

BSDS-103

Programming in C

DETAILED SYLLABUS

UNIT 1 : INTRODUCTORY CONCEPTS

Basic definition of Pseudo Code, algorithm, flowchart, program.

UNIT 2 : ELEMETS OF C PROGRAMMING

Characters used in C, Identifiers, Keywords, Tokens, Constants, Variables.

UNIT 3 : VARIABLES AND DATA TYPES

Integer, character floating point and string; Initialization of variable during

 declarations; Symbolic Constants.

UNIT 4 : OPERATORS AND EXPRESSIONS

Expression in C, Different types of operators: Arithmetic, Relational and

Logical, Assignment, Conditional, Increment and decrement, Bitwise,

Comma and other operator (sizeof, period etc). Precedence and

associatively of operators, type casting

UNIT 5 : PREPROCESSOR DIRECTIVES AND I/O FUNCTIONS

Header Files (stdio, conio), Formatted Input / Output Functions (scanf,

printf), Escape Sequences, Character Input/Output Functions (getch,

getchar, putchar, gets, puts, getche, clrscr).

UNIT 6 : CONDITIONAL STATEMENTS

Conditional Statement- if, if- else, nested if-else, switch-case; break,

continue, goto

UNIT 7 : LOOP CONTROL STRUCTURES

Concept of Loops, Types of loop: while, do-while, for; nested loops

COURSE INTRODUCTION: PROGRAMMING IN C

Since computers cannot understand human languages, special programming languages

are designed for this purpose. C is one of the most popular programming languages. It is

used in several different software platforms such as system software and application

software. C language was developed in the early 1970s by Dennis Ritchie at Bell

Laboratories, USA.

The objective of the course is to introduce the learners to the C programming

language and enable them to apply these concepts for solving problems. Programming is

a skill best developed by rigorous practice and learning one programming language will

help in learning other programming languages.

C language uses a compiler as its translator to translate or compile the complete C

program. A linker is used to link the input (usually keyboard) and output (usually monitor)

devices and generate an executable program from an object program. On executing the

executable program, user is allowed to input values and get the output. C language

commonly uses a Turbo editor in MS-DOS system and VI editor in UNIX system.

The course is divided into two blocks:

Block 1 deals with the fundamental concept of programming language including

pseudocode, algorithm and flowcharts. Variety of data types, operators and

expressions, preprocessor directives, macros, statements like if, if-else, switch,

break, continue etc. are introduced in this block. Concept of loop is also covered

in this block.

Block 2 concentrates on some of the most important concepts of programming language

like functions, arrays, strings and pointers. Concept of storage class, structure

and union are also discussed in this block. At the end, file handling is discussed.

BLOCK INTRODUCTION: BLOCK 1

This is the first block of the course ‘Programming in C’. After completing this block,

learners will be able to write basic C programs using various desicion control and iterative state-

ments.

This block comprises of the following seven units:

Unit 1: introduces the elementary concept of programming. This unit will help you to represent

a problem pictorially with the help of flow chart. You will also be able to write a problem

with some sequential steps with the help of algorithms and pseudocode.

Unit 2: discusses some elements of C programming like tokens, identifiers, keywords etc.

Unit 3: is about variables and data types. How variables in C are declared and defined are

discussed in this unit.

Unit 4: concentrates on operators and expressions. Different types of operators like arithmetic,

logical, relational, etc. are discussed in this unit. In what order the operators are evaluated

when several operators are together in a statement or expression is also covered in this

unit.

Unit 5: deals with preprocessor directives and different Input/output functions like scanf(), printf().

gets(), puts() etc.

Unit 6: is about decision and control statements. Different kinds of statements like if, if-else,

switch-case etc. and unconditional branching statements like break, continue are

discussed in this unit.

Unit 7: is the last unit of this block which deals with the most important concept loop. After

learning these you will be able to write complete C program using various control

statements and loops.

 The structure of Block 1 is as follows:

While going through a unit, you will notice some boxes, containing such information as

would help you to understand some of the difficult, unfamiliar terms. You will find an item called

“ACTIVITY’ where you will apply your knowledge and thoughts in some questions pertaining to

the relevant topic. Again, we have included some relevant concepts in “LET US KNOW” along

with the text. And, at the end of each seection, you will get “CHECK YOUR PROGRESS” questions.

These have been designed to self-check your progress of study. It will be better if you solve the

problems put in these boxes immediately after you go through the sections of the units and then

match your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the end of each

unit.

Programming in C6

Programming in C 7

UNIT 1: INTRODUCTORY CONCEPTS

UNIT STRUCTURE

1.1 Learning Objectives

1.2 Introduction

1.3 Algorithm

1.3.1 Conventions Used in Writing Algorithm

1.3.2 Method for Developing an Algorithm

1.4 Pseudocode

1.5 Flowchart

1.5.1 Symbols of Flowchart

1.5.2 Advantages and Limitations of Flowchart

1.6 Let Us Sum Up

1.7 Answers to Check Your Progress

1.8 Further Reading

1.9 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 define algorithm

 learn the conventions used in writing algorithms

 develop algorithm for various computational problems

 define pseudocode

 write pseudocode for different problems

 pictorially represent algorithm in the form of flowchart

 learn different symbols of flowchart

 draw flowcharts for computations, decision making, loops etc.

1.2 INTRODUCTION

This is the first unit of this course. This unit deals with some

introductory concepts of programming. Learners will be acquainted with

the key elements of programming to design and develop accurate and

Programming in C8

Introductory ConceptsUnit 1

efficient programs. Algorithms, pseudocodes, and flowcharts are used in

the process of program development to help the programmers as well as

the users to clearly understand the solution to the problem at hand.

In this unit, we will learn the method of writing algorithms and

pseudocodes, and pictorially represent a schematic flow of logic in the form

of flowcharts.

1.3 ALGORITHM

Algorithm is a sequence of instructions to solve a problem. An

algorithm gives the logic of the program, that is, a step-by-step description

of how to arrive at a solution. In general terms, an algorithm provides a

blueprint to writing a program to solve a particular problem. Once we have

an blueprint of a solution, we can implement it in any high-level language,

such as C, C++, Java etc.

An algorithm has a finite number of steps and some steps may

involve decision-making and repetition.

1.3.1 Conventions Used in Writing Algorithms

The following are the conventions used in writing algorithms:

 Name of the algorithm: Every algorithm is assigned a name

which reflects the task to be performed by it.

 Introductory Comments: The task performed by the algorithm

is described briefly in this section. The variables used along with

their data types are mentioned here.

 Steps: An algorithm comprises of a sequence of steps which

should be numbered. The statements within a step are executed

in a left to right manner.

 Comments in Steps: Each step is preceded by a brief comment

describing its function. Comments within a step are enclosed in

parentheses.

The algorithm shown in Example 1.6: (Finding the largest

of three numbers) is written considering all the above conventions.

Programming in C 9

Introductory Concepts Unit 1

For a better understanding, let us write some more algorithms for

solving simple problems.

1.3.2 Method for Developing an Algorithm

 State the problem you are trying to solve in clear and concise

terms.

 List the inputs (information needed to solve the problem) and

the outputs (what the algorithm will produce as a result)

 Identify the steps needed to convert or manipulate the inputs to

produce the outputs.

 Test the algorithm: choose different data sets and verify that

your algorithm works.

Example 1.1: Write an algorithm to add two numbers.

Solution:

Step 1: Input the first number as A

Step 2: Input the second number as B

Step 3: Set Sum = A+ B

Step 4: Display Sum

Step 5: End

The algorithm for adding two numbers can also be written

as:

Step 1: Read a

Step 2: Read b

Step 3: Sum a + b

Step 4: Write Sum

Step 5: Stop

Both the two algorithms for adding two numbers are correct,

but only the words/texts are different. While writing algorithms, it is

good to keep the following points in mind:

 Usually, words like Read, Input or Accept can be used to

represent input operation to give values of variables to the

computer.

Programming in C10

 Display, Show, Write or Print can be used to represent output

operation to show the result computed by the computer.

 Back arrow ‘ ’ represents the value obtained by evaluating

the right side variables or expression and assigning it to the left

side variable. The symbol ‘=’can also be used instead of ‘ ’.

 In case of branching or conditional statements, If-Then or If-

Then-Else is used. The conditional statement usually contains

relational operators such as <, >, <=, >= etc.

 The iterative or repetitive statements can be written between

Repeat For or Repeat While loops.

Example 1.2: Write an algorithm to find whether a number is

even or odd.

Solution:

Step 1: Input the first number as A

Step 2: if A % 2 = 0

then print “Even”

else

print “Odd”

Step 3: End

Example 1.3: Write an algorithm to find the larger of two

numbers.

Solution:

Step 1: Input first number as A

Step 2: Input second number as B

Step 3: if A > B

then print A

else if A < B

then print B

else

print “The numbers are equal”

Step 4: End

Introductory ConceptsUnit 1

Programming in C 11

Example 1.4: Write the algorithm to convert the temperature

on oF (Fahrenheit) to oC(Centigrade) using the formula oC = 5/9

(oF – 32).

Solution: The input variable is F (temperature in oFahrenheit) and

the output variable is C (temperature in oCentigrade)

Step 1: Read F

Step 2: C5/9*(F - 32)

Step 3: Print C

Step 4: Stop

Example 1.5: Write an algorithm to find the sum of first N natural

numbers.

Solution:

Step 1: Input N

Step 2: Set i = 0, sum = 0

Step 3: Repeat Step 3 and 4 while i <=N

Step 4: Set sum = sum + i

set i = i + 1

Step 5: Print sum

Step 6: End

Example 1.6: Write an algorithm to compute the largest of three

numbers.

Solution: Algorithm: Largest

This algorithm computes the largest of three numbers.

The variable names are:

a, b, c: type integer

large: type integer, storing the value of the largest

number

Step 1: [Input three integers]

Read a, b, c

Step 2: [Compute the largest of three numbers]

large =a;

If (b > large) large = b

if (c > large) large = c

Introductory Concepts Unit 1

Programming in C12

Step 3: [Display the largest number]

Print (large)

Step 4: [Finished]

Exit

The statements in an algorithm are normally of three different

types: sequence, selection, and iteration type statement.

 Sequence means that each step of the algorithm is executed in

the specified order. The algorithm in Example 1.1 performs the

steps in a sequential order.

 Selection or Decision statements are used when the outcome

of the process depends on some condition. The general form is:

if condition

then statement1

else statement2

For example,

if x = y

then print "Equal"

else

print "Not Equal"

The algorithm shown in Example 1.2 contains decision

statements.

 Iteration or Repetition involves executing one or more steps

for a number of times. This can be implemented using constructs

Repeat-For, Repeat-While. Repetition occurs in one or more

steps untill some condition is true. The algorithm shown in

Example 1.5 contains repetitive statements.

CHECK YOUR PROGRESS

Q.1: State True/ False:

i) An algorithm solves a problem in a finite number of steps.

ii) The conditional statement usually contains relational

operators.

Introductory ConceptsUnit 1

Programming in C 13

iii) Repetition occurs in one or more steps untill some

condition is false.

Q.2: Write an algorithm for interchanging or swapping two values.

1.4 PSEUDOCODES

Pseudocode are statements written in structured English

for describing algorithms. It allows the designer to focus on the logic

of the algorithm without being distracted by details of programming

language syntax. At the same time, the pseudocode needs to be

complete.

There are no clearly defined standards for writing a

pseudocode. Indentation is used to increase clarity while writing

pseudocodes. It helps even non-programmers to understand the

logic of the problem. The aim of writing pseudocode is to get the

idea quickly and to be able to read easily without details. It is like a

young child putting sentences together without any grammar. For

simplicity, let us represent few works done in our daily life in the

form of pseudocode:

Brush teeth

Wash face

Comb hair

See in mirror

Let us see at some more examples of pseudocodes in terms

of computer programming.

Example 1.7: Write a pseudocode to find area of a rectangle.

Solution:

READ height of rectangle

READ width of rectangle

COMPUTE area as height * width

Example 1.8: Write a pseudocode for finding the average of 5

numbers.

Solution: Input 5 numbers

sum = add numbers together

Introductory Concepts Unit 1

Programming in C14

avg = sum / 5

Display avg

Example 1.9: Write a pseudocode to read the marks of 10 students.

If marks are greater than 150, the student passes, or else the student

fails. Count the number of students who haved passed and failed.

Solution: The variables used in this example are : totalpass, totalfail,

no.of students, marks:

1) Set totalpass to 0

2) Set totalfail to 0

3) Set no.of students to 0

4) While no. of students < 10

a) Input the marks

b) If marks >=150

Set totalpass = totalpass +1

Else

Set totalfail = totalfail + 1

EndIf

EndWhile

5) Display totalpass, totalfail

6) End

Some advantages of pseudocodes are given below:

 The language independent nature of pseudocode helps the

programmer to express the design in plain natural language.

 It can be designed based on the logic of the problem without

being concerned about programming syntax or rule.

The main disadvantages of pseudocode are:

 It does not have any standard format or syntax of writing.

 It cannot be compiled or executed.

Introductory ConceptsUnit 1

Programming in C 15

CHECK YOUR PROGRESS

Q.3: Is there any standard rule when writing

pseudocode?

Q.4: What is pseudocode?

1.5 FLOWCHART

We are already acquainted with the meaning of “pseudocode” and

“algorithm” in the previous section. Before we start coding a program, it is

necessary to plan the step-by-step solution to the problem. Such a systematic

plan can be symbolically represented with the help of a diagram. This

diagram is called a flowchart. A flowchart is a symbolic representation of a

solution to a given task. In this section we will learn to draw flowcharts

using various symbols associated with it.

A flowchart is a pictorial representation of an algorithm. It shows

the logic of the algorithm and the flow of control. The flowchart uses symbols

to represent specific actions and arrows to indicate the flow of control.

Normally, an algorithm is expressed as a flowchart and then the

flowchart is converted into a program using some programming language.

Flowcharts are independent of the programming language that are being

used. Hence, one can fully concentrate on the logic of the problem solving

at this stage.

