LEARN
PYTHON

PROGRAMMING

WRITE CODE FROM SCRATCH IN A GLEAR & CONGISE WAY, WITH A
COMPLETE BASIG COURSE. FROM BEGINMERS TO INTERMEDIATE, AN
HANDS-ON PROJEGT WITH EXAMPLES, TD FOLLOW STEP BY STEP

WILLIAM GRAY

LEARIN
PYTHON

PROGRAMMING

WRITE CODE FROM SCRATCH IN AELEH.H & CONCISE WAY, WITH A

COMPLETE BASIG COURSE. FROM B
HANDS-0ON PROJEGT WITH EXAM

GINNERS TO INTERMEDIATE, AN
LES, TD FOLLOW STEP BY STEP

WILLIAM GRAY

LEARN PYTHON
PROGRAMMING

WRITE CODE FROM SCRATCH IN A CLEAR
& CONCISE WAY, WITH A COMPLETE
BASIC COURSE. FROM BEGINNERS TO
INTERMEDIATE, AN HANDS-ON PROJECT
WITH EXAMPLES, TO FOLLOW STEP BY
STEP

written by WILLIAM GRAY

Congratulation on downloading this ebook and thank
You for doing so.

Please enjoy !

© Copyright 2019 by WILLIAM GRAY

All rights reserved

No part of this publication may be reproduced,
distributed, or transmitted in any form or by any
means, including photocopying, recording, or other
electronic or mechanical methods, or by any
information storage and retrieval system without the
prior written permission of the publisher, except in
the case of very brief quotations embodied in critical
reviews and certain other noncommercial uses

permitted by copyright law.

TABLE OF CONTENTS

CHAPTER 1
LEARN PYTHON PROGRAMMING
INTRODUCTION

REASONS WHY THE MASSIVE POPULARITY OF PYTHON WILL REMAIN INTACT IN
THE FUTURE

Supports Multiple Programming Paradigms

Doesn't Require Programmers to Write Lengthy Code

Provides a Comprehensive Standard Library

Effectuates Web Application Development

Facilitates Development of High Quality GUI, Scientific and Numeric Applications
Simplifies Prototyping of Applications

Can also be used for Mobile App Development

Open Source
CHAPTER 2

HOW TO ACCEPT USER INPUTS AND DISPLAY OUTPUTS
CHAPTER 3

HOW TO DEFINE YOUR OWN FUNCTIONS AND MODULES
CHAPTER 4

HOW TO WRITE YOUR OWN CLASS

OBJECT ORIENTED
CHAPTER 5

HOW TO WORK WITH EXTERNAL FILES
CHAPTER 6

DISCOVER VARIABLES, STRINGS, INTEGERS, AND MORE TO DESIGN
CONVERSATIONAL PROGRAMS

CHAPTER 7

UNDERSTAND “GRAPHICAL USER INTERFACES” AND CREATE YOUR OWN ARCADE
GAMES AND APPS.

CHAPTER 8
HOW BENEFICIAL IS DJANGO FOR THE EXISTING PYTHON DEVELOPERS
SHORTER AND CLEANER CODE
OPTIONS TO CUSTOMIZE WEB APPLICATIONS
BUILT-IN TOOLS FOR ACCOMPLISHING COMMON TASKS
A VARIETY OF PACKAGES
OBJECT-RELATIONAL MAPPER (ORM)
HUMAN READABLE URLS
DYNAMIC ADMIN INTERFACE
OPTIMIZED SECURITY
OPTION TO EXCHANGE IDEAS
CHAPTER 9
IMPORTANT PYTHON FRAMEWORKS
1) Kivy
2) Qt
3)PyGUI
4) WxPython
5)Django
6) CherryPy
7) Flask
8) Pyramid
9)_Web.py.
10)_TurboGears
CHAPTER 10
ROLE OF PYTHON IN IMAGE APPLICATIONS
CHAPTER 11
LOGISTIC REGRESSION WITH L2 REGULARIZATION IN PYTHON
CHAPTER 12
CAN PYTHON WEB APPLICATIONS BE TESTED USING SELENIUM?
Supports Major Operating Systems and Web Browsers

Allows Users to Create Complete Test Automation Suite
EXECUTES TESTS FASTER
Requires Basic HTML Concepts

Helps Testers to Address Maintainability Issues
Provides Selenium Python API

CHAPTER 13
PERL AND PYTHON

1) Design Goal

2) Syntax Rules

3)Family of Languages

4) Ways to Achieve Same Results
5) Web Scripting Language

6)_Web Application Frameworks
7)_Usage

8) Performance and Speed

9)_Structured Data Analysis

10) JVM Interoperability,

11) Advanced Object Oriented Programming

12)_Text Processing Capability
CHAPTER 14
APPS BUILT WITH PYTHON

Instagram

Pinterest
Disqus
Spotify,
Dropbox
Uber
Reddit
CHAPTER 15
TOOLS TO RUN PYTHON ON ANDROID

BeeWare

Chaquopy.

Kivy

QPython

SL4A

PySide

Termux
CHAPTER 16

PYTHON AS A MOBILE APP DEVELOPMENT LANGUAGE
CHAPTER 17

PROGRAMMING LANGUAGES FOR MOBILE APP DEVELOPMENT

BuildFire.js

Python

Java
PHP

CHAPTER 1
LEARN PYTHON PROGRAMMING

INTRODUCTION

Python is an example of a high level language.Other high level languages
you might have heard of are C++,PHP,Pascal,C#,and Java. Python is an
easy to learn, powerful programming language. It has efficient high-level
data structures and a simple but effective approach to object-oriented

programming.

Python was originally conceived by Van Rossum as a hobby language in
December 1989. Also, the major and backward-incompatible version of the
general-purpose programming language was released on 3rd December
2008. But Python is recently rated by a number of surveyors as the most
popular coding language of 2015. The massive popularity indicates

Python's effectiveness as a modern programming language. At the same

time, Python 3 is currently used by developers across the worlds for

creating a variety of desktop GUI, web and mobile applications.

Python is a high-level, interpreted scripting language developed in the late
1980s by Guido van Rossum at the National Research Institute for
Mathematics and Computer Science in the Netherlands. The initial version

was published at the alt.sources newsgroup in 1991, and version 1.0 was
released in 1994.

Python 2.0 was released in 2000, and the 2.x versions were the prevalent
releases until December 2008. At that time, the development team made the
decision to release version 3.0, which contained a few relatively small but
significant changes that were not backward compatible with the 2.x
versions. Python 2 and 3 are very similar, and some features of Python 3
have been backported to Python 2. But in general, they remain not quite

compatible.

Both Python 2 and 3 have continued to be maintained and developed, with
periodic release updates for both. As of this writing, the most recent
versions available are 2.7.15 and 3.6.5. However, an official End Of Life
date of January 1, 2020 has been established for Python 2, after which time
it will no longer be maintained. If you are a newcomer to Python, it is

recommended that you focus on Python 3, as this tutorial will do.

Python is still maintained by a core development team at the Institute, and

Guido is still in charge, having been given the title of BDFL (Benevolent

Dictator For Life) by the Python community. The name Python, by the way,
derives not from the snake, but from the British comedy troupe Monty
Python’s Flying Circus, of which Guido was, and presumably still is, a fan.
It 1s common to find references to Monty Python sketches and movies

scattered throughout the Python documentation.

There are also a number of reasons why the huge popularity and market

share of Python will remain intact over a longer period of time.

REASONS WHY THE MASSIVE POPULARITY OF PYTHON
WILL REMAIN INTACT IN THE FUTURE

Supports Multiple Programming Paradigms

Good developers often take advantage of different programming paradigms
to reduce the amount of time and efforts re q uired for developing large and
complex applications. Like other modern programming languages, Python
also supports a number of commonly used programming styles including
object-oriented, functional, procedural and imperative. It further features
automatic memory management, along with a dynamic type system. So
programmers can use the language to effectuate development of large and

complex software applications.

Doesn't Require Programmers to Write Lengthy Code

Python 1s designed with complete focus on code readability. So the
programmers can create readable code base that can be used by members of
distributed teams. At the same time, the simple syntax of the programming
language enables them to express concepts without writing longer lines of
code. The feature makes it easier for developers to large and complex
applications within a stipulated amount of time. As they can easily skip
certain tasks required by other programming languages, it becomes easier

for developers to maintain and update their applications.

Provides a Comprehensive Standard Library

Python further scores over other programming languages due to its
extensive standard library. The programmers can use these libraries to
accomplish a variety of tasks without writing longer lines of code. Also, the
standard library of Python is designed with a large number of high use
programming tasks scripted into it. Thus, it helps programmers to
accomplish tasks like string operations, development and implementation of
web services, working with internet protocols, and handling operating

system interface.

Effectuates Web Application Development

Python is designed as a general-purpose programming language, and lacks
built-in web development features. But the web developers use a variety of
add-on modules to write modern web applications in Python. While writing
web applications in Python, programmers have option to use several high-
level web frameworks including Django, web2py, TurboGears, CubicWeb,
and Reahl. These web frameworks help programmers to perform a number
of operations, without writing additional code, like database manipulation,
URL routing, session storage and retrieval, and output template formatting.
They can further use the web frameworks to protect the web application

from cross-site scripting attacks, SQL injection, and cross-site request

forgery.

Facilitates Development of High Quality GUI, Scientific and Numeric
Applications

Python is currently available on major operating systems like Windows,
Mac OS X, Linux and UNIX. So the desktop GUI applications written in
the programming language can be deployed on multiple platforms. The
programmers can further speedup cross-platform desktop GUI application
development using frameworks like Kivy, wxPython and PyGtk. A number
of reports have highlighted that Python is used widely for development of
numeric and scientific applications. While writing scientific and numeric
applications in Python, the developers can take advantage of tools like

Scipy, Pandas, [Python, along with the Python Imaging Library.

Simplifies Prototyping of Applications

Nowadays, each organization wants to beat competition by developing
software with distinct and innovative features. That is why; prototyping has
become an integral part of modern software development lifecycle. Before
writing the code, developers have to create prototype of the application to
display its features and functionality to various stakeholders. As a simple
and fast programming language, Python enables programmers to develop
the final system without putting any extra time and effort. At the same time,
the developers also have option to start developing the system directly from

the prototype simply by refactoring the code.

Can also be used for Mobile App Development

Frameworks like Kivy also make Python usable for developing mobile
apps. As a library, Kivy can be used for creating both desktop applications
and mobile apps. But it allows developers to write the code once, and
deploy the same code on multiple platforms. Along with interfacing with
the hardware of the mobile device, Kivy also comes with built-in camera
adapters, modules to render and play videos, and modules to accept user
input through multi-touch and gestures. Thus, programmers can use Kivy to
create different versions of the same applications for i10S, Android and
Windows Phone. Also, the framework does not require developers to write
longer lines of code while creating Kivy programs. After creating different
versions of the mobile app, they can package the app separately for
individual app store. The option makes it easier for developers to create

different versions of the mobile app without deploying separate developers.

Open Source

Despite being rated as the most popular coding language of 2015, Python is
still available as open source and free software. Along with large IT
companies, the startups and freelance software developers can also use the
programming language without paying any fees or royalty. Thus, Python
makes it easier for businesses to reduce development cost significantly. At
the same time, the programmers can also avail the assistance of large and

active community to add out-of-box features to the software application.

The last major release of Python took place in December 2008. Python 3
was released as a backward-incompatible version with most of the major

features back ported to Python 2.6 and 2.7. However, the programming

language is being updated by the community at regular intervals. The
community released Python 3.4.3 on 23rd February with several features
and patches. So the developer can always use the most recent version of the
Python programming language to effectuate development of various

software applications.

CHAPTER 2

HOW TO ACCEPT USER INPUTS AND
DISPLAY OUTPUTS

INPUT()

Python [ifi}1g!1]

The Input Function

The hello program of The Classic First Program always does the same
thing. This 1s not very interesting. Programs are only going to be reused if
they can act on a variety of data. One way to get data is directly from the
user. Modify the hello.py program as follows in the editor, and save it with

File » Save As....", using the name hello you.py.
person = input('Enter your name: ')

print('Hello', person)

Run the program. In the Shell you should see

Enter your name:

Follow the instruction (and press Enter). Make sure the typing cursor is in

the Shell window, at the end of this line. After you type your response, you

can see that the program has taken in the line you typed. That is what the
built-in function input does: First it prints the string you give as a parameter
(in this case 'Enter your name: '), and then it waits for a line to be typed in,
and returns the string of characters you typed. In the hello_you.py program

this value is assigned to the variable person, for use later.

The parameter inside the parentheses after input is important. It is a prompt,
prompting you that keyboard input is expected at that point, and hopefully
indicating what is being requested. Without the prompt, the user would not

know what was happening, and the computer would just sit there waiting!

Open the example program, interview.py. Before running it (with any made-

up data), see if you can figure out what it will do:

"Tlustrate input and print."

applicant = input("Enter the applicant's name: ")
interviewer = input("Enter the interviewer's name: ")
time = input("Enter the appointment time: ")
print(interviewer, "will interview", applicant, "at", time)

The statements are executed in the order they appear in the text of the
program: se q uentially. This is the simplest way for the execution of the

program to flow. You will see instructions later that alter that natural flow.

If we want to reload and modify the hello_you.py program to put an

exclamation point at the end, you could try:

person = input('"Enter your name: ')

print("Hello', person, '!")

Run it and you see that it is not spaced right. There should be no space after
the person’s name, but the default behavior of the print function is to have
each field printed separated by a space. There are several ways to fix this.
You should know one. Think about it before going on to the next section.
Hint: [1]

[1] The + operation on strings adds no extra space.

1.10.2. Print with Keyword Parameter sep

One way to put punctuation but no space after the person in hello_you.py is
to use the plus operator, +. Another approach is to change the default
separator between fields in the print function. This will introduce a new
syntax feature, keyword parameters. The print function has a keyword
parameter named sep. If you leave it out of a call to print, as we have so far,

it is set e g ual to a space by default. If you add a final field, sep=", in the
print function in hello_you.py, you get the following example file,

hello you2.py:

""Hello to you! Illustrates sep with empty string in print.

m

person = input('"Enter your name: ")
print('Hello ', person, '!', sep=")

Try the program.

Keyword paramaters must be listed at the end of the parameter list.

1.10.3. Numbers and Strings of Digits

Consider the following problem: Prompt the user for two numbers, and then
print out a sentence stating the sum. For instance if the user entered 2 and 3,

you would print ‘The sum of 2 and 3 1s 5.”

You might imagine a solution like the example file additionl.py, shown

below. There is a problem. Can you figure it out before you try it? Hint: [2]

"Error in addition from input."

x = input("Enter a number: ")

y = input("Enter a second number: ")

print("The sum of ', x, "and ', y, "is ', x+y, ", sep=") #error

End up running it in any case.

We do not want string concatenation, but integer addition. We need integer
operands. Briefly mentioned in Whirlwind Introduction To Types and
Functions was the fact that we can use type names as functions to convert
types. One approach would be to do that. Further variable names are also
introduced in the example addition2.py file below to emphasize the

distinctions in types. Read and run:

"'Conversion of strings to int before addition™

xString = input("Enter a number: ")

X = int(xString)

yString = input("Enter a second number: ")
y = int(yString)

print('The sum of ', x, 'and ', y, ' is ', x+y, ., sep=")

Needing to convert string input to numbers is a common situation, both
with keyboard input and later in web pages. While the extra variables above
emphasized the steps, it is more concise to write as in the variation in

example file, addition3.py, doing the conversions to type int immediately:

""Two numeric inputs, with immediate conversion'

x = int(input("Enter a number: "))

y = int(input("Enter a second number: "))

print('The sum of ', x, 'and ', y, ' is ', x+y, ., sep=")

The simple programs so far have followed a basic programming pattern:
input-calculate-output. Get all the data first, calculate with it second, and
output the results last. The pattern se q uence would be even clearer if we

explicitly create a named result variable in the middle, as in addition4.py

""Two numeric inputs, explicit sum"

x = int(input("Enter an integer: "))

y = int(input("Enter another integer: "))

sum = Xty

print('The sum of ', x, 'and ', y, " is ', sum, ., sep=")

We will see more complicated patterns, which involve repetition, in the
future.

[2] The input function produces values of string type.

1.10.3.1. Exercise for Addition

Write a version, add3.py, that asks for three numbers, and lists all three, and

their sum, in similar format to addition4.py displayed above.

1.10.3.2. Exercise for Quotients

Write a program, quotient.py, that prompts the user for two integers, and

then prints them out in a sentence with an integer division problem like

The q uotient of 14 and 3 is 4 with a remainder of 2

Review Division and Remainders if you forget the integer division or

remainder operator.

1.10.4. String Format Operation

In grade school q uizzes a common convention is to use fill-in-the blanks.

For instance,

Hello !

and you can fill in the name of the person greeted, and combine given text
with a chosen insertion. We use this as an analogy: Python has a similar
construction, better called fill-in-the-braces. There is a particular operation
on strings called format, that makes substitutions into places enclosed in
braces. For instance the example file, hello_you3.py, creates and prints the

same string as in hello_you2.py from the previous section:

""Hello to you! Illustrates format with {} in print.

m

person = input('"Enter your name: ")
greeting = 'Hello, {}!".format(person)
print(greeting)

There are several new ideas here!

First method calling syntax for objects is used. You will see this very
important modern syntax in more detail at the beginning of the next chapter
in Object Orientation. All data in Python are objects, including strings.
Objects have a special syntax for functions, called methods, associated with
the particular type of object. In particular str objects have a method called
format. The syntax for methods has the object followed by a period

followed by the method name, and further parameters in parentheses.

object.methodname(parameters)

In the example above, the object is the string 'Hello {}!'. The method is

named format. There is one further parameter, person.

The string for the format method has a special form, with braces embedded.
Places where braces are embedded are replaced by the value of an

expression taken from the parameter list for the format method. There are

many variations on the syntax between the braces. In this case we use the
syntax where the first (and only) location in the string with braces has a

substitution made from the first (and only) parameter.

In the code above, this new string is assigned to the identifier greeting, and

then the string is printed.

The identifier greeting was introduced to break the operations into a clearer
se q uence of steps. However, since the value of greeting is only referenced

once, it can be eliminated with the more concise version:

person = input('Enter your name: ')

print('"Hello {}!'.format(person))

Consider the interview program. Suppose we want to add a period at the
end of the sentence (with no space before it). One approach would be to
combine everything with plus signs. Another way is printing with keyword
sep=". Another approach is with string formatting. Using our grade school

analogy, the idea is to fill in the blanks in

will interview at

There are multiple places to substitute, and the format approach can be

extended to multiple substitutions: Each place in the format string where

there 1s '{}', the format operation will substitute the value of the next

parameter in the format parameter list.

Run the example file interview2.py, and check that the results from all three

methods match.

