
COMPUTATIONA
L

NUMBERTHEOR

Y

&CRYPTOGRAP
Computational Number Theory & Cryptography

Course Writer

Dr. Ajay Patel
Dr. Amit Suthar

Computational
Number Theory &
Cryptography

2023

PG Diploma in Cyber SecurityB.Sc. IN CYBER SECURITY

3

Computational Number Theory and Cryptography
Block-1

UNIT-1 Computational Complexity 006

UNIT-2 GCD Computation 009

UNIT-3 Finite Groups 012

UNIT-4 Modular Arithmetic 023

Block-2

UNIT-1 Key Exchange 037

UNIT-2 Public Key Cryptosystem 042

UNIT-3 Factorization 054

Open University
PGDCS-103

Madhya Pradesh Bho�

4

Block-3

UNIT-1 Primality Testing 078

UNIT-2 Elliptic Curve Cryptosystem 092

UNIT-3 Hash Function Digital Signatures 110

UNIT-4 Stream Ciphers 126

Block-4:

UNIT-1 Crypto-graphical Algorithms 130

UNIT-2 Public Key Infrastructure 141

UNIT-3 Classical cryptography 147

5

o

Block-1

6

Unit 1: Computational Complexity

1.1 COMPLEXITY OF COMPUTATION & COMPLEXITYCLASSES

We will restrict ourselves to two types of Complexities:

Time Complexity

Space Complexity.

By time/space complexity we mean the time/space as a function of input size required by an

algorithm to solve a problem.

Problems are categorized into 2 types

(i) DecisionProblem

(ii) OptimizationProblem.

For the purpose of present discussion we will concentrate on decision problems. This is defined

as follows.

Definition 1: Let x L or x

L is decision problem.

Notation: Let p() denote a polynomial function.

We will define some complexity classes:

Definition 2: The class P comprises of all languages L

time algorithm A to decide L. In other words given a string x

determine in time p(|x|) whether x L or x L.

Definition3: The class NP comprises of all language L given a string x L a

proof of the membership of x L can be found and verified in time p(|x|).

Definition 4: The class Co-NP comprises of all language L - L NP.

Note: We can easily verify CO-P=P and thus P NP CO-NP.

Definition 5: The class PSPACE comprise of all languages L

algorithm A that uses polynomial working space with respect to the input size to decide L. In

other words given a string x (|x|) whether

x L or x L.

1

7

We will state without proof the following result that follows from Savitch‘stheorem:

PSPACE=NSPACE

Polynomial Time reducibility:

A language L1 2

time computable function f () such that x *, x L1 if and only if f (x) L2 . We denote this

by L1 p L2. we can clearly observe that polynomial time reductions are transitive.

Completeness:

A language L complexity class C if all problems

in that complexity class C can be reduced to L.Thus we formally define the notion of NP-

Completeness.

Definition 6:

A language L NP-Complete if

(i) L NP

(ii) L NP, we have L pL.

The above definition is not very suitable to prove a language L to be NP-Complete since we

have infinitely many language in the class NP to be reduced to L. Hence for providing NP-

Completeness we resort to the following equivalentdefinition.

Definition 7:

A language L is said to be NP-Complete if

(i) L NP

(ii) L' NP-Complete and L' pL.

The previous two definitions are equivalent since:

L' is NP-Complete L NP, L p L definition 6) L NP, L pL pL

L NP, L p L (from the transitivity of polynomial time reductions.) L is NP-Complete.

Only catch in this approach is to prove the first problem to be NP-Complete for which we

usually take as SATISFIABILITY problem.

1.2 ENCODINGSCHEME

In all the definition of computational complexity we assume the input string x is represented

using some reasonable encoding scheme.

Input size will usually refer to the numbers of components of an instance. For example when we

8

Let X = 2 X 1+X 2

Y = 2 Y1+Y2....

consider the problem of sorting the input size usually refers to the number of data items to be

sorted ignoring the fact each item would take more than 1 bit to represent on a computer

But when we talk about primarily testing, i.e., to test whether a given integer n is prime or

composite the simple algorithm to test for all factors from 2,3,……, is considered

exponentialsincetheinputsizeI(n)is bitsandthetimecomplexityisO(),i.e.,

O().

Again if n is represented in unary the same algorithm would be considered polynomial. For

number theoretic algorithms used for cryptography we usually deal with large precision

numbers. So while analyzing the time complexity of the algorithm we will consider the size of

the operands under binary encoding as the input size. We will analyze most of our programs

estimating

complexity to the number of bit operations we have to consider the time complexities of

addition, subtraction, multiplication &division.

Addition & subtraction:

Clearly

operations.

Multiplication:

Let X and Y be two ß bit numbers

Then X x Y = 2 X1 Y1 + 2 (X1 Y2+ X2 Y1) + X2 Y2

Thus the time complexity of the above multiplication

T () = 4T (/2) +C

4 multiplications to Compute X 1Y1, X 1Y2,

. X2Y1&X2Y2

9

Unit 2: GCD Computation

2.1 ELEMENTARYNUMBER-THEORY

Brief review of notions from elementary number theory concerning the set

Z = {..., -2, -1, 0, 1, 2...} of integers and

N = {0, 1, 2 , ...} of natural numbers.

Zn= {0, 1, 2… n-1}

Zn
+= {1, 2… n-1.}

Common divisors and greatest common divisors (GCD):

Let a, b Z

d Z d | ax + by [x, y Z]

Let d = gcd (a,b)

d' | a d' | b d' | d [d

The following are elementary properties of the gcd function:

gcd(a , b) = gcd(b , a)

gcd(a , b) = gcd(- a , b)

gcd(a , b) = gcd(| a |, | b |)

gcd(a , 0) = | a |

gcd(a , ka) = | a | for any k Z .

Theorem 1

If a and b are any integers then gcd(a,b) is the smallest positive element of the set {ax + by : x, y

Z }

Proof:

Let s be the smallest positive element of the set:{ ax + by : x , y Z}

Let q = a / s and s = ax + by

a mod s = a – qs = a - q (ax + by) = a (1 - qx) + b (- qy)

a mod s <s and a mod s is a linear combination of a and b . Thus a mod s = 0 s | a

Using analogous reasoning we can show s | b. Thus s a,b).

Let d = gcd (a,b) d | a and d | b. Thus d | s and s >0 d s. We have shown before d s and

2

10

thus we have established that d=s.

Corollary 1:

For any integers a and b, if d | a and d | b then d | gcd(a, b).

Relatively prime integers

Two integers a, b are said to be relatively prime if their only common divisor is 1, that is, if

gcd(a, b) = 1.

Theorem 2

For any integers a, b, and p, if both gcd(a, p) = 1 and gcd(b, p) = 1, then gcd(ab, p) = 1.

Proof :

gcd(a, p) = 1 x, y Z such that ax + py = 1 gcd(b,

p) = 1 x Z such that bx

Multiplying these equations and rearranging, we have

ab(x x') + p(ybx' + y'ax + pyy') = 1.

Thus linear combination of a, b and p is equal to 1

Thus we have gcd (ab, p) = 1

Theorem 3

For all primes p and all integers a, b if p | ab p | a or p | b .

Proof:

Assume otherwise, i.e., p | a and p | b. Since p is prime only 2 factors are there for p i.e. 1 & p.

Therefore gcd(a, p) =1 and gcd(b, p) =1 then gcd (ab, p)=1 p |ab.

Unique factorization

A composite integer a can be written in exactly one way as a product of the form:

a =

Where pi‘s are primes i (1..k) such that p1< p2<p3-------- <pk

and ei Z+(i=1,2, -------k)

Theorem 4 (GCD Recursion theorem)

For any non negative integer a and positive integer b gcd (a, b)= gcd (b, a mod b)

11

Proof:

We will show gcd (b, a mod b) | gcd (a, b) and gcd (a, b) | gcd (b, a mod b). Let d = gcd (b, a

mod b). Thus d | b and d | (a mod b).

Now a = b + a mod b. Hence a is a linear combination of b and a mod b and so d | a.

Therefore d | a and d | b d | gcd (a, b) from Corollary1.

Let d = gcd (a, b) d | a and d | b. Now a mod b = a – b and that implies a mod b is a linear
combination of a and b. Thus d | (a mod b) d | b and d | (a mod b) d | gcd (b , a mod b)

from Corollary 1.

2.2 EUCLID'SALGORITHM

EUCLID (a, b)

1. ifb=0

2. then return(a)

3. else return(EUCLID(b, a modb))

Lemma: If a > b

then a k+2 and b k+1

Proof: (By induction)

Basis: Let k=1, we know a > b

b 2 = 1 (here k+1=2)

Since a > b a a 3 (herek+2=3)

If a >b initially then this property a >b is maintained at each recursive invocation in EUCLID (a,

b) algorithm, since b >a mod balways.

NOTE: Since a mod b <b The invariant 1st argument > 2nd argument of EUCLID's algorithm

is maintained during each iteration.

Inductive Hypothesis: Assume the result holds for # of invocations k -1

Inductive proof: Let EUCLID (a , b) makes k invocations

EUCLID (b , a mod b) makes (k -1) invocation

From our inductive hypothesis:

b (k -1)+2 , a mod b (k -1)+1

10

Therefore b k+1 , a mod b k

We know, a = * b + a modb (where = Floor (a))

a b + a mod b .

Since a mod b kwe have a k+1 + Fk a k+2 .

Lame’s Theorem: For any integer k b b < Fk+1 then EUCLID (a, b) makes

fewer than k recursive calls gcd (Fk+1, Fk) = gcd (Fk, Fk-1) = … = gcd (1,0) = 1

Therefore # of recursive invocation = k-1

This shows that the bound k-1 is tight.

Fk /Fk-1]
To represent Fk, # of bits required =k

)

EXTENDED-EUCLID ALGORITHM

Goal: Given 2 integers a and b compute integers x and y such that gcd (a, b) = ax + by.

EXTENDED-EUCLID (a, b)

1. if b =0

2. then return (a, 1,0)

3. (d', x', y') -EUCLID (b, a modb)

4. (d, x, y) – y')

5. return (d, x, y)

For a=99 and b =78 the following table illustrates the values of variables d, x, y at different

levels of recursion for the algorithm EXTENDED-EUCLID(99, 78). We can easily verify that

gcd(99, 78) = 3 = -11(99) + 14(78).

11

The correctness of the algorithm is established from the following inductive argument.

Basis: Let d denote gcd(a, b). When EUCLID terminates b = 0 and d = a x = 1, y = 0. Thus

the arguments returned by EXTENDED-EUCLID iscorrect.

Inductive Hypothesis: Assume the values d', x', y' returned by EXTENDED-EUCLID(b, a mod

b) is correct.

Induction Step: We have to show EXTENDED-EUCLID(a, b) correctly computes d, x, y.

d'= x'b + y' (a mod b) = x'b + y' (a - b) = y'a + (x'- y')b =d

x = y' and y = x'- y'.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

12

Unit 3: Finite Groups

3.1 MODULAR ARITHMETICGROUPS

A group (S ,) is a set S together with a binary operation defined on S for which the

following properties hold.

1. Closure: For all a , b S , we have a b S.

2. Identity:Thereisanelemente S,calledtheidentityofthegroup,suchthate a=a

e = a, for all a S.

3. Associativity: For all a , b , c S, we have (a b) c = a (b c).

4. Inverses: For each a S , there exists a unique element b S , called the inverse of a ,

such that a b = b a = e.

As an example, consider the familiar group (Z , +) of the integers Z under the operation of

addition: 0 is the identity, and the inverse of a is - a .

Abelian group :

If a group (S ,) satisfies the commutative law a b = b a, for all a , b S , then it is an

abelian group .

The groups defined by modular addition and multiplication

First we define the congruence notation

If a , b Z then we say a b modulo n if p , q , r Z such that a = pn + r and b = qn + r .

We will denote a mod n as [a]n

We can form two finite abelian groups by using addition and multiplication modulo n , where n

is a positive integer. These groups are based on the equivalence classes of the integers modulo n

a a ' (mod n) and b b ' (mod n), then

a + b a ' + b ' (mod n),

ab a ' b ' (mod n) .

Thus, we define addition and multiplication modulo n , denoted +nand *n,as follows:

[a] n + n [b] n = [a + b] n(addition modulo n)

3

13

n, n n n n

15 15, 15

[a] n * n [b] n = [a *b] n(multiplicative modulo n)

Using this definition of addition modulo n , we define the additive group modulo n as (Z n,+ n).

The size of the additive group modulo n is | Z n| = n. Modular addition over the group (Z 6, + 6) is

defined as follows:

Closure: If a Zn and b Zn then from the definition of addition modulo n a +n b = [a + b]n Z n

Identity: 0 is the identity element of

ZnInverse: Inverse of [a] n is [-a] n -

a] n

Using this definition of multiplication modulo n , we define the multiplicative group modulo n

as(Z* *) where Z* ={[a] Z | gcd(a , n)=1} . For e.g. when n=15,

Z* = {1, 2, 4, 7, 8, 11, 13, 14}. Modular multiplication over the group(Z* *) is defined as

follows:

Identity: [1] n

Inverse: Since gcd(a , n)=1 for every a Z*
n from Extended-Euclid (a , n) we obtain x and y

14

k

n ,

n ,

45

45 , 45

such that ax + ny =1 ax n x is the inverse of a .

Clearly both +nand *nare associative and commutative. Thus we have established the following

theorem:

Theorem 1: Both (Z n,+n)and(Z* *n) form finite Abeliangroups.

|Z* n n) is the Euler phi function .

From unique factorization theorem n can be expressed in terms of prime factors as follows:

n = p1
e1 p2

e2... p ek

In our example n =15

15 =3*5

-1/3)(1-1/5) =8

For n = 45 = 32 -1/3)(1-1/5)=24. Thus the group(Z* *)contains

|Z* | =24elements.

3.2 SUBGROUPS

Subgroups and its Properties :

Lecture no 4.

Let (G,) be a group and H G is a subgroup if

1. H is closed.

2. a H , a -1 H.

Proof: To show H is a group

1. Closure [Follows from 1stcondition]

2. Associativity [Follows from associativity ofG]

3. Inverse a H , a -1 H [2 ndcondition]

a a -1 H [1st condition]

 e H

Theorem 1 : A non empty closed subset of a finite group is always a subgroup.

Proof : Let (G,) be a finite group & H be a non em pty closed subset of G . Pick an elem ent a

 H & generate the sequence a , a 2 , a 3 , ... where a 2 = a a , a 3 = a 2 a and so on.

15

This is an infinite sequence all whose members belong to finite subset H and hence all elements

in the sequence cannot be distinct. Thus there must be at least 2 elements that are identical.

a r = a s (r

a r-s = e

a -1 = a r - s -1 H

Thus H is a subgroup from our definition.

Definition 1: Let (G,) be a group and H is a subgroup of G. Between two elements a , b G

we define a congruence relation as follows:

a b -1 H

Lemma 1: Congruence relation is an equivalence relation.

Proof:

Reflexive:

We have to show a r all a G

From the definition of congruence relation a a -1 = e H a

Symmetric:

Let a , b G. Since a b mod H

a b -1 H

(a b -1) -1 H [Since H is a subgroup]

(b -1) -1 a -1 H

b a mod H

Transitive:

Let a , b , c a = b b c mod H

a b -1 b c -1 H So

a b -1 b c -1 H

a c -1 H

a c modH

Cosets: Let (G,) be a group and H is a subgroup of G .Pick an element a belonging to G.

Let H a = { h a | h H} be Right coset

Let a H= { a h | h H} be Left coset

Lemma 2: H a = { x | x a mod H} a

G

Proof: Let [a] = { x | x a mod H}. We have to show H a =[a].

16

To prove H a [a] let us pick an element h a H a . Thus h H a (h a) -1 = a a -

1 h -1 = h -1 H [Since H is a subgroup].

h a [a]

To prove that [a] H a let us pick an element x [a]

a x -1 H

(a x -1) -1 H

x a -1 H

Therefore for some h H we have x = h a . Thus x H a and [a] Ha.

Lemma 3: There is a one to one correspondence between any 2 right cosets of G.

Proof: To establish one to one correspondence between two sets X and Y we have to exhibit a

mapping f : X Y such that a 1 , a 2 X , a 1 = a 2 if and only if f(a 1)=f(a 2) where f(a 1), f(

a 2) Y . Also f has to be onto. As in our case we have if h 1 a = h 2 a then h 1 = h 2 and thus h

1 b = h 2 b . The function is also onto because for every element h b in the range there is an

inverse element h a in thedomain.

Theorem 2 [Lagrange]: Let (G,) be a finite group and H is a subgroup of G. Then o(H) |
o(G).

Proof: Notation o(S) = |S|

Let k be the number of right cosets. Thus k * o(H) = o(G) and o(H) | o(G).

Order of an element

Let (G,) be a finite group. Let a G. Then order (a) is defined as the smallest positive

integer t such that a (t) = e. [a t= a a a ... a t times].

Theorem 3 : For any finite group (G,*) and any a G the order of the element is equal to

the size of the subgroup it generates i.e., ord (a) =|<a>|.

Proof: <a > = e , a , a 2 , a 3

17

Let t = ord (a). So a (t) = e .

a(t) * a (k)

e *a(k) = a (k)

If j >t i <j such that a(i)= a(j)

Thus no new elements are generated beyond a(t). Hence |<a >| t .

Now we have to show that |<a >| t by proving all elements in <a > = { a1 , a2 ,….., at} are

distinct. Assume otherwise 1 i <j t suchthat a i=aj. Let t bej +k.Henceai+k=a j+k=

a(t)=e ai+(t-j)=eandweknow thati +t-j <t . Thuswearriveatacontradiction sincet = ord (a) is the

smallest power to which a has to be raised to become identity. Thus our assumption 1 i <j

t such that a i= a jis incorrect . Therefore, each element of the sequence a(1), a(2), ..., a(t)is

distinct, and |<a > | t . Thus we conclude that ord (a) = |<a > | Corollary 1:

Let (G,) be a finite group with identity e then for all a G we have aord(G) = e .

Proof : Consider the subgroup <a > of G. From Theorem 3 |< a >| = ord(a). From Lagrange's

theorem ord (a) | ord(G). Let ord (G) be k * ord(a). Thus a ord(G) = a k*ord(a) = e k = e .

Consider the group (Z*
n,

* n). We already know that | Zn
* | = (n).

Euler's Theorem :

For any integer n > 1

a (n) a Zn
*. [Corollary 1]

Fermat's Theorem :

If p is a prime then | Zp
* | = (p) = p -1.

a(p-1) 1 mod p for all a Zp
*.[Corollary1]

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India.

2. Topics in Algebra , Second Edition, I. N.Herstein, John Wiley.

3.3 PRIMITIVEROOTS

Definition 1: In a group (G,) an element g G is called a primitive root or the generator if

ord(g) = |G|.

18

Definition 2: A group (G,) is said to be cyclic if there is a generator for G.

Now the natural question is if (Zn
*, xn) always cyclic?

The answer is no. The following theorem Niven and Zuckerman [..] characterizes for which n

(Zn
*, xn) is cyclic.

Theorem 1: The value of n >1 for which (Zn
*, xn) is cyclic are 2, 4, peand 2pe, for all primes p >

2 and positive integer e .

We will not prove the entire theorem. But we will concentrate on the special case when n is a

prime p and show that (Zn
*, xn) is always cyclic.

Lemma 1 : For any n>1,

Proof : Let g Ag= { x |1 x n gcd(x , n) = g }.

If g | n then the corresponding Ag's are non-empty. They partition the set {1, 2, 3 …, n } such that

.

Let d = n / g . [Assume | Ag n / g)]

Let x Zd
*<=> gcd(xg , dg) = g *gcd(x , d) = g [since gcd(x , d)=1]

....................<=> gcd(xg , x) = g

....................<=>xg Ag

Therefore there is a one to one correspondence between elements of Zd
*and Ag.

| Ag| = | Zd
* d) .

Theorem 2 : Zp
* p -1) generators.

Proof : Zp
*= {1, 2, …, p -1} . Let Ok= { x Zp

*| ord(x)= k }

Clearly ……………..(1)

Assume | Ok k) (that is to be proved later in Lemma2)

Then [From Lemma1]

19

For the equality (1) to hold, we must have | Ok k) for all k | (p -1).

Put k = p - p -1) generators of Zp
*.Thus it must be cyclic.

Lemma 2: | Ok k)

Proof: If | Ok| an element a Ok.

Generate the sequence { a , a 2 , a 3 …, ak= e }

To prove this lemma we first establish a claim as follows:

Claim: 1 j k ord(a j) = k if and only if gcd (j , k) =1.

To prove the if part let us assume gcd (j , k) =1. Thus there exists integers m and n such that mj

+ nk = 1. Let k'' be the order of a jand assume k'' <k . Therefore (a j) k"= e . So we have:

Thus ord(a) <k which is a contradiction. Hence our assumption on the order of a jto be less

than k is incorrect.

To provethe onlyif part weassumegcd(j , k)= k'>1.Then (aj)k/k'=(aj)j/k'=(e)j/k'=e.Since k' >1, (k / k'

) <k a jhas order <k.

So we have established our claim.

Thus Ok= { a j| gcd(j , k) =1} | Ok k) .

Theorem 2 provides a nice characterization of computing generators for the group (Zp
*, x p).

A randomized Las Vegas algorithm to compute the generator is to pick an element a Z*
pat

random and check if its order is p -1. We will describe the checking of order of an element later.

p -1) generators of Z*
pthe probability that an arbitrary

element of Z*
p p -1)/(p -1). Thus after expected (p - p -1) trials

we will be able to obtain a generator.

3.4 GENERATORCOMPUTATION

From the fundamental theorem of arithmetic, we have n = where p1>p2>pk

i> 0 .

Lemma 3: For each i pi> i .

Proof: We will prove the above lemma using induction. Let us assume our inductive hypothesis

holds i <m. We must show that it holds for i = m. The basis is clearly verified from the fact

20

thatfori=1,pi i>ifori=1.Fromourinductivehypothesiswehavepm-1>m-1. Since pm-

1+1 is an even number we have pm> pm-1+1. Therefore pm> m and our inductive hypothesis

holds for i=m .•

Theorem 3: n) denotes the number of distinct prime factors of n , then

n) O .

Proof: From the fundamental theorem of arithmetic, we have n = where p1>p2

>.... pk i>0.

Now to maximize k , the number of distinct prime factors, we restrict i i= 1 .

Thus from Lemma 3 we have n = p1>p2>....... pk>k !. Using Stirling's Formula we obtain:

Theorem4:

Proof: We know F (n) = n wheren = . From

Lemma 3 we have:

Now the only thing that is left is to compute the order of the randomly picked element a

Zp
*. For this we have to assume the prime factorization of (p – 1) is available with us. Let p1

,p2

,.....pkare distinct prime factors of (p – 1). The following theorem enables us to computethe

generator in polynomial time.

21

Theorem 5: Let p be a prime, a Zp
* is a primitive root or the generator if and only if the

congruencerelation does not hold for each prime divisorpi.

Proof: Let a be a generator of Zp
*, then we have a p-1 (mod p) and a h p) h (0 ..

p –1). Since (0 .. p – 1) pi , wecannot have for any pi.

Let does hold for some prime divisor pi . Assume that a is not a primitive

root, then its order should be less than p – 1. Let ord(a) = d . Then we have d <p – d | p –1.

So (p – 1) / d is an integer and is therefore divisible by some prime factor pi of p -1.Then

for some c . Then , this contradicts with our assumption.
So our assumption is wrong and hence a cannot be a generator ofZp

*.

p -1)/(

p -1). Thus with high probability after expected (p - p -1) trials, i.e., O

trials we will obtain a generator. Since the maximum number of distinct

prime factors of (p – 1) will beO. So we have to testO

pi' ssuchthat does not hold for eachpi.

For the time being we will assume time to perform modular exponentiation is O(log p). [We will

elaborate this algorithm later.]

Thus we have established the following theorem:

22

Theorem 6: Given a prime p and the prime factorization of p –1, a generator of (Zp,
* x p) can

be computed by a randomized Las Vegas algorithm with expected running time O

.

23

Unit 4: Modular Arithmetic

4.1 SOLVING MODULAR LINEAREQUATIONS

Solve for the unknown x in the following equation:

ax b mod n

given a , b and n .

Consider the subgroup of (Zn, +n), i.e., { a x: x > 0 } = { ax mod n : x > 0 } = <a >. Thus the

above equation has a solution if and only if b <a >.

Theorem 1:

For any positive integers a and n , if d = gcd(a , n), then <a > = <d > = {0, d , 2 d , 3 d , …., ((

n / d)-1)/ d } in Znand thus |<a >| = n / d .