It is always recommended for a beginner, to draw flowcharts prior to

writing programs in the selected programming language.

1.5.1 Symbols of Flowchart

Flowcharting has many standard symbols. The boxes which

are used in flowcharts are standardized to have specific meanings.

These flowchart symbols have been standardized by the American

National Standards Institute (ANSI). The symbols of a flowchart

include:

Introductory Concepts Unit 1

Programming in C16

 Start and End (or, Start and Stop): Every flowchart has a unique

starting point and an ending point. The Start and End symbols

are also known as terminal symbols and are represented as

ovals, or rounded rectangles. Flowchart begins at the start

terminator and ends at the stop terminator. The starting point is

indicated with the word START inside the terminator symbol.

The ending point is indicated with the word STOP inside the

terminator symbol.

 Input/Output: Input/Output symbols are used to denote any

input/output function in the program. These are represented

using a parallelogram and are used to get inputs from the users

or to display the results to them.

Thus, if there is any input to the program via an input device,

like a keyboard, tape etc. it will be indicated in the flowchart with

the help of the Input/Output symbol. Similarly, all output

instructions, for output to devices like printers, monitors etc. are

indicated in the Input/Output symbol.

 Process: A process or computation represents arithmetic and

data movement instructions in the flowchart. It is generally

represented by using a rectangle. All arithmetic processes of

addition, subtraction, multiplication and division are indicated in

the process symbol. If there are more than one process

instructions to be executed sequentially, they can be placed in

the same process box (rectangle), one below the other in the

sequence in which they are to be executed.

 Decision : The decision symbol is represented by using a

diamond. It is used in a flowchart to indicate the point where a

Introductory ConceptsUnit 1

Programming in C 17

decision is to be made and branching done upon the result of

the decision to one or more alternative paths. The criteria for

decision making is written inside the decision box.

It is basically used to depict a Yes/No question or a True/

False test. The two arrows coming out of it, one from the bottom

point and the other from the right point, corresponds to Yes or

True, and No or False., respectively. The arrow should always

be labeled.

 Flow lines/Arrows: Flow lines (or, Arrows) are solid lines with

arrowheads which indicate the flow of operation. They show the

exact sequence in which the instructions are to be executed.

The normal flow of the flowchart is depicted from top to bottom

and from left to right.

 Connectors: In situations, where the flowcharts become big, it

may so happen that the flow lines start crossing each other at

many places causing confusion. This will also result in making

the flowchart difficult to understand. Also, the flowchart may not

fit in a single page for big programs. Thus, whenever the flowchart

becomes complex and spreads over a number of pages

connectors are used.

The connector represents entry from or exit to another part

of the flowchart. A connector symbol is indicated by a circle and

a letter or a digit is placed inside the circle. This letter or digit

indicates a link. A pair of such identically labelled connectors is

used to indicate a continued flow in situations where flowcharts

are complex or spread over more than one page.

Introductory Concepts Unit 1

Programming in C18

Connectors do not represent any operation in the flowchart.

Their use is only for the purpose of increased convenience and

clarity.

The flowchart symbols discussed above are given together

in Figure 1.1:

Figure 1.1: Flowchart Symbols

1.5.2 Advantages and Limitations of Flowchart

Advantages of Flowchart: There are a number of advantages of

flowcharts in problem solving.

 The flowchart being a pictorial representation of a program

makes it easier for the programmer to explain the logic of the

program to others rather than using a program.

 It shows in a simple way the execution of logical steps without

the syntax and language complexities of the program.

 In real life programming situations a number of programmers

are associated with the development of a system and each

Introductory ConceptsUnit 1

Programming in C 19

programmer is assigned a specific task of the entire system.

Hence, each programmer can develop his own flowchart and,

later on, all the flowcharts can be combined for depicting the

overall system. Any problems related to linking of different

modules can be detected at this stage itself and suitable

modifications can be carried out. Flowcharts can thus be used

as working models in design of new software systems.

 Flowchart has become a necessity for better documentation of

complex programs.

 Flowchart also enables us to trace and detect any logical or

other errors before the programs are written. Hence, a flowchart

is very helpful in the process of debugging a program.

 Flowcharts are very helpful during the testing of the program as

well as incorporating further modifications

Limitations of Flowchart:

 Drawing flowchart for large complex problem is a laborious and

time-consuming activity. Many a time, the flowchart of a complex

problem becomes complex and clumsy.

 Sometimes, a little bit of alteration in the solution may require a

complete re-drawing of the flowchart.

CHECK YOUR PROGRESS

Q.5: What is a flowchart?

Q.6: Give any two advantages of flowcharts.

Let us look at few examples of flowcharts:

Example 1.10: Draw the flowchart to find the sum and product of

two given numbers.

Introductory Concepts Unit 1

Programming in C20

Solution:

Example 1.11: Draw the flowchart to convert the temperature in

Fahrenheit (0f) to Centigrade (0c).

Solution:

Example 1.12: Draw the flowchart to find the biggest of the two

given numbers.

Introductory ConceptsUnit 1

Programming in C 21

Solution:

Example 1.13: Draw a

flowchart to f ind the

biggest of three given

numbers.

Solution:

Introductory Concepts Unit 1

Programming in C22

ACTIVITY

Q.1: Draw a flowchart to calculate the salary of a daily

wager using the formula given below:

[Salary=(no_of_hours*pay_per_hour)+Travel_allowance]

Q.2: Draw a flowchart to subtract two numbers.

Example 1.14: Draw a flowchart to calculate the sum of first 15

natural numbers.

Solution:

CHECK YOUR PROGRESS

Q.7: In a flowchart, which symbol is represented using

a rectangle?

a) Decision b) Connector

c) Input/Output d) Process

Introductory ConceptsUnit 1

Programming in C 23

Q.8: Which one of the following is a graphical or symbolic

representation of a process?

a) Algorithm b) Pseudocode

c) Flowchart d) Program

Q.9: The symbol is always the first and the last

symbol in a flowchart.

1.6 LET US SUM UP

 An algorithm is a precise specification of a sequence of instructions

to be carried out in order to solve a given problem.

 In the context of computer programming, an algorithm, is defined

as a well-ordered collection of unambiguous and effectively

computable operations which, when executed, produces a result

and halts in a finite amount of time.

 Pseudocode consists of English-like phrases describing an algorithm.

An ideal pseudocode must be complete, describing entire logic of

the algorithm, so that it can be translated straightway into a program

using any programming language. It facilitates programmers to focus

on the logic of the algorithm.

 A flowchart is a pictorial representation of an algorithm. It shows the

logic of the algorithm and the flow of control.

 The flowchart uses symbols to represent specific actions and arrows

to indicate the flow of control.

 For Start and End/Stop, oval or rounded rectangle is used.

 For input/output opereation, parallelogram is used.

 For process or computation, rectangle is used.

 For decision, the diamond symbol is used.

 For indicating flow of control, arrows with different heads are used.

 For indicating connections, labelled circle are used.

Introductory Concepts Unit 1

Programming in C24

1.7 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: i) True, ii) True, iii) False

Ans. to Q. No. 2: Algorithm for interchanging/swapping two values:

Step 1: Input first number as A

Step 2: Input second number as B

Step 3: Set temp = A

Step 4: Set A = B

Step 5: Set B = temp

Step 6: Display A, B

Step 7: End

Ans. to Q. No. 3: There are no such set rules, but the code should provide

clear descriptions of the algorithms being outlined.

Ans. to Q. No. 4: Pseudocode is not an actual programming language. It

uses short phrases to describe an algorithm before you actually

create it in a specific programming language. Once you know what

the program is about and how it will function, then you can use

pseudocode to create statements to achieve the required results

for your program.

Ans. to Q. No. 5: A flowchart is a diagrammatic or symbolic representation

of an algorithm. It uses various symbols to represent the operations

to be performed.

Ans. to Q. No. 6: The advantages of flowcharts are:

i) Flowcharts are helpful for better documentation of complex

programs.

ii) Flowchart also enables us in tracing and detecting any logical

or other errors before the programs are written.

Ans. to Q. No. 7: d) Process

Ans. to Q. No. 8: c) Flowchart

Ans. to Q. No. 9: Start and End

Introductory ConceptsUnit 1

Programming in C 25

1.8 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw-

Hill Education.

2) Gottfried Byron, S; Programming with C; Tata McGraw-Hill Education.

1.9 MODEL QUESTIONS

Q.1: Define algorithm. How is it useful in the context of software

development?

Q.2: What do you understand by the term pseudocode?

Q.3: Differentiate between algorithm and pseudocode.

Q.4: Write an algorithm to find the smallest of three given numbers.

Q.5: Write the algorithm to find the average of three given numbers.

Q.6: Write an algorithm to find the sum of natural numbers upto N.

Q.7: Write an algorithm to find the area of a triangle.

Q.8: Write an algorithm to find the sum of a set of numbers.

Q.9: Write an algorithm to find the factorial of a given number.

Q.10: Write a pseudocode to compute the average of n numbers.

Q.11: What is a flowchart? What are the significance of flowchart?

Q.12: With the help of an example explain the use of a flowchart.

Q.13: How is a flowchart different from an algorithm? Do we need to have

both of them for developing a program?

Q.14: Draw the flowchart to find the area and circumference of a circle of

radius r.

Q.15: Draw the flowchart to find the smallest of three given numbers.

Q.16: Discuss the advantages and limitations of flowchart.

Q.17: Describe the symbols used in flowchart.

*** ***** ***

Introductory Concepts Unit 1

Programming in C26

UNIT 2: ELEMENTS OF C PROGRAMMING

UNIT STRUCTURE

2.1 Learning Objectives

2.2 Introduction

2.3 C Character Set

2.4 Tokens

2.5 Identifiers

2.6 Reserved Words

2.7 Constants

2.8 Variables

2.9 Let Us Sum Up

2.10 Answers to Check Your Progress

2.11 Further Reading

2.12 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will able to:

 describe the C character set

 describe C tokens

 describe the primary elements like identifiers, reserved words,

constants etc.

 define variables in C language.

2.2 INTRODUCTION

We have already learned about basic programming concepts

including pseudo code, algorithm and flowcharts in the introductory unit. In

this unit, we will introduce some basic concepts of C language like identifiers,

keywords and constants etc. The C language was developed by Dennis

Ritchie at Bell Laboratories during the 1970’s.

Programming in C 27

2.3 C CHARACTER SET

C does not use, nor does it require the use of, every character found

on a modern computer keyboard. The only characters required by the C

Programming language are as follows :

Alphabets A – Z

a – z

Digits 0 – 9

Special Symbol # & | ! ? _ ~ ^ { } [] () < >

space . , : ; ‘ $ “ + - / * = %

2.4 TOKENS

Tokens are the basic building blocks in C language. The smallest

individual units in a C program are known as C tokens. There are six types

of C tokens. They are:

1) Keywords (eg: int, do),

2) Identifiers (eg: main, total),

3) Constants (eg: 5, 25),

4) Strings (eg: “kkhsou”, “university”),

5) Special symbols (eg: (), {}),

6) Operators (eg: +, /,-,*)

We will discuss some of these basic building blocks in this unit.

2.5 IDENTIFIERS

Identifiers are the names that are given to various program elements,

such as variables, functions and arrays. Identifiers consist of letters and

digits in any order except that the first character must be a letter. To construct

an identifier you must obey the following points:

 Only alphabet, digit and underscores are permitted

 An identifier cannot start with a digit.

 Identifiers are case sensitive, i.e., uppercase and lowercase letters

are distinct.

 Maximum length of an identifier is 32 characters.

Elements of C Programming Unit 2

Programming in C28

The following names are valid identifiers:

x y12 sum_1 temperature

names area tax_rate table

The following names are not valid identifiers for the reasons stated:

x” illegal characters (“).

order-no illegal character (–)

total sum illegal character (blank space)

2.6 RESERVED WORD

Reserved words are the essential part of a language definition. The

meaning of these words has already been explained to the C compiler. So

you canot use these reserved words as variable names. Since these

reserved words have some special meaning in C language, therefore these

words are often known as “keyword”. The following list shows all the reserved

words available in C language:

auto double if static

break else int struct

case enum long switch

char extern near typedef

const far register union

continue float return unsigned

default for short void

do goto igned ++ while

2.7 CONSTANTS

A constant is a container to store value. But you can’t change the

value of that container (constant) during the execution of the program.

Thus, the value of a constant remains constant through the complete

program.

There are two broad categories of constant in C, literal constant

and symbolic constant. A literal constant is just a value. For example, 10

is a literal constant. It does not have a name; it is just a literal value.

Elements of C ProgrammingUnit 2

Programming in C 29

Depending on the type of data, literal constant is of different types. They

include integer, character and floating point constant. Integer constant can

again be subdivided into decimal (base-10), octal (base-8), and hexadecimal

(base-16) integer constant. One important variation of character constant

is string constant. Remember that a character constant is always enclosed

with single quotation mark, whereas a string constant is always enclosed

with a double quotation mark. Another point to remember is that an octal

integer constant always starts with 0 and a hexadecimal constant with 0x.

EXAMPLE TYPES

153 Decimal integer constant

015 Octal integer constant

0xA1 Hexadecimal integer constant

153.371 Floating point constant

‘a’ Character constant

‘1’ Character constant

“a” String constant

“153” String Constant

2.8 VARIABLES

A variable is an identifier to store value. You can identify a variable

with a container which takes different values at different times during the

execution of the program. Thus, the value of the variable may change within

the program. A variable name can be chosen by the programmer in a

meaningful way that reflects what it represents in the program. Suppose

you want to store value 153 to a variable. In C programming language a

varibale can be assigned a value using the following statements :

int A ;

A = 153 ;

Here, first we declare the data type of the variable followed by a

variable name, in this case “A”. After that, A is assigned the value 153.

Similarly, we can store strings in character variables and decimal numbers

in floating point variables. We will discuss initialization and declaration of

variables in detail in the next unit.

Elements of C Programming Unit 2

Programming in C30

CHECK YOUR PROGRESS

Q.1: What is an identifiers?

Q.2: What is a keyword in C?

