  
aa = a(ae) = (a a)e = (aa)(aa)  

Thus for any  a  G,  a  G, such that, aa = aa = e  
Again   ea = (aa)a = a(aa) = ae = a  

ae = ea = a for all a  G  

i.e., e is identity of G.  
Hence G is a group.  
(Refer Example 1.6 for another proof).  

(i) a(bc) = (ab)c for all a, b, c  G  

Proof: A natural question to crop up at this stage would be what happens,  
when one sided identity and the other sided inverse exists. Would such a system  
also form a group? The answer to which is provided bythe following illustration.  

Let G be a finite set having at least two elements. Define ‘.’ on G by  
ab = b for all a, b  G  

then clearly associativity holds in G.  
Let   e  G by any fixed element.  
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Theorem 1.6: A system < G, . > forms a group if and only if  

= a(aa)a = a(e)a = (ae)a = aa= e.  

Theorem 1.7: A system < G, . > forms a group if and only if  

(ii)  e  G, such that, ea = a for all a  G  
(iii) for all a  G,  some a  G, such that, aa = e.  



But we know G is not a group (cancellation laws do not hold in it).  
Hence for a system < G, . > to form a group it is essential that the same  

sided identity and inverse exist.  

A Notation: Let G be a group with binary composition ‘.’. If a  G be any  
element then by closure property a . a  G. Similarly (a . a) . a  G and so  
on.  

It would be very convenient (and natural!) to denote a . a by a and  2 

a . (a . a) or (a . a). a by a and so on. Again a . a would be denoted by  3 –1 –1 

a . And since a . a = e, it would not be wrong to denote e = a . It is now  –2 –1 0

a simple matter to understand that under our notation  
a . a = am n m+n  

(a ) = am n mn  

where m, n are integers.  
In case the binary composition of the group is denoted by +, we will talk  

of sums and multiples in place of products and powers. Thus here 2a = a + a,  
and na = a + a + ... + a (n times), if n is a +ve integer. In case n is negative  
integer then n = – m, where m is positive and we define na = – ma = (– a) +  
(– a) + ... + (– a) m times.  

Example 1.1: If G is a finite group of order n then show that for any  
124

Solution: Since o(G) = n, G has n elements.  
Let a  G be any element. By closure property a , a , ... all belong to G.  2 3

Consider   e, a, a , ..., a2 n  

These are n + 1 elements (all in G). But G contains only n elements.  
 at least two of these elements are equal. If any of a, a , ..., a2 n  

equals e, our result is proved. If not, then a = a for some i, j, 1  i, j  n.  i j 

Without any loss of generality, we can take i  j  
then   a = ai j  




a . a = a . ai –j j –j  

a = e where 1  i – j  n.  i–j 

Putting,   i – j = r gives us the required  result.  

Example 1.2: Show that a finite semi-group in which cross cancellation  
holds is an abelian group.  
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a  G,  some positive integer r, 1  r  n, such that, a = e.  r 



Since G is abelian, cross cancellation laws become the cancellation laws.  
Hence G is a finite semi-group in which cancellation laws hold.  

Thus G is a group.  

Example 1.3: If G is a group in which (ab) = a b for three consecutive  i i i 

Solution: Let n, n + 1, n + 2 be three consecutive integers for which the given  
condition holds. Then for any a, b  G,  

(ab) = a bn n n  

(ab) = a bn+1 n+1 n+1  

(ab) = a bn+2 n+2 n+2  

(ab) = a bn+2 n+2 n+2  

(ab)(ab) = a bn+1 n+2 n+2  

...(1)  

...(2)  

...(3)  
Now,  



 (ab)(a b ) = a bn+1 n+1 n+2 n+2  

 ba = a b (using cancellation)  n+1 n+1 ...(4)  

gives  
(ab) = a bn+1 n+1 n+1  

(ab)(ab) = a bn n+1 n+1  

(ab)(a b ) = a bn n n+1 n+1  

ba = a b  n n

i.e.,  


 ba = a ba  n+1 n




a b = a ba using Equation (4)  n+1 n

ab = ba.  
Hence G is abelian.  

Note: Conclusion of the above result may not follow if the given result holds  
only for two consecutive integers.  

Consider, for example, the Quaternion group. One can check that  
(ab) = a b for i = 4, 5 but the group is not abelian.  i i i 

Example 1.4: Suppose (ab) = a b for all a, b  G where n > 1 is a fixed  n n n 

Show that,  (a) (ab) = b an–1 n–1 n–1  

(b) a b = b an n–1 n–1 n  

(c) (aba b ) = e  –1 –1 n(n – 1) for all a, b  G  
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integers i and any a, b in G, then show that G is abelian.  

Similarly,  

integer.  






(ab) ab = b (b a )b  n–1 –1 n n

(ab) = b an–1 n–1 n–1  

(a b ab) = a b a b–1 –1 n –n –n n n  

(a b ab) = a (b ab)–1 –1 n –n –1 n  

= a b a b  –n –1 n

for all a, b  G  

and  

 a b a b = a b a b  –n –n n n –n –1 n

a b = b an n–1 n–1 n   for all a, b  G  
(c) Consider (aba b )–1 –1 n(n–1)  

= [(aba b )–1 –1 n–1 n  ]
= [(ba b ) a ] by (i)  –1 –1 n–1 n–1 n 

= [ba b a ] = [b(a b a )]–(n–1) –1 n–1 n –(n–1) –1 n–1 n  

= b (a b a ) = b a b an –(n–1) –1 n–1 n n –(n–1) –n n–1  

= a b b a–(n–1) n –n n–1   by (ii)  
= e for all a, b  G.  

Example 1.5: Let G be a group and suppose there exist two relatively  
119

prime positive integers m and n such that a b = b a and a b = b am m m m n n n n  

Solution: Since m, n are relatively prime, there exist integers x and y such that,  
mx + ny = 1.  

For any a, b we have  
(a b ) = (a b )(a b )......(a b )  m n mx m n m n m n

= a (b a b ......b a )bm n m n n m n  

= a (b a ) bm n m mx–1 n  

mx times  

= a (b a ) (b a ) bm n m mx n m –1 n  

= a c (b a ) b where c = (b a )m m n m –1 n n m x  

= c a (b a ) bm m n m –1 n  

= c a a b b = c = (b a )m m –m –n n m n m mx  

Similarly, (a b ) = (b a )m n ny n m ny  

giving (a b ) = (b a )m n mx + ny n m mx + ny  


Now,  

a b = b a for all a, b  G  m n n m ...(1)  
ab = a bmx + ny mx + ny  

= a . (a b )bmx ny mx ny  
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(b) Now,  

for all a, b  G. Show that G is abelian.  



= (b ) . (a ) . (b ) . (a )x m x m y n y n  

= b (a . b ) . a = b (b . a ) . amx mx ny ny mx ny mx ny  

= b . a = ba.  mx + ny mx + ny 

Hence G is abelian.  

Note: In the following Theorem, we give another proof to Theorem 1.6 done  

Subgroups  
We have seen that R, the set of real numbers, forms a group under addition,  
and Z, the set of integers, also forms a group under addition.Also Z is a subset  
of R. It is one of the many situations which prompts us to make  

Definition: A non empty subset H of a group G is said to be a subgroup of  
G, if H forms a group under the binary composition of G.  

Obviously, if H is a subgroup of G and K is a subgroup of H, then K is  
subgroup of G.  

If G is a group with identity element e then the subset {e} and G are  
triviallysubgroups ofG andwecall themthe trivial subgroups.Allother subgroups  
will be called non-trivial (or proper subgroups).  

Notice that Z = {0, 1, 2, 3, 4} mod 5 is not a subgroup of Z under  5 

a subgroup of Z , etc.  6
We sometimes use the notation H  G to signify that H is a subgroup of  

G and H < G to mean that H is a proper subgroup of G.  
It may be a little cumbersome at times to check whether a given subset  

H of a group G is a subgroup or not by having to check all the axioms in the  
definition of a group. The following two theorems (especially the second one)  
go a long way in simplifying this exercise.  

Theorem 1.8: A non-empty subset H of a group G is a subgroup of G iff  
(i) a, b  H  ab  H  

(ii) a  H  a  H.  –1 

Proof: Let H be a subgroup of G then by definition it follows that (i) and (ii)  
hold.  
Conversely, let the given conditions hold in H.  
Closure holds in H by (i).  
Again,   a, b, c  H  a, b, c  G    a(bc) = (ab)c  
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earlier.  

addition as addition modulo 5 is not the composition of Z. Similarly, Z is not  5 



Inverse of each element of H is in H by (ii).  
Hence H satisfies all conditions in the definition of a group and thus it forms a  
group and therefore a subgroup of G.  

Theorem 1.9: A non-void subset H of a group G is a subgroup of G iff  a,  
b  H  ab  H.  –1 

Proof: If H is a subgroup of G then, a, b  H  ab  H (follows easily by  –1 

usingdefinition).  
Conversely, let the given condition hold in H.  
That associativity holds in H follows as in previous theorem.  
Let a  H be any element (H  )  
then a, a  H  aa  H  e  H.  –1 

Again, for any a  H, as e  H  
ea  H  a  H  –1 –1 

i.e., H has inverse of each element.  
a, b  H,  
a, b  H  –1 

 a(b )  H  ab  H  –1 –1 

i.e., H is closed under multiplication.  
Hence H forms a group and therefore a subgroup of G.  

Note: If the binarycomposition of the group is denoted by+, the above condition  
would read as a, b  H  a – b  H. Note also that e is always in H.  

The following theorem may not prove to be very useful in as much as it  
confines itself to finite subsets only but nevertheless it has its importance.  

Theorem 1.10: A non empty finite subset H of a group G is a subgroup  
of G iff H is closed under multiplication.  

Proof: If H is a subgroup of G then it is closed under multiplication bydefinition,  
so there is nothing to prove.  

Conversely, let H be a finite subset such that,  
a, b  H  ab  H  

Now,   a, b, c  H  a, b, c  G  
 a(bc) = (ab)c  

Associativity holds in H.  
 H is a semi-group.  

Self - Learning  
Material  20  

So H has identity.  

Finally, for any  



If a = e then a = a  H  –1 

Let a  e, then by closure a, a , a ...  H  2 3

Since H is finite, for some n, m, a = a , n > m  n m

i.e.,  
i.e.,  

a = e, n – m > 1 as a  e  n–m 

a . a = e  n–m–1

 a = an–m–1 –1  

where n–m–1  1 and therefore,  
a  H. Hence a  H  a  H and thus H is a subgroup of G  n–m–1 –1 

(Theorem 1.8).  

Definition: Let G be a group. Let  
Z(G) = {x  G | xg = gx for all g  G}  

then Z(G) is called centre of the group G.  

Proof: Let Z(G) be the centre of the group G.  
Then Z(G)    as e  Z(G)  

Again, x, y  Z(G)  xg = gx  
yg = gy for all g  G  

 g x = x g–1 –1 –1 –1  

g y = y g–1 –1 –1 –1  

g(xy ) = (gx)y = (xg)y–1 –1 –1  

= (xg)y (g g)  –1 –1

for all g  G  
Now,  

= xg(y g )g = xg(g y )g  –1 –1 –1 –1

= x(gg )y g  –1 –1

= (xy )g for all g  G  –1

     xy  Z(G)  –1 

Hence Z(G) is a subgroup.  

Definition: Let G be a group. a  G be any element. The subset  
N(a) = {x  G | xa = ax} is called normalizer or centralizer of a  

inG.  
It is easy to see that normalizer is a subgroup of G.  
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Theorem 1.11: Centre of a group G is a subgroup of G.  

Note: Obviously, G is abelian iff Z(G) = G.  



(13)(12) = (123)  
We find (12), (13) do not commute.  
 (12) and (13) do not belong to Z(S )  3
Again,   (23)(132) = (12)  

(132)(23) = (13)  

Also,  

(23), (132) do not belong to Z(S )  3
(123)(12) = (13)  
(12)(123) = (23)  

Shows   (123)  Z(S )  3
Hence Z(S ) contains only I.  3

Example 1.7: Let G be the group of all 2×2 non singular matrices over  

a
86

c
b
d

Solution: If   be any element of the centre Z(G) of G then it should  

commute with all members of G. In particular we should have,  
a
c

b
d

0
1

1
0

0 1
0

a
c

b
d


1

 b = c, a = d  
a
c

b
d

0
1

0
1

a
c

b
d

Also,    gives  

a
a

a
c




b
d

b b
b

=
d  c  d

 a + b = a, b = c = 0  
a
c

b
d

a 0
Hence any member   of Z(G) turns out to be of the type   .

0 a

In other words, members of the centre Z(G) are the 2×2 scalar matrices of G.  

Example 1.8: Let G be a group in which  
(ab) = a b3 3 3  

(ab) = a b , for all a, b  G  5 5 5

Show that G is abelian.  

Solution: We first show that b  Z(G) for all b  G.  2 

We know   (a ba) = a b a  –1 3 –1 3

(a ba) = a (ba) = a b a–1 3 –3 3 –3 3 3  By given condition  
Self - Learning  
64

Material  22  

the reals. Find centre of G.  
 
 
 

           
           
           

1
145

1
1 1

           
           
           

 
 
 

 
 
 

 
 
 

 
 
 










a b a = a b a–1 5 –5 5 5  

a b = b a  a b b = b a4 5 5 4 4 3 2 5 4  

(a ) b b = b a  b a b = b a2 2 3 2 5 4 3 4 2 5 4  

a b = b a  aa b = b a4 2 2 4 3 2 2 4  

ab a = b a2 3 2 4  

ab = b a for all a, b  G  2 2

b  Z(G) for all b  G  2 

(ab) = (ab) (ab) = a b b a4 5 –1 5 5 –1 –1  

= a b a = a a b , as b  Z(G)  5 4 –1 5 –1 4 2 

= a b4 4  



Now,  

 (ab) = a b for three consecutive integers i = 3, 4, 5  i i i 

Hence G is abelian.  

Example 1.9: Show that union of two subgroups may not be a subgroup.  
Solution: Let, H = {2n | n  Z}  2 

H = {3n | n  Z}  3 
where (Z, +) is the group of integers. H and H will be subgroups of Z.  2 3 

Indeed  
2n– 2m = 2(n – m)  H2  

Now H  H is not a subgroup as 2, 3  H  H2 3 2 3  
but   2 – 3 = –1  H  H2 3  

Theorem 1.12: Union of two subgroups is a subgroup iff one of them is  

Proof: Let H, K be two subgroups of a group G and suppose H  K  
then H  K = K which is a subgroup of G.  

Conversely, let H, K be two subgroups of G such that, H  K is also  
a subgroup of G. We show one of them must be contained in the other. Suppose  
it is not true i.e.,  

  HH K, K  
Then,    x  H such that,  x  K  

 y  K such that,  y  H  
Also then x, y  H  K and since H  K is a subgroup, xy  H  K  

 xy  H or xy  K  
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So, ab = ba for all a, b  G, by example done earlier.  

contained in the other.  



Definition 1: Let H be a subgroup of a group G. For a, b  G, we say a is  
congruent to b mod H if ab  H.  –1 

In notational form, we write a  b mod H.  
It is easyto prove that this relation is anequivalence relation. Corresponding  

to this equivalence relation, we get equivalence classes. For any a G, the  
equivalence class of a, we know will be given by  

cl(a) = {x  G | x  a mod H}.  

Definition 2: Let H be a subgroup of G and let a  G be any element.  
Then Ha = {ha | h  H} is called a right coset of H in G.  

We show in the following theorem that any right coset of H in G is an  
equivalence class. To be exact we state:  

Theorem 1.13: Ha = {x  G | x  a mod H} = cl(a) for any a G.  

Proof: Let,   x  Ha  
Then,   x = ha for some h  H  

 xa = h  –1 

 xa  H  –1 

 x  a mod H  
 x  cl(a)  

Ha  cl(a).  Thus,  
Again let x  cl(a) be any element.  
Then,   x  a mod H  

 xa  H  –1 

 xa = h for some h  H  –1 

 x = ha  Ha  
cl(a)  Ha  thus  

and hence   Ha = cl(a).  
Having established that right cosets are equivalence classes, we are free  

to use the results that we know about equivalence classes. We can, therefore,  
say now that any two right cosets are either equal or have no element in  
common and also that union of all the right cosets of H in G will equal G.  

Note: Note that a coset is not essentially a subgroup. If G be the Quaternion  
group then H = {1, – 1} is a subgroup of G. Take a = i, then Ha = {i, – i}  
which is not a subgroup of G. (it doesn't contain identity). Refer Theorem 1.15  
ahead.  Self - Learning  
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Thus one of the two is contained in the other.  



f (ha) = hb  
Then   h a = h a  h = h  h b = h b  1 2 1 2 1 2

 f (h a) = f (h a)  1 2
i.e., f is well defined.  

f (h a) = f (h a)  h b = h b  h = h  h a = h a  1 2 1 2 1 2 1 2

Showing f is 1–1.  
That f is onto, is easily seen, as for any hb  Hb, ha would be its pre  

image.  
The immediate utility of this lemma is seen, if the group G happens to be  

finite, because in that case the lemma asserts that any two right cosets of H in  
66

G have the same number of elements. Since H = He is also a right coset of H  
in G, this leads us to state that all right cosets of H in G have the same number  
of elements as are in H (G, being, of course, finite). We are now ready to prove  

Theorem 1.14 (Lagrange’s): If G is a finite group and H is a subgroup of  
G then o(H) divides o(G).  

Proof: Let o(G) = n.  
Since corresponding to each element in G, we can define a right coset of H in  
G, the number of distinct right cosets of H in G is less than or equal to n.  

Using the properties of equivalence classes we know  
G = Ha  Ha  ...  Ha1 2 t  

where,   t = Number of distinct right cosets of H in G.  
 o(G) = o(Ha ) + o(Ha ) + ... + o(Ha )  1 2 t

(Reminding ourselves that two right cosets are either equal or have no  
element in common).  

 o(G) = o(H) + o(Ha)  ...  o(H) using the above lemma  
t times  

 o(G) = t. o(H)  
or that  o(H) | o(G)  
and we have proved a very important theorem.  
But a word of caution here. Converse of Lagrange's theorem does not  

hold.  

Note: If G is a group of prime order, it will have only two subgroups G and  
{e}. Refer Theorem 1.25 also.  

We have been talking about right cosets of H in G all this time.Are there  
134

left cosets also? The answer should be an obvious yes.After all we can similarly  
Self - Learning  
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It would indeed be an interesting ‘brushing up’for the reader, by proving these  

We now come to a simple but very important  
121

Theorem 1.15: Let H be a subgroup of G then,  
(i) Ha = H  a  H; aH = H  a  H  
(ii) Ha = Hb  ab  H; aH = bH  a b  H  –1 –1 

(iii) Ha (or aH) is a subgroup of G iff a  H.  

Proof: (i) Let Ha = H  
Since e  H, ea  Ha  ea  H  a  H.  
Let aH, we show Ha = H.  
Let x  Ha  x = ha for some h  H  
Now h  H, aH  haH  xH  Ha  H  
Again, let   y  H, since a  H  

ya  H  –1 





ya = h for some h  H  –1 

y = ha  Ha  
H  Ha  

Hence  
(ii)  

Ha = H.  
Ha = Hb  

 (Ha)b = (Hb)b–1 –1  





Hab = He  –1 

Hab = H  –1 

ab  H using (i)  –1 

subgroup of G then e  Ha and thus the right cosets Ha and He have  
one element e in common and hence Ha = He = H  a  H by (i).  

Definition: Let G be a group and H, a subgroup of G. Then index of H in G  
is the number of distinct right (left) cosets of H in G. It is denoted by i (H) or  G
[G:H].  

A look at the proof of Lagrange's theorem suggests that if G is a finite  
o(G)  group, then i (H) =  G .
o(H )   

It is, of course, possible for an infinite group G to have a subgroup  
H ( G) with finite index.  
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results independently.  

(iii) If a  H then Ha = H which is a subgroup. Conversely, if Ha is a  

Corresponding results for left cosets can be tackled similarly.  



a = 3n + r,  
which gives  

H + a = H + (3n + r) = (H + 3n) + r = H + r  
where 0  r < 3  

0  r < 3  

Hence H has only 3 right cosets in Z and thus has index 3.  
Notice, H – 1 = (H + 3) – 1 = H + (3 – 1) = H + 2, etc.  

Case 19: Let G = < R – {0}, . >, i.e., let G be the group of non zero real  
numbers under multiplication. Let H = {1, –1}. Then H is a subgroup of G  

being {2, –2}, {3, –3}, {4, –4}, ..., etc.  

Definition: Let H be a subgroup of a group G, we define  
C(H) = {x  G | xh = hx for all h  H} then C(H) is called centralizer of H  
inG.  

Also the set  
N(H) =  {x  G | xH = Hx}  

= {x  G | xHx = H}  –1 

is called normalizer of H in G.  
It is an easy exercise to see that both C(H) and N(H) are subgroups of G.  

Again as,  x  C(H)  xh = hx for all h  H  
 xH = Hx  
 x  N(H)  

we notice C(H)  N(H).  
However, C(H) need not be equal to N(H) as consider the Quaternion  

group G = {±1, ±i, ±j, ±k} and let H = {±1, ±i}.  
Then N(H) = G and C(H) = {±1, ±i}.  
Showing that C(H)  N(H)  

Note: One can define C(H) or N(H) in the same way even if H happens to be  
only a non-empty subset of G.  
Example 1.10: Show that C(H) = G  H  Z(G).  

Solution: Let C(H) = G. Let h  H be any element. Then, x  G  x  C(H)  
 xh = hx  any element h in H commutes with all elements of G  h   
Z(G)  H  Z(G).  

H commutes with every element of G.  
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where i (H) is infinite. Notice H has infinite number of right cosets in G, these  G

Conversely, let H Z(G). Let x  G. Since H  Z(G) each element of  



Solution: Let,  = Set of all left cosets of H in G.  
 = Set of all right cosets of H in G.  

Define a mapping   :   , such that,  
(aH) = Ha a  G  –1 

 is well defined as  
 a b  H  –1 

Ha = Hb–1 –1  

aH = bH  


 (aH) = (bH)  

Taking the steps backwards, we find  is 1–1. Again, for any Ha  ,  
a H is the required pre-image under  proving that  is onto.  –1

If G is finite, then the above result reduces to saying that number of left  
cosets of H in G is same as the number of right cosets of H in G.  

Example 1.12: Let H be a subgroup of a group G and N(H) = {a  G |  
aHa = H}. Prove that N(H) is a subgroup of G which contains H.  –1 

Solution: N(H)   subset of G as  
eHe = H  e  N(H)  –1 

Let now a, b  N(H) be any two elements, then  
aHa = H  –1 

bHb = H  –1 

then,   bHb = H  –1  b (bHb )b = b Hb  –1 –1 –1

 (b b)Hb b = b Hb  –1 –1 –1







H = b Hb  –1

aHa = a(b Hb)a–1 –1 –1  

aHa = ab Hba–1 –1 –1  

H = (ab ) H(ab )–1 –1 –1  

ab  N(H) i.e., N(H) is a subgroup of G.  –1 

Since h  H  hHh = H (Ha = H  a  H, etc.)  –1 

we find h  N(H) showing that H  N(H).  
Example 1.13: Suppose that H is a subgroup of a group G such that whenever  

Solution: It is given  that if Ha  Hb then aH  bH  
thus if aH = bH then Ha = Hb.   ...(1)  
Let now g  G, h  H be any elements, then  

(g h)H = g (hH) = g H (h  H)  –1 –1 –1
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H is a subgroup of a group G.  

Ha  Hb then aH  bH. Prove that gHg  H for all g  G.  –1 



Example 1.14: If G = S and H = {I, (13)}, write all the left cosets of H  3 

Solution:   H = {(12)I, (12)(13)} = {(12), (132)}  (12)
H (Show!)  (123)=

H = {(23)I, (23)(13)} = {(23), (132)} = H  (23) (132)
H = H as (13)  H  (13)

IH = H  
are all the left cosets of H in G.  

Definition: Let H and K be two subgroups of a group G. We define  
HK = {hk | h  H, k  K} then HK will be a non-empty subset of G (Sometimes,  

Theorem 1.16: HK is a subgroup of G iff HK = KH.  

Proof: Let HK be a subgroup of G. We show HK = KH  
Let,   x  HK be any element  
Then,   x  HK (as HK is a subgroup)  –1 

 x = hk for some h  H, k  K  –1 

 x = (hk) = k h  KH  –1 –1 –1 

HK  KH  Thus,  
Again let  
Then,  

y  KH be any element  
y = kh for some k  K, h  H  

y = h k  HK  –1 –1 –1 
 y  HK   (as HK is a subgroup)  
 KH  HK  

HK = KH.  Hence,  
Conversely, let HK = KH.  
Let, a, b  HK be any two elements, we show ab  HK  –1 

a, b  HK  a = h k for some h , h  H  1 1 1 2 

b = h k2 2   k , k  K  1 2 

Then,   ab = (h k ) (h k ) = (h k ) (k h–1 
1 1 2 2

–1 1
2
1  )21 1  

= k k h1 2
1 

2
1  

Now,  

Thus,  

(k k1 2
1  ) h  KH = HK  2

1 

h = hk for some h  H, k  K  2
1 (k k1 2

1  )
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in G.  

called thecomplexof Hand K).Will it forma subgroup? Theanswer is provided by  

1h ( )  



some k  K and h  H.  1 1 2. If G has binary composition +, we define  
H + K = {h + k | h  H, k  K}.  

Theorem 1.17: If H and K are finite subgroups of a group G then  
o(H ) . o(K )   o(HK) =   .

o(HK)  
Proof: Let D = H  K then D is a subgroup of K and as in the proof of  

45

Lagrange's theorem,  a decomposition of K into disjoint right cosets of D in  
K and  

K = Dk  Dk  ...  Dk1 2 t  
o(K )   

and also   t =  o(D)  

Again, HK = H (   
i 1   

Thus,  
i 1  

Now no two of Hk , Hk , ..., Hk can be equal as if Hk = Hk for i, j  1 2 t i j 

then k k  H  k k  H  K  k k  D  Dk = Dki

j 
1 

i

j 
1 

i

j 
1 

i j  

which is not true.  
Hence, o(HK) = o(Hk ) + (Hk ) + ... + o(Hk )  1 2 t

= o(H) + o(H) + ... + o(H)  
= t . o(H)  

o(H ) . o(K )   =
o(H   K )   

which proves the result.  
Aliter: We have HK = {hk | h  H, k  K}.  

Let H  K = {x , x , ..., x } and suppose o(H) = r, o(K) = s  1 2 n
1Now hk = (hx ) (x k)  HK  i = 1, 2, ..., n  i i

 

xi
1  Also,   hx  H,  i k  K as x  H and K  i 

Thus,   hk = (hx ) xi
1  k  HK  i = 1, 2, ..., n  i

or that hk can be written in at least n different ways. We show these are  
the only n ways that hk can be expressed as an element of HK.  

Suppose   hk = h k1 1  
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 Dk ) and since D  H, HD = H  i 
t

t
HK =  Hk = Hk  Hk  ...  Hki 1 2 t  

 



1 i
k = x k  1 i

1

hk = h k = (hx ) (x k)  1 1 i i
 1and thus  

Hence each hk can be written in exactly n different ways.  
Since h can be chosen in r ways, k can be chosen in s ways, we find hk  

rs  can be chosen in   ways.  
n

o(H ) . o(K )   rs  
n

Thus,   o(HK) =   = .
o(H   K )   

Note o(H  K)  1 as H  K   as e  H  K.  
Corollary: If H and K are subgroups of a finite group G such that o(H) >  

o(G), o(K) >  o(G) then o(H  K) > 1.  

Proof: We have,  
o(G) .  o(G)  o(H ) o(K )    o(G)  o(G)  o(HK) =    =

o(H  K  ) o(H  K  ) o(H  K )   

 o(H  K) > 1.  

Example 1.15: Suppose G is a finite group of order pq, where p, q are  
primes and p > q. Show that G has at most one subgroup of order p.  

Solution: Suppose H, K are two subgroups of order p.  
Then, as o(H  K) | o(H) = p, we find  

o(H  K) = 1 or p  
If, o(H  K) = 1, then  

o(H ).o(K )    p.p  o(HK) =   = = p > pq = o(G)  2 

[p > q  p > pq]  2 
o(H   K )    1

which is not possible. Hence o(H  K) = p = o(H)  
and as H  K  H, we find H  K = H  

There exists at least one subgroup of order p. A group of order 15 will  
have only one subgroup of order 5.  

Note: We have defined the product HK of two subgroups H and K. The same  
definition can be used for the product, even if H, K happen to be subsets of G.  

of G if and only if HK = KH.  
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Similarly, H  K = K and hence K = H.  

Example 1.16: Let H, K be subgroups of G. Show that HK is a subgroup  



= (HK) (KH) = H(KK)H  
= H(KH) = H(HK)  
= (HH)K = HK  

Then, HK is a subgroup of G.  
Cyclic Groups  
Definition: Order of an element : Let G be a group and a  G be any element.  
We say a is of order (or period) n if n is the least +ve integer such that,  
a = e. If binary composition of G is denoted by +, this would read as na =  n 

0, where 0 is identity of G.  
If it is not possible to find such n, we say a has infinite order. Order of a will  

be denoted by o(a). It is obvious that o(a) = 1 iff a = e.  
Cyclic Group: A group G is called a cyclic group if  an element a  G, such  
that every element of G can be expressed as a power of a. In that case a is  
called generator of G. We express this fact by writing G = < a > or G = (a).  

Thus G is called cyclic if  an element a  G such that, G = {a | n  Z}.  n 

Again, if binary composition of G is denoted by +, the words 'power of a'  
would mean multiple of a.  

Note we are not saying that generator is unique. Indeed if a is generator so  
would be a .Asimple example of a cyclic group is the group of integers under  –1

Again the group G = {1, –1, i, –i} under multiplication is cyclic as we can  
express its members as i, i , i , i . Thus i (or – i) is a generator of this group.  2 3 4

a cyclic group. 1 and –1 = n – 1 will be its generators. But it can have more  
generators besides these. (Refer Theorem 1.30 ahead).  

Consider, Z = {0, 1, 2,...7} addition modulo 8  8 
Then we can check that 1, 3, 5, 7 will be generators of Z8  
Notice that,  
3 = 3, 3 = 3  3 = 6,  3 = 3  3  3 = 1  1 2 3 

3 = 3  3  3  3 = 4 and so on  4 

i.e., < 3 > = {3, 6, 1, 4, 7, 2, 5, 0} or that 3  
is a generator of Z . Observe also that 1, 7 and 3, 5 are each others  8

inverses.  

cyclic for every n. For instance U is cyclic. But U is not cyclic.  5 8 
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addition, 1 being its generator.  

Case 20: The group Z = {0, 1, 2, ... , n – 1} addition modulo n(n  1) is  n 

On the other hand, U , the group under multiplication modulo n is not  n



Suppose any two of the above elements are equal  
say   a = a with i > j  i j 

Then, a . a = e  a = e  i –j i–j 

But 0 < i – j  n – 1 < n, thus  a positive integer i – j, such that,  
a = e and i – j < n, which is a contradiction to the fact that o(a) = n.  i–j 

Thus no two of the above n elements can be equal, i.e., G contains at  
least n elements. We show it does not contain any other element. Let x  G  
be any element. Since G is cyclic, generated by a, x will be some power of a.  

Let  
By division algorithm, we can write  

m = nq + r where 0  r < n  
a = a = (a ) . a = e . a = am nq+r n q r q r r  

x = ar   where 0  r < n  

x = am  

Now,  


i.e., x is one of a = e, a, a , ..., a0 2 n–1  

or G contains precisely n elements  
 o(G) = n = o(a)  

Case (ii): o(a) is infinite.  
In this case no two powers of a can be equal as if a = a (n > m)  n m 

then a = e, i.e., it is possible to find a positive integer n – m such that,  n–m 45

Hence no two powers of a can be equal. In other words G would contain  
infinite number of elements.  

Example 1.17: If a  G be of finite order n and also a = e then show  m 

that n | m.  

Solution: Let o(a) = n, then by definition n is the least positive integer such  
that, a = e.  n 

Suppose   a = e for some m  m 

By division algorithm, m = nq + r, where 0  r < n  
a = am nq + r  

 e = a . a = (a ) . a = e . a = anq r n q r q r r  

0  r < n  
Since n is such least positive integer, we must have r = 0  
i.e., m = nq or that n | m.  

where  
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These are all elements of G and are n in number.  

a = e meaning thereby that a has finite order.  n–m 



then   m | l, n | l,  
(ab)l  

= a b = e . e = e  nr2 

 o(ab) | l  
 k | l.  

 l = mr , l = nr1 2  = a b (G is abelian)  l l Now,  
mr  1

that o(b) = 31.  

Solution: We have b = aba2 –1  

 b = (aba ) (aba )  4 –1 –1

= ab(a a) b ab = ab a–1 nr 2 mr1 2 –1  

= a(aba ) a–1 –1  

 b = a ba4 2 –2  

 b = (a ba ) (a ba ) =  a b a8 2 –2 2 –2 2 2 –2  

= a (aba )a = a ba2 –1 –2 3 –3  

 b = a ba (as above)  16 4 –4 

 b = a ba = b as a = e  32 5 –5 5 

 b = e  31 is a multiple of o(b)  31 

Since 31 is a prime number, it is the least positive integer such that b = e  31 

 o(b) = 31.  
We are, of course, taking b  e.  

Theorem 1.19:  A subgroup of a cylic group is cyclic.  
66

Proof: Let G = < a > and let H be a subgroup of G. If H = {e}, there is nothing  
45

to prove. Let H  {e}. Members of H will be powers of a. Let m be the least  
positive integer such that, a  H. We claim H = < a >.  m m 

Let x  H be any element. Then x = a for some k. By division algorithm,  k 

k = mq + r where 0  r < m  
 r = k – mq  
 a = a . a = x . (a )  H  r k –mq m –q 

But m is the least positive integer such that, a  H, meaning thereby that  m 

r = 0.  
Thus,   k = mq  

x = a = (a )k m q  or that  
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Example 1.19: If in a group G, a = e, aba = b for a, b  G then show  5 –1 2 



Also mZ  nZ if and only if  n | m. So mZ = nZ if and only if  
m = ±n.  

Case 21: Let H = < a > = {an | n  Z} = aZ  
K = < b > = {bm | m  Z} = bZ  

be two subgroups of < Z, + >, then Z being abelian, H + K = K + H  
 H + K is a subgroup of Z.  

[Note here HK = H + K].  
We show H + K = < d > = dZ, where d = g.c.d.(a, b)  
Now,  



x  H + K  
x  < a > + < b >  
x = an + bm,   n, m  Z  

 x  < d > [as d | a, d | b  d | an + bm  d | x]  
Thus H + K  < d >.  
Again, y  < d >    y = td  

 y = t(ax + by) = atx + bty  H + K  
H + K = < d >  Hence  

i.e.,   aZ + bZ = (a, b)Z.  

Theorem 1.20: A cyclic group is abelian.  
Proof: Let G = < a >. If x, y  G be any elements then x = a , y = a for  n m 

some integers m, n.  
Now xy = a . a = a = a = a . a = y . x  n m n+m m+n m n 

Hence G is abelian.  
Note: In view of the above result, all non abelian groups are non-cyclic.  
< Q, + > the group of rationals under addition serves  as an example of an  

mabelian group which is not cyclic. For, suppose   Q is a generator of Q,  
n

m 1 mthen any element of Q should be a multiple of  . Now    Q, and if  is  
n 3n   n

1 ma generator, we should be able to write  

1

= k , for some k  
3n   n

 = km  
3

1Which is not possible as k, m are integers, whereas  is not. Hence no  
3

element can act as generator of Q.  
Self - Learning  
Material   35  



Theorem 1.21: If G is a finite group, then order of any element of G divides  

Proof: Let a  G be any element.  
Let H = {a | n an integer}  n 

then H is a cyclic subgroup of G, generated by a, as  
x, y  H  x = a , y = an m  

 xy = a . a = a  H  –1 n –m n–m 

By Lagrange’s theorem o(H) | o(G). But o(H) = o(a)  
o(a) | o(G).  

Corollary: If G is a finite group then for any a  G  
a = e  o(G) 

Proof: o(a) | o(G)  o(G) = o(a)k   For some k  
Now, a = a = (a ) = e = e  o(G) o(a)k o(a) k k 

Thus any element of a finite group, has finite order (which is less than or  
equal to the order of the group). Converse is, however, not true.  

Case 22: The group < Z, + > of integers is an example of a group in which  

As another example consider G = {2 : r = 0, ±1, ...}  r 

then we know G forms a group under multiplication. No non-identityelement  
in G has finite order as  

(2 ) = 1  r n iff 2 = 1  rn 

iff r = 0 or n = 0.  

Note: If G is a finite group of order n and  an element a  G, such that,  
o(a) = n then G is cyclic, generated by a. Clearly o(a) = n gives a = e, and  n 

lesser powers not equal to e and thus G = {a, a , ..., a = e}.  2 n 

Example 1.20: Let G be a finite group whose order is not divisible by 3.  

Solution: Let a, b  G be any elements.  
Then as,  
we get  

(ab) = a b3 3 3  

ababab = a b3 3  




baba = a b (cancellation)  2 2 

(ba) = a b2 2 2   ...(1)  
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order of G.  

each non identity element is of infinite order.  

Suppose (ab) = a b for all a, b  G, then show that G is abelian.  3 3 3 



Consider now,   (a b ab ) = (a ) (b ab ) = a (b ab )–1 –2 2 3 –1 3 –2 2 3 –3 –2 2 3  

= a (b a b )  –3 –2 3 2

= a (b b a ) from Equation (2)  –3 –2 2 3

= a a = e  –3 3 

 o(a b ab ) | 3  –1 –2 2

 o(a b ab ) = 1 or 3  –1 –2 2

If o(a b ab ) = 3 then 3 | o(G) which is not true.  –1 –2 2

Hence   o(a b ab ) = 1  –1 –2 2

a b ab = e  –1 –2 2 

ab = b a  2 2

 ...(3)  

Again from, (1)   (ba) = a b = a(ab ) = a(b a) using Equation (3)  2 2 2 2 2

(ba) (ba) = ab a  2
 bab = ab  ba = ab  2 

or that G is abelian.  
Theorem 1.22: Converse of Lagrange's theorem holds in finite cyclic groups.  

Proof: Let G = < a > be a finite cyclic group of order n.  
Then,  
Suppose m | n. We show  a subgroup of G having order m.  
Since  

o(G) = o(a) = n  

m | n,  k such that, n = mk  
Let H be the cyclic group generated by ak  

then H is a subgroup of G and o(H) = o(a )  k

We show  
Now,  

o(a ) = m  k

(a ) = a = a = e,  k m km n 

(a ) = e  k t 
as o(a) = n  

Suppose now, that  
Then,   a = e  kt 

 o(a) | kt  n | kt  
 km | kt  m | t  

o(a ) = m  kthus  
which proves the result.  

Note: One can go a step further here and show that such a subgroup (as taken  
above) would also be unique. Suppose H is another subgroup of G such that,  
o(H) = m. Since H is a subgroup of a cyclic group G = < a >, H will be  
generated by some power of a.  
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 a = a = (a ) . amp mkq + mr mk q mr  

= a (o(a) = n = mk)  mr 

o(H) = o(a ) = m  pNow,  

thus  
 (a ) = e  p m 

a = e  mr where 0  mr < n  
But this    


mr = 0  (as o(a) = n)  

r = 0   as m  0  
hence   p = kq  
Thus   H  = < a > = < a >  < a > = H  p kq k 

o(H) =  o(H)  
 H = H.  

We thus conclude:  

Theorem 1.23: If G is a finite cyclic group of order n then the number of  
distinct subgroups of G is the number of distinct divisors of n, and there  

Proof: So subgroups of G are of the type < a > where k is a divisor of n and  k 

< a > is the unique subgroup of order m. As a particular case, suppose  n/m 

G = < a > has order 30. Since divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30,   
eight subgroups of G, namely  

< a > = {e, a, a , ..., a } = G  2 29

< a > = {e, a , a , ..., a }  2 2 4 28

< a > = {e, a , a , ..., a }  3 3 6 27

< a >, < a >, < a >, < a > and < a > = {e} having order  5 6 10 15 30 

30, 15, 10, 6, 5, 3, 2, 1.  
Consider again, the cyclic group Z = {0, 1, 2, ..., 29} under addition  30 

Z will have eight subgroups namely  30 
< 1 > = {0, 1, 2, ..., 29} = Z30  
< 2 > = {0, 2, 4, ..., 28}  
< 3 > = {0, 3, 6, ..., 27}  
< 5 >, < 6 >, < 10 >, < 15 >, < 30 > = {0}  

having order 30, 15, 10, 6, 5, 3, 2, 1.  
In view of the above theorem these would be the only subgroups of Z .  30
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But  

is at most one subgroup of G of any given order.  

modulo 30 . o(Z ) = 30 and as 30 has 8 divisors 1, 2, 3, 5, 6, 10, 15, 30,  30
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and let H = {a | n an integer} then H is a cyclic subgroup of G.  n 


But,  

o(H) | o(G)  o(H) = 1 or p  
o(H)  1 as a  H, a  e,  

Thus o(H) = p  H = G, i.e., G is a cyclic group generated by a. Since  
a was taken as any element (other than e), any element of G can act as its  

Corollary: A group of prime order is abelian.  

Theorem 1.25: A group G of prime order cannot have any non-trivial  
subgroups.  

Proof: If H is any subgroup of G then as o(H) | o(G) = p, a prime  
We find  o(H) = 1 or p  
i.e.,   H = {e} or H = G.  

Theorem 1.26: A group of finite composite order has at least one non-  
trivial subgroup.  

Proof: Let o(G) = n = rs   where 1 < r, s < n  
Since n > 1,  e  a  G. Consider a .  r

Case (i): a = e  r 

then  
then  
Let,  

o(a)  r, let o(a) = k  
1 < k  r < n   (k > 1, as a  e)  
H = {a, a , a , ..., a = e}  2 3 k 

then H is anon-emptyfinite subset ofG and it is closedunder multiplication,  
thus H is a subgroup of G. Since o(H) = k < n, we have proved the result.  
Case (ii): a  e, then since (a ) = a = a = a = e  r r s rs n o(G) 

o(a )  s. Let o(a ) = t then 1 < t  s < n.  r r

If we take K = {a , a ,..., a = e} then K is a non empty finite subset  r 2r tr 

of G, closed under multiplication and is therefore a subgroup of G. Its order  
being less than n, it is the required subgroup.  

Theorem 1.27: If G is a group having no non-trivial subgroups then G  

Then we can find a  G, such that, a  e.  
Let H = < a >, then H is a cyclic subgroup of G and H  {e}. But G has  

no non-trivial subgroups.  
Thus,   H = G  

 G = < a >   Self - Learning  
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generator.  

must be finite having prime order.  
Proof: Suppose G has infinite order.  



Again < a >  {e}, because then a = e would again mean that o(a) is  2 2 

finite ( 2).  
Thus < a > is a non-trivial subgroup of G which is not possible. Hence  2 

o(G) cannot be infinite.  
So o(G) is finite and as it cannot be composite by previous theorem, it  

must be prime.  
Summing up, what we have done above proves  

Theorem 1.28: The only groups which have no non-trivial subgroups are  
the cyclic groups of prime order and the group {e}.  

All this time we have been talking about cyclic groups and their generators  
without being very sure as to how many generators a cyclic group could have.  
To resolve this, we consider  

Theorem 1.29: An infinite cyclic group has precisely two generators.  

Proof: Let G = < a > be an infinite cyclic group.  
As mentioned earlier, if a is a generator of G then so would be a .  –1

Let now b be any generator of G,  
Then as b G, a generates G, we get b = a for some integer n  n 

Again as aG, b generates G, we get a = b for some integer m  m 

 a = b = (a ) = am n m nm  

 a = e  o(a) is finite and  nm – 1  nm–1 

Since o(G) = o(a) is infinite, the above can hold only if  
nm – 1 = 0   nm = 1  

1 m =   or n = ± 1 as m, n are integers.  
n

i.e.,   b = a or a–1  

In other words, a and a are precisely the generators of G.  –1 

Question to be answered now is how many generators a finite cyclic  
group would have.Before we come to the answer we first definewhat is popularly  
known as the Euler's  function (or Euler's totient function).  

For any integer n, we define (1) = 1 and for n > 1, (n) to be the  
number of positive integers less then n and relativelyprime to n.As an example  
(6) = 2, (10) = 4, etc.  

Note 1, 5 are less than 6 and relatively prime to 6 and 1, 3, 7, 9 (four  

p – 1, if p is a prime. The following two results can be helpful at times.  
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in number) are less than 10 and relatively prime to 10, etc. Obviously, (p) =  



(mn) = (m) (n), (m, n  1)  
We are now ready to prove  

Theorem 1.30: Number of generators of a finite cyclic group of order n  
is (n).  

Proof: Let G = < a > be a cyclic group of order n  
then   o(a) = o(G) = n  
We claim a is generator of G iff (m, n) = 1, i.e., m, n are relatively  m 

prime.  
[For instance, if n = 8, then (8) = 4 will be number of generators as  

we will show a, a , a , a will generate G and no other element can generate  3 5 7 

G. So here m can have values 1, 3, 5, 7].  
Let now a be a generator of G for some m  m 

Since aG, a = (a ) for some i  m i 

 a = e  o(a) | mi – 1  mi–1 

 n | mi – 1  
 mi – 1 = nj  

mi – nj = 1  
for some integer j  

i.e.,  
 (m, n) = 1.  

Conversely, let (m, n) = 1  
Then  integers x and y such that,  

mx + ny = 1  
 a = a  mx + ny 

 a . a = a  mx ny 

 a (a ) = a  mx n y 

 a = a as o(a) = n  mx 

 a = (a )m x  

Since every element of G is a power of a and a itself is a power of a ,  m

we find a generates G, which proves our result.  m 

Note: We thus realize that if a is a generator of a finite cyclic group G  
of order n, then other generators of G are of the type a where m and n are  m 

coprime.  

coprime, and thus generators of Z would indeed be the elements of U .  n n
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In fact an integer k will be a generator of Z if and only if k and n are  n 



Then U is a group under multiplication modulo n.  n 
By definition of Euler’s -function,  

o(U ) = (n).  n
If n = 1, then (n) = (1) = 1 and a = a  1 (mod 1) (as 1 divides  (n) 1 

a – 1)  
Let   n > 1  
Now by Euclid's algorithm  
a = nq + r, for some integers q, r where 0  r < n.  
If r = 0 then a = nq  n | a  (a, n) = n > 1, a contradiction  
 1  r < n  
Also   (r, n) = d  d | r, d | n  d | a–nq, d | nq  





d | a, d | n  
d | (a, n) = 1  
d = 1  

 (r, n) = 1 and 1  r < n  
 r  Un  
a = nq + r  a  r (mod n)  Also  

It follows from Lagrange's theorem that,  
r  r  ...  r = identity of U = 1  [a = e]  n 

o(G) 

where  is composition multiplication modulo n in U and (n) is order  n 
of group U .  n

 r –nq = 1, for some integer q(n) 
1 1  

 r  1 (mod n)  (n) 

 a  1 (mod n)  (n) 

so,   a  r (mod n)  a  r (mod n).  (n) (n) 

Theorem (Fermat’s) 1.32: For any integer a and prime p,  
a  a (mod p).  p 

Proof: If (a, p) = 1, then by Euler's theorem  
a  1 (mod p)  (p) 

 a  1 (mod p)  p–1 

 a  a (mod p)  p 
as (p) = p – 1   

If (a, p) = p, then p | a  p | ap  

 p | a – a  p 
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Solution: By Lagrange's theorem such a subgroup can exist.  
We first claim that all elements of G cannot be of order 2. Suppose it is so.  
Let a, b  G be two different elements with order 2.  
Let H = < a >, K = < b > be the cyclic subgroups generated by a and b  
then   o(H) = 2, o(K) = 2  
Since all elements of G are of order 2, it  must be abelian.  
 HK = KH  HK is a subgroup of G  

57

o(H ) . o(K )    2  2  
1

and as   o(HK) =   = = 4  
o(H   K )   

[Note H  K = {e} as a  b]  
By Lagrange's theorem o(HK) would divide o(G)  
i.e., 4 | 10 which is not true hence our assumption is wrong and thus all elements  
of G cannot have order 2.  
Again, since G is finite, o(a) | o(G) for all a  G  
  at least one element a  G, such that, o(a) = 5 or 10.  
If o(a) = 5, then H = < a > is a subgroup of order 5.  
If o(a) = 10, then H = < a > is a subgroup of order 5.  2 

In any case our result is proved.  

Example 1.22: Let G be a group such that intersection of all its subgroups  
which are different from {e} is a subgroup different from {e}. Prove that  

Solution: Let a  G be any element.  
If a = e, o(a) = 1  
Let a  e and suppose o(a) is not finite.  
Consider the cyclic subgroups < a >, < a >, < a >, ...  2 3 

Since each < a >  {e} as o(a) is not finite  i 

< a >  < a >  < a >  ...  {e} by given condition.  2 3 

As intersection of cyclic subgroups is cyclic subgroup  
 < a > = < a > for some integer m  i m 
i

Again,  

<a >  < a >  2m m 

(multiples of 2m are multiples of m)  

< a >  < a > for all i  m i 

>
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every element of G has finite order.  

In particular,  < a >  < am 2m  

But  



 o(a) is finite, a contradiction.  
Hence the result follows.  

Theorem 1.33: If G is a finite group of order n and for every divisor d of  
n  unique subgroup of order d, then G is cyclic.  

Proof: Let d | n.  
Define A(d) = {x  G | o(x) = d}  
Suppose A(d) . Then  x  G such that, o(x) = d.  
Let H = < x >. Then o(x) = o(H) = d. This gives (d) generators of H  

or (d) elements of order d in H. If  y  G, y  H such that, o(y) = d, then  
K = < y > is a subgroup of order d. It is given that G has unique subgroup of  
order d. So, K = H  y  H, a contradiction. Thus, the number of elements  
in G of order d is (d).  

So,  
and  

o(A(d)) = (d) if A(d)    
o(A(d)) = 0  if A(d) =  for all d | n  

 A(d)  
d |n  

Let d , ..., d be all divisors of n.  1 s 
Suppose A(d ) = , ..., A(d ) =   1 i

and  
(Note, if A(d) =  for all d | n, then o(G) = 0, a contradiction. So, A(d)  

 for some d | n)  
o(A(d )) = ... = o(A(d )) = 0  1 i
o(A(d )) = (d ) ..., o(A(d )) = (d )  i+1 i + 1 s s

G = A(d)  o(G) =  o(A(d))  

A(d )  , ..., A(d )    i + 1 s


and  
Now    d |n   d |n  

 n = (d ) + ... + (d )  i + 1 s

By Example 1.21,   n =   (d )   
d |n  

 (d ) + ... + (d ) + (d ) + ... + (d ) = (d ) + ... + (d )  1 i i + 1 s i + 1 s

 (d ) + ... + (d ) = 0, a contradiction  1 i

So, A(d)  for all d | n. In particular  
A(n)    x  A(n)   x  G such that, o(x) = n = o(G)  G  

is a cyclic group.  

Example 1.23: Show that in a cyclic group of order n,  (m) elements of  
order m for every divisor m of n. Deduce that n =    (d )   .Self - Learning  
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Clearly, G =  



The number of elements of order m in H equals the number of generators  
of H. But the number of generators of H is (m). So, the number of elements  

104

of order m in H is (m). If k  G such that, o(k) = m, then K = < k > has order  
m. Since G, has unique subgroup of order m, K = H.  

 k  H. So, all elements of order m belong to H.  
This gives total number of elements of order m in G to be (m).  
Let a  G such that, o(a) = d. Then d | o(G) = n.  
From above (d) elements of order d in G. In this way, count all elements  

of G to get n =   (d )   .
d |n  

Example 1.24: Let G be a group.  
o(a)  Show that o(a ) =  n

(o(a), n)  
for all a  G  

where n is an integer and (o(a), n) = g.c.d. (o(a), n).  

Solution: Let o(a) = m.  
m
d

n
d

Let   d = (m, n)    , are integers  


Let  

(a ) = (a ) = e = e  n m/d m n/d n/d 

(a ) = e  a = e  n r nr 

 o(a) | nr  
 m | nr  

m n  



r
d d  
m m n  | r as   , = 1  
d d d  

m
 r   d

o(a)  m o(a ) =  n = .
d (o(a), n)  

(a) ab = ba  
(b) (o(a), o(b)) = 1.  
Show that o(ab) = o(a) o(b).  

Solution: Let o(a) = m, o(b) = n  
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 
 
 

Example 1.25: Let G be a group. Suppose a, b  G, such that,  



 ar = b–r  

 (a ) = (b ) = (b ) = e  r n –r n n –r 

 o(a) | rn  
 m | rn  
 m | r  

n | r  
as (m, n) = 1  

 l.c.m. of (m & n) | r  
 mn | r  mn  r  

 o(ab) = mn.  

1.2.1 Normal and Subnormal Series  
Definition: A normal subgroup H of a group G is called a maximal normal  

94

subgroup of G if H  G and there exists no normal subgroup K of G such that,  
H  K  G.  

Thus H  G is a maximal normal subgroup of G if whenever K  G such  
that, H  K  G then either K = H or K = G.  

In fact, a subgroup H  G is called maximal subgroup of G if whenever  
H  K  G then either K = G or K = H.  

S3  
A3  

S3  o = 2, a prime and thus   is a simple group.  that  

Case 24:  If G is a simple group then it has no non-trivial normal subgroups and  
so {e} will be a (and only) maximal normal subgroup in G.  

Theorem 1.34:  H is a maximal normal subgroup of G iff G/H is simple.  

Proof: Let H be maximal normal in G. Any subgroup of G/H is of the form  
K/H where K  G and H  K and also K/H is normal in G/H  K G.  

Thus anysubgroup K/H will be non trivial normal subgroup ofG/H if H   
KG, which isnot true asH is maximalnormal. SoG/H has nonon trivial normal  
subgroup and is, therefore, simple.  
Conversely: Let G/H be simple. Suppose H is not maximal normal, then  a  
normal subgroup K of G such that,  

H  K  G and thus K/H will be normal subgroup of G/H where K/H   
G/H, a contradiction as G/H is simple.  
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Similarly,  

Case 23:  A is a maximal normal subgroup of S . o(A ) = 3 whereas o(S )  3 3 3 3
= 6. Clearly there cannot be any subgroups of order 4 or 5 in S . We also notice  3

 
 
 A3   



Suppose G is not simple. Then it has at last one normal subgroup N  G,  
N  {e}. If N is maximal normal, we are done. If not, then  at least one normal  

hence the above process must end after a finite number of steps. Hence G will  
have a maximal normal subgroup.  

Example 1.27:  Let H, K be two distinct maximal normal subgroups of G  
94

then G = HK and H  K is a maximal normal subgroup of H as well as K.  

Solution: Since H, K are normal, HK is normal in G.  
Since H  HK  G and HK is maximal normal.  
We must have  HK = H or HK = G  

Hence HK = G (as HK  G  HK = H, HK = K  H = K).  
Again by isomorphism theorem  

HK  
H

K


H  K

K GThus,   
H  K H

G
H

Since H is maximal normal,   is simple  

Ki.e.,   is simple  
H  K  

 H  K is maximal normal in K  
Similarly, it is maximal normal inH.  

Example 1.28:  Show that (Q, +) has no maximal normal subgroup.  
QSolution: Suppose H is a maximal normal subgroup of (Q, +), then   is simple  
H

Qandso hasnonontrivialnormalsubgroupi.e., itwillhavenonontrivial subgroup  
H

Q(Q being abelian, all subgroups are normal). Thus   is a cyclic group of  
H

prime order p.  
QLet H + x    be any element  
H

Then   p(H + x) = H  
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
subgroup M where N M G. If M is maximal normal, we are done. If not, we  
continue like this. Since G is finite, it can have finite number of subgroups and  



Similarly, HK = K or HK = G  



p
Q  H  Q  H = Q, a contradiction.  
Hence the result follows.  

Definition: Let G be a group. A sequence of subgroups  
{e} = G  G  G  ........  G = G  0 1 2 n 

is called a normal series of G if G is a normal subgroup of Gi i+1  
 i = 0, 1  2,...,n – 1.  

...(1.3)  
,

Gi1  The factor (quotient) groups   ( i) are called the factors of the normal  
Gi  

series.  
Here each G is normal in G , although it may not be normal in G.Also  i i+1

(1.3) excluding G is called the length of the normal series.  

