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Unit 1: Computational Complexity

1.1 COMPLEXITY OF COMPUTATION & COMPLEXITYCLASSES

We will restrict ourselves to two types of Complexities:

Time Complexity 

Space Complexity.

By time/space complexity we mean the time/space as a function of input size required by an 

algorithm to solve a problem.

Problems are categorized into 2 types

(i) DecisionProblem

(ii) OptimizationProblem.

For the purpose of present discussion we will concentrate on decision problems. This is defined 

as follows.

Definition 1: Let x L or x

L is decision problem.

Notation: Let p() denote a polynomial function. 

We will define some complexity classes:

Definition 2: The class P comprises of all languages L 

time algorithm A to decide L. In other words given a string x

determine in time p(|x|) whether x L or x L.

Definition3: The class NP comprises of all language L given a string x L a 

proof of the membership of x L can be found and verified in time p(|x|).

Definition 4: The class Co-NP comprises of all language L - L NP.

Note: We can easily verify CO-P=P and thus P NP CO-NP.

Definition 5: The class PSPACE comprise of all languages L 

algorithm A that uses polynomial working space with respect to the input size to decide L. In 

other words given a string x (|x|) whether 

x L or x L.

1
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We will state without proof the following result that follows from Savitch‘stheorem: 

PSPACE=NSPACE

Polynomial Time reducibility:

A language L1 2

time computable function f ( ) such that x *, x L1 if and only if f (x) L2 . We denote this 

by L1 p L2. we can clearly observe that polynomial time reductions are transitive.

Completeness:

A language L complexity class C if all problems 

in that complexity class C can be reduced to L.Thus we formally define the notion of NP-

Completeness.

Definition 6:

A language L NP-Complete if

(i) L NP

(ii) L NP, we have L pL.

The above definition is not very suitable to prove a language L to be NP-Complete since we 

have infinitely many language in the class NP to be reduced to L. Hence for providing NP-

Completeness we resort to the following equivalentdefinition.

Definition 7:

A language L is said to be NP-Complete if

(i) L NP

(ii) L' NP-Complete and L' pL.

The previous two definitions are equivalent since:

L' is NP-Complete L NP, L p L definition 6) L NP, L pL pL 

L NP, L p L (from the transitivity of polynomial time reductions.) L is NP-Complete. 

Only catch in this approach is to prove the first problem to be NP-Complete for which we 

usually take as SATISFIABILITY problem.

1.2 ENCODINGSCHEME

In all the definition of computational complexity we assume the input string x is represented 

using some reasonable encoding scheme.

Input size will usually refer to the numbers of components of an instance. For example when we 
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Let X = 2 X 1+X 2

Y = 2 Y1+Y2....

consider the problem of sorting the input size usually refers to the number of data items to be 

sorted ignoring the fact each item would take more than 1 bit to represent on a computer

But when we talk about primarily testing, i.e., to test whether a given integer n is prime or 

composite  the  simple  algorithm  to  test  for all factors  from  2,3,……, is considered 

exponentialsincetheinputsizeI(n)is bitsandthetimecomplexityisO( ),i.e.,

O( ).

Again if n is represented in unary the same algorithm would be considered polynomial. For 

number theoretic algorithms used for cryptography we usually deal with large precision  

numbers. So while analyzing the time complexity of the algorithm we will consider the size of 

the operands under binary encoding as the input size. We will analyze most of our programs 

estimating

complexity to the number of bit operations we have to consider the time complexities of 

addition, subtraction, multiplication &division.

Addition & subtraction:

Clearly

operations.

Multiplication:

Let X and Y be two ß bit numbers

Then X x Y = 2 X1 Y1 + 2 (X1 Y2+ X2 Y1) + X2 Y2

Thus the time complexity of the above multiplication 

T ( ) = 4T ( /2) +C

4 multiplications to Compute X 1Y1, X 1Y2,

. X2Y1&X2Y2
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Unit 2: GCD Computation

2.1 ELEMENTARYNUMBER-THEORY

Brief review of notions from elementary number theory concerning the set 

Z = {..., -2, -1, 0, 1, 2...} of integers and

N = {0, 1, 2 , ...} of natural numbers. 

Zn= {0, 1, 2… n-1}

Zn
+= {1, 2… n-1.}

Common divisors and greatest common divisors (GCD):

Let a, b Z

d Z d | ax + by [ x, y Z]

Let d = gcd (a,b)

d' | a d' | b d' | d [ d

The following are elementary properties of the gcd function:

gcd( a , b ) = gcd( b , a )

gcd( a , b ) = gcd(- a , b )

gcd( a , b ) = gcd(| a |, | b |) 

gcd( a , 0) = | a |

gcd( a , ka ) = | a | for any k Z .

Theorem 1

If a and b are any integers then gcd(a,b) is the smallest positive element of the set {ax + by : x, y

Z }

Proof:

Let s be the smallest positive element of the set:{ ax + by : x , y Z}

Let q = a / s and s = ax + by

a mod s = a – qs = a - q ( ax + by ) = a (1 - qx ) + b (- qy )

a mod s <s and a mod s is a linear combination of a and b . Thus a mod s = 0 s | a

Using analogous reasoning we can show s | b. Thus s a,b ).

Let d = gcd (a,b) d | a and d | b. Thus d | s and s >0 d s. We have shown before d s and 

2
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thus we have established that d=s.

Corollary 1:

For any integers a and b, if d | a and d | b then d | gcd(a, b).

Relatively prime integers

Two integers a, b are said to be relatively prime if their only common divisor is 1, that is, if 

gcd(a, b) = 1.

Theorem 2

For any integers a, b, and p, if both gcd(a, p) = 1 and gcd(b, p) = 1, then gcd(ab, p) = 1.

Proof :

gcd(a, p) = 1 x, y Z such that ax + py = 1 gcd(b, 

p) = 1 x Z such that bx

Multiplying these equations and rearranging, we have 

ab(x x') + p(ybx' + y'ax + pyy') = 1.

Thus linear combination of a, b and p is equal to 1 

Thus we have gcd (ab, p ) = 1

Theorem 3

For all primes p and all integers a, b if p | ab p | a or p | b .

Proof:

Assume otherwise, i.e., p | a and p | b. Since p is prime only 2 factors are there for p i.e. 1 & p. 

Therefore gcd(a, p) =1 and gcd(b, p) =1 then gcd (ab, p)=1 p |ab. 

Unique factorization

A composite integer a can be written in exactly one way as a product of the form: 

a =

Where pi‘s are primes i (1..k) such that p1< p2<p3-------- <pk

and ei Z+(i=1,2, -------k)

Theorem 4 (GCD Recursion theorem )

For any non negative integer a and positive integer b gcd (a, b )= gcd (b, a mod b)
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Proof:

We will show gcd (b, a mod b) | gcd (a, b ) and gcd (a, b ) | gcd (b, a mod b ). Let d = gcd (b, a 

mod b ). Thus d | b and d | (a mod b ).

Now a = b + a mod b. Hence a is a linear combination of b and a mod b and so d | a. 

Therefore d | a and d | b d | gcd (a, b) from Corollary1.

Let d = gcd (a, b) d | a and d | b. Now a mod b = a – b and that implies a mod b is a linear 
combination of a and b. Thus d | (a mod b) d | b and d | (a mod b ) d | gcd (b , a mod b)

from Corollary 1.

2.2 EUCLID'SALGORITHM

EUCLID (a, b)

1. ifb=0

2. then return(a)

3. else return(EUCLID(b, a modb))

Lemma: If a > b

then a k+2 and b k+1

Proof: (By induction)

Basis: Let k=1, we know a > b 

b 2 = 1 (here k+1=2)

Since a > b a a 3 (herek+2=3)

If a >b initially then this property a >b is maintained at each recursive invocation in EUCLID (a,

b) algorithm, since b >a mod balways.

NOTE: Since a mod b <b The invariant 1st argument > 2nd argument of EUCLID's algorithm 

is maintained during each iteration.

Inductive Hypothesis: Assume the result holds for # of invocations k -1

Inductive proof: Let EUCLID ( a , b ) makes k invocations

EUCLID ( b , a mod b ) makes ( k -1) invocation 

From our inductive hypothesis:

b ( k -1)+2 , a mod b ( k -1)+1
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Therefore b k+1 , a mod b k

We know, a = * b + a modb (where = Floor ( a))

a b + a mod b .

Since a mod b kwe have a k+1 + Fk a k+2 .

Lame’s Theorem: For any integer k b b < Fk+1 then EUCLID (a, b) makes 

fewer than k recursive calls gcd ( Fk+1, Fk ) = gcd (Fk, Fk-1) = … = gcd (1,0) = 1

Therefore # of recursive invocation = k-1

This shows that the bound k-1 is tight.

Fk /Fk-1 ]
To represent Fk, # of bits required =k

)

EXTENDED-EUCLID ALGORITHM

Goal: Given 2 integers a and b compute integers x and y such that gcd (a, b) = ax + by. 

EXTENDED-EUCLID (a, b)

1. if b =0

2. then return (a, 1,0)

3. (d', x', y') -EUCLID (b, a modb)

4. (d, x, y) – y')

5. return (d, x, y )

For a=99 and b =78 the following table illustrates the values of variables d, x, y at different 

levels of recursion for the algorithm EXTENDED-EUCLID(99, 78). We can easily verify that 

gcd(99, 78) = 3 = -11(99) + 14(78).
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The correctness of the algorithm is established from the following inductive argument.

Basis: Let d denote gcd(a, b). When EUCLID terminates b = 0 and d = a x = 1, y = 0. Thus  

the arguments returned by EXTENDED-EUCLID iscorrect.

Inductive Hypothesis: Assume the values d', x', y' returned by EXTENDED-EUCLID(b, a mod

b) is correct.

Induction Step: We have to show EXTENDED-EUCLID(a, b) correctly computes d, x, y.

d'= x'b + y' (a mod b) = x'b + y' (a - b) = y'a + (x'- y')b =d

x = y' and y = x'- y'.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India .
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Unit 3:  Finite Groups

3.1 MODULAR ARITHMETICGROUPS

A group ( S , ) is a set S together with a binary operation defined on S for which the 

following properties hold.

1. Closure: For all a , b S , we have a b S.

2. Identity:Thereisanelemente S,calledtheidentityofthegroup,suchthate a=a

e = a, for all a S.

3. Associativity: For all a , b , c S, we have ( a b) c = a ( b c).

4. Inverses: For each a S , there exists a unique element b S , called the inverse of a ,

such that a b = b a = e.

As an example, consider the familiar group ( Z , +) of the integers Z under the operation of 

addition: 0 is the identity, and the inverse of a is - a .

Abelian group :

If a group ( S , ) satisfies the commutative law a b = b a, for all a , b S , then it is an

abelian group .

The groups defined by modular addition and multiplication

First we define the congruence notation 

If a , b Z then we say a b modulo n if p , q , r Z such that a = pn + r and b = qn + r .

We will denote a mod n as [a]n

We can form two finite abelian groups by using addition and multiplication modulo n , where n

is a positive integer. These groups are based on the equivalence classes of the integers modulo n

a a ' (mod n ) and b b ' (mod n ), then

a + b a ' + b ' (mod n),

ab a ' b ' (mod n ) .

Thus, we define addition and multiplication modulo n , denoted +nand *n,as follows:

[a] n + n [b] n = [a + b] n(addition modulo n)

3



13

n, n n n n

15 15, 15

[a] n * n [b] n = [a *b] n(multiplicative modulo n)

Using this definition of addition modulo n , we define the additive group modulo n as ( Z n,+ n).

The size of the additive group modulo n is | Z n| = n. Modular addition over the group ( Z 6, + 6 ) is 

defined as follows:

Closure: If a Zn and b Zn then from the definition of addition modulo n a +n b = [a + b]n Z n

Identity: 0 is the identity element of 

ZnInverse: Inverse of [a] n is [-a] n -

a] n

Using this definition of multiplication modulo n , we define the multiplicative group modulo n

as(Z* * ) where Z* ={[ a ] Z | gcd( a , n )=1} . For e.g. when n=15,

Z* = {1, 2, 4, 7, 8, 11, 13, 14}. Modular multiplication over the group(Z* * ) is defined as 

follows:

Identity: [1] n

Inverse: Since gcd( a , n )=1 for every a Z*
n from Extended-Euclid ( a , n ) we obtain x and y
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k

n ,

n ,

45

45 , 45

such that ax + ny =1 ax n x is the inverse of a .

Clearly both +nand *nare associative and commutative. Thus we have established the following 

theorem:

Theorem 1: Both ( Z n,+n)and(Z* *n) form finite Abeliangroups.

|Z* n n ) is the Euler phi function .

From unique factorization theorem n can be expressed in terms of prime factors as follows:

n = p1
e1 p2

e2... p ek

In our example n =15 

15 =3*5

-1/3)(1-1/5) =8

For n = 45 = 32 -1/3)(1-1/5)=24. Thus the group(Z* * )contains

|Z* | =24elements.

3.2 SUBGROUPS

Subgroups and its Properties :

Lecture no 4.

Let (G, ) be a group and H G is a subgroup if

1. H is closed.

2. a H , a -1 H.

Proof: To show H is a group 

1. Closure [Follows from 1stcondition]

2. Associativity [Follows from associativity ofG]

3. Inverse a H , a -1 H [2 ndcondition]

a a -1  H [1st condition]

 e  H

Theorem 1 : A non empty closed subset of a finite group is always a subgroup.

Proof : Let (G,  ) be a finite group &  H  be a non em pty closed subset of G . Pick an elem ent a

 H &  generate the sequence a , a 2 , a 3 , ... where a 2 = a  a , a 3 = a 2 a and so on.
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This is an infinite sequence all whose members belong to finite subset H and hence all elements 

in the sequence cannot be distinct. Thus there must be at least 2 elements that are identical.

a r = a s ( r 

a r-s = e

a -1 = a r - s -1 H

Thus H is a subgroup from our definition.

Definition 1: Let (G, ) be a group and H is a subgroup of G. Between two elements a , b G

we define a congruence relation as follows:

a b -1 H

Lemma 1: Congruence relation is an equivalence relation. 

Proof:

Reflexive:

We have to show a r all a G

From the definition of congruence relation a a -1 = e H a

Symmetric:

Let a , b G. Since a b mod H

a b -1 H

( a b -1 ) -1 H [Since H is a subgroup]

( b -1 ) -1 a -1 H

b a mod H

Transitive:

Let a , b , c a = b b c mod H

a b -1 b c -1 H So 

a b -1 b c -1 H

a c -1 H

a c modH

Cosets: Let (G, ) be a group and H is a subgroup of G .Pick an element a belonging to G. 

Let H a = { h a | h H} be Right coset

Let a H= { a h | h H} be Left coset 

Lemma 2: H a = { x | x a mod H} a

G

Proof: Let [ a ] = { x | x a mod H}. We have to show H a =[ a ].
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To prove H a [ a ] let us pick an element h a H a . Thus h H a ( h a ) -1 = a a -

1 h -1 = h -1 H [Since H is a subgroup].

h a [a]

To prove that [ a ] H a let us pick an element x [ a ]

a x -1 H

( a x -1 ) -1 H

x a -1 H

Therefore for some h H we have x = h a . Thus x H a and [a] Ha.

Lemma 3: There is a one to one correspondence between any 2 right cosets of G.

Proof: To establish one to one correspondence between two sets X and Y we have to exhibit a 

mapping f : X Y such that a 1 , a 2 X , a 1 = a 2 if and only if f( a 1 )=f( a 2 ) where f( a 1 ), f(

a 2 ) Y . Also f has to be onto. As in our case we have if h 1 a = h 2 a then h 1 = h 2 and thus h

1 b = h 2 b . The function is also onto because for every element h b in the range there is an 

inverse element h a in thedomain.

Theorem 2 [Lagrange]: Let (G, ) be a finite group and H is a subgroup of G. Then o(H) | 
o(G).

Proof: Notation o(S) = |S|

Let k be the number of right cosets. Thus k * o(H) = o(G) and o(H) | o(G). 

Order of an element

Let (G, ) be a finite group. Let a G. Then order (a) is defined as the smallest positive 

integer t such that a (t) = e. [ a t= a a a ... a t times].

Theorem 3 : For any finite group (G,*) and any a G the order of the element is equal to 

the size of the subgroup it generates i.e., ord (a) =|<a>|.

Proof: <a > = e , a , a 2 , a 3 ..........
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Let t = ord ( a ). So a (t) = e .

a( t ) * a ( k )

e *a( k ) = a ( k )

If j >t i <j such that a(i)= a(j)

Thus no new elements are generated beyond a(t). Hence |<a >| t .

Now we have to show that |<a >| t by proving all elements in <a > = { a1 , a2 ,….., at} are 

distinct. Assume otherwise 1 i <j t suchthat a i=aj. Let t bej +k.Henceai+k=a j+k=

a(t)=e ai+(t-j)=eandweknow thati +t-j <t . Thuswearriveatacontradiction sincet = ord ( a ) is the 

smallest power to which a has to be raised to become identity. Thus our assumption 1 i <j 

t such that a i= a jis incorrect . Therefore, each element of the sequence a(1), a(2), ..., a(t)is 

distinct, and |<a > | t . Thus we conclude that ord ( a ) = |<a > | Corollary 1:

Let (G, ) be a finite group with identity e then for all a G we have aord(G) = e .

Proof : Consider the subgroup <a > of G. From Theorem 3 |< a >| = ord( a ). From Lagrange's

theorem ord ( a ) | ord(G). Let ord (G) be k * ord( a ). Thus a ord(G) = a k*ord(a) = e k = e .

Consider the group ( Z*
n,

* n ). We already know that | Zn
* | = ( n ).

Euler's Theorem :

For any integer n > 1

a (n) a Zn
*. [Corollary 1]

Fermat's Theorem :

If p is a prime then | Zp
* | = ( p ) = p -1. 

a(p-1) 1 mod p for all a Zp
*.[Corollary1]

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India.

2. Topics in Algebra , Second Edition, I. N.Herstein, John Wiley.

3.3 PRIMITIVEROOTS

Definition 1: In a group (G, ) an element g G is called a primitive root or the generator if

ord( g ) = |G|.
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Definition 2: A group (G, ) is said to be cyclic if there is a generator for G. 

Now the natural question is if ( Zn
*, xn ) always cyclic?

The answer is no. The following theorem Niven and Zuckerman [ ..] characterizes for which n

(Zn
*, xn ) is cyclic.

Theorem 1: The value of n >1 for which ( Zn
*, xn) is cyclic are 2, 4, peand 2pe, for all primes p >

2 and positive integer e .

We will not prove the entire theorem. But we will concentrate on the special case when n is a 

prime p and show that ( Zn
*, xn ) is always cyclic.

Lemma 1 : For any n>1, 

Proof : Let g Ag= { x |1 x n gcd( x , n ) = g }.

If g | n then the corresponding Ag's are non-empty. They partition the set {1, 2, 3 …, n } such that

.

Let d = n / g . [ Assume | Ag n / g ) ]

Let x Zd
*<=> gcd( xg , dg ) = g *gcd( x , d ) = g [ since gcd( x , d )=1]

....................<=> gcd( xg , x ) = g

....................<=>xg Ag

Therefore there is a one to one correspondence between elements of Zd
*and Ag.

| Ag| = | Zd
* d ) .

Theorem 2 : Zp
* p -1) generators.

Proof : Zp
*= {1, 2, …, p -1} . Let Ok= { x Zp

*| ord( x )= k }

Clearly  ……………..(1)

Assume | Ok k ) (that is to be proved later in Lemma2) 

Then [From Lemma1]
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For the equality (1) to hold, we must have | Ok k ) for all k | ( p -1).

Put k = p - p -1) generators of Zp
*.Thus it must be cyclic. 

Lemma 2: | Ok k )

Proof: If | Ok| an element a Ok.

Generate the sequence { a , a 2 , a 3 …, ak= e }

To prove this lemma we first establish a claim as follows:

Claim: 1 j k ord( a j) = k if and only if gcd ( j , k ) =1.

To prove the if part let us assume gcd ( j , k ) =1. Thus there exists integers m and n such that mj

+ nk = 1. Let k'' be the order of a jand assume k'' <k . Therefore ( a j) k"= e . So we have:

Thus ord( a ) <k which is a contradiction. Hence our assumption on the order of a jto be less 

than k is incorrect.

To provethe onlyif part weassumegcd(j , k)= k'>1.Then (aj)k/k'=(aj)j/k'=( e)j/k'=e.Since k' >1, ( k / k' 

) <k a jhas order <k.

So we have established our claim.

Thus Ok= { a j| gcd( j , k ) =1} | Ok k ) . 

Theorem 2 provides a nice characterization of computing generators for the group ( Zp
*, x p).

A randomized Las Vegas algorithm to compute the generator is to pick an element a Z*
pat 

random and check if its order is p -1. We will describe the checking of order of an element later. 

p -1) generators of Z*
pthe probability that an arbitrary 

element of Z*
p p -1)/( p -1). Thus after expected ( p - p -1) trials 

we will be able to obtain a generator.

3.4 GENERATORCOMPUTATION

From the fundamental theorem of arithmetic, we have n = where p1>p2> .......pk

i> 0 .

Lemma 3: For each i pi> i .

Proof: We will prove the above lemma using induction. Let us assume our inductive hypothesis 

holds i <m. We must show that it holds for i = m. The basis is clearly verified from the fact
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thatfori=1,pi i>ifori=1.Fromourinductivehypothesiswehavepm-1>m-1. Since pm-

1+1 is an even number we have pm> pm-1+1. Therefore pm> m and our inductive hypothesis 

holds for i=m .•

Theorem 3: n ) denotes the number of distinct prime factors of n , then

n ) O .

Proof: From the fundamental theorem of arithmetic, we have n = where p1>p2

>.... pk i>0.

Now to maximize k , the number of distinct prime factors, we restrict i i= 1 . 

Thus from Lemma 3 we have n = p1>p2>....... pk>k !. Using Stirling's Formula we obtain:

Theorem4: 

Proof: We know F ( n ) = n wheren = . From

Lemma 3 we have:

Now the only thing that is left is to compute the order of the randomly picked element a

Zp
*. For this we have to assume the prime factorization of ( p – 1) is available with us. Let p1

,p2

,.....pkare distinct prime factors of ( p – 1). The following theorem enables us to computethe

generator in polynomial time.



21

Theorem 5: Let p be a prime, a Zp
* is a primitive root or the generator if and only if the

congruencerelation does not hold for each prime divisorpi.

Proof: Let a be a generator of Zp
*, then we have a p-1 (mod p ) and a h p ) h (0 ..

p –1). Since (0 .. p – 1) pi , wecannot have for any pi.

Let does hold for some prime divisor pi . Assume that a is not a primitive 

root, then its order should be less than p – 1. Let ord( a ) = d . Then we have d <p – d | p –1.

So ( p – 1) / d is an integer and is therefore divisible by some prime factor pi of p -1.Then

for some c . Then , this contradicts with our assumption. 
So our assumption is wrong and hence a cannot be a generator ofZp

*.

p -1)/(

p -1). Thus with high probability after expected ( p - p -1) trials, i.e., O

trials we will obtain a generator. Since the maximum number of distinct

prime factors of ( p – 1) will beO. So we have to testO

pi' ssuchthat does not hold for eachpi.

For the time being we will assume time to perform modular exponentiation is O( log p). [We will 

elaborate this algorithm later.]

Thus we have established the following theorem:
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Theorem 6: Given a prime p and the prime factorization of p –1, a generator of ( Zp,
* x p) can 

be computed by a randomized Las Vegas algorithm with expected running time O

.
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Unit 4:  Modular Arithmetic

4.1 SOLVING MODULAR LINEAREQUATIONS

Solve for the unknown x in the following equation:

ax b mod n

given a , b and n .

Consider the subgroup of ( Zn, +n), i.e., { a x: x > 0 } = { ax mod n : x > 0 } = <a >. Thus the 

above equation has a solution if and only if b <a >.

Theorem 1:

For any positive integers a and n , if d = gcd( a , n ), then <a > = <d > = {0, d , 2 d , 3 d , …., ((

n / d )-1)/ d } in Znand thus |<a >| = n / d .

Proof:

We have to show that <a > = <d >. First we show <d > <a > . Since d = gcd ( a , b ) we have x

, y Zn
+ such that d = ax + ny . If either x or y returned by EXTENDED-EUCLID is negative 

we consider them as [ n + x ] nor [ n + y ] nrespectively. Thus ax d mod n d <a

> d is some multiple of a . All others members of <d > belongs to <a > since they are 

multiple of d multiple of multiple of a .

Now we show <a > <d >. Pick an arbitrary element m ax mod n <a > m = ax + ny 

d | m (since d | a and d | n ) m <d >. Combining these result <a > = <d >

Corollary 1:

The equation ax b (mod n ) is solvable for the unknown x if and only if gcd( a , n ) | b .

