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Introduction, Toolboxes: Python, fundamental libraries for data Scientists. 
Integrated development environment (IDE). Data operations: Reading, selecting, 
filtering, manipulating, sorting, grouping, rearranging, ranking, and plotting. 

     Introduction to Data Science  
 

1.1 What is Data Science? 
 

You have, no doubt, already experienced data science in several forms. When 
you are looking for information on the web by using a search engine or asking 

your mobile phone for directions, you are interacting with data science 

products. Data science has been behind resolving some of our most common 

daily tasks for several years. 
Most of the scientific methods that power data science are not new and 

they have been out there, waiting for applications to be developed, for a long 

time. Statistics is an old science that stands on the shoulders of eighteenth-

century giants such as Pierre Simon Laplace (1749–1827) and Thomas Bayes 

(1701–1761). Machine learning is younger, but it has already moved beyond 
its infancy and can be considered a well- established discipline. Computer 

science changed our lives several decades ago and continues to do so; but it 

cannot be considered new. 

So, why is data science seen as a novel trend within business reviews, in 
technology blogs, and at academic conferences? 

The novelty of data science is not rooted in the latest scientific knowledge, 

but in a disruptive change in our society that has been caused by the evolution of 

technology: datification. Datification is the process of rendering into data aspects 
of the world that have never been quantified before. At the personal level, the 

list of datified concepts is very long and still growing: business networks, the 

lists of books we are reading, the films we enjoy, the food we eat, our physical 

activity, our purchases, our driving behavior, and so on. Even our thoughts are 

datified when we publish them on our favorite social network; and in a not so 
distant future, your gaze could be datified by wearable vision registering 

devices. At the business level, companies are datifying semi-structured data 

that were previously discarded: web activity logs, computer network activity, 

machinery signals, etc. Nonstructured data, such as written reports, e-mails, or 
voice recordings, are now being stored not only for archive purposes but also 

to be analyzed. 

 



 

  

However, datification is not the only ingredient of the data science revolution. The 

other ingredient is the democratization of data analysis. Large companies such as 

Google, Yahoo, IBM, or SAS were the only players in this field when data science 
had no name. At the beginning of the century, the huge computational resources 

of those companies allowed them to take advantage of datification by using 

analytical techniques to develop innovative products and even to take decisions 

about their own business. Today, the analytical gap between those companies 
and the rest of the world (companies and people) is shrinking. Access to cloud 

computing allows any individual to analyze huge amounts of data in short periods 

of time. Analytical knowledge is free and most of the crucial algorithms that are 

needed to create a solution can be found, because open-source development is the 
norm in this field. As a result, the possibility of using rich data to take evidence-

based decisions is open to virtually any person or company. 

Data science is commonly defined as a methodology by which actionable insights  

can be inferred from data. This is a subtle but important difference with respect 

to previous approaches to data analysis, such as business intelligence or 
exploratory statistics. Performing data science is a task with an ambitious 

objective: the produc- tion of beliefs informed by data and to be used as the basis 

of decision-making. In the absence of data, beliefs are uninformed and decisions, 

in the best of cases, are based on best practices or intuition. The representation of 
complex environments by rich data opens up the possibility of applying all the 

scientific knowledge we have regarding how to infer knowledge from data. 

In general, data science allows us to adopt four different strategies to explore 

the world using data: 

 
1. Probing reality. Data can be gathered by passive or by active methods. In the 

latter case, data represents the response of the world to our actions. Analysis 
of those responses can be extremely valuable when it comes to taking 

decisions about our subsequent actions. One of the best examples of this 

strategy is the use of A/B testing for web development: What is the best 

button size and color? The best answer can only be found by probing the 
world. 

2. Pattern discovery. Divide and conquer is an old heuristic used to solve complex 

problems; but it is not always easy to decide how to apply this common sense 

to problems. Datified problems can be analyzed automatically to discover 
useful patterns and natural clusters that can greatly simplify their solutions. 

The use of this technique to profile users is a critical ingredient today in such 

important fields as programmatic advertising or digital marketing. 

3. Predicting future events. Since the early days of statistics, one of the most impor- 

tant scientific questions has been how to build robust data models that are 
capa- ble of predicting future data samples. Predictive analytics allows 

decisions to be taken in response to future events, not only reactively. Of 

course, it is not possible to predict the future in any environment and there will 

always be unpre- dictable events; but the identification of predictable events 
represents valuable knowledge. For example, predictive analytics can be used 



 

to optimize the tasks 
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planned for retail store staff during the following week, by analyzing data 
such as weather, historic sales, traffic conditions, etc. 

4. Understanding people and the world. This is an objective that at the 

moment is beyond the scope of most companies and people, but large 

companies and governments are investing considerable amounts of money in 
research areas such as understanding natural language, computer vision, 

psychology and neu- roscience. Scientific understanding of these areas is 

important for data science because in the end, in order to take optimal 

decisions, it is necessary to know the real processes that drive people’s 

decisions and behavior. The development of deep learning methods for 
natural language understanding and for visual object recognition is a good 

example of this kind of research. 
 

Toolboxes for Data Scientists  
 
 

 Introduction 
 

In this chapter, first we introduce some of the tools that data scientists use. The 
toolbox of any data scientist, as for any kind of programmer, is an essential 

ingredient for success and enhanced performance. Choosing the right tools can 

save a lot of time and thereby allow us to focus on data analysis. 

The most basic tool to decide on is which programming language we will use. 

Many people use only one programming language in their entire life: the first and 
only one they learn. For many, learning a new language is an enormous task that, 

if at all possible, should be undertaken only once. The problem is that some 

languages are intended for developing high-performance or production code, 

such as C, C++, or Java, while others are more focused on prototyping code, 
among these the best known are the so-called scripting languages: Ruby, Perl, and 

Python. So, depending on the first language you learned, certain tasks will, at the 

very least, be rather tedious. The main problem of being stuck with a single 

language is that many basic tools simply will not be available in it, and eventually 
you will have either to reimplement them or to create a bridge to use some other 

language just for a specific task. 
 

 Toolboxes for Data Scientists 

In conclusion, you either have to be ready to change to the best language for 

each task and then glue the results together, or choose a very flexible language 
with a rich ecosystem (e.g., third-party open-source libraries). In this book we 

have selected Python as the programming language. 

 

Why Python? 



 

 
Python1 is a mature programming language but it also has excellent properties 

for newbie programmers, making it ideal for people who have never programmed 

before. Some of the most remarkable of those properties are easy to read code, 

suppression of non-mandatory delimiters, dynamic typing, and dynamic memory 

usage. Python is an interpreted language, so the code is executed immediately in 
the Python con- sole without needing the compilation step to machine language. 

Besides the Python console (which comes included with any Python installation) 

you can find other in- teractive consoles, such as IPython,2 which give you a richer 

environment in which to execute your Python code. 
Currently, Python is one of the most flexible programming languages. One of 

its main characteristics that makes it so flexible is that it can be seen as a 

multiparadigm language. This is especially useful for people who already know how 

to program with other languages, as they can rapidly start programming with Python 
in the same way. For example, Java programmers will feel comfortable using 

Python as it supports the object-oriented paradigm, or C programmers could mix 

Python and C code using cython. Furthermore, for anyone who is used to 

programming in functional languages such as Haskell or Lisp, Python also has basic 

statements for functional programming in its own core library. 
In this book, we have decided to use Python language because, as explained 

before, it is a mature language programming, easy for the newbies, and can be 

used as a specific platform for data scientists, thanks to its large ecosystem of 

scientific libraries and its high and vibrant community. Other popular alternatives 
to Python for data scientists are R and MATLAB/Octave. 

 
 

 Fundamental Python Libraries for Data Scientists 
 

The Python community is one of the most active programming communities with 
a huge number of developed toolboxes. The most popular Python toolboxes for 

any data scientist are NumPy, SciPy, Pandas, and Scikit-Learn. 

 

 Numeric and Scientific Computation: NumPy and SciPy 
 

NumPy3 is the cornerstone toolbox for scientific computing with Python. NumPy 

provides, among other things, support for multidimensional arrays with basic 
oper- ations on them and useful linear algebra functions. Many toolboxes use the 

NumPy array representations as an efficient basic data structure. Meanwhile, SciPy 

provides a collection of numerical algorithms and domain-specific toolboxes, 

including signal processing, optimization, statistics, and much more. Another core 
toolbox in SciPy is the plotting library Matplotlib. This toolbox has many tools for 

data visualization. 

 
 



 

 SCIKIT-Learn: Machine Learning in Python 
 

Scikit-learn4 is a machine learning library built from NumPy, SciPy, and Matplotlib. 

Scikit-learn offers simple and efficient tools for common tasks in data analysis such 

as classification, regression, clustering, dimensionality reduction, model 
selection, and preprocessing. 

 
 

 PANDAS: Python Data Analysis Library 
 

Pandas5 provides high-performance data structures and data analysis tools. The 

key feature of Pandas is a fast and efficient DataFrame object for data manipulation 

with integrated indexing. The DataFrame structure can be seen as a spreadsheet 

which offers very flexible ways of working with it. You can easily transform any 
dataset in the way you want, by reshaping it and adding or removing columns or 

rows. It also provides high-performance functions for aggregating, merging, and 

joining dataset- 

s. Pandas also has tools for importing and exporting data from different formats: 

comma-separated value (CSV), text files, Microsoft Excel, SQL databases, and the 
fast HDF5 format. In many situations, the data you have in such formats will not 

be complete or totally structured. For such cases, Pandas offers handling of miss- 

ing data and intelligent data alignment. Furthermore, Pandas provides a 

convenient Matplotlib interface. 
 
 
 

 Data Science Ecosystem Installation 
 

Before we can get started on solving our own data-oriented problems, we will need 

to set up our programming environment. The first question we need to answer 

concerns 

 
 

Toolboxes for Data Scientists 

Python language itself. There are currently two different versions of Python: Python 

2.X and Python 3.X. The differences between the versions are important, so there 

is no compatibility between the codes, i.e., code written in Python 2.X does not 

work in Python 3.X and vice versa. Python 3.X was introduced in late 2008; by then, 

a lot of code and many toolboxes were already deployed using Python 2.X (Python 
2.0 was initially introduced in 2000). Therefore, much of the scientific community 

did not change to Python 3.0 immediately and they were stuck with Python 2.7. By 

now, almost all libraries have been ported to Python 3.0; but Python 2.7 is sti ll 

maintained, so one or another version can be chosen. However, those who 

already have a large amount of code in 2.X rarely change to Python 3.X. In our 
examples throughout this book we will use Python 2.7. 

Once we have chosen one of the Python versions, the next thing to decide is 



 

whether we want to install the data scientist Python ecosystem by individual 

tool- boxes, or to perform a bundle installation with all the needed toolboxes 
(and a lot more). For newbies, the second option is recommended. If the first 

option is chosen, then it is only necessary to install all the mentioned toolboxes in the 

previous section, in exactly that order. 

However, if a bundle installation is chosen, the Anaconda Python 
distribution6 is then a good option. The Anaconda distribution provides 

integration of all the Python toolboxes and applications needed for data 

scientists into a single directory without mixing it with other Python toolboxes 

installed on the machine. It contain- s, of course, the core toolboxes and 

applications such as NumPy, Pandas, SciPy, Matplotlib, Scikit-learn, IPython, 
Spyder, etc., but also more specific tools for other related tasks such as data 

visualization, code optimization, and big data processing. 

 
 

 Integrated Development Environments (IDE) 
 

For any programmer, and by extension, for any data scientist, the integrated de- 

velopment environment (IDE) is an essential tool. IDEs are designed to maximize 
programmer productivity. Thus, over the years this software has evolved in order 

to make the coding task less complicated. Choosing the right IDE for each person 

is crucial and, unfortunately, there is no “one-size-fits-all” programming 

environment. The best solution is to try the most popular IDEs among the 
community and keep whichever fits better in each case. 

In general, the basic pieces of any IDE are three: the editor, the compiler, (or 

interpreter) and the debugger. Some IDEs can be used in multiple programming 

languages, provided by language-specific plugins, such as Netbeans7 or Eclipse.8 

Others are only specific for one language or even a specific programming task. In 
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the case of Python, there are a large number of specific IDEs, both commercial 

(PyCharm,9 WingIDE10 …) and open-source. The open-source community helps 

IDEs to spring up, thus anyone can customize their own environment and share it 
with the rest of the community. For example, Spyder11 (Scientific Python 

Development EnviRonment) is an IDE customized with the task of the data 

scientist in mind. 

 
 

 Web Integrated Development Environment (WIDE): Jupyter 
 

With the advent of web applications, a new generation of IDEs for interactive lan- 

guages such as Python has been developed. Starting in the academia and e-

learning communities, web-based IDEs were developed considering how not only 
your code but also all your environment and executions can be stored in a server. 

One of the first applications of this kind of WIDE was developed by William Stein in 

early 2005 using Python 2.3 as part of his SageMath mathematical software. In 



 

SageMath, a server can be set up in a center, such as a university or school, and 

then students can work on their homework either in the classroom or at home, 
starting from exactly the same point they left off. Moreover, students can execute 

all the previous steps over and over again, and then change some particular code 

cell (a segment of the docu- ment that may content source code that can be 

executed) and execute the operation again. Teachers can also have access to 
student sessions and review the progress or results of their pupils. 

Nowadays, such sessions are called notebooks and they are not only used in 

classrooms but also used to show results in presentations or on business 

dashboards. The recent spread of such notebooks is mainly due to IPython. Since 

December 2011, IPython has been issued as a browser version of its interactive 
console, called IPython notebook, which shows the Python execution results very 

clearly and concisely by means of cells. Cells can contain content other than code. 

For example, markdown (a wiki text language) cells can be added to introduce 

algorithms. It is also possible to insert Matplotlib graphics to illustrate examples or 
even web pages. Recently, some scientific journals have started to accept 

notebooks in order to show experimental results, complete with their code and 

data sources. In this way, experiments can become completely and absolutely 

replicable. 
Since the project has grown so much, IPython notebook has been separated 

from IPython software and now it has become a part of a larger project: Jupyter12. 

Jupyter (for Julia, Python and R) aims to reuse the same WIDE for all these 

interpreted languages and not just Python. All old IPython notebooks are 

automatically imported to the new version when they are opened with the 
Jupyter platform; but once they 

 

 Get Started with Python for Data Scientists 
 

Throughout this book, we will come across many practical examples. In this chapter,  

we will see a very basic example to help get started with a data science 

ecosystem from scratch. To execute our examples, we will use Jupyter notebook, 

although any other console or IDE can be used. 

 
The Jupyter Notebook Environment 

Once all the ecosystem is fully installed, we can start by launching the Jupyter 

notebook platform. This can be done directly by typing the following command 

on your terminal or command line: $ jupyter notebook 
If we chose the bundle installation, we can start the Jupyter notebook platform by 

clicking on the Jupyter Notebook icon installed by Anaconda in the start menu or 
on the desktop. 

The browser will immediately be launched displaying the Jupyter notebook home- 

page, whose URL is http://localhost:8888/tree. Note that a special port is used; 

by default it is 8888. As can be seen in Fig. 2.1, this initial page displays a tree view of 
a directory. If we use the command line, the root directory is the same directory 

where we launched the Jupyter notebook. Otherwise, if we use the Anaconda 

launcher, the root directory is the current user directory. Now, to start a new 
New Notebooks Python 2 



 

notebook, we only 

need to press 
the home page. 

button at the top on the right of the 

 
 
 
 
 
 
 
 
 
 

 
In []: 

As can be seen in Fig. 2.2, a blank notebook is created called Untitled. First of 
all, we are going to change the name of the notebook to something more 
appropriate. To do this, just click on the notebook name and rename it: 
DataScience-GetStartedExample. 

Let us begin by importing those toolboxes that we will need for our program. In the 
first cell we put the code to import the Pandas library as pd. This is for convenience; 
every time we need to use some functionality from the Pandas library, we will 
write pd instead of pandas. We will also import the two core libraries mentioned 
above: the numpy library as np and the matplotlib library as plt. 

 

import pandas as pd 

import numpy as np 

import matplotlib . pyplot as plt 
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Fig. 2.1 IPython notebook home page, displaying a home tree directory 

 

 

Fig. 2.2 An empty new notebook 

 

To execute just one cell, we press the ¸ button or click on 
 

or press 
 
 
 

In [*]: 

the keys Ctrl + Enter . While execution is underway, the header of the cell shows the 
* mark: 

Cell Run 

 

import pandas as pd 

import numpy as np 

import matplotlib . pyplot as plt 
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In [1]: 

While a cell is being executed, no other cell can be executed. If you try to 

execute another cell, its execution will not start until the first cell has finished its 

execution. Once the execution is finished, the header of the cell will be replaced 
by the next number of execution. Since this will be the first cell executed, the 

number shown will 
be 1. If the process of importing the libraries is correct, no output cell is produced. 

 
 

 

For simplicity, other chapters in this book will avoid writing these imports. 

 
The DataFrame Data Structure 

The key data structure in Pandas is the DataFrame object. A DataFrame is basically a 
tabular data structure, with rows and columns. Rows have a specific index to access  
them, which can be any name or value. In Pandas, the columns are called Series, a 
special type of data, which in essence consists of a list of several values, where 
each value has an index. Therefore, the DataFrame data structure can be seen as 
a spreadsheet, but it is much more flexible. To understand how it works, let us 
see how to create a DataFrame from a common Python dictionary of lists. First, 
we will 

 
 
 

In [2]: 

create a new cell by clicking 
Then, we write in the following code: 

or pressing the keys Ctrl + . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this example, we use the pandas DataFrame object constructor with a dictionary 

of lists as argument. The value of each entry in the dictionary is the name of the 

column, and the lists are their values. 

The DataFrame columns can be arranged at construction time by entering a 

key- word columns with a list of the names of the columns ordered as we want. If 
the 

 

import pandas as pd 

import numpy as np 

import matplotlib . pyplot as plt 

Insert Insert Cell Below 

 
data = { ’ year ’: [ 

2010 , 2011 , 2012 , 

2010 , 2011 , 2012 , 

2010 , 2011 , 2012  

],  

’ team ’: [ 

’ FCBarcelona ’, ’ FCBarcelona ’, 

’ FCBarcelona ’, ’ RMadrid ’, 

’ RMadrid ’, ’ RMadrid ’, 

’ ValenciaCF ’, ’ ValenciaCF ’, 

’ ValenciaCF ’ 

],  

’ wins ’: [30 , 28, 32, 29, 32, 26, 21, 17, 19] , 

’ draws ’: [6 , 7, 4, 5, 4, 7, 8, 10 , 8] , 

’ losses ’: [2 , 3, 2, 4, 2, 5, 9, 11 , 11 ] 

} 

football = pd . DataFrame ( data , columns = [ 

’ year ’, ’ team ’, ’ wins ’, ’ draws ’, ’ losses ’ 

] 

) 
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Out[2]: 

 
 

column keyword is not present in the constructor, the columns will be arranged 

in alphabetical order. Now, if we execute this cell, the result will be a table like 

this: 
 

 year team wins draws losses 

0 2010 FCBarcelona 30 6 2 

1 2011 FCBarcelona 28 7 3 

2 2012 FCBarcelona 32 4 2 

3 2010 RMadrid 29 5 4 

4 2011 RMadrid 32 4 2 

5 2012 RMadrid 26 7 5 

6 2010 ValenciaCF 21 8 9 

7 2011 ValenciaCF 17 10 11 

8 2012 ValenciaCF 19 8 11 

where each entry in the dictionary is a column. The index of each row is created 

automatically taking the position of its elements inside the entry lists, starting from 0.  
Although it is very easy to create DataFrames from scratch, most of the time 

what we will need to do is import chunks of data into a DataFrame structure, and 

we will see how to do this in later examples. 

Apart from DataFrame data structure creation, Panda offers a lot of 

functions to manipulate them. Among other things, it offers us functions for 
aggregation, manipulation, and transformation of the data. In the following 

sections, we will introduce some of these functions. 

 
Open Government Data Analysis Example Using Pandas 

To illustrate how we can use Pandas in a simple real problem, we will start doing 

some basic analysis of government data. For the sake of transparency, data 

produced by government entities must be open, meaning that they can be freely 

used, reused, and distributed by anyone. An example of this is the Eurostat, which 

is the home of European Commission data. Eurostat’s main role is to process and 
publish compa- rable statistical information at the European level. The data in 

Eurostat are provided by each member state and it is free to reuse them, for both 

noncommercial and commercial purposes (with some minor exceptions). 

Since the amount of data in the Eurostat database is huge, in our first study 
we are only going to focus on data relative to indicators of educational funding 
by the member states. Thus, the first thing to do is to retrieve such data from 

Eurostat. Since open data have to be delivered in a plain text format, CSV (or any 
other delimiter-separated value) formats are commonly used to store tabular 

data. In a delimiter-separated value file, each line is a data record and each 
record consist- s of one or more fields, separated by the delimiter character 
(usually a comma). Therefore, the data we will use can be found already 

processed at book’s Github repository as educ_figdp_1_Data.csv file. Of course, it 
can also be download- ed as unprocessed tabular data from the Eurostat database 
site13 following the path: 



 

× 
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 Reading 
 

 
 
 
 
 
 

In [1]: 

Let us start reading the data we downloaded. First of all, we have to create a new 
notebook called Open Government Data Analysis and open it. Then, after ensuring 
that the educ_figdp_1_Data.csv file is stored in the same directory as our notebook 
directory, we will write the following code to read and show the content: 

 
 
 

 
Out[1]: 

 
 
 
 
 
 

384 rows × 5 columns 

The way to read CSV (or any other separated value, providing the separator 
character) files in Pandas is by calling the read_csv method. Besides the name of 
the file, we add the na_values key argument to this method along with the character 
that represents “non available data” in the file. Normally, CSV files have a header 
with the names of the columns. If this is the case, we can use the usecols 
parameter to select which columns in the file will be used. 

In this case, the DataFrame resulting from reading our data is stored in edu. The 
output of the execution shows that the edu DataFrame size is 384 rows 3 columns. 
Since the DataFrame is too large to be fully displayed, three dots appear in the middle 
of each row. 

Beside this, Pandas also has functions for reading files with formats such as Excel,  
HDF5, tabulated files, or even the content from the clipboard (read_excel(), 
read_hdf(), read_table(), read_clipboard()). Whichever function we use, the 
result of reading a file is stored as a DataFrame structure. 

To see how the data looks, we can use the head() method, which shows just the 
first five rows. If we use a number as an argument to this method, this will be the 
number of rows that will be listed: 

 

 
. 

 
edu = pd . read_csv ( ’ files / ch02 / educ_figdp_1_Data . csv ’, 

na_values = ’: ’, 

usecols = [" TIME " ," GEO " ," Value " ]) 

edu  

 TIME GEO Value 

0 2000 European Union ... NaN 

1 2001 European Union ... NaN 

2 2002 European Union ... 5.00 

3 2003 European Union ... 5.03 

... ... ... ... 

382 2010 Finland 6.85 

383 2011 Finland 6.76 

 

Tables by themes Population and social conditions Education and training Education 

Indicators on education finance Public expenditure on education . 
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In [2]: 

Out[2]: 

 
 
 
 
 
 
 

 
In [3]: 

 
 
 
 

 
Similarly, it exists the tail() method, which returns the last five rows by default. 

 
 

Out[3]: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

In [4]: 

If we want to know the names of the columns or the names of the indexes, we 
can use the DataFrame attributes columns and index respectively. The names of the 
columns or indexes can be changed by assigning a new list of the same length to 
these attributes. The values of any DataFrame can be retrieved as a Python array 
by calling its values attribute. 

If we just want quick statistical information on all the numeric columns in a 
DataFrame, we can use the function describe(). The result shows the count, the 
mean, the standard deviation, the minimum and maximum, and the percentiles, 
by default, the 25th, 50th, and 75th, for all the values in each column or series. 

 
 

Out[4]: 

 
 
 
 
 
 
 
 
 

Name: Value, dtype: float64 

 

edu . head () 

 

edu . tail () 

 

edu . describe () 

 TIME GEO Value 

0 2000 European Union ... NaN 

1 2001 European Union ... NaN 

2 2002 European Union ... 5.00 

3 2003 European Union ... 5.03 

4 2004 European Union ... 4.95 

 

379 2007 Finland 5.90 

380 2008 Finland 6.10 

381 2009 Finland 6.81 

382 2010 Finland 6.85 

383 2011 Finland 6.76 

 

 TIME Value 

count 384.000000 361.000000 

mean 2005.500000 5.203989 

std 3.456556 1.021694 

min 2000.000000 2.880000 

25% 2002.750000 4.620000 

50% 2005.500000 5.060000 

75% 2008.250000 5.660000 

max 2011.000000 8.810000 
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 Selecting Data 
 

 
 
 
 
 
 
 

In [5]: 

If we want to select a subset of data from a DataFrame, it is necessary to indicate this  
subset using square brackets ([ ]) after the DataFrame. The subset can be specified 
in several ways. If we want to select only one column from a DataFrame, we only 
need to put its name between the square brackets. The result will be a Series 
data structure, not a DataFrame, because only one column is retrieved. 

 
 

Out[5]: 0 NaN 

1 NaN 

2 5.00 

3 5.03 

4 4.95 

... ... 380 6.10 

381 6.81 

382 6.85 

383 6.76 
Name: Value, dtype: float64 

If we want to select a subset of rows from a DataFrame, we can do so by indicating  
a range of rows separated by a colon (:) inside the square brackets. This is commonly  
known as a slice of rows: 

In [6]: 

 
 

Out[6]: 

 
 
 

 
 
 
 
 
 
 
 

In [7]: 

This instruction returns the slice of rows from the 10th to the 13th position. 

Note that the slice does not use the index labels as references, but the position. In 

this case, the labels of the rows simply coincide with the position of the rows. 

If we want to select a subset of columns and rows using the labels as our 
references instead of the positions, we can use ix indexing: 

 

edu [ ’ Value ’] 

 
edu [10:14]  

 
edu . ix [90:94 , [ ’ TIME ’,’ GEO ’]] 

 TIME GEO Value 

10 2010 European Union (28 countries) 5.41 

11 2011 European Union (28 countries) 5.25 

12 2000 European Union (27 countries) 4.91 

13 2001 European Union (27 countries) 4.99 
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Out[7]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [8]: 

 
 

 
 TIME GEO 

90 2006 Belgium 

91 2007 Belgium 

92 2008 Belgium 

93 2009 Belgium 

94 2010 Belgium 

This returns all the rows between the indexes specified in the slice before the 
comma, and the columns specified as a list after the comma. In this case, ix references 
the index labels, which means that ix does not return the 90th to 94th rows, but it  
returns all the rows between the row labeled 90 and the row labeled 94; thus if 
the index 100 is placed between the rows labeled as 90 and 94, this row would 
also be returned. 

 
 

 Filtering Data 
 

Another way to select a subset of data is by applying Boolean indexing. This indexing  

is commonly known as a filter. For instance, if we want to filter those values less 

than or equal to 6.5, we can do it like this: 

 
 

Out[8]: 
 

 TIME GEO Value 

218 2002 Cyprus 6.60 

281 2005 Malta 6.58 

94 2010 Belgium 6.58 

93 2009 Belgium 6.57 

95 2011 Belgium 6.55 

Boolean indexing uses the result of a Boolean operation over the data, 
returning a mask with True or False for each row. The rows marked True in the 
mask will be selected. In the previous example, the Boolean operation 
edu[’Value’] >produces a Boolean mask. When an element in the “Value” column 
is greater than 6.5, the corresponding value in the mask is set to True, otherwise 
it is set to False. Then, when this mask is applied as an index in edu[edu[’Value’] > 
6.5], the result is a filtered DataFrame containing only rows with values higher 
than 6.5. Of course, any of the usual Boolean operators can be used for filtering: 
< (less than),<= (less than or equal to), > (greater than), >= (greater than or equal 
to), = (equal to), and ! =  (not equal to). 

 
 Filtering Missing Values 

 
Pandasuses the special value NaN (not a number) to represent missing values. In Python, NaN is a special floating-point value returned by certain operations when 

 
edu [ edu [ ’ Value ’] > 6.5]. tail () 
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Table 2.1 List of most common aggregation functions 
 

Function Description 

count() Number of non-null observations 

sum() Sum of values 

mean() Mean of values 

median() Arithmetic median of values 

min() Minimum 

max() Maximum 

prod() Product of values 

std() Unbiased standard deviation 

var() Unbiased variance 

 

 
 
 
 
 
 

In [9]: 

one of their results ends in an undefined value. A subtle feature of NaN values is that  
two NaN are never equal. Because of this, the only safe way to tell whether a value is  
missing in a DataFrame is by using the isnull() function. Indeed, this function can be 
used to filter rows with missing values: 

 

 
Out[9]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [10]: 

 
 TIME GEO Value 

0 2000 European Union (28 countries) NaN 

1 2001 European Union (28 countries) NaN 

36 2000 Euro area (18 countries) NaN 

37 2001 Euro area (18 countries) NaN 

48 2000 Euro area (17 countries) NaN 

 

 
 Manipulating Data 
 
Once we know how to select the desired data, the next thing we need to know is 
how to manipulate data. One of the most straightforward things we can do is to 
operate with columns or rows using aggregation functions. Table 2.1 shows a list of 
the most common aggregation functions. The result of all these functions applied 
to a row or column is always a number. Meanwhile, if a function is applied to a 
DataFrame or a selection of rows and columns, then you can specify if the function 
should be applied to the rows for each column (setting the axis=0 keyword on the 
invocation of the function), or it should be applied on the columns for each row 
(setting the axis=1 keyword on the invocation of the function). 

 
edu [ edu [" Value " ]. isnull () ]. head () 

 
edu . max ( axis = 0) 
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Out[10]: TIME 2011 

GEO Spain 

Value 8.81 
dtype: object 

Note that these are functions specific to Pandas, not the generic Python 
functions. There are differences in their implementation. In Python, NaN values 
propagate through all operations without raising an exception. In contrast, 
Pandas operations exclude NaN values representing missing data. For example, the 
pandas max function excludes NaN values, thus they are interpreted as missing values, 
while the standard Python max function will take the mathematical interpretation of 
NaN and return it as the maximum: 

In [11]: 

Out[11]: Pandas max function: 8.81 Python max function: 

nan 

Beside these aggregation functions, we can apply operations over all the values in  

rows, columns or a selection of both. The rule of thumb is that an operation 

between columns means that it is applied to each row in that column and an 
operation between rows means that it is applied to each column in that row. For 

example we can apply any binary arithmetical operation (+,-,*,/) to an entire row: 

In [12]: 

 
 
 

Out[12]: 0 NaN 

1 NaN 

2 0.0500 

3 0.0503 

4 0.0495 
Name: Value, dtype: float64 

However, we can apply any function to a DataFrame or Series just setting its name 
as argument of the apply method. For example, in the following code, we apply 
the sqrt function from the NumPy library to perform the square root of each value 
in the Value column. 

In [13]: 

 
 

 
Out[13]: 0 NaN 

1 NaN 

2 2.236068 

3 2.242766 

4 2.224860 
Name: Value, dtype: float64 

 
print " Pandas max function :" , edu [ ’ Value ’]. max () 

print " Python max function :" , max ( edu [ ’ Value ’]) 

 

s = edu [" Value " ]/100 

s. head () 

 

s = edu [" Value " ]. apply ( np . sqrt ) 

s. head () 
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In [14]: 

If we need to design a specific function to apply it, we can write an in-line function, 
commonly known as a λ-function. A λ-function is a function without a name. It is 
only necessary to specify the parameters it receives, between the lambda keyword 
and the colon (:). In the next example, only one parameter is needed, which will 
be the value of each element in the Value column. The value the function returns will 
be the square of that value. 

 
 

 
Out[14]: 0 NaN 

1 NaN 

2 25.0000 

3 25.3009 

4 24.5025 
Name: Value, dtype: float64 

Another basic manipulation operation is to set new values in our DataFrame. This  
can be done directly using the assign operator (=) over a DataFrame. For example, to  
add a new column to a DataFrame, we can assign a Series to a selection of a 
column that does not exist. This will produce a new column in the DataFrame 
after all the others. You must be aware that if a column with the same name 
already exists, the previous values will be overwritten. In the following example, 
we assign the Series that results from dividing the Value column by the maximum 
value in the same column to a new column named ValueNorm. 

In [15]: 

 

 

Out[15]: 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
In [16]: 

Now, if we want to remove this column from the DataFrame, we can use the drop 
function; this removes the indicated rows if axis=0, or the indicated columns if 
axis=1. In Pandas, all the functions that change the contents of a DataFrame, such 
as the drop function, will normally return a copy of the modified data, instead of 
overwriting the DataFrame. Therefore, the original DataFrame is kept. If you do 
not want to keep the old values, you can set the keyword inplace to True. By default, 
this keyword is set to False, meaning that a copy of the data is returned. 