Note: Some authors prefer to call the above a subnormal series. It is then called  
a normal series if G is normal in G  i.  i 

If G is any group then  
{e} = G  G = G  0 1 

is an obvious example of a normal series.  
Case 25:  {I}  A  S is a normal series of S .  3 3 3

{I}  E  K  A  S is a normal series of S , where  4 4 4 4

E = {I, (12)(34)}, K = {I, (12)(34), (13)(24), (14)(23)}  4 

1.2.2 Composition Series  
Definition: Let G a group. A sequence of subgroups  

{e} = G  G  G  .......  G = G  0 1 2 n 

of G is called a composition series of G if  
(i) Each G is normal subgroup of G (i = 0, 1, ....... n – 1),  i i+1 
(ii) G  G for any i and  i i+1 

Gi1  (iii)   is a simple group  i.  
Gi  
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it is possible thatG = G for some i. Thenumber of distinct members of Equation  i i+1 

The above is expressed in short by saying that N = (G , G , ........., G )  0 1 n
is a normal series of G. If N and M are two normal series of G such that,  
N  M then M is called a refinement of N (a proper refinement if N  M).  

69




We notice that a composition series is a normal series (converse being not  
true) and that a composition series has no ‘Gaps’.  

A group can have more then one composition series.  
123

Case 26:  {0}  < 8 >  < 4 >  Z  
is a normal series of the group (Z, +), but it is not a composition series as < 4 >  
is not maximal normal in Z. Notice < 4 >  < 2 >  Z.  

Case 27:  Consider the quaternion group G. Then  
{1}  {1, –1}  {1, –1, i, – i}  G  
{1}  {1, –1}  {1, –1, j, – j}  G  
{1}  {1, –1}  {1, –1, k, – k}  G  

are all composition series of G. If we write the first series as G  G  G0 1 2  
 G then  

G GG 8
4

4
2

o = = 2,   o = = 2,   o = 2  
G

i.e., all the factorgroupsareofprimeorderandthushaveno trivialnormalsubgroups  
and hence are simple.  

The existence of a composition series is ensured by  
Theorem 1.35:  Every finite group G (with more than one element) has a  
composition series.  

Proof: We use induction on o(G).  
If o(G) = 2 then {e} = G  G = G is (only) composition series of G.  0 1 

G1  
G0  

GNotice   =  G and as o(G) = 2, a prime it is simple group and, therefore,  
{e}  

G1   is simple.  
G0  

show result holds for G. If G is a simple group then {e}  G is the composition  
series for G. Suppose G is not simple.  

Since G is finite, it has a maximal normal subgroup N  G and as o(N)  

{e}  N  N  ...  N  1 2 

Then the series  
{e}  N  N  ...  N  G will be a composition series for G.  1 2 

Hence the result holds.   Self - Learning  
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 
 
 G2   

 
   2 

 1   

 
   1 

 G0   

Suppose now that the result holds for groups with order less thano(G).We  

< o(G), result holds for N which then has a composition series, say,  



C : {e} = H  H  .........  H = G  2 0 1 m ...(1.5)  
of a group G are said to be equivalent if  a 1-1 onto mapping between the  
factors of Equation (1.4) and factors of Equation (1.5) such that the corresponding  
factor groups are isomorphic. In other words (1.4) and (1.5) will be equivalent  
if t = m and each factor group of Equation (1.4) is isomorphic to some factor  
group of Equation (1.5).  

Also in this case, we write C ~ C . It is easy to see that ~ is an equivalence  1 2
relation.  

The next theorem shows the equivalence of any two such composition series.  

1.2.3 Jordan-Holder Theorem  
Theorem 1.36 (Jordan-Hölder):  Let G be a finite group. Let  

C : {e} = N  N  ...  N  N = G  1 0 1 t–1 t 
C : {e} = H  H  ...  H  H = G  2 0 1 m–1 m 

...(1.6)  

...(1.7)  
be two composition series of G. Then m = t and there exists a permutation  

Ni   Hi  1  i  i of 0, 1, 2, ..., t–1 such that,    , 0  i  t–1   1 
Ni   Hi    

i.e., C and C are equivalent.  1 2 

Proof: Let o(G) = n. We use induction on n.  
If n = 2, we have seen (Theorem 1.35) G has onlyone composition series.  

Hence result holds in this case.  
Let now the result hold for groups with order less than o(G).  

Case (i) N = H . Consider the series  t–1 m–1
{e} = N  N  ...  N0 1 t–1  

{e} = H  H  ...  H = N0 1 m–1 t–1  

...(1.8)  

...(1.9)  

< o(G), the result holds for Equation (1.8) Equation and Equation (1.9), i.e.,  
Equation (1.8) and Equation (1.9) are equivalent.  

Thus,  
and also factors of Equation (1.8) and Equation (1.9) are isomorphic under  

some permutation.  

t – 1 = m – 1   t = m  

Nt  
Nt1  

Hm   G G
= = =Nt1   Hm   Hm  1   1  
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We have seen that a finite groupcan have more than one composition series.  

Then these are composition series for finite group N and as o(N )  t–1 t–1

Now,  

Then K is a finite group and has a composition series. Let  



{e} = K  K  ...  K = K be a composition series of K.  0 1 s 
Since N , H are normal in G, K = N H will be normal subgroup  t–1 m–1 t–1 m–1 

of G  
Again, as N , H are maximal normal subgroups of G  t–1 m–1 

N . H = G  t–1 m–1 

.

So,   K  N , K  Ht–1 m–1  

Consider now the series,  
{e} = K  K  .......  K = K  N  N = G ...(1.10)  0 1 s t–1 t 

{e} = K  K  .......  K = K  H  H = G ...(1.11)  0 1 s m–1 m 

We show these are composition series of G. For this we need show that  
Nt 1  

K
Hm  

K
1  and   are simple.  

Byisomorphism theorem  

Nt1   N Ht m    G1   1   =N  Ht1 m   Hm1   Hm  1   1  

Nt1   Hm1  
N  H Nt1 m1 t1  

G GSo,    and similarly    ...(1.12)  
N  Ht1 m   Hm  1  1  

Hm   G = is simple as Equation (1.7) is a composition series  
Hm   Hm  1  1  

of G  

Nt1   is simple  N  Ht1 m  1  

Nt1  i.e.,   is simple.  K

Hm  1   is simple.  K

Now Equation (1.10) and Equation (1.11) would be equivalent as  
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and N  H = K is maximal normal subgroup of N and Ht–1 m–1 t–1 m–1  
(Refer Example 1.27)  

Now,  

Similarly,  



N = G = H  t m

N Hm– 1   t – 1   

K

N H

H

2

1

2Ks– 1   

N 1

N = {e} = H  = K  0 0  0

they are equivalent. Hence they have same length, i.e., t = s + 2  
Similarly, (1.7) and (1.11) give m = s + 2  

 t = m  
Now   Equation (1.6) ~ Equation (1.10), Equation (1.10) ~ Equation  

(1.11)  (1.6) ~ Equation (1.11)  
Also   Equation (1.7) ~ (1.11)  thus Equation (1.6) ~ Equation (1.7)  

as ~ is an equivalence relation.  
Hence the theorem is proved.  

Example 1.29:  Find all the composition series of G = < a >, a cyclic group  
of order 6 and show they are equivalent.  

Solution: G = {e, a, a a , a , a }. Since o(G) = 6 has four divisors 1, 2, 3,  2 3 4 5

6, G will have four subgroups, namely {e}, G and < a > = {e, a , a }, < a >  2 2 4 3 

= {e, a }  3

Composition series of G will be  
{e}  < a >  G  3 

{e}  < a >  G  2 

   a3  

{e}  
G 6

2
Notice o   = = 3, o   = o(< a >) = 2 which are primes  3 

and so the factors are simple groups.  

G
 a   3 





a3  Again,    Z ,  3

 Z ,  2

 < a >  Z3 
2  {e}  

G
 a   2 

a2    < a >  Z2 
3  {e}  
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Now Equation (1.6) and Equation (1.10) are two composition series ofNt  
= G and applying case (i) to these (second last terms are equal = N ) we find  t–1

 
 
  a    3 

 
  
 

Example 1.30:  Find all the composition series of Z and show they are  30 



equivalent.  

other subgroups of Z are  30 
< 2 > = {0, 2, 4, 6, ... 28}  
< 3 > = {0, 3, 6, ..., 27}  

and   < 5 >, < 6 >, < 10 >, < 15 >  
Composition series will be  
{0}  < 15 >  < 5 >  G  
{0}  < 10 >  < 5 >  G  
{0}  < 6 >  < 3 >  G  

{0}  < 15 >  < 3 >  G  
{0}  < 10 >  < 2 >  G  
{0}  < 6 >  < 2 >  G  

G
Here each  , factor group is simple.  i1 

Gi  

o( 5 )   5  6
2

 5   
15   

For instance,   o = = = 3, a prime and so  
o( 15 )   15   

is simple.  
Equivalence of anytwo composition series can be shown as in the previous  

example.  
Theorem 1.37:  An abelian group G has a composition series iff G is finite.  

Proof: If G is finite, we have already shown that (Theorem 1.35) G has a  
composition series.  
Conversely, let G be an abelian group and suppose it has a composition series  

{e} = G  G  G  ........  G = G  0 1 2 k 

Gi  
then since   is an abelian simple group  i = 1, 2, ..., k  Gi1  

 Gi  Thus,   o = pi  Gi  

and by above problem then o(G) = p p ... p1 2 k  
Hence G is a finite group.  

Corollary: An infinite abelian group has no composition series.  
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Solution: Z = {0, 1, 2, ..., 29} addition modulo 30. Besides {0} and Z , the  30 30

 
 
 

it will be a group of prime order, say, pi  

    1 

0 1 2 n

Hi1  



such that, each H is a normal subgroup of H and  i i+1 

 i = 0, 1, 2, ..., n – 1.  
is abelian  Hi  

Also then, the series Equation (1.13) is referred to as solvable series of G.  
Thus G is solvable if it has a normal series (H , H , ..., H ) such that, its  0 1 n

factor groups are abelian.  
Case 28:  Any abelian group G is solvable. Since {e} = G  G = G is a normal  0 1 

Gseries for G where,    G is abelian.  
{e}  

Case 29:  Every cyclic group is solvable.  
Case 30:  S and S are solvable. Since {I}  A  S is a normal series for S3 4 3 3 3  

A3  S3  
A3  

where its factor groups   and  {I}  

So S is an example of a non abelian group that is solvable.  3 

{I}  K  A  S will serve as the required normal series for S . Notice  4 4 4 4

K4  
{I}  

that    K  o   = o(K ) = 4 and we know a group of order 4 is abelian.  44{I}  

Note: Any non abelian simple group is not solvable. If G is simple, it has no  
proper normal subgroup except {e}. So {e}  G is the only normal series of G  

G Gand as    G,   is not abelian as G is non abelian. Hence G is not solvable.  
{e}   {e}  

We have defined commutator subgroup G of a group G.  
Now let G be commutator subgroup of a group G.  
And let (G) = G = G be commutator subgroup of G and G be  (2) (3) 

commutator subgroup of G and so on then G is called the nth commutator  (2) (n) 

group.  
Theorem 1.38: A group G is solvable iff G = {e} for some positive  (n) 69

integer n.  
Proof: Let G be solvable. Then there exists a normal series  

{e} = G  G  G  .......  G = G  0 1 2 n 
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are abelian as these are of prime order.  

 K   4  
 

subgroup ofG.We use this to provide uswith an equivalent definitionof a solvable  



Gn1   Gn1  

i.e.,  

Again as  

G  G(2) 
n–1  

Gn  1  

Gn  2  

Continuing like this, we will get G  G = {e}  (n) 
0 

which gives G = {e}.  (n) 

Conversely, let G = {e}. Consider the series  (n) 

{e} = G  G  G  ...  G G  G = G  (n) (n–1) (n–2) (2) (1) (0) 

which will be a normal series for G, where  

G(i)   G(i)  

(G   )  (i) = is abelian  i  
G(i  1)  

and, of course, G G  i  (i) (i–1) 

 G is solvable  



Theorem 1.39:  A subgroup of a solvable group is solvable.  
9

Proof: Let H be any subgroup of a solvable group G.  
Since, G is solvable, G = {e} for some positive integer n.  (n) 

Continuing like this, we get H  G = {e}  (n) (n) 

 H = {e}  (n) 

 H is solvable.  
Theorem 1.40:  Homomorphic image of a solvable group is solvable.  
Proof: Let f : G  H be an onto homomorphism, where G is solvable. Then   
a positive integer n such that, G = {e}  (n) 

Let a, b  G be any elements, then f (a), f (b)  H  
 f (a) f (b) (f (a)) (f (b))  H  –1 –1 

Also,   a, b  G  aba b  G and as  –1 –1 

f (aba b ) = f (a) f (b) (( f (a)) (f (b))  H, we find  –1 –1 –1 –1 

f (G)  H as aba b  G  –1 –1 
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 (G)  G  n–1  

is abelian, we get G  G  G  Gn–1 n–2 
(2) 

n–2  

That solvability is hereditary follows by.  

Now, H  G  H  G  (H)  (G), i.e., H  G(2) (2)  



So   H = f (G)  
 (H) = ( f (G)) = [ f (G)] = f (G) =  f (G )  (2)

H = f (G )  (2) (2)or that  
Continuing like this we get  

H = f (G ) = f ({e}) = {e } where e is identity of H  (n) (n)
1 1 

i.e., H is solvable.  
Theorem 1.41:  Quotient group of a solvable group is solvable.  
Proof: Follows from above as a quotient group is a homomorphic image of the  
group under the natural homomorphism.  

{e} = N  N  ...  N  N = G be a solvable series of G then  0 1 n–1 n 
show that  

Solution: Let us put H = N  H, i = 0, 1, 2, ..., n.  i i 

Then we show that  
{e} = H  H  H  .......  H  H = H  0 1 2 n–1 n 

is a solvable series for H.  
...(1)  

 Since N N we find N  H N  H  i i+1 i i+1 

i.e.,   H H i = 0, 1, 2, ..., n – 1  i i+1 

Hi  We show now   is abelian   i = 0, 1, 2, ..., n – 1  
Hi1  

NDefine a map   : Hi+1   , such that,  i1 
Ni  

(x) = xN (i = 0, 1, 2, ..., n – 1)  i 

x  H = N  H  x  N , x  H  i+1 i+1 i+1

Ni1  
Thus xN   i and  is well defined  Ni  

Now (xy) = xyN = xN yN = (x) (y) shows  is a homomorphism  i i i 

Again, x  Ker  (x) = Ni  
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Example 1.31:  Let H be a subgroup of a solvable group G. If  

{e} = N  H  N  H  ...  N  H  N  H = H is a solvable  0 1 n–1 n 
series of H. Hence show that H is solvable.  



Hi1  (H )   i+1 Ker   

Hi1  i.e.    (H )  i+1Hi  

Nwhere (H ) is a subgroup of  , which is abelian and so (H ) is  i+1
i1 

i+1Ni  

Hi1  abelian and hence because of the above isomorphism   is abelian.  
Hi  

Thus series Equation (1) is a solvable series of H.  
Example 1.32:  Let G be a solvable group and suppose H  {e} is a subgroup  
of G then show that H  H.  
Solution: Suppose H = H, then  

H = (H) = H = H  {e}  (2) 

If H = H, then H = H = H  {e}  (n) (n+1) 

Thus by induction H  {e}  r  1  (r) 

But G solvable  H is solvable  H = {e} for some r  1, a contradiction.  (r) 

Hence H  H.  
Example 1.33:  Show that a simple group is solvable if and only if it is abelian.  

Solution: Let G be a simple group. Since G G we find either G = {e} or  
G = G. If G is solvable then G  G so G = {e}. Thus G is abelian.  

Conversely, if G is abelian then G = {e} and so G is solvable.  
9

Example 1.34:  Show that S (n  5) is not solvable.  n 

Hence S is not solvable for n  5.  n 

GTheorem 1.42:  Let N be a normal subgroup of G such that, N and   are  
N

solvable then G is solvable.  
Proof: Let   {e} = N  N  ...  N = N  0 1 k 

G2   Gn  

...(1.14)  

...(1.15)  
G
N

G Gn0 and   {N} =   =N N N N
120
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Solution: If S is solvable then A is solvable. But A (n  5) is simple. Thus by  n n n 
above problem A is abelian which is not true. [Notice (123)(234) (234)(123)].  n 

G
 .......   1 1 



which gives G G  i  i i+1 

Again by Third theorem of Isomorphism we have  

G G /N  i1 i1
Gi   G /N  i

Gi1  
Gi  

G /N  i1
G /N  i

Since   is abelian, we find   is abelian  i. Consider now the  

series  
{e} = N  N  ...  N = N = G  G  ...  G = G  0 1 k 0 1 n 

then it satisfies all conditions in the definition of a solvable series and hence it is  
required solvable Equation of G showing thereby that G is solvable.  

9

When we consider the series Equation (1.15), it is clear that G , G , ...,  0 1
are all subgroups of G containing H.  
Note: We thus conclude that a group G with a normal subgroup N is solvable  
if both N and G/N are solvable.  
Example 1.35:  Show that a finite p-group is solvable, where p is prime.  
Solution: Let G be the given finite p-group, then o(G) = p for some n  0.  n 

If n = 1, then G is a group of prime order and thus it is abelian and so G  
50

is solvable.  
Suppose now n > 1. We use induction on n. Suppose that the result holds  

for all groups with order p where m < n, then o(Z(G)) > 1.  m 

Let o(Z(G)) = p , t  1 (Notice o(Z(G)) | o(G) = p )  t n 

pn  

pt  
 GThus,   o = = p = p where s < n  n– t s 

GSince result holds for groups with order p where m < n we find  m 
Z (G)  

is solvable.  
Also Z(G) is solvable as it is abelian.  
Hence by above theorem G is solvable.  

Example 1.36:  Show that a solvable group contains at least one normal  
abelian subgroup H.  
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Now G  {e} as if G = {e} then G is abelian, which is not true. Hence  
G = {e}, n  1  (n) 

Let H = G then H is a subgroup of G.  (n–1) 

and as H = G = {e}, we find H is abelian and also as G is normal  (n) (n–1) 

subgroup of G, we find H is the required subgroup.  
Example 1.37:  Show that a group of order pq is solvable, where p, q are  
primes.  
Solution: Let o(G) = pq. If p = q then o(G) = p and thus G is an abelian group.  2 

Hence G is solvable. Let now p > q. Then number of Sylow  
p-subgroups of G is 1 + kp where (1 + kp) | q, i.e., 1 + kp = 1 or q.  

If 1 + kp = q then kp = q – 1  p | (q – 1) which is not true, as p > q.  
Hence 1 + kp = 1 and there exists a unique normal Sylow p-subgroup, say  

9

H, of order p.  
Since p is prime, H will be cyclic and so abelian and hence solvable.  

G
H

G
H

G
H

Again o   = q    is abelian    is solvable  G is solvable.  

Example 1.38:  Show that the following two statements are equivalent:  
(a) Every group of order p q , where p, q are primes, is solvable.  m n

(b) Simple groups of order p q are cyclic groups of order p or q.    

Solution: (a)  (b)  
Let G be a simple group of order p q . Since G is normal in G, we find   

either G = {e} or G = G.  
Since G is solvable, by (a) G = {e} and so G is abelian.  
Let H be a Sylow p-subgroup of G. Then H will be normal as G is abelian  

and o(H) = p  

Again, G simple means either H = G or H = {e}  
If H = G, there  = 1,  = 0 and so G is cyclic of order p  
If H = {e} then if K is sylow q-subgroup of G, it will be normal and as  

before, either, K = G or K = {e}  
If K = G, then  = 1,  = 0 and so G is cyclic of order q.  
If K = {e}, we get the case where  = 0,  = 0 forcing G = {e} which  

is not true as G is simple. Hence the result follows.  
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, . By (b), each factor would, therefore, be cyclic and so abelian. Hence G  
is solvable.  
Note: There is a famous theorem of Burnside in which it is proved that every  
group of order p q where p, q are primes, is solvable.  m n 

1.3.1 Nilpotent Groups  
Definition I:  A group G is called nilpotent if it has a normal series  

{e} = G  G  G  ......  G = G  0 1 2 n 

Gi   Gsuch that,    Z    i = 1, 2, ..., n  
Gi    Gi  1

Definition II:  We first define what we mean bynth centre of a group. Let G be  
a group and Z(G) be its centre. We call Z(G) the first centre of G and put  

G G GZ(G) = Z (G). Consider now the group  1 , then centre Z   of  
Z(G)   Z(G)   Z(G)  

Gis a normal subgroup of  
Z(G)  

 G GSo,   Z 
Z (G)   Z (G)  11

G
K

HSince any normal subgroup of   is of the form   for a unique normal  
K

G His of the type  
Z (G)  1

subgroup H of G, we find any normal subgroup of  
Z (G)  1

where H   G
We write H = Z (G) (Called second centre of G)  2

Z (G)  2 
Z (G)  1

GThen Z (G) G such that,  Z  2 =
Z (G)  1

Continuing like this we get Z (G) G, (called nth centre)  n

Z (G)  n Gsuch that,   = Z   n > 1  
Z (G)  n1 Z (G)  n1

Let us write Z (G) = {e}, and thus  0

Self - Learning  
Material  60  

 
 
   1 

 
 
 

  

 
 
 

 
 
 



the smallest m such that, Z (G) = G is called the class of nilpotency of G.  m

We first show the equivalence of the two definitions.  
Definition I  Definition II  

Let G be nilpotent according to Definition I. Then G has a normal series  
68

{e} = G  G  G  ...  G = G  0 1 2 n 

Gi   Gsuch that,    Z    i = 1, 2, ..., n  
Gi    Gi  1

Let i = 1, then  

G1  
G0  

G
 Z  

If x  G be any element, then  1 

G1    GG x   0  G x  Z  0 G0   G

G G x . G y = G yG x  G y   0 0 0 0 0 G0  

 G xy = G yx  0 0 

 xy x y  G = {e}  –1 –1 
0 

 xy = yx  y  G  
 x  Z(G) = Z (G)  1

Hence, G  Z (G)  1 1

Let, i = 2, then  

 G2  
G1  

G
 Z  

G

If x  G be any element then proceeding as above we get  2 
xy x y  G–1 –1 

1  

and as  G  Z (G)  1 1

xy x y  Z (G)  y  G  –1 –1 
1
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 x  Z (G)  2Hence, G  Z (G)  2 2

Continuing like this, we get  
G  Z (G)  i = 1, 2, ..., n  i i

Hence, G = G  Z (G)  n n

or that G is nilpotent according to Definition II.  
Definition II  Definition I  
Suppose G is nilpotent of class n then Z (G) = G. Consider the series  n

{e} = Z (G)  Z (G)  Z (G)  .......  Z (G) = G  0 1 2 n

 Z (G)  i Gwhich is a normal series and   = Z  
Z (G)  i1 Z (G)  i1  

i.e., G is nilpotent according to Definition I.  
Case 31:  An abelian group is nilpotent. Since G abelian  

 G = Z(G), i.e., Z (G) = G.  1

Also then all cyclic groups will be nilpotent.  

G, the quaternion group. Then  
G = {1}  G = {1, – 1}  G = {1, – 1, i, – i}  G  0 1 2 

G G
G

G
G

Go oand   = 2,   = 4    , are abelian  
G G2  1

G G G G G  Z

Z

=

=

, Z   = . Also  Z   = {G , G } is  0(1) 0(–1)
G G G G2   G1

abelian  

Thus   G G  and so G is nilpotent but not abelian.  
G G0  

Case 32:  A finite p-group is nilpotent.  
Theorem 1.43:  Every nilpotent group is solvable. Converse is not true.  
Proof: Let G be a nilpotent group, then G has a normal series  

9 68

{e} = G  G  G  ...  G = G  0 1 2 n 
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Gi1  
Hence G is solvable.  

holds for no m.  
(In fact S is not nilpotent, for n  3).  n 

Theorem 1.44:  Any subgroup of a nilpotent group is nilpotent.  
Proof: Let H be a subgroup of a nilpotent group G. Since G is nilpotent, there  
exists a normal series  

{e} = G  G  G  ......  G = G  0 1 2 n 

 Gi   Gsuch that,    Z   , i = 1, 2, ..., n  
Gi   Gi  1

Consider the series  
{e} = G  H  G  H  G  H  ...  G  H = G  H = H  0 1 2 n 

It is easy to see that G  H G  H  i. We show  
50

i–1 i 

 G  H  i G  H  
G  H  i1 

 Z   ,  i = 1, 2, ..., n which would establish  
Gi1   H

that H is nilpotent.  

G  H  i Let (G  H)x   i–1 be any element  Gi1   H  

then x  G  H  x  G and x  H.  i i 

G  H  
Gi1  

Now, (G  H)x  Z  i–1  H

G  H  
if (G  H)x commutes with all elements of  i–1 Gi1   H  

i.e.,  

i.e.,  
i.e.,  
i.e.,  

(G  H)xy = (G  H)yx  i–1 i–1 

xy x y  G  H  y  G  H  –1 –1 
i–1 

xy x y  G and xy x y  H  y  G  H  –1 –1 
i–1 

–1 –1 
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(G  H)x (G  H)y = (G  H)y (G  H)x  y   i–1 i–1 i–1 i–1 
G  H  

Now, x  H, y  H  xy x y  H  –1 –1 

i–1   i–1    



Gi1   Gi  

 G x G y = G y Gi–1 i–1 i–1 i–1  

 G xy = G yx  i–1 i–1

x  y  G  

 xy x y  G  y  G  –1 –1 
i–1 

and hence over assertion is proved.  
Theorem 1.45:  Homomorphic image of a nilpotent group is nilpotent.  
Proof: Let  : G  H be an onto homomorphism and suppose G is nilpotent.  
Then there exists a normal series  

{e} = G  G  G  .......  G = G  0 1 2 n 

 Gi   Gsuch that,    Z    i = 1, 2, ..., n  
Gi   Gi  1

(e) = (G )  (G )  (G )  ...  (G ) = (G) = H is the required  0 1 2 n

 (G )  i (G)  
(G )  i1

normal series for H where    Z  
(Gi1  )

It is easy to see that (G ) (G )  i and we leave it for the reader  i–1 i
to try and prove it.  

Let (G ) = H i = 1, 2, ..., n  i i 

 Hi   Hwe show    Z  
Hi   H1   i

Hi  Let H x   i–1 be any element,  
Hi1  

 Hwe have to show that  H x  Z  i–1 H i  

Hi.e.,   (H x) (H y) = (H y) (H x)  H y   i–1 i–1 i–1 i–1 i–1 

H xy = H yx  i–1 i–1 

Hi1  

i.e.,  
i.e.,   xy x y  H–1 –1 

i–1    y  H  

y  H  y = (G)   b  G, such that, (b) = y  
120
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Now, x  H  x  (G )   a  G such that, (a) = x  i i i 



and so  G a . G b = G b Gi–1 i–1 i–1 i–1  a
i.e.,  
i.e.,  
i.e.,  

G ab = G ba  i–1 i–1 

ab a b  G–1 –1 
i–1  

(ab a b )  (G ) = H.  –1 –1
i–1

Hence the result follows.  
Theorem 1.46:  Any quotient group of a nilpotent group is nilpotent.  
Proof: Follows from above theorem as any quotient group of a group is its  
homomorphic image.  

S3  Converse is, however, not true as   is abelian and so nilpotent, but S3  A3  

is not nilpotent.  
Example 1.39: If H and K are nilpotent groups then show that H × K is also  
nilpotent.  
Solution: Let H and K be nilpotent. Then  normal series  

 Hi   H{e } = H  H  H  .......  H = H such that,  1 0 1 2 n 

i = 1, 2, ..., n  

 Z  

 Z  

Hi   H1   i

 Ki   K{e } = K  K  K  .......  K = K such that,  2 0 1 2 n Ki    Ki  1

We can repeat terms in the series with lesser terms.  
Consider the series  
{e } × {e } = H × K  H × K  H × K  .......  H × K = H × K  1 2 0 0 1 1 2 2 n n 

Then one can check that this is a normal series in which  

 H  Ki i  
H  Ki1 i  

H  K  
 Z  

H  K1 i  1 i  

H  Ki i  
H Ki1 i1  

Let (H × K ) (h, k)   i–1 i–1 be any element  


 H  K  then (H × K ) (h, k) will belong to  Z  i–1 i–1 H  K1 i1  i
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i.e., if  h x h x  H–1 –1 
i–1  

ky k y  K–1 –1 
i–1  

which is true.  

We leave the first part (that H × K H × K ) for the reader to try  i i i+1 i+1
as an exercise.  
Example 1.40:  If H is a proper subgroup of a nilpotent group G then show  
that H is a proper subgroup of N(H).  
Solution: Since G is nilpotent, it has upper central series  

{e} = Z (G)  Z (G)  Z (G)  .......  Z (G) = G  0 1 2 n

Then we get  
Z (G)  H  Z (G)  ...  i i+1 

 Z (G)  i1
Z (G)  i 

GAgain since   = Z  
Z (G)  i

Z (G)  i1 is abelian.  
Z (G)  i 

Let g  Z (G) and hH be any elements, then  i+1

Z (G)  i1h  H  Z (G) and so Z (G)g, Z (G)h   i+1 i i and thus  
Z (G)  i 

Z (G)g Z (G)h = Z (G)h Z (G)g  i i i i

 Z (G)gh = Z (G)hg  i i

 gh g h  Z (G)  H  –1 –1 
i

 gh g  H  g  Z (G), h  H  –1 
i+1

 gH g  H  g  Z (G)  –1 
i+1

i.e.,   gH g = H  –1  g  Z (G)  i+1

 any g  Z (G) is such that g  N(H)  i+1

or that  Z (G)  N(H)  i+1
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3. Define subgroup.  
4. When a group G is called cyclic?  
5. When maximal normal subgroup of G no exists normal subgroup of K?  
6. When can you say that a group of order pq is solvable?  
7. What is a nilpotent group?  

1.4 ANSWERS  TO ‘CHECK YOUR PROGRESS’  

1. A group satisfies the following postulates.  
(i) Associativity: a  (b c) = (a b) c, for all a, b, c  G  * * * *
(ii) Existence of Identity:   an element e  G, such that,  

a e = e a = a for all a  G  * *
(e is then called identity)  

(iii) Existence of Inverse : For every a  G,  a  G (depending upon  
a) such that,  
a a = a a = e  *

2. If the set G is finite (i.e., has finite number of elements) it is called a finite  
group otherwise, it is called an infinite group.  

3. A non empty subset H of a group G is said to be a subgroup of G if H  
forms a group under the binarycomposition ofG.  

4. A group G is called a cyclic group if  an element a G such that every  
element of G can be expressed as a power of a.  

5. A normal subgroup H of a group G is called a maximal normal subgroup  
of G if H  G and there exists no normal subgroup K of G such that, H   
K  G.  

6. Agroup of order pq is solvable if p and q are primes.  
7. A group G is called nilpotent if it has a normal series  

{e}  G  G  .....  G  G such that,  0 1 n 

Gi   G Z  
Gi1   Gi1  
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and existence of inverse.  
 Let G be a group.Asequence of subgroups  

{e} = G  G  G  ........  G = G  0 1 2 n 

is called a normal series of G if G is a normal subgroup of G ,  i i+1
 Agroup G is called a cyclic group if  an element a  G, such that every  

element of G can be expressed as a power of a. In that case a is called  
generator of G. We express this fact by writing G = < a > or G = (a).  

 Let G a group.Asequence of subgroups  
{e} = G  G  G  .......  G = G  0 1 2 n 

of G is called a composition series of G if  
(i) each G is normal subgroup of G (i = 0, 1, ....... n – 1),  i i+1 

(ii) G  G for any i and  i i+1 

(iii) is a simple group  i.  

 If G is a finite group, then order of any element of G divides order of G.  
 A normal subgroup H of a group G is called a maximal normal subgroup  

of G if H  G and there exists no normal subgroup K of G such that, H  
 K  G.  

 A group G is called nilpotent if it has a normal series  
{e} = G  G  G  ......  G = G  0 1 2 n 

such that,  i = 1, 2, ..., n  

 A group G is called nilpotent if it has a normal series  
{e} = G  G  G  ......  G = G  0 1 2 n 

1.6 KEY  TERMS  

 Finite group: If a group has finite number of elements then it is called finite  
group.  

 Subgroup: A non-empty subset of a group is said to be a subgroup if it  
forms a group under the binary composition of the group.  

 Cyclic group: A group G is called a cyclic group if  an element a   
G, such that every element of G can be expressed as a power of a. In  
that case a is called generator of G. We express this fact by writing G  
= < a > or G = (a).  
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EXERCISES  

Short-Answer Questions  

1. Define a group.  
2. Specify the term cycle group.  
3. What is the difference between normal and subnormal series?  
4. Define the term composition series?  
5. State the Jordan-Holder theorem.  
6. Define the term solvable group.  
7. What can you say about the nilpotency is an abelian group?  

Long-Answer Questions  

1. Check whether the following systems form a group (a semi-group) or not  
(a) G = Set of rational numbers under composition  defined by a  * *

ab  b =   , a, b  G  
2

(b) G = {± 1, ± i}, where i =  1 under multiplication.  

(c) G = {1, w, w }, where w is cube root of unity under multiplication.  2

(d) Set of all 2 × 2 matrices over integers under matrix multiplication.  

cos   sin  
(e) Set of all matrices of the form   ,   R, under matrix  

– sin  θ cos θ  
multiplication.  

(f) Q = Set of all rational numbers under  where a b = a + b – ab.  * *
(g) G = {2, 4, 6, 8} under multiplication modulo 10.  

(h) G = {1, 2, 3} under multiplication modulo 4.  

(i) G = {(a, b) | a, b  Z} under  defined by  *
(a, b) (c, d) = (ac + bd, ad + bc).  *

2. Let G be the set {± e, ± a, ± b, ± c} where  

1
101

0
0
1

1
0

0 0
1

1    0
1

1
0

e =   , a =   , b =   , c =   .
1    0

Show that G forms a group under matrix multiplication.  
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( e) which is its own inverse.  
6. (a) Show that the power set of a finite set X is a finite semi group under  

intersection, has identity and all elements are idempotent.  
(b) Show that a finite semi-group G with identity is a group iff G contains  
only one idempotent.  

7. Show that a monoid is a group if and only if cancellation laws hold in it.  
8. Let G be the Quaternion group. Find centre of G. Find also the normalizer  

of i in G.  
9. If H is a subgroup of G, show that  

g Hg = {g hg | h  H} is a subgroup of G.  –1 –1

Show further that g Hg is abelian if H is abelian.  –1

10. Let G be the group of all 3 × 3 invertible matrices over reals. Show that  
1
0
0

a
1
0

b
c
1

H =   a, b, c   R is a subgroup of G.  

11. If N(H) be the normalizer of H in a group G then show that Z(G)  N(H),  
where H  G.  

12. If o(G) = 6 and H  K are subgroups of G each of order 2 then show  
that HK cannot be a subgroup of G. Show also that G cannot have two  
subgroups of order 3.  

13. If a finite group possesses an element of order 2, show that it possesses  
an odd number of such elements.  

Show that G is cyclic, generated by a. Hence show that a group of order  
n is cyclic iff it has an element of order n.  

15. Show that a subgroup ( {e}) of an infinite cyclic group is infinite.  

16. If G is a cyclic group of order p, a prime then show that any non identity  
element of G is of order p.  

17. Find all the subgroups of the quaternion group G and show that  no two  

18. Show that a finite cyclic group with three or more elements has even  
member of generators.  

19. Write down all the 12 subgroups of Z . How many generators it has?  60
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14. Show that every element in U is its own inverse and hence U is not  8 8 
cyclic and let G be a finite group. Let a  G be such that o(a) = o(G).  

62

non-trivial subgroups H, K of G such that, H  K is identity only.  



maximal sbgroups of S .  3

22. Let G be a finite p-group of order p . Show that it has a normal series  n

{e} = G  G  ...  G = G  0 1 n 

where o(G ) = p i = 0, 1, 2, ..., n  i
i 

23. Show that a simple group is solvable iff it is cyclic.  

24. If all proper subgroups of a non solvable group G are solvable, show that  
G = G. (A group G such that G = G is called a perfect group).  

25. Show that a finite p-group is nilpotent.  

26. Suppose that in a non abelian simple group, {e} is the onlyconjugate class  
whose order is prime power. Show that a group of orderp q (p, q primes)  m n 

is a solvable group.  

27. Show that every sylow subgroup of a nilpotent group G is normal in G.  
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2.0 INTRODUCTION  

In mathematics, a module is one of the fundamental algebraic structures used in  
abstract algebra.Amodule is an additive abelian group. In a simple module the  
submodules are themodule itself and the module that consists of the element zero.  

A canonical, normal, or standard formof a mathematical object is a standard  
wayof presenting that object as a mathematical expression. Often, it is one which  
provides the simplest representationof anobjectandwhichallows it tobe identified  

from subfield to subfield. In most fields, a canonical form specifies a unique  
representation for every object, while a normal form simply specifies its form,  
without the requirement of uniqueness.  

Linear transformation isa function between two vector spaces that preserves  

these twoconditionssimultaneouslyarecalledsimilaritytransformations.Anilpotent  
transformation is one with a power that is the zero map.AJordan block is a matrix  
having zeros everywhere except along the diagonal and superdiagonal with each  
element of the diagonal consisting of a single number and each element of the  
superdiagonal consisting of a 1.AJordan form consists of one or more Jordan  
blocks.  
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2.7.3 Schur’s Lemma  

2.8 Answers to ‘Check Your Progress’  

in a unique way.The distinction between ‘Canonical’and ‘Normal’forms varies  

theoperationsofvectoradditionandscalarmultiplication.Transformationssatisfying  



2.1 OBJECTIVES  
After going through this unit, you will be able to:  

 Know about the similarityof linear transformations  
 Define invariant subspaces and reduction to triangular form  
 Describe thenilpotent transformations, index ofnilpotencyand invariantsof  

nilpotent transformations  
 Analyse the primarydecomposition theorem  
 Explain about the Jordan blocks and Jordan forms  
 Elaborate on the cyclic modules  
 Understand the simple modules and schur’s lemma  
 State and prove fundamental structure theorem for modules  

2.2 SIMILARITY  OF LINEAR TRANSFORMATIONS  

In mathematics and computer science, a ‘Canonical, Normal’, or ‘Standard  
Form’ of a mathematical object is a standard way of presenting that object as a  

96

mathematical expression.Often, it isonewhichprovidesthesimplest representation  

between ‘Canonical’and ‘Normal’ forms varies from subfield to subfield. In most  
fields, a canonical form specifies a unique representation for everyobject, while a   
normal formsimplyspecifies its form,without the requirement ofuniqueness. The  
canonical form of a positive integer in decimal representation is a finite sequence  

which an equivalence relation is defined, acanonical form consists in the choice of  
a specific object in each class. For example:  

 Therowechelon form is acanonical form, whenoneconsiders asequivalent  
a matrix and its left product byan invertible matrix.  

In computer science,and more specificallyin computeralgebra, whenrepresenting  
mathematical objects in a computer, there are usually many different ways to  
represent the same object. Acanonical form is a representation such that every  
objecthas aunique representation (with canonicalizationbeingtheprocess through  
which a representation is put into its canonical form). Thus, the equality of two  
objectscaneasilybetestedbytestingtheequalityof theircanonical forms.Canonical  
forms frequentlydepend on arbitrarychoices (like ordering the variables), which  
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of an object and which allows it to be identified in a unique way. The distinction  

of digits that does not begin with zero. More generally, for a class of objects on  

 Jordan normal form is a canonical form for matrix similarity.  



Given a set S of objects with an equivalence relation R on S, a canonical  
form is given by designating some objects of S to be canonical form, such that  
everyobject under consideration is equivalent to exactly one object in canonical  
form. In other words, the canonical forms in S represent the equivalence classes,  
once and onlyonce. To test whether two objects are equivalent, it then suffices to  
testequalityon theircanonical forms.Acanonical formthusprovidesaclassification  
theorem and more, in that it not only classifies every class, but also gives a  
distinguished (canonical) representative for each object in the class.  

set S is a mapping c: S  S such that for all s, s , s  S:  1 2 

1. c(s) = c(c(s)) (Idempotence),  
2. s R s if and only if c(s ) = c(s ) (Decisiveness), and  1 2 1 2

3. s R c(s) (Representativeness).  
In practical terms, it is often helpful to be able to recognize the canonical  

forms. There is also a practical, algorithmic question to consider: how to pass  
from a given object s in S to its canonical form s*? Canonical forms are generally  
used to make operating with equivalence classes more effective. For example, in  
modular arithmetic, the canonical form for a residue class is usually taken as the  
least non-negative integer in it. Operations on classes are carried out bycombining  
these representatives, and then reducing the result to its leastnon-negative residue.  
Theuniqueness requirement is sometimes relaxed, allowing the forms tobe unique  
up to some finer equivalence relation, such as allowing for reordering of terms (if  
there is no natural ordering on terms).  

A canonical form may simply be a convention, or a deep theorem. For  
example, polynomials are conventionally written with the terms in descending  
powers: it is more usual to write x + x + 30 than x + 30 + x , although the two  2 2

forms define the same polynomial.  
Definition: Let V and U be two vector spaces over the same field F, then a  
mapping T : V  U is called a homomorphism or a linear transformation if  

T(x + y) = T(x) + T(y) for all x, y  V  
T(x) = T(x)  F  

One can combine the two conditions to get a single condition  
T(x + y) = T(x) + T(y) x, y  V; ,  F  

It is easy to see that both are equivalent. If a homomorphism happens to  
be one-one onto also we call it an isomorphism, and say the two spaces are  
isomorphic. (Notation V  U).   Self - Learning  
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Formally, a canonicalization with respect to an equivalence relationR on a  



are clearly linear transformations.  
Case 2: For a field F, consider the vector spaces F and F . Define a map  2 3

T : F  F , by  3 2

T(, , ) = (, )  
then T is a linear transformation as  
for any x, y  F , if  x = ( ,  ,  )  3

1 1 1

y = ( ,  ,  )  2 2 2

then   T(x + y) =  T( +  ,  +  ,  +  ) = ( +  ,  +  )  1 2 1 2 1 2 1 2 1 2

= ( ,  ) + ( ,  ) = T(x) + T(y)  1 1 2 2

and   T(x) =  T( ( ,  ,  )) = T( ,  ,  )  1 1 1 1 1 1

= ( ,  ) = ( ,  ) = T(x)  1 1 1 1

Case 3: Let V be the vector space of all polynomials in x over a field F. Define  
T : V  V, such that,  

dT(f (x)) =  

T(f + g) =  

f (x)  
dx  
d d dthen   (f + g) =   f  g = T( f ) + T(g)  
dx   dx   dx  

d dT(f ) =   (f ) =  f = T(f )   
dx   dx  

shows that T is a linear transformation.  
In fact, if  : V  V be defined such that  

x
( f ) =   f (t) dt  0  

then  will also be a linear transformation.  
Case 4: Consider the mapping  

T : R  R, such that,  3 

then T is not a linear transformation.  
Consider, for instance,  

T((1, 0, 0) + (1, 0, 0)) = T(2, 0, 0) = 4  
T(1, 0, 0) + T(1, 0, 0) = 1 + 1 = 2.  
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A  BAB ,  –1

where A and A are called similar matrices. Similarity transformations  
transform objects in space to similar objects.  
Hypercompanion Matrix: Let {p()} be one of the elementary divisors of the  q 

characteristic matrix of some-matrix and C(p) be the companion matrix ofp().  
The hypercompanion matrix H associated with the elementarydivisor {p()} is  q 

givenby  

C( p) M 0 ...  
...  

0
0

0
00

...  
0

C ( p) M
...  
0
0

... ...  ...   ...  
H = c(p)   If q = 1  H =   if q >1  0

0
... C( p)  
...  

M
0 0 C( p)  

where M is a matrix of the same order as C(p) having the element 1 in the  
lower left-hand corner and zeros elsewhere. The diagonal of the hypercompanion  
matrix H consists of q identical C(p) matrices. There is a continuous line of 1s just  
above the diagonal.  
Note: Every square matrix A over F is similar to the direct sum of the  
hypercompanion matrices of the elementary divisors overF of I – A.  
Jacobson Canonical Form: The Jacobson canonical form of a square matrixA  
consistsof thedirect sumofthehypercompanionmatricesoftheelementarydivisors  
over F of I – A, i.e., the matrix J,  

H 0 0
0

...  

...  
0
0

0
0

1

0 H2  

J  ... ...  ... ...  ...   ...  
00

102

0
0
0

0
0

... Hk –1  

...   0 Hk   

where H is the hypercompanion matrix associated with the i-th elementary  i 

Jordan Canonical Form:Let the elementarydivisors of the characteristic matrix  
of a matrix A be powers of linear polynomials. Then the canonical form is the  
direct sum of hypercompanion matrices of the form  
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divisor.  

 



a1  0 0 0 ...   0

as the Jordan or classical canonical form.  
 Let F be the field in which thecharacteristic polynomialof amatrixA factors  

into linear polynomials. Then A is similar over F to the direct sum of  
hypercompanion matrices of the form in Equation (2.1), each matrix  
corresponding to an elementary divisor (  – a ) .  i

q 

 An n-square matrix A is similar to a diagonal matrix if and only if the  
elementary divisors of I – A are linear polynomials, i.e., if and only if the  
minimum polynomial ofA is the productof distinct linear polynomials.  

Rational Canonical Form: Let A be an n×n matrix A and let C , C , C , ..., Ci i i+1 n  

be the companion matrices of the non-trivial invariant factors ofI – A. Then the  
rational canonical form for all matrices similar toA is  

C 0 ...   0
0

i

0 C ...  i1 S   
... ... ...  ..  

...  0 0 C

In other words, the rational form is the direct sum of the companion matrices  
C , C , C , ..., C :  i i i+1 n 

S = diag (C , C , C , ..., C )  i i i+1 n 

 Everysquare matrix A is similar to thedirect sum of thecompanion matrices  
of the non-trivial invariant factors ofI – A.  

Second Canonical Form: Given an n×n matrix A, let be the companion matrices  
of the elementarydivisors ofI – A. Then a canonical form for all matrices similar  
to A is  

C 0 ...   0
0

i

0 C ...  i1 S   
... ... ...  ...  

...  0 0 C

We can say that, the form is the direct sum of the companion matrices  
C , C , C , ..., C ,  i i i+1 n 

S = diag (C , C , C , ..., C )  i i i+1 n 
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corresponding to the elementary divisor {p()} = (  – a ) . The diagonal  q 
i

q 

contains q identical a ‘s. This special case of the Jacobson canonical form is known  i
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TRIANGULAR FORM



TRIANGULAR FORM  

Definition: Let T be a linear operator on a vector space V. If W is a subspace  
of V such that, T(W)  W, we say W is invariant under T or is T-invariant.  
Case 5: Since T(0) = 0 and T(V) = V, both zero subspace and V are invariant  
subspaces of V.  
Case 6: Let v  Ker T then T(v) = 0  Ker T  Ker T is invariant subspace  
of V. Also w  ImT  w = T(v)  Tw = T(Tv), Tv  V  Tw  ImT.  

 ImT is an invariant subspace of V.  
Case 7: Let f (t) be any polynomial. Let v  Ker (f (T)) then f (T) v = 0  

Since  

Thus,  

f (t) . t = t f(t)  
f (T)T = Tf(T)  

f(T) Tv = Tf(T) v = 0  
Tv  Ker f (T)  

 Ker f (T) is invariant under T.  
Example 2.1: Let T be a linear operator on R , the matrix of which in the  2

standard ordered basis is  

1
2

–1  A =  
2

Prove that the only subspaces of R invariant under T are R and  2 2 

zero subspaces.  
x –1   1Solution: Characteristic polynomial of A (or T) is   = x – 3x + 4,  2 
–2   x – 2  

whose roots are not real. Thus eigen values of A (or T) do not exist in R. If W  

A B
Then T has a matrix representation   , where A is matrix of restriction  

0 C

Since T(w)  W for all w  W, we define T : W  W by T (x) = T(x)  w w
for all x  W.  
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is an invariant subspace of R such that, W  0, R then dim W = 1. Let W be  2 

spanned by v. Then Tv  W  Tv = v, v  0   is an eigen value of T (  
 R), a contradiction. Hence O and R are only invariant subspaces of R .  2 2

Theorem 2.1: Let W be an invariant subspace of linear operator T on V.  
 
 
 

T of T on W.  w 

Proof: Let {w , ..., w } be a basis of W. Let  = {w , ..., w , v , ..., v } be a  1 r 1 r 1 s
basis of V, obtained by extending basis of W.  



w r r 1r   1 rr r  
T(v ) = b w + ... + b w + c v + ... + c v1 11 1 r1 r 11 1 s1 s  

......................  
T(v ) = b w + ... + b w + c v + ... + c vs 1s 1 rs r 1s 1 ss s  

a 






a1r   






11  


11  

  
brs  



ar1  

0
a brr r1  Thus matrix of T with respect to basis  is  
0
 

0 0 cs1   c

A B
C

= where A = (a ), B = (b ), C = (c )  ij ij ij0

are of order r × r, r × s, s × s respectively  

called restriction of T on W.  
We now show that the matrix C obtained in Theorem 2.1 is the matrix of  

Vsome linear operator on   induced by T.  
W

Define :  
 

 such that,  V VT
W W


(W + v) = W + T(v), v  V  T


Then is well defined as W + v = W + v  T




v – v  W  
T(v – v)  W  

 T(v) – T(v)  W  
 W + T(v) = W + T(v)  

Since T is linear transformation, so is  . Let {w , ..., w } be a basis of W.  
 
T 1 r

Then it can be extended to form a basis of V. Let {w , ..., w , v , ..., v }  1 r 1 s
Vbe a basis of V. Then {W + v , ..., W + v } is a basis of  1 s .
W
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Clearly, A is matrix of T with respect to {w , ..., w } = basis of W. T is  w 1 r w 



...................  


(W + v ) = W + T(v ) = W + b w + ... + b w + c w + ...  T s s 1s   1 rs   r

= W + c v + ... + c v1s 1 ss s   (as in Theorem 2.1)  
 V matrix of  with respect to basis {W + v , ..., W + v } of  1 s is  T

W

   
   
   

11  







= C  

A special situation where B = 0 in theorem is obtained when V is a direct  
sum of two invariant subspaces under T.  
Example 2.2: If W and U are invariant subspaces of a linear operator on a  

A 0
is   , where  a basis  of V such that the matrix of T with respect to    0 C

A is the matrix of T on W and C is the matrix of T on U.  w u 

Now   T (w ) = T(w ) = a w + ... + a ww 1 1 11 1 r1 r  

T (w ) = T(w ) = a w + ... + a ww 2 2 12 1 r2 2  

.........................  
T (w ) = T(w ) = a w + ... + a ww r r 1r 1 rr r  

T(w )  W for all i = 1, ..., r  ias  

T (u ) = T(u ) = c u + ... + c uu 2 2 12 1 s2 s  

...........................  
T (u ) = T(u ) = c u + ... + c uu s s 1s 1 ss s  

as  
So matrix of T with respect to  = {w , ..., w , u , ..., u } of V is  1 r 1 r

given by  

T(u )  U for all j = 1, ..., s  j
113

Self - Learning  
Material   81  

1s  
+ c v .  s

1
s s

c c   1s 
 
 
 
 
 s  c   c1 ss   

Finite Dimensional Vector Space (F.D.V.S). V over F and V = U  W, then   
 
 
 

Solution: Let {w , ..., w } be a basis of W and {u , ..., u } be a basis of U. Then  1 r 1 s
{w , ..., w , u , ..., u } is a basis of W  U = V.  1 r 1 s

Similarly, T (u ) = T(u ) = c u + ... + c uu 1 1 11 1 s1 s  



0 


0 cs1  



c

Example 2.3: Let V be the vector space of all polynomials in x over F, of  
degree  5. Let T : V  V be defined by T(1) = x + x , T(x) = x + 1, T(x )  2 4 2

= 1, T(x ) = x + x + 1, T(x ) = x , T(x ) = 0. If W is the linear span of  3 3 2 4 4 5

{1, x , x },  2 4

 V
(c) Find the matrix of  in a suitable basis of   .T W

Solution (a): Let w  W. Then w = a + bx + cx where a, b, c  F.  2 4 

T(w)= a . T(1) + bt(x ) + cT(x )  2 4

= a(x + x ) + b + cx2 4 4  

= b + ax + (a + c) x2 4  

 W for all w  W  
 W is invariant under T.  

(b): Notice that {1, x , x } is linearly independent set over F and so forms a  2 4

basis of W, and it can be extended to form a basis, namely {1, x , x , x,  2 4

x , x } of V.  3 5

T (1) = T(1) = x + x = 0 . 1 + 1 . x + 1 . xw
2 4 2 4  

T (x ) = T(x ) = 1 = 1 . 1 + 0 . x + 0 . xw 
2 2 2 4  

T (x ) = T(x ) = x = 0 . 1 + x + 1 . xw
4 4 4 2 4  

 matrix of T with respect to basis {1, x , x } of W is given by  w 
2 4

0
1
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1

1
0
0

0
0
1

A =   .

V
(c): Now {W + x, W + x , W + x } is basis of  3 5 .W


 (W + x) = W + T(x) = W + x + 1  T

= W + x = 1 . (W + x) + 0(W + x ) + 0(W + x )  3 5
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  
   ss 

where A = (a ), C = (c ) are r × r and s × s matrices, respectively. Clearly A is  ij ij
the matrix of T on W and C is the matrix of T on U.  w u 

(a) Show that W is invariant under T.  
(b) Find the matrix of T in a suitable basis of W.  w 

(d) Find the matrix of T in a suitable basis of V.  

Now,  

 
 
 
  




(W + x ) = W + T(x )  5 5T

V
= W + 0 = W = zero of  W
= 0(W + x) + 0(W + x ) + 0(W + x )  3 5

 V
 matrix of  with respect to basis {W + x, W + x , W + x } of  3 5 is  T W

given by  
1
0
0

0
1
0

0
0
0

C =  

(d) :  T(x) = x + 1  = 1 . 1 + 0 . x + 0 . x + 1 . x + 0 . x + 0 . x2 4 3 5  

T(x ) = x + x +1 = 1 . 1 + 1 . x + 0 . x + 0 . x + 1 . x + 0 . x3 3 2 2 4 3 5  

T(x ) = 0 = 0 . 1 + 0 . x + 0 . x + 0 . x + 0 . x + 0 . x5 2 4 3 5  

 matrix of T with respect to basis {1, x , x , x, x , x } of V is given by  2 4 3 5

0
1
1

1
0
0

0
0
1





1
0
0

1
1
0

0
0
0

        
0
0
0

0
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0
0

0
0
0





1
59

0
0

0
1
0

0
0
0

1
0
0

1 0
0
0

A B
C

= , where B =   1
0

.
0

an invariant subspace of T. Show that the characteristic polynomial p (x)  T 
of T is given by  

p (x) =  T ,
w w


polynomials of T  and  T w  w
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 
 
 
  

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
  

Example 2.4: Let T be a linear operator on a F.D.V.S. V over F. Let W be  

p (x)  T p (x) , where  ˆ wT p (x)  T w
p (x) are the characteristic  T̂ 

respectively.  

Here  A  matrix of T on W  w  



A – xI   B=

=

V0 C – xI  
W

A – xI C  – xI  

= (characteristic polynomial of T )  w

× (characteristic polynomial of   )

.

A natural question arises ‘What is the minimal polynomial forT in terms of  

result about minimal polynomial of T. We prove  

for T, where W is an invariant subspace of V and T is a linear operator on  

Proof: Let p(x) be the minimal polynomial for T.  
n – 1  Let   p(x) =  +  x + ... +   0 1 x + xn  

n – 1  

Since   T(w) = T (w) for all w  W  w

T (w) = T(T (w))  2
w

= T (T (w)) as T (w)  W  w w w

In this way  T (w) = T (w) for all w  W  r
w
r 

 p(T ) (w) = p(T) (w) for all w  W  w

= 0 as p(T) = 0 for all w  W  
p(T ) = 0  w

Let q(x) be the minimal polynomial for T . Then p(x) = q(x) r(x) + h(x)  w

where  


h(x) = 0 or deg h(x) < deg q(x).  
0 = p(T ) = q(T ) r(T ) + h(T )  w w w w

h(T ) = 0  w

If h(x)  0, then h(x) is non zero polynomial satisfied byT of degree less  w 
than deg q(x), a contradiction as q(x) is minimal.  

 h(x) = 0  q(x) divides p(x).  

triangularizable over F if there exists an ordered basis  of V such that [T] is   
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  
  ˆC  matrix of T on  

   
 

T

= p (x) p (w)  Tw T̂ 

minimal polynomial for T ’?As we saw in above problem that the characteristic  w
polynomial of T divides the characteristic polynomial of T, we have a similar  w 

Theorem 2.2: The minimal polynomial of T divides the minimal polynomial  w 

V.  