Proof:

We have to show that <a > = <d >. First we show <d > <a > . Since d = gcd (a , b) we have x

, y Zn
+ such that d = ax + ny . If either x or y returned by EXTENDED-EUCLID is negative

we consider them as [n + x] nor [n + y] nrespectively. Thus ax d mod n d <a

> d is some multiple of a . All others members of <d > belongs to <a > since they are

multiple of d multiple of multiple of a .

Now we show <a > <d >. Pick an arbitrary element m ax mod n <a > m = ax + ny

d | m (since d | a and d | n) m <d >. Combining these result <a > = <d >

Corollary 1:

The equation ax b (mod n) is solvable for the unknown x if and only if gcd(a , n) | b .

Theorem 2: Let d = gcd (a , n) and suppose that d = ax'+ ny' for some integers x' and y ' . If d |

b then the equation ax b mod n has one of its solutions x0 as:

x0 = x' (b / d) mod n

Proof: We have to show ax0 b mod n . From the given condition we know ax' d mod n .

Thus ax0 ax' (b / d) mod n d (b / d) mod n b mod n .

4

24

Theorem 3: Consider the modular linear equation ax b mod n . If d = gcd(a , n) and d | b and

that x0 is any solution to this equation then this equation has d distinct solutions:

xi= x 0 + i (n / d) for i = 0, 1, …, d -1

Proof: We have to show axi b mod n i (0 .. d -1) . Since d = gcd(a , n) , d | a . Hence an

integer k = a / d . From the given condition the following must hold:

axi a (x0 + i (n / d)) mod n ax0+ ai (n / d)) mod n ax0 + kin) mod n ax0 mod n b

mod n.

So xiis a solution to the given equation. Thus we conclude there are d distinct solutions to the

given equation.

The following procedure computes all solutions of the modular linear equation ax mod n .

MODULAR-LINEAR-EQUATION-SOLVER (a , b , n)

1. (d , x ' , y ') -EUCLID(a , n)

2. if d |b

3. then x0 x ' (b / d) modn

4. for i = 0 to d-1

5. do print (x0 + i (n / d)) modn

6. else print “NoSolution.”

Exercise: Find all solutions to the equation 35 x

Solution: Here a = 35, b = 10 and n = 50. We know gcd(35, 50) = 5. Thus there are 5 solutions

to the given equation.

Since 3 x 35 + (-2) x 50 = 5 we have x' = 3. Thus x0 = x' (b / d) mod n = 3 x (10/5) mod 50 =

6. Other solutions are xi= x0 + i (n / d) [i = 1, 2, …, 4] i.e., x1 = 16, x2 = 26, x3 = 36, x4 = 46.

Corollary 2: For any n > 1 if gcd(a, n) =1 then the equation ax b mod n has exactly one

solution.

Corollary 3: For any n > 1 if gcd(a, n) =1 then the equation ax n has exactly an unique

solution, i.e., a -1 Z n
*.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

25

4.2 MODULAREXPONENTIATION

A frequently occurring operation in number-theoretic computations is raising one number to a

power modulo another number, also known as modular exponentiation . More precisely, we

would like an efficient way to compute a bmod n , where a and b are nonnegative integers and n

is a positive integer. They all are bit numbers.

To compute ab(mod n) we can adopt the following approach:

Perform b multiplications (a × a × a × … × a) mod n .

There are some drawbacks of this approach that are asfollows:

1. 1. The intermediate result is too large to fit inmemory.

2. Not polynomial-time with respect to input size, since we are performingb

multiplications where our input size is log b .

Here we present a polynomial time algorithm to perform modular exponentiation using repeated

squaring.

MODULAR-EXPONENTIATION (a , b , n)

1 c

2 d

3 let <bkbk-1 ... b0> be the binary representation of b . 4

for i = k down to 0

5 do c

6 d

7 if bi =1

8 then c

9 d n

10 returnd

Here we note that the above program will run perfectly even if we remove the variable c

altogether from the program. The variable c is retained to describe the loop invariant with which

we establish the correctness of the above algorithm.

Invariant: In each iteration the following invariant is maintained:

1. 1. Let the current bit being processed is bi. The value of c is the same as the prefi x <

bkbk-1 ..., bi+1> of the binary representation of b.

2. d = a c mod n.

26

We use this loop invariant as follows:

Initialization:

Initially i = k , so that the prefi x < bkbk-1 ..., b i+1> is empty, which corresponds to c = 0.

Moreover, d = 1 = a c mod n .

Maintenance:

Let c ' and d ' denote the values of c and d at the end of an iteration of the for loop and thus the

values prior to the next iteration. Each iteration updates c ' i = 0) or c ' i

= 1), so that c will be correct prior to the next iteration.

If bi = 0 then d ' = d2 mod n i.e., d ' = (a c)2 mod n and hence d ' = a 2c mod n = ac' mod n .

If bi = 1 then d' = d 2 a mod n i.e., d ' = (a c)2 a mod n and hence d ' = a 2c+1 mod n = ac' mod n .

in either case, d = acmod n prior to the next iteration.

Termination:

At termination, i = -1. Thus, c = b , since c has the value of the prefi x < bkbk-1 ... b0> of b 's

binary representation. Hence d = ac mod n = ab mod n .

Analysis of Time Complexity:

-bit numbers then the total number of arithmetic operations

-
2 3). Thus the algorithm

is clearly polynomial with respect to input size.

Note: Modular exponentiation algorithm is an essential component used in several cryptographic

algorithms.

One weakness of the algorithm is the different timing requirement of each iteration depending on

the value of the bit bi. If the bit bi= 0 clearly the for loop take much less computation time than

the bit bi = 1. This weakness of modular exponentiation had been exploited to attack several

cryptographic algorithms. This attack is known as timing attack .

There are several remedies to overcome the attack. One possible solution is to remove the

difference in computation time for bi= 0 or 1 by adding some delay in each iteration when bi= 0

and making the loop execution time equal to that of bi = 1. We will discuss other remedies later.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

27

4.3 CHINESE REMAINDER THEOREM

Around A.D. 100, the Chinese mathematician Sun-Tsu posed the following problem:

Problem 1: Determine the numbers that leave remainders 2, 3 and 2 when divided by 3, 5 and 7

respectively.

One solution to the above problem is 23. The general solution is 23+105k for arbitrary integer k.

A system of two or more linear congruence need not have solution. Consider the system of

congruence x x This system is clearly unsolvable. Since the second

congruence implies x is of the form 4k + 1 which makes it indivisible by 2 and thereby making

the first congruence infeasible.

But the above argument doesn‘t hold when the system of congruence have pair-wise relatively

prime moduli (for example 3, 5 and 7). We will prove that the system of congruence that can be

solved individually can also be solved simultaneously provided they have pair-wise relatively

prime moduli.

We will first prove the result for a system of 2 congruence relations and then generalize for

arbitrary number of congruence relations.

Lemma 1: The system of congruence x a mod n1 and x b mod n2 has exactly one solution

modulo the product n1n2 provided gcd (n1,n2) =1.

Proof: Since gcd (n1, n2) = 1 there are integers p and q such that pn1 + qn2 = 1. Thus pn1

n2) and qn2 n1). Let x' = bpn1 + apn2. Thus x' a mod n1 and x' b mod n2. Thus x' is a

solution to our given system of congruence. Let x" denote another solution to the system. Thus x'

x" (mod n1) and x' x" (mod n2). Since gcd (n1, n2) = 1 we have x' x"(mod n) where n =

n1n2.

Chinese Remainder Theorem (Generalized Version): Let n1, n2, …, nk be pair-wise relatively

prime integers with gcd (ni, nj) = 1 where i a1, a2, …, ak be arbitrary integers. Then there

exists exactly one solution x (mod n1x n2x… x nk) to the system of congruence:

28

x a1 (mod n1), x a2 (mod n2), …, x ak(mod nk).

Proof: Let n = n1 x n2 x… x n k. Let us define mi= n/nifor i = 1, 2, …,k. Thus m i = n 1 x n 2 x…

xni-1xni+1x…xnk.Wenow defineci=mi(mi
-1modni)fori =1,2, …,k.Weknowmi

-1 mod n iexists since

gcd(mi , ni) = 1. Finally we define:

x a 1c 1 + a2c2 + … + a k c k) (mod n)

To prove that x satisfies every congruence we argue as follows. We know that

cj j ni) for j i and ci ni) otherwise. Thus

x a ici (mod ni)

a i m i(mi
-1 mod ni) (mod ni)

ai (mod ni)

For all i = 1, 2, …,k.

Problem 2: Find all solutions to the equations x x

Solution: a1 = 4, n1= m2 = 5, a2 = 5 and n2 = m1= 11. n = 55.

We know 11-1 -1

c1 = 11 (1 mod 5) = 11 and c 2 = 5 (9 mod 11) = 45

Thus x = 4 x 11 + 5 x 45 (mod 55) = 44 + 225 (mod 55) = 269 (mod 55) = 49 (mod 55).

So the general solution to the given system of congruence is 49 + 55k where k is an arbitrary

integer.

Corollary 1: If n1, n2, …, nkare pair-wise relatively prime and n = n1 xn2x x nkthen forall

integer x and a

x a (mod ni)

for i = 1, 2, …, k if and only if

x a (mod n).

Proof: For the if part of the proof we assume x a (mod n) and hence (x-a) = kn for some

integer k. Thus ni| (x-a) since n = n1 xn2xxnk.

To prove the only if part we assume x a (mod ni) for all i = 1, 2, …, k. We prove this part by

induction on k.

29

Basis: When k = 2 we have x a (mod n1) and x a (mod n2). We have to prove x a (mod

n1n2). From the given congruence we can infer there exists integers k1 and k2 such that (x-a) =

k1n2 = k2n2. Since n1 and n2 are relatively prime we have integers l and m such that ln1 + mn2 = 1.

Multiplying both sides by (x-a) we have lk 2n 2n 1 + m k 1n 1n2 = (x-a) and hence (x-a) = k3n1n 2

where k3 is an integer.

Inductive Hypothesis: Assume the hypothesis holds for pair-wise relatively prime integers n1,

n2, …, nk-1.

Induction step: We have to show the corollary holds for pair-wise relatively prime integers n1,

n2, …, nk. Let n'= n1 x n2 x… x nk-1. We know that n' and nk are relatively prime and x a (mod

n') and x a (mod nk). Following similar argument used for the proof of the basis we can show x

a (mod n'nk). We also know that n = n1x n2 x… x nkand thus n = n' x nk. Hence we have

proved that x a (mod n).

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

4.4 DISCRETE LOGARITHMPROBLEM

Theorem 1: If g is a generator of Zn
* then the equation gx gy(mod n) holds if and only if the equation

x y n)) holds

Proof : To prove the if part we assume x y n)). Thus x = y + k n) for some integer k.

Therefore

gx

= g

= gy (g)(mod n)

= gy (1)k (mod n)

= gy (mod n)

To prove the only if part we assume that g x y(mod n). The sequence of powers of g generates

every element of <g>and |<g n). Thus the sequence of powers of g is periodic with period

n). Therefore if gx y (mod n), then we must have x

Discrete Logarithm: Let g be the generator of the group Zn
* . Given an element y = gx (mod n)

the discrete logarithm is defined as dlogn,g(y) = x.

30

Let us consider and the group (Z7
*, xn) . Clearly the group is cyclic since n = 7 is a prime number.

We can see that 3 is a generator of the group. Thus discrete logarithm according to the previous

definition is defined by the following table:

x 1 2 3 4 5 6

dlog7,3(x) 0 2 1 4 5 1

Table – 1

Given g, x and n it is easy to determine y. By the word easy we mean it is polynomial time

computable. This clearly follows from the fact that we can perform modular exponentiation in

polynomial time. But given g, y and n it is difficult to compute x. This problem is known as the

discrete logarithm problem. Till to-date we are not aware of any polynomial time algorithm for

this problem. Many cryptographic algorithms utilize the difficulty of solving the discrete

logarithm problem.

Now we can clearly see that given n if we pre-compute the entire Table-1 by computing

sequentially the indices g0mod n, g1 mod n ,…so on and storing the corresponding exponent of g

in the indexed array location. Once we are done with this preprocessing given an arbitrary x we

can compute dlogn,g (x) in polynomial time. But there comes the tradeoff between time and

memory .

Note: Discrete Logarithm Problem NP. This follows from the fact that given a guess of x

clearly the verification whether y = gx (mod n) can be carried out in polynomial time using

modular exponentiation algorithm.

Properties of Logarithms:

loga1 =0

logaa =1

logaxy = logax+logay

logax
n = nlogax

Properties of DiscreteLogarithms:

dlogn,g (1)=0 g0 = 1(mod n)

dlogn,g(g)=1 g1 = g(modn)

dlogn,g(xy) =(dlogn,g(x)+dlogn,g

[Proof is provided in the Explanation]

31

n,g n,g

n,g

g)modn

p

p

dlogn,g xr = r dlogn,g

[Using repeated application of the earlier property]

Explanation :
dlogn (x)

n,g

dlogn (y)
n,g

(xy) modn=g(dlog (x)+dlog (y))modn

xy= gdlog x,y(modn)

dlog(xy) (dlog(x)+dlog (y)
n,g n,g n,g

Applying Theorem 1 we have:

dlogn,g (xy) = (dlogn,g(x)+dlogn,g

Reference:

1. Cryptography and Network Security , William Stallings, Prenctice Hall India.

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

4.5 QUADRATICRESIDUES

Definition 1: An element a Z* is called a quadratic residue if there are elements ±x Z*n such

that x2 non-quadratic residue .

Lemma 1: Let p be an odd prime and g be the generator of Z* . Then all even powers of g are

quadratic residues and all odd powers of g are non-quadratic residues.

Proof: Let l = 2 k be an even number and clearly gl is a quadratic residue since (± gk)2 l mod

n . Thus here x = gk . In contrast let l = 2 k + 1 be an odd number. We will prove that in this case

gl is not a quadratic residue by contradiction. Assume otherwise, i.e., let gl be a quadratic residue.

Thus there exists x = gm Z*
p such that x2 2m 2k+1 mod p. Applying

Theorem 1 in lecture-4 (Module -3) we have . Thus we have 2 m

x = g

y = g

32

have 2 m -1). This implies (p -1) | (2 m -2 k -1). Since p -1 is an even number

and (2 m -2 k -1) is an odd number and an even number cannot divide an odd number we have

arrived at a contradiction. Thus our assumption that gl is a quadratic residue is not correct and

hence it is a non-quadratic residue.

Theorem 1: Let p be an odd prim and e 2 e has only 2 solutions

namely ±1.

Proof: Let g be the generator of the cyclic group . Thus we can rewrite our modular equation

as . Thus from Theorem 1 in lecture-4 (Module-3)we

have e) = pe-1 (p-1). Thus the givenmodular
equation is solvable since gcd(2, pe-1 (p-1)) = 2 | 0 and it has exactly 2 solutions namely ±1(By

Inspection).

Note that if n is an arbitrary composite number the equation x2

solutions. For example if n = 15 then 4 and 11 are two non-trivial roots of the equation x2

mod n besides 1 and 14. Later in Theorem 3 we will estimate the number of roots of the

equation x2

Theorem 2: [Euler] Let and it is a quadratic residue if and only if

Proof: To prove the if part we assume that is a quadratic residue. Thus it must an

even power of g where g is ageneratorof . Let a be equal to g2k.Thus

33

For the only if part weassume that is a non-quadratic residue. Thus it must bean

odd power of g where g is ageneratorof Let a be equal to g2k+1.Thus

Since gp-1 Theorem 1 . Since g is the generator its order

cannot be less than (p-1). Thus and .

Now the most natural question is what happens when n is composite. In other words how many

roots are there of the equation x2

two cases:

n is even and of theform

n is odd and of theform

In both cases pi‘s are all primes. From Theorem 1 we know that there are exactly 2 roots for

each of the modular linear equation x2 i (pi
following for modular linearequations.

x2

x2

x2 e has exactly 4 roots for e

With this knowledge if we lift the result from primes to composites using CRT (Chinese

Remainder Theorem) we can observe that the equation x2 a mod n has 2k roots when n is odd

and when n is even it has 2k-1, 2k and 2k+1 roots respectively for e1=1, e1=2 and e1

Now we introduce to the notion of Legendre Symbol of an element . It isdenoted

34

by and is defined asfollows:

= =

depending on whether a is a quadratic residue or non-quadratic residue from Euler‘s Criterion.

Theorem 3: For every odd prime pwehave =(-1) = depending on p
4 and p

Theorem 4: For every odd prime p wehave = = +1 (if p -1
(if p

Proof: Consider the following congruences :

p-1 -1)1 mod p, 2 2(-1)2 mod p, p -3 -1)3 mod p, 4 -1)4 mod p, …, r

mod p. Here r is either p – (p-1)/2 or (p-1)/2. If we multiply these
congruences and observing the fact that the number on the left of each congruence is even,we

obtain:

2.4.6 … (p-1) ! (-1) modp.

Thus we have ! !(-1) mod p. Since ! p we have

established the first equalitysince = .

Theorem 5: If a prime p either is a or –a is anon-quadratic
residue.

35

p

p

Proof: If p p will be of the form 4l + 3 for some integer l, i.e., p = 2k+1 for some

odd number k where k = 2l+1. We prove the theorem using contradiction. Assume both a and –a

are quadratic residues modulo p. We then have x2 a mod p and y2 -a mod p for some x, y

Z* . From this we have x2k ak mod p and y2k -1)kakmod p. Since k is odd x2k mod p and y2k

mod p must have opposite signs. But from Fermat’s little theorem, both x2k and y2k must be

congruent to 1 mod p, which contradicts the assumption. Hence either a or –a is a non-quadratic

residue.

If p p p

easily show that the first case 2 is the generator and in the second case p-2 is the generator. Thus

using this characterization we can compute the generator of any odd prime p

time.

Now we will prove an important theorem for finding out the square root of any quadratic residue.

Theorem 6: If a Z* is a quadratic residue then its square root is modp.

Proof: Clearly we can see that mod p = mod p = mod p = a mod p. This

is because Legendre symbol mod p = +1, since a is a quadraticresidue.

We can use the above theorem to compute the square root of anyquadraticresidue
deterministically using modular exponentiation when p

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

3. Randomized Algorithms , R. Motwani & P. Raghavan, Cambridge University Press.

36

Block-2

37

YA =

YB =

Unit 1: Key Exchange

5.1 DIFFIE HELLMAN KEYEXCHANGE

This key exchange protocol is one of the earliest technique that illustrates the use ofnumber

theory in public key cryptography. Here two parties say Alice and Bob want to agree on a

common key K that will be used for encryption in a symmetric key cryptosystem. A simple

example is asfollows:

Key : K, Message :m

Encryption by Alice:

Cipher text produced is C = m K

Decryption by Bob :

Original message is retrieved back as follows: m K K = m.

During the process of establishing agreement between Alice and Bob it is essential that no third

party should be able to compute K. Let us first describe the process of establishing agreement:

Publicly Available Information: prime p , generator g of the group (Z*
p, x p).

Step 1. Both Alice and Bob choose their private keys XA and XB respectively such that 1 < XA<

p -1 and 1< XB<p -1.

Step 2. Alice sends her public key YA = and Bob sends his public key YB=

.

1

38

Step 3. Both Alice and Bob agrees on the commonkeyK= mod p =

.

Information available to the eavesdropper are prime p, generator g, public key of Alice YA and

public key of Bob YB. But to compute K from the available information requires computing

either XA, i.e., the secret key of Alice or XB, i.e., the secret key of Bob. But this reduces to

solving the discrete logarithm problem. So the key exchange scheme is secured.

In this key exchange scheme many times it becomes computationally difficult to compute the

generator g forthe group . So instead of using a generator the common practice is to pickup

anelement from having large order to avoid small subgroup attack. If the element picked

has a small order then the cardinality of the sub-group generated by that element will be small

and thus any brute-force algorithm will crack the discrete logarithm problem over that small

subgroup.

To avoid this problem we introduce a class of primes called safe primes. A safe prime p can

always be expressed in the form 2q+1 where q is another prime. Clearly these primes are

congruent to 3 mod 4. For any primep,| | = p -1. Hence if p is a safeprime| | =2q.

Hence there can be only subgroups of order 1, 2 and q. Now consider the set of allquadratic

residuesin . The size of this set is (p -1)/2, i.e., q. It is easy to show that this set isclosed

with respect to multiplication modulo p. Hence it is a asubgroupof . This subgroup is

preferred in Diffie Hellman key exchange due to security issues related to the disclosure ofthe

least significant bit information to the eavesdropper. Moreover since the cardinality of this

subgroup is q, a prime number, any element of this subgroup would be thegenerator.

Attacks on Diffie Hellman Key Exchange Scheme:

The proposed Diffie Hellman key exchange scheme is susceptible to a type of attack known as

Man-In-The-Middle attack. Theattack proceedsasfollows:

39

Suppose Eve is in between Alice and Bob. Eve has 2 secret keys . Eve intercepts

YA from Alice and YB from Bobandsends to Aliceand

toBob.

Finally Alice and Eve agrees on a commonkey K1= and Eve and Bobagrees

on a commonkeyK2= . Subsequent communication between Alice, Eve and
Bob takes place as follows:

In the above diagram E(K, m) denotes the encrypted message m with the key K.

Suppose Alice wants to communicate message m1 to Bob. She sends E(K1, m1) to Bob, i.e.,

message m1 encrypted by K1. Eve intercepts that and decrypts with K1and sends the encrypted

message E(K2, m1) to Bob. Bob decrypts that with his key K2. Similarly if Bob wants to

communicate a message m2 to Alice he sends E(K2, m2) to Alice. That encrypted text is

intercepted by Eve and decrypted with K2. Eve subsequently send the encrypted message E(K1,

40

m2) to Alice which she decrypts with K1to obtain m2. Thus both Alice and Bob are completely

unaware of the presence of Eve in the middle.

Remedy:

To overcome this type of attack every message should be authenticated by the sender. In other

words the use of MAC or digital signature will eliminate this type of attack.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

3. Randomized Algorithms , R. Motwani & P. Raghavan, Cambridge University Press.

5.2 CRYPTO SYSTEMS BASED ON DISCRETE LOG

Massey Omura Cryptosystem:

Suppose Alice wants to send a message m to Bob. Alice locks the message m with a lock and

sends it to Bob. Bob doesn't have the key to unlock. So what Bob does he puts an additional lock

over it and sends it back to Alice. Alice unlocks her own lock and sends it back to Bob. Bob then

unlocks his own lock and recovers the message m .

Here a large prime p is publicly available. Also assume m <p .The communication is carried out

through three following steps:

Step 1. Alice chooses a private key a and locks the message m by raising it to the power a to

obtain m amod p and subsequently sends to Bob.

Step 2. Bob chooses another private key b and puts the additional lock by raising the received

content to the power b to obtain m abmod p and subsequently sends back to Alice.

Step 3. Alice unlocks her own lock using a -1 ,i.e., shecomputesm mod p

mod p m [k(p-1)+1]b mod p mb mod p and sends it again to Bob.

Step 4. Bob then recovers the message m using b-1aftercomputing mod

mod p m mod p .

The security of this cryptosystem is based on the difficulty of solving the discrete logarithm

problem.

Like Diffie-Hellman key exchange scheme this cryptosystem is also susceptible to Man-In-The-

Middle-Attack . Clearly we can see Alice has no way of distinguishing Bob from Eve. So to

avoid this attack all message should be authenticated by the sender.

41

ElGamal Crypto system:

Here Bob chooses a large prime p and a generator g . Bob also chooses a secret integer a and

computes k1 = gamod p . The information (p , g , k1) is made public and is Bob's public key.

Suppose Alice now wants to send a message m to Bob where 0 m <p . The communication

takes place as follows:

Encryption by Alice:

1. 1. Alice downloads the public key of Bob (p , g , k1) from a publicdirectory.

2. Alice chooses a secret random integer k and computes C1 gk(mod p).

3. Alice also computes C2 kk
1 m modp.

4. Alice sends the pair (C1 , C2) to Bob.

In fact we can think C2 as a masked message and C1 contains the clue to unmask the message.

Decryption by Bob:

1. 1. Bob computesk2 mod p .

2. Bob decrypts by computing p.

If the eavesdropper knows about Bob's secret key a then he/she can easily decrypt the message

using the same procedure adapted by Bob. But to compute a from g and k1 requires solving the

discrete logarithm problem.

Also computing the integer k from C1 , g and p requires solving the discrete logarithm problem.It
should be noted that k should be a random integer and should vary in each run. Otherwise if the same
k is used in 2 sessions (for two distinct messages) it possible to break ElGamal Cryptosystem. The
attack is explained as follows:
Assumption: The attacker Eve had somehow came to know the plaintext m in the session when

Alice used the secret random integer k .

If Alice uses the same secret random integer k in another session for the message m' then shewill

send the pair (C1 , C3) to Bob where .

Now . Since Eve knows all C2,

C3 , m and p she can compute m' .

Thus the heart of the cryptosystem is based on discrete log.