Theorem 2: Let d = gcd ( a , n ) and suppose that d = ax'+ ny' for some integers x' and y ' . If d |

b then the equation ax b mod n has one of its solutions x0 as:

x0 = x' ( b / d ) mod n

Proof: We have to show ax0 b mod n . From the given condition we know ax' d mod n .

Thus ax0 ax' ( b / d ) mod n d ( b / d ) mod n b mod n .

4
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Theorem 3: Consider the modular linear equation ax b mod n . If d = gcd( a , n ) and d | b and

that x0 is any solution to this equation then this equation has d distinct solutions:

xi= x 0 + i ( n / d ) for i = 0, 1, …, d -1

Proof: We have to show axi b mod n i (0 .. d -1) . Since d = gcd( a , n ) , d | a . Hence an 

integer k = a / d . From the given condition the following must hold:

axi a ( x0 + i ( n / d )) mod n ax0+ ai ( n / d )) mod n ax0 + kin ) mod n ax0 mod n b

mod n.

So xiis a solution to the given equation. Thus we conclude there are d distinct solutions to the 

given equation.

The following procedure computes all solutions of the modular linear equation ax mod n .

MODULAR-LINEAR-EQUATION-SOLVER ( a , b , n )

1. ( d , x ' , y ' ) -EUCLID( a , n)

2. if d |b

3. then x0 x ' ( b / d ) modn

4. for i = 0 to d-1

5. do print ( x0 + i ( n / d )) modn

6. else print “NoSolution.”

Exercise: Find all solutions to the equation 35 x

Solution: Here a = 35, b = 10 and n = 50. We know gcd(35, 50) = 5. Thus there are 5 solutions 

to the given equation.

Since 3 x 35 + (-2) x 50 = 5 we have x' = 3. Thus x0 = x' ( b / d ) mod n = 3 x (10/5) mod 50 = 

6. Other solutions are xi= x0 + i ( n / d ) [ i = 1, 2, …, 4 ] i.e., x1 = 16, x2 = 26, x3 = 36, x4 = 46. 

Corollary 2: For any n > 1 if gcd( a, n ) =1 then the equation ax b mod n has exactly one 

solution.

Corollary 3: For any n > 1 if gcd( a, n ) =1 then the equation ax n has exactly an unique 

solution, i.e., a -1 Z n
*.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.
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4.2 MODULAREXPONENTIATION

A frequently occurring operation in number-theoretic computations is raising one number to a 

power modulo another number, also known as modular exponentiation . More precisely, we 

would like an efficient way to compute a bmod n , where a and b are nonnegative integers and n

is a positive integer. They all are bit numbers.

To compute ab(mod n ) we can adopt the following approach:

Perform b multiplications ( a × a × a × … × a ) mod n .

There are some drawbacks of this approach that are asfollows:

1. 1.  The intermediate result is too large to fit inmemory.

2. Not polynomial-time with respect to input size, since we are performingb

multiplications where our input size is log b .

Here we present a polynomial time algorithm to perform modular exponentiation using repeated 

squaring.

MODULAR-EXPONENTIATION ( a , b , n )

1 c

2 d

3 let <bkbk-1 ... b0> be the binary representation of b . 4 

for i = k down to 0

5 do c

6 d

7 if bi =1

8 then c

9 d n

10 returnd

Here we note that the above program will run perfectly even if we remove the variable c 

altogether from the program. The variable c is retained to describe the loop invariant with which 

we establish the correctness of the above algorithm.

Invariant: In each iteration the following invariant is maintained:

1. 1. Let the current bit being processed is bi. The value of c is the same as the prefi x < 

bkbk-1 ..., bi+1> of the binary representation of b.

2. d = a c mod n.
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We use this loop invariant as follows:

Initialization:

Initially i = k , so that the prefi x < bkbk-1 ..., b i+1> is empty, which corresponds to c = 0. 

Moreover, d = 1 = a c mod n .

Maintenance:

Let c ' and d ' denote the values of c and d at the end of an iteration of the for loop and thus the 

values prior to the next iteration. Each iteration updates c ' i = 0) or c ' i

= 1), so that c will be correct prior to the next iteration.

If bi = 0 then d ' = d2 mod n i.e., d ' = ( a c)2 mod n and hence d ' = a 2c mod n = ac' mod n .

If bi = 1 then d' = d 2 a mod n i.e., d ' = ( a c)2 a mod n and hence d ' = a 2c+1 mod n = ac' mod n . 

in either case, d = acmod n prior to the next iteration.

Termination:

At termination, i = -1. Thus, c = b , since c has the value of the prefi x < bkbk-1 ... b0> of b 's 

binary representation. Hence d = ac mod n = ab mod n .

Analysis of Time Complexity:

-bit numbers then the total number of arithmetic operations 

-
2 3 ). Thus the algorithm 

is clearly polynomial with respect to input size.

Note: Modular exponentiation algorithm is an essential component used in several cryptographic 

algorithms.

One weakness of the algorithm is the different timing requirement of each iteration depending on 

the value of the bit bi. If the bit bi= 0 clearly the for loop take much less computation time than 

the bit bi = 1. This weakness of modular exponentiation had been exploited to attack several 

cryptographic algorithms. This attack is known as timing attack .

There are several remedies to overcome the attack. One possible solution is to remove the 

difference in computation time for bi= 0 or 1 by adding some delay in each iteration when bi= 0 

and making the loop execution time equal to that of bi = 1. We will discuss other remedies later. 

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India .
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4.3 CHINESE REMAINDER THEOREM

Around A.D. 100, the Chinese mathematician Sun-Tsu posed the following problem:

Problem 1: Determine the numbers that leave remainders 2, 3 and 2 when divided by 3, 5 and 7 

respectively.

One solution to the above problem is 23. The general solution is 23+105k for arbitrary integer k.

A system of two or more linear congruence need not have solution. Consider the system of 

congruence x x This system is clearly unsolvable. Since the second 

congruence implies x is of the form 4k + 1 which makes it indivisible by 2 and thereby making 

the first congruence infeasible.

But the above argument doesn‘t hold when the system of congruence have pair-wise relatively 

prime moduli ( for example 3, 5 and 7 ). We will prove that the system of congruence that can be 

solved individually can also be solved simultaneously provided they have pair-wise relatively 

prime moduli.

We will first prove the result for a system of 2 congruence relations and then generalize for 

arbitrary number of congruence relations.

Lemma 1: The system of congruence x a mod n1 and x b mod n2 has exactly one solution 

modulo the product n1n2 provided gcd (n1,n2) =1.

Proof: Since gcd (n1, n2) = 1 there are integers p and q such that pn1 + qn2 = 1. Thus pn1

n2) and qn2 n1). Let x' = bpn1 + apn2. Thus x' a mod n1 and x' b mod n2. Thus x' is a 

solution to our given system of congruence. Let x" denote another solution to the system. Thus x'

x" (mod n1) and x' x" ( mod n2 ). Since gcd (n1, n2 ) = 1 we have x' x"(mod n) where n =

n1n2.

Chinese Remainder Theorem (Generalized Version): Let n1, n2, …, nk be pair-wise relatively 

prime integers with gcd (ni, nj) = 1 where i a1, a2, …, ak be arbitrary integers. Then there 

exists exactly one solution x (mod n1x n2x… x nk) to the system of congruence:
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x a1 ( mod n1), x a2 (mod n2), …, x ak( mod nk).

Proof: Let n = n1 x n2 x… x n k. Let us define mi= n/nifor i = 1, 2, …,k. Thus m i = n 1 x n 2 x…

xni-1xni+1x…xnk.Wenow defineci=mi(mi
-1modni)fori =1,2, …,k.Weknowmi

-1 mod n iexists since 

gcd(mi , ni) = 1. Finally we define:

x a 1c 1 + a2c2 + … + a k c k) (mod n )

To prove that x satisfies every congruence we argue as follows. We know that

cj j ni) for j i and ci ni) otherwise. Thus

x a ici (mod ni)

a i m i(mi
-1 mod ni) (mod ni)

ai (mod ni)

For all i = 1, 2, …,k.

Problem 2: Find all solutions to the equations x x

Solution: a1 = 4, n1= m2 = 5, a2 = 5 and n2 = m1= 11. n = 55. 

We know 11-1 -1

c1 = 11 (1 mod 5 ) = 11 and c 2 = 5 ( 9 mod 11 ) = 45

Thus x = 4 x 11 + 5 x 45 (mod 55) = 44 + 225 (mod 55) = 269 (mod 55) = 49 (mod 55).

So the general solution to the given system of congruence is 49 + 55k where k is an arbitrary 

integer.

Corollary 1: If n1, n2, …, nkare pair-wise relatively prime and n = n1 xn2x ......... x nkthen forall

integer x and a

x a (mod ni)

for i = 1, 2, …, k if and only if

x a (mod n).

Proof: For the if part of the proof we assume x a (mod n) and hence (x-a) = kn for some 

integer k. Thus ni| (x-a) since n = n1 xn2x .........xnk.

To prove the only if part we assume x a (mod ni) for all i = 1, 2, …, k. We prove this part by 

induction on k.
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Basis: When k = 2 we have x a (mod n1) and x a ( mod n2 ). We have to prove x a (mod 

n1n2). From the given congruence we can infer there exists integers k1 and k2 such that ( x-a ) = 

k1n2 = k2n2. Since n1 and n2 are relatively prime we have integers l and m such that ln1 + mn2 = 1. 

Multiplying both sides by (x-a ) we have lk 2n 2n 1 + m k 1n 1n2 = (x-a) and hence (x-a) = k3n1n 2

where k3 is an integer.

Inductive Hypothesis: Assume the hypothesis holds for pair-wise relatively prime integers n1,

n2, …, nk-1.

Induction step: We have to show the corollary holds for pair-wise relatively prime integers n1,

n2, …, nk. Let n'= n1 x n2 x… x nk-1. We know that n' and nk are relatively prime and x a (mod 

n') and x a (mod nk). Following similar argument used for the proof of the basis we can show x

a ( mod n'nk). We also know that n = n1x n2 x… x nkand thus n = n' x nk. Hence we have 

proved that x a (mod n).

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

4.4 DISCRETE LOGARITHMPROBLEM

Theorem 1: If g is a generator of Zn
* then the equation gx gy(mod n) holds if and only if the equation 

x y n)) holds

Proof : To prove the if part we assume x y n)). Thus x = y + k n) for some integer k.

Therefore 

gx

= g

= gy (g )(mod n)

= gy (1)k (mod n)

= gy (mod n)

To prove the only if part we assume that g x y(mod n). The sequence of powers of g generates 

every element of <g>and |<g n). Thus the sequence of powers of g is periodic with period 

n). Therefore if gx y (mod n), then we must have x 

Discrete Logarithm: Let g be the generator of the group Zn
* . Given an element y = gx (mod n) 

the discrete logarithm is defined as dlogn,g(y) = x.
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Let us consider and the group (Z7
*, xn) . Clearly the group is cyclic since n = 7 is a prime number. 

We can see that 3 is a generator of the group. Thus discrete logarithm according to the previous 

definition is defined by the following table:

x 1 2 3 4 5 6

dlog7,3(x) 0 2 1 4 5 1

Table – 1

Given g, x and n it is easy to determine y. By the word easy we mean it is polynomial time 

computable. This clearly follows from the fact that we can perform modular exponentiation in 

polynomial time. But given g, y and n it is difficult to compute x. This problem is known as the 

discrete logarithm problem. Till to-date we are not aware of any polynomial time algorithm for 

this problem. Many cryptographic algorithms utilize the difficulty of solving the discrete 

logarithm problem.

Now we can clearly see that given n if we pre-compute the entire Table-1 by computing 

sequentially the indices g0mod n, g1 mod n ,…so on and storing the corresponding exponent of g 

in the indexed array location. Once we are done with this preprocessing given an arbitrary x we 

can compute dlogn,g (x) in polynomial time. But there comes the tradeoff between time and 

memory .

Note: Discrete Logarithm Problem NP. This follows from the fact that given a guess of x 

clearly the verification whether y = gx (mod n) can be carried out in polynomial time using 

modular exponentiation algorithm.

Properties of Logarithms:

loga1 =0

logaa =1

logaxy = logax+logay

logax
n = nlogax

Properties of DiscreteLogarithms: 

dlogn,g (1)=0 g0 = 1(mod n) 

dlogn,g(g)=1 g1 = g(modn)

dlogn,g(xy) =(dlogn,g(x)+dlogn,g

[Proof is provided in the Explanation]
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n,g n,g

n,g

g )modn

p

p

dlogn,g xr = r dlogn,g

[Using repeated application of the earlier property]

Explanation :
dlogn (x) 

n,g

dlogn (y) 
n,g

(xy) modn=g(dlog (x)+dlog (y))modn 

xy= gdlog x,y(modn)

dlog(xy) (dlog(x)+dlog (y) 
n,g n,g n,g

Applying Theorem 1 we have:

dlogn,g (xy) = (dlogn,g(x)+dlogn,g

Reference:

1. Cryptography and Network Security , William Stallings, Prenctice Hall India.

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

4.5 QUADRATICRESIDUES

Definition 1: An element a Z* is called a quadratic residue if there are elements ±x Z*n such 

that x2 non-quadratic residue .

Lemma 1: Let p be an odd prime and g be the generator of Z* . Then all even powers of g are 

quadratic residues and all odd powers of g are non-quadratic residues.

Proof: Let l = 2 k be an even number and clearly gl is a quadratic residue since (± gk )2 l mod 

n . Thus here x = gk . In contrast let l = 2 k + 1 be an odd number. We will prove that in this case 

gl is not a quadratic residue by contradiction. Assume otherwise, i.e., let gl be a quadratic residue. 

Thus there exists x = gm Z*
p such that x2 2m 2k+1 mod p. Applying 

Theorem 1 in lecture-4 (Module -3) we have . Thus we have 2 m 

x = g

y = g
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have 2 m -1). This implies ( p -1) | (2 m -2 k -1). Since p -1 is an even number 

and (2 m -2 k -1) is an odd number and an even number cannot divide an odd number we have 

arrived at a contradiction. Thus our assumption that gl is a quadratic residue is not correct and 

hence it is a non-quadratic residue.

Theorem 1: Let p be an odd prim and e 2 e has only 2 solutions 

namely ±1.

Proof: Let g be the generator of the cyclic group  . Thus we can rewrite our modular equation 

as  . Thus from Theorem 1 in lecture-4 (Module-3)we

have e) = pe-1 (p-1). Thus the givenmodular 
equation is solvable since gcd(2, pe-1 (p-1)) = 2 | 0 and it has exactly 2 solutions namely ±1(By

Inspection).

Note that if n is an arbitrary composite number the equation x2

solutions. For example if n = 15 then 4 and 11 are two non-trivial roots of the equation x2

mod n besides 1 and 14. Later in Theorem 3 we will estimate the number of roots of the 

equation x2

Theorem 2: [Euler] Let and it is a quadratic residue if and only if 

Proof:  To prove the if part we assume that is a quadratic residue. Thus it must an 

even power of g where g is ageneratorof . Let a be equal to g2k.Thus
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For the only if part weassume that is a non-quadratic residue. Thus it must bean

odd power of g where g is ageneratorof Let a be equal to g2k+1.Thus

Since gp-1 Theorem 1  . Since g is the generator its order 

cannot be less than (p-1). Thus   and .

Now the most natural question is what happens when n is composite. In other words how many 

roots are there of the equation x2

two cases:

n is even and of theform

n is odd and of theform

In both cases pi‘s are all primes. From Theorem 1 we know that there are exactly 2 roots for

each of the modular linear equation x2 i (pi 
following for modular linearequations.

x2

x2

x2 e has exactly 4 roots for e

With this knowledge if we lift the result from primes to composites using CRT (Chinese 

Remainder Theorem) we can observe that the equation x2 a mod n has 2k roots when n is odd 

and when n is even it has 2k-1, 2k and 2k+1 roots respectively for e1=1, e1=2 and e1

Now we introduce to the notion of Legendre Symbol of an element  . It isdenoted
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by and is defined asfollows:

= =

depending on whether a is a quadratic residue or non-quadratic residue from Euler‘s Criterion.

Theorem 3: For every odd prime pwehave =(-1) = depending on p
4 and p

Theorem 4:  For every odd prime p wehave = = +1 (if p -1
(if p

Proof: Consider the following congruences :

p-1 -1)1 mod p, 2 2(-1)2 mod p, p -3 -1)3 mod p, 4 -1)4 mod p, …, r

mod p. Here r is either p – (p-1)/2 or (p-1)/2. If we multiply these 
congruences and observing the fact that the number on the left of each congruence is even,we

obtain:

2.4.6 … (p-1) ! (-1) modp.

Thus we have  ! !(-1) mod p. Since ! p we have 

established the first equalitysince = .

Theorem 5: If a prime p either is a or –a is anon-quadratic 
residue.
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p

p

Proof: If p p will be of the form 4l + 3 for some integer l, i.e., p = 2k+1 for some 

odd number k where k = 2l+1. We prove the theorem using contradiction. Assume both a and –a

are quadratic residues modulo p. We then have x2 a mod p and y2 -a mod p for some x, y

Z* . From this we have x2k ak mod p and y2k -1)kakmod p. Since k is odd x2k mod p and y2k

mod p must have opposite signs. But from Fermat’s little theorem, both x2k and y2k must be 

congruent to 1 mod p, which contradicts the assumption. Hence either a or –a is a non-quadratic 

residue.

If p p p

easily show that the first case 2 is the generator and in the second case p-2 is the generator. Thus 

using this characterization we can compute the generator of any odd prime p

time.

Now we will prove an important theorem for finding out the square root of any quadratic residue.

Theorem 6: If a Z* is a quadratic residue then its square root is  modp.

Proof: Clearly we can see that mod p = mod p = mod p = a mod p. This 

is because Legendre symbol  mod p = +1, since a is a quadraticresidue.

We can use the above theorem to compute the square root of anyquadraticresidue 
deterministically using modular exponentiation when p

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

3. Randomized Algorithms , R. Motwani & P. Raghavan, Cambridge University Press.



36

Block-2



37

YA =

YB =

Unit 1:  Key Exchange

5.1 DIFFIE HELLMAN KEYEXCHANGE

This key exchange protocol is one of the earliest technique that illustrates the use ofnumber 

theory in public key cryptography. Here two parties say Alice and Bob want to agree on a 

common key K that will be used for encryption in a symmetric key cryptosystem. A simple 

example is asfollows:

Key : K, Message :m

Encryption by Alice:

Cipher text produced is C = m K

Decryption by Bob :

Original message is retrieved back as follows: m K K = m.

During the process of establishing agreement between Alice and Bob it is essential that no third 

party should be able to compute K. Let us first describe the process of establishing agreement:

Publicly Available Information: prime p , generator g of the group ( Z*
p, x p).

Step 1. Both Alice and Bob choose their private keys XA and XB respectively such that 1 < XA<

p -1 and 1< XB<p -1.

Step 2. Alice sends her public key YA = and Bob sends his public key YB=

.

1
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Step 3. Both Alice and Bob agrees on the commonkeyK= mod p =

.

Information available to the eavesdropper are prime p, generator g, public key of Alice YA and 

public key of Bob YB. But to compute K from the available information requires computing 

either XA, i.e., the secret key of Alice or XB, i.e., the secret key of Bob. But this reduces to 

solving the discrete logarithm problem. So the key exchange scheme is secured.

In this key exchange scheme many times it becomes computationally difficult to compute the

generator g forthe group . So instead of using a generator the common practice is to pickup

anelement from having large order to avoid small subgroup attack. If the element picked 

has a small order then the cardinality of the sub-group generated by that element will be small 

and thus any brute-force algorithm will crack the discrete logarithm problem over that small 

subgroup.

To avoid this problem we introduce a class of primes called safe primes. A safe prime p can

always be expressed in the form 2q+1 where q is another prime. Clearly these primes are

congruent to 3 mod 4. For any primep,| | = p -1. Hence if p is a safeprime| | =2q.

Hence there can be only subgroups of order 1, 2 and q. Now consider the set of allquadratic

residuesin . The size of this set is (p -1)/2, i.e., q. It is easy to show that this set isclosed

with respect to multiplication modulo p. Hence it is a asubgroupof . This subgroup is 

preferred in Diffie Hellman key exchange due to security issues related to the disclosure ofthe 

least significant bit information to the eavesdropper. Moreover since the cardinality of this 

subgroup is q, a prime number, any element of this subgroup would be thegenerator.

Attacks on Diffie Hellman Key Exchange Scheme:

The proposed Diffie Hellman key exchange scheme is susceptible to a type of attack known as

Man-In-The-Middle attack. Theattack proceedsasfollows:
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Suppose Eve is in between Alice and Bob. Eve has 2 secret keys . Eve intercepts 

YA from Alice and YB from Bobandsends to Aliceand

toBob.

Finally Alice and Eve agrees on a commonkey K1= and Eve and Bobagrees

on a commonkeyK2= . Subsequent communication between Alice, Eve and 
Bob takes place as follows:

In the above diagram E(K, m) denotes the encrypted message m with the key K.

Suppose Alice wants to communicate message m1 to Bob. She sends E(K1, m1) to Bob, i.e., 

message m1 encrypted by K1. Eve intercepts that and decrypts with K1and sends the encrypted 

message E(K2, m1) to Bob. Bob decrypts that with his key K2. Similarly if Bob wants to 

communicate a message m2 to Alice he sends E(K2, m2) to Alice. That encrypted text is 

intercepted by Eve and decrypted with K2. Eve subsequently send the encrypted message E(K1,
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m2) to Alice which she decrypts with K1to obtain m2. Thus both Alice and Bob are completely 

unaware of the presence of Eve in the middle.

Remedy:

To overcome this type of attack every message should be authenticated by the sender. In other 

words the use of MAC or digital signature will eliminate this type of attack.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India.

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International.

3. Randomized Algorithms , R. Motwani & P. Raghavan, Cambridge University Press.

5.2 CRYPTO SYSTEMS BASED ON DISCRETE LOG

Massey Omura Cryptosystem:

Suppose Alice wants to send a message m to Bob. Alice locks the message m with a lock and 

sends it to Bob. Bob doesn't have the key to unlock. So what Bob does he puts an additional lock 

over it and sends it back to Alice. Alice unlocks her own lock and sends it back to Bob. Bob then 

unlocks his own lock and recovers the message m .

Here a large prime p is publicly available. Also assume m <p .The communication is carried out 

through three following steps:

Step 1. Alice chooses a private key a and locks the message m by raising it to the power a to 

obtain m amod p and subsequently sends to Bob.

Step 2. Bob chooses another private key b and puts the additional lock by raising the received 

content to the power b to obtain m abmod p and subsequently sends back to Alice.

Step 3. Alice unlocks her own lock using a -1 ,i.e., shecomputesm mod p

mod p m [k(p-1)+1]b mod p mb mod p and sends it again to Bob.

Step 4. Bob then recovers the message m using b-1aftercomputing mod

mod p m mod p .

The security of this cryptosystem is based on the difficulty of solving the discrete logarithm 

problem.

Like Diffie-Hellman key exchange scheme this cryptosystem is also susceptible to Man-In-The-

Middle-Attack . Clearly we can see Alice has no way of distinguishing Bob from Eve. So to 

avoid this attack all message should be authenticated by the sender.
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ElGamal Crypto system:

Here Bob chooses a large prime p and a generator g . Bob also chooses a secret integer a and 

computes k1 = gamod p . The information ( p , g , k1 ) is made public and is Bob's public key. 

Suppose Alice now wants to send a message m to Bob where 0 m <p . The communication 

takes place as follows:

Encryption by Alice:

1. 1. Alice downloads the public key of Bob ( p , g , k1 ) from a publicdirectory.

2. Alice chooses a secret random integer k and computes C1 gk(mod p ).

3. Alice also computes C2 kk
1 m modp.

4. Alice sends the pair ( C1 , C2 ) to Bob.

In fact we can think C2 as a masked message and C1 contains the clue to unmask the message. 

Decryption by Bob:

1. 1.  Bob computesk2 mod p .

2. Bob decrypts by computing  p.

If the eavesdropper knows about Bob's secret key a then he/she can easily decrypt the message 

using the same procedure adapted by Bob. But to compute a from g and k1 requires solving the 

discrete logarithm problem.

Also computing the integer k from C1 , g and p requires solving the discrete logarithm problem.It 
should be noted that k should be a random integer and should vary in each run. Otherwise if the same 
k is used in 2 sessions (for two distinct messages) it possible to break ElGamal Cryptosystem. The 
attack is explained as follows:
Assumption: The attacker Eve had somehow came to know the plaintext m in the session when 

Alice used the secret random integer k .

If Alice uses the same secret random integer k in another session for the message m' then shewill 

send the pair ( C1 , C3 ) to Bob where .

Now  . Since Eve knows all C2,

C3 , m and p she can compute m' .

Thus the heart of the cryptosystem is based on discrete log.

