

Information Technology
Workshop

in MATLAB

Author
Dr. Hari Prabhat Gupta,

Assistant Professor, IIT (BHU) Varanasi

Reviewer
Dr. Sandeep Kumar,
Associate Professor,

Indian Institute of Technology, Roorkee

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

BOOK AUTHOR DETAILS

Dr. Hari Prabhat Gupta, Assistant Professor, IIT (BHU) Varanasi

Email ID: hariprabhat.cse@iitbhu.ac.in

BOOK REVIEWER DETAILS

Dr. Sandeep Kumar, Associate Professor, Indian Institute of Technology, Roorkee

Email ID: sandeepkumargarg@gmail.com

BOOK COORDINATOR (S) – English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for Technical
Education (AICTE), New Delhi, India

Email ID: director.fdc@aicte-india.org

 Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for Technical Education
(AICTE), New Delhi, India
Email ID: ad1fdc@aicte-india.org

Phone Number: 011-29581339

October, 2022

© All India Council for Technical Education (AICTE)

ISBN : 978-81-959863-2-3

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or
any other means, without permission in writing from the All India Council for Technical
Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be
obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Laser Typeset by:

Printed at:

Disclaimer: The website links provided by the author in this book are placed for informational,
educational & reference purpose only. The Publisher do not endorse these website links or the
views of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be
settled under Delhi Jurisdiction, only.

ABOUT THE AUTHOR

Hari Prabhat Gupta is working as faculty in the
Department of Computer Science and Engineering, Indian
Institute of Technology (BHU) Varanasi. Previously, Hari
was a Technical Lead in Samsung R&D Bangalore, India.
Hari received his Ph.D. and M.Tech. degrees in Computer
Science and Engineering from Indian Institute of
Technology Guwahati; and his B.E. degree in Computer
Engineering from Govt. Engineering College Ajmer, India.
Hari has elevated to the grade of Senior Member of IEEE
in June 2020 based on his significant contributions to the
profession. Hari successfully

organized short-term courses under Quality Improvement Programme, courses under
Global Initiative of Academic Networks (GIAN), VRITIKA training program, and
other continuing education programs in the domain of smart sensing, machine
learning, and wireless sensing. Hari has published three Indian patents and more than
150 research papers in journals and conferences. Hari was awarded TCS research
fellowship, Samsung spot awards, and best teacher awards. Hari has finished various
research projects sponsored by different government and private organizations.

ACKNOWLEDGEMENTS

The author is grateful to AICTE for their meticulous planning and execution to
publish the technical book for Engineering and Technology students. I sincerely
acknowledge the valuable contributions of the reviewer of the book Prof. Sandeep
Kumar, for making it students’ friendly and giving a better shape in an artistic
manner. This book is an outcome of various suggestions of AICTE members,
experts and authors who shared their opinion and thoughts to further develop the
engineering education in our country. It is also with great honour that we state that
this book is aligned to the AICTE Model Curriculum and in line with the
guidelines of NEP-2020. Towards promoting education in regional languages, this
book is being translated in scheduled Indian regional languages.
Acknowledgements are due to the contributors and different workers in this field
whose published books, review articles, papers, photographs, footnotes, references
and other valuable information enriched us at the time of writing the book. I like to
express my sincere thanks to Dr. Rahul Bansal who helped me to write this book.
Dr. Bansal worked with me from the beginning of the book and especially gave
suggestions for writing the examples, questionnaire, and experiments. Finally, I
thank my Mother- Prabhat Gupta and my wife—Tanima Dutta—for their love and
support while I prepared this book. The patience and encouragement of my family
made this project possible. I affectionately dedicate this book to them.

Hari Prabhat Gupta

Indian Institute of Technology (BHU) Varanasi, India

PREFACE

The book entitled Information Technology (IT) Workshop is a result of our vast
experience of teaching and research in programming languages. This book
initiates with the introduction to IT workshop, which covers the different domains
of IT workshop. It then explores the one of the most widely used programming
language i.e. MATLAB. Main purpose of this book is to help students and
researchers to understand and apply the MATLAB programming language to
different engineering applications.

This book starts with the basic concepts of MATLAB programming and describes
the applications of each concept in detail. The major content of the book consists
of the topics suggested by AICTE and described in a systematic and simple
way. This book consists of the numerous solved and unsolved problems which
will help the students to develop their critical thinking and logical skills. This book
consists of a vast variety of questions, including multiple choice questions, and
long and short answer-type questions. It follows the lower and higher order of
Bloom’s taxonomy. The lower order leads the students to understand, remember
and apply for practical applications. Higher order skills improve students'
creativity, analysis, and evaluation skills. It also contains experiments at the end of
the chapter which will help students to apply the content on practical applications.
Each chapter has references and recommended readings through which students
can explore more theoretical and practical aspects of the main content. Beside
these, it also consists of ‘Know More’ section to discuss the additional information
about the content.

The author sincerely hopes that the book will motivate the students to learn and
apply the MATLAB programming to practical applications and will surely
contribute to the research and development in the engineering field. The author
welcomes all beneficial comments and suggestions to improve the future editions
of the book. It gives an immense pleasure to place this book in the hands of the
teachers and students.

Hari Prabhat Gupta
Indian Institute of Technology (BHU) Varanasi, India

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to
develop an outcome based curriculum and incorporate an outcome based
assessment in the education system. By going through outcome based assessments
evaluators will be able to evaluate whether the students have achieved the outlined
standard, specific and measurable outcomes. With the proper incorporation of
outcome based education there will be a definite commitment to achieve a
minimum standard for all learners without giving up at any level. At the end of the
programme running with the aid of outcome based education, a students will be
able to arrive at the following outcomes:

PO-1 Engineering knowledge

PO-2 Problem analysis

PO-3 Design/development of solutions

PO-4 Conduct investigations of complex problems

PO-5 Modern tool usage

PO-6 The engineer and society

PO-7 Environment and sustainability

PO-8 Ethics

PO-9 Individual and team work

PO-10 Communication

PO-11 Project management and finance

PO-12 Life-long learning

COURSE OUTCOMES

After course completion, the students will be able to:

CO-1: Understand the fundamentals of MATLAB and Creating MATLAB
variables, workspace and miscellaneous commands.

CO-2: Practice the matrix, array and basic mathematical functions, solving
linear equations, and other mathematical functions.

CO-3: Analyze the programming script with input/output, script side-effects
and anatomy of a M-File function.

CO-4: Develop script with relational and logical operators, “for…end” loop,
“while….end” loop, other flow structures, operator precedence, saving
output to a file

CO-5: Understand the Debugging process, running with breakpoints, examining
values, correcting and ending debugging and correcting an M-file.

Course
Outcome

Expected Mapping with Programme Outcomes
(1-Weak Correlation; 2-Medium correlation; 3-Strong

Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-
11

PO-
12

CO-1
3 3 3 1 - - - - 1 1 1 3

CO-2
1 2 3 3 3 3 3 3 2 1 3 3

CO-3
1 2 3 3 3 3 3 3 2 1 3 3

CO-4
1 2 3 3 3 3 3 3 2 1 3 3

CO-5
2 2 3 3 3 3 3 3 2 2 1 2

GUIDELINES FOR TEACHERS

Outcome Based Education (OBE) aims at improving student’s skills and
knowledge. Therefore, it becomes the teacher's responsibility to implement OBE
in an appropriate and systematic way. Following are some responsibilities (not
limited to) are given below:

● The teachers must provide the exercise so that students can explore more and
more.

● The students must have an online or offline version of the MATLAB
without considering any other potential ineligibility.

● The teachers must try to enhance the students skills and logical skills while
pursuing the course.

● Every student must be accoutred with quality of education appended with
competence after they finalized their education.

● They must always motivate the students to enhance their quintessential
performance by their capabilities.

● The teachers must promote and motivate the team work as it creates the
interest and curiosity amongst the students.

● They must ensure Bloom's taxonomy as shown in Figure I during the
assessment and evaluation of the students. The detailed explanation of
Bloom’s Taxonomy is given in Table I.

Figure I: Bloom’s taxonomy

Table I: Bloom’s Taxonomy

Level Teacher should
check the student’s

ability to

Student should be able to Possible Mode of
Assessment

Create create design or fabricate or
simulate

Mini or major project

Evaluate justify secure or defend Assignment

Analyse distinguish characterize or distinguish Project/lab methodology

Apply use information operate or illustrate Technical presentation/
illustration

Understand explain the ideas explain or describe Presentation/semin ar

Remember define (or remember) define or remember Quiz

GUIDELINES FOR STUDENTS

Students must opt for equal responsibility for simulating the OBE. Following are
some responsibilities (not limited to):

● Students must be familiar with each unit outcome before starting the new
unit.

● Students must be familiar with each course outcome before starting the
course.

● Students must be familiar with each programme outcome before starting
the programme.

● Students must properly apply the concept to practical problems.
● Student’s learning must be related to practical and real life consequences.
● Students must be familiar with their competency at every level of OBE.