 

s = edu [" Value " ]. apply ( lambda d: d **2) 

s. head () 

 
edu [ ’ ValueNorm ’] = edu [ ’ Value ’]/ edu [ ’ Value ’]. max () 

edu . tail () 

 
edu . drop ( ’ ValueNorm ’, axis = 1 , inplace = True ) 

edu . head () 

 TIME GEO Value ValueNorm 

379 2007 Finland 5.90 0.669694 

380 2008 Finland 6.10 0.692395 

381 2009 Finland 6.81 0.772985 

382 2010 Finland 6.85 0.777526 

383 2011 Finland 6.76 0.767310 
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Out[16]: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [17]: 

 
 
 
 

 
Instead, if what we want to do is to insert a new row at the bottom of the 

DataFrame, we can use the Pandas append function. This function receives as 
argument the new row, which is represented as a dictionary where the keys 
are the name of the columns and the values are the associated value. You must be 
aware to setting the ignore_index flag in the append method to True, otherwise 
the index 0 is given to this new row, which will produce an error if it already 
exists: 

 
 
 

Out[17]: 

 
 
 
 

 
 
 
 
 
 

In [18]: 

Finally, if we want to remove this row, we need to use the drop function again.  
Now we have to set the axis to 0, and specify the index of the row we want to 
remove. Since we want to remove the last row, we can use the max function over 
the indexes to determine which row is. 

 

 

Out[18]: 

 
 
 
 

 
 
 
 
 
 
 

In [19]: 

The drop() function is also used to remove missing values by applying it over the 
result of the isnull() function. This has a similar effect to filtering the NaN values, as 
we explained above, but here the difference is that a copy of the DataFrame without 
the NaN values is returned, instead of a view. 

 
edu = edu . append ({ " TIME ": 2000 , " Value ": 5.00 , " GEO ": ’a ’}, 

ignore_index = True ) 

edu . tail () 

 
edu . drop ( max ( edu . index ) , axis = 0 , inplace = True ) 

edu . tail () 

 
eduDrop = edu . drop ( edu [" Value " ]. isnull () , axis = 0) 

eduDrop . head () 

 TIME GEO Value 

0 2000 European Union (28 countries) NaN 

1 2001 European Union (28 countries) NaN 

2 2002 European Union (28 countries) 5 

3 2003 European Union (28 countries) 5.03 

4 2004 European Union (28 countries) 4.95 

 

 TIME GEO Value 

380 2008 Finland 6.1 

381 2009 Finland 6.81 

382 2010 Finland 6.85 

383 2011 Finland 6.76 

384 2000 a 5 

 

 TIME GEO Value 

379 2007 Finland 5.9 

380 2008 Finland 6.1 

381 2009 Finland 6.81 

382 2010 Finland 6.85 

383 2011 Finland 6.76 
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Out[19]: 

 
 
 
 

 
 
 
 
 
 
 
 

In [20]: 

To remove NaN values, instead of the generic drop function, we can use the 
specific dropna() function. If we want to erase any row that contains an NaN value, we 
have to set the how keyword to any. To restrict it to a subset of columns, we can 
specify it using the subset keyword. As we can see below, the result will be the same 
as using the drop function: 

 

 

Out[20]: 

 
 
 
 

 
 
 
 
 
 
 
 

In [21]: 

If, instead of removing the rows containing NaN, we want to fill them with another 
value, then we can use the fillna() method, specifying which value has to be used. If 
we want to fill only some specific columns, we have to set as argument to the 
fillna() function a dictionary with the name of the columns as the key and which 
character to be used for filling as the value. 

 

 

Out[21]: 
 

 TIME GEO Value 

0 2000 European Union (28 countries) 0.00 

1 2001 European Union (28 countries) 0.00 

2 2002 European Union (28 countries) 5.00 

3 2003 European Union (28 countries) 4.95 

4 2004 European Union (28 countries) 4.95 

 

 
 Sorting 
Another important functionality we will need when inspecting our data is to sort 
by columns. We can sort a DataFrame using any column, using the sort function. If 
we want to see the first five rows of data sorted in descending order (i.e., from 
the largest to the smallest values) and using the Value column, then we just need to 
do this: 

 
eduDrop = edu . dropna ( how = ’ any ’, subset = [" Value " ]) 

eduDrop . head () 

 
eduFilled = edu . fillna ( value = {" Value ": 0}) 

eduFilled . head () 

 TIME GEO Value 

2 2002 European Union (28 countries) 5.00 

3 2003 European Union (28 countries) 5.03 

4 2004 European Union (28 countries) 4.95 

5 2005 European Union (28 countries) 4.92 

6 2006 European Union (28 countries) 4.91 

 

 TIME GEO Value 

2 2002 European Union (28 countries) 5.00 

3 2003 European Union (28 countries) 5.03 

4 2004 European Union (28 countries) 4.95 

5 2005 European Union (28 countries) 4.92 

6 2006 European Union (28 countries) 4.91 
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In [22]: 

Out[22]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [23]: 

 
 
 
 

 
Note that the inplace keyword means that the DataFrame will be overwritten, and 

hence no new DataFrame is returned. If instead of ascending = False we use 
ascending = True, the values are sorted in ascending order (i.e., from the smallest 
to the largest values). 

If we want to return to the original order, we can sort by an index using the 

sort_index function and specifying axis=0: 

 

 

Out[23]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [24]: 

 

 TIME GEO Value 

0 2000 European Union ... NaN 

1 2001 European Union ... NaN 

2 2002 European Union ... 5.00 

3 2003 European Union ... 5.03 

4 2004 European Union ... 4.95 

 

 
 Grouping Data 
 
Another very useful way to inspect data is to group it according to some criteria. 
For instance, in our example it would be nice to group all the data by country, 
regardless of the year. Pandas has the groupby function that allows us to do exactly 

this. The value returned by this function is a special grouped DataFrame. To have 
a proper DataFrame as a result, it is necessary to apply an aggregation function. 
Thus, this function will be applied to all the values in the same group. 

For example, in our case, if we want a DataFrame showing the mean of the 

values for each country over all the years, we can obtain it by grouping according to 
country and using the mean function as the aggregation method for each group. 

The result would be a DataFrame with countries as indexes and the mean values as 

the column: 

 
edu . sort_values ( by = ’ Value ’, ascending = False , 

inplace = True ) 

edu . head () 

 
edu . sort_index ( axis = 0 , ascending = True , inplace = True ) 

edu . head () 

 
group = edu [[ " GEO " , " Value " ]]. groupby ( ’ GEO ’). mean () 

group . head () 

 TIME GEO Value 

130 2010 Denmark 8.81 

131 2011 Denmark 8.75 

129 2009 Denmark 8.74 

121 2001 Denmark 8.44 

122 2002 Denmark 8.44 
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Out[24]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [25]: 

 

 Value 

GEO  

Austria 5.618333 

Belgium 6.189091 

Bulgaria 4.093333 

Cyprus 7.023333 

Czech Republic 4.16833 

Rearranging Data 
 
Up until now, our indexes have been just a numeration of rows without much 
meaning. We can transform the arrangement of our data, redistributing the indexes 
and columns for better manipulation of our data, which normally leads to better 
performance. We can rearrange our data using the pivot_table function. Here, we 
can specify which columns will be the new indexes, the new values, and the new 
columns. 

For example, imagine that we want to transform our DataFrame to a 
spreadsheet- like structure with the country names as the index, while the 
columns will be the years starting from 2006 and the values will be the previous 
Value column. To do this, first we need to filter out the data and then pivot it in 
this way: 

 
 

Out[25]: 

 
 
 
 
 

 
 
 
 

In [26]: 

Now we can use the new index to select specific rows by label, using the ix 
operator: 

 
 

Out[26]: 
 
TIME 2006 2011 

GEO   

Spain 4.26 4.82 

Portugal 5.07 5.27 

Pivot also offers the option of providing an argument aggr_function that allows us 
to perform an aggregation function between the values if there is more 

 
filtered_data = edu [ edu [" TIME "] > 2005]  

pivedu = pd . pivot_table ( filtered_data , values = ’ Value ’, 

index = [ ’ GEO ’],  

columns = [ ’ TIME ’]) 

pivedu . head () 

 
pivedu . ix [[ ’ Spain ’,’ Portugal ’], [2006 ,2011]]  

TIME 2006 2007 2008 2009 2010 2011 

GEO       

Austria 5.40 5.33 5.47 5.98 5.91 5.80 

Belgium 5.98 6.00 6.43 6.57 6.58 6.55 

Bulgaria 4.04 3.88 4.44 4.58 4.10 3.82 

Cyprus 7.02 6.95 7.45 7.98 7.92 7.87 

Czech Republic 4.42 4.05 3.92 4.36 4.25 4.51 
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than one value for the given row and column after the transformation. As usual, 
you can design any custom function you want, just giving its name or using a λ-
function. 

 
 

 Ranking Data 
 

Another useful visualization feature is to rank data. For example, we would like to 
know how each country is ranked by year. To see this, we will use the pandas rank  
function. But first, we need to clean up our previous pivoted table a bit so that it 
only has real countries with real data. To do this, first we drop the Euro area 
entries and shorten the Germany name entry, using the rename function and then 
we drop all the rows containing any NaN, using the dropna function. 

Now we can perform the ranking using the rank function. Note here that the  
parameter ascending=False makes the ranking go from the highest values to the 
lowest values. The Pandas rank function supports different tie-breaking methods, 
specified with the method parameter. In our case, we use the first method, in which 
ranks are assigned in the order they appear in the array, avoiding gaps between 
ranking. 

In [27]: 
pi ved u = pi vedu . drop ([ 

’ Euro area ( 13 countri es  ) ’, ’ Euro area ( 

15 countries  ) ’, ’ Euro area ( 17 countri es  

) ’, ’ Euro area ( 18 countri es  ) ’, 

’ Europ ean Union ( 25 cou ntri es  ) ’, ’ Europ ean  

Union ( 27 countri es  ) ’, ’ Eur opea n Union ( 28 

coun tri es  ) ’ 

],  

axis = 0) 

pi ved u = p i ved u . r en a me ( in dex  = { ’ G er man y  ( unt il  1990 f or mer  t err it or y  of the FRG ) ’: ’ Germany ’})  

pi ved u  = pi ved u . dro p na () 

pi ved u . rank ( as c en d i ng  = False , met ho d = ’ first ’). head () 

 

Out[27]: 

 
 
 
 
 

 
 
 
 
 

In [28]: 

If we want to make a global ranking taking into account all the years, we can 

sum up all the columns and rank the result. Then we can sort the resulting values 

to retrieve the top five countries for the last 6 years, in this way: 

 
totalSum = pivedu . sum ( axis = 1) 

totalSum . rank ( ascending = False , method = ’ dense ’) 

. sort_values () . head () 

TIME 2006 2007 2008 2009 2010 2011 

GEO       

Austria 10 7 11 7 8 8 

Belgium 5 4 3 4 5 5 

Bulgaria 21 21 20 20 22 21 

Cyprus 2 2 2 2 2 3 

Czech Republic 19 20 21 21 20 18 
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Out[28]: GEO 

Denmark 1 

Cyprus 2 

Finland 3 

Malta 4 

Belgium 5 

dtype: float64 

Notice that the method keyword argument in the in the rank function specifies  
how items that compare equals receive ranking. In the case of dense, items that 
compare equals receive the same ranking number, and the next not equal item 
receives the immediately following ranking number. 

 
 

 Plotting 
 

 
 
 
 
 
 

In [29]: 

Pandas DataFrames and Series can be plotted using the plot function, which uses the 
library for graphics Matplotlib. For example, if we want to plot the accumulated 
values for each country over the last 6 years, we can take the Series obtained in 
the previous example and plot it directly by calling the plot function as shown in the 
next cell: 

 
 
 
 
 

Out[29]: 

 
 

 
Note that if we want the bars ordered from the highest to the lowest value, 

we need to sort the values in the Series first. The parameter kind used in the plot  
function defines which kind of graphic will be used. In our case, a bar graph. The 
parameter style refers to the style properties of the graphic, in our case, the color 

 

 

totalSum = pivedu . sum ( axis = 1) 

. sort_values ( ascending = False ) 

totalSum . plot ( kind = ’ bar ’, style = ’b ’, alpha = 0.4 , 

title = " Total Values for Country ") 
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In [30]: 

 
 

of bars is set to b (blue). The alpha channel can be modified adding a keyword 
parameter alpha with a percentage, producing a more translucent plot. Finally, using 
the title keyword the name of the graphic can be set. 

It is also possible to plot a DataFrame directly. In this case, each column is treated 

as a separated Series. For example, instead of printing the accumulated value 

over the years, we can plot the value for each year. 

 
 
 
 

 
Out[30]: 

 
 

 

In this case, we have used a horizontal bar graph (kind=’barh’) stacking all the  
years in the same country bar. This can be done by setting the parameter stacked 
to True. The number of default colors in a plot is only 5, thus if you have more 
than 5 Series to show, you need to specify more colors or otherwise the same set 
of colors will be used again. We can set a new set of colors using the keyword color 
with a list of colors. Basic colors have a single-character code assigned to each, 
for example, “b” is for blue, “r” for red, “g” for green, “y” for yellow, “m” for 
magenta, and “c” for cyan. When several Series are shown in a plot, a legend is 
created for identifying each one. The name for each Series is the name of the 
column in the DataFrame. By default, the legend goes inside the plot area. If we 
want to change this, we can use the legend function of the axis object (this is the 
object returned when the plot function is called). By using the loc keyword, we can 
set the relative position of the legend with respect to the plot. It can be a 
combination of right or left and upper, lower, or center. With bbox_to_anchor we 
can set an absolute position with respect to the plot, allowing us to put the 
legend outside the graph. 

 
my_colors = [ ’b ’, ’r ’, ’g ’, ’y ’, ’m ’, ’c ’] 

ax = pivedu . plot ( kind = ’ barh ’, 

stacked = True , 

color = my_colors ) 

ax . legend ( loc = ’ center left ’, bbox_to_anchor = (1 , . 5 ) ) 



 

                                                                                    UNIT-2 

Descriptive statistics, data preparation. Exploratory Data Analysis data summarization, 

data distribution, measuring asymmetry. Sample and estimated mean, variance and 

standard score. Statistical Inference frequency approach, variability of estimates, 

hypothesis testing using confidence intervals, using p-values 

 

              Descriptive Statistics 
                 

Descriptive statistics helps to simplify large amounts of data in a sensible 

way. In contrast to inferential statistics, which will be introduced in a later 
chapter, in descriptive statistics we do not draw conclusions beyond the data we 

are analyzing; neither do we reach any conclusions regarding hypotheses we may 

make. We do not try to infer characteristics of the “population” (see below) of the 

data, but claim to present quantitative descriptions of it in a manageable form. It 
is simply a way to describe the data. 

Statistics, and in particular descriptive statistics, is based on two main concepts: 
 

a population is a collection of objects, items (“units”) about which information 

is sought; 

• a sample is a part of the population that is observed. 

Descriptive statistics applies the concepts, measures, and terms that are used 

to describe the basic features of the samples in a study. These procedures are 
essential to provide summaries about the samples as an approximation of the 

population. Together with simple graphics, they form the basis of every 

quantitative analysis of data. In order to describe the sample data and to be able 

to infer any conclusion, we should go through several steps: 

 
1. Data preparation: Given a specific example, we need to prepare the data 

for generating statistically valid descriptions. 

2. Descriptive statistics: This generates different statistics to describe and 

summa- rize the data concisely and evaluate different ways to visualize them. 
 
 

 

• 
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 Data Preparation 
 

One of the first tasks when analyzing data is to collect and prepare the data in a 

format appropriate for analysis of the samples. The most common steps for data 
preparation involve the following operations. 

 
1. Obtaining the data: Data can be read directly from a file or they might be obtained 

by scraping the web. 
2. Parsing the data: The right parsing procedure depends on what format the 

data are in: plain text, fixed columns, CSV, XML, HTML, etc. 

3. Cleaning the data: Survey responses and other data files are almost always in- 

complete. Sometimes, there are multiple codes for things such as, not asked, 
did not know, and declined to answer. And there are almost always errors. A 

simple strategy is to remove or ignore incomplete records. 

4. Building data structures: Once you read the data, it is necessary to store them 

in a data structure that lends itself to the analysis we are interested in. If the 

data fit into the memory, building a data structure is usually the way to go. If 
not, usually a database is built, which is an out-of-memory data structure. 

Most databases provide a mapping from keys to values, so they serve as 

dictionaries. 

 
 

 The Adult Example 
 

Let us consider a public database called the “Adult” dataset, hosted on the UCI’s 

Machine Learning Repository.1 It contains approximately 32,000 observations con- 
cerning different financial parameters related to the US population: age, sex, 

marital (marital status of the individual), country, income (Boolean variable: whether 

the per- son makes more than $50,000 per annum), education (the highest level of 

education achieved by the individual), occupation, capital gain, etc. 

We will show that we can explore the data by asking questions like: “Are men 
more likely to become high-income professionals than women, i.e., to receive an 

income of over $50,000 per annum?” 

 



 

Data Preparation  

In [1]: 

First, let us read the data: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [2]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Checking the data, we obtain: 

 
 

Out[2]: [[50, ’Self-emp-not-inc’, 83311, ’Bachelors’, 13, 

’Married-civ-spouse’, ’Exec-managerial’, ’Husband’, ’White’, ’Male’, 0, 0, 13, ’United-
States’, r <= 50K ’]] 

One of the easiest ways to manage data in Python is by using the DataFrame 
structure, defined in the Pandas library, which is a two-dimensional, size-
mutable, potentially heterogeneous tabular data structure with labeled axes: 

 

In [3]: 

 
 
 
 
 
 
 
 
 
 
 
 

In [4]: 

 
The command shape gives exactly the number of data samples (in rows, in this 

case) and features (in columns): 

 
 

Out[4]: (32561, 15) 

 

file = open ( ’ files / ch03 / adult . data ’, ’r ’) 

def chr_int ( a): 

if a. isdigit () : return int (a) 

else : return 0 

 

data = [] 

for line in file : 

data1 = line . split ( ’, ’) 

if len ( data1 ) == 15 : 

data . append ([ chr_int ( data1 [0]) , data1 [1] , 

chr_int ( data1 [2]) , data1 [3] , 

chr_int ( data1 [4]) , data1 [5] , 

data1 [6] , data1 [7] , data1 [8] , 

data1 [9] , chr_int ( data1 [10]) , 

chr_int ( data1 [11]) , 

chr_int ( data1 [12]) , 

data1 [13] , data1 [14]  

]) 

 

print data [1:2]  

 

df = pd . DataFrame ( data ) 

df . columns = [ 

’ age ’, ’ type_employer ’, ’ fnlwgt ’, 

’ education ’, ’ education_num ’, ’ marital ’, 

’ occupation ’,’ relationship ’, ’ race ’, 

’ sex ’, ’ capital_gain ’, ’ capital_loss ’, 

’ hr_per_week ’, ’ country ’, ’ income ’ 

] 

 

df . shape  
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In [5]: 

Thus, we can see that our dataset contains 32,561 data records with 15 

features each. Let us count the number of items per country: 

 
 
 

Out[5]: country 

? 583 

Cambodia 19 

Vietnam 67 

Yugoslavia 16 

The first row shows the number of samples with unknown country, followed 

by the number of samples corresponding to the first countries in the dataset. 
Let us split people according to their gender into two groups: men and women. 

 

In [6]: 

 
 
 

In [7]: 

If we focus on high-income professionals separated by sex, we can do: 

 
 
 
 
 
 
 

 

Exploratory Data Analysis 
 

The data that come from performing a particular measurement on all the 
subjects in a sample represent our observations for a single characteristic like 
country, age, education, etc. These measurements and categories represent a 
sample distribution of the variable, which in turn approximately represents the 
population distribution of the variable. One of the main goals of exploratory 
data analysis is to visualize and summarize the sample distribution, thereby 
allowing us to make tentative assumptions about the population distribution. 

Summarizing the Data 
 

The data in general can be categorical or quantitative. For categorical data, a 

simple tabulation of the frequency of each category is the best non-graphical 

exploration for data analysis. For example, we can ask ourselves what is the 

proportion of high- income professionals in our database: 

 
counts = df . groupby ( ’ country ’). size () 

print counts . head () 

 
ml = df [( df . sex == ’ Male ’)]  

 
ml1 = df [( df . sex == ’ Male ’) & ( df . income == ’ >50 K\ n ’) 

] 

fm = df [( df . sex == ’ Female ’)]  

fm1 = df [( df . sex == ’ Female ’) & ( df . income == ’ >50 K\ n 

’)]  



 

{   } =
2
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In [8]: 

 
 
 
 
 
 
 
 

Out[8]: The rate of people with high income is: 24 %. 

The rate of men with high income is: 30 %. The rate of women 

with high income is: 10 %. 

Given a quantitative variable, exploratory data analysis is a way to make 

prelim- inary assessments about the population distribution of the variable using 
the data of the observed samples. The characteristics of the population 

distribution of a quanti- tative variable are its mean, deviation, histograms, 

outliers, etc. Our observed data represent just a finite set of samples of an often 

infinite number of possible samples. The characteristics of our randomly observed 
samples are interesting only to the degree that they represent the population of 

the data they came from. 

 
 

Mean 

One of the first measurements we use to have a look at the data is to obtain 

sample statistics from the data, such as the sample mean [1]. Given a sample of 
n values, 

xi , i 
values, 

1 , . . . ,  n, the mean, μ, is the sum of the values divided by the number of 
in other words: 

 
df 1 = df [( df . income == ’ >50 K\ n ’)]  

print ’ The rate of people with high income is : ’, 

int ( len ( df1 )/ float ( len ( df )) *100) , ’%. ’ 

print ’ The rate of men with high income is : ’, 

int ( len ( ml1 )/ float ( len ( ml )) *100) , ’%. ’ 

print ’ The rate of women with high income is : ’, 

int ( len ( fm1 )/ float ( len ( fm )) *100) , ’%. ’ 



 

 1
=   i 

n 

− 

n 

μ x . (3.1) 
n 

i =1 

The terms mean and average are often used interchangeably. In fact, the 

main distinction between them is that the mean of a sample is the summary 

statistic com- puted by Eq. (3.1), while an average is not strictly defined and could 

be one of many summary statistics that can be chosen to describe the central 
tendency of a sample. 

In our case, we can consider what the average age of men and women samples 

in our dataset would be in terms of their mean: 
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In [9]: 

 
 
 
 
 
 
 
 

Out[9]:          The average age of men is: 39.4335474989 The average age of 

women is: 36.8582304336 

The average age of high-income men is: 44.6257880516 

The average age of high-income women is: 42.1255301103 

This difference in the sample means can be considered initial evidence that 

there are differences between men and women with high income! 

Comment: Later, we will work with both concepts: the population mean and 

the sample mean. We should not confuse them! The first is the mean of samples 

taken from the population; the second, the mean of the whole population. 

Sample Variance 

The mean is not usually a sufficient descriptor of the data. We can go further by 
knowing two numbers: mean and variance. The variance σ2 describes the spread 
of the data and it is defined as follows: 

σ2 = 
1       

(xi − μ)2. (3.2) 
 
 
 
 
 
 
 
 
 
 

In [10]: 

i 

The term (xi μ) is called the deviation from the mean, so the variance is the mean 
squared deviation. The square root of the variance, σ, is called the standard 
deviation. We consider the standard deviation, because the variance is hard to 
interpret (e.g., if the units are grams, the variance is in grams squared). 

Let us compute the mean and the variance of hours per week men and women 

in our dataset work: 

print ’ The average age 

ml [ ’ age ’]. mean () 

print ’ The average age 

fm [ ’ age ’]. mean () 

of men is : ’, 

of women is : ’, 

print ’ The average age 

ml1 [ ’ age ’]. mean () 

of high - income men is : ’, 

print ’ The average age of high - income women is : ’, 

fm1 [ ’ age ’]. mean () 

 
ml_mu = ml [ ’ age ’]. mean () 

fm_mu = fm [ ’ age ’]. mean () 

ml_var = ml [ ’ age ’]. var () 

fm_var = fm [ ’ age ’]. var () 

ml_std = ml [ ’ age ’]. std () 

fm_std = fm [ ’ age ’]. std () 

print ’ Statistics of age for men : mu : ’, 

ml_mu , ’ var : ’, ml_var , ’ std : ’, ml_std 



 

{  } 

3.3   Exploratory Data Analysis 35 

 

        Out[10]: Statistics of age for men: mu: 39.4335474989 var: 178.773751745 std: 13.3706301925 

Statistics of age for women: mu: 36.8582304336 var: 196.383706395 std: 

14.0136970994 

We can see that the mean number of hours worked per week by women is signif- 

icantly lesser than that worked by men, but with much higher variance and 

standard deviation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [11]: 

 
 Sample Median 

The mean of the samples is a good descriptor, but it has an important drawback: 
what will happen if in the sample set there is an error with a value very different 
from the rest? For example, considering hours worked per week, it would 
normally be in a range between 20 and 80; but what would happen if by mistake 
there was a value of 1000? An item of data that is significantly different from the 
rest of the data is called an outlier. In this case, the mean, μ, will be drastically 
changed towards the outlier. One solution to this drawback is offered by the 
statistical median, μ12, which is an order statistic giving the middle value of a 
sample. In this case, all the values are ordered by their magnitude and the 
median is defined as the value that is in the middle of the ordered list. Hence, it is 
a value that is much more robust in the face of outliers. 

Let us see, the median age of working men and women in our dataset and the 

median age of high-income men and women: 

 
 
 
 
 
 
 
 
 

 
Out[11]: Median age per men and women: 38.0 35.0 

Median age per men and women with high-income: 44.0 41.0 

As expected, the median age of high-income people is higher than the whole 

set of working people, although the difference between men and women in both 

sets is the same. 

 
 

Quantiles and Percentiles 

Sometimes we are interested in observing how sample data are distributed in 
general. In this case, we can order the samples xi , then find the xp so that it 

divides the data into two parts, where: 

 

ml_median = ml [ ’ age ’]. median () 

fm_median = fm [ ’ age ’]. median () 

print " Median age per men and women : " , 

ml_median , fm_median  

 

ml_median_age = ml 1 [ ’ age ’]. median () 

fm_median_age = fm 1 [ ’ age ’]. median () 

print " Median age per men and women with high - 

income : " , 

ml_median_age , fm_median_age  



 

× 

× × × 
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Fig. 3.1 Histogram of the age of working men (left) and women (right) 

 

 

• a fraction p of the data values is less than or equal to xp and 

• the remaining fraction (1 − p) is greater than xp .  

That value, xp, is the p-th quantile, or the 100 p-th percentile. For example, a 5-
number summary is defined by the values xmin, Q1, Q2, Q3, xmax , where Q1 is the 
25 p-th percentile, Q2 is the 50 p-th percentile and Q3 is the 75 p-th percentile. 

 
 Data Distributions 

 

 
 
 
 
 
 
 
 
 

 
In [12]: 

Summarizing data by just looking at their mean, median, and variance can be danger- 

ous: very different data can be described by the same statistics. The best thing to 

do is to validate the data by inspecting them. We can have a look at the data 
distribution, which describes how often each value appears (i.e., what is its 

frequency). 

The most common representation of a distribution is a histogram, which is a graph 

that shows the frequency of each value. Let us show the age of working men and 
women separately. 

 
 
 

 
In [13]: 

 
 

 

The output can be seen in Fig. 3.1. If we want to compare the histograms, we 

can plot them overlapping in the same graphic as follows: 

 
ml_age = ml [ ’ age ’] 

ml_age . hist ( normed = 0 , histtype = ’ stepfilled ’, 

bins = 20 ) 

 
fm_age = fm [ ’ age ’] 

fm_age . hist ( normed = 0 , histtype = ’ stepfilled ’, 

bins = 10 ) 
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Fig. 3.2 Histogram of the age of working men (in ochre) and women (in violet) (left). Histogram of the 

age of working men (in ochre), women (in blue), and their intersection (in violet) after samples 

normalization (right) 

 
 

In [14]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [15]: 

 
The output can be seen in Fig. 3.2 (left). Note that we are visualizing the absolute 

values of the number of people in our dataset according to their age (the abscissa 

of the histogram). As a side effect, we can see that there are many more men in 

these conditions than women. 

We can normalize the frequencies of the histogram by dividing/normalizing by 
n, the number of samples. The normalized histogram is called the Probability 

Mass Function (PMF). 

 
 
 
 
 
 

This outputs Fig. 3.2 (right), where we can observe a comparable range of indi- 

viduals (men and women). 
The Cumulative Distribution Function (CDF), or just distribution function, 

describes the probability that a real-valued random variable X with a given proba- 

bility distribution will be found to have a value less than or equal to x . Let us show 

the CDF of age distribution for both men and women. 

 
import seaborn as sns 

fm_age . hist ( normed = 0 , histtype = ’ stepfilled ’, 

alpha = .5 , bins = 20 ) 

ml_age . hist ( normed = 0 , histtype = ’ stepfilled ’, 

alpha = .5 , 

color = sns . desaturate (" indianred " , 

.75) , 

bins = 10 ) 

 
fm_age . hist ( normed = 1 , histtype = ’ stepfilled ’, 

alpha = .5 , bins = 20 ) 

ml_age . hist ( normed = 1 , histtype = ’ stepfilled ’, 

alpha = .5 , bins = 10 , 

color = sns . desaturate (" indianred " , 

.75) ) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [16]: 
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Fig. 3.3 The CDF of the age of 

working male (in blue) 

and female (in red) samples 

 
 
 
 
 
 
 
 

The output can be seen in Fig. 3.3, which illustrates the CDF of the age distributions 
for both men and women. 

 
 

 Outlier Treatment 
 

As mentioned before, outliers are data samples with a value that is far from the 

central tendency. Different rules can be defined to detect outliers, as follows: 
 

• Computing samples that are far from the median. 

• Computing samples whose values exceed the mean by 2 or 3 standard deviations. 

For example, in our case, we are interested in the age statistics of men versus 

women with high incomes and we can see that in our dataset, the minimum age is 

17 years and the maximum is 90 years. We can consider that some of these samples 

are due to errors or are not representable. Applying the domain knowledge, we 

focus on the median age (37, in our case) up to 72 and down to 22 years old, and 
we consider the rest as outliers. 

 
ml_age . hist ( normed = 1 , histtype = ’ step ’, 

cumulative = True , linewidth = 3.5 , 

bins = 20 ) 

fm_age . hist ( normed = 1 , histtype = ’ step ’, 

cumulative = True , linewidth = 3.5 , 

bins = 20 , 

color = sns . desaturate (" indianred " , 

.75) ) 
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In [17]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [18]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can check how the mean and the median changed once the data were cleaned: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Out[18]: Men statistics: Mean: 44.3179821239 Std: 10.0197498572 Median: 

44.0 Min: 19 Max: 72 

Women statistics: Mean: 41.877028181 Std: 10.0364418073 Median: 

41.0 Min: 19 Max: 72 

Let us visualize how many outliers are removed from the whole data by: 
 

In [19]: 

 

df 2 = df . drop ( df . index [ 

( df . income == ’ >50 K\ n ’) & 

(df[ ’ age ’] > df [ ’ age ’]. median () + 35 ) & 

(df[ ’ age ’] > df [ ’ age ’]. median () -15) 

]) 

ml1_age = ml 1 [ ’ age ’] 

fm1_age = fm 1 [ ’ age ’] 

 

ml2_age = ml1_age . drop ( ml1_age . index [ 

( ml1_age > df [ ’ age ’]. median () + 35 ) & 

( ml1_age > df [ ’ age ’]. median () - 15 ) 

]) 

fm2_age = fm1_age . drop ( fm1_age . index [ 

( fm1_age > df [ ’ age ’]. median () + 35 ) & 

( fm1_age > df [ ’ age ’]. median () - 15 ) 

]) 

 

mu2ml = ml2_age . mean () 

std2ml = ml2_age . std () 

md2ml = ml2_age . median () 

mu2fm = fm2_age . mean () 

std2fm = fm2_age . std () 

md2fm = fm2_age . median () 

 
print " Men statistics :" 

print " Mean :" , mu2ml , " Std :" , std2ml 

print " Median :" , md2ml  

print " Min :" , ml2_age . min () , " Max :" , ml2_age . max () 

 
print " Women statistics :" 

print " Mean :" , mu2fm , " Std :" , std2fm 

print " Median :" , md2fm  

print " Min :" , fm2_age . min () , " Max :" , fm2_age . max () 

 

plt . figure ( figsize = (13.4 , 5) ) 

df . age [( df . income == ’ >50 K\ n ’)]  

. plot ( alpha = .25 , color = ’ blue ’) 

df 2 . age [( df 2 . income == ’ >50 K\ n ’)]  

. plot ( alpha = .45 , color = ’ red ’) 
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Fig. 3.4 The red shows the cleaned data without the considered outliers (in blue) 

 
 
 
 
 
 
 
 
 
 

 
In [20]: 

 
Figure 3.4 shows the outliers in blue and the rest of the data in red. Visually, 

we can confirm that we removed mainly outliers from the dataset. 

Next we can see that by removing the outliers, the difference between the 
popula- tions (men and women) actually decreased. In our case, there were more 

outliers in men than women. If the difference in the mean values before removing 

the outliers is 2.5, after removing them it slightly decreased to 2.44: 

 
 
 
 
 

 

Out[20]: The mean difference with outliers is: 2.58. 

The mean difference without outliers is: 2.44. 

Let us observe the difference of men and women incomes in the cleaned 

subset with some more details. 

In [21]: 

 
 
 
 
 
 
 

 
The results are shown in Fig. 3.5. One can see that the differences between 

male and female values are slightly negative before age 42 and positive after it. 

Hence, women tend to be promoted (receive more than 50 K) earlier than men. 

 
print ’ The mean difference with outliers is : %4.2 f. 