Like Diffie-Hellman key exchange scheme this cryptosystem is also susceptible to Man-In-The-

Middle-Attack. Clearly we can see Bob has no way of distinguishing Alice from Eve. So to

avoid this attack all messages should be authenticated by the sender.

42

Unit 2: Public Key Cryptosystem

6.1 PUBLIC KEY CRYPTOSYSTEM &RSA

Suppose Alice wants to send some message M to Bob. But she cannot allow any other person to

know the content of M. So she has to send her message in an encrypted format that can be

decrypted only by Bob and not by any third party / eavesdropper. In public key cryptosystem this

is achieved as follows:

Each party has a pair of public and secret key. So Bob had public key PBand secret key SB . All

public keys of different parties are maintained in a public directory. So Alice first finds the

public key PB of Bob from the public directory. She then encrypts the message M with the public

key PB and obtains the encrypted message or cipher-text C = PB (M). This cipher-text C is sent to

Bob across the communication channel. After Bob receives the cipher-text C he decrypts using

his secret key SB to get SB (C) = SB (PB (M)) = M, the original message back.

So in this cryptosystem we have to ensure two things:

i. SB should be the inverse of PB.

ii. In spite of the knowledge of PB it is computationally infeasible to an eavesdropper to

determine SB .

One important issue that is left is how a message M is represented. It is usually represented by an

integer obtained as below.

2

43

M: Iam fine.
In the above message there are 9 distinct alphabets including blank. So we can use a number system
of base 9 and assign the code to each alphabet as follows:

Alphabet Code

. 0

I 1

a 2

e 3

f 4

i 5

m 6

n 7

8

So the message string M is mapped to the integer: 910 x 1 + 99 x 8 + 97 x 2 + 96 x 6 + 95 x 8 + 94

x 4 + 93 x 5 + 92 x 7 + 91 x 3 + 90 x 0. We can uniquely determine the string M back given this

integer in base 9.

DIGITAL SIGNATURES

Alice signs the message M SA(M') to it. She transmits the

message/signature pair (M M' = PA

the equation holds, he accepts (M

• Alice computes her digital signature s for the message M' using her secret key SAand the

44

SA(M').

• Alice sends the message/signature pair (M

• When Bob receives (M

key to verify the equation M' = PA M' contains Alice's name, so Bob knows

whose public key to use.) If the equation holds, then Bob concludes that the message M' was

actually signed by Alice. If the equation doesn't hold, Bob concludes either that the message M'

or the digital signature s was corrupted by transmission errors or that the pair (M

attempted forgery. Digital signature provides both authentication of the signer's identity

Sometimes a variation of the above approach is used for digital signatures. Here a one-wayhash

function h () is used. The hash function h () is public. These hash functions are called

cryptographic has functions. Given a message M it is easy to compute h (M) but it is

computationally infeasible to find two messages M and M' such that h (M) = h (M') . So Alice

applies her secret key SAover

h (M') and not over M'. SA(h (M')). Now she sends the pair (M'

Bob. Bob cannot compute h-1(). So in the first step he applies Alice's public key PAover s to

obtain PA PA(A(h (M')))= h (M'). In the second step Bob applies the public hash function

over the first component of the pair (M' M'to obtain h (M'). Bob accepts the signature as

valid if and only if the results obtained in the two steps are equal. Otherwise he rejects the

signature. This may happen either due to error in transmission or due to tampering by an

eavesdropper. So he will ask Alice to retransmit the message-signature pair again.

Exercise Question: Alice's signature can be verified by any person including Bob. What Alice

must do to ensure that only Bob can verify her signature?

RSA Public Key Cryptosystem

The cryptosystem is set up as follows:

1. Choose two large random and distinct primes p and q 100 – 200 digit each roughly of

the samesize.

2. Compute n = pq

n) = n (1-1/ p)(1-1/ q) = (p -1)(q -1).

4. Pick an integer e n), i.e., gcd (e n)) =1.

5. Compute d the multiplicative inverse of e n), i.e., ed n).

6. Publish the pair (e , n) as the RSA public key.

45

7. Retain the pair (d , n) as the RSA secret key.

Suppose Alice wants to send a message M to Bob. Assume M<n . So Alice encrypts M with the

public key d of Bob to obtain the cipher-text C = Mdmod n . She sends C to Bob. Bob decrypts

the cipher C using his secret key d to get Cdmod n edmod n

(1-1/ p)(1-1/ q) = (p -1)(q -

But this computation for Eve requires factoring n . So it is computationally infeasible for Eve to

determine d .

Correctness of RSA is established via following argument:

We know M Zn since M Z M < n .

Since e and d are multiplicative inverses we have ed -1)(q -1)

for some integer k .

Now if M

Med
k(p -1)(q -

1))
mod p

(p -1)k(q -1) mod p

k(q -1) mod p [Applying Fermat's Theorem]

mod p

Again if M p then trivially Med p .

Thus for all M Znwe have:

Med p --------------------------(1)

Similarly for all M Znwe have:

Med q --------------------------(2)

Combining (1) and (2) using Chinese Remainder Theorem we have:

Med n

for all M.

Computationally hard assumption for RSA algorithm is the difficulty of factoring the modulus n

. If n can be factorized in polynomial time to obtain p and q then the attacker can break the

n) =(p -1)(q -1) and then

by using EXTENDED-EUCLID algorithm d can be computed. Conversely if the attacker can

figure out the decryption key d then the attacker can come to know k ed

46

n) ed = 1+ k n) for some integer k . Then using the randomized algorithm discussed in

Lecture-1 Module-5 the attacker can factorize n in polynomial time.

RSA is frequently used in hybrid mode with fast non-public key cryptosystem. It is combined

with cryptosystems for which encryption and decryption keys are identical like DES or AES.

RSA is used to transmit the key. But the original message is encrypted as a symmetric cipher.

Suppose the key required for symmetric encryption is K. So the message M is encrypted with K

to obtain the symmetric cipher E(K, M). But the receiving party Bob doesn't know K. So the

sender Alice encrypts K in RSA with receiver's public key PB to obtain PB (K). She then sends to

Bob E(K, M) || PB (K). Bob after receiving applies his own secret key SB over PB (K) to obtain K.

He then applies K over the first component for symmetric decryption to retrieve M.

6.2 CHOICE OF THE PUBLICKEY

RSA Contd.

Choice of the Public Key: To speed up the modular exponentiation operation it is desirable that

the public key has lot of 0 bits. Usual choice of public key is of the form 2k+1 since this will

have exactly two zeros. Common choice of public keys are 3, 17 and 65537 (= 216+1).

If the public key is very small then RSA is vulnerable to the following attack:

Suppose the encryption / public key is e = 3 used by three different users A, B and C having 3

distinct moduli namely n1, n2 and n3. Suppose the sender X wants to send the same message M to

A, B and C.So he encrypts all of them with the same public key e and computes the cipher texts

CA= Me mod n1, CB= Me mod n2 and CC= Me mod n3 respectively.

Suppose it happens to be n1, n2 and n3 are pairwise relatively prime and n1
*n2

*n3>M e. This can

only happen if e is very small. In our case let us assume M 3<n1
*n2

*n3 since e = 3 though M 3is

larger than each n1, n2 and n3. Then using Chinese Remainder Theorem the attacker can easily

compute M 3and thus can determine M after computing the cube root.

47

Operations using the secret key:

For the decryption operation we perform the following modular exponentiation operation to

retrieve the original message M:

M = C dmod n where C is the cipher text, d is the secret key and n = pxq where p and q are two

large primes. To speed up this operation we compute:

Vp= C dmod p and Vq= C dmod q

From these using to compute C dmod n we have to use Chinese Remainder Theorem.

So we compute:

Xp= q x (q-1 mod p) and Xq= p x (p-1mod q)

Now we retrieve M as follows:

M = (VpXp + VqXq) mod n

To speed up the two modular exponentiation operations to compute Vpand Vqwe can make use of

Fermat‘s theorem as follows:

a bmod p = a ymod p

where b = (p-1)x + y since a p-1

Attacks on RSA:

There are several attacks on RSA public key cryptosystem. They are categorized as follows:

1. Brute Force Attack: Here the attacker tries with different secretkeys.

2. Mathematical Attacks: Most of these approaches finally broil down to factoring

RSA modulus.

3. Timing Attack: This attack uses the timing difference of modularexponentiation

algorithm depending on the number of 0 bits and 1 bits in the secret key. We will

elaborate on thislater.

4. Chosen Cipher Text Attack (CCA).

Mathematical Attack:

Here we prove that if the attacker can figure out the secret key d in polynomial time then we

have a randomized polynomial time algorithm to factor n.

Choose a random number r Zn
*. Since both e and d are known we know ed – 1 = k n). Thus

from Euler‘s theorem red-1 -trivial square root of 1.For

this we keepon computing … and so on till we get either -1 or a non-trivialsquare

48

root of 1 or is no longer divisible by 2. If we obtain -1 or is no longer divisible by 2

we repeat the above procedure selecting a new random number r. Otherwise if we get a non-

trivial square root of 1, i.e., x such that x2 n and x x+1, n) or gcd (x-1,n)

will give a non-trivial factor of n (i.e., 1 or n). Thus we have a randomized polynomial time

algorithm to factorize n.

Chosen Cipher Text Attack:

Here the attacker Eve gets holds of a cipher text C that was sent by Alice to Bob. Let M be the

corresponding plaintext. Thus M = Ce mod n. The attack proceeds as follows:

1. 1. Eve selects a random number r, such that 1 <r <n-1 and gcd(r,n) =1.

1. 2. Eve computes X = re C mod n and submits to Bob as a chosen cipher text.

1. 3. Eve receives back the signed message from Bob Y = Xdmod n = rM mod n.

1. 4. Since Eve know r -1 she retrieves the message M = r -1Y mod n.

Remedies:

To overcome this attack the plaintext is usually padded prior to encryption. Method like optimal

asymmetric encryption scheme (OAEP) has been proposed to overcome such attacks.

Reference:

1. Cryptography and Network Security , William Stallings, Prenctice Hall India .

6.3 ATTACKS ON RSA & REMEDIES

Timing Attack:

This attack was first suggested by Paul Kocher in 1995. He showed that it is possible to find out

the secret key by careful examination of the computation times in a series of decryption

procedure. The method uses the weakness of modular exponentiation algorithm and can be used

to attack not only RSA but also any other cryptographic algorithms that use modular

exponentiation that includes algorithms based on discrete log computation.

Suppose Eve sends to Bob several ciphertexts y. After decryption of each ciphertext Bob sends

the acknowledgement back to Eve. Thus Eve comes to know the decryption time of each

ciphertext. From this timing information Eve has to figure out the decryption exponent d.

We need to assume that Eve knows the hardware being used to to calculate yd(mod n). Eve can

use this information to calculate the computation time of various steps that occur in this process.

49

Let d=b1b2…bwbe written in binary. Let y and n be integers. We perform the modular

exponentiation using the following algorithm:

1. Start with k=1 ands1=1.

2. If bk==1, let rk sk y(mod n). If bk == 0, letrk=sk.

3. Let sk+1 (modn).

4. If k==w, stop. If k<w, add 1 to k and go to (3).

Finally rw yd(modn).

Here we note that the multiplication sk y occurs only when the bit bk==1. In practice there is a

large variation in timing of this multiplication operation.

Now we need to introduce few notations from Probability & Statistics. Let t denote the random

variable for the time taken for the decryption of a ciphertext y.

Let t1, t2, …, tndenote the decryption time of ciphertexts y1, y2, …, yn. The mean is denoted by :

Mean(t) = m=

The variance of the random variable t is denoted by:

Var(t)=

If we break up the computation time tifor the decryption of the ciphertext yiinto two

independent random processes withcomputationtimes and respectively such thatti= +

, then Var(ti) = Var() + Var().

Eve knows t1, t2, …, tn. Suppose she knows bits b1b2…bk-1of the secret key d. Since she knows the

hardware she can figure out the time required for computing r1, r2, …rk-1 in the modular

exponentiation algorithm. Also she can determine the time to calculate sk+1 (mod n) when

bk== 0 since rk = sk. Thus she knows the remaining computation time xi for each ciphertext yito

compute rk, …, rw.

50

Let be the computation time for sk y(mod n) if the bit bk==1. Eve still doesn’t knowbk.

Let =xi - . EvecomputesVar(xi)and Var(). If Var(xi)>Var() Eve concludes bk

= 1 else bk = 0. After determining bk Eve proceeds in the same manner to determine the

remaining bits of the secret key.

Correctness Proof: If bk= 1 then the multiplication sk y(mod n) indeed occurs. It is reasonable

toassume and are independent andthus:

Var(xi)=Var() + Var() > Var().

If bk= 0 then the multiplication does not occur and=Var() 0. Thus

Var(xi)=Var() +Var() Var().

Remedies:

i) Constant Exponentiation Time: Timing attack can be avoided if Bob sends the

acknowledgement back after the same fixed amount of time for each ciphertext. This solves the

problem but the performance isdegraded.

ii) Random Delay: Here Bob sends back the acknowledgement after adding a random delay

after the end of each modular exponentiation computation. This is susceptible to attack since the

attacker can compensate the added random delay considering it as fluctuation over the d.c

(average) component.

iii) Blinding: This proceeds asfollows:

1. 1. Bob selects a random number r, such that 1 < r <n-1 and gcd(r,n)=1.

2. Bob computes X = re C mod n, where e is the publickey.

3. Bob Computes Y = Xdmod n = rMmod n.

4. Since Bob knows r-1 he retrieves the message M = r-1Y modn.

This process prevents the attacker in knowing what cipher text bits are being processed and

prevents bit by bit analysis that is essential for the timing attack.

Reference:

1. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

2. Cryptography and Network Security , William Stallings, Prenctice Hall India.

51

6.4 RABIN CRYPTO SYSTEM

Rabin Cryptosystem:

Rabin cryptosystem is described as follows:

Let n be the product of two distinct primes p and q, p, q

Let P, C Zn , where P is the plaintext and C is the cipher text.

Define

K = {(n, p, q, B) : 0 -1}

For K = (n, p, q, B), define

eK(x) = x(x+B) mod n

and

The values n and B are public, while p and q are secret.

The encryption function eK is not an injection, so decryption cannot be done in an unambiguous

fashion. In fact, there are four possible plaintexts that could be the encryption of any givenciphertext.

It is a nontrivial square root of 1 modulo n, then there are four decryptions of

eK (x) for any x Zn:

Example:

So the decryption process won‘t be unique unless the plaintext contains sufficient redundancy to

eliminate three pf these four values.

The decryption process is analyzed as follows:

Given a ciphertext y, the plaintext x is determined by the solving the equation

x2 + Bx y (mod n)

Substituting x = x1 – B/2, the above equation reduces to

x1
2 – B x1 + B2/ 4 + Bx1– B2/ 2 – y n)

or

x1
2 B2 / 4 + y (mod n)

52

Let C = B2 / 4 + y, then we can rewrite the congruence as

x1
2 C (mod n)

So, decryption reduces to extracting square roots modulo n. This is equivalent to solving the two

congruences

x1
2 C (mod p)

and

x1
2 C (mod q)

Now there are two square roots of C modulo p and two square roots of C modulo q. Using the

Chinese remainder theorem, these can be combined to yield four solutions modulo n. Also it can

be determined by Euler‘s criterion if C is a quadratic residue modulo p (and modulo q). Infact, C

will be a quadratic residue modulo p (and modulo q) if encryption is performed correctly.

When p

modulo p. Suppose C is a quadratic residue and p

Here, we again make use of Euler‘s criterion, which says that if C is a quadratic residue modulo

p, then p). Hence the two square roots of C modulo p are .

In a similar fashion, the two square roots of C modulo q are . One can then

obtain the four square roots x1 of C modulo n using the Chinese RemainderTheorem

Example:

Let us illustrate the encryption and decryption procedures for the Rabin cryptosystem with a toy

example. Suppose n = 77 = 7 x 11 and B = 9. Then the encryption function is

eK(x) = x2 + 9xmod 77

and the decryption function is

53

Suppose the ciphertext y = 22. Compute the square roots of 23 modulo 7 and modulo 11. Since 7

and 11 are both congruent to 3 mod 4, using the formula derived above, we have

Using Chinese Remainder Theorem, we compute the four square roots of 23 modulo 77 to be

±10 and ±32 mod77.

Finally, the four possible plaintexts are

10 – 63 mod 77 = 44

67 – 43 mod 77 = 24

32 – 43 mod 77 = 66

45 – 43 mod 77 = 2

The computationally hard problem in this cryptosystem is the difficulty of factoring themodulus

n. In contrary let us assume that the adversary can figure out the square roots modulo n . Since n

is the product of two primes there will be 4 square roots x1 , x2 , x3 and x4 such that

mod n. Among these 4 square roots there will be a pair such that ximod n

xjmod n for some i , j [1..4]. Then gcd (xi+ xj, n) or gcd (xi- xj, n) will give a non trivial

factor of n. Thus if we can break the cryptosystem in polynomial time we will be able to factor n

in polynomial time.

Reference:

1. Cryptography Theory and Practice , D. R. Stinson, CRC Press.

54

Unit 3: Factorization

7.1 CURRENT STATE OF THEART

Current state of the art

Factorization of integer in polynomial time is still to date an unresolved problem. Cryptographic

algorithms like RSA, Rabin all rely upon the difficulty of integer factorization problem. Even to

date factoring large integers with very fast computers require a lot of computing time. There are

some efficient pseudo polynomial time algorithms known for the factoring problem.

Difficulty and complexity

If a large, b-bit number is the product of two primes that are roughly the same size, then no

algorithm is published that can factor in polynomial time. That means there is no widely known

algorithm that can factor it in time O(bk) for any constant k. In other words, there are algorithms

which are super-polynomial but sub- exponential. In particular, the best published asymptotic

running time is for the general number field sieve (GNFS) algorithm, which, for a b-bit number

n, is:

For an ordinary computer, GNFS is the best published algorithm for large n (more than about

100 digits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that

solves it in polynomial time. This will have significant implications for cryptography if a large

quantum computer is ever built. Shor's algorithm takes only O(b3) time and O(b) space on b-bit

number inputs. In 2001, the first 7-qubit quantum computer became the first to run Shor's

algorithm. It factored the number 15.

It is not known exactly which complexity classes contain the integer factorization problem. The

decision-problem form of it ("does N have a factor less than M?") is known to be in both NP and

co-NP. This is because both YES and NO answers can be trivially verified given the prime

factors (whose correctness can be verified using the AKS primality test). It is known to be in

BQP because of Shor's algorithm. It is suspected to be outside of all three of the complexity

3

55

classes P, NP-Complete, and co-NP-Complete. If it could be proved that it is in either NP-

Complete or co-NP-Complete, that would imply NP = co-NP. That would be a very surprising

result, and therefore integer factorization is widely suspected to be outside both of those classes.

Many people have tried to find classical polynomial-time algorithms for it and failed, and

therefore it is widely suspected to be outside P.

Interestingly, the decision problem "is N a composite number?" (or equivalently: "is N a prime

number?") appears to be much easier than the problem of actually finding the factors of N.

Specifically, the former can be solved in polynomial time (in the number n of digits of N) with

the AKS primality test. In addition, there are a number of probabilistic algorithms that can test

primality very quickly if one is willing to accept the small possibility of error. The easiness of

primality testing is a crucial part of the RSA algorithm, as it is necessary to find large prime

numbers to start with.

Trial division

Trial division is the simplest and easiest to understand of the integer factorization algorithms.

Given an odd composite integer n there must be a prime factor less than . Thus we need to

test for all primes
From the prime number theorem we have thefollowing:

Thus we have to test for all prime factors of n . From the previous theorem wehave:

If a v a riant is used without pri m ality testing, but si m ply dividing by every odd nu m ber less
than the square root of n , pri m e or not, it can take up to about

trial divisions which for large n is worse.

56

If n has small prime factors then this algorithm performs quite well. This means that for n with

large p rime factors of similar size (like those used in public key cryptography), trial division is

computation a lly infeasible. For most significant factoring concerns, however, other algorithms

are more efficient and therefore feasible.

Given a composite integer n(throughout this article, n means "the integer to be factored"),trial

division consists of trial-dividing n by every prime number less than or equal to . If a

number is found which divides evenly into n, that number is a factor ofn.

A definite bound on the prime factors is possible. Suppose P(i) is the i'th prime, so that P(1) = 2,

P(2) = 3, etc. Then the last prime number worth testing as a possible factor o n is P(i) where P(i

+ 1)2> n; equality here would mean that P(i + 1) was a factor. This is all very well, but usually

inconvenient to apply for the inspection of a single n since determining the correct value for i is

more effort than simply trying the one unneeded candidate P(i + 1) that would be involved in

testing with all P(i) such that

. Should the square root of n be integral, then it is a factor and n is a

Perfect square, not that this is a good way of findingthem.

Trial division is guaranteed to find a factor of n, since it checks all possible prime factors of n.

Thus, if the algorithm finds no factor, it is proof that n is prime.

In the worst case, trial division is a laborious algorithm. If it starts from 2 and works up to the

square root of n, the algorithm requires

This does not take into account the overhead of primality testing to obtain the prime numbers as

candidate factors. If a variant is used without primality testing, but simply dividing by every odd

number less than the square root of n, prime or not, it can take up to about

trial divisions which for large n is worse.

This means that for n with large prime factors of similar size (like those used in public key

57

cryptography), trial division is computationally infeasible.

However, for n with at least one small factor, trial division can be a quick way to find that small

factor. It is worthwhile to note that for random n, there is a 50% chance that 2 is a

factor of n, and a 33% chance that 3 is a factor, and so on. It can be shown that 88% of all positive

integers have a factor under 100, and that 91% have a factor under 1000.

For most significant factoring concerns, however, other algorithms are more efficient and therefore

feasible.

Pollard's p-1 algorithm [4]

Pollard's p is a number theoretic integer factorization algorithm, invented by

John Pollard in 1974. It is a special-purpose algorithm, meaning that it is only suitable for

integers with specific types of factors.

The algorithm is based on the insight that numbers of the form ab

composite when b is itself composite. Since it is computationally simple to evaluate numbers of

this form in modular arithmetic, the algorithm allows one to quickly check many potential

factors with great efficiency. In particular, the method will find a factor p if b is divisible by p

1, hence the name. When p nly small integers) then thisalgorithm

is well-suited to discovering the factorp.

Base concepts

Let n be a composite integer with prime factor p. By Fermat's little theorem, weknowthat

for a coprime top

Let us assume that p -powersmooth for some reasonably sized B (more on the selection

of this value later). Recall that a positive integer m is called B-smooth if all prime factors pi of

m are such that pi -powersmooth if all prime powers

i dividing m are such that pii

Let p1, ..., pL be the primes less than B and let e1, ..., eL be the exponents such that

Let

58

As a shortcut, M = lcm{1, ..., B}. As a consequence of this, (p e

divides M this implies that pe M

because p divides n this means gcd(aM

Therefore if gcd(aM -trivial factor of n.

If p -power-smooth, then aM 1 (mod p) for at least half of all a.

Pollard concepts

Let n = pqr, where p and q are distinct primes and r is an integer, such that p is B-

powersmooth and q is not B-powersmooth. Now, gcd(aM yields a proper factor of n.

In the case where q -powersmooth, the gcd may yield a trivial factor because q divides a
M

× 409. 421 22×3×5×7 and 409 23×3×17. So, an appropriate value of B would be from

7 to 16. If B was selected less than 7 the gcd would have been 1 and if B was selected higher

than 16 the gcd would have been n. Of course, we do not know what value of B is appropriate in

advance, so this will factor into thealgorithm.

To speed up calculations, we also know that when taking the gcd we can reduce one part modulo

the other, so gcd(a M a M

modular exponentiation and the Euclidean algorithm.

Algorithm and running time

The basic algorithm can be written as follows:

Inputs: n: a composite integer

Output: a non-trivial factor of n or failure

1. select a smoothness bound B

2. randomly pick a coprime to n (note: we can actually fix a, random selection here is not

imperative)

3. for each prime q

59

a qe mode n (note: this is aM)

4. g

5. if 1 < g < n then returng

6. if g = 1 then select a higher B and go to step 2 or returnfailure

7. if g = n then go to step 2 or returnfailure

If g = 1 in step 6, this indicates that for all p -powersmooth. If g = n in step

7, this usually indicates that all factors were B-powersmooth, but in rare cases it could indicate

that a had a small order modulo p.

The running time of this algorithm is O(B × log B × log2n), so it is advantageous to pick a small

value of B.

7.2 LARGE PRIMEVARIANT

Large prime variant

A variant of the basic algorithm is sometimes used. Statistically, there is often a factor p of n

such that p = fq such that f is B-powersmooth and B < q

called a semi-smoothness bound.