LIST OF ABBREVIATIONS

Abbreviation Full form Abbreviation Full form

2D 2-Dimensional IT Information
Technology

3D 3-Dimensional IoT Internet of things

FPGA Field Programmable
Gate Arrays

PLC Programmable
Logic Controller

GPU Graphics Processing Unit MATLAB MATrix LABoratory

HDL Hardware
Description Language

RAM Random
Access Memory

HTML HyperText Markup Language SCILAB Scientific Laboratory

LIST OF FIGURES

Figure 2.1 Illustration of MATLAB default layout 14

Figure 2.2 Workspace layout in MATLAB 15

Figure 3.1 Illustration of assigning value to variable using command window 32

Figure 4.1 Half adder 95

Figure 4.2 Cosine wave 99

Figure 7.1 Profile summary 161

Figure 8.1 Grayscale equivalent of the original image 170

Figure 8.2 Histogram equivalent of the grayscale image 170

Figure 8.3 Intensity levels for image transformation methods 173

Figure 8.4 Actual and improved contrast of grayscale image 174

Figure 8.5 Histogram of the original image and improved contrast image 174

Figure 8.6 Comparison of the actual and negative transformed image 175

Figure 8.7 Comparison of the actual and logarithmic transformed image 176

Figure 8.8 Power law transformation of the image 177

Figure 8.9 Original image considered for obtaining attributes 182

Figure 8.10 Comparison of original and negative transformed image 183

Figure 8.11 Image transformation using power law transformation method 185

Figure 9.1 Cell marker insertion in cell folding method 189

Figure 9.2 Minimized program after cell folding method 190

Figure 9.3 Options available to select any one of the given choices 193

Figure 9.4 Illustration of plotting of graph in MATLAB 193

Figure 9.5 Illustration of checking the variable value in the editor window 195

LIST OF TABLES

Table 1.1 Different versions of HTML 05

Table 2.1 MATLAB online supported products 19

Table 3.1 Commonly used arithmetic operators 38

Table 3.2 Precedence of the operators and parentheses 40

Table 3.3 Commonly used mathematical functions 42

Table 3.4 Mathematical representation in MATLAB 42

Table 3.5 Relational operators and their corresponding MATLAB functions 43

Table 3.6 Logical operators with their MATLAB functions 45

Table 3.7 Truth table of logical operators 45

Table 3.8 Illustration of data types in MATLAB 50

Table 3.9 Illustration of the details of numeric data types in MATLAB 50

Table 4.1 Truth table for a half adder 95

Table 4.2 Truth table of Ex-OR gate 96

Table 6.1 is functions in MATLAB 135

Table 8.1 Specifiers or symbols with their specifications. 178

LIST OF EXPERIMENTS

1 Experiment 4.1: Experiment on vector operation 94

2 Experiment 4.2: Experiment on matrix operation 96

3 Experiment 4.3: Generation of signal waveform 98

4 Experiment 4.4: MATLAB program on convolution process 99

5 Experiment 6.1: Experiment on conditional branching 148

6 Experiment 8.1: Extract features of an image using MATLAB 181

7 Experiment 8.2: MATLAB program for image negation 182

8 Experiment 8.3: MATLAB program for power law transformation 184

9 Experiment 8.4: File handling in MATLAB 185

Contents

Foreword

About the Author

Acknowledgements

Preface

Outcome based education

Course outcomes

Guidelines for teachers

Guidelines for students

List of abbreviations

List of figures

List of tables

List of experiments

Unit 1: Introduction to IT Workshop

Unit specifics 1

Rationale 2

Pre-requisites 2

Unit outcomes 2

1.1 About IT Workshop 3

1.2 IT Workshop in different domains 3

1.2.1 IT Workshop using MATLAB 3

1.2.2 IT Workshop using Python 3

1.2.3 IT Workshop using scripting language 4

1.3 Applications of IT Workshop 6

1.4 Challenges 7

1.5 IT Workshop for research and development 8

1.6 Organization of the book 8

Unit summary 9

Short and long answer type questions

References

9

10

Unit 2: Preliminaries of MATLAB

Unit specifics 11

Rationale 12

Pre-requisites 12

Unit outcomes 12

2.1 About MATLAB 13

2.2 Installation of MATLAB 16

2.3 Use of MATLAB 18

2.3.1 MATLAB Online 18

2.3.2 MATLAB Offline 23

Unit summary 24

Exercises 25

Multiple choice questions 25

Answers to multiple choice questions 26

Short and long answer type questions 26

Know more 27

References 28

Unit 3: Basics of MATLAB

Unit specifics 29

Rationale 30

Pre-requisites 30

Unit outcomes 30

3.1 Variables in MATLAB 31

3.1.1 Variables naming conventions 33

3.1.2 Character variables 35

3.1.3 String variables 37

3.2 Operators in MATLAB 38

3.2.1 Arithmetic operators 38

3.2.2 Relational operators 43

3.2.3 Logical operators 45

3.3 Rational expressions in MATLAB 47

3.4 Type range and type casting 50

Unit summary 53

Exercises 54

Multiple choice questions 54

Answers to multiple choice questions 57

Short and long answer type questions 58

References 59

Unit 4: Vectors and Matrices in MATLAB

Unit specifics 61

Rationale 62

Pre-requisites 62

Unit outcomes 62

4.1 Vectors 63

4.1.1 Create row and column vectors 63

4.1.2 Operation with vectors 65

4.2 Matrices 72

4.2.1 Matrices creation 72

4.2.2 Operation with matrices 78

4.3 Sequence generation in MATLAB 84

Unit summary 85

Exercises 86

Multiple choice questions 86

Answers to multiple choice questions 91

Short and long answer type questions 91

Practical 94

Unit 5: MATLAB Scripts and Functions

Unit specifics 101

Rationale 102

Pre-requisites 102

Unit outcomes 102

5.1 MATLAB scripts 103

5.2 Functions in MATLAB 104

5.2.1 Definition of function 105

5.2.2 Function handle 110

5.3 Types of functions 111

Unit summary 117

Exercises 118

Multiple choice questions 118

Answers to multiple choice questions 121

Short and long answer type questions 121

Practical 123

References 124

Unit 6: Branch Statements

Unit specifics 125

Rationale 126

Pre-requisites 126

Unit outcomes 126

6.1 Branching statement 127

6.1.1 if statement 127

6.1.2 if-else statement 129

6.1.3 elseif statement 130

6.1.4 Nested if-else statements 132

6.1.5 Switch case statements 133

6.2 is function in MATLAB 135

Unit summary 142

Exercises 142

Multiple choice questions 142

Answers to multiple choice questions 146

Short and long answer type questions 147

Practical 148

References 149

Unit 7: Loop Statements

Unit specifics 151

Rationale 152

Pre-requisites 152

Unit outcomes 152

7.1 Loop statements 153

7.1.1 for loop 153

7.1.2 Nested for loop 155

7.1.3 while loop 157

7.2 Timing Functions 158

7.2.1 timeit function 158

7.2.2 tic and toc functions 158

7.3 Profiling to enhance performance 160

Unit summary 162

Exercises 162

Multiple choice questions 162

Answers to multiple choice questions 165

Short and long answer type questions 165

References 166

Unit 8: Image Processing and File Handling in MATLAB

Unit specifics 167

Rationale 168

Pre-requisites 168

Unit outcomes 168

8.1 Introduction to image processing 169

8.1.1 Importing and displaying an image 169

8.1.2 Write the imported image to another format 169

8.2 Intensity transformation 171

8.2.1 Histogram equalization 171

8.2.2 Linear transformation 171

8.2.3 Logarithmic transformation 172

8.2.4 Power–law transformation 172

8.3 File handling in MATLAB 177

Unit summary 179

Exercises 179

Multiple choice questions 179

Answers to multiple choice questions 180

Short and long answer type questions 180

Practical 181

References 186

Unit 9: MATLAB Program Organization and Debugging Techniques

Unit specifics 187

Rationale 188

Pre-requisites 188

Unit outcomes 188

9.1 MATLAB program organization 189

9.2 Menu-driven modular program in MATLAB 190

9.3 Debugging techniques 194

9.4 SCILAB Programming 195

9.4.1 Features of SCILAB 196

9.4.2 Installation of SCILAB 196

Unit summary 196

Exercises 197

Multiple choice questions 197

Answers to multiple choice questions 199

Short and long answer type questions 199

References 200

UNIT SPECIFICS

This unit covers the following aspects:

● About IT Workshop

● IT Workshop using MATLAB, Python, scripting language

● Applications of IT Workshop

● IT Workshop for research and development

● Organization of the book

This unit familiarizes the students with the Information Technology (IT) Workshop. It
discusses the different platforms and applications of IT Workshop. This unit also
discusses the various challenges in the IT field, which helps the students to explore new
ideas. The research and development aspects of IT Workshop are also covered to
develop the student’s curiosity about developing new technologies. Finally, it discusses
the structure of the book. At the end of the Unit, it consists of several references and
recommended readings that help students explore more theoretical and practical
aspects of the main content.

Introduction to
IT Workshop 1

2 | Introduction to IT Workshop

RATIONALE

This unit initially introduces the IT Workshop. It then discusses the IT Workshop using MATLAB,
Python, and scripting languages. It discusses the various applications of IT Workshop in different
domains, e.g., biomedical engineering, wireless communication, signal processing, image
processing, control, financial systems, etc. Next, it discusses the challenges in the information
technology field, which include IT domain liability, data security, open source software, etc. This
unit also covers the IT Workshop for research and development.

PRE-REQUISITES

Basic knowledge of information technology

UNIT OUTCOMES

The outcomes of the Unit are as follows:

U1-O1: Describe IT Workshop

U1-O2: Discuss the IT Workshop using MATLAB, Python, and scripting language

U1-O3: Discuss the applications and challenges of information technology

U1-O4: IT Workshop for research and development

Unit-1 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U1‐O1 3 - 1 - -

U1‐O2 2 - 1 - 1

U1‐O3 3 - - - -

U1‐O4 3 - - - -

IT Workshop| 3

1.1 About IT Workshop
Information Technology (IT) Workshop includes the implementation, advancement, and
reinforcement of computer-based information technologies. In the last few decades, IT has
been impelled by scientists and academicians. This era of IT has merged a global network
that is used to transmit information using modern technologies. It has a wide range of
applications in communication systems, intelligent transportation systems, digital circuits,
etc. For practical implementation of these applications, it requires a platform that consists of
algorithms and mechanisms in terms of mathematical formulation. The platform includes
programming languages.