’ 

% ( ml_age . mean () - fm_age . mean () ) 

print ’ The mean difference without outliers is : 

%4.2 f. ’ 

% ( ml2_age . mean () - fm2_age . mean () ) 

 
countx , divisionx = np . histogram ( ml 2 _age , normed = 

True ) 

county , divisiony = np . histogram ( fm 2 _age , normed = 

True ) 

 

val = [( divisionx [ i] + divisionx [ i +1]) /2 

for i in range ( len ( divisionx ) - 1) ] 

plt . plot ( val , countx - county , ’o - ’) 



 

g1 = 
n
 

σ3 
, (3.3) 

3.3   Exploratory Data Analysis 41 
 

 

Fig. 3.5 Differences in high-income earner men versus women as a function of age 

 

 
 Measuring Asymmetry: Skewness and Pearson’s Median 

Skewness Coefficient 
 

For univariate data, the formula for skewness is a statistic that measures the 
asym- metry of the set of n data samples, xi : 

1 
.

i (xi − μ3) 
 
 
 
 
 
 
 
 

 
In [22]: 

where μ is the mean, σ is the standard deviation, and n is the number of data points. 
Negative deviation indicates that the distribution “skews left” (it extends 

further to the left than to the right). One can easily see that the skewness for a 
normal distribution is zero, and any symmetric data must have a skewness of 
zero. Note that skewness can be affected by outliers! A simpler alternative is to 
look at the relationship between the mean μ and the median μ12. 
 

def skewness ( x): 

res = 0 

m = x. mean () 

s = x. std () 

for i in x:  

res += ( i - m) * ( i - m) * ( i - m) 

res /= ( len ( x) * s * s * s) 

return res  

 
print " Skewness of the male population = " , 

skewness ( ml2_age ) 

print " Skewness of the female population is = " , 

skewness ( fm2_age ) 



 

= = 
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Out[22]: Skewness of the male population = 0.266444383843 Skewness of the female 

population = 0.386333524913 

That is, the female population is more skewed than the male, probably since 

men could be most prone to retire later than women. 
The Pearson’s median skewness coefficient is a more robust alternative to the 

skewness coefficient and is defined as follows: 

gp = 3(μ − μ12)σ. 

There are many other definitions for skewness that will not be discussed here. 

In our case, if we check the Pearson’s skewness coefficient for both men and 

women, we can see that the difference between them actually increases: 
 

In [23]: 

 
 
 
 
 
 
 
 
 

Out[23]: Pearson’s coefficient of the male population = 9.55830402221 Pearson’s coefficient of the 

female population = 26.4067269073 

Continuous Distribution 
 

The distributions we have considered up to now are based on empirical 
observations and thus are called empirical distributions. As an alternative, we may 
be interested in considering distributions that are defined by a continuous 
function and are called continuous distributions [2]. Remember that we defined the 
PMF, f X (x), of a discrete random variable X as f X (x) P(X  x) for all x . In the case 
of a continuous random variable X , we speak of the Probability Density Function 
(PDF), which 

 
def pearson ( x): 

return 3 *( x. mean () - x. median () )* x. std () 

 
print " Pearson ’ s coefficient of the male population  

= " , 

pearson ( ml2_age ) 

print " Pearson ’ s coefficient of the female 

population = " , 

pearson ( fm2_age ) 



 

λ 

e − 
— − 

x 

4 
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Fig. 3.6 Exponential CDF (left) and PDF (right) with λ = 3.00 

is defined as FX (x) where this satisfies: FX (x) = 
¸ x  

f X (t)δt for all x . There are 

many continuous distributions; here, we will conside
∞
r the most common ones: the 

exponential and the normal distributions. 

 
 

 The Exponential Distribution 
Exponential distributions are well known since they describe the inter-arrival 

time between events. When the events are equally likely to occur at any time, 
the distri- bution of the inter-arrival time tends to an exponential distribution. The 

CDF and the PDF of the exponential distribution are defined by the following 

equations: 

CDF(x) = 1 − e−λx , PDF(x) = λe−λx . 

The parameter λ defines the shape of the distribution. An example is given 
in Fig. 3.6. It is easy to show that the mean of the distribution is 1 , the variance is  

and the median is lλ
 λ2 

Note that for a small number of samples, it is difficult to see that the exact 

empirical distribution fits a continuous distribution. The best way to observe this 

match is to generate samples from the continuous distribution and see if these 
samples match the data. As an exercise, you can consider the birthdays of a large 

enough group of people, sorting them and computing the inter-arrival time in 

days. If you plot the CDF of the inter-arrival times, you will observe the 

exponential distribution. 

There are a lot of real-world events that can be described with this 
distribution, including the time until a radioactive particle decays; the time it 

takes before your next telephone call; and the time until default (on payment to 

company debt holders) in reduced-form credit risk modeling. The random variable X 

of the lifetime of some 
batteries is associated with a probability density function of the form: PD F(x)  = 

1 4 e 
(x   μ)2 

2 
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Fig. 3.7 Normal PDF with μ = 6 and σ = 2 

 
 The Normal Distribution 

The normal distribution, also called the Gaussian distribution, is the most common 
since it represents many real phenomena: economic, natural, social, and others. 

Some well-known examples of real phenomena with a normal distribution are as 

follows: 
 

• The size of living tissue (length, height, weight). 
• The length of inert appendages (hair, nails, teeth) of biological specimens. 

• Different physiological measurements (e.g., blood pressure), etc. 

The normal CDF has no closed-form expression and its most common 
represen- tation is the PDF: 

1 
  e 
2πσ2 

(x −μ)2 

2σ2    . 

The parameter σ defines the shape of the distribution. An example of the PDF 
of a normal distribution with μ = 6 and σ = 2 is given in Fig. 3.7. 

 
 Kernel Density 

 
In many real problems, we may not be interested in the parameters of a 

particular distribution of data, but just a continuous representation of the data. 

In this case, we should estimate the distribution non-parametrically (i.e., making 

no assumptions about the form of the underlying distribution) using kernel density 
estimation. Let us imagine that we have a set of data measurements without 

knowing their distribution and we need to estimate the continuous 

representation of their distribution. In this case, we can consider a Gaussian 

kernel to generate the density around the data. Let us consider a set of random 
data generated by a bimodal normal distribution. If we consider a Gaussian 

kernel around the data, the sum of those kernels can give us 

PDF (x) = √ 
− 
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Fig. 3.8 Summed kernel functions around a random set of points (left) and the kernel density 

estimate with the optimal bandwidth (right) for our dataset. Random data shown in blue, kernel 

shown in black and summed function shown in red 

 
 
 
 

 
In [24]: 

 

a continuous function that when normalized would approximate the density of the 

distribution: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 (left) shows the result of the construction of the continuous 

function from the kernel summarization. 

In fact, the library SciPy3 implements a Gaussian kernel density estimation that 

automatically chooses the appropriate bandwidth parameter for the kernel. Thus, 
the final construction of the density estimate will be obtained by: 

 
 
 
 

. 

 

x1 = np . random . normal ( -1 , 0.5 , 15 ) 

x2 = np . random . normal (6 , 1 , 10 ) 

y = np .r_[ x1 , x2] # r_ translates slice objects to 

concatenation along the first axis . 

x = np . linspace ( min (y) , max ( y) , 100) 

s = 0.4 # Smoothing parameter  

# Calculate the kernels  

kernels = np . transpose ([ norm . pdf (x , yi , s) for yi 

in y]) 

plt . plot (x , kernels , ’k: ’) 

plt . plot (x , kernels . sum (1) , ’r ’) 

plt . plot (y , np . zeros ( len (y)) , ’bo ’, ms = 10)  



 

¯ 

¯ 

— − 

= ¯ − 
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In [25]: 

 
 
 
 
 

Figure 3.8 (right) shows the result of the kernel density estimate for our example. 
 
 
 

 Estimation 
 

An important aspect when working with statistical data is being able to use 

estimates to approximate the values of unknown parameters of the dataset. In this 
section, we will review different kinds of estimators (estimated mean, variance, 

standard score, etc.). 

 
 

Sample and Estimated Mean, Variance and Standard Scores 
 

In continuation, we will deal with point estimators that are single numerical estimates 

of parameters of a population. 

Mean 
Let us assume that we know that our data are coming from a normal distribution 

and the random samples drawn are as follows: 

{0.33, −1.76, 2.34, 0.56, 0.89}. 

The question is can we guess the mean μ of the distribution? One approximation 
is given by the sample mean, x . This process is called estimation and the statistic (e.g., 

the sample mean) is called an estimator. In our case, the sample mean is 0.472, and 
it seems a logical choice to represent the mean of the distribution. It is not so 
evident if we add a sample with a value of 465. In this case, the sample mean will be 

77.11, which does not look like the mean of the distribution. The reason is due to 
the fact that the last value seems to be an outlier compared to the rest of the 

sample. In order to avoid this effect, we can try first to remove outliers and then to 
estimate the mean; or we can use the sample median as an estimator of the 
mean of the distribution. If there are no outliers, the sample mean x minimizes 

the following mean squared error: 

MSE 
1 

(x μ)2, 
n 

where n is the number of times we estimate the 

mean. Let us compute the MSE of a set of random 

data: 

 
from scipy . stats import kde  

density = kde . gaussian_kde ( y) 

xgrid = np . linspace ( x. min () , x. max () , 200) 

plt . hist (y , bins = 28 , normed = True ) 

plt . plot ( xgrid , density ( xgrid ) , ’r-’) 



 

¯ 

 
¯ =  − ̄ i 

n − 1 

= 

{  } 
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In [26]: 
 
 
 
 
 
 
 
 
 
 
 
 

Out[26]: MSE: 0.00019879541147 
 
 
 

 Variance 
If we ask ourselves what is the variance, σ2, of the distribution of X , analogously 
we can use the sample variance as an estimator. Let us denote by σ2 the sample 
variance estimator: 

σ2 
1 

(x x )2. 
n 

For large samples, this estimator works well, but for a small number of 

samples it is biased. In those cases, a better estimator is given by: 

σ̄ 2  = 
     1      

(xi − x̄)2 . 

Standard Score 
In many real problems, when we want to compare data, or estimate their 

correlations or some other kind of relations, we must avoid data that come in 

different units. For example, weight can come in kilograms or grams. Even data 
that come in the same units can still belong to different distributions. We need to 

normalize them to standard scores. Given a dataset as a series of values, xi , we 

convert the data to standard scores by subtracting the mean and dividing them by 

the standard deviation: 

zi 
(xi − μ) 

.
 

σ 

Note that this measure is dimensionless and its distribution has a mean of 0 

and variance of 1. It inherits the “shape” of the dataset: if X is normally 

distributed, so is Z ; if X is skewed, so is Z . 

 
 Covariance, and Pearson’s and Spearman’s Rank Correlation 

 
Variables of data can express relations. For example, countries that tend to invest 

 
NTs = 200  

mu = 0.0 

var = 1.0  

err = 0.0 

NPs = 1000  

for i in range ( NTs ): 

x = np . random . normal ( mu , var , NPs ) 

err += ( x. mean () - mu ) ** 2 

print ’ MSE : ’, err / NTests  



 

= − = − { } { } 
{  } {  } 

 1
=  i

 i 

− 

− + 

n i =1 

= 

in research also tend to invest more in education and health. This kind of 

relationship is captured by the covariance. 
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Fig. 3.9 Positive correlation between economic growth and stock market returns worldwide ( left). 

Negative correlation between the world oil production and gasoline prices worldwide (right) 

 Covariance 
When two variables share the same tendency, we speak about covariance. Let us 
consider two series, xi and yi . Let us center the data with respect to their mean: 
dxi   xi   μX and d yi   yi    μY . It is easy to show that when xi   and   yi   vary 
together, their deviations tend to have the same sign. The covariance is defined 
as the mean of the following products: 

n 

Cov(X, Y)  dx d y , 
n 

i =1 

where n is the length of both sets. Still, the covariance itself is hard to interpret. 

 
 

 Correlation and the Pearson’s Correlation 
If we normalize the data with respect to their deviation, that leads to the 

standard scores; and then multiplying them, we get: 

ρi = 
xi − μX  yi − μY 

.
 

σX σY 

The mean of this product is ρ = 1  .n ρi . Equivalently, we can rewrite ρ in 

terms of the covariance, and thus obtain the Pearson’s correlation: 

Cov(X, Y)  
ρ . 

σX σY 

Note that the Pearson’s correlation is always between 1 and 1, where 

the magnitude depends on the degree of correlation. If the Pearson’s correlation is 

1 (or 1), it means that the variables are perfectly correlated (positively or 

negatively) (see Fig. 3.9). This means that one variable can predict the other very 

well. However,



 

= 

= [− − − − − ] 
= 
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Fig. 3.10 Anscombe configurations 

 

 
having ρ 0, does not necessarily mean that the variables are not correlated! Pear- 
son’s correlation captures correlations of first order, but not nonlinear 

correlations. Moreover, it does not work well in the presence of outliers. 

 
 

 Spearman’s Rank Correlation 

The Spearman’s rank correlation comes as a solution to the robustness problem 

of Pearson’s correlation when the data contain outliers. The main idea is to use 
the ranks of the sorted sample data, instead of the values themselves. For 

example, in the list [4, 3, 7, 5], the rank of 4 is 2, since it will appear second in the 

ordered list ([3, 4, 5, 7]). Spearman’s correlation computes the correlation 

between the ranks 

of the data. For example, considering the data: X [10, 20, 30, 40, 1000], and 
Y      70,   1000,   50,   10,   20 , where we have an outlier in each one set. If we 
compute the ranks, they are [1.0, 2.0, 3.0, 4.0, 5.0] and [2.0, 1.0, 3.0, 5.0, 4.0]. As 
value of the Pearson’s coefficient, we get 0.28, which does not show much 



 

correlation                           

between the sets. However, the Spearman’s rank coefficient, capturing the 

correlation between the ranks, gives as a final value of 0.80, confirming the 

correlation between the sets. As an exercise, you can compute the Pearson’s and 
the Spearman’s rank correlations for the different Anscombe configurations given in 

Fig. 3.10. Observe if linear and nonlinear correlations can be captured by the 

Pearson’s and the Spearman’s rank correlations. 

                       Statistical Inference  

Introduction 
 

There is not only one way to address the problem of statistical inference. In fact, 

there are two main approaches to statistical inference: the frequentist and 
Bayesian approaches. Their differences are subtle but fundamental: 

 
In the case of the frequentist approach, the main assumption is that there is a 

population, which can be represented by several parameters, from which we 

can obtain numerous random samples. Population parameters are fixed but 
they are not accessible to the observer. The only way to derive information 

about these parameters is to take a sample of the population, to compute the 

parameters of the sample, and to use statistical inference techniques to make 

probable propositions regarding population parameters. 
The Bayesian approach is based on a consideration that data are fixed, not the 

result of a repeatable sampling process, but parameters describing data can be 

described probabilistically. To this end, Bayesian inference methods focus on 

producing parameter distributions that represent all the knowledge we can 
extract from the sample and from prior information about the problem. 

 
A deep understanding of the differences between these approaches is far 

beyond the scope of this chapter, but there are many interesting references that 
will enable you to learn about it [1]. What is really important is to realize that the 

approaches are based on different assumptions which determine the validity of 

their inferences. The assumptions are related in the first case to a sampling process; 

and to a statistical model in the second case. Correct inference requires these 
assumptions to be correct. The fulfillment of this requirement is not part of the 

method, but it is the responsibility of the data scientist. 

In this chapter, to keep things simple, we will only deal with the first approach, 

but we suggest the reader also explores the second approach as it is well worth it! 

  

 Statistical Inference: The Frequentist Approach 
 

As we have said, the ultimate objective of statistical inference, if we adopt the 

fre- quentist approach, is to produce probable propositions concerning population 

• 

• 



 

param- eters from analysis of a sample. The most important classes of 

propositions are as follows: 
Propositions about point estimates. A point estimate is a particular value that 

best approximates some parameter of interest. For example, the mean or the 

variance of the sample. 

Propositions about confidence intervals or set estimates. A confidence interval 
is a range of values that best represents some parameter of interest. 

• Propositions about the acceptance or rejection of a hypothesis. 

In all these cases, the production of propositions is based on a simple 

assumption: we can estimate the probability that the result represented by the 
proposition has been caused by chance. The estimation of this probability by 

sound methods is one of the main topics of statistics. 

The development of traditional statistics was limited by the scarcity of 

computa- tional resources. In fact, the only computational resources were 
mechanical devices and human computers, teams of people devoted to 

undertaking long and tedious calculations. Given these conditions, the main 

results of classical statistics are theo- retical approximations, based on idealized 

models and assumptions, to measure the effect of chance on the statistic of 

interest. Thus, concepts such as the Central Limit Theorem, the empirical sample 
distribution or the t-test are central to understanding this approach. 

The development of modern computers has opened an alternative strategy for 

measuring chance that is based on simulation; producing computationally inten- 

sive methods including resampling methods (such as bootstrapping), Markov 
chain Monte Carlo methods, etc. The most interesting characteristic of these 

methods is that they allow us to treat more realistic models. 

 Measuring the Variability in Estimates  
Estimates produced by descriptive statistics are not equal to the truth but they 
are better as more data become available. So, it makes sense to use them as 

central elements of our propositions and to measure its variability with respect to the 

sample size. 

                         Point Estimates 

Let us consider a dataset of accidents in Barcelona in 2013. This dataset can be 
downloaded from the OpenDataBCN website,1 Barcelona City Hall’s open data 

service. Each register in the dataset represents an accident via a series of 

features: weekday, hour, address, number of dead and injured people, etc. This 
dataset will represent our population: the set of all reported traffic accidents in 

Barcelona during 2013. 
 
 
 
 
 
 
 

 

 

 
In [1]: 

 Sampling Distribution of Point Estimates 

Let us suppose that we are interested in describing the daily number of traffic 

acci- dents in the streets of Barcelona in 2013. If we have access to the 
population, the computation of this parameter is a simple operation: the total 

number of accidents divided by 365. 

• 

• 

 
data = pd . read_csv (" files / ch04 / ACCIDENTS_GU_BCN_2013 . csv ") 

data [ ’ Date ’] = data [ u ’ Dia de mes ’]. apply ( lambda x: str (x))  

+ ’-’ + 

data [ u ’ Mes de any ’]. apply ( lambda x: str (x)) 

data [ ’ Date ’] = pd . to_datetime ( data [ ’ Date ’]) 

accidents = data . groupby ([ ’ Date ’]) . size () 
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Out[1]: 
Mean: 
25.9095 
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suppose that we only have access to a limited part of the data (the 

sample): the number of accidents during some days of 2013. Can we 
still give an approximation of the population mean? 

The most intuitive way to go about providing such a mean is simply 

to take the sample mean. The sample mean is a point estimate of the 

population mean. If we can only choose one value to estimate the 
population mean, then this is our best guess. 

The problem we face is that estimates generally vary from one 

sample to another, and this sampling variation suggests our estimate 

may be close, but it will not be exactly equal to our parameter of 

interest. How can we measure this variability? 
In our example, because we have access to the population, we can 

empirically build the sampling distribution of the sample mean2 for a 
given number of observations. Then, we can use the sampling 

distribution to compute a measure of the variability. In Fig. 4.1, we can 
see the empirical sample distribution of the mean for s 10.000 samples with n  

200 observations from our dataset. This empirical distribution has 

been built in the following way:  Statistical Inference 
 

 

Fig. 4.1 Empirical distribution of the sample mean. In red, the mean value of this distribution 

 

 

1. Draw s (a large number) independent samples {x 1 , . . . ,  xs} from the 

population where each element x j is composed of {x j }i=1,...,n. 

2. Evaluate the sample mean μ̂ j  = 1  .n x j of each sample. 
3. Estimate the sampling distribution of μ by the empirical distribution of the 

sample 
replications. 

 

In [2]: 

 
 
 
 
 
 
 

 
# population  

df = accidents . to_frame () 

N_test = 10000  

elements = 200 

# mean array of samples 

means = [ 0 ] * N_test  

# sample generation  

for i in range ( N_test ): 

rows = np . random . choice ( df . index . values , elements ) 

sampled_df = df . ix [ rows ] 

means [ i] = sampled_df . mean () 
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te from a sample of size n, we define its sampling distribution as the 

distribution of the point estimate based on samples of size n from its 
population. This definition is valid for point estimates of other 

population parameters, such as the population median or population 

standard deviation, but we will focus on the analysis of the sample 

mean. 
The sampling distribution of an estimate plays an important role in 

understanding the real meaning of propositions concerning point 

estimates. It is very useful to think of a particular point estimate as 

being drawn from such a distribution. 

 The Traditional Approach 
In real problems, we do not have access to the real population and 

so estimation of the sampling distribution of the estimate from the 

empirical distribution of the sample replications is not an option. But 
this problem can be solved by making use of some theoretical results 

from traditional statistics. 
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It can be mathematically shown that given n independent observations xi i=1,..,n 
of a population with a standard deviation σx , the standard deviation of the 
sample mean σx¯ , or standard error, can be approximated by this formula: 

SE =
 σx  

 

The demonstration of this result is based on the Central Limit Theorem: an 
old theorem with a history that starts in 1810 when Laplace released his first paper 

on it. This formula uses the standard deviation of the population σx , which is not 
known, but it can be shown that if it is substituted by its empirical estimate σx , the 

estimation is sufficiently good if n > 30 and the population distribution is not 
skewed. This allows us to estimate the standard error of the sample mean even if 

we do not have 

access to the population. 

So, how can we give a measure of the variability of the sample mean? The 
answer is simple: by giving the empirical standard error of the mean distribution. 

 
 
 
 
 

 
Out[3]: Direct estimation of SE from one sample of 200 elements: 0.6536 Estimation of the SE by 

simulating 10000 samples of 200 

elements: 0.6362 

Unlike the case of the sample mean, there is no formula for the standard error 

of other interesting sample estimates, such as the median. 

 
 

 
rows = np . random . choice ( df . index . values , 200) 

sampled_df = df . ix [ rows ] 

est_sigma_mean = sampled_df . std () / math . sqrt (200)  

 

print ’ Direct estimation of SE from one sample of 

200 elements : ’, est_sigma_mean [ 0 ] 

print ’ Estimation of the SE by simulating 10000 samples of 

200 elements : ’, np . array ( means ). std () 



 

 The Computationally Intensive Approach 

Let us consider from now that our full dataset is a sample from a hypothetical 

population (this is the most common situation when analyzing real data!). 
A modern alternative to the traditional approach to statistical inference is the 

bootstrapping method [2]. In the bootstrap, we draw n observations with 

replacement from the original data to create a bootstrap sample or resample. Then, 

we can calculate the mean for this resample. By repeating this process a large 
number of times, we can build a good approximation of the mean sampling 

distribution (see Fig. 4.2). 
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Fig. 4.2 Mean sampling distribution by bootstrapping. In red, the mean value of this distribution 

 
 

In [4]: 

 
 
 
 
 
 
 
 

 
Out[4]: Mean estimate: 25.9094 

The basic idea of the bootstrapping method is that the observed sample 

contains sufficient information about the underlying distribution. So, the 

information we can extract from resampling the sample is a good approximation of 

what can be expected from resampling the population. 
The bootstrapping method can be applied to other simple estimates such as 

the median or the variance and also to more complex operations such as 

estimates of censored data.3 

 

 Confidence Intervals 
 

A point estimate Θ, such as the sample mean, provides a single plausible value 
for a parameter. However, as we have seen, a point estimate is rarely perfect; 

usually there is some error in the estimate. That is why we have suggested using the 

standard error as a measure of its variability. 

Instead of that, a next logical step would be to provide a plausible range of 
values for the parameter. A plausible range of values for the sample parameter is 

called a confidence interval. 

 
 

 
def meanBootstrap ( X , numberb ): 

x = [0]* numberb  

for i in range ( numberb ): 

sample = [X[j]  

for j 

in np . random . randint ( len ( X) , size = len (X))  

] 

x[i] = np . mean ( sample ) 

return x 

m = meanBootstrap ( accidents , 10000) 

print " Mean estimate :" , np . mean ( m) 



 

We will base the definition of confidence interval on two ideas: 

 
1. Our point estimate is the most plausible value of the parameter, so it makes 

sense to build the confidence interval around the point estimate. 

2. The plausibility of a range of values can be defined from the sampling 

distribution of the estimate. 

 
For the case of the mean, the Central Limit Theorem states that its 

sampling distribution is normal: 

 
Theorem 4.1 Given a population with a finite mean μ and a finite non -zero variance σ 
2, the sampling distribution of the mean approaches a normal distribution with a 
mean of μ and a variance of σ 2/n as n, the sample size, increases. 

 

 
 
 
 
 
 
 
 
 
 

In [5]: 

In this case, and in order to define an interval, we can make use of a well-

known result from probability that applies to normal distributions: roughly 95% of 

the time our estimate will be within 1.96 standard errors of the true mean of the 
distribution. If the interval spreads out 1.96 standard errors from a normally 

distributed point estimate, intuitively we can say that we are roughly 95% 

confident that we have captured the true parameter. 

CI = [Θ − 1.96 × SE , Θ  + 1.96 × SE ] 

 
 
 
 

Out[5]: Confidence interval: [24.975, 26.8440] 

Suppose we want to consider confidence intervals where the confidence level 

is somewhat higher than 95%: perhaps we would like a confidence level of 99%. 
To create a 99% confidence interval, change 1.96 in the 95% confidence interval 

formula to be 2.58 (it can be shown that 99% of the time a normal random 

variable will be within 2.58 standard deviations of the mean). 

In general, if the point estimate follows the normal model with standard error SE , 
then a confidence interval for the population parameter is 

Θ ± z × SE  

where z corresponds to the confidence level selected: 
 
 

Confidence Level 90% 95% 99% 99.9% 

z Value 1.65 1.96 2.58 3.291 

 

This is how we would compute a 95% confidence interval of the sample mean 

using bootstrapping: 

 
m = accidents . mean () 

se = accidents . std () / math . sqrt ( len ( accidents )) 

ci = [ m - se *1.96 , m + se *1.96]  

print " Confidence interval :" , ci 



 

  

1. Repeat the following steps for a large number, s, of times: 

 
a. Draw n observations with replacement from the original data to create 

a bootstrap sample or resample. 
b. Calculate the mean for the resample. 

 
2. Calculate the mean of your s values of the sample statistic. This process 

gives you a “bootstrapped” estimate of the sample statistic. 

3. Calculate the standard deviation of your s values of the sample statistic. 
This process gives you a “bootstrapped” estimate of the SE of the sample 

statistic. 
4. Obtain the 2.5th and 97.5th percentiles of your s values of the sample statistic. 

 

In [6]: 

 
 
 
 
 
 

 

Out[6]: Mean estimate: 25.9039 

SE of the estimate: 0.4705 

Confidence interval: [24.9834, 26.8219] 

 
 

 But What Does “95% Confident” Mean? 
The real meaning of “confidence” is not evident and it must be understood from 

the point of view of the generating process. 

Suppose we took many (infinite) samples from a population and built a 95% 

confidence interval from each sample. Then about 95% of those intervals would 

contain the actual parameter. In Fig. 4.3 we show how many confidence intervals 
computed from 100 different samples of 100 elements from our dataset contain 

the real population mean. If this simulation could be done with infinite different 

samples, 5% of those intervals would not contain the true mean. 

So, when faced with a sample, the correct interpretation of a confidence 
interval is as follows: 

 
In 95% of the cases, when I compute the 95% confidence interval from this sample, the 
true mean of the population will fall within the interval defined by these bounds: ±1.96 × 
SE.  

We cannot say either that our specific sample contains the true parameter or 

that the interval has a 95% chance of containing the true parameter. That 

interpretation would not be correct under the assumptions of traditional 

 
m = meanBootstrap ( accidents , 10000) 

sample_mean = np . mean ( m) 

sample_se = np . std ( m) 

 

print " Mean estimate :" , sample_mean  

print " SE of the  estimate :" , sample_se  

 

ci = [ np . percentile ( m , 2.5) , np . percentile ( m , 97.5) ] 

print " Confidence interval :" , ci 



 

statistics. 

 Hypothesis Testing 
 

Giving a measure of the variability of our estimates is one way of producing a 
statistical proposition about the population, but not the only one. R.A. Fisher 

(1890– 1962) proposed an alternative, known as hypothesis testing, that is based 

on the concept of statistical significance. 

Let us suppose that a deeper analysis of traffic accidents in Barcelona results in 

a difference between 2010 and 2013. Of course, the difference could be caused 
only by chance, because of the variability of both estimates. But it could also be 

the case that traffic conditions were very different in Barcelona during the two 

periods and, because of that, data from the two periods can be considered as 

belonging to two different populations. Then, the relevant question is: Are the 
observed effects real or not? 

Technically, the question is usually translated to: Were the observed effects statis- 

tically significant? 

The process of determining the statistical significance of an effect is called hypoth- 
esis testing. 

This process starts by simplifying the options into two competing hypotheses: 

 
H0: The mean number of daily traffic accidents is the same in 2010 and 2013 

(there is only one population, one true mean, and 2010 and 2013 are just 
different samples from the same population). 

HA: The mean number of daily traffic accidents in 2010 and 2013 is different 

(2010 and 2013 are two samples from two different populations). 
 
 

 

Fig. 4.3 This graph shows 100 sample means (green points) and its corresponding confidence 

intervals, computed from 100 different samples of 100 elements from our dataset. It can be 

observed that a few of them (those in red) do not contain the mean of the population (black 

horizontal line) 

• 

• 
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We call H0 the null hypothesis and it represents a skeptical point of view: the 

effect we have observed is due to chance (due to the specific sample bias). HA is 
the alternative hypothesis and it represents the other point of view: the effect is 

real. 

The general rule of frequentist hypothesis testing: we will not discard H0 (and 

hence we will not consider HA) unless the observed effect is implausible under 
H0. 

 

 Testing Hypotheses Using Confidence Intervals 
 

 
 
 
 
 
 

In [7]: 

We can use the concept represented by confidence intervals to measure the 

plausi- bility of a hypothesis. 
We can illustrate the evaluation of the hypothesis setup by comparing the 

mean rate of traffic accidents in Barcelona during 2010 and 2013: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Out[7]: 2010: Mean 24.8109 

2013: Mean 25.9095 
 

 
 
 
 
 
 

In [8]: 

This estimate suggests that in 2013 the mean rate of traffic accidents in 

Barcelona was higher than it was in 2010. But is this effect statistically significant? 

Based on our sample, the 95% confidence interval for the mean rate of 

traffic accidents in Barcelona during 2013 can be calculated as follows: 

 
data = pd . read_csv (" files / ch04 / ACCIDENTS_GU_BCN_2010 . csv " , 

encoding = ’ latin -1 ’) 

 

# Create a new column which is the date  

data [ ’ Date ’] = data [ ’ Dia de mes ’]. apply ( lambda x: str (x))  

+ ’-’ + 

data [ ’ Mes de any ’]. apply ( lambda x: str (x)) 

data2 = data [ ’ Date ’] 

counts2010 = data [ ’ Date ’]. value_counts () 

print ’ 2010: Mean ’, counts2010 . mean () 

 
data = pd . read_csv (" files / ch04 / ACCIDENTS_GU_BCN_2013 . csv " , 

encoding = ’ latin -1 ’) 

 

# Create a new column which is the date  

data [ ’ Date ’] = data [ ’ Dia de mes ’]. apply ( lambda x: str (x))  

+ ’-’ + 

data [ ’ Mes de any ’]. apply ( lambda x: str (x)) 

data2 = data [ ’ Date ’] 

counts2013 = data [ ’ Date ’]. value_counts () 

print ’ 2013: Mean ’, counts2013 . mean () 

 
n = len ( counts2013 ) 

mean = counts2013 . mean () 

s = counts2013 . std () 

ci = [ mean - s *1.96/ np . sqrt ( n) , mean + s *1.96/ np . sqrt (n)] 

print ’ 2010 accident rate estimate : ’, counts2010 . mean () 

print ’ 2013 accident rate estimate : ’, counts2013 . mean () 

print ’ CI for 2013: ’,ci 



 

= 
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Out[8]: 2010 accident rate estimate: 24.8109 

2013 accident rate estimate: 25.9095 

CI for 2013: [24.9751, 26.8440] 

Because the 2010 accident rate estimate does not fall in the range of plausible 

values of 2013, we say the alternative hypothesis cannot be discarded. That is, it 

cannot be ruled out that in 2013 the mean rate of traffic accidents in Barcelona 
was higher than in 2010. 

Interpreting CI Tests 

Hypothesis testing is built around rejecting or failing to reject the null hypothesis. 
That is, we do not reject H0 unless we have strong evidence against it. But what 
precisely does strong evidence mean? As a general rule of thumb, for those cases 

where the null hypothesis is actually true, we do not want to incorrectly reject H0 
more than 5% of the time. This corresponds to a significance level of α 0.05. In 
this case, the correct interpretation of our test is as follows: 

 
If we use a 95% confidence interval to test a problem where the null hypothesis is true, 

we will make an error whenever the point estimate is at least 1.96 standard errors away 

from the population parameter. This happens about 5% of the time (2.5% in each tail). 

 

 
 Testing Hypotheses Using p-Values 

 
A more advanced notion of statistical significance was developed by R.A. Fisher in 

the 1920s when he was looking for a test to decide whether variation in crop 

yields was due to some specific intervention or merely random factors beyond 
experimental control. 

Fisher first assumed that fertilizer caused no difference (null hypothesis) and 

then calculated P, the probability that an observed yield in a fertilized field would 

occur if fertilizer had no real effect. This probability is called the p-value. 