Definition: Alinear operator T on a F.D.V.S. V(F) is said to be triangulable or  

triangular.  



Proof: Let the characteristic polynomial ofT be product of linear factors inF[x].  
Let c , c , ..., c be eigen values of T in F.  1 2 n 

56

We use induction on n.  

Let n > 1. Assume that the result is true for all vector spaces over F of  
dimension less than n.  

Let dim V = n. Let v be an eigen vector of T with respect to c , then  1 1
T(v ) = c v1 1 1  

Let   W = < v >.  1 

V VThen W is T-invariant subspace of V. Consider  . dim   = n – 1  
W W

 V
w

VThen   :  such that,  T
W


(W + v) = W + T(v)  T

Vis well defined linear operator on  . Let f (x) be the characteristic polynomial  
W

for T and g(x) be the characteristic polynomial for  . Then g(x) divides f(x) by  
 
T

Example 2.4.  
So, g(x) is also product of linear factors in F[x].  

VBy induction hypothesis  a basis  = {W + v , ..., W + v } of  2 n such  
W

that,  
a   a2  22  
0
:




T = , a  F  ij  

0  0


 (W + v ) = a (W + v ) + ... + a (W + v )  j 2 j 2 nj n  T

 W + T(v ) = a (W + v ) + ... + a (W + v )  j 2 j 2 nj n

= W + a v + ... + a v2 j 2 nj n  

 T(v ) = a v + ... + a v + a vj 2 j 2 nj n 1j 1   , a  F  1j 

 = {v , v , ..., v } is a basis of V  1 2 n
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If n = 1, then the result is obvious as 1 × 1 matrix is always triangular.  

    
   
   

   n 
 
 
 
 
 ann   

Now,  



which is triangular matrix and so T is triangulable. So, result follows by  
induction.  

Conversely, if T is triangulable then  a basis  of V such that, [T] = A   
is triangular and eigen values of T are diagonal entries in A.  

 Characteristic polynomial for A or T is product of linear factors in F[x].  

T is product of linear factors in F[x].  
Corollary.: If A is n × n matrix over the field of complex numbers, then A is  
triangulable.  
Proof: Byfundamental theorem of algebra (i.e., Everypolynomial over the field  
C of complex numbers has all roots in C), the minimal polynomial p(x) of A has  

r rkthe form p(x) = (x – c ) ... (x – c ) , where c  C. By above theorem A is  1
1 

k i 
triangulable.  
Example 2.5: Let T be a linear operator on a finite dimensional vector space  

Solution: Let W be a non-zero T-invariant subspace of V. Then the restriction  
T of T on W is a linear operator on W. Since the characteristic polynomial of  w 

T(x) = cx  x is also an eigen vector of T.  

invariant under T, v  W  T(v)  W  T(v) = v. w  W  w = av  T(w)  
= aT(v) = av = av = w. Let v W, v V. Then, v, v are linearly inde-  
pendent. Let W be the subspace spanned by v. Since W is invariant under  
T, T(v)  W.  

 T(v) = v. Let V  be the subspace spanned by v – v. Then as  
before T(v – v) = (v – v)  

 T(v) – T(v) = v – vv – v = v – v  
 ( – )v = ( – )v   =  =  as v, v are linearly independent  
 T(v) = (v).  

 for all v  V, T(v) = v  
 T = I.  
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Note:We thus realise that T is triangulable if and only if minimal polynomial for  

V(F). Suppose all eigen values of T are in F. Show that every non zero.  
T-invariant subspace of V contains an eigen vector of T.  

T divides the characteristic polynomial ofT, eigen values of T also belong to F.  w w 
Let c  F be an eigen value of T . Then  0  x  W such that T (x) = cx   w w

Example 2.6: Let T be a linear operator on V. If every subspace of V is  
invariant under T, show that T is a scalar multiple of the identity operator.  
Solution: Let 0  v V. Let W be a subspace of V spanned by V. Since W is  



T. By theorem 10  p(x) has distinct roots and p(T) = 0.  
Conversely, let q(x) be a polynomial over C such that, q(T) = 0 and roots  

of q(x) are distinct.  
 p(x) divides q(x)  
and thus roots of p(x) are distinct.  
Hence T is diagonalizable.  

Example 2.8: If A is nilpotent, show that A is similar to a triangular matrix  
whose entries on the diagonal are all zero.  
Solution: A is nilpotent  A = 0  the minimal polynomial p(x) of A is x ,  m r

r  m. So, 0 is only eigen value of A. Since 0  F, by theorem 2.3, A is similar  
to a triangular matrix B.  A = P BP  –1

Since eigen value of A is only 0, eigen value of B is only 0 and these are  
diagonal entries on B.  
Projections  
We recall, by a projection E of a vector space V, we mean a linear operator on  
V such that, E = E.  2 

Let now E be a projection on V, then E : V  V.  
We show V = R  N, where R = Range of E and  

N = Null space of E = Ker E.  
Let v  V be any element, then  

E = E  2 






E (v) = E(v)  2

E(v – E(v)) = 0  
v – E(v)  Ker E = N  

Thus  
i.e.,  
Again, let x  R  N then x  R and x  N  

v = E(v) + (v – E(v))  R + N  
V = R + N  

x  R    y  V such that, E(y) = x  
x  N    E(x) = 0  

So,   E (y) = E E(y) = E(x) = 0  2

 E(y) = 0  x = 0  R  N = {0}  
V = R  N.  Hence  
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Then E is easily seen to be a linear operator  
Also E (v) = EE(v) = E(a) = E(a + 0) = a = E(v)  v  V  2

shows that E = E and thus E is a projection.  2 

We claim A = range of E and B = Ker E  
v  Ker E  E(v) = 0  E(a + b) = 0 where v = a + b  

 a = 0  v = a + b = b  B  

So B = Ker E  
 E(b) = E(0 + b) = 0  b  Ker E  

It is easy to see that A = range of E.  
56

We thus notice that when there is projection E on V, then V is direct sum  
of range E and Ker E and conversely, if V is direct sum of two subspaces then  
there exists a projection E on V such that these subspaces are range and Ker of  

81

E.  
If V = R  N corresponding to a projection E, we say E is projection on  

R along N (R = range E, N = Ker E).  
Suppose again that V = A  B and let's define  

F : V  V such that,  
F(v) = b where v  V is such that, v = a + b  

then as before we can check that F is a projection on V and A = Ker F, B =  
Range F.  

Hence if E was projection on A along B, then F is projection on B along  
A. Is there a direct relation between E and F?  

Consider (E + F) (v) = E (v) + F (v)= a + b = v,  
= I (v)  v  

and thus  
or that  

E + F = I  
E = I – F  

We can sum up and say that E is a projection iff I – E is a projection and  
if E is a projection on R along N then I – E is a projection on N along R.  

We give another ‘Proof’of this result in Example 2.9.  
Let us now consider the general result through  

Theorem 2.4: If V = W  ...  W , then  k linear operators E , ..., E on  1 k 1 k 
V such that,  
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Again b  B  b = 0 + b  

i i



i i

Proof: Let v  V be any element then  
v = x + x + ... + x , x  W being uniquely determined  1 2 k i i 

E : V  V, such that,  i 

E (x + ... + x ) = x for all i  i 1 k i 

Then E is linear operator such that,  i 

E (x + ... + x ) = E (x ) = x = E (x + ... + x )  2
i 1 k i i i i 1 k

 E = E for all i  2
i i 

This proves (i).  
Let i  j. Then E E (x + ... + x ) = E (x ) = 0  i j 1 k i j

E E = 0 for all i  j.  i j 

Define  



This proves (ii).  
Let v  V. Then v = x + ... + x , x  W1 k i i  

 (E + ... + E )v = E v + ... + E v  1 k 1 k

= x + ... + x1 k  

= v = I(v)  
 E + ... + E = I  1 k 

This proves (iii).  
By definition of E , range of E is W which proves (iv).  i i i 

Conversely, let v  V. By (iii) I = E + ... + E1 k  

 v = I(v) = E (v) + ... + E (v) = x + ... + x , x  W (x = E v)  1 k 1 k i i i i

 V = W + ... + W1 k  

Let  



v = y + ... + y , y  W = Range of E1 k i i i  

y = E (z )  i i i

E (v) = E (y ) + ... + E (y )  j j 1 j k

= E E (z ) + ... + E E (z )  j 1 1 j k k

= E (z ) = E (z ) = y2
j j j j j  

 x = y for all j = 1, ..., k  j j 

Hence, V = W  ...  W .  1 k
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and conversely.  

Each v  V can be uniquely written as sum of elements of W , ..., W .  1 k



 x  null space of I – E  
Also x  N  Ex = 0  

 (I – E) x = x for all x  N  
v  V  v = r + n, r  R, n  N  

 (I – E) v = (I – E) r + (I – E) n  
= 0 + n = n  



 Range space of I – E is N  
Also   (I – E) = I + E – 2E = I – E  2 2 

 I – E is the projection on N along R.  

(a) E + E is projection iff  E E = E E = 0.  1 2 1 2 2 1 

(b) E + E is a projection on R  R along N  N .  1 2 1 2 1 2

Solution: (a) We have V = R  N and V = R  N1 1 2 2  

Let   E + E be a projection. Then (E + E ) = E + E1 2 1 2
2 

1 2  

 E + E + E E + E E = E + E2
1 

2
2 1 2 2 1 1 2  

 E E + E E = 0  (i)  1 2 2 1 

 E E E + E E E = 0  E E = – E E E1 1 2 1 2 1 1 2 1 2 1  

E E E + E E E = 0  E E = – E E E1 2 1 2 1 1 2 1 1 2 1  

E E = E E and so (a) gives  1 2 2 1 

and  
Thus  

(1 + 1) E E = 0  E E = 0  1 2 1 2 

Hence   E E = E E = 0  1 2 2 1 

Conversely,   E E = E E = 0 gives  1 2 2 1 

E E + E E = 0  1 2 2 1 

 E + E + E E + E E = E + E1
2 2

2 1 2 2 1 1 2  

 (E + E ) = E + E .  1 2
2 

1 2

(b)We have to show that Range of E + E is R  R and Ker (E + E )  1 2 1 2 1 2
= N  N .  1 2

Let x  Ker (E + E )  (E + E )x = 0  1 2 1 2

 E x + E x = 0  E E (x) + E E (x) = 0  1 2 
60

1 1 1 2
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Example 2.10: Let V(F) be a vector space. Let E be a projection on R1 1  
along N and E be a projection on R along N . Assuming that 1 + 1  0  1 2 2 2
in F, show that  



1 1 2 2and so   x  N  N  Ker (E + E )  N  N1 2 1 2 1 2  

Again, y  N  N  y  N & y  N1 2 1 2  

 E (y) = 0, E (y) = 0  1 2

 (E + E )y = 0  y  Ker (E + E )  1 2 1 2

N  N  Ker (E  E )  1 2 1 2

Ker (E + E ) = N  N1 2 1 2  

So  
or that  
We leave the rest of the proof for the reader as an exercise.  

Theorem 2.5: Any projection E on a vector space V is diagonalizable.  
,

Then {v , v , ..., v , v , ..., v } is a basis of R  N = V  1 2 k k + 1 n

E(v ) = E(r + n ) r  R, n  N  1 1 1 1 1 

E (v ) = E(v ) = E(r + n ) = E(r ) + E(n ) = E(r )  2
1 1 1 1 1 1 1

E(v ) = E(r )  1 1





 E(v – r ) = 0  v – r  Ker E = N  1 1 1 1 

v  R, r  R  v – r  R  1 1 1 1 

v – r  R  N = {0}  1 1 

Also  
and thus  

 v = r1 1  

n = v – r = 0  1 1 1 

Thus E(v ) = v . Similarly E(v ) = v  i = 1, 2, ..., k  1 1 i i 

Also E(v ) = 0   j = k + 1, ..., n.  j

I 0
0

Showing matrix of E with respect to this basis is  
0

which is clearlya diagonal matrix.  
Hence the result follows.  

Example 2.11: If diagonal operator has eigen values 0 and 1 only then show  
103

that it is a projection.  

be 1 and others be 0.  
Let v  V. Then v =  v + ... +  v +  v + ... +  v1 1 m m m + 1 m + 1 n n  
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Proof: Suppose {v , v , ..., v } is a basis of range space R of E and {v1 2 k k + 1  
..., v } is a basis of null space N of E.  n

Now,  

Again  

 
 
 

Solution: Since T is diagonal operator,  a basis  = {v , ..., v } of V such that  1 n
[T] = diagonal. Since eigen values of T are 0 and 1, let first m entries in diagonal   



= T( v + ... +  v +  v + ... +  v )  1 1 m m m + 1 m + 1 n n
= T(v) for all v  V  

 T = T  2 

Hence T is a projection.  

Proof: Let TE = E T  i i

Let x  W . Then by definition, E (x ) = xi i i i i  

 T(x ) = T(E x )  i i i

= E (Tx )  i i

 T(x )  Range of E = Wi i i  

 W is invariant under T for all i = 1, ..., k  i 

Conversely, let W be invariant under T. Then v  V  i 

 I (v) = (E + ... + E )(v)  1 k

 v = E (v) + ... + E (v)  1 k

 T(v) = TE (v) + ... + TE (v)  1 k

Since E (v)  W and W is T- invariant  T(E (v))  W .  i i i i i

So, E [T(E (v)] = T(E (v)) if j = i  j i i

= 0 if j  i  
 E (T(v)) = T(E (v))  j j

E T = TE  j.  j j 

 v  V  


i  j. Consider the space R . Define  2

E : R  R , such that, and  E : R  R , such that,  1 
2 2

2 
2 2

E (a, b) = (a, 0)  1 E (a, b) = (0, b)  2

then clearly E , E are projections and  1 2 

E E (a, b) = E (0, b) = (0, 0)  1 2 1

E E (a, b) = E (a, 0) = (0, 0)  2 1 2
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Theorem 2.6: Let T be a linear operator on the space V and V = W  ...  1 
 W . Define E (v) = E (x + ... + x ) = x  W . Then each E is a projection  k i i 1 k i i i 
on V such that, E E = 0 for all i  j and I = E + ... + E . Also then each  i j 1 k
W is invariant under T iff TE = E T for all i = 1, 2, ..., k.  i i i

Definition: Let V be a vector space and E , E , ..., E be a collection of pro-  1 2 k 
jections on V, then this collection is called orthogonal collection if E E = 0   i j 



each W is T-invariant if and only if E T = TE , i = 1, 2, ..., k.  i i i

..., E on V such that,  k 

(i) T = c E + ... + c E1 1 k k  

(ii) I = E + ... + E1 k  

(iii) E E = 0 for all i  j  i 
129

j 

(iv) E = E2
i i  

(v) Range of E is the eigen space of T associated with eigen value  i 

eigen values of T and (iv) and (v) are also satisfied.  

be eigen spaces of T corresponding to eigen values c .  i

Thendim V = dim W + ... + dim W1 k  

and   V = W + ... + W1 k  

V = W  ...  W1 k  Hence  

Then, I(v) = v = (E + ... + E )v  1 k

= E (v) + ... + E (v)  1 k

 T(v) = TE (v) + ... + TE (v)  1 k 

= c E (v) + ... + c E (v) as E (v)  Range of E = W1 1 k k i i i  

= (c E + ... + c E )v  1 1 k k

 T = c E + ... + c E1 1 k k  

This proves (i).  

Then   TE = c E for all i  i i i 

 (T – c I) E = 0 for all i  i i 

E  0  v  V such that, E (v )  0  i i i iSince  
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Theorem 2.7: Let T be a linear operator on a F.D.V.S.  V. If T is diagonal-  
izable and c , ..., c are distinct eigen values of T, then  linear operators E ,  1 k 1

c of T.  i 

Conversely, if  distinct scalars c , ..., c and k non-zero linear opera-  1 k 
tors E , ..., E satisfying (i), (ii), (iii) then T is diagonalizable, c , ..., c are  1 k 1 k 

Proof: Let T be diagonalizable and c , ..., c be distinct eigen values of T. Let W1 k i  

As in Theorm 2.7, let E , ..., E be the projections associated with this  1 k 
decomposition. Then (ii) to (v) are satisfied. Let v  V  

Conversely, suppose T along with distinct scalars c and non-zero opera-  i 
tors E satisfy (i), (ii) and (iii). Also T = c E + ... + c Ei 1 1 k k  



(T – cI) = (c E + ... + c E ) – c(E + ... + E )  1 1 k k 1 k
= (c – c)E + ... + (c – c)E1 1 k k  

If c is an eigen value of T, then  0  v  V such that,  
Tv = cv  (T – cI)v = 0  

 (c – c) E E (v) + ... + (c – c) E E (v) = 0  1 j 1 k j k

 (c – c) E (v) = 0 for all j = 1, ..., k  j j

If E (v) = 0 for all j, then I = E + ... + Ej 1 k  

 v = I(v) = E (v) + ... + E (v) = 0  1 k

E (v)  0 for some j  j

c = c for some j  j 





 c , ..., c are only eigen values of T.  1 k 

Let W = range of E , i = 1, ..., k.  i i

By (ii) I = E + ... + E1 k  

 v = Iv = E v + ... + E v  W + ... + W for all v  V  1 k 1 k 

 V = W + ... + W1 k  

As in Theorem 2.4, V = W  ...  W1 k  

 dim V = dim W + ... + dim W1 k  

 T is diagonalisable if W = eigen space of T corresponding to c .  i 
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i

Let x  eigen space of T. Then T(x) = c x, 1  i  k  i

 (c E + ... + c E )x = c I(x) = c (E + ... + E )x  1 1 k k i i 1 k

 c E (x) + ... + c E (x) = c E (x) + ... + c E (x)  1 1 k k i 1 i k

 (c – c ) E (x) + ... + (c – c ) E (x) = 0  1 i 1 k i k

 (c – c ) E (x) = 0 for all j = 1, ..., k  j i j

as   E (x)  Range of E = Wj j j  

W , ..., W are independent.  1 k 

E (x) = 0, j  i as c – c  0 for all j  i  j j i 

I = E + ... + E ,  1 k

and  
we get  
Since  

x = E (x) + ... + E (x) = E (x)  1 k i

 x  Range of E = Wi i  

 eigen space corresponding to c is contained in W .  i i
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i i
 W = eigen space corresponding to c .  i i

Suppose T is a linear operator with minimal polynomial p(x) = (x – c ) ...  
54

1
(x – c ) such that, c , ..., c  F are distinct. To show T is diagonalizable.  k 1 k 

(x – c )  i Proof: Let p (x) =  j , j = 1, ..., k  (c – c )  j i i  j

Then   p (c ) = j i ij  

Let V = space of all polynomials over F of degree less than k.  
Then p , ..., p  V and are linearly independent as  p + ... +  p = 0  1 k 1 1 k k 

  p (c ) + ... +  p (c ) = 0  1 1 i k k i

  = 0 for all i  i 

Since dim  V = k, {p , ..., p } is a basis of V.  1 k

Now  
Put  

1  V  1 =  p + ... +  p1 1 k k  

x = c on both sides to get  i 

1 =  for all i  i 

 1 = p + ... + p1 k   ...(2.1)  

...(2.2)  

x  V x =  p + ... +  p1 1 k k  

Put   x = ci  

Then   c =  for all i  i i 

x = c p + ... + c p1 1 k k  

Let p (T) = Ej j  

Put x = T in Equation (2.1) and Equation (2.2) above to get  
I = p (T) + ... + p (T) = E + ... + E1 k 1 k  

T = c E + ... c E1 1 k k  

Since p(x) divides p (x)p (x) for all i  j  i j

p (T)p (T) = p(T)q(T) for all i  j  i j

 E E = 0 for all i  j  i j 

If E = 0 for some j, then p (T) = 0 and  j j

degree of p (x) < deg p(x), a contradiction  j

 E  0 for all j = 1, ..., k  j 

 T is diagonalizable.  
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Solution: Let R = range of E  
N = null space of E  

Then   V = R  N  
We have shown before that I – E is also a projection. x  N  Ex = 0  

 (I – E)x = x  x  range of I – E.  Range of E = R, Range of (I – E)  
= N.  

Also E(I – E) = E – E = E – E = 0. Suppose R is invariant under T then  2 

 T(EV)  EV  T(I – E)V = T(V – EV)  V – EV = (I – E)V  N =  
(I – E)V is invariant under T.  

 By Theorem 2.6,  TE = ET  
 ETE = E T = ET = TE.  2

Conversely, suppose ETE = TE  
Let   E(v)  R = range of E  
Then   E (TE(v))  R as T : V  V, E : V  V  

TE(v)  R since ETE = TE  

 R is invariant under T.  
Further, if both R and N are invariant under T, then by Theorem 2.7,  

TE = ET.  
Conversely, suppose TE = ET  ETE = TE  
From above then, R is invariant under T.  
Also n  N  E(n) = 0  (ET)(n) = (TE)(n)  

= T(E(n))  
= T(0) = 0  

 E(T(n)) = 0 for all n  N  
 T(n)  null space of E for all n  N  
 N is invariant under T.  

Example 2.13: Let V = R and T be the linear operator on V whose matrix  2 

a b
relative to standard ordered basis is  

Show that  

for same non-zero a, b  R.  
0 a

(a) W the subspace generated by (1, 0) is T-invariant  1 

(b) W the subspace generated by (0, 1) is not T-invariant  2 

(c) no T-invariant subspace W of R such that, R = W  W.  2 2 
1 
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1
Since dim W = 1, dim W must also be 1.  1 

Define   E : R  R , such that,  2 2

E(x, y) = (x, 0)  
then E is a projection of R onto W .  

54 2 
1

By Example 2.12, we should have TE = ET.  
TE(1, 1) = T(1, 0) = (a, 0)  
ET(1, 1) = E(a + b, a) = (a + b, 0)  

Showing that ET  TE and thus there does not exist any T-invariant sub-  
space W such that, R = W  W. We leave part (b) and (c) for students to  2 

1 
complete.  

the minimal polynomial for T decomposes over F into a product of linear  
10

polynomials. Then  a diagonalizable operator D on V and a nilpotent  
operator N on V such that (i) T = D + N (ii) DN = ND.  

r rk1

c , ..., c are distinct scalars in F.  1 k 

rispace of (T – c I) . Let E , ..., E be the corresponding projections. Then W =  i 1 k i 
range of E .  i

Let   D = c E + ... + c E1 1 k k  

By Theorem 2.7, D is diagonalizable.  
Since   I = E + ... + E1 k  

T = TE + ... + TE , D = c E + ... + c E1 k 1 1 k k  

N = T – D = (T – c I)E + ... + (T – c I)E1 1 k k  

N = (T – c I) E + ... + (T – c I) E as TE = E T  i  2 
1

2
1 k

2 
k i i

Let  
Then  
and in general that, N = (T – c I) E + ... + (T – c I) Er 

1
r

1 k
r 

k  
r riiSince (x – c ) is the minimal polynomial of T on W , (T – c I) = 0 on Wi i i i  

for all i.  
 (T – c I) = 0 on W for all r  ri

r 
i i  

N = 0 for all r  r for each i  r 
i 




Now   DT = (c E + ... + c E ) (TE + ... + TE )  1 1 k k 1 k

= c TE + ... + c TE1 1 k k   Self - Learning  
Material   97  

But  

Theorem 2.8: Let T be a linear operator on the F.D.V.S. V(F). Suppose that  

Proof: Let p(x) = (x – c ) ... (x – c ) be the minimal polynomial for T where  1 k

By Primary decomposition theorem, V = W  ...  W , where W = null  1 k i 

N is nilpotent operator.  
T = D + N, D is diagonalizable and N, nilpotent operator.  
39



= TD  
 D(D + N) = (D + N)D  

 DN = ND.  

2.4 NILPOTENT  TRANSFORMATIONS  

A linear transformation N : U  U is called nilpotent if there exists a k  N such  
that N = 0 for some positive integerk. The smallest such k is sometimes called the  k 

degree of N.  
A nilpotent transformation is a linear transformation L of a vector space  

such that L = 0 for some positive integer k.Anilpotent transformation naturally  k 

determines a flag of subspaces  
{0}kerN  kerN  .... kerN kerN = U and a signature,  1 2 k–1 k 

0 = n < n < n < n <n = dim U, n = dim ker N .  0 1 2 k–1 k i 
i

The signature is governed by the following constraint, and characterizesN  
up to linear isomorphism.  
Theorem 2.9: A sequence of increasing natural numbers is the signature of a  
nilpotent transformation ifand onlyif  

n –n  n –nj+1 j j j–1  

for all j=1,…., k–1 . Equivalently, there exists a basis ofU such that the matrix of  
N relative to this basis is block diagonal  

N 0
N2  

0

0
0

...  

...  
0
0
0


1

0
0


N ...  3 


0


0


... Nk  0

with each of the blocks having the form  

0
0

0
0
0

1
0

0
0
0

0 ...   0
0

1
0
0

0
01


0
0
0

...  

...  

N   i 0
1
0

...  

...  

Letting d denote the number of blocks of size i, the signature of N is given by  i 

n = n + d + d + + d , i=1,….,k  i i–1 i i+1 k
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which are also the first n – 1 columns of the size n identity matrix I .As  n
shorthand, write J = Jn  

induction to study the powers of J. Our claim is that  

for 1  k  n. For the base case, k = 1 and the definition of J = J (0)  1 
n

J is nilpotent of index n.  

Theorem 2.11: ENLT  
Eigenvalues of Nilpotent Linear Transformations  
Suppose that T :  V V is a nilpotent linear transfromation and is an eigenvalue  
of T. Then  = 0  
Proof: Let x be an eigenvector of T for the eigenvalue , and suppose that T is  
nilpotent with index p.  
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understood to mean that if we have a specific matrix J (0) ) then we need to  n 
establish it isnilpotent of a specified index.Thefirst column ofJ is thezero vector,  n 
and the remaining n – 1 columns are the standard unit vectors e , 1  i  n – 1.  i

We will use the definition of matrix multiplication together with a proof by  

establishes the claim. For the induction step, first note thatJe = 0 and Je = e for  1 i i–1
2  i  n. Then, assuming the claim is true for k, we examine the k + 1 case,  

This concludes the induction. So J has a nonzero entry (a one) in row  k 
n – k and column n, for 1  k  n –1, and is therefore a nonzero matrix. However,  



Because x is an eigenvector, it is nonzero, and therefore Theorem SMEZV  
tells us that  = 0 and so  = 0.  p 

Paraphrasing, all of the eigenvalues of a nilpotent linear transformation are  
zero. So in particular, the characteristic polynomial of a nilpotent linear  

10

transformation, T , on a vector space of dimension n, is simply p (x) = x .  T
n

Theorem 2.12: DNLT  
Diagonalizable Nilpotent LinearTransformations  
Suppose the linear transformationT : V V is nilpotent. Then T is diagonalizable  
if and onlyT is the zero linear transformation.  
Proof: We start with the easy direction. Let n = dim (V).  

() The linear transformation Z : V  V defined by Z(v) = 0 for all v  V   
is nilpotent of index p =1 and a matrix representation relative to anybasis ofV is  
the n × n zero matrix, O. Quite obviously, the zero matrix is a diagonal matrix and  
hence Z is diagonalizable.  

must have algebraic multiplicityn (Theorem NEM). So the geometric multiplicity  
of zero will be n as well  () = n.  T

subset of V of size n, and by will be a basis for V. For any x  B we have  
T(x)   = 0x  

= 0  
So T is identically zero on a basis for B, and since the action of a linear  

transformation on a basis determines all of the values of the linear transformation,  

So, other than one trivial case (the zero matrix), every nilpotent linear  
transformation isnot diagonalizable.  
Theorem 2.13: KPLT  
Kernels of Powers of Linear Transformations  
Suppose T : V  V is a linear transformation, wheredim (V) = n. Then there is an  
integer m, 0  m  n, such that  
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() Assume now that T is diagonalizable, so  () =  () for every  T T
eigenvalueByTheorem ENLT,Thasonlyoneeigenvalue (zero),which therefore  

Let B be a basis for the eigenspace e (0). Then B is a linearly independent  T 

it is easy to see that T(v) = 0 for every v  V.  



.

and by Definition SSET we have  

Second, we demonstrate the existence of a power m where consecutive  
powers result in equal kernels.Abyproduct will be the condition that m can be  
chosen so that m  n. To the contrary, suppose that  

Since  

Repeated application of this observation yields  

Thus,   has a basis of size at least n + 1, which is a linearly  
independent set of size greater than n in the vector space of dimension n.  

This contradiction yields the existence of an integer k such that  
, so we can define m to be smallest such integer with this  

135

property. From the argument above about dimensions resulting from a strictly  
increasing chain of subspaces, it should be clear that m  n.  

39
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So by Definition KLT,  



Theorem 2.14: KPNLT  
Kernels of Powers of Nilpotent Linear Transformations  
Suppose T : V  V is a nilpotent linear transformaton with index p and  
dim (V) = n. Then 0  p  n, and  

Proof: Since T = 0 it follows that T = 0 all j  0 and thus K(T ) = V for  p p+j p+j

j  0. So the value of m guaranteed by Theorem KPLT is at most p. The only  

that m = p. To see this we must show that K(T )  k K(T ) for 0  k  p –1.  k+1

If K(T ) = 1. For some k < p, then K(T ) = K(T ) = V. This implies that T = 0,  k k p k 

violating the fact that T has index p. So the smallest value ofm is indeed p, and we  
learn that p < n.  
Theorem 2.15: CFNLT  
Canonical Form for Nilpotent LinearTransformations  
Suppose that T : V  V is a nilpotent linear transformation of index p. Then there  

and the total number of block si the nullity of T, n(T).  

and can be used in practice. As we begin, the basis vectors will not be in the  
proper order, but we will rearrange them at the end of the proof. For convenience,  

linearly independent set of   vectors that form a  

having bases z , 1  j  s , and which together equal V as a direct sum.  i.j i

wrong end”). K(T ) is a proper subspace of K(T ) = V (Theorem KPNLT).  p–1 p

There is a subspace of V that will pair with the subspace K(T ) to form a direct  p–1

sum of V . Call this subspace Z , and choose vectors z , 1  j  s , as a basis of  p p.j p
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remaining aspect of our conclusion that does not follows form Theorem KPLT is  

is a basis for V so that the matrix representation M , is block diagonal with  T
B,B

eachblock being a Jardan block, J (0). The size of the largest block is the ndex p,  n 

Proof: We will explicitly construct the desired basis, so the proof is constructive  

define n = n(T ), so for example, n = 0, n = n(T), and n = n(T ). Define  i 
i

0 1 p p
s = n – n , for 1 i  p, so we can think of as “how much bigger” K(T ) is than  i i i–1 i
K(T ). In particular, Theorem KPNLT implies that si > 0 for  1  i  p.  i–1

We are going to build a set of vectors z , 1  i  p, 1  j  s . Each z , will  i,j i i,j
be an element of K(T ) and not an element of K(T ). In total, we will obtain a  i i–1

basisofV.Weconstruct this set inpieces, startingat the“wrong”end.Ourprocedure  
will build a series of subspaces, Z , each lying in between K(T ) and K(T ),  i 

i–1 i

We build the subspace Z first (this is what we meant by “starting at the  p 

p p,j  



have no nonzero vectors in common, for 1  j  s , z  K(T ). That was  p p,j 
p–1

reading of this proof), you will recognize this as the key step in realizing a matrix  

know that this set of vectors in linearly independent, so start with a relation of  
linear dependence and massage it,  

Define   The statement just above means  
that   .As defined, x is a linear combination of the basis vectors B ,  p

and therefore x  Z . Thus  p

Now we recognize the definition of x as a relation of linear dependence on the  
linearly independent set B , and therefore  . Thisestablishes the  p

. Because   that x = 0.  

linear independence of   .

2.4.1 Index of Nilpotency  

Nilpotent element is an element a of a ring or semi-group with zero A such that,  
a = 0 for some natural number n. The smallest such n is called the nilpotency  n 

index of a. For example, in the residue ring modulo p (under multiplication),  n 

where p is a prime number, the residue class of p is nilpotent of index n.  
In the ring of (2×2) matrices with coefficients in a fieldK the matrix,  

0 1  
0 0  

is nilpotent of index 2.  

cyclic group of order p generated by, the element 1– is nilpotent of index p.  
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comparablyeasy.  
If obtaining Z was easy, getting Z will be harder. We will repeat the next  p p–1 

step p – 1 times, and so will do it carefully the first time. Eventually,Z will have  p–1 
dimension S . However, the first s vectors of a basis are straightforward. Define  p–1 p 
z = T(z ), 1  j  s . Notice that we have no choice in creating these vectors,  p–1,j p,j p

they are a consequence of our choices for z . In retrospect (i.e. on a second  p,j 

representation of a nilpotent linear transformation with Jordan blocks.We need to  

In the group algebra Fp[G], where F is the field with p elements and G the  p 

10



Note: If T is a square matrix with characteristic polynomial c(x) then c(T) = O.  
10

Canonical form for nilpotent matrices is one that is all zeroes except for  
blocks of subdiagonal ones. This can bemade unique bysetting some rules for the  
arrangement of blocks.  
Lemma 2: If the matrices T – I and N are similar, then T and N + I are also  
similar, via the same change of basis matrices.  
Proof: N = P (T – I) P = PTP – I  –1 –1 

 PTP = N + I  –1 

Definition: Invariant Subspace: Let  t : V  V be a transformation.  Then a  
subspace M is t invariant if m M  t(m)   M 

Example 2.14: N (t) and R (t) are both t invariant.   

Solution: If  v N(t), then  k such that,  t (v) = 0  n  k.  n 

t (v) = t (t (v)) = 0   t (v)  N (t).  n+1 n 


If v R (t), then  w such that,  v = t (w).  
n 

Then t (v) = t (w) = t (t (w))  R (t).  n+1 n 


Lemma 3:Asubspace M is t invariant iff it is  t –  invariant for any scalar .  
In particular, where  is an eigenvalue of a linear transformation t, then for any  i 
other eigenvalue  , the spaces N ( t   ) and R ( t   ) are both t  j  i  i j  
invariant.  
Proof: If M is t –  invariant for any scalar , then setting = 0 means W is t  
invariant.  

If M is t invariant, then  mM  t(m)  M .  
SinceM isasubspace, it isclosedunderall linearcombinationsofitsmembers.  

Hence, t(m) m  M , i.e., mM  ( t  ) (m) M .  

Lemma 4: Given t : V  V and let N and R be t invariant complementary  
subspaces of V. Then t can be represented by a matrix with blocks of square  
submatrices T and T :  1 2 

T O
T2  

(dim  
(dim  

N
R

) rows  
) rows  

1
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Hence, N ( t –  ) and R ( t –  ) are both t –  invariant. By definition,   i  i i 
t –  is nilpotent on  N ( t –  ) .  i  i 

Now since N ( t –  ) and R ( t –  ) are t –  invariant, they are t   i  i i 
invariant and hence also t - l invariant.  j 

 
  
 



tBB   Then   has the desired form.  

T O1Lemma 5: If T is a matrix with submatrices T and T such that,  
152

T   1 2 O T2  

Then |T| = |T ||T |  1 2

Proof: Let the dimensions of T, T and T be n× n, r × r and (n–r) × (n–r)  1 2 

Then  

t


P

 

2
1

0 0 0  
2 0 0  

Example 2.15: Solve  0
107

0
0
0

3
0

0
3

2 0 0 0  
1

Solution: 0  
0

2 0 0 2
1

0 3  
2 0  

0
3

  36  
0
0

3
0

0
3

Lemma 6: If a linear transformation t : V  V has the characteristic polynomial  

c(x)  (x  λ ) ....(x  λ )1 
p

1 k 
p

k  

Then,  
V  N (t  λ )  .... N (t  λ ) and dim N (t  λ )  p 1  k  i i  

Proof: Since dim(V) – p + …. + p1 k  

Therefore V  N (t  λ )  .... N (t  λ ) if dim N (t  λ )  p and   1  k  i i 

N (t  λ )  N (t  λ ) {0} i  j   i  j 

N (t  λ ) j  According to Lemma 3, N (t  λ ) j and   i 

Since the intersect of t invariant subspaces is t invariant, the restriction of t   
N (t   )  N (t   )  

are t invariant.   j

to M =   is a linear transformation.   i  j

Now both t– and t– are nilpotent on M.  i j Self - Learning  
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t(v ) | .... | t(ρ )1 B q B   

 
   

respectively.  

1

22

2

2

11

1

....tr1P(r1) nP(n)  () t ....tP 
1P(1) rP(r )   

P P

P() t ....t () t ....t1P (1) rP (r ) r1P (r1) nP (n)  
P

| T || T |  1 2 

 i  i

T O1 



From Lemma 4   and from Lemma 5 |T–xI|=|T –xI||T –xI|  1 2  T    O T2  

From the uniqueness clause of the fundamental theorem of arithmetic,  
q k  | | (x  ) .......(x 1

q
1 k  )

And  
r k  | T  xI | ( )  2 x  ) .......(x 1

r1 
k  

Then, q + r = p j=1, ….,k  j j j 

The only eigen value of t on M is hence i.  
Hence c(x) = (x – )on M, i.e., q = 0  j  i  i j 

Consider next the restriction of  t –  to R = R ( t –  ) .  i  i 

Since t –  is nonsingular on R,  is not an eigenvalue of R.  i i 

Hence, q = p .  i i 

1. Define linear transformation.  
2. Write the hypercompanion matrix.  
3. What do you mean by rational cononical form?  
4. What is nilpotent element?  

2.5 PRIMARY  DECOMPOSITION THEOREM  

Theorem 2.16: Let T be a liner operator on a finite dimensional space V  

p(x) = p (x) ...... p (x)1
r1 

k
rk  

rir are +ve integers. Let W be the null spaces of p (T) , i = 1, . . ., k. Then  i i i

(i) V = W  W1 k  

(ii) Each W is invariant under T (i.e., T(W )  W  i)  i i i 

ri
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   

1T  xI  

i.e., the restriction of t–i M to is N (t – ) nilpotent on M.   i

Check Your Progress  

over F. Let p(x) be the minimal polynomial for T such that,  

where the p (x) are distinct irreducible monic polynomials over F and  i

(iii) If T is operator induced on W by T, then the minimal polynomial q (x)  i i i
for T is p (x) .  i i

72

1 k

g (x) f (x) + ... + g (x) f (x) = 1  1 1 k k

g (T) f (T) + ... + g (T) f (T) = I  1 1 k k

Let,   v  V, then  



v = g (T) f (T)(v) + ... + g (T) f (T)(v)  1 1 k kriNow p (T) f (T) g (T) = p(T) g (T) = 0  i i i i

 g (T) f (T)(v) = f (T)g (T)(v)  i i i i
ri






p (T) g (T) f (T)(v) = 0  i i i
rig (T) f (T)(v)  Ker p (T) = Wi i i i  

v  W + ... + W1 k  

V = W + ... + W1 k  

or that V = W  ...  W1 k  

For let x + ... + x = 0,  x  W1 k i i  

then   x = – (x + ... + x )  1 2 k

 f (T) x = 0 as  i  1, f (T) x = 0  1 1 1 i 
r1Now g.c.d. (f (x), p (x) ) = 1  1 1

So  q (x), r (x)  F[x] such that,  1 1
r1f (x) q (x) + p (x) r (x) = 1  1 1 1 1

r1 I = q (T) f (T) + r (T) p (T)  1 1 1 1

 x = 0  1 

Similarly x = 0  i  i 

This proves (i).  
Let x  W = Ker p (T)i i i

ri  

riThen   p (T) (x ) = 0  i i
ri Tp (T) (x ) = 0  i i

 p (T) (T(x )) = 0  i
ri 

i

 T(x )  W  i  i i 

which proves (ii).  
Again, since   p (T) (x ) = 0   x  Wi

ri 
i i i  

p (T) = 0 on Wi
ri 

i  
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 W is T-invariant  i  i 

1 k i i
 f (T)(v) = f (T) p (T) wi i

si
i  




f (T) w = 0  j  i  i j 

f (T)(v) = f (T)q (T)wi i i  

= f (T) q (T ) wi i i i  

= 0 as q (T ) = 0  i i

f (T) 0



f (T) = 0  




p(x) | f(x)  
r siip (x) | p (x)  i i

 r  si i  

r = si i  
riSo, q (x)= p (x)  i i

which proves (iii).  
Corollary: If T is a linear operator on a finite dimensional space V over F and  
minimal polynomial p(x) of T is a product of distinct linear factors, then T is  
diagonalisable.  

By primarydecomposition theorem  
V = W  ...  W , where each W = Null space of (T – c I)  1 r i i

 v  W  (T – c I)v = 0  i i

  T(v) = c v  i

a basis of V  T is a diagonalisable.  
Example 2.16: Let T and S be linear operators on V(F), each having all its  

space with respect to eigen value c.  
Let   v  W .  c

Then   T(S(v)) = (TS)(v)  
= (ST)(v)  
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Proof: Let p(x) = (x – c ) ... (x – c ), where c are distinct roots of p(x) in F.  1 r i 

 every non-zero vector in W is an eigen vector of T corresponding to  i 
eigen value c of T. If  is a basis of W , then { , ...,  } is a basis of V.  consists  i i i i r i 
of eigen vectors of T  { , ...,  } =  consists of eigen vectors of T and is  1 r

eigen values in F such that, TS = ST.  
Show that they have a common eigen vector.  

Solution: Let c be an eigen value of T. Let W = {v  V T(v) = cv} be the eigen  c

c c c c
 S is a linear operator on W .  c
Let  F be an eigen value of S as linear operator on W .  c
  w  W such that,  c

S(w) = w, w  0  
w  W  T(w) = cw  c

 w is a common eigen vector of T and S.  
Example 2.17: Let N be 2 × 2 complex matrix such that N = 0. Prove that  2 

0 0 



0
1

0
0

either N = 0  or N is similar over C to   .

Solution: Let T : V  V be a linear operator such that,  
[T] = N,  = {v , v } is a basis of V.   1 2

0 = N = N . N = [T] [T] = [T ]2 
  

2
  

T = 0.  2 
Suppose N  0, i.e., T  0.  
Let  be an eigen value of T.  
Then there exists 0  v  V such that,  

T(v) = v  
 T (v) = (T(v)) =  v  2 2






0 =  v  2

 = 0 as v  0  2 

 = 0  
 0 is the only eigen value of T.  

Then  
Since  

Let  
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 
 
 

Now,  

Let W be the eigen space of T with respect to eigen value 0.  o
W = {x  VT(x) = 0} = Ker T  o

o0  v  W , W  {0}  o

So, dim  W = 1 or 2.  o

oIf dim W = 2, then dim W = dim V  o
 W = V  Ker T = V  T = 0, which is not true.  o

Therefore, dim W = 1.  o
W = < w >  2 o

1

Then {w , w } is a basis of V.  1 2

Let   T(w ) =  w +  w1 1 1 2 2  

T(w ) = 0w + 0w as w  Ker T.  2 1 2 2 

T = 0  0 = T (w )  2 2 
1

=  T(w ) +  T(w )  1 1 2 2

=  T(w )  1 1

=  ( w +  w )  1 1 1 2 2

=  w +   w2 
1 1 2 2  1

  = 0 (  0 as  = 0   w  Ker T  1 2 2 1

But  



(1 2 2 1 

 w = 0 which is not true).  1 

So,  
Now  
as  

T(w ) =  w .  1 2 2

{ w , w }=  is also a basis of V  –
2
1 

1 2

a w + bw = 0  –
2
1 

1 2

 a = 0, b = 0  –1 
2

 a = 0 = b.  
 { w , w } =  is a L.I. set  –

2
1 

1 2

 is a basis of V as dim V = 2  
Therefore,   T ( w ) =  T (w )  –

2
1 

1
–
2
1 

1

=   w = w–
2
1 

2 2 2  

= 0 w + 1w–
2
1 

1 2  

0
1

0
0

 [T] =    

Also   [T] = N   

0
1

0 N is similar to   over C.  
0

Example 2.18: Show that if A is a 2 × 2 matrix over C then A is similar to  
a 0 a 0a matrix  of the type   or   over C.  
0 b 1 a

72
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 w  W  W  = {0}  1 o

 
 
 

 
 
 

 
 
 

 
 
 

a 0 A is similar over C to  
0 b

If the roots of f (x) are same, let f (x) = (x – )2  

Then  
Let  

0 = f (A) = (A – I)2  

N = A – I  
0
1

0
0

By above problem either N = 0 or N is similar over  C to   .

 0If N = 0, then  A = I =  

 A is similar over C to  

0 

 0
0 

0 0
0

N = Q–1   Q
1

 
 
 

 
 
 

 
 
 

 
 
 

If  
 
 
 



0
Q Q

Q

Q

1

0
1

0
0

Then  



A – I = Q–1  

 0 0
1

0
0

A =   + Q–1  
0 

    0 0
1

= Q–1  

= Q–1  

 Q
0  0

 0
Q

1 

 0 A is similar over C to the matrix of the type   .
1 

Example 2.19: Give an example to show that AB is diagonalisable and BA  

0
51

0
1
0

1
0

0
0

Solution: Let   A =   , B =  

0
0

0
0

Then   AB =  

So, AB is a diagonal matrix. AB is a diagonalisable matrix.  
0
0

1
0

Now   BA =   and (BA) = 0  2 
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 
 

 
 
 

 
 
 

 
 
 

0       
         

 
 
 

 
 
 

is not diagonalisable, where A and B are n × n matrices over F.  

 
 
 

 
 
 

 
 
 

 
 
 

that 0 or 1 are only eigen values of T and T is diagonalisable.  
Solution: Let   f (x) = x (x – 1) = x – x  2 

f (T) = T – T = 0  2 then  
If p(x) is the minimal polynomial of T, then p(x)f (x).  

p(x) = x or x – 1 or x(x – 1)  
The eigen values of T are the roots of the minimal polynomial of T.  
 0 or 1 are only eigen values of T.  
In each case p(x) = x or x – 1 or x(x – 1),  
p(x) is product of distinct linear factors. So, T is diagonalisable.  

Example 2.21: Give an example of a linear operator T having eigen values  
0 and 1 but T is not idempotent.  
Solution: Let T be a linear operator on V where dim V = 3 such that matrix of  
T with respect to a basis of V is  

0 1 1 
 



0
0

1A =   1
0 1  

Then eigen values of A (or T) are entries on the diagonal as A is a triangular  
matrix.  

 eigen values of T are 0, 1, 1.  

0
0
0

1 1 0
0
0

1
1

1
A =  2 1 1 1

0 1  0 1  

0
0
0

1
1
0

2
= 2

1
 A  

 A is not idempotent.  
So, T is not idempotent.  
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2.6 JORDAN  BLOCKS AND JORDAN FORMS  

A Jordan block is a matrix with zeros everywhere except along the diagonal and  
superdiagonal, with each element of the diagonal consisting of a single number,  
and each element of the superdiagonal consisting of a 1. For example,  
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 
 
  

But  





    
    
    
        

 
 
 
  



0

     1
λ0 0  0

The degenerate case of a 1 ×1 matrix is considered a Jordan block even  
though it lacks a superdiagonal to be filled with 1s. Any Jordan block is thus  
specified by its dimension n and its eigenvalue  and is indicated as J .  ,n

For an arbitrary square matrix A over an algebraically closed field k there  
always exists a square non-singular matrix C over k such that C AC is a Jordan  –1

matrix or A is similar over k to a Jordan matrix. This assertion is valid under  
weaker restrictions on k. For a matrix A to be similar to a Jordan matrix it is  
necessaryand sufficient thatk contains all roots of the minimum polynomial ofA.  
The matrix C AC mentioned above is called a Jordan form or Jordan normal  –1

51

form of the matrix A.  
The Jordan form of a matrix is determined onlyup to the order of the Jordan  

consist of the same Jordan blocks and differ only in the distribution of the blocks  

C () = rk (A –  E) –2 rk (A –  E) + rk (A – E)m–1 m m+1  ,

 
 
 
  

blocks. More exactly, two Jordan matrices are similar over k if and only if they  

along the main diagonal. The number C () of Jordan blocks of order m with  m

eigen value  in a Jordan form of a matrix A is given by the formula  



( ) ( ) ( ) ( )m ,

where E is the unit matrix of the same order n as A, rk B is the rank of the  
matrix B, and rk (A –  E) is n, by definition.  0 

Theorem 2.17: There exists a basis of V such that the matrix of T is in block-  
diagonal form with Jordan blocks. If a is an eigenvalue of T, t the sequence (t ,  0
t ,….,t ,….) with t = dim ker(T – a) and (s , s ,…., s ,….) = –R(L – 1) (t),  1 n i 

i 
0 1 n

2

where R and L are the left and right-shift operators onR , then s is the number of  
i 

Jordan blocks of size i with eigenvalue a.  
As an illustration, let T be the linear operator on F whose matrix with  2

6 

respect the standard basis of F is  2
6 

1 1 1 1 0 0  
0 1 1 1 0 1  
0 0 1 0 1 1  
0 0 0 1 1 1  
0 0 0 0 1 0  
0 0 0 0 0 1  

A   
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 
 
 
 
 
 
 
 
  

A –1     , (A –1) = 0.  3 

0 0 0 0 1 1  
0 0 0 0 0 0  
0 0 0 0 0 0  

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

,

It follows that (T – 1) = 0 and 1 is the only eigenvalue of T. We also have  3 

(0, 3, 5, 6, 6, ...., 6, ...).  
Now (L – 1)(t) = (3, 2, 1, 0, 0, ..., 0, ...), (L – 1) (t) = (–1,–1,–1, 0, 0, ...,  2

0, ...) and so –R(L–1) (t) = (0, 1, 1, 1, 0, 0, ..., 0, ...) which, according to the  2

above Theorem , implies that there is one Jordan block of size 1, one of size 2 and  
one of size 3. Hence there is a basis ofF such that the matrix of T with respect to  2

6 

this basis is  

1 0 0 0 0 0  
0 1 1 0 0 0  
0 0 1 0 0 0  
0 0 0 1 1 0  
0 0 0 0 1 1  
0 0 0 0 0 1

 
 
 
 
  

(A –1)   2 
 
 
 
 
  

rank(T – 1) = 3, rank(T – 1) = 1, rank(T – 1) = 0 so that t = dim ker(T – 1)  2 3 
1 

= 3, t = dim ker(T – 1) = 5, t = dim ker(T – 1) = 6. Hence t is the sequence  2 
2 

3 
3 

 
 
 
 
 
 
 
 
  



0 0 0 0 0 1  

(f ) = f .  n n–1


g, (T – a)(g), (T – a) (g), ...., (T – a) (g) is a basis for a T-invariant subspace of  2 n–1

called a cyclic vector of cycle length n for the eigenvalue a. Each Jordan block  
corresponds to a cyclic vector. The subspace generated by a cyclic vectorg and  
its images under the powers of T is called the cyclic subspace generated byg.  

direct sum of cyclic subspaces in the case of the above illustration. We first find  
88

bases for ker(T – 1), ker(T – 1) , ker(T – 1) .  2 3
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  
If W is a T-invariant subspace of V and f = (f , f , ..., f ) is a basis of W, the  1 2 n

matrix (with respect to this basis) of the restriction ofT to W is the Jordan matrix  
J (a) iff T(f ) = af , T(f ) = af + f , ..., T(f ) = af + f , ..., T(f ) = af + f or,  n 1 1 2 2 1 i i i–1 n n n–1 
equivalently, (T – a)(f ) = 0, (T – a)(f ) = f , ..., (T – a)(f ) = f , ..., (T – a)  1 2 1 i i–1

For such a basis we have f = (T –a) (f ) with f Ker((T–a) )–Ker((T–  i 
n–i

n
n  n 

a) ). Conversely, if g Ker((T – a) ) – Ker((T – a) ) the sequence  n–1 n n–1

V such that the matrix of this mapping with respect to the basis f = (T –a) (g),  1 
n–1

f = (T – a) (g), ..., (T – a)(g), g is the Jordan matrix Jn(a). The vector g is  2 
n–2

We now illustrate how to find cyclic vectors that give decomposition into a  



linearly independent. We complete these two vectors to a basis of ker(T –1) by  
means of the vector  

g = e + e + e + e . Now, the sequence of vectors  3 2 3 5 6

g = e , (T – 1)(g ) = e + e + e , (T – 1) (g ) = e ,  1 6 1 2 3 4
2

1 1

g = e , (T – 1)(g ) = e + e , g = e + e + e + e2 5 2 3 4 3 2 3 5 6  

is linearly independent and the basis  
f = g , f = (T – 1)(g ), f = g , f = (T – 1) (g ), f = (T – 1)(g ), f = g1 3 2 2 3 2 4 

2
1 5 1 6 1  

a subspace of V , we say that the sequence v , v , ..., v is linearly independent  
49

1 2 n 
mod W if  

a v + a v + …..+ a v  W  a = a = ... = a = 0.  1 1 2 2 n n 1 2 n 

Lemma 7: If Ker((T – a) ) = Ker((T – a) ) then Ker((T – a) ) = Ker((T – a) ).  i i+1 i+1 i+2

This lemma shows that, for an eigenvalue a of T, there is an integer p > 0  
44

such that  
0 = t < t <….. < t = t = t = ……,  0 1 p p+1 p+2 

where t = dim(T – a) .  i 
i

Lemma 8: If i  2 and v Ker((T – a) ) – Ker((T – a) ) then  i i–1

(T – a)(v) Ker((T – a) ) – ker((T – a) ).  i–1 i–2

Proof: If v Ker((T – a) ) and (T – a)(v) Ker((T – a) ) then  i i–2

(T – a) (v) = (T – a) (T – a)(v) = 0  i–1 i–2

Self - Learning  
Material   115  

We find that g = e completes the given basis of Ker((T–1) ) to a basis of Ker((T–  1 6 
2

1) ). Now (T –1)(e ) = e +e +e is in the kernel of (T – 1) but not in the kernel of  3
6 2 3 4 

2 

T – 1. Thus e , e + e , e + e + e + e , e + e + e is linearly independent and  1 3 4 2 3 5 6 2 3 4 
we can complete this sequence to a basis of Ker((T – 1) ) with the vector g = e .  2

2 5
Now (T – 1) (g ) = e ,(T – 1)(g ) = e + e are in the kernel of T – 1 and are  2

1 1 2 3 4 

yields the above Jordan canonical form for T. If v , v , ..., v  V and W is  1 2   n 

This is equivalent to saying that the images of the vectorsv in the quotient  i 
space V=W form a linearly independent sequence. Similarly, we say that v , v ,  1 2
..., v generate V mod W if every v V can be written in the form v = a v + a vn 1 1 2 2  
+ …. + a v with w W. This is equivalent to saying that the images of the  n n 

vectors v in V=W span V=W.  i 

Proof: Letv Ker((T–a) ).Then(T–a)(v)Ker((T–a) )=Ker((T–a))which  i+2 i+1 i

implies that (T – a) (v)= (T – a)(T – a)(v) =0and hence thatv Ker((T –a) ).  i+1 i i+1

which implies that v Ker((T – a) ).  i–1



Lemma 9: If i  2 and v , v , ..., v Ker(T–a)i is linearly independent mod  1 2 n 

Ker((T–a) ) then  i–1

(T – a)(v ), (T – a)(v ), ..., (T – a)(v )  Ker((T – a) )  1 2 n
i–1

is a linearly independent sequence mod Ker((T – a) ).  i–2

If r = (r , r , ..., r , ...) = (L – 1)(t) then  0 1 i

r = dim(Ker(T – a) ) – dim(Ker(T – a) ) = dim(Ker((T – a) )=Ker((T  i i+1
i i+1

– a) ).  i

Lemma 7 shows that r is a decreasingsequence of natural numbers which are zero  
for i > p, i.e.,  

r  r  r  …..  r = r = r = ... = 0.  0 1 2 p p+1 p+2 

The above Theorem states that the number of Jordan blocks of size i  1 is  

Following is the proof of the above stated Theorem:  

k1   k2  (λ  a1  )   a ...(   a ) 0   m 
k

m  
2

By the primary decomposition theorem, V is a direct sum of the subspaces  
ki

k k +1  iiinteger k is the smallest integer > 0 such that, Ker ((T – a ) ) = Ker ((T – a )  i i i )

and so   ,V (a )  i 

This subspace is called the generalized eigenspace for the eigenvaluea .  i

Let a be any eigenvalue of T. If t = dim ker(T – a) , then we have  i 
i

0 = t < t < . . . < t = t0 1 p p+1  

for a unique p  1.  
Given below is an algorithm for decomposing V (a) into a direct sum of  

cyclic Subspaces:  
Step 1:  Find a basis for Ker((T – a) ) mod Ker((T – a) ), i.e., find a sequence  p p–1

of vectors in Ker((T – a) ) which complete some basis of ker  p

(T – a) to a basis of Ker((T – a) ).  p–1 p

Step 2:  If p = 1 stop, if p > 1 take the image, under T – a, of the basis of  
Ker((T – a) ) mod Ker((T – a) ) obtained in the previous step and  p p–1

complete it to a basis of Ker((T – a) ) mod Ker((T – a) ).  p–1 p–2

Self - Learning  
Material  116  

–(r –r –1) = r –1 –r = dim(Ker((T–a) )=Ker((T–a) )–dim(Ker((T–  i i i i 
i i–1

a) )=Ker((T–a) ))  i+1 i

Proof:Without lossofgenerality,wecanassumethat theminimalpolynomialofT is  

V (a ) = Ker((T – a ) ) with {a , . . . , a } being the set of eigenvalues of T. The  i i 1 m

j0  
 ker(T – a ) i 

j  



cyclic vectors of cycle length i. The number of these cyclic vectors is dim(ker((T  
– a) )=Ker((T – a) )) – dim(Ker((T – a) )=Ker((T – a) )).  i i–1 i+1 i

Moreover, V is the direct sum of the cyclic subspaces generated by the  
cyclic vectors so obtained.  
Corollary 1: Let V be a finite-dimensional vector space over a field K and let T   
be a linear operator onV whose minimal polynomial is a product of linear factors.  