Q.3: What are the types of constants?

Q.4: What is a variable?

2.9 LET US SUM UP

 C character set includes uppercase and lowercase alphabets, digits

and several special characters. All together there are 93 valid

characters allowed in C.

 Identifiers are the name given to the various program elements–

variables, functions, arrays etc.

 There are 32 keywords (reserved words) in C. They cannot be used

as variable names.

 A variable in C language is an entity whose value may vary during

program execution.

2.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: Identifiers are the names that are given to various

program elements, such as variables, functions and arrays.

Identifiers consist of letters and digits in any order except that the

first character must be a letter.

Ans. to Q. No. 2: Keywords are also called the reserved words in C. They

have specific meaning to compiler. These words should not be used

for naming any other variables.

Ans. to Q. No. 3: There are two broad categories of constant in C, literal

constant and symbolic constant.

Ans. to Q. No. 4: A variable is an identifier that is used to represent a single

data item i.e. a numerical quantity or a character constant. A given

Elements of C ProgrammingUnit 2

Programming in C 31

variable can be assigned different data items at various place within

a program.

2.11 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw-

Hill Education.

2) Gottfried Byron, S; Programming with C; Tata McGraw-Hill Education.

2.12 MODEL QUESTIONS

Q.1: What is the difference between a keyword and an identifier?

Q.2: List the rules of naming an identifier in C?

Q.3: Differentiate between a variable and a constant.

Q.4: What are variables and tokens in C language?

Q.5: Give four different types of token with suitable example.

*** ***** ***

Elements of C Programming Unit 2

Programming in C32

UNIT 3: VARIABLES AND DATA TYPES

UNIT STRUCTURE

3.1 Learning Objectives

3.2 Introduction

3.3 Basic Data Types in C

3.4 C Variables and their Declarations

3.5 Symbolic Constants

3.6 Let Us Sum Up

3.7 Answers to Check Your Progress

3.8 Further Reading

3.9 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will able to:

 learn about the basic data types used in C language

 declare and initialize C variables

 learn about symbolic constants.

3.2 INTRODUCTION

We have already learned the elements of C programming in the

previous unit.

In this unit, you will come across the elementary data types used in

C language. The concept of variables are also included as an important

part of the unit.

3.3 BASIC DATA TYPES IN C

To process with data, first of all you must know the type of the data.

Data type of C has 3 distinct categories. Figure 3.1 explains the different

categories of C data type.

Programming in C 33

C Data Type

Built-in Type Derived Type User Defined Type

Integer Array Structure

Character Function Union

Float Pointer Enumeration

Double Reference

Fig 3.1: Data Types in C language

The first category of data type is the built-in data type, which is also

known as elementary or basic type. Sometime these are called the “primitive”

type. These basic data types have several type modifiers, which alter the

meaning of the base data type to yield a new type. Table 3.1 lists all

combinations of the basic data types and modifiers along with their size

and ranges:

Type Size (in Bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

signed char 1 -128 to 127

int 2 -32768 to 32767

unsigned int 2 0 to 65535

signed int 2 -32768 to 32767

short int 2 -32768 to 32767

unsigned short int 2 0 to 65535

signed sort int 4 -32768 to 32767

long int 4 -2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

signed long int 4 -2147483648 to 2147483647

Variables and Data Types Unit 3

Programming in C34

float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E-308

long float 10 3.4E-4932 to 1.1E+4932

Table 3.1: Size and range of basic data type and its modifier

Moreover, besides these basic data types, another special data type

is void. The void type specifies the return type of a function, when it is not

returning any value. Sometime void is used to indicate an empty parameter

to a function. After all, this data type holds the literal meaning of void.

The “%” symbol along with a (special) character in known as format

specifier or conversion specifier. It indicates the data type to be printed

or scanned and how that data type is converted to the character that appears

on the screen. Format specifiers for usual variable types are shown in Table

3.2.

Format Specifier Usual VariableType Display as

%c char single character

%d int signed integer

%f %lf float or double signed decimal

%e %le float or double exponential format

%o int unsigned octal value

%u int unsigned integer

%x int unsigned hex value

%ld int long decimal integer

%s array of char sequence of characters

Table 3.2: Format specifier for usual variable type

3.4 C VARIABLES AND THEIR DECLARATIONS

We have already introduced variables in the previous unit (Unit 2).

Now, in this unit, let us try to understand how varibales are initialized and

declared.

We already know that a variable is an identifier to store value. A

variable name can be chosen by the programmer in a meaningful way that

reflects what it represents in the program. The naming convention of variable

Variables and Data TypesUnit 3

Programming in C 35

follows the rule of constructing identifiers. Again we are taking the same

example of storing 153 in a variable. Suppose you want to store value 153

to a variable. What you will do is – first create the name of the variable,

suppose A. Since 153 is integer, so declare the variable A as integer, and

then assign 153 to that variable.

Now, in C programming language, this can be done using the

following statement:

int A ;

A = 153 ;

The first statement says that A is a container, where we can store

only integer type variable. This means that we cannot store value into A

other than integer. Therefore, this type of statement is known as declaration

statement (A declares that A can store only integer type of variable). Thus,

the general form of declaration of a variable is:

data_type variable1, variable2, , variableN;

By declaring a variable you tell 3 things to the compiler :

 What the variable name is.

 What type of data the variable will hold.

 and the scope of the variable.

Up to this point container A is empty. The second statement says

that the value 153 is stored in A. This means variable A is initialized with

153. Therefore, this type of statement is known as variable initialization. A

variable must store a value after it has been declared (but before it is used

in an expression). You can store values to a variable in two ways :

 By using assignment statement.

 and by using a read statement.

The first method is already shown in the example. In second

approach you can make a call of C standard input function (that is scanf,

153

A int A int A

153

Variables and Data Types Unit 3

Programming in C36

getch, getc, gets etc.) to store value to a variable. For example, the previous

initialization statement can be written as:

scanf(“%d”,&A);

This statement will take an integer type input from standard input

device (that is keyword) and store it to A.

We can also declare and initialize a variable in a single statement

as follows:

int A = 153;

This type of statement is known as initialization of variable during

declaration. As a shorthand, you can declare variables that have the same

type in a single line of declaration by separating the variable names with

commas. For example, you can declare the variable j and k in a single line

as:

int j, k;

which is the same as the declaration of j and k as :

int j;

int k;

It is always a good practice to group together declarations of the

same data type for an easy reference. For example:

int j, k;

float x,y,z;

A few examples of variable declarations are shown below :

Variable Remarks

Declaration

int i = 0, j = 1; i and j are declared as integer variables. The

variables i and j are initialized with value as 0 and

1 respectively.

float basic_pay; basic_pay is a floating point variable with a real

value or values containing decimal point.

char a; a is a character variable that stores a single

character.

double theta; theta is a double precision variable that stores

 a double precision floating point number.

Variables and Data TypesUnit 3

Programming in C 37

3.5 SYMBOLIC CONSTANTS IN C

A symbolic constant is a name that substitutes for a sequence of

characters. The characters may represent a numeric constant. A character

constant is a string constant. Thus, a symbolic constant allows a name to

appear in place of a numeric constant, character constant or a string. When

a program is compiled, each occurrence of a symbolic constant is replaced

by its corresponding character sequence.

Symbolic constants are usually defined at the beginning of a program.

The symbolic constants may then appear later in the program in place of

the numeric constants, character constants, etc. which the symbolic

constants represent.

Symbolic constants are defined using #define as given below:

#define<symbolic constant name> <value>

Suppose that you are writing a program which performs a variety of

geometrical calculations. For example, using the value (3.14) for the

calculations. To calculate the circumference and area of a circle with a

known radius, you could write:

circum = 3.14 * (2*radius);

area = 3.14 * (radius) * (radius);

If, however, you define a symbolic constant with the name PI and

assign it the value 3.14, you would write the name PI and the value 3.14 as

shown below:

#define PI 3.14

circum = PI * (2*radius);

area = PI * (radius) * (radius);

Some valid examples of symbolic constant definitions are :

#define TAXRATE 0.55

#define TRUE 1

#define FALSE 0

Variables and Data Types Unit 3

Programming in C38

CHECK YOUR PROGRESS

Q.1: What are the basic data types used in C?

Q.2: Define variable.

Q.3: What are symbolic constants?

3.6 LET US SUM UP

 A C variable is an entity whose value may vary during program

execution.

 C makes it compulsory to declare the type of any variable name

that a programmer wishes to use in a program before using it.

 The basic data type that can be used for such declaration are int,

float, double and char.

 Symbolic constants are generally defined at the beginning of a

program.

3.7 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: The built in data types are integer, character, float, double.

Ans. to Q. No. 2: A variable is an identifier that is used to represent a single

data item i.e., a numerical quantity or a character constant. A given

variable can be assigned different data items at various place within

a program.

Ans. to Q. No. 3: A symbolic constant is a name that substitutes for a

sequence of characters. The characters may represent a numeric

constant, a character constant is a string constant.

Variables and Data TypesUnit 3

Programming in C 39

3.8 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw-

Hill Education.

2) Gottfried Byron, S; Programming with C; Tata McGraw-Hill Education.

3.9 MODEL QUESTIONS

Q.1: Name and describe the four basic data types in C ?

Q.2: What is a variable ?

Q.3: How are variable initialized? Explain with example.

Q.4: What are symbolic constants. How are they different from variables?

Explain in brief.

Q.5: How are the variables declared in C? Give a suitable example.

Q.6: Give examples of built-in and derived data types.

Q.7: Give the difference between signed and unsigned integers.

Q.8: Write the size in bytes of the following data types:

char, float, int, long int, double.

Q.9: Write the format specifiers for: array of char, int, unsigned int, char.

*** ***** ***

Variables and Data Types Unit 3

Programming in C40

UNIT 4: OPERATORS AND EXPRESSIONS

UNIT STRUCTURE

4.1 Learning Objectives

4.2 Introduction

4.3 Operators

4.3.1 Arithmetic Operators

4.3.2 Relational Operators

4.3.3 Logical Operators

4.3.4 Assignment Operators

4.3.5 Increments and Decrement Operators

4.3.6 Conditional Operators

4.3.7 Bitwise Operators

4.3.8 Special Operators

4.4 Precedence and Associativity

4.5 Expressions

4.6 Type Conversion

4.7 Let Us Sum Up

4.8 Answers to Check Your Progress

4.9 Further Reading

4.10 Model Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 define operators and operands

 define and use different types of operators like arithmetic, logical,

relational, assignment, conditional, bitwise and special operators

 learn about the order of precedence among operators

 use expession in programming

 perform type conversion.

Programming in C 41

4.2 INTRODUCTION

We have already learnt how variables and different data types can

be used in programming. These variables, constants and other elements

can be joined together by various operators to form expressions.

In this unit you will learn about different types of operators and how

these operators are used to form expressions.

4.3 OPERATORS

Operators are special symbols which instruct the compiler to perform

certain mathematical or logical manipulations. Operators are used in

programs to manipulate data and variables. They are used with operands

to build expressions. We will discuss expression at the end of this unit.

For example, the following is an expression containing two operands

(i.e., 2 and 4) and one operator (i.e., +)

2 + 4

C language has a rich set of operators which can be classified as

follows:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

 Increments and Decrement Operators

 Conditional Operators

 Bitwise Operators

 Special Operators

4.3.1 Arithmetic Operators

For arithmetic operations such as plus, minus, multiplication,

division etc., we need some operators. C provides all the basic

arithmetic operators. They are listed in Table 4.1. The operators +,

-, * and / all work in the same way as they do in other programming

Operands: The data

items that operators

act upon are called

operands.

Operators and Expressions Unit 4

Programming in C42

languages. These operators can operate on any built-in data types

allowed in C.

Operator Meaning

+ Addition or Unary Plus

– Subtraction or Unary Minus

* Multiplication

/ Division

% Modulo Division

Table 4.1: Arithmetic Operators

Some uses of arithmetic operators can be seen in the

following expressions:

x + y

x - y

- x + y

a * b + c

- a * b

Here a, b, c, x, y are operands.

Integer Arithmetic: When an arithmetic operation is performed on

two whole numbers or integers then such an operation is called

integer arithmetic. It always gives an integer as the result.

Let, x = 5 and y = 2 be two integer numbers. Then the integer

arithmetic leads to the following results:

x + y = 5 + 2 = 7 (Addition)

x – y = 5 - 2 = 3 Subtraction)

x * y = 5 * 2 = 10 (Multiplication)

x / y = 5 / 2 = 2 (Division)

x % y = 5 % 2 =1 (Modulo Division)

In integer division the fractional part is truncated. Division

gives the quotient, whereas modulo division gives the remainder

of division. The following program is an example to illustrate the

above operations.

Example 4.1: Write a program to show the summation, subtraction,

multiplication, division and modulo division of two integer numbers.

Operators and ExpressionsUnit 4

Programming in C 43

#include<stdio.h>

#include<conio.h>

void main()

{

int n1, n2, sum, sub, mul, div, mod;

clrscr();

scanf (“%d %d”, &n1, &n2); //inputs the operands

sum = n1+n2;

printf(“\n The sum is = %d”, sum); //display the output

sub = n1-n2;

printf(“\n The difference is = %d”, sub);

mul = n1*n2;

printf(“\n The product is = %d”, mul);

div = n1/n2;

printf(“\n The division is = %d”, div);

mod = n1%n2;

printf(“\n The modulus is = %d”, mod);

getch();

}

If we enter n1 = 5 and n2 = 2, then the output of the above

program will be as follows:

The sum is = 7

The difference is = 3

The product is = 10

The division is = 2

The modulus is = 1

Floating point arithmetic: When an arithmetic operation is

performed on two real numbers or fractional numbers, such an

operation is called floating point arithmetic. The floating point

results can be truncated according to requirement. The modulus

operator is not applicable for fractional numbers.

