

MCA-101

Digital Techniques

COURSE INTRODUCTION

This course is designed for the learners who are beginners in the field of computer architecture.
This is the age of digital technology. In this age it is very important to have some idea about
digital techniques used in computer system. After going through this course learners will be able
to understand the different number systems like binary, octal, decimal and hexadecimal. Different
types of gates, basic memory circuits, combinational and sequential circuits are discussed in
this course.

There are two blocks in this course.
Block 1 deals with the basic concept of number system, data representation, logic gates and
logic family. After going through this block learners will be comfortable to learn block 2.
 Block 2 concentrates on basic principles of combinational and sequential circuits. At the end
of this block learners will have a clear concept of register, counter and memory organization.

Each unit of these blocks includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts.
You may find some boxes marked with: “LET US KNOW”. These boxes will provide you with
some interesting and relevant additional information. Again, you will get “CHECK YOUR
PROGRESS” questions. These have been designed to self-check your progress of study. It
will be helpful for you if you solve the problems put in these boxes immediately after you go
through the sections of the units and then match your answers with “ANSWERS TO CHECK
YOUR PROGRESS” given at the end of each unit.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

BLOCK INTRODUCTION

This course contains fifteen units in two blocks. Block I contains 8 units. These units discuss

the basic concept of digital logic. Unit 1 deals with the basic concept of different number systems

and their conversion. Unit 2 introduces binary arithmetic like r’s and (r-1)’s complement etc.The

basic of data representation like fixed point and floating point are discussed in Unit 3. Introduction

to code conversion techniques like Gray code, BCD, Excess - 3 are discussed in unit 4. Unit 5

discusses the introduction of boolean algebra and their properties, De - Morgan’s theorem etc.

The concept of logic gates like AND, OR, NAND,NOR, XOR etc. are discussed in unit 6. Unit 7

discusses the details of floating point number representation. Logic family and their properties

are discussed in unit 8.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

MASTER OF COMPUTER APPLICATION /
MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

Digital Techniques

DETAILED SYLLABUS

BLOCK-1
Semester I

Page No.

Unit 1: Introduction to Number Systems [5 marks] 7-18
Decimal, Binary, Hexadecimal and Octal number system, Number system conversions

Unit 2: Binary Arithmetic [6 marks] 19-30
Complement: r’s and (r-1)’s complement, Binary addition, Binary subtraction, Binary
multiplication, Binary division.

Unit 3: Introduction to Data Representation [6 marks] 31-38
Fixed Point representation and Floating point representation

Unit 4: Code Conversion [5 marks] 39-46
Gray code, BCD, ASCII, EBCDIC, Conversion from Binary to Gray and Vice-versa

Unit 5: Boolean Algebra [5 marks] 47-55
Introduction, Properties, De-Morgan’s Theorem, Duality Principle

Unit 6: Logic Gates [5 marks] 56-75
Logic Gates: AND, OR, NOT, NAND, NOR, XOR; Conversion of the logic gates

Unit 7: Floating Point Number Representation [5 marks] 76-94
Floating point number, Normalization of floating point, overflow and underflow,
 detection of overflow, IEEE floating point standard

Unit 8: Logic Families [6 marks] 95-112
Introduction, Registror Transistor Logic(RTL), Integrated Injection logic(IIL),
Diode- Transistor Logic(DTL), Emitter-Coupled Logic(ECL), Transistor- Transistor
Logic(TTL), TTL-NAND, Tri State Logic, MOS devices, Logic gates with MOSFET’s

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 7

 Introduction to Number System Unit 1

UNIT 1 : INTRODUCTION TO NUMBER SYSTEMS

UNIT STRUCTURE

1.1 Learning Objectives

1.2 Introduction

1.3 Number System

1.3.1 Decimal Number System

1.3.2 Binary Number System

1.3.3 Octal Number System

1.3.4 Hexadecimal Number System

1.4 Number System Conversion

1.4.1 Binary to Decimal Conversion

1.4.2 Decimal to Binary Conversion

1.4.3 Octal to Decimal Conversion

1.4.4 Decimal to Octal Conversion

1.4.5 Hexadecimal to decimal Conversion

1.4.6 Decimal to Hexadecimal Conversion

1.5 Let Us Sum Up

1.6 Further Reading

1.7 Answers to Check Your Progress

1.8 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

l define and describe number systems like decimal, binary, octal,

and hexadecimal.

l convert from one number system to another number system.

1.2 INTRODUCTION

Computer system uses different number systems to represent data.

In this unit, we will be able to understand how numbers are represented in

different number systems.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques8

Unit 1 Introduction to Number System
In this unit, we will learn about decimal, binary, octal and hexadecimal

number systems. In addition to this, we will also discuss the ways for

converting from one number system to one another number system. Once,

we have the knowledge of number systems, then in the next units, we will

discuss about binary arithmetic and data representation methods.

1.3 NUMBER SYSTEM

Number system is a fundamental concept used in micro computer

system. They are of different types and can be represented by digit symbols.

The knowledge of binary, octal and hexadecimal number system is essential

to understand the operation of a computer. This unit deals with all these

number systems. In this unit we will discuss about all the representation of

number system and their conversion from one number system to another

number system.

We are familier with the decimal number system which is used in

our day-to-day work. Ten digits are used in decimal number system. To

represent these decimal digits, ten separate symbols 0, 1, 2, 3, 4, 5, 6, 7, 8

and 9 are used. But a digital computer stores, understands and manipulates

information composed of only zeros and ones. So, each decimal digits,

letters, symbols etc. written by the programmer (an user) are converted to

binary codes in the form of 0’s and 1’s within the computer. The number

system is divided into different categories according to the base (or radix)

of the system as binary, octal and hexadecimal. If a number system of base

r is a system, then the system have r distinct symbols for r digits. The

knowledge of the number system is essential to understand the operation

of a computer.

1.3.1 Decimal Number System

Decimal number system have ten digits represented by 0, 1, 2, 3, 4,

5, 6, 7, 8 and 9. So, the base or radix of such a system is 10.

In this system, the successive position to the left of the decimal

point represent units, tens, hundreds, thousands etc. For example, if we

consider a decimal number 1257, then the digit representations are :

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 9

 Introduction to Number System Unit 1

1 2 5 7

thousands hundreds tens units

positions position position position

The weight of each digit of a number depends on its relative position

within the number.

Example 1.1 : Find the weight of each digit in 6472.

The weight of each digit of the decimal no. 6472

6472 = 6000 + 400 + 70 + 2 = 6 × 103 + 4 × 102 + 7 × 101 + 2 × 100

The weight of digits from right hand side are :

Weight of 1st digit = 2 × 100

Weight of 2nd digit = 7 × 101

Weight of 3rd digit = 4 × 102

Weight of 4th digit = 6 × 103

The above expressions can be written in general forms as the weight of nth

digit of the number from the right hand side :

= nth digit × 10n-1

= nth digit × (base)n-1

The number system in which the weight of each digit depends

on its relative position within the number is called positional number system.

The above form of general expression is true only for positional number

system.

1.3.2 Binary Number System
Only two digits 0 and 1 are used to represent the binary number

system. So the base or radix is two (2). The digits 0 and 1 are called bits

(Binary Digits). In this number system the value of the digit will be two times

greater than its predecessor. Thus, the value of the places are :

 ← 32 ← 16 ← 8 ← 4 ← 2 ← 1

The weight of each binary bit depends on its relative position within

the number. It is explained by the following example--

Decimal Number
System uses 10 digits
from 0 to 9.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques10

Unit 1 Introduction to Number System

Example 1.2 : Find the weight of binary number 10110.

The weight of bits of the binary number 10110 is :

= 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20

= 16 + 0 + 4 + 2 + 0 = 22 (decimal number)

The weight of each bit of a binary no. depends on its relative

pointer within the no. and explained from right hand side as :

Weight of 1st bit = 1st bit X 20

Weight of 2nd bit = 2nd bit X 21

..

...

and so on.

The weight of the nth bit of the number from right hand side

= nth bit × 2n-1

= nth bit × (Base)n-1

It is seen that this rule for a binary number is same as that for a

decimal number system. The above rule holds good for any other positioned

number system. The weight of a digit in any positioned number system

depends on its relative positon within the number and the base of the number

system.

Table 1.1 shows the binary equivalent numbers for decimal digits.

Table 1.1 : Binary equivalent of decimal numbers

Decimal Number Equivalent Binary Number

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

A Binary Number
System uses only digit 0
and 1

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 11

 Introduction to Number System Unit 1

Binary Fractions : A binary fractions can be represented by a series of 1s

and 0s to the right of a binary point. The weight of digit positions to the right

of the binary point are given by 2-1, 2-2, 2-3 and so on.

Example 1.3 : Show the representation of binary fraction 0.1101.

Solution : The binary representation of 0.1101 is :

0.1101 = 1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4

= 1 × 0.5 + 1 × 0.25 + 0 × 0.125 + 1 × 0.0625

= 0.8125

So, (0.1101)2 = (0.8125)10

1.3.3 Octal Number System

A commonly used positional number system is the Octal Number

System. This system has eight (8) digit representation as 0,1,2,3,4,5,6 and

7. The base or radix of this system is 8. The values increase from left to

right as 1,8,64,512, 4096 etc. The decimal value 8 is represented in octal as

10,9 as 11,10 as 12 and so on. As 8=23, an octal number is represented by

a group of three binary bits. For example, 3 is represented as 011, 4 as 100 etc.

Table 1.2 The octal number and their binary representations.

Decimal Number Octal Number Binary Coded Octal No.

0 0 000

1 1 001

. . .

. . .

7 7 111

8 10 100 000

15 17 001 111

1.3.4 Hexadecimal Number System

The hexadecimal number system is now extensively used in

computer industry. Its base (or radix) is 16, and the digits are 0, 1, 2, 3, 4, 5,

6, 7, 8, 9, A, B, C, D, E, F. The hexadecimal numbers are used to represent

binary numbers incase of conversion and compactness.

Octal Number System
uses 8 digits from 0 to 7.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques12

Unit 1 Introduction to Number System

As 16 = 24, hexadecimal number is represented by a group of four

binary bits. For example, 5 is represented by 0101. Table 1.3 shows the

binary equivalent of a decimal number and its hexadecimal representation.

Table 1.3 : Hexadecimal number and their Binary representation

Decimal No. Hexadecimal No. Binary coded Hex. No

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

1.4 NUMBER SYSTEM CONVERSION

As the computer uses different number systems, there is a process

of converting generally used decimal number systems to other number

systems and vice-versa.

1.4.1 Binary to Decimal Conversion

To convert a binary number to its decimal equivalent we use the

following expression.The weight of the nth bit of the number from right hand

side can be represented as-

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 13

 Introduction to Number System Unit 1

= nth bit × 2n-1

First we mark the bit position and then we give the weight of each bit

of the number depending on its position. The sum of the weight of all bits

gives us the equivalent number.

Example 1.4 : Convert binary (100101)2 to its decimal equivalent.

Solution : (100101)2 = 1 × 25 + 0 × 24 + 0 × 23 +1× 22 + 0 × 21+1×20

= 32 + 0 + 0 + 4 + 0 + 1

= 37

So, (100101)2 = (37)10

Mixed number contain both integer and fractional parts and can convert to

its decimal equivalent is as follows :

Example 1.5 : Convert (11011.101)2 to its equivalent decimal number.

Solutaion :
(11011.101)2 = (1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20) +

 (1 × 2–1 + 0 × 2–2 + 1 × 2–3)

= (16 + 8 + 0 + 1) + (0.5 + 0 + 0.125) = 27.625

So, (11011.101)2 = (27.625)10

1.4.2 Decimal to Binary Conversion

There are different methods used to convert decimal number to

binary numbers. The most common method is to repeatedly divide the

decimal number by 2, then the remainder 0’s and 1’s obtained after division,

is read in reverse order to obtain the binary equivalent of the decimal number.

Example 1.6 : Convert (75)10 to its binary equivalent.

Solution : 2 |75 Remainder

2 |37 LSB 1

2 |18 1

2 |9 0 Read in

2 |4 1 reverse order

2 |2 0

2 |1 MSB 0

0 1

So, (75)10 = (1001011)2

á

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques14

Unit 1 Introduction to Number System

Example 1.7 : Convert decimal fraction (25.625)10 to its equivalent binary

number.

Solution : 2|25 Remainder MSB 0.625

2 |12 1 × 2

2 |6 0 1.250

2 |3 0 × 2

2 |1 1 0.500

0 1 × 2

(25)10 = (11001)2 1.000

(0.625)10 = (0.101)2

So, (25.625)10 = (11001.101)2

1.4.3 Octal to Decimal Conversion

The method of converting octal numbers to decimal numbers is

simple. The decimal equivalent of an octal number is the sum of the numbers

multiplied by their corresponding weights.

Example 1.8 : Find decimal equivalent of octal number (153)8

Solution : 1 × 82 + 5 × 81 + 3 × 80 = 64 + 40 + 3 = 107

So, (153)8 = (107)10

The fractional part can be converted by multiplying it by the negative

powers of 8 as shown in the following example.

Example 1.9 : Find decimal equivalent of octal number (123.21)8

Solution : (1X82 + 2X81 + 3X80) + (2 × 8-1 + 1 × 8-2)

= (64 +16 + 3) + (0.25 + 0.0156) = 83.2656

So, (123.21)8 = (83.2656)10

1.4.4 Decimal to Octal Conversion

The procedure for conversion of decimal numbers to octal numbers

is exactly similar to the conversion of decimal number to binary numbers

except replacing 2 by 8.

Example 1.10 : Find the octal equivalent of decimal (4121)10

â

â

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 15

 Introduction to Number System Unit 1

Solution :

8 |4121

8 |515 1 read from MSB

8 |64 3 to LSB

8 |8 0

8 |1 0

0 1

So, (4121)10=(10031)8

The fractional part is multiplied by 8 to get a carry and a fraction as

shown in the following example.

Example 1.11 : Find the octal equivalent of (.123)10

Solution : Octal equivalent of fractional part of the decimal number is :

8 × 0.123 = 0.984 0

8 × 0.984 = 7.872 7 read from LSB

8 × 0.872 = 6.976 6 to MSB

8 × 0.976 = 7.808 7

Read the integer to the left of the decimal point.

The calculation can be terminated after a few steps if the fractional

part does not become zero.

The octal equivalent of (0.123)10= (0.0767)8

NOTE : The octal to binary and binary to octal conversion is very easy.

Since, 8 is the third power of 2, we can convert each octal digit into its three-

bit binary form and vice versa.

Example 1.12 : Convert (567)8 to its binary form.

Solution : 5 6 7

101 110 111

So, (567)8 = (101 110 111)2

Conversion from binary to octal is just opposite of the above

example.

1.4.5 Hexadecimal to Decimal Conversion
The method of converting hexadecimal numbers to decimal numbers

is simple. The decimal equivalent of an hexadecimal number is the sum of

á

â

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques16

Unit 1 Introduction to Number System

the numbers multiplied by their corresponding weights.

Example 1.13 : Find the decimal equivalent of (4A8C)16

Solution :
(4A8C)16 = (4 × 163) + (10 × 162) + (8 × 191) + (12 × 160)

= 16384 + 2560 + 128 + 12
=(19084)10

(4A83)16 = (19084)10

Example 1.14 : Find the decimal equivalent of (53A.0B4)16

Solution :
(53A.0B4)16 = (5 × 162) + (3 × 161) + (10 × 160) + (0 × 16-1)

 + (11 × 16-2) + (4 × 16-3)
= 1280 + 48 + 10 + 0 + 0.04927 + 0.0009765
= (1338.0439)10

 (53A.0B4)16 =(1338.0439)10

1.4.6 Decimal to Hexadecimal Conversion

The procedure for conversion from decimal no. and its fraction part
to hexadecimal equivalent is exactly similar to the conversion of decimal to
binary number except replacing 2 by 16.
Example 1.15 : Convert decimal (1234.675)10 to hexadecimal.
Solution : First, we consider (1234)10 :

Remainder
Decimal Hexadecimal

16 |1234 2 2
16 |77 13 D
16 |4 4 4

(1234)10 = (4D2)16

Then, conversion of (0.675)10 :
Decimal Hexadecimal

0.675 × 16 = 10.8 10 A
0.800 × 16 = 12.8 12 C
0.800 × 16 = 12.8 12 C
0.800 × 16 = 12.8 12 C

(0.675)10= (0.ACC)16

Hence (1234.675)10= (4D2.ACC)16

á

â

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 17

 Introduction to Number System Unit 1

If the decimal number is very large, it is tedious to convert the
number to binary directly. So it is always advisable to convert the number

into hexadecimal first, and then convert the hexadecimal to binary.

CHECK YOUR PROGRESS

Q.1. What is the largest numbar that can be represented using 8

bits?

..

Q.2. What is the weight of 1 in (10000)2.

..

Q.3. Convert the following:

a) (565.25)10 to its equivalent binary number.

b) (256.24)8 to decimal equivalent.

c) (A3B.BB)16 to decimal equivalent.

d) (10010.110)2 to decimal equivalent.

e) (3964.63)10 to octal equivalent.