"'Compare print with concatenation and with format string."

applicant = input("Enter the applicant's name: ")

interviewer = input("Enter the interviewer's name: ")

time = input("Enter the appointment time: ")

print(interviewer + ' will interview ' + applicant + ' at ' + time +'.")
print(interviewer, ' will interview ', applicant, ' at ', time, '.", sep=")

print('{} will interview {} at {}.".format(interviewer, applicant, time))

Sometimes you want a single string, but not just for printing. You can
combine pieces with the + operator, but then all pieces must be strings or
explicitly converted to strings. An advantage of the format method is that it
will convert types to string automatically, like the print function. Here is
another variant of our addition sentence example, addition4a.py, using the

format method.

""Two numeric inputs, explicit sum"

x = int(input("Enter an integer: "))

y = int(input("Enter another integer: "))

sum = xX+y

sentence = "The sum of {} and {} is {}.".format(x, y, sum)

print(sentence)

Conversion to strings was not needed in interview?2.py. (Everything started
out as a string.) In addition4a.py, however, the automatic conversion of the

integers to strings is useful.

So far there is no situation that requires a format string instead of using
other approaches. Sometimes a format string provides a shorter and simpler
expression. Except where specifically instructed in an exercise for practice,
use whatever approach to combining strings and data that you like. There
are many elaborations to the fields in braces to control formatting. We will
look at one later, String Formats for Float Precision, where format strings

are particularly useful.

A technical point: Since braces have special meaning in a format string,
there must be a special rule if you want braces to actually be included in the
final formatted string. The rule is to double the braces: '{{'and '} }'. The
example code formatBraces.py, shown below, makes setStr refer to the
string 'The set is {5,9}.". The initial and final doubled braces in the format

string generate literal braces in the formatted string:

"Tllustrate braces in a formatted string.""

a=>5
b=9
setStr = "The set is {{{}, {}}}.".format(a, b)

print(setStr)

This kind of format string depends directly on the order of the parameters to
the format method. There is another approach with a dictionary, that was
used in the first sample program, madlib.py, and will be discussed more in
Dictionaries and String Formatting. The dictionary approach is probably the
best in many cases, but the count-based approach is an easier start,

particularly if the parameters are just used once, in order.

Optional elaboration with explicitly numbered entries

Imagine the format parameters numbered in order, starting from 0. In this
case 0, 1, and 2. The number of the parameter position may be included
inside the braces, so an alternative to the last line of interview2.py is (added

in example file interview3.py):

print("{0} will interview {1} at {2}.'.format(interviewer, applicant, time))

This is more verbose than the previous version, with no obvious advantage.

However, if you desire to use some of the parameters more than once, then

the approach with the numerical identification with the parameters is useful.
Every place the string includes '{0}', the format operation will substitute the
value of the initial parameter in the list. Wherever '{1}' appears, the next

format parameter will be substituted....

Predict the results of the example file arith.py shown below, if you enter 5
and 6. Then check yourself by running it. In this case the numbers referring
to the parameter positions are necessary. They are both repeated and used

out of order:

"'Fancier format string example with
parameter identification numbers

-- useful when some parameters are used several times."

x = int(input('Enter an integer: '))

y = int(input('"Enter another integer: "))
formatStr="{0} + {1} = {2}; {0} * {1} = {3}
equations = formatStr.format(x, y, x+y, x*y)
print(e q uations)

Try the program with other data.

Now that you have a few building blocks, you will see more exercises
where you need to start to do creative things. You are encouraged to go

back and reread Learning to Problem-Solve.

1.10.4.1. Addition Format Exercise

Write a version of Exercise for Addition, add3f.py, that uses the string

format method to construct the same final string as before.

1.10.4.2. Quotient Format Exercise

Write a version of the q uotient problem in Exercise for Quotients,
g uotientformat.py, that uses the string format method to construct the same
final string as before. Again be sure to give a full sentence stating both the

integer quotient and the remainder.

CHAPTER 3

HOW TO DEFINE YOUR OWN FUNCTIONS
AND MODULES

PYTHON
FUNCTIONS

Modules refer to a file containing Python statements and definitions.

A file containing Python code, for e.g.: example.py, is called a module and

its module name would be example.

We use modules to break down large programs into small manageable and

organized files. Furthermore, modules provide reusability of code.

We can define our most used functions in a module and import it, instead of

copying their definitions into different programs.

Let us create a module. Type the following and save it as example.py.

Python Module example

def add(a, b):
"""This program adds two

t"""

numbers and return the resul

result=a+b
return result

Here, we have defined a function add() inside a module named example.

The function takes in two numbers and returns their sum.

How to import modules in Python?

We can import the definitions inside a module to another module or the

interactive interpreter in Python.

We use the import keyword to do this. To import our previously defined

module example we type the following in the Python prompt.

>>> import example

This does not enter the names of the functions defined in example directly

in the current symbol table. It only enters the module name example there.

Using the module name we can access the function using the dot . operator.

For example:

>>> example.add(4,5.5)
9.5

Python has a ton of standard modules available.

You can check out the full list of Python standard modules and what they
are for. These files are in the Lib directory inside the location where you
installed Python.

Standard modules can be imported the same way as we import our user-

defined modules.

There are various ways to import modules. They are listed as follows.

Python import statement

We can import a module using import statement and access the definitions

inside it using the dot operator as described above. Here is an example.

import statement example

to import standard module math

import math)

print("The value of pi 1s", math.pi

When you run the program, the output will be:

The value of p11s 3.141592653589793

Import with renaming

We can import a module by renaming it as follows.

import module by renaming it

import math as m

print("The value of pi is", m.p1)

We have renamed the math module as m. This can save us typing time in

Some Cases.

Note that the name math is not recognized in our scope. Hence, math.pi is

invalid, m.pi is the correct implementation.

Python from...import statement

We can import specific names from a module without importing the module

as a whole. Here is an example.

import only pi from math module

from math import pi

print("The value of pi 1s", pi)

We imported only the attribute pi from the module.

In such case we don't use the dot operator. We could have imported multiple

attributes as

>>> from math import pi, e
>>> pi

3.141592653589793

>>>¢

2.718281828459045

Import all names

We can import all names(definitions) from a module using the following

construct.

import all names from the standard module math

from math import *

print("The value of pi1 1s", pi)

We imported all the definitions from the math module. This makes all

names except those beginnig with an underscore, visible in our scope.

Importing everything with the asterisk (*) symbol 1s not a good
programming practice. This can lead to duplicate definitions for an

identifier. It also hampers the readability of our code.

Python Module Search Path

While importing a module, Python looks at several places. Interpreter first
looks for a built-in module then (if not found) into a list of directories

defined in sys.path. The search is in this order.

The current directory.

PYTHONPATH (an environment variable with a list of directory).
The installation-dependent default directory.
>>> import Sys

>>> sys.path

[",

'C:\\Python33\\Lib\\idlelib',
'C:\\Windows\\system32\\python33.zip',
'C:\\Python33\\DLLs',

'C:\\Python33\\lib',

'C:\\Python33',
'C:\\Python33\\lib\\site-packages']

We can add modify this list to add our own path.

Reloading a module

The Python interpreter imports a module only once during a session. This

makes things more efficient. Here is an example to show how this works.

Suppose we have the following code in a module named my module.

This module shows the effect of

multiple imports and reload

print("This code got executed")

Now we see the effect of multiple imports.

>>> import my_module
This code got executed

>>> import my_module
>>> import my_module

We can see that our code got executed only once. This goes to say that our

module was imported only once.

Now if our module changed during the course of the program, we would
have to reload it.One way to do this is to restart the interpreter. But this does

not help much.

Python provides a neat way of doing this. We can use the reload() function

inside the imp module to reload a module. This is how its done.

>>> import imp
>>> import my_module
This code got executed

>>> import my_module

>>> imp.reload(my_module)

This code got executed

<module 'my _module' from '\\my module.py™
The dir() built-in function

We can use the dir() function to find out names that are defined inside a

module.

For example, we have defined a function add() in the module example that

we had in the beginning.

>>> dir(example)

[' builtins ',

__cached ',

' '

__doc_ ',

' file ',
' initializing ',

' '

__loader ',

' '

__name__,

'

' package ',
'add']
Here, we can see a sorted list of names (along with add). All other names

that begin with an underscore are default Python attributes associated with

the module (we did not define them ourself).

For example, the name_ _ attribute contains the name of the module.

>>> import example
>>>example. name
'example’

All the names defined in our current namespace can be found out using the

dir() function without any arguments.

>>>g =1

>>>b = "hello"
>>> import math
>>> dir()

L |

[' builtins ',' doc

L} L |

,' name ' ,'a','b', 'math', 'pyscripter']

Check out these examples to learn more:

Python Program to Shuffle Deck of Cards

Python Program to Display Calendar.

CHAPTER 4
HOW TO WRITE YOUR OWN CLASS

Polymorphism

Inheritance

Ohbject

rlass Parent { 1
class Chile: (Rarentk:
ohy = child {):

wmﬁf@Eﬁi ‘ Python Class

-~)

In object-oriented computer languages such as Python, classes are basically
a template to create your own objects. Objects are an encapsulation of
variables and functions into a single entity. Objects get their variables and
functions from classes.

Here are some examples that will help you understand—read on. There is
also an interactive code shell, simply press the “Run” button at the top of

the specific window.

The simplest way to describe classes and how to use them is this:

Imagine you have great powers. You create a species (“class”).

Then you create attributes for that species (“properties”)—height, weight,

limbs, color, powers, and so on.

Then you create an instance of that species—Fido the dog, Drogon from

Game of Thrones, and so on. Then you work with these instances:

In a game, for instance, they would engage in action, interact, using their

attributes.
In a banking app, they would be the different transactions.

In a vehicle buy/sell/trade/lease app, the vehicle class could then spawn
sub-classes such as cars. Each would have attributes such as mileage,

options, features, color, and trim.

You can already see why this is useful. You are creating, re-using, adapting,

and enhancing items in a very efficient, logical, and useful way.

By now, you have probably realized that this is a way to classify and group,

one that that is similar to how humans learn:

Animals are living things that are not human or trees, in a basic sense

then you move on to different types of animals—dogs, cats are probably the

first animals most of us learnt about

then you move to different attributes of animals—shapes, sizes, sounds,

appendages and so on.

For instance, when you were a child, your first understanding of a dog was
probably something with four legs that barked. Then you learnt to
distinguish that some were real dogs, others were toys. That this “dog”

concept contained many types.

Creating and using classes is basically:

building a template to put “things” in—a classification

which can then be operated on. For example, pulling up all the people with
dogs that you could re g uest to link to a blog on pets, or all bank clients

who might be good prospects for a new credit card.

The main point here is classes are objects that can produce instances of
those templates, on which operations and methods can be applied. It is an
excellent way to conceptualize, organize, and build a hierarchy for any

organization or process.

As our world gets more complex, this is a way to mimic that complexity
from a hierarchical perspective. It also builds a deeper understanding of the
processes and interactions for business, technical, and social settings from a

virtual information technology point.

An example might be a video game you create. Each character could be a

“class”, with its own attributes, that interacts with instances of other classes.
King George of the “King” class might interact with Court Jester Funnyman
of the “Clown” class, and so on. A King might have a royal “servant” class,

and a “servant” class would always have a “King” class, for example.

This 1s what we will do:

create a class and use it
create a module and move the class creation and initiation to the module

call the module in a new program to use the class.

#TSB - Create Class in Python - rocket positions (X,y) and graph
#some items and comments bolded to call attention to process
import matplotlib.pyplot as plt
class Rocket():
def it (self, x=0, y=0):
#each rocket has (x,y) position; user or calling function has choice
#of passing in x and y values, or by default they are set at 0
self.x =x

selfy=y

def move up(self):

self.y +=1

def move down(self):

selfy =1

def move right(self):

self.x +=1

def move left(self):
selfx =1

#Make a series of rockets - X,y positions, I am calling it rocket
rockets=[]
rockets.append(Rocket())
rockets.append(Rocket(0,2))
rockets.append(Rocket(1,4))
rockets.append(Rocket(2,6))
rockets.append(Rocket(3,7))
rockets.append(Rocket(5,9))
rockets.append(Rocket(8, 15))

#Show on a graph where each rocket is

for index, rocket in enumerate(rockets):

#original position of rockets
print("Rocket %d is at (%d, %d)." % (index, rocket.x, rocket.y))

plt.plot(rocket.x, rocket.y, 'ro', linewidth=2, linestyle='dashed',

markersize=12)
#move the 'rocket' one up
rocket.move up()

print("New Rocket position %d is at (%d, %d)." % (index, rocket.x,
rocket.y))

#plot the new position

plt.plot(rocket.x, rocket.y, 'bo’', linewidth=2, linestyle='dashed',

markersize=12)
#move the rocket left, then plot the new position
rocket.move_left()

plt.plot(rocket.x, rocket.y, 'yo', linewidth=2, linestyle='dashed',

markersize=12)

#show graph legend to match colors with position
plt.gca().legend((‘original position','”* - Moved up', '< - Moved left'"))
plt.show()

#plt.legend(loc="upper left")

So there you have it. You can create many different classes, with parent

classes, sub-classes and so on.

OBJECT ORIENTED

Python has been an object-oriented language since it existed. Because of
this, creating and using classes and objects are downright easy. This chapter
helps you become an expert in using Python's object-oriented programming

support.

If you do not have any previous experience with object-oriented (OO)
programming, you may want to consult an introductory course on it or at

least a tutorial of some sort so that you have a grasp of the basic concepts.

However, here is small introduction of Object-Oriented Programming

(OOP) to bring you at speed —

Overview of OOP Terminology

Class — A user-defined prototype for an object that defines a set of
attributes that characterize any object of the class. The attributes are data
members (class variables and instance variables) and methods, accessed via

dot notation.

Class variable — A variable that is shared by all instances of a class. Class
variables are defined within a class but outside any of the class's methods.

Class variables are not used as fre q uently as instance variables are.

Data member — A class variable or instance variable that holds data

associated with a class and its objects.

Function overloading — The assignment of more than one behavior to a
particular function. The operation performed varies by the types of objects

or arguments involved.

Instance variable — A variable that is defined inside a method and belongs

only to the current instance of a class.

Inheritance — The transfer of the characteristics of a class to other classes

that are derived from it.

Instance — An individual object of a certain class. An object obj that

belongs to a class Circle, for example, is an instance of the class Circle.

Instantiation — The creation of an instance of a class.

Method — A special kind of function that is defined in a class definition.

Object — A uni q ue instance of a data structure that's defined by its class.
An object comprises both data members (class variables and instance

variables) and methods.

Operator overloading — The assignment of more than one function to a

particular operator.

Creating Classes

The class statement creates a new class definition. The name of the class

immediately follows the keyword class followed by a colon as follows —

class ClassName:
'Optional class documentation string'
class suite

The class has a documentation string, which can be accessed via

ClassName. doc .

The class_suite consists of all the component statements defining class

members, data attributes and functions.

Example

Following is the example of a simple Python class —

class Employee:
'Common base class for all employees'

empCount = 0

def init (self, name, salary):
self.name = name
self.salary = salary

Employee.empCount += 1

def displayCount(self):

print "Total Employee %d" % Employee.empCount

def displayEmployee(self):
print "Name : ", self.name, ", Salary: ", self.salary
The variable empCount is a class variable whose value is shared among all

instances of a this class. This can be accessed as Employee.empCount from

inside the class or outside the class.

The first method _ init () is a special method, which is called class
constructor or initialization method that Python calls when you create a new

instance of this class.

You declare other class methods like normal functions with the exception
that the first argument to each method is self. Python adds the self argument

to the list for you; you do not need to include it when you call the methods.

Creating Instance Objects

To create instances of a class, you call the class using class name and pass

in whatever arguments its __init method accepts.

"This would create first object of Employee class"
empl = Employee("Zara", 2000)

"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class

variable would be accessed using class name as follows —

empl.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together:

#!/usr/bin/python

class Employee:

'Common base class for all employees'

empCount = 0

def init_ (self, name, salary):
self.name = name
self.salary = salary

Employee.empCount += 1

def displayCount(self):

print "Total Employee %d" % Employee.empCount

def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"
empl = Employee("Zara", 2000)

"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)
emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

When the above code is executed, it produces the following result —

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000
Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time

empl.age =7 # Add an 'age' attribute.
empl.age = 8 # Modify 'age' attribute.
del empl.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use the

following functions —

The getattr(obj, name[, default]) — to access the attribute of object.

The hasattr(obj,name) — to check if an attribute exists or not.

The setattr(obj,name,value) — to set an attribute. If attribute does not exist,

then it would be created.

The delattr(obj, name) — to delete an attribute.

hasattr(empl, 'age') # Returns true if 'age' attribute exists

getattr(empl, 'age') # Returns value of 'age' attribute

setattr(emp1, 'age', 8) # Set attribute 'age' at 8

delattr(empl, 'age') # Delete attribute 'age’'
Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be

accessed using dot operator like any other attribute —

__dict__ — Dictionary containing the class's namespace.

__doc_ — Class documentation string or none, if undefined.

__name__ — Class name.

__module — Module name in which the class is defined. This attribute is

__main__" in interactive mode.

__bases_ — A possibly empty tuple containing the base classes, in the

order of their occurrence in the base class list.

For the above class let us try to access all these attributes:

#!/usr/bin/python

class Employee:

'Common base class for all employees'

empCount = 0

def init_ (self, name, salary):
self.name = name
self.salary = salary

Employee.empCount += 1

def displayCount(self):

print "Total Employee %d" % Employee.empCount

def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary

print "Employee. doc :", Employee. doc

print "Employee. name :", Employee. name
print "Employee. module :", Employee. module
print "Employee. bases :", Employee. bases

print "Employee. dict :", Employee. dict

When the above code is executed, it produces the following result —

Employee. doc_: Common base class for all employees

Employee. name : Employee

Employee. module : main

Employee. bases : ()

.

Employee. dict :{' module "' main ', 'displayCount'"

<function displayCount at 0xb7¢84994>, 'empCount': 2,

'displayEmployee': <function displayEmployee at 0xb7c8441c>,

'

__doc_":'Common base class for all employees',
' init ": <function init _ at Oxb7c846bc>}
Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances)
automatically to free the memory space. The process by which Python
periodically reclaims blocks of memory that no longer are in use is termed

Garbage Collection.

Python's garbage collector runs during program execution and is triggered
when an object's reference count reaches zero. An object's reference count

changes as the number of aliases that point to it changes.

An object's reference count increases when it is assigned a new name or
placed in a container (list, tuple, or dictionary). The object's reference count
decreases when it's deleted with del, its reference is reassigned, or its
reference goes out of scope. When an object's reference count reaches zero,

Python collects it automatically.

a=40 # Create object <40>

b=a # Increase ref. count of <40>

c=[b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>
b=100 # Decrease ref. count of <40>
c[0] =-1 # Decrease ref. count of <40>

Y ou normally will not notice when the garbage collector destroys an
orphaned instance and reclaims its space. But a class can implement the
special method del (), called a destructor, that is invoked when the
instance is about to be destroyed. This method might be used to clean up

any non memory resources used by an instance.

