CHEMISTRY - I

WITH LAB MANUAL

MANISHA AGRAWAL

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS4C/4344, Ansari Road, Darya Ganj, New Delhi-110002Phone: 011-23244447-48Mobile: +91-99109 09320E-mail: contact@khannabooks.comWebsite: www.khannabooks.com

Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-14-1 Book Code: UG001EN

Chemistry - I *by* Manisha Agrawal **[English Edition]**

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

Printed in India.

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई-मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahre

(Anil D. Sahasrabudhe)

Acknowledgement

The author grateful to AICTE for their meticulous planning and execution to publish the technical book for Engineering and Technology students.

I sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Vimal Rarh, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that I state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, I like to express my sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Manisha Agrawal

Preface

Subject Chemistry teaches useful skills and knowledge. It plays an important and useful role in everyday life, towards the development and growth of a number of industries. Such as the food we eat, the air we breathe, the various cleansing agents we use, even human emotions are sometimes a result of chemical reactions within our body.

The text book on "Chemistry-I" (Theory and Lab) is designed to cater the needs of young minds of 21st century. The theoretical concepts and practical utility of these are blended in all the topics of the content with relevant examples. Book is strictly aligned with AICTE model curriculum incorporating student centric and self-learning activities as per New National Education Policy. Salient features of this model curriculum have been designed in such a way that it encourages innovation and research. A total number of credits have been reduced and many new courses have been incorporated in consultation with industry experts. The Curriculum has been designed where the students can understand the industry requirements and have hands-on experience. The students will develop a problem - solving approach and will be able to meet the challenges of the future.

To fulfil the aims and objectives of the above, this book is written for undergraduate students of Engineering. The Book contains seven Units. Flow of each unit begins with rationale, prerequisites and unit outcomes. 'Interesting facts', 'E- resources', 'Use of ICT', 'Case studies and Projects' are mentioned after every topic. Which provides a window to students to realize the importance and efforts behind those particular topics. After completion of the topics summary of the units is briefed. Descriptive and objective questions are included in the exercise with feedback of correct options in each Unit. The additional reading information of a particular topic is shared in the section "know more", to encourage the teachers and students to get the additional information.

The separate reference section is cited at the end of all chapters. Book ends with the appendices, attainments & gap analysis, suggestive outlines to report experiments and Rubrics for assessments.

I hope this book will be advantageous for the students to enhance their skills and knowledge. Although every care has been taken to avoid misprints and mistakes, yet it is difficult to claim perfection. I will be grateful to the readers if any errors are pointed out. Suggestions, corrections, and feedbacks for further improvement of the book will be thankfully acknowledged.

Manisha Agrawal

Outcome Based Education

For the implementation of an outcome based education the first requirement is to develop an outcome based curriculum and incorporate an outcome based assessment in the education system. By going through outcome based assessments evaluators will be able to evaluate whether the students have achieved the outlined standard, specific and measurable outcomes. With the proper incorporation of outcome based education there will be a definite commitment to achieve a minimum standard for all learners without giving up at any level. At the end of the programme running with the aid of outcome based education, a students will be able to arrive at the following outcomes:

- **PO-1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO-2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO-3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO-4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO-5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO-6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO-7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO-8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO-9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- **PO-10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO-11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12: Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomes

After completion of the course the students will be able to:

- **CO-1:** Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- **CO-2:** Rationalise bulk properties and processes using thermodynamic considerations.
- **CO-3:** Distinguish the ranges of the electromagnetic spectrum used for exciting different molecularenergy levels in various spectroscopic techniques
- **CO-4:** Rationalise periodic properties such as ionization potential, electronegativity, oxidation statesand electronegativity.
- CO-5: List major chemical reactions that are used in the synthesis of molecules.

Mapping of Course Outcomes with Program Outcomes

Course	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
Outcome	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	1		2								
CO-2	3		2	2					2			
CO-3	3	2			1	2	1		2			
CO-4	3	3	1			2					1	
CO-5	3	2	2		1	3						1

Abbreviations and Symbols

Symbols	Details
ψ	Wave-function
Н	Hamiltonian operator
σ	σ- bonding orbital
σ*	σ-antibonding orbital
π	π - bonding orbital
π*	π - antibonding orbital
Δο	Energy for octahedral complex
Δ _t	Energy for tetrahedral complex
μ	Magnetic moment
τ	Tau
δ	Delta
λ	Lambda