1.5 LET US SUM UP

l We have learnt four different number systems used in digital systems

in this unit.

l Conversion of one number system to another number system can

be done.

l In our day-to-day life, we use the decimal number system. In this

system, base is 10 and we use 10 digits from 0 to 9.

l The binary number system has two digits and so its base is 2.

l The octal number system has 8 digits from 0 to 7 and the base of

the system is 8.

l The hexadecinal number system has 16 digits from 0 to 9 and A to F

and the base of the system is 16.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques18

Unit 1 Introduction to Number System

1.6 FURTHER READING

l Ram, B. (2000), Computer Fundamentals Architecture and

Organization, New Age International

l Mano, M.M. (2017), Digital Logic and Computer Design, Pearson
Education India

l Sinha, P. K. and Sinha P. (2010), Computer Fundamentals, BPB
Publication.

l Talukdar, P. (2010), Digital Techniques, N.L. Publications.

1.7 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : (1111 1111)2

Ans. to Q. No. 2 : Weight is 24 = 16

Ans. to Q. No. 3 : a) (1000110101.01)2 b) (174.44)10 c) (2620.8)10

d) (18.75)10 e) (7574.50)8

1.8 MODEL QUESTIONS

Q.1.What is binary number system?

Q.2.What is meant by ‘base’ or ‘radix’ of a number system?

Q.3.Convert the following to its binary equivalent:

(i) (67)8 (ii) (A8D)16 (iii) (81B6.F)16

(iv) (64.3)10 (v) (765.45)8 (vi) (1725.23)8

Q.4. Convert the following to its decimal equivalent:

(i) (11011)2 (ii) (1111.11)2 (iii) (45)8

(iv) (671.23)8 (v) (ABCD)16 (vi) (12AF.E4)16

Q.5.Explain the process of converting a decimal number to binary.

Q.6.How can a binary number be converted into octal and hexadecimal

numbers?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 19

Binary Arithmetic Unit 2

UNIT 2 : BINARY ARITHMETIC

UNIT STRUCTURE

2.1 Learning Objectives

2.2 Introduction

2.3 Complement of Numbers

2.3.1 (r–1)’s Complement

2.3.2 r’s Complement

2.4 Binary Arithmetic

2.4.1 Addition

2.4.2 Subtraction

2.4.3 Multiplication

2.4.4 Division

2.5 Let Us Sum Up

2.6 Further Reading

2.7 Answers to Check Your Progress

2.8 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit you will be able to:

l describe r‘s and (r-1)’s complement

l describe binary addition and subtraction

l describe binary multiplication and division.

2.2 INTRODUCTION

In the previous unit, we have been introduced to the different number

systems Decimal, Octal, Binary and Hexadecimal. We have also learnt

how to convert from one number system to another number system in the

previous unit. In this unit, we will learn about the complement systems. We

will learn about R and (R-1)’s complement systems. We will also learn to

perform binary arithmetic functions like addition, subtraction, multiplication

and division in this unit. In the next few units are will learn more about data

representation and code conversion methods.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques20

Unit 2 Binary Arithmetic

2.3 COMPLEMENT OF NUMBERS

Complements are used in digital computers for simplifying the

substraction operation and for logical manipulation.The complement of a

binary number is obtained by inverting all of the bits.

For example, the complement of 10011 is 01100 and 00101 is 11010 etc.

The complement again depends on the base of the number.

There are two types of complements for a number of base r. These are :

l r’s complement and

l (r-1)’s complement,

For example, for decimal numbers the base is 10. Therefore,

complements will be 10’s complement and (10–1)=9’s complement. For

binary numbers, the complement are 2’s complement and 1’s complement

since base is 2.

2.3.1 (r–1)’s Complement

Given a number N in base r having n digits, the (r–1)’s

complement of N is defined as (rn–1) – N.
9’s Complement : For decimal numbers, r=10 and r-1=9, so the 9’s
complement of N is (10n–1) – N.

For example, with n = 4 we have 104 = 10000 and 104–1 = 9999.
It follows the rule that the 9’s complement of a decimal number is obtained
by subtracting each digit from 9.

For example, 9’s complement of 49 is (99–49) = 50
9’s complement of 127 is (999–127) = 872

1’s Complement : For binary numbers, r = 2 and (r–1) = 1, so the 1’s
complement of N is (2n–1) – N. Again, 2n is represented by a binary number
that consists of a 1 followed by n 0’s. 2n-1 is a binary number represented
by n 1’s. For example,with n = 4, we have 24 = (10000)2 and 24–1 = (1111)2.
Thus the 1’s complement of a binary number is obtained by subtracting
each digit from 1.

However, the subtraction of a binary digit from 1 causes the bit
to change from 0 to 1 or from 1 to 0. Therefore, the 1’s complement of a
binary number is formed by changing 1’s into 0 and 0’s into 1’s. For example,

1’s complement of 1010111 is 0101000.

The 7’s and 15’s
complement of a number
is found by subtracting
each digit of the number
from 7 and 15
respectively.

Like 8’s complement and
16’s complement of a
number is found by
adding 1 to the LSB of
the 7’s and 15’s
complement of an octal
and hexadecimal number
respectively.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 21

Binary Arithmetic Unit 2

2.3.2 R’s Complement
The r’s complement of a n-digit number N in base r is defined as

rn – N for N =0 and 0 for N = 0. Comparing with the (r–1)’s complement, we

note that the r’s complement is obtained by adding 1 to the (r–1)’s

complement.

10’s Complement : The 10’s complement of a decimal number is equal to

the 9’s complement of the number plus 1

i.e. 10’s complement of decimal number = Its 9’s complement +1

So, 10’s complement of 49 is (99–49) + 1 = 50 + 1 = 51

10’s complement of 127 is (999–127) + 1 = 872 + 1 = 873

2’s Complement : It is obtained by adding 1 in the 1’s complement form of

the binary numbers.

i.e. 2’s complement of binary number = 1’s complement of that

number + 1

For example, 2’s complement of 1010111 is 0101000 + 1 = 0101001

CHECK YOUR PROGRESS

Q.1. Find 9’s complement 10’s complement of decimal numbers 44

and 182.

..

..

Q.2. Find 1’s complement and 2’s complement of binary numbers

1101001 and 0000.

..

..

2.4 BINARY ARITHMETIC
Like decimal arithmetic operations such as addition, subtraction we

can perform arithmetic operation in binary number system too.

2.4.1 Addition

Binary addition is performed in the same manner as decimal addition. Since,

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques22

Unit 2 Binary Arithmetic

in binary system only two digit 0 and 1 are used, the addition follows the

following rules.

0 + 0 = 0

0 + 1 = 1 = 1+0

1 + 1 = 0, Carry 1 to the next left column

1 + 1 +1 = 1, Carry 1 to the next column.

Carry overs are performed in the same manner as in decimal arithmetic.

Example 2.1 : Add the binary numbers

(i) 1011 and 1001

(ii) 10.011 and 1.001

Solution :

(i) Binary no. Equivalent decimal no.

11

1011 11

+1001 9

10100 20

(ii) 10.011 2.375

1.001 1.125

11.100 3.500

Since the circuit in all digital systems actually can handle two

numbers to performs addition, it is not necessary to consider the addition of

more than two binary numbers. When more than two numbers are to be

added, the first two are added first and then their sum is added to the third

and so on.

The complexity may rise when we add combination of positive

and negative binary numbers. In this case, the arithmatic addition is

dependent on the representation of

a) Signed magnitude

b) Signed 1’s complement

c) Signed 2’s complement

This will be more clear if we discuss using the following example:

Carry

1 Carry

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 23

Binary Arithmetic Unit 2

Example 2.2 : Add 25 and -30 in binary using 7 bit register in signed

magnitude representation

a) Signed 1’s complement representaion

b) Signed 2’s complement representaion

Solution : Here, 25 is + 25 = 0011001 in binary system

–30 = 1011110 in binary system

To do arithmatic addition with one negative number, we have to

check the magnitude of the numbers. The number having smaller magnitude

is subtracted from the bigger number and the sign of bigger number is

selected. To implement such a scheme in digits, hardware will require a

long sequence of control decisions as well as circuits that will add, compare

and subtract numbers. The better alternative of arithmatic addition with one

negative number is signed 2’s complement.

In signed 2’s complement representation :

We get that +30 is 0 011110

–30 is 1 011110

Now, 2’s complement of –30 (including sign bit) 1 100010

+25 is 0 011001

Addition

+25 0 011 001

–30 1 100 010

–05 1 111 011 (Just add the numbers)

The result for negative number will store in signed 2’s complement

form. So the above result in signed 2’s complemnt form including sign bit is:

1 000 100 +1 = 1 000 101

Which is -05 in decimal system.

From the above example, it can be noticed that, signed 2’s

complement representation is simpler than signed magnitude representaion.

This procedure requires only one central decision and only one circuit for

adding the two numbers. But it puts additional condition that the negative

numbers should be stored in signed 2’s complment form in the register.

This can be achieved by complementing the positive number bit by bit then

incrementing the resultant by 1 to get signed 2’s complement.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques24

Unit 2 Binary Arithmetic

In signed 1’s complement representation : This method is also simple.

Here, we add the two numbers including the sign bit. If carry of the most

significant bit or sign bit is one, then we increment the result by 1 and discard

the carry over.

Addition :

+25 = 0 011 001

–30 = 1 100 001 (1’s complement of -30)

–5 = 1 111 010

The result will store in 1’s complement format. So, 1111 010 in

1’s complement format including the sign bit is 1 000 101 which is the required

result.

Example 2.3 : Add -25 and +30 using 7-bit register.

Solution :

–25 1 100 110 (1’s complement of 25)

+30 0 011 110

+5 1 0 000 100

Carry bit, so add 1 to the sum and discard the carry.

This sum is now = 0 000 101 which is +5

Example 2.4 : Add –25 and –30 using 7-bit register.

Solution : –25 1 100 110 (1’s complement of 25)

–30 1 100 001 (1’s complement of 30)

–55 1 1 000 111

Carry bit, so add 1 to sum and discard the carry.

Now the sum is = 1 001 000, which is –55

Since, +55 is 0 110 111

So, –55 is in 1’s complement 1 001 000

The interesting feature about these representation is the

representation of 0 in signed magnitude and 1’s complement. There are

two representations for zero :

Signed magnitude +0 –0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 25

Binary Arithmetic Unit 2

0 000000 1 000000

Signed 1’s complement 0 000000 1 111111

But in signed 2’s complement, there is just one zero and there

are no positive or negative zero.

+0 000000

–0 in 2’s complement is +0 = 1 111111

1

1 0 000000

discard this carry

Thus, both +0 and –0 are same in 2’s complement notation.

This is an added advantage in favour of 2’s complement notation. The

maximum number which can be accomodated in registers also depends

on the type of representation. In general, in a 8 bit register, 1 bit is used as

sign. Therefore, the rest of 7 bits are used for representing the value. The

value of maximum and minumum number which can be represented are :

For signed magnitude representation 27 –1 to –(27–1)

= 128 –1 to – (128–1)

= 127 to – 127,

which is for signed 1’s complement representation.

For signed 2’s complement representation is from + 127 to –128. The –128

is represented in signed 2’s complement notation as 10000000.

2.4.2 Subtraction

Though there are many other methods for performing

subtraction, we will consider the method of subtraction known as

complementary subtraction. This is a more efficient method of subtraction

while using electronic circuits. We have to follow the following three steps

to subtract binary numbers.

In 1’s complement method :

1. Find the 1’s complement of the number which is subtracting.

2. Add the number which is subtracting from with the complement value

obtained from step 1.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques26

Unit 2 Binary Arithmetic

3. If there is a carry of 1, add the carry with the result of addition. Else,

take complement of the result again and attach a negative sign with

the result.

Example 2.5 : Subtract 5 – 6 by 1’s complement method.

Solution : Binary equivalent of 5 is 101

Binary equivalent of 6 is 110

Step 1 : 1’s complement of 6 is 001

Step 2 : Adding 001 with 101 gives the result :

001

+ 101

110

Step 3 : Since there is no carry in step 2, we take the complement again

which will be 001 and after attaching negative sign, the required result will

be –001 which is -1.

In 2’s complement method : It is same as 1’s complement method except

step 3. The steps are :

Step 1 : Find the 2’s complement of the number which is subtracting.

Step 2 : Add the number which is subtracting from, with the complement

value obtained from step 1.

Step 3 : If there is a carry of 1, ignore it. Else, take 2’s complement of the

result again and attach a negative sign with the result.

Example 2.6 : Subtract 5 – 7 by 2’s complement method.

Solution : Binary equivalent of 5 is 101

Binary equivalent of 7 is 111

Step 1 : The 2’s complement of 7 is 000 + 1 = 001

Step 2 : Adding 001 with 101 will give result as :

001

101

110 (No carry)

Step 3 : Since there is no carry, the 2’s complement of 110 is 001 + 1 = 010

and attaching a negative sign the required result is –10 i.e.,-2.

Overflow : An overflow is said to have occured when the sum of two n digit

number occupies (n+1) digits. This definition is valid for both binary as well

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 27

Binary Arithmetic Unit 2

as decimal digits. But what is the significance of overflow for binary numbers?

Well, the answer lies in the representation of numbers. Every computer

employs a limit for representation of numbers eg. in our examples we are

using 8 bit registers of calculating the sum. But what will happen if the sum

of the two numbers can be accommodated only in 9 bits? Where are we

going to store the 9th bit? The problem will be more clear by the following

example. In case of a +ve no. added to a –ve no., the sum of result will

always be smaller than the two numbers. An overflow always occurs when

the added numbers are both +ve or both -ve.

Example 2.7 : Add the numbers 65 and 75 in 8 bit register in signed 2’s

complement notation.

Solution : 65 0 1000001

75 0 1001011

140 1 0001100

This is a -ve number and the 2’s complement of the result is

equal to -115 which is obviously a wrong result. This has occured because

of overflow.

Detection of Overflow : Overflow can be detected as :

If the carry out of the MSBs of number (or, carry into the sign bit)

is equal to the carry out of the sign bit, then overflow must have occured.

For example

–65 1 0111111 –65 1 0111111

–15 1 1110001 –75 1 0110101

–80 1 1 0110000 –140 1 0 1110100

Carry = 1 Carry = 10

Carry from MSB = 1 Carry from MSB = 0

Carry from sign bit = 1 Carry from sign bit = 1

Sign bit is = 1 Sign bit is = 0

No overflow Overflow

Thus, overflow has occured, i.e. the arithmatic results so

calculated have exceeded the capacity of the representation. This overflow

also implies that the calculated results might be errorneous.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques28

Unit 2 Binary Arithmetic

2.4.3 Multiplication

Multiplication in binary follows the same rules that are followed

in the decimal system. The rules to be remembered are:

0 × 0 = 0 1 × 0 = 0

0 × 1 = 0 1 × 1 = 1

For example, multiplying 10101 × 11001

10101

× 11001

10101

10101

10101

1000001101

2.4.4 Division
The process of binary division is same as the decimal division.

In binary division we have two rules:

0/1 = 0 1/1 = 1

The steps for binary division are :

1. Start from the left of the divided.

2. Perform subtraction in which the divisor is subtracted from the divedend.

a) If subtraction is possible put a 1 in the quotient and subtract the

divisor from the corresponding digits of the dividend. Else put a 0

in the quotient

b) Bring down the next digit to the right of the remainder.

3. Execute step 2 till there are no more digits left to bring down from the

dividend.

Example 2.8 : Divide 1011001 by 110

Solution :

0111 (Quotient)

(Divisor) 110 |1011001 (Dividend)

110

1010

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 29

Binary Arithmetic Unit 2

110

1000

110

0101

Here 111 is the quotient and 101 is the remainder.

CHECK YOUR PROGRESS

Q.3.Add 35 and -40 in binary using 7 bit register in 2’s complement

representation.

..

Q.4.Add binary no. 110011.010 and 1000.10

..

Q.5.Subtract (1010101)2 -(1001001)2 by 2’s complement method.

..

Q.6.Multiply (11001)2 by (101)2.

..

Q.7.Divide (101101.101)2 by (110)2.

..

2.5 LET US SUM UP

l The 1’s complement of a binary number is formed by changing 1’s

into 0 and 0’s into 1’s.

l The 2’s complement of a binary number is obtained by adding 1 to

the 1’s complement of the binary number.

l Binary addition is performed in the same manner as decimal addition.

l Complementary subtraction method is considerd for binary

subtraction.

l An overflow is said to have occured when the sum of two n digits

number occupies (n+1) digits.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques30

Unit 2 Binary Arithmetic

2.6 FURTHER READING

l Ram, B. (2000), Computer Fundamentals Architecture and

Organization, New Age International

l Mano, M.M. (2017), Digital Logic and Computer Design, Pearson
Education India

l Sinha, P. K. and Sinha P. (2010), Computer Fundamentals, BPB
Publication.

l Talukdar, P. (2010), Digital Techniques, N.L. Publications.

2.7 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : 9’s complement of 44 is 55 and 182 is 817
10’s complement of 44 is 56 and 182 is 818

Ans. to Q. No. 2 : 1’s complement of 1101001 is 0010110 and 0000 is
1111
2’s complement of 1101001 is 0010111 and 0000 is 10000

Ans. to Q. No. 3 : (000101)2

Ans. to Q. No. 4 : (111011.110)2

Ans. to Q. No. 5: (1100)2

Ans. to Q. No. 6 : (1111101)2

Ans. to Q. No. 7 : (111.10011)2

2.8 MODEL QUESTIONS

Q.1. Find 8’s and 16’s complement of the following:
(i) 67 (ii) 5672

Q.2. Find the 7’s and 15’s complement of the following:
(i) 643 (ii) 15AB

Q.3. Perform the following by 2’s complement method:
(i) 10101 – 11011 (ii) 100011 – 1111

Q.4. Multiply 1101 to 11110.