As a starting point, this would work into the basic algorithm at step 6 if we encountered gcd = 1

but didn't want to increase B. For all primes B < q1, ..., qL

to obtain a non-trivial factor of n. This is quickly accomplished, because if we let c = aM, and d1

= q1 and di = qi i

The running time of the algorithm with this variant then becomes O(B' × log B' × log2n).

Additional information

Because of this algorithm's effectiveness on certain types of numbers the RSAspecifications

require that the primes, p and q, be such that p-1 and q-1 are non-B- power-smooth for small

values of B.

60

Williams' p plus 1 algorithm[5]

In computational number theory, Williams' p + 1 algorithm is an integer factorization algorithm

invented by H. C. Williams.

It works well if the number N to be factored contains one or more prime factors p such that p + 1

is smooth, i.e. p + 1 contains only small factors. It uses Lucas sequences. It is analogous to

Pollard's p-1 algorithm.

Algorithm

Choose some integer A greater than 2 which characterizes the sequence:

V0 = 2,V1 = A,Vj= AVj-1 Vj-2

where all operations are performed modulo N.

Then any odd prime p divides gcd(N,VM M is a multiple of p D / p), where D =

A2 D / p) is the Jacobi symbol.

We require that (D / p) = D should be a quadratic non-residue modulo p. But as we

don't know p beforehand, more than one value of A may be required before finding a solution. If

(D / p) = + 1, this algorithm degenerates into a slow version of Pollard's p-1 algorithm.

So, for different values of M we calculate gcd(N,VM

to N, we have found a non-trivial factor of N. The values of M used are successive factorials, and

VM is the M-th value of the sequence characterized by VM-1.

To find the M-th element V of the sequence characterized by B, we proceed in a manner similar

to left-to-right exponentiation:

x=B

y=(B^2-2) mod N

for each bit of M to the right of the most significant bit if the bit is 1

x=(x*y-B) mod N

y=(y^2-2) mod N

else

V=x

y=(x*y-B) modN

x=(x^2-2) modN

Example

With N=112729 and A=5, successive values of VM are: V1

61

of seq(5) = V1! of seq(5) = 5

V2 of seq(5) = V2! of seq(5) = 23

V3 of seq(23) = V3! of seq(5) = 12098

V4 of seq(12098) =V4! of seq(5) =87680

V5 of seq(87680) = V5! of seq(5) = 53242

V6 of seq(53242) = V6! of seq(5) = 27666

V7 of seq(27666) = V7! of seq(5) = 110229

At this point, gcd(110229-2,112729) = 139, so 139 is a non-trivial factor of 112729. Notice that

p+1 = 140 = 2 × 5 × 7. The number 7! is the lowest factorial which is multiple of 140, so the

proper factor 139 is found in this step.

Lenstra elliptic curve factorization[6]

Lenstra elliptic curve factorization or the elliptic curve factorization method (ECM) is a

fast, sub-exponential running time algorithm for integer factorization which employs elliptic

curves. Technically, the ECM is classified as a deterministic algorithm as all "random" steps

(such as the choice of curves) used can be de-randomized and done in a deterministic way. (This

is not to say that the algorithm can't be implemented in a probabilistic way, if one so chooses,

provided one has a true source of randomness.)

For factoring ECM is the third-fastest known factoring method. The second fastest is the

multiple polynomial quadratic sieve and the fastest is the general number field sieve; both are

probabilistic algorithms.

Practically speaking, ECM is considered a special purpose factoring algorithm as it is most

suitable for finding small factors. Currently, it is still the best algorithm for divisors not greatly

exceeding 20 to 25 digits (64 to 83 bits or so), as its running time is

dominated by the size of the smallest factor p rather than by the size of the number n to be

factored. The largest factor found using ECM so far was discovered on August 24, 2006 by B.

Dodson and has 67 digits[7]. Increasing the number of curves tested improves the chances of

finding a factor, but they are not linear with the increase in the number of digits.

62

Derivation

ECM is at its core an improvement of the older p-1 algorithm. The p-1 algorithm finds prime

factors p such that p-1 is B-powersmooth for small values of b. For any e, a multiple of p-1, and

any a relatively prime to p, by Fermat's little theorem we have a e 1

(mod p). Then gcd(a e-1, n) is likely to produce a factor of n. However, the algorithm fails when

p-1 has large prime factors, as is the case for numbers containing strong primes,for

example.

ECM gets around this obstacle by considering the group of a random elliptic curve over the finite

field Zp, rather than considering the multiplicative group of Zpwhich always has order p-1.

The order of the group of an elliptic curve over Zpvaries (randomly) between p + 1 - 2 p and p

+ 1 + 2 p by Hasse's theorem, and is likely to be smooth for some elliptic curves. Although there

is no proof that a smooth group order will be found in the Hasse-interval, by using heuristic

probabilistic methods, the Canfield-Erdös-Pomerance theorem with suitably optimized parameter

choices, and the L-notation, we can expect to try L[

group order. This heuristic estimate is very reliable in practice.

Lenstra's elliptic curve factorization

The Lenstra elliptic curve factorization method to find a factor of the given number n

works as follows:

• Pick a random elliptic curve over Z with a point A on it. Then, we consider the group

law on this curve mod n — this is possible since almost all residues mod n have inverses,

which can be found using the Euclidean algorithm, and finding a noninvertible residue is

tantamount to factoringn.

• Compute eA in this group, where e is product of small primes raised to small powers,as

in the p-1 algorithm. This can be done one prime at a time, thusefficiently.

• Hopefully, eA is a zero element of the elliptic curve group in Zp, but not in Zqfor

another prime divisor q of n (as in the p-1 method, it is unlikely that both groups will

have an order which is a divisor of e). Then we can find a factor of n by finding the

greatest common divisor of the first coordinate of A and n, since this coordinate will be

zero in Zp.

63

• If it does not work, we can try again with some other curve and starting point.

The complexity depends on the size of the factor and can be represented by, where p is the

smallest factor ofn.

7.3 DIXON'S FACTORIZATION METHOD

Dixon's factorization method

In number theory, Dixon's factorization method (also Dixon's algorithm) is a general- purpose

it is the prototypical factor base method, and the only factor base method for which a run-time

bound not reliant on conjectures about the smoothness properties of values of a polynomial is

known. The algorithm was designed by John D. Dixon, a mathematician at Carleton University,

and was published in 1981.

Basic idea

Dixon's method is based on finding a congruence of squares modulo the integer N which we

intend to factor. Fermat's factorization algorithm finds such a congruence by selecting random or

pseudo-random xvalues and hoping that the integer x2 mod N is the square of an integer . :

For example, if N=84923, we notice (by starting at 292, the first number greater than and

counting up) that 5052 mod 84923 is 256, the square of 16. So(505-16)(505+16)=0 mod N.

Computing the GCD of 505-16 and N using Euclid's algorithm gives us 163, which is a factor of

N.

In practice, selecting random x values will take an impractically long time to find a congruence

of squares, since there are so few squares less than N.

Dixon's method replaces the condition 'is the square of an integer' with the much weaker one 'has

only small prime factors'; for example, there are 292 squares less than 84923,

662 numbers whose prime factors are only 2,3,5 or 7, and 4767 whose prime factors are all less

than 30.

If we have lots of numbers whose squares can be factorisedas

64

for afixed set of small primes, linear algebra modulo 2

on the matrix eijwill give us a subset of the aiwhose squares combine to a product of small

primes to an even power -- that is, a subset of the aiwhose squares combine to asquare.

Method

Firstly, a set of primes less than some bound B is chosen. This set of primes is called the factor

base. Then, using the polynomial

p(x) = x2(mod n)

many values of x are tested to see if p(x) factors completely over the factor base. If it does, the

pair (x, p(x)) is stored. Such a pair is called a relation. Then, once the number of relations

collected exceeds the size of the factor base, we can enter the next stage.

The p(x) values are factorized (this is easy since we are certain they factorize completely over the

factor base) and the exponents of the prime factors are converted into an exponent vector mod 2.

For example, if the factor base is {2, 3, 5, 7} and the p(x) value is

30870, we have:

30870 = 21.32.51.73

This gives an exponent vector of:

If we can find some way to add these exponent vectors together (equivalent to multiplying the

corresponding relations together) to produce the zero vector (mod 2), then we can get a

congruence of squares. Thus we can put the exponent vectors together into a matrix, and

formulate an equation:

65

. . .

This can be converted into a matrix equation:

This matrix equation is then solved (using, for example, Gaussian elimination) to find the vector

c. Then:

where the products are taken over all k for which Ck= 1. At least one of the Ckmust be one.

Because of the way we have solved for c, the right-hand side of the above congruence is a

square. We then have a congruence of squares.

Example

Considering the factor base {2,3,5,7}, we will try to factor 84923.

5132 mod 84923 = 8400 = 24
*3*5

2
*7

5172 mod 84923 = 33600 = 26
*3*5

2
*7

so

(513.537)2 mod 84923 = 210 32 54 72

513 times 537 is 20712 (mod 84923).

That is,

207122 mod 84923 = (25.3.552.7)2 mod 84923 = 168002 mod 84923

We then look at 20712-16800 = 3912 and 20712+16800 = 37512, and compute their greatest

common divisors with 84923 by using Euclid's algorithm. This is 163 in the case of 3912, and

521 in the case of 37512; and, indeed, 84923 = 521 * 163.

REFERENCES

1. http://en.wikipedia.org/wiki/Trial_division

2. Richard P. Brent. An Improved Monte Carlo Factorization Algorithm, BIT 20,

1980,pp.176-184

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and CliffordStein.

Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-

66

03293-7. Section 31.9: Integer factorization, pp.896–901

4. http://en.wikipedia.org/wiki/Pollard%27s_p-1_algorithm

5. http://www.mersennewiki.org/index.php/P_Plus_1 MersenneWiki article about p+1

factorizationmethod.

6. Lenstra Jr., H. W. "Factoring integers with elliptic curves." Annalsof

Mathematics (2) 126 (1987), 649-673. MR89g:11125.

7. Brent, Richard P. "Factorization of the tenth Fermat number." Mathematics of

Computation 68 (1999),429-451.

8. http://en.wikipedia.org/wiki/Fermat%27s_factorization_method

9. J. D. Dixon, "Asymptotically fast factorization of integers," Math. Comput.,

36(1981), p.255-260.

7.4 QUADRATIC-SIEVE FACTORING

The pseudo code for the MD5 algorithm is as follows:

// Note: All variables are unsigned 32 bits and wrap modulo 2^32 when calculating

var int [64] r, k

// r specifies the per-round shift amounts

// Use binary integer part of the sines of integers as constants:

for i from 0 to 63

k[i] := floor(abs(sin(i + 1)) × (2 pow 32))

// Initialize variables:

h0 := 0x67452301

h1 := 0xEFCDAB89

h2 := 0x98BADCFE

h3 := 0x10325476

//Pre-processing:

append "1" bit to message

67

append "0" bits until message length in bits = 448 (mod 512)

append bit (bit, not byte) length of unpadded message as 64-bit little-endian integer to message

// Process the message in successive 512-bit chunks:

for each 512-bit chunk of message

break chunk into sixteen 32-bit little-endian words w[i], 0 = i = 15

// Initialize hash value for this chunk:

var int a := h0

var int b := h1

var int c := h2

var int d :=h3

// Mainloop:

for i from 0 to 63

if 0 then

f := (b and c) or ((not b) and d)

g := i

else if 16

f := (d and b) or ((not d) and c)

g := (5×i + 1) mod 16

else if 32

f := b xor c xor d

g := (3×i + 5) mod 16

else if 48

f := c xor (b or (not d))

g := (7×i) mod 16

temp := d

d := c

c :=b

68

b := b + leftrotate ((a + f + k[i] + w[g]) , r[i])

a := temp

// Add this chunk's hash to result so far:

h0 := h0 + a

h1 := h1 + b

h2 := h2 + c

h3 := h3 + d

var int digest := h0 append h1 append h2 append h3

// (expressed as little-endian)

// leftrotate function definition

leftrotate (x, c)

return (x << c) or (x >> (32-c));

Summary

The MD5 message-digest algorithm is simple to implement, and provides a "fingerprint" or

message digest of a message of arbitrary length. It is conjectured that the difficulty of coming up

with two message having the same message digest is on the order of 2^64 operations, and that

the difficulty of coming up with any message having a given message digest is on the order of

2^128 operations. The MD5 algorithm has been carefully scrutinized for weaknesses. It is,

however, a relatively new algorithm and further security analysis is of course justified, as is the

case with any new proposal of this sort.

Differences Between MD4 and MD5

The following are the differences between MD4 and MD5

1. A fourth round has beenadded.

2. Each step now has a unique additiveconstant.

3. The function g in round 2 was changed from (XY v XZ v YZ) to(XZ v Y not(Z)) to makeg

lesssymmetric.

4. Each step now adds in the result of the previous step.This

......a. promotes a faster "avalanche effect".

5. The order in which input words are accessed in rounds 2and

69

......a. 3 is changed, to make these patterns less like each other.

6. The shift amounts in each round have beenapproximately

......a. optimized, to yield a faster "avalanche effect." The shifts in

......b.different rounds are distinct.

SHA hash functions

The SHA hash functions are five cryptographic hash functions designed by the National

Security Agency (NSA) and published by the NIST as a U.S. Federal Information Processing

Standard . SHA stands for Secure Hash Algorithm.

The five algorithms are denoted SHA-1 , SHA-224 , SHA-256 , SHA-384 , and SHA-512 . The

latter four variants are sometimes collectively referred to as SHA-2 . SHA-1 produces a message

digest that is 160 bits long; the number in the other four algorithms' names denote the bit length

of the digest they produce.

SHA-1 is employed in several widely used security applications and protocols, including TLS

and SSL , PGP , SSH , S/MIME , and IPsec . It was considered to be the successor to MD5 , an

earlier, widely-used hash function.

SHA-1 algorithm

Initialize variables:

h0 := 0x67452301

h1 := 0xEFCDAB89

h2 := 0x98BADCFE

h3 := 0x10325476

h4 := 0xC3D2E1F0

Pre-processing:

append the bit '1' to the message

append k bits '0', where k is the minimum number >= 0 such that the resulting message

................length (in bits) is congruent to 448 (mod 512)

append length of message (before pre-processing), in bits , as 64-bit big-endian integer

Process the message in successive 512-bit chunks:

break message into 512-bit chunks

70

for each chunk

............break chunk into sixteen 32-bit big-endian words w[i], 0

Extend the sixteen 32-bit words into eighty 32-bit words:

for i from 16 to 79

...........w[i] := (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

Initialize hash value for this chunk:

a := h0

b := h1

c := h2

d := h3

e := h4

Main loop:

for i from 0 to 79

if 0

f := (b and c) or ((not b) and d)

k := 0x5A827999

else if 20

f := b xor c xor d

k := 0x6ED9EBA1

else if 40

f := (b and c) or (b and d) or (c and d)

k := 0x8F1BBCDC

else if 60

f := b xor c xor d

k := 0xCA62C1D6

temp := (a leftrotate 5) + f + e + k + w[i]

e :=d

d := c

c := b leftrotate 30

71

b := a

a := temp

Add this chunk's hash to result so far:

h0 := h0 + a

h1 := h1 + b

h2 := h2 + c

h3 := h3 + d

h4 := h4 + e

Produce the final hash value (big-endian):

digest = hash = h0 append h1 append h2 append h3 append h4

Reference:

Hans Delfs and Helmut Knebl, Introduction to Cryptography: Principles and Applications, 2 nd

Edition, Springer Verlag.

1. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

2. Cryptography and Network Security , William Stallings, Prenctice Hall India.

3. Cryptography Theory and Practice , D. R. Stinson, CRC Press.

7.5 POLLARD-RHOMETHOD

Fermat Factorization

This method of factorization a number n is based on the fact that every odd number can be

expressed as the difference of two squares.

Let

Notice that, if n is odd, then so is a and b and hence and areintegers.

72

Therefore, where

Factorization technique

One tries various values of t,hopingthat is a square.

FermatFactor (n): // n is odd

s

while s_sq isn't a square:

s

endwhile

return

Run time: let n = ab ,then

Number of stepsrequired:

If n is prime (so that a = 1), one needs O(n) steps! But if n has a factor close to its square-root the

method works quickly.

E.g. factorize 200819

73

Soln:

4492 - 200819 = 782

4502 - 200819 = 412

200819 = (450 + 41)(450 - 41) = 491* 409

Factor Bases

Let t 2 = s2 - s,n) gives nontrivial factors of

n.

Proof: t 2 = s2 mod n nI t 2- s2 n I (t + s)(t -s)

But

 gcd (t + s,n) and gcd (t - s,n) give nontrivial factors of n

Pollard’s rho heuristic

As the procedure is only a heuristic, neither its running time nor its success is guaranteed. Given

n it can factorize in time.

Pollard-Rho (n)

74

14. Endwhile

The following sequences may be noted from the procedure above:

Notice that as x1 was initialized with a value in Zn and all succeeding values in the sequence

depend on the previous value, the sequence is bound to repeat after some values. Moreover, the

dependence is a random function given by:

7.6 POLLARD RHOANALYSIS

Pollard Rho Analysis:

By the birthday-paradox, the sequence then must repeat after steps in expectation. As

will be shown below, a similar sequence of for a prime factor of n will alsorepeatin

steps or steps in expectation because the greatest value of the smallest prime

factor of n is less than .

Let p be a nontrivial factor of n, then the sequence induces acorrespondingsequence

modulo pwhere

75

Thus, althoughthesequence is not being computed explicitly, it is well defined and obeys

the same recurrence as the sequence . By similar reasoning as for the original sequence, the

sequence repeats in . Consider the figure below for theillustration.

Let t denote the index of the first repeated value in the sequence, and let u > 0 denote the

length of the cycle that has been produced.

i.e. t and u > 0 are the smallest values such that for all i

t of the tail of the he length u of the cycle take the value inexpectation.

76

When Pollard-Rho saves as y any value xk such that k

the cycle modulo p because future values will always be ones already on the cycle. Then, to

ensure that line 8 of Pollard-Rho computes a nontrivial factor, all that is required is that

. This happens when k is set to a value greater than u which causes xi to loop

around all values in the cycle modulo p without a change in y. A factor of n is then discovered

when xi

Since the expected values of both t and u are , the expected number of steps to produce

the factor p is . For the smallest factor of n, p is less than and hence the overall run

time is inexpectation.

Two reasons why the algorithm may not perform as expected:

• The heuristic analysis of the run time may result in the the cycle of values modulo p to be

much larger than , in which case the algorithm performs correctly but slower thandesired.

• The divisors of n produced may not always be a trivial one like 1 orn.

Both these problem are found to be insignificant in practice.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India.

2. A course in Number Theory and Cryptography, Neal Koblitz, Springer.

77

Block-3

78

Unit 1: Primality Testing

8.1 PRIMALITY TESTING

Primality Testing

Mathematicians have tried in vain to this day to discover some order in the sequence ofprime

numbers, and we have reason to believe that it is a mystery into which the human mind will

neverpenetrate. L.EULER.

Abstract: Our objective is to find a polynomial-time foolproof algorithm to determine whether

a given integer is prime. Everyone knows trial division, in which we try to divide n by every

integer m intherange .The number of steps in this algorithm will be at least the

number of integers m we consider, which issomethinglike in the worst case (when nis

prime).Notethat isroughly where d is the number of digits of n when written in binary

(and d is roughly log{n} where, here and throughout, we will take logarithms in base 2). We

first present few basic algorithms for primality testing and then proceed with AKSalgorithm[2].

Introduction:

There are few better known or more easily understood problems in pure mathematics than the

question of rapidly determining whether a given integer is prime. The problem of distinguishing

prime numbers from composite numbers, and of resolving the latter into their prime factors is

known to be one of the most important and useful in arithmetic. It has engaged the industry and

wisdom of ancient and modern geometers to such an extent that it would be superfluous to

discuss the problem at length. Nevertheless we must confess that all methods that have been

proposed thus far are either restricted to very special cases or are so laborious and difficult that

even for numbers that do not exceed the limits of tables constructed by estimable men, they try

the patience of even the practiced calculator. And these methods do not apply at all to larger

numbers.

Primes come up in many different places in the mathematical literature, and some of these

suggest ways to distinguish primes from composites. Those of us who are interested in primality

testing always look at anything new with one eye open to this application, and yet finding a fast

1

79

primality testing algorithm has remained remarkably elusive. See [4] and [5] for probabilistic and

randomized primality testing methods. The advent of the AKS algorithm makes us wonder

whether we have missed some such algorithm, something that one could perform in a few

minutes, by hand, on any enormous number.

The ultimate goal of this line of research has been, of course, to obtain an unconditional

deterministic polynomial-time algorithm for primality testing. This is achieved by the AKS

algorithm. Next we give the mathematical background to understand the algorithms for Primality

testing.

Introduction to Jacobi Symbol:

Suppose we want to determine whether or not x2

prime, If p is small, we could square all of the numbers mod p and see if a is on the list. When p

is large, this is impractical. If p

compute s (p+1)/4 (mod p). If a has a square root, then s is one of them, so we simply have to

square s and see if we get a. If not, then a has no square root mod p. The following proposition

gives a method for deciding whether a is a square mod p that works for arbitrary odd p.

Proposition: let p be a odd prime and let a be an integer with a 0 (mod p). Then a (p-1)/2

(mod p). The congruence x2 (p-1)/2

Proof: Let y (p-1)/2 (mod p). Then y2 p-1

If a 2, then a(p-1)/2 p-1

primitive root mod p. Then a j for some j. If a(p-1)/2

g j(p-1)/2 (p-1)/2

Which implies j.(p-1)/2 -1). This implies that j must be even: j=2k. Therefore, a j

(k)2 (mod p), so a is a square mod p.

Although the above proposition is easy to implement by a computer , it is rather difficult to use

by hand. In the following we introduce the Legendre and Jacobi symbols, which gave us an easy

way to determine whether or not a number is a square mod p. they are also very useful in

Primality testing.

Let p be an odd prime and let a (not)

) = { 1 if x2

80

- 1 if x2 has a solution.

Some important properties of the Legendre symbol are given in the following.

Properties: Let p be an odd prime.

The properties above can be used to build a recursive algorithm to compute the Jacobi symbol

efficiently. In fact, the algorithm is strongly reminiscent of Euclid‘s algorithm for the gcd.Here

is how the algorithm applies to compute :

If m > n then use the invariance property: return .

If m=0 or m=1, then use(7) : return 0 or1

Factor m as 2kl, where l is odd. If k >0 use formulas (7) and (3) : return

.

Use reciprocity : if m=n=3 mod 4 then return - ; otherwise return .

As this method is similar to Euclidean GCD algorithm, its complexity too isO ().

81

2 3 r

The Jacobi symbol extends the Legendre symbol from primes p to composite odd integers n. One

might define the symbol to be +1 if a is a square mod n and -1 if not. However, this would cause

the property (3) to fail.

In order to preserve property (3), we define the Jacobi symbol as follows. Let n be an odd

positive integer and let a be a nonzero integer with gcd (a, n) =1. Let

n = p1
ap bp c……p q

be prime factorization of n. Then

The symbols on the right side are Legendre symbols introduced earlier. Note that if n=p, the right

side is simply one Legendre symbol, so the Jacobi symbol reduces to the Legendre symbol.

Properties:

82

Before going into any of the primality tests we give a basic principle on which the tests depend

upon.

Basic principle: let n be an integer and suppose there exist integers x and y with x2

but x ±y (mod n). Then n is composite. Morover, gcd(x-y,n) gives a nontrivial factor of n.

Proof: Let d = gcd(x-y, n). if d= n then x

Suppose d=1. A basic result on divisibility is that if a| bc and gcd(a,b) =1, then a |c.In our case,

since n divides x2– y2 = (x-y) (x+y) and d=1, we must have that n divides x+y, which

contradicts the assumption that x -y (mod n). Therefore d n.

8.2 FERMAT PRIMALITY TEST

Fermat Primality Test: Let n >1 be an integer. Choose a random integer a with 1 < a < n-1.

If a n-1 1(mod n) then n is composite. If an-1 1 (mod n), then n is probably prime.

If we are careful about how we do this successive squaring, the Fermat test can be combined

with the basic principle to yield the following stronger result.

Miller- Rabin Primality test:

Let n >1 be an odd integer. Write a-1 =2km with m odd. Choose a random integer a with 1< a<

n-1. Compute b0
m (mod n). If b0 1 (mod n), then stop and declare that n is probably

prime. Otherwise, let b1 0
2(mod n). If b1 1 (mod n), then n is composite (and gcd (b0 -1,n)

gives a nontrivial factor of n). If b1 -1 (mod n), then stop and declare that n is probably prime.

Otherwise, let b2 1
2(mod n). If b2 1 (mod n), then n is composite. If b2 -1 (mod n), then stop

and declare that n is probably prime. Continue in this way until stopping and reaching bk-1. If bk-

1 -1 (mod n), then n is composite.