List of Figures

Unit 1: Atomic and Molecular Structure

Fig. 1.1:	A Particle in a One-Dimensional Box with P.E. = 0 Inside the Box and P.E. = ∞ on the walls of the Box and outside the Box.	5
Fig. 1.2:	A Plot of $\psi n(x)\psi n(x)$ for the First Four Wavefunctions.	5
-	Particle in a 3D Box with Three Lengths: a, b and c	5
-	Shapes of Orbitals and Sub-orbitals Derived from Quantum Numbers	7
Fig. 1.5:	Filling of Electrons as per Aufbau's Rule	7
Fig. 1.6:	Formation of Bonding and Anti-Bonding Orbital	10
Fig. 1.7:	Molecular Orbital Diagram for Hydrogen Molecule	11
Fig. 1.8:	Order of Energy for N ₂ and Lower Molecules	12
Fig. 1.9:	Order of Energy for O ₂ and Higher Molecules	12
Fig. 1.10:	Bonding and Antibonding Orbitals in 1, 3-Butadiene Molecule	14
Fig. 1.11:	MOT Diagram for Benzene	16
Fig. 1.12:	Explanation of Anti-aromaticity in Cyclobutadiene	16
Fig. 1.13:	Explanation of Aromaticity in Benzene	16
Fig. 1.14:	CFT of Central Metal ion in Different Geometries of the Complex	18
Fig. 1.15:	Angular Dependence Functions of d-orbitals t_{2g} and e_g	18
Fig. 1.16:	Splitting of d Orbital in High and Low Spin	19
Fig. 1.17:	The Magnitude of Splitting Stabilization in Octahedral Complex	20
Fig. 1.18:	The Magnitude of Splitting Stabilization in Tetrahedral Complex	20
Fig. 1.19:	The CFSE in Octahedral and Tetrahedral Complex	21
Fig. 1.20:	Conductors, Insulators and Semiconductors	24
Fig. 1.21:	Intrinsic Semiconductors	25
Fig. 1.22:	Extrinsic Semiconductors	25
Fig. 1.23:	n-type Doping	26
Fig. 1.24:	p - type Doping	26
Unit 2:	Spectroscopic Techniques and Applications	
Fig. 2.1:	Region of Electromagnetic radiations	36
Fig. 2.2:	Jablonski Diagram	38
Fig. 2.3:	Transition of Spectrum in Various Energy Levels $E_R < E_V < E_E$	39
Fig. 2.4:	Electronic Energy Levels and Electronic Transitions	40
Fig. 2.5:	Absorption Spectra of Benzene, Naphthalene and Anthracene	41
Fig. 2.6:	Fluorescence Spectrum of Organic Molecules	43
Fig. 2.7:	Rotational Energy Levels	44

Fig. 2.8:	Functional Group Region and Finger Print Region in IR Spectra	45
Fig. 2.9:	Finger Print Region in IR Spectrum	47
Fig. 2.10:	IR Spectrum of Ethanol	47
Fig. 2.11:	1H NMR Spectrum of Ethanol	50
Fig. 2.12:	NMR Spectrum of Butan-1-ol	50
Fig. 2.13:	NMR Spectrum of Butanone	51
Fig 2.14:	MRI Image of Brain	53
Fig. 2.15:	MRI Image of Cardiac	53
Fig. 2.16:	MRI Image of Abdomen	53
Fig. 2.17:	Silver Nanocomposites and Silver Nanocrystals Through X-ray Diffraction Pattern	54
Unit 3:	Intermolecular Forces and Potential Energy Surfaces	
Fig. 3.1:	Hydrogen Bonding in H-F	67
Fig. 3.2:	Hydrogen Bonding in NH_3 and H_2O	67
Fig 3.3:	p - Nitrophenol	68
Fig. 3.4:	O-Nitrophenol and p-Nitrophenol	68
Fig. 3.5:	Hydrogen Bond in Water and Ice	69
Fig. 3.6:	Forces of Attraction Between Molecules of a Gas	72
Fig. 3.7:	Critical Points	74
Fig. 3.8:	Thomason's Isotherms of Carbon dioxide	76
Fig. 3.9:	A potential Energy Curve for a Covalent Bond.	77
Unit 4:	Use of Free Energy in Chemical Equilibria	
Fig. 4.1:	Entropy, Degree of Randomness	91
Fig. 4.2:	Relationship Among G, S, and H	93
Fig. 4.3:	Relationship Among Gibbs free Energy, Volume and Entropy	94
Fig. 4.4:	Electro-chemical Cell	95
Fig. 4.5:	Equation of Cell	95
Fig. 4.6:	Conjugate Acid and Conjugate Base Pairs in Water Molecule	99
Fig. 4.7:	Redox Reaction between Fe ₂ O ₃ and Carbon Mono-oxide	100
Fig. 4.8:	Structure of Water	101
Fig. 4.9:	(a) Rusting of Iron (Black and Yellow Rust) (b) Rusting on Copper (Green Layer)	104
Fig. 4.10:	Ellingham Diagram	106
Unit 5:	Periodic Properties	
Fig. 5.1:	Shielding Effect due to Interaction between Electron and Nucleus	119
Fig. 5.2:	Shapes of Atomic Orbital	120
Fig. 5.3:	Electronic Configuration	122