Q.5. Divide 110011 by 110.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 31

Introduction to Data Representation Unit 3

UNIT 3 : INTRODUCTION TO DATA REPRESENTATION

UNIT STRUCTURE

3.1 Learning Objectives

3.2 Introduction

3.3 Data Representation

3.4 Fixed Point Representation

3.5 Floating Point Representation

3.6 Let Us Sum Up

3.7 Further Reading

3.8 Answers to Check Your Progress

3.9 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

l identify how data is represented in computers

l describe fixed point representation

l describe floating point representation

3.2 INTRODUCTION

In the previous units, we have learnt about different number systems

like binary, octal, decimal and hexadecimal. We have also learnt how to do

binary arithmetic operations like addition, subtraction, multiplication and

division.

In this unit, we will discuss about the concept of data representation.

Fixed and floating point representation are introduced in this unit. Floating

point representation will be covered in detail in unit 7 later. In the next unit we

will discuss about the different types of computer codes.

3.3 DATA REPRESENTATION

Data are usually represented by using the alphabets A to Z, numbers

0 to 9 and various other symbols. This form of representation is used to

formulate problem and fed to the computer. The processed output is required

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques32

Unit 3 Introduction to Data Representation

in the same form. This form of representation is called external data

representation. However, the computer can understand data only in the form

of 0’s and 1’s. The method of data representaion in a form suitable for storing

in the memory and for processing by the CPU is called the internal data

representation on digital computer.

Data, in general, are of two types : Numeric and non-numeric

(Character data). The numeric data deals only with numbers and arithmetic

operations and non numeric data deals with characters, names, addresses

etc. and non-arithmetic operations. Numeric data can be represented using

fixed point or floating point representations. Let us look at these in detail.

3.4 FIXED POINT REPRESENTATION

A fixed point number in binary system uses a sign bit. A positive

number has a sign bit 0 while the negative number has a sign bit 1. A negative

number can be represented in one of the following ways.

– Signed magnitude representaion

– Signed 1’s complement representaion

– Signed 2’s complement representaion

Assume that the size of the register is 7 bit and the 8th position

bit in used for error checking and correction or other purposes.

a) Signed magnitude representation

+6 –6

0 000110 1 000110
 No change in the

Sign bit Sign bit magnitude, only the

sign bit changes

b) Signed 1’s complement representation

+6 –6

0 000110 1 111001

Here 0 and 1 are sign bits. We get 1’s complement for the –ve

integer is by taking complement of all the bits of +ve no. including sign bit.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 33

Introduction to Data Representation Unit 3

c) Signed 2’s complement representation

+6 –6

0 000101 1 111011
 2’s complement of the

Sign bit Sign bit positive number

including sing bit

The signed magnitude system is easier to interpret but computer

arithmetic with this system is not efficient. The circuits for handling

numbers are simplified if 1’s or 2’s complement systems are used

and as a result one of these two is almost always adopted.

Note 1 : In 1’s and 2’s complements, all positive integers are

represented as sign magnitude system.

Note 2 : When all the bits of the computer word are used to represent

the number and no bit is used for signed representation, it is called

unsigned representation of the number.

3.5 FLOATING POINT REPRESENTATION

A number which has both an integer part as well as a fractional

part is called real number or floating point number. A floating point

number is either positive or negative. Examples of real decimal

numbers are 156.65, 0.893, –235.75, –0.253 etc. Examples of binary

real numbers are 101.101, 0.11101, –1011.101, –0.1010 etc.

The first part of the number is a fixed point number which is

called mantissa. It can be an integer or a fraction.

The second part specifies the decimal or binary point position

and is termed exponent. It is not a physical point. Therefore,

whenever we are representing a point it is termed as an exponent. It

is only the assumed position. For example, for decimal 0. +15.37,

the typical floating point notaion is :

51.47 = 0.5147 × 102 or 5147 × 10-2

Now, the floating point representation of 0.5147 × 103 is :

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques34

Unit 3 Introduction to Data Representation

Sign Sign

|0 .5147| |0 02|

Mantissa (fraction) Exponent

The floating point representation of 5147 X 10-2 is

Sign Sign

|0 5147| |0 02|

Mantissa (Integer) Exponent

Similarly, for example a floating point binary number 1011.1010

can be represented as : 1011.1010 = 0.10111010 × 24

This can be represented in a 16 bit register as follows

Sign Sign

|0 .10111010| |0 000100|

Mantissa (fraction) Exponent

The mantissa occupies 9 bits (1 bit for sign and 8 bits for value)

and the exponent 7 bits (1 bit for sign and 6 bits for value). The

binary point (.) is not physically indicated in the register, but it is only

assumed (position) to be there.

In general form, the floating point numbers is expressed as :

N = M X Re

Where, M – Mantissa

R – Radix (or base)

e – Exponent

The mantissa M and exponent e are physically present in register.

But the radix R and the point (decimal or binary point) are not

indicated in the register. There are only assumed for computation

and manipulation.

Normalized Floating point Number : Floating point numbers are

often represented in normalized forms. A floating point number where

mantissa does not contain zero as the most significant digit of the

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 35

Introduction to Data Representation Unit 3

number is considered to be in normaliged form. For example,

0.00038695 × 105 and 0.0589 × 10-4 are not normaliged numbers.

But 0.38695 × 102 and 0.589 × 10-5 are normaliged numbers.

Similarly, for binary number also, 0.0011001 × 28 and 0.0001011 × 2-

5 are not non-normaliged binary numbers. But 0.11001 × 26 and 0.1011

× 2-8 are normaliged binary numbers.

A zero cannot be normaliged as all the digits in the mantissa is

zero.

Arithmetic operations involved with floating point numbers are

more complex. It takes larger time for execution and requires

complex hardware. But floating point representaion is frequently used

in scientific calculations.

Overflow and Underflow : When the result is too small to be

presented by the computer, an overflow or underflow condition exists.

When two floating-point numbers of the same sign are added, a

carry may be generated out of high-order bit position. This is known

as mantissa overflow. In case of addition or subtraction floating point

numbers are aligned. The mantissa is shifted right for the alignment

of a floating point number. Sometimes, the low order bits are lost in

the process of alignment. This is referred as mantissa underflow. To

perform the multiplication of two floating point numbers, the

exponents are added. In certain cases the sum of the exponents

maybe too large and it may exceed the storing capacity of the

exponent field. This is called exponent overflow. In case of division

the exponent of the divisior is subtracted from the exponent of the

dividend. The result of subtraction may be too small to be

represented. This is called exponent underflow.

Overflow or underflow resulting from a mantissa operation can

be corrected by shifting the mantissa of the result and adjusting the

exponent. But the exponent overflow or underflow can not be

corrected and hence, an error indication has to be displayed on the

computer screen.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques36

Unit 3 Introduction to Data Representation

CHECK YOUR PROGRESS

Q.1. Represent 10 by the following representation method.

a) Signed magnitude representation.

b) Signed 2’s complement representation.

Q.2. Represent (1010.1010)2 with floating point representation

method.

Q.3. Fill in the blanks

a) When all the bits of the computer word are used to

represent the number, it is called ___________ of the

number.

b) A ___________ cannot be normalized as all the digits in

the mantissa is zero.

c) In general, ___________ of a number is used to represent

sign bit in signed magnitude representation.

d) ___________ takes longer time for execution and requires

complex hardware.

e) An ___________ occurs when the result is too small to

be represented by the computer.

3.6 LET US SUM UP

l A fixed point numbers in binary system uses a sign bit. A positive

number has a sign bit 0 while the negative number has a sign bit 1.

l For fixed point we have discussed three different methods, they are:

Ø Signed magnitude representation method

Ø Signed 1’s complement representation method

Ø Signed 2’s complement representation method

l Signed magnitude representation: It uses one bit, usually the

leftmost bit, to indicate the sign where ‘0’ indicates the positive integer

and the ‘1’ indicates the negative integer. The rest of the bits are used

as magnitude.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 37

Introduction to Data Representation Unit 3

l A number which has both an integer part and a fractional part is called

real number or floating point number. A floating point number can be

either positive or negative.

l The first part of the number is a fixed point number which is called

Mantissa. It can be an integer or a fraction.

l The second part specified the decimal or binary point position and is

termed exponent.

l A floating point number where mantissa does not contain zero as the

most significant digit of the number is considered to be in normalized

form.

l When two floating-point numbers of the same sign are added, a carry

may be generated out of high-order bit position. This is known as

mantissa overflow. In case of division the exponent of the divisor is

subtracted from the exponent of the dividend. The result may be too

small to be represented and is calaled exponent underflow.

3.7 FURTHER READING

l Morris, M.M. (1987). DIgital Logic and Computer Design.

l Sinha, P.K., & Sinha, P. (2010). Computer Fundamentals (Vol. 4). BPB
publications.

l Ram, B. (2000). Computer Fundamentals: Architecture and

Organisation. New Age International.

3.8 ANSWERS TO CHECK YOUR PROGRESS

Answer to Q1: a) 001010

b) 110110

Answer to Q2: Mantissa is 10101010, fraction is 000100 (in 16 bit
representation)

Answer to Q3: a) unsigned representation
b) zero
c) leftmost bit
d) Arithmetic operation

e) overflow or underflow

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques38

Unit 3 Introduction to Data Representation

3.9 MODEL QUESTIONS

Q.1. Explain the fixed point representation method with example.

Q.2. How can decimal number be represented?

Q.3. What is mantissa and exponent of decimal representation?

Q.4. How can a floating point number be normalized for computerized

representation?

Q.5. What is overflow and underflow?

Q.6. What is data representation?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 39

Code Conversion Unit 4

UNIT 4 : CODE CONVERSION

UNIT STRUCTURE
4.1 Learning Objectives

4.2 Introduction

4.3 Computer Code

4.4 BCD number

4.5 ASCII Code

4.6 EBCDIC

4.7 Gray Code

4.8 Let Us Sum Up

4.9 Further Reading

4.10 Answers to Check Your Progress

4.11 Model Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

l describe different computer code systems

l describe BCD and ASCII code

l describe EBCDIC and Gray code

4.2 INTRODUCTION

In the previous units we have learned about different number systems

like decimal, binary, octal and hexadecimal. We have also covered binary

arithmetic operations like addition, subtraction multiplication and division.

We have also discussed about the methods for representing data. Fixed

point representation and floating point representation were also introduced

in the previous unit.

In this unit, we will introduce the concept of computer code and code

conversion. Different computer codes like BCD, ASCII, EBCDIC and gray

codes are discussed in this unit. We will also learn how to convert binary to

gray code and vice versa. In the next units, we will discuss about boolean

algebra and logic gates.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques40

Unit 4 Code Conversion

4.3 COMPUTER CODE

A code is a symbol or group of symbols that represents discrete

elements. Coding of characters has been standardised to enable transfer
of data between computers. Numeric data is not the only form of data
handled by a computer. We often require to process alphanumeric data. An
alphanumeric data is a string of symbols, where a symbol may be one of
the letters A, B, C,, Z, or one of the digits 0, 1, 2,, 9, or a special
character, such as + – */, . () = (space for blank) etc. However, the bits 0
and 1 must represent any data internally. Hence, computers use binary
coding schemes to represent data internally. In binary coding, a group of
bits represent every symbol that appears in the data. The group of bits used
to represent a symbol is called a byte. To indicate the numbers of bits in a
group, sometimes a byte is referred to as “n-bit byte”, where the group
contains n bits. However, the term “byte” commonly means an 8-bit byte

because most modern computers use 8 bits to represent a symbol.

4.4 BCD NUMBER

In computing and electronic systems, Binary-Coded Decimal
(BCD) is a way to express each of the decimal digits with a binary code. Its
main advantage is that it allows easy conversion to decimal digits for printing
or display and faster decimal calculations. Decimal numbers with their BCD

equivalent are given in the Table 4.1 :

Table 4.1 : BCD Code

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 41

Code Conversion Unit 4

Unlike binary encoded numbers, BCD encoded numbers can

easily be displayed by mapping each of the nibbles(4-bits) to a different
character. Examples of conversion of decimal to BCD and BCD to decimal
are included below:
Example 4.1 : Convert the decimal numbers 47 and 180 to BCD.
Solution : 4 = 0100 and 7 = 111

47 = 0100111
Similarly, 180=0001 1000 0000

Example 4.2 : Convert each of the BCD code 1000111 to decimal.
Solution : First we have to divide the whole BCD code by a set of 4-bits
from right to left. Then from left to right we can put the corresponding decimal
numbers.

0100 0111
4 7

Thus, 1000111(in BCD) = 47 (in Decimal)
BCD addition : BCD is a numeric code and can be used in arithmetic
operations. Addition is the most important operation because the other three
operations (subtraction, multiplication, and division) can be accomplished
by the use of addition. Here is how to add two BCD numbers:
Step1 : Add the two BCD numbers, using the rules for binary addition.
Step 2 : If a 4-bit sum is equal to or less than 9, it is a valid BCD number.
Step 3 : If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is
generated, it is an invalid result. Add 6(0110) to the 4-bit sum in order to skip
the six invalid states and return the code to 8421. If a carry results when 6 is
added, simply add the carry to the next 4-bit group.

Example 4.3 : Add the following BCD numbers :
a) 0001 + 0100
b) 10000111 + 01010011

Solution : The decimal number addition are shown for comparison.
(a) 0001 1

+0100 +4
0101 5

∴ 0001 + 0100 = 0101 Which is valid BCD no. (Value < 9)
(b) 1000 0111 87

+0101 0011 + 53

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques42

Unit 4 Code Conversion

1101 1010 Both groups are invalid (>9) +140
+0110 +0110 Add 6 (i.e.,0110) to both groups

0001 0100 0000 Valid BCD number which is 140

in decimal.

4.5 ASCII CODE

ASCII stands for American Standard Code for Information

Interchange. It is a very well-known fact that computers can manage internally
only 0s (zeros) and 1s (ones). By means of sequences of 0s and 1s the
computer can express any numerical value as its binary translation, which
is a very simple mathematical operation.

However, there is no such evident way to represent letters and
other non-numeric characters with 0s and 1s. Therefore, in order to do that,
computers use ASCII tables, which are tables or lists that contain all the
letters in the roman alphabet plus some additional characters. In these tables
each character is always represented by the same order number. For
example, the ASCII code for the capital letter “A” is always represented by
the order number 65, which is easily representable using 0s and 1s in binary:
65 expressed as a binary number is 1000001. ASCII has 128 character
codes(from 0 to 127) and symbols represented by a 7-bit binary code.

ASCII is the common code for microcomputer equipment. The
first 32 characters in the ASCII-table are unprintable control codes and are
used to control peripherals such as printers. Examples of control characters
are “NULL”, “line feed”, “start of text” and “escape”. The other characters
are graphic symbols that can be printed or displayed and that include the
letters of the alphabet (lowercase and upper case), the ten decimal digits,

punctuation signs, and other commonly used symbols.

4.6 EBCDIC
EBCDIC is the abbreviation for Extended Binary-Coded

Decimal Interchange Code. EBCDIC is an IBM code for representing
characters as numbers. It uses 8 bits per character. Thus 256 charaters
can be represented with 8 bits. The 9th position bit can be used for parity.
The EBCDIC code is used in IBM mainframe models and other similar
machines.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 43

Code Conversion Unit 4

In EBCDIC, the first 4 bits are known as zone bits and remaining
4 bits represent digit values. Electronic circuits are available to transform

characters from ASCII to EBCDIC and vice-varsa.

4.7 GRAY CODE

The gray code is an unweighted code not suited for arithmetic

operations, but useful for input output devices, analog to digital converters
etc. The Gray code, named after Frank Gray, is a binary numeral system
where two successive values differ in only one digit. It is sometimes referred
to as reflected binary, because the first eight values compare with those of
the last 8 values, but in reverse order.

The Gray code was originally designed to prevent spurious output
from electromechanical switches. Today, Gray codes are widely used to
facilitate error correction in digital communications such as digital terrestrial

television and some cable TV systems.

Table 4.2 : Gray Code

Decimal Gray Code Binary

0 0000 0000

1 0001 0001

2 0011 0010

3 0010 0011

4 0110 0100

5 0111 0101

6 0101 0110

7 0100 0111

8 1100 1000

9 1101 1001

10 1111 1010

11 1110 1011

12 1010 1100

13 1011 1101

14 1001 1110

15 1000 1111

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques44

Unit 4 Code Conversion

Conversion from Binary to Gray code : The following rules explain how

to convert from a binary number to a Gray code :

a) The most significant bit (left most) in the gray code is the same as

the corresponding most significant bit in the binary code.

b) Going from left to right, add each pair of adjacent pair of binary code

to get the next Gray code bit. Discard carries.

For example, the conversion of the binary number 1100 to gray code is as

follows:

Binary code 1 1 0 0

MSB (Most significant bit) LSB (Least significant bit)

MSB of Gray code will be same as MSB of Binary code. Here, it will be 1.

Now , addition of each pair of adjacent bits of Binary code:

1 + 1 = 10 = 0 , discarding the carry 1

1 + 0 = 1, no carry

0 + 0 = 0, no carry

Therefore, 1100 in gray code is 1010

Conversion from Gray to Binary code : The following rules apply:

a) The most significant bit (left most) in the binary code is the same

as the corresponding most significant bit in the gray code.

b) Add each binary code bit generated by Gray code bit in the next

adjacent position. Discard carries.

For example, binary 10101111 in gray code will be like this :

1 0 1 0 1 1 1 1 Gray code

1 1 0 0 1 0 1 0 In Binary

CHECK YOUR PROGRESS

Q.1. Convert the following binary numbers to gray code

(i) 11011 (ii) 10110

Q.2. Convert the following Gray codes to Binary codes.

