

(ii)

Microprocessor
and

Microcontroller

Authors

Prof. Saurabh Chaudhury
Professor,
Department of Electrical
Engineering, National Institute of
Technology, Silchar, Assam

Dr. Risha Mal
Associate Professor,

Department of Electrical
Engineering, National Institute
of Technology, Silchar, Assam

Reviewer

Dr. Hariharan Seshadri
Associate Professor,

Department of ECE, Indian Institute of Information Technology,
Kanchipuram, Chennai

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

(iii)

BOOK AUTHOR DETAILS

Prof. Saurabh Chaudhury, Professor, Department of Electrical Engineering, National Institute of
Technology, Silchar, Assam.

Email ID: saurabh@ee.nits.ac.in

Dr. Risha Mal, Associate Professor, Department of Electrical Engineering, National Institute of
Technology, Silchar, Assam.

Email ID: risha@ee.nits.ac.in

BOOK REVIEWER DETAILS

Dr. Hariharan Seshadri Associate Professor, Department of ECE, Indian Institute of Information
Technology, Kanchipuram, Chennai

Email ID: hari.seshadri@iiitdm.ac.in

BOOK COORDINATOR (S) – English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for
Technical Education (AICTE), New Delhi, India

 Email ID: director.fdc@aicte-india.org

 Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for Technical
Education (AICTE), New Delhi, India

 Email ID: ad1fdc@aicte-india.org

 Phone Number: 011-29581339

March, 2023

© All India Council for Technical Education (AICTE)

ISBN : 978-81-960576-9-5

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or
any other means, without permission in writing from the All India Council for Technical
Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be
obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Attribution-Non Commercial-Share Alike 4.0 International
(CC BY-NC-SA 4.0)

Disclaimer: The website links provided by the author in this book are placed for informational,
educational & reference purpose only. The Publisher do not endorse these website links or the views
of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be settled
under Delhi Jurisdiction, only.

(iv)

(v)

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. T. G. Sitharam,
Chairman; Dr. Abhay Jere, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary and
Dr Amit Kumar Srivastava, Director, Faculty Development Cell for their planning to publish
the books on Microprocessor and Microcontroller. We sincerely acknowledge the valuable
contributions of the reviewer of the book Dr. Hariharan Seshadri, Associate Professor,
Department of ECE, Indian Institute of Information Technology Kancheepuram for reviewing
each chapter minutely, pointing out the errors and for his useful suggestions to enrich the write
up and as a whole in giving a better shape of the book.

Further, I would like to thank NIT Silchar for giving a conducive environment to perform the
task of writing this book. I express my sincere gratitude to my teachers, mentors in building up
a sound knowledge of the subjects like, Digital Electronics, Computer Architecture,
Microelectronics, DSP etc. which helped me in writing this book.

I sincerely acknowledge the helping hand of my co-author Dr. Risha Mal for contributing a
few chapters and Mr. Jayanta Kar, Md. Sheikh, for their support in verifying the lab
experiments through physical connections through microprocessor and microcontroller kits,
also, in listing the content of the book. Special thanks to my family members, specially my
mother, Kiron Bala Choudhury for her constant encouragement, my wife, my son and my
daughter Subhashree for their constant support and inspiration towards the completion of the
book.

This book is an outcome of various suggestions of AICTE members, experts and authors who
shared their opinion and thought to further develop the engineering education in our country.
Acknowledgements are due to the contributors and different workers in this field whose
published books, review articles, papers, photographs, footnotes, references and other valuable
information enriched us at the time of writing the book.

Prof. Saurabh Chaudhury

Dr. Risha Mal

(vi)

PREFACE

The book titled “Microprocessor and Microcontroller” is an outcome of the rich experience of our
teaching the subject and exposure to various other fundamental courses. This book aims at giving the
readers specially, the second-year undergraduate students a thorough knowledge of microprocessors
and microcontrollers in a best possible way. It is written in a very lucid manner so as to understand the
underlying concepts easily. Keeping in mind the purpose of wide coverage as well as to provide
essential supplementary information, we have included the topics recommended by AICTE, in a very
systematic and orderly manner throughout the book. The book begins with a brief history on the
evolution of computers and processors for making the subject interesting. Further, starting from the
very basic microprocessor 8085 and the basic microcontroller 8051, the book gradually progresses
towards advanced microprocessors and microcontrollers in the most appropriate manner. Looking into
the level of maturity of students, the contents are covered in depth, explained in a reader-friendly
manner with explanatory examples and designed appropriately. The book gives a comprehensive view
of microprocessors and microcontrollers which would be also useful for self-study purposes.

 During the process of preparation of the manuscript, we have considered the various standard text
books and accordingly we have developed sections like critical questions, solved and supplementary
problems etc. Apart from illustrations and examples as required, we have enriched the book with
numerous solved problems in every unit for proper understanding of the related topics. Under the
common title “Microprocessors and Microcontrollers” there are many books. However, most of the
books have given emphasis to one particular microprocessor or microcontroller and none is complete
in the sense of current book, where, we have included the basic microprocessor, 8085 and progressed
through 8086 to some of the advanced microprocessors such as Pentium. Similarly, starting with 8051
microcontroller we have given coverage to ARM based microcontrollers which is the core component
of any embedded system today. Further, we have included the relevant laboratory practicals and
presented it in the form of a manual in appendix which the students will find easy to perform
experiments. Annexure includes the hex code corresponding 8085 assembly language.

 As far as the present book is concerned, it is meant to provide a thorough understanding on
microprocessors and microntrollers on the topics covered. This book will prepare students to apply the
knowledge in solving engineering challenges and many real-life problems. The subject matters are
presented in a constructive manner so that an Engineering degree prepares students to work in different
sectors or in research centres at the very forefront of technology.

 We sincerely hope that the book will inspire the students to learn architectural innovations and
programming skills of various microprocessors and microcontrollers which will surely contribute to
the development of a solid foundation of the subject. We would be thankful to all beneficial comments
and suggestions which will contribute to the improvement of the future editions of the book. It gives us
immense pleasure to place this book in the hands of the students. It was indeed a big pleasure to work
on different aspects of coverage in the book.

Prof. Saurabh Chaudhury

Dr. Risha Mal

(vii)

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop an
outcome based curriculum and incorporate an outcome based assessment in the education
system. By going through outcome based assessments evaluators will be able to evaluate
whether the students have achieved the outlined standard, specific and measurable outcomes.
With the proper incorporation of outcome based education there will be a definite commitment
to achieve a minimum standard for all learners without giving up at any level. At the end of the
programme running with the aid of outcome based education, a student will be able to arrive
at the following outcomes:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex
engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO3. Design / development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member
or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

(viii)

PO11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in multidisciplinary
environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

(ix)

COURSE OUTCOMES

After completion of the course the students will be able to:

Students will be able to:

CO-1: Understand and Compare Fundamentals of Microprocessors and Microcontrollers

CO-2: Illustrate Architecture of AT 8051Microcontroller

CO-3: Implement Assembly Language Programs for Data Manipulation

CO-4: Interface I/O and Peripheral Devices with AT 8051 Microcontroller

CO-5: Implement Communication Standards and Protocols

CO-6: Understand Architecture of ARM (RISC) Microcontroller

(x)

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the students
should be enhanced. Teachers should take a major responsibility for the proper
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE
system may be as follows:

 Within reasonable constraint, they should manoeuvre time to the best advantage of all
students.

 They should assess the students only upon certain defined criterion without considering
any other potential ineligibility to discriminate them.

 They should try to grow the learning abilities of the students to a certain level before
they leave the institute.

 They should try to ensure that all the students are equipped with the quality knowledge
as well as competence after they finish their education.

 They should always encourage the students to develop their ultimate performance
capabilities.

 They should facilitate and encourage group work and team work to consolidate newer
approach.

 They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level
Teacher should

Check
Student should be

able to
Possible Mode of

Assessment
 Create Students ability to

create
Design or Create Mini project

Evaluate

 Students ability to
justify

Argue or Defend Assignment

 Analyse Students ability to
distinguish

Differentiate or
Distinguish

Project/Lab
Methodology

Apply

 Students ability to
use information

Operate or
Demonstrate

Technical Presentation/
Demonstration

 Understand Students ability to
explain the ideas

Explain or Classify Presentation/Seminar

Remember
Students ability to

recall (or remember)
Define or Recall Quiz

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the
responsibilities (not limited to) for the students in OBE system are as follows:

 Students should be well aware of each UO before the start of a unit in each and every
course.

 Students should be well aware of each CO before the start of the course.
 Students should be well aware of each PO before the start of the programme.
 Students should think critically and reasonably with proper reflection and action.
 Learning of the students should be connected and integrated with practical and real life

consequences.
 Students should be well aware of their competency at every level of OBE.

(xi)

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

Abbreviations Full form Abbreviations Full form

A/D Analog to digital ALU Arithmetic/logic unit

ARM Advanced RISC Machines ALE Address Latch Enable

BTB Branch target buffer ASCII American Standard Code for
Information Interchange

CISC Complex instruction set
computer

BIU Bus interface unit

CPI Cycles per instruction BCD Binary coded decimal

CU Control Unit CWR Control word register

CPU Central Processing Unit CSMA Career sense multiple access
collision avoidances

DMA Direct Memory Access IR Instruction Register

DTE Data terminal equipment I2C Inter-Integrated Circuit Bus

DCE Data Communication
Equipment

LIFO Last in first out

EU Execution unit LSB Least significant bit

FPU Floating point unit FPGAs Field programmable gate
arrays

GPU Graphics Processing Unit INTR Interrupt Request

I/O Input/output ICs Integrated Circuits

MAC Media Access Control NMI Non-maskable interrupt

MMU Memory management unit MCU Microcontroller unit

SU Segmentation Unit SoC System on Chip

PC Personal computer ROM Read only memory

PU Paging unit RAM Random access memory

UART Universal Asynchronous Data
Receiver &Transmitter

MPU Microprocessor unit

SCADA Supervisory Control and Data
Acquisition

MIPS Million instructions per
second

WPAN wireless personal area
networks

RISC Reduced instruction set
computer

SPI Serial Peripheral Interface SFRs Special function registers

MOS Metal-oxide semiconductor SR Status Register

VLSI Very large-scale integration PSW Program status word

TLB Translational look-aside
buffer

MSB Most significant bit

(xii)

List of Symbols

Symbols Description Symbols Description
tH Data hold time T T-states

tDSW Data set up time f Clock frequency
tPWH Enable pulse width

(xiii)

LIST OF FIGURES

Unit 1 Fundamentals of Microprocessors and Microcontrollers

1.1 Brain Vs. Computer 3
1.2 Growth in IC (Processors) in terms of transistor counts over the years 5
1.3 General-purpose computing system with Microprocessor as CPU 6
1.4 Basic architecture of Microcontroller 7
1.5 General organization of a Microprocessor based system 8
1.6 8085 Microprocessor pin layout and associated signals 11
1.7 Pin layout of 8085 according to signal groups 13
1.8 Architecture of 8085 14

1.9 (a) Format of immediate addressing 16
1.9 (b) Program memory and immediate data 16
1.10 Direct Addressing Mode 17
1.11 Register Direct Addressing Process 17
1.12 Indirect Addressing Process 17
1.13 Opcode fetch machine cycle 24
1.14 Execute cycle 25
1.15 Pin Diagram of 8086 Microprocessor 27
1.16 Internal Architecture of 8086 Microprocessor 31
1.17 Classification of 8086 Interrupts 41
1.18 Architectural Diagram of a Microcontroller 47

Unit 2 8051 Microcontroller
2.1 Architecture of 8051 56
2.2 Detailed block diagram of 8051 microcontroller with internal registers 57
2.3 Various Storage Registers of 8051 58
2.4 Internal locations in ROM memory 62
2.5 RAM memory allocation in 8051 64
2.6 Stack operation and Stack Pointer locations 66
2.7 Clocking Circuit (Crystal Oscillator) of 8051 66
2.8 Reset Circuit of 8051 67
2.9 Port 0 connectivity for external memory 70
2.10 Flow chart of steps to create a program 73

Unit 3 Instruction Set and Programming
3.1 Bit Addressable RAM 96

Unit 4 Memories and I/O Interfacing
4.1 74LS373 D Latch 139
4.2 Circuit Diagram to Interface External ROM with 8051 140
4.3 Connection to External Program ROM 140
4.4 Off-chip Program Code Access 141
4.5 8051 Accessing 256K*8 External NV-RAM 142

(xiv)

4.6 Interfacing LCD to 8051 144
4.7 LCD Timing Diagram 148
4.8 ADC804 Chip 149
4.9 Data Conversion by the ADC804 Chip 151
4.10 ADC804 Free Running Test Mode 152
4.11 LCD Timing Diagram for Read 157
4.12 LCD Timing Diagram for Write 158
4.13 Matrix Keyboard Connection to Ports 159
4.14 Flowchart for Program 12-4 161
4.15 7-Segment display of LED 164
4.16 74373 Latches for interfacing a 7-segment display 164
4.17 The Functional block diagram of the ADC 0808/0809 chip 165
4.18 The Circuit Diagram of Connecting 8085, 8255 and the ADC Converter 166
4.19 The block diagram of 8253 168
4.20 Interfacing 8253 with 8085 168
4.21 Chip Select Logic of 8253 169
4.22 Interfacing Diagram of Stepper Motor with 8085 174

Unit 5 External Communication Interface
5.1 Serial Communication 177
5.2 Parallel Communication 177
5.3 Data transmission process on the RS232 178
5.4 The Data transmission in RS232 179
5.5 Modbus Protocol 181
5.6 Single Master, Single Slave System 181
5.7 Connection of Multiple Slaves with Single Master 183
5.8 Data Transfer using I2C Interface 185
5.9 Single Master with Multiple Slaves 186
5.10 Single Master I2C Bus 187
5.11 Multi - Master I2C Bus 188
5.12 IEEE 802.15.4 and ZigBee role in the ISO/OSI stack 190
5.13 Node Diagram of Piconet and Scatter-net Network 193

Unit 6 Introduction to Advanced Processors and Concepts
6.1 (a) Nonpipelined processing 199
6.1 (b) Pipelined processing 199
6.1 (c) Superscalar processing 199

6.2 Cache Memory organization and data access mechanism 202
6.3 Internal block diagram of 80286 204
6.4 Register set of 80286 Processor 206
6.5 Flag registers of 80286 207
6.6 Internal Architecture of 80386 209
6.7 Simplified Architecture of 80486 211
6.8 Internal Architecture of 80486 211
6.9 Flag registers of 80486 212

(xv)

CONTENTS

 Foreword
 Acknowledgement
 Preface
 Outcome Based Education
 Course Outcomes
 Guidelines for Teachers
 Guidelines for Students

 Abbreviations and Symbols
 List of Figures

iv

v

vi

vii

ix

x

x

xi

xiii

Chapter 1 1-54

1 Fundamentals of Microprocessors and Microcontrollers 1
 1.1 Introduction 2
 1.1.1 The Brain versus The Computer 2
 1.1.2 History and Evolution of Computers 3
 1.1.2.1 The Mechanical Era 3
 1.1.2.2 Electronic Age 3
 1.1.3 Growth in IC 5

6.10 Internal Architecture of Pentium Processor 214
6.11 Detailed Architecture of Pentium 215
6.12 Superscalar processor organization in Pentium 217
6.13 Integer Pipeline of Pentium 228
6.14 Floating point of Pentium 219

6.15 (a) Registers of Pentium Processor 221
6.15 (b) Control and Debug registers of Pentium 221

6.16 Register banks of Pentium 222
6.17 Address translation in Pentium from linear to real physical address with

no page table
223

6.18 ARM 6 Architecture 228
6.19 LPC2148 Pin diagram 233
6.20 Interfacing LED to Microcontroller 238

(xvi)

 1.1.4 Microprocessors versus Microcontrollers 6
 1.2 The Microcomputer and the Microprocessor based System 7
 1.2.1 Classification of Computers 9
 1.2.2 Microprocessor Instructions and Programming

Languages
9

 1.3 Overview of 8085 Microprocessor 10
 1.3.1 PIN Diagram and Architecture of 8085 11
 1.3.1.1 The Address Bus and Data Bus 12
 1.3.1.2 Control and Status Signal 12
 1.3.1.3 Power Supply and Clock Frequency Signals 12
 1.3.1.4 Externally Initiated Signals and Interrupts 13
 1.3.1.5 Serial I/O Signals 13
 1.3.2 Architecture of 8085 Microprocessor 14
 1.3.2.1 Addressing Modes 16
 1.3.2.2 Instruction Set 18
 1.3.2.3 Instruction Timing Diagram and Machine Cycle 23
 1.4 8086 Microprocessor-An Overview 26
 1.4.1 PIN Diagram of 8086 26
 1.4.2 Architecture of 8086 30
 1.4.2.1 General Purpose Registers of 8086 31
 1.4.2.2 Segment Registers 32
 1.4.2.3 Flag Registers 32
 1.4.3 Addressing Modes of 8086 33
 1.4.4 8086 Instruction Set 35
 1.4.4.1 Data Transfer Instructions 36
 1.4.4.2 Arithmetic Instructions 37
 1.4.4.3 Bit Manipulation Instructions 38
 1.4.4.4 String Instructions 39
 1.4.4.5 Program Execution Transfer Instructions (Branch

and
 Loop Instructions)

39

 1.4.4.6 Processor Control Instructions 40
 1.4.4.7 Iteration Control Instructions 40
 1.4.4.8 Interrupt Instructions 41
 1.4.5 8086 Interrupts 41
 1.4.5.1 Hardware Interrupts 41
 1.4.5.2 Software Interrupts 42
 1.5 Microcontroller and Its Architecture 44
 1.5.1 Types of Microcontrollers 44
 1.5.2 Applications of Microcontrollers 45
 1.5.3 Microcontroller Architecture 45
 1.5.4 Comparison of 8-bit, 16-bit and 32-bit Microcontrollers 47
 1.5.5 How to choose Microcontrollers? 48
 1.6 Embedded Systems 48
 1.6.1 Characteristics of Embedded Systems 48

(xvii)

 1.6.2 Role of Microcontrollers in Embedded System Design 49
 Summary 49
 Review Questions and Exercise 50
 References 54

Chapter 2 55-82
2 8051 Microcontroller 55
 2.1 Architecture of 8051 56
 2.1.1 Storage Registers in 8051 57
 2.1.2 Program Counter 59
 2.1.3 The Stack Pointer 59
 2.1.4 Reset Vector 59
 2.1.5 The SFR of 8051 60
 2.1.6 Program Memory or ROM Space in 8051 62
 2.1.7 Data Memory or RAM 63
 2.1.8 Register Banks in 8051 64
 2.1.9 Stack in the 8051 65
 2.1.10 Clock and Reset Circuit 66
 2.1.11 Address, Data & Control Bus 67
 2.1.12 Timers of 8051 and their Associated Registers 68
 2.1.13 I/O Ports and their Functions 69
 2.2 Assembly Language of 8051 72
 2.2.1 Structure of Assembly Language 72
 2.2.2 Assembling and Running an 8051 Program 73
 2.2.3 Assembler Directives 74
 2.2.4 Labels in Assembly Language 74
 2.3 Instruction Set of 8051 75
 2.3.1 Data Transfer Instructions 76
 2.3.2 Arithmetic Instructions 76
 2.3.3 Logical Instructions 77
 2.3.4 Boolean or Bit Manipulation Instructions 77
 2.3.5 Program Control or Branching Instructions 77
 2.4 Timing and Machine Cycle for 8051 78
 2.5 Assembly Language Programming of 8051 78
 Summary 80
 Review Questions and Exercise 80
 References 82

Chapter 3 83-134
3 Instruction Set and Programming 83
 3.1 Addressing Mode 83
 3.2 Instruction Syntax 84
 3.3 Data types and directives 85
 3.3.1 Unsigned char 85
 3.3.2 Signed char 86
 3.3.3 Unsigned and signed Int 86

(xviii)

 3.3.4 Single Bit 86
 3.3.5 Bit and sfr 87
 3.4 Subroutines 88
 3.4.1 Calling Subroutines 89
 3.5 Addressing Modes 90
 3.5.1 Immediate Addressing Mode 90
 3.5.2 Register Addressing Mode 91
 3.5.3 Direct Addressing Mode 91
 3.5.4 Stack and Direct Addressing Mode 92
 3.5.5 Indirect Addressing Mode 92
 3.5.6 Indexed Addressing Mode and Onchip ROM Access 94
 3.5.6.1 Indexed Addressing Mode and MOVX 95
 3.5.7 Bit Inherent Addressing 95
 3.5.8 Bit Addressable RAM 95
 3.5.9 Registers Bit Addressability 97
 3.6 8051 Instruction Set 99
 3.6.1 Data Transfer Instructions 99
 3.6.2 Arithmetic Instructions 101
 3.6.3 Logical Instructions 103
 3.6.4 Boolean or Bit Manipulation Instructions 104
 3.6.5 Programming Branching Instructions 106
 3.7 Instructions and Programs 108
 3.7.1 Arithmetic Instructions 108
 3.7.2 BCD Number System 109
 3.7.3 DA Instruction 110
 3.7.4 Unsigned Multiplication 113
 3.7.5 Unsigned Division 113
 3.8 Signed Arithmetic Instructions 115
 3.8.1 Signed 8-Bit Operands 115
 3.8.2 Overflow Problem 116
 3.8.3 OV Flag 116
 3.9 Logic and Compare Instructions 118
 3.9.1 AND 118
 3.9.2 OR 118
 3.9.3 XOR 119
 3.9.4 Complement Accumulator 120
 3.9.5 Compare Instruction 120
 3.10 Rotate Instruction and Data Serialization 121
 3.10.1 Rotating Right and Left 121
 3.11 Serializing Data 123
 3.12 SWAP 125
 3.13 BCD and ASCII Application Programs 126
 3.13.1 Packed BCD to ASCII Conversion 126
 3.13.2 ASCII to Packed BCD Conversion 127

(xix)

 3.13.3 Using a Look-up Table for ASCII 128
 3.13.4 Checksum Byte in ROM 128
 3.13.5 Binary (Hex) to ASCII Conversion 129
 3.14 Assembly Language Programs 129
 3.14.1 Data Types 130
 3.14.2 Unsigned Char 130
 3.14.3 Signed Char 131
 3.14.4 Unsigned and Signed Int 132
 3.14.5 Bit and sfr 132
 Review Questions and Exercise 133
 References 134
Chapter 4 135-175

4 Memory and I/O Interfacing 135
 4.1 Memory I/O Expansion Buses 135
 4.2 Control and Status Signals 136
 4.2.1 Three Status Signals -- IO/M, S0 & S1 136
 4.2.2 Interrupts and External Initiated Signals 136
 4.2.3 Serial I/O Signals 137
 4.3 Memory Wait States 137
 4.3.1 External Memory Interfacing 137
 4.3.2 Interfacing External ROM 138
 4.3.3 Address/Data Multiplexing 140
 4.3.4 Connection to External Program ROM 140
 4.3.5 On-chip and Off-chip Code ROM 140
 4.4 Interfacing to Large External Memory 141
 4.5 Interfacing of Peripheral Devices 143
 4.5.1 Interfacing LCD to 8051 144
 4.5.2 Interfacing with ADC and Sensors 148
 4.5.2.1 ADC Devices 148
 4.5.2.2 ADC804 Chip 149
 4.5.2.3 Vref /2 150
 4.5.2.4 Vref /2 Relation to Vin Range 150
 4.5.2.5 ADC804 Free Running Test Mode 151
 4.6 LCD Interfacing 152
 4.6.1 Sending Information to LCD using MOVC Instruction 153
 4.7 Keyboard Interfacing 158
 4.7.1 Matrix Keyboard Connection to Ports 159
 4.8 Interfacing 7 (Seven) Segment Display to 8085 Microprocessor 163
 4.9 Interfacing ADC with 8085 Microprocessor 165
 4.10 Interfacing 8253 (Timer IC) with 8085 Microprocessor 167
 4.11 Interfacing 8253 with 8085 167
 4.12 Interfacing Stepper Motor with 8085 170
 Review Questions and Exercise 174
 References 175

(xx)

Chapter 5 176-196

5 External Communication Interface 176
 5.1 Synchronous and Asynchronous Communication 176
 5.2 RS232 Serial Communication Protocol 176
 5.2.1 Modes of Data Transfer in Serial Communication 177
 5.2.2 Characteristics of Serial Communication 178
 5.3 What is RS232? 178
 5.3.1 Universal Asynchronous Data Receiver and Transmitter

(UART)
178

 5.3.2 How RS232 Works? 179
 5.4 RS485 179
 5.4.1 How RS485 works? 180
 5.4.2 Advantages of RS485 180
 5.4.3 Applications of RS485 180
 5.5 Introduction to Serial Peripheral Interface (SPI) 181
 5.5.1 How does SPI work? 182
 5.5.2 Steps of SPI Data Transmission 183
 5.5.3 Advantages 184
 5.5.4 Disadvantages 184
 5.5.5 Application of SPI 184
 5.6 Inter-Integrated Circuit Bus (I2C) 185
 5.6.1 I2C Interface 185
 5.6.2 I2C Protocol 185
 5.6.3 I2C Configurations 187
 5.7 What is ZigBee Technology? 188
 5.7.1 How does ZigBee Technology work? 189
 5.7.2 ZigBee Architecture 189
 5.7.3 ZigBee Operating Modes and Its Topologies 191
 5.7.4 ZigBee Topologies 191
 5.7.5 Which devices use ZigBee? 191
 5.8 What is Bluetooth? 192
 5.8.1 How does Bluetooth Work? 192
 5.8.2 Bluetooth Architecture 193
 Review Questions and Exercise 195
 References 196
Chapter 6 197-240
6 Introduction to Advanced Processors and Concepts 197
 6.1 Pipeline vs Superscalar processing 198
 6.2 Cache and Virtual Memory Concept 199
 6.3 80286 Microprocessor 203
 6.3.1 Architecture of 80286 204
 6.3.2 Addressing Modes 207
 6.4 80386 Microprocessor 208
 6.4.1 Architecture of 80386 Processor 208

(xxi)

 6.5 80486 Microprocessor 210
 6.5.1 Architecture of 80486 210
 6.5.2 Registers and Flag register of 80486 212
 6.6 Pentium Processor 213
 6.6.1 Architecture of Pentium 213
 6.6.2 Branch Prediction 216
 6.6.3 Integer pipelines U and V 217
 6.6.4 Floating point unit 219
 6.6.5 Register set of Pentium 220
 6.6.6 Memory subsystem in Pentium 222
 6.7 CISC Architecture 223
 6.8 RISC Processors 224
 6.9 RISC vs CISC 225
 6.10 Architecture of ARM Microcontrollers 226
 6.10.1 ARM Processors 226
 6.10.2 ARM Microcontroller Pinout 232
 6.10.3 GPIO Configuration 235
 6.11 Interfacing LED with LPC2148 MCU 237
 Summary 239
 Review Questions 239
 References 240

List of Tables

1.1 Machine cycles and status signals 12
2.1 List of SFRs and their address 60
2.2 List File in ROM 63
2.3 Instruction set of 8051 and types 75
3.1 Types of instructions 84
3.2 Data types, number of bits, bytes and range of values 87
3.3 Instructions that are used for signal-bit operations 97
3.4 Register bits and addresses 98
3.5 Data transfer mnemonics and its functions 100
3.6 Data transfer instruction with details 100
3.7 Arithmetic mnemonics and its functions 101
3.8 Arithmetic instruction with details 102
3.9 Logical instructions with details 103
3.10 Mnemonics of the logical instructions 103
3.11 Bit manipulation instructions with details 105
3.12 Mnemonics of the bit manipulation instructions 105
3.13 Program branching instructions with details 106
3.14 Mnemonics of the program branching instructions 107
4.1 Pin description for LCD 143

(xxii)

4.2 LCD command codes 144
4.3 LCD addressing for the LCD’s of 40x2 size 148
4.4 Vref /2 relation to Vin range 150
4.5 LCD addressing for the LCDs of 40x2 size 153
4.6 The counter is being selected by using A1 and A0 pins of 8253 169
4.7 4 binary sequence/code used for rotation 171
4.8 8 binary sequence/code used for rotation 172
4.9 Chip select logic 172
4.10 Program in look-up table 173
5.1 The complete process of data transmission 179
5.2 Difference between ZigBee and Bluetooth 193
6.1 The ARM7TDMI instruction set 231

 Appendices 241

 Appendix A: List of Laboratory Experiments 242
 Appendix B: Installation guidelines and introduction to IDE 243-

253
 Appendix C: Laboratory manual for performing experiments related to

microprocessors and microcontrollers
254-
272

 Annexures: Hex codes for 8085

273-
281

 CO and PO Attainment Table

282

 References for Further Learning 282
 Index

283-
287

1 | Microprocessor and Microcontroller

Chapter 1

Fundamentals of Microprocessors and
Microcontrollers

 Key Features of Module-1

● Definition and significance of microprocessors and microcontrollers
● Brain vs Computer
● History, growth and evolution of computers
● Overview of 8085 and 8086 processors
● Fundamentals of microcontrollers
● Comparison of 8-bit, 16-bit and 32-bit microcontrollers
● Microcontrollers for Embedded Systems design

Pre-requisites

● Fundamentals of Digital Electronics
● Basics of Computers

Module-1 Outcomes

● Students should be able to understand the fundamentals of 8085 and 8086 processors
specifically, the architecture, addressing modes and instruction set

● Students should be able to write assembly language programs for 8085 and 8086
processors

● Should be able to understand the fundamentals of microcontrollers, difference between
microprocessor and microcontroller

● Should be able to understand embedded systems and its characteristics and the role of
microcontrollers in the embedded systems applications

 This chapter gives an overview of general structure of microprocessors and
microcontrollers, an analogy between the human brain versus computer, history, growth and
evolution of computers. Progress in microprocessors and advances in semiconductor
technology, microcomputer systems and the classification of computers are then illustrated. It
further introduces the readers about representation of data and how the binary data in the form
of 0 and 1 are manipulated by the processor when written in machine language, assembly
language (abbreviated form of instruction or mnemonics) or high-level languages such as
FORTRAN, BASIC, C, C++ or Java. The major component of the chapter is the overview of
8085 and 8086 microprocessors. It covers the architecture, instruction set, addressing modes,
interrupts, instruction cycles. The chapter also encompasses the fundamentals of
microcontroller architecture beginning with 8-bit microcontroller such as 8051 and then a
comparison of it with the other microcontrollers namely, 16-bit and 32-bit is also illustrated.
Lastly, at the end of the chapter a brief introduction is given to embedded systems and its
characteristics. Also, on how microcontrollers can be used to design an embedded system.

2 | Microprocessor and Microcontroller

1.1 Introduction

Microprocessor can be considered as the brain of a digital computer. It plays a significant role
in our day to day life in today’s digital era. It can be viewed as a programmable logic device
that can be used to control processes or can be used to turn on/off any mechanical, electrical or
electronic devices. Microprocessor can also be viewed as data processing or computing unit of
a computer or any other digital systems. It is a programmable integrated circuit capable of
computing and decision making similar to the central processing unit (CPU) of a computer.
Many a times the term microprocessor and CPU are used synonymously. Every computer, like
human brains, contains a processor able to interpret and execute programs; has a memory for
storing the programs and the data it processes; and has input output devices for transferring the
information from the computer to the outside world and vice-versa. Today we find the uses of
microprocessor enormous. Apart from the general computing systems, it is being widely used
in consumer products, medical equipment, smart cars and many other embedded applications.

1.1.1The Brain versus the Computer

From the time immemorial humans relied on their brains to perform calculations, as if they
were the computers. As the civilization progressed through many generations, a variety of
computing tools were invented but could not replace manual computations. But if the size and
complexity of the calculation increases, two major limitations of human computation that
become apparent.

● The speed at which human brains can compute is limited
● Humans are so badly prone to error.

Even with these limitations, we can make an analogy between the human brain and the
computer. Consider the course of actions needed by human brain in order to manually fill up
an income tax return form. First of all, human need paper to store information. The information
that can be stored include a list of instructions—more commonly known as programs,
algorithm or procedure (in the sense of digital computers) to carry out the calculation, as well
as numbers or data to be used. Some relevant information can be gathered either from radio,
television, newspaper, internet etc. We can consider them as input devices. Data processing
takes place in human brain which acts like the processor or CPU. During the process of
calculation human need to store intermediate results as well as final results on the paper (like a
memory or storage device). It is quite apparent that human brain performs two distinct
functions. First, it interprets the instructions and controls the flow of processing the instructions
and ensures that they are executed in a proper sequence. Secondly, the execution function that
includes some specific tasks such addition, subtraction, multiplication and division. Usually, a
calculator aids in doing such calculations to the brain. After the completion of the task, the
results may be uploaded over the internet or may be furnished to an organization which can be
considered as the output devices. Figure 1.1 illustrates, the analogy between the brain and the
computer.

3 | Microprocessor and Microcontroller

Fig.1.1: Brain Vs. Computer

1.1.2 History and Evolution of Computers

Like human civilization computers also have evolved through centuries for many generations
to reach to the level of today. People thought of computation and performing some elementary
operations such as addition, subtraction, multiplication and division long back in 16th century
or even earlier [1]. In those days these were some clever mechanical devices designed with
gears, levers, wheels and the like.

1.1.2.1 The Mechanical Era

● Blaze Pascal [1623-62], a French philosopher first invented an early, influential
mechanical calculator that could add or subtract decimal numbers.

● Gottfried Leibniz [1946-1716], in Germany extended Pascal’s design to perform
multiplication and division.

● Charles Babbage’s difference engine in the 19th century to perform multistep
operations automatically without human intervention at every step.

● Some later developments in the design of general-purpose program-controlled
computer includes Z1 in 1938 (still a mechanical computer from Germany), Z3 in
1941,

● an automatic calculator known as Harvard Mark I in 1944 from Harvard University.

1.1.2.2. Electronic Age

The mechanical computers suffered from two serious limitations: it is inherently slow in
computation because of its movable parts and the transmission of information by
mechanical means is unreliable. Moreover, the size is also very large. With the development
of electronic valves and vacuum tubes in early 1900, permitted the processing and storage
of digital data at a much higher speed than that of any mechanical device.
The first generation (1940-1950)

● First by John V. Atanasoff (1903-95), at Iowa State University, in late 1930s

4 | Microprocessor and Microcontroller

● The Electronic Numeric Integrator and Calculator (ENIAC) by Mauchly and Eckert
in the University of Pennsylvania, 1943-46

● The first commercial product by Eckert-Mauchly Corp was UNIAC (Universal
Automatic Computer) in 1951.

● IAS Computer, by von Neumann, at the Institute for Advanced Studies in Princeton
began to work on the design of a new stored program electronic computer, 1947

The second generation (1954-64)

Key Features

● The vacuum tubes and electronics valves were soon replaced by bipolar junction
transistors, in 1947

● the second-generation computers based on transistors soon replaced the first-
generation of vacuum tube-based machines

● drastic reduction in size and cost and power.
● Computational speed also enhanced to a great extent.
● ferrite cores became the dominant technology for main memories until it is

superseded by the all-transistor memories in 1970s.
● Magnetic disks became the principal technologies for secondary memories since

then.
● With the introduction of index registers, it is possible to have indexed instructions,

which increments or decrements the designated index I.
● Another innovation in second generation was the introduction of program-control

instructions: call and return which allow the linking of programs.
● It allowed to perform operations on floating point numbers,
● With the introduction of compilers in has become possible to write instructions in

high level language.
● For system management, batch processing came into existence. Batch processing

makes use of supervisory program known as batch monitor which is a rudimentary
version of operating system, which is a system program designed to manage
computer’s resources efficiently.

The third generation (1965-75)

Key Features

● introduction of silicon based integrated circuits (ICs) in the design of computer
hardware, in 1961

● This replaced all the second-generation computers designed with discrete
transistors,

● reduced size, cost and enhanced the speed.
● The most significant event during this period was the recognition of the need to

standardize the computers,
● more and more software were developed and used more efficiently.
● IBM developed the most influential third-generation computer, the System/360

which was announced in 1964 and came in the year 1965.
● Since then System/360 became the de-facto standard and all the models in the series

are software compatible with each other (share common instruction set).
● Introduction of status register (SR) to save the program status word, for any

exceptional conditions, errors, divide by zero or any urgent service requests such
as interrupts.

5 | Microprocessor and Microcontroller

● The VLSI Era

With the advent of integrated circuits (IC) in 1959 at Texas Instruments [2] and its
commercialization in1961, the dominant technology for manufacturing the computer logic
circuits and memory has been the ICs. Initially, the ICs started with few transistors (less
than 100) and gradually progressed through technology advancements allowing more and
more devices to be accommodated in a single chip with the advent of metal-oxide
semiconductor (MOS) ICs. This has resulted in medium scale (MSI), large scale (LSI) and
very large scale integrated (VLSI) circuits containing 1000, 10000 and millions of
transistors, respectively. This allowed to fabricate CPU, main memory, multichip module
or even all the electronic circuits of a computer on a single chip at a very low cost [3]. This
is an enormous advancement allowing to develop a wide range of machines starting form
portable personal computers, microcontrollers to supercomputers containing thousands of
CPUs.

1.1.3 Growth in IC

With the invention of CMOS devices in 1960s there was a rapid growth in silicon-based
ICs. An enormous growth in processor design and in the design of memories had been
observed. Looking into pattern of growth in IC, Gordon Moore, a co-founder of Intel 1965
prophesies that growth in ICs will double in every 24 months, popularly known as Moore’s
law [4]. Fig. 1.2 shows the growth in ICs in processor hardware and future trend up to 2025.
It initially followed a linear rate, but after mid-1990s it deviated from Moore’s law and
followed an exponential growth rate. However, Moore’s law still remains a business
standard in other design fronts such as, in number of processor cores, in the design of
pipelining stages or in selecting the clock frequency for next generation computers.

Figure1.2: Growth in IC (processors) in terms of transistor counts over the years
(Courtesy- ResearchGate)

6 | Microprocessor and Microcontroller

1.1.4 Microprocessor versus Microcontroller

Microprocessor is a programmable logic device, built on electronic circuit, which is capable
of taking binary instructions from a storage device called memory, operates on binary data
(input) according to the instructions and produces results (output). Usually, microprocessor
is the essential part of a general-purpose computing system. A typical programmable
computing system consists of four components: microprocessor, a high-speed memory,
input and output devices as shown in Fig.1.3. Any users program can be carried out using
these four components often known as the hardware. Users program is nothing but a set of
instructions. A group of programs is commonly known as software. Such a system can be
used to carry out any mathematical function or it can be used to design traffic light control.
Depending upon the type of applications, such a system can be simple or highly
sophisticated (high performing). Accordingly, the microprocessor can be implemented to
design reconfigurable processors, domain specific processors and application specific
processors apart from general purpose. However, we can in general classify the
microprocessors into two categories-reprogrammable systems and embedded systems. In
reprogrammable systems such as microcomputers, the microprocessor is used for
computing and data processing. Such a system includes a general-purpose processor, a mass
storage device, such as disk and CD-ROMs and peripheral devices such as, printers,
scanners: personal computer (PC) is a perfect example for this. While in embedded systems,
the microprocessor is used for specific task and it is not reprogrammable to the end users.
It is a part of the consumer product. Microprocessors used in such a system are categorised
as microcontrollers, which includes the components as shown in Fig.1.4. Microcontroller
is essentially an entire computer on a single chip which houses, memory, I/O interfacing
circuits, A/D converters, serial I/O and timers. While embedded systems can be viewed as
products or systems that use microprocessor or a microcontroller to perform a specific task.
Examples of embedded systems include, Washing machines, digital cameras, traffic light
control, automobile dashboard control, antilock braking system in smart cars, cruise control
and many more.

Fig.1.3: General-purpose computing system with microprocessor as CPU

7 | Microprocessor and Microcontroller

Fig.1.4: Basic architecture of Microcontroller

1.2 The Microcomputer and the Microprocessor based System

The computers that are designed with microprocessor are known as microcomputers and is
one among many microprocessor-based systems. The general organization of such a system
is shown in Fig. 1.5. It has three major components, the microprocessor, I/O (input/output)
and the memory (read/write memory and read only memory). These components are
connected by a high-speed communication path known as bus. Each of these components
are called sub-systems and the entire unit is referred to as a system or a microcomputer
system. Thus, microprocessor is only one component of the microcomputer whereas, the
microcomputer is a complete system like other computers, except that the function of CPU
is performed by the microprocessor. As it is apparent from the Fig. 1.2 that 4-bit and 8-bit
microprocessors came around 1975-80. Initially they were used in the area of machine
control and instrumentation. However, as the price went down with the advancement in
technology, microprocessors began to use in many application areas, such as for video
games, word processing, small-business applications. Early microcomputers were designed
with 8-bit microprocessor. As the technology progressed through, other higher bits
microprocessors (16-bit, 32-bit and 64-bit) such as 8086,80286/386/486, Pentium,
Pentium-Pro, Pentium 4, Motorola 68000 and Power PC became available and the present
microcomputers are built around these microprocessors.

8 | Microprocessor and Microcontroller

Figure 1.5: General organization of a Microprocessor based System

The Central Processing Unit (CPU)

We have seen so far microprocessor as the essential component of a digital computer. The
structure of a computer is represented in the form of block diagram as in Fig.1.3. It has four
major components: memory, input, output and the central processing unit (CPU). The CPU
is comprising of an arithmetic/logic unit (ALU) and the control unit. It also contains some
internal registers to store data temporarily.
The Arithmetic/Logic Unit (ALU)
The ALU performs the basic arithmetic operations such as addition, subtraction,
multiplication, division and the logical operations such as AND, OR, NOT.
The Control Unit
The control unit generates a set of control signals which enters into the ALU unit (commonly
known as data-path unit) at appropriate point and time and controls the sequence of events
for the task to be completed faithfully by the ALU. In other words, the synchronisation and
timing for communication is carried out by the control unit. It consists of instruction
decoder, counters and a control unit that generates control signals.
Basic functions of CPU
The CPU fetches instructions from the memory, decodes the instructions and performs
(executes) the task specified in the instructions. It also communicates with input and output
devices to receive or send data. Various steps involved are
● It fetches instructions from the memory
● Determines what function it has to do (i.e. decodes the instruction)
● Performs the function in ALU unit (execution)

While execution some major tasks are need to be carried out. These are as follows:

● Transfer of data from register to register in CPU itself
● Transfer of data between CPU register and specified memory location
● Performing ALU operation on data from a specific memory location or designated CPU

register

9 | Microprocessor and Microcontroller

● Directing CPU to change the sequence of fetching instruction if the processing of data
identifies a specific condition

● It looks for special control signals such as interrupts and provides appropriate responses

 With the advent of IC technology, it is possible to build CPU on a single chip. A computer
designed with a microprocessor acting as its CPU is known as microcomputer. The term,
microprocessor and the microprocessor unit (MPU) are often used synonymously. Again, a
computer may have a single processor acting as a CPU or it can have multiple processors
acting as the CPU. Thus, many a times, microprocessor and the CPU are used synonymously
to mean the same.
Address Bus
It consists of set of connected wires known as bus which carries the address, to identify
a memory location or an I/O port. It is usually a binary pattern of 0s and 1s. For example,
an 8-bit address bus has eight lines thus it can identify 28 = 256 different locations. So, the
locations in hexadecimal format can be written as 00H – FFH. It is unidirectional.
Data Bus
The data bus is used to transfer data either between memory and processor or between I/O
device and processor and vice-versa. For example, an 8-bit processor will generally have
an 8-bit data bus and a 16-bit processor will have 16-bit data bus. It is bidirectional.
Control Bus
The control unit in the processor generates the control signals and the control bus carry
those signals, which consists of signals for selection of memory or I/O device from the
given address, selecting and controlling the appropriate functional units also for direction
of data transfer and synchronization of data transfer in case of slow devices.

1.2.1 Classification of Computers

Computers can be broad classified into following three categories: Large/main frame, mini
and micro-computers.

Large general-purpose computers are usually owned by a big organization with multi-user
and multi-tasking capabilities designed to perform complex scientific and engineering
problems and also for handling records of big organization or government agencies. These
are categorised into two: the main frames and supercomputers. Examples of these include
IBM main frame computers, System/390 series, Fujitsu GS8800 and the Hitachi MP5800,
Cray-2. [5]

Whereas, medium-size computers or the minicomputers are usually a departmental level
computer or the computer of a small factory, with relatively lesser size, reduced
computational capability and less cost than the main frame computers. A typical example
of this is Digital Equipment PDP 11/45.

Micro-computers again can be classified into: Personal computers (PC)-desktops/laptops,
Workstations, single board and single chip microcomputers (microcontrollers).

1.2.2 Microprocessor Instructions and Programming Languages

Microprocessor understands only binary language. Each microprocessor has its own binary
words, meaning and language. A binary word is defined as the number of bits the
microprocessor can recognize and process at a time. Accordingly, there are 4-bit (small),
8-bit, 16-bit, 32-bit and 64-bit (large) microprocessors. Every computer has its own set of
instructions depending upon the design of its CPU or of its microprocessor. However, to

10 | Microprocessor and Microcontroller

communicate with the computer, it is necessary to give instructions in binary form which
is commonly known as machine language. For example, 8085 microprocessor uses 8-bit
words to write instruction. Thus, its instruction set is composed of various combination of
these eight-bit words. Following are the two examples of 8085 instructions:

0011 1100 = an instruction to increment the number in the accumulator by 1

1000 0000 = an instruction that adds the number in the register B with the content of the

 accumulator and keep the sum in the accumulator

 But it is difficult for most of the people to write programs using binary instructions.
Programmers prefer to write instructions and programs using a much simpler and short form
symbolic codes (mnemonics) known as assembly language. For example, if we would like
to represent the earlier binary code 0011 1100 (or in Hex code, 3CH) in mnemonic is INR
A,

INR A: INR means increment and A stands for accumulator. The symbol indicates the

 operation of incrementing the accumulator content by 1.

ADD B: ADD means addition, and B represents the content in register B. This symbol

indicates to add the content of register B with accumulator content and keep the

result in accumulator.

However, the instruction written in assembly language are machine dependent. So they cannot
be transferred from one machine to the other. To get rid of this problem, some machine
independent languages such as BASIC, FORTRAN, PASCAL, C, C++, JAVA are evolved.
These are referred to as high level languages, which are English-like, taking symbols and
conventions from English. The instructions are written in statements rather than mnemonics.
But the English-like languages the machine cannot understand, so there is need for translator
translating these languages to machine language. So, there is a need either for a compiler or
an interpreter. The compiler or the interpreter is essentially a program that takes high level
language as input or source code and converts into machine specific object code
understandable by that computer only. During the process of conversion, it also checks for
syntax errors etc. if any in the source code. While a compiler reads the entire source code or
program first and then translates or converts into machine code that is executable by the
processor. The interpreter takes one instruction at a time and produces an object code and
executes it before taking another instruction. Writing programs in high level language has an
obvious advantage that the designing the code and debugging is very easy. Finding an error
is easier when written in high level language rather than the assembly language.

1.3 Overview of 8085 Microprocessor

8085 microprocessor is an 8-bit processor developed by Intel corporation in the year 1976.
Although it is the most basic processor but it has all the important features of today’s higher
bit microprocessors. So, to understand the internal architecture of a microprocessor it is
better to start with a simple processor.

Key Features of 8085

● It is an 8-bit processor
● It is a single chip MOS device with 40 pins

11 | Microprocessor and Microcontroller

● It has 8-bit data bus and 16-bit address bus. However, the lower order address and data
are multiplexed (AD0-AD7)

● It works on +5V DC power supply
● It has a maximum clock frequency of 3MHz where the minimum frequency is 500 KHz
● It has five addressing modes
● It can address up to 64 k memory locations
● Its instruction set consisting of 72 instructions
● To address an I/O or peripheral device it uses both memory-mapping as well as IO

mapped IO. It uses 16 bit addresses for memory-mapped IO and 8 bit addresses for IO
mapped IO

● It is a CISC processor and uses five stage execution unit

1.3.1 PIN Diagram and Architecture of 8085

The 8085 microprocessor is an IC having 40 pins. The layout of which is shown in Fig. 1.6
and Fig.1.7. The signals which are connected to these pins can be classified into six groups.
These are

● Address bus
● Data bus
● Control & status signals
● Power supply and frequency signals
● Externally initiated signals
● Serial I/O signals

Figure 1.6: 8085 Microprocessor Pin layout and associated signals

12 | Microprocessor and Microcontroller

1.3.1.1 The address bus and Data bus

Address bus is 16-bit wide and consists of 16 signal lines/wires for communication. Higher
order address bus consists of bit lines (A8-A15) which is unidirectional. Usually goes to
tri-state/high impedance state during HOLD and HALT mode. Lower order address
consists of bit lines (A0-A7) is multiplexed with data bus. Thus, we have multiplexed
address/data bus (AD0-AD7) and is bidirectional. It behaves as address bus during first
clock cycle. In the subsequent clock cycles (3rd and 4th) it acts as data bus. These 8 signal
lines goes to tri-state/high impedance state in HOLD and HALT mode.

1.3.1.2 Control and Status signals

This group consists of the following signals,

● ALE : Address Latch Enable
● 𝑅𝐷 : Read control signal
● 𝑊𝑅 : Write control signal
● IO/𝑀, S1 and S0 : Status signal

ALE occurs during the first clock cycle of a machine state and enables the address to get
latched. The falling edge of ALE guarantee the setup and hold times for the address
information. ALE can also be used to strobe the status information. It is never tri-stated.

IO/𝑀 is a status signal used to differentiate between I/O and memory operations. When this
signal goes high it indicates an I/O operation and when it is low indicates a memory
operation. This signal is usually combined with 𝑅𝐷 and WR signals to generate control
signals for I/O and memory.

S1and S0 are the status signals similar to IO/𝑀, however, they are rarely used in small
systems. The following table shows various machine cycles and associated status signals.

Table 1.1: Machine cycles and status signals

1.3.1.3 Power Supply & Clock Frequency Signals
Again, this group consists of four signals,
 Vcc : +5 V DC power supply
 Vss :Ground
 X1, X2 : Crystal Oscillator with a frequency of 6 MHz is connected to these two pins
 CLK : Clock output

13 | Microprocessor and Microcontroller

1.3.1.4 Externally Initiated Signals and Interrupts
● 𝑅𝐸𝑆𝐸𝑇𝐼𝑁: When the signal on this pin goes low, the PC is set to 0 and the buses are

tri-stated and the processor is reset.
● RESET OUT: This signal indicates that the processor is in reset state. The signal can

be used to reset other devices.
● READY: When this signal goes low, the processor waits for an integral number of

clock cycles until it goes high.
● HOLD: This signal indicates that a peripheral such as DMA (direct memory access)

controller is requesting for the use of address and data bus
● HLDA: This signal acknowledges the HOLD request
● INTR: Interrupt request is a general-purpose interrupt
● 𝐼𝑁𝑇𝐴: This active low signal is used to acknowledge an interrupt
● RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and

have the higher priority than other interrupts i.e. INTR
● TRAP: This is a non-maskable interrupt and has the highest priority

1.3.1.5 Serial I/O Signals

This group consists of only two signals,

● SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM
instruction.

● SOD: Serial output signal. Output SOD is set or reset by using SIM instruction

Fig. 1.7: Pin layout of 8085 according to Signal Groups

14 | Microprocessor and Microcontroller

1.3.2 Architecture of 8085 microprocessor
A microprocessor’s architecture is often specified with its instruction set, addressing
modes, data types and their formats, design of its CPU, main memory and IO subsystem.
The logic design of the microprocessor is usually called as the architecture.
Microprocessor is a programmable logic device designed with registers, flipflops and
timing circuitries. It has a set of instruction to manipulate data and communicate with
peripherals. The microprocessor can be programmed to perform various tasks on a given
data by selecting necessary instruction from its set. It can also respond to external signals.
Various functions of microprocessor can be classified into:

● Microprocessor-initiated operations
● Internal operations
● Peripheral or externally initiated operations

Microprocessor needs a group of logic circuits and a set of control signals to perform all
these functions. Today’s microprocessors have all these modules housed in a single chip
whereas earlier processors did not have all the necessary components in one chip. The
complete unit were made up of more than one chip. Thus, the term microprocessing unit
(MPU) is often used to represent these group of devices to perform all these functions like
a CPU. Therefore, the term MPU and microprocessor are often used synonymously.

The architectural diagram of 8085 microprocessor is shown in Fig.1.8. It consists of the
ALU (the arithmetic/logic unit), PC, control unit, instruction register and instruction
decoder, register array and the busses. The address and data bus are already illustrated in
earlier section. Rest of the modules will be discussed here briefly.

Fig. 1.8: Architecture of 8085

 The ALU

The arithmetic/logic unit or the ALU performs various computing functions. These are
basically the arithmetic operation such as addition, subtraction and logic operations such as

15 | Microprocessor and Microcontroller

AND, OR, XOR. For data manipulation, it takes help of Accumulator and a temporary
register which are considered as a part of ALU.

 The Register Array

It is consisting of various registers identified as B, C, D, E, H, L. These are primarily used
to store data temporarily during program execution and are accessible to the user through
instructions. They can be used singly either to store 8-bit data or can be used in pair (such
as BC, DE or HL) for 16 bit-operations. The register pair HL is also used as data pointer
(holds memory address).

The 8085 microprocessor also has an accumulator and a temporary register for the data
processing by the ALU, which not accessible by the user. The accumulator is used to store
8-bit data and also to store the result of an ALU operation.

 Flag Registers

The ALU also contains a 8-bit flag register to accommodate 05 flags. These flags set or reset
according to the program operation, i.e. data condition in A or other registers. These are

● Zero (Z) : it is set if the result of an arithmetic operation is zero
● Carry (CY) : is set if there is a carry/borrow after arithmetic operation
● Sign (S) : is used to indicate the sign of data in the accumulator

▪ is set to 1 if negative and set to 0 (reset) if positive
● Parity (P) : is set if the number is even and reset if the number is odd
● Auxiliary Carry (AC): is set if there is a carry out from bit 3 position

Most commonly used flags are-Zero, Carry and Sign. Microprocessor uses these flags to test
data conditions before jumping.