Fig. 5.4:	Electronic Configuration – Iron	123
Fig. 5.5:	Covalent Radius of Hydrogen Atom	125
Fig. 5.6:	Van Der Waal's Radii of Chlorine and Argon	125
Fig. 5.7:	Tetrahedral Gometry	132
Fig. 5.8:	Square Planar Geometry	132
Fig. 5.9:	Coordination Number 6	133
Unit 6:	Stereochemistry	
Fig. 6.1:	Representation of Wedge-Dash Notation	146
Fig. 6.2:	Newman Projection Staggered and Eclipsed Forms	147
Fig. 6.3:	Sawhorse Projection Formulas of Ethane	147
Fig. 6.4:	Representation of Fischer Projection	148
Fig. 6.5:	Representation of Cyclic Wedge-Dash Notation	148
Fig. 6.6:	Representation of Haworth Projections	148
Fig. 6.7:	Representation of Chair Conformations	149
Fig. 6.8:	Chain Isomerism	150
Fig. 6.9:	Position Isomerism	150
Fig. 6.10:	Functional Isomers	150
Fig. 6.11:	Metamerism	150
Fig. 6.12:	Tautomerism	151
Fig. 6.13:	Ring-chain Isomerism	151
Fig. 6.14:	Cis - Trans isomers	151
Fig. 6.15:	Chiral Center in Carbon	152
Fig. 6.16	Plane of Symmetry	152
Fig. 6.17:	Centre of Symmetry	152
Fig. 6.18:	Lactic Acid	153
Fig. 6.19:	Two Enantiomers of Lactic Acid	153
Fig. 6.20:	Isomerism in Tartaric Acid	153
Fig. 6.21:	Enantiomers and Diastereomers in 3-Bromo-2-Butanol	154
Fig. 6.22:	Confirmations of Ethane	157
Fig. 6.23:	Conformation of n-Butane	158
Fig. 6.24:	Energy Charges During Rotation Around the Central C-C Bind in n-Butane	158
Unit 7:	Organic Reactions and Synthesis of a Drug Molecule	
Fig. 7.1:	Addition Reaction of Alkenes	170
e	Addition to Carbonyl Groups	170
	Oxidation Reaction	172

Fig. 7.4: Reduction Reaction

172

Fig. 7.5:	Reduction Reactions in Aldehyde and Ketones	173
Fig. 7.6:	Diels Alder Reaction	174
Fig. 7.7:	Ring Opening Reaction	174
Fig. 7.8:	Synthesis of Aspirin	175
Fig. 7.9:	Synthesis of Paracetamol	175
Fig. 7.10:	Synthesis of Ibuprofen	176

List of Tables

Unit 1: Atomic And Molecular Structure	
Table 1.1: Historical Time-Lines	8
Table 1.2: Bonding and Antibonding Molecular Orbitals	10
Table 1.3 Order of Energy for N_2 and O_2 molecules	11
Unit 2: Spectroscopic Techniques and Applications	
Table 2.1 Energy in Diatomic Molecules	37
Unit 3: Intermolecular Forces and Potential Energy Surfaces	
Table 3.1: Differences between Ideal and Real Gases	71
Unit 5: Periodic Properties	
Table 5.1: Co-ordination Numbers of Metal Ions	131
Table 5.2: Characteristics of Hard, Soft & Borderline Acids & Bases	134
Table 5.3: The Table Below Summarizes the Molecular and Electron-Pair Geometries and Shapes	136
Unit 7: Organic Reactions and Synthesis of a Drug Molecule	
Table 7.1: Difference between SN ¹ and SN ² Reactions	169
Table 7.2: Difference between E1 and E2 Reactions	171