Like Diffie-Hellman key exchange scheme this cryptosystem is also susceptible to Man-In-The-

Middle-Attack. Clearly we can see Bob has no way of distinguishing Alice from Eve. So to 

avoid this attack all messages should be authenticated by the sender.



42

Unit 2:  Public Key Cryptosystem

6.1 PUBLIC KEY CRYPTOSYSTEM &RSA

Suppose Alice wants to send some message M to Bob. But she cannot allow any other person to 

know the content of M. So she has to send her message in an encrypted format that can be 

decrypted only by Bob and not by any third party / eavesdropper. In public key cryptosystem this 

is achieved as follows:

Each party has a pair of public and secret key. So Bob had public key PBand secret key SB . All 

public keys of different parties are maintained in a public directory. So Alice first finds the 

public key PB of Bob from the public directory. She then encrypts the message M with the public 

key PB and obtains the encrypted message or cipher-text C = PB (M). This cipher-text C is sent to 

Bob across the communication channel. After Bob receives the cipher-text C he decrypts using 

his secret key SB to get SB (C) = SB (PB (M)) = M, the original message back.

So in this cryptosystem we have to ensure two things:

i. SB should be the inverse of PB.

ii. In spite of the knowledge of PB it is computationally infeasible to an eavesdropper to 

determine SB .

One important issue that is left is how a message M is represented. It is usually represented by an 

integer obtained as below.

2
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M: Iam fine.
In the above message there are 9 distinct alphabets including blank. So we can use a number system 
of base 9 and assign the code to each alphabet as follows:

Alphabet Code

. 0

I 1

a 2

e 3

f 4

i 5

m 6

n 7

8

So the message string M is mapped to the integer: 910 x 1 + 99 x 8 + 97 x 2 + 96 x 6 + 95 x 8 + 94

x 4 + 93 x 5 + 92 x 7 + 91 x 3 + 90 x 0. We can uniquely determine the string M back given this 

integer in base 9.

DIGITAL SIGNATURES

Alice signs the message M SA( M' ) to it. She transmits the 

message/signature pair ( M M' = PA

the equation holds, he accepts ( M

• Alice computes her digital signature s for the message M' using her secret key SAand the 
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SA( M').

• Alice sends the message/signature pair ( M

• When Bob receives ( M

key to verify the equation M' = PA M' contains Alice's name, so Bob knows 

whose public key to use.) If the equation holds, then Bob concludes that the message M' was 

actually signed by Alice. If the equation doesn't hold, Bob concludes either that the message M'

or the digital signature s was corrupted by transmission errors or that the pair (M

attempted forgery. Digital signature provides both authentication of the signer's identity 

Sometimes a variation of the above approach is used for digital signatures. Here a one-wayhash 

function h () is used. The hash function h () is public. These hash functions are called 

cryptographic has functions. Given a message M it is easy to compute h (M ) but it is 

computationally infeasible to find two messages M and M' such that h (M ) = h (M') . So Alice 

applies her secret key SAover

h ( M' ) and not over M'. SA(h (M' )). Now she sends the pair (M'

Bob. Bob cannot compute h-1(). So in the first step he applies Alice's public key PAover s to 

obtain PA PA( A(h (M' )))= h (M' ). In the second step Bob applies the public hash function 

over the first component of the pair (M' M'to obtain h (M' ). Bob accepts the signature as 

valid if and only if the results obtained in the two steps are equal. Otherwise he rejects the 

signature. This may happen either due to error in transmission or due to tampering by an 

eavesdropper. So he will ask Alice to retransmit the message-signature pair again.

Exercise Question: Alice's signature can be verified by any person including Bob. What Alice 

must do to ensure that only Bob can verify her signature?

RSA Public Key Cryptosystem

The cryptosystem is set up as follows:

1. Choose two large random and distinct primes p and q 100 – 200 digit each roughly of 

the samesize.

2. Compute n = pq

n ) = n (1-1/ p )(1-1/ q ) = ( p -1)( q -1).

4. Pick an integer e n ), i.e., gcd ( e n )) =1.

5. Compute d the multiplicative inverse of e n), i.e., ed n).

6. Publish the pair ( e , n ) as the RSA public key.
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7. Retain the pair ( d , n ) as the RSA secret key.

Suppose Alice wants to send a message M to Bob. Assume M<n . So Alice encrypts M with the 

public key d of Bob to obtain the cipher-text C = Mdmod n . She sends C to Bob. Bob decrypts 

the cipher C using his secret key d to get Cdmod n edmod n

(1-1/ p )(1-1/ q ) = ( p -1)( q -

But this computation for Eve requires factoring n . So it is computationally infeasible for Eve to 

determine d .

Correctness of RSA is established via following argument:

We know M Zn since M Z M < n .

Since e and d are multiplicative inverses we have ed -1)(q -1) 

for some integer k .

Now if M 

Med
k( p -1)( q -

1))
mod p

( p -1)k( q -1) mod p

k( q -1) mod p [Applying Fermat's Theorem]

mod p

Again if M p then trivially Med p .

Thus for all M Znwe have:

Med p --------------------------(1)

Similarly for all M Znwe have:

Med q --------------------------(2)

Combining (1) and (2) using Chinese Remainder Theorem we have:

Med n

for all M.

Computationally hard assumption for RSA algorithm is the difficulty of factoring the modulus n

. If n can be factorized in polynomial time to obtain p and q then the attacker can break the 

n ) =( p -1)( q -1) and then 

by using EXTENDED-EUCLID algorithm d can be computed. Conversely if the attacker can 

figure out the decryption key d then the attacker can come to know k ed 
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n ) ed = 1+ k n ) for some integer k . Then using the randomized algorithm discussed in 

Lecture-1 Module-5 the attacker can factorize n in polynomial time.

RSA is frequently used in hybrid mode with fast non-public key cryptosystem. It is combined 

with cryptosystems for which encryption and decryption keys are identical like DES or AES. 

RSA is used to transmit the key. But the original message is encrypted as a symmetric cipher. 

Suppose the key required for symmetric encryption is K. So the message M is encrypted with K 

to obtain the symmetric cipher E(K, M). But the receiving party Bob doesn't know K. So the 

sender Alice encrypts K in RSA with receiver's public key PB to obtain PB (K). She then sends to 

Bob E(K, M) || PB (K). Bob after receiving applies his own secret key SB over PB (K) to obtain K. 

He then applies K over the first component for symmetric decryption to retrieve M.

6.2 CHOICE OF THE PUBLICKEY

RSA Contd.

Choice of the Public Key: To speed up the modular exponentiation operation it is desirable that 

the public key has lot of 0 bits. Usual choice of public key is of the form 2k+1 since this will 

have exactly two zeros. Common choice of public keys are 3, 17 and 65537 (= 216+1).

If the public key is very small then RSA is vulnerable to the following attack:

Suppose the encryption / public key is e = 3 used by three different users A, B and C having 3 

distinct moduli namely n1, n2 and n3. Suppose the sender X wants to send the same message M to 

A, B and C.So he encrypts all of them with the same public key e and computes the cipher texts 

CA= Me mod n1, CB= Me mod n2 and CC= Me mod n3 respectively.

Suppose it happens to be n1, n2 and n3 are pairwise relatively prime and n1
*n2

*n3>M e. This can 

only happen if e is very small. In our case let us assume M 3<n1
*n2

*n3 since e = 3 though M 3is 

larger than each n1, n2 and n3. Then using Chinese Remainder Theorem the attacker can easily 

compute M 3and thus can determine M after computing the cube root.
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Operations using the secret key:

For the decryption operation we perform the following modular exponentiation operation to 

retrieve the original message M:

M = C dmod n where C is the cipher text, d is the secret key and n = pxq where p and q are two 

large primes. To speed up this operation we compute:

Vp= C dmod p and Vq= C dmod q

From these using to compute C dmod n we have to use Chinese Remainder Theorem. 

So we compute:

Xp= q x (q-1 mod p) and Xq= p x (p-1mod q)

Now we retrieve M as follows:

M = (VpXp + VqXq) mod n

To speed up the two modular exponentiation operations to compute Vpand Vqwe can make use of 

Fermat‘s theorem as follows:

a bmod p = a ymod p

where b = (p-1)x + y since a p-1

Attacks on RSA:

There are several attacks on RSA public key cryptosystem. They are categorized as follows:

1. Brute Force Attack: Here the attacker tries with different secretkeys.

2. Mathematical Attacks: Most of these approaches finally broil down to factoring 

RSA modulus.

3. Timing Attack: This attack uses the timing difference of modularexponentiation 

algorithm depending on the number of 0 bits and 1 bits in the secret key. We will 

elaborate on thislater.

4. Chosen Cipher Text Attack (CCA).

Mathematical Attack:

Here we prove that if the attacker can figure out the secret key d in polynomial time then we 

have a randomized polynomial time algorithm to factor n.

Choose a random number r Zn
*. Since both e and d are known we know ed – 1 = k n). Thus 

from Euler‘s theorem red-1 -trivial square root of 1.For

this we keepon computing … and so on till we get either -1 or a non-trivialsquare
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root of 1 or is no longer divisible by 2. If we obtain -1 or is no longer divisible by 2

we repeat the above procedure selecting a new random number r. Otherwise if we get a non-

trivial square root of 1, i.e., x such that x2 n and x x+1, n) or gcd (x-1,n)

will give a non-trivial factor of n (i.e., 1 or n). Thus we have a randomized polynomial time 

algorithm to factorize n.

Chosen Cipher Text Attack:

Here the attacker Eve gets holds of a cipher text C that was sent by Alice to Bob. Let M be the 

corresponding plaintext. Thus M = Ce mod n. The attack proceeds as follows:

1. 1. Eve selects a random number r, such that 1 <r <n-1 and gcd(r,n) =1.

1. 2. Eve computes X = re C mod n and submits to Bob as a chosen cipher text.

1. 3. Eve receives back the signed message from Bob Y = Xdmod n = rM mod n.

1. 4. Since Eve know r -1 she retrieves the message M = r -1Y mod n.

Remedies:

To overcome this attack the plaintext is usually padded prior to encryption. Method like optimal 

asymmetric encryption scheme (OAEP) has been proposed to overcome such attacks.

Reference:

1. Cryptography and Network Security , William Stallings, Prenctice Hall India .

6.3 ATTACKS ON RSA & REMEDIES

Timing Attack:

This attack was first suggested by Paul Kocher in 1995. He showed that it is possible to find out 

the secret key by careful examination of the computation times in a series of decryption 

procedure. The method uses the weakness of modular exponentiation algorithm and can be used 

to attack not only RSA but also any other cryptographic algorithms that use modular 

exponentiation that includes algorithms based on discrete log computation.

Suppose Eve sends to Bob several ciphertexts y. After decryption of each ciphertext Bob sends 

the acknowledgement back to Eve. Thus Eve comes to know the decryption time of each 

ciphertext. From this timing information Eve has to figure out the decryption exponent d.

We need to assume that Eve knows the hardware being used to to calculate yd(mod n). Eve can 

use this information to calculate the computation time of various steps that occur in this process. 
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Let d=b1b2…bwbe written in binary. Let y and n be integers. We perform the modular 

exponentiation using the following algorithm:

1. Start with k=1 ands1=1.

2. If bk==1, let rk sk y(mod n). If bk == 0, letrk=sk.

3. Let sk+1 (modn).

4. If k==w, stop. If k<w, add 1 to k and go to (3). 

Finally rw yd(modn).

Here we note that the multiplication sk y occurs only when the bit bk==1. In practice there is a 

large variation in timing of this multiplication operation.

Now we need to introduce few notations from Probability & Statistics. Let t denote the random 

variable for the time taken for the decryption of a ciphertext y.

Let t1, t2, …, tndenote the decryption time of ciphertexts y1, y2, …, yn. The mean is denoted by :

Mean(t) = m=

The variance of the random variable t is denoted by: 

Var(t)= 

If we break up the computation time tifor the decryption of the ciphertext yiinto two

independent random processes withcomputationtimes and respectively such thatti= +

, then Var(ti) = Var(  ) + Var( ).

Eve knows t1, t2, …, tn. Suppose she knows bits b1b2…bk-1of the secret key d. Since she knows the 

hardware she can figure out the time required for computing r1, r2, …rk-1 in the modular

exponentiation algorithm. Also she can determine the time to calculate sk+1 (mod n) when 

bk== 0 since rk = sk. Thus she knows the remaining computation time xi for each ciphertext yito

compute rk, …, rw.
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Let be the computation time for sk y(mod n) if the bit bk==1. Eve still doesn’t knowbk.

Let =xi - . EvecomputesVar(xi)and Var( ). If Var(xi)>Var( ) Eve concludes bk

= 1 else bk = 0. After determining bk Eve proceeds in the same manner to determine the 

remaining bits of the secret key.

Correctness Proof: If bk= 1 then the multiplication sk y(mod n) indeed occurs. It is reasonable 

toassume and are independent andthus:

Var(xi)=Var( ) + Var( ) > Var( ).

If bk= 0 then the multiplication does not occur and=Var( ) 0. Thus 

Var(xi)=Var( ) +Var( ) Var( ).

Remedies:

i) Constant Exponentiation Time: Timing attack can be avoided if Bob sends the 

acknowledgement back after the same fixed amount of time for each ciphertext. This solves the 

problem but the performance isdegraded.

ii) Random Delay: Here Bob sends back the acknowledgement after adding a random delay 

after the end of each modular exponentiation computation. This is susceptible to attack since the 

attacker can compensate the added random delay considering it as fluctuation over the d.c 

(average) component.

iii) Blinding: This proceeds asfollows:

1. 1. Bob selects a random number r, such that 1 < r <n-1 and gcd(r,n)=1.

2. Bob computes X = re C mod n, where e is the publickey.

3. Bob Computes Y = Xdmod n = rMmod n.

4. Since Bob knows r-1 he retrieves the message M = r-1Y modn.

This process prevents the attacker in knowing what cipher text bits are being processed and 

prevents bit by bit analysis that is essential for the timing attack.

Reference:

1. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

2. Cryptography and Network Security , William Stallings, Prenctice Hall India.
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6.4 RABIN CRYPTO SYSTEM

Rabin Cryptosystem:

Rabin cryptosystem is described as follows:

Let n be the product of two distinct primes p and q, p, q 

Let P, C Zn , where P is the plaintext and C is the cipher text.

Define

K = {(n, p, q, B) : 0 -1}

For K = (n, p, q, B), define 

eK(x) = x(x+B) mod n

and

The values n and B are public, while p and q are secret.

The encryption function eK is not an injection, so decryption cannot be done in an unambiguous 

fashion. In fact, there are four possible plaintexts that could be the encryption of any givenciphertext. 

It is a nontrivial square root of 1 modulo n, then there are four decryptions of 

eK (x) for any x Zn:

Example:

So the decryption process won‘t be unique unless the plaintext contains sufficient redundancy to 

eliminate three pf these four values.

The decryption process is analyzed as follows:

Given a ciphertext y, the plaintext x is determined by the solving the equation

x2 + Bx y (mod n)

Substituting x = x1 – B/2, the above equation reduces to

x1
2 – B x1 + B2/ 4 + Bx1– B2/ 2 – y n)

or

x1
2 B2 / 4 + y (mod n)
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Let C = B2 / 4 + y, then we can rewrite the congruence as

x1
2 C (mod n)

So, decryption reduces to extracting square roots modulo n. This is equivalent to solving the two 

congruences

x1
2 C (mod p)

and

x1
2 C (mod q)

Now there are two square roots of C modulo p and two square roots of C modulo q. Using the 

Chinese remainder theorem, these can be combined to yield four solutions modulo n. Also it can 

be determined by Euler‘s criterion if C is a quadratic residue modulo p (and modulo q). Infact, C 

will be a quadratic residue modulo p (and modulo q) if encryption is performed correctly.

When p

modulo p. Suppose C is a quadratic residue and p

Here, we again make use of Euler‘s criterion, which says that if C is a quadratic residue modulo

p, then p). Hence the two square roots of C modulo p are .

In a similar fashion, the two square roots of C modulo q are  . One can then 

obtain the four square roots x1 of C modulo n using the Chinese RemainderTheorem

Example:

Let us illustrate the encryption and decryption procedures for the Rabin cryptosystem with a toy 

example. Suppose n = 77 = 7 x 11 and B = 9. Then the encryption function is

eK(x) = x2 + 9xmod 77

and the decryption function is
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Suppose the ciphertext y = 22. Compute the square roots of 23 modulo 7 and modulo 11. Since 7 

and 11 are both congruent to 3 mod 4, using the formula derived above, we have

Using Chinese Remainder Theorem, we compute the four square roots of 23 modulo 77 to be

±10 and ±32 mod77.

Finally, the four possible plaintexts are

10 – 63 mod 77 = 44

67 – 43 mod 77 = 24

32 – 43 mod 77 = 66

45 – 43 mod 77 = 2

The computationally hard problem in this cryptosystem is the difficulty of factoring themodulus

n. In contrary let us assume that the adversary can figure out the square roots modulo n . Since n

is the product of two primes there will be 4 square roots x1 , x2 , x3 and x4 such that

mod n. Among these 4 square roots there will be a pair such that ximod n

xjmod n for some i , j [1..4]. Then gcd ( xi+ xj, n ) or gcd ( xi- xj, n ) will give a non trivial 

factor of n. Thus if we can break the cryptosystem in polynomial time we will be able to factor n

in polynomial time.

Reference:

1. Cryptography Theory and Practice , D. R. Stinson, CRC Press.
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Unit 3:  Factorization

7.1 CURRENT STATE OF THEART

Current state of the art

Factorization of integer in polynomial time is still to date an unresolved problem. Cryptographic 

algorithms like RSA, Rabin all rely upon the difficulty of integer factorization problem. Even to 

date factoring large integers with very fast computers require a lot of computing time. There are 

some efficient pseudo polynomial time algorithms known for the factoring problem.

Difficulty and complexity

If a large, b-bit number is the product of two primes that are roughly the same size, then no 

algorithm is published that can factor in polynomial time. That means there is no widely known 

algorithm that can factor it in time O(bk) for any constant k. In other words, there are algorithms 

which are super-polynomial but sub- exponential. In particular, the best published asymptotic 

running time is for the general number field sieve (GNFS) algorithm, which, for a b-bit number 

n, is:

For an ordinary computer, GNFS is the best published algorithm for large n (more than about 

100 digits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that 

solves it in polynomial time. This will have significant implications for cryptography if a large 

quantum computer is ever built. Shor's algorithm takes only O(b3) time and O(b) space on b-bit 

number inputs. In 2001, the first 7-qubit quantum computer became the first to run Shor's 

algorithm. It factored the number 15.

It is not known exactly which complexity classes contain the integer factorization problem. The 

decision-problem form of it ("does N have a factor less than M?") is known to be in both NP and 

co-NP. This is because both YES and NO answers can be trivially verified given the prime 

factors (whose correctness can be verified using the AKS primality test). It is known to be in 

BQP because of Shor's algorithm. It is suspected to be outside of all three of the complexity 

3
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classes P, NP-Complete, and co-NP-Complete. If it could be proved that it is in either NP-

Complete or co-NP-Complete, that would imply NP = co-NP. That would be a very surprising 

result, and therefore integer factorization is widely suspected to be outside both of those classes. 

Many people have tried to find classical polynomial-time algorithms for it and failed, and 

therefore it is widely suspected to be outside P.

Interestingly, the decision problem "is N a composite number?" (or equivalently: "is N a prime 

number?") appears to be much easier than the problem of actually finding the factors of N. 

Specifically, the former can be solved in polynomial time (in the number n of digits of N) with 

the AKS primality test. In addition, there are a number of probabilistic algorithms that can test 

primality very quickly if one is willing to accept the small possibility of error. The easiness of 

primality testing is a crucial part of the RSA algorithm, as it is necessary to find large prime 

numbers to start with.

Trial division

Trial division is the simplest and easiest to understand of the integer factorization algorithms.

Given an odd composite integer n there must be a prime factor less than . Thus we need to 

test for all primes 
From the prime number theorem we have thefollowing:

Thus we have to test for all  prime factors of n . From the previous theorem wehave:

If a v a riant is used without pri m ality testing, but si m ply dividing by every odd nu m ber less 
than the square root of n , pri m e or not, it can take up to about

trial divisions which for large n is worse.



56

If n has small prime factors then this algorithm performs quite well. This means that for n with 

large p rime factors of similar size (like those used in public key cryptography), trial division is 

computation a lly infeasible. For most significant factoring concerns, however, other algorithms 

are more efficient and therefore feasible.

Given a composite integer n(throughout this article, n means "the integer to be factored"),trial 

division consists of trial-dividing n by every prime number less than or equal to  . If a 

number is found which divides evenly into n, that number is a factor ofn.

A definite bound on the prime factors is possible. Suppose P(i) is the i'th prime, so that P(1) = 2,

P(2) = 3, etc. Then the last prime number worth testing as a possible factor o n is P(i) where P(i

+ 1)2> n; equality here would mean that P(i + 1) was a factor. This is all very well, but usually 

inconvenient to apply for the inspection of a single n since determining the correct value for i is 

more effort than simply trying the one unneeded candidate P(i + 1) that would be involved in 

testing with all P(i) such that

. Should the square root of n be integral, then it is a factor and n is a 

Perfect square, not that this is a good way of findingthem.

Trial division is guaranteed to find a factor of n, since it checks all possible prime factors of n. 

Thus, if the algorithm finds no factor, it is proof that n is prime.

In the worst case, trial division is a laborious algorithm. If it starts from 2 and works up to the 

square root of n, the algorithm requires

This does not take into account the overhead of primality testing to obtain the prime numbers as 

candidate factors. If a variant is used without primality testing, but simply dividing by every odd 

number less than the square root of n, prime or not, it can take up to about

trial divisions which for large n is worse.

This means that for n with large prime factors of similar size (like those used in public key
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cryptography), trial division is computationally infeasible.

However, for n with at least one small factor, trial division can be a quick way to find that small

factor. It is worthwhile to note that for random n, there is a 50% chance that 2 is a

factor of n, and a 33% chance that 3 is a factor, and so on. It can be shown that 88% of all positive

integers have a factor under 100, and that 91% have a factor under 1000.

For most significant factoring concerns, however, other algorithms are more efficient and therefore

feasible.

Pollard's p-1 algorithm [4]

Pollard's p is a number theoretic integer factorization algorithm, invented by 

John Pollard in 1974. It is a special-purpose algorithm, meaning that it is only suitable for 

integers with specific types of factors.

The algorithm is based on the insight that numbers of the form ab

composite when b is itself composite. Since it is computationally simple to evaluate numbers of 

this form in modular arithmetic, the algorithm allows one to quickly check many potential 

factors with great efficiency. In particular, the method will find a factor p if b is divisible by p 

1, hence the name. When p nly small integers) then thisalgorithm 

is well-suited to discovering the factorp.

Base concepts

Let n be a composite integer with prime factor p. By Fermat's little theorem, weknowthat 

for a coprime top

Let us assume that p -powersmooth for some reasonably sized B (more on the selection

of this value later). Recall that a positive integer m is called B-smooth if all prime factors pi of 

m are such that pi -powersmooth if all prime powers

i dividing m are such that pii

Let p1, ..., pL be the primes less than B and let e1, ..., eL be the exponents such that

Let
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As a shortcut, M = lcm{1, ..., B}. As a consequence of this, (p e

divides M this implies that pe M

because p divides n this means gcd(aM

Therefore if gcd(aM -trivial factor of n.

If p -power-smooth, then aM 1 (mod p) for at least half of all a.

Pollard concepts

Let n = pqr, where p and q are distinct primes and r is an integer, such that p is B-

powersmooth and q is not B-powersmooth. Now, gcd(aM yields a proper factor of n. 

In the case where q -powersmooth, the gcd may yield a trivial factor because q divides a
M

× 409. 421 22×3×5×7 and 409 23×3×17. So, an appropriate value of B would be from 

7 to 16. If B was selected less than 7 the gcd would have been 1 and if B was selected higher 

than 16 the gcd would have been n. Of course, we do not know what value of B is appropriate in 

advance, so this will factor into thealgorithm.

To speed up calculations, we also know that when taking the gcd we can reduce one part modulo 

the other, so gcd(a M a M

modular exponentiation and the Euclidean algorithm.

Algorithm and running time

The basic algorithm can be written as follows:

Inputs: n: a composite integer

Output: a non-trivial factor of n or failure

1. select a smoothness bound B

2. randomly pick a coprime to n (note: we can actually fix a, random selection here is not 

imperative)

3. for each prime q 
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a qe mode n (note: this is aM)

4. g

5. if 1 < g < n then returng

6. if g = 1 then select a higher B and go to step 2 or returnfailure

7. if g = n then go to step 2 or returnfailure

If g = 1 in step 6, this indicates that for all p -powersmooth. If g = n in step 

7, this usually indicates that all factors were B-powersmooth, but in rare cases it could indicate 

that a had a small order modulo p.