1.2 IT Workshop in different domains
The different programming languages, e.g., MATLAB, Python, scripting language, etc., can
be used to solve different scientific problems. These consist of various toolboxes to model
the complex expressions to simple manipulations. Based on the methodology and available
toolboxes, the user opts for the domains to perform the arithmetic, relational, and logical
operations. IT Workshop can be done in MATLAB, Python, scripting language, and other
computer programming languages. The rest of this section discusses the programming of IT
Workshop in MATLAB, Python, and scripting languages.

1.2.1 IT Workshop using MATLAB
MATLAB is the most widely used programming language to simulate
mathematical expressions [1]. It gives the output in terms of numeric
values, arrays, or graphical representation. It is the ideal choice for
moderate and complex mathematical manipulation. It consists of many
toolboxes with applications in engineering science, biological science,
financial management, etc. The most commonly used toolboxes include
signal processing, control, image, communication, etc. The users can
operate MATLAB online and offline, making this more user-friendly.

1.2.2 IT Workshop using Python
Guido van Rossum developed the Python programming language in the
late 1980s. The initial version was made accessible in 1991 and gained
huge popularity amongst the researchers and academicians. For this
contribution, Guido van Rossum was entitled as ‘Benevolent Dictator for
Life’ by the Python group. Python is a high-level and multi-paradigm
computer programming language licensed under a General Public License
(GPL) [2]. It is an open-source platform authorized by OSI and FSF. It
consists the applications in web-based systems, mathematical
computation, machine learning, deep learning algorithms, etc. Due to its
compact syntax, it allows users to write simple program statements for complex expressions.
It contains innumerable inbuilt libraries and functions to perform the task. The significant

4 | Introduction to IT Workshop

advantage of Python is that it is easy to understand, apply to real-world problems, and inbuilt
functions and libraries.

Key features: Python is one of the popular programming languages nowadays due to its
magnificent performance. Following are the key features of Python which makes it highly
demanding platform for professionals:

● Easy to apply: Python is easy to learn and apply for practical application. It consists
of ingenious syntax which can be easily learnt and applied by the beginners.

● Compact syntax: Python uses the compact syntax which helps the users to write
the short program for the complex expressions. This makes this programming
language more user friendly.

● Freely available: Python is licensed under the GPL. This makes this programming
language as freely accessible. It can be download from the Python‘s official site i.e.,
Python Releases for Windows | Python.org.

● Interactive and dynamic programming: It uses chevron prompt (>>>) which allows
the user to write and simulate the program statement spontaneously. This feature
becomes useful when a program statement has errors and it requires debugging
techniques. Python is also a dynamic programming as users need not to define the
datatype as they are already defined.

● Portability and scalability: Python is compatible with operating systems e.g.
Windows, Linux, MacOS. These support a favourable executing environment for
writing the complex expressions.

● Huge library: Python has a huge inbuilt library and function which makes this
programming language as user friendly.

● Memory management: Python consists of a garbage collector for memory
management. Thus, memory allocation is not an issue for users.

1.2.3 IT Workshop using scripting language
The HyperText Markup Language, abbreviated as HTML, is a scripting
language [3] to design the documents. HTML was introduced by physicist
Tim Berners-Lee in the early 1990s. It was then made available for users in
late 1991 in the form of a document named ‘HTML Tags’. Since then, it has
been updated many times since it was first released. Its latest version is
HTML 5. Table 1.1 describes the different versions of HTML. These
documents can be presented in a web browser. It is widely used for
developing web pages and enhancing data storage. It has applications in
internet navigation. Due to webpage support, easier to learn, and faster to code, scripting
languages such as HTML are preferable for IT Workshop. It is now developed and
maintained by Web Hypertext Application Technology Working Group (WHATWG).

IT Workshop| 5

Table 1.1: Different versions of HTML.

Versions Released on Descriptions

HTML1 1991 ● Initial Version

● Consists of 18 elements

● Tim Berners-Lee contemplate HTML as elevance of

SGNL

HTML2 1995 ● New feature added

● Maintained by W3C

HTML3 1997 ● Released with novel features i.e., tables, scripts, etc.

● Text with images also improved

HTML4 1997 ● New features i.e., style sheets, added

● Introduced CSS

HTML5 2014 ● It is a latest version

● It comes with advanced features e.g., videos

insertion, improved content layout, etc.

Features of HTML:

● Easy to operate: HTML is a simple and straightforward language that is easy to
apply for practical usage.

● Platform-independent: Major advantage of HTML is that it is platform independent
scripting language unlike other languages like Java, C/C++ etc.

● Webpage development: This language allows images and audio inclusion on the
webpage. Latest version of HTML allows the video insertion to the webpage.

● Hypertext inclusion: It also allows the hypertext included to the text which can be
displayed on electronic devices. The users can spontaneously access the link which
is referenced to the hypertext.

● Markup language: The users can supervise the exhibit of the document.

Demerits of HTML: Apart from the merits, HTML scripting language has disadvantages
also. Some of major disadvantages are given below:

6 | Introduction to IT Workshop

● This language allows us to generate static web pages. It fails to generate dynamic

web pages.
● This language does not have compact syntax. Thus, it uses complex programs for

generating a simple webpage.
● It does not allow mathematical computation or mathematical simulation.

IT Workshop can be accomplished using different platforms. The scripting languages, such
as HTML, are specially developed for web development. It is challenging to use such
scripting languages for mathematical computation. Python consists of several libraries that
are freely available for users. However, this platform is limited by the availability of different
domain toolboxes. MATLAB consists of many toolboxes for various applications in
engineering science, biomedical science, financial management, etc. MATLAB is available in
online as well as offline modes. Moreover, MATLAB consists of the tools for almost all
engineering branches. Such benefits and unique features of MATLAB, makes it suitable for
IT Workshop. This book uses MATLAB for the programming of IT Workshop.

1.3 Applications of IT Workshop
IT Workshop has numerous applications in engineering, management, and medical
sciences. In this section, we discuss some applications of IT Workshop. We also discuss the
available packages in MATLAB for the applications.

● Wireless communication systems: The signal of different frequencies can be
transmitted from one place to another using wireless communication. The devices at
the transmitter and receiver can be synchronized using MATLAB programming. They
have applications in 5G, satellite communication, long-term evolution systems,
designing of radio frequency antennas, etc.

● Control systems: The control systems stabilize the devices using the looping
systems. MATLAB contains a control system toolbox to operate these systems. The
algorithms in the toolbox can analyze the system performance in both time and
frequency domains. It consists of several controllers for tuning the gain of the
systems.

● Image processing: The low-quality image can be enhanced using image processing
techniques. The image processing can be analog or digital. Digital image processing
is more popular among these two. MATLAB consists of a separate image processing
toolbox to process the images.

● Internet of Things: The Internet of Things (IoT) connects devices with the outside
world using the internet. Examples of IoT analytics platform services are
ThingSpeak and Amazon Web Services (AWS). Such platforms lead to storing and
analyzing data through cloud computing. The users can also compare the data with
the historical data available for better output by removing noise, disturbances,
outliers, etc.

● Signal processing: MATLAB can also be used to analyze, supervise and control the
time-variant and time-invariant signal. It has a signal processing toolbox for this
purpose which consists of numerous algorithms for signal operations, e.g.,
quantization, upsampling, downsampling, filtering, etc. It can operate in both

IT Workshop| 7

domains, i.e., the time and frequency domains. It also helps to develop wave signal
datasets, which can be further processed using artificial intelligence model training.

● Embedded systems: Embedded systems are the combination of software and
hardware that are designed to perform a specific task. Such systems have a wide
range of real-time applications, including smartphones, UAVs, and transportation
systems. The practicability of these systems becomes easy when designed and
simulated using MATLAB and Simulink.

● Mechatronics: Mechatronics is the amalgamation of mechanics and electronics.
Thus, the integration of physical systems and embedded systems perform the tasks.
It initially recognizes the simulated algorithms and then operates in parallel to obtain
the optimum results. As it performs operations with hardware, thus causing an error
in the output. The algorithms for the system models are designed to overcome these
issues.

● Computational biology: In this methodology, scientists analyze the biological
conduct using mathematical formulation and simulation. MATLAB allows these
mathematical expressions to simulate and predict the behavior. The users can model
the algorithms for generating innovative formulations.

● Computational finance: It deals with risk & investment regulation, insurance, etc.
MATLAB allows the user to analyze live market data and helps in mathematical
modeling. It also estimates the risk attributions and provides the solution for minimum
risk.

● Motor and power control: It modulates the motor torque, speed, and other
parameters to ensure stability. MATLAB provides cost-effective design, which leads
to productive processors, sensors, etc. It also allows Hardware Description
Language (HDL) for testing and simulation.

● Robotics: Robotics helps in designing and implementing autonomous systems.
MATLAB contains algorithms that can read and analyze the data from the robotics
system, which can be implemented for hardware-in-the-loop tests for further
verification.

● FPGA Design and Codesign: Field Programmable Gate Arrays (FPGA) consist of
configurable logic blocks programmed according to user needs. The programmable
behavior of FPGA makes it worthy for several applications, including wireless sensor
networks, communication systems, biomedical devices, etc. MATLAB allows
innovation of the prototype and system on chip devices. It helps the users to
implement and debug the FPGA program and develop model hardware architectonic.