The p-value is the probability of observing data at least as favorable to the 
alter- native hypothesis as our current dataset, if the null hypothesis is true. We 

typically use a summary statistic of the data to help compute the p-value and 

evaluate the hypotheses. 

Usually, if P is less than 0.05 (the chance of a fluke is less than 5%) the result is 
declared statistically significant. 

It must be pointed out that this choice is rather arbitrary and should not be 

taken as a scientific truth. 

The goal of classical hypothesis testing is to answer the question, “Given a sample 
and an apparent effect, what is the probability of seeing such an effect by 

chance?” Here is how we answer that question: 

The first step is to quantify the size of the apparent effect by choosing a test 

statistic. In our case, the apparent effect is a difference in accident rates, so a 

natural choice for the test statistic is the difference in means between the two 
periods. 

• 
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The second step is to define a null hypothesis, which is a model of the system 

based on the assumption that the apparent effect is not real. In our case, the 
null hypothesis is that there is no difference between the two periods. 

The third step is to compute a p-value, which is the probability of seeing the 

apparent effect if the null hypothesis is true. In our case, we would compute 

the difference in means, then compute the probability of seeing a difference as 
big, or bigger, under the null hypothesis. 

The last step is to interpret the result. If the p-value is low, the effect is said to 

be statistically significant, which means that it is unlikely to have occurred by 

chance. In this case we infer that the effect is more likely to appear in the larger 
population. 

 

 

 
In [9]: 

In our case, the test statistic can be easily computed: 

 
 
 
 

 
Out[9]: m: 365 n: 365 

mean difference: 1.0986 

To approximate the p-value , we can follow the following procedure: 

 
1. Pool the distributions, generate samples with size n and compute the 

difference in the mean. 

2. Generate samples with size n and compute the difference in the mean. 

3. Count how many differences are larger than the observed one. 

 

In [10]: 

 

m= len ( counts2010 ) 

n= len ( counts2013 ) 

p = ( counts2013 . mean () - counts2010 . mean () ) 

print ’m: ’, m , ’n: ’, n 

print ’ mean difference : ’, p 

 

# pooling distributions 

x = counts2010  

y = counts2013  

pool = np . concatenate ([ x , y ]) 

np . random . shuffle ( pool ) 

 

# sample generation 

import random  

N = 10000 # number of samples 

diff = range (N)  

for i in range (N):  

p1 = [ random . choice ( pool ) for _ in xrange (n)] 

p2 = [ random . choice ( pool ) for _ in xrange (n)] 

diff [ i] = ( np . mean ( p1 ) - np . mean ( p2 )) 

• 

• 

• 
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In [11]: 

 
 
 
 
 
 
 
 

 
Out[11]: p-value (Simulation)= 0.0485 ( 4.85%) Difference = 1.098 The effect is likely 

Interpreting P-Values 

A p-value is the probability of an observed (or more extreme) result arising only 

from chance. 
If P is less than 0.05, there are two possible conclusions: there is a real effect 

or the result is an improbable fluke. Fisher’s method offers no way of knowing 

which is the case. 

We must not confuse the odds of getting a result (if a hypothesis is true) with 
the odds of favoring the hypothesis if you observe that result. If P is less than 
0.05, we cannot say that this means that it is 95% certain that the observed effect 
is real and could not have arisen by chance. Given an observation E and a hypothesis 
H , P(E H) and P(H E) are not the same! 

Another common error equates statistical significance to practical 

importance/ relevance. When working with large datasets, we can detect 
statistical significance for small effects that are meaningless in practical terms. 

We have defined the effect as a difference in mean as large or larger than δ, 
considering the sign. A test like this is called one sided. 

If the relevant question is whether accident rates are different, then it makes 

sense to test the absolute difference in means. This kind of test is called two sided 
because it counts both sides of the distribution of differences. 

Direct Approach 

The formula for the standard error of the absolute difference in two means is 

similar to the formula for other standard errors. Recall that the standard error of 

a single mean can be approximated by: 

S E x̄1 

  σ1   
= √

n1
 

The standard error of the difference of two sample means can be constructed 
from the standard errors of the separate sample means: 

 
 

S E x̄1 −x̄2   = 
2 2 
1 2 

  

n1 n2 

This would allow us to define a direct test with the 95% confidence interval. 

 
# counting differences larger than the observed one 

diff2 = np . array ( diff ) 

w1 = np . where ( diff2 > p) [ 0 ] 

 

print ’p - value ( Simulation ) = ’, len (w1)/ float (N) , 

’( ’, len (w1)/ float ( N) *100 ,’%) ’, ’ Difference = ’, p 

if ( len (w1)/ float ( N)) < 0.05:  

print ’ The effect is likely ’ 

else : 

print ’ The effect is not likely ’ 



 

| 
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 But Is the Effect E Real? 
 

We do not yet have an answer for this question! We have defined a null 
hypothesis H0 (the effect is not real) and we have computed the probability of the 
observed effect under the null hypothesis, which is P(E H0), where E is an effect 
as big as or bigger than the apparent effect and a p-value . 

We have stated that from the frequentist point of view, we cannot consider HA 
unless P(E H0) is less than an arbitrary value. But the real answer to this question 
must be based on comparing P(H0 E) to P(HA E), not on P(E H0)! One possi- ble 
solution to these problems is to use Bayesian reasoning; an alternative to the 
frequentist approach. 

No matter how many data you have, you will still depend on intuition to 

decide how to interpret, explain, and use that data. Data cannot speak by 
themselves. Data scientists are interpreters, offering one interpretation of what 

the useful narrative story derived from the data is, if there is one at all. 

 
 
 

 



 

 
UNIT-3 

Supervised Learning: First step, learning curves, training-validation and test.             

Learning models generalities, support vector machines, random forest. 

Examples 

Supervised Learning 
 

Machine learning involves coding programs that automatically adjust their 
perfor- mance in accordance with their exposure to information in data. This 

learning is achieved via a parameterized model with tunable parameters that are 

automatically adjusted according to different performance criteria. Machine 

learning can be con- sidered a subfield of artificial intelligence (AI) and we can 

roughly divide the field into the following three major classes. 

 
1. Supervised learning: Algorithms which learn from a training set of labeled 

examples (exemplars) to generalize to the set of all possible inputs. Examples 
of techniques in supervised learning: logistic regression, support vector 

machines, decision trees, random forest, etc. 

2. Unsupervised learning: Algorithms that learn from a training set of unlabeled 

examples. Used to explore data according to some statistical, geometric or 
sim- ilarity criterion. Examples of unsupervised learning include k-means 

clustering and kernel density estimation. We will see more on this kind of 

techniques in Chap. 7. 

3. Reinforcement learning: Algorithms that learn via reinforcement from 
criticism that provides information on the quality of a solution, but not on how 

to improve it. Improved solutions are achieved by iteratively exploring the 

solution space. 

 
This chapter focuses on a particular class of supervised machine learning: clas- 

sification. As a data scientist, the first step you apply given a certain problem is to 

identify the question to be answered. According to the type of answer we are 

seeking, we are directly aiming for a certain set of techniques. 
 

  Supervised Learning 

If our question is answered by YES/NO, we are facing a classification problem. 

Classifiers are also the tools to use if our question admits only a discrete set of 

answers, i.e., we want to select from a finite number of choices. 

 
– Given the results of a clinical test, e.g., does this patient suffer from diabetes? 

– Given a magnetic resonance image, is it a tumor shown in the image? 

– Given the past activity associated with a credit card, is the current 

operation fraudulent? 

 
If our question is a prediction of a real-valued quantity, we are faced with a 

• 

• 



 

≥ 

regres- sion problem. We will go into details of regression in Chap. 6. 

 
– Given the description of an apartment, what is the expected market value of 

the flat? What will the value be if the apartment has an elevator? 

– Given the past records of user activity on Apps, how long will a certain client 

be connected to our App? 
– Given my skills and marks in computer science and maths, what mark will I 

achieve in a data science course? 

 
Observe that some problems can be solved using both regression and 

classification. As we will see later, many classification algorithms are thresholded 

regressors. There is a certain skill involved in designing the correct question and 

this dramatically affects the solution we obtain. 

 

 The Problem 
 

In this chapter we use data from the Lending Club1 to develop our understanding 
of machine learning concepts. The Lending Club is a peer-to-peer lending 

company. It offers loans which are funded by other people. In this sense, the 

Lending Club acts as a hub connecting borrowers with investors. The client applies 

for a loan of a certain amount, and the company assesses the risk of the operation. 
If the application is accepted, it may or may not be fully covered. We will focus 

on the prediction of whether the loan will be fully funded, based on the scoring 

of and information related to the application. 

We will use the partial dataset of period 2007–2011. Framing the problem a 
little bit more, based on the information supplied by the customer asking for a 

loan, we want to predict whether it will be granted up to a certain threshold thr . The 

attributes we use in this problem are related to some of the details of the loan 

application, such as amount of the loan applied for the borrower, monthly 

payment to be made by the borrower if the loan is accepted, the borrower’s 
annual income, the number of  incidences of delinquency in the borrower’s credit 

file, and interest rate of the loan, among others. 
In this case we would like to predict unsuccessful accepted loans. A loan 

applica- tion is unsuccessful if the funded amount (funded_amnt) or the amount 
funded by investors (funded_amnt_inv) falls far short of the requested loan 
amount (loan_amnt). That is, 

loan − f unded 
0.95.

 

loan 
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In [1]: 

 
Note that in this problem we are predicting a binary value: either the loan is fully 

funded or not. Classification is the natural choice of machine learning tools for 
prediction with discrete known outcomes. According to the cardinality of the 

target set, one usually distinguishes between binary classifiers when the target 

output only takes two values, i.e., the classifier answers questions with a yes or a no; 

or multiclass classifiers, for a larger number of classes. This issue is important in 
that not all methods can naturally handle the multiclass setting.2 

In a formal way, classification is regarded as the problem of finding a function 

h(x) Rd      K that maps an input space in Rd onto a discrete set of k target outputs 
or classes K   1 , . . . ,  k . In this setting, the features are arranged as a vector x of d 
real-valued numbers.3 

We can encode both target states in a numerical variable, e.g., a successful 

loan target can take value 1; and it is 1, otherwise. 

Let us check the dataset,4 

 
 
 
 

 
 

2Several well-known techniques such as support vector machines or adaptive boosting 

(adaboost) are originally defined in the binary case. Any binary classifier can be extended to the 

multiclass case in two different ways. We may either change the formulation of the 

learning/optimization process. This requires the derivation of a new learning algorithm capable 

of handling the new modeling. Alternatively, we may adopt ensemble techniques. The idea 

behind this latter approach is that we may divide the multiclass problem into several binary 

problems; solve them; and then aggregate the results. If the reader is interested in these 

techniques, it is a good idea to look for: one-versus-all, one-versus-one, or error correcting 

output codes methods. 
3Many problems are described using categorical data. In these cases either we need classifiers that 

are capable of coping with this kind of data or we need to change the representation of those 

variables into numerical values. 
4The notebook companion shows the preprocessing steps, from reading the dataset, cleaning and 

imputing data, up to saving a subsampled clean version of the original dataset. 

 
import pickle  

ofname = open ( ’./ files / ch05 / dataset_small . pkl ’,’rb ’) 

# x stores input data and y target values  

(x , y) = pickle . load ( ofname ) 



 

⎢ x21  x22 · · · x2d 

⎥  
⎢ x31  x32 · · · x3d 

⎥  

 

A problem in Scikit-learn is modeled as follows: 

 
Input data is structured in Numpy arrays. The size of the array is expected to be 

[n_samples, n_features]: 

 
– n_samples: The number of samples (n). Each sample is an item to process 

(e.g., classify). A sample can be a document, a picture, an audio file, a video, 

an astronomical object, a row in a database or CSV file, or whatever you can 

describe with a fixed set of quantitative traits. 

– n_features: The number of features (d) or distinct traits that can be used to 

describe each item in a quantitative manner. Features are generally real-
valued, but may be Boolean, discrete-valued or even categorical. 

⎡
x11  x12 · · · x1d 

⎤
 

 

feature matrix : X = 
 

. 

⎣
⎢  

.
 

. 
. . . . 

.   
. . .   .  
⎥
⎦ 

 
 
 
 
 
 
 

In [2]: 

xn1 xn2 · · ·  xnd 

label vector : yT = [y1, y2, y3, · · ·  yn] 

The number of features must be fixed in advance. However, it can be very 

great (e.g., millions of features). 

 
 
 

Out[2]: dims: 15, samples: 4140 

Considering data arranged as in the previous matrices we refer to: 

 
the columns as features, attributes, dimensions, regressors, covariates, 

predictors, or independent variables; 

• the rows as instances, examples, or samples; 

• the target as the label, outcome, response, or dependent variable. 

All objects in Scikit-learn share a uniform and limited API consisting of three 

complementary interfaces: 

 

• an estimator interface for building and fitting models (fit()); 
• a predictor interface for making predictions (predict()); 

• a transformer interface for converting data (transform()). 

 
dims = x. shape [ 1 ] 

N = x. shape [ 0 ] 

print ’ dims : ’ + str ( dims ) + ’, samples : ’ + str (N)  

• 

• 



 

 

In [3]: 

Let us apply a classifier using Python’s Scikit-learn libraries, 



 

= 

 
 
 
 
 
 
 
 
 
 

Out[3]: Predicted value: -1.0 , real target: -1.0 

The basic measure of performance of a classifier is its accuracy. This is defined as 
the number of correctly predicted examples divided by the total amount of examples.  
Accuracy is related to the error as follows: acc = 1 − err . 

acc 
Number of correct predictions 

n 

Each estimator has a score() method that invokes the default scoring metric. 
In the case of k-nearest neighbors, this is the classification accuracy. 

In [4]: 

 
 

Out[4]: 0.83164251207729467 

It looks like a really good result. But how good is it? Let us first understand a little 

bit more about the problem by checking the distribution of the labels. 
Let us load the dataset and check the distribution of labels: 

In [5]: 

 
 
 
 

 
with the result observed in Fig. 5.1. 

Note that there are far more positive labels than negative ones. In this case, 
the dataset is referred to as unbalanced.5 This has important consequences for a 

classifier as we will see later on. In particular, a very simple rule such as always 

predict the 
 
 

5The term unbalanced describes the condition of data where the ratio between positives and 

negatives is a small value. In these scenarios, always predicting the majority class usually yields 

accurate performance, though it is not very informative. This kind of problems is very common 

when we want to model unusual events such as rare diseases, the occurrence of a failure in 

machinery, fraudulent credit card operations, etc. In these scenarios, gathering data from usual 

events is very easy but collecting data from unusual events is difficult and results in a 

comparatively small dataset. 

 

 

 
from sklearn import neighbors 

from sklearn import datasets  

# Create an instance of K - nearest neighbor classifier 

knn = neighbors . KNeighborsClassifier ( n_neighbors = 11 ) 

# Train the classifier  

knn . fit ( x , y) 

# Compute the prediction according to the model 

yhat = knn . predict ( x) 

# Check the result on the last example 

print ’ Predicted value : ’ + str ( yhat [ -1]) , 

’, real target : ’ + str ( y [ -1]) 

 
knn . score (x , y) 

 
plt . pie ( np . c_ [ np . sum ( np . where ( y == 1 , 1 , 0) ) , 

np . sum ( np . where ( y == -1 , 1 , 0) ) ][0] , 

labels = [ ’ Not fully funded ’,’ Full amount ’], 

colors = [ ’r ’, ’g ’], shadow = False , 

autopct = ’ %.2 f ’ ) 

plt . gcf () . set_size_inches ((7 , 7) ) 



 

 

Fig. 5.1 Pie chart showing 

the distribution of labels 

in the dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
majority class, will give us good performance. In our problem, always predicting 
that the loan will be fully funded correctly predicts 81.57% of the samples. 
Observe that this value is very close to that obtained using the classifier. 

Although accuracy is the most normal metric for evaluating classifiers, there 

are cases when the business value of correctly predicting elements from one class 

is different from the value for the prediction of elements of another class. In 

those cases, accuracy is not a good performance metric and more detailed 
analysis is needed. The confusion matrix enables us to define different metrics 

considering such scenarios. The confusion matrix considers the concepts of the 

classifier outcome and the actual ground truth or gold standard. In a binary 

problem, there are four possible cases: 

 
True positives (TP): When the classifier predicts a sample as positive and it really 

is positive. 

False positives (FP): When the classifier predicts a sample as positive but in fact 
it is negative. 

True negatives (TN): When the classifier predicts a sample as negative and it really 

is negative. 

False negatives (FN): When the classifier predicts a sample as negative but in fact 
it is positive. 

 
We can summarize this information in a matrix, namely the confusion matrix, 

as follows: 

• 

• 

• 

• 



 

= 

= 

= 

= 

= 
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Positive 

Prediction Negative 

Gold Standard 

Positive Negative 

Sens
↓

itivity 

Spec
↓

ificity (Recall) 

→ Precision 

→ Negative Predictive Value 

The combination of these elements allows us to define several performance metrics: 

• Accuracy: 
accuracy 

  TP + TN 
 

TP + TN + FP + FN 

• Column-wise we find these two partial performance metrics: 

– Sensitivity or Recall: 

– Specificity: 

sensitivity 
TP

 
Real Positives 

 

specificity 
TN

 
Real Negatives 

TP 
= 

TP + FN 

TN 
= 

TN + FP 

• Row-wise we find these two partial performance metrics: 

– Precision or Positive Predictive Value: 

precision  
TP 

Predicted Positives 

TP 
= 

TP + FP 
– Negative predictive value: 

NPV 
TN

 
Predicted Negative 

 
TN 

= 
TN + FN 

These partial performance metrics allow us to answer questions concerning 

how often a classifier predicts a particular class, e.g., what is the rate of 

predictions for not fully funded loans that have actually not been fully funded? 
This question is answered by recall. In contrast, we could ask: Of all the fully 

funded loans predicted by the classifier, how many have been fully funded? This is 

answered by the precision metric. 
Let us compute these metrics for our problem. 

TP FP 

FN TN 
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In [6]: 

 
 
 
 
 
 

 
Out[6]: TP: 3370 , FP: 690 

FN: 7 , TN: 73 

Scikit-learn provides us with the confusion matrix, 

In [7]: 

 
 
 

 
Out[7]: 3370, 690 

7, 73 

Let us check the following example. Let us select a nearest neighbor classifier 
with the number of neighbors equal to one instead of eleven, as we did before, 

and check the training error. 

In [8]: 

 
 
 
 
 
 

 

Out[8]: classification accuracy: 1.0 confusion matrix: 
3377 0 

0   763 

The performance measure is perfect! 100% accuracy and a diagonal confusion 

matrix! This looks good. However, up to this point we have checked the classifier 

performance on the same data it has been trained with. During exploitation, in 
real applications, we will use the classifier on data not previously seen. Let us 

simulate this effect by splitting the data into two sets: one will be used for 

learning (training set) and the other for testing the accuracy (test set). 

 

yhat = knn . predict ( x) 

TP = np . sum ( np . logical_and ( yhat == -1 , y == -1) ) 

TN = np . sum ( np . logical_and ( yhat == 1 , y == 1) ) 

FP = np . sum ( np . logical_and ( yhat == -1 , y == 1) ) 

FN = np . sum ( np . logical_and ( yhat == 1 , y ==  -1) ) 

print ’TP : ’ + str (TP), ’, FP : ’ + str (FP)  

print ’FN : ’ + str (FN), ’, TN : ’ + str (TN)  

 
from sklearn import metrics  

metrics . confusion_matrix ( yhat , y) 

# sklearn uses a transposed convention for the confusion 

# matrix thus I change targets and predictions  

 
# Train a classifier using . fit () 

knn = neighbors . KNeighborsClassifier ( n_neighbors = 1) 

knn . fit ( x , y) 

yhat =  knn . predict ( x) 

 

print " classification accuracy :" + 

str ( metrics . accuracy_score ( yhat , y)) 

print " confusion matrix : \ n" + 

str ( metrics . confusion_matrix ( yhat , y)) 
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In [9]: 

 
 
 
 
 
 
 
 

If we check the shapes of the training and test sets we obtain, 

Out[9]: Training shape: (2898, 15), training targets shape: (2898,) 

Testing shape: (1242, 15), testing targets shape: (1242,) 

With this new partition, let us train the model 

In [10]: 

 
 
 
 
 
 
 
 

Out[10]: TRAINING STATS: 

classification accuracy: 1.0 
confusion matrix: 

2355 0 

0   543 

As expected from the former experiment, we achieve a perfect score. Now let 

us see what happens in the simulation with previously unseen data. 

In [11]: 

 
 
 
 
 
 

 

Out[11]: TESTING STATS: 

classification accuracy: 0.754428341385 
confusion matrix: 
865 148 

157 72 

 
# Simulate a real case : Randomize and split data into 

# two subsets PRC *100\% for training and the rest  

# (1 - PRC ) *100\% for testing  

perm = np . random . permutation ( y. size ) 

PRC = 0.7  

split_point = int ( np . ceil ( y. shape [0]* PRC )) 

 

X_train = x[ perm [: split_point ]. ravel () ,:] 

y_train = y[ perm [: split_point ]. ravel () ] 

 

X_test = x[ perm [ split_point :]. ravel () ,:] 

y_test = y[ perm [ split_point :]. ravel () ] 

 
# Train a classifier on training data  

knn = neighbors . KNeighborsClassifier ( n_neighbors = 1) 

knn . fit ( X_train , y_train ) 

yhat = knn . predict ( X_train ) 

 

print "\ n TRAINING STATS :" 

print " classification accuracy :" + 

str ( metrics . accuracy_score ( yhat , y_train )) 

print " confusion matrix : \ n" + 

str ( metrics . confusion_matrix ( y_train , yhat )) 

 

# Check on the test set 

yhat = knn . predict ( X_test ) 

print " TESTING STATS :" 

print " classification accuracy :" , 

metrics . accuracy_score ( yhat , y_test ) 

print " confusion matrix : \ n" + 

str ( metrics . confusion_matrix ( yhat , y_test )) 



 

   1
=in  i i 

i i i i 
0 otherwise. 
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In [12]: 

Observe that each time we run the process of randomly splitting the dataset 

and train a classifier we obtain a different performance. A good simulation for 

approxi- mating the test error is to run this process many times and average the 
performances. Let us do this!6 

 
 
 
 
 
 
 
 
 
 
 

Out[12]: Mean expected error: 0.754669887279 

As we can see, the resulting error is below 81%, which was the result of the 

most naive decision process. What is wrong with this result? 

Let us introduce the nomenclature for the quantities we have just computed 

and define the following terms. 

 
In-sample error Ein: The in-sample error or training error is the error 

measured over all the observed data samples in the training set, i.e., 
 

N 

E e(x , y ) 
N 

i =1 

Out-of-sample error Eout: The out-of-sample error or generalization error mea- 

sures the expected error on unseen data. We can approximate/simulate this 

quantity by holding back some training data for testing purposes. 
 

Eout = Ex,y(e(x, y)) 

Note that the definition of the instantaneous error e(xi , yi ) is still missing. For 

example, in classification we could use the indicator function to account for a 

cor- rectly classified sample as follows: 

e(x , y ) = I [h(x ) = y ] =

 
1, if h(xi ) = yi

 

 
 

 
6sklearn   allows   us   to   easily   automate   the   train/test   splitting   using   the   function 

train_test_split(...). 

 
# Spitting done by using the tools provided by sklearn : 

from sklearn . cross_validation import train_test_split  

 

PRC = 0.3  

acc = np . zeros ((10 ,) ) 

for i in xrange (10) : 

X_train , X_test , y_train , y_test = 

train_test_split ( x , y , test_size = PRC ) 

knn = neighbors . KNeighborsClassifier ( n_neighbors = 1) 

knn . fit ( X_train , y_train ) 

yhat = knn . predict ( X_test ) 

acc [ i] = metrics . accuracy_score ( yhat , y_test ) 

acc . shape = (1 , 10 ) 

print " Mean expected error :" + str ( np . mean ( acc [0]) ) 

• 

• 



 

 First Steps

 77 
 

 

Fig. 5.2 Comparison of the methods using the accuracy metric 

 

 
Observe that: 

 

Eout ≥ Ein 

 
 
 
 
 

In [13]: 

Using the expected error on the test set, we can select the best classifier 

for our application. This is called model selection. In this example we cover the 

most simplistic setting. Suppose we have a set of different classifiers and want to 

select the “best” one. We may use the one that yields the lowest error rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 shows the results of applying the code. 

 
from sklearn import tree 

from sklearn import svm 

PRC = 0.1  

acc_r = np . zeros ((10 ,  4) ) 

for i in xrange (10) : 

X_train , X_test , y_train , y_test = 

train_test_split ( x , y , test_size = PRC ) 

nn 1 = neighbors . KNeighborsClassifier ( n_neighbors = 1) 

nn 3 = neighbors . KNeighborsClassifier ( n_neighbors = 3) 

svc = svm . SVC () 

dt = tree . DecisionTreeClassifier () 

 

nn1 . fit ( X_train , y_train ) 

nn3 . fit ( X_train , y_train ) 

svc . fit ( X_train , y_train ) 

dt . fit ( X_train , y_train ) 

 

yhat_nn1 = nn 1 . predict ( X_test ) 

yhat_nn3 = nn 3 . predict ( X_test ) 

yhat_svc = svc . predict ( X_test ) 

yhat_dt = dt . predict ( X_test ) 

 

acc_r [ i ][0] = metrics . accuracy_score ( yhat_nn1 , y_test ) 

acc_r [ i ][1] = metrics . accuracy_score ( yhat_nn3 , y_test ) 

acc_r [ i ][2] = metrics . accuracy_score ( yhat_svc , y_test ) 

acc_r [ i ][3] = metrics . accuracy_score ( yhat_dt , y_test ) 



 

• − 

→ 
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This process is one particular form of a general model selection technique 

called cross-validation. There are other kinds of cross-validation, such as leave-
one-out or K-fold cross-validation. 

 
In leave-one-out, given N samples, the model is trained with N 1 samples and 

tested with the remaining one. This is repeated N times, once per training 
sample and the result is averaged. 

In K-fold cross-validation, the training set is divided into K nonoverlapping splits. 

K-1 splits are used for training and the remaining one used to assess the mean. 

This process is repeated K times leaving one split out each time. The results are 
then averaged. 

 

 What Is Learning? 
 

Let us recall the two basic values defined in the last section. We talk of training error 

or in-sample error, Ein, which refers to the error measured over all the observed 

data samples in the training set. We also talk of test error or generalization error, 

Eout, as the error expected on unseen data. 
We can empirically estimate the generalization error by means of cross-

validation techniques and observe that: 
 

Eout ≥ Ein. 

The goal of learning is to minimize the generalization error; but how can we 

guarantee this minimization using only training data? 
From the above inequality it is easy to derive a couple of very intuitive ideas. 

 

• Because Eout is greater than or equal to Ein, it is desirable to have 

Ein → 0. 

Additionally, we also want the training error behavior to track the 

generalization error so that if one minimizes the in-sample error the out-of-

sample error follows, i.e., 
Eout ≈ Ein. 

We can rewrite the second condition as 

Ein ≤ Eout ≤ Ein + Ω, 

with Ω 0. 
We would like to characterize Ω in terms of our problem parameters, i.e., 

the number of samples (N ), dimensionality of the problem (d), etc. 
Statistical analysis offers an interesting characterization of this quantity7 

 
 

7The reader should note that there are several bounds in machine learning to characterize the 

generalization error. Most of them come from variations of Hoeffding’s inequality. 

• 

• 
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Fig. 5.3 Toy problem data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E E (C) 
log C 

, 
N 

where C is a measure of the complexity of the model class we are using. Technically, 

we may also refer to this model class as the hypothesis space. 

 
 
 

 Learning Curves 
 

Let us simulate the effect of the number of examples on the training and test 

errors for a given complexity. This curve is called the learning curve. We will focus 
for a moment in a more simple case. Consider the toy problem in Fig. 5.3. 

Let us take a classifier and vary the number of examples we feed it for training 

purposes, then check the behavior of the training and test accuracies as the 

number of examples grows. In this particular case, we will be using a decision tree 
with fixed maximum depth. 

Observing the plot in Fig. 5.4, we can see that: 
 

As the number of training samples increases, both errors tend to the same 

value. When we have few training data, the training error is very small but the 
test error is very large. 

 
Now check the learning curve when the degree of complexity is greater in Fig. 5.5. 

We simulate this effect by increasing the maximum depth of the tree. 

And if we put both curves together, we have the results shown in Fig. 5.6. 

Although both show similar behavior, we can note several differences: 

• 
• 



 

80 5 Supervised Learning 
 

 

Fig. 5.4 Learning curves (training and test errors) for a model with a high degree of complexity 

 

 

Fig. 5.5 Learning curves (training and test errors) for a model with a low degree of complexity 

 

 

Fig. 5.6 Learning curves (training and test errors) for models with a low and a high degree of 

complexity 
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Fig. 5.7 Learning curves (training and test errors) for a fixed number of data samples, as the 

complexity of the decision tree increases 

 

 
With a low degree of complexity, the training and test errors converge to the 

bias sooner/with fewer data. 

Moreover, with a low degree of complexity, the error of convergence is larger 
than with increased complexity. 

 
The value both errors converge towards is also called the bias; and the differ- 

ence between this value and the test error is called the variance. The 
bias/variance decomposition of the learning curve is an alternative approach to 

the training and generalization view. 

Let us now plot the learning behavior for a fixed number of examples with 

respect to the complexity of the model. We may use the same data but now we 

will change the maximum depth of the decision tree, which governs the complexity 
of the model. Observe in Fig. 5.7 that as the complexity increases the training error 

is reduced; but above a certain level of complexity, the test error also increases. 

This effect is 
called overfitting. We may enact several cures for overfitting: 

 
Observe that models are usually parameterized by some hyperparameters. 

Select- ing the complexity is usually governed by some such parameters. Thus, 

we are faced with a model selection problem. A good heuristic for selecting the 
model is to choose the value of the hyperparameters that yields the smallest 

estimated test error. Remember that this can be done using cross-validation. 

We may also change the formulation of the objective function to penalize complex 
models. This is called regularization. Regularization accounts for estimating the 

value of Ω in our out-of-sample error inequality. In other words, it models the 
complexity of the technique. This usually becomes implicit in the algorithm but 
has huge consequences in real applications. The most common regularization 

strategies are as follows: 

• 

• 

• 

• 
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– L2 weight regularization: Adding an L2 penalization term to the weights of a 

weight-controlled model implies looking for solutions with small weight values. 
Intuitively, adding an L2 penalization term can be seen as a surrogate for the 

notion of smoothness. In this sense, a low complexity model means a very 

smooth model. 

– L1 weight regularization: Adding an L1 regularization term forces sparsity in 
the weights of the model. In this sense, a low complexity model means a 

model with few components or few active terms. 

 
These terms are added to the objective function. They trade off with the error 

function in the objective and are governed by a hyperparameter. Thus, we still 

have to select this parameter by means of model selection. 

We can use “ensemble techniques”. A third cure for overfitting is to use ensemble  

techniques. The best known are bagging and boosting. 
 
 
 

 Training, Validation and Test 
 

Going back to our problem, we have to select a model and control its complexity 

according to the number of training data. In order to do this, we can start by 

using a model selection technique. We have seen model selection before when we 

wanted to compare the performance of different classifiers. In that case, our best 
bet was to select the classifier with the smallest Eout. Analogous to model 

selection, we may think of selecting the best hyperparameters as choosing the 

classifier with parameters that performs the best. Thus, we may select a set of 

hyperparameter values and use cross-validation to select the best configuration. 
The process of selecting the best hyperparameters is called validation. This 

intro- duces a new set into our simulation scheme; we now need to divide the data 

we have into three sets: training, validation, and test sets. As we have seen, the 

process of assessing the performance of the classifier by estimating the 

generalization error is called testing. And the process of selecting a model using 
the estimation of the gen- eralization error is called validation. There is a subtle but 

critical difference between the two and we have to be aware of it when dealing 

with our problem. 

 
Test data is used exclusively for assessing performance at the end of the 

process and will never be used in the learning process.8 

Validation data is used explicitly to select the parameters/models with the best 
performance according to an estimation of the generalization error. This is a 

form of learning. 

• Training data are used to learn the instance of the model from a model class. 

 
. 

• 

• 

• 
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In practice, we are just given training data, and in the most general case we 

explicitly have to tune some hyperparameter. Thus, how do we select the 

different splits? 
How we do this will depend on the questions regarding the method that we 

want to answer: 

 
Let us say that our customer asks us to deliver a classifier for a given problem. If 

we just want to provide the best model, then we may use cross-validation on 

our training dataset and select the model with the best performance. In this 

scenario, when we return the trained classifier to our customer, we know that it 

is the one that achieves the best performance. But if the customer asks about 
the expected performance, we cannot say anything. 

A practical issue: once we have selected the model, we use the complete 

training set to train the final model. 

If we want to know about the performance of our model, we have to use 

unseen data. Thus, we may proceed in the following way: 

 
1. Split the original dataset into training and test data. For example, use 30% of 

the original dataset for testing purposes. This data is held back and will only 

be used to assess the performance of the method. 

2. Use the remaining training data to select the hyperparameters by means of 

cross- validation. 

3. Train the model with the selected parameter and assess the performance 
using the test dataset. 

 
A practical issue: Observe that by splitting the data into three sets, the 
classifier is trained with a smaller fraction of the data. 