Let x = 15.0 and y = 2.0 then x + y = 15.0 +2.0 = 17.0

x – y = 15.0 - 2.0 = 13.0

Operators and Expressions Unit 4

Programming in C44

x * y = 15.0 * 2.0 = 30.0

x / y = 15.0 / 2.0 = 7.5

Mixed mode Arithmetic: When one of the operands is real and the

other is an integer and if the arithmetic operation is carried out on

these two operands, then it is called mixed mode arithmetic. If

any one operand is of real type then the result will always be real,

thus 15 / 10.0 = 1.5.

4.3.2 Relational Operators

Often it is required to compare the relationship between

operands and bring out a decision accordingly. For example, we

may compare the salary of persons, age of two persons, marks of

students, or the price of two items, and so on. These comparisons

can be done with the help of relational operators. C supports the

following relational operators:

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Table 4.2 Relational operators

A simple relational expression contains only one relational

operator and takes the following form:

exp1 relational operator exp2

where exp1 and exp2 are expressions, which may be simple

constants, variables or combination of them. The value of a relational

expression is either zero or one. The value is zero if the relation is

false and one if the relation is true.

Some examples of relational expressions and their evaluated

values are listed below:

Operators and ExpressionsUnit 4

Programming in C 45

3.5 <= 12 TRUE

-6 > 0 FALSE

10 < 7 + 5 TRUE

4 == 2 FALSE

4! =2 TRUE

Let us consider the following example where there are two

arithmetic expressions on either side of the relational operator >.

p+q > m+n

In such cases, the arithmetic expressions will be evaluated

first and then the result is compared. The result will be TRUE only if

the sum of the values of p+q is greater than the sum of the values of

m+n. This is because, arithmetic operators have higher precedence

over relational operators. We will discuss operator precedence later

in this unit.

Relational expressions are used in decision making

statements such as if, while and for of C language. We shall learn

about these statements in later units.

4.3.3 Logical Operators

Logical operators compare or evaluate logical and relational

expressions. C language has the following logical operators:

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

Table 4.3: Logical Operators

The AND (&&) and OR (||) allow two or more conditions to

be combined in an if statement and make decisions.

Logical AND (&&): The logical AND operator is used for evaluating

two condit ions or expressions with relational operators

simultaneously. If both the expressions to the left and to the right of

the logical operator are TRUE, then the whole compound expression

is TRUE. For example:

Operators and Expressions Unit 4

Programming in C46

a > b && x = = 8

The expression to the left is a > b and that on the right is x

== 8. The whole expression is TRUE only if both expressions are

TRUE i.e., if a is greater than b and x is equal to 8. The following

example is given to show the usage of logical AND with an if

statement:

if (age>18 && marks>=300)

Logical OR (||): The logical OR is used to combine two expressions

and the condition evaluates to TRUE if any one of the two

expressions is TRUE. For example:

a < m || a < n

The expression evaluates to TRUE if any one of the

expressions a<m and a<n is TRUE or if both of them are TRUE. It

evaluates to TRUE if a is less than either m or n and also when a is

less than both m and n.

Logical NOT (!): The NOT operator is denoted by !. It takes single

expression and evaluates to TRUE if the expression is FALSE and

evaluates to FALSE if the expression is TRUE. In other words, it

just reverses the value of the expression it operates on. For example,

! (x < 5)

This means if x is less than 5, the result will be FALSE, since

(x<5) is TRUE. The NOT operator is often used to reverse the

logical value of a single variable.

4.3.4 Assignment Operators

The assignment operator denoted by = is used to assign

the result of an expression to a variable. For example:

x = a + b ;

In the above statement, the value of a + b is evaluated and

substituted to the variable x.

Again, in the statement x = x + 1; the value of x is incremented

by 1 and it is assigned to x in the left hand side. This can also be

Operators and ExpressionsUnit 4

Programming in C 47

written as x + = 1; This notation of assigning is known as shorthand

form.

The commonly used shorthand assignment are as follows:

a = a + 1 is same as a += 1

a = a – 1 is same as a -= 1

a = a * (n+1) is same as a *= (n+1)

a = a / (n+1) is same as a /= (n+1)

a = a % b is same as a %= b

The assignment operator = and the equality operator == are

distinctly different. The assignment operator is to assign a value to

an identifier, whereas the equality operator is used to determine if

two expressions have the same value. These operators cannot be

used in place of one another.

Program 4.2: Program to calculate the sum and average of five

numbers.

#include<stdio.h>

#include<conio.h>

void main()

{

float a,b,c,d,e,sum,avg;

clrscr();

printf(“Enter the five numbers:\n ”);

scanf(“%f%f%f%f%f ”, &a,&b,&c,&d,&e);

sum=a+b+c+d+e;

avg=sum/5.0;

printf(“\n\nSum is = %f ”,sum);

printf(“\nAverage is = %f ”,avg);

getch();

}

If we enter 4,10,12, 3 and 6, then the output of the above

program will be:

Enter the five numbers: 4 10 12 3 6

Sum is = 35.00 Average is = 7.00

Operators and Expressions Unit 4

Programming in C48

LET US KNOW

Unary Operators: The operator that acts upon a single

operand to produce a new value is called Unary operator. Unary

operators usually precede their single operands, though some unary

operators are written after their operands. Unary minus operation is

distinctly different from the arithmetic operator which denotes

subtraction (-). The subtraction operator requires two separate

operands. All unary operators are of equal precedence and have

right-to-left associativity. Following are some examples of the use

of unary minus operation:

-145 // unary minus is followed by an integer constant

-0.5 //unary minus is followed by an floting-point constant

- a //unary minus is followed by a variable ‘a’

-5 *(a + b) //unary minus is followed by an arithmetic expression

4.3.5 Increment and Decrement Operators

The increment and decrement operators are one of the unary

operators which are very useful in C language. These are:

+ + and - -

The increment operator ++ adds 1 to the operand, while the

decrement operator - - subtracts 1. If i is an integer type variable,

then we can write these operators in program as follows:

+ + i; pre-increment

or i + +; post-increment

- - i; pre-decrement

or i - -; post increment

Again, the statement + + i; is same as i = i+1; or i + =1; and

- - i; is same as i = i -1; or i - =1;

The ++i and i++ means the same thing when they form state-

ments independently. But they behave differently when they are used

in expressions on the right-hand side of an assignment statement.

Operators and ExpressionsUnit 4

Programming in C 49

When the operator ++ is written before the variable name

(e.g., ++i) then the operator is called prefix operator and when the

operator ++ is written after the variable name (e.g., i++) then it is

called postfix operator. Let us consider the following statements:

i = 5;

j = ++i; // pre-increment

printf(“%d%d”, i, j);

In this case, the value of j and i would be 6. A prefix operator

first adds 1 to the operand and then the result is assigned to the

variable on the left. Thus, 1 is added to i and the value of i becomes

6. Then this incremented value of i is assigned to j and the value of

j also becomes 6.

Suppose, if we rewrite the above statements as:

i = 5;

j = i++; // post-increment

then the value of j would be 5 and i would be 6. This is

because a postfix operator first assigns the value to the variable on

the left and then increments the operands. Thus, 5 is first assigned

to j and then i is incremented by 1.

Rules for increment (+ +) and decrement (- -) Operators:

 When postfix ++ (or - -) is used with a variable in an expression,

the expression is evaluated first using the original value of the

variable and then the variable is incremented.

 When prefix ++ (or - -) is used in an expression, the variable is

incremented (or decremented) first and then the expression is

evaluated using the new value of the variable.

 The precedence and associativity of ++ and - - operators are

the same as those of unary + and -.

4.3.6 Conditional Operators

The ternary operator “?:” is used to denote conditional

operator. Three operands are used here so it is called ternary

operator. The syntax is as follows:

Operators and Expressions Unit 4

Programming in C50

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions. exp1 is evaluated

first. If the expression is TRUE then exp2 is evaluated and its value

becomes the value of the expression. If exp1 is FALSE, exp3 is

evaluated and its value becomes the value of the expression. Only

one of the expressions is evaluated. For example:

a = 10;

b = 15;

x = (a > b) ? a : b ;

Here, value of b will be assigned to x. Since, a=10 and b=15,

the condition a>b will be FALSE; therefore b is assigned to x.

Program 4.3: Program to illustrate the use of conditional operator.

#include<stdio.h>

#include<conio.h>

void main()

{

int age;

clrscr();

printf(“Enter your age in years: ”);

scanf(“%d”,&age);

(age>=18)? printf(“\nYou can vote\n”): printf(“You cannot vote”);

getch();

}

Output : Enter your age in years:

26

You can vote

If we run the program again and enter age = 15, then the

output will be:

Enter your age in years:

15

You cannot vote

Program 4.4: Program for finding the larger value of two given values

using conditional operator:

Operators and ExpressionsUnit 4

Programming in C 51

#include<stdio.h>

void main()

{

int i, j, large;

printf (“Enter 2 integers : ”); //ask the user to input 2 numbers

scanf(“%d %d”,&i, &j);

large = i > j ? i : j; //evaluation using conditional operator

printf(“The larger of two numbers is %d \n”, large);

}

Output : Enter 2 integers: 14 25

The larger of two numbers is: 25

4.3.7 Bitwise Operators

Bitwise operators are used for manipulation of data at bit

level. A bitwise operator operates on each bit of data. Those operators

are used for testing, complementing or shifting bits to the right or

left hand side. Bitwise operators may not be applied to a float or

double.

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive

<< Shift left

>> Shift right

Table 4.4: Bitwise operators

Bitwise Logical Operators: The logical bitwise operators are similar

to the Boolean or Logical operators, except that they operate on

every bit in the operand(s). For instance, the bitwise AND operator

(&) compares each bit of the left operand to the corresponding bit in

the right hand operand. If both bits are 1, a 1 is placed at that bit

position in the result. Otherwise, a 0 is placed at that bit position.

Bitwise AND (&) Operator: The bitwise AND operator performs

logical operations on a bit-by-bit level using the following truth table:

Operators and Expressions Unit 4

Programming in C52

Bit x of operator1 Bit x of operator2 Bit x of result

0 0 0

0 1 0

1 0 0

1 1 1

Table 4.5: Truth Table for the bitwise AND (&) operator

Let us consider the following program segment for

understanding AND(&) operation.

void main()

{ unsigned int a = 60; // a= 60 = 0011 1100

unsigned int b = 13; // b= 13 = 0000 1101

unsigned int c = 0;

c = a & b; //c= 12 = 0000 1100

printf(“%d”,c);

}

The output will be 12.

Bitwise OR (|): The bitwise OR operator performs logical operations

on a bit-by-bit level using the following truth table:

Bit x of operator1 Bit x of operator2 Bit x of result

0 0 0

0 1 1

1 0 1

1 1 1

Table 4.6: Truth Table for the bitwise OR (|) operator

The bitwise OR operator (|) places a 1 in the corresponding

value’s bit position if either operand has a bit set (i.e.,1) at the

position. Bitwise OR(|) operation can be understood with the following

example:

void main()

{ unsigned int a = 60; // 60 = 0011 1100

unsigned int b = 13; // 13 = 0000 1101

unsigned int c = 0;

Operators and ExpressionsUnit 4

Programming in C 53

c = a | b; // 61 = 0011 1101

}

Bitwise exclusive OR (^): The bitwise exclusive OR (XOR) operator

performs logical operations on a bit-by-bit level using the following

truth table:

Bit x of operator1 Bit x of operator2 Bit x of result

0 0 0

0 1 1

1 0 1

1 1 0

Table 4.7: Truth Table for the exclusive OR(^)

The bitwise exclusive OR(^) operator sets a bit in the resulting

value’s bit position if either operand (but not both) has a bit set

(i.e.,1)at the position. Bitwise exclusive OR(^) operation can be

understood with the following example:

void main()

{ unsigned int a = 60; // 60 = 0011 1100

unsigned int b = 13; // 13 = 0000 1101

unsigned int c = 0;

c = a ^ b; // 49 = 0011 0001

}

Bitwise Complement (~): The bitwise complement operator (~)

performs logical operations on a bit-by-bit level using the following

truth table:

bit x of op2 result

0 0

0 1

Table 4.8: Truth table for the Bitwise Complement (~)

The bitwise complement operator (~) reverses each bit in

the operand.

Bitwise Shift Operators: C provides two bitwise shift operators,

bitwise left shift (<<) and bitwise right shift (>>), for shifting bits left

Operators and Expressions Unit 4

Programming in C54

or right by an integral number of positions in integral data. Both of

these operators are binary, and the left operand is the integral data

whose bits are to be shifted, and the right operand, called the shift

count, specifies the number of positions by which bits need shifting.

The shift count must be nonnegative and less than the number of

bits required to represent data of the type of the left operand.

5 << 3

Left operand Right operand

Left-Shift (<<) Operator: The left shift operator shift bits to the left.

As bits are shifted toward high-order positions, 0 bits enter the low-

order positions. Bits shifted out through the high-order position are

lost. For example, let us consider the following declaration:

unsigned int Z = 5;

Here, Z in binary can be represented as 00000000 00000101

when 16 bits are used to store integer values.

Now if we apply left-shift, then

Z << 1 is 00000000 00001010 or 10 in decimal

and Z << 15 is 10000000 00000000 or 32768 in decimal.

Left-Shift is useful when we want to multiply an integer (not

floating point numbers) by a power of 2. The operator, takes 2

operands like this:

a << b

This expression returns the value of a multiplied by 2 to the

power of b.

For example, let us consider 4 << 2. In binary, 4 is 100.

Adding 2 zeros to the end gives 10000, which is 16, i.e., 4*22 = 4*4

= 16.

Similarly, 4 << 3 can be evaluated by adding 3 zeros to get

100000, which is 4*23 = 4*8 = 32.

Shifting once to the left multiplies the number by 2. Multiple

shifts of 1 to the left results in multiplying the number by 2 over and

over again. In other words, it means multiplying by a power of 2.

Some examples are:

Operators and ExpressionsUnit 4

Programming in C 55

5 << 3 = 5*23 = 5*8 = 40

8 << 4 = 8*24 = 8*16 = 128

1 << 2 = 1*22 = 1*4 = 4

Right-Shift (>>) Operator: The right shift operator shifts bits to the

right. As bits are shifted towards low-order positions, 0 bits enter the

high-order positions, if the data is unsigned. If the data is signed

and the sign bit is 0, then 0 bits also enter the high- order positions.