The running time of this algorithm is O(B × log B × log2n), so it is advantageous to pick a small 

value of B.

7.2 LARGE PRIMEVARIANT

Large prime variant

A variant of the basic algorithm is sometimes used. Statistically, there is often a factor p of n 

such that p = fq such that f is B-powersmooth and B < q 

called a semi-smoothness bound.

As a starting point, this would work into the basic algorithm at step 6 if we encountered gcd = 1 

but didn't want to increase B. For all primes B < q1, ..., qL

to obtain a non-trivial factor of n. This is quickly accomplished, because if we let c = aM, and d1

= q1 and di = qi i

The running time of the algorithm with this variant then becomes O(B' × log B' × log2n).

Additional information

Because of this algorithm's effectiveness on certain types of numbers the RSAspecifications 

require that the primes, p and q, be such that p-1 and q-1 are non-B- power-smooth for small 

values of B.
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Williams' p plus 1 algorithm[5]

In computational number theory, Williams' p + 1 algorithm is an integer factorization algorithm 

invented by H. C. Williams.

It works well if the number N to be factored contains one or more prime factors p such that p + 1 

is smooth, i.e. p + 1 contains only small factors. It uses Lucas sequences. It is analogous to 

Pollard's p-1 algorithm.

Algorithm

Choose some integer A greater than 2 which characterizes the sequence:

V0 = 2,V1 = A,Vj= AVj-1 Vj-2

where all operations are performed modulo N.

Then any odd prime p divides gcd(N,VM M is a multiple of p D / p), where D =

A2 D / p) is the Jacobi symbol.

We require that (D / p) = D should be a quadratic non-residue modulo p. But as we 

don't know p beforehand, more than one value of A may be required before finding a solution. If 

(D / p) = + 1, this algorithm degenerates into a slow version of Pollard's p-1 algorithm.

So, for different values of M we calculate gcd(N,VM

to N, we have found a non-trivial factor of N. The values of M used are successive factorials, and 

VM is the M-th value of the sequence characterized by VM-1.

To find the M-th element V of the sequence characterized by B, we proceed in a manner similar 

to left-to-right exponentiation:

x=B

y=(B^2-2) mod N

for each bit of M to the right of the most significant bit if the bit is 1

x=(x*y-B) mod N

y=(y^2-2) mod N

else

V=x

y=(x*y-B) modN

x=(x^2-2) modN

Example

With N=112729 and A=5, successive values of VM are: V1
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of seq(5) = V1! of seq(5) = 5

V2 of seq(5) = V2! of seq(5) = 23

V3 of seq(23) = V3! of seq(5) = 12098 

V4 of seq(12098) =V4! of seq(5) =87680

V5 of seq(87680) = V5! of seq(5) = 53242 

V6 of seq(53242) = V6! of seq(5) = 27666 

V7 of seq(27666) = V7! of seq(5) = 110229

At this point, gcd(110229-2,112729) = 139, so 139 is a non-trivial factor of 112729. Notice that 

p+1 = 140 = 2 × 5 × 7. The number 7! is the lowest factorial which is multiple of 140, so the 

proper factor 139 is found in this step.

Lenstra elliptic curve factorization[6]

Lenstra elliptic curve factorization or the elliptic curve factorization method (ECM) is a 

fast, sub-exponential running time algorithm for integer factorization which employs elliptic 

curves. Technically, the ECM is classified as a deterministic algorithm as all "random" steps 

(such as the choice of curves) used can be de-randomized and done in a deterministic way. (This 

is not to say that the algorithm can't be implemented in a probabilistic way, if one so chooses, 

provided one has a true source of randomness.)

For factoring ECM is the third-fastest known factoring method. The second fastest is the 

multiple polynomial quadratic sieve and the fastest is the general number field sieve; both are 

probabilistic algorithms.

Practically speaking, ECM is considered a special purpose factoring algorithm as it is most 

suitable for finding small factors. Currently, it is still the best algorithm for divisors not greatly 

exceeding 20 to 25 digits (64 to 83 bits or so), as its running time is

dominated by the size of the smallest factor p rather than by the size of the number n to be 

factored. The largest factor found using ECM so far was discovered on August 24, 2006 by B. 

Dodson and has 67 digits[7]. Increasing the number of curves tested improves the chances of 

finding a factor, but they are not linear with the increase in the number of digits.
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Derivation

ECM is at its core an improvement of the older p-1 algorithm. The p-1 algorithm finds prime 

factors p such that p-1 is B-powersmooth for small values of b. For any e, a multiple of p-1, and 

any a relatively prime to p, by Fermat's little theorem we have a e 1

(mod p). Then gcd(a e-1, n) is likely to produce a factor of n. However, the algorithm fails when

p-1 has large prime factors, as is the case for numbers containing strong primes,for 

example.

ECM gets around this obstacle by considering the group of a random elliptic curve over the finite 

field Zp, rather than considering the multiplicative group of Zpwhich always has order p-1.

The order of the group of an elliptic curve over Zpvaries (randomly) between p + 1 - 2 p and p

+ 1 + 2 p by Hasse's theorem, and is likely to be smooth for some elliptic curves. Although there 

is no proof that a smooth group order will be found in the Hasse-interval, by using heuristic 

probabilistic methods, the Canfield-Erdös-Pomerance theorem with suitably optimized parameter 

choices, and the L-notation, we can expect to try L[

group order. This heuristic estimate is very reliable in practice.

Lenstra's elliptic curve factorization

The Lenstra elliptic curve factorization method to find a factor of the given number n

works as follows:

• Pick a random elliptic curve over Z with a point A on it. Then, we consider the group 

law on this curve mod n — this is possible since almost all residues mod n have inverses, 

which can be found using the Euclidean algorithm, and finding a noninvertible residue is 

tantamount to factoringn.

• Compute eA in this group, where e is product of small primes raised to small powers,as 

in the p-1 algorithm. This can be done one prime at a time, thusefficiently.

• Hopefully, eA is a zero element of the elliptic curve group in Zp, but not in Zqfor

another prime divisor q of n (as in the p-1 method, it is unlikely that both groups will 

have an order which is a divisor of e). Then we can find a factor of n by finding the 

greatest common divisor of the first coordinate of A and n, since this coordinate will be 

zero in Zp.
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• If it does not work, we can try again with some other curve and starting point. 

The complexity depends on the size of the factor and can be represented by, where p is the 

smallest factor ofn.

7.3 DIXON'S FACTORIZATION METHOD

Dixon's factorization method

In number theory, Dixon's factorization method (also Dixon's algorithm) is a general- purpose 

it is the prototypical factor base method, and the only factor base method for which a run-time 

bound not reliant on conjectures about the smoothness properties of values of a polynomial is 

known. The algorithm was designed by John D. Dixon, a mathematician at Carleton University, 

and was published in 1981.

Basic idea

Dixon's method is based on finding a congruence of squares modulo the integer N which we 

intend to factor. Fermat's factorization algorithm finds such a congruence by selecting random or 

pseudo-random xvalues and hoping that the integer x2 mod N is the square of an integer . :

For example, if N=84923, we notice (by starting at 292, the first number greater than and 

counting up) that 5052 mod 84923 is 256, the square of 16. So(505-16)(505+16)=0 mod N.

Computing the GCD of 505-16 and N using Euclid's algorithm gives us 163, which is a factor of 

N.

In practice, selecting random x values will take an impractically long time to find a congruence 

of squares, since there are so few squares less than N.

Dixon's method replaces the condition 'is the square of an integer' with the much weaker one 'has 

only small prime factors'; for example, there are 292 squares less than 84923,

662 numbers whose prime factors are only 2,3,5 or 7, and 4767 whose prime factors are all less 

than 30.

If we have lots of numbers  whose squares can be factorisedas
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for afixed set of small primes, linear algebra modulo 2

on the matrix eijwill give us a subset of the aiwhose squares combine to a product of small 

primes to an even power -- that is, a subset of the aiwhose squares combine to asquare.

Method

Firstly, a set of primes less than some bound B is chosen. This set of primes is called the factor 

base. Then, using the polynomial

p(x) = x2(mod n)

many values of x are tested to see if p(x) factors completely over the factor base. If it does, the 

pair (x, p(x)) is stored. Such a pair is called a relation. Then, once the number of relations 

collected exceeds the size of the factor base, we can enter the next stage.

The p(x) values are factorized (this is easy since we are certain they factorize completely over the 

factor base) and the exponents of the prime factors are converted into an exponent vector mod 2. 

For example, if the factor base is {2, 3, 5, 7} and the p(x) value is

30870, we have:

30870 = 21.32.51.73

This gives an exponent vector of:

If we can find some way to add these exponent vectors together (equivalent to multiplying the 

corresponding relations together) to produce the zero vector (mod 2), then we can get a 

congruence of squares. Thus we can put the exponent vectors together into a matrix, and 

formulate an equation:
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. . .

This can be converted into a matrix equation:

This matrix equation is then solved (using, for example, Gaussian elimination) to find the vector

c. Then:

where the products are taken over all k for which Ck= 1. At least one of the Ckmust be one. 

Because of the way we have solved for c, the right-hand side of the above congruence is a 

square. We then have a congruence of squares.

Example

Considering the factor base {2,3,5,7}, we will try to factor 84923. 

5132 mod 84923 = 8400 = 24
*3*5

2
*7

5172 mod 84923 = 33600 = 26
*3*5

2
*7

so

(513.537)2 mod 84923 = 210 32 54 72

513 times 537 is 20712 (mod 84923). 

That is,

207122 mod 84923 = (25.3.552.7)2 mod 84923 = 168002 mod 84923

We then look at 20712-16800 = 3912 and 20712+16800 = 37512, and compute their greatest 

common divisors with 84923 by using Euclid's algorithm. This is 163 in the case of 3912, and 

521 in the case of 37512; and, indeed, 84923 = 521 * 163.
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7.4 QUADRATIC-SIEVE FACTORING

The pseudo code for the MD5 algorithm is as follows:

// Note: All variables are unsigned 32 bits and wrap modulo 2^32 when calculating

var int [64] r, k

// r specifies the per-round shift amounts

// Use binary integer part of the sines of integers as constants:

for i from 0 to 63

k[i] := floor(abs(sin(i + 1)) × (2 pow 32))

// Initialize variables:

h0 := 0x67452301 

h1 := 0xEFCDAB89 

h2 := 0x98BADCFE 

h3 := 0x10325476

//Pre-processing:

append "1" bit to message
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append "0" bits until message length in bits = 448 (mod 512)

append bit (bit, not byte) length of unpadded message as 64-bit little-endian integer to message

// Process the message in successive 512-bit chunks:

for each 512-bit chunk of message

break chunk into sixteen 32-bit little-endian words w[i], 0 = i = 15

// Initialize hash value for this chunk:

var int a := h0 

var int b := h1 

var int c := h2 

var int d :=h3

// Mainloop:

for i from 0 to 63

if 0 then

f := (b and c) or (( not b) and d)

g := i

else if 16

f := (d and b) or (( not d) and c) 

g := (5×i + 1) mod 16

else if 32

f := b xor c xor d

g := (3×i + 5) mod 16

else if 48

f := c xor (b or ( not d))

g := (7×i) mod 16

temp := d

d := c

c :=b



68

b := b + leftrotate ((a + f + k[i] + w[g]) , r[i])

a := temp

// Add this chunk's hash to result so far:

h0 := h0 + a 

h1 := h1 + b 

h2 := h2 + c 

h3 := h3 + d

var int digest := h0 append h1 append h2 append h3

// (expressed as little-endian)

// leftrotate function definition

leftrotate (x, c)

return (x << c) or (x >> (32-c));

Summary

The MD5 message-digest algorithm is simple to implement, and provides a "fingerprint" or 

message digest of a message of arbitrary length. It is conjectured that the difficulty of coming up 

with two message having the same message digest is on the order of 2^64 operations, and that 

the difficulty of coming up with any message having a given message digest is on the order of 

2^128 operations. The MD5 algorithm has been carefully scrutinized for weaknesses. It is, 

however, a relatively new algorithm and further security analysis is of course justified, as is the 

case with any new proposal of this sort.

Differences Between MD4 and MD5

The following are the differences between MD4 and MD5

1. A fourth round has beenadded.

2. Each step now has a unique additiveconstant.

3. The function g in round 2 was changed from (XY v XZ v YZ) to(XZ v Y not(Z)) to makeg 

lesssymmetric.

4. Each step now adds in the result of the previous step.This

......a. promotes a faster "avalanche effect".

5. The order in which input words are accessed in rounds 2and
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......a. 3 is changed, to make these patterns less like each other.

6. The shift amounts in each round have beenapproximately

......a. optimized, to yield a faster "avalanche effect." The shifts in

......b.different rounds are distinct.

SHA hash functions

The SHA hash functions are five cryptographic hash functions designed by the National 

Security Agency (NSA) and published by the NIST as a U.S. Federal Information Processing 

Standard . SHA stands for Secure Hash Algorithm.

The five algorithms are denoted SHA-1 , SHA-224 , SHA-256 , SHA-384 , and SHA-512 . The 

latter four variants are sometimes collectively referred to as SHA-2 . SHA-1 produces a message 

digest that is 160 bits long; the number in the other four algorithms' names denote the bit length 

of the digest they produce.

SHA-1 is employed in several widely used security applications and protocols, including TLS 

and SSL , PGP , SSH , S/MIME , and IPsec . It was considered to be the successor to MD5 , an 

earlier, widely-used hash function.

SHA-1 algorithm

Initialize variables:

h0 := 0x67452301 

h1 := 0xEFCDAB89 

h2 := 0x98BADCFE 

h3 := 0x10325476 

h4 := 0xC3D2E1F0

Pre-processing:

append the bit '1' to the message

append k bits '0', where k is the minimum number >= 0 such that the resulting message

................length (in bits ) is congruent to 448 (mod 512)

append length of message (before pre-processing), in bits , as 64-bit big-endian integer

Process the message in successive 512-bit chunks:

break message into 512-bit chunks
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for each chunk

............break chunk into sixteen 32-bit big-endian words w[i], 0 

Extend the sixteen 32-bit words into eighty 32-bit words:

for i from 16 to 79

...........w[i] := (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

Initialize hash value for this chunk:

a := h0 

b := h1 

c := h2 

d := h3 

e := h4

Main loop:

for i from 0 to 79

if 0 

f := (b and c) or (( not b) and d) 

k := 0x5A827999

else if 20 

f := b xor c xor d

k := 0x6ED9EBA1

else if 40 

f := (b and c) or (b and d) or (c and d) 

k := 0x8F1BBCDC

else if 60 

f := b xor c xor d

k := 0xCA62C1D6

temp := (a leftrotate 5) + f + e + k + w[i] 

e :=d

d := c

c := b leftrotate 30
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b := a

a := temp

Add this chunk's hash to result so far:

h0 := h0 + a 

h1 := h1 + b 

h2 := h2 + c

h3 := h3 + d 

h4 := h4 + e

Produce the final hash value (big-endian):

digest = hash = h0 append h1 append h2 append h3 append h4

Reference:

Hans Delfs and Helmut Knebl, Introduction to Cryptography: Principles and Applications, 2 nd 

Edition, Springer Verlag.

1. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

2. Cryptography and Network Security , William Stallings, Prenctice Hall India.

3. Cryptography Theory and Practice , D. R. Stinson, CRC Press.

7.5 POLLARD-RHOMETHOD

Fermat Factorization

This method of factorization a number n is based on the fact that every odd number can be 

expressed as the difference of two squares.

Let 

Notice that, if n  is odd, then so is a and b and hence and areintegers.
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Therefore, where

Factorization technique

One tries various values of t,hopingthat is a square.

FermatFactor (n): // n is odd

s

while s_sq isn't a square:

s

endwhile

return 

Run time: let n = ab ,then 

Number of stepsrequired: 

If n is prime (so that a = 1), one needs O(n) steps! But if n has a factor close to its square-root the 

method works quickly.

E.g. factorize 200819
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Soln:

4492 - 200819 = 782 

4502 - 200819 = 412

200819 = (450 + 41)(450 - 41) = 491* 409

Factor Bases

Let t 2 = s2 - s,n) gives nontrivial factors of 

n.

Proof: t 2 = s2 mod n  nI  t 2- s2  n I  ( t + s)(t -s)

But

 gcd (t + s,n) and gcd (t - s,n) give nontrivial factors of n

Pollard’s rho heuristic

As the procedure is only a heuristic, neither its running time nor its success is guaranteed. Given

n it can factorize in time.

Pollard-Rho (n)
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14. Endwhile

The following sequences may be noted from the procedure above:

Notice that as x1 was initialized with a value in Zn and all succeeding values in the sequence 

depend on the previous value, the sequence is bound to repeat after some values. Moreover, the 

dependence is a random function given by:

7.6 POLLARD RHOANALYSIS

Pollard Rho Analysis:

By the birthday-paradox, the sequence then must repeat after steps in expectation. As 

will be shown below, a similar sequence of for a prime factor of n will alsorepeatin 

steps or  steps in expectation because the greatest value of the smallest prime 

factor of n is less than .

Let p be a nontrivial factor of n, then the sequence  induces acorrespondingsequence 

modulo pwhere
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Thus, althoughthesequence is not being computed explicitly, it is well defined and obeys 

the same recurrence as the sequence . By similar reasoning as for the original sequence, the 

sequence  repeats in . Consider the figure below for theillustration.

Let t denote the index of the first repeated value in the sequence, and let u > 0 denote the 

length of the cycle that has been produced.

i.e. t and u > 0 are the smallest values such that for all i 

t of the tail of the he length u of the cycle take the value inexpectation.
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When Pollard-Rho saves as y any value xk such that k 

the cycle modulo p because future values will always be ones already on the cycle. Then, to 

ensure that line 8 of Pollard-Rho computes a nontrivial factor, all that is required is that

. This happens when k is set to a value greater than u which causes xi to loop 

around all values in the cycle modulo p without a change in y. A factor of n is then discovered 

when xi

Since the expected values of both t and u are , the expected number of steps to produce 

the factor p is . For the smallest factor of n, p is less than and hence the overall run 

time is  inexpectation.

Two reasons why the algorithm may not perform as expected:

• The heuristic analysis of the run time may result in the the cycle of values modulo p to be

much larger than , in which case the algorithm performs correctly but slower thandesired.

• The divisors of n produced may not always be a trivial one like 1 orn.

Both these problem are found to be insignificant in practice.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C. 

Stein, Prentice Hall India.

2. A course in Number Theory and Cryptography, Neal Koblitz, Springer.
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Unit 1:  Primality Testing

8.1 PRIMALITY TESTING

Primality Testing

Mathematicians have tried in vain to this day to discover some order in the sequence ofprime 

numbers, and we have reason to believe that it is a mystery into which the human mind will 

neverpenetrate. L.EULER.

Abstract: Our objective is to find a polynomial-time foolproof algorithm to determine whether 

a given integer is prime. Everyone knows trial division, in which we try to divide n by every 

integer m intherange .The number of steps in this algorithm will be at least the 

number of integers m we consider, which issomethinglike in the worst case (when nis

prime).Notethat isroughly where d is the number of digits of n when written in binary 

(and d is roughly log{n} where, here and throughout, we will take logarithms in base 2). We 

first present few basic algorithms for primality testing and then proceed with AKSalgorithm[2].

Introduction:

There are few better known or more easily understood problems in pure mathematics than the 

question of rapidly determining whether a given integer is prime. The problem of distinguishing 

prime numbers from composite numbers, and of resolving the latter into their prime factors is 

known to be one of the most important and useful in arithmetic. It has engaged the industry and 

wisdom of ancient and modern geometers to such an extent that it would be superfluous to 

discuss the problem at length. Nevertheless we must confess that all methods that have been 

proposed thus far are either restricted to very special cases or are so laborious and difficult that 

even for numbers that do not exceed the limits of tables constructed by estimable men, they try 

the patience of even the practiced calculator. And these methods do not apply at all to larger 

numbers.

Primes come up in many different places in the mathematical literature, and some of these 

suggest ways to distinguish primes from composites. Those of us who are interested in primality 

testing always look at anything new with one eye open to this application, and yet finding a fast 

1
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primality testing algorithm has remained remarkably elusive. See [4] and [5] for probabilistic and 

randomized primality testing methods. The advent of the AKS algorithm makes us wonder

whether we have missed some such algorithm, something that one could perform in a few

minutes, by hand, on any enormous number.

The ultimate goal of this line of research has been, of course, to obtain an unconditional 

deterministic polynomial-time algorithm for primality testing. This is achieved by the AKS 

algorithm. Next we give the mathematical background to understand the algorithms for Primality 

testing.

Introduction to Jacobi Symbol:

Suppose we want to determine whether or not x2

prime, If p is small, we could square all of the numbers mod p and see if a is on the list. When p 

is large, this is impractical. If p

compute s (p+1)/4 (mod p). If a has a square root, then s is one of them, so we simply have to 

square s and see if we get a. If not, then a has no square root mod p. The following proposition 

gives a method for deciding whether a is a square mod p that works for arbitrary odd p.

Proposition: let p be a odd prime and let a be an integer with a  0 (mod p). Then a (p-1)/2

(mod p). The congruence x2 (p-1)/2

Proof: Let y (p-1)/2 (mod p). Then y2 p-1

If a 2, then a(p-1)/2 p-1

primitive root mod p. Then a j for some j. If a(p-1)/2

g j(p-1)/2 (p-1)/2 

Which implies j.(p-1)/2 -1). This implies that j must be even: j=2k. Therefore, a j

(k)2 (mod p), so a is a square mod p.

Although the above proposition is easy to implement by a computer , it is rather difficult to use 

by hand. In the following we introduce the Legendre and Jacobi symbols, which gave us an easy 

way to determine whether or not a number is a square mod p. they are also very useful in 

Primality testing.

Let p be an odd prime and let a (not) 

) = { 1 if x2
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- 1 if x2 has a solution.

Some important properties of the Legendre symbol are given in the following.

Properties: Let p be an odd prime.

The properties above can be used to build a recursive algorithm to compute the Jacobi symbol 

efficiently. In fact, the algorithm is strongly reminiscent of Euclid‘s algorithm for the gcd.Here 

is how the algorithm applies to compute :

If m > n then use the invariance property: return .

If m=0 or m=1, then use(7) : return 0 or1

Factor m as 2kl, where l is odd. If k >0 use formulas (7) and (3) : return 

.

Use reciprocity : if m=n=3 mod 4 then return  - ; otherwise return .

As this method is similar to Euclidean GCD algorithm, its complexity too isO ( ).
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2 3 r

The Jacobi symbol extends the Legendre symbol from primes p to composite odd integers n. One 

might define the symbol to be +1 if a is a square mod n and -1 if not. However, this would cause 

the property (3) to fail.

In order to preserve property (3), we define the Jacobi symbol as follows. Let n be an odd

positive integer and let a be a nonzero integer with gcd (a, n) =1. Let

n = p1
ap bp c……p q

be prime factorization of n. Then

The symbols on the right side are Legendre symbols introduced earlier. Note that if n=p, the right 

side is simply one Legendre symbol, so the Jacobi symbol reduces to the Legendre symbol.

Properties:
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Before going into any of the primality tests we give a basic principle on which the tests depend 

upon.

Basic principle: let n be an integer and suppose there exist integers x and y with x2

but x  ±y ( mod n). Then n is composite. Morover, gcd(x-y,n) gives a nontrivial factor of n.

Proof: Let d = gcd(x-y, n). if d= n then x 

Suppose d=1. A basic result on divisibility is that if a| bc and gcd(a,b) =1, then a |c.In our case, 

since n divides x2– y2 = (x-y) (x+y) and d=1, we must have that n divides x+y, which 

contradicts the assumption that x  -y (mod n). Therefore d n.

8.2 FERMAT PRIMALITY TEST

Fermat Primality Test: Let n >1 be an integer. Choose a random integer a with 1 < a < n-1.

If a n-1 1(mod n) then n is composite. If an-1 1 (mod n), then n is probably prime.

If we are careful about how we do this successive squaring, the Fermat test can be combined 

with the basic principle to yield the following stronger result.

Miller- Rabin Primality test:

Let n >1 be an odd integer. Write a-1 =2km with m odd. Choose a random integer a with 1< a< 

n-1. Compute b0
m (mod n). If b0 1 (mod n), then stop and declare that n is probably 

prime. Otherwise, let b1 0
2(mod n). If b1 1 (mod n), then n is composite (and gcd (b0 -1,n) 

gives a nontrivial factor of n ). If b1 -1 (mod n), then stop and declare that n is probably prime. 

Otherwise, let b2 1
2(mod n). If b2 1 (mod n), then n is composite. If b2 -1 (mod n), then stop 

and declare that n is probably prime. Continue in this way until stopping and reaching bk-1. If bk-

1  -1 (mod n), then n is composite.