Example

This del () destructor prints the class name of an instance that is about

to be destroyed —

#!/usr/bin/python

class Point:
def init_ (self, x=0, y=0):
self.x =x
selfy=y
def del (self):

class name =self. class . name

print class_name, "destroyed"

ptl = Point()

pt2 = ptl

pt3 = ptl

print id(ptl), 1d(pt2), id(pt3) # prints the ids of the obejcts
del ptl

del pt2

del pt3

When the above code is executed, it produces following result —

3083401324 3083401324 3083401324
Point destroyed

Note — Ideally, you should define your classes in separate file, then you

should import them in your main program file using import statement.

Class Inheritance

Instead of starting from scratch, you can create a class by deriving it from a
preexisting class by listing the parent class in parentheses after the new

class name.

The child class inherits the attributes of its parent class, and you can use
those attributes as if they were defined in the child class. A child class can

also override data members and methods from the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of

base classes to inherit from is given after the class name —

class SubClassName (ParentClass1[, ParentClass2, ...]):
'Optional class documentation string'

class suite

#!/usr/bin/python

class Parent: # define parent class
parentAttr = 100
def init (self):

print "Calling parent constructor"

def parentMethod(self):

print 'Calling parent method'

def setAttr(self, attr):

Parent.parentAttr = attr

def getAttr(self):

print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class
def init (self):

print "Calling child constructor"

def childMethod(self):
print 'Calling child method'

¢ = Child() # instance of child
c.childMethod() # child calls its method
c.parentMethod() # calls parent's method
c.setAttr(200) # again call parent's method
c.getAttr() # again call parent's method

When the above code is executed, it produces the following result —

Calling child constructor
Calling child method

Calling parent method

Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows —

class A: # define your class A

class B: # define your class B

You can use issubclass() or isinstance() functions to check a relationships

of two classes and instances.

The issubclass(sub, sup) boolean function returns true if the given subclass

sub is indeed a subclass of the superclass sup.

The isinstance(obj, Class) boolean function returns true if obj is an instance

of class Class or is an instance of a subclass of Class

Overriding Methods

You can always override your parent class methods. One reason for

overriding parent's methods is because you may want special or different

functionality in your subclass.

Example

#!/usr/bin/python

class Parent: # define parent class
def myMethod(self):

print 'Calling parent method'

class Child(Parent): # define child class
def myMethod(self):

print 'Calling child method'

¢ = Child() # instance of child
c.myMethod() # child calls overridden method

When the above code is executed, it produces the following result —

Calling child method
Base Overloading Methods

Following table lists some generic functionality that you can override in

your own classes —

Sr.No. Method, Description & Sample Call
1
__init (self [,args...])

Constructor (with any optional arguments)

Sample Call : obj = className(args)

_del (self)

Destructor, deletes an object

Sample Call : del obj

3

__repr__ (self)

Evaluable string representation

Sample Call : repr(obj)

4
_str (‘self)

Printable string representation

Sample Call : str(obj)

_cmp__ (self, x)

Object comparison

Sample Call : cmp(obj, x)

Overloading Operators

Suppose you have created a Vector class to represent two-dimensional
vectors, what happens when you use the plus operator to add them? Most

likely Python will yell at you.

You could, however, define the add method in your class to perform

vector addition and then the plus operator would behave as per expectation

Example

#!/usr/bin/python

class Vector:
def _init (self, a, b):
self.a=a

selfb=Db

def str (self):
return 'Vector (%d, %d)' % (self.a, self.b)

def add (self,other):

return Vector(self.a + other.a, self.b + other.b)

vl = Vector(2,10)
v2 = Vector(5,-2)
print vl + v2

When the above code is executed, it produces the following result —

Vector(7,8)

Data Hiding

An object's attributes may or may not be visible outside the class definition.
You need to name attributes with a double underscore prefix, and those

attributes then are not be directly visible to outsiders.

Example

#!/usr/bin/python

class JustCounter:

__secretCount =0

def count(self):
self. secretCount +=1

print self. secretCount

counter = JustCounter()
counter.count()
counter.count()

print counter. _secretCount

When the above code is executed, it produces the following result —

1
2
Traceback (most recent call last):
File "test.py", line 12, in <module>
print counter. _secretCount
AttributeError: JustCounter instance has no attribute ' secretCount'

Python protects those members by internally changing the name to include
the class name. You can access such attributes as
object. className attrName. If you would replace your last line as

following, then it works for you —

print counter. JustCounter _secretCount.

CHAPTER 5

HOW TO WORK WITH EXTERNAL FILES

Why use Files?

_ Write to file
T o i
- e ‘—}'\,{!\g aAVE)
ngrﬂm 1|:‘t'--:.-h“":'-'c 11'!.
N
T o l‘-'- .-"'----I-r
L L
i :
i @
1 =
B External File
H::x
Read from™-"T"7""% | reecondary
file {Load) sforage)
oo

& python

...50 We can
have access to
‘stored’ data
even after we
close our
programs

All programs must deal with external data. They will either accept data

from sources outside the text of the program, or they will produce some

kind of output, or they will do both. Think about it: if the program produces

no output, how do you know it did anything?

By external data, we mean data outside of volatile, high-speed, primary
memory; we mean data on peripheral devices. This may be persistent data
on a disk, or transient data on a network interface. For now, it may mean

transient data displayed on our terminal.

Most operating systems provide simple, uniform access to external data via
the abstraction called a file. We’ll look at the operating system
implementation, as well as the Python class that gives us access to the

operating system file in our programs.

In File Objects — Our Connection To The File System, we provide
definitions of how Python works with files. We cover the built-in functions
for working with files in The File and Open Functions. In Methods We Use
on File Objects, we describe some method functions of file objects. We’ll
look at file-processing statements in File Statements: Reading and Writing
(but no Arithmetic).

File Objects — Our Connection To The File System

Abstractions Built on Top of Abstractions. Files do a huge number of things
for us. To support this broad spectrum of capabilities, there are two layers
of abstraction involved: the OS and Python. Unfortunately, both layers use
the same words, so we have to be careful about casually misusing the word
“file”.

The operating system has devices of various kinds. All of the various

devices are unified using a common abstraction that we call the file system.

All of a computer’s devices appear as OS files of one kind or another. Some
things which aren’t physical devices also appear as files. Files are the

plumbing that move data around our information infrastructure.

Additionally, Python defines file objects. These file objects are the fixtures

that give our Python program access to OS files.

Python File and OS File

How Files Work. When your program evaluates a method function of a
Python file object, Python transforms this into an operation on the
underlying OS file. An OS file operation becomes an operation on one of
the various kinds of devices attached to our computer. Or, a OS file
operation can become a network operation that reaches through the Internet
to access data from remote computers. The two layers of abstraction mean
that one Python program can do a wide variety of things on a wide variety

of devices.

Python File Objects

In Python, we create a file object to work with files in the file system. In
addition to files in the OS’s file system, Python recognizes a spectrum of
file-like objects, including abstractions for network interfaces called pipes

and sockets and even some kind of in-memory buffers.

Unlike sequences, sets and mappings, there are no Python literals for file
objects. Lacking literals, we create a file object using the file() or open()
factory function. We provide two pieces of information to this function. We
can provide a third, optional, piece of information that may improve the

performance of our program.

The name of the file. The operating system will interpret this name using its
“working directory” rules. If the name starts with / (or device:\) it’s an
absolute name. Otherwise, it’s a relative name; the current working

directory plus this name identifies the file.

Python can translate standard paths (using /) to Windows-specific paths.
This saves us from having to really understand the differences. We can

name all of our files using /, and avoid the messy details.

We can, if we want, use raw strings to specify Windows path names using

the \ character.

The access mode for the file. This is some combination of read, write and
append. The mode can also include instructions for interpreting the bytes as

characters.

Optionally, we can include the buffering for the file. Generally, we omit
this. If the buffering argument is given, 0 means each byte is transferred as

it is read or written. A value of 1 means the data is buffered a line at a time,

suitable for reading from a console, or writing to an error log. Larger
numbers specify the buffer size: numbers over 4,096 may speed up your

program.

Once we create the file object, we can do operations to read characters from
the file or write characters to the file. We can read individual characters or

whole lines. Similarly, we can write individual characters or whole lines.

When Python reads a file as a se q uence of lines, each line will become a
separate string. The "\n' character is preserved at the end of the string. This
extra character can be removed from the string using the rstrip() method

function.

A file object (like a sequence) can create an iterator which will yield the
individual lines of the file. You can, consequently, use the file object in a

for statement. This makes reading text files very simple.

When the work is finished, we also need to use the file’s close() method.
This empties the in-memory buffers and releases the connection with the
operating system file. In the case of a socket connection, this will release all
of the resources used to assure that data travels through the Internet

successfully.

The File and Open Functions

Here’s the formal definition of the file() and open() factory functions. These
functions create Python file objects and connect them to the appropriate

operating system resources.

open(filename, mode[, buffering]) — file

The filename is the name of the file. This is simply given to the operating
system. The OS expects eitther absolute or relative paths; the operating

system folds in the current working directory to relative paths.

1 /!

The mode is covered in detail below. In can be 't', 'w' or 'a' for reading
(default), writing or appending. If the file doesn’t exist when opened for
writing or appending, it will be created. If a file existed when opened for
writing, it will be truncated and overwritten. Add a 'b' to the mode for
binary files. Add a '+' to the mode to allow simultaneous reading and

writing.

If the buffering argument is given, 0 means unbuffered, 1 means line

buffered, and larger numbers specify the buffer size.

file(filename, mode[, buffering]) — file

This is another name for the open() function. It parallels other factory
functions like int() and dict().

Python expects the POSIX standard punctuation of / to separate elements of

the filename path for all operating systems. If necessary, Python will

translate these standard name strings to the Windows punctuation of \.
Using standardized punctuation makes your program portable to all
operating systems. The os.path module has functions for creating valid

names in a way that works on all operating systems.

Tip Constructing File Names

When using Windows-specific punctuation for filenames, you’ll have
problems because Python interprets the \ as an escape character. To create a
string with a Windows filename, you’ll either need to use \ in the string, or

nn

use an r'" " string literal. For example, you can use any of the following:
r"E:\writing\technical\pythonbook\python.html" or

"E:\\writing\\technical\\pythonbook\\python.html".

Note that you can often use "E:/writing/technical/pythonbook/python.html".
This uses the POSIX standard punctuation for files paths, /, and is the most
portable. Python generally translates standard file names to Windows file

names for you.

Generally, you should either use standard names (using /) or use the os.path
module to construct filenames. This module eliminates the need to use any
specific punctuation. The os.path.join() function makes properly punctuated

filenames from se q uences of strings

The Mode String. The mode string specifies how the OS file will be
accessed by your program. There are four separate issues addressed by the

mode string: opening, bytes, newlines and operations.

Opening. For the opening part of the mode string, there are three

alternatives:

r: Open for reading. Start at the beginning of the OS file. If the OS file does

not exist, raise an IOError exception. This is the default.

w: Open for writing. Start at he beginning of the OS file. If the OS file does

not exist, create the OS file.

a: Open for appending. Start at the end of the OS file. If the OS file does not

exist, create the OS file.

Bytes or Characters. For the byte handling part of the mode string, there are

two alternatives:

b: The OS file is a se q uence of bytes; do not interpret the file as a
sequence of characters. This is suitable for .csv files as well as images,

movies, sound samples, etc.

The default, if b is not included, is to interpret the file is a sequence of
ordinary characters. The Python file object will be an iterator that yields
each individual line from the OS file as a separate string. Translations from
various encoding schemes like UTF-8 and UTF-16 will be handled

automatically.

Universal Newlines. The newline part of the mode string has two

alternatives:

U: Universal newline interpretation. The first instance of \n, \r\n (or \r) will
define the newline character(s). Any of these three newline se q uences will
be silently translated to the standard "\n' character. The \r\n is a Windows

feature.

The default, if U is not included, is to only handle this operating system’s

standard newline character(s).

Mixed Operations. For the additional operations part of the mode string,

there are two alternatives:

+: Allow both read and write operations to the OS file.

The default, if + is not included, is to allow only limited operations: only

€6 99, (13 29

reads for files opened with “r”’; only writes for OS files opened with “w” or

(1P 2]

a .

Typical combinations include the following:

"r" to read text files.

"rb" to read binary files. A .csv file, for example, is often processed in

binary mode.
"wt" to create new text file for reading and writing.

The following examples create Python file objects for further processing:

dataSource= open("name addr.csv", "rb")

newPage= open("addressbook.html", "w"
theErrors= open("/usr/local/log/error.log", "a")
dataSource:

This example opens the existing file name addr.csv in the current working
directory for reading. The variable dataSource identifies this file object, and

we can use this variable for reading strings from this file.

This file is opened in binary mode.

newPage:

This example creates a new file addressbook.html (or it will truncate this
file if 1t exists). The file will be in the current working directory. The
variable newPage identifies the file object. We can then use this variable to

write strings to the file.

theErrors:

This example appends to the file error.log (or creates a new file, if the file
doesn’t exist). The file has the directory path /ust/local/log/. Since this is an

absolute name, it doesn’t depend on the current working directory.

Buffering files is typically left as a default, specifying nothing. However,
for some situations, adjusting the buffering can improve performance. Error

logs, for instance, are often unbuffered, so the data is available immediately.

Large input files may be opened with large buffer numbers to encourage the
operating system to optimize input operations by reading a few large

chunks of data from the device instead of a large number of smaller chunks.

Tip Debugging Files

There are a number of things that can go wrong in attempting to create a file

object.

If the file name is invalid, you will get operating system errors. Usually
they will look like this:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: 'wakawaka'

It is very important to get the file’s path completely correct. You’ll notice
that each time you start IDLE, it thinks the current working directory is
something like C:\Python26. You’re probably doing your work in a
different default directory.

When you open a module file in IDLE, you’ll notice that IDLE changes the
current working directory is the directory that contains your module. If you
have your .py files and your data files all in one directory, you’ll find that

things work out well.

The next most common error is to have the wrong permissions. This usually
means trying to writing to a file you don’t own, or attempting to create a file
in a directory where you don’t have write permission. If you are using a
server, or a computer owned by a corporation, this may re g uire some work
with your system administrators to sort out what you want to do and how

you can accomplish it without compromising security.

The [Errno 2] note in the error message is a reference to the internal
operating system error numbers. There are over 100 of these error numbers,
all collected into the module named errno. There are a lot of different things

that can go wrong, many of which are very, very obscure situations.

Methods We Use on File Objects

The Python file object is our view of the underlying operating system file.

The OS file, in turn, gives us access to a specific device.

The Python file object has a number of operations that transform the file
object, read from or write to the OS file, or access information about the

file object.

Reading. The following read methods get data from the OS file. These
operations may also change the Python file object’s internal status and
buffers. For example, at end-of-file, the internal status of the file object will
be changed. Most importantly, these methods have the very visible effect of

consuming data from the OS file.

file.read(size) — string

Read as many as size characters from file f as a single, large string. If size is

negative or omitted, the rest of the file is read into a single string.

from future import print_function
dataSource= open("name_addr.csv", "r")
theData= dataSource.read()
for n in theData.splitlines():

print(n)
dataSource.close()
file.readline(size) — string

Read the next line or as many as size characters from file f; an incomplete
line can be read. If size is negative or omitted, the next complete line is
read. If a complete line is read, it includes the trailing newline character. If
the file is at the end, f. readline() returns a zero length string. If the file has

a blank line, this will be a string of length 1, just the newline character.

from future import print_function
dataSource= file("name_addr.csv", "r")
n= dataSource.readline()

while len(n) > 0:

print(n.rstrip())

n= dataSource.readline()
dataSource.close()
file.readlines(hint)

Read the next lines or as many lines from the next hint characters from file
f. The hint size may be rounded up to match an internal buffer size. If hint is
negative or omitted, the rest of the file is read. All lines will include the
trailing newline character. If the file is at the end, f. readlines() returns a

zero length list.

When we simply reference a file object in a for statement, this is the

function that’s used for iteration over the file.
dataSource= file("name addr.csv", "r")
for n in dataSource:
print(n.rstrip())
dataSource.close()

Writing. The following methods send data to the OS file. These operations
may also change the Python file object’s internal status and buffers. Most
importantly, these methods have the very visible effect of producing data to
the OS file.

file.flush()

Flush all accumulated data from the internal buffers of file f to the device or

interface. If a file is buffered, this can help to force writing of a buffer that

is less than completely full. This is appropriate for log files, prompts written

to sys.stdout and error messages.

file.truncate(size)

Truncate file f. If size is not given, the file is truncated at the current
position. If size is given, the file will be truncated at or before size. This

function is not available on all platforms.

file.write(string)

Write the given string to file f. Buffering may mean that the string does not

appear on a console until a close() or flush() operation is used.

newPage= file("addressbook.html", "w"

newPage.write("<html>\n<head><title>Hello World</title>

</head>\n<body>\n")

newPage.write("<p>Hello World</p>\n")
newPage.write("<\body>\n</htmI>\n")
newPage.close()

file.writelines(list)

Write the list of strings to file f. Buffering may mean that the strings do not

appear on any console until a close() or flush() operation is used.

newPage= file("addressbook.html", "w"

newPage.writelines(["<htmI>\n", "<head><title>Hello World</title>
</head>\n", "<body>\n"])

newPage.writelines(["<p>Hello World</p>\n"])
newPage.writelines(["<\body>\n", "</htmI>\n"])
newPage.close()

Accessors. The following file accessors provide information about the file

object.

file.tell() — integer

Return the position from which file f will be processed. This is a partner to
the seek() method; any position returned by the tell() method can be used as

an argument to the seek() method to restore the file to that position.

file.fileno() — integer

Return the internal file descriptor (fd) number used by the OS library when
working with file f. A number of modules provide access to these low-level

libraries for advanced operations on devices and files.

file.isatty() — boolean

Return True if file f is connected to an OS file that is a console or keyboard.

file.closed() — boolean

This attribute of file f is True if the file is closed.

file.mode() — string

This attribute is the mode argument to the file() function that was used to

create the file object.

file.name

This attribute of file f is the filename argument to the file() function that

was used to create the file object.

Transfomers. The following file transforms change the file object itself.
This includes closing it (and releasing all OS resources) or change the

position at which reading or writing happens.

file.close()

Close file f. The closed flag is set. Any further operations (except a

redundant close) raise an IOError exception.

file.seek(offset[, whence])

Change the position from which file f will be processed. There are three

values for whence which determine the direction of the move.

If whence is 0 (the default), move to the absolute position given by offset.
f.seek(0) will rewind file f.

If whence is 1, move relative to the current position by offset bytes. If offset

is negative, move backwards; otherwise move forward.

If whence is 2, move relative to the end of file. f.seek(0,2) will advance file
f to the end.

File Statements: Reading and Writing (but no Arithmetic)

A file object (like a se q uence) can create an iterator which will yield the
individual lines of the file. We looked at how se q uences work with the for
statement in Looping Back : Iterators, the for statement and Generators.

Here, we’ll use the file object in a for statement to read all of the lines.

Additionally, the print statement can make use of a file other than standard
output as a destination for the printed characters. This will change with

Python 3.0, so we won’t emphasize this.