However, if the sign bit is 1, the bits entering high-order positions

are implementation-dependent. On some machines 1s, and on

others 0s, are shifted in. The former type of operation is known as

the arithmetic right shift, and the latter type the logical right shift.

For example,

unsigned int Z = 40960;

and Z in binary 16-bit format is 10100000 00000000

Now, if we apply right-shift, then

Z >> 1 is 01010000 00000000 or 20480 decimal

and Z >> 15 is 00000000 00000001 or 1 decimal

In the second example, the 1 originally in the fourteenth bit

position has dropped off. Another right shift will drop off the 1 in the

first bit position, and Z will become zero.

4.3.8 Special Operators

C supports some special operators such as comma operator,

size of operator, pointer operators (& and *) and member selection

operators (. and ->). The size of and the comma operators are

discussed in this unit.

The Comma Operator: The comma operator can be used to link

related expressions together. The comma allows for the use of

multiple expressions to be used where normally only one would be

allowed. It is used most often in the for loop statement.

The comma operator forces all operations that appear to

the left to be fully completed before proceeding to the right of comma.

This helps eliminate the side effects of the expression evaluation.

Operators and Expressions Unit 4

Programming in C56

num1 = num2 + 1, num2 = 2

The comma ensures that num2 will not be changed to a 2

before num2 has been added to 1 and the result placed into num1.

Some examples of comma operator are:

In for loops:

for (n=1, m=15, n <=m; n++,m++)

In while loops:

while (c=getchar(), c != ‘15’)

Exchanging values:

temp = x, x = y, y = temp;

The concept of loop will be discussed in the later units.

Program 4.5: Program to swap (interchange) two numbers using a

temporary variable.

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,temp;

clrscr();

printf("\nEnter the two integer numbers:");

scanf("%d%d",&a,&b);

printf("\nEntered numbers are.:");

printf("%d%8d",a,b);

temp=a,a=b,b=temp; // comma operator is used

printf("\n\nSwapped numbers are:%d%8d",a,b);

getch();

}

Output: (Suppose we have entered 4 and 8)

Enter the two integer numbers: 4 8

Entered numbers are: 4 8

Swapped numbers are: 8 4

The Sizeof Operator: The sizeof operator returns the physical size,

in bytes, of the data item for which it is applied. It can be used with

any type of data item except bit fields.

Operators and ExpressionsUnit 4

Programming in C 57

When sizeof is used on a character field the result returned

is 1 (if a character is stored in one byte). When used on an integer

the result returned is the size in bytes of that integer.

For example: s = sizeof (sum);

t = sizeof (long int);

The sizeof operator is normally used for determining the

lengths of arrays and structures when their sizes are not known to

the programmer. It is also used for allocating memory space

dynamically to variables during the execution of the program.

Program 4.6: Program that employs different kinds of operators

like arithmetic, increment, conditional and sizeof operators.

#include<stdio.h>

#include<conio.h>

void main()

{ int a, b, c, d,s;

clrscr();

a = 20;

b = 10;

c = ++a-b

printf (“a = %d, b = %d, c = %d\n”, a,b,c);

d=b++ + a;

printf (“a = %d, b = %d, d = %d\n, a,b,d);

printf (“a / b = %d\n, a / b);

printf (“a % b = %d\n, a % b);

printf (“a *= b = %d\n, a *= b);

printf (“%d\n, (c < d) ? 1 : 0);

printf (“%d\n, (c > d) ? 1 : 0);

s=sizeof(a);

printf(“\nSize is: %d bytes”,s);

}

Output: a=21 b=10 c=11

a=21 b=11 d=32

a/b=1

Operators and Expressions Unit 4

Programming in C58

a%b=10

a*=b=231

1

0

2 bytes

The increment operator ++ works when used in an

expression. In the statement c = ++a – b; new value a = 16 is used

thus giving value 6 to c. That is a is incremented by 1 before using

in expression. However in the statement d = b++ + a; the old value

b = 10 is used in the expression. Here b is incremented after it is

used in the expression.

CHECK YOUR PROGRESS

Q.1: Find the output of the following program segment:

a) void main(){ int x = 50;

printf(“%d\n”,5+ x++);

printf(“%d\n”,5+ ++x); }

b) void main(){ int x, y;

x = 50;

y = 100;

printf(“%d\n”,x+ y++);

printf(“%d\n”,++y -3); }

c) void main(){ int s1,s2;

char c='A';

float f;

s1=sizeof(c);

s2=sizeof(f);

printf("ASCII value of 'A' is %d",c);

printf("\nSize of s1 and s2 in bytes:%d%8d",s1,s2); }

Q.2: Find the output of the following C program:

void main()

Operators and ExpressionsUnit 4

Programming in C 59

{ int a,b,c;

a=b=c=0;

printf(“Initial value of a,b,c :%d%d%d\n”,a,b,c);

a=++b + ++c;

printf(“\na=++b + ++c=%d%d%d\n”,a,b,c);

a= b++ + c++;

printf(“\na=b++ + c++= %d%d%d\n”,a,b,c);

a=++b + c++;

printf(“\na=++b + c++= %d%d%d\n”,a,b,c);

a=b-- +c --;

printf(“\na=b-- +c --= %d%d%d\n”,a,b,c);

}

Q.3: Choose the correct option:

i) If i=6, and j=++i, the the value of j and i will be

a) i=6,j=6 b) i=6, j=7 c)i=7,j=6 d)i=7,j=7

ii) If the following variables are set to the values as shown

below, then what will be the expression following it?

answer=2;

marks=10;

!((“answer<5”)&& (marks>2))

a) 1 b) 0 c) -1 d) 2

EXERCISE 4.1

1) Write a program that reads a floating-point number and then

displays the right-most digit of the integral part of the number.

4.4 PRECEDENCE AND ASSOCIATIVITY

There are two important characteristics of operators which determine

how operands group with operators. These are precedence and

associativity. The operators have an order of precedence among

themselves. This order of precedence dictates in what order the operators

Operators and Expressions Unit 4

Programming in C60

are evaluated when several operators are together in a statement or

expression. An operator’s precedence is meaningful only if other operators

with higher or lower precedence are present. Expressions with higher-

precedence operators are evaluated first. The grouping of operands can

be forced by using parentheses. Also, each operator has an associativity

factor that tells in what order the operands associated with the operator are

to be evaluated. Associativity is the left-to-right or right-to-left order for

grouping operands to operators that have the same precedence.

The following Table 4.9 lists C operators in order of precedence

(highest to lowest). Their associativity indicates in what order operators of

equal precedence in an expression are applied. R indicates Right and L

indicates Left.

Operator category Operators Associativity

Unary Operator -- ++ ! sizeof(type) R to L

Arithmetic multiply,

divide and remainder * / % L to R

Arithmetic add, subtract + - L to R

Relational Operators < <= > >= L to R

Equality Operators == != L to R

Logical AND && L to R

Logical OR || L to R

Conditional operator ? : R to L

Assignment operator = += -+ *= /+ %= R to L

Table.4.9: Precedence and Associativity

For example, in the following statements, the value 10 is assigned

to both a and b because of the right-to-left associativity of the = operator.

The value of c is assigned to b first, and then the value of b is assigned to a.

b = 9;

c = 10;

a = b = c;

In the expression

a + b * c / d

Operators and ExpressionsUnit 4

Programming in C 61

the * and / operations are performed before + because of

precedence. b is multiplied by c before it is divided by d because of

associativity.

4.5 EXPRESSIONS

C Expressions are based on algebraic expressions. These

expressions are very similar to what we learn in algebra, but they are not

exactly the same. An expression is a combination of variables, constants

and operators written according to the syntax of C language. In C every

expression evaluates to a value i.e., every expression results in some value

of a certain type that can be assigned to a variable. Here are some examples

of expressions:

15 // a constant

i // a variable

i+15 // a variable plus a constant

(m + n) * (x + y)

The following program illustrates the effect of presence of

parenthesis in expressions.

Program 4.7: Program to show use of parenthesis:

#include<stdio.h>

#include<conio.h>

void main()

float a, b, c x, y, z;

a = 9;

b = 12;

c = 3;

x = a – b / 3 + c * 2 – 1;

y = a – b / (3 + c) * (2 – 1);

z = a – (b / (3 + c) * 2) – 1;

printf (“x = %fn”,x);

printf (“y = %fn”,y);

printf (“z = %fn”,z);

}

Operators and Expressions Unit 4

Programming in C62

Output: x = 10.00

y = 7.00

z = 4.00

Rules for evaluation of expression:

 First parenthesized sub expression left to right is evaluated.

 If parenthesis is nested, the evaluation begins with the inner

most sub expression.

 The precedence rule is applied in determining the order of

application of operators in evaluating sub expressions.

 The associability rule is applied when two or more operators of the

same precedence level appear in the sub expression.

 Arithmetic expressions are evaluated from left to right using the

rules of precedence.

 When parenthesis is used, the expressions within parenthesis

assume the highest priority.

4.6 TYPE CONVERSION

The type conversion or typecasting refers to changing an entity

of one data type into another. C allows programmers to perform typecasting

by placing the type name in parentheses and placing this in front of the

value. The form of the cast data type is:

(type) expression

Let us consider the case where we want to divide two integers a

and b, where the result must be an integer. However, we may want to force

the output to be a float type in order to keep the fraction part of the division.

The typecast operator is used in such a case. It will do the conversion

without any loss of fractional part of data.

Program 4.8: Program to show type conversion:

#include<stdio.h>

void main()

{

int a,b;

a=3,b=2;

Operators and ExpressionsUnit 4

Programming in C 63

printf(“\n%f”,(float)a/b);

}

The output of the above program will be 1.500000. This is because

data type cast (float) is used to force the type of the result to be of the type

float.

From the above it is clear that the usage of typecasting is to make a

variable of one type act like another type for one single operation. So by

using this ability of typecasting it is possible to create ASCII characters by

typecasting integer to its character equivalent.

Typecasting is also used in arithmetic operation to get correct result.

This is very much needed in case of division when integer gets divided and

the remainder is omitted. In order to get correct precision value, one can

make use of typecast as shown in the example above. Another use of the

typecasting is shown in the example below.

void main()

{

int a = 5000, b = 7000 ; long int c = a * b ;

}

Here, two integers are multiplied and the result is truncated and

stored in variable c of type long int. But this would not fetch correct result

for all. To get a more desired output the code is written as

long int c = (long int) a * b;

Though typecast has so many uses one must take care about its

usage since using typecast in wrong places may cause loss of data. For

instance, truncating a float when typecasting to an int.

CHECK YOUR PROGRESS

Q.4: State whether the following expressions are true

or false:

i) Conditional operator (? :) has right to left associativity.

ii) Logical OR operator has right to left associativity.

iii) C permits mixing of constants and variables of different

types in an expression.

Operators and Expressions Unit 4

Programming in C64

iv) Precedence dictates in what order the operators are

evaluated when several operators are together in a

statement or expression.

v) A typecast is used to force a value to be of a particular

variable type.

4.7 LET US SUM UP

A list of C operators with their symbol is summerized below:

Arithmetic Operator:

Operator Description

* multiplication

/ division

% modulo

+ addition

- subtraction

Relational Operator:

Oerator Description

< less than

> greater than

>= greater than or equal

== equal to

!= not equal

Logical Operator:

Operator Description

! NOT

&& AND

|| OR

Bitwise Operators:

Operator Description

~ One’s complement

<< Left shift

Operators and ExpressionsUnit 4

Programming in C 65

>> Right shift

& Bitwise AND

^ Bitwise XOR

Assignment Operator: The Assignment Operator(=) evaluates an

expression on the right of the expression and substitutes it to the value or

variable on the left of the expression. For example:

sum = n1+n2 ;

value of n1 and n2 are added and the result is assigned to the

variable sum.

Increment and Decrement:

Operator Description Example

++ increment a++ (post increment)

++a (pre increment)

-- decrement a-- (post decrement)

--a (pre decrement)

The Conditional Operator: The conditional operator can be used

to replace if-else logic in some situations. It is also known as ternary opeartor

since three opearnds are used for this opeartor. The format of conditional

operator is shown below:

result = condition ? expression1 :expression2;

Comma Operator: We can use the comma operator (,) available in

C language, to build a compound expression by putting several expressions

inside a set of parentheses. The expressions are evaluated from left to

right and the final value is evaluated last.

sizeof Operator: The sizeof operator returns the size in bytes of

the data item for which it is applied. It can be used with any type of data

item except bit fields. The general form is: s = sizeof (item);

C expressions are syntactically valid combinations of operators and

operands that compute to a value determined by the priority and associativity

of the operators.

Operators and Expressions Unit 4

Programming in C66

4.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: a) 55 99

b) 150 57

c) ASCII value of 'A' is 65

Size of s1 and s2 in bytes: 1 4

Ans. to Q. No. 2: Initial value of a,b,c : 0 0 0

a = ++b + ++c = 2 1 1

a = b++ + c++ = 2 2 2

a = ++b + c++ = 5 3 3

a = b-- + c -- = 6 2 2

Ans. to Q. No. 3: i) (d) i=7, j=7

ii) (b) 0

Ans. to Q. No. 4: i) True, ii) False, iii) True, iv) True, v) True

4.9 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw-

Hill Education.

2) Gottfried Byron, S; Programming with C; Tata McGraw-Hill Education.

4.10 MODEL QUESTIONS

Q.1: What is an operator? What are the different types of operators that

are included in C.

Q.2: What is an operand? What is the relationship between operator

and operand?

Q.3: Describe the three logical operators included in C?

Q.4: Write a C program to compute the surface area and volume of a

cube if the side of the cube is taken as input.

Operators and ExpressionsUnit 4

Programming in C 67

Q.5: What is unary operator? How many operands are associated with a

unary operator?

Q.6: What is meant by operator precedence?

Q.7: What is meant by associativity? What is the asslociativity of the

arithmetic operators?

