st A T e afitg

All India Council for Technical Education

Exigirai fnermapis

imMerrupt Controd

MIGIIIII'III]I}ESSIIH
MIBHUGUNTIIIIII.EII

Saurabh Chaudhury
Risha Mal

Il Year Degree leval book as per AICTE model curricelum

|Basad upan Dutcome Based Education as per Mational Education Policy 2020,
The book is reviewed by Shri Hariharan Seshadri

Microprocessor
and
Microcontroller

Authors
Prof. Saurabh Chaudhury Dr. Risha Mal

Professor, Associate Professor,
Department of Electrical Department of Electrical
Engineering, National Institute of Engineering, National Institute
Technology, Silchar, Assam of Technology, Silchar, Assam

Reviewer

Dr. Hariharan Seshadri
Associate Professor,
Department of ECE, Indian Institute of Information Technology,
Kanchipuram, Chennai

All India Council for Technical Education

Nelson Mandela Marg, Vasant Kunj,
New Delhi, 110070

(i)

BOOK AUTHOR DETAILS

Prof. Saurabh Chaudhury, Professor, Department of Electrical Engineering, National Institute of
Technology, Silchar, Assam.

Email ID: saurabh@ee.nits.ac.in

Dr. Risha Mal, Associate Professor, Department of Electrical Engineering, National Institute of
Technology, Silchar, Assam.

Email ID: risha@ee.nits.ac.in

BOOK REVIEWER DETAILS

Dr. Hariharan Seshadri Associate Professor, Department of ECE, Indian Institute of Information
Technology, Kanchipuram, Chennai

Email ID: hari.seshadri@jiitdm.ac.in

BOOK COORDINATOR (S) — English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for
Technical Education (AICTE), New Delhi, India
Email ID: director.fdc@aicte-india.org

Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for Technical
Education (AICTE), New Delhi, India
Email ID: adlfdc@aicte-india.org

Phone Number: 011-29581339
March, 2023
© All India Council for Technical Education (AICTE)
ISBN : 978-81-960576-9-5

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or
any other means, without permission in writing from the All India Council for Technical
Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be
obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

@ @ @ Attribution-Non Commercial-Share Alike 4.0 International
’ (CC BY-NC-SA 4.0)

Disclaimer: The website links provided by the author in this book are placed for informational,
educational & reference purpose only. The Publisher do not endorse these website links or the views
of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be settled
under Delhi Jurisdiction, only.

i e e
mﬂn mwu#mﬁ“
Frm dwan e HET
e i o e g o o

oo TR
gt & oht Hrem ey AW | e s .o
SR BLL INDRA COUMGIL FOR TECHMICAL EDUCATION

A STATLITESA Y B OF THE ‘T £6° bk

Prof. T. G. Sitharam ;!-$: bty of Eouration Gerd. of 1l

Chalmman T & hirach Wiiedik Merg mm P Dt 00T
A Hpl=E E-mail : chaimmarnifiaciesrcia oy
FOREWORD

Engreem ane (e backberm of e medam sockty. b fhrough them that engneenng marveks
e Fappaersad and impececd qualty of 1de across the word. They have drven humanity 1owanss.
greata Feighile in A mors el AN LRpIeDedEnicd mannes

Tha A0 Ieeks Councd dor Tachnas Edusatan I:J\]ETE'; led from She frord and asssied shidenss
Taculy & PeSiucors I every possibl manner jowards Be sheagisening of he jechmcs
educalionan ha couniry AKCTE s aways warking iowands pramobing guakty Technical Education
1 kil Indlia @ maademn developed naton with he regrataon of modern knowledge £ iradibona)
kniadadge tor tho wetan of mankend

An amay af initiaines have been faken by AICTE in las decade which have bban sccaianag now
by the Mational Educasion Palcy (MEF] 2032 The implémsnision of NEF under the waionary
wadership of Han'ble Pime Mirster of India ervissges the pranigion Ter sducaicn in regional
languages to al iheweby ersuning thal every graduste bcormas comgmlent anaugh And s ina
positon o contibite fosards the natonal growih and deselopment ihrough nnevation &
enirepreneursTip

One of the sphanes where AICTE had been relenbessly working smee J021-22 e pravdding hon
gualily boais prepered and trarelated ty emicedl educabon nowakous indian langueges o s
engroing shodents al Under Gradisste & Diplomd level. For the seeand yoar siudents, MICTE
has idanithed 88 books at Linder Graduste and Diplomss Lewed coursss. for iransiatan o 12 indian
languzges - Hodi Tamil, Gugati, Oda, Bangali, Harmpda, Urdu Pun@asl. Telugu, Maralhi,
Aasamese B Malayalsm |6 sddiice (o the Englah madium. tho 1056 boois in difencnt ndian
Languapges ars gamg to suppor 10 engireering students 1o keem in heir mathor sangus, Curently,
there are 39 irstfuticrs in 11 =iales cifenng coursés i Indian languages i cisoplines ke
Bipmecical Engineering, Chil Engineerrg, Comguier Bcionco & Engropnng, Elecincal
Ergnesing. Eedrecncs & Commirmalien Engingadng, Information Technology Enginaenng &
Meactamcal Enginesning, Archilechue, and Infiangr Desigring. This will become possibie due to
active mmvalvemanl &aad Bupport of universiestrelidicrs in ciferart stains

O bebad of AICTE, | gxprass gmiane grallede 1o 80 Qiglinguishm? authors, nedswers and
trarslators from diffenes ITS, MNITS and i ingliuions S 1had admirabie conlribution ina wery
sheorl span of ma.,

MICTE in confiden that these aul comes bagsed becka wih tal righ contant wil heip lechnical
shidents master (he subpcis wilh fAchor comprefanEon And reEior Case

TSy _

iPred T G Seharam)

(v)

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. T. G. Sitharam,
Chairman; Dr. Abhay Jere, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary and
Dr Amit Kumar Srivastava, Director, Faculty Development Cell for their planning to publish
the books on Microprocessor and Microcontroller. We sincerely acknowledge the valuable
contributions of the reviewer of the book Dr. Hariharan Seshadri, Associate Professor,
Department of ECE, Indian Institute of Information Technology Kancheepuram for reviewing
each chapter minutely, pointing out the errors and for his useful suggestions to enrich the write
up and as a whole in giving a better shape of the book.

Further, [would like to thank NIT Silchar for giving a conducive environment to perform the
task of writing this book. I express my sincere gratitude to my teachers, mentors in building up
a sound knowledge of the subjects like, Digital Electronics, Computer Architecture,
Microelectronics, DSP etc. which helped me in writing this book.

I sincerely acknowledge the helping hand of my co-author Dr. Risha Mal for contributing a
few chapters and Mr. Jayanta Kar, Md. Sheikh, for their support in verifying the lab
experiments through physical connections through microprocessor and microcontroller Kkits,
also, in listing the content of the book. Special thanks to my family members, specially my
mother, Kiron Bala Choudhury for her constant encouragement, my wife, my son and my
daughter Subhashree for their constant support and inspiration towards the completion of the
book.

This book is an outcome of various suggestions of AICTE members, experts and authors who
shared their opinion and thought to further develop the engineering education in our country.
Acknowledgements are due to the contributors and different workers in this field whose
published books, review articles, papers, photographs, footnotes, references and other valuable
information enriched us at the time of writing the book.

Prof. Saurabh Chaudhury
Dr. Risha Mal

Q)

PREFACE

The book titled “Microprocessor and Microcontroller” is an outcome of the rich experience of our
teaching the subject and exposure to various other fundamental courses. This book aims at giving the
readers specially, the second-year undergraduate students a thorough knowledge of microprocessors
and microcontrollers in a best possible way. It is written in a very lucid manner so as to understand the
underlying concepts easily. Keeping in mind the purpose of wide coverage as well as to provide
essential supplementary information, we have included the topics recommended by AICTE, in a very
systematic and orderly manner throughout the book. The book begins with a brief history on the
evolution of computers and processors for making the subject interesting. Further, starting from the
very basic microprocessor 8085 and the basic microcontroller 8051, the book gradually progresses
towards advanced microprocessors and microcontrollers in the most appropriate manner. Looking into
the level of maturity of students, the contents are covered in depth, explained in a reader-friendly
manner with explanatory examples and designed appropriately. The book gives a comprehensive view
of microprocessors and microcontrollers which would be also useful for self-study purposes.

During the process of preparation of the manuscript, we have considered the various standard text
books and accordingly we have developed sections like critical questions, solved and supplementary
problems etc. Apart from illustrations and examples as required, we have enriched the book with
numerous solved problems in every unit for proper understanding of the related topics. Under the
common title “Microprocessors and Microcontrollers” there are many books. However, most of the
books have given emphasis to one particular microprocessor or microcontroller and none is complete
in the sense of current book, where, we have included the basic microprocessor, 8085 and progressed
through 8086 to some of the advanced microprocessors such as Pentium. Similarly, starting with 8051
microcontroller we have given coverage to ARM based microcontrollers which is the core component
of any embedded system today. Further, we have included the relevant laboratory practicals and
presented it in the form of a manual in appendix which the students will find easy to perform
experiments. Annexure includes the hex code corresponding 8085 assembly language.

As far as the present book is concerned, it is meant to provide a thorough understanding on
microprocessors and microntrollers on the topics covered. This book will prepare students to apply the
knowledge in solving engineering challenges and many real-life problems. The subject matters are
presented in a constructive manner so that an Engineering degree prepares students to work in different
sectors or in research centres at the very forefront of technology.

We sincerely hope that the book will inspire the students to learn architectural innovations and
programming skills of various microprocessors and microcontrollers which will surely contribute to
the development of a solid foundation of the subject. We would be thankful to all beneficial comments
and suggestions which will contribute to the improvement of the future editions of the book. It gives us
immense pleasure to place this book in the hands of the students. It was indeed a big pleasure to work
on different aspects of coverage in the book.

Prof. Saurabh Chaudhury
Dr. Risha Mal

(i)

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop an
outcome based curriculum and incorporate an outcome based assessment in the education
system. By going through outcome based assessments evaluators will be able to evaluate
whether the students have achieved the outlined standard, specific and measurable outcomes.

With the proper incorporation of outcome based education there will be a definite commitment

to achieve a minimum standard for all learners without giving up at any level. At the end of the

programme running with the aid of outcome based education, a student will be able to arrive
at the following outcomes:

PO1.

PO2.

PO3.

POA4.

POS.

PO6.

PO7.

POS8.

PO9.

PO10.

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex
engineering problems.

Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

Design / development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member
or leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

(vii)

PO11.

PO12.

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in multidisciplinary
environments.

Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

(viii)

COURSE OUTCOMES

After completion of the course the students will be able to:

Students will be able to:

CO-1: Understand and Compare Fundamentals of Microprocessors and Microcontrollers
CO-2: Illustrate Architecture of AT 8051Microcontroller

CO-3: Implement Assembly Language Programs for Data Manipulation

CO-4: Interface I/O and Peripheral Devices with AT 8051 Microcontroller

CO-5: Implement Communication Standards and Protocols

CO-6: Understand Architecture of ARM (RISC) Microcontroller

(ix)

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the students
should be enhanced. Teachers should take a major responsibility for the proper
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE
system may be as follows:

Within reasonable constraint, they should manoeuvre time to the best advantage of all
students.

They should assess the students only upon certain defined criterion without considering
any other potential ineligibility to discriminate them.

They should try to grow the learning abilities of the students to a certain level before
they leave the institute.

They should try to ensure that all the students are equipped with the quality knowledge
as well as competence after they finish their education.

They should always encourage the students to develop their ultimate performance
capabilities.

They should facilitate and encourage group work and team work to consolidate newer
approach.

They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level Teacher should Student should be Possible Mode of
Check able to Assessment
Create Students ability to Design or Create Mini project
create
Students ability to .
Evaluate justify Argue or Defend Assignment
Analyse Students ability to Differentiate or Project/Lab
Y distinguish Distinguish Methodology
Appl Students ability to Operate or Technical Presentation/
PPl use information Demonstrate Demonstration
Studer}ts abl!‘ty to Explain or Classify Presentation/Seminar
explain the ideas
Students ability to .
recall (or remember) Define or Recall Quiz

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the
responsibilities (not limited to) for the students in OBE system are as follows:

Students should be well aware of each UO before the start of a unit in each and every

course.

Students should be well aware of each CO before the start of the course.
Students should be well aware of each PO before the start of the programme.
Students should think critically and reasonably with proper reflection and action.

Learning of the students should be connected and integrated with practical and real life

consequences.

Students should be well aware of their competency at every level of OBE.

)

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

Abbreviations Full form Abbreviations Full form
A/D Analog to digital ALU Arithmetic/logic unit
ARM Advanced RISC Machines ALE Address Latch Enable
BTB Branch target buffer ASCII American Standard Code for
Information Interchange
CISC Complex instruction set BIU Bus interface unit
computer
CPI Cycles per instruction BCD Binary coded decimal
CU Control Unit CWR Control word register
CPU Central Processing Unit CSMA Career sense multiple access
collision avoidances
DMA Direct Memory Access IR Instruction Register
DTE Data terminal equipment 12C Inter-Integrated Circuit Bus
DCE Data Communication LIFO Last in first out
Equipment
EU Execution unit LSB Least significant bit
FPU Floating point unit FPGAs Field programmable gate
arrays
GPU Graphics Processing Unit INTR Interrupt Request
/0 Input/output ICs Integrated Circuits
MAC Media Access Control NMI Non-maskable interrupt
MMU Memory management unit MCU Microcontroller unit
SuU Segmentation Unit SoC System on Chip
PC Personal computer ROM Read only memory
PU Paging unit RAM Random access memory
UART Universal Asynchronous Data MPU Microprocessor unit
Receiver & Transmitter
SCADA Supervisory Control and Data MIPS Million instructions per
Acquisition second
WPAN wireless personal area RISC Reduced instruction set
networks computer
SPI Serial Peripheral Interface SFRs Special function registers
MOS Metal-oxide semiconductor SR Status Register
VLSI Very large-scale integration PSW Program status word
TLB Translational look-aside MSB Most significant bit

buffer

(xi)

List of Symbols

Symbols Description Symbols Description
ty Data hold time T T-states
tosw Data set up time f Clock frequency
tpwH Enable pulse width

(xif)

Unit 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9 (a)
1.9 (b)
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
Unit 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
Unit 3
3.1
Unit 4
4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

Fundamentals of Microprocessors and Microcontrollers

Brain Vs. Computer

Growth in IC (Processors) in terms of transistor counts over the years
General-purpose computing system with Microprocessor as CPU
Basic architecture of Microcontroller

General organization of a Microprocessor based system
8085 Microprocessor pin layout and associated signals
Pin layout of 8085 according to signal groups
Architecture of 8085

Format of immediate addressing

Program memory and immediate data

Direct Addressing Mode

Register Direct Addressing Process

Indirect Addressing Process

Opcode fetch machine cycle

Execute cycle

Pin Diagram of 8086 Microprocessor

Internal Architecture of 8086 Microprocessor
Classification of 8086 Interrupts

Architectural Diagram of a Microcontroller

8051 Microcontroller

Architecture of 8051

Detailed block diagram of 8051 microcontroller with internal registers
Various Storage Registers of 8051

Internal locations in ROM memory

RAM memory allocation in 8051

Stack operation and Stack Pointer locations

Clocking Circuit (Crystal Oscillator) of 8051

Reset Circuit of 8051

Port 0 connectivity for external memory

Flow chart of steps to create a program

Instruction Set and Programming

Bit Addressable RAM

Memories and I/O Interfacing

74LS373 D Latch

Circuit Diagram to Interface External ROM with 8051
Connection to External Program ROM

Off-chip Program Code Access

8051 Accessing 256K*8 External NV-RAM

(xiii)

0 N N L W

—_
—

14
16
16
17
17
17
24
25
27
31
41
47

56
57
58
62
64
66
66
67
70
73

96

139
140
140
141
142

4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421
422
Unit 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
Unit 6
6.1 (a)
6.1 (b)
6.1 (c)
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Interfacing LCD to 8051

LCD Timing Diagram

ADCB804 Chip

Data Conversion by the ADC804 Chip
ADCR804 Free Running Test Mode
LCD Timing Diagram for Read

LCD Timing Diagram for Write
Matrix Keyboard Connection to Ports
Flowchart for Program 12-4
7-Segment display of LED

74373 Latches for interfacing a 7-segment display

The Functional block diagram of the ADC 0808/0809 chip
The Circuit Diagram of Connecting 8085, 8255 and the ADC Converter

The block diagram of 8253

Interfacing 8253 with 8085

Chip Select Logic of 8253

Interfacing Diagram of Stepper Motor with 8085
External Communication Interface

Serial Communication

Parallel Communication

Data transmission process on the RS232

The Data transmission in RS232

Modbus Protocol

Single Master, Single Slave System

Connection of Multiple Slaves with Single Master
Data Transfer using [2C Interface

Single Master with Multiple Slaves

Single Master 12C Bus

Multi - Master I12C Bus

IEEE 802.15.4 and ZigBee role in the ISO/OSI stack
Node Diagram of Piconet and Scatter-net Network
Introduction to Advanced Processors and Concepts
Nonpipelined processing

Pipelined processing

Superscalar processing

Cache Memory organization and data access mechanism
Internal block diagram of 80286

Register set of 80286 Processor

Flag registers of 80286

Internal Architecture of 80386

Simplified Architecture of 80486

Internal Architecture of 80486

Flag registers of 80486

(xiv)

144
148
149
151
152
157
158
159
161
164
164
165
166
168
168
169
174

177
177
178
179
181
181
183
185
186
187
188
190
193

199
199
199
202
204
206
207
209
211
211
212

6.10
6.11
6.12
6.13
6.14
6.15 (a)
6.15 (b)
6.16
6.17

6.18
6.19
6.20

Internal Architecture of Pentium Processor
Detailed Architecture of Pentium

Superscalar processor organization in Pentium
Integer Pipeline of Pentium

Floating point of Pentium

Registers of Pentium Processor

Control and Debug registers of Pentium
Register banks of Pentium

Address translation in Pentium from linear to real physical address with
no page table

ARM 6 Architecture

LPC2148 Pin diagram

Interfacing LED to Microcontroller

CONTENTS

Foreword

Acknowledgement

Preface

Outcome Based Education

Course Outcomes

Guidelines for Teachers
Guidelines for Students

Abbreviations and Symbols

List of Figures

Chapter 1

1 Fundamentals of Microprocessors and Microcontrollers

1.1

Introduction
1.1.1 The Brain versus The Computer
1.1.2 History and Evolution of Computers
1.1.2.1 The Mechanical Era
1.1.2.2 Electronic Age
1.1.3 Growth in IC

()

214
215
217
228
219
221
221
222

223

228
233
238

Vi

vii

xi

Xiil

1-54

DN W W W NN -

1.2

1.3

1.4

1.5

1.6

1.1.4 Microprocessors versus Microcontrollers
The Microcomputer and the Microprocessor based System

1.2.1 Classification of Computers

1.2.2 Microprocessor Instructions and Programming
Languages

Overview of 8085 Microprocessor

1.3.1 PIN Diagram and Architecture of 8085

1.3.1.1 The Address Bus and Data Bus
1.3.1.2 Control and Status Signal
1.3.1.3 Power Supply and Clock Frequency Signals
1.3.1.4 Externally Initiated Signals and Interrupts
1.3.1.5 Serial I/O Signals
1.3.2 Architecture of 8085 Microprocessor
1.3.2.1 Addressing Modes
1.3.2.2 Instruction Set
1.3.2.3 Instruction Timing Diagram and Machine Cycle
8086 Microprocessor-An Overview
1.4.1 PIN Diagram of 8086
1.4.2 Architecture of 8086
1.4.2.1 General Purpose Registers of 8086
1.4.2.2 Segment Registers
1.4.2.3 Flag Registers
1.4.3 Addressing Modes of 8086
1.4.4 8086 Instruction Set
1.4.4.1 Data Transfer Instructions
1.4.4.2 Arithmetic Instructions
1.4.4.3 Bit Manipulation Instructions
1.4.4.4 String Instructions

1.4.4.5 Program Execution Transfer Instructions (Branch

and
Loop Instructions)
1.4.4.6 Processor Control Instructions

1.4.4.7 Iteration Control Instructions
1.4.4.8 Interrupt Instructions
1.4.5 8086 Interrupts
1.4.5.1 Hardware Interrupts
1.4.5.2 Software Interrupts
Microcontroller and Its Architecture

1.5.1 Types of Microcontrollers

1.5.2 Applications of Microcontrollers

1.5.3 Microcontroller Architecture

1.54 Comparison of 8-bit, 16-bit and 32-bit Microcontrollers
1.5.5 How to choose Microcontrollers?

Embedded Systems

1.6.1 Characteristics of Embedded Systems

(xvi)

O O 3 N

11
12
12
12
13
13
14
16
18
23
26
26
30
31
32
32
33
35
36
37
38
39

39

40
40
41
41
41
42
44
44
45
45
47
48
48
48

1.6.2 Role of Microcontrollers in Embedded System Design

Summary
Review Questions and Exercise
References
Chapter 2
2 8051 Microcontroller
2.1 Architecture of 8051
2.1.1 Storage Registers in 8051
2.1.2 Program Counter
2.13 The Stack Pointer
2.14 Reset Vector
2.1.5 The SFR of 8051
2.1.6 Program Memory or ROM Space in 8051
2.1.7 Data Memory or RAM
2.1.8 Register Banks in 8051
2.1.9 Stack in the 8051
2.1.10 Clock and Reset Circuit
2.1.11 Address, Data & Control Bus
2.1.12 Timers of 8051 and their Associated Registers
2.1.13 I/O Ports and their Functions
2.2 Assembly Language of 8051
2.2.1 Structure of Assembly Language
222 Assembling and Running an 8051 Program
2.23 Assembler Directives
2.2.4 Labels in Assembly Language
23 Instruction Set of 8051
2.3.1 Data Transfer Instructions
232 Arithmetic Instructions
2.33 Logical Instructions
234 Boolean or Bit Manipulation Instructions
2.3.5 Program Control or Branching Instructions
2.4 Timing and Machine Cycle for 8051
2.5 Assembly Language Programming of 8051
Summary
Review Questions and Exercise
References
Chapter 3
3 Instruction Set and Programming
3.1 Addressing Mode
3.2 Instruction Syntax
33 Data types and directives

3.3.1 Unsigned char
3.3.2 Signed char
333 Unsigned and signed Int

(xvii)

49
49
50
54
55-82
55
56
57
59
59
59
60
62
63
64
65
66
67
68
69
72
72
73
74
74
75
76
76
77
77
77
78
78
80
80
82
83-134
83
83
84
85
85
86
86

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11
3.12
3.13

3.3.4 Single Bit

335 Bit and sfr

Subroutines

3.4.1 Calling Subroutines

Addressing Modes

3.5.1 Immediate Addressing Mode

352 Register Addressing Mode

3.53 Direct Addressing Mode

354 Stack and Direct Addressing Mode

3.55 Indirect Addressing Mode

3.5.6 Indexed Addressing Mode and Onchip ROM Access
3.5.6.1 Indexed Addressing Mode and MOVX

3.5.7 Bit Inherent Addressing

3.5.8 Bit Addressable RAM

3.59 Registers Bit Addressability

8051 Instruction Set

3.6.1 Data Transfer Instructions

3.6.2 Arithmetic Instructions

3.6.3 Logical Instructions

3.6.4 Boolean or Bit Manipulation Instructions

3.6.5 Programming Branching Instructions

Instructions and Programs

3.7.1 Arithmetic Instructions

3.7.2 BCD Number System

3.7.3 DA Instruction

3.7.4 Unsigned Multiplication

3.7.5 Unsigned Division

Signed Arithmetic Instructions

3.8.1 Signed 8-Bit Operands

3.8.2 Overflow Problem

3.83 OV Flag

Logic and Compare Instructions

3.9.1 AND

3.9.2 OR

3.93 XOR

3.9.4 Complement Accumulator

3.9.5 Compare Instruction

Rotate Instruction and Data Serialization

3.10.1 Rotating Right and Left

Serializing Data

SWAP

BCD and ASCII Application Programs

3.13.1 Packed BCD to ASCII Conversion

3.13.2 ASCII to Packed BCD Conversion

(xviii)

86
87
88
&9
90
90
91
91
92
92
94
95
95
95
97
99
99
101
103
104
106
108
108
109
110
113
113
115
115
116
116
118
118
118
119
120
120
121
121
123
125
126
126
127

3.13.3 Using a Look-up Table for ASCII 128

3.13.4 Checksum Byte in ROM 128

3.13.5 Binary (Hex) to ASCII Conversion 129

3.14 Assembly Language Programs 129
3.14.1 Data Types 130

3.14.2 Unsigned Char 130

3.14.3 Signed Char 131

3.14.4 Unsigned and Signed Int 132

3.14.5 Bit and sfr 132

Review Questions and Exercise 133

References 134

Chapter 4 135-175
4 Memory and I/O Interfacing 135
4.1 Memory I/O Expansion Buses 135
4.2 Control and Status Signals 136
4.2.1 Three Status Signals -- IO/M, S0 & S1 136

422 Interrupts and External Initiated Signals 136

423 Serial I/0 Signals 137

4.3 Memory Wait States 137
4.3.1 External Memory Interfacing 137

43.2 Interfacing External ROM 138

433 Address/Data Multiplexing 140

434 Connection to External Program ROM 140

4.3.5 On-chip and Off-chip Code ROM 140

4.4 Interfacing to Large External Memory 141
4.5 Interfacing of Peripheral Devices 143
4.5.1 Interfacing LCD to 8051 144

452 Interfacing with ADC and Sensors 148

4.5.2.1 ADC Devices 148

4.5.2.2 ADC804 Chip 149

4.5.2.3 Vier /2 150

4.5.2.4 Vit /2 Relation to Vi, Range 150

4.5.2.5 ADC804 Free Running Test Mode 151

4.6 LCD Interfacing 152
4.6.1 Sending Information to LCD using MOVC Instruction 153

4.7 Keyboard Interfacing 158
4.7.1 Matrix Keyboard Connection to Ports 159

4.8 Interfacing 7 (Seven) Segment Display to 8085 Microprocessor 163
4.9 Interfacing ADC with 8085 Microprocessor 165
4.10 Interfacing 8253 (Timer IC) with 8085 Microprocessor 167
4.11 Interfacing 8253 with 8085 167
4.12 Interfacing Stepper Motor with 8085 170
Review Questions and Exercise 174
References 175

(xix)

Chapter 5 176-196

5 External Communication Interface 176
5.1 Synchronous and Asynchronous Communication 176
5.2 RS232 Serial Communication Protocol 176

5.2.1 Modes of Data Transfer in Serial Communication 177
52.2 Characteristics of Serial Communication 178
53 What is RS232? 178
5.3.1 Universal Asynchronous Data Receiver and Transmitter 178
(UART)
532 How RS232 Works? 179
54 RS485 179
5.4.1 How RS485 works? 180
54.2 Advantages of RS485 180
543 Applications of RS485 180
5.5 Introduction to Serial Peripheral Interface (SPI) 181
5.5.1 How does SPI work? 182
552 Steps of SPI Data Transmission 183
5.53 Advantages 184
554 Disadvantages 184
5.5.5 Application of SPI 184
5.6 Inter-Integrated Circuit Bus (12C) 185
5.6.1 12C Interface 185
5.6.2 12C Protocol 185
5.6.3 12C Configurations 187
5.7 What is ZigBee Technology? 188
5.7.1 How does ZigBee Technology work? 189
5.7.2 ZigBee Architecture 189
5.7.3 ZigBee Operating Modes and Its Topologies 191
5.7.4 ZigBee Topologies 191
5.7.5 Which devices use ZigBee? 191
5.8 What is Bluetooth? 192
5.8.1 How does Bluetooth Work? 192
5.8.2 Bluetooth Architecture 193
Review Questions and Exercise 195
References 196

Chapter 6 197-240

6 Introduction to Advanced Processors and Concepts 197
6.1 Pipeline vs Superscalar processing 198
6.2 Cache and Virtual Memory Concept 199
6.3 80286 Microprocessor 203

6.3.1 Architecture of 80286 204
6.3.2 Addressing Modes 207
6.4 80386 Microprocessor 208
6.4.1 Architecture of 80386 Processor 208

(oxx)

6.5 80486 Microprocessor
6.5.1 Architecture of 80486
6.5.2 Registers and Flag register of 80486
6.6 Pentium Processor
6.6.1 Architecture of Pentium
6.6.2 Branch Prediction
6.6.3 Integer pipelines U and V
6.6.4 Floating point unit
6.6.5 Register set of Pentium
6.6.6 Memory subsystem in Pentium
6.7 CISC Architecture
6.8 RISC Processors
6.9 RISC vs CISC
6.10 Architecture of ARM Microcontrollers
6.10.1 ARM Processors
6.10.2 ARM Microcontroller Pinout
6.10.3 GPIO Configuration
6.11 Interfacing LED with LPC2148 MCU
Summary
Review Questions
References
List of Tables
1.1 Machine cycles and status signals
2.1 List of SFRs and their address
2.2 List File in ROM
2.3 Instruction set of 8051 and types
3.1 Types of instructions
3.2 Data types, number of bits, bytes and range of values
33 Instructions that are used for signal-bit operations
3.4 Register bits and addresses
3.5 Data transfer mnemonics and its functions
3.6 Data transfer instruction with details
3.7 Arithmetic mnemonics and its functions
3.8 Arithmetic instruction with details
3.9 Logical instructions with details
3.10 Mnemonics of the logical instructions
3.11 Bit manipulation instructions with details
3.12 Mnemonics of the bit manipulation instructions
3.13 Program branching instructions with details
3.14 Mnemonics of the program branching instructions
4.1 Pin description for LCD

(xxi)

210
210
212
213
213
216
217
219
220
222
223
224
225
226
226
232
235
237
239
239
240

12
60
63
75
84
87
97
98
100
100
101
102
103
103
105
105
106
107
143

4.2 LCD command codes

43 LCD addressing for the LCD’s of 40x2 size

4.4 Veer /2 relation to Vinrange

4.5 LCD addressing for the LCDs of 40x2 size

4.6 The counter is being selected by using A1 and Ao pins of 8253

4.7 4 binary sequence/code used for rotation

4.8 8 binary sequence/code used for rotation

4.9 Chip select logic

4.10 Program in look-up table

5.1 The complete process of data transmission

5.2 Difference between ZigBee and Bluetooth

6.1 The ARM7TDMI instruction set
Appendices

Appendix A: List of Laboratory Experiments
Appendix B: Installation guidelines and introduction to IDE

Appendix C: Laboratory manual for performing experiments related to

microprocessors and microcontrollers

Annexures: Hex codes for 8085

CO and PO Attainment Table

References for Further Learning

Index

(xxip)

144
148
150
153
169
171
172
172
173
179
193
231

241
242
243-
253
254-
272

273-
281
282

282
283-
287

Chapter 1

Fundamentals of Microprocessors and
Microcontrollers

Key Features of Module-1

Definition and significance of microprocessors and microcontrollers
Brain vs Computer

History, growth and evolution of computers

Overview of 8085 and 8086 processors

Fundamentals of microcontrollers

Comparison of 8-bit, 16-bit and 32-bit microcontrollers
Microcontrollers for Embedded Systems design

Pre-requisites

e Fundamentals of Digital Electronics
e Basics of Computers

Module-1 Outcomes

e Students should be able to understand the fundamentals of 8085 and 8086 processors
specifically, the architecture, addressing modes and instruction set

e Students should be able to write assembly language programs for 8085 and 8086
processors

e Should be able to understand the fundamentals of microcontrollers, difference between
microprocessor and microcontroller

e Should be able to understand embedded systems and its characteristics and the role of
microcontrollers in the embedded systems applications

This chapter gives an overview of general structure of microprocessors and
microcontrollers, an analogy between the human brain versus computer, history, growth and
evolution of computers. Progress in microprocessors and advances in semiconductor
technology, microcomputer systems and the classification of computers are then illustrated. It
further introduces the readers about representation of data and how the binary data in the form
of 0 and 1 are manipulated by the processor when written in machine language, assembly
language (abbreviated form of instruction or mnemonics) or high-level languages such as
FORTRAN, BASIC, C, C++ or Java. The major component of the chapter is the overview of
8085 and 8086 microprocessors. It covers the architecture, instruction set, addressing modes,
interrupts, instruction cycles. The chapter also encompasses the fundamentals of
microcontroller architecture beginning with 8-bit microcontroller such as 8051 and then a
comparison of it with the other microcontrollers namely, 16-bit and 32-bit is also illustrated.
Lastly, at the end of the chapter a brief introduction is given to embedded systems and its
characteristics. Also, on how microcontrollers can be used to design an embedded system.

2 | Microprocessor and Microcontroller

1.1 Introduction

Microprocessor can be considered as the brain of a digital computer. It plays a significant role
in our day to day life in today’s digital era. It can be viewed as a programmable logic device
that can be used to control processes or can be used to turn on/off any mechanical, electrical or
electronic devices. Microprocessor can also be viewed as data processing or computing unit of
a computer or any other digital systems. It is a programmable integrated circuit capable of
computing and decision making similar to the central processing unit (CPU) of a computer.
Many a times the term microprocessor and CPU are used synonymously. Every computer, like
human brains, contains a processor able to interpret and execute programs; has a memory for
storing the programs and the data it processes; and has input output devices for transferring the
information from the computer to the outside world and vice-versa. Today we find the uses of
microprocessor enormous. Apart from the general computing systems, it is being widely used
in consumer products, medical equipment, smart cars and many other embedded applications.

1.1.1The Brain versus the Computer

From the time immemorial humans relied on their brains to perform calculations, as if they
were the computers. As the civilization progressed through many generations, a variety of
computing tools were invented but could not replace manual computations. But if the size and
complexity of the calculation increases, two major limitations of human computation that
become apparent.

e The speed at which human brains can compute is limited
e Humans are so badly prone to error.

Even with these limitations, we can make an analogy between the human brain and the
computer. Consider the course of actions needed by human brain in order to manually fill up
an income tax return form. First of all, human need paper to store information. The information
that can be stored include a list of instructions—more commonly known as programs,
algorithm or procedure (in the sense of digital computers) to carry out the calculation, as well
as numbers or data to be used. Some relevant information can be gathered either from radio,
television, newspaper, internet etc. We can consider them as input devices. Data processing
takes place in human brain which acts like the processor or CPU. During the process of
calculation human need to store intermediate results as well as final results on the paper (like a
memory or storage device). It is quite apparent that human brain performs two distinct
functions. First, it interprets the instructions and controls the flow of processing the instructions
and ensures that they are executed in a proper sequence. Secondly, the execution function that
includes some specific tasks such addition, subtraction, multiplication and division. Usually, a
calculator aids in doing such calculations to the brain. After the completion of the task, the
results may be uploaded over the internet or may be furnished to an organization which can be
considered as the output devices. Figure 1.1 illustrates, the analogy between the brain and the
computer.

3 | Microprocessor and Microcontroller

Central Processigg
|

InpulieApil eqwpmoid

Contral Proceting

LT

Feogpmm coriral InguifCigime
Ll ey i WETTIGHTY

Firstinsnl

B il Loggee ::u-l s Elafa

Fig.1.1: Brain Vs. Computer
1.1.2 History and Evolution of Computers

Like human civilization computers also have evolved through centuries for many generations
to reach to the level of today. People thought of computation and performing some elementary
operations such as addition, subtraction, multiplication and division long back in 16" century
or even earlier [1]. In those days these were some clever mechanical devices designed with
gears, levers, wheels and the like.

1.1.2.1 The Mechanical Era

e Blaze Pascal [1623-62], a French philosopher first invented an early, influential
mechanical calculator that could add or subtract decimal numbers.

e Qottfried Leibniz [1946-1716], in Germany extended Pascal’s design to perform
multiplication and division.

e Charles Babbage’s difference engine in the 19" century to perform multistep
operations automatically without human intervention at every step.

e Some later developments in the design of general-purpose program-controlled
computer includes Z1 in 1938 (still a mechanical computer from Germany), Z3 in
1941,

e an automatic calculator known as Harvard Mark I in 1944 from Harvard University.

1.1.2.2. Electronic Age

The mechanical computers suffered from two serious limitations: it is inherently slow in
computation because of its movable parts and the transmission of information by
mechanical means is unreliable. Moreover, the size is also very large. With the development
of electronic valves and vacuum tubes in early 1900, permitted the processing and storage
of digital data at a much higher speed than that of any mechanical device.
The first generation (1940-1950)

e First by John V. Atanasoff (1903-95), at lowa State University, in late 1930s

4 | Microprocessor and Microcontroller

The Electronic Numeric Integrator and Calculator (ENIAC) by Mauchly and Eckert
in the University of Pennsylvania, 1943-46

The first commercial product by Eckert-Mauchly Corp was UNIAC (Universal
Automatic Computer) in 1951.

IAS Computer, by von Neumann, at the Institute for Advanced Studies in Princeton
began to work on the design of a new stored program electronic computer, 1947

The second generation (1954-64)

Key Features

The vacuum tubes and electronics valves were soon replaced by bipolar junction
transistors, in 1947

the second-generation computers based on transistors soon replaced the first-
generation of vacuum tube-based machines

drastic reduction in size and cost and power.

Computational speed also enhanced to a great extent.

ferrite cores became the dominant technology for main memories until it is
superseded by the all-transistor memories in 1970s.

Magnetic disks became the principal technologies for secondary memories since
then.

With the introduction of index registers, it is possible to have indexed instructions,
which increments or decrements the designated index I.

Another innovation in second generation was the introduction of program-control
instructions: call and return which allow the linking of programs.

It allowed to perform operations on floating point numbers,

With the introduction of compilers in has become possible to write instructions in
high level language.

For system management, batch processing came into existence. Batch processing
makes use of supervisory program known as batch monitor which is a rudimentary
version of operating system, which is a system program designed to manage
computer’s resources efficiently.

The third generation (1965-75)

Key Features

introduction of silicon based integrated circuits (ICs) in the design of computer
hardware, in 1961

This replaced all the second-generation computers designed with discrete
transistors,

reduced size, cost and enhanced the speed.

The most significant event during this period was the recognition of the need to
standardize the computers,

more and more software were developed and used more efficiently.

IBM developed the most influential third-generation computer, the System/360
which was announced in 1964 and came in the year 1965.

Since then System/360 became the de-facto standard and all the models in the series
are software compatible with each other (share common instruction set).
Introduction of status register (SR) to save the program status word, for any
exceptional conditions, errors, divide by zero or any urgent service requests such
as interrupts.

5 | Microprocessor and Microcontroller

o The VLSI Era

With the advent of integrated circuits (IC) in 1959 at Texas Instruments [2] and its
commercialization in1961, the dominant technology for manufacturing the computer logic
circuits and memory has been the ICs. Initially, the ICs started with few transistors (less
than 100) and gradually progressed through technology advancements allowing more and
more devices to be accommodated in a single chip with the advent of metal-oxide
semiconductor (MOS) ICs. This has resulted in medium scale (MSI), large scale (LSI) and
very large scale integrated (VLSI) circuits containing 1000, 10000 and millions of
transistors, respectively. This allowed to fabricate CPU, main memory, multichip module
or even all the electronic circuits of a computer on a single chip at a very low cost [3]. This
is an enormous advancement allowing to develop a wide range of machines starting form

portable personal computers, microcontrollers to supercomputers containing thousands of
CPUs.

1.1.3 Growth in IC

With the invention of CMOS devices in 1960s there was a rapid growth in silicon-based
ICs. An enormous growth in processor design and in the design of memories had been
observed. Looking into pattern of growth in IC, Gordon Moore, a co-founder of Intel 1965
prophesies that growth in ICs will double in every 24 months, popularly known as Moore’s
law [4]. Fig. 1.2 shows the growth in ICs in processor hardware and future trend up to 2025.
It initially followed a linear rate, but after mid-1990s it deviated from Moore’s law and
followed an exponential growth rate. However, Moore’s law still remains a business
standard in other design fronts such as, in number of processor cores, in the design of
pipelining stages or in selecting the clock frequency for next generation computers.

EE+R1
MOORE"S
SCALING 27
o
BE& I e T
-y e g
PR S T
[T]
Ledeb of LTV isdd
E LD
=]
o
g LR TRE
=
b=
= 1000000
100800
Bl ln]
1800
154y (L Fi] 1S [R5 JOOE 1S T

YEAR

Figurel.2: Growth in IC (processors) in terms of transistor counts over the years
(Courtesy- ResearchGate)

6 | Microprocessor and Microcontroller

1.1.4 Microprocessor versus Microcontroller

Microprocessor is a programmable logic device, built on electronic circuit, which is capable
of taking binary instructions from a storage device called memory, operates on binary data
(input) according to the instructions and produces results (output). Usually, microprocessor
is the essential part of a general-purpose computing system. A typical programmable
computing system consists of four components: microprocessor, a high-speed memory,
input and output devices as shown in Fig.1.3. Any users program can be carried out using
these four components often known as the hardware. Users program is nothing but a set of
instructions. A group of programs is commonly known as software. Such a system can be
used to carry out any mathematical function or it can be used to design traffic light control.
Depending upon the type of applications, such a system can be simple or highly
sophisticated (high performing). Accordingly, the microprocessor can be implemented to
design reconfigurable processors, domain specific processors and application specific
processors apart from general purpose. However, we can in general classify the
microprocessors into two categories-reprogrammable systems and embedded systems. In
reprogrammable systems such as microcomputers, the microprocessor is used for
computing and data processing. Such a system includes a general-purpose processor, a mass
storage device, such as disk and CD-ROMs and peripheral devices such as, printers,
scanners: personal computer (PC) is a perfect example for this. While in embedded systems,
the microprocessor is used for specific task and it is not reprogrammable to the end users.
It is a part of the consumer product. Microprocessors used in such a system are categorised
as microcontrollers, which includes the components as shown in Fig.1.4. Microcontroller
is essentially an entire computer on a single chip which houses, memory, I/O interfacing
circuits, A/D converters, serial I/O and timers. While embedded systems can be viewed as
products or systems that use microprocessor or a microcontroller to perform a specific task.
Examples of embedded systems include, Washing machines, digital cameras, traffic light
control, automobile dashboard control, antilock braking system in smart cars, cruise control
and many more.

"’r Microprocessor 1\'

Control Unit

Register Array

e > 4

Memory

Lt

Fig.1.3: General-purpose computing system with microprocessor as CPU

7 | Microprocessor and Microcontroller

Pve rosoebralies

Procancp

(LT

Analog oo

Frgiiml
Conaartar

-
Diiginsd gios |

Py

O T {

Ptalrbay
Cantrpdler

Fig.1.4: Basic architecture of Microcontroller

1.2 The Microcomputer and the Microprocessor based System

The computers that are designed with microprocessor are known as microcomputers and is
one among many microprocessor-based systems. The general organization of such a system
is shown in Fig. 1.5. It has three major components, the microprocessor, I/0 (input/output)
and the memory (read/write memory and read only memory). These components are
connected by a high-speed communication path known as bus. Each of these components
are called sub-systems and the entire unit is referred to as a system or a microcomputer
system. Thus, microprocessor is only one component of the microcomputer whereas, the
microcomputer is a complete system like other computers, except that the function of CPU
is performed by the microprocessor. As it is apparent from the Fig. 1.2 that 4-bit and 8-bit
microprocessors came around 1975-80. Initially they were used in the area of machine
control and instrumentation. However, as the price went down with the advancement in
technology, microprocessors began to use in many application areas, such as for video
games, word processing, small-business applications. Early microcomputers were designed
with 8-bit microprocessor. As the technology progressed through, other higher bits
microprocessors (16-bit, 32-bit and 64-bit) such as 8086,80286/386/486, Pentium,
Pentium-Pro, Pentium 4, Motorola 68000 and Power PC became available and the present
microcomputers are built around these microprocessors.

8 | Microprocessor and Microcontroller

Input Port Qutput Port
with with
Switches LEDs
i |
Microprocessor
Unit System Bus
(MPU)
R/W
. B ROM Memory

Figure 1.5: General organization of a Microprocessor based System

The Central Processing Unit (CPU)

We have seen so far microprocessor as the essential component of a digital computer. The
structure of a computer is represented in the form of block diagram as in Fig.1.3. It has four
major components: memory, input, output and the central processing unit (CPU). The CPU
is comprising of an arithmetic/logic unit (ALU) and the control unit. It also contains some
internal registers to store data temporarily.
The Arithmetic/Logic Unit (ALU)
The ALU performs the basic arithmetic operations such as addition, subtraction,
multiplication, division and the logical operations such as AND, OR, NOT.
The Control Unit
The control unit generates a set of control signals which enters into the ALU unit (commonly
known as data-path unit) at appropriate point and time and controls the sequence of events
for the task to be completed faithfully by the ALU. In other words, the synchronisation and
timing for communication is carried out by the control unit. It consists of instruction
decoder, counters and a control unit that generates control signals.
Basic functions of CPU
The CPU fetches instructions from the memory, decodes the instructions and performs
(executes) the task specified in the instructions. It also communicates with input and output
devices to receive or send data. Various steps involved are

e [t fetches instructions from the memory

e Determines what function it has to do (i.e. decodes the instruction)

e Performs the function in ALU unit (execution)

While execution some major tasks are need to be carried out. These are as follows:

e Transfer of data from register to register in CPU itself
Transfer of data between CPU register and specified memory location
Performing ALU operation on data from a specific memory location or designated CPU
register

9 | Microprocessor and Microcontroller

e Directing CPU to change the sequence of fetching instruction if the processing of data
identifies a specific condition
e It looks for special control signals such as interrupts and provides appropriate responses

With the advent of IC technologys, it is possible to build CPU on a single chip. A computer
designed with a microprocessor acting as its CPU is known as microcomputer. The term,
microprocessor and the microprocessor unit (MPU) are often used synonymously. Again, a
computer may have a single processor acting as a CPU or it can have multiple processors
acting as the CPU. Thus, many a times, microprocessor and the CPU are used synonymously
to mean the same.

Address Bus

It consists of set of connected wires known as bus which carries the address, to identify
a memory location or an I/O port. It is usually a binary pattern of Os and 1s. For example,
an 8-bit address bus has eight lines thus it can identify 2% = 256 different locations. So, the
locations in hexadecimal format can be written as 00H — FFH. It is unidirectional.

Data Bus

The data bus is used to transfer data either between memory and processor or between 1/0
device and processor and vice-versa. For example, an 8-bit processor will generally have
an 8-bit data bus and a 16-bit processor will have 16-bit data bus. It is bidirectional.
Control Bus

The control unit in the processor generates the control signals and the control bus carry
those signals, which consists of signals for selection of memory or I/O device from the
given address, selecting and controlling the appropriate functional units also for direction
of data transfer and synchronization of data transfer in case of slow devices.

1.2.1 Classification of Computers

Computers can be broad classified into following three categories: Large/main frame, mini
and micro-computers.

Large general-purpose computers are usually owned by a big organization with multi-user
and multi-tasking capabilities designed to perform complex scientific and engineering
problems and also for handling records of big organization or government agencies. These
are categorised into two: the main frames and supercomputers. Examples of these include
IBM main frame computers, System/390 series, Fujitsu GS8800 and the Hitachi MP5800,
Cray-2. [5]

Whereas, medium-size computers or the minicomputers are usually a departmental level
computer or the computer of a small factory, with relatively lesser size, reduced
computational capability and less cost than the main frame computers. A typical example
of this is Digital Equipment PDP 11/45.

Micro-computers again can be classified into: Personal computers (PC)-desktops/laptops,
Workstations, single board and single chip microcomputers (microcontrollers).

1.2.2 Microprocessor Instructions and Programming Languages

Microprocessor understands only binary language. Each microprocessor has its own binary
words, meaning and language. A binary word is defined as the number of bits the
microprocessor can recognize and process at a time. Accordingly, there are 4-bit (small),
8-bit, 16-bit, 32-bit and 64-bit (large) microprocessors. Every computer has its own set of
instructions depending upon the design of its CPU or of its microprocessor. However, to

10 | Microprocessor and Microcontroller

communicate with the computer, it is necessary to give instructions in binary form which
is commonly known as machine language. For example, 8085 microprocessor uses 8-bit
words to write instruction. Thus, its instruction set is composed of various combination of
these eight-bit words. Following are the two examples of 8085 instructions:

0011 1100 = an instruction to increment the number in the accumulator by 1
1000 0000 = an instruction that adds the number in the register B with the content of the
accumulator and keep the sum in the accumulator

But it is difficult for most of the people to write programs using binary instructions.
Programmers prefer to write instructions and programs using a much simpler and short form
symbolic codes (mnemonics) known as assembly language. For example, if we would like
to represent the earlier binary code 0011 1100 (or in Hex code, 3CH) in mnemonic is INR
A,

INR A: INR means increment and A stands for accumulator. The symbol indicates the
operation of incrementing the accumulator content by 1.

ADD B: ADD means addition, and B represents the content in register B. This symbol
indicates to add the content of register B with accumulator content and keep the
result in accumulator.

However, the instruction written in assembly language are machine dependent. So they cannot
be transferred from one machine to the other. To get rid of this problem, some machine
independent languages such as BASIC, FORTRAN, PASCAL, C, C++, JAVA are evolved.
These are referred to as high level languages, which are English-like, taking symbols and
conventions from English. The instructions are written in statements rather than mnemonics.
But the English-like languages the machine cannot understand, so there is need for translator
translating these languages to machine language. So, there is a need either for a compiler or
an interpreter. The compiler or the interpreter is essentially a program that takes high level
language as input or source code and converts into machine specific object code
understandable by that computer only. During the process of conversion, it also checks for
syntax errors etc. if any in the source code. While a compiler reads the entire source code or
program first and then translates or converts into machine code that is executable by the
processor. The interpreter takes one instruction at a time and produces an object code and
executes it before taking another instruction. Writing programs in high level language has an
obvious advantage that the designing the code and debugging is very easy. Finding an error
is easier when written in high level language rather than the assembly language.

1.3 Overview of 8085 Microprocessor

8085 microprocessor is an 8-bit processor developed by Intel corporation in the year 1976.
Although it is the most basic processor but it has all the important features of today’s higher
bit microprocessors. So, to understand the internal architecture of a microprocessor it is
better to start with a simple processor.

Key Features of 8085

e [t is an 8-bit processor
e [t is a single chip MOS device with 40 pins

11 | Microprocessor and Microcontroller

It has 8-bit data bus and 16-bit address bus. However, the lower order address and data
are multiplexed (AD0-AD7)

It works on +5V DC power supply

It has a maximum clock frequency of 3MHz where the minimum frequency is 500 KHz
It has five addressing modes

It can address up to 64 k memory locations

Its instruction set consisting of 72 instructions

To address an 1/O or peripheral device it uses both memory-mapping as well as 10
mapped IO. It uses 16 bit addresses for memory-mapped 10 and 8 bit addresses for 10
mapped 10

It is a CISC processor and uses five stage execution unit

1.3.1 PIN Diagram and Architecture of 8085

The 8085 microprocessor is an IC having 40 pins. The layout of which is shown in Fig. 1.6
and Fig.1.7. The signals which are connected to these pins can be classified into six groups.
These are

Address bus

Data bus

Control & status signals

Power supply and frequency signals
Externally initiated signals

Serial I/O signals

Ky —=]]

Ko —]
Resel oul -4—
SOD -—
SID —={
Trap -—{
R&T 7.5 —{]
RST 6.5 -—{
RST 5.5 —{]
INTR —]
INTA -—]
AD, -a-{]12
AD, --{]13
AD, |14
AD; -m]15
AD,; -] 16
AD, |17
ADg (|18
AD,; w19
Ves —{]20

Do =~ ;O A DM =

=
- 0

Figure 1.6: 8085 Microprocessor Pin layout and associated signals

12 | Microprocessor and Microcontroller

1.3.1.1 The address bus and Data bus

Address bus is 16-bit wide and consists of 16 signal lines/wires for communication. Higher
order address bus consists of bit lines (A8-A15) which is unidirectional. Usually goes to
tri-state/high impedance state during HOLD and HALT mode. Lower order address
consists of bit lines (A0-A7) is multiplexed with data bus. Thus, we have multiplexed
address/data bus (AD0-AD7) and is bidirectional. It behaves as address bus during first
clock cycle. In the subsequent clock cycles (3™ and 4™) it acts as data bus. These 8§ signal
lines goes to tri-state/high impedance state in HOLD and HALT mode.

1.3.1.2 Control and Status signals

This group consists of the following signals,

e ALE : Address Latch Enable
e RD : Read control signal

e WR : Write control signal

e [0O/M, S1 and SO : Status signal

ALE occurs during the first clock cycle of a machine state and enables the address to get
latched. The falling edge of ALE guarantee the setup and hold times for the address
information. ALE can also be used to strobe the status information. It is never tri-stated.

IO/M is a status signal used to differentiate between 1/O and memory operations. When this
signal goes high it indicates an I/O operation and when it is low indicates a memory
operation. This signal is usually combined with RD and WR signals to generate control
signals for I/O and memory.

Sland SO are the status signals similar to I0/M, however, they are rarely used in small
systems. The following table shows various machine cycles and associated status signals.

Table 1.1: Machine cycles and status signals

Operations 10/ | s, B

Opcode Fetch 0 1 1
Memory Read 0 1 0
Memory Wnte 0 0 1
1o Read 1 1 0
1O Write i 0 1
interrupt Ack 1 1 1
Halt High Impedance 0 0

1.3.1.3 Power Supply & Clock Frequency Signals

Again, this group consists of four signals,

[J Vce :+5 V DC power supply

[1'Vss :Ground

[0 X1, X2 : Crystal Oscillator with a frequency of 6 MHz is connected to these two pins
OOCLK :Clock output

13 | Microprocessor and Microcontroller

1.3.1.4 Externally Initiated Signals and Interrupts

e RESETIN: When the signal on this pin goes low, the PC is set to 0 and the buses are
tri-stated and the processor is reset.

e RESET OUT: This signal indicates that the processor is in reset state. The signal can
be used to reset other devices.

e READY: When this signal goes low, the processor waits for an integral number of
clock cycles until it goes high.

e HOLD: This signal indicates that a peripheral such as DMA (direct memory access)

controller is requesting for the use of address and data bus

HLDA: This signal acknowledges the HOLD request

INTR: Interrupt request is a general-purpose interrupt

INTA: This active low signal is used to acknowledge an interrupt

RST 7.5, RST 6.5, RST 5,5 — restart interrupt: These are vectored interrupts and

have the higher priority than other interrupts i.e. INTR

e TRAP: This is a non-maskable interrupt and has the highest priority

1.3.1.5 Serial 1/0 Signals
This group consists of only two signals,

e SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM
instruction.
e SOD: Serial output signal. Output SOD is set or reset by using SIM instruction

Foarer sEapysienal
v

T
It
i 1.1 i Adideeia
5h'il||f.! _-"'F!,:: g
shinale '21' i
b
ll- o
IRAT 1. Lo BB fE ADS-ADE) | g
uac A B % 1 [Toars bim
Meierrupr | RETLT E b |
Al L2161 o
e I [=
1L BYEL o L
i .
W o8 £ Conirekam
: 0T Slades nagmaly
Hostet EESET 1% ok) -
sk | wsmorT [o L1
I i
] ; o B
[— w A |
= oo HLEA
T.h-e: B e - ¥ Pemiphersls
=l]
m LRI iniann] dignad
L LH HEADY
12 b
i)
|1's:-
ramd &l

Fig. 1.7: Pin layout of 8085 according to Signal Groups

14 | Microprocessor and Microcontroller

1.3.2 Architecture of 8085 microprocessor
A microprocessor’s architecture is often specified with its instruction set, addressing
modes, data types and their formats, design of its CPU, main memory and 1O subsystem.
The logic design of the microprocessor is usually called as the architecture.
Microprocessor is a programmable logic device designed with registers, flipflops and
timing circuitries. It has a set of instruction to manipulate data and communicate with
peripherals. The microprocessor can be programmed to perform various tasks on a given
data by selecting necessary instruction from its set. It can also respond to external signals.
Various functions of microprocessor can be classified into:

® Microprocessor-initiated operations

e Internal operations

e Peripheral or externally initiated operations

Microprocessor needs a group of logic circuits and a set of control signals to perform all
these functions. Today’s microprocessors have all these modules housed in a single chip
whereas earlier processors did not have all the necessary components in one chip. The
complete unit were made up of more than one chip. Thus, the term microprocessing unit
(MPU) is often used to represent these group of devices to perform all these functions like
a CPU. Therefore, the term MPU and microprocessor are often used synonymously.

The architectural diagram of 8085 microprocessor is shown in Fig.1.8. It consists of the
ALU (the arithmetic/logic unit), PC, control unit, instruction register and instruction
decoder, register array and the busses. The address and data bus are already illustrated in
earlier section. Rest of the modules will be discussed here briefly.

1NHR AT o 4 TEAF
i teiris | mEraa | R Em

§ 1.3 i

]
&
- ﬁ:} | E M lnirresd Thoim Ha

L e AL |
Fay ' ! F

| | |

L} 1 T T
| -\.-:i.-m-.-;J | Trmp g | Il.-j-u.- 24 -_i'l -

lesvmszman
Thumk
Al e
1 | a
- || Lt PR
Lew fpule

=,
(B % 1) == [P Rk

Rig Galmr

| P epate Cmadni
o r— Ierreamad e [mem
P Bt Y ey LB (L]
= LT | '

=

] T it
PR B vl S Lk o I By Bl ""I L [e s Bl 'ﬂ
T T T
T 11111 B } 1 . ‘4\/'7
T CET {5 TV ST T Rk KT 4007
BEaLT B RISV IR v - - feri

Fig. 1.8: Architecture of 8085
The ALU

The arithmetic/logic unit or the ALU performs various computing functions. These are
basically the arithmetic operation such as addition, subtraction and logic operations such as

15 | Microprocessor and Microcontroller

AND, OR, XOR. For data manipulation, it takes help of Accumulator and a temporary
register which are considered as a part of ALU.

The Register Array

It is consisting of various registers identified as B, C, D, E, H, L. These are primarily used
to store data temporarily during program execution and are accessible to the user through
instructions. They can be used singly either to store 8-bit data or can be used in pair (such
as BC, DE or HL) for 16 bit-operations. The register pair HL is also used as data pointer
(holds memory address).

The 8085 microprocessor also has an accumulator and a temporary register for the data
processing by the ALU, which not accessible by the user. The accumulator is used to store
8-bit data and also to store the result of an ALU operation.

Flag Registers

The ALU also contains a 8-bit flag register to accommodate 05 flags. These flags set or reset
according to the program operation, i.e. data condition in A or other registers. These are

e Zero (Z) :itis setif the result of an arithmetic operation is zero
e Carry (CY) : is set if there is a carry/borrow after arithmetic operation
e Sign (S) :isused to indicate the sign of data in the accumulator

= s setto I if negative and set to O (reset) if positive
® Parity (P) : is set if the number is even and reset if the number is odd
e Auxiliary Carry (AC): is set if there is a carry out from bit 3 position

Most commonly used flags are-Zero, Carry and Sign. Microprocessor uses these flags to test
data conditions before jumping.

The Control Unit

It provides necessary timing and control signals to all the operations. Also control flow of data
between microprocessor and main memory/peripherals. A bit pattern usually called micro-
program initiates execution of an instruction. By setting a sequence of control signal, it selects
appropriate logic circuits in ALU and performs the task. Control signals are communicated
through the control bus.

Program Counter and SP

The program counter (PC) is al6 bit registers to hold memory addresses. Memory addresses
are of 16-bit. The PC is used to sequence the execution of instruction. It points to memory
address where from next byte to be fetched.

The stack pointer or SP is a memory pointer to point memory location in R/W memory, called
stack. It is also a 16-bit register. Beginning of stack is defined by loading a 16-bit address in
SP. Stack is an area of memory used to hold data that will be retrieved soon. The stack is usually
accessed in a Last in First out (LIFO) fashion.

Instruction Register (IR) and Decoder

These are some non-programmable registers. Instructions are stored in IR after being fetched
by the processor. Decoder decodes the instruction in IR.

16 | Microprocessor and Microcontroller

1.3.2.1 Addressing Modes

It specifies the way to represent the data to be operated on by the instruction. In other words,
the addressing modes indicates the formats of specifying the operands. The 8085
microprocessor has the following five different types of addressing modes.

Immediate addressing

Memory direct/Direct addressing
Register direct addressing
Indirect addressing

Implicit (or implied) addressing

Immediate Addressing

In immediate addressing the operand is present in the instruction itself. The operand (either a
byte or a word) will be either transferred to a register or a memory location. For example,

MVI A, 32H : means the immediate operand 32H is to be transferred to the register A.
MOV A, #6AH: means copy the immediate operand 6AH to accumulator.