The reason why the test works is- suppose, for example that b3 1 (mod n). This means that 

b2
2 1 (mod n). This means that b2

2 12 (mod n). Apply the basic principle from before. Either 

b2 ±1 (mod n), or b2  ±1 (mod n) and n is composite. In the latter case, gcd (b2-1, n) give a 

nontrivial factor of n. In the former case, the algorithm would have stopped by the previous step.

MILLER-RABIN (n, s)

1. For j

2. do a -1)

3. If WITNESS(a,n)
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k-2 k-2

4. then returnCOMPOSITE

5. returnPRIME

WITNESS (a, n)

Let <bk,bk-1…b0> be the binary representation ofn-1.

d

for I 

do x 

d

if d=1 and x -1

then returnTRUE

if(bi=1)then

d

endfor

ifd

then returnTRUE

returnFALSE

If we reach bk-1 , we computed bk-1 a (n-1)/2 (mod n). The square of this is an-1, which must be 1 

(mod n) if n is prime, by Fermat‘s Theorem. Therefore, if n is prime, bk-1 ± 1 (mod n). All other 

choices mean that n is composite. Moreover, if bk-1 1 then, if we didn‘t stop at an earlierstep,

b 2 12 (mod n)with b  ±1 (mod n). This means that n is composite (and we can factorn).

Although all prime numbers will be detected through this test, however the converse is not true. 

There are numbers which pass this test but are composite, i.e n is composite and an-1

n)for all possible bases a. Such numbers are called Carmichael numbers. For example 561 is a 

Carmichael number. Carmichael numbers are usually of the form (p1.p2.p3) where the number is 

product of primes.

An alternative and equivalent definition of Carmichael numbers is given by Korselt's criterion.

Theorem : A positive composite integer n is a Carmichael number if and only if n is square-free, 

and for all prime divisors p of n, it is true that p n

For example:
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561= 3.11.17 is square-free and 2 |560, 10|560, 16 |560.

1105= 5.13.17 is square-free and 4 |1104, 12|1104, 16 |1104.

Solovay-Strassen Primality test: let n be an odd integer. Choose several random integers a 

with 1<a<n-1.if

For some a, then n is composite. If

For all a, then n is probably prime.

Running time: O((log n)3). This follows from running times of separate parts of the algorithm: 

finding gcd, computing of Jacobi symbol, and finally computing powers of a.

Respectively, O((log n)2) + O((log n)2) + O((log n)3).

Definition 1. For odd n > 3, wedefine 

We will use the following lemma.

Lemma 2.1. For odd n > 3, n is prime if and only if E(n) = Zn
*

For the proof of the lemma, refer to the book Randomized Algorithms [1], Lemma 14.30.

Theorem 2.2. If n is an odd prime, and a {1, . . . , n 1}, the probability that the

algorithm returns “prime” is [Solovay sen(n) = prime ]=1.

If n is an odd composite, the probability that algorithm returns ”composite” is

[Solovay sen(n)= composite ]

Proof: If n is an odd prime, then the algorithm will obviously always output 

now prove the second part of the theorem. Assume that n is an odd composite. We will show 

that the probability of the algorithm returning is 

[Solovay sen(n)= prime ]=

[{gcd(a, n) = 1} {= a(n 1)/2 mod n}] = 

From Lemma 2.1 it follows that E(n) n
*

Now it is easy to show that E(n) is a subgroup of the multiplicative group Zn
*
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a, b E(n)  (ab mod n) E(n)

a E(n) a 1 E(n).

E(n) is thus a proper subgroup of Zn
*

and, from elementary group theory, we conclude that

Thus [Solovay sen(n) = prime ]

8.3 AKS PRIMALITY TEST

AKS PRIMALITY TEST:

First we describe a characterization of prime numbers that will provide the conceptual 

mathematical foundation for our polynomial time algorithm.

Lemma 3.1: Let a n n +a (mod n).

Proof:

By the Binomial theorem we have:

If n isprimethen is divisible by n according to the binomial theorem. By Fermat'slittle 

theorem, we have an

If n is composite, then let q be a prime divisor of n with qs | n . The coefficient of xn-q in the 

binomial expansion of (x +a)n is aq . The numerator is divisible by qs but not by 

qs+1. The denominator is divisible byq.Hence aq

implies (a,qs) = 1, implies (aq, qs) =1,implies aq n). 

Therefore (x+a)n xn + a (modn)

The above identity suggests a simple method for testing the primality of an integer n. We can 

choose an integer a such that (a, n) = 1 and calculate f(x) = (x + a)n - (xn + a). If this function is 

equal to 0 (mod n) then n is prime, else n is composite. Although this is certainly a valid
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primality test, it is horribly inefficient as it involves the computation of n coefficients. The trick 

however is in choosing a suitable integer a. The simplest method for reducing the number of 

coefficients that need to be computed is to evaluate f(x) modulo n and modulo some polynomial 

of small degree, say (xr - 1).

Although it is clear that all primes p satisfy (x + a)p - (xp + a) xr -1), some composite 

numbers may satisfy this equation for all values of a and r. It turns out that for a judiciously 

chosen r, if the above identity is satisfied for several values of a, then n can be shown to be a 

prime power. The number of a's and the appropriate value of r are bounded by log(n). Therefore 

we have just described a deterministic polynomial time primality testing algorithm.

Algorithm:

INPUT: n 

STEP 1: If b, then output 

COMPOSITE. STEP2: Find the minimal r r(n) > 

log2 (n)

STEP3 : For a=1to r do

If 1< (a,n) < n, then output COMPOSITE 

STEP4: if r 

STEP5:  For a=1 to do

If (x+a)n – (xn +a) r -1), then output COMPOSITE. 

STEP 6: output PRIME.

Proof: If n is prime, STEP 1 cannot return COMPOSITE. Similarly, STEP 3 cannot return 

COMPOSITE. Hence, the AKS algorithm will always return PRIME if n is prime.

Conversely, if the AKS algorithm returns PRIME, we will prove that n is indeed prime. If the 

algorithm returns PRIME in STEP 4, n must be prime because otherwise a non trivial factor a 

would have been found in STEP 3. The only case which remains is that if the algorithm returns 

PRIME in STEP 6.

Lemma: There exists an integer r 
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Proof:

For n=2, r=3 satisfies all the conditions.

For 

We know that for n n where lcm(m) denote the LCM of first m numbers. 

So we get the following:

Let r be the smallest integer not dividing N. then condition (2) is obviously satisfies as r is not 

divisor

( ni-1) for . Condition (1) is also satisfiesbecause

Now we prove (3). It is clear that (r,n) <r,as otherwise r would divide n and hence N. Thus

is an integer lessthanmax not dividing N. Because r was chosen to be 

minimal,it must be case that   .hence we have found ther.

Because Or(n) >1, n must have some prime divisor p such that Or (p) >1. STEP 3 did not output 

COMPOSITE, so we know that (n, r)=(p, r) =1. Additionally, we know that p > r as otherwise 

STEP 3 or STEP 4 would have returned a decision regarding the primality n.

Hypothesis:

We now focus our attention on STEP 5 of the algorithm. Let us define an introspective. For 

polynomial f(X) and number m f(X) if

f(X)m = f(Xm) (mod Xr-1, p).
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Lemma: let n prime divisor p and let a .if n,p are introspective for

(x+a),then is introspective for (x+a) aswell.

Proof: As p and n are both introspective for (x+a), we have

We must show h xr xr distinct irreducible hi(x) over 

Zp. Using the Chinese Remainder theorem , we get

As xr p, each of the irreducible factors hi(x) divide h. Hence xr

proof.

It is easy to see the introspective numbers are closed under multiplication and that the set of 

functions for which a given integer is introspective is closed under multiplication.

We can now state a fact as a consequence of the above results.

Every element if the set  is introspective for every polynomial in the 

set  . We now define two groups based on these sets that will play a 

crucial role in theproof.

1. This is a subgroup of Z*
r since (n,r) =(p,r)=1. Let G be this 

group and |G|=t.G is generated by n and p modulo r and since Or(n) > log2 (n), t > 

log2(n).

2. Let Qr(X) be rth cyclotomic polynomial over Fp .

Polynomial Qr(X) divides Xr
r(p) . Let 

h(X) be one such irreducible factor. Since or(p) >1, the degree of h(X) is greater than 

one. The second group is the set of all residues of polynomials in P modulo h(X) andp.

Let G be this group. This group is generated by elements X, X+1,X+2,…, X+l in the 

field F = FpX/ (h(X)) and is a subgroup of the multiplicative group of F.
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Lemma :

Proof: Note that because h(x) is a factor of Qr(X) , x is a primitive rth root of unity in F. We now 

show that if f, g 

elements in G.

Suppose, that f(x) =g(x) in F. Let m f(xm)=g(xm)

within F. Then xm is a root of j(z)=f(z)-g(z) for every m Ir. We know,(m,r)=1, so each such 

xm is a primitive rth root of unity. Hencethereare distinct roots of j(z) in F. But the degree 

j(z) < t by the choice of f and g. This contradiction ( a polynomial cannot have more roots ina 

field than its degree) implies that f(x) x) inF.

Notice that i p whenever 1 Then by above 

,x,x+1,x+2,x+3...x+l are a. Since the degree of h(x) is greater than 1, all of theselinear

polynomials are nonzero in F. therefore there are atleast, l+1 distinct polynomials of degree 1 in

G. hence there atleast  polynomials of degree s in G. Then the order of G is atleast  

.hence theproof.

Lemma : If n is not a power ofpthen .

Proof: Consider the following subset of I:

If n is not a power of p,then Since there are at least two 

elements of I‘ that are equivalent modulo r. Label these elements m1,m2 where m1>m2.

Then

Let f(x) m1,m2 are introspective

Thus in the field F. Thereforethepolynomial has

atleast |G| roots in F (since f(x) is the 

largest element ofI‘.
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Itfollowsthat . Hence theproof.

Lemma: If AKS algorithm return PRIME then n is prime.

Proof: Assume that the algorithm return prime.Recallthat and is generated by n and p, 

therefore t 2(n)or .

We know that

Also by lemma,  if p is not a power of p. Therefore it must be the case that n= pk for 

some k>0 . But STEP 1 did not output COMPOSIT, so k=1, proving that n is indeed prime.This 

completes our proof of theorem.

Time Complexity:

The overall complexity of AKS algorithm is O (log10.5(n)).

Conclusion: In this report we have presented the three important Primality testing algorithms, 

Miller- Rabin Test, Solovay –Strassen test, AKS algorithm. We also gave an introduction to the 

Jacobi symbol. The AKS algorithm is an unconditional deterministic polynomial time algorithm 

for Primality testing. It was first of its kind. The algorithm was a major breakthrough for 

Primality testing and in general for mathematics. The authors received many accolades, 

including the 2006 Godel prize and the 2006 Fulkerson Prize, for this work.
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Unit 2:  Elliptic Curve Cryptosystem

9.1 ELLIPTICCURVES

An elliptic curve is defined by an equation in two variables, with coefficients. For cryptography, 

the variables and coefficients are restricted to elements in a finite field.

Note: Elliptic curves are not ellipses. They are so named because they are described by cubic 

equations, similar to those used for calculating the circumference of an ellipse.

Definition: Let be a fieldofcharacteristic and let (where ) be a cubic 

polynomial with no multiple roots. An ellipticcurveover is the set ofpoints with 

which satisfy theequation

together with asingle element and called the point at infinity .

If is a field of characteristic 2, then an ellipticcurveover is the set of points satisfying an 

equation of typeeither

or else,

If is a field of characteristic 3, then an ellipticcurveover is the set of points satisfying the 

equation

Figure 1 shows two examples of elliptic curves. Now, consider the set of pointsE 

(1)

(2)

(3)

(4)

consisting of all of the points  that satisfy Equation (1) together withtheelement . Using a 

different value of the pair  results in a different set E .

Using this terminology, the two curves in Figure 1 depict the sets  and  ,

respectively.

2
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Figure 1 Examples of Elliptic Curves

Geometric Description of Addition :

A group can be defined based on the set E  for specificvaluesof and in Equation (1), 

provided the following condition ismet:
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(5)

To define a group, we define an operation, called addition and denoted by +, for the set E ,

where and satisfy Equation (5). In geometric terms, the rules for addition can be stated as 

follows: If three points on an elliptic curve lie on a straight line, theirsumis .

From this definition, we can define the rules of addition over an elliptic curve:

Let , and denote thecoordinates of , ,and respectively. We want to 

express and interms of , , , .

Let  be the equation of the linepassingthrough and  .

=

The equation of the elliptic curve is

=

Roots of theequation are , , .
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Addition of two points:

9.2 ELLIPTIC CURVES (CONTD.) AND FINITEFIELDS

......
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is the point of intersection of thetangentat and the ellipticcurve.

Example : On the elliptic curve let  and . Find and .

Solution .

....

For finding ,

Forfinding ,
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Elliptic curves over :

For elliptic curves over  , wehave

(6)

Now consider the set  consisting of all pairsofintegers that satisfy Equation (6), 

together with a pointat infinity .Thecoefficients and and thevariables and are all 

elements of .

It can be shown that a finite abelian group can be defined based on the set providedthat 

has no repeated factors. This is equivalent to thecondition

(7)

For example, let  , that is, the ellipticcurve

: . Forthe set , we are only interested in thenonnegative

integers in the quadrant from through  that satisfy theequation mod . Table 1

lists the points (other than   ) that arepart of . Figure 2 plots thepoints of .

In case of the finite group  , the numberofpoints is bounded by

Table 1 Points on theEllipticcurve otherthan
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9.3 ECDLP

Figure 2 The Elliptic Curve

The Elliptic Curve cryptosystem ( ECC ) have the potential to provide relatively small block 

size, high security public key schemes that can be efficiently implemented. The Elliptic Curve 

Discrete Logarithm problem ( ECDL P ) is based on the fact that given m.P for some integer m

and some point P on the Elliptic Curve where P is known, we have to find v alue of m . The 

smaller key size of Elliptic Curve Cryptosystem makes possible much more compact 

implementations for a given level of security , which means faster cryptographic operations, 

running on smaller chips or more compact software. We mainly concentrate on the Elliptic 

Curve whose equation is given by y2= x3+ Ax + B defined over a finite field Fpfor prime p for A ,

B in the field. The ECC transforms data into some point representation of the Elliptic Curve. It 

relies on calculating the multiple of a point P as m.P which is public and it is difficult to find 

integer m from P and m.P . This is the Elliptic Curve Discrete Logarithm Problem ( ECDL P ). It 

basically defines a group by the operator addition on the points found on the EllipticCurve.
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Informally a zero-knowledge proof system allows one person to convince another person of 

some fact without revealing any information about the proof. There are usually two participants, 

the prover and the verifier. The prover would like to prevent the verifier from gaining any useful 

information while participating in the protocol. For some details refer [3] and [8].

An Elliptic Curve is defined on a field. The field may be finite or infinite. We will draw our 

attention towards finite fields. It is denoted by Fqhaving q elements where q = prhaving p as the 

characteristic of the field Fqand r as any positive integer. We will mainly consider for the curve 

where q = p i.e. r = 1. The points on the curve whose x and y values are in the field are taken into 

account. The ECC transforms the data into some point representation. The points form an 

Abelian Group w.r.t. the operator addition. There is one point indicated by O called the identity 

element.

Definition 2.1. The Order of a point is defined as the number of times the point must be added in 

order to give the identity element i.e. the point O .

Definition 2.2. The Generator of the group is a point whose Order is equal to the number of 

points that are in the group.

The basis of ECC is The Elliptic Curve Discrete Logarithm Problem i.e. the ECDL P .

Definition 2.3. The Elliptic Curve Discrete Logarithm problem or ECDLP is defined as follows:

Given points P and Q on Ep( A, B ) such that the equation m.P = Q holds. Compute k

given P and Q .

Definition 2.4. The Zero Knowledge Proof is defined as follows:

There are usually two participants, the prover and the verifier. The prover knows some fact and 

wishes to prove that to the verifier. The prover and the verifier will be allowed to perform 

alternatively the following computations:

1. Receive message from the other party.

2. Perform a privatecomputation.

3. Send a message to the other party.

A typical round of the protocol will consist of a challenge by the verifier and a response by the 

prover. At the end the verifier either accepts or rejects.

Definition 2.5. The Birthday Paradox is defined as follows :

How many people must there be in a room before there is a 50% chance that two of them were 

born on the same day of the year.
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The above problem can be stated in a different way as follows :

Given a random variable that is an integer with uniform distributions between 1 and n and a 

selection of k instances ( k = n ) of the random variable, what is the probability p( n, k ) that there 

is at least one duplicate ? The Birthday Paradox is a special case where n = 365 and asks for the 

value of k such that p( n, k )>0 . 5. The answer to this problem is

k ( n). [6]

Definition 2.6. The M odular Linear Equation is stated as ax = b ( mod n ) where a >0 and n >

0.

Review of Existing Results

Let E be an Elliptic Curve defined over a finite field with F p having equation y2= x3+ Ax + B ,

where A &B satisfies the inequality 4 A3+ 27 B2= 0. We can find the number of points on the 

curve by checking the Legendre Symbol for y2for each value of x . T he number of points will be 

denoted by #E( Fp).

The Hasses's theorem provides some limit on the number of points on an Elliptic Curve defined 

over a finite field. It states that |p +1-#E (Fp) | p . [5]

Theorem 3.1. The Equation ax ( mod n ) is solvable for the unknown x if and only if 

gcd(a, n)|b . [4]

Theorem 3.2. The Equation ax ( mod n ) either has d distinct solutions modulo n, where d =

gcd (a, n) ,or it has no solutions. [4]

Theorem 3.3. Let d = gcd (a, n) , and suppose that d = axf+ nyffor some int e gers xfand yf. If d| 

b, then the e quation ax ( mod n ) has as one of it's solutions the value x0, where x0= xf(b/d)

mod n.[4]

Theorem 3.4. Sup p ose that the e quation ax ( mod n ) is solvable (that is, d|b , where d =

gcd ( a,n )) and that x0is any solution to this e quation. Then, this e quation has exactly ddistinct 

solutions, modulo n, given by xi= x0+ i(n/d) for i = 0 , 1 , 2 ,3 ,...... , d - 1 .[4]

Corollary 3.5. For any n >1, if gcd (a, n) = 1, then the equation ax (mod n) has a unique 

solution, modulo n . [4] In particular if b = 1 then x = a-1n Z*.

Theorem 3.6. In a coin toss, if the probability of obtaining a head is p then it is expected that 

after 1 /p tosses the first head is obtained. [2]

Theorem 3.7. n>1 (n)/n n/ log n) . [2]
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First we will provide a Zero Knowledge Proof for Elliptic Curve Discrete Logarithm Problem 

(ECDL P ) and explain the properties. In the next section we will present an attack over the Zero 

Knowledge Protocol.

Properties of Zero Knowledge Interactive Proof

A Zero Knowledge Interactive Proof (ZKIP) or Zero Knowledge Protocol is an iteracti ve 

method for one party to prove to another that a (usually mathematical) statement is true without 

revealing anything other than the veracity of the statement. A Zero Knowledge Interactive Proof 

must satisfy three properties :

1. Completeness : If the statement is true, the honest verifier (that is, one following theprotocol 

property) will be convinced of this fact by an honestprover.

2. Soundness : If the statement is false, no cheating prover can convince the honest verifier that it 

is true except with small probability.

3. Zero-Knowledge : If the statement is true, no cheating verifier learns anything other thanthis 

fact.

9.4 ZERO KNOWLEDGEPROOF

Now we will give the Zero Knowledge Proof for Elliptic Curve Discrete Logarithm Prob-

lem(ECDLP) and prove the properties.Our proof has some resemblance with ElGamal signature 

scheme [1] descri bed in [5] in details . Let the prover be Alice and the verifier be Bob . Let the 

Elliptic Curve be denoted by Ep(A,B) and let n be the number of points on the Elliptic Curve. Let 

P Ep(A,B) be a generator of the group. So Alice wants to convince Bob that she knows the 

value of m where Q = mP without disclosing m . It can be achieved by following steps :

1. Alice picks random integer k with 1 = k = p-1 where p is the characteristic of the fieldand 

sends R = kPtoBob.

2. Bob picks random integer r with 1 = r = p-1 and sends it toAlice.

3. Alice computes Y = (k-mr ) mod n where n is the number of points on the curve i.e. # E(Fp)=

n , and sends it to Alice.

4. Bob verifies if R == YP + rQ.

If step 4 is satisfied then Bob accepts else rejects. Now we will verify the three properties stated 

previously for the protocol as follows:
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1. Completeness : Given Q = mP . We have to show that if Alice knows value of m , then Bob is 

convinced that Alice knowsit.

Since Alice knows value of m , all four steps in the protocol can be carried out. At step 3 Alice 

computes Y = (k - mr) mod n and sends it to Bob. At step 4, Bob verifies YP + rQ = R or not.Now 

YP + rQ = (k - mr) P + rQ = kP - rmP + rQ = kP - rQ + rQ = kP =R

( verified).

So Bob is convinced that Alice knowsm .

2. Soundness : Here we have to show that if Alice does not know value of m then shecan't 

convince Bob that she knows it or succeeds with a very small probability.

Now suppose Alice doesn't know value of m and wants to convince Bob that she knows it. The 

only way that Alice can convince Bob is in step 3 of the protocol Alice should send such a value 

for Y such that Y P should have value R- rQ , so that after

adding rQ Bob will get R .

i.e. YP = R-rQ

i.e. YP = kP -rmP

i.e. YP = (k -mr)P

i.e. Y= (k -mr ) mod n

Now Alice has values of k , r but she doesn't have the value of m . So it can't find value of k-mr .

So she can't cheat.

3. Zero-Knowledge : Here we have to show that no information is released in the pro-tocol. 

Now in one session of the protocol Bob/Eavesdropper E has the followinginformation:

P ,Q , R = kP ,r ,Y = (k - mr) mod n .

Now from Y = ( k - mr ) mod n , in order to find out value of m it knows value of r . So the only 

thing left is to know k . But to find k the only way is to solve the ECDLP , R = kP for k . So 

Bob/Eavesdropper can't know value of m . So the proof is a Perfect Zero-Knowledge .

Attack on the Zero Knowledge Protocol

During the whole protocol the Eavesdropper E has the following information : 

point P (known)

point Q = mP (known)

point R = k P (known) ( k unknown) 

number r (known)
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number Y = (k - mr) mod n (known, m unknown)

From it the Eavsdropper can't find any useful information. But the attack is possible

if the attacker uses information from multiple sessions of the challenge-response protocol. Now 

suppose in one session

Y 1= (k - mr 1) modn (1)

In another session Alice use the same k to compute R and thus

Y 2 = (k - mr2) modn (2)

So (1) - (2) ? Y 1-Y 2 = m(r2- r 1) mod n

m (r2- r 1) = (Y 1- Y2) mod n (3)

So r2- r 1 is known, and Y1- Y2 is known. So we can solve form by using Theorem 3.4. Here in the 

Modular Linear Equation ax , a = (r2- r1), b = (Y1- Y2), x = m and the number of 

solutions = gcd(a,n). The attack proceeds as follows :

In step 1 of the protocol Eavesdropper E gets the value of Ri= kiP( i = 1 , 2 ,3, .......) wherei

denotes the session numbers of the challenge-response protocol. Suppose at some session j , E

disc overs Rj= Rl, for some l < j . Thus we have :

kjP = klP (kj-kl)P = O. We will assume P is either the generator or a point on the Elliptic Curve 

with high order. Otherwise ECDLP can be easily solved by any brute force method. Thus we can 

safely assume without loss of generality O( P ) >> kj- kl. Thus the only way the equality holds if 

kj= kl. Thus the entire problem reduces to solving the Modular Linear Equation (3). From 

Corollary 3 . 1 of Modular Linear Equation we hence

m = (Y1-Y2 )(r2- r1) - 1 mod n .

As stated in Corollary3.1,(r2- r1)-1 would be uniquely defined if gcd (r2- r1,n) = 1. 

r2- r1. Thus gcd ,n) = 1. W e can adopt the following randomized algorithm 

r2 from r1 .

Algorithm 1 RAND ( n )

1: Pick a random number x from ( 2 ,3 , ....., n -1).

2: Compute gcd(x,n).

3: if gcd (x,n) = 1 then 

.
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5: else

6: goto step 1.

7: end if

We know that |Zn n ). Thus the tptal number of integers less than n and relativelyprime

w.r.t n n ). Thus the probability that the selected number x Z n n

)/ n . Thus from Theorem 3.6 after expected n n )  O ( log n / loglog n ) iterations we will 

get x  Z n * . Thus the expected time complexity of RAND is O ( log n / loglog n ) assuming 

the time complexity to compute gcd(x,n) is O (l og n). Thus in sessions i and j attacker will use a 

random number r 1 and r 2= r 1

chooses different values of k at each session. But in step 1 of the protocol Alice picks up k with1

k p-1 at random. Thus from Birthday Paradox after O ( p) sessions Alice will pick up k used 

in some earlier session with high probability. Thus after O ( p) sessions of the challenge 

response protocol with high prpbability an Eavesdropper can compute the value m for ECDLP .