Q.8: What will be the output of the following program:

#include<stdio.h>

#include<conio.h>

void main()

{

printf(“The size of char is %d”,sizeof(char));

printf(“\nThe size of int is %d”,sizeof(int));

printf(“\nThe size of short is %d”,sizeof(short));

printf(“\nThe size of float is %d”,sizeof(float));

printf(“\nThe size of long is %d”,sizeof(long));

printf(“\nThe size of char is %d”,sizeof(char));

printf(“The size of double is %d”,sizeof(double));

getch();

}

*** ***** ***

Operators and Expressions Unit 4

Programming in C68

UNIT 5: PREPROCESSOR DIRECTIVES AND I/O
FUNCTIONS

UNIT STRUCTURE

5.1 Learning Objectives

5.2 Introduction

5.3 Header Files

5.4 Formatted Input/Output Functions

5.5 Control Strings used in printf() and scanf() Functions

5.6 Escape Sequences

5.7 Unformatted Input/Output Functions

5.8 Let Us Sum Up

5.9 Answers to Check Your Progress

5.10 Further Reading

5.11 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn about header file and its use

 learn formatted input function like scanf()

 learn formatted output function like printf()

 describe control string used in printf() and scanf()

 describe unformatted input functions like getch(), getche(), getchar(),

gets()

 formatted input functions like putch(), putchar(), puts()

5.2 INTRODUCTION

A computer program basically consists of three sections i.e, input,

processing, and output. The input section receives data from the

environment through some input device like keyboard, mouse, secondary

storage etc. The processing section is responsible for calculating the

required data or output. Different logic like selective logic and iterative logic

Programming in C 69

are implemented in this section. The last section is the output section. This

section is responsible for providing output in the appropriate manner. C

language provides a set of library functions for doing these activities. These

functions are predefined and stored in some file known as header file.

5.3 HEADER FILES

C language is rich in terms of library functions. The library functions

are stored in a special file called header file. A header file is a special

system file with extension.h which contains C library function declarations

and macro definitions. It is included in a C program using #include

preprocessor directives. The # symbol at the beginning indicates that this

is for the C preprocessor. The #include instruct the compiler to read the

specified file and execute when necessary. For example, the header file

stdio.h should be used if you want to use the two standard I/O functions

printf() and scanf().

CHECK YOUR PROGRESS

Q.1: What are the different input devices used to input

data into a program?

Q.2: What is header file? Why is it used?

Q.3: To use printf() and scanf()functions in a program

header file is required.

5.4 FORMATTED I/O FUNCTIONS

Formatted functions can be both input and output type. Input

functions can accept data from the input device like keyboard and output

functions can display data on the output device like monitor. Formatted

functions allow the user to accept and display the data as per requirements.

For example, if you want to display a particular data on a particular position

of the screen, it is possible to do so. Here, we will discuss one formatted

input function i.e., scanf() and one formatted output function i.e., printf().

Preprocessor Directives and I/O Functions Unit 5

Programming in C70

a) scanf(): Commonly used standard input formatted library function

to accept data form the keyboard. It can accept data until we are

pressing the enter key or space bar.

Syntax:

scanf(“control string”, list of addresses of variables);

For example, scanf(“%d”, &n);

Here %d represent that n is an integer variable. It can read a set of

variable of same type or different type.

For example,

scanf(“%d%f%c”, &n, &p, &ch);

where n, p and ch are the variables of type int, float and char

respectively. Here ‘&’ is known as ‘address of’ operator. It is required,

because the values read form keyboard should store in some

address of the memory.

//Program 5.1: Write a C program to find the area of a circle:

#include<stdio.h>

#include<conio.h>

void main()

{

float r, area;

clrscr();

printf(“Enter the radius : “);

scanf(“%f”, &r);

area=3.14*r*r;

printf(“Area= %10.3f”, area);

getch();

}

b) printf(): A standard output library function to display a constant or

content of a variable as per the user requirements. Library functions

must be written using lower case letters. As such, printf() must also

be written in lower case letters only. The syntax for writing printf()

is:

Preprocessor Directives and I/O FunctionsUnit 5

Programming in C 71

printf(“control string”);

or

printf(“control string”, variable1, variable2,, variable n);

//Program 5.2: Sample C program showing the use of printf():

#include<stdio.h>

#include<conio.h>

void main()

{

printf(“WEL-COME TO WORLD OF C “);

getch();

}

5.5 CONTROL STRINGS USED IN printf() AND scanf()

FUNCTIONS

A control string is a string of characters. If the first character is

either % or \ then it specifies some meaning, otherwise the string displays

as they are in the string. The two symbols specified are as follow:

% Conversion specification

\ Escape sequence

Conversion specification indicates the data type used in the program.

The following are the different control strings used to specify different data

types, which are also known as format specifier.

Data type Format specifier

int %d or %l

short signed %d or %l

long int %ld

long signed %ld

long unsigned %lu

unsigned hexadecimal %x

unsigned octal %o

float %f

double %lf

Preprocessor Directives and I/O Functions Unit 5

Programming in C72

signed character %c

unsigned character %c

string %s

//Program 5.3: Program to show the use of control string:

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

printf(“%d %f %c”, 4,4.0,’4');

getch();

}

Output: 4 4.000000 4

Here, %d represents an integer value 4, %f represents a float value

4.0 and finally %c represents a character value 4. The second value 4.0 is

displayed as 4.000000 instead of 4.0. This is the normal tendency of compiler

that float value is always displayed with upto 6 digits after decimal point.

This can be reformatted by using field-width specifier. The field width

specifier tells printf() how many columns on screens should be used while

printing a value.

//Program 5.4: Program to show the use of field-width specifier:

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

printf(“%d%5.2f%c”, 4,4.0,’4');

getch();

}

Output: 4 4 . 0 0 4

Here %5.2f means float value for 5 characters, out of which 2 for

after decimal point, one for the decimal point itself and the remaining two

for before decimal.

Preprocessor Directives and I/O FunctionsUnit 5

Programming in C 73

//Program 5.5:

#include<steio.in>

#include<conio.in

void main()

{

clrscr();

printf(“\n%d”, 4);

printf(“\n%2d”, 4);

printf(“\n%3d”, 4);

printf(“\n%-3d”, 4);

getch();

}

%d means display the value without any field-width specifier, %2d

means display the value with two column from right side, %3d means display

the value with three columns form right side and finally %-3d means display

the value with 3 columns from left side. Here, sign indicate left justification.

Program S.S. will be more clear if we execute the program in our computer

and see the output.

5.6 ESCAPE SEQUENCES

Escape sequences are useful to beautify the output in the display

screen. The output of a program should be well formatted, so that nobody

should be confused. The following are the commonly used escape

sequences in C.

Escape Purpose Description

Sequence

\n New line Takes the cursor to the beginning of

the next line.

\b Backspace Moves the cursor one position left of

its current position

\f Form feed Moves the page on the printer to the

beginning of next page.

Preprocessor Directives and I/O Functions Unit 5

Programming in C74

\” Double quote If the character “ to be printed

\\ Backslash If the character \ to be printed

\t Tab Advances the remaining output one tab

on the screen

\r Carriage return Takes the cursor to the beginning of

the line in which it is currently placed.

\a Alert Alerts the user by sounding the speaker

inside the computer.

/*Program 5.6: C program showing the use of double quote (“) in a

display message.*/

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

printf(“\”KKHSOU\””);

getch();

}

Output: “KKHSOU”

/*Program 5.7: C program showing the use of tab (\t) in a display

message.*/

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

printf(“\t Education\t is\t a \t backbone\t of \t a \t society.”);

getch();

}

Output:

Education is a backbone of a society.

Preprocessor Directives and I/O FunctionsUnit 5

Programming in C 75

CHECK YOUR PROGRESS

Q.4: Write a program to input two numbers from the

keyboard and find the sum?

Q.5: The basic pay of an employee is input through the keyboard.

His dearness allowance is 119% of basic pay, and house

rent allowance is 15% of basic pay. Write a program to

calculate his gross salary.

Q.6: Write a program to check whether an input integer is odd or

even.

5.7 UNFORMATTED I/O FUNCTIONS

Unformatted functions are easier to use. They do not require any

control string to use. There are several input and output functions through

which we can accept data and display them on the monitor. We can accept

a single character or a set of characters. Similarly, we can display a single

character as well as a set of characters using output functions. While

entering data using scanf() function, a few problems arise such as:

 It requires to hit the enter key to accept the data.

 It cannot accept blank character. So multiple words are not possible

to accept.

The above problems are eliminated in the unformatted functions.

We will discuss here some input and output functions, such as -

Input functions:

getch()

getche()

getchar()

gets()

Output functions:

putch()

putchar()

puts()

Preprocessor Directives and I/O Functions Unit 5

Programming in C76

getch(): This function accepts a character from the keyboard and

does not echo the typed character on the screen. It will read a character

just after it is typed without waiting for the enter key to be pressed. In most

of our previous examples, we have used this function. One might think that

C program always end with getch() - which is not true. getch() function

can be used anywhere in a C program to accept a single character. Most

often this function is used to hold the execution of a program, or to see

intermediate results or to stop rolling the screen.

getche(): The function getche() is similar to getch() except that

getche() will echo the typed character on the screen whereas getch()

does not echo the typed character on the screen.

getchar(): getchar() also reads a character from the keyboard

and echoes it on the screen just after it is typed. It requires the enter key to

be pressed.

gets(): It accepts a string or a group of words from the keyboard at

a time which is not possible by scanf() or getch() . It is used to read a

sentence from the keyboard. The reading process will terminate when an

enter key is hit.

/*Program 5.8: C program showing the use of some input/output

functions.*/

#include<stdio.h>

#include<conio.h>

void main()

{

char a, b, c;

clrscr();

printf(“Press any key to continue : \n”);

a=getch();

printf(“Type any character \n”);

b=getche();

printf(“Press any key and press enter key \n”);

c=getchar();

printf(“Outputs are : “);

Preprocessor Directives and I/O FunctionsUnit 5

Programming in C 77

putch(a);

putch(b);

putch(c);

getch();

}

putch() and putchar() are just opposite to getch(). They are

used to display a single character on the screen. puts() is also just opposite

to gets(). It is used to display a string or a sentence on the screen.

/*Program 5.9: C program which reads name and title from the

keyboard and display it. */

#include<stdio.h>

#include<conio.h>

void main()

{

char name[30];

clrscr();

printf(“Your name please: “);

gets(name); //name will be entered through the keyboard

puts(“Hello “); //display Hello

puts(name); //display the entered name

getch();

}

5.8 LET US SUM UP

 A computer program basically consist of three sections i.e. input,

processing and output.

 Library functions are used to perform some computations and I/O

operations.

 Library functions are stored in a special file called header file.

 Common formatted I/O functions are printf() and scanf().

 Control strings or format specifiers are used to specify data type.

 Escape sequences are used to beautify output of programs.

Preprocessor Directives and I/O Functions Unit 5

Programming in C78

 Unformatted I/O functions do not requires any control string.

 Common unformatted I/O functions are getch(), getche(), getchar(),

gets(), putch(), puts(), putchar().

5.9 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: Different input devices like keyboard, mouse, secondary

storage etc. are used to input data into a computer program.

Ans. to Q. No. 2: A header file is a special system file with extension .h

which contains C library function declarations and macro definitions.

It is used to use some library function into a program.

Ans. to Q. No. 3: To use printf() and scanf()functions in a program stdio.h

header file is required.

Ans. to Q. No. 4: #include<stdio.h>

#include<conio.h>

void main()

{

int a, b, c;

clrscr();

printf(“Enter the first number :\n”);

scanf(“%d”, &a);

printf(“Enter the second number :\n”);

scanf(“%d”, &b);

c=a+b;

printf(“The sum is %d”, c);

getch();

}

Ans. to Q. No. 5: #include<stdio.h>

#include<conio.h>

void main()

{

int bpay, hra, da, gross;

clrscr();

Preprocessor Directives and I/O FunctionsUnit 5

Programming in C 79

printf(“Enter the basic pay :\n”);

da=bpay*1.19;

hra=bpay*.15;

gross=bpay+da+hra;

printf(“The gross salary is %d”, gross);

getch();

}

Ans. to Q. No. 6: #include<stdio.h>

#include<conio.h>

void main()

{

int a;

clrscr();

printf(“Enter the number :\n”);

scanf(“%d”, &a);

if((a%2)==0

printf(“The number is even”);

else

printf(“The number is odd”);

getch();

}

5.10 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw-

Hill Education.

2) Gottfried Byron, S; Programming with C; Tata McGraw-Hill Education.

5.11 MODEL QUESTIONS

Q.1: What is control string?

Q.2: Explain the different format specifiers used in C language?

Q.3: What are the uses of escape sequence?

Preprocessor Directives and I/O Functions Unit 5

Programming in C80

Q.4: Differentiate between formatted and unformatted function.

Q.5: The temperature of a city in Fahrenheit degrees is input through

the keyboard. Write a program to convert this temperature into

Centigrade degrees.

Q.6: If a four-digit number is input through the keyboard, write a program

to reverse the number.

Q.7: Any year is input through the keyboard. Write a program to determine

whether the year is a leap year or not.

Q.8: A number is entered through the keyboard. Write a program to find

the reversed number and to determine whether the original and

reversed numbers are equal or not.

Q.9: Any character is entered through the keyboard, write a program to

determine whether the character entered is a capital letter, a small

case letter, a digit or a special symbol.

Q.10: Write a program to calculate overtime pay of an employee. Over

time is paid at the rate of Rs. 10.00 per hour for every hour worked

above 8 hours. Assume that employees do not work for fractional

part of an hour.

*** ***** ***

Preprocessor Directives and I/O FunctionsUnit 5

Programming in C 81

UNIT 6: CONDITIONAL STATEMENTS

UNIT STRUCTURE

6.1 Learning Objectives

6.2 Introduction

6.3 Decision Control Statements

6.4 Conditional Branching Statements

6.4.1 if Statement

6.4.2 if-else Statement

6.4.3 Nested if-else Statement

6.4.4 switch Statement

6.5 break Statement

6.6 continue Statement

6.7 goto Statement

6.8 Conditional Operator Statement

6.9 Let Us Sum Up

6.10 Answers to Check Your Progress

6.11 Further Reading

6.12 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will able to:

 learn about decision control statements

 use conditional and uncondional branching statements in

programming

 learn about if, if-else, switch statements

 learn to use break, continue and goto statements.