The reason why the test works is- suppose, for example that b3 1 (mod n). This means that

b2
2 1 (mod n). This means that b2

2 12 (mod n). Apply the basic principle from before. Either

b2 ±1 (mod n), or b2 ±1 (mod n) and n is composite. In the latter case, gcd (b2-1, n) give a

nontrivial factor of n. In the former case, the algorithm would have stopped by the previous step.

MILLER-RABIN (n, s)

1. For j

2. do a -1)

3. If WITNESS(a,n)

83

k-2 k-2

4. then returnCOMPOSITE

5. returnPRIME

WITNESS (a, n)

Let <bk,bk-1…b0> be the binary representation ofn-1.

d

for I

do x

d

if d=1 and x -1

then returnTRUE

if(bi=1)then

d

endfor

ifd

then returnTRUE

returnFALSE

If we reach bk-1 , we computed bk-1 a (n-1)/2 (mod n). The square of this is an-1, which must be 1

(mod n) if n is prime, by Fermat‘s Theorem. Therefore, if n is prime, bk-1 ± 1 (mod n). All other

choices mean that n is composite. Moreover, if bk-1 1 then, if we didn‘t stop at an earlierstep,

b 2 12 (mod n)with b ±1 (mod n). This means that n is composite (and we can factorn).

Although all prime numbers will be detected through this test, however the converse is not true.

There are numbers which pass this test but are composite, i.e n is composite and an-1

n)for all possible bases a. Such numbers are called Carmichael numbers. For example 561 is a

Carmichael number. Carmichael numbers are usually of the form (p1.p2.p3) where the number is

product of primes.

An alternative and equivalent definition of Carmichael numbers is given by Korselt's criterion.

Theorem : A positive composite integer n is a Carmichael number if and only if n is square-free,

and for all prime divisors p of n, it is true that p n

For example:

84

561= 3.11.17 is square-free and 2 |560, 10|560, 16 |560.

1105= 5.13.17 is square-free and 4 |1104, 12|1104, 16 |1104.

Solovay-Strassen Primality test: let n be an odd integer. Choose several random integers a

with 1<a<n-1.if

For some a, then n is composite. If

For all a, then n is probably prime.

Running time: O((log n)3). This follows from running times of separate parts of the algorithm:

finding gcd, computing of Jacobi symbol, and finally computing powers of a.

Respectively, O((log n)2) + O((log n)2) + O((log n)3).

Definition 1. For odd n > 3, wedefine

We will use the following lemma.

Lemma 2.1. For odd n > 3, n is prime if and only if E(n) = Zn
*

For the proof of the lemma, refer to the book Randomized Algorithms [1], Lemma 14.30.

Theorem 2.2. If n is an odd prime, and a {1, . . . , n 1}, the probability that the

algorithm returns “prime” is [Solovay sen(n) = prime]=1.

If n is an odd composite, the probability that algorithm returns ”composite” is

[Solovay sen(n)= composite]

Proof: If n is an odd prime, then the algorithm will obviously always output

now prove the second part of the theorem. Assume that n is an odd composite. We will show

that the probability of the algorithm returning is

[Solovay sen(n)= prime]=

[{gcd(a, n) = 1} {= a(n 1)/2 mod n}] =

From Lemma 2.1 it follows that E(n) n
*

Now it is easy to show that E(n) is a subgroup of the multiplicative group Zn
*

85

a, b E(n) (ab mod n) E(n)

a E(n) a 1 E(n).

E(n) is thus a proper subgroup of Zn
*

and, from elementary group theory, we conclude that

Thus [Solovay sen(n) = prime]

8.3 AKS PRIMALITY TEST

AKS PRIMALITY TEST:

First we describe a characterization of prime numbers that will provide the conceptual

mathematical foundation for our polynomial time algorithm.

Lemma 3.1: Let a n n +a (mod n).

Proof:

By the Binomial theorem we have:

If n isprimethen is divisible by n according to the binomial theorem. By Fermat'slittle

theorem, we have an

If n is composite, then let q be a prime divisor of n with qs | n . The coefficient of xn-q in the

binomial expansion of (x +a)n is aq . The numerator is divisible by qs but not by

qs+1. The denominator is divisible byq.Hence aq

implies (a,qs) = 1, implies (aq, qs) =1,implies aq n).

Therefore (x+a)n xn + a (modn)

The above identity suggests a simple method for testing the primality of an integer n. We can

choose an integer a such that (a, n) = 1 and calculate f(x) = (x + a)n - (xn + a). If this function is

equal to 0 (mod n) then n is prime, else n is composite. Although this is certainly a valid

86

primality test, it is horribly inefficient as it involves the computation of n coefficients. The trick

however is in choosing a suitable integer a. The simplest method for reducing the number of

coefficients that need to be computed is to evaluate f(x) modulo n and modulo some polynomial

of small degree, say (xr - 1).

Although it is clear that all primes p satisfy (x + a)p - (xp + a) xr -1), some composite

numbers may satisfy this equation for all values of a and r. It turns out that for a judiciously

chosen r, if the above identity is satisfied for several values of a, then n can be shown to be a

prime power. The number of a's and the appropriate value of r are bounded by log(n). Therefore

we have just described a deterministic polynomial time primality testing algorithm.

Algorithm:

INPUT: n

STEP 1: If b, then output

COMPOSITE. STEP2: Find the minimal r r(n) >

log2 (n)

STEP3 : For a=1to r do

If 1< (a,n) < n, then output COMPOSITE

STEP4: if r

STEP5: For a=1 to do

If (x+a)n – (xn +a) r -1), then output COMPOSITE.

STEP 6: output PRIME.

Proof: If n is prime, STEP 1 cannot return COMPOSITE. Similarly, STEP 3 cannot return

COMPOSITE. Hence, the AKS algorithm will always return PRIME if n is prime.

Conversely, if the AKS algorithm returns PRIME, we will prove that n is indeed prime. If the

algorithm returns PRIME in STEP 4, n must be prime because otherwise a non trivial factor a

would have been found in STEP 3. The only case which remains is that if the algorithm returns

PRIME in STEP 6.

Lemma: There exists an integer r

87

Proof:

For n=2, r=3 satisfies all the conditions.

For

We know that for n n where lcm(m) denote the LCM of first m numbers.

So we get the following:

Let r be the smallest integer not dividing N. then condition (2) is obviously satisfies as r is not

divisor

(ni-1) for . Condition (1) is also satisfiesbecause

Now we prove (3). It is clear that (r,n) <r,as otherwise r would divide n and hence N. Thus

is an integer lessthanmax not dividing N. Because r was chosen to be

minimal,it must be case that .hence we have found ther.

Because Or(n) >1, n must have some prime divisor p such that Or (p) >1. STEP 3 did not output

COMPOSITE, so we know that (n, r)=(p, r) =1. Additionally, we know that p > r as otherwise

STEP 3 or STEP 4 would have returned a decision regarding the primality n.

Hypothesis:

We now focus our attention on STEP 5 of the algorithm. Let us define an introspective. For

polynomial f(X) and number m f(X) if

f(X)m = f(Xm) (mod Xr-1, p).

88

Lemma: let n prime divisor p and let a .if n,p are introspective for

(x+a),then is introspective for (x+a) aswell.

Proof: As p and n are both introspective for (x+a), we have

We must show h xr xr distinct irreducible hi(x) over

Zp. Using the Chinese Remainder theorem , we get

As xr p, each of the irreducible factors hi(x) divide h. Hence xr

proof.

It is easy to see the introspective numbers are closed under multiplication and that the set of

functions for which a given integer is introspective is closed under multiplication.

We can now state a fact as a consequence of the above results.

Every element if the set is introspective for every polynomial in the

set . We now define two groups based on these sets that will play a

crucial role in theproof.

1. This is a subgroup of Z*
r since (n,r) =(p,r)=1. Let G be this

group and |G|=t.G is generated by n and p modulo r and since Or(n) > log2 (n), t >

log2(n).

2. Let Qr(X) be rth cyclotomic polynomial over Fp .

Polynomial Qr(X) divides Xr
r(p) . Let

h(X) be one such irreducible factor. Since or(p) >1, the degree of h(X) is greater than

one. The second group is the set of all residues of polynomials in P modulo h(X) andp.

Let G be this group. This group is generated by elements X, X+1,X+2,…, X+l in the

field F = FpX/ (h(X)) and is a subgroup of the multiplicative group of F.

89

Lemma :

Proof: Note that because h(x) is a factor of Qr(X) , x is a primitive rth root of unity in F. We now

show that if f, g

elements in G.

Suppose, that f(x) =g(x) in F. Let m f(xm)=g(xm)

within F. Then xm is a root of j(z)=f(z)-g(z) for every m Ir. We know,(m,r)=1, so each such

xm is a primitive rth root of unity. Hencethereare distinct roots of j(z) in F. But the degree

j(z) < t by the choice of f and g. This contradiction (a polynomial cannot have more roots ina

field than its degree) implies that f(x) x) inF.

Notice that i p whenever 1 Then by above

,x,x+1,x+2,x+3...x+l are a. Since the degree of h(x) is greater than 1, all of theselinear

polynomials are nonzero in F. therefore there are atleast, l+1 distinct polynomials of degree 1 in

G. hence there atleast polynomials of degree s in G. Then the order of G is atleast

.hence theproof.

Lemma : If n is not a power ofpthen .

Proof: Consider the following subset of I:

If n is not a power of p,then Since there are at least two

elements of I‘ that are equivalent modulo r. Label these elements m1,m2 where m1>m2.

Then

Let f(x) m1,m2 are introspective

Thus in the field F. Thereforethepolynomial has

atleast |G| roots in F (since f(x) is the

largest element ofI‘.

90

Itfollowsthat . Hence theproof.

Lemma: If AKS algorithm return PRIME then n is prime.

Proof: Assume that the algorithm return prime.Recallthat and is generated by n and p,

therefore t 2(n)or .

We know that

Also by lemma, if p is not a power of p. Therefore it must be the case that n= pk for

some k>0 . But STEP 1 did not output COMPOSIT, so k=1, proving that n is indeed prime.This

completes our proof of theorem.

Time Complexity:

The overall complexity of AKS algorithm is O (log10.5(n)).

Conclusion: In this report we have presented the three important Primality testing algorithms,

Miller- Rabin Test, Solovay –Strassen test, AKS algorithm. We also gave an introduction to the

Jacobi symbol. The AKS algorithm is an unconditional deterministic polynomial time algorithm

for Primality testing. It was first of its kind. The algorithm was a major breakthrough for

Primality testing and in general for mathematics. The authors received many accolades,

including the 2006 Godel prize and the 2006 Fulkerson Prize, for this work.

91

References:

1. R. Motwani and P. Raghavan, Randomized algorithms. Cambridge UniversityPress,1995.

2. M. Agarwal, N.Kayal and N.saxena , primes in P,Department of Computer Science

Engineering, Indian Institute of technology Kanpur. Available from the World wide webhttp://

www.cse.iitk.ac.in/news/primality.pdf

3. Trappen and Washington, Introduction to Cryptography with CodingTheory.

4. G.L. Miller riemanns hypothesis and tests for Primality.

5. M.O. Rabin . Probabilistic algorithm for testingprimality.

Acknowledgement: Mr. Sai Sheshank Burra (B. Tech, CSE) [Scribe for Last Three

Lectures]

92

Unit 2: Elliptic Curve Cryptosystem

9.1 ELLIPTICCURVES

An elliptic curve is defined by an equation in two variables, with coefficients. For cryptography,

the variables and coefficients are restricted to elements in a finite field.

Note: Elliptic curves are not ellipses. They are so named because they are described by cubic

equations, similar to those used for calculating the circumference of an ellipse.

Definition: Let be a fieldofcharacteristic and let (where) be a cubic

polynomial with no multiple roots. An ellipticcurveover is the set ofpoints with

which satisfy theequation

together with asingle element and called the point at infinity .

If is a field of characteristic 2, then an ellipticcurveover is the set of points satisfying an

equation of typeeither

or else,

If is a field of characteristic 3, then an ellipticcurveover is the set of points satisfying the

equation

Figure 1 shows two examples of elliptic curves. Now, consider the set of pointsE

(1)

(2)

(3)

(4)

consisting of all of the points that satisfy Equation (1) together withtheelement . Using a

different value of the pair results in a different set E .

Using this terminology, the two curves in Figure 1 depict the sets and ,

respectively.

2

93

Figure 1 Examples of Elliptic Curves

Geometric Description of Addition :

A group can be defined based on the set E for specificvaluesof and in Equation (1),

provided the following condition ismet:

94

(5)

To define a group, we define an operation, called addition and denoted by +, for the set E ,

where and satisfy Equation (5). In geometric terms, the rules for addition can be stated as

follows: If three points on an elliptic curve lie on a straight line, theirsumis .

From this definition, we can define the rules of addition over an elliptic curve:

Let , and denote thecoordinates of , ,and respectively. We want to

express and interms of , , , .

Let be the equation of the linepassingthrough and .

=

The equation of the elliptic curve is

=

Roots of theequation are , , .

95

Addition of two points:

9.2 ELLIPTIC CURVES (CONTD.) AND FINITEFIELDS

......

96

is the point of intersection of thetangentat and the ellipticcurve.

Example : On the elliptic curve let and . Find and .

Solution .

....

For finding ,

Forfinding ,

97

Elliptic curves over :

For elliptic curves over , wehave

(6)

Now consider the set consisting of all pairsofintegers that satisfy Equation (6),

together with a pointat infinity .Thecoefficients and and thevariables and are all

elements of .

It can be shown that a finite abelian group can be defined based on the set providedthat

has no repeated factors. This is equivalent to thecondition

(7)

For example, let , that is, the ellipticcurve

: . Forthe set , we are only interested in thenonnegative

integers in the quadrant from through that satisfy theequation mod . Table 1

lists the points (other than) that arepart of . Figure 2 plots thepoints of .

In case of the finite group , the numberofpoints is bounded by

Table 1 Points on theEllipticcurve otherthan

98

9.3 ECDLP

Figure 2 The Elliptic Curve

The Elliptic Curve cryptosystem (ECC) have the potential to provide relatively small block

size, high security public key schemes that can be efficiently implemented. The Elliptic Curve

Discrete Logarithm problem (ECDL P) is based on the fact that given m.P for some integer m

and some point P on the Elliptic Curve where P is known, we have to find v alue of m . The

smaller key size of Elliptic Curve Cryptosystem makes possible much more compact

implementations for a given level of security , which means faster cryptographic operations,

running on smaller chips or more compact software. We mainly concentrate on the Elliptic

Curve whose equation is given by y2= x3+ Ax + B defined over a finite field Fpfor prime p for A ,

B in the field. The ECC transforms data into some point representation of the Elliptic Curve. It

relies on calculating the multiple of a point P as m.P which is public and it is difficult to find

integer m from P and m.P . This is the Elliptic Curve Discrete Logarithm Problem (ECDL P). It

basically defines a group by the operator addition on the points found on the EllipticCurve.

99

Informally a zero-knowledge proof system allows one person to convince another person of

some fact without revealing any information about the proof. There are usually two participants,

the prover and the verifier. The prover would like to prevent the verifier from gaining any useful

information while participating in the protocol. For some details refer [3] and [8].

An Elliptic Curve is defined on a field. The field may be finite or infinite. We will draw our

attention towards finite fields. It is denoted by Fqhaving q elements where q = prhaving p as the

characteristic of the field Fqand r as any positive integer. We will mainly consider for the curve

where q = p i.e. r = 1. The points on the curve whose x and y values are in the field are taken into

account. The ECC transforms the data into some point representation. The points form an

Abelian Group w.r.t. the operator addition. There is one point indicated by O called the identity

element.

Definition 2.1. The Order of a point is defined as the number of times the point must be added in

order to give the identity element i.e. the point O .

Definition 2.2. The Generator of the group is a point whose Order is equal to the number of

points that are in the group.

The basis of ECC is The Elliptic Curve Discrete Logarithm Problem i.e. the ECDL P .

Definition 2.3. The Elliptic Curve Discrete Logarithm problem or ECDLP is defined as follows:

Given points P and Q on Ep(A, B) such that the equation m.P = Q holds. Compute k

given P and Q .

Definition 2.4. The Zero Knowledge Proof is defined as follows:

There are usually two participants, the prover and the verifier. The prover knows some fact and

wishes to prove that to the verifier. The prover and the verifier will be allowed to perform

alternatively the following computations:

1. Receive message from the other party.

2. Perform a privatecomputation.

3. Send a message to the other party.

A typical round of the protocol will consist of a challenge by the verifier and a response by the

prover. At the end the verifier either accepts or rejects.

Definition 2.5. The Birthday Paradox is defined as follows :

How many people must there be in a room before there is a 50% chance that two of them were

born on the same day of the year.

100

The above problem can be stated in a different way as follows :

Given a random variable that is an integer with uniform distributions between 1 and n and a

selection of k instances (k = n) of the random variable, what is the probability p(n, k) that there

is at least one duplicate ? The Birthday Paradox is a special case where n = 365 and asks for the

value of k such that p(n, k)>0 . 5. The answer to this problem is

k (n). [6]

Definition 2.6. The M odular Linear Equation is stated as ax = b (mod n) where a >0 and n >

0.

Review of Existing Results

Let E be an Elliptic Curve defined over a finite field with F p having equation y2= x3+ Ax + B ,

where A &B satisfies the inequality 4 A3+ 27 B2= 0. We can find the number of points on the

curve by checking the Legendre Symbol for y2for each value of x . T he number of points will be

denoted by #E(Fp).

The Hasses's theorem provides some limit on the number of points on an Elliptic Curve defined

over a finite field. It states that |p +1-#E (Fp) | p . [5]

Theorem 3.1. The Equation ax (mod n) is solvable for the unknown x if and only if

gcd(a, n)|b . [4]

Theorem 3.2. The Equation ax (mod n) either has d distinct solutions modulo n, where d =

gcd (a, n) ,or it has no solutions. [4]

Theorem 3.3. Let d = gcd (a, n) , and suppose that d = axf+ nyffor some int e gers xfand yf. If d|

b, then the e quation ax (mod n) has as one of it's solutions the value x0, where x0= xf(b/d)

mod n.[4]

Theorem 3.4. Sup p ose that the e quation ax (mod n) is solvable (that is, d|b , where d =

gcd (a,n)) and that x0is any solution to this e quation. Then, this e quation has exactly ddistinct

solutions, modulo n, given by xi= x0+ i(n/d) for i = 0 , 1 , 2 ,3 ,...... , d - 1 .[4]

Corollary 3.5. For any n >1, if gcd (a, n) = 1, then the equation ax (mod n) has a unique

solution, modulo n . [4] In particular if b = 1 then x = a-1n Z*.

Theorem 3.6. In a coin toss, if the probability of obtaining a head is p then it is expected that

after 1 /p tosses the first head is obtained. [2]

Theorem 3.7. n>1 (n)/n n/ log n) . [2]

101

First we will provide a Zero Knowledge Proof for Elliptic Curve Discrete Logarithm Problem

(ECDL P) and explain the properties. In the next section we will present an attack over the Zero

Knowledge Protocol.

Properties of Zero Knowledge Interactive Proof

A Zero Knowledge Interactive Proof (ZKIP) or Zero Knowledge Protocol is an iteracti ve

method for one party to prove to another that a (usually mathematical) statement is true without

revealing anything other than the veracity of the statement. A Zero Knowledge Interactive Proof

must satisfy three properties :

1. Completeness : If the statement is true, the honest verifier (that is, one following theprotocol

property) will be convinced of this fact by an honestprover.

2. Soundness : If the statement is false, no cheating prover can convince the honest verifier that it

is true except with small probability.

3. Zero-Knowledge : If the statement is true, no cheating verifier learns anything other thanthis

fact.

9.4 ZERO KNOWLEDGEPROOF

Now we will give the Zero Knowledge Proof for Elliptic Curve Discrete Logarithm Prob-

lem(ECDLP) and prove the properties.Our proof has some resemblance with ElGamal signature

scheme [1] descri bed in [5] in details . Let the prover be Alice and the verifier be Bob . Let the

Elliptic Curve be denoted by Ep(A,B) and let n be the number of points on the Elliptic Curve. Let

P Ep(A,B) be a generator of the group. So Alice wants to convince Bob that she knows the

value of m where Q = mP without disclosing m . It can be achieved by following steps :

1. Alice picks random integer k with 1 = k = p-1 where p is the characteristic of the fieldand

sends R = kPtoBob.

2. Bob picks random integer r with 1 = r = p-1 and sends it toAlice.

3. Alice computes Y = (k-mr) mod n where n is the number of points on the curve i.e. # E(Fp)=

n , and sends it to Alice.

4. Bob verifies if R == YP + rQ.

If step 4 is satisfied then Bob accepts else rejects. Now we will verify the three properties stated

previously for the protocol as follows:

102

1. Completeness : Given Q = mP . We have to show that if Alice knows value of m , then Bob is

convinced that Alice knowsit.

Since Alice knows value of m , all four steps in the protocol can be carried out. At step 3 Alice

computes Y = (k - mr) mod n and sends it to Bob. At step 4, Bob verifies YP + rQ = R or not.Now

YP + rQ = (k - mr) P + rQ = kP - rmP + rQ = kP - rQ + rQ = kP =R

(verified).

So Bob is convinced that Alice knowsm .

2. Soundness : Here we have to show that if Alice does not know value of m then shecan't

convince Bob that she knows it or succeeds with a very small probability.

Now suppose Alice doesn't know value of m and wants to convince Bob that she knows it. The

only way that Alice can convince Bob is in step 3 of the protocol Alice should send such a value

for Y such that Y P should have value R- rQ , so that after

adding rQ Bob will get R .

i.e. YP = R-rQ

i.e. YP = kP -rmP

i.e. YP = (k -mr)P

i.e. Y= (k -mr) mod n

Now Alice has values of k , r but she doesn't have the value of m . So it can't find value of k-mr .

So she can't cheat.

3. Zero-Knowledge : Here we have to show that no information is released in the pro-tocol.

Now in one session of the protocol Bob/Eavesdropper E has the followinginformation:

P ,Q , R = kP ,r ,Y = (k - mr) mod n .

Now from Y = (k - mr) mod n , in order to find out value of m it knows value of r . So the only

thing left is to know k . But to find k the only way is to solve the ECDLP , R = kP for k . So

Bob/Eavesdropper can't know value of m . So the proof is a Perfect Zero-Knowledge .

Attack on the Zero Knowledge Protocol

During the whole protocol the Eavesdropper E has the following information :

point P (known)

point Q = mP (known)

point R = k P (known) (k unknown)

number r (known)

103

number Y = (k - mr) mod n (known, m unknown)

From it the Eavsdropper can't find any useful information. But the attack is possible

if the attacker uses information from multiple sessions of the challenge-response protocol. Now

suppose in one session

Y 1= (k - mr 1) modn (1)

In another session Alice use the same k to compute R and thus

Y 2 = (k - mr2) modn (2)

So (1) - (2) ? Y 1-Y 2 = m(r2- r 1) mod n

m (r2- r 1) = (Y 1- Y2) mod n (3)

So r2- r 1 is known, and Y1- Y2 is known. So we can solve form by using Theorem 3.4. Here in the

Modular Linear Equation ax , a = (r2- r1), b = (Y1- Y2), x = m and the number of

solutions = gcd(a,n). The attack proceeds as follows :

In step 1 of the protocol Eavesdropper E gets the value of Ri= kiP(i = 1 , 2 ,3,) wherei

denotes the session numbers of the challenge-response protocol. Suppose at some session j , E

disc overs Rj= Rl, for some l < j . Thus we have :

kjP = klP (kj-kl)P = O. We will assume P is either the generator or a point on the Elliptic Curve

with high order. Otherwise ECDLP can be easily solved by any brute force method. Thus we can

safely assume without loss of generality O(P) >> kj- kl. Thus the only way the equality holds if

kj= kl. Thus the entire problem reduces to solving the Modular Linear Equation (3). From

Corollary 3 . 1 of Modular Linear Equation we hence

m = (Y1-Y2)(r2- r1) - 1 mod n .

As stated in Corollary3.1,(r2- r1)-1 would be uniquely defined if gcd (r2- r1,n) = 1.

r2- r1. Thus gcd ,n) = 1. W e can adopt the following randomized algorithm

r2 from r1 .

Algorithm 1 RAND (n)

1: Pick a random number x from (2 ,3 ,, n -1).

2: Compute gcd(x,n).

3: if gcd (x,n) = 1 then

.

104

5: else

6: goto step 1.