The format of immediate addressing is shown in Fig. 1.9a, while program memory and
immediate data, how is being transferred to accumulator is shown in Fig. 1.9b.

Immediate Mode

T T T

oparand Valua

(a)

Immediate Addressing Mode

Instrusctiorn Dpcoecle Eytes Cycles

MO A SEAM Tl 2 i

Program Mamory

ooy
D20]
0205 | GA | ECHH

D20 b
[alat Ty BF]H 0 da T
i

ox03 [

oz02 74

0201 PC = PC + 2 | oT04

Feagrarm Caun s

ax0a

weraw , CarounEs Tosd sy, oo

Fig. 1.9 (a) Format of immediate addressing and (b) Program memory and immediate data

Memory direct/ Direct addressing

17 | Microprocessor and Microcontroller

This type of addressing indicates that data transfer operation is direct. The address of a memory
location where the operand is stored is directly specified in the instruction. For example,

LDA 2051H : it means load the content of the memory location specified by 2051H into

accumulator register (A). A pictorial representation of this mode of operation is shown below
in Fig.1.10.

Instruction

Ol ol Addresss

! Cyovaranc

Dhirect Adidressing Mode
MAEITYOY

Fig.1.10: Direct Addressing Mode
Register Direct Addressing

This type of addressing refers to transfer of the data byte or a word directly from one register
to the other. For example, MOV A, C: it means copy the content of register C to register A.
Fig.1.11 depicts the pictorial representation of this mode of operation. For more on addressing

scan the QR code.
| | .; I_r — %

MBOTE 2
scidreLning

Regafer Direct Addressing Mods Fgister Sal

Fig.1.11: Register Direct Addressing process
Indirect Addressing

Indirect addressing refers to data transfer (byte or a word) between a register and a memory
location specified by register pair. For example,

MOV B, M : copy the data byte into register B from the memory location specified by the
address in the register pair HL. Fig.1.12 represents indirect mode of addressing.

oFrcobDE REGIIETER

- Address

A ey

B0B8S5 Indirect Addressing Mode

Fig.1.12: Indirect Addressing process

18 | Microprocessor and Microcontroller

Implied or Implicit Addressing

In this type of addressing no operand is needed. The operand is implicitly present there in the
opcode/ instruction itself. For example,

CMA : complement the content of the accumulator,
RAL : Rotate the content of accumulator to the left

RLC : Rotate the accumulator content left through carry. Following picture illustrates the
same.

F

L CY —pJ D, | D, | o, | ol o] D] D D, -—-|

&

Ciarrs Arccumulator

-

Again, there may be one byte, two byte or three bytes in an instruction which will correspond
to equal number memory addresses where they will be stored. As such, processors dealing with
corresponding such instructions are known as /-Address, 2-Adress or 3-Adress machines.
Examples of which are as follows:

* One byte Instruction
— MOV C, A (Hex code: 4FH)
— ADDB (Hex code: 80H)
- CMA (Hex code: 2FH)---Implicit operand
* Two-byte Instruction
— MVI A, 32H (Hex 3E: first byte, 32 : second byte
— MVI B, F2H (Hex 06: first byte, F2 : second byte
. Three-byte Instruction
— LDA 2050H (Hex code: 3A:first byte, 50:second byte, 20: 3™ byte)
— JMP 2085H (Hex code: C3: 1 byte ~ 85: 2" byte 20: 3 byte)
1.3.2.2 Instruction Set

Instruction is a binary pattern or a format to perform a specific task by the processor. The entire
group of instructions that are supported by a microprocessor is known as the instruction set.
The 8085 microprocessor has a total of 74 opcodes that result in 246 instructions (with all
variants). An instruction has two parts-the opcode and the operand. Opcode specifies the
function to be executed and operand indicates the data to be operated on. These instructions
can be broadly classified into three groups.

e Data transfer or data movement instructions
e Data Processing (ALU operations)

o Arithmetic instructions

o Logic instructions

19 | Microprocessor and Microcontroller

e Program Control

o
o

Branch instruction
Machine control instructions

Data Transfer Instructions

These are a group of instructions used to copy data from one location (source) to another
(destination). Such an operation does not modify the source register content. Following are the
various types of instructions under data processing depending upon the type of source and

destination.

* Instruction Types:

Between registers (example, B to D)

A specific data byte to a register or a memory location (example, load B with
32H)

Between a memory location and a register (example, from location 2000H to B)
Between I/O device and accumulator (example: Keyboard to accumulator)

Between registers and stack memory

Some illustrating examples are given in the following table.

Mnemonics

MOV, Rd, Rs

MVI R, 8-bit
LXI Rp

IN 8-bit

OUT 8-bit

LDA 16-bit

STA 16-bit

LDAX Rp

STAX Rp

Examples Operation

MOV B, A Copy data from source register Rs to destination
ister R

MOV C. B register Rd

MVI A, 8FH Load 8-bit data (immediate) into a register

LXID, 2051H Load 16-bit data (immediate) into the register
pair, DL

INO1H Read the data from an input device (port) and
place it in the accumulator

OUT 08H Write the 8-bit data from accumulator to an
output device (port)

LDA 2050H Copy the data byte into A from the memory
specified by 16-bit address

STA 2075H Copy the data byte from A to the memory
location specified by 16-bit address

LDAX B Copy the data byte into A from the memory
location specified by address stored in the
register pair BC

STAX H Copy the data byte from A to the memory

location specified by the address in the register
pair HL

20 | Microprocessor and Microcontroller

MOV R, M MOV B, M Copy the data byte into register B from the
memory location specified by the address in
register pair HL (indirect address)

MOV M, R MOV M, A Copy the data byte from the register to the
memory location specified by the address in the
register pair HL (indirect address)

LHLD 16-bit address LHLD 2040H This instruction copies the data byte from the
memory location specified by the address into L
and copies the content of next memory location
toH

SHLD 16-bit address SHLD 2032H This instruction stores the data bytes from L
registers into the memory location specified by
the address and from H to the next memory
location by incrementing the operand

SPHL none SPHL Stores the content of register pain H and L into
the stack pointer register. H provides the higher
order address while L stores the lower order
address

PUSH Rp PUSH B Content of the register pair are copied into stack.
Stack pointer register is first decremented and
content of higher order register is copied. Again,
stack pointer is decremented and the content of
lower order register is copied there.

POP Rp POPH Content of the memory location pointed out by
the stack pointer register is loaded into the
register C, E or L (lower order byte). The stack
pointer is then incremented by 1 and the content
of that memory location is copied to register B, D
or H (higher order byte)

Data Processing (Arithmetic and Logic) Instructions

This group includes all the instructions needed for arithmetic operations and logical operations
which comprise of the following instruction types.

* Arithmetic Operations

— Addition (any 8-bit number, contents of register or contents of memory location
can be added with accumulator content)

— Subtraction (performed in 2’s complement)

— Increment/Decrement: contents of a register or register pair can be
incremented/decremented by 1

* Deals with one register or one location

21 | Microprocessor and Microcontroller

* Logical Operations
— AND, OR, Exclusive-OR

* any 8-bit number, contents of register or contents of memory location
can be logically ANDed, ORed or XORed with accumulator content

— Rotate: each bit of accumulator can be shifted left or right

Compare: for equality, greater than or less than
— Complement: Each bit of accumulator contents

Some of the important instructions under this are shown next in the table.

Mnemonics Instruction/Example Operation

ADD R ADD B Add the content of register B with the content
of A

ADI 8-bit ADI 4FH Add the 8-bit data (immediate) with the
content of A

ADDM ADDM Add the content of the memory location
specified by register pair HL with the content
of A

SUB R SUB D Subtract the content of register from the
content of A

SUI 8-bit SUI 32H Subtract the data byte from the content of A

SUB M SUB M Subtract the content of the memory location
specified by register pair HL from the content
of A

INR R INR B Increment the content of register

INR M INR M Increment the content of memory location
specified by register pair HL

DCR R DCR C Decrement the content of the register

DCR M DCR M Decrement the content of memory location
specified by register pair HL

INX RP INX B Increment the content of the register pair

DCX Rp DCXH Decrement the content of the register pair

ANA R ANA B Logically AND the content of register B with
that of A

ANI 8-bit ANI 4DH Logically AND the data-byte with the content
of A

ANA M ANA M Logically AND the content of memory
location specified by the register pair HL with
that of A

DAD Rp DAD H 16-bit content of the specified register pair

will be added with the content of H and L
register and the result will be saved in HL pair.

ORA R ORA C Logically OR the content of register with that
of A

ORI 8-bit ORI 4FH Logically OR the 8-bit data with that of A

ORA M ORA M Logically OR the content of memory location
specified by the register pair HL with that of
A

XRA R XRA D Logically XOR the content of register with

that of A

22 | Microprocessor and Microcontroller

XRI 8-bit XRI 7BH Logically XOR the 8-bit data with that of A

XRAM XRAM Logically XOR the content of memory
location specified by the register pair HL with
that of A

CMPR CMP B Compare the content of B with that of A for
less than, Equal to or greater than

CPI 8-bit CPI 4FH Compare 8-bit data with the content of A for

less than, equal to or greater than

Program Control Instructions

This group includes all the instructions needed for branching operations as well as for machine
control operations. These can be further classified as follows:

* Jump:
— Conditional Jump

* Test for certain condition (e.g. zero or carry flag)

Unconditional jump

* Call, Return and Restart: change the sequence of instruction execution

By calling a subroutine

— Returning from a subroutine
* Machine Control Operation

— Halt, Interrupt or do nothing

Following are typical program control instructions.

Mnemonics Instruction/Example Operation

JMP 16-bit address JMP 2050H Change the sequence of program execution
form the specified 16-bit address

JZ 16-bit address J7 2070H Change the sequence of program execution

form the specified 16-bit address when
Zero Flag is set

IJNZ 16-bit address JNZ 2080H Change the sequence of program execution
form the specified 16-bit address when
Zero Flag is reset

JC 16-bit address JC 2025H Change the sequence of program execution
form the specified 16-bit address when
Carry Flag is set

IJNC 16-bit address JNC 2030H Change the sequence of program execution
form the specified 16-bit address when
Carry Flag is reset

CALL 16-bit address CALL 2175H Change the sequence of program execution
to the location of a subroutine

RET None RET Return to the «calling program after
completing the execution in subroutine

HLT None HLT Stop processing of instructions and wait

NOP None NOP Do not perform any operation

23 | Microprocessor and Microcontroller

DI None DI Disable or reset the interrupt enable flip-
flop and all the interrupts except the TRAP
are disabled

EI None SI Set the interrupt enable flip-flop and all the
interrupts are re-enabled except the TRAP

These are some of the typical and most widely used instructions. There are many other
instructions in the set of 8085 instructions which includes other 16-bit operations, additional
jump instructions and conditional Call and Return instructions. Interested readers are advised
to go through the QR link for further details. ﬁﬂﬁ

o
mare an

Example 1 il

Write a program to subtract two numbers 49H from 4FH already stored in two memory location
2051H and 2052H respectively and save the result in memory location 2053H. Instructions
begin at 2030H.

Mnemonics Memory location HEX code
LDA 2051H 2030 3A
2031 51
2032 20
MOV B, A 2033 47
LDA 2052H 2034 3A
2035 52
2036 20
SUB 2037 90
STA 2053H 2038 32
2039 53
203A 20
HLT 203B 76
//Manual load 2051 49
2052 9F
2053 00

1.3.2.3 Instruction Timing diagram and Machine Cycle

Microprocessor runs with a global clock. Every action of the processor is initiated with
reference to this clock either at leading/trailing edge. Any operation involving read/write
operation or data transfer with the action of control signals, I0O/M, S1 and SO can be displayed
in the form of a timing diagram.

A machine cycle is the time taken by the microprocessor to complete the task of accessing
memory or I/O devices. Various operations like opcode fetch, memory read, memory write,
I/O read, 1/0 write etc. are performed in a machine cycle. Each cycle of the clock is known as
T-sate. Thus, a machine cycle will have many states. As both the instruction and data are stored

24 | Microprocessor and Microcontroller

in memory, so the microprocessor fetches the instruction first to read the instruction or data
and then executes the instruction.

An instruction cycle thus consisting of two step operation: fetch and execute. This may take
typically 1-5 machine cycles involving 3-6 T-states. For example, the first machine cycle in
every instruction is the opcode fetch which requires at least 4T states as in Fig. 1.9.

Example 2

[lustrate the steps involved and timing diagram of data flow when the instruction MOV C, A
(Hex code: 4FH) stored in 2005H is being fetched.

Step 1: Microprocessor places 16-bit address from the PC on the address bus
— This is accomplished in T1 cycle
— ALE goes high
— IO/M-bar goes low
Step 2: Control unit sends RD-bar control signal to enable the memory chip
— Initiates it in clock cycle T2 and continues up to T3
Step 3: Byte from the memory location is placed on the data bus (AD7-ADO0)
— RD-bar signal goes high
— Bus goes to high impedance state
Step 4: The byte is placed in the instruction decoder and the task is carried out as per instruction

— The task of decoding and execution is performed in T4 clock (if data is one byte)

- Cxprote Totcm. -
T T T LE
.

A W Hisge carciesr ||'-ﬁ-r\-nr.i aechoiresss :{li.hn.:-;-n::nm:::.C
. B L e - {- ’-:l'..r;l.'l-lh:r }
T Bba Ty aacclieenn

ALEY , RN
e : -
[Ty W | SEatais il =0, 8 -1 B - }.l'll'_...rr_r:ﬂ-d-d Fe=acis
e
T \{] j

Fig kL5 (lpcocde fetch machine oy clie

Fig. 1.13: Opcode Fetch Machine Cycle

Similarly, the instruction cycle for the instruction MVI A, 32H is shown below which consists
of two machine cycles M1 and M2 with opcode fetch (M1) and memory read (M2). Opcode
fetch takes 4T states whereas, memory read requires 3T states as shown in Fig. 1.10.

25 | Microprocessor and Microcontroller

Execution of an Instruction: MV A, 32h

I AR, ¢ i, Wi B iy Bl |
— rrrwa gt v i L r— 1 L i i |

E T T T n T

I -
2lhie L. |_ | A= | . 3 . 1

[1 Tooh F ke T | E R
f, . j | Sema [T IL“'P-"-'“"C-I 2 T P
ool dem e | | - Eatibitins |
A, T |
AL, : ey F + M, Tipsly } =4 .-{ Gijus } = { N e Tl } -2
[Pr—— T | M| P———— A — # L]
;i | | | |
|
|
ey T T T T
i K F{ Wt e el] (P T | 'f"::" [R T -..u-n!
]
|

If we assume

Fig. 1.14: Execute cycle

a clock frequency of 2MHz, then the execution time for memory read cycle and

the instruction cycle can be calculated as follows:

Clock

Example 3

frequency = 2MHz

T-state = 1/2MHz = 0.5uS

Execution time for Opcode Fetch =4T =2 uS
Execution time for Memory Read = 3T =1.5uS
Execution time for the Instruction =7T = 3.5uS

Program to add two 8-bit numbers with a provision of Carry.

Program
MVIC, 00
LDA 4100
MOV B, A
LDA 4101
ADD B
INCLI1
INRC

L1 STA 4200
MOV A, C
STA 4201
HLT/RST

//Clear Reg C for carry

//Load accumulator with the data byte from memory location 4100H
//Transfer the data to register B

//Load the second data from memory location 4101H

// Add the content of register B with that of accumulator

//If no carry is generated jump to step 8 levelled L1

//else, increment register C by 1 to indicate a carry

// Store the result in the memory location 4200H

// Transfer the content of register C to accumulator

//Store the carry to memory location 4201H

//End the program with Halt (HLT) or go back to monitor program with

26 | Microprocessor and Microcontroller

//Restart (RST)
Example 4

Reverse a string of numbers.

Program:

MVIB, 06 // Initialize one register (Reg B) with the length of the string

LXI H, 8100 // Initialize one register pair (HL) with the starting address of the source array
LXI D, 8205 // Initialize one register pair (DE) with ending address of the destination array

L1: MOV A, M //Move the memory content to accumulator
STAX D // Store the accumulator content in DE pair
INXH //Increment HL pair

DCX D //Decrement DE pair

DCR B // Decrement the counter register — Reg B

INZ L1 //Check for zero, if not zero, go to step 4

RST1 //Stop

//Some sample data input and output

Input Output

8100 0A 8200 OF
8101 OB 8201 OE
8102 0C 8202 0D
8103 0D 8203 0C
8104 OE 8204 OB
8105 OF 8205 O0A

1.4 8086 Microprocessor-An Overview

Key Features

First 16-bit processor introduced by Intel in 1978

It is a 40-pin DIP IC, works on SMHz clock

Consists of 29,000 transistors

Have more powerful and high-speed computational resources
Have more powerful instruction set compared to 8085 processor
20-bit Address bus

16-bit Data bus

Addressed memory size is IM

Can address up to 4 segments of 64KB

8088 is a less expensive version of 8086 that uses 8-bit data bus

1.4.1 PIN Diagram of 8086

The pin-diagram 8086 processor is shown in Fig. 1.11. It is a 40-pin dual-in-line (DIP)
package IC and works on SMHz clock with a +5V dc power supply. 8086 is designed to

27 | Microprocessor and Microcontroller

operate in two modes, Minimum and Maximum. It can prefetch up to 6 instruction bytes
from memory and queues them in order to speed up instruction execution. Various groups
of signals associated with the pins are described next.

Max MIN
MODE MODE

Gnp O 1 -/ 40 0 u..

ap14 O = 33 [ap1s

ao1s O 3 38 [A16/53

ap1z O 4 37 O m7/s4

ap1l O s 36] a18/s5

ap1o O s 35 [J si9/56

aps O 7 34 [0 BRE/s7?

ape O] 8 33 [Mn/Mx

a7 O 9 3z [FD

saps O 10 E{‘:ﬂf.f a1 [RG/GTO (HOLD)

05 O 11 30 [RG/GTL (HLDA)

ap4a O 12 2a] C6CK (WH)

03 O 13 2 B 52 M/ 5]

aDz O 14 27 I 51 DT R)

401 O 15 26 [sb (DEN)

spo O 16 s B oso (ALE)

nmi O 17 22 [os1 (TNTA]

INTR O 18 23] TEST

cLk O 19 22 O reapy

ano O 20 21) RESET

Fig.1.15: Pin Diagram of 8086 Microprocessor
ADO0-AD15
These signal lines are associated with pins [16-2 & 39] These are. multiplexed bidirectional
address/data bus. In T1 cycle, they carry lower order 16-bit address. In the remaining clock
cycles, they carry 16-bit data. Lower order data byte is carried by AD0O-AD7 while ADS8-
ADIS5 carry the higher order byte of data.
A19/S6, A18/SS, A17/S4, A16/S3
These signal lines are associated with the pin [35-38]. These are unidirectional
multiplexed address and status bus. During T1 cycle, they carry higher order address (4-
bits) while in the remaining clock cycles, they carry status signals.
BHE / S7
BHE stands for Bus High Enable. It is associated with Pin 34. BHE signal is used to
indicate the transfer of data over higher order data bus (D8 — D15). 8-bit I/O devices use
this signal. It is multiplexed with status pin S7.
READY
Pin 22 is associated with this signal. This is an acknowledgement signal from slower 1/O
devices or memory. It is an active high signal. When it goes high, it indicates that the device

28 | Microprocessor and Microcontroller

is ready to transfer data. When it goes low, microprocessor is then in wait state.
RESET

Pin 21 is associated with this signal. It is a system reset and active high signal. When it goes
high, microprocessor enters into reset state and terminates the current activity. It must be
active for at least four clock cycles to reset the microprocessor.

RD (Read)

This signal is connected to Pin 32. It is used for read operation. It is an output signal. It is
an active low signal

MN / MX

Connected to Pin 33. 8086 works in two modes: Minimum Mode, Maximum Mode. If
MN/MX is high, it works in minimum mode. If MN/MX is low, it works in maximum
mode. Pins 24 to 31 issue two different sets of signals. One set of signals is issued when
CPU operates in minimum mode. Other set of signals is issued when CPU operates in
maximum mode.

INTR

It is an interrupt request signal connected to Pin 18. It is active high. It is level triggered
NMI

It is a non-maskable interrupt signal connected to Pin 17. It is an active high, edge triggered
interrupt.

TEST [at Pin 23]

It is used to test the status of math coprocessor 8087. The BUSY pin of 8087 is connected
to this pin of 8086. If low, execution continues else microprocessor is in wait state.

CLK [at Pin 19]

This clock input provides the basic timing for processor operation. It is symmetric square
wave with 33% duty cycle. The range of frequency of different versions is 5 MHz, 8§ MHz
and 10 MHz

VCC and VSS [at Pin 40 and Pin 20],

VCC is power supply signal connected to Pin 40. +5V DC is supplied through this pin.
VSS is the ground signal

PIN DESCRIPTION FOR MINIMUM MODE

INTA

The signal associated with [Pin 24] is an interrupt acknowledge signal, INTA. It is active
low output signal. When microprocessor receives INTR signal, it acknowledges the
interrupt by generating this signal.

ALE

The signal at [Pin 25] is ALE, which is called Address Latch Enable signal. It indicates
that a valid address is available on bus ADO — ADI1S5. It is an active high output signal and
remains high during T1 state. It is connected to enable pin of latch 8282.

DEN

[Pin 26] is DEN signal or a Data Enable signal. This is an active low output signal. This
signal is used to enable the transceiver 8286. Transceiver is used to separate the data from
the multiplexed address/data bus.

DT /R _bar

[Pin 27] is a DataTransmit/Receive signal. It decides the direction of data flow through the
transceiver. When it is high, data is transmitted out. When it is low, data is received in.
M/10

[Pin 28] is a signal issued by the microprocessor to distinguish memory access from I/O
access. When it goes high, memory is accessed. When it goes low, I/O devices are

29 | Microprocessor and Microcontroller

accessed.

WR

[Pin 29] is a Write signal. It is an active low output signal. This is used to write data in
the memory or output device based on the status of M/IO signal.

HLDA

HLDA is attached to [Pin 30]. It is a Hold Acknowledge signal. It is issued after receiving
the HOLD signal. It is an active high output signal.

HOLD

[Pin 31] is for HOLD signal. In DMA mode of data transfer when the DMA controller
needs to use address/data bus, it sends a request to the CPU through this pin. It is an active
high input signal. When microprocessor receives HOLD signal, it issues HLDA signal to
the DMA controller.
DMA stands for Direct Memory Access which allows I/O devices to directly access
memory with less participation of the processor. It is a hardwired-controlled data transfer
technique. In this mode, the external hardware which is the DM A controller, takes over the
charge of processor busses for data transfer. Suppose, disk controller is ready to transmit
the information from the disk, it transfers a DMA request (DRQ) signal to the DMA
controller. The DMA controller then sends a HOLD signal to the processor’s HOLD input.
The processor in reply to this signal suspends the buses and transfers an HLDA
acknowledgment signal. When the DMA controller gets the HLDA signal, then the DMA
controller gains the control of the buses, it transfers the memory address where the first
byte of information from the disk is to be written. It also transfers a DMA to acknowledge
(DACK) signal to the disk controller device to signal it to get ready for transferring the
output byte. However, in this mode, the device can make only one byte or word transfer.
After each transfer, DMAC gives the control of all buses to the processor. HOLD signal
will be reasserted when the I/0 device is ready again to transfer next byte or word.

PIN DESCRIPTION FOR MAXIMUM MODE

QS1 and QS0

These two signals are assigned to [Pin 24 and 25]. These pins provide the status of
instruction queue. For example, when QS1 QS0 = 00, means no operation, for 01, it
indicates 1% byte of opcode from queue, 10 means Empty Queue and 11 means
subsequent byte from queue.

S0, S1, S2

[Pin 26, 27, 28] are for three status signals (S0, S1, S2) which indicate the operation being
done by the microprocessor. This information is required by the Bus Controller 8288. Bus
controller 8288 generates all memory and I/O control signals. With S0, S1 and S2 there can
be 8 possible combinations. These are as follows.

0 0 0 => Interrupt Acknowledge

00 1=>1/O Read

0 1 0=>1/O Write

0 1 1=>Halt

1 0 0 => Opcode Fetch

1 0 1 => Memory Read

1 1 0 => Memory Write

1 1 1=> Passive

30 | Microprocessor and Microcontroller

LOCK

[Pin 29] is for the signal LOCK. This is an active low output signal and it indicates that
other processors should not ask CPU to relinquish the system bus. When it goes low, all the
interrupts are masked and HOLD request is not granted. This pin is activated by using
LOCK prefix on any instruction.

RQ/GT1 and RQ/GT0

[Pin 30 and 31] are associated with these two signals. They are bi-directional. These are
Request/Grant pins. Other processors request the CPU through these lines to release the
system bus. After receiving the request, CPU sends acknowledge signal on the same lines.
RQ/GTO has higher priority than RQ/GT1.

1.4. 2 Architecture of 8086

8086 provides an improved architecture over 8085. It is a 16-bit processor supported by 16-
bit ALU, a set of 16-bit registers. It has a segmented memory addressing capability. It also
includes a rich instruction set with a powerful interrupt structure and fetched instruction
queue for overlapped fetching and execution. The internal architecture of 8086 is shown in
Fig. 1.12. 8086 has a pipeline architecture. Entire architecture of 8086 can be divided into
two separate processing parts--bus interface unit (BIU) and Execution Unit (EU). The bus
interface unit consists of circuits for physical address translation and a pre-decoding
instruction byte queue (6 bytes long). Bus interface unit is responsible for establishing
communication between peripheral devices (external) including memory via the bus.
Moreover, 8086 can address segmented memory. So, the complete physical address which
is 20-bit long is generated by adding the segment and offset register, each of which are 16-
bit long.

To generate the physical address, the content of the segment register, also known as
segment address is left-shifted four times and then the content of offset register also known
as the offset address is added to produce a 20-bit address. For further explanation with
examples refer [6]. More on memory mapping techniques will be described in Chapter 6.
The segment addressed by a segment value of 1005H can have the offset values ranging
from 0000H to FFFFH i.e. a maximum of 64K memory locations can be accommodated by
a segment. Thus, the segment register essentially indicates the base address of a particular
segment and the offset indicates the distance of the required memory location from base
address in the segment. As the offset is a 16-bit number, so each segment can have 64K
locations. The bus interface unit has a separate adder to perform this address translation to
obtain the physical address of peripheral device or a memory location. The segment address
value is taken from an appropriate segment register depending on whether a code, data or
stack to be accessed. While the offset may be the content of IP, BP, SP, SI, DI, BX or an
immediate 16-bit value depending upon the type of addressing mode.

In 8085 microprocessor, instruction is first fetched and decoded and then goes to execution
unit to perform the arithmetic or logic operation, during which the external bus remains
idle. While in 8086, this time-slot is utilized to perform overlapped fetch and execution.
While the fetched instruction is decoded and executed internally by the processor, the
external bus is used to fetch next machine/instruction and arrange them in a buffer queue,
known as pre-decoded instruction byte queue. It is a 6-byte long first-in first-out buffer
queue. While the opcode is being fetched by the bus interface unit, the execution unit
executes the pre-decoded instructions concurrently. Thus, the BIU and the EU forms the

31 | Microprocessor and Microcontroller

pipeline architecture. Branch interface unit therefore manages the complete interfacing of
execution unit with I/O devices or memory under the control of timing and control unit.
The execution unit contains the register set of 8086 except the segment registers and IP. It
has a 16-bit ALU to perform the arithmetic and logic operations. It has also 16-bit flag
registers which reflect the results of execution performed by the ALU. The decoding unit
decodes the instructions issued by the instruction byte queue. The control unit provides the
necessary timing and control signals for execution. The execution unit may pass the result
to bus interface unit for saving them to external memory.

WE Y
INTEAFACE
r—- —— .
| L2 - L t
4
| HETRLCTEN |
FTAL AN I
! J \ [#YTE i
| s 1 I i
| s 0 ‘ |
I 1
] I
| & o ——— S - |
| 5 l :-
| o
| ir | t
| , CONTRADL i
|- _________ S]] TETEM |
|]
I
| W N b Ir
: I
. |
|
| AH Al It
T BL [
| [£l ARITRMETIC |
i [[LOMGIE LT Il
|
|] L) |
| :: I d !
| e |
, sz = |
kit A e g A o e T

Fig. 1.16: Internal Architecture of 8086 Microprocessor {Courtesy: EEEGUIDE [7

—_—
(-

1.4.2.1 GENERAL PURPOSE REGISTERS OF 8086

There are 14 user addressable registers altogether in 8086, each of which are 16-bit. Four
general purpose registers- AX, BX, CX, and DX can be used as 8-bit registers
individually or can be used as 16-bit in pair.

* AX Register: AX register is also known as accumulator register that stores
operands for arithmetic operation like divided, rotate.

* BX Register: This register is mainly used as a base register. It holds the starting
base location or the base address of a memory region within a data segment.

* CX Register: It is defined as a counter. It is primarily used in loop instruction to
store loop counter.

* DX Register: DX register is used to contain I/O port address for I/O instruction.

32 | Microprocessor and Microcontroller

1.4.2.2 SEGMENT REGISTERS

There are some additional registers called segment registers to generate memory address
when combined with other (offset) in the microprocessor. In 8086 microprocessor, memory
is divided into 4 segments as follows:

Code Segment (CS): The CS register is used for addressing a memory location in
the Code Segment of the memory, where the executable program is stored.

* Data Segment (DS): The DS contains most data used by program. Data are accessed
in the Data Segment by an offset address or the content of other register that holds
the offset address.

* Stack Segment (SS): SS defined the area of memory used for the stack.

» Extra Segment (ES): ES is additional data segment that is used by some of the
string to hold the destination data

1.4.2.3 Flag Registers

These registers determine the current state of the processor. They are modified
automatically by CPU after arithmetic and logic operation operations. They allow us to
determine the type of the result, and also to determine conditions for the transfer of control
to other parts of the program. In 8086 there are 9 flag registers and they are divided into
two groups:

1. Conditional Flags
2. Control Flag

CONDITIONAL FLAGS

Conditional flags represent the status of the last arithmetic or logical operation that is
executed. Conditional flags are as follows:

1. Carry Flag (CF): This flag represents an overflow condition for unsigned integer
arithmetic operation. It is also used in multiple-precision arithmetic.

2. Auxiliary Flag (AF): If any arithmetic operation performed in ALU results in a
carry/barrow from the lower nibble (i.e. DO — D3) to the upper nibble (i.e. D4 — D7), then
the AF flag is set i.e. carry given by D3 bit to D4 is AF flag. This is not a general-purpose
flag, it is used internally by the processor to perform Binary to BCD conversion.

3. Parity Flag (PF): This flag is used to indicate the data bits parity in the result. If the
lower order 8- bits of the result contains even number of 1’s, the Parity Flag is set and it is
reset for odd number of 1’s.

4. Zero Flag (ZF): This flag is set if the result of any arithmetic or logical operation is
zero else it is reset.

5. Sign Flag (SF): In sign magnitude notation of a number, the sign of number is
indicated by MSB. Usually 0 for positive and 1 for negative number. If the result of an
operation is negative (i.e. MSB = 1) then sign flag is set.

6. Overflow Flag (OF): This occurs when signed numbers are added or subtracted. When
this flag is set it indicates that the result has exceeded the capacity of machine.

33 | Microprocessor and Microcontroller

CONTROL FLAGS
Control flags are set or reset deliberately by the CPU to control the operations of the
execution unit. Control flags are as follows:
. Trap Flag (TP):
This is used for single step control.
It allows user to execute one instruction of a program at a time for debugging purpose.
When trap flag is set, program can be run in single step mode.

e o6 o —

[\

. Interrupt Flag (IF):

It is an interrupt enable/disable flag.
If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the interrupt is
disabled.

e [t can be set by executing instruction sit and can be cleared by executing CLI
instruction.

3. Direction Flag (DF):

e This is used for string operation.

e Ifthis is set then the string bytes are accessed from higher memory address to lower
memory address.

[]

When it is reset, the string bytes are accessed from lower memory address to higher
memory address.

1.4.3. ADDRESSING MODES OF 8086

The different ways in which a source operand is denoted in an instruction is known as
addressing modes. There are specifically 8 different addressing modes in 8086 programming.
However, considering I/O, memory locations and type of data, there are more variations. These
are as follows:

Addressing Modes for Register and Immediate Data

e Register Addressing mode
e Immediate Addressing mode

Addressing modes for memory data

Register Indirect Addressing mode
Direct Addressing mode

Based Addressing mode

Indexed Addressing mode

Base Relative Addressing mode
Base Indexed Addressing mode
String Addressing Mode

Addressing modes for I/0 port

e Direct I/O port Addressing
e Indirect I/O port Addressing

Relative Addressing
e Implied Addressing Mode

34 | Microprocessor and Microcontroller

Immediate addressing mode

The addressing mode in which the data operand is a part of the instruction itself is known as
immediate addressing mode.

Example,
e MOV CX, 4929 H * ADD AX, 2387 H, * MOV AL, FFH
Register addressing mode
In this mode, the register is the source of an operand for an instruction.

Example,

MOV CX, AX // copies the contents of the 16-bit AX register into
// the 16-bit CX register),
ADD BX, AX

Direct addressing mode

In this addressing mode, the effective address of the memory location is written directly in the
instruction.

Example
MOV AX, 1592H, MOV AL, 0300H
Register indirect addressing mode

This addressing mode allows data to be addressed at any memory location through an offset
address held in any of the following registers: BP, BX, DI & SI.

Example

MOV AX, [BX] //Suppose the register BX contains 4895H, then the contents
//4895H are moved to AX
ADD CX, {BX}

Based addressing mode

In this addressing mode, the offset address of the operand is given by the sum of contents of
the BX/BP registers and 8-bit/16-bit displacement.

Example
MOV DX, [BX+04], ADD CL, [BX+08]
Indexed addressing mode

In this addressing mode, the operands offset address is obtained by adding the contents of SI
or DI register with 8-bit/16-bit displacements.

Example

35 | Microprocessor and Microcontroller

MOV BX, [SI+16],
ADD AL, [DI+16]

Base-indexed addressing mode

In this addressing mode, the offset address of the operand is calculated by summing the base
register with the contents of an Index register.

Example

ADD CX, [AX+SI],
MOV AX, [AX+DI]

Base Relative (displacement)addressing mode

In this addressing mode, the operands offset is obtained by summing the base register
contents, with a constant offset.

Example

e MOV AX, [BP + 1],
e ADD CX, [BX+16],
e IMP[BX+1]

1/O DIRECT ADDRESSING MODES

Here the port number is a 8 bit immediate operand. This allows fixed access to ports
numbered 0 to 255.

Example: OUT 05H, AL //outputs [AL] to 8-bit port 05H

INDIRECT ADDRESSING MODE

The port number is taken from DX allowing 64K 8-bit ports or 32K 16-bit ports.

Example: INAX, DX //If [DX]=5040, Inputs the 8-bit content of port 5040 into AL and 5041 into AH.
RELATIVE ADDRESSING MODE

In this mode, the operand is specified as a signed 8-bit displacement, relative to
PC (Program Counter).

Example: JINC START // if carry=0, PC is loaded with current PC contents plus the 8-bit signed value
of START, otherwise the next instruction is executed.

IMPLIED ADDRESSING MODE
Instructions using this mode have no operands.

Example: CLC //This clears the carry flag to zero

1.4.4 8086 Instruction Set

The 8086 microprocessor supports 8 different classes of instructions. These are,

o Data Transfer Instructions
e Arithmetic Instructions

36 | Microprocessor and Microcontroller

Bit Manipulation Instructions

String Instructions

Program Execution Transfer Instructions (Branch & Loop Instructions)
Processor Control Instructions

Iteration Control Instructions

Interrupt Instructions

Let us now discuss each of these instruction sets in detail along with examples.

1.4.4.1 Data Transfer Instructions

These instructions are used to transfer the data from a source to the destination. Following are
the list of instructions under this group.

Instruction to transfer a word

MOV - This instruction is used to copy a byte or word from a given source to a
specified destination. For example,

MOV CX, 037AH, MOV AX, BX or MOV DL, [BX]

PUSH - This instruction is used to put a word at the top of the stack. For example,
PUSH BX, PUSH DS. The SP is decremented by 2 after PUSH operation.

POP — This is used to get a word from the top of the stack to a given location. For
example, POP DX, POP DS. After POP operation SP is incremented by 2.

PUSHA - This is used to put all the registers into the stack.
POPA — This instruction is used to get words from the stack to all registers.

XCHG - This is used to exchange the data between two locations. For example,
XCHG AX, DX or XCHG BL, CH

XLAT - This instruction is used to translate a byte in AL using a table in the memory.

Instructions for input and output port operations

IN — This is used to read a byte or word from a given port to the accumulator. For
example, IN AL, OC8H or IN AX, 34H

OUT - This is used to send out a byte or word from the accumulator to the intended
port. For example, OUT 3BH, AL or OUT 2CH, AX.

Instructions to transfer the address

LEA — This instruction is used to load the address of operand into a given register.

LDS — This instruction is used to load DS register and other specified register from
the memory

LES - It is used to load ES register and other specified register from the memory.

37 | Microprocessor and Microcontroller

Instructions to transfer flag registers

LAHF — This instruction is used to load AH with the lower-order byte of the flag
register.

SAHF — This is used to store AH register to low-order byte of the flag register.

PUSHF - This is used to copy a word in the flag register to two memory locations in
the stack pointed by the stack pointer. Decrements the stack pointer by 2

POPF - This is used to copy a word from two memory locations at the top of the
stack to the flag register and increments the stack pointer by 2.

1.4.4.2 Arithmetic Instructions

These instructions are used to perform arithmetic operations like addition, subtraction,
multiplication, division, etc.

Following is the list of instructions under this group.

Instructions to perform addition

ADD - This instruction is used for the addition of the provided byte with a byte or a
word with a word.

ADC — This is used for addition with a carry.
INC - This instruction is used for incrementing the provided byte/word by 1.
AAA - This instruction is used to adjust ASCII after addition.

DAA — This instruction is used to adjust the decimal after the addition/subtraction
operation.

Instructions to perform subtraction

SUB — This instruction is used to subtract the byte from a byte or the word from a
word.

SBB — This is used to perform subtraction with borrow.
DEC - This instruction is used to decrement the provided byte/word by 1.

NPG - This is used to negate each bit of the provided byte/word and add 1’s or 2’s
complement.

CMP — It is used to compare 2 provided byte/word.
AAS — It is used to adjust ASCII codes after subtraction.

DAS — This instruction is used to adjust decimal after subtraction.

Instruction to perform multiplication

MUL - Instruction to multiply unsigned byte by byte/word by word. For example,

o MUL BH ---Multiply AL with BH; result in AX
o MUL CX--Multiply AX with CX; result in DX (higher word) and AX (lower)

38 | Microprocessor and Microcontroller

IMUL - Instruction to multiply signed byte by byte or word by word. For example,
o IMUL BH -- Multiply signed byte in AL with signed byte in BH; result in AX
o IMUL AX --Multiply AX times AX; result in DX and AX

AAM - Instruction to adjust ASCII codes after multiplication.

Instructions to perform division

DIV — This instruction is used to divide the unsigned word by byte or unsigned
double word by word. For example,

o DIV BL -Divide word in AX by byte in BL; Quotient in AL, remainder in AH

o DIV CX - Divide down word in DX and AX by word in CX; Quotient in AX,
and remainder in DX.

IDIV — This instruction is used to divide the signed word by byte or signed double
word by word. For example, IDIV BL //Signed word in AX/signed byte in BL.

AAD - This instruction is used to adjust ASCII codes after division.

CBW - This is used to fill the upper byte of the word with the copies of sign bit of the
lower byte.

CWD - This is used to fill the upper word of the double word with the sign bit of the
lower word.

1.4.4.3 Bit Manipulation Instructions

These instructions are used to perform operations where data bits are involved, i.e. operations
like logical, shift, etc.

Following is the list of instructions under this group:

Instructions to perform logical operation

NOT - This instruction is used to invert each bit of a byte or word.

AND — Used for adding each bit in a byte/word with the corresponding bit in another
byte/word. For example, AND BH, CL AND BX, 00FFH etc.

OR - This instruction is used to multiply each bit in a byte/word with the
corresponding bit in another byte/word. For example, OR AH, CL OR BP,SI OR
BL, 80H etc.

XOR — Used to perform Exclusive-OR operation over each bit in a byte/word with
the corresponding bit in another byte/word.

TEST — Th is used to add operands to update flags, without affecting operands.

Instructions to perform shift operations

SHL/SAL - This instruction is used to shift bits of a byte/word towards left and put
zero(S) in LSBs.

SHR — Used to shift bits of a byte/word towards the right and put zero(S) in MSBs.

39 | Microprocessor and Microcontroller

SAR - This instruction is used to shift bits of a byte/word towards the right and copy
the old MSB into the new MSB.

Instructions to perform rotate operations

ROL - This instruction is used to rotate bits of byte/word towards the left, i.e. MSB
to LSB and to Carry Flag [CF].

ROR — Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to
Carry Flag [CF].

RCR — Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to
MSB.

RCL - This is used to rotate bits of byte/word towards the left, i.e. MSB to CF and
CF to LSB.

1.4.4.4 String Instructions

String is a group of bytes/words and their memory is always allocated in a sequential order.

Following is the list of instructions under this group —

REP — This instruction is used to repeat the given instruction till CX # 0.
REPE/REPZ — Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

REPNE/REPNZ — Used to repeat the given instruction until CX = 0 or zero flag ZF
=1.

MOVS/MOVSB/MOVSW - This instruction is used to move the byte/word from
one string to another.

COMS/COMPSB/COMPSW — Used to compare two string bytes/words.

INS/INSB/INSW - This is used as an input string/byte/word from the I/O port to the
provided memory location.

OUTS/OUTSB/OUTSW — Used as an output string/byte/word from the provided
memory location to the I/O port.

SCAS/SCASB/SCASW - This is used to scan a string and compare its byte with a
byte in AL or string word with a word in AX.

LODS/LODSB/LODSW — Used to store the string byte into AL or string word into
AX.

1.4.4.5 Program Execution Transfer Instructions (Branch and Loop Instructions)

These instructions are used to transfer/branch the instructions during an execution. It includes
the following instructions —

Instructions to transfer the instruction during an execution without any condition —

CALL - This is used to call a procedure and save their return address to the stack.
RET — This is used to return from the procedure to the main program.

JMP — This is used to jump to the provided address to proceed to the next instruction.

40 | Microprocessor and Microcontroller

Instructions to transfer the instruction during an execution with some conditions —

e JA/JNBE — This is used to jump if above/not below/equal instruction satisfies.

JAE/JNB — This is used to jump if above/not below instruction satisfies.

e JBE/JNA — This is used to jump if below/equal/ not above instruction satisfies.

e JC — This is used to jump if carry flag CF = 1

e JE/JZ — This instruction is used to jump if equal/zero flag ZF = 1

e JG/JNLE — This is used to jump if greater/not less than/equal instruction satisfies.

e JGE/JNL — This instruction is used to jump if greater than/equal/not less than
instruction satisfies.

e JL/JNGE — This is used to jump if less than/not greater than/equal instruction
satisfies.

e JLE/JING — Used to jump if less than/equal/if not greater than instruction satisfies.
e JNC — This is used to jump if no carry flag (CF = 0) is set.

e JNE/JNZ — This is used to jump if not equal/zero flag, ZF = 0

e JNO — This is used to jump if no overflow i.e. OF =0

e JNP/JPO — This is used to jump if not parity/parity odd PF = 0

e JNS — This is used to jump if not sign SF =0

e JO — This is used to jump if overflow flag is set i.e. OF = 1

e JP/JPE — This is used to jump if parity/parity even, PF =1

e JS — This is used to jump if sign flag, SF = 1

1.4.4.6 Processor Control Instructions

These instructions are used to control the processor action by setting/resetting the flag values.
Following are the instructions under this group —

e STC — This instruction is used to set carry flag CF to 1

e CLC — This is used to clear/reset carry flag CF to 0

e CMC — This is used to put complement at the state of carry flag CF.

e STD - This instruction is used to set the direction flag DF to 1

e CLD — This is used to clear/reset the direction flag DF to 0

e STI — This is used to set the interrupt enable flag to 1, i.e., enable INTR input.

e CLI — This is used to clear the interrupt enable flag to 0, i.e., disable INTR input.

1.4.4.7 Iteration Control Instructions

These instructions are used to execute the given instructions for number of times. Following
is the list of instructions under this group —

41 | Microprocessor and Microcontroller

LOQP — This is used to loop a group of instructions until the condition satisfies, i.e.,
CX=0

LOOPE/LOOPZ — This is used to loop a group of instructions till it satisfies ZF = 1
&CX=0

LOOPNE/LOOPNZ — This is used to loop a group of instructions till it satisfies ZF
=0&CX=0

JCXZ — This is used to jump to the provided address if CX =0

1.4.4.8 Interrupt Instructions

These instructions are used to call the interrupt during program execution.

INT — This instruction is used to interrupt the program during execution and calling
service specified.

INTO — This is used to interrupt the program during execution if OF = 1

IRET - This instruction is used to return from interrupt service to the main program

1.4.5 8086 Interrupts

Interrupt is a method of making a temporary halt during program execution and allowing
peripheral devices to access the microprocessor. The microprocessor responds to that
interrupt with an ISR (Interrupt Service Routine), which is a short program that instructs the
microprocessor on how to handle the interrupt.

The following figure (Fig. 1.13) shows the types of interrupts that are there in a 8086
microprocessor.

Maskable Interrupt

Interrupts

Hardware Software
Interrupt Interrupt

Non-Maskable
Interrupt

Fig. 1.17: Classification of 8086 Interrupts

1.4.5.1 Hardware Interrupts

Hardware interrupt is caused by any peripheral device by sending a signal through a specified
pin to the microprocessor.

42 | Microprocessor and Microcontroller

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-maskable
interrupt and INTR is a maskable interrupt having lower priority. One more interrupt pin
associated is INTA called interrupt acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable
interrupt request pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place —
e Completes the current instruction that is in progress.
e Pushes the Flag register values on to the stack.

e Pushes the CS (code segment) value and IP (instruction pointer) value of the return
address on to the stack.

e [P is loaded from the contents of the word location 00008H.
e (S is loaded from the contents of the next word location 0000AH.

e Interrupt flag and trap flag are reset to 0.
INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted only if
interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear
interrupt Flag instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI is
disabled, then the microprocessor first completes the current execution and sends ‘0’ on
INTA pin twice. The first ‘0’ means INTA informs the external device to get ready and
during the second ‘0’ the microprocessor receives the 8 bit, say X, from the programmable
interrupt controller.

These actions are taken by the microprocessor —
e First completes the current instruction.
e Activates INTA output and receives the interrupt type, say X.

e Flag register value, CS value of the return address and IP value of the return address
are pushed on to the stack.

e [P value is loaded from the contents of word location X x 4

e CSis loaded from the contents of the next word location.

e Interrupt flag and trap flag is reset to 0
1.4.5.2 Software Interrupts
Some instructions are inserted at the desired position into the program to create interrupts.
These interrupt instructions can be used to test the working of various interrupt handlers. It

includes —

INT- Interrupt instruction with type number

43 | Microprocessor and Microcontroller

It is 2-byte instruction. First byte provides the op-code and the second byte provides the
interrupt type number. There are 256 interrupt types under this group.

Its execution includes the following steps —
e Flag register value is pushed on to the stack.

e (S value of the return address and IP value of the return address are pushed on to the
stack.

e [P is loaded from the contents of the word location ‘type number’ x 4
e CSis loaded from the contents of the next word location.
e Interrupt Flag and Trap Flag are reset to 0

The starting address for type0 interrupt is 000000H, for typel interrupt is 00004H similarly
for type2 is 00008H and so on. The first five pointers are dedicated interrupt pointers.
Le. —

e TYPE 0 interrupt represents division by zero situation.

e TYPE 1 interrupt represents single-step execution during the debugging of a program.
e TYPE 2 interrupt represents non-maskable NMI interrupt.

e TYPE 3 interrupt represents break-point interrupt.

¢ TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced microprocessors, and
interrupts from 32 to Type 255 are available for hardware and software interrupts.

INT 3-Break Point Interrupt Instruction

It is a 1-byte instruction having op-code is CCH. These instructions are inserted into the
program so that when the processor reaches there, then it stops the normal execution of
program and follows the break-point procedure.

Its execution includes the following steps —
e Flag register value is pushed on to the stack.

e (S value of the return address and IP value of the return address are pushed on to the
stack.

o [P is loaded from the contents of the word location 3x4 = 0000CH
o (S is loaded from the contents of the next word location.

e Interrupt Flag and Trap Flag are reset to 0
INTO - Interrupt on overflow instruction

It is a 1-byte instruction and their mnemonic INTQO. The op-code for this instruction is CEH.
As the name suggests it is a conditional interrupt instruction, i.e. it is active only when the
overflow flag is set to 1 and branches to the interrupt handler whose interrupt type number is
4. If the overflow flag is reset then, the execution continues to the next instruction.

Its execution includes the following steps —

e Flag register values are pushed on to the stack.

44 | Microprocessor and Microcontroller

e CS value of the return address and [P value of the return address are pushed on to the
stack.

o [P is loaded from the contents of word location 4x4 = 00010H
o (S is loaded from the contents of the next word location.

e Interrupt flag and Trap flag are reset to 0

1.5 Microcontroller and Its Architecture

A microcontroller is a small, low-cost microcomputer which is designed to perform the
specific tasks of embedded systems like, cruise control, ABS in Cars, displaying microwave’s
information, washing machines, printers and many more. In general, the microcontroller
consists of the processor, the memory (RAM, ROM, EPROM), Serial ports, peripherals (timers,
counters), etc. in a single chip.

A microcontroller (MCU for microcontroller unit) can also be defined as a small computer
on a single MOS VLSI chip. A microcontroller contains one or more CPUs (processor cores)
along with memory and programmable input/output peripherals. Program memory in the form
of ferroelectric RAM, NOR flash or ROM is also often included on chip, as well as a small
amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the
microprocessors used in personal computers or other general purpose applications (such as,
Pentium, Motorola 68000 series) consisting of RAM, ROM, timers, [/O ports, bus interface,
cache memories etc. are added externally and comes in various discrete chips.

In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on
a chip (SoC). An SoC may connect the external microcontroller chips as the motherboard
components, but an SoC usually integrates the advanced peripherals like graphics processing
unit (GPU) and Wi-Fi interface controller as its internal microcontroller unit circuits. By
reducing the size and cost compared to a design that uses a separate microprocessor, memory,
and input/output devices, microcontrollers make it economical to digitally control even more
devices and processes. Today, mixed signal microcontrollers are common, integrating analog
components needed to control non-digital electronic systems. In the context of the internet of
things, microcontrollers are economical and popular means of data collection, sensing and
actuating the physical world as edge devices.

1.5.1 Types of Microcontrollers

Microcontrollers are divided into various categories based on memory, architecture, bits and
instruction sets. Following are their types.

Bit Based

Based on bit configuration, the microcontrollers are further divided into three categories.

e 8-bit microcontroller — This type of microcontroller is used to execute arithmetic and
logical operations like addition, subtraction, multiplication division, etc. For example,
Intel 8031 and 8051 are 8 bits microcontroller.

e 16-bit microcontroller — This type of microcontroller is used to perform arithmetic
and logical operations where higher accuracy and performance is required. For
example, Intel 8096 is a 16-bit microcontroller.

e 32-bit microcontroller — This type of microcontroller is generally used in
automatically controlled appliances like automatic operational machines, medical
appliances, etc.

45 | Microprocessor and Microcontroller

Memory Based

Based on memory configurations, the microcontroller is further divided into two categories.

e External memory microcontroller — This type of microcontroller is designed in
such a way that they do not have a program memory on the chip. Hence, it is named
as external memory microcontroller. For example: Intel 8031 microcontroller.

¢ Embedded memory microcontroller — This type of microcontroller is designed in
such a way that the microcontroller has all programs and data memory, counters and
timers, interrupts, I/O ports are embedded on the chip. For example: Intel 8051
microcontroller.

Instruction Set Based

Based on the instruction set configuration, the microcontroller is further divided into two
categories.

e CISC — Stands for complex instruction set computer. It allows the user to insert a
single instruction as an alternative to many simple instructions, thereby reducing total
number of executable instructions in a program (N).

e RISC - Stands for Reduced Instruction Set Computers. It reduces the execution time

by shortening the cycles per instruction (CPI).

1.5.2 Applications of Microcontrollers

Microcontrollers are widely used in various different devices such as —

e Light sensing and controlling devices like LED.

e Temperature sensing and controlling devices like microwave oven, chimneys.
e Fire detection and safety devices like Fire alarm.

e Measuring devices like Volt Meter.

e Washing machines,

e Smart Cars

e Aviation Control

e Smart doors and many more

1.5.3 Microcontroller Architecture

The fundamental and primary part of the microcontroller is the Central Processing Unit which
is capable of processing a word of varying length ranging from 4-bit up to 64-bit. But in
modern-day, with technological advancements, the word length has increased and accordingly
the range. There is additionally a timer which is present in the microcontroller which acts as a
watchdog. There are memory storages of different types that are present in the microcontroller.
They act as storage devices for program as well as data.

The architecture of the microcontroller is the internal hardware design which is important to
understand the applicability of its architecture for different reasons. The design is not too
complex and is easy to understand. The architecture defines every section very clearly and

46 | Microprocessor and Microcontroller

distinctly. Fig.1.13 shows the general architecture of a microcontroller. It consists of the
following basic components.

1. CPU (Central Processing Unit)

It comprises of an Arithmetic Logic Unit (ALU) and a Control Unit (CU) and some other
components too which are important for its functioning. CPU co-ordinates the communication
between the peripheral devices such as memory, Output, and Input. All the arithmetical and
logical operations are performed by the Arithmetic Logic Unit (ALU). The timing to be
maintained of the communication between the CPU and the different components in the device
is controlled by the Control Unit (CU).

2. Program Memory

The instructions that are issued by the CPU are recorded and stored in the Program Memory. it
is also termed as Read-Only Memory (ROM). It even stores the data whenever the device is
not in functioning mode (silent) or is turned off so that there is a stored record of the functions
and the implementation of the various actions of the device controls. Even on the possibility of
a complete reset, there is no alteration of any data. Today we have alternative Program Memory
such as, Electrically Erasable Programmable Read-Only Memory (EEPROM) which is also
non-volatile memory.

3. Data Memory

This resides in the microcontroller and is totally responsible for the storage of temporary data
and variables. It also stores intermediate results and some other data which are important for
the proper functioning of the program. It is commonly called as Random-Access Memory
(RAM) which is a volatile memory. It is commonly systematized as registers and it includes
the Special Function Registers (SFRs) and also the memory locations accessible by the user.

4. Input and Output Ports

These are the ports that provide physical connection of the microcontroller with the outside
world. There are sensors that are present in the ports and they assist in allowing the input of
data from external sources into the microcontroller. The data which is received from the input
ports is usually manipulated and that decide the data which will be available at the output port.
Mostly, the ports present in the microcontroller function both as input and also as output ports.
They can perform with dual functionality.

5. Clock Generator

The synchronization of data and the flow of the program need to be timely and ordered. The
clock signal helps to maintain this important functioning of the microcontroller. Thereby the
operations run smoothly. It is an integral and most important part of the microcontroller and its
architecture. An additional timing circuit needs to be provided which is usually in the form of
a crystal.

6. ADC and DAC

A/D and D/A converters are very useful to convert the output signal in the necessary form.
For example, the data which is available in the form of analog signal can be converted into
digital and vice-versa.

Apart from these, a microcontroller also includes interface for USB/ethernet, RS232 serial
interface, PWM etc.

47 | Microprocessor and Microcontroller

RAM

ROM

suid Q1

1/0 pins

Fig. 1.18: Architectural Diagram of a Microcontroller

1.5.4 Comparison of 8-bit, 16-bit and 32-bit Microcontrollers

As already stated that microcontrollers can be of 8-bit, 16-bit or 32-bit depending upon the
number of bits of data it processes. Certainly, they differ in terms of their execution time
(speed), cost, efficiency, address space and storage capability. A brief comparison is given
next.

8-bit Microcontroller

Internal bus is 8-bit

ALU performs operation on 8-bit data (1-byte)

8-bit microcontrollers are used in small systems

Typically works on 4 MHZ clock

Less cost

Small RAM and ROM

8-bit microcontroller uses small memories that can be erased in-system

Examples: AVR, PIC, HCS12, 8051 family

Used in products like, miniature-washing machine, remote control toys, motor control
etc.

16-bit Microcontroller

Internal bus is 16 bit

Typically works on 12-50MHz. clock

ALU performs operation on 16-bit (2-bytes) data

More precision compared to 8-bit microcontroller

Typically has 16 to 32Kbyte of memory

16-bit microcontrollers use large memories that cannot be erased in-system
Examples: Extended 8051 XA, Intel 8096, MC68HC12

Used in micro-ovens, washing machines, video games etc.

48 | Microprocessor and Microcontroller

32-bit Microcontroller

Internal bus is 32-bit

Usually have clocks more than 100MHZ

ALU performs operations on 32-bit (4-byte) data

Can address up to 4GB of memory (RAM)

Even greater precision than 16-bit microcontroller
Examples: PIC32, ARM, Intel 80960, Atmel 251 family
Used in large embedded system

1.5.5 How to choose microcontrollers?

The criteria to choose a microcontroller are

Whether the microcontroller meets the computing needs of the task efficiently and cost
effectively. Factors affecting this are, speed, cost per unit, power consumption,
packaging, amount of RAM and ROM in the chip, number of I/O pins and timers.
Moreover, also depends on how easy to upgrade it to high performance or low power
consumption version

What are the software development tools available? For example, compilers,
assemblers, debuggers, emulators etc. that is how easy to develop products around the
chosen microcontroller.

It must be readily available and there must be a wide availability of the reliable sources
of microcontroller (manufacturer and supplier). At present the leading 8-bit
microcontroller, the 8051 family has the largest number of multiple suppliers. For
example, 8051 was originated by Intel but now several companies also produce 8051.
These include, Intel, Atmel, AMD, Philips, Infineon, Dallas Semiconductor [Ref. 8].

1.6 Embedded Systems

Definition 1: Any computing system embedded within larger electronic devices, repeatedly
carrying out a particular function, often going completely unrecognized by the user of the
device is known as embedded system [Ref.9].

Definition 2: Nearly any device that runs on electricity, either already has or soon will have a
computing system embedded within it-called an embedded system.

Alternatively, any computing system other than a desktop is also termed as embedded system.

1.6.1

Characteristics of Embedded Systems
They are single functioned: Executes a specific task repeatedly. For example, a pager,
a digital camera, washing machine, mobile phone etc. Whereas, desktop systems are
general purpose and executes a variety of programs.
Tightly constrained: They have stringent design constraints. Simultaneously, they need
to be
Cheap
Small size and fit on a single chip
Fast enough for real-time
Consume extremely low power for long battery life

o No cooling arrangement
Reactive and real-time: They must respond to the environment very quickly. For
example, braking system in cars (ABS), Cruise control, Aviation control.

O O O O

49 | Microprocessor and Microcontroller

1.6.2 Role of Microcontrollers in Embedded System Design

As it is clear from the definition of embedded systems that these are single-functioned. It means
that embedded systems continue to perform a single task repeatedly throughout its life. For
example, a washing machine will continue to perform the task of washing, rinsing and spinning
throughout its life as and when asked to do so. Similarly, a digital camera will perform the task
of capturing still and video images, internally process it and save, retrieve it as and when asked
to do so. A printer will continue to do the task of printing only. Microcontrollers play a
significant role in the design of embedded systems. As microcontroller is also designed for
single functioned (usually a small program stored in on-chip ROM) and having low cost
suitable for the design of embedded systems. Normally, for small, low cost embedded
applications microcontrollers are mostly preferred. 8-bit and 16-bit microcontrollers are the
most appropriate for applications such as in washing machine, microwave ovens, toys, video
games. Although microcontrollers are most preferred for low-cost embedded applications there
are situations where they are inadequate for the task. Therefore, in recent years, the
manufacturer of general-purpose processors such as, Intel, Freescale Semiconductors Inc.
(formerly Motorola), AMD (Advanced Micro Devices Inc.), Cyrix (a division of National
Semiconductors Inc.), Apple Corporations have targeted their processors for high-end
embedded applications. For example, 8086 processors, 68000 series processors, PowerPC and
ARM processors are now quite often used for high-end embedded applications. Today, even
32-bit RISC processors are used for complex embedded applications such as mobile phones.
Normally, for large embedded applications reconfigurable kind of processors such as Field
Programmable Gate Arrays (FPGAs) are used. They are very much flexible. Consumers
product can be upgraded even after shipment. FPGAs are most suitable for fast proto-typing
also. However, the unit cost is very high compared to microprocessor and microcontroller-
based design, so they are deployed only for large embedded systems.