6.2 INTRODUCTION

In the previous units, we have seen that the C language has a

collection of library functions, which include a number of input/output

functions. Moreover, the instructions were executed in the same order in

Programming in C82

which they appeared within a program. Each instruction was executed once

and only once. But C language provides the facilities of decision making to

carry out logical test at some particular point within the program and repeated

execution of a group of instructions.

In this unit, we will learn about decision control statements that can

alter the flow of a sequence of instructions.

6.3 DECISION CONTROL STATEMENTS

We have already been acquainted with simple C programs in the

previous units. We have seen that the code in the C program is executed

sequentially from the beginning to end of the program. But in some situations,

we may want only selected statements to be executed. In such cases, we

use decision control statements.

C language supports two types of decision control statements. These

includes conditional and unconditional branching.

6.4 CONDITIONAL BRANCHING STATEMENT

While writing computer programs we usually instruct the computer

to check various kinds of situations and to act accordingly. The computer

performs comparisons of various kinds of statements. The conditional

branching statements help to jump from one part of the program to another

depending on whether a particular condition is satisfied or not.

Conditional branching statements include if, if-else, nested if-else,

switch statements.

6.4.1 if Statement

If statement is the most popular and simple decision making

statement. First of all, it checks the test condition and then, depending

on the result of the test condition, it transfers the control to a particular

statement or to a block of statements.

The if statement evaluates the test expression inside

parenthesis. If the test expression is evaluated to true (nonzero),

Decision and Control StatementsUnit 6

Programming in C 83

then the statements inside the body of if is executed. If test

expression is evaluated to false (0), statements inside the body of if

is skipped. In C any non-zero integer value is treated as true and

zero is treated as false. The syntax of simple if statement is as

follows:

if(test condition)

{

/*statement(s) that will execute if the condition is true.*/

}

The parentheses { } used in if statements are not necessary

if the statement block contains only one statement.

Fig. 6.1: Control transfer in if statements

Program 6.1: Write a C program to check whether the entered

number is positive or negative

Solution:

#include<stdio.h>

#include<conio.h>

void main(){

int a ;

printf (“ Enter the number: ”) ;

scanf (“ %d ” , &a) ;

Decision and Control Statements Unit 6

Programming in C84

if(a == 0)

printf (“The Number is Zero ”) ;

if (a > 0)

printf (“ The Number is Positive ”) ;

if (a < 0)

printf (“The number is negative ”);

getch();

}

Output:

Enter the number 3

The Number is Positive

6.4.2 if-else Statement

If-else statement is a bi-directional condition control

statement. This type of statement is used to test the condition and

take one of the two possible actions. Syntax of if-else is given below.

If the test condition is evaluated and found to be true then block of

statement 1 will be executed, otherwise block of statement 2 will be

executed.

if (test condition)

{

block of statement 1

}

else

{

block of statement 2

}

If the test condition is true, then the body of if will be executed

and if the test condition is false, then the statements in the else part

will be executed.

Decision and Control StatementsUnit 6

Programming in C 85

Fig 6.2: Control transfer in if-else statements

Program 6.2: Write a C program to print the larger of the two given

numbers.

Solution:

#include<stdio.h>

void main()

{

int a , b ;

printf (“ Enter the First number ”) ;

scanf (“ %d ” , &a) ;

printf (“ Enter the Second number ”) ;

scanf (“ %d ” , &b) ;

if(a>b)

printf (“ Largest Number is = %d” , a) ;

/* This statement will be executed if the conditional

statement is true i.e. if the value of a is greater than the

value of b */

else

printf (“ Largest Number is=%d” , b) ;

/* This statement will be executed if the conditional

statement is false i.e if the value of a is less than the

value of b */

}

Decision and Control Statements Unit 6

Programming in C86

Output: Enter the First number 12

Enter the Second number 20

Largest Number is 20

Let us consider a program for checking whether a year is a

leap year or not. Leap year is a special year containing one extra

day i.e., total number number of days in a leap year is 366 days. If

a year is exactly divisible by 4 and not divisible by 100 then it is a

leap year. Again, if the year is exactly divisible by 400 then it is a

leap year, otherwise it is a common year.

Program 6.3: Write a C program to check whether a year is leap

year or not.

Solution:

#include<stdio.h>

#include<conio.h>

void main()

{

int year;

/* Read year from user */

printf("Enter year : ");

scanf("%d", &year);

// Check for leap year

if(((year%4 == 0) && (year%100 !=0)) || (year%400==0))

{

printf("LEAP YEAR");

}

else

{

printf("COMMON YEAR");

}

getch();

}

If we enter 2004, 2016 the output will be LEAP YEAR. And if

we enter year like 2005, 2010, 2015, then the output will be

COMMON YEAR.

Decision and Control StatementsUnit 6

Programming in C 87

6.4.3 Nested if-else Statement

In certain cases we may use one if-else structure within

another if- else. This is known as nested if-else structure. The

syntax is as follows.

if(test condition 1)

{

if(test condition 2)

{

block of statement 1

}

else

{

block of statement 2

}

}

else

{

block of statement 3

}

Program 6.4: The program in Program 6.1 can be rewritten in nested

if-structure in following ways

Solution:

#include<stdio.h>

void main()

{

int a ;

printf (“ Enter the number: ”) ;

scanf (“ %d ” , &a) ;

if(a == 0)

printf (“The number is Zero ”) ;

else

if (a > 0)

Decision and Control Statements Unit 6

Programming in C88

printf (“ The number is Positive ”) ;

else

printf (“The number is Negative ”);

}

Output: Enter the number 5

The number is Positive

6.4.4 switch Statement

The main disadvantage of if-else statements is that they

are too complex to understand, read and debug when there are

multiple conditions for testing. Switch case statements are a

substitute for long if statements that compare a variable to several

"integral" values. The basic format for using switch-case is outlined

below.

switch (<variable/expression>)

{

case label1:

/* statements to be executed if <variable> = = label1*

break;

case label2:

/* statements to be executed if <variable> = = label2 */

break;

...

...

default:

/* statements to be executed if <variable> does not equal

the value following any of the cases*/

}

The switch statement checks the value of variable/

expression against the list of case labels and when a match is

found, the block of statements associated with that case is executed.

The labels in the syntax are constants or expressions. The break

statement at the end of each block signals the end of a particular

Decision and Control StatementsUnit 6

Programming in C 89

case and causes immediate exit from the switch statement. If the

expression does not match any of the case labels then it will execute

statements in the default section.

An important point to remember about the switch statement

is that the case values may only be constant integral expressions.

The default case is optional, but it is wise to include it as it handles

any unexpected cases. Switch statements serve as a simple way

to write long if statements when the requirements are met. Let us

consider an example for a better understanding of the switch

statement.

There are some rules that should be followed while writing

switch statement. These rules are:

 The <variable/expression> used in a switch statement must

have an integral type.

 We can have any number of case statements within a switch.

Each case is followed by the value to be compared to and a

colon.

 The constant-expression (labels in the syntax) for a case must

be the same data type as the variable in the switch, and it must

be a constant or a literal.

 When the variable being used is equal to a case, constant or

literal, the statements following that case will execute until a

break statement is reached.

 When a break statement is reached, the switch terminates, and

the flow of control jumps to the next line following the switch

statement.

 Not every case needs to contain a break. If no break appears,

the flow of control will fall through to subsequent cases until a

break is reached.

 A switch statement can have an optional default case, which

mostly appears at the end of the switch. The default case can

be used for performing a task when none of the cases is true.

Decision and Control Statements Unit 6

Programming in C90

Program 6.5: Write a program to convert a single digit number into

words. [For example if you enter 5, the output should be “Five”].

#include<stdio.h>

#include<conio.h>

void main()

{

int x;

printf(“Enter a number less than 10 : ”);

scanf(“%d”,&x) ;

switch(x)

{

case 1: printf(“ One ”) ;

break ;

case 2: printf(“ Two ”) ;

break ;

case 3: printf(“ Three ”) ;

break ;

case 4: printf(“ Four ”) ;

break ;

case 5: printf(“ Five ”) ;

break ;

case 6: printf(“ Six ”) ;

break ;

case 7: printf(“ Seven ”) ;

break ;

case 8: printf(“ Eight ”) ;

break ;

case 9: printf(“ Nine ”) ;

break ;

case 10: printf(“ Ten ”) ;

break ;

default : printf(“ Out of range ”) ;

}

}

Decision and Control StatementsUnit 6

Programming in C 91

Output: Enter a number less than 10 : 5

Five

6.5 break STATEMENT

The break statement generally appears inside switch body or a loop

body. In C, the break statement is used to terminate the execution of the

current enclosing switch or loop body in which it appears. The general format

of the break statement is:

break;

The break is a keyword and a semicolon must be inserted after the

word break. We have already seen its usage in the switch statement.

Break statement is widely used in loop. When the compiler

encounters a break statement, the control passes to the statement that

follows the loop.The following program Program 6.6 shows the use of break

statement inside for loop. In a loop, the break statement is mostly associated

with an if statement.

Program 6.6: Write a program to show use of break statements

inside for loop.

Solution:

#include <stdio.h>

#include<conio.h>

void main()

{

int i;

for (i = 1; i <= 10; i++)

{

printf (“%d, ”, i);

if (i == 4)

break;

}

getch();

}

Decision and Control Statements Unit 6

Programming in C92

When we run the program, the output will be 1, 2, 3, 4, although the

program is written for display from 1 to 10. In the for loop, the counter i is

from 1 to 10. As soon as i becomes equal to 4, the break statement is

executed and the control jumps out of the loop.

Hence, the break statement is used to exit a loop from any point

within its body, bypassing its normal terminating condition.

6.6 continue STATEMENT

Similar to the break statement, the continue statement can only

appear in the body of a loop. The continue statement forces the next iteration

of the loop to take place, skipping any statement(s) following the continue

satement in the body of the loop. The syntax of the continue statement is:

continue;

When the compiler encounters a continue statement then the rest

of the statements in the loop are skipped and the control is unconditionally

transferred to the next iteration.

The use of continue statement in loops is shown in the following

syntax. Like break statement, continue statement is also associated with

an if condition.

while (test-condition)

{

……………

if(………..)

continue;

……………

……………

}

do

{

……………

if(………..)

continue;

……………

Decision and Control StatementsUnit 6

Programming in C 93

……………

} while(test-condition);

for(initialization; test condition; increment)

{

……………

if(………..)

continue;

……………

……………

}

For example, if we want to display the numbers from 1 to 10 except

7, then we can use continue statement in the following way:

Program 6.7: Write a program to show use of continue statement.

Solution:

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

for(i=1;i<=10;i++)

{

if(i==7)

continue;

printf(“%d\t”,i);

}

getch();

}

The output of the program will be 1 2 3 4 5 6 8 9 10.

As soon as i becomes equal to 7, the continue statement is

encountered, so the rest of the statements in the for loop are skipped and

the control passes to the next iteration that increments the value of i.

Thus, the continue statement forces the next iteration to take place,

skipping any code in between itself and the test condition of the loop.

Decision and Control Statements Unit 6

Programming in C94

6.8 goto STATEMENT

C language supports an unconditional control statement that is goto.

The goto statement is used to tranfer control to a specified label. It is used

to transfer the control in a program from one point to another point

unconditionally. Therefore, goto is called unconditional branching statement.

The syntax of the goto statement is:

The following program shows the use of goto statement with the

help of for loop.

Program 6.8: Write a program to show use of goto statement.

Solution:

#include<stdio.h>

void main()

{

int i, value;

for(i=0; i<=10; ++i)

{

printf (“Enter a number \n”);

scanf (“%d”, &value);

if (value <= 0)

{

printf (“Error :”);

printf (“ Zero or negative value found \n”);

goto error;

}

}

error :

; // Null statement

}

Decision and Control StatementsUnit 6

Programming in C 95

Output:

Enter a number

1

Enter a number

2

Enter a number

0

Error: Zero or negative value found

It is a good programming practice to use the break and continue

statements in preference to goto whenever possible. Use of goto statement

makes it difficult to trace the control flow of a program and thus the program

becomes complicated and hard to modify.

CHECK YOUR PROGRESS

Q.1: Fill in the blanks:

i) In C any integer value is treated as true

and is treated as false.

ii) When a statement is reached, the switch

statement terminates, and the flow of control jumps to

the next line following the switch statement.

iii) We can have number of case statements

within a switch.

iv) If none of the cases is matched with the variable in the

switch statement, then the statement under

will be executed.

v) The switch case control expression must be of

.................... type.

vi) The statement is used to transfer control

to a specified label.

Q.2: Choose the appropriate option:

A switch statement is used to–

a) switch between function in a program

b) switch from one variable to another variable

Decision and Control Statements Unit 6

Programming in C96

c) to choose from multiple possibilities which may arise

due to different values of a single variable

d) to use switching variable

Q.3: What will be the value of x in the following code:

#include <stdio.hi>

#include<conio.h>

void main ()

{

int x, y = 10;

x = (y < 10) ? 30 : 40;

printf("Value of x: %d", x);

getch();

}

6.9 LET US SUM UP

 Conditional statements are used to execute a statement or a group

of statements based on certain conditions. if, if-else, switch

statements are conditional statements.

 In an if statement, if the condition is true the statements inside the

parenthesis { }, will be executed, else the control will be transferred

to the next statement after if.

 In an if-else statement, if the condition is true the statements between

if and else is executed. If it is false the statement after else is

executed.

 The switch case statements are often used as an alternative to long

if statements that compare a variable to several integral values. It

matches the value in variable with any of the cases inside, the

statements under the case that matches will be executed.

 Default is a case that is executed when the value of the variable

does not match with any of the values of the case statement.

 The break statement causes an immediate exit from the innermost

loop structure.