The Control Unit

It provides necessary timing and control signals to all the operations. Also control flow of data
between microprocessor and main memory/peripherals. A bit pattern usually called micro-
program initiates execution of an instruction. By setting a sequence of control signal, it selects
appropriate logic circuits in ALU and performs the task. Control signals are communicated
through the control bus.

 Program Counter and SP

The program counter (PC) is a16 bit registers to hold memory addresses. Memory addresses
are of 16-bit. The PC is used to sequence the execution of instruction. It points to memory
address where from next byte to be fetched.

The stack pointer or SP is a memory pointer to point memory location in R/W memory, called
stack. It is also a 16-bit register. Beginning of stack is defined by loading a 16-bit address in
SP. Stack is an area of memory used to hold data that will be retrieved soon. The stack is usually
accessed in a Last in First out (LIFO) fashion.

Instruction Register (IR) and Decoder

These are some non-programmable registers. Instructions are stored in IR after being fetched
by the processor. Decoder decodes the instruction in IR.

16 | Microprocessor and Microcontroller

 1.3.2.1 Addressing Modes

It specifies the way to represent the data to be operated on by the instruction. In other words,
the addressing modes indicates the formats of specifying the operands. The 8085
microprocessor has the following five different types of addressing modes.

● Immediate addressing
● Memory direct/Direct addressing
● Register direct addressing
● Indirect addressing
● Implicit (or implied) addressing

Immediate Addressing

In immediate addressing the operand is present in the instruction itself. The operand (either a
byte or a word) will be either transferred to a register or a memory location. For example,

MVI A, 32H : means the immediate operand 32H is to be transferred to the register A.

MOV A, #6AH: means copy the immediate operand 6AH to accumulator.

The format of immediate addressing is shown in Fig. 1.9a, while program memory and
immediate data, how is being transferred to accumulator is shown in Fig. 1.9b.

(a)

Fig. 1.9 (a) Format of immediate addressing and (b) Program memory and immediate data

Memory direct/ Direct addressing

17 | Microprocessor and Microcontroller

This type of addressing indicates that data transfer operation is direct. The address of a memory
location where the operand is stored is directly specified in the instruction. For example,

LDA 2051H : it means load the content of the memory location specified by 2051H into
accumulator register (A). A pictorial representation of this mode of operation is shown below
in Fig.1.10.

Fig.1.10: Direct Addressing Mode

Register Direct Addressing

This type of addressing refers to transfer of the data byte or a word directly from one register
to the other. For example, MOV A, C: it means copy the content of register C to register A.
Fig.1.11 depicts the pictorial representation of this mode of operation. For more on addressing
scan the QR code.

 Fig.1.11: Register Direct Addressing process

Indirect Addressing

Indirect addressing refers to data transfer (byte or a word) between a register and a memory
location specified by register pair. For example,

MOV B, M : copy the data byte into register B from the memory location specified by the
address in the register pair HL. Fig.1.12 represents indirect mode of addressing.

Fig.1.12: Indirect Addressing process

18 | Microprocessor and Microcontroller

Implied or Implicit Addressing

In this type of addressing no operand is needed. The operand is implicitly present there in the
opcode/ instruction itself. For example,

CMA : complement the content of the accumulator,

 RAL : Rotate the content of accumulator to the left

RLC : Rotate the accumulator content left through carry. Following picture illustrates the
same.

Again, there may be one byte, two byte or three bytes in an instruction which will correspond
to equal number memory addresses where they will be stored. As such, processors dealing with
corresponding such instructions are known as 1-Address, 2-Adress or 3-Adress machines.
Examples of which are as follows:

• One byte Instruction

– MOV C, A (Hex code: 4FH)

– ADD B (Hex code: 80H)

– CMA (Hex code: 2FH)---Implicit operand

• Two-byte Instruction

– MVI A, 32H (Hex 3E : first byte, 32 : second byte

– MVI B, F2H (Hex 06: first byte, F2 : second byte

• Three-byte Instruction

– LDA 2050H (Hex code: 3A:first byte, 50:second byte, 20: 3rd byte)

– JMP 2085H (Hex code: C3: 1st byte 85: 2nd byte 20: 3rd byte)

1.3.2.2 Instruction Set

Instruction is a binary pattern or a format to perform a specific task by the processor. The entire
group of instructions that are supported by a microprocessor is known as the instruction set.
The 8085 microprocessor has a total of 74 opcodes that result in 246 instructions (with all
variants). An instruction has two parts-the opcode and the operand. Opcode specifies the
function to be executed and operand indicates the data to be operated on. These instructions
can be broadly classified into three groups.

● Data transfer or data movement instructions
● Data Processing (ALU operations)

o Arithmetic instructions
o Logic instructions

19 | Microprocessor and Microcontroller

● Program Control
o Branch instruction
o Machine control instructions

Data Transfer Instructions

These are a group of instructions used to copy data from one location (source) to another
(destination). Such an operation does not modify the source register content. Following are the
various types of instructions under data processing depending upon the type of source and
destination.

• Instruction Types:

– Between registers (example, B to D)

– A specific data byte to a register or a memory location (example, load B with
32H)

– Between a memory location and a register (example, from location 2000H to B)

– Between I/O device and accumulator (example: Keyboard to accumulator)

– Between registers and stack memory

Some illustrating examples are given in the following table.

Mnemonics Examples Operation

MOV, Rd, Rs MOV B, A

MOV C, B

Copy data from source register Rs to destination
register Rd

MVI R, 8-bit MVI A, 8FH Load 8-bit data (immediate) into a register

LXI Rp LXI D, 2051H Load 16-bit data (immediate) into the register
pair, DL

IN 8-bit IN 01H Read the data from an input device (port) and
place it in the accumulator

OUT 8-bit OUT 08H Write the 8-bit data from accumulator to an
output device (port)

LDA 16-bit LDA 2050H Copy the data byte into A from the memory
specified by 16-bit address

STA 16-bit STA 2075H Copy the data byte from A to the memory
location specified by 16-bit address

LDAX Rp LDAX B Copy the data byte into A from the memory
location specified by address stored in the
register pair BC

STAX Rp STAX H Copy the data byte from A to the memory
location specified by the address in the register
pair HL

20 | Microprocessor and Microcontroller

MOV R, M MOV B, M Copy the data byte into register B from the
memory location specified by the address in
register pair HL (indirect address)

MOV M, R MOV M, A Copy the data byte from the register to the
memory location specified by the address in the
register pair HL (indirect address)

LHLD 16-bit address LHLD 2040H This instruction copies the data byte from the
memory location specified by the address into L
and copies the content of next memory location
to H

SHLD 16-bit address SHLD 2032H This instruction stores the data bytes from L
registers into the memory location specified by
the address and from H to the next memory
location by incrementing the operand

SPHL none SPHL Stores the content of register pain H and L into
the stack pointer register. H provides the higher
order address while L stores the lower order
address

PUSH Rp PUSH B Content of the register pair are copied into stack.
Stack pointer register is first decremented and
content of higher order register is copied. Again,
stack pointer is decremented and the content of
lower order register is copied there.

POP Rp POP H Content of the memory location pointed out by
the stack pointer register is loaded into the
register C, E or L (lower order byte). The stack
pointer is then incremented by 1 and the content
of that memory location is copied to register B, D
or H (higher order byte)

Data Processing (Arithmetic and Logic) Instructions

This group includes all the instructions needed for arithmetic operations and logical operations
which comprise of the following instruction types.

• Arithmetic Operations

– Addition (any 8-bit number, contents of register or contents of memory location
can be added with accumulator content)

– Subtraction (performed in 2’s complement)

– Increment/Decrement: contents of a register or register pair can be
incremented/decremented by 1

• Deals with one register or one location

21 | Microprocessor and Microcontroller

• Logical Operations

– AND, OR, Exclusive-OR

• any 8-bit number, contents of register or contents of memory location
can be logically ANDed, ORed or XORed with accumulator content

– Rotate: each bit of accumulator can be shifted left or right

– Compare: for equality, greater than or less than

– Complement: Each bit of accumulator contents

Some of the important instructions under this are shown next in the table.

Mnemonics Instruction/Example Operation
ADD R ADD B Add the content of register B with the content

of A
ADI 8-bit ADI 4FH Add the 8-bit data (immediate) with the

content of A
ADD M ADD M Add the content of the memory location

specified by register pair HL with the content
of A

SUB R SUB D Subtract the content of register from the
content of A

SUI 8-bit SUI 32H Subtract the data byte from the content of A
SUB M SUB M Subtract the content of the memory location

specified by register pair HL from the content
of A

INR R INR B Increment the content of register
INR M INR M Increment the content of memory location

specified by register pair HL
DCR R DCR C Decrement the content of the register
DCR M DCR M Decrement the content of memory location

specified by register pair HL
INX RP INX B Increment the content of the register pair
DCX Rp DCX H Decrement the content of the register pair
ANA R ANA B Logically AND the content of register B with

that of A
ANI 8-bit ANI 4DH Logically AND the data-byte with the content

of A
ANA M ANA M Logically AND the content of memory

location specified by the register pair HL with
that of A

DAD Rp DAD H 16-bit content of the specified register pair
will be added with the content of H and L
register and the result will be saved in HL pair.

ORA R ORA C Logically OR the content of register with that
of A

ORI 8-bit ORI 4FH Logically OR the 8-bit data with that of A
ORA M ORA M Logically OR the content of memory location

specified by the register pair HL with that of
A

XRA R XRA D Logically XOR the content of register with
that of A

22 | Microprocessor and Microcontroller

XRI 8-bit XRI 7BH Logically XOR the 8-bit data with that of A
XRA M XRA M Logically XOR the content of memory

location specified by the register pair HL with
that of A

CMP R CMP B Compare the content of B with that of A for
less than, Equal to or greater than

CPI 8-bit CPI 4FH Compare 8-bit data with the content of A for
less than, equal to or greater than

Program Control Instructions

This group includes all the instructions needed for branching operations as well as for machine
control operations. These can be further classified as follows:

• Jump:

– Conditional Jump

• Test for certain condition (e.g. zero or carry flag)

– Unconditional jump

• Call, Return and Restart: change the sequence of instruction execution

– By calling a subroutine

– Returning from a subroutine

• Machine Control Operation

– Halt, Interrupt or do nothing

Following are typical program control instructions.

Mnemonics Instruction/Example Operation
JMP 16-bit address JMP 2050H Change the sequence of program execution

form the specified 16-bit address
JZ 16-bit address JZ 2070H Change the sequence of program execution

form the specified 16-bit address when
Zero Flag is set

JNZ 16-bit address JNZ 2080H Change the sequence of program execution
form the specified 16-bit address when
Zero Flag is reset

JC 16-bit address JC 2025H Change the sequence of program execution
form the specified 16-bit address when
Carry Flag is set

JNC 16-bit address JNC 2030H Change the sequence of program execution
form the specified 16-bit address when
Carry Flag is reset

CALL 16-bit address CALL 2175H Change the sequence of program execution
to the location of a subroutine

RET None RET Return to the calling program after
completing the execution in subroutine

HLT None HLT Stop processing of instructions and wait
NOP None NOP Do not perform any operation

23 | Microprocessor and Microcontroller

DI None DI Disable or reset the interrupt enable flip-
flop and all the interrupts except the TRAP
are disabled

EI None SI Set the interrupt enable flip-flop and all the
interrupts are re-enabled except the TRAP

These are some of the typical and most widely used instructions. There are many other
instructions in the set of 8085 instructions which includes other 16-bit operations, additional
jump instructions and conditional Call and Return instructions. Interested readers are advised
to go through the QR link for further details.

Example 1

Write a program to subtract two numbers 49H from 4FH already stored in two memory location
2051H and 2052H respectively and save the result in memory location 2053H. Instructions
begin at 2030H.

Mnemonics Memory location HEX code

LDA 2051H 2030 3A
 2031 51
 2032 20

MOV B, A 2033 47

LDA 2052H 2034 3A
 2035 52
 2036 20

SUB 2037 90

STA 2053H 2038 32
 2039 53
 203A 20

HLT 203B 76

//Manual load 2051 49
 2052 9F
 2053 00

1.3.2.3 Instruction Timing diagram and Machine Cycle

Microprocessor runs with a global clock. Every action of the processor is initiated with
reference to this clock either at leading/trailing edge. Any operation involving read/write
operation or data transfer with the action of control signals, IO/𝑀, S1 and S0 can be displayed
in the form of a timing diagram.

A machine cycle is the time taken by the microprocessor to complete the task of accessing
memory or I/O devices. Various operations like opcode fetch, memory read, memory write,
I/O read, I/O write etc. are performed in a machine cycle. Each cycle of the clock is known as
T-sate. Thus, a machine cycle will have many states. As both the instruction and data are stored

24 | Microprocessor and Microcontroller

in memory, so the microprocessor fetches the instruction first to read the instruction or data
and then executes the instruction.

An instruction cycle thus consisting of two step operation: fetch and execute. This may take
typically 1-5 machine cycles involving 3-6 T-states. For example, the first machine cycle in
every instruction is the opcode fetch which requires at least 4T states as in Fig. 1.9.

Example 2

Illustrate the steps involved and timing diagram of data flow when the instruction MOV C, A
(Hex code: 4FH) stored in 2005H is being fetched.

Step 1: Microprocessor places 16-bit address from the PC on the address bus

– This is accomplished in T1 cycle

– ALE goes high

– IO/M-bar goes low

Step 2: Control unit sends RD-bar control signal to enable the memory chip

– Initiates it in clock cycle T2 and continues up to T3

Step 3: Byte from the memory location is placed on the data bus (AD7-AD0)

– RD-bar signal goes high

– Bus goes to high impedance state

Step 4: The byte is placed in the instruction decoder and the task is carried out as per instruction

– The task of decoding and execution is performed in T4 clock (if data is one byte)

Fig. 1.13: Opcode Fetch Machine Cycle

Similarly, the instruction cycle for the instruction MVI A, 32H is shown below which consists
of two machine cycles M1 and M2 with opcode fetch (M1) and memory read (M2). Opcode
fetch takes 4T states whereas, memory read requires 3T states as shown in Fig. 1.10.

25 | Microprocessor and Microcontroller

Fig. 1.14: Execute cycle

If we assume a clock frequency of 2MHz, then the execution time for memory read cycle and
the instruction cycle can be calculated as follows:

● Clock frequency = 2MHz
● T-state = 1/2MHz = 0.5µS
● Execution time for Opcode Fetch = 4T = 2 µS
● Execution time for Memory Read = 3T =1.5µS
● Execution time for the Instruction =7T = 3.5µS

Example 3

Program to add two 8-bit numbers with a provision of Carry.

Program

MVI C, 00 //Clear Reg C for carry

LDA 4100 //Load accumulator with the data byte from memory location 4100H

MOV B, A //Transfer the data to register B

LDA 4101 //Load the second data from memory location 4101H

ADD B // Add the content of register B with that of accumulator

JNC L1 //If no carry is generated jump to step 8 levelled L1

INR C //else, increment register C by 1 to indicate a carry

L1 STA 4200 // Store the result in the memory location 4200H

MOV A, C // Transfer the content of register C to accumulator

STA 4201 //Store the carry to memory location 4201H

HLT/RST //End the program with Halt (HLT) or go back to monitor program with

26 | Microprocessor and Microcontroller

//Restart (RST)

Example 4

 Reverse a string of numbers.

Program:
MVIB, 06 // Initialize one register (Reg B) with the length of the string
LXI H, 8100 // Initialize one register pair (HL) with the starting address of the source array
LXI D, 8205 // Initialize one register pair (DE) with ending address of the destination array

L1: MOV A, M //Move the memory content to accumulator
STAX D // Store the accumulator content in DE pair
INX H // Increment HL pair
DCX D //Decrement DE pair
DCR B // Decrement the counter register – Reg B
JNZ L1 //Check for zero, if not zero, go to step 4
RST1 //Stop

//Some sample data input and output

Input Output

8100 0A 8200 0F

8101 0B 8201 0E

8102 0C 8202 0D

8103 0D 8203 0C

8104 0E 8204 0B

8105 0F 8205 0A

1.4 8086 Microprocessor-An Overview

Key Features
● First 16-bit processor introduced by Intel in 1978
● It is a 40-pin DIP IC, works on 5MHz clock
● Consists of 29,000 transistors
● Have more powerful and high-speed computational resources
● Have more powerful instruction set compared to 8085 processor
● 20-bit Address bus
● 16-bit Data bus
● Addressed memory size is 1M
● Can address up to 4 segments of 64KB
● 8088 is a less expensive version of 8086 that uses 8-bit data bus

1.4.1 PIN Diagram of 8086

The pin-diagram 8086 processor is shown in Fig. 1.11. It is a 40-pin dual-in-line (DIP)
package IC and works on 5MHz clock with a +5V dc power supply. 8086 is designed to

27 | Microprocessor and Microcontroller

operate in two modes, Minimum and Maximum. It can prefetch up to 6 instruction bytes
from memory and queues them in order to speed up instruction execution. Various groups
of signals associated with the pins are described next.

 Fig.1.15: Pin Diagram of 8086 Microprocessor
AD0-AD15
These signal lines are associated with pins [16-2 & 39] These are. multiplexed bidirectional
address/data bus. In T1 cycle, they carry lower order 16-bit address. In the remaining clock
cycles, they carry 16-bit data. Lower order data byte is carried by AD0-AD7 while AD8-
AD15 carry the higher order byte of data.
A19/S6, A18/S5, A17/S4, A16/S3
These signal lines are associated with the pin [35-38]. These are unidirectional
multiplexed address and status bus. During T1 cycle, they carry higher order address (4-
bits) while in the remaining clock cycles, they carry status signals.
BHE / S7
BHE stands for Bus High Enable. It is associated with Pin 34. BHE signal is used to
indicate the transfer of data over higher order data bus (D8 – D15). 8-bit I/O devices use
this signal. It is multiplexed with status pin S7.
READY
Pin 22 is associated with this signal. This is an acknowledgement signal from slower I/O
devices or memory. It is an active high signal. When it goes high, it indicates that the device

28 | Microprocessor and Microcontroller

is ready to transfer data. When it goes low, microprocessor is then in wait state.
RESET
Pin 21 is associated with this signal. It is a system reset and active high signal. When it goes
high, microprocessor enters into reset state and terminates the current activity. It must be
active for at least four clock cycles to reset the microprocessor.
RD (Read)
This signal is connected to Pin 32. It is used for read operation. It is an output signal. It is
an active low signal
MN / MX
Connected to Pin 33. 8086 works in two modes: Minimum Mode, Maximum Mode. If
MN/MX is high, it works in minimum mode. If MN/MX is low, it works in maximum
mode. Pins 24 to 31 issue two different sets of signals. One set of signals is issued when
CPU operates in minimum mode. Other set of signals is issued when CPU operates in
maximum mode.
INTR
It is an interrupt request signal connected to Pin 18. It is active high. It is level triggered
NMI
It is a non-maskable interrupt signal connected to Pin 17. It is an active high, edge triggered
interrupt.
TEST [at Pin 23]
It is used to test the status of math coprocessor 8087. The BUSY pin of 8087 is connected
to this pin of 8086. If low, execution continues else microprocessor is in wait state.
CLK [at Pin 19]
This clock input provides the basic timing for processor operation. It is symmetric square
wave with 33% duty cycle. The range of frequency of different versions is 5 MHz, 8 MHz
and 10 MHz
VCC and VSS [at Pin 40 and Pin 20],
VCC is power supply signal connected to Pin 40. +5V DC is supplied through this pin.
VSS is the ground signal

PIN DESCRIPTION FOR MINIMUM MODE
INTA
The signal associated with [Pin 24] is an interrupt acknowledge signal, INTA. It is active
low output signal. When microprocessor receives INTR signal, it acknowledges the
interrupt by generating this signal.
ALE
The signal at [Pin 25] is ALE, which is called Address Latch Enable signal. It indicates
that a valid address is available on bus AD0 – AD15. It is an active high output signal and
remains high during T1 state. It is connected to enable pin of latch 8282.
DEN
[Pin 26] is DEN signal or a Data Enable signal. This is an active low output signal. This
signal is used to enable the transceiver 8286. Transceiver is used to separate the data from
the multiplexed address/data bus.
DT / R_bar
[Pin 27] is a DataTransmit/Receive signal. It decides the direction of data flow through the
transceiver. When it is high, data is transmitted out. When it is low, data is received in.
M / IO
[Pin 28] is a signal issued by the microprocessor to distinguish memory access from I/O
access. When it goes high, memory is accessed. When it goes low, I/O devices are

29 | Microprocessor and Microcontroller

accessed.
WR
 [Pin 29] is a Write signal. It is an active low output signal. This is used to write data in
the memory or output device based on the status of M/IO signal.
HLDA
HLDA is attached to [Pin 30]. It is a Hold Acknowledge signal. It is issued after receiving
the HOLD signal. It is an active high output signal.
HOLD
[Pin 31] is for HOLD signal. In DMA mode of data transfer when the DMA controller
needs to use address/data bus, it sends a request to the CPU through this pin. It is an active
high input signal. When microprocessor receives HOLD signal, it issues HLDA signal to
the DMA controller.
DMA stands for Direct Memory Access which allows I/O devices to directly access
memory with less participation of the processor. It is a hardwired-controlled data transfer
technique. In this mode, the external hardware which is the DMA controller, takes over the
charge of processor busses for data transfer. Suppose, disk controller is ready to transmit
the information from the disk, it transfers a DMA request (DRQ) signal to the DMA
controller. The DMA controller then sends a HOLD signal to the processor’s HOLD input.
The processor in reply to this signal suspends the buses and transfers an HLDA
acknowledgment signal. When the DMA controller gets the HLDA signal, then the DMA
controller gains the control of the buses, it transfers the memory address where the first
byte of information from the disk is to be written. It also transfers a DMA to acknowledge
(DACK) signal to the disk controller device to signal it to get ready for transferring the
output byte. However, in this mode, the device can make only one byte or word transfer.
After each transfer, DMAC gives the control of all buses to the processor. HOLD signal
will be reasserted when the I/O device is ready again to transfer next byte or word.

PIN DESCRIPTION FOR MAXIMUM MODE

QS1 and QS0
These two signals are assigned to [Pin 24 and 25]. These pins provide the status of
instruction queue. For example, when QS1 QS0 = 00, means no operation, for 01, it
indicates 1st byte of opcode from queue, 10 means Empty Queue and 11 means
subsequent byte from queue.

S0, S1, S2
[Pin 26, 27, 28] are for three status signals (S0, S1, S2) which indicate the operation being
done by the microprocessor. This information is required by the Bus Controller 8288. Bus
controller 8288 generates all memory and I/O control signals. With S0, S1 and S2 there can
be 8 possible combinations. These are as follows.
0 0 0 => Interrupt Acknowledge
0 0 1 => I/O Read
0 1 0 => I/O Write
0 1 1 => Halt
1 0 0 => Opcode Fetch
1 0 1 => Memory Read
1 1 0 => Memory Write
1 1 1=> Passive

30 | Microprocessor and Microcontroller

LOCK
[Pin 29] is for the signal LOCK. This is an active low output signal and it indicates that
other processors should not ask CPU to relinquish the system bus. When it goes low, all the
interrupts are masked and HOLD request is not granted. This pin is activated by using
LOCK prefix on any instruction.

RQ/GT1 and RQ/GT0
[Pin 30 and 31] are associated with these two signals. They are bi-directional. These are
Request/Grant pins. Other processors request the CPU through these lines to release the
system bus. After receiving the request, CPU sends acknowledge signal on the same lines.
RQ/GT0 has higher priority than RQ/GT1.

1.4. 2 Architecture of 8086
8086 provides an improved architecture over 8085. It is a 16-bit processor supported by 16-
bit ALU, a set of 16-bit registers. It has a segmented memory addressing capability. It also
includes a rich instruction set with a powerful interrupt structure and fetched instruction
queue for overlapped fetching and execution. The internal architecture of 8086 is shown in
Fig. 1.12. 8086 has a pipeline architecture. Entire architecture of 8086 can be divided into
two separate processing parts--bus interface unit (BIU) and Execution Unit (EU). The bus
interface unit consists of circuits for physical address translation and a pre-decoding
instruction byte queue (6 bytes long). Bus interface unit is responsible for establishing
communication between peripheral devices (external) including memory via the bus.
Moreover, 8086 can address segmented memory. So, the complete physical address which
is 20-bit long is generated by adding the segment and offset register, each of which are 16-
bit long.
To generate the physical address, the content of the segment register, also known as
segment address is left-shifted four times and then the content of offset register also known
as the offset address is added to produce a 20-bit address. For further explanation with
examples refer [6]. More on memory mapping techniques will be described in Chapter 6.
The segment addressed by a segment value of 1005H can have the offset values ranging
from 0000H to FFFFH i.e. a maximum of 64K memory locations can be accommodated by
a segment. Thus, the segment register essentially indicates the base address of a particular
segment and the offset indicates the distance of the required memory location from base
address in the segment. As the offset is a 16-bit number, so each segment can have 64K
locations. The bus interface unit has a separate adder to perform this address translation to
obtain the physical address of peripheral device or a memory location. The segment address
value is taken from an appropriate segment register depending on whether a code, data or
stack to be accessed. While the offset may be the content of IP, BP, SP, SI, DI, BX or an
immediate 16-bit value depending upon the type of addressing mode.
In 8085 microprocessor, instruction is first fetched and decoded and then goes to execution
unit to perform the arithmetic or logic operation, during which the external bus remains
idle. While in 8086, this time-slot is utilized to perform overlapped fetch and execution.
While the fetched instruction is decoded and executed internally by the processor, the
external bus is used to fetch next machine/instruction and arrange them in a buffer queue,
known as pre-decoded instruction byte queue. It is a 6-byte long first-in first-out buffer
queue. While the opcode is being fetched by the bus interface unit, the execution unit
executes the pre-decoded instructions concurrently. Thus, the BIU and the EU forms the

31 | Microprocessor and Microcontroller

pipeline architecture. Branch interface unit therefore manages the complete interfacing of
execution unit with I/O devices or memory under the control of timing and control unit.
The execution unit contains the register set of 8086 except the segment registers and IP. It
has a 16-bit ALU to perform the arithmetic and logic operations. It has also 16-bit flag
registers which reflect the results of execution performed by the ALU. The decoding unit
decodes the instructions issued by the instruction byte queue. The control unit provides the
necessary timing and control signals for execution. The execution unit may pass the result
to bus interface unit for saving them to external memory.

Fig. 1.16: Internal Architecture of 8086 Microprocessor {Courtesy: EEEGUIDE [7]}

1.4.2.1 GENERAL PURPOSE REGISTERS OF 8086
There are 14 user addressable registers altogether in 8086, each of which are 16-bit. Four
general purpose registers- AX, BX, CX, and DX can be used as 8-bit registers
individually or can be used as 16-bit in pair.

• AX Register: AX register is also known as accumulator register that stores
operands for arithmetic operation like divided, rotate.
• BX Register: This register is mainly used as a base register. It holds the starting
base location or the base address of a memory region within a data segment.
• CX Register: It is defined as a counter. It is primarily used in loop instruction to
store loop counter.
• DX Register: DX register is used to contain I/O port address for I/O instruction.

32 | Microprocessor and Microcontroller

1.4.2.2 SEGMENT REGISTERS

There are some additional registers called segment registers to generate memory address
when combined with other (offset) in the microprocessor. In 8086 microprocessor, memory
is divided into 4 segments as follows:
Code Segment (CS): The CS register is used for addressing a memory location in
the Code Segment of the memory, where the executable program is stored.

• Data Segment (DS): The DS contains most data used by program. Data are accessed
in the Data Segment by an offset address or the content of other register that holds
the offset address.

• Stack Segment (SS): SS defined the area of memory used for the stack.

• Extra Segment (ES): ES is additional data segment that is used by some of the
string to hold the destination data

1.4.2.3 Flag Registers
These registers determine the current state of the processor. They are modified
automatically by CPU after arithmetic and logic operation operations. They allow us to
determine the type of the result, and also to determine conditions for the transfer of control
to other parts of the program. In 8086 there are 9 flag registers and they are divided into
two groups:

1. Conditional Flags
2. Control Flag

CONDITIONAL FLAGS

Conditional flags represent the status of the last arithmetic or logical operation that is
executed. Conditional flags are as follows:
1. Carry Flag (CF): This flag represents an overflow condition for unsigned integer
arithmetic operation. It is also used in multiple-precision arithmetic.
2. Auxiliary Flag (AF): If any arithmetic operation performed in ALU results in a
carry/barrow from the lower nibble (i.e. D0 – D3) to the upper nibble (i.e. D4 – D7), then
the AF flag is set i.e. carry given by D3 bit to D4 is AF flag. This is not a general-purpose
flag, it is used internally by the processor to perform Binary to BCD conversion.
3. Parity Flag (PF): This flag is used to indicate the data bits parity in the result. If the
lower order 8- bits of the result contains even number of 1’s, the Parity Flag is set and it is
reset for odd number of 1’s.
4. Zero Flag (ZF): This flag is set if the result of any arithmetic or logical operation is
zero else it is reset.
5. Sign Flag (SF): In sign magnitude notation of a number, the sign of number is
indicated by MSB. Usually 0 for positive and 1 for negative number. If the result of an
operation is negative (i.e. MSB = 1) then sign flag is set.
6. Overflow Flag (OF): This occurs when signed numbers are added or subtracted. When
this flag is set it indicates that the result has exceeded the capacity of machine.

33 | Microprocessor and Microcontroller

CONTROL FLAGS
Control flags are set or reset deliberately by the CPU to control the operations of the
execution unit. Control flags are as follows:
1. Trap Flag (TP):
● This is used for single step control.
● It allows user to execute one instruction of a program at a time for debugging purpose.
● When trap flag is set, program can be run in single step mode.

2. Interrupt Flag (IF):

● It is an interrupt enable/disable flag.
● If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the interrupt is

disabled.
● It can be set by executing instruction sit and can be cleared by executing CLI

instruction.

3. Direction Flag (DF):

● This is used for string operation.
● If this is set then the string bytes are accessed from higher memory address to lower

memory address.
● When it is reset, the string bytes are accessed from lower memory address to higher

memory address.

1.4.3. ADDRESSING MODES OF 8086

The different ways in which a source operand is denoted in an instruction is known as
addressing modes. There are specifically 8 different addressing modes in 8086 programming.
However, considering I/O, memory locations and type of data, there are more variations. These
are as follows:

Addressing Modes for Register and Immediate Data

● Register Addressing mode
● Immediate Addressing mode

Addressing modes for memory data

● Register Indirect Addressing mode
● Direct Addressing mode
● Based Addressing mode
● Indexed Addressing mode
● Base Relative Addressing mode
● Base Indexed Addressing mode
● String Addressing Mode

Addressing modes for I/O port

● Direct I/O port Addressing
● Indirect I/O port Addressing

Relative Addressing

● Implied Addressing Mode

34 | Microprocessor and Microcontroller

Immediate addressing mode

The addressing mode in which the data operand is a part of the instruction itself is known as
immediate addressing mode.

Example,

● MOV CX, 4929 H * ADD AX, 2387 H, * MOV AL, FFH

Register addressing mode

In this mode, the register is the source of an operand for an instruction.

Example,

MOV CX, AX // copies the contents of the 16-bit AX register into
 // the 16-bit CX register),
ADD BX, AX

Direct addressing mode

In this addressing mode, the effective address of the memory location is written directly in the
instruction.

Example

MOV AX, 1592H, MOV AL, 0300H

Register indirect addressing mode

This addressing mode allows data to be addressed at any memory location through an offset
address held in any of the following registers: BP, BX, DI & SI.

Example

MOV AX, [BX] //Suppose the register BX contains 4895H, then the contents
 //4895H are moved to AX
ADD CX, {BX}

Based addressing mode

In this addressing mode, the offset address of the operand is given by the sum of contents of
the BX/BP registers and 8-bit/16-bit displacement.

Example

MOV DX, [BX+04], ADD CL, [BX+08]

Indexed addressing mode

In this addressing mode, the operands offset address is obtained by adding the contents of SI
or DI register with 8-bit/16-bit displacements.

Example

35 | Microprocessor and Microcontroller

MOV BX, [SI+16],
ADD AL, [DI+16]

Base-indexed addressing mode

In this addressing mode, the offset address of the operand is calculated by summing the base
register with the contents of an Index register.

Example

ADD CX, [AX+SI],
MOV AX, [AX+DI]

Base Relative (displacement)addressing mode

In this addressing mode, the operands offset is obtained by summing the base register
contents, with a constant offset.

Example

● MOV AX, [BP + 1],
● ADD CX, [BX+16],
● JMP [BX+1]

I/O DIRECT ADDRESSING MODES

Here the port number is a 8 bit immediate operand. This allows fixed access to ports
numbered 0 to 255.

Example: OUT 05H, AL //outputs [AL] to 8-bit port 05H

INDIRECT ADDRESSING MODE

The port number is taken from DX allowing 64K 8-bit ports or 32K 16-bit ports.

Example: IN AX, DX //If [DX]=5040, Inputs the 8-bit content of port 5040 into AL and 5041 into AH.

RELATIVE ADDRESSING MODE

In this mode, the operand is specified as a signed 8-bit displacement, relative to
PC (Program Counter).

Example: JNC START // if carry=0, PC is loaded with current PC contents plus the 8-bit signed value
of START, otherwise the next instruction is executed.

IMPLIED ADDRESSING MODE

Instructions using this mode have no operands.

Example: CLC //This clears the carry flag to zero

1.4.4 8086 Instruction Set

The 8086 microprocessor supports 8 different classes of instructions. These are,

● Data Transfer Instructions
● Arithmetic Instructions

36 | Microprocessor and Microcontroller

● Bit Manipulation Instructions
● String Instructions
● Program Execution Transfer Instructions (Branch & Loop Instructions)
● Processor Control Instructions
● Iteration Control Instructions
● Interrupt Instructions

Let us now discuss each of these instruction sets in detail along with examples.

1.4.4.1 Data Transfer Instructions

These instructions are used to transfer the data from a source to the destination. Following are
the list of instructions under this group.

Instruction to transfer a word

● MOV – This instruction is used to copy a byte or word from a given source to a
specified destination. For example,

MOV CX, 037AH, MOV AX, BX or MOV DL, [BX]

● PUSH – This instruction is used to put a word at the top of the stack. For example,
PUSH BX, PUSH DS. The SP is decremented by 2 after PUSH operation.

● POP – This is used to get a word from the top of the stack to a given location. For
example, POP DX, POP DS. After POP operation SP is incremented by 2.

● PUSHA – This is used to put all the registers into the stack.

● POPA – This instruction is used to get words from the stack to all registers.

● XCHG – This is used to exchange the data between two locations. For example,
XCHG AX, DX or XCHG BL, CH

● XLAT – This instruction is used to translate a byte in AL using a table in the memory.

Instructions for input and output port operations

● IN – This is used to read a byte or word from a given port to the accumulator. For
example, IN AL, OC8H or IN AX, 34H

● OUT – This is used to send out a byte or word from the accumulator to the intended
port. For example, OUT 3BH, AL or OUT 2CH, AX.

Instructions to transfer the address

● LEA – This instruction is used to load the address of operand into a given register.

● LDS – This instruction is used to load DS register and other specified register from
the memory

● LES – It is used to load ES register and other specified register from the memory.

37 | Microprocessor and Microcontroller

Instructions to transfer flag registers

● LAHF – This instruction is used to load AH with the lower-order byte of the flag
register.

● SAHF – This is used to store AH register to low-order byte of the flag register.

● PUSHF – This is used to copy a word in the flag register to two memory locations in
the stack pointed by the stack pointer. Decrements the stack pointer by 2

● POPF – This is used to copy a word from two memory locations at the top of the
stack to the flag register and increments the stack pointer by 2.

1.4.4.2 Arithmetic Instructions

These instructions are used to perform arithmetic operations like addition, subtraction,
multiplication, division, etc.

Following is the list of instructions under this group.

Instructions to perform addition

● ADD – This instruction is used for the addition of the provided byte with a byte or a
word with a word.

● ADC – This is used for addition with a carry.

● INC – This instruction is used for incrementing the provided byte/word by 1.

● AAA – This instruction is used to adjust ASCII after addition.

● DAA – This instruction is used to adjust the decimal after the addition/subtraction
operation.

Instructions to perform subtraction

● SUB – This instruction is used to subtract the byte from a byte or the word from a
word.

● SBB – This is used to perform subtraction with borrow.

● DEC – This instruction is used to decrement the provided byte/word by 1.

● NPG – This is used to negate each bit of the provided byte/word and add 1’s or 2’s
complement.

● CMP – It is used to compare 2 provided byte/word.

● AAS – It is used to adjust ASCII codes after subtraction.

● DAS – This instruction is used to adjust decimal after subtraction.

Instruction to perform multiplication

MUL – Instruction to multiply unsigned byte by byte/word by word. For example,

o MUL BH ---Multiply AL with BH; result in AX

o MUL CX--Multiply AX with CX; result in DX (higher word) and AX (lower)

38 | Microprocessor and Microcontroller

● IMUL – Instruction to multiply signed byte by byte or word by word. For example,

o IMUL BH -- Multiply signed byte in AL with signed byte in BH; result in AX

o IMUL AX --Multiply AX times AX; result in DX and AX

● AAM – Instruction to adjust ASCII codes after multiplication.

Instructions to perform division

● DIV – This instruction is used to divide the unsigned word by byte or unsigned
double word by word. For example,

o DIV BL -Divide word in AX by byte in BL; Quotient in AL, remainder in AH

o DIV CX - Divide down word in DX and AX by word in CX; Quotient in AX,
and remainder in DX.

● IDIV – This instruction is used to divide the signed word by byte or signed double
word by word. For example, IDIV BL //Signed word in AX/signed byte in BL.

● AAD – This instruction is used to adjust ASCII codes after division.

● CBW – This is used to fill the upper byte of the word with the copies of sign bit of the
lower byte.

● CWD – This is used to fill the upper word of the double word with the sign bit of the
lower word.

1.4.4.3 Bit Manipulation Instructions

These instructions are used to perform operations where data bits are involved, i.e. operations
like logical, shift, etc.

Following is the list of instructions under this group:

Instructions to perform logical operation

● NOT – This instruction is used to invert each bit of a byte or word.

● AND − Used for adding each bit in a byte/word with the corresponding bit in another
byte/word. For example, AND BH, CL AND BX, 00FFH etc.

● OR – This instruction is used to multiply each bit in a byte/word with the
corresponding bit in another byte/word. For example, OR AH, CL OR BP, SI OR
BL, 80H etc.

● XOR − Used to perform Exclusive-OR operation over each bit in a byte/word with
the corresponding bit in another byte/word.

● TEST – Th is used to add operands to update flags, without affecting operands.

Instructions to perform shift operations

● SHL/SAL – This instruction is used to shift bits of a byte/word towards left and put
zero(S) in LSBs.

● SHR − Used to shift bits of a byte/word towards the right and put zero(S) in MSBs.

39 | Microprocessor and Microcontroller

● SAR – This instruction is used to shift bits of a byte/word towards the right and copy
the old MSB into the new MSB.

Instructions to perform rotate operations

● ROL – This instruction is used to rotate bits of byte/word towards the left, i.e. MSB
to LSB and to Carry Flag [CF].

● ROR − Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to
Carry Flag [CF].

● RCR − Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to
MSB.

● RCL – This is used to rotate bits of byte/word towards the left, i.e. MSB to CF and
CF to LSB.

1.4.4.4 String Instructions

String is a group of bytes/words and their memory is always allocated in a sequential order.

Following is the list of instructions under this group −

● REP – This instruction is used to repeat the given instruction till CX ≠ 0.

● REPE/REPZ − Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

● REPNE/REPNZ − Used to repeat the given instruction until CX = 0 or zero flag ZF
= 1.

● MOVS/MOVSB/MOVSW – This instruction is used to move the byte/word from
one string to another.

● COMS/COMPSB/COMPSW − Used to compare two string bytes/words.

● INS/INSB/INSW – This is used as an input string/byte/word from the I/O port to the
provided memory location.

● OUTS/OUTSB/OUTSW − Used as an output string/byte/word from the provided
memory location to the I/O port.

● SCAS/SCASB/SCASW – This is used to scan a string and compare its byte with a
byte in AL or string word with a word in AX.

● LODS/LODSB/LODSW − Used to store the string byte into AL or string word into
AX.

1.4.4.5 Program Execution Transfer Instructions (Branch and Loop Instructions)

These instructions are used to transfer/branch the instructions during an execution. It includes
the following instructions −

Instructions to transfer the instruction during an execution without any condition −

● CALL – This is used to call a procedure and save their return address to the stack.

● RET − This is used to return from the procedure to the main program.

● JMP − This is used to jump to the provided address to proceed to the next instruction.

40 | Microprocessor and Microcontroller

Instructions to transfer the instruction during an execution with some conditions −

● JA/JNBE – This is used to jump if above/not below/equal instruction satisfies.

● JAE/JNB − This is used to jump if above/not below instruction satisfies.

● JBE/JNA − This is used to jump if below/equal/ not above instruction satisfies.

● JC − This is used to jump if carry flag CF = 1

● JE/JZ − This instruction is used to jump if equal/zero flag ZF = 1

● JG/JNLE − This is used to jump if greater/not less than/equal instruction satisfies.

● JGE/JNL − This instruction is used to jump if greater than/equal/not less than
instruction satisfies.

● JL/JNGE − This is used to jump if less than/not greater than/equal instruction
satisfies.

● JLE/JNG − Used to jump if less than/equal/if not greater than instruction satisfies.

● JNC − This is used to jump if no carry flag (CF = 0) is set.

● JNE/JNZ − This is used to jump if not equal/zero flag, ZF = 0

● JNO − This is used to jump if no overflow i.e. OF = 0

● JNP/JPO − This is used to jump if not parity/parity odd PF = 0

● JNS − This is used to jump if not sign SF = 0

● JO − This is used to jump if overflow flag is set i.e. OF = 1

● JP/JPE − This is used to jump if parity/parity even, PF = 1

● JS − This is used to jump if sign flag, SF = 1

1.4.4.6 Processor Control Instructions

These instructions are used to control the processor action by setting/resetting the flag values.

Following are the instructions under this group −

● STC − This instruction is used to set carry flag CF to 1

● CLC − This is used to clear/reset carry flag CF to 0

● CMC − This is used to put complement at the state of carry flag CF.

● STD – This instruction is used to set the direction flag DF to 1

● CLD − This is used to clear/reset the direction flag DF to 0

● STI − This is used to set the interrupt enable flag to 1, i.e., enable INTR input.

● CLI − This is used to clear the interrupt enable flag to 0, i.e., disable INTR input.

1.4.4.7 Iteration Control Instructions

These instructions are used to execute the given instructions for number of times. Following
is the list of instructions under this group −

41 | Microprocessor and Microcontroller

● LOOP − This is used to loop a group of instructions until the condition satisfies, i.e.,
CX = 0

● LOOPE/LOOPZ – This is used to loop a group of instructions till it satisfies ZF = 1
& CX = 0

● LOOPNE/LOOPNZ – This is used to loop a group of instructions till it satisfies ZF
= 0 & CX = 0

● JCXZ − This is used to jump to the provided address if CX = 0

1.4.4.8 Interrupt Instructions

These instructions are used to call the interrupt during program execution.

● INT − This instruction is used to interrupt the program during execution and calling
service specified.

● INTO − This is used to interrupt the program during execution if OF = 1

● IRET – This instruction is used to return from interrupt service to the main program

1.4.5 8086 Interrupts

Interrupt is a method of making a temporary halt during program execution and allowing
peripheral devices to access the microprocessor. The microprocessor responds to that
interrupt with an ISR (Interrupt Service Routine), which is a short program that instructs the
microprocessor on how to handle the interrupt.

The following figure (Fig. 1.13) shows the types of interrupts that are there in a 8086
microprocessor.

Fig. 1.17: Classification of 8086 Interrupts

1.4.5.1 Hardware Interrupts

Hardware interrupt is caused by any peripheral device by sending a signal through a specified
pin to the microprocessor.

42 | Microprocessor and Microcontroller

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-maskable
interrupt and INTR is a maskable interrupt having lower priority. One more interrupt pin
associated is INTA called interrupt acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable
interrupt request pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place −

● Completes the current instruction that is in progress.

● Pushes the Flag register values on to the stack.

● Pushes the CS (code segment) value and IP (instruction pointer) value of the return
address on to the stack.

● IP is loaded from the contents of the word location 00008H.

● CS is loaded from the contents of the next word location 0000AH.

● Interrupt flag and trap flag are reset to 0.

INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted only if
interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear
interrupt Flag instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI is
disabled, then the microprocessor first completes the current execution and sends ‘0’ on
INTA pin twice. The first ‘0’ means INTA informs the external device to get ready and
during the second ‘0’ the microprocessor receives the 8 bit, say X, from the programmable
interrupt controller.

These actions are taken by the microprocessor −

● First completes the current instruction.

● Activates INTA output and receives the interrupt type, say X.

● Flag register value, CS value of the return address and IP value of the return address
are pushed on to the stack.

● IP value is loaded from the contents of word location X × 4

● CS is loaded from the contents of the next word location.

● Interrupt flag and trap flag is reset to 0

1.4.5.2 Software Interrupts

Some instructions are inserted at the desired position into the program to create interrupts.
These interrupt instructions can be used to test the working of various interrupt handlers. It
includes −

INT- Interrupt instruction with type number

43 | Microprocessor and Microcontroller

It is 2-byte instruction. First byte provides the op-code and the second byte provides the
interrupt type number. There are 256 interrupt types under this group.

Its execution includes the following steps −

● Flag register value is pushed on to the stack.

● CS value of the return address and IP value of the return address are pushed on to the
stack.

● IP is loaded from the contents of the word location ‘type number’ × 4

● CS is loaded from the contents of the next word location.

● Interrupt Flag and Trap Flag are reset to 0

The starting address for type0 interrupt is 000000H, for type1 interrupt is 00004H similarly
for type2 is 00008H and ……so on. The first five pointers are dedicated interrupt pointers.
i.e. −

● TYPE 0 interrupt represents division by zero situation.

● TYPE 1 interrupt represents single-step execution during the debugging of a program.

● TYPE 2 interrupt represents non-maskable NMI interrupt.

● TYPE 3 interrupt represents break-point interrupt.

● TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced microprocessors, and
interrupts from 32 to Type 255 are available for hardware and software interrupts.

INT 3-Break Point Interrupt Instruction

It is a 1-byte instruction having op-code is CCH. These instructions are inserted into the
program so that when the processor reaches there, then it stops the normal execution of
program and follows the break-point procedure.

Its execution includes the following steps −

● Flag register value is pushed on to the stack.

● CS value of the return address and IP value of the return address are pushed on to the
stack.

● IP is loaded from the contents of the word location 3×4 = 0000CH

● CS is loaded from the contents of the next word location.

● Interrupt Flag and Trap Flag are reset to 0

INTO - Interrupt on overflow instruction

It is a 1-byte instruction and their mnemonic INTO. The op-code for this instruction is CEH.
As the name suggests it is a conditional interrupt instruction, i.e. it is active only when the
overflow flag is set to 1 and branches to the interrupt handler whose interrupt type number is
4. If the overflow flag is reset then, the execution continues to the next instruction.

Its execution includes the following steps −

● Flag register values are pushed on to the stack.

44 | Microprocessor and Microcontroller

● CS value of the return address and IP value of the return address are pushed on to the
stack.

● IP is loaded from the contents of word location 4×4 = 00010H

● CS is loaded from the contents of the next word location.

● Interrupt flag and Trap flag are reset to 0

1.5 Microcontroller and Its Architecture

A microcontroller is a small, low-cost microcomputer which is designed to perform the
specific tasks of embedded systems like, cruise control, ABS in Cars, displaying microwave’s
information, washing machines, printers and many more. In general, the microcontroller
consists of the processor, the memory (RAM, ROM, EPROM), Serial ports, peripherals (timers,
counters), etc. in a single chip.

A microcontroller (MCU for microcontroller unit) can also be defined as a small computer
on a single MOS VLSI chip. A microcontroller contains one or more CPUs (processor cores)
along with memory and programmable input/output peripherals. Program memory in the form
of ferroelectric RAM, NOR flash or ROM is also often included on chip, as well as a small
amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the
microprocessors used in personal computers or other general purpose applications (such as,
Pentium, Motorola 68000 series) consisting of RAM, ROM, timers, I/O ports, bus interface,
cache memories etc. are added externally and comes in various discrete chips.

In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on
a chip (SoC). An SoC may connect the external microcontroller chips as the motherboard
components, but an SoC usually integrates the advanced peripherals like graphics processing
unit (GPU) and Wi-Fi interface controller as its internal microcontroller unit circuits. By
reducing the size and cost compared to a design that uses a separate microprocessor, memory,
and input/output devices, microcontrollers make it economical to digitally control even more
devices and processes. Today, mixed signal microcontrollers are common, integrating analog
components needed to control non-digital electronic systems. In the context of the internet of
things, microcontrollers are economical and popular means of data collection, sensing and
actuating the physical world as edge devices.

1.5.1 Types of Microcontrollers

Microcontrollers are divided into various categories based on memory, architecture, bits and
instruction sets. Following are their types.

Bit Based

Based on bit configuration, the microcontrollers are further divided into three categories.

● 8-bit microcontroller − This type of microcontroller is used to execute arithmetic and
logical operations like addition, subtraction, multiplication division, etc. For example,
Intel 8031 and 8051 are 8 bits microcontroller.

● 16-bit microcontroller − This type of microcontroller is used to perform arithmetic
and logical operations where higher accuracy and performance is required. For
example, Intel 8096 is a 16-bit microcontroller.

● 32-bit microcontroller − This type of microcontroller is generally used in
automatically controlled appliances like automatic operational machines, medical
appliances, etc.

45 | Microprocessor and Microcontroller

Memory Based

Based on memory configurations, the microcontroller is further divided into two categories.

● External memory microcontroller − This type of microcontroller is designed in
such a way that they do not have a program memory on the chip. Hence, it is named
as external memory microcontroller. For example: Intel 8031 microcontroller.

● Embedded memory microcontroller − This type of microcontroller is designed in
such a way that the microcontroller has all programs and data memory, counters and
timers, interrupts, I/O ports are embedded on the chip. For example: Intel 8051
microcontroller.

Instruction Set Based

Based on the instruction set configuration, the microcontroller is further divided into two
categories.

● CISC − Stands for complex instruction set computer. It allows the user to insert a
single instruction as an alternative to many simple instructions, thereby reducing total
number of executable instructions in a program (N).

● RISC − Stands for Reduced Instruction Set Computers. It reduces the execution time
by shortening the cycles per instruction (CPI).

1.5.2 Applications of Microcontrollers

Microcontrollers are widely used in various different devices such as −

● Light sensing and controlling devices like LED.

● Temperature sensing and controlling devices like microwave oven, chimneys.

● Fire detection and safety devices like Fire alarm.

● Measuring devices like Volt Meter.

● Washing machines,

● Smart Cars

● Aviation Control

● Smart doors and many more

1.5.3 Microcontroller Architecture

The fundamental and primary part of the microcontroller is the Central Processing Unit which
is capable of processing a word of varying length ranging from 4-bit up to 64-bit. But in
modern-day, with technological advancements, the word length has increased and accordingly
the range. There is additionally a timer which is present in the microcontroller which acts as a
watchdog. There are memory storages of different types that are present in the microcontroller.
They act as storage devices for program as well as data.

The architecture of the microcontroller is the internal hardware design which is important to
understand the applicability of its architecture for different reasons. The design is not too
complex and is easy to understand. The architecture defines every section very clearly and

46 | Microprocessor and Microcontroller

distinctly. Fig.1.13 shows the general architecture of a microcontroller. It consists of the
following basic components.

1. CPU (Central Processing Unit)
It comprises of an Arithmetic Logic Unit (ALU) and a Control Unit (CU) and some other
components too which are important for its functioning. CPU co-ordinates the communication
between the peripheral devices such as memory, Output, and Input. All the arithmetical and
logical operations are performed by the Arithmetic Logic Unit (ALU). The timing to be
maintained of the communication between the CPU and the different components in the device
is controlled by the Control Unit (CU).

2. Program Memory
The instructions that are issued by the CPU are recorded and stored in the Program Memory. it
is also termed as Read-Only Memory (ROM). It even stores the data whenever the device is
not in functioning mode (silent) or is turned off so that there is a stored record of the functions
and the implementation of the various actions of the device controls. Even on the possibility of
a complete reset, there is no alteration of any data. Today we have alternative Program Memory
such as, Electrically Erasable Programmable Read-Only Memory (EEPROM) which is also
non-volatile memory.

3. Data Memory

This resides in the microcontroller and is totally responsible for the storage of temporary data
and variables. It also stores intermediate results and some other data which are important for
the proper functioning of the program. It is commonly called as Random-Access Memory
(RAM) which is a volatile memory. It is commonly systematized as registers and it includes
the Special Function Registers (SFRs) and also the memory locations accessible by the user.

4. Input and Output Ports
These are the ports that provide physical connection of the microcontroller with the outside
world. There are sensors that are present in the ports and they assist in allowing the input of
data from external sources into the microcontroller. The data which is received from the input
ports is usually manipulated and that decide the data which will be available at the output port.
Mostly, the ports present in the microcontroller function both as input and also as output ports.
They can perform with dual functionality.

5. Clock Generator
The synchronization of data and the flow of the program need to be timely and ordered. The
clock signal helps to maintain this important functioning of the microcontroller. Thereby the
operations run smoothly. It is an integral and most important part of the microcontroller and its
architecture. An additional timing circuit needs to be provided which is usually in the form of
a crystal.

6. ADC and DAC
A/D and D/A converters are very useful to convert the output signal in the necessary form.
For example, the data which is available in the form of analog signal can be converted into
digital and vice-versa.

Apart from these, a microcontroller also includes interface for USB/ethernet, RS232 serial
interface, PWM etc.

47 | Microprocessor and Microcontroller

Fig. 1.18: Architectural Diagram of a Microcontroller

1.5.4 Comparison of 8-bit, 16-bit and 32-bit Microcontrollers

As already stated that microcontrollers can be of 8-bit, 16-bit or 32-bit depending upon the
number of bits of data it processes. Certainly, they differ in terms of their execution time
(speed), cost, efficiency, address space and storage capability. A brief comparison is given
next.