Summary

In this chapter we have learnt the general structure of microprocessors and microcontrollers.
We have also noticed the analogy between the human brain versus computer. History, growth
and evolution of computers are also elucidated briefly. Progress in microprocessors and
advances in semiconductor technology, microcomputer systems and the classification of
computers are also illustrated. Then we introduced the readers on machine language, assembly
language (abbreviated form of instruction or mnemonics) or high-level languages such as
FORTRAN, BASIC, C, C++ or Java. The major component of the chapter is the overview of
8085 and 8086 microprocessors. We have covered the architecture, instruction set, addressing
modes, interrupts, instruction cycles. We have also introduced readers about the fundamentals
of microcontroller architecture beginning with 8-bit microcontroller such as 8051 and
compared it with the other microcontrollers namely, 16-bit and 32-bit is also illustrated. Lastly,
at the end of the chapter a brief introduction is given to embedded systems and its
characteristics. Also, on how microcontrollers can be used to design an embedded system.

50 | Microprocessor and Microcontroller

Review Questions and Exercise

Section 1.1 & 1.2

A U o

b

11.

What are the components of a computer? List it.

What is a microprocessor? Compare between microprocessor and a CPU.

Find the differences between a microprocessor and a microcontroller.

Explain the terms: SSI, MSI and LSI.

Define bit, byte and instruction.

How many bytes are there in a word of 32 bits

Calculate the number of registers in a 64K memory chip.

Explain the difference between machine language and assembly language of 8085
microprocessor

What is an assembler?

. What are low and high-level languages? State the relative benefits of high-level

language over low-level language
Explain the difference between a compiler and an interpreter.

Section 1.3

12.

13.

14.

15.

16.

17.

18.

19.

Define opcode and operand. Specify the opcode and operand in the following
instructions: (i) MOV B, A (ii) MVI B, 4FH (iii)CMA
Find the machine codes and number of bytes in the following instructions.
a. MVIH,47H
b. ADIF5H
c. SUBC
Write the corresponding HEX code for the following instruction set and number of
bytes in each instruction.
MVI B, 4FH
MVI C, 78H
MOV A, C
ADD B
OUT 07H
HLT
If the starting address of the system memory is 2000H, what will be the address to
enter the HEX code for OUT 07H in question 14.
Assemble the following program, starting at location 2000H.
START: IN F2H //Read input switches at port F2H
CMA //set ON switches to logic 1
ORA A //set Z flag if no switch is ON
JZ START //Go back and read input port if all switches are off
Write an assembly language program to add the two Hex numbers, A2H and 18H.
Keep the two numbers saved for future use and save the result in accumulator.
Two data bytes 28H and 97H are stored in register B and Accumulator respectively.
What will be the contents of the register B, C and accumulator after execution of the
following two instructions?
Mov A, B
Mov C, A

Draw the timing diagram, instruction cycle, machine cycle for the problem 18.

51 | Microprocessor and Microcontroller

20. Find the contents of the registers A, B, C, D and flags S, Z, CY if the following
instructions are executed.
MVI A, 00H
MVI B, F8H
MOV C, A
MOV D, B
HLT

21. What will be instructions to load the hexadecimal numbers 62H in register C and 91H
in accumulator A? Also display the number 62H in PORTO and 91H in PORTT1.

22. Draw the timing diagram of instruction cycle, machine cycle and T-states for the
problem of 21.

23. Write instructions to read data at the input PORT 07H and PORT 08H. Also display
the input data at PORT 07H to an output PORT 00H and store the input data from
PORT 08H into register C.

24. Specify the output at PORT?2 if the following program is executed.

MOV B, 68H
MOV A, B
MOV C, A
MVI D, 42H
OUT PORT2
HLT

25. Find the register contents and the status of flag registers when the following
instructions are executed. Also indicate the output at PORTO.
Initial Status: A B S V4 CYy

00 9F 0 1 0

MVI A, F2H
MVI B, 7AH
ADD B
OUT PORTO
HLT
26. Write a small program using ADI instruction to add two hexadecimal numbers 3AH
and 48H and display the answer at an output port.
27. Draw the timing diagram for the instruction cycle, machine cycle for the program in
problem 26.
28. Write a program to perform the following steps:
a. Load O0OH in to the accumulator
b. Decrement accumulator
c. Display the answer at the output port
29. Subtract two unsigned numbers F8H and 69H and specify the contents of A and the
status registers S and CY. Explain the significance of sign flag if it set after the
operation.
30. Find the content of the register and status flags (S, Z, CY) after the instruction ORA A
is executed.
MVI A, 48H
MVI B, 58H
ADD B
ORA A
31. Load the data byte A7H in register C. Mask the higher-order bits (D7-D4), and
display the lower-order bits (D3-D0) at an output port.

52 | Microprocessor and Microcontroller

32. What will be the address of the output port? Explain the type of numbers that can be
displayed at the output port.

MVI A, BYTEI1

ORA A //set flags

JP OUTPRT //Jump if byte is positive
XRA A

OUTPRT: OUT F2H
HLT
If BYTEI = 92H, what will be the output at port F2H?

33. In the following program if BYTE1=A7H, what will be displayed at port 01H?
MVI A, BYTEI //Get data byte
ORA A //Set flags
JM OUTPRT
OUT 01H
HLT

OUTPRT: CMA
ADI 01H
OUT 01H
HLT
34. Specify the memory location and its content after the execution of the following
instruction,
MVI B, F7TH
MOV A, B
STA XX75H
HLT
35. Indicate the content of registers A, D and HL after the execution of the following
instructions.
LXI H, XX80H //set up HL as memory pointer
SUB A //clear accumulator
MVI D, OFH //set up register as a counter

LOOP:MOV M, A //clear memory
INX H //mext memory location
DCR D //lupdate counter
JNZ LOOP
HLT
36. How many times the following loop will executed? Explain

LXI B, 0008H
LOOP:DCX B
MOV A, B
ORA C
INZ LOOP
37. Indicate the content of the accumulator and status of CY flag when the following
instructions are executed,
a. MVI A, 8FH b. MVI A, B7TH
ORA A ORA A
RLC RAL

53 | Microprocessor and Microcontroller

38. The following set of data bytes are stored in memory locations starting from 4050H.
Check each data byte for bits D7 and Do. If D7 or DO is 1, reject the data byte
otherwise, store the data bytes in the memory locations starting at 4060H.

Data(H): 80, 54, F8, 78, F1, 68, 35 and 62

39. Write a program to store the following set of data bytes in descending order.

Data(H): 64, 40, 56, 68, 45, 5A, 4F, 4D, 56, 59

Section 1.4

40. What is the size of address and data bus in the 80867

41. Draw the register organization of the 8086 and explain typical applications of each
register.

42. How is the 20-bit physical memory address calculated in the 8086 processor?

43. Find the 20-bit physical address of an external memory location if the segment
address is 1005H and offset address is 5555H.

44. What are the different memory segments used in the 8086 and explain their functions?

45. Write the function of the DF, IF and TF bits in the 8086.

46. The content of the different registers in the 8086 is CS = FOOOH, DS = 1000H, SS =
2000H and ES = 3000H. Find the base address of the different segments in the
memory.

47. What is the difference between the minimum and maximum mode of operation of the
8086?

48. What is DMA operation? Which pins of the 8086 are used to perform the DMA
operation in the minimum and maximum modes of the 80867

49. Explain the function of different flags in the 8086.

50. Find the difference between maskable and non-maskable interrupts?

51. What is the difference between hardware and software interrupts?

52. Explain interrupt vector. What is the maximum number of interrupt vectors that can
be stored in the IVT of the 80867

53. Write a program to move a word string 200 bytes (i.e. 100 words) long from the offset
address 1000H to the offset address 3000H in the segment 5000H.

54. Write a program to find the smallest word in an array of 100 words stored sequentially
in the memory; starting at the offset address 1000H in the segment address SO00H.
Store the result at the offset address 2000H in the same segment.

55. Write a program to add the two BCD data 29H and 98H and store the result in BCD
form in the memory locations 2000H: 3000H and 2000H: 3001H.

Section 1.5 & 1.6

56. Write true or false. A Microcontroller is less expensive than a microprocessor.
57. Which of the following devices on chip, a microcontroller has?
(a) RAM (b) ROM (c) VO (d) All of the above
58. Which of the following devices a general-purpose microprocessor needs to be
attached to?
(a) RAM (b) ROM (c) VO (d) All of them
59. An embedded system is also called a dedicated system. Why?
60. What does the term embedded System mean?
61. Why having multiple resources of a given product does matter?
62. What is an embedded system?
63. What are the characteristics of embedded system? Give examples.
64. What a role a microcontroller plays in designing an embedded system?

54 | Microprocessor and Microcontroller

References
[1] Boyer, C.B. 4 History of Mathematics. 2" ed. New York: Wiley 1989.

[2] Braun, E. and S. MacDonald. Revolution in Miniature, The History and Impact of
Semiconductor Electronics. 2™ ed. Cambridge, England: Cambridge University Press, 1982.

[3] John P. Hayes. Computer Architecture and Organization. 3" ed. Singapore: McGraw-Hill
International Edition, 1998.

[4] R. R. Schaller, "Moore's law: past, present and future," in /EEE Spectrum, vol. 34, no. 6,
pp- 52-59, June 1997, doi: 10.1109/6.591665.

[5] Siewiorek, D.P., C.G. Bell, and A. Newell. Computer Structures: Readings and Examples.
New York: McGraw-Hill, 1982.

[6] K.M. Bhurchandi and A.K. Ray, ADVACNED MICROPROCESSORS AND
PERIPHERALS, 3" ed. Tata McGraw-Hill, New Delhi, 2013.

[7] https://www.eeeguide.com/internal-architecture-of-8086/

[8] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2" ed. New Jersey, Pearson Prentice Hall, 2006.

[9] Santanu Chattopadhyay. Embedded System Design. 2" ed. PHI Learning Private Ltd. New
Delhi, 2016.

[10] https://www.vssut.ac.in/lecture _notes/lecture1423813120.pdf

Chapter 2
8051 Microcontroller

Key Features

e 8051 microcontroller and its essential features
e Internal architecture of 8051

e Various storage registers in 8051, SFRs

e Program and Data memory

e Stacks

e (lock and Reset circuit
e Timers

e [/O ports

e Assembly Language of 8051
e Instruction Set and Assembly Language Programs

Module-2 outcomes

Students should be

able to understand the internal architecture of 8051

e able to explain the role of different registers, SFRs in 8051

e able to explain the functions of clock and reset circuit, timers and ports
e aware of the instruction set and tasks performed by instructions

e able to write assembly language programs

8051 is one of the most popular and low-cost microcontrollers also known as MCS-51. It was
introduced in 1981 by Intel. It gained the popularity because Intel allowed other manufacturers
to make and market variants of 8051 (with variations in speed) which are code compatible with
each other. It belongs to 8-bit microcontroller family. It has a built-in monitor program, built-
in program memory, interrupts, analog I/O, serial I/O, facility to interface external memory,
and a timer. It is called a system on chip because it has 128 bytes of RAM, 4K bytes of on-chip
ROM, two timers, one serial port and 4 ports (8-bit wide), all on a single chip.

Other members of 8051 microcontroller family are 8052, 8031, Atmel AT89C51, Dallas
DS89C4x0 and Philips 8051.

An 8051 microcontroller comes in bundle with the following features —

4KB bytes on-chip program memory (ROM)
128 bytes on-chip data memory (RAM)
Four register banks

128 user defined software flags

8-bit bidirectional data bus

56 | Microprocessor and Microcontroller

16-bit unidirectional address bus

32 general purpose registers each of 8-bit

16-bit Timers (usually 2, but may have more or less)

Three internal and two external Interrupts

Four 8-bit ports, (short models have two 8-bit ports)

16-bit program counter and data pointer

8051 may also have a number of special features such as UARTs, ADC, Op-amp, etc.

Like any other microprocessor-based systems, in 8051 microcontrollers, the system bus plays
a key role to connect all the devices to the central processing unit. This bus includes a data bus-
an 8-bit, an address bus-16-bit & bus control signals. Other devices can also be interfaced
throughout the system bus like ports, memory, interrupt control, serial interface, the CPU,
timers. 8051 microcontroller programming is usually done with embedded C language using
Keil software. Although, it can be programmed to perform tasks using assembly language. It
also has several other 8 bit and 16-bit registers. For internal functioning & processing of
microcontroller, 8051 comes with integrated built-in RAM. This is the primary memory and is
employed for storing temporary data. It is an unpredictable memory i.e. its data can be lost
when the power supply to the microcontroller is switched OFF. This microcontroller is very
simple to use, affordable, less computing power, has a simple architecture and instruction set.

2.1 Architecture of 8051

The architectural diagram of 8051 microcontroller is shown in Fig.2.1, whereas the detailed
block diagram representation of it with internal registers, RAM, ROM, I/O ports and
interconnections is shown in Fig.2.2.

I aRE

- P L P2 s
i’
Addiess Dara

Fig.2.1: Architecture of 8051

57 | Microprocessor and Microcontroller

Armttrmshe Epecul e o -| .
and P Fitian Hmmti= ;:I:II?-.P-D
Logic Ut H"E'.M”:“ =1~
1 o x
& H B-Bi Cain and |
Adkiress Hus] = }
- B)
ke | i
DPTR g :
RS | Oew RO
O &
L_| ®
| | 18-t Advons Bus E
s
Fa— Spocal
ALt ,'Tzr'ﬂlurrl ‘gﬁ"ﬂ" Fumction =
PEEN g T Apgitar
ATAL Tasmatai Ik
'] System Bank 3 "
ETAL,™ inimirupis = =
AESET=== Timats CON
| mﬂl’l ZBUF
W e 2 =
1 Dt Bt ﬂ
GHND— Mamory Coningd
: ooy TMOD
'I_I_
] TL,
! TH.
| P —
] Bark 0 b
i TH,
[}
' Intaival RAM Stuchae

Fig.2.2: Detailed block diagram of 8051 microcontroller with internal registers

The flowing section explains various registers, internal logic units and other components in
detail.

2.1.1 Storage Registers in 8051
We will discuss the following types of storage registers here —

e Accumulator

e Rregister

e Bregister

e Data Pointer (DPTR)

e Program Counter (PC)
e Stack Pointer (SP)

Accumulator

The accumulator, register A, is used for all arithmetic and logic operations. If the accumulator
is not present, then every result of each calculation (addition, multiplication, shift, etc.) is to be
stored into the main memory. Access to main memory is slower than access to a register like
the accumulator because the technology used for the large main memory is slower (but cheaper)
than the technology used for a register.

58 | Microprocessor and Microcontroller

The "R" Registers

The "R" registers are a set of eight registers, namely, R0, R1 to R7 as shown in Fig. 2.3. These
registers function as auxiliary or temporary storage registers in many operations. Consider an
example of the sum of 10 and 20. Store a variable 10 in an accumulator and another variable
20 in, say, register R4. To carry out the addition, the following command is to be executed.

ADD A, R4

After executing this instruction, the accumulator will contain the value 30. Thus "R" registers
are very important auxiliary or helper registers. The Accumulator alone would not be very
useful if there were no "R" registers. The "R" registers are meant for temporarily storage of
values.

Let us take another example. We will add the values in R1 and R2 together and then subtract
the values of R3 and R4 from the result.

MOV A,R3 ;Move the value of R3 into the accumulator
ADD A,R4 ;Add the value of R4

MOV R5,A ;Store the resulting value temporarily in R5
MOV A,R1 ;Move the value of Rl into the accumulator
ADD A,R2 ;Add the value of R2

SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)
As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course, this is not

the most efficient way to calculate (R1 + R2) — (R3 + R4), but it does illustrate the use of the
"R" registers as a way to store values temporarily.

- O | P '|

1&6-bit Registars of 8051

B 2 8] 8] 3] B B = »

B-bat Registars of 8051

Fig.2.3: Various Storage Registers of 8051

The "B" Register

The "B" register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-
byte) value. The "B" register is used only by two 8051 instructions: MUL AB and DIV AB.
To quickly and easily multiply or divide A by another number, you may store the other number
in "B" and make use of these two instructions. Apart from using MUL and DIV instructions,
the "B" register is often used as yet another temporary storage register, much like a ninth R
register.

59 | Microprocessor and Microcontroller

The Data Pointer

The Data Pointer (DPTR) is the 8051°s only user-accessible 16-bit (2-byte) register. The
Accumulator, RO-R7 registers and B register are 1-byte registers. DPTR is meant for pointing
to data. It is used by the 8051 to access external memory using the address indicated by DPTR.
DPTR is the only 16-bit register available and is often used to store 2-byte values.

2.1.2 Program Counter

The Program Counter (PC) is a register to store a 2-byte address which tells the 8051 where
from the next instruction to be executed can be found (in the memory). PC starts at 0000h when
the 8051 initializes and is incremented every time after an instruction is executed. PC is not
always incremented by 1. Some instructions may require 2 or 3 bytes; in such cases, the PC
will be incremented by 2 or 3.

Branch, jump, and interrupt operations load the Program Counter with an address other than
the next sequential location. Activating a power-on reset will cause all values in the register to
be lost. It means the value of the PC is 0 upon reset, forcing the CPU to fetch the first opcode
from the ROM location 0000. It means we must place the first byte of opcode in ROM location
0000 because that is where the CPU expects to find the first instruction.

2.1.3 The Stack Pointer (SP)

Stack is implemented in RAM and a CPU register is used to access it called SP (Stack Pointer)
register. The Stack Pointer, like all other registers except DPTR and PC, may hold an 8-bit (1-
byte) value i.e. SP register is an 8-bit register and can address memory addresses of range 00H
to FFH. When the content of a CPU register is stored in a stack, it is called a PUSH operation.
When the content of a stack is stored in a CPU register, it is called a POP operation.

The Stack Pointer tells the location from where the next value is to be removed from the stack.
When a value is pushed onto the stack, the value of SP is incremented and then the value is
stored at the resulting memory location. When a value is popped off the stack, the value is
returned from the memory location indicated by SP, and then the value of SP is decremented.

This order of operation is important. SP will be initialized to 07H when the 8051 is initialized.
If a value is pushed onto the stack at the same time, the value will be stored in the internal RAM
address O8H because the 8051 will first increment the value of SP (from 07H to 08H) and then
will store the pushed value at that memory address (08H). SP is modified directly by the 8051
by six instructions: PUSH, POP, ACALL, LCALL, RET, and RETI.

2.1.4 Reset Vector

The significance of the reset vector is that it points the processor to the memory address which
contains the firmware's first instruction. Without the Reset Vector, the processor would not
know where to begin execution. Upon reset, the processor loads the Program Counter (PC)
with the reset vector value from a predefined memory location. On CPUOS architecture, this is
at location $FFFE to $FFFF.

When the reset vector is not necessary, developers normally take it for granted and don’t
program into the final image. As a result, the processor doesn't start up on the final product. It
is a common mistake that takes place during the debug phase.

60 | Microprocessor and Microcontroller

2.1.5 The SFR of 8051

A Special Function Register (or Special Purpose Register, or simply Special Register) is a
register within a microprocessor that controls or monitors the various functions of a
microprocessor. As the special registers are closely tied to some special function or status of
the processor, they might not be directly writable by normal instructions (like add, move, etc.).
Instead, some special registers in some processor architectures require special instructions to
modify them.

In the 8051, register A, B, DPTR, and PSW are a part of the group of registers commonly
referred to as SFR (special function registers). An SFR can be accessed by its name or by its
address. The following table 2.1 shows a list of SFRs and their addresses.

Table 2.1: List of SFRs and their addresses

Byte

Address Bit Address
FF
FO F7 F6 F5 F4 F3 F2 F1 FO B
EO E7 E6 E5 E4 E3 E2 El EO ACC
DO D7 D6 D5 D4 D3 D2 - DO PSW
B8 - - - BC BB BA B9 B8 IP
BO B7 B6 B5 B4 B3 B2 B1 BO P3
A2 AF - - AC AB AA A9 A8 IE
A0 A7 A6 A5 A4 A3 A2 Al A0 P2
99 Not bit Addressable SBUF
98 9F 9E 9D 9C 9B 9A 99 98 SCON
90 97 96 95 94 93 92 91 90 P1
8D Not bit Addressable TH1
8C Not bit Addressable THO
8B Not bit Addressable TL1
8A Not bit Addressable TLO
89 Not bit Addressable TMOD
88 8F 8E 8D 8C &B 8A 89 88 TCON
87 Not bit Addressable PCON
83 Not bit Addressable DPH
82 Not bit Addressable DPL
81 Not bit Addressable SP

80 87 87 85 &4 83 82 81 80 PO

61 | Microprocessor and Microcontroller

The following two points are to be about the SFR addresses.

e A special function register can have an address between 80H to FFH. These addresses
are above 80H, as the addresses from 00 to 7FH are the addresses of RAM memory
inside the 8051.

e Not all the address space of 80 to FF are used by the SFR. Unused locations, 80H to
FFH, are reserved and must not be used by the 8051 programmers.

Program Status Word (PSW)

The program status word (PSW) register is an 8-bit register, also known as flag register. It is
of 8-bit wide but only 6-bit of it is used. The two unused bits are user-defined flags. Four of
the flags are called conditional flags, which means that they indicate a condition which results
after an instruction is executed. These four are CY (Carry), AC (auxiliary carry), P (parity),
and OV (overflow). The bits RSO and RS1 are used to change the bank registers. The following
format shows the program status word register. The PSW Register contains that status bits
(flags) that reflect the current status of the CPU is represented in 8-bit format as below.

7 6 5 4 3 2 1 0

CY AC FoO RS1 RSO ov - P
CY SSW' Carry Flag
AC ESW' Aucxiliary Carry Flag
FO ISDSW' Flag 0 available to user for general purpose.
RS1 ESW' Register Bank selector bit 1
RSO ESW' Register Bank selector bit 0
ov gSW' Overflow Flag
- ll)SW' User definable FLAG
P PSW. Parity FLAG. Set/ cleared by hardware during instruction cycle to indicate
0 even/odd number of 1 bit in accumulator.

We can select the corresponding Register Bank bit using RSO and RS1 bits.
RS1 RSO Register Bank Address

0 0 0 00H-07H
0 1 1 08H-0FH
1 0 2 10H-17H
1 1 3 18H-1FH

e CY, the carry flag — This carry flag is set (1) whenever there is a carry out from the
D7 bit. It is affected after an 8-bit addition or subtraction operation. It can also be reset
to 1 or O directly by an instruction such as "SETB C" and "CLR C" where "SETB"
stands for set bit carry and "CLR" stands for clear carry.

62 | Microprocessor and Microcontroller

e AC, auxiliary carry flag — If there is a carry from D3 and D4 during an ADD or SUB
operation, the AC bit is set; otherwise, it is cleared. It is used for the instruction to
perform binary coded decimal arithmetic.

o P, the parity flag — The parity flag represents the number of 1's in the accumulator
register only. If the A register contains odd number of 1's, then P = 1; and for even
number of 1's, P = 0.

e OV, the overflow flag — This flag is set whenever the result of a signed number
operation is too large causing the high-order bit to overflow into the sign bit. It is used
only to detect errors in signed arithmetic operations.

Example 2.1

Show the status of CY, AC, and P flags after the addition of 9CH and 64H in the following
instruction.

MOV A, #9CH
ADD A, # 64H

Solution: 9C 10011100
+64 01100100
100 00000000

CY =1 since there is a carry beyond D7 bit
AC =0 since there is a carry from D3 to D4
P =0 because the accumulator has even number of 1's

2.1.6 Program Memory or ROM Space in 8051

Some family members of 8051 have only 4K bytes of on-chip ROM (e.g. 8751, AT8951); some
have 8K ROM like, AT89C52 and there are few other family members with 32K bytes and
64K bytes of on-chip ROM such as Dallas Semiconductor [Ref. 1]. A point to be remembered
is that no member of the 8051 family can access more than 64K bytes of opcode since the
program counter in 8051 is a 16-bit register (0000 to FFFF address).

The first location of the program ROM inside the 8051 has the address of 0000H, whereas the
last location can be different depending on the size of the ROM on the chip. Among the 8051
family members, AT8951 has 4k bytes of on-chip ROM having a memory address of 0000
(first location) to OFFFH (last location) as shown in Fig.2.4.

Fig. 2.4: Internal locations in ROM memory
Programming the ROM

To understand the role of program counter in fetching and executing a program memory, let us
see the action of the program counter. Consider a simple program as shown below and see how

63 | Microprocessor and Microcontroller

the code is listed and placed in ROM of 8051 chip as in Table 2.2. For more details on
8051microcontrollers see the QR code.

Program

Mnemonics Hex code
MOV R5, #25H 7D25
MOV R7, #34H 7F34
MOV A, #0 7400
ADD A, R5 2D

ADD A, R7 2F

ADD A, #12H 2412
HERE: SIMP HERE 80FE

As we can see from the table that opcode and operand for each instruction are listed on the left
side of the list file. Once the program is burnt into a ROM of 8051 microcontroller family
member (such as 8751, AT8951 or DS5000) the opcode and operand are placed in ROM
locations starting at 0000 as shown in the list file in Table 2.2. The directives such as ORG and
END does not create any object code, used only by the assembler for its own understanding.
Thus, blank in the list file (no code). For a detail step-by-step procedure of action for executing
a program the readers may refer section 2.4, program 2-1 in [2].

OF A0
Table 2.2: List File in ROM E 7
contro!lers
1 | 0000 ORG OH //Start at location 0
2 |1 0000 |7D25 MOV R5, #25H | //Load 25H into R5
3 10002 |7F34 MOV R7, #34H | //Load 34H into R7
4 10004 | 7400 MOV A, #0 //Load 0 into A
5 10006 |2D ADD A, RS //Add contents of RS to A, so A= A+RS5
6 | 0007 |2F ADD A, R7 //Add contents of R7 to A, now A=A+R7
7 10008 | 2412 ADD A, #12H //Add to A the value 12H, now A=A+12H
8 | 000A | 8OFE HERE: | SIMP HERE //Stay in this loop
9 | 000C END //End of asm source file

2.1.7 Data Memory or RAM

The 8051 microcontroller has a total of 128 bytes of RAM. We will discuss about the
allocation of these 128 bytes of RAM and examine their usage as stack and register.

RAM Memory Space Allocation in 8051

The 128 bytes of RAM inside the 8051 are assigned the address 00 to 7FH. They can be
accessed directly as memory locations and are divided into three different groups as follows —

e 32 bytes from O0H to 1FH locations are set aside for register banks and the stack.

e 16 Dbytes from 20H to 2FH locations are set aside for bit-addressable read/write memory.

e 80 bytes from 30H to 7FH locations are used for read and write storage; it is called as
scratch pad. These 80 locations RAM are widely used for the purpose of storing data
and parameters by 8051 programmers.

64 | Microprocessor and Microcontroller

Secratch Pad RAM

Bt Addreszable RAM

Register Bank 3
Register Bank 2
Reaister Bank 1
(Stack)

Register Bank 0

Fig. 2.5: RAM memory allocation in 8051
2.1.8 Register Banks in 8051

A total of 32 bytes of RAM are set aside for the register banks and the stack. These 32 bytes
are divided into four register banks in which each bank has 8 registers, R0O—R7. RAM locations
from 0 to 7 are set aside for bank 0 of RO—R7 where R0 is RAM location 0, R1 is RAM location
1, R2 is location 2, and so on, until the memory location 7, which belongs to R7 of bank 0.

The second bank of registers RO—R7 starts at RAM location 08H and goes to locations OFH.
The third bank of RO—R?7 starts at memory location 10H and goes to location to 17H. Finally,
RAM locations 18H to 1FH are set aside for the fourth bank of RO-R7. This is depicted in
Fig.2.5.

Default Register Bank

If RAM locations 00—1F are set aside for the four registers banks, which register bank of RO—
R7 do we have access to when the 8051 is powered up? The answer is register bank 0; that is,
RAM locations from 0 to 7 are accessed with the names RO to R7 when programming the 8051.
Because it is much easier to refer these RAM locations by names such as RO to R7, rather than
by their memory locations.

How to Switch Register Banks

Register bank 0 is the default bank when the 8051 is powered up. We can switch to the other
banks using PSW register. D4 and D3 bits of the PSW are used to select the desired register
bank, since they can be accessed by the bit addressable instructions SETB and CLR. For
example, "SETB PSW.3" will set PSW.3 = 1 and select the bank register 1.

65 | Microprocessor and Microcontroller

RS1 RS0 Bank Selected
0 O BankO0
0 1 Bank1
1 0 Bank2

1 1 Bank3

2.1.9 Stack in the 8051

The stack is a section of a RAM used by the CPU to store information such as data or memory
address on temporary basis. The CPU needs this storage area considering limited number of
registers.

How Stacks are Accessed

As the stack is a section of a RAM, there are registers inside the CPU to point to it. The register
used to access the stack is known as the stack pointer register. The stack pointer in the 8051 is
8-bits wide, and it can take a value of 00 to FFH. When the 8051 is initialized, the SP register
contains the value 07H. This means that the RAM location 08 is the first location used for the
stack. The storing operation of a CPU register in the stack is known as a PUSH, and getting
the contents from the stack back into a CPU register is called a POP.

Pushing into the Stack

In the 8051, the stack pointer (SP) points to the last used location of the stack. When data is
pushed onto the stack, the stack pointer (SP) is incremented by 1. When PUSH is executed, the
contents of the register are saved on the stack and SP is incremented by 1. To push the registers
onto the stack, we must use their RAM addresses. For example, the instruction "PUSH 1"
pushes register R1 onto the stack.

Popping from the Stack

Popping the contents of the stack back into a given register is the opposite to the process of
pushing. With every pop operation, the top byte of the stack is copied to the register specified
by the instruction and the stack pointer is decremented once.

The operation of the stack and SP is shown in Fig. 2.6. The stack pointer (SP) is set to 07H
when 8051 is reset. But it can be changed to any internal RAM location by the programmer.
The stack is limited in height to the size of internal RAM. Stack has the capability to overwrite
the valuable data in register banks, bit addressable RAM and scratch pad areas of RAM. The
stack is normally placed high in internal RAM, by an appropriate choice of the number placed
in SP register to avoid any conflict with other registers, bit or scratch pad.

66 | Microprocessor and Microcontroller

CPFU CPU
Action Action

5P =0A Store Data | A ddress OA Gret Diata SP =04

gp=pn Store Data | A ddvess 00 Cret Diata

f'
| SP=08 | Store Data | Address 08 | Get Data
e '1' — R T .
| sp=o07 | Address 07 P=07
Storing Data on the Stack Internal EAN Gerting data frem the Stack
{Increment then store) {Get then decrement)

Ktack Operation

Fig. 2.6: Stack operation and Stack Pointer locations
2.1.10 Clock and Reset Circuit

The 8051 has on chip oscillator pins XTAL1 and XTAL2 which are provided for connecting
a resonant network to from an oscillator crystal having a frequency range from 1 MHZ to 24
MHZ.

Ceramic resonators may be used as a low-cost alternative to crystal resonators but due to
decrease in frequency stability and accuracy, ceramic resonators are not preferred for high-
speed serial data communication with other system.

The oscillator is formed by the crystal, capacitors, and on chip inverter generates a pulse train
at the frequency of the crystal as shown in Fig.2.7

The clock frequency establishes the smallest interval of time within the microcontroller, called
the pulse, p, time. The smallest interval of time to accomplish any simple instruction, or part
of a complex instruction, however, is the machine cycle. The machine cycle is made up of six
states. A state is the basic time interval for discrete operations of the microcontroller such as,
fetching on encoded byte, decoding encode, executing an encode, or writing a data byte. The
oscillator pulses define each state.

2
| | XTAL2
30pk
)]
Ci T
— il XTALI
30pF
I GND

Fig. 2.7: Clocking Circuit (Crystal Oscillator) of 8051

67 | Microprocessor and Microcontroller

We can calculate the time taken by any particular instruction to be executed as follows. The
time to execute the instruction is found by multiplying the number of clock cycles required by
the instruction (C) by 12 and then dividing the product by the crystal frequency.

T (instruction) = C x12 /Crystal frequency

A 12 MHZ crystal results in convenient time period of 1 microsecond per cycle. An 11.0592
MHZ crystal with a clock frequency of 921.6 KHz, can be divided evenly by the standard
communication baud rates of 19200, 9600, 4800, 2400, 1200 and 300 HZ.

Reset

8051 can be reset in two ways 1) power-on reset — which resets the 8051 when power is turned
ON and 2) manual reset — in which a reset happens only when a push button is pressed
manually. When the rest circuit is power on, capacitor gradually charges and initially a high
voltage appears across the resistor for some time. Till the voltage across the resistor is high
8051 remains in reset state for a few milliseconds time (usually within a time period of 2
machine cycles). By this time, all the transients in the circuit settles and then microcontroller
starts working. Two different reset circuits are shown Fig.2.8 below. A reset doesn't affect
contents of internal RAM

41}_-;::- l Fe
L™ :

Fig. 2.8: Reset Circuit of 8051
2.1.11 Address, Data & Control Bus

The address bus in 8051 microcontrollers is consisting of 16-bit address lines which carries
the 16 bit addresses of memory locations. It is generally be used for transferring the data from
Central Processing Unit to Memory. The 16-bit address bus can address a 64K (2'¢) memory
space and a separate 64K byte of data memory space. While the data bus in 8051
microcontrollers is consisting of 8 bits data lines which carries data between processor and
other components. Data bus is bidirectional. The control bus manages the information flow

68 | Microprocessor and Microcontroller

between various components (ALU, registers, memory, I/O etc.) indicating whether the
operation is a read or a write and ensuring that the operation happens at the right time.

2.1.12 Timers of 8051 and their Associated Registers

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event counters.
Both Timer 0 and Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit architecture, each
16-bit is accessed as two separate registers of lower order byte and higher order byte.

Timer 0 Register

The 16-bit register of Timer 0 is accessed as lower-bye and higher-byte. The lower-byte register
is called TLO (Timer 0 low byte) and the higher-byte register is called THO (Timer 0 high byte).

These registers can be accessed like any other register. For example, the instruction MOV TLO,
#4H moves the value into the low-byte of Timer #0.

THO Lo

===

Timer 1 Register

The 16-bit register of Timer 1 is accessed as lower- and higher-byte. The lower-byte register
is called TL1 (Timer 1 low byte) and the higher-byte register is called TH1 (Timer 1 high
byte). These registers can be accessed like any other register. For example, the instruction
MOYV TL1, #4H moves the value into the low-byte of Timer 1.

L L1

TMOD (Timer Mode) Register
Both Timer 0 and Timer 1 use the same register to set the various timer operation modes. It is
an 8-bit register in which the lower 4 bits are set aside for Timer 0 and the upper four bits for

Timers. In each case, the lower 2 bits are used to set the timer mode in advance and the upper
2 bits are used to specify the location.

69 | Microprocessor and Microcontroller

Gate CIT M1 MO Gate C/T M1 MO

e

Timer 1 Tmar [

Gate — When set, the timer only runs while INT(0,1) is high.
C/T — Counter/Timer select bit.

M1 — Mode bit 1.

MO — Mode bit 0.

GATE

Every timer has a means of starting and stopping. Some timers do this by software, some by
hardware, and some have both software and hardware controls. 8051 timers have both
software and hardware controls. The start and stop of a timer is controlled by software using
the instruction SETB TR1 and CLR TR1 for timer 1, and SETB TR0 and CLR TRO for
timer 0.

The SETB instruction is used to start it and it is stopped by the CLR instruction. These
instructions start and stop the timers as long as GATE = 0 in the TMOD register. Timers can
be started and stopped by an external source by making GATE = 1 in the TMOD register.

2.1.13 1/0O Ports and their Functions

The four ports PO, P1, P2, and P3, each use 8 pins, making them 8-bit ports. Upon RESET, all
the ports are configured as inputs, ready to be used as input ports. When the first 0 is written
into a port, it becomes an output. To reconfigure it as an input, a 1 must be sent to a port.

Port 0 (Pin No 32 — Pin No 39)

It has 8 pins (32 to 39). It can be used for input or output. Unlike P1, P2, and P3 ports, we
normally connect PO to 10K-ohm pull-up resistors to use it as an input or output port being an
open drain. It is also designated as AD0O-AD7, allowing it to be used as both address and data.
In case of 8031 (i.e. ROM-less Chip), when we need to access the external ROM, then PO will
be used for both Address and Data Bus. ALE (Pin no 31) indicates if PO has address or data.
When ALE = 0, it provides data D0O-D7, but when ALE = 1, it has address A0-A7. In case no
external memory connection is available, PO must be connected externally to a 10K-ohm pull-
up resistor as shown in Fig. 2.9.

70 | Microprocessor and Microcontroller

PO
PO T
Po.2
P13
P4
Pr).5
Pi1.6
POLT

BOS51

{ Hiog

Fig. 2.9: Port 0 connectivity for external memory
MOV A, #0FFH //(comments: A=FFH(Hexadecimal i.c. A=1111 1111)
MOV PO, A //(Port0 have 1's on every pin so that it works as Input)
Port 1 (Pin 1 through 8)
It is an 8-bit port (pin 1 through 8) and can be used either as input or output. It doesn't require
pull-up resistors because they are already connected internally. Upon reset, Port 1 is configured
as an input port. The following code can be used to send alternating values of 55H and AAH

to Port 1.

//Toggle all bits of continuously

MOV A, #55
BACK:
MOV P2 A

ACALL DELAY
CPL A //complement(invert) reg. A
SIMP BACK

If Port 1 is configured to be used as an output port, then to use it as an input port again, program
it by writing 1 to all of its bits as in the following code.

//Toggle all bits of continuously

MOV A, #0FFH //A =FF hex

MOV Pl1,A //Make P1 an input port
MOV A, Pl //get data from P1
MOV R7,A //save it in Reg R7
ACALL DELAY //wait

MOV A, Pl //get another data from P1
MOV R6,A //save it in R6
ACALL DELAY /Iwait

71 | Microprocessor and Microcontroller

MOV A, Pl //get another data from P1
MOV R5A //save it in R5

Port 2 (Pins 21 through 28)

Port 2 occupies a total of 8 pins (pins 21 through 28) and can be used for both input and output
operations. Just as P1 (Port 1), P2 also doesn't require external Pull-up resistors because they
are already connected internally. It must be used along with PO to provide the 16-bit address
for the external memory. So it is also designated as (A0—A7), as shown in the pin diagram.
When the 8051 is connected to an external memory, it provides path for upper 8-bits of 16-bits
address, and it cannot be used as I/O. Upon reset, Port 2 is configured as an input port. The
following code can be used to send alternating values of 55H and AAH to port 2.

//Toggle all bits of continuously

MOV A, #55
BACK:
MOV P2, A

ACALL DELAY
CPL A // complement(invert) reg. A
SIMP BACK

If Port 2 is configured to be used as an output port, then to use it as an input port again,
program it by writing 1 to all of its bits as in the following code.

//Get a byte from P2 and send it to P1
MOV A, #0FFH //A =FF hex

MOV P2, A //make P2 an input port
BACK:

MOV A,P2 //get data from P2
MOV Pl1,A //send it to Port 1
SIMP BACK //keep doing that

Port 3 (Pins 10 through 17)

It is also of 8 bits and can be used as Input/Output. This port provides some extremely important
signals. P3.0 and P3.1 are RxD (Receiver) and TxD (Transmitter) respectively and are
collectively used for Serial Communication. P3.2 and P3.3 pins are used for external interrupts.
P3.4 and P3.5 are used for timers TO and T1 respectively. P3.6 and P3.7 are Write (WR) and
Read (RD) pins. These are active low pins, means they will be active when 0 is given to them
and these are used to provide Read and Write operations to External ROM in 8031 based
systems.

P3 Bit Function Pin
P3.0 RxD 10
P3.1< TxD 11
P3.2< Complement of INTO 12
P33 < INTI 13
P3.4< TO 14
P3.5< T1 15

P3.6 < WR 16

72 | Microprocessor and Microcontroller

P3.7< Complement of RD 17

2.2 Assembly Language of 8051

Assembly languages were developed to provide mnemonics or symbols for the machine level
instructions. Assembly language programs consist of mnemonics and as such they should be
translated into machine code. A program that is responsible for this conversion is known as
assembler. Assembly language is often termed as a low-level language because it directly
works with the internal structure of the CPU. To program in assembly language, a programmer
must know all the registers of the CPU.

Different programming languages such as C, C++, Java and various other languages are called
high-level languages because they do not deal with the internal details of a CPU. In contrast,
an assembler is used to translate an assembly language program into machine code (sometimes
also called object code or opcode). Similarly, a compiler translates a high-level language into
machine code. For example, to write a program in C language, one must use a C compiler to
translate the program into machine language.

2.2.1 Structure of Assembly Language

An assembly language program is a series of short-form English word or lines, which are either
assembly language instructions such as ADD and MOV, or statements called directives.

An instruction tells the CPU what function it has to do, while a directive (also called pseudo-
instructions) gives instruction to the assembler. For example, ADD and MOV instructions are
commands which the CPU runs, while ORG and END are assembler directives. The assembler
places the opcode to the memory location 0 when the ORG directive is used, while END
indicates to the end of the source code. A program language instruction consists of the
following four fields —

[label:] mnemonics [operands] [; comment]
A square bracket ([]) indicates that the field is optional.

e The label field allows the program to refer to a line of code by name. The label fields
cannot exceed a certain number of characters.

e The mnemonics and operands fields together perform the actual task of the program
and accomplish the specified tasks. Statements like ADD A, C & MOV C, #68 where
ADD and MOV are the mnemonics, which are also known as opcodes, while "A, C"
and "C, #68" are the operands. These two fields could contain directives. Directives do
not generate machine code and are used only by the assembler, whereas instructions are
translated into machine code for the CPU to execute.

1.0000 ORG OH //start (origin) at location 0
20000 7D25 MOV R5#25H //load 25H into R5 register
3.0002 7F34 MOV R7.#34H //load 34H into R7 register
4.0004 7400 MOV A#0 //load 0 into accumulator A
5.0006 2D ADD A,R5 //add contents of R5 to A
6.00072F ADD A,R7 //add contents of R7 to A
7.0008 2412 ADD A#12H //add to A value 12 H
8.000A 8OFE HERE: SJIMP HERE //stay in this loop

9.000C END /lend of asm. source file

73 | Microprocessor and Microcontroller

e The comment field begins with a / which is an indicator of the comment.
e Any label in the program is specified by a label name such as, "HERE" in the program.
Any label which refers to an instruction should be followed by a colon.

2.2.2 Assembling and Running an 8051 Program

Here we will discuss about the basic form of an assembly language. The steps to create and
run an assembly language program are as follows:

o First, we use an editor to type in a program similar to the above program. Editors, like
MS-DOS EDIT program that comes with all Microsoft operating systems can be used
to create or edit a program. The Editor must be able to produce an ASCII file. The "asm"
extension for the source file is used by an assembler in the next step.

e The "asm" source file contains the program code created in Step 1. It is fed to an 8051
assembler. The assembler then converts the assembly language instructions into
machine code instructions and produces an .obj file (object file) and a .Ist file (list file).
It is also called as a source file, that's why some assemblers require that this file have
the "src" extensions. The "lIst" file is optional. It is very useful to the program because
it lists all the opcodes and addresses as well as errors that the assemblers detected.

e Assemblers require a third step called linking. The link program takes one or more
object files and produces an absolute object file with the extension "abs".

e Next, the "abs" file is fed to a program called "OH" (object to hex converter), which
creates a file with the extension "hex" that is ready to burn in to the ROM. The complete
set of steps are shown in the flowchart of Fig.2.10.

EDITOR
PROGEAM

iy file. A

L

ASSEMBLER
PROGE AM

1:3:.'J'|I= Isi ...J

myfile.oky)

other obj files
vy
LINEER
PROGRAM

.

miyiale.abs

l

OH
PROGRAM

.

miyfile. hex

Fig. 2.10: Flow chart of steps to create a program

74 | Microprocessor and Microcontroller

Data Type

The 8051 microcontroller contains a single data type of 8-bits, and each register is also of 8-
bits size. The programmer has to break down data larger than 8-bits (00 to FFH, or to 255 in
decimal) so that it can be processed by the CPU.

DB (Define Byte)

The DB directive is the most widely used data directive in the assembler. It is used to define
the 8-bit data. It can also be used to define decimal, binary, hex, or ASCII formats data. For
decimal, the "D" after the decimal number is optional, but it is required for "B" (binary) and
"HI" (hexadecimal).

To indicate ASCII, simply place the characters in quotation marks ('like this'). The assembler
generates ASCII code for the numbers/characters automatically. The DB directive is the only
directive that can be used to define ASCII strings larger than two characters; therefore, it should
be used for all the ASCII data definitions. Some examples of DB are given below —

ORG 500H

DATAI: DB 28 //DECIMAL (1C in hex)
DATA2: DB 00110101B //BINARY (35 in hex)
DATA3: DB 39H //HEX

ORG 510H

DATA4: DB "2591" //ASCII NUMBERS

ORG 520H

DATA6: DA "MY NAME IS Michael" //ASCII CHARACTERS

Either single or double quotes can be used around ASCII strings. DB is also used to allocate
memory in byte sized chunks.

2.2.3 Assembler Directives

Some of the directives of 8051 are as follows —

ORG (origin) — The origin directive is used to indicate the beginning of the address. It
takes the numbers in hexa or decimal format. If H is provided after the number, the
number is treated as hexa, otherwise decimal. The assembler converts the decimal
number to hexa.

EQU (equate) — It is used to define a constant without occupying a memory location.
EQU associates a constant value with a data label so that the label appears in the
program, its constant value will be substituted for the label. While executing the
instruction "MOV R3, #COUNT", the register R3 will be loaded with the value 25
(notice the # sign). The advantage of using EQU is that the programmer can change it
once and the assembler will change all of its occurrences; the programmer does not
have to search the entire program.

END directive — It indicates the end of the source (asm) file. The END directive is the
last line of the program; anything after the END directive is ignored by the assembler.

2.2.4 Labels in Assembly Language

All the labels in assembly language must follow the rules given below —

75 | Microprocessor and Microcontroller

e Each label name must be unique. The names used for labels in assembly language
programming consist of alphabetic letters in both uppercase and lowercase, number 0
through 9, and special characters such as question mark (?), period (.), at the rate @,
underscore (_), and dollar ($).

e The first character should be in alphabetical character; it cannot be a number.

e Reserved words cannot be used as a label in the program. For example, ADD and MOV
words are the reserved words, since they are instruction mnemonics.

e In addition to these there may be some other revered words specific to a particular
assembler.

2.3 Instruction Set of 8051

To perform any task by a microprocessor or a microcontroller it is to be programmed using
specific instructions from its set. Writing a program for any microcontroller is nothing but
giving a set of commands to the microcontroller in a particular order in which they must be
executed in order to perform a specific task. These commands to the microcontroller are known
as its instructions. An instruction set is unique to a family of computer or microcontroller. 8051
microcontrollers instruction set is also known as MCS-51 instruction set. As the family of 8051
microcontrollers use 8-bit processors, so its instruction set is optimized for 8-bit control
applications. As a typical 8-bit processor, the 8051 microcontroller instructions have 8-bit
opcodes. Thus, 8051 microcontroller’s instruction set can be up to 2% = 256 instructions.
However, depending upon the types of instructions (groups) and addressing modes there 49
instruction Mnemonics in the 8051 Microcontroller. These 49 Mnemonics are divided into five
groups as shown in the following table (Table 2.1).

Table 2.3: Instruction set of 8051 and Types

DATA PROGRAM
TRANSFER ARITHMETIC LOGICAL BOOLEAN BRANCHING
MOV ADD ANL CLR LIMP
MOVC ADDC ORL SETB AIJMP
MOVX SUBB XRL MOV SIMP
PUSH INC CLR IC Iz
POP DEC CPL INC INZ
XCH MUL RL JB CINE
XCHD DIV RLC INB DINZ
DA A RR JBC NOP
RRC ANL LCALL
SWAP ORL ACALL
CPL RET
RETI
IMP

As we can see from the table that there are basically five groups of instructions. These are data
transfer, arithmetic, logical, Boolean or bit manipulation and program control or branch
instructions. A brief explanation of each type of instruction Mnemonics is given below. The
detail of these instructions will be explained with appropriate examples in the next Chapter.

However, before proceeding further on the types of instructions, let us see the structure of the
8051 microcontroller instructions. An 8051 instruction consists of an Opcode (or Operation —

76 | Microprocessor and Microcontroller

Code) followed by Operand(s) of size Zero Byte, One Byte or Two Bytes. While opcode
specifies the operation to be performed, the operand part of instruction indicates the data being
processed by the instruction. The operand can be in any of the following forms-

No Operand

Data value

I/O Port

Memory Location
CPU register

There can be multiple operands also in an instruction. Accordingly, the format for an instruction
can be written as,

MNEMONIC OPERAND1, OPERAND2

Where, OPERANDI is the destination operand and OPERAND? is the source operand. A
simple instruction may have only opcode. Other instructions may include one or more
operands. One operand instruction is essentially a 2-byte instruction whereas two operand
instruction is a 3-byte instruction.

2.3.1 Data Transfer Instructions

Data transfer instructions are associated with the transfer of data between registers or external
program memory or external data memory. The Mnemonics associated with Data Transfer
are given below.

e MOV // Move data

e MOVC //Move code

o« MOVX // Move external data

e PUSH // Move data to stack

e POP // Copy data from stack

e XCH //Exchange data between two registers

e XCHD //Exchange lower order data between two registers

2.3.2 Arithmetic Instructions

Arithmetic instructions are meant to perform addition, subtraction, multiplication and
division. The arithmetic instructions also include increment or decrement by one, and a
special instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the arithmetic instructions of the 8051 Microcontroller
instruction set are:

e ADD // Addition without a carry
e ADDC // Addition with carry

e SUBB // Subtract with carry

e INC // Increment by 1

e DEC // Decrement by 1

e MUL // Multiply

e DIV // Divide

e DAA // Decimal Adjust the Accumulator (register A)

77 | Microprocessor and Microcontroller

2.3.3 Logical Instructions

The next group of instructions are the Logical Instructions, which perform logical operations
like AND, OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on
Bytes of data on a bit-by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

e ANL // Logical AND operation

e ORL // Logical OR operation

e XRL // Logical EX-OR operation

e CLR // Clear register content

e CPL // Complement the register content

e RL //Rotate a byte left

e RLC // Rotate a byte and carry bit to left

e RR // Rotate a byte to right

e RRC // Rotate a byte and carry bit to right

o SWAP // Swap lower and higher nibble in a byte

2.3.4 Boolean or Bit Manipulation Instructions

Boolean or Bit Manipulation Instructions deal with bit variables. In 8051 microcontrollers,
there is a special bit-addressable area in the RAM, so also, some of the Special Function
Registers (SFRs) are bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

e CLR // Clear a bit (reset to 0)

e SETB // Set a bit (set to 1)

e MOV // Move a bit

o JC // Jump if the carry flag is set (i.e. if C=1)

e JNC / Jump if the carry flag is not set (i.e. if C=0)
e JB // Jump if the specified bit is set

e JNB // Jump if the specified bit is not set

e JBC // Jump if the specified bit set and also clear the bit
e ANL // Bitwise logical AND operation

e ORL // Bitwise logical OR operation

e CPL // Complement the bit

2.3.5 Program Control or Branching Instructions

The last group of instructions in the 8051 Microcontroller instruction set are the program
control or branching instructions. These instructions control the flow of program logic. The
mnemonics of this set are as follows.

o LJMP //Long Jump (Unconditional)

e AJMP // Absolute Jump (Unconditional)
o SJIMP // Short Jump (Unconditional)

o JZ // Jump if accumulator A = 0

e JNZ // Jump if accumulator A is not 0
e CJNE // Compare and jump if not equal

e DJNZ // Decrement and Jump if not 0

78 | Microprocessor and Microcontroller

e NOP // No operation
LCALL// Long Call to subroutine, can have target address anywhere within

/I 64K-bytes address space (ROM) of 8051

ACALL // Absolute Call to Subroutine (Unconditional), must have target

//address within 2K-bytes of ROM space

e RET // Return from subroutine
e RETI // Return from interrupt
e JMP // Jump to an address unconditionally

Each of these 05 groups of instructions will be discussed in details in Chapter 3 with examples.
Moreover, some problems will be solved and illustrated next in section 2. for further
clarification of the underlying concepts and utility of the instruction set.

2.4 Timing and Machine Cycle for 8051

Just like a general-purpose processor such as 8085, the tasks carried out by a microcontroller
are also measured in terms of systems clock or clock cycles. However, in contrast to 8085, CPU
of a microcontroller takes certain number of clock cycles to execute an instruction. In 8051
family, these clock cycles are referred to as the machine cycles. As for example, MOV, DEC,
NOP instructions take just 1 machine cycle, whereas, LIMP, DINZ, RET etc. takes 2 machine
cycles to execute. Again, a MUL instruction takes 4 machine cycles. To calculate the time delay
associated with these instructions it is necessary to know the clock frequency of the crystal
oscillator connected to 8051 family of microcontrollers. In 8051, one machine cycle lasts for
12 oscillator periods. So, to calculate the machine cycle for the 8051, we take 1/12 of the crystal
frequency. For a crystal with 16 MHz clock, the clock frequency will be 16MHz/12 = 1.333
Mhz. and the machine cycle =1/1.333MHz = 0.75 micro-sec.

2.5 Assembly Language Programming of 8051

Although 8051 programming is emphasised in Chapter 3, we will see some assembly language
programs in this section through a few examples. Solutions to each of the examples and
necessary explanations are given through comments written side by side to the assembly
language instructions.

Example 2.2

Suppose the RAM locations 40-44 have the following numbers. Write a program to find the
sum of the numbers. At the end of the program, register A should contain lower order byte and
R7 should higher order byte. All values are in hex.

40 = (7D)
41 = (EB)
42 = (C5)
43 = (5B)
44 = (30)
Solution:
MOV RO, #40H //load pointer
MOV R2, #5 //load counter
CLR A //A=0
MOV R7, A //Clear R7

AGAIN: ADD A, @RO //add the byte pointed by RO with the accumulator

79 | Microprocessor and Microcontroller

JINC NEXT //1If CY=0, do not accumulate carry
INC R7 //keep on adding carry

NEXT: INC RO //increment pointer
DINZ R2, AGAIN //repeat until R2=0

Example 2.3
The marks obtained by a student (out of 25) for the six courses in a semester are stored in a
RAM locations 47H onwards. Find the average of marks and output it in port 1.

Solution:
MOV R1, #06 //R1 stores the number of courses which is 6
MOV RO, #47H //RO0 acts as a pointer to the data in ROM
MOV B, #06 //only B can be used as divisor register
MOV A, #0 //clear accumulator, A=0
REPEAT: ADD A, @RO //add the data pointed by RO to A
//since each number is less than 25, CY=0
INC RO //increment the pointer
DINZ R1, REPEAT //repeat the addition until R1=0
DIV AB //divide the sum in A by 6 in B to get average
//keep quotient in A and remainder in B
MOV P1, A //output average in Port 1, ignoring remainder
Example 2.4

Daily temperatures of five days are stored in ROM locations 40H-44H as shown below. Check
if any of the values equals 65. If the value 65 exists in the table then store it to R4, else make
R4=0.

40H=(75) 41H=(79) 42H=(69) 43H=(65) 44H=(62)

Solution:
MOV R4, #0 //IR4=0
MOV RO, #40H //load pointer with initial ROM location
MOV R2, #05 //load counter
MOV A, #65 //load A with 65 to be verified in the list
BACK: CINE A, @RO, NEXT //compare RAM data with 65
MOV R4, RO //if 65 then save to R4
SIMP EXIT //and exit
NEXT: INC RO //otherwise increment pointer
DINZ R2, BACK //keep on checking all the values until count=0
EXIT
Example 2.5

Write a program that will toggle all the bits of Port 1 continuously after a time delay. The
value that will be sent to port 1 is 55H.

Solution:
ORG 0
MOV A, #55H //load A with 55H

BACK: MOV P1, A //send the value of reg A in port 1
ACALL DELAY //a subroutine call for time delay
CPL A //complement content of reg A
SIMP BACK //keep doing it indefinitely

//DELAY subroutine starts here
DELAY:

80 | Microprocessor and Microcontroller

MOV RS, #0FFH //load R5 with FFH (counter with delay of 255)
REPEAT: DINZ RS, REPEAT //stay here until content of RS becomes 0

RET //return to calling program
END //lend of asm file
SUMMARY

This chapter introduces readers about the important features of 8051 microcontrollers and
different other manufactures of 8051 family of microcontrollers. Next, the architecture and
internal details of 8051 are explained in detail. All the major registers of 8051 including A, B,
RO, R1, R2, R3, R4, R5, R6, R7, DPTR and PC along with SFRs are described next. Then we
talk about program memory or ROM space allocation in 8051 and how to burn a program in
ROM is illustrated with examples. Programmers must be aware of where programs are placed
in ROM and how much memory is available. We then describe the register banks, RAM space
allocation for data and the default register bank. Next, a detailed pictorial representation of
stack operations and manipulation of stack and SP via PUSH and POP operation is elucidated.
The process of creating an assembly language program is also described starting from a source
file, to assembling it, linking and executing the program. Assembly language programs consist
of sequence of statements called instructions. Some of them are pseudo-instructions which are
also known as directives. Instructions are translated by assembler into machine codes. Pseudo-
instructions are not translated into machine code. They direct the assembler, how to translate
instructions into machine codes. Program status word (PSW) is indicated with flags. Flags are
useful to programmers as they indicate the status after the execution of an instruction. For
example, whether it has resulted in a carry or overflow. We have also described the clock
generation in 8051 with crystal oscillator circuit and followed by reset circuit in detail. Timers
and their associated registers are explained next. Additionally, I/O ports of 8051 are defined
along with their configuration and connectivity. Instruction set of 8051 microcontroller consists
of 49 distinct instruction divided into five groups which are also explained briefly. Lastly, this
chapter illustrates on some assembly language programs.

Review Questions and Exercise

Section 2.1: Architecture of 8051

1. The program counter of 8051 is 8-bit/16-bit/32-bit wide. Pick the correct answer.
2. Accumulator A and reg B are 8-bit/16-bit/32-bit wide registers. Pick the correct one.
3. Name a 16-bit register in the 8051 microcontrollers.
4. What is the size of the registers RO-R7?
5. Check the following program segment and find the result. Also mention the location
of result.
MOV A, #25H
MOV R2, #14H
ADD A,R2

6. Which of the following instructions are illegal?

81 | Microprocessor and Microcontroller

MOV R3, #500

MOV R1, #50

MOV A, #255H

MOV A, #F5H

MOV R9, #50H

MOV R7, #00

ADD A, RS

ADD A, #50H
i. ADD R3, A

7. If the contents of RO and A are 25H and 55H respectively, then what be will be
content of destination registers after the execution of each line of the following
instructions?

Pl moe a0 o

ADD A, RO
MOV RO, A
ADD A, RO
ADD RO, #07

Section 2.2 Introduction to Assembly Language Programming

8. Which program produces “obj’ file?
9. Answer True or False.
a. Source file has an extension “src” or “asm”.
b. Source code file can be a non-ASCII file.
c. Every source file must have ORG and END directives.
d. ORG and END directive appear in “.Ist” file.
10. Is there any difference between instruction and directive?

Section 2.3: Program Counter and ROM space in 8051

11. Why do we write the programs always with ORG 0000 at the starting?
12. Find the number of bytes in each of the following instructions?

a. MOV A, #55H
b. MOV R3, #5
c. ADD A, #0

d. MOV A, R1

e. INC R2

f. MOV R3, A
13. If the following program is burnt into ROM, what will be the content of each ROM

locations?