{0} = V  V V …… V = V with dim(V ) = i.  0 1 2 n i

Corollary 2: If A is an n × n matrix over a field K whose minimal polynomial is a  
product of linear factors then there is an invertible matrix P  
P AP is upper triangular.  –1

such that  n×n  K

Corollary 3: (Cayley-Hamilton) If  () is the characteristic polynomial of the  A

matrix A   then  (A) = 0.  n×n 
A

 C
Corollary3 is true for a matrix A over anyfield K since it is possible to find  

a field F, containing K as a subfield, such that the minimal polynomial of A is a  
product of linear factors  – c with c F.  

na ) ( a ) ... (  1
n

1 2 
n

2 
Let   be the characteristic polynomial of  

C with characteristic polynomial () = ( – 1)5×5 2  Example 2.22: If A  
( – 2) and minimal polynomial m() = ( – 1)( – 2) , what is the Jordan  3 2

form for A?  
Solution: The generalized eigenspace for the eigenvalue 2 has dimension 3 and  
there is a cyclic vector of cycle length 2. It follows that there is one Jordan block  
of size 1 and one of size 2. On the other hand the cyclic vectors for the eigenvalue  
1 have cycle length 1 and so there must be 2 Jordan blocks of size 1 for the  
eigenvalue 1 since the generalized eigenspace for this eigenvalue has dimension 2.  
The Jordan form (up to order of the blocks) is therefore  

2
85

0
0
0
0

0
2
0
0
0

0
1
2
0
0

0
0
0
1
0

0
0
0
0
1
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If dim(V ) = n, there are T-invariant subspaces  

( –  –  – x )   
a linear operator T on a finite-dimensional vector spaceV with a , a , ..., a distinct.  1 2 l 
The integer n is called the algebraic multiplicity of the eigenvalue a . n is the  i i i 
dimensionof the generalizedeigenspaceV (a ) for theeigenvaluea .Thedimension  i i
of the eigenspaceKer((T –a )) is called the geometric multiplicityof theeigenvalue  i
a .ThusT isdiagonalizableifandonlyifthegeometricmultiplicityofeacheigenvalue  i
is equal to its algebraic multiplicity.  

 
 
 
 
 
 
  

f ll h h b i h (i) 2 d bl k f i 3 (ii) 1 f i 3



It follows that there must be either (i) 2 Jordan blocks of size 3 or (ii) 1 of size 3,  
oneofsize2andoneofsize1or (iii)oneofsize 3and3ofsize1.Thecorresponding  
possible Jordan forms for A are:  

0
37

0
0
0
0
0

1
0
0
0
0
0
44

0
1
0
0
0
0
37

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
44

0
1
0

0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0
37

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
37

0
0
0

0
0
0
0
0
0

1
0
0
0
0
0
44

0
1
0
0
0
0
37

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

(i)   (ii)   (iii)  

Since the nullityof A is respectively2, 3, 4 in cases (i), (ii), (iii), we get that  

Example 2.24: If N is an n × n matrix with n  2, N = 0, N  0, show that  n n–1 

there is no complex n × n matrix A with A = N.  2 

Solution:Suppose thatA =N for someA.ThenA =N =0andsothecharacteristic  2 2n n 

polynomial of A must be  . Hence A = 0 which implies  N = A = 0 since  n n n–1 2n–2 

2n – 2  n.  
This contradicts the assumption that N  0.  n–1 

5. When is a linear operator on a finite dimensional space V over F  
diagonalizable?  

6. What is Jordan block?  

2.7 CYCLIC  MODULES  

A group we noticed is a system with a non-empty set and a binary composition.  
One can of course talk about non-empty sets with two binarycompositions also,  
thesetof integersunderusualadditionandmultiplicationbeinganexample.Though  
this set forms a group under addition and not under multiplication, it does have  

out some of these and generalize the concept in the form of a ring. We start with  
148

the formal definition.  
Definition 1:Anon-empty set R, together with two binary compositions + and  
. is said to form a Ring if the following axioms are satisfied:  

49

(i) a + (b + c) = (a + b) + c for all a, b, c  R  
(ii) a + b = b + a for a, b  R  
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two such matrices with the same nullityare similar.  

Check Your Progress  

certain specificproperties satisfiedwith respect to multiplication as well.Wesingle  



(v) a . (b . c) = (a . b) . c for all a, b, c  R  
(vi) a . (b + c) = a . b + a . c  

(b + c) . a = b . a + c . a for all a, b, c  R  
Notes: 1. Since we say that + and . are binarycompositions onR, it is understood  

that the closure properties with respect to these hold in R. In other words,  
for all a, b  R, a + b and a . b are unique in R.  

2. One can use any other symbol instead of + and ., but for obvious reasons,  
we use these two symbols (the properties look so natural with these). In  
fact, in future, the statement that R is a ring would mean that R has two  
binary compositions + and . defined on it and satisfies the above axioms.  

3. Axiom (v) is named associativitywith respect to . and axiom (vi) is referred  
to as distributivity (left and right) with respect to . and +.  

4. Axioms (i) to (iv) could be restated by simply saying that < R, + > forms  
an abelian group.  

5. Since 0 in axiom (iii) is identitywith respect to +, it is clear that this element  
is unique (see groups).  

Definitions 2: A ring R is called a commutative ring if ab = ba for all a, b   
R. Again if   an element e  R such that,  

ae = ea = a for all a  R  

called unit element or multiplicative identity).  
It would be easy to see that if unity exists in a ring then it must be unique.  

Note: We recall that in a group by a we meant a . a where ‘.’ was the binary  2 

fact, we also introduce similar notation for addition, and shall write na to mean  

Case 8: Sets of real numbers, rational numbers, integers form rings with respect  
87

Case 9: Set E of all even integers forms a commutative ring, without unity (under  
usual addition and multiplication).  
Case 10: (a) Let M be the set of all 2 × 2 matrices over integers under matrix  
addition and matrix multiplication. It is easy to see thatM forms a ring with unity  

1
0

0
1

, but is not commutative.  
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we say, R is a ring with unity. Unity is generally denoted by 1. (It is also  

composition of the group. We continue with the same notation in rings as well. In  

a + a + ....+ a (n times), n being an integer.  

to usual addition and multiplication.These are all commutative rings with unity.  

 
 
 



multiplication modulo 7. (In fact, we could take n in place of 7).  
Case 12: Let F be the set of all continuous functions f : R  R, where R = set  

for any   f, g  F  
( f + g)x = f (x)  

( f g)x = f (x)g(x)  
for all x  R  
for all x  R  

zero of this ring is the mapping O : R  R, such that,  
O(x) = 0 for all x  R  

87

Also additive inverse of any f  F is the function (– f ) : R  R such that,  
(– f )x = – f (x)  

In fact, F would have unity also, namely the function  i : R  R defined  
by i(x) = 1 for all x  R.  
Note:Although the same notation fg has been used for product here it should not  

Case 13: Let Z be the set of integers, then Z[i] = {a + ib | a, b  Z} forms  a  
ring under usual addition and multiplication of complex numbers.a + ib where a,  
b  Z is called a Gaussian integer and Z[i] is called the ring of Guassian integers.  

We can similarly get Z [i] the ring of Gaussian integers modulo n. For  n
instance,  

Z [i] = {a + ib | a, b  Z = {0, 1, 2} mod 3}  3 3 

= {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}  
Case 14: Let X be a non-empty set. Then P (X) the power set of X (i.e., set of  
all subsets of X) forms a ring under + and · defined by  

A + B = (A  B) – ( A  B)  
A . B = A B  

In fact, this is a commutative ring with unityand also satisfies the property  
A = A for all A  P (X).  2 

Case 15: Let M = set of all 2 × 2 matrices over members from the ring of integers  
modulo 2. It would be a finite non-commutative ring. M would have  

a
67

c
b
d2 = 16 members as each element a, b, c, d in matrix  4 

2 ways. Compositions in M are given by  

can be chosen in  

a
c

b
d

x
z

y a
c




x
z

b
d




y

 =
u u
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of real numbers. ThenF formsa ring underaddition and multiplicationdefined by:  

be mixed up with fog defined earlier.  
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1 1  0
1

0
1

1 1  
That M is non commutative follows as   =

1 1   1 1  

0
1

0
1

1 1   0
0

0
0

But   =
1 1  

Case 16: Let R = {0, a, b, c}. Define + and . on R by  
+
0
a
b
c

0
0
a
b
c

a
a
0
c

b
b
c

c
c
b
a
0

. 0
37

0
0
0
0

a b c
0
c
c
0

0
a
b
c

0
a
a
0

0
b
b
0

0
ab

Then one can check that R forms a non commutative ring without unity. In  
fact it is an example of the smallest non commutative ring.  
Theorem 2.18: In a ring R, the following results hold  

(i) a . 0 = 0 . a = 0  for all a  R  
(ii) a(–b) = (–a)b = –ab for all a, b  R  

(iii) (–a) (–b) = ab.  a, b  R  
(iv) a(b – c) = ab – ac.  a, b, c  R  

Proof: (i)   a . 0 = a . (0 + 0)  
 a . 0 = a . 0 + a . 0  
 a . 0 + 0 = a . 0 + a . 0  

0 = a . 0  
using cancellation w.r.t  + in the group < R, + >.  


(ii)   a . 0  = 0  
a (– b + b) = 0  
a (– b) + ab= 0  



 a (– b) = – (ab)  

(iii) (– a) (– b) = – [a (– b)] = –[– ab] = ab  
(iv)   a (b – c) = a (b + (– c))  

= ab + a (– c)  
= ab – ac.  
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similarly, (– a) b = – ab.  



2. If n, m are integers and a, b elements of a ring, then it is easy to see that  
n(a + b) = na + nb  
(n + m)a = na + ma  

(nm)a = n(ma)  
a a = am n m + n  

(a ) = am n mn  

We are so much used to the property that whenever ab = 0 then either  
a = 0 or b = 0 that it may need more than a bit of convincing that the result may  
not always be true. Indeed in the ring of integers (or reals or rationals) this property  
holds. But if we consider the ring of 2 × 2 matrices over integers, we notice, we  
can have two non zero elements A, B s.t, AB = 0, but A  0 B  0. In fact, take  

0
0

1
0

2
85

0
0
0

0
0

0
0

A =   and B =   then A  0, B  0. But AB =   . We formalise  

this notion through  
Definition 1: Let R be a ring. An element 0  a  R is called a zero-divisor,  
if  an element 0  b  R such that, ab = 0 or ba = 0.  
Definition 2:Acommutative ring R is called an Integral domain if ab = 0 in R  
 either a = 0 or b = 0. In other words, a commutative ringR is called an integral  
domain if R has no zero divisors.  

.An obvious example of an integral domain is <Z, +,  > the ring of integers  
whereas the ring of matrices, talked about above is an example of a ring which  
is not an integral domain.  
Note: Some authors do not insist upon the condition of commutativity as a part  
of thedefinitionofan integraldomain.Onecanhavenoncommutative ringswithout  
zero divisors.  

The following theorem gives us a necessary and sufficient condition for a  
commutative ring to be an integral domain.  
Theorem 2.19: A commutative ring R is an integral domain iff for all a, b,  
c  R (a  0)  

ab = ac  b = c.  
Proof: Let R be an integral domain  

Let  
Then  


ab = ac (a  0)  
ab – ac = 0  

49

a(b – c) = 0  
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Suppose ab = 0  
then   ab = a.0  
 b = 0 using given condition  
Hence ab = 0 b = 0 whenever a  0 or that R is an integral domain.  

Note:Aring R is said to satisfy left cancellation law if for all a, b, c  R, a  0  
ab = ac  b = c.  

Similarly we can talk of right cancellation law. It might, of course, be  
noted that cancellation is of only non zero elements.  

with respect to multiplication if  some b  R such that ab = 1 = ba.  
Notice, unit and unit element (unity) are different concepts and should not  

Definition 2:Aring R with unity is called a Division ring or a skew field if non  
zero elements of R form a group with respect to multiplication.  

In other words, a ring R with unity is a Division ring if non zero elements  
of R have multiplicative inverse.  
Definition 3:Acommutative division ring is called a field.  

Real numbers form a field, whereas integers do not, under usual addition  
and multiplication. Since a division ring (field) forms groups with respect to two  
binary compositions, it must contain two identity elements 0 and 1 (with respect  
to addition and multiplication) and thus a division ring (field) has at least two  
elements.  
Case 17:Adivision ring which is not a field. LetM be the set of all 2 × 2  matrices  

a b
a

of the type   where a, b are complex numbers and  a , b are their  
b  

1
0

0
1

aconjugates, i.e., if a = x + iy then = x – iy. Then M is a ring with unity  

under matrix additionand matrix multiplication.  

x  iy  
iv  

u
x




iv  
iy  

Any non zero element of M will be  

where x, y, u, v are not all zero.  

(u   )
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Definition 1:An element a in a ring R with unity, is called invertible (or a unit)  

be confused with each other.  

 
 
 

 
 
 

 
 
 

where k = x + y + u + v , will be  multiplicative inverse of the above  44



non zero matrix, showing that M is a division  ring. But M will not be a field as  
44

it is not commutative as  
0 1

0
i 0 0 i  

=

=

1   0 i   i   0

i 0 0 1
0

0 i 0 i  
 .

0 i   1 i   0 i   0

Case 18: Consider  
D = {a + bi + cj + dk | a, b, c, d  R} with i = j = k = –1, then D  2 2 2 

forms a ring under multiplication.  
Since i = 0 + 1i + 0j + 0k, j = 0 + 0i + 1j + 0k gives ij = k, ji = –k,  

we find D is not commutative and hence is not a field. D has unity 1 = 1 + 0i +  
0j + 0k.  

If a + bi + cj + dk be any non zero element of D (i.e., at least one of a,  
(a  bi  cj  dk)  

b, c, d is non zero) then (a + bi + cj + dk)   = 1.  
a2     b c d2 2 2   

Hence D is a division ring but not a field.  
Theorem 2.20: A field  is an integral domain.  
Proof: Let < R, +, . > be a field, then R is a commutative ring.  

Let ab = 0 in R. We want to show either a = 0 or b = 0. Suppose a  0,  
then a exists (definition of field)  –1 

thus  


ab = 0  
a (ab) = a 0  –1 –1

b = 0.  

which shows that R is an integral domain.  
A ‘Partial Converse’ of the above result also holds.  

Theorem 2.21: A non-zero finite integral domain is a field.  
Proof: Let R be a non zero finite integral domain.  

Let R be the subset of R containing non zero elements of R.  
Sinceassociativityholds inR, itwill hold inR.ThusR is afinite semi group.  
Again cancellation laws hold in R (for non zero elements) and therefore,  

these hold in R.  
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     
     
     

 
 
 

But        
     
     

   
   
   



domain).  

aa , ...., aa are distinct members of R.  2 n 

Since a  R, a = aa for some i  i 

Let x  R be any element, then x = aa for some j  j 

Thus   ax = (aa )x = a(a x)  i i

x = a x  ii.e.,  
Hence usingcommutativitywe find  

x = a x = xai i  

or that a is unity of R. Let a = 1  i i 

Thus for 1 R, since 1 = aa for some k  k 

has multiplicative inverse or that R is a field.  
Case 19:An infinite integral domain which is not a field is the ring of integers.  
Definition: A ring R is called a Boolean ring if x = x for all x  R.  2 

Case 20:The ring{0, 1} under additionand multiplication mod 2forms a Boolean  

Example 2.25: Show that a Boolean ring is  commutative.  
Solution: Let a, b  R be any elements  

Then  
Bygiven condition  

(a + b) = a + b  2 

 a + b + ab + ba = a + b  2 2 

 a + b + ab + ba = a + b  
 ab + ba = 0  
 ab = – ba  
 a(ab) = a(–ba)  
 a b = – aba  2

...(1)  

...(2)   ab = – aba  
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Aliter: Let R = {a , a , ...., a } be a finite non zero integral domain. Let  1 2 n
0  a  R be any element then  aa , aa , ....., aa are all in R and if aa = aa1 2 n i j  
for some i  j, then by cancellation we get a = a which is not true. Hence aa ,  i j 1

We find a is multiplicative inverse of a. Hence any non zero element of R   k 

ring.  

a + b R (closure)  



ab = ba (= – aba)  
or that R is commutative.  

Example 2.26: (a) Show that a non zero element a in Z is a unit iff a and  n 
n are relatively prime.  

Solution: (a) Z = {0, 1, 2, ......, n – 1} mod n  n 

Let a  Z be a unit, then  b  Z such that,  n n 

a  b = 1  
i.e., when ab is divided by n, remainder is 1, in other words,  

ab = nq + 1  
or   ab – nq = 1  
 a and n are relatively prime.  
Conversely, let (a, n) = 1, then  integers u, v such that,  

au + nv = 1  
 au = n(–v) + 1  

Suppose, u = nq + r, 0  r < n, r  Z ,  n

Then   au = anq + ar = n (– v) + 1  
ar = n (– v – aq) + 1,  r  Zn  

a  r = 1,  r  Zn  



i.e.,  
i.e.,   a is a unit.  

(b) Let a be not a unit and suppose g.c.d(a, n) = d > 1  
Since d |a, a = dk for some k. Also d |n  n = dt  

n a.t = dk   = kn = 0 mod n  
d

Example 2.27: Show that  Z = {0, 1, 2, ....., p –1} modulo p is a field iff  p 
p is a prime.  

 a  b = 0 where a, b are non zero  Z has zero divisors.  p 

integraldomain.  
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(b) If a is not a unit then it is a zero divisor.  

i.e., a is a zero divisor.  

Solution: Let Z be a field. Suppose p is not a prime, then  a, b, such that  p 
p = ab, 1 < a, b < p  

i.e. Z is not an integral domain, a contradiction as Z being a field is an  p p 

Then   ab is a multiple of p  



 p | ab  
 p | a or p | b (p being prime)  
 a = 0 or b = 0 (Notice a, b  Z a , b < p)  p 

 Z is an integral domain and hence a field.  p 

show that R is commutative.  
Solution: Let x, y  R be any elements  

then  
Bygiven condition  

(x(y + 1)) = x (y +1)2 2 2  

y + 1  R as 1  R  

 (xy + x) = x (y + 1)2 2 2  

 (xy) + x + xyx + xxy = x (y + 1 + 2y)  2 2 2 2 

 x y + x + xyx + xxy = x y + x + 2x y  2 2 2 2 2 2 2

 xyx = x y  2 ...(1)  
Since Equation (1) holds for all x, y in R, it holds for x + 1, y also. Thus  

replacing x by x + 1, we get  
(x + 1) y(x +1) = (x +1) y  2

 (xy + y) (x +1) = (x +1 +2x)y  2 

 xyx + xy + yx + y = x y + y + 2xy  2

 yx = xy using Equation (1)  
Hence R is commutative.  

Example 2.29: Show that the ring R of real valued continuous functions on  
[0, 1] has zero divisors.  
Solution: Consider the functions f and g defined on [0, 1] by  

1
2

1
2

 x,  f (x) =   0  x   

1
2

= 0,  

and g(x) = 0,  

= x  

 x 1   

10  x   
2
76

1 1
2

 ,  x 1   
2
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Example 2.28:  If in a ring R, with unity, (xy) = x y for all x, y  R then  2 2 2 

2 2

i.e.,   g f (x) = 0 for all x  

  



i.e.,   g f = 0 but f  0, g  0.  
Definition: A non-empty subset S of a ring R is said to be a subring of R if S  
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forms a ring under the binary compositions of R.  
. .The ring < Z, +,  > of integers is a subring of the ring < R, +,  > of real  

numbers.  
If R is a ring then {0} andR are always subrings ofR, called trivial subrings  

of R.  
It is obvious that a subring of an integral domain will be an integral domain.  
Inpractice itwouldbedifficultandlengthytocheckallaxiomsinthedefinition  

of a ring to find out whether a subset is a subring or not. The following theorem  

Theorem 2.22: A non-empty subset S of a ring R is a subring of R iff a, b  
 S  ab, a – b  S.  
Proof: Let S be a subring of R  

then   a, b S  ab  S (closure)  
a, b  S  a – b  S  

as < S, + > is a subgroup of < R, + >.  
Conversely, since a, b  S  a – b  S, we find < S, + > forms a  

subgroup of < R, + >. Again for any a, b  S, since S  R  
a, b  R  

 a + b = b + a  
and so we find S is abelian.  
Byasimilarargument,wefindthatmultiplicativeassociativityanddistributivity  

hold in S.  
In other words, S satisfies all the axioms in the definition of a ring.  
Hence S is a subring of R.  

Definition: A non-empty subset S of a field F is called a subfield, if S forms a  

divisionring.  
The simple modules over a ring R are the (left or right) modules over R,  

which have no non zero proper submodules.  
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would make the job rather easy.  

field under the operations in F. Similarly, we can define a subdivision ring of a  

1. r(x + y) = rx + ry  
2. (r + s)x = rx + sx  
3. (rs)x = r(sx)  



4. 1 x = x, if R has multiplicative identity 1 .  R R

A right R-module is defined in the similar waybut the ring acts on the right, i.e.,  
we have a scalar multiplication of the form M × R  M, and the axioms are  
written with scalars r and s on the right of x and y. If R is commutative, then left R-  
modules are the same as right R-modules and are called R-modules.  

Submodule  

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule  
or R-submodule if, for any n  N and any r  R, the product rn  N or nr  N  
in the case of right R-module.  

Quotient Module  

Given a module A over a ring R, and a submodule B of A, the quotient space A/B  
is defined bythe equivalence relation  

a ~ b if and only if b – a  B,  
for any a and b  A. The elements of A/B are the equivalence classes  

[a] = { a + b : b in B }.  
The addition operation on A/B is defined for two equivalence classes as the  

equivalence class of the sum of two representatives from these classes as,  
[a] + [b] = [a + b] for  a, b  A and r  R  
and the multiplication byelements ofR as,  
r·[a] = [r·a], for all a, b  A and r  R  

2.7.1 Simple Modules  

Definition 1:Amodule is analgebraicobject in which thingscanbeadded together  
commutatively by multiplying coefficients and in which most of the rules of  
manipulating vectors hold. If a module takes its coefficients in a ringR then it is  
called a module over R or an R-module. If a and b are two integers then the  

Definition 2: The left R-module M is said to be finitelygenerated if there exist  
n

m , m , …., m M such that,  M =  1 2 n Rm .  i i   1
76
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In thisway,A/Bbecomes itselfamoduleoverR, called thequotientmodule.  

smallestmodulecontainingaandb is themodule for theirgreatest commondivisor.  

a , . . . , a R and x , . . . , x X.  1 n 1 n 

Definition 3:Let R be a ringand letM bea left R-module. For anyelementm M,  
the left ideal  



Ann(m) = { r  R | r m = 0 }  
is called the annihilator of m. The ideal  
Ann (M) = { r  R | r m = 0 for all m M }.  
is called the annihilator of M.  
The module M is called faithful ifAnn(M)=(0).  
A module is simple if it is non-zero and does not admit a proper non-zero  

submodule. If a moduleM is simple then the followingare equivalent:  
 Am = M for every m non-zero in M. simple module  
 M   A/m for some maximal left ideal of A.  

element of a simple module is a maximal left ideal.  
The annihilator of a simple module is called a primitive ideal. The ringA is  

primitive if the zero ideal is primitive or equivalently, ifA admits a faithful simple  
module.  

 A module may have no simple submodules. Simple submodules of A are  A

minimal left ideals.  

 The Z-module Z/p Z where p is a prime is indecomposable. It is simple if  n

and only if n = 1.  

endomorphisms is a two-sided ideal ofA. Let B be the subring A generated  
by the identity endomorphism and a. Then V is a simple B-module, in  

Definition 4: Auniformmodule is a non-zero moduleM such that the intersection  
of anytwo non zero submodules of M is non-zero or equivalently such that every  
non zero submodule of M is essential in M.  
Note:An essential submodule of a moduleB is anysubmoduleAwhich has non-  
zero intersection with everynon-zero submodule ofB.  Self - Learning  
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In particular, simple modules are cyclic and the annihilator of anynon-zero  

 The module A is simple if and only if A is a division ring. In this case, any  A

simple module is isomorphic to A.  A

 Let A = End V for a field k and a k-vector spaceV. The set a of finite rank  k 

particular a simple A-module and B A if dim V is infinite. Let W be a  k 
codimension1subspaceofV.TheendomorphismskillingWformaminimal  
left ideal in A and in B. Thus A and B when dim V is infinite give examples  k 
of primitive rings that admit non-trivial proper two-sided ideals.  

over itself is known as anArtinian semi simple ring. Some important rings, such as  
group ringsof finite groups over fields ofcharacteristic zero, aresemi-simple rings.  
AnArtinian ring is initially understood via its largest semi-simple quotient. The  
structure of Artinian semi-simple rings is well understood by the Artin–  

35

Wedderburn theorem, which exhibits these rings as finite direct products of  



matrixrings.  
Definition: Amodule over a (not necessarilycommutative) ring is said to be semi  
simple (or completely reducible) if it is the direct sum of simple (irreducible)  
submodules.  

For a module M, the following are equivalent:  
1. M is semi-simple; i.e., a direct sum of irreducible modules.  
2. M is the sum of its irreducible submodules.  
3. Every submodule of M is a direct summand: for every submodule N of  

M, there is a complement P such that M = N P.  
The most basic example of a semi simple module is a module over a field,  

i.e., a vector space. On the other hand, the ringZ of integers is not a semi simple  
65

module over itself, since the submodule 2Z is not a direct summand.  
Semi-simple is stronger than completely decomposable, which is a direct  

sum of indecomposable submodules.  
Let A be an algebra over a field K. Then a left module M over A is said to  
35

be absolutely semi simple if, for anyfield extensionF of K, F —    M is a semi-  
simple module over F —   A.   K   

Properties of Semi-Simple Module  

 If M is semi simple and N is a submodule, then N and M/N are also semi  

 An arbitrarydirect sum of semi-simple modules is semi-simple.  
 AmoduleM is finitelygenerated and semi-simple if and only if it isArtinian  

and its radical is zero.  

2.7.3 Schur’s Lemma  

Schur’s lemma is a fundamental result in representation theory, an elementary  
observation about irreducible modules, which is nonetheless noteworthybecause  
of its profound applications.  
Lemma 10: Let G be a finite group and let V and W be irreducible G-modules.  
Then, every G-module homomorphism f:VW is either invertible or the trivial  
zero map.  
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simple.  

Corollary: Let V be a finite-dimensional, irreducible G-module taken over an  
algebraicallyclosed field. Then, everyG-module homomorphism f:VV is equal  
to ascalar multiplication.  
Proof: Since the ground field is algebraically closed, the linear transformation  
f:VV has an eigenvalue , say. By definition, f  is not invertible, and hence  

Given below is one of the most important consequences of Schur’s lemma:  



2.7.4 Free Modules Fundamental Structure Theorem  

In a principal ideal domain, the generators of an ideal is unique up to associates. If  
a R, then the generator of ann(a) (= {r R| ra = 0}) is called the order of a,  

denoted by o(a). Now we attach a weight P(a) to a R. Since R is a unique  

of a by P(a). By convention, P(0) = 1. Thus, a|b in R implies that P(a)  P(b),  
where the equality holds if and only if a, b are associates.  
Lemma 11: Let M be a finitelygenerated module over a principal ideal domainR,  

Proof: If one of the a is a unit then the proof follows.  i 

s  P(a )  Let   where a  0. We will prove this by induction on s. If s = 0,  i  i

every a is zero or a unit and at least one a is a unit.  i i 

b c = 1.  2 2 

M = {m , m , . . . ,m }  1 2 n

c2   b1 (m ,m )   ,m ,...., m   31 2  c b1 2  

0 = b(b m + b m ) + a m + . . . + a m1 1 2 2 3 3 n n  

Now P(b)  P(a < P(a ) + P(a ). By induction, M = {m , . . . ,m }, with  1 1 2 1 n

o(m ) | b, and o(m )|a , for i  3. But b|a , b|a , hence o(m )|a , for all i.  1 1 i 1 2 1 i
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equal to zero by Schur’s lemma. In other words, f =  , i.e., a scalar.  

factorizationdomain,wedenote thenumberofprimefactors (countingmultiplicity)  

say M = {m , . . . ,m }. Suppose that there is a relation a m + . . . + a m = 0,  1 n 1 1 n n 
where not all the a are zero. Then there are elements m , . . . ,m M, such that,  1 n 
M = {m , . . . ,m }, and the order of m divides every a .  1 n

i

1 i

If a is a unit, then m is a linear combination of the other m . So take  1 1 i
m = 0, m = m , i > 1.  1 i i

If onlyone a is non-zero, the result is easy to establish, so let us assumea ,  i 1
a are nonzero and non-unit. Let b = g.c.d.(a , a ), a = bc , a = bc , and b c +  2 1 2 1 1 2 2 1 1 

Now,  


  n 
















Proof: If n = 1, this is true, as R is a principal ideal domain. Now let n > 1. We  
induct on n.  

Amongst all possible set of generators ofM having n elements choose one  
which has an element m with least P(m). Let M = {m = m , m , . . . ,m }. If  1 2 n

Rmi
'  M  R  Rmm i

'   , then by induction the submodule   has a basis {m , . . . ,  2i2   i2  

m }. But then {m , . . . ,m } is a basis of M.  n 1 n



We show that Rm is indeed a direct summand of M: If not, one has a  

the result follows.  

7. When a oring R is called a Boolean ring?  
8. State the Schur's lemma.  

2.8 ANSWERS  TO ‘CHECK YOUR PROGRESS’  

1. Let V and U be two vector spaces over the same field F, then a mapping  
T: V  U is called a linear transformation if  
T(x+y) =T(x) + T(y) for all x, y   V
T(x) = T(x),    F

2. Let {p()} be one of the elementarydivisors of the characteristic matrix of  q 

some -matrix and C(p) be the companion matrix of p(). The  
hypercompanion matrix H associated with the elementarydivisor {p()}q  

is given by  

C( p)   M 0 


0
0

0
00


0

C( p) M  
H  c( p) if q 1 H    if q 1   

0
   
0
0

 
M C( p)  

0 0 0 C( p)  
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relation a m + . . . + a m = 0, with a m  0. Let b =g.c.d.(a , o(m )) = c a +  1 1 n n 1 1 1 1 1 1 
c o(m ). Since a m  0, a and o(m ) are not associates. Hence, P(b) < P(o(m )).  2 1 1 1 1 1 1

Note that bm +c a m +. . .+c a m = 0. By above Lemma M = {m , . . .  1 1 2 2 1 n n 1
,m }, with o(m )|b, o(m )|c a , for i  2. Since P(o(m ))  P(b) < P(o(m )),  n 1 1 1 i 1 1
this contradicts the minimalityof {m , . . .  ,m }. Thus, R, m is a summand of M and  1 n

Check Your Progress  

 
 
 
 
 
 
  

matrices of the non-trivial invariant factors ofI – A.  
4. Nilpotent element is an element a of a ring or semi-group with zero A such  

that a = 0 for some natural number n.  n 

5. If T is a linear operator on a finite dimensional spaceV over F and minimal  
polynomial p(x) of T is a product of distinct linear factors then T is  
diagonalizable.  

6. A Jordanblock is a matrix with zeros everywhere except along the diagonal  
and superdiagonal with each element of the diagonal consisting of a single



and superdiagonal, with each element of the diagonal consisting of a single  
number , and each element of the superdiagonal consisting of a 1.  

7. A ring R is called a Boolean ring if x = x for all x  R.  2 

8. Let G be a finite group and let V and W be irreducible G-modules. Then,  
everyG-module homomorphism f: V  W is either invertible or the trivial  
zero map.  

2.9 SUMMARY  

 A similarity transformation is a conformal mapping whose transformation  
matrix A can be written in the form  2 

A = BAB ,  –1

where A and A are called similar matrices.  2 

 Every square matrix A over F is similar to the direct sum of the  
hypercompanion matrices of the elementary divisors overF of I – A.  

 The Jacobson canonical form of a square matrix Aconsists of the direct  
sum of the hypercompanion matrices of the elementarydivisors overF of  
I – A.  

 An n-square matrix A is similar to a diagonal matrix if and only if the  
65

elementary divisors of I – A are linear polynomials, i.e., if and only if the  
minimum polynomial ofA is the productof distinct linear polynomials.  

 Let T be a linear operator on a vector space V. If W is a subspace of V such  
that, T(W)  W, we say W is invariant under T or is T-invariant.  

 Everysquare matrix A is similar to thedirect sum of thecompanion matrices  
of the non-trivial invariant factors ofI – A.  

 A linear transformation N : U  U is called nilpotent if there exists ak N  
such that N = 0 for some positive integer k.  k 
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blocks of subdiagonal ones.  
 A Jordanblock is a matrix with zeros everywhere except along the diagonal  

and superdiagonal, with each element of the diagonal consisting of a single  
number , and each element of the superdiagonal consisting of a 1.  

42

 The Jordan form of a matrix is determined only up to the order of the  

only if they consist of the same Jordan blocks and differ only in the  
distribution of the blocks along the main diagonal.  

 A non empty set R, together with two binary compositions + and . is said  
to form a Ring if the following axioms are satisfied:  

(i) a + (b + c) = (a + b) + c for all a, b, c  R  
(ii) a + b = b + a for a, b  R  
(iii)  some element 0 (called zero) in R, such that, a + 0 = 0 + a = a for  

all a  R  
(iv) For each a  R,  an element (– a)  R, such that, a + (– a) = (–  

a) + a = 0  
(v) a . (b . c) = (a . b) . c for all a, b, c  R  
(vi) a . (b + c) = a . b + a . c  

(b + c) . a = b . a + c . a for all a, b, c  R  

2.10 KEY TERMS  

 Canonical form: The canonical form of a positive integer in decimal  
representation is a finite sequence of digits that does not begin with zero.  

 Jacobson canonical form:TheJacobsoncanonical formofasquare matrix  
Aconsistsofthedirect sumof thehypercompanionmatricesof theelementary  
divisors over F of I – A  

 Nilpotent froms formations: Alinear transformation N : U  U is called  
nilpotent if there exists a k  N such that N = 0 for some positive integer k.  k 

The smallest such k is sometimes called the degree of N.  
 Jordan blocks: AJordan block is a matrix with zeros everywhere except  

143

along the diagonal and superdiagonal, with each element of the diagonal  
consisting of a single number , and each element of the superdiagonal  
consisting of a 1.  
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Jordan blocks. More exactly, two Jordan matrices are similar overk if and  

112



2.11 SELF-ASSESSMENT QUESTIONS AND  112

EXERCISES  

Short-Answer Questions  

1. What is the significance of linear transformations?  
2. What does Jordan canonical form  
3. Howwillyoudefineaminimalpolynomial?  
4. Definenilpotent transformations.  
5. State the primarydecomposition theorem.  
6. What is Jordan blocks used for?  
7. What are simple modules?  
8. Specify the term submodule.  

10. State the fundamental structure theorem for modules.  
Long-Answer Questions  

1. Let V be the vector space of all polynomials of degree  6 over F. Let W  
2 4 6be  the subspace of V spanned by {1, x , x , x }. Let D be the differential  

d f (x)  on V. (i.e., D (f (x)) =   . Show that W is not invariant  operator   dx  
under D.  

d 2   

dx2  2. In (1) show that W is invariant under D where D ( f (x)) =   2 2

= D . Find  2

. Let T  f (x)  

(i) The matrix of T in a suitable basis of W.  w 

V(ii) The matrix of   in a suitable basis of  W
(iii) The matrix of T in a suitable basis of V.  

0
93

0
0
0

2
0
0
0

0
12  
0

0
0

0
0
0

6
0
0

0
A 0(i) A =   (ii) C =   20 (iii)  

0
30  
0

0 C
0

3. Let V be the vector space of all polynomials over the field of real numbers  
R. Let W be the subspace of V spanned by {1, x, x }. Let T be the linear  2
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9. What is the significance of Schur’s lemma?  

T̂

 
 
 
 
 
 

 
 
 
  

 
 
 





i
i 1   

subspaces of V.  
5. Let c be a characteristic value of T and W be the space of characteristic  

vectors associated with the characteristic value c. What is the restriction  
operator T ? (T = cI)  w w 

6. Let T be a linear operator on a finite dimensional vector spaceV. Prove that  
T is diagonalisable if and only if V is a direct sum of one dimensional  

82

T-invariant subspaces.  
7. Let T be a linear operator on a finite dimensional vector space V and let  

W be a T-invariant subspace of V.  
(i) Show that if  is an eigen value of T , then  is an eigen value of T.  w

(iii) Prove that if T is diagonalizable, then so is T .  w

8. Let W be a proper T-invariant subspace of V, where T is a linear operator  
on a finite dimensional vector space V.  

VLet  : V    such that,  W

(v) = W + v be a linear transformation. Show that T =    where  
V

is a linear operator on   defined by   (W + v) = W + T (v).  W

Further, if T is diagonalizable, show that   is also diagonalizable.  

vectors of T. Also T =    {x , ..., x } are eigen vectors of  1 n 

{W + x , ..., W + x } are eigen vectors of  1 n . If {W + v , ..., W + v } is  1 r

Va basis of  , then it can be replaced by {W + x , ..., W + x } such that  1 rW

V V
it forms a basis of   consisting of eigen vectors of  ).  W W

9. Let T be a linear operator on a finite dimensional vector space and suppose  
that V = W  ...  W , where W is a T-invariant subspace of V for each  1 k i 
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i 1   


(ii) Show that the eigen space of T corresponding to eigen value  of  w 
T is W  W, where W denotes the eigen space of T corresponding  w   
to .  

(Hint: T is diagonalizable  V = W + ... + W where W denotes  1 k i 
eigen space corresponding to eigen value  of T. Use (ii)).  i 

T̂ T̂

T̂

T̂

(Hint: T is diagonalizable  a basis {x , ..., x } of V consisting of eigen  1 n

T̂ T̂

T̂

i l j i



is also a projection.  
11. Let T be a linear operator on a finite dimensional vector spaceV. Let R be  

the range of T and let N be the null space of T. Prove that R and N are  
independent if and only if V = R  N.  

12. Let T be a linear operator on a F.D.V.S.V. Suppose T is diagonalizable.  
Show that T = Ker T  ImT  

0
95

0
0
1

1
0
0
0

0
1
0
0

0
0
1
0

13. Show that the eigenvalues ofA=  

14. Let T be a linear operator on V such that T is diagonalizable. Show that  
(T – I) (v) = 0, v  V,  F  (T – I )(v) = 0.  n

15. Let T be a linear operator on V such that, T = I. Let char F = 0. Suppose  m 

T has all eigenalues in F. Show that T is diagonalizable.  
[Hint: If g.c.d. (f, f ) = 1, then roots of f are simple.]  

16. Show that a ringR is commutative iff  
(a + b) = a + b + 2ab for all a, b R.  2 2 2 

17. If in a ring R, x = x for all x then show that 2x = 0 and x + y = 0  x = y.  2 

18. If R is a ring with unity and (ab) = (ba) for all a, b  R and 2x = 0  2 2 

 x = 0 then show that R is commutative.  
32
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3.0 INTRODUCTION  

In mathematics, a field theory studies the properties of fields. A field is a  
mathematical entityforwhich addition, subtraction,multiplicationand divisionare  
well defined. Fields are important in algebra since they provide the proper  
generalization of number domains, such as, the sets of rational numbers, real  
numbers and complex numbers. Field extensions are an object of study in field  
theory inwhich we start with a base field and construct a larger fieldcontaining the  
base field and satisfying additional properties. A field extension L/K is called  
algebraic if every element of L is algebraic over K, i.e., if every element of L is a  
root of some non-zero polynomial with coefficients inK. Field extensions that are  
not algebraic, i.e.,whichcontain transcendental elements,arecalled transcendental.  

extensions, separable and inseparable extensions, normal extensions, finite fields,  
algebraicallyclosedfields,automorphismofextensions,Galoisextensionandsolution  
of polynomial equations by radicals.  
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3.8 Answers to ‘Check Your Progress’  

In thisunit, youwill studyabout the field theory,algebraic and transcendental  



 Define algebraic, transcendental, separable and inseparable extensions  
 Describeperfect fields,normalextension, finitefieldsandalgebraicallyclosed  

fields  
 Understand automorphism of extensions, primitive elements, Galois  

extensions and fundamental theorem of Galois theory  
 Solve polynomial equations byradicals  
 Justify the insolvabilityof the general equation of degree 5   

3.2 FIELD THEORY  

In mathematics, a field is a set on which addition, subtraction, multiplication, and  
division are defined and behave as the corresponding operations on rational and  
real numbers do.Afield is thus a fundamental algebraic structure, which is widely  
used in algebra, number theory, and many other areas of mathematics.  

The best known fields are the field of rational numbers, the field of real  
numbers and the field of complex numbers. Many other fields, such as fields of  
rational functions, algebraic function fields, algebraic number fields, andp-adic  
fieldsarecommonlyusedandstudied inmathematics,particularlyinnumber theory  
and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e.,  
fieldswithfinitelymanyelements.  

The relation of two fields is expressed by the notion of a field extension.  
Galois Theory, initiated by Évariste Galois in the 1830s, is devoted to  
understanding the symmetriesof field extensions.Amongother results, this theory  
shows that angle trisection and squaring the circle cannot be done with a compass  
and straightedge. Moreover, it shows that quintic equations are, in general,  
algebraicallyunsolvable.  

Fields serve as foundational notions in several mathematical domains. This  
includes different branches of mathematical analysis, which are based on fields  
withadditionalstructure.Basic theoremsinanalysishingeonthestructuralproperties  
of the field of real numbers. Most importantly for algebraic purposes, any field  
may be used as the scalars for a vector space, which is the standard general  
context for linearalgebra.Numberfields, thesiblingsof thefieldofrationalnumbers,  
are studied in depth in number theory. Function fields can help describe properties  
of geometric objects.  
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also consider the so-called inverse operations of subtraction,a – b, and division,  
a / b, bydefining:  

a – b = a + (–b),  
a / b = a . b – 1.  

3.2.1 Extension Field  

Definition: Let K be a field and suppose F is a subfield of K, then K is called an  
extension of F.  

Suppose S is a non-emptysubset ofK. Let F(S) denote the smallest subfield  
of K which contains both F and S. (In fact F(S) would be the intersection of all  
subfields of K that contain F and S). The following theorem is then an easy  
consequence.  

Theorem 3.1: If S, T are non-empty subsets of a field K and K is an extension  
of a field F then F(S  T) = F(S) (T) (where, of course, if F(S) = E, then by  
F(S)(T) we mean E(T)).  

Proof: F(S  T) is the smallest subfield of K containing S  T, F  
i.e.,   S, T, F  F(S  T)  

F(S)  F(S  T), T  F(S  T)  
F(S)(T)  F(S  T)  
F, S, T  F(S)(T)  




Again,  



F, S  T  F(S) (T)  
F(S  T)  F(S)(T)  
F(S  T) = F(S)(T)  or that  

Corollary: F(S  T) = F(T  S) = F(S)(T) follows clearly as S  T = T  S.  

Note: If S is a finite subset {a , a , ..., a } of K we write F(S) = F(a , a ,..., a ).  1 2 n 1 2 n
The order in which a appear is immaterial in view of the above Corollary as  i 

F(a , a ,...., a ) = F({a }{a , a , ...., a })  1 2 n 1 2 3 n
= F({a , a , ....., a }  {a })  2 3 n 1

= F(a , a , ....., a , a )  2 3 n 1
Also then,   F(a)(b) = F(a, b) = F(b, a) = F(b)(a)  
Again, if K = F(a), K is called simple extension of F and we say K is  

obtained by adjoining the element a to F.  
Example 3.1: Let Q be the field of rationals then show that  

Q ( 2 , 3) = Q ( 2  3) .  
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 Q ( 2  3)  Q ( 2,  3)  



2  3  Q ( 2  







3)  

3)  

3)  

3)  

( 2   3)  Q ( 2  2 

 2 + 3 +  2 2 3   Q ( 2  

5  Q ( 2  Also  
 5 +  2 2 3 – 5  = 2 2 3   Q ( 2   3)  

Again,   2  Q ( 2  3)  

1
2

 2 ×   2 3  =

=

2 3  Q ( 2   3)  

 ( 2   3) 2 3   2 3  3 2  Q ( 2    3)   ...(1)  
Also  


2  3  Q ( 2  

3)  Q ( 2  

2 3   Q ( 2  

3 2)  (2 2  







3)  

3)  

3)  

2( 2  

2 2  

(2 3  



 

  –  2 3)   Q ( 2   3) by using  
Equation (1)  

 2

3

 Q ( 2  

 Q ( 2  





3)  

Again,   2  3)   3( 2   3)  Q ( 2   3)  
and using Equation (1) we get  
(3 2  

i.e.,  

 3 3)   (2 3   3 2)  Q ( 2  







3)  

3)  3

3

 Q ( 2  

 Q ( 2  Hence  
or that  

2,   3)  Q ( 2,  3)  Q ( 2  

3)  

 3)  

Q ( 2,  3) = Q ( 2   .
If K is an extension of F, then we know that K can be regarded as a vector  

space over F. In that case dimension of K over F is called degree of K over F  
and we denote it by [K : F]. Our next theorem is about the degree of extension  
fields. If [K : F] is finite, we say K is finite extension of F.  

Theorem 3.2: Let K be a finite extension of F and L, a finite extension of  
42

K. Then L is a finite extension of F and [L : F]   = [L : K] [K : F].  
Proof: Let [L : K] = m, [K : F] = n  

Let {a , ...., a } be a basis of L over K and {b , ...., b } be a basis of  1 m 1 n
K over F.  
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Now,  



Then   ( b )a = 0,  ij j i  b  K  ij j 
i  1 j 1    j 1   

Since {a , ...., a } are linearly independent over K,  1 m

 b = 0  for all i = 1, ...., m  ij j 
j 1   

Also b , ...., b are linearly independent over F.  1 n 
 = 0  for all i = 1, ...., m j = 1, ...., n  ij 

  K and {b , ..., b } is a basis of K over F  i 1 n

  =  b + ... +  b ,   F  i i1 1 in n ij 

 a =    a   = ii i
i 1    i  1   

=  a b ,   F  ij i j ij 
i  1 j 1   

 {a b | 1  i  m, 1  j  n} spans L over F and so forms a basis of  i j 
L over F.  

 [L : F] = mn = [L : K] [K : F]  

Note: If [L : K] is infinite, then [L : F] is also infinite because [L : F] = r  every  
subset of L having r + 1 elements is linearly dependent over F. Since [L : K] is  

independent over F, a contradiction.  
 [L : F] is infinite. Similarly, [K : F] is infinite.  

Corollary 1: If L is a finite extension of F and K is a subfield of L which contains  
F, then [K : F] divides [L : F].  

Proof: By remark above [K : F] is finite as [L : F] = finite.Also [L : K] is finite.  
By Theorem 3.2,   [L : F] = [L : K] [K : F]  

[K : F] divides [L : F]  

Corollary 2: If K is an extension of F, then K = F if and only if [K : F] = 1.  

Proof: If K = F, then [K : F] = [K : K] = 1  
32
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   
m n


n


n

 {a b | 1  i  m, 1  j  n} is a linearly independent subset of L over  i j 
F. Let a  L. Since {a , ..., a } is a basis of L over K, a =  a + ... +  a ,  1 m 1 1 m m


m


m

( b ...   b )a1 1 in n i  

   
m n

infinite,  a , ..., a  L which are linearly independent over K. Now 1  K  1 r + 1 
and 1 is linearly independent over F as 1  0.As in Theorem 3.2, a .1, a .1, ...  1 2
a .1 are linearly independent over F. We find a , ..., a  L are linearly  r + 1 1 r + 1 



 b  F  K  F  K = F.  
Corollary 3: If L is an extension of F and [L : F] is a prime number p, then there  
is no field K such that, F  K  L.  

Proof: Suppose  a field K such that, F  K  L.  
Then   p = [L : F] = [L : K] [K : F] by Theorem 3.2  

 [L : K] = 1  or [K : F] = 1  
K = L or K = F by Corollary2 a contradiction.  

Hence the result.  
Trivially then, if K is an extension of F of prime degree then for every  

a  K, F(a) = F or F(a) = K.  

Example 3.2: Let D be an integral domain. Let F be a field such that,  
F  D. Suppose unity 1 of F is also unity of D. Then D can be regarded as  

Solution: Let [D : F] = r. Let {a , ..., a } be a basis of D over F.  1 r
Let 0  a  D. We show that a is invertible. Consider {aa , ..., aa }.  1 r

Let  
Then  


 (aa ) + ... +  (aa ) = 0,   F.  1 1 r r i 

a( a + ... +  a ) = 0  1 1 r r
 a + ... +  a = 0, as a  0 and D is an integral domain.  1 1 r r 

{aa , ..., aa } is linearly independent over F.  1 r
But [D : F] = r  {aa , ..., aa } is a basis of D over F.  1 r
 1  D  1 =  aa + ... +  aa ,   F  1 1 r r i 

= a( a + ...  a )  1 1 r r

= ab, b =  a + ... +  a  D  1 1 r r 



a is invertible.  
D is a field.  

3.3 ALGEBRAIC AND TRANSCENDENTAL  
EXTENSIONS  

Suppose K is an extension of F and a  K.  
Let   F[a] = {f (a) | f (x) = a + a x + ... + a x  F[x]}, a  F  0 1 n

n 
i 

then as f (a) = a + a a + ... + a a  K, we find F[a]  K  0 1 n
n 

One can show that F[a] is an integral domain.  
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a vector space over F. Show that D is a field if [D : F] = finite.  

 = 0 for all i = 1, ..., r as {a , ..., a } is linearly independent over F.  i 1 r



a = 0 + 1.a + 0.a + ...  F[a]  2 

i.e., a  F[a]  E  
Again if   F be any element then  

 =  + 0x + 0x + ...  F[x]  2 

gives   F[a] or that F  F[a]  E  
Hence F(a)  E, as F(a) is the smallest field containing F and a.  
If f (a)  F [a] be any member where  

f (a) =  +  a + ... +  a ,   F  0 1 n
n

i 

then as a  F(a),   F  F(a), we find f (a)  F(a)  i
Hence F[a]  F(a) and so  

F[a]  F (a)  E  
But E is the smallest field containing F [a].  
 E  F (a). Hence F(a) = E.  
So, we have explicitlydetermined the field F(a). It is the field of quotients  

of F[a].  
f (a)  
g(a)  

We write, F(a) =   g(a)  0, f (x), g(x) F[x]  

In general, one can show that  
133




F[x]  
F[x]  

f (a , ..., a )  1 n 
g(a , ..., a )  1 n 

F (a , ..., a ) =  1 n | g(a , ..., a )  0,  1 n 

A natural question arises. When is F[a] = F(a)? To answer this, we first  
define what is an algebraic element. Let K be an extension of F. a  K is said  
to be algebraic over F if  non-zero polynomial f (x)  F[x] such that,  

2f (a) = 0. Otherwise, it is called transcendental element. For example,  R =   
real field, is algebraic overQ = rational field as   2 satisfies non-zero polynomial  
f (x) = x – 2  Q[x]. However, , e  R are not algebraic over Q.An extension  2 

K of F is called an algebraic extension if every a  K is algebraic over F.  
If for some a  K, a is not algebraic over F, then K is called transcendental  

the following theorem that finite extensions are algebraic. So, C = the field of  
complex numbers is algebraic over R as [C : R] = 2, {1, i} being a basis of C  
over R.  
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 
 
 

f (x , ..., x )  1 n 
g(x , ..., x )  1 n 

 
 
 

extension of F. For example, R is transcendental extension of Q. We shall see in  

We sometimes use the notationK/F to express the fact thatK is an extension  
of F. Similarly, K/F is algebraic would mean K is an algebraic extension of F.  



 a is algebraic over F.  
 K is algebraic over F.  

Note: Converse of Theorem 3.3 is not true.  

Corollary: a  K is algebraic over F if [F(a) : F] = Finite.  

Proof: By Theorem 3.3, F(a) is algebraic over F.  
 a  F(a) is algebraic over F.  
Converse of the above corollary is also true. But we will prove it after the  

next theorem.  

(i)  a unique monic irreducible polynomial p(x)  F[x] such that,  
p(a) = 0  

q(x),  
(iii) F (a) = F [a].  

Proof: (i) Since a is algebraic over F,  a non-zero polynomial f (x)  F[x], such  
that,  

f (a) = 0.  
Let t(x) be the non-zero polynomial of smallest degree over F such that,  
t(a) = 0 and suppose  

t(x) = a + a x + ... + a x , a  F  0 1 n
n

i 

If t(x) is not monic [Bymonic polynomial, we mean a polynomial in which  
coefficient of highest degree term is 1], then let  

p(x) = a a + a a x + ... + x = a t(x)  n
–1

0 n
–1

1
n 

n
–1

Now deg p(x) = n = deg t(x) and p(a) = 0 and p(x) is a monic polynomial.  
Thus  a monic polynomial p(x) of least degree such that, p(a) = 0.  

Suppose p(x) = p (x)p (x), where p and p are polynomials with lesser  1 2
117

1 2 
degree than deg p.  

Then   0 = p(a) = p (a)p (a)  1 2
 p (a) = 0  or p (a) = 0  [as F[a] is an I.D.]  1 2
But that would lead to a contradiction asp(x) is such polynomial with least  

degree.  
Hence p(x) is irreducible polynomial.  
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Let f (x) =  +  x + ... +  x . Then f (x) is non-zero polynomial in  0 1 n
n

F [x] as some   0. Also f (a) =  +  a + ... +  a = 0  i 0 1 n
n 

Theorem 3.4: Let a  K be algebraic over F. Then  

(ii) non-zero polynomial q(x)  F[x] such that, q(a) = 0, then p(x) divides  



0 = q(a) = p(a)h(a) + r(a)  
r(a) = 0  as p(a) = 0  

Since p(x) is of least degree such that, p(a) = 0, we find deg r < deg p is  
not possible. Hence r(x) = 0  

i.e.,  
Since q(x) is irreducible, h(x) must be a constant polynomial, sayh(x) = c  
Then q(x) = cp(x)  

q(x) = p(x)h(x)   ...(3.1)  

Since q(x) is monic, coefficient of highest degree term in L.H.S. is 1 and  
therefore it is 1 on R.H.S. also  

R.H.S. being cp(x) = ca a + ca a x + ... + cx gives c = 1  n
–1

0 n
–1

1
n 

Hence q(x) = p(x), proving the uniqueness of p(x)  
(ii) Follows by Equation (3.1)  
(iii) Define a mapping  : F[x]  F[a], such that,  

( f (x)) = f (a)  
then  is onto homomorphism (verify!)  

Byfundamental theorem then  
F[x]  F[a]   
Ker  θ

F[x]  Since F[a] is an integral domain, so would be   which implies Ker    
Ker  θ

is a prime ideal. Since a is algebraic over K,  a non-zero polynomial f (x)   
F[x] such that, f (a) = 0.  




(f (x)) = f (a) = 0  
f (x)  Ker   Ker   (0)  

is a PID.  
Thus Ker  is a maximal ideal.  

F[x]   is a field.  
Ker  θ

 F [a] is a field.  
But F(a) is the smallest field containing F and a and thus F(a)  F[a]  
Also   F[a]  F(a)  

F(a) = F[a].  Hence  
Note F(a) is field of quotients of F[a] and when F[a] is itself a field, F[a]  

= F(a).  
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Now,  

i.e., Keris a non-zero prime ideal ofF[x] which beinga Euclidean domain  



g(x)   g  0  

2. If a  K is transcendental over F then F(x)  F(a).  

Proof: Define  : F(x)  F(a) such that,  
f (a)  
g(a)  

f (x)  
g(x)  

 = ,

Then  is well defined onto homomorphism.  
 f (x)  Also    = 0  

= 0  f (a)  
g(a)  






f (a) = 0  
f (x) = 0, for otherwise a would be algebraic over F.  
f (x)   = 0  
g(x)  





Hence  
 is 1–1.  