(i) 11011 (ii) 100111

 + + + + + + +

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 45

Code Conversion Unit 4

Q.3. (i) The American Standard Code for Information Interchange

is a standard __________ bits code.

(ii) EBCDIC uses __________ bits per character.

(iii) Code is a representation of __________.

(iv) In both binary and gray code, the __________ is same.

Q.4. Add the following BCD numbers :

(i) 00100011 + 00010001 (ii) 1001 + 0100

4.8 LET US SUM UP

l BCD code is a way to express decimal digits with a binary code.

l BCD, ASCII, EBCDIC,and Gray Code are the commonly used

commputer codes.

l BCD is a numeric code and can be used in arithmetic operations.

l ASCII is a 7 bit binary code.

l EBCDIC uses 8-bits to represent character.

l Gray codes are used to facilitate error correction.

l ASCII stands for American Standard Code for Information

Interchange.

l Gray codes area not not suited for arithmetic operations.

4.9 FURTHER READING

l Ram, B. (2000), Computer Fundamentals Architecture and

Organization, New Age International

l Mano, M.M. (2017), Digital Logic and Computer Design, Pearson
Education India

l Sinha, P. K. and Sinha P. (2010), Computer Fundamentals, BPB
Publication.

l Talukdar, P. (2010), Digital Techniques, N.L. Publications.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques46

Unit 4 Code Conversion

4.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : (i) 10110 (ii) 11101

Ans. to Q. No. 2 : (i) 10010 (ii) 111010

Ans. to Q. No. 3 : (i) 7 (ii) 8 (iii) Discrete elements

(iv) MSB-bit

Ans. to Q. No. 4 : (i) Solution :

0010 0011 35

+0001 0001 +17

0011 0100 +52 Valid BCD no. (since both <9)

(ii) Solution :

1001 9

+0100 +4

1101 Invalid BCD number (>9) +13

+0110 Add 6 (i.e., 0110)

0001 0011 A valid BCD number which

is 13 in decimal

4.11 MODEL QUESTIONS

Q1. What is BCD code?

Q2. Convert the decimal numbers 15, 275 to BCD.

Q3. Add the two BCD numbers 10000111 and 01010011.

Q4. Write BCD for the following decimal number:

(i) 679 (ii) 45.96

Q.5. Give the importance of Gray codes.

Q.6. Write a short note on ASCII codes.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 47

 Boolean Algebra Unit 5

UNIT 5 : BOOLEAN ALGEBRA

UNIT STRUCTURE

5.1 Learning Objectives

5.2 Introduction

5.3 Boolean Operators

5.4 Basic Theorems and Postulates of Boolean Algebra

5.5 Let Us Sum Up

5.6 Further Reading

5.7 Answers to Check Your Progress

5.8 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

l define Boolean algebra

l explain basic concepts of Boolean Algebra

l define the basic theorems and postulates of Boolean Algebra

l define Boolean function

5.2 INTRODUCTION

In the previous units we have been introduced to concepts like binary

arithmetic, data representation and code conversion. We have learnt about

the methods for representing data. We have also learnt about the different

types of computer codes like gray, BCD, ASCII and EBCDIC codes. The

conversion process from one code to another is also discussed in previous

units.

In this unit, you will be able to learn about the fundamentals of Boolean

Algebra. You will also learn the basic theorems and postulates of Boolean

algebra. Different concepts like the principles of Duality, De Morgan’s

theorem are also covered in this unit.

In the next unit, we will learn about the different types of logic gates.

Conversion of logic gates is also covered in the next unit.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques48

Unit 5 Boolean Algebra

5.3 BOOLEAN OPERATORS

Boolean algebra may be defined with the help of three sets of

components viz,

i) a set of elements,

ii) a set of operators and

iii) a number of unproved axioms or postulates.

A set of elements is any collection of objects having a common

property. A set of operators are the binary operators, which are rules that

are assigned to each pair of elements of the set, a unique element from the

set. The axioms or postulates form the basic assumptions from which it is

possible to deduce the rules, theorems and properties of Boolean algebra.

A variable in Boolean algebra can take only two vales, 1 (TRUE) or 0 (FALSE).

i.e. TRUE is represented by 1 and FALSE is represented by 0. Boolean

algebra is used for designing and analysing digital circuits. There are three

basic operations in Boolean algebra and these operations are done with the

help of three operators, viz. AND, OR and NOT. (These are also called

basic logic operation).

AND operation : Boolean AND operator for two variables A and B

can be represented as:

A and B or A.B or AB

It results 1 or TRUE if both the operands A and B are 1 (TRUE),

otherwise the result is 0 (FALSE).

OR Operation : The OR operator for the same variables can be

represented as :

A OR B or A+B

The result of this operation in 0 (FALSE) if both the variables are 0

(FALSE); otherwise the result is 1 (TRUE).

NOT Operation : The NOT operation for a variable A can be

represented as:

NOT Ā or A or A/.

It returns the opposite value of the variable i.e. returns 0 (FALSE) if A

is 1 (TRUE) and vice versa.

The results of these Boolean operations can be represented in a

tabular form, which is referred to as the “truth table”.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 49

 Boolean Algebra Unit 5

Table 5.1: Truth Table for AND, OR and NOT operation

A B (A AND B) A.B (A OR B) A+B NOT(A)

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Note : Boolean addition is same as the OR operation and Boolean

multiplication is same as AND operation.

Truth Table : A truth table is a table which gives the output for all

combination of input values. A truth table can be drawn for a particular

function/operation. In the truth Table 5.1, three tables are merged into a

single one.

In addition to these three basic Boolean operations, three more

operators have been defined for Boolean algebra. They are: XOR (Exclusive

OR), NOR (Not+OR) and NAND (Not+AND).

5.4 BASIC THEOREMS AND POSTULATES OF
BOOLEAN ALGEBRA

The theorems and postulates are the most basic relationships in

Boolean algebra. Six theorems and four postulates of Boolean algebra are

listed in Table 5.2. The postulates are basic axioms of the algebric structure

and need no proof, but the theorems must be proven with the help of the

postulates. Both the postulates and theorems are listed in pairs: one is the

dual of the other.

Table 5.2 Postulates and Theorems of Boolean Algebra

Postulate 2 (a) x + 0 = z (b) x.1 = x

Postulate 5 (a) x + x/ = 1 (b) x. x/ = 0

Theorem 1 (a) x + x = x (b) x. x = x

Theorem 2 (a) x + 1 = 1 (b) x. 0 = 0

Theorem 3, Involution (x/) / =x

Postulate 3, Commutative (a) x + y = y + x (b) xy = yx

Theorem 4, Associative (a) x + (y + z) = (x + y) + z

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques50

Unit 5 Boolean Algebra

(b) x (yz) = (xy)z

Postulates 4, Distributive (a) x (y + z) = xy + xz

(b) x+yz = (x+y)(x+z)

Theorem 5, De Morgan’s (a) (x + y)/ = x/ y/ (b) (xy)/ = x/ + y/

Theorem 6, Absorption (a) x + xy = x (b) x(x + y) = x

Duality Principle : This is an important property of Boolean algebra. It states

that every algebric expression deducible from the postulates of Boolean

algebra remains valid if the operator and identity elements are interchanged.

In a two-valued Boolean algebra (which is defined on a set of two elements,

B = {0, 1}, with rules for the two binary operators + and•), the identity elements

and the elements of the set B are same: 1 and 0. If we need the dual of an

algebric expression we simply interchange OR and AND operators and

replace 1’s by 0’s and 0’s by 1’s.

The proofs of the theorems with one variable are given below:

Theorem 1 (a) x + x = x

x + x = (x + x).1 by postulate : 2 (b)

= (x + x)• (x + x/) : 5 (a)

= x + x x/ : 4 (b)

= x + 0 : 2 (a)

= x

Theorem 1 (b) : x. x = x

x. x = x. x + 0 by postulate : 2 (a)

= xx + x x/ : 5 (b)

= x (x + x/) : 4 (a)

= x.1 : 5 (a)

= x : 2 (a)

If we observe carefully we see that theorem 1 (b) is the dual of

theorem 1 (a) and each step of the proof in part (b) is the dual of part (a).

Thus any dual theorem can be similarly derived from the proof of its

corresponding pair.

Theorem 2 (a): x + z = 1

x + 1 = 1. (x + 1) by postulate : 2 (b)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 51

 Boolean Algebra Unit 5

= (x + x/) (x +1) : 5 (a)

= x + x/.1 : 4 (b)

= x + x/ : 2 (b)

= 1 : 5 (a)

Theorem 2 (b): x. 0 = 0 by duality.

Theorem 3: (x/)/ = x

We have x. x/ = 0 from postulate 5 (b), which defines complement of x.

The complement of x/ is x and is also (x/)/. Since the complement is

unique, therefore we have (x/)/ = x.

We can prove the theorems which involve two or three variables,

algebraically, from the postulates and theorems which have already been

proven. Let us consider the absorption theorem.

Theorem 6 (a) : x + xy = x

x + xy = x.1 + xy by postulate 2 (b)

= x (1 + y) by postulate 4 (a)

= x (y + 1) by postulate 3 (a)

= x.1 by theorem 2 (a)

= x by postulate 2 (b)

Theorem 6 (b): x (x + y) = x by duality.

The theorems of Boolean algebra can also be proved easily with the

help of truth table. The truth table shown in Table 5.3 verifies the theorem 6

(b).

Table 5.3 Truth Table for verification of Theorem 6 (b).

1 2 3 4

x y x + y x (x + y)

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 1

Here we see that, column 4 and column 1 are same, i.e. x (x + y) =

x. Since the algebric proof of the De Morgan’s theorem and the associative

law are very long, we can show their validity with truth tables easily. Let us

consider the De Morgan’s theorem: (x + y)/ = x/ y/.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques52

Unit 5 Boolean Algebra

Now, the truth table for this is shown in Table 5.4.

Table 5.4 : Truth table for De Morgan’s theorem

1 2 3 4 5 6 7

x y x + y (x + y)/ x/ y/ x/ y/

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

Column 4 is equal to column 7, so, (x + y)/ = x/ y/

Complement of a Boolean Function : The complement of a

function F is F/. It can be obtained from an interchange of 0/s for 1/s and 1/

s for 0/s in the value of F. Algebraically, the complement of a function may be

derived through De Morgan’s theorem. The De Morgan’s theorem can be

extended to any number of variables.

The theorem can be generalized as :

(A + B + C + + G) / = A/B/C/ ... G/

(ABC...G) / = A/ + B/ + C/ + + G/

This generalized form of De Morgan Theorem states that the

complement of a function is obtained by interchanging AND and OR operators

and complementing each literal. (A literal is a primed or unprimed variable).

Let F1= A/BC + A/B/C/. Now F1
/ i.e. complement of the function can be

obtained by applying the De Morgan’s theorem as follows:

F1
/ = (A/BC + A/B/C/)/

= (A/BC) / (A/B/C/)/

= (A+B/+C/) (A+B+C)

An easier procedure for deriving the complement of a function is to

take the dual of the function and complement each literal. Thus, the dual of

F1= (A/+B+C) (A/+B/+C/) and then complementing each literal, F1
/ = (A+B/

+C/) (A+B+C).

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 53

 Boolean Algebra Unit 5

CHECK YOUR PROGRESS

Q.1. What is a truth table? Create a truth table for AND and OR

operation?

Q.2. Define the principle of Duality.

Q.3. State and prove the De Morgan’s theorem for two variables.

(Using truth table)

5.5 LET US SUM UP

l Boolean addition is same as logical OR and Boolean multiplication

is same as logical AND operation.

l The logical NOT operation changes logical 1 to 0 and vice versa.

l To get dual of any Boolean expression, you have to replace every 0

with 1 and every 1 with 0, and replacing every operator (+) with (.)

and every (.) with (+).

l Any Boolean expression obtained by interchanging 0s and 1s and

the operator (of an expression) is called the dual expression. This is

the duality principle of Boolean algebra.

l De Morgan’s theorem can be extended to any number of variables.

It is useful in obtaining the complement of a Boolean function.

5.6 FURTHER READING

l Mano, M.M. (1982), Computer System Architecture, Englewood Cliffs,

N. J. 53-54

l Mano, M.M. (2017), Digital logic and Computer Design, Pearson

Education India.

l Ram, B. (2000), Computer Fundamentals Architecture and Organization,

New Age International.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques54

Unit 5 Boolean Algebra

5.7 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : A truth table is a table, which has two sides, viz, input

and output. In input side, we have all the possible

combinations of input variables, i.e. for 2 variables, we

have 22 = 4 input combinations(4 rows), for 3, we have

8 combinations and so on. The output side gives us

the result of the function or operation either 1 (TRUE)

or 0 (FALSE). Output 1 indicates that the corresponding

input combination (minterm) is present in the function.

Truth table for AND and OR operations

Input Output

A B A.B A+B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Ans. to Q. No. 2 : The principle of duality states that for any Boolean

expression, another valid expression can be obtained

by replacing each 0 with 1 and 1 with 0 and

interchanging the binary operators (.) and (+). For any

pair of expression so obtained, the original one is called

the primal and the new one is called the dual expression.

For example – the expression a b/ + cd = 1, its dual is

(a + b/) (c + d) = 0.

Ans. to Q. No. 3 : The De Morgan’s theorem for two variables A and B

can be state as:

I. (A + B)/ = A/ B/

II. (AB) / = A/ + B/

i.e. complement of an expression can be obtained by

complementing each literal and interchanging the binary

operators (.) and (+).

Truth Table

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 55

 Boolean Algebra Unit 5

Proof : A B A/ B / A/B/ (A+B) (A+B)/ AB (AB) / A/+B/

0 0 1 1 1 0 1 0 1 1

0 1 1 0 0 1 0 0 1 1

1 0 0 1 0 1 0 0 1 1

1 1 0 0 0 1 0 1 0 0

=

=

5.8 MODEL QUESTIONS

Q.1. State and prove De Morgan’s Theorem.

Q.2. What are the different ways of representing a Boolean function?

Q.3. What is Duality Principle?

Q.4. Define truth table.

Q.5. Prove that x (y + z) = xy + yz using truth tables.

Q.6. Prove that x + xy = x.

=

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques56

Unit 6 Logic Gates

UNIT 6 : LOGIC GATES

UNIT STRUCTURE

6.1 Learning Objectives

6.2 Introduction
6.3 Logic Gates

6.3.1 OR Gate
6.3.2 AND Gate
6.3.3 NOT Gate
6.3.4 NAND Gate
6.3.5 NOR Gate
6.3.6 XOR Gate
6.3.7 XNOR Gate

6.4 De Morgan’s Theorem
6.5 Truth Table
6.6 Conversion of the Logic Gates
6.7 Let Us Sum Up
6.8 Further Reading
6.9 Answer to Check Your Progress

6.10 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

l describe different logic gates
l prepare truth table for AND, OR, NOT, NAND, NOR, XOR and

XNOR gates
l obtain boolean function from a truth table
l perform NAND implementation of a Boolean function

l perform NOR implementation of a Boolean function

6.2 INTRODUCTION

In the previous units, we have learnt about number system, binary

arithmetic, boolean algebra and conversion codes. Different number
systems have been covered along with different types of computer codes
in previous units. In addition to these, boolean operators and basic postulates

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 57

Logic Gates Unit 6

and theorems are also covered in the previous units.
In this unit, we will discuss about the different types of logic gates.

The graphical symbols and truth table of the logic gates are also discussed
in detail. The conversion of logic gates is also covered in this unit. In the

next unit, we will discuss in detail about the floating point representation.

6.3 LOGIC GATES

A logic gate is an electronic circuit, which is used or collectively can

be used to transform a boolean function or expression into a logic diagram.
Logic gates have only one output and atleast two inputs except for the NOT
gate, which has only one input. The output signals appears only for certain
combinations of input signals. Binary information available in the input lines
are manipulated by the gates. Three basic logic circuits, commonly called
gates are used to make logic decision : they are OR, AND and NOT gate.
Logic gates are available in the form of various IC families and are the basic
building block of various circuits. Each gate has a distinct graphic symbol
and its operation can be described by means of an algebric function. The
input-output relationship of the binary variables for each gate can be
represented in tabular form in a truth table.

Before going to discuss about the functions of the logic gates, we
have to know few basic terms that are associated with the functions of
gates. Logic 1 and 0, that are applied as input or may be obtained as ouput
of a gate, are represented by voltage levels. Positive logic (or active high
levels) means that the most positive logic voltage level (also referred to as
the high level) is defined to be the logic state1. On the other hand, the most
negative logic voltage level (also referred to as the low level) is defined to be
the logic state 0. Negative logic (or active law levels) is just the opposite, the
most positive (high) level is 0, and the most negative (low) level is a 1. For
instance, if the voltage levels are (–0.1)v and (-5)v, then in a positive logic
system, the (-5)v level represents a zero and the –0.1v represents a 1.
Conversely, if the voltage levels are 0.1v and 5v, then in a negative logic
system, the 5v levels represents a zero and the 0.1v represents a one.

The choice of positive or negative logic is made by the individual
logic designer. We cannot say one is advantageous over the other. It is
common to see that most logic designers and text books on logic design

use positive logic.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques58

Unit 6 Logic Gates

6.3.1 OR Gate

An OR gate has two or more inputs and a single output. It is an

electronic circuit and the output of an OR gate is HIGH (logic1) if

atleast one of the inputs is HIGH, otherwise (i.e. if all inputs are

LOW) the output is LOW (0). Figure 6.1 shows the graphic symbol

used for an OR gate.