ORG 0000H
MOV RO, #26H
MOV R1, #36H
MOV A, #0
ADD A, RO
MOV R2, A

Section 2.4: Instruction Set and Machine Cycle

14. What the mnemonics SJIMP stands for? What is its length in bytes?
15. In which way SIMP and LIMP differ?
16. If the current PC value is 0100H, calculate the target address in the instruction

82 | Microprocessor and Microcontroller

SIMP HERE, where HERE corresponds to 003FH.
17. Write True or False. All 8051 jumps are short jumps?
18. Which of the following instructions is/are not a short jump?
a. J1Z b. INC c. LIMP d. DJNZ
19. Write true or false. All conditional jumps are short jumps.
20. Write a program to add 2 to the accumulator four times.
21. Analyse the following program:

CLR C

MOV A, #4CH //load A with 4CH

SUBB A, #6EH //subtract 6EH from A

JNC NEXT //if CY=0, jump to NEXT

CPL A //if CY=1 then take 1’s complement

INC A //and increment to get 2’s complement
NEXT: MOV RI1, A // save content of A in R1

22. For an AT805 1microcontroller system with crystal frequency of 11.0592MHz, what
will be the time taken to execute each of the following instructions:

a. MOV R3, #55 b. LIMP c. MUL AB d. DEC R3
e. NOP f. DIMP R2, target
References

1. Dallas Semiconductors: www.maxim-ic.com

2. M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2" ed. New Jersey, Pearson Prentice Hall, 2006.

3. Kenneth J. Ayala. The 8051 Microcontroller. St. Paul, MN, WEST PUBLISHING
COMPANY, 1991

4. http://techknowlearn.blogspot.com/2013/07/reset-oscillator-circuit-of-8051-
micro.html

5. https://codembedded.wordpress.com/2017/03/27/architecture-of-8051-microcontroller

Chapter 3

Instruction Set and Programming

Key features of Module — 3

Different types of addressing modes in 8051 microcontrollers
Detailed instruction sets of 8051 microcontrollers
Fundamental programs in C language

Different assemblers and compilers

Pre-requisites

e Fundamentals C programming
e Basics of Computers

Module — 3 Outcomes

e Students should be able to understand the different addressing modes of 8051
microcontrollers and their implications

e Students should be able to write the proper syntax of instructions in 8051
microcontrollers

e Students should be able to write programs in assembly language and C language

This chapter gives an overview of the addressing modes of 8051 microcontrollers. The
understanding of how to address a source data is discussed. There are different types of
addressing like Register Addressing, Direct Addressing, Indirect Addressing, Relative
Addressing, Indexed Addressing, Bit Inherent Addressing, bit Direct Addressing. These are the
modes how a data can be represented through instruction depending on the location of the data.
The syntax of writing any instruction is shown in the chapter along with some fundamental
programs of 8051 microcontrollers.

3.1 Addressing Mode

Addressing mode is a way to address an operand. Operand means the data we are operating
upon (source data). It can be a direct address of memory, it can be register names, it can be any
numerical data etc. depending on the programming situation. The classification of the
addressing mode is not very significant, except that it provides some clues in understanding
mnemonics.

The CPU can access data in various ways, which are called addressing modes

e Immediate
e Register
e Direct

84 | Microprocessor and Microcontroller

e Register indirect
e Indexed

Direct, register indirect and indexed are accessing memories. The addressing modes are

discussed later in the chapter.

3.2 Instruction Syntax

There are 49 Instruction Mnemonics in the 8051 Microcontroller Instruction Set and these 49
Mnemonics are divided into five groups.

Table 3. 1. Types of instructions

DATA ARITHMETIC LOGICAL BOOLEAN PROGRAM
TRANSFER BRANCHING
MOV ADD ANL CLR LIMP
MOVC ADDC ORL SETB AJMP
MOVX SUBB XRL MOV SIMP
PUSH INC CLR JC Iz
POP DEC CPL JNC INZ
XCH MUL RL B CINE
XCHD DIV RLC INB DINZ
DA A RR JBC NOP
RRC ANL LCALL
SWAP ORL ACALL
CPL RET
RETI
JMP

The 8051 microcontroller instructions set includes 110 instructions, 49 of which are single byte
instructions, 45 are two bytes instructions and 17 are three bytes instructions. The instructions
format consists of a function mnemonic followed by destination and source field. Data transfer
group. Arithmetic group. The syntax of 8051 microcontroller is given as

<Memory address> <Mnemonics™>;

For example, to add two numbers, first one number has to be in accumulator, then we add the
other number with the number in the accumulator.

2001 ADD A, Rn
The program illustrates how to assemble and run an 8051 program

0000 ORG OH; start (origin) at 0

0000 7D25 MOV R5, #25H; load 25H into R5

0002 7F34 MOV R7, #34H; load 34H into R7

0004 7400 MOV A, #0; load 0 into A

0006 2D ADD A, R5; add contents of R5 to A; now A=A +RS5
0007 2F ADD A, R7; add contents of R7 to A; now A = A +R7
0008 2412 ADD A, #12H; add to A value 12H; now A = A + 12H
000A 80EF HERE: SJIMP HERE; stay in this loop

000C END; end of asm source file

85 | Microprocessor and Microcontroller

3.3 Data types and directives

A good understanding of C data types for 8051 can help programmers to create smaller hex
files

e Signed char

e Unsigned int

e Signed int

o Sbit (single bit)
e Bitand sfr

3.3.1 Unsigned char

The character data type is the most natural choice
e 8051 is an 8-bit microcontroller
Unsigned char is an 8-bit data type in the range of 0 — 255 (00 — FFH)
e One of the most widely used data types for the 8051 f
i. Counter value f
ii. ASCII characters
C compilers use the signed char as the default if we do not put the keyword unsigned.

1. Write an 8051 C program to send values 00 — FF to port P1.
Solution:
#include <reg51.h>
void main(void)
{

unsigned char z;

for (z=0;z<=255;z++)
Pl=z;

}

2. Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A,
B, C, and D to port P1.

Solution:
#include <reg51.h>

void main(void)

{
unsigned char mynum[]=*012345ABCD”;

unsigned char z;
for (z=0;z<=10;z++)
Pl1=mynum]z];

}

3. Write an 8051 C program to toggle all the bits of PI continuously.

Solution:
//Toggle P1 forever

86 | Microprocessor and Microcontroller

#include <reg51.h>
void main(void)

{
for (;;)

{
p1=0x55; p1=0xAA;

h
b

3.3.2 Signed char
The signed char is an 8-bit data type

e Use the MSB D7 to represent — or +
e Give us values from —128 to +127 %o

We should stick with the unsigned char unless the data needs to be represented as signed
numbers.

4. Write an 8051 C program to send values of —4 to +4 to port P1.

Solution:

//Singed numbers

#include <reg51.h>

void main(void)

{

char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};
unsigned char z;

for (z=0;z<=8;z++)

Pl1=mynum]z];

}

3.3.3 Unsigned and Signed int

The unsigned int is a 16-bit data type

e Takes a value in the range of 0 to 65535 (0000 — FFFFH)
e Define 16-bit variables such as memory addresses
e Set counter values of more than 256

o Since registers and memory accesses are in 8-bit chunks, the misuse of int variables will
result in a larger hex file.

Signed int is a 16-bit data type

e Use the MSB D15 to represent — or +
e We have 15 bits for the magnitude of the number from —32768 to +32767

3.3.4 Single Bit
5. Write an 8051 C program to toggle bit DO of the port P1 (P1.0) 50,000 times.

87 | Microprocessor and Microcontroller

Solution:

#include <reg51.h>
sbit MYBIT=P1"0;
void main(void)

{
unsigned int z;

for (z=0;z<=50000;z++)
{
MYBIT=0; MYBIT=I;
¥

J

3.3.5 Bit and sfr

The bit data type allows access to single bits of bit-addressable memory spaces 20 — 2FH. To
access the byte-size SFR registers, we use the sfr data type

Table 3.2. Data types, number of bits, bytes and range of values

Data type Bits Bytes Value range

bit 1 Oto1l

signed char 8 1 -128 to +127

unsigned char 8 1 0to 255

enum 8orl6 lor2 -128to+127 or-32768 to +32767
signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647
unsigned long 32 4 0 to 4294967295

float 32 4 +1.175494E-38 to £3.402823E+38
sbit 1 Oto1

sfr 8 4 0 to 255

sfrl6 16 2 0 to 65535

The following are some more widely used directives of the 8051.

ORG (origin)

The ORG directive is used to indicate the beginning of the address. The number that comes
after ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal
and the assembler will convert it to hex. Some assemblers use “. ORG” (notice the dot) instead
of “ORG” for the origin directive. Check your assembler.

EQU (equate)

This is used to define a constant without occupying a memory location. The EQU directive
does not set aside storage for a data item but associates a constant value with a data label so
that when the label appears in the program, its constant value will be substituted for the label.
The following uses EQU for the counter constant and then the constant is used to load the R3
register.

88 | Microprocessor and Microcontroller

COUNT EQU 25

MOV R3, #COUNT

When executing the instruction “MOV R3, #COUNT”, the register R3 will be loaded with the
value 25 (notice the # sign). What is the advantage of using EQU? Assume that there is a
constant (a fixed value) used in many different places in the program, and the programmer
wants to change its value throughout. By the use of EQU, the programmer can change it once
and the assembler will change all of its occurrences, rather than search the entire program trying
to find every occurrence.

END directive

Another important pseudocode is the END directive. This indicates to the assembler the end of
the source (asm) file. The END directive is the last line of an 8051 program, meaning that in
the source code anything after the END directive is ignored by the assembler. Some assemblers
use “. END” (notice the dot) instead

of “END”.

3.4 Subroutines

The CPU also uses the stack to save the address of the instruction just below the CALL
instruction. This is how the CPU knows where to resume when it returns from the called
subroutine. Subroutines are a set of instructions that perform specific function, which is written
in some other memory location other than the main program. Call instruction is used to call
subroutine

e Subroutines are often used to perform tasks that need to be performed frequently

e This makes a program more structured in addition to saving memory space

LCALL (long call)
3-byte instruction f

e First byte is the opcode f

e Second and third bytes are used for address of target subroutine
Subroutine is located anywhere within 64K byte address space

ACALL (absolute call)
2-byte instruction
e f 11 bits are used for address within 2K-byte range
When a subroutine is called, control is transferred to that subroutine, the processor
e Saves on the stack the the address of the instruction immediately below the LCALL
e Begins to fetch instructions form the new location %o
After finishing execution of the subroutine
The instruction RET transfers control back to the caller f
e Every subroutine needs RET as the last instruction

6. Write an example of LCALL

ORG 0

89 | Microprocessor and Microcontroller

BACK: MOV A, #55H; load A with 55H

MOV P1, A; send 55H to port 1

LCALL DELAY; time delay

MOV A, #0AAH; load A with AA (in hex)

MOV P1, A; send AAH to port 1

LCALL DELAY

SIMP BACK; keep doing this indefinitely;

---------- this is delay subroutine ------------

ORG 300H; put DELAY at address 300H

DELAY: MOV RS, #0FFH; R5=255 (FF in hex), counter
AGAIN: DINZ R5, AGAIN; stay here until RS become 0
RET; return to caller (when R5 =0)

END

3.4.2 Calling Subroutines

It is common to have one main program and many subroutines that are called from the main
program.

;MAIN program calling subroutines
ORG 0

MAIN: LCALL SUBR 1

LCALL SUBR 2

LCALL SUBR 3

HERE: SIMP HERE

jmmmmm e end of MAIN

— end of subroutinel

E— end of subroutine2

jmmmmm e end of subroutine3
END ;end of the asm file

This allows you to make each subroutine into a separate module
- Each module can be tested separately and then brought together with main program
- In a large program, the module can be assigned to different programmers.

ACALL
The only difference between ACALL and LCALL is

e The target address for LCALL can be anywhere within the 64K byte address
e The target address of ACALL must be within a 2K-byte range %o

90 | Microprocessor and Microcontroller

The use of ACALL instead of LCALL can save a number of bytes of program ROM space

ORG 0

BACK: MOV A #55H ;load A with 55H
MOV P1,A ;send 55H to port 1

LCALL DELAY ;time delay

MOV A,#0AAH ;load A with AA (in hex)
MOV P1,A ;send AAH to port 1

LCALL DELAY

SIMP BACK ;keep doing this indefinitely

END ;end of asm file

e A rewritten program which is more efficient

3.5 Addressing Modes

The CPU can access data in various ways, which are called addressing modes

e Immediate
e Register
e Direct

e Register indirect

e Indexed

ORG 0

MOV A, #55H ;load A with 55H

BACK: MOV P1,A ;send 55H to port 1
ACALL DELAY ;time delay

CPL A ;complement reg A

SIMP BACK ;keep doing this indefinitely

END ;end of asm file

Direct, register indirect and indexed are accessing memories.

3.5.1 Immediate Addressing Mode

The source operand is a constant

e The immediate data must be preceded by the pound sign, “#”

e (Can load information into any registers, including 16-bit DPTR register f

DPTR can also be accessed as two 8-bit registers, the high byte DPH and low byte DPL

MOV A #25H ;load 25H into A
MOV R4,#62 ;load 62 into R4

MOV B,#40H ;load 40H into B
MOV DPTR,#4521H ;DPTR=4512H
MOV DPL,#21H ;This is the same
MOV DPH,#45H

;as above ;illegal!! Value > 65535 (FFFFH)
MOV DPTR, #68975

91 | Microprocessor and Microcontroller

e We can use EQU directive to access immediate data

Count EQU 30

MOV R4,#COUNT ;R4=1EH

MOV DPTR,#MYDATA ;DPTR=200H
ORG 200H

MYDATA: DB “America”

e We can also use immediate addressing mode to send data to 8051 ports

MOV P1,#55H
3.5.2 Register Addressing Mode
Use registers to hold the data to be manipulated

MOV A,RO ;copy contents of RO into A
MOV R2,A ;copy contents of A into R2
ADD A,RS5 ;add contents of R5 to A
ADD A,R7 ;add contents of R7 to A
MOV R6,A ;save accumulator in R6

The source and destination registers must match in size

e MOV DPTR,A will give an error

MOV DPTR,#25F5H
MOV R7,DPL
MOV R6,DPH

The movement of data between Rn registers is not allowed
MOV R4,R7 is invalid

3.5.3 Direct Addressing Mode

It is most often used the direct addressing mode to access RAM locations 30 — 7FH

e The entire 128 bytes of RAM can be accessed
o The register bank locations are accessed by the register names

MOV A,4 ;is same as
MOV A,R4 ;which means copy R4 into A

Contrast this with immediate addressing mode

e There is no “#” sign in the operand

MOV RO0,40H ;save content of 40H in RO
MOV 56H,A ;save content of A in 56H

92 | Microprocessor and Microcontroller

7. Write code to send 55H to ports P1 and P2, using (a) their names (b) their addresses

Solution :

(a) MOV A #55H ;A=55H
MOV P1,A ;P1=55H
MOV P2,A ;P2=55H
(b) From Table 5-1, P1 address=80H; P2 address=AOH
MOV A #55H ;A=55H
MOV 80H,A ;P1=55H
MOV 0AOH,A ;P2=55H

3.5.4 Stack and Direct Addressing Mode

Only direct addressing mode is allowed for pushing or popping the stack

e PUSH A is invalid
e Pushing the accumulator onto the stack must be coded as PUSH OEOH

8. Show the code to push R5 and A onto the stack and then pop them back them into R2
and B, where B = 4 and R2 = R5

Solution:
PUSH 05 ;push R5 onto stack
PUSH 0EOH ;push register A onto stack
POP OFOH ;pop top of stack into B ;now register B = register A
POP 02 ;pop top of stack into R2 ;now R2=R6

3.5.5 Indirect Addressing Mode

A register is used as a pointer to the data

e Only register RO and R1 are used for this purpose
e R2 —R7 cannot be used to hold the address of an operand located in RAM

When RO and R1 hold the addresses of RAM locations, they must be preceded by the “@”
sign

MOV A,@RO0 ;move contents of RAM whose ;address is held by RO into A

MOV @R1,B ;move contents of B into RAM ;whose address is held by R1

9. Write a program to copy the value 55H into RAM memory locations 40H to 41H using
(a) direct addressing mode, (b) register indirect addressing mode without a loop, and
(c) with a loop

Solution:
(a) MOV A #55H ;load A with value 55H

93 | Microprocessor and Microcontroller

MOV 40H,A ;copy A to RAM location 40H
MOV 41H.A ;copy A to RAM location 41H

(b) MOV A #55H ;load A with value S5H
MOV RO0,#40H ;load the pointer. RO=40H
MOV @RO0,A ;copy A to RAM RO points to
INC RO ;increment pointer. Now R0=41h
MOV @RO0,A ;copy A to RAM RO points to

(c)MOV A, #55H ;A=55H

MOV RO0,#40H ;load pointer.R0=40H,

MOV R2,#02 ;load counter, R2=3

AGAIN: MOV @RO0,A ;copy 55 to RAM RO points to
INC RO ;increment RO pointer

DINZ R2,AGAIN ;loop until counter = zero

The advantage is that it makes accessing data dynamic rather than static as in direct addressing
mode

e Looping is not possible in direct addressing mode

10. Write a program to clear 16 RAM locations starting at RAM address 60H

Solution:
CLR A ;A=0
MOV R1,#60H ;load pointer. R1=60H
MOV R7,#16 ;load counter, R7=16
AGAIN: MOV @R1,A ;clear RAM R1 points to
INC R1 ;increment R1 pointer
DINZ R7,AGAIN ;loop until counter=zero

11. Write a program to copy a block of 10 bytes of data from 35H to 60H

Solution:
MOV RO0,#35H ;source pointer
MOV R1,#60H ;destination pointer
MOV R3,#10 ;counter BACK:
MOV A,@RO ;get a byte from source
MOV @R1,A ;copy it to destination
INC RO ;increment source pointer
INC R1 ;increment destination pointer
DINZ R3,BACK ;keep doing for ten bytes

e RO and R1 are the only registers that can be used for pointers in register indirect addressing
mode.

e Since RO and R1 are 8 bits wide, their use is limited to access any information in the internal
RAM

94 | Microprocessor and Microcontroller

e Whether accessing externally connected RAM or on-chip ROM, we need 16-bit pointer
In such case, the DPTR register is used

e Indexed addressing mode is widely used in accessing data elements of look-up table entries
located in the program ROM %o

e The instruction used for this purpose is MOVC A,@A+DPTR

» Use instruction MOVC, “C” means code
» The contents of A are added to the 16-bit register DPTR to form the 16-bit
address of the needed data

3.5.6 Indexed Addressing Mode and Onchip ROM Access

12. In this program, assume that the word “USA” is burned into ROM locations starting at
200H. And that the program is burned into ROM locations starting at 0. Analyze how
the program works and state where “USA” is stored after this program is run.

Solution:

ORG 0000H ;burn into ROM starting at 0

MOV DPTR,#200H ;DPTR=200H look-up table addr
CLR A ;clear A(A=0)

MOVC A,@A+DPTR ;get the char from code space
MOV RO0,A ;save it in RO

INC DPTR ;DPTR=201 point to next char

CLR A ;clear A(A=0)

MOVC A,@A~+DPTR ;get the next char

MOV R1,A ;save it in R1

INC DPTR ;DPTR=202 point to next char

CLR A ;clear A(A=0)

MOVC A,@A+DPTR ;get the next char

MOV R2,A ;save it in R2

Here: SJIMP HERE ;stay here ;Data is burned into code space
starting at 200H

ORG 200H

MYDATA:DB “USA”

END ;end of program

The look-up table allows access to elements of a frequently used table with minimum

operations

13. Write a program to get the x value from Pl and send x2 to P2, continuously

Solution:

ORG 0

MOV DPTR,#300H ;LOAD TABLE ADDRESS

MOV A,#0FFH ;A=FF

MOV PI,A ;CONFIGURE P1 INPUT PORT
BACK:MOV A,P1;GET X

MOV A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2,A ;ISSUE IT TO P2

SIMP BACK ;KEEP DOING IT

95 | Microprocessor and Microcontroller

ORG 300H

XSQR _TABLE:

DB 0,1,4,9,16,25,36,49,64,81
END

3.5.6.1 Indexed Addressing Mode and MOVX

In many applications, the size of program code does not leave any room to share the 64K-byte
code space with data

e The 8051 has another 64K bytes of memory space set aside exclusively for data storage

This data memory space is referred to as external memory and it is accessed only by the MOVX
instruction

The 8051 has a total of 128K bytes of memory space

e 64K bytes of code and 64K bytes of data
e The data space cannot be shared between code and data

In many applications we use RAM locations 30 — 7FH as scratch pad

e We use RO—R7 of bank 0
o Leave addresses 8 — 1FH for stack usage
o [f we need more registers, we simply use RAM locations 30 — 7FH

14. Write a program to toggle P1 a total of 200 times. Use RAM location 32H to hold your
counter value instead of registers RO — R7

Solution:
MOV P1,#55H ;P1=55H
MOV 32H,#200 ;load counter value ;into RAM loc 32H
LOP1: CPL P1 ;toggle P1
ACALL DELAY
DINZ 32H,LOP1 ;repeat 200 times

3.5.7 Bit Inherent Addressing

Many microprocessors allow program to access registers and I/O ports in byte size only.
However, in many applications we need to check a single bit. One unique and powerful feature
of the 8051 is single-bit operation single-bit instructions allow the programmer to set, clear,
move, and complement individual bits of a port, memory, or register. It is registers, RAM, and
I/O ports that need to be bit-addressable. ROM, holding program code for execution, is not bit-
addressable.

3.5.8 Bit Addressable RAM

The bit-addressable RAM location are 20H to 2FH

These 16 bytes provide 128 bits of RAM bit-addressability, since 16 x 8 = 128
0 to 127 (in decimal) or 00 to 7FH

96 | Microprocessor and Microcontroller

e The first byte of internal RAM location 20H has bit address 0 to 7H

e The last byte of 2FH has bit address 78H to 7FH %o Internal RAM locations 20-2FH

are both byte-addressable and bit- addressable
e Bit address 00-7FH belong to RAM byte addresses 20-2FH
e Bit address 80-F7H belong to SFR PO, P1, ...

General purpose RAM

; .

w 7B 7D A ™M TA T% | B |
™ 7P P 75 T4 73 T2 Ti |70
e W BF GE &b BC GB BA B9 | 68
B & 1 [A al BX [} [11]
MW S EF SD %N SR OSA %G | SR
I S OB O§5 B 51 5T % | S0
R e S - o e S e
;7 aF 3 m x 3 A |38 |
Bt — seklorosabls M 3 MW I5 M AF K@ | 30
Locstiosr [3 3 3 0 x MW M b m
R e
¥iO1F 1E 4B A€ 18 1A 1% | 18 |
SR LT I8 13w I} i3 bl
BOOF OE 0D O OB DA 09 | 08
ol o [+]] [i-} o4 ol 0z [}
:: Banlk 3
|l- Bank 2
:E Hanl: 1

| ui
h
= i

| Theteai Repater Bank for KT

Fig.3.3: Bit Addressable RAM

15. Find out to which by each of the following bits belongs. Give the address of the RAM
byte in hex (a) SETB 42H, (b) CLR 67H, (c) CLR OFH (d) SETB 28H, (e) CLR 12, (f)

SETB 05

Solution:

97 | Microprocessor and Microcontroller

DF D& O M D3 2 DI Do
IF AFOTE M Mo I MW
(m} T2 of BAM loestion JRH iE L - R
" ; 20 R EE 600 RC B BA Al | ES
Wt 7 &6 BS B4 B3 &2 Bl | &b
ik D7 of BaMs leestice 3CH 2 S SR EIE T ~ PR T |
i L . S0 5 foa 50 i
a8 3F e .M b B a1 | 0
(e} D7 o RAM loestion 21H, L] o O4E AD AT A 49 | 48
2 i i
0 47 46 45 44 43 43 41 | 4
. n ; 27 F 3F an C A Y L] 18
idi Dl of BAM loemion 28H ——
26 T35 34 .33 32 31 |
i o ’E M oW W™ M 8
[RF] 04 of BAM location ZIH : ;.-q_ . 5 24 73 33 9 33 [
ifr O ol Bl locaion 20H - d¥--i IF IE- ED WD 18 LA IR | 3B
~-32 w17 TS M 13 12 11 | |
21 ~[F [E m e M o, M| OF
a0 07 O6-&ns Oed o3 e 1§ [n 0] |

To avoid confusion regarding the addresses 00 — 7FH

e The 128 bytes of RAM have the byte addresses of 00 — 7FH can be accessed in byte
size using various addressing modes

Direct and register-indirect

e The 16 bytes of RAM locations 20 — 2FH have bit address of 00 — 7FH

We can use only the single-bit instructions and these instructions use only direct addressing
mode

Table 3.3. Instructions that are used for signal-bit operations

Instruction Function

SETB bit Set the bit (bit=1)

CLR bit Clear the bit (bit = 0)

CPL bit Complement the bit (bit = NOT bit)

JB bit, target Jump to target if bit = 1 (jump if bit)

JNB bit, target Jump to target if bit = 0 (jump if no bit)

JBC bit, target Jump to target if bit = 1, clear bit (jump if bit, then clear)

3.5.9 Registers Bit Addressability
Only registers A, B, PSW, IP, IE, ACC, SCON, and TCON are bit-addressable

98 | Microprocessor and Microcontroller

e While all I/O ports are bit-addressable

In PSW register, two bits are set aside for the selection of the register banks

e Upon RESET, bank 0 is selected
e We can select any other banks using the bit-addressability of the PSW

CY AC - RS1 RSO ov -~ P

Table 3.4. Register Bits and addresses

RS1 RSO Register Bank Address

0 0 0 00H - 07H
0 1 1 O8H - OFH
1 0 2 10H - 17H
1 1 3 18H - 1FH

16. Write a program to save the accumulator in R7 of bank 2.
Solution:
CLR PSW.3 SETB PSW.4 MOV R7,A

17. While there are instructions such as JNC and JC to check the carry flag bit (CY), there
are no such instructions for the overflow flag bit (OV). How would you write code to

check OV?
Solution:
JB PSW.2, TARGET; jump if OV=1
CY AC -- RS1 RS0 ov - P

18. While a program to save the status of bit P1.7 on RAM address bit 05.

Solution: MOV C,P1.7 MOV 05,C

19. Write a program to see if the RAM location 37H contains an even value. If so, send it to
P2. If not, make it even and then send it to P2.

Solution: MOV A,37H ;load RAM 37H into ACC JNB ACC.0,YES ;if DO of ACC
0? If so jump INC A ;it’s odd, make it even YES: MOV P2,A ;send it to P2

20. The status of bits P1.2 and P1.3 of I/O port PI must be saved before they are changed.

Write a program to save the status of P1.2 in bit location 06 and the status of P1.3 in bit
location 07

99 | Microprocessor and Microcontroller

Solution: CLR 06 ;clear bit addr. 06 CLR 07 ;clear bit addr. 07 INB P1.2,0VER ;check P1.2,
if 0 then jump SETB 06 ;if P1.2=1,set bit 06 to 1 OVER: JNB P1.3,NEXT ;check P1.3, if 0
then jump SETB 07 ;if P1.3=1,set bit 07 to 1 NEXT: ...

Using BIT

The BIT directive is a widely used directive to assign the bit-addressable I/O and RAM
locations

e Allow a program to assign the I/O or RAM bit at the beginning of the program, making it
easier to modify them

21. A switch is connected to pin P1.7 and an LED to pin P2.0. Write a program to get the
status of the switch and send it to the LED.

Solution: LED BIT P1.7 ;assign bit SW BIT P2.0 ;assign bit HERE: MOV C,SW ;get the bit
from the port MOV LED,C ;send the bit to the port SIMP HERE ;repeat forever

22. Assume that bit P2.3 is an input and represents the condition of an oven. If it goes high,
it means that the oven is hot. Monitor the bit continuously. Whenever it goes high, send
a high-to-low pulse to port P1.5 to turn on a buzzer.

Solution: OVEN_HOT BIT P2.3 BUZZER BIT P1.5 HERE: JNB OVEN HOT, HERE; keep
monitoring ACALL DELAY CPL BUZZER; sound the buzzer ACALL DELAY SIMP HERE

Using EQU
Use the EQU to assign addresses

e Defined by names, like P1.7 or P2
e Defined by addresses, like 97H or 0AOH

3.6 8051 Instruction Set

A simple instruction consists of just the opcode. Other instructions may include one or more
operands. Instruction can be one-byte instruction, which contains only opcode, or two-byte
instructions, where the second byte is the operand or three-byte instructions, where the operand
makes up the second and third byte.

Based on the operation they perform, all the instructions in the 8051 Microcontroller Instruction
Set are divided into five groups. They are:

Data Transfer Instructions

Arithmetic Instructions

Logical Instructions

Boolean or Bit Manipulation Instructions
Program Branching Instructions

3.6.1 Data Transfer Instructions

100 | Microprocessor and Microcontroller

The Data Transfer Instructions are associated with transfer of data between registers or external
program memory or external data memory. The Mnemonics associated with Data Transfer are
given below.

o« MOV

e MOVC

o« MOVX

e PUSH

e POP

e XCH

e XCHD

Table 3.5. Data transfer mnemonics and its function
Mnemonic Description
MOV Move Data
MOVC Move Code
MOCX Move External Data
PUSH Move Data to Stack
POP Copy Data from Stack
XCH Exchange Data between two Registers
XCHD Exchange Lower Order Data between two
Registers

The following table lists out all the possible data transfer instructions along with other details
like addressing mode, size occupied and number machine cycles it takes.

Table 3.6 Data transfer instructions with details

Mnemonic | Instructio Description Addressing | No. of | No. of
n Mode Bytes | Cycle
s
MOV | A, #Data A <« Data Immediate 2 1
A,Rn A «—Rn Register 1 1
A, Direct A « (Direct) Direct 2 1
A,@Ri A— @Ri Indirect 1 1
Rn,#Data Rn « data Immediate 2 1
Rn,A Rn— A Register 1 1
Rn,Direct Rn « (Direct) Direct 2 2
Direct, A (Direct) «— A Direct 2 1
Direct,Rn (Direct) < Rn Direct 2 2
Directl, (Directl) « (Direct2) Direct 3 2
Direct2
Direct, (Direct) «+— @Ri Indirect 2 2
@Ri
Direct, (Direct) «— #Data Direct 3 2
#Data
@Ri,A @Ri — A Indirect 1 1
@Ri,Direct @Ri < Direct Indirect 2 2
@Ri,#Data @Ri < #Data Indirect 2 1

101 | Microprocessor and Microcontroller

DPTR #Dat DPTR « #Datal6 Immediate 3
alé
MOVC | A,@A+DP A« Code pointed by A+DPTR Indexed 1
TR
A, @A+PC A« Code pointed by A+PC Indexed 1
A,@Ri A « Code pointed by Ri (8-bit Indirect 1
Address)
MOVX | A,@DPTR | A« External Data pointed by DPTR Indirect 1
@Ri,A @Ri <« A (External Data 8-bit Indirect 1
Addr)
@DPTR,A | @DPTR« A (External Data 16- bit Indirect 1
Addr)
PUSH Direct Stack Pointer SP « (Direct) Direct 2
POP Direct (Direct) « Stack Pointer SP Direct 2
XCH Rn Exchange ACC with Rn Register 1
Direct Exchange ACC with Direct Byte Direct
@Ri Exchange ACC with Indirect RAM Indirect 1
XCHD A,@Ri Exchange ACC with Lower Order Indirect 1
Indirect RAM

3.6.2 Arithmetic Instructions

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and
division. The arithmetic instructions also include increment by one, decrement by one and a
special instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller
Instruction Set are:

e ADD

e ADDC

e SUBB

e INC

e DEC

e MUL

o DIV

o DAA

Table 3.7. Arithmatic mnemonics and its function
Mnemonic Description

ADD Addition without Carry
ADDC Addition with Carry
SUBB Subtract with Carry
INC Increment by 1

DEC Decrement by 1

102 | Microprocessor and Microcontroller

MUL
DIV
DA A

Multiply
Divide

Decimal Adjust the Accumulator (A

Register)

The arithmetic instructions have no knowledge about the data format i.e., signed, unsigned,
ASCIL BCD, etc. Also, the operations performed by the arithmetic instructions affect flags like
carry, overflow, zero, etc. in the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the

following table.
Table 3.8. Arithmetic instructions with details
Mnemonic | Instruction Description Addressing # of # of Cycles
Mode Bytes
ADD A, #Data A «— A +Data Immediate 2 1
A,Rn A «—A+Rn Register 1 1
A, Direct A —A+ (Direct) Direct 2 1
A,@Ri A— A+ @Ri Indirect 1 1
ADDC A, #Data A <A + Data+C Immediate 2 1
A,Rn A «—A+Rn+C Register 1 1
A, Direct A «—A +(Direct) + C Direct 2 1
A,@Ri A— A+ @Ri+C Indirect 1 1
SUBB A, #Data A «—A-Data-C Immediate 2 2
A,Rn A —A-Rn-C Register 3 2
A, Direct A« A - (Direct) - C Direct 1 1
A,@Ri A+—A- @Ri-C Indirect 2 2
MUL AB Multiply A with B - 1 4
(A <« Lower Byte of A*B and
B <« Higher Byte of A*B)
DIV AB Divide A by B — 1 4
(A < Quotient and B «
Remainder
DEC A A— A-1 Register 1 1
Rn—Rn-1 Register 1 1
(Direct)«— (Direct) - 1 Direct 2 1
@Ri— @Ri-1 Indirect 1 1
INC A A— A+l Register 1 1

103 | Microprocessor and Microcontroller

A,Rn Rn« Rn +1 Register 1 1

Direct (Direct)«— (Direct) +1 Direct 2 1

@Ri @Ri«— @Ri +1 Indirect 1 1

DPTR DPTR« DPTR +1 Register 1 2

DA A Decimal Adjust Accumulator — 1 1

3.6.3 Logical Instructions

The next group of instructions are the Logical Instructions, which perform logical operations
like AND, OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on

Bytes of data on a bit-by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

e ANL
e ORL
e XRL
e CLR
e CPL
e RL
e RLC
e RR
e RRC
e SWAP
Table 3.9. Logical instructions with details
Mnemonic Description
ANL Logical AND
ORL Logical OR
XRL Ex-OR
CLR Clear Register
CPL Complement the Register
RL Rotate a Byte to Left
RLC Rotate a Byte and Carry Bit to Left
RR Rotate a Byte to Right
RRC Rotate a Byte and Carry Bit to Right
SWAP Exchange lower and higher nibbles in a Byte
Table 3.10. Mnemonics of the Logical Instructions.
Mnemonic | instruction Description Addressing | # of # of
Mode Bytes Cycles
ANL A, #Data A «— A AND Data Immediate 2 1

104 | Microprocessor and Microcontroller

A,Rn A «—A AND Rn Register 1 1
A,Direct A «—A AND (Direct) Direct 2 1
A,@Ri A <—A AND @Ri Indirect 1 1
Direct, A (Direct) «—(Direct) Direct 2 1
AND A
Direct, (Direct) «—(Direct) AND Direct 3 2
#Data # Data
ORL A, #Data A «—A OR Data Immediate 2 1
A,Rn A <—AOR Rn Register 1 1
A,Direct A «—A OR (Direct) Direct 2 1
A,@Ri A —A+ @Ri Indirect 1 1
Direct, A (Direct) < (Direct) OR Direct 2 1
A
Direct, (Direct) «—(Direct) OR # Direct 3 2
#Data Data
XRL A, #Data A —A XRL Data Immediate 2 1
A,Rn A <A XRL Rn Register 1 1
A,Direct A «—A XRL (Direct) Direct 2 1
A,@Ri A —A XRL @Ri Indirect 1 1
Direct, A | (Direct) «—(Direct) XRL Direct 2 1
A
Direct, (Direct) «—(Direct) XRL Direct 3 2
#Data # Data
CLR A A «—00H — 1 1
CPL A A— A — 1 1
RL A Rotate ACC Left - 1 1
1
RLC A Rotate ACC Left through - 2 1
Carry
1 1
RR A Rotate ACC Right -
1
RRC A Rotate ACC Right - 1 1
through Carry
SWAP A Swap Nibble within - 1 1
ACC

3.6.4 Boolean or Bit Manipulation Instructions
As the name suggests, Boolean or Bit Manipulation Instructions deal with bit variables. We

know that there is a special bit-addressable area in the RAM and some of the Special Function
Registers (SFRs) are also bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

105 | Microprocessor and Microcontroller

e CLR

e SETB

o« MOV

e JC

e JNC

e JB

« JNB

e JBC

e ANL

e ORL

e CPL

Table 3.11. Bit Manipulation instructions with details
Mnemonic Description

CLR Clear a Bit (Reset to 0)
SETB Set a Bit (Setto 1)
MOV Move a Bit
IC Jump if Carry Flag is Set
INC Jump if Carry Flag is Not Set
JB Jump if specified Bit is Set
INB Jump if specified Bit is Not Set
JBC Jump if specified Bit is Set and also clear the Bit
ANL Bitwise AND
ORL Bitwise OR
CPL Complement the Bit

These instructions can perform set, clear, and, or, complement etc. at bit level. All the possible
mnemonics of the Boolean Instructions are specified in the following table.

Table 3.12. Mnemonics of the Bit Manipulation instructions

Mnemonic instruction Description # of # of Cycles
Bytes

CLR C C« 0 (C = Carry Bit) 1 1
Bit Bit <0 (Bit = Direct Bit) 2 1

SET C Ce—1 1 1
Bit Bit <1 2 1

CPL C 1 1

C «C
Bit Bit Bit 2 1
ANL C, /Bit 2 1
C «C. Bit (AND)
C, Bit C< C. Bit (AND) 2 1

106 | Microprocessor and Microcontroller

ORL C, /Bit 2 1
C «C+ Bit (AND)
C, Bit 2 1
C «C+ Bit (AND)
MOV C, Bit C« Bit 2 1
Bit, C Bit— C
IC rel Jump is carry (C) is Set 2 2
INC rel Jump is carry (C) is Not Set 2 2
JB Bit,rel Jump is Direct Bit is Set 3 2
INB Bit,rel Jump is Direct Bit is Not Set 3 2
JBC Bit,rel Jump is Direct Bit is Set and 3 2
Clear Bit

3.6.5 Program Branching Instructions

The last group of instructions in the 8051 Microcontroller Instruction Set are the Program
Branching Instructions. These instructions control the flow of program logic. The mnemonics
of the Program Branching Instructions are as follows.

e LIMP

o AJMP

o SJIMP

e JZ

e JNZ

o CJNE

e DJNZ

e NOP

e LCALL

e ACALL

e RET

e RETI

e JMP

Table 3.13. Program Branching instructions with details
Mnemonic Description

LIMP Long Jump (Unconditional)
AJMP Absolute Jump (Unconditional)
SIMP Short Jump (Unconditional)
1z Jump if A is equal to 0
INZ Jump if A is not equal to 0
CINE Compare and Jump if Not Equal
DINZ Decrement and Jump if Not Zero

NOP No Operation

107 | Microprocessor and Microcontroller

LCALL Long Call to Subroutine

ACALL Absolute Call to Subroutine (Unconditional)
RET Return from Subroutine

RETI Return from Interrupt

JMP Jump to an Address (Unconditional)

All these instructions, except the NOP (No Operation) affect the Program Counter (PC) in one
way or other. Some of these instructions has decision making capability before transferring
control to other part of the program.

The following table shows all the mnemonics with respect to the program branching
instructions.

Table 3.14. Mnemonics of the Program Branching instructions

Mnemonic | instruction Description # of Bytes # of
Cycles
ACALL ADDRI1 Absolute Subroutine Call 2 2
PC+2 — (SP);
ADDRI6 — PC
LCALL ADDRI16 Long Subroutine call PC+3 3 2
— (SP);
ADDRI6 — PC
RET - Return from subroutine 1 2
(SP) —- PC
RETI - Return from Interrupt 1 2
AIJMP ADDRI11 Absolute Jump 2 2
ADDR16 — PC
LIMP ADDRI16 Long Jump 3 2
ADDR16 — PC
SIMP rel Short Jump 2 2
PC+2+rel—»PC
JMP @A+DPTR A+DPTR—PC 1 2
1z rel If A=0, Jump to PC +rel 2 2
INZ rel If A #0 , Jump to PC +rel 2
CINE A, Direct, Compare (Direct) with A, Jump 3 2
rel, to PC +rel if not equal
A, Data, rel Compare # Data with A, Jump 3 2
to PC +rel if not equal
A, Data, rel | Compare #Data with Rn, Jump 3 2
to PC +rel if not equal
A, Data, rel | Compare #Data with @Ri, Jump 3 2
to PC +rel if not equal
DINZ Rn ,rel Department Rn , Jump to PC + 2 2
rel if not Zero
Direct, rel Department (Direct) , Jump to 3 2
PC + rel if not Zero
NOP No Operation 1 1

108 | Microprocessor and Microcontroller

In this chapter, we have seen the introduction to the 8051 Microcontroller Instruction Set,
Addressing Modes in 8051 Microcontroller and different types of instructions in the Instruction
Set of the 8051 Microcontroller.

3.7 Instructions and Programs

3.7.1 Arithmetic Instructions
Addition of Unsigned Numbers
ADD A, source; A=A + source

= The instruction ADD is used to add two operands
» Destination operand is always in register A
» Source operand can be a register, immediate data, or in memory
» Memory-to-memory arithmetic operations are never allowed in 8051
Assembly language

23. Show how the flag register is affected by the following instruction

MOV A,#0F5H ;A=F5 hex
ADD A#0BH ;A=F5+0B=0

Solution:
F5H 1111 0101
+ 0BH + 0000 1011
100H 0000 0000

Addition of Individual Bytes

24. Assume that RAM locations 40 — 44H have the following values. Write a program to
find the sum of the values. At the end of the program, register A should contain the low
byte and R7 the high byte

Solution:

40 = (7D)
41 = (EB)
42 =(C5)
43 =(5B)
44 = (30)
MOV RO#40HR2,#5 ;load pointer
MOV A ;load counter
CLR :A=0
MOV R7,A ;clear R7

AGAIN: ADD A,@RO ;add the byte ptr to by R0
INC NEXT ;if CY=0 don’t add carry

INC R7 ;keep track of carry

109 | Microprocessor and Microcontroller

NEXT: INC RO ;increment pointer
DINZ R2, AGAIN; repeat until R2 is zero

ADDC and Addition of 16- Bit Numbers

* When adding two 16-bit data operands, the propagation of a carry from lower byte to
higher byte is concerned

| When the first byte is added

W B9 {E7+80=T4, CY'=11

B 8D The carry is propagated to the higher byte,
; - which result in 30

+ 3B + | =78 (all 1n hex)

18 T

3.7.2 BCD Number System

» The binary representation of the digits 0 to 9 is called BCD (Binary Coded Decimal)
» Unpacked BCD
e In unpacked BCD, the lower 4 bits of the number represent the BCD
number, and the rest of the bits are 0
e Ex. 00001001 and 00000101 are unpacked BCD for 9 and 5
» Packed BCD
e In packed BCD, a single byte has two BCD number in it, one in the lower
4 bits, and one in the upper 4 bits
e Ex. 0101 1001 is packed BCD for 59H

Digit BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Unpacked and Packed BCD

110 | Microprocessor and Microcontroller

Adding these two
numbers gives
aoll 111IB3FH},
Which 15 not BCDY!

" Adding two BCD aumbers muast give a BCD resalt

= AOW AFITH
ADD ALE2EH

v The result above should have been 17 + 25 =45 (01000101). To cormrest this problem,
the programmer mast add 6 (31100 to thedow digit: 3F — 6= 45H

3.7.3 DA Instruction
DA A; decimal adjust for addition

= The DA instruction is provided to correct the aforementioned problem associated with
BCD addition
» The DA instruction will add 6 to the lower nibble or higher nibble if need

Exampla; GCH

MOY .-‘-'ql-'—l'-'il-] ; A4=4TH tirst BCD operand

% DA Eq! 15H = TXH : B=13H second BCD operaid
J_ ADDA.B ;_____,,---”"I . lsex (bivary) addition {A=6CH
]‘—DA A DA waeks ooly after an ADD, but Lt e HCTh e

73H oot after INC (A=T2H)

The “DA” instruction works only on A. In other word, while the source can be an operand of
any addressing mode, the destination must be in register A in order for DA to work.

= Summary of DA instruction
» After an ADD or ADDC instruction
1. If the lower nibble (4 bits) is greater than 9, or if AC=1, add 0110 to the lower 4
bits
2. If the upper nibble is greater than 9, or if CY=1, add 0110 to the upper 4 bits

111 | Microprocessor and Microcontroller

HEX BCD

29 0010 1001
+ 18 < D001 1000

41 0100 0001 AC=1
v b + 0110

a7 N 01000111

Since AC=] atter the
A addition, “Da A7 will add 6 to thelower nibble,

."'w.,l The finzal reznkt i3 m BCD format.

25. Assume that 5 BCD data items are stored in RAM locations startingat 40H, as
shown below. Write a program to find the sum of all thenumbers. The result must

be in BCD.
40=(71)
41=(11)
42= (65)
43=(59)
44= (37)
Solution:
MOV RO, #40H ; Load pointer
MOV R2, #5 ; Load counter
CLR A ; A=0
MOV R7, A ; Clear R7
AGAIN: ADD A,@RO ; add the byte pointer; to by R0
JNC NEXT ; if CY=0 don’t; add carry
INC R7 ; keep track of carries
NEXT: INC RO ; increment pointer

DINZ R2, AGAIN

Subtraction of Unsigned Numbers

; repeat until R2 is 0

* In many microprocessors there are two different instructions for subtraction: SUB and

SUBB (subtract with borrow)

» In the 8051 we have only SUBB

» The 8051 uses adder circuitry to perform the subtraction

SUBB A, source; A =A —source — CY

112 | Microprocessor and Microcontroller

= To make SUB out of SUBB, we have to make CY=0 prior to the execution of the
instruction
» Notice that we use the CY flag for the borrow
= SUBB when CY =0
1. Take the 2°s complement of the subtrahend (source operand)
2. Add it to the minuend (A)
3. Invert the carry

CLR C
MOV A, #4C ;load A with value 4CH
SUBB A, #6EH ;subtract 6E from A
INC NEXT ;i CY=0 jump to NEXT
CPL A; if CY=1, take 1’s complement
INC A ;and increment to get 2’s comp
NEXT: MOV RL,A ;save A in R1
{0 ¥'s
Calwtion: .__,.- — = ';.";J[HF‘I.EIHEHL
Py
4 oL0G . Lion s ALK 1 L0]_
EE oILD LE1D = "'J[u.--u:llu_ | &+
-22 __I.i'.'lll'.!]II?'-q--'
=0, e ressul 18 paesiniie; Fo
Y =1, the result i3 negative : e

o e
=nd the destimatios has the — { e v
2"s complement of the resudi o [3 Invert Cary]

* SUBB when CY =1
» This instruction is used for multi-byte numbers and will take care of the borrow
of the lower operand

113 | Microprocessor and Microcontroller

CLR € -

A=6H-%H-0=CCH

MO %ﬁJH A=G2H

o
SUBB A #36H 62H-96H=CCH wath CY=I

MONY BT A czave the resull
SUUBB .Q..-" 12H ;27TH-12H-1=14H
MOV H_l.‘l.;""ll'."m mave the resull

; Ly oy
Solution: -

We have 27T62H - 1296H = 14CCH

3.7.4 Unsigned Multiplication

A=3H-IZH- 1 =[4HCY =0

= The 8051 supports byte by byte multiplication only
» The byte are assumed to be unsigned data

MUL AB ;AxB, 16-bit result in B, A

MOV AH#25H
MOV B,#65H
MUL AB

;load 25H to reg. A
;load 65H to reg. B

;25H * 65H = E99 where
;B=0EH and A =99H

Unsigned Multiplication Summary (MUL AB)

Multiplication Operand 1 Operand?2 Result
Byte x byte A B B = high byte
A = low byte
3.7.5 Unsigned Division
= The 8051 supports byte over byte division only
» The byte are assumed to be unsigned data
MOV A #95 ;load 95 to reg. A

114 | Microprocessor and Microcontroller

MOV B.#10 :load 10 to reg. B DIV
AB; divide
A by B, A/B
MUL AB ; A =09(quotient) and
; B =05(remainder)
Application for DIV
DIV AB: divide A by B, AB
% RN ABgd boad 94 to FET
MOV B #14 HEES L g
MUL AL A= T quoLient) and
L B = DS remaieder)
Unsigned Division Summary (DIV AB)
Drivision Mumerator | Denominator | Quotiend Remainder
Byte [/ byte A B A B
CY is alwavs
] IfB#0,0V=0

[fB =10 0V = | indicates error

(a) Write a program to get hex data in the range of 00 — FFH fromport 1 and convert
it to decimal. Save it in R7, R6 and RS.
(b) Assuming that P1 has a value of FDH for data, analyse program.

Solution:
(a)

MOV

MOV
MOV
MOV
DIV

MOV
MOV
DIV

MOV
MOV

A#OFFH

P1,A
APl
B,#10
AB
R7,B
B,#10
AB
R6,B
R5,A

;make P1 an input port
;read data from P1

;B=0A hex

;divide by 10
;save lower digit

;divide by 10 once more

;save the next digit

;save the last digit

115 | Microprocessor and Microcontroller

(b) To convert a binary (hex) value to decimal, we divide it by 10 repeatedly until the
quotient is less than 10. After each division the remainder is saves

Q R
FDIOA= 19 3 (low digit)
19/0A = 2 5 (middle digit)
2 (high digit)

Therefore, we have FDH=253.

3.8 Signed Arithmetic Instructions
3.8.1 Signed 8-bit Operands

= D7 (MSB) is the sign and DO to D6 are the magnitude of the number
» If D7=0, the operand is positive, and if D7=1, it is negative

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO
| |

Sign ‘ Magnitude ‘

= Positive numbers are 0 to +127

= Negative number representation (2’s complement)
1. Write the magnitude of the number in 8-bit binary (no sign)
2. Invert each bit

3.Add 1 toit
26. Show how the 8051 would represent -34H
Solution:
L. 00110100 34H given in binary
2. 1100 1011 invert each bit
3. 1100 1100 add 1 (which is CC in hex)

Signed number representation of -34 in 2’s complement is CCH

Decimal Binary Hex
-128 1000 0000 80
-127 1000 0001 81

-126 1000 0010 82

116 | Microprocessor and Microcontroller

-2 1111 1110 FE
-1 1111 1111 FF
0 0000 0000 00
+1 0000 0001 01
+2 0000 0010 02
+127 0111 1111 7F

3.8.2 Overflow Problem

= [If the result of an operation on signed numbers is too large for the register
» An overflow has occurred and the programmer must be noticed

27. Examine the following code and analyze the result.

MOV A #+96
MOV R1,#+70
ADD AR1
Solution:
+96 0110 0000
+ +70 0100 0110
+ 166 1010

;A=0110 0000 (A=60H)
;R1=01000110(R1=46H)
;A=1010 0110

;A=A6H=-90,INVALID

0110 and OV =1

According to the CPU, the result is -90, which is wrong. The CPUsets OV=1 to

indicate the overflow

3.8.3 OV Flag

= In 8-bit signed number operations, OV is set to 1 if either occurs:
1. There is a carry from D6 to D7, but no carry out of D7 (CY=0)
2. There is a carry from D7 out (CY=1), but no carry from D6 to D7

117 | Microprocessor and Microcontroller

MOV A=128 -A=1000 00K A=50H)
MOV Ré 82 Ra=1111 1110(R4=FEH)
=i =TEH=4128 TNV,
ARM A=DLNT NIA=TEH=+116, NV ALID
-12% 1D (1]
+ B 111% 1110
-130 LURN 1110 amd QV=1
1
| OV=1
=1 The result +126 is wroag
MDY A 21 JA=1TE] 11 M A=FEH)
MOV R, &5 CRi=1111 101i(R1=FEH)
ADD A RL SA=1111 L001cA=FaH=-7,
- Coarect, DV=00
- 1111 1110
4 -5 + i1i1 1011
=7 I1E1 10401 And 0V =0
OV =0
The resuli -7 B carrect
MOV A, #=T A=H O111CA=DTH)
MOV R #H1E =000 LR L =1 2k}
ADD A R] A=D0R] I00LIA=]19H=+2%,
WCarrect OV'=0)
7 0000 0111
+ 18 0001 0010
15 00T 1001 and OV=0D
\'1 oY =0

The result =25 iz correct

* In unsigned number addition, we must monitor the status of CY (carry)
» Use JNC or JC instructions
» In signed number addition, the OV (overflow) flag must be monitored by the

programmer
» JB PSW.2 or JNB PSW.2

2's Complement
= To make the 2’s complement of a number

CPL A ;1’s complement (invert)

118 | Microprocessor and Microcontroller

ADD A, #1

; add 1 to make 2’s comp.

3.9 LOGIC AND COMPARE INSTRUCTIONS

3.9.1 AND

ANL destination, source; dest = dest AND source

» This instruction will perform a logic AND on the two operands and place the result in

the destination

» The destination is normally the accumulator
» The source operand can be a register, in memory, or immediate

X Y |XANDY
0 0 0
0 1 0
1 0 0
1 1 1

MOV A_235H A= 35H

ANL A =0FH ;A=A AND OFH

35H 0 0 1 1/% |

aFH a6 0 0 o i

{(5H] fi il 4] 1] 1
3.9.2 OR

ORL destination, source; dest = dest OR source

» The destination and source operands are ORed and the result is placed in the destination

Show the results of the following.

AML is cften vsed o mask (set fo)
certainhis of & operand

» The destination is normally the accumulator
» The source operand can be a register, in memory, or immediate

X Y |XORY
0 0 0
0 1 1
1 0 1
1 1 1

28. Show the results of the following.

MOV A s0H; A = 0
ORL A 268H A =6C

0MH 21 0

g 8 0 b :
S8H | Lium-:- 0 0
8 1 1 0

&CH 1 & 40

OFL mstruction can beused 1o st

certain bits of an opermnd 10]

119 | Microprocessor and Microcontroller

3.9.3 XOR
XRL destination, source; dest = dest XOR source

» This instruction will perform XOR operation on the two operands and place the result
in the destination
» The destination is normally the accumulator
» The source operand can be a register, in memory, or immediate

X Y | X XORY
0 0 0
0 1 1
1 0 1
1 1 0

29. Show the results of the following.

b [':T"'Js}[fl [XRL mstrsciron can be
:_':“-L |) used 1o togele ceram
:“_--I-H o1 & /0 1 0 @ bats of an op=rand

T8H 0l L 1 1]00 @

HH o0 0 1 L o 9

30. The XRL instruction can be used to clear the contents of a register by XORing it with
itself. Show how XRL A, A clears A, assuming that AH = 45H.

45H 01 00 01 01
45H 01 00 01 01
00H 00 00 00 00

Read and test P1 to see whether it has the value 45H. If it does, send 99H to P2 otherwise, it
stays cleared

Solution:

MOV PIEED ; clear P2

0% P1LA0FFH; make PL an anpist poat

XBL can be usad tosee of tive

MOV B3 =45H E3i=45H
regesiers have the same valos

MO APL | read PI
/

XBL A B3

THE EXIT jumpd Ao

r }
i *Eh' "l 1f both repsters have the samevalne, 00 & placed
EXIT. . ‘“x__" m A JNE aod I test the cootents of the

accusnulanor

120 | Microprocessor and Microcontroller

3.9.4 Complement Accumulator
CPL A ;complements the register A

= This is called 1’s complement
MOV A #55H
CPL A

;now A=AAH
;0101 0101(55H)
;becomes 1010 1010(AAH)
= To get the 2’s complement, all we have to do is to to add 1 to the 1’s complement
3.9.5 Compare Instruction
CJNE destination, source,rel. addr.

= The actions of comparing and jumping are combined into a single instruction called
CJNE (compare and jump if not equal)
» The CINE instruction compares two operands, and jumps if they are not equal
» The destination operand can be in the accumulator or in one of the Rn registers
» The source operand can be in a register, in memory, or immediate
= The operands themselves remain unchanged
» It changes the CY flag to indicate if the destination operand is larger or small.

>
CINE B3, %80, NOT_EQUAL; checke RS for 80
-Ri=80
NOT_EQUAL:
INC NEXT , jump if
R5 =30 RS < §0 CY flag alwavs checked for
NEXT: e cases of greater or less than
T but onlv after 1t s
deterrmnead that L1|.-=:.-' are aol
exqqual
Compare Carry Flag
destination > source CY=0
destination < source Cy=1

e Notice in the CINE instruction that any Rn register can be compared with an immediate
value.
» There is no need for register A to be involved

121 | Microprocessor and Microcontroller

» The compare instruction is really a subtraction, except that the operands remain
unchanged
» Flags are changed according to the execution of the SUBB instruction

31. Write a program to read the temperature and test it for the value 75. According to the
test results, place the temperature value into the registers indicated by the following.

If T=75then A =75
If T<75thenR1=T
If T>75then R2=T

Solution:

MOV P1L#0FFH ;make P1 an input port

MOV A,P1 ;read P1 port

CINE A#75,0VER ;jump if A is not 75

SIMP EXIT ;A=T5, exit

OVER: JNC NEXT ;if CY=0 then A>75
MOV R1,A :CY=1, A<75, save in R1
SIMP EXIT ; and exit
NEXT: MOV R2,A ;A>75, save it in R2

EXIT:

3.10 Rotate Instruction and Data Serialization
3.10.1 Rotating Right and Left
RR A ; rotate right A

» In rotate right
» The 8 bits of the accumulator are rotated right one bit, and
» Bit DO exits from the LSB and enters into MSB, D7

L ;

MSB — LSB

MOV A#36H ;A = 0011 0110
RR A ;A = 0001 1011
RR A ;A = 1000 1101

122 | Microprocessor and Microcontroller

1100 0110
0110 0011

z =
> >
P
Il Il

RL A ;rotate left A

= In rotate left
» The 8 bits of the accumulator are rotated left one bit, and
» Bit D7 exits from the MSB and enters into LSB, D0

MSB « LSB I"_

Rotating through Carry
RRC A ;rotate right through carry

MOV A#72H ;A = 0111 0010

RL A ;A = 1110 0100

RL A ;A = 1100 1001
= InRRCA

» Bits are rotated from left to right
» They exit the LSB to the carry flag, and the carry flag enters the MSB

i
— MSB — LSB = CY

CLR C ;make CY =0
MOV A #26H A = 0010 0110

123 | Microprocessor and Microcontroller

RRC A ;A = 0001 0011 CYy = 0
RRC A ;A = 0000 1001 CYy = 1
RRC A ;A = 1000 0100 CY = 1

RLC A ;rotate left through carry

= InRLCA
» Bits are shifted from right to left
» They exit the MSB and enter the carry flag, and the carry flag enters the LSB

B § |L ' MSB « LSB

32. Write a program that finds the number of 1s in a given byte

MOV RIL,#0

MOV R7,#8 ;count=08

MOV A #97H

AGAIN: RLC A

JNC NEXT ;check for CY

INC RI1 ;if CY=1 add to count
NEXT: DINZ R7,AGAIN

3.11 Serializing Data

» Serializing data is a way of sending a byte of data one bit at a time through a single pin
of microcontroller
» Using the serial port, discussed in Chapter 10
» To transfer data one bit at a time and control the sequence of data and spaces
in between them
= Transfer a byte of data serially by
» Moving CY to any pin of ports PO — P3
» Using rotate instruction

33. Write a program to transfer value 41H serially (one bit at a time) via pin P2.1. Put two
highs at the start and end of the data. Send the byte LSB first.

Solution:

MOV A, #41H

124 | Microprocessor and Microcontroller

SETB P2.1 ;high

SETB P2.1 ;high MOV RS, #8
AGAIN: RRC A

MOV P2.1, C; send CY to P2.1
DJNZ RS, HERE

SETB P2.1 ;high

SETB P2.1 ;high

Fim

Register A

= CY = P2.1

D7 vk

34. Write a program to bring in a byte of data serially one bit at a time via pin P2.7 and
save it in register R2. The byte comes in with the LSB first.

MOV RS, #8

AGAIN: MOV C, P2.7; bring in bit
RRC A

DINZ RS, HERE

MOV R2, A ;saveit

Pin

Single-bit Operations with CY

= There are several instructions by which the CY flag can be manipulated directly

Instruction Function

SETB C Make CY = 1

CLR C Clear carry bit (CY =0)

CPL C Complement carry bit

MOV b,C Copy carry status to bit location (CY =b)
MOV C,b Copy bit location status to carry (b = CY)
JNC target Jump to target if CY =0

JC target Jump to target if CY =1

125 | Microprocessor and Microcontroller

ANL C,bit AND CY with bit and save it on CY

ANL C,/bit AND CY with inverted bit and save it on CY
ORL C,bit OR CY with bit and save it on CY

ORL C,/bit OR CY with inverted bit and save it on CY

35. Assume that bit P2.2 is used to control an outdoor light and bit P2.5 a light inside a
building. Show how to turn on the outside light and turn off the inside one.

Solution:
SETB C ;CY = 1
ORL C,p2.2 ;CY = P2.2 ORed w/ CY
MOV P2.2,C ;turn it on if not on
CLR C ;CY = 0
ANL C,P2.5 ;CY = P2.5 ANDed w/ CY

MOV P2.5, C; turn it off if not off

36. Write a program that finds the number of 1s in a given byte.

MOV R1, #0 ; R1 keeps number of 1s
MOV R7, #8 ; counter, rotate 8 times
MOV A, #97H ; find number of 1s in 97H
AGAIN: RLC A ; rotate it thru CY

INC R1 ; check CY

NEXT: DINZ R7,AGAIN ;if CY=1, Inc count

; go thru 8 times

3.12 SWAP
SWAP A

= [t swaps the lower nibble and the higher nibble
» In other words, the lower 4 bits are put into the higher 4 bits and the higher 4
bits are put into the lower 4 bits
= SWAP works only on the accumulator (A)

Before: Dy-Da D3-D0

After 03-Do o7F-Da

37. (a) Find the contents of register A in the following code.