F(x)  F(a).  

Corollary 1: Let a  K be algebraic over F. Then [F(a) : F] = finite = deg Irr  
(F, a) and so F(a) is an algebraic extension of F.  

Proof: Let p(x) = Irr (F, a). Let n = deg p(x).  
We show that 1, a, a , ..., a form a basis of F(a) over F.  2 n–1 

Let 0    f (a)  F[a] = F(a). Then f (x)  F[x].  
Now for f (x), p(x)  F[x],  q(x), r(x)  F[x] such that,  

f (x) = p(x)q(x) + r(x) where either r(x) = 0  
or   deg r < deg p.  

r(x) = 0    f (x) = p(x)q(x)  
 f (a) = p(a)q(a) = 0  as p(a) = 0  

which is not possible as f (a)  0  
Thus r(x)  0. Hence deg r < deg p.  

n–1  Suppose r(x) =  +  x + ... +   0 1 x ,  F, where some  could  i i n–1  
be zero.  

Again as  
we find  

f (a) = p(a) q(a) + r(a) and p(a) = 0  
f (a) = r(a)  
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  

 
 
 

  g(x)   

But  



n–1   +  a +  a + ... +   0 1 2
2 a = 0  n–1  

n–1   t(x) =  +  x + ... +   0 1 xn–1  
is non zero polynomial (some   0) with t(a) = 0.  i 

A contradiction to the fact that p(x) is such polynomial with least degree.  
Hence 1, a, ..., a are Linearly Independent (L.I.) and thus form a basis of F(a).  n–1 

Hence   [F(a) : F] = n.  
3. Using Corollary to theorem 3.3 we conclude a  K is algebraic over F iff  
[F(a) : F] = finite.  
Definition: An element a  K is said to be algebraic of degree n over F if it  
satisfies a polynomial of degree n over F and does not satisfy any polynomial of  
lesser degree (than n).  

Thus a is algebraic of degree n over F if deg Irr (F, a) = n. Also in that  
case, [F(a) : F] = n and {1, a, a , ..., a } is a basis of F(a) over F.  2 n–1

extension of F and so is algebraic over F.  

Proof: We prove the result by induction on n. If n = 1, result follows from  

a ) as F  F(a , a , ..., a ).  n–1 1 2 n–1

 [F(a , ..., a ) : F] = [F(a , ..., a ) : F(a , ..., a )] [F(a , ..., a ) :  1 n 1 n 1 n–1 1 n–1
F] = finite  

 Result is true for n also.  
By induction, result is true for all n  1.  

Corollary 3: If a, b  K are algebraic over F, then a ± b, ab, ab (if b  0)  –1 

are algebraic over F. In other words, the elements of K which are algebraic over  
F form a subfield of K (and this subfield is called the algebraic closure of F  
over K).  

Proof: By Corollary 2, F(a, b) is algebraic over F.  
 a ± b, ab, ab  F(a, b) are algebraic over F.  –1 
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Corollary 2: If a , ..., a  K are algebraic over F then F(a , ..., a ) is finite  1 n 1 n

Corollary 1. Assume it to be true for naturals less than n. Let a , ..., a  K be  1 n 
algebrai cover F. Now a is algebraic over F  a is algebraic over F (a , ...,  n n 1

 ByCorollary1, [F(a , ..., a ) (a ) : F(a , ..., a )] is finite. Byinduction  1 n–1 n 1 n–1
hypothesis, [F(a , ..., a ) : F] is finite.  1 n–1



Proof: Let L denote the R.H.S. We first show that L is a subfield of K.  
f (u , ..., u )  1 m 
g(u , ..., u )  1 m 

Let  

Let  

 L,    L  

Y =   
g(u , ..., u ) g (v , ..., v )  1 m 1 1 n 

 f (v , ..., v ) g(u , ..., u )  1 1 n 1 n =

Define h(x , ..., x ) =  f (x , ..., x ) g (x , ..., x1 m + n 1 m 1 m + 1 m + n  
– g(x , ..., x ) f (x , ..., x1 m 1 m + 1 m + n  

r (x , ..., x ) = g(x , ..., x ) g (x , ..., x1 m + n 1 m 1 m+1 m + n  

)
)

)

r(u , ..., u , v , ..., v )  1 m 1 n 
Then   Y =    L  

Suppose  

Let  

 0  

Z =   ·
g(u , ..., u ) f (v , ..., v )  1 m 1 1 n 

Define h (x , ..., x ) =  f (x , ..., x ) g (x , ..., x );  1 1 m + n 1 m 1 m + 1 m + n
r (x , ..., x ) = g(x , ..., x ) f (x ,..., x ).  1 1 m + n 1 m 1 m + 1 m + n

Then   Z =    L  

So, L is subfield of K.  
Let u  S. Define  f (x) = x, g(x) = 1.  1 
Then   f (u ) = u , g(u ) = 1  1 1 1

f (u )  1
g(u )  1

u1    L     L    u  L  1 1
So, S  L.  
Let   F. Define  f (x) = , g(x) = 1.  
Let u  S. Then  f (u) = , g(u) = 1.  

f (u)  
g(u)  


1

 L    =   L.  

So, F  L.  
But F(S) is the smallest field containing F and S, F(S)  L.  
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f (v , ..., v )  1 1 n 
g (v , ..., v )  1 1 n 

f (u , ..., u ) f (v , ..., v )  1 m 1 1 n 

f (u , ..., u ) g (v , ..., v )  1 m 1 1 n 
g(u , ..., u ) g (v , ..., v )  1 m 1 1 n 

h(u , ..., u , v , ..., v )  1 m 1 n 

f (v , ..., v )  1 1 n 
g (v , ..., v )  1 1 n 

f (u , ..., u ) g (v , ..., v )  1 m 1 1 n 

1

1

h (u , ..., u , v , ..., v )  1 m 1 n 
r (u , ..., u , v , ..., v )  1 m 1 n 

Now,  



So,   Y  F(S), then  L  F(S).  
F(S) = L.  Hence  

2. If K is an extension field of F, and K is generated by algebraic elements (i.e.,  
K = F(S), where S  K is a set of algebraic elements over K), then K is an  
algebraic extension of F.  

f (u , ..., u )  1 n Proof: Let C  K, then C =   , u  S.  i g(u , ..., u )  1 n 

where f (x , ..., x ), g(x , ..., x )  F[x ,..., x ].  1 n 1 n 1 n

Hence K/F is algebraic.  

Theorem 3.5: If L is an algebraic extension of K and K, an algebraic  

Proof: Let a  L. Since L is algebraic over K, a is algebraic over K.  
  0  f (x)  K[x] such that, f (a) = 0. Let f (x) =  +  x + ... +  0 1

 x ,   K.  n
n

i 

Theorem 3.4, [F( ,  , ...,  ) : F] = finite.  0 1 n
Let  
Then [M : F] is finite and so M is algebraic over F. Clearly, each   M.  i 

Thus, f (x)  M[x].  

M = F( ,  , ...,  )  0 1 n

i.e., a is algebraic over M.  
By Corollary 1, M(a) is finite extension of M.  




[M(a) : F] = [M(a) : M] [M : F] = Finite.  
M(a) is algebraic over F.  
a  M(a) is algebraic over F.  

Since a is an arbitrary element of L, L is an algebraic extension of F.  

Definition: Acomplex number is said to be an algebraic number if it is algebraic  
over the field of rational numbers.  

An algebraic number is said to be an algebraic integer if it satisfies an  

a monic polynomial over integers).  
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Clearly C  F(u , ..., u ). But u , ..., u are algebraic over F  F(u ,  1 n 1 n 1
..., u ) is an algebraic extension of F  C is algebraic over F.  n

extension of F, then L is an algebraic extension of F.  

Since K is algebraic over F, each   K is algebraic over F. ByCorollary2   i 

equation of the form x +  x + ... +  where  , ...,  are integers (i.e.,  n 
1

n–1 
n 1 n 

Example 3.3: If a is any algebraic number, prove that  a positive integer  
n such that na is an algebraic integer.  



pi  qi  
Let    =  i where p , q are integers, q > 0  i i i 

p1   pm  
qm  

pm  
qm  

 a +  m a + ... +  m–1 a   1 

1  
= 0  

Let n = q ... q . Then n is a positive integer  1 m

and na + p q ...q a + ... + p q ... q = 0  m 
1 2 m

m–1 
m 1 m–1 




n a + p q ... q a n + ... +  p q ... q n = 0  m m 
1 2 m

m–1 m–1 
m 1 m–1

m–1 

na satisfies the polynomial  
x + p q ... q x + ... + p q ... q n = 0  m 

1 2 m
m–1 

m 1 m–1
m–1 

where coefficients are integers.  

pSolution: Let r = , where q > 0, (p, q) = 1  
q

Since r is an algebraic integer  
r +  r + ... +  r +  = 0  m 

1
m–1 

m–1 m 
 s are integers.  i


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q1  

 na is an algebraic integer.  

Example 3.4: If the rational number r is also an algebraic integer, prove that  
r must be an ordinary integer.  



 cos mº is algebraic number for all integers m.  
m  
180  

m  
180  

m  
180  

m  
180  

Also cos   and cos   + i sin   is algebraic number  i sin   is  

m  
180  

algebraic number  sin   is algebraic number as i is also algebraic number   

Example 3.6: Find a basis of Q ( 3,  5) over Q.  

Solution: We have,  
[Q ( 3,  5) : Q] = [Q ( 3) ( 5) : Q]  

= [Q ( 3) ( 5)  : Q ( 3)] [Q   3 : Q]  

= [L ( 5)  : L] [Q ( 3) : Q] where L = Q ( 3)  

= deg Irr (L, 5) × deg Irr (Q,  
= deg (x – 5) × deg (x – 3)  2 2 

= 2 × 2 = 4.  

3 )  

Thus basis has 4 elements.  
Also if [(F(a) : F)] = n then 1, a, a , ..., a is basis of F(a) over F, and  2 n–1 

thus  

Thus basis of [L ( 5)  : L] [Q ( 3)  : Q] = [(Q ( 3,  5) : Q]  

is 1.1, 1. 3  

i.e., 1,  3, 5, 15  

Example 3.7: Find the minimal polynomial for  
that Q ( 2,  3) = Q ( 2  3) . Find a basis for Q( 2,  3)  

3) = 5 + 2  2 

3) = 49 + 20  4 

, 1. 5  , 3 5  [Refer Theorem 3.2]  

.

2  3 and use it to show  
 .

( 2   6 ;  

( 2  

( 2  





6 .  

So,   3) – 10 ( 2  4  3) + 1 = 0  2 

Therefore, a =   2  3 satisfies  
f (x) = x – 10x + 1 over Q.  4 2 

Let   p(x) = Irr(Q, a)  
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sin mº is algebraic number.  

Basis of L ( 5)  over L is {1, 5}  

Basis of Q ( 3)  over Q is {1, 3}  

Solution: Now,  



So, f (x) is the minimal polynomial for  
Therefore, [Q ( 2  3) : Q] = 4.  

: Q] = deg Irr (Q,  

2  3.  


Also,   [Q   )22
= deg (x – 2) = 2.  2 

Q  Q( )  Q(  
Consider  
Then  

,2 ).  32

g(x) = x – 3  Q( ) [x].  2 2

g( )  = 0  3

 deg Irr (Q( ),  )  deg g(x) = 2  32

 [(Q(   , ) : Q]  2.  32

So,   [Q(  

[Q(  

, ) : Q]  4.  32



Q  Q(   + )  Q(   , ).  2 3 32

, )] : Q] = [Q(   , ) : Q(   + )]  32

2

2 23 3

× [Q(   + ) : Q]  32

 [Q(  
 Q(  

, )] : Q(   + )] = 1  23 3

, ) = Q(   +2 )32 3

Since  
{1,  

[Q(   + ) : Q] = 4  2 3

+ , (   + ) , (  2 + ) } is a basis for Q(  3 +2 )32
3

2 23 3 3
= Q(   , ) over Q.  2

Example 3.8 : Let F(x) be the field of rational functions in an indeterminate  
x. Show that every element of F (x) which is not in F is transcendental  
over F.  

f fSolution: Let 0     F(x),    F , ( f , g) 1.  
g g

fSuppose is not transcendental over F.  
g

fThen is algebraic over F.  
g

ffSo   F = F  

 F  

.
gg

f fgConsider   = F   .
g gf
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Now,  

Clearly,  

 
 
 

 
 
 

 
 
 

 
 
 



So,   g = ( g +  fg + ..... a f ) f.  n + 1 
0

n 
1

n – 1 
n 

n

Since (f, g) = 1,  f | g  f | g  f = unit  n + 1 

f g = unit    = unit  F, a contradiction.  
g

fSo, is transcendental over F.  
g

Example 3.9: Let K be an extension of F and let aK. Then F[a] can be  

show that F[a] = F(a).  

Solution: Let   0  c  F[a]. Define  
T : F[a]  F[a] such that,  
T(b) = bc  

Then T is a linear transformation.  
Let b  Ker T. Then T(b) = 0  bc = 0  b = 0 as c  0 and F[a] is  

an integeral domain.  
Thus Ker T = {0} forcing T to be 1–1.  
Since F[a] is a FDVS over F, T is also onto.  
Now1  F[a]  b  F[a] st., T(b) = 1  

 bc = 1 or that c is invertible.  
So F[a] is a fieldcontainingF anda. But F(a) is thesmallest field containing  

F & a and so F(a)  F[a], However F[a]  F(a) giving F[a] = F(a).  

only if every ring R, such that, F  R  K is a field.  

Solution: Let K/F be algebraic and let R be a ring such that, F  R  K.  
Since R  K, R will be commutative and also unity of K will be unity of R   

as F  R  K.  
Let 0  a  R, then a  K  a  K  –1 

K/F algebraic  a is algebraic over F  

Let  

 0  f (x)  F(x) such that, f (a) = 0  
f (x) =  +  x + ..... +  x ,   F  0 1 n

n
i 

Then  +  a +  a + ...... +  a = 0 with some   0. Suppose  0 1 2
2 

n
n 

i 
  0  o 

Then  a = – ( +  a + ... +  a )  R  0
–1 

1 2 n
n+1 38
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regarded as a vector space over F. If the dimension of F[a] over F is finite,  

Example 3.10 : Let K be an extension of F. Show that K/F is algebraic if and  



Suppose a  0, then a  R = F[a]  –1 

Thus  
Let  

a =  +  a + ... +  a ,   F  –1 
0 1 n

n
i 

f (x) =  +  x + ... +  x  F[x]  0 1 n
n 

1 =  a +  a + ... +  a0 1
2 

n
n+1  Now  

gives  a +  a + ... +  a – 1 = 0  0 1
2 

n
n+1 

showing that a satisfies x f (x) – 1  F[x].  
Clearly x f (x) – 1 is a non zero polynomial.  
Hence, a is algebraic over F and so K/F is algebraic.  

3.3.1 Separable and Inseparable Extensions  
This section deals with those polynomials which have simple roots and the fields  
generated by these simple roots.  

A root  of f (x)  K[x] is called simple if x –  divides f (x) and (x – )2  

does not divide f (x). Similarly, a root  of f (x)  K[x] is said to be a root with  
multiplicity m, if (x – ) divides f (x) but (x – ) does not divide f (x).  m m + 1 

Let   f (x) = a + a x + ... + a x  K[x].  0 1 n
n 

Define f (x) = a + 2a + ... + na x  K[x].  1 2 n
n–1 

Then f (x) or f  is called the derivative of f.  
If f, g  K[x], then it can be easily proved that  
(i) ( f ± g) = f  ± g  
(ii)  
(iii) (af ) = a f , a  K  
(iv) x = 1.  

( fg) = f g + fg  

It can be easily checked that  is a simple root of f (x)  K[x] iff  
f ()  0. In other words,  is not a simple root of f  K[x] iff f () = 0.  

Theorem 3.6: Suppose all roots of f (x)  K[x] in a minimal spitting field of  
f over K are simple. Then the roots of f in any minimal splitting field of f over  
K are simple.  

Proof: Let f (x) =  (x –  ) ... (x –  ),   E.  0 1 n i 
where E = K( , ...,  ) is a minimal splitting field of f over K.  1 n

Suppose each  is a simple root of f.  i 
Let E be another minimal splitting field of f over K.  
Then E = K( , ...,  ) where  s are roots of f.  1 n i

Then there exists a K-isomorphism : E  E.  
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Thus, the roots of f in E are also simple roots.  

Note: By the above arguments, we can also prove that if there is a root of mul-  
tiplicitym in a minimal splitting field of fover K, then everyminimal splitting field  
of f over K will have a root of f of multiplicity m.  
Theorem 3.7: Let F be an extension of K. Let f, g  K[x]. Then the g.c.d.  
of f and g regarded as polynomials in K[x] is same as that of f and g regarded  
as polynomials in F[x], upto associates.  
Proof: Let d be the g.c.d. of f, g  K[x] and d be the g.c.d. of f, g  F[x].  1 

Now  


Also,  
Since  

d | f, d | g in K[x]  d | f, d | g in F[x]  
d | d in F[x]  d = du, u  F[x].  1 1 

d = f f + gg , f, f  K[x].  1 1 1 

d | f, d | g, d | ff , d | gg .  1 1 1 1 1 1

Therefore, d | ff + gg = d in F[x].  1 1 1 
d = d v v  F[x].  1

So, d = duv  uv = 1  u, v are units in F  d, d are associates. Thus  1 
d and d are same upto associates.  1 

Theorem 3.8: Let F be an extension of K.Then f and g are relatively prime  
regarded as elements of K[x] iff f and g are relatively prime regarded as  
elements of F[x].  

Proof: Suppose f and g are relatively prime regarded as elements of F[x].  
Then (f, g) = g.c.d. of f, g  F[x] is a unit d  F.  
Let (f, g) = g.c.d. of f, g  K[x] be d1  
Then d and d are associates  1 



d = ud , u = Unit in  F  1

d = u d = Unit in F  1 
–1 

Since d  K, d is a unit in K.  1 1 

Theorem 3.9: Let F be an extension of K. Let f (x)  K[x], F. Then f  
can be written as f = (x – ) g + (x – ) f () + f () for some g  F[x].  2

Proof: Now (x – )  F[x].  
Let  
and  
So,  

f = (x – ) g + h, g, h  F[x]  2

h = (x – )g + h , g, h  F  1 1 1 
f () = h() = h (deg h < 2)  1 
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The converse follows similarly.  



Theorem 3.10: Let f  K[x]. Then the roots of f are simple iff f and f  are  
relatively prime.  

Proof: Suppose the roots of f are simple. Let ( f, f ) = d.  
If d is a non-constant polynomial in K[x], then d has a root  in some  

extension F of K.  
Now  



f = d f , f  = dg , f , g  K[x]  1 1 1 1 

f () = d() f (), f () = d() g ()  1 1
f () = 0 = f ().  

Using above result, we get  
f = (x – ) g + (x – ) f () + f ()  2 

= (x – ) g  2

 is not a simple root of f, a contradiction.  
So,   d = constant  K.  
Since   f  0, d is a non zero element in K.  
Therefore, d is a unit  f, f  are relatively prime.  
Conversely, let f and f  be relatively prime. Then ( f, f ) = d = unit in K.  
Let  be a root of f such that  is not a simple root of f. Let  F  K.  
Then f () = 0 = f ()  



x –  divides f and f  in F[x]  K[x]  
x –  divides d  

and x –  divides d  
 deg (x – )  deg d = 0, a contradiction.  

So all roots of f are simple.  

Definition:Apolynomial is said to be separable if all its roots are simple. In view  
of the above theorem, the following result follows.  
Theorem 3.11: A polynomial f (x)  F[x] is separable iff f and f  are rela-  
tively prime.  

Corollary 1: If f (x)  F[x] is irreducible over F such that, f   0, then f is  
separable.  

Proof: Let g.c.d. (f, f ) = d then deg d  deg f  < deg f.  
Since f is irreducible over F and d is a factor of f such that deg d < deg  

f, we find d is (non zero) constant and thus a unit. So, f and f  are relativelyprime.  
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But d  K  deg d = 0 (d  0).  



Proof: Let f = a + a x + ... + a x  F[x].  0 1 n
n 

Then f  = a + 2a + ... + na x1 2 n
n–1  .

Thus, f   0. By Corollary 1, f is separable.  

Theorem 3.12: Let F be a field of characteristic p. Then for any polynomial  
f(x)  F[x], f  = 0 iff f (x) = g(x ) for some polynomial g(x)  F[x].  p

Proof: Let f(x) = a + a x + ... + a x and f  = 0.  0 1 n
n 

Then ra = 0   r = 1, 2, ..., n.  r 


Thus,  

a = 0 or p divides r as char F = p.  r 
f = a + a x + ... + a x0 p

p 
sp

sp  

= g(x ), where g(x) = a + a x + ... + a x  F[x].  p
0 p sp

s 

Conversely,let f = g(x ), where  p

g(x) = b + b x + ... + b x  F[x]  0 1 n
n 

Then,   f = b + b x + ... + b x0 1
p 

n 
np  

 f  = pb x + ... + npb x = 0  as pa = 0  a  F.  1
p–1 

n
np–1 

Proof: (i) Let char F = 0. Then by corollary 2 to Theorem 3.11 f is separable.  
So, all roots of f are simple.  

(ii) Let char F = p. If f   0, then by corollary 1 to Theorem 3.11 f is  
separable. So, all roots of f are simple.  

If f  = 0, then f (x) = g(x ), for some g  F[x].  p

Since f is irreducible over F, so is g over F.  
If g  0, then g is separable over F. Let  be a root of f.  
Then   0 = f() = g( )  g(x) = Irr (F,  ).  p p

So, f (x) = g(x ) = (x –  ) h(x )  p p p p

= (x – ) h (x)  p 
1

[h (x) = h(x )  h () = h( )  0]  1
p

1
p

 x – appears exactly p times in f (x).  
This is true for all roots of f (x).  
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If f  = 0, then ra = 0 for all r = 1, 2, ..., n. Since char F = 0, a = 0 for  r r 
all r = 1, 2, ..., n  f = a , a contradiction as F is irreducible (deg f  1).  0

Theorem 3.13: Let f(x)  F[x] be irreducible over F. Then all its roots have  
79

the same multiplicity.  

Now, g(x) = (x –  ) h(x), h( )  0 as  is a simple root of g(x).  p p p 



exactly p times.  e 

Hence all roots of f have same multiplicity p (e  0).  e 

Aliter: Let  be a root of f of multiplicity m.  
Then f (x) = (x – ) g(x), g()  0 g(x) K[x], K = k()  m 

Let  the another root of f. Then  an F-isomorphism  
 : F()  F() such that,  

() =   
Now  
Let  

f = (f) = (x – ) (g(x))  m 

g(x) = a + a x + ... + a x , a K  0 1 n
n

i 
(g(x)) = (a ) + (a ) x + ... + (a ) x0 1 n

n  

(g()) = (a ) + (a ) + ... + (a ) 0 1 n
n  

= (a ) + (a ) () + ... + (a ) ( )  0 1 n
n

= (a + a  + ... + a  )  0 1 1 n
n

Then  


= (g())  0 as g()  0  
  is a root of f of multiplicitym, showing that all roots of f have same  

n, where n = deg f. (F deotes the field {0, 1, 2, ..., p – 1} mod p).  p 

Proof: By above theorem, all roots of f have same multiplicity p , e > 0 as f is  e

not separable.  
So,   deg f = rpe  

 p divides n = deg f. (Note, char F = p).  p 

Proof: Let  
If b is a root of f (x), then f (b) = 0  a = b .  p

f (x) = x – b = (x – b) .  p p p

f (x) = x – a.  p 


If b  F, then f (x) is p-th power of linear polynomial x – b  F[x].  
Suppose b  F. Let p(x) be a monic irreducible factor of f (x) in F[x].  
Since p(x) divides f (x), p(x) = (x – b) for some m, 1  m  p.  m 

So,   p(b) = 0. Thus, p(x) = Irr (F, b).  
If q(x) is another monic irreducible factor of f (x) in F[x], then  

q(x) = Irr (F, b) = p(x).  
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multiplicity.  

Corollary: If f  F [x] is irreducible over F and f is not separable, then p divides  p p

Theorem 3.14: Let x – a  F[x], where p = char F. Then either x – a is  p p 

irreducible over F or x – a is a p-th power of a linear polynomial in F.  p 



Case 1: We give an example of an irreducible polynomial which does not have  
distinct roots.  

If f is reducible over K, then there would be an element a  K such that,  
f (a) = 0.  

g(t)   t = a . But a  K  a =  2 .
h(t)  

(g(t))2  

(h(t))2  
So,   t =    deg (g(t)) = deg t(h(t)) .  2 2

 2 deg g(t) = deg t + 2 deg h(t) = 1 + 2 deg h(t), which is not true.  
So, f is irreducible over K.  
If  is a root of f, then f () = 0 (as char K = 2 = char F )   is not  2

a simple root of f.  
So,   f = (x – ) .  2

Thus, f is an irreducible polynomial having no simple roots.  

Definition: Let F be an algebraic extension of K. Then a  F is called separable  
over K if Irr (K, a) is separable.  

if each a  F is separable over K, then F is called a separable extension of K.  
(We write F/K is separable).  

In the case above, x – t = Irr (K, ) and  is not a simple root of x – t.  2 2 

If F is a minimal splitting field of f = x – t over K, containing  then  2 

F/K is algebraic and  F is not separable over K.  
So, F = K() is not separable over F.  
However, if char K = 0 then every algebraic extension of K is separable  

by Corollary 2. to Theorem 3.11.  

Theorem 3.15: Let char K = p. Then every algebraic extension of K is sepa-  
rable iff K = K .  p

Proof: Suppose every algebraic extension of K is separable. Let a  K. Let  
f (x) = x – a and b be a zero of f (x). Then 0 = f (b) = b – a  a = b   p p p 

f (x) = x – b = (x – b) . If b  K then f (x) is irreducible over K.  p p p

So,  



x – a = Irr(K, b).  p 

f (x) = x – a  p 

f (x) =  px p – 1  
38
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Let K = F (t), F = {0, 1} mod 2 and t is an indeterminate over F . Let  2 2 2
f (x) = x – t  K[x].  2 

Thus, a  F is separable over K iff a is a simple root of Irr (K, a). Further,  

But  



So, b  K and a = b  K  K  K .  p p p

Conversely, let K = K . Let F/K be algebraic.  p

Let   F, f (x) = Irr (K, ). If f is not separable, then f  = 0. So,  
f = g(x ) for some g  K[x].  p

Let   g = a + a x + ... + a x , a  K.  0 1 n
n

i 

f = g(x ) = a + a x + ... + a xp
0 1

p 
n

np  

K = K , a = b , b  K.  p
i i

p
i 

Then  
Since  
So,   p p pf = b + b x + ... + b x0 1 

p 
n 

np  

= (b + b x + ... + b x ) , b K  0 1 n
n p

i 

contradicting that f is irreducible over K.  
Thus f is separable   is separable.  
Since  is an arbitrary element of F, F/K is separable.  

3.4 PERFECT FIELDS  

Definition: A field K is called perfect field if every algebraic extension of K is  
separable.  

Afield of characteristic zero is perfect byCorollary2 toTheorem 3.11. So,  
Q, R, C, are perfect fields.  

Theorem 3.16: Let char K = p. Then the following are equivalent:  
(i) K is perfect.  
(ii) K = Kp  

(iii) Every element in K is a p-th power of some element in K.  
(iv)  : K  K such that (a) = a is an automorphism.  p 

Proof: (i)  (ii) follows by Theorem 3.15  
(ii)  (iii) obvious  

(iii)  (iv): Since char K = p,  is clearly a homomorphism and is 1-1.  
Also,  
 b = (a)   is onto. So,  is an automorphism.  

b  K  b = a , a  K by (iii).  p

(iv)  (i):   Now (K) = {(a) | a  K}  
= {a | a  K}  p 

= K .  p
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However, K  K. So K = K (Note, K = {a | a  K}).  p p p p 



Proof: Let a  L, p(x) = Irr (K, a)  
q(x) = Irr(F, a)  

Then   q(x)  K[x] and q(a) = 0.  
So, p(x) divides q(x) in K[x]  




q(x) = p(x) r(x), r(x)  K[x]  
q(x) = p(x) r(x) + p(x) r(x)  
q(a) = p(a) r(a).  

Since L/F is separable, a is separable over F.  
So a is a simple root of q(x)  q(a)  0  




p(a)  0  a is a simple root of p(x)  
a is separable over K  
L/K is separable.  

Corollary: Every finite extension of a perfect field is perfect.  

Proof: Let F be a perfect field. Let K/F be finite extension. ThenK/F is algebraic.  
Let L/K be algebraic. Then L/F is algebraic. Since F is perfect, L/F is separable.  
From above, L/K is separable. So, K is perfect.  

Example 3.11: Let F be a perfect field. Show that the set of elements fixed  
125

under all automorphisms of F is a perfect subfield.  

of all automorphisms of F. Then K is subfield of F.  
Define  : F  F such that,  

() = p  

Let  K. Then () =  G  



() =   =  K  K  K .  p p p

K = K  K is perfect.  p 

Example 3.12: Let K/F be a finite extension and suppose K is perfect then  
show that F is perfect.  

Solution: Let char F = p, then char K = p.  
Let [K : F] = n and { ,  , ...,  } be a basis of K over F.  1 2 n

Since K is perfect, K = K . We show F = F .  p p

F  F  K. So we show that  p 

[K : F ] = [K : F] which would give F = F .  p p
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Solution: Let char F = p, K = {a  F | (a) = a   G}, where G is the group  

Then  is a homomorphism. Since F is perfect,  is onto. So, G.  

Now,  



 a = 0   i  i 
S is L.I. set in K (over F )  p

Let   b K, then b = a , a  K as K = Kp p   

a  K  a = b  + b  + ... + b  , b F  1 1 2 2 n n i 

b = a = b  + b  + ... + b p 
1
p 

1
p 

2
p 

2
p 

n
p 

n
p  

 S spans K over Fp   

Hence S is a basis of K over Fp  




[K : F ] = o(S) = n = [K : F]  p

F = F or that F is perfect.  p 

3.4.1 Normal Extensions  
If f (x)  K[x] is irreducible over K, then  an extension E of K containing a root  
of f(x). In this section we consider those extensions of K which contain all roots  
of f(x) and study properties of such extensions.  

Definition: Let E be an extension of K. E is called normal extension of K if  
(i) E/K is algebraic (ii) E  p(x) = Irr (K, ) splits in E[x] or E.  

Case 2:Aquadratic extension is a normal extension.  
Let E be a quadratic extension of K. Then [E : K] = 2.  
Since E/K is finite, E/K is algebraic.  
Let E,   p(x) = Irr (K, ).  
Now  
Either  

K  K() E. Since 2 = [E : K] = [E : K()] [K() : K].  
[E : K()] = 1 or [K() : K] = 1.  
[K() : K] = 1, then K() = K  K  

p(x) = x –  splits in K[x]  E[x].  
[E : K()] = 1, then E = K().  

So,   2 = [E : K] = [K() : K] = deg Irr (K, ) = deg p(x).  
Now  is a root of p(x)  x –  divides p(x) in E[x].  

Since  

p(x) = (x – ) q(x), q(x)  E[x].  
deg p(x) = 2, deg q(x) = 1. So q(x) = (x – ),  E.  

p(x) = (x – ) (x – ) splits in E[x].  Therefore,  
Thus, E/K is normal.  

Case 3: Let f (x) = x – 2  Q[x]. Let  be the real root of f (x). Consider  3 

Q()/Q. We show that Q()/Q is not normal.  
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Now,  

If  

If  



If f (x) splits in Q(), then Q() contains a minimal splitting field E of f (x)  
over Q.  

So,   Q  E  Q().  
[E : Q] = 6 and [Q() : Q] = deg Irr (Q, ) = deg f(x) = 3.  
3 = [Q() : Q]  [E : Q] = 6, we get a contradiction.  
Q()/Q is not normal.  

Since  
So,  

Note: We have seen in above case that an extension of degree 3 need not be  
84

normal. We can, however, have a normal extension of degree 3. Consider  
f (x) = x + x + 1  F [x], where F = {0, 1} mod 2. Let  be a root of f (x).  3 2 

2 2 
Then  , 1 +  +  are also roots of f (x). So F () is a minimal splitting field  2 2 

2
of f (x) over F . Thus F ()/F is normal and [F () : F ] = deg Irr (F , ) =  2 2 2 2 2 2
deg f (x) = 3.  

Theorem 3.18: Let F  K  E be a tower of fields. If E/F is normal, then  
so is E/K.  

Proof: Since E/F is normal, E/F is algebraic. So, E/K is algebraic.  
Let E, p(x) = Irr (K, ) , q(x) = Irr(F, ).  
Then q(x)  F[x]  K[x]  q(x)  K[x] and q() = 0.  
So, p(x) divides q(x) in K[x].  
Since E/F is normal and E, q(x) splits in E[x].  
So, p(x) splits in E[x]. Thus, E/K is normal.  

Note: In above theorem K/F need not be normal. Consider f (x) = x – 2  3 

 Q[x]. Let R be a root of f (x). Then Q()/Q is not normal by Case 3.  
However, Q(, w)/Q is normal by Theorem 3.19 and Q  Q()  Q(, w).  
Notice Q(, w) is a minimal splitting field of f (x) over Q.  

Theorem 3.19: A minimal splitting field of a non-constant polynomial f (x)  
K[x] over K is normal extension of K.  

Proof: Let E be a minimal splitting field of f (x) over K. Then E/K is algebraic  
and finite. Let f (x) =  (x –  ) ... (x –  ),   E.  0 1 n i 

Then E = K( ,  , ...,  )  1 2 n
Let E, p(x) = Irr (K, )  K[x]  E[x].  
Then p(x) splits in some extension of E.  
Let be a root of p(x) in some extension of E. We show that E.  

that, () = .  
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But  

Similarly, Q(w)/Q and Q(w )/Q are not normal extensions.  2

Now ,  are roots of p(x)  a K-isomorphism : K()  K() such  



Also, a minimal splitting field of ( f ) = f over K() is  
K() ( ,  , ...,  )  1 2 n

= K( ,  , ...,  ) ()  1 2 n

= E().  
So, an isomorphism : E  E() such that, (a) = (a)  a  K()  
 () =  () = .  

K  K()  E  E()  
[E : K()] = [(E) : (K()]  

= [E() : (K()]  


= [E() : K()]  
So, [E() : K] = [E() : K()] [K() : K]  

= [E : K()] deg p(x)  
= [E : K()] [K() : K]  
= [E : K].  

Since E  E() and E, E() as vector spaces over K have same dimension,  
E = E(). So, E. Thus, p(x) splits in E. This proves E/K is normal.  

Theorem 3.20: A finite normal extension is a minimal splitting field of some  
polynomial.  

Proof: Let E/K be a finite normal extension.  
E/K is finite  E = K( ,  , ...,  ).  1 2 n

Let p (x) = Irr (K,  ). Since   E and E/K is normal, each p (x) splits  i i i i
in E.  

Let f = p p ... p  K[x].  1 2 n 

Then, a minimal splitting field of f over K is  
K( ,  , ...,  , roots of p s in E) = E.  1 2 n i

So, E is a minimal splitting field of f over K.  

Proof: Since E /K is finite, E = K( , ...,  ).  1 1 1 n

So,   E E = K( , ...,  )E1 2 1 n 2  
= E ( , ...,  ), as K  E2 1 n 2  

KE = E2 2  
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Now,  

Corollary: Let K  E  E, K  E  E be towers of fields such that, E /K,  1 2 1
E /K are finitenormal extensions. ThenE E , the smallest subfield ofEcontaining  2 1 2
E  E is finite normal extension of K.  1 2 



= [E : K].  1 
Therefore,  

[E E : K] = [E E : E ] [E : K]  1 2 1 2 2 2 
[E K] [E : K] = Finite  1 2 

[E E : K] = Finite.  1 2 
Now E /K is finite normal  E is a minimal splitting field of f over K  1 1 1 
Also, E /K is finite normal  E is a minimal splitting field of f over K  2 2 2 

Let   f = f f , E = K(a , ..., a ), E = K(b , ..., b ).  1 2 1 1 r 2 1 s

Then, a minimal splitting field of f over K is K(a , ..., a , b , ..., b )  1 r 1 s
= E (b , ..., b )  1 1 s

= E K(b , ..., b ) as E K = E1 1 s 1 1  

= E E .  1 2
Thus, E E /K is finite normal extension.  1 2
(Note, we have also shown above that E /K, E /K are finite  E E /K  

108
1 2 1 2

is finite).  

Case 4: We now give an example to show that a normal extension of a normal  
extension need not be a normal extension.  

Consider the tower of fields Q  Q(  
Now [Q( ) : Q] = deg Irr (Q,  
and [Q(2 ) : Q(2 )] = deg Irr(Q(  1/4 1/2

So, Q( )/Q, Q(2 )/Q(  1/4 ) are normal.  

2 ) Q(2 ).  1/4

) = deg(x – 2) = 2  2 

), 2 ) = deg (x –  1/4 2 2) = 2  
130

2 2

2

22

If Q(2 )/Q is normal,  then  1/4

f (x) = Irr(Q, 2 ) = x – 2 must split in Q(2 ).  1/4 4 1/4

So, Q(2 ) contains a minimal splitting field E of f (x).  1/4

[E : Q] = 8 and Q  E  Q(2 )  1/4

 [Q(2 ) : Q] = 4  [E : Q] = 8, a contradiction.  1/4

Therefore, Q(2 )/Q is not normal, proving our assertion.  1/4

Theorem 3.21: Let K  F  E be a tower of fields such that, E/K is finite  
normal. Then any K-homomorphism of F into E can be extended to K-au-  
tomorphism of E.  
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But  

Proof: Since E/K is finite, E = K( ,  , ...,  ). Also E/K is finite normal  1 2 n
 E is a minimal splitting field of some f (x)  K[x] over K. Let  be a K-  



= E(roots of f in E) = E  
(E = K( ,  , ...,  )  F( ,  , ..., )  E  1 2 n 1 2 n

E = F( ,  , ...,  ))  1 2 n
Also, a minimal splitting field of ( f(x)) = f over F is  
F( ,  , ...,  , roots of f in E)  1 2 n

= E(roots of f (x) in E)  
= E  

[E = K( ,  , ...,  )  F( ,  , ...,  )  1 2 n 1 2 n
 F ( ,  , ...,  )  1 2 n

F( ,  , ...,  ) = E  1 2 n
 E = F '( ,  , ...,  )]  1 2 n

Therefore,  an isomorphism  : E  E such that,  

(a) = (a)  a  F  

 () = () = K   is a K-automorphism of E  
extending . This proves the result.  

Normal Closure: Let E/K be a finite extension. Then E = K( ,  , ...,  ).  1 2 n

Let   p = Irr(K,  ) and f = p p ... p  K[x].  i i 1 2 n 

Then E the minimal splitting field of f over K is  
K( , ...,  , root of f in some extension of E)  1 n

= E(roots of f in some extension of E)  
E  E and E/K is finite normal  
(as a minimal splitting field of f over K is finite normal extension of K)  
Suppose K  E  F such that, F/K is finite normal.  
We show that E ' can be embedded in F.  

  E  F    F  i. Also F/K is normal.  i i 
So, p (x) splits in F[x]  i  f splits in F[x]  i

E  F. But E  is also a minimal splitting field of f over K.  1 

Therefore, E   E  F  E can be embedded in F.  1 
Thus, E is the least finite normal extension of K such that, K  E  E.  
E is called the normal closure of E/K.  

Case 5: Let   f (x) = x – 2  3 

= (x – ) (x – w) (x – w )  2
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F contains a minimal splitting field E of f over K.  1 



So, Q(w)/Q is the normal closure of Q.  

3.4.2 Finite Fields  
A field having finite number of elements is called a finite field or a Galois field.  

Theorem 3.22: If F is a finite field, then o(F) = p for some prime p and an  n 

integer n  1.  

Proof: Let P be the prime subfield of F.  
ZSince F is finite, so is P. Therefore, P    for some prime p.  

 p   
ZBut    {0, 1, 2, ..., p – 1} mod p = F  P  F .  p p p   

Let {u , ..., u } be a basis of F/F .  1 n p
Then F = { u + ... +  u |   F }.  1 1 n n i p

a field with p elements.  n 

Proof: Let f (x) = x – x  F [x], q = p . Let F be a minimal splitting field of  q 
p

n

f (x) over F .  p

Then  
Let  

F = F (zeros of f in F).  p 

S = {zeros of f in F}.  
Now  


f  = qx – 1 = – 1 as char F = p  q – 1 

q – 1  = p – 1 = – 1.  n 

Therefore, (f, f ) = 1  
 all zeros of f in F are simple and so distinct.  
So,   o(S) = q.  

0  S  S .  Now  
Also  


a, b  F  a = a, b = b  q 
q q 

(a ± b) = a  b = a  b,  q q q 

(ab) = a b = ab, (ab ) = a b = ab q q q – 1 q q – q – 1  

 a ± b, ab, ab (if b  0)  S.  –1 

Thus, S is a subfield of F.  
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Since P  F, we can regard F  F. Now F is a vector space over F .  p p
Since F is finite, [F : F ] = n = finite.  p

Now each  can be chosen in p ways and  u =  u   =  ,  i i i i i i i
therefore o(F) = p .  n

Theorem 3.23: Let p be a prime and n  1 be an integer. Then there exists  



But F is the smallest field containing F and S.  p 
 F  S. Also S F. So, S = F  o(F) = o(S) = q.  

Lemma 1: Let G be an abelian group under multiplication. Let a, b  G be  
such that o(a) = m, o(b) = n and (m, n) = 1. Then o(ab) = mn  
Proof: Now (ab) = a b = (a ) (b ) = 1 = identity of G  mn mn mn m n n m 

If (ab) = 1, then a b = 1.  t t t 




a = b  a = b  b = 1  t –t mt –mt –mt 

b = 1  o(b) | mt  n | mt  n | t as (n, m) = 1.  mt 

Lemma 2: Let G be an abelian group under multiplication. Let a, b  G be  
such that, o(a) = m, o(b) = n. Then there exists c  G such o(c) = l.c.m. of  
m and n.  

Proof: Let (m, n) > 1.  
Let   m = p ... p1 

1 
r
r  

n = p ... p1 
1 

r
r  

where p , ..., p are distinct  primes and  ,  are non negative integers.  1 r i i 

l = p ... p p ... p1 
1 

s s
 

r
r   s s  1  

1   Let  
where    for i = 1, ..., s and    for j = s + 1, ..., r.  i i j j 

Then l is the l.c.m of m and n.  
s + 1    p sx = aps + 1   ... p , y = b ... pr 

1 1 
s  

rLet  
o(x) = p ... p1 

1 
s
  sThen  

o(y) = p ... ps
 

r
r  s  1  

1   

and (o(x)), o(y)) = 1.  
By Lemma 1,  

o(xy) = l.c.m. of m and n  

= p ... p p ... p .  1 s s
 

r
r1 s s  1  

1   

Lemma 3: With the hypothesis of lemma 2, if n  m, then the l.c.m. l of m  
and n is greater than m.  
Proof: Now m | l  m  l. If m = l, then n | l  n | m, a contradiction.  
So l > m.  
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We now prove the following results from group theory.  

Similarly, m | t. So, mn | t  t  mn  o(ab) = mn.  



is G such that o() = l > m contradicting G is of maximum order. So,  
n | m o() | o() for all G.  

Theorem 3.24: Let F be a finite field. Then F*, the set of non zero elements  

Proof: Now F* is an abelian group under multiplication.  
Let  F* be an element of maximum order m.  
Then by Lemma 4, o() | m for all  F*.  
So, m = o()r  
  =  = 1 for all F*.  m o()r 

 satisfies x – 1 over F.  m 

Since F can't have more than m zeros of x – 1, o(F*)  m.  m 

But  F* and o() = m  
 1, ,  , ..., are distinct elements of F*  2 m – 1 

 o(F*)  m  o(F*) = m = o()  F* = <  >.  
The generators of F* are called primitive elements of F.  

Proof: We can regard F as an extension of F . Let q = p .  p
n

Now   F* = <  >, o() = o(F*) = q – 1. Also  = 1.  q – 1 

 = .  q 
 Elements of F are zeros of f (x) = x – x over F .  q 

p
So, f (x) splits in F.  
Therefore, f (x) = x(x – ) ... (x – q – 1  

 Minimal splitting field of f over F is F (,  , ...,  , 1, 0) =  p p
2 m – 1

F (F) = F.  p

)

Theorem 3.26: Any two finite fields with the same number of elements p
144 84 n  

are F -isomorphic.  p

are F -isomorphic.  p
The above theorem shows that there is unique field of order q = p upto  
132 n 

an isomorphism. It is denoted by GF(p ) or GF(q) or Fq.  n
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of F forms a cyclic group under multiplication in F.  

Theorem 3.25: Let F be a finite field of order p . Then F is a minimal split-  n

ting field of x – x over F .  pn 
p

Proof: Let F , F be finite fields such that o(F ) = p = o(F ). Then, by above  1 2 1
n 

2
theorem F , F are minimal splitting fields of f (x) = x – x over F  F , F1 2 

pn 
p 1 2  



The x – 1 = x   x (x – 1) + (x – 1).  
Therefore, x – 1 divides x – 1 if and only if x – 1 = 0.  m n 122 r 

Also x – 1 = 0 if and only if r = 0.  r 

So x – 1 divides x – 1 if and only if m divides n.  m n 

Example 3.14: Show that x –x divides x –x if m divides n.  pm pn

Solution: Let n = mu.  
Then p – 1  = p –1  n mu 

= (p ) – 1  m u 

= (p – 1) (integer)  m 

 p – 1 divides p – 1  m n 

By above problem  
nx – 1 divides xpm p    – 1  – 1   – 1  

 x – x divides x – x.  pm pm 

Theorem 3.27: Let F be a field with p elements. Then F has a subfield k  n 

with p elements if and only if m divides n.  m 

Proof: Suppose k is a subfield of F. Then k can be regarded as an extension of  

Conversely, let F be a field such that, o(F) = p . Suppose m divides n.  n

Now F is a minimal splitting field of x – x over F .  pn 
p

Let f (x) = x – x and g(x) = x – x.  pn pm 

Since m divides n, by above problem g(x) divides f (x).  
Consider F  = {zeros of g(x) in F}.  
Then F  is a subfield of F.  
Since g(x) has p distinct zeros, F  is a subfield of F with p elements.  m m 

If k is another subfield of F such that o(k) = p , then o(k) = o(F ) = p .  m m

 k, F  are F -isomorphic.  p

Thus, there isexactlyonesubfieldofF (up toisomorphism)withp elements.  m 

Example 3.15: Determine the algebraic closure of F .  p

F m! is a subfield of F n!. Thus, there is an ascending chain of subfields  p p

F  F  F  ...  p p2! p3! 
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  i 0     

F such that [k : F ] = m. Similarly, F can be  regarded as an extension of Fp p p  
such that  [F : F ] = n. Now [F : F ] = [F : k] [k : F ]  m divides n.  p p p

Solution:We know m! divides n! for all positive integersm < n. Byabove theorem  

Then the minimal splitting field of f over F is a finite field F .  



nppSo, each f  S splits in F .  p
Thus, the minimal splitting field of S over F is  p 
F (zeros of f  S in F )  F .   pp p
Also, a F  a  F for some n  a is zero of x – x over F .  p n 

pn 
pp

Now f = x – x  S  a is zero of f  S in Fpn 
p  





F  F (zeros of f  S in F )     p p  p  
Minimal splitting field of S over F is F  pp
F is the algebraic closure of F .  p p

Theorem 3.28: Every finite extension of a finite field is Galois.  

Proof: Let K be a finite extension of a finite field k. Then K is also a finite field.  
So, char k = char K = p, for some prime p. Let o(k) = p , o(K) = p .  m n

Now K is a minimal splitting field of x – x over F  K/F is finite  pn 
p p 

normal.  

Corollary: F /F is Galois, q = p .  q p 
n

Theorem 3.29: Let F be a finite field. Then there exists an irreducible poly-  
nomial of any given degree n over k.  

Proof: Let o(F) = p , p being a prime.  m

Let   q = p and let f (x) = x – x  nm q 

Then F is the minimal splitting field of f (x) over F .  q p

Since m/nm, F = F can be imbedded in F .  pm q
Now  
Then  

F  F = F  F = E.  p pm pmn 

[E : F] = n.  
Let E* be the multiplicative group of non zero elements of E and let  

E* = <  >  
Then  
So,  

E = F() as F  E, E  
n = [E : F] = [F() : F] = deg Irr (F, )  

 Irr (F, ) is an irreducible polynomial of degree n over F.  
84

a cyclic group generated by Frobenius map of order n, where q = p .  n
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Also F is finite  F is perfect  every algebraic extension of F is  p p p 
separable  K/F is separable  K/F is Galois. Now, F  k  K and K/Fp p p p  
is Galois K/k is Galois.  

Theorem 3.30: Let G be the group of F -automorphisms of F . Then G is  p q



Also  is 1-1.  
Since F is finite,  is onto.  q 

If b  F , then b = b  p
p 

 (b) = b for all b  F .  p

So,  is an F -automorphism of F  G.  p q 

By Artin's theorem, o(G) = [F : F ] as F is the fixed field of G.  q p p 

Let  

o(G) = n. We show that o() = n.  
126

 = I, let F * = < a >.  r 
q

Then  



a = 1  a = a  a = a.  q – 1  q pn 

 = I   (a) = a  a = a  a = 1.  r r pr pr 

o(a) | p – 1  q – 1 | p – 1  r 

– 1  


Also  
So,  

p – 1 | p – 1  p – 1  p – 1  n r.  n r n r 

 (b) = b = b for all b  F  = I.  r pn 
p 

n 

o() = n  G = <  >.  

Example 3.16: Show that for any integer a and prime p, a  a (mod p).  p 

Solution: Let  
Then  

a = pq + r, 0  r  p.  
a  r (mod p)  

0  r  p  r  Fp  
r r r = r  o o ... o 
p times  




So,  



r – pu = r  p 

r  r (mod p)  p 

r  a (mod p)  p 

a  r (mod p)  
a  r (mod p)  p p 

a  a (mod p)  p 

(The above result is known as Fermat's theorem)  

Example 3.17: Show that every irreducible polynomial f (x)  F [x] is a  p
divisor of x – x for some n.  pn 

Solution: Let deg f (x) = d and  be a zero of f (x) in an extension of F .  p

Then, [F () : F ] = deg Irr (F , ) = deg f (x) = d.  p p p

So,   o(F ()) = p . Then  F ()  p
d

p
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Now,  

Now,  



p

Solution: Let f (x) = x – x, q = p . Let p(x) be a monic irreducible factor of  q n

Now  
and  

F  F ()  Fp p q  
n = [F : F ] = [F : F ()] [F () : F ]  q p q p p p

= [F : F ()] deg Irr (F , )  q p q
= [F : F ()] deg p(x)  q p

deg p(x) divides n.  
 Any monic irreducible polynomial dividing x – x is of degree  pn 

dividingn.  

Example 3.19: Contruct a field of order 9.  

Solution: Let F be the field of order 9. Let F = {0, 1, 2} mod 3. Then  9 3 
[F : F ] = 2. Let f (x) = x – x. Then F is a minimal splitting field of f (x) over  9 3

9 
9 

F . Let p(x) be an irreducible factor of f (x) over F . Let  be a zero of p(x) in  3 3

SinceF , [F () : F ]  1  3 3 3
 [F () : F ] = 2  3 3

But [F () : F ] = deg Irr (F , )  3 3 3
= deg p(x)  

Thus  
Hence any irreducible factor of f (x) over F has degree 1 or 2.  3 

x – x = x(x – 1)  9 8 

= x(x – 1) (x + 1)  4 4 

= x(x – 1) (x + 1) (x + 1) (x – x – 1) (x + x –1)  2 2 2 

deg p(x) = 2.  

Note, x + 1, x – x – 1, x + x – 1 are irreducible over F as none of  2 2 2 
3 

0, 1, 2 are zeros of these factors.  
Let  
Then {1, } is a basis of F = F () over F .  9 3 3

p(x) = x + 1. Let  be a zero of p(x).  2 

So,   F = {a + ba, b  F }  9 3

= {0, 1, 2, ,  + 1,  + 2, 2, 2 + 1, 2 + 2}.  
Let u =  + 1. Then u = 2, u = – 1, u = 1. So, o(u) = 8  2 4 8 

F * = < u >.  9
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f (x) over F . Let  be a zero of p(x) in F, where F is a minimal splitting field of  p
f (x) over F . Then F = F and p(x) = Irr (F , )  p q p

F . Then  is a zero of f (x). If  F , then p(x) = x –  deg p(x) = 1. If  9 3
52

 F , then F  F ()  F  [F : F ] = 2 = [F : F ()] [F () : F ].  3 3 3 9 9 3 9 3 3 3

Now,  



u + 1   0, let u + 1 = un n z(n)  .
Define   u + u = u if u + 1  0 where a  b  a b z(a – b) + b a – b 

= 0 if u + 1 = 0  a – b 

Let's find  u + u7 1  

Now   u + 1  =  + 1 = u  0.  6 1 

z(6) = 1. Therefore, u + u = u = u7 1 Z(6) + 1  2  So,  
Also, u + u = 0 as u + 1 = – 1 + 1 = 0. In this way addition is defined  6 2 4 

in terms of u .  i

Let a = u . Then write log a = i. If b = u , then ab = u , where  denotes  i j i  j

the addition modulo 9.  
So, log ab = i  j = log a  log b.  
Such a logarithm is known as Zech logarithm.  

3.4.3 Algebraically Closed Fields  
In this section, we give a characterization of normal extensions.Also, we show  
that given a tower of fields k  F  K such that K/k is normal, any k-homomor-  
phism of F into K can be extended to a k-automorphism of K. We have already  

is an algebraic extension  k k  of k such that  has no algebraic extension other that  
k itself. is called an algebraic closure of k. We define the product of two  k
subfields of a field and show that the product and the intersection of two normal  
extensions of k is again a normal extension of k.  

Let S be a set of polynomials over k. Suppose each f  S splits in a field  
E containing k. Then E is called a splitting field of S over k and k(zeros of  
f  S in E) is called a minimal splitting field of S over k. For a finite set S, it  
is very easy to show the existence of a minimal splitting field ofS over k. For, let  

S = { f , f , ..., f | f  k[x]}.  1 2 n i 

Definition:Afield k is called algebraically closed if every polynomial f over k  
splits in k.  

By fundamental theorem of algebra, everypolynomial overC, the field of  

the field of reals is not algebraiclly closed as x + 1  R[x] does not split in R.  2 

We have the following characteriszations of algebraicallyclosed fields.  Self - Learning  
Material  176  

If  

seen this result when K/k is finite normal. We also show that given a fieldk, there  

Let E be a minimal splitting field of f over k, E be aminimal splitting field  1 1 2 
of f over E and so on, E be a minimal splitting field of f over E . Then  2 1 n n n–1
E  E  ...  E and each f splits in E  E  S splits in E . So, k(zeros  1 2 n i i n n
of f in E ) is a minimal splitting field ofS over k. It is also a minimal splitting field  i n
of f = f f ... f over k.  1 2 n 

complex numbers splits in C. So, C is an algebraically closed field. However, R   



f splits in k.  
So, f = f f ... f where each f is linear over k.  1 2 n i 
Since f is irreducible over k, f = f  f is linear over k  deg f = 1.  1 
Conversely, let g  k[x].  
Then g = g g ... g , where each g is irreducible over k.  1 2 m i 
By hypothesis, deg g = 1  g is linear over k for each i  i i 

 g is a product of linear factors over k  g splits in k.  
So, k is algebraically closed.  

Theorem 3.32: A field k is algebraically closed iff every algebraic extension  
of k is k itself.  

Proof: Let k be algebraically closed. Let K/k be algebraic.  
Let K, p(x) = Irr (k, ).  
By above theorem deg p(x) = 1  p(x) = x –  k[x]  k   

K = k.  
Conversely, let f  k[x]. Let K be a minimal splitting field of f over k.  
Then K/k is algebraic. By hypothesis, K = k.  
So, f (x) splits in k[x]  k is algebraically closed.  
Summarizing the last two results, we have the following  

Theorem 3.33: Let k be a field. Then following are equivalent  
(i) k is algebraically closed.  
(ii) Every irreducible polynomial over k has degree one.  
(iii) Every algebraic extension over k is k itself.  

Theorem 3.34: A finite field is not algebraically closed.  