8-bit Microcontroller

● Internal bus is 8-bit
● ALU performs operation on 8-bit data (1-byte)
● 8-bit microcontrollers are used in small systems
● Typically works on 4 MHZ clock
● Less cost
● Small RAM and ROM
● 8-bit microcontroller uses small memories that can be erased in-system
● Examples: AVR, PIC, HCS12, 8051 family
● Used in products like, miniature-washing machine, remote control toys, motor control

etc.

16-bit Microcontroller

● Internal bus is 16 bit
● Typically works on 12-50MHz. clock
● ALU performs operation on 16-bit (2-bytes) data
● More precision compared to 8-bit microcontroller
● Typically has 16 to 32Kbyte of memory
● 16-bit microcontrollers use large memories that cannot be erased in-system
● Examples: Extended 8051 XA, Intel 8096, MC68HC12
● Used in micro-ovens, washing machines, video games etc.

48 | Microprocessor and Microcontroller

32-bit Microcontroller

● Internal bus is 32-bit
● Usually have clocks more than 100MHZ
● ALU performs operations on 32-bit (4-byte) data
● Can address up to 4GB of memory (RAM)
● Even greater precision than 16-bit microcontroller
● Examples: PIC32, ARM, Intel 80960, Atmel 251 family
● Used in large embedded system

1.5.5 How to choose microcontrollers?

The criteria to choose a microcontroller are

● Whether the microcontroller meets the computing needs of the task efficiently and cost
effectively. Factors affecting this are, speed, cost per unit, power consumption,
packaging, amount of RAM and ROM in the chip, number of I/O pins and timers.
Moreover, also depends on how easy to upgrade it to high performance or low power
consumption version

● What are the software development tools available? For example, compilers,
assemblers, debuggers, emulators etc. that is how easy to develop products around the
chosen microcontroller.

● It must be readily available and there must be a wide availability of the reliable sources
of microcontroller (manufacturer and supplier). At present the leading 8-bit
microcontroller, the 8051 family has the largest number of multiple suppliers. For
example, 8051 was originated by Intel but now several companies also produce 8051.
These include, Intel, Atmel, AMD, Philips, Infineon, Dallas Semiconductor [Ref. 8].

●

1.6 Embedded Systems

Definition 1: Any computing system embedded within larger electronic devices, repeatedly
carrying out a particular function, often going completely unrecognized by the user of the
device is known as embedded system [Ref.9].

Definition 2: Nearly any device that runs on electricity, either already has or soon will have a
computing system embedded within it-called an embedded system.

Alternatively, any computing system other than a desktop is also termed as embedded system.

1.6.1 Characteristics of Embedded Systems
● They are single functioned: Executes a specific task repeatedly. For example, a pager,

a digital camera, washing machine, mobile phone etc. Whereas, desktop systems are
general purpose and executes a variety of programs.

● Tightly constrained: They have stringent design constraints. Simultaneously, they need
to be

o Cheap
o Small size and fit on a single chip
o Fast enough for real-time
o Consume extremely low power for long battery life
o No cooling arrangement

● Reactive and real-time: They must respond to the environment very quickly. For
example, braking system in cars (ABS), Cruise control, Aviation control.

49 | Microprocessor and Microcontroller

1.6.2 Role of Microcontrollers in Embedded System Design

As it is clear from the definition of embedded systems that these are single-functioned. It means
that embedded systems continue to perform a single task repeatedly throughout its life. For
example, a washing machine will continue to perform the task of washing, rinsing and spinning
throughout its life as and when asked to do so. Similarly, a digital camera will perform the task
of capturing still and video images, internally process it and save, retrieve it as and when asked
to do so. A printer will continue to do the task of printing only. Microcontrollers play a
significant role in the design of embedded systems. As microcontroller is also designed for
single functioned (usually a small program stored in on-chip ROM) and having low cost
suitable for the design of embedded systems. Normally, for small, low cost embedded
applications microcontrollers are mostly preferred. 8-bit and 16-bit microcontrollers are the
most appropriate for applications such as in washing machine, microwave ovens, toys, video
games. Although microcontrollers are most preferred for low-cost embedded applications there
are situations where they are inadequate for the task. Therefore, in recent years, the
manufacturer of general-purpose processors such as, Intel, Freescale Semiconductors Inc.
(formerly Motorola), AMD (Advanced Micro Devices Inc.), Cyrix (a division of National
Semiconductors Inc.), Apple Corporations have targeted their processors for high-end
embedded applications. For example, 8086 processors, 68000 series processors, PowerPC and
ARM processors are now quite often used for high-end embedded applications. Today, even
32-bit RISC processors are used for complex embedded applications such as mobile phones.
Normally, for large embedded applications reconfigurable kind of processors such as Field
Programmable Gate Arrays (FPGAs) are used. They are very much flexible. Consumers
product can be upgraded even after shipment. FPGAs are most suitable for fast proto-typing
also. However, the unit cost is very high compared to microprocessor and microcontroller-
based design, so they are deployed only for large embedded systems.

Summary

In this chapter we have learnt the general structure of microprocessors and microcontrollers.
We have also noticed the analogy between the human brain versus computer. History, growth
and evolution of computers are also elucidated briefly. Progress in microprocessors and
advances in semiconductor technology, microcomputer systems and the classification of
computers are also illustrated. Then we introduced the readers on machine language, assembly
language (abbreviated form of instruction or mnemonics) or high-level languages such as
FORTRAN, BASIC, C, C++ or Java. The major component of the chapter is the overview of
8085 and 8086 microprocessors. We have covered the architecture, instruction set, addressing
modes, interrupts, instruction cycles. We have also introduced readers about the fundamentals
of microcontroller architecture beginning with 8-bit microcontroller such as 8051 and
compared it with the other microcontrollers namely, 16-bit and 32-bit is also illustrated. Lastly,
at the end of the chapter a brief introduction is given to embedded systems and its
characteristics. Also, on how microcontrollers can be used to design an embedded system.

50 | Microprocessor and Microcontroller

Review Questions and Exercise

Section 1.1 & 1.2

1. What are the components of a computer? List it.
2. What is a microprocessor? Compare between microprocessor and a CPU.
3. Find the differences between a microprocessor and a microcontroller.
4. Explain the terms: SSI, MSI and LSI.
5. Define bit, byte and instruction.
6. How many bytes are there in a word of 32 bits
7. Calculate the number of registers in a 64K memory chip.
8. Explain the difference between machine language and assembly language of 8085

microprocessor
9. What is an assembler?
10. What are low and high-level languages? State the relative benefits of high-level

language over low-level language
11. Explain the difference between a compiler and an interpreter.

Section 1.3

12. Define opcode and operand. Specify the opcode and operand in the following
instructions: (i) MOV B, A (ii) MVI B, 4FH (iii)CMA

13. Find the machine codes and number of bytes in the following instructions.
a. MVI H, 47H
b. ADI F5H
c. SUB C

14. Write the corresponding HEX code for the following instruction set and number of
bytes in each instruction.

MVI B, 4FH
MVI C, 78H
MOV A, C
ADD B
OUT 07H
HLT

15. If the starting address of the system memory is 2000H, what will be the address to
enter the HEX code for OUT 07H in question 14.

16. Assemble the following program, starting at location 2000H.
START: IN F2H //Read input switches at port F2H
 CMA //set ON switches to logic 1
 ORA A //set Z flag if no switch is ON
 JZ START //Go back and read input port if all switches are off

17. Write an assembly language program to add the two Hex numbers, A2H and 18H.
Keep the two numbers saved for future use and save the result in accumulator.

18. Two data bytes 28H and 97H are stored in register B and Accumulator respectively.
What will be the contents of the register B, C and accumulator after execution of the
following two instructions?

Mov A, B
Mov C, A

19. Draw the timing diagram, instruction cycle, machine cycle for the problem 18.

51 | Microprocessor and Microcontroller

20. Find the contents of the registers A, B, C, D and flags S, Z, CY if the following
instructions are executed.
MVI A, 00H
MVI B, F8H
MOV C, A
MOV D, B
HLT

21. What will be instructions to load the hexadecimal numbers 62H in register C and 91H
in accumulator A? Also display the number 62H in PORT0 and 91H in PORT1.

22. Draw the timing diagram of instruction cycle, machine cycle and T-states for the
problem of 21.

23. Write instructions to read data at the input PORT 07H and PORT 08H. Also display
the input data at PORT 07H to an output PORT 00H and store the input data from
PORT 08H into register C.

24. Specify the output at PORT2 if the following program is executed.
MOV B, 68H
MOV A, B
MOV C, A
MVI D, 42H
OUT PORT2
HLT

25. Find the register contents and the status of flag registers when the following
instructions are executed. Also indicate the output at PORT0.
Initial Status: A B S Z CY

00 9F 0 1 0

 MVI A, F2H
 MVI B, 7AH
 ADD B
 OUT PORT0
 HLT

26. Write a small program using ADI instruction to add two hexadecimal numbers 3AH
and 48H and display the answer at an output port.

27. Draw the timing diagram for the instruction cycle, machine cycle for the program in
problem 26.

28. Write a program to perform the following steps:
a. Load 00H in to the accumulator
b. Decrement accumulator
c. Display the answer at the output port

29. Subtract two unsigned numbers F8H and 69H and specify the contents of A and the
status registers S and CY. Explain the significance of sign flag if it set after the
operation.

30. Find the content of the register and status flags (S, Z, CY) after the instruction ORA A
is executed.
MVI A, 48H
MVI B, 58H
ADD B
ORA A

31. Load the data byte A7H in register C. Mask the higher-order bits (D7-D4), and
display the lower-order bits (D3-D0) at an output port.

52 | Microprocessor and Microcontroller

32. What will be the address of the output port? Explain the type of numbers that can be
displayed at the output port.

MVI A, BYTE1
ORA A //set flags
JP OUTPRT //Jump if byte is positive
XRA A

 OUTPRT: OUT F2H

 HLT

 If BYTE1 = 92H, what will be the output at port F2H?

33. In the following program if BYTE1=A7H, what will be displayed at port 01H?
MVI A, BYTE1 //Get data byte
ORA A //Set flags
JM OUTPRT
OUT 01H
HLT

 OUTPRT: CMA
 ADI 01H
 OUT 01H
 HLT

34. Specify the memory location and its content after the execution of the following
instruction,

MVI B, F7H
MOV A, B
STA XX75H
HLT

35. Indicate the content of registers A, D and HL after the execution of the following
instructions.

LXI H, XX80H //set up HL as memory pointer
SUB A //clear accumulator
MVI D, 0FH //set up register as a counter

 LOOP: MOV M, A //clear memory
 INX H //next memory location
 DCR D //update counter
 JNZ LOOP
 HLT

36. How many times the following loop will executed? Explain

LXI B, 0008H
LOOP: DCX B

MOV A, B
ORA C
JNZ LOOP

37. Indicate the content of the accumulator and status of CY flag when the following
instructions are executed,

a. MVI A, 8FH b. MVI A, B7H
ORA A ORA A
RLC RAL

53 | Microprocessor and Microcontroller

38. The following set of data bytes are stored in memory locations starting from 4050H.

Check each data byte for bits D7 and D0. If D7 or D0 is 1, reject the data byte
otherwise, store the data bytes in the memory locations starting at 4060H.
Data(H): 80, 54, F8, 78, F1, 68, 35 and 62

39. Write a program to store the following set of data bytes in descending order.
Data(H): 64, 40, 56, 68, 45, 5A, 4F, 4D, 56, 59

Section 1.4

40. What is the size of address and data bus in the 8086?
41. Draw the register organization of the 8086 and explain typical applications of each

register.
42. How is the 20-bit physical memory address calculated in the 8086 processor?
43. Find the 20-bit physical address of an external memory location if the segment

address is 1005H and offset address is 5555H.
44. What are the different memory segments used in the 8086 and explain their functions?
45. Write the function of the DF, IF and TF bits in the 8086.
46. The content of the different registers in the 8086 is CS = F000H, DS = 1000H, SS =

2000H and ES = 3000H. Find the base address of the different segments in the
memory.

47. What is the difference between the minimum and maximum mode of operation of the
8086?

48. What is DMA operation? Which pins of the 8086 are used to perform the DMA
operation in the minimum and maximum modes of the 8086?

49. Explain the function of different flags in the 8086.
50. Find the difference between maskable and non-maskable interrupts?
51. What is the difference between hardware and software interrupts?
52. Explain interrupt vector. What is the maximum number of interrupt vectors that can

be stored in the IVT of the 8086?
53. Write a program to move a word string 200 bytes (i.e. 100 words) long from the offset

address 1000H to the offset address 3000H in the segment 5000H.
54. Write a program to find the smallest word in an array of 100 words stored sequentially

in the memory; starting at the offset address 1000H in the segment address 5000H.
Store the result at the offset address 2000H in the same segment.

55. Write a program to add the two BCD data 29H and 98H and store the result in BCD
form in the memory locations 2000H: 3000H and 2000H: 3001H.

 Section 1.5 & 1.6

56. Write true or false. A Microcontroller is less expensive than a microprocessor.
57. Which of the following devices on chip, a microcontroller has?

(a) RAM (b) ROM (c) I/O (d) All of the above
58. Which of the following devices a general-purpose microprocessor needs to be

attached to?
(a) RAM (b) ROM (c) I/O (d) All of them

59. An embedded system is also called a dedicated system. Why?
60. What does the term embedded System mean?
61. Why having multiple resources of a given product does matter?
62. What is an embedded system?
63. What are the characteristics of embedded system? Give examples.
64. What a role a microcontroller plays in designing an embedded system?

54 | Microprocessor and Microcontroller

References

[1] Boyer, C.B. A History of Mathematics. 2nd ed. New York: Wiley 1989.

[2] Braun, E. and S. MacDonald. Revolution in Miniature, The History and Impact of
Semiconductor Electronics. 2nd ed. Cambridge, England: Cambridge University Press, 1982.

[3] John P. Hayes. Computer Architecture and Organization. 3rd ed. Singapore: McGraw-Hill
International Edition, 1998.

[4] R. R. Schaller, "Moore's law: past, present and future," in IEEE Spectrum, vol. 34, no. 6,
pp. 52-59, June 1997, doi: 10.1109/6.591665.

[5] Siewiorek, D.P. , C.G. Bell, and A. Newell. Computer Structures: Readings and Examples.
New York: McGraw-Hill, 1982.

[6] K.M. Bhurchandi and A.K. Ray, ADVACNED MICROPROCESSORS AND
PERIPHERALS, 3rd ed. Tata McGraw-Hill, New Delhi, 2013.

[7] https://www.eeeguide.com/internal-architecture-of-8086/

[8] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2nd ed. New Jersey, Pearson Prentice Hall, 2006.

[9] Santanu Chattopadhyay. Embedded System Design. 2nd ed. PHI Learning Private Ltd. New
Delhi, 2016.

 [10] https://www.vssut.ac.in/lecture_notes/lecture1423813120.pdf

55 | Microprocessor and Microcontroller

Chapter 2

8051 Microcontroller

Key Features

 8051 microcontroller and its essential features
 Internal architecture of 8051
 Various storage registers in 8051, SFRs
 Program and Data memory
 Stacks
 Clock and Reset circuit
 Timers
 I/O ports
 Assembly Language of 8051
 Instruction Set and Assembly Language Programs

Module-2 outcomes

Students should be

 able to understand the internal architecture of 8051
 able to explain the role of different registers, SFRs in 8051
 able to explain the functions of clock and reset circuit, timers and ports
 aware of the instruction set and tasks performed by instructions
 able to write assembly language programs

8051 is one of the most popular and low-cost microcontrollers also known as MCS-51. It was
introduced in 1981 by Intel. It gained the popularity because Intel allowed other manufacturers
to make and market variants of 8051(with variations in speed) which are code compatible with
each other. It belongs to 8-bit microcontroller family. It has a built-in monitor program, built-
in program memory, interrupts, analog I/O, serial I/O, facility to interface external memory,
and a timer. It is called a system on chip because it has 128 bytes of RAM, 4K bytes of on-chip
ROM, two timers, one serial port and 4 ports (8-bit wide), all on a single chip.

Other members of 8051 microcontroller family are 8052, 8031, Atmel AT89C51, Dallas
DS89C4x0 and Philips 8051.

An 8051 microcontroller comes in bundle with the following features −

 4KB bytes on-chip program memory (ROM)
 128 bytes on-chip data memory (RAM)
 Four register banks
 128 user defined software flags
 8-bit bidirectional data bus

56 | Microprocessor and Microcontroller

 16-bit unidirectional address bus
 32 general purpose registers each of 8-bit
 16-bit Timers (usually 2, but may have more or less)
 Three internal and two external Interrupts
 Four 8-bit ports, (short models have two 8-bit ports)
 16-bit program counter and data pointer
 8051 may also have a number of special features such as UARTs, ADC, Op-amp, etc.

Like any other microprocessor-based systems, in 8051 microcontrollers, the system bus plays
a key role to connect all the devices to the central processing unit. This bus includes a data bus-
an 8-bit, an address bus-16-bit & bus control signals. Other devices can also be interfaced
throughout the system bus like ports, memory, interrupt control, serial interface, the CPU,
timers. 8051 microcontroller programming is usually done with embedded C language using
Keil software. Although, it can be programmed to perform tasks using assembly language. It
also has several other 8 bit and 16-bit registers. For internal functioning & processing of
microcontroller, 8051 comes with integrated built-in RAM. This is the primary memory and is
employed for storing temporary data. It is an unpredictable memory i.e. its data can be lost
when the power supply to the microcontroller is switched OFF. This microcontroller is very
simple to use, affordable, less computing power, has a simple architecture and instruction set.

2.1 Architecture of 8051
The architectural diagram of 8051 microcontroller is shown in Fig.2.1, whereas the detailed
block diagram representation of it with internal registers, RAM, ROM, I/O ports and
interconnections is shown in Fig.2.2.

Fig.2.1: Architecture of 8051

57 | Microprocessor and Microcontroller

Fig.2.2: Detailed block diagram of 8051 microcontroller with internal registers

The flowing section explains various registers, internal logic units and other components in
detail.

2.1.1 Storage Registers in 8051

We will discuss the following types of storage registers here −

 Accumulator
 R register
 B register
 Data Pointer (DPTR)
 Program Counter (PC)
 Stack Pointer (SP)

Accumulator

The accumulator, register A, is used for all arithmetic and logic operations. If the accumulator
is not present, then every result of each calculation (addition, multiplication, shift, etc.) is to be
stored into the main memory. Access to main memory is slower than access to a register like
the accumulator because the technology used for the large main memory is slower (but cheaper)
than the technology used for a register.

58 | Microprocessor and Microcontroller

The "R" Registers

The "R" registers are a set of eight registers, namely, R0, R1 to R7 as shown in Fig. 2.3. These
registers function as auxiliary or temporary storage registers in many operations. Consider an
example of the sum of 10 and 20. Store a variable 10 in an accumulator and another variable
20 in, say, register R4. To carry out the addition, the following command is to be executed.

ADD A, R4

After executing this instruction, the accumulator will contain the value 30. Thus "R" registers
are very important auxiliary or helper registers. The Accumulator alone would not be very
useful if there were no "R" registers. The "R" registers are meant for temporarily storage of
values.

Let us take another example. We will add the values in R1 and R2 together and then subtract
the values of R3 and R4 from the result.

MOV A,R3 ;Move the value of R3 into the accumulator
ADD A,R4 ;Add the value of R4
MOV R5,A ;Store the resulting value temporarily in R5
MOV A,R1 ;Move the value of R1 into the accumulator
ADD A,R2 ;Add the value of R2
SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course, this is not
the most efficient way to calculate (R1 + R2) – (R3 + R4), but it does illustrate the use of the
"R" registers as a way to store values temporarily.

Fig.2.3: Various Storage Registers of 8051

The "B" Register

The "B" register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-
byte) value. The "B" register is used only by two 8051 instructions: MUL AB and DIV AB.
To quickly and easily multiply or divide A by another number, you may store the other number
in "B" and make use of these two instructions. Apart from using MUL and DIV instructions,
the "B" register is often used as yet another temporary storage register, much like a ninth R
register.

59 | Microprocessor and Microcontroller

The Data Pointer

The Data Pointer (DPTR) is the 8051’s only user-accessible 16-bit (2-byte) register. The
Accumulator, R0–R7 registers and B register are 1-byte registers. DPTR is meant for pointing
to data. It is used by the 8051 to access external memory using the address indicated by DPTR.
DPTR is the only 16-bit register available and is often used to store 2-byte values.

2.1.2 Program Counter

The Program Counter (PC) is a register to store a 2-byte address which tells the 8051 where
from the next instruction to be executed can be found (in the memory). PC starts at 0000h when
the 8051 initializes and is incremented every time after an instruction is executed. PC is not
always incremented by 1. Some instructions may require 2 or 3 bytes; in such cases, the PC
will be incremented by 2 or 3.
Branch, jump, and interrupt operations load the Program Counter with an address other than
the next sequential location. Activating a power-on reset will cause all values in the register to
be lost. It means the value of the PC is 0 upon reset, forcing the CPU to fetch the first opcode
from the ROM location 0000. It means we must place the first byte of opcode in ROM location
0000 because that is where the CPU expects to find the first instruction.

2.1.3 The Stack Pointer (SP)

Stack is implemented in RAM and a CPU register is used to access it called SP (Stack Pointer)
register. The Stack Pointer, like all other registers except DPTR and PC, may hold an 8-bit (1-
byte) value i.e. SP register is an 8-bit register and can address memory addresses of range 00H
to FFH. When the content of a CPU register is stored in a stack, it is called a PUSH operation.
When the content of a stack is stored in a CPU register, it is called a POP operation.

The Stack Pointer tells the location from where the next value is to be removed from the stack.
When a value is pushed onto the stack, the value of SP is incremented and then the value is
stored at the resulting memory location. When a value is popped off the stack, the value is
returned from the memory location indicated by SP, and then the value of SP is decremented.

This order of operation is important. SP will be initialized to 07H when the 8051 is initialized.
If a value is pushed onto the stack at the same time, the value will be stored in the internal RAM
address 08H because the 8051 will first increment the value of SP (from 07H to 08H) and then
will store the pushed value at that memory address (08H). SP is modified directly by the 8051
by six instructions: PUSH, POP, ACALL, LCALL, RET, and RETI.

2.1.4 Reset Vector

The significance of the reset vector is that it points the processor to the memory address which
contains the firmware's first instruction. Without the Reset Vector, the processor would not
know where to begin execution. Upon reset, the processor loads the Program Counter (PC)
with the reset vector value from a predefined memory location. On CPU08 architecture, this is
at location $FFFE to $FFFF.

When the reset vector is not necessary, developers normally take it for granted and don’t
program into the final image. As a result, the processor doesn't start up on the final product. It
is a common mistake that takes place during the debug phase.

60 | Microprocessor and Microcontroller

2.1.5 The SFR of 8051

A Special Function Register (or Special Purpose Register, or simply Special Register) is a
register within a microprocessor that controls or monitors the various functions of a
microprocessor. As the special registers are closely tied to some special function or status of
the processor, they might not be directly writable by normal instructions (like add, move, etc.).
Instead, some special registers in some processor architectures require special instructions to
modify them.

In the 8051, register A, B, DPTR, and PSW are a part of the group of registers commonly
referred to as SFR (special function registers). An SFR can be accessed by its name or by its
address. The following table 2.1 shows a list of SFRs and their addresses.

 Table 2.1: List of SFRs and their addresses

Byte
Address

Bit Address

FF

F0 F7 F6 F5 F4 F3 F2 F1 F0 B

E0 E7 E6 E5 E4 E3 E2 E1 E0 ACC

D0 D7 D6 D5 D4 D3 D2 - D0 PSW

B8 - - - BC BB BA B9 B8 IP

B0 B7 B6 B5 B4 B3 B2 B1 B0 P3

A2 AF - - AC AB AA A9 A8 IE

A0 A7 A6 A5 A4 A3 A2 A1 A0 P2

99 Not bit Addressable SBUF

98 9F 9E 9D 9C 9B 9A 99 98 SCON

90 97 96 95 94 93 92 91 90 P1

8D Not bit Addressable TH1

8C Not bit Addressable TH0

8B Not bit Addressable TL1

8A Not bit Addressable TL0

89 Not bit Addressable TMOD

88 8F 8E 8D 8C 8B 8A 89 88 TCON

87 Not bit Addressable PCON

83 Not bit Addressable DPH

82 Not bit Addressable DPL

81 Not bit Addressable SP

80 87 87 85 84 83 82 81 80 P0

61 | Microprocessor and Microcontroller

The following two points are to be about the SFR addresses.

 A special function register can have an address between 80H to FFH. These addresses
are above 80H, as the addresses from 00 to 7FH are the addresses of RAM memory
inside the 8051.

 Not all the address space of 80 to FF are used by the SFR. Unused locations, 80H to
FFH, are reserved and must not be used by the 8051 programmers.

Program Status Word (PSW)

The program status word (PSW) register is an 8-bit register, also known as flag register. It is
of 8-bit wide but only 6-bit of it is used. The two unused bits are user-defined flags. Four of
the flags are called conditional flags, which means that they indicate a condition which results
after an instruction is executed. These four are CY (Carry), AC (auxiliary carry), P (parity),
and OV (overflow). The bits RS0 and RS1 are used to change the bank registers. The following
format shows the program status word register. The PSW Register contains that status bits
(flags) that reflect the current status of the CPU is represented in 8-bit format as below.

 7 6 5 4 3 2 1 0
CY AC F0 RS1 RS0 OV ̶ P

 CY
PSW.
7

Carry Flag

AC
PSW.
6

Auxiliary Carry Flag

F0
PSW.
5

Flag 0 available to user for general purpose.

RS1
PSW.
4

Register Bank selector bit 1

RS0
PSW.
3

Register Bank selector bit 0

OV
PSW.
2

Overflow Flag

-
PSW.
1

User definable FLAG

P
PSW.
0

Parity FLAG. Set/ cleared by hardware during instruction cycle to indicate
even/odd number of 1 bit in accumulator.

We can select the corresponding Register Bank bit using RS0 and RS1 bits.
RS1 RS0 Register Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

1 1 3 18H-1FH

 CY, the carry flag − This carry flag is set (1) whenever there is a carry out from the
D7 bit. It is affected after an 8-bit addition or subtraction operation. It can also be reset
to 1 or 0 directly by an instruction such as "SETB C" and "CLR C" where "SETB"
stands for set bit carry and "CLR" stands for clear carry.

62 | Microprocessor and Microcontroller

 AC, auxiliary carry flag − If there is a carry from D3 and D4 during an ADD or SUB
operation, the AC bit is set; otherwise, it is cleared. It is used for the instruction to
perform binary coded decimal arithmetic.

 P, the parity flag − The parity flag represents the number of 1's in the accumulator
register only. If the A register contains odd number of 1's, then P = 1; and for even
number of 1's, P = 0.

 OV, the overflow flag − This flag is set whenever the result of a signed number
operation is too large causing the high-order bit to overflow into the sign bit. It is used
only to detect errors in signed arithmetic operations.

Example 2.1

Show the status of CY, AC, and P flags after the addition of 9CH and 64H in the following
instruction.

MOV A, #9CH

ADD A, # 64H

Solution: 9C 10011100
 +64 01100100
 100 00000000

CY = 1 since there is a carry beyond D7 bit
AC = 0 since there is a carry from D3 to D4
P = 0 because the accumulator has even number of 1's

2.1.6 Program Memory or ROM Space in 8051

Some family members of 8051 have only 4K bytes of on-chip ROM (e.g. 8751, AT8951); some
have 8K ROM like, AT89C52 and there are few other family members with 32K bytes and
64K bytes of on-chip ROM such as Dallas Semiconductor [Ref. 1]. A point to be remembered
is that no member of the 8051 family can access more than 64K bytes of opcode since the
program counter in 8051 is a 16-bit register (0000 to FFFF address).

The first location of the program ROM inside the 8051 has the address of 0000H, whereas the
last location can be different depending on the size of the ROM on the chip. Among the 8051
family members, AT8951 has 4k bytes of on-chip ROM having a memory address of 0000
(first location) to 0FFFH (last location) as shown in Fig.2.4.

Fig. 2.4: Internal locations in ROM memory

Programming the ROM

To understand the role of program counter in fetching and executing a program memory, let us
see the action of the program counter. Consider a simple program as shown below and see how

63 | Microprocessor and Microcontroller

the code is listed and placed in ROM of 8051 chip as in Table 2.2. For more details on
8051microcontrollers see the QR code.

Program
Mnemonics Hex code
MOV R5, #25H 7D25
MOV R7, #34H 7F34
MOV A, #0 7400
ADD A, R5 2D
ADD A, R7 2F
ADD A, #12H 2412
HERE: SJMP HERE 80FE

As we can see from the table that opcode and operand for each instruction are listed on the left
side of the list file. Once the program is burnt into a ROM of 8051 microcontroller family
member (such as 8751, AT8951 or DS5000) the opcode and operand are placed in ROM
locations starting at 0000 as shown in the list file in Table 2.2. The directives such as ORG and
END does not create any object code, used only by the assembler for its own understanding.
Thus, blank in the list file (no code). For a detail step-by-step procedure of action for executing
a program the readers may refer section 2.4, program 2-1 in [2].

 Table 2.2: List File in ROM

1 0000 ORG 0H //Start at location 0
2 0000 7D25 MOV R5, #25H //Load 25H into R5
3 0002 7F34 MOV R7, #34H //Load 34H into R7
4 0004 7400 MOV A, #0 //Load 0 into A
5 0006 2D ADD A, R5 //Add contents of R5 to A, so A= A+R5
6 0007 2F ADD A, R7 //Add contents of R7 to A, now A=A+R7
7 0008 2412 ADD A, #12H //Add to A the value 12H, now A=A+12H
8 000A 80FE HERE: SJMP HERE //Stay in this loop
9 000C END //End of asm source file

2.1.7 Data Memory or RAM

The 8051 microcontroller has a total of 128 bytes of RAM. We will discuss about the
allocation of these 128 bytes of RAM and examine their usage as stack and register.

RAM Memory Space Allocation in 8051

The 128 bytes of RAM inside the 8051 are assigned the address 00 to 7FH. They can be
accessed directly as memory locations and are divided into three different groups as follows −

 32 bytes from 00H to 1FH locations are set aside for register banks and the stack.
 16 bytes from 20H to 2FH locations are set aside for bit-addressable read/write memory.
 80 bytes from 30H to 7FH locations are used for read and write storage; it is called as

scratch pad. These 80 locations RAM are widely used for the purpose of storing data
and parameters by 8051 programmers.

64 | Microprocessor and Microcontroller

Fig. 2.5: RAM memory allocation in 8051

2.1.8 Register Banks in 8051

A total of 32 bytes of RAM are set aside for the register banks and the stack. These 32 bytes
are divided into four register banks in which each bank has 8 registers, R0–R7. RAM locations
from 0 to 7 are set aside for bank 0 of R0–R7 where R0 is RAM location 0, R1 is RAM location
1, R2 is location 2, and so on, until the memory location 7, which belongs to R7 of bank 0.

The second bank of registers R0–R7 starts at RAM location 08H and goes to locations OFH.
The third bank of R0–R7 starts at memory location 10H and goes to location to 17H. Finally,
RAM locations 18H to 1FH are set aside for the fourth bank of R0–R7. This is depicted in
Fig.2.5.

Default Register Bank

If RAM locations 00–1F are set aside for the four registers banks, which register bank of R0–
R7 do we have access to when the 8051 is powered up? The answer is register bank 0; that is,
RAM locations from 0 to 7 are accessed with the names R0 to R7 when programming the 8051.
Because it is much easier to refer these RAM locations by names such as R0 to R7, rather than
by their memory locations.

How to Switch Register Banks

Register bank 0 is the default bank when the 8051 is powered up. We can switch to the other
banks using PSW register. D4 and D3 bits of the PSW are used to select the desired register
bank, since they can be accessed by the bit addressable instructions SETB and CLR. For
example, "SETB PSW.3" will set PSW.3 = 1 and select the bank register 1.

65 | Microprocessor and Microcontroller

RS1 RS0 Bank Selected

0 0 Bank0

0 1 Bank1

1 0 Bank2

1 1 Bank3

2.1.9 Stack in the 8051

The stack is a section of a RAM used by the CPU to store information such as data or memory
address on temporary basis. The CPU needs this storage area considering limited number of
registers.

How Stacks are Accessed

As the stack is a section of a RAM, there are registers inside the CPU to point to it. The register
used to access the stack is known as the stack pointer register. The stack pointer in the 8051 is
8-bits wide, and it can take a value of 00 to FFH. When the 8051 is initialized, the SP register
contains the value 07H. This means that the RAM location 08 is the first location used for the
stack. The storing operation of a CPU register in the stack is known as a PUSH, and getting
the contents from the stack back into a CPU register is called a POP.

Pushing into the Stack

In the 8051, the stack pointer (SP) points to the last used location of the stack. When data is
pushed onto the stack, the stack pointer (SP) is incremented by 1. When PUSH is executed, the
contents of the register are saved on the stack and SP is incremented by 1. To push the registers
onto the stack, we must use their RAM addresses. For example, the instruction "PUSH 1"
pushes register R1 onto the stack.

Popping from the Stack

Popping the contents of the stack back into a given register is the opposite to the process of
pushing. With every pop operation, the top byte of the stack is copied to the register specified
by the instruction and the stack pointer is decremented once.

The operation of the stack and SP is shown in Fig. 2.6. The stack pointer (SP) is set to 07H
when 8051 is reset. But it can be changed to any internal RAM location by the programmer.
The stack is limited in height to the size of internal RAM. Stack has the capability to overwrite
the valuable data in register banks, bit addressable RAM and scratch pad areas of RAM. The
stack is normally placed high in internal RAM, by an appropriate choice of the number placed
in SP register to avoid any conflict with other registers, bit or scratch pad.

66 | Microprocessor and Microcontroller

Fig. 2.6: Stack operation and Stack Pointer locations

2.1.10 Clock and Reset Circuit

The 8051 has on chip oscillator pins XTAL1 and XTAL2 which are provided for connecting
a resonant network to from an oscillator crystal having a frequency range from 1 MHZ to 24
MHZ.

Ceramic resonators may be used as a low-cost alternative to crystal resonators but due to
decrease in frequency stability and accuracy, ceramic resonators are not preferred for high-
speed serial data communication with other system.

The oscillator is formed by the crystal, capacitors, and on chip inverter generates a pulse train
at the frequency of the crystal as shown in Fig.2.7

The clock frequency establishes the smallest interval of time within the microcontroller, called
the pulse, p, time. The smallest interval of time to accomplish any simple instruction, or part
of a complex instruction, however, is the machine cycle. The machine cycle is made up of six
states. A state is the basic time interval for discrete operations of the microcontroller such as,
fetching on encoded byte, decoding encode, executing an encode, or writing a data byte. The
oscillator pulses define each state.

Fig. 2.7: Clocking Circuit (Crystal Oscillator) of 8051

67 | Microprocessor and Microcontroller

We can calculate the time taken by any particular instruction to be executed as follows. The
time to execute the instruction is found by multiplying the number of clock cycles required by
the instruction (C) by 12 and then dividing the product by the crystal frequency.

T(instruction) = C ×12 /Crystal frequency

A 12 MHZ crystal results in convenient time period of 1 microsecond per cycle. An 11.0592
MHZ crystal with a clock frequency of 921.6 KHz, can be divided evenly by the standard
communication baud rates of 19200, 9600, 4800, 2400, 1200 and 300 HZ.

Reset

8051 can be reset in two ways 1) power-on reset – which resets the 8051 when power is turned
ON and 2) manual reset – in which a reset happens only when a push button is pressed
manually. When the rest circuit is power on, capacitor gradually charges and initially a high
voltage appears across the resistor for some time. Till the voltage across the resistor is high
8051 remains in reset state for a few milliseconds time (usually within a time period of 2
machine cycles). By this time, all the transients in the circuit settles and then microcontroller
starts working. Two different reset circuits are shown Fig.2.8 below. A reset doesn't affect
contents of internal RAM

Fig. 2.8: Reset Circuit of 8051

2.1.11 Address, Data & Control Bus

The address bus in 8051 microcontrollers is consisting of 16-bit address lines which carries
the 16 bit addresses of memory locations. It is generally be used for transferring the data from
Central Processing Unit to Memory. The 16-bit address bus can address a 64K (216) memory
space and a separate 64K byte of data memory space. While the data bus in 8051
microcontrollers is consisting of 8 bits data lines which carries data between processor and
other components. Data bus is bidirectional. The control bus manages the information flow

68 | Microprocessor and Microcontroller

between various components (ALU, registers, memory, I/O etc.) indicating whether the
operation is a read or a write and ensuring that the operation happens at the right time.

2.1.12 Timers of 8051 and their Associated Registers

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event counters.
Both Timer 0 and Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit architecture, each
16-bit is accessed as two separate registers of lower order byte and higher order byte.

Timer 0 Register

The 16-bit register of Timer 0 is accessed as lower-bye and higher-byte. The lower-byte register
is called TL0 (Timer 0 low byte) and the higher-byte register is called TH0 (Timer 0 high byte).
These registers can be accessed like any other register. For example, the instruction MOV TL0,
#4H moves the value into the low-byte of Timer #0.

Timer 1 Register

The 16-bit register of Timer 1 is accessed as lower- and higher-byte. The lower-byte register
is called TL1 (Timer 1 low byte) and the higher-byte register is called TH1 (Timer 1 high
byte). These registers can be accessed like any other register. For example, the instruction
MOV TL1, #4H moves the value into the low-byte of Timer 1.

TMOD (Timer Mode) Register

Both Timer 0 and Timer 1 use the same register to set the various timer operation modes. It is
an 8-bit register in which the lower 4 bits are set aside for Timer 0 and the upper four bits for
Timers. In each case, the lower 2 bits are used to set the timer mode in advance and the upper
2 bits are used to specify the location.

69 | Microprocessor and Microcontroller

Gate − When set, the timer only runs while INT(0,1) is high.

C/T − Counter/Timer select bit.

M1 − Mode bit 1.

M0 − Mode bit 0.

GATE

Every timer has a means of starting and stopping. Some timers do this by software, some by
hardware, and some have both software and hardware controls. 8051 timers have both
software and hardware controls. The start and stop of a timer is controlled by software using
the instruction SETB TR1 and CLR TR1 for timer 1, and SETB TR0 and CLR TR0 for
timer 0.

The SETB instruction is used to start it and it is stopped by the CLR instruction. These
instructions start and stop the timers as long as GATE = 0 in the TMOD register. Timers can
be started and stopped by an external source by making GATE = 1 in the TMOD register.

2.1.13 I/O Ports and their Functions

The four ports P0, P1, P2, and P3, each use 8 pins, making them 8-bit ports. Upon RESET, all
the ports are configured as inputs, ready to be used as input ports. When the first 0 is written
into a port, it becomes an output. To reconfigure it as an input, a 1 must be sent to a port.

Port 0 (Pin No 32 – Pin No 39)

It has 8 pins (32 to 39). It can be used for input or output. Unlike P1, P2, and P3 ports, we
normally connect P0 to 10K-ohm pull-up resistors to use it as an input or output port being an
open drain. It is also designated as AD0-AD7, allowing it to be used as both address and data.
In case of 8031 (i.e. ROM-less Chip), when we need to access the external ROM, then P0 will
be used for both Address and Data Bus. ALE (Pin no 31) indicates if P0 has address or data.
When ALE = 0, it provides data D0-D7, but when ALE = 1, it has address A0-A7. In case no
external memory connection is available, P0 must be connected externally to a 10K-ohm pull-
up resistor as shown in Fig. 2.9.

70 | Microprocessor and Microcontroller

Fig. 2.9: Port 0 connectivity for external memory

MOV A, #0FFH //(comments: A=FFH(Hexadecimal i.e. A=1111 1111)

MOV P0, A //(Port0 have 1's on every pin so that it works as Input)

Port 1 (Pin 1 through 8)

It is an 8-bit port (pin 1 through 8) and can be used either as input or output. It doesn't require
pull-up resistors because they are already connected internally. Upon reset, Port 1 is configured
as an input port. The following code can be used to send alternating values of 55H and AAH
to Port 1.

//Toggle all bits of continuously
MOV A, #55
BACK:

MOV P2, A
ACALL DELAY
CPL A //complement(invert) reg. A
SJMP BACK

If Port 1 is configured to be used as an output port, then to use it as an input port again, program
it by writing 1 to all of its bits as in the following code.

//Toggle all bits of continuously

MOV A, #0FFH //A = FF hex
MOV P1, A //Make P1 an input port
MOV A, P1 //get data from P1
MOV R7, A //save it in Reg R7
ACALL DELAY //wait

MOV A, P1 //get another data from P1
MOV R6, A //save it in R6
ACALL DELAY //wait

71 | Microprocessor and Microcontroller

MOV A, P1 //get another data from P1
MOV R5, A //save it in R5

Port 2 (Pins 21 through 28)

Port 2 occupies a total of 8 pins (pins 21 through 28) and can be used for both input and output
operations. Just as P1 (Port 1), P2 also doesn't require external Pull-up resistors because they
are already connected internally. It must be used along with P0 to provide the 16-bit address
for the external memory. So it is also designated as (A0–A7), as shown in the pin diagram.
When the 8051 is connected to an external memory, it provides path for upper 8-bits of 16-bits
address, and it cannot be used as I/O. Upon reset, Port 2 is configured as an input port. The
following code can be used to send alternating values of 55H and AAH to port 2.

//Toggle all bits of continuously
MOV A, #55
BACK:
MOV P2, A
ACALL DELAY
CPL A // complement(invert) reg. A
SJMP BACK

If Port 2 is configured to be used as an output port, then to use it as an input port again,
program it by writing 1 to all of its bits as in the following code.

//Get a byte from P2 and send it to P1
MOV A, #0FFH //A = FF hex
MOV P2, A //make P2 an input port
BACK:
MOV A, P2 //get data from P2
MOV P1, A //send it to Port 1
SJMP BACK //keep doing that

Port 3 (Pins 10 through 17)

It is also of 8 bits and can be used as Input/Output. This port provides some extremely important
signals. P3.0 and P3.1 are RxD (Receiver) and TxD (Transmitter) respectively and are
collectively used for Serial Communication. P3.2 and P3.3 pins are used for external interrupts.
P3.4 and P3.5 are used for timers T0 and T1 respectively. P3.6 and P3.7 are Write (WR) and
Read (RD) pins. These are active low pins, means they will be active when 0 is given to them
and these are used to provide Read and Write operations to External ROM in 8031 based
systems.

P3 Bit Function Pin
P3.0 RxD 10

P3.1 < TxD 11

P3.2 < Complement of INT0 12

P3.3 < INT1 13

P3.4 < T0 14

P3.5 < T1 15

P3.6 < WR 16

72 | Microprocessor and Microcontroller

P3.7 < Complement of RD 17
AD

2.2 Assembly Language of 8051

Assembly languages were developed to provide mnemonics or symbols for the machine level
instructions. Assembly language programs consist of mnemonics and as such they should be
translated into machine code. A program that is responsible for this conversion is known as
assembler. Assembly language is often termed as a low-level language because it directly
works with the internal structure of the CPU. To program in assembly language, a programmer
must know all the registers of the CPU.

Different programming languages such as C, C++, Java and various other languages are called
high-level languages because they do not deal with the internal details of a CPU. In contrast,
an assembler is used to translate an assembly language program into machine code (sometimes
also called object code or opcode). Similarly, a compiler translates a high-level language into
machine code. For example, to write a program in C language, one must use a C compiler to
translate the program into machine language.

2.2.1 Structure of Assembly Language

An assembly language program is a series of short-form English word or lines, which are either
assembly language instructions such as ADD and MOV, or statements called directives.

An instruction tells the CPU what function it has to do, while a directive (also called pseudo-
instructions) gives instruction to the assembler. For example, ADD and MOV instructions are
commands which the CPU runs, while ORG and END are assembler directives. The assembler
places the opcode to the memory location 0 when the ORG directive is used, while END
indicates to the end of the source code. A program language instruction consists of the
following four fields −

[label:] mnemonics [operands] [;comment]

A square bracket ([]) indicates that the field is optional.

 The label field allows the program to refer to a line of code by name. The label fields
cannot exceed a certain number of characters.

 The mnemonics and operands fields together perform the actual task of the program
and accomplish the specified tasks. Statements like ADD A , C & MOV C, #68 where
ADD and MOV are the mnemonics, which are also known as opcodes, while "A, C"
and "C, #68" are the operands. These two fields could contain directives. Directives do
not generate machine code and are used only by the assembler, whereas instructions are
translated into machine code for the CPU to execute.

 1.0000 ORG 0H //start (origin) at location 0
 2 0000 7D25 MOV R5,#25H //load 25H into R5 register
 3.0002 7F34 MOV R7,#34H //load 34H into R7 register
 4.0004 7400 MOV A,#0 //load 0 into accumulator A
 5.0006 2D ADD A,R5 //add contents of R5 to A
 6.0007 2F ADD A,R7 //add contents of R7 to A
 7.0008 2412 ADD A,#12H //add to A value 12 H
 8.000A 80FE HERE: SJMP HERE //stay in this loop
 9.000C END //end of asm. source file

73 | Microprocessor and Microcontroller

 The comment field begins with a // which is an indicator of the comment.
 Any label in the program is specified by a label name such as, "HERE" in the program.

Any label which refers to an instruction should be followed by a colon.

2.2.2 Assembling and Running an 8051 Program

Here we will discuss about the basic form of an assembly language. The steps to create and
run an assembly language program are as follows:

 First, we use an editor to type in a program similar to the above program. Editors, like
MS-DOS EDIT program that comes with all Microsoft operating systems can be used
to create or edit a program. The Editor must be able to produce an ASCII file. The "asm"
extension for the source file is used by an assembler in the next step.

 The "asm" source file contains the program code created in Step 1. It is fed to an 8051
assembler. The assembler then converts the assembly language instructions into
machine code instructions and produces an .obj file (object file) and a .lst file (list file).
It is also called as a source file, that's why some assemblers require that this file have
the "src" extensions. The "lst" file is optional. It is very useful to the program because
it lists all the opcodes and addresses as well as errors that the assemblers detected.

 Assemblers require a third step called linking. The link program takes one or more
object files and produces an absolute object file with the extension "abs".

 Next, the "abs" file is fed to a program called "OH" (object to hex converter), which
creates a file with the extension "hex" that is ready to burn in to the ROM. The complete
set of steps are shown in the flowchart of Fig.2.10.

Fig. 2.10: Flow chart of steps to create a program

74 | Microprocessor and Microcontroller

Data Type

The 8051 microcontroller contains a single data type of 8-bits, and each register is also of 8-
bits size. The programmer has to break down data larger than 8-bits (00 to FFH, or to 255 in
decimal) so that it can be processed by the CPU.

DB (Define Byte)

The DB directive is the most widely used data directive in the assembler. It is used to define
the 8-bit data. It can also be used to define decimal, binary, hex, or ASCII formats data. For
decimal, the "D" after the decimal number is optional, but it is required for "B" (binary) and
"Hl" (hexadecimal).

To indicate ASCII, simply place the characters in quotation marks ('like this'). The assembler
generates ASCII code for the numbers/characters automatically. The DB directive is the only
directive that can be used to define ASCII strings larger than two characters; therefore, it should
be used for all the ASCII data definitions. Some examples of DB are given below –

 ORG 500H

DATA1: DB 28 //DECIMAL (1C in hex)
DATA2: DB 00110101B //BINARY (35 in hex)
DATA3: DB 39H //HEX
ORG 510H
DATA4: DB "2591" //ASCII NUMBERS
ORG 520H
DATA6: DA "MY NAME IS Michael" //ASCII CHARACTERS

Either single or double quotes can be used around ASCII strings. DB is also used to allocate
memory in byte sized chunks.

2.2.3 Assembler Directives

Some of the directives of 8051 are as follows −

 ORG (origin) − The origin directive is used to indicate the beginning of the address. It
takes the numbers in hexa or decimal format. If H is provided after the number, the
number is treated as hexa, otherwise decimal. The assembler converts the decimal
number to hexa.

 EQU (equate) − It is used to define a constant without occupying a memory location.
EQU associates a constant value with a data label so that the label appears in the
program, its constant value will be substituted for the label. While executing the
instruction "MOV R3, #COUNT", the register R3 will be loaded with the value 25
(notice the # sign). The advantage of using EQU is that the programmer can change it
once and the assembler will change all of its occurrences; the programmer does not
have to search the entire program.

 END directive − It indicates the end of the source (asm) file. The END directive is the
last line of the program; anything after the END directive is ignored by the assembler.

2.2.4 Labels in Assembly Language

All the labels in assembly language must follow the rules given below −

75 | Microprocessor and Microcontroller

 Each label name must be unique. The names used for labels in assembly language
programming consist of alphabetic letters in both uppercase and lowercase, number 0
through 9, and special characters such as question mark (?), period (.), at the rate @,
underscore (_), and dollar ($).

 The first character should be in alphabetical character; it cannot be a number.
 Reserved words cannot be used as a label in the program. For example, ADD and MOV

words are the reserved words, since they are instruction mnemonics.
 In addition to these there may be some other revered words specific to a particular

assembler.

2.3 Instruction Set of 8051

To perform any task by a microprocessor or a microcontroller it is to be programmed using
specific instructions from its set. Writing a program for any microcontroller is nothing but
giving a set of commands to the microcontroller in a particular order in which they must be
executed in order to perform a specific task. These commands to the microcontroller are known
as its instructions. An instruction set is unique to a family of computer or microcontroller. 8051
microcontrollers instruction set is also known as MCS-51 instruction set. As the family of 8051
microcontrollers use 8-bit processors, so its instruction set is optimized for 8-bit control
applications. As a typical 8-bit processor, the 8051 microcontroller instructions have 8-bit
opcodes. Thus, 8051 microcontroller’s instruction set can be up to 28 = 256 instructions.
However, depending upon the types of instructions (groups) and addressing modes there 49
instruction Mnemonics in the 8051 Microcontroller. These 49 Mnemonics are divided into five
groups as shown in the following table (Table 2.1).

Table 2.3: Instruction set of 8051 and Types

DATA
TRANSFER

ARITHMETIC LOGICAL BOOLEAN
PROGRAM

BRANCHING
MOV ADD ANL CLR LJMP

MOVC ADDC ORL SETB AJMP

MOVX SUBB XRL MOV SJMP

PUSH INC CLR JC JZ

POP DEC CPL JNC JNZ

XCH MUL RL JB CJNE

XCHD DIV RLC JNB DJNZ

 DA A RR JBC NOP

 RRC ANL LCALL

 SWAP ORL ACALL

 CPL RET

 RETI

 JMP

As we can see from the table that there are basically five groups of instructions. These are data
transfer, arithmetic, logical, Boolean or bit manipulation and program control or branch
instructions. A brief explanation of each type of instruction Mnemonics is given below. The
detail of these instructions will be explained with appropriate examples in the next Chapter.

However, before proceeding further on the types of instructions, let us see the structure of the
8051 microcontroller instructions. An 8051 instruction consists of an Opcode (or Operation –

76 | Microprocessor and Microcontroller

Code) followed by Operand(s) of size Zero Byte, One Byte or Two Bytes. While opcode
specifies the operation to be performed, the operand part of instruction indicates the data being
processed by the instruction. The operand can be in any of the following forms-

 No Operand
 Data value
 I/O Port
 Memory Location
 CPU register

There can be multiple operands also in an instruction. Accordingly, the format for an instruction
can be written as,

MNEMONIC OPERAND1, OPERAND2

Where, OPERAND1 is the destination operand and OPERAND2 is the source operand. A
simple instruction may have only opcode. Other instructions may include one or more
operands. One operand instruction is essentially a 2-byte instruction whereas two operand
instruction is a 3-byte instruction.

2.3.1 Data Transfer Instructions

Data transfer instructions are associated with the transfer of data between registers or external
program memory or external data memory. The Mnemonics associated with Data Transfer
are given below.

 MOV // Move data
 MOVC //Move code
 MOVX // Move external data
 PUSH // Move data to stack
 POP // Copy data from stack
 XCH //Exchange data between two registers
 XCHD //Exchange lower order data between two registers

2.3.2 Arithmetic Instructions

Arithmetic instructions are meant to perform addition, subtraction, multiplication and
division. The arithmetic instructions also include increment or decrement by one, and a
special instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the arithmetic instructions of the 8051 Microcontroller
instruction set are:

 ADD // Addition without a carry
 ADDC // Addition with carry
 SUBB // Subtract with carry
 INC // Increment by 1
 DEC // Decrement by 1
 MUL // Multiply
 DIV // Divide
 DAA // Decimal Adjust the Accumulator (register A)

77 | Microprocessor and Microcontroller

2.3.3 Logical Instructions

The next group of instructions are the Logical Instructions, which perform logical operations
like AND, OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on
Bytes of data on a bit-by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

 ANL // Logical AND operation
 ORL // Logical OR operation
 XRL // Logical EX-OR operation
 CLR // Clear register content
 CPL // Complement the register content
 RL //Rotate a byte left
 RLC // Rotate a byte and carry bit to left
 RR // Rotate a byte to right
 RRC // Rotate a byte and carry bit to right
 SWAP // Swap lower and higher nibble in a byte

2.3.4 Boolean or Bit Manipulation Instructions

Boolean or Bit Manipulation Instructions deal with bit variables. In 8051 microcontrollers,
there is a special bit-addressable area in the RAM, so also, some of the Special Function
Registers (SFRs) are bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

 CLR // Clear a bit (reset to 0)
 SETB // Set a bit (set to 1)
 MOV // Move a bit
 JC // Jump if the carry flag is set (i.e. if C=1)
 JNC // Jump if the carry flag is not set (i.e. if C=0)
 JB // Jump if the specified bit is set
 JNB // Jump if the specified bit is not set
 JBC // Jump if the specified bit set and also clear the bit
 ANL // Bitwise logical AND operation
 ORL // Bitwise logical OR operation
 CPL // Complement the bit

2.3.5 Program Control or Branching Instructions

The last group of instructions in the 8051 Microcontroller instruction set are the program
control or branching instructions. These instructions control the flow of program logic. The
mnemonics of this set are as follows.