7: end if

We know that |Zn n). Thus the tptal number of integers less than n and relativelyprime

w.r.t n n). Thus the probability that the selected number x Z n n

)/ n . Thus from Theorem 3.6 after expected n n) O (log n / loglog n) iterations we will

get x Z n * . Thus the expected time complexity of RAND is O (log n / loglog n) assuming

the time complexity to compute gcd(x,n) is O (l og n). Thus in sessions i and j attacker will use a

random number r 1 and r 2= r 1

chooses different values of k at each session. But in step 1 of the protocol Alice picks up k with1

k p-1 at random. Thus from Birthday Paradox after O (p) sessions Alice will pick up k used

in some earlier session with high probability. Thus after O (p) sessions of the challenge

response protocol with high prpbability an Eavesdropper can compute the value m for ECDLP .

6 Solution to Overcome the Above Attack

In this section we will provide a solution i.e., a modified Zero Knowledge Proof for the ECDLP

that overcomes the above attack and prove the required properties i.e., Com- pleteness,

Soundness, and Zero-Knowledge, as explained previously . We also provide an explanation of

how it overcomes the above attack.

Let the proverbe Alice and the verifier be Bob . Let the Elliptic Curve be denoted by Ep(A, B)

and let n be the number of points on the Elliptic Curve. Let P Ep(A, B) be a generator of

the group. So Alice wants to convince Bob that she knows the value of m where Q = mP

without disclosing m . It can be achieved by following steps :

1. Alice picks random integers k1and k2with 1 1, k2 p - 1 where p is the c haracteristic ofthe

field and sends R1= k1P and R2= k2Q toBob.

2. Bob picks random integer r with 1 - 1 and sends it toAlice.

3. Alice computes Y = (mrk2- k 1) mod n where n is the number of points on the curvei.e.

#E(Fp)= n , and sends it toAlice.

4. Bob verifies if YP + R1==rR2.

105

If step 4 is satisfied then Bob accepts else rejects. Now we will verify the three propertiesstated

previously for the protocol as follows:

1. Completeness : Given Q = mP . We have to show that if Alice knows value of m , then Bob is

convinced that Alice knowsit.

Since Alice knows value of m , all four steps in the protocol can be carried out. At step 3 Alice

computes Y = (mrk2-k1) mod n and sends it to Bob. At step 4, Bob verifies YP + R1= rR2or not.

Now YP + R1= (mrk2- k1)P + k1P

= mrk2P- k1P + k1P

= mrk2P

= rk2Q (Replacing mP by Q)

=rR2(Replacing k2Q by R2) (Verified). So Bob is convinced that Alice knows m .

2. Soundness : Here we have to show that if Alice does not know value of m then shecan't

convince Bob that she knows it or succeeds with a very small probability.

Now suppose Alice doesn't know value of m and wants to convince Bob that she knows it. The

only way that Alice can convince Bob is in step 3 of the protocol Alice should send such a value

for Y such that YP should have value rR2- R1, so that after adding R1 Bob will get rR2.

i.e. YP = rR2- R 1i.e. YP = k2rQ - k1P i.e. YP = mrk2P - k1P

i.e. Y = (mrk2- k1) mod n

Now Alice has values of r ,k2,k1but she doesn't have the value of m . So it can't find value of

(mrk2- k1). So she can't cheat.

3. Zero-Knowledge : Here we have to show that no information is released in the pro-tocol.

Now in one session of the protocol Bob/Eavesdropper E has the following information :

P,Q,R1= k1P , R2= k2Q,Y= (mrk2- k1) mod n.

Now Y = (mrk2- k1) mod n. From this modular equation to find out value of m the known

quantities are r and Y. In this modular linear equation Y =(mrk2- k1)mod n we have 3 unknowns

m,k1, and k2. Thus 2 ECDLPs R1= k1P and R2= k2Q reduces to solving Y = (mrk2- k1) mod n .

Thus in other words if there is an efficient way of obtaining k1and k2from the modular linear

equation Y =(mrk2- k1) mod n then there is an efficient solution to 2ECDLPs R1= k1P and R2=

k2Q . Hence solving the modular linear equation Y = (mrk2- k1) mod nis at least as hard as

106

solving ECDLPs R1= k1Pand R2= k2Q . So Bob/Eavesdropper can't know value of m . So the

proof is a Perfect Zero-Knowledge .

Now we will explain how the attack is avoided. Now suppose as earlier Bob / E gets Y1and Y2as

follows :

Y1= (mr1k12- k) mod nand Y2=(mr2k22- k)mod ni.e., in both sessions R 1 values are same. Here

k12and k22indicate the k2values in both sessions.Now subtracting as previously we will get Y1-

Y2= m(r1k12- r2k22) mod n . But as it doesn't know the value of k12and k22, so it can't solve for the

Modular Linear Equation .Even if R2is same in b oth cases with R2= k2Qthen it will get the final

subtraction result as Y1- Y2= mk2(r1- r2)mod n. So solving it will give the value of mk2. Again if

we can obtain m efficiently we have an efficient solution to the ECDLP R2= k2Q. Thus again we

have a reduction from ECDLP to the problem of computing m from mk2. So this proof system is

not susceptible to the previous attack.

Conclusion

The Elliptic Curve cryptosystem (ECC) can play an important role in asymmetric cryp-

tography . ECC is a stronger option than the RSA and Discrete Logarithm systems for the future.

Here we have presented a Zero Knowledge In teractive Proof for ECDLP where the elliptic

curve is of the form Ep(A,B) where pis a prime. The re- sult can be easily generalized to Eq(A,B)

for composite q where q = pr. Given a guess of m for ECDLP we can easily verify in polynomial

time whether P = m.Q . This shows E C D LP N P P S P AC E = I P [7]. This confirms

with our result that shows E C D LP I P . Subsequently we have also presented an attack on

the Zero Knowledge Pro-tocol using Birthday Paradox . Lastly we modified the Zero

Knowledge Proof to overcome thisattack.

References

[1] T.ElGamal,

DiscreteLogarithm

[2] Pinaki Mitra, M.Durgaprasad Rao, M. Kranthi Kumar,

of the Group (Zp
*, xp) and Safe Primes

(Accepted forPublication).

[3] Steven G. Krantz,

107

[4] T.H. Coreman, C.E. Leiserson, R.L. Rivest, C. Stein, - rithms(Second

Edition) -872.

[5] Lawrence C. Washington, - Number Theory and Cryptography - (164-

168), CHAPMAN & HALL/C R C,2003.

[6] William Stallings,

[7] Adi Shamir, -

877, October1992.

[8]

Discrete Logarithm Problem –5.

Reference:

1. A course in Number Theory and Cryptography, Neal Koblitz ,Springer.

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C.Washington,

Pearson Education .

3. Cryptography and Network Security , William Stallings, Prenctice Hall India.

9.5 ELLIPTIC CURVECRYPTOGRAPHY

Elliptic curve cryptosystem is based Elliptic Curve Discrete Logarithm Problem ,i.e., ECDLP .

The problem is defined as follows:

Given points P and Q on Ep(a,b) such that the equation kP = Q holds. Compute k given P and Q .

Representing Plaintext Message by a Point on the Elliptic Curve

Suppose the plaintext message is an integer m. We have to represent this by a point on the

elliptic curve y2= x3+ax+b (mod p). We choose the x -coordinate of the representative point by m

. But it may so happen that m3+am+b (mod p) is not a quadratic residue and thus the ordinate

value is undefined. So we adopt the following randomized procedure described in [1].

Let K be the largest integer such that the failure probability 1/2k is acceptable. We also assume

that (m +1)K<p. the message m will be represented by a point with the abscissa value x = mK +

j,where0 j <K. Also we assumethatp 3 mod 4. This assumption will help us in computing

the square root deterministically. For j=0,1,2,…,K -1 check if z=x3+ax+b (mod p) is a quadratic

residue or not. If it is a quadratic residue we compute the vale of y as Nowwe

108

represent the message by Pm= (x,y). If the test fails for all values of j then we fail to map the

message to a point. Clearly the failure probability is 1/2k.

At the time of decryption we recover the message m from Pm= (x,y) as follows:

m= .

Elliptic Curve Analogue of Diffie- Hellman Key Exchange

Publicly available information: Ep(a,b) and a point G on the curve with high order, i.e.,kG = O

for

large k . Let n be the total number of points on the curve.

1. Alice chooses her private key nAsuchthat 1 nA n and computes the public key PA=nAxG.

2. Bob chooses his private key nBsuchthat1 nB n and computes the public key PB=nBxG.

3. Alice and Bob simultaneously compute the shared key K = nAxnBxG after computingnAxPB

and nBxPArespectively.

This key exchange scheme as mentioned earlier is susceptible to intruder-in-the-middle attack.

To overcome this all messages should be authenticated by its sender.

Elliptic Curve Analogue of ElGamal Cryptosystem

Bob's Public Key: PB

Bob's Secret Key: a where PB G .

109

Other Publicly Available Information: Elliptic Curve Ep(a,b) and a point G of large order on

the elliptic curve and the prime p .

Encryption (Sender: Alice)

Let Pmbe the point on the elliptic curve corresponding to the plaintext message m .

• Alice chooses a random number k , suchthat 1 k p -1.

• She computes the cipher text C ={C1 ,C2} = { kG,Pm+kPB}.

• She sends the cipher text C ={C1,C2} toBob.

Decryption (Receiver: Bob)

After receiving the cipher text C ={C1,C2}

• C1 B

• Then Bob subtracts the result obtained in Step1. from C2. Thus Bob computes C2- kPB=Pm

and recovers the plaintext.

Reference:

1. A course in Number Theory and Cryptography, Neal Koblitz ,Springer.

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

3. Cryptography Theory and Practice , D. R. Stinson, CRC Press.

110

Unit 3: Hash Function Digital
Signatures

10.1 CRYPTOGRAPHIC HASHFUNCTIONS

In cryptography, a cryptographic hash function is a transformation that takes an input and

returns a fixed-size string, which is called the hash value. Hash functions with this property are

used for a variety of computational purposes, including cryptography. The hash value is a

concise representation of the longer message or document from which it was computed. The

message digest is a sort of "digital fingerprint" of the larger document. Cryptographic hash

functions are used to do message integrity checks and digital signatures in various information

security applications, such as authentication and message integrity.

There is no formal definition which captures all of the properties considered desirable for a

cryptographic hash function.

A cryptographic hash function h : M Z is a mapping from the set of messages of arbitray

length i.e., the domain M to a set of fixed length (approx. 160 bits) message digests i.e., the range

Z .

These properties below are generally considered prerequisites:

Preimage resistant (See one way function for a related but slightly differentproperty):

given h(m) it should be hard to find any m such that h (m) = h (m).

Second preimage resistant : given an input m1 , it should be hard to find another input,m2

(not equal to m1) such that h (m1) = h (m2).

This property is implied by collision-resistance. Second preimage resistance is sometimes

referred to as weak collision resistance .

Collision-resistant : it should be hard to find two different messages m1 and m2 suchthat

h (m1) = h (m2). This property is sometimes referred to as strong collision resistance.

Birthday Paradox: If there are n people having m possible birthdays and if n > (approx.)

3

111

then with high probability (i.e., probability >) there will be a pair of people having the same

birthday.

Proof: The probability that all people having distinct birthday (assuming m >n) is as follows:

=

= £

having the same birthday .

Thus ln (2) n(n-1) ln (2)m (approx.)Q.E.D

Thus to check the strong collision resistance property of a hash function h : M Z wherethe

Z | = 2 we have to test an arbitrary subset of M with cardinality

It is however, a common misconception that "one-wayness" of a cryptographic hash function

means irreversibility of processing of the hash state, and that it somehow contradicts the

principles used to construct block ciphers. Such "irreversibility" in fact means presence of local

collisions that could facilitate attacks. The hash function must be a permutation processing its

state bijectively to be cryptographically secure. It must be irreversible regarding the data block

just like any block cipher must be irreversible regarding the key (it should be impossible to find

the key that can encrypt a block A into a block B faster than the brute-force). This makes iterated

block ciphers and hash functions processing blocks of the same size as secret keys of those block

ciphers virtually identical, except the roles of key and data blocks are swapped. All the attacks

against the MDx and SHA families of hash functions exploit local collisions in the processing of

the data block. The local collisions caused by the final addition operation can also be exploited

by these attacks.

MDx Hash Function Family

The family of MDx hash function started from MD4 and subsequently extended to MD5 and

MD7 . We first explain the principle of MD4 . MD4 converts a message block whose length is

112

modulo 512 bit long to a message digest of 128 bits concatenating contents of 4 registers after 3

rounds. First given a bit string x of arbitrary length it converts it a message M whose length is

modulo 512 bits. This is done as follows:

1. d = (447-| x |) mod 512

2. Let l denote the binary representation of | x | mod 264. | l|=64

3. M = x || 1 || 0d|| l.

In the above algorithm | x | denote the length of the bit string x . Thus we see that | x || 1 || 0d | =

448 mod 512. Concatenating l we get | M | as a multiple of 512.

Then M is broken up into words of length 32 bits as follows:

M = M [0] M [1] … M [N -1]

Where each M [i] is 32 bit long and N º 0 mod 16. The overall algorithm proceeds as follows:

1. 1. A = 67452301 hex

2. B = efcdab89hex

3. C = 98badcfehex

4. D = 10325476 hex

5. for i = 0 to N/16 -1 do

6. for j = 0 to 15 do

7. X [j] = M [16i + j]

8. AA =A

9. BB =B

10. CC =C

11. DD =D

12. Round1

13. Round2

14. Round3

15. A = A +AA

16. B = B +BB

17. C = C +CC

18. D = D +DD

We maintain 4 registers A , B , C , D each of length 32 bits. In each iteration of the outer for loop

we process a message block X [0] X [1] … X [15] of length 512 bits to produce a message digest

113

of length 128 bits formed by concatenating the contents of those 4 register A , B , C , D .

The above algorithm of MD4 was subsequently extended to MD5 that works in 4 rounds instead

of 3 rounds.

10.2 ELGAMAL DIGITALSIGNATURES

1. Introduction:-

Traditionally signature with a message is used to give evidence of identity and intention with

regard to that message. For years people have been using various types of signature to associate

their identity and intention to the messages. Wax imprint, seal, and handwritten signature are the

common examples. But when someone need to sign a digital message, things turn different. In

case of signing a digital document one cannot use any classical approach of signing, because it

can be forged easily. Forger just need to cut the signature and paste it with any other message.

For signing a digital document one uses digital signature [1][2][3].

Therefore, digital signature are required not to be separated from the message and attached to

another. That is a digital signature is required to be both message and signer dependent. For

validating the signature anyone can verify the signature, so digital signature are suppose to be

verified easily.

A digital signature scheme typically consist of three distinct steps:

1. Key generation:- User compute their public key and corresponding privatekey.

2. Signing:- In this step user sign a given message with his/her privatekey.

3. Verification:- In this step user verify a signature for given message and publickey.

So the functionality provided by digital signature can be stated asfollows:

Authentication:- Digital signature provides authentication of the source of the messages as a

message is signed by the private key of the sender which is only known to him/her.

Authentication is highly desirable in many applications.

Integrity:- Digital signature provides integrity as digital signature uniquely associate with

corresponding message. i.e. After signing a message a message cannot be altered if someone do

it will invalidate the signature. There is no efficient method to change message and its signature

to produce a new message and valid signature without having private key. So both sender and

receiver don‘t have to worry about in transit alteration.

Non- repudiation:- For a valid signature sender of message cannot deny having signed it.

114

In this report we are going to discuss different variation of digital signature. First we will

describe RSA digital signature scheme and Elgamal signature scheme, along with their

elliptic curve version. After covering above signature scheme we will talk about digital

signature standards, and then we will cover proxy signature scheme, blind signature scheme

and then we will finally talk about short signature scheme.

2. RSA Digital SignatureScheme

Suppose Alice want to send a message(m) to Bob. She can generate digital signature using RSA

digital signature scheme [4] as follow:

Key Generation:-

She can generate key for RSA signature scheme:

1. Choose two distinct large prime numbers p and q.

2. Compute n =pq.

3. n is used as the modulus for both the public and privatekeys.

4. Compute , where is Euler‘s totientfunction.

5. Choose an integer e such that and

6. Compute d = e .

Then the public key and private key of user will be (e, n) and (d, n) respectively.

Now she have her public and private key. Now she can generate the signature of a message by

encrypting it by her private key.

So she can generate signature corresponding to message(m) as follow:

Signing:-

1. Represent the message m as an integer between 0 and n .

2. Sign message by raising it to the dth power modulon.

S d (mod n)

So S is the signature corresponding to message m. Now she can send message malong with the

signature S to Bob.

Upon receiving the message and signature (m, S), Bob can verify the signature by decrypting it

by Alice public key as follow:

115

Verification:-

1. Verify signature by raising it to the eth power modulon.

m' e (mod n)

2. If m' = m (mod n) then signature is valid otherwise not.

For a valid signature both mand m' will be equalbecause:

S d (mod n)

m' de(mod n)

and

e is inverse of d, i.e. ed .

So, by using above algorithm Alice can generate a valid signature S for her message m, but there

is a problem in above define scheme that is the length of the signature is equal to the length of

the message. This is a disadvantage when message is long.

There is a modification in the above scheme. The signature scheme is applied to the hash of the

message, rather than to the message itself.Now Alice have a message signature pair (m, S). So,

the signature S is a valid signature for message m. So a forger (lets say Eve) cannot forge Alice

signature. i.e. She cannot use signature S with another message lets say m1, because Seis not

equal to m1. Even when the signature scheme is applied to the hash of the message it is infeasible

to forge the signature, because it is infeasible to produce two message m, m1with same hash

value.

In practice, the public key in RSA digital signature scheme is much smaller than the private key.

This enable a user to verify the message easily. This is a desired because a message may be

verified more than once, so the verification process should be faster than signing process.

The RSA Digital Signature Algorithm:-

Additional instructions for RSA signature algorithm is as follows:

An RSA digital signature key pair consists of an RSA private key, which is used to compute a

digital signature, and an RSA public key, which is used to verify a digital signature. An RSA

digital signature key pair shall not be used for other purposes (e.g. key establishment).

An RSA public key consists of a modulus n, which is the product of two positive prime integers

p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values

(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly

116

considered to be the length of the modulus n in bits (nlen). The corresponding RSA private key

consists of the same modulus n and a private key exponent d that depends on n and the public

key exponent e. Thus, the RSA private key is the pair of values (n, d) and is used to generate

digital signatures. In order to provide security for the digital signature process, the two integers p

and q, and the private key exponent d shall be kept secret. The modulus n and the public key

exponent e may be made known to anyone.

The Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and

3072 bits.

An approved hash function, as specified in [7], shall be used during the generation of key pairs

and digital signatures. When used during the generation of an RSA key pair, the length in bits of

the hash function output block shall meet or exceed the security strength associated with the bit

length of the modulus n. The security strength associated with the RSA digital signature process

is no greater than the minimum of the security strength associated with the bit length of the

modulus and the security strength of the hash function that is employed. Both the security

strength of the hash function used and the security strength associated with the bit length of the

modulus n shall meet or exceed the security strength required for the digital signature process.

10.3 BLIND & PRONY SIGNATURE

Elgamal digital signature scheme[5] is proposed by Elgamal in 1985. This is based on Diffe-

Hellman key exchange. This signature scheme is quite different from RSA signature scheme in

terms of validity of signatures corresponding to a message. i.e. there are many valid signatures

for a message. Suppose Alice want to sign a message using Elgamal digital signature scheme,

she can generate signature S corresponding to message m as follow:

Key generation:-

She can generate key for Elgamal signature scheme as follow:

1. Choose p be a largeprime.

2. Choose g be a randomly chosen generator of the multiplicative group of integers Zp.

3. Choose a secret key x such that 1 < x < p .

4. Compute y = gx (modp).

117

Then the public key and private key of user will be (p, g, y) and (p, g, x) respectively.

Signing:-

Now Alice has her public and private key so she can sign a message m by using following steps:

1. Choose a random number k such that 0 < k < p and gcd(k, p .

2. Compute r k(modp).

3. Compute s -1 (mod p . Where H(m) is hash of message.

Then the pair (r, s) is the signature of the messagem.

Verification:-

Bob can verify the signature (r, s) of message m as follow:

1. Download Alice's public key (p, g,y).

2. Compute v1
H(m)(mod p) and v2

r r s (modp).

3. The signature is declared valid if and only if v1 2 (modp).

For a valid signature (r, s), v1 2 (mod p) since

s -1 (mod p

sk

H(m) -1)

v1
H(m)(mod p)

v1
(sk+xr)(modp)

v1
(sk) g (xr)(mod p)

v1
k) s (g x) r(mod p)

v1
r r s (mod p)

v1 2 (mod p).

The security of Elgamal digital signature scheme relies on the difficulty of computing discrete

logarithms. The security of the system follows from the fact that since x is kept private for

forging Elgamal digital signature one do need to solve discrete logarithm problem.s

Suppose Eve want to forge Alice signature for a message m1and she doesn't know x (as x kept

private by Alice), then she cannot compute s(as s 1)
-1 (mod p . Now the

only option left is to choose s which satisfies the verification. Thus s should satisfy equation y rr
s H(m)(mod p) as Eve knows (p, g, y) so she can compute r. So the equation can be rearrange

as r s -r g H(m)(mod p), which is again a discrete logarithm problem. So Elgamalsignature

118

scheme is secure, as long as discrete logarithm are difficult to compute.

Digital Signature Standards

Digital signature standards [6] define some standards to be followed. A digital signature scheme

includes a signature generation and a signature verification. Each user has a public and private

key and is the owner of that key pair.

For both the signature generation and verification processes, the message (i.e., the signed data)

is converted to a fixed-length representation of the message by means of an approved hash

function. Both the original message and the digital signature are made available to a verifier.

A verifier requires assurance that the public key to be used to verify a signature belongs to the

entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a

verifier requires assurance that the signatory is the actual owner of the public/private key pair

used to generate and verify a digital signature. A binding of an owners identity and the owners

public key shall be effected in order to provide this assurance.

A verifier also requires assurance that the key pair owner actually possesses the private key

associated with the public key, and that the public key is a mathematically correct key. By

obtaining these assurances, the verifier has assurance that if the digital signature can be correctly

verified using the public key, the digital signature is valid (i.e., the key pair owner really signed

the message). Digital signature validation includes both the (mathematical) verification of the

digital signature and obtaining the appropriate assurances.

Technically, a key pair used by a digital signature algorithm could also be used for purposes

other than digital signatures (e.g., for key establishment). However, a key pair used for digital

signature generation and verification as specified in this Standard shall not be used for any other

purpose. A number of steps are required to enable a digital signature generation or verification

capability in accordance with Standards.

Initial Setup:-

Each intended signatory shall obtain a digital signature key pair that is generated as specified for

the appropriate digital signature algorithm, either by generating the key pair itself or by obtaining

the key pair from a trusted party. The intended signatory is authorized to use the key pair and is

119

the owner of that key pair. Note that if a trusted party generates the key pair, that party needs to

be trusted not to masquerade as the owner, even though the trusted party knows the private key.

After obtaining the key pair, the intended signatory (now the key pair owner) shall obtain

assurance of the validity of the public key and assurance that he/she actually possesses the

associated private key.

Digital Signature Generation:-

Prior to the generation of a digital signature, a message digest shall be generated onthe

information to be signed using an appropriate approved hashfunction.

Using the selected digital signature algorithm, the signature private key, the messagedigest,

and any other information required by the digital signature process, a digital signature shall be

generated according to theStandard.

The signatory may optionally verify the digital signature using the signature verification

process and the associated public key. This optional verification serves as a final check to detect

otherwise undetected signature generation computation errors; this verification may be prudent

when signing a high-value message, when multiple users are expected to verify the signature, or

if the verifier will be verifying the signature at a much later time.

Digital Signature Verification and Validation:-

In order to verify a digital signature, the verifier shall obtain the public key of the claimed

signatory,(usually) based on the claimed identity. A message digest shall be generated on the

data whose signature is to be verified (i.e., not on the received digital signature) using the same

hash function that was used during the digital signature generation process. Using theappropriate

digital signature algorithm, the domain parameters (if appropriate), the public key and the newly

computed message digest, the received digital signature is verified in accordance with this

Standard. If the verification process fails, no inference can be made as to whether the data is

correct, only that in using the specified public key and the specified signature format, the digital

signature cannot be verified for thatdata.

Before accepting the verified digital signature as valid, the verifier shall have

1. assurance of the signatory claimedidentity,

2. assurance of the validity of the public key,and

120

3. assurance that the claimed signatory actually possessed the private key that was usedto

generate the digital signature at the time that the signature wasgenerated.

If the verification and assurance processes are successful, the digital signature and signed data

shall be considered valid. However, if a verification or assurance process fails, the digital

signature should be considered invalid.

10.4 SHORT SIGNATURE SCHEMEI

Suppose Alice want her message to be sign by Bob without letting him know the content of the

message, she can got it done using Blind signature scheme [8]. Blind signatures scheme,

proposed by Chaum, allow a signer to interactively sign messages for users such that the

messages are hidden from the signer. Blind signature typically have two basic security

properties: blindness says that a malicious signer cannot decide upon the order in which two

messages have been signed in two executions with an honest user, and unforgeability demands

that no adversarial user can create more signatures than interactions with the honest signer took

place.