Decision and Control StatementsUnit 6

Programming in C 97

 The continue statement causes the loop to be continued with the

next iteration after skipping any statement in between.

 The goto statement is used to transfer the control in a program from

one point to another point unconditionally.

6.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: i) non-zero, zero, ii) break, iii) any, iv) default, v) integral,

vi) goto

Ans. to Q. No. 2: c) to choose from multiple possibilities which may arise

due to different values of a single variable.

Ans. to Q. No. 3: Value of x: 40

6.11 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw

Hill Education.

2) Thareja, R. (2012); Computer Fundamentals & Programming in C;

OXFORD University Press.

6.12 MODEL QUESTIONS

Q.1: What is the role of conditional statements in programming?

Q.2: Explain the importance of switch case statement. In which situations

is a switch case desirable?

Q.3: Explain the usefulness of default statement in switch case statement.

Q.4: Write a program to print the prime factor of a number.

Q.5: Write a program to test if a given number is a power of 2.

Q.6: Write a program using switch case to display a menu that offers five

options: read three numbers, calculate total, calculate average,

display the smallest and display the largest value.

Q.7: Write a C program to check whether a number is even or odd.

Decision and Control Statements Unit 6

Programming in C98

Q.8: Write a C program to check whether a character is alphabet or not.

Q.9: Write a C program to input any alphabet and check whether it is

vowel or consonant.

Q.10: Write a C program to input any character and check whether it is

alphabet, digit or special character.

Q.11: Write a C program to check whether a character is uppercase or

lowercase alphabet.

Q.12: Write a C program to input marks of five subjects Physics, Chemistry,

Biology, Mathematics and Computer. Calculate percentage and

grade according to following:

Percentage > 90% : Grade A

Percentage > 80% : Grade B

Percentage > 70% : Grade C

Percentage > 60% : Grade D

Percentage > 40% : Grade E

Percentage < 40% : Grade F

Q.13: What is the similarity and difference between break and continue

statements ?

Q.14: What are decision control statements? Explain in detail.

*** ***** ***

Decision and Control StatementsUnit 6

Programming in C 99

UNIT 7: LOOP CONTROL STRUCTURES

UNIT STRUCTURE

7.1 Learning Objectives

7.2 Introduction

7.3 Loop Control Statements

7.3.1 while Loop

7.3.2 do-while Loop

7.3.3 for Loop

7.4 Let Us Sum Up

7.5 Answers to Check Your Progress

7.6 Further Reading

7.7 Model Questions

7.1 LEARNING OBJECTIVES

After going through this unit, you will able to:

 learn about the concept of loop

 learn to write three different types of loops

 use while, do-while and for loop in programming

 learn to write loop within a loop.

7.2 INTRODUCTION

In the previous unit we have learned about conditional statements.

We have seen that the C language is accompanied by a collection of

statements and functions. Moreover the instructions were executed in the

same order in which they appeared within a program. Each instruction was

executed once and only once. But C language provides the facilities to

carry out logical test at some particular point within the program and repeated

execution of a group of instructions.

In this unit we will discuss various control statements available in C

language.

Programming in C100

7.3 LOOP CONTROL STATEMENTS

The repetation process within a computer program is known as

iteration. C language supports three types of iterative statements, also

known as loop control statements.

Loop control statements are used to execute and repeat a block of

statements depending on the value of a condition. There are three types of

loop control statements in C language. They are:

 while loop

 do-while loop

 for loop

7.3.1 While loop

The while loop provides a mechanism to repeat one or more

statements while a particular condition (i.e., test expression) is true.

The syntax of while loop is as follows:

statement x;

while(condition)

{

statement block;

}

statement y;

In case of while loop, the condition is tested first. If the

condition is true, only then the statement block will be executed

otherwise if the condition is false, the control will jump outside the

while loop block.

Loop Control StructuresUnit 7

Programming in C 101

Fig. 7.1: Flow chart of while loop

From the diagram it is clear that the while loop will execute

as long as the condition is true. The updation of increment/decrement

statement is necessary.

Again if the condition never becomes false then it will become

an infinite loop which is never desirable. If the condition evaluates

to false, then the statements enclosed in the loop are never executed.

 The braces { } can be omitted when there only one statement

available in the statement block.

 The initialization of variable takes place only once to initialize

the value of the variable.

 The condition and increment/decrement are executed on each

iteration.

For example, in the following program 7.1, while loop is used

while calculating the factorial of a number.

//Program 7.1: Program for finding the factorial of a number.

#include <stdio.h>

#include<conio.h>

void main()

{

int number;

long factorial;

printf("Enter an integer: ");

scanf("%d",&number);

Loop Control Structures Unit 7

Programming in C102

factorial = 1;

// loop terminates when number is less than or equal to 0

while (number > 0)

{

factorial = factorial*number; // factorial = factorial*number;

number--;

}

printf("Factorial= %ld", factorial);

getch();

}

7.3.2 do…while STATEMENT

The do-while loop is similar to while loop except that in a do-

while loop, the test condition is tested at the end of the loop. Since

the test condition is tested at the end, this implies that the body of

the loop gets executed at least once even if the condition is false.

The general form of writing do-while loop is as follows:

statement x;

do

{

statement block;

} while(condition);

statement y;

In case of do-while loop it should be remembered that test

condition is followed by a semicolon. The curly bracket is optional if

there is only one statement in the body of the loop. The do-while

loop continues to execute while the condition is true. When the

condition becomes false, the control will jump to statement following

the do-while loop. The major difference of do-while loop with while

loop is that it always executes at least once.

Loop Control StructuresUnit 7

Programming in C 103

Fig. 7.2: Flow chart of do-while loop

//Program 7.2: Program to display all the even numbers less than

or equal to10 using do-while loop.

#include<stdio.h>

#include<conio.h>

void main()

{

int c=2;

do

{

printf(“%d ” , c) ;

c=c+2;

} while(c < = 10);

getch();

}

Output: 2 4 6 8 10

//Program 7.3: Program to compute the average of first n numbers

using do-while loop.

#include<stdio.h>

#include<conio.h>

Loop Control Structures Unit 7

Programming in C104

void main()

{

int n,i=0,sum=0;

clrscr();

float avg=0.0;

printf("\nEnter the value of n:");

scanf("%d", &n);

do

{

sum=sum+i;

i=i+1;

}while(i<=n);

avg=sum/n;

printf("\nThe sum of first n numbers=%d",sum);

printf("\nThe average of first %d numbers=%f",n,avg);

getch();

}

Output: Enter the value of n: 5

The sum of first n numbers= 15

The average of first 5 numbers = 3.000000

7.3.3 for loop

The for loop consists of three different statements separated

by semicolon: Initialization, Test condition and Increment/

Decrement statement for updation of loop variable. Updating the

loop variable may include incrementing the loop variable,

decrementing the loop variable or setting it to some other values

according to our requirement.

When a for loop is executed, the loop variable is initialized

only once. With every iteration of the loop, the loop variable is

updated and the condition is checked. If the test condition is True,

the statement block of the loop is executed, else the statements

comprising the statement block of the loop are skipped and the

Loop Control StructuresUnit 7

Programming in C 105

control jumps to the immediate statement following the for loop body.

The general syntax and flow chart of for loop is given here:

for(initialization; test condition; increment/decrement statement)

{

statement block ; //codes to be executed;

}

statement y;

Some important point regarding for loop:

 Every section of the for loop is separated from the other with a

semicolon.

 It is possible that one of the sections may be empty, though the

semicolon still have to be there.

 In case all the expressions are omitted, then there must be two

semicolons in the for loop. This is as follows:

for(; ;)

 In case of for loop, the condition is tested before the statements

contained in the body are executed. So if the condition does not

hold True, then the body of the loop may never get executed.

 Multiple conditions in the test expression can be tested by using

the logical AND (&&) and logical OR (||) operators.

 Multiple initializations must be separated with a comma operator

as shown in Program 7.5:

Loop Control Structures Unit 7

Programming in C106

Fig.7.3: Flow chart of for loop

In a, for loop initialization statement allows the programmer

to give a value. Test condion is tested before each iteration. The

condition is a relational expression. If condition evaluates to True

(i.e., nonzero) the next iteration occurs, otherwise the loop is

terminated. Increment or decrementor statement is executed at the

end of each iteration. A simple example of displaying natural numbers

upto 10 is shown using for fort loop.

/*Program 7.4: Write a C program displaying 10 natural numbers

using for loop*/

#include<stdio.h>

#include<conio.h>

void main()

{

int n, i;

printf (“ The first 10 natural numbers are: ”) ;

for (i = 0 ; i < 10 ; i++)

printf (“ %d\t ”, i);

Loop Control StructuresUnit 7

Programming in C 107

getch();

}

Output: Enter the Limit : 10

0 1 2 3 4 5 6 7 8 9

In the above example the first loop variable i is initialized as

0, then check the condition, is the value of i is less then 10. For the

first execution, the condition results are True. The control will execute

the printf statement which will display the value 0. Next the value of

loop variable i is incremented by 1 with the increment statement

i++. Thus, the current value of loop variable i is now 1. Again, check

the condition whether 1<10. Since the condition is True, therefore

the printf statement will be executed and display 1. Again increment

the loop variable by 1 and repeat the same procedure until the

condition evalutes to False.

/*Program 7.5: Program showing multiple initializations separated

by comma operator */

#include<stdio.h>

#include<conio.h>

void main()

{

int i, sum;

clrscr();

for(i=1, sum = 0; i<=10; i++)

sum=sum+i;

printf(“\nSummation of 1 to 10 is %d”,sum);

getch();

}

In the Program 7.5, i is initialized to 1 and sum is initialized

to 0 separating it with a comma. The output will give the sum of 1 to

10 which is 55.

 If the loop control variable is updated within the block of

statement, then the third part can be skipped.

Loop Control Structures Unit 7

Programming in C108

 In some situation,we are required to write for loop with two

semicolons only i.e., no initialization, test condition and updating

of loop control variable. Then the for loop become an infinite

loop if no stopping condition is specified in the body of the loop.

For example, the following program segment will infinitely display

the word “KKHSOU” on the computer screen.

//Program 7.6:

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

for(; ;)

{

printf(“KKHSOU\n”);

}

getch();

}

 Floating point variable should not be used as loop control

variable.

 While writing a loop, the following points are to be added :

– Declaration of a loop control variable (i.e.,a counter)

– Statements inside loop body

– Evaluating the test expression (i.e., conditions)

– Incrementing or decrementing the loop control (counter)

variable.

Loop Control StructuresUnit 7

Programming in C 109

CHECK YOUR PROGRESS

Q.1: Consider the following code fragment:

for(digit = 0; digit<9; digit++)

{

digit = 2*digit;

digit --;

}

How many times will the loop be executed–

a) Infinite b) 9 c) 4 d) 0

Q.2: How many times will the following loop be executed-

ch = ‘b’;

while (ch>= ‘a’ && ch <= ‘z’)

a) 0 b) 25 c) 26 d) 1

Q.3: Write the output of the following program -

#include<stdio.h>

void main()

{

int i=0, sum =0;

while(i<20)

{

if(i%5 = = 0)

{

sum += i;

printf(“%d”, sum);

}

++i;

}

printf (“\n Sum = %d”, sum);

}

Q.4: Write a C program to check whether a given number is a

palindrome or not.

Loop Control Structures Unit 7

Programming in C110

7.4 LET US SUM UP

 Loop directs a program to perform a set of operations again and

again until a specified condition is achieved.

 There are three types of loops: while, do-while and for loop.

 Every loop has a start value, a step value and a stop value., i.e.,

there are three sections of a loop: inialization, condition and updation

of loop control variable.

 The while and do-while loop constructs are more suitable in situations

where prior knowledge of the terminating condition is not known.

 While loop evaluates a test expression before allowing entry into

the loop, whereas do-while loop is executed at least once before it

evaluates the test expression which is available at the end of the

loop.

 The for loop construct is appropriate when in advance it is known as

to how many times the loop will be executed. It is suitable for a finite

loop.

7.5 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: a) Infinite

Ans. to Q. No. 2: b) 25

Ans. to Q. No. 3: 0 5 15 30

sum = 30

Ans. to Q. No. 4:

#include<stdio.h>

void main()

{

long int n, digit, sum = 0, rev = 0;

long int num;

printf (“Input the number \n”);

Loop Control StructuresUnit 7

Programming in C 111

scanf (“%ld”, &num);

n = num;

do

{

digit = num % 10;

sum += digit;

rev = rev * 10 + digit;

num /= 10;

}

while (num != 0);

printf (“Sum of the digits of the number = %ld\n”, sum);

printf (“Reverse of the number = %ld \n”, rev);

if (n == rev)

printf (“The number is a palindrome \n”);

else

printf (“The number is not a palindrome \n”);

}

7.6 FURTHER READING

1) Balagurusamy, E. (2002); Programming in ANSI C; Tata McGraw

Hill Education.

2) Thareja, R. (2012); Computer Fundamentals & Programming in C;

OXFORD University Press.

7.7 MODEL QUESTIONS

Q.1: How many times does the loop iterate?

for(i=0; i=10;i = i+2)

printf(“Guwahati\n”);

a) 5 b) 10 c) 2 d) none of the above

Loop Control Structures Unit 7

Programming in C112

Q.2: How many times does the loop occur?

i=0;

while(i<5)

printf(“%d\n”,i++);

a) 5 b) infinite c) 4 d) 6

Q.3: Write a C programm using d--while loop, to calculate the sum of

every third integer, beginning with i=2, for all values of i that are less

than 50.

Q.4: Write a C Program to reverse a given integer (for example, 17536 is

reversed as 63571).

Q.5: Write a C Program to check whether the given number n is a prime

number.

Q.6: Write a C Program to generate the Fibonacci series: 0 1 1 2 3 5 8...

upto n.

Q.7: Write a C Program to display the following pattern:

1

2 3 2

3 4 5 4 3

4 5 6 7 6 5 4

Q.8: Write a C Program to display multiplication table from 1 to 5 upto 10

numbers.

*** ***** ***

Loop Control StructuresUnit 7