6 Solution to Overcome the Above Attack

In this section we will provide a solution i.e., a modified Zero Knowledge Proof for the ECDLP 

that overcomes the above attack and prove the required properties i.e., Com- pleteness, 

Soundness, and Zero-Knowledge, as explained previously . We also provide an explanation of 

how it overcomes the above attack.

Let the proverbe Alice and the verifier be Bob . Let the Elliptic Curve be denoted by Ep( A, B )

and let n be the number of points on the Elliptic Curve. Let P Ep( A, B ) be a generator of 

the group. So Alice wants to convince Bob that she knows the value of m where Q = mP 

without disclosing m . It can be achieved by following steps :

1. Alice picks random integers k1and k2with 1 1, k2 p - 1 where p is the c haracteristic ofthe 

field and sends R1= k1P and R2= k2Q toBob.

2. Bob picks random integer r with 1 - 1 and sends it toAlice.

3. Alice computes Y = ( mrk2- k 1) mod n where n is the number of points on the curvei.e. 

#E(Fp)= n , and sends it toAlice.

4. Bob verifies if YP + R1==rR2.
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If step 4 is satisfied then Bob accepts else rejects. Now we will verify the three propertiesstated 

previously for the protocol as follows:

1. Completeness : Given Q = mP . We have to show that if Alice knows value of m , then Bob is 

convinced that Alice knowsit.

Since Alice knows value of m , all four steps in the protocol can be carried out. At step 3 Alice 

computes Y = ( mrk2-k1) mod n and sends it to Bob. At step 4, Bob verifies YP + R1= rR2or not. 

Now YP + R1= ( mrk2- k1)P + k1P

= mrk2P- k1P + k1P

= mrk2P

= rk2Q ( Replacing mP by Q )

=rR2( Replacing k2Q by R2) ( Verified). So Bob is convinced that Alice knows m .

2. Soundness : Here we have to show that if Alice does not know value of m then shecan't 

convince Bob that she knows it or succeeds with a very small probability.

Now suppose Alice doesn't know value of m and wants to convince Bob that she knows it. The 

only way that Alice can convince Bob is in step 3 of the protocol Alice should send such a value 

for Y such that YP should have value rR2- R1, so that after adding R1 Bob will get rR2.

i.e. YP = rR2- R 1i.e. YP = k2rQ - k1P i.e. YP = mrk2P - k1P

i.e. Y = ( mrk2- k1) mod n

Now Alice has values of r ,k2,k1but she doesn't have the value of m . So it can't find value of 

(mrk2- k1). So she can't cheat.

3. Zero-Knowledge : Here we have to show that no information is released in the pro-tocol. 

Now in one session of the protocol Bob/Eavesdropper E has the following information : 

P,Q,R1= k1P , R2= k2Q,Y= ( mrk2- k1) mod n.

Now Y = ( mrk2- k1) mod n. From this modular equation to find out value of m the known 

quantities are r and Y. In this modular linear equation Y =(mrk2- k1)mod n we have 3 unknowns 

m,k1, and k2. Thus 2 ECDLPs R1= k1P and R2= k2Q reduces to solving Y = (mrk2- k1) mod n .

Thus in other words if there is an efficient way of obtaining k1and k2from the modular linear 

equation Y =(mrk2- k1) mod n then there is an efficient solution to 2ECDLPs R1= k1P and R2=

k2Q . Hence solving the modular linear equation Y = ( mrk2- k1) mod nis at least as hard as
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solving ECDLPs R1= k1Pand R2= k2Q . So Bob/Eavesdropper can't know value of m . So the 

proof is a Perfect Zero-Knowledge .

Now we will explain how the attack is avoided. Now suppose as earlier Bob / E gets Y1and Y2as 

follows :

Y1= (mr1k12- k) mod nand Y2=(mr2k22- k)mod ni.e., in both sessions R 1 values are same. Here 

k12and k22indicate the k2values in both sessions.Now subtracting as previously we will get Y1-

Y2= m(r1k12- r2k22) mod n . But as it doesn't know the value of k12and k22, so it can't solve for the 

Modular Linear Equation .Even if R2is same in b oth cases with R2= k2Qthen it will get the final 

subtraction result as Y1- Y2= mk2( r1- r2)mod n. So solving it will give the value of mk2. Again if 

we can obtain m efficiently we have an efficient solution to the ECDLP R2= k2Q. Thus again we 

have a reduction from ECDLP to the problem of computing m from mk2. So this proof system is 

not susceptible to the previous attack.

Conclusion

The Elliptic Curve cryptosystem ( ECC ) can play an important role in asymmetric cryp-

tography . ECC is a stronger option than the RSA and Discrete Logarithm systems for the future. 

Here we have presented a Zero Knowledge In teractive Proof for ECDLP where the elliptic 

curve is of the form Ep( A,B) where pis a prime. The re- sult can be easily generalized to Eq(A,B)

for composite q where q = pr. Given a guess of m for ECDLP we can easily verify in polynomial 

time whether P = m.Q . This shows E C D LP  N P P S P AC E = I P [7]. This confirms 

with our result that shows E C D LP  I P . Subsequently we have also presented an attack on 

the Zero Knowledge Pro-tocol using Birthday Paradox . Lastly we modified the Zero 

Knowledge Proof to overcome thisattack.
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9.5 ELLIPTIC CURVECRYPTOGRAPHY

Elliptic curve cryptosystem is based Elliptic Curve Discrete Logarithm Problem ,i.e., ECDLP .

The problem is defined as follows:

Given points P and Q on Ep(a,b) such that the equation kP = Q holds. Compute k given P and Q .

Representing Plaintext Message by a Point on the Elliptic Curve

Suppose the plaintext message is an integer m. We have to represent this by a point on the 

elliptic curve y2= x3+ax+b (mod p). We choose the x -coordinate of the representative point by m

. But it may so happen that m3+am+b (mod p) is not a quadratic residue and thus the ordinate 

value is undefined. So we adopt the following randomized procedure described in [1].

Let K be the largest integer such that the failure probability 1/2k is acceptable. We also assume 

that (m +1)K<p. the message m will be represented by a point with the abscissa value x = mK +

j,where0 j <K. Also we assumethatp 3 mod 4. This assumption will help us in computing 

the square root deterministically. For j=0,1,2,…,K -1 check if z=x3+ax+b (mod p) is a quadratic 

residue or not. If it is a quadratic residue we compute the vale of y as  Nowwe
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represent the message by Pm= (x,y). If the test fails for all values of j then we fail to map the 

message to a point. Clearly the failure probability is 1/2k.

At the time of decryption we recover the message m from Pm= (x,y) as follows:

m= .

Elliptic Curve Analogue of Diffie- Hellman Key Exchange

Publicly available information: Ep(a,b) and a point G on the curve with high order, i.e.,kG = O

for

large k . Let n be the total number of points on the curve.

1. Alice chooses her private key nAsuchthat 1 nA n and computes the public key PA=nAxG.

2. Bob chooses his private key nBsuchthat1 nB n and computes the public key PB=nBxG.

3. Alice and Bob simultaneously compute the shared key K = nAxnBxG after computingnAxPB

and nBxPArespectively.

This key exchange scheme as mentioned earlier is susceptible to intruder-in-the-middle attack. 

To overcome this all messages should be authenticated by its sender.

Elliptic Curve Analogue of ElGamal Cryptosystem 

Bob's Public Key: PB

Bob's Secret Key: a where PB G .
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Other Publicly Available Information: Elliptic Curve Ep(a,b) and a point G of large order on 

the elliptic curve and the prime p .

Encryption (Sender: Alice)

Let Pmbe the point on the elliptic curve corresponding to the plaintext message m .

• Alice chooses a random number k , suchthat 1 k p -1.

• She computes the cipher text C ={C1 ,C2} = { kG,Pm+kPB}.

• She sends the cipher text C ={C1,C2} toBob.

Decryption (Receiver: Bob)

After receiving the cipher text C ={C1,C2}

• C1 B

• Then Bob subtracts the result obtained in Step1. from C2. Thus Bob computes C2- kPB=Pm

and recovers the plaintext.
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Unit 3:  Hash Function Digital 
Signatures

10.1 CRYPTOGRAPHIC HASHFUNCTIONS

In cryptography, a cryptographic hash function is a transformation that takes an input and 

returns a fixed-size string, which is called the hash value. Hash functions with this property are 

used for a variety of computational purposes, including cryptography. The hash value is a 

concise representation of the longer message or document from which it was computed. The 

message digest is a sort of "digital fingerprint" of the larger document. Cryptographic hash 

functions are used to do message integrity checks and digital signatures in various information 

security applications, such as authentication and message integrity.

There is no formal definition which captures all of the properties considered desirable for a 

cryptographic hash function.

A cryptographic hash function h : M Z is a mapping from the set of messages of arbitray 

length i.e., the domain M to a set of fixed length (approx. 160 bits) message digests i.e., the range 

Z .

These properties below are generally considered prerequisites:

Preimage resistant (See one way function for a related but slightly differentproperty): 

given h(m) it should be hard to find any m such that h ( m ) = h ( m).

Second preimage resistant : given an input m1 , it should be hard to find another input,m2

(not equal to m1 ) such that h ( m1 ) = h ( m2 ).

This property is implied by collision-resistance. Second preimage resistance is sometimes 

referred to as weak collision resistance .

Collision-resistant : it should be hard to find two different messages m1 and m2 suchthat

h ( m1 ) =  h ( m2 ). This property is sometimes referred to as strong collision resistance.

Birthday Paradox: If there are n people having m possible birthdays and if n > (approx.) 

3
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then with high probability (i.e., probability > ) there will be a pair of people having the same 

birthday.

Proof: The probability that all people having distinct birthday (assuming m >n ) is as follows:

=

= £

having the same birthday .

Thus  ln (2)  n( n-1) ln (2)m (approx.)Q.E.D

Thus to check the strong collision resistance property of a hash function h : M Z wherethe 

Z | = 2 we have to test an arbitrary subset of M with cardinality

It is however, a common misconception that "one-wayness" of a cryptographic hash function 

means irreversibility of processing of the hash state, and that it somehow contradicts the 

principles used to construct block ciphers. Such "irreversibility" in fact means presence of local 

collisions that could facilitate attacks. The hash function must be a permutation processing its 

state bijectively to be cryptographically secure. It must be irreversible regarding the data block 

just like any block cipher must be irreversible regarding the key (it should be impossible to find 

the key that can encrypt a block A into a block B faster than the brute-force). This makes iterated 

block ciphers and hash functions processing blocks of the same size as secret keys of those block 

ciphers virtually identical, except the roles of key and data blocks are swapped. All the attacks 

against the MDx and SHA families of hash functions exploit local collisions in the processing of 

the data block. The local collisions caused by the final addition operation can also be exploited 

by these attacks.

MDx Hash Function Family

The family of MDx hash function started from MD4 and subsequently extended to MD5 and 

MD7 . We first explain the principle of MD4 . MD4 converts a message block whose length is 
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modulo 512 bit long to a message digest of 128 bits concatenating contents of 4 registers after 3 

rounds. First given a bit string x of arbitrary length it converts it a message M whose length is 

modulo 512 bits. This is done as follows:

1. d = (447-| x |) mod 512

2. Let l denote the binary representation of | x | mod 264. | l|=64 

3. M = x || 1 || 0d|| l.

In the above algorithm | x | denote the length of the bit string x . Thus we see that | x || 1 || 0d | = 

448 mod 512. Concatenating l we get | M | as a multiple of 512.

Then M is broken up into words of length 32 bits as follows:

M = M [0] M [1] … M [ N -1]

Where each M [ i ] is 32 bit long and N º 0 mod 16. The overall algorithm proceeds as follows: 

1. 1. A = 67452301 hex

2. B = efcdab89hex

3. C = 98badcfehex

4. D = 10325476 hex

5. for i = 0 to N/16 -1 do

6. for j = 0 to 15 do

7. X [ j] = M [ 16i + j ]

8. AA =A

9. BB =B

10. CC =C

11. DD =D

12. Round1

13. Round2

14. Round3

15. A = A +AA

16. B = B +BB

17. C = C +CC

18. D = D +DD

We maintain 4 registers A , B , C , D each of length 32 bits. In each iteration of the outer for loop 

we process a message block X [0] X [1] … X [15] of length 512 bits to produce a message digest 
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of length 128 bits formed by concatenating the contents of those 4 register A , B , C , D .

The above algorithm of MD4 was subsequently extended to MD5 that works in 4 rounds instead 

of 3 rounds.

10.2 ELGAMAL DIGITALSIGNATURES

1. Introduction:-

Traditionally signature with a message is used to give evidence of identity and intention with 

regard to that message. For years people have been using various types of signature to associate 

their identity and intention to the messages. Wax imprint, seal, and handwritten signature are the 

common examples. But when someone need to sign a digital message, things turn different. In 

case of signing a digital document one cannot use any classical approach of signing, because it 

can be forged easily. Forger just need to cut the signature and paste it with any other message.

For signing a digital document one uses digital signature [1][2][3].

Therefore, digital signature are required not to be separated from the message and attached to 

another. That is a digital signature is required to be both message and signer dependent. For 

validating the signature anyone can verify the signature, so digital signature are suppose to be 

verified easily.

A digital signature scheme typically consist of three distinct steps:

1. Key generation:- User compute their public key and corresponding privatekey.

2. Signing:- In this step user sign a given message with his/her privatekey.

3. Verification:- In this step user verify a signature for given message and publickey. 

So the functionality provided by digital signature can be stated asfollows:

Authentication:- Digital signature provides authentication of the source of the messages as a 

message is signed by the private key of the sender which is only known to him/her.

Authentication is highly desirable in many applications.

Integrity:- Digital signature provides integrity as digital signature uniquely associate with 

corresponding message. i.e. After signing a message a message cannot be altered if someone do 

it will invalidate the signature. There is no efficient method to change message and its signature 

to produce a new message and valid signature without having private key. So both sender and 

receiver don‘t have to worry about in transit alteration.

Non- repudiation:- For a valid signature sender of message cannot deny having signed it.
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In this report we are going to discuss different variation of digital signature. First we will 

describe RSA digital signature scheme and Elgamal signature scheme, along with their 

elliptic curve version. After covering above signature scheme we will talk about digital 

signature standards, and then we will cover proxy signature scheme, blind signature scheme 

and then we will finally talk about short signature scheme.

2. RSA Digital SignatureScheme

Suppose Alice want to send a message(m) to Bob. She can generate digital signature using RSA 

digital signature scheme [4] as follow:

Key Generation:-

She can generate key for RSA signature scheme:

1. Choose two distinct large prime numbers p and q.

2. Compute n =pq.

3. n is used as the modulus for both the public and privatekeys.

4. Compute , where is Euler‘s totientfunction.

5. Choose an integer e such that and 

6. Compute d = e .

Then the public key and private key of user will be (e, n) and (d, n) respectively.

Now she have her public and private key. Now she can generate the signature of a message by 

encrypting it by her private key.

So she can generate signature corresponding to message(m) as follow:

Signing:-

1. Represent the message m as an integer between 0 and n .

2. Sign message by raising it to the dth power modulon.

S d (mod n)

So S is the signature corresponding to message m. Now she can send message malong with the 

signature S to Bob.

Upon receiving the message and signature (m, S), Bob can verify the signature by decrypting it 

by Alice public key as follow:
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Verification:-

1. Verify signature by raising it to the eth power modulon.

m' e (mod n)

2. If m' = m (mod n) then signature is valid otherwise not. 

For a valid signature both mand m' will be equalbecause:

S d (mod n) 

m' de(mod n) 

and

e is inverse of d, i.e. ed .

So, by using above algorithm Alice can generate a valid signature S for her message m, but there 

is a problem in above define scheme that is the length of the signature is equal to the length of 

the message. This is a disadvantage when message is long.

There is a modification in the above scheme. The signature scheme is applied to the hash of the 

message, rather than to the message itself.Now Alice have a message signature pair (m, S). So, 

the signature S is a valid signature for message m. So a forger ( lets say Eve) cannot forge Alice 

signature. i.e. She cannot use signature S with another message lets say m1, because Seis not 

equal to m1. Even when the signature scheme is applied to the hash of the message it is infeasible 

to forge the signature, because it is infeasible to produce two message m, m1with same hash 

value.

In practice, the public key in RSA digital signature scheme is much smaller than the private key. 

This enable a user to verify the message easily. This is a desired because a message may be 

verified more than once, so the verification process should be faster than signing process.

The RSA Digital Signature Algorithm:-

Additional instructions for RSA signature algorithm is as follows:

An RSA digital signature key pair consists of an RSA private key, which is used to compute a 

digital signature, and an RSA public key, which is used to verify a digital signature. An RSA 

digital signature key pair shall not be used for other purposes (e.g. key establishment).

An RSA public key consists of a modulus n, which is the product of two positive prime integers 

p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values 

(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly
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considered to be the length of the modulus n in bits (nlen). The corresponding RSA private key 

consists of the same modulus n and a private key exponent d that depends on n and the public 

key exponent e. Thus, the RSA private key is the pair of values (n, d) and is used to generate 

digital signatures. In order to provide security for the digital signature process, the two integers p

and q, and the private key exponent d shall be kept secret. The modulus n and the public key 

exponent e may be made known to anyone.

The Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and 

3072 bits.

An approved hash function, as specified in [7], shall be used during the generation of key pairs 

and digital signatures. When used during the generation of an RSA key pair, the length in bits of 

the hash function output block shall meet or exceed the security strength associated with the bit 

length of the modulus n. The security strength associated with the RSA digital signature process 

is no greater than the minimum of the security strength associated with the bit length of the 

modulus and the security strength of the hash function that is employed. Both the security 

strength of the hash function used and the security strength associated with the bit length of the 

modulus n shall meet or exceed the security strength required for the digital signature process.

10.3 BLIND & PRONY SIGNATURE

Elgamal digital signature scheme[5] is proposed by Elgamal in 1985. This is based on Diffe-

Hellman key exchange. This signature scheme is quite different from RSA signature scheme in 

terms of validity of signatures corresponding to a message. i.e. there are many valid signatures 

for a message. Suppose Alice want to sign a message using Elgamal digital signature scheme, 

she can generate signature S corresponding to message m as follow:

Key generation:-

She can generate key for Elgamal signature scheme as follow:

1. Choose p be a largeprime.

2. Choose g be a randomly chosen generator of the multiplicative group of integers Zp.

3. Choose a secret key x such that 1 < x < p .

4. Compute y = gx (modp).
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Then the public key and private key of user will be (p, g, y) and (p, g, x) respectively.

Signing:-

Now Alice has her public and private key so she can sign a message m by using following steps:

1. Choose a random number k such that 0 < k < p and gcd(k, p .

2. Compute r k(modp).

3. Compute s -1 (mod p . Where H(m) is hash of message. 

Then the pair (r, s) is the signature of the messagem.

Verification:-

Bob can verify the signature (r, s) of message m as follow:

1. Download Alice's public key (p, g,y).

2. Compute v1
H(m)(mod p) and v2

r r s (modp).

3. The signature is declared valid if and only if v1 2 (modp).

For a valid signature (r, s), v1 2 (mod p) since

s -1 (mod p 

sk

H(m) -1)

v1
H(m)(mod p) 

v1
(sk+xr)(modp)

v1
(sk) g (xr)(mod p)

v1
k) s (g x) r(mod p) 

v1
r r s (mod p)

v1 2 (mod p).

The security of Elgamal digital signature scheme relies on the difficulty of computing discrete 

logarithms. The security of the system follows from the fact that since x is kept private for 

forging Elgamal digital signature one do need to solve discrete logarithm problem.s

Suppose Eve want to forge Alice signature for a message m1and she doesn't know x (as x kept 

private by Alice), then she cannot compute s( as s 1)
-1 (mod p .  Now the 

only option left is to choose s which satisfies the verification. Thus s should satisfy equation y rr
s H(m)(mod p) as Eve knows (p, g, y) so she can compute r. So the equation can be rearrange 

as r s -r g H(m)(mod p), which is again a discrete logarithm problem. So Elgamalsignature
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scheme is secure, as long as discrete logarithm are difficult to compute.

Digital Signature Standards

Digital signature standards [6] define some standards to be followed. A digital signature scheme 

includes a signature generation and a signature verification. Each user has a public and private 

key and is the owner of that key pair.

For both the signature generation and verification processes, the message (i.e., the signed data) 

is converted to a fixed-length representation of the message by means of an approved hash 

function. Both the original message and the digital signature are made available to a verifier.

A verifier requires assurance that the public key to be used to verify a signature belongs to the 

entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a 

verifier requires assurance that the signatory is the actual owner of the public/private key pair 

used to generate and verify a digital signature. A binding of an owners identity and the owners 

public key shall be effected in order to provide this assurance.

A verifier also requires assurance that the key pair owner actually possesses the private key 

associated with the public key, and that the public key is a mathematically correct key. By 

obtaining these assurances, the verifier has assurance that if the digital signature can be correctly 

verified using the public key, the digital signature is valid (i.e., the key pair owner really signed 

the message). Digital signature validation includes both the (mathematical) verification of the 

digital signature and obtaining the appropriate assurances.

Technically, a key pair used by a digital signature algorithm could also be used for purposes 

other than digital signatures (e.g., for key establishment). However, a key pair used for digital 

signature generation and verification as specified in this Standard shall not be used for any other 

purpose. A number of steps are required to enable a digital signature generation or verification 

capability in accordance with Standards.

Initial Setup:-

Each intended signatory shall obtain a digital signature key pair that is generated as specified for 

the appropriate digital signature algorithm, either by generating the key pair itself or by obtaining 

the key pair from a trusted party. The intended signatory is authorized to use the key pair and is
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the owner of that key pair. Note that if a trusted party generates the key pair, that party needs to 

be trusted not to masquerade as the owner, even though the trusted party knows the private key.

After obtaining the key pair, the intended signatory (now the key pair owner) shall obtain 

assurance of the validity of the public key and assurance that he/she actually possesses the 

associated private key.

Digital Signature Generation:-

Prior to the generation of a digital signature, a message digest shall be generated onthe 

information to be signed using an appropriate approved hashfunction.

Using the selected digital signature algorithm, the signature private key, the messagedigest, 

and any other information required by the digital signature process, a digital signature shall be 

generated according to theStandard.

The signatory may optionally verify the digital signature using the signature verification 

process and the associated public key. This optional verification serves as a final check to detect 

otherwise undetected signature generation computation errors; this verification may be prudent 

when signing a high-value message, when multiple users are expected to verify the signature, or 

if the verifier will be verifying the signature at a much later time.

Digital Signature Verification and Validation:-

In order to verify a digital signature, the verifier shall obtain the public key of the claimed 

signatory,(usually) based on the claimed identity. A message digest shall be generated on the 

data whose signature is to be verified (i.e., not on the received digital signature) using the same 

hash function that was used during the digital signature generation process. Using theappropriate 

digital signature algorithm, the domain parameters (if appropriate), the public key and the newly 

computed message digest, the received digital signature is verified in accordance with this 

Standard. If the verification process fails, no inference can be made as to whether the data is 

correct, only that in using the specified public key and the specified signature format, the digital 

signature cannot be verified for thatdata.

Before accepting the verified digital signature as valid, the verifier shall have

1. assurance of the signatory claimedidentity,

2. assurance of the validity of the public key,and
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3. assurance that the claimed signatory actually possessed the private key that was usedto 

generate the digital signature at the time that the signature wasgenerated.

If the verification and assurance processes are successful, the digital signature and signed data 

shall be considered valid. However, if a verification or assurance process fails, the digital 

signature should be considered invalid.

10.4 SHORT SIGNATURE SCHEMEI

Suppose Alice want her message to be sign by Bob without letting him know the content of the 

message, she can got it done using Blind signature scheme [8]. Blind signatures scheme, 

proposed by Chaum, allow a signer to interactively sign messages for users such that the 

messages are hidden from the signer. Blind signature typically have two basic security 

properties: blindness says that a malicious signer cannot decide upon the order in which two 

messages have been signed in two executions with an honest user, and unforgeability demands 

that no adversarial user can create more signatures than interactions with the honest signer took 

place.

Blind signatures are typically employed in privacy-related protocols where the signer and 

message author are different parties. Blind signature schemes see a great deal of use in 

applications where sender privacy is important, some of them are:

1. Cryptographic election systems(e-Vote).

2. Digital cash schemes (e-Cash)

Blind signature scheme can be used with RSA signature algorithm. In RSA signature scheme a 

signature is computed by encrypting the message by the private key. In case of the blind 

signature there is one additional step Blinding the message. Alice can blind her message and get 

is signed by Bob, and remove the blinding factor after getting it signed. Suppose (e, N) and (d,

N) is the public key and private key of Bob respectively then Alice can blind her messageas 

follows:

Blinding the message:-

1. Alice choose a random value r, such that r is relatively prime to N (i.e. gcd(r, N ) =1).
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2. Calculate blinding factor by raising r to the public key e (mod N ) (i.e. blinding factoris 

equal to re(mod N )).