Guidelines for Teachers

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manipulate time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level			Teacher should Check	Student should be able to	Possible Mode of Assessment
	Creating		Students ability to create	Design or Create	Mini project
	Evaluating		Students ability to Justify	Argue or Defend	Assignment
	Analysing		Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
	Applying		Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
	Understanding		Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
	Remembering		Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

		Forew	ord	iii			
		Ackno	wledgement	ν			
		Prefac		vii			
		•	me Based Education	ix			
		Course	e Outcomes	xi			
		Abbre	viations and Symbols	xii			
		List of	Figures	xiii			
		List of	Tables	xvii			
		Guide	lines for Teachers	xviii			
		Guide	lines for Students	xviii			
1.	Ato	omic a	and Molecular Structure	1-34			
			pecific	1			
		Ratior	nale	1			
		Pre-Requisites					
		Learni	earning Outcomes				
		Mapping of Unit Wise Learning Outcomes with the Course Outcomes					
	1.1	Introd	uction To Quantum Mechanics	2			
		1.1.1	What is Quantum Mechanics?	2			
		1.1.2	Origin of Quantum Mechanics	2			
		1.1.3	Fundamentals of Quantum Mechanics	3			
		1.1.4	Quantum Mechanical Study for Particle in a One-dimensional Box – MODEL SYS	TEM 4			
		1.1.5	Quantum Mechanics and Atomic Structure	6			
		1.1.6	Historical Time-Lines	8			
	1.2	Quant	rum Mechanics and Chemical Bonding	9			
		1.2.1	Molecular Orbital Theory	9			
		1.2.2	Salient features of VBT and MOT	9			
		1.2.3	Linear Combination of Atomic Orbitals (LCAO)	9			
		1.2.4	Energy Level Diagram	11			
		1.2.5	Bond Order	12			
		1.2.6	Analysis done by Bond Order	13			
	1.3	Magne	etic Behaviour	13			

		1.3.1 Diatomic Molecule Oxygen	13				
	1.4	p – Molecular Orbitals of Butadiene	14				
		1.4.1 HOMO and LUMO	14				
	1.5	p – Molecular Orbitals of Benzene and Aromaticity	15				
	1.6	Huckel's Rule : Criteria for Aromaticity	15				
	1.7	7 Crystal Field Theory					
		1.7.1 Basic Concept	17				
		1.7.2 Postulates of CFT	17				
		1.7.3 Orbital Splitting	18				
		1.7.4 This Splitting is Affected by the Following Factors	19				
		1.7.5 Octahedral Complexes	19				
		1.7.6 Tetrahedral Complex	20				
	1.8	Crystal Field Stabilization Energy	21				
	1.9	Magnetism of Transition Metal Complexes	22				
		1.9.1 Characteristics for Magnetism	22				
	1.10	Band Structure of Solids and the Role of Doping on Band Structure	23				
		1.10.1 Doping	25				
		Summary Exercises Design Innovative Projects / Activities					
		Suggested Readings	32				
		Know More	32				
2.	Spe	ectroscopic Techniques and Applications	35-64				
		Unit Specific	35				
		Rationale	35				
		Pre-Requisites	35				
		Learning Outcomes	35				
		Mapping of Unit Wise Learning Outcomes with the Course Outcomes	35				
		Introduction	36				
	2.1	Basic Principles of Spectroscopy	37				
		2.1.1 Born Oppenheimer Approximation	37				
		2.1.2 Franck–Condon Principle	37				
		2.1.3 Jablonski Diagram: Relaxation Mechanism for Excited State Molecules	38				
	2.2	Electronic Spectroscopy	39				
		2.2.1 Types of Electronic Transitions	40				
		2.2.2 Applications of Electronic Spectroscopy	40				

42 42 44 44 45 45 45 45 45 45 45 46 46 46 48 48 48 48
44 44 45 45 45 46 46 46 48 48 48
44 45 45 45 46 46 46 48 48 48
45 45 45 46 46 46 48 48 48
45 45 46 46 48 48 48
45 46 46 48 48 48
46 46 48 48 48
46 48 48 48
48 48 48
48 48
48
48
49
52
53
53
53
54
55
56
59
60
60
urfaces 65–88
65
65
65
65
irse Outcomes 65
66
66
66
66
67