 
If we want to make a good comparison of classifiers but we do not care 

about the best parameters, we may use nested cross-validation. Nested cross-
validation runs two cross-validation processes. An external cross-validation is 

used to assess the performance of the classifier and in each loop of the external 

cross-validation another cross-validation is run with the remaining training set 

to select the best parameters. 

 
If we want to select the best complexity of a decision tree, we can use tenfold 

cross- validation checking for different complexity parameters. If we change the 

maximum depth of the method, we obtain the results in Fig. 5.8. 

• 

• 

• 
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Fig. 5.8 Box plot showing accuracy for different complexities of the decision tree 

 
 

In [14]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Checking Fig. 5.8, we can see that the best average accuracy is obtained by 

the fifth model, a maximum depth of 6. Although we can report that the best 
accuracy is estimated to be found with a complexity value of 6, we cannot say 

anything about the value it will achieve. In order to have an estimation of that 

value, we need to run the model on a new set of data that are completely unseen, 

both in training and in model selection (the model selection value is positively 
biased). Let us put everything together. We will be considering a simple train_test 

split for testing purposes and then run cross-validation for model selection. 

 
# Create a 10 - fold cross - validation set 

kf = cross_validation . KFold ( n = y. shape [0] , 

n_folds = 10 , 

shuffle = True , 

random_state = 0) 

 

# Search for the parameter among the following : 

C = np . arange (2 , 20 ,) 

 

acc = np . zeros ((10 , 18 ) ) 

i = 0 

for train_index , val_index in kf : 

X_train , X_val = X[ train_index ], X[ val_index ] 

y_train , y_val = y[ train_index ], y[ val_index ] 

j = 0 

for c in C:  

dt = tree . DecisionTreeClassifier ( 

min_samples_leaf = 1 , 

max_depth = c) 

dt . fit ( X_train , y_train ) 

yhat = dt . predict ( X_val ) 

acc [ i ][ j] = metrics . accuracy_score ( yhat , y_val ) 

j = j + 1 

i = i + 1 



 

In [15]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out[15]: Mean accuracy: [0.8254832 0.83031158 0.83091854 0.83423816 

0.83363939 0.83303516 0.82759983 0.82337022 0.82034725 

0.81642795 0.80947567 0.79951316 0.80162614 0.79226695 

0.79589324 0.785928 0.78049267 0.78320988] 

Selected model index: 3 

 
If we run the output of this code, we observe that the best accuracy is 

provided by the fourth model. In this example it is a model with complexity 5.9 
The selected model achieves a success rate of 0.83423816 in validation. We then 
train the model with the complete training set and verify its test accuracy. 

 
 
 
 
 
 
 
 
 
 
 

 
# Train_test split  

X_train , X_test , y_train , y_test = cross_validation  

. train_test_split ( X , y , test_size = 0.20)  

 

# Create a 10 - fold cross - validation set 

kf = cross_validation . KFold ( n = y_train . shape [0] , 

n_folds = 10 , 

shuffle = True , 

random_state = 0) 

 

# Search the parameter among the following 

C = np . arange (2 , 20 ,) 

acc = np . zeros ((10 , 18 ) ) 

i = 0 

for train_index , val_index in kf : 

X_t , X_val = X_train [ train_index ], X_train [ val_index ] 

y_t , y_val = y_train [ train_index ], y_train [ val_index ] 

j = 0 

for c in C:  

dt = tree . DecisionTreeClassifier ( 

min_samples_leaf = 1 , 

max_depth = c) 

dt . fit ( X_t , y_t ) 

yhat = dt . predict ( X_val ) 

acc [ i ][ j] = metrics . accuracy_score ( yhat , y_val ) 

j = j + 1 

i = i + 1 

print ’ Mean accuracy : ’ + str ( np . mean ( acc , axis = 0) ) 

print ’ Selected model index : ’ + 

str ( np . argmax ( np . mean ( acc , axis = 0) )) 



 

 

In [16]: 

 
 
 
 
 
 
 
 

 
Out[16]: Test accuracy: 0.826086956522 

 

 
 
 
 

In [17]: 

As expected, the value is slightly reduced; it achieves 0.82608. Finally, the model 
is trained with the complete dataset. This will be the model used in exploitation 
and we expect to at least achieve an accuracy rate of 0.82608. 

 
 
 
 
 

 
 

 Two Learning Models 
 

Let us return to our problem and check the performance of different models. 

There are many learning models in the machine learning literature. However, in 

this short introduction we focus on two of the most important and pragmatically 
effective approaches10: support vector machines (SVM) and random forests (RF). 

 

 Generalities Concerning Learning Models 
 

Before going into some of the details of the models selected, let us check the 

com- ponents of any learning algorithm. In order to be able to learn, an algorithm 

has to define at least three components: 

 
The model class/hypothesis space defines the family of mathematical models 

that will be used. The target decision boundary will be approximated from one 

element of this space. For example, we can consider the class of linear models. In 

this case our decision boundary will be a line if the problem is defined in R2 and 
the model class is the space of all possible lines in R2. 

 

 
# Train the model with the complete training set with the 

selected complexity  

dt = tree . DecisionTreeClassifier ( 

min_samples_leaf = 1 , 

max_depth = C[ np . argmax ( np . mean ( acc , axis = 0) ) ]) 

dt . fit ( X_train , y_train ) 

 

# Test the model with the test set 

yhat = dt . predict ( X_test ) 

print ’ Test accuracy : ’ + 

str ( metrics . accuracy_score ( yhat , y_test )) 

 
# Train the final model  

dt = tree . DecisionTreeClassifier ( min_samples_leaf = 1 , 

max_depth = C[ np . argmax ( np . mean ( acc , axis = 0) ) ]) 

dt . fit ( X , y) 

• 



 

Model classes define the geometric properties of the decision function. There 

are different taxonomies but the best known are the families of linear and 
nonlinear models. These families usually depend on some parameters; and the 

solution to a learning problem is the selection of a particular set of parameters, i.e., 

the selection of an instance of a model from the model class space. The model 

class space is also called the hypothesis space. 
The selection of the best model will depend on our problem and what we 

want to obtain from the problem. The primary goal in learning is usually to 

achieve the minimum error/maximum performance; but according to what 

else we want from the algorithm, we can come up with different algorithms. 

Other common desirable properties are interpretability, behavior when faced 
with missing data, fast training, etc. 

The problem model formalizes and encodes the desired properties of the 

solution. In many cases, this formalization takes the form of an optimization 

problem. In its most basic instantiation, the problem model can be the 
minimization of an error function. The error function measures the difference 

between our model and the target. Informally speaking, in a classification 

problem it measures how “irritated” we are when our model misses the right 

label for a training sample. For example, in classification, the ideal error function 

is the 0–1 loss. This function takes value 1 when we incorrectly classify a training 
sample and zero otherwise. In this case, we can interpret it by saying that we 

are only irritated by “one unit of irritation” when one sample is misclassified. 

The problem model can also be used to impose other constraints on our 

solution,11 such as finding a smooth approximation, a model with a low degree 
of small complexity, a sparse solution, etc. 

The learning algorithm is an optimization/search method or algorithm that, 

given a model class, fits it to the training data according to the error function. 

According to the nature of our problem there are many different algorithms. In 
general, we are talking about finding the minimum error approximation or 

maximum probable model. In those cases, if the problem is convex/quasi-convex 

we will typically use first- or second-order methods (i.e., gradient descent, 

coordinate descent, Newton’s method, interior point methods, etc.). Other 

searching techniques such as genetic algorithms or Monte Carlo techniques can 
be used if we do not have access to the derivatives of the objective function. 

 
 

 Support Vector Machines 
 

SVM is a learning technique initially designed to fit a linear boundary between 

the samples of a binary problem, ensuring the maximum robustness in terms of 
tolerance to isotropic uncertainty. This effect is observed in Fig. 5.9. Note that the 

boundary displayed has the largest distance to the closest point of both 

classes. Any other 

 
 

11Remember the regularization cure for overfitting. 

• 

• 
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Fig. 5.9 Support vector 

machine decision 

boundary and the support 

vectors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

separating boundary will have a point of a class closer to it than this one. The 

figure also shows the closest points of the classes to the boundary. These points 

are called support vectors. In fact, the boundary only depends on those points. If 

we remove any other point from the dataset, the boundary remains intact. 
However, in general, if any of these special points is removed the boundary will 

change. 

 
 

 A Brief Note on Deriving Hard Margin Support Vector Machines In 

order to understand the model, we have to be able to approximately 

derive its for- mulation. For this purpose it is important to understand a 
couple of things about basic geometry of a hyperplane. A hyperplane in 
Rd is defined as an affine combination of the variables: π   aT x   b    0. A 

hyperplane splits the space into two half-spaces. The evaluation of the 
equation of the hyperplane on any element belonging to one 

of the half-spaces is a positive value. It is a negative value for all the elements in 
the other half-space. The distance of a point x ∈ Rd to the hyperplane π is 

|aT x + b| 
d(x, π) = 

ǁaǁ2 
Given a binary classification problem with training data D = {(xi , yi )}, i = 1 . . .  

N, yi ∈ {+1, −1}, consider S ⊆ D the subset of all data points belonging to class +1, S = 
{xi |yi = +1}, and R = {xi |yi = −1} its complement. 



 

ǁaǁ2 
= 

= 

ǁ ǁ 
ǁ ǁ 

ǁ ǁ 

− 
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Then the problem of finding a separating hyperplane consists of fulfilling the 

following constraints12 

aT si + b > 0 and aT ri + b < 0 ∀si ∈ S, ri ∈ R. 

This is a feasibility problem and it is usually written in the following way in 

optimization standard notation: 

minimize 1 

subject to yi (aT xi + b) ≥ 1, ∀xi ∈ D 

The solution of this problem is not unique. Selecting the maximum margin 
hyper- plane requires us to add a new constraint to our problem. Remember from 
the geom- etry of the hyperplane that the distance of any point to a hyperplane is 

given by: d(x, π) a
T x +b . 

Recall also that we want positive data to be beyond value 1 and negative data 

below 1. Thus, what is the distance value we want to maximize? 
The positive point closest to the boundary is at 1/ a 2 and the negative point 

closest to the boundary data point is also at 1/ a 2. Thus, data points from 
different classes are at least 2/ a 2 apart. 

Recall that our goal is to find the separating hyperplane with maximum 

margin, i.e., with maximum distance between elements in the different classes. 

Thus, we can complete the former formulation with our last requirement as 
follows: 

minimize ǁaǁ2/2 

subject to yi (aT xi + b) ≥ 1, ∀xi ∈ D 

This formulation has a solution as long as the problem is linearly separable. 

In order to deal with misclassifications, we are going to introduce a new set of 
variables ξi , that represents the amount of violation in the i -th constraint. If the 
constraint is already satisfied, then ξi 0; while ξi > 0 otherwise. Because ξi is 
related to the errors, we would like to keep this amount as close to zero as 
possible. This makes us introduce an element in the objective trade-off with the 
maximum margin. 

 
12Note the strict inequalities in the formulation. Informally, we can consider the smallest 

satisfied constraint, and observe that the rest must be satisfied with a larger value. Thus, we can 

arbitrarily set that value to 1 and rewrite the problem as 

aT si + b ≥ 1 and aT ri + b ≤ −1. 



 

  

i 

i 
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The new model becomes: 
 

N 

minimize   ǁaǁ2/2 + C ξi 
i =1 

subject to yi (aT xi + b) ≥ 1 − ξi , i = 1 . . .  N 

ξi ≥ 0 

where C is the trade-off parameter that roughly balances the rates of margin and 

misclassification. This formulation is also called soft-margin SVM. 
The larger the C value is, the more importance one gives to the error, i.e., the 

method will be more accurate according to the data at hand, at the cost of being 

more sensitive to variations of the data. 

The decision boundary of most problems cannot be well approximated by a 

linear model. In SVM, the extension to the nonlinear case is handled by means of 
kernel theory. In a pragmatic way, a kernel can be referred to as any function that 

captures the similarity between any two samples in the training set. The kernel 

has to be a positive semi-definite function as follows: 
 

• Linear kernel: 

• Polynomial kernel: 

k(xi , x j ) = x T x j 

k(xi , x j ) = (1 + x T x j ) p 

• Radial Basis Function kernel: 

k(xi , x j ) = e 

 

 
ǁxi −x j ǁ

2 2σ2 

 

Note that selecting a polynomial or a Radial Basis Function kernel means that 
we have to adjust a second parameter p or σ, respectively. As a practical 
summary, the SVM method will depend on two parameters (C, γ) that have to be 
chosen carefully using cross-validation to obtain the best performance. 

 
 

 Random Forest 
 

Random Forest (RF) is the other technique that is considered in this work. RF is 

an ensemble technique. Ensemble techniques rely on combining different 

classifiers using some aggregation technique, such as majority voting. As pointed 

out earlier, ensemble techniques usually have good properties for combating 
overfitting. In this case, the aggregation of classifiers using a voting technique 

reduces the variance of the final classifier. This increases the robustness of the 

classifier and usually achieves a very good classification performance. A critical issue 

in the ensemble of classifiers is that for the combination to be successful, the 

errors made by the members of the ensemble should be as uncorrelated as 
possible. This is sometimes referred to in the 

− 



 

literature as the diversity of the classifiers. As the name suggests, the base 

classifiers in RF are decision trees. 

 
 

 A Brief Note on Decision Trees 
A decision tree is one of the most simple and intuitive techniques in machine 

learning, based on the divide and conquer paradigm. The basic idea behind 

decision trees is to partition the space into patches and to fit a model to a patch. 

There are two questions to answer in order to implement this solution: 
 

• How do we partition the space? 

• What model shall we use for each patch? 

Tackling the first question leads to different strategies for creating decision tree. 

However, most techniques share the axis-orthogonal hyperplane partition policy, 
i.e., a threshold in a single feature. For example, in our problem “Does the 

applicant have a home mortgage?”. This is the key that allows the results of this 

method to be interpreted. In decision trees, the second question is 

straightforward, each patch is given the value of a label, e.g., the majority label, 

and all data falling in that part of the space will be predicted as such. 
The RF technique creates different trees over the same training dataset. The 

word “random” in RF refers to the fact that only a subset of features is available 

to each of the trees in its building process. The two most important parameters in 

RF are the number of trees in the ensemble and the number of features each tree 
is allowed to check. 

 

 

 Ending the Learning Process 
 

With both techniques in mind, we are going to optimize and check the results 
using nested cross-validation. Scikit-learn allows us to do this easily using several 
model selection techniques. We will use a grid search, GridSearchCV (a cross-
validation using an exhaustive search over all combinations of parameters 
provided). 
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In [16]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out[16]: classification accuracy: 0.856038647343 confusion matrix: 
3371 590 

6    173 

The result obtained has a large error in the non-fully funded class (negative). 

This is because the default scoring for cross-validation grid-search is mean 

accuracy. Depending on our business, this large error in recall for this class may 
be unaccept- able. There are different strategies for diminishing the impact of this 

effect. On the one hand, we may change the default scoring and find the 

parameter setting that cor- responds to the maximum average recall. On the other 

hand, we could mitigate this effect by imposing a different weight on an error on 

the critical class. For example, we could look for the best parameterization such 
than one error on the critical class is equivalent to one thousand errors on the 

noncritical class. This is important in business scenarios where monetization of 

errors can be derived. 
 

 

 A Toy Business Case 
 

Consider that clients using our service yield a profit of 100 units per client (we will use  
abstract units but keep in mind that this will usually be accounted in 
euros/dollars). We design a campaign with the goal of attracting investors in 

order to cover all non-fully funded loans. Let us assume that the cost of the 
campaign is α units per client. With this policy we expect to keep our customers 

 
parameters = { ’C ’: [1 e4, 1 e5, 1 e6 ], 

’ gamma ’: [1 e -5 , 1 e -4 , 1 e -3]}  

N_folds = 5 

 

kf = cross_validation . KFold ( n = y. shape [0] , 

n_folds = N_folds , 

shuffle = True , 

random_state = 0) 

 

acc = np . zeros (( N_folds ,) ) 

i = 0 

# We will build the predicted y from the partial predictions 

on the test of each of the folds  

yhat = y. copy () 

for train_index , test_index in kf : 

X_train , X_test = X[ train_index ,:] , X[ test_index ,:] 

y_train , y_test = y[ train_index ], y[ test_index ] 

scaler = StandardScaler () 

X_train = scaler . fit_transform ( X_train ) 

clf = svm . SVC ( kernel = ’ rbf ’) 

clf = grid_search . GridSearchCV ( clf , parameters , cv = 3) 

clf . fit ( X_train , y_train . ravel () ) 

X_test = scaler . transform ( X_test ) 

yhat [ test_index ] = clf . predict ( X_test ) 

 

print metrics . accuracy_score ( yhat , y) 

print metrics . confusion_matrix ( yhat , y) 



 

+ 

+ 

· + 

    

· + 

satisfied and engaged with our service, so they keep using it. Analyzing the 
confusion matrix we can 
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Fig. 5.10 Surfaces for two 

different campaign and 

attraction factors. The 

horizontal plane 

corresponds to the profit if 

no campaign is launched. 

The slanted plane is the 

profit for a certain 

confusion matrix 

 
 
 
 
 
 
 
 
 
 

 
give precise meaning to different concepts in this campaign. The real positive set 
(TP  FN) consists of the number of clients that are fully funded. According to 
our assumption, each of these clients generates a profit of 100 units. The total 
profit is 100 (TP  FN). The campaign to attract investors will be cast considering 
all the clients we predict are not fully funded. These are those that the classifier 
predict as negative, i.e., (FN  T N). However, the campaign will only have an 
effect on the investors/clients that are actually not funded, i.e., T N ; and we expect 
to attract a certain fraction β of them. After deploying our campaign, a simplified 
model of the expected profit is as follows: 

100 · ( T P  + F N )  − α(TN + F N )  + 100βTN  

When optimizing the classifier for accuracy, we do not consider the business 
needs. In this case, optimizing an SVM using cross-validation for different parameters 
of the C and γ, we have an accuracy of 85.60% and a confusion matrix with the 
following values: 

3371. 590. 
6. 173. 

If we check how the profit changes for different values of α and β, we obtain the 
plot in Fig. 5.10. The figure shows two hyperplanes. The horizontal plane is the 
expected profit if the campaign is not launched, i.e., 100 (TP  FN).  The other 
hyperplane represents the profit of the campaign for different values of α and β using 
a particular classifier. Remember that the cost of the campaign is given by α, and the 
success rate of the campaign is represented by β. For the campaign to be 
successful we would like to select values for both parameters so that the profit of 
the campaign is larger than the cost of launching it. Observe in the figure that 
certain costs and attraction rates result in losses. 



 

We may launch different classifiers with different configurations and toy with dif- 

ferent weights (2, 4, 8, 16) for elements of different classes in order to bias the classi 
Supervised Learning 

 

 

Fig. 5.11 3D surfaces of the profit obtained for different classifiers and configurations of retention 

campaign cost and retention rate. a RF, b SVM with the same cost per class, c SVM with double 

cost for the target class, d SVM with a cost for the target class equal to 4, e SVM with a cost for 

the target class equal to 8, f SVM with a cost for the target class equal to 16 

 
fier towards obtaining different values for the confusion matrix.13 The weights define 

 

 

 



 

Table 5.1 Different configurations of classifiers and their respective profit rates and accuracies 
 

 Max profit rate (%) Profit rate at 60% (%) Accuracy (%) 

Random forest 4.41 2.41 87.87 

SVM {1 : 1} 4.59 2.54 85.60 

SVM {1 : 2} 4.52 2.50 85.60 

SVM {1 : 4} 4.30 2.28 83.81 

SVM {1 : 8} 10.69 3.57 52.51 

SVM {1 : 16} 10.68 2.88 41.40 

 
 

 
how much a misclassification in one class counts with respect to a 

misclassification in another. Figure 5.11 shows the different landscapes for different 

configurations of the SVM classifier and RF. 

In order to frame the problem, we consider a very successful campaign with a 
60% investor attraction rate. We can ask several questions in this scenario: 

 

• What is the maximum amount to be spent on the campaign? 
• How much will I gain? 
• From all possible configurations of the classifier, which is the most profitable? 

• Is it the one with the best accuracy? 

Checking the values in Fig. 5.11, we find the results collected in Table 5.1. Observe 
that the most profitable campaign with 60% corresponds to a classifier that considers  

the cost of mistaking a sample from the non-fully funded class eight times larger 

than the one from the other class. Observe also that the accuracy in that case is 

much worse than in other configurations. 
The take-home idea of this section is that business needs are often not aligned 

with the notion of accuracy. In such scenarios, the confusion matrix values have 

specific meanings. This must be taken into account when tuning the classifier. 
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may tackle many more different settings. For example, we may have different 

target labels for a single example; this is called multilabel learning. Or, data can 
come from streams or be time dependent; in these settings, sequential learning or 

sequence learning can be the methods of choice. Moreover, each data example 

can be a non- vector or have a variable size, such as a graph, a tree, or a string. In 

such scenarios kernel learning or structural learning may be used. During these last 
years we are also seeing the revival of neural networks under the name of deep 

learning and achieving impressive results in different domains such as computer 

vision or natural language processing. Nonetheless, all of these methods will behave 

as explained in this chapter and most of the lessons learned here can be readily 
applied to these techniques. 

 



 

                                                             UNIT-4 

Regression analysis, Regression: linear regression simple linear regression, 

multiple & Polynomial regression, Sparse model. Unsupervised learning, 

clustering, similarity and distances, quality measures of clustering, case 

study. 

 

Regression Analysis 
 

 Introduction 
 

In this chapter, we introduce regression analysis and some of its applications in 

data science. Regression is related to how to make predictions about real-world 
quantities such as, for instance, the predictions alluded to in the following 

questions. How does sales volume change with changes in price? How is sales 

volume affected by the weather? How does the title of a book affect its sales? 

How does the amount of a drug absorbed vary with the patient’s body weight; 
and does this relationship depend on blood pressure? How many customers can 

I expect today? At what time should I go home to avoid traffic jams? What is the 

chance of rain on the next two Mondays; and what is the expected 

temperature? 
All these questions have a common structure: they ask for a response that 

can be expressed as a combination of one or more (independent) variables 

(also called covariates or predictors). The role of regression is to build a model 

to predict the response from the variables. This process involves the transition 

from data to model. More specifically, the model can be useful in different tasks, 
such as the following: 

(1) analyzing the behavior of data (the relation between the response and the 

vari- ables), (2) predicting data values (whether continuous or discrete), and 

(3) finding important variables for the model. 
In order to understand how a regression model can be suitable for tackling 

these tasks, we will introduce three practical cases for which we use three real 

datasets and solve different questions. These practical cases will motivate simple 

linear regression, multiple linear regression, and logistic regression, as 
presented in the following sections. 
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Fig. 6.1 Illustration of different simple linear regression models. Blue points correspond to a set 

of random points sampled from a univariate normal (Gaussian) distribution. Red, green and 

yellow lines are three different simple linear regression models 

 

 

 Linear Regression 
 

The objective of performing a regression is to build a model to express the 

relation between the response y Rn and a combination of one or more 

(independent) vari- ables xi  Rn . [1] The model allows us to predict the response y 
from the variables. The simplest model which can be considered is a linear model, 
where the response y depends linearly on the d variables xi : 

y = a1x1 + ·  · · + ad xd . (6.1) 

The variables ai are termed the parameters or coefficients of the model. 
This equation can be rewritten in a more compact matrix form: y = Xw, where 

⎛ 
y1 
⎞ ⎛ 

x11 . . .  x1d 
⎞

 ⎛ 
a1 
⎞ 

 
⎜
⎝  .  

⎟
⎠

 
 

 
. 

xn1 . . .  xnd ad 

Linear regression is the technique for creating these linear models. 

 
 

 Simple Linear Regression 
 

Simple linear regression considers n samples of a single variable x Rn and 

describes the relationship between the variable and the response with the model: 

y = a0 + a1x, (6.2) 

where the parameter a0 is called the intercept or the constant term. 

Given a set of samples (x, y), such as the set illustrated in Fig. 6.1, we can create 
a linear model to explain the data, as in Eq. (6.2). But how do we know which is the 
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best model (best parameters) for this particular set of samples? See the three 

different models (straight lines in different colors) in Fig. 6.1. 
Ordinary least squares (OLS) is the simplest and most common estimator in which 

the parameters (a’s) are chosen to minimize the square of the distance between 

the predicted values and the actual values with respect to a0, a1: 

||a0 + a1x − y||2 = 
  

(a0 + a1x j − y j )2. 
j =1 

We are concerned here with the y-axis distance, since it does not consider the 

error in the variables. This error expression is often called the sum of squared 

errors of prediction (SSE). The SSE function is quadratic in the parameters, w, with 

positive- definite Hessian, and therefore this function possesses a unique global 

minimum at w    (a0, a1). The resulting model is represented as follows: y    a0     
a1x, where the hats on the variables represent the fact that they are estimated 

from the data available. 

OLS is a popular approach for several reasons. It makes it computationally cheap to 

calculate the coefficients. It is also easier to interpret than the other more 
sophisticated models. In situations where the goal is to understand a simple model 

in detail, rather than to estimate the response well, it can provide insight into what 

the model captures. Finally, in situations where there is a lot of noise, as in many 

real scenarios, it may be hard to find the true functional form, so a constrained 

model can perform quite well compared to a complex model which can be more 
affected by noise. 

Practical Case: Sea Ice Data and Climate Change 

In this practical case, we pose the question: Is the climate really changing? More 

concretely, we want to show the effect of the climate change by determining whether  

the sea ice area (or extent) has decreased over the years. Sea ice area refers to 

the total area covered by ice, whereas sea ice extent is the area of ocean with at 

least 15% sea ice. Reliable measurement of sea ice edges began with the satellite 
era in the late 1970s. Before then, sea ice area and extent were monitored less 

precisely by a combination of ships, buoys, and aircraft. 

We will use the sea ice data from the National Snow & Ice Data Center1 which 

provides measurements of the area and extend of sea ice at the poles over the 
last 36 years. The center has given access to the archived monthly Sea Ice Index 

images and data since 1979 [2]. The archived data reside at an FTP location2 (web-

page instructions can be followed easily to access and download the files). The 

ASCII data files tabulate sea ice extent and area (in millions of square kilometers) 
by year for a given month. 

In order to check whether there is an anomaly in the evolution of sea ice 

extent over recent years, we want to build a simple linear regression model and 

analyze the fitting; but before we need to perform several processing steps. 
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Fig. 6.2 Ice extent data by month 

 
In [1]: 

First, we read the data, previously downloaded, and create a DataFrame 
(Pandas) as follows: 

 
 
 
 

Out[1]: shape: (424, 6) 

For data cleaning, we check the values of all the fields to detect any potential 
error. We find that there is a ‘ 9999’ value in the data_type field which should contain  
‘Goddard’ or ‘NRTSI-G’ (the type of the input dataset). So we can easily clean the 
data, removing these instances. 

In [2]: 

 
 
 
 
 
 
 

In [3]: 

Next, we visualize the data. The lmplot() function from the Seaborn toolbox is 
intended for exploring linear relationships of different forms in multidimensional 
datasets. For instance, we can illustrate the relationship between the month of the 
year (variable) and the extent (response) as follows: 

 

 

This outputs Fig. 6.2. We can observe a monthly fluctuation of the sea ice 

extent, as would be expected for the different seasons of the year. 

We should normalize the data before performing the regression analysis to 

avoid this fluctuation and be able to study the evolution of the extent over the 
years. To capture the variation for a given interval of time (month), we can 

compute the mean 

 

ice = pd . read_csv ( ’ files / ch06 / SeaIce . txt ’, 

delim_whitespace = True ) 

print ’ shape : ’, ice . shape  

 
ice2 = ice [ ice . data_type != ’ -9999 ’] 

 

import Seaborn as sns 

sns . lmplot ("mo" , " extent " , ice2 ) 
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Fig. 6.3 Ice extent data by month after the normalization 

 

 
for the i-th interval of time (using the period from 1979 through 2014 for the 
mean extent) μi , and subtract it from the set of extent values for that month ei . 

This value can be converted to a relative percentage difference by dividing it by 
the total average (1979–2014) μ, and then multiplying by 100: 

ei − μi 
 

ẽi   = 100 ∗ , i = 1, . . . , 12. 
μ 

 

 
In [4]: 

We implement this normalization and plot the relationship again as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [5]: 

The new output is in Fig. 6.3. We now observe a comparable range of values 

for all months. 

Next, the normalized values can be plotted for the entire time series to analyze the 
tendency. We compute the trend as a simple linear regression. We use the lmplot() 
function for visualizing linear relationships between the year (variable) and the extent  
(response). 

 

This outputs Fig. 6.4 showing the regression model fitting the extent data. 

This plot has two main components. The first is a scatter plot, showing the 

observed data points. The second is a regression line, showing the estimated 
linear model relating 

 

for i in range (12) : 

ice2 . extent [ ice2 . mo == i + 1 ] = 

100*( ice2 . extent [ ice2 . mo == i + 1 ] 

- month_means [ i +1])  

/ month_means . mean () 

sns . lmplot ("mo" , " extent " , ice2 ) 

 

sns . lmplot (" year " , " extent " , ice2 ) 

j 



 

  
 

 

Fig. 6.4 Regression model fitting sea ice extent data for all months by year using lmplot 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [6]: 

 

the two variables. The regression line is plotted with a 95% confidence band to 
give an impression of the uncertainty in the model. 

In this figure, we can observe that the data show a long-term negative trend 

over years. The negative trend can be attributed to global warming, although there 

is also a considerable amount of variation from year to year. 
Up until here, we have qualitatively shown the linear regression using a useful 

visu- alization tool. We can also analyze the linear relationship in the data using the 
Scikit- learn library, which allows a quantitative evaluation. As was explained in the 
previous chapter, Scikit-learn provides an object-oriented interface centered 
around the con- cept of an estimator. The sklearn.linear_model.LinearRegression 
estimator sets the state of the estimator based on the training data using the 
function fit. Moreover, it allows the user to specify whether to fit an intercept 
term in the object construction. This is done by setting the corresponding 
constructor arguments of the estimator object as follows: 

 

 
 
 
 
 
 

In [7]: 

During the fitting process, the state of the estimator is stored in instance 
attributes that have a trailing underscore (‘_’). For example, the coefficients of a 
LinearRegression estimator are stored in the attribute coef_. We fit a regres- sion 
model using years as variables (x) and the extent values as the response (y). 

 

from sklearn . linear_model import LinearRegression 

est = LinearRegression ( fit_intercept = True ) 

 

x = ice2 [[ ’ year ’]] 

y = ice2 [[ ’ extent ’]] 

est . fit ( x , y) 

print " Coefficients :" , est . coef_  

print " Intercept :" , est . intercept_  
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Out[7]: Coefficients: [[-0.45275459]] 

Intercept: [ 903.71640207] 

Estimators that can generate predictions provide an Estimator.predict method. 
In the case of regression, Estimator.predict will return the predicted regression 
values. We can evaluate the model fitting by computing the mean squared error 
(MSE) and the coefficient of determination (R2) of the model. The coefficient R2 is 
defined as (1    u/v), with u      (y    y)2 and v      (y    y)2, where y is the mean. The 
best possible score for R2 is 1.0, lower values are worse (it can also be negative). 
These measures can provide a quantitative answer to the question we are facing: 
Is there a negative trend in the evolution of sea ice extent over recent years? We 
can perform this analysis for a particular month or for all months together, as 
done in the following lines: 

In [8]: 

 
 
 

 
Out[8]: MSE: 10.5391316398 

R2: 0.50678703821 

var: 31.98324 

The negative trend seen in Fig. 6.4 is validated by the MSE value which is small, 

0.1%, and the R2 value which is acceptable, given the variance of the data, 0.3%. 

Given the model, we can also predict the extent value for the coming years. 
For instance, the predicted extent for January 2025 can be computed as follows: 

In [9]: 

 
 
 
 

 

Out[9]: Prediction of extent for January 2025 (in millions of square km): [12.93603933]. 

 
 

 Multiple Linear Regression and Polynomial Regression 
 

As we have seen in the previous section, with simple linear regression we 
describe the relationship between the variable and the response with a straight 

line. In the case of multiple linear regression, we extend this idea by fitting a d-

dimensional hyperplane to our d variables, as defined in Eq. (6.1). 

Multiple linear regression may seem a very simple model, but even when the 

response depends on the variables in nonlinear ways, this model can still be used 
by 

 
from sklearn import metrics 

y_hat = est . predict ( x) 

print " MSE :" , metrics . mean_squared_error ( y_hat , y) 

print " R ̂ 2: " , metrics . r2_score ( y_hat , y) 

print ’ var : ’, y. var () 

 
x = [2025]  

y_hat = model . predict ( x) 

m = 1 # January  

y_hat = ( y_hat * month_means . mean () /100) + month_means [ m] 

print " Prediction of extent for January 2025  

( in millions of square km ):" , y_hat  
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considering nonlinear transformations φ (·) of the variables: 

y = a1φ(x1) + · · ·  + ad φ(xd ) 

This model is called polynomial regression and it is a popular nonlinear regression 

technique which models the relationship between the response and the 

variables as an p-th order polynomial. The higher the order of the polynomial, the 

more complex the functions you can fit. However, using higher-order polynomial 
can involve computational complexity and overfitting. Overfitting occurs when a 

model fits the characteristics of the training data and loses the capacity to 

generalize from the seen to predict the unseen. 