1.4 Challenges
IT has become very popular in the last few decades due to its manifold-cloud domain. The
researchers are adopting new technologies to develop the infrastructure models. These lead
to easy sharing of information. However, this easy availability of huge data and exploration of
businesses result in expanding privacy and security risks. The following are the major
challenges in IT:

8 | Introduction to IT Workshop

1. IT domain liabilities: Digital transformation needs advanced emerging technologies

and new frameworks. It becomes necessary to endorse the appropriate and skilled
leader. Therefore it is necessary to escalate the skilled leader. Appended to this,
skilled workers in this field must also be embellished.

2. Information security: Technological advancement leads to information security
concerns. The information security concern pervades almost all new technologies,
including professional and personal data saved on the cloud.

3. Effective mathematical computation: The real application in IT involves a huge
amount of data continuously varying with time. Most of these require a high-end
processing unit for further analyzing and processing.

4. Open source platform: Although the open source platforms lead to ease of
manipulation but these compromise ownership of organization products. These are
not safe for confidential business transactions.

5. Remote automation: New technology advancements are resulting in smart homes,
offices, and cities that can be grandiose by several accidents and disturbances. This
needs a breach of regulations between the customer and the service provider.

1.5 IT Workshop for research and development
The main aim of the IT Workshop is to foster research and development in engineering
science, medical science, etc. Different IT domains have abundant research fields, including
global positioning satellites, digital circuit design, remote areas communication, medical
appliances, etc. MATLAB enables researchers to design and simulate model-based systems
to analyze and develop the most efficient system. Platforms such as MATLAB, Simulink,
Python, etc. allow researchers first to delineate the system model and then test on these
platforms before practical implementation. This helps to develop a cost-efficient and accurate
model for a system.

1.6 Organization of the book
The remainder of the book is structured as follows: Chapter 2 introduces MATLAB and its
tools. It also discusses the installation methods appended with the applications of MATLAB.
Chapter 3 discusses the variables with their naming convention. It also includes operators,
i.e., arithmetic, logical, relational operators, and rational expressions. Chapter 4 covers the
vectors, matrices, and various operations such as arithmetic, relational, and logic with
vectors and matrices. Chapter 5 introduces MATLAB scripts and functions. It also consists of
various types of functions with applications. Chapter 6 contains branch statements, i.e., if, if-
else, nested if-else, switch-case statements, etc. Besides these, it also covers ‘is’ function and
its application. Chapter 7 includes loop statements, e.g., for loop, nested for loop, while loop,
etc. It also introduces the time function and its application in signal processing. Chapter 8
discusses the basics of image processing, i.e., importing, exporting and performing image
transformation. It covers histogram equalization, linear transformation, logarithmic
transformation, and power law transformation methods. This unit also includes file handling
in MATLAB. Finally, Chapter 9 introduces MATLAB program organization. It then discusses

Unit Summary

Short and Long Answer Type Questions

IT Workshop| 9

the menu-driven modular program and debugging techniques that help remove errors in the
program statements. It also introduces SCILAB programming.

● The programming languages, e.g., MATLAB, Python, HTML, etc., are used to solve
several problems in the field of engineering, management, and medical sciences.

- MATLAB is a high-level programming language that can be used for numeric
calculation, advanced graphics, and visualization.

- Python is a high-level and multi-paradigm computer programming language
licensed under a general public license.

- HTML is a markup language that is mainly used for designing documents.

● IT Workshop consists various applications,such as
- Wireless communication and control systems
- Image and signal processing
- Internet of things
- Mechatronics and robotics
- Computational biology and finance
- Motor and power control
- FPGA Design and Codesign

● Major challenges in IT fields are
- IT domain liabilities
- Information security
- Effective mathematical computation
- Open source platform
- Remote automation

1.1 Explain the significance of IT Workshop in brief.

1.2 Write a short note on the following
(a) IT Workshop using MATLAB
(b) IT Workshop using Python
(c) IT Workshop using HTML

1.3 What are the applications of IT Workshop?

1.4 What are the major challenges of information technology? Explain in brief.

1.5 Explain the significance of IT Workshops in research and development.

References

10 | Introduction to IT Workshop

1.6 What are the key features of the Python language?

1.7 What are the key features of HTML scripting language?

[1] ‘Applications of MATLAB’, 2022 [Online]. Available:
https://www.mathworks.com/help/simulink/applications.html
[Accessed: September-2022].

[2] ‘Introduction of Python, 2022 [Online]. Available: https://www.python.org/

[Accessed: September-2022].

[3] ‘Introduction of HTML’, 2022 [Online]. Available:
https://html.spec.whatwg.org/multipage/ [Accessed: September-2022].

UNIT SPECIFICS

Through this unit we have discussed the following aspects:

● About MATLAB and its tools
● Installation of MATLAB using online and offline
● Use of MATLAB in different domains

This unit discusses the preliminaries of MATLAB for developing further curiosity and
inventiveness. This also explains the different modes of operation of MATLAB, which will
help students to apply in practical applications, not only in engineering science but also
in finance, biological science, etc.

At the end of the main contents of the unit, a variety of questions are given. These
follow the lower and higher order of Bloom’s taxonomy. These questions let the students
gain more insight into the content and improve their logical skills. It also enlisted
references and recommended readings which helps the students to explore more about
the content.

There is one more section named “Know More”. This section discusses the inventor
of MATLAB. To create interest among students, this section highlights the developing
phase of MATLAB and its developer, i.e., MathWorks.

Introduction to
MATLAB 2

12 | Introduction to MATLAB

RATIONALE

This preliminary unit helps students to get a basic idea about MATLAB. It describes the history of
the development of MATLAB and MathWorks organization. This unit also helps students to
explore the different toolboxes available in MATLAB and Simulink. The MATLAB environment is
also discussed, including the command window, editor window, and workspace window. This unit
elucidates the basic idea of introducing input using the command window and editor window. It
exclusively explains the installation of MATLAB products using both, with and without an
internet connection. MATLAB online is also gaining popularity nowadays. This unit gives further
distinct ideas of MATLAB online mode. Several toolboxes, along with their applications, are also
discussed in this unit. Simultaneously, it considers the merits and demerits of the online and
offline modes of MATLAB usage. A brief cloud solution is also discussed in this unit.

PRE-REQUISITES

Basic use of computers

Basic knowledge of computer programming

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U2-O1: About MATLAB

U2-O2: Installation of MATLAB

U2-O3: Use of MATLAB

Unit-2 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U2‐O1 3 - - - 1

U2‐O2 3 - - - 1

U2‐O3 3 1 1 1 1

IT Workshop| 13

2.1 About MATLAB
MATLAB is an integrated technical computing environment that amalgamates numeric
calculation, advanced graphics and visualization, and a high-level programming language
[1]. MATLAB is derived from the word MATrix LABoratory. It is a widely-used programming
language for mathematical computation and graphical representation. MATLAB was
designed by Cleve Moler in the late 1960s, and it first appeared in the late 1970s for simple
matrix calculations. MATLAB was commercially released by MathWorks, Inc. in 1984. In the
1990s, MathWorks introduced the first MATLAB compiler. Later, MathWorks added important
libraries and toolboxes that support Graphics Processing Units (GPUs). Recently,
MathWorks launched many features, e.g., MATLAB live editor notebook, to improve the
interfacing and functionality. The latest version of MATLAB is R2022a released in March
2022.

Besides MATLAB, Simulink is also the primary product of MathWorks. Simulink is a MATLAB-
based graphical programming platform. Simulink has a wide range of applications in control
systems and signal processing for system design and simulation. Simulink is especially useful
in one’s growth process. It helps the users to get novel ideas, and then, they can create
the code for the system and check for the results. The user can do the multiple executions of
the program and recreates the code for optimal results [2].

Several categories of MATLAB inbuilt examples are available, which can
be used by students and working professionals. MATLAB and Simulink are
basically potent mathematical tools that consist of several varieties of
toolboxes. The important MATLAB applications and the toolbox are as
follows [3]:

● Signal processing: The toolbox available in MATLAB for this
application are audio, SerDes toolbox RF, DSP, phased array
systems, sensor fusion, tracking, signal processing, and wavelet
toolbox.

● Control system: Aerospace, automated driving, control system, fuzzy logic, model
predictive and robotics toolbox, system identification are the toolbox of control
system application.

● Wireless communication: 5G Antenna, LTE HDL, wireless local area network
toolbox.

● Code generation: Embedded, filter designing, HDL, GPU, MATLAB coder, filter
design HDL coder, Fixed-point designer, Vision HDL toolbox.

● Math, statistics, and optimization: Curve fitting, mapping, global optimization,
Model-based calibration, Partial differential equation, Symbolic math, and
optimization.

● Data science, machine and deep learning: Deep & machine learning statistics,
Predictive maintenance, Reinforcement learning, Text analytics.

● Image processing and segmentation, computer vision: Automated driving
system, Computer vision, Image acquisition, Vision hardware description language.

● Financial management system: Database toolbox, Datafeed econometrics,
Finance instruments, Finance and risk management, Spreadsheet link, trading.

● Computational biological system: Bioinformatics, SimBiology.

14 | Introduction to MATLAB

● Application deployment: MATLAB compiler, MATLAB compiler software,

development kit.

The toolbox available for important applications of Simulink are as follows [3]:

● Signal processing: Audio & SerDes toolbox, RF, digital signal processing system,
Mixed-signal blockset, Phased array system.

● Control system: Aerospace and powertrain, Vehicle dynamics blockset, Robotics
system and control design, Design optimization.

● Wireless communication: Communication toolbox.
● Code generation: AUTOSAR blockset, Kit for DO qualification, Embedded,

Simulink, HDL, PLC coder, Fixed-Point designer, IEC certification kit, LTE HDL
toolbox, Simulink code inspector.