Proof: Let k be the finite field {a , a , ..., a }  1 2 n
Let   f = 1 + (x – a ) (x – a ) ... (x – a )  k[x].  1 2 n

f (a )  0 for all i, we find f does not split in k.  iSince  
Hence k is not algebraically closed.  

Definition: Let k be a field. An extension E of k is called algebraic closure  
of k if  

(i) E/k is algebraic.  
(ii) E is algebraically closed.  
The following result is now an immediate consequence of Theorem 3.32.  
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of Q as C/Q is not algebraic (  C is not algebraic over Q).  

Theorem 3.36: Let K/k be algebraic. Let  denote an algebraic closure of  
K. Then  is an algebraic closure of k such that  

k  K   

is analgebraicclosureofK,  
/k is algebraic. But  is algebraically closed. Thus  

closure of k.  

k
k

k .

Proof: Since  
So,  

k k/K is algebraic.Also,K/k is algebraic.  
is also an algebraic  k k k

Theorem 3.37: Let K be an algebraically closed field such that K is an ex-  
tension of k. Let F = {a  K|a is algebraic over k}.  

Then F is an algebraic closure of k.  

Proof: We know that  
k  F  K is a tower of fields.  

Also, by definition of F, F/k is algebraic.  
Let f  F[x]. Then f  K[x]. Since K is algebraically closed, f splits in K.  
Let f = (x –  ) ... (x –  ),   K.  1 n i 

Since  is algebraic over F, F( )/F is algebraic for all i.  i i
Also F/k is algebraic. So, F( )/k is algebraic for all i.  i







  K is algebraic over k  i 
 F  i 

f splits in F  

F is an algebraic closure of k.  

an algebraic closure of Q.  

over k.  

Theorem 3.38: Let S be a set of polynomials over k. Then there is a minimal  
splitting field of S over k.  
Proof: Suppose S = {f | f  k[x], i  I}.  i i 

Let  
Put  
Let  

A = {i , i , ..., i } be a finite subset of I.  1 2 n
f = f f ... f  k[x].  A i1 i2 in 
E be a minimal splitting field of f over k.  A A 

Suppose B  A. Then f divides f . So, f splits in E .  B A B A
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F is algebraically closed  

From above theorem it follows that F = {a C | a is algebraic over Q}is  

Wenowshowtheexistenceofaminimalsplittingfieldofasetofpolynomials  

A



A
A, B  I.  

Let C = A  B. Then A, B  C.  
So, E , E  E  a, b  EA B C C  



a  b, ab, ab , (if b  0) are in E  E  –1
C 

E is a field.  
Therefore, for each f  S, f splits in E , where A = {i}.  i i A




each f  S splits in E.  i 

E is a splitting field of S over k.  
k(zero of f in E) is a minimal splitting field of S over k.  i 

Using Zorn's lemma or otherwise one can prove the following result.  

Theorem 3.39: Any two minimal splitting fields of a set of polynomials over  
k are isomorphic.  

We can now show the existence of an algebraic closure of a field k.  

Theorem 3.40: Let S be the set of all polynomials over k. Then a minimal  
splitting field of S over k is an algebraic closure of k.  

Proof: Let F be a minimal splitting field of S. Since F is generated by zeros of  
f  S, F is generated by algebraic elements over k. So, F/k is algebraic.  

Let  
Let  

f = a + a x + ... + a x  F[x].  0 1 n
n 

E = k(a , a , ..., a )  F.  0 1 n

Then f  E[x]. Let E be a minimal splitting field of f over E.  
Let   f = (x –  ) ... (x –  ),   E.  1 n i 

E = E( , ...,  ).  1 nThen  

Let   g = Irr(k,  )  i i
Let   g = g g ... g  k[x]  1 2 n 

g = (x –  )f , f  E[x].  i i i i Now  
Therefore, g = (x –  ) .... (x –  )f ... f1 n 1 n  

= (x –  ) ... (x –  ) f ... f1 n
–1 

1 n  

= ff  , f  =  f ... f  E[x]  –1 
1 n 

Let  
where c  k, b  E, a  F.  i i i 

Now c =  a br i r – i  

g = c x , f  = b x , f = a xi
i

i
i

i
i  
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Since each  is algebraic over E, E/E is algebraic. Also, each a  F is  i i 
algebraic over k  E/k is algebraic. So, E/k is algebraic.  



 b = a (c – a b ... – a b )  F  r + 1 j
–1 

j + r + 1 j +  r + 1 0 j+i r

By induction, each b  F  f   F[x].  i 

By hypothesis, g  k[x]  g splits in F.  
Let   g = (x –  ) ... (x –  )   F  1 m i 

Suppose f  F[x] splits in some extension F of F.  
Let  
Now  
Let  
So,  


f = d(x – d ) ... (x – d ), d  F '  F.  1 n i 

f   F[x]  F [x]  f  splits in some extension F  of F '.  
f  = e(x – e ) ... (x – e ), e  F   F   F  1 r i 

g = ff     g(d ) = 0 for all i  i

d –  = 0 for some j depending on i  i j 
d = b  F  i j 

 d  F for all i  i 
 f splits in F.  
Thus, F is algebraically closed.  
Hence F is an algebraic closure of k.  
Converse of above theorem is also true.  

Theorem 3.41: Let F be an algebraic closure of k. Then F is a minimal  
splitting field of the set S of all polynomials over k.  

Proof: Now F is an algebraic closure of k  



F is algebraically closed  
Each f  S splits in F.  

Let F = k(zeros of f  S in F)  F.  
Let  F. Then  is algebraic over k as F/k is algebraic.  
Let p(x) = Irr(k, )  
Then  is a zero of p(x)  S in F.  
So,   F   F  F.  
Therefore, F  = F  F is a minimal splitting field of F of the set of all  

polynomials over k. The following is then immediate.  

Theorem 3.42: Any two algebraic closures of a field are isomorphic.  

by Theorem 3.39.  
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Proof: Let k be a field and F , F be algebraic closures of k. Then F , F are  1 2 1 2 
minimalsplittingfieldsof thesetofallpolynomialsoverk.So,F ,F are isomorphic  1 2 



E . Then E  E for all n.  i – 1 n – 1 n 
So, E = E is a field  each f splits in E  n i n

 E is a splitting field of S over k.  
Let F = k(zeros of f in E)  E.  i 

Then k  F  E is a tower of fields and F is a minimal splitting field of S  
over k. So, F is an algebraic closure of k  F is algebraically closed  F is not  
finite. Since E is countable, F is also countable. Thus, any algebraic closure F  
of k being isomorphic to F is also countable.  
Lemma: Let E be an algebraic extension of k and let   E  E be a  
k-homomorphism. Then  is a k-automorphism.  

Proof: Let E, p(x) = Irr (k, ).  
Let    =  ,  , ...,  be zeros of p(x) lying in E.  1 2 r 

E  = k( ,  , ...,  )  E.  1 2 rLet  
Then E/k is finite.  
Let   p(x) = (x –  ) q (x), q (x)  k( )[x].  i i i i

Since  
Therefore, p(x) = (p(x)) = (x –( )) (q (x))  i i

 ( ) is a zero of p(x) for all i.  i
E  E  ( )  E for all i.  i

So, ( ) is a zero of p(x) in E for all i.  i



( )  E for all i.  i

: E  E is k-homomorphism.  
Also E/k is finite. Since  is also 1 – 1, : E  E must be onto (See  

below).  
Therefore, E = (E)  = (), for some E  E  

That  

 : E  E is onto  is a k-automorphism of E.  
: E  E is onto follows from the result  

‘If V is a finite dimensional vector space over F and T : V  V is a linear  
52

E. Also E as a vector space over k is finite dimensional.  
We now give two characterizations of normal extensions. These are very  

useful in finding whether the given extension is normal or not.  

Self - Learning  
Material   181  

field of f over E = k. In this way, let E be a minimal splitting field of f over  1 0 i i 

(a) = a for all ak, (p(x)) = p(x).  

But  

transformaion, then T is 1-1 iff T is onto’. Here : E  E is a k-homomorphism  
is a linear transformation as (a) = (a) () = a() for all a  k,   



Since K/k is algebraic, a is algebraic over k. Let p(x) = Irr (k, ). Let (a)  = b. Since (p(x)) = p(x), b is a zero of p(x) in   K.  k
Since K/k is normal, p(x) splits in K[x]. So, b  K.  
Therefore,  : K  K is k-homomorphism.  

Conversely, let K and p(x) = Irr(k, ).  
Since is an algebraic closure of k, p(x) splits in  [x].  k k
Let  be a zero of p(x) in   .k
Then there exists a k-isomorphism : k()  k() such that () = .  
Since k, k()  k. So,  is a k-homomorphism from k() into  .  k
Thus  can be extended to k-homomorphism  
By hypothesis,  is a k-automorphism of K.  

 : K  K .  


So,  (K) = K. Also   (a) = (a) for all a  k(). In particular   () =  
() = .  

Since   K,   ()    (K) = K  K.  
Therefore, p(x) splits in K[x].  
Hence K/k is normal.  

Theorem 3.45: Let K be an algebraic extension of k. Then K/k is normal iff  
K is a minimal splitting field over k of a set of polynomials in k[x].  

K).  
Then F is a minimal splitting field of S over k.  

Thus K is a minimal splitting field of S over k.  

k. Let  be an algebraic closure of k such that,  k  K  .  k k
Let : K  be a k-homomorphism.  k
Let a  K be a zero of some f  k[x] in S.  
Then (a) is also a zero of f as  is a k-homomorphism.  
As f splits in K[x], we can write f = (x –  ) ... (x –  ),   K, k.  1 n i 

Since ( ) is a zero of f for all i, ( )  , { , ...,  } = {( ), ...,  k
k

Let T = {zeros of f in K, f  S}.Then  : T  T. Also : T  T is  
1 –1 as : K  is 1 – 1.  k
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By above lemma, is a k-automorphism of K.  

Proof: Let K/k be normal. Let K. Let f (x) = Irr (k, ). Then f (x) splits   
in K[x] for all K. Let S = {f  | K}. Let F = k(zeros of f in K,    

Clearly, F  K. Also K  is a zero of f F. So, F = K.  

Conversely, let K be a minimal splitting field of a set S of polynomials over  

i i 1 n
( )} as  can't have more than n zeros of f. So, ( )  K for all i. n i

1  



ig(( ), ...,  1 (  ))  n g( , ...,  )  1 n So, b  K  (K)  K.  
f ( , ..., )  1 1 m 
g ( , ..., m)  1 1

Also d  K  d =   ,

f ((u ),...,(u ))  1 1 m   T  d =  i , u  T  i g1  ((u ),...,  1 (u ))  m 

f1  (u , ..., u1 m  )
)




( f1  (u , ..., u ))  1 m 



d =   = , u  T  ig1  (u , ..., u1 m  (g1  (u , ..., u ))  1 m 

d (K)  K  (K)  (K) = K.  
So, : K  K is onto Thus, is a k-automorphism of K. By previous  

result, K/k is normal.  
Summarizing, the last two theorems we get  

Theorem 3.46: Let K be an algebraic extension of k. Then following are  
equivalent:  

(i) K/k is normal.  
(ii) Every k-homomorphism of K into  is a k-automorphism of K where  k

is an algebraic closure of k.  k

(iii) K is a minimal splitting field of a set of polynomials over k.  
Theorem 3.47: Let F/k be algebraic. If every finite extension of k admis a  

Let  
Then  


f = (x –  ) ... (x –  ),   E.  1 n i 

f = f = (x – ( )) ... (x – ( ))  1 n

f splits in F  
 every polynomial over k splits in F.  
Let F  be a minimal splitting field of the set of all polynomials over k.  
Then  
Also,  
Let  

F  = k(zero of f  k[x] in F)  F  
  F  is algerbraic over k.  

p(x) = Irr(k, ). Then F is a zero of p(x)  k[x]  
  F   F  F   F = F .  

So, F is an algebraic closure of k.  
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 
 
 

k-homomorphism into F, then F is an algebraic closure of k.  
Proof: Let f = a + a x + ... + a x  k[x]. Let E be a minimal splitting field  0 1 n

n 

of f over k. Then E/k is finite.  
By hypothesis, there is a k-homomorphism : E  F.  

Proof: Let  : K  F be a k-homomorphism.  



E is a subfield of k and K  E  Let   S = (E, g)   .
g : E  F is a homomorphism extending  σ

Define a relation  on S as follows:  
(E , g )  (E , g ) if E  E and g is an extension of g to E .  1 1 2 2 1 2 2 1 2

Then  is a partial order on S.  

Let {(E , g )} be a chain in S. Let E = E and define g : E  F such  i i i i i
that, g() = g () if  E .  i i

Then (E, g)  S and is an upper bound of the chain {(E , g )}.  
52

i i

By Zorn's lemma S has a maximal element, say (E , g ).  0 0

We show that E = . Suppose E   0 .kk 0
Then we can find a such that a  E . Since /k algebraic, a is algebraic  k k0

over k.  
Let f = Irr (k, a). Now k  E  f  E [x]. Since F is algebraically  0 0

closed, g ( f )  F[x] splits in F[x].  0

extending g .  0

(E (a), ).This contradicts the maximality of (E , g ).  0 0 0

So, E = . Therefore, g :  F is a homomorphism extending .  k k0 0
Corollary: Let K/k be algebraic such that k  K  . Then any k-homomor-  k
phism of K into can be extended to a k-homomorphism of  into .  k k k

Proof: Take F = in above theorem.  k

Corollary: Any two algebraic closures of a field k are k-isomorphic.  
Proof: Let K , K be algebraic closures of k.  1 2 

Now k  K , K . Let  : k  K be the inclusion map i.e., () =  for  1 2 1 
all  k.  

By taking K = , k = K , F = k , in above theorem,  can be extended  k 1

Self - Learning  
Material  184  

  
 
  

Let b be a zero of g ( f ) in F. Then there exists an isomorphism  : E (a)  0 0

0 E(b) extending g , where E = g (E ).  0 0 00

0But b  F, E  F  E(b)  F. So, : E (a)  F is a homomorphism  00

Therefore, (E , g )  (E (a), ) and E  E (a)  (E , g )   0 0 0 0 0 0 0

2
to a k-homomorphism  : K  K .  2 1



Since K /k is algebraic, K /(K ) is also algebraic.  1 1 2

Hence, K , K are k-isomorphic.  1 2 

Theorem 3.49: Let k, E, K be fields such that, k  E  K and K/k is normal.  
Then any k-homomorphism  : E  K can be extended to a k-automorphism  
of K.  
Proof: Since K/k is normal, K is minimal splitting field a set of polynomials over  
k. Let  denote an algebraic closure of k.  k

Then is a minimal splitting field of the set of all polynomials over k.  k
So K can be regarded as a subfield of   .k
Now  : E  K is a k-homomorphism.  
Thus  : E  is a k-homomorphism.  k
Since K/k is algebraic, so is E/k. Now k  E  , E/k is algebraic.  k
By previous theorem,  can be extended to a k-homomorphism  :  

 . Therefore,  : K  is also a k-homomorphism.  kk k

This proves the result.  
Product of Fields:Let M, N be extensions of a fieldk such that M, Nare contained  
in a field L. Then MN is defined as the smallest subfield of L containing M  
and N.  

Let  

Then M[N] is an integral domain. Let K be field of quotients of M[N].  

So,   M, N  M[N]  K.  
But MN is the smallest field containing M, N, MN  K.  

Also,   a b  M[N], for all a  M, b  N  i i i i  
i  1   

a b  MN , as  ai  M 



ai  



MN  

MN  





i i
i  1   

b N bi i

M[N]  MN.  
But K is the smallest field containing M[N]  K  MN  

K = MN  
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But (K ) is algebraicallyclosed(K ) has no algebraic extension other  2 2
than itself  K = (K )  is onto  is a k-isomorphism.  1 2

Again, K/k is normal  is a k-automorphism of K.  

M[N] = {a b + ... + a b | a  M, b  N}.  1 1 n n i i 
n = Finite  

Clearly, M  M[N], N  M[N].  

n


n









 ...  a bn n  Proof: Let  

where  

 =   K K1 2  

a , a   K , b , b   Ki i 1 i i 2  

Then   () =   (K )  2 

 (K K )  (K ) (K )  1 2 1 2

  (K )(K ).  1 2Let  
( )(d )  ...  (c )(d )  1 r r Then    =  

(c )(d )  ...  (c )(d )  1 1 r r 

= (), where =  

 (K K )  1 2

K K1 2  







(K )(K ) (K K )  1 2 1 2

(K K ) = (K )(K ).  1 2 1 2

Theorem 3.50: If E, F are normal extensions of k, then EF and E  F are  
normal over k.  

Proof: (i) Let  
from EF into  

k denote an algebraic closure of k. Let  be a k-homomorphism  
k .k such that, k  EF   

Now (EF) = (E)(F) by above lemma.  
Since E, F  EF,  is also k-homomorphism from E into  

k . Also E, F are normal over k : E  E and : F  F are k-  
k and F  

into  
automorphisms  




(E) = E, (F) = F  
(EF) = EF  

Now  : EF   k is also a k-homomorphism from EF into EF. But  
(EF) = EF  

 : EF  EF is onto.  
So,    : EF  EF is a k-automorphism.  
EF/k is normal.  
(ii) Let  be a k-homorphism from E F into  

. Then can be extended to  -homomorphism  :  
SinceE/k isnormal,E is aminimal splittingfieldof asetofpolynomials over  

E can be regarded as a subfield of  . Therefore, k  E  . Similarly  
k  F   

k such that k  E  F  
k  k .   k k

k
k k
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1

a b1 1  
a  b   ...  a  b   1 n n

1

1

(a )(b )  ...  (a ) (b )  1 n n 
(a )(b )  ...  (a ) (b )  1 n n

(K )  1

c1  

c d  ...  c d1 1 r r  
c d   ....  c d    1 1 r r

k. However,  is a minimal splitting field of the set of all polynomials overk. So,  



Thus,   (E  F) = (E) (F)  
=  (E)  (F)  1 2
= E  F.  

 | E  F =   
 (E  F) = E  F  
is a k-automorphism of E  F.  
E  F/k is normal.  

1. What do you mean by extension of a field F?  
2. When is a complex number said to be an algebraic number?  
3. What is a prime subfield?  
4. Define normal extension.  
5. What is a finite field?  
6. What is a splitting field?  

3.5 AUTOMORPHISM OF EXTENSIONS  

The purpose of this section is to find conditions under which a finite extension  

of k-automorphisms of F is at most n = [F : K]. We then show that the upper  
bound n is achieved iff F/K is both normal and separable.  

Note,   : E  E such that, (  ) (a) =  ( (a))  a  E.  i i i i i i

In the following result, we show that any family of homomorphisms from  
a field into another field is linearly independent.  

over E.  
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Material   187  

But  

Check Your Progress  

F/K is separable in terms ofk-automorphisms of F.We first show that the number  

Definition: Let  ,  , ...,  be homomorphisms from a field E into a field E.  1 2 n 
Then,  s are called linearly independent over E if   + ... +   = 0,   i

98
1 1 n n 

 = 0  i where   E.  i i 

Theorem (Dedekind). 3.51: Let ( ) be a family of distinct homomorphism  i i 
from a field E into a field E'. Then { } is linearly independent over E'.  i i 

Proof: Suppose { } is not linearly independent over E. Then  finite subset  i i 
of { } which is not linearly independent over E. (i.e., it is linearly dependent  i i 
over E.). Let  { ,  , ...,  } be a minimal linearly dependent subset of { }1 2 r i i  

1 1



1 1 r r  

Suppose  
Now  

  0.  1 

 (a) = (–   ) (a) + ... + (–   ) (a) a  E  1 1
–1

2 2 1
–1

r r

 (a) =   (a) + ... +   (a),  1 2 2 r r

 = –    E, a  E  i 1
–1 

i ...(3.2)  

...(3.3)  
So,    (ab) =   (ab) + ... +   (ab)  a, b  E  1 2 2 r r

  (a)  (b) =   (a) (b) + ... +   (a) (b) a, b  E  1 1 2 2 2 r r r

Consider Equation (3.3) –  (b) Equation (3.2).  1

Then   0 =   (a) ( (b) –  (b)) + ... +   (a) ( (b) –  (b))  2 2 2 1 r r r 1

=  ( (b)   (b))  i 1  (a) a  E  i 

 ( (b)   (b)) 1 i  i i  

i
2





0 =  
2

 ( (b) –  (b)) = 0   i = 2, 3, ..., r,  b  E  i i 1

as { ,  , ...,  } is a minimal linearly dependent subset of { } .  1 2 r i i
Since    i  1,  c  E such that,  (c )   (c ).  i 1 i i i 1 i

Now  ( (c ) –  (c ) = 0  i = 2, 3, ...,  i i i 1 i

  = 0  i = 2, 3, ..., r.  i 

 (a) = 0  a  E, by (3.2)  1

 (1) = 0  

So,  


1 = 0, which is not true.  
Thus { } is a linearly independent set over E.  i i 

Theorem 3.52: Let E, E' be extensions of K. Let [E : K] = n. Then, there are  
at most n K-homomorphisms from E into E'.  

Consider the system of equations   = 0,  j = 1, 2, ..., n.  (u )xi j i  
i  0  

a non zero solution, say c , c , ..., c  E where some c  0.  0 1 n i 

Let a  E. Since {u , u , ..., u } spans E/K, a =  u + ... +  u ,  1 2 n 1 1 n n
  K  i 
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r


r



Proof: Let {u , u , ..., u } be a basis of E/K. Let  ,  , ...,  be n + 1 distinct  1 2 n 0 1 n 
K-homomorphisms from E into E.  

n



Then, we have n equation in n + 1 unknowns x s  E. Since the number  i
of equations is less than number of unknowns, the above system of equations has  



=

=

  (u ))ci j i  j   
i j

  (u ))ci j i   j
j i


i





ci   (a) = 0   a  E  i 
i  0  

c  = 0  c = 0  i by above theorem.  i i i 
i  0  

K-homomorphisms from E into E.  

Corollary: There are at most n K-automorphisms of E, where n = [E : K].  
Proof: Take E = E in above theorem. By automorphism of E, we mean  
isomorphism of E into E. Now any K-homomorphism from E into E is a linear  
transformation from E into E as vector space over K.Also, any homomorphism  
from E into E is 1–1 and so onto as [E : K] = finite. By above theorem, there  
are at most n K-automorphisms of E where n = [E : K].  

Case 6: Define  : C  C such that,  
(z) =  z , where  z = Conjugate of z  

Then  is R-homomorphism and   I. So, , I are two distinct R-homo-  
morphismsofC intoC.But [C : R] =2 there areatmost twoR-automorphismss  
of C.Also, any R-homomorphism of C into C is an R-automorphism of C. So,  
, I are only R-automorphisms of C. Note, C/R is normal as [C : R] = 2 and  
C/R is separable as char R = 0  R is perfect  Every algebraic extension of  
R is separable.  

Case 7: Let  be the real cube root of f (x) = x – 2. Let F = Q()  R. Let  3 

 be a Q-automorphism of F.  
Since  is a root of f (x) in R, () is a root of ( f (x)) = f (x) in R.  
So,  () = . But [Q() : Q] = deg Irr (Q, ) = deg f (x) = 3 and  

{1, ,  } is a basis of Q()/Q.  2

 Q() = {a + a  + a  | a  Q}.  0 1 2
2 

i 

Since (a ) = a and () = ,  fixes every element of Q().  i i 

Note Q()/Q is separable as char Q = 0  Q is perfect  Every alge-  
braic extension of Q is separable.  
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 
= 0  as   (u ) c = 0  i j i 

n


n


But some c  0. So, we get a contradiction. Thus, there are at most n  i 

So,  = I  Identity map is the only Q-automorphism of F = Q().  



Let  be a root of f(x) in some extension of F.  
Now f (x) = x – t is irreducible over F  [F() : F] = p.  p 

{1, , ..., } is a basis of F()/F.  p–1

So,   F() =  {  |ai
i 

i  
i 0   

If  is F-automorphism of F(), then () is a root of f (x) = ( f (x)) in  
F().  

But  is the only root of f (x) in any extension of F.  
() =   fixes every element of F().  

Thus, identity map is the only F-automorphism of F().  
Since  is not a simple root of f (x), is not separable over F.  
Therefore, if E/K is not sparable then one may not get [E : K],  

K-automorphisms of E.  
The above two examples clearly demonstrate that in order that an exten-  
131

sion E/K has [E : K], K-automomorphisms of E, E/K should be both normal and  
separable. In the first example, we saw that we do get [E : K], K-automorphisms  
of E when E/K is both normal and separable. We would like to prove this in  
general.  
Theorem 3.53: Let K  L  F  E be a tower of fields. Suppose E/K is finite  
normal. If r is the number of K-homorphisms from L into E and s the number  
of L-homomorphisms from F into E, then the number of K-homomorphisms  
from F into E is rs.  

extended to K-automorphisms of E.  i  

We show that {   | 1  i  r, 1  j  s} is the set of distinct  i  

Suppose    =  j  . Then   (a) =    (a), a  F  q p   i   i   p   

 p   

 p   

q j






 (l) =    (l)  l  L  i   i q

(l) =   (l) l  L  i  

 =   i = p   =   j = q.  i p j q 

Let  be any K-homomorphisms from F into E. Then  | L is a  
K-homomorphisms from L into E.  
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p 1  

 a  F}.  

 is the identity map.  

Proof: Let  , ...,  be the K-homomorphisms of L into E and  ,  , ...,  be  1 r 1 2 s 
the L-homomorphisms from F into E. Since E/K is finite normal, each  can be  i 

K-homomorphisms from F into E.  
j



i
   =  for some j  =   i

–1
j i j  

Thus,  are the onlyK-homomorphisms from F into E and so, there are  i  
exactly rs K-homomorphisms from F into E.  

Theorem 3.54: Let K  E  E' be a tower of fields. Suppose E'/K is finite  
normal. Then E/K is separable if and only if the number of K-homomor-  

150

phisms from E into E' is [E : K].  

Proof: Suppose E/K is separable. We prove the result by induction on n = [E  
: K].  

If n = 1, then E = K and I : E  E such that, I(a) = a is K-homomorphisms  
from E into E.  

So, the result is true for n = 1.  
46

Let n > 1. Assume that the result is true for all integers < n.  
Let a  E, a  K.  
Now K  K(a)  E  E  and E /K is finite normal  E /K(a) is finite  

normal.  
Also, [E : K] = [E : K(a)] [K(a) : K] and [K(a) : K] > 1  
 [E : K(a)] < [E : K] = n.  
Since E/K is separable E/K(a) is also separable.  
By induction hypothesis (applied to tower of fields K(a)  E  E), the  

number of K(a)-homomorphisms from E into E is [E : K(a)].  
Let p(x) = Irr(K, a). Since a  E, a is separable over K. So, all roots of  

p(x) are simple.  
Let deg p(x) = r. Since E/K is normal, p(x) splits in E  as a  E  E.  
Let a = a , a , ..., a be distinct roots of p(x) in E. Then  K-isomorphisms  1 2 r 

distinct.  
Since a  E , ’s are r K-homomorphisms from K(a) into E.  i 

K-homomorphisms from E(a) into E.  
By previous theorem these are excatly [E : K(a)] [K(a) : K] = [E : K],  

K-homomorphisms from E into E.  

Conversely, let there be n = [E : K] K-homomorphisms from E into E.  
Let a  E.  
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j

 : K(a)  K(a ) such that,  (a) = a i = 1, 2, ..., r. ’s, a’s being  i i i i i i

i

iAlso as [K(a) : K] = deg Irr (K, a) = deg p(x) = r, these s are only  

So, the result is true in this case. By induction the result is true for alln 1.  



[E : K ] n
rs  [E : K(a)] =   = .

[K (a) :  K ]

By above theorem, the number of K-automorphisms from E into E  is  
nms   r = n, a contradiction. So,m = r.That is, the number ofK-homomorphisms  
r

from K(a) into E  is [K(a) : K] = deg Irr (K, a).  
Let p(x) = Irr (K, a), deg p(x) = r.  
Since E/K is normal, p(x) splits in E  as a  E  E.  
Let a = a , a , ..., a be distinct roots or p(x) in E.  1 2 t 

Then, for each i  K-isomorphisms  : K(a)  K(a ) such that,  (a) = a .  i i i i

Since a  E, K(a )  E . So,  : K(a)  E  is K-homomorphism.  i i i 
Again as a s are distinct, is are also distinct K-homomorphisms from  i

K(a) into E.  
If  is a K-homomorphisms from K(a) into E, then a is a root of p(x)  

in E  




(a) is a root of (p(x)) = p(x) in E  
(a) = a for some i  i 
(a) =  (a) for some i   =  for some i.  i i 

So,  ,  , ...,  are the only K-homomorphisms from K(a) into E  1 2 t 




t = [K(a) : K] = deg p(x) = r.  
all roots of p(x) are distinct and so simple.  
a is separable over K. Thus, E/K is separable.  

Corollary 1: Let E/K be finite normal. Then E/K is separable if and only if the  
number of K-automorphisms of E is [E : K] = n.  

Proof: Since E/K is finite, a K-homomorphism of E is K-automorphism of E and  
conversely. The result then follows by above theorem.  
Corollary 2: Let K  E  E  be a tower of fields such that, E/K and E /E are  
finite separable. Then E/K is also finite separable.  

Proof: Let [E : K] = r, [E  : E] = s. Since E/K, E/E are finite so is E /K.  
Thus  an extension F of K such that, F/K is finite normal and K  E   

E   F.  
By above theorem since E/K is separable, there are r K-homomorphisms  

from E into F.  
Now F/K is normal  F/E is also normal.  
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over K. Then K(a , a , ..., a )/K is separable.  1 2 n

 a is separable over K(a , ..., an 1 n–1  )
 K(a , ..., a ) | K(a , ..., a ) is finite separable.  1 n 1 n

is true  n  1.  

Corollary 4: Let F  K  E be a tower of fields such that, E/K and K/F are  
separable. Then E/F is also separable.  

Proof: Let a  E.  
Let p(x) = Irr (K, a)  

= b + b x + ... + b x , b  K  0 1 r
r

i 

Let K  = F(b , b , ..., b )  K  0 1 r

b  K b is separable over F  i i 
K /F is separable by above Corollary  

Since p(x) is irreducible over K, it is also irreducible over K .  
So, p(x) = Irr (K , a)  
Now K   K  E and a  E is separable over K  p (a)  0  a is  

separable overKK(a)/K is separableand finite.Also,K/F is finite separable.  
So, K(a)/F is finite separable.  
 a is separable over F.  
Thus, E/F is separable.  

Theorem 3.55: Let K  E  E' be a tower of fields such that, E'/K is finite  
normal. Then following are equivalent:  

(i) There are exactly n = [E : K] K-homomorphisms from E into E.  
(ii) E/K is separable.  
(iii) E/K is generated by separable elements.  
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Proof: We prove the result by induction on n. Since a , a , ..., a are separable  1 2 n 
over K, a , a , ..., a are algebraic over K. So, K(a , a , ..., a )/K is finite. Let  1 2 n 1 2 n
E/K be finite normal extension such that, K  K(a , ..., a )  E. Let  1 n
n = 1. Let p(x) = Irr (K, a ), deg p(x) = r. Then  r K-homomorphisms from  1
K(a ) into E ' as seen in above theorem. But r = [K(a ) : K]. By above theorem,  1 1
K(a )/K is separable. So, the result is true for n = 1. Let n > 1. Assume that the  1
result is true for all integers < n. By induction hypothesis, K(a , ..., a )/K is finite  1 n
separable. Also, a is separable over K and K  K(a , ..., a )  K(a , ..., a )  n 1 n–1 1 n

By above corollary, K(a , ..., a )/K is separable. By induction the result  1 n



f (u , ..., u )  1 n 
g(u , ..., u )  1 n 

a  E, then a =   , f, g  K[x , ..., x ], u  S. So, a  K(u ,  1 n i 1K. Let  

proves (b).  

Theorem (Artin’s) 3.56: Let E be a field, G the group of automorphisms of  

case, [E : K] = o(G).  
Proof: K = {a  E | (a) = a G}  

0, 1  K  K .  
Let a, b  K. Then (a  b) = (a) (b) = a  b  a  b  K. Also  

(ab) = (a) (b) = ab  ab  K. If b  0, then (ab ) = (a) (b)–1 –1  

ab ab  K. So, K is a subfield of E.  –1 –1 
=

number of K-automorphisms of E is at most [E : K]. So, G is finite. Suppose o(G)  

(in r + 1 unknowns x s in E)  j

for all G  (u )x  0  j j 
j 0   

Since the number of equations is less than the number of unknowns, the  
system of equations has a non-zero solution.  

Let (a , a , ..., a , 0, 0, ..., 0) be a non zero solution of least length s + 1  0 1 s
(a  0 i = 0, 1, ..., s)  i 

Then  


Take  

(u )a = – (u )a + ... + – (u )a0 0 1 1 s s  
(u ) = (u )b + ... + (u )b for all G ...(3.4)  0 1 1 s s 

 = I. Then u = u b + ... + u b0 1 1 s s  

So, some b  K. Let b  K.  i 1 

Then G such that, (b )  b .  1 1

Replace  by   in (i) to get  –1

 (u ) =  –1
0 for all G   (u )b

j j   
j 1  
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u , ..., u ). Since u , u , ..., u are separable over K, K(u , u , ..., u )/K is  2 n 1 2 n 1 2 n
separable. Therefore, a is separable over K. Thus, E/K is separable. This  

E and suppose K is the set of elements of E fixed by G. Then K is a subfield  
of E, called the fixed field of G. E/K is finite if and only if G is finite. In that  

Clearly, G is a group of K-automorphism of E. If E/K is finite, then the  

= r. Let u , u , ..., u  E be linearly independent over K. Consider the r equations  0 1 r 

r



If b  K for all i, then (– 1)u + b u + ... + b u = 0, contradicting that  i 0 1 1 s s 
u , u , ..., u linearly independent over K.  0 1 s 

r





= 0,  for all G  (u ) ((b  b )  j j j 
j 1  

 = 0,  for all  G, where c = (b ) – bj j j  (u ) cj j  
j 1  

Since  
We have a non zero solution (0, c , ..., c , 0, ..., 0) of length less than s +  1 s

1, a contradiction.  
Therefore, r + 1 elements in E are not linearly independenent over K  

c = (b ) – b  0.  1 1 1 

 [E : K]  r  E/K is finite.  
So,   [E : K]  o(G). But o(G)  [E : K]  

 o(G) = [E : K].  

Example 3.21: Let E be a field with n distinct automorphisms and suppose  
K is the fixed field of the set of automorphisms. Show that [E : K]  n.  

then K  F  E. By Artin's theorem, [E : F] = o(G)  n.  
So,   [E : K]  [E : F]  n.  

Example 3.22: Find the fixed field F of K(x) under the automorphisms x   
(1 lies in F  2(x  x  2 )x

1Solution: Let (x) = 1 – x, (x) =  . Then , , , , , I are six distinct  
x

automorphisms of E = K(x). Let F be the fixed field of these 6 automorphisms  
of E. So, F  F  E. By previous example, [E : F]  6  [E : F]  6.  

(Let   g(x) =   2(x  x  2 )
Then (g(x)) = g(x), (g(x)) = g(x)  

Let  

g(x)  F  
L = K(g(x))  F  E  

Then [E : L] = [E : F] [F : L]  6.  
Now  
Also,  

L(x) = K(x) = E.  
(x – x + 1) – g(x) x (x – 1) = 0  2 3 2 2 
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r



Solution: Let  ,  , ...,  be distinct automorphisms of E. Let G be the group  1 2 n 
generated by  ,  , ...,  . Then o(G)  n. If F is the fixed field of G,  1 2 n

1 – x, x  . Show that the degree is 6. Verify that   x  x 1)2 3  

and use this to find an equation for x over F.  

x  x 1)2 3  

x is a root of a polynomial of degree 6 with coefficients in L  



 F = L = K(g(x))  
 (x – x + 1) – g(x)x (x – 1) = 0 is an equation for x over F.  2 3 2 2 

3.5.1 Primitive Elements  
Theorem 3.57: Let K/F be a finite separable extension. Then K = F (a) for  
some a  K.  

Proof: Since K/F is finite, K = F(a , ..., a ) for some a , ..., a  K. It is enough  1 n 1 n 
to prove the theorem for n = 2.  

Let K = F(, ). Then ,  are separable over F.  
Case (i): Let F be an infinite field.  

Let   p(x) = Irr (F, )  
q(x) = Irr (F, )  

Let  =  , ...,  ,  =  , ...,  be the roots of p(x), q(x) respectively  1 n 1 m 
in a splitting  fields of p(x) and q(x). Since K is finite, there exists a  K such that  

    i 
   j   

a    for 1  i  n, 2  j  m.  a  0 and  

Since ,  are separable over F,  s and  s are distinct roots of p(x), q(x)  i j

Let    = a + .  

Clearly  
Define  
Then  

g(x) = p( – ax).  
g() = p( – a) = p() = 0.  
g( ) = p( – a )  0 for all j = 2, ..., m.  j jAlso,  

(For, p( – a ) = 0   – a –  = 0 for some i  j j i 

 a +  – a –  = 0  j i 

    i 
   j  

 a =   , a contradiction  

Since g(x)  F() [x] and g() = 0, f (x) divides g(x). Similarly f (x) di-  
vides q(x)  

So, f (x) divides g.c.d. of g(x) and q(x).  
 f (x) divides x –   
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respectively.  

We show that  F() = F(, ).  
F()  F().  

Now  is a root of g(x) and q(x) and no  ( j  1) is a root of g(x)  j 
  is the only common root of g(x) and q(x). Let f (x) = Irr (F(), ).  



Thus,  

Case (ii): K is finite. We shall prove later that K = K – {0} is a cyclic group.  * 

If K = <a>, then K = F(a).  * 

Note: An extension K/F a called a simple extension if K = F(a) for some  
a  K. In the above theorem, we have shown that a finite separable extension is  
a simple extension. a is called a primitive element of K over F if K = F(a).  

Example 3.23: Find a primitive element for Q(i, 2 ) over Q.  1/2

Solution: Since char Q = 0, Q is perferct. So, Q(i, 2 )/Q is separable. There-  1/2

fore, primitive element of Q(i, 2 ) over Q exists.  1/2

Let   p(x) = Irr (Q, 2 ) = x – 2 = (x – 2 ) (x + 2 )  1/2 2 1/2 1/2

q(x) = Irr (Q, i) = x + 1 = (x – i) (x + i).  2 

1

22  
1

22  

i)  

1

22  

i

i

 Consider   = = –2 i.  1/2
 (  

Take  
Then  

a = 1.  
 = a +  = i + 2 .  1/2

By above theorem Q(i, 2 ) = Q() = Q(i + 2 ).  1/2 1/2

3.6 GALOIS EXTENSIONS  

Definition: An extension E of F is called a Galois extension if  
(i) E/F is finite  
(ii) F is the fixed field of a group of automorphisms of E.  

Galois.  

Theorem 3.58: Let E/F be a finite extension. Then E/F is a Galois extension  
if and only if it is both normal and seperable.  

Proof: Let E/F be a Galois extension.Then F is the fixed field of a group G of  
automorphisms of E. ByArtin's theorem, since E/F is finite, G is also finite.  

Let  
Let  

G = { = I,  , ...,  }.  1 2 n

a  E.  
Let  (a) = a , i = 1, 2, ..., n.  i i

Suppose a = a, a ,..., a are distinct elements of {a , a , ..., a }.  1 2 r 1 2 n
Let   S = {a , a , ..., a }. Then S  E.  1 2 r
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F() = F(, ).  

We first find a necessaryand sufficient condition for a finite extension to be  



Let   f (x) = (x – a ) ... (x – a )  1 r
= x +  x + ... +  xr 

1
r – 1 

r
r  

Now ( f (x))= (x –  (a )) ... (x –  (a ))  t t 1 t r

= (x – a ) ... (x – a ) = f (x) for all t.  1 r
So, x +  ( )x + ... +  ( ) = x +  x + ... + r 

t 1
r – 1 

t r
r 

1
r – 1 

r  






 ( ) =  for all t and i  t i i 
 belongs to the fixed field of G  i 

  F, for all i  i 

f (x)  F[x].  
Let g(x) be a monic irreducible factor of f (x) in F[x].  
Let a be a zero of g(x) in E.  i 

Now   a =  (a) =   (a ) =  (a ). So, a is a zero of g(x) in E.  j j j i
–1

i t i i 

  (a ) is a zero of  (g(x)) = g(x) in E  t i t
a is a zero of g(x) in E for all j  j 




g(x) =  f (x)  
f (x) = Irr (F, a).  

Since a is a simple zero of f (x), a is separable over F. So, E/F is separable.  
Also, f (x) splits in E[x].  

Conversely, let G be the group of all F-automorphisms of E. Let F  be  
the fixed field of G.  

Then F  F   E and o(G) = [E : F].  
Since E/F is finite, So is E/F .  
Also, E/F is seperable normal  E/F  is separable, normal.  
Therefore, there are exactly n = [E : F] F-automorphisms of E.  
 o(G) = n  [E : F ] = n  
 [F  : F] = 1  F  = F.  
F is the fixed field of G  E/F is Galois.  

Corollary 1: Let E/F be finite extension. Then E/F is Galois if and only if F is  
the fixed field of the group of all F-automorphisms of E.  

Proof: Let E/F be Galois. Then from above E/F is finite, normal, separable.  
Again by converse part of the above result, F is the fixed field of the group of all  
F-automorphisms of E. Converse, follows by definition.  
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E/F is normal.  



Note: When E/F is Galois, the group of all F-automorphisms of E is denoted by  
Gal(E/F) or G(E/F) called the Galois group of E/F.  

Theorem 3.59: Let E/F be a finite extension. Then E/F is contained in a  
Galois extension if and only if it is separable.  
Proof: Let E/F be a contained in a Galois extension E/F. Then F  E  E.  

Now E/F is Galois  E/F is separable  E/F  is separable.  
Conversely, let E/F be separable. Since E/F is finite,  

E = F( ,  , ...,  ).  1 2 n

Let   p = Irr(F,  ),   E  i i i 
  E   is separable over F  i i 

 is a simple zero of p , for all i  i i

 Each zero of p in a splitting field is simple  i 

Let f =   p . Then f  k[x]  E[x], and f splits in some extension of E.  i
i 1  

Let L be a minimal splitting field of f (x) over F.  
Then L = F (zeros of f in an extension of E)  

= F ( ,  , ...,  , zeros of f other than  s in an extension of E)  1 2 n i
= E (zeros of f other than  s in an extension of E)  i

 F  E  L  
Also, L is generated by separable elements over F (as each zero of f in an  

Theorem 3.60: Let E/k be Galois and F be any extension of k. Then EF/F  
is Galois and G(EF/F) is isomorphic to a subgroup of G(E/k).  

Proof: Since E/k is Galois, E/k is finite normal. So, E is a minimal splitting field  
of some polynomial f (x)  k[x].  

Let   f (x) = (x –  ) (x –  ) ... (x –  ),   E, k.  1 2 n i 

E = k( ,  , ...,  ).  1 2 nThen  
Also, E/k is separable  

over k   is separable over F.  i 

Again,   E = k( ,  , ...,  ).  1 2 n

 EF = FE = Fk( ,  , ...,  )  1 2 n
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n



extension of E is simple and is a zero of an irreducible polynomial of p  F[x])  i 
L/F is separable  E/F is contained in a separable extension L/F.  

 Each  is separable over k. Now k  F  EF and  is separable  i i 



 EF/F is separable.  
So, EF/F is Galois.  
Let    G(EF/F).  

f =  f f ...f where each f is monic irreducible polynomial  1 2 r i Let  
in k[x].  

So, each  is a zero of some f  k[x].  i j 
Since  is separable over k,  is a simple zero.  i i 

Let   S = { ,  , ...,  }. Then  is a zero of f in E  EF  1 2 n i 
( ) is a zero of (f) = f in EF ( )  S.  i i

So, {( ), ( ), ..., ( )} = { ,  , ...,  }  1 2 n 1 2 n

 (E) = k(( ), ( ), ..., ( ))  1 2 n

= k( ,  , ...,  ) = E  1 2 n

  restricted to E belongs to G(E/k)  
Define : G(EF | F)  G(E/k) such that,  

Then  is a homomorphism.  
Also  is 1 – 1 as  | E = I  



( ) =  for all i  i i 
(a) = a for all a  EF as EF = F( ,  , ...,  ) and  fixes  1 2 n

each element of F  
 = I on EF.  
So, G(EF/F) (G(EF/F))  G(E/F).  

Corollary: If E/k is Galois and F, an extension of k, then [EF : F] divides  
[E : k].  

Proof: By above theorem, EF/F is Galois  
 [EF : F] = o(G(EF/F))  

[E : k] = o(G(E/k))  Also,  





(G(EF/F))  G(E/F)  
o((G(EF/F)) divides o(G(E/F))  
o(G(EF/F)) divides o(G(E/F))  
[EF : F] divides [E : k].  

Note: The above corollary need not be true if E/k is not Galois. For example,  
let k = Q, let  be the real cube root of 2. Then , w, w are roots of  2 

f (x) = x – 2 in C.  3 
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() =  | E   

But  



[E : k] = [Q (w) : Q] = deg Irr (Q, w)  
= deg f (x) = 3.  

3.6.1 Fundamental Theorem of Galois Theory  
Theorem (The fundamental theorem of Galois Theory) 3.61: Let E/k be  
Galois. Let G = G(E/k) be the group of all k-automorphisms of E. Then  

(i) There is one-one correspondence between the sets  

inverting bijection.  
(ii) F A is the fixed field of the subgroup H B corresponding to F and  

H B is the group of H*-automorphisms of E, where H* is the fixed  
field of H.  

(iii) If H is the subgroup of B corresponding to the field F in A, then  
o(H) = [E : F] and [G : H] = [F : k].  

= H .  2

(v) If H B corresponds to F A, then F/k is normal if and only if H is  
Gnormal subgroup of G and in that case, G(F/k)    .
H

Proof: Define : A  B such that,  
(F) = F*  

where F* = {G | (x) = x for all x  F}. Then F*  B.  

(H) = H*  
where H* = {x  E | (x) = x for all H}  
Then H* A is the fixed field of H.  
Let F , F  A such that F  F .  1 2 1 2

Let  




  F *. Then (x) = x for all x  F2 2  
(x) = x for all x F as F  F1 1 2  

 F *  F *  F *  1 2 1
(F ) (F )  is an order inverting map.  2 1

Let H  B. Then H (x) = x for all x  H*  H**  H  
 H**.   Self - Learning  
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while  

A= {F | F = field, k  F E} and B= {H | H  G} which is an order  

(iv) If H , H B corresponding to F , F A respectively, then F , F1 2 1 2 1 2  
are conjugate under an automorphism  G if and only if  H   –1 

1

Similarly,define  : B A such that,  

Similarly,  is an order inverting map.  



Now  
Also,  


H  H**  
F  F**  




F*  F*** for all F A.  
(F**) (F)  

for all H  B.  
Now  is 1-1 onto if and only if  = Identity and  = Identity if and only  

if H = H** for all H B and F = F** for all F  A.  
Let H  B. Then H* = F is the fixed field of H.  
By Artin's theorem o(H) = [E : F].  
Also,o(H**) = [E : H***] = [E : H*] = [E : F].  
So,  
Let  

o(H) = o(H**). But H  H**. Therefore, H = H**.  
F  A. Then k  F  E.  

Now E/k is Galois  E/F is Galois  F is the fixed field of the group H  
of all F-automorphisms of E.  

 H  G  H  B.  
Now H* = fixed field of H = F  

H*** = F**  H* = F**  F = F** for all F  A.  
Thus,  is 1-1 onto.  
This proves (i).  

(ii) Let F  A. Let (F) = H. Then F* = H  F** = H*  F = H*   
F is the fixed field of H.  

Let H  B. Then there exists F  A such that (F) = H  H = F*.  

of E.  
Conversely, let  be an F-automorphism of E.  
Then   (x) = x for all x  F  F* = H.  
So, H is the group of all F = H*-automorphisms of E.  

(iii) ByArtin's theorem  
o(H) = [E : H*] = [E : F]  

o(G)  
o(H )   

[E : k]  
[E : F ]   

[G : H] =   = = [F : k].  

(iv) Suppose  F , F  A are conjugate under G. Then (F ) = F .  1 2 1 2

Let y  F . Then y = (z), z  F . Therefore,  (y) = z.  2 1
–1

  (y) = (z), for all H–1
1  
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F***  F* for all F  A. So, F* = F***. Similarly, H* = H***  

Let H. Then F*(x) = x for all x F  is an F-automorphism  



Let a  F . Then (a) = b  F1 2  







(a) = (b), for all  H2  
(a) = b, for all  H2  

 (a) =  (b) = a, for all  H , a  F–1 –1
2 1  

   H ,  –1
1 for all H2  

 H   H–1
2 1  
H H 2 1

–1  

H = H  .  2 1
–1

H = H 2 1
–1  

So,  
Conversely, let  
Let y F . Now   H , for all H2

–1 
2 2  

for G.  








 (y) = y  –1

 (y) =  (y) = z  –1 –1

(z) = z,   for all  H1  
z  F1  

y = (z)  (F )  1
F (F )  2 1

Let x  F . Now    H ,  1
–1

1 for all H2  








 (x) =  x  –1

(x) = (x) = x  
(x) =  x,   for all  H2  

x  F2  
(x)  F2  

(F )  F .  1 2

So,   (F ) = F  F are conjugate under .  1 2 2 

(v) Suppose F/k is normal. Since E/k is finite, so is F/k. Therefore, F/k  
is finite normal  F is a minimal splitting field of some f  k[x].  

Let   f = (x –  ) ... (x –  ),   E, k.  1 n i 
F = k( ,  , ...,  ).  1 2 nThen  

Let G. Then is a k-autmorphism of E  (f) = f.  




f = (x – ( )) ... (x – ( ))  1 n

( ), ..., ( ) are zeros of f in E  1 n
{ ,  , ...,  } = {( ), ..., ( )}.  1 2 n 1 n
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(F) = F by (iv) for all  G  
Let  F, p(x) = Irr (k, ).  
Since E/k is normal and E, we find p(x) splits in E.  
Let  be a zero of p(x) in E.  
Then ,  are zeros of p(x) in E.  

 : k()  k() such that,  
() = , (a) = a for all a  k.  

Since E, k()  E. So  is a k-homomorphisms from k() to E.  
Since E/K is finite normal,  can be extended to k-automorphism  of E.  

So,  G.  
Now () = () =  and () (F) = F  F.  
Thus, p(x) splits in F  F/K is normal.  
Let H be a normal subgroup ofG.Then the corresponding fieldF is normal  

over k from above. Since E/k is Galois, so is F/k. Let N = Gal(F/k)  
Define  : G  N such that,  

(Since H  G,  H = H (F) = F)  –1

Let , G.  
F  

= ()),   ()  F  

for all F  

 () = ()()  

Let  N. Then  can be extended to k-automorphism  of E   
G

The result now follows byusing fundamental theorem of homomorphism.  

Case 9: (i) Let E be a minimal splitting field of f(x) = x – 2 over Q. Let  be  3 

the real cube root of 2.  
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Conversely, let H = F* be normal subgroup of G. Then  H=  for  –1 
all G.  

There is an isomorphism  

¯() = , where  is the restriction of  on F.  ¯

¯ ¯  Then  () = () (),  

= (())  ¯
¯ ¯  = (())  

= () (),  ¯ ¯  
 =   ¯  ̄  ̄  ̄  

 is a homomorphism  

() =  = . So,  is onto. Now  Ker   () = Identity of N   ¯
̄ = Identity on F () = , for all  F.  ¯



So, E/Q is Galois.  
Let G = G(E/Q) be the group of all Q-automorphisms of E.  
Then Q is the fixed field of G. ByArtin's theorem o(G) = [E : Q] = 6.  
Since , w are roots of f (x), there exists Q-isomorphism  
 : Q()  Q(w) such that,  0 

 () = w  0

Let   g(x) = x + x + 1, then g(x) is irreducible over Q()  R  2 

 (g(x)) = g(x) is irreducible over Q(w)  0and  
Since w, w are roots of g(x), there exists an isomorphism  

 : Q(, w) = E  Q(w, w) = E such that,  
(w) = w  
() =  () = w  0

(a) =  (a) = a  a  Q  0

Thus  is Q-automorphism of E,   I.  
Also w, w are roots of g(x) which is irreducible over Q() and  Q()  2 

isomorphism  
 : Q(, w) = E  Q(, w ) = E such that,  2

(w) = w , () =   2

and so  is Q-automorphism of E, , I  
Now    () = w ,  (w) = w  2 2 2

() () = w, () (w ) = w2 2  

( ) () = w , ( ) (w ) = w .  2 2 2 2 2

o(G) = 6, G = {I,  ,  , , ,  }  2 2

() () = (w) = w ,   2
Since  
Also  
So G is a non abelian group of order 6 and so G  S .  3
Denote w by 1, w by 2 and w by 3 and we get  2 3 

 = (12), T = (13),  T = (23),  2

 = (123),  = (132)  2 

Write  
Then  

 =  ,  =  , T =  ,  =  and  T = 2 3 4
2 

5 
2 

6  
G = {I,  ,  ,  ,  ,  }  2 3 4 5 6

Subgroups of G are:  
H = {I, }, H = {I,  },  1 2 2 4
H = {I,  }, H = {I,  ,  }, H = G, H = {I}.  3 6 4 3 5 5 6 

Let F = H *, the fixed field of H .  1 1 1 Self - Learning  
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Then  
Let  

F = Q(w ) and F , the fixed field of H is Q()  2 
2

3 3 

F = H *, the fixed field of H . Now H fixes 3i  4 4 4 4 

 Q  Q( 3i )  F  E.  4 

Since [E : F ] = 3. [Q( 3 i ) : Q] = 2, [E : Q] = 6, F = Q( 3 i ).  4 4 

and  
F = Fixed field of G = Q  5 

F = Fixed field of H = E.  6 6 
So, we have 6 intermediate fields between Q and E corresponding to 6  

subgroups of G.  
Since H , H , H are not normal, F /Q, F /Q, F /Q are also not normal.  1 2 3 1 2 3

normal subgroups of G.  

(ii) Let E be a minimal splitting field of f (x) = x + 1 over Q.  4 

π π
4

Then ,  ,  ,  are roots of f (x), where  = cos  i sin  3 5 7 
4

and   E = Q() = Q( ) = Q( ) = Q( )  3 5 7

Then  
Char  

[E : Q] = [Q() : Q] = deg Irr (Q, ) = deg f (x) = 4.  
Q = 0  E/Q is separable.  

Also E is a minimal splitting field of f (x) over Q implies E/Q is normal.  
Hence E/Q is Galois.  
Let   G = G(E/Q) be the Galois group of E/Q.  
By Artin's theorem, o(G) = [E : Q] = 4  
Since  and  are roots of an irreducible polynomial f (x) over Q, there  3 

exists Q-automorphism  
 : Q() = E  Q( ) = E, such that,  3 

3

 () = 3
3  

 : Q() = E  Q( ) = E such that,  5 
5

 () =  5 
5  

 : Q() = E  Q( ) = E such that,  7 
7

 () =  7
7  

So   G = {I,  ,  ,  }  3 5 7

Also  

group.  
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Clearly,  

Also H , H , H are normal subgroup of G, and thus F /Q, F /Q, F /Q are  4 5 6 4 5 6

Similarly, there existsQ-automorphisms  

 =  =  = I  3
2 2 2 

Thus G is an abelian non cyclic group of order 4 and so it is the Klein's four  
5 7



 (  2 ) = (2) = 2  2 

2 )) = 2 = 0  2  ((  

(  



2) is a zero of x + 2 in E  C  2 

( )  =  . Similarly (i) = i.  

 () =    σ3 
3  

2
61

2

1 i 1 iSo,    = 3 2 2 2 2

  (  3

  (  3

2 ) = –   2 ,  (i) = – i  3

2 i) =   2 i  
 H fixes  1 

Let F = H , the fixed field of H1 1
*

1  

2 i  

Then   Q  Q(  

i) : Q] = 2, [E : F ] = 2, [E : Q] = 4  1

F = Q( i)  1 

 () =   σ5 
5  

2 i)  F  E  1 

But [Q(  
So,  

2

2

1 i 1 iAlso,    =     .5 2 2 2 2

 (  5 2 ) = –  2 and  (i) = i  H fixes i.  5 2 

Let F = H *, the fixed field of H .  2 2 2

Then  
and  

Q  Q(i)  F  E  2 
[E : F ] = 2, [Q(i) : Q] = 2, [E : Q] = 4  F = Q(i).  2 2 

1 i 1 iNow    () =   σ7 
5    = 7 2 2 2 2

  (  5 2) =  
. Let F = H *, the fixed field of H .  3 3 3

)  F  E  3 

[E : F ] = 2, [Q( ) : Q] = 2, [E : Q] = 4  F = Q(  3 3 

2
 H fixes  3 2

Then   Q  Q(  2
and   2 2).  
Clearly F = fixed field of H (= G) is Q and F = fixed field of H = E.  4 4 5 5 
So, F , F , F , F , F are intermediate fields lying between Q and E.  1 2 3 4 5 
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 
 
 

 
 
 

 
 
 

Since F , F , F are quadratic extensions of Q, F /Q, F /Q, F /Q are  1 2 3 1 2 3
normal.Also F /Q, F /Q are normal. But G being abelian, all subgroup of G are  4 5
normal subgroups of G.  



through radicals we require the Galois theoretic derivation of the general solution  
to the polynomial. Thesolvabilitythrough radicals canberevealedusingtheGalois  

Polynomials of degree one and two are simply established to be solvable  
byradicals because of the existence of similar general formula for both. Complex  
formulas for cubic and quartic polynomials aresolved byradicals.Though,general  
polynomials of degree five are not solvable and so there is no general formula for  
this.  