 
 

 Sparse Model 
 

Often, in real problems, there are uninformative variables in the data which 

prevent proper modeling of the problem and thus, the building of a correct 
regression model. In such cases, a feature selection process is crucial to select 

only the informative features and discard non-informative ones. This can be 

achieved by sparse methods which use a penalization approach, such as LASSO 

(least absolute shrinkage and selection operator) to set some model coefficients 
to zero (thereby discarding those variables). Sparsity can be seen as an application 

of Occam’s razor: prefer simpler models to complex ones. 

Given the set of samples (X, y), the objective of a sparse model is to minimize 
the SSE through a restriction (or penalty): 

1 
||Xw − y||2 + α||w||1, 

where ||w||1 is the L1-norm of the parameter vector w = ( a 0 , . . . ,  ad ). 

Practical Case: Prediction of the Price of a New Housing Market 

In this practical case we want to solve the question: Can we predict the price of a 

new market given any of its attributes? 

We will use the Boston housing dataset from Scikit-learn, which provides recorded 
measurements of 13 attributes of housing markets around Boston, as well as the 
median house price.3 Once we load the dataset (506 instances), the description 
of the dataset can easily be shown by printing the field DESCR. The data (x), 
feature names, and target (y) are stored in other fields of the dataset. 

We first consider the task of predicting median house values in the Boston 
area using as the variable one of the attributes, for instance, LSTAT, defined as the 
“pro- portion of lower status of the population”. 

Seaborn visualization can be used to show this linear relationships easily: 
 
 

 
3Copy of UCI ML housing dataset: http://archive.ics.uci.edu/ml/datasets/Housing. 
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Fig. 6.5 Scatter plot of Boston data (LSTAT versus price) and their linear relationship (using 

lmplot) 

 
 

In [10]: 

 
 
 
 
 
 
 

Out[10]: Shape of data: (506L, 13L) (506L,) 

Feature names: [’CRIM’ ’ZN’ ’INDUS’ ’CHAS’ ’NOX’ ’RM’ ’AGE’ 

’DIS’ ’RAD’ ’TAX’ ’PTRATIO’ ’B’ ’LSTAT’] 

In Fig. 6.5, we can clearly see that the relationship between price and LSTAT is 
nonlinear, since the straight line is a poor fit. We can examine whether a better fit 
can be obtained by including higher-order terms. For example, a quadratic model: 

yi ≈ a0 + a1xi + a2x2 

The lmplot function allows to easily change the order of the model as is done in 
the next code, which outputs Fig. 6.6, where we observe a better fit. 

In [11]: 

 

To study the relation among multiple variables in a dataset, there are different 
options. We can study the relationship between several variables in a dataset by 

using the functions corr and heatmap which allow to calculate a correlation matrix 
for a dataset and draws a heat map with the correlation values. The heat map is a 
matricial image which helps to interpret the correlations among variables. For the 

sake of visualization, we do not consider all the 13 variables in the Boston 
housing data, but six: CRIM, per capita crime rate by town; INDUS, proportion of 
non-retail 

 
from sklearn import datasets  

boston = datasets . load_boston () 

X_boston , y_boston = boston . data , boston . target  

print ’ Shape of data : ’, X_boston . shape , y_boston . shape 

print ’ Feature names : ’, boston . feature_names  

df_boston = pd . DataFrame ( boston . data , 

columns = boston . feature_names ) 

df_boston [ ’ price ’] = boston . target  

sns . lmplot (" price " , " LSTAT " , df_boston ) 

 
sns . lmplot (" price " , " LSTAT " , df_boston , order = 2) 
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Fig. 6.6 Scatter plot of Boston data (LSTAT versus price) and their polynomial relationship (using 

lmplot with order 2) 

 
 
 
 
 
 
 

In [12]: 

 
business acres per town; NOX, nitric oxide concentrations (parts per 10 million); 
RM, average number of rooms per dwelling; AGE, proportion of owner-occupied 
units built prior to 1940; and LSTAT. These variables are indicated by their indexes 
in the following code: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [13]: 

 
Figure 6.7 shows a heat map representing the correlation between pairs of vari- 

ables; specifically, the six variables selected and the price of houses. The color 
bar shows the range of values used in the matrix. This plot is a useful way of 
summa- rizing the correlation of several variables. It can be seen that LSTAT and RM 
are the variables that are most correlated with price. 

Another good way to explore multiple variables is the scatter plot from 
Pandas. The scatter plot is a grid of plots of multiple variables one against the 
others, illus- trating the relationship of each variable with the rest. For the sake of 
visualization, we do not consider all the variables, but just three: RM, AGE, and LSTAT 
defined by indexes in the following code: 

 
indexes = [0 ,2 ,4 ,5 ,6 ,12] 

df 2 = pd . DataFrame ( boston . data [: , indexes ], 

columns = boston . feature_names [ indexes ]) 

df2 [ ’ price ’] = boston . target  

corrmat = df 2 . corr () 

sns . heatmap ( corrmat , vmax = .8 , square = True ) 

 
indexes =[ 5 , 6 ,12]  

df 2 = pd . DataFrame ( boston . data [: , indexes ], 

columns = boston . feature_names [ indexes ]) 

df2 [ ’ price ’] = boston . target  

pd . scatter_matrix ( df2 , figsize = (12.0 , 12.0) ) 
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Fig. 6.7 Correlation plot: 

heat map representing 

the correlation between 

seven pairs of variables in 

the Boston housing 

dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [14]: 

 
 
 
 
 
 
 
 
 
 
 

 
This code outputs Fig. 6.8, where we obtain visual information concerning the 

density function for every variable, in the diagonal, as well as the scatter plots of 
the data points for pairs of variables. In the last column, we can appreciate the 
relation between the three variables selected and house prices. It can be seen that 
RM follows a linear relation with price; whereas AGE does not. LSTAT follows a higher-
order relation with price. This plot gives us an indication of how good or bad 
every attribute would be as a variable in a linear model. 

For the evaluation of the prediction power of the model with new samples, we 

split the data into a training set and a testing set, and we compute the linear 

regression score, which returns the coefficient of determination R2 of the 

prediction. We can also calculate the MSE. 
 

from sklearn import linear_model 

train_size = X_boston . shape [0]/2 

X_train = X_boston [: train_size ] 

X_test = X_boston [ train_size :] 

y_train = y_boston [: train_size ] 

y_test = y_boston [ train_size :] 

print ’ Training and testing set sizes ’, 

X_train . shape , X_test . shape 

regr = LinearRegression () 

regr . fit ( X_train , y_train ) 

print ’ Coeff and intercept : ’, 

regr . coef_ , regr . intercept_  

print ’ Testing Score : ’, regr . score ( X_test , y_test ) print ’ 

Training  

MSE : ’, 

np . mean (( regr . predict ( X_train ) - y_train ) **2) 

print ’ Testing MSE : ’, 

np . mean (( regr . predict ( X_test ) - y_test ) **2)  
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Fig. 6.8 Scatter plot of Boston housing dataset 

 
 

Out[14]: Training and testing set sizes (253, 13) (253, 13) 

Coeff and intercept: [ 1.20133313 0.02449686 0.00999508 

0.42548672 -8.44272332 8.87767164 -0.04850422 -1.11980855 

0.20377571 -0.01597724 -0.65974775 0.01777057 -0.11480104] 

-10.0174305829 

Testing Score: -2.24420202674 

Training MSE: 9.98751732546 

Testing MSE: 302.64091133 

We can see that all the coefficients obtained are different from zero, meaning 

that no variable is discarded. Next, we try to build a sparse model to predict the 

price using the most important factors and discarding the non-informative ones. To 

do this, we can create a LASSO regressor, forcing zero coefficients. 
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In [15]: 

 
 
 
 
 
 
 

Out[15]: Coeff and intercept: [ 0. 0.01996512 -0. 0. -0. 7.69894744 

-0.03444803 -0.79380636 0.0735163 -0.0143421 -0.66768539 

0.01547437 -0.22181817] -6.18324183615 

Testing Score: 0.501127529021 

Training MSE: 10.7343110095 

Testing MSE: 46.5381680949 

It can now be seen that the result of the model fitting for a set of sparse 

coefficients is much better than before (using all the variables), with the score 

increasing from 

2.24 to 0.5. This demonstrates that four of the initial variables are not 

important for the prediction and in fact they confuse the regressor. 
With the LASSO result, we can also emphasize the most important factors for 

determining the price of a new market, based on the coefficient values: 

In [16]: 

 
 
 

Out[16]: Ordered variable (from less to more important): [’CRIM’ ’INDUS’ ’CHAS’ ’NOX’ ’TAX’ ’B’ ’ZN’ ’AGE’ 

’RAD’ ’LSTAT’ ’PTRATIO’ ’DIS’ ’RM’] 

There are also other strategies for feature selection. For instance, we can 

select the k 5 best features, according to the k highest scores, using the function 

SelectKBest from Scikit-learn: 

In [17]: 

 
 
 
 
 
 

Out[17]: Selected features: [(False, ’CRIM’), (False, ’ZN’), (True, 

’INDUS’), (False, ’CHAS’), (False, ’NOX’), (True, ’RM’), (True, 

’AGE’), (False, ’DIS’), (False, ’RAD’), (False, ’TAX’), (True, ’PTRATIO’), (False, ’B’), (True, ’LSTAT’)] 

The set of selected features is now different, since the criterion has changed. 

However, three of the most important features: RM, PTRATIO, and LSTAT. 
In order to evaluate the prediction, it could be interesting to visualize the 

target and predicted responses in a scatter plot, as it is done in the next code: 

 
regr_lasso = linear_model . Lasso ( alpha = . 3 ) 

regr_lasso . fit ( X_train , y_train ) print ’ Coeff and intercept : 

’, regr_lasso . coef_  

print ’ Tesing Score : ’, regr_lasso . score ( X_test , 

y_test ) print ’ Training MSE : ’, 

np . mean (( regr_lasso . predict ( X_train ) - y_train ) **2) 

print ’ Testing MSE : ’, 

np . mean (( regr_lasso . predict ( X_test ) - y_test ) **2)  

 
ind = np . argsort ( np . abs ( regr_lasso . coef_ )) 

print ’ Ordered variable ( from less to more important ): ’, 

boston . feature_names [ ind ] 

 
import sklearn . feature_selection as fs 

selector = fs . SelectKBest ( score_func = fs . f_regression , 

k = 5) 

selector . fit_transform ( X_train , y_train ) per 

selector . fit ( X_train , y_train ) 

print ’ Selected features : ’, 

zip ( selector . get_support () , boston . feature_names ) 
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Fig. 6.9 Relation between true (x-axis) and predicted (y-axis) prices 

 
 

In [18]: 

 
 
 
 
 

 

The output is shown in Fig. 6.9, where we can observe that the original 

prices are properly estimated by the predicted ones, except for the higher 
values, around 
$50.000 (points in the top right corner). 

Finally, it is worth noting that we can work with statistical evaluation of a 

linear regression with the OLS toolbox of the Stats Model toolbox.4 This toolbox is 

useful to study several statistics concerning the regression model. To know more 
about the toolbox, go to the Documentation related to Stats Models. 

 
 
 

 Logistic Regression 
 

Logistic regression is a type of model of probabilistic statistical classification. It is 

used as a binary model to predict a binary response, the outcome of a categorical 
dependent variable (i.e., a class label), based on one or more variables. 

The form of the logistic function is: 

f x 
1

 
1 + e−λx 

 

 
clf = LinearRegression () 

clf . fit ( boston . data , boston . target ) 

predicted = clf . predict ( boston . data ) 

plt . scatter ( boston . target , predicted , alpha = 0.3) 

plt . plot ([0 , 50] , [0 , 50] , ’-- k ’) 

plt . axis ( ’ tight ’) 

plt . xlabel ( ’ True price ( $1000s ) ’) 

plt . ylabel ( ’ Predicted price ( $1000s ) ’) 
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Fig. 6.10 Logistic function for different lambda values 

 

 

Fig. 6.11 Linear regression (blue) versus logistic regression (red) for fitting a set of data (black points) 

normally distributed across the 0 and 1 y-values 

 

 
Figure 6.10 illustrates the logistic function with different values of λ. This function 

is useful because it can take as its input any value from negative infinity to 

positive infinity, whereas the output is restricted to values between 0 and 1 and 
hence can be interpreted as a probability. 

The set of samples (X, y), illustrated as black points in Fig. 6.11, defines a fitting 

problem suitable for a logistic regression. The blue and red lines show the fitting 

result for linear and logistic models, respectively. In this case, a logistic model can 

clearly explain the data; whereas a linear model cannot. 

Practical Case: Winning or Losing Football Team 

Now, we pose the question: What number of goals makes a football team the 

winner or the loser? More concretely, we want to predict victory or defeat in a 
football match when we are given the number of goals a team scores. To do this 

we consider 



 

= = 

the set of results of the football matches from the Spanish league5 and we build a 

classification model with it. 
We first read the data file in a DataFrame and select the following columns in 

a new DataFrame: HomeTeam, AwayTeam, FTHG (home team goals), FTAG (away 
team goals), and FTR (H=home win, D  draw, A  away win). We then build a d-
dimensional vector of variables with all the scores, x, and a binary response 
indicating victory or defeat, y. For that, we create two extra columns containing 
W the number of goals of the winning team and L the number of goals of the losing 
team and we concatenate these data. Finally, we can compute and visualize a logistic 
regression model to predict the discrete value (victory or defeat) using these 
data. 

In [19]: 
from skl earn . l i near_model import Log i st i cReg ressi on  data  = pd . r ead_cs v  ( ’ 
files  / ch06 / SP 1 . csv ’) 
s = data [[ ’ HomeTeam ’,’ AwayTeam ’, ’ FTHG ’, ’ FTAG ’, ’ FTR ’ ] ] def my_f1 ( row ): 

return max ( row [ ’ FTHG ’], row [ ’ FTAG ’ ] ) def my_f2 ( row ): 
return min ( row [ ’ FTHG ’], row [ ’ FTAG ’ ] )  s[ ’W ’] = s. appl y ( 

my_f1 , axis = 1) 
s[ ’L ’] = s. apply ( my_f2 , axis = 1) x1 = s[ ’W ’]. val ues  
y1 = np . ones ( len ( x1 ) , dtype = np . int ) x2 = s[ ’L ’]. values  
y2 = np . zeros  ( len ( x2 ) , dtype = np . int ) x = np . concatenate 
([ x1 , x2 ]) 
x = x [: , np . ne wax is  ] 
y = np . concatenate ([ y1 , y2 ]) log reg = 
Log is t i cR eg r es s io n  () log reg . fit (x , y) 
X_test = np . l i nspace ( -5 , 10 , 300) def l r_ model  (x ) :   

return 1 / ( 1 + np . exp ( -x) )  
loss = l r_model ( X_test * l ogreg . coef_ + log reg . i ntercept_ ) 

. ravel  () 
X_tes t2  = X_tes t [: , np . newax is  ] 
los s pred  = log reg . p redict  ( X_tes t2  ) plt . s catter  ( x. ravel 
() , y , 

co lor = ’ black ’, 
s = 100 , z order = 20 , 
alpha = 0.03)  

plt . plot ( X_test , loss , color = ’ b lue ’, l in ewi dth  = 3) 
plt . plot ( X_test , loss pred , co lor  = ’ red ’, l in ewidt h  = 3) 

 
 

Figure 6.12 shows a scatter plot with transparency so we can appreciate the over- 
lapping in the discrete positions of the total numbers of victories and defeats. It 

also shows the fitting of the logistic regression model, in blue, and prediction of 

the logistic regression model, in red, for the Spanish football league results. With 

this information we can estimate that the cutoff value is 1. This means that a 
team, in general, has to score more than one goal to win. 

 
 
 
 
 

5http://www.football-data.co.uk/mmz4281/1213/SP1.csv. 



 

  
 

 

Fig. 6.12 Fitting of the logistic regression model (blue) and prediction of the logistic regression model 

(red) for the Spanish football league results 

 

 



 

Unsupervised Learning  
 

Introduction 
 

In machine learning, the problem of unsupervised learning is that of trying to find 

hidden structure in unlabeled data. Since the examples given to the learner are 

unla- beled, there is no error or reward signal to evaluate the goodness of a 

potential solution. This distinguishes unsupervised from supervised learning. 
Unsupervised learning is defined as the task performed by algorithms that learn 

from a training set of unlabeled or unannotated examples, using the features of 

the inputs to categorize them according to some geometric or statistical criteria. 

Unsupervised learning encompasses many techniques that seek to summarize and  
explain key features or structures of the data. Many methods employed in 

unsuper- vised learning are based on data mining methods used to preprocess 

data. Most unsupervised learning techniques can be summarized as those that 

tackle the follow- ing four groups of problems: 

 
Clustering: has as a goal to partition the set of examples into groups. 

Dimensionality reduction: aims to reduce the dimensionality of the data. Here, 
we encounter techniques such as Principal Component Analysis (PCA), 

independent component analysis, and nonnegative matrix factorization. 

Outlier detection: has as a purpose to find unusual events (e.g., a 

malfunction), that distinguish part of the data from the rest according to certain 

criteria. 
Novelty detection: deals with cases when changes occur in the data (e.g., in 

stream- ing data). 

 
The most common unsupervised task is clustering, which we focus on in this 

chapter. 

 
 

 

• 
• 

• 

• 
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Clustering 
 

Clustering is a process of grouping similar objects together; i.e., to partition unlabeled 

examples into disjoint subsets of clusters, such that: 

 
Examples within a cluster are similar (in this case, we speak of high intraclass 

similarity). 

Examples in different clusters are different (in this case, we speak of low interclass 

similarity). 

 
When we denote data as similar and dissimilar, we should define a measure for 

this similarity/dissimilarity. Note that grouping similar data together can help in 

discov- ering new categories in an unsupervised manner, even when no sample 
category labels are provided. Moreover, two kinds of inputs can be used for 

grouping: 

 
(a) in similarity-based clustering, the input to the algorithm is an n n dissimilarity 

matrix or distance matrix; 

(b) in feature-based clustering, the input to the algorithm is an n D feature matrix 

or design matrix, where n is the number of examples in the dataset and D the 

dimensionality of each sample. 

 
Similarity-based clustering allows easy inclusion of domain-specific similarity, 

while feature-based clustering has the advantage that it is applicable to 

potentially noisy data. 
Therefore, several questions regarding the clustering process arise. 

 
What is a natural grouping among the objects? We need to define the “groupness”  

and the “similarity/distance” between data. 

How can we group samples? What are the best procedures? Are they efficient? 
Are they fast? Are they deterministic? 

How many clusters should we look for in the data? Shall we state this 

number a priori? Should the process be completely data driven or can the user 

guide the grouping process? How can we avoid “trivial” clusters? Should we 
allow final clustering results to have very large or very small clusters? Which 

methods work when the number of samples is large? Which methods work 

when the number of classes is large? 

What constitutes a good grouping? What objective measures can be defined to 

evaluate the quality of the clusters? 

 
There is not always a single or optimal answer to these questions. It used to be 

said that clustering is a “subjective” issue. Clustering will help us to describe, 

analyze, and gain insight into the data, but the quality of the partition depends to a 
great extent on the application and the analyst. 

• 

• 

• 

• 

• 
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 Similarity and Distances 
 

To speak of similar and dissimilar data, we need to introduce a notion of the similarity  

of data. There are several ways for modeling of similarity. A simple way to model 
this is by means of a Gaussian kernel: 

s(a, b) = e−γd(a,b) 

where d(a, b) is a metric function, and γ is a constant that controls the decay of the 

function. Observe that when a b, the similarity is maximum and equal to one. On 

the contrary, when a is very different to b, the similarity tends to zero. The 
former modeling of the similarity function suggests that we can use the notion of 

distance as a surrogate. The most widespread distance metric is the Minkowski 

distance: 

d 

d(a, b) = ( |ai − bi|
p)1/p 

i=1 

where d(a, b) stands for the distance between two elements a, b Rd , d is the 
dimensionality of the data, and p is a parameter. 

The best-known instantiations of this metric are as follows: 
 

• when p = 2, we have the Euclidean distance, 
• when p = 1, we have the Manhattan distance, and 
• when p = inf, we have the max-distance. In this case, the distance corresponds 

to the component |ai − bi| with the highest value. 

 
 What Constitutes a Good Clustering? Defining Metrics to 

Measure Clustering Quality 
 

When performing clustering, the question normally arises: How do we measure 
the quality of the clustering result? Note that in unsupervised clustering, we do not 

have groundtruth labels that would allow us to compute the accuracy of the 

algorithm. Still, there are several procedures for assessing quality. We find two 

families of techniques: those that allow us to compare clustering techniques, and 
those that check on specific properties of the clustering, for example 

“compactness”. 

 
 

 Rand Index, Homogeneity, Completeness and V-measure Scores 
One of the best-known methods for comparing the results in clustering 

techniques in statistics is the Rand index or Rand measure (named after William 

M. Rand). The Rand index evaluates the similarity between two results of data 

clustering. Since in unsupervised clustering, class labels are not known, we use 

the Rand index to compare the coincidence of different clusterings obtained by 
different approaches or criteria. As an alternative, we later discuss the 



 

Silhouette coefficient: instead of 
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(a + d) − [(a + b)(a + c) + (c + d )(b + d)] 
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comparing different clusterings, this evaluates the compactness of the results of 

applying a specific clustering approach. 
Given a set of n elements S    o 1 , . . . ,  on , we can compare two partitions of S1: X   

X 1 , . . . ,  Xr , a partition of S into r subsets; and Y   Y 1 , . . . , ,  Ys , a partition of S into s 
subsets. Let us use the annotations as follows: 

 
a is the number of pairs of elements in S that are in the same subset in both X and 

Y ; 

b is the number of pairs of elements in S that are in different subsets in both X and 

Y ; 

c is the number of pairs of elements in S that are in the same subset in X , but 
in different subsets in Y ; and 

d is the number of pairs of elements in S that are in different subsets in X , but 

in the same subset in Y . 

 
The Rand index, R, is defined as follows: 

R 
  a + b 

,
 

a + b + c + d 
ensuring that its value is between 0 and 1. 

One of the problems of the Rand index is that when given two datasets with 
random labelings, it does not take a constant value (e.g., zero) as expected. 

Moreover, when the number of clusters increases it is desirable that the upper 

limit tends to the unity. To solve this problem, a form of the Rand index, called the 
Adjusted Rand index, is used that adjusts the Rand index with respect to chance 

grouping of elements. It is defined as follows: 

AR = 2
  n 2 

 

 

 
. 

[(a + b)(a + c) + (c + d )(b + d)] 
 
 
 
 
 
 
 
 

In [1]: 

Another way for comparing clustering results is the V-measure. Let us first intro- 

duce some concepts. We say that a clustering result satisfies a homogeneity 
criterion if all of its clusters contain only data points which are members of the 

same original (single) class. A clustering result satisfies a completeness criterion if 

all the data points that are members of a given class are elements of the same 

predicted cluster. Note that both scores have real positive values between 0.0 

and 1.0, larger values being desirable. For example, if we consider two toy 
clustering sets (e.g., original and predicted) with four samples and two labels, we 

get: 

 

 

Out[1]: 0.000 

 
. 

2 

 
print (" %.3 f" % metrics . homogeneity_score ([0 , 0 , 1 , 1] , 

[0 , 0 , 0 , 0]) ) 

• 

• 

• 

• 
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In [2]: 

The homogeneity is 0 since the samples in the predicted cluster 0 come 

from original cluster 0 and cluster 1. 
 

print metrics . completeness_score ([0 , 0 , 1 , 1] , 

[1 , 1 , 0 , 0])  



 

 
 

 
Out[2]: 1.0 

The completeness is 1 since all the samples from the original cluster with label 

0 go into the same predicted cluster with label 1, and all the samples from the 

original cluster with label 1 go into the same predicted cluster with label 0. 

However, how can we define a measure that takes into account the 

completeness as well as the homogeneity? The V-measure is the harmonic mean 
between the homogeneity and the completeness defined as follows: 

v = 2 ∗ (homogeneity ∗ completeness)/(homogeneity + completeness). 

Note that this metric is not dependent of the absolute values of the labels: a 

permutation of the class or cluster label values will not change the score value in 

any way. Moreover, the metric is symmetric with respect to switching between 

the predicted and the original cluster label. This is very useful to measure the 

agreement of two independent label assignment strategies applied to the same 
dataset even when the real groundtruth is not known. If class members are 

completely split across different clusters, the assignment is totally incomplete, 

hence the V-measure is null: 

In [3]: 

 

 

Out[3]: 0.000 

In contrast, clusters that include samples from different classes destroy the 

homo- geneity of the labeling, hence: 

In [4]: 

 

 

Out[4]: 0.000 

In summary, we can say that the advantages of the V-measure include that it 

has bounded scores: 0.0 means the clustering is extremely bad; 1.0 indicates a 

per- fect clustering result. Moreover, it can be interpreted easily: when analyzing 
the V-measure, low completeness or homogeneity explain in which direction the 

clus- tering is not performing well. Furthermore, we do not assume anything 

about the cluster structure. Therefore, it can be used to compare clustering 

algorithms such as K-means, which assume isotropic blob shapes, with results of 

other clustering algorithms such as spectral clustering (see Sect. 7.2.3.2), which can 
find clusters with “folded” shapes. As a drawback, the previously introduced 

metrics are not normalized with regard to random labeling. This means that 

depending on the num- ber of samples, clusters and groundtruth classes, a 

completely random labeling will 
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not always yield the same values for homogeneity, completeness and hence, the 

 
print (" %.3 f" % metrics . v_measure_score ([0 , 0 , 0 , 0] , 

[0 , 1 , 2 , 3]) ) 

 
print (" %.3 f" % metrics . v_measure_score ([0 , 0 , 1 , 1] , 

[0 , 0 , 0 , 0]) ) 



 

= 

+ 
− 

V- measure. In particular, random labeling will not yield a zero score, and they will 

tend further from zero as the number of clusters increases. It can be shown that 
this prob- lem can reliably be overcome when the number of samples is high, i.e., 

more than a thousand, and the number of clusters is less than 10. These metrics 

require knowl- edge of the groundtruth classes, while in practice this information 

is almost never available or requires manual assignment by human annotators. 
Instead, as mentioned before, these metrics can be used to compare the results of 

different clusterings. 

 
 

 Silhouette Score 
An alternative to the former scores is to evaluate the final ‘shape’ of the 
clustering result. This is the underlying idea behind the Silhouette coefficient. It is 
defined as a function of the intracluster distance of a sample in the dataset, a and 
the nearest- cluster distance, b for each sample.2 Later, we will discuss different 
ways to compute the distance between clusters. The Silhouette coefficient for a 
sample i can be written as follows: 

Silhouette(i) 
b − a 

. 
max(a, b) 

Hence, if the Silhouette s(i) is close to 0, it means that the sample is on the border 

of its cluster and the closest one from the rest of the dataset clusters. A negative 

value means that the sample is closer to the neighbor cluster. The average of the 

Silhouette coefficients of all samples of a given cluster defines the “goodness” of 
the cluster. A high positive value, i.e., close to 1 would mean a compact cluster, 

and vice versa. And the average of the Silhouette coefficients of all clusters gives 

idea of the quality of the clustering result. Note that the Silhouette coefficient 

only makes sense when the number of labels predicted is less than the number of 
samples clustered. 

The advantage of the Silhouette coefficient is that it is bounded between 1 and 
1. Moreover, it is easy to show that the score is higher when clusters are dense 

and well separated; a logical feature when speaking about clusters. Furthermore, 

the Silhouette coefficient is generally higher when clusters are compact. 

 
 

 Taxonomies of Clustering Techniques 
 

Within different clustering algorithms, one can find soft partition algorithms, 

which assign a probability of the data belonging to each cluster, and also hard 

partition algorithms, where each datapoint is assigned precise membership of 
one cluster. A typical example of a soft partition algorithm is the Mixture of 

Gaussians [1], which can be viewed as a density estimator method that assigns 

a confidence or 

 
 

2The intracluster distance of sample i is obtained by the distance of the sample to the nearest sample 

from the same class, and the nearest-cluster distance is given by the distance to the closest 

sample from the cluster nearest to the cluster of sample i. 
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probability to each point in the space. A Gaussian mixture model is a probabilistic 

model that assumes all the data points are generated from a mixture of a finite 
number of Gaussian distributions with unknown parameters. The universally 

used generative unsupervised clustering using a Gaussian mixture model is also 

known as EM Clustering. Each point in the dataset has a soft assignment to the K 

clusters. One can convert this soft probabilistic assignment into membership by 
picking out the most likely clusters (those with the highest probability of 

assignment). 

An alternative to soft algorithms are the hard partition algorithms, which assign a 

unique cluster value to each element in the feature space. According to the 

grouping process of the hard partition algorithm, there are two large families of 
clustering techniques: 

 
Partitional algorithms: these start with a random partition and refine it 
iteratively. That is why sometimes these algorithms are called “flat” clustering. In 

this chapter, we will consider two partitional algorithms in detail: K-means and 

spectral clus- tering. 

Hierarchical algorithms: these organize the data into hierarchical structures, 
where data can be agglomerated in the bottom-up direction, or split in a top-down 

manner. In this chapter, we will discuss and illustrate agglomerative clustering. 

 
A typical hard partition algorithm is K-means clustering. We will now discuss it 

in some detail. 

 
 

 K-means Clustering 
K-means algorithm is a hard partition algorithm with the goal of assigning each 

data point to a single cluster. K-means algorithm divides a set of n samples X into 

k disjoint clusters ci, i 1,. , k, each described by the mean μi of the samples in the 
cluster. The means are commonly called cluster centroids. The K-means algorithm 

assumes that all k groups have equal variance. 

K-means clustering solves the following minimization problem: 
k k 

arg minc  
           

d(x, μj) = arg minc  
           

||x − μj||2
 (7.1) 

j=1 x∈cj j=1 x∈cj 

where ci is the set of points that belong to cluster i and μi is the center of the 

class ci. K-means clustering objective function uses the square of the Euclidean 

distance d(x, μj) x μj 2, that is also referred to as the inertia or within-cluster sum- 

of-squares. This problem is not trivial to solve (in fact, it is NP-hard problem), so 

the algorithm only hopes to find the global minimum, but may become stuck at a 
different solution. 

In other words, we may wonder whether the centroids should belong to the 

original set of points: 
n 

inertia = minμj ∈c(||xi − μj||2)). (7.2) 
i=0 

• 

• 



 

= 
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The K-means algorithm, also known as Lloyd’s algorithm, is an iterative procedure 

that searches for a solution of the K -means clustering problem and works as follows. 
First, we need to decide the number of clusters, k. Then we apply the following 

procedure: 

 
1. Initialize (e.g., randomly) the k cluster centers, called centroids. 

2. Decide the class memberships of the n data samples by assigning them to 

the nearest-cluster centroids (e.g., the center of gravity or mean). 

3. Re-estimate the k cluster centers, ci, by assuming the memberships found 

above are correct. 
4. If none of the n objects changes its membership from the last iteration, then 

exit. Otherwise go to step 2. 
 

 
 

 
In [5]: 

Let us illustrate the algorithm in Python. First, we will create three sample 

distri- butions: 

 
 
 
 
 
 

The sample distributions generated are shown in Fig. 7.1 (left). However, the algo- 

rithm is not aware of their distribution. Figure 7.1 (right) shows what the 

algorithm sees. Let us assume that we expect to have three clusters (k 3) and 

apply the K-means command from the Scikit-learn library: 

 

 

 

Fig. 7.1 Initial samples as generated (left), and samples seen by the algorithm (right) 

 

MAXN = 40 

X = np . concatenate ([ 

1.25 * np . random . randn ( MAXN , 2) , 

5 + 1.5* np . random . randn ( MAXN , 2) ])  

X = np . concatenate ([ 

X , [8 , 3] + 1.2* np . random . randn ( MAXN , 2) ]) 
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In [6]: 

 
 
 
 

 
Out[6]: KMeans(copy_x=True, init=’random’, max_iter=300, 

n_clusters=3, n_init=10, n_jobs=1, precompute_distances=True, random_state=None, 

tol=0.0001, verbose=0) 

Each clustering algorithm in Scikit-learn is used as follows. First, an object from 
the clustering technique is instantiated. Then we can use the fit method to adjust 
the learning parameters. We also find the method predict that, given new data, 
returns the cluster they belong to. For the class, the labels over the training data 
can be found in the labels_ attribute or alternatively they can be obtained using the  
predict method. 

How many “mis-clusterings” do we have? In order to see this, we tessellate 
the space and color all grid points from the same cluster with the same color. 

Then, we overlay the initial sample distributions (see Fig. 7.2). In the ideal case, we 

expect that in each partitioned subspace the sample points are of the same color. 

However, as shown in Fig. 7.2, the resulting clustering, which is represented in the 

figure by the color subspace in gray, does not usually coincide exactly with the initial 
distribution, which is represented by the color of the data. For example, in the same 

figure, if most of the blue points belong to the same cluster, there are a few ones 

that belong to the space occupied by the green data. 
When computing the Rand index, we get: 

In [7]: 

 
 
 

 

Fig. 7.2 Original samples 

(dots) generated by three 

distributions and the 

partition of the space 

according to the K-means 

clustering 

 
from sklearn import cluster  

 

K = 3 # Assuming we have 3 clusters ! 

clf = cluster . KMeans ( init = ’ random ’, n_clusters = K) 

clf . fit ( X) 

 
print ( ’ The Adjusted Rand index is : %. 2 f ’ % 

metrics . adjusted_rand_score ( y. ravel () , clf . labels_ )) 
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Out[7]: The Adjusted Rand index is: 0.66 

Taking into account that the Adjusted Rand index belongs to the interval [0, 1], 

the result of 0.66 in our example means that although most of the clusters were 

discovered, not 100% of them were; as confirmed by Fig. 7.2. 
The inertia can be seen as a measure of how internally coherent the clusters are. 