Blind signatures are typically employed in privacy-related protocols where the signer and

message author are different parties. Blind signature schemes see a great deal of use in

applications where sender privacy is important, some of them are:

1. Cryptographic election systems(e-Vote).

2. Digital cash schemes (e-Cash)

Blind signature scheme can be used with RSA signature algorithm. In RSA signature scheme a

signature is computed by encrypting the message by the private key. In case of the blind

signature there is one additional step Blinding the message. Alice can blind her message and get

is signed by Bob, and remove the blinding factor after getting it signed. Suppose (e, N) and (d,

N) is the public key and private key of Bob respectively then Alice can blind her messageas

follows:

Blinding the message:-

1. Alice choose a random value r, such that r is relatively prime to N (i.e. gcd(r, N) =1).

121

2. Calculate blinding factor by raising r to the public key e (mod N) (i.e. blinding factoris

equal to re(mod N)).

3. Blind the message by computing the product of the message and blinding factor,i.e.

m' e (mod N)

Now Alice can send blinded message m' to Bob. Now m' does not leak any information about m,

as r is private to Alice. Any malicious user need to solve discrete logarithm problem for

recovering original m from m'.

Signing:-

When Bob (signing authority) receive a blinded message from Alice (user) he will sign the

message by his private key

S' d(mod N)

S' is the signature corresponding to message m'. Bob send S' to Alice. Alice removes the

blinding factor from the signature by dividing it r and revel the original RSA signature S as

follow:

S -1 (mod N)

Now Alice message m with signature S, signature can be verified using Bob's public key.

Verification:-

Now signature can be verified as usual RSA signature.

1. Verify signature by raising it to the eth power moduleN.

m' e (mod N)

2. If m' = m (mod N) then signature is valid otherwisenot.

The above scheme will work fine. i.e. (S, m) is a valid signature message tuple corresponding to

Bob. Since

S -1 (mod N)
dr-1 (mod N)

e)dr-1 (mod N)
dredr-1 (mod N)

drr-1 (mod N)
d (mod N)

122

5. Proxy Signature:-

In proxy signature scheme a user Alice (original signer) delegates her signing capability to

another user, Bob(proxy signer), so that Bob can sign messages on behalf of Alice. Proxy

signature can be validate for its correctness and can be distinguished between a normal signature

and a proxy signature. So the verifier can be convinced of the original signer‘s agreement on the

signed message. Proxy signature is used in a number of applications, including electronic

commerce, mobile agents, distributed shared object systems,and many more. For example, the

president of a company delegates a signing right to his/her secretary before a vacation. The

secretary can make a signature on behalf of the president, and a verifier can be confident that the

signature has been made by the authorized secretary. The verifier can also be convinced of the

president‘s agreement on the signed message. Typically, a proxy signature scheme is as follows.

The original signer Alice sends the proxy signer Bob a signature that is associated with a specific

message. Bob makes a proxy private key using this information. Bob can then sign on a message

with the proxy private key using a normal signature scheme. After the message and signature

have been sent to the verifier, he/she recovers a proxy public key using public information and

verifies the proxy signature using a normal signature scheme.

Proxy Signature scheme is introduced by Mambo [9]. Proxy signature scheme is based on a

discrete logarithm problem. The original signer has the private key x and public key y x(mod

p). Proxy signature scheme is as follow:

System Parameters:-

The original signer choose k randomly and computes r = gk mod p, and s = x + kr mod p. Now

original signer send these system parameters to the proxy signer.

i.e. original signer sends (r, s) to the proxy signer. The proxy signer checks the validity of (r, s)

as follows:

gs = yrr mod p

If this equality holds, the proxy signer accepts (r, s)as the valid proxy secret key.

Signing

The proxy signer signs a message m, then its signature Spis generated. After that, the proxy

signer sends the message and its signature, which are (m, Sp , r), to the verifier.

123

Verification

Upon receiving (m, Sp , r), the verifier recovers y' by y' = yrr mod p and substitute y' for y. After

that, the verifier proceeds the verification phase of normal signature scheme.

10.5 SHORT SIGNATURE SCHEMEII

Short signature scheme[10] give the shortest signature among all discussed signature schemes.

This signature scheme use elliptic curve and bilinear pairing. We will discuss this signature

scheme starting from the basic signature scheme and then type of bilinear pairing it uses, after

that security multiplier and finally types of elliptic curve used in this scheme.

Short signature scheme is in three parts, KeyGen, Sign, and Verify. It makes use of a hash

function h : {0, 1} G . Where G is the base group and g is generator. G, g are system

parameters.

1. Key Generation:- Choose a random x Z p , and compute v gx. x is the secret key andv

is thepublic key.

2. Signing:- For a message M {0, 1} , and secret key x, Compute h h(M), and hx.

The signatureis G .

3. Verification:- For a given public key v, a message M , and a signature , compute h h(M)

and verifythat is a valid Diffie-Hellmantuple.

So short signature scheme use bilinear pairing in verification of the signature.

Bilinear pairing:-

Let G1and GTbe two cyclic groups of prime order q. Let G2be a group and each element of G2

has order dividing q. A bilinear pairing e is e : G1× G2 GTsuch that

1. e(g1 , g2) = 1GTfor all g2 G2if and only if g1 = 1G1, and similarly e(g1 , g2) = 1GTfor

all g1 G1if and only if g2 = 1G2.

2. for all g1 G1 and g2 G2, e(g1 , g2) = e(g1
a , g2

b)abfor all a, b Z.

Security Multiplier: - Let a finite field Fp
lwhere p is a prime and l is a positive integer, and an

elliptic curve E over Fp
lhave m points. Let, point P of elliptic curve has order q, where q2!| m.

Then subgroup P has a security multiplier , if order of plin F qis . We will discuss different

families of elliptic curve Which are classified by the value of security multiplier.

124

Type 1

Let p be a prime where p = 2(mod 3). Let E be the elliptic curve defined over Fp, and equation

of the curve is y2 = x3 + b, Typically b = ±1. Then E(Fp) is supersingular curve, and number of

points, #E(Fp) = p + 1, and #E(Fp
2) = (p + 1)2. For any odd j | p + 1, G = E(Fp)[j] is cyclic and

has security multiplier . Let be the cube root of unity. Consider the following map,

sometimes referred to as a distortion map:

Then maps points of E(Fp) to points of E(Fp2)\E(Fp). Thus if f denotes the bilinear pairing,

then defining e : G × G q2by gives a bilinear non-degenerate map.

Type 2

Unlike above discussed curve this type of curve have low characteristic field. Let F is a finite

field defined over 3lwhere l is a positive exponent. Let curve E+ : y2 = x3 + 2x + 1, and

E : y2 = x3 + 2x-1, over F3
l .

when l = ±1mod12

#E+ (F3
l) = 3l + 1 + 3(l+1)/2

when l = ±5mod12

#E+ (F3
l) = 3l + 1 (l+1)/2

when l = ±1mod12

#E -(F3
l) = 3l + 1 (l+1)/2

when l = ±5mod12

#E - (F3
l) = 3l + 1 + 3(l+1)/2

Type 3

Let p be a prime where p 3(mod 4). Let E be the elliptic curve defined over Fp, and equation of

the curve is y2 = x3 + ax, where a Z(mod p). Then E(Fq) is supersingular curve, and number

of point, #E(Fp) = p + 1, and #E(Fp2) = (p + 1)2. For any odd j|p + 1, Group G = E(Fp)[j] is

cyclic and has security multiplier .

Type 4

Type 4 curves are non-supersingular. By considering cyclotomic polynomials, elliptic curve with

security multiplier 12 can be generated. Let q(x) = 36x4 + 36x3 + 24x2 + 6x + 1. Let t(x) = 6x2 +

1. If D = 3, then solution of CM equation will always be V = 6x2 + 4x + 1. It turns out q(x) + 1

125

t(x) | q(x)12 . So the value of security multiplier is 12. Following algorithm is used to

generate curves:

1. Pick an integer x of a desired magnitude. It may benegative.

2. Check if q(x) isprime.

3. Check if n = q(x) has a large prime factor r. (Ideally it should beprime.)

4. Try different values of k until a random point of y2 = x3 + k has ordern.

Type 5

Type 5 curve are also non-supersingular curve. Type 6 curve are ordinary curves with security

multiplier 6. Order of type 6 curves is a prime or a prime multiplied by a small constant. Let a

finite field F defined over some p where p = sq. Where s is a small constant and q is a

prime. When type 5 curve is defined over field Fp6, its order is a multiple of q2.

References for Last 4 Lectures:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and CliffordStein

Introduction to Algorithms Third Edition.

2. WadeTrappe,LawrenceC. Washington Introduction to Cryptographywith Coding

Theory

3.

4. R.L. Rivest, A.Shamir,andL.Adleman A Method for ObtainingDigital Signatures

126

Unit 4: Stream Ciphers

11.1 VIDEO DATA CIPHERS

Ciphers:

1. Block Cipher

2. StreamCipher

Block Cipher: The same function is used to encrypt successive blocks (memory less).

Stream Cipher: This processes plan text as small as single bit. It has memory.

One – Time – Pad (corresponding cipher is called Vernam cipher)

plain text

keystream

ciphertext

Decryption :

Assumption: is truly random.

Synchronous Stream Ciphers:

{There is a clock which is same at both the ends}

Definition: a synchronous stream cipher is one in which the key stream is generated

independently of the plain text and cipher text.

Properties of Synchronous stream cipher:

• Synchronization requirement: In a synchronous stream cipher, both the sender and receiver

must be synchronized using the same key. If synchronization is lost due to cipher text digits

being inserted or deleted during transmission, then decryption fails and can only be restored

through additional techniques for re-synchronization. This involves either re-initialization or

4

127

placing special marker at regular intervals or redundancy in plaintext.

• No error propagation: A cipher text digit that is modified during transmission doesn'teffect

decryption of other cipher textdigits.

Active attacks: As a consequence of properly (i), the insertion, deletion or replay of cipher text

digits by an active adversary causes immediate loss of synchronization and hence might possibly

be detected by decryptors.

Application: Stream ciphers are used for video data stream.

Reference:

1. Handbook of Applied Cryptography , A. Menzes, P. van Oorschot and S. Vanstone.

Scribes: Rakesh Yarlagadda, Ravi Ranjan

128

Properties of Synchronous stream cipher:

• Synchronization requirement: In a synchronous stream cipher, both the sender and receiver

must be synchronized using the same key. If synchronization is lost due to cipher text digits

being inserted or deleted during transmission, then decryption fails and can only be restored

through additional techniques for re-synchronization. This involves either re-initialization or

placing special marker at regular intervals or redundancy in plaintext.

• No error propagation: A cipher text digit that is modified during transmission doesn’t

effect decryption of other cipher text digits.

Active attacks: As a consequence of properly (i), the insertion, deletion or replay of cipher text

digits by an active adversary causes immediate loss of synchronization and hence might possibly

be detected by decryptors.

Application: Stream ciphers are used for video data stream.

Reference:

1. Handbook of Applied Cryptography , A. Menzes, P. van Oorschot and S. Vanstone.

Scribes: Rakesh Yarlagadda, Ravi Ranjan

129

Block-4

130

Unit 1: Entity Authentication

12.1 ElGamal Signature Scheme

The ElGamal signature scheme is a digital signature scheme based on the algebraic properties of

modular exponentiation, together with the discrete logarithm problem. The algorithm uses a key

pair consisting of a public key and a private key. The private key is used to generate a digital

signature for a message, and such a signature can be verified by using the signer's corresponding

public key. The digital signature provides message authentication (the receiver can verify the

origin of the message), integrity (the receiver can verify that the message has not been modified

since it was signed) and non-repudiation (the sender cannot falsely claim that they have not signed

the message).

Operations

The scheme involves four operations: key generation (which creates the key pair), key

distribution, signing and signature verification.

Key generation

Key generation has two phases. The first phase is a choice of algorithm parameters which may
be shared between different users of the system, while the second phase computes a single key
pair for one user.

Parameter generation

Choose a key length N. .

Choose a N-bit prime number
Choose a cryptographic hash function with output length L bits. If L > N, only the leftmost N bits of the
hash output are used.
Choose a generator g < p of the multiplicative group of integers modulo p, Z*p.

The algorithm parameters are. These parameters may be shared between users of the system.

Per-user keys

Given a set of parameters, the second phase computes the key pair for a single user:

1

131

Choose an integer x randomly from {1…p – 2}
Compute y: = gx mod p.

x is the private key and y is the public key.

Key distribution

The signer should send the public key y to the receiver via a reliable, but not necessarily secret,
mechanism. The signer should keep the private key x secret.

Signing

A message m is signed as follows:

Choose an integer k randomly from {2… p – 2 }with k relatively prime to p - 1.
Compute r := gk mod p.
Compute s := (H(m)-x r)k-1 mod (p-1).
In the unlikely event that s=0 start again with a different random k.

The signature is (r,s)

Verifying a signature

One can verify that a signature is (r, s) a valid signature for a message m as follows:

Verify that 0 < r < pand0<s<p-1.
The signature is valid if and only if gH(m) y^r r^s (mod p)

Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will always be
accepted by the verifier.

The computation of s during signature generation implies

H(m) -1}

Since g is relatively prime to p,

gH(m) {xr+sk} (mod p)
x)r (g^{k})^s (mod p)
r (r)s (mod p)

Security

132

A third party can forge signatures either by finding the signer's secret key x or by finding collisions in the

hash function H(m) H(M)(mod p-1). Both problems are believed to be difficult. However, as of 2011 no

tight reduction to a computational hardness assumption is known.

The signer must be careful to choose a different k uniformly at random for each signature and to be

certain that k, or even partial information about k, is not leaked. Otherwise, an attacker may be able to

deduce the secret key x with reduced difficulty, perhaps enough to allow a practical attack. In particular,

if two messages are sent using the same value of k and the same key, then an attacker can compute x

directly.

Existential forgery

The original paper did not include a hash function as a system parameter. The message m was used

directly in the algorithm instead of H(m). This enables an attack called existential forgery, as described in

section IV of the paper. Pointcheval and Stern generalized that case and described two levels of

forgeries:

1. The one-parameter forgery. Select an e such that 1 < e < p - 1. Setr := ge y mod pand s := -r mod(p-1).

Then the tuple(r, s) is a valid signature for the message m = es mod(p-1).

2. The two-parameter forgery. Select 1 < e,v < p-1, and gcd (v,p-1)=1. Set r := geyv mod p and s := -rv^{-1}

mod{(p-1). Then the tuple (r, s)is a valid signature for the messagem = es mod{(p-1). The one-parameter

forgery is a special case of the two-parameter forgery, when v = 1.

12.2 Autokey Identity Scheme

While the identity scheme described in RFC-2875 is based on a ubiquitous Diffie-Hellman

infrastructure, it is expensive to generate and use when compared to others described here. There are

five schemes now implemented in Autokey to prove identity: (1) trusted certificates (TC), (2) private

certificates (PC), (3) a modified Schnorr algorithm (IFF aka Identify Friendly or Foe), (4) a modified

Guillou-Quisquater algorithm (GQ), and (5) a modified Mu-Varadharajan algorithm (MV). The

TC scheme, which involves a certificate trail to a trusted host, is discussed on the Autokey

Protocol page. Each of the others involves generating parameters specific to the scheme, together with

public and private values used by the scheme.

In order to simplify implementation, each scheme uses existing structures in the OpenSSL library,

including those for RSA and DSA cryptography. As these structures are sometimes used in ways far

133

different than their original purpose, they are called cuckoo structures in the descriptions that follow.

In the challenge-response schemes client Alice asks server Bob to prove identity relative to a secret

group key b provided by a trusted authority (TA). As shown in the figure above, client Alice rolls

random nonce1 and sends to server Bob. Bob rolls random nonce2, performs some mathematical

function and returns the response along with the hash of some private value to Alice. Alice performs

another mathematical function and verifies the result matches the hash in Bob's message.

Each of the five schemes is intended for specific use. There are three kinds of keys, trusted agent,

server and client. Servers can be clients of other servers, but clients cannot cannot be servers for

dependent clients. In general, the goals of the schemes are that clients cannot masquerade as a servers

and a servers cannot masquerade as a trusted agents (TAs), but they differ somewhat on how to achieve

these goals. To the extent that identity can be verified without revealing the group key, the schemes are

properly described as zero-knowledge proofs.

The four identity schemes described here have different design goals and are intended for specific

application. The PC scheme is intended for one-way broadcast configurations where clients cannot run

a duplex protocol. It is essentially a symmetric key cryptosystem where the certificate itself is the key.

The IFF scheme is intended for servers operated by national laboratories. The servers share a private

group key and provide the public client parameters on request. The clients cannot masquerade as

servers.

The GQ scheme is intended for exceptionally hostile scenarios where it is necessary to change the

client key at relatively frequent intervals. As in the IFF scheme the servers share a private group key

and provide the public client parameters on request. In this scheme clients requre a public key to

complete the exchange. This is conveyed in the server certificate in an extension field. The certificate

134

can be changed while retaining the same group key.

The MV scheme is intended for the most challenging scenarios where it is neccesary to protect against

both server and client masquerade. The private values used by the TA to generate the cryptosystem are

not available to the servers and the private values used by the servers to encrypt data are not available

to the clients. Thus, a client cannot masquerade as a server and a server cannot masquerade as a TA.

However, a client can verify a server has the correct group key even though neither the client nor

server know the group key, nor can either manufacture a client key acceptable to any other client. A

further feature of this scheme is that the TA can collaborate with the servers to revoke client keys.

Private Certificate (PC) Cryptosystem

The PC scheme shown above uses a private certificate as the group key. A certificate is designated

private by a X509 Version 3 extension field when generated by the ntp-keygen program in the NTP

software distribution. In the Autokey context it functions as a symmetric key. The private certificate is

generated by a TA and distributed to all group members by secure means and is never revealed outside

the group. A client is marked trusted in the (optional) Parameter Exchange and authentic when the first

signature is verified. This scheme is cryptographically strong as long as the private certificate is

protected; however, it can be very awkward to refresh the keys or certificate, since new values must be

securely distributed to a possibly large population and activated simultaneously

Schnorr (IFF) Cryptosystem

The Schnorr (IFF) identity scheme can be used when certificates are generated by utilities other than

the ntp-keygen program in the NTP software distribution. Certificates can be generated by the

OpenSSL library or an external public certificate authority, but conveying an arbitrary public value in a

certificate extension field might not be possible. The TA generates the IFF parameters, private key and

public key, then sends these values to the servers and the parameters and public key to the clients.

Without the private key a client cannot masquerade as a legitimate server.

135

The DSA parameters are generated by routines in the OpenSSL library. The IFF values hide in a DSA

cuckoo structure which uses the same parameters. The p is a 512-bit prime, g a generator of the

multiplicative group Zp* and q a 160-bit prime that divides p - 1 and is a qth root of 1 mod p; that

is, gq = 1 mod p. The TA rolls a private random group key b (0 < b < q) and computes the public

key v = gb, then distributes private (p, q, g, b) to the servers using secure means and public (p, q, g, v)

to the clients not necessarily using secure means.

The TA generates a DSA parameter structure for use as IFF parameters. The IFF parameters are

identical to the DSA parameters, so the OpenSSL library DSA parameter generation routine can be

used directly. The DSA parameter structure is written to a file as an encrypted DSA key encoded in

PEM. Unused structure members are set to one.

IFF DSA Item Include

p p modulus all

q q modulus all

g g generator all

b priv_key group key server

v pub_key client key client

Alice challenges Bob to confirm identity using the following protocol exchange.

1. Alice rolls random r (0 < r < q) and sends to Bob.

2. Bob rolls random k (0 < k < q), computes y = k + b r mod q and x = gk mod p, then sends (y,

hash(x)) to Alice.

3. Alice computes z = gy vr mod p and verifies hash(z) equals hash(x).

Guillou-Quisquater (GQ) Cryptosystem

136

The Guillou-Quisquater (GQ) identity scheme is useful when certificates are generated by

the ntp-keygen program in the NTP software distribution. The TA generates the GQ parameters,

private key and public key, then sends these values to the servers and the parameters to the clients. The

public key is inserted in an X.509 extension field when the certificate is generated. Without the private

key a client cannot masquerade as a legitimate server.

The RSA parameters are generated by routines in the OpenSSL libbrary. The GQ values hide in a RSA

cuckoo structure which uses the same parameters. The values are used in an identity scheme based on

RSA cryptography and described in [1] and [5] p. 300 (with errors). The 512-bit public

modulus n = p q, where p and q are secret large primes. The TA rolls random group key b (0 < b < n)

and sends (n, b) to the servers using secure means. The private key and public key are constructed later.

The TA generates a RSA parameter structure for use as GQ parameters. The RSA parameter structure

is written to a file as an encrypted RSA key encoded in PEM. Unused structure members are set to one.

When generating new certificates, the server rolls new random private key u (0 < u < n) and public key

its inverse u-1 obscured by the group key v = u-1 b. These values replace the private and public keys

normally generated by the RSA scheme. In addition, the public key v is conveyed in a X.509 certificate

extension.

GQ RSA Item Include

n n modulus all

b e group key all

u p server key server

v q client key client

Alice challenges Bob to confirm identity using the following exchange.

137

1 Alice rolls random r (0 < r < n) and sends to Bob.

2 Bob rolls random k (1 < k < n) and computes y = k ur mod n and x = kb mod n, then sends (y,

hash(x)) to Alice.

3 Alice computes z = vr yb mod n and verifies hash(z) equals hash(x).

Mu-Varadharajan (MV) Cryptosystem

The Mu-Varadharajan (MV) scheme was originally intended to encrypt broadcast transmissiions to

receivers which do not transmit. There is one encryption key for the broadcaster and a separate

decryption key for each receiver. It operates something like a pay-per-view satellite broadcasting

system where the session key is encrypted by the broadcaster and the decryption keys are held in a

tamperproof set-top box. We don't use it this way, but read on.

In the MV scheme the TA constructs an intricate cryptosystem involving a number of activation keys

known only to the TA. The TA decides which keys to activate and provides to the servers an

encryption key E and server decryption keys gbar and ghat which depend on the activated keys. The

servers have no additional information and, in particular, cannot masquerade as a TA. In addition, the

TA provides for each activation key j individual client decryption keys xbar and xhat, which do not

need to be changed if the TA enables or disables an activation key. The clients have no further

information and, in particular, cannot masquerade as a server or TA.

Clients are assigned one of the activation keys and are provided with the corresponding client key.

There can be any number of clients sharing the same activation key according to policy. While the

machinery to enable and disable ativation keys is included in the current implementation, specific

means and interfaces to do this are not yet available, so only one client key is provided.

The scheme is designed so that clients can construct the inverse of E from the server gbar and ghat and

client xbar and xhat. In the scheme both E and its inverse are exponentiated by a server nonce, so the

product is always one and the secrecy depends on the descrete log problem.

The MV values hide in a DSA cuckoo structure which uses the same parameters, but generated in a

different way. The values are used in an encryption scheme similar to El Gamal cryptography and use a

polynomial formed from the expansion of product terms (x - xj), as described in [3]. The paper has

significant errors and serious omissions.

138

The TA generates the modulus, encryption key and server decryption keys as an encrypted DSA key

encoded in PEM. Unused structure members are set to one.

MV DSA Item Include

p p modulus all

q q modulus server

E g private encrypt key server

gbar priv_key server decrypt key server

ghat pub_key server decrypt key server

The TA generates the modulus and client decryption keys as a nonencrypted DSA key encoded in

PEM. It is used only by designated recipient(s) who pay a suitably outrageous fee for its use. Unused

structure members are set to one.

MV DSA Item Include

p p modulus all

xbar priv_key client decrypt key client

xhat pub_key client decrypt key client

The devil is in the details. Let q be the product of n distinct primes s1j (j = 1...n), where each s1j, also

called an activation key, has m significant bits. Let prime p = 2q + 1, so that q and each s1j divide p - 1

and p has M = nm + 1 significant bits. Let g be a generator of the multiplicative group Zp*; that is,

gcd(g, p - 1) = 1 and gq = 1 mod p. We do modular arithmetic over Zq and then project into Zp* as

powers of g. Sometimes we have to compute an inverse b-1 of random b in Zq, but for that purpose we

require gcd(b, q) = 1. We expect M to be in the 500-bit range and n relatively small, like 30. The TA

uses a nasty probabilistic algorithm to generate the cryptosystem. In the following let the number ofbits

139

in the modulus m = 512.

1 The object is to generate a multiplicative group Zp* modulo a prime p and a subset Zq mod q,

where q is the product of n distinct m-bit primes s1j (j = 1...n) and q divides p - 1. As a practical

matter, it is tough to find more than 31 distinct primes for mn = 512 or 61 primes for mn = 1024.