Basically, the polynomials are functions of the type,  
n–1  p(x)  a x  an 

n 
n   x    a x  a1 0  –1  

satisfy the condition p(x) = 0. To solve the polynomial roots using radicals does  
not mean to find a root, because as per the fundamental theorem of algebra any  
polynomial of degreen has n complex roots which should not be distinct. Solving  
apolynomialbyradicals involvestheexpressionofall rootsofapolynomial including  
the four basic operations: addition, subtraction, multiplication and division, and  
also taking the radicals from the arithmetic grouping of coefficients of any given  
polynomial. Solving for polynomial roots through radicals includes obtaining the  
general solution to the general form of a polynomial of some specific degree. The  
followinganalysisexplainshowallpolynomialscanbesolved throughradicals and  
to prove the resultant of the solvabilityof polynomials.  
Cubic Functions: Cubic functions can be solved with the help of Cardano’s  
method in which the general cubic equation is transformed into a depressed cubic  
without the x term.  2 

Consider the general form of a polynomial of degree three.  
ax + bx + cx + d = 0  3 2 …(3.6)  
It is easy to work using a polynomial of foremost coefficient one, hence we  

divide a outside the entire equation to get,  

b
a

c d
a

x3   x2   x   0  ,
a

bx  y –  Bysubstituting   into above equation the polynomial becomes,  
3a  

b b b c b d
a

y –    y –    y –   
3a a 3a a 3a  Self - Learning  
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polynomials of different degrees.Additionally, for polynomials whichare solvable  

Theory and also the characteristics of Group and Field theory.  

where a  0. The root(s) of a polynomial are considered the value(s) of x which  n 

 3    2    
          



Where,  

b2   2b2   c b3   b3   cb   d
a

p  –  q  –  – and  
3a 3a2 2    d 27a 9a 3a3 3 2  

Such that,  

) – 3uv  3 ) – (u3   v )  0  3 …(3.8)  (u  v (u   v

Equation (3.7) corresponds to Equation (3.8) so that,  

(u v) y, 3uv – q  – p, u v3 3      

Equation (3.8) can be solved for y as follows,  

2 3 2 3q q p q q p
3y  w   –    – –  ,2 2 3 2 2 3

The general solutions for this equation is,  

2 3 2 3b w q q p q q p
3

i 3x  –    –    – – 
3a 3a   2 2 3 2 2

Let usconsider theGalois groupof the irreducible depressedcubic equation.  
The Galois group of the splitting field of a general cubic equation isS andalso the  3 
possible Galois group of any cubic is isomorphic to eitherS or A .  3 3

Let f(x) = x + px + q be an irreducible cubic in the polynomial ring F[x]  3 

over a field F of characteristic zero with roots y , y and y .  1 2 3

We include the relations, y + y + y = 0, y y + y y + y y = p and  1 2 3 1 2 2 3 3 1 
y y y = -q.  1 2 3 

Also, either F(y ) = K or F(y ) < K.  1 1

Case (i): F(y ) = K.  1

We know that K = F(y ) for any i = {1,2,3} or [K:F] = 3.  1

Hence, Gal(K/F) = A . The composition series of Gal(K/F) is thus A 1.  3 3 
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 
            3                i              

where i  {1,2,3} and w is one of the 3rd roots of unity.  i 

 
            3   
                         

Hence we have the chain of fields F  F(y )  K, where K = F(y ,y ) =  1 1 2
F(y y ,y ). Hence, if two roots are in the field then the third root is automatically  v 2 3
there.  



acquired by adjoining a square root of the discriminant D where,  

D  (y – y )j i 
2  

1i j3  

is fixed byanyeven permutation of the roots and  

for any odd permutation  where  acts naturally on the   D  –   D

subscripts in the above expression ofD. Thus D is fixed byall of S , so if D is not  4

a square   , hence   = 2 or is a radical extension. Since Gal  

(K/F) = S it can be shown that L =  3 

Thus, K = F(y ,y ) =  1 2

.

and the composition series of Gal(K/F):  

S3   A 1 3

This is so because,  
2 3 b3   b3   cb   d

c
b2   2b2   cq p –  –   –  =

=

=

27a 9a 3a3 3 2   9a 9a 3a  2 2 2 3

1
–

–

(b c – 4db – 4ac2 2 3 3   18abcd – 27d a )  2 2 

108  

1 ( y – y ) ( y – y ) ( y – y )1 2 
2 

2 3 
2 

1 3 
2  

108  
Therefore, the adjoining of the square root of the discriminant gives rise to  

the field L which contains the term,  
2 3q p

2 3
Quartic Functions: Quartic polynomials can be solved using Ferrari’s  

method which transforms a quartic polynomial into a depressed quartic which has  
no x term.  3 

We start with the general form of a quartic equation,  

x + ax + bx + cx + d = 0  4 3 2 .…(3.9)  
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Since [K: F] = 6 and G = S , so S has only one degree 3 subgroup A . This  3 3 3implies that there exists a field L such that [K: L] = A = 3 and [L: F] = 2. L is thus  3

We comprehend that  

 

     
          

 2    
   
   

     
     
     



4
y +py + qy + r = 0  4 2 …(3.10)  

We can add 2zy + z to the above equation to obtain,  2 2 

y + 2zy + z = (2z – p)y – qy + (z – r)  4 2 2 2 2 

Since we would like the right hand side to be a square so we should let the  

q –4(z –r)(2z–p) = 0  2 2

Rearranging the terms we get a cubic in z as,  
8z – 4pz – 8rz + 4rp – q = 0  3 2 2 …(3.11)  
Thus we find the root z of this equation and solve for y bysubstituting that  

value into Equation (3.10) to get a quadratic iny . Solving the resultant quadratic  2

in y gives the roots of the depressed quartic from which we can derivex.  2 

Thus we get the solutions for the quartic Equation (3.9). One root of  
Equation (3.9) is fixed in this formula,  

1
2




1
2

a
x    2z – p    z – p  z2  – r – .

4
The Galois theoretic derivation of the formula is as follows.  
Solving for the roots of a quartic involves solving of the cubic  

Equation (3.11) in z:  

8x – 4pz – 8rz + 4rp – q = 0  3 2 2 

For a general irreducible quartic equation f in F[x], the Galois  
group G = Gal(E/F) is S .  4

G = S has the composition series as follows:  4 

1 <  > V A S4 4  

where V is the Klein 4-group.  is any of the 3 order 2 involutions in V .  
The corresponding field extension is,  

E  E E E F.  A4 v

The part    F(corresponding to A4   S ) is of degree two and  4EA  4

corresponds to the degree two extension in solvingz. The element z is solved via  
taking a degree two extension, i.e., square root of the discriminant and followed  
by a cubic root (as explained eralier for cubic equations). Note that  
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discriminant of the quadratic on the RHS be 0. Specifically, we assume that,  

Gal(E/F) = S /V, which is isomorphic to S . In fact, S = VS = gh {g in V, h in  4 3 4 3 
S }. The group V acts on E triviallyand hence S /V (identified with S ) acts on E3 v 4 3 v  



4groups <  > which correspond to the adjoining of the 3 possible values of z as  
solutions of the Equation (3.11). The last radical extension (E  E ) corresponds  
to,  

1
2

1
4

1
2

1
– z –   p  z – r  2 – z – p – z – r  2 or  

4
Adjoining either of these two to E will give rise to the same field E since  

the degree [E: E ] = 2.  

3.7.1 Insolvability of the General Equation of Degree 5  
128

In algebra, theAbel-Ruffini theorem also known asAbel’s impossibility theorem  
states that thereisnogeneralalgebraicsolution, i.e., solution inradicals topolynomial  
equations of degree five or higher. This theorem states that every non-constant  
polynomial equation in one unknown, with real or complex coefficients, has at  
least one complex number as solution.  

The theorem defines the form that a solution must take. It also states that  
137

not all solutions of higher degree equations can be obtained bystarting with the  
41

equation’s coefficients and rational constants, and repeatedly forming sums,  
differences, products, quotients and radicals (nth roots for some integer n) of  
previously obtained numbers. In fact if the roots happen to be rational numbers,  
theycan triviallybe expressed asconstants. The simplest nontrivial example is the  
monomial equation ax = b, whose solutions are,  n 

b
n – 1  n .

a
Here the expression e appears to involve the use of the exponential  i2k / n 

nfunction that gives the possible values of  
onlyextraction of radicals.  

(the nth roots of unity), so it involves  1

TheAbel-Ruffini theorem states that there aresome fifth-degree equations  
whose solution cannot be so expressed, for example the equation x – x + 1 = 0.  5 

Some other fifth degree equations can be solved by radicals, for examplex – x5 4  

– x + 1 = 0, which factorizes to (x – 1) (x – 1)(x + 1)(x + i)(x – i) = 0. The  
precise criterion that distinguishes between those equations that can be solved by  
radicals and those that cannot be solved was given by Évariste Galois and is  

only if its Galois group (over the rational numbers or more generallyover the base  
field of admitted constants) is a solvable group.  
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e k  0,1,....,  i2 k / n 

termed as Galois Theory.Apolynomial equation can be solved by radicals if and  

n



concrete but algebraically independent values over the base field.  
The following proof is based on Galois Theory. Historically, Ruffini and  

theorystates that an equation is solvable in radicals if and only if it has a solvable  
Galois group, so the proof of theAbel-Ruffini theorem is based on the Galois  
group of the general polynomial of the fifth degree.  

Let E = Q(y ,y ,y ,y ,y ) and let,  1 2 3 4 5

f(x) = (x – y ) (x – y ) (x – y ) (x – y ) (x – y )  E[x]  1 2 3 4 5

S = y + y + y + y + y1 1 2 3 4 5  

S = y y + y y +..... + y y2 1 2 1 3 4 5  

S = y y y y y .  5 1 2 3 4 5

(y – y )(y – y )(y – y )(y – y )(y – y )  3 1 2 5 4

This is same polynomial as,  
(y – y )(y – y )(y – y )(y – y )(y – y )  1 2 3 4 5

The automorphism  also leave E fixed, so theyare elements of the Galois  

of a quintic polynomial has at most 5! elements because G ( E/Q) 5! and so  

group of every general polynomial of degree n is isomorphic to S .  n

group on five letters also known as the icosahedral group. However, the quotient  
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the ‘general equation of the nth degree’. This remains true if the coefficients are  
n

Abel’s proofs precede Galois Theory. One of the fundamental theorems of Galois  

Let y be a real number transcendental over the field of rational numbersQ  1 
and let y be a real number transcendental over Q(y ) and so on to y which is  2 1 5 
transcendental over Q(y ,y ,y ,y ). These numbers are called independent  1 2 3 4
transcendental elements over Q.  

Multiplying f(x) yields the elementarysymmetric functions of they :  n

and so for,  

The coefficient of x in f(x) is thus ( – 1) S . Because our independent  n 5 – n
5 – n

transcendental y act as indeterminate over Q, so every permutation  in the  n 
symmetric group on 5 letters S induces an automorphism  on E that leaves Q  5 
fixed and permutes the elements y .An arbitraryrearrangement of the roots of the  n
product form produces the same polynomial of the form,  

group G(E/Q). Now, since | S | = 5! so it must be G ( E/Q)  5!, as there could  5 
possiblybe automorphism there that is not inS . However, since the splitting field  5

G(E/Q)must be isomorphic toS .Generalizingthisargument shows that the Galois  5

TheonlycompositionseriesofS is S A {e},whereA is the alternating  5 5 5 5 



says that the general polynomials of all degrees higher than the fifth also have no  
solution in radicals.Note that the above construction of the Galois group for a fifth  
degree polynomial onlyapplies to thegeneral polynomial. Specific polynomials  
of the fifth degree mayhavedifferent Galois groups withquite different properties,  
for example x – 1 has a splitting field generated by a primitive 5th root of unity  5 

and hence its Galois group is abelian and the equation itself solvable by radicals.  

7. When is an extension called a simple extension?  
8. Write about the quartic function.  
9. State theAbel’s theorem.  

3.8 ANSWERS  TO ‘CHECK YOUR PROGRESS’  

1. Let K be a field and suppose F is a subfield of K then K is called the  
extension of F.  

2. A complex number is said to be an algebraic number if it is algebraic over  
the fieldof rational numbers.  

3. Let F be a field. The intersection of all subfields of F is the smallest  
subfield of F and is called the prime subfield of F.  

4. Let E be an extension of K. E is called normal extension of K if E/K is  
algebraic and   splits in E[x] or E.  E  p(x)  Irr(K , )      

5. A field having a finite number of elements is called a finite field or a Galois  
field.  

6. Let S be a set of polynomials over k. Suppose each f S splits in a field  
E containing k. Then E is called a splitting field of S over k.  

7. An extension K/F is called a simple extension if K=F(a) for some a K.  

a quartic polynomial into a depressed quartic which has nox term.  3 

than four is not solvable by radicals.  
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Check Your Progress  

8. Quartic polynomials canbesolved usingFerrari’smethod which transforms  

9. Abel’s theorem states that the generic algebraic equation of degree higher  



 If K is an extension of F. a  K is said to be algebraic over F if   
non-zero polynomial f (x)  F[x] such that f (a) = 0.  

 An element a  K is said to be algebraic of degree n over F if it satisfies  
a polynomial of degree n over F and does not satisfy any polynomial of  
lesser degree (than n).  

 A field K is called perfect field if everyalgebraic extension ofK is separable.  
 If E is an extension of K. E is called normal extension of K if  

 A field k is called algebraicallyclosed if everypolynomial f over k splits in  
k.  

 Let  ,  , ...,  be homomorphisms from a field E into a field E. Then,  1 2 n 

 s are called linearly independent over E if   + ... +   = 0,  i
151

1 1 n n i  

= 0  i where   E.   i
 An extension E of F is called a Galois extension if  

(i) E/F is finite  
(ii) F is the fixed field of a group of automorphisms ofE.  

the general cubic equation is transformed into a depressed cubic without  
the x term.  2 

a quartic polynomial into a depressed quartic which has nox term.  3 

 TheAbel-Ruffini theorem states that there are some fifth-degree equations  
whose solution cannot be so expressed, for example the equation x – x +   5 

1 = 0.  

3.10 KEY  TERMS  

 Algebraic number:Acomplex number is said to be an algebraicnumber if  
it is algebraic over the field of rational numbers.  

 Separable polynomial: Apolynomial is said to be separable if all its roots  
are simple.  

 Finite field:Afieldhaving finitenumberofelements is calledafinite fieldor  
a Galois field.  
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(i) E/K is algebraic (ii) E  p(x) = Irr (K, ) splits in E[x] or E.  

 Cubic functions can be solved with the help of Cardano’s method in which  

 Quartic polynomials canbesolved usingFerrari’smethod which transforms  



method which transforms a quartic polynomial into a depressed quartic  
which has no x term.  3 

3.11 SELF-ASSESSMENT  QUESTIONS AND  105

EXERCISES  

Short-Answer Questions  

1. Define a field.  
2. What is algebraic extension?  
3. What is the difference between separable and inseparable extensions?  
4. When is a field said to be perfect?  
5. What do you mean by the term normal closure?  
6. Define product of fields.  
7. Define linear independence.  
8. What isprimitive element?  
9. What is Galois group?  

10. What do you understand the solvability of a quadratic equation.  

Long-Answer Questions  
1. If a, b  K are algebraic over F of degrees m and n respectively and if  

m and n are relatively prime, prove that F(a, b) is of degree mn over F.  
2. If a  K is algebraic over F of odd degree, show that F (a) = F(a ).  2

3. Show that degree of  
is 6.  

2  3 over Q is 4 and degree of  2 5  over Q   3  

4. If a is an algebraic integer and m is an ordinary integer, prove  

6. Find a basis of Q ( 2,  3) over Q.  [1, 2, 3,  6 ]

8. If K is an extension of F, c  K, a, b  F, a  0 then show that F(c) =  
F(ac + b).  
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(i) a + m is an algebraic integer.  
(ii) ma is an algebraic integer.  

5. Prove that sum and product of two algebraic integers is an algebraic integer.  

7. Let K be an extension of F. Suppose E , E are contained in K and are  1 2 
extensions of F. If [E : F] and [E : F] are primes, show that either  1 2 
E  E = F or E = E .  1 2 1 2



that K will be a simple extension of F.  
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10. Let K be a finite extension of F. Suppose if F and F are any two subfields  1 2 
of K such that, F  F and F  F then either F  F or F  F . Show  1 2 1 2 2 1
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4.3 Simple Modules  
4.4 Schur’s Lemma  
4.5 Free Modules Fundamental Structure Theorem  
4.6 Noetherian and Artinian Modules  
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4.16 Further Reading  

4.0 INTRODUCTION  

In mathematics, more specifically in the area of abstract algebra known as ring  

on leftandright ideals. InotherhandthenotionofaNoetherianringisof fundamental  
importance in both commutative and non-commutative ring theory, due to the role  
it plays in simplifying the ideal structure of a ring. In abstract algebra, a Noetherian  
module is a module that satisfies the ascending chain conditionon its submodules,  
where the submodules are partiallyordered by inclusion.  

In abstract algebra, an Artinian module is a module that satisfies the  
descending chain condition on its poset of submodules. They are for modules  
whatArtinian rings are for rings, and a ring isArtinian iff it is anArtinian module  
over itself (with left or right multiplication). Both concepts are named for Emil  
Artin.  

In algebra, the Wedderburn–Artin theorem is a classification theorem for  

the problemof classifying finite-dimensional central simple algebras over a fieldK  
to the problem of classifying finite-dimensional central division algebras overK.  
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4.12 Answers to ‘Check Your Progress’  

theory, a Noetherian ring is a ring that satisfies the ‘Ascending Chain Condition’  

semisimpleringsandsemisimplealgebras.TheWedderburn–Artintheoremreduces  



J.A. Cox and A. J. Hetzel.  
In mathematics, the Lasker–Noether theorem states that every Noetherian  
70

ring is a Lasker ring, which means that every ideal can be decomposed as an  
intersection, called primarydecomposition, of finitelymanyprimary ideals.  

In this unit, you will study about the rings and modules, simple modules,  
149

Schur’s Lemma, free modules fundamental structure theorem, Noetherian and  
Artinian module or ring, Hilbert’s basis theorem, Wedderburn–Artin theorem,  
uniform module, primarymodule, Lasker–Noether theorem.  

4.1 OBJECTIVES  

After going through this unit, you will be able to:  

 Understand the fundamental structure theorem for modules  
 Describe the Neotherian andArtinian rings as well as modules  
 State the Hilbert basis and WedderburnArtin theorem  
 Elaborate on the primary modules and Noether-Lasker theorem  

4.2 RINGS AND MODULES: INTRODUCTION  

A group we noticed is a system with a non-empty set and a binary composition.  
One can of course talk about non-empty sets with two binarycompositions also,  
thesetof integersunderusualadditionandmultiplicationbeinganexample.Though  
this set forms a group under addition and not under multiplication, it does have  

out some of these and generalize the concept in the form of a ring. We start with  
105

the formal definition.  
Definition 1:Anon-empty set R, together with two binary compositions + and  
. is said to form a Ring if the following axioms are satisfied:  
33

(i) a + (b + c) = (a + b) + c for all a, b, c  R  
(ii) a + b = b + a for a, b  R  

(iii)  some element 0 (called zero) in R, such that, a + 0 = 0 + a = a for all  
a  R  

(iv) for each a  R,  an element (– a)  R, such that, a + (– a) = (–a) + a  
= 0  
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 Define simplemodules, uniform modules andSchur’s lemma  

certain specificproperties satisfiedwith respect to multiplication as well.Wesingle  



that the closure properties with respect to these hold in R. In other words,  
for all a, b  R, a + b and a . b are unique in R.  

2. One can use any other symbol instead of + and ., but for obvious reasons,  
we use these two symbols (the properties look so natural with these). In  
fact, in future, the statement that R is a ring would mean that R has two  
binary compositions + and . defined on it and satisfies the above axioms.  

3. Axiom (v) is named associativitywith respect to . and axiom (vi) is referred  
to as distributivity (left and right) with respect to . and +.  

4. Axioms (i) to (iv) could be restated by simply saying that < R, + > forms  
an abelian group.  

5. Since 0 in axiom (iii) is identitywith respect to +, it is clear that this element  
is unique (see groups).  

Definitions 2: A ring R is called a commutative ring if ab = ba for all a, b   
R. Again if   an element e  R such that,  

ae = ea = a for all a  R  

called unit element or multiplicative identity).  
It would be easy to see that if unity exists in a ring then it must be unique.  

Note: We recall that in a group by a we meant a . a where ‘.’ was the binary  2 

fact, we also introduce similar notation for addition, and shall write na to mean  

Case 1: Sets of real numbers, rational numbers, integers form rings with respect  

Case 2: Set E of all even integers forms a commutative ring, without unity (under  
usual addition and multiplication).  
Case 3: (a) Let M be the set of all 2 × 2 matrices over integers under matrix  
addition and matrix multiplication. It is easy to see thatM forms a ring with unity  

1
0

0
1

, but is not commutative.  

a b
(b) Let M be set of all matrices of the type   over integers under matrix  0 0
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we say, R is a ring with unity. Unity is generally denoted by 1. (It is also  

composition of the group. We continue with the same notation in rings as well. In  

a + a + ....+ a (n times), n being an integer.  

to usual addition and multiplication.These are all commutative rings with unity.  

 
 
 

 
 
 

addition and multiplication.ThenM forms a non commutative ringwithout unity.  



for any   f, g  F  
( f + g)x = f (x)  

( f g)x = f (x)g(x)  
for all x  R  
for all x  R  

zero of this ring is the mapping O : R  R, such that,  
O(x) = 0 for all x  R  

Also additive inverse of any f  F is the function (– f ) : R  R such that,  
(– f )x = – f (x)  

In fact, F would have unity also, namely the function  i : R  R defined  
by i(x) = 1 for all x  R.  
Note:Although the same notation fg has been used for product here it should not  

Case 6: Let Z be the set of integers, then Z[i] = {a + ib | a, b  Z} forms  a  
ring under usual addition and multiplication of complex numbers.a + ib where a,  
b  Z is called a Gaussian integer and Z[i] is called the ring of Guassian integers.  

We can similarly get Z [i] the ring of Gaussian integers modulo n. For  n
instance,  

Z [i] = {a + ib | a, b  Z = {0, 1, 2} mod 3}  3 3 

= {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}  
Case 7: Let X be a non-empty set. Then P (X) the power set of X (i.e., set of  
all subsets of X) forms a ring under + and · defined by  

A + B = (A  B) – ( A  B)  
A . B = A B  

In fact, this is a commutative ring with unityand also satisfies the property  
A = A for all A  P (X).  2 

Case 8: Let M = set of all 2 × 2 matrices over members from the ring of integers  
modulo 2. It would be a finite non-commutative ring. M would have  

a
c

b
d

2 = 16 members as each element a, b, c, d in matrix  4 

2 ways. Compositions in M are given by  

can be chosen in  

a
c

b
d

x
z

y a
c




x
z

b
d




y

 =
u u

where  denotes addition modulo 2 and  
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be mixed up with fog defined earlier.  

 
 
 

   
   
   

 
 
 



That M is non-commutative follows as   =1 1  1 1 1 1  

0
63

1
0
1

1 1   0
0

0
0

But   =
1 1  

Case 9: Let R = {0, a, b, c}. Define + and . on R by  
+
0
a
b
c

0
0
a
b
c

a
a
0
c

b
b
c

c
c
b
a
0

. 0
0
0
0
0

a b
0
b
b
0

c
0
a
b
c

0
a
a
0

0
c
c
0

0
ab

Then one can check that R forms a non-commutative ring without unity. In  
fact it is an example of the smallest non-commutative ring.  
Theorem 4.1: In a ring R, the following results hold  

(i) a . 0 = 0 . a = 0  for all a  R  
(ii) a(–b) = (–a)b = –ab for all a, b  R  

(iii) (–a) (–b) = ab.  a, b  R  
(iv) a(b – c) = ab – ac.  a, b, c  R  

Proof: (i)   a . 0 = a . (0 + 0)  
 a . 0 = a . 0 + a . 0  
 a . 0 + 0 = a . 0 + a . 0  

0 = a . 0  
using cancellation w.r.t  + in the group < R, + >.  


(ii)   a . 0  = 0  
a (– b + b) = 0  
a (– b) + ab= 0  



 a (– b) = – (ab)  
similarly (– a) b = – ab.  
(iii) (– a) (– b) = – [a (– b)] = –[– ab] = ab  
(iv)   a (b – c) = a (b + (– c))  

= ab + a (– c)  
= ab – ac.  
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             

     
     
     

 
 
 

2. If n, m are integers and a, b elements of a ring, then it is easy to see that  
136



n(a + b) = na + nb  
(n + m)a = na + ma  

(nm)a = n(ma)  
a a = am n m + n  

(a ) = am n mn  

We are so much used to the property that whenever ab = 0 then either a  
= 0 or b = 0 that it may need more than a bit of convincing that the result may  
not always be true. Indeed in the ring of integers (or reals or rationals) this property  
holds. But if we consider the ring of 2 × 2 matrices over integers, we notice, we  
can have two non-zero elements A, B s.t, AB = 0, but A  0 B  0. In fact, take  

0
115

0
1
0

2
0

0
0

0
0

0
0

A =   and B =   then A  0, B  0. But AB =   . We formalise  

this notion through  
Definition 1: Let R be a ring. An element 0  a  R is called a zero-divisor,  
if  an element 0  b  R such that, ab = 0 or ba = 0.  
Definition 2:Acommutative ring R is called an Integral domain if ab = 0 in R  
 either a = 0 or b = 0. In other words, a commutative ringR is called an integral  
domain if R has no zero divisors.  

.An obvious example of an integral domain is <Z, +,  > the ring of integers  
whereas the ring of matrices, talked about above is an example of a ring which  

70

is not an integral domain.  
Note: Some authors do not insist upon the condition of commutativity as a part  
of thedefinitionofan integraldomain.Onecanhavenon-commutativeringswithout  
zero divisors.  

The following theorem gives us a necessary and sufficient condition for a  
commutative ring to be an integral domain.  
Theorem 4.2: A commutative ring R is an integral domain iff for all a, b,  
c  R (a  0)  

ab = ac  b = c.  
Proof: Let R be an integral domain  

Let  
Then  


ab = ac (a  0)  
ab – ac = 0  

33

a(b – c) = 0  
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 
 
 

 
 
 

 
 
 



Suppose ab = 0  
then   ab = a.0  
 b = 0 using given condition  

40

Hence ab = 0 b = 0 whenever a  0 or that R is an integral domain.  
Note:Aring R is said to satisfy left cancellation law if for all a, b, c  R, a  0  

ab = ac  b = c.  
Similarly we can talk of right cancellation law. It might, of course, be  

noted that cancellation is of only non zero elements.  

with respect to multiplication if  some b  R such that ab = 1 = ba.  
Notice, unit and unit element (unity) are different concepts and should not  

Definition 2:Aring R with unity is called a Division ring or a skew field if non  
zero elements of R form a group with respect to multiplication.  

In other words, a ring R with unity is a Division ring if non-zero elements  
of R have multiplicative inverse.  
Definition 3:Acommutative division ring is called a field.  

Real numbers form a field, whereas integers do not, under usual addition  
and multiplication. Since a division ring (field) forms groups with respect to two  
binary compositions, it must contain two identity elements 0 and 1 (with respect  
to addition and multiplication) and thus a division ring (field) has at least two  
elements.  
Case 10:Adivision ring which is not a field. LetM be the set of all 2 × 2  matrices  

a b
a

of the type   where a, b are complex numbers and  a , b are their  
b  

1
0

0
1

aconjugates, i.e., if a = x + iy then = x – iy. Then M is a ring with unity  

under matrix additionand matrix multiplication.  

x  iy  
iv  

u
x




iv  
iy  

Any non-zero element of M will be  

where x, y, u, v are not all zero.  

(u   )
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Definition 1:An element a in a ring R with unity, is called invertible (or a unit)  

be confused with each other.  

 
 
 

 
 
 

 
 
 



where k = x + y + u + v , will be  multiplicative inverse of the above  non-zero matrix, showing that M is a division  ring. But M will not be a field as  
it is not commutative as  

0 1
0

i 0 0 i  
=

=

1   0 i   i   0

i 0 0 1
0

0 i 0 i  
 .

0 i   1 i   0 i   0

Case 11: Consider  
D = {a + bi + cj + dk | a, b, c, d  R} with i = j = k = –1, then D  2 2 2 

forms a ring under multiplication.  
Since i = 0 + 1i + 0j + 0k, j = 0 + 0i + 1j + 0k gives ij = k, ji = –k,  

we find D is not commutative and hence is not a field. D has unity 1 = 1 + 0i +  
0j + 0k.  

If a + bi + cj + dk be any non-zero element of D (i.e., at least one of a,  
(a  bi  cj  dk)  

b, c, d is non zero) then (a + bi + cj + dk)   = 1.  
a2     b c d2 2 2   

Hence D is a division ring but not a field.  
Theorem 4.3: A field  is an integral domain.  
Proof: Let < R, +, . > be a field, then R is a commutative ring.  

Let ab = 0 in R. We want to show either a = 0 or b = 0. Suppose a  0,  
90

then a exists (definition of field)  –1 

thus  


ab = 0  
a (ab) = a 0  –1 –1

b = 0.  

which shows that R is an integral domain.  
A ‘Partial Converse’ of the above result also holds.  

Theorem 4.4: A non-zero finite integral domain is a field.  
Proof: Let R be a non-zero finite integral domain.  

Let R be the subset of R containing non-zero elements of R.  
Sinceassociativityholds inR, itwill hold inR.ThusR is afinite semi group.  
Again cancellation laws hold in R (for non zero elements) and therefore,  

these hold in R.  
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     
     
     

 
 
 

But        
     
     

   
   
   

domain).  



aa , ...., aa are distinct members of R.  2 n 

Since a  R, a = aa for some i  i 

Let x  R be any element, then x = aa for some j  j 

Thus   ax = (aa )x = a(a x)  i i

x = a x  ii.e.,  
Hence usingcommutativitywe find  

x = a x = xai i  

or that a is unity of R. Let a = 1  i i 

Thus for 1 R, since 1 = aa for some k  k 

has multiplicative inverse or that R is a field.  
Case 12:An infinite integral domain which is not a field is the ring of integers.  
Definition: A ring R is called a Boolean ring if x = x for all x  R.  2 

Case 13:The ring{0, 1} under additionand multiplication mod 2forms a Boolean  

Example 4.1: Show that a Boolean ring is commutative.  
Solution: Let a, b  R be any elements  

Then  
Bygiven condition  

(a + b) = a + b  2 

 a + b + ab + ba = a + b  2 2 

 a + b + ab + ba = a + b  
 ab + ba = 0  
 ab = – ba   ...(1)  

...(2)  

 a(ab) = a(–ba)  
 a b = – aba  2

 ab = – aba  
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Aliter: Let R = {a , a , ...., a } be a finite non-zero integral domain. Let  1 2 n0  a  R be any element then  aa , aa , ....., aa are all in R and if aa = aa1 2 n i j  
for some i  j, then by cancellation we get a = a which is not true. Hence aa ,  i j 1

We find a is multiplicative inverse of a. Hence anynon-zero element ofR  k 

ring.  

a + b R (closure)  

ab = ba (= – aba)  



or that R is commutative.  
Example 4.2: (a) Show that a non-zero element a in Z is a unit iff a and n  n 
are relatively prime.  

Solution: (a) Z = {0, 1, 2, ......, n – 1} mod n  n 

Let a  Z be a unit, then  b  Z such that,  n n 

a  b = 1  
i.e., when ab is divided by n, remainder is 1, in other words,  

ab = nq + 1  
or   ab – nq = 1  
 a and n are relatively prime.  
Conversely, let (a, n) = 1, then  integers u, v such that,  

au + nv = 1  
 au = n(–v) + 1  

Suppose, u = nq + r, 0  r < n, r  Z ,  n

Then   au = anq + ar = n (– v) + 1  
ar = n (– v – aq) + 1,  r  Zn  

a  r = 1,  r  Zn  



i.e.,  
i.e.,   a is a unit.  

(b) Let a be not a unit and suppose g.c.d(a, n) = d > 1  
Since d |a, a = dk for some k. Also d |n  n = dt  

n a.t = dk   = kn = 0 mod n  
d

Example 4.3: Show that  Z = {0, 1, 2, ....., p –1} modulo p is a field iff p  p 
is a prime.  

 a  b = 0 where a, b are non zero  Z has zero divisors.  p 

integraldomain.  Self - Learning  
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(b) If a is not a unit then it is a zero divisor.  

i.e., a is a zero divisor.  

Solution: Let Z be a field. Suppose p is not a prime, then  a, b, such that p  p 
= ab, 1 < a, b < p  

i.e. Z is not an integral domain, a contradiction as Z being a field is an  p p 

Then   ab is a multiple of p  
 p | ab  



 p | a or p | b (p being prime)  
 a = 0 or b = 0 (Notice a, b  Z a , b < p)  

90
p 

 Z is an integral domain and hence a field.  p 

that R is commutative.  
Solution: Let x, y  R be any elements  

then  
Bygiven condition  

(x(y + 1)) = x (y +1)2 2 2  

y + 1  R as 1  R  

 (xy + x) = x (y + 1)2 2 2  

 (xy) + x + xyx + xxy = x (y + 1 + 2y)  2 2 2 2 

 x y + x + xyx + xxy = x y + x + 2x y  2 2 2 2 2 2 2

 xyx = x y  2 ...(1)  
Since Equation (1) holds for all x, y in R, it holds for x + 1, y also. Thus  

replacing x by x + 1, we get  
(x + 1) y(x +1) = (x +1) y  2

 (xy + y) (x +1) = (x +1 +2x)y  2 

 xyx + xy + yx + y = x y + y + 2xy  2

 yx = xy using Equation (1)  
Hence R is commutative.  

Example 4.5: Show that the ring R of real valued continuous functions on  
[0, 1] has zero divisors.  
Solution: Consider the functions f and g defined on [0, 1] by  

1
2

1
2

 x,  f (x) =   0  x   

1
2

= 0,  
34

and g(x) = 0,  

= x  

 x 1   

10  x   
2

1 1
2

 ,  x 1   
2
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Example 4.4:  If in a ring R, with unity, (xy) = x y for all x, y  R then show  2 2 2 89

2 2

i.e.,  
i.e.,  

g f (x) = 0 for all x  
g f = 0 but f  0, g  0.  

40

  



Definition: A non-empty subset S of a ring R is said to be a subring of R if S  
40

forms a ring under the binary compositions of R.  
. .The ring < Z, +,  > of integers is a subring of the ring < R, +,  > of real  

numbers.  
If R is a ring then {0} andR are always subrings ofR, called trivial subrings  

of R.  
It is obvious that a subring of an integral domain will be an integral domain.  
Inpractice itwouldbedifficultandlengthytocheckallaxiomsinthedefinition  

of a ring to find out whether a subset is a subring or not. The following theorem  

Theorem 4.5: A non-empty subset S of a ring R is a subring of R iff a, b   
S
 ab, a – b  S.  
Proof: Let S be a subring of R  

then   a, b S  ab  S (closure)  
a, b  S  a – b  S  

as < S, + > is a subgroup of < R, + >.  
Conversely, since a, b  S  a – b  S, we find < S, + > forms a  

subgroup of < R, + >. Again for any a, b  S, since S  R  
a, b  R  

 a + b = b + a  
and so we find S is abelian.  
Byasimilarargument,wefindthatmultiplicativeassociativityanddistributivity  

hold in S.  
In other words, S satisfies all the axioms in the definition of a ring.  
Hence S is a subring of R.  

Definition: A non-empty subset S of a field F is called a subfield, if S forms a  

divisionring.  
The simple modules over a ring R are the (left or right) modules over R,  

which have no non-zero proper submodules.  
Self - Learning  
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would make the job rather easy.  

field under the operations in F. Similarly, we can define a subdivision ring of a  

1. r(x + y) = rx + ry  
2. (r + s)x = rx + sx  
3. (rs)x = r(sx)  
4. 1 x = x, if R has multiplicative identity 1 .  R R



A right R-module is defined in the similar waybut the ring acts on the right, i.e.,  
we have a scalar multiplication of the form M × R  M, and the axioms are  
written with scalars r and s on the right of x and y. If R is commutative, then left R-  
modules are the same as right R-modules and are called R-modules.  

Submodule  

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule  
or R-submodule if, for any n  N and any r  R, the product rn  N or nr  N  
in the case of right R-module.  

Quotient module  

Given a module A over a ring R, and a submodule B of A, the quotient space A/B  
is defined bythe equivalence relation  

a ~ b if and only if b – a  B,  
for any a and b  A. The elements of A/B are the equivalence classes  

[a] = { a + b : b in B }.  
The addition operation on A/B is defined for two equivalence classes as the  

equivalence class of the sum of two representatives from these classes as,  
[a] + [b] = [a + b] for  a, b  A and r  R  
and the multiplication byelements ofR as,  
r·[a] = [r·a], for all a, b  A and r  R  

4.3 SIMPLE MODULES  

Definition 1:Amodule is analgebraicobject in which thingscanbeadded together  
commutatively by multiplying coefficients and in which most of the rules of  
manipulating vectors hold. If a module takes its coefficients in a ringR then it is  

140

called a module over R or an R-module. If a and b are two integers then the  

Definition 2: The left R-module M is said to be finitelygenerated if there exist  
40

n
m , m , …., m M such that  M=  1 2 n Rm .  i i   1

34
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In thisway,A/Bbecomes itselfamoduleoverR, called thequotientmodule.  

smallestmodulecontainingaandb is themodule for theirgreatest commondivisor.  

a , . . . , a R and x , . . . , x X.  1 n 1 n 

Definition 3:Let R be a ringand letM bea left R-module. For anyelementm M,  
the left ideal  

Ann(m) = { r  R | r m = 0 }  
is called the annihilator of m. The ideal  



Ann (M) = { r  R | r m = 0 for all m M }.  
is called the annihilator of M.  
The module M is called faithful ifAnn(M)=(0).  
A module is simple if it is non-zero and does not admit a proper non-zero  

submodule. If a moduleM is simple then the followingare equivalent:  
 Am = M for every m non-zero in M. simple module  
 M   A/m for some maximal left ideal of A.  

element of a simple module is a maximal left ideal.  
The annihilator of a simple module is called a primitive ideal. The ringA is  

primitive if the zero ideal is primitive or equivalently, ifA admits a faithful simple  
module.  

 A module may have no simple submodules. Simple submodules of A are  A

minimal left ideals.  

 The Z-module Z/p Z where p is a prime is indecomposable. It is simple if  n

and only if n = 1.  

endomorphisms is a two-sided ideal ofA. Let B be the subring A generated  
by the identity endomorphism and a. Then V is a simple B-module, in  

Definition 4: Auniformmodule is a non-zero moduleM such that the intersection  
of anytwo non-zero submodules of M is non-zero or equivalently such that every  
non-zero submodule of M is essential in M.  
Note:An essential submodule of a moduleB is anysubmoduleAwhich has non-  
zero intersection with everynon zero submodule ofB.  Self - Learning  
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In particular, simple modules are cyclic and the annihilator of anynon-zero  

 The module A is simple if and only if A is a division ring. In this case, any  A

simple module is isomorphic to A.  A

 Let A = End V for a field k and a k-vector spaceV. The set a of finite rank  k 

particular a simple A-module and B A if dim V is infinite. Let W be a  k 
codimension1subspaceofV.TheendomorphismskillingWformaminimal  
left ideal in A and in B. Thus A and B when dim V is infinite give examples  k 
of primitive rings that admit non-trivial proper two-sided ideals.  

of its profound applications.  
Lemma 1: Let G be a finite group and let V and W be irreducible G-modules.  
Then, every G-module homomorphism f:VW is either invertible or the trivial  
zero map.  
Proof: Both the kernel, ker f and the image, im f are G-submodules of V and W,  
respectively. Since V is irreducible, ker f is either trivial or all of V. In the former  
case im f is all of W also because W is irreducible and hence f is invertible In the



case, im f is all of W also because W is irreducible and hence f is invertible. In the  
latter case, f is the zero map.  

Corollary: Let V be a finite-dimensional, irreducible G-module taken over an  
algebraicallyclosed field. Then, everyG-module homomorphism f:VV is equal  
to ascalar multiplication.  
Proof: Since the ground field is algebraically closed, the linear transformation  
f:VV has an eigenvalue , say. By definition, f  is not invertible, and hence  

4.5 FREE MODULES FUNDAMENTAL STRUCTURE  
THEOREM  

In a principal ideal domain, the generators of an ideal is unique up to associates. If  
a R, then the generator of ann(a) (= {r R| ra = 0}) is called the order of a,  

denoted by o(a). Now we attach a weight P(a) to a R. Since R is a unique  

of a by P(a). By convention, P(0) = 1. Thus, a|b in R implies that P(a)  P(b),  
where the equality holds if and only if a, b are associates.  
Lemma 2: Let M be a finitelygenerated module over a principal ideal domainR,  

Proof: If one of the a is a unit then the proof follows.  i 

s  P(a )  Let   where a  0. We will prove this by induction on s. If s = 0,  i  i

every a is zero or a unit and at least one a is a unit.  i i 
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Given below is one of the most important consequences of Schur’s lemma:  

equal to zero by Schur’s lemma. In other words, f =  , i.e., a scalar.  

factorizationdomain,wedenote thenumberofprimefactors (countingmultiplicity)  

say M = {m , . . . ,m }. Suppose that there is a relation a m + . . . + a m = 0,  1 n 1 1 n n 
where not all the a are zero. Then there are elements m , . . . ,m M, such that  i 1 n 
M = {m , . . . ,m }, and the order of m divides every a .  1 n 1 i

If a is a unit, then m is a linear combination of the other m . So take  1 1 i
m = 0, m = m , i > 1.  1 i i

c b2 1   (m ,m )   ,m ,...., m   31 2  c b1 2  

0 = b(b m + b m ) + a m + . . . + a m1 1 2 2 3 3 n n  

Now P(b)  P(a < P(a ) + P(a ). By induction, M = {m , . . . ,m }, with  1 1 2 1 n

o(m ) | b, and o(m )|a , for i  3. But b|a , b|a , hence o(m )|a , for all i.  1 1 i 1 2 1 i

Theorem 4 6: Every n-generated module M over a principal ideal domain R


  n 

















Theorem 4.6: Every n-generated module M over a principal ideal domain R  
 Rmi

n
1 i  is a direct sum of n cyclic modules M   . Equivalently, M = {m , .  1

a m   0  . . ,m }, and   implies a m = 0, for all i.  i i  i in

Proof: If n = 1, this is true, as R is a principal ideal domain. Now let n > 1. We  
induct on n.  

Amongst all possible set of generators ofM having n elements choose one  
which has an element m with least P(m). Let M = {m = m , m , . . . ,m }. If  1 2 n

Rmi
'  M  R  Rm'   m i , then by induction the submodule   has a basis {m , . . . ,  2i2   i2  

m }. But then {m , . . . ,m } is a basis of M.  n 1 n

We show that Rm is indeed a direct summand of M: If not, one has a  

the result follows.  

4.6 NOETHERIAN  AND ARTINIAN MODULES  

Amodule isArtinian/Noetherian if it satisfies either of the following equivalent  
conditions:  

 Every non-emptycollection of submodules contains a minimal/maximal  
element with respect to inclusion.  

 Anydescending/ ascendingchain of submodules stabilizes.  
Aninfinitedirect sumofnon-zeromodules isneitherArtiniannorNoetherian.  

A vector space is Artinian/ Noetherian if and only if its dimension is finite.  
SubmodulesandquotientmodulesofArtinianmodulesareArtinian. Ifasubmodule  
N of a module M and the quotient M/N by it areArtinian, then so is M.  Self - Learning  
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relation a m + . . . + a m = 0, with a m  0. Let b =g.c.d.(a , o(m )) = c a +  1 1 n n 1 1 1 1 1 1 
c o(m ). Since a m  0, a and o(m ) are not associates. Hence, P(b) < P(o(m )).  2 1 1 1 1 1 1

Note that bm +c a m +. . .+c a m = 0. By above Lemma M = {m , . . .  1 1 2 2 1 n n 1
,m }, with o(m )|b, o(m )|c a , for i  2. Since P(o(m ))  P(b) < P(o(m )),  n 1 1 1 i 1 1

this contradicts the minimalityof {m , . . . ,m }. Thus, Rm is a summand of M and  1 n



subset ofN willgenerateN , weclearlycan choose an infinite sequence of elements  
from , and get a proper ascending sequence of submodules:  N , s , s ,...N  1 2 

,{s }{s , s }    .... which contradicts with the fact that M is Noetherian.  

 N  ...be an ascending sequence of submodules of M,  0 

1 1 2

Now, let  N1  

is again a submodule of M which, byassumption, is finitelygenerated. Let  
i 1  

{v , v , ..., v } be a set of generators for  1 2 k , and N be some submodule which  i ji i 1  

contains {v }. Let m = max{j , j , ..., jk} , since ...,  i 1 2

.ii 1  
 

,Y X Z 0   Theorem 4.8: Given any short exact sequence  0   
X is Noetherian if and only if Y and Z are Noetherian.  
Proof: Let N beanysubmodule of theNoetherian moduleX and everysubmodule  
of N is also a submodule of X, hence, is finitely generated. Then from the above  
Theorem , N is Noetherian.  

To conclude that Z is Noetherian, let us consider any ascending sequence of  

ascending sequence, since X is Noetherian. This implies  Z  Z  ...also  1 2 

terminates.  
: Let N  N  ... be any ascending sequence of submodules of X, then  

There is m so that  (N ) =  (N ) = ... and v(N ) = v(N ) = .... .We  –1
m

–1
m + 1 m m+1

claim that N = N = ... .  m m+1 

For this claim to hold, we only need to show that N  N , i.e. for any  m+1 m 
z  N , we show that z  N .  m+1 m

For z  N , v(z)  v(N ) = v(N ), there is z  N so that v(z) = v(z).  m+1 m+1 m m 

Since the given sequence is exact,   such that (y) = z – z.  yY  
This implies y  (z – z)  (N ) =  (N ) . We thus have (y)   –1 –1 

m+1
–1

m
N , and  z = (y) + z  N .  m m
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
 Ni  



 N  


N N  ..., N N ...  N  1 0 m m1 

    v

Now,sinceY isD-isomorphic toaNoetheriansubmoduleofX,Y is thusNoetherian.  

submodules of Z : Z  Z  ... . Clearly, v (Z )  v (Z )  ... is a terminated  1 2 
–1 

1
–1 

2

 (N )   (N )  ... and v(N )  v(N )  ... are ascending sequences in  –1
1

1
–1

0

2 1 2
Noetherian modules Y and Z, respectively.  



Definition 1: A ring R is called a noetherian ring if every ideal of R is finitely  
generated.  
Definition 2:Aring R is called noetherain ring if everyascending chain of ideals  
in R terminates after finite number of steps.  

Before giving any examples let us first show the equivalence of the two  
definitions.  
Definition 1  Definition 2  

Let R be a ring in which every ideal is finitely generated. Let  
A  A  A  . . .  1 2 3 

be any ascending chain of ideals in R,  
 A  A =  
i

Let   i

then A is an ideal of R  
Thus A is finitelygenerated.  
Let   A = < a , a , ....., a >  1 2 n 

Consider any a , then a  A = Aj j i  

 a  A for some i  j i 

Suppose   a  A , a  A ....., a  A1 i1 2 i2 n in  
Let k be such that A  A  j = 1, 2,....., n  ij k 

Then   a , a , ....., a  A1 2 n k  

A  A  A  k 

Hence A = A or that the chain terminates at A which proves the result.  k k 

Definition 1  Definition 2  
Let R be a ring satisfying the condition of Definition 2.  

91

Let I be any ideal of R. We  show I is finitely generated.  
Let a  I be any element.  1 

If I = < a >, we are done.  1 

If I  < a > then  same a  I such that, a  < a >  1 2 2 1 

Consider < a , a >. If I = < a , a > then the result is proved.  1 2 1 2 

an ascending chain of ideals  
< a >  < a , a >  < a , a , a >  . . .  1 1 2 1 2 3 

48
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If not then  a  I such that, a  < a , a > continuing like this we get  3 3 1 2 



Z, Z[i], F[x] where F is a field are all noetherian.  
Case 15:Afinite ring will be noetherian and so would be any field. Remeber a  
field F has only two ideal {0} and F.  

Remark: A ring R is defined to be right noetherian if every ascending  
chain of right ideals inR terminates after finite number of steps. Similarlyone can  
talk of a left noetherian ring by considering left ideals.  

Again the condition of termination of an ascending chain is also referred to  
asACC (AscendingChain Condition).Aringin whichACC holds for right as well  
as left ideals is called a noetherian ring.  

One can have examples of right noetherian rings that are not left noetherian  
and vice versa.  
Theorem 4.9: Quotient ring of a noetherian ring is noetherian.  

Proof: Let R/I be any quotient ring of a noetherian ring R.  
Let f : R  R/I be the the natural homomorphism, where f (r) = r + I  

Let  
Let J = {r  R | f (r)   
then it is easy to see that J is an ideal of R Since R is noetherian, J is finitely  

generated.  
Let  

J be any ideal of R/I. We show  J is finitely generated.  
J }

J = < r , r , ....., r >, then we can show that  1 2 n 

= < f (r ), f (r ), ....., f (r ) >  1 2 n

be any element then r  J and as J is generated by r , r ,  1 2

J

Let f (r)   J
....., r , we get  n

r =  r +  r + ...... +  r1 1 2 2 n n     R  i 

 f (r) = f ( ) f (r ) + f ( ) f (r ) + ..... + f ( ) f (r ), f( )  R/   1 2 2 n n i
I

Showing that  J = < f (r ), f (r ), ....., f (r ) >  1 2 n
Hence R/I is noetherian.  

Theorem 4.10: Homomorphic image of a noetherian ring is noetherian  
Proof: Let f : R  R be an onto homomorphism and suppose R is noetherian.  

ByFundamental theorem of ring homomorphism  
R is isomorphic to a quotient ring ofR, which will be noetherian byabove  

theorem. Hence R will be noetherian.  
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of ideals which must become stationary after a finite number of steps  
i.e.,   I  I  I .....  I = I = I .....  1 2 n n+1 n+2 

and thus I will be maximal.  n 

Example 4.7: Let R be a commutative ring with unity. Let R[x] be noetherian.  
Show that R is also noetherian.  
Solution: We know that  
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R[x]  
 R  

 x    

R[x]  Since R[x] is noetherian, its quotient ring   is noetherian and therefore  
 x    

so is R.  
We use the famous Hilbert Basis theorem which says that polynomial ring  

R[x] of a noetherian ring R is noetherian in proving the following  
Example 4.8: Show by an example that subring of a noetherian ring may not  
be noetherian.  
Solution: Let Q be the field of rational numbers, then Q is a noetherian ring and  
thus Q[x] is noetherian.  

Let S = { f (x)  Q[x] |  f (x) = a + a x + a x + ..... + a x , a Z, ao 1 2
2 

n
n

o i  

It is easy to see that S is a subring of Q[x].  
We notice  the chain  

x x
 x 

2 4
is an ascending chain of ideals in S which does not terminate after finite  

xnumber of steps. Suppose for instance, equality holds at < x > =   , then  
2

x x < x >    = h(x)x  
2 2

for some h(x) =  +  x + ..... +  x where   Z  0 1 m 
m 

0 
x





=  x +  x + ..... +  x0 1
2 

m 
m+1  

2
114

1
2

 1   0    x  0x  ... = 0   x   x  ...   x2 
o 1

2 
m

m  

1
2

1=  But  Z  o 2
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ideal I such that, I  I  I and continuing like this we get an ascending chain  2 1 2 

 Q  i  1}  

  
          ...  



I  I  I  .....  1 2 3 terminates after a finite number of steps.  
It is clear that any finite ring is artinian and so would be a field. The ringZ  

of integers is not artinian as the decending chain  

< n >   < 2n > < 4n > .....  

of ideals (for any +ve integer n) is infinite.  
This also shows that subring of an artinian ring maynot be artinian. Notice  

Q the ringof rationals being afield is artinian. Onecan talk of left and right artinian  
rings also by considering chain of left (right) ideals.  

1. What is commutative ring?  
2. What do you understand by submodule?  
3. State the Schur’s lemma.  
4. Define thesimple modules.  
5. Give the statement of principal ideal domain.  
6. Write the necessaryand sufficient condition for a Noetherian andArtinian  

module.  
7. Define Noetherian ring.  

4.8 HILBERT BASIS THEOREM  

In mathematics, specifically commutative algebra, Hilbert’s basis theorem says  
that a polynomial ring over a Noetherian ring is Noetherian.  
Theorem 4.11: Let R be a right (left) Noetherian ring. Then R[x] is also  
right (left) Noetherian.  
Proof: Let R be a noetherian ring and let f(x)=a x + a x +...+a x+a R[x]  

43
n

n 
n–1

n+1
1 0 

with a  0. a is the initial coefficient of f.  n n 

Let I be an ideal in R[x]. We will show that I is finitely generated, so that  
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    
    

Check Your Progress  

R[x] is noetherian. Now let f be a polynomial of least degree in I and if f , f ,….,  0 0 1
f have been chosen then choose f from I\( f , f ,…., f ) of minimal degree.  k 

147
k+1 0 1 k

Continuing inductivelygives a sequence (f ) of elements of I.  k

k k k k  k0  k 0   1 2 N k





Hence, R[x] is noetherian.  

4.9 WEDDERBURN ARTIN THEOREM  

Theorem 4.12: (Wedderburn): A finite division ring is a field.  
Proof: Let R be a finite division ring.  
Let Z(R) be the centre of R. Then Z(R) is a field and R can be regarded as a vector  
space over Z(R). Since R is finite, R is finite dimensional overZ(R). Let dim R = n,  

no(Z(R)) = q = power of a prime. Then o(R) = q . We show that n = 1. Because  

R |xa = ax} is a subring of R containing Z(R). So, N(a) can also be regarded as a  

a
nLet R* = R – {0}. Then R* is a multiplicative group and o(R*) = q – 1.  

Consider the class equation of R*.  
o(R*)  nq – 1 = o(Z (R*))     o(N (a))  a  Z (R*) 

q 1  n 
= q 1    

nNow   a a

By above Lemma then  

q 1  n 
 (q)  n  (  n q) q 1  

 (q)  q 1  n 

 (q)  n = | q   |  | q 1|  q 1  





o()m  

Hence R is a field.  
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deg (f ) –deg(f ). Then deg (f –g) < deg (f ) and f –g  and f –g  N + 1 k N + 1 N + 1 N + 1 N + 1
(f , f ,…., f ). But this contradicts minimality of deg(f ).  0 1 N N + 1

then dim R = 1 would imply R = Z(R)R is a field. Let n > 1. Now N(a) = {x  

vector space over Z(R). Let o (N(a)) = q for some integer r .  ra 

q 1  a Z (R*) 
ra 

q – 1|q – 1  r |n, 1r < n  a r

q 1  ra 

But  

So, we get a contradictionn = 1  



which specifies that every ideal can be written as an intersection of finitelymany  primary ideals which are related to but are not identical as powers of prime  
ideals. The theorem was first established by Emanuel Lasker for the special case  
of polynomial rings and convergent powerseries rings, and was verified byEmmy  

theorem of arithmetic and more specifically the fundamental theorem of finitely  
generated abelian groups to all Noetherian rings.  

It has an extension to modules and states that every submodule of a set  
module overa Noetherian ring is a finite intersection of primarysubmodules. This  
refers to the situation for rings as a special case considering the ring as a module  
over itself suchthat idealsaresubmodules.Thisspecifies theprimarydecomposition  
structure of the structure theorem for set modules over a principal ideal domain  
and for the special case of polynomial rings over a field.  