Several issues should be taken into account: 

 
The inertia assumes that clusters are isotropic and convex, since the Euclidean 

distance is applied, which is isotropic with regard to the different dimensions 

of the data. However, we cannot expect that the data fulfill this assumption by 
default. Hence, the K-means algorithm responds poorly to elongated clusters or 

manifolds with irregular shapes. 

The algorithm may not ensure convergence to the global minimum. It can be 
shown that K-means will always converge to a local minimum of the inertia 
(Eq. (7.2)). It depends on the random initialization of the seeds, but some 
seeds can result in a poor convergence rate, or convergence to suboptimal 
clustering. To alleviate the problem of local minima, the K-means computation 
is often per- formed several times, with different centroid initializations. One 
way to address this issue is the k-means++ initialization scheme, which has been 
implemented in Scikit-learn (use the init=’kmeans++’ parameter). This parameter 
initializes the centroids to be (generally) far from each other, thereby probably 
leading to better results than random initialization. 

This algorithm requires the number of clusters to be specified. Different 

heuristics can be applied to predetermine the number of seeds of the 

algorithm. 

It scales well to a large number of samples and has been used across a large 
range of application areas in many different fields. 

 
In summary, we can conclude that K-means has the advantages of allowing the 

easy use of heuristics to select good seeds; initialization of seeds by other 
methods; multiple points to be tried. However, in contrast, it still cannot ensure 

that the local minima problem is overcome; it is iterative and hence slow when 

there are a lot of high-dimensional samples; and it tends to look for spherical 

clusters. 

 
 

 Spectral Clustering 
Up to this point, the clustering procedure has been considered as a way to find 

data groups following a notion of compactness. Another way of looking at what a 

cluster is is provided by connectivity (or similarity). Spectral clustering [2] refers to a 

family of methods that use spectral techniques. Specifically, these techniques are 
related to the eigendecomposition of an affinity or similarity matrix and solve the 

problem of clustering according to the connectivity of the data. Let us consider an 

ideal similarity matrix of two clear sets. 

• 

• 

• 

• 
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Let us denote the similarity matrix, S, as the matrix Sij s(xi, xj) which gives the 
similarity between observations xi and xj. Remember that we can model 

similarity 

using the Euclidean distance, d(xi, xj) xi xj 2, by means of a Gaussian Kernel 
as follows: 

s(xi, xj) = exp(−α||xi − xj||2), 

where α is a parameter. We expect two points from different clusters to be far 

away from each other. However, if there is a sequence of points within the cluster 

that forms a “path” between them, this also would lead to big distance among some 

of the points from the same cluster. Hence, we define an affinity matrix A based on 

the similarity matrix S, where A contains positive values and is symmetric. This can 
be done, for example, by applying a k-nearest neighbor that builds a graph 

connecting just the k closest data points. The symmetry comes from the fact that 

Aij and Aji give the distance between the same points. Considering the affinity 

matrix, the clustering can be seen as a graph partition problem, where connected 
graph components correspond to clusters. The graph obtained by spectral clustering 

will be partitioned so that graph edges connecting different clusters have low 

weights, and vice versa. Furthermore, we define a degree matrix D, where each 

diagonal value is the degree of the respective graph node and all other elements 
are 0. Finally, we can compute the unnormalized graph Laplacian (U D A) and/or a 

normalized version of the Laplacian (L), as follows: 

 
Simple Laplacian: L    I     D−1A, which corresponds to a random walk, being D−1 
the transition matrix. Spectral clustering obtains groups of nodes such that the 
random walk corresponds to seldom transitions from one group to another. 

Normalized Laplacian: L = D− 
1 

UD− 
1 

. 

• Generalized Laplacian: L = D−1U . 

If we assume that there are k clusters, the next step is to find the k 

small- est eigenvectors, without considering the trivial constant eigenvector. Each 
row of the matrix formed by the k smallest eigenvectors of the Laplacian matrix 

defines a transformation of the data xi. Thus, in this transformed space, we can 

apply K-means clustering in order to find the final clusters. If we do not know in 

advance the number of clusters, k, we can look for sudden changes in the sorted 

eigenvalues of the matrix, U , and keep the smallest ones. 

Hierarchical Clustering 
Another well-known clustering technique of particular interest is hierarchical cluster- 

ing. Hierarchical clustering is comprised of a general family of clustering algorithms 
that construct nested clusters by successive merging or splitting of data. The hier- 

archy of clusters is represented as a tree. The tree is usually called a dendrogram. 

The root of the dendrogram is the single cluster that contains all the samples; the 

leaves are the clusters containing only one sample each. This is a nice tool, 
since it can be straightforwardly interpreted: it “explains” how clusters are 

formed and visualizes clusters at different scales. The tree that results from the 

technique shows 



 

the similarity between the samples. Partitioning is computed by selecting a cut 

on the tree at a certain level. 
In general, there are two types of hierarchical clustering: 

 

• Top-down divisive clustering applies the following algorithm: 

– Start with all the data in a single cluster. 

– Consider every possible way to divide the cluster into two. 
– Choose the best division. 

– Recursively, it operates on both sides until a stopping criterion is met. That 

can be something as follows: there are as much clusters as data; the 

predetermined number of clusters has been reached; the maximum distance 

between all possible partition divisions is smaller than a predetermined 
threshold; etc. 

 

• Bottom-up agglomerative clustering applies the following algorithm: 

– Start with each data point in a separate cluster. 

– Repeatedly join the closest pair of clusters. 

– At each step, a stopping criterion is checked: there is only one cluster; a 
prede- termined number of clusters has been reached; the distance between 

the closest clusters is greater than a predetermined threshold; etc. 

 
This process of merging forms a binary tree or hierarchy. 

 
When merging two clusters, a question naturally arises: How to measure the 

similarity of two clusters? There are different ways to define this with different 

results for the agglomerative clustering. The linkage criterion determines the 
metric used for the cluster merging strategy: 

 
Maximum or complete linkage minimizes the maximum distance between observa- 

tions of pairs of clusters. Based on the similarity of the two least similar 
members of the clusters, this clustering tends to give tight spherical clusters as a 

final result. Average linkage averages similarity between members, i.e., minimizes 

the average of the distances between all observations of pairs of clusters. 

Ward linkage minimizes the sum of squared differences within all clusters. It is 

thus a variance-minimizing approach and in this sense is similar to the K-means 
objective function, but tackled with an agglomerative hierarchical approach. 

 
Let us illustrate how the different linkages work with an example. Let us 

generate three clusters as follows: 

• 

• 

• 



 

In [8]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In [9]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Let us apply agglomerative clustering using the different linkages: 

 
 
 
 
 
 
 
 
 
 
 
 

The results of the agglomerative clustering using the different linkages: complete,  

average, and Ward are given in Fig. 7.3. Note that agglomerative clustering 

exhibits “rich get richer” behavior that can sometimes lead to uneven cluster 
sizes, with average linkage being the worst strategy in this respect and Ward 

linkage giving the most regular sizes. Ward linkage is an attempt to form clusters 

that are as compact as possible, since it considers inter- and intra-distances of the 

clusters. Meanwhile, for non-Euclidean metrics, average linkage is a good 

alternative. Average linkage can produce very unbalanced clusters, it can even 
separate a single data point into a separate cluster. This fact would be useful if we 

want to detect outliers, but it may be undesirable when two clusters are very 

close to each other, since it would tend to merge them. 

Agglomerative clustering can scale to a large number of samples when it is 
used jointly with a connectivity matrix, but it is computationally expensive when no 

con- 

 

MAXN1 = 500 

MAXN2 = 400 

MAXN3 = 300 

X1 = np . concatenate ([ 

2.25 * np . random . randn ( MAXN1 , 2) , 

4 + 1.7* np . random . randn ( MAXN2 , 2) ]) 

X1 = np . concatenate ([ 

X1 , [8 , 3] + 1.9* np . random . randn ( MAXN3 , 2) ]) 

 

y1 = np . concatenate ([ 

np . ones (( MAXN1 , 1) ) , 

2 * np . ones (( MAXN2 , 1) ) ]) 

y1 = np . concatenate ([ 

y1 , 3 * np . ones (( MAXN3 , 1) ) ]) . ravel () 

y1 = np . int_ ( y1 ) 

labels_y1 = [ ’+ ’, ’* ’, ’o ’] 

colors = [ ’r ’, ’g ’, ’b ’] 

from sklearn . cluster import AgglomerativeClustering 

for linkage in ( ’ ward ’, ’ complete ’, ’ average ’):  

clustering = AgglomerativeClustering ( linkage = linkage , 

n_clusters = 3 ) 

clustering . fit ( X1 ) 

 

x_min , x_max = np . min ( X1 , axis = 0) , np . max ( X1 , axis  

= 0) 

X1 = ( X1 - x_min ) / ( x_max - x_min ) 

plt . figure ( figsize =( 5 , 5) ) 

for i in range ( X1 . shape [0]) : 

plt . text ( X1 [ i , 0] , X1 [ i , 1] , labels_y1 [ y1 [ i ] -1] , 

color = colors [ y1 [ i ] -1]) 

plt . title (" \% s linkage " \% linkage , size = 20) 

plt . tight_layout () 

 

plt . show () 



 

nectivity constraints are added between samples: it considers all the possible 

merges at each step. 

 
 

 Adding Connectivity Constraints 
Sometimes, we are interested in introducing a connectivity constraint into the 

clus- tering process so that merging of nonadjacent points is avoided. This can be 

achieved by constructing a connectivity matrix that defines which are the 

neighboring samples in the dataset. For instance, in the example in Fig. 7.4, we 
want to avoid the forma- tion of clusters of samples from the different circles. A 

sample code to compute agglomerative clustering with connectivity would be as 

follows: 

 

 

 

Fig. 7.3 Illustration of agglomerative clustering using different linkages: Ward, complete, and 

average. The symbol of each data point corresponds to the original class generated and the 

color corresponds to the cluster obtained 



 

 

 

Fig. 7.4 Illustration of agglomerative clustering without (top row) and with (bottom row) a connec- 

tivity graph using the three linkages (from left to right): average, complete, and Ward. The 

colors correspond to the clusters obtained 

 
 

In [10]: 

 
 

 

A connectivity constraint is useful to impose a certain local structure, but it 
also makes the algorithm faster, especially when the number of the samples is 
large. A connectivity constraint is imposed via a connectivity matrix: a sparse matrix 

that only has elements at the intersection of a row and a column with indexes of 
the dataset that should be connected. This matrix can be constructed from a 
priori information or can be learned from the data, for instance using 

kneighbors_graph to restrict merging to nearest neighbors or using 
image.grid_to_graph to limit merging to neighboring pixels in an image, both from 
Scikit-learn. This phenomenon can be observed in Fig. 7.4, where in the first row we 

see the results of the agglomerative clustering without using a connectivity graph. 
The clustering can join data from different circles (e.g., the black cluster). At the 
bottom, the three linkages use a connectivity graph and thus two of them avoid 

joining data points that belong to different circles (except the Ward linkage that 
attempts to form compact and isotropic clusters). 
 

 

Fig. 7.5 Comparison of the different clustering techniques (from left to right): K-means, spectral 
clustering, and agglomerative clustering with average and Ward linkage on simple compact datasets. 
In the first row, the expected number of clusters is k = 2 and in the second row: k = 4 

 Comparison of Different Hard Partition Clustering Algorithms Let us 

compare the behavior of the different clustering algorithms discussed so far. For 

this purpose, we generate three different datasets’ configurations: 

 
(a) 4 spherical groups of data; 

(b) a uniform data distribution; and 

(c) a non-flat configuration of data composed of two moon-like groups of data. 

 
connectivity = kneighbors_graph ( X , 30 ) 

model = AgglomerativeClustering ( linkage = ’ average ’, 

connectivity = connectivity , n_clusters = 8) 

model . fit ( X) 



 

= 

= 

= = 

 
An easy way to generate these datasets is by using Scikit-learn that has predefined 
functions for it: datasets.make_blobs(), datasets.ma- ke_ moons(), etc. 

We apply the clustering techniques discussed above, namely K-means, 

agglom- erative clustering with average linkage, agglomerative clustering with Ward 

linkage, and spectral clustering. Let us test the behavior of the different algorithms 
assuming k 2 and k 4. Connectivity is applied in the algorithms where it is 

applicable. 

In the simple case of separated clusters of data and k 4, most of the clustering 

algorithms perform well, as expected (see Fig. 7.5). The only algorithm that could 

not discover the four groups of samples is the average agglomerative clustering. 
Since it allows highly unbalanced clusters, the two noisy data points that are 

quite separated from the closest two blobs were considered as a different cluster, 

while the two central blobs were merged in one cluster. In case of k   2, each of 

the methods is obligated to join at least two blobs in a cluster. 
Regarding the uniform distribution of data (see Fig. 7.6), K-means, Ward linkage 

agglomerative clustering and spectral clustering tend to yield even and compact 

clusters; while the average linkage agglomerative clustering attempts to join 

close points as much as possible following the “rich get richer” rule. This 
results in a 
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Fig. 7.6 Comparison of the different clustering techniques (from left to right): K-means, spectral 

clustering, and agglomerative clustering with average and Ward linkage on uniformly 
distributed data. In the first row, the number of clusters assumed is k = 2 and in the second row: 
k = 4 

 

Fig. 7.7 Comparison of the different clustering techniques (from left to right): K-means, spec- 
tral clustering, and agglomerative clustering with average and Ward linkage on non-flat 
geometry datasets. In the first row, the expected number of clusters is k = 2 and in the second 
row: k = 4 

second cluster of a small set of data. This behavior is observed in both cases: k     2 

and k     4. 

Regarding datasets with more complex geometry, like in the moon dataset 

(see Fig. 7.7), K-means and Ward linkage agglomerative clustering attempt to 

construct compact clusters and thus cannot separate the moons. Due to the 

connectivity con- straint, the spectral clustering and the average linkage 
agglomerative clustering sep- arated both moons in case of k 2, while in case of k 

4, the average linkage agglomerative clustering clustered most of datasets 

correctly separating some of the noisy data points as two separate single clusters. 

In the case of spectral clustering, looking for four clusters, the method splits each 
of the two moon datasets into two clusters. 
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Fig. 7.8 Expenditure on different educational indicators for the first five countries in the Eurostat  

dataset 

 

Case Study 
 

In order to illustrate clustering with a real dataset, we will now analyze the indicators  

of spending on education among the European Union member states, provided 

by the Eurostat data bank.3 The data are organized by year (TIME) from 2002 

until 2011 and country (GEO): (‘Albania’, ‘Austria’, ‘Belgium’, ‘Bulgaria’, etc.). 
Twelve indicators (INDIC_ED) of financing of education with their corresponding 

values (Value) are given: (1) Expenditure on educational institutions from private 

sources as % of gross domestic product (GDP), for all levels of education 

combined; (2) Expenditure on educational institutions from public sources as % 
of GDP, for all levels of government combined, (3) Expenditure on educational 

institutions from public sources as % of total public expenditure, for all levels of 

education combined, 

(4) Public subsidies to the private sector as % of GDP, for all levels of education 
combined, (5) Public subsidies to the private sector as % of total public 

expenditure, for all levels of education combined, etc. We can store the 12 

indicators for a given year (e.g., 2010) in a table. Figure 7.8 provides visualization of 

the first five countries in the table. 

As we can observe, this is not a clean dataset, since there are values missing. 
Some countries have very limited information and should be excluded. Other 

countries may still not collect or have access to a few indicators. For these last cases, 

we can proceed in two ways: (a) fill in the gaps with some non-informative, non-

biasing data; or (b) drop the features with missing values for the analysis. If we 
have many features and only a few have missing values, then it is not very harmful 

to drop them. However, if missing values are spread across most of the features, we 

eventually have to deal with them. In our case, both options seem reasonable, as 

long as the number of missing features for a country is not too large. We will 
proceed in both ways at the same time. We apply both options: filling the gap 

with the mean value of the feature and the dropping option, ignoring the 

indicators with missing values. Let us now apply K-means clustering to thesedatin 

order to partition the countries according to 
 

. 
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Fig. 7.9 Clustering of the countries according to their educational expenditure using filled-in (top 

row) and dropped (bottom row) missing values 

 

 
their investment in education and check their profiles. Figure 7.9 shows the 

results of this K-means clustering. We have sorted the data for better 

visualization. At a simple glance, we can see that the partitions (top and bottom of 
Fig. 7.9) are different. Most countries in cluster 2 in the filled-in dataset 

correspond to cluster 0 in the dropped missing values dataset. Analogously, most 

of cluster 0 in the filled- in dataset correspond to cluster 1 in the dropped missing 

values dataset; and most countries from cluster 1 in the filled-in dataset 
correspond to cluster 2 in the dropped 



 

= 
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Fig. 7.10 Mean expenditure of the different clusters according to the 8 indicators of the indicators- 

dropped dataset 

 

 
set. Still, there are some countries that do not follow this rule. That is, looking at 

both clusterings, they may yield similar (up to label permutation) results, but 

they will not necessarily always coincide. This is mainly due to two aspects: the 
random initialization of the K-means clustering and the fact that each method 

works in a different space (i.e., dropped data in 8D space vs filled-in data, 

working in 12D space). Note that we should not consider the assigned absolute 

cluster value, since it is irrelevant. The mean expenditure of the different clusters is 
shown by different colors according to the 8 indicators of the indicators-dropped 

dataset (see Fig. 7.10). So, without loss of generality, we continue analyzing the set 

obtained by dropping missing values. Let us now check the clusters and check their 

profile by looking at the centroids. Visualizing the eight values of the three clusters 

(see Fig. 7.10), we can see that cluster 1 spends more on education for the 8 
educational indicators, while 

cluster 0 is the one with least resources invested in education. 
Let us consider a specific country, e.g., Spain and its expenditure on education. 

If we refine cluster 0 further and check how close members are from this 
cluster to cluster 1, it may give us a hint as to a possible ordering. When 

visualizing the distance to cluster 0 and 1, we can observe that Spain, while being 

from cluster 0, has a smaller distance to cluster 1 (see Fig. 7.11). This should make us 

realize that using 3 clusters probably does not sufficiently represent the groups of 

countries. So we redo the process, but applying k    4: we obtain 4 clusters. This 
time cluster 0 includes the EU members with medium expenditure (Fig. 7.12). This 

reinforce the intuition about Spain being a limit case in the former clustering. The 

clusters obtained are as follows: 

 
Cluster 0: (‘Austria’, ‘Estonia’, ‘EU13’, ‘EU15’, ‘EU25’, ‘EU27’, ‘France’, 

‘Germany’, ‘Hungary’, ‘Latvia’, ‘Lithuania’, ‘Netherlands’, ‘Poland’, ‘Portugal’, 

‘Slovenia’, ‘Spain’, ‘Switzerland’, ‘United Kingdom’, ‘United States’) 

• 
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Fig. 7.11 Distance of countries in cluster 0 to centroids of cluster 0 (in red) and cluster 1 (in blue) 

 

 

Fig. 7.12 K-means applied to the Eurostat dataset grouping the countries into four clusters 

 

 
Cluster 1: (‘Bulgaria’, ‘Croatia’, ‘Czech Republic’, ‘Italy’, ‘Japan’, ‘Romania’, ‘Slovakia’) 

• Cluster 2: (‘Cyprus’, ‘Denmark’, ‘Iceland’) 

• Cluster 3: (‘Belgium’, ‘Finland’, ‘Ireland’, ‘Malta’, ‘Norway’, ‘Sweden’) 

We can repeat the process using the alternative clustering techniques and 

compare their results. Let us first apply spectral clustering. The corresponding 

code will be as follows: 

• 
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Fig. 7.13 Spectral clustering applied to the European countries according to their expenditure on 

education 

 
 

In [11]: 

 
 
 
 

 
The result of this spectral clustering is shown in Fig. 7.13. Note that in general, 

the aim of spectral clustering is to obtain more balanced clusters. In this way, the 

predicted cluster 1 merges clusters 2 and 3 of the K-means clustering, cluster 2 

corresponds to cluster 1 of the K-means clustering, cluster 0 mainly shifts to 

cluster 2, and cluster 3 corresponds to cluster 0 of the K-means. 
Applying agglomerative clustering, not only we do obtain different clusters, 

but also we can see how different clusters are obtained. Thus, in some way it is 

giving us information on which the most similar pairs of countries and clusters 

are. The corresponding code that applies the agglomerative clustering will be as 
follows: 

 
X = StandardScaler () . fit_transform ( edudrop . values ) 

distances = euclidean_distances ( edudrop . values ) 

spectral = cluster . SpectralClustering ( 

n_clusters = 4 , affinity = " nearest_neighbors ") 

spectral . fit ( edudrop . values ) 

y_pred = spectral . labels_ . astype ( np . int ) 
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In [12]: 

 
 
 
 
 
 
 
 

 
In Scikit-learn, the parameter color_threshold of the command dendro- gram() 

colors all the descendent links below a cluster node k the same color if k is the 
first node below the color_threshold. All links connecting nodes with distances 
greater than or equal to the threshold are colored blue. Hence, using 
color_threshold 

= 3, the clusters obtained are as follows: 

Cluster 0: (‘Cyprus’, ‘Denmark’, ‘Iceland’) 

Cluster 1: (‘Bulgaria’, ‘Croatia’, ‘Czech Republic’, ‘Italy’, ‘Japan’, ‘Romania’, 
‘Slovakia’) 

Cluster 2: (‘Belgium’, ‘Finland’, ‘Ireland’, ‘Malta’, ‘Norway’, ‘Sweden’) 

Cluster 3: (‘Austria’, ‘Estonia’, ‘EU13’, ‘EU15’, ‘EU25’, ‘EU27’, ‘France’, 

‘Germany’, ‘Hungary’, ‘Latvia’, ‘Lithuania’, ‘Netherlands’, ‘Poland’, ‘Portugal’, 
‘Slovenia’, ‘Spain’, ‘Switzerland’, ‘United Kingdom’, ‘United States’) 

Note that, to a high degree, they correspond to the clusters obtained by the K-

means (except for permutation of cluster labels, which is irrelevant). 

 
Figure 7.14 shows the construction of the clusters using complete linkage agglom- 

erative clustering. Different cuts at different levels of the dendrogram allow us to 

obtain different numbers of clusters. 

To summarize, we can compare the results of the three clustering approaches. We 
cannot expect the results to coincide, since the different approaches are based 

on different criteria for constructing clusters. Nonetheless, we can still observe 

that in this case, K-means and the agglomerative approaches gave the same 

results (up to a permutation of the number of cluster, which is irrelevant); while 
spectral clustering gave more evenly distributed clusters. This later approach 

fused clusters 0 and 2 of the agglomerative clustering in cluster 1, and split cluster 

3 of the agglomerative clustering into its clusters 0 and 3. Note that these results 

could change when using different distances among data. 

 
from scipy . cluster . hierarchy import linkage , dendrogram 

from scipy . spatial . distance import pdist  

 

X_train = edudrop . values  

dist = pdist ( X_train , ’ euclidean ’) 

linkage_matrix = linkage ( dist , method = ’ complete ’);  

 

plt . figure ( figsize = (11.3 , 11.3) ) 

dendrogram ( linkage_matrix , orientation =" right " , 

color_threshold = 3 , 

labels = wrk_countries_names , 

leaf_font_size = 20 ) ; 

plt . tight_layout () 

• 

• 

• 
• 
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Fig. 7.14 Agglomerative clustering applied to cluster European countries according to their expen- 

diture on education 

 



 

UNIT-5 

Network Analysis, Graphs, Social Networks, centrality, drawing centrality of 

Graphs, PageRank, Ego-Networks, community Detection 

Network Analysis 
Introduction 

 
Network data are generated when we consider relationships between two or 

more entities in the data, like the highways connecting cities, friendships 

between peo- ple or their phone calls. In recent years, a huge number of network 

data are being generated and analyzed in different fields. For instance, in 
sociology there is inter- est in analyzing blog networks, which can be built based 

on their citations, to look for divisions in their structures between political 

orientations. Another example is infectious disease transmission networks, which 

are built in epidemiological studies to find the best way to prevent infection of 

people in a territory, by isolating cer- tain areas. Other examples studied in the 
field of technology include interconnected computer networks or power grids, 

which are analyzed to optimize their functioning. We also find examples in academia, 

where we can build co-authorship networks and citation networks to analyze 

collaborations among Universities. 
Structuring data as networks can facilitate the study of the data for different 

goals; for example, to discover the weaknesses of a structure. That could be the 

objective of a biologist studying a community of plants and trying to establish 

which of its properties promote quick transmission of a disease. A contrasting 
objective would be to find and exploit structures that work efficiently for the 

transmission of messages across the network. This may be the goal of an 

advertising agent trying to find the best strategy for spreading publicity. 

How to analyze networks and extract the features we want to study are 

some of the issues we consider in this chapter. In particular, we introduce some 
basic concepts related with networks, such as connected components, centrality 

measures, ego-networks, and PageRank. We present some useful Python tools for 

the analysis of networks and discuss some of the visualization options. In order to 

motivate and illustrate the concepts, we perform social network analysis using real 
data. We present a practical case based on a public dataset which consists of a 

set of interconnected 

 



 

Facebook friendship networks. We formulate multiple questions at different 

levels: the local/member level, the community level, and the global level. 
In general, some of the questions we try to solve are the following: 

 
What type of network are we dealing with? 

Which is the most representative member of the network in terms of being the 

most connected to the rest of the members? 
Which is the most representative member of the network in terms of being the 

most circulated on the paths between the rest of the members? 

Which is the most representative member of the network in terms of proximity 

to the rest of the members? 
Which is the most representative member of the network in terms of being the 

most accessible from any location in the network? 

There are many ways of calculating the representativeness or importance of a 

member, each one with a different meaning, so: how can we illustrate them 

and compare them? 
Are there different communities in the network? If so, how many? 
Does any member of the network belong to more than one community? That 

is, is there any overlap between the communities? How much overlap? How 
can we illustrate this overlap? 
Which is the largest community in the network? 
Which is the most dense community (in terms of connections)? 

How can we automatically detect the communities in the 

network? 
Is there any difference between automatically detected communities and real 

ones (manually labeled by users)? 

 
 
 

 Basic Definitions in Graphs 
 

Graph is the mathematical term used to refer to a network. Thus, the field that 

studies networks is called graph theory and it provides the tools necessary to analyze 

networks. Leonhard Euler defined the first graph in 1735, as an abstraction of one 
of the problems posed by mathematicians of the time regarding Konigsberg, a city 

with two islands created by the River Pregel, which was crossed by seven bridges. 

The problem was: is it possible to walk through the town of Konigsberg crossing 

each bridge once and only once? Euler represented the land areas as nodes and the 
bridges connecting them as edges of a graph and proved that the walk was not 

possible for this particular graph. 

A graph is defined as a set of nodes, which are an abstraction of any entities 

(parts of a city, persons, etc.), and the connecting links between pairs of nodes called 

edges or relationships. The edge between two nodes can be directed or undirected.A 
directed edge means that the edge points from one node to the other and not the 

other way round. An example of a directed relationship is “a person knows another 

person”. An edge has a direction when person A knows person B, and not the reverse 

• 

• 

• 

• 

• 

• 

• 
• 

• 

• 
• 
• 



 

direction 

 Basic 

Definitions in Graphs 143 

Fig. 8.1 Simple undirected 

labeled graph with 5 

nodes and5 edges 

 
 
 
 
 

 
if B does not know A (which is usual for many fans and celebrities). An undirected 

edge means that there is a symmetric relationship. An example is “a person 

shook hands with another person”; in this case, the relationship, unavoidably, 

involves both persons and there is no directionality. Depending on whether the edges 

of a graph are directed or undirected, the graph is called a directed graph or an 
undirected graph, respectively. 

The degree of a node is the number of edges that connect to it. Figure 8.1 

shows an example of an undirected graph with 5 nodes and 5 edges. The degree 

of node C is 1, while the degree of nodes A, D and E is 2 and for node B it is 3. If a 
network is directed, then nodes have two different degrees, the in-degree, which 

is the number of incoming edges, and the out-degree, which is the number of 

outgoing edges. 

In some cases, there is information we would like to add to graphs to model 
properties of the entities that the nodes represent or their relationships. We could 

add strengths or weights to the links between the nodes, to represent some real-

world measure. For instance, the length of the highways connecting the cities in a 

network. In this case, the graph is called a weighted graph. 

Some other elementary concepts that are useful in graph analysis are those 
we explain in what follows. We define a path in a network to be a sequence of 

nodes connected by edges. Moreover, many applications of graphs require 

shortest paths to be computed. The shortest path problem is the problem of 

finding a path between two nodes in a graph such that the length of the path or 
the sum of the weights of edges in the path is minimized. In the example in Fig. 8.1, 

the paths (C, A, B, E) and (C, A, B, D, E) are those between nodes C and E. This 

graph is unweighted, so the shortest path between C and E is the one that follows 

the fewer edges: (C, A, B, E). A graph is said to be connected if for every pair of 
nodes, there is a path between them. A graph is fully connected or complete if 

each pair of nodes is connected by an edge. A connected component or simply a 

component of a graph is a subset of its nodes such that every node in the subset has 

a path to every other one. In the example of Fig. 8.1, the graph has one connected 

component. A subgraph is a subset of the nodes of a graph and all the edges 
linking those nodes. Any group of nodes can form 

a subgraph. 
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 Social Network Analysis 
 

Social network analysis processes social data structured in graphs. It involves the 

extraction of several characteristics and graphics to describe the main properties 
of the network. Some general properties of networks, such as the shape of the 

network degree distribution (defined bellow) or the average path length, 

determine the type of network, such as a small-world network or a scale-free 

network. A small-world network is a type of graph in which most nodes are not 
neighbors of one another, but most nodes can be reached from every other node 

in a small number of steps. This is the so-called small-world phenomenon which 

can be interpreted by the fact that strangers are linked by a short chain of 

acquaintances. In a small-world network, people usually form communities or 

small groups where everyone knows every- one else. Such communities can be 
seen as complete graphs. In addition, most the community members have a few 

relationships with people outside that community. However, some people are 

connected to a large number of communities. These may be celebrities and such 

people are considered as the hubs that are responsible for the small-world 
phenomenon. Many small-world networks are also scale-free net- works. In a 

scale-free network the node degree distribution follows a power law (a 

relationship function between two quantities x and y defined as y      xn, where n 

is a constant). The name scale-free comes from the fact that power laws have the 
same functional form at all scales, i.e., their shape does not change on 

multiplication by a scale factor. Thus, by definition, a scale-free network has many 

nodes with a very few connections and a small number of nodes with many 

connections. This structure is typical of the World Wide Web and other social 

networks. In the following sections, we illustrate this and other graph properties 
that are useful in social network analysis. 

 
 
 
 
 
 
 
 
 
 

In [1]: 

Basics in NetworkX 
 

NetworkX1 is a Python toolbox for the creation, manipulation and study of the 

struc- ture, dynamics and functions of complex networks. After importing the 

toolbox, we can create an undirected graph with 5 nodes by adding the edges, as 

is done in the following code. The output is the graph in Fig. 8.1. 

 
 
 
 
 
 
 

 
To create a directed graph we would use nx.DiGraph(). 

 

import networkx as nx 

G = nx . Graph () 

G. add_edge ( ’A ’, ’B ’);  

G. add_edge ( ’A ’, ’C ’);  

G. add_edge ( ’B ’, ’D ’);  

G. add_edge ( ’B ’, ’E ’);  

G. add_edge ( ’D ’, ’E ’); 

nx . draw_networkx ( G) 



 

 Practical Case: Facebook Dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [2]: 

 
For our practical case we consider data from the Facebook network. In particular, we  

use the data Social circles: Facebook2 from the Stanford Large Network Dataset3 

(SNAP) collection. The SNAP collection has links to a great variety of networks 

such as Facebook-style social networks, citation networks, Twitter networks or 

open communities like Live Journal. The Facebook dataset consists of a network 
repre- senting friendship between Facebook users. The Facebook data was 

anonymized by replacing the internal Facebook identifiers for each user with a 

new value. 

The network corresponds to an undirected and unweighted graph that 

contains users of Facebook (nodes) and their friendship relations (edges). The 
Facebook dataset is defined by an edge list in a plain text file with one edge per 

line. 

Let us load the Facebook network and start extracting the basic information 

from the graph, including the numbers of nodes and edges, and the average 
degree: 

 
 
 
 
 

Out[2]: Nodes: 4039 

Edges: 88234 

Average degree: 21 

The Facebook dataset has a total of 4,039 users and 88,234 friendship 

connections, with an average degree of 21. In order to better understand the 
graph, let us compute the degree distribution of the graph. If the graph were 

directed, we would need to generate two distributions: one for the in-degree and 

another for the out-degree. A way to illustrate the degree distribution is by 

computing the histogram of degrees and plotting it, as the following code does 

with the output shown in Fig. 8.2: 

In [3]: 

 

 
 
 
 
 
 
 

In [4]: 

The graph in Fig. 8.2 is a power-law distribution. Thus, we can say that the Face- 

book network is a scale-free network. 
Next, let us find out if the Facebook dataset contains more than one 

connected component (previously defined in Sect. 8.2): 

 
fb = nx . read_edgelist (" files / ch08 / facebook_combined . txt ") 

fb_n , fb_k = fb . order () , fb . size () 

fb_avg_deg = fb_k / fb_n 

print ’ Nodes : ’, fb_n  

print ’ Edges : ’, fb_k  

print ’ Average degree : ’, fb_avg_deg  

 

degrees = fb . degree () . values () 

degree_hist = plt . hist ( degrees , 100)  

 
print ’# connected components of Facebook network : ’, 

nx . number_connected_components ( fb ) 



 

 

 

    Out[4]: # connected components of Facebook network: 1 

 
 
 
 
 
 
 
 
 
 

 
In [5]: 

As it can be seen, there is only one connected component in the Facebook network.  