3. Blind the message by computing the product of the message and blinding factor,i.e.

m' e (mod N )

Now Alice can send blinded message m' to Bob. Now m' does not leak any information about m,

as r is private to Alice. Any malicious user need to solve discrete logarithm problem for 

recovering original m from m'.

Signing:-

When Bob (signing authority) receive a blinded message from Alice (user) he will sign the 

message by his private key

S' d(mod N)

S' is the signature corresponding to message m'. Bob send S' to Alice. Alice removes the 

blinding factor from the signature by dividing it r and revel the original RSA signature S as 

follow:

S -1 (mod N )

Now Alice message m with signature S, signature can be verified using Bob's public key.

Verification:-

Now signature can be verified as usual RSA signature.

1. Verify signature by raising it to the eth power moduleN.

m' e (mod N)

2. If m' = m (mod N) then signature is valid otherwisenot.

The above scheme will work fine. i.e. (S, m) is a valid signature message tuple corresponding to 

Bob. Since

S -1 (mod N )
dr-1 (mod N )

e)dr-1 (mod N )
dredr-1 (mod N )

drr-1 (mod N )
d (mod N )
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5. Proxy Signature:-

In proxy signature scheme a user Alice (original signer) delegates her signing capability to 

another user, Bob( proxy signer), so that Bob can sign messages on behalf of Alice. Proxy 

signature can be validate for its correctness and can be distinguished between a normal signature 

and a proxy signature. So the verifier can be convinced of the original signer‘s agreement on the 

signed message. Proxy signature is used in a number of applications, including electronic 

commerce, mobile agents, distributed shared object systems,and many more. For example, the 

president of a company delegates a signing right to his/her secretary before a vacation. The 

secretary can make a signature on behalf of the president, and a verifier can be confident that the 

signature has been made by the authorized secretary. The verifier can also be convinced of the

president‘s agreement on the signed message. Typically, a proxy signature scheme is as follows. 

The original signer Alice sends the proxy signer Bob a signature that is associated with a specific 

message. Bob makes a proxy private key using this information. Bob can then sign on a message 

with the proxy private key using a normal signature scheme. After the message and signature 

have been sent to the verifier, he/she recovers a proxy public key using public information and 

verifies the proxy signature using a normal signature scheme.

Proxy Signature scheme is introduced by Mambo [9]. Proxy signature scheme is based on a 

discrete logarithm problem. The original signer has the private key x and public key y x(mod 

p). Proxy signature scheme is as follow:

System Parameters:-

The original signer choose k randomly and computes r = gk mod p, and s = x + kr mod p. Now 

original signer send these system parameters to the proxy signer.

i.e. original signer sends (r, s) to the proxy signer. The proxy signer checks the validity of (r, s)

as follows:

gs = yrr mod p

If this equality holds, the proxy signer accepts (r, s)as the valid proxy secret key.

Signing

The proxy signer signs a message m, then its signature Spis generated. After that, the proxy 

signer sends the message and its signature, which are (m, Sp , r), to the verifier.
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Verification

Upon receiving (m, Sp , r), the verifier recovers y' by y' = yrr mod p and substitute y' for y. After 

that, the verifier proceeds the verification phase of normal signature scheme.

10.5 SHORT SIGNATURE SCHEMEII

Short signature scheme[10] give the shortest signature among all discussed signature schemes. 

This signature scheme use elliptic curve and bilinear pairing. We will discuss this signature 

scheme starting from the basic signature scheme and then type of bilinear pairing it uses, after 

that security multiplier and finally types of elliptic curve used in this scheme.

Short signature scheme is in three parts, KeyGen, Sign, and Verify. It makes use of a hash 

function h : {0, 1} G . Where G is the base group and g is generator. G, g are system 

parameters.

1. Key Generation:- Choose a random x Z p , and compute v gx. x is the secret key andv

is thepublic key.

2. Signing:- For a message M {0, 1} , and secret key x, Compute h h(M), and hx.

The signatureis G .

3. Verification:- For a given public key v, a message M , and a signature , compute h h(M)

and verifythat is a valid Diffie-Hellmantuple.

So short signature scheme use bilinear pairing in verification of the signature.

Bilinear pairing:-

Let G1and GTbe two cyclic groups of prime order q. Let G2be a group and each element of G2

has order dividing q. A bilinear pairing e is e : G1× G2 GTsuch that

1. e(g1 , g2 ) = 1GTfor all g2 G2if and only if g1 = 1G1, and similarly e(g1 , g2 ) = 1GTfor 

all g1 G1if and only if g2 = 1G2.

2. for all g1 G1 and g2 G2, e(g1 , g2 ) = e(g1
a , g2

b )abfor all a, b Z.

Security Multiplier: - Let a finite field Fp
lwhere p is a prime and l is a positive integer, and an 

elliptic curve E over Fp
lhave m points. Let, point P of elliptic curve has order q, where q2!| m.

Then subgroup P has a security multiplier , if order of plin F qis . We will discuss different 

families of elliptic curve Which are classified by the value of security multiplier.
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Type 1

Let p be a prime where p = 2(mod 3). Let E be the elliptic curve defined over Fp, and equation 

of the curve is y2 = x3 + b, Typically b = ±1. Then E(Fp ) is supersingular curve, and number of 

points, #E(Fp) = p + 1, and #E(Fp
2 ) = (p + 1)2. For any odd j | p + 1, G = E(Fp )[j] is cyclic and 

has security multiplier . Let be the cube root of unity. Consider the following map, 

sometimes referred to as a distortion map:

Then maps points of E(Fp ) to points of E(Fp2 )\E(Fp ). Thus if f denotes the bilinear pairing, 

then defining e : G × G q2by gives a bilinear non-degenerate map.

Type 2

Unlike above discussed curve this type of curve have low characteristic field. Let F is a finite 

field defined over 3lwhere l is a positive exponent. Let curve E+ : y2 = x3 + 2x + 1, and

E : y2 = x3 + 2x-1, over F3
l .

when l = ±1mod12

#E+ (F3
l ) = 3l + 1 + 3(l+1)/2

when l = ±5mod12

#E+ (F3
l ) = 3l + 1 (l+1)/2

when l = ±1mod12

#E -(F3
l ) = 3l + 1 (l+1)/2

when l = ±5mod12

#E - (F3
l ) = 3l + 1 + 3(l+1)/2

Type 3

Let p be a prime where p 3(mod 4). Let E be the elliptic curve defined over Fp, and equation of 

the curve is y2 = x3 + ax, where a Z(mod p). Then E(Fq ) is supersingular curve, and number 

of point, #E(Fp ) = p + 1, and #E(Fp2 ) = (p + 1)2. For any odd j|p + 1, Group G = E(Fp )[j] is 

cyclic and has security multiplier .

Type 4

Type 4 curves are non-supersingular. By considering cyclotomic polynomials, elliptic curve with 

security multiplier 12 can be generated. Let q(x) = 36x4 + 36x3 + 24x2 + 6x + 1. Let t(x) = 6x2 +

1. If D = 3, then solution of CM equation will always be V = 6x2 + 4x + 1. It turns out q(x) + 1 
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t(x) | q(x)12 . So the value of security multiplier is 12. Following algorithm is used to 

generate curves:

1. Pick an integer x of a desired magnitude. It may benegative.

2. Check if q(x) isprime.

3. Check if n = q(x) has a large prime factor r. (Ideally it should beprime.)

4. Try different values of k until a random point of y2 = x3 + k has ordern.

Type 5

Type 5 curve are also non-supersingular curve. Type 6 curve are ordinary curves with security 

multiplier 6. Order of type 6 curves is a prime or a prime multiplied by a small constant. Let a 

finite field F defined over some p where p = sq. Where s is a small constant and q is a 

prime. When type 5 curve is defined over field Fp6, its order is a multiple of q2.

References for Last 4 Lectures:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and CliffordStein

Introduction to Algorithms Third Edition.

2. WadeTrappe,LawrenceC. Washington Introduction to Cryptographywith Coding 

Theory

3.

4. R.L. Rivest, A.Shamir,andL.Adleman A Method for ObtainingDigital Signatures
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Unit 4:  Stream Ciphers

11.1 VIDEO DATA CIPHERS

Ciphers:

1. Block Cipher

2. StreamCipher

Block Cipher: The same function is used to encrypt successive blocks (memory less). 

Stream Cipher: This processes plan text as small as single bit. It has memory.

One – Time – Pad (corresponding cipher is called Vernam cipher )

plain text 

keystream

ciphertext

Decryption :

Assumption: is truly random.

Synchronous Stream Ciphers:

{There is a clock which is same at both the ends}

Definition: a synchronous stream cipher is one in which the key stream is generated 

independently of the plain text and cipher text.

Properties of Synchronous stream cipher:

• Synchronization requirement: In a synchronous stream cipher, both the sender and receiver 

must be synchronized using the same key. If synchronization is lost due to cipher text digits 

being inserted or deleted during transmission, then decryption fails and can only be restored 

through additional techniques for re-synchronization. This involves either re-initialization or 

4
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placing special marker at regular intervals or redundancy in plaintext.

• No error propagation: A cipher text digit that is modified during transmission doesn'teffect 

decryption of other cipher textdigits.

Active attacks: As a consequence of properly (i), the insertion, deletion or replay of cipher text 

digits by an active adversary causes immediate loss of synchronization and hence might possibly 

be detected by decryptors.

Application: Stream ciphers are used for video data stream.

Reference:

1. Handbook of Applied Cryptography , A. Menzes, P. van Oorschot and S. Vanstone.

Scribes: Rakesh Yarlagadda, Ravi Ranjan
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Properties of Synchronous stream cipher:

• Synchronization requirement: In a synchronous stream cipher, both the sender and receiver 

must be synchronized using the same key. If synchronization is lost due to cipher text digits 

being inserted or deleted during transmission, then decryption fails and can only be restored 

through additional techniques for re-synchronization. This involves either re-initialization or 

placing special marker at regular intervals or redundancy in plaintext.

• No error propagation: A cipher text digit that is modified during transmission doesn’t 

effect decryption of other cipher text digits.

Active attacks: As a consequence of properly (i), the insertion, deletion or replay of cipher text 

digits by an active adversary causes immediate loss of synchronization and hence might possibly 

be detected by decryptors.

Application: Stream ciphers are used for video data stream.

Reference:

1. Handbook of Applied Cryptography , A. Menzes, P. van Oorschot and S. Vanstone.

Scribes: Rakesh Yarlagadda, Ravi Ranjan
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Unit 1:  Entity Authentication

12.1 ElGamal Signature Scheme

The ElGamal signature scheme is a digital signature scheme based on the algebraic properties of 

modular exponentiation, together with the discrete logarithm problem. The algorithm uses a key 

pair consisting of a public key and a private key. The private key is used to generate a digital 

signature for a message, and such a signature can be verified by using the signer's corresponding 

public key. The digital signature provides message authentication (the receiver can verify the 

origin of the message), integrity (the receiver can verify that the message has not been modified 

since it was signed) and non-repudiation (the sender cannot falsely claim that they have not signed 

the message).

Operations

The scheme involves four operations: key generation (which creates the key pair), key 

distribution, signing and signature verification.

Key generation

Key generation has two phases. The first phase is a choice of algorithm parameters which may 
be shared between different users of the system, while the second phase computes a single key 
pair for one user.

Parameter generation

Choose a key length N. .

Choose a N-bit prime number 
Choose a cryptographic hash function with output length L bits. If L > N, only the leftmost N bits of the 
hash output are used.
Choose a generator g < p of the multiplicative group of integers modulo p, Z*p.

The algorithm parameters are. These parameters may be shared between users of the system.

Per-user keys

Given a set of parameters, the second phase computes the key pair for a single user:

1
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Choose an integer x randomly from {1…p – 2}
Compute y: = gx mod p.

x is the private key and y is the public key.

Key distribution

The signer should send the public key y to the receiver via a reliable, but not necessarily secret, 
mechanism. The signer should keep the private key x secret.

Signing

A message m is signed as follows:

Choose an integer k randomly from {2… p – 2 }with k relatively prime to p - 1.
Compute r := gk mod p.
Compute s := (H(m)-x r)k-1 mod (p-1).
In the unlikely event that s=0 start again with a different random k.

The signature is (r,s)

Verifying a signature

One can verify that a signature is (r, s) a valid signature for a message m as follows:

Verify that 0 < r < pand0<s<p-1.
The signature is valid if and only if gH(m) y^r r^s (mod p)

Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will always be 
accepted by the verifier.

The computation of s during signature generation implies

H(m) -1}

Since g is relatively prime to p,

gH(m) {xr+sk} (mod p)
x)r (g^{k})^s (mod p)
r (r)s (mod p)

Security
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A third party can forge signatures either by finding the signer's secret key x or by finding collisions in the 

hash function H(m) H(M)(mod p-1). Both problems are believed to be difficult. However, as of 2011 no 

tight reduction to a computational hardness assumption is known.

The signer must be careful to choose a different k uniformly at random for each signature and to be 

certain that k, or even partial information about k, is not leaked. Otherwise, an attacker may be able to 

deduce the secret key x with reduced difficulty, perhaps enough to allow a practical attack. In particular, 

if two messages are sent using the same value of k and the same key, then an attacker can compute x

directly.

Existential forgery

The original paper did not include a hash function as a system parameter. The message m was used 

directly in the algorithm instead of H(m). This enables an attack called existential forgery, as described in 

section IV of the paper. Pointcheval and Stern generalized that case and described two levels of 

forgeries:

1. The one-parameter forgery. Select an e such that 1 <  e  <  p - 1. Setr := ge y mod pand s := -r mod(p-1).

Then the tuple(r, s) is a valid signature for the message m = es mod(p-1).

2. The two-parameter forgery. Select 1 < e,v < p-1, and gcd (v,p-1)=1. Set r := geyv mod p and s := -rv^{-1} 

mod{(p-1). Then the tuple (r, s)is a valid signature for the messagem = es mod{(p-1). The one-parameter 

forgery is a special case of the two-parameter forgery, when v = 1.

12.2 Autokey Identity Scheme

While the identity scheme described in RFC-2875 is based on a ubiquitous Diffie-Hellman 

infrastructure, it is expensive to generate and use when compared to others described here. There are 

five schemes now implemented in Autokey to prove identity: (1) trusted certificates (TC), (2) private 

certificates (PC), (3) a modified Schnorr algorithm (IFF aka Identify Friendly or Foe), (4) a modified 

Guillou-Quisquater algorithm (GQ), and (5) a modified Mu-Varadharajan algorithm (MV). The 

TC scheme, which involves a certificate trail to a trusted host, is discussed on the Autokey 

Protocol page. Each of the others involves generating parameters specific to the scheme, together with 

public and private values used by the scheme.

In order to simplify implementation, each scheme uses existing structures in the OpenSSL library, 

including those for RSA and DSA cryptography. As these structures are sometimes used in ways far 
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different than their original purpose, they are called cuckoo structures in the descriptions that follow.

In the challenge-response schemes client Alice asks server Bob to prove identity relative to a secret 

group key b provided by a trusted authority (TA). As shown in the figure above, client Alice rolls 

random nonce1 and sends to server Bob. Bob rolls random nonce2, performs some mathematical 

function and returns the response along with the hash of some private value to Alice. Alice performs 

another mathematical function and verifies the result matches the hash in Bob's message.

Each of the five schemes is intended for specific use. There are three kinds of keys, trusted agent, 

server and client. Servers can be clients of other servers, but clients cannot cannot be servers for 

dependent clients. In general, the goals of the schemes are that clients cannot masquerade as a servers 

and a servers cannot masquerade as a trusted agents (TAs), but they differ somewhat on how to achieve 

these goals. To the extent that identity can be verified without revealing the group key, the schemes are 

properly described as zero-knowledge proofs.

The four identity schemes described here have different design goals and are intended for specific 

application. The PC scheme is intended for one-way broadcast configurations where clients cannot run 

a duplex protocol. It is essentially a symmetric key cryptosystem where the certificate itself is the key.

The IFF scheme is intended for servers operated by national laboratories. The servers share a private 

group key and provide the public client parameters on request. The clients cannot masquerade as 

servers.

The GQ scheme is intended for exceptionally hostile scenarios where it is necessary to change the 

client key at relatively frequent intervals. As in the IFF scheme the servers share a private group key 

and provide the public client parameters on request. In this scheme clients requre a public key to 

complete the exchange. This is conveyed in the server certificate in an extension field. The certificate 
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can be changed while retaining the same group key.

The MV scheme is intended for the most challenging scenarios where it is neccesary to protect against

both server and client masquerade. The private values used by the TA to generate the cryptosystem are 

not available to the servers and the private values used by the servers to encrypt data are not available 

to the clients. Thus, a client cannot masquerade as a server and a server cannot masquerade as a TA. 

However, a client can verify a server has the correct group key even though neither the client nor 

server know the group key, nor can either manufacture a client key acceptable to any other client. A 

further feature of this scheme is that the TA can collaborate with the servers to revoke client keys.

Private Certificate (PC) Cryptosystem

The PC scheme shown above uses a private certificate as the group key. A certificate is designated 

private by a X509 Version 3 extension field when generated by the ntp-keygen program in the NTP 

software distribution. In the Autokey context it functions as a symmetric key. The private certificate is 

generated by a TA and distributed to all group members by secure means and is never revealed outside 

the group. A client is marked trusted in the (optional) Parameter Exchange and authentic when the first 

signature is verified. This scheme is cryptographically strong as long as the private certificate is 

protected; however, it can be very awkward to refresh the keys or certificate, since new values must be 

securely distributed to a possibly large population and activated simultaneously

Schnorr (IFF) Cryptosystem

The Schnorr (IFF) identity scheme can be used when certificates are generated by utilities other than 

the ntp-keygen program in the NTP software distribution. Certificates can be generated by the 

OpenSSL library or an external public certificate authority, but conveying an arbitrary public value in a 

certificate extension field might not be possible. The TA generates the IFF parameters, private key and 

public key, then sends these values to the servers and the parameters and public key to the clients. 

Without the private key a client cannot masquerade as a legitimate server.
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The DSA parameters are generated by routines in the OpenSSL library. The IFF values hide in a DSA 

cuckoo structure which uses the same parameters. The p is a 512-bit prime, g a generator of the 

multiplicative group Zp* and q a 160-bit prime that divides p - 1 and is a qth root of 1 mod p; that 

is, gq = 1 mod p. The TA rolls a private random group key b (0 < b < q) and computes the public 

key v = gb, then distributes private (p, q, g, b) to the servers using secure means and public (p, q, g, v) 

to the clients not necessarily using secure means.

The TA generates a DSA parameter structure for use as IFF parameters. The IFF parameters are 

identical to the DSA parameters, so the OpenSSL library DSA parameter generation routine can be 

used directly. The DSA parameter structure is written to a file as an encrypted DSA key encoded in 

PEM. Unused structure members are set to one.

IFF DSA Item Include

p p modulus all

q q modulus all

g g generator all

b priv_key group key server

v pub_key client key client

Alice challenges Bob to confirm identity using the following protocol exchange.

1. Alice rolls random r (0 < r < q) and sends to Bob.

2. Bob rolls random k (0 < k < q), computes y = k + b r mod q and x = gk mod p, then sends (y, 

hash(x)) to Alice.

3. Alice computes z = gy vr mod p and verifies hash(z) equals hash(x).

Guillou-Quisquater (GQ) Cryptosystem
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The Guillou-Quisquater (GQ) identity scheme is useful when certificates are generated by 

the ntp-keygen program in the NTP software distribution. The TA generates the GQ parameters, 

private key and public key, then sends these values to the servers and the parameters to the clients. The 

public key is inserted in an X.509 extension field when the certificate is generated. Without the private 

key a client cannot masquerade as a legitimate server.

The RSA parameters are generated by routines in the OpenSSL libbrary. The GQ values hide in a RSA 

cuckoo structure which uses the same parameters. The values are used in an identity scheme based on 

RSA cryptography and described in [1] and [5] p. 300 (with errors). The 512-bit public 

modulus n = p q, where p and q are secret large primes. The TA rolls random group key b (0 < b < n) 

and sends (n, b) to the servers using secure means. The private key and public key are constructed later.

The TA generates a RSA parameter structure for use as GQ parameters. The RSA parameter structure 

is written to a file as an encrypted RSA key encoded in PEM. Unused structure members are set to one.

When generating new certificates, the server rolls new random private key u (0 < u < n) and public key 

its inverse u-1 obscured by the group key v = u-1 b. These values replace the private and public keys 

normally generated by the RSA scheme. In addition, the public key v is conveyed in a X.509 certificate 

extension.

GQ RSA Item Include

n n modulus all

b e group key all

u p server key server

v q client key client

Alice challenges Bob to confirm identity using the following exchange.
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1 Alice rolls random r (0 < r < n) and sends to Bob.

2 Bob rolls random k (1 < k < n) and computes y = k ur mod n and x = kb mod n, then sends (y, 

hash(x)) to Alice.

3 Alice computes z = vr yb mod n and verifies hash(z) equals hash(x).

Mu-Varadharajan (MV) Cryptosystem

The Mu-Varadharajan (MV) scheme was originally intended to encrypt broadcast transmissiions to 

receivers which do not transmit. There is one encryption key for the broadcaster and a separate 

decryption key for each receiver. It operates something like a pay-per-view satellite broadcasting 

system where the session key is encrypted by the broadcaster and the decryption keys are held in a 

tamperproof set-top box. We don't use it this way, but read on.

In the MV scheme the TA constructs an intricate cryptosystem involving a number of activation keys 

known only to the TA. The TA decides which keys to activate and provides to the servers an 

encryption key E and server decryption keys gbar and ghat which depend on the activated keys. The 

servers have no additional information and, in particular, cannot masquerade as a TA. In addition, the 

TA provides for each activation key j individual client decryption keys xbar and xhat, which do not 

need to be changed if the TA enables or disables an activation key. The clients have no further 

information and, in particular, cannot masquerade as a server or TA.

Clients are assigned one of the activation keys and are provided with the corresponding client key. 

There can be any number of clients sharing the same activation key according to policy. While the 

machinery to enable and disable ativation keys is included in the current implementation, specific 

means and interfaces to do this are not yet available, so only one client key is provided.

The scheme is designed so that clients can construct the inverse of E from the server gbar and ghat and 

client xbar and xhat. In the scheme both E and its inverse are exponentiated by a server nonce, so the 

product is always one and the secrecy depends on the descrete log problem.

The MV values hide in a DSA cuckoo structure which uses the same parameters, but generated in a 

different way. The values are used in an encryption scheme similar to El Gamal cryptography and use a 

polynomial formed from the expansion of product terms (x - xj), as described in [3]. The paper has 

significant errors and serious omissions.
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The TA generates the modulus, encryption key and server decryption keys as an encrypted DSA key 

encoded in PEM. Unused structure members are set to one.

MV DSA Item Include

p p modulus all

q q modulus server

E g private encrypt key server

gbar priv_key server decrypt key server

ghat pub_key server decrypt key server

The TA generates the modulus and client decryption keys as a nonencrypted DSA key encoded in 

PEM. It is used only by designated recipient(s) who pay a suitably outrageous fee for its use. Unused 

structure members are set to one.

MV DSA Item Include

p p modulus all

xbar priv_key client decrypt key client

xhat pub_key client decrypt key client

The devil is in the details. Let q be the product of n distinct primes s1j (j = 1...n), where each s1j, also 

called an activation key, has m significant bits. Let prime p = 2q + 1, so that q and each s1j divide p - 1

and p has M = nm + 1 significant bits. Let g be a generator of the multiplicative group Zp*; that is, 

gcd(g, p - 1) = 1 and gq = 1 mod p. We do modular arithmetic over Zq and then project into Zp* as 

powers of g. Sometimes we have to compute an inverse b-1 of random b in Zq, but for that purpose we 

require gcd(b, q) = 1. We expect M to be in the 500-bit range and n relatively small, like 30. The TA 

uses a nasty probabilistic algorithm to generate the cryptosystem. In the following let the number ofbits 
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in the modulus m = 512.

1 The object is to generate a multiplicative group Zp* modulo a prime p and a subset Zq mod q,

where q is the product of n distinct m-bit primes s1j (j = 1...n) and q divides p - 1. As a practical 

matter, it is tough to find more than 31 distinct primes for mn = 512 or 61 primes for mn = 1024. 

The latter can take several hundred iterations and several minutes on a Sun Blade 1000.

2 Compute the modulus q as the product of the primes. Compute the modulus p as 2q + 1 and 

test p for primality. If p is composite, replace one of the primes with a new distinct prime and try 

again. Note that q will hardly be a secret since we have to reveal p to servers and clients. 