The latter can take several hundred iterations and several minutes on a Sun Blade 1000.

2 Compute the modulus q as the product of the primes. Compute the modulus p as 2q + 1 and

test p for primality. If p is composite, replace one of the primes with a new distinct prime and try

again. Note that q will hardly be a secret since we have to reveal p to servers and clients.

However, factoring q to find the primes should be adequately hard, as this is the same problem

considered hard in RSA. Question: is it as hard to find n small prime factors totalling n bits as it is

to find two large prime factors totalling n bits? Remember, the bad guy doesn't know n.

3 Associate with each s1j an element sj such that sj s1j = s1j mod q. One way to find an sj is to

compute the quotient (q + s1j) / s1j mod p. The student should prove the remainder is always

zero.

4 Compute the generator g of Zp using a random roll such that gcd(g, p - 1) = 1 and gq = 1. If not,

roll again.

The cryptosystem parameters n, p, q, g, s1j, sj (j = 1...n) have been determined. The TA sets up a specific

instance of the scheme as follows.

Roll random roots xj mod q (j = 1...n) for a polynomial of order n. While it may not be strictly necessary,

Make sure each root has no factors in common with q.

Generate polynomial coefficients ai (i = 0...n) from the expansion of root products (x - xi) mod q in

powers of x using a fast method contributed by Charlie Boncelet.

Generate gi = gai mod p for all i and the generator g. Verify prod(giai xji) = 1 for all i, j. Note

the ai xji exponent is computed mod q, but the gi is computed mod p. Also note the expression given in

the paper cited is incorrect.

1 Make master encryption key A = Prod(gixj) (i = 0...n, j = 1...n - 1). Keep it around for awhile,

since it is expensive to compute.

2 Roll private random group key b mod q (0 < b < q), where gcd(b, q) = 1 to guarantee the inverse

exists, then compute b-1 mod q. If b is changed, all keys must be recomputed.

140

3 Make private client keys xbarj = b-1 Sum(xin mod q) (i = 1...n, i != j) and xhatj = sjxjn for all j.

Note that the keys for the jth client involve only sj and that s1j remain secret. The TA sends

(p, xbarj, xhatj) to the jth client(s) using nonsecure means.

4 The activation key is initially q by construction. The TA revokes client j by dividing q by s1j. The

quotient becomes the activation key s. Note we always have to revoke one key; otherwise, the

plaintext and cryptotext would be identical. The TA computes private server encryption

key E = As and server decryption keys gbar = gbars and ghat = ghatsb mod p and sends

(p, E, gbar, ghat) to the servers using secure means. These values must be recomputed if an

activation key is changed.

Alice challenges Bob to confirm identity using the following exchange.

1 Alice rolls random r (0 < r < q) and sends to Bob.

2 Bob rolls random k (0 < k < q), computes y = rEk, ybar = gbark and yhat = ghatk, then returns

(y, ybar, yhat) to Alice.

3 Alice computes the session decryption key (Ek)-1 = ybarxhatj yhatxbarj, then verifies that y = r.

141

Unit 2: Public Key Infrastructure

12.2 Public key Infrastructure

A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures needed to

create, manage, distribute, use, store and revoke digital certificates and manage public-key encryption.

The purpose of a PKI is to facilitate the secure electronic transfer of information for a range of network

activities such as e-commerce, internet banking and confidential email. It is required for activities where

simple passwords are an inadequate authentication method and more rigorous proof is required to

confirm the identity of the parties involved in the communication and to validate the information being

transferred.

In cryptography, a PKI is an arrangement that binds public keys with respective identities of entities (like

people and organizations). The binding is established through a process of registration and issuance of

certificates at and by a certificate authority (CA). Depending on the assurance level of the binding, this

may be carried out by an automated process or under human supervision.

The PKI role that may be delegated by a CA to assure valid and correct registration is called

a registration authority (RA). Basically, an RA is responsible for accepting requests for digital

certificates and authenticating the entity making the request. The Internet Engineering Task Force's RFC

3647 defines an RA as "An entity that is responsible for one or more of the following functions: the

identification and authentication of certificate applicants, the approval or rejection of certificate

applications, initiating certificate revocations or suspensions under certain circumstances, processing

2

142

subscriber requests to revoke or suspend their certificates, and approving or rejecting requests by

subscribers to renew or re-key their certificates. RAs, however, do not sign or issue certificates (i.e., an

RA is delegated certain tasks on behalf of a CA). While Microsoft may have referred to a subordinate

CA as an RA, this is incorrect according to the X.509 PKI standards. RAs do not have the signing

authority of a CA and only manage the vetting and provisioning of certificates. So in the Microsoft PKI

case, the RA functionality is provided either by the Microsoft Certificate Services web site or through

Active Directory Certificate Services which enforces Microsoft Enterprise CA and certificate policy

through certificate templates and manages certificate enrollment (manual or auto-enrollment). In the case

of Microsoft Standalone CAs, the function of RA does not exist since all of the procedures controlling

the CA are based on the administration and access procedure associate with the system hosting the CA

and the CA itself rather than Active Directory. Most non-Microsoft commercial PKI solutions offer a

stand-alone RA component.

An entity must be uniquely identifiable within each CA domain on the basis of information about that

entity. A third-party validation authority (VA) can provide this entity information on behalf of the CA.

The X.509 standard defines the most commonly used format for public key certificates.

Design

Public key cryptography is a cryptographic technique that enables entities to securely communicate on an

insecure public network, and reliably verify the identity of an entity via digital signatures.

A public key infrastructure (PKI) is a system for the creation, storage, and distribution of digital

certificates which are used to verify that a particular public key belongs to a certain entity. The PKI

creates digital certificates which map public keys to entities, securely stores these certificates in a central

repository and revokes them if needed.

A PKI consists of:

A certificate authority (CA) that stores, issues and signs the digital certificates;

A registration authority (RA) which verifies the identity of entities requesting their digital

certificates to be stored at the CA;

A central directory—i.e., a secure location in which keys are stored and indexed;

A certificate management system managing things like the access to stored certificates or the

delivery of the certificates to be issued;

143

A certificate policy stating the PKI's requirements concerning its procedures. Its purpose is to allow

outsiders to analyze the PKI's trustworthiness.

Method of Clarification

Broadly speaking, there have traditionally been three approaches to getting this trust: certificate

authorities (CAs), web of trust (WoT), and simple public key infrastructure (SPKI).

Certificate authorities

The primary role of the CA is to digitally sign and publish the public key bound to a given user. This is

done using the CA's own private key, so that trust in the user key relies on one's trust in the validity of

the CA's key. When the CA is a third party separate from the user and the system, then it is called the

Registration Authority (RA), which may or may not be separate from the CA. The key-to-user binding is

established, depending on the level of assurance the binding has, by software or under human

supervision.

The term trusted third party (TTP) may also be used for certificate authority (CA). Moreover, PKI is
itself often used as a synonym for a CA implementation.

Issuer market share

In this model of trust relationships, a CA is a trusted third party – trusted both by the subject (owner)

of the certificate and by the party relying upon the certificate.

According to NetCraft report from 2015, the industry standard for monitoring active Transport Layer

Security (TLS) certificates, states that "Although the global [TLS] ecosystem is competitive, it is

dominated by a handful of major CAs — three certificate authorities (Symantec, Sectigo, GoDaddy)

account for three-quarters of all issued [TLS] certificates on public-facing web servers. The top spot

has been held by Symantec (or VeriSign before it was purchased by Symantec) ever since [our]

survey began, with it currently accounting for just under a third of all certificates. To illustrate the

effect of differing methodologies, amongst the million busiest sites Symantec issued 44% of the

valid, trusted certificates in use — significantly more than its overall market share."

Following to major issues in how certificate issuing were managed, all major players gradually

distrusted Symantec issued certificates starting from 2017.

144

Temporary certificates and single sign-on

This approach involves a server that acts as an offline certificate authority within a single sign-on system.

A single sign-on server will issue digital certificates into the client system, but never stores them. Users

can execute programs, etc. with the temporary certificate. It is common to find this solution variety

with X.509-based certificates.

Starting Sep 2020, TLS Certificate Validity reduced to 13 Months.

Web of Trust

An alternative approach to the problem of public authentication of public key information is the web-of-

trust scheme, which uses self-signed certificates and third-party attestations of those certificates. The

singular term "web of trust" does not imply the existence of a single web of trust, or common point of

trust, but rather one of any number of potentially disjoint "webs of trust". Examples of implementations

of this approach are PGP (Pretty Good Privacy) and GnuPG (an implementation of OpenPGP, the

standardized specification of PGP). Because PGP and implementations allow the use of e-mail digital

signatures for self-publication of public key information, it is relatively easy to implement one's own web

of trust.

One of the benefits of the web of trust, such as in PGP, is that it can interoperate with a PKI CA fully

trusted by all parties in a domain (such as an internal CA in a company) that is willing to guarantee

certificates, as a trusted introducer. If the "web of trust" is completely trusted then, because of the nature

of a web of trust, trusting one certificate is granting trust to all the certificates in that web. A PKI is only

as valuable as the standards and practices that control the issuance of certificates and including PGP or a

personally instituted web of trust could significantly degrade the trustworthiness of that enterprise's or

domain's implementation of PKI.[18]

The web of trust concept was first put forth by PGP creator Phil Zimmermann in 1992 in the manual for

PGP version 2.0:

As time goes on, you will accumulate keys from other people that you may want to designate as trusted

introducers. Everyone else will each choose their own trusted introducers. And everyone will gradually

accumulate and distribute with their key a collection of certifying signatures from other people, with the

expectation that anyone receiving it will trust at least one or two of the signatures. This will cause the

emergence of a decentralized fault-tolerant web of confidence for all public keys.

Simple public key Infrastructure

145

Another alternative, which does not deal with public authentication of public key information, is

the simple public key infrastructure (SPKI) that grew out of three independent efforts to overcome the

complexities of X.509 and PGP's web of trust. SPKI does not associate users with persons, since

the key is what is trusted, rather than the person. SPKI does not use any notion of trust, as the verifier is

also the issuer. This is called an "authorization loop" in SPKI terminology, where authorization is

integral to its design.[citation needed] This type of PKI is specially useful for making integrations of PKI

that do not rely on third parties for certificate authorization, certificate information, etc.; A good example

of this is an Air-gapped network in an office.

Decentralized PKI

Decentralized identifiers (DIDs) eliminate dependence on centralized registries for identifiers as well as

centralized certificate authorities for key management, which is the standard in hierarchical PKI. In cases

where the DID registry is a distributed ledger, each entity can serve as its own root authority. This

architecture is referred to as decentralized PKI (DPKI).

BlockChain-based PKI

An emerging approach for PKI is to use the blockchain technology commonly associated with

modern cryptocurrency.[21][22] Since blockchain technology aims to provide a distributed and

unalterable ledger of information, it has qualities considered highly suitable for the storage and

management of public keys. Some cryptocurrencies support the storage of different public key types

(SSH, GPG, RFC 2230, etc.) and provides open source software that directly supports PKI

for OpenSSH servers.[citation needed] While blockchain technology can approximate the proof of

work often underpinning the confidence in trust that relying parties have in a PKI, issues remain such as

administrative conformance to policy, operational security and software implementation quality. A

certificate authority paradigm has these issues regardless of the underlying cryptographic methods and

algorithms employed, and PKI that seeks to endow certificates with trustworthy properties must also

address these issues.

Here is a list of known blockchain-based PKI:

CertCoin

FlyClient

BlockQuick

146

Uses

PKIs of one type or another, and from any of several vendors, have many uses, including providing

public keys and bindings to user identities which are used for:

Encryption and/or sender authentication of e-mail messages (e.g., using OpenPGP or S/MIME);

Encryption and/or authentication of documents (e.g., the XML Signature or XML

Encryption standards if documents are encoded as XML);

Authentication of users to applications (e.g., smart card logon, client authentication with SSL).

There's experimental usage for digitally signed HTTP authentication in

the Enigform and mod_openpgp projects;

Bootstrapping secure communication protocols, such as Internet key exchange (IKE) and SSL. In

both of these, initial set-up of a secure channel (a "security association") uses asymmetric key—i.e.,

public key—methods, whereas actual communication uses faster symmetric key—i.e., secret key—

methods;

Mobile signatures are electronic signatures that are created using a mobile device and rely on

signature or certification services in a location independent telecommunication environment;

Internet of things requires secure communication between mutually trusted devices. A public key

infrastructure enables devices to obtain and renew X509 certificates which are used to establish trust

between devices and encrypt communications using TLS.

147

Unit 3: Classical Cryptography

13.1 Introduction

In this unit, we will learn to describe and analyze the following classical ciphers: ADFGVX, Affine,

Beaufort, Bifid, Caesar, Columnar Transposition, Four-Square, Hill, Playfair, Polybius Square, Rail-

fence, Simple Substitution, Straddle Checkerboard, Vigenere, Autokey, Enigma, and Lorenz

ciphers.nz ciphers. These ciphers are intuitively easy to understand and seem to encrypt the message

well, but they have many shortcomings, which we will discuss as we work through this unit. By

studying these classical ciphers, you will learn to avoid poor cipher design.

13.2 Learning Objectives

Upon successful completion of this unit, students will be able to:

Define, use, and effectively attack classical ciphers such as the ADFGVX, Affine, Beaufort,

Bifid, Caesar, Columnar Transposition, Four-Square, Hill, Playfair, Polybius Square, Rail-fence,

Simple Substitution, Straddle Checkerboard, Vigenere, and Autokey ciphers.

Explain the workings of mechanical ciphers Enigma and Lorenz.

13.3 ADFGVX Cipher

In cryptography, the ADFGVX cipher was a field cipher used by the German Army during World

War I. ADFGVX was in fact an extension of an earlier cipher called the ADFGX cipher. Invented

by Colonel Fritz Nebel and introduced in March 1918, the cipher was a fractionating transposition

cipher which combined a modified Polybius square with a single columnar transposition. The cipher

is named after the six possible letters used in the ciphertext: A, D, F, G, V and X. These letters were

chosen deliberately because they sound very different from each other when transmitted via morse

code. The intention was to reduce the possibility of operator error.

From Kahn's 'The CodeBreakers':

"It was no less clear to the Allies that Germany planned to launch a climactic offensive in the spring.

There were many signs—the new cipher itself was one. The question was: Where and when would

3

148

the actual blow fall? The German high command, recognizing the incalculable military value of

surprise, shrouded its plans in the tightest secrecy. Artillery was brought up in concealment; feints

were flung out here and there along the entire front to keep the Allies off balance; the ADFGVX

cipher, which had reportedly been chosen from among many candidates by a conference of German

ciphe specialists, constituted an element in this overall security, as did the new Schliis-selheft. The

Allies bent every effort and tapped every source of information to find out the time and place of the

real assault."

Georges Painvin was the French cryptanalyst tasked with cracking the ADFGVX cipher. The

intelligence he provided was vital to the French war effort, particularly in saving Paris in 1918:

"At midnight on June 9 the front from Montdidier to Compiegne erupted in a fierce, pelting

hurricane of high-explosive, shrapnel, and gas shells. For three hours a German artillery

concentration that averaged one gun for no more than ten yards of front poured a continual stream of

fire onto the French positions—and Ludendorff's urgent demand for ammunition became clear. But

this time, for the first time since Ludendorff began his stupendous series of triumphs, there was no

surprise. Painvin's manna had saved the French."

The Algorithm

The 'key' for a ADFGVX cipher is a 'key square' and a key word. e.g.

p h 0 q g 6

4 m e a 1 y

l 2 n o f d

x k r 3 c v

s 5 z w 7 b

j 9 u t i 8

The key square is a 6 by 6 square containing all the letters and the numbers 0 - 9. The key word is any word e.g.

GERMAN

There are a number of steps involved:

1. Build a table like the following with the key square. This is known as a polybius square.

A D F G V X

A | p h 0 q g 6

149

D | 4 m e a 1 y

F | l 2 n o f d

G | x k r 3 c v

V | s 5 z w 7 b

X | j 9 u t i 8

2. Encode the plaintext using this matrix, to encode the letter 'a', locate it in the matrix and read off the letter on

the far left side on the same row, followed by the letter at the top in the same column. In this way each plaintext

letter is replaced by two cipher text letters. E.g. 'attack' -> 'DG XG XG DG GV GD'. The cipher text is now twice as

long as the original plaintext. Note that so far, it is just a simple substitution cipher, and trivial to break.

3. Write the code word with the enciphered plaintext underneath e.g.

4. Perform a columnar transposition. Sort the code word alphabetically, moving the columns as you go. Note that

the letter pairs that make up each letter get split apart during this step, this is called fractionating.

G E R M A N

D G X G X G

D G G V G D

5. Read the final cipher text off in columns.

A E G M N R

X G D G G X

G G D V D G

-> XG GG DD GV GD XG

A Short Example

We will now encipher:

DEFEND THE EAST WALL OF THE CASTLE

Using the same key as above, after the substitution step we get:

FXDFFVDFFFFXXGADDFDFDGVAXGVGDGFAFAFGFVXGADDFGVDGVAXGFADF

We now write this out with the keyword above (table on the left), and sort the columns (table on the right):

G E R M A N

F X D F F V

D F F F F X

X G A D D F

D F D G V A

A E G M N R

F X F F V D

F F D F X F

D G X D F A

V F D G A D

150

X G V G D G

F A F A F G

F V X G A D

D F G V D G

V A X G F A

D F

D G X G G V

F A F A G F

A V F G D X

D F D V G G

F A V G A X

F D

We now read off the columns to get the final cipher:

FFDVDFADFXFGFGAVFAFFDXDXFFDVDFFDGGAGVGVXFAGGDGADFADVFXGX

13.4 Affine Cipher

Introduction

The Affine cipher is a special case of the more general monoalphabetic substitution cipher.The

cipher is less secure than a substitution cipher as it is vulnerable to all of the attacks that work

against substitution ciphers, in addition to other attacks. The cipher's primary weakness comes from

the fact that if the cryptanalyst can discover (by means of frequency analysis, brute force, guessing

or otherwise) the plaintext of two cipher text characters, then the key can be obtained by solving a

simultaneous equation.

The Algorithm

The 'key' for the Affine cipher consists of 2 numbers, we'll call them a and b. The following

discussion assumes the use of a 26 character alphabet (m = 26). a should be chosen to be relatively

prime to m (i.e. a should have no factors in common with m). For example 15 and 26 have no factors

in common, so 15 is an acceptable value for a, however 12 and 26 have factors in common (e.g. 2) so

12 cannot be used for a value of a. When encrypting, we first convert all the letters to numbers ('a'=0,

'b'=1, 'z'=25). The ciphertext letter c, for any given letter p is (remember p is the number representing

a letter):

The decryption function is:

where a is the multiplicative inverse of a in the group of integers modulo m.

To find a multiplicative inverse, we need to find a number x such that:

151

If we find the number x such that the equation is true, then x is the inverse of a, and we call it a

The easiest way to solve this equation is to search each of the numbers 1 to 25, and see which one

satisfies the equation. If you want a more rigorous solution, you can use matlab to find x:

> [g,x,d] = gcd(a,m); % we can ignore g and d, we dont need them

> x = mod(x,m);

If you now multiply x and a and reduce the result (mod 26), you will get the answer 1. Remember,

this is just the definition of an inverse i.e. if a*x = 1 (mod 26), then x is an inverse of a (and a is an

inverse of x).

We now use the value of x we calculated as a-1. This allows us to perform the decryption step.

Note: As stated above, m does not have to be 26, it is simply the number of characters in the alphabet

you choose to use. If upper case characters, lowercase characters and spaces are used, then m will be

53. Digits and punctuation could also be incorporated (which again would change the value of m).

Assume we discard all non alphabetical characters including spaces. Let the key be a=5 and b= 7. The

encryption function is then (5*p + 7)(mod 26). To encode:

'defend the east wall of the castle',

We would take the first letter, 'd', convert it to a number, 3 ('a'=0, 'b'=1, ..., 'z'=25) and plug it into the

equation:

since 'w' = 22, 'd' is transformed into 'w' using the values a=5 and b= 7. If we continue with all the

other letters we would have:

'wbgbuwyqbbhtynhkkzgyqbrhtykb'

Now to decode, the inverse of 5 modulo 26 is 21, i.e. 5*21 = 1 (mod 26). The decoding function is

so we have recovered d=3 as the first plaintext character.

'defendtheeastwallofthecastle'

13.5 Bifid Cipher

Introduction

Bifid is a cipher which combines the Polybius square with transposition, and uses fractionation

to achieve diffusion. It was invented by Felix Delastelle. Delastelle was a Frenchman who

152

invented several ciphers including the bifid, trifid, and four-square ciphers. The first presentation

of the bifid appeared in the French Revue du Génie civil in 1895 under the name

of cryptographie nouvelle.

It has never been used by a military or government organization, only ever by amateur

cryptographers. Be wary of the Wikipedia page on bifid, it is almost entirely incorrect.

The Algorithm

Keys for the Bifid cipher consist of a 25 letter 'key square'. e.g.

1 2 3 4 5
1| p h q g m
2| e a y l n
3| o f d x k
4| r c v s z
5| w b u t i

Note that there is no 'j' in the key-square, it is merged with the letter 'i'. The example below will

encipher 'defend the east wall of the castle' using the key shown above.

When enciphering a plaintext, each letter is replaced by the numbers on the left hand side and

top of the key square. These are then written on top of one another as shown in step 1 (below).

E.g. 'd' is in row 3, column 3 of the key square so 3 is written in the top row and 3 is written in

the second row. This is done for all plaintext letters. Step 2: The numbers are then grouped into

blocks of a certain size (this is called the period, and forms part of the key). In this example the

period is 5. The groups are then read off left to right (this is the fractionating step that makes

bifid slightly more difficult to crack than a simple substitution cipher). Step 3 shows the new

sequence of numbers after reading the groups left to right, first the top row of the group followed

by the bottom row. The entire string is then re-enciphered using the original keysquare (shown in

step 4) e.g. 'row 3, col 2' is 'f' in the original key square.

An example encryption using the above key:

Plaintext: defend the east wall of the castle

step 1: row 323223 512 2245 5222 33 512 424522

col 312153 421 1244 1244 12 421 224441

step 2: 32322 35122 24552 22335 12424 522

153

31215 34211 24412 44124 21224 441

step 3: 3232231215 3512234211 2455224412 2233544124 1242421224 522441

step 4: f f y h m k h y c p l i a s h a d t r l h c c h l b l r

Thus 'defendtheeastwallofthecastle' becomes 'ffyhmkhycpliashadtrlhcchlblr' using the key square

shown above and a period of 5 during the enciphering step.

13.4 Vignere Gronsfeld Cipher

Introduction

The Vigenère Cipher is a polyalphabetic substitution cipher. The method was originally described by

Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the

scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as

the Vigenère cipher.

Blaise de Vigenère actually invented the stronger Autokey cipher in 1586.

The Vigenère Cipher was considered le chiffre ind hiffrable (French for the unbreakable cipher) for

300 years, until in 1863 Friedrich Kasiski published a successful attack on the Vigenère cipher.

Charles Babbage had, however, already developed the same test in 1854. Gilbert Vernam worked on

the vigenere cipher in the early 1900s, and his work eventually led to the one-time pad, which is a

provably unbreakable cipher.

The Algorithm
The 'key' for a vigenere cipher is a key word. e.g. 'FORTIFICATION'

The Vigenere Cipher uses the following tableau (the 'tabula recta') to encipher the plaintext:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

154

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

155

To encipher a message, repeat the keyword above the plaintext:

FORTIFICATIONFORTIFICATIONFO

DEFENDTHEEASTWALLOFTHECASTLE

Now we take the letter we will be encoding, 'D', and find it on the first column on the tableau. Then,

we move along the 'D' row of the tableau until we come to the column with the 'F' at the top (The 'F' is

the keyword letter for the first 'D'), the intersection is our cipher text character, 'I'.

So, the cipher text for the above plaintext is:

FORTIFICATIONFORTIFICATIONFO

DEFENDTHEEASTWALLOFTHECASTLE

ISWXVIBJEXIGGBOCEWKBJEVIGGQS

Variants

There are several ciphers that are very similar to the vigenere cipher.

The Gronsfeld cipher is exactly the same as the vigenere cipher, except numbers are used as the key

instead of letters. There is no other difference. The numbers may be picked from a sequence, e.g. the

Fibonacci series, or some other pseudo-random sequence.

The gronsfeld cipher is cryptanalysed in the same way as the vigenere algorithm, however the autokey

cipher will not be broken using the kasiski method since the key does not repeat. The best way to

break the autokey cipher is to try and guess portions of the plaintext or key from the cipher text,

knowing they must both follow the frequency distribution of English text. Guessing how the plaintext

begins is the easiest way of cracking the cipher.