126 | Microprocessor and Microcontroller

(b) In the absence of a SWAP instruction, how would you exchange the nibbles? Write a
simple program to show the process

Solution:
(a)
MOV A#72H A = 7T2H
SWAP A ;A = 27H
(b)
MOV A#T2H ;A = 0111 0010
RL A ;A = 0111 0010
RL A A = 0111 0010
RL A ;A = 0111 0010
RL A A = 0111 0010
3.13 BCD AND ASCII APPLICATION PROGRAMS
ASCII code and BCD for digits 0 - 9
Key ASCII (hex) Binary BCD (unpacked)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 0110010 0000 0010
3 33 0110011 0000 0011
4 34 011 0100 0000 0100
5 35 0110101 0000 0101
6 36 0110110 0000 0110
7 37 0110111 0000 0111
8 38 011 1000 0000 1000
9 39 011 1001 0000 1001

3.13.1 Packed BCD to ACSII Conversion

= The DS5000T microcontrollers have a real-time clock (RTC)
» The RTC provides the time of day (hour, minute, second) and the date (year,
month, day) continuously, regardless of whether the power is on or off
= However, this data is provided in packed BCD

127 | Microprocessor and Microcontroller

» To be displayed on an LCD or printed by the printer, it must be in ACSII format

Packed BCD Unpacked BCD ASCII

MH 02H & {9H AZHE i0H
BO10 1001 ‘ o000 0010 & 0011 0010 &
Q000 1001 (a1 1001
3.13.2 ASCII to Packed BCD Conversion

* To convert ASCII to packed BCD
» It is first converted to unpacked BCD (to get rid of the 3)
» Combined to make packed BCD

Eay ASCH Unpacked BCD Packed BCD
i} 34 000 0100
7 i7 D00 0111 0100 0111 e 4TH
MOV A #4 ;A=34H, hex for ‘4’
MOV R1,#7 ;R1=37H,hex for <7
ANL A, #OFH ;mask ibble (A=04 37
, ;mask upper nibble () Assume
ANL R1,#0FH ;mask upper nibble (R1=07) that
SWAP A ;A=40H register
ORL A,R1 ;A=47H, packed BCD A has
packed
BCD,
write a

program to convert packed BCD to two ASCII numbers and place them in R2 and R6.
MOV A, #29H; A=29H, packed BCD
MOV R2; A ; keep a copy of BCD data
ANL A, #0FH; mask the upper nibble (A=09)
ORL A, #30H; make it an ASCII, A=39H (‘9’)
MOV R6, A ;saveit
MOV A, R2 ; A=29H, get the original
Data
ANL A, #0FOH; mask the lower nibble
—

RR A ;rotate right
RR A ;rotateright

128 | Microprocessor and Microcontroller

RR A ;rotate right SWAP A
RR A ;rotate right

ORL A, #30H ; A=32H, ASCII char. ’2’

MOV R2, A ; save ASCII char in R2

3.13.3 Using a Look-up Table for ASCII

38. Assume that the lower three bits of P1 are connected to three switches. Write a program
to send the following ASCII characters to P2 based on the status of the switches.

000 <O
001 ‘T
010 <2
011 <3
100 4
101 8
110 ‘6’
111 7

MOV DPTR,#MYTABLE
Solution:

MOV A,P1 ;get SW status

ANL A #07H ;mask all but lower 3
MOVC A,@A+DPTR ;get data from table
MOV P2,A ;display value

SIMP $;stay here

ORG 400H

MYTABLE DB ‘0°,°1°,°2°,°3° 4’ *5° 6T’
END

3.13.4 Checksum Byte in ROM

= To ensure the integrity of the ROM contents, every system must perform the checksum
calculation
» The process of checksum will detect any corruption of the contents of ROM
» The checksum process uses what is called a checksum byte
» The checksum byte is an extra byte that is tagged to the end of series of bytes of data
» To calculate the checksum byte of a series of bytes of data
» Add the bytes together and drop the carries
» Take the 2°s complement of the total sum, and it becomes the last byte of the
series
= To perform the checksum operation, add all the bytes, including the checksum byte
» The result must be zero

129 | Microprocessor and Microcontroller

» Ifit is not zero, one or more bytes of data have been changed

39. Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H.(a) Find
the checksum byte, (b) perform the checksum operation to ensure data integrity, and (c)
if the second byte 62H has been changed to 22H, show how checksum detects the error.

Solution:
(a) Find the checksum byte.

25H The checksum is calculated by first adding the
+ 62H bytes. The sum is 118H, and dropping the carry,
+ 3FH we get 18H. The checksum byte is the 2’s

+ 52H complement of 18H, which is E§H
~ lI8H

(b) Perform the checksum operation to ensure data integrity.
25H

+ 62H adding the series of bytes including the checksum

+ 3FH byte must result in zero. This indicates that all the

+ 52H bytes are unchanged and no byte is corrupted.

+ E8H

200H (dropping the carries)

(©) If the second byte 62H has been changed to 22H, show how checksum detects the error.
25H

+ 22H Adding the series of bytes including the checksum

+ 3FH byte shows that the result is not zero, which indicates
+ 52H that one or more bytes have been corrupted.
+ ES8H

1COH (dropping the carry, we get COH)
3.13.5 Binary (Hex) to ASCII Conversion

* Many ADC (analog-to-digital converter) chips provide output data in binary (hex)
» To display the data on an LCD or PC screen, we need to convert it to ASCII
e Convert 8-bit binary (hex) data to decimal digits, 000 — 255
e Convert the decimal digits to ASCII digits, 30H — 39H

3.14 Assembly language Programs
8051 PROGRAMMING IN C
Why Program 8051 In C

130 | Microprocessor and Microcontroller

= Compilers produce hex files that is downloaded to ROM of microcontroller
» The size of hex file is the main concern
= Microcontrollers have limited on-chip ROM
= Code space for 8051 is limited to 64K bytes
= C programming is less time consuming, but has larger hex file size
= The reasons for writing programs in C
» It is easier and less time consuming to write in C than Assembly
» C is easier to modify and update
» You can use code available in function libraries
» C code is portable to other microcontroller with little of no modification

For more examples of 8051 assembly language programs, see the QR code.

3.14.1 DATA TYPES o

= A good understanding of C data types for 8051 can help programmers to
create smaller hex files

Unsigned char

Signed char

Unsigned int

Signed int

Sbit (single bit)

Bit and sfr

YVVVVYY

3.14.2 Unsigned char

» The character data type is the most natural choice
» 8051 is an 8-bit microcontroller
» Unsigned char is an 8-bit data type in the range of 0 — 255 (00 — FFH)
» One of the most widely used data types for the 8051
e Counter value
e ASCII characters
= C compilers use the signed char as the default if we do not put the keyword unsigned

40. Write an 8051 C program to send values 00 — FF to port Pl.

Aadnrion;

1. Pay capeful amention 10 the Size of
oo thes data
Try to use unsignad char mstead of

#inelude <pep3] b=

\

vided aemvaad) L
i it if possible
.-"---
_
e

unsigned char z;

far l:ll:"'j F e “Ere)
Pi=z

41. Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A,
B, C, and D to port P1.

131 | Microprocessor and Microcontroller

Solution
#include <reg51.h>
void main(void)
{
unsigned char mynum[]="012345ABCD”;
unsigned char z;
for (z=0;z<=10;z++)
Pl=mynum]z];
}
42. Write an 8051 C program to toggle all the bits of P1 continuously.

Solution:
//Toggle P1 forever #include <reg51.h>
void main(void)
{
for (5;)

{

p1=0x55;

pl=0xAA;

H

h
3.14.3 Signed Char

= The signed char is an 8-bit data type
» Use the MSB D7 to represent — or +
» Give us values from —128 to +127 %o We should stick with the unsigned char
unless the data needs to be represented as signed numbers
» Temperature
43. Write an 8051 C program to send values of —4 to +4 to port P1.

Solution:

//Singed numbers

#include <reg51.h>

void main(void)

{

char mynum[J={+1,-1,+2,-2,+3,-3,+4,-4};

unsigned char z; for (z=0;z<=8;z++)

132 | Microprocessor and Microcontroller

Pl1=mynum][z];

}
3.14.4 Unsigned and Signed int

» The unsigned int is a 16-bit data type
Takes a value in the range of 0 to 65535 (0000 — FFFFH)
Define 16-bit variables such as memory addresses
Set counter values of more than 256
Since registers and memory accesses are in 8-bit chunks, the misuse of int
variables will result in a larger hex file
= Signed intis a 16-bit data type
» Use the MSB D15 to represent — or +
» We have 15 bits for the magnitude of the number from —32768 to +32767

YV VYV

44. Write an 8051 C program to toggle bit D0 of the port P1 (P1.0) 50,000 times.

Solution:
R Shat kevword allows access 1o the snple
Fclude ':“Ej_'_hl";---’ s bits of the SFR registers
<5 MIYRIT=P1'0;

voad mamiveond)
£
unsigned mi 2,
for {rel); ros30000;2++)
i
AYHIT=0,

MYEBIT=]

i

3.14.5 Bit and sfr

= The bit data type allows access to single bits of bit-addressable memory spaces 20 —
2FH
= To access the byte-size SFR registers, we use the sfr data type

Data Type Size in Bits Data Range/Usage

unsigned char 8-bit 0 to 255

133 | Microprocessor and Microcontroller

(signed) char 8-bit -128 to +127

unsigned int 16-bit 0 to 65535

(signed) int 16-bit -32768 to +32767

sbit 1-bit SFR bit-addressable only

bit 1-bit RAM bit-addressable only

sfr 8-bit RAM addresses 80 — FFH only

a.

Review Questions and Exercise

Explain briefly the five addressing model of 8051 with example foe each.
After reset , the contents of internal memory of 8051 with address 0OAH and OBH
contains data 22H and 33H , respectively . Sketch the contents of internal
memory from address 07H to OBH and the value of register SP , after executing
the following code:

PUSH 0AH

MOV 81H,#0BH

POP 09H
Write a subroutine which checks the content of 20H . If it is a positive number ,
the subroutine find its two’s complement and store it in same location and
returns.

What are assembler directives ? Explain any four of them.
If the XTAL frequwncy of 8051 is 8 MHz , find the time taken to execute the
following program:
MOV R2,#04
MOV R1,#06
WAIT: DINZR2, WAIT.
Write 8051 ALP which checks whether the ten numbers stored from external

RAM memory address , 2000H are odd/even . The programs should store
accordingly 00H/FFH from internal location 30H onwards.

Interface ADCO0809 to 8051 and write ALP to convert the analog voltage
connected to second channel . Display the digital value on LEDs connected to
Port-0.

Interface 8051 to stepper motor and write an ALP to rotate the motor first +4 steps
and then -6 steps.

134 | Microprocessor and Microcontroller

a. What is the difference between timer and counter operation 0of8051 ? How to
start/stop the timer/counter o 8051 when
i. GATE control is not used
ii. GATE control is used
b. Explain briefly the interrupts of 8051 , indicate their vector addresses.
Weite an ALP in 8051 which generates a square wave of frequency 10 kHz on pin
P1.2, using time-1 . Assume XTAL frequency as 11.0592 MHz .
What is the minimum frequency that can be generated ?

a. Explain the function of the pins of 9-pin RS-232 connector .

b. Explain how 8051 transmit the character and receives a character serially using
UART.

c. Write 8051 C program to transmit serially the message ‘SWITCH’ or ‘SWITCH
OFF’ depending on the status of the simple switch connected to pin P1.2 . use 2400
baud rate . 1 stop bit, 8 data bits format and assume XTAL frequency as 11.0592
Mhz.

a. Interface an LCD display to 8051 write an ALP display the message ‘VERY GOOD’

b. With a block schematic explain the features 8255 PPI chip and its MODE-0 operation.
c. If the internal memory 20H contains AAH and 07H contains 55H . What is the
content of register A and status of carry bit after executing the following code:
MOV C,07H
MOV A #20H
ADDC A,07

References

[1] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2~ ed. New Jersey, Pearson Prentice Hall, 2006.

[2] Santanu Chattopadhyay. Embedded System Design. 2+ ed. PHI Learning Private Ltd. New
Delhi, 2016.

[3] Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded....” Question Paper with Solution the 8051 Microcontroller Based Embedded...,
www.slideshare.net, 1 Mar. 2001, https://www.slideshare.net/manishpatel 79/question-paper-
with-solution-the-8051-microcontroller-based-embedded-systems-junejuly-2013-vtu

135 | Microprocessor and Microcontroller

Chapter 4
Memory and I/O Interfacing

Key features of Module — 4

e Memory and I/O Expansion Buses

e Control Signals, Memory Wait States
e External Memory

e Memory Interfacing

e Direct Memory Access

e interfacing of Peripheral Devices

Pre-requisites

e Fundamentals C programming
e Basics of Computers

Module — 4 Outcomes

e Students should be able to know about the different types of Memory and buses of
8051 microcontrollers

e Students should be able to know about the control signal and Memory Wait Status in
8051 microcontrollers

e Students should be able to write programs to interfacing the memory and Peripheral
devices

This chapter gives an overview of the interfacing of the memory and peripheral devices of
8051 microcontrollers. The understanding of how to applied the control signal at
microcontrollers is discussed. There are three types of control signals like RD, WR & ALE.
And discussed about the interfacing of the external memory, memory interfacing and
peripherals devices such as LEDS, LCD, Hex Keyboard, 7- Segment Multiplexed Display,
Timers, Counters, ADC, DAC, DC Motor, Stepper Motor The syntax of writing any
instruction is shown in the chapter along with some fundamental programs of 8051
microcontrollers.

4.1 Memory and I/O Expansion Buses

There are two main types of buses: system bus and I/O bus. The system bus, also called the
memory bus, makes a connection between the CPU and the main memory of the computer
that resides on the motherboard. Input/output (I/O) or expansion buses are responsible for
connecting the peripheral devices (mouse, keyboard, flash drives) to the Central Processing
Unit (CPU). The system bus and I/O buses are connected through a bridge that is
implemented in the chipset of the processor.

136 | Microprocessor and Microcontroller

4.2 Control and status signals
Three control signals are RD, WR & ALE.

RD — This signal indicates that the selected IO or memory device is to be read and is ready
for accepting data available on the data bus.

WR — this signal indicates that the data on the data bus is to be written into a selected
memory or 10 location.

ALE — It is a positive going pulse generated when a new operation is started by the
microprocessor. When the pulse goes high, it indicates address. When the pulse goes down
it indicates data.

4.2.1 Three status signals- 10/M, S0 & S1

I0/M—This signal is used to differentiate between 10 and Memory operations, i.e. when it
is high indicates 1O operation and when it is low then it indicates memory operation.

S1 & SO —These signals are used to identify the type of current operation.

Power supply — There are 2 power supply signals — VCC & VSS.
VCC indicates +5v power supply and VSS indicates ground signal.

» Clock signals
There are 3 clock signals, i.e. X1, X2, CLK OUT.

X1, X2 — A crystal (RC, LC N/W) is connected at these two pins and is used to set
frequency of the internal clock generator. This frequency is internally divided by 2.

CLK OUT - this signal is used as the system clock for devices connected with the
Microprocessor.
4.2.2 Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to
perform a task. There are 5 interrupt signals, i.e. TRAP, RST 7.5, RST 6.5, RST 5.5, and
INTR. We will discuss interrupts in detail in interrupts section.

INTA — It is an interrupt acknowledgment signal.

RESET IN — this signal is used to reset the microprocessor by setting the program counter
to zero.

RESET OUT - this signal is used to reset all the connected devices when the
MiCroprocessor is reset.

READY - this signal indicates that the device is ready to send or receive data. [f READY
is low, then the CPU has to wait for READY to go high.

137 | Microprocessor and Microcontroller

HOLD - this signal indicates that another master is requesting the use of the address and
data buses.

HLDA (HOLD Acknowledge) — It indicates that the CPU has received the HOLD request
and it will relinquish the bus in the next clock cycle. HLDA is set to low after the HOLD
signal is removed.

4.2.3 Serial I/0 signals

There are 2 serial signals, i.e. SID and SOD and these signals are used for serial
communication.

SOD (Serial output data line) — the output SOD is set/reset as specified by the SIM
instruction.

SID (Serial input data line) — the data on this line is loaded into accumulator whenever a
RIM instruction is executed.

4.3 Memory Wait States

A wait state is a delay experienced by a computer processor when accessing external
memory or another device that is slow to respond. A program or process in a wait state is
inactive for the duration of the wait state.

For example, an application program that communicated with one other program might
send that program a message and then go into a wait state until it was "reawakened" by a
message back from the other program.

When a computer processor works at a faster clock speed (expressed in MHz or millions
of cycles per second) than the random access memory (RAM) that sends it instructions, it
is set to go into a wait state for one or more clock cycles so that it is synchronized with
RAM speed. In general, the more time a processor spends in wait states, the slower the
performance of that processor.

4.3.1 External Memory Interfacing
Memory Capacity

The number of bits that a semiconductor memory chip can store is called chip capacity. It
can be in units of Kbits (kilobits), Mbits (megabits), and so on. This must be distinguished
from the storage capacity of computer systems. While the memory capacity of a memory
IC chip is always given bits, the memory capacity of a computer system is given in bytes

* 16M memory chip — 16 megabits
* A computer comes with 16M memory — 16 megabytes

138 | Microprocessor and Microcontroller

Memory Organization

= Memory chips are organized into a number of locations within the IC
» Each location can hold 1 bit, 4 bits, 8 bits, or even 16 bits, depending on how it
is designed internally
= The number of locations within a memory IC depends on the address pins
= The number of bits that each location can hold is always equal to the number of data
pins
» To summarize
» A memory chip contains 2x (2 raised to power of x) location, where x is the
number of address pins
» Each location contains y bits, where y is the number of data pins on the chip
» The entire chip will contain 2*x X y bits.

Speed

» One of the most important characteristics of a memory chip is the speed at which its
data can be accessed

» To access the data, the address is presented to the address pins, the READ pin is
activated, and after a certain amount of time has elapsed, the data shows up at the data
pins

» The shorter this elapsed time, the better, and consequently, the more expensive the
memory chip

» The speed of the memory chip is commonly referred to as its access time

Example

1. A given memory chip has 12 address pins and 4 data pins. Find: (a) The organization,
and (b) the capacity.

Solution:

(a) This memory chip has 4096 locations (212 = 4096), and each location can hold bits of
data. This gives an organization of 4096 X 4, often represented as 4Kx 4.

(b) The capacity is equal to 16K bits since there is a total of 4K locations and each location
can hold 4 bits of data.

2. A 512K memory chip has 8 pins for data. Find: (a) The organization, and (b) the
number of address pins for this memory chip.

Solution:

(a) A memory chip with 8 data pins means that each location within the chip can hold 8
bits of data. To find the number of locations within this memory chip, divide the capacity
by the number of data pins. 512K/8 = 64K; therefore, the organization for this memory chip
is 64K x 8

(b) The chip has 16 address lines since 216 = 64K
4.3.2 Interfacing External ROM
= The 8031 chip is a ROM less version of the 8051

139 | Microprocessor and Microcontroller

>

>

It is exactly like any member of the 8051 family as far as executing the instructions
and features are concerned, but it has no on-chip ROM

To make the 8031 execute 8051 code, it must be connected to external ROM
memory containing the program code

8031 is ideal for many systems where the on-chip ROM of 8051 is not sufficient,
since it allows the program size to be as large as 64K bytes

For 8751/89C51/DS5000-based system, we connected the EA pin to Vcc to indicate
that the program code is stored in the microcontroller’s on-chip ROM

To indicate that the program code is stored in external ROM, this pin must be
connected to GND

PO and P2 in Providing Address

= Since the PC (program counter) of the 8031/51 is 16-bit, it is capable of

Accessing up to 64K bytes of program code
In the 8031/51, port 0 and port 2 provide the 16-bit address to access external
Memory

e PO provides the lower 8-bit address A0 — A7, and P2 provides

the upper 8-bit address A8 — A15

= PO is also used to provide the 8-bit data bus DO — D7

P0.0 — P0.7 are used for both the address and data paths
= address/data multiplexing

= ALE (address latch enable) pin is an output pin for 8031/51
ALE =0, PO is used for data path
ALE =1, PO is used for address path
To extract the address from the PO pins we connect PO to a 74LS373 and use the
ALE pin to latch the address
Normally ALE = 0, and PO is used as a data bus, sending data out or bringing data
in

— 2 i
el oy ——
— |
R A0 |-
ST 5y ——
] By —
T
- By —
=R Chulipul eorrirsd
Firrtican Tabile
Cutpl | 2 Enabls
eeyridrd L [= CXufpmiid
L [K (E]
L i i
[i =]
H = - 2

741.5373 I Latch
Fig.4.1: 74LS373 D Latch

140 | Microprocessor and Microcontroller

= Whenever the 8031/51 wants to use PO as an address bus, it puts the addresses A0
— A7 on the PO pins and activates ALE = 1

4.3.3 Address/Data Multiplexing

= PSEN (program store enables) signal is an output signal for the 8031/51

microcontroller and must be connected to the OE pin of a ROM containing the
program code

= [t is important to emphasize the role of EA and PSEN when connecting the 8031/51
to external ROM

» When the EA pin is connected to GND, the 8031/51 fetches opcode from
external ROM (8031)2—PSEN by using PSEN

ol S0kS 1 Hn s
EA L el] EA L= 1= % ok
CHOCMCE ALK . LELELE N
N Lhi=-Clhup
OFF1 "
CHIT B) IFFF
Chip Off 2000
i hip

Cin-chip

O
Chip
FFFI | FEEEL FFFI
Fig.4.2: Circuit diagram to interface external ROM with 8051
= The connection of the PSEN pin to the OE pin of ROM
» In systems based on the 8§751/89C51/ DS5000 where EA is connected to
Ve, these chips do not activate the PSEN pin

» This indicates that the on-chip ROM contains program code

4.3.4 Connection to External Program ROM

B031/51
o
Alf ar
Lower 8-Bil
i — . Address Bus

ol Diaxa

[

Fig.4.3. Connection to External Program ROM

4.3.5 On-Chip and Off-Chip Code ROM
= Inan 8751 system we could use on- chip ROM for boot code and an external ROM
will contain the user’s program
» We still have EA = Ve,
e Upon reset 8051 executes the on-chip program first, the
e When it reaches the end of the on-chip ROM, it switches to
external ROM for rest of program

141 | Microprocessor and Microcontroller

T
ey — R

Ik i 0 X
<L w | - |

AT - ER -]

—— L |2Tﬁ.‘.|

ol Exal

|_-I S — program
= ¥ . |

=l Y ROM

Fig.4.4. Off-chip Program Code Access

3. Discuss the program ROM space allocation for each of the following cases.

(a) EA = 0 for the 8751 (89C51) chip.

(b) EA = Vcc with both on-chip and off-chip ROM for the 8751.
(© EA = Vcc with both on-chip and off-chip ROM for the 8752.
Solution:

(a) When EA = 0, the EA pin is strapped to GND, and all program fetches are directed to
external memory regardless of whether or not the 8751 has some on-chip ROM for program
code. This external ROM can be as high as 64K bytes with address space of 0000 — FFFFH. In
this case an 8751(89C51) is the same as the 8031 system.

(b) With the 8751 (89C51) system where EA=Vcc, it fetches the program code of address
0000 — OFFFH from on-chip ROM since it has 4K bytes of on-chip program ROM and any
fetches from addresses 1000H — FFFFH are directed to external ROM.

(©) With the 8752 (89C52) system where EA=Vcc, it fetches the program code of addresses
0000 — 1FFFH from on-chip ROM since it has 8K bytes of on-chip program ROM and any
fetches from addresses 2000H — FFFFH are directed to external ROM

4.4 Interfacing to Large External Memory

= In some applications we need a large amount of memory to store data
» The 8051 can support only 64K bytes of external data memory since DPTR
is 16-bit
» To solve this problem, we connect A0 — A15 of the 8051 directly to the
external memory’s A0 — A15 pins, and use some of the P1 pins to access the
64K bytes blocks inside the single 256K *x8 memory chip

142 | Microprocessor and Microcontroller

P

o L
TALEB13E
AN | —
ATE il W wio
3 o
& o] -
E— TE TWToE Spp L Ep
w Wi CE CF
——r14 — 10 P s
= 1GM=A 18Kl —| 46K=x#

Fig.4.5. 8051 Accessing 256K*8 External NV-RAM

4. In a certain application, we need 256K bytes of NV-RAM to store data collected by
8051 microcontrollers. (a) Show the connection of an 8051 to a single 256K X8 NV-
RAM chip. (b) Show how various blocks of this single chip are accessed

Solution:

(a)

The 256K X8 NV-RAM has 18 address pins (A0 — A17) and 8 data Lines. As shown

in Fig.5, AO— A15 go directly to the memory chip while A16 and A17 are controlled
by P1.0 and P1.1, respectively. Also notice that chip select of external RAM is
connected to P1.2 of the 8051.

(b)The 256K bytes of memory are divided into four blocks, and each block is accessed as

follows:
Chip select
P1.2
0

0
0
0

Al17
P1.1
0
0
1

Al6
P1.0
0
1
0

Block address space
00000H - OFFFFH
10000H - 1FFFFH
20000H - 2FFFFH
30000H - 3FFFFH

External RAM
disabled

143 | Microprocessor and Microcontroller

For example, to access the 20000H — 2FFFFH address space we need the following

CLR P1.2 DPTR, ; enable external RAM
MOV #0 ; start of 64K memory block
CLR P1.0 ; A16=0

SETB P1.1 ; A17 =1 for 20000H block
MOV A, SBUF ;get data from serial port
MOVX @DPTR, A

INC DPTR ; next location

4.5 Interfacing of Peripheral Devices

Table 4.1. Pin Descriptions for LCD

Pin Symbol 1/0 Descriptions

1 VSS -- Ground
Send 2 VCC -- +5V power supply
displayed 3 VEE P Iy to control contrast
information -- ower supply to control contras
or instruction 4 RS I RS=0 to select command register,
command RS=1 to select data register
codes tothe
5 R/W I R/W=0 for write, R/W=1 for read
LCD
Read the _ 6 E o
contents of Used
the LCD’s 7 DBO /O by the
internal 8 DBI I/0 the 8- bit data bus LCD to
registers latch
i The 8-
9 DB2 1/0 the 8- bit data bus bit data
10 DB3 1/0 the 8- bit data bus bus
informa
11 DB4 /'O the 8- bit data bus tion
12 DB5 1/0 the 8- bit data bus
13 DB6 /0 the 8- bit data bus
14 DB7 /0 the 8- bit data bus

= LCD is finding widespread use replacing LEDs

= The declining prices of LCD

= The ability to display numbers, characters, and graphics

= Incorporation of a refreshing controller into the LCD, thereby relieving the CPU
of the task of refreshing the LCD

= Ease of programming for characters and graphics

144 | Microprocessor and Microcontroller

Table 4.2. LCD Command Codes

Code (Hex) Command to LCD Instruction
Register

1 Clear display screen

2 Return home

4 Decrement cursor (shift cursor to left)
6 Increment cursor (shift cursor to right)
5 Shift display right

7 Shift display left

8 Display off, cursor off

A Display off, cursor on

C Display on, cursor off

E Display on, cursor blinking

F Display on, cursor blinking

10 Shift cursor position to left

14 Shift cursor position to right

18 Shift the entire display to the left

1C Shift the entire display to the right

80 Force cursor to beginning to 1st line
CO0 Force cursor to beginning to 2nd line
38 2 lines and 5x7 matrix

4.5.1 Interfacing LCD to 8051

4.To send any of the commands to the LCD, make pin RS=0. For data, make RS=1.
Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD. This
is shown in the code below.

;calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins DO-D7
;P2.0 is connected to RS pin of LCD

;P2.1 is connected to R/W pin of LCD 251 —— i
;P2.2 is connected to E pin of LCD i I i

ORG _ Ic Vo = .rll:.-
MOV A, #38H; INIT. LCD 2 LINES, 5X7 MATRIX R

ACALL COMNWRT; call command subroutine R RW

ACALL DELAY ;give LCD some time

b - .
e R

MOV A #0OEH ;display on, cursor on

ACALL COMNWRT ;call command subroutine
Fig.4.6. Interfacing LCD to 8051
ACALL DELAY ;give LCD some time

145 | Microprocessor and Microcontroller

MOV A #01 ;clear LCD

ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A #06H ;shift cursor right

ACALL COMNWRT ;call command subroutine ACALL DELAY ;give LCD some time
MOV A, #84H ;cursor at line 1, pos. 4

ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A #N’;display letter N

ACALL DATAWRT ; call display subroutine
ACALL DELAY; give LCD some time

MOV A, #0’; display letter O

ACALL DATAWRT ; call display subroutine
AGAIN: SIMP AGAIN; stay here

MOV PI1, A ; stay here

COMNWRT:

MOV PI1, A ;copyreg A to port 1

CLR P2.0 ;RS=0 for command

CLR P2.1 ; R/W=0 for write

SETB P2.2 ; E=I for high pulse

ACALL DELAY ; give LCD some time
CLR P2.2 ; E=O0 for H-to-L pulse

RET

DATAWRT: ; write data to LCD

MOV P1, A ; copy reg A to port 1

SETB P2.0 ; RS=1 for data

CLR P2.1 ; R/W=0 for write

SETB P2.2 ; E=I for high pulse

ACALL DELAY ; give LCD some time
CLR P2.2 ; E=O0 for H-to-L pulse

RET

DELAY: MOV R3, #50 ;50 or higher for fast CPUs

146 | Microprocessor and Microcontroller

HERE2: MOV R4, #255 ; R4 =255
HERE:DJINZ R4, HERE; stay until R4 becomes 0
DINZ R3, HERE2

RET

END

;Check busy flag before sending data, command to LCD
;pl=data pin

;P2.0 connected to RS pin

;P2.1 connected to R/W pin

;P2.2 connected to E pin

ORG OH

MOV A #38H ;init. LCD 2 lines ,5x7 matrix
ACALL COMMAND:;issue command

MOV A #0EH ;LCD on, cursor on
ACALL COMMAND ;issue command

MOV A#01H ;clear LCD command
ACALL COMMAND ;issue command

MOV A #06H ;shift cursor right

ACALL COMMAND:;issue command

MOV A #86H ;eursor: line 1, pos. 6
ACALL COMMAND ;command subroutine
MOV A#N’;display letter N

ACALL DATA DISPLAY

MOV A # O’ ;display letter O

ACALL DATA DISPLAY

HERE: SIMP HERE ; STAY HERE
COMMAND:

ACALL READY ;is LCD ready?

MOV P1,A ;issue command code

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 to write to LCD

SETB P2.2 ;E=I1 for H-to-L pulse

147 | Microprocessor and Microcontroller

CLR
RET

P2.2 ;E=0.latch in

DATA DISPLAY:

ACALL READY ; is LCD ready?

MOV PI1, A ;issue data

SETB P2.0 ; RS=1 for data

CLR

SETB P2.2 ; E=1 for H-to-L pulse

RET

READY

P2.1 ; R/W =0 to write to LCD

To read the command
register, we make R/W=1,
RS=0, and a H-to-L pulse for
the E pin

SETB P1.7 ; make P1.7 input port

CLR P2.0 ; RS=0 access command reg

SETB P2.1 ; R/W=I read command reg

; read command reg and check busy flag

BACK: SETB P2.2 ; E=1 for H-to-L pulse

CLR
JB

RET
END

P2.2 ; E=0 H-to-L pulse
P1.7, BACK ; stay until busy flag=0

If bit 7 (busy flag) is high, the LCD
is busy and no information Should
be issued to it

v

One can put data at any location in the LCD
and the following shows address locations and how they are accessed

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO0
0 0 1 A A A A A A A

> AAAAAAA=000 0000 to 010 0111 for linel
» AAAAAAA=100 0000 to 110 0111 for line2

148 | Microprocessor and Microcontroller

LCD Timing

Ly = Ddle 397 UDTAMS

//‘ =TEE £ LT |

L= Dats hekd Tme

| i
i ?Hff =10 FF AR
L A .
¥ Loy
|

bas Bpwrn

Ean = Hold firme sitar E s ooena
dicren For biothi |3 and By = 10 e

{minmmump

T, ¢ = Sotupn fimie pricets E (gaisg friph) for
both FS and 2% = 140 ne frmmmmam)

Eppyy = Erdlls pulnes width

= &350 ms [mHeimum)

Fig.4.7. LCD Timing Diagram
4.5.2 Interfacing to ADC and Sensors
4.5.2.1 ADC Devices

= ADCs (analog-to-digital converters) are among the most widely used devices for data
acquisition

= A physical quantity, like temperature, pressure, humidity, and velocity, etc., is
converted to electrical (voltage, current) signals using a device called a transducer, or

sensor.
Table 4.3. LCD Addressing for the LCD of 40 X 2 Size
L The uppur address rurigs can go as high
" | m=o1cO1L1
LOD Addrassing for tha' LODs of 40 %3 sixd For tha 40 charsctar-wida LD, which

cofrespordds to hocations O to 19

DET DEe DEE DE4 DE3 DBEZ DRI DB

Liwel {meny 1 [i] i] i) Q 0 o
Larel _tmax) 1 H 1 0 1 1 1]
L2 v ek} L 1 8]] i i} i k]

S e — . - — _— . - -
Line? {mnx) i i i K] i] i i]

149 | Microprocessor and Microcontroller

* We need an analog-to-digital converter to translate the analog signals to digital
numbers, so microcontroller can read them

4.5.2.2 ADC804 Chip

= ADCS804 IC is an analog-to-digital converter

» It works with +5 volts and has a resolution of 8 bits

» Conversion time is another major factor in judging an ADC
Conversion time is defined as the time it takes the ADC to convert the
analog input to a digital (binary) number
In ADC804 conversion time varies depending on the clocking signals
applied to CLK R and CLK IN pins, but it cannot be faster than 110 ns

+iy
Diffarential analog inputs whera Vin
N 2 - Vin {41~ Vin
| iim -1 s sonnected to groend and
H‘x,] "--f-_ Win =) ls used as the analog Enput to
o Y| T, Fi
i e v 'E'f. e be converted
T = — Vil el s

A GND D; T - +5% poer supply or a reference
A L st T, . <

L i 14 woitage when Vreff 2 ingut is opan

= Vo' 2 el BT e T LED&

CLER D5 ' [Mot conmected)

{ Ain

.]
L% f_-'-
- p _ 5 “Erd of cormversion”
g ol el - When the canverskon is finksked, it
i """ | B0Es low To signal the CPU that the
?‘D e normally converted data is ready ta be picked
i iy
DGsD / START
|
— L

Fig.4.8. ADC804 Chip

e WR = “start conversion” When WR makes a low-to- high transition, ADC804 starts
converting the analog input value of Vin to an 8-bit digital number

e (CS=CS s an active low input used to activate ADC804

e RD=“output enable” a high-to-low RD pulse is used to get the 8-bit converted data out

of ADC804

* CLKINand CLKR
» CLK IN is an input pin connected to an external clock source
» To use the internal clock generator (also called self-clocking), CLK IN
and CLK R pins are connected to a capacitor and a resistor, and the clock

frequency is determined by

1
1.1RC

150 | Microprocessor and Microcontroller

Typical values are R = 10K ohms and C =150 pF
We get £ = 606 kHz and the conversion time is 110 ns

4.5.2.3 Vref?2

It is used for the reference voltage
» If this pin is open (not connected), the analog input voltage is in the range of 0
to 5 volts (the same as the Vcc pin)
» If the analog input range needs to be 0 to 4 volts, Vref/2 is connected to 2 volts

4.5.2.4 Vref/2 Relation to Vin Range

[] V V u

A\

D0-D7

The digital data output pins

These are tri-state buffered

The converted data is accessed only when CS = 0 and RD is forced low
To calculate the output voltage, use the following formula

Vin

D =_rin__
out Step Size

Mt 2(v] Nin(V) Step Size (my)

Not conmected® DRo5 hi256=19.53
4.0 w4 4/155=15.62
1.5 Oto3 3/256=11.71
1,28 0t 2.56 2,56/ 256=10
LU Otg2 2/256=1.81
0.5 ol 1/256=3.90

Stop size 15 the smallest chenes can be dizcerned by an ADC

Table 4.4. Vref/2 Relation to Vin Range

Dout = digital data output (in decimal),

Vin = analog voltage, and

step size (resolution) is the smallest change

Analog ground and digital ground

Analog ground is connected to the ground of the analog Vin
Digital ground is connected to the ground of the Vcc pin

To isolate the analog Vin signal from transient voltages caused by digital switching of
the output DO — D7
» This contributes to the accuracy of the digital data output.

151 | Microprocessor and Microcontroller

¢ The following steps must be followed for data conversion by the ADC804 chip
» Make CS =0 and send a low-to-high pulse to pin WR to start conversion
» Keep monitoring the INTR pin
e IfINTR is low, the conversion is finished
e [fthe INTR is high, keep polling until it goes low
» After the INTR has become low, we make CS = 0 and send a high-to-low pulse to the
RD pin to get the data out of the ADC804

| f
1 IIII
. | l".ll ."I
WA /
\ {
|
L {
\ / |
D-b7 ——— v] | Data out
End conversion H /
e | {
INTR " /
| !
Start conversion “-5'1 .flllr
—-— y . of
KD g\ i L
v
C5 i5 set to low for both RD and 'WR Read it
Pulses

Fig.4.9. Data conversion by the ADC804 chip

4.5.2.5 ADC804 Free Running Test Mode

152 | Microprocessor and Microcontroller

=5
a potertiomsier used Do The TS
.au input is spplied a O-to-5 snalog
_ e ——+ growended and the unll:.mgn b it
] e Win =)
r—— [, i | KB —
L0k .-;" jl Vi [] ::::::] "|1
POT "_.- — I"-'-ut'} :n-\- La e &
| A GND D'i- T — "'\-\.____ The boeary cutputs are
S = Ay . [T | monitored on the LED
= e s oA T TalEIn | Ly of the digital trainer
CLER D5 =3
] .'T
== <7 n? — -,
e .
o - o, = .
- i) i %, The CSmput is apphly & (-to-
L b ¥ S| B W analog grounded and
[5apE —— WE 3 a
— ; the voltage to input Yin (+}
EE} [NTH -] nermuully W input s
- apen
[r =MD ETART

Fig.4.10. ADC804 Free Running Test Mode

5. Write a program to monitor the INTR pin and bring an analog input into register A.
Then call a hex-to ACSII conversion and data display subroutines. Do this
continuously.

; p2.6=WR (start conversion needs to L-to-H pulse)

; p2.7 When low, end-of-conversion)

; p2.5=RD (a H-to-L will read the data from ADC chip)
; pl.0—P1.7=DO0 - D7 of the ADC804

MOV Pl,#0FFH ; make P1 = input

BACK: CLR P26 ;WR=0

SETB P2.6 ; WR =1 L-to-H to start conversion
HERE: JB P2.7, HERE ; wait for end of conversion
CLR P2.5 ; conversion finished, enable RD
MOV A, P1 ;read the data

ACALL CONVERSION; hex-to-ASCII conversion
ACALL DATA_DISPLAY:; display the data

SETB p2.5 ; make RD=1 for next round

SIMP BACK

4.6 LCD Interfacing

= One can put data at any location in the LCD and the following shows address
locations and how they are accessed

153 | Microprocessor and Microcontroller

Table 4.5. LCD Addressing for the LCDs of 40 X2 size

R/W DB7

DB6 DB5 DB4 DB3 DB2 DB1 DBO

» AAAAAAA=000 0000 to 010 0111 for linel

> AAAAAAA=100 0000 to 110_0111 for line2

The upper address range can go as
high as 0100111

For the 40- character-wide LCD, which
corresponds to locations 0 to 39

DB7 DB6 DBS DB4 DB3 DB2 DB1 DB0

Linel (min) 1 0 0 0 0 0 0 0
Linw 1 0 0 1 1 1
Line2 (min) 1 1 0 0 0 0 0 0

1 0 0 1 1 1

Line2 (max) 1 1
— A

4.6.1 Sending Information to LCD Using MOVC Instruction

; Call a time delay before sending next data/command

; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0
MOV DPTR, #MYCOM
Cl: CLR A

MOVC A,@A+DPTR
ACALL COMNWRT
ACALL DELAY

INC DPTR

JZ SEND DAT
SIMP Cl1
SEND DAT:

MOV DPTR, #MYDATA

DI1: CLR A

; call command subroutine

; give LCD some time

154 | Microprocessor and Microcontroller

MOVC A,@A+DPTR

ACALL DATAWRT ; call command subroutine
ACALL DELAY ; give LCD some time

INC DPTR

JZ AGAIN

SIMP Dl

AGAIN: SJMP AGAIN ;stay here
COMNWRT: ;send command to LCD

MOV P1, A ;copy reg A to P1 CLR P2.0
;RS=0 for command CLR P2.1
:R/W=0 for write SETB P2.2
;E=1 for high pulse ACALL DELAY
;give LCD some time

CLR P2.2 ; E=0 for H-to-L pulseRET
DATAWRT: write data to LCD
MOV P1, A ; copy reg A to port 1
SETB P2.0 ; RS=1 for data

CLR P2.1 ; R’'W=0 for write SETB
P2.2; E=1 for high pulse

ACALL DELAY ; give LCD some time

CLR P2.2 ; E=0 for H-to-L pulseRET
DELAY: MOV R3,#250 ; 50 or higher for fast CPUs
HERE2: MOV R4, #255; R4 =255

HERE: DJINZ R4, HERE ; stay until R4 becomes 0
DJNZ R3, HERE2

RET

ORG 300H
MYCOM: DB 38H, OEH, 01, 06, 84H, 0 ; commands and null
MYDATA: DB “HELLO”, 0

END

6. Write an 8051 C program to send letters ‘M’, ‘D’, and ‘E’ to the LCD using the busy
flag method.

Solution:

#include <reg51.h>

155 | Microprocessor and Microcontroller

sfr Idata = 0x90; //P1=LCD data pins
sbit rs = P2"0;

sbit rw = P2"1;

sbit en = P2"2;

sbit busy = P17,

Void main ()

{

ledemd(0x38);

lcdemd(0x0E);

ledemd(0x01);

ledemd(0x06);

lcdemd(0x86); //line 1, position 6
ledemd(‘M’);

ledemd(‘D?);

ledemd(‘E’);

}

Void ledemd (unsigned char value)

{

lcdready(); //check the LCD busy flag
Ldata = value; //put the value on the pins
rs =0;

rw = 0;

en=1; //strobe the enable pin
MSDelay(1);

en=0;

Return;

}

Void lcddata (unsigned char value) {

ledready(); //check the LCD busy flag

156 | Microprocessor and Microcontroller

Ldata = value; //put the value on the pins
rs=1;

w=0;

en=1; //strobe the enable pin
MSDelay(1);

en = (; return;

}

Void lcdready ()

{

Busy =1; //make the busy pin at input
rs = 0;

w=1;

While (busy==1) { //wait here for busy flag

en=0; //strobe the enable pin
MSDelay(1);

en=1;

}

Void Icddata (unsigned int itime)

{

Unsigned int i, j; for (i=0; i<itime; i++)
For (j=0;j<1275;j++);

}

157 | Microprocessor and Microcontroller

£p= Dlats cutput Seliy tirs

—I \‘l\ \ Fagr= Moid time after £ has come oonen

fier ol BS mead RO = L0 A
[=iremumy

tan = Betup time progr be | peing high) for

boch RS pnd AW = 140 ms devd rimum)

Fig.4.11. LCD Timing diagram for Read

Note: Read requires an L-to-H pulse for the E pin

158 | Microprocessor and Microcontroller

LCD Timing for Write!

P = DAEN 30T 0p T

£y= Data hold tme

= 10 ns {minimum

LT

..-.,..,_.,_-..,.,..,.....-_,.,..---. .,..,.-,.___.,_
g

i
i
"
1
i
i
i
W
1
"
-+ [
' 1
W
i
ﬂ
x5 H
T
'
W
i
i
W
"
.
i
1
i

£ = Hodd time after € has come
diowyn for both BS and RAW = L0 ns

[mimEmam]

£ac = Sebup time priar to € [going high] far
both RS and RAW = 140 nf (matimum])

Tpw i @ Erbble pulse width

= 450 nY [manimum)

Fig.4.12. LCD Timing Diagram For write
4.7. Keyboard Interfacing

= Keyboards are organized in a matrix of rows and columns
» The CPU accesses both rows and columns through ports
e Therefore, with two 8-bit ports, an 8 x 8 matrix of keys can be connected to a
microprocessor
» When a key is pressed, a row and a column make a contact
e Otherwise, there is no connection between rows and columns

159 | Microprocessor and Microcontroller

* In IBM PC keyboards, a single microcontroller takes care of hardware and software

interfacing

A 4x4 matrix connected to two ports

» The rows are connected to an output port and the columns are connected to an input
port

4.7.1. Matrix Keyboard Connection to ports

i
e

T

N

i =L

Port 1
[y P X
(Em})

Fig.4.13. Matrix Keyboard Connection to ports

= [t is the function of the microcontroller to scan the keyboard continuously to detect and

identify the key pressed

= To detect a pressed key, the microcontroller grounds all rows by providing 0 to the

output latch, then it reads the columns

» If the data read from columns is D3 — DO = 1111, no key has been pressed and the

process continues till key press is detected
» If one of the column bits has a zero, this means that a key press has occurred

e For example, if D3 — DO = 1101, this means that a key in the D1 column has been

pressed

e After detecting a key press, microcontroller will go through the process of identifying

the key

e Starting with the top row, the microcontroller grounds it by providing a low to row DO

only

» It reads the columns, if the data read is all 1s, no key in that row is activated and

the process is moved to the next row
e [t grounds the next row, reads the columns, and checks for any zero
» This process continues until the row is identified
e After identification of the row in which the key has been pressed
» Find out which column the pressed key belongs to

7. From given Figure identify the row and column of the pressed key for each of the

Sfollowing.
(a) D3 - D0 = 1110 for the row, D3 — D0 = 1011 for the column
(b) D3 — D0 = 1101 for the row, D3 — D0 =0111 for the column
Solution:

From Fig.13 the row and column can be used to identify the key.

160 | Microprocessor and Microcontroller

(a) The row belongs to DO and the column belongs to D2; therefore, key number 2 was
pressed.

(b) The row belongs to D1 and the column belongs to D3; therefore, key number 7 was
pressed.

¢ Program 12-4 for detection and identification of key activation goes through the
following stages:
1. To make sure that the preceding key has been released, Os are output to all rows at
once, and the columns are read and checked repeatedly until all the columns are high
e When all columns are found to be high, the program waits for a short amount of
time before it goes to the next stage of waiting for a key to be pressed
2. To see if any key is pressed, the columns are scanned over and over in an infinite loop
until one of them has a 0 on it
e Remember that the output latches connected to rows still have their initial zeros
(provided in stage 1), making them grounded
e After the key press detection, it waits 20 ms for the bounce and then scans the
columns again
(a) it ensures that the first key press detection was not an erroneous one due a spike
noise
(b) The key press. If after the 20-ms delay the key is still pressed, it goes back into
the loop to detect a real key press

3. To detect which row key press belongs to, it grounds one row at a time, reading the
columns each time

e If it finds that all columns are high, this means that the key press cannot
belong to that row
— Therefore, it grounds the next row and continues until it finds the row the key press belongs
to
e Upon finding the row that the key press belongs to, it sets up
the starting address for the look-up table holding the scan
codes (or ASCII) for that row
4. To identify the key press, it rotates the column bits, one bit at a time, into the carry flag
and checks to see if it is low
= Upon finding the zero, it pulls out the ASCII code for that key from the look-
up table
= otherwise, it increments the pointer to point to the next element of the look-
up table

161 | Microprocessor and Microcontroller

I Flowohars for Program 12-3 @

K Start 1 I Eead all column I

I Ground all rows Ly I Eeys
down

‘ . Y ea
'I Fead all columns I"
I Woalt for debounce I

$ I Read all columns I
Vs

I CGaronnd next roer

x

et scan
Ccodefrom

Find whaich
kKewis

1
K_ Feturn _j

Fig.4.14. Flow chart for the program 12-4
8. Program 12-4: Keyboard Program

; Keyboard subroutine. This program sends the ASCII; Code for pressed key to P0.1; P1.0-
P1.3 connected to rows, P2.0-P2.3 to column

MOV P2, #0FFH ; make P2 an input port

162 | Microprocessor and Microcontroller

K1:MOV P1, #0 ; ground all rows at once
MOV A, P2 ; read all col

;(ensure keys open)
ANL A, 00001111B ; masked unused bits
CINE A, #00001111B, K1 ; till all keys release
K2: ACALL DELAY ;call 20 msec delay
MOV A, P2 ; see if any key is pressed
ANL A,00001111B :mask unused bits
CINE A, #00001111B, OVER ; key pressed, find row
SIMP K2 ; check till key pressed
OVER: ACALL DELAY ; wait 20 msec debounce time
MOV A, P2 ; check key closure
ANL A, 00001111B ; mask unused bits
CINE A, #00001111B, OVERI1; key pressed, find row
SIMP K2 ; if none, keep polling
OVERI1: MOV P1, #11111110B ; ground row 0
MOV A, P2 ; read all columns
ANL A, #00001111B ; mask unused bits
CINE A, #00001111B, ROW_0; key row 0, find col.

MOV P1, #11111101B ; ground row 1
MOV A, P2 ; read all columns
ANL A, #00001111B ; mask unused bits

CINE A, #00001111B, ROW _1 ; key row 1, find col.

MOV P1, #11111011B ; ground row 2
MOV A, P2 ; read all columns
ANL A, #00001111B ; mask unused bits

CINE A, #00001111B, ROW_2 ; key row 2, find col.

MOV P1,#11110111B ;ground row 3
MOV A, P2 ; read all columns
ANL A, #00001111B ; mask unused bits

CINE A, #00001111B, ROW _3 ; key row 3, find col.
LIMP K2 ; if none, false input,

163 | Microprocessor and Microcontroller

; repeat

ROW_0: MOV DPTR, #KCODEO ; set DPTR=start of row 0
SJMP FIND ; find col. Key belongs to
ROW_1: MOV DPTR, #KCODE1 ; set DPTR=start of row
SIMP FIND ; find col. Key belongs to

ROW _2: MOV DPTR, #KCODE2 ; set DPTR=start of row 2
SJMP FIND ; find col. Key belongs to

ROW_3: MOV DPTR, #KCODE3 ; set DPTR=start of row 3

FIND: RRC A ; see if any CY bit low
JNC MATCH ; if zero, get ASCII code
INC DPTR ; point to next col. addr
SIMP FIND ; keep searching

MATCH: CLR A ; set A=0 (match is found)
MOVC A,@A+DPTR ; get ASCII from table
MOV PO, A ; display pressed key
LIMP K1

; ASCII LOOK-UP TABLE FOR EACH ROW ORG 300H
KCODEO: DB“0°,°1°,°2°,’3’; ROW 0

KCODEL: DB‘4°,’5°,°6’,”7’; ROW 1

KCODE2: DB ‘8’,’9’,’A’,’B’; ROW 2

KCODE3: DB‘C’,’D’,’E’,’F’; ROW 3

END

4.8. Interfacing 7(Seven) Segment Display to 8085 Microprocessor

An output device which is very common is, especially in the kit of 8085 microprocessor and it
is the Light Emitting Diode consisting of seven segments. Moreover, we have eight segments
in a LED display consisting of 7 segments which includes °.’, consisting of character 8 and
having a decimal point just next to it. We denote the segments as ‘a, b, c, d, e, f, g, and dp’
where dp signifies ‘.” which is the decimal point. Moreover, these are LEDs or together a series
of Light Emitting Diodes. We have shown the internal circuit comprising of a display of seven

segment is as shown in Fig 15.

164 | Microprocessor and Microcontroller

= il
(i |

a -l
b -}
T |
i . _T
L . OO
d= i . T' A pyosdies
i il a
- I
= i -L
=
lll:'l -l l

Fig.4.15. 7-segment display of LED

There are two types of 7-segment LED: They are the common anode type and the common
cathode type. We have discussed the common anode-type which is 7 segmented Light Emitting
Diode. In the LED which is common anode and is 7-segmented, here we connect all the eight
LED anodes together and the eight external pin is brought to display. And this pin gets
connected to a DC supply of +5 Volt. The cathode ends of the eight segments are brought out
on the pins of the display.

The use of 74373 latch for interfacing a 7-segment display is shown in the following Fig.
14373 laich

%

from 0 :;__.%Hy
Ays - Accumulator H e
— \ of 8085 3 W "
— — 1 a +5V
— 1 T
0 £
AE —{0- / b— 1 ¥ Wy —k,-
- - - 4
1O/M f Latch | R (Output enable)
WR—=o _) enable 0

Note: To keep the figure simple, only two of the eight segment connectioas are shown. The other six segment connections are similar.
Fig.4.16. 74373 latches for interfacing a 7-segment display

In the 74373 latch is used as an I/O mapped I/O port with the port address as FEH. This could
be easily verified from the chip select circuit used in the figure. The following instructions

Are to be executed to display character ‘3’ on the 7-segment display. The corresponding
program to send ODH to the port FEH will be MVI A, 0DH OUT FEH

Using MVI instruction we are initializing Accumulator (A) with Byte 0DH i.e. 0000 1101.
Then it will be sent to the port FEH by the instruction OUT.

165 | Microprocessor and Microcontroller

4.9. Interfacing ADC with 8085 Microprocessor

The Analog to Digital Conversion is a quantizing process. Here the analog signal is
represented by equivalent binary states. The A/D converters can be classified into two groups
based on their conversion techniques.

In the first technique it compares given analog signal with the initially generated equivalent
signal. In this technique, it includes successive approximation, counter and flash type
converters. In another technique it determines the changing of analog signals into time or
frequency. This process includes integrator-converters and voltage-to-frequency converters.
The first process is faster but less accurate, the second one is more accurate. As the first
process uses flash type, so it is expensive and difficult to design for high accuracy.

The ADC 0808/0809 Chip

The ADC 0808/0809 is an 8-bit analog to digital converter. It has 8 channel multiplexer to
interface with the microprocessor.

This chip is popular and widely used ADC. ADC 0808/0809 is a monolithic CMOS device.
This device uses successive approximation technique to convert analog signal to digital form.
One of the main advantage of this chip is that it does not require any external zero and full
scale adjustment, only +5V DC supply is sufficient.

Let us see some good features of ADC 0808/0809

e The conversion speed is much higher

e The accuracy is also high

e [t has minimal temperature dependence

e Excellent long-term accuracy and repeatability

ADC
) BEOEDI0R 8155
0 5-Bir
Chispm |
CLh | — h“\ i PamA
. 7490 CLE rl|
from | !
i i
W ECC | Po il B
[~ -P{\-._. I.ELF;E' "-\.\‘H -~
=3V ———— REF () ALE ' T
. LTRSS 0r
oE o . o
REF) amc [soc ||
GXD — ¥cs |4 Pom
] | Crone

Fig.4.17. The functional block diagram of the ADC 0808/0809 Chip

166 | Microprocessor and Microcontroller

e Less power consumption

Vee soc CLK EOC
]
A INOD Control and
v § Channel Timing
A Multiplexer
L and
0| Analog
G Switches »-8 LSB
I b
I &k 5
- N7 S5AR
A 0
P u
{3 Comaparator Output -
T | . | Latch p
5 Address 5]
Lartch T
and 5
ALE Decoder 236 R 5-1 MISB
Register -
Ladder
ADD A B C GND REF (=) REF () OL

Fig.4.18.The circuit diagram of connecting 8085, 8255 and the ADC converter

To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface chip with
it. Let us see the circuit diagram of connecting 8085, 8255 and the ADC converter. The PortA
of 8255 chip is used as the input port. The PC7 pin of Port Cupper is connected to the End of
Conversion (EOC) Pin of the analog to digital converter. This port is also used as input port.
The Clower port is used as output port. The PC2-0 lines are connected to three address pins of
this chip to select input channels. The PC3 pin is connected to the Start of Conversion (SOC)
pin and ALE pin of ADC 0808/0809. See the QR code for more on interfacing. M

i

mars an

2035

167 | Microprocessor and Microcontroller

Program

MVI A, 98H; Set Port A and Cupper as input, Crower as output

OUT 03H; Write control word 8255-I to control Word

Register

XRA A; Clear the accumulator

OUT 02H; send the content of Acc to Port Crower to select

INO

MVI A, 08H; Load the accumulator with 08H

OUT 02H; ALE and SOC will be 0

XRA A; Clear the accumulator

OUT 02H; ALE and SOC will be low.

READ: IN 02H; Read from EOC (PC7)

RAL; Rotate left to check C7 is 1.

JNC READ; If C7 is not 1, go to READ

IN 00H; Read digital output of ADC

STA 8000H; Save result at S000H

HLT; Stop the program

4.10. Interfacing 8253 (Timer IC) with 8085 Microprocessor

The Intel 8253 is programmable Interval Timers (PTIs) designed for microprocessors toper
form timing and counting functions using three 16-bit registers. Each counter has 2 input pins,
i.e., Clock & Gate, and 1 pin for “OUT” output. To operate a counter, a 16-bit count is loaded
in its register. On command, it begins to decrement the count until it reaches 0, then it generates
a pulse that can be used to interrupt the CPU.

Features of 8253S

It has three independent 16-bit down counters.

It can handle inputs from DC to 10MHz.

These three counters can be programmed for either binary or BCD count.

It is compatible with almost all microprocessors.

8254has a powerful command called READ BACK command, which allows the user
to check the count value, the programmed mode, the current mode, and the current
status of the counter.

4.11. Interfacing 8253 with 8085

168 | Microprocessor and Microcontroller

From the following picture, we can see that the data bus D7-0 of 8085 is connected to the data
pins D7 to DO of 8253. So, the higher order address bus is used as decoder input to select the
chip and the A8 and A9 of 8085 are connected to the pin Al and A0 respectively to select the
counter.

Internal Cata Bus

D% = Dig |4— CLEKOQ
Daza R —
BUS COUNIER O |4—— SATEO
BLTEFER
Bldirection
Crala Bus ——= OQLUTO
RO —]

EEAD | a——— CLE 1

TR e WRITE
CONTROL COLXNTERL |4 = gaTE1l

Ay o LOGIC

— % OLT1

= & ¥

- +— CLK2
cosTRiE =
o (— covstir: |4 carea
REGISEER
—— &= DOTT:=>
E
Fig.4.19: The block diagram of 8253
2095 B253
= f— CLEO
AD s » Al =1
9 <: > i ko E - GATL O
B —e= ouTo
RO = FD
E lp— CLE 1
v - Wk CONTROL GATE 1
i WORD 2
s - Ay REGISTER S |f—a OUT1
Ag = A % le— cpE:z
Bl = E le— cares
Hig-Ai1s =] E - =5 =
e = s o e OUT 2
O3 |— =5 =

Fig.4.20: Interfacing 8253 with 8085

In the next diagram, we can get the chip select logic of 8253. In that diagram, we can easily
find that when A3-2 and A7-5 are at logic 0 and A4 at logic 1, then only the chip select CS pin
of 8253 will be enabled.

169 | Microprocessor and Microcontroller

8253
AD, - AD-
E | LR O
< :>- D, -Da E -%—— GATE O
o = oUTo
IO R - O
= |=— CLE1
o W == VR CONTROL E i GATE 1
WORD =
Ay - A REGISTER 2 |—= orT1
.

5 0 = g = |»— CLE2
i] E lsi—— GATE 2
A— (= e
i [So— p— 5 = ;
Ay -

A L

Fig.4.21: Chip select Logic of 8253

Table 4.6. To show how the counter is being selected by using Al and A0 pins of 8253.

cs
Ae As Ay A3 A A A
0 0] 1 0 0 0 0
0 4] 1 0 0 0 1
0 0 1 0 0 1 §]
0 0 1 0 0 1 1

HEX
Address

10H
11H
12H
13H

Counter Selection

Counter 0
Counter 1
Counter 2

Control Word
Register

By using the IN and OUT instruction the counter selection and Control Word Register (CWR)
setup can be done. If the Accumulator is holding content to load CWR, then by using OUT
13H the CWR will be set. Similarly, by using IN instruction we can get the value of counter
value, like IN 11H will get the value from counter 1 and so on.