However, factoring q to find the primes should be adequately hard, as this is the same problem 

considered hard in RSA. Question: is it as hard to find n small prime factors totalling n bits as it is 

to find two large prime factors totalling n bits? Remember, the bad guy doesn't know n.

3 Associate with each s1j an element sj such that sj s1j = s1j mod q. One way to find an sj is to 

compute the quotient (q + s1j) / s1j mod p. The student should prove the remainder is always 

zero.

4 Compute the generator g of Zp using a random roll such that gcd(g, p - 1) = 1 and gq = 1. If not, 

roll again.

The cryptosystem parameters n, p, q, g, s1j, sj (j = 1...n) have been determined. The TA sets up a specific 

instance of the scheme as follows.

Roll random roots xj mod q (j = 1...n) for a polynomial of order n. While it may not be strictly necessary, 

Make sure each root has no factors in common with q.

Generate polynomial coefficients ai (i = 0...n) from the expansion of root products (x - xi) mod q in 

powers of x using a fast method contributed by Charlie Boncelet.

Generate gi = gai mod p for all i and the generator g. Verify prod(giai xji) = 1 for all i, j. Note 

the ai xji exponent is computed mod q, but the gi is computed mod p. Also note the expression given in 

the paper cited is incorrect.

1 Make master encryption key A = Prod(gixj) (i = 0...n, j = 1...n - 1). Keep it around for awhile, 

since it is expensive to compute.

2 Roll private random group key b mod q (0 < b < q), where gcd(b, q) = 1 to guarantee the inverse 

exists, then compute b-1 mod q. If b is changed, all keys must be recomputed.
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3 Make private client keys xbarj = b-1 Sum(xin mod q) (i = 1...n, i != j) and xhatj = sjxjn for all j. 

Note that the keys for the jth client involve only sj and that s1j remain secret. The TA sends 

(p, xbarj, xhatj) to the jth client(s) using nonsecure means.

4 The activation key is initially q by construction. The TA revokes client j by dividing q by s1j. The 

quotient becomes the activation key s. Note we always have to revoke one key; otherwise, the 

plaintext and cryptotext would be identical. The TA computes private server encryption 

key E = As and server decryption keys gbar = gbars and ghat = ghatsb mod p and sends 

(p, E, gbar, ghat) to the servers using secure means. These values must be recomputed if an 

activation key is changed.

Alice challenges Bob to confirm identity using the following exchange.

1 Alice rolls random r (0 < r < q) and sends to Bob.

2 Bob rolls random k (0 < k < q), computes y = rEk, ybar = gbark and yhat = ghatk, then returns 

(y, ybar, yhat) to Alice.

3 Alice computes the session decryption key (Ek)-1 = ybarxhatj yhatxbarj, then verifies that y = r.
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Unit 2:  Public Key Infrastructure 

12.2 Public key Infrastructure

A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures needed to 

create, manage, distribute, use, store and revoke digital certificates and manage public-key encryption. 

The purpose of a PKI is to facilitate the secure electronic transfer of information for a range of network 

activities such as e-commerce, internet banking and confidential email. It is required for activities where 

simple passwords are an inadequate authentication method and more rigorous proof is required to 

confirm the identity of the parties involved in the communication and to validate the information being

transferred.

In cryptography, a PKI is an arrangement that binds public keys with respective identities of entities (like 

people and organizations). The binding is established through a process of registration and issuance of 

certificates at and by a certificate authority (CA). Depending on the assurance level of the binding, this 

may be carried out by an automated process or under human supervision.

The PKI role that may be delegated by a CA to assure valid and correct registration is called 

a registration authority (RA). Basically, an RA is responsible for accepting requests for digital 

certificates and authenticating the entity making the request. The Internet Engineering Task Force's RFC 

3647 defines an RA as "An entity that is responsible for one or more of the following functions: the 

identification and authentication of certificate applicants, the approval or rejection of certificate 

applications, initiating certificate revocations or suspensions under certain circumstances, processing 

2
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subscriber requests to revoke or suspend their certificates, and approving or rejecting requests by 

subscribers to renew or re-key their certificates. RAs, however, do not sign or issue certificates (i.e., an 

RA is delegated certain tasks on behalf of a CA). While Microsoft may have referred to a subordinate 

CA as an RA, this is incorrect according to the X.509 PKI standards. RAs do not have the signing 

authority of a CA and only manage the vetting and provisioning of certificates. So in the Microsoft PKI 

case, the RA functionality is provided either by the Microsoft Certificate Services web site or through 

Active Directory Certificate Services which enforces Microsoft Enterprise CA and certificate policy 

through certificate templates and manages certificate enrollment (manual or auto-enrollment). In the case 

of Microsoft Standalone CAs, the function of RA does not exist since all of the procedures controlling 

the CA are based on the administration and access procedure associate with the system hosting the CA 

and the CA itself rather than Active Directory. Most non-Microsoft commercial PKI solutions offer a 

stand-alone RA component.

An entity must be uniquely identifiable within each CA domain on the basis of information about that 

entity. A third-party validation authority (VA) can provide this entity information on behalf of the CA.

The X.509 standard defines the most commonly used format for public key certificates.

Design

Public key cryptography is a cryptographic technique that enables entities to securely communicate on an 

insecure public network, and reliably verify the identity of an entity via digital signatures.

A public key infrastructure (PKI) is a system for the creation, storage, and distribution of digital 

certificates which are used to verify that a particular public key belongs to a certain entity. The PKI 

creates digital certificates which map public keys to entities, securely stores these certificates in a central 

repository and revokes them if needed. 

A PKI consists of: 

A certificate authority (CA) that stores, issues and signs the digital certificates;

A registration authority (RA) which verifies the identity of entities requesting their digital 

certificates to be stored at the CA;

A central directory—i.e., a secure location in which keys are stored and indexed;

A certificate management system managing things like the access to stored certificates or the 

delivery of the certificates to be issued;
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A certificate policy stating the PKI's requirements concerning its procedures. Its purpose is to allow 

outsiders to analyze the PKI's trustworthiness.

Method of Clarification

Broadly speaking, there have traditionally been three approaches to getting this trust: certificate 

authorities (CAs), web of trust (WoT), and simple public key infrastructure (SPKI).

Certificate authorities

The primary role of the CA is to digitally sign and publish the public key bound to a given user. This is 

done using the CA's own private key, so that trust in the user key relies on one's trust in the validity of 

the CA's key. When the CA is a third party separate from the user and the system, then it is called the 

Registration Authority (RA), which may or may not be separate from the CA. The key-to-user binding is 

established, depending on the level of assurance the binding has, by software or under human 

supervision.

The term trusted third party (TTP) may also be used for certificate authority (CA). Moreover, PKI is 
itself often used as a synonym for a CA implementation.

Issuer market share

In this model of trust relationships, a CA is a trusted third party – trusted both by the subject (owner) 

of the certificate and by the party relying upon the certificate.

According to NetCraft report from 2015, the industry standard for monitoring active Transport Layer 

Security (TLS) certificates, states that "Although the global [TLS] ecosystem is competitive, it is 

dominated by a handful of major CAs — three certificate authorities (Symantec, Sectigo, GoDaddy)

account for three-quarters of all issued [TLS] certificates on public-facing web servers. The top spot 

has been held by Symantec (or VeriSign before it was purchased by Symantec) ever since [our] 

survey began, with it currently accounting for just under a third of all certificates. To illustrate the 

effect of differing methodologies, amongst the million busiest sites Symantec issued 44% of the 

valid, trusted certificates in use — significantly more than its overall market share."

Following to major issues in how certificate issuing were managed, all major players gradually 

distrusted Symantec issued certificates starting from 2017.
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Temporary certificates and single sign-on

This approach involves a server that acts as an offline certificate authority within a single sign-on system. 

A single sign-on server will issue digital certificates into the client system, but never stores them. Users 

can execute programs, etc. with the temporary certificate. It is common to find this solution variety

with X.509-based certificates. 

Starting Sep 2020, TLS Certificate Validity reduced to 13 Months.

Web of Trust

An alternative approach to the problem of public authentication of public key information is the web-of-

trust scheme, which uses self-signed certificates and third-party attestations of those certificates. The 

singular term "web of trust" does not imply the existence of a single web of trust, or common point of 

trust, but rather one of any number of potentially disjoint "webs of trust". Examples of implementations 

of this approach are PGP (Pretty Good Privacy) and GnuPG (an implementation of OpenPGP, the 

standardized specification of PGP). Because PGP and implementations allow the use of e-mail digital 

signatures for self-publication of public key information, it is relatively easy to implement one's own web 

of trust.

One of the benefits of the web of trust, such as in PGP, is that it can interoperate with a PKI CA fully 

trusted by all parties in a domain (such as an internal CA in a company) that is willing to guarantee 

certificates, as a trusted introducer. If the "web of trust" is completely trusted then, because of the nature 

of a web of trust, trusting one certificate is granting trust to all the certificates in that web. A PKI is only 

as valuable as the standards and practices that control the issuance of certificates and including PGP or a 

personally instituted web of trust could significantly degrade the trustworthiness of that enterprise's or 

domain's implementation of PKI.[18]

The web of trust concept was first put forth by PGP creator Phil Zimmermann in 1992 in the manual for 

PGP version 2.0:

As time goes on, you will accumulate keys from other people that you may want to designate as trusted 

introducers. Everyone else will each choose their own trusted introducers. And everyone will gradually 

accumulate and distribute with their key a collection of certifying signatures from other people, with the 

expectation that anyone receiving it will trust at least one or two of the signatures. This will cause the 

emergence of a decentralized fault-tolerant web of confidence for all public keys.

Simple public key Infrastructure
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Another alternative, which does not deal with public authentication of public key information, is 

the simple public key infrastructure (SPKI) that grew out of three independent efforts to overcome the 

complexities of X.509 and PGP's web of trust. SPKI does not associate users with persons, since 

the key is what is trusted, rather than the person. SPKI does not use any notion of trust, as the verifier is 

also the issuer. This is called an "authorization loop" in SPKI terminology, where authorization is 

integral to its design.[citation needed] This type of PKI is specially useful for making integrations of PKI 

that do not rely on third parties for certificate authorization, certificate information, etc.; A good example 

of this is an Air-gapped network in an office.

Decentralized PKI

Decentralized identifiers (DIDs) eliminate dependence on centralized registries for identifiers as well as 

centralized certificate authorities for key management, which is the standard in hierarchical PKI. In cases 

where the DID registry is a distributed ledger, each entity can serve as its own root authority. This 

architecture is referred to as decentralized PKI (DPKI).

BlockChain-based PKI

An emerging approach for PKI is to use the blockchain technology commonly associated with 

modern cryptocurrency.[21][22] Since blockchain technology aims to provide a distributed and 

unalterable ledger of information, it has qualities considered highly suitable for the storage and 

management of public keys. Some cryptocurrencies support the storage of different public key types 

(SSH, GPG, RFC 2230, etc.) and provides open source software that directly supports PKI 

for OpenSSH servers.[citation needed] While blockchain technology can approximate the proof of 

work often underpinning the confidence in trust that relying parties have in a PKI, issues remain such as 

administrative conformance to policy, operational security and software implementation quality. A 

certificate authority paradigm has these issues regardless of the underlying cryptographic methods and 

algorithms employed, and PKI that seeks to endow certificates with trustworthy properties must also 

address these issues. 

Here is a list of known blockchain-based PKI:

CertCoin

FlyClient

BlockQuick
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Uses

PKIs of one type or another, and from any of several vendors, have many uses, including providing 

public keys and bindings to user identities which are used for:

Encryption and/or sender authentication of e-mail messages (e.g., using OpenPGP or S/MIME);

Encryption and/or authentication of documents (e.g., the XML Signature or XML 

Encryption standards if documents are encoded as XML);

Authentication of users to applications (e.g., smart card logon, client authentication with SSL).

There's experimental usage for digitally signed HTTP authentication in 

the Enigform and mod_openpgp projects;

Bootstrapping secure communication protocols, such as Internet key exchange (IKE) and SSL. In 

both of these, initial set-up of a secure channel (a "security association") uses asymmetric key—i.e., 

public key—methods, whereas actual communication uses faster symmetric key—i.e., secret key—

methods;

Mobile signatures are electronic signatures that are created using a mobile device and rely on 

signature or certification services in a location independent telecommunication environment;

Internet of things requires secure communication between mutually trusted devices. A public key 

infrastructure enables devices to obtain and renew X509 certificates which are used to establish trust 

between devices and encrypt communications using TLS.
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Unit 3:  Classical Cryptography

13.1 Introduction

In this unit, we will learn to describe and analyze the following classical ciphers: ADFGVX, Affine, 

Beaufort, Bifid, Caesar, Columnar Transposition, Four-Square, Hill, Playfair, Polybius Square, Rail-

fence, Simple Substitution, Straddle Checkerboard, Vigenere, Autokey, Enigma, and Lorenz 

ciphers.nz ciphers. These ciphers are intuitively easy to understand and seem to encrypt the message 

well, but they have many shortcomings, which we will discuss as we work through this unit. By 

studying these classical ciphers, you will learn to avoid poor cipher design.

13.2 Learning Objectives

Upon successful completion of this unit, students will be able to:

Define, use, and effectively attack classical ciphers such as the ADFGVX, Affine, Beaufort, 

Bifid, Caesar, Columnar Transposition, Four-Square, Hill, Playfair, Polybius Square, Rail-fence, 

Simple Substitution, Straddle Checkerboard, Vigenere, and Autokey ciphers.

Explain the workings of mechanical ciphers Enigma and Lorenz.

13.3 ADFGVX Cipher

In cryptography, the ADFGVX cipher was a field cipher used by the German Army during World 

War I. ADFGVX was in fact an extension of an earlier cipher called the ADFGX cipher. Invented 

by Colonel Fritz Nebel and introduced in March 1918, the cipher was a fractionating transposition 

cipher which combined a modified Polybius square with a single columnar transposition. The cipher 

is named after the six possible letters used in the ciphertext: A, D, F, G, V and X. These letters were 

chosen deliberately because they sound very different from each other when transmitted via morse 

code. The intention was to reduce the possibility of operator error.

From Kahn's 'The CodeBreakers':

"It was no less clear to the Allies that Germany planned to launch a climactic offensive in the spring.

There were many signs—the new cipher itself was one. The question was: Where and when would 

3
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the actual blow fall? The German high command, recognizing the incalculable military value of 

surprise, shrouded its plans in the tightest secrecy. Artillery was brought up in concealment; feints 

were flung out here and there along the entire front to keep the Allies off balance; the ADFGVX 

cipher, which had reportedly been chosen from among many candidates by a conference of German 

ciphe specialists, constituted an element in this overall security, as did the new Schliis-selheft. The 

Allies bent every effort and tapped every source of information to find out the time and place of the 

real assault."

Georges Painvin was the French cryptanalyst tasked with cracking the ADFGVX cipher. The 

intelligence he provided was vital to the French war effort, particularly in saving Paris in 1918:

"At midnight on June 9 the front from Montdidier to Compiegne erupted in a fierce, pelting 

hurricane of high-explosive, shrapnel, and gas shells. For three hours a German artillery 

concentration that averaged one gun for no more than ten yards of front poured a continual stream of 

fire onto the French positions—and Ludendorff's urgent demand for ammunition became clear. But 

this time, for the first time since Ludendorff began his stupendous series of triumphs, there was no 

surprise. Painvin's manna had saved the French."

The Algorithm

The 'key' for a ADFGVX cipher is a 'key square' and a key word. e.g.

p h 0 q g 6

4 m e a 1 y

l 2 n o f d

x k r 3 c v

s 5 z w 7 b

j 9 u t i 8

The key square is a 6 by 6 square containing all the letters and the numbers 0 - 9. The key word is any word e.g. 

GERMAN

There are a number of steps involved:

1. Build a table like the following with the key square. This is known as a polybius square.

A D F G V X

A | p h 0 q g 6
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D | 4 m e a 1 y

F | l 2 n o f d

G | x k r 3 c v

V | s 5 z w 7 b

X | j 9 u t i 8

2. Encode the plaintext using this matrix, to encode the letter 'a', locate it in the matrix and read off the letter on 

the far left side on the same row, followed by the letter at the top in the same column. In this way each plaintext 

letter is replaced by two cipher text letters. E.g. 'attack' -> 'DG XG XG DG GV GD'. The cipher text is now twice as 

long as the original plaintext. Note that so far, it is just a simple substitution cipher, and trivial to break.

3. Write the code word with the enciphered plaintext underneath e.g.

4. Perform a columnar transposition. Sort the code word alphabetically, moving the columns as you go. Note that 

the letter pairs that make up each letter get split apart during this step, this is called fractionating.

G E R M A N

D G X G X G

D G G V G D

5. Read the final cipher text off in columns.

A E G M N R

X G D G G X

G G D V D G

-> XG GG DD GV GD XG

A Short Example

We will now encipher:

DEFEND THE EAST WALL OF THE CASTLE

Using the same key as above, after the substitution step we get:

FXDFFVDFFFFXXGADDFDFDGVAXGVGDGFAFAFGFVXGADDFGVDGVAXGFADF

We now write this out with the keyword above (table on the left), and sort the columns (table on the right):

G E R M A N

F X D F F V

D F F F F X

X G A D D F

D F D G V A

A E G M N R

F X F F V D

F F D F X F

D G X D F A

V F D G A D
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X G V G D G

F A F A F G

F V X G A D

D F G V D G

V A X G F A

D F        

D G X G G V

F A F A G F

A V F G D X

D F D V G G

F A V G A X

F D      

We now read off the columns to get the final cipher:

FFDVDFADFXFGFGAVFAFFDXDXFFDVDFFDGGAGVGVXFAGGDGADFADVFXGX

13.4 Affine Cipher

Introduction

The Affine cipher is a special case of the more general monoalphabetic substitution cipher.The 

cipher is less secure than a substitution cipher as it is vulnerable to all of the attacks that work 

against substitution ciphers, in addition to other attacks. The cipher's primary weakness comes from 

the fact that if the cryptanalyst can discover (by means of frequency analysis, brute force, guessing 

or otherwise) the plaintext of two cipher text characters, then the key can be obtained by solving a 

simultaneous equation.

The Algorithm

The 'key' for the Affine cipher consists of 2 numbers, we'll call them a and b. The following 

discussion assumes the use of a 26 character alphabet (m = 26). a should be chosen to be relatively 

prime to m (i.e. a should have no factors in common with m). For example 15 and 26 have no factors 

in common, so 15 is an acceptable value for a, however 12 and 26 have factors in common (e.g. 2) so 

12 cannot be used for a value of a. When encrypting, we first convert all the letters to numbers ('a'=0, 

'b'=1, 'z'=25). The ciphertext letter c, for any given letter p is (remember p is the number representing 

a letter):

The decryption function is:

where a is the multiplicative inverse of a in the group of integers modulo m.

To find a multiplicative inverse, we need to find a number x such that:



151

If we find the number x such that the equation is true, then x is the inverse of a, and we call it a

The easiest way to solve this equation is to search each of the numbers 1 to 25, and see which one 

satisfies the equation. If you want a more rigorous solution, you can use matlab to find x:

> [g,x,d] = gcd(a,m);    % we can ignore g and d, we dont need them

> x = mod(x,m);                                                    

If you now multiply x and a and reduce the result (mod 26), you will get the answer 1. Remember, 

this is just the definition of an inverse i.e. if a*x = 1 (mod 26), then x is an inverse of a (and a is an 

inverse of x).

We now use the value of x we calculated as a-1. This allows us to perform the decryption step.

Note: As stated above, m does not have to be 26, it is simply the number of characters in the alphabet 

you choose to use. If upper case characters, lowercase characters and spaces are used, then m will be 

53. Digits and punctuation could also be incorporated (which again would change the value of m).

Assume we discard all non alphabetical characters including spaces. Let the key be a=5 and b= 7. The 

encryption function is then (5*p + 7)(mod 26). To encode:

'defend the east wall of the castle',

We would take the first letter, 'd', convert it to a number, 3 ('a'=0, 'b'=1, ..., 'z'=25) and plug it into the 

equation:

since 'w' = 22, 'd' is transformed into 'w' using the values a=5 and b= 7. If we continue with all the 

other letters we would have:

'wbgbuwyqbbhtynhkkzgyqbrhtykb'

Now to decode, the inverse of 5 modulo 26 is 21, i.e. 5*21 = 1 (mod 26). The decoding function is

so we have recovered d=3 as the first plaintext character.

'defendtheeastwallofthecastle'

13.5 Bifid Cipher

Introduction

Bifid is a cipher which combines the Polybius square with transposition, and uses fractionation 

to achieve diffusion. It was invented by Felix Delastelle. Delastelle was a Frenchman who 
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invented several ciphers including the bifid, trifid, and four-square ciphers. The first presentation 

of the bifid appeared in the French Revue du Génie civil in 1895 under the name 

of cryptographie nouvelle.

It has never been used by a military or government organization, only ever by amateur 

cryptographers. Be wary of the Wikipedia page on bifid, it is almost entirely incorrect.

The Algorithm

Keys for the Bifid cipher consist of a 25 letter 'key square'. e.g.

1 2 3 4 5
1| p h q g m
2| e a y l n
3| o f d x k
4| r c v s z
5| w b u t i

Note that there is no 'j' in the key-square, it is merged with the letter 'i'. The example below will 

encipher 'defend the east wall of the castle' using the key shown above.

When enciphering a plaintext, each letter is replaced by the numbers on the left hand side and 

top of the key square. These are then written on top of one another as shown in step 1 (below). 

E.g. 'd' is in row 3, column 3 of the key square so 3 is written in the top row and 3 is written in 

the second row. This is done for all plaintext letters. Step 2: The numbers are then grouped into 

blocks of a certain size (this is called the period, and forms part of the key). In this example the 

period is 5. The groups are then read off left to right (this is the fractionating step that makes 

bifid slightly more difficult to crack than a simple substitution cipher). Step 3 shows the new 

sequence of numbers after reading the groups left to right, first the top row of the group followed 

by the bottom row. The entire string is then re-enciphered using the original keysquare (shown in 

step 4) e.g. 'row 3, col 2' is 'f' in the original key square.

An example encryption using the above key:

Plaintext:   defend the east wall of the castle

step 1: row  323223 512 2245 5222 33 512 424522

col  312153 421 1244 1244 12 421 224441    

step 2:  32322 35122 24552 22335 12424 522 



153

31215 34211 24412 44124 21224 441 

step 3:      3232231215 3512234211 2455224412 2233544124 1242421224 522441

step 4:      f f y h m  k h y c p  l i a s h  a d t r l  h c c h l  b l r

Thus 'defendtheeastwallofthecastle' becomes 'ffyhmkhycpliashadtrlhcchlblr' using the key square 

shown above and a period of 5 during the enciphering step.

13.4 Vignere Gronsfeld Cipher

Introduction

The Vigenère Cipher is a polyalphabetic substitution cipher. The method was originally described by 

Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the 

scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as 

the Vigenère cipher.

Blaise de Vigenère actually invented the stronger Autokey cipher in 1586.

The Vigenère Cipher was considered le chiffre ind hiffrable (French for the unbreakable cipher) for 

300 years, until in 1863 Friedrich Kasiski published a successful attack on the Vigenère cipher. 

Charles Babbage had, however, already developed the same test in 1854. Gilbert Vernam worked on 

the vigenere cipher in the early 1900s, and his work eventually led to the one-time pad, which is a 

provably unbreakable cipher.

The Algorithm
The 'key' for a vigenere cipher is a key word. e.g. 'FORTIFICATION'

The Vigenere Cipher uses the following tableau (the 'tabula recta') to encipher the plaintext:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
    ---------------------------------------------------

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
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F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L   L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W   W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
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To encipher a message, repeat the keyword above the plaintext:

FORTIFICATIONFORTIFICATIONFO

DEFENDTHEEASTWALLOFTHECASTLE

Now we take the letter we will be encoding, 'D', and find it on the first column on the tableau. Then, 

we move along the 'D' row of the tableau until we come to the column with the 'F' at the top (The 'F' is 

the keyword letter for the first 'D'), the intersection is our cipher text character, 'I'.

So, the cipher text for the above plaintext is:

FORTIFICATIONFORTIFICATIONFO

DEFENDTHEEASTWALLOFTHECASTLE

ISWXVIBJEXIGGBOCEWKBJEVIGGQS

Variants

There are several ciphers that are very similar to the vigenere cipher.

The Gronsfeld cipher is exactly the same as the vigenere cipher, except numbers are used as the key 

instead of letters. There is no other difference. The numbers may be picked from a sequence, e.g. the 

Fibonacci series, or some other pseudo-random sequence.

The gronsfeld cipher is cryptanalysed in the same way as the vigenere algorithm, however the autokey 

cipher will not be broken using the kasiski method since the key does not repeat. The best way to 

break the autokey cipher is to try and guess portions of the plaintext or key from the cipher text,

knowing they must both follow the frequency distribution of English text. Guessing how the plaintext 

begins is the easiest way of cracking the cipher.