MATLAB provides a rich user experience design. The shortcut icon of the MATLAB is shown

as . Figure 2.1 illustrates a default layout of MATLAB. The three different types of
windows, namely Command Window, Editor Window, and Workspace appear on the default
layout of MATLAB.

Figure 2.1: Illustration of MATLAB default layout.

The command window is the most crucial part of all the windows. The symbol ">>", also
known as prompt, is used to execute a MATLAB command and gives the corresponding
outcome instantly. It is quite interesting to know that the command window uses its inbuilt
workspace which can be displayed in the workspace window.

MATLAB has the Help section which can be operated either directly from the starting window
as shown in Figure 2.1 or by typing help appended with command or function name in the

IT Workshop| 15

command window. The command window can be cleared using the clc command at the
prompt.

The editor window consists of commands (program) that are saved in MATLAB files. It can
be seen on the upper portion of the command window as shown in Figure 2.1. The
commands can be edited in the editor window (which are permanently saved in MATLAB file)
and corresponding outcomes can be seen in the command window and workspace.

The workspace window comprises numeric values of the variables in the form of outcome.
It also consists of data that is imported into MATLAB. The utilization of the workspace
window becomes crucial for a long MATLAB program that consists of many variables. The
workspace window enlists all the variables and their corresponding values. It also displays
the size, memory allocated, class associated with the variables. Figure 2.2 illustrates the
workspace window.

Figure 2.2: Workspace layout in MATLAB.

The workspace becomes empty whenever the user exits the program without saving. The
data will reappear in the workspace after the execution of the program. Saving the long and
complex MATLAB program periodically will help avoid rewriting the program.

Command history in MATLAB can be seen at the bottom of the workspace window. It uses to
show the already executed commands in the past. The reuse of the long and complex
commands using from command history reduces the time of the user. A command namely,
whos, in MATLAB enlists the variables appended with their size in a MATLAB program.
When the user clicks on a particular variable, it will display the values assigned to the
variable in a new tab referred to as array editor.
We can give the input in MATLAB in two ways: the command window and the editor window.
These inputs can be in the form of variables or numeric values. Working in the command
window is helpful for the short program statement due to its command history characteristics.
The major advantage of introducing input to the command window is to show the
corresponding output value spontaneously. It also requires memory space when the program
is being executed. However, such practice doesn't save the program and the workspace
becomes empty whenever the user exits. Variable values or data are neither saved in the
command window nor in the workspace window when the program will close. The editor

16 | Introduction to MATLAB

window overcomes the above limitations. To use the editor window, create a m-file by
clicking on Create new document→Script menu as shown in Figure 2.1 and save the file at
the desired location using the Save document icon. A major advantage of using the editor
window is that the program statements are saved in memory as m-file format. MATLAB
displays the output in the command window in the form of numerical or text values. MATLAB
consists of a window, known as a graphical window, to display the outputs in graph format.
The graphical window can be further edited as the user requirements.

2.2 Installation of MATLAB
MathWorks allows the installation of MATLAB using standard installation
and installation without using internet connection methods. Before
installing the latest version of MATLAB i.e., R2022a on a system, the user
must ensure several requirements which need to be fulfilled. The system
requirements for installing MATLAB R2022a are as follows [4]:

● Operating system: MATLAB supports Windows (Version 10,
version 11, and Server 2019 of Windows) and Mac (Monterey
(version 12), Big Sur (version 11.6), and Catalina (version 10.15.7)
of macOS) operating system. It also supports Linux operating
systems with Ubuntu version 20.04 LTS and version 18.04 LTS, Debian 10, Red Hat
Enterprise Linux version 8 and version 7, SUSE Linux Enterprise Desktop version 12
and version 15, and SUSE Linux Enterprise Server version 1 and 12.

● Processor: MATLAB is compatible with all Intel processors and AMD x86-64 when
operated with Windows, Mac and Linux. Besides the aforementioned processor,
MATLAB also supports (Apple silicon) in Mac.

● RAM: It requires a minimum 4GB RAM to work with MATLAB. However, it is
recommended to use 8GB RAM for better performance.

● Storage: It needs around 3.5 GB for MATLAB, 5GB to 8GB for typical installation.
Complete installation requires 24GB for Mac & Linux and 31.5GB for Windows.
Users are recommended to use SSD for better performance while working with
MATLAB.

● Graphics: There is no need for specific graphics cards for running Windows, Mac,
and Linux operating systems. However, MathWorks recommends 1GB GPU for
better performance.

The following points should be noted while installing MATLAB:

● Windows 7 is not supported in the MATLAB latest version R2022a.
● MATLAB also supports operation on shared computers. Shared computer installation

requires permission from the administrator.
● Many times, it requires altering the tmp folder. The procedure can be followed from

the link [5].

The following two ways are possible to install MATLAB:

I. Standard installation: In the standard installation method, MATLAB is installed on a
computer using an internet connection. The user first needs to create a MathWorks

IT Workshop| 17

account. It is advised to disable the antivirus during installation as it leads to slow
down the installation process due to insignificant internet security applications.
Before the installation process starts, some system requirements for the latest
version need to be fulfilled, as discussed above. The following steps are involved in
installing MATLAB using standard installation [6]:

Step 1. Create a MathWorks account and sign up. If MathWorks account is not
available personally, you can sign up using the university's or company's license.

Step 2. Download the release from the official website of MATLAB and run the
installer. You must agree to make the changes when it will suggest.

Step 3. The next step is a license agreement between the user and MathWorks. It is
mandatory to accept the agreement otherwise it is not possible to install the
MATLAB.

Step 4. It will ask for the activation key and authentication.

Step 5. After authentication, you can select the destination folder then MATLAB
product needs to be selected.

Step 6. The last step is confirmation from the user and installation is done. After
installation, click Finish to complete the installation.

II. Without using internet connection: In this method, the installation is accomplished
using a file installation key. Initially, the user must obtain the license center's
installation key. The following steps are performed for installation [7]:

Step 1. Sign up to the MathWorks account on a computer with an internet connection
and download the MATLAB product on removable storage memory along with the
license.

Step 2. Next, the license file and installation key need to be copied to the target
computer.

Step 3. After obtaining the installer and MATLAB product files, the next step is to
start the installer. It will also take permission for the app to make changes, which is to
be accepted for further processing.

Step 4. MathWorks asks to agree to all the terms and conditions related to the
software license agreement. The MATLAB products will not be installed if the user
does not accept these agreements.

Step 5. Next, the user needs to enter the installation key.

Note: If a user has the incorrect installation key, then the user may ask for a new
one.

Step 6. Offline MATLAB installation needs a license file to install the MATLAB
product. If the user selects a license file for a different MATLAB product, it will show
an error. Therefore, the selection of the correct license file for the correct MATLAB
product is compulsory. The user can ask for a new license file if the installer identifies
any incorrect license file.

18 | Introduction to MATLAB

Step 7. MathWorks products can be installed in the default destination folder or the
user's choice folder (recommended by MathWorks). If the destination folder is the
user's choice, the following are the specifications while selecting the folder name:

● Non-English characters are not allowed.
● Alphanumeric characters and special characters e.g., underscore, are valid.
● Function names can not be folder names.

Step 8. The user can select the product associated with the installation key. There
are several MATLAB products that are dependent on each other, the user will get a
product dependency warning while selecting such products.

Step 9. The user selects an option to create a shortcut icon, symbolic links, or mex
script based on the operating system.

Step 10. The next step is to review the product summary and click on begin the
installation.

Step 11. After completion of the installation, the user can click on finish to complete
the installation.

Note:

● MathWorks allows the installation of the products non-interactively. If a user
needs to install several MATLAB products with the same information, then
the user can use the information through the properties file. This time-saving
process is very useful for reducing installation errors.

● MATLAB communicates with MathWorks to check the license validity from
time to time. It also allows the user to update the license if its time period is
over.

● Mathworks allows installing its product for multiple computers. For this, the
user must contact the administrator.

2.3 Use of MATLAB
Similar to the installation of MATLAB, it can be accessed in online and offline modes.

2.3.1 MATLAB online
MATLAB online was released in March 2017. It enables the user to access
MATLAB products using any standard web browser with an internet
connection. This feature leads to a revolutionary leap by providing an
online platform for the users to access MATLAB. It has become very
useful, especially for working professionals, MATLAB training for
researchers and young minds to explore the MATLAB products. After
releasing in 2017, MATLAB online is expanding day by day to the demand
of the users. Table 2.1 shows the supported products in MATLAB online.

IT Workshop| 19

Table 2.1: MATLAB online supported products [8].

Products Applications

Toolbox for 5G 5G toolbox has applications in RF designs, interference sources,
and 5G new radio communication systems.

Aerospace toolbox This toolbox has applications in aerospace engineering, 2-
dimensional and 3-dimensional visualization of vehicle
movement, analyzing satellite motion.

Audio toolbox Audio toolbox helps in acoustic signal modeling which can
analyze audio features. The results are further trained using
computer programming.

Computer vision
toolbox

This toolbox has applications in 3-dimensional vision, and video
processing frameworks. This is also compatible with other
programming language like C/C++.

DSP system toolbox DSP system toolbox has several applications e.g., signal
processing systems, RF systems, RADAR, telecommunication,
finite and infinite system response systems, etc. It also supports
C/C++ code for system modeling.

Image processing
toolbox

Using this toolbox, any image can be enhanced, segmented, or
further processed to remove noise or further processing.

Database toolbox It helps in interchanging the data from different databases.