 LJMP // Long Jump (Unconditional)
 AJMP // Absolute Jump (Unconditional)
 SJMP // Short Jump (Unconditional)
 JZ // Jump if accumulator A = 0
 JNZ // Jump if accumulator A is not 0
 CJNE // Compare and jump if not equal
 DJNZ // Decrement and Jump if not 0

78 | Microprocessor and Microcontroller

 NOP // No operation
 LCALL // Long Call to subroutine, can have target address anywhere within

// 64K-bytes address space (ROM) of 8051

 ACALL // Absolute Call to Subroutine (Unconditional), must have target

//address within 2K-bytes of ROM space

 RET // Return from subroutine
 RETI // Return from interrupt
 JMP // Jump to an address unconditionally

Each of these 05 groups of instructions will be discussed in details in Chapter 3 with examples.
Moreover, some problems will be solved and illustrated next in section 2. for further
clarification of the underlying concepts and utility of the instruction set.

2.4 Timing and Machine Cycle for 8051

Just like a general-purpose processor such as 8085, the tasks carried out by a microcontroller
are also measured in terms of systems clock or clock cycles. However, in contrast to 8085, CPU
of a microcontroller takes certain number of clock cycles to execute an instruction. In 8051
family, these clock cycles are referred to as the machine cycles. As for example, MOV, DEC,
NOP instructions take just 1 machine cycle, whereas, LJMP, DJNZ, RET etc. takes 2 machine
cycles to execute. Again, a MUL instruction takes 4 machine cycles. To calculate the time delay
associated with these instructions it is necessary to know the clock frequency of the crystal
oscillator connected to 8051 family of microcontrollers. In 8051, one machine cycle lasts for
12 oscillator periods. So, to calculate the machine cycle for the 8051, we take 1/12 of the crystal
frequency. For a crystal with 16 MHz clock, the clock frequency will be 16MHz/12 = 1.333
Mhz. and the machine cycle =1/1.333MHz = 0.75 micro-sec.

2.5 Assembly Language Programming of 8051

Although 8051 programming is emphasised in Chapter 3, we will see some assembly language
programs in this section through a few examples. Solutions to each of the examples and
necessary explanations are given through comments written side by side to the assembly
language instructions.

Example 2.2
Suppose the RAM locations 40-44 have the following numbers. Write a program to find the
sum of the numbers. At the end of the program, register A should contain lower order byte and
R7 should higher order byte. All values are in hex.
 40 = (7D)
 41 = (EB)
 42 = (C5)
 43 = (5B)
 44 = (30)
Solution:
 MOV R0, #40H //load pointer
 MOV R2, #5 //load counter
 CLR A //A=0
 MOV R7, A //Clear R7
AGAIN: ADD A, @RO //add the byte pointed by R0 with the accumulator

79 | Microprocessor and Microcontroller

 JNC NEXT //If CY=0, do not accumulate carry
 INC R7 //keep on adding carry
NEXT: INC R0 //increment pointer
 DJNZ R2, AGAIN //repeat until R2=0

Example 2.3
The marks obtained by a student (out of 25) for the six courses in a semester are stored in a
RAM locations 47H onwards. Find the average of marks and output it in port 1.

Solution:
 MOV R1, #06 //R1 stores the number of courses which is 6
 MOV R0, #47H //R0 acts as a pointer to the data in ROM
 MOV B, #06 //only B can be used as divisor register
 MOV A, #0 //clear accumulator, A=0
REPEAT: ADD A, @R0 //add the data pointed by R0 to A
 //since each number is less than 25, CY=0
 INC R0 //increment the pointer
 DJNZ R1, REPEAT //repeat the addition until R1=0

DIV AB //divide the sum in A by 6 in B to get average
//keep quotient in A and remainder in B

 MOV P1, A //output average in Port 1, ignoring remainder
Example 2.4
Daily temperatures of five days are stored in ROM locations 40H-44H as shown below. Check
if any of the values equals 65. If the value 65 exists in the table then store it to R4, else make
R4=0.
40H = (75) 41H= (79) 42H=(69) 43H= (65) 44H= (62)
Solution:
 MOV R4, #0 //R4=0
 MOV R0, #40H //load pointer with initial ROM location
 MOV R2, #05 //load counter
 MOV A, #65 //load A with 65 to be verified in the list
BACK: CJNE A, @R0, NEXT //compare RAM data with 65
 MOV R4, R0 //if 65 then save to R4
 SJMP EXIT //and exit
NEXT: INC R0 //otherwise increment pointer
 DJNZ R2, BACK //keep on checking all the values until count=0
EXIT …..

Example 2.5
Write a program that will toggle all the bits of Port 1 continuously after a time delay. The
value that will be sent to port 1 is 55H.

Solution:

 ORG 0
 MOV A, #55H //load A with 55H
BACK: MOV P1, A //send the value of reg A in port 1
 ACALL DELAY //a subroutine call for time delay
 CPL A //complement content of reg A
 SJMP BACK //keep doing it indefinitely
//DELAY subroutine starts here
DELAY:

80 | Microprocessor and Microcontroller

 MOV R5, #0FFH //load R5 with FFH (counter with delay of 255)
REPEAT: DJNZ R5, REPEAT //stay here until content of R5 becomes 0
 RET //return to calling program
END //end of asm file

SUMMARY

This chapter introduces readers about the important features of 8051 microcontrollers and
different other manufactures of 8051 family of microcontrollers. Next, the architecture and
internal details of 8051 are explained in detail. All the major registers of 8051 including A, B,
R0, R1, R2, R3, R4, R5, R6, R7, DPTR and PC along with SFRs are described next. Then we
talk about program memory or ROM space allocation in 8051 and how to burn a program in
ROM is illustrated with examples. Programmers must be aware of where programs are placed
in ROM and how much memory is available. We then describe the register banks, RAM space
allocation for data and the default register bank. Next, a detailed pictorial representation of
stack operations and manipulation of stack and SP via PUSH and POP operation is elucidated.
The process of creating an assembly language program is also described starting from a source
file, to assembling it, linking and executing the program. Assembly language programs consist
of sequence of statements called instructions. Some of them are pseudo-instructions which are
also known as directives. Instructions are translated by assembler into machine codes. Pseudo-
instructions are not translated into machine code. They direct the assembler, how to translate
instructions into machine codes. Program status word (PSW) is indicated with flags. Flags are
useful to programmers as they indicate the status after the execution of an instruction. For
example, whether it has resulted in a carry or overflow. We have also described the clock
generation in 8051 with crystal oscillator circuit and followed by reset circuit in detail. Timers
and their associated registers are explained next. Additionally, I/O ports of 8051 are defined
along with their configuration and connectivity. Instruction set of 8051 microcontroller consists
of 49 distinct instruction divided into five groups which are also explained briefly. Lastly, this
chapter illustrates on some assembly language programs.

Review Questions and Exercise

Section 2.1: Architecture of 8051

1. The program counter of 8051 is 8-bit/16-bit/32-bit wide. Pick the correct answer.
2. Accumulator A and reg B are 8-bit/16-bit/32-bit wide registers. Pick the correct one.
3. Name a 16-bit register in the 8051 microcontrollers.
4. What is the size of the registers R0-R7?
5. Check the following program segment and find the result. Also mention the location

of result.

MOV A, #25H
MOV R2, #14H
ADD A, R2

6. Which of the following instructions are illegal?

81 | Microprocessor and Microcontroller

a. MOV R3, #500
b. MOV R1, #50
c. MOV A, #255H
d. MOV A, #F5H
e. MOV R9, #50H
f. MOV R7, #00
g. ADD A, R5
h. ADD A, #50H
i. ADD R3, A

7. If the contents of R0 and A are 25H and 55H respectively, then what be will be
content of destination registers after the execution of each line of the following
instructions?

ADD A, R0
MOV R0, A
ADD A, R0
ADD R0, #07

Section 2.2 Introduction to Assembly Language Programming

8. Which program produces “obj’ file?
9. Answer True or False.

a. Source file has an extension “src” or “asm”.
b. Source code file can be a non-ASCII file.
c. Every source file must have ORG and END directives.
d. ORG and END directive appear in “.lst” file.

10. Is there any difference between instruction and directive?

Section 2.3: Program Counter and ROM space in 8051

11. Why do we write the programs always with ORG 0000 at the starting?
12. Find the number of bytes in each of the following instructions?

a. MOV A, #55H
b. MOV R3, #5
c. ADD A, #0
d. MOV A, R1
e. INC R2
f. MOV R3, A

13. If the following program is burnt into ROM, what will be the content of each ROM
locations?

ORG 0000H
MOV R0, #26H
MOV R1, #36H
MOV A, #0
ADD A, R0
MOV R2, A

Section 2.4: Instruction Set and Machine Cycle

14. What the mnemonics SJMP stands for? What is its length in bytes?
15. In which way SJMP and LJMP differ?
16. If the current PC value is 0100H, calculate the target address in the instruction

82 | Microprocessor and Microcontroller

SJMP HERE, where HERE corresponds to 003FH.
17. Write True or False. All 8051 jumps are short jumps?
18. Which of the following instructions is/are not a short jump?

a. JZ b. JNC c. LJMP d. DJNZ
19. Write true or false. All conditional jumps are short jumps.
20. Write a program to add 2 to the accumulator four times.
21. Analyse the following program:

CLR C
MOV A, #4CH //load A with 4CH
SUBB A, #6EH //subtract 6EH from A

 JNC NEXT //if CY=0, jump to NEXT
CPL A //if CY=1 then take 1’s complement
INC A //and increment to get 2’s complement

 NEXT: MOV R1, A // save content of A in R1

22. For an AT8051microcontroller system with crystal frequency of 11.0592MHz, what
will be the time taken to execute each of the following instructions:
a. MOV R3, #55 b. LJMP c. MUL AB d. DEC R3
e. NOP f. DJMP R2, target

References

1. Dallas Semiconductors: www.maxim-ic.com
2. M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and

Embedded System. 2nd ed. New Jersey, Pearson Prentice Hall, 2006.
3. Kenneth J. Ayala. The 8051 Microcontroller. St. Paul, MN, WEST PUBLISHING

COMPANY, 1991
4. http://techknowlearn.blogspot.com/2013/07/reset-oscillator-circuit-of-8051-

micro.html
5. https://codembedded.wordpress.com/2017/03/27/architecture-of-8051-microcontroller

83 | Microprocessor and Microcontroller

Chapter 3

 Instruction Set and Programming

Key features of Module – 3
 Different types of addressing modes in 8051 microcontrollers
 Detailed instruction sets of 8051 microcontrollers
 Fundamental programs in C language
 Different assemblers and compilers

Pre-requisites

 Fundamentals C programming
 Basics of Computers

Module – 3 Outcomes

 Students should be able to understand the different addressing modes of 8051
microcontrollers and their implications

 Students should be able to write the proper syntax of instructions in 8051
microcontrollers

 Students should be able to write programs in assembly language and C language

This chapter gives an overview of the addressing modes of 8051 microcontrollers. The
understanding of how to address a source data is discussed. There are different types of
addressing like Register Addressing, Direct Addressing, Indirect Addressing, Relative
Addressing, Indexed Addressing, Bit Inherent Addressing, bit Direct Addressing. These are the
modes how a data can be represented through instruction depending on the location of the data.
The syntax of writing any instruction is shown in the chapter along with some fundamental
programs of 8051 microcontrollers.

3.1 Addressing Mode

Addressing mode is a way to address an operand. Operand means the data we are operating
upon (source data). It can be a direct address of memory, it can be register names, it can be any
numerical data etc. depending on the programming situation. The classification of the
addressing mode is not very significant, except that it provides some clues in understanding
mnemonics.

The CPU can access data in various ways, which are called addressing modes

 Immediate

 Register

 Direct

84 | Microprocessor and Microcontroller

 Register indirect

 Indexed

Direct, register indirect and indexed are accessing memories. The addressing modes are
discussed later in the chapter.

 3.2 Instruction Syntax

There are 49 Instruction Mnemonics in the 8051 Microcontroller Instruction Set and these 49
Mnemonics are divided into five groups.

Table 3. 1. Types of instructions

DATA
TRANSFER

ARITHMETIC LOGICAL BOOLEAN PROGRAM
BRANCHING

MOV ADD ANL CLR LJMP
MOVC ADDC ORL SETB AJMP
MOVX SUBB XRL MOV SJMP
PUSH INC CLR JC JZ
POP DEC CPL JNC JNZ
XCH MUL RL JB CJNE
XCHD DIV RLC JNB DJNZ
 DA A RR JBC NOP
 RRC ANL LCALL
 SWAP ORL ACALL
 CPL RET
 RETI
 JMP

The 8051 microcontroller instructions set includes 110 instructions, 49 of which are single byte
instructions, 45 are two bytes instructions and 17 are three bytes instructions. The instructions
format consists of a function mnemonic followed by destination and source field. Data transfer
group. Arithmetic group. The syntax of 8051 microcontroller is given as

<Memory address> <Mnemonics>;

For example, to add two numbers, first one number has to be in accumulator, then we add the
other number with the number in the accumulator.

2001 ADD A, Rn

The program illustrates how to assemble and run an 8051 program

0000 ORG 0H; start (origin) at 0
0000 7D25 MOV R5, #25H; load 25H into R5
0002 7F34 MOV R7, #34H; load 34H into R7
0004 7400 MOV A, #0; load 0 into A
0006 2D ADD A, R5; add contents of R5 to A; now A = A + R5
0007 2F ADD A, R7; add contents of R7 to A; now A = A + R7
0008 2412 ADD A, #12H; add to A value 12H; now A = A + 12H
000A 80EF HERE: SJMP HERE; stay in this loop
000C END; end of asm source file

85 | Microprocessor and Microcontroller

3.3 Data types and directives

A good understanding of C data types for 8051 can help programmers to create smaller hex
files

 Signed char

 Unsigned int

 Signed int

 Sbit (single bit)

 Bit and sfr

3.3.1 Unsigned char

The character data type is the most natural choice
 8051 is an 8-bit microcontroller

Unsigned char is an 8-bit data type in the range of 0 – 255 (00 – FFH)
 One of the most widely used data types for the 8051 ƒ

i. Counter value ƒ
ii. ASCII characters

 C compilers use the signed char as the default if we do not put the keyword unsigned.

1. Write an 8051 C program to send values 00 – FF to port P1.
 Solution:

 #include <reg51.h>
 void main(void)
 {
unsigned char z;
 for (z=0;z<=255;z++)
 P1=z;
 }

2. Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A,

B, C, and D to port P1.
 Solution:

 #include <reg51.h>
 void main(void)
{
unsigned char mynum[]=“012345ABCD”;
unsigned char z;
for (z=0;z<=10;z++)
P1=mynum[z];
}

3. Write an 8051 C program to toggle all the bits of P1 continuously.

Solution:
 //Toggle P1 forever

86 | Microprocessor and Microcontroller

#include <reg51.h>
void main(void)
 {
for (;;)
{
p1=0x55; p1=0xAA;
}
}

3.3.2 Signed char

The signed char is an 8-bit data type

 Use the MSB D7 to represent – or +

 Give us values from –128 to +127 ‰

We should stick with the unsigned char unless the data needs to be represented as signed
numbers.

4. Write an 8051 C program to send values of –4 to +4 to port P1.

 Solution:

//Singed numbers
 #include <reg51.h>
void main(void)
{
char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};
unsigned char z;
 for (z=0;z<=8;z++)
P1=mynum[z];
 }

3.3.3 Unsigned and Signed int

The unsigned int is a 16-bit data type

 Takes a value in the range of 0 to 65535 (0000 – FFFFH)

 Define 16-bit variables such as memory addresses

 Set counter values of more than 256

 Since registers and memory accesses are in 8-bit chunks, the misuse of int variables will
result in a larger hex file.

 Signed int is a 16-bit data type

 Use the MSB D15 to represent – or +

 We have 15 bits for the magnitude of the number from –32768 to +32767

3.3.4 Single Bit

5. Write an 8051 C program to toggle bit D0 of the port P1 (P1.0) 50,000 times.

87 | Microprocessor and Microcontroller

Solution:
 #include <reg51.h>
sbit MYBIT=P1^0;
 void main(void)
 {
unsigned int z;
 for (z=0;z<=50000;z++)
{
MYBIT=0; MYBIT=1;
}
 }

3.3.5 Bit and sfr

The bit data type allows access to single bits of bit-addressable memory spaces 20 – 2FH. To
access the byte-size SFR registers, we use the sfr data type

Table 3.2. Data types, number of bits, bytes and range of values

Data type Bits Bytes Value range
bit 1 0 to 1
signed char 8 1 -128 to +127
unsigned char 8 1 0 to 255
enum 8 or 16 1 or 2 -128 to +127 or -32768 to +32767
signed short 16 2 -32768 to +32767
unsigned short 16 2 0 to 65535
signed int 16 2 -32768 to +32767
unsigned int 16 2 0 to 65535
signed long 32 4 -2147483648 to 2147483647
unsigned long 32 4 0 to 4294967295
float 32 4 ±1.175494E-38 to ±3.402823E+38
sbit 1 0 to 1
sfr 8 4 0 to 255
sfr16 16 2 0 to 65535

The following are some more widely used directives of the 8051.

ORG (origin)

The ORG directive is used to indicate the beginning of the address. The number that comes
after ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal
and the assembler will convert it to hex. Some assemblers use “. ORG” (notice the dot) instead
of “ORG” for the origin directive. Check your assembler.

EQU (equate)

This is used to define a constant without occupying a memory location. The EQU directive
does not set aside storage for a data item but associates a constant value with a data label so
that when the label appears in the program, its constant value will be substituted for the label.
The following uses EQU for the counter constant and then the constant is used to load the R3
register.

88 | Microprocessor and Microcontroller

COUNT EQU 25
…….. ……..
MOV R3, #COUNT

When executing the instruction “MOV R3, #COUNT”, the register R3 will be loaded with the
value 25 (notice the # sign). What is the advantage of using EQU? Assume that there is a
constant (a fixed value) used in many different places in the program, and the programmer
wants to change its value throughout. By the use of EQU, the programmer can change it once
and the assembler will change all of its occurrences, rather than search the entire program trying
to find every occurrence.

END directive

Another important pseudocode is the END directive. This indicates to the assembler the end of
the source (asm) file. The END directive is the last line of an 8051 program, meaning that in
the source code anything after the END directive is ignored by the assembler. Some assemblers
use “. END” (notice the dot) instead
of “END”.

3.4 Subroutines

The CPU also uses the stack to save the address of the instruction just below the CALL
instruction. This is how the CPU knows where to resume when it returns from the called
subroutine. Subroutines are a set of instructions that perform specific function, which is written
in some other memory location other than the main program. Call instruction is used to call
subroutine

 Subroutines are often used to perform tasks that need to be performed frequently

 This makes a program more structured in addition to saving memory space

LCALL (long call)
 3-byte instruction ƒ

 First byte is the opcode ƒ

 Second and third bytes are used for address of target subroutine
Subroutine is located anywhere within 64K byte address space

ACALL (absolute call)
 2-byte instruction

 ƒ 11 bits are used for address within 2K-byte range
When a subroutine is called, control is transferred to that subroutine, the processor

 Saves on the stack the the address of the instruction immediately below the LCALL

 Begins to fetch instructions form the new location ‰
 After finishing execution of the subroutine
 The instruction RET transfers control back to the caller ƒ

 Every subroutine needs RET as the last instruction

6. Write an example of LCALL

ORG 0

89 | Microprocessor and Microcontroller

 BACK: MOV A, #55H; load A with 55H
 MOV P1, A; send 55H to port 1
LCALL DELAY; time delay
MOV A, #0AAH; load A with AA (in hex)
MOV P1, A; send AAH to port 1
 LCALL DELAY
SJMP BACK; keep doing this indefinitely;
---------- this is delay subroutine ------------
ORG 300H; put DELAY at address 300H
DELAY: MOV R5, #0FFH; R5=255 (FF in hex), counter
AGAIN: DJNZ R5, AGAIN; stay here until R5 become 0
RET; return to caller (when R5 =0)
END

3.4.2 Calling Subroutines

It is common to have one main program and many subroutines that are called from the main
program.

;MAIN program calling subroutines
ORG 0
MAIN: LCALL SUBR_1
LCALL SUBR_2
 LCALL SUBR_3
HERE: SJMP HERE
 ;-----------end of MAIN
SUBR_1: ...
 ...
RET
 ;-----------end of subroutine1
SUBR_2: ...
 ...
RET
 ;-----------end of subroutine2
SUBR_3: ...
 ...
RET
 ;-----------end of subroutine3
END ;end of the asm file

This allows you to make each subroutine into a separate module
- Each module can be tested separately and then brought together with main program
 - In a large program, the module can be assigned to different programmers.

ACALL

The only difference between ACALL and LCALL is

 The target address for LCALL can be anywhere within the 64K byte address

 The target address of ACALL must be within a 2K-byte range ‰

90 | Microprocessor and Microcontroller

 The use of ACALL instead of LCALL can save a number of bytes of program ROM space

ORG 0
BACK: MOV A,#55H ;load A with 55H
MOV P1,A ;send 55H to port 1
 LCALL DELAY ;time delay
MOV A,#0AAH ;load A with AA (in hex)
MOV P1,A ;send AAH to port 1
 LCALL DELAY
SJMP BACK ;keep doing this indefinitely
...
END ;end of asm file

 A rewritten program which is more efficient

ORG 0
MOV A,#55H ;load A with 55H
BACK: MOV P1,A ;send 55H to port 1
ACALL DELAY ;time delay
CPL A ;complement reg A
SJMP BACK ;keep doing this indefinitely
 ...
END ;end of asm file

3.5 Addressing Modes

The CPU can access data in various ways, which are called addressing modes

 Immediate

 Register

 Direct

 Register indirect

 Indexed

Direct, register indirect and indexed are accessing memories.

3.5.1 Immediate Addressing Mode

The source operand is a constant

 The immediate data must be preceded by the pound sign, “#”

 Can load information into any registers, including 16-bit DPTR register ƒ

DPTR can also be accessed as two 8-bit registers, the high byte DPH and low byte DPL

MOV A,#25H ;load 25H into A
MOV R4,#62 ;load 62 into R4
MOV B,#40H ;load 40H into B
MOV DPTR,#4521H ;DPTR=4512H
MOV DPL,#21H ;This is the same
MOV DPH,#45H
;as above ;illegal!! Value > 65535 (FFFFH)
MOV DPTR,#68975

91 | Microprocessor and Microcontroller

 We can use EQU directive to access immediate data

Count EQU 30

MOV R4,#COUNT ;R4=1EH
MOV DPTR,#MYDATA ;DPTR=200H
ORG 200H
MYDATA: DB “America”

 We can also use immediate addressing mode to send data to 8051 ports

MOV P1,#55H

3.5.2 Register Addressing Mode

Use registers to hold the data to be manipulated

MOV A,R0 ;copy contents of R0 into A
MOV R2,A ;copy contents of A into R2
ADD A,R5 ;add contents of R5 to A
ADD A,R7 ;add contents of R7 to A
MOV R6,A ;save accumulator in R6

The source and destination registers must match in size

 MOV DPTR,A will give an error

MOV DPTR,#25F5H
MOV R7,DPL
MOV R6,DPH

The movement of data between Rn registers is not allowed
 MOV R4,R7 is invalid

3.5.3 Direct Addressing Mode

It is most often used the direct addressing mode to access RAM locations 30 – 7FH

 The entire 128 bytes of RAM can be accessed

 The register bank locations are accessed by the register names

MOV A,4 ;is same as
MOV A,R4 ;which means copy R4 into A

Contrast this with immediate addressing mode

 There is no “#” sign in the operand

MOV R0,40H ;save content of 40H in R0
 MOV 56H,A ;save content of A in 56H

92 | Microprocessor and Microcontroller

7. Write code to send 55H to ports P1 and P2, using (a) their names (b) their addresses

 Solution :

(a) MOV A,#55H ;A=55H
MOV P1,A ;P1=55H
MOV P2,A ;P2=55H

(b) From Table 5-1, P1 address=80H; P2 address=A0H
 MOV A,#55H ;A=55H
MOV 80H,A ;P1=55H
MOV 0A0H,A ;P2=55H

3.5.4 Stack and Direct Addressing Mode

Only direct addressing mode is allowed for pushing or popping the stack

 PUSH A is invalid
 Pushing the accumulator onto the stack must be coded as PUSH 0E0H

8. Show the code to push R5 and A onto the stack and then pop them back them into R2

and B, where B = A and R2 = R5

 Solution:
PUSH 05 ;push R5 onto stack
PUSH 0E0H ;push register A onto stack
 POP 0F0H ;pop top of stack into B ;now register B = register A
POP 02 ;pop top of stack into R2 ;now R2=R6

3.5.5 Indirect Addressing Mode

A register is used as a pointer to the data

 Only register R0 and R1 are used for this purpose

 R2 – R7 cannot be used to hold the address of an operand located in RAM

 When R0 and R1 hold the addresses of RAM locations, they must be preceded by the “@”
sign

MOV A,@R0 ;move contents of RAM whose ;address is held by R0 into A
MOV @R1,B ;move contents of B into RAM ;whose address is held by R1

9. Write a program to copy the value 55H into RAM memory locations 40H to 41H using
(a) direct addressing mode, (b) register indirect addressing mode without a loop, and
(c) with a loop

Solution:

 (a) MOV A,#55H ;load A with value 55H

93 | Microprocessor and Microcontroller

MOV 40H,A ;copy A to RAM location 40H
MOV 41H.A ;copy A to RAM location 41H

(b) MOV A,#55H ;load A with value 55H
MOV R0,#40H ;load the pointer. R0=40H
MOV @R0,A ;copy A to RAM R0 points to
INC R0 ;increment pointer. Now R0=41h
MOV @R0,A ;copy A to RAM R0 points to

(c)MOV A,#55H ;A=55H

MOV R0,#40H ;load pointer.R0=40H,
MOV R2,#02 ;load counter, R2=3
AGAIN: MOV @R0,A ;copy 55 to RAM R0 points to
INC R0 ;increment R0 pointer
 DJNZ R2,AGAIN ;loop until counter = zero

The advantage is that it makes accessing data dynamic rather than static as in direct addressing
mode

 Looping is not possible in direct addressing mode

10. Write a program to clear 16 RAM locations starting at RAM address 60H

Solution:
CLR A ;A=0
MOV R1,#60H ;load pointer. R1=60H
MOV R7,#16 ;load counter, R7=16
AGAIN: MOV @R1,A ;clear RAM R1 points to
 INC R1 ;increment R1 pointer
DJNZ R7,AGAIN ;loop until counter=zero

11. Write a program to copy a block of 10 bytes of data from 35H to 60H

Solution:
MOV R0,#35H ;source pointer
MOV R1,#60H ;destination pointer
MOV R3,#10 ;counter BACK:
MOV A,@R0 ;get a byte from source
MOV @R1,A ;copy it to destination
INC R0 ;increment source pointer
INC R1 ;increment destination pointer
DJNZ R3,BACK ;keep doing for ten bytes

 R0 and R1 are the only registers that can be used for pointers in register indirect addressing

mode.

 Since R0 and R1 are 8 bits wide, their use is limited to access any information in the internal
RAM

94 | Microprocessor and Microcontroller

 Whether accessing externally connected RAM or on-chip ROM, we need 16-bit pointer
 In such case, the DPTR register is used

 Indexed addressing mode is widely used in accessing data elements of look-up table entries
located in the program ROM ‰

 The instruction used for this purpose is MOVC A,@A+DPTR
 Use instruction MOVC, “C” means code
 The contents of A are added to the 16-bit register DPTR to form the 16-bit

address of the needed data

3.5.6 Indexed Addressing Mode and Onchip ROM Access

12. In this program, assume that the word “USA” is burned into ROM locations starting at
200H. And that the program is burned into ROM locations starting at 0. Analyze how
the program works and state where “USA” is stored after this program is run.

Solution:
ORG 0000H ;burn into ROM starting at 0
MOV DPTR,#200H ;DPTR=200H look-up table addr
CLR A ;clear A(A=0)
MOVC A,@A+DPTR ;get the char from code space
MOV R0,A ;save it in R0
INC DPTR ;DPTR=201 point to next char
CLR A ;clear A(A=0)
 MOVC A,@A+DPTR ;get the next char
MOV R1,A ;save it in R1
INC DPTR ;DPTR=202 point to next char
CLR A ;clear A(A=0)
MOVC A,@A+DPTR ;get the next char
MOV R2,A ;save it in R2
Here: SJMP HERE ;stay here ;Data is burned into code space
starting at 200H
ORG 200H
MYDATA:DB “USA”
 END ;end of program

The look-up table allows access to elements of a frequently used table with minimum
operations

13. Write a program to get the x value from P1 and send x2 to P2, continuously

Solution:
ORG 0
MOV DPTR,#300H ;LOAD TABLE ADDRESS
MOV A,#0FFH ;A=FF
MOV P1,A ;CONFIGURE P1 INPUT PORT
BACK:MOV A,P1 ;GET X
MOV A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2,A ;ISSUE IT TO P2
SJMP BACK ;KEEP DOING IT

95 | Microprocessor and Microcontroller

ORG 300H
 XSQR_TABLE:
DB 0,1,4,9,16,25,36,49,64,81
 END

3.5.6.1 Indexed Addressing Mode and MOVX

In many applications, the size of program code does not leave any room to share the 64K-byte
code space with data

 The 8051 has another 64K bytes of memory space set aside exclusively for data storage

 This data memory space is referred to as external memory and it is accessed only by the MOVX
instruction

The 8051 has a total of 128K bytes of memory space

 64K bytes of code and 64K bytes of data

 The data space cannot be shared between code and data

In many applications we use RAM locations 30 – 7FH as scratch pad

 We use R0 – R7 of bank 0

 Leave addresses 8 – 1FH for stack usage

 If we need more registers, we simply use RAM locations 30 – 7FH

14. Write a program to toggle P1 a total of 200 times. Use RAM location 32H to hold your
counter value instead of registers R0 – R7

Solution:
MOV P1,#55H ;P1=55H
MOV 32H,#200 ;load counter value ;into RAM loc 32H
LOP1: CPL P1 ;toggle P1
ACALL DELAY
DJNZ 32H,LOP1 ;repeat 200 times

3.5.7 Bit Inherent Addressing

Many microprocessors allow program to access registers and I/O ports in byte size only.
However, in many applications we need to check a single bit. One unique and powerful feature
of the 8051 is single-bit operation single-bit instructions allow the programmer to set, clear,
move, and complement individual bits of a port, memory, or register. It is registers, RAM, and
I/O ports that need to be bit-addressable. ROM, holding program code for execution, is not bit-
addressable.

3.5.8 Bit Addressable RAM

The bit-addressable RAM location are 20H to 2FH

 These 16 bytes provide 128 bits of RAM bit-addressability, since 16 × 8 = 128

 0 to 127 (in decimal) or 00 to 7FH

96 | Microprocessor and Microcontroller

 The first byte of internal RAM location 20H has bit address 0 to 7H

 The last byte of 2FH has bit address 78H to 7FH ‰ Internal RAM locations 20-2FH
are both byte-addressable and bit- addressable

 Bit address 00-7FH belong to RAM byte addresses 20-2FH

 Bit address 80-F7H belong to SFR P0, P1, …

Fig.3.3: Bit Addressable RAM

15. Find out to which by each of the following bits belongs. Give the address of the RAM
byte in hex (a) SETB 42H, (b) CLR 67H, (c) CLR 0FH (d) SETB 28H, (e) CLR 12, (f)
SETB 05

Solution:

97 | Microprocessor and Microcontroller

To avoid confusion regarding the addresses 00 – 7FH

 The 128 bytes of RAM have the byte addresses of 00 – 7FH can be accessed in byte
size using various addressing modes

 Direct and register-indirect

 The 16 bytes of RAM locations 20 – 2FH have bit address of 00 – 7FH

We can use only the single-bit instructions and these instructions use only direct addressing
mode

Table 3.3. Instructions that are used for signal-bit operations

Instruction Function

SETB bit Set the bit (bit = 1)

CLR bit Clear the bit (bit = 0)

CPL bit Complement the bit (bit = NOT bit)

JB bit, target Jump to target if bit = 1 (jump if bit)

JNB bit, target Jump to target if bit = 0 (jump if no bit)

JBC bit, target Jump to target if bit = 1, clear bit (jump if bit, then clear)

3.5.9 Registers Bit Addressability

Only registers A, B, PSW, IP, IE, ACC, SCON, and TCON are bit-addressable

98 | Microprocessor and Microcontroller

 While all I/O ports are bit-addressable

In PSW register, two bits are set aside for the selection of the register banks

 Upon RESET, bank 0 is selected

 We can select any other banks using the bit-addressability of the PSW

Table 3.4. Register Bits and addresses

16. Write a program to save the accumulator in R7 of bank 2.

Solution:

CLR PSW.3 SETB PSW.4 MOV R7,A

17. While there are instructions such as JNC and JC to check the carry flag bit (CY), there
are no such instructions for the overflow flag bit (OV). How would you write code to
check OV?

Solution:

JB PSW.2, TARGET; jump if OV=1

CY AC -- RS1 RS0 OV -- P

18. While a program to save the status of bit P1.7 on RAM address bit 05.

Solution: MOV C,P1.7 MOV 05,C

19. Write a program to see if the RAM location 37H contains an even value. If so, send it to
P2. If not, make it even and then send it to P2.

Solution: MOV A,37H ;load RAM 37H into ACC JNB ACC.0,YES ;if D0 of ACC
0? If so jump INC A ;it’s odd, make it even YES: MOV P2,A ;send it to P2

20. The status of bits P1.2 and P1.3 of I/O port P1 must be saved before they are changed.
Write a program to save the status of P1.2 in bit location 06 and the status of P1.3 in bit
location 07

CY AC -- RS1 RS0 OV -- P

RS1 RS0 Register Bank Address

0 0 0 00H - 07H

0 1 1 08H - 0FH

1 0 2 10H - 17H

1 1 3 18H - 1FH

99 | Microprocessor and Microcontroller

Solution: CLR 06 ;clear bit addr. 06 CLR 07 ;clear bit addr. 07 JNB P1.2,OVER ;check P1.2,
if 0 then jump SETB 06 ;if P1.2=1,set bit 06 to 1 OVER: JNB P1.3,NEXT ;check P1.3, if 0
then jump SETB 07 ;if P1.3=1,set bit 07 to 1 NEXT: ...

Using BIT

The BIT directive is a widely used directive to assign the bit-addressable I/O and RAM
locations

 Allow a program to assign the I/O or RAM bit at the beginning of the program, making it
easier to modify them

21. A switch is connected to pin P1.7 and an LED to pin P2.0. Write a program to get the

status of the switch and send it to the LED.

Solution: LED BIT P1.7 ;assign bit SW BIT P2.0 ;assign bit HERE: MOV C,SW ;get the bit
from the port MOV LED,C ;send the bit to the port SJMP HERE ;repeat forever

22. Assume that bit P2.3 is an input and represents the condition of an oven. If it goes high,
it means that the oven is hot. Monitor the bit continuously. Whenever it goes high, send
a high-to-low pulse to port P1.5 to turn on a buzzer.

Solution: OVEN_HOT BIT P2.3 BUZZER BIT P1.5 HERE: JNB OVEN_HOT, HERE; keep
monitoring ACALL DELAY CPL BUZZER; sound the buzzer ACALL DELAY SJMP HERE

Using EQU

Use the EQU to assign addresses

 Defined by names, like P1.7 or P2

 Defined by addresses, like 97H or 0A0H

3.6 8051 Instruction Set

A simple instruction consists of just the opcode. Other instructions may include one or more
operands. Instruction can be one-byte instruction, which contains only opcode, or two-byte
instructions, where the second byte is the operand or three-byte instructions, where the operand
makes up the second and third byte.

Based on the operation they perform, all the instructions in the 8051 Microcontroller Instruction
Set are divided into five groups. They are:

 Data Transfer Instructions
 Arithmetic Instructions
 Logical Instructions
 Boolean or Bit Manipulation Instructions
 Program Branching Instructions

3.6.1 Data Transfer Instructions

100 | Microprocessor and Microcontroller

The Data Transfer Instructions are associated with transfer of data between registers or external
program memory or external data memory. The Mnemonics associated with Data Transfer are
given below.

 MOV
 MOVC
 MOVX
 PUSH
 POP
 XCH
 XCHD

Table 3.5. Data transfer mnemonics and its function

Mnemonic Description
MOV Move Data
MOVC Move Code
MOCX Move External Data
PUSH Move Data to Stack
POP Copy Data from Stack
XCH Exchange Data between two Registers
XCHD Exchange Lower Order Data between two

Registers

The following table lists out all the possible data transfer instructions along with other details
like addressing mode, size occupied and number machine cycles it takes.

Table 3.6 Data transfer instructions with details

Mnemonic Instructio
n

Description Addressing
Mode

No. of
Bytes

No. of
Cycle

s
MOV A, #Data A ← Data Immediate 2 1

 A,Rn A ← Rn Register 1 1
 A, Direct A ← (Direct) Direct 2 1
 A,@Ri A← @Ri Indirect 1 1
 Rn,#Data Rn ← data Immediate 2 1
 Rn,A Rn← A Register 1 1
 Rn,Direct Rn ← (Direct) Direct 2 2
 Direct, A (Direct) ← A Direct 2 1
 Direct,Rn (Direct) ← Rn Direct 2 2
 Direct1,

Direct2
(Direct1) ← (Direct2) Direct 3 2

 Direct,
@Ri

(Direct) ← @Ri Indirect 2 2

 Direct,
#Data

(Direct) ← #Data Direct 3 2

 @Ri,A @Ri ← A Indirect 1 1
 @Ri,Direct @Ri ← Direct Indirect 2 2
 @Ri,#Data @Ri ← #Data Indirect 2 1

101 | Microprocessor and Microcontroller

 DPTR,#Dat
a16

DPTR ← #Data16 Immediate 3 2

MOVC A,@A+DP
TR

A← Code pointed by A+DPTR Indexed 1 2

 A,@A+PC A← Code pointed by A+PC Indexed 1 2
 A,@Ri A ← Code pointed by Ri (8-bit

Address)
Indirect 1 2

MOVX A,@DPTR A← External Data pointed by DPTR Indirect 1 2

 @Ri,A @Ri ← A (External Data 8-bit
Addr)

Indirect 1 2

 @DPTR,A @DPTR← A (External Data 16- bit
Addr)

Indirect 1 2

PUSH Direct Stack Pointer SP ← (Direct) Direct 2 2

POP Direct (Direct) ← Stack Pointer SP Direct 2 2

XCH Rn Exchange ACC with Rn Register 1 1
 Direct Exchange ACC with Direct Byte Direct 2 1
 @Ri Exchange ACC with Indirect RAM Indirect 1 1

XCHD A,@Ri Exchange ACC with Lower Order
Indirect RAM

Indirect 1 1

3.6.2 Arithmetic Instructions

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and
division. The arithmetic instructions also include increment by one, decrement by one and a
special instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller
Instruction Set are:

 ADD
 ADDC
 SUBB
 INC
 DEC
 MUL
 DIV
 DA A

Table 3.7. Arithmatic mnemonics and its function

Mnemonic Description
ADD Addition without Carry
ADDC Addition with Carry
SUBB Subtract with Carry
INC Increment by 1
DEC Decrement by 1

102 | Microprocessor and Microcontroller

MUL Multiply
DIV Divide
DA A Decimal Adjust the Accumulator (A

Register)

The arithmetic instructions have no knowledge about the data format i.e., signed, unsigned,
ASCII, BCD, etc. Also, the operations performed by the arithmetic instructions affect flags like
carry, overflow, zero, etc. in the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the
following table.

Table 3.8. Arithmetic instructions with details

Mnemonic Instruction Description Addressing
Mode

of
Bytes

of Cycles

ADD A, #Data A ← A +Data Immediate 2 1

 A,Rn A ←A+ Rn Register 1 1

 A, Direct A ←A+ (Direct) Direct 2 1

 A,@Ri A← A+ @Ri Indirect 1 1

ADDC A, #Data A ←A + Data +C Immediate 2 1

 A,Rn A ←A+ Rn +C Register 1 1

 A, Direct A ←A +(Direct) + C Direct 2 1

 A,@Ri A← A+ @Ri + C Indirect 1 1

SUBB A, #Data A ←A- Data - C Immediate 2 2

 A,Rn A ←A – Rn - C Register 3 2

 A, Direct A← A - (Direct) - C Direct 1 1

 A,@Ri A ←A - @Ri - C Indirect 2 2

MUL AB Multiply A with B
(A ← Lower Byte of A*B and

B ←Higher Byte of A*B)

─ 1 4

DIV AB Divide A by B
(A ← Quotient and B ←

Remainder

─ 1 4

DEC A A← A - 1 Register 1 1

 Rn← Rn - 1 Register 1 1

 (Direct)← (Direct) - 1 Direct 2 1

 @Ri← @Ri - 1 Indirect 1 1

INC A A← A +1 Register 1 1

103 | Microprocessor and Microcontroller

 A,Rn Rn← Rn +1 Register 1 1

 Direct (Direct)← (Direct) +1 Direct 2 1

 @Ri @Ri← @Ri +1 Indirect 1 1

 DPTR DPTR← DPTR +1 Register 1 2

DA A Decimal Adjust Accumulator ─ 1 1

3.6.3 Logical Instructions

The next group of instructions are the Logical Instructions, which perform logical operations
like AND, OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on
Bytes of data on a bit-by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

 ANL
 ORL
 XRL
 CLR
 CPL
 RL
 RLC
 RR
 RRC
 SWAP

Table 3.9. Logical instructions with details

Mnemonic Description
ANL Logical AND
ORL Logical OR
XRL Ex-OR
CLR Clear Register
CPL Complement the Register
RL Rotate a Byte to Left
RLC Rotate a Byte and Carry Bit to Left
RR Rotate a Byte to Right
RRC Rotate a Byte and Carry Bit to Right
SWAP Exchange lower and higher nibbles in a Byte

Table 3.10. Mnemonics of the Logical Instructions.

Mnemonic instruction Description Addressing
Mode

of
Bytes

of
Cycles

ANL A, #Data A ← A AND Data Immediate 2 1

104 | Microprocessor and Microcontroller

 A,Rn A ←A AND Rn Register 1 1
 A,Direct A ←A AND (Direct) Direct 2 1
 A,@Ri A ←A AND @Ri Indirect 1 1
 Direct, A (Direct) ←(Direct)

AND A
Direct 2 1

 Direct,
#Data

(Direct) ←(Direct) AND
Data

Direct 3 2

ORL A, #Data A ←A OR Data Immediate 2 1

 A,Rn A ← A OR Rn Register 1 1
 A,Direct A ←A OR (Direct) Direct 2 1
 A,@Ri A ←A+ @Ri Indirect 1 1
 Direct, A (Direct) ← (Direct) OR

A
Direct 2 1

 Direct,
#Data

(Direct) ←(Direct) OR #
Data

Direct 3 2

XRL A, #Data A ←A XRL Data Immediate 2 1

 A,Rn A ←A XRL Rn Register 1 1
 A,Direct A ←A XRL (Direct) Direct 2 1
 A,@Ri A ←A XRL @Ri Indirect 1 1
 Direct, A (Direct) ←(Direct) XRL

A
Direct 2 1

 Direct,
#Data

(Direct) ←(Direct) XRL
Data

Direct 3 2

CLR A A ←00H ─ 1 1

CPL A A← A ─ 1 1

RL A Rotate ACC Left ─ 1 1

 1 1
RLC A Rotate ACC Left through

Carry
─ 2 1

 1 1
RR A Rotate ACC Right ─

 1 1
RRC A Rotate ACC Right

through Carry
─ 1 1

SWAP A Swap Nibble within

ACC
─ 1 1

3.6.4 Boolean or Bit Manipulation Instructions

As the name suggests, Boolean or Bit Manipulation Instructions deal with bit variables. We
know that there is a special bit-addressable area in the RAM and some of the Special Function
Registers (SFRs) are also bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

105 | Microprocessor and Microcontroller

 CLR
 SETB
 MOV
 JC
 JNC
 JB
 JNB
 JBC
 ANL
 ORL
 CPL

Table 3.11. Bit Manipulation instructions with details

Mnemonic Description
CLR Clear a Bit (Reset to 0)
SETB Set a Bit (Set to 1)
MOV Move a Bit
JC Jump if Carry Flag is Set
JNC Jump if Carry Flag is Not Set
JB Jump if specified Bit is Set
JNB Jump if specified Bit is Not Set
JBC Jump if specified Bit is Set and also clear the Bit
ANL Bitwise AND
ORL Bitwise OR
CPL Complement the Bit

These instructions can perform set, clear, and, or, complement etc. at bit level. All the possible
mnemonics of the Boolean Instructions are specified in the following table.

Table 3.12. Mnemonics of the Bit Manipulation instructions
Mnemonic instruction Description # of

Bytes
of Cycles

CLR C C← 0 (C = Carry Bit) 1 1

 Bit Bit ←0 (Bit = Direct Bit) 2 1

SET C C← 1 1 1

 Bit Bit ←1 2 1

CPL C
C ←C

1 1

 Bit Bit Bit 2 1

ANL C, /Bit

C ←C. Bit (AND)

2 1

 C, Bit C← C. Bit (AND) 2 1

106 | Microprocessor and Microcontroller

ORL C, /Bit
C ←C+ Bit (AND)

2 1

 C, Bit
C ←C+ Bit (AND)

2 1

MOV C, Bit C← Bit 2 1

 Bit, C Bit← C 2 2

JC rel Jump is carry (C) is Set 2 2

JNC rel Jump is carry (C) is Not Set 2 2

JB Bit,rel Jump is Direct Bit is Set 3 2

JNB Bit,rel Jump is Direct Bit is Not Set 3 2

JBC Bit,rel Jump is Direct Bit is Set and
Clear Bit

3 2

3.6.5 Program Branching Instructions

The last group of instructions in the 8051 Microcontroller Instruction Set are the Program
Branching Instructions. These instructions control the flow of program logic. The mnemonics
of the Program Branching Instructions are as follows.

 LJMP
 AJMP
 SJMP
 JZ
 JNZ
 CJNE
 DJNZ
 NOP
 LCALL
 ACALL
 RET
 RETI
 JMP

Table 3.13. Program Branching instructions with details
Mnemonic Description

LJMP Long Jump (Unconditional)
AJMP Absolute Jump (Unconditional)
SJMP Short Jump (Unconditional)
JZ Jump if A is equal to 0
JNZ Jump if A is not equal to 0
CJNE Compare and Jump if Not Equal
DJNZ Decrement and Jump if Not Zero
NOP No Operation

107 | Microprocessor and Microcontroller

LCALL Long Call to Subroutine
ACALL Absolute Call to Subroutine (Unconditional)
RET Return from Subroutine
RETI Return from Interrupt
JMP Jump to an Address (Unconditional)

All these instructions, except the NOP (No Operation) affect the Program Counter (PC) in one
way or other. Some of these instructions has decision making capability before transferring
control to other part of the program.

The following table shows all the mnemonics with respect to the program branching
instructions.

Table 3.14. Mnemonics of the Program Branching instructions

Mnemonic instruction Description # of Bytes # of
Cycles

ACALL ADDR11 Absolute Subroutine Call
PC+2 → (SP);

ADDR16 → PC

2 2

LCALL ADDR16 Long Subroutine call PC+3
→ (SP);

ADDR16 → PC

3 2

RET - Return from subroutine
(SP) → PC

1 2

RETI - Return from Interrupt 1 2
AJMP ADDR11 Absolute Jump

ADDR16 → PC
2 2

LJMP ADDR16 Long Jump
ADDR16 → PC

3 2

SJMP rel Short Jump
PC+2+rel→PC

2 2

JMP @A+DPTR A+DPTR→PC 1 2
JZ rel If A=0 , Jump to PC +rel 2 2

JNZ rel If A ≠0 , Jump to PC +rel 2

CJNE A, Direct,
rel,

Compare (Direct) with A, Jump
to PC +rel if not equal

3 2

 A, Data, rel Compare # Data with A, Jump
to PC +rel if not equal

3 2

 A, Data, rel Compare #Data with Rn, Jump
to PC +rel if not equal

3 2

 A, Data, rel Compare #Data with @Ri, Jump
to PC +rel if not equal

3 2

DJNZ Rn ,rel Department Rn , Jump to PC +
rel if not Zero

2 2

 Direct, rel Department (Direct) , Jump to
PC + rel if not Zero

3 2

NOP No Operation 1 1

108 | Microprocessor and Microcontroller

In this chapter, we have seen the introduction to the 8051 Microcontroller Instruction Set,
Addressing Modes in 8051 Microcontroller and different types of instructions in the Instruction
Set of the 8051 Microcontroller.

3.7 Instructions and Programs

3.7.1 Arithmetic Instructions

Addition of Unsigned Numbers

ADD A, source ; A = A + source

 The instruction ADD is used to add two operands
 Destination operand is always in register A
 Source operand can be a register, immediate data, or in memory
 Memory-to-memory arithmetic operations are never allowed in 8051

Assembly language

23. Show how the flag register is affected by the following instruction

MOV A,#0F5H ;A=F5 hex
ADD A,#0BH ;A=F5+0B=0

Solution:

 Addition of Individual Bytes

24. Assume that RAM locations 40 – 44H have the following values. Write a program to
find the sum of the values. At the end of the program, register A should contain the low
byte and R7 the high byte
Solution:

 40 = (7D)
41 = (EB)
42 = (C5)
43 = (5B)
44 = (30)

 MOV

MOV
CLR

R0,#40H R2,#5
A

;load pointer
;load counter
;A=0

MOV R7,A ;clear R7

AGAIN: ADD A,@R0 ;add the byte ptr to by R0

 JNC NEXT ;if CY=0 don’t add carry

 INC R7 ;keep track of carry

 F5H 1111 0101
+ 0BH + 0000 1011
 100H 0000 0000

109 | Microprocessor and Microcontroller

NEXT: INC R0 ;increment pointer

DJNZ R2, AGAIN; repeat until R2 is zero

ADDC and Addition of 16- Bit Numbers

 When adding two 16-bit data operands, the propagation of a carry from lower byte to
higher byte is concerned

 3.7.2 BCD Number System

 The binary representation of the digits 0 to 9 is called BCD (Binary Coded Decimal)
 Unpacked BCD

 In unpacked BCD, the lower 4 bits of the number represent the BCD
number, and the rest of the bits are 0

 Ex. 00001001 and 00000101 are unpacked BCD for 9 and 5
 Packed BCD

 In packed BCD, a single byte has two BCD number in it, one in the lower
4 bits, and one in the upper 4 bits

 Ex. 0101 1001 is packed BCD for 59H

Unpacked and Packed BCD

Digit BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

110 | Microprocessor and Microcontroller

3.7.3 DA Instruction

DA A; decimal adjust for addition

 The DA instruction is provided to correct the aforementioned problem associated with
BCD addition
 The DA instruction will add 6 to the lower nibble or higher nibble if need

The “DA” instruction works only on A. In other word, while the source can be an operand of
any addressing mode, the destination must be in register A in order for DA to work.

 Summary of DA instruction
 After an ADD or ADDC instruction

1. If the lower nibble (4 bits) is greater than 9, or if AC=1, add 0110 to the lower 4
bits
2. If the upper nibble is greater than 9, or if CY=1, add 0110 to the upper 4 bits

111 | Microprocessor and Microcontroller

25. Assume that 5 BCD data items are stored in RAM locations starting at 40H, as

shown below. Write a program to find the sum of all the numbers. The result must
be in BCD.

40= (71)
41= (11)
42= (65)
43= (59)
44= (37)

Solution:

MOV R0, #40H ; Load pointer

MOV R2, #5 ; Load counter

 CLR A ; A=0

 MOV R7, A ; Clear R7

AGAIN: ADD A,@R0 ; add the byte pointer; to by R0

 JNC NEXT ; if CY=0 don’t; add carry

 INC R7 ; keep track of carries

 NEXT: INC R0 ; increment pointer

 DJNZ R2, AGAIN ; repeat until R2 is 0

Subtraction of Unsigned Numbers

 In many microprocessors there are two different instructions for subtraction: SUB and
SUBB (subtract with borrow)
 In the 8051 we have only SUBB
 The 8051 uses adder circuitry to perform the subtraction

 SUBB A, source; A = A – source – CY

112 | Microprocessor and Microcontroller

 To make SUB out of SUBB, we have to make CY=0 prior to the execution of the
instruction

 Notice that we use the CY flag for the borrow
 SUBB when CY = 0

1. Take the 2’s complement of the subtrahend (source operand)
2. Add it to the minuend (A)
3. Invert the carry

CLR C
MOV A, #4C ;load A with value 4CH
 SUBB A, #6EH ;subtract 6E from A
 JNC NEXT ;if CY=0 jump to NEXT
CPL A; if CY=1, take 1’s complement
 INC A ;and increment to get 2’s comp

NEXT: MOV R1,A ;save A in R1

 SUBB when CY = 1

 This instruction is used for multi-byte numbers and will take care of the borrow
of the lower operand

113 | Microprocessor and Microcontroller

3.7.4 Unsigned Multiplication

 The 8051 supports byte by byte multiplication only
 The byte are assumed to be unsigned data

MUL AB ;AxB, 16-bit result in B, A

MOV A,#25H ;load 25H to reg. A

MOV B,#65H ;load 65H to reg. B

MUL AB ;25H * 65H = E99 where
;B = OEH and A = 99H

Unsigned Multiplication Summary (MUL AB)

 Multiplication Operand1 Operand2 Result

Byte x byte A B B = high byte

A = low byte

3.7.5 Unsigned Division

 The 8051 supports byte over byte division only
 The byte are assumed to be unsigned data

MOV A,#95 ;load 95 to reg. A

114 | Microprocessor and Microcontroller

 DIV
AB; divide

A by B, A/B

MUL AB ; A = 09(quotient) and

; B = 05(remainder)

Application for DIV

(a) Write a program to get hex data in the range of 00 – FFH from port 1 and convert
it to decimal. Save it in R7, R6 and R5.

(b) Assuming that P1 has a value of FDH for data, analyse program.

 Solution:

(a)

MOV A,#0FFH

MOV P1,A ;make P1 an input port

MOV A,P1 ;read data from P1
MOV B,#10 ;B=0A hex

DIV AB ;divide by 10

MOV R7,B ;save lower digit
MOV B,#10

DIV AB ;divide by 10 once more
MOV R6,B ;save the next digit

MOV R5,A ;save the last digit

MOV B,#10 ;load 10 to reg. B

115 | Microprocessor and Microcontroller

(b) To convert a binary (hex) value to decimal, we divide it by 10 repeatedly until the

quotient is less than 10. After each division the remainder is saves

Q R
FD/0A = 19 3 (low digit)
19/0A = 2 5 (middle digit)
2 (high digit)
Therefore, we have FDH=253.

3.8 Signed Arithmetic Instructions

3.8.1 Signed 8-bit Operands

 D7 (MSB) is the sign and D0 to D6 are the magnitude of the number
 If D7=0, the operand is positive, and if D7=1, it is negative

 Positive numbers are 0 to +127
 Negative number representation (2’s complement)

1. Write the magnitude of the number in 8-bit binary (no sign)
2. Invert each bit
3. Add 1 to it

26. Show how the 8051 would represent -34H

Solution:

1. 0011 0100 34H given in binary

2. 1100 1011 invert each bit

3. 1100 1100 add 1 (which is CC in hex)

Signed number representation of -34 in 2’s complement is CCH

Decimal Binary Hex

-128 1000 0000 80

-127 1000 0001 81

-126 1000 0010 82

...

D7 D6 D5 D4 D3 D2 D1 D0

Sign Magnitude

116 | Microprocessor and Microcontroller

-2 1111 1110 FE

-1 1111 1111 FF

0 0000 0000 00

+1 0000 0001 01

+2 0000 0010 02

...

+127 0111 1111 7F

3.8.2 Overflow Problem

 If the result of an operation on signed numbers is too large for the register
 An overflow has occurred and the programmer must be noticed

27. Examine the following code and analyze the result.

MOV
MOV
ADD

A,#+96
R1,#+70
A,R1

;A=0110 0000 (A=60H)
;R1=0100 0110(R1=46H)
;A=1010 0110

;A=A6H=-90,INVALID

Solution:

 +96 0110 0000

+ +70 0100 0110

+ 166

1010 0110 and OV =1

According to the CPU, the result is -90, which is wrong. The CPU sets OV=1 to
indicate the overflow

3.8.3 OV Flag

 In 8-bit signed number operations, OV is set to 1 if either occurs:
1. There is a carry from D6 to D7, but no carry out of D7 (CY=0)
2. There is a carry from D7 out (CY=1), but no carry from D6 to D7

117 | Microprocessor and Microcontroller

 In unsigned number addition, we must monitor the status of CY (carry)
 Use JNC or JC instructions

 In signed number addition, the OV (overflow) flag must be monitored by the
programmer

 JB PSW.2 or JNB PSW.2

2's Complement

 To make the 2’s complement of a number

CPL A ;1’s complement (invert)

118 | Microprocessor and Microcontroller

 ADD A, #1 ; add 1 to make 2’s comp.

3.9 LOGIC AND COMPARE INSTRUCTIONS

3.9.1 AND

ANL destination, source; dest = dest AND source

 This instruction will perform a logic AND on the two operands and place the result in
the destination

 The destination is normally the accumulator
 The source operand can be a register, in memory, or immediate

Show the results of the following.

3.9.2 OR

ORL destination, source; dest = dest OR source

 The destination and source operands are ORed and the result is placed in the destination
 The destination is normally the accumulator
 The source operand can be a register, in memory, or immediate

28. Show the results of the following.

X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X OR Y
0 0 0
0 1 1
1 0 1
1 1 1

119 | Microprocessor and Microcontroller

3.9.3 XOR

XRL destination, source; dest = dest XOR source

 This instruction will perform XOR operation on the two operands and place the result
in the destination

 The destination is normally the accumulator
 The source operand can be a register, in memory, or immediate

29. Show the results of the following.

30. The XRL instruction can be used to clear the contents of a register by XORing it with
itself. Show how XRL A, A clears A, assuming that AH = 45H.

45H 0 1 0 0 0 1 0 1

45H 0 1 0 0 0 1 0 1

00H 0 0 0 0 0 0 0 0

Read and test P1 to see whether it has the value 45H. If it does, send 99H to P2 otherwise, it
stays cleared

Solution:

X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 0

120 | Microprocessor and Microcontroller

3.9.4 Complement Accumulator

CPL A ;complements the register A

 This is called 1’s complement
MOV A #55H
CPL A

 ;now A=AAH

;0101 0101(55H)

 ;becomes 1010 1010(AAH)

 To get the 2’s complement, all we have to do is to to add 1 to the 1’s complement

3.9.5 Compare Instruction

CJNE destination, source,rel. addr.

 The actions of comparing and jumping are combined into a single instruction called
CJNE (compare and jump if not equal)

 The CJNE instruction compares two operands, and jumps if they are not equal
 The destination operand can be in the accumulator or in one of the Rn registers
 The source operand can be in a register, in memory, or immediate

 The operands themselves remain unchanged
 It changes the CY flag to indicate if the destination operand is larger or small.

 Notice in the CJNE instruction that any Rn register can be compared with an immediate
value.

 There is no need for register A to be involved

Compare Carry Flag

destination source CY = 0

destination < source CY = 1

121 | Microprocessor and Microcontroller

 The compare instruction is really a subtraction, except that the operands remain
unchanged

 Flags are changed according to the execution of the SUBB instruction

31. Write a program to read the temperature and test it for the value 75. According to the
test results, place the temperature value into the registers indicated by the following.

If T = 75 then A = 75

If T < 75 then R1 = T

If T > 75 then R2 = T

Solution:

 MOV P1,#0FFH ;make P1 an input port

 MOV A,P1 ;read P1 port

 CJNE A,#75,OVER ;jump if A is not 75

 SJMP EXIT ;A=75, exit

 OVER: JNC NEXT ;if CY=0 then A>75

 MOV R1,A ;CY=1, A<75, save in R1

 SJMP EXIT ; and exit

 NEXT: MOV R2,A ;A>75, save it in R2

 EXIT: …..

3.10 Rotate Instruction and Data Serialization

3.10.1 Rotating Right and Left

RR A ; rotate right A

 In rotate right
 The 8 bits of the accumulator are rotated right one bit, and
 Bit D0 exits from the LSB and enters into MSB, D7

MOV A,#36H ;A = 0011 0110

RR A ;A = 0001 1011

RR A ;A = 1000 1101

122 | Microprocessor and Microcontroller

RL A ;rotate left A

 In rotate left
 The 8 bits of the accumulator are rotated left one bit, and
 Bit D7 exits from the MSB and enters into LSB, D0

Rotating through Carry

RRC A ;rotate right through carry

MOV A,#72H ;A = 0111 0010

RL A ;A = 1110 0100

RL A ;A = 1100 1001

 In RRC A
 Bits are rotated from left to right
 They exit the LSB to the carry flag, and the carry flag enters the MSB

 CLR C ; make CY = 0

MOV A,#26H ;A = 0010 0110

RR A ;A = 1100 0110

RR A ;A = 0110 0011

123 | Microprocessor and Microcontroller

RRC A ;A = 0001 0011 CY = 0

RRC A ;A = 0000 1001 CY = 1

RRC A ;A = 1000 0100 CY = 1

RLC A ;rotate left through carry

 In RLC A
 Bits are shifted from right to left
 They exit the MSB and enter the carry flag, and the carry flag enters the LSB

32. Write a program that finds the number of 1s in a given byte

MOV R1,#0

MOV R7,#8 ;count=08

MOV A,#97H

AGAIN: RLC A

JNC NEXT ;check for CY

INC R1 ;if CY=1 add to count

NEXT: DJNZ R7,AGAIN

3.11 Serializing Data

 Serializing data is a way of sending a byte of data one bit at a time through a single pin
of microcontroller

 Using the serial port, discussed in Chapter 10
 To transfer data one bit at a time and control the sequence of data and spaces

in between them
 Transfer a byte of data serially by

 Moving CY to any pin of ports P0 – P3
 Using rotate instruction

33. Write a program to transfer value 41H serially (one bit at a time) via pin P2.1. Put two

highs at the start and end of the data. Send the byte LSB first.

Solution:

MOV A, #41H

124 | Microprocessor and Microcontroller

SETB P2.1 ; high

SETB P2.1 ; high MOV R5, #8

AGAIN: RRC A

MOV P2.1, C ; send CY to P2.1

 DJNZ R5, HERE

SETB P2.1 ; high

SETB P2.1 ; high

34. Write a program to bring in a byte of data serially one bit at a time via pin P2.7 and
save it in register R2. The byte comes in with the LSB first.

MOV R5, #8

AGAIN: MOV C, P2.7 ; bring in bit

 RRC A

DJNZ R5, HERE

MOV R2, A ; save it

Pin

Single-bit Operations with CY

 There are several instructions by which the CY flag can be manipulated directly

Instruction Function

SETB C Make CY = 1

CLR C Clear carry bit (CY = 0)

CPL C Complement carry bit

MOV b,C Copy carry status to bit location (CY = b)

MOV C,b Copy bit location status to carry (b = CY)

JNC target Jump to target if CY = 0

JC target Jump to target if CY = 1

125 | Microprocessor and Microcontroller

ANL C,bit AND CY with bit and save it on CY

ANL C,/bit AND CY with inverted bit and save it on CY

ORL C,bit OR CY with bit and save it on CY

ORL C,/bit OR CY with inverted bit and save it on CY

35. Assume that bit P2.2 is used to control an outdoor light and bit P2.5 a light inside a
building. Show how to turn on the outside light and turn off the inside one.

Solution:

SETB C ;CY = 1

ORL C,P2.2 ;CY = P2.2 ORed w/ CY

MOV P2.2,C ;turn it on if not on

CLR C ;CY = 0

ANL C,P2.5 ;CY = P2.5 ANDed w/ CY

MOV P2.5, C ; turn it off if not off

36. Write a program that finds the number of 1s in a given byte.

MOV R1, #0 ; R1 keeps number of 1s

MOV R7, #8 ; counter, rotate 8 times

MOV A, #97H ; find number of 1s in 97H

AGAIN: RLC A ; rotate it thru CY

 JNC R1 ; check CY

NEXT: DJNZ R7, AGAIN ; if CY=1, Inc count

 ; go thru 8 times

3.12 SWAP

SWAP A

 It swaps the lower nibble and the higher nibble
 In other words, the lower 4 bits are put into the higher 4 bits and the higher 4

bits are put into the lower 4 bits
 SWAP works only on the accumulator (A)

37. (a) Find the contents of register A in the following code.

126 | Microprocessor and Microcontroller

(b) In the absence of a SWAP instruction, how would you exchange the nibbles? Write a
simple program to show the process

Solution:

(a)

 MOV A,#72H ;A = 72H

 SWAP A ;A = 27H

(b)

 MOV A,#72H ;A = 0111 0010

 RL A ;A = 0111 0010

 RL A ;A = 0111 0010

 RL A ;A = 0111 0010

 RL A ;A = 0111 0010

3.13 BCD AND ASCII APPLICATION PROGRAMS

ASCII code and BCD for digits 0 - 9

3.13.1 Packed BCD to ACSII Conversion

 The DS5000T microcontrollers have a real-time clock (RTC)
 The RTC provides the time of day (hour, minute, second) and the date (year,

month, day) continuously, regardless of whether the power is on or off
 However, this data is provided in packed BCD

Key ASCII (hex) Binary BCD (unpacked)

0 30 011 0000 0000 0000

1 31 011 0001 0000 0001

2 32 011 0010 0000 0010

3 33 011 0011 0000 0011

4 34 011 0100 0000 0100

5 35 011 0101 0000 0101

6 36 011 0110 0000 0110

7 37 011 0111 0000 0111

8 38 011 1000 0000 1000

9 39 011 1001 0000 1001

127 | Microprocessor and Microcontroller

 To be displayed on an LCD or printed by the printer, it must be in ACSII format

3.13.2 ASCII to Packed BCD Conversion

 To convert ASCII to packed BCD
 It is first converted to unpacked BCD (to get rid of the 3)
 Combined to make packed BCD

37.
Assume
that
register
A has
packed
BCD,
write a

program to convert packed BCD to two ASCII numbers and place them in R2 and R6.

MOV A, #29H; A=29H, packed BCD

 MOV R2, A ; keep a copy of BCD data

ANL A, #0FH; mask the upper nibble (A=09)

ORL A, #30H; make it an ASCII, A=39H (‘9’)

 MOV R6, A ; save it

 MOV A, R2 ; A=29H, get the original

Data

ANL A, #0F0H; mask the lower nibble

RR A ; rotate right

 RR A ; rotate right

MOV

MOV

A, #’4’

R1,#’7’

;A=34H, hex

;R1=37H,hex

for ‘4’

for ‘7’

ANL A, #0FH ;mask upper nibble (A=04)

ANL R1,#0FH ;mask upper nibble (R1=07)
SWAP
ORL

A
A, R1

;A=40H
;A=47H, packed BCD

128 | Microprocessor and Microcontroller

 RR A ; rotate right SWAP A

RR A ; rotate right

ORL A, #30H ; A=32H, ASCII char. ’2’

MOV R2, A ; save ASCII char in R2

3.13.3 Using a Look-up Table for ASCII

38. Assume that the lower three bits of P1 are connected to three switches. Write a program
to send the following ASCII characters to P2 based on the status of the switches.

000 ‘0’
001 ‘1’
010 ‘2’
011 ‘3’
100 ‘4’
101 ‘5’
110 ‘6’
111 ‘7’

 MOV DPTR,#MYTABLE
Solution:

MOV A,P1 ;get SW status

ANL A,#07H ;mask all but lower 3

 MOVC A,@A+DPTR ;get data from table

 MOV P2,A ;display value

SJMP $;stay here

;------------------

ORG 400H

MYTABLE DB ‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’

 END

3.13.4 Checksum Byte in ROM

 To ensure the integrity of the ROM contents, every system must perform the checksum
calculation

 The process of checksum will detect any corruption of the contents of ROM
 The checksum process uses what is called a checksum byte

 The checksum byte is an extra byte that is tagged to the end of series of bytes of data
 To calculate the checksum byte of a series of bytes of data

 Add the bytes together and drop the carries
 Take the 2’s complement of the total sum, and it becomes the last byte of the

series
 To perform the checksum operation, add all the bytes, including the checksum byte

 The result must be zero

129 | Microprocessor and Microcontroller

 If it is not zero, one or more bytes of data have been changed

39. Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H.(a) Find
the checksum byte, (b) perform the checksum operation to ensure data integrity, and (c)
if the second byte 62H has been changed to 22H, show how checksum detects the error.

Solution:

(a) Find the checksum byte.

 25H The checksum is calculated by first adding the

+ 62H bytes. The sum is 118H, and dropping the carry,

+ 3FH we get 18H. The checksum byte is the 2’s

+ 52H complement of 18H, which is E8H

 118H

(b) Perform the checksum operation to ensure data integrity.
 25H

+ 62H adding the series of bytes including the checksum

+ 3FH byte must result in zero. This indicates that all the

+ 52H bytes are unchanged and no byte is corrupted.

+ E8H

 200H (dropping the carries)

(c) If the second byte 62H has been changed to 22H, show how checksum detects the error.

 25H

+ 22H Adding the series of bytes including the checksum

+ 3FH byte shows that the result is not zero, which indicates

+ 52H that one or more bytes have been corrupted.

+ E8H

 1C0H (dropping the carry, we get C0H)

3.13.5 Binary (Hex) to ASCII Conversion

 Many ADC (analog-to-digital converter) chips provide output data in binary (hex)
 To display the data on an LCD or PC screen, we need to convert it to ASCII

 Convert 8-bit binary (hex) data to decimal digits, 000 – 255
 Convert the decimal digits to ASCII digits, 30H – 39H

3.14 Assembly language Programs

8051 PROGRAMMING IN C

Why Program 8051 In C

130 | Microprocessor and Microcontroller

 Compilers produce hex files that is downloaded to ROM of microcontroller
 The size of hex file is the main concern

 Microcontrollers have limited on-chip ROM
 Code space for 8051 is limited to 64K bytes
 C programming is less time consuming, but has larger hex file size
 The reasons for writing programs in C

 It is easier and less time consuming to write in C than Assembly
 C is easier to modify and update
 You can use code available in function libraries
 C code is portable to other microcontroller with little of no modification

 For more examples of 8051 assembly language programs, see the QR code.

3.14.1 DATA TYPES

 A good understanding of C data types for 8051 can help programmers to
create smaller hex files

 Unsigned char
 Signed char
 Unsigned int
 Signed int
 Sbit (single bit)
 Bit and sfr

3.14.2 Unsigned char

 The character data type is the most natural choice
 8051 is an 8-bit microcontroller

 Unsigned char is an 8-bit data type in the range of 0 – 255 (00 – FFH)
 One of the most widely used data types for the 8051

 Counter value
 ASCII characters

 C compilers use the signed char as the default if we do not put the keyword unsigned

40. Write an 8051 C program to send values 00 – FF to port P1.

41. Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A,
B, C, and D to port P1.

131 | Microprocessor and Microcontroller

Solution

#include <reg51.h>

 void main(void)

{

unsigned char mynum[]=“012345ABCD”;

unsigned char z;

for (z=0;z<=10;z++)

 P1=mynum[z];

}

42. Write an 8051 C program to toggle all the bits of P1 continuously.

Solution:

//Toggle P1 forever #include <reg51.h>

void main(void)

{

for (;;)

 {

 p1=0x55;

 p1=0xAA;

 }

}

3.14.3 Signed Char

 The signed char is an 8-bit data type
 Use the MSB D7 to represent – or +
 Give us values from –128 to +127 ‰ We should stick with the unsigned char

unless the data needs to be represented as signed numbers
 Temperature

43. Write an 8051 C program to send values of –4 to +4 to port P1.

Solution:

//Singed numbers

#include <reg51.h>

void main(void)

{

char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};

unsigned char z; for (z=0;z<=8;z++)

132 | Microprocessor and Microcontroller

P1=mynum[z];

}

3.14.4 Unsigned and Signed int

 The unsigned int is a 16-bit data type
 Takes a value in the range of 0 to 65535 (0000 – FFFFH)
 Define 16-bit variables such as memory addresses
 Set counter values of more than 256
 Since registers and memory accesses are in 8-bit chunks, the misuse of int

variables will result in a larger hex file
 Signed int is a 16-bit data type

 Use the MSB D15 to represent – or +
 We have 15 bits for the magnitude of the number from –32768 to +32767

44. Write an 8051 C program to toggle bit D0 of the port P1 (P1.0) 50,000 times.

Solution:

3.14.5 Bit and sfr

 The bit data type allows access to single bits of bit-addressable memory spaces 20 –
2FH

 To access the byte-size SFR registers, we use the sfr data type

Data Type Size in Bits Data Range/Usage

unsigned char 8-bit 0 to 255

133 | Microprocessor and Microcontroller

Review Questions and Exercise

1.

a. Explain briefly the five addressing model of 8051 with example foe each.
b. After reset , the contents of internal memory of 8051 with address 0AH and 0BH

contains data 22H and 33H , respectively . Sketch the contents of internal
memory from address 07H to 0BH and the value of register SP , after executing
the following code:

 PUSH 0AH
 :
 MOV 81H,#0BH
 POP 09H

c. Write a subroutine which checks the content of 20H . If it is a positive number ,
the subroutine find its two’s complement and store it in same location and
returns.

2.
a. What are assembler directives ? Explain any four of them.
b. If the XTAL frequwncy of 8051 is 8 MHz , find the time taken to execute the

following program:
MOV R2,#04
MOV R1,#06

 WAIT: DJNZ R2, WAIT.
c. Write 8051 ALP which checks whether the ten numbers stored from external

RAM memory address , 2000H are odd/even . The programs should store
accordingly 00H/FFH from internal location 30H onwards.

3.

a. Interface ADC0809 to 8051 and write ALP to convert the analog voltage
connected to second channel . Display the digital value on LEDs connected to
Port-0.

b. Interface 8051 to stepper motor and write an ALP to rotate the motor first +4 steps
and then -6 steps.

(signed) char 8-bit -128 to +127

unsigned int 16-bit 0 to 65535

(signed) int 16-bit -32768 to +32767

sbit 1-bit SFR bit-addressable only

bit 1-bit RAM bit-addressable only

sfr 8-bit RAM addresses 80 – FFH only

134 | Microprocessor and Microcontroller

4.

a. What is the difference between timer and counter operation of8051 ? How to
start/stop the timer/counter o 8051 when

i. GATE control is not used
ii. GATE control is used

b. Explain briefly the interrupts of 8051 , indicate their vector addresses.
c. Weite an ALP in 8051 which generates a square wave of frequency 10 kHz on pin

P1.2 , using time-1 . Assume XTAL frequency as 11.0592 MHz .
What is the minimum frequency that can be generated ?

5.

a. Explain the function of the pins of 9-pin RS-232 connector .
b. Explain how 8051 transmit the character and receives a character serially using

UART .
c. Write 8051 C program to transmit serially the message ‘SWITCH’ or ‘SWITCH

OFF’ depending on the status of the simple switch connected to pin P1.2 . use 2400
baud rate . 1 stop bit , 8 data bits format and assume XTAL frequency as 11.0592
Mhz.

6.

a. Interface an LCD display to 8051 write an ALP display the message ‘VERY GOOD’
.

b. With a block schematic explain the features 8255 PPI chip and its MODE-0 operation.
c. If the internal memory 20H contains AAH and 07H contains 55H . What is the

content of register A and status of carry bit after executing the following code:
MOV C,07H

 MOV A,#20H
 ADDC A,07

References

[1] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2nd ed. New Jersey, Pearson Prentice Hall, 2006.

[2] Santanu Chattopadhyay. Embedded System Design. 2nd ed. PHI Learning Private Ltd. New
Delhi, 2016.

[3] Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded….” Question Paper with Solution the 8051 Microcontroller Based Embedded…,
www.slideshare.net, 1 Mar. 2001, https://www.slideshare.net/manishpatel_79/question-paper-
with-solution-the-8051-microcontroller-based-embedded-systems-junejuly-2013-vtu

135 | Microprocessor and Microcontroller

Chapter 4

Memory and I/O Interfacing

Key features of Module – 4

 Memory and I/O Expansion Buses

 Control Signals, Memory Wait States

 External Memory

 Memory Interfacing

 Direct Memory Access

 interfacing of Peripheral Devices

Pre-requisites

 Fundamentals C programming

 Basics of Computers

Module – 4 Outcomes

 Students should be able to know about the different types of Memory and buses of
8051 microcontrollers

 Students should be able to know about the control signal and Memory Wait Status in
8051 microcontrollers

 Students should be able to write programs to interfacing the memory and Peripheral
devices

This chapter gives an overview of the interfacing of the memory and peripheral devices of
8051 microcontrollers. The understanding of how to applied the control signal at
microcontrollers is discussed. There are three types of control signals like RD, WR & ALE.
And discussed about the interfacing of the external memory, memory interfacing and
peripherals devices such as LEDS, LCD, Hex Keyboard, 7- Segment Multiplexed Display,
Timers, Counters, ADC, DAC, DC Motor, Stepper Motor The syntax of writing any
instruction is shown in the chapter along with some fundamental programs of 8051
microcontrollers.

4.1 Memory and I/O Expansion Buses

There are two main types of buses: system bus and I/O bus. The system bus, also called the
memory bus, makes a connection between the CPU and the main memory of the computer
that resides on the motherboard. Input/output (I/O) or expansion buses are responsible for
connecting the peripheral devices (mouse, keyboard, flash drives) to the Central Processing
Unit (CPU). The system bus and I/O buses are connected through a bridge that is
implemented in the chipset of the processor.

136 | Microprocessor and Microcontroller

4.2 Control and status signals

Three control signals are RD, WR & ALE.

RD − This signal indicates that the selected IO or memory device is to be read and is ready
for accepting data available on the data bus.

WR − this signal indicates that the data on the data bus is to be written into a selected
memory or IO location.

ALE − It is a positive going pulse generated when a new operation is started by the
microprocessor. When the pulse goes high, it indicates address. When the pulse goes down
it indicates data.

4.2.1 Three status signals- IO/𝑀, S0 & S1

IO/𝑀−This signal is used to differentiate between IO and Memory operations, i.e. when it
is high indicates IO operation and when it is low then it indicates memory operation.

S1 & S0 −These signals are used to identify the type of current operation.

Power supply − There are 2 power supply signals − VCC & VSS.
VCC indicates +5v power supply and VSS indicates ground signal.

 Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

X1, X2 − A crystal (RC, LC N/W) is connected at these two pins and is used to set
frequency of the internal clock generator. This frequency is internally divided by 2.

CLK OUT − this signal is used as the system clock for devices connected with the
microprocessor.

4.2.2 Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to
perform a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and
INTR. We will discuss interrupts in detail in interrupts section.

INTA − It is an interrupt acknowledgment signal.

RESET IN − this signal is used to reset the microprocessor by setting the program counter
to zero.

RESET OUT − this signal is used to reset all the connected devices when the
microprocessor is reset.

READY − this signal indicates that the device is ready to send or receive data. If READY
is low, then the CPU has to wait for READY to go high.

137 | Microprocessor and Microcontroller

HOLD − this signal indicates that another master is requesting the use of the address and
data buses.

HLDA (HOLD Acknowledge) − It indicates that the CPU has received the HOLD request
and it will relinquish the bus in the next clock cycle. HLDA is set to low after the HOLD
signal is removed.

 4.2.3 Serial I/O signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

SOD (Serial output data line) − the output SOD is set/reset as specified by the SIM
instruction.

SID (Serial input data line) − the data on this line is loaded into accumulator whenever a
RIM instruction is executed.

4.3 Memory Wait States

A wait state is a delay experienced by a computer processor when accessing external
memory or another device that is slow to respond. A program or process in a wait state is
inactive for the duration of the wait state.

For example, an application program that communicated with one other program might
send that program a message and then go into a wait state until it was "reawakened" by a
message back from the other program.
When a computer processor works at a faster clock speed (expressed in MHz or millions
of cycles per second) than the random access memory (RAM) that sends it instructions, it
is set to go into a wait state for one or more clock cycles so that it is synchronized with
RAM speed. In general, the more time a processor spends in wait states, the slower the
performance of that processor.

4.3.1 External Memory Interfacing

Memory Capacity

The number of bits that a semiconductor memory chip can store is called chip capacity. It
can be in units of Kbits (kilobits), Mbits (megabits), and so on. This must be distinguished
from the storage capacity of computer systems. While the memory capacity of a memory
IC chip is always given bits, the memory capacity of a computer system is given in bytes

• 16M memory chip – 16 megabits
• A computer comes with 16M memory – 16 megabytes

138 | Microprocessor and Microcontroller

Memory Organization

 Memory chips are organized into a number of locations within the IC
 Each location can hold 1 bit, 4 bits, 8 bits, or even 16 bits, depending on how it

is designed internally
 The number of locations within a memory IC depends on the address pins
 The number of bits that each location can hold is always equal to the number of data

pins
 To summarize

 A memory chip contains 2^x (2 raised to power of x) location, where x is the
number of address pins

 Each location contains y bits, where y is the number of data pins on the chip
 The entire chip will contain 2^x × y bits.

 Speed

 One of the most important characteristics of a memory chip is the speed at which its
data can be accessed

 To access the data, the address is presented to the address pins, the READ pin is
activated, and after a certain amount of time has elapsed, the data shows up at the data
pins

 The shorter this elapsed time, the better, and consequently, the more expensive the
memory chip

 The speed of the memory chip is commonly referred to as its access time

Example

1. A given memory chip has 12 address pins and 4 data pins. Find: (a) The organization,
and (b) the capacity.

 Solution:

 (a) This memory chip has 4096 locations (2 = 4096), and each location can hold bits of
data. This gives an organization of 4096 × 4, often represented as 4K× 4.

(b) The capacity is equal to 16K bits since there is a total of 4K locations and each location
can hold 4 bits of data.

2. A 512K memory chip has 8 pins for data. Find: (a) The organization, and (b) the
number of address pins for this memory chip.

Solution:

(a) A memory chip with 8 data pins means that each location within the chip can hold 8
bits of data. To find the number of locations within this memory chip, divide the capacity
by the number of data pins. 512K/8 = 64K; therefore, the organization for this memory chip
is 64K × 8

(b) The chip has 16 address lines since 2 = 64K

 4.3.2 Interfacing External ROM

 The 8031 chip is a ROM less version of the 8051

139 | Microprocessor and Microcontroller

 It is exactly like any member of the 8051 family as far as executing the instructions
and features are concerned, but it has no on-chip ROM

 To make the 8031 execute 8051 code, it must be connected to external ROM
memory containing the program code

 8031 is ideal for many systems where the on-chip ROM of 8051 is not sufficient,
since it allows the program size to be as large as 64K bytes

 For 8751/89C51/DS5000-based system, we connected the EA pin to Vcc to indicate
that the program code is stored in the microcontroller’s on-chip ROM

 To indicate that the program code is stored in external ROM, this pin must be
connected to GND
P0 and P2 in Providing Address

 Since the PC (program counter) of the 8031/51 is 16-bit, it is capable of
Accessing up to 64K bytes of program code

 In the 8031/51, port 0 and port 2 provide the 16-bit address to access external
Memory

 P0 provides the lower 8-bit address A0 – A7, and P2 provides
 the upper 8-bit address A8 – A15

 P0 is also used to provide the 8-bit data bus D0 – D7
 P0.0 – P0.7 are used for both the address and data paths

 address/data multiplexing

 ALE (address latch enable) pin is an output pin for 8031/51
 ALE = 0, P0 is used for data path
 ALE = 1, P0 is used for address path
 To extract the address from the P0 pins we connect P0 to a 74LS373 and use the

ALE pin to latch the address
 Normally ALE = 0, and P0 is used as a data bus, sending data out or bringing data

in

Fig.4.1: 74LS373 D Latch

140 | Microprocessor and Microcontroller

 Whenever the 8031/51 wants to use P0 as an address bus, it puts the addresses A0
– A7 on the P0 pins and activates ALE = 1

 4.3.3 Address/Data Multiplexing

 PSEN (program store enables) signal is an output signal for the 8031/51

microcontroller and must be connected to the OE pin of a ROM containing the
program code

 It is important to emphasize the role of EA and PSEN when connecting the 8031/51
to external ROM

 When the EA pin is connected to GND, the 8031/51 fetches opcode from
external ROM (8031)2—PSEN by using PSEN

Fig.4.2: Circuit diagram to interface external ROM with 8051

 The connection of the PSEN pin to the OE pin of ROM
 In systems based on the 8751/89C51/ DS5000 where EA is connected to

Vcc, these chips do not activate the PSEN pin
 This indicates that the on-chip ROM contains program code

 4.3.4 Connection to External Program ROM

Fig.4.3. Connection to External Program ROM

4.3.5 On-Chip and Off-Chip Code ROM

 In an 8751 system we could use on- chip ROM for boot code and an external ROM
will contain the user’s program

 We still have EA = Vcc,

 Upon reset 8051 executes the on-chip program first, the

 When it reaches the end of the on-chip ROM, it switches to
external ROM for rest of program

141 | Microprocessor and Microcontroller

Fig.4.4. Off-chip Program Code Access

3. Discuss the program ROM space allocation for each of the following cases.

(a) EA = 0 for the 8751 (89C51) chip.

(b) EA = Vcc with both on-chip and off-chip ROM for the 8751.

(c) EA = Vcc with both on-chip and off-chip ROM for the 8752.

Solution:

(a) When EA = 0, the EA pin is strapped to GND, and all program fetches are directed to
external memory regardless of whether or not the 8751 has some on-chip ROM for program
code. This external ROM can be as high as 64K bytes with address space of 0000 – FFFFH. In
this case an 8751(89C51) is the same as the 8031 system.

(b) With the 8751 (89C51) system where EA=Vcc, it fetches the program code of address
0000 – 0FFFH from on-chip ROM since it has 4K bytes of on-chip program ROM and any
fetches from addresses 1000H – FFFFH are directed to external ROM.

(c) With the 8752 (89C52) system where EA=Vcc, it fetches the program code of addresses
0000 – 1FFFH from on-chip ROM since it has 8K bytes of on-chip program ROM and any
fetches from addresses 2000H – FFFFH are directed to external ROM

4.4 Interfacing to Large External Memory

 In some applications we need a large amount of memory to store data
 The 8051 can support only 64K bytes of external data memory since DPTR

is 16-bit
 To solve this problem, we connect A0 – A15 of the 8051 directly to the

external memory’s A0 – A15 pins, and use some of the P1 pins to access the
64K bytes blocks inside the single 256K ×8 memory chip

142 | Microprocessor and Microcontroller

Fig.4.5. 8051 Accessing 256K*8 External NV-RAM

4. In a certain application, we need 256K bytes of NV-RAM to store data collected by
8051 microcontrollers. (a) Show the connection of an 8051 to a single 256K ×8 NV-
RAM chip. (b) Show how various blocks of this single chip are accessed

Solution:

(a) The 256K ×8 NV-RAM has 18 address pins (A0 – A17) and 8 data Lines. As shown
in Fig.5, A0 – A15 go directly to the memory chip while A16 and A17 are controlled
by P1.0 and P1.1, respectively. Also notice that chip select of external RAM is
connected to P1.2 of the 8051.

(b)The 256K bytes of memory are divided into four blocks, and each block is accessed as
follows:

Chip select A17 A16

P1.2 P1.1 P1.0 Block address space

0 0 0 00000H - 0FFFFH

0 0 1 10000H - 1FFFFH

0 1 0 20000H - 2FFFFH

0 1 1 30000H - 3FFFFH

1 X X External RAM
disabled

143 | Microprocessor and Microcontroller

For example, to access the 20000H – 2FFFFH address space we need the following

4.5 Interfacing of Peripheral Devices

Table 4.1. Pin Descriptions for LCD

 LCD is finding widespread use replacing LEDs
 The declining prices of LCD
 The ability to display numbers, characters, and graphics
 Incorporation of a refreshing controller into the LCD, thereby relieving the CPU

of the task of refreshing the LCD
 Ease of programming for characters and graphics

CLR
MOV

CLR

P1.2 DPTR,
#0

P1.0

; enable external RAM
; start of 64K memory block

; A16 = 0

SETB P1.1 ; A17 = 1 for 20000H block

MOV A, SBUF ;get data from serial port

MOVX @DPTR, A

INC DPTR ; next location

Pin Symbol I/O Descriptions

1 VSS -- Ground

2 VCC -- +5V power supply

3 VEE -- Power supply to control contrast

4 RS I RS=0 to select command register,
RS=1 to select data register

5 R/W I R/W=0 for write, R/W=1 for read

 6 E I/O

 7 DBO I/O
 8 DB1 I/O the 8- bit data bus

 9 DB2 I/O the 8- bit data bus

 10 DB3 I/O the 8- bit data bus

 11 DB4 I/O the 8- bit data bus

 12 DB5 I/O the 8- bit data bus

 13 DB6 I/O the 8- bit data bus

 14 DB7 I/O the 8- bit data bus

- Send
displayed
information
or instruction
command
codes to the
LCD
- Read the
contents of
the LCD’s
internal
registers

Used
by the
LCD to
latch

The 8-
bit data
bus
informa
tion

144 | Microprocessor and Microcontroller

Table 4.2. LCD Command Codes

Code (Hex) Command to LCD Instruction
Register
1 Clear display screen
 2 Return home
4 Decrement cursor (shift cursor to left)
6 Increment cursor (shift cursor to right)
5 Shift display right
7 Shift display left
8 Display off, cursor off

A Display off, cursor on
C Display on, cursor off
E Display on, cursor blinking
F Display on, cursor blinking
10 Shift cursor position to left
14 Shift cursor position to right
18 Shift the entire display to the left
1C Shift the entire display to the right
80 Force cursor to beginning to 1st line
C0 Force cursor to beginning to 2nd line
38 2 lines and 5x7 matrix

4.5.1 Interfacing LCD to 8051

4.To send any of the commands to the LCD, make pin RS=0. For data, make RS=1.
Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD. This
is shown in the code below.

;calls a time delay before sending next data/command

;P1.0-P1.7 are connected to LCD data pins D0-D7

;P2.0 is connected to RS pin of LCD

;P2.1 is connected to R/W pin of LCD

;P2.2 is connected to E pin of LCD
ORG

MOV A, #38H; INIT. LCD 2 LINES, 5X7 MATRIX

ACALL COMNWRT; call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#0EH ;display on, cursor on

ACALL COMNWRT ;call command subroutine

 Fig.4.6. Interfacing LCD to 8051

ACALL DELAY ;give LCD some time

145 | Microprocessor and Microcontroller

MOV A,#01 ;clear LCD

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#06H ;shift cursor right

ACALL COMNWRT ;call command subroutine ACALL DELAY ;give LCD some time

MOV A,#84H ;cursor at line 1, pos. 4

ACALL COMNWRT ;call command subroutine

ACALL DELAY ;give LCD some time

MOV A,#’N’ ;display letter N

ACALL DATAWRT ; call display subroutine

ACALL DELAY; give LCD some time

MOV A, #’O’; display letter O

ACALL DATAWRT ; call display subroutine

AGAIN: SJMP AGAIN; stay here

MOV P1, A ; stay here

COMNWRT:

MOV P1, A ; copy reg A to port 1

CLR P2.0 ; RS=0 for command

CLR P2.1 ; R/W=0 for write

SETB P2.2 ; E=1 for high pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H-to-L pulse

RET

DATAWRT: ; write data to LCD

MOV P1, A ; copy reg A to port 1

SETB P2.0 ; RS=1 for data

CLR P2.1 ; R/W=0 for write

SETB P2.2 ; E=1 for high pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H-to-L pulse

RET

DELAY: MOV R3, #50 ;50 or higher for fast CPUs

146 | Microprocessor and Microcontroller

HERE2: MOV R4, #255 ; R4 = 255

HERE: DJNZ R4, HERE; stay until R4 becomes 0

DJNZ R3, HERE2

RET

END

;Check busy flag before sending data, command to LCD

;p1=data pin

;P2.0 connected to RS pin

;P2.1 connected to R/W pin

;P2.2 connected to E pin

ORG 0H

MOV A,#38H ;init. LCD 2 lines ,5x7 matrix

ACALL COMMAND ;issue command

MOV A,#0EH ;LCD on, cursor on

ACALL COMMAND ;issue command

MOV A,#01H ;clear LCD command

ACALL COMMAND ;issue command

MOV A,#06H ;shift cursor right

ACALL COMMAND ;issue command

MOV A,#86H ;cursor: line 1, pos. 6

 ACALL COMMAND ;command subroutine

MOV A,#’N’ ;display letter N

ACALL DATA_DISPLAY

MOV A,#’O’ ;display letter O

 ACALL DATA_DISPLAY

HERE: SJMP HERE ; STAY HERE

COMMAND:

ACALL READY ;is LCD ready?

MOV P1,A ;issue command code

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 to write to LCD

SETB P2.2 ;E=1 for H-to-L pulse

147 | Microprocessor and Microcontroller

CLR P2.2 ;E=0,latch in

RET

DATA_DISPLAY:

ACALL READY ; is LCD ready?

MOV P1, A ; issue data

SETB P2.0 ; RS=1 for data

CLR P2.1 ; R/W =0 to write to LCD

SETB P2.2 ; E=1 for H-to-L pulse

RET

READY

SETB P1.7 ; make P1.7 input port

CLR P2.0 ; RS=0 access command reg

SETB P2.1 ; R/W=1 read command reg

; read command reg and check busy flag

BACK: SETB P2.2 ; E=1 for H-to-L pulse

CLR P2.2 ; E=0 H-to-L pulse

JB P1.7, BACK ; stay until busy flag=0

RET

END

 One can put data at any location in the LCD
and the following shows address locations and how they are accessed

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 1 A A A A A A A

 AAAAAAA=000_0000 to 010_0111 for line1
 AAAAAAA=100_0000 to 110_0111 for line2

To read the command
register, we make R/W=1,
RS=0, and a H-to-L pulse for
the E pin

If bit 7 (busy flag) is high, the LCD
is busy and no information Should
be issued to it

148 | Microprocessor and Microcontroller

 LCD Timing

 Fig.4.7. LCD Timing Diagram

4.5.2 Interfacing to ADC and Sensors

4.5.2.1 ADC Devices

 ADCs (analog-to-digital converters) are among the most widely used devices for data
acquisition

 A physical quantity, like temperature, pressure, humidity, and velocity, etc., is
converted to electrical (voltage, current) signals using a device called a transducer, or
sensor.

Table 4.3. LCD Addressing for the LCD of 40 × 2 Size

149 | Microprocessor and Microcontroller

 We need an analog-to-digital converter to translate the analog signals to digital
numbers, so microcontroller can read them

 4.5.2.2 ADC804 Chip

 ADC804 IC is an analog-to-digital converter
 It works with +5 volts and has a resolution of 8 bits
 Conversion time is another major factor in judging an ADC

 Conversion time is defined as the time it takes the ADC to convert the
analog input to a digital (binary) number

 In ADC804 conversion time varies depending on the clocking signals
applied to CLK R and CLK IN pins, but it cannot be faster than 110 ns

 Fig.4.8. ADC804 Chip

 WR = “start conversion” When WR makes a low-to- high transition, ADC804 starts
converting the analog input value of Vin to an 8-bit digital number

 CS= CS is an active low input used to activate ADC804

 RD= “output enable” a high-to-low RD pulse is used to get the 8-bit converted data out
of ADC804

 CLK IN and CLK R
 CLK IN is an input pin connected to an external clock source
 To use the internal clock generator (also called self-clocking), CLK IN

and CLK R pins are connected to a capacitor and a resistor, and the clock
frequency is determined by

 F =
.

150 | Microprocessor and Microcontroller

 Typical values are R = 10K ohms and C =150 pF

 We get f = 606 kHz and the conversion time is 110 ns

4.5.2.3 Vref/2
 It is used for the reference voltage

 If this pin is open (not connected), the analog input voltage is in the range of 0
to 5 volts (the same as the Vcc pin)

 If the analog input range needs to be 0 to 4 volts, Vref/2 is connected to 2 volts

4.5.2.4 Vref/2 Relation to Vin Range

 D0-D7
 The digital data output pins
 These are tri-state buffered

 The converted data is accessed only when CS = 0 and RD is forced low
 To calculate the output voltage, use the following formula

 𝐷 =

Table 4.4. Vref/2 Relation to Vin Range

 Dout = digital data output (in decimal),

 Vin = analog voltage, and

 step size (resolution) is the smallest change
 Analog ground and digital ground
 Analog ground is connected to the ground of the analog Vin
 Digital ground is connected to the ground of the Vcc pin

 To isolate the analog Vin signal from transient voltages caused by digital switching of

the output D0 – D7
 This contributes to the accuracy of the digital data output.

151 | Microprocessor and Microcontroller

 The following steps must be followed for data conversion by the ADC804 chip
 Make CS = 0 and send a low-to-high pulse to pin WR to start conversion
 Keep monitoring the INTR pin

 If INTR is low, the conversion is finished

 If the INTR is high, keep polling until it goes low
 After the INTR has become low, we make CS = 0 and send a high-to-low pulse to the

RD pin to get the data out of the ADC804

 Fig.4.9. Data conversion by the ADC804 chip

4.5.2.5 ADC804 Free Running Test Mode

152 | Microprocessor and Microcontroller

 Fig.4.10. ADC804 Free Running Test Mode

5. Write a program to monitor the INTR pin and bring an analog input into register A.
Then call a hex-to ACSII conversion and data display subroutines. Do this
continuously.

; p2.6=WR (start conversion needs to L-to-H pulse)

; p2.7 When low, end-of-conversion)

; p2.5=RD (a H-to-L will read the data from ADC chip)

; p1.0 – P1.7= D0 - D7 of the ADC804

MOV P1, #0FFH ; make P1 = input

BACK: CLR P2.6 ; WR = 0

SETB P2.6 ; WR = 1 L-to-H to start conversion

HERE: JB P2.7, HERE ; wait for end of conversion

CLR P2.5 ; conversion finished, enable RD

MOV A, P1 ; read the data

ACALL CONVERSION; hex-to-ASCII conversion

ACALL DATA_DISPLAY; display the data

SETB p2.5 ; make RD=1 for next round

SJMP BACK

4.6 LCD Interfacing

 One can put data at any location in the LCD and the following shows address
locations and how they are accessed

153 | Microprocessor and Microcontroller

 Table 4.5. LCD Addressing for the LCDs of 40 ×2 size

R
S
R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 A A A A A A A

 AAAAAAA=000_0000 to 010_0111 for line1
 AAAAAAA=100_0000 to 110_0111 for line2

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Line1 (min) 1 0 0 0 0 0 0 0

Line1 (max) 1 0 1 0 0 1 1 1

Line2 (min) 1 1 0 0 0 0 0 0

Line2 (max) 1 1 1 0 0 1 1 1

4.6.1 Sending Information to LCD Using MOVC Instruction

; Call a time delay before sending next data/command

; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0

MOV DPTR, #MYCOM

C1: CLR A

MOVC A,@A+DPTR

ACALL COMNWRT ; call command subroutine

ACALL DELAY ; give LCD some time

INC DPTR

JZ SEND_DAT

SJMP C1

SEND_DAT:

MOV DPTR, #MYDATA

D1: CLR A

The upper address range can go as
high as 0100111

For the 40- character-wide LCD, which
corresponds to locations 0 to 39

154 | Microprocessor and Microcontroller

MOVC A,@A+DPTR

ACALL DATAWRT ; call command subroutine

 ACALL DELAY ; give LCD some time

INC DPTR

JZ AGAIN

SJMP D1

AGAIN: SJMP AGAIN ; stay here

COMNWRT: ;send command to LCD

MOV P1, A ;copy reg A to P1 CLR P2.0
 ;RS=0 for command CLR P2.1
 ;R/W=0 for write SETB P2.2
 ;E=1 for high pulse ACALL DELAY
 ;give LCD some time

CLR P2.2 ; E=0 for H-to-L pulse RET

DATAWRT: write data to LCD

MOV P1, A ; copy reg A to port 1

SETB P2.0 ; RS=1 for data

CLR P2.1 ; R/W=0 for write SETB

P2.2; E=1 for high pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H-to-L pulse RET

DELAY: MOV R3, #250 ; 50 or higher for fast CPUs

HERE2: MOV R4, #255; R4 = 255

HERE: DJNZ R4, HERE ; stay until R4 becomes 0

DJNZ R3, HERE2

RET

ORG 300H

MYCOM: DB 38H, 0EH, 01, 06, 84H, 0 ; commands and null

 MYDATA: DB “HELLO”, 0

END

6. Write an 8051 C program to send letters ‘M’, ‘D’, and ‘E’ to the LCD using the busy

flag method.

Solution:

#include <reg51.h>

155 | Microprocessor and Microcontroller

sfr ldata = 0x90; //P1=LCD data pins

sbit rs = P2^0;

sbit rw = P2^1;

sbit en = P2^2;

sbit busy = P1^7;

Void main ()

{

lcdcmd(0x38);

lcdcmd(0x0E);

lcdcmd(0x01);

lcdcmd(0x06);

lcdcmd(0x86); //line 1, position 6

lcdcmd(‘M’);

lcdcmd(‘D’);

lcdcmd(‘E’);

}

Void lcdcmd (unsigned char value)

{

lcdready(); //check the LCD busy flag

Ldata = value; //put the value on the pins

rs = 0;

rw = 0;

en = 1; //strobe the enable pin

 MSDelay(1);

en = 0;

Return;

}

Void lcddata (unsigned char value) {

lcdready(); //check the LCD busy flag

156 | Microprocessor and Microcontroller

Ldata = value; //put the value on the pins

rs = 1;

rw = 0;

en = 1; //strobe the enable pin

 MSDelay(1);

en = 0; return;

}

Void lcdready ()

{

Busy = 1; //make the busy pin at input

 rs = 0;

rw = 1;

While (busy==1) { //wait here for busy flag

en = 0; //strobe the enable pin

 MSDelay(1);

en = 1;

}

Void lcddata (unsigned int itime)

{

Unsigned int i, j; for (i=0; i<itime; i++)

For (j=0;j<1275;j++);

}

157 | Microprocessor and Microcontroller

Fig.4.11. LCD Timing diagram for Read

Note: Read requires an L-to-H pulse for the E pin

158 | Microprocessor and Microcontroller

Fig.4.12. LCD Timing Diagram For write

4.7. Keyboard Interfacing

 Keyboards are organized in a matrix of rows and columns
 The CPU accesses both rows and columns through ports

 Therefore, with two 8-bit ports, an 8 x 8 matrix of keys can be connected to a
microprocessor

 When a key is pressed, a row and a column make a contact
 Otherwise, there is no connection between rows and columns

159 | Microprocessor and Microcontroller

 In IBM PC keyboards, a single microcontroller takes care of hardware and software
interfacing

 A 4x4 matrix connected to two ports
 The rows are connected to an output port and the columns are connected to an input

port

4.7.1. Matrix Keyboard Connection to ports

Fig.4.13. Matrix Keyboard Connection to ports

 It is the function of the microcontroller to scan the keyboard continuously to detect and
identify the key pressed

 To detect a pressed key, the microcontroller grounds all rows by providing 0 to the
output latch, then it reads the columns

 If the data read from columns is D3 – D0 = 1111, no key has been pressed and the
process continues till key press is detected

 If one of the column bits has a zero, this means that a key press has occurred

 For example, if D3 – D0 = 1101, this means that a key in the D1 column has been
pressed

 After detecting a key press, microcontroller will go through the process of identifying
the key

 Starting with the top row, the microcontroller grounds it by providing a low to row D0
only

 It reads the columns, if the data read is all 1s, no key in that row is activated and
the process is moved to the next row

 It grounds the next row, reads the columns, and checks for any zero
 This process continues until the row is identified

 After identification of the row in which the key has been pressed
 Find out which column the pressed key belongs to

7. From given Figure identify the row and column of the pressed key for each of the
following.

(a) D3 – D0 = 1110 for the row, D3 – D0 = 1011 for the column

(b) D3 – D0 = 1101 for the row, D3 – D0 = 0111 for the column

Solution:

From Fig.13 the row and column can be used to identify the key.

160 | Microprocessor and Microcontroller

(a) The row belongs to D0 and the column belongs to D2; therefore, key number 2 was
pressed.

(b) The row belongs to D1 and the column belongs to D3; therefore, key number 7 was
pressed.

 Program 12-4 for detection and identification of key activation goes through the
following stages:

1. To make sure that the preceding key has been released, 0s are output to all rows at
once, and the columns are read and checked repeatedly until all the columns are high

 When all columns are found to be high, the program waits for a short amount of
time before it goes to the next stage of waiting for a key to be pressed

2. To see if any key is pressed, the columns are scanned over and over in an infinite loop
until one of them has a 0 on it

 Remember that the output latches connected to rows still have their initial zeros
(provided in stage 1), making them grounded

 After the key press detection, it waits 20 ms for the bounce and then scans the
columns again

(a) it ensures that the first key press detection was not an erroneous one due a spike
noise

(b) The key press. If after the 20-ms delay the key is still pressed, it goes back into
the loop to detect a real key press

 3. To detect which row key press belongs to, it grounds one row at a time, reading the
columns each time

 If it finds that all columns are high, this means that the key press cannot
belong to that row

– Therefore, it grounds the next row and continues until it finds the row the key press belongs
to

 Upon finding the row that the key press belongs to, it sets up
the starting address for the look-up table holding the scan
codes (or ASCII) for that row

4. To identify the key press, it rotates the column bits, one bit at a time, into the carry flag
and checks to see if it is low

 Upon finding the zero, it pulls out the ASCII code for that key from the look-
up table

 otherwise, it increments the pointer to point to the next element of the look-
up table

161 | Microprocessor and Microcontroller

 Fig.4.14. Flow chart for the program 12-4

8. Program 12-4: Keyboard Program

; Keyboard subroutine. This program sends the ASCII; Code for pressed key to P0.1; P1.0-
P1.3 connected to rows, P2.0-P2.3 to column

MOV P2, #0FFH ; make P2 an input port

162 | Microprocessor and Microcontroller

 K1:MOV P1, #0 ; ground all rows at once

MOV A, P2 ; read all col

 ;(ensure keys open)

ANL A, 00001111B ; masked unused bits

CJNE A, #00001111B, K1 ; till all keys release

K2: ACALL DELAY ; call 20 msec delay

MOV A, P2 ; see if any key is pressed

ANL A,00001111B ;mask unused bits

CJNE A, #00001111B, OVER ; key pressed, find row

SJMP K2 ; check till key pressed

OVER: ACALL DELAY ; wait 20 msec debounce time

MOV A, P2 ; check key closure

ANL A, 00001111B ; mask unused bits

CJNE A, #00001111B, OVER1; key pressed, find row

SJMP K2 ; if none, keep polling

OVER1: MOV P1, #11111110B ; ground row 0

MOV A, P2 ; read all columns

ANL A, #00001111B ; mask unused bits

CJNE A, #00001111B, ROW_0; key row 0, find col.

MOV P1, #11111101B ; ground row 1

MOV A, P2 ; read all columns

ANL A, #00001111B ; mask unused bits

 CJNE A, #00001111B, ROW_1 ; key row 1, find col.

 MOV P1, #11111011B ; ground row 2

MOV A, P2 ; read all columns

ANL A, #00001111B ; mask unused bits

CJNE A, #00001111B, ROW_2 ; key row 2, find col.

MOV P1,#11110111B ;ground row 3

MOV A, P2 ; read all columns

ANL A, #00001111B ; mask unused bits

CJNE A, #00001111B, ROW_3 ; key row 3, find col.

 LJMP K2 ; if none, false input,

163 | Microprocessor and Microcontroller

; repeat

ROW_0: MOV DPTR, #KCODE0 ; set DPTR=start of row 0

 SJMP FIND ; find col. Key belongs to

ROW_1: MOV DPTR, #KCODE1 ; set DPTR=start of row

SJMP FIND ; find col. Key belongs to

ROW_2: MOV DPTR, #KCODE2 ; set DPTR=start of row 2

 SJMP FIND ; find col. Key belongs to

ROW_3: MOV DPTR, #KCODE3 ; set DPTR=start of row 3

FIND: RRC A ; see if any CY bit low

JNC MATCH ; if zero, get ASCII code

INC DPTR ; point to next col. addr

SJMP FIND ; keep searching

MATCH: CLR A ; set A=0 (match is found)

 MOVC A,@A+DPTR ; get ASCII from table

 MOV P0, A ; display pressed key

LJMP K1

; ASCII LOOK-UP TABLE FOR EACH ROW ORG 300H

KCODE0: DB ‘0’,’1’,’2’,’3’; ROW 0

KCODE1: DB ‘4’,’5’,’6’,’7’; ROW 1

KCODE2: DB ‘8’,’9’,’A’,’B’; ROW 2

KCODE3: DB ‘C’,’D’,’E’,’F’; ROW 3

END

4.8. Interfacing 7(Seven) Segment Display to 8085 Microprocessor

An output device which is very common is, especially in the kit of 8085 microprocessor and it
is the Light Emitting Diode consisting of seven segments. Moreover, we have eight segments
in a LED display consisting of 7 segments which includes ‘.’, consisting of character 8 and
having a decimal point just next to it. We denote the segments as ‘a, b, c, d, e, f, g, and dp’
where dp signifies ‘.’ which is the decimal point. Moreover, these are LEDs or together a series
of Light Emitting Diodes. We have shown the internal circuit comprising of a display of seven
segment is as shown in Fig 15.

164 | Microprocessor and Microcontroller

 Fig.4.15. 7-segment display of LED

There are two types of 7-segment LED: They are the common anode type and the common
cathode type. We have discussed the common anode-type which is 7 segmented Light Emitting
Diode. In the LED which is common anode and is 7-segmented, here we connect all the eight
LED anodes together and the eight external pin is brought to display. And this pin gets
connected to a DC supply of +5 Volt. The cathode ends of the eight segments are brought out
on the pins of the display.

The use of 74373 latch for interfacing a 7-segment display is shown in the following Fig.

 Fig.4.16. 74373 latches for interfacing a 7-segment display

In the 74373 latch is used as an I/O mapped I/O port with the port address as FEH. This could
be easily verified from the chip select circuit used in the figure. The following instructions

Are to be executed to display character ‘3’ on the 7-segment display. The corresponding
program to send 0DH to the port FEH will be MVI A, 0DH OUT FEH

Using MVI instruction we are initializing Accumulator (A) with Byte 0DH i.e. 0000 1101.
Then it will be sent to the port FEH by the instruction OUT.

165 | Microprocessor and Microcontroller

4.9. Interfacing ADC with 8085 Microprocessor

The Analog to Digital Conversion is a quantizing process. Here the analog signal is
represented by equivalent binary states. The A/D converters can be classified into two groups
based on their conversion techniques.

In the first technique it compares given analog signal with the initially generated equivalent
signal. In this technique, it includes successive approximation, counter and flash type
converters. In another technique it determines the changing of analog signals into time or
frequency. This process includes integrator-converters and voltage-to-frequency converters.
The first process is faster but less accurate, the second one is more accurate. As the first
process uses flash type, so it is expensive and difficult to design for high accuracy.

The ADC 0808/0809 Chip

The ADC 0808/0809 is an 8-bit analog to digital converter. It has 8 channel multiplexer to
interface with the microprocessor.

This chip is popular and widely used ADC. ADC 0808/0809 is a monolithic CMOS device.
This device uses successive approximation technique to convert analog signal to digital form.
One of the main advantage of this chip is that it does not require any external zero and full
scale adjustment, only +5V DC supply is sufficient.

Let us see some good features of ADC 0808/0809

 The conversion speed is much higher

 The accuracy is also high

 It has minimal temperature dependence

 Excellent long-term accuracy and repeatability

 Fig.4.17. The functional block diagram of the ADC 0808/0809 Chip

166 | Microprocessor and Microcontroller

 Less power consumption

Fig.4.18.The circuit diagram of connecting 8085, 8255 and the ADC converter

To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface chip with
it. Let us see the circuit diagram of connecting 8085, 8255 and the ADC converter. The PortA
of 8255 chip is used as the input port. The PC7 pin of Port Cupper is connected to the End of
Conversion (EOC) Pin of the analog to digital converter. This port is also used as input port.
The Clower port is used as output port. The PC2-0 lines are connected to three address pins of
this chip to select input channels. The PC3 pin is connected to the Start of Conversion (SOC)
pin and ALE pin of ADC 0808/0809. See the QR code for more on interfacing.

167 | Microprocessor and Microcontroller

Program

MVI A, 98H; Set Port A and CUpper as input, CLower as output

OUT 03H; Write control word 8255-I to control Word

Register

XRA A; Clear the accumulator

 OUT 02H; send the content of Acc to Port CLower to select

 IN 0

MVI A, 08H; Load the accumulator with 08H

OUT 02H; ALE and SOC will be 0

 XRA A; Clear the accumulator

 OUT 02H; ALE and SOC will be low.

 READ: IN 02H; Read from EOC (PC7)

 RAL; Rotate left to check C7 is 1.

JNC READ; If C7 is not 1, go to READ

IN 00H; Read digital output of ADC

STA 8000H; Save result at 8000H

HLT; Stop the program

4.10. Interfacing 8253 (Timer IC) with 8085 Microprocessor

The Intel 8253 is programmable Interval Timers (PTIs) designed for microprocessors toper
form timing and counting functions using three 16-bit registers. Each counter has 2 input pins,
i.e., Clock & Gate, and 1 pin for “OUT” output. To operate a counter, a 16-bit count is loaded
in its register. On command, it begins to decrement the count until it reaches 0, then it generates
a pulse that can be used to interrupt the CPU.

Features of 8253S

 It has three independent 16-bit down counters.

 It can handle inputs from DC to 10MHz.

 These three counters can be programmed for either binary or BCD count.

 It is compatible with almost all microprocessors.

 8254has a powerful command called READ BACK command, which allows the user
to check the count value, the programmed mode, the current mode, and the current
status of the counter.

4.11. Interfacing 8253 with 8085

168 | Microprocessor and Microcontroller

From the following picture, we can see that the data bus D7-0 of 8085 is connected to the data
pins D7 to D0 of 8253. So, the higher order address bus is used as decoder input to select the
chip and the A8 and A9 of 8085 are connected to the pin A1 and A0 respectively to select the
counter.

Fig.4.19: The block diagram of 8253

 Fig.4.20: Interfacing 8253 with 8085

In the next diagram, we can get the chip select logic of 8253. In that diagram, we can easily
find that when A3-2 and A7-5 are at logic 0 and A4 at logic 1, then only the chip select CS pin
of 8253 will be enabled.

169 | Microprocessor and Microcontroller

 Fig.4.21: Chip select Logic of 8253

 Table 4.6. To show how the counter is being selected by using A1 and A0 pins of 8253.

By using the IN and OUT instruction the counter selection and Control Word Register (CWR)
setup can be done. If the Accumulator is holding content to load CWR, then by using OUT
13H the CWR will be set. Similarly, by using IN instruction we can get the value of counter
value, like IN 11H will get the value from counter 1 and so on.

So, the following four steps are needed for counter operations:

 Initialize 8253 chip

 Load Control word register with Control Word value

 Load Lower Order count value

 Load Higher Order count value

Let us see a program to load counter 2 in mode 1 with a count value 500010 in mode 0. Also,
read the count value on a fly.

At first, to initialize the 8253, the Control word will be B2H

170 | Microprocessor and Microcontroller

Now the control word for latching operation for counter 2 is 80H

We will load 500010 into the counter. The hexadecimal equivalent of 500010 is 1388H.

MVI A, B2H; Load B2H as initialization byte for counter

OUT 13H; Write ACC content CWR

MVI A, 88H ; Load LS byte of count value

OUT 12H ; Send to Counter 2

MVI A, 13H ; Load MS byte of count value

OUT 12H ; Send to Counter 2

MVI D, 00 ; clear the register D

L1: MVI A, 80H ; Set a with control word 80H of counter 2

OUT 13H ; Write Acc content CWR

IN 12H ; Read LS value of counter value

MOV B, A ; store LS value to B

IN 12H ; Read MS value of counter value

ORA B ; OR LS and MS to set Z flag

JNZ L1 ; if Z flag is not set, jump to Loop

HLT ; Halt the program

4.12. Interfacing Stepper Motor with 8085

Stepper motor is an electromechanical device that rotates through fixed angular steps when
digital inputs are applied. It is suitable for precise position, speed and direction control which
are required in automation system.

The angle through which stepper motor rotates with a fixed angle for each digital data is called
step angle.

Different stepper motor has different step angle. The more frequently used stepper motor has
step angle of 0.9 degrees and 1.8 degrees.

Depending on the sequence applied to stepper motor, it can be classified in two category:

1. 4- Step sequence or full step sequence

2. 8- Step sequence or half step sequence

Calculations:

171 | Microprocessor and Microcontroller

1. Total no. of steps=

Ex: = 200 steps are required to complete one rotation

2. Total no. of repeated steps=

Ex: = 50 repetition of sequence = (32) in Hexadecimal.

 4-Step sequence:

 In this type of functioning, the following 4 binary sequence/code are used for rotation:
(Considering step angle= 1.8 degrees)

Table4.7. 4 binary sequence/code are used for rotation

 8-Step Sequence:

 In this type of functioning, the following 8 binary sequence/code are used for rotation:
(Considering step angle= 0.9degrees)

172 | Microprocessor and Microcontroller

Table4.8. 8 binary sequence/code are used for rotation

Table 4.9. Chips select Logic

173 | Microprocessor and Microcontroller

Table 4.10. Program in Look-up table

Control word Format:

 In the above program in look up table if the 4-step sequence for clock wise then stepper
motor will rotate in clockwise direction and if the 4-step sequence for anti-clock wise
then stepper motor will rotate in anti-clockwise direction.

174 | Microprocessor and Microcontroller

 Speed control of stepper motor is achieved by writing program to rotate stepper motor
continuously in delay program. We can change the delay between two steps and thus
change the speed of stepper motor.

 Interfacing diagram of Stepper motor with 8085

 Fig 4.22: Interfacing diagram of Stepper motor with 8085

Review Questions and Exercise

1. The 8051 microcontroller is of ___pin package as a ______ processor. a) 30, 1byte b) 20, 1
byte c) 40, 8 bit d) 40, 8 byte

2. The SP is of ___ wide register. And this may be defined anywhere in the ______. a) 8 byte,
on-chip 128 byte RAM. b) 8 bit, on chip 256 byte RAM. c) 16 bit, on-chip 128 byte ROM d) 8
bit, on chip 128 byte RAM.

3. After reset, SP register is initialized to address________. a) 8H b) 9H c) 7H d) 6H

 4. What is the address range of SFR Register bank? a) 00H-77H b) 40H-80H c) 80H-7FH d)
80H-FFH

175 | Microprocessor and Microcontroller

 5. Which pin of port 3 is has an alternative function as write control signal for external data
memory? a) P3.8 b) P3.3 c) P3.6 d) P3.1

6. What is the Address (SFR) for TCON, SCON, SBUF, PCON and PSW respectively? a) 88H,
98H, 99H, 87H, 0D0H. b) 98H, 99H, 87H, 88H, 0D0H c) 0D0H, 87H, 88H, 99H, 98H d) 87H,
88H, 0D0H, 98H, 99H

7. Match the following:

1) TCON i) contains status information

2) SBUF ii) timer / counter control register.

3) TMOD iii) idle bit, power down bit

4) PSW iv) serial data buffer for Tx and Rx.

 5) PCON v) timer/ counter modes of operation.

 a) 1->ii, 2->iv, 3->v, 4->i, 5->iii.

b) 1->i, 2->v, 3->iv, 4->iii, 5->ii.

c) 1->v, 2->iii, 3->ii, 4->iv, 5->i.

d) 1->iii, 2->ii, 3->i, 4->v, 5->iv.

8. Which of the following is of bit operations? i) SP ii) P2 iii) TMOD iv) SBUF v) IP a) ii, v
only b) ii, iv, v only c) i, v only d) iii, ii only

9. Serial port interrupt is generated, if ____ bits are set a) IE b) RI, IE c) IP, TI d) RI, TI 10. In
8051 which interrupt has highest priority? a)IE1 b)TF0 c)IE0 d)TF1

10. Write a program to turns the lamp on and off by energizing and de-energizing the relay
every second.

11. A switch is connected to pin P2.7. Write an ALP to monitor the status of the SW. If SW =
0, motor moves clockwise and if SW = 1, motor moves anticlockwise.

12. Write a program to generate a sine wave using DAC 0808.

References

[1] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2nd ed. New Jersey, Pearson Prentice Hall, 2006.

[2] Santanu Chattopadhyay. Embedded System Design. 2nd ed. PHI Learning Private Ltd. New
Delhi, 2016.

[3] Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded….” Question Paper with Solution the 8051 Microcontroller Based Embedded…,
www.slideshare.net, 1 Mar. 2001, https://www.slideshare.net/manishpatel_79/question-paper-
with-solution-the-8051-microcontroller-based-embedded-systems-junejuly-2013-vtu

176 | Microprocessor and Microcontroller

Chapter 5

External Communication Interface

Key features of Module – 5

 Different types of Communication Protocols.
 Detailed introduction about Serial Peripheral Interface (SPI) and inter-Integrated

Circuit Bus (I2C)
 Introduction and Interfacing to Protocols like Bluetooth and Zig-bee

Pre-requisites

 Basics of Computers

 Basics of Means of communication

Module – 5 Outcomes

 Students should be able to understand the different types of communications and
communication protocols

 Students should be able to know about the Serial Peripheral Interface (SPI) and Inter-
Integrated Circuit Bus (I2C)

 Students should be able to know about the Interfacing to Protocols like Bluetooth and
Zig- bee

This chapter gives an overview of the types of communications and communications protocols
and also discussed the working principle of communications protocol like RS232, RS485. And
here discussed about the introduction of Serial Peripheral Interface (SPI) and Inter-Integrated
Circuit Bus (I2C). Introduction and Interfacing to Protocols like Bluetooth and Zig-bee are
discussed.

5.1 Synchronous and Asynchronous communication

The key difference between synchronous and asynchronous communication is synchronous
communications are scheduled, real-time interactions by phone, video, or in-person.
Asynchronous communication happens on your own time and doesn't need scheduling.

5.2 RS232 Serial Communication Protocol:

One of the oldest, yet popular communication protocol that is used in industries and commercial
products is the RS232 Communication Protocol. The term RS232 stands for "Recommended
Standard 232" and it is a type of serial communication used for transmission of data normally

177 | Microprocessor and Microcontroller

in medium distances. It was introduced back in the 1960s and has found its way into many
applications like computer printers, factory automation devices etc. Today there are many
modern communication protocols like the RS485, SPI, I2C, CAN etc

1. What is a serial communication?

In telecommunication, the process of sending data sequentially over a computer bus is called
as serial communication, which means the data will be transmitted bit by bit. While in parallel
communication the data is transmitted in a byte (8 bit) or character on several data lines or
buses at a time. Serial communication is slower than parallel communication but used for long
data transmission due to lower cost and practical reasons.

 Fig. 5.1. serial communication

Fig. 5.2. Parallel communication

5.2.1 Modes of Data Transfer in Serial Communication:

 Asynchronous Data Transfer – The mode in which the bits of data are not synchronized
by a clock pulse. Clock pulse is a signal used for synchronization of operation in an
electronic system.

178 | Microprocessor and Microcontroller

 Synchronous Data Transfer – The mode in which the bits of data are synchronized by a
clock pulse.

5.2.2 Characteristics of Serial Communication:

 Baud rate is used to measure the speed of transmission. It is described as the number of
bits passing in one second. For example, if the baud rate is 200 then 200 bits per Sec
passed. In telephone lines, the baud rates will be 14400, 28800 and 33600.

 Stop Bits are used for a single packet to stop the transmission which is denoted as “T”.
Some typical values are 1, 1.5 & 2 bits.

 Parity Bit is the simplest form of checking the errors. There are of four kinds, i.e., even
odd, marked and spaced. For example, If 011 is a number the parity bit=0, i.e., even
parity and the parity=1, i.e., odd parity.

Fig.5.3. Data transmission process on the RS232

5.3 What is RS232?

RS232 is a standard protocol used for serial communication, it is used for connecting computer
and its peripheral devices to allow serial data exchange between them. As it obtains the voltage
for the path used for the data exchange between the devices. It is used in serial communication
up to 50 feet with the rate of 1.492kbps. As EIA defines, the RS232 is used for connecting Data
Transmission Equipment (DTE) and Data Communication Equipment (DCE).

5.3.1Universal Asynchronous Data Receiver &Transmitter (UART)

It used in connection with RS232 for transferring data between printer and computer. The
microcontrollers are not able to handle such kind of voltage levels, connectors are connected
between RS232 signals. These connectors are known as the DB-9 Connector as a serial port
and they are of two type’s Male connector (DTE) & Female connector (DCE).

 5.3.2 How RS232 Works?

RS232 works on the two-way communication that exchanges data to one another. There are
two devices connected to each other, (DTE) Data Transmission Equipment& (DCE) Data
Communication Equipment which has the pins like TXD, RXD, and RTS& CTS. Now, from
DTE source, the RTS generates the request to send the data. Then from the other side DCE, the
CTS, clears the path for receiving the data. After clearing a path, it will give a signal to RTS of
the DTE source to send the signal. Then the bits are transmitted from DTE to DCE. Now again
from DCE source, the request can be generated by RTS and CTS of DTE sources clears the
path for receiving the data and gives a signal to send the data. This is the whole process through
which data transmission takes place.

179 | Microprocessor and Microcontroller

Table 5.1. The complete process of data transmission

Example: The signals set to logic 1, i.e., -12V. The data transmission starts from next bit and
to inform this, DTE sends start bit to DCE. The start bit is always ‘0’, i.e., +12 V & next 5 to 9
characters is data bits. If we use parity bit, then 8 bits data can be transmitted whereas if parity
doesn’t use, then 9 bits are being transmitted. The stop bits are sent by the transmitter whose
values are 1, 1.5 or 2 bits after the data transmission.

 Fig.5.4. The data transmission in RS232

Without interruption any number of bits can be sent or received in a continuous stream. With
I2C and UART, data is sent in packets, limited to a specific number of bits. Start and stop
conditions define the beginning and end of each packet, so the data is interrupted during 4

5.4 RS485

RS485 is a standard defining the electrical characteristics of serial lines for use in serial
communications systems. It is essentially a form of serial communication.

It is known for being able to be used effectively over long distances and in electrically noisy
environments. Due to this and it being able to transmit data over long distances, the RS485 is
used commonly as a protocol for POS, industrial and telecom. The RS485 is also common in
computers, PLCs, microcontrollers and intelligent sensors in scientific and technical
applications.

180 | Microprocessor and Microcontroller

RS485 is used more industrially where many devices need to be interconnected together for a
system. However, Arduino and Raspberry Pi hobbyists also use it for some of their projects
when multiple peripherals need to be linked to the board.

5.4.1 How RS485 works?

In RS485 standard, data is transmitted via two wires twisted together also referred to as
“Twisted Pair Cable”. The twisted pairs in RS485 gives immunity against electrical noise,
making RS485 viable in electrically noisy environments.

RS485 at its core with 2 wires allows half-duplex data transmission. This means data can be
transmitted in both directions to and fro devices one direction at a time. By adding another 2
wires, making it a 4 wires system, it allows data transmission in both directions to and fro
devices at the same time, also known as full-duplex. However, in a full-duplex setup, they are
limited to a master and slave communication where slaves cannot communicate with each
other.

5.4.2 Advantages of RS485

RS485 main advantages as compared to other serial communication are tolerance to electrical
noise, lengthy cable runs, multiple slaves in one connection, and fast data transmission speed.

RS485 has many advantages over other standards, especially when it comes to applications in
noisy industrial environments. The design of RS485 is targeted towards it being tolerant and
forgiving to noise and long cable runs with the twisted pair cable arrangement. It allows cable
lengths up to 1,200m/4000feet.

Another major advantage is that there can be more than one slave in the connection. Up to 32
slaves can be connected in the system. This is great for Supervisory Control and Data
Acquisition (SCADA) systems where there are many devices and it also comes at a very low
cost to implement.

 5.4.3 Applications of RS485

RS485 is used in many computer and automation systems. Some of the examples are robotics,
base stations, motor drives, video surveillance and also home appliances. In computer systems,
RS485 is used for data transmission between the controller and a disk drive. Commercial
aircraft cabins also use RS485 for low-speed data communications. This is due to the minimal
wiring required due to the wiring configuration requirements of RS485.

RS485 is however most popularly used in programmable logic controllers and factory floors
where there are lots of electrical noise. RS485 is used as the physical layer for many standards
and proprietary automation protocols to implement control systems, most commonly Modbus.

Modbus is the world’s most popular automation protocol in the market. Developed by
Modicon, Modbus enables different devices from different manufacturers to be integrated into
the main system. Most Modbus implementations use RS485 due to the allowance of longer
distances, higher speeds and multiple devices on a single network.

181 | Microprocessor and Microcontroller

Modbus devices communicate using a Master-Slave technique where only one device (the
Master) can initiate transactions (AKA queries). The other devices (the slaves) respond by
giving the requested data to the master, or by taking the action requested in the query. This
whole system allows manufacturing facilities to control their devices remotely and also set-up
automation.

 Fig.5.5.Modbus Protocol.

5.5 Introduction to Serial Peripheral Interface (SPI)

SPI is a common communication protocol used by many different devices. For example, SD
card reader modules, RFID card reader modules, and 2.4 GHz wireless transmitter/receivers all
use SPI to communicate with microcontrollers.

One unique benefit of SPI is the fact that data can be transferred transmission.

Devices communicating via SPI are in a master-slave relationship. The master is the controlling
device (usually a microcontroller), while the slave (usually a sensor, display, or memory chip)
takes instruction from the master. The simplest configuration of SPI is a single master, single
slave system, but one master can control more than one slave (more on this below).

 Fig.5.6. Single master, Single Slave System

MOSI (Master Output/Slave Input) – Line for the master to send data to the slave.

MISO (Master Input/Slave Output) – Line for the slave to send data to the master.

SCLK (Clock) – Line for the clock signal.

SS/CS (Slave Select/Chip Select) – Line for the master to select which slave to send data to.

182 | Microprocessor and Microcontroller

 5.5.1 How does SPI work?

THE CLOCK

The clock signal synchronizes the output of data bits from the master to the sampling of bits by
the slave. One bit of data is transferred in each clock cycle, so the speed of data transfer is
determined by the frequency of the clock signal. SPI communication is always initiated by the
master since the master configures and generates the clock signal.

Any communication protocol where devices share a clock signal is known as synchronous. SPI
is a synchronous communication protocol. There are also asynchronous methods that don’t use
a clock signal. For example, in UART communication, both sides are set to a pre-configured
baud rate that dictates the speed and timing of data transmission.

The clock signal in SPI can be modified using the properties of clock polarity and clock phase.
These two properties work together to define when the bits are output and when they are
sampled. Clock polarity can be set by the master to allow for bits to be output and sampled on
either the rising or falling edge of the clock cycle. Clock phase can be set for output and
sampling to occur on either the first edge or second edge of the clock cycle, regardless of
whether it is rising or falling.

SLAVE SELECT

The master can choose which slave it wants to talk to by setting the slave’s CS/SS line to a
low voltage level. In the idle, non-transmitting state, the slave select line is kept at a high
voltage level. Multiple CS/SS pins may be available on the master, which allows for multiple
slaves to be wired in parallel. If only one CS/SS pin is present, multiple slaves can be wired
to the master by daisy-chaining.

MULTIPLE SLAVES

SPI can be set up to operate with a single master and a single slave, and it can be set up with
multiple slaves controlled by a single master. There are two ways to connect multiple slaves
to the master. If the master has multiple slave select pins, the slaves can be wired in parallel
like this as shown in Fig.5.7.

183 | Microprocessor and Microcontroller

Fig.5.7.Connection of Multiple Slave with Single Master.

MOSI AND MISO

The master sends data to the slave bit by bit, in serial through the MOSI line. The slave
receives the data sent from the master at the MOSI pin. Data sent from the master to the slave
is usually sent with the most significant bit first.

The slave can also send data back to the master through the MISO line in serial. The data sent
from the slave back to the master is usually sent with the least significant bit first.

 5.5.2 Steps of SPI Data Transmission

1. The master outputs the clock signal:

184 | Microprocessor and Microcontroller

2. The master switches the SS/CS pin to a low voltage state, which activates the slave:

3. The master sends the data one bit at a time to the slave along the MOSI line. The slave
reads the bits as they are received:

4. If a response is needed, the slave returns data one bit at a time to the master along the
MISO line. The master reads the bits as they are received:

 5.5.3 Advantages

 No start and stop bits, so the data can be streamed continuously without interruption
 No complicated slave addressing system like I2C
 Higher data transfer rate than I2C (almost twice as fast)
 Separate MISO and MOSI lines, so data can be sent and received at the same time

 5.5.4 Disadvantages

 Uses four wires (I2C and UARTs use two)
 No acknowledgement that the data has been successfully received (I2C has this)
 No form of error checking like the parity bit in UART
 Only allows for a single master

 5.5.5 Applications of SPI

 Memory: SD Card, MMC, EEPROM, Flash
 Sensors: Temperature and Pressure
 Control Devices: ADC, DAC, digital POTS and Audio Codec.
 Others: Camera Lens Mount, touchscreen, LCD, RTC, video game controller, etc.

185 | Microprocessor and Microcontroller

5.6 Inter-Integrated Circuit Bus (I2C)

I²C or I2C is an abbreviation of Inter-Integrated Circuit, a serial communication protocol made
by Philips Semiconductor (now it is NXP Semiconductor). It is created with an intention of
communication between chips reside on the same Printed Circuit Board (PCB). It is commonly
used to interface slow speed ICs to a microprocessor or a microcontroller. It is a master-slave
protocol, usually a processor or microcontroller is the master and other chips like RTC,
Temperature Sensor, and EEPROM will be the slave. We can have multiple masters and
multiple slaves in the same I2C bus. Hence it is a multi-master, multi-slave protocol.

5.6.1 I2C Interface

It needs only two wires for exchanging data and ground as the reference.

 SDA – Serial Data

 SCL – Serial Clock

 GND – Ground

 Fig.5.8. Data Transfer using the I2C Interface

 5.6.2 I2C Protocol

I2C protocol is more complex than UART or SPI protocols as it using only 2 lines (one for
clock and one for data) for to and for communication. But usually, we don’t need to worry
about it as in most of the device’s hardware itself will take care of these things.

Data Transfer on the I2C Bus

Start Condition

I2C start condition is issued by a master device to give a notice to all slave devices that the
communication is about to start. Thus, start condition triggers all slave devices to listen to the
data in the bus. To issue start condition, the master device pulls SDA low and leaves SCL high.
In the case of multi-master I2C there is a possibility that 2 masters wish to take ownership of

the bus at the same time. In these cases, the device which pull down SDA first gains the control
of the bus

Address Frame

186 | Microprocessor and Microcontroller

Address frame is always sent just after the first start condition during every communication
sequence. In this master devices specifies the address of the slave device to which the master
wants to communicate. There are basically 2 types of addressing 7-bit addressing and 10-bit
addressing. In the 7-bit addressing mode, master sends address first (MSB first) followed by
read/write (R/W) indicating bit (0 => Write, 1 => Read).

Fig.5.9. Single Master with Multiple Slaves

Data Frames

Data frame(s) are transmitted just after the address frame. It can be sent from master to slave
OR from slave to master depending on the above R/W bit through SDA line. The master will
continue generating required clock signals. Devices can send one or more than one data frame
as per the requirements.

Stop Condition

Master device will generate stop condition once all data frames has been sent/received. As per
I2C standards, STOP condition is defined as a LOW to HIGH transition on SDA line after a
LOW to HIGH transition on SCL, with SCL HIGH. So, SDA should not change status when
SCL is HIGH to avoid false stop condition.

Repeated Start Condition

During an I2C communication, sometimes a master wants to send a specific command to a
slave device and read back response right away. In this situation there is a possibility that
another master (in case of multi-master bus) takes the control of the bus. To avoid these
conditions I2C protocol defines repeated start condition.

In normal cases I2C master will send start condition, address + R/W bit, send or receive any
number of bytes and mark the end by a stop condition. During repeated start condition, master
will send START CONDITION instead of stop condition and will keep the control over the
bus. Master can send any number of start condition using this method. Irrespective of the
number of start conditions, transfer must be end by exactly one stop condition.

Clock Stretching

We have seen that master device determines the clock speed in I2C communication. This avoid
the need of synchronizing master and slave exactly to a predefined baud rate. But there can be
some situations when I2C slave device is not able to cooperate with clock signals given by
master. Clock stretching is the mechanism used to slow down master device for slave device
to complete its operation.

187 | Microprocessor and Microcontroller

I2C slave device is allowed to hold down the clock signal when it needs master to slow down
on the 9th clock of every data transfer before the ACK stage.

Acknowledge (ACK) and Not Acknowledge (NACK)

Each byte of data in I2C communication includes an additional bit known as ACK bit. This bit
provides a provision for the receiver to send a signal to transmitter that the byte was
successfully received and ready to accept another byte.

5.6.3 I2C Configurations

We can make I2C configurations basically in 2 ways.

Single Master I2C Bus

This is the simplest I2C bus configuration. Single master in the bus is responsible for all
communications taking place in the bus. It will be providing necessary clock required for the
communication with slave devices. The master device will specify the address of the particular
slave device to which it needs to write data or from which it needs to read data. Only that
particular slave device will respond for this.

 Fig.5.10. Single Master I2C Bus

Multi-Master I2C Bus

In this case there will be more than one master device. Any master device is allowed to start
communication or use the bus whenever it is required. If a master in a multi-master bus
transmits a HIGH, bus see’s that the line is LOW (means another device is pulling down), it
has to halt the communication because another device is using the bus.

188 | Microprocessor and Microcontroller

 Fig.5.11. Multi - Master I2C Bus

Advantages

 Needs only 2 lines (SCL & SDA) + Ground as reference

 Supports up to 1008 slave devices

 Supports multi-master system

Disadvantages

 Needs more complex hardware

 Data rate less than SPI

Applications

 EEPROMs

 Real Time Clock ICs

 Temperature Sensors

 Accelerometers

 Gyro meters

 LCDs

5.7 What is ZigBee Technology?

ZigBee communication is specially built for control and sensor networks on IEEE 802.15.4
standard for wireless personal area networks (WPANs), and it is the product from ZigBee
alliance. This communication standard defines physical and Media Access Control (MAC)
layers to handle many devices at low-data rates. These ZigBee’s WPANs operate at 868 MHz,
902-928MHz, and 2.4 GHz frequencies. The data rate of 250 kbps is best suited for periodic as
well as intermediate two-way transmission of data between sensors and controllers.

189 | Microprocessor and Microcontroller

ZigBee is a low-cost and low-powered mesh network widely deployed for controlling and
monitoring applications where it covers 10-100 meters within the range. This communication
system is less expensive and simpler than the other proprietary short-range wireless sensor
networks as Bluetooth and Wi-Fi

ZigBee supports different network configurations for the master to master or master to slave
communications. And also, it can be operated in different modes as a result the battery power
is conserved. ZigBee networks are extendable with the use of routers and allow many nodes to
interconnect with each other for building a wider area network.

5.7.1 How does ZigBee Technology Work?

ZigBee technology works with digital radios by allowing different devices to converse through
one another. The devices used in this network are a router, coordinator as well as end devices.
The main function of these devices is to deliver the instructions and messages from the
coordinator to the single end devices such as a light bulb.

In this network, the coordinator is the most essential device which is placed at the origin of the
system. For each network, there is simply one coordinator, used to perform different tasks.
They choose a suitable channel to scan a channel as well as to find the most appropriate one
through the minimum of interference, allocate an exclusive ID as well as an address to every
device within the network so that messages otherwise instructions can be transferred in the
network.

Routers are arranged among the coordinator as well as end devices which are accountable for
messages routing among the various nodes. Routers get messages from the coordinator and
stored them until their end devices are in a situation to get them. These can also permit other
end devices as well as routers to connect the network;

In this network, the small information can be controlled by end devices by communicating with
the parent node like a router or the coordinator based on the ZigBee network type. End devices
don’t converse directly through each other. First, all traffic can be routed toward the parent
node like the router, which holds this data until the device’s receiving end is in a situation to
get it through being aware. End devices are used to request any messages that are waiting from
the parent.

5.7.2 ZigBee Architecture

ZigBee system structure consists of three different types of devices as ZigBee Coordinator,
Router, and End device. Every ZigBee network must consist of at least one coordinator which
acts as a root and bridge of the network. The coordinator is responsible for handling and storing
the information while performing receiving and transmitting data operations.

190 | Microprocessor and Microcontroller

ZigBee routers act as intermediary devices that permit data to pass to and fro through them to
other devices. End devices have limited functionality to communicate with the parent nodes
such that the battery power is saved as shown in the figure. The number of routers, coordinators,
and end devices depends on the type of networks such as star, tree, and mesh networks.

 Fig.5.12. IEEE 802.15.4 and ZigBee role in the ISO/OSI stack.

ZigBee protocol architecture consists of a stack of various layers where IEEE 802.15.4 is
defined by physical and MAC layers while this protocol is completed by accumulating
ZigBee’s own network and application layers.

Physical Layer: This layer does modulation and demodulation operations upon transmitting
and receiving signals respectively. This layer’s frequency, data rate, and a number of channels
are given below.

MAC Layer: This layer is responsible for reliable transmission of data by accessing different
networks with the carrier sense multiple access collision avoidances (CSMA). This also
transmits the beacon frames for synchronizing communication.

Network Layer: This layer takes care of all network-related operations such as network setup,
end device connection, and disconnection to network, routing, device configurations, etc.

Application Support Sub-Layer: This layer enables the services necessary for ZigBee device
objects and application objects to interface with the network layers for data managing services.
This layer is responsible for matching two devices according to their services and needs.

Application Framework: It provides two types of data services as key-value pair and generic
message services. The generic message is a developer-defined structure, whereas the key-value
pair is used for getting attributes within the application objects. ZDO provides an interface
between application objects and the APS layer in ZigBee devices. It is responsible for detecting,
initiating, and binding other devices to the network.

191 | Microprocessor and Microcontroller

5.7.3 ZigBee Operating Modes and Its Topologies

ZigBee two-way data is transferred in two modes: non-beacon mode and Beacon mode. In a
beacon mode, the coordinators and routers continuously monitor the active state of incoming
data hence more power is consumed. In this mode, the routers and coordinators do not sleep
because at any time any node can wake up and communicate.

However, it requires more power supply and its overall power consumption is low because
most of the devices are in an inactive state for over long periods in the network. In a beacon
mode, when there is no data communication from end devices, then the routers and coordinators
enter into a sleep state. Periodically this coordinator wakes up and transmits the beacons to the
routers in the network.

These beacon networks are work for time slots which means, they operate when the
communication needed results in lower duty cycles and longer battery usage. These beacon and
non-beacon modes of ZigBee can manage periodic (sensors data), intermittent (Light switches),
and repetitive data types.

5.7.4 ZigBee Topologies

ZigBee supports several network topologies; however, the most commonly used configurations
are star, mesh, and cluster tree topologies. Any topology consists of one or more coordinators.
In a star topology, the network consists of one coordinator which is responsible for initiating
and managing the devices over the network. All other devices are called end devices that
directly communicate with the coordinator.

This is used in industries where all the endpoint devices are needed to communicate with the
central controller, and this topology is simple and easy to deploy. In mesh and tree topologies,
the ZigBee network is extended with several routers where the coordinator is responsible for
staring them. These structures allow any device to communicate with any other adjacent node
for providing redundancy to the data.

If any node fails, the information is routed automatically to other devices by these topologies.
As redundancy is the main factor in industries, hence mesh topology is mostly used. In a cluster-
tree network, each cluster consists of a coordinator with leaf nodes, and these coordinators are
connected to the parent coordinator which initiates the entire network.

Due to the advantages of ZigBee technology like low cost and low power operating modes and
its topologies, this short-range communication technology is best suited for several applications
compared to other proprietary communications, such as Bluetooth, Wi-Fi, etc. some of these
comparisons such as range of ZigBee, standards, etc., are given below.

5.7.5 Which Devices use ZigBee?

The following list of devices supports the ZigBee protocol.

 Belkin WeMo

 Samsung SmartThings

 Yale smart locks

 Philips Hue

 Thermostats from Honeywell

 Ikea Tradfri

 Security Systems from Bosch

192 | Microprocessor and Microcontroller

 Comcast Xfinity Box from Samsung

 Hive Active Heating & accessories

 Amazon Echo Plus

 Amazon Echo Show

Instead of connecting every ZigBee device separately, a central hub is required for controlling
all the devices. The above-mentioned devices namely SmartThings as well as Amazon Echo
Plus can also be used like a Wink hub to play a vital role within the network. The central hub
will scan the network for all the supported devices and provides you simple control of the above
devices with a central app.

5.8 What is Bluetooth?

Bluetooth was created under the IEEE 802.15.1 standard, which is used for wireless
communication via radio transmissions. Bluetooth was first introduced in 1994 as a wireless
replacement for RS-232 connections.

Bluetooth connects a wide range of devices and establishes personal networks in the unlicensed
2.4 GHz spectrum. The device class determines the operating range. Many digital gadgets, such
as MP3 players, mobile and peripheral devices, and personal computers, use Bluetooth.

Unlike previous wireless technologies, Bluetooth provides high-level services such as file
pushing, voice transmission, and serial line emulation to its network and devices.

A scattered ad-hoc topology is the name given to the Bluetooth topology. It defines a Piconet,
a small cell that consists of a group of devices connected in an ad-hoc manner.

Bluetooth ensures data security and privacy when in use. It employs a 128-bit random number,
a device's 48-bit MAC address, and two keys: authentication (128 bits) and encryption (256
bits) (8 to 128 bits). Non-secure, service level, and link level are the three modes of operation.

5.8.1 How does Bluetooth Works?

Bluetooth Network consists of a Personal Area Network or a piconet which contains a
minimum of 2 to a maximum of 8 Bluetooth peer devices- Usually a single master and up to 7
slaves. A master is a device that initiates communication with other devices. The master device
governs the communications link and traffic between itself and the slave devices associated
with it. A slave device is a device that responds to the master device. Slave devices are required
to synchronize they’re transmit/receive timing with that of the masters.

In addition, transmissions by slave devices are governed by the master device (i.e., the master
device dictates when a slave device may transmit). Specifically, a slave may only begin its
transmissions in a time slot immediately following the time slot in which it was addressed by
the master, or in a time slot explicitly reserved for use by the slave device.

The frequency hopping sequence is defined by the Bluetooth device address (BD_ADDR) of
the master device. The master device first sends a radio signal asking for a response from the
particular slave devices within the range of addresses. The slaves respond and synchronize their
hop frequency as well as a clock with that of the master device.

Scatter nets are created when a device becomes an active member of more than one piconet.
Essentially, the adjoining device shares its time slots among the different piconets.

193 | Microprocessor and Microcontroller

5.8.2 Bluetooth Architecture

The Bluetooth architecture uses two networks like Piconet and Scatter-net

Piconet Network

Piconet is one kind of wireless network that includes one main node namely the master node
as well as seven energetic secondary nodes are known as slave nodes. So, we can declare that
there are eight active nodes totally which are arranged at a10 meters distance. The message
between these two nodes can be done one-to-one otherwise one-to-many.

Communication can be possible only among the master and slave but the communication like
Slave-slave cannot be possible. It also includes 255 parked nodes which are known as
secondary nodes. These cannot communicate until it gets altered to the active condition.

Scatter-net Network

The formation of the Scatter-net Network can be done through various piconets. On one
piconet, a slave is present which acts as a master otherwise it can be called primary within other
piconets. So, this type of node gets a message from the master within one piconet & transmits
the message toward its slave in another piconet wherever it works like a slave. So, this kind of
node is called a bridge-node. In two piconets, a station cannot be master.

Fig.5.13. Node Diagram of Piconet and Scatter-net Network.

 Table 5.2. Difference between ZigBee and Bluetooth

Bluetooth

ZigBee

The frequency range of Bluetooth ranges
from 2.4 GHz – 2.483 GHz

The frequency range of ZigBee is 2.4
GHz

It has 79 RF channels

It has 16 RF channels

The modulation technique used in
Bluetooth is GFSK

ZigBee uses different modulation
techniques like BPSK, QPSK & GFSK.

Bluetooth includes 8-cell nodes

ZigBee includes above 6500 cell nodes

194 | Microprocessor and Microcontroller

Review Questions and Exercise

Bluetooth uses IEEE 802.15.1
specification

ZigBee uses IEEE 802.15.4 specification

Bluetooth covers the radio signal upto
10meters

ZigBee covers the radio signal upto 100
meters

Bluetooth takes 3 seconds to join a
network

ZigBee takes 3 Seconds to join a network

The network range of Bluetooth ranges
from 1-100 meters based on radio class.

The network range of ZigBee is up to 70
meters

The protocol stack size of a Bluetooth is
250 Kbytes

The protocol stack size of a ZigBee is 28
Kbytes

The height of the TX antenna is 6meters
whereas the RX antenna is 1meter

The height of the TX antenna is 6meters
whereas the RX antenna is 1meter

Blue tooth uses rechargeable batteries ZigBee doesn’t use rechargeable batteries

Bluetooth requires less bandwidth As compared with Bluetooth, it needs
high bandwidth

The TX Power of Bluetooth is 4 dBm The TX Power of ZigBee is 18 dBm

The frequency of Bluetooth is 2400 MHz The frequency of ZigBee is 2400 MHz

Tx antenna gain of Bluetooth is 0dB
whereas the RX -6dB

Tx antenna gain of ZigBee is 0dB
whereas the RX -6dB

Sensitivity is -93 dB Sensitivity is -102 dB

The margin of Bluetooth is 20 dB Margin of ZigBee is 20 dB

Bluetooth range is 77 meters The ZigBee range is 291 meters

195 | Microprocessor and Microcontroller

1. Can devices be added and removed while the system is running (Hot swapping) in I2C
and SPI?

2. Is it better to use I2C or SPI for data communication between a microprocessor and
DSP?

3. How to set SPI bus speed in the master device?
4. What will happen if two SPI slaves same time communicate with Master (two Cs pins

are high)?
5. Is it better to use I2C or SPI for data communication from ADC?
6. How to set SPI bus speed in the master device?
7. Does SPI need a baud rate?
8. What happens when mode fault is enabled in SPI (Serial Peripheral Interface)?
9. What are the limitations of the SPI interface?
10. What Is The Zigbee Alliance?
11. What Is The Goal Of The Zigbee Alliance?
12. What Are The Typical Applications Promoted By The Zigbee Alliance?
13. Which Zigbee Alliance Members Are Active In Residential And Building

Automation?
14. Which Zigbee Alliance Members Are Active In Industrial Automation?
15. Which Zigbee Alliance Members Are Active In Automated Metering?
16. What Are The Various Zigbee Application Profiles?
17. What Is The Zigbee Commissioning Framework (zcf)?
18. What Are The Various Zigbee Certification Mechanisms?
19. Is It Possible To Deploy Zigbee Networks In Sub-ghz Bands?
20. What Is The Typical Battery Lifetime Of Zigbee End Devices?
21. Is It Possible To Have Battery-powered Zigbee Routers?
22. Does The Zigbee Coordinator Represent A Single Point Of Failure?
23. How Is Addressing Performed In Zigbee?
24. Define IP Spoofing?
25. Define Cabir Worm?
26. Name few applications of Bluetooth?
27. Why can Bluetooth equipment integrate easily in TCP/IP network?
28. Is it possible to connect multiple Bluetooth hubs?
29. What is FCC and how does it relate to Bluetooth?
30. How does Bluetooth fit in with WiFi?
31. Under what frequency range does Bluetooth work?
32. Do Bluetooth devices need line of sight to connect to one another? List the differences

between Bluetooth and Wi-Fi IEEE 802.11 in networking.
33. What is Bluetooth SIG?
34. How many devices can communicate concurrently?
35. How secure a Bluetooth device is?
36. What kind of encryption will be used for Bluetooth security?
37. What is the range of Bluetooth transmitter/receivers?
38. Which technology is used to avoid interference in Bluetooth?
39. What is RJ-45?

196 | Microprocessor and Microcontroller

References

[1] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2nd ed. New Jersey, Pearson Prentice Hall, 2006.

[2] Santanu Chattopadhyay. Embedded System Design. 2nd ed. PHI Learning Private Ltd. New
Delhi, 2016.

[3] Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded….” Question Paper with Solution the 8051 Microcontroller Based Embedded…,
www.slideshare.net, 1 Mar. 2001, https://www.slideshare.net/manishpatel_79/question-paper-
with-solution-the-8051-microcontroller-based-embedded-systems-junejuly-2013-vtu

197 | Microprocessor and Microcontroller

Chapter 6
Introduction to Advanced Processors and Concepts

Key Features of the Module

 Introduce readers to some advanced processors
 Key architectural features and concepts
 Instruction-level parallelism

o Pipelining and superscalar execution
 Cache-memory concept and cache organization
 Concept of virtual memory and memory address translation
 architectural features of 286, 386, 486 and Pentium
 CISC and RISC processors and their differences
 Introduction to ARM processor and ARM-based microcontrollers
 GPIO configuration of ARM microcontrollers and interfacing

Pre-requisites

 Digital Electronics
 Processor basics

Module Outcome

At the end of the course students should be able to

 explain the architectural features of advanced processors such as instruction level
parallelism-pipeline and superscalar execution

 explain the concept of cache and its role in the memory subsystem, virtual
memory, memory address translation

 understand the internal architecture of the advanced processors, 286, 386, 486 and
Pentium

 understand the architecture of ARM-based microcontrollers, concept of GPIO
 interface ARM MCU with external hardware and write interfacing programs

198 | Microprocessor and Microcontroller

In this chapter we will discuss the important features of some advanced processors and the

architectural innovations that have taken place namely, in 286, 386,486 and Pentium. In most

of the advanced processors pipelining, superscalar execution, cache memory, concept of virtual

memory and memory mapping are most important features. So, we proceed first with the

concept of pipeline and superscalar execution. Then we talk about virtual memory, address

translation or mapping of virtual memory to real physical memory, cache memory and their

organizations. With these important architectural concepts, we proceed towards some advanced

processors with their key architectural features. Next, we discuss on the basic features of RISC

and CISC processors, a comparison of RISC with CISC is also narrated. A brief introduction

to ARM Processors followed by ARM microcontrollers will be illustrated next together with

GPIO configuration and interfacing.

6.1 Pipeline vs. Superscalar processing

Advanced processors include many features in their architecture to enhance the performance.

These include incorporation of cache memory (for both instruction and data), pipelined

processing, superscalar execution, RISC/CISC features etc. As pipelining and superscalar

processing are the characteristic features in most of the advanced processors, so in the

beginning of the chapter the concepts of these two features will be illustrated first.

Pipelining is a technique which allows the processing of several instructions in a partially

overlapped manner. Pipelining can be easily carried out for a sequence of instructions which

are same or similar in nature that employ a single execution unit. However, all the common

steps in instruction processing can also be pipelined such as, instruction fetching (IF),

instruction decoding (ID), operand loading (OL), execution (EX) and write back or operand

storing (OS). The pipelined execution is very much similar to assembly line of a manufacturing

unit where many products are in various stages of manufacturing at the same time. In a non-

pipelined processor, the instructions execution follows a fixed sequence as depicted in Fig.

6.1a. Whereas, a pipelined execution unit allows each individual task of fetching, decoding etc.

to be taken up independently by a separate sub unit (stage) of the pipeline processor as shown

in Fig.6.1b. This is called instructions overlapping-where one instruction may be in fetch stage,

while other instruction may be in decode stage while some other may be in execution stage etc.

Here, up to five instructions can be overlapped with such a five-stage pipelined execution unit.

Of course, performance delay may occur as in case of I4 which takes EX stage for two

consecutive cycles. Similar problem occurs for branch instructions like I7 (as in Fig.6.1b) where

the outcome of I7’s EX step must be known before the location of next instruction (I8) to be

processed.

199 | Microprocessor and Microcontroller

Superscalar execution: A microprocessor’s effective MIPS (million instructions per second)

can be increased or CPI (cycles per instruction) can be reduced (to less than 1) by replicating

various instruction processing units so that several instructions can be processed

simultaneously. This makes it possible to start the processing of or issue two or more

instructions simultaneously or in parallel. Thus, the instructions can be completely overlapped

as shown in Fig 6.1c. Processors with this capability are said to be superscalar. Pipelining and

superscalar execution both fall under the category of instruction-level parallelism.

(b)

(c)
Fig.6.1 (a) Nonpipelined processing (b) Pipelined Processing (c) Superscalar processing [In figure, i

=>instruction, t =>time]

200 | Microprocessor and Microcontroller

6.2 Cache and Virtual Memory Concept

The memory subsystem of a digital computer is organized in a multi-level hierarchical manner.

Controlling the various parts of its hierarchy also takes place in a very different fashion. Cache

and main memory form a distinct sub-hierarchy whose main goal is to support CPU in

accessing instruction and data with a minimum delay. Hardware controllers usually manage

this sub-hierarchy. Usually the cache memory and the main memory acts like a single memory

M to the user program. Similarly, the main memory and the secondary memory form another

two-level sub-hierarchy. The interaction between the two is however managed by the operating

system and as such it is not transparent to the system software but somewhat transparent to the

user program. Virtual memory is a concept and is applied when the main memory and

secondary memory appear to a user program like a seamless, single large addressable memory.

There are some obvious reasons for bringing the concept of virtual memory. These are as

follows:

 To free the user programs from the burden of storage allocation and to permit efficient

sharing of available memory space among different users.

 To make the user programs independent of configuration and capacity of physical

memory. As such it allows seamless overflow into the secondary memory when the

main memory capacity is exhausted.

 In order to achieve very low access time and cost per bit with a memory hierarchy.

A memory system is usually addressed by a set of virtual or logical addresses (V) derived from

the identifiers specified in an object program. The set of abstract locations that a program

reference is the program’s virtual address space. A set of physical or real addresses R

identifies the physical storage locations which is fixed in each memory unit M. Therefore, an

efficient mechanism is needed to translate/map this virtual address space to real physical

address known as addressing mapping of the form, f: V→R which is the key to successful

design of a multilevel memory. This address assignment and translation is carried out at various

stages of the program, specifically,

 While writing the program by a programmer.

 During the program compilation by the compiler.

 While initial program loading by the loader.

 During run-time by the memory management unit.

Real physical addresses were explicitly specified by the programmers in early computers,

which had neither hardware nor software support for memory management. But with modern

201 | Microprocessor and Microcontroller

computers, programmers normally deal with virtual addresses. Specialized hardware and

software within the computer automatically determine the real physical address required for

program execution.

Caches

Cache memory is a fast, small size intermediate memory placed between CPU and main

memory in the memory subsystem. It is used to reduce the time of access to external memory

by the CPU as specified earlier and limit the access time to single cycle. They appear both as a

small on-chip memory with CPU and also as a off-chip cache that uses fast SRAM technology

in the two-level cache organization. When a memory request is generated, the request is first

presented to the cache memory, and if the cache cannot respond, the request is then presented

to main memory.

 Hit: if a cache access finds data present in the cache memory, as in Fig.6.2

 Miss: if a cache access does not find data, then it forces to access data from the main

memory

A cache serves as a buffer between CPU and the main memory in the two-level organization.

It also acts like a buffer in the memory management unit such as translational look-aside buffer

(TLB) which is specialized cache that permits fast translation of memory addresses. Even data

buffers in the high-speed secondary memory devices such as in hard disk drives are also known

as cache.

Cache Organization

Basically, a cache memory has two principal components. These are cache data memory and

cache tag memory. Memory words are stored in cache data memory which are grouped into

small pages known as cache blocks or lines. The contents of the cache’s data memory are

nothing but the copies of a set of main memory blocks. Each cache block is marked with its

block address also called as tag. So, the cache knows which part of the memory space the block

belongs. The collection of tag addresses that are currently assigned to the cache are stored in a

special memory known as cache tag memory or directory. Thus, the time required to check the

tag address and access cache’s data memory must be less than the main memory access time in

order to improve the performance of a processor.

202 | Microprocessor and Microcontroller

Fig 6.2: Cache memory organization and data access mechanism [Courtesy: Virtual Lab,

IITKGP]

Cache memories can be organized in many ways. Based on the way of access it can be of the

following two types,

 Look through cache

 Look-aside cache

In look-aside design, cache and main memory are directly connected to the system bus. Here

the CPU initiates a memory access by placing a real address Ai on the memory address bus at

the start of a memory read or write cycle. The cache immediately compares Ai with tag address

residing in the tag memory. If it is a match, cache hit occurs and the access is completed without

the involving M2 (main memory). If no match, then it is a miss and the access is directed to M2.

A block of data Bj that includes the target address is transferred from M2 to M1(known as block

replacement) and is completed in a single short burst. So, in case of cache miss and consequent

block data transfer the system bus remains unavailable for IO operations.

Look-through cache is a faster but a more costly organization, where the CPU communicates

with the cache via a separate (local) bus which is isolated from the system bus. Thus, the system

bus is available for use by other units such as IO controllers. A look-through cache allows the

local bus linking M1 and M2 to be wider than the system bus, thereby speeding up cache-main

memory transfer. Typically, a block replacement takes single clock cycle.

203 | Microprocessor and Microcontroller

It can also be categorized based on the memory-mapping technique used. In associative or

content addressing mapping technique permits the input tag (as initiated by CPU in the memory

address) to be compared simultaneously with all the tags present in the cache-tag memory. This

is of course feasible in small cache and TLBs. So, a number of low-cost alternative ways have

been developed for the limited use of associative addressing. Following caches fall under this

category.

 Direct-mapping

 Associative mapping

 Set-associative mapping

Again, caches can be also organized based on the instruction and data they deal with separately

or in a unified manner and according categorized as,

 Unified cache

 Split cache (I-cache and D-cache)

For more details on the cache organization and associated memory mapping readers may refer

[1]. Keeping these architectural concepts in mind, in the next few subsections, we now look

forward to some of the advanced processors and their architectural features.

6.3 80286 Microprocessor

80286 Processor is popularly known as 286 processor introduced by Intel in 1982 and
composed of 132K transistors with n-MOS process technology. It has the following salient
features.

Key Features

• It has 16-bit Data bus and 24-bit address bus

• 80286 does not have multiplexed address/data bus

• Addressed Memory size or address space of 16MB

• First processor with memory management unit with enhanced memory protection
capabilities

• 80286 has memory management capability that maps 230(1GB) of virtual address

• 80286 can be operated in real mode as well as in protected virtual address mode

• Segmentation in protected mode is different from the real mode

• Backward compatible

• Clock speed is higher (max 12.5MHz) and hence time of execution of some
instructions are as low as 250ns.

204 | Microprocessor and Microcontroller

• It has few more instructions compared to its predecessor 80186 and has faster
execution time.

• 80286 is a high-performance processor. Six times the performance of the standard
8086. The power consumption is also less compared to 8086

• It is a multiuser processor and having multi-tasking capabilities

• 80286 has three high-level instructions such as BOUND, LEAVE and ENTER

6.3.1 Architecture of 80286

80286 is an advanced, high-performance processor which is designed specially with additional
capabilities for multi-user and multitasking systems. The 80286 has built-in memory protection
that supports operating system, task isolation as well as program and data privacy. 80286 is
much faster compared to 8086. A 12 MHz 80286 provides a processing speed of about six
times faster than the 5 MHz 8086. The 80286 has a memory management capability that can
map 230 (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of
physical memory. 80286 is also compatible with 8086 and 8088 processors (instructions). The
Architecture of 80286 Microprocessor has two operating modes: real address mode and
protected virtual address mode. In real address mode, the 80286 is object code compatible with
its predecessor 8086, and 8088 software. In protected virtual address mode, the 80286’s source
code is also compatible with 8086, 8088 software. In both the modes 80286 can operate at its
full performances and execute all instructions of the 8086 and 8088 processors. The internal
architecture of 80286 is shown in the block diagram of Fig. 6.3. The CPU of 80286 consists of
the following:

 Address Unit (AU)
 Bus Unit (BU)
 Instruction Unit (IU)
 Execution Unit (EU)

Fig. 6.3: Internal block diagram of 80286 [Courtesy: Slideplayer]

Address Unit (AU)

205 | Microprocessor and Microcontroller

The address unit (AU) determines the physical address of instructions and operands which are
stored in memory. Like 8086 processor, it computes the 20-bit physical address from the
content of the segment register and 16-bit offset. The addresses so computed by the address
unit are used to specify different peripheral devices such as memory and I/O devices. The
physical addresses computed by the address unit are then sent to the Bus Unit (BU) of the CPU.

Bus Unit (BU)

The bus unit also known as bus interface unit interconnects the 80286 processor with memory
and I/O devices. 80286 has a 16-bit data bus, a 24-bit address bus, and a control bus. The bus
interface unit is responsible for performing all external bus operations. It consists of latches
and drivers for the address bus, which transmit the physical address A19-A0. This 20-bit address
facilitates all the memory and I/O devices for read and write operations. Bus unit is used to
fetch instructions from the memory and are kept in a queue for faster execution. Instruction
pipelining uses this concept. As the instructions are prefetched, so the processor will not wait
for the current instruction to be completed rather it will decode the next instruction from the
instruction queue and make it ready for execution. The prefetch module in the bus unit performs
the task of prefetching. The bus interface unit has a bus controller which controls the prefetch
module. The fetched instructions are arranged in a 6-byte prefetch queue. This way, the CPU
prefetches the instructions to enhance the speed of execution.

Instruction Unit (IU)

Instruction unit or the instruction decoder receives the instructions from the prefetch queue and
the instruction decoder decodes them one by one. The decoded instructions are then latched
onto a decoded instruction queue. The IU can decode a maximum of 3 prefetched instructions
and loads them into decoded instruction queue for execution by execution unit.

Execution Unit (EU)

The decoded instructions are then fed to a control circuit of the execution unit. This unit
executes the instructions received from the decoded instruction queue. It consists of the register
bank, arithmetic and logic unit (ALU) and control unit. The register bank is used to store data
as a scratch pad. The register bank can also be used as special-purpose registers. The ALU is
the core of the EU which performs all the arithmetic and logical operations and sends the results
either to the data bus or back to the register bank. The control unit controls the overall operation
of the execution unit.

The 80286 series of processors contain all the basic set of registers, instructions, and addressing
modes of 8086. Moreover, the 80286 processor is upward compatible with its predecessors
8086, 8088, and 80186 CPU’s. It has altogether fifteen registers grouped into four groups as
shown in Fig.6.4. These are,

 General purpose registers
 Segment registers
 Base and Index registers
 Status and Control registers

206 | Microprocessor and Microcontroller

Fig. 6.4: Register Set of 80286 Processor [Courtesy: EEGUIDE]

General-Purpose Registers: These eight 16-bit general-purpose registers which are used to
store operands of arithmetic and logical instructions. Four of these (AX, BX, CX, and DX)
registers can be used either as 16-bit words or can be split into two separate 8-bit registers.

Segment Registers: There are four 16-bit special-purpose registers in 80286 which are used to
select the segments of memory that are immediately addressable for code, stack, and data.

Base and Index Registers: These are four general-purpose registers which can also be used to
determine offset addresses of operands in memory. Usually, these registers hold base addresses
or indexes to particular locations within a segment. Any specified addressing mode determines
the specific registers used for operand address calculations.

Status and Control Register: There are three 16-bit special-purpose registers in 80286 which
are used for record and control of the 80286 processor. The instruction pointer contains the
offset address of the next sequential instruction to be executed.

Flag Word Register: The flag word register records the specific characteristics of the result of
arithmetic and logical instructions. The flag register bits D0, D2, D4, D6, D7, and D11 are
modified as per result of the execution of arithmetic and logical instructions. These are called
status flag hits. Bits D8 and D9 control the operation of the 80286 within a given operating
mode and these bits are called control flags. The flag register is a 16-bit register. Figure 6.5
shows the flag register of 80286.

207 | Microprocessor and Microcontroller

Fig 6.5: Flag registers of 80286 [Courtesy: EEGUIDE]

6.3.2 Addressing modes

The 80286 processor has eight addressing modes for the instructions to access operands from
memory. The eight different addressing modes of 80286 microprocessor are as follows:

 Register operand mode

 Immediate operand

 Direct mode

 Register indirect mode

 Based mode

 Indexed mode

 Based indexed mode

 Based indexed mode with displacement

The first two operating modes are related to the register and immediate operands. The
remaining six modes are provided to specify the location of an operand in a memory segment.
A memory operand address consists of two 16-bit components, namely, segment selector and
offset. The segment selector is supplied by a segment register either implicitly chosen by a
segment override prefix. The offset is determined by summing any combination of the
following three address elements.

 The displacement (8- or 16-bit immediate value)
 The base (content of the BX or BP)
 Any carry out from the 16-bit addition is ignored; eight-bit displacements are sign

extended to 16-bit values

208 | Microprocessor and Microcontroller

Combinations of these three address elements define the six memory addressing modes.

6.4 80386 Microprocessor

80386 processor also known as 386 was introduced by Intel in 1985. It is the first 32-bit
processor and an upgraded version of 80286 with a processing speed twice that of 80286 and
has 275K transistor in it, developed with 0.8 micron CMOS technology. It has the following
features.

Key Features

 It is a 32-bit microprocessor with a 32-bit ALU.

 80386 has a data bus of 32-bit.

 It holds an address bus of 32 bit.

 It supports physical memory addressability of 4 GB and virtual memory addressability
of 64 TB.

 80386 supports a variety of operating clock frequencies, which are 16 MHz, 20 MHz,
25 MHz, and 33 MHz.

 80386 Microprocessor has a 16-byte prefetch queue.

 It offers 3 stage pipeline processing: fetch, decode and execute. As it supports
simultaneous fetching, decoding, and execution inside the system.

 80386 has dedicated hardware that gives multitasking capability.

 Microprocessor has memory management unit with a segmentation unit and a paging
Unit.

 It supports 3 operating modes: real, protected, and virtual real mode.

 The 80386 can run 8086 applications under a protected mode in its virtual 8086 mode
of operation.

6.4.1 Architecture of 80386 Processor

The detailed architectural diagram of the 80386 processor is depicted in Fig. 6.6. Its internal
architecture consists of three different major sections, namely, the Central Processing Unit
(CPU), the Memory Management Unit (MMU) and the Bus Interface Unit (BIU).

Central Processing Unit (CPU) The central processing unit consists of an Execution Unit (EU)
and an Instruction Unit (IU). The Execution Unit EU has altogether sixteen registers- eight
general-purpose and eight special-purpose registers. These registers are used for data-handling
and calculating the offset addresses. The Instruction Unit (IU) is used to decode the instructions
opcode (one byte) as received from the 16-byte instruction code queue. This is followed by
arranging them into a 3-instruction decoded-instruction queue. After decoding opcode bytes of
instructions, the information is then passed to the control section to provide the necessary
control signals. The powerful barrel shifter present in the EU increases the speed of all shifts
and rotate operations. While the multiply or divide logic implements the bit-shift-rotate
algorithms to complete the instruction execution a within minimum time. The 32-bit
multiplication/division operations can also be executed within one microsecond by the
multiply/divide logic.

209 | Microprocessor and Microcontroller

Fig. 6.6: Internal Architecture of 80386 [Courtesy: EEGUIDE]

Memory Management Unit (MMU)

The Memory Management Unit (MMU) consists of a Segmentation Unit (SU) and a Paging
Unit (PU).

Segmentation Unit (SU) The segmentation unit uses two address components, namely, the
segment address and offset address to locate and share code and data. The segmentation unit
allows a maximum size of 4 GB segments. The segmentation unit has four-level protection
mechanisms to protect and isolate the system’s code and data from the application programs.
The ‘limit and attribute PLA’ is used to check segment limits and attributes at segment level to
keep away from invalid accesses to code and data.

Paging Unit (PU) The paging unit organizes the physical memory in terms of pages of 4 KB
size each. The paging unit always acts under the control of the segmentation unit. Each segment
is divided into pages. The virtual memory is also arranged in terms of segments and pages by
the memory management unit. The paging unit usually converts linear addresses into physical
addresses. The ‘control and attribute PLA’ is used to check the privileges at the page level.
Each page always maintains the paging information of the task.

Bus Interface Unit (BIU) The bus interface unit interfaces the 80386 processor with memory
and I/O devices. To fetch instructions and transfer data from code prefetch unit, the processor
provides address, data and control signals through BIU. The code prefetch is used for fetching
instructions from the memory while BIU is not executing any bus cycle (i.e. idle). The bus
control section has a ‘request prioritizer’ to decide the priority of the various bus requests. It
also controls the bus access. The address driver is used for bus enable signals BE3-BE0 and

210 | Microprocessor and Microcontroller

address signals A31-A0. The pipeline and bus size control units handle the related control
signals.

6.5 80486 Microprocessor

Popularly known as 486 processor which was introduced by Intel in 1989. It is the first
processor with an in-built floating-point processing unit on the same chip. It consists of
1200K transistors, fabricated with CMOS IV process technology and has the following
features.

Key Features

 It is a 32-bit complete architecture which can support 8-bit, 16-bit and 32-bit data types.

 486 processor has 8 KB unified, level 1 cache for code and data included in CPU. In

advanced versions of the 80486, cache size is increased to 16 KB.

 Clock frequency of 25 MHz, 33 MHz, 50 MHz and 100 MHz are available with

different versions of 80486.

 Execution time of instructions is significantly reduced. Load, store and arithmetic

instructions are executed in just one cycle when data is already present in the cache.

 For fast execution of complex instructions, the 80486 has a five-stage pipeline.

 80486 processor has a 32-byte prefetch queue.

 The 80486 processor has multiprocessing support capability.

 RISC feature is incorporated in 80486.

 Clock-doubling and clock-tripling technology has been incorporated in faster versions

of Intel 80486 CPU.

 Power management and System Management Mode (SMM) of 80486 is a standard

feature of the processor.

6.5.1 Architecture of 80486

 A simplified architecture of Intel 80486 processor is shown in Fig. 6.7 whereas the detailed
internal architecture is shown in Fig. 6.8. The architecture of 80486 can be divided into
following three different sections,

 Bus interface unit (BIU),
 Execution and control unit (EU), and
 Floating-point unit (FU).

211 | Microprocessor and Microcontroller

Fig. 6.7: Simplified architecture of 486

Fig. 6.8: Internal Architecture of 80486 [Courtesy: EEGUIDE]

Bus Interface Unit (BIU): The bus interface unit organizes all the bus related activities of the
processor. The address driver is connected to an internal 32-bit cache unit and also with the
system bus (also 32 bit). The data bus transceivers are connected between the internal 32-bit
data bus and system bus. The write data buffer is a queue of four 80-bit registers and is able to
hold the 80-bit data which will be written to the memory. Due to pipelined execution of the
write operation, data must be available in advance. To control the bus access and operations,
the following bus control and request sequencer signals A̅D̅S̅, W/R̅, D/C̅, M/I̅O̅, PCD, PWT,
R̅D̅Y̅, L̅O̅C̅K̅, P̅L̅O̅C̅K̅, B̅O̅F̅F̅, A̅2̅0̅M̅, BREQ, HOLD, HLDA, RESET, INTR, NMI, F̅E̅R̅R̅
and I̅G̅N̅N̅E̅ are used.

Execution Unit (EU) and Control Unit (CU): The burst control signal updates the processor
that the burst is ready. This signal works as a ready signal in the burst cycle. The B̅L̅A̅S̅T̅ output
shows that the previous burst cycle is over. The bus size control signals B̅S̅1̅6̅ and B̅S̅8̅ indicates

212 | Microprocessor and Microcontroller

dynamic bus sizing. The cache control signals K̅E̅N̅, FLUSH, AHOLD and E̅A̅D̅S̅ are used to
control the cache control unit.

The parity generation and control unit generate the parity and carries out the parity-checking
during the processor operation. The boundary scan control unit of the processor performs the
boundary scan tests operation to ensure the correct operation of all the components of the circuit
on the mother board.

The prefetcher unit fetches the codes from the memory and arranges them in a 32-byte code
queue. The function of the instruction decoder is to receive the code from the code queue and
then decode the instructions sequentially. The decoder unit then fed them to the control unit to
derive the control signals, which are used for execution of the decoded instructions. Before
execution, the protection unit should check all protection norms. If there is in any violation, an
appropriate exception is generated.

The control ROM stores a microprogram to generate control signals for execution of
instructions. Register banks and ALU are used for their usual operation as they perform in
80286. The barrel shifter is used to perform the shift and rotate algorithms. The segmentation
unit, descriptor registers, paging unit, translation look aside buffer and limit and attribute PLA
are worked together for the virtual memory management. These units also provide protection
to the opcodes or operand in the physical memory.

Floating–point Unit (FPU): The floating-point unit and register banks or FPU communicate
with the bus interface unit (BIU) under the control of memory management unit (MMU),
through a 64-bit internal data bus. Generally, the FPU is used for mathematical data processing
at very high speed as compared to the ALU.

6.5.2 Registers and Flag Register of 80486

Fig.6.9: Flag Registers of 486 [Courtesy: EEGUIDE]

The registers of the 80486 processor are same as the 80386 processor, except for the flag
register. Figure 6.9 shows the flag register. As compared to the flag register of 80386, the flag
register of 80386 has only one additional flag called alignment check flag or AC flag. The D18
position of the flag register is AC flag as depicted in Fig. 6.9. When the AC flag bit is set to
‘1’, there is an access to a misaligned address and an exception (fault) will be generated. The
alignment faults are generated only at privilege level 3.

213 | Microprocessor and Microcontroller

6.6 Pentium Processor

The fifth-generation processor in the 8086 series is 80586 which is renamed as Pentium

Processor. It was developed by Intel in 1993 and represented by P5. It consists of 3.1 million

transistors, uses 0.8-micron BiCMOS technology and has the following feature.

Key Features

 Pentium runs at a clock frequency of 60 MHz to 233 MHz.

 Pentium has two 8 Kbyte L1 cache (for instruction and data), but there is no L2 cache.

 Similar to 486 processor but with 64-bit data bus

 Wider internal datapaths: 128-bit and 256-bit wide

 Pentium has a 32-bit address bus, therefore provides a 4Gb physical memory space

 It has two instruction execution units

 It is a superscalar processor

 It has two independent integer pipelines and a floating-point pipeline

 Includes a branch prediction unit

6.6.1 Architecture of Pentium

Pentium processor is an advancement over its predecessor 80386 and 80486. Pentium bring

about some modifications in its cache structures, width of the data bus, numeric coprocessor

with enhanced speed along with two integer processors. It has two on-chip cache-one for data

and the other for instructions. Each cache is of 8Kb size. As it uses dual integer processor, so

two instructions can be executed simultaneously in one clock cycle. Advanced version of

Pentium processor is Pentium Pro which is comparatively faster. This is because Pentium Pro

allows scheduling of 5 simultaneous instructions in order to get executed. Along with level-1

cache i.e., 16K-byte like Pentium, it has a level-2 cache that is 256K-byte size. Moreover,

Pentium Pro has an error detection and correction capability. The error correction unit offers

correction of single-bit error and detection of two-bit error. With additional four address lines,

the Pentium Pro offers 64 Gb of accessible physical memory.

The Pentium is a 32-bit processor. It has a 32-bit address bus and a 64-bit data bus. The internal

and external data buses are connected through the on-chip caches. Figure 6.10 shows a

simplified architecture of Pentium processor whereas Fig. 6.11 shows a detailed internal

architecture which consists of 8K byte code cache, 8K byte data cache, Translation Look-aside

214 | Microprocessor and Microcontroller

Buffer (TLB), Branch Trace Buffer (BTB), Integer pipelines U and V, floating-point pipeline,

Microcode ROM, and Control Unit (CU).

Fig. 6.10: Internal Architecture of Pentium Processor [Courtesy: Computer.org]

215 | Microprocessor and Microcontroller

Fig.6.11: Detail Architecture of Pentium [Courtesy: Electronicdesk]

The bus interface unit of the processor sends the control signal and fetches the code and data

from external memory and I/O devices. The size of the external data bus is 64-bit through which

burst read and burst write-back cycles can be performed. The paging unit in the architecture

provides optional extensions of around 2 to 4 Mb page sizes.

In order to load the instructions into the execution unit, code cache, branch target buffer and

prefetch buffers work together to accomplish the task. The code cache or the external memory

holds the instructions from where codes are fetched. While the branch target buffer holds the

address of the respective branch and the TLB (translational lookaside buffer) within the code

cache converts the linear address into the physical address which is used by the code cache.

This processor contains pairs of prefetch buffers having a size of 32-byte that combinedly

operate with branch target buffer. Both the buffers operate independently but not at the same

time. One of the prefetch buffers starts fetching the instructions in a sequential manner till the

time branch instruction has not occurred. However, as soon as the branch instruction is fetched

by the prefetch buffer, the BTB then check for the branching operation. Once it is checked by

BTB that branch has not occurred then linear fetching of instruction will resume. On the

216 | Microprocessor and Microcontroller

contrary, while checking if BTB gets to know about the occurrence of the branch instruction

then the other prefetch buffer in pair gets enabled and starts fetching the instructions from the

branch target address. By doing so, the branching instructions get simultaneously fetched and

are ready for decoding and execution.

The instruction fetch unit reads the instruction one at a time and stores them in the instruction

queue. During the execution of an instruction, the processor does not sit idle and checks for the

next two instructions in the queue. If the two instructions are independent of each other, then

U-pipe and V-pipe are assigned instructions individually so that execution can occur

simultaneously. However, in the case, the queued instructions are dependent on each other,

then both the instructions are assigned to U-pipe for execution one after the other and V-pipe

remains idle. The controlling of the operations of the Pentium processor is provided by the

control ROM that has a microcode within it. The control ROM directly controls U-pipe and V-

pipe.

Both data and code cache within the processor is organized in the 2-way associated set cache.

Each cache has 128 sets and each set has 2 lines which are 32 bits wide just like 486 processor.

Each cache is connected with its own Translation Look-aside Buffer (TLB). Therefore, the

paging unit of the Memory Management Unit (MMU) can rapidly convert linear code or data

addresses into physical addresses The LRU (Least Recently Used) mechanism handles the

cache replacement. As we can see clearly in the above figure that the code cache makes a

connection with the prefetch buffer by a bus of size 256 bit, thus 256/8 i.e., 32 bytes of opcode

can be buffered in one clock cycle. The data cache has two ports that are used to simultaneously

deal with two data references. The execution unit within the Pentium processor contains two

integer pipelines namely, U-pipe and V-pipe. Each one has its separate ALU. There are five

stages in which these pipelines operate, namely, prefetch, decode-1, decode-2, execute,

writeback. The U-pipe is responsible for executing all integer as well as floating-point

instructions while V-pipe executes simple integer operations.

6.6.2 Branch Prediction

Branch prediction consists of a Control Unit (CU) and a Branch Target Buffer (BTB). The

function of control unit and branch target buffer are as follows:

Branch Target Buffer (BTB): The BTB is used to store the target address and statistical

information about the branch operation. Hence, the branch prediction is able to predict branches

and cause the Pentium to use the most likely target address for instruction fetching, thus

217 | Microprocessor and Microcontroller

enhancing the execution performance. Any misprediction causes penalty and pipeline flushes

the wrongly processed data.

Control Unit (CU): The control unit controls the five-stage integer pipelines U and V, and the

eight-stage floating-point unit. In the architecture of Pentium Processor, the integer pipelines

are used for all instructions which does not involve any floating-point operations. Therefore,

the Pentium can transmit two integer instructions in the same clock cycle and performance of

the processor is improved. Such an execution comes under superscalar architecture, Figure

6.12 shows the superscalar organization of the Pentium processor.

Fig.6.12: Superscalar processor organization in Pentium

The first four stages of the floating-point pipeline execution overlap with the U pipeline. The

parallel operation of the integer and floating-point pipelines is possible only under some

specified conditions. If the clock frequency of Pentium is same as 80486, then the Pentium

floating-point unit is able to execute floating-point instructions 3 to 5 times faster than 80486.

This is possible because of on-chip hardware multiplier and divider present in the floating-point

unit with quicker algorithms that can be incorporated in the micro-coded floating-point unit.

The Pentium has a microcode support unit to perform complex functions. The support unit

controls the pipelines with the microcode. Actually, this unit controls and utilizes both the

pipelines together. Therefore, complex microcode instructions run very fast on a Pentium than

on a 80486.

6.6.3 Integer Pipelines U and V

As already mentioned that Pentium processor has two integer pipelines, called U and V and a

floating-point unit. Hence it falls under the category of superscalar processor. The U-pipeline

is capable of handling the full instruction set of the Pentium processor but the V-pipeline has

218 | Microprocessor and Microcontroller

limited handling capability. The V-pipeline is able to handle only simple instructions without

any microcode support. The V-pipeline is used to execute ‘simple integer instructions’ such as

load/store type instructions and the FPU instruction FXCH, but the U-pipeline executes any

legitimate Pentium instructions. Actually, architecture of Pentium processor uses a set of

pairing rules to select a simple instruction which can go through the V pipeline. When

instructions are paired, initially the instruction is issued to the U-pipe and then the next

sequential instruction is issued to the V-pipe.

Fig. 6.13: Integer pipeline of Pentium

There are two integer pipelines and a floating-point unit in the Architecture of Pentium

Processor. Figure 6.13 shows an integer pipeline. Each integer unit has the basic five-stage

pipeline as given below:

 Prefetch (PF)

 Decode-1 (D1)

 Decode-2 (D2)

 Execute (E)

 Write Back (WB)

Superscalar Processing

The internal architecture of Pentium processor has been designed on the basis of superscalar

execution. In superscalar architecture, two or more instructions are executed in parallel. Figure

6.11 shows the superscalar architecture of Pentium. There are two independent integer

pipelines as depicted in Fig. 6.13. In the PF and D1 stages, the microprocessor can fetch, decode

219 | Microprocessor and Microcontroller

instructions and generate control words. In this stage, decoded instructions issue them to two

parallel U and V pipelines. For complex instructions, D1 generates micro-coded sequences for

U and V pipelines. Several techniques are used to resolve the pairing of instructions.

6.6.4 Floating-Point Unit

The 80486DX CPU is the first processor in which the 80387, math co-processor has been

incorporated on-chip to reduce the communication overhead. The 80486 CPU contains a

floating-point unit, but that is not pipelined. The architecture of Pentium processor has been

designed for incorporating on the chip numeric data processor.

Fig.6.14: Floating-Point unit of Pentium

The Floating-Point Unit (FPU) of Pentium has an eight-stage pipeline as shown in Fig. 6.14.

The eight pipeline stages are

 Prefetch (PF)

 Decode-1 (D1)

 Decode-2 (D2)

 Execute (dispatch)

 Floating Point Execute-1 (X1)

 Floating Point Execute-2 (X2)

 Write Float (WF)

 Error Reporting (ER)

220 | Microprocessor and Microcontroller

The first five stages of the pipeline are similar to the U and V integer pipelines. During the

operand fetch stage, the FPU fetches the operands either from the floating-point register or

from the data cache. The floating-point unit has eight general-purpose floating-point registers.

There are two execution stages in Pentium such as the first execution stage (X1 stage) and the

second execution stage (X2 stage). In the X1 and X2 stages, the floating-point unit reads the

data from the data cache and executes the floating-point calculation.

Prefetch (PF) The prefetch stage is same as the integer pipeline of Pentium processor.

Decode-1 (D1) The decode-1 (D1) pipeline stage is also same as the integer pipeline of Pentium

processor.

Decode-2 (D2) The decode-2 (D2) pipeline stage is required whenever the control word from

D1 stage is decoded to complete the instruction decoding. In this stage, it is the integer pipeline

of Pentium processor.

Operand Fetch During the execution stage (E), the floating-point unit accesses the data cache

and the floating-point register to fetch operands. Before writing the floating-point data to the

data cache, the floating-point unit converts internal data format into appropriate memory

representation format.

Floating Point Execute-1 (X1) In the Floating Point Execute-1 (X1) stage, the floating-point

unit executes the first steps of the floating-point calculations. While reading the floating-point

data from the data cache, the floating-point unit writes the data into the floating-point register.

Floating Point Execute-2 (X2) During the Floating Point Execute-2 (X2) stage, the floating -

point unit execute the remaining steps of the floating-point computations.

Write Float (WF) In the Write Float (WF) stage, the floating-point unit completes the execution

of the floating-point calculations and then writes the computed result into the floating-point

register file.

Error Reporting (ER) In the error reporting (ER) stage, the floating-point unit generates a report

about resulting floating point operation and any special situations occurred which it updates in

the floating-point status.

6.6.5 Register Set of Pentium

221 | Microprocessor and Microcontroller

The register set of Pentium processor are shown in Fig. 6.15(a) and 6.15(b). It has the same

register set as that of 80386 processor, but it has two new registers CR4 and TR12 are added in

the register set of Pentium processor as depicted in Fig.6.15 (b).

The control register CR4 controls the Pentium processors extensions for virtual-8086 mode

operation. The CR4 register is also used for supporting the debugger which can support up to

4 Mbyte pages. The test control register TR12 enables the selective activation of new features

of Pentium processors such as branch prediction, and superscalar operation, etc.

In flag register EFLAG of Pentium three new flags are also added. Two flags are used to sup-

port virtual 8086 mode operation and the third flag indicates if the processor supports the CPU

ID instruction. When the processor sets and clears the ID flag, it can execute the CPUID

instruction.

Fig.6.15: (a) Registers of Pentium Processor

Fig.6.15: (b) Control and Debug Registers of Pentium

222 | Microprocessor and Microcontroller

6.6.6 Memory Subsystem in Pentium

The memory subsystem of the Pentium processor consists of the CPU registers, main memory,

cache memory and secondary memory. The main memory unit is 4G bytes in size as in the case

of 80486 microprocessor. However, the main difference in Pentium lies with the width of

memory data-bus. The Pentium uses 64-bit data bus to address the memory which is organized

in eight banks each with a capacity to store 512M bytes of data as shown in Fig. 6.16. As a

double precision floating point number is 64-bit wide, so with a 64-bit memory data bus

Pentium is able to retrieve floating point data just in one cycle. Thus, enhancing its performance

over 486 processor. The range of memory location vary from 00000000H to FFFFFFFFH in

Pentium. Active low Bank Enable signals (BE7bar to BE0bar) are used to enable each memory

bank. Each such memory bank is 8-bit wide. These memory banks allow access to one byte,

two-byte, word or double word in one memory read cycle. So, eight separate write strobe

signals are necessary for writing to the memory banks. A new feature is added in Pentium to

enhance its capability to check and generate parity for the address bus during certain operations.

The AP and APCHK-bar pins are used to serve these tasks. As the memory system is 32-bit

whereas Pentium has 64-bit data bus, so to connect with the memory system Pentium uses a set

of bidirectional multiplexers to convert 64-bit data bus into a 32-bit data bus to access the

memory banks.

Cache memory in Pentium is again different from its predecessor 486. The 486 processor uses

a unified cache whereas Pentium uses a split cache. That is, it uses a separate instruction cache

and data cache each of 8K byte size for storing the instruction and data respectively. Thus,

avoiding any cache conflict and enhancing performance over 486 processor.

Fig. 6.16: Register banks of Pentium

Memory Management Unit

223 | Microprocessor and Microcontroller

The memory management unit of Pentium is compatible with its predecessor 386 and 486

processors. Many of it features are remained unchanged. Difference is in its paging unit and a

new system management option termed as the memory management mode. Usually, the paging

table becomes too large when the system contains a large memory. In Pentium paging works

with 4M-byte memory pages which dramatically reduces the complexity to a single page table.

Thus, no page table entry is needed in the linear address (unlike a 4K-byte paging) which

eventually is converted to a real physical address. The leftmost 10 bits of the linear address as

in Fig.6.15 selects an entry in the page directory which ultimately addresses a 4M-byte memory

page (a real physical memory). The CR3 in Fig.6.17 holds the root address.

Fig. 6.17: Address translation in Pentium from linear to real physical address with no page table

The system memory management mode (SNM) is of the same level as protected mode, real

mode, and virtual mode but it has the privilege to function as a manager. The SNM is not to be

used as an application or a system-level feature. It is intended to be used for high-level system

functions such as for power management and security in most of the Pentiums. The task of

SNM is accomplished via a new external hardware interrupt applied to the SMI-bar pin of the

Pentium. When SMI-bar is activated it disables all other interrupts that are normally handled

by user applications and operating system. The return for the SNM interrupt is accomplished

by the new instruction RSM which returns the program control from the memory management

mode to the interrupted program. Interested readers may refer [2] for more on this topic.

6.7 CISC Architecture

224 | Microprocessor and Microcontroller

CISC stands for Complex Instruction Set Computer. The design of the CISC processor is based

on an approach so as to complete the whole operation in few lines of the assembly language

code. Most of the Intel processors from 8086 to Pentium belong to CISC architecture, although

they have intelligently added some of the RISC features also. While RISC processor uses the

approach of increasing internal parallelism by executing a simple set of instructions in a single

clock cycle. While he major goal behind the design of CISC is to have such an instruction set

that works well with the tasks and data structures of Higher-Level Languages. The important

features of CISC architecture are highlighted below.

CISC Features

 They have a variable instruction set which includes simple to complex instructions

 Requires a complex instruction decoding

 The task of compiler is reduced as a single instruction can perform the tasks like,

loading, evaluating and storing

 Supports various addressing modes

 Requires more cycles per instruction compared to RISC

 Number of instructions in a given program are less compared to RISC

 Almost any instruction can access main memory

 The operations can be performed in the memory itself thus requiring lesser number of

general-purpose registers

 Less support to instruction level pipelining compared to RISC

 Instructions have variable lengths

 It has a complex addressing modes

 It uses microprogrammed control thus more flexible compared to RISC

 Finds applications in general-purpose computers

6.8 RISC Processors

RISC is an acronym for Reduced Instruction Set Computer. As the name implies such a

processor has a small but an efficient set of instructions to execute any task or user program.

Its design is based on one instruction per cycle approach. It is basically a load-store

architecture. RISC architecture is based on the design principle of simplified instructions that

can carry out less but fast operations in each cycle thereby improving the performance. Thus,

RISC offer a simplified hardware with lesser chip area and shorter design cycle. ARM series

of processors, IBM PowerPC, SUN-Sparc are some of the RISC processors. Following are the

important features of this architecture.

225 | Microprocessor and Microcontroller

Features

 It is a load-store architecture, therefore data operations can not be performed directly in

the memory

 Most RISC instructions involve register to register operations that are internal to CPU

 Designed to perform single cycle operation thereby making efficient CPU utilization

 It offers maximization in operating speed; this resultantly reduces execution time.

 It has a fixed length, small set of instructions with uniform format thereby making the

design simple.

 The instruction length is fixed thus supports pipelining

 Uses hard-wared control unit which is very fast compared to microprogram control in

CISC

 Control unit is not flexible

 As the compiler plays a big role to convert complex instructions into many simple

instructions, therefore the performance of the processor depends on compiler.

 As a RISC processor consumes less power and they are high performing in nature so

very much useful for low power, battery-operated portable applications.

6.9 RISC Vs CISC

There are a few characteristics features that distinguishes RISC from the CISC. Following gives

a brief comparison between the two.

1. RISC uses simple instructions whereas, CISC uses complex instructions.

2. RISC thus requires more number of instructions to complete the task whereas, CISC

requires relative lesser instructions.

3. RISC has uniform instruction format whereas, CISC has a variable format.

4. RISC typically has a single cycle execution (CPI=1), whereas, a CISC usually requires

more than one cycle to complete execution (CPI>1).

5. Memory access is limited to Load/Store instructions in RISC, whereas, almost any

instruction can access main memory in CISC

6. RISC uses hard-wared control (rigid) whereas, CISC uses microprogrammed control

(flexible).

7. RISC processors are heavily pipelined whereas, CISC provides lesser support to

pipeline architecture because of complex instruction.

8. RISC processors are much faster compared to CISC (typically 2 to 4 times).

226 | Microprocessor and Microcontroller

6.10 Architecture of ARM Microcontrollers

ARM microcontrollers use ARM processor as its central processing unit in the chip together

with RAM, ROM, timing units and IO ports. Although ARM series of processors are general-

purpose processors but because of their low cost, low power, high performance and small size

they have been widely used today for portable and embedded applications. So before

proceeding any further, we discuss first the architectural features of ARM.

6.10.1 ARM Processors

One of the most popular RISC processors is the ARM microprocessor. ARM belongs to a

family of processors with the acronym, Acorn RISC Machine which was developed by Acorn

Computers Ltd, Cambridge in UK in 1980s to act as CPU of a personal computer.

Subsequently, the family name had been changed to Advanced RISC Machines. ARM cores

are licensed to business partners so as to develop and fabricate new microcontrollers around

the same processor cores. The design of ARM family of processors aimed at reducing the size,

lowering the cost and to have low-power, intended for applications such as portable computers,

video games, portable digital assistants etc. ARM has progressed through many generations

initially with 26-bit in Version-1, to 32-bit in Version-2 and Version-3 (ARM6 &ARM7).

Today we have ARM processors of Version-8 with ARM11, ARM Cortex-A50. In 2022, ARM

launched in its new version (v9) ARM Cortex-X2, Cortex-A710 and the Cortex-A510 chips for

smartphones, laptops and smart home devices.

Key Features

 ARM is a 32-bit processor but it also has 16-bit variant called THUMB

 It operates on 32-bit data

 It has a 32-bit address bus

 Basically, it is a Load/store architecture with limited access to main memory

 It has a small instruction set and uniform instructions allowing high code density in its

program memory when used as microcontroller

 It has a large uniform register file

 Maximum size of the memory is 4Gb (232bytes) for ARM6 which are byte addressable

 Applies instruction level parallelism (3-stage pipeline architecture) to achieve the goal

of executing one instruction per clock cycle

 Memory and IO share the same address space

227 | Microprocessor and Microcontroller

 Uses memory-mapped IO

Organization of the CPU

The CPU and its organization in ARM processor is shown in Fig. 6.18. It has a 32-bit ALU and

a large register file consisting of 32-bit general-purpose registers. It has several modes of

operation including user mode, supervisory mode and four other special modes associated with

interrupt handling. In the user mode, there are sixteen 32-bit user addressable registers, R0-R15

in the register file. Where, R15 is also acts as the program counter PC, so also the current

program status register designated as CPSR. R14 also acts as the link register to keep the return

address whenever a subroutine is called. The other name of R13 is stack pointer register. Some

other additional registers are there in the register file which are not visible to the user and are

used in other operating modes. The ALU is designed to perform the basic arithmetic operations

on 32-bit integers. It employs combinational logic circuits to perform arithmetic addition,

subtraction and a sequential shifter and add method for multiplication. A powerful shifter

circuit performs multiplication and division. A separate address incrementor circuit implements

address-manipulation operations such as PC=PC+1. In order to have a direct interaction

between data and control registers, ARM has an unusual feature of placing PC and status

register in the register file, although they are part of the PCU.

228 | Microprocessor and Microcontroller

Fig. 6.18: ARM 6 Architecture [Courtesy: ResearchGate]

Apart from these, ARM6 has 32-bit instructions with a variety of formats and addressing

modes. There are about 25 main instructions, each of which can operate on 32-bit operands or

even with 8-bit operands. Operands and addresses are stored in registers which can be referred

by short, 4-bit names. Thus, allowing a single instruction to have as many as four operands

(max). The available address space is shared between memory and IO devices (known as

memory-mapped IO), considering IO, just like a memory. Hence, load/store instructions used

for memory transfers can also be used for IO operations. ARM6 has four status registers,

namely N (negative), Z(zero), C (carry), V (overflow) and such ARM instructions can be

229 | Microprocessor and Microcontroller

conditionally executed, thereby increasing the instruction set to a large number. For example,

MOVCC R1, R2. This instruction will be executed if C=0, then R1=R2. Further, it uses a

powerful shifter known as the barrel shifter to perform bitwise shifting for multiplication and

divisions. Each bit of shifting to the left implies multiplying the number by 2 and each beat of

shifting to the left indicates divide by 2. For example, MOV, R1, R2, LSL#2. It means, left-shift

R2 by 2-bit positions (multiply by 4) and then copy to R1 (i.e. R1=R2x4). It implements

instruction-level parallelism by introducing a three-stage pipeline (fetch, decode and execute)

architecture to enhance the performance up to one instruction per cycle.

Processor Modes

The ARM has six operating modes:

 User (unprivileged mode under which most tasks run)

 FIQ (entered when a high priority (fast) interrupt is raised)

 IRQ (entered when a low priority (normal) interrupt is raised)

 Supervisor (entered on reset and when a Software Interrupt instruction is

executed)

 Abort (used to handle memory access violations)

 Undef (used to handle undefined instructions)

 ARM Architecture Version 4 adds a seventh mode:

 System (privileged mode using the same registers as user mode)

 Apart from 32-bit operations, ARM allows a THUMB processor mode which supports 16-bit

instructions, thereby increasing the code density however, with a reduced performance for

some low-end applications. Usually, a very small amount of RAM is accessible with a datapath

of 32-bit in embedded hardware. Rest of it is accessed by a 16-bit path. Therefore, it is logical

to use 16-bit thumb code and wider instructions can be placed in a memory which is accessible

by 32-bit. ARMTDMI was the first processor to have thumb instruction decoder. Besides, ARM

and THUMB mode of operations, there is yet another mode known as the JAZELLE which

allows the execution of JAVA bytecode in hardware. It is most prominently used in mobile

phones so that the execution speed of Java EM games can be enhanced. The Java virtual

machine performs the complicated operations in software whereas Java bytecodes are usually

run on hardware. The first processor to use Jazelle was ARM926EJ-S. One of the most

advanced form of ARM microcontrollers is the ARM Cortex, developed using ARMv7

processor. Cortex family is again divided into following three categories,

230 | Microprocessor and Microcontroller

 ARM Cortex-A series

 ARM Cortex-M series

 ARM Cortex-R series

Cortex family of processors use Embedded C language for programming and Keil compiler for

execution purpose. Although most of the ARM based microcontrollers use high-level language

for programming but it is necessary to look at the assembly level instructions and programs to

understand the high performance and capability of ARM architecture.

ARM Instructions

Although there are 25 main instructions in ARM6 for performing data processing

(Arithmetic/logic Operations), data movement and program control operations, ARM7 and

other higher versions have a few more instructions which allows tasks like, block memory data

transfer, load/store multiple, and coprocessor data processing. These additional instructions

making ARM7 more suitable as microcontroller. Table 6.1 shows the instruction set of

ARM7TDMI. Incidentally, ARM7TDMI also has 25 main instructions. Normal load/store

instructions allow data transfer between a single register and a memory location whereas

load/store multiple instruction allows multiple registers can be loaded with memory contents.

For example,

 LDR R0, R1
 LDR R0, [R1]
 STR R0, R1
 STR R0, [R1]

 are some single register load/store instructions. Whereas, instruction of the type,

 LDMIA R1, {R2, R3, R5}

 STMIA R9!, {R2, R3,R5}

are some load/store multiple instructions. In LDMIA, IA specifies increment after. There are

another option IB, which implies increment before. {R2-R5} is an alternative way to specify

four registers R2, R3, R4, R5. The symbol ‘!’ indicates auto-incrementation of memory

locations specified by R9. The list of destination registers may contain any or all of R0 to R15.

LDMIA R1, {R2, R3, R5} => R2= mem[R1],
R3=mem[R1+4],
R5=mem[R1+8]
Block memory data transfer operations are usually performed using LOOP instructions.

For example, a block of memory containing 128 bytes are to be transferred from memory

location (source) R9 to a destination specified by R10. Whereas, R11 indicates the end

address of the source, then this transfer can be performed by using the following LOOP,

231 | Microprocessor and Microcontroller

 Loop: LDMIA R9!, {R0-R7} //Each register holds 32bits or 4bytes, loading 32
 bytes
 STMIA R10!, {R0-R7} //store 32 bytes
 CMP R9. R11 //comparing start and end address of source
 BNE Loop
Thus, to transfer 132 bytes block data, the loop will run only 4 times as each register can store

32 bits or 4bytes and R0-R7 indicates a total of eight register. So, each time 32 bytes of data

transfer will take place. Thus, to transfer 132 bytes, the loop will run for 4 times.

Table 6.1: The ARM7TDMI instruction Set

Sl.

No.

Mnemonic Instruction Action

1 ADC Add with carry Rd= Rn +Op2+ Carry

2 ADD Add Rd: = Rn +Op2

3 AND AND Rd:= Rn AND Op2

4 B Branch R15 := address

5 BIC Bitwise Clear Rd := Rn AND NOT

6 BL Branch with Link R14 := R15, R15 := address

7 BX Branch and Exchange R15 := Rn,T bit := Rn[0]

8 CDP Coprocessor Data

Processing

(Coprocessor-specific)

9 CMN Compare Negative CPSR flags := Rn + Op2

10 CMP Compare CPSR flags := Rn - Op2

11 EOR Exclusive OR Rd := (Rn AND NOT Op2)

OR (op2 AND NOT Rn)

12 LDC Load coprocessor from

memory

Coprocessor load

13 LDR Load register from memory Rd := (address)

14 LDM Load multiple registers Stack manipulation (Pop)

15 MCR Move CPU register to

coprocessor register

cRn := rRn {<op>cRm}

16 MLA Multiply Accumulate Rd := (Rm * Rs) + Rn

17 MOV Move register or constant Rd : = Op2

18 MRC Move from coprocessor

register to CPU register

Rn := cRn {<op>cRm}

19 MRS Move PSR status/flags to

register

Rn := PSR

232 | Microprocessor and Microcontroller

20 MSR Move register to PSR

status/flags

PSR := Rm

21 MUL Multiply Rd := Rm * Rs

22 MVN Move register negative Rd := 0xFFFFFFFF EOR Op2

23 ORR OR Rd := Rn OR Op2

24 RSB Reverse Subtract Rd := Op2 - Rn

25 RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry

6.10.2 ARM Microcontroller Pinout

The pin diagram of ARM7 based microcontroller LPC2148 is shown in Fig.6.19. It is a

trademark chip of Phillips (NXP semiconductor). In the development of different

microprocessor-based applications, the designer of embedded systems and SOC (system

on chip) use different processor cores, libraries, and tools. Out of these ARM7 is one of

the best processors for embedded system designers. It has become so much popular in

the last few years. It is easily available in the market. This global ARM7 processor

technology has developed many microcontrollers such as LPC2144, LPC2146, and

LPC2148, etc. But LPC2148 microcontroller is the most famous microcontroller which has

been used currently in different applications such as in automatic braking systems and

mobile phones etc.

The LPC2148 microcontroller consists of 64 pins and the group of these pins are called a

port. It consists of two ports and registers. These ports could be used as input or output

ports therefore the pins of these ports are called GPIO (general purposes input-output)

pins. Following are the details of pins in the chip.

233 | Microprocessor and Microcontroller

Fig.6.19: LPC2148 Pin Diagram

Pin1 (P0.21/PWM5/AD1.6/Cap1.3): It is a general-purpose pin and can be used for four

multiple ways such as it could be as input output data pin, as a pulse width modulation

generator, as an analog to digital converter and as a capture input for timer l channel 3.

Pin 2 (P0.22/AD1.7/CAP0.0/MAT0.0): This can also be for used for four purposes. First, as

P0.22 it can be used for input output data pin, second, as AD1.7 it can be used as analog to

digital converter with ADC 1, input 7. Third, as CAP0.0 it can be used to capture input for

timer 0 and channel 0. Fourth, as MAT 0.0 it can be used to match output for timer 0 and

channel 0.

Pin 3 (RTC X1): Pin3 is used as input pin for RTC oscillator circuit.

Pin 4 (P1.19/TRACEPKT3): Pin 4 can be as GPIO pin so also as 3-bit input output pin for

inner pull up.

Pin 5 (RTCX2): Pin 4 is used as output pin for RTC oscillator circuit.

234 | Microprocessor and Microcontroller

Pin (6,18,25,42,50): These pins are used as references pins for grounding the microcontroller.

Pin7(VDDA): This pin is used as voltage source pin with 3.3 Volts. These voltages can be

useful for digital to analog conversion and analog to digital conversion.

Pin13 (P0.28/AD0.1/CAP0.2/MAT0.2): This pin is used as a GPIO pin, analog to digital

converter pin for ADC-0 input 1, capture input pin for timer 0 channel 2 and as a match output

pin for timer 2 channel 1.

Pin14(P0.29/AD0.2/CAP0.3/MAT0.3): This pin can be used as a GPIO pin, converter input

pin for ADC-0 input 2, capture input for timer 0 channel 3 and as a match output pin for timer

0 channel 3.

Pin15(P0.30/AD0.3/CAP0.3/EINT3/CAP0.0): This pin can be used as GPIO pin, converter

pin for ADC-0 timer input 3, external interrupt with input 3 and as capture input pin for timer

0 channel 0.

Pin16(P1.16/ TRACEPKT0): This pin is used as a trace packet pin as well as GPIO pin.

Pin(17,19,20,21): All these pins are used as GPIO pins.

Pin17 is used as UP_LED pin, Pin19 is used as a transmitter output for UART0 and as a pulse

Pin20 is used as a reset pin for JTAG interface. Similarly, the pin21is uses as receiver input for

UART0, also as PWM generator for output 3 and external interrupt with input 0.

Pin(22,24,26,27,28,29,30): These are GPIO pins.

Pin22 is used as clock input output, pin 24 is used as CLK output during JTAG interface. Pin

26 is used as matched output for timer 0 channel 0 and as external interrupt for input1.Pin 27

is used as a serial clock for transferring data from master bus to slave bus and as a

digital converter ADC-0.6 for input 6. Pin 28 can be used as external trigger input with inner

pullup. Pin 29 is used as MISO for transferring data form mater to slave bus and used as a

converter ADC-0 with input 7. Pin 30 is used as MISO output and as a capture input for timer

0 channel 2.

Pin(23,43,51): These pins are used for suppling input voltages to internal core and input

output ports.

Pin(31,32,33): These pins are used as GPIO pins.

235 | Microprocessor and Microcontroller

Pin 31 is used as SSEL0, PWM2 and as external interrupt for input 2. Pin 32 is used as a trace

CLK for standard input output port with inner pull up. Similarly, pin 33 is used as transmitter

TXD1 for UART1 and as a pulse width modulator PWM4

Pin(34,35,36,37): Pin 34,35,36 and 37 are GPIO pins.

 Pin 34 can be used as input receiver such as RDX1 for UART1, as output pulse modulator

such as PWM6 for output 6, as an external interrupt pin for input 3. Pin 35 can be used as a

request pin for sending request to UART1, as a capture input pin for timer 1 channel 1, as an

anlage to digital converter ADC-1 for input 1. Pin 36 could be used as a 2-bit pipeline status

pin for standard input output port. Pin 37 can be used as a clear input pin for UART1, as a

capture pin for timer 1 channel 1 and as a clear output input pin for 12C bus observer.

Pin(38,39,40,41): Pin 38,39,40 and 41 could be used as GPIO pin.

Pin 38 can be used as an output data terminal ready pin for UART1, as match output pin for

timer 1 channel 0 or as an analog to digital converter ADC-1 for input1. Pin 39 can be used as

an input data terminal ready pin for UART1 or an output match pin for terminal 1 channel 1

and as a converter ADC-1 for input 4. Pin 40 can be used a bit-1 pipe line status pin for standard

input output port. While, Pin 41 be used as input data carrier detector pin for UART1, as

an external interrupt pin for input 1 and as an input output open drain pin for 12C bus observer.

Pin(44,45,46,47): These pins are also used as GPIO pin.

Pin 44 is used as a bit-0 pipe line pin for standard input output port. Pin 45 can be used as an

input ring pointer pin for UART1, as an external interrupt pin for input 2 or as a pulse width

modulator generator ADC-1.5 for input 5. Pin 46 can be used as external interrupt pin for input

0, as a match output pin for timer 0 channel 2 and as a capture input pin for timer 0 channel 2.

Pin 47 can be used as capture input pin for timer 1 channel 2, as a serial CLK pin for sending

output from master but to slave bus.

Pins 49, 50, 51, 57, 59, 61, 62, 63 have their usual functionality as specified in the pinout. Rest

of the pins work in a similar manner as specified earlier. For more details, interested readers

may refer https//microcontrollerslab.com.

6.10.3 GPIO configuration

236 | Microprocessor and Microcontroller

Most of the pins of I/O ports in LPC2148 have more than one function i.e. they are multiplexed

with different functions. Any pin of the LPC2148 can have a maximum of 4 functions. Hence

in order to select any one of the four functions, two corresponding bits of the PINSEL register

are needed. So, a 32-bit PINSEL register can control 16 pins with 2-bits to control each pin.

PINSEL0 controls PORT0 pins P0.0 to P0.15, PINSEL1 controls PORT0 pins P0.16 to P0.31

and PINSEL2 controls PORT1 pins P1.16 to P1.31.

The default function of all the Pins is GPIO. But it is a good programming practice to specify

“PINSEL0=0” in order to select the GPIO function of the Pins.

GPIO function is the most frequently used functionality of the microcontroller. The GPIO

function in both the ports are controlled by a set of 4 registers: IOPIN, IODIR, IOSET and

IOCLR.

IOPIN: It is a GPIO Port Pin Value register and can be used to read or write values directly to

the pin. The status of the pins that are configured as GPIO can always be read from this register

irrespective of the direction set on the pin (Input or Output).

The syntax for this register is IOxPIN, where ‘x’ is the port number i.e. IO0PIN for PORT0

and IO1PIN for PORT1.

IODIR: It is a GPIO Port Direction Control register which is used to set the direction i.e. either

input or output of individual pins. When a bit in this register is set to ‘0’, the corresponding pin

in the microcontroller is configured as input. Similarly, when a bit is set as ‘1’, the

corresponding pin is configured as output.

The syntax for this register is IOxDIR, where ‘x’ is the port number, accordingly, IO0DIR is

for PORT0 and IO1DIR is for PORT1.

IOSET: It is a GPIO Port Output Set Register and can be used to set the value of a GPIO pin

that is configured as output to High (Logic 1). When a bit in the IOSET register is set to ‘1’,

the corresponding pin is set to Logic 1. Setting a bit ‘0’ in this register has no effect on the pin.

The syntax for this register is IOxSET, where ‘x’ is the port number, so, IO0SET is meant for

PORT0 and IO1SET for PORT1.

IOCLR: It is a GPIO Port Output Clear Register and can be used to set the value of a GPIO pin

that is configured as output to Low (Logic 0). When a bit in the IOCLR register is set to ‘1’,

237 | Microprocessor and Microcontroller

the corresponding pin in the respective Port is set to Logic 0 and at the same time clears the

corresponding bit in the IOSET register. Setting ‘0’ in the IOCLR has no effect on the pin.

The syntax for this register is IOxCLR, where ‘x’ is the port number i.e. IO0CLR for PORT0

and IO1CLR for PORT1.

An important point to be remembered here is that since the LPC2148 is a 32-bit microcontroller,

the length of all the registers mentioned is also 32-bits. Each bit in the above-mentioned

registers is directly linked to the corresponding pin in the microcontroller i.e. bit ‘a’ in IO0SET

corresponds to Pin ‘a’ in the PORT0.

Moreover, registers in LPC2148 follow Big Endian format. So, bit 0 is the LSB on the extreme

right of the register and bit 31 is the MSB on the extreme left of the register.

Also, when reset, all the pins are set as GPIO pins and the direction of each pin is set as Input.

For more details refer [3].

6.11 Interfacing LED with LPC2148 MCU

We can write a high-level program to interface LED devices and to turn on/off the LEDs. First,

the PORT1 pins are configured as outputs using IO1DIR register. Then in an infinite loop, the

pins (or LEDs connected to them) are turned ON using IO1SET register and turned OFF using

IO1CLR register. A delay is introduced between the turning ON and OFF of the LEDs using a

“for” loop, so that the blinking of LEDs is visible. Figure 6.15 shows the LED connections to

ARM-based MCU. The ARM7 LPC2148 advanced development board has eight numbers of

point LEDs, connected with I/O Port lines (P1.16 – P1.23) to make port pins high.

238 | Microprocessor and Microcontroller

Fig.6.20: Interfacing LED to Microcontroller {Courtesy: Pantech Prolabs]

The following program will blink the LEDs repeatedly that are connected to PORT1 pins of
the MCU.

#include <lpc214x.h>

int delay;

int main (void)

{

PINSEL2 = 0x00000000;

IO1DIR = 0xFFFFFFFF; // All the pins of PORT1 are configured as Output

while (1)

{

IO1SET = 0xFFFFFFFF; // Set Logic 1 to all the PORT1 pins i.e. turn on LEDs

for (delay = 0; delay<500000; delay++)

IO1CLR = 0xFFFFFFFF; // Set Logic 0 to all the PORT1 pins i.e. turn off LEDs

for (delay = 0; delay<500000; delay++)

}

239 | Microprocessor and Microcontroller

return 0;

}

Summary

In this chapter, we have gone through the architectural features of some of the advanced

processors. We have understood what is instruction pipelining and superscalar execution. We

have also seen their differences. Then we have introduced the concept of cache memory-why

it is so important in enhancing the performance of a processor. That is why cache is a unique

feature in advanced processors. We have come across the terms-cache hit, cache miss and

penalty. We have also noted the classification of cache memories, cache organization. Concept

of virtual memory and memory mapping are also explained. Next, the architectural features of

Intel family of advanced processors, namely, 80286, 80386, 80486 and Pentium are explained

thoroughly with diagrams, considering their CPU, register sets, instructions, addressing modes,

address translation and memory management. Then, a detail architectural concept of one of the

most popular RISC processor-the ARM processor is explained before discussing on ARM

microcontrollers. We have also provided a clear concept of RISC and CISC processors and

compared the two architectures. ARM7 based microcontrollers have been explained next with

pin diagram. GPIO and configuring the GPIO is explained next. Finally, how to interface a

ARM microcontroller with LED devices is then explained with a circuit diagram as well as

with a high-level program.

Review Questions

1. What do you mean by instruction pipelining?

2. What is superscalar execution?

3. In superscalar processor CPI can be less than 1. Say ‘Yes’ or ‘No’.

4. Compare between pipelining and superscalar execution.

5. What is a cache memory?

6. Define cache tag, cache hit and cache miss penalty.

7. How can you classify cache memories?

8. Define virtual address and address mapping.

9. How do you find 80286 different from 8086 processor?

10. First 32-bit processor is 286/386/486 or Pentium. Pick the correct answer.

240 | Microprocessor and Microcontroller

11. Concept of virtual memory and memory management unit was first introduced in which

Intel processor?

12. Which of the Intel processor has 5 stages of pipeline?

13. Pentium is a pipeline or a superscalar processor?

14. What is the size of the cache in Pentium? Is there any L2 cache in Pentium?

15. Write the full form of ARM.

16. How many instructions are there in ARM6 and how many status registers?

17. Why the architecture of ARM is called a load/store architecture?

18. Can ARM6 processor perform load/store multiple instruction?

19. What is a THUMB mode of operation in ARM?

20. Which of the ARM series processor is useful for ARM based microcontroller design?

21. How many pins are there in LPC2148? How many ports are it?

22. What is GPIO? Which register is needed for configuring GPIO?

23. How to set GPIO port as input or output?

REFERENCES

1. John P. Hayes. Computer Architecture and Organization. McGraw-Hill International

Editions, 1998

2. Barry B. Brey. The Intel Microprocessors, Architecture, Programming and Interfacing. PHI,

2004, 6th Edition, Copyright 2003.

3. https://www.electronicshub.org/arm-gpio-introduction

241 | Microprocessor and Microcontroller

Appendices: Experiments and Laboratory Manual

242 | Microprocessor and Microcontroller

Appendix A

List of Laboratory Experiments

Experiments to be conducted in the Microprocessors and Microcontrollers Laboratory are:

1. Configuration and Usage of Integrated Development Environment
2. Implementation of Arithmetic and Logical Operations to Verify Different Addressing

Modes
3. Interfacing of LED and 7-Segment Display
4. Interfacing 16X2 Liquid Crystal Display
5. Interfacing 4X4 Hex Keypad
6. Interfacing of DC Motor to Explore Variable Speed
7. Interfacing of Stepper Motor to Explore Variable Speed
8. Interfacing of ADC
9. Interfacing of DAC
10. Implementation of Communication by Using RS-232 Standard
11. Implementation of I2C Protocol
12. Interface of LEDs with GPIO of ARM7TDMI Processor

243 | Microprocessor and Microcontroller

Appendix B

Installation guidelines and introduction to IDE

1. Aim: To configure and use integrated development environment for 8051
microcontroller.

2. Objective: This experiment can be done in two steps.
 Download and install the required Integrated development environment (IDE)

i.e Keil C51 µVision in this case.
 How to configure it for simulating the code for a given case.

Keil C51 Development tools

There are several integrated development environments (IDEs) available for 8051
microcontroller programming.

 Keil µVision is a popular IDE for 8051 development that includes an assembler, linker,
and debugger. It also includes a simulation environment for testing code before it is
uploaded to the microcontroller.

 A unique feature of the Keil µVision IDE is the Device Database™ which contains
information about more than 3500 supported microcontrollers. When you create a new
uVision project and select the target chip from the database, uVision sets all assembler,
compiler, linker, and debugger options for you. The only option you must configure is
the memory map.

Install Keil C51 software for accessing Keil µVision IDE:

Step 1:

Download Keil C51 development tools from official website:

https://developer.arm.com/Tools%20and%20Software/Keil%20PK51

Step 2:

Double click on the .exe file downloaded from the above link.

244 | Microprocessor and Microcontroller

Click on Next tab to proceed to installation.

Read the terms of the preceding License Agreement and check the box then click on Next tab.

245 | Microprocessor and Microcontroller

Select the folder to install the setup.

Fill up the required details to move on to the next step.

246 | Microprocessor and Microcontroller

It will take two to three minutes for the installation to complete.

At last Finish the installation window will appear as shown.

So, the installation of the Keil µvision is successfully completed.

Set Up Keil C51 for 8051 Microcontroller Simulations

The 8051 is a powerful microcontroller. Keil C51 Integrated development environment
(IDE) is used to write and test code before embedded into microcontroller.

247 | Microprocessor and Microcontroller

 To transfer code from the PC to the flash memory (a process also known as “burning”),
generating the hex file is essential.

 To create this file from assembly-level code or any other high-level language like C you
need an IDE that has a compiler that will do this job for you.

 Keil µvision C51 IDE is used for writing code for 8051. It’s a free IDE for 8051 related
embedded development and is a very popular simulation platform as well.

 You can simulate the code written in the IDE to see the transfer of data in memory
locations and registers making it a great tool for simulation. It has advanced debug
capabilities too that makes it extremely powerful for testing.

To generate the hex file the IDE follows the following steps:

 It generates a .asm file and sends it to the assembler.
 The assembler generates two files from this. A .lst file and a .obj file.
 In the next step, a process known as “linking” connects the .obj file to others.obj

files
 Conversion of the object files to a .hex file.

The hex file can then be burnt into the flash memory of the 8051 using an ISP hardware
programmer.

Step 1: Click on the Project dropdown menu and then click on New μvision Project.

Step 2: Create a new folder at any suitable location on your computer where you wish to keep
all project files. In our case it is \thispc\desktop\8051. Create a new project file at this location
and click on Save.

248 | Microprocessor and Microcontroller

Step 3: Select the microcontroller of your choice in the new pop-up window. In our case, it is
the AT89C51. Now press Ok.

Step 4: Click on NO in the pop-up window that appears next. We will do this step manually.

249 | Microprocessor and Microcontroller

Step 5: Create a new file by clicking on the new file button in the top right corner.

Step 6: Write your code in the newly created file.

250 | Microprocessor and Microcontroller

Step 7: Save the file in your Project folder. The extension to be used is .c for c code and .asm
in case of assembly-level code. As we are using assembly-level code we use .asm here.

Step 8: Click on the expand (plus) sign next to Target 1 and then right-click on Source group
1. In the options box, click on Add Existing files to Source group 1. This adds the new file
that contains your code to your Project file.

251 | Microprocessor and Microcontroller

Step 9: Select the file you created and add it here. Now you have a Project file with its
constituent code files. All the other files that will be generated will be present in this Project
folder.

Step 10: Right-click on Target 1 and then select Options for Target “Target 1”.

252 | Microprocessor and Microcontroller

Step 11: In the new dialog box, click on the Output tab and then check the box in front of the
Create hex file option.

Build the project by pressing F7 on your keyboard and if there are no errors in your code the
hex file will be in the objects folder of your project folder.

Simulating code using Keil µvision:

As mentioned earlier we can use Keil to simulate our code. Let’s do that by clicking on the
magnifying scope symbol in the toolbar.

253 | Microprocessor and Microcontroller

Once you click here after compiling your code you can see a step-by-step execution of your
code.

Conclusion:

Now you can learn assembly language programming/embedded C with 8051 without
actually needing a kit. Just take up any sample programs, compile them, and run the simulation
tool. This is a great exercise in learning the working of instructions from a close perspective.

254 | Microprocessor and Microcontroller

APPENDIX C

Laboratory Manual

In the following, a detailed systematic procedure for carrying out laboratory experiments 2 to
12 are given. Assembly language programs as well as corresponding Hex codes (both for
8085/8051) are given for most of the experiments in a ready to use manner for the students.
However, experiment 12 is to be performed using Keil Software, thus written in assembly
language. These experiments are already tested and verified by executing the programs in an
appropriate microprocessor or micrcontroller kit. The hardware and/or software requirement
for performing each of the experiments are also specified.

EXPERIMENT # 2

1.1 Name of the Experiment: To verify Different Addressing Modes

1.2 AIM: Implementation of Arithmetic and Logical Operations to verify different addressing
modes

1.3 Equipment needed: Power Supply, adapter, Microprocessor Trainer Kit

1.4 Program to illustrate Immediate Addressing, Register Direct and Implicit Addressing
with Arithmetic operation

Assembly Language Program Hex Code

MVI B, 4FH //immediate address 06H

 4FH

MVI C, 78H //Immediate address 0EH

 78H

MOV A, C //Register direct 79H

ADD B //Implicit address 80H

STA 2080H //memory direct 32H

 80H

 20H

HLT 76H

Program Execution

Before executing the program, we need to load the hex codes in memory locations in a
sequential manner. For example, if the starting address is 2000H where code 06H will be
loaded, then the memory locations for the rest of the codes will be 2001, 2002, 2003, 2004,

255 | Microprocessor and Microcontroller

2005, 2006, 2007, 2008, 2009 where 04F, OE, 78, 79, 80, 32, 80, 20, 76 will be loaded and
saved. Then we need to instruct microprocessor for specifying the starting address. This is done
by loading 2000H. And then once the Execution Key is pressed, the microprocessor loads
2000H in the Program Counter and the program control is transferred from the Monitor
program the user program. The result will be available at 2080H location (which is 4F+78=C7).

1.5 Program to illustrate Indirect addressing

Assembly Language Program Hex code

LXI H, 2050H //immediate 11

 50

 20

MOV A, M //Indirect address 7E

ANI 0FH //immediate E6

 0F

STA 2060H //memory direct 32

 60

 20

HLT 76

2050 08

2060 00

Program Execution

Just like previous program, we first load the hex codes to memory locations in a sequential
manner. We can start with 2040H to save 11. Similarly, rest of the codes will be saved in
memory locations 2041, 2042, 2042, 2043, 2044, 2045, 2046, 2047, 2048 and 2049
respectively. Moreover, memory location 2050 will store an initial value of 08H and in 2060,
result will be stored which initially contains 00H. We then instruct the microprocessor to
execute. Before that we need to load starting address, which is 2040H. And then once the
Execution Key is pressed, the microprocessor loads 2040H in the Program Counter and the
program control is transferred from the Monitor program the user program. The result will be
available at 2060H (which 08 AND 0F = 08H).

1.6 Conclusion: Results are verified in microprocessor kit. This implies that the addressing
modes are correctly implemented in the program.

256 | Microprocessor and Microcontroller

EXPERIMENT # 3a

1. Name of the Experiment: Interfacing LEDs for Displaying Binary Data
2. Hardware needed: one 8-input NAND gate, one NOR gate, and a 7475 D-type latch

with 8085 trainer kit
3. Objective: To interface LED output port for displaying binary data from accumulator
4. Circuit Diagram

5. Circuit Operation

Lower-order address lines of the 8085 are used to generate the enable signal for the D-latch.
For this, address bus A7-A0 is decoded with an 8-input NAND gate. The output of the NAND
gate goes low only when all the inputs are high i.e. when the address is FFH (or 01H as specified
in the diagram). The output of the NAND gate is next combined with the IOW-bar control
signal with a NOR gate to generate the select pulse or the enable signal, IOSEL for the D-latch.
In the meantime, the contents of the accumulator have been put on the data bus. The IOSEL
pulse activates the D-latches and the data are now latched and displayed in the LED device.
bus

6. Program
Mnemonics Hex code
MVI A, DATA 3E
 DATA
OUT FFH D3
 FF
HLT 76

7. Program Execution
Once the program is executed, LEDs will glow as per the binary data. LED will glow with 1
and remain OFF with a binary 0.

8. Conclusion: The LEDs thus got interfaced with 8085

EXPERIMENT # 3b

1. Name of the Experiment: Interfacing seven segment display with 8085
2. Hardware requirement: NAND gate, NOR gate, NOT gate, Latch, 7-segment

displays, limiting registers

257 | Microprocessor and Microcontroller

3. Circuit Diagram:
(a) interfacing 8085 with 7-segment display

4. Program:

Mnemonics Hex Code
MVI A, DATA 3E
 DATA
OUT EFH D3
 EF
HLT 76

5. Program Execution: Once the program is executed, LEDs will glow as per the binary
data. LED will glow with 1 and remain OFF with a binary 0.

6. Conclusion: Seven segment display devices got interfaced with 8085

EXPERIMENT # 4

1. Name of the Experiment: Interfacing 16x2 Liquid Crystal Display with 8051.
2. Hardware requirement:

 AT89C51 (8051 Microcontroller)
 16X2 LCD Display
 11.0592MHz Crystal
 2 X 33pF Capacitors
 2 X 10 KΩ Resistors
 1 KΩ X 8 Resistor Pack
 10 KΩ Potentiometer
 330Ω Resistor
 Push Button
 10μF/16V Capacitor
 8051 Programmer
 5V Power Supply

258 | Microprocessor and Microcontroller

 Connecting Wires
3. Circuit Diagram:

4. Program:

0000 HERE: MOV A, #38H
0002 ACALL CMND
0004 MOV A, #0FH
0006 ACALL CMND
0008 MOV A, #06H
000A ACALL CMND
000C MOV A, #01H
000E ACALL CMND
0010 MOV A, #080H
0012 ACALL CMND
0014 MOV A, #' '
0016 ACALL DISP
0018 MOV A, #'H'
001A ACALL DISP
001C MOV A, #'E'
001E ACALL DISP
0020 MOV A, #'L'
0022 ACALL DISP
0024 MOV A, #'L'
0026 ACALL DISP
0028 MOV A, #'O'
002A ACALL DISP
002C SJMP HERE
002E CMND: MOV P2, A
0030 CLR P3.5

259 | Microprocessor and Microcontroller

0032 CLR P3.4
0034 SETB P3.3
0036 CLR P3.3
0038 RET
0039 DISP: MOV P2, A
003B SETB P3.5
003D CLR P3.4
003F CLR P3.3
0041 SETB P3.3
0043 RET

 END

5. Execution and Results:
After executing the code, we can observe the text string shown in the 16x2 LCD display
“Hello”.
We can also write a program in C for interfacing LCD to 8051 microcontroller.

EXPERIMENT # 5

1. Name of the Experiment: Interfacing 4x4 Hex Keypad with 8051.
2. Hardware requirement: 8051 AT89S51 microcontroller, 4x4 Hex keypad, capacitors,

resistors, 7 segment LED display and power supply.
3. Circuit diagram:

4. Program:

MOV DPTR, #LUT // moves starting
address of LUT to DPTR

 CLR P1.2

MOV A, #11111111B // loads A with all 1's JB P1.4, NEXT9
MOV P0, #00000000B // initializes P0 as
output port

 MOV A, #8D

BACK: MOV P1, #11111111B // loads P1
with all 1's

 ACALL DISPLAY

260 | Microprocessor and Microcontroller

 CLR P1.0 // makes row 1 low NEXT9: JB P1.5, NEXT10
 JB P1.4, NEXT1 // checks whether
column 1 is low and jumps to NEXT1 if not
low

 MOV A, #9D

 MOV A, #0D // loads a with 0D if
column is low (that means key 1 is pressed)

 ACALL DISPLAY

 ACALL DISPLAY // calls DISPLAY
subroutine

NEXT10: JB P1.6, NEXT11

NEXT1: JB P1.5, NEXT2 // checks
whether column 2 is low and so on...

 MOV A, #10D

 MOV A, #1D ACALL DISPLAY
 ACALL DISPLAY NEXT11: JB P1.7, NEXT12
NEXT2: JB P1.6, NEXT3 MOV A, #11D
 MOV A, #2D ACALL DISPLAY
 ACALL DISPLAY NEXT12: SETB P1.2
NEXT3: JB P1.7, NEXT4 CLR P1.3
 MOV A, #3D JB P1.4, NEXT13
 ACALL DISPLAY MOV A, #12D
NEXT4: SETB P1.0 ACALL DISPLAY
 CLR P1.1 NEXT13: JB P1.5, NEXT14
 JB P1.4, NEXT5 MOV A, #13D
 MOV A, #4D ACALL DISPLAY
 ACALL DISPLAY NEXT14: JB P1.6, NEXT15
NEXT5: JB P1.5, NEXT6 MOV A, #14D
 MOV A, #5D ACALL DISPLAY
 ACALL DISPLAY NEXT15: JB P1.7, BACK
NEXT6: JB P1.6, NEXT7 MOV A, #15D
 MOV A, #6D ACALL DISPLAY
 ACALL DISPLAY LJMP BACK

NEXT7: JB P1.7, NEXT8
DISPLAY: MOVC A, @A+DPTR //
gets digit drive pattern for the current
key from LUT

 MOV A, #7D
 MOV P0, A // puts
corresponding digit drive pattern into
P0

 ACALL DISPLAY RET
NEXT8: SETB P1.1
 LUT: DB 01100000B //Look up table
 DB 11011010B //starts here
 DB 11110010B
 DB 11101110B
 DB 01100110B
 DB 10110110B
 DB 10111110B
 DB 00111110B
 DB 11100000B
 DB 11111110B
 DB 11110110B
 DB 10011100B
 DB 10011110B
 DB 11111100B
 DB 10001110B

261 | Microprocessor and Microcontroller

 DB 01111010B
 END

5. Program execution and Results:
After executing the code the key which is pressed will be shown in the seven segment LED
display connected to it.

EXPERIMENT # 6 & 7

DC Motor Speed Control with 8051 and Stepper Motor Clockwise and Anti Clockwise
Rotation

PART NO: PS-ACC-DC-STEP PS-ADD-ON, card (from Pantech ProLab, Chennai) has
facility to interface Stepper motor and DC motor. User could evaluate motors features with
easily with the interface card. Separate PBT connectors for motors terminations. Motor could
be driven by h-bridge drivers. All motor lines and power lines are terminated by the 20pin
connector.

 SPECIFICATIONS

 Stepper Motor o (Angle control / Clockwise/ Counter-clockwise)

 DC Motor controlled with PWM Control

o Direction and speed control

 Motor control line and Power lines terminated at box connector

 20-pin FRC Cable o To connect host boards (Microcontroller/Processor)

CARD FEATURES

 5V Stepper Motor

 5V DC Motor

 Motor Driver Unit

 Terminal connectors

 20-pin Box Connector

STEPPER MOTOR

 Step Angle (o) : 1.8

 Motor Length (mm) : 34

 Holding Torque (g.cm) : 1300

 Lead Wire (NO.) : 6

 Rated Current (A) : 0.3

262 | Microprocessor and Microcontroller

 Phase Resistance (ohm) : 40

 Phase Inductance (mH) : 20

 Rotor Inertia (g.cm 2) : 20

 Motor Weight (Kg) : 0.18

DC MOTOR

 Voltage : 6.0V (Range: 1.5 - 12.)

 Speed : 2,700(ЎА10%) rpm (No)

 Current : 0.02A (No)

 Torque : 5.88 mN. M

KIT INCLUDES

 Motor Interface Card (with Stepper/DC Motor)

 Interface Cable

HARDWARE DESCRIPTION

 STEPPER MOTOR Bipolar Stepper Motor driven by h-bridge driver, facility to connect
external power supply to the motor. 5V Stepper Motor speed, direction (clockwise/counter-
clockwise) and angle rotation through user program.

 DC MOTOR 5V DC Motor speed has controlled through PWM signal. Motor can run both
clockwise/counter clockwise, Motor speed controlled by varying ENA (duty cycle) signal
through the program.

IN 8051 WE HAVE SINGLE 8255

 J1 8255

PORTS ADDRESS

Control port 4003H

PORT A 4000H

PORT B 4001H

PORT C 4002H

PROCEDURE:

 Connect a 20 Pin FRC cable between the 8051 Trainer Kits J1 port (middle port) and
the DC MOTOR/STEPPER MOTOR CARD.

 Connect a DC motor at the MG1 connector or connect a Stepper Motor in J4.
 Connect USB/PS2 keyboard on 8051 Microcontroller. Type and execute the DC

Motor or Stepper Motor program.
 Now the DC Motor or the Stepper Motor is running

Experiment 6: DC MOTOR INTERFACE WITH 8051

263 | Microprocessor and Microcontroller

AIM: To interface the DC motor with 8051 and to run the DC motor at various speed

PROGRAM:

ADDRESS OPCODE MNEMONICS
9100 74 80 MOV A,#80
9102 90 40 03 MOV DPTR,#4003
9105 F0 MOVX @DPTR,A
9106 74 06 START: MOV A,#06H
9108 90 40 01 MOV DPTR,#4001
910B F0 MOVX @DPTR,A
910C 12 19 11 LCALL DELAY
910F 80 F5 SJMP START
9111 78 FF DELAY: MOV R0,#FF
9113 79 FF LOP: MOV R1,#FF
9115 D9 FE LOP1: DJNZ R1,LOP1
9117 D8 FA DJNZ R0,LOP
9119 22 RET

RESULT: Execute the program. Now we can see that the DC motor run.

Experiment 7: Stepper Motor Control for CLOCKWISE ANTI CLOCKWISE ROTATION
using 8051

AIM: To interface the stepper motor with the 8051-trainer kit and to run a stepper motor in
both the direction

PROGRAM

ADDRESS OPCODE MNEMONICS
9100 74 80 MOV A,#80
9102 90 40 03 MOV DPTR,#4003
9105 F0 MOVX @DPTR,A
9106 78 32 START : MOV R0,#32
9108 90 92 00 CLKWI : MOV

DPTR,#9200
910B A9 82 MOV R1,82
910D AA 83 MOV R2,83
910F 31 26 ACALL ROTAT
9111 D8 F5 DJNZ R0,CLKWI
9113 31 41 ACALL DELAY
9115 78 32 MOV R0, #32
9117 90 92 50 ANCKWI: MOV

DPTR,#9250
911A A9 82 MOV R1,82
911C AA 83 MOV R2,83
911E 31 26 ACALL ROTAT
9120 D8 F5 DJNZ R0, ANCKWI
9122 31 91 ACALL DELAY
9124 80 E0 SJMP START
9126 7B 04 ROTAT: MOV R3,#04
9128 E0 REPT : MOVX A,@DPTR
9129 90 40 00 MOV DPTR,#4000

264 | Microprocessor and Microcontroller

912C F0 MOVX @DPTR,A
912D 7C 03 MOV R4,#03
912F 7D 01 LOP3 : MOV R5,#0A
9131 7E FF LOP2 : MOV R6,#FF
9133 DE FE LOP 1 : DJNZ R6, LOP1
9135 DD FA DJNZ R5, LOP2
9137 DC F6 DJNZ R4, LOP3
9139 09 INC R1
913A 89 82 MOV 82,R1
913C 8A 83 MOV 83,R2
913E DB E8 DJNZ R3, REPT
9140 22 RET
9141 7C 03 DELAY : MOV R4,#03
9143 7D FF LP3 : MOV R5,#FF
9145 7E FF LP2 : MOV R6,#FF
9147 DE FE LP1 : DJNZ R6, LP1
9149 DD FA DJNZ R5, LP2
914B DC F6 DJNZ R4, LP3
914D 22 RET

ORG 9200H

9200 03060C09 DB 03H, 06H, 0CH, 09H

ORG 9250H

9250 090C0603 DB 09H, 0CH, 06H, 03H

END

RESULT: Execute the program. Now you can see that the stepper motor runs in a clockwise
and anti-clockwise direction.

Steps for executing the program:

1. After the last instruction, press the “Enter” key two times.
2. To execute the program press “G” from the keyboard and enter the initial address of

the program i.e. 9100 and then press “Enter” key.

EXPERIMENT # 8

1. Name of the Experiment: Interfacing an A/D converter with 8085 using the

Interrupt
2. Objective:

o To interface a typical 8-bit A/D converter with 8085 using status check
3. Hardware requirements:

o one 8-bit A/D converter (SAR) with input voltage 0 to 5V range, with active
low START-bar and DR-bar)

o one 3:8 decoder, 74LS138

265 | Microprocessor and Microcontroller

o 4-input NAND gate, 2-input NAND gates and inverters
o Two Tri-state Buffer

4. Circuit Diagram: Figure below shows the circuit for interfacing a typical ADC
with 8085 using Status Check. When the active low pulse is sent to START-bar and
DR-bar goes high, the ADC output goes into high impedance state. The rising edge
of the STAR-bar pulse initiates the conversion. When the conversion is complete,
the DR-bar goes low and the digital output are available on the output lines that can
be read by the microprocessor.

5. Program
OUT 82H ; Start conversion
TEST: IN 80H ; Read Data Ready Status
RAR ; Rotate D0, into carry
JC TEST ; If D0 = 1, conversion is not yet complete
 ; go back and check
IN 81H ; Microprocessor will read output and save
;it in accumulator.
RET

6. Results: Analog input to ADC will get converted to digital output available at the
D7:D0 pins of the ADC will be read by 8085 and found in accumulator.

EXPERIMENT # 9

1. Name of the Experiment: Interfacing 8-bit D/A Converter with 8085
2. Objectives:
 To design an output port with address FFH and to interface 1408 D/A converter that is

calibrated for 0 to 10V range
 To write a program and execute it to generate a continuous waveform

266 | Microprocessor and Microcontroller

3. Hardware requirements: one 8-input NAND gate, one 2-input NOR gate, one
74LS373 latch, 1408 DAC, 2 registers of 2.5K

4. Circuit Diagram

The circuit diagram of D/A conversion is shown in Figure below. The 1408 is an 8-bit
D/A converter compatible with TTL and CMOS logic, having a settling time of 300
ns. It has 8-input lines with A1 as MSB and A8 as LSB unlike the convention used in
the data bus of 8085 (where D7 is MSB and D0 is LSB). It requires 2mA reference
current for full-scale input and two power supplies, VCC = +5 V and VEE =-15 V.
74LS373 is a 8-input D-latch for storing the input data from processor data bus.

5. Program
Mnemonics Meaning
 MVI A, 00H Load accumulator with first input
D2A: OUT FFH Output to DAC
 MVI B, COUNT Set up Reg. B for delay
DELAY: DCR B
 JNZ DELAY
 INR A Next input
 JMP D2A Go back to output

6. Results and waveform
The program continuously put 00 through FF to the D/A converter. The corresponding
analog output of the DAC starts from 0V and increases up to 10V as a ramp. When the
accumulator contents go to 0, the next cycle begins and the ramp signal is generated
continuously.

7. Conclusion: A DAC has been successfully interfaced with 8085 to generate a Ramp
Signal continuously.

267 | Microprocessor and Microcontroller

EXPERIMENT # 10

1. Name of the Experiment: Implementation of serial data transmission using RS-232
standard.

2. Objective: To implement serial data communication between two 8051
microcontrollers using RS-232.

3. Hardware Requirement: Two 8051 microcontroller kits, and one RS-232 cable.

4. Procedure: Suppose, the letter “E” is to be transferred serially at 9600 baud
continuously using 8051. Use 8-bit data and 1-stop bit.

Through the PC hyper terminal window (serial window), set 9600 BAUD rate. After
executing program with PS2 KIT press ‘B’, set 9600 baud the rate value.

 Connect the two microcontroller kits using an RS-232 cable.

 Enter the transmitter program in 1st microcontroller kit and the receiver program in 2nd
microcontroller kit.

 Run the receiver program first in kit-2 and then run the transmitter program in kit-1.
 After executing the transmitter program, reset the kit and then go to location 8700H.

5. The transferred data “Yes” (ASCII value) are stored from 8400H onwards in kit-2.

INPUT in Transmitter Kit: 910F: 45

Transmitter Program:

Memory Location Hex Code Mnemonics

9100 75 MOV TMOD, #21H

89

21

 9103 75 MOV TH1, #0F5H

 8D

 F5

 9106 75 MOV SCON, #52H

 98

 52

 9109 75 MOV PCON, #00H

 87

 00

 910C D2 SETB TR1

8E

268 | Microprocessor and Microcontroller

 910E 74 MOV A, #45H

 45

 9110 31 ACALL TRANS

 14

 9112 80 HALT: SJUMP HALT

 FE

 9114 F5 TRANS: MOV SBUF, A

 99

 9116 30 WAIT: JNB TI, WAIT

 99

 FD

 9119 C2 CLR TI

 99

 911B 22 RET

INPUT in RECEIVER KIT: 9200: 45

Receiver Program:

9100 75 MOV TMOD, #21H

 89

 21

9103 75 MOV TH1, #0F5H

 8D

 F5

9106 75 MOV SCON, #52H

 98

 52

9109 75 MOV PCON, #00H

 87

 00

910C 90 MOV DPTR, #9200H

 92

 00

269 | Microprocessor and Microcontroller

910F D2 SETB TR1

 8E

9111 30 WAIT: JNB RI, WAIT

 98

 FD

9114 E5 MOV A, SBUF

 99

9116 C2 CLR RI

 98

9118 C2 CLR TR1

 8E

911A F0 MOVX @DPTR, A

911B A3 INC DPTR

911C 80 HALT: SJMP HALT

 FE

EXPERIMENT # 11

1. Name of the Experiment: Implementation of I2C protocol

2. Objectives: To implement I2C protocol on 8051 ARM7TDMI microcontroller.

3. Hardware Requirement: 8051 microcontroller, I2C compatible peripherals such as
sensors, actuators etc., Pull-up resistors of range 4.7 kΩ to 10 kΩ, Cables and
connectors, development board, breadboard or PCB, programmer and Power supply.

4. Procedure:
 Assemble the hardware: Assemble the circuit by connecting the 8051

microcontroller, the I2C-compatible peripheral(s), the pull-up resistors, and
any other required components to a breadboard or PCB.

 Write the software: Write the code that implements the I2C protocol on the
8051 microcontroller. The code should include the initialization of the I2C bus,
the communication protocol, and any other necessary functions for your
specific use case.

 Compile the code: Use a compiler to compile the code you have written into
machine code that can be run on the 8051 microcontroller.

 Upload the code: Use a programmer to upload the compiled code to the 8051
microcontroller. The programmer will be connected to the computer and the
development board, and will be used to transfer the code from the computer to
the microcontroller.

270 | Microprocessor and Microcontroller

 Test the circuit: Power on the circuit and test the communication between the
8051 microcontroller and the I2C device. You can use a logic analyzer or an
oscilloscope to monitor the I2C bus and verify that the communication is
correct.

 Debug and refine the code: If necessary, debug the code and make any
necessary changes to improve the performance and reliability of the
communication. Repeat steps 3-5 until you are satisfied with the results.

 Integrate with your system: Integrate the I2C circuit into your larger system, as
required.

5. Program:

 ;Define i2c pins
 SDA EQU P1.0
 SCL EQU P1.1
 ;I2C initialization

0000 I2C_INIT:MOV SDA, 1
0003 MOV SCL, 1
0006 RET

 ;I2C start condition
0007 I2C_START: MOV SDA, 1
000A MOV SCL, 1
000D MOV SDA, 0
0010 RET

 ;I2C stop condition
0011 I2C_STOP: MOV SDA, 0
0014 MOV SCL, 1
0017 MOV SDA, 1
001A RET

 ;I2C write
001B I2C_WRITE: MOV SCL, 0
001E MOV SDA, C
0020 MOV SCL, 1
0023 RET

 ;I2C read
0024 I2C_READ: MOV SCL, 0
0027 MOV SDA, 1
002A MOV SCL, 1
002D MOV C, SDA
002F RET

 ;I2C write byte
0030 I2C_WRITE_BYTE: MOV SCL, 0
0033 MOV SDA, C
0035 MOV SCL, 1
0038 JC ACK
003A RET

 ;I2C read byte
003B I2C_READ_BYTE: MOV SCL, 0
003E MOV SDA, 1
0041 MOV SCL, 1

271 | Microprocessor and Microcontroller

0044 MOV C, SDA
0046 RET
0047 ACK: MOV SCL, 0 ; I2C acknowledge
004A MOV SDA, 1
004D MOV SCL, 1
0050 RET

6. Output
 Reading data from an I2C device:

8051 microcontroller can read the data from the peripheral devices and
sensors through I2C device.

 Writing data to an I2C device:
8051 microcontroller writing data to the peripheral device through I2C then
acknowledge can be seen as output that data successfully written.

EXPERIMENT # 12

7. Name of the Experiment: Interface of LEDs with GPIO of ARM7TDMI Processor

8. Objectives: To interface LED devices with ARM7TDMI microcontroller and to turn
on/off the LEDs.

9. Hardware Requirement: IC-LPC2148, Point LEDs (8), 1K resistors (8)

10. Circuit Diagram: First, the PORT1 pins are configured as outputs using IO1DIR register.
Then in an infinite loop, the pins (or LEDs connected to them) are turned ON using IO1SET
register and turned OFF using IO1CLR register. A delay is introduced between the turning
ON and OFF of the LEDs using a “for” loop, so that the blinking of LEDs is visible. Figure
6.15 shows the LED connections to ARM-based MCU. The ARM7 LPC2148 advanced
development board has eight numbers of point LEDs, connected with I/O Port lines (P1.16 –
P1.23) to make port pins high.

272 | Microprocessor and Microcontroller

11. Program

#include <lpc214x.h>

int delay;

int main (void)

{

PINSEL2 = 0x00000000;

IO1DIR = 0xFFFFFFFF; // All the pins of PORT1 are configured as Output

while (1)

{

IO1SET = 0xFFFFFFFF; // Set Logic 1 to all the PORT1 pins i.e. turn on LEDs

for (delay = 0; delay<500000; delay++)

IO1CLR = 0xFFFFFFFF; // Set Logic 0 to all the PORT1 pins i.e. turn off LEDs

for (delay = 0; delay<500000; delay++)

}

return 0;

}

12. Results: LEDs will glow as per the program.

273 | Microprocessor and Microcontroller

Annexures

 OPCODES (HEX CODES) OF INTEL 8085 PROCESSOR

Sr. No. Mnemonics, Operand Opcode Bytes

1. ACI Data CE 2

2. ADC A 8F 1

3. ADC B 88 1

4. ADC C 89 1

5. ADC D 8A 1

6. ADC E 8B 1

7. ADC H 8C 1

8. ADC L 8D 1

9. ADC M 8E 1

10. ADD A 87 1

11. ADD B 80 1

12. ADD C 81 1

13. ADD D 82 1

14. ADD E 83 1

15. ADD H 84 1

16. ADD L 85 1

17. ADD M 86 1

18. ADI Data C6 2

19. ANA A A7 1

20. ANA B A0 1

21. ANA C A1 1

22. ANA D A2 1

23. ANA E A3 1

274 | Microprocessor and Microcontroller

24. ANA H A4 1

25. ANA L A5 1

26. ANA M A6 1

27. ANI Data E6 2

28. CALL Label CD 3

29. CC Label DC 3

30. CM Label FC 3

31. CMA 2F 1

32. CMC 3F 1

33. CMP A BF 1

34. CMP B B8 1

35. CMP C B9 1

36. CMP D BA 1

37. CMP E BB 1

38. CMP H BC 1

39. CMP L BD 1

40. CMP M BD 1

41. CNC Label D4 3

42. CNZ Label C4 3

43. CP Label F4 3

44. CPE Label EC 3

45. CPI Data FE 2

46. CPO Label E4 3

47. CZ Label CC 3

48. DAA 27 1

49. DAD B 09 1

50. DAD D 19 1

51. DAD H 29 1

52. DAD SP 39 1

53. DCR A 3D 1

54. DCR B 05 1

275 | Microprocessor and Microcontroller

Sr. No. Mnemonics, Operand Opcode Bytes

55. DCR C 0D 1

56. DCR D 15 1

57. DCR E 1D 1

58. DCR H 25 1

59. DCR L 2D 1

60. DCR M 35 1

61. DCX B 0B 1

62. DCX D 1B 1

63. DCX H 2B 1

64. DCX SP 3B 1

65. DI F3 1

66. EI FB 1

67. HLT 76 1

68. IN Port-address DB 2

69. INR A 3C 1

70. INR B 04 1

71. INR C 0C 1

72. INR D 14 1

73. INR E 1C 1

74. INR H 24 1

75. INR L 2C 1

76. INR M 34 1

77. INX B 03 1

78. INX D 13 1

79. INX H 23 1

80. INX SP 33 1

81. JC Label DA 3

82. JM Label FA 3

83. JMP Label C3 3

84. JNC Label D2 3

276 | Microprocessor and Microcontroller

85. JNZ Label C2 3

86. JP Label F2 3

87. JPE Label EA 3

88. JPO Label E2 3

89. JZ Label CA 3

71. INR C 0C 1

72. INR D 14 1

73. INR E 1C 1

74. INR H 24 1

75. INR L 2C 1

76. INR M 34 1

77. INX B 03 1

78. INX D 13 1

79. INX H 23 1

80. INX SP 33 1

81. JC Label DA 3

82. JM Label FA 3

83. JMP Label C3 3

84. JNC Label D2 3

85. JNZ Label C2 3

86. JP Label F2 3

87. JPE Label EA 3

88. JPO Label E2 3

89. JZ Label CA 3

90. LDA Address 3A 3

91. LDAX B 0A 1

92. LDAX D 1A 1

93. LHLD Address 2A 3

94. LXI B 01 3

95. LXI D 11 3

96. LXI H 21 3

97. LXI SP 31 3

98. MOV A, A 7F 1

277 | Microprocessor and Microcontroller

99. MOV A, B 78 1

100. MOV A, C 79 1

101. MOV A, D 7A 1

102. MOV A, E 7B 1

103. MOV A, H 7C 1

104. MOV A, L 7D 1

105. MOV A, M 7E 1

106. MOV B, A 47 1

107. MOV B, B 40 1

108. MOV B, C 41 1

109. MOV B, D 42 1

110. MOV B, E 43 1

111. MOV B, H 44 1

112. MOV B, L 45 1

113. MOV B, M 46 1

114. MOV C, A 4F 1

115. MOV C, B 48 1

116. MOV C, C 49 1

117. MOV C, D 4A 1

118. MOV C, E 4B 1

119. MOV C, H 4C 1

120. MOV C, L 4D 1

121. MOV C, M 4E 1

122. MOV D, A 57 1

123. MOV D, B 50 1

124. MOV D, C 51 1

125. MOV D, D 52 1

126. MOV D, E 53 1

127. MOV D, H 54 1

128. MOV D, L 55 1

129. MOV D, M 56 1

130. MOV E, A 5F 1

131. MOV E, B 58 1

132. MOV E, C 59 1

278 | Microprocessor and Microcontroller

133. MOV E, D 5A 1

134. MOV E, E 5B 1

135. MOV E, H 5C 1

136. MOV E, L 5D 1

137. MOV E, M 5E 1

138. MOV H, A 67 1

139. MOV H, B 60 1

140. MOV H, C 61 1

141. MOV H, D 62 1

142. MOV H, E 63 1

143. MOV H, H 64 1

144. MOV H, L 65 1

145. MOV H, M 66 1

146. MOV L, A 6F 1

147. MOV L, B 68 1

148. MOV L, C 69 1

149. MOV L, D 6A 1

150. MOV L, E 6B 1

151. MOV L, H 6C 1

152. MOV L, L 6D 1

153. MOV L, M 6E 1

154. MOV M, A 77 1

155. MOV M, B 70 1

156. MOV M, C 71 1

157. MOV M, D 72 1

158. MOV M, E 73 1

159. MOV M, H 74 1

160. MOV M, L 75 1

161. MVI A, Data 3E 2

162. MVI B, Data 06 2

163. MVI C, Data 0E 2

164. MVI D, Data 16 2

165. MVI E, Data 1E 2

166. MVI H, Data 26 2

279 | Microprocessor and Microcontroller

167. MVI L, Data 2E 2

168. MVI M, Data 36 2

169. NOP 00 1

170. ORA A B7 1

171. ORA B B0 1

172. ORA C B1 1

173. ORA D B2 1

174. ORA E B3 1

175. ORA H B4 1

176. ORA L B5 1

177. ORA M B6 1

178. ORI Data F6 2

179. OUT Port-Address D3 2

180. PCHL E9 1

181. POP B C1 1

182. POP D D1 1

183. POP H E1 1

184. POP PSW F1 1

185. PUSH B C5 1

186. PUSH D D5 1

187. PUSH H E5 1

188. PUSH PSW F5 1

189. RAL 17 1

190. RAR 1F 1

191. RC D8 1

192. RET C9 1

193. RIM 20 1

194. RLC 07 1

195. RM F8 1

196. RNC D0 1

197. RNZ C0 1

198. RP F0 1

199. RPE E8 1

200. RPO E0 1

280 | Microprocessor and Microcontroller

201. RRC 0F 1

202. RST 0 C7 1

203. RST 1 CF 1

204. RST 2 D7 1

205. RST 3 DF 1

206. RST 4 E7 1

207. RST 5 EF 1

208. RST 6 F7 1

209. RST 7 FF 1

210. RZ C8 1

211. SBB A 9F 1

212. SBB B 98 1

213. SBB C 99 1

214. SBB D 9A 1

215. SBB E 9B 1

216. SBB H 9C 1

217. SBB L 9D 1

218. SBB M 9E 1

219. SBI Data DE 2

220. SHLD Address 22 3

221. SIM 30 1

222. SPHL F9 1

223. STA Address 32 3

224. STAX B 02 1

225. STAX D 12 1

226. STC 37 1

227. SUB A 97 1

228. SUB B 90 1

229. SUB C 91 1

230. SUB D 92 1

231. SUB E 93 1

232. SUB H 94 1

233. SUB L 95 1

234. SUB M 96 1

281 | Microprocessor and Microcontroller

235. SUI Data D6 2

236. XCHG EB 1

237. XRA A AF 1

238. XRA B A8 1

239. XRA C A9 1

240. XRA D AA 1

241. XRA E AB 1

242. XRA H AC 1

243. XRA L AD 1

244. XRA M AE 1

245. XRI Data EE 2

246. XTHL E3 1

REFERENCES FOR FURTHER LEARNING

1. John P. Hayes. Computer Architecture and Organization. 3rd ed. Singapore: McGraw-

Hill International Edition, 1998
2. K.M. Bhurchandi and A.K. Ray, ADVACNED MICROPROCESSORS AND

PERIPHERALS, 3rd ed. Tata McGraw-Hill, New Delhi, 2013.
3. M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and

Embedded System. 2nd ed. New Jersey, Pearson Prentice Hall, 2006.
4. Ramesh Gaonkar. Microprocessor Architecture, Program ming, and Applications with

the 8085. Fifth Edition: Peram International Publishing (India) Private Ltd. 2012.
5. Manish Patel “Question Paper with Solution the 8051 Microcontroller Based

Embedded Systems, www.slideshare.net, 1 Mar. 2001.

6. Barry B. Brey. The Intel Microprocessors, Architecture, Programming and Interfacing.

PHI, 2004, 6th Edition, Copyright 2003.

7. Kenneth J. Ayala. The 8051 Microcontroller. St. Paul, MN, WEST PUBLISHING
COMPANY, 1991

8. Santanu Chattopadhyay. Embedded System Design. 2nd ed. PHI Learning Private Ltd.
New Delhi, 2016.

9. https://www.eeeguide.com
10. https://www.computer.org
11. https://www.researchgate.net
12. https://www.slideshare.net

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after the
completion of the course and a correlation can be made for the attainment of POs to analyze the gap.
After proper analysis of the gap in the attainment of POs necessary measures can be taken to overcome
the gaps.

Table for CO and PO attainment

Course
Outcome

s

Expected Mapping with Programme Outcomes
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12

CO-1 3 2 2 2 1 - - - - - - -

CO-2 3 3 2 2 - - - - - - - -

CO-3 3 3 2 - - - - - - - - -

CO-4 3 3 3 2 2 - - - - - - -

CO-5 3 2 2 2 1 - - - - - - -

CO-6 3 3 3 2 1 - - - - - - -

The data filled in the above table can be used for gap analysis.

283 | Microprocessor and Microcontroller

Index

Accumulator, 62, 63, 64, 91, 127, 128,
129, 131, 135, 183

Advanced, 212, 213

Addressing modes, 1,17, 36, 37, 38, 90,
98, 99, 100, 222,223, 244

Address frame, 201

ADCs, 160,161,162, 163, 164, 178, 179,
180, 252, 253

ALU, 8, 9, 15, 16, 221, 222, 232

AMD, 53

Analog, 160, 161, 162, 163

Analog signal, 178

Architecture, 1, 14, 32, 213, 219, 224,
225,227, 229, 233

Arithmetic instructions, 110

ARM microcontrollers, 243, 249

ARM processors, 243, 244

ARM architecture, 246, 247

ARM instructions, 247

ARM6, 243, 245, 246

ARM7, 243, 255

ARM11, 243

ARM Cortex, 243, 247

ARMTDMI, 246, 248

Assembly language, 1, 11, 77, 78, 79, 81,
88, 117

Asynchronous, 192, 196

Arduino, 194

Automation systems, 195

Baud rates, 192

BCD, 118, 119

Packed, 119

Unpacked, 118

Brain, 1, 2

Bus, 147

 interface, 221, 225, 226, 227, 228, 230

Bus controller, 32

Binary data, 1

 manipulated, 1

bit-addressable, 103, 106, 107, 143

bit manipulation, 113

Bidirectional multiplexers, 239

Bluetooth, 207, 208, 209

Buffer, 216, 230, 231, 232

Calculator, 3

Call and return, 4

Cache, 229, 230, 232

memory, 213, 215, 216, 217, 239

 tag, 217

Checksum, 138, 139

Chip select, 182, 186

CISC architecture, 241, 242

CISC processor, 213, 241

Control register, 238

284 | Microprocessor and Microcontroller

Compatible, 5

Computer, 1, 193, 195

Computation, 3

Compilers, 4, 11, 92

Communication, 190, 191, 192, 193, 194,
200, 207, 208

Controller, 32

Control word, 183, 184

 unit, 226, 228, 230

CMOS, 5

CPU, 2,5,8, 50, 95, 147, 148, 216,224

Data processing, 2, 20, 22

Digital computer, 2

Digital data, 4

Direct addressing, 37, 99, 101

Directives, 78, 80

Data transfer, 82, 108,192

transmission, 194, 195, 196

Data memory, 216

Data frame, 201

DCE, 192, 193

DMA, 31

 Controller, 31

DTE, 192, 193

Evolution, 1

Embedded Systems, 1,2,6, 52, 53,54

 characteristics, 2

 applications, 2

Execution, 2, 27, 213, 233

 cycle, 27

 unit, 224, 226, 228, 230

External memory, 149, 153

Flag, 35, 36, 67, 228, 229

Flag registers, 35, 40, 66, 238

Floating-point, 226, 228,

instruction, 232

 operations, 233

 unit, 233, 236, 237

 registers, 236

 pipeline, 233

FPGAs, 53

Fundamentals, 1

 of microcontrollers, 1, 7

 of 8051, 1,

generations, 3

general purpose registers, 244

general purpose pin, 250

GPIO pin, 251, 252, 253, 254

growth, 1

history, 1

high level language, 1

hit, 216

IBM PowerPC, 242

ICs, 4,5

Immediate addressing, 17, 37, 98

Implicit addressing, 19

Indexed addressing, 102

Indirect addressing, 37, 100, 101

interrupts, 1, 30, 31, 45, 46, 47, 60, 147,
148, 246

interprets, 2, 14

285 | Microprocessor and Microcontroller

instructions, 2, 20, 39, 40, 41,42, 43, 44,
81, 82, 83, 88, 90, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 119, 120, 124,
129, 183, 231, 232, 244

 unit, 221, 224

set, 107,

level, 214

instruction cycle, 1, 25, 26, 27

instruction level parallelism, 214, 244

interfacing, 146, 150, 155, 156, 160, 176,
178, 181, 182, 184, 188, 255

I2C, 191, 199, 200, 202, 203

I/O, 7, 8

 operations, 13,

 bus 147, 148

 signals, 148

 devices, 221

Keyboard, 170, 171, 172,

program, 174

subroutine, 174

LCDs, 164, 165, 166, 167, 170

LEDs, 176, 177, 255

Load/store instructions, 246

Logical operations, 83,112

Look through, 217, 218

Loo-aside, 217

LPC2148MCU, 255

LPC2148, 253, 254

microcontroller, 249

Machine language, 10

 cycle, 25, 84, 88

Mapping, 218

Master, 197, 198, 199

MAC layer, 205

Memory, 5,6,7, 13, 73, 146, 147, 153, 216

 capacity, 149

 chip, 149

 management, 219, 224, 225, 228,

 240

 locations, 21, 22, 23, 26, 95, 100

Memory mapped, 246

Memory operations, 147

Memory subsystem, 239

Microprocessors, 1, 2, 6,11, 181, 199,
218,223,

Microprogram, 228

Microcomputers, 8, 10

Microcontroller, 48, 49, 50, 51, 52, 61, 80,
84, 86, 136, 140, 146, 171, 199, 247, 194

Minimum mode, 30

Maximum mode, 30

Miss, 216

Mnemonics, 1, 77, 78, 81, 82, 91, 108, 110

MOSI, 198

Moore’s law, 5

MISO, 198

Multiplexed, 12, 29

Multi-master bus, 202

NOP, 115, 116

On-chip, 150, 152, 153

Operating system, 4

 modes, 224

Oscillator, 71, 72, 250

286 | Microprocessor and Microcontroller

Organization, 216

overview 1

 of 8085 microprocessors, 1, 11,14,

16, 33, 54

 of 8086 microprocessors, 1, 36, 54

 of 8051, 1, 54, 60, 61, 73, 80, 81,

86, 87, 90, 95, 140, 151

8051 microcontroller, 62, 80, 81, 84, 90,
91, 108, 110, 115, 117

Overflow, 125, 127

Parallelism, 214

Paging unit, 225

PC, 116

PCB, 199

Peripherals, 13, 45, 146, 147, 179

Peripheral devices, 155

Pentium processor, 229, 230, 231, 232,
233, 234, 235, 237, 239

Piconet, 208

Pipeline, 213, 220, 221, 226, 229, 230, 234

Ports, 75, 76, 77

Processors, 1, 212, 213, 214, 229, 232

80286 processor, 218, 220, 221

80386 processor, 223, 224

80486 processor, 226

Programs, 2, 6, 78

Program control, 23

Program memory, 50, 60

Programmable, 2

 logic device, 2

integrated circuit, 2

input/output, 48

peripheral interface, 179

Progress, 1

 in semiconductor technology, 1

 microcomputer systems, 1

 personal computer, 48

Program Counter (PC), 64, 65, 244, 245

Physical address, 215, 216, 220, 231

 memory, 225, 229

PLCs, 194

Protocol, 190, 192, 195, 200

PCB, 199

PUSH, 100

Pulse width modulation, 250

POP, 100

RISC processor, 213, 241, 242, 243

RISC architecture, 241

RS232, 190

RS485, 191, 194, 195

RAM, 50, 51, 52, 60, 68, 70, 71, 100, 101,
103, 104, 105, 120, 148, 246

Raspberry Pi, 194

Reset, 65, 71, 72, 73

Register, 65, 66, 70,73, 74, 94, 221, 222,
223

Reprogrammable systems, 6

Register addressing, 37

Register bank, 70

ROM, 50, 51, 52, 60, 67, 97, 101, 102,
138, 140, 150, 151, 152, 153, 228, 230

Rotate, 131, 132, 133

287 | Microprocessor and Microcontroller

Scatter-net, 208

Segment, 32, 33, 34, 35

Serial communication, 192

signed, 93, 94, 110, 127, 141, 142

single master, 202

slave, 197, 198, 199

split cache, 239

stack pointer, 64, 71

stepper motor, 184, 187, 188

SRAM, 216

subroutine, 24,95, 96, 97

superscalar, 213, 233, 235

SoC, 48

SUN Sparc, 242

SPI, 196

Special register, 65

Synchronous, 192, 196

Technology, 203, 216, 218, 223, 226, 229

Timer, 74, 75, 181

Topologies, 206

Unified cache, 218

Unsigned, 93, 110, 117, 121, 122, 123,
127, 142

User-defined flags, 66

Virtual memory, 215, 225

 Address, 215, 216, 219

ZigBee, 203, 204, 205, 206, 209