		3.2.4	Characteristics	67
		3.2.5	Types of Hydrogen Bonding	67
		3.2.6	Importance of Hydrogen Bonding in Daily Life	68
		3.2.7	Van Der Waals Forces	69
		3.2.8	London Dispersion Force	70
	3.3	Equat	ion of Real Gas and Critical Phenomena	70
		3.3.1	Differences between Ideal and Real Gases	71
		3.3.2	Deviation of Real Gases and Van Der Waal's Equation	71
		3.3.3	Significance of Van der Waals Constants	73
		3.3.4	Liquefaction of Gases and Critical Temperature	73
		3.3.5	The Critical Point	74
		3.3.6	Critical Phenomena	74
		3.3.7	Critical Temperature (T _c)	75
		3.3.8	Thomson's experiment	75
		3.3.9	Joule-Thomson Effect and Inversion Temperature (T _i)	76
	3.4	Potent	tial Energy Surfaces of H ₃ , H ₂ F, HCN	77
		3.4.1	Potential Energy Curves (1-D Potential Energy Surfaces)	77
		3.4.2	Potential, Kinetic, and Total Energy for a System	78
		3.4.3	The Dimensionality of A Potential Energy Surface	78
		3.4.4	Application of Potential Energy Surfaces	78
		Summ	hary	79
		Exerci	ise	80
		Practi	cal	83
		Design	n Innovative / Projects / Activities	86
		Sugge	sted Readings	86
		Know	More	86
4.	Use	e of Fi	ree Energy in Chemical Equilibria	89-116
		Unit S	Specific	89
		Ratior	-	89
			equisites	89
		Learn	ing Outcomes	89
		Mapp	ing of Unit Wise Learning Outcomes with the Course Outcomes	89
	4.1		luction	90
	4.2	Free E	Energy (ΔG)	90
		4.2.1	Enthalpy (ΔH)	90
		4.2.2	Entropy (ΔS)	91

4.3	4.3 Entropy Change of an Ideal Gas with Change in Temperature, Pressure and Volume		92
	4.3.1 W	hen T and V are Variables	92
	4.3.2 W	hen T and P are Considered Variables	92
4.4	Gibbs Free	e Energy	93
	4.4.1 Re	lationship Among G, S, and V	93
4.4.2	Gibbs Free	e Energy of Formation	94
4.5	Cell Poten	tials	94
	4.5.1 Ele	ectrochemical Cell	94
	4.5.2 Ce	ll Diagram may be Written as	95
4.6	Standard (Cell Potential	96
	4.6.1 Sta	indard Cell Potential Example	96
4.7	Nernst Eq	uation	97
4.8	Acid Base	Theories	97
	4.8.1 Lir	nitations	98
	4.8.2 Th	e Arrhenius Theory of Acids and Bases	98
	4.8.3 Lir	nitations of the theory	98
	4.8.4 Th	e Bronsted-lowry Theory of Acids and Bases	98
	4.8.5 Co	njugate pairs	98
	4.8.6 Th	e Lewis Theory of Acids and Bases	99
4.9	Oxidation	and Reduction	100
	4.9.1 Ox	ridising and Reducing Agents	100
4.10	Water Che	emistry	101
	4.10.1 Ha	urdness	102
	4.10.2 Ty	pes of Hardness	102
	4.10.3 Th	e reason for Choosing CaCO3 as Standard is	103
4.11	Corrosion		104
	4.11.1 Ex	amples of Corrosion	104
	4.11.2 Co	prosion can be Prevented by using below Mentioned Techniques	105
	4.11.3 Ty	pes of Corrosion	105
	4.11.4 Pa	rameters Affecting the Corrosion Rate	105
4.12	Ellingham	Diagram – Thermodynamics of Metallurgy	105
	Summary		107
	Exercise		108
	Practicals		110
	Suggested	Reading	114
	Know Mo	re	114