Definitions  

Write R for a commutative ring, and M and N for modules over it.  
 A zero divisor of a module M is an element x of R such that xm = 0 for  

58

some non-zero m in M.  
 An element x of R is called nilpotent in M if x M = 0 for some positive  n

integer n.  
 A module is called coprimary if every zero divisor of M is nilpotent in M.  

For example, groups of prime power order and free abelian groups are  
termed as coprimary modules over the ring of integers.  

 A submodule M of a module N is called a primary submodule if N/M is  

to the statement that if ab is in I then either a is in I or b is in I for some n  n 

and to the condition that every zero-divisor of the ringR/I is nilpotent.  
 AsubmoduleMofa moduleN is called irreducible if it isnotan intersection  

of two strictly larger submodules.  
 An associated prime of a moduleM is a prime ideal that is the annihilator of  

some element of M.  

Statement  

The Lasker-Noether theorem for modules states that every submodule of a set  
91

module over a Noetherian ring is a finite intersection of primarysubmodules. For  
the special case of ideals it states that every ideal of a Noetherian ring is a finite  

127
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Noether. Basically, theLasker-Noether theorem is an extensionof the fundamental  

coprimary.  
 Anideal I iscalledprimary if it isaprimarysubmoduleofR.Thisisequivalent  

intersection of a finite number of irreducible submodules.  



 If M is an irreducible submodule of a finitely generated module N over a  
Noetherian ring then N/M has only one associated prime ideal.  

 A finitelygenerated module over a Noetherian ring is coprimaryif and only  
if it has at most one associated prime.  

Irreducible Decomposition in Rings  

The decomposition of ideals in rings was required when there was lack of unique  
factorization in number fields like   , in which 6 = 2.3 =  

. If a number does not factor uniquely into primes, then  
the ideal generated by the number may however factor into the intersection of  
43

powers of prime ideals otherwise an ideal mayat least factor into the intersection  
of primary ideals. Consider the example given below:  

Let RbeaNoetherian ringand Ian ideal inR.Then Ihasaunique irredundant  
primarydecomposition into primary ideals.  

Irredundancyrefers to:  
 Removing any of the Q changes the intersection, i.e.,  i 

for all i, where the symbol hat denotes  
omission.  

 The associated prime ideals   are distinct.  

Uniqueness refers to uniqueness for reordering the primary ideals. In the  
141

case of the ring of integers  , the Lasker-Noether theorem is equivalent to the  
fundamental theorem of arithmetic. If an integer n has prime  
factorization  
generated by  

, then the primary decomposition of the ideal  
43

, is  

Minimal Decompositions and Uniqueness  

A primarydecomposition of a submoduleM of a module N is called minimal if it  
has the smallest possible number of primarymodules. Consider the case where all  
modules will be finitely generated over a Noetherian ring R. For minimal  
decompositions, the primes of the primary modules are uniquely determined as  

Self - Learning  
Material  242  

Then M has two different minimal primary decompositions M = (y) ) (x, y ) =   2



(y) )  (x + y, y ). The minimal prime is (y) and the embedded prime is (x, y).  2

4.11 UNIFORM MODULES  

In abstract algebra, a module is called a uniform module if the intersection of any  
two non-zero submodules is non-zero. This is equivalent to saying that everynon-  
zero submodule of M is an essential submodule.Aring maybe called a right (left)  
uniform ring if it is uniformas a right (left)module over itself.  

Alfred Goldie used the notion ofuniform modules to construct a measure of  
dimension for modules, now known as the uniform dimension (or Goldie  
58

dimension) ofa module.Uniform dimensiongeneralizes some, butnot all, aspects  
of the notion of the dimension of a vector space. Finite uniform dimension was a  

characterizes which rings are right orders in a semi simple ring. Modules of finite  
uniform dimension generalize both ‘Artinian Modules and Noetherian  
Modules’. Uniform dimension is also referred to as simply the dimension of a  
module or the rank of a module. Uniform dimension should not be confused with  
the related notion, also due to Goldie, of the reduced rank of a module.  

Properties and Examples of Uniform Modules  
Being a uniform module is not usually preserved by direct products or  

quotientmodules.Thedirect sumoftwonon-zerouniformmodulesalwayscontains  
twosubmoduleswithintersectionzero,namelythe twooriginal summandmodules.  

N / (N N ) N / (N N ) = {0}.  1 1 2 2 1 2

Uniserialmodulesareuniform,anduniform modulesarenecessarilydirectly  
indecomposable.Anycommutative domain is a uniform ring, since ifa and b are  
non-zero elements of two ideals, then the product ab is a non-zero element in the  
intersection of the ideals.  

Uniform Dimension of a Module  

The following theorem makes it possible to define a dimension on modules using  
uniform submodules. It is a module version of a vector space Refer Theorem 4.13.  
Theorem4.13: If U and V are members of a finite collection of uniform  i j 

submodules of a module M such that  
submodules of M, then n = m.  

and   are both essential  
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keyassumption for several theoremsbyGoldie, includingGoldie’s theorem, which  

If N and N areproper submodules of auniform moduleM andneither submodule  1 2 
contains the other, then M / (N N ) fails to be uniform, as  1 2

u.dim(R ) or rather u.dim( R) is being measured. It is possible to have two  R R



If N is a submodule ofM, then u.dim(N)  u.dim(M) with equalityexactly  

always have the same uniform dimension. It is also true thatu.dim(M) = n if and  
only if E(M) is a direct sum ofn indecomposable injective modules.  

It can be shown thatu.dim(M)= if andonlyifMcontainsan infinitedirect  
sum of non-zero submodules. Thus if M is either Noetherian orArtinian, M has  
finite uniform dimension. IfM has finitecomposition lengthk, then u.dim(M) k  
with equalityexactlywhenM is a semi simple module. (Lam 1999)  

A standard result is that a right Noetherian domain is a right Ore domain. In  
fact, we can recover this result from another theorem attributed to Goldie, which  
states that the following three conditions are equivalent for a domainD:  

D is right Ore  
 u.dim(D ) = 1  D

 u.dim(D ) <   D

8. State the Hilbert basis theorem.  
9. Define the Lasker-Noether theorem.  

4.12 ANSWERS  TO ‘CHECK YOUR PROGRESS’  

1. Aring R is called a commutative ring if ab = ba for all a, b  R.Again if  
 an element e  R such that,  
ae = ea = a for all a  R  

called unit element or multiplicative identity).  
2. Suppose M is a left R-module and N is a subgroup of M. Then N is a  

submodule or R-submodule if, for any n  N and any r  R, the product  
rn  N or nr  N in the case of right R-module.  

3. A module is an algebraic object in which things can be added together  
commutativelybymultiplyingcoefficients and inwhich most of the rules of  
manipulating vectors hold. If a module takes its coefficients in a ringR then  
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different uniform dimensions on the opposite sides of a ring.  

whenN is anessential submodule ofM. Inparticular,Mand its injective hullE(M)  

Check Your Progress  

we say, R is a ring with unity. Unity is generally denoted by 1. (It is also  



every G-module homomorphism f:VW is either invertible or the trivial  
zero map.  

5. In a principal ideal domain, the generators of an ideal is unique up to  
associates. If a R, then the generator of ann(a) (= {r  
called the order of a, denoted by o(a).  

 R| ra = 0}) is  

6. AmoduleisArtinian/Noetherianif itsatisfieseitherofthefollowingequivalent  
conditions:  
 Everynon-emptycollection of submodules contains a minimal/maximal  
element with respect to inclusion.  
Anydescending/ ascending chain of submodules stabilizes.  
Aninfinitedirect sumofnon-zeromodules isneitherArtiniannorNoetherian.  
Avector space isArtinian/ Noetherian if and only if its dimension is finite.  
Submodules and quotient modules ofArtinian modules areArtinian. If a  
submodule N of a module M and the quotient M/N by it areArtinian, then  
so is M.  

7. A ring R is called a northerian ring if every ideal ofR is finiteltygenerated.  
8. LetRbearight (left)Noetherian ring.ThenR[x] isalso right(left)Noetherian.  
9. The Lasker-Noether theorem states that every Noetherian ring is a Lasker  

ring which specifies that every ideal can be written as an intersection of  
47

finitely many primary ideals which are related to but are not identical as  
powersofprime ideals.The theoremwasfirst establishedbyEmanuelLasker  
for the special case of polynomial rings and convergent power series rings,  

4.13 SUMMARY  

 Sets of real numbers, rational numbers, integers form rings with respect to  

 A commutative ring R is called an Integral domain if ab = 0 in R  either  
a = 0 or b = 0. In other words, a commutative ring R is called an integral  
domain if R has no zero divisors.  

to multiplication if  some b  R such that ab = 1 = ba.  
 Real numbers form a field, whereas integers do not, under usual addition  

and multiplication. Since a division ring(field) forms groups with respect to  
two binary compositions, it must contain two identity elements 0 and 1  
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and was verified byEmmy Noether.  

usualadditionand multiplication.Theseareallcommutativeringswithunity.  

 Anelementa ina ringR with unity, is called invertible (oraunit)with respect  



 A non-empty subset S of a field F is called a subfield, if S forms a field  

 A right R-module is defined in the similar waybut the ring acts on the right,  
i.e., we have a scalarmultiplication of the formM× R  M, and the axioms  
are written with scalars r and s on the right of x and y. If R is commutative,  
then left R-modules are the same as right R-modules and are called R-  
modules.  

 A module is an algebraic object in which things can be added together  
commutativelybymultiplyingcoefficients and inwhich most of the rules of  
manipulating vectors hold. If a module takes its coefficients in a ringR then  
it is called a module over R or an R-module. If a and b are two integers  
then the smallest module containinga and b is the module for their greatest  

 A module is simple if it is non-zero and does not admit a proper non-zero  
submodule.  

observation about irreducible modules, which is nonetheless noteworthy  
because of its profound applications.  

 Aninfinitedirect sumofnon-zeromodules isneitherArtiniannorNoetherian.  
Avector space isArtinian/ Noetherian if and only if its dimension is finite.  
Submodules and quotient modules ofArtinian modules areArtinian. If a  
submodule N of a module M and the quotient M/N by it areArtinian, then  
so is M.  

 Homomorphic image of a noetherian ring is noetherian  
 The Lasker-Noether theorem states that every Noetherian ring is a Lasker  

ring which specifies that every ideal can be written as an intersection of  
finitely many primary ideals which are related to but are not identical as  
powers of prime ideals.  

4.14 KEY  TERMS  

 Submodule:Suppose M is a left R-module and N is a subgroup of M. Then  
N is a submodule orR-submodule if, for anynN and anyrR, the product  
rn  N or nrN in the case of right R-module.  
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under the operations in F. Similarly, we can define a subdivision ring of a  
divisionring.  

common divisor.  

 Schur’s lemmaisafundamental result in representation theory,anelementary  



togethercommutativelybymultiplyingcoefficients and inwhichmost of the  
rules of manipulating vectors hold.  

 Noetherian ring:Aring is called noetherian ring if everyideal of the ring is  
finitelygenerated.  

 Lasker-Noether theorem:The Lasker-Noether theorem states that every  
NoetherianringisaLaskerringwhichspecifies thateveryidealcanbewritten  
as an intersectionof finitelymanyprimaryideals which are related to but are  
not identical as powers of prime ideals.  

4.15 SELF-ASSESSMENT  QUESTIONS AND  92

EXERCISES  

Short-Answer Questions  

1. Give the axioms which are satisfied of a ring.  
2. What are simple modules?  

4. State the fundamental structure theorem for modules.  
5. What is the difference between noetherian rings and modules?  
6. Write the applications of Hilbert Basis theorem.  
7. State WedderburnArtin theorem.  
8. Define Noether-Lasker theorem.  

Long-Answer Questions  

1. Show that a ring R is commutative iff  
(a + b) = a + b + 2ab for all a, b R.  2 2 2 

2. If in a ring R, x = x for all x then show that 2x = 0 and x + y = 0  x  2 

= y.  
3. If R is a ring with unity and (ab) = (ba) for all a, b  R and 2x = 0  2 2 

 x = 0 then show that R is commutative.  
77

4. Let R be the set of real numbers. Show that R×R forms a field under  
addition and multiplication defined by  

(a, b) + (c, d) = (a + c, b + d)  
.(a, b) (c, d) = (ac – bd, ad + bc).  
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3. What is the significance of Schur’s lemma?  



abelian group.  
7. Give an example of a non commutative ring R in which (xy) = x y2 2 2  

for all x, y  R.  
.8. If < R, +,  > be a system satisfying all conditions in the definition of a ring  

with unityexcepta + b= b + a, thenshow that this condition is also satisfied.  
9. Show that if 1 – ab is invertible in a ring with 1 then so is 1 – ba.  

(See theorem 4 page 261).  
a
c

b
d

11. Let R be the set of all 2 × 2 matrices  
55

over Q such that, a = d and  

c = 0. Let I be the set of all such matrices for which a = d = 0. Show that  
I is an ideal of R.  
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10. Show that a finite  commutative ring R without zero divisors has unity.  

 
 
 
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5.7 Self-Assessment Questions and Exercises  
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5.0 INTRODUCTION  

In mathematics, finitely generatedAbelian group is a non-empty setG, together  
with a binarycomposition * (star) is said to form a group. Specifically in the field  

in a field F is a canonical form for matrices formed by conjugation by invertible  
matrices over F in linear algebra. The shape represents a simple decomposition of  
the vector space into cyclic subspaces forA. (i.e., spanned bysome vector and its  
repeated images underA). Because a given matrix can onlyhave one normal form  
(thus the term ‘Canonical’), matrix B is identical to A if and only if it has the same  
rational canonical form asA. This form can be determined without anyoperations  
thatmight changewhileextendingthe fieldF (thus the ‘Rational’), suchas factoring  
polynomials, demonstrating that whether two matrices are comparable does not  
change when the field is extended. Ferdinand Georg Frobenius, a German  
Mathematician, is the name of the form.  

In thisunit,youwill learnabout thefinitelygenerated Abeliangroups, rational  
canonical form and generalised Jordon form over anyfield.  

5.1 OBJECTIVES  

After going through this unit, you will be able to:  
 Know about the finitelygeneratedAbelian groups  
 Define rational canonical form  
 Learn about the generalised Jordon form over any field  
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5.4 Answers to ‘Check Your Progress’  

of finite group theory.The rational canonical form ofa square matrixAwith entries  



(i) Associativity: a (b c) = (a b) c, for all a, b, c  G  * * * *
(ii) Existence of Identity:  an element e  G, such that,  

e = e a = a for all a  G  a * *
(e is then called identity)  

(iii) Existence of Inverse: For every a  G,  a  G (depending upon a)  
such that,  

a a = a a = e  **
(a is then called inverse of a)  

Remarks: (i) Since  is a binary composition on G, it is understood that for  *
all a, b  G, a b is a unique member of G. This property is called closure  *
property.  

(ii) If, in addition to the above postulates, G also satisfies the commutative  
law  

a b = b   a* for all a, b  G  *
then G is called an abelian group or a commutative group.  

(iii) Generally, the binary composition for a group is denoted by ‘.’ (dot)  
which is so convenient to write (and makes the axioms look so natural too).  

This binary composition ‘.’ is called product or multiplication (although it  
may have nothing to do with the usual multiplication, that we are so familiar  

92

with). In fact, we even drop ‘.’ and simply write ab in place of a . b.  
In future, whenever we say that G is a group it will be understood that there  

exists a binarycomposition ‘.’ on G and it satisfies all the axioms in the definition  
of a group.  

If the set G is finite (i.e., has finite number of elements) it is called a finite  
group otherwise, it is called an infinite group.  

We shall always (unless stated otherwise) use the symbols e for identity of  
a group and a for inverse of element a of the group.  –1 

Definition: By order of a group, we will mean the number of elements in the  
55

group and shall denote it by o(G) or | G |.  
We now consider a few examples of systems that form groups (or do not  

form groups).  
Example 5.1: The set Z of integers forms an abelian group with respect to the  
usual addition of integers.  
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Example 5.2: One can easily check, as in the previous example, that sets Q  of rationals, R of real numbers would also form abelian groups with respect to  
addition.  
Example 5.3: Set of integers, with respect to usual multiplication does not  

Note 2 has no inverse with respect to multiplication as there does not exist  
any integer a such that, 2 . a = a . 2 = 1.  
Example 5.4: The set G of all +ve irrational numbers together with 1 under  
multiplication does not form a group as closure does not hold. Indeed  3 .  3  
= 3  G, although one would notice that other conditions in the definition of a  
group are satisfied here.  
Example 5.5: Let G be the set {1, – 1}. Then it forms an abelian group under  
multiplication. It is again easy to check the properties.  

1 would be identity and each element is its own inverse.  
Example 5.6: Set of all 2 × 2 matrices over integers under matrix addition  
would be another example of an abelian group.  
Example 5.7: Set of all non-zero complex numbers forms a group under  
multiplication defined by  

(a + ib) (c + id) = (ac – bd) + i (ad + bc)  

a b i    will be inverse of a + ib.  
a2   b2   a2   b2  

Note a + ib non-zero means that not both a & b are zero. Thus a + b2 2  

 0.  

integer forms an abelian group under usual multiplication of complex numbers.  
We know that complex number z is an nth root of unity if z = 1 and also  n 

2ir/n  In fact the roots are given by  e
where r = 1, 2, ..., n and e = cos x + i sin x.  ix 

If a, b  G be any two members, then a = 1, b = 1 thus (ab) = a bn n n n n  

= 1.  
 ab is an nth root of unity  
 ab  G  closure holds.   Self - Learning  
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form a group, although closure, associativity, identity conditions hold.  

1 = 1 + i.0 will be identity,  

Example 5.8: The set G of all nth roots of unity, where n is a fixed positive  

that there exist exactly n distinct roots of unity.  



So, inverse of e is e and identity is e = 1  2 ir/n 2i(n –r)/n 2 i0/n 

Commutativity being obvious, we find G is an abelian group.  
As a particular case, if n = 4 then G is {1, – 1, i, – i}  

Example 5.9: (i) Let G = {± 1, ± i, ± j, ± k}. Define product on G by usual  
multiplication together with  

i = j = k = – 1,  2 2 2 ij = – ji = k  
jk = – kj = i  
ki = – ik = j  

then G forms a group. G is not abelian as ij  ji.  
This is called the Quaternion Group.  

(ii) If set G consists of the eight matrices  

1
0

0 1   0 i 0 i 0 0 1 0
1

1  
,

,

, , , , ,
1 0 1 0  i    0 i 1 0 0

0 i 0  i   
, where i = 1  

i 0  i    0

then G forms a non-abelian group under matrix multiplication.  
Example 5.10: Let G = {(a, b) | a, b rationals, a  0}. Define  on G by  *

(a, b) (c, d) = (ac, ad + b)  *
Closure follows as a, c  0  ac  0  

[(a, b) (c, d)] (e, f )   = (ac, ad + b) (e, f )  * * *
= (ace, acf + ad + b)  

(a, b) [(c, d ) (e, f )]   = (a, b) (ce, cf + d )   ** *
= (ace, acf + ad + b)  

(1, 0) will be identity and (1/a, – b/a) will be inverse of any element (a, b).  
G is not abelian as  

(1, 2)  (3, 4) = (3, 4 + 2) = (3, 6)  *
(3, 4)  (1, 2) = (3, 6 + 4) = (3, 10).  *
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   
   
   

proves associativity.  



It is called the general linear group of 2 × 2 matrices over reals and is  denoted by GL(2, R).  

1
0

0
The matrix   will act as identity and  

1

d b  
ad   bc ad  

a
bc   a

c
b
d

the matrix   will be inverse of   .
c   
ad   bc ad  bc  

one can generalise and prove  
(b) If G be the set of all n × n invertible matrices over reals, then G forms  

a group under matrix multiplication.  
(c) The set of 2 × 2 matrices over R with determinant value 1 forms a non-  

abelian group under matrix multiplication and is called thespecial linear group,  
denoted by SL(2, R).  

One can take any field (e.g., Q, C or Z ) in place of R in the above examples.  p

Example 5.12: Let G = {2 | r = 0, ±1, ±2, ...}  r 

We show G forms a group under usual multiplication.  
For any  2 , 2  G, 2 . 2 = 2  G  r s r s r + s 

Thus closure holds.  
Associativity is obvious.  
Again as 1  G, and x . 1 = 1 . x = x for all x  G  

For any 2  G, as 2  G and 2 . 2 = 2 = 1,  r –r r –r 0 

we find each element of G has inverse. Commutativity is evidently true.  
Example 5.13: Group of Residues : Let G = {0, 1, 2, 3, 4}. Define a composition  
 on G by a  b = c where c is the least non –ve integer obtained as remainder  5 5 
when a + b is divided by 5. For example. 3 4 = 2, 3 1 = 4, etc. Then  5 5 
 is a binary composition on G (called addition modulo 5). It is easy to verify  5 

55

that G forms a group under this.  
One can generalise this result to  

G = {0, 1, 2, ..., n – 1}  
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 
 
 

 
 
 
 
 
 

 
 
 

1 is identity.  

under addition modulo n where n is any positive integer.  



simply write . This group is generally denoted by Z .  n
Example 5.14: Let G = {x  Z | 1  x < n, x, n being co-prime} where  
Z = set of integers and x, n being co-prime means H.C.F of x and n is 1.  

We define a binary composition  on G by a  b = c where c is the least  
+ve remainder obtained when a . b is divided by n. This composition  is  
called multiplication modulo n.  

We show G forms a group under .  

which is not possible as a, n and b, n are co-prime.  
Thus c  0 and also then 1  c < n.  
Now if c, n are not co-prime then  some prime no. p such that, p |c and  

p |n.  
Again as ab = nq + c for some q  
We get p |ab   [p |n  p |nq, p |c  p |nq + c]  
 p |a or p |b (as p is prime)  
If p |a then as p |n it means a, n are not co-prime.  
But a, n are co-prime.  
Similarly p |b leads to a contradiction.  
Hence c, n are co-prime and thus c  G, showing that closure holds.  
Associativity: Let a, b, c  G be any elements.  
Let a  b = r , (a  b)  c = r  c = r1 1 2  

then r is given by r c = nq + r2 1 2 2  

Also a b = r means  1 

ab = q n + r1 1  

thus   ab – q n = r1 1  

 (ab – q n)c = r c = nq + r1 1 2 2  

 (ab)c = r + nq + nq c = n(q c + q ) + r2 2 1 1 2 2  

or that r is the least non-negative remainder got by dividing (ab)c by n.  2 

Similarly, if a  (b c) = r then we can show that r is the least non –ve  3 3 
remainder got by dividing a(bc) by n.  

But since a(bc) = (ab)c, r = r2 3  

Hence a  (b  c) = (a b)  c.  
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Closure: For a, b  G, let a b = c. Then c  0, because otherwise n | ab  



and thus we can find integers x and y such that, ax + ny = 1  
By division algorithm, we can write  

x = qn + r, where 0  r < n  
 ax = aqn + ar  
 ax + ny = aqn + ar + ny  
 1 = aqn + ar + ny  

or that  
i.e., a  r = 1. Similarly r  a = 1. If r, n are co-prime, r will be inverse  

of a.  

ar = 1 + (–aq – y)n  

If r, n are not co-prime, we can find a prime number p such that, p | r, p | n  
 p | qn and p | r  
 p | qn + r  
 p | x  
 p | ax also p | ny  
 p | ax + ny = 1  

which is not possible. Thus r, n are co-prime and so r  G and is the required  
31

inverse of a.  
It is easy to see that G will be abelian. We denote this group by U or U(n)  

71
n 

and call it the group of integers under multiplication modulo n.  
Remark: Suppose n = p, a prime, then since all the integers 1, 2, 3, ...,  
p – 1 are co-prime to p, these will all be members of G. One can show that  

G = {2, 4, 6, ..., 2(p – 1)}  
where p > 2 is a prime forms an abelian group under multiplication modulo 2p.  

106

Since for any 2n  G, 2n(p + 1) = 2np + 2n = 2n  
We noitce p + 1 will be identity of G.  
Again, for any 2 n  G, since 2n and p are co-prime  x, y, s, t, 2nx +  

py = 1  
 py = 1 – 2nx = odd  
 y is odd as p is odd.  

Let y = 2k + 1, then 2nx + p (2k + 1) = 1  
 2nx + 2py + 2p = p + 1  

99
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Example 5.15: Let G = {0, 1, 2} and define  on G by  *
a b = | a – b |  *

Then closure is established by taking a look at the composition table  

0 1  
0 1  

2
2

*
0
1
2

1 0 1  
2 1  0

Since a 0 = | a – 0 | = a = 0  a, 0 is identity  * *
and a a = | a – a | = 0 shows each element will be its own inverse.  *
But the system (G, ) fails to be a group as associativity does not hold.  *
Indeed  
but  

1 (1 2) = 1  1 = 0  * *  *  
(1 1) 2 = 0  2 = 2  * * *

Example 5.16: Let S = {1, 2, 3} and let S = A(S) = set all permutations  3 

S imply that fog is a permutation on S the closure property is ensured. Hence  
S forms a group. That it is not abelian follows  by the fact that fog  gof . This  3 
would, in fact, be the smallest non-abelian group and we shall have an occasion  
to talk about this group again under the section on permutation groups.  

Remark: Let X be a non-empty set and let M(X) = set of all maps from X to  
X, then A(X)  M(X). M(X) forms a semi group under composition of maps.  
Identity map also lies in M(X) and as a map is invertible iff it is 1-1, onto i.e.,  
a permutation, we find A(X) the subset of all permutations forms a group, denoted  

n elements then o(M(X)) = n and o(S ) =  n 
X

notation S for S .  n X

n and in that case we use the  

In the definition of a group, we only talked about the existence of identity and  

an elementary but exceedingly useful result. We prove it along with some other  
146

results in  
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of S. This set satisfies associativity, existence of identityand existence of inverse  
conditions in the definition of a group. Also clearly, since f, g permutations on  

by S or Sym(X) and is called symmetric group of X. If X is finite with say,  X 

inverse of each element.We now show that these elements would also be unique,  



(4) (ab) = b a for all a, b  G  –1 –1 –1 

(5) ab = ac  b = c  
ba = ca  b = c for all a, b, c  G  
(called the cancellation laws).  

ee = ee = e  
and as e  G and e is identity  

ee = ee = e  
The two  e = e  
which establishes the uniqueness of identity in a group.  

(2) Let a  G be any element and let a and a be two inverse elements of  
a, then  

aa = aa = e  
aa = aa = e  

Now a = ae = a(aa) = (aa)a = ea = a.  
Showing thereby that inverse of an element is unique. We shall denote  
inverse of a by a .  –1

(3) Since a is inverse of a  –1 

aa = a a = e62  –1 –1

which also implies a is inverse of a–1  

Thus (a ) = a.  –1 –1 

(4) We have to prove that ab is inverse of b a for which we show  –1 –1 

(ab) (b a ) = (b a ) (ab) = e.  –1 –1 –1 –1

Now   (ab) (b a ) = [(ab) b ] a–1 –1 –1 –1  

= [(a(bb )] a–1 –1  

= (ae) a = aa = e  –1 –1 

Similarly (b a ) (ab) = e  –1 –1

and thus the result follows.  
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Proof: (1) Suppose e and e are two elements of G which act as identity.  
Then, since e  G and e is identity,  



Thus   ab = ac  b = c  

permutations on X. Consider f, g, h  A(X), defined by  
f (1) = 2,  
g (1) = 2,  
h (1) = 3,  

f (2) = 3,  
g (2) = 1,  
h(2) = 1,  

f (3) = 1  
g(3) = 3  
h(3) = 2  

It is easy then to verify that  fog = goh  

(b) If we consider the group in Example 5.10, we find  
(1, 2)  (3, 4) = (3, 6) = (3, 0)  (1, 2)  * *
(3, 4)  (3, 0)  

Hence we notice, cross cancellations may not hold in a group.  

ya = b have unique solutions for x and y in G.  
Proof: Now ax = b  

 a (ax) = a b  –1 –1

 ex = a b  –1

or   x = a b  –1

which is the required solution of the equation ax = b.  
Suppose x = x and x = x are two solutions of this equation, then  1 2 

ax = b and ax = b  1 2 

 ax = ax1 2  

 x = x by left cancellation  1 2 

Showing that the solution is unique.  
Similarly y = ba will be unique solution of the equation ya = b.  –1 

Theorem 5.2: A non-empty set G together with a binary composition ‘.’  
is a group if and only if  

(1) a(bc) = (ab)c for all a, b, c  G  
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which is called the left cancellation law.  
One can similarly, prove the right cancellation law.  

Example 5.17 (a): Let X = {1, 2, 3} and let S = A(X) be the group of all  3 

But f  h.  

But  

Theorem 5.1: For elements a, b in a group G, the equations ax = b and  



of identity and inverse (for each element).  
Let a  G be any element.  
By (2) the equations   ax = a  

ya = a  
have solutions in G.  
Let x = e and y = f be the solutions.  
Thus  e, f  G, such that, ae = a  

fa = a  
Let now bG be any element then again by (2)  some x, y in G such that,  

ax = b  
ya = b.  

Now   ax = b  f. (a . x) = f . b  
 (f . a) . x = f . b  
 a . x = f . b  
 b = f . b  

Again   y . a = b  (y . a) . e = b . e  
 y . (a . e) = b . e  
 y . a = be  
 b = be  

thus we have  

for any  

b = f b  
b = be  
b  G  

Putting b = e in (i) and  b = f in (ii) we get  
e = fe  
f = fe  

 e = f.  
Hence   ae = a = fa = ea  
i.e.,  e  G, such that,  ae = ea = a  

Again, for any a  G, and (the identity) e  G, the equations ax = e and  
ya = e have solutions.  
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 e is identity.  



1 1

an inverse. Thus each element has inverse and, by definition, G forms a group.  
Remark: While proving the above theorem we have assumed that equations  
of the type ax = b and ya = b have solutions in G. The result may fail, if only  
one type of the above equations has solution. Consider for example:  

G to be a set with at least two elements. Define ‘.’ on G by a . b = b for  
all a, b  G.  

then   a . (b . c) = a . c = c  
(a . b) . c = b . c = c  

shows associativity holds.  
Again as  ab = b, the equation ax = b has a solution for any a, b  G.  
We notice that G is not a group, as cancellation laws do not hold in G.  
As let a, b  G be any two distinct members, then  

ab = b  
bb = b  ab = bb  

a  b.  
Definition:Anon-empty set G together with a binary composition ‘.’ is called  
a semi-group if  

a . (b . c) = (a . b) . c for all a, b, c  G  
80

Obviously then every group is a semi-group. That the converse is not true  
follows by considering the set N of natural numbers under addition.  
Theorem 5.3: Cancellation laws may not hold in a semi-group.  
Proof: Consider M the set of all 2 × 2 matrices over integers under matrix  
multiplication, which forms a semi-group.  

1
0

0
0

0
0

0
2

0
3

0
0

If we take   A =   , B =   , C =  

0
0

0
0

then clearly  AB = AC =  

B  C.  
Set of natural numbers under addition is an example of a semi-group  

in which cancellation laws hold.  
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i.e., for any a  G,  some a  G satisfying the above relations  a has  1 

But  

 
 
 

 
 
 

 
 
 

 
 
 

But  



Let a  G be any element, then by closure property  
aa , aa , ..., aa1 2 n  

are all in G.  
Suppose any two of these elements are equal  

then  
aa = aa for some i  j  i j 

a = a by cancellation  i j 

a  a as i  j  i j 

Hence no two of  aa , aa , ..., aa can be equal.  1 2 n 

These being n in number, will be distinct members of G (Note o(G) = n).  
Thus if b  G be any element then  

b = aa for some i  i 

i.e., for a, b  G the equation ax = b has a solution (x = a ) in G.  i

Similarly, the equation  ya = b will have a solution in G.  
G being a semi-group, associativity holds in G.  
Hence G is a group (by theorem 5.2).  

31

Remark: The above theorem holds only in finite semi-groups. The semi-group  
of natural numbers under addition being an example where cancellation laws  
hold but which is not a group.  
Theorem 5.5: A finite semi-group is a group if and only if it satisfies  

97

cancellation laws.  
Proof: Follows by previous Theorem 5.4.  
Definition: A non-empty set G together with a binary composition ‘.’ is said  
to form a monoid if  

(i) a(bc) = (ab)c  a, b, c  G  
(ii)  an element e  G such that,  ae = ea = a  a  G  
e is then called identity of G. It is easy to see that e is unique.  

31

So all groups are monoids and all monoids are semi-groups.  
When we defined a group, we insisted that  an element e which acts both  

as a right as well as a left identity and each element has both sided inverse. We  
show now that it is not really essential and only one sided identity and the same  
sided inverse for each element could also make the system a group.  
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say,  

But  



Proof: If G is a group, we have nothing to prove as the result follows bydefinition.  
Conversely, let the given conditions hold.  

All we need show is that  ea = a for all a  G  
and   aa = a for any a  G  
Let a  G be any element.  
By (iii)  
 For  
Now  

 a  G, such that, aa = e  
a  G,  a  G, such that, aa = e (using (iii))  
aa = a(ae) = (a a)e = (aa)(aa)  

Thus for anya  G,  a  G, such that, aa = aa = e  
Again   ea = (aa)a = a(aa) = ae = a  

ae = ea = a for all a  G  

i.e., e is identity of G.  
Hence G is a group.  
It would now be a routine exercise to prove  

(i) a(bc) = (ab)c for all a, b, c  G  

A natural question to crop up at this stage would be what happens, when one  
sided identity and the other sided inverse exists. Would such a system also form  
a group? The answer to which is provided by  
Example 5.18. Let G be a finite set having at least two elements. Define ‘.’  

31

on G by  
ab = b for all a, b  G  

then clearly associativity holds in G.  
Let   e  G by any fixed element.  

ea = a for all a  G  Then as  

Again a . e = e for all a  G  
e is right inverse for any element a  G.  

97

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= a(aa)a = a(e)a = (ae)a = aa= e.  

Theorem 5.7: A system < G, . > forms a group if and only if  
139

(ii)  e  G, such that, ea = a for all a  G  
(iii) for all a  G,  some a  G, such that, aa = e.  

e will act as left identity.  



element then by closure property a . a  G. Similarly (a . a) . a  G and so  on.  
It would be very convenient (and natural!) to denote a . a by a and a . (a . a)  2 

or (a . a). a by a and so on. Again a . a would be denoted by a . And  3 –1 –1 –2

since a . a = e, it would not be wrong to denote e = a . It is now a simple  –1 0

matter to understand that under our notation  
a . a = am n m+n  

(a ) = am n mn  

where m, n are integers.  
In case the binary composition of the group is denoted by +, we will talk of  

sums and multiples in place of products and powers. Thus here 2a = a + a,  
and na = a + a + ... + a (n times), if n is a +ve integer. In case n is –ve integer  
then n = – m, where m is +ve and we define na = – ma = (– a) + (– a) + ...  

71

+ (– a) m times.  
Example 5.19. If G is a finite group of order n then show that for any a  

138

Solution: Since o(G) = n, G has n elements.  
Let a  G be any element. By closure property a , a , ... all belong to G.  2 3

Consider e, a, a , ..., a2 n  

These are n + 1 elements (all in G). But G contains only n elements.  
 at least two of these elements are equal. If any of a, a , ..., a equals e,  2 n 

our result is proved. If not, then a = a for some i, j, 1  i, j  n. Without any  i j 

loss of generality, we can take i  j  
then   a = ai j  

 a . a = a . ai –j j –j  

 a = e  i–j where 1  i – j  n.  
Putting i – j = r gives us the required  result.  

Example 5.20. Show that a finite semi-group in which cross cancellation holds  
is an abelian group.  
31

Solution: Let G be the given finite semi-group. Let a, b  G be any elements.  
Since G is a semi-group, by associativity  

a(ba) = (ab)a  
By cross cancellation then  ba = ab  G is abelian.  
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 G,  some positive integer r, 1  r  n, such that, a = e.  r 



Solution: Let n, n + 1, n + 2 be three consecutive integers for which the given  
condition holds. Then for any a, b  G,  

(ab) = a bn n n  

(ab) = a bn+1 n+1 n+1  

(ab) = a bn+2 n+2 n+2  

...(1)  

...(2)  

...(3)  
Now   (ab) = a bn+2 n+2 n+2  

 (ab)(ab) = a bn+1 n+2 n+2  

 (ab)(a b ) = a bn+1 n+1 n+2 n+2  

 ba = a b (using cancellation)  n+1 n+1

(ab) = a bn+1 n+1 n+1  

(ab)(ab) = a bn n+1 n+1  

(ab)(a b ) = a bn n n+1 n+1  

 ba = a b  n n

...(4)  
Similarly  
gives  
i.e.,  

 ba = a ba  n+1 n

 a b = a ba using Equation (4)  n+1 n

 ab = ba.  
Hence G is abelian.  

Remark: Conclusion of the above result may not follow if the given result  
holds only for two consecutive integers.  

Consider, for example, the Quaternion group. One can check that (ab) = a bi i i  

for i = 4, 5 but the group is not abelian.  
Example 5.22. Suppose (ab) = a b for all a, b  G where n > 1 is a  n n n 

Show that(i) (ab) = b an–1 n–1 n–1  

(ii) a b = b an n–1 n–1 n  

(iii) (aba b ) = e  –1 –1 n(n – 1) for all a, b  G  
Solution: (i) We have  

[b (ba)b] = b (ba) b  –1 n –1 n

[b (ba)b] = (ab)–1 n n  

(ab) = b (ba) b  n –1 n

and  
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integers i and any a, b in G, then show that G is abelian.  

fixed integer.  



= a b a b  –n –1 n

 a b a b = a b a b  –n –n n n –n –1 n

 a b = b a for all a, b  G  n n–1 n–1 n 

(iii) Consider (aba b )–1 –1 n(n–1)  

= [(aba b )–1 –1 n–1 n  ]
= [(ba b ) a ] by (i)  –1 –1 n–1 n–1 n 

= [ba b a ] = [b(a b a )]–(n–1) –1 n–1 n –(n–1) –1 n–1 n  

= b (a b a ) = b a b an –(n–1) –1 n–1 n n –(n–1) –n n–1  

= a b b a–(n–1) n –n n–1   by (ii)  
= e for all a, b  G.  
110

Example 5.23. Let G be a group and suppose there exist two relatively  
prime positive integers m and n such that a b = b a and a b = b am m m m n n n n  

Solution: Since m, n are relatively prime, there exist integers x and y such that  
118

mx + ny = 1.  
For any a, b we have  

(a b ) = (a b )(a b )......(a b ) mx times  m n mx m n m n m n

= a (b a b ......b a )bm n m n n m n  

= a (b a ) bm n m mx–1 n  

= a (b a ) (b a ) bm n m mx n m –1 n  

= a c (b a ) b where c = (b a )m m n m –1 n n m x  

= c a (b a ) bm m n m –1 n  

= c a a b b = c = (b a )m m –m –n n m n m mx  

Similarly  
giving  

(a b ) = (b a )m n ny n m ny  

(a b ) = (b a )m n mx + ny n m mx + ny  

 a b = b a for all a, b  G  m n n m 

ab = a bmx + ny mx + ny  

...(1)  
Now  

= a . (a b )bmx ny mx ny  

= a (a k )b where d = a , k = bmx m m ny y x  

= a (k d )b by (1)  mx m n ny 

= a . b . a . bmx mx ny ny  
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for all a, b  G. Show that G is abelian.  



Hence G is abelian.  
Remark: In the following problem we give another proof to Theorem 5.6 done  

Show that G is a group.  

Let   ac = bc.  
As given  


 c  G, such that, cc = e  
(ac)c = (bc)c  

 a(cc) = b(cc)  
 ae = be  a = b.  

Consider, (ea)a = e(aa) = e . e = e  
Also   aa = e  

aa = (ea) = a  

a = ea for all a  G  
 e is also left identify of G.  
Again (aa)a = a(aa) = ae = a  
and ea = a  

 (aa)a = ea  
 aa = e by right cancellation law  
 a is also left inverse of a  

So, G is a group.  
Example 5.25. If in a semi-group S,  x y = y = yx x, y, then show that  2 2 

S is abelian.  
Solution:   x y = y x y = y2 2 2 2  

yx = y  x, y  S  2 

 xy = x  x, y  S  2 

 x y = x2 2 2  
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earlier.  
Example 5.24. Let G be a semi-group, Suppose  e  G, such that,  
ae = a  for all a  G and for each a  G,  a  G, such that, aa = e.  

Solution: We first show that G satisfies the right cancellation law.  

We now show that e is left identity.  

By right cancellation law,  



By Equation (1) and (2), xy x = yx y  2 2

Since   y = y  y  S, we get  3 

xy = (xy) = xy xy xy  3 

= xy xy x y = x(yx) x(xy)  3 2

= (yx)x (yx) (xy)  2

= yx yx y = yxy x y  3 2 2

= (yx)xy x  2

= yx y x  2 2

= y(y x) (as y = yx )  2 2

= y x  3

= yx   (as y = y)  3 

Thus xy = yx  x, y  S  
Hence S is abelian.  

a  G such that aa a = a, then show that G is a group.  
Solution: Let e, f be idempotents in G, i.e., e = e, f = f.  2 2 

We show (ef) = ef.  2 

Now ef  G   g  G, such that,  
(ef ) g (ef ) = ef  

Also ef (gefg) ef = (efgef ) gef = (ef ) gef = ef  
 g = gefg  

...(1)  

...(2)  

...(3)  

...(4)  

Again, (ef ) (ge) (ef ) = efgef = ef  
 ge = g  

Also, ef (fg) ef = efgef = ef  
 fg = g  

Now g2   = (ge) (fg) by (3) and (4)  
= g(ef ) = g by (2)  

i.e., g is an idempotent.  
Also,   g = g g = gg = g  ggg = g  3 2

g(ef ) g = g and so g = ef and  
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Example 5.26. If G is a semi-group such that given a  G,  unique  

But  



Now aaa = a  (aa) = aa  aa is an idempotent.  2 

 aa = e.  
Similarly  
Now  

aa = e  
a = aaa = ae  
a = aaa = ea  

 ae = ea = a  a  G  
 e is identity of G.  

Also given a  G, aa = e = aa showing that a is inverse of a.  
Hence G is a group.  

CHECK YOUR PROGRESS  

1. Define binarycomposition.  
2. What do you understand by quaternion group?  
3. Write the statement of general linear group.  
4. What is special linear group?  
5. When G is called semi-group?  

5.3 RATIONAL NORMAL FORM  

The rational canonical form of a square matrix A with entries in a field F is a  
canonical form formatrices formed byconjugation byinvertiblematrices overF in  
linear algebra. The shape represents a simple decomposition of the vector space  
into cyclic subspaces for A. (i.e., spanned bysome vector and its repeated images  
under A). Because a given matrix can onlyhave one normal form (thus the term  
‘Canonical’),matrixB is identical toA ifandonlyif it has thesamerationalcanonical  
form as A. This form can be determined without anyoperations that might change  
while extending the field F (thus the ‘Rational’), such as factoring polynomials,  
demonstrating that whether two matrices are comparable does not change when  
the field is extended. Ferdinand GeorgFrobenius, a German mathematician, is the  
name of the form.  

Some authors use the phrase rational canonical form to refer to a somewhat  
different form, the primary rational canonical form. The fundamental form,  
rather of decomposing into a small number of cyclic subspaces, decomposes into  
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a large number of them. It is similarly defined over F, but with major differences:  



Rational Normal Form Motivation  

When determining whether two square matricesAand B are comparable, one  
way is to deconstruct the vector space as far as possible into a direct sum of stable  
subspaces for each of them and compare the actions on these subspaces. If both  
are diagonalizable, for example, one can decompose them into eigenspaces (for  

116

which the action is as basic as it gets, namelybya scalar), and then compare their  

illuminatingstrategyinpractice, it has anumber of limitations asa general method.  
First, it necessitates the discoveryof all eigenvalues, such as the roots of the  

characteristic polynomial, but an explicit statement for them maynotbe attainable.  
Second, a complete set of eigenvalues mayexist only in a subset of the field under  
consideration, in which case there is no proof of similarity to the original field.  

case a decomposition into generalized eigenspaces, and potentiallyJordan blocks,  
must be used instead.  

However, attaining such a detailed decomposition is not required to simply  
determine if two matrices are comparable. Instead, the rational canonical form  
relies on a direct sum decomposition into as many stable subspaces as possible,  
while yet permittinga fairlybasic description of the action on each of them. These  
subspaces are called cyclic subspaces (byanalogywith cyclic subgroups) and are  
clearly stable under the linear operator. They are formed by a single nonzero  
vectorvandallof its imagesbyrepeatedapplicationof thelinearoperatorassociated  
with the matrix. Taking v and its consecutive images as long as they are linearly  
independent yields a basis for such a subspace. The companion matrix of a monic  
polynomial is the matrix of the linear operator with respect to such a basis; this  
polynomial (the minimal polynomial of the operator restricted to the subspace,  
which is analogous to the order of a cyclic subgroup) determines the action of the  
operator on the cyclic subspace up to isomorphism and is independent of the  
vector v generate.  

There is always a direct sum decomposition into cyclic subspaces, and  

mayallowadecompositionas thedirect sumofsmallercyclic subspaces(essentially  
by the Chinese remainder theorem).As a result, knowing the respective minimum  
polynomials and having some decomposition of the space into cyclic subspaces  
for both matrices is insufficient to determine their similarity. To verify that  
decompositions into cyclic subspaces for similar matrices are same, an extra  
requirement is imposed: in the list of associated minimum polynomials, each one  
must divide the next (and the constant polynomial 1 is forbidden to exclude trivial  
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eigenvalues andmultiplicities to determine similarity.While this is typicallya very  

Finally, even over this bigger field,Aand B may not be diagonalizable, in which  

obtainingonedoesnotnecessitatefactoringpolynomials.However,cyclicsubspaces  



two matrices are identical if and onlyif their rational canonical forms are the same.  
Example 5.27  
Consider the followingmatrixA, which is centered on Q:  

Solution: Ahas minimal polynomial  = X – 4X – 2X + 4X + 4X + 1, so that  6 4 3 2 

the dimension of a subspace generated by the repeated images of a single vector  
is at most 6. The characteristic polynomial is  = X – X – 5X +2X + 10X +  8 7 6 5 4 

2X – 7X – 5X – 1, which is a multiple of the minimal polynomial bya factorX3 2 2  

– X – 1. There always exist vectors such that the cyclic subspace that theygenerate  
has the same minimal polynomial as the operator has on the whole space; indeed  
most vectors will have this property, and in this case the first standard basis vector  

span a cyclic subspace with minimal polynomial . There exist complementary  
stable subspaces (of dimension 2) to this cyclic subspace, and the space generated  
by vectors v = (3, 4, 8, 0, -1, 0, 2, -1) and w = (5, 4, 5, 9, -1, 1, 1, -2) is an  T T 

example. In fact one has A.v = w, so the complementary subspace is a cyclic  
subspace generated by v; it has minimal polynomial X – X – 1 must divided   2 

(and it is easilychecked that it does), and we have found the invariant factorsX –  2 

X – 1 and  = X – 4X – 2X + 4X + 4X + 1 of A. Then the rational canonical  6 4 3 2 

form ofAis the blockdiagonal matrix with thecorrespondingcompanion matrices  
as diagonal blocks, namely  
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e does so: the vectors A (e ) for k = 0, 1, . . . , 5 are linearly independent and  1 
k

1
118



one has A = PCP .  -1

General Case and Theory of Rational Normal Form  

P  F[X], there is associated to it a companion matrix C whose characteristic  P 
polynomial and minimal polynomial are both equal toP).  
Theorem 5.8: Let V be a finite-dimensional vector space over a field F, and A a   
square matrix over F. Then V (viewed as an F[X]-module with the action of X  
given byA) admits a F[X]-module isomorphism  

V F[x]/f1   … F[X]/fk    

(so they are non-units in F[X]) that satisfy the relations  
f1 | f | … | f2 k  

where ‘a | b’ is notation for ‘a divides b’; with these conditions the list of  
polynomials f isunique.  i 

Proof:Applythe structure theorem for finitelygenerated modules over a principal  
ideal domain to V, viewing it as an F[X]-module. The structure theorem provides  
a decomposition into cyclic factors, each of which is a quotient ofF[X] bya proper  
ideal; the zero ideal cannot be present since the resulting free module would be  
infinite-dimensional as F vector space, while V is finite-dimensional. For the  

ideal, one obtains the divisibilityconditions for the f .  i

Given an arbitrary square matrix, the elementary divisors used in the  
construction of the Jordan normal form do not exist over F[X], so the invariant  

of the invariant factors gives the characteristic polynomial. Note that this implies  
thattheminimalpolynomialdividesthecharacteristicpolynomial(whichisessentially  
theCayley-Hamilton theorem),and that everyirreducible factorof thecharacteristic  
polynomial alsodivides the minimal polynomial (possiblywith lowermultiplicity).   Self - Learning  
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Fix abasefieldFandafinite-dimensionalvectorspaceVoverF.Givenapolynomial  

where the f F[X] maybe taken to bemonic polynomialsof positive degree  i 

polynomials f one then takes the unique monic generators of the respective ideals,  i 
and since the structure theorem ensurescontainment of everyideal in the preceding  

factors f as given above must be used instead. The last of these factors f is then  i k 
minimalpolynomial,whichall the invariant factors thereforedivide,andtheproduct  



invariant factors associated to A, and these invariant factors are independent of  
basis, it follows that two square matrices A and B are similar if and only if they  
have the same rational canonical form.  

5.3.1 Generalised Jordon form over any Field  

Even if it exists over theground fieldF, the rational or Frobenius normal form does  
not reflect any sort of factorization of the characteristic polynomial. This means  
thatwhenF issubstitutedbyadifferentfield,it remainsinvariant(as longasitcontains  

form fromother normal forms that relyon factoring the characteristic polynomial,  
suchasthediagonal form(ifA isdiagonalizable)or theJordannormalformingeneral  
(if the characteristic polynomial splits into linear factors).Adiagonal matrix with  
unique diagonal elements, for example, hasa Frobenius normal formthat is simply  
the partner matrix of its characteristic polynomial.  

There is anotherwayto defineanormal form, that, like the Frobeniusnormal  
form, is always defined over the same fieldF as A, but that does reflect a possible  
factorizationofthecharacteristicpolynomial(orequivalentlytheminimalpolynomial)  
into irreducible factors overF, and which reduces to the Jordan normal form when  
this factorization onlycontains linear factors (corresponding to eigenvalues). This  
form is sometimes called the generalized Jordan normal form, or primary  
rational canonical form. It is based on the fact that the vector space can be  
canonically decomposed into a direct sum of stable subspaces corresponding to  
the distinct irreducible factors P of the characteristic polynomial (as stated by the  
lemme desnoyaux [fr]), where thecharacteristic polynomial of eachsummand is a   
power of the correspondingP.These summands can be further decomposed, non-  

normal form above), where the characteristic polynomial of each summand is still  
a (generally smaller) power of P. The primary rational canonical form is a block  
diagonal matrix corresponding to such a decomposition into cyclic modules, with  
a particular form called generalized Jordan block in the diagonal blocks,  
corresponding to a particular choice of a basis for the cyclic modules. This  
generalized Jordan block is itself a block matrix of the form  
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theentriesoftheoriginalmatrixA).However, thisdistinguishestheFrobeniusnormal  

canonically, as a direct sum of cyclicF[x]-modules (like is done for the Frobenius  



basisof thecyclicmodulegivingriseto this formisobtainedbychoosingagenerating  
vector v (one that is not annihilated byP (A) where the minimal polynomial of  k–1

the cyclic module is P ), and taking as basis  k

v, A(v), A (v), . . . , A (v), P(A)(v), A(P(A)(v)), . . . , A (P(A)(v),  2 d – 1 d – 1 

. . . , P (A)(v), . . . , P (A)(v), . . . , A (P (A)(v))  2 k – 1 d – 1 k – 1 

where d = deg (P).  

CHECK YOUR PROGRESS  

6. What is rational cononical form of a square matrix?  
7. Define generalised Jordon block in diagonal block.  

5.4 ANSWERS TO ‘CHECK YOUR PROGRESS’  

1. The binary composition for a group is denoted by ‘.’ (dot) which is so  
convenient to write (and makes the axioms look so natural too).  
This binary composition ‘.’ is called product or multiplication (although  
it may have nothing to do with the usual multiplication, that we are so  
familiar with). In fact, we even drop ‘.’ and simply write ab in place of  
a . b.  

2. Let G = {± 1, ± i, ± j, ± k}. Define product on G by usual multiplication  
together with  
i = j = k = – 1,  2 2 2 ij = – ji = k  
jk = – kj = i  
ki = – ik = j  
then G forms a group. G is not abelian as ij  ji.  
This is called the Quaternion Group.  

a
c

b
d

3. The set G of all 2 × 2 matrices of the form   over reals, where ad  

– bc  0, i.e., with non zero determinant forms a non abelian group under  
matrix multiplication.  
It is called the general linear group of 2 × 2 matrices over reals and is  
denoted by GL(2, R).  
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 
 
 

semi-group if  



a . (b . c) = (a . b) . c for all a, b, c  G  
Obviously then every group is a semi-group. That the converse is not  
true follows by considering the set N of natural numbers under addition.  

6. The rational canonical formof a square matrixA with entries in a field F is a   
canonical form for matrices formed byconjugation by invertible matrices  
over F in linear algebra. The shape represents a simple decomposition of  
the vector space into cyclic subspaces for A. (i.e., spanned bysome vector  
and its repeated images under A).  

7. Theprimaryrationalcanonical formisablockdiagonalmatrixcorresponding  
to such a decomposition into cyclic modules, with a particular form called  
generalizedJordanblockin thediagonalblocks, correspondingtoaparticular  
choice of a basis for the cyclic modules.  

5.5 SUMMARY  

 Associativity: a (b c) = (a b) c, for all a, b, c  G  * * * *
 Existence of Identity:   an element e  G, such that,  

e = e a = a for all a  G  a * *
(e is then called identity)  

 Existence of Inverse: For everya  G,  a  G (depending upon a) such  
that,  
a a = a a = e  **
(a is then called inverse of a)  

 Since is a binary composition on G, it is understood that for all a, b   *
G, a b is a unique member of G. This property is called closure property.  *

 This binary composition ‘.’ is called product or multiplication (although  
it may have nothing to do with the usual multiplication, that we are so  
familiar with). In fact, we even drop ‘.’ and simply write ab in place of  
a . b.  

 Set of all non-zero complex numbers forms a group under multiplication  
defined by  
(a + ib) (c + id) = (ac – bd) + i (ad + bc).  

forms an abelian group under usual multiplication of complex numbers.  
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 The set G of all nth roots of unity, where n is a fixed positive integer  



ki = – ik = j  
then G forms a group. G is not abelian as ij  ji.  
This is called the Quaternion Group.  

 For elements a, b in a group G, the equations ax = b and ya = b have  
unique solutions for x and y in G.  

 Cancellation laws may not hold in a semi-group.  
 A finite semi-group in which cancellation laws hold is a group.  
 A finite semi-group is a group if and only if it satisfies cancellation laws.  
 The rational canonical formof a square matrixA with entries in a field F is a   

canonical form for matrices formed byconjugation by invertible matrices  
over F in linear algebra. The shape represents a simple decomposition of  
the vector space into cyclic subspaces for A. (i.e., spanned bysome vector  
and its repeated images under A).  

 Theprimaryrationalcanonical formisablockdiagonalmatrixcorresponding  
to such a decomposition into cyclic modules, with a particular form called  
generalizedJordanblockin thediagonalblocks, correspondingtoaparticular  
choice of a basis for the cyclic modules.  

5.6 KEY TERMS  

 Closure property: Since is a binary composition on G, it is understood  *
that for all a, b  G, a b is a unique member of G. This property is  *

 Existence of identity:   an element e  G, such that,  
a e = e a = a for all a  G  **
(e is then called identity)  

 Existence of inverse: For every a  G,  a  G (depending upon a)  
such that,  
a a = a a = e  **
(a is then called inverse of a)  

 Rational normal form: The rational canonical form of a square matrix A   
withentries inafieldF isacanonical formformatricesformedbyconjugation  
byinvertiblematrices overF in linearalgebra. The shape representsa simple  
decomposition of the vector space into cyclic subspaces forA. (i.e., spanned  
by some vector and its repeated images under A).   Self - Learning  
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called closure property.  



1. What do you mean by the finitelygeneratedAbelian group?  
2. What is rational normal form?  
3. State the generalised Jordon form over any field.  

Long-Answer Questions  

1. Brieflydiscussabout the finitelygeneratedAbelian groupgivingappropriate  
examples.  

2. Elaborate on the is rational normal form give appropriate examples.  
3. Discuss in detail about the generalised Jordon form over anyfield with the  

help of relevant examples.  
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