So, the following four steps are needed for counter operations:

Initialize 8253 chip

Load Control word register with Control Word value

Load Lower Order count value
Load Higher Order count value

Let us see a program to load counter 2 in mode 1 with a count value 500010 in mode 0. Also,
read the count value on a fly.

At first, to initialize the 8253, the Control word will be B2H

170 | Microprocessor and Microcontroller

Counter2 LoadLS5 and then MS Mode 1 selection 0 for Binary
1 0 1 1 0 0 1 0

Now the control word for latching operation for counter 2 is 8OH

Counter 2 Latching Option Don’t Care
1 0 0 0 0 0 0 0

We will load 500010 into the counter. The hexadecimal equivalent of 500010 is 1388H.
MVI A, B2H; Load B2H as initialization byte for counter

OUT 13H; Write ACC content CWR

MVI A, 88H ; Load LS byte of count value

OUT 12H ; Send to Counter 2

MVI A, 13H ; Load MS byte of count value
OUT 12H ; Send to Counter 2

MVI D, 00 ; clear the register D

L1: MVI A, 80H ; Set a with control word 80H of counter 2

OUT 13H ; Write Acc content CWR

IN 12H ; Read LS value of counter value
MOV B, A ; store LS value to B

IN 12H ; Read MS value of counter value
ORA B ; OR LS and MS to set Z flag
JINZ L1 ; if Z flag is not set, jump to Loop
HLT ; Halt the program

4.12. Interfacing Stepper Motor with 8085

Stepper motor is an electromechanical device that rotates through fixed angular steps when
digital inputs are applied. It is suitable for precise position, speed and direction control which

are required in automation system.

The angle through which stepper motor rotates with a fixed angle for each digital data is called

step angle.

Different stepper motor has different step angle. The more frequently used stepper motor has

step angle of 0.9 degrees and 1.8 degrees.

Depending on the sequence applied to stepper motor, it can be classified in two category:
1. 4- Step sequence or full step sequence

2. 8- Step sequence or half step sequence

Calculations:

171 | Microprocessor and Microcontroller

1. Total no. of steps=

Ex: =200 steps are required to complete one rotation

2. Total no. of repeated steps=

Ex: = 50 repetition of sequence = (32) in Hexadecimal.

4-Step sequence:

o In this type of functioning, the following 4 binary sequence/code are used for rotation:
(Considering step angle= 1.8 degrees)

Table4.7. 4 binary sequence/code are used for rotation

: I~ Glep seere binary | HEX
Pl LT Eifbifed

Comiiaenbs

Il..

8-Step Sequence:

¢ In this type of functioning, the following 8 binary sequence/code are used for rotation:
(Considering step angle= 0.9degrees)

172 | Microprocessor and Microcontroller

Table4.8. 8 binary sequence/code are used for rotation

4- Slep sequence bnary | HEX o
pattern o "
& B e 0
il 1 i 1]t
epnca i i
rhockwisa fotEior
0 X 0 1| o
|_ I i} l |_'g-\-
1
| [i]
| K l N
{ 1]] a1 &
il] '| a I_‘ﬂr_a-
1] | 1] [l
Table 4.9. Chips select Logic
g Address
select Hres tio HEX Geledted
address walert address || 170
firnes port
07 A 5 A a3 &z | a1 | 20
1 o 0 0 a o Jo |o |8m i"“_'
1 o o 0 g (o]l |t |&w ::“T
1 o o 0 g o l1 |o |ex E':’HT
Crhip
1 ol 8] i] 1 I g3 | sddact
racgsber

173 | Microprocessor and Microcontroller

Table 4.10. Program in Look-up table

07 B H G5 | D4 | D3 DZ | D1 | DO

IOBSR [MA I MA | PA || PCU | MB | PB | PCU

1 0 0 0 0 0 0 0

LABEL OPCODE | OPERAND COMMENT

LX1 SF,2B00H Inibalize Stack, ponter

1 A, BOH Initialize 8255

ouT 83H (CWR)

M1 B, 32H [ribalize repeated count
REPEAT: || LI H, 2100H Iritialize 4-step sequence

M1 C04H Initialize 4-step sequence from look up table
BACK: MOV AM

ouT E;H PORT Sends data to Port A

CALL DELAY Provide time intarval between steps

N H Increment look Up table

DR i Decrement 4-step count

Tz BACK Is count="00"7 ifno then jump to BACK

DCR B Is count="00"7 if ves then decrementrepeated

ol gin
Z REFEAT Repeated count is repeated for further rotation
HLT

Control word Format:

e In the above program in look up table if the 4-step sequence for clock wise then stepper
motor will rotate in clockwise direction and if the 4-step sequence for anti-clock wise
then stepper motor will rotate in anti-clockwise direction.

174 | Microprocessor and Microcontroller

e Speed control of stepper motor is achieved by writing program to rotate stepper motor
continuously in delay program. We can change the delay between two steps and thus

change the speed of stepper motor.

Interfacing diagram of Stepper motor with 8085

Fig 4.22: Interfacing diagram of Stepper motor with 8085

Review Questions and Exercise

1. The 8051 microcontroller is of __ pin package as a processor. a) 30, 1byte b) 20, 1
byte ¢) 40, 8 bit d) 40, 8 byte
2. The SPis of wide register. And this may be defined anywhere in the . a) 8 byte,

on-chip 128 byte RAM. b) 8 bit, on chip 256 byte RAM. c) 16 bit, on-chip 128 byte ROM d) 8
bit, on chip 128 byte RAM.

3. After reset, SP register is initialized to address .a) 8H b)9H ¢) 7H d) 6H

4. What is the address range of SFR Register bank? a) 00H-77H b) 40H-80H c) 80H-7FH d)
80H-FFH

175 | Microprocessor and Microcontroller

5. Which pin of port 3 is has an alternative function as write control signal for external data
memory? a) P3.8 b) P3.3 ¢) P3.6 d) P3.1

6. What is the Address (SFR) for TCON, SCON, SBUF, PCON and PSW respectively? a) 88H,
98H, 99H, 87H, 0DOH. b) 98H, 99H, 87H, 88H, 0DOH ¢) 0DOH, 87H, 88H, 99H, 98H d) 87H,
88H, 0DOH, 98H, 99H

7. Match the following:

1) TCON 1) contains status information

2) SBUF ii) timer / counter control register.
3) TMOD ii1) idle bit, power down bit

4) PSW iv) serial data buffer for Tx and Rx.
5) PCON v) timer/ counter modes of operation.

a) 1->ii, 2->iv, 3->v, 4->i, 5->iii.
b) 1->i, 2->v, 3->iv, 4->iii, 5->ii.
¢) 1->v, 2->iii, 3->ii, 4->iv, 5->i.
d) 1->iii, 2->ii, 3->i, 4->v, 5->iv.

8. Which of the following is of bit operations? i) SP ii) P2 iii) TMOD iv) SBUF v) IP a) ii, v

9. Serial port interrupt is generated, if bits are set a) IE b) RI, IE ¢) IP, TI d) RI, TI 10. In
8051 which interrupt has highest priority? a)l[E1 b)TFO c)IE0 d)TF1

10. Write a program to turns the lamp on and off by energizing and de-energizing the relay
every second.

11. A switch is connected to pin P2.7. Write an ALP to monitor the status of the SW. If SW =
0, motor moves clockwise and if SW = 1, motor moves anticlockwise.

12. Write a program to generate a sine wave using DAC 0808.

References

[1] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2~ ed. New Jersey, Pearson Prentice Hall, 2006.

[2] Santanu Chattopadhyay. Embedded System Design. 2~ ed. PHI Learning Private Ltd. New
Delhi, 2016.

[3] Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded....” Question Paper with Solution the 8051 Microcontroller Based Embedded...,
www.slideshare.net, 1 Mar. 2001, https://www.slideshare.net/manishpatel 79/question-paper-
with-solution-the-805 1 -microcontroller-based-embedded-systems-junejuly-2013-vtu

Chapter 5

External Communication Interface

Key features of Module — 5

® Different types of Communication Protocols.

® Detailed introduction about Serial Peripheral Interface (SPI) and inter-Integrated
Circuit Bus (12C)

® [ntroduction and Interfacing to Protocols like Bluetooth and Zig-bee

Pre-requisites

e Basics of Computers
e Basics of Means of communication

Module — 5 Outcomes

e Students should be able to understand the different types of communications and
communication protocols

e Students should be able to know about the Serial Peripheral Interface (SPI) and Inter-
Integrated Circuit Bus (I12C)

e Students should be able to know about the Interfacing to Protocols like Bluetooth and
Zig- bee

This chapter gives an overview of the types of communications and communications protocols
and also discussed the working principle of communications protocol like RS232, RS485. And
here discussed about the introduction of Serial Peripheral Interface (SPI) and Inter-Integrated
Circuit Bus (I2C). Introduction and Interfacing to Protocols like Bluetooth and Zig-bee are
discussed.

5.1 Synchronous and Asynchronous communication

The key difference between synchronous and asynchronous communication is synchronous
communications are scheduled, real-time interactions by phone, video, or in-person.
Asynchronous communication happens on your own time and doesn't need scheduling.

5.2 RS232 Serial Communication Protocol:

One of the oldest, yet popular communication protocol that is used in industries and commercial
products is the RS232 Communication Protocol. The term RS232 stands for "Recommended
Standard 232" and it is a type of serial communication used for transmission of data normally

177 | Microprocessor and Microcontroller

in medium distances. It was introduced back in the 1960s and has found its way into many

applications like computer printers, factory automation devices etc. Today there are many
modern communication protocols like the RS485, SPI, 12C, CAN etc

1. What is a serial communication?

In telecommunication, the process of sending data sequentially over a computer bus is called
as serial communication, which means the data will be transmitted bit by bit. While in parallel
communication the data is transmitted in a byte (8 bit) or character on several data lines or
buses at a time. Serial communication is slower than parallel communication but used for long

data transmission due to lower cost and practical reasons.

CLE

™ HHHEEEEEE

CLK

Fig. 5.1. serial communication

TXD 0
TXD]
TR} 2
THXI» 3
TXD 4
TXD 5
TXD o

TXD 7

CLE

Fig. 5.2. Parallel communication

5.2.1 Modes of Data Transfer in Serial Communication:

e Asynchronous Data Transfer — The mode in which the bits of data are not synchronized
by a clock pulse. Clock pulse is a signal used for synchronization of operation in an

electronic system.

178 | Microprocessor and Microcontroller

e Synchronous Data Transfer — The mode in which the bits of data are synchronized by a
clock pulse.

5.2.2 Characteristics of Serial Communication:

* Baud rate is used to measure the speed of transmission. It is described as the number of
bits passing in one second. For example, if the baud rate is 200 then 200 bits per Sec
passed. In telephone lines, the baud rates will be 14400, 28800 and 33600.

= Stop Bits are used for a single packet to stop the transmission which is denoted as “T”.
Some typical values are 1, 1.5 & 2 bits.

X TX
DTE RX >< EX DCE
{ Transmitter) {Receiver)
GND OND

= Parity Bit is the simplest form of checking the errors. There are of four kinds, i.e., even
odd, marked and spaced. For example, If 011 is a number the parity bit=0, i.e., even
parity and the parity=1, i.e., odd parity.

Fig.5.3. Data transmission process on the RS232
5.3 What is RS232?

RS232 is a standard protocol used for serial communication, it is used for connecting computer
and its peripheral devices to allow serial data exchange between them. As it obtains the voltage
for the path used for the data exchange between the devices. It is used in serial communication
up to 50 feet with the rate of 1.492kbps. As EIA defines, the RS232 is used for connecting Data
Transmission Equipment (DTE) and Data Communication Equipment (DCE).

5.3.1Universal Asynchronous Data Receiver & Transmitter (UART)

It used in connection with RS232 for transferring data between printer and computer. The
microcontrollers are not able to handle such kind of voltage levels, connectors are connected
between RS232 signals. These connectors are known as the DB-9 Connector as a serial port
and they are of two type’s Male connector (DTE) & Female connector (DCE).

5.3.2 How RS232 Works?

RS232 works on the two-way communication that exchanges data to one another. There are
two devices connected to each other, (DTE) Data Transmission Equipment& (DCE) Data
Communication Equipment which has the pins like TXD, RXD, and RTS& CTS. Now, from
DTE source, the RTS generates the request to send the data. Then from the other side DCE, the
CTS, clears the path for receiving the data. After clearing a path, it will give a signal to RTS of
the DTE source to send the signal. Then the bits are transmitted from DTE to DCE. Now again
from DCE source, the request can be generated by RTS and CTS of DTE sources clears the
path for receiving the data and gives a signal to send the data. This is the whole process through
which data transmission takes place.

179 | Microprocessor and Microcontroller

Table 5.1. The complete process of data transmission

TE TREAMSMITTER
R¥I» RECEFIVER

RI= RECHJEST TO SEMD
LTS CLEAR TOSEND

GHD GROUND

Example: The signals set to logic 1, i.e., -12V. The data transmission starts from next bit and
to inform this, DTE sends start bit to DCE. The start bit is always ‘0’, i.e., +12 V & next 5 to 9
characters is data bits. If we use parity bit, then 8 bits data can be transmitted whereas if parity
doesn’t use, then 9 bits are being transmitted. The stop bits are sent by the transmitter whose
values are 1, 1.5 or 2 bits after the data transmission.

o by b k2 h3 o ng b 7

| — E‘-xllf
| N

STANT &iT
PARAITF BIT STORBITS

A TA MITE

o o w m w w
L]

- o oo owEm
]

o om mm am mw
(=

- -
=
=1

T EETEERE X

-

Fig.5.4. The data transmission in RS232

Without interruption any number of bits can be sent or received in a continuous stream. With
I2C and UART, data is sent in packets, limited to a specific number of bits. Start and stop
conditions define the beginning and end of each packet, so the data is interrupted during 4

5.4 RS485

RS485 is a standard defining the electrical characteristics of serial lines for use in serial
communications systems. It is essentially a form of serial communication.

It is known for being able to be used effectively over long distances and in electrically noisy
environments. Due to this and it being able to transmit data over long distances, the RS485 is
used commonly as a protocol for POS, industrial and telecom. The RS485 is also common in
computers, PLCs, microcontrollers and intelligent sensors in scientific and technical
applications.

180 | Microprocessor and Microcontroller

RS485 is used more industrially where many devices need to be interconnected together for a
system. However, Arduino and Raspberry Pi hobbyists also use it for some of their projects
when multiple peripherals need to be linked to the board.

5.4.1 How RS485 works?

In RS485 standard, data is transmitted via two wires twisted together also referred to as
“Twisted Pair Cable”. The twisted pairs in RS485 gives immunity against electrical noise,
making RS485 viable in electrically noisy environments.

RS485 at its core with 2 wires allows half-duplex data transmission. This means data can be
transmitted in both directions to and fro devices one direction at a time. By adding another 2
wires, making it a 4 wires system, it allows data transmission in both directions to and fro
devices at the same time, also known as full-duplex. However, in a full-duplex setup, they are
limited to a master and slave communication where slaves cannot communicate with each
other.

5.4.2 Advantages of RS485

RS485 main advantages as compared to other serial communication are tolerance to electrical
noise, lengthy cable runs, multiple slaves in one connection, and fast data transmission speed.

RS485 has many advantages over other standards, especially when it comes to applications in
noisy industrial environments. The design of RS485 is targeted towards it being tolerant and
forgiving to noise and long cable runs with the twisted pair cable arrangement. It allows cable
lengths up to 1,200m/4000feet.

Another major advantage is that there can be more than one slave in the connection. Up to 32
slaves can be connected in the system. This is great for Supervisory Control and Data
Acquisition (SCADA) systems where there are many devices and it also comes at a very low
cost to implement.

5.4.3 Applications of RS485

RS485 is used in many computer and automation systems. Some of the examples are robotics,
base stations, motor drives, video surveillance and also home appliances. In computer systems,
RS485 is used for data transmission between the controller and a disk drive. Commercial
aircraft cabins also use RS485 for low-speed data communications. This is due to the minimal
wiring required due to the wiring configuration requirements of RS485.

RS485 is however most popularly used in programmable logic controllers and factory floors
where there are lots of electrical noise. RS485 is used as the physical layer for many standards
and proprietary automation protocols to implement control systems, most commonly Modbus.

Modbus is the world’s most popular automation protocol in the market. Developed by
Modicon, Modbus enables different devices from different manufacturers to be integrated into
the main system. Most Modbus implementations use RS485 due to the allowance of longer
distances, higher speeds and multiple devices on a single network.

181 | Microprocessor and Microcontroller

Modbus devices communicate using a Master-Slave technique where only one device (the
Master) can initiate transactions (AKA queries). The other devices (the slaves) respond by
giving the requested data to the master, or by taking the action requested in the query. This
whole system allows manufacturing facilities to control their devices remotely and also set-up
automation.

Master

. Request
Response ' |

Slave 1 Slave 2 Slave N

Fig.5.5.Modbus Protocol.

5.5 Introduction to Serial Peripheral Interface (SPI)

SPI is a common communication protocol used by many different devices. For example, SD
card reader modules, RFID card reader modules, and 2.4 GHz wireless transmitter/receivers all
use SPI to communicate with microcontrollers.

One unique benefit of SPI is the fact that data can be transferred transmission.

Devices communicating via SPI are in a master-slave relationship. The master is the controlling
device (usually a microcontroller), while the slave (usually a sensor, display, or memory chip)
takes instruction from the master. The simplest configuration of SPI is a single master, single
slave system, but one master can control more than one slave (more on this below).

Mlaaner Slave
MOS] N MOS]
MISO = BATS O
SCLK - SCLE
ST r --l RS

Fig.5.6. Single master, Single Slave System
MOSI (Master Output/Slave Input) — Line for the master to send data to the slave.
MISO (Master Input/Slave Qutput) — Line for the slave to send data to the master.
SCLK (Clock) — Line for the clock signal.

SS/CS (Slave Select/Chip Select) — Line for the master to select which slave to send data to.

182 | Microprocessor and Microcontroller

Wires Used 4
Maximum Speead Upta 10 Mbps

Synchronous or Asynchronous? Synchronous

Serial or Parallel? Sena
Max # of Masters 1
Max # of Slaves I heopretically unhimifed*

5.5.1 How does SPI work?
THE CLOCK

The clock signal synchronizes the output of data bits from the master to the sampling of bits by
the slave. One bit of data is transferred in each clock cycle, so the speed of data transfer is
determined by the frequency of the clock signal. SPI communication is always initiated by the
master since the master configures and generates the clock signal.

Any communication protocol where devices share a clock signal is known as synchronous. SPI
is a synchronous communication protocol. There are also asynchronous methods that don’t use
a clock signal. For example, in UART communication, both sides are set to a pre-configured
baud rate that dictates the speed and timing of data transmission.

The clock signal in SPI can be modified using the properties of clock polarity and clock phase.
These two properties work together to define when the bits are output and when they are
sampled. Clock polarity can be set by the master to allow for bits to be output and sampled on
either the rising or falling edge of the clock cycle. Clock phase can be set for output and
sampling to occur on either the first edge or second edge of the clock cycle, regardless of
whether it is rising or falling.

SLAVE SELECT

The master can choose which slave it wants to talk to by setting the slave’s CS/SS line to a
low voltage level. In the idle, non-transmitting state, the slave select line is kept at a high
voltage level. Multiple CS/SS pins may be available on the master, which allows for multiple
slaves to be wired in parallel. If only one CS/SS pin is present, multiple slaves can be wired
to the master by daisy-chaining.

MULTIPLE SLAVES

SPI can be set up to operate with a single master and a single slave, and it can be set up with
multiple slaves controlled by a single master. There are two ways to connect multiple slaves
to the master. If the master has multiple slave select pins, the slaves can be wired in parallel
like this as shown in Fig.5.7.

183 | Microprocessor and Microcontroller

b [E

¥

SIS0 — BT

¥

LK -
851

L
e
in
=
o

EEZ

53

Fig.5.7.Connection of Multiple Slave with Single Master.

MOSI AND MISO

The master sends data to the slave bit by bit, in serial through the MOSI line. The slave
receives the data sent from the master at the MOSI pin. Data sent from the master to the slave
is usually sent with the most significant bit first.

The slave can also send data back to the master through the MISO line in serial. The data sent
from the slave back to the master is usually sent with the least significant bit first.

5.5.2 Steps of SPI Data Transmission

1. The master outputs the clock signal:

Slave

184 | Microprocessor and Microcontroller

2. The master switches the SS/CS pin to a low voltage state, which activates the slave:

3. The master sends the data one bit at a time to the slave along the MOSI line. The slave
reads the bits as they are received:

LEE Firal

T
11 @@ 0 Q1

Master

o Hlave ave

MOS]
MISD | I N I I]
L L L LT

- '..

4. If aresponse is needed, the slave returns data one bit at a time to the master along the
MISO line. The master reads the bits as they are received:

Master

5.5.3 Advantages

= No start and stop bits, so the data can be streamed continuously without interruption
» No complicated slave addressing system like 12C

= Higher data transfer rate than 12C (almost twice as fast)

= Separate MISO and MOSI lines, so data can be sent and received at the same time

5.5.4 Disadvantages

= Uses four wires (I2C and UARTS use two)

= No acknowledgement that the data has been successfully received (I12C has this)
= No form of error checking like the parity bit in UART

* Only allows for a single master

5.5.5 Applications of SPI

= Memory: SD Card, MMC, EEPROM, Flash

= Sensors: Temperature and Pressure

= Control Devices: ADC, DAC, digital POTS and Audio Codec.

= Others: Camera Lens Mount, touchscreen, LCD, RTC, video game controller, etc.

185 | Microprocessor and Microcontroller

5.6 Inter-Integrated Circuit Bus (I12C)

I?C or I12C is an abbreviation of Inter-Integrated Circuit, a serial communication protocol made
by Philips Semiconductor (now it is NXP Semiconductor). It is created with an intention of
communication between chips reside on the same Printed Circuit Board (PCB). It is commonly
used to interface slow speed ICs to a microprocessor or a microcontroller. It is a master-slave
protocol, usually a processor or microcontroller is the master and other chips like RTC,
Temperature Sensor, and EEPROM will be the slave. We can have multiple masters and
multiple slaves in the same 12C bus. Hence it is a multi-master, multi-slave protocol.

5.6.1 12C Interface
It needs only two wires for exchanging data and ground as the reference.

e SDA — Serial Data
e SCL — Serial Clock
e GND - Ground

VD G G G5 G WYY G SN

WEE acknowiedgemeni u-:-'lrr:-'nt-:lgﬂrar-r | & |

aigral from slave shgnal on recates | |

I 1 |
B |geem 1 A & LW 5 12N S ae EM

ity a1 f AL oo e

ETART o STOR oF
FaEaaked BTART b comphate, —— —— chod lire hedd LOW repaatad START

T L L] I WAl n aken wfi wliv s de e ce ik

Fig.5.8. Data Transfer using the I2C Interface
5.6.2 12C Protocol

12C protocol is more complex than UART or SPI protocols as it using only 2 lines (one for
clock and one for data) for to and for communication. But usually, we don’t need to worry
about it as in most of the device’s hardware itself will take care of these things.

Data Transfer on the 12C Bus
Start Condition

12C start condition is issued by a master device to give a notice to all slave devices that the
communication is about to start. Thus, start condition triggers all slave devices to listen to the
data in the bus. To issue start condition, the master device pulls SDA low and leaves SCL high.
In the case of multi-master 12C there is a possibility that 2 masters wish to take ownership of

the bus at the same time. In these cases, the device which pull down SDA first gains the control
of the bus

Address Frame

186 | Microprocessor and Microcontroller

Address frame is always sent just after the first start condition during every communication
sequence. In this master devices specifies the address of the slave device to which the master
wants to communicate. There are basically 2 types of addressing 7-bit addressing and 10-bit
addressing. In the 7-bit addressing mode, master sends address first (MSB first) followed by
read/write (R/W) indicating bit (0 => Write, 1 => Read).

Fig.5.9. Single Master with Multiple Slaves
Data Frames

Data frame(s) are transmitted just after the address frame. It can be sent from master to slave
OR from slave to master depending on the above R/W bit through SDA line. The master will
continue generating required clock signals. Devices can send one or more than one data frame
as per the requirements.

Stop Condition

Master device will generate stop condition once all data frames has been sent/received. As per
12C standards, STOP condition is defined as a LOW to HIGH transition on SDA line after a
LOW to HIGH transition on SCL, with SCL HIGH. So, SDA should not change status when
SCL is HIGH to avoid false stop condition.

Repeated Start Condition

During an I2C communication, sometimes a master wants to send a specific command to a
slave device and read back response right away. In this situation there is a possibility that
another master (in case of multi-master bus) takes the control of the bus. To avoid these
conditions [2C protocol defines repeated start condition.

In normal cases [2C master will send start condition, address + R/W bit, send or receive any
number of bytes and mark the end by a stop condition. During repeated start condition, master
will send START CONDITION instead of stop condition and will keep the control over the
bus. Master can send any number of start condition using this method. Irrespective of the
number of start conditions, transfer must be end by exactly one stop condition.

Clock Stretching

We have seen that master device determines the clock speed in [2C communication. This avoid
the need of synchronizing master and slave exactly to a predefined baud rate. But there can be
some situations when 12C slave device is not able to cooperate with clock signals given by
master. Clock stretching is the mechanism used to slow down master device for slave device
to complete its operation.

187 | Microprocessor and Microcontroller

12C slave device is allowed to hold down the clock signal when it needs master to slow down
on the 9th clock of every data transfer before the ACK stage.

Acknowledge (ACK) and Not Acknowledge (NACK)

Each byte of data in [2C communication includes an additional bit known as ACK bit. This bit
provides a provision for the receiver to send a signal to transmitter that the byte was
successfully received and ready to accept another byte.

5.6.3 12C Configurations
We can make 12C configurations basically in 2 ways.
Single Master 12C Bus

This is the simplest I12C bus configuration. Single master in the bus is responsible for all
communications taking place in the bus. It will be providing necessary clock required for the
communication with slave devices. The master device will specify the address of the particular
slave device to which it needs to write data or from which it needs to read data. Only that
particular slave device will respond for this.

VL

p v
il

&C1

S W= T SOA
12

ETETST Y

§rue 1 Slee 1 Slave 3

1

Fig.5.10. Single Master I12C Bus
Multi-Master 12C Bus

In this case there will be more than one master device. Any master device is allowed to start
communication or use the bus whenever it is required. If a master in a multi-master bus
transmits a HIGH, bus see’s that the line is LOW (means another device is pulling down), it
has to halt the communication because another device is using the bus.

188 | Microprocessor and Microcontroller

SDA |=€ * »| SDA
Master 1 Slave 1
SCL * »| SCL
SDA j€=——= >| SDA
Master 2 Slave 2
SCL e—>»| SCL

Fig.5.11. Multi - Master 12C Bus

Advantages

e Needs only 2 lines (SCL & SDA) + Ground as reference
e Supports up to 1008 slave devices
e Supports multi-master system

Disadvantages

e Needs more complex hardware
e Data rate less than SPI

Applications

e EEPROMs

e Real Time Clock ICs
e Temperature Sensors
e Accelerometers

e (Gyro meters

e LCDs

5.7 What is ZigBee Technology?

ZigBee communication is specially built for control and sensor networks on IEEE 802.15.4
standard for wireless personal area networks (WPANSs), and it is the product from ZigBee
alliance. This communication standard defines physical and Media Access Control (MAC)
layers to handle many devices at low-data rates. These ZigBee’s WPANs operate at 868 MHz,
902-928MHz, and 2.4 GHz frequencies. The data rate of 250 kbps is best suited for periodic as
well as intermediate two-way transmission of data between sensors and controllers.

189 | Microprocessor and Microcontroller

ZigBee is a low-cost and low-powered mesh network widely deployed for controlling and
monitoring applications where it covers 10-100 meters within the range. This communication
system is less expensive and simpler than the other proprietary short-range wireless sensor
networks as Bluetooth and Wi-Fi

ZigBee supports different network configurations for the master to master or master to slave
communications. And also, it can be operated in different modes as a result the battery power
is conserved. ZigBee networks are extendable with the use of routers and allow many nodes to
interconnect with each other for building a wider area network.

5.7.1 How does ZigBee Technology Work?

ZigBee technology works with digital radios by allowing different devices to converse through
one another. The devices used in this network are a router, coordinator as well as end devices.
The main function of these devices is to deliver the instructions and messages from the
coordinator to the single end devices such as a light bulb.

In this network, the coordinator is the most essential device which is placed at the origin of the
system. For each network, there is simply one coordinator, used to perform different tasks.
They choose a suitable channel to scan a channel as well as to find the most appropriate one
through the minimum of interference, allocate an exclusive ID as well as an address to every
device within the network so that messages otherwise instructions can be transferred in the
network.

Routers are arranged among the coordinator as well as end devices which are accountable for
messages routing among the various nodes. Routers get messages from the coordinator and
stored them until their end devices are in a situation to get them. These can also permit other
end devices as well as routers to connect the network;

In this network, the small information can be controlled by end devices by communicating with
the parent node like a router or the coordinator based on the ZigBee network type. End devices
don’t converse directly through each other. First, all traffic can be routed toward the parent
node like the router, which holds this data until the device’s receiving end is in a situation to
get it through being aware. End devices are used to request any messages that are waiting from
the parent.

5.7.2 ZigBee Architecture

ZigBee system structure consists of three different types of devices as ZigBee Coordinator,
Router, and End device. Every ZigBee network must consist of at least one coordinator which
acts as a root and bridge of the network. The coordinator is responsible for handling and storing
the information while performing receiving and transmitting data operations.

190 | Microprocessor and Microcontroller

ZigBee routers act as intermediary devices that permit data to pass to and fro through them to
other devices. End devices have limited functionality to communicate with the parent nodes
such that the battery power is saved as shown in the figure. The number of routers, coordinators,
and end devices depends on the type of networks such as star, tree, and mesh networks.

I[SOmodel 802.15.4/ZigBee
Application ZigBee app
layer objects
+ ZigBee
Transport layer ZigBee security
services

Network layer ZigBee routing

x

Logical link

802.11 LLC
control

Data link layer
Medium access

802.15.4 MAC
control

[EEE 802.15.4

868/915/2400

Physical laye
ysical layer MHz

v

Fig.5.12. IEEE 802.15.4 and ZigBee role in the ISO/OSI stack.

ZigBee protocol architecture consists of a stack of various layers where IEEE 802.15.4 is
defined by physical and MAC layers while this protocol is completed by accumulating
ZigBee’s own network and application layers.

Physical Layer: This layer does modulation and demodulation operations upon transmitting
and receiving signals respectively. This layer’s frequency, data rate, and a number of channels
are given below.

MAC Layer: This layer is responsible for reliable transmission of data by accessing different
networks with the carrier sense multiple access collision avoidances (CSMA). This also
transmits the beacon frames for synchronizing communication.

Network Layer: This layer takes care of all network-related operations such as network setup,
end device connection, and disconnection to network, routing, device configurations, etc.

Application Support Sub-Layer: This layer enables the services necessary for ZigBee device
objects and application objects to interface with the network layers for data managing services.
This layer is responsible for matching two devices according to their services and needs.

Application Framework: It provides two types of data services as key-value pair and generic
message services. The generic message is a developer-defined structure, whereas the key-value
pair is used for getting attributes within the application objects. ZDO provides an interface
between application objects and the APS layer in ZigBee devices. It is responsible for detecting,
initiating, and binding other devices to the network.

191 | Microprocessor and Microcontroller

5.7.3 ZigBee Operating Modes and Its Topologies

ZigBee two-way data is transferred in two modes: non-beacon mode and Beacon mode. In a
beacon mode, the coordinators and routers continuously monitor the active state of incoming
data hence more power is consumed. In this mode, the routers and coordinators do not sleep
because at any time any node can wake up and communicate.

However, it requires more power supply and its overall power consumption is low because
most of the devices are in an inactive state for over long periods in the network. In a beacon
mode, when there is no data communication from end devices, then the routers and coordinators
enter into a sleep state. Periodically this coordinator wakes up and transmits the beacons to the
routers in the network.

These beacon networks are work for time slots which means, they operate when the
communication needed results in lower duty cycles and longer battery usage. These beacon and
non-beacon modes of ZigBee can manage periodic (sensors data), intermittent (Light switches),
and repetitive data types.

5.7.4 ZigBee Topologies

ZigBee supports several network topologies; however, the most commonly used configurations
are star, mesh, and cluster tree topologies. Any topology consists of one or more coordinators.
In a star topology, the network consists of one coordinator which is responsible for initiating
and managing the devices over the network. All other devices are called end devices that
directly communicate with the coordinator.

This is used in industries where all the endpoint devices are needed to communicate with the
central controller, and this topology is simple and easy to deploy. In mesh and tree topologies,
the ZigBee network is extended with several routers where the coordinator is responsible for
staring them. These structures allow any device to communicate with any other adjacent node
for providing redundancy to the data.

If any node fails, the information is routed automatically to other devices by these topologies.
As redundancy is the main factor in industries, hence mesh topology is mostly used. In a cluster-
tree network, each cluster consists of a coordinator with leaf nodes, and these coordinators are
connected to the parent coordinator which initiates the entire network.

Due to the advantages of ZigBee technology like low cost and low power operating modes and
its topologies, this short-range communication technology is best suited for several applications
compared to other proprietary communications, such as Bluetooth, Wi-Fi, etc. some of these
comparisons such as range of ZigBee, standards, etc., are given below.

5.7.5 Which Devices use ZigBee?
The following list of devices supports the ZigBee protocol.

e Belkin WeMo

e Samsung SmartThings

e Yale smart locks

e Philips Hue

e Thermostats from Honeywell
e lkea Tradfri

e Security Systems from Bosch

192 | Microprocessor and Microcontroller

e Comcast Xfinity Box from Samsung
e Hive Active Heating & accessories
e Amazon Echo Plus

e Amazon Echo Show

Instead of connecting every ZigBee device separately, a central hub is required for controlling
all the devices. The above-mentioned devices namely SmartThings as well as Amazon Echo
Plus can also be used like a Wink hub to play a vital role within the network. The central hub
will scan the network for all the supported devices and provides you simple control of the above
devices with a central app.

5.8 What is Bluetooth?

Bluetooth was created under the IEEE 802.15.1 standard, which is used for wireless
communication via radio transmissions. Bluetooth was first introduced in 1994 as a wireless
replacement for RS-232 connections.

Bluetooth connects a wide range of devices and establishes personal networks in the unlicensed
2.4 GHz spectrum. The device class determines the operating range. Many digital gadgets, such
as MP3 players, mobile and peripheral devices, and personal computers, use Bluetooth.

Unlike previous wireless technologies, Bluetooth provides high-level services such as file
pushing, voice transmission, and serial line emulation to its network and devices.

A scattered ad-hoc topology is the name given to the Bluetooth topology. It defines a Piconet,
a small cell that consists of a group of devices connected in an ad-hoc manner.

Bluetooth ensures data security and privacy when in use. It employs a 128-bit random number,
a device's 48-bit MAC address, and two keys: authentication (128 bits) and encryption (256
bits) (8 to 128 bits). Non-secure, service level, and link level are the three modes of operation.

5.8.1 How does Bluetooth Works?

Bluetooth Network consists of a Personal Area Network or a piconet which contains a
minimum of 2 to a maximum of 8 Bluetooth peer devices- Usually a single master and up to 7
slaves. A master is a device that initiates communication with other devices. The master device
governs the communications link and traffic between itself and the slave devices associated
with it. A slave device is a device that responds to the master device. Slave devices are required
to synchronize they’re transmit/receive timing with that of the masters.

In addition, transmissions by slave devices are governed by the master device (i.e., the master
device dictates when a slave device may transmit). Specifically, a slave may only begin its
transmissions in a time slot immediately following the time slot in which it was addressed by
the master, or in a time slot explicitly reserved for use by the slave device.

The frequency hopping sequence is defined by the Bluetooth device address (BD_ADDR) of
the master device. The master device first sends a radio signal asking for a response from the
particular slave devices within the range of addresses. The slaves respond and synchronize their
hop frequency as well as a clock with that of the master device.

Scatter nets are created when a device becomes an active member of more than one piconet.
Essentially, the adjoining device shares its time slots among the different piconets.

193 | Microprocessor and Microcontroller

5.8.2 Bluetooth Architecture
The Bluetooth architecture uses two networks like Piconet and Scatter-net
Piconet Network

Piconet is one kind of wireless network that includes one main node namely the master node
as well as seven energetic secondary nodes are known as slave nodes. So, we can declare that
there are eight active nodes totally which are arranged at al0 meters distance. The message
between these two nodes can be done one-to-one otherwise one-to-many.

Communication can be possible only among the master and slave but the communication like
Slave-slave cannot be possible. It also includes 255 parked nodes which are known as
secondary nodes. These cannot communicate until it gets altered to the active condition.

Scatter-net Network

The formation of the Scatter-net Network can be done through various piconets. On one
piconet, a slave is present which acts as a master otherwise it can be called primary within other
piconets. So, this type of node gets a message from the master within one piconet & transmits
the message toward its slave in another piconet wherever it works like a slave. So, this kind of
node is called a bridge-node. In two piconets, a station cannot be master.

Fig.5.13. Node Diagram of Piconet and Scatter-net Network.

Table 5.2. Difference between ZigBee and Bluetooth

Bluetooth ZigBee

The frequency range of Bluetooth ranges | The frequency range of ZigBee is 2.4

from 2.4 GHz —2.483 GHz GHz

It has 79 RF channels It has 16 RF channels

The modulation technique used in ZigBee uses different modulation
Bluetooth is GFSK techniques like BPSK, QPSK & GFSK.

ZigBee includes above 6500 cell nodes

Bluetooth includes &-cell nodes

194 | Microprocessor and Microcontroller

Bluetooth uses IEEE 802.15.1
specification

ZigBee uses IEEE 802.15.4 specification

Bluetooth covers the radio signal upto
10meters

ZigBee covers the radio signal upto 100
meters

Bluetooth takes 3 seconds to join a
network

ZigBee takes 3 Seconds to join a network

The network range of Bluetooth ranges
from 1-100 meters based on radio class.

The network range of ZigBee is up to 70
meters

The protocol stack size of a Bluetooth is
250 Kbytes

The protocol stack size of a ZigBee is 28
Kbytes

The height of the TX antenna is 6meters
whereas the RX antenna is 1meter

The height of the TX antenna is 6meters
whereas the RX antenna is 1meter

Blue tooth uses rechargeable batteries

ZigBee doesn’t use rechargeable batteries

Bluetooth requires less bandwidth

As compared with Bluetooth, it needs
high bandwidth

The TX Power of Bluetooth is 4 dBm

The TX Power of ZigBee is 18 dBm

The frequency of Bluetooth is 2400 MHz

The frequency of ZigBee is 2400 MHz

Tx antenna gain of Bluetooth is 0dB
whereas the RX -6dB

Tx antenna gain of ZigBee is 0dB
whereas the RX -6dB

Sensitivity is -93 dB

Sensitivity is -102 dB

The margin of Bluetooth is 20 dB

Margin of ZigBee is 20 dB

Bluetooth range is 77 meters

The ZigBee range is 291 meters

Review Questions and Exercise

195 | Microprocessor and Microcontroller

1.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.

Can devices be added and removed while the system is running (Hot swapping) in [12C
and SPI?

Is it better to use 12C or SPI for data communication between a microprocessor and
DSP?

How to set SPI bus speed in the master device?

What will happen if two SPI slaves same time communicate with Master (two Cs pins
are high)?

Is it better to use 12C or SPI for data communication from ADC?

How to set SPI bus speed in the master device?

Does SPI need a baud rate?

What happens when mode fault is enabled in SPI (Serial Peripheral Interface)?

What are the limitations of the SPI interface?

. What Is The Zigbee Alliance?

. What Is The Goal Of The Zigbee Alliance?

. What Are The Typical Applications Promoted By The Zigbee Alliance?

. Which Zigbee Alliance Members Are Active In Residential And Building

Automation?

Which Zigbee Alliance Members Are Active In Industrial Automation?
Which Zigbee Alliance Members Are Active In Automated Metering?
What Are The Various Zigbee Application Profiles?

What Is The Zigbee Commissioning Framework (zcf)?

What Are The Various Zigbee Certification Mechanisms?

Is It Possible To Deploy Zigbee Networks In Sub-ghz Bands?

What Is The Typical Battery Lifetime Of Zigbee End Devices?

Is It Possible To Have Battery-powered Zigbee Routers?

Does The Zigbee Coordinator Represent A Single Point Of Failure?
How Is Addressing Performed In Zigbee?

Define IP Spoofing?

Define Cabir Worm?

Name few applications of Bluetooth?

Why can Bluetooth equipment integrate easily in TCP/IP network?

Is it possible to connect multiple Bluetooth hubs?

What is FCC and how does it relate to Bluetooth?

How does Bluetooth fit in with WiFi?

Under what frequency range does Bluetooth work?

Do Bluetooth devices need line of sight to connect to one another? List the differences
between Bluetooth and Wi-Fi IEEE 802.11 in networking.

What is Bluetooth SIG?

How many devices can communicate concurrently?

How secure a Bluetooth device is?

What kind of encryption will be used for Bluetooth security?

What is the range of Bluetooth transmitter/receivers?

Which technology is used to avoid interference in Bluetooth?

What is RJ-45?

196 | Microprocessor and Microcontroller

References

[1] M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2~ ed. New Jersey, Pearson Prentice Hall, 2006.

[2] Santanu Chattopadhyay. Embedded System Design. 2+ ed. PHI Learning Private Ltd. New
Delhi, 2016.

[3] Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded....” Question Paper with Solution the 8051 Microcontroller Based Embedded...,
www.slideshare.net, 1 Mar. 2001, https://www.slideshare.net/manishpatel 79/question-paper-
with-solution-the-805 1 -microcontroller-based-embedded-systems-junejuly-2013-vtu

197 | Microprocessor and Microcontroller

Chapter 6

Introduction to Advanced Processors and Concepts

Key Features of the Module

Introduce readers to some advanced processors
Key architectural features and concepts
Instruction-level parallelism
o Pipelining and superscalar execution
Cache-memory concept and cache organization
Concept of virtual memory and memory address translation
architectural features of 286, 386, 486 and Pentium
CISC and RISC processors and their differences
Introduction to ARM processor and ARM-based microcontrollers
GPIO configuration of ARM microcontrollers and interfacing

Pre-requisites

Digital Electronics
Processor basics

Module Outcome

At the end of the course students should be able to

explain the architectural features of advanced processors such as instruction level
parallelism-pipeline and superscalar execution

explain the concept of cache and its role in the memory subsystem, virtual
memory, memory address translation

understand the internal architecture of the advanced processors, 286, 386, 486 and
Pentium

understand the architecture of ARM-based microcontrollers, concept of GPIO
interface ARM MCU with external hardware and write interfacing programs

198 | Microprocessor and Microcontroller

In this chapter we will discuss the important features of some advanced processors and the
architectural innovations that have taken place namely, in 286, 386,486 and Pentium. In most
of the advanced processors pipelining, superscalar execution, cache memory, concept of virtual
memory and memory mapping are most important features. So, we proceed first with the
concept of pipeline and superscalar execution. Then we talk about virtual memory, address
translation or mapping of virtual memory to real physical memory, cache memory and their
organizations. With these important architectural concepts, we proceed towards some advanced
processors with their key architectural features. Next, we discuss on the basic features of RISC
and CISC processors, a comparison of RISC with CISC is also narrated. A brief introduction
to ARM Processors followed by ARM microcontrollers will be illustrated next together with

GPIO configuration and interfacing.
6.1 Pipeline vs. Superscalar processing

Advanced processors include many features in their architecture to enhance the performance.
These include incorporation of cache memory (for both instruction and data), pipelined
processing, superscalar execution, RISC/CISC features etc. As pipelining and superscalar
processing are the characteristic features in most of the advanced processors, so in the

beginning of the chapter the concepts of these two features will be illustrated first.

Pipelining is a technique which allows the processing of several instructions in a partially
overlapped manner. Pipelining can be easily carried out for a sequence of instructions which
are same or similar in nature that employ a single execution unit. However, all the common
steps in instruction processing can also be pipelined such as, instruction fetching (IF),
instruction decoding (ID), operand loading (OL), execution (EX) and write back or operand
storing (OS). The pipelined execution is very much similar to assembly line of a manufacturing
unit where many products are in various stages of manufacturing at the same time. In a non-
pipelined processor, the instructions execution follows a fixed sequence as depicted in Fig.
6.1a. Whereas, a pipelined execution unit allows each individual task of fetching, decoding etc.
to be taken up independently by a separate sub unit (stage) of the pipeline processor as shown
in Fig.6.1b. This is called instructions overlapping-where one instruction may be in fetch stage,
while other instruction may be in decode stage while some other may be in execution stage etc.
Here, up to five instructions can be overlapped with such a five-stage pipelined execution unit.
Of course, performance delay may occur as in case of I4 which takes EX stage for two
consecutive cycles. Similar problem occurs for branch instructions like I7 (as in Fig.6.1b) where
the outcome of 17’s EX step must be known before the location of next instruction (I8) to be

processed.

199 | Microprocessor and Microcontroller

Superscalar execution: A microprocessor’s effective MIPS (million instructions per second)
can be increased or CPI (cycles per instruction) can be reduced (to less than 1) by replicating
various instruction processing units so that several instructions can be processed
simultaneously. This makes it possible to start the processing of or issue two or more
instructions simultaneously or in parallel. Thus, the instructions can be completely overlapped
as shown in Fig 6.1c. Processors with this capability are said to be superscalar. Pipelining and
superscalar execution both fall under the category of instruction-level parallelism.

Eriptrus iy 4 IwmarmscLicim 1y Iryskiratmpn J
- A

— LR R | 14 -1
IneiTe T e = (V] iEL" I|
(el et T

=

i, |

[

Cmeams e U5

IF
WEB |
Bid
MEM W8 |
MEM | WB |

()
Fig.6.1 (a) Nonpipelined processing (b) Pipelined Processing (c) Superscalar processing [In figure, i
=>instruction, t =>time]

200 | Microprocessor and Microcontroller

6.2 Cache and Virtual Memory Concept

The memory subsystem of a digital computer is organized in a multi-level hierarchical manner.
Controlling the various parts of its hierarchy also takes place in a very different fashion. Cache
and main memory form a distinct sub-hierarchy whose main goal is to support CPU in
accessing instruction and data with a minimum delay. Hardware controllers usually manage
this sub-hierarchy. Usually the cache memory and the main memory acts like a single memory
M to the user program. Similarly, the main memory and the secondary memory form another
two-level sub-hierarchy. The interaction between the two is however managed by the operating
system and as such it is not transparent to the system software but somewhat transparent to the
user program. Virtual memory is a concept and is applied when the main memory and
secondary memory appear to a user program like a seamless, single large addressable memory.
There are some obvious reasons for bringing the concept of virtual memory. These are as

follows:

e To free the user programs from the burden of storage allocation and to permit efficient
sharing of available memory space among different users.

e To make the user programs independent of configuration and capacity of physical
memory. As such it allows seamless overflow into the secondary memory when the
main memory capacity is exhausted.

e In order to achieve very low access time and cost per bit with a memory hierarchy.

A memory system is usually addressed by a set of virtual or logical addresses (V) derived from
the identifiers specified in an object program. The set of abstract locations that a program
reference is the program’s virtual address space. A set of physical or real addresses R
identifies the physical storage locations which is fixed in each memory unit M. Therefore, an
efficient mechanism is needed to translate/map this virtual address space to real physical
address known as addressing mapping of the form, f: V—R which is the key to successful
design of a multilevel memory. This address assignment and translation is carried out at various

stages of the program, specifically,

e While writing the program by a programmer.
e During the program compilation by the compiler.
e While initial program loading by the loader.
e During run-time by the memory management unit.
Real physical addresses were explicitly specified by the programmers in early computers,

which had neither hardware nor software support for memory management. But with modern

201 | Microprocessor and Microcontroller

computers, programmers normally deal with virtual addresses. Specialized hardware and
software within the computer automatically determine the real physical address required for

program execution.

Caches

Cache memory is a fast, small size intermediate memory placed between CPU and main
memory in the memory subsystem. It is used to reduce the time of access to external memory
by the CPU as specified earlier and limit the access time to single cycle. They appear both as a
small on-chip memory with CPU and also as a off-chip cache that uses fast SRAM technology
in the two-level cache organization. When a memory request is generated, the request is first
presented to the cache memory, and if the cache cannot respond, the request is then presented

to main memory.

o Hit: if a cache access finds data present in the cache memory, as in Fig.6.2
e Miss: if a cache access does not find data, then it forces to access data from the main

memory

A cache serves as a buffer between CPU and the main memory in the two-level organization.
It also acts like a buffer in the memory management unit such as translational look-aside buffer
(TLB) which is specialized cache that permits fast translation of memory addresses. Even data
buffers in the high-speed secondary memory devices such as in hard disk drives are also known

as cache.

Cache Organization

Basically, a cache memory has two principal components. These are cache data memory and
cache tag memory. Memory words are stored in cache data memory which are grouped into
small pages known as cache blocks or lines. The contents of the cache’s data memory are
nothing but the copies of a set of main memory blocks. Each cache block is marked with its
block address also called as fag. So, the cache knows which part of the memory space the block
belongs. The collection of tag addresses that are currently assigned to the cache are stored in a
special memory known as cache tag memory or directory. Thus, the time required to check the
tag address and access cache’s data memory must be less than the main memory access time in

order to improve the performance of a processor.

202 | Microprocessor and Microcontroller

Augdrass (e ing Dir poaldona
371 =0 13 B2 17 2 10

T Theo
g
i -i-w' "

ki Wikl Tag Liala

Fig 6.2: Cache memory organization and data access mechanism [Courtesy: Virtual Lab,

IITKGP]

Cache memories can be organized in many ways. Based on the way of access it can be of the

following two types,

e Look through cache

o Look-aside cache
In look-aside design, cache and main memory are directly connected to the system bus. Here
the CPU initiates a memory access by placing a real address A; on the memory address bus at
the start of a memory read or write cycle. The cache immediately compares A; with tag address
residing in the tag memory. If it is a match, cache hit occurs and the access is completed without
the involving M2 (main memory). If no match, then it is a miss and the access is directed to M.
A block of data B; that includes the target address is transferred from M> to M(known as block
replacement) and is completed in a single short burst. So, in case of cache miss and consequent

block data transfer the system bus remains unavailable for IO operations.

Look-through cache is a faster but a more costly organization, where the CPU communicates
with the cache via a separate (local) bus which is isolated from the system bus. Thus, the system
bus is available for use by other units such as IO controllers. A look-through cache allows the
local bus linking M; and M to be wider than the system bus, thereby speeding up cache-main

memory transfer. Typically, a block replacement takes single clock cycle.

203 | Microprocessor and Microcontroller

It can also be categorized based on the memory-mapping technique used. In associative or
content addressing mapping technique permits the input tag (as initiated by CPU in the memory
address) to be compared simultaneously with all the tags present in the cache-tag memory. This
is of course feasible in small cache and TLBs. So, a number of low-cost alternative ways have
been developed for the limited use of associative addressing. Following caches fall under this

category.

e Direct-mapping
e Associative mapping
o Set-associative mapping
Again, caches can be also organized based on the instruction and data they deal with separately

or in a unified manner and according categorized as,

o Unified cache

e Split cache (I-cache and D-cache)
For more details on the cache organization and associated memory mapping readers may refer
[1]. Keeping these architectural concepts in mind, in the next few subsections, we now look

forward to some of the advanced processors and their architectural features.

6.3 80286 Microprocessor

80286 Processor is popularly known as 286 processor introduced by Intel in 1982 and
composed of 132K transistors with n-MOS process technology. It has the following salient
features.

Key Features
* It has 16-bit Data bus and 24-bit address bus
* 80286 does not have multiplexed address/data bus
* Addressed Memory size or address space of 1l6MB

* First processor with memory management unit with enhanced memory protection
capabilities

+ 80286 has memory management capability that maps 23°(1GB) of virtual address
* 80286 can be operated in real mode as well as in protected virtual address mode
* Segmentation in protected mode is different from the real mode

* Backward compatible

* Clock speed is higher (max 12.5MHz) and hence time of execution of some
instructions are as low as 250ns.

204 | Microprocessor and Microcontroller

* It has few more instructions compared to its predecessor 80186 and has faster
execution time.

* 80286 is a high-performance processor. Six times the performance of the standard
8086. The power consumption is also less compared to 8086

» It is a multiuser processor and having multi-tasking capabilities
* 80286 has three high-level instructions such as BOUND, LEAVE and ENTER
6.3.1 Architecture of 80286

80286 is an advanced, high-performance processor which is designed specially with additional
capabilities for multi-user and multitasking systems. The 80286 has built-in memory protection
that supports operating system, task isolation as well as program and data privacy. 80286 is
much faster compared to 8086. A 12 MHz 80286 provides a processing speed of about six
times faster than the 5 MHz 8086. The 80286 has a memory management capability that can
map 23° (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of
physical memory. 80286 is also compatible with 8086 and 8088 processors (instructions). The
Architecture of 80286 Microprocessor has two operating modes: real address mode and
protected virtual address mode. In real address mode, the 80286 is object code compatible with
its predecessor 8086, and 8088 software. In protected virtual address mode, the 80286’s source
code is also compatible with 8086, 8088 software. In both the modes 80286 can operate at its
full performances and execute all instructions of the 8086 and 8088 processors. The internal
architecture of 80286 is shown in the block diagram of Fig. 6.3. The CPU of 80286 consists of
the following:

e Address Unit (AU)
e Bus Unit (BU)
e Instruction Unit (IU)
e Execution Unit (EU)
Femmmm-mm—ms——emm—m—e-z-=s==a ——rrre e
: KAOUHESS 19a T ALY : i P i Al
: i | —l LaTciER amo cevERE TV BRE, i
: Hnmfi::; : : PIE- PROCERRR ==ttt FERCR
ENTERGION 1y PERES
: aEamenT | ADOER : : FETCHER Bt L J
i BAEES i I T WL,
| BEGNENTh == == I 1 Big COMTROL] £l
i i I COMNTE,
| copeaEn| mars - ! T Cote bia
i i i
; | A TA THANGCFIVERS Byg.- O
] I L]
L EEE=m=== #-ETTE !
T PREFETCH '
GUELE L]
I B LT U g
! - SR R R
i
i . | | = _____4...___________1' RESET
! : 1 | FDECOOED Lprpomon] meTRucTIoN | E GLK
: \‘t:l'“"éﬁé'“"l BECODER | UM) bt Vg
| ENGTUTI N USIT (B8 i § — o
L N AT B el oesosm s e e ames e e e = W
e [
I EHRS

Fig. 6.3: Internal block diagram of 80286 [Courtesy: Slideplayer]
Address Unit (AU)

205 | Microprocessor and Microcontroller

The address unit (AU) determines the physical address of instructions and operands which are
stored in memory. Like 8086 processor, it computes the 20-bit physical address from the
content of the segment register and 16-bit offset. The addresses so computed by the address
unit are used to specify different peripheral devices such as memory and I/O devices. The
physical addresses computed by the address unit are then sent to the Bus Unit (BU) of the CPU.

Bus Unit (BU)

The bus unit also known as bus interface unit interconnects the 80286 processor with memory
and I/0 devices. 80286 has a 16-bit data bus, a 24-bit address bus, and a control bus. The bus
interface unit is responsible for performing all external bus operations. It consists of latches
and drivers for the address bus, which transmit the physical address A19-Ao. This 20-bit address
facilitates all the memory and I/O devices for read and write operations. Bus unit is used to
fetch instructions from the memory and are kept in a queue for faster execution. Instruction
pipelining uses this concept. As the instructions are prefetched, so the processor will not wait
for the current instruction to be completed rather it will decode the next instruction from the
instruction queue and make it ready for execution. The prefetch module in the bus unit performs
the task of prefetching. The bus interface unit has a bus controller which controls the prefetch
module. The fetched instructions are arranged in a 6-byte prefetch queue. This way, the CPU
prefetches the instructions to enhance the speed of execution.

Instruction Unit (I1U)

Instruction unit or the instruction decoder receives the instructions from the prefetch queue and
the instruction decoder decodes them one by one. The decoded instructions are then latched
onto a decoded instruction queue. The IU can decode a maximum of 3 prefetched instructions
and loads them into decoded instruction queue for execution by execution unit.

Execution Unit (EU)

The decoded instructions are then fed to a control circuit of the execution unit. This unit
executes the instructions received from the decoded instruction queue. It consists of the register
bank, arithmetic and logic unit (ALU) and control unit. The register bank is used to store data
as a scratch pad. The register bank can also be used as special-purpose registers. The ALU is
the core of the EU which performs all the arithmetic and logical operations and sends the results
either to the data bus or back to the register bank. The control unit controls the overall operation
of the execution unit.

The 80286 series of processors contain all the basic set of registers, instructions, and addressing
modes of 8086. Moreover, the 80286 processor is upward compatible with its predecessors
8086, 8088, and 80186 CPU’s. It has altogether fifteen registers grouped into four groups as
shown in Fig.6.4. These are,

e General purpose registers

e Segment registers

e Base and Index registers

e Status and Control registers

206 | Microprocessor and Microcontroller

. Aegistar Funclions

7 a7
|
BEYTE AR i AL
MULTIPLY/DIVIDE
ACORESIABLE D BL K0 IMSTRUCTION
X CH GL LOCPISHF T/REPEAT COUNT
{4E-BIT REGISTER i
KAKMES SHOWHY BiX BH BL
| p BASE REGISTERS
ap
S |
e INDEX REGISTERS
Di
5F | STACK FOINTER
15 T
GENERAL PURPOSE REGISTERS
15 o
cS |CODE SEGMENT SELECTION 15 @

3 Tk PahTany o) F ETATUS WIRD
03 1-.'mm SEHTaRECTON. e
55 STACK SEGMENT SELECTION N POINTER

STATLIS AND CONTRGA
L & JEXTRA BEGMENT SELECTION e denloantly
SEGUENT REGISTERS

Fig. 6.4: Register Set of 80286 Processor [Courtesy: EEGUIDE]

General-Purpose Registers: These eight 16-bit general-purpose registers which are used to
store operands of arithmetic and logical instructions. Four of these (AX, BX, CX, and DX)
registers can be used either as 16-bit words or can be split into two separate 8-bit registers.

Segment Registers: There are four 16-bit special-purpose registers in 80286 which are used to
select the segments of memory that are immediately addressable for code, stack, and data.

Base and Index Registers: These are four general-purpose registers which can also be used to
determine offset addresses of operands in memory. Usually, these registers hold base addresses
or indexes to particular locations within a segment. Any specified addressing mode determines
the specific registers used for operand address calculations.

Status and Control Register: There are three 16-bit special-purpose registers in 80286 which
are used for record and control of the 80286 processor. The instruction pointer contains the
offset address of the next sequential instruction to be executed.

Flag Word Register: The flag word register records the specific characteristics of the result of
arithmetic and logical instructions. The flag register bits Do, D2, D4, Ds, D7, and D11 are
modified as per result of the execution of arithmetic and logical instructions. These are called
status flag hits. Bits Ds and Dy control the operation of the 80286 within a given operating
mode and these bits are called control flags. The flag register is a 16-bit register. Figure 6.5
shows the flag register of 80286.

207 | Microprocessor and Microcontroller

STATUS FLAGE
CARRY FLAIES

PARTY FLAG
ALMILIARY CARRPY FLAG
ZERGQ FLAG —
SGN FLAG |
OVERFLIWY FLAG =
1DI: DII

Dr ElI "Dr lDl\:

By B Buty 4 B o oo o,
Mmr IDFL]:EIF DF f 1: 3 | ZF ﬁ%{ AF &,rzx‘ PF :;'rf,-: CF |
| COMTROL FLAGS
v ‘ L TRAPFLAG
MESTED TAEK INTERRUPT FLAG
140 PREVILEGE L DIRECTION FLAG
LEVEL
Dy 0L B 0o D, 05 0L B 06 By B, 0. 0 G 0. D
T ;/’/ﬁ}ﬁ,ﬁwrf/y;f /f R A /W}??, s | em| e | pe | Pe
i ™| =21 |
L e p—
%HMEEEWME MACHIE | PROCESS0R EXTENSIONEXTENSON |
INTEL RESERVED ATATLS WOMITOR PROCESEOR EXTENSION
WoRDO PROTECTION ENAGLE
Fig 6.5: Flag registers of 80286 [Courtesy: EEGUIDE]
6.3.2 Addressing modes

The 80286 processor has eight addressing modes for the instructions to access operands from
memory. The eight different addressing modes of 80286 microprocessor are as follows:

e Register operand mode
e Immediate operand

e Direct mode

e Register indirect mode
e Based mode

e Indexed mode

o Based indexed mode

o Based indexed mode with displacement

The first two operating modes are related to the register and immediate operands. The
remaining six modes are provided to specify the location of an operand in a memory segment.
A memory operand address consists of two 16-bit components, namely, segment selector and
offset. The segment selector is supplied by a segment register either implicitly chosen by a
segment override prefix. The offset is determined by summing any combination of the
following three address elements.

e The displacement (8- or 16-bit immediate value)

e The base (content of the BX or BP)

e Any carry out from the 16-bit addition is ignored; eight-bit displacements are sign
extended to 16-bit values

208 | Microprocessor and Microcontroller

Combinations of these three address elements define the six memory addressing modes.