Figure 6.1 : Graphic symbols for (a) two inputs, (b) 3 inputs and

(c) 4 inputs or gate

The algebric function for OR gate (2 inputs) is : F = x+y, and the

truth table is :

Table 6.1 Truth table of OR gate (2inputs)

x y F

0 0 0

1 0 1

1 1 1

Figure 6.2 : Shows the switching circuit analogy of OR function

The circuit of an OR gate is arranged in such a way that the

output is in state 1, when anyone of the inputs is in state 1 ; i.e.

when input A or input B or input C is 1 (in case of 3 inputs OR gate).

The circuit can be illustrated by the analogy shown in Figure 6.2.

The circuit consists of a battery, a lamp and three parallel switches

connected in series. Battery switches are the inputs to the lamp and

the light from the lamp represents the circuit output.

A
B

(a) (b) (c)

Y = A+B Y = A+B+C Y = A+B+C+D
A
B
C

A
B

C
D

B

A

C

V

Y = A + B + C

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 59

Logic Gates Unit 6

Let us define an open switch as a 0 state, i.e., no light represents

0 state, and a closed switch represents state 1, i.e., a glowing lamp as a 1

state. We can list the various combinations (8 combinations) of switch states

as inputs to the circuit and the resulting output states in a truth table. It is

clear from the truth table that all switches must be opened (0 state) for the

light to be off (output in 0 state). This type of circuit is called an OR gate.

Table 6.2 : Truth table of 3 inputs OR gate

Inputs Outputs

A B C Y = A + B + C

0 0 0 0

0 0 1 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

6.3.2 AND Gate

An AND gate also may have two or more inputs and a single

output. In order to have a HIGH (1) output, all the inputs of the AND

gate must be HIGH (1), otherwise the output is LOW. Figure 6.3

shows graphic symbols used for an AND gate.

Figure 6.3 : Graphic symbol for (a) two inputs (b) three inputs and

(c) four inputs AND gate

The algebric function for a two inputs AND gate is :

Y = A.B

Table 6.3 shows the truth table for this function.

A

B

(a) (b) (c)

Y = A.B Y = A.B.C Y = A.B.C.D
A

B

C

A

B

C
D

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques60

Unit 6 Logic Gates

Table 6.3 : Truth table of AND gate

X Y F

0 0 0

0 1 0

1 0 0

1 1 1

The AND function can be explained by a series switching circuit

as shown in Figure 6.4. It has two switches X and Y in series with a

bulb and a power supply. The bulb will glow if and only if both the

switches X and Y are simultaneously on.

Figure 6.4 : Switching circuit analogy of AND function

In the truth table 6.3,

x = y = 0 represents that the switches are OFF

x = y = 1 represents that the switches are ON

F = 0 represents that the bulb will not glow

F = 1 represents that the bulb will glow.

6.3.3 NOT Gate

NOT gate circuit has a single input and single output. The NOT

gate circuit is also called a complementary circuit or an inverter as it

complements its input i.e. it accomplishes a logic negation. Figure

6.5 shows the different graphic symbols used for the NOT gate.

Figure 6.5 : Graphic symbols for NOT gate

The algebric function for a NOT gate is : F = x/. Table 6.4 is the

X Y F = X.Y

(a)

(b)

(c)

(d)

x

x

x

x

x/

x/

x/

x/

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 61

Logic Gates Unit 6

truth table for a NOT gate.

Table 6.4 : Truth table of NOT gate

X F

0 1

1 0

The NOT gate is understood by the short circuit switch A which

when it is closed, (ON) the bulb is bypassed and it does not glow,

but when the switch is opened (OFF), the current will flow through

the bulb and it would glow. i.e., when A is ON the bulb will be OFF

and when A is OFF the lamp will be ON.

Figure 6.6 : Switching analogy of the NOT function

6.3.4 NAND Gate

A NAND gate is the cascade combination of all AND and a NOT

gate. It is an AND gate followed by an inverter. The NAND operation

is the complement of the AND operation. Fig. 6.7 shows the graphic

symbols for a NAND gate. The algebric function is defined as : F =

(xy)/. Table 6.5 shows the truth table for NAND operation.

Table 6.5

x y F

0 0 1

0 1 1

1 0 1

1 1 0

R

AV

Y = A–

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques62

Unit 6 Logic Gates

–~

Figure 6.7 : Graphic symbols of NAND gate

6.3.5 NOR Gate
The negation of the OR function is called NOT-OR or NOR. A

NOR gate is the cascade combination of NOT and OR gates. The NOR

operation is the complement of OR operation. The graphic symbols used

normally for a NOR gate are shown in figure 6.8. The NOR function is defined

as : F = (x+y)/.

–~

Figure 6.8 : Two Graphic or logic symbols of NOR gate

Table 6.6 : Truth table of NOR gate

x y F

0 0 1

0 1 0

1 0 0

1 1 0

Note : Any boolean function can be implemented using NAND or NOR gates.

So, NAND and NOR gates are called universal gates.

6.3.6 Exclusive - OR (XOR) gate

The exclusive - OR (XOR) gate has a graphic symbol similar to

that of the OR gate, except for the additional curved line on the input side.

The output of a two input XOR gate is a logic 1, if the input x or input y is a

logic 1 exclusively, i.e., they are not 1 simultaneously. The graphic symbol

is shown in Figure 6.9 and the XOR function can be written as F = X ⊕ Y =

XY/ + X/Y.

 x
y F =

(xy)/

x
y

F =
(xy)/

 x

y

F=(x+y)/ x

y
F=(x+y)/

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 63

Logic Gates Unit 6

Figure 6.9 : (a) Graphic symbol fo XOR gate(b) XOR gate using basic gates

The truth table of XOR operation is shown in Table 6.7

Table 6.7 : Truth table for XOR operation

X Y F = X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

From the truth table, it is clear that the output is 1 (HIGH), when

any one of the inputs is at 1 (HIGH). The output is 0 (LOW), when

both the inputs are at 1 (HIGH) or at 0 (LOW), i.e. same. In case of

more than two inputs, the output of a XOR gate is high when an odd

number of inputs is HIGH, such as one or three or five etc. On the

otherhand, when there is an even number of HIGH inputs, the output

will be always LOW.

6.3.7 XNOR Gate

The XNOR i.e., exclusive NOR gate is the complement of the

XOR gate. XNOR function is also called equivalence function. The

graphic symbol of XNOR gate is similar to that of the XOR gate,

except for the additional inverter gate (or a small bubble) on the output

side. The output of a two inputs XNOR gate is a logic 1 (HIGH), if

both the inputs are either 1 (HIGH) or 0 (LOW). If the inputs are

different (not same), the output is 0 (LOW), In general, we can say

the output is 0 (LOW), when the inputs to an XNOR gate have an

odd numbers of 1s. The graphic symbol of XNOR gate is shown in

Figure 6.10.

–~

x
y

x

y

F = (x ⊕ y) F = x/y+xy/

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques64

Unit 6 Logic Gates

Figure 6.10 : Graphic symbols for XNOR or euivalence gate

The truth table is given in Table 6.8. Here, we see that the output

F is the complement of output of the XOR gate. The boolean function

for XNOR gate is :

F = (x ⊕ y)/ = (x/y + xy/)/

= (x/y)/ (xy/)/ Applying DcMorgan's Theorem

= (x + y/) (x/ + y)

= xx/ + xy + x/y/ + yy/

= xy + x/y/

Table 6.8 : Truth table for XNOR gate

Input Output

x y F = (x ⊕ y)/

0 0 1

0 1 0

1 0 0

1 1 1

6.4 DE MORGAN’S THEOREM

In the previous unit, we have mentioned the De Morgan’s Theorem

and its proof for two variables also has been explained using truth table. De

Morgan, a great mathematician contributed two most important theorems

of Boolean algebra. These two theorem are extremely useful in simplifying

an expression in which the product of the sum of variables is complemented.

The two theorems can be extended to any number of variables and

generalized as:

Theorem 1 : (A + B + C +)/ = A/ . B/ . C/

Theorem 2 : (A . B . C)/ = A/ + B/ + C/ +

In words, we can write Theorem 1 as: The complement of an OR

sum equals the AND product of the complements, and the theorem 2 as :

–~

 F = (x ⊕ y)/ F = (x ⊕ y)/
x
y

x
y

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 65

Logic Gates Unit 6

The complement of an AND product is equal to the OR sums of the

complements.

The complement of any boolean function may be found by means of

these theorems. It consists of two simple steps to form a complement of a

function.

Step 1 : Interchange the symbols / operands “+” and “*”.

Step 2 : Each and every term in the expression is complemented.

Example 6.1 : Find the complements of the following functions using De

Morgan’s Theorem.

(i) F = (A + B)/ (A/ + C/) (B/ + C)

(ii) F = A/B + ABC + AB/C

Solution : (i) F = (A + B)/ (A/ + C/) (B/ + C)

F/ = [(A + B)/ (A/ + C/) (B/ + C)]/

= (A + B) + (A/ + C/)/ + (B/ + C)/

= (A + B) + AC + BC/

= A + B + AC + BC/

(ii) F = A/B + ABC + AB/C

F/ = (A/B + ABC + AB/C)/

= (A/B)/ (ABC)/ (AB/C)/

F/ = (A + B/) (A/ + B/ + C/) (A/ + B + C/)

6.5 TRUTH TABLE

Basic idea of truth table has already been given in the earlier unit.

Here, we will learn the process of deriving an expression from a truth table.

The general procedure for obtaining the expression from a truth

table in sum of products (SOP) can be summarized as follows:

1 Write an AND term (minterm) for each combination of input

variables in the table for which output is 1.

2 Each AND term contains each input variable either in normal

form or in complemented form. If the corresponding variable is 0

then it is complemented in the AND term.

3 All the AND terms are then ORed together to produce the final

output expression.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques66

Unit 6 Logic Gates

Example : 6.2. Obtain the logic function specified by the following truth table.

Simplify it using algebric manipulation and implement it with logic diagram.

x y z F

0 0 0 1 → x/y/z/

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1 → xy/z/

1 0 1 0

1 1 0 1 → xyz/

1 1 1 1 → xyz

Solution : The resultant boolean bunction is :

F = x/y/z/ + xy/z/ + xyz/ + xyz

= y/z/ (x/ + x) + xy (z/ + z/)

= y/z/ + xy

This is the simplified function.

The logic diagram is :

Figure 6.11 : Logic diagram for F = xy + y/z/

Note : Since the function has 2 AND terms, we need 2 AND gates

and 1 OR gate to implement it.

6.6 CONVERSION OF LOGIC GATES

We have already discussed the functions of three basic gates, viz,

OR, AND and NOT gates, which perform logical addition, logical multiplication

and inversion operations respectively. Besides these, we also have come

to know about NAND and NOR gates and their functions. In this section, we

will discuss how the digital circuits can be implemented with NAND or NOR

F

x

y

z

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 67

Logic Gates Unit 6

gates.

NAND and NOR gates are easier to fabricate with electronic

components and are the basic gates used in all IC digital logic families. So,

digital circuits are more frequently constructed with NAND or NOR gates

than with AND and OR gates. Because of the prominence of NAND and

NOR gates in the design of digital circuits, rules and procedures have been

developed for the conversion from boolean functions given in terms of AND,

OR and NOT into equivalent NAND or NOR logic diagram. Here, we will

consider the procedure for only two level implementation.

First, we will define two other graphic symbols for NAND and NOR

gates, which will make the conversion procedure easily understandable.

Two equivalent symbols for the NAND gate are shown in Figure 6.12 (a).

The AND invert symbol has been defined previously. It is possible to

represent a NAND gate by an OR graphic symbol preceded by small circles

in all the inputs. This symbol i.e. invert - OR symbol for the NAND gate

follows from the De Morgan’s theorem. and from the convention that the

small circle denotes complementation.

(a) Two graphic symbols for NAND gate

(b) Two graphic symbols for NOR gate

(c) Three graphic symbols for inverter

Figure 6.12 : Graphic symbols for NAND, NOR and NOT gates

The invert AND is an alternative that uses De Morgan’s theorem and

the convention that small circles in the inputs denote complementation.

 x x/

x x/ x x/

 x x

y y

z
z

F = (xyz)/

F = (x/+y/+z/)
= (xyz)/

 x x
y y
z z

F = (x+y+z)/
F = x/y/z/

= (x+y+z)/

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques68

Unit 6 Logic Gates

A one input NOR gate or NAND gate is equivalent to an inverter. So,

an inverter gate can be drawn in three ways as shown in Figure 6.12 (c).

NAND Implementation : To implement a boolean function with NAND

gates, it is required that the function is to be simplified in the sum of products

(SOP) form. We can see the relationship between a sum of products

expression and its equivalent NAND implementation, by considering the

logic diagrams of Figure 6.13. All three diagrams are equivalent and

implement the function : Y = ABC + DE + F

(c)

Figure 6.13 : Three ways to implement Y = ABC + DE + F

The function is implemented in SOP form with AND and OR gates

in Figure 6.13 (a). The AND gates are replaced by NAND gates and the OR

gate is replaced by a NAND gate with an invert OR symbol. The simple

variable F is complemented and applied to the second level invert OR gate.

A small circle represents complementation. Therefore two circles on the

same line represent double complementation and both can be removed.

The complement of F goes through a small circle which complements the

variable again to produce the normal value of F. Thus, if we remove the

small circles in the gates of Figure 6.13 (b), we get Figure 6.13 (a). Therefore,

the two diagrams implement the same function and are equivalent.

In Figure 6.13(c),the output NAND gate i.e. the second level NAND

A
B
C

D
E

F

A
B
C

D
E

F

A
B
C

D
E

F

1st level 1st level

1st level

2nd level 2nd level

2nd level

Y

(a) (b)

Y

Y

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 69

Logic Gates Unit 6

gate is replaced with the conventional symbol. The one input NAND gate

complements variable F. The diagram in (c) is equivalent to the one in (b),

which is turn is equivalent to the diagram in (a). Thus, we implement the

circuit, with NAND gates in Figure 6.13(b) or 6.13 (c), which is first

implemented with AND and OR gates in Figure 6.13 (a).

The NAND implementation can also be verified algebrically as:

Y = [(ABC)/ . (DE)/ . F/]/

= [(A/ + B/ + C/) (D/ + E/) . F/]/

= ABC + DE + F

From, the transformation shown in Figure 6.13 we see that a boolean

function can be implemented with two levels of NAND gates. The rule for

obtaining the NAND logic diagram from a boolean function is as follows:

1. Simplify the function in sum of products (SOP).

2. For each product term of the function that has atleast two literals,

draw a NAND gate.

3. Draw a single NAND gate (using the AND invert or INVERT -OR

graphic symbol) in the second level, with inputs coming from

outputs of first -level gates.

4. A term with a single variable requires an inverter in the first level

or may be complemented and applied as an input to the second-

level NAND gate.

There is a second way to implement a boolean function with NAND

gates. We can combine the 0’s in a map to obtain the simplified expression

of the complement of the function in sum of products. The complement of

the function so obtained can then be implemented with two levels of NAND

gates using the above stated rules. To obtain the normal output of the circuit,

it is required to insert a one input NAND or inverter gate to generate the true

value of the output variable. When the designer wants to generate the

complement of the function, the second method in preferred.

Example 6.3 : Implement the following function with NAND gates F (x, y, z)

= (2,4)∑ .

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques70

Unit 6 Logic Gates

The first step is to simplify the function in sum of products form. We

draw a map and plot the terms (Figure 6.14).

There are only two 1’s in the map, and they cannot be combined,

since they are not adjacent to each other. The simplified form of the function

in SOP is F = x/yz/ + xy/z/

x\yz

00 01 11 10

0 0 0 0 1

1 1 0 0 0

(a) Map simplification in SOP F = x/yz/ + xy/z/

(b) F = x/yz/ + xy/z/ (c) F/ = x/y/ + xy + z

Figure 6.14 : Implementation of Function in eg. 6.3 with NAND gates

The two level NAND implementation is shown in Figure 6.14 (a) Now,

we try to simplify the complement of the function in SOP. This is done by

combining to 0’s in the map: Thus , F/ = x/y/ + xy + z

The two-level NAND gate for generating F/ is shown in Figure 6.14

(c). If output F is required, we have to add a one input NAND gate to invert

the function. (We assume that the input variables are available in both the

normal and complement forms).

NOR Implementation : The NOR function is the dual of the NAND

function. So, all procedures and rules for NOR logic are the dual of the

corresponding procedures and rules developed for NAND logic.

The implementation of a boolean function with NOR gates requires

that the function be simplified in product of sums (POS) form. A product of

sums expression specifies a group of OR gates for the sum terms, followed

x /

y

z /

x

y /

z /
x /

x

y /

z

F

F

F/

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 71

Logic Gates Unit 6

by an AND gate to produce the product. The transformation from the OR-

AND to the NOR-NOR diagram is shown in Figure 6.15, which is similar to

the NAND transformation discussed already, except that here we use the

product of sums expression :

F = A (B + C) (D +E)

Figure 6.15 : Implementation of the function F = A(B + C) (D + E)

The procedure for obtaining the NOR logic diagram from a boolean

function can be derived from this transformation. It is similar to the three

step NAND rule, except that the simplified expression must be in the product

of sums and the terms for the first level NOR gates are the sum terms. A

term with a single variable requires a one input NOR or inverter gate or may

be complemented and directly applied to the second-level NOR gate.