Opening and Reading From a File. Let’s say we have the following file. If
you use an email service like HotMail, Yahoo! or Google, you can
download an address book in Comma-Separated Values (CSV) format that
will look similar to this file. Yahoo!’s format will have many more columns

than this example.

name addr.csv

"First","Middle","Last","Nickname","Email","Category"

nmn

"Moe","","Howard","Moe","moe@?3stooges.com","actor"

nn

"Jerome","Lester","Howard","Curly","curly@3stooges.com","actor"

nn

"Larry","","Fine","Larry","larry(@3stooges.com","musician"

LI nn

"Jerome","","Besser","Joe","joe(@3stooges.com","actor"

nn

"Joe","","DeRita","CurlyJoe","curlyjoe(@3stooges.com","actor"

"Shemp","","Howard","Shemp","shemp@3stooges.com","actor"

Here’s a quick example that shows one way to read this file using the file’s

iterator. This isn’t the best way, that will have to wait for The csv Module.

3
4
dataSource = file("name addr.csv", "r")
for addr in dataSource:
print(addr)
dataSource.close()

We create a Python file object for the name addr.csv in the current working

directory in read mode. We call this object dataSource.

The for statement creates an iterator for this file; the iterator will yield each

individual line from the file.

We can print each line.

We close the file when we’re done. This releases any operating system

resources that our program tied up while it was running.

A More Complete Reader. Here’s a program that reads this file and

reformats the individual records. It prints the results to standard output.
This approach to reading CSV files isn’t very good. In the next chapter,
we’ll look at the csv module that handles some of the additional details

re q uired for a really reliable program.

nameaddr.py

TN

O o0 3 O W

10

#!/usr/bin/env python

nnn

"""Read the name addr.csv file.

dataSource = file("name_addr.csv", "r")

for addr in dataSource:
split the string on the ,'s
g uotes= addr.split(",")
strip the ""'s from each field
fields= [f.strip('"") for f in quotes]
print(fields[0], fields[1], fields[2], fields[4])
dataSource.close()

We open the file name addr.csv in our current working directory. The

variable dataSource is our Python file object.

The for statement gets an iterator from the file. It can then use the iterator,
which yields the individual lines of the file. Each line is a long string. The

fields are surrounded by "s and are separated by ,s.

We use the split() function to break the string up using the ,s. This particular
process won’t work if there are ,s inside the q uoted fields. We’ll look at

the csv module to see how to do this better.

We use the strip() function to remove the "s from each field. Notice that we
used a list comprehension to map from a list of fields wrapped in "s to a list

of fields that are not wrapped in "s.

Seeing Output with print. The print() function does two things. When we
introduced print() back in Seeing Results : The print Statement, we hustled
past both of these things because they were really uite advanced

concepts.

We covered strings in Se q uences of Characters : str and Unicode. We’re
covering files in this chapter. Now we can open up the hood and look

closely at the print() function.

The print() function evaluates all of its expressions and converts them to

strings. In effect, it calls the str() built-in function for each argument value.

The print() function writes these strings, separated by a separator character,

sep. The default separator is a space, '".

The print() function also writes an end character, end. The default end is the

newline character, "\n'.

The print() function has one more feature which can be very helpful to us.

We can provide a file parameter to redirect the output to a particular file.

We can use this to write lines to sys.stderr.

A W DN

5
from future import print_function
import sys

print("normal output")

print("Red Alert!", file=sys.stderr)
print("still normal output", file=sys.stdout)
We enable the print function.

We import the sys module.

We write a message to standard output using the undecorated print

statement.
We use the file parameter to write to sys.stderr.
We also use the:varname:file parameter to write to sys.stdout.

When you run this in IDLE, you’ll notice that the error messages display in

red, while the standard output displays in blue.

Print Command. Here is the syntax for an extension to the print statement.

print >> file [, expression, ...]

The >> is an essential part of this peculiar syntax. This is an odd special
case punctuation that doesn’t appear elsewhere in the Python language. It’s

called the “chevron print”.

Important Python 3

This chevron print syntax will go away in Python 3. Instead of a print

statement with a bunch of special cases, we’ll use the print() function.

Opening A File and Printing. This example shows how we open a file in the
local directory and write data to that file. In this example, we’ll create an
HTML file named addressbook.html. We’ll write some content to this file.
We can then open this file with FireFox or Internet Explorer and see the

resulting web page.

addrpage.py

N W

O o0 9 O W

10

11

#!/ust/bin/env python

"""Write the addressbook.html page."""
from future import print_function

new_ page = open("addressbook.html", "w")

print('<htmI>', new page)
print(' <head>"'

'<meta http-e q uiv="content-type" content="text/html; charset=us-

ascii">'

'<title>addressbook</title></head>', file=new page)
print(' <body><p>Hello world</p></body>', file=new page)
print("</htmI>', file=new_page)
new_page.close()

Basic File Exercises

Device Structures.

Some disk devices are organized into cylinders and tracks instead of blocks.
A disk may have a number of parallel platters; a cylinder is the stack of
tracks across the platters available without moving the read-write head. A
track is the data on one circular section of a single disk platter. What
advantages does this have? What (if any) complexity could this lead to?

How does an application program specify the tracks and sectors to be used?

Some disk devices are described as a simple se q uence of blocks, in no
particular order. Each block has a unique numeric identifier. What

advantages could this have?

Some disk devices can be partitioned. What (if any) relevance does this

have to file processing?

Skip The Header Record.

Our name_addr.csv file has a header record. We can skip this record by

getting the iterator and advancing to the next item.

Write a variation on nameaddr.py which uses the iter() to get the iterator for
the dataSource file. Assign this iterator object to dataSrclter. If you replace
the file, dataSource, with the iterator, dataSrclter, how does the processing
change? What is the value returned by dataSrclter.next() before the for
statement? How does adding this change the processing of the for

statement?

Combine The Two Examples.

Our two examples, addrpage.py and name addr.py are really two halves of
a single program. One program reads the names and address, the other
program writes an HTML file. We can combine these two programs to

reformat a CSV source file into a resulting HTML page.

The name and addresses could be formatted in a web page that looks like

the following:

<htmI>

<head><title>Address Book</title></head>

<body>

<table>

<tr><td>last name</td><td>first name</td><td>email address</td></tr>
<tr><td>last name</td><td>first name</td><td>email address</td></tr>

<tr><td>last name</td><td>first name</td><td>email address</td></tr>

</table>
</body>
</html>

Each of our input fields becomes an output field sandwiched in between
<td> and </td>. In this case, we uses phrases like last name, first name and
email address to show where real data would be inserted. The other HTML

elements like <table> have to be printed as they’re shown in this example.

Your final program should open two files: name_addr.csv and
addressbook.html. Your program should write the initial HTML material
(up to the first <tr>) to the output file. It should then read the CSV records,
writing a complete address line between <tr> to </tr>. After it finishes
reading and writing names and addresses, it has to write the last of the
HTML file, from </table> to </html>.

CHAPTER 6

DISCOVER VARIABLES, STRINGS,
INTEGERS, AND MORE TO DESIGN
CONVERSATIONAL PROGRAMS

Ao r b
"bive- 302 i : border-box:-moz-box-sizing :border-box: -webkit - box
h 4px . margin=top l::positionabsolute top:1-:"

'|_]-¢

i b | !“
e width "

“gEthata”
"selbata™

Before we start to write the program, we need to generate a token for our
bot. The token is needed to access the Telegram API, and install the
necessary dependencies.

1. Create a new bot in BotFather

If you want to make a bot in Telegram, you have to “register” your bot first
before using it. When we “register” our bot, we will get the token to access
the Telegram API.

Go to the BotFather (if you open it in desktop, make sure you have the
Telegram app), then create new bot by sending the /newbot command.
Follow the steps until you get the username and token for your bot. You can
go to your bot by accessing this URL:
https://telegram.me/YOUR BOT_ USERNAME and your token should
looks like this.

70441893 1: A AEtcZ s ddasikdtsikk
2. Install the library

Since we are going to use a library for this tutorial, install it using this

command.

pip3 install python-telegram-bot

If the library is successfully installed, then we are good to go.

Write the program

Let’s make our first bot. This bot should return a dog image when we send
the /bop command. To be able to do this, we can use the public API from

RandomDog to help us generate random dog images.

The workflow of our bot is as simple as this:

access the API -> get the image URL -> send the image

1. Import the libraries

First, import all the libraries we need.

from telegram.ext import Updater, CommandHandler
import re g uests

import re

2. Access the API and get the image URL

Let’s create a function to get the URL. Using the re q uests library, we can
access the API and get the json data.

contents = re q uests.get('https://random.dog/woof.json').json()

You can check the json data by accessing that URL:
https://random.dog/woof.json in your browser. You will see something like

this on your screen:

“url":"https://random.dog/***** JPG"
p g

Get the image URL since we need that parameter to be able to send the

image.

image url = contents['url']

Wrap this code into a function called get url() .

def get url():

contents = re q uests.get('https://random.dog/woof.json').json()
url = contents['url']
return url

3. Send the image

To send a message/image we need two parameters, the image URL and the

recipient’s ID—this can be group ID or user ID.

We can get the image URL by calling our get url() function.

url = get_url()

Get the recipient’s ID using this code:

chat id = update.message.chat id

After we get the image URL and the recipient’s ID, it’s time to send the

message, which is an image.

bot.send photo(chat id=chat id, photo=url)

Wrap that code in a function called bop , and make sure your code looks
like this:

def bop(bot, update):
url = get_url()

chat id = update.message.chat id

bot.send photo(chat _id=chat id, photo=url)
4. Main program

Lastly, create another function called main to run our program. Don’t forget
to change YOUR TOKEN with the token that we generated earlier in this

tutorial.

def main():
updater = Updater("YOUR TOKEN")
dp = updater.dispatcher
dp.add handler(CommandHandler('bop',bop))

updater.start_polling()
updater.idle()

if _name =='_main_ "
main()

At the end your code should look like this:

from telegram.ext import Updater, InlineQueryHandler, CommandHandler
import requests
import re
def get url():
contents = re q uests.get('https://random.dog/woof.json').json()

url = contents['url']

return url
def bop(bot, update):

url = get_url()

chat id = update.message.chat id

bot.send photo(chat id=chat id, photo=url)
def main():

updater = Updater("YOUR TOKEN")

dp = updater.dispatcher

dp.add_handler(CommandHandler('bop',bop))

updater.start polling()
updater.idle()

if _name ==' main_":
main()

5. Run the program

Awesome! You finished your first program. Now let’s check if it works.

Save the file, name it main.py , then run it using this command.

python3 main.py

Go to your telegram bot by accessing this URL:
https://telegram.me/YOUR BOT USERNAME. Send the /bop command.
If everything runs perfectly the bot will reply with a random dog image.
Cute right?

Handling errors

Great! Now you have a bot that will send you a cute dog image whenever

you want.

There is more! The RandomDog API not only generates images, but also
videos and GIFs. If we access the API and we get a video or GIF, there is an

error and the bot won’t send it to you.

Let’s fix this so the bot will only send a message with an image attachment.
If we get a video or GIF then we will call the API again until we get an

image.

1. Match the file extension using regex

We are going to use a regex to solve this problem.

To distinguish an image from video or GIF, we can take a look at the file

extension. We only need the last part of our URL.

https://random.dog/***** JPG

We need to define, first, what file extensions are allowed in our program.

allowed extension = ["jpg','jpeg','png']

Then use the regex to extract the file extension from the URL.

file extension = re.search("([*.]*)$",url).group(1).lower()

Using that code, make a function called get image url() to iterate the URL
until we get the file extension that we want (jpg,jpeg,png).

def get image url():
allowed extension = ['jpg','jpeg’,'png']
file_extension ="
while file extension not in allowed extension:
url = get_url()
file extension = re.search("([*.]*)$",url).group(1).lower()
return url
2. Modify your code

Great! Now for the last part, replace the url = get url() line in the bop()

function with url = get image url() , and your code should look like this:

from telegram.ext import Updater, InlineQueryHandler, CommandHandler
import re g uests
import re
def get url():
contents = requests.get(‘https://random.dog/woof.json').json()

url = contents['url']

return url
def get image url():
allowed extension = ['jpg','jpeg','png']
file_extension ="
while file_extension not in allowed_extension:
url = get_url()
file extension = re.search("([*.]*)$",url).group(1).lower()
return url
def bop(bot, update):
url = get 1mage url()
chat id = update.message.chat id
bot.send photo(chat id=chat id, photo=url)
def main():
updater = Updater('YOUR TOKEN")
dp = updater.dispatcher
dp.add handler(CommandHandler('bop',bop))

updater.start_polling()
updater.idle()
if name ==' main_ "

main().

CHAPTER 7

UNDERSTAND “GRAPHICAL USER
INTERFACES” AND CREATE YOUR OWN
ARCADE GAMES AND APPS.

Arcade, like many other packages, is available via PyPi, which means you
can install Arcade using the pip command (or the pipenv command). If you
already have Python installed, you can likely just open up a command
prompt on Windows and type:

pip install arcade

Or on MacOS and Linux type:

pip3 install arcade

For more detailed installation instructions, you can refer to the Arcade

installation documentation.

Simple drawing

You can open a window and create simple drawings with just a few lines of

code.

The script below shows how you can use Arcade's drawing commands to do
this. Note that you don't need to know how to use classes or even define
functions. Programming with q uick visual feedback is great for anyone

who wants to start learning to program.

import arcade

Set constants for the screen size

SCREEN_WIDTH = 600

SCREEN_ HEIGHT = 600

Open the window. Set the window title and dimensions (width and height)

arcade.open_window(SCREEN WIDTH, SCREEN HEIGHT, "Drawing
Example")

Set the background color to white.

For a list of named colors see:

http://arcade.academy/arcade.color.html

Colors can also be specified in (red, green, blue) format and
(red, green, blue, alpha) format.

arcade.set background color(arcade.color WHITE)

Start the render process. This must be done before any drawing

commands.

arcade.start render()

Draw the face

x =300
y =300
radius = 200

arcade.draw_circle filled(x, y, radius, arcade.color. YELLOW)

Draw the right eye
x =370

y =350

radius = 20

arcade.draw_circle filled(x, y, radius, arcade.color. BLACK)

Draw the left eye

x =230
y =350
radius = 20

arcade.draw_circle filled(x, y, radius, arcade.color. BLACK)

Draw the smile
x =300

y =280

width = 120
height = 100
start _angle = 190
end_angle =350

arcade.draw_arc outline(x, y, width, height, arcade.color. BLACK,
start angle, end angle, 10)

Finish drawing and display the result

arcade.finish render()

Keep the window open until the user hits the 'close' button
arcade.run()

Using functions

Of course, writing code in the global context isn't good form. Thankfully
improving your program by using functions is easy. Here we can see an
example of a drawing a pine tree at a specific (X, y) location using a

function:

def draw_pine tree(X, y):

nan

""" This function draws a pine tree at the specified location.

Draw the triangle on top of the trunk.

We need three x, y points for the triangle.

arcade.draw_triangle filled(x +40,y, # Point 1
X,y -100, # Point 2
x + 80, y - 100, # Point 3
arcade.color DARK GREEN)

Draw the trunk
arcade.draw_lIrtb rectangle filled(x + 30, x + 50, y - 100, y - 140,
arcade.colorDARK BROWN)

The more experienced programmer will know that modern graphics
programs first load drawing information onto the graphics card, and then
ask the graphics card to draw it later as a batch. Arcade supports this as
well. Drawing 10,000 rectangles individually takes about 0.800 seconds.
Drawing them as a batch takes less that 0.001 seconds.

The Window class

Larger programs will typically derive from the Window class, or use
decorators. This allows a programmer to write code to handle drawing,
updating, and handling input from the user. A template for a starting a

Window-based program is below.

import arcade

SCREEN_WIDTH = 800
SCREEN_ HEIGHT = 600

class MyGame(arcade. Window):

nmnn

""" Main application class.

def init (self, width, height):
super(). init (width, height)

arcade.set background color(arcade.color AMAZON)

def setup(self):

Set up your game here

pass

def on_draw(self):
""" Render the screen. """
arcade.start_render()

Your drawing code goes here

def update(self, delta_time):

""" All the logic to move, and the game logic goes here.

pass

def main():
game = MyGame(SCREEN WIDTH, SCREEN HEIGHT)
game.setup()

arcade.run()

"

if name ==" main "
main()

The Window class has several methods that your programs can override to

provide functionality to the program. Here are some of the most commonly

used ones:

on_draw: All the code to draw the screen goes here.

update: All the code to move your items and perform game logic goes here.

This is called about 60 times per second.

on_key press: Handle events when a key is pressed, such as giving a player

a speed.

on_key release: Handle when a key is released, here you might stop a

player from moving.
on_mouse_motion: This is called every time the mouse moves.
on_mouse_press: Called when a mouse button is pressed.

set viewport: This function is used in scrolling games, when you have a
world much larger than what can be seen on one screen. Calling
set_viewport allows a programmer to set what part of that world is currently

visible.
Sprites

Sprites are an easy way to create a 2D bitmapped object in Arcade. Arcade
has methods that make it easy to draw, move, and animate sprites. You can

also easily use sprites to detect collisions between objects.

Creating a sprite

Creating an instance of Arcade's Sprite class out of a graphic is easy. A
programmer only needs the file name of an image to base the sprite off of,

and optionally a number to scale the image up or down. For example:

SPRITE SCALING COIN =0.2

coin = arcade.Sprite("coin_01.png", SPRITE _SCALING COIN)

This code will create a sprite using the image stored in coin_01.png. The

image will be scaled down to 20% of its original height and width.

Sprite lists

Sprites are normally organized into lists. These lists make it easier to
manage the sprites. Sprites in a list will use OpenGL to batch-draw the
sprites as a group. The code below sets up a game with a player, and a
bunch of coins for the player to collect. We use two lists, one for the player

and one for the coins.

def setup(self):

nmnn

""" Set up the game and 1nitialize the variables.
Create the sprite lists
self.player list = arcade.SpriteList()

self.coin_list = arcade.SpriteList()

Score

self.score =0

Set up the player
Character image from kenney.nl

self.player sprite = arcade.Sprite("images/character.png",
SPRITE SCALING PLAYER)

self.player sprite.center x = 50 # Starting position
self.player_sprite.center y = 50

self.player list.append(self.player sprite)

Create the coins

for 1 in range(COIN_COUNT):

Create the coin instance
Coin image from kenney.nl

coin = arcade.Sprite("images/coin_01.png",
SPRITE _SCALING_COIN)

Position the coin
coin.center x = random.randrange(SCREEN WIDTH)
coin.center y = random.randrange(SCREEN_ HEIGHT)

Add the coin to the lists
self.coin_list.append(coin)

We can easily draw all the coins in the coin lists:

def on_draw(self):

""" Draw everything """
arcade.start render()
self.coin_list.draw()
self.player_list.draw()

Detecting sprite collisions

The function check for collision with list allows us to see if a sprite runs
into another sprite in a list. We can use this to see all the coins the player
sprite is in contact with. Using a simple for loop, we can get rid of the coin

from the game and increase our score.

def update(self, delta time):
Generate a list of all coin sprites that collided with the player.

coins_hit list = arcade.check for collision with list(self.player sprite,

self.coin_list)

Loop through each colliding sprite, remove it, and add to the score.
for coin in coins_hit_list:

coin kill()

self.score += 1

For the full example, see collect coins.py.