6.4 80386 Microprocessor

80386 processor also known as 386 was introduced by Intel in 1985. It is the first 32-bit
processor and an upgraded version of 80286 with a processing speed twice that of 80286 and
has 275K transistor in it, developed with 0.8 micron CMOS technology. It has the following
features.

Key Features
e Itis a 32-bit microprocessor with a 32-bit ALU.
o 80386 has a data bus of 32-bit.
o It holds an address bus of 32 bit.

e It supports physical memory addressability of 4 GB and virtual memory addressability
of 64 TB.

o 80386 supports a variety of operating clock frequencies, which are 16 MHz, 20 MHz,
25 MHz, and 33 MHz.

o 80386 Microprocessor has a 16-byte prefetch queue.

o It offers 3 stage pipeline processing: fetch, decode and execute. As it supports
simultaneous fetching, decoding, and execution inside the system.

o 80386 has dedicated hardware that gives multitasking capability.

e Microprocessor has memory management unit with a segmentation unit and a paging
Unit.

e [t supports 3 operating modes: real, protected, and virtual real mode.

e The 80386 can run 8086 applications under a protected mode in its virtual 8086 mode
of operation.

6.4.1 Architecture of 80386 Processor

The detailed architectural diagram of the 80386 processor is depicted in Fig. 6.6. Its internal
architecture consists of three different major sections, namely, the Central Processing Unit
(CPU), the Memory Management Unit (MMU) and the Bus Interface Unit (BIU).

Central Processing Unit (CPU) The central processing unit consists of an Execution Unit (EU)
and an Instruction Unit (IU). The Execution Unit EU has altogether sixteen registers- eight
general-purpose and eight special-purpose registers. These registers are used for data-handling
and calculating the offset addresses. The Instruction Unit (IU) is used to decode the instructions
opcode (one byte) as received from the 16-byte instruction code queue. This is followed by
arranging them into a 3-instruction decoded-instruction queue. After decoding opcode bytes of
instructions, the information is then passed to the control section to provide the necessary
control signals. The powerful barrel shifter present in the EU increases the speed of all shifts
and rotate operations. While the multiply or divide logic implements the bit-shift-rotate
algorithms to complete the instruction execution a within minimum time. The 32-bit
multiplication/division operations can also be executed within one microsecond by the
multiply/divide logic.

209 | Microprocessor and Microcontroller

Architecture of 80386

THTAIOH U R ul IS 2OATRDL
i m.%m
L1t i e | i’ BiE DR,
| : NEAET, LA,
b
WA *
PR A T preiy 3
[F:
[]
4,
§ b
FRITETEN a
. ADORTSS RS = FAp
AT L] e B3= kil
{\ g, B,
'..s'mu: LAy TR T
pritady Arsg i
T FinEp WlALeg
E Wy
= - o= 1
BiRELL £ i
Y i WO N o [
1] tafii [sz 2 L
e oo | [.
WLTRLY

P

| COWTeN
™
i

FLE
ﬁu L L =T

q r—ry -
| Three Sections:
| Bus Interfaca units

In . ol -y i -
AiLral Frooess)| 1L

o L L
TR AL T Memaory

Managamant Linig

Fig. 6.6: Internal Architecture of 80386 [Courtesy: EEGUIDE)]
Memory Management Unit (MMU)

The Memory Management Unit (MMU) consists of a Segmentation Unit (SU) and a Paging
Unit (PU).

Segmentation Unit (SU) The segmentation unit uses two address components, namely, the
segment address and offset address to locate and share code and data. The segmentation unit
allows a maximum size of 4 GB segments. The segmentation unit has four-level protection
mechanisms to protect and isolate the system’s code and data from the application programs.
The ‘limit and attribute PLA’ is used to check segment limits and attributes at segment level to
keep away from invalid accesses to code and data.

Paging Unit (PU) The paging unit organizes the physical memory in terms of pages of 4 KB
size each. The paging unit always acts under the control of the segmentation unit. Each segment
is divided into pages. The virtual memory is also arranged in terms of segments and pages by
the memory management unit. The paging unit usually converts linear addresses into physical
addresses. The ‘control and attribute PLA’ is used to check the privileges at the page level.
Each page always maintains the paging information of the task.

Bus Interface Unit (BIU) The bus interface unit interfaces the 80386 processor with memory
and I/O devices. To fetch instructions and transfer data from code prefetch unit, the processor
provides address, data and control signals through BIU. The code prefetch is used for fetching
instructions from the memory while BIU is not executing any bus cycle (i.e. idle). The bus
control section has a ‘request prioritizer’ to decide the priority of the various bus requests. It
also controls the bus access. The address driver is used for bus enable signals BE3-BEo and

210 | Microprocessor and Microcontroller

address signals A3zi-Ao. The pipeline and bus size control units handle the related control

signals.

6.5 80486 Microprocessor

Popularly known as 486 processor which was introduced by Intel in 1989. It is the first
processor with an in-built floating-point processing unit on the same chip. It consists of
1200K transistors, fabricated with CMOS IV process technology and has the following
features.

Key Features

It is a 32-bit complete architecture which can support 8-bit, 16-bit and 32-bit data types.
486 processor has 8§ KB unified, level 1 cache for code and data included in CPU. In
advanced versions of the 80486, cache size is increased to 16 KB.

Clock frequency of 25 MHz, 33 MHz, 50 MHz and 100 MHz are available with
different versions of 80486.

Execution time of instructions is significantly reduced. Load, store and arithmetic
instructions are executed in just one cycle when data is already present in the cache.
For fast execution of complex instructions, the 80486 has a five-stage pipeline.

80486 processor has a 32-byte prefetch queue.

The 80486 processor has multiprocessing support capability.

RISC feature is incorporated in 80486.

Clock-doubling and clock-tripling technology has been incorporated in faster versions
of Intel 80486 CPU.

Power management and System Management Mode (SMM) of 80486 is a standard

feature of the processor.

6.5.1 Architecture of 80486

A simplified architecture of Intel 80486 processor is shown in Fig. 6.7 whereas the detailed
internal architecture is shown in Fig. 6.8. The architecture of 80486 can be divided into

following three different sections,

Egi,E
Bus interface unit (BIU), =
Execution and control unit (EU), and m
Floating-point unit (FU). cEN T o B

T RS EOTE

211 | Microprocessor and Microcontroller

l ‘i] t L 3 l
' R Frijglig Sampmin ik Hiogiadisr
fih 4 m h,':,'ff,] R Kt (5L} ariel AL
0,-0, 4 4 4 4
{ ' l .
I i bl liss 1 :
Conbiod Swnals - . . '1._ | .,.1 . Dhisernding Conlonl Fleraling
Sintiin Shandld W3 [;r-f-v-:lr-'l ol Uit (DL Uit (L) | | Poing Liait (FPL)
|

2

Fig. 6.7: Simplified architecture of 486

P |I5-='|.1I‘| Indernial Diata Bus
J :HMI'I"MT-M:II.H- e

i

| [4 F1
- ERNTOATA bt |
T
J L_Ei.-ﬁﬁ:?rﬁ'i wus |] e
E-'I.HEII. e 'rrrﬂ:m:'rl'u '!\./' :::" Tt L;' . AD-A31
STTER | i Paging - Caclue Uit @ EHE 5 L
REJIETEN DESCRIPTOR T — VWETTE BLIEF] B
Pt e meGSTENS o e il
LIarT TR AT 2 fkB CACHE| * satapus (L0-Dr31
ATTMEUEE LOCEASDE | PRYRHCAL PN |
alll PFLA BAN IR LDEAEER '[:- = ".'“.L.m“ﬂ”
| ":F e
T ARGURST
X FEOLENCER
0 SHPFLACEASNTBUE PreFelcher [~ it B i
ETRUCTIlY = 1 =e=za=a=z 2 = ma
3 BYTE COBE MR SU
Lot CAN L CoTROL
emiad § . T | EadERaER R
| s i T 1% 8 BY¥TES Cal CoMT
_:,3‘ FPu COMTRL 5 et T
— P | A] P ETFRLECT o PasTY DEMERATICN
" ; . o T AR LET R,
Regster| "y
1 Biba
File OO0 INSTALICTION TS

Fig. 6.8: Internal Architecture of 80486 [Courtesy: EEGUIDE)]

Bus Interface Unit (BIU): The bus interface unit organizes all the bus related activities of the
processor. The address driver is connected to an internal 32-bit cache unit and also with the
system bus (also 32 bit). The data bus transceivers are connected between the internal 32-bit
data bus and system bus. The write data buffer is a queue of four 80-bit registers and is able to
hold the 80-bit data which will be written to the memory. Due to pipelined execution of the
write operation, data must be available in advance. To control the bus access and operations,
the following bus control and request sequencer signals ADS, W/R, D/C, M/IO, PCD, PWT,
RDY, LOCK, PLOCK, BOFF, A20M, BREQ, HOLD, HLDA, RESET, INTR, NMI, FERR
and IGNNE are used.

Execution Unit (EU) and Control Unit (CU): The burst control signal updates the processor

that the burst is ready. This signal works as a ready signal in the burst cycle. The BLAST output
shows that the previous burst cycle is over. The bus size control signals BS16 and BS8 indicates

212 | Microprocessor and Microcontroller

dynamic bus sizing. The cache control signals KEN, FLUSH, AHOLD and EADS are used to
control the cache control unit.

The parity generation and control unit generate the parity and carries out the parity-checking
during the processor operation. The boundary scan control unit of the processor performs the
boundary scan tests operation to ensure the correct operation of all the components of the circuit
on the mother board.

The prefetcher unit fetches the codes from the memory and arranges them in a 32-byte code
queue. The function of the instruction decoder is to receive the code from the code queue and
then decode the instructions sequentially. The decoder unit then fed them to the control unit to
derive the control signals, which are used for execution of the decoded instructions. Before
execution, the protection unit should check all protection norms. If there is in any violation, an
appropriate exception is generated.

The control ROM stores a microprogram to generate control signals for execution of
instructions. Register banks and ALU are used for their usual operation as they perform in
80286. The barrel shifter is used to perform the shift and rotate algorithms. The segmentation
unit, descriptor registers, paging unit, translation look aside buffer and limit and attribute PLA
are worked together for the virtual memory management. These units also provide protection
to the opcodes or operand in the physical memory.

Floating—point Unit (FPU): The floating-point unit and register banks or FPU communicate
with the bus interface unit (BIU) under the control of memory management unit (MMU),
through a 64-bit internal data bus. Generally, the FPU is used for mathematical data processing
at very high speed as compared to the ALU.

6.5.2 Registers and Flag Register of 80486

ANAT R R AR
CRERT FLaEE = - — =
FARTT FLAG -
SUTILIAHT CASKT FLAD
ZER FLAL - |
G0N FLAG
CERFLOW LA
On O PuBaeh P T Do W gl O g8 T e BN
o i MT L1aPL Gf oF | o | TT | BF o -] L o HE L] I (=3
T | | — o] -
| | CONTROL FLARSE
* | L TRAPFLAG
HESTED TaGH | INTERRIFT FlLAGS
153 PR EVILEGE = I — CORECTHON FLAGS

LEEL
n o, 0. B, 8, 0

A]

&
: "E.Eﬁ HETCHED BIFS Ajas TR e T
ﬁf:f:'aq AEZERVED TOR N TEL WINT AL MODE
REBLME FLAC

Fig.6.9: Flag Registers of 486 [Courtesy: EEGUIDE)]

The registers of the 80486 processor are same as the 80386 processor, except for the flag
register. Figure 6.9 shows the flag register. As compared to the flag register of 80386, the flag
register of 80386 has only one additional flag called alignment check flag or AC flag. The D13
position of the flag register is AC flag as depicted in Fig. 6.9. When the AC flag bit is set to
‘1’, there is an access to a misaligned address and an exception (fault) will be generated. The
alignment faults are generated only at privilege level 3.

213 | Microprocessor and Microcontroller

6.6 Pentium Processor

The fifth-generation processor in the 8086 series is 80586 which is renamed as Pentium
Processor. It was developed by Intel in 1993 and represented by P5. It consists of 3.1 million

transistors, uses 0.8-micron BiCMOS technology and has the following feature.
Key Features

e Pentium runs at a clock frequency of 60 MHz to 233 MHz.

o Pentium has two 8 Kbyte L1 cache (for instruction and data), but there is no L2 cache.
e Similar to 486 processor but with 64-bit data bus

e Wider internal datapaths: 128-bit and 256-bit wide

e Pentium has a 32-bit address bus, therefore provides a 4Gb physical memory space

o It has two instruction execution units

o It is a superscalar processor

It has two independent integer pipelines and a floating-point pipeline

Includes a branch prediction unit

6.6.1 Architecture of Pentium

Pentium processor is an advancement over its predecessor 80386 and 80486. Pentium bring
about some modifications in its cache structures, width of the data bus, numeric coprocessor
with enhanced speed along with two integer processors. It has two on-chip cache-one for data
and the other for instructions. Each cache is of 8Kb size. As it uses dual integer processor, so
two instructions can be executed simultaneously in one clock cycle. Advanced version of
Pentium processor is Pentium Pro which is comparatively faster. This is because Pentium Pro
allows scheduling of 5 simultaneous instructions in order to get executed. Along with level-1
cache i.e., 16K-byte like Pentium, it has a level-2 cache that is 256K-byte size. Moreover,
Pentium Pro has an error detection and correction capability. The error correction unit offers
correction of single-bit error and detection of two-bit error. With additional four address lines,

the Pentium Pro offers 64 Gb of accessible physical memory.

The Pentium is a 32-bit processor. It has a 32-bit address bus and a 64-bit data bus. The internal
and external data buses are connected through the on-chip caches. Figure 6.10 shows a
simplified architecture of Pentium processor whereas Fig. 6.11 shows a detailed internal

architecture which consists of 8K byte code cache, 8K byte data cache, Translation Look-aside

214 | Microprocessor and Microcontroller

Buffer (TLB), Branch Trace Buffer (BTB), Integer pipelines U and V, floating-point pipeline,
Microcode ROM, and Control Unit (CU).

Bus interface

BTB Instruction cache Data cache
branch
prediction I
mechanism
ian Prefetch buffer \
Integer Integer
ALU ALU :
Floating-

Performance point

monitor unit

Hegister set }_\—

Fig. 6.10: Internal Architecture of Pentium Processor [Courtesy: Computer.org]

215 | Microprocessor and Microcontroller

Beranch
Target Code Cache
Buffer Ll
L'::.'nlrn-l‘ oP ¥ I Imstruction
LBE-H: Ararch Poinger
| werihcatmon [
i Lt
addrpgs

..-...---...--,.--.....--
-
Execution Lnit

Architecture of Pentinm Processor

Fig.6.11: Detail Architecture of Pentium [Courtesy: Electronicdesk]

The bus interface unit of the processor sends the control signal and fetches the code and data
from external memory and I/O devices. The size of the external data bus is 64-bit through which
burst read and burst write-back cycles can be performed. The paging unit in the architecture

provides optional extensions of around 2 to 4 Mb page sizes.

In order to load the instructions into the execution unit, code cache, branch target buffer and
prefetch buffers work together to accomplish the task. The code cache or the external memory
holds the instructions from where codes are fetched. While the branch target buffer holds the
address of the respective branch and the TLB (translational lookaside buffer) within the code

cache converts the linear address into the physical address which is used by the code cache.

This processor contains pairs of prefetch buffers having a size of 32-byte that combinedly
operate with branch target buffer. Both the buffers operate independently but not at the same
time. One of the prefetch bufters starts fetching the instructions in a sequential manner till the
time branch instruction has not occurred. However, as soon as the branch instruction is fetched
by the prefetch buffer, the BTB then check for the branching operation. Once it is checked by

BTB that branch has not occurred then linear fetching of instruction will resume. On the

216 | Microprocessor and Microcontroller

contrary, while checking if BTB gets to know about the occurrence of the branch instruction
then the other prefetch buffer in pair gets enabled and starts fetching the instructions from the
branch target address. By doing so, the branching instructions get simultaneously fetched and

are ready for decoding and execution.

The instruction fetch unit reads the instruction one at a time and stores them in the instruction
queue. During the execution of an instruction, the processor does not sit idle and checks for the
next two instructions in the queue. If the two instructions are independent of each other, then
U-pipe and V-pipe are assigned instructions individually so that execution can occur
simultaneously. However, in the case, the queued instructions are dependent on each other,
then both the instructions are assigned to U-pipe for execution one after the other and V-pipe
remains idle. The controlling of the operations of the Pentium processor is provided by the

control ROM that has a microcode within it. The control ROM directly controls U-pipe and V-
pipe.

Both data and code cache within the processor is organized in the 2-way associated set cache.
Each cache has 128 sets and each set has 2 lines which are 32 bits wide just like 486 processor.
Each cache is connected with its own Translation Look-aside Buffer (TLB). Therefore, the
paging unit of the Memory Management Unit (MMU) can rapidly convert linear code or data
addresses into physical addresses The LRU (Least Recently Used) mechanism handles the
cache replacement. As we can see clearly in the above figure that the code cache makes a
connection with the prefetch buffer by a bus of size 256 bit, thus 256/8 i.e., 32 bytes of opcode
can be buffered in one clock cycle. The data cache has two ports that are used to simultaneously
deal with two data references. The execution unit within the Pentium processor contains two
integer pipelines namely, U-pipe and V-pipe. Each one has its separate ALU. There are five
stages in which these pipelines operate, namely, prefetch, decode-1, decode-2, execute,
writeback. The U-pipe is responsible for executing all integer as well as floating-point

instructions while V-pipe executes simple integer operations.

6.6.2 Branch Prediction

Branch prediction consists of a Control Unit (CU) and a Branch Target Buffer (BTB). The

function of control unit and branch target buffer are as follows:

Branch Target Buffer (BTB): The BTB is used to store the target address and statistical
information about the branch operation. Hence, the branch prediction is able to predict branches

and cause the Pentium to use the most likely target address for instruction fetching, thus

217 | Microprocessor and Microcontroller

enhancing the execution performance. Any misprediction causes penalty and pipeline flushes

the wrongly processed data.

Control Unit (CU): The control unit controls the five-stage integer pipelines U and V, and the
eight-stage floating-point unit. In the architecture of Pentium Processor, the integer pipelines
are used for all instructions which does not involve any floating-point operations. Therefore,
the Pentium can transmit two integer instructions in the same clock cycle and performance of
the processor is improved. Such an execution comes under superscalar architecture, Figure

6.12 shows the superscalar organization of the Pentium processor.

Instruciion fetch {IF} or Prafetch (PF) |

Dh:..'-m.;u instruclicn ang Decoda inalrecion and
panerahe conired woed D] | gensmes conbrol woed (D1
Fipatirg L Fip=lne W
o b J L
{’ecade contral ward Cwcode contred word
o oreEle ety and ganersle memery |
f nciirans [OF} . auirrepe [DF) E
E { Accms Daln Cache apd | Acciess Dein Sache and | =
B :Iﬂc'lk.?.lh'lh.'l aLU rasull (EX CBldaahe AL nesull (EX EE
o il o PV

| Wériln Back Roault WD) ‘Wirite Dok Fesull (WE)

| S

Fig.6.12: Superscalar processor organization in Pentium

The first four stages of the floating-point pipeline execution overlap with the U pipeline. The
parallel operation of the integer and floating-point pipelines is possible only under some
specified conditions. If the clock frequency of Pentium is same as 80486, then the Pentium
floating-point unit is able to execute floating-point instructions 3 to 5 times faster than 80486.
This is possible because of on-chip hardware multiplier and divider present in the floating-point

unit with quicker algorithms that can be incorporated in the micro-coded floating-point unit.

The Pentium has a microcode support unit to perform complex functions. The support unit
controls the pipelines with the microcode. Actually, this unit controls and utilizes both the
pipelines together. Therefore, complex microcode instructions run very fast on a Pentium than

on a 80486.

6.6.3 Integer Pipelines U and V

As already mentioned that Pentium processor has two integer pipelines, called U and V and a
floating-point unit. Hence it falls under the category of superscalar processor. The U-pipeline

is capable of handling the full instruction set of the Pentium processor but the V-pipeline has

218 | Microprocessor and Microcontroller

limited handling capability. The V-pipeline is able to handle only simple instructions without
any microcode support. The V-pipeline is used to execute ‘simple integer instructions’ such as
load/store type instructions and the FPU instruction FXCH, but the U-pipeline executes any
legitimate Pentium instructions. Actually, architecture of Pentium processor uses a set of
pairing rules to select a simple instruction which can go through the V pipeline. When
instructions are paired, initially the instruction is issued to the U-pipe and then the next

sequential instruction is issued to the V-pipe.

Inalructicn fetch [IF) ar Pralalch {PF)

I

=

Decoda inslrugban a1e
[generaly coniral woed (D)

JiE&
e e]
fecod e comirod word and

pEnerale ey slorass [(DE)
1]
frress Dala Cache and Calkulale
SLU rasull (EX)

y

White Back Besul [WH)

Fig. 6.13: Integer pipeline of Pentium

There are two integer pipelines and a floating-point unit in the Architecture of Pentium
Processor. Figure 6.13 shows an integer pipeline. Each integer unit has the basic five-stage

pipeline as given below:

Prefetch (PF)
e Decode-1(D1)
e Decode-2 (D2)
e Execute (E)

e Write Back (WB)
Superscalar Processing

The internal architecture of Pentium processor has been designed on the basis of superscalar
execution. In superscalar architecture, two or more instructions are executed in parallel. Figure
6.11 shows the superscalar architecture of Pentium. There are two independent integer

pipelines as depicted in Fig. 6.13. In the PF and D1 stages, the microprocessor can fetch, decode

219 | Microprocessor and Microcontroller

instructions and generate control words. In this stage, decoded instructions issue them to two
parallel U and V pipelines. For complex instructions, D1 generates micro-coded sequences for

U and V pipelines. Several techniques are used to resolve the pairing of instructions.
6.6.4 Floating-Point Unit

The 80486DX CPU is the first processor in which the 80387, math co-processor has been
incorporated on-chip to reduce the communication overhead. The 80486 CPU contains a
floating-point unit, but that is not pipelined. The architecture of Pentium processor has been

designed for incorporating on the chip numeric data processor.

—
irstnuction falch [1F) ar Prefeich (PE)
Decode nslructian and Decsde instrucion and
peneraie cordrel wond (D) pensrale pandral woed [E1)
Fipaline LI Pioaina
| | 4}
Dacode congnal woed snd Liecade comirsd word and !
EET'IEI'E'E mernany Address gnmﬂg Ty addres= F‘Eﬂ.ﬁﬂg‘ Faoinl L ﬁ: PLl:-
(D2} [LAED) -
——— REH&H EIH:R
Armss Dads Cacks and Ancess [ada Cache snd ET[0)=8T(7)
Cabculate ALL rgsufl (BX} | Cakulate ALL result (EX) | I
M XF ———
i X /) E
1 . M J :
wF
[Mempner |
- k
|_ I_| _ Divider | |

Fig.6.14: Floating-Point unit of Pentium

The Floating-Point Unit (FPU) of Pentium has an eight-stage pipeline as shown in Fig. 6.14.
The eight pipeline stages are

e Prefetch (PF)

e Decode-1 (D1)

e Decode-2 (D2)

o Execute (dispatch)

o Floating Point Execute-1 (X1)
e Floating Point Execute-2 (X2)
e Write Float (WF)

e Error Reporting (ER)

220 | Microprocessor and Microcontroller

The first five stages of the pipeline are similar to the U and V integer pipelines. During the
operand fetch stage, the FPU fetches the operands either from the floating-point register or
from the data cache. The floating-point unit has eight general-purpose floating-point registers.
There are two execution stages in Pentium such as the first execution stage (X1 stage) and the
second execution stage (X2 stage). In the X1 and X2 stages, the floating-point unit reads the

data from the data cache and executes the floating-point calculation.

Prefetch (PF) The prefetch stage is same as the integer pipeline of Pentium processor.

Decode-1 (DI1) The decode-1 (D1) pipeline stage is also same as the integer pipeline of Pentium

processor.

Decode-2 (D2) The decode-2 (D2) pipeline stage is required whenever the control word from
D1 stage is decoded to complete the instruction decoding. In this stage, it is the integer pipeline

of Pentium processor.

Operand Fetch During the execution stage (E), the floating-point unit accesses the data cache
and the floating-point register to fetch operands. Before writing the floating-point data to the
data cache, the floating-point unit converts internal data format into appropriate memory

representation format.

Floating Point Execute-1 (X1) In the Floating Point Execute-1 (X1) stage, the floating-point
unit executes the first steps of the floating-point calculations. While reading the floating-point

data from the data cache, the floating-point unit writes the data into the floating-point register.

Floating Point Execute-2 (X2) During the Floating Point Execute-2 (X2) stage, the floating -

point unit execute the remaining steps of the floating-point computations.

Write Float (WF) In the Write Float (WF) stage, the floating-point unit completes the execution
of the floating-point calculations and then writes the computed result into the floating-point

register file.

Error Reporting (ER) In the error reporting (ER) stage, the floating-point unit generates a report
about resulting floating point operation and any special situations occurred which it updates in

the floating-point status.

6.6.5 Register Set of Pentium

221 | Microprocessor and Microcontroller

The register set of Pentium processor are shown in Fig. 6.15(a) and 6.15(b). It has the same

register set as that of 80386 processor, but it has two new registers CR4 and TR12 are added in

the register set of Pentium processor as depicted in Fig.6.15 (b).

The control register CR4 controls the Pentium processors extensions for virtual-8086 mode
operation. The CR4 register is also used for supporting the debugger which can support up to

4 Mbyte pages. The test control register TR12 enables the selective activation of new features

of Pentium processors such as branch prediction, and superscalar operation, etc.

In flag register EFLAG of Pentium three new flags are also added. Two flags are used to sup-
port virtual 8086 mode operation and the third flag indicates if the processor supports the CPU

ID instruction. When the processor sets and clears the ID flag, it can execute the CPUID

instruction.

Genaral Furpose Bagralars Irsirociion Pointer
| 'IE_ _|_E a7 i) 2 16 16 i
EAX] | ®f P
EBX BH BL EFLAG Reglsher
[e | = 1 E_ b 615 i
H
e I b |:|1|_=-.G| LA |
EDx OH oL
15 o
E&A E=| . E—
EDI o Eg
0s = :
Epe BF | ES Gegren| Regishirs
F&
ESP &F | aal—

Fig.6.15: (a) Registers of Pentium Processor

Condrol Recpslam Doy Ragstors:
i 1815 a A | 15 15 i
R f ORT
e HiRE
CRZ i
oAt . DRé
R 1 1 DR3
nR2
T et
TR 2 DRD
TR =
TRE
15 131 018 U
TR 755 Balesior TES Basn Addess | TES Limit
LoTR| LOTES Seiecier | LOT Bame Address | LOT Limil
IDAT | IDT @asn Addeass ICT Ll
GDTR | GOT Bese Address | GOT Limil_

Fig.6.15: (b) Control and Debug Registers of Pentium

222 | Microprocessor and Microcontroller

6.6.6 Memory Subsystem in Pentium

The memory subsystem of the Pentium processor consists of the CPU registers, main memory,
cache memory and secondary memory. The main memory unit is 4G bytes in size as in the case
of 80486 microprocessor. However, the main difference in Pentium lies with the width of
memory data-bus. The Pentium uses 64-bit data bus to address the memory which is organized
in eight banks each with a capacity to store 512M bytes of data as shown in Fig. 6.16. As a
double precision floating point number is 64-bit wide, so with a 64-bit memory data bus
Pentium is able to retrieve floating point data just in one cycle. Thus, enhancing its performance
over 486 processor. The range of memory location vary from 00000000H to FFFFFFFFH in
Pentium. Active low Bank Enable signals (BE7bar to BEObar) are used to enable each memory
bank. Each such memory bank is 8-bit wide. These memory banks allow access to one byte,
two-byte, word or double word in one memory read cycle. So, eight separate write strobe
signals are necessary for writing to the memory banks. A new feature is added in Pentium to
enhance its capability to check and generate parity for the address bus during certain operations.
The AP and APCHK-bar pins are used to serve these tasks. As the memory system is 32-bit
whereas Pentium has 64-bit data bus, so to connect with the memory system Pentium uses a set
of bidirectional multiplexers to convert 64-bit data bus into a 32-bit data bus to access the

memory banks.

Cache memory in Pentium is again different from its predecessor 486. The 486 processor uses
a unified cache whereas Pentium uses a split cache. That is, it uses a separate instruction cache
and data cache each of 8K byte size for storing the instruction and data respectively. Thus,

avoiding any cache conflict and enhancing performance over 486 processor.

| SEY FE= A [:1=5] e gE ' HEM

Fig. 6.16: Register banks of Pentium

Memory Management Unit

223 | Microprocessor and Microcontroller

The memory management unit of Pentium is compatible with its predecessor 386 and 486
processors. Many of it features are remained unchanged. Difference is in its paging unit and a
new system management option termed as the memory management mode. Usually, the paging
table becomes too large when the system contains a large memory. In Pentium paging works
with 4M-byte memory pages which dramatically reduces the complexity to a single page table.
Thus, no page table entry is needed in the linear address (unlike a 4K-byte paging) which
eventually is converted to a real physical address. The leftmost 10 bits of the linear address as
in Fig.6.15 selects an entry in the page directory which ultimately addresses a 4M-byte memory
page (a real physical memory). The CR3 in Fig.6.17 holds the root address.

Liresar 2ddrass

M gy [
I [Hrectory [ot
10 b -
4-348 pegps
_Fage dinsciony (b — = Physical adar, |
'

.

W '—I Cemeciony entey - i

% -

2

| CR3 |

Fig. 6.17: Address translation in Pentium from linear to real physical address with no page table

The system memory management mode (SNM) is of the same level as protected mode, real
mode, and virtual mode but it has the privilege to function as a manager. The SNM is not to be
used as an application or a system-level feature. It is intended to be used for high-level system
functions such as for power management and security in most of the Pentiums. The task of
SNM is accomplished via a new external hardware interrupt applied to the SMI-bar pin of the
Pentium. When SMI-bar is activated it disables all other interrupts that are normally handled
by user applications and operating system. The return for the SNM interrupt is accomplished
by the new instruction RSM which returns the program control from the memory management

mode to the interrupted program. Interested readers may refer [2] for more on this topic.

6.7 CISC Architecture

oz moreSey

224 | Microprocessor and Microcontroller

CISC stands for Complex Instruction Set Computer. The design of the CISC processor is based
on an approach so as to complete the whole operation in few lines of the assembly language
code. Most of the Intel processors from 8086 to Pentium belong to CISC architecture, although
they have intelligently added some of the RISC features also. While RISC processor uses the
approach of increasing internal parallelism by executing a simple set of instructions in a single
clock cycle. While he major goal behind the design of CISC is to have such an instruction set
that works well with the tasks and data structures of Higher-Level Languages. The important

features of CISC architecture are highlighted below.

CISC Features

e They have a variable instruction set which includes simple to complex instructions

e Requires a complex instruction decoding

o The task of compiler is reduced as a single instruction can perform the tasks like,
loading, evaluating and storing

e Supports various addressing modes

e Requires more cycles per instruction compared to RISC

e Number of instructions in a given program are less compared to RISC

e Almost any instruction can access main memory

o The operations can be performed in the memory itself thus requiring lesser number of
general-purpose registers

e Less support to instruction level pipelining compared to RISC

o Instructions have variable lengths

e It has a complex addressing modes

e [t uses microprogrammed control thus more flexible compared to RISC

o Finds applications in general-purpose computers

6.8 RISC Processors

RISC is an acronym for Reduced Instruction Set Computer. As the name implies such a
processor has a small but an efficient set of instructions to execute any task or user program.
Its design is based on one instruction per cycle approach. It is basically a load-store
architecture. RISC architecture is based on the design principle of simplified instructions that
can carry out less but fast operations in each cycle thereby improving the performance. Thus,
RISC offer a simplified hardware with lesser chip area and shorter design cycle. ARM series
of processors, IBM PowerPC, SUN-Sparc are some of the RISC processors. Following are the

important features of this architecture.

225 | Microprocessor and Microcontroller

Features

o Itis aload-store architecture, therefore data operations can not be performed directly in
the memory

e Most RISC instructions involve register to register operations that are internal to CPU

e Designed to perform single cycle operation thereby making efficient CPU utilization

o It offers maximization in operating speed; this resultantly reduces execution time.

o It has a fixed length, small set of instructions with uniform format thereby making the
design simple.

o The instruction length is fixed thus supports pipelining

e Uses hard-wared control unit which is very fast compared to microprogram control in
CISC

o Control unit is not flexible

e As the compiler plays a big role to convert complex instructions into many simple
instructions, therefore the performance of the processor depends on compiler.

e As a RISC processor consumes less power and they are high performing in nature so

very much useful for low power, battery-operated portable applications.

6.9 RISC Vs CISC

There are a few characteristics features that distinguishes RISC from the CISC. Following gives

a brief comparison between the two.

1. RISC uses simple instructions whereas, CISC uses complex instructions.

2. RISC thus requires more number of instructions to complete the task whereas, CISC
requires relative lesser instructions.

3. RISC has uniform instruction format whereas, CISC has a variable format.

4. RISC typically has a single cycle execution (CPI=1), whereas, a CISC usually requires
more than one cycle to complete execution (CPI>1).

5. Memory access is limited to Load/Store instructions in RISC, whereas, almost any
instruction can access main memory in CISC

6. RISC uses hard-wared control (rigid) whereas, CISC uses microprogrammed control
(flexible).

7. RISC processors are heavily pipelined whereas, CISC provides lesser support to
pipeline architecture because of complex instruction.

8. RISC processors are much faster compared to CISC (typically 2 to 4 times).

226 | Microprocessor and Microcontroller

6.10 Architecture of ARM Microcontrollers

ARM microcontrollers use ARM processor as its central processing unit in the chip together
with RAM, ROM, timing units and 10O ports. Although ARM series of processors are general-
purpose processors but because of their low cost, low power, high performance and small size
they have been widely used today for portable and embedded applications. So before

proceeding any further, we discuss first the architectural features of ARM.
6.10.1 ARM Processors

One of the most popular RISC processors is the ARM microprocessor. ARM belongs to a
family of processors with the acronym, Acorn RISC Machine which was developed by Acorn
Computers Ltd, Cambridge in UK in 1980s to act as CPU of a personal computer.
Subsequently, the family name had been changed to Advanced RISC Machines. ARM cores
are licensed to business partners so as to develop and fabricate new microcontrollers around
the same processor cores. The design of ARM family of processors aimed at reducing the size,
lowering the cost and to have low-power, intended for applications such as portable computers,
video games, portable digital assistants etc. ARM has progressed through many generations
initially with 26-bit in Version-1, to 32-bit in Version-2 and Version-3 (ARM6 &ARM?7).
Today we have ARM processors of Version-8 with ARM11, ARM Cortex-A50. In 2022, ARM
launched in its new version (v9) ARM Cortex-X2, Cortex-A710 and the Cortex-A510 chips for

smartphones, laptops and smart home devices.
Key Features

e ARM is a 32-bit processor but it also has 16-bit variant called THUMB

o It operates on 32-bit data

o It has a 32-bit address bus

o Basically, it is a Load/store architecture with limited access to main memory

e It has a small instruction set and uniform instructions allowing high code density in its
program memory when used as microcontroller

e It has a large uniform register file

e Maximum size of the memory is 4Gb (2*?bytes) for ARM6 which are byte addressable

e Applies instruction level parallelism (3-stage pipeline architecture) to achieve the goal
of executing one instruction per clock cycle

e Memory and IO share the same address space

227 | Microprocessor and Microcontroller

e Uses memory-mapped 10
Organization of the CPU

The CPU and its organization in ARM processor is shown in Fig. 6.18. It has a 32-bit ALU and
a large register file consisting of 32-bit general-purpose registers. It has several modes of
operation including user mode, supervisory mode and four other special modes associated with
interrupt handling. In the user mode, there are sixteen 32-bit user addressable registers, R0-R15
in the register file. Where, R15 is also acts as the program counter PC, so also the current
program status register designated as CPSR. R14 also acts as the link register to keep the return
address whenever a subroutine is called. The other name of R13 is stack pointer register. Some
other additional registers are there in the register file which are not visible to the user and are
used in other operating modes. The ALU is designed to perform the basic arithmetic operations
on 32-bit integers. It employs combinational logic circuits to perform arithmetic addition,
subtraction and a sequential shifter and add method for multiplication. A powerful shifter
circuit performs multiplication and division. A separate address incrementor circuit implements
address-manipulation operations such as PC=PC+1. In order to have a direct interaction
between data and control registers, ARM has an unusual feature of placing PC and status

register in the register file, although they are part of the PCU.

228 | Microprocessor and Microcontroller

Al310} . control = ™
; | i
— Elﬂtlf:l I‘EES I'EQIStE!II'- N :
- g |
E Incremanter
—"“> register
— =Ty
P —— i instructio

_L) decode
[multiply & |
[W FEQEEE-L} control |

| Barrel £
/ shifter f
_ s i ::!\. I-.' L IE

Li— i

data in reqgister |

ngoT O

weo P
=]

" D[31:0] |

Fig. 6.18: ARM 6 Architecture [Courtesy: ResearchGate]

Apart from these, ARM6 has 32-bit instructions with a variety of formats and addressing
modes. There are about 25 main instructions, each of which can operate on 32-bit operands or
even with 8-bit operands. Operands and addresses are stored in registers which can be referred
by short, 4-bit names. Thus, allowing a single instruction to have as many as four operands
(max). The available address space is shared between memory and IO devices (known as
memory-mapped 10), considering 10, just like a memory. Hence, load/store instructions used
for memory transfers can also be used for IO operations. ARM6 has four status registers,

namely N (negative), Z(zero), C (carry), V (overflow) and such ARM instructions can be

229 | Microprocessor and Microcontroller

conditionally executed, thereby increasing the instruction set to a large number. For example,
MOVCC RI, R2. This instruction will be executed if C=0, then R1=R2. Further, it uses a
powerful shifter known as the barrel shifter to perform bitwise shifting for multiplication and
divisions. Each bit of shifting to the left implies multiplying the number by 2 and each beat of
shifting to the left indicates divide by 2. For example, MOV, RI, R2, LSL#2. It means, left-shift
R2 by 2-bit positions (multiply by 4) and then copy to R1 (i.e. R1=R2x4). It implements
instruction-level parallelism by introducing a three-stage pipeline (fetch, decode and execute)

architecture to enhance the performance up to one instruction per cycle.

Processor Modes

The ARM has six operating modes:

e User (unprivileged mode under which most tasks run)

e FIQ (entered when a high priority (fast) interrupt is raised)

e [RQ (entered when a low priority (normal) interrupt is raised)

e Supervisor (entered on reset and when a Software Interrupt instruction is

executed)

Abort (used to handle memory access violations)
e Undef (used to handle undefined instructions)

ARM Architecture Version 4 adds a seventh mode:

e System (privileged mode using the same registers as user mode)
Apart from 32-bit operations, ARM allows a THUMB processor mode which supports 16-bit
instructions, thereby increasing the code density however, with a reduced performance for
some low-end applications. Usually, a very small amount of RAM is accessible with a datapath
of 32-bit in embedded hardware. Rest of it is accessed by a 16-bit path. Therefore, it is logical
to use 16-bit thumb code and wider instructions can be placed in a memory which is accessible
by 32-bit. ARMTDMI was the first processor to have thumb instruction decoder. Besides, ARM
and THUMB mode of operations, there is yet another mode known as the JAZELLE which
allows the execution of JAVA bytecode in hardware. It is most prominently used in mobile
phones so that the execution speed of Java EM games can be enhanced. The Java virtual
machine performs the complicated operations in software whereas Java bytecodes are usually
run on hardware. The first processor to use Jazelle was ARMO926EJ-S. One of the most
advanced form of ARM microcontrollers is the ARM Cortex, developed using ARMv7

processor. Cortex family is again divided into following three categories,

230 | Microprocessor and Microcontroller

o ARM Cortex-A series

o ARM Cortex-M series

o ARM Cortex-R series
Cortex family of processors use Embedded C language for programming and Keil compiler for
execution purpose. Although most of the ARM based microcontrollers use high-level language
for programming but it is necessary to look at the assembly level instructions and programs to

understand the high performance and capability of ARM architecture.

ARM Instructions

Although there are 25 main instructions in ARMG6 for performing data processing
(Arithmetic/logic Operations), data movement and program control operations, ARM7 and
other higher versions have a few more instructions which allows tasks like, block memory data
transfer, load/store multiple, and coprocessor data processing. These additional instructions
making ARM7 more suitable as microcontroller. Table 6.1 shows the instruction set of
ARM7TDMI. Incidentally, ARM7TDMI also has 25 main instructions. Normal load/store
instructions allow data transfer between a single register and a memory location whereas
load/store multiple instruction allows multiple registers can be loaded with memory contents.

For example,

« LDRRO,RI
« LDRRO, [RI]
« STRRO,RI

o STR RO, [R1]
are some single register load/store instructions. Whereas, instruction of the type,

« LDMIARI, {R2, R3, R5}

o STMIA R9!, {R2, R3,R5}
are some load/store multiple instructions. In LDMIA, IA specifies increment after. There are
another option IB, which implies increment before. {R2-R5} is an alternative way to specify
four registers R2, R3, R4, R5. The symbol ‘!’ indicates auto-incrementation of memory
locations specified by R9. The list of destination registers may contain any or all of RO to R15.
LDMIA R1, {R2, R3, R5} => R2=mem[R1],
R3=mem[R1+4],

R5=mem[R1+8]
Block memory data transfer operations are usually performed using LOOP instructions.

For example, a block of memory containing 128 bytes are to be transferred from memory
location (source) R9 to a destination specified by R10. Whereas, R11 indicates the end

address of the source, then this transfer can be performed by using the following LOOP,

231 | Microprocessor and Microcontroller

Loop:

32 bits or 4bytes and R0O-R7 indicates a total of eight register. So, each time 32 bytes of data

LDMIA RO9!, {R0-R7}

STMIA R10!, {R0-R7}
R9.R11

Loop

Thus, to transfer 132 bytes block data, the loop will run only 4 times as each register can store

CMP
BNE

bytes

//Each register holds 32bits or 4bytes, loading 32

//store 32 bytes
//comparing start and end address of source

transfer will take place. Thus, to transfer 132 bytes, the loop will run for 4 times.

Table 6.1: The ARM7TDMI instruction Set

»

00 N OO O b ON -

10
11

12

13

14

15

16

17

18

19

z
o

Mnemonic

ADC
ADD
AND
B
BIC
BL
BX
CDP

CMN
CMP
EOR

LDC

LDR

LDM

MCR

MLA

MOV

MRC

MRS

Instruction

Add with carry
Add

AND

Branch

Bitwise Clear
Branch with Link
Branch and Exchange
Coprocessor Data
Processing
Compare Negative
Compare

Exclusive OR

Load coprocessor from
memory

Load register from memory
Load multiple registers
Move CPU register to
coprocessor register
Multiply Accumulate
Move register or constant
Move from coprocessor
register to CPU register
Move PSR status/flags to
register

Action

Rd= Rn +Op2+ Carry

Rd: = Rn +Op2

Rd:= Rn AND Op2

R15 := address

Rd := Rn AND NOT

R14 := R15, R15 := address
R15 := Rn,T bit := Rn[0]

(Coprocessor-specific)

CPSR flags := Rn + Op2
CPSR flags := Rn - Op2
Rd := (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

Coprocessor load

Rd := (address)
Stack manipulation (Pop)

cRn :=rRn {<op>cRm}
Rd := (Rm * Rs) + Rn
Rd:=0p2

Rn := cRn {<op>cRm}

Rn := PSR

232 | Microprocessor and Microcontroller

20 MSR Move register to PSR PSR := Rm
status/flags
21 MUL Multiply Rd :=Rm * Rs
22 MVN Move register negative Rd := OxFFFFFFFF EOR Op2
23 ORR OR Rd := Rn OR Op2
24 RSB Reverse Subtract Rd := Op2 - Rn
25 RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry

6.10.2 ARM Microcontroller Pinout

The pin diagram of ARM7 based microcontroller LPC2148 is shown in Fig.6.19. It is a
trademark chip of Phillips (NXP semiconductor). In the development of different
microprocessor-based applications, the designer of embedded systems and SOC (system
on chip) use different processor cores, libraries, and tools. Out of these ARM7 is one of
the best processors for embedded system designers. It has become so much popular in
the last few years. It is easily available in the market. This global ARM7 processor
technology has developed many microcontrollers such as LPC2144, LPC2146, and
LPC2148, etc. But LPC2148 microcontroller is the most famous microcontroller which has
been used currently in different applications such as in automatic braking systems and
mobile phones etc.

The LPC2148 microcontroller consists of 64 pins and the group of these pins are called a
port. It consists of two ports and registers. These ports could be used as input or output
ports therefore the pins of these ports are called GPIO (general purposes input-output)

pins. Following are the details of pins in the chip.

233 | Microprocessor and Microcontroller

PO2OMAT.ISSELIEINTI

1 PO.1SMAT1.2/MOSIICAPY.2
| POARICAPY. IMISO1MATES

=
%
=
-

o
]
m

PO.21/PWMSIAD1.B/CAP1.3 T
PO.22/AD1.T/CAPO.O/MATO.0)~
RTCX1

P1.18/TRACEPKT3

187 P1.20ITRACESYNC

CFA POATICAP.2ISCK1/MATY.2
10 POAGIEINTO/MATO.2/CAPD.2
LY POASIRIMVEINT2/ADA.5

" P4 ZAPIPESTATO

vss ‘Ll voD
VDDA [l 42 SRVET
P1.18TRACEPKT2 [PO14/DCDVEINTI/SDAA
P0.25/AD0.4/AOUT 5] P1.22/PIPESTAT1
o+ o] LPC2148 =11 PO.13/DTRU/MATY.1/ADT.4

D- ~L00 PO2IDSRA/MATL.OMADY .S

P1AT/TRACEPKT [<l POI1/CTS1CAP1/SCLY
PO.28/AD0.1/CAPD.2/IMATO.2 5K =100 P1.23/PIPESTAT2

PO.29/AD0.2/CAPO.3MATO.3 L] <100 POIO/RTS1/CAP1.0/AD1.2

PO.I0ADOMEINTHCAPD.O [
P1ABMRACEFKTO =10 POAITXDUPWMA/ADTA

g 8283 & E'géggﬁ
§ ETER T EicEifs
- gz ggd
= £E8 gsg&

Fig.6.19: LPC2148 Pin Diagram

Pinl (P0.21/PWMS5/AD1.6/Capl.3): It is a general-purpose pin and can be used for four
multiple ways such as it could be as input output data pin, as a pulse width modulation

generator, as an analog to digital converter and as a capture input for timer 1 channel 3.

Pin 2 (P0.22/AD1.7/CAP0.0/MATO0.0): This can also be for used for four purposes. First, as
P0.22 it can be used for input output data pin, second, as AD1.7 it can be used as analog to
digital converter with ADC 1, input 7. Third, as CAPO0.0 it can be used to capture input for
timer 0 and channel 0. Fourth, as MAT 0.0 it can be used to match output for timer 0 and

channel 0.
Pin 3 (RTC X1): Pin3 is used as input pin for RTC oscillator circuit.

Pin 4 (P1.19/TRACEPKT?3): Pin 4 can be as GPIO pin so also as 3-bit input output pin for

inner pull up.

Pin 5 (RTCX2): Pin 4 is used as output pin for RTC oscillator circuit.

234 | Microprocessor and Microcontroller

Pin (6,18,25,42,50): These pins are used as references pins for grounding the microcontroller.

Pin7(VDDA): This pin is used as voltage source pin with 3.3 Volts. These voltages can be

useful for digital to analog conversion and analog to digital conversion.

Pin13 (P0.28/AD0.1/CAP0.2/MATO0.2): This pin is used as a GPIO pin, analog to digital
converter pin for ADC-0 input 1, capture input pin for timer 0 channel 2 and as a match output

pin for timer 2 channel 1.

Pin14(P0.29/AD0.2/CAP0.3/MAT0.3): This pin can be used as a GPIO pin, converter input
pin for ADC-0 input 2, capture input for timer 0 channel 3 and as a match output pin for timer

0 channel 3.

Pin15(P0.30/AD0.3/CAP0.3/EINT3/CAP0.0): This pin can be used as GPIO pin, converter
pin for ADC-0 timer input 3, external interrupt with input 3 and as capture input pin for timer

0 channel 0.

Pin16(P1.16/ TRACEPKTO0): This pin is used as a trace packet pin as well as GPIO pin.

Pin(17,19,20,21): All these pins are used as GPIO pins.

Pin17 is used as UP_LED pin, Pin19 is used as a transmitter output for UARTO and as a pulse
Pin20 is used as a reset pin for JTAG interface. Similarly, the pin2lis uses as receiver input for

UARTO, also as PWM generator for output 3 and external interrupt with input 0.

Pin(22,24,26,27,28,29,30): These are GPIO pins.

Pin22 is used as clock input output, pin 24 is used as CLK output during JTAG interface. Pin
26 is used as matched output for timer 0 channel 0 and as external interrupt for inputl.Pin 27
is used as a serial clock for transferring data from master bus to slave bus and as a
digital converter ADC-0.6 for input 6. Pin 28 can be used as external trigger input with inner
pullup. Pin 29 is used as MISO for transferring data form mater to slave bus and used as a
converter ADC-0 with input 7. Pin 30 is used as MISO output and as a capture input for timer
0 channel 2.

Pin(23,43,51): These pins are used for suppling input voltages to internal core and input

output ports.

Pin(31,32,33): These pins are used as GPIO pins.

235 | Microprocessor and Microcontroller

Pin 31 is used as SSELO, PWM2 and as external interrupt for input 2. Pin 32 is used as a trace
CLK for standard input output port with inner pull up. Similarly, pin 33 is used as transmitter

TXD1 for UART]1 and as a pulse width modulator PWM4

Pin(34,35,36,37): Pin 34,35,36 and 37 are GPIO pins.

Pin 34 can be used as input receiver such as RDX1 for UARTI, as output pulse modulator
such as PWMG6 for output 6, as an external interrupt pin for input 3. Pin 35 can be used as a
request pin for sending request to UART, as a capture input pin for timer 1 channel 1, as an
anlage to digital converter ADC-1 for input 1. Pin 36 could be used as a 2-bit pipeline status
pin for standard input output port. Pin 37 can be used as a clear input pin for UARTI, as a

capture pin for timer 1 channel 1 and as a clear output input pin for 12C bus observer.

Pin(38,39,40,41): Pin 38,39,40 and 41 could be used as GPIO pin.

Pin 38 can be used as an output data terminal ready pin for UART]1, as match output pin for
timer 1 channel 0 or as an analog to digital converter ADC-1 for inputl. Pin 39 can be used as
an input data terminal ready pin for UART1 or an output match pin for terminal 1 channel 1
and as a converter ADC-1 for input 4. Pin 40 can be used a bit-1 pipe line status pin for standard
input output port. While, Pin 41 be used as input data carrier detector pin for UARTI, as

an external interrupt pin for input 1 and as an input output open drain pin for 12C bus observer.

Pin(44,45,46,47): These pins are also used as GPIO pin.

Pin 44 is used as a bit-0 pipe line pin for standard input output port. Pin 45 can be used as an
input ring pointer pin for UART1, as an external interrupt pin for input 2 or as a pulse width
modulator generator ADC-1.5 for input 5. Pin 46 can be used as external interrupt pin for input
0, as a match output pin for timer 0 channel 2 and as a capture input pin for timer 0 channel 2.
Pin 47 can be used as capture input pin for timer 1 channel 2, as a serial CLK pin for sending

output from master but to slave bus.

Pins 49, 50, 51, 57, 59, 61, 62, 63 have their usual functionality as specified in the pinout. Rest
of the pins work in a similar manner as specified earlier. For more details, interested readers

may refer https//microcontrollerslab.com.

6.10.3 GPIO configuration

236 | Microprocessor and Microcontroller

Most of the pins of I/O ports in LPC2148 have more than one function i.e. they are multiplexed
with different functions. Any pin of the LPC2148 can have a maximum of 4 functions. Hence
in order to select any one of the four functions, two corresponding bits of the PINSEL register
are needed. So, a 32-bit PINSEL register can control 16 pins with 2-bits to control each pin.
PINSELO controls PORTO pins P0.0 to P0.15, PINSEL1 controls PORTO pins P0.16 to P0.31
and PINSEL2 controls PORT1 pins P1.16 to P1.31.

The default function of all the Pins is GPIO. But it is a good programming practice to specify
“PINSELO0=0" in order to select the GPIO function of the Pins.

GPIO function is the most frequently used functionality of the microcontroller. The GPIO
function in both the ports are controlled by a set of 4 registers: IOPIN, IODIR, IOSET and
IOCLR.

IOPIN: 1t is a GPIO Port Pin Value register and can be used to read or write values directly to
the pin. The status of the pins that are configured as GPIO can always be read from this register

irrespective of the direction set on the pin (Input or Output).

The syntax for this register is IOXPIN, where ‘x’ is the port number i.e. IOOPIN for PORTO
and IO1PIN for PORT1.

IODIR: 1t is a GPIO Port Direction Control register which is used to set the direction i.e. either
input or output of individual pins. When a bit in this register is set to ‘0’, the corresponding pin
in the microcontroller is configured as input. Similarly, when a bit is set as ‘1°, the

corresponding pin is configured as output.

The syntax for this register is [OxDIR, where ‘x’ is the port number, accordingly, IOODIR is
for PORTO and IO1DIR is for PORT1.

IOSET: 1t is a GPIO Port Output Set Register and can be used to set the value of a GPIO pin
that is configured as output to High (Logic 1). When a bit in the IOSET register is set to ‘1°,

the corresponding pin is set to Logic 1. Setting a bit ‘0’ in this register has no effect on the pin.

The syntax for this register is IOXSET, where ‘X’ is the port number, so, IOOSET is meant for
PORTO and IO1SET for PORT]1.

IOCLR: 1t is a GPIO Port Output Clear Register and can be used to set the value of a GPIO pin
that is configured as output to Low (Logic 0). When a bit in the IOCLR register is set to ‘1°,

237 | Microprocessor and Microcontroller

the corresponding pin in the respective Port is set to Logic 0 and at the same time clears the

corresponding bit in the IOSET register. Setting ‘0’ in the IOCLR has no effect on the pin.

The syntax for this register is [OXCLR, where ‘x’ is the port number i.e. IOOCLR for PORTO
and IO1CLR for PORTI.

An important point to be remembered here is that since the LPC2148 is a 32-bit microcontroller,
the length of all the registers mentioned is also 32-bits. Each bit in the above-mentioned
registers is directly linked to the corresponding pin in the microcontroller i.e. bit ‘a’ in IOOSET

corresponds to Pin ‘a’ in the PORTO.

Moreover, registers in LPC2148 follow Big Endian format. So, bit 0 is the LSB on the extreme
right of the register and bit 31 is the MSB on the extreme left of the register.

Also, when reset, all the pins are set as GPIO pins and the direction of each pin is set as Input.

For more details refer [3].

6.11 Interfacing LED with LPC2148 MCU

We can write a high-level program to interface LED devices and to turn on/off the LEDs. First,
the PORT1 pins are configured as outputs using IO1DIR register. Then in an infinite loop, the
pins (or LEDs connected to them) are turned ON using IO1SET register and turned OFF using
IO1CLR register. A delay is introduced between the turning ON and OFF of the LEDs using a
“for” loop, so that the blinking of LEDs is visible. Figure 6.15 shows the LED connections to
ARM-based MCU. The ARM7 LPC2148 advanced development board has eight numbers of
point LEDs, connected with I/O Port lines (P1.16 — P1.23) to make port pins high.

238 | Microprocessor and Microcontroller

L
BEER
ym BREP-
—l i -
e LE@E
L] g1 (] i |
N 11| e R
g]%] MR
17| (ERTH — NN il
1 FEEL L i
W | Taas - ay g wmtaa | g T .
| EAAA PELAE p —_—— * | e oy = |||
3 bt i o - i I— : —ady
:|-|||.‘.. '—:'-F...'— :' | wy |+ ':l":l
ea s | = 1 (EEHLY
[Py L MY | TN e — =, 3
I . Ildg_i.‘ | e ey =
pam e e
LY
e iaar 1
= T gLt
E £ P L | Y.L S POUIT LEDE
- (T
= H

Fig.6.20: Interfacing LED to Microcontroller {Courtesy: Pantech Prolabs]

The following program will blink the LEDs repeatedly that are connected to PORT]1 pins of
the MCU.

#include <Ipc214x.h>

int delay;

int main (void)

{

PINSEL2 = 0x00000000;

IO1DIR = OxFFFFFFFF; // All the pins of PORT1 are configured as Output
while (1)

{

IO1SET = OxFFFFFFFF; // Set Logic 1 to all the PORT]1 pins i.e. turn on LEDs
for (delay = 0; delay<500000; delay++)

IO1CLR = OxFFFFFFFF; // Set Logic 0 to all the PORT1 pins i.e. turn off LEDs
for (delay = 0; delay<500000; delay++)

}

239 | Microprocessor and Microcontroller

return O;

}
Summary

In this chapter, we have gone through the architectural features of some of the advanced
processors. We have understood what is instruction pipelining and superscalar execution. We
have also seen their differences. Then we have introduced the concept of cache memory-why
it is so important in enhancing the performance of a processor. That is why cache is a unique
feature in advanced processors. We have come across the terms-cache hit, cache miss and
penalty. We have also noted the classification of cache memories, cache organization. Concept
of virtual memory and memory mapping are also explained. Next, the architectural features of
Intel family of advanced processors, namely, 80286, 80386, 80486 and Pentium are explained
thoroughly with diagrams, considering their CPU, register sets, instructions, addressing modes,
address translation and memory management. Then, a detail architectural concept of one of the
most popular RISC processor-the ARM processor is explained before discussing on ARM
microcontrollers. We have also provided a clear concept of RISC and CISC processors and
compared the two architectures. ARM7 based microcontrollers have been explained next with
pin diagram. GPIO and configuring the GPIO is explained next. Finally, how to interface a
ARM microcontroller with LED devices is then explained with a circuit diagram as well as

with a high-level program.

Review Questions

—

What do you mean by instruction pipelining?

What is superscalar execution?

In superscalar processor CPI can be less than 1. Say ‘Yes’ or ‘No’.
Compare between pipelining and superscalar execution.

What is a cache memory?

Define cache tag, cache hit and cache miss penalty.

How can you classify cache memories?

Define virtual address and address mapping.

How do you find 80286 different from 8086 processor?
10. First 32-bit processor is 286/386/486 or Pentium. Pick the correct answer.

$ © =N kv DD

240 | Microprocessor and Microcontroller

11. Concept of virtual memory and memory management unit was first introduced in which
Intel processor?

12. Which of the Intel processor has 5 stages of pipeline?

13. Pentium is a pipeline or a superscalar processor?

14. What is the size of the cache in Pentium? Is there any L2 cache in Pentium?

15. Write the full form of ARM.

16. How many instructions are there in ARM6 and how many status registers?

17. Why the architecture of ARM is called a load/store architecture?

18. Can ARMS6 processor perform load/store multiple instruction?

19. What is a THUMB mode of operation in ARM?

20. Which of the ARM series processor is useful for ARM based microcontroller design?

21. How many pins are there in LPC2148? How many ports are it?

22. What is GPIO? Which register is needed for configuring GPIO?

23. How to set GPIO port as input or output?

REFERENCES

1. John P. Hayes. Computer Architecture and Organization. McGraw-Hill International
Editions, 1998

2. Barry B. Brey. The Intel Microprocessors, Architecture, Programming and Interfacing. PHI,
2004, 6™ Edition, Copyright 2003.

3. https://www.electronicshub.org/arm-gpio-introduction

241 | Microprocessor and Microcontroller

Appendices: Experiments and Laboratory Manual

242 | Microprocessor and Microcontroller

Appendix A

List of Laboratory Experiments

Experiments to be conducted in the Microprocessors and Microcontrollers Laboratory are:

N

XN AW

9
1

0.