LTE toolbox This toolbox gives long-term evolution (LTE) modeling and
designing for communication systems. It is also compatible with
radio frequency hardware.

GPU coder It is used for CUDA kernels code creation for deep learning,
DSP systems, etc.

MATLAB coder This toolbox helps in creating programming codes for MATLAB
which are compatible with the hardware.

Model predictive
control toolbox

It helps in modeling and simulation of the different controllers.

Parallel computing
toolbox

This toolbox has different processors, GPUs, and several
clusters which helps in resolving data-intensive issues.

20 | Introduction to MATLAB

Robotics system
toolbox

It helps in modeling and simulation of mobile robots, industrial
robots, etc.

Satellite
communications

Satellite communications toolbox has applications in modeling
and testing satellite communication systems.

Signal processing
toolbox

This toolbox helps to model various signal processing filters,
which leads to resampling, smoothing, and further analyzing the
signal. It also supports an artificial intelligence model for signal
improvement.

Simscape multibody Simscape helps in modeling of physical systems e.g., rectifiers,
electric motors etc.

Simulink coder This toolbox creates C/C++ codes for MATLAB. For this reason,
it was called a real-time workshop.

Simulink control design It helps in designing and modeling control systems e.g., PID
controllers.

Simulink design
optimization

It gives tools and functions for model tuning. Users can also do
the Monte-Carlo simulation. Various system properties e.g.,
response time, are also optimized using this tool.

Symbolic math toolbox This toolbox helps in generating code for manipulation and
graphical representation of the mathematical equations. It also
supports the live editor to transform to Latex, HTML, etc.

System identification
toolbox

This toolbox is widely used for parameter identification of linear
and nonlinear systems. The major advantage of this toolbox is
that it can operate in both the time and frequency domains.

Text analytics toolbox This helps in analyzing the text report on social media, news
feeds, surveys etc.

UAV toolbox UAV toolbox has applications in UAV systems for modeling,
simulation, and testing. These are also responsible for improving
the compatibility of sensors with UAV systems.

Wavelet toolbox Wavelet Toolbox is basically used for denoising the signal and
images. It is also compatible with C/ C++/ CUDA code.

WLAN toolbox This toolbox is used in the modeling and simulation of local are
network communications systems. This toolbox also supports
transceiving the RF signal from hardware.

IT Workshop| 21

System composer It helps in analyzing the system model. It also supports live view
of the model.

Statistics and ML
toolbox

It gives the formulation to model the data. This also helps in
creating numeric values for the Monte Carlo simulation.

Simscape fluids This toolbox gives the model for the fluid system. The major
advantage of this system is that it is compatible with mechanical
systems, electrical systems, etc.

Simscape electrical It helps to simulate several e.g., electrical, mechanical systems
etc. It can be useful for developing control systems and electrical
systems.

Simscape driveline It has applications in modeling and simulation of rotational and
translational mechanical systems. It is compatible with C
programming.

Robust control toolbox The uncertain model is generated using the robust control
toolbox. It also helps to analyze the uncertainty in several
systems. It reduces plant and controller order.

Risk management
toolbox

This toolbox is used to model consumer and corporate credit
risk. These are basically used for the probability default model.

Radio Frequency
toolbox

RF toolbox helps to work with RF systems. It is also useful for
both time-domain analysis and frequency domain analysis.

Predictive
maintenance

It is helpful in detecting faults and estimating the remaining
useful life of a mechanical system. It is also used for data
management.

Phased array system It has the application in direction-of-arrival (DOA), range-Doppler
estimation. It is also useful in designing the waveform.

Partial differential
equation

It helps in generating mathematical formulation of structure
mechanical systems, heat transfer systems, electromagnetics,
etc. Users can also do the postprocessing and visualization
using this toolbox.

Optimization toolbox This toolbox is used to optimize nonlinear systems. It is also
useful for linear, quadratic programming, and several other
mathematical formulations.

Navigation toolbox It helps in modeling MAP representation (2-dimensional,
3-dimensional), SLAM, and path planning. It has applications in

22 | Introduction to MATLAB

 sensor modeling, pose estimation using sensors, and navigation
systems.

Due to the availability of these toolboxes, and comfortability for the users, MATLAB online is
becoming popular with the users. Following are the merits of MATLAB online [9]:

● Downloading and Installation not required: MATLAB online allows users to
access MATLAB products using any standard web browser on any computer with an
internet connection. Users need not download or install the MATLAB product, rather
they can access it online by signing in to their MathWorks account.

● Collaboration for online sharing: Users can share the m-files, live scripts, and
several other MATLAB products using MATLAB online. This enables the teachers to
conduct the training program, webinars, seminars, etc., in a convenient manner.

● Latest MATLAB version: MathWorks provides the latest version of MATLAB to the
users on MATLAB online platform. There is no need to update the license for the
same.

● Cloud storage: MathWorks provides a 5GB MATLAB drive for storing and accessing
the files which can be accessed online from anywhere or from any computer. This
feature also enables the user to synchronize the files between the computer and
MATLAB online. The users can also import and export the files from any computer to
a MATLAB drive.

● Hardware interaction: MATLAB online is compatible with USB webcams and audio
playback devices using Google chrome. It can also interact with low-processing
devices such as Raspberry Pi.

MATLAB online allows the users to use the cloud solution e.g., MATLAB and Simulink online,
MATLAB grader, ThingSpeak, MATLAB drive, etc. To access these facilities, users meet the
system specifications or requirements which are mentioned as follows [10]:

● The recommended browser is Google chrome. It is also compatible with cloud
solutions that are adaptable with almost all modern web browsers e.g., Google
Chrome, Mozilla Firefox, Apple Safari, and Microsoft Edge which runs on Windows,
Linux, and Mac.

● In the browser setting, cookies, pop-ups, and JavaScript should be enabled.
● It requires a good speed broadband connection with a 1Mbps minimum speed.
● MATLAB is available on the system and MATLAB mobile for smart devices.
● The minimum screen resolution and memory required for MATLAB are 1024×768

and 2GB, respectively.
● It supports ThingSpeak where the IoT devices must reinforce HTTP, TCP/IP, and

MQTT protocols. Moreover, the firewall should support the connection to the above-
mentioned protocol.

● Several amalgamations with learning management networks need LTI1.1 or LTI1.3.

Besides the advantages of MATLAB and Simulink online, these have several demerits also
[8]. Some of these are enlisted below:

MATLAB online demerits: MATLAB online is incompatible with some hardware e.g.,
instrument control. It does not support packaging tool for add-ons, MATLAB compiler,

IT Workshop| 23

MATLAB compiler SDK, Windows component i.e., COM. Users can operate xlsread and
xlswrite in basic mode only. The files with sizes larger than 256MB need to be operated
through MATLAB drive. Beside these, MATLAB online does not fully support a graphical
interface to the profiler, shell-escape bang (!) command. The app design facility can only be
accessed using Google chrome and Microsoft edge.

Simulink online demerits:

Simulink online does not support variant manager and Simulink debugger. External mode is
not available while communicating with raspberry pi hardware. Moreover, Simulink online
does not support deployment when communicating with parrot mini drone hardware.
Copy/paste feature from exterior applications is applicable. Simulink online is not compatible
with screen resolutions higher than 1900×1200. Apart from the above limitations, the
performance of Simulink online outside the United States is poor.

2.3.2 MATLAB offline
MATLAB offline works on the computer without internet connection. It is the most popular
amongst MATLAB users worldwide. The main reason is its better compatibility with the
hardware, accessibility of all MATLAB toolboxes, no dependency on the availability of
internet connection, etc. Once the MATLAB products are installed on a computer (installation
procedure is already discussed in Section 2.2), it is ready to use without an internet
connection. The user needs the internet connection only for downloading the files and
installing the product. MathWorks provides a network-based MATLAB license e.g., network
concurrent which does not need an internet connection, rather it needs a connection to the
license manager server on the local network for accessing the license. The following are the
merits of MATLAB in offline version:

MATLAB offline merits:

● Compatibility with the hardware: MATLAB offline is more compatible with
hardware like Raspberry Pi, USB webcams, serialport(), playback devices etc. This is
due to the availability of huge space for processing and independence to use without
any web browsers.

● Better performance: MATLAB offline gives better performance as it is independent
of internet connection and online MATLAB server. The heavy file can easily be
handled in the offline version.

● Support graphical interface: MATLAB offline supports a graphical interface to the
profiler.

● More features to operate: MATLAB offline supports more features like better screen
resolution, copy-paste from external applications, variant manager, Simulink
debugger, etc.

Due to the aforementioned advantages of the offline version of MATLAB, there are more
than 4 million active users worldwide. Moreover, when compared to MATLAB online,
MATLAB offline has several constraints. Some are as follows:

MATLAB offline demerits:

● It requires downloading the product files, which need huge memory space.
Installation is also a time-consuming process, though, it is a one-time process.

Unit Summary

24 | Introduction to MATLAB

● Collaboration with the others is a bit complex in offline MATLAB and makes it more

complex than MATLAB online.
● The latest version of MATLAB offline is not updated automatically unless the user

buys the license of the latest one.

The following points summarise the unit:

● History of MATLAB

- Inventor: Cleve Moler.

- Developer: MathWorks.