Game physics

Many games include some kind of physics. The simplest are top-down
programs that prevent the player from walking through walls. Platformers
add more complexity with gravity and platforms that move. Some games

use a full 2D physics engine with mass, friction, springs, and more.

For simple top-down based games, an Arcade program needs a list of walls
that the player (or anything else) can't move through. I usually call this
wall_list. Then a physics engine is created in the Window class's setup code
with:

self.physics_engine = arcade.PhysicsEngineSimple(self.player sprite,
self.wall_list)

The player_sprite is given a movement vector with its two attributes
change x and change y. A simple example of doing this would be to have

the player move with the keyboard. For example, this might be in the

custom child of the Window class:

MOVEMENT SPEED =35

def on_key press(self, key, modifiers):

"""Called whenever a key is pressed. """

if key == arcade.key.UP:

self.player sprite.change y = MOVEMENT SPEED
elif key == arcade.key. DOWN:

self.player sprite.change y =-MOVEMENT SPEED
elif key == arcade key.LEFT:

self.player sprite.change x =-MOVEMENT SPEED
elif key == arcade.key.RIGHT:

self.player sprite.change x = MOVEMENT SPEED

def on key release(self, key, modifiers):

nmn

"""Called when the user releases a key.

if key == arcade.key.UP or key == arcade.key. DOWN:
self.player_sprite.change y =0

elif key == arcade.key.LEFT or key == arcade.key.RIGHT:
self.player sprite.change x =0

Although that code sets the player's speed, it doesn't move the player. In the
update method of the Window class, calling physics_engine.update() will

move the player, but not through walls.

def update(self, delta time):

nan

""" Movement and game logic

self.physics_engine.update()

Moving to a side view platformer is rather easy. A programmer just needs to
switch the physics engine to PhysicsEnginePlatformer and add in the

gravity constant.

self.physics_engine = arcade.PhysicsEnginePlatformer(self.player_sprite,
self.wall_list,
gravity constant=GRAVITY)

You can use a program like Tiled to lay the tiles/blocks that make up your

level.

For an example, see sprite tiled map.py.

For full 2D physics you can integrate the PyMunk library.

Learn by example

One of the best ways to learn is by example. The Arcade library has a long

list of example programs that a person can draw on to create games. These

examples each show a game concept that students have asked for in my

classes or online over the years.

Running any of these demos is easy once Arcade has been installed. Each
of the samples has a comment at the beginning of the program with a
command you can type on the command-line to run the sample, for

example:

python -m arcade.examples.sprite. moving_platforms.

CHAPTER 8

HOW BENEFICIAL IS DJANGO FOR THE
EXISTING PYTHON DEVELOPERS

As a powerful server side scripting language, Python makes it easier for
developers to build high-performing websites rapidly. The object-oriented
programming language supports modules and packages. So the developers
can divide the code into different modules, and reuse these modules across
different projects. They can further reduce overall development time and
efforts significantly by using a Python web framework.

As highlighted by several surveys, existing Python developers across the
world prefer Django to other popular Python web frameworks like
TurboGears, Falcon, Pyramid, web2py and web.py. Along with being a

high-level web framework, Django is also flexible and extensible, and

comes with features that help developers to create customized internet
applications. There are also a number of reasons why Django is hugely

popular among both beginners and existing Python programmers.

What Makes Django Popular Among Existing Python Programmers?

SHORTER AND CLEANER CODE

The existing Python programmers understand the long-term benefits of a
shorter and cleaner code base. As Python enables those to express common
concepts with less code, they can always avoid creating longer code. At the
same time, Django supports model-view-controller (MVC) pattern. The
pattern makes it easier for programmers to organize their code efficiently by
keeping the business logic, user interface and application data separate. The
combination of Python and Django helps experienced developers to create

readable, shorter and cleaner code.

OPTIONS TO CUSTOMIZE WEB APPLICATIONS

Nowadays each business wants its website to deliver distinct and rich user
experience. Python developers look for options to customize pieces of
websites without putting any extra time and effort. As a flexible web
framework, Django enables them to customize different pieces of a website.
Instead of using pre-built web applications, the programmers are re q uired
to focus only on customizing pieces of the website according to client's
specific requirements. The focus enables them to create applications that
deliver relevant content or information according to the specific needs of

user.

BUILT-IN TOOLS FOR ACCOMPLISHING COMMON TASKS

Django is being updated regularly with new features and built-in tools. It
includes a variety of built-in tools that help users to accomplish common
web development tasks without writing lengthy code. These built-in tools
help programmers to reduce the amount of time re q uired for developing

large websites.

A VARIETY OF PACKAGES

The existing Python programmers further boost performance of their web
application using Django packages. The Django packages include reusable
tools, apps, and sites. Many developers fre q uently use apps like Django
Extensions, Django Celery, Django Rest Framework and South. They also
effectuate development of ecommerce websites by using django SHOP,
django-oscar, Satchmo, satchless or Cartridge. They also have option to
choose from a variety of reusable tools, apps and sites according to the
nature and needs of the web application. These packages make it easier for

them to boost the website's performance without writing extra code.

OBJECT-RELATIONAL MAPPER (ORM)

The choice of database differs from one client to another. The experienced
Python developers prefer using object-relational mapper to write database
g ueries without using SQL. Django comes with an ORM that enables
developers to manipulate database without writing lengthy SQL queries.
The framework implements the ORM by default to allow programmers to
describe the database layout as a Python class. At the same time, they also

have option to use a Python API to access data in a more efficient way. As

the API is generated on the fly, the developers are not re q uired to generate
any additional code. That is why; Django is used widely for development of

data-driven websites.

HUMAN READABLE URLS

The beginners often ignore the significance of human readable URLs. But
existing Python developers understand the benefits of human readable
URLSs for the web application. The website visitors can understand and
remember the URL more easily. Also, the human readable URLs will make
the web pages rank higher on search engine results pages. Django makes it
easier for programmers to create simple, readable and easy-to-remember

URLSs for both website visitors and search engine bottoms.

DYNAMIC ADMIN INTERFACE

Each client wants a simple and dynamic admin interface to manage the
application smoothly. Django is designed with features to generate a
production-ready admin interface. The dynamic admin interface allows
authenticate users to add, delete and change objects. Thus, it makes it easier
for the business to edit or update the website content, without using any
backend interface. The existing Python programmers take advantage of this

feature to setup and run admin sites while developing the models.

OPTIMIZED SECURITY

Python scores over other popular web programming language in the
category of security. The existing Python developers also avail the features
of Django to optimize the security of Python web application. Unlike other

web frameworks, Django often generates web pages dynamically, and sends

the content to web browsers through templates. So the source code remains
hidden from both the web browser and end users. As the source code is not
directly exposed to the end users, the internet application gets
comprehensive security cover. At the same time, the developers can also
use Django to prevent cross-site scripting attacks, SQL injection and other

security threats.

OPTION TO EXCHANGE IDEAS

Like other open source technologies, Django is also supported by a large
and active community. So the existing Python web developer often avail
assistance of the community to handle new issues. At the same time, they
also exchange ideas and best practices with other members of the
community on a regular basis. The exchange makes it easier for them to
keep track of the latest trends in web development, along with

understanding how to implement these trends without any hassle.

The existing Python programmers also upgrade to the latest version of
Django to avail new features and enhancements, along with a number of
bug fixes. Further, they can avail regular security updates for the most
recent version of the web framework to protect the application from latest
security threats. Many programmers even upgrade to the latest version of

Django to keep their code base relevant and up to date.

CHAPTER 9
IMPORTANT PYTHON FRAMEWORKS

As a dynamic, general purpose and object-oriented programming language,
Python is used widely by developers across the world for building a variety
of software applications. Unlike other modern programming languages,
Python enables programmers to express concept with less and readable
code. The users also have an option to integrate Python with other popular
programming languages and tools seamlessly. But it cannot be used directly

for writing different types of software.

Often Python developers have to use a variety of frameworks and tools to
build high quality software applications within a shorter amount of time.
The resources provided by the Python frameworks help users to reduce the
time and effort required for modern applications. They also have an option
to choose from a number of frameworks according to the nature and
requirements of individual projects. However, it is also important for the
programmers to know some of the Python frameworks that will remain

popular in the longer run.

10 Python Frameworks that will Remain Popular :

1) Kivy

As an open source Python library, Kivy makes it easier for programmers to
build multi-touch user interfaces. It supports a number of popular platforms
including Windows, Linux, OS X, 10S and Android. So the cross-platform
framework enables users to create the app for multiple platforms using the
same code base. It is also designed with features to take advantage of the

native inputs, protocols and devices. Kivy further includes a fast graphic

engine, while allowing users to choose from more than 20 extensible

widgets.

2) Qt

The open source Python framework is written in C++. Qt enables
developers to build connected applications and Uls that run on multiple
operating systems and devices. The developers can further create cross-
platform applications and Uls without making any changes to the code. Qt
further scores over other frameworks due to its comprehensive library of
APIs and tools. The programmers have option to use Qt either under the

community license or the commercial license.

3) PyGUI

PyGUI is considered to be simpler than other Python frameworks. But it
enables developers to create GUI API by taking advantage of the language
features of Python. PyGUI currently supports Windows, OS X and Linux.
So the developers can use it for creating lightweight GUI APIs that can be
implemented on these three platforms. They can further document the API
comprehensively without referring to the documentation of any third-party
GUI library.

4) WxPython

The GUI toolkit for Python helps programmers to create applications with
highly functional graphical user interfaces. As wxPython supports
Windows, Linux and OS X, it becomes easier for developers to run the
same program in multiple platforms without modifying the code. The users

can write the programs in Python, while taking advantage of the 2D path

drawing engine, standard dialogs, dockable windows and other features

provided by the framework.

5) Django

Django is the most popular high-level web application development
framework for Python. Despite being open source, Django provides a
simple and rapid development environment for building a variety of
websites and web applications rapidly. It further helps programmers to
create web application without writing lengthy code. It further comes with
features to prevent some of the common security mistakes made by the

developers.

6) CherryPy

As a minimalist web framework, CherryPy enables programs to create
websites and web applications just like writing other object-oriented Python
programs. So it becomes easier for developers to build web applications
without writing lengthy code. CherryPy further comes with a clean
interface, while allowing developers to decide the right frontend utilities
and data storage option. Despite being the oldest Python web application
development framework in the market, CherryPy is still being used by

programmers to create a variety of modern websites.

7) Flask

Flask is one of the micro web frameworks available for Python. Its core is
simple and easy to use, but highly extensible. It also lacks many features
provided by other web frameworks including database abstraction layer and

form validations. Also, it does not allow users to add common functionality

to the web application through third-party libraries. However, Flask enables
programmers to create website rapidly by using extensions and code
snippets. The snippets and patterns contributed by other members help
developers to accomplish common tasks like database access, caching, file

upload and authentication without writing any additional code.

8) Pyramid

Despite being a lightweight and simple Python web framework, Pyramid is
hugely popular among programmers due to its high and rapid performance.
The open source framework can be used for creating a variety of
applications. Once the standard Python development environment is set up,
the developers can use Pyramid to build the applications rapidly. Pyramid
further allows users to take advantage of an independent Model-view-
controller (MVC) structure. At the same time, they can further take

advantage of other frameworks by integrating them with Pyramid.

9) Web.py

As a simple but powerful web framework for Python, web.py helps
programmers to build a variety of modern web applications rapidly. The
combination of simple architecture and impressive development potential
further helps users to overcome some of the common restrictions and
inconveniences in web development. It still lacks many features provided
by other modern web frameworks. But developers can easily integrate
web.py with other frameworks to avail a number of advanced features and

functionality.

10) TurboGears

As a highly-scalable web application development framework for Python,
TurboGears helps users to eliminate restrictions and limitations within the
development environment. It can be used as a micro-framework or full-
stack framework. It further provides a flexible object relationship mapper
(ORM), along with supporting several databases, multiple data exchange
formats, and horizontal data partitioning. The developers can further use the
new widget system provided by TurboGears to effectuate development of

AJAX-heavy web applications.

On the whole, the Python developers have option to choose from many
frameworks. Some of these frameworks effectuate development of GUI
desktop applications, whereas others help programmers to build modern
websites and web application rapidly. At the same time, the developers also
have option to use certain frameworks to write mobile apps in Python. That
is why; it becomes essential for the developer to assess the suitability of
each framework for his project based on its features and functionality. The
user can also consider integrating the framework with other frameworks

and tools to avail more advanced features and functionality.

CHAPTER 10

ROLE OF PYTHON IN IMAGE
APPLICATIONS

e Python Applications

'. Desktop GUI Scientific and
\ Applications Numeric

and Internet
|\ Development

Software Business
\ Development ¢ Applications

Database Games and
Access A\ 3D Graphics

Python is a high level programming language that lets you work more

g uickly and integrate your systems more effectively. 90% of people prefer

Python over other technology because of its simplicity, reliability and easy
interfacing. It is often compared to Lisp, Tcl, Perl, Ruby, C#, Visual Basic,
Visual Fox Pro, Scheme or Java. It can be easily interfaced with
C/ObjC/Java/Fortran. It runs on all major operating systems such as
Windows, Linux/Unix, OS/2, Mac, Amiga, etc. Day by day we can see a
rapid growth in Python Development.

Python supports multiple programming paradigms and modules. Python is
also supported for the Internet Communications Engine (ICE) and many
other integration technologies. It is packed with rich libraries and many
add-on packages to tackle specific tasks. Python is friendly language you
can learn it easily. Python used in many business, government, non-profit
organizations, Google search engine, YouTube, NASA, the New York
Stock Exchange, etc. Python is often used as a scripting language, but is
also used in a wide range of non-scripting contexts. It provides very clear
and readable syntax. You can easily write programs using this language.
The Python code runs more than fast enough for most applications. It is
used in a wide variety of application domains. Python is an excellent

language for learning object orientation.

Applications written in Python are:

e Web Applications (Django, Pylons)
e Games (Eve Online - MMORPQ).
3D CAD/CAM.

e Image Applications.

e Science and Education Applications.

e Software Development (Trac for Project Management).
e Object Databases (ZODB / Durus).

e Network Programming (Bittorent).

e Mobile applications.

e Audio/Video Applications.

e Office Applications.

e Console Applications.

e Enterprise Applications.

e File Formats.

e Internet Applications.

e Python in Image Applications

Always images play a big role in reaching the audience than the words in
the web application field. Because a picture is worth a thousand words.
Generally some users can satisfy with the existing images but some users
want to make some creativity or changes to an image. In order to fulfil their
demands Python provides various programs. Let's see how Python used in

imaging applications

Gnofract 4D is a flexible fractal generation program, allows user to create
beautiful images called fractals. Based on mathematical principles, the
computer created the images automatically, include the Mandelbrot and
Julia sets and many more. It doesn't mean that you need to do math for
creating the images. Instead you can use your mouse to create more images
as per your wish. Basically it runs on Unix-based systems such as Linux

and FreeBSD and can also be run on Mac OS X. It is very easy to use, very

fast, and flexible with an unlimited number of fractal functions and vast

amount of options. It is a widely used open source program.

Gogh is a PyGTK-based painting program or image editor with support for

pressure-sensitive tablets/devices.

ImgSeek is a photo collection manager and viewer with content-based
search. It has many features. If you want to find a particular item, you
simply sketch the image or you can use another image in your collection. It

provides you with what you exactly need.

VPython is the Python programming language plus a 3D graphics module
called "visual". By using it you can easily create objects in 3D space and
animations etc. It helps you to display the objects in a window. VPython
allows the programmers to focus more on the computational aspect of their

programs.

MayaVi is a scientific visualization program based on the Visualization
Toolkit (VTK), supports volume visualization of data via texture and ray
cast mappers. It is easy to use. It can be imported as a Python module from

other Python programs and can also be scripted from the Python interpreter.

The Python Applications used in different ways in the image application.

Not only in this field, it also used in various types of applications.

CHAPTER 11

LOGISTIC REGRESSION WITH L2
REGULARIZATION IN PYTHON

L2 Regularization

A

E= =% Ylg—)l £ =

—
I
e

plain error welght penalty

elegant math simpla math

ar
el Wi

Awiy = 7+ [z + (o — tg)* o (1 — o) | + [+ wy]

learning signal
rate

Logistic regression is used for binary classification problems -- where you
have some examples that are "on" and other examples that are "off." You
get as input a training set; which has some examples of each class along
with a label saying whether each example is "on" or "off". The goal is to
learn a model from the training data so that you can predict the label of new

examples that you haven't seen before and don't know the label of.

For one example, suppose that you have data describing a bunch of
buildings and earth g uakes (E.g., year the building was constructed, type of
material used, strength of earthquake,etc), and you know whether each
building collapsed ("on") or not ("off") in each past earthquake. Using this
data, you'd like to make predictions about whether a given building is going

to collapse in a hypothetical future earth q uake.

One of the first models that would be worth trying is logistic regression.

Coding it up

I wasn't working on this exact problem, but [was working on something
close. Being one to practice what I preach, I started looking for a dead
simple Python logistic regression class. The only requirement is that I
wanted it to support L2 regularization (more on this later). I'm also sharing
this code with a bunch of other people on many platforms, so I wanted as

few dependencies on external libraries as possible.

I couldn't find exactly what I wanted, so I decided to take a stroll down
memory lane and implement it myself. I've written it in C++ and Matlab

before but never in Python.

I won't do the derivation, but there are plenty of good explanations out there
to follow if you're not afraid of a little calculus. Just do a little Googling for

"logistic regression derivation." The big idea is to write down the

probability of the data given some setting of internal parameters, then to
take the derivative, which will tell you how to change the internal

parameters to make the data more likely. Got it? Good.

For those of you out there that know logistic regression inside and out, take
a look at how short the train() method is. I really like how easy it is to do in
Python.

Regularization

I caught a little indirect flak during March madness season for talking about
how I regularized the latent vectors in my matrix-factorization model of
team offensive and defensive strengths when predicting outcomes in NCAA
basketball. Apparently people thought I was talking nonsense -- crazy,
right?

But seriously, guys -- regularization is a good idea.

Let me drive home the point. Take a look at the results of running the code
(linked at the bottom).

Take a look at the top row.

On the left side, you have the training set. There are 25 examples laid out
along the x axis, and the y axis tells you if the example is "on" (1) or "off"
(0). For each of these examples, there's a vector describing its attributes
that I'm not showing. After training the model, I ask the model to ignore
the known training set labels and to estimate the probability that each label
is "on" based only on the examples's description vectors and what the
model has learned (hopefully things like stronger earth q uakes and older
buildings increase the likelihood of collapse). The probabilities are shown
by the red X's. In the top left, the red X's are right on top of the blue dots,

so it 1s very sure about the labels of the examples, and it's always correct.