Thus, the Facebook network is a connected graph (see definition in Sect. 8.2). We can 

try to divide the graph into different connected components, which can be 

potential communities (see Sect. 8.6). To do that, we can remove one node from 
the graph (this operation also involves removing the edges linking the node) and 

see if the number of connected components of the graph changes. In the 

following code, we prune the graph by removing node ‘0’ (arbitrarily selected) and 

compute the number of connected components of the pruned version of the 
graph: 

 
 
 
 
 
 

Out[5]: Remaining nodes: 4038 

New # connected components: 19 

Now there are 19 connected components, but let us see how big the biggest is 

and how small the smallest is: 

In [6]: 

 
 
 

 
Out[6]: Sizes of the connected components [4015, 1, 3, 2, 2, 1, 1, 1, 

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1] 

This simple example shows that removing a node splits the graph into multiple 

components. You can see that there is one large connected component and the 

rest are almost all isolated nodes. The isolated nodes in the pruned graph 
were only Fig. 8.2 Degree histogram distribution 

 
fb_prun = nx . read_edgelist ( 

" files / ch08 / facebook_combined . txt ") 

fb_prun . remove_node ( ’0 ’) 

print ’ Remaining nodes : ’, fb_prun . number_of_nodes () 

print ’ New # connected components : ’, 

nx . number_connected_components ( fb_prun ) 

 

fb_components = nx . connected_components ( fb_prun ) 

print ’ Sizes of the connected components ’, 

[ len (c) for c in fb_components ] 
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connected to node ‘0’ in the original graph and when that node was removed 

they were converted into connected components of size 1. These nodes, only 
connected to one neighbor, are probably not important nodes in the structure of 

the graph. We can generalize the analysis by studying the centrality of the nodes. 

The next section is devoted to explore this concept. 
 
 
 

 Centrality 
 

The centrality of a node measures its relative importance within the graph. In this 

section we focus on undirected graphs. Centrality concepts were first developed 
in social network analysis. The first studies indicated that central nodes are 

probably more influential, have greater access to information, and can 

communicate their opinions to others more efficiently [1]. Thus, the applications 

of centrality concepts in a social network include identifying the most influential 

people, the most informed people, or the most communicative people. In practice, 
what centrality means will depend on the application and the meaning of the 

entities represented as nodes in the data and the connections between those 

nodes. Various measures of the centrality of a node have been proposed. We 

present four of the best-known measures: degree centrality, betweenness 
centrality, closeness centrality, and eigenvector centrality. 

Degree centrality is defined as the number of edges of the node. So the more 

ties a node has, the more central the node is. To achieve a normalized degree 

centrality of a node, the measure is divided by the total number of graph nodes (n) 
without counting this particular one (n 1). The normalized measure provides 

proportions and allows us to compare it among graphs. Degree centrality is related 

to the capacity of a node to capture any information that is floating through the 

network. In social networks, connections are associated with positive aspects such 

as knowledge or friendship. 
Betweenness centrality quantifies the number of times a node is crossed along 

the shortest path/s between any other pair of nodes. For the normalized 

measure this number is divided by the total number of shortest paths for every 

pair of nodes. Intuitively, if we think of a public bus transportation network, the 
bus stop (node) with the highest betweenness has the most traffic. In social 

networks, a person with high betweenness has more power in the sense that 

more people depend on him/her to make connections with other people or to 

access information from other people. Comparing this measure with degree 
centrality, we can say that degree centrality depends only on the node’s 

neighbors; thus, it is more local than the betweenness centrality, which depends 

on the connection properties of every pair of nodes in the graph, except pairs with 

the node in question itself. The equivalent measure exists for edges. The 

betweenness centrality of an edge is the proportion of the shortest paths 
between all node pairs which pass through it. 

Closeness centrality tries to quantify the position a node occupies in the 
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network based on a distance calculation. The distance metric used between a pair 

of nodes is defined by the length of its shortest path. The closeness of a node is 
inversely proportional to the length of the average shortest path between that 

node and all the 

 

other nodes in the graph. In this case, we interpret a central node as being close 

to, and able to communicate quickly with, the other nodes in a social network. 

Eigenvector centrality defines a relative score for a node based on its 
connections and considering that connections from high centrality nodes 

contribute more to the score of the node than connections from low centrality 

nodes. It is a measure of the influence of a node in a network, in the following 

sense: it measures the extent to which a node is connected to influential nodes. 
Accordingly, an important node is connected to important neighbors. 

Let us illustrate the centrality measures with an example. In Fig. 8.3, we 

show an undirected star graph with n     8 nodes. Node C is obviously important, 

since it can exchange information with more nodes than the others. The degree 

centrality measures this idea. In this star network, node C has a degree 
centrality of 7 or 1 if we consider the normalized measure, whereas all other 

nodes have a degree of 1 or 1/7 if we consider the normalized measure. Another 

reason why node C is more important than the others in this star network is that it 

lies between each of the other pairs of nodes, and no other node lies between C 
and any other node. If node C wants to contact F, C can do it directly; whereas if 

node F wants to contact B, it must go through C. This gives node C the capacity to 

broke/prevent contact among other nodes and to isolate nodes from information. 

The betweenness centrality is underneath this idea. In this example, the 
betweenness centrality of the node C is 28, computed as (n 1)(n 2)/2, while the 

rest of nodes have a betweenness of 0. The final reason why we can say node C is 

superior in the star network is because C is closer to more nodes than any other 

node is. In the example, node C is at a distance of 1 from all other 7 nodes and each 

other node is at a distance 2 from all other nodes, except C. So, node C has 
closeness centrality of 1/7, while the rest of nodes have a closeness of 1/13. The 

normalized measures, computed by dividing by n 1, are 1 for C and 7/13 for the 

other nodes. 

An important concept in social network analysis is that of a hub node, which is 
defined as a node with high degree centrality and betweenness centrality. When 

a hub governs a very centralized network, the network can be easily fragmented 

by removing that hub. 

Coming back to the Facebook example, let us compute the degree centrality of 
Facebook graph nodes. In the code below we show the user identifier of the 10 

most central nodes together with their normalized degree centrality measure. We 

also show the degree histogram to extract some more information from the 

shape of the distribution. It might be useful to represent distributions using 

logarithmic scale. We 

 
 

Fig. 8.3 Star graph example 
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In [7]: 

do that with the matplotlib.loglog() function. Figure 8.4 shows the degree 
centrality histogram in linear and logarithmic scales as computed in the box 
bellow. 

 
 
 
 
 
 
 

Out[7]: Facebook degree centrality: [(u’107’, 0.258791480931154), 

(u’1684’, 0.1961367013372957), (u’1912’, 0.18697374938088163), 

(u’3437’, 0.13546310054482416), (u’0’, 0.08593363051015354), 

(u’2543’, 0.07280832095096582), (u’2347’, 0.07206537890044576), 

(u’1888’, 0.0629024269440317), (u’1800’, 0.06067360079247152), 

(u’1663’, 0.058197127290737984)] 

The previous plots show us that there is an interesting (large) set of nodes 

which corresponds to low degrees. The representation using a logarithmic scale 

(right-hand graphic in Fig. 8.4) is useful to distinguish the members of this set of 

nodes, which are clearly visible as a straight line at low values for the x-axis (upper 
left-hand part of the logarithmic plot). We can conclude that most of the nodes in 

the graph have low degree centrality; only a few of them have high degree 

centrality. These latter nodes can be properly seen as the points in the bottom 

right-hand part of the logarithmic plot. 
The next code computes the betweenness, closeness, and eigenvector 

centrality and prints the top 10 central nodes for each measure. 

 

 

 

Fig. 8.4 Degree centrality histogram shown using a linear scale (left) and a log scale for both the 

x- and y-axis (right) 

 
degree_cent_fb = nx . degree_centrality ( fb ) 

print ’ Facebook degree centrality : ’, 

sorted ( degree_cent_fb . items () , 

key = lambda x: x [1] , 

reverse = True ) [:10]  

degree_hist = plt . hist ( list ( degree_cent_fb . values () ) , 100) 

plt . loglog ( degree_hist [1][1:] , 

degree_hist [0] , ’b ’, marker = ’o ’) 
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In [8]: 

 
 
 
 
 
 
 
 
 
 

 
Out[8]: Facebook betweenness centrality: [(u’107’, 0.4805180785560141), (u’1684’, 

0.33779744973019843), (u’3437’, 0.23611535735892616), 

(u’1912’, 0.2292953395868727), (u’1085’, 0.1490150921166526), 

(u’0’, 0.1463059214744276), (u’698’, 0.11533045020560861), 

(u’567’, 0.09631033121856114), (u’58’, 0.08436020590796521), 

(u’428’, 0.06430906239323908)] 

 
 

Out[8]: Facebook closeness centrality: [(u’107’, 0.45969945355191255), (u’58’, 0.3974018305284913), 

(u’428’, 0.3948371956585509), 

(u’563’, 0.3939127889961955), (u’1684’, 0.39360561458231796), 

(u’171’, 0.37049270575282134), (u’348’, 0.36991572004397216), 

(u’483’, 0.3698479575013739), (u’414’, 0.3695433330282786), 

(u’376’, 0.36655773420479304)] 

Facebook eigenvector centrality: [(u’1912’, 0.09540688873596524), (u’2266’, 

0.08698328226321951), (u’2206’, 0.08605240174265624), 

(u’2233’, 0.08517341350597836), (u’2464’, 0.08427878364685948), 

(u’2142’, 0.08419312450068105), (u’2218’, 0.08415574433673866), 

(u’2078’, 0.08413617905810111), (u’2123’, 0.08367142125897363), 

(u’1993’, 0.08353243711860482)] 

As can be seen in the previous results, each measure gives a different ordering 
of the nodes. The node ‘107’ is the most central node for degree (see box Out 

[7]), betweenness, and closeness centrality, while it is not among the 10 most central 
nodes for eigenvector centrality. The second most central node is different for 
closeness and eigenvector centralities; while the third most central node is 

different for all four centrality measures. 
Another interesting measure is the current flow betweenness centrality, also called 

random walk betweenness centrality, of a node. It can be defined as the 

probability of passing through the node in question on a random walk starting 
and ending at some node. In this way, the betweenness is not computed as a 

function of shortest paths, but of all paths. This makes sense for some social 

networks where messages may get to their final destination not by the shortest 

path, but by a random path, as in the case of gossip floating through a social 
network for example. 

Computing the current flow betweenness centrality can take a while, so we 

 
betweenness_fb = nx . betweenness_centrality ( fb ) 

closeness_fb = nx . closeness_centrality ( fb ) 

eigencentrality_fb = nx . eigenvector_centrality ( fb ) 

print ’ Facebook betweenness centrality : ’, 

sorted ( betweenness_fb . items () , 

key = lambda x: x [1] , 

reverse = True ) [:10]  

print ’ Facebook closeness centrality : ’, 

sorted ( closeness_fb . items () , 

key = lambda x: x [1] , 

reverse = True ) [:10]  

print ’ Facebook eigenvector centrality : ’, 

sorted ( eigencentrality_fb . items () , 

key = lambda x: x [1] , 

reverse = True ) [:10]  



 

will work with a trimmed Facebook network instead of the original one. In fact, 

we can  
 
 
 
 
 
 

In [9]: 

 
 

pose the question: What happen if we only consider the graph nodes with more 
than the average degree of the network (21)? We can trim the graph using degree 

centrality values. To do this, in the next code, we define a function to trim the 

graph based on the degree centrality of the graph nodes. We set the threshold to 

21 connections: 

 
 
 
 
 
 
 
 
 
 

Out[9]: Degree centrality threshold: 0.00520059435364 Remaining # nodes: 

2226 
 

 
 
 
 
 
 

 
In [10]: 

The new graph is much smaller; we have removed almost half of the nodes 

(we have moved from 4,039 to 2,226 nodes). 

The current flow betweenness centrality measure needs connected graphs, as 

does any betweenness centrality measure, so we should first extract a connected 

compo- nent from the trimmed Facebook network and then compute the 

measure: 

 
def trim_degree_centrality ( graph , degree = 0.01) : 

g = graph . copy () 

d = nx . degree_centrality ( g) 

for n in g. nodes () : 

if d[ n] <= degree : 

g. remove_node ( n) 

return g 

thr = 21.0/( fb . order () - 1.0)  

 

print ’ Degree centrality threshold : ’, thr  

 

fb_trimmed = trim_degree_centrality ( fb , degree = thr ) 

print ’ Remaining # nodes : ’, len ( fb_trimmed ) 

 
fb_subgraph = list ( nx . connected_component_subgraphs ( 

fb_trimed )) 

print ’# subgraphs found : ’, size ( fb_subgraph ) 

print ’# nodes in the first subgraph : ’, 

len ( fb_subgraph [0])  

betweenness = nx . betweenness_centrality ( fb_subgraph [0]) 

print ’ Trimmed FB betweenness : ’, 

sorted ( betweenness . items () , key = lambda x: x [1] , 

reverse = True ) [:10]  

current_flow = nx . current_flow_betweenness_centrality ( 

fb_subgraph [0])  

print ’ Trimmed FB current flow betweenness : ’, 

sorted ( current_flow . items () , key = lambda x: x [1] , 

reverse = True ) [:10]  
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Fig. 8.5 The Facebook 

network with a 

random layout 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Out[10]: # subgraphs found: 2 

# nodes in the first subgraph: 2225 

Trimmed FB betweenness: [(u’107’, 0.5469164906683255), 

(u’1684’, 0.3133966633778371), (u’1912’, 0.19965597457246995), 

(u’3437’, 0.13002843874261014), (u’1577’, 0.1274607407928195), 

(u’1085’, 0.11517250980098293), (u’1718’, 0.08916631761105698), 

(u’428’, 0.0638271827912378), (u’1465’, 0.057995900747731755), 

(u’567’, 0.05414376521577943)] 

Trimmed FB current flow betweenness: [(u’107’, 

0.2858892136334576), (u’1718’, 0.2678396761785764), (u’1684’, 

0.1585162194931393), (u’1085’, 0.1572155780323929), (u’1405’, 

0.1253563113363113), (u’3437’, 0.10482568101478178), (u’1912’, 

0.09369897700970155), (u’1577’, 0.08897207040045449), (u’136’, 

0.07052866082249776), (u’1505’, 0.06152347046861114)] 

As can be seen, there are similarities in the 10 most central nodes for the 

between- ness and current flow betweenness centralities. In particular, seven up 

to ten are the same nodes, even if they are differently ordered. 

 Drawing Centrality in Graphs 
 

In this section we focus on graph visualization, which can help in the network 
data understanding and usability. 

The visualization of a network with a large amount of nodes is a complex task. 
Different layouts can be used to try to build a proper visualization. For instance, 
we can draw the Facebook graph using the random layout (nx.random_layout), 
but this is a bad option, as can be seen in Fig. 8.5. Other alternatives can be more 
useful. In the box below, we use the Spring layout, as it is used in the default function 
(nx.draw), but with more iterations. The function nx.spring_layout returns the 
position of the nodes using the Fruchterman–Reingold force-directed algorithm. 
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Fig. 8.6 The Facebook 

network drawn using the 

Spring layout and degree 

centrality to define the node 

size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [11]: 

 
 
 
 
 
 
 
 
 
 
 
 

This algorithm distributes the graph nodes in such a way that all the edges are 

more or less equally long and they cross themselves as few times as possible. 
Moreover, we can change the size of the nodes to that defined by their degree 

centrality. As can be seen in the code, the degree centrality is normalized to 

values between 0 and 1, and multiplied by a constant to make the sizes 

appropriate for the format of the figure: 

 
 
 
 
 
 

The resulting graph visualization is shown in Fig. 8.6. This illustration allows us 

to understand the network better. Now we can distinguish several groups of nodes 

or “communities” clearly in the graph. Moreover, the larger nodes are the more 
central nodes, which are highly connected of the Facebook graph. 

We can also use the betweenness centrality to define the size of the nodes. In this 

way, we obtain a new illustration stressing the nodes with higher betweenness, which 

are those with a large influence on the transfer of information through the 
network. The new graph is shown in Fig. 8.7. As expected, the central nodes are 

now those connecting the different communities. 

Generally different centrality metrics will be positively correlated, but when 

they are not, there is probably something interesting about the network nodes. For 
instance, if you can spot nodes with high betweenness but relatively low degree, 

these are the nodes with few links but which are crucial for network flow. We can 

also look for 

 
pos_fb = nx . spring_layout ( fb , iterations = 1000)  

 

nsize = np . array ([ v for v in degree_cent_fb . values () ]) 

nsize = 500*( nsize - min ( nsize )) /( max ( nsize ) - min ( nsize )) 

nodes = nx . draw_networkx_nodes ( fb , pos = pos_fb , 

node_size = nsize ) 

edges = nx . draw_networkx_edges ( fb , pos = pos_fb , 

alpha = . 1 ) 
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Fig. 8.7 The Facebook 

network drawn using 

the Spring layout and 

betweenness centrality 

to define the node size 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
the opposite effect: nodes with high degree but relatively low betweenness. 

These nodes are those with redundant communication. 

Changing the centrality measure to closeness and eigenvector, we obtain the 

graphs in Figs. 8.8 and 8.9, respectively. As can be seen, the central nodes 
are also different for these measures. With this or other visualizations you will be 

able to discern different types of nodes. You can probably see nodes with high 

closeness centrality but low degree; these are essential nodes linked to a few 

important or active nodes. If the opposite occurs, if there are nodes with high 
degree centrality but low closeness, these can be interpreted as nodes embedded 

in a community that is far removed from the rest of the network. 

In other examples of social networks, you could find nodes with high closeness 

centrality but low betweenness; these are nodes near many people, but since 
there may be multiple paths in the network, they are not the only ones to be 

near many people. Finally, it is usually difficult to find nodes with high 

betweenness but low closeness, since this would mean that the node in question 

monopolized the links from a small number of people to many others. 

 
 

 PageRank 
 

PageRank is an algorithm related to the concept of eigenvector centrality in 
directed graphs. It is used to rate webpages objectively and effectively measure 

the attention devoted to them. PageRank was invented by Larry Page and Sergey 

Brin, and became a Google trademark in 1998 [2]. 

Assigning the importance of a webpage is a subjective task, which depends on the 
interests and knowledge of the persons that browse the webpages. However, 

there are ways to objectively rank the relative importance of webpages. 
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Fig. 8.8 The Facebook 

network drawn using the 

Spring layout and closeness 

centrality to define the 

node size 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.9 The Facebook 

network drawn using 

the Spring layout and 

eigenvector centrality 

to define the node size 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
We consider the directed graph formed by nodes corresponding to the 

webpages and edges corresponding to the hyperlinks. Intuitively, a hyperlink to a 

page counts as a vote of support and a page has a high rank if the sum of the ranks 

of its incoming edges is high. This considers both cases when a page has many 

incoming links and when a page has a few highly ranked incoming links. 

Nowadays, a variant of the algorithm is used by Google. It does not only use 
information on the number of edges pointing into and out of a website, but uses 

many more variables. 

We can describe the PageRank algorithm from a probabilistic point of view. The 

rank of page Pi is the probability that a surfer on the Internet who starts visiting a 
random page and follows links, visits the page Pi . With more details, we consider 
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that the weights assigned to the edges of a network by its transition matrix, M, are 

the probabilities that the surfer goes from one webpage to another. We can 
understand the 

 

Fig. 8.10 The Facebook 

network drawn using the 

Spring layout and PageRank 

to define the node size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
rank computation as a random walk through the network. We start with an initial equal 
probability for each page: v0 = ( 1 , . . . ,  1 ), where n is the number of nodes. Then 
we can compute the probability that each page is visited after one step by applying 
the transition matrix: v1      Mv. The probability that each page will be visited after 
k steps is given by vk   Mka. After several steps, the sequence converges to a 
unique probabilistic vector a∗ which is the PageRank vector. The i -th element of 
this vector is the probability that at each moment the surfer visits page Pi . We need a 
nonambiguous definition of the rank of a page for any directed web graph. 
However, 
in the Internet, we can expect to find pages that do not contain outgoing links 

and this configuration can lead to certain problems to the explained procedure. 

In order to overcome this problem, the algorithm fixes a positive constant p 
between 0 and 1 (a typical value for p is 0.85) and redefines the transition 

matrix of the graph by 

R = (1 − p) M + p B, where B = 1 I , and I is the identity matrix. Therefore, a 
 
 
 

 
In [12]: 

node with no outgoing edges has probability n of moving to any other node. 
Let us compute the PageRank vector of the Facebook network and use it to define 

the size of the nodes, as was done in box In [11]. 
 

pr = nx . pagerank ( fb , alpha = 0.85)  

nsize = np . array ([ v for v in pr . values () ]) 

nsize = 500*( nsize - min ( nsize )) /( max ( nsize ) - min ( nsize )) 

nodes = nx . draw_networkx_nodes ( fb , 

pos = pos_fb , 

node_size = nsize ) 

edges = nx . draw_networkx_edges ( fb , 

pos = pos_fb , 

alpha = . 1 ) 



 

The code above outputs the graph in Fig. 8.10, that emphasizes some of the 

nodes with high PageRank. Looking the graph carefully one can realize that there 
is one large node per community. 

8.5 Ego-Networks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [13]: 

 
Ego-networks are subnetworks of neighbors that are centered on a certain node. 

In Facebook and LinkedIn, these are described as “your network". Every person in 
an ego-network has her/his own ego-network and can only access the nodes in it. 

All ego-networks interlock to form the whole social network. The ego-network 

definition depends on the network distance considered. In the basic case, a 

distance of 1, a link means that person A is a friends of person B, a distance of 2 

means that a person, C, is a friend of a friend of A, and a distance of 3 means that 
another person, D, is a friend of a friend of a friend of A. Knowing the size of an 

ego-network is important when it comes to understanding the reach of the 

information that a person can transmit or have access to. Figure 8.11 shows an 

example of an ego-network. The blue node is the ego, while the rest of the nodes 
are red. 

Our Facebook network was manually labeled by users into a set of 10 ego- 

networks. The public dataset includes the information of these 10 manually 

defined ego-networks. In particular, we have available the list of the 10 ego nodes: 

‘0’, ‘107’, ‘348’, ‘414’, ‘686’, ‘1684’, ‘1912’, ‘3437’, ‘3980’ and their connections. 
These ego-networks are interconnected to form the fully connected graph we 

have been analyzing in previous sections. 

In Sect. 8.4 we saw that node ‘107’ is the most central node of the Facebook 

network for three of the four centrality measures computed. So, let us extract 
the ego-networks of the popular node ‘107’ with a distance of 1 and 2, and compute 

their sizes. NetworkX has a function devoted to this task: 

 
 
 
 
 

 

Fig. 8.11 Example of an ego-

network. The blue node is 

the ego 

 
ego_107 = nx . ego_graph ( fb , ’ 107 ’) 

print ’# nodes of ego graph 107: ’, 

len ( ego_107 ) 

print ’# nodes of ego graph 107 with radius up to 2: ’, 

len ( nx . ego_graph ( fb , ’ 107 ’, radius = 2) ) 



 

 

Out[13]: # nodes of ego graph 107: 1046 

# nodes of ego graph 107 with radius up to 2: 2687 

The ego-network size is 1,046 with a distance of 1, but when we expand the 

distance to 2, node ‘107’ is able to reach up to 2,687 nodes. That is quite a large 

ego-network, containing more than half of the total number of nodes. 
Since the dataset also provides the previously labeled ego-networks, we can 

com- pute the actual size of the ego-network following the user labeling. We can 
access the ego-networks by simply importing os.path and reading the edge list corre- 
sponding, for instance, to node ‘107’, as in the following code: 

In [14]: 

 
 
 
 
 
 

 

Out[14]: Nodes of the ego graph 107: 1034 

As can be seen, the size of the previously defined ego-network of node ‘107’ is 

slightly different from the ego-network automatically computed using NetworkX. 

This is due to the fact that the manual labeling is not necessarily referred to the 
subgraph of neighbors at a distance of 1. 

We can now answer some other questions about the structure of the 

Facebook network and compare the 10 different ego-networks among them. 

First, we can compute which the most densely connected ego-network is from 
the total of 10. To do that, in the code below, we compute the number of edges in 

every ego-network and select the network with the maximum number: 

 

import os . path 

ego_id = 107 

G_107 = nx . read_edgelist ( 

os . path . join ( ’ files / ch08 / facebook ’, 

’ {0}. edges ’. format ( ego_id )) , 

nodetype = int ) 

print ’ Nodes of the ego graph 107: ’, len ( G_107 ) 



 

In [15]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out[15]: The most densely connected ego-network is that of node: 1912 Nodes: 747 

Edges: 30025 

Average degree: 40 

 
The most densely connected ego-network is that of node ‘1912’, which has an 

average degree of 40. We can also compute which is the largest (in number of nodes)  
ego-network, changing the measure of sizes from G.size() by G.order(). In this case, 
we obtain that the largest ego-network is that of node ‘107’, which has 1,034 
nodes and an average degree of 25. 

Next let us work out how much intersection exists between the ego-networks 

in the Facebook network. To do this, in the code below, we add a field ‘egonet’ for 

every node and store an array with the ego-networks the node belongs to. Then, 

having the length of these arrays, we compute the number of nodes that belong to 

1, 2, 3, 4 and more than 4 ego-networks: 

 
ego_ids = ( 0 , 107 , 348 , 

414 , 686 , 698 , 

1684 , 1912 , 3437 , 3980)  

ego_sizes =  zeros ((10 , 1) ) 

i = 0 

# Fill the ’ ego_sizes ’ vector with the size (# edges ) of the 

10 ego - networks in egoids  

for id in ego_ids : 

G = nx . read_edgelist ( 

os . path . join ( ’ files / ch08 / facebook ’, 

’ {0}. edges ’. format ( id )) , 

nodetype = int ) 

ego_sizes [ i] = G. size () 

i = i + 1 

[ i_max , j] = ( ego_sizes == ego_sizes . max () ). nonzero () 

ego_max = ego_ids [ i_max ] 

print ’ The most densely connected ego - network is \ 

that of node : ’, ego_max  

 

G = nx . read_edgelist ( 

os . path . join ( ’ files / ch08 / facebook ’, 

’ {0}. edges ’. format ( ego_max )) , 

nodetype = int ) 

print ’ Nodes : ’, G. order () 

print ’ Edges : ’, G. size () 

print ’ Average degree : ’, G_k / G_n  



 

# Add a field ’ egonet ’ to the nodes of the whole facebook 

network . 

# Default value egonet = [] , meaning that this node does not 

belong to any ego - netowrk  

for i in fb . nodes () : 

fb . node [ str (i) ][ ’ egonet ’] = [] 

 

# Fill the ’ egonet ’ field with one of the 10 ego values in 

ego_ids : 

for id in ego_ids : 

G = nx . read_edgelist ( 

os . path . join ( ’ files / ch08 / facebook ’, 

’ {0}. edges ’. format ( id )) , 

nodetype = int ) 

print id 

for n in G. nodes () : 

if ( fb . node [ str (n) ][ ’ egonet ’] == []) : 

fb . node [ str (n) ][ ’ egonet ’] = [ id ] 

else : 

fb . node [ str (n) ][ ’ egonet ’]. append ( id ) 

 

# Compute the intersections : 

S = [ len (x[ ’ egonet ’]) for x in fb . node . values () ] 

print ’# nodes into more than 4 ego - network : ’ ,\ 

sum ( greater ( S , 4) ) 

 

In [16]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

print  ’#  nodes  into  0 ego - netwo rk  : ’, sum ( equa l (S , 0) ) 
print  ’#  nodes  into  1 ego - netwo rk  : ’, sum ( equa l (S , 1) ) 
print  ’#  nodes  into  2 ego - netwo rk  : ’, sum ( equa l (S , 2) ) 
print  ’#  nodes  into  3 ego - netwo rk  : ’, sum ( equa l (S , 3) ) 
print  ’#  nodes  into  4 ego - netwo rk  : ’, sum ( equa l (S , 4) ) 

 
 

 
Out[16]: # nodes into 0 ego-network: 80 

# nodes into 1 ego-network: 3844 

# nodes into 2 ego-network: 102 

# nodes into 3 ego-network: 11 

# nodes into 4 ego-network: 2 

# nodes into more than 4 ego-network: 0 

 
As can be seen, there is an intersection between the ego-networks in the Facebook 

network, since some of the nodes belong to more than 1 and up to 4 ego-

networks simultaneously. 
We can also try to visualize the different ego-networks. In the following code, 

we draw the ego-networks using different colors on the whole Facebook network 

and we obtain the graph in Fig. 8.12. As can be seen, the ego-networks clearly 

form groups of nodes that can be seen as communities. 
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Fig. 8.12 The Facebook 

network drawn using the 

Spring layout and different 

colors to separate the 

ego-networks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [17]: 
# Add a field ’ eg ocolor  ’ to the nodes of the whole facebook  network . 
# D efault  value eg ocolor  r =0 , meaning  that  this  node  
does not belong to any ego - netow rk  for i in fb . nodes () : fb . node [ str (i)  ][ ’ eg ocol or ’] 

= 0 
 

# Fil l  the ’ eg ocol or ’ field with a dif ferent color number for each ego - network in 
eg o_i ds : 

i dCol or = 1 
for id in eg o_i ds  : 

G = nx . read_edg el i st  ( 
os . path . join ( ’ fi les / ch08 / facebook ’, 

’ {0}. edg es ’. format ( id )) , nodetype = int ) 
for n in G. nodes () : 

fb . node [ str (n) ][ ’ eg ocolor  ’] = idColor  i dCol or += 1 
 

col ors = [ x[ ’ eg ocolor ’] for x in fb . node . values () ] 
 

nsize = np . array ([ v for v in deg ree_cent_fb  . val ues () ]) 

nsiz e = 5 00 *( nsiz e - min ( nsiz e )) /( max ( ns iz e ) - min ( nsiz e )) nodes = nx . 

draw_networkx _n ode s  ( 
fb , pos = pos_fb , 
cmap = plt . g et_cmap ( ’ Pai red ’) , no de_ col or  = colors  , 
node_si ze = nsize , 
w ith_l abel s  = False ) 

edges = nx . d ra w_ ne tw or kx _e dg es  ( fb , pos = pos _fb , alpha  = .1)  
 
 

However, the graph in Fig. 8.12 does not illustrate how much overlap is there 

between the ego-networks. To do that, we can visualize the intersection between 

ego-networks using a Venn or an Euler diagram. Both diagrams are useful in order to 

see how networks are related. Figure 8.13 shows the Venn diagram of the 
Facebook network. This powerful and complex graph cannot be easily built in 

Python tool- 
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Fig. 8.13 Venn diagram. The 

area is weighted according 

to the number of friends in 

each ego-network and the 

intersection between ego-

networks is related to the 

number of common users 

 
 
 
 
 
 
 
 
 

boxes like NetworkX or Matplotlib. In order to create it, we have used a JavaScript 

visualization library called D3.JS.4 
 
 
 

 Community Detection 
 

 
 
 
 
 
 
 
 
 
 
 

In [18]: 

A community in a network can be seen as a set of nodes of the network that is 

densely connected internally. The detection of communities in a network is a 

difficult task since the number and sizes of communities are usually unknown [3]. 

Several methods for community detection have been developed. Here, we 
apply one of the methods to automatically extract communities from the Facebook 

network. We import the Community toolbox5 which implements the Louvain 
method for community detection. In the code below, we compute the best 
partition and plot the resulting communities in the whole Facebook network with 

different colors, as we did in box In [17]. The resulting graph is shown in Fig. 8.14. 

 
 
 
 
 
 
 
 
 
 
 
 

 

. 

 
import community partition = community . best_partition ( fb ) 

print "#  

communities found :" , max ( partition . values () ) colors2 = 

[ partition . get ( node ) for node in fb . nodes () ] nsize = np . 

array ([ v 

for v in degree_cent_fb . values () ]) nsize = 500*( nsize - 

min ( nsize )) /( max ( nsize ) - min ( nsize )) nodes = 

nx . draw_networkx_nodes ( 

fb , pos = pos_fb , 

cmap = plt . get_cmap ( ’ Paired ’), 

node_color = colors2 , 

node_size = nsize , 

with_labels = False ) 

edges = nx . draw_networkx_edges ( fb , pos = pos_fb , alpha = .1)  
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Fig. 8.14 The Facebook 

network drawn using the 

Spring layout and different 

colors to separate the 

communities found 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Out[18]: # communities found: 15 

As can be seen, the 15 communities found automatically are similar to the 10 ego- 

networks loaded from the dataset (Fig. 8.12). However, some of the 10 ego-

networks are subdivided into several communities now. This discrepancy can be 
due to the fact that the ego-networks are manually annotated based on more 

properties of the nodes, whereas communities are extracted based only on the 

graph information. 

 