● Latest version R2022a was released in March 2022.
● Written in: C/C++, MATLAB
● Operating system: Windows, Linux, MacOS
● Editor window, command window, workspace window.
● Users can use the Help section to explore the toolboxes and MATLAB commands.
● MATLAB can be installed using: (i) standard installation method, and (ii) installation

without using an internet connection.
● MATLAB can be accessed using : (i) online mode, and (ii) offline mode.
● MATLAB online was released in March 2017.
● MATLAB online has the following merits:

- no downloading and no installation,

- collaboration for online sharing,

- latest version available for the user,

- cloud storage

● Cloud solution support by MATLAB online:

- MATLAB and Simulink online

- MATLAB grader

● MATLAB online has the following demerits:

- Hardware incompatibility and graphical user interface not supported

- Simulink online has constraints of performance, accessibility, and compatibility.

● MATLAB offline has the advantage of

- better performance and compatibility with hardware

- support several features, e.g., graphical user interface, etc.

● Matlab offline has the following disadvantages

- Complex downloading and installation process

- a collaboration with others not available,

- latest version not available.

Multiple Choice Questions

IT Workshop| 25

EXERCISES

2.1 MATLAB was originally designed by

(a) Steve Bangert (b) Cleve Moler (c) John N. Little (d) John Little

2.2 MATLAB was commercially released in

(a) 1960 (b) 1974 (c) 1984 (d) 1979

2.3 developed the MATLAB software.

(a) MathWorks, Inc. (b) Microsoft (c) Google (d) None of these

2.4 MATLAB is available in

(a) Online version (b) Offline version (c) Both online and offline (d) None of these

2.5 MATLAB can be accessed using

(a) Windows (b) Mac (c) Linux (d) all of the above

2.6 In the standard installation method, MATLAB is installed on a computer using

(a) internet connection (b) without an internet connection.

(c) both, (a) and (b) (d) none of the above

2.7 In which year, MATLAB online was released?

(a) 1984 (b) 2017 (c) 2019 (d) 2014

2.8 Latest version of MATLAB, R2022a, was released in

(a) 2021 (b) 2022 (c) 2019 (d) 2020

2.9 How much is the cloud storage capacity of MATLAB drive?

(a) 5GB (b) 2GB (c) 3GB (d) 7GB

2.10 Which of the following is not the cloud solution provided by MATLAB online?

(a) ThingSpeak (b) MATLAB grader (c) MATLAB drive (d) MathWorks

2.11 What is the minimum memory of a computer required for a cloud solution?

2.1 (b), 2.2 (c), 2.3 (a), 2.4 (c), 2.5 (d), 2.6 (a), 2.7 (b), 2.8 (b), 2.9 (a), 2.10 (d), 2.11 (b), 2.12
(d), 2.13 (a), 2.14 (b), 2.15 (b)

Answers to Multiple Choice Questions

Short and Long Answer Type Questions

26 | Introduction to MATLAB

(a) 5GB (b) 2GB (c) 3GB (d) 1GB

2.12 MATLAB online is incompatible with

(a) USB webcam (b) Audio devices (c) Raspberry pi (d) instrument control

2.13 Maximum screen resolution supported by Simulink online is

(a) 1900×1200 (b) 2560×1440 (c) 1080×600 (d) 1280×720

2.14 Which version of MATLAB supports the graphical interface?

(a) MATLAB online (b) MATLAB offline (c) Both (a) and (b) (d) None of the above

2.15 Statement 1: Latest version of MATLAB offline is updated automatically without getting

the license of the latest version.

Statement 2: Latest version of MATLAB online is updated automatically without getting

the license for the latest version.

(a) Only statement 1 is true.

(b) Only statement 2 is true.

(c) Both the statements, statement 1 and statement 2 are true.

(c) Both the statements, statement 1 and statement 2 are false.

2.1 Write a short note on the following

(a) Command window

(b) Editor window

(c) Workspace

2.2 What are the advantages and disadvantages of MATLAB online.

2.3 What are the advantages and disadvantages of the offline version of MATLAB.

2.4 Briefly describe the prerequisite system requirements for the latest version of MATLAB.

Know More

IT Workshop| 27

2.5 Compare the installation methods for installing MATLAB i.e., standard installation method

and installation without using internet connection method.

2.6. Explain the significance of the workspace window.

2.7 Write a brief note on toolbox availability in MATLAB online and MATLAB offline.

2.8 Convert the background of the MATLAB layout such that the MATLAB environment is
black and the font color is white.

2.9 How to clean the command history.

2.10 How to remove the content from the command window.

2.11 Try to resize the command window and editor window such that both windows take
equal space.

2.12 Change the font and writing style of the editor window.

2.13 Write applications of the following toolboxes:

(a) Signal processing toolbox

(b) Control system toolbox

(c) Image processing toolbox

(d) Aerospace toolbox

2.14 Which are the supported browsers for cloud solutions in MATLAB online.

2.15 Write a short note on system requirements for using a cloud solution.

Cleve Moler is an American mathematician and computer programmer. He earned his
graduate degree and doctorate degree from California Institute of Technology in 1961 and
Stanford University in 1965, respectively. He developed numerical computing packages and
gave these to his students. He is co-founder of MathWorks which then commercialized its
product i.e., MATLAB and Simulink. Cleve Moler received the Computer Pioneer Award and
IEEE John von Neumann Medal in 2012 and 2014, respectively.

MathWorks: MathWorks is a private corporation in America which handles computer
software. MathWorks’s headquarter is at Natick, Massachusetts, USA. Its major products are
MATLAB and Simulink. Cleve Moler and Jack Little initially set up the company to provide
free mathematical computing tools to graduate and post-graduate students in the 1970s.
Later, Little and Steve Bangert did the programming in C language. Then, they (along with
Cleve Moler) established MathWorks. Today, over 4 million active users are there worldwide.

References

28 | Introduction to MATLAB

[1] 'About MATLAB', 2022. [Online]. Available:
https://in.mathworks.com/products/matlab.html [Accessed: September- 2022].

[2] ‘About Simulink’, 2022. [Online]. Available:

https://in.mathworks.com/products/simulink.html [Accessed: September- 2022].

[3] ‘MATLAB Applications and Toolbox’, 2022. [Online]. Available:
https://in.mathworks.com/ [Accessed: September- 2022].

[4] ‘System Requirements for MATLAB’, 2022. [Online]. Available:

https://in.mathworks.com/support/requirements/matlab-system-requirements.html
[Accessed: September- 2022].

[5] ‘Install Products’, 2022. [Online]. Available:

https://in.mathworks.com/help/install/install-products.html [Accessed: September-
2022].

[6] ‘Install Products Using Internet Connection’, 2022. [Online]. Available:

https://in.mathworks.com/help/install/ug/install-products-with-internet-connection.ht
ml [Accessed: September- 2022].

[7] ‘Install Products Using File Installation Key’, 2022. [Online]. Available:

https://in.mathworks.com/help/install/ug/install-using-a-file-installation-key.html
[Accessed: September- 2022].

[8] ‘General Limitations in MATLAB online’, 2022. [Online]. Available:

https://in.mathworks.com/products/matlab-online/limitations.html [Accessed:
September- 2022].

[9] ‘Merits of MATLAB online’, 2022. [Online]. Available:

https://in.mathworks.com/products/matlab-online.html [Accessed: September-
2022].

[10] ‘Browser Requirements’, 2022. [Online]. Available:

https://in.mathworks.com/support/requirements/browser-requirements.html
[Accessed: September- 2022].

UNIT SPECIFICS

This unit covers the following aspects:

● Variables with their naming convention
● Operators in MATLAB which include arithmetic, relational and logical operators
● Rational expressions in MATLAB
● Type range and type casting in MATLAB

This unit starts with the introduction to variables and their applications in MATLAB
programming. It also explains the use of different operators in MATLAB with appropriate
examples for each. Moreover, it considers the rational expressions and operation of
these expressions using MATLAB. Besides these, it explains the different data types and
their conversions. This unit contains selected information as ‘Note’ to discuss the key
points of the content and exclusively covers a variety of examples and the discussion on
them. A large variety of Multiple-Choice Questions (MCQs) with their solutions at the end
of the unit are discussed. The MCQs are appended with short and long-type questions
which have two different categories. It also enlisted references and recommended
readings which helps the students to explore more about the content.

Basics of MATLAB 3

30 | Basics of MATLAB

RATIONALE

This unit familiarizes the students with the variables and their significance in MATLAB. It
explains several conventions for naming a variable. This unit also discusses the string and
character array. Several mathematical computations of more than two operands are
accomplished using the different operators. It helps the students to understand these operators,
e.g., arithmetic, logical and relational operators. Moreover, it also clarifies the application of
these operators which can be further used for engineering applications. This unit also introduces
the rational expressions and their uses in MATLAB. This becomes useful for complex
mathematical expressions. The simplification of the rational expressions leads to a decrease in
the computational burden of the system. Besides these, it also discusses the different data types
and their conversion using distinct MATLAB commands. Appended with this, the unit explains
each topic with suitable examples having explanations of each example.

PRE-REQUISITES
MATLAB environment

Basic mathematical concepts

UNIT OUTCOMES

The outcomes of this unit are as follows:

U3-O1:MATLAB variables and their applications

U3-O2: Explain operators in MATLAB

U3-O3: Rational expressions in MATLAB

U3-O4: Type casting in MATLAB

Unit-3 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U3‐O1 1 2 3 1 1

U3‐O2 1 2 1 1 1

U3‐O3 1 2 1 1 1

U3‐O3 1 2 1 1 2

IT Workshop| 31

We have seen the history of MATLAB, gradual development of the MathWorks
organization in the previous unit and explained how to install and work on MATLAB. Unit
2 also covered the details of command, editor, and workspace windows. The users can
introduce the input in the editor window, or in the command window. The user gets
spontaneous output using the command window. However, the editor window is
preferred for long and complex MATLAB program statements. It saves MATLAB
programs in m-files (with .m format) which can be accessed in the future. The aim of this
unit is to introduce the variables and the basic operations, e.g., arithmetic, logical,
relational, etc., with variables in MATLAB. This unit will cover the variables and
operators of MATLAB. Next, it introduces the rational expressions in MATLAB. Finally,
the type range and type casting will be discussed with examples.