Another way to implement a function with NOR gate is to use the

expression for the complement of the function in product of sums. It gives a

two level implementation for F/ and a three level implementation gives the

normal output F.

Simplified product of sums can be obtained from a table by combining

the 0’s and then complementing the function. To obtain the simplified product

of sums expression for the complement of the function, we have to combine

the 1’s in the map and then complement the function. The NOR gate

implementation procedure is demonstrated in the following example.

F

F

F

(a) (b)

(c)

A

B
C

D
E

A /

B
C

D
E

A

B
C

D
E

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques72

Unit 6 Logic Gates

Example 6.4 : Implement the function of e.g. 6.3 with NOR gates.

The map for this function is drawn in Figure 6.14 (a) Now, combining

the 0’s we obtain F/ = x/y/ + xy + z

This is the complement of the function in SOP. To obtain it in POS

form, as required for NOR implementation, complement F/.

(F/)/ = F = (x + y) (x/ + y/)z/

The two level implementation with NOR gate is shown in Fig. 6.16.

Another implementation that is possible from the complement of the

function in POS is left as an exercise.

Fig. 6.16 : Implementation of function with NOR gates

Example 6.5 : Draw the logic diagram for the function F = A ⊕ B ⊕ C

(a) using 2-input gates (b) using 3-input gate

CHECK YOUR PROGRESS

Q.1. When the output of an OR gate is High?

Q.2. When the output of an AND gate is HIGH?

Q.3. What is the function of a NOT gate?

Q.4. When the output of a XOR gate is HIGH?

Q.5. Why the digital circuits are more frequently constructed with

NAND or NOR gates?

F

x
y

x /

y /

z /

F = A ⊕ B ⊕ C

F = A ⊕ B ⊕ C

A

B

C
C
B
A

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 73

Logic Gates Unit 6

6.7 LET US SUM UP

l A logic gate is an electronic circuit that is used to implement a

booleam function by a logic diagram.

l An OR gate produces a HIGH output when atleast one input is HIGH;

whereas an AND gate produces a HIGH output when all inputs are

HIGH.

l A NAND gate is an AND gate followed by an inverter. It produces a

LOW output if all its inputs are HIGH.

l A NOR gate is an OR gate followed by an inverter. It produces a

HIGH output when all its inputs are LOW.

l The realization of basic qater viz., AND, OR, and NOT can be made

by using either NAND or NOR gates. For this reason, NAND and

NOR gates are called universal gates.

6.8 FURTHER READING

l Mano, Morris (2007), Digital Logic and Computer Design. Pearson

Education.

l Kumar, A. Anand. (2003), Fundamental of Digital Circuit, New Delhi,

PHI.

6.9 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : If atleast one of the inputs is HIGH.

Ans. to Q. No. 2 : If all the inputs to it are HIGH.

Ans. to Q. No. 3 : The function of the NOT gate is to invert / complement

its single line input variable or function.

Ans. to Q. No. 4 : If both the input variables to a XOR gate is not equal

then the output is HIGH.

Ans. to Q. No. 5 : Because, NAND and NOR gates are easier to fabricate.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques74

Unit 6 Logic Gates

6.10 MODEL QUESTIONS

Q.1. What is a logic gate?

Q.2. List the three basic logic operations.

Q.3. What are the positive and negative logic?

Q.4. What is the only set of input conditions that will produce a LOW

output for an OR gate?

Q.5. Write a truth table for a 3 input OR gate?

Q.6. Write a Boolean expression for a 4 input AND gate

Q.7. What is the only input combination that will produce a HIGH at the

output of a 4 input AND gate?

Q.8. What input/ logic level should be applied to the second input of a 2-

input AND gate to inhibit the logic signal at the first input from reaching

output?

Q.9. Develop a truth table for a 3- input AND gate.

Q.10. Is there any difference between 1 OR 1 and 1+1 (binary addition) ?

Q.11. Name the logic gate which has only one input, and show the logic /

graphic sym bol.

Q.12. What are the NAND and NOR gates?

Q.13. Write the logic symbols of NAND /NOR gates and develop its truth

table.

Q.14. What are the universal gates?

Q.15. Draw the logic diagram of OR gate using NOR /NAND gate.

Q.16. Draw the logic diagram of AND gate using NOR / NAND gate.

Q.17. Draw the logic diagram of NOT gate using NOR / NAND gate

Q.18. What is an XOR gate ? Write its truth table for 2 variables.

Q.19. Show the logic diagram of an XOR gate using basic gates.

Q.20. Draw the logic diagram of an XOR gate using NAND gates.

Q.21. What is an XNOR gate ? Write its truth table.

Q.22. Draw the logic diagram of an XNOR gate using basic gates.

Q.23. Draw the symbol of an XNOR gate and its Boolean expression

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 75

Logic Gates Unit 6

Q.24. Implement the following functions with (i) NAND gates (ii) NOR gates.

Q.25. Write the procedure for obtaing NAND logic implementation of a

Boolean function.

Q.26. Write the procedure for obtaing NOR logic implementation of a

Boolean function.

Q.27. Explain the operation of 3-input AND / OR gate and realize it using

NAND /NOR gates

Q.28. Explain the operation of 2-input XOR gate and realize it using NAND

/NOR gates

Q.29. Explain the operation of 2-input XNOR gate and realize it using NAND

/NOR gates.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques76

Unit 7 Floating point Number Representation

UNIT 7 : FLOATING POINT NUMBER
 REPRESENTATION

UNIT STRUCTURE
7.1 Learning Objectives

7.2 Introduction

7.3 Floating Point Number

7.4 Normalization of Floating Point Number

7.5 Overflow and Underflow

7.6 IEEE standard for Floating Point Representation

7.7 Floating-Point Arithmetic

7.7.1 Addition and Subtraction

7.7.2 Multiplication

7.7.3 Division

7.8 Let Us Sum Up

7.9 Further Reading

7.10 Answers to Check Your Progress

7.11 Model Questions

7.1 LEARNING OBJECTIVES
After going through this unit, you will be able to :

l define floating point number

l describe the method to normalize floating point number

l understand overflow and underflow

l know the accepted standard of floating point presentation

l become familiar with floating point arithmetic

7.2 INTRODUCTION

In the previous units, we have learnt about the different types of code

conversion methods and logic gates. Different types of logic gates have
been discussed in detail in the previous units. In this unit, we describe floating
point number representation. We will also discuss how floating point number
is normalized. Further, we shall describe what are overflow and underflow.
The IEEE standard for floating point number representation shall also be

described. We will also discuss floating point arithmetic in this unit.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 77

Floating point Number Representation Unit 7

7.3 FLOATING POINT NUMBER

The floating point number system is used to represent large fraction

of numbers for scientific and computational purposes using two segments

namely mania and exponent. Numbers that are too large for standard integer

representations or that has fractional components are usually represented

in scientific notation using floating point numbers. Thus, 875,000,000,000,000

can be represented as 8.75×1014 and 0.0000000000000875 can be

represented as 8.75×10-14. Here the decimal point is shifted to a convenient

location and the exponent of 10 is used to keep track of that decimal point.

This allows a range of very large and very small numbers to be represented

with only a few digits. This same approach can be used for binary numbers.

The floating point number system, based on scientific notation, is capable

of representing very large (1.33×10^88) and very small (1.33×10^-88)

numbers. A floating-point number can be represented in the form EBF ±×±

This number can be stored in a binary word with three fields as shown

below:

l Sign (plus or minus)

l Fraction F (also called mantissa or significand)

l Exponent E

Figure 7.1: Floating point number representation

Figure 7.1 shows floating point number representation using mantissa and

exponent. The base B is implicit and need not be stored because it is the

same for all numbers. Decimal numbers use base 10 (F×10E) while binary

numbers use base 2 (F×2E). The leftmost bit stores the sign of the number

('0' for positive numbers and '1' for negative numbers). The exponent value

is stored in the next 'k' bits. The representation used is known as a biased

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques78

Unit 7 Floating point Number Representation

representation. A fixed value, called bias, is subtracted from the exponent

field to get the true exponent value. Typically, the bias is equals to,

 k-1(2 -1) where 'k' is the number of bits in the binary exponent. The 8-bit

exponent field yields the numbers from 0 to 255. With a bias of 127 i.e. (27-

1), the true exponent values are in the range -127 to+128. The significand is

composed of an implicit leading bit (before the radix point) and fractional

bits (after the radix point). The leading bit for normalized numbers is 1 and

for the denormalized numbers is 0. Modern computer architecture adopt

IEEE 754 standard for representing floating-point numbers. The IEEE

standard defines both 32-bit single -precision and 64-bit double-precision

format with 8-bit and 11-bit exponents, respectively. The implied base is 2.

7.4 NORMALIZATION OF FLOATING POINT NUMBER

A normalized number is defined to have the most significant digit of

the significand, a nonzero value. Any floating-point number can be expressed

in many ways. For example, the following are equivalent, where the

significand is expressed in binary form: 60.110×2 , 3110×2 , 70.0110×2 .

To simplify operations on floating-point numbers, it is required that they be

normalized.

For example,

l
10

1+(1.23356789) ×10 : Normalized decimal floating point number

l
10

12-(9.97865231) ×10 : Normalized decimal floating point number

l 4
10(23.2) 10× : Unnormalized decimal floating point number

l 3
2(101.011) ×2 : Unnormalized binary floating point number

l 5
2(1.01011) ×2 : Normalized binary floating point number

Therefore, for base 2 representation, a normalized number is one in which

the most significant bit (MSB) of the significand is one. Thus, a normalized

nonzero number is one in the form ±E±1.F×2 . Since the most significant

bit is always one, it is not necessary to store this bit. This is an implicit bit

hidden in the significand. Thus, the 23-bit significand field (in 32-bit single-

precision representation) is used to store a 24-bit value. Given a number

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 79

Floating point Number Representation Unit 7

that is not normalized, it may be normalized by shifting the radix point to the

right of the most significant binary digit (bit 1) and adjusting the exponent

accordingly.

Example 7.1: Represent each of the following decimal number using the 8-

bit floating-point format with 3 bits for the mantissa and 4 bits for the exponent.

a) (5.5)10

b) -(96)10

Solution: a) (5.5)10

 Steps : 1.Convert the decimal number to binary: (101.1)2=(1.011)2×22

 2. Store the binary number in the following binary word with three

fields:

Sign bit is equals to 0 since the number is positive. The MSB of the number

(1.011)2×22 will not occupy a bit position because it is always a 1. Therefore,

the significand is the fractional number 011. Here, exponent field is of 4 bits.

So, bias is equal to 7 (23-1). Add 7 to the exponent to get the true exponent

value. True exponent value (biased exponent) is 2+7=(9)10=(1001)2.

Therefore, the complete floating point number is:

b) - (96)10

Steps: 1.Convert the decimal number to binary: (-1100000)2= (1.100000)2×26

 2. Store the binary number in the following binary word with three fields:

Sign bit is equals to 1 since the number is negative. The MSB of the number

(1.100000)2×26 will not occupy a bit position because it is always a 1.

Therefore, the significand is the fractional number 100000. The required

three significand bits are the first three bits i.e. 100. Here, significand needs

to be rounded off to the nearest eight bits to fit in the allowed range of the

given representation. Here, exponent field is of 4 bits. So, bias is equal to 7

(23-1). Add 7 to the exponent to get the true exponent value. True exponent

value (biased exponent) is 6+7=(13)10=(1101)2. Therefore, the complete

Sign
(1 bit)

Exponent
(4 bits)

Significand
(3 bits)

0 1001 011

Sign
(1 bit)

Exponent
(4 bits)

Significand
(3 bits)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques80

Unit 7 Floating point Number Representation

floating point number is :

Example 7. 2: Consider the 8-bit floating-point representation with 3 bits for

the mantissa and 4 bits for the excess-7 (bias value is 7) exponent. What

decimal number does the bit pattern 11101100 represent?

Solution:

1. The number is negative, since the sign bit is 1.

2. The exponent bits represent (1101)2 = (13)10. This is 7 more than the

actual exponent, and so the actual exponent must be 13-7=6.

Significand is 100. Thus, in binary scientific notation, we have -

(1.100)2×26.

3. Convert this to binary number: - (1.100)2×26= - (1100000)2.

4. Convert the binary number into decimal number: (1100000)2= - (96)10.

5. Therefore, the resultant decimal number is - (96)10.

The 8-bit floating-point format can represent a wide range of both small

numbers and large numbers. The smallest possible positive number that

can be represented in 8-bit floating point format with 4 bit exponent and 3 bit

significand is :

This gives 00000000 which represents,

 (1.000)2×20-7= (1.000)2×2-7. The decimal equivalent of this number is

(0.0078)10.

The largest possible positive number that can be represented in this 8-bit

floating point format is :

This gives 01111111 which represents,

(1.111)2×215-7= (1.111)2×28. The decimal equivalent of this number is (480)10.

Thus, the 8-bit floating-point format (with 4 exponent bits and 3 significand

1 1101 100

0
(sign bit)

0000
(Exponent bits)

000
(significand bits)

0
(sign bit)

1111
(Exponent bits)

111
(significand bits)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 81

Floating point Number Representation Unit 7

bits) can represent positive numbers from about (0.0078)10 to (480)10. In

contrast, the 8-bit 2's-complement representation can only represent positive

numbers in the range from 1 to 127. But the floating-point representation

cannot represent all the numbers in this range, since 8 bits can represent

only 28(256) distinct values, and there are infinitely many real numbers in

the range to represent (even within a small range of 0.0 to 0.1). If the number

of bits in the exponent is increased, the range of expressible numbers will

get expanded. But because only a fixed number of different values can be

expressed, the density of those numbers will be reduced and therefore the

precision. The only way to increase both range and precision is to use more

bits. Thus, most computers offer 32-bit single-precision numbers and 64

bit double-precision numbers.

CHECK YOUR PROGRESS

1. The decimal numbers represented in the computer are called as floating

point numbers, as the decimal point floats through the number.

(a) True (c) cannot say anything

(b) False (d) none of the above

2. If the decimal point is placed to the right of the first significant digit, then

the number is called as

(a) Orthogonal (c) Determinate

(b) Normalized (d) none of the above

3. _______ constitute the representation of the floating number.

(a) Sign (c) Significant digits

(b) Scale factor (d) All of the above

4. The sign followed by the string of digits is called as ______

(a) Significant (c) Mantissa

(b) Determinant (d) Exponent

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques82

Unit 7 Floating point Number Representation

7.5 OVERFLOW AND UNDERFLOW

An AND gate may have two or more inputs and a single output. In

order to have a HIGH (1) output, all the inputs of the AND gate must be HIGH

(1), otherwise the output is LOW. Figure 6.3 in unit 6 shows graphic symbols

used to represent an AND gate.

Overflow occurs when an arithmetic operation results in a magnitude greater

than the one that can be expressed in the given floating point notation.

Underflow occurs if the number is not zero but too small to be represented

in the given floating point representation. For example, Figure 7.2 shows

the range of numbers that can be represented in a 32-bit word.

l Negative numbers can be represented between-(2-2-23) ×2128 and -2-127.

l Positive numbers can be represented between 2-127 and (2-2-23) ×2128.

Figure 7.2: Expressible Numbers in Typical 32-Bit Formats

So, in this case overflow will occur if the magnitude of the result of an

arithmetic operation is greater than the number that can be expressed with

an exponent of 128 e.g. 2120×2100= 2220. Underflow will occur if the fractional

magnitude is too small e.g. 2-120×2-100= 2-220.

7.6 IEEE STANDARD FOR FLOATING POINT
REPRESENTATION

Floating point numbers are an important data type used in almost all

computer hardware. The most important floating-point representation is

defined in IEEE Standard 754, was adopted in 1985 by all computer

manufacturers. This standard defines both a 32-bit single precision format

and a 64-bit double precision format for representing a floating point number.

The implied base is 2.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 83

Floating point Number Representation Unit 7

32-bits Double Precision IEEE 754 Standard

In 32-bit single-precision floating-point representation:

Ø The most significant bit is the sign bit (S), with 0 for positive num-

bers and 1 for negative numbers.

Ø The following 8 bits represent exponent (E).

Ø The remaining 23 bits represents fraction (F).

Figure 7.3: IEEE 754 representation of 32 bits floating point number

Figure 7.3 shows a typical 32-bit floating-point format. Exponent (E) can be

both positive and negative numbers. So, instead of using a separate sign bit

for the exponent, the standard uses a biased representation. Here, since

the exponent field is of 8 bits, it can have numbers from 0 to 255. A bias

value of 127 (27-1) is added to the true exponent to be stored in the exponent

field. The exponent is biased, so that the range of exponents is from -126 to

+127. So for exponent values in the range of 1 to 254, the value N =

() 127E21.F −×± or () () 127Es 21.F1 −××− is the normalized nonzero floating-

point number.

To increase the precision of the significand, the IEEE 754 standard uses a

normalized significand. The MSB of the significand is always one and it is

not necessary to store this bit. This is an implicit bit hidden in the significand.

Thus in the single precision IEEE Standard, the significand field is 24 bits

long of which 23 bits of the significand is stored in the memory and the

MSB is an implied 1. The extra bit increases the number of significant digits

in the significand.

For exponent (E) =0, the numbers are in the de-normalized form. Unlike

normalized form in the de-normalized form an implicit leading 0 is used for

the significand and the actual exponent is always -126. For E=0, the value

N = () () 126s 20.F1 −×− . Hence, de-normalized form can be used to

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques84

Unit 7 Floating point Number Representation

represent the number zero with E=0 and F=0. An exponent of all ones (i.e.