Now on the right side, we have some new examples that the model hasn't
seen before. This is called the test set. This is essentially the same as the
left side, but the model knows nothing about the test set class labels (yellow
dots). What you see is that it still does a decent job of predicting the labels,
but there are some troubling cases where it is very confident and very

wrong. This is known as overfitting.

This is where regularization comes in. As you go down the rows, there is
stronger L2 regularization -- or e q uivalently, pressure on the internal
parameters to be zero. This has the effect of reducing the model's certainty.
Just because it can perfectly reconstruct the training set doesn't mean that it
has everything figured out. You can imagine that if you were relying on
this model to make important decisions, it would be desirable to have at

least a bit of regularization in there.

And here's the code. It looks long, but most of it is to generate the data and
plot the results. The bulk of the work is done in the train() method, which

is only three (dense) lines. It re g uires numpy, scipy, and pylab.

* For full disclosure, I should admit that I generated my random data in a
way such that it is susceptible to overfitting, possibly making logistic-

regression-without-regularization look worse than it is.

The Python Code

from scipy.optimize.optimize import fmin_cg, fmin bfgs, fmin

import numpy as np

def sigmoid(x):

return 1.0 / (1.0 + np.exp(-x))

class SyntheticClassifierData():

def init (self, N, d):

""" Create N instances of d dimensional input vectors and a 1D

class label (-1 or 1). """

means = .05 * np.random.randn(2, d)

self.X train = np.zeros((N, d))

self.Y train = np.zeros(N)

for 1 in range(N):

if np.random.random() > .5:

y=1

else:

y=0

self.X train[i, :] = np.random.random(d) + means]y, :]

selfY train[i]=2.0*y-1

self.X test = np.zeros((N, d))

self.Y test = np.zeros(N)

for 1 in range(N):

if np.random.randn() > .5:

y=1

else:

self.X test[1, :] = np.random.random(d) + means]|y, :]

self.Y test[i]=2.0*y-1

class LogisticRegression():

""" A simple logistic regression model with L2 regularization (zero-mean

nmnn

Gaussian priors on parameters).

def init (self, x train=None, y train=None, x test=None,

y_test=None,

alpha=.1, synthetic=False):

Set L2 regularization strength

self.alpha = alpha

Set the data.

self.set data(x_train, y train, X _test, y test)

Initialize parameters to zero, for lack of a better choice.

self.betas = np.zeros(self.x _train.shape[1])

def negative lik(self, betas):

return -1 * self.lik(betas)

def lik(self, betas):

""" Likelihood of the data under the current settings of parameters. """

Data likelihood

for 1 in range(self.n):

1 +=log(sigmoid(self.y train[i] *

np.dot(betas, self.x train[i,:])))

Prior likelihood

for k in range(1, self.x_train.shape[1]):

| -= (self.alpha / 2.0) * self.betas[k]**2

return 1

def train(self):

""" Define the gradient and hand it off to a scipy gradient-based

nmn

optimizer.

Define the derivative of the likelihood with respect to beta k.

Need to multiply by -1 because we will be minimizing.

dB k =lambda B, k : np.sum([-self.alpha * B[k] +

self.y train[i] * self.x_train[i, k] *

sigmoid(-self.y train[i] *

np.dot(B, self.x_train[i,:]))

for 1 in range(self.n)]) * -1

The full gradient is just an array of componentwise derivatives

dB = lambda B : np.array([dB_k(B, k)

for k in range(self.x_train.shape[1])])

Optimize

self.betas = fmin_bfgs(self.negative lik, self.betas, fprime=dB)

def set data(self, x_train, y train, x_test, y_test):

""" Take data that's already been generated. """

self.x_train = x_train

self.y train=y train

self.x_test =x_test

self.y test=y test

self.n =y train.shape[0]

def training_reconstruction(self):

p_y1 = np.zeros(self.n)

for 1 in range(self.n):

p_yl[i] = sigmoid(np.dot(self.betas, self.x_train[i,:]))

return p_yl

def test_predictions(self):

p_y1 = np.zeros(self.n)

for 1 in range(self.n):

p_yl[i] = sigmoid(np.dot(self.betas, self.x test[i,:]))

return p_yl

def plot_training reconstruction(self):

plot(np.arange(self.n), .5 +.5 * self.y _train, 'bo')

plot(np.arange(self.n), self.training reconstruction(), 'rx")

ylim([-.1, 1.1])

def plot_test predictions(self):

plot(np.arange(self.n), .5 +.5 * selfly _test, 'yo')

plot(np.arange(self.n), self.test predictions(), 'rx")

ylim([-.1, 1.1])

"

if name ==" main "

from pylab import *

Create 20 dimensional data set with 25 points -- this will be

susceptible to overfitting.

data = SyntheticClassifierData(25, 20)

Run for a variety of regularization strengths

alphas = [0, .001, .01, .1]

for j, a in enumerate(alphas):

Create a new learner, but use the same data for each run

Ir = LogisticRegression(x_train=data.X train, y train=data.Y train,

x_test=data.X test, y test=data.Y test,

alpha=a)

print "Initial likelihood:"

print Ir.lik(Ir.betas)

Train the model

Ir.train()

Display execution info

print "Final betas:"

print Ir.betas

print "Final lik:"

print Ir.lik(Ir.betas)

Plot the results

subplot(len(alphas), 2, 2*j + 1)

Ir.plot_training_reconstruction()

ylabel("Alpha=%s" % a)

ifj ==0:

title("Training set reconstructions")

subplot(len(alphas), 2, 2% + 2)

Ir.plot_test predictions()

ifj == 0:

title("Test set predictions")

show() .

CHAPTER 12

CAN PYTHON WEB APPLICATIONS BE
TESTED USING SELENIUM?

Python is currently more popular than other modern programming
languages. The interpreted and object-oriented programming language is
also hugely popular among developers across the world as a strong server
side scripting language. As Python enables developers to express concepts
by writing less and readable code, it becomes easier for programmers to
reduce the development time significantly. At the same time, the developers
also have option to use popular web frameworks like Django to create high-
performing and complex Python web applications rapidly. However, the
developers still need to assess the look, feel and performance of the Python

web application thoroughly to boost its popularity and profitability.

While testing the internet applications the developers have option to choose
from a number of browser automation tools like PAMIE, PyXPCOM,
windmill, SST and Selenium. But most developers prefer Selenium to other
frameworks to test their Python web applications efficiently. Unlike other
web browser automation tools, Selenium allows testing professionals to
write test scripts in a number of languages including Python, C#, Java, PHP,
Ruby and Python. So the testers have option to test the Python web
application by writing test scripts in Python. There are also a number of
reasons why developers across the world use Selenium for testing Python

web applications.

Why QA Professionals Prefer Using Selenium for Testing Python Web
Applications?

Supports Major Operating Systems and Web Browsers

At present, Selenium supports all major operating systems and web
browsers. The framework currently supports both Microsoft Windows and
Linux. Likewise, it is compatible with most popular web browsers like
Firefox, Chrome, Internet Explorer, Safari and Opera. The compatibility
makes it easier for QA professionals to test the Python web application tools
across multiple platforms and web browsers without writing separate codes,
or using additional test automation tools. Selenium further comes with
features to generate and execute test scripts automatically across different

web browsers and systems simultaneously.

Allows Users to Create Complete Test Automation Suite

The Selenium testing professionals can create a complete test automation
suite by combining Selenium WebDriver and Selenium IDE. They can use
Selenium WebDriver to quickly create browser-based regression automation
suites and tests. Further, they can scale and distribute the test scripts across
multiple environments. The Selenium IDE, on the other hand, makes it
easier for testers to create bug-reproduction scripts rapidly. Thus, the QA
professionals can combine distinct parts of Selenium to create a complete

test automation tool, without re g uiring any licensed or third-party APIs.

EXECUTES TESTS FASTER

To identify all bugs and performance issues in the web applications, QA
professionals have to perform tests repeatedly and fre q uently. But the
testers also have to complete all tests within a limited amount of time.
Selenium allows testing professionals to take advantage of cloud-based
testing grids to boost the performance of their test runs. In addition to
optimizing the test infrastructure, these tools further enable testers to run
parallel tests. Thus, it becomes easier for the testers to execute tests quickly
and repeatedly. The testers also have option to choose from several open
source cloud-based functional testing grids to avoid increased project

overheads.

Requires Basic HTML Concepts

Selenium supports a number of modern programming languages. But while
testing a Python web application, it re q uires only basic HTML concepts.
HTML is used for describing a web page, whereas individual HTML tags
represent document content. Thus, HTML tags decide how the content is
appears on the web browsers. Selenium divides the HTML elements or
attributes into three distinct categories, i.e., single, group and customized. It
locates single elements by their 1d, link or link text, whereas the group
elements are identified based on combined values or index property. So it
becomes easier for testers to find out the location of the defect or bug. The
feature makes it easier for them to identify the exact bugs and performance

issues q uickly.

Helps Testers to Address Maintainability Issues

In addition to creating and executing test scripts q uickly, QA professionals
are also re q uired to maintain the test cases effectively. Selenium helps
testers to overcome maintainability issues by structuring the automated test
code using a pattern called page objects. The page objects focuses on the
structure of HTML code of a particular web page instead of checking how
the services are implemented. Thus, testers can take advantage of page
objects to locate the code easily, navigate between various web pages
smoothly, and making changes only once. As most Selenium code will be
located inside page objects, the testers can easily increase the code base

without adding fresh Selenium code.

Provides Selenium Python API

As noted earlier, Python supports several programming languages including
Python. So the testers have option to write test scripts in Python. Also, they
can use Selenium Python API to write acceptance and functional tests by
accessing Selenium WebDrivers like common, support, chrome, Firefox, ie,
remote and phantomjs. The most recent version of the API further supports
multiple versions of Python including 3.2, 3.3, 3.4 and 2.7. It can further be
accessed simply by downloading and installing the Selenium Python
bindings. Thus, an organization can leverage the skills of existing Python

programmers to perform acceptance and functional testing efficiently.

Works with several testing frameworks

While testing the Python web application with Selenium, QA professionals
have option to use a number of test framework. At present, the portable web

browser automation framework works with Pytest, PyUnit, unittest, and

robot framework. As a part of Python 2.1 standard library, PyUnit enables
testers to write tests easily, and execute multiple tests in text or GUI mode.
Likewise, pytest comes with a number of features that help testers to write
better programs. So the QA professional can take advantage of these test
frameworks to ensure that the Python web application delivers flawless user

experience across many web browsers.

Python is an open source programming language, whereas Selenium is an
open source web browser automation tool. Thus, organizations can use the
programming language and web testing tool together to bring down the
project costs. However, the combination will further enable them test the

application across major web browsers within a stipulated amount of time.

CHAPTER 13
PERL AND PYTHON

\ V)

Both Python and Perl are mature, open source, general purpose, high level,
and interpreted programming languages. But the usage statistics posted on
various websites depict that Python is currently more popular than Perl.
Hence, a software developer can enhance his career prospects by switching

form Perl to Python.

A beginner can further learn and use Python programming language
without putting extra time and effort. However, you must not switch to a
new programming language just because its popularity and usage. You must
keep in mind the major differences between the two programming

languages while deciding about migrating from Perl to Python.

Points You Must Keep in Mind while Switching from Perl to Python

1) Design Goal

Perl was originally designed as a scripting language to simplify report
processing capabilities. Hence, it comes with built-in text processing
capability. On the other hand, Python was designed initially as a hobby
programming language. But it was designed with features to help
programmers build applications with concise, readable and reusable code.
The two programming languages still differ in the category of features and

performance.

2) Syntax Rules

The syntax rules of both Python and Perl are influenced by several other
programming languages. For instance, Perl borrows features from a number
of programming languages including C, shell script, sed, AWK and Lisp.
Likewise, Python implements functional programming features in a manner
similar to Lisp. But Python is hugely popular among modern programming
languages due to its simple syntax rules. In addition to being easy to use,
the syntax rules of Python further enable programmers to except many

concepts with less and readable code.

3) Family of Languages

Perl belongs to a family of high-level programming languages that includes
Perl 5 and Perl 6. The versions 5 and 6 of Perl are compatible with each
other. A developer can easily migrate from Perl 5 to Perl 6 without putting
extra time and effort. The programmers have option to choose from two

distinct versions of Python - Python 2 and Python 2. But the two versions of

Python are not compatible with each other. Hence, a programmer has to

choose from two distinct versions of the programming language.

4) Ways to Achieve Same Results

Python enables programmers to express concepts without writing longer
lines of code. But it re q uires programmers to accomplish tasks or achieve
results in a specific and single way. ON the other hand, Perl enable
programmers to accomplish a single task or achieve the same results in a
number of ways. Hence, many programmers find Perl to be more flexible
than Python. But the multiple ways to achieve the same result often make

the code written in Perl messy and application difficult to maintain.

5) Web Scripting Language

Perl was originally designed as a UNIX scripting language. Many
developers use Perl as a scripting language to avail its built-in text
processing capabilities. However, there are many web developers who
complain that Perl is slower than other widely used scripting language.
Python is also used widely by programmers for web application
development. But it lacks built-in web development capabilities. Hence,
developers have to avail various frameworks and tools to write web

applications in Python efficiently and rapidly.

6) Web Application Frameworks

Most developers nowadays avail the tools and features provided by various
frameworks to build web applications efficiently and rapidly. Perl web
programmers have option to choose from an array of frameworks including

Catalyst, Dancer, Mojolicious, Poet, Interchange, Jifty, and Gantry.

Likewise, the web developers also have option to use a number of Python
web frameworks including Django, Flask, Pyramid, Bottle and Cherrypy.
However, the number of Python web framework is much higher than the

number of Perl web frameworks.

7) Usage

As mentioned earlier, both Python and Perl are general-purpose
programming languages. Hence, each programming language is used for
developing a variety of software applications. Perl 1s used widely for
graphic and network programming, system administration, and
development of finance and biometric applications. But Python comes with
a robust standard library simplifies web application development, scientific
computing, big data solution development, and artificial intelligence tasks.
Hence, developers prefer using Python for development of advanced and

mission-critical software applications.

8) Performance and Speed

A number of studies have shown than Python is slower than other
programming languages like Java and C++. Hence, developers frequently
explore ways to enhance the execution speed of Python code. Some
developers even replace default Python runtime with their own custom
runtime to make the Python applications run faster. Many programmers
even find Perl to be faster than Python. Many web developers use Perl as a
scripting language make the web applications faster, and deliver enhanced

user experience.

9) Structured Data Analysis

At present, big data is one of the hottest trends in software development.
Many enterprises nowadays build custom applications for collecting,
storing, and analyzing huge amount of structured and unstructured data.
The PDL provided by Perl enables developers to analyze big data. The
built-in text processing capability of Perl further simplifies and speeds up
analysis of huge amount of structured data. But Python is used widely by
programmers for data analysis. The developers further take advantage of
robust Python libraries like Numpy to process and analyze huge volumes of

data in a faster and more efficient way.

10) JVM Interoperability

At present, Java is one of the programming languages that are used widely
for development of desktop, web, and mobile applications. In comparison to
Perl, Python interoperates with Java Virtual Machine (JVM) seamlessly and
efficiently. Hence, the developers have option to write Python code than
runs smoothly on JVM, while taking advantage of robust Java APIs and
objects. The interoperability helps programmers to build application by
targeting the popular Java platform, while writing code in Python instead of

Java.

11) Advanced Object Oriented Programming

Both Perl and Python are object-oriented programming languages. But
Python implements advanced object oriented programming languages in a
better way than Perl. While writing code in Perl, programmers still need to
use packages instead of classes. Python programmers can write high quality
and modular code by using classes and objects. Many developers find it

difficult to keep the code simple and readable while writing object oriented

code in Perl. But Perl makes it easier for programmers to accomplish a

variety of tasks simply by using one liners on the command line.

12) Text Processing Capability

Unlike Python, Perl was designed with built-in text processing capabilities.
Hence, many programmers prefer using Perl for report generation. Perl
further makes it easier for programmers to perform regex and string
comparison operations like matching, replacement, and substitution. It
further does not re q uire developers to write additional code to perform
exception handling and I/O operations. Hence, many programmers prefer
Perl to Python while building applications that need to process textual data

or generate reports.

On the whole, a large number of modern software developers prefer Python
to Perl. But there are a number of programming languages - Java, C, C++
and C# - which are currently more popular than both Perl and Python. Also,
Python, like other technologies, also has its own shortcomings. For
instance, you will be required to use Python frameworks while writing
applications in the programming language. Hence, you must keep in mind
the pros and cons of both programming languages before migrating from
Perl to Python.

CHAPTER 14
APPS BUILT WITH PYTHON

3 < PYTHON FOR

MOBILE DEVELOPMENT!

Over its almost 30 years of existence, Python has become one of the most

popular programming languages. But if most startups once used it because
of its simplicity and low cost, modern giants like Instagram or Spotify use
Python and the Django framework to create smooth working experiences.
Famously, Django provides fast work processes, clean design, and
transparent functionality, among many other advantages. It allows
developers at all levels to focus on writing their apps instead of reinventing
the wheel (or fixing it, for that matter). On top of that, it’s free, open source,
and has gathered a mighty community of developers over the years. Large
companies appreciate this. To give you an example, let’s take a look at

some apps written in Python that you probably didn’t know about.

Instagram

As you know, this is the app that changed the world of digital photography,
made it instant, more accessible and widespread, expanded lines of
creativity and defined new rules in marketing. It allows users to take
pictures, edit and share them online using a camera as simple as a
smartphone. With 400 million active users per day, it obviously negates any
notion that apps built in Python are not really scalable. According to
Instagram engineer Hui Ding, Instagram’s engineering motto is “Do the
simple things first”—and this is what Python allows developers to do. For
them, it’s user-friendly, simple, clean, and favors pure pragmatism. And

since it’s so popular, growing an engineering team is a lot easier

Pinterest

Ranking third behind Facebook and Twitter, Pinterest is a social network
that allows users to bookmark images, collect and share them with other
users. As one of the web’s most-used apps, Pinterest relies on Python and
Django to rapidly deal with large amounts of content. In fact, this website

has used Python since day one.

Disqus

This commenting plug-in is a simple and effective way to engage an
audience and fuel discussion while controlling incoming content by
efficiently moderating the comments. Allowing multiple sign-in options and
cross-site notifications, this app serves audiences with all kinds of
preferences. In this case, Python makes full use of Django’s security

features and regular security patches.

Spotify

Spotify is the world’s largest streaming service, with annual revenue of over
€4 billion. This makes it a major market player and also one of the top
Python users among businesses. The company chose to work with Python
because of the development speed and advanced data analytics that the
language offers. This enables Spotify to manage functions such as Radio

and Discover, which are based on the personal musical preferences of users.