3.1 Variables in MATLAB
MATLAB deals with the time-varying information or data obtained from the physical world
e.g., gyroscope data, accelerometer data, etc. These data are in the form of numeric
values, words, and so on. MATLAB has enormous mathematical functions and tools to
execute the different operations on this physical world information. MathWorks has
introduced a huge number of toolboxes to build up these functions. MATLAB uses
variables for further processing of the data. This section introduces the variables and the
basic variable types in MATLAB. A variable in the programming language is used to
reserve some form of value. Using the variable in MATLAB helps to avoid repeating the
same value frequently in the code and thus improves the readability of the script.

Different types of variables require unequal memory size which depends on the type of
the values. MATLAB supports different types of values, such as Numeric (plain integer,
long integer, float (real number), complex), Boolean (logical), or char (string). Let 𝑖 be a
variable and 𝑘 value assigned to it. In order to define a variable, the variable name
always appear on the left of equality, i.e., 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 ⇒ 𝑖 𝑘 .

Assign the numeric value 10 to a variable 𝑖.

Solution:

>> 𝑖 10

𝑖

10

(Continue for error): Assign the numeric value 10 to a variable 𝑖.

Solution:

>> 10 𝑖

32 | Basics of MATLAB

 10 𝑖

↑

Error: Incorrect use of '=' operator.

(Continue for using semicolon) : Assign a numeric value 10 to variable 𝑖.

Solution:

>> 𝑖 10;

>>

Description of Example 3.1: After typing 𝑖 10 in the Command Window, as shown in
Figure 3.1, the value 10 is assigned to the variable 𝑖. Typing 𝑖 10 does not imply that
variable 𝑖 equals 10. The symbol "=" is known as an assignment operator in MATLAB. It
is worth noting that the variable 𝑖 is kept on the left side of the assignment operator else
it leads to an error message as shown in Example 3.1 (Continue for error). The symbol
';' is put after the variable name to avoid hitting the enter key for displaying the content. It
is also noted that the variable in MATLAB is an array or matrix. Example 3.1 creates a
1-by-1 matrix named 𝑖 and the value 10 is assigned to 𝑖.

Figure 3.1: Illustration of assigning value to variable using the command window.

IT Workshop| 33

3.1.1 Variables naming conventions
Variable naming conventions in programming languages help to move easily from
language to language. It also helps to communicate the source code from one developer
to fellow developers. The most common variable naming conventions in MATLAB are as
follows:

● Variable names should begin with alphabets (lowercase or uppercase).
● Variable names support only the underscore symbol (‘_’) inside or at the end of

the variable name.
● MATLAB is case-sensitive, so variables X and x are not the same.
● Keywords in a programming language are reserved for a specific purpose. The

variable name in MATLAB should not be the same as the MATLAB keywords.
The list of the MATLAB keywords, which can be found by running the built-in
function iskeyword(), includes 'catch', 'classdef', 'spmd', 'elseif', 'end', 'for',
'function', 'global', 'if', 'else', 'otherwise', 'parfor', 'persistent', 'continue', 'return',
'switch', 'break', 'try', 'case' and 'while' [1]. MATLAB keywords are case-sensitive
and have different meanings with upper and lower letters.

● The space is not allowed in variable name. Name with space will be considered
as two different variables and give an error.

● MATLAB provides some predefined variables which cannot be used as variable
names as they can create conflict with user-defined variable names [2]. Some
predefined variables in MATLAB are as follows:

- pi: It is a mathematical term π.

- i or j: It represents the complex number which has the value

- inf: Denotes the infinity value in MATLAB.

- NaN: It indicates ‘not a number’.

- clock: Represents the time in MATLAB.

- date: It shows the current date.

 1 .

- eps: It denotes ‘epsilon’, which is the smallest number in MATLAB.

- ans: Shows the outcome in the command window.

Assign values 10, 12, and 14 to variables 𝑖, 𝑖_7, and 𝑖8, respectively.
Solution:

>> 𝑖 10

𝑖

10

34 | Basics of MATLAB

>> 𝑖_7 12

𝑖_7

12

>> 𝑖8 14

𝑖8

14

(Continue for error): Assign values 10 and 12 to variables 𝑖# and 𝑖_7,
respectively.
Solution:

>> 𝑖# 10

𝑖# 10

Error: Invalid text character.

>> 𝑖_7 12

𝑖7

Error: Undefined function or variable ' 𝑖7 '.

(Continue for error because of case-sensitive): Assign value 10 to the
variable 𝑖.
Solution:

>> 𝑖 10

𝐼

Error: Undefined function or variable ' 𝐼 '.

(Continue for error because of using keyword): Assign 10 and 12 to the
variables 𝑘 and K, respectively.
Solution:

>> 𝑘 10

𝑘

(Continue for error due to space): Assign value 10 to the variable NEW
DELHI.
Solution:

>> 𝑁𝐸𝑊 𝐷𝐸𝐿𝐻𝐼 10

𝑁𝐸𝑊 𝐷𝐸𝐿𝐻𝐼

Error: Undefined function 'NEW' for input arguments of type

'char'.

Error: Incorrect use of '=' operator.

>> 𝐾 10

𝐾

 10

IT Workshop| 35

Description of Example 3.2: The assigned value 10 to 𝑖 variable successfully works
because 𝑖 is an alphabet. The remaining part of the variable name is followed by
underscore, numbers, and alphabets. Example 3.2 (Continue for error) illustrates an
incorrect variable because the first convention of the variable name is not an alphabet.
Next, 𝑖# gives an error because the variable name allows only underscore and other
symbols are syntactically invalid. The variable I is an undefined variable as MATLAB is
case-sensitive. Similarly, the variables 𝑖 and 𝐼 are treated as different variables. The
variable 𝑘 gives an error because it is a MATLAB keyword. However, 𝐾 is not a keyword
and can successfully work as a variable. The space in the variable name 𝑁𝐸𝑊 𝐷𝐸𝐿𝐻𝐼
gives an error as MATLAB does not successfully recognize 𝑁𝐸𝑊, space, 𝐷𝐸𝐿𝐻𝐼 .

3.1.2 Character variables
MATLAB supports character arrays and string arrays to represent the text. Character
arrays are the succession of the characters and they basically used to accumulate
fragments of texts as character vectors. These character arrays are represented using
single quotes. It is also possible that the inputs of the arrays are different data types. In
such cases, the char function (denoted as 𝑐ℎ𝑎𝑟) converts the array of different types into
the character.
array.

𝑐ℎ𝑎𝑟() function also converts the multiple arrays into a single character

Store a character array Learnprogramming to a variable 𝑐ℎ𝑟.
Solution:

>> chr = ('Learnprogramming')

chr =

36 | Basics of MATLAB

 'Learnprogramming'

Access information of variable 𝑐ℎ𝑟.
Solution:

>> whos chr

Name Size Byte Class Attributes

chr 1×13 26 char

(Continue for concatenation): Write a program to concatenate two character
arrays.
Solution:

>> chr1=('MAHARASHTRA');

>> chr2=(chr1, 'PUNE')

chr2=

'MAHARASHTRAPUNE'

(Continue to retrieve sequence from character array): Store a character
array MAHARASHTRA to a variable. Retrieve the sequence AHA from the
array MAHARASHTRA.
Solution:

>> chr1=('MAHARASHTRA');

>> chr1(2:4)

ans=

‘AHA’

Description of Example 3.3: Former part of the example assigns the character
'Learnprogramming' to the variable chr. For this, the character array needs to be kept in
single quotes (‘ ’). The information in the character array can be accessed using whos
command. whos command displays information in terms of name, size, memory storage,
class, and attributes. The next part shows the concatenation of the two character arrays,
‘MAHARASHTRA’ and ‘PUNE’, to give the output character ‘MAHARASHTRAPUNE’.
MATLAB allows retrieving the sequence from the character array. The latter part of the
example describes the method to retrieve ‘AHA’ from the character array
‘MAHARASHTRA’.

IT Workshop| 37

3.1.3 String variables
A string in MATLAB is a vector and its characters are the elements of the string. The
sequence of characters is stored in terms of a data type called a string data type. Same
as character data type, the user can designate the text in terms of the m-file name,
graphical labels, and textual facts. In the string arrays, the text is confined in double-
quotes (“ ”).

Store a string array to variable str.
Solution:

>> str=(“Learn programming”)

str =

“Learn programming”

Access information of variable str.

Solution:

>> whos str

Name Size Byte Class Attributes

str 1 × 1 174 string

(Continue to convert a string into character): Convert a string array “Learn

programming” into a character array.

Solution:

>> str=(“Learn”, “programming”)

str =

”Learn” “programming”

>> chr = convertStringsToChars(str)

chr =

’Learn’ ’programming’

(Combining text with string): Compute the circumference of a circle of

radius 2 unit.

38 | Basics of MATLAB

 Solution:

>> Radius = 2;

>> Circumference = 2 ∗ pi ∗ Radius;

>> Statement = “Total circumference is” + Circumference + “unit”

Statement =

“Total circumference is 12.5664 unit”

Description of Example 3.4: In the first part of the example, it assigns the string “Learn
programming” to the variable 𝑠𝑡𝑟. Further, the information about the 𝑠𝑡𝑟 display using the
𝑤ℎ𝑜𝑠 command. The next part of the example uses convertStringsToChars() to convert
the string array into a character array. Users can