E=255) together with a fraction (significand) of zero represents positive or

negative infinity, depending on the sign bit. Magnitude of numbers that can

be represented in this 32-bits single precision format is approximately in the

range of 1.8 × 10- 38 to 3.40 × 1038. An exponent of all ones (E=255) together

with a nonzero fraction gives the value NaN, which means Not a Number.

When an operation is performed by a computer on a pair of operands, the

result may not be mathematically defined. For example, if zero is divided by

zero, the result is indeterminate. Such a result is called Not a Number (NaN)

in the IEEE Standard.

Example 7. 3: Convert the decimal number (0.75)10 to a 32-bits single

precision floating point binary number.

Solution: Given decimal number is (0.75)10

Convert the decimal number to binary:

 (0.11)2 = (1.1)2×2-1

Sign bit is equals to 0 since the number is positive. The MSB of the number

(1.1)2×2-1 will not occupy a bit position because it is always a 1 in normalized

number. Therefore, the significand is the fractional 23-bits binary number

10000000000000000000000 and the biased exponent is:

 -1+127= (126)10 = (01111110)2

 Therefore, the complete floating point number is

Example 7. 4: Determine the decimal value of the following floating point

binary number:

 1 10010001 10001110001000000000000

Solution:

1. The number is negative, since the sign bit is 1.

2. The exponent bits represent (10010001)2 = (145)10. This is 127 more

than the actual exponent, and so the actual exponent must be 145-

127=18. Significand is 10001110001000000000000.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 85

Floating point Number Representation Unit 7

3. The general approach to determine the value of a normalised floating

point number is expressed by the formula:

 S E-127×(-1) (1.F)×2
= 1 145-127×(-1) (1.10001110001)×2 = 1 18×(-1) (1.10001110001)×2

4. Convert this to binary number: - (1.1001110001)2×218= -

(1100011100010000000)2.

5. Convert the binary number into decimal number:

- (1100011100010000000)2= - (407680)10.

64-bits Double Precision IEEE 754 Standard

In 64-bit double-precision floating-point representation:

Ø The most significant bit is the sign bit (S), with 0 for positive numbers

and 1 for negative numbers.

Ø The following 11 bits represent exponent (E).

Ø The remaining 52 bits represents fraction (F).

Figure 7.4: IEEE 754 representation of 64 bits floating point number

Figure 7.4 shows a typical 64-bit floating-point format. Similar to 32-bits

representation, in this format also Exponent (E) can be both positive and

negative numbers. So, instead of using a separate sign bit for the exponent,

the standard uses a biased representation. Here, since the exponent field is

of 11 bits, it can have numbers from 0 to 2048. A bias value of 1023 (210-1)

is added to the true exponent to be stored in the exponent field. The exponent

is biased, so that the range of exponents is from -1022 to +1023. So for

exponent values in the range of 1 to 2046, the value N = E-1023±(1.F)×2 or

 S E-1023×(-1) (1.F)×2 is the normalized nonzero floating-point number. Here,

the significand field is 53 bits long of which 52 bits of the significand is

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques86

Unit 7 Floating point Number Representation

stored in the memory and the MSB is an implied 1. The extra bit increases

the number of significant digits in the significand.

 For exponent (E) =0, the numbers are in the de-normalized form. Unlike

normalized form in the de-normalized form an implicit leading 0 is used for

the fraction and the actual exponent is always -1022. For E=0, the value N

= S -1022×(-1) (0.F)×2 . Hence, de-normalized form can be used to represent

the number zero with E=0 and F=0. An exponent of all ones (i.e. E=2047)

together with a fraction of zero represents positive or negative infinity,

depending on the sign bit. Magnitude of numbers that can be represented in

this 64-bits double precision format is approximately in the range of 2.23 ×

10-308 to 1.8 × 10308. An exponent of all ones (E=2047) together with a nonzero

fraction gives the value NaN, which means Not a Number.

7.7 FLOATING-POINT ARITHMETIC

For addition and subtraction, both the operands need to have the same

exponent value. So, shifting of the radix point on one of the operands may

be required to achieve proper alignment. Table 7.1 summarizes the basic

operations for floating-point arithmetic. A floating-point operation may produce

one of the following conditions:

(a) If a positive exponent exceeds the maximum possible exponent value,

Exponent overflow occurs.

(b) If a negative exponent is less than the minimum possible exponent

value then exponent underflow occurs. This means that the number

is too small to be represented, and it may be expressed as zero.

(c) In the process of aligning the significands, digits may get shifted to the

right end of the significand and some form of rounding operation may

require. Significand underflow occurs in this situation.

(d) The addition of two significands of the same sign may result in a carry

out of the most significant bit. This can be fixed by realignment and

significand overflow may occur.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 87

Floating point Number Representation Unit 7

Table 7.1: Arithmetic Operations in floating point numbers

7.7.1 Addition and Subtraction

Addition and subtraction are identical operation except for a sign change.

So, in subtraction operation the sign of the subtrahend is changed.

There are four basic steps of the algorithm for addition and subtraction:

1. Check for zero: If either operand is 0, the other operand is expressed

as the result.

2. Align the significands: The alignment is achieved by repeatedly

shifting the magnitude portion of the significand of the smaller number

to the right by 1 digit and incrementing the exponent until the two

exponents are equal. If this process results in a 0 value for the

significand, then the other number is expressed as the result.

3. Add or subtract the significands: The two significands are added

together, taking into account their signs.

4. Normalization of result: If result of the operation is not in normalized

form, normalization is done by left shifting the significand until MSB is

nonzero and decrementing its exponent value or by right shifting the

result and incrementing its exponent value. It may cause exponent

underflow if exponent value is smaller than minimum exponent allowed.

Exponent overflow may occur if its value is larger than maximum

exponent allowed in the representation. Finally, the result must be

rounded off.

Floating Point Numbers Arithmetic Operations

X=Xs × BXe

Y=Ys × BYe

Where,

Xs and Ys are the significand

of X and Y respectively

Xe and Ye are the exponent

of X and Y respectively

B= base

e e eX -Y Y
s s×B +Y)×BX+Y=(X

if Xe ≤ Ye
e e eX -Y Y

s s×B -Y)×BX-Y=(X
if Xe ≤ Ye

e eX +Y
s s×Y)×BX×Y=(X

e eX -Ys

s

XX = ×B
Y Y

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques88

Unit 7 Floating point Number Representation

Here, negative significands are first converted to 2's complement form and

then the addition is performed. The result is converted back to sign-magnitude

form. When adding numbers of opposite sign, cancellation may occur,

resulting in an arbitrarily small sum or even zero if the numbers are equal in

magnitude. Normalization in this case may require shifting by the total

number of bits in the significand results in a large loss of accuracy.

Example 7. 5: Convert the decimal number (-0.75)10 to a 64-bits double

precision floating point binary number.

Solution: Given decimal number is (-0.75)10

Converting the decimal number to binary:

(-0.11)2 = - (1.1)2×2-1

Sign bit is equals to 1 since the number is negative. The MSB of the number

- (1.1)2×2-1 will not occupy a bit position because it is always a 1 in normalized

number. Therefore, the significand is the fractional 52-bits binary number

1000 0000 0000 0000 0000 000.....0 and the biased exponent is:

 -1+1023= (1022)10 = (01111111110)2

 Therefore, the complete floating point number is

CHECK YOUR PROGRESS

5. In IEEE 32-bit representations, the mantissa of the fraction is said to

occupy ______ bits.

(a) 24 (b) 23

(c) 20 (d) 16

6. In double precision format the size of the mantissa is ______ bits.

(a)32 (b) 52

(c) 64 (d) 72

7. A machine stores floating point numbers in 7-bit word. The first bit is

used for the sign of the number, the next three for the biased exponent

1 01111111110 10000000000000000000000.....0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 89

Floating point Number Representation Unit 7

and the next three for the magnitude of the mantissa. The number

(0010110)2 represented in base-10 is

(a) 0.375 (b) 0.875

(c) 1.5 (d) 3.5

8. A machine stores floating point numbers in 7-bit words. The first bit is

stored for the sign of the number, the next three for the biased exponent

and the next three for the magnitude of the mantissa. You are asked

to represent 33.35 in the above word. The error you will get in this

case would be

(a) Underflow (b) Overflow

(c) NaN (d) No error will be registered.

Example 7.6: Convert the following decimal number into IEEE 754 single

precision format. Perform floating-point addition. Show the results in

normalized form X = (2345.125)10 and Y= (0 .75)10.

Solution: 32- bit single precision representation of X and Y is obtained

using the method discussed in section 7.4.1.

 X = (2345.125)10 is represented as:

Y= (0 .75)10 is represented as:

Addition operation is done using the formula shown in Table 7.1, i.e.

 e e eX -Y Y
s s×B +Y)×BX+Y=(X

Steps:

1. Here, X = (2345.125)10= (1.00100101001001)2×211 and Y= (0 .75)10 =

(1.1)2×2-1

0
(sign bit)

10001010
(Exponent
bits)

00100101001001000000000
(significand bits)

0
(sign bit)

01111110
(Exponent bits)

1000000000000000000000
(significand bits)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques90

Unit 7 Floating point Number Representation

 Xe= 10001010, Xs= 00100101001001000000000, Ye= 01111110 and

 Ys= 1000000000000000000000

So since Ye ≤ Xe , Y is a smaller number. Shifting the significand of YY

until its exponent matches the exponent of X :

 Ys×211 = 0.00000000000110000000000

2. Adding the significand of X and Y:

Xs + Ys× 211 = 1.00100101001001000000000 +

0.00000000000110000000000

 = 1. 00100101001111000000000

3. So, the result of addition is already a nonzero normalized number.

4. Therefore, X+Y is equal to :

7.7.2 Multiplication
Floating-point multiplication algorithm is as follows:

1. If either operand is zero, result of the operation is expressed as zero.

The next step is to add the exponents.

2. If the exponents are stored in biased form, the exponent sum would

have doubled the bias value. Thus, the bias value must be subtracted

from the sum. The result could be either an exponent overflow or

underflow, which is marked by ending the algorithm.

3. If the exponent of the product is within the proper range, the next step

is to multiply the significands, taking into account their signs. The

multiplication is performed in the same way as for integers.

4. The result of the multiplication will be double the length of the multiplier

and multiplicand. The extra bits will be truncated.

5. The result is then normalized and rounded off like in addition and

subtraction operations. The normalization could result in exponent

underflow.

Example 7. 7: Convert the following decimal number into IEEE 754 single

precision format. Perform floating-point multiplication. Show the results

in normalized form X = (-18)10 and Y= (9.5)10.

0
(sign bit)

10001010
 (Exponent bits)

00100101001111000000000

(significand bits)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 91

Floating point Number Representation Unit 7

Solution: 32- bit single precision representation of X and Y is obtained

using the method discussed in section 7.4.1.

X = (-18)10 is represented as:

Y= (9.5)10 is represented as:

Multiplication operation is done using the formula shown in Table 7.1, i.e.
 e eX +Y

s s×Y)×BX×Y=(X
Steps:
1. Here, X = (-18)10= (-1.0010)2×24 and Y= (9.5)10 = (1.0011)2×23

Xe=10000011, Xs= 00100000000000000000000,
Ye= 10000010 and
Ys= 00110000000000000000000
Sign of X is negative and Y is positive, so sign of the product will be
negative.

2. Multiply the significand of X and Y: The product of the 24 bits significands
will be of 48 bits with two bits to the left of the binary point:
(01).0101011000000….000000
So, truncate the product to 24 bits: (1).01010110000000000000000

3. Compute exponent of the result:
Xe + Ye - 12710 = 1000 0011 + 1000 0010 - 0111111 = 1000 0110

4. So, the result of multiplication is already a nonzero normalized number.

5. Therefore, X×Y is equal to :

1
(sign bit)

10000011
 (Exponent bits)

00100000000000000000000
(significand bits)

0
(sign bit)

10000010
(Exponent bits)

00110000000000000000000
(significand bits)

1
(sign bit)

10000110
 (Exponent
bits)

01010101100000000000000

(significand bits)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques92

Unit 7 Floating point Number Representation

7.7.3. Division
Floating-point division algorithm is as follows:

1. If the divisor is zero, the result is set to infinity. A dividend of zero

results in zero. If both divisor and dividend is zero, (i.e. 0/0) the result

is NaN.

2. The divisor exponent is subtracted from the dividend exponent to

remove the bias, which must be added back in the exponent of the

result.

3. Check result exponent for overflow or underflow. Overflow occurs if

result exponent is larger than maximum exponent allowed and

underflow occurs if result exponent is smaller than minimum exponent

allowed in the given representation.

4. Divide the significand. The result of division will be double the length

of the divisor and dividend. The extra bits will be truncated.

5. The result is then normalized and rounded off.

7.8 LET US SUM UP

l The floating point number system is used to represent large fraction

numbers for scientific and computational purposes using two

segments namely manias and exponent.

l A normalized number is defined to have the most significant digit of

the significand a nonzero value.

l Overflow occurs when an arithmetic operation results in a magnitude

greater than the one that can be expressed in the given floating point

notation.

l Underflow occurs if the number is not zero but too small to be

represented in the given floating point representation.

l Floating point numbers are an important data type used in almost all

computer hardware.

l The most important floating-point representation is defined in IEEE

Standard 754, was adopted in1985 by all computer manufacturers.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 93

Floating point Number Representation Unit 7

l To increase the precision of the significand, the IEEE 754 Standard

uses a normalized significand.

l Addition and subtraction are identical operation except for a sign

change. So, in subtraction operation the sign of the subtrahend is

changed.

7.9 FURTHER READING

l Overtorn M., (2001), Numerical Computing with IEEE Floating Point

Anithmetic.

l Mano, Moorris. (2007), Digital Logic and Computer Design. Pearson

Education.

7.10 ANSWERS TO CHECK YOUR
PROGRESS

Ans 1: (a)

Ans 2: (b)

Ans 3: (d)

Ans 4: (c)

Ans 5: (b)

Ans 6: (b)

Ans 7: (b)

Steps:

1. The number is positive, since the sign bit is 0.

2. The exponent bits represent (010)2 = (2)10. This is 3 more than the

actual exponent, and so the actual exponent must be 2-3= -1.

Significand is 110.Thus, in binary scientific notation, we have

(1.110)2×2-1.

3. Convert this to binary number: (1.110)2×2-1= (0.1110)2.

4. Convert the binary number into decimal number: (0.1110)2=

(0.875)10.

5. Therefore, the resultant decimal number is (0.875)10.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques94

Unit 7 Floating point Number Representation

Ans 8: (b)

Binary representation of decimal number (33.35)10 is :

(33.35)10 ≈ (100001.01)2

Its binary scientific notation is (1.0000101)2×25.

The biased exponent has 3 bits, so the biased exponent varies from

(000)2 to (111)2 i.e. from 0 to (7)10. So the exponent can vary from -3 to

Hence the number (33.35)10 which has an exponent of 5 would overflow.

7.11 MODEL QUESTIONS

Q.1. Convert the decimal number (-2345.125)10 to a 32-bits single precision

floating point binary number.

Q.2. Consider a 7-bit floating-point representation with 3 bits for the excess-

3 exponent and 3 bits for the mantissa.

(a) How would 0.375 be represented in this 7-bit representation?

(b) What decimal value do 0110110 represent?

Q.3. Convert the decimal number (1460.125)10 to a 64-bits double precision

floating point binary number.

Q.4. The following numbers use the IEEE 32-bit floating-point format. What

is the equivalent decimal value?

(a) 1 10000011 11000000000000000000000

(b) 1 00000000 00000000000000000000001

Q.5. Compute the largest and smallest positive numbers that can be

represented in the 32-bit normalized form.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 95

Logic Family Unit 8

UNIT 8 : LOGIC FAMILY

UNIT STRUCTURE

8.1 Learning Objectives

8.2 Introduction
8.3 Logic Family
8.4 Resistor Transistor Logic (RTL)
8.5 Integrated Injection Logic (I2L)
8.6 Diode-Transistor Logic (DTL)
8.7 Emitter-Coupled Logic (ECL)
8.8 Transistor-Transistor Logic (TTL)
8.9 Tri State Logic
8.10 Metal Oxide Semiconductor Field-Effect Transistor (MOSFET)
8.11 Let Us Sum Up
8.12 Further Reading
8.13 Answers to Check Your Progress

8.14 Model Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

l define logic family
l describe the different types of logic family
l describe RTL, I2L, DTL, ECL, TTL and MOSFET

l describe tri-state logic

8.2 INTRODUCTION

In the previous units, we have learnt about logic gates and floating

point number representation. Different types of logic gates and their
conversion has been discussed in the previous units. We have also learnt
to perform arithmetic functions on floating point numbers.

In this unit, we will learn about the concepts of logic family. Different
types of logic families are covered in this unit like register transistor logic,
integrated injection logic, diode transistor logic among others. Tri State logic

and MOSFET technology is also covered in this unit.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques96

Unit 8 Logic Family

 8.3 LOGIC FAMILY

Logic family of digital integrated circuits (IC) devices is an assembly

of logic gates built by using a number of different designs, methods,

components and processes intended to generate binary output. Individual
components are formed from various logic families, containing some
interrelated basic logical functions. All these can be used as building-blocks
to generate systems or as an interconnected structure to form more complex
ICs. A logic family can also be referred to as a set of techniques that can be
used to execute logic within VLSI ICs. Some of these logic families use
static techniques to reduce the design complexities such as memories,
central processors etc. Some other like domino logic, uses dynamic
techniques to decrease the delay, size and power consumption. Prior to the
extensive use of ICs, different vacuum-tubes and solid-state logic systems
were used but these were not at all as interoperable and standardized as
the IC devices.