5.	Per	iodic	Properties	117-144
		Unit S	pecific	117
		Ration	ale	117
		Pre-Re	equisites	117
		Learni	ing Outcomes	117
		Mappi	ing of Unit Wise Learning Outcomes with the Course Outcomes	118
	5.1	Introd	uction	118
	5.2	Effecti	ive Nuclear Charge	119
		5.2.1	Shielding Effect	119
	5.3	Penetr	ration of Orbitals	119
		5.3.1	s, p, d, f Orbitals Energies of Atoms in Periodic Table	120
		5.3.2	Penetration Power	121
	5.4	Electro	onic Configuration	121
	5.5	Classif	fication of Elements Based on Electronic Configuration	
		[s, p, d	and f - Block Elements]	123
	5.6	Atomi	c Radii	124
		5.6.1	Factors on which atomic size depends	124
		5.6.2	Covalent Radius	125
		5.6.3	Metallic Radii (Crystal Radii)	125
		5.6.4	Van der Waal's Radius	125
		5.6.5	Ionic Radii	126
		5.6.6	Periodic Trends of atomic radii	126
	5.7	Ionisa	tion Energy (I.E.) or Ionisation Potential (I.P.)	126
		5.7.1	First Ionisation Energy (IE)	126
		5.7.2	Factors on which Ionisation Energy Depends	126
		5.7.3	Periodic Trends of Ionisation Energy	127
	5.8	Electro	on Affinity (E.A.)	127
		5.8.1	Successive Electron Affinities	127
		5.8.2	Factors on which Electron Affinity Depends	127
		5.8.3	Periodic Trends of Electron Affinity	128
	5.9	Electro	onegativity	128
		5.9.1	Measurement of Electronegativity	128
		5.9.2	Application of Electronegativity	128
		5.9.3	Periodic Trends of Electronegativity	129
	5.10	Polariz	zability	129
		5.10.1	Anions of Lower Charge Density are More Polarizable	129

		5.10.2 Polarization will be Increased by	129	
		5.10.3 Factors that Influence Polarizability	129	
		5.10.4 Trend of Polarizability	130	
	5.11	1 Oxidation State		
	5.12	2 Coordination Numbers and Geometry		
		5.12.1 How to Calculate Coordination Number	132	
	5.13	Hard and Soft Acids and Bases	133	
	5.14 Molecular Geometries			
	Summary			
	Exercise		138	
		Practical	141	
		Suggested Readings	142	
		Know More	142	
6.	Ste	reochemistry and Organic Reactions	145-166	
		Unit Specific	145	
		Rationale	145	
		Pre-Requisites	145	
		Learning Outcomes	145	
		Mapping Of Unit Wise Learning Outcomes With The Course Outcomes	145	
	6.1	INTRODUCTION	146	
		6.1.1 Three-Dimensional Representations	146	
	6.2	Isomerism	149	
		6.2.1 Structural Isomerism	150	
		6.2.2 Stereoisomerism	151	
		6.2.3 Optical Isomerism	152	
	6.3	Enantiomers and Diastereomers	154	
		6.3.1 Difference between Enantiomers and Diastereomers	155	
		6.3.2 Application in Daily Life	155	
	6.4	Configuration	155	
		6.4.1 Absolute Configuration	155	
	6.5	Conformations	157	
	6.6	Isomerism in Transition Metal Compounds	159	
	6.7	Uses of Coordination Compounds	161	
		Summary	162	
		Suggested Readings	164	
		Know More	165	

7.	Org	ganic	Reactions Synthesis of Drug Molecules	167-180
		Unit S	pecific	167
		Rationale		167
		Pre-Re	Pre-Requisites	
		Learning Outcomes		167
		Mapping of Unit Wise Learning Outcomes with the Course Outcomes		167
	7.1	7.1 Introduction		168
	7.2	Substitution Reaction		168
		7.2.1	Components of a Substitution Reaction	168
		7.2.2	Types of Substitution Reaction	169
		7.2.3	Applications of Radical Substitution	169
	7.3	Addition Reaction		170
		7.3.1	Electrophilic Addition Reaction	170
		7.3.2	Nucleophilic Addition Reaction	170
		7.3.3	Free-radical Addition	171
	7.4	Elimir	nation Reaction	171
		7.4.1	Types of Elimination Reaction Mechanisms	171
	7.5	Oxida	tion and Reduction Reactions	172
		7.5.1	Oxidation	172
		7.5.2	Explanation	172
		7.5.3	Reduction	172
		7.5.4	Explanation	173
		7.5.5	Common Oxidation and Reduction Reactions	173
	7.6	Cycliz	ation and Ring Opening	173
		7.6.1	Cyclization Reaction	174
		7.6.2	Types of Cyclization Reaction	174
		7.6.3	Ring opening Reaction	174
	7.7	Synthe	esis of Commonly used Drug Molecules	175
		7.7.1	Aspirin	175
		7.7.2	Paracetamol	175
		7.7.3	Ibuprofen	176
		Summ	hary	176
		Exercise		177
		Suggested Readings		180
		Know	More	180

Annexure 181-190		
Annexure - 1	181	
Annexure - 2	182	
Annexure - 3	183	
Annexure - 4	190	
Appendices 191-192		