Dropbox

Another top app built in Python 1s Dropbox. The popular file-hosting
service recently moved from Python 2.7 to Python 3 in one of the largest
Python 3 migrations ever. One of the most popular desktop apps in the
world, Dropbox can be installed on Windows, macOS, and some flavors of
Linux. It’s a good thing that Python is portable and works on many
platforms, from PC and Linux to PlayStation.

Uber

A ride-hailing service that also offers food delivery, peer-to-peer
ridesharing and bicycle-sharing (among other services), Uber has a lot of
calculations to do. Think about it: the company operates in 785
metropolitan areas worldwide and is estimated to have 100 million users.
That’s a lot of math. But again, Python handles large amounts of data and is
easy to learn and work with, which are two reasons why Python is so
popular. These benefits make it an obvious choice for companies whose
applications need to be reliable, secure and rely on developers around the

world to maintain it.

Reddit

The American social news aggregator and discussion website Reddit also
runs on Python, even though originally it was written in Common Lisp.
After looking for wider access to code libraries and greater development
flexibility, Reddit made the switch. If you look at it, this website is
somewhat of an anthill. With about 542 million monthly visitors as of
February 2018, Reddit is one of the most impressive Python app examples.
Registered users post content such as text, video, or images in thousands of
categories, and vote it up and down. Using a localization management
platform, users help translate Reddit into 89 different languages. Again,
Python manages the workload and complex functionality thanks to its

“batteries included” approach.

What can we say? That’s a powerful portfolio! As we mentioned earlier,
Python used to be a language for rough drafts and startup development
because it was simple and cheap. But usually, the simplest solutions are the
most reliable ones. The more parts a mechanism has, the higher the chances
of something breaking or someone messing up—which many large
companies learned the hard way. That’s why they chose to work with
Python, and why so many of the world’s most popular apps are built in
Python. Python has proven that you can build an amazing product with
simple, time-honored tools—as long as you create it for the users and don’t

have to dig into overcomplicated code. (Unless, of course, you want to.)

CHAPTER 15
TOOLS TO RUN PYTHON ON ANDROID

Python has proven itself as a highly capable language—approachable for
newcomers, but powerful in the hands of experts. Why shouldn’t you be
able to use Python everywhere that you need to tell a computer to do
something? And shouldn’t your tools exploit all the capabilities of Python
as a language, not just the bits that map nicely to a C binding?

Modern computing doesn’t happen in an 80x25 console window. It happens
on phones, tablets, and desktop machines with rich user interfaces.
Shouldn’t you be able to use Python in all those locations, and exploit the

uni g ue capabilities of those platforms?

End users shouldn’t have to care what language their tools are written in.

And that starts with looking and behaving like completely native tools.

Native appearance, native behavior, delivered in the way a native app is
delivered. Why shouldn’t your Python tools fit in just as well as a native
tool?

There are several ways to use Python on Android.

BeeWare

BeeWare is a collection of tools for building native user interfaces

This is what BeeWare provides. Tools to help you write Python code with a
rich, native user interface; and the libraries and support code necessary to
get that code running on 10S, Android, macOS, Linux, Windows, tvOS, and

more.

Open source

The Open Source development process has proven itself to be the most
reliable way to develop robust and reliable software. That’s why the entire
BeeWare suite of tools are BSD licensed, and available for all to use and

modify.

Chaquopy
Cha g uopy is a plugin for Android Studio’s Gradle-based build system.

Cha g uopy enables you to freely intermix Java and Python in your app,

using whichever language is best for your needs:

With the Python API, you can write an app partly or entirely in Python.
The complete Android API and user interface toolkit are directly at your

disposal.

Chaquopy works within Android’s standard build system:

If you use Android Studio, you can start using Cha q uopy in 5 minutes

with no change to your existing development process.
Download and installation are automated via Gradle.

To get started:

Try out the demo app for Python 2 or Python 3.
Browse example source code on GitHub.

Or view the documentation.

Kivy

Kivy is a cross-platform OpenGL-based user interface toolkit.

You can run Kivy applications on Android, on (more or less) any device
with OpenGL ES 2.0 (Android 2.2 minimum). This is standard on modern

devices; Google reports the re q uirement is met by 99.9% of devices.

Kivy APKSs are normal Android apps that you can distribute like any other,
including on stores like the Play store. They behave properly when paused
or restarted, may utilise Android services and have access to most of the

normal java API as described below.

Follow the instructions below to learn how to package your app for
Android, debug your code on the device, and use Android APIs such as for

vibration and reading sensors.

The Kivy project provides all the necessary tools to package your app on
Android, including building your own standalone APK that may be
distributed on a market like the Play store. This is covered fully in the

Create a package for Android documentation.

Using Android APIs

Although Kivy is a Python framework, the Kivy project maintains tools to
easily use the normal java APIs, for everything from vibration to sensors to

sending messages through SMS or email.

For new users, we recommend using Plyer. For more advanced access or for
APIs not currently wrapped, you can use Pyjnius directly. Kivy also

supplies an android module for basic Android functionality.

User contributed Android code and examples are available on the Kivy

wiki.

Pyqtdeploy

Pyqtdeploy is a tool for deploying PyQt applications. It supports
deployment to desktop platforms (Linux, Windows and OS X) and to
mobile platforms (10S and Android).

py g tdeploy works by taking the individual modules of a PyQt application,
freezing them, and then placing them in a Qt resource file that is converted
to C++ code by Qt’s rcc tool. Python’s standard library is handled in the

Same way.

py g tdeploy also generates a Qt .pro file that describes all the generated
C++ code. From this Qt’s gmake tool is used to generate a platform-specific
Makefile which will then generate a single executable. Further Qt and/or
platform specific tools can then be used to convert the executable to a

platform specific deployable package.

py g tdeploy re q uires PyQt5 and Python v3.2 or later to be installed.

PyQt4 and PyQt5 applications written using Python v2.6 and later and
Python v3.3 and later are supported.

py g tdeploy is released under the BSD license.

QPython

QPython is an on-device script engine and development environment.

In most cases, script can get your jobs done as good as the native

application. Now you can make it with QPython’s help.

QPython is a script engine which runs Python programs on android devices.

It also can help developers develop android applications.

QPython includes a complete development kit which help you to develop

programs with mobile provides regular Python console

SL4A
SL4A (Scripting Layer for Android), originally named ASE (Android

Scripting Environment), is a set of “facades” which expose a greatly-
simplified subset of the Android API.

SL4A brings scripting languages to Android by allowing you to edit and
execute scripts and interactive interpreters directly on the Android device.
These scripts have access to many of the APIs available to full-fledged
Android applications, but with a greatly simplified interface that makes it

easy to get things done.

Scripts can be run interactively in a terminal and in the background. Python,
Perl, JRuby, Lua, BeanShell, JavaScript, Tcl, and shell are currently
supported, and we’re planning to add more. See the SL4A Video Help

playlist on YouTube for various demonstrations of SL4A’s features.

SL4A is designed for developers and is alpha quality software.

PySide
PySide (the Python binding for the Qt toolkit) has some preliminary support
for Android.

The PySide project provides LGPL-licensed Python bindings for the Qt 4. It
also includes complete toolchain for rapidly generating bindings for any Qt-
based C++ class hierarchies. PySide Qt bindings allow both free open
source and proprietary software development and ultimately aim to support

Qt platforms.

Termux

Termux is an Android terminal emulator and Linux environment app that
works directly with no rooting or setup re q uired. A minimal base system
is installed automatically—additional packages are available using the APT

package manager.

CHAPTER 16

PYTHON AS A MOBILE APP DEVELOPMENT
LANGUAGE

o B

Image o
Iming= of the Cay.py Pl
nport Teadparcer
from PIL irpori Inage
mpart £ys
f oAy versioan_inta[2] == 3t
From Llip, request iwport wriretr
LR
fram urllib inpart urlretrieve
cel mainll:
- g=rsel http://na
o1 [a1
mmary]
&, Aaserip

qoe pode=RGY
=D Thebay,
s npen A fi

[IR L] B0 -
f the Day.py v A
Imags o tie Dag.sy: 20
Locals
description 'The w1 whara wcal e
Tt
inoge_url ‘ner ST TR i
ing PIL. JpeginageF e 5 <
latest
fay 1'id'] as g
11) [*published*]
120 ['published_parssd'] tim=cctruct td
size=1ZB0RUS1 at x120ALEZAU-
pa'l
“«
irs. Tag and halo ta ssve 1t
' [] + 1 - i + N _
y u i o R P
h i k | raturn
I ?
ngmpy: - 0
i
¥
o2z E=E

Why should you consider Python for mobile app development? These

features make it easy to use to create expressive, quality apps.

Mobile has become one of the primary needs of today’s generation.
Therefore, it is uite impossible for people to live without mobile phones,
as they play an important role in our lives. Recognizing this dependence,
various mobile application development companies launch new applications

fre q uently, in order to feed off this dependence.

This is a great business opportunity and is interesting, to say the least. The
challenge, however, is not to jump on the mobile app development

platform, but to choose the right programming language.

Why Python?

As we have several choices while selecting the best programming language,
one of the easiest ways is to go for the most popular language. According to

Codevaal, Python was the most popular coding language in 2014.

In comparison to other programming languages, Python is easier to learn,
highly readable, and simple to implement as it has a clean syntax which

re q uires less coding. It focuses on the business logic rather than basic facts
of the language. Python is used in a wide variety of application domains as
it can easily be connected with C, Objective-C, Java, or FORTRAN. It runs
on all major operating systems, like Windows, Linux/Unix, OS/2, Mac,
Amiga, etc. With the help of Python, we can create any type of mobile
applications, like Calibre, OpenStack, Ubuntu Software Center, World of
Tanks, Quora, BitTorrent, Reddit, Spotify, YouTube, Instagram, and many

morc.

Features of Python

There have been numerous programming languages introduced, all with
their own specialties. For example, the top five popular languages:
JavaScript, Python, C#, Android with Kotlin, and Go.

Before beginning with the deeper concept of Python for mobile
development, let us take a look at its major features that give you reasons
why should you choose Python for developing your apps in comparison to
other tools:

Easy to read: For beginners, using a static language for the first time can be
very difficult as it presents additional complexity. Python is dynamic

language it instructs indentation, which aids readability.

Easy to code: Compared to other popular languages like Java and C++,
Python is a much easier language to code. Anyone can learn Python within
a few hours. It is called a programmer-friendly language as it is very easy to

use.

Interpreted language: With some languages, like C++ or Java, we are
always supposed to first compile it and then run it. But it’s not the same
with Python, as there is no need to compile it. This is because, internally, it

converts one language to binary immediately.

Expressive: Python is an expressive language, considered a most
outstanding feature as it helps to focus on the solution rather than the

syntax.

Object-oriented language: Python’s main focus is on objects, functions, and
combining data. Python supports multiple inheritances. It also supports both

object-oriented and procedure-orientated programming.
Python-10S-support (CPython compiled for use on 10S)
VOC (A CPython bytecode to Java class file transpiler)
Python-10S-template (a cookie-cutter template for 10S projects)

Python-Android-template (a cookie-cutter template for Android projects)

Briefcase (a distutils extension for packaging Python projects as apps)

Rubicon-ObjC (a bridge between Objective-C and Python)
Toga (a cross-platform native widget library)

The above tools were in the early phase of development, however, they are
mature enough to demonstrate that the objectives of developing mobile

apps in Python are neither an illusion nor a mirage.

Why Python for Mobile Development?

Python has the potential to run on any of the major operating systems such

as OS/2, Linux/Unix, Mac, Amiga, Windows, etc.

The language offers a concept with the intention to allow obstacle-free

programs on a small or large scale.

There is a variety of tools provided by Python for both developers and

system administrators.

Due to Python’s ability to be flexible and dynamic, users like Google,
Yahoo, and IBM find it fun to work with.

The development and portability rate in Python are very high, which allows

the same application to operate across platforms.

Python consists of rich libraries and many other packages to tackle a

particular task.

Role of Python in Mobile Development

Mobile application development has become a major business sector
because of its expanding scope. The cross-platform Python framework
works for Android, Windows 7, Linux, and Mac. It is a perfect tool for

writing simple scripts and complex multi-threaded applications.

The interesting thing about Android having Python in it is the chance to use
limitless lines of code already written and available for free. Developers for
iPhone and Android apps use a number of cross-platform development

techni q ues to provide their customer a great mobile application.

MobiCart, RhoMobile, SwebApps, PhoneGap, Mippin, Appcelerator,
AppMkr, Sencha Touch, GENWI, MoSync, WidgetPed, and Whoop are
some of the top tools used for cross-formatting in mobile application

development.

Python-Based Mobile Applications
Aarlogic C05/3: Ready-to-use GSM/GPS tracking PCB with a Python

development board along with the support of test server based on Google

Maps.

Pyroute: A GPS-capable mapping/routing application for mobile.

FoodPlus: A mobile food app which simplifies the process of food ordering

and tracking, specially designed for food lovers.

AppBackup: An app for jailbroken 10OS devices that lets one back up and
restore the settings and data of App Store apps.

CHAPTER 17

PROGRAMMING LANGUAGES FOR MOBILE
APP DEVELOPMENT

“Smartphone users touch their phones 2,617 times each day, and spend an

average of 145 daily minutes on their mobile phones.”

This is good news. Because you can now reach your target audience on the

go.

Make no mistakes about it. Mobile users are one of the most active

consumers.

If you can reach them via mobile apps, you can get them to try your

product, purchase your product, or join your cause.

That’s why you should continually try to generate new app ideas.

As mobile marketing continues to dominate the digital marketing realm, a
lot of businesses are capitalizing on the latest mobile technology — mobile

apps, to create brand awareness, acquire customers, and increase revenue.

Don’t be left behind. Do you have the courage to take the plunge and build

your own mobile app?

Truth is, if you’re just starting out in this whole thing, you need the right
tool to produce functional apps, and the right idea to get you the app

valuation you want.

But more than that, you need the right programming language that’s
compatible with modern mobile platforms. Millions of people use

smartphones today. So you need to build compatible mobile apps.

A report by Statista shows the staggering increase in the sales of
smartphones from 2009 to 2015. The annual smartphone sales crossed 1.3

billion in 2015 with android being the most used OS for smartphones.

In another report, it’s been predicted that the smartphone shipment
worldwide will cross 1.6 billion by 2020. Again, Android is expected to

rule the global smartphone market.

What do these numbers mean?

If you have to develop a mobile app, this is the most appropriate time.
Whether you need to become a developer, or hire a professional mobile

developer, this is the best time to get started.

Deciding to jump on the mobile app development bandwagon is not the

challenge. The challenge is — choosing the right programming language.

Ultimately, you want to answer these questions:

Where do I begin?
Which programming language do I choose and why?
How do I master it?

What should I look for in a mobile developer?

These are just a few basic (uestions that come to mind as soon as you

think of developing a mobile app.

There are several programming languages to choose from. One of the
easiest ways is to select the most popular language. According to codeeval,

Python is the most popular coding language.

The guide below will help you choose the right mobile app development
coding language. By the end of this guide, you will have one thing

absolutely clear in your mind — what language you will use.

BuildFire.js
BuildFire.js leverages the BuildFire SDK and Javascript to allow

developers to rapidly build mobile apps with the power of the BuildFire
backend.

With BuildFire already having plugins that cover 70% or more of the
common business use cases, developers only need to build specific
functionality that’s uni q ue to the client, rather than build the whole thing

from scratch.

That means quicker builds, less headaches and more apps getting built.

BuildFire.js was built to have a flexible architecture to give developers the

option to utilize any client-side Javascript framework they like including:

jQuery, Angular, React, Underscore and many more.

Key features:

Easy to learn and works with existing frameworks you already use
Highly scalable

Short-cuts the development timeline by 40% or more

Resources:

Learn how to build your first app through the developer portal

Python
Let’s talk about the most popular app development language — Python.

Python is a high-level programming language that is widely used in web
development, app development, analyzing and computing scientific and

numeric data, creating desktop GUIs, and for software development.

Python is the most taught programming language at the school and college

level for the fact that it has several applications in real life.

The core philosophy of python language is:

Beautiful is better than ugly
Explicit is better than implicit
Simple is better than complex
Complex is better than complicated
Readability counts

If there 1s one language that you should learn for app development, it should

be Python because it’s easy-to-learn and it’s great at readability.

Python is a powerful high-level language that can be used to create android
and desktop apps from scratch. Just to give you a hint of how powerful this

language is, Dropbox is created in Python.

If this isn’t encouraging enough, here is a list of some other apps and

websites developed in Python.

Calibre

OpenStack

Ubuntu Software Center

World of Tanks (I’'m sure you have played it)
BitTorrent

Quora

Reddit

Spotify
Instagram

YouTube

The list can go on and on...

Well, the potential is there. You can create any type of mobile app with
Python. Learning it is not a big deal since it is one of the easiest languages

around.

You can get started right away.

Key features:

Processed at runtime by the interpreter
Object-oriented language

Easy-to-learn and master

Interactive language

Easy-to-read

Scalable

Supports GUI applications

Runs on Windows, Mac, Unix, and Linux

Resources:

Learn python the hard way is a free book to get started.
Write your first python application by Keenan Payne.
Codeacademy has a free course on Python.

Free Python tips.

Java
Java is the most used app development language. According to VersionEye,
which tracks the open source software libraries, developers complete most

projects in Java followed by Ruby.

According to PYPL Popularity, Java is the most searched language on

Google worldwide in the current year.

Java stands at the number one place with 23.4% share, with Python at the
second place with 13.7% share. The difference between the first and second

place shows how popular Java is among developers.

Android OS is written in Java so if you learn Java, you will be able to create
Android apps of all types and this will put you in the driving seat because

you will be in control over the future of app technology.

Java is the most suitable mobile app development language because it runs

on all the platforms including the all-famous Android.

Uses

Java is used in development of:

Android apps
Server apps

Web apps
Embedded space
Big data technology
Scientific apps
Websites

Games

Some of the most famous Java applications include:

ThinkFree cloud office
NASA world wind
Blu-ray Disc Association
UltraMixer

But nothing beats the Android operating system.

Java is believed to be everywhere since it 1s hooked to the Android

operating system. It’s open source, it’s independent of platform, and has

several uses in the real world.

Key features:

Object oriented language.

It runs on all the platforms.

Supports APIs that make integration a piece of cake.
It is easy-to-learn and read.

Hundreds of open source libraries available.

Easy to get expert help from Android communities.
Powerful IDEs make coding easy and error-free.

Resources

Android developer site
Java tutorials
Java tutorial for complete beginners is a free course on Udemy

More Java tutorials by Oracle

PHP
Hypertext Preprocessor (PHP) is a server-side scripting open source
language. It was designed by Zend Technologies in 1995. It was developed

for websites, but it’s used for general purpose development today.

Besides server side scripting, it is used for command line scripting and for

coding applications.

PHP primarily is a coding language used for creating dynamic websites, but

you can create android and 10S apps in PHP, according to Zend.

With PHAP, it is possible to write complete android, 10S, and windows
apps. Suman Tripathi shares a three-layered model for developing stunning

apps in PHP for mobiles.

PHP is the most popular programming language as reported by Jobs

Tractor. Java is the second most popular programming language.

magine if you learn PHP, you will be in a position to create dynamic
websites, web applications, and all types of mobile apps. It’s the single
most used programming language out there that’s supported and used by
78.6% developers.

Better yet, you can create stunning Facebook apps like Family Tree and

eBuddy. You can create the next big app all in PHP, who knows?

In case you aren’t aware, some of the biggest websites that you visit daily
are coded in PHP such as Facebook, Wikipedia, Flickr, Yahoo, Tumblr, and

several others.

[thrive lead lock id="14525']Hidden Content[/thrive lead lock]

Uses

Not just apps, you can use PHP for a whole lot of development including:

Ecommerce websites

Create GUI

Code project management tools

Create Facebook apps

Image processing

Mobile app development

Content management systems such as WordPress and Drupal
Dynamic websites

WordPress plugin development

Creating PDFs

Key features:

Open-source
Independent of platform
Uses procedural and object oriented

Easy-to-learn

Numerous applications and uses
Server compatibility
Easy database integration

Resources

Pear 1s the best repository for PHP extensions.
Official PHP manual.

PHP for beginners.

Video PHP tutorials.

Swift
If there 1s one programming language that has the potential to reshape the

future, it is Swift.

It was released by Apple Inc. in June 2014 for i10S (and supporting
systems) and Linux. It is the primary programming language used for
developing 10S and OS X apps.

Swift is the fastest growing language, according to TNW. The demand for
Swift developers has increased 600 percent making them the most hired

developers.

Did I tell you that the Swift developers make serious money? Swift

developers have the highest average salaries in the US.

There couldn’t be any better time to learn and code a mobile app in Swift.

Google 1s also considering to make Swift its first-class language instead of
Java. If Google shifts to Swift, the demand for Swift apps and developers

will skyrocket and there will be no other competing language.

Swift means business.

One of the most famous examples of Swift apps is none other than

SlideShare 10S app, which is completely built in Swift.

For now, Swift is only available for 10S development but since it works on
Linux and is open source, which means it can be used by anyone. It is still

new and those who will shift to Swift early will have the advantage.

Key features:

Extremely easy to learn especially if you know Objective-C.

It is open source.

It is a simplified version of Objective-C.

Easy-to-code.

Maintenance is super-easy.

It is the future of 10S development.

It needs less coding as compared to other languages.

Resources

Official Apple developer site
Beginner’s guide for Swift
Introduction to Swift

Learnswift website

C#
C# 1s known as C Sharp. It is a multi-paradigm programming language,
which is object and component oriented. It’s a general-purpose

programming language developed by Microsoft.

You can create pretty much anything in C# ranging from server
applications to web services to games to mobile apps and more. If you’re
planning to develop a game app, C# is one of the best languages to go for

since it is supported by Unity3D.

Most of the experts believe that the demand for C# is dipping and there are

not enough jobs available in the market for C# developers.

Xamarin is the platform that has changed the expectations of the experts
and the developers. It’s an app building tool that makes it simpler for C#
developers to create apps for Android and 10S.

But mobile app development isn’t the only thing that developers are doing,
C# 1s used widely in business and productivity tools, enterprises, utilities,

games, etc.

There’s a lot of potential for C# since it’s used for everything that you can
think of: Visual Studio, AutoCAD, Office 365, and SharePoint are just a
few examples of software built with C#. It’s mostly used in the

development of enterprise-level programs.

Just to give you a hint of how easy it is to create a mobile app in C# using

Xamarin, Nish created an app in just one day.

You can create your next mobile app in C# fairly q uickly.

Key features:

Easy-to-use and a simple language

Used extensively in the development of web applications and large tools

It is a type-safe language

It is scalable
Access to .NET framework

Resources

Microsoft’s free tutorials

LearnCS is a nice resource

.NET blog

Objective-C
Objective-C is an object-oriented general-purpose programming language
that is derived from C. Objective-C was the core programming language

used by Apple for 10S and OS X development prior to Swift.

Though Swift is replacing Objective-C, but the q ueries at StackOverflow

show that the developers are still working on Objective-C.

Same is the case with Github, developers are still creating their projects in
Objective-C.

The transition will not be instant.

Objective-C 1sn’t going anywhere any soon, says Paul Krill, for two main

reasons. First, there has been a lot of investment in it in terms of apps.

Second, the frameworks of the apps still rely on Objective-C even after the
launch of Swift.

Therefore, learning and creating a mobile app in Objective-C will still pay

off. You can create all types of apps in it, not really a big deal.

Key features:

Simple to use

You can use C++ and C while using Objective-C
It uses dynamic run-time

It supports dynamic typing

Works smoothly with Apple Inc.

Resources

Objective-C tutorial by Code School
Crash course by Ray W.
Training by Apple Inc.

C++
C++, pronounced as C Plus Plus, is a general purpose object-oriented

programming language with low-level memory manipulation feature.

C++ inherits its syntax from C and it is an extension of the C. If you know
how to use C, C++ will not be a big deal. The two languages share all the

features but C++ is more comprehensive.

The demand for C++ has always been there. It’s not just about developing
mobile apps rather it is a powerful language that is used in all the sectors

ranging from finance to manufacturing to banking and several others.

In terms of mobile apps, C++ has been doing exceptionally well since it
helps develop cross-platform mobile apps easily with its unified debugging
experience and powerful environment. It can be used to create stunning

apps for Android, Windows, and iOS.

Not just mobile apps, but C++ has the potential to create some of the
biggest tools like Google Chrome, Amazon, PayPal, World of Warcraft,
Photoshop, and many others.

Learning C++ means you will be able to smoothly code games, apps, and

commercial software.

Some of the major uses of C++ (and C) include:

Development of operating systems

New programming language development

Graphics and designs

Game development

App development

Web browsers

Development of compilers for programming languages
Medical, mathematical, and engineering applications
Enterprise tools

Computation platforms

Key features

C++ 1s one of the most powerful languages out there with tons of features.

It 1s simple and efficient
Object oriented
Massive library
Portable

Extremely fast

Resources

The official website

LearnCPP is a great resource for beginners

CPlusPlus is a free resource

JavaScript
JavaScript 1s a high-level interpreted programming language. It is a multi-
paradigm language that supports object-oriented and functional

programming.

JavaScript is ranked third by the number of programming jobs it offers.

JavaScript is not primarily a language for app development instead, it is the
language that is run by browsers which is used to develop and control web
pages. Creating mobile apps with JavaScript is possible but it has to be used
with CSS, HTML, and AJAX.

There are several frameworks that can be used to create a professional

JavaScript app such as PhoneGap, jQuery Mobile, and Ionic.

Creating apps in JavaScript is easy because you have to code the app once

and it can be released on all the platforms (Android, 10S, and Windows).

Key features:

One of the easiest languages out there that you can be learned in a few days.

Fast and efficient.

It is executed on the client-side which means it saves bandwidth by not

using the server.

Used for dynamics and creating animations on otherwise dull and boring

websites.

Resources

The official JavaScript website
JavaScript Track on Codecademy

Basics of JavaScript on Udacity

HTMLS5
HTMLS is the fifth version of HTML (HyperText Markup Language).

HTMLS is used to present content on the internet.

HTMLS is not essentially a mobile app development language. In order to
create an app in HTMLYS, it has to be used with other languages such as

JavaScript.

You can create Android as well as 10S apps in HTMLS. The only

re g uirement is using a powerful framework such as PhoneGap.

Joe Wolf shares some great tips and reasons for creating HTMLS5 apps. You

can create a mobile app in HTMLS (CSS and JavaScript) or you can use it

in combination with APIs. In any case, HTMLS5 apps are responsive and

work smoothly on all devices.

Code once, and use on multiple devices.

There are hundreds of web apps that are created in HTMLS that you use
every single day. The all-famous Google Docs and Google Drive are mostly
coded in HTMLS5. That’s not all, the Zoho app collection has over 33
productivity apps and most of them are developed in HTMLS.

So why bother creating a mobile app in HTMLS5 when there are more

sophisticated programming languages available to choose from?

Here are a few reasons to learn and code in HTMLY5:

HTMLS has been fully adopted by mobile (and desktop) browsers.
Cross-browser support.

With its cross-browser support and responsiveness, anything created in

HTMLS5 works on all devices painlessly.

Use canvas tag to develop games in HTMLS.
Easy and clean coding.

It fully supports videos and audios.

Time to take HTMLS seriously.

Key features:

Easy-to-learn

Support for mobile

Responsive design with support for all the devices
Drag-and-drop feature

Resources

Learn HTMLS5 programming from scratch at Udemy.
HTMLS cheat sheet is a great resource for beginners.

HTMLS guide by Mozilla.

Ruby
Ruby is a general-purpose object-oriented programming language. It was
developed by Yukihiro Matz Matsumoto in 1990s. It supports multiple

paradigmes.

The demand for Ruby developers is five times more than the demand for
Python developers. It is the fastest growing programming language and an
average Ruby developer earns $77K per project while some earn as high as
$112K.

Analysis of over 50 repository servers shows that Ruby is the second

language that has most projects completed while Java is at the top.

You cannot create a mobile app on Ruby without using a framework such as
RubyMotion or Rhodes. Using one of these frameworks, you can create
apps for Android, 10S, Windows, and OS X.

If there is one language that is easiest of them all, it is Ruby. You can create
an app in 10 minutes on Ruby. It is not just easy to code but it is no less

than a ghost.

Some of the biggest websites are coded in Ruby like Fiverr, Airbnb, Pixlr,

Groupon, Basecamp, Scribd, Bloomberg, ThemeForest, and many others.

It is easy and insanely powerful. Why not use it to create a next level

mobile app.

Key features:

It supports dynamic typing.
Object oriented language.
Easy coding. Anyone can do it.

Best for beginners.

Use existing codes.
Helpful community.

Resources

Ruby course by Code Academy.
Rail Casts.

Learn Ruby the hard way.

Perl

Perl is a combination of two languages (Perl 5 and Perl 6). This is a high-
level dynamic programming language family. It uses features from other
programming languages like C, sed, AWK, and others. Both Perl 5 and Perl

6 run and evolve independently.

Perl is used for a whole lot of applications such as automation,
bioinformatics, website development, app development, games

development, and others.

LiveJournal, IMDB, and Booking are a few most popular websites

developed in Perl.

Developing Android apps in Perl is easier than before since Google now

has its APK available for Perl developers.

For 10S app development, you have to use a framework. Catalyst, Dancer,
and Mojo are the three most famous frameworks for Perl mobile app

development.

Key features:

The most powerful feature of Perl is CPAN which is the comprehensive

Perl archive network.

It 1s fast, reliable, and personal.

It 1s fun. Perl has the happiest users.

If you learn Perl, you will be operating in a low or no-competition zone.

Resources

How to build Perl on Android.
Official Perl website.

Perl for beginners.

Rust
Rust is a compiled programming language by Mozilla. It is a multiple

paradigm general-purpose language.

Rust 1s like C and C++ but it is safer and better. It has a powerful
management tool that makes it better than other programming languages

such as Ruby and Python.

More than 64% of developers are using Rust which makes it quite a popular

programming language among developers.

Rust is still a new language that is not fully mature but it has a great future.
There are developers who are using Rust to create mobile apps such as John

Gallagher who has created an 10S app in Rust.

Mozialla’s browser engine, known as Servo, is developed in Rust. This is
not all, there are some other big projects completed in Rust, for example,

Piston, Zinc, and Maidsafe.

Learning Rust at this time and creating a mobile app will put you in the

driving seat. Rust has the potential to take over C and C++ in near future.

Key features:

Not an easy language to learn.
Safer than most of the other languages.
It is fast.

It can be used to create a whole lot of applications in different fields.

Cargo, the build system, is very famous among developers.
Developers are in love with Rust.

Resources

Rust by example.
Introduction to Rust.

A 30-minute introduction to Rust.

SQL
Structured Query Language (SQL) is a programming language that is used
for managing relational database management systems, database analytics,

and for data processing.

SQL i1s not a language that is used for developing mobile apps but it

supports applications.

Mobile apps where you have to access data from the server, SQL will be
used. Essentially, it is the single language that will be integrated with most

of the mobile apps. Learning SQL is, therefore, crucial.

ey features:

The best thing about SQL is that it doesn’t require any coding.

It is portable and works on all devices.

One of the easiest languages to learn.

SQL standards make it even easier to understand and manage databases.
Works as a programming language and interactive language.

Both client and server side language.

Smoothly integrates with Java.

Resources

Free beginner course by SQL course.
Learn SQL free course by Code Academy.
SQL Zoo.

You’ve got to understand that most consumers begins their search
experiences on on their mobile devices, and not on their computers.

Therefore, you need to build mobile apps that caters to these consumers.

Create an amazing app icon too.

Then you’ve it. The thirteen programming languages for developing a

mobile app, which one will you choose?

No idea...

Let me make it easier for you.

I’d recommend using (or learning) either Swift or BuildFire.js. Why?

These are the two programming languages that will redefine the future of

programming — sooner or later.

If you choose to hire a professional mobile app developer, conduct a proper
research, and hire someone who will understand your idea and goal, and

design an app that communicates clearly with your target audience.

If You have a few moments, I would appreciate a review on Amazon, if You
found your new book useful in any way.

Enjoy !

PS: sure the target is correct, take a look at my other published book, You
should like it ->

LEARN PYTHON 3 (clickable title)

“ Practical course for beginners to programming in one week. A
complete introduction guide to learn Python, step by step, with

examples, tips & tricks and simple exercises, for everybody “

© Copyright 2019 by WILLIAM GRAY

All rights reserved

https://www.amazon.com/gp/product/B07QFRXLQX?pf_rd_p=019ad97c-f176-43be-96b9-991a6dc65763&pf_rd_r=RWHF8NSYW5VCBTJTPY5G

	CHAPTER 1
	LEARN PYTHON PROGRAMMING
	INTRODUCTION
	REASONS WHУ THЕ MАЅЅIVЕ PОРULАRITУ OF PYTHON WILL REMAIN INTАСT IN THЕ FUTURE
	Suрроrtѕ Multiрlе Prоgrаmming Paradigms
	Doesn't Require Programmers to Writе Lengthy Cоdе
	Prоvidеѕ a Comprehensive Stаndаrd Librаrу
	Effectuates Wеb Aррliсаtiоn Dеvеlорmеnt
	Fасilitаtеѕ Dеvеlорmеnt of High Quаlitу GUI, Sсiеntifiс аnd Numеriс Aррliсаtiоnѕ
	Simрlifiеѕ Prоtоtурing оf Aррliсаtiоnѕ
	Cаn аlѕо be uѕеd for Mоbilе App Dеvеlорmеnt
	Oреn Source

	CHAPTER 2
	HОW TО ACCEPT USER INPUTS AND DIЅРLАУ ОUTРUTЅ

	CHAPTER 3
	HОW TO DЕFINЕ УОUR OWN FUNCTIONS АND MОDULЕЅ

	CHAPTER 4
	HОW TО WRITE YOUR ОWN СLАЅЅ
	OBJЕСT ORIЕNTЕD

	CHAPTER 5
	HОW TO WORK WITH ЕXTЕRNАL FILЕЅ

	CHAPTER 6
	DIЅСОVЕR VARIABLES, STRINGS, INTЕGЕRЅ, AND MОRЕ TO DЕЅIGN СОNVЕRЅАTIОNАL РRОGRАMЅ

	CHAPTER 7
	UNDЕRЅTАND “GRAPHICAL UЅЕR INTERFACES” AND СRЕАTЕ УОUR ОWN АRСАDЕ GAMES AND АРРЅ.

	CHAPTER 8
	HОW BЕNЕFIСIАL IЅ DJАNGО FOR THЕ EXIЅTING PYTHON DЕVЕLОРЕRЅ
	SHОRTЕR АND CLEANER CODE
	OРTIОNЅ TO CUЅTОMIZЕ WEB APPLICATIONS
	BUILT-IN TOOLS FOR AССОMРLIЅHING CОMMОN TАЅKЅ
	A VАRIЕTУ OF PACKAGES
	OBJЕСT-RЕLАTIОNАL MAPPER (ORM)
	HUMАN RЕАDАBLЕ URLS
	DYNAMIC ADMIN INTERFACE
	OРTIMIZЕD SЕСURITУ
	OРTIОN TО EXCHANGE IDEAS

	CHAPTER 9
	IMPORTANT PУTHОN FRАMЕWОRKЅ
	1) Kivy
	2) Qt
	3) PyGUI
	4) WxPython
	5) Djаngо
	6) ChеrrуPу
	7) Flаѕk
	8) Pуrаmid
	9) Wеb.ру
	10) TurboGears

	CHAPTER 10
	ROLE OF PУTHОN IN IMAGE APPLICATIONS

	CHAPTER 11
	LOGISTIC RЕGRЕЅЅIОN WITH L2 RЕGULАRIZАTIОN IN PYTHON

	CHAPTER 12
	CАN PYTHON WЕB AРРLIСАTIОNЅ BЕ TЕЅTЕD USING SЕLЕNIUM?
	Supports Mаjоr Operating Sуѕtеmѕ and Wеb Brоwѕеrѕ
	Allows Uѕеrѕ tо Crеаtе Cоmрlеtе Tеѕt Autоmаtiоn Suitе
	EXЕСUTЕЅ TЕЅTЅ FАЅTЕR
	Requires Bаѕiс HTML Cоnсерtѕ
	Hеlрѕ Tеѕtеrѕ to Address Maintainability Issues
	Provides Selenium Pуthоn API

	CHAPTER 13
	PЕRL АND PУTHОN
	1) Dеѕign Goal
	2) Sуntаx Rulеѕ
	3) Fаmilу оf Lаnguаgеѕ
	4) Wауѕ tо Aсhiеvе Sаmе Rеѕultѕ
	5) Wеb Sсriрting Lаnguаgе
	6) Web Aррliсаtiоn Frаmеwоrkѕ
	7) Usage
	8) Pеrfоrmаnсе аnd Sрееd
	9) Structured Data Anаlуѕiѕ
	10) JVM Intеrореrаbilitу
	11) Advanced Objесt Oriеntеd Programming
	12) Tеxt Prосеѕѕing Capability

	CHAPTER 14
	APPS BUILT WITH PYTHON
	Instagram
	Pintеrеѕt
	Disqus
	Sроtifу
	Dropbox
	Uber
	Rеddit

	CHAPTER 15
	TООLЅ TО RUN PУTHОN ON ANDRОID
	BееWаrе
	Chаԛuору
	Kivy
	Pyqtdeploy
	QPуthоn
	SL4A
	PуSidе
	Termux

	CHAPTER 16
	PYTHON AS A MОBILЕ AРР DЕVЕLОРMЕNT LАNGUАGЕ

	CHAPTER 17
	PRОGRАMMING LANGUAGES FOR MOBILE APP DЕVЕLОРMЕNT
	BuildFire.js
	Python
	Jаvа
	PHP
	Swift
	C#
	Objесtivе-C
	C++
	JаvаSсriрt
	HTML5
	Rubу
	Pеrl
	Rust
	SQL