ICs are basically used to perform low power circuit operation since
they cannot handle large current and voltages. They are fabricated using
different technologies like DTL, RTL, TTL, I2L, ECL etc. Some of the terms
used in digital IC specifications are discussed below.
Threshold Voltage: It is defined as the voltage of the gate input that causes
a change in the state from one logic level to the other at the output.
Propagation Delay: It defined as the average of the signal delay time of
the output going from logic 1 to logic 0 and logic 0 to logic 1.
Power Dissipation: It is defined as the power required by a logic cycle to
execute with 50% duty cycle at a particular frequency.
Fan-in: It is defined as the number of inputs, a logic gate can handle.
Fan-out: It is defined as the number of loads that the output of the logic gate
can drive without damaging its regular operation.
Noise margin: The circuit's capacity to bear noise signals is known as the
noise immunity, a quantitative measure of it is the noise margin.
Speed power product: It is defined as the product of gate power dissipation

and propagation delay of the gate.

The main types of logic families are :-

A. Resistor Transistor Logic (RTL)
B. Integrated Injection Logic (I2L)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 97

Logic Family Unit 8

C. Diode-Transistor Logic (DTL)
D. Emitter-Coupled Logic (ECL)
E. Transistor-Transistor Logic (TTL)
F. Metal Oxide Semiconductor Field- Effect Transistor (MOSFET)

A comparison of the above families are given in Table 8.1.

Table 8.1: Comparing the parameters of different logic families

8.4 Resistor Transistor Logic (RTL)

The resistor transistor logic (RTL) is a category of digital circuits

that uses resistors at the input and bipolar junction transistors (BJTs) as the

switching devices. These circuits were previously constructed with discrete

components, but later on it became the first digital logic family to be produced,

as the IC.

RTL inverter: A simple RTL inverter is shown in Fig 8.1. It consists of a

common-emitter (CE) stage and a base resistor that is connected in between

the input voltage source and the base. The base resistor's work is to increase

the negligible transistor's input voltage range from around 0.7 V to about 3.5

V, by altering the input voltage to current. The job of the collector resistor is

to change the collector current into voltage.

Figure 8.1: RTL inverter

Parameter RTL I2L DTL ECL TTL MOSFET
Basic Gate NOR NOR NAND OR-NOR NAND NAND
Fan out 5 Depends

on Injector
Current

8 25 20 20

Power
dissipation

12mW 6 to 70 nW 8-12 mW 40-55 mW 10mW 0.2 – 10
mW

Noise
immunity

Nominal Poor Good Poor Very
good

Good

Propagatio
n delay

12 nSec 25-30
nSec

30 nSec 1 nSec 10
nSec

300 nSec

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques98

Unit 8 Logic Family

RTL NOR gate: Using two or more base resistors (RC and R4) rather

than one, it becomes a two input RTL NOR gate, shown in Fig 8.2. By

applying the two arithmetic operations comparison and addition

simultaneously, the logical operation OR is performed. The equivalent

resistance of all the resistors connected to high state and that of the low

state forms the two legs of a voltage divider circuit. The number of the inputs

and the base resistances are chosen in such a way that only one high state

is enough to make the base-emitter voltage greater than the threshold value

and as such the transistor is in saturation mode. The transistor is cut-off,

when all the input voltages are low. The pull down resistor (R1) biases the

transistor to the proper on-off threshold value. Since the collector-emitter

voltage of transistor (Q1) is taken as output, so it is inverted and when the

inputs are low, it is high. Thus, it performs the logic function of a NOR gate.

Figure 8. 2: RTL NOR gate with one transistor

8.5 INTEGRATED INJECTION LOGIC (I2L)
The I2L is a class of digital circuits that is built with several collector

BJTs. In the initial stage, the I2L had a speed that was almost equivalent to

TTL, low power as CMOS, making it the best logic family for use in VLSI

ICs. Though, the logic voltage levels are very close i.e. high value of 0.7V

and low value of around 0.2V, it has a high noise immunity since it operates

by current rather than by voltage. Sometimes, it is also termed as merged

transistor logic. Figure 8.3 shows an I2L circuit.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 99

Logic Family Unit 8

Figure 8.3: An I2L logic circuit

The main part of an I2L circuit is the common emitter open

collector inverter. It consists of an NPN transistor with the base biased with

a forward current and the emitter connected to ground. At the base, the

input is applied either as a high-z floating condition or as a current sink. The

output is taken from the collector. So, it is either high-z floating condition

representing high logic level or a current sink showing the low logic level. If

the bias current is grounded, the transistor is in off state and the collector is

in floating condition. But, if the bias current is not connected to the ground,

then the bias current will flow through the transistor to the emitter, turning

the transistor on and this makes the collector to sink current i.e. low logic

level. Since, the output can sink current instead of sourcing the current so it

is better to connect the outputs of several inverters together, forming a wired

AND gate (shown in Figure 8.4). It is a two-input NOR gate, when the outputs

of two inverters are wired together.

Figure 8.4: A wired AND gate followed by an inversion

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques100

Unit 8 Logic Family

8.6 DIODE-TRANSISTOR LOGIC (DTL)
It is a category of digital circuits that is the direct predecessor of

transistor transistor logic. It is called so since the ANDing operation is carried

out by a diode network and the transistor performs the amplifying part.

The DTL circuit, shown in Figure 8.5, consists of three stages. First is the

input diode logic stage (R1, D1 and D2). Second is an intermediate level

shifting part (RC and R4). Finally, an output common emitter amplifier stage

(R2 and Q1). When both the inputs A and B are at logic 1, the diodes (D1

and D2) are reversed biased. The resistors (R1 and RC) will then provide

sufficient current to turn on the transistor (Q1) along with the current required

by the resistor (R4). A small voltage on the base (VBE = 0.3 V for Ge and

0.6 V for Si) of the transistor (Q1) will be generated. The Q1 transistor's

collector current will then produce low value at the output (Q). If both the

inputs or either of them is low, then one of the two input diodes conduct and

pull the voltage less than around 2 volts. Resistors (RC and R4) behave as

a voltage divider which makes transistor Q1's base voltage to be negative

and turns it off. Transistor Q1's collector current will be around zero, so

resistor (R2) will give high value at the output (Q).

Figure 8.5: DTL logic

8.7 EMITTER-COUPLED LOGIC (ECL)

The ECL is a high speed IC BJT logic family. It uses a BJT differential

amplifier having single ended input and low emitter current to avoid the

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 101

Logic Family Unit 8

transistor going to its saturation state and also its slow turn-off characteristics.

Since the current is steered in between the two legs of an emitter coupled

pairs so it is sometimes called current steering logic (CSL), current switch

emitter-follower (CSEF) logic or current mode logic (CML). In case of ECL,

the transistors never reach the saturation stage, the input impedance is

high, the output resistance is low and the input-output voltages have a small

swing (around 0.8 V). So, the transistors change its states fast, fanout

capability is high and gate delays are low.

The major limitation of an ECL is that each gate always draws the

current, so it consumes more power than the other logic families. The

equivalent of an ECL is made out of FETs known as the source-coupled

logic (SCFL).

Figure 8.6 shows a NOR-OR gate using ECL logic. Here, A and B are

the two inputs. When either one of the two inputs is high then the NOR

output is low and the OR output is high. If both the inputs are low then the

NOR is high and OR is low. Transistor Q3's base voltage is set at a level

where there is a sufficient base current to make Q3 to conduct. Thus, Q3's

collector brings the OR output low. Transistor Q3's emitter is high enough

in comparison to Q2's base such that Q2 cannot conduct, so Q2's collector

is grounded. This makes the NOR's output high. When either of the two

inputs is high, then the subsequent transistor conducts brings Q1 or Q2's

collector to be low causing the NOR's output to be low and OR's output to

be high.

Figure 8.6: Two I/P ECL OR/NOR gate

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques102

Unit 8 Logic Family

8.8 TRANSISTOR-TRANSISTOR LOGIC (TTL)

It is a category of digital circuits built using BJTs and resistors. In this

case, the transistors perform both the ANDing operation and the amplifying

function. The TTL circuits were widely used in applications such as industrial

controls, computers, instrumentation, consumer electronics etc. TTL inputs

are the emitters of a multiple-emitter transistor. The TTL IC structure is

functionally the same as that of the multiple transistors where the collector

and bases are tied together. A common emitter amplifier buffers the output.

To eliminate the problem with the high output resistance, totem-pole (push-

pull) arrangement is used. It consists of the two n-p-n transistors (TC and

TD), lifting diode (D) and the current-limiting resistor RC, as shown in figure

8.7. It works by applying the current steering principle.

When both TB and TD are off, transistor TC operates in an active region

like a voltage follower producing a high output. When TB is on, it activates

TD, driving low voltage to the output. The series combination of TB's CE

junction and TD's BE junction is in parallel with the series of TC's BE junction,

TD CE junction and D's anode cathode junction. The second series

combination has the larger threshold voltage, so no current flows through it

and transistor TC is in off state. In between the transition, the resistor RC

lowers the current that flows directly through the series connected transistors

TC, TD and diode D. The efficiency of the gate may be increased by removing

the pull-up and pull-down resistors from the output stage, without affecting

the power consumption.

 Figure 8.7: TTL logic inverter

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 103

Logic Family Unit 8

TTL NAND

Figure 8.8 shows a NAND gate implemented using TTL logic. If both

inputs are at logic 1, the two transistors are in reverse active mode. A current

flows through the first resistor through the collector and base of these

transistors and then on the right through the base of the transistor, thus

saturating it and the output down is in low state. When both inputs are low,

the simplest path to ground through the first resistor is through the base of

the transistors. Thus the collector voltages are low, keeping that transistor

off and bringing the output to logic 1 state. If only one of the inputs is at a

logic 0, the input gives the easiest path to ground, keeping the transistor on

the right switched off state.

Figure 8.8: TTL NAND gate circuit

8.9 TRI STATE LOGIC

In digital electronics, tri state or three state logic allows an output port

to assume a 0 and 1 logic levels in addition to high impedance state. This

permits multiple circuits to distribute the same output lines. They are found

applicable in many flip-flops, bus, drivers and registers. Some of the other

uses are peripherals, computer memory and internal and external buses.

Some of the devices are controlled by an active-low input called Output

Enable (OE) which gives the information whether the outputs should be

held in a logic1 state or a high-impedance state. It uses the advantage of

high speed operation of wire ANDing of open collector configuration and

totem-pole arrangement.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques104

Unit 8 Logic Family

In the tri state logic, the high impedance state works as a selector

which keeps away the circuits that are not being used. Keeping one device

on a high-impedance state, prevents the design from a short circuit. Figure

8.9 shows the tri state logic. In this case, when B =1, the circuit operates as

a normal inverter and when B=0,the circuit goes to high impedance state.

Figure 8.9: Tristate logic buffer

As shown in Fig 8.10, the low value at E forward biases the BE

junction of Q1, and turns off Q2 by shunting the current in R1, making Q4

also off. The first diode shunts away from the base of Q3, at a low value of

E, thus turning it off.

Figure 8.10: Tristate TTL inverter

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 105

Logic Family Unit 8

8.10 METAL OXIDE SEMICONDUCTOR FIELD-
EFFECT TRANSISTOR (MOSFET)

MOSFET is a FET that is usually fabricated by the controlled oxidation

of Si. The conductivity of the device is determined by the insulated gate's

voltage. This capacity to change the conductivity with respect to the amount

of applied voltage can be used for switching or amplifying electronic signals.

The main advantage of a MOSFET is that it needs almost zero input current

to control the load current, when compared to BJTs. They can be classified

under two types. One is the enhancement channel MOSFET and other is

the depletion channel MOSFET. In case of the enhancement one, the

conductivity of the device is increased by the voltage applied to the gate

terminal increases. In the depletion mode MOSFET, the conductivity is

decreased by applying voltage at the gate. The gate material used in

MOSFET is a layer of polysilicon. Here, different dielectric materials are

used in the oxide part. MOSFETs can be built with either p-type or n-type

semiconductors or using complementary pairs of MOS transistors i.e. with

CMOS logic. Figure 8.11 shows the p and n channel, enhancement and

depletion type MOSFET.

Figure 8.11: (a) n-channel depletion type MOSFET (b) p-channel

depletion type MOSFET (c) n-channel enhancement type MOSFET

(d) p-channel enhancement type MOSFET

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques106

Unit 8 Logic Family

Logic gates with MOSFET's:

Several logic gates such as AND, NAND, OR, and NOR using CMOS

technology are discussed below. Figure 8.12 shows a two input NAND gate

using CMOS logic. The transistors Q1 and Q3 are controlled by the input

signal (InputA), where the upper transistor is turned off and the lower transistor

is turned on when the input is at logic 1. Q2 and Q4 are controlled by the

same input signal (InputB). The upper transistors Q1 and Q2 have their

source and drain terminals parallely connected while the transistors Q3

and Q4 are series-connected. The output will go high if either of the upper

transistors saturates, and output will be low only if both lower transistors

saturates.

Figure 8.12: NAND gate using CMOS logic

As shown in Figure 8.13, the CMOS AND gate is created in the same

way as the CMOS NAND gate but by only inverting the terminal at the output.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 107

Logic Family Unit 8

Figure 8.13: AND gate using CMOS logic

A CMOS NOR gate circuit also uses four MOSFETs alike that of the

NAND gate, except the arrangements of the transistors. Here, in place of

the two parallelly connected upper transistors and two series connected

transistors lower ones, the NOR gate uses two two parallel-connected

sinking transistors and two series-connected sourcing transistors, as shown

in figure 8.14.

Figure 8.14: NOR gate using CMOS logic

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques108

Unit 8 Logic Family

The OR gate is made up from the basic NOR gate with an inverter stage on

the output, as shown in Figure 8.15.

Figure 8.15: OR gate using CMOS logic

CHECK YOUR PROGRESS

1. What is a totem pole output?

2. State the advantages of CMOS logic.

3. Write a note on tri-state gates.

4. What is the significance of high impedance state in tri-state gates?

5. Define the term fan out.

6. How to increase fan-in of an RTL NOR gate?

7. The DTL propagation delay is relatively _______.

8. In an ECL, from where is the output taken?

9. In ECL the fanout capability is _______.

10. Give one disadvantage of ECL.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 109

Logic Family Unit 8

8.11 LET US SUM UP

l Logic family of digital integrated circuits (IC) devices is an assembly

of logic gates built by using a number of different designs, methods,

components and processes intended to generate binary output.

l ICs are basically used to perform low power circuit operation since

they cannot handle large current and voltages.

l The RTL is a category of digital circuits that uses resistors at the

input and bipolar junction transistors (BJTs) as the switching devices.

l The I2L is a class of digital circuits that is built with several collector

BJTs. Initially it had a speed that was almost equivalent to TTL, still

had a low power as CMOS, making it the best logic family for use in

VLSI ICs.

l The DTL is a category of digital circuits that is the direct predecessor

of transistor transistor logic.

l The ECL is a high speed IC BJT logic family. It uses a BJT differential

amplifier having single ended input and low emitter current to avoid

the transistor going to its saturation state and also its slow turn-off

characteristics.

l TTL is a category of digital circuits built using BJTs and resistors.

l In digital electronics, tri state or three state logic allows an output

port to assume a 0 and 1 logic levels in addition to high impedance

state.

l The main advantage of a MOSFET is that it needs almost zero input

current to control the load current, when compared to BJTs.

8.12 FURTHER READING

l Mano M. M. (2017), marris, 2007, Digital Logic and computer design.

Pearson Education India.

l Kumar, A. A., (2014), Fundamental of Digital Circuit, PHI Learning Pvt.

Ltd.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques110

Unit 8 Logic Family

8.13 ANSWERS TO CHECK YOUR
PROGRESS

Answer to Q.1: Totem pole output is a standard output of a TTL gate. It is

designed to reduce the propagation delay in the circuit and to provide enough

output power for high fan-out.

Answer to Q.2: The advantages of CMOS logic are :–

l Consumes less power.

l Fan-out is more.

l Better noise margin

l Can be operated at high voltages, resulting in improved

noise immunity.

Answer to Q.3: It is a digital circuit that exhibits three states. Two of the

states are signals equivalent to logic1 and logic 0. The third state is high

impedance state.

Answer to Q.4: High impedance state of a tri state gate provides a special

feature not available in other gates. A larger number of three state gate output

can be connected with wires to form a common line without endangering

loading effects.

Answer to Q.5: It is the maximum number of inputs which have same family

that the gate can drive maintaining its output's normal operation.

Answer to Q.6: Can be increased by adding more output transistors

Answer to Q.7: Large

Answer to Q.8: Collector

Answer to Q.9: High

Answer to Q.10: It requires more power

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Digital Techniques 111

Logic Family Unit 8

8.14 MODEL QUESTIONS

Q.1. What are the different types of logic families?

Q.2. Compare the different parameters of the main logic families.

Q.3. Describe the working of the RTL taking into account its primary gate.

Q.4. How does the DTL family work? Describe using its primary gate.

Q.5. Write briefly about how the I2L family works.

Q.6. Write short notes on TTL.

Q.7. What are the advantages and disadvantages of the MOSEFT family?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

	Unit_I
	Unit_II
	Unit_III
	Unit_IV
	Unit_V
	Unit_VI
	Unit_VII
	Unit_VIII
	Blank Page