Configuration and Usage of Integrated Development Environment
Implementation of Arithmetic and Logical Operations to Verify Different Addressing
Modes

Interfacing of LED and 7-Segment Display

Interfacing 16X2 Liquid Crystal Display

Interfacing 4X4 Hex Keypad

Interfacing of DC Motor to Explore Variable Speed

Interfacing of Stepper Motor to Explore Variable Speed
Interfacing of ADC

Interfacing of DAC

Implementation of Communication by Using RS-232 Standard

11. Implementation of 12C Protocol
12. Interface of LEDs with GPIO of ARM7TDMI Processor

243 | Microprocessor and Microcontroller

Appendix B

Installation guidelines and introduction to IDE

1. Aim: To configure and use integrated development environment for 8051
microcontroller.
2. Objective: This experiment can be done in two steps.
e Download and install the required Integrated development environment (IDE)
i.e Keil C51 pVision in this case.
e How to configure it for simulating the code for a given case.

Keil C51 Development tools

There are several integrated development environments (IDEs) available for 8051
microcontroller programming.

o Keil pVision is a popular IDE for 8051 development that includes an assembler, linker,
and debugger. It also includes a simulation environment for testing code before it is
uploaded to the microcontroller.

e A unique feature of the Keil pVision IDE is the Device Database™ which contains
information about more than 3500 supported microcontrollers. When you create a new
uVision project and select the target chip from the database, uVision sets all assembler,
compiler, linker, and debugger options for you. The only option you must configure is
the memory map.

Install Keil C51 software for accessing Keil pVision IDE:

Step 1:
Download Keil C51 development tools from official website:

https://developer.arm.com/Tools%20and%20Software/Keil%20PK51

Step 2:

Double click on the .exe file downloaded from the above link.

244 | Microprocessor and Microcontroller

Welcome o Keil gWizion

s i ArmekeiL

The SETUP progam rizlal
Keil CH1 Yerzsion 9.61

This SE TUP progeam mag be izesd o updsts & passvious product instailston
H o e pou showdd make a backud cooy belone pocesding.

I = mecommerced thal pou esal ol Windows progrars behore conbirung #alh SETLR
Fiollos: Era mpmachons o complebe Fe product g lalabon

L Lares

Click on Next tab to proceed to installation.

setup Keil £57 Version 261

Lioense Agesmend

Fleace iand the iobowing icence agesmert cansiily q r m KEIL

To contrae wth SETUP, vou must accegt the leres of te Licerss Agreement. To accep! the
agraamant, chick the check bow below

EMD USER LICENCE AGREEMENT FOR ARM KER S0FTWARE DEVELOPERERMT A
ToOOLS

THIZ END USER LICENCE AGREEMENT FUCEMCE™) 19 A LEGAL AGREEMENT
BETWEEN YOU (EITHER A SINGLE INDIVIDUAL. OR SINGLE LEGAL ENTITY)} AND
Al LIATED ["ARNT) FOH THE USE OF THE S0FTWARE ACCOMPANYING THIZ
LICEMCE ARM 15 OHLY WILLING TO LICEMSE THE SOFTWARE TO YOU OM
CORDIMON THAT YOU &CCEPT ALL OF THE TERME IHN THIE LICENCE BY

I¥ | ages to ol the lems of the preceding Licerse Agreemsnl

| <o Back Pt = | Cancsl |

Read the terms of the preceding License Agreement and check the box then click on Next tab.

245 | Microprocessor and Microcontroller

Fobdar Seleciion
Sel=cl the lclder where SETUP vall inskal Hag a r m KE I I.

SETUP wall westall i izion in 1he folowang fakde

To wetal o tr folder, prece Ted. Torstal o 8 dflersn! (okder, e Beomee' and selec] snolles
feddar

Diestration Folder

|C Kl w3 Browss .

% Back Plesd > Carca

Select the folder to install the setup.

S2tug Ked C51 Verdion 9.61

i ril
T:HT:F:IE::::mrJhn q r m KEl |—

Fleate erbe yong name. The nama ol Fhe cormpasny S0 whom pou work aned your -l sddieze

Fiatt Mame; gt

s F
Company Mame; h

E-mal Py

¢ Bisck Mzl 22 Coancel

Fill up the required details to move on to the next step.

246 | Microprocessor and Microcontroller

Setum Kesl L51 Version %ol

Selup Slalus a r m KE lL

pMizion Selup s pefomindg tee regae dhed opesahons

Irizbadl Folss
Irishalling WFTC A2 W

i Back Iu_- I Cancs] |

It will take two to three minutes for the installation to complete.

Cetup el 51 Version 256

Eeil pWizion Getup completed
-R-B-J[.Elh"far:mrtﬂﬁl d rm KE”.

pWisen Sehop s pefaimed sl requeetted operabons 2 ecesstuly

[~ [Ehaw Aelesss Notes!

I Add esampbe piojects 1ot pecenily weed project k.

I" Firish]

At last Finish the installation window will appear as shown.

So, the installation of the Keil pvision is successfully completed.

Set Up Keil C51 for 8051 Microcontroller Simulations

The 8051 is a powerful microcontroller. Keil C51 Integrated development environment
(IDE) is used to write and test code before embedded into microcontroller.

247 | Microprocessor and Microcontroller

e To transfer code from the PC to the flash memory (a process also known as “burning”),
generating the hex file is essential.

o To create this file from assembly-level code or any other high-level language like C you
need an IDE that has a compiler that will do this job for you.

e Keil pvision C51 IDE is used for writing code for 8051. It’s a free IDE for 8051 related
embedded development and is a very popular simulation platform as well.

e You can simulate the code written in the IDE to see the transfer of data in memory
locations and registers making it a great tool for simulation. It has advanced debug
capabilities too that makes it extremely powerful for testing.

To generate the hex file the IDE follows the following steps:

e [t generates a .asm file and sends it to the assembler.
e The assembler generates two files from this. A .Ist file and a .obj file.
e In the next step, a process known as “linking” connects the .obj file to others.obj
files
e Conversion of the object files to a .hex file.
The hex file can then be burnt into the flash memory of the 8051 using an ISP hardware
programmer.

Step 1: Click on the Project dropdown menu and then click on New pvision Project.
Mg ol e e |
mmmhﬂ.ﬂmmmmmtﬂmwhm
o @ e hg |
i n-l_-mnva'm_

e g ek
Cheit Wegsl)

i
§
i

AP WA SERE TR BT

Step 2: Create a new folder at any suitable location on your computer where you wish to keep
all project files. In our case it is \thispc\desktop\8051. Create a new project file at this location
and click on Save.

248 | Microprocessor and Microcontroller

LR a
it e B sl Fteeria e el sl 1

igd@ A un|os|==/rannEesd s Bar & e @ |\l N

3 -5 | | FEA R e]

w‘ ii

- awrrh 2541

& Domelandn
3 bhusic

& Biiises
B et
s Sl D 2}

AP, WA SCR TR B

Step 3: Select the microcontroller of your choice in the new pop-up window. In our case, it is
the AT89C51. Now press Ok.

Ll st MLttt el v .
LR N IR AN 1E S R Easf@ec e lEN
¥ e Znowi- o | K| ey Enlbhresrim

L

[7 Use Eatncad e L Tirwtend of BLST

el T e

o (i i it TR ek i 37 L0 Lo,
Meriy Lok P M.
(T2 Bytes O il

AP WA BRI B

Step 4: Click on NO in the pop-up window that appears next. We will do this step manually.

249 | Microprocessor and Microcontroller

[T T e ap———— -
P Eem Yew Propest Amn Debug Meighemn Tash BOL Yendaw Hep

Nl W@ AR e | e PARN|EEE N Hds & e o aBES

3 Wi on | | gy ol R e .

[-

. WABA SR TR WA

Step 5: Create a new file by clicking on the new file button in the top right corner.

s Qe oS- %

‘Emadsiien A A SR T

Step 6: Write your code in the newly created file.

250 | Microprocessor and Microcontroller

B Lom Yww Poed fmh Dvbag Pwigheme lash O Wendaw Hep

JH R s e E o R R B Y
- gt | Tl ok e
Fngect V8 e . x
T Prowet: euemple T POV A, BER Moves BBH rle Use sioselabos (89 4n deslesld
% i Targat | MO B, Fover A dnko tha sccumilator(Td in decimlj
R00 kWY Aty the value Stieed 10 th Rocumilitor wEEh ~eRlsfes ML and sbared whe Fesult 10 whe sctumilatad
LS ” TR T a
@

B LR

Smaishcn LG

Step 7: Save the file in your Project folder. The extension to be used is .c for ¢ code and .asm
in case of assembly-level code. As we are using assembly-level code we use .asm here.

P R — i —r
;3.' q-- = _ == A —
e 5 -
= 5
——

Step 8: Click on the expand (plus) sign next to Target 1 and then right-click on Source group
1. In the options box, click on Add Existing files to Source group 1. This adds the new file
that contains your code to your Project file.

251 | Microprocessor and Microcontroller

T ORW e e hEr EE WNSHS B D S
bl i o L K o] i & w00l e &
TN - o = B

[T | p T +

1 b s o=, g

[Ty L

Step 9: Select the file you created and add it here. Now you have a Project file with its
constituent code files. All the other files that will be generated will be present in this Project
folder.

L]
Wi Bem Uww Prejest Maih Debug Pmigheas Tash DAL Wndew Help
LT " P TEN BRI
(O - [— o O Y P
L - B pre—— e
1. Progiet srmple T > TTET: T — _
i Target | 2407
[S g 1 ARtar omllizas wice seplates R e stofes the seeslc bn the accowilst

Bty
[tpe—

| | mmreplal s
[

| Forwme el am

I fad vee :-h-..l--_l--

8 e P

L @

Lmadshicn LICA%

Step 10: Right-click on Target 1 and then select Options for Target “Target 1”.

252 | Microprocessor and Microcontroller

i Eom Yww Pojett b Ovbug Peigherel Tash TCI Yendew Help
E N Lo L B E] SHE B80S R E A
e i | agay a0 X el

Frojest)

15, Froweet: wemple WY &, B
R Gutue o T T 1 T

g 1 narmpintavm = = S

i G
b Maage Proieet bom
Y Faberds afl argat file
L ik Taigen "

| s riame Fir Depesdenins

Carfigars lagwi opfier Gmuidicn LIC

Step 11: In the new dialog box, click on the Output tab and then check the box in front of the
Create hex file option.

o
mM fem Vww Pojent Amn Gebug Pmphean e SCL Wrndew Hep
S nlaw s B | =3RRI B DY
i | g N] & =
Prageat g 1 enmmpie s - R
% Frot el N NT T, MAMET Tionas. L8 INEs Bhs 8 OreseietreIBE oh ecime:
i Targai 1 Mo EL, AveAr
5 e Gy 1 MR,
2 emghiie |- i T Em!u— CEF | St | B Liscae | BLS1 s | Dbu | Dbt |
| IRV ¥ EN. - | [T S —
I T Creste fmcutsiee Dhpsciy g
| [~ - [
Tee cEa e Mikfoms [FEXE =l
|
‘ " Dbjcir snersis T O B Pl
|
|
| e [[|

Rilu—) | = , J

§A|ﬂ v i, © »

b deatmid = @

Lmadshicn LICA% JLBA BT TE

Build the project by pressing F7 on your keyboard and if there are no errors in your code the
hex file will be in the objects folder of your project folder.

Simulating code using Keil pvision:

As mentioned earlier we can use Keil to simulate our code. Let’s do that by clicking on the
magnifying scope symbol in the toolbar.

253 | Microprocessor and Microcontroller

Mu Eem Yww Pojet fmh Debug Peisheas lash BTI Wndew Help

A A ul o r == FERAN[EEn G T ST Ol LS

S U i | 0| e ﬁﬁ!‘i"‘.

o tagat 1

'ﬂi._ Zn [{TE

‘Bmuishcn AP WA SCRL T B

Once you click here after compiling your code you can see a step-by-step execution of your
code.

Conclusion:

Now you can learn assembly language programming/embedded C with 8051 without
actually needing a kit. Just take up any sample programs, compile them, and run the simulation
tool. This is a great exercise in learning the working of instructions from a close perspective.

254 | Microprocessor and Microcontroller

APPENDIX C

Laboratory Manual

In the following, a detailed systematic procedure for carrying out laboratory experiments 2 to
12 are given. Assembly language programs as well as corresponding Hex codes (both for
8085/8051) are given for most of the experiments in a ready to use manner for the students.
However, experiment 12 is to be performed using Keil Software, thus written in assembly
language. These experiments are already tested and verified by executing the programs in an
appropriate microprocessor or micrcontroller kit. The hardware and/or software requirement
for performing each of the experiments are also specified.

EXPERIMENT # 2

1.1 Name of the Experiment: To verify Different Addressing Modes

1.2 AIM: Implementation of Arithmetic and Logical Operations to verify different addressing
modes

1.3 Equipment needed: Power Supply, adapter, Microprocessor Trainer Kit

1.4 Program to illustrate Immediate Addressing, Register Direct and Implicit Addressing
with Arithmetic operation

Assembly Language Program Hex Code
MVI B, 4FH //immediate address 06H

4FH
MVIC, 78H //Immediate address 0EH

78H
MOV A, C //Register direct 79H
ADD B //Mmplicit address 80H
STA 2080H //memory direct 32H

80H

20H
HLT 76H

Program Execution

Before executing the program, we need to load the hex codes in memory locations in a
sequential manner. For example, if the starting address is 2000H where code 06H will be
loaded, then the memory locations for the rest of the codes will be 2001, 2002, 2003, 2004,

255 | Microprocessor and Microcontroller

2005, 2006, 2007, 2008, 2009 where 04F, OE, 78, 79, 80, 32, 80, 20, 76 will be loaded and
saved. Then we need to instruct microprocessor for specifying the starting address. This is done
by loading 2000H. And then once the Execution Key is pressed, the microprocessor loads
2000H in the Program Counter and the program control is transferred from the Monitor
program the user program. The result will be available at 2080H location (which is 4F+78=C7).

1.5 Program to illustrate Indirect addressing

Assembly Language Program Hex code
LXI H, 2050H //immediate 11
50
20
MOV A, M //Indirect address 7E
ANI OFH //immediate E6
OF
STA 2060H //memory direct 32
60
20
HLT 76
2050 08
2060 00

Program Execution

Just like previous program, we first load the hex codes to memory locations in a sequential
manner. We can start with 2040H to save 11. Similarly, rest of the codes will be saved in
memory locations 2041, 2042, 2042, 2043, 2044, 2045, 2046, 2047, 2048 and 2049
respectively. Moreover, memory location 2050 will store an initial value of 08H and in 2060,
result will be stored which initially contains 00H. We then instruct the microprocessor to
execute. Before that we need to load starting address, which is 2040H. And then once the
Execution Key is pressed, the microprocessor loads 2040H in the Program Counter and the
program control is transferred from the Monitor program the user program. The result will be
available at 2060H (which 08 AND OF = 08H).

1.6 Conclusion: Results are verified in microprocessor kit. This implies that the addressing
modes are correctly implemented in the program.

256 | Microprocessor and Microcontroller

EXPERIMENT # 3a

1. Name of the Experiment: Interfacing LEDs for Displaying Binary Data

2. Hardware needed: one 8-input NAND gate, one NOR gate, and a 7475 D-type latch
with 8085 trainer kit

3. Objective: To interface LED output port for displaying binary data from accumulator

4. Circuit Diagram

i Vee = 5V
ir I
AT
HE 10 Address Pulse]
% 0
a4 [Crata)
Az
Al i T Device Select
i1 10 Write ['OW
P _I_I_ Pulig
[10 Address QH] _m_

5. Circuit Operation
Lower-order address lines of the 8085 are used to generate the enable signal for the D-latch.
For this, address bus A7-Ao is decoded with an 8-input NAND gate. The output of the NAND
gate goes low only when all the inputs are high i.e. when the address is FFH (or 01H as specified
in the diagram). The output of the NAND gate is next combined with the IOW-bar control
signal with a NOR gate to generate the select pulse or the enable signal, IOSEL for the D-latch.
In the meantime, the contents of the accumulator have been put on the data bus. The IOSEL
pulse activates the D-latches and the data are now latched and displayed in the LED device.
bus

6. Program

Mnemonics Hex code
MVI A, DATA 3E
DATA
OUT FFH D3
FF
HLT 76

7. Program Execution
Once the program is executed, LEDs will glow as per the binary data. LED will glow with 1
and remain OFF with a binary 0.

8. Conclusion: The LEDs thus got interfaced with 8085

EXPERIMENT # 3b

1. Name of the Experiment: Interfacing seven segment display with 8085
2. Hardware requirement: NAND gate, NOR gate, NOT gate, Latch, 7-segment
displays, limiting registers

257 | Microprocessor and Microcontroller

3. Circuit Diagram:
(a) interfacing 8085 with 7-segment display

o7
AT e— E
A —d I Bddress Pulse AT
it o ol
ha _I_]_ [Crata of A) I
A3 Ane— 8
‘;": 10 Write TOW Device Select [Currant I

Pulse Limiting =5
Al —— c W
_!_I_ | i Registers]

(10 Address EFH],

4. Program:

Mnemonics Hex Code
MVI A, DATA 3E
DATA
OUT EFH D3
EF
HLT 76

5. Program Execution: Once the program is executed, LEDs will glow as per the binary
data. LED will glow with 1 and remain OFF with a binary 0.

6. Conclusion: Seven segment display devices got interfaced with 8085

EXPERIMENT # 4

1. Name of the Experiment: Interfacing 16x2 Liquid Crystal Display with 8051.
2. Hardware requirement:

e AT89CS51 (8051 Microcontroller)

e 16X2 LCD Display

e 11.0592MHz Crystal

e 2 X 33pF Capacitors

e 2 X 10 KQ Resistors

e 1 KQ X 8 Resistor Pack

e 10 KQ Potentiometer

e 330Q Resistor

e Push Button

e 10uF/16V Capacitor

e 8051 Programmer

e 5V Power Supply

258 | Microprocessor and Microcontroller

e Connecting Wires
3. Circuit Diagram:

Ihed LLIT

E.
]

|

|

e 3

2

g

|

o m—
- =g iR |28
I—“T ETae el
i = zm
sor |14 praies ey
| =3 i [
Rl T |
| EET -
e } B ar 2
-T - o 5 Rl =i -
] LG
Ty F PN ﬁ
PAEEN
o gt
Pk
e
Paam
e P EATE ¥ [11
] B T % HTHE =
e L] PE S —:i
. =2 any [
) e |2
i) AT j
-] =ra -] L
. A i

4. Program:

0000 HERE: MOV A, #38H
0002 ACALL CMND
0004 MOV A, #0FH
0006 ACALL CMND
0008 MOV A, #06H
000A ACALL CMND
000C MOV A, #01H
000E ACALL CMND
0010 MOV A, #080H
0012 ACALL CMND
0014 MOV A # '

0016 ACALL DISP
0018 MOV A, #H'
001A ACALL DISP
001C MOV A, #E'
001E ACALL DISP
0020 MOV A, #L
0022 ACALL DISP
0024 MOV A, #L
0026 ACALL DISP
0028 MOV A, #0'
002A ACALL DISP
002C SIMP HERE
002E CMND: MOV P2, A
0030 CLR P3.5

259 | Microprocessor and Microcontroller

0032 CLR P34
0034 SETB P3.3
0036 CLR P3.3
0038 RET
0039 DISP: MOV P2, A
003B SETB P3.5
003D CLR P3.4
003F CLR P3.3
0041 SETB P3.3
0043 RET

END

5. Execution and Results:
After executing the code, we can observe the text string shown in the 16x2 LCD display
“Hello”.
We can also write a program in C for interfacing LCD to 8051 microcontroller.

EXPERIMENT # 5

1. Name of the Experiment: Interfacing 4x4 Hex Keypad with 8051.

2. Hardware requirement: 8051 AT89S51 microcontroller, 4x4 Hex keypad, capacitors,
resistors, 7 segment LED display and power supply.

3. Circuit diagram:

L G
1 .
s !, 4
W oo | L
| | - | 1| | | 1 B0 - el ;’ LT
ol L R .“. :: i Ly 5T I .
1] A3 5 .\.3-_
|"_|i|_’llll A2 3 = p
&1 Pa <
|-'|"-|3||':'|".- B & -
ey b e o [H'I'- - _.-\.'*'f‘-:-*v_ e | BT sk
E ||'|_| LI |l| i i 1 [ﬂ_._'-_.":_,.',,.-—l- — h
= TR MES el —-_.H:.-:_.-,_.-I |
[11
F i .
P ".-"\:.-:-.-"-\.-'r :

4. Program:

MOV DPTR, #LUT // moves starting

address of LUT to DPTR CLR P12

MOV A, #11111111B//loads A with all 1's JB P1.4, NEXT9
MOV PO, #00000000B // initializes PO as MOV A, #8D
output port

BACK: 1\'/IOV P1, #11111111B // loads P1 ACALL DISPLAY
with all 1's

260 | Microprocessor and Microcontroller

CLR P1.0 // makes row 1 low

NEXT9: JB P1.5, NEXT10

JB P1.4, NEXT1 // checks whether
column 1 is low and jumps to NEXT1 if not
low

MOV A, #9D

MOV A, #0D // loads a with 0D if
column is low (that means key 1 is pressed)

ACALL DISPLAY

ACALL DISPLAY // calls DISPLAY
subroutine

NEXT10: JB P1.6, NEXT11

NEXTI1: JB Pl..5, NEXT2 // checks MOV A, #10D
whether column 2 is low and so on...
MOV A, #1D ACALL DISPLAY
ACALL DISPLAY NEXT11:JB P1.7, NEXT12
NEXT2: JB P1.6, NEXT3 MOV A, #11D
MOV A, #2D ACALL DISPLAY
ACALL DISPLAY NEXT12: SETB P1.2
NEXT3: JB P1.7, NEXT4 CLR P1.3
MOV A, #3D JB P1.4, NEXT13
ACALL DISPLAY MOV A, #12D
NEXT4: SETB P1.0 ACALL DISPLAY
CLR P1.1 NEXTI13: JB P1.5, NEXT14
JB P1.4, NEXTS5 MOV A, #13D
MOV A, #4D ACALL DISPLAY
ACALL DISPLAY NEXTI14: JB P1.6, NEXT15
NEXTS5: JIB P1.5, NEXT6 MOV A, #14D
MOV A, #5D ACALL DISPLAY
ACALL DISPLAY NEXT15: JB P1.7, BACK
NEXT6: JB P1.6, NEXT7 MOV A, #15D
MOV A, #6D ACALL DISPLAY
ACALL DISPLAY LIMP BACK

NEXT7: JB P1.7, NEXT8

DISPLAY: MOVC A, @A+DPTR //
gets digit drive pattern for the current
key from LUT

MOV A, #7D

MOV PO, A // puts
corresponding digit drive pattern into
PO

ACALL DISPLAY

RET

NEXTS: SETB P1.1

LUT: DB 01100000B //Look up table
DB 11011010B //starts here
DB 11110010B
DB 11101110B
DB 01100110B
DB 10110110B
DB 10111110B
DB 00111110B
DB 11100000B
DB 11111110B
DB 11110110B
DB 10011100B
DB 10011110B
DB 11111100B
DB 10001110B

261 | Microprocessor and Microcontroller

DB 01111010B
END

5. Program execution and Results:
After executing the code the key which is pressed will be shown in the seven segment LED
display connected to it.

EXPERIMENT #6 & 7

DC Motor Speed Control with 8051 and Stepper Motor Clockwise and Anti Clockwise
Rotation

PART NO: PS-ACC-DC-STEP PS-ADD-ON, card (from Pantech ProLab, Chennai) has
facility to interface Stepper motor and DC motor. User could evaluate motors features with
easily with the interface card. Separate PBT connectors for motors terminations. Motor could
be driven by h-bridge drivers. All motor lines and power lines are terminated by the 20pin
connector.

SPECIFICATIONS

e Stepper Motor o (Angle control / Clockwise/ Counter-clockwise)
e DC Motor controlled with PWM Control

o Direction and speed control

e Motor control line and Power lines terminated at box connector
e 20-pin FRC Cable o To connect host boards (Microcontroller/Processor)
CARD FEATURES

e 5V Stepper Motor

¢ 5V DC Motor

¢ Motor Driver Unit

e Terminal connectors

e 20-pin Box Connector

STEPPER MOTOR

e Step Angle (0) : 1.8

e Motor Length (mm) : 34

e Holding Torque (g.cm) : 1300

e Lead Wire (NO.) : 6

e Rated Current (A) : 0.3

262 | Microprocessor and Microcontroller

e Phase Resistance (ohm) : 40

e Phase Inductance (mH) : 20

¢ Rotor Inertia (g.cm 2) : 20

e Motor Weight (Kg) : 0.18

DC MOTOR

e Voltage : 6.0V (Range: 1.5 -12.)
e Speed : 2,700(Y A10%) rpm (No)
e Current : 0.02A (No)

e Torque : 5.88§ mN. M

KIT INCLUDES

e Motor Interface Card (with Stepper/DC Motor)

e Interface Cable

HARDWARE DESCRIPTION

e STEPPER MOTOR Bipolar Stepper Motor driven by h-bridge driver, facility to connect
external power supply to the motor. 5V Stepper Motor speed, direction (clockwise/counter-
clockwise) and angle rotation through user program.

e DC MOTOR 5V DC Motor speed has controlled through PWM signal. Motor can run both
clockwise/counter clockwise, Motor speed controlled by varying ENA (duty cycle) signal

through the program.
IN 8051 WE HAVE SINGLE 8255

e J1 8255

PORTS ADDRESS
Control port 4003H
PORT A 4000H
PORT B 4001H
PORT C 4002H
PROCEDURE:

e Connect a 20 Pin FRC cable between the 8051 Trainer Kits J1 port (middle port) and
the DC MOTOR/STEPPER MOTOR CARD.

e Connect a DC motor at the MG1 connector or connect a Stepper Motor in J4.

e Connect USB/PS2 keyboard on 8051 Microcontroller. Type and execute the DC

Motor or Stepper Motor program.

e Now the DC Motor or the Stepper Motor is running

Experiment 6: DC MOTOR INTERFACE WITH 8051

263 | Microprocessor and Microcontroller

AIM: To interface the DC motor with 8051 and to run the DC motor at various speed

PROGRAM:
ADDRESS OPCODE MNEMONICS
9100 74 80 MOV A #80
9102 90 40 03 MOV DPTR,#4003
9105 FO MOVX @DPTR,A
9106 74 06 START: MOV A,#06H
9108 9040 01 MOV DPTR,#4001
910B FO MOVX @DPTR,A
910C 121911 LCALL DELAY
910F 80 F5 SIMP START
9111 78 FF DELAY: MOV RO,#FF
9113 79 FF LOP: MOV R1#FF
9115 D9 FE LOP1: DINZ R1,LOP1
9117 D8 FA DJNZ R0O,LOP
9119 22 RET

RESULT: Execute the program. Now we can see that the DC motor run.

Experiment 7: Stepper Motor Control for CLOCKWISE ANTI CLOCKWISE ROTATION
using 8051

AIM: To interface the stepper motor with the 8051-trainer kit and to run a stepper motor in
both the direction

PROGRAM

ADDRESS OPCODE MNEMONICS

9100 74 80 MOV A #80

9102 9040 03 MOV DPTR,#4003

9105 FO MOVX @DPTR,A

9106 78 32 START : MOV RO0,#32

9108 90 92 00 CLKWI : MOV
DPTR,#9200

910B A9 82 MOV R1,82

910D AA 83 MOV R2,83

910F 3126 ACALL ROTAT

9111 D8 F5 DINZ RO,CLKWI

9113 3141 ACALL DELAY

9115 78 32 MOV RO, #32

9117 90 92 50 ANCKWI: MOV
DPTR,#9250

911A A9 82 MOV R1,82

911C AA 83 MOV R2,83

911E 3126 ACALL ROTAT

9120 D8 F5 DINZ RO, ANCKWI

9122 3191 ACALL DELAY

9124 80 E0 SIMP START

9126 7B 04 ROTAT: MOV R3.#04

9128 EO REPT : MOVX A,@DPTR

9129 90 40 00 MOV DPTR,#4000

264 | Microprocessor and Microcontroller

912C FO MOVX @DPTR,A
912D 7C 03 MOV R4,#03
912F 7D 01 LOP3 : MOV R5,#0A
9131 7E FF LOP2 : MOV R6,#FF
9133 DE FE LOP 1: DJNZ R6, LOP1
9135 DD FA DJNZ RS, LOP2
9137 DC Fé6 DJNZ R4, LOP3
9139 09 INC R1
913A 89 82 MOV 82,R1
913C 8A 83 MOV 83,R2
913E DB E8 DINZ R3, REPT
9140 22 RET
9141 7C 03 DELAY : MOV R4,#03
9143 7D FF LP3 : MOV RS #FF
9145 7E FF LP2 : MOV R6,#FF
9147 DE FE LP1 : DJNZ R6, LP1
9149 DD FA DINZ RS, LP2
914B DCF6 DJNZ R4, LP3
914D 22 RET

ORG 9200H

9200 03060C09 DB 03H, 06H, 0CH, 09H
ORG 9250H

9250 090C0603 DB 09H, 0CH, 06H, 03H
END

RESULT: Execute the program. Now you can see that the stepper motor runs in a clockwise
and anti-clockwise direction.

Steps for executing the program:

1. After the last instruction, press the “Enter” key two times.
2. To execute the program press “G” from the keyboard and enter the initial address of
the program i.e. 9100 and then press “Enter” key.

EXPERIMENT # 8

1. Name of the Experiment: Interfacing an A/D converter with 8085 using the
Interrupt
2. Objective:
o To interface a typical 8-bit A/D converter with 8085 using status check
3. Hardware requirements:
o one 8-bit A/D converter (SAR) with input voltage 0 to 5V range, with active
low START-bar and DR-bar)
o one 3:8 decoder, 74LS138

265 | Microprocessor and Microcontroller

o 4-input NAND gate, 2-input NAND gates and inverters
o Two Tri-state Buffer

4. Circuit Diagram: Figure below shows the circuit for interfacing a typical ADC
with 8085 using Status Check. When the active low pulse is sent to START-bar and
DR-bar goes high, the ADC output goes into high impedance state. The rising edge
of the STAR-bar pulse initiates the conversion. When the conversion is complete,
the DR-bar goes low and the digital output are available on the output lines that can
be read by the microprocessor.

i - 3
-
8l Iy
A INTET]] | Digiul I ——
LT o ".II L-nnyerier Chutpn [imain e
hy — 13 I,
iy g <] -
= r
'-._.|.‘. 1D o
T 4
HINY 1 M|
| 3
L | _"l..,, Hy | [
& A
N
)
i = Kl
4 .
[
|
1] |
e \r_ﬁ'l.. [

5. Program
OUT 82H ; Start conversion
TEST: IN 80H ; Read Data Ready Status

RAR ; Rotate Dy, into carry
JC TEST ;IfDo=1, conversion is not yet complete
; go back and check

IN 81H ; Microprocessor will read output and save
;it in accumulator.
RET

6. Results: Analog input to ADC will get converted to digital output available at the
D7:DO0 pins of the ADC will be read by 8085 and found in accumulator.

EXPERIMENT #9

1. Name of the Experiment: Interfacing 8-bit D/A Converter with 8085

2. Objectives:

e To design an output port with address FFH and to interface 1408 D/A converter that is
calibrated for 0 to 10V range

e To write a program and execute it to generate a continuous waveform

266 | Microprocessor and Microcontroller

3.

Hardware requirements: one 8-input NAND gate, one 2-input NOR gate, one
74LS373 latch, 1408 DAC, 2 registers of 2.5K

4. Circuit Diagram

The circuit diagram of D/A conversion is shown in Figure below. The 1408 is an 8-bit
D/A converter compatible with TTL and CMOS logic, having a settling time of 300
ns. It has 8-input lines with A1 as MSB and A8 as LSB unlike the convention used in
the data bus of 8085 (where D7 is MSB and DO is LSB). It requires 2mA reference
current for full-scale input and two power supplies, Vcc=+5 V and Vegg=-15 V.
74LS373 is a 8-input D-latch for storing the input data from processor data bus.

5. Program

Mnemonics Meaning

MVI A, 00H Load accumulator with first input
D2A: OUT FFH Output to DAC

MVI B, COUNT Set up Reg. B for delay
DELAY: DCR B

INZ DELAY

INR A Next input

JMP D2A Go back to output

6. Results and waveform

The program continuously put 00 through FF to the D/A converter. The corresponding
analog output of the DAC starts from OV and increases up to 10V as a ramp. When the
accumulator contents go to 0, the next cycle begins and the ramp signal is generated
continuously.

Conclusion: A DAC has been successfully interfaced with 8085 to generate a Ramp
Signal continuously.

267 | Microprocessor and Microcontroller

3.
4.

EXPERIMENT # 10

. Name of the Experiment: Implementation of serial data transmission using RS-232

standard.

Objective: To implement serial data communication between two 8051
microcontrollers using RS-232.

Hardware Requirement: Two 8051 microcontroller kits, and one RS-232 cable.

Procedure: Suppose, the letter “E” is to be transferred serially at 9600 baud
continuously using 8051. Use 8-bit data and 1-stop bit.

Through the PC hyper terminal window (serial window), set 9600 BAUD rate. After
executing program with PS2 KIT press ‘B’, set 9600 baud the rate value;

Connect the two microcontroller kits using an RS-232 cable.

Enter the transmitter program in 1% microcontroller kit and the receiver program in 2"
microcontroller kit.

Run the receiver program first in kit-2 and then run the transmitter program in kit-1.
After executing the transmitter program, reset the kit and then go to location 8700H.

5. The transferred data “Yes” (ASCII value) are stored from 8400H onwards in kit-2.

INPUT in Transmitter Kit: 910F: 45
Transmitter Program:
Memory Location Hex Code Mnemonics
9100 75 MOV TMOD, #21H
89
21
9103 75 MOV TH1, #0F5H
8D
F5
9106 75 MOV SCON, #52H
98
52
9109 75 MOV PCON, #00H
87
00
910C D2 SETB TR1

8E

268 | Microprocessor and Microcontroller

910E

9110

9112

9114

9116

9119

911B

INPUT in RECEIVER KIT:

Receiver Program:

9100

9103

9106

9109

910C

74
45
31
14
80
FE
F5
99
30
99
FD
C2
99
22

75
89
21
75
8D
F5
75
98
52
75
87
00
90
92
00

HALT:

TRANS:

WAIT:

9200:

MOV A, #45H

ACALL TRANS

SJUMP HALT

MOV SBUF, A

INB TI, WAIT

CLR TI

RET

45

MOV TMOD, #21H

MOV THI, #0F5H

MOV SCON, #52H

MOV PCON, #00H

MOV DPTR, #9200H

269 | Microprocessor and Microcontroller

910F D2 SETB TR1
8E
9111 30 WAIT: JNB RI, WAIT
98
FD
9114 E5 MOV A, SBUF
99
9116 C2 CLR RI
98
9118 C2 CLR TRI
8E
911A FO MOVX @DPTR, A
911B A3 INC DPTR
911C 80 HALT: SIMP HALT
FE

EXPERIMENT # 11

—

Name of the Experiment: Implementation of [2C protocol

2. Objectives: To implement I12C protocol on 8051 ARM7TDMI microcontroller.

3. Hardware Requirement: 8051 microcontroller, I2C compatible peripherals such as
sensors, actuators etc., Pull-up resistors of range 4.7 kQ to 10 kQ, Cables and
connectors, development board, breadboard or PCB, programmer and Power supply.

4. Procedure:

e Assemble the hardware: Assemble the circuit by connecting the 8051
microcontroller, the 12C-compatible peripheral(s), the pull-up resistors, and
any other required components to a breadboard or PCB.

e Write the software: Write the code that implements the 12C protocol on the
8051 microcontroller. The code should include the initialization of the 12C bus,
the communication protocol, and any other necessary functions for your
specific use case.

e Compile the code: Use a compiler to compile the code you have written into
machine code that can be run on the 8051 microcontroller.

e Upload the code: Use a programmer to upload the compiled code to the 8051
microcontroller. The programmer will be connected to the computer and the
development board, and will be used to transfer the code from the computer to
the microcontroller.

270 | Microprocessor and Microcontroller

e Test the circuit: Power on the circuit and test the communication between the
8051 microcontroller and the 12C device. You can use a logic analyzer or an
oscilloscope to monitor the [12C bus and verify that the communication is
correct.

e Debug and refine the code: If necessary, debug the code and make any
necessary changes to improve the performance and reliability of the
communication. Repeat steps 3-5 until you are satisfied with the results.

e Integrate with your system: Integrate the [2C circuit into your larger system, as
required.

5. Program:

;Define i2c¢ pins
SDA EQU P1.0
SCL EQU P1.1
;12C initialization
0000 [2C INIT:MOV SDA, 1
0003 MOV SCL, 1
0006 RET
;12C start condition
0007 12C START: MOV SDA, 1
000A MOV SCL, 1
000D MOV SDA, 0
0010 RET
;12C stop condition
0011 [2C_STOP: MOV SDA, 0
0014 MOV SCL, 1
0017 MOV SDA, 1
001A RET
;J2C write
001B 12C_ WRITE: MOV SCL, 0
001E MOV SDA, C
0020 MOV SCL, 1
0023 RET
;J2C read
0024 12C READ: MOV SCL, 0
0027 MOV SDA, 1
002A MOV SCL, 1
002D MOV C, SDA
002F RET
;12C write byte
0030 12C_ WRITE BYTE: MOV SCL, 0
0033 MOV SDA, C
0035 MOV SCL, 1
0038 JC ACK
003A RET
;12C read byte
003B 12C READ BYTE: MOV SCL, 0
003E MOV SDA, 1
0041 MOV SCL, 1

271 | Microprocessor and Microcontroller

0044 MOV C, SDA
0046 RET
0047 ACK: MOV SCL, 0 ; I2C acknowledge
004A MOV SDA, 1
004D MOV SCL, 1
0050 RET
6. Output

e Reading data from an I2C device:
8051 microcontroller can read the data from the peripheral devices and
sensors through 12C device.

e Writing data to an 12C device:
8051 microcontroller writing data to the peripheral device through 12C then
acknowledge can be seen as output that data successfully written.

EXPERIMENT # 12

7. Name of the Experiment: Interface of LEDs with GPIO of ARM7TDMI Processor

8. Objectives: To interface LED devices with ARM7TDMI microcontroller and to turn
on/off the LEDs.

9. Hardware Requirement: IC-LPC2148, Point LEDs (8), 1K resistors (8)

10. Circuit Diagram: First, the PORT1 pins are configured as outputs using IO1DIR register.
Then in an infinite loop, the pins (or LEDs connected to them) are turned ON using IOISET
register and turned OFF using IO1CLR register. A delay is introduced between the turning
ON and OFF of the LEDs using a “for” loop, so that the blinking of LEDs is visible. Figure
6.15 shows the LED connections to ARM-based MCU. The ARM7 LPC2148 advanced
development board has eight numbers of point LEDs, connected with I/O Port lines (P1.16 —
P1.23) to make port pins high.

272 | Microprocessor and Microcontroller

R
T
win BREAR
PR ” LERI
o -rI:IHIr !EEEE 'P'l"" —.I—I-Il-'-'---’
|— = vEEs [T rie Ag e
— py { 3L e
——54 | VHEL BT el N
l-_-'rn:;E Ml 11 ML : L
= LEA AL LERLE | SE—— I | :"
e o i] mm | Lan
- #_}25!—!‘, | "= ~—] LEEEIT
- ufatin [)
page (1o WD 1. e B
I P
2 ¥ e - — - '—';..-E!n—— FOINT L BOS
- L '
" aws
:H?_Iu'g- [= 1]
2t b
I_T_l
11.Program
#include <Ipc214x.h>
int delay;

int main (void)

{

PINSEL2 = 0x00000000;

IO1DIR = 0xFFFFFFFF; // All the pins of PORT1 are configured as Output
while (1)

{

IO1SET = OxFFFFFFFF; // Set Logic 1 to all the PORT]1 pins i.e. turn on LEDs
for (delay = 0; delay<500000; delay++)

IO1CLR = 0xFFFFFFFF; // Set Logic 0 to all the PORT1 pins i.e. turn off LEDs
for (delay = 0; delay<500000; delay++)

}

return O;

}

12. Results: LEDs will glow as per the program.

273 | Microprocessor and Microcontroller

Annexures

OPCODES (HEX CODES) OF INTEL 8085 PROCESSOR

Sr. No. Mnemonics, Operand Opcode Bytes
1. ACI Data CE 2
2. ADCA 8F 1
3. ADCB 88 1
4. ADCC 89 1
5. ADCD 8A 1
6. ADCE 8B 1
7. ADCH 8C 1
8. ADCL 8D 1
9. ADC M 8E 1
10. ADD A 87 1
11. ADD B 80 1
12. ADD C 81 1
13. ADD D 82 1
14. ADD E 83 1
15. ADDH 84 1
16. ADD L 85 1
17. ADD M 86 1
18. ADI Data cé6 2
19. ANA A A7 1
20. ANA B A0 1
21. ANAC Al 1
22. ANAD A2 1
23. ANAE A3 1

274 | Microprocessor and Microcontroller

24, ANA H A4 1
25. ANA L A5
26. ANAM A6 1
27. ANI Data E6 2
28. CALL Label CD 3
29. CC Label DC 3
30. CM Label FC 3
31. CMA 2F 1
32. cMC 3F 1
33. CMP A BF 1
34. CMP B B8 1
35. CMP C B9 1
36. CMP D BA 1
37. CMPE BB 1
38. CMPH BC 1
39. CMP L BD 1
40. CMP M BD 1
41. CNC Label D4 3
42. CNZ Label ca 3
43, CP Label F4 3
44. | CPE Label EC 3
45. | CPl Data FE 2
46. | CPO Label E4 3
47. | CZ Label CC 3
48. | DAA 27 1
49. | DADB 09 1
50. | DADD 19 1
51. | DADH 29 1
52. | DADSP 39 1
53. | DCRA 3D 1
54. | DCRB 05 1

275 | Microprocessor and Microcontroller

Sr. No. | Mnemonics, Operand Opcode Bytes
55. |DCRC oD 1
56. |DCRD 15 1
57. | DCRE 1D 1
58. | DCRH 25 1
59. | DCRL 2D 1
60. | DCRM 35 1
61. | DCXB 0B 1
62. | DCXD 1B 1
63. | DCXH 2B 1
64. | DCXSP 3B 1
65. | DI F3 1
66. | El FB 1
67. | HLT 76 1
68. | IN Port-address DB 2
69. |INRA 3C 1
70. |INRB 04 1
71. |INRC oc 1
72. |INRD 14 1
73. |INRE 1C 1
74. | INRH 24 1
75. |INRL 2C 1
76. |INRM 34 1
77. |INXB 03 1
78. | INXD 13 1
79. | INXH 23 1
80. | INXSP 33 1
81. |JCLabel DA 3
82. | IM Label FA 3
83. | JMP Label c3 3
84. | INC Label D2 3

276 | Microprocessor and Microcontroller

85. | JNZ Label C2 3
86. | JP Label F2 3
87. | JPE Label EA 3
88. | JPO Label E2 3
89. |JZLabel CA 3
71. |INRC oc
72. |INRD 14 1
73. |INRE 1C 1
74. | INRH 24 1
75. |INRL 2C 1
76. |INRM 34 1
77. |INXB 03 1
78. | INXD 13 1
79. | INXH 23 1
80. | INXSP 33 1
81. |JCLabel DA 3
82. | IM Label FA 3
83. | JMP Label c3 3
84. | INC Label D2 3
85. | JNZ Label c2 3
86. | JP Label F2 3
87. | JPE Label EA 3
88. | JPO Label E2 3
89. | JZLabel CA 3
90. LDA Address 3A 3
91. LDAX B 0A 1
92. LDAX D 1A 1
93. LHLD Address 2A 3
94. LXI B 01 3
95. LXI D 11 3
96. LXI H 21 3
97. LXI SP 31 3
98. MOV A, A 7F 1

277 | Microprocessor and Microcontroller

99. | MOVA,B 78
100. |MOVA,C 79
101. | MOVA,D 7A
102. | MOVA,E 78
103. | MOV A, H 7C
104. | MOVA,L 7D
105. | MOV A M 7E
106. |MOVB,A 47
107. | MOVB,B 40
108. |MOVB,C 41
109. |MOVB,D 42
110. | MOV B, E 43
111. | MOVB,H 44
112. | MOVB,L 45
113. | MOVB, M 46
114. | MOV C, A 4F
115. | MOV (B 48
116. | MoV, C 49
117. |MOVC,D 4A
118. | MOVGC,E 4B
119. |mMovV G H 4c
120. | MOV G, L 4D
121. [MOVC M 4AE
122. |MOVD,A 57
123. |[mMovD,B 50
124. [MOV D,C 51
125. | MOVD,D 52
126. |MOVD,E 53
127. | MOVD,H 54
128. | MOVD,L 55
129. |[MOVD,M 56
130. |MOVE, A 5F
131. | MOVE,B 58
132. | MOVE,C 59

278 | Microprocessor and Microcontroller

133. MOV E, D 5A 1
134. MOV E, E 5B 1
135. MOV E, H 5C 1
136. MOV E, L 5D 1
137. MOV E, M 5E 1
138. MOV H, A 67 1
139. MOV H, B 60 1
140. MOV H, C 61 1
141. MOV H, D 62 1
142. MOV H, E 63 1
143. MOV H, H 64 1
144. MOV H, L 65 1
145. MOV H, M 66 1
146. MOV L, A 6F 1
147. MOV L, B 68 1
148. MOV L, C 69 1
149. MOV L, D 6A 1
150. MOV L, E 6B 1
151. MOV L, H 6C 1
152. MOV L, L 6D 1
153. MOV L, M 6E 1
154. MOV M, A 77 1
155. MOV M, B 70 1
156. MOV M, C 71 1
157. MOV M, D 72 1
158. MOV M, E 73 1
159. MOV M, H 74 1
160. MOV M, L 75 1
161. MVI A, Data 3E 2
162. MVI B, Data 06 2
163. MVI C, Data OE 2
164. MVI D, Data 16 2
165. MVI E, Data 1E 2
166. MVI H, Data 26 2

279 | Microprocessor and Microcontroller

167. MVI L, Data 2E 2
168. MVI M, Data 36 2
169. NOP 00 1
170. ORA A B7 1
171. ORAB BO 1
172. ORAC B1 1
173. ORAD B2 1
174. ORAE B3 1
175. ORAH B4 1
176. ORAL B5 1
177. ORA M B6 1
178. ORI Data F6 2
179. OUT Port-Address D3 2
180. PCHL E9 1
181. POP B C1 1
182. POPD D1 1
183. POP H El 1
184. POP PSW F1 1
185. PUSH B C5 1
186. PUSH D D5 1
187. PUSH H E5 1
188. PUSH PSW F5 1
189. RAL 17 1
190. RAR 1F 1
191. RC D8 1
192. RET C9 1
193. RIM 20 1
194. RLC 07 1
195. RM F8 1
196. RNC DO 1
197. RNZ co 1
198. RP FO 1
199. RPE E8 1
200. RPO EO 1

280 | Microprocessor and Microcontroller

201. RRC OF 1
202. RSTO c7 1
203. RST 1 CF 1
204. RST 2 D7 1
205. RST 3 DF 1
206. RST 4 E7 1
207. RST5 EF 1
208. RST 6 F7 1
209. RST 7 FF 1
210. Rz c8 1
211. SBB A 9F 1
212. SBB B 98 1
213. SBB C 99 1
214, SBB D 9A 1
215. SBBE 9B 1
216. SBBH 9C 1
217. SBB L 9D 1
218. SBB M 9E 1
219. SBI Data DE 2
220. SHLD Address 22 3
221. SIM 30 1
222. SPHL F9

223. STA Address 32 3
224, STAX B 02 1
225. STAX D 12 1
226. STC 37 1
227. SUB A 97 1
228. SUB B 90 1
229. SUBC 91 1
230. SUBD 92 1
231. SUBE 93 1
232. SUBH 94 1
233. SUBL 95 1
234, SUBM 96 1

281 | Microprocessor and Microcontroller

235. SUI Data D6
236. XCHG EB
237. XRA A AF
238. XRA B A8
239. XRAC A9
240. XRAD AA
241. XRAE AB
242. XRAH AC
243. XRAL AD
244, XRAM AE
245. XRI Data EE
246. XTHL E3

REFERENCES FOR FURTHER LEARNING

8.

9.

John P. Hayes. Computer Architecture and Organization. 3" ed. Singapore: McGraw-
Hill International Edition, 1998

K.M. Bhurchandi and A.K. Ray, ADVACNED MICROPROCESSORS AND
PERIPHERALS, 3" ed. Tata McGraw-Hill, New Delhi, 2013.

M. Ali Mazidi, J. Gillipsie Mazidi, Rolin D. McKinlay. The 8051Microcontrollers and
Embedded System. 2" ed. New Jersey, Pearson Prentice Hall, 2006.

Ramesh Gaonkar. Microprocessor Architecture, Program ming, and Applications with
the 8085. Fifth Edition: Peram International Publishing (India) Private Ltd. 2012.
Manish Patel “Question Paper with Solution the 8051 Microcontroller Based
Embedded Systems, www.slideshare.net, 1 Mar. 2001.

Barry B. Brey. The Intel Microprocessors, Architecture, Programming and Interfacing.
PHI, 2004, 6" Edition, Copyright 2003.

Kenneth J. Ayala. The 8051 Microcontroller. St. Paul, MN, WEST PUBLISHING
COMPANY, 1991
Santanu Chattopadhyay. Embedded System Design. 2+ ed. PHI Learning Private Ltd.
New Delhi, 2016.

https://www.eeeguide.com

10. https://www.computer.org
11. https://www.researchgate.net
12. https://www.slideshare.net

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after the
completion of the course and a correlation can be made for the attainment of POs to analyze the gap.
After proper analysis of the gap in the attainment of POs necessary measures can be taken to overcome

the gaps.
Table for CO and PO attainment
Course Expected Mapping with Programme Outcomes
Outcome (1- Weak Correlation,; 2- Medium correlation,; 3- Strong Correlation)

s PO-1| PO-2| PO-3 | PO-4| PO-5| PO-6 | PO-7 | PO-8| PO-9| PO-10 | PO-11| PO-12
Co-1 3 2 2 2 1 = = = = = = =
C0-2 3 3 2 2 = = = = = = = =
co-3 3 3 2 - - - - - - - - -
CO-4 3 3 3 2 2 = = = = = = =
Co-5 3 2 2 2 1 = = = = = = =
Co-6 3 3 3 2 1 - - - - - - -

The data filled in the above table can be used for gap analysis.

Index

Accumulator, 62, 63, 64,91, 127, 128,
129, 131, 135, 183

Advanced, 212, 213

Addressing modes, 1,17, 36, 37, 38, 90,
98,99, 100, 222,223, 244

Address frame, 201

ADCs, 160,161,162, 163, 164, 178, 179,
180, 252, 253

ALU, 8,9, 15, 16, 221, 222,232
AMD, 53

Analog, 160, 161, 162, 163
Analog signal, 178

Architecture, 1, 14, 32, 213, 219, 224,
225,227,229, 233

Arithmetic instructions, 110
ARM microcontrollers, 243, 249
ARM processors, 243, 244
ARM architecture, 246, 247
ARM instructions, 247

ARMBS, 243, 245, 246

ARM7, 243, 255

ARM11, 243

ARM Cortex, 243, 247
ARMTDMI, 246, 248

Assembly language, 1, 11, 77, 78, 79, 81,
88, 117

Asynchronous, 192, 196
Arduino, 194

Automation systems, 195
Baud rates, 192
BCD, 118, 119
Packed, 119
Unpacked, 118
Brain, 1, 2
Bus, 147
interface, 221, 225, 226, 227, 228, 230
Bus controller, 32
Binary data, 1
manipulated, 1
bit-addressable, 103, 106, 107, 143
bit manipulation, 113
Bidirectional multiplexers, 239
Bluetooth, 207, 208, 209
Buffer, 216, 230, 231, 232
Calculator, 3
Call and return, 4
Cache, 229, 230, 232
memory, 213, 215, 216, 217, 239
tag, 217
Checksum, 138, 139
Chip select, 182, 186
CISC architecture, 241, 242
CISC processor, 213, 241

Control register, 238

284 | Microprocessor and Microcontroller

Compatible, 5
Computer, 1, 193, 195
Computation, 3
Compilers, 4, 11, 92

Communication, 190, 191, 192, 193, 194,
200, 207, 208

Controller, 32
Control word, 183, 184
unit, 226, 228, 230
CMOS, 5
CPU, 2,5,8, 50, 95, 147, 148, 216,224
Data processing, 2, 20, 22
Digital computer, 2
Digital data, 4
Direct addressing, 37, 99, 101
Directives, 78, 80
Data transfer, 82, 108,192
transmission, 194, 195, 196
Data memory, 216
Data frame, 201
DCE, 192, 193
DMA, 31
Controller, 31
DTE, 192, 193
Evolution, 1
Embedded Systems, 1,2,6, 52, 53,54
characteristics, 2
applications, 2
Execution, 2, 27, 213, 233
cycle, 27
unit, 224, 226, 228, 230

External memory, 149, 153

Flag, 35, 36, 67, 228, 229

Flag registers, 35, 40, 66, 238

Floating-point, 226, 228,
instruction, 232
operations, 233
unit, 233, 236, 237
registers, 236
pipeline, 233

FPGAs, 53

Fundamentals, 1

of microcontrollers, 1, 7
of 8051, 1,

generations, 3

general purpose registers, 244

general purpose pin, 250

GPIO pin, 251, 252, 253, 254

growth, 1

history, 1

high level language, 1

hit, 216

IBM PowerPC, 242

ICs, 4,5

Immediate addressing, 17, 37, 98

Implicit addressing, 19

Indexed addressing, 102

Indirect addressing, 37, 100, 101

interrupts, 1, 30, 31, 45, 46, 47, 60, 147,
148, 246

interprets, 2, 14

285 | Microprocessor and Microcontroller

instructions, 2, 20, 39, 40, 41,42, 43, 44,

81, 82, 83, 88, 90, 108, 109, 110, 111, 112,

113, 114, 115, 116, 117, 119, 120, 124,
129, 183, 231, 232, 244

unit, 221, 224

set, 107,

level, 214
instruction cycle, 1, 25, 26, 27
instruction level parallelism, 214, 244

interfacing, 146, 150, 155, 156, 160, 176,
178, 181, 182, 184, 188, 255

12C, 191, 199, 200, 202, 203
10, 7,8
operations, 13,
bus 147, 148
signals, 148
devices, 221
Keyboard, 170, 171, 172,
program, 174
subroutine, 174
LCDs, 164, 165, 166, 167, 170
LEDs, 176, 177, 255
Load/store instructions, 246
Logical operations, 83,112
Look through, 217, 218
Loo-aside, 217
LPC2148MCU, 255
LPC2148, 253, 254
microcontroller, 249
Machine language, 10
cycle, 25, 84, 88

Mapping, 218

Master, 197, 198, 199
MAC layer, 205
Memory, 5,6,7, 13, 73, 146, 147, 153, 216
capacity, 149
chip, 149
management, 219, 224, 225, 228,
240
locations, 21, 22, 23, 26, 95, 100
Memory mapped, 246
Memory operations, 147
Memory subsystem, 239

Microprocessors, 1, 2, 6,11, 181, 199,
218,223,

Microprogram, 228
Microcomputers, 8, 10

Microcontroller, 48, 49, 50, 51, 52, 61, 80,
84, 86, 136, 140, 146, 171, 199, 247, 194

Minimum mode, 30
Maximum mode, 30
Miss, 216
Mnemonics, 1, 77, 78, 81, 82, 91, 108, 110
MOSI, 198
Moore’s law, 5
MISO, 198
Multiplexed, 12, 29
Multi-master bus, 202
NOP, 115, 116
On-chip, 150, 152, 153
Operating system, 4
modes, 224
Oscillator, 71, 72, 250

286 | Microprocessor and Microcontroller

Organization, 216

overview 1
of 8085 microprocessors, 1, 11,14,
16, 33, 54
of 8086 microprocessors, 1, 36, 54
of 8051, 1, 54, 60, 61, 73, 80, 81,
86, 87, 90, 95, 140, 151

8051 microcontroller, 62, 80, 81, 84, 90,
91, 108, 110, 115, 117

Overflow, 125, 127

Parallelism, 214

Paging unit, 225

PC, 116

PCB, 199

Peripherals, 13, 45, 146, 147, 179
Peripheral devices, 155

Pentium processor, 229, 230, 231, 232,
233,234, 235,237,239

Piconet, 208
Pipeline, 213, 220, 221, 226, 229, 230, 234
Ports, 75, 76, 77
Processors, 1,212, 213, 214, 229, 232
80286 processor, 218, 220, 221
80386 processor, 223, 224
80486 processor, 226
Programs, 2, 6, 78
Program control, 23
Program memory, 50, 60
Programmable, 2
logic device, 2

integrated circuit, 2

input/output, 48
peripheral interface, 179
Progress, 1
in semiconductor technology, 1
microcomputer systems, 1
personal computer, 48
Program Counter (PC), 64, 65, 244, 245
Physical address, 215, 216, 220, 231
memory, 225, 229
PLCs, 194
Protocol, 190, 192, 195, 200
PCB, 199
PUSH, 100
Pulse width modulation, 250
POP, 100
RISC processor, 213, 241, 242, 243
RISC architecture, 241
RS232, 190
RS485, 191, 194, 195

RAM, 50, 51, 52, 60, 68, 70, 71, 100, 101,
103, 104, 105, 120, 148, 246

Raspberry Pi, 194
Reset, 65, 71, 72, 73

Register, 65, 66, 70,73, 74, 94, 221, 222,
223

Reprogrammable systems, 6
Register addressing, 37
Register bank, 70

ROM, 50, 51, 52, 60, 67, 97, 101, 102,
138, 140, 150, 151, 152, 153, 228, 230

Rotate, 131, 132, 133

287 | Microprocessor and Microcontroller

Scatter-net, 208
Segment, 32, 33, 34, 35

Serial communication, 192

signed, 93, 94, 110, 127, 141, 142

single master, 202

slave, 197, 198, 199

split cache, 239

stack pointer, 64, 71
stepper motor, 184, 187, 188
SRAM, 216

subroutine, 24,95, 96, 97
superscalar, 213, 233, 235
SoC, 48

SUN Sparc, 242

SPI, 196

Special register, 65

Synchronous, 192, 196

Technology, 203, 216, 218, 223, 226, 229
Timer, 74, 75, 181

Topologies, 206

Unified cache, 218

Unsigned, 93, 110, 117, 121, 122, 123,
127, 142

User-defined flags, 66

Virtual memory, 215, 225
Address, 215, 216, 219

ZigBee, 203, 204, 205, 206, 209

Microprocessor and Microcontrolier

Saurabh Chaudhury
Risha Mal

This baak aims ot |'.'|r|;:|l.-'i|;1i|‘|g;l e rgaders ﬁpl.'ll;mlt!l.'_ B S@cand irar uru:wrgrudlmt[‘: atucdents &
thorough knawledge of microprocessorsand microcontrollers in a best possible way. Syllabus
of this book = as per the AICTE model of currtculum, following Mational Education Policy. 2020,
Each chapter of the book b= written in & very licld manner 50 85 10 understand the underlying
concepts easily with explanatory examples followed by review quastions, exercises and QR
codes of online links and other learning resources, The boold bagins with a brief history on
the evalution of compulers and Procossors far I'I'I-:lkll'lg the subject interest ing. Further, :.r.irlirlg
fromm the very baske microprocessor BOBS and the basic microcontrollér BO51, the book
gradually progresses towards advanced microprocessers and microcontrollers n the most
Appropriate manner.

Saliant Features:

= LCortentof the book aligned with the mapping of Course Outcomes, Programs Dutcomes and
Unit Dutcomes.

* Inthe beginning of each unit leaming outcormes are lsted to make the student undersiand
whar s enpectad aut of himdher after completing that unis

* Book provides Lots of recent information, interesting facts, QR Code for E-resources, QR Code
for useof |CT, projects, prowp discussion et

* Ltudent and teacher centric subject materials incleded in book with balanced and
chronoiogical manner

* Figures, tables, and software screen shots are inserted toimprove clarity of the topics.

= Apart from essential informationa "Know Mare' section s alsa provided ineach unit to extend
the learning beyond syilabus.

= Short questions, objective questions and long snswer exercises are given for practice
of students after avery chapter

« Solved and unsolved pruhIF_'m:'. inrl|.|r_ling numerical examples are solved with
systematic steps.

All India Council for Technical Education EHiteeris
Malson Ma a Marg, ant Kunj

New Delhi-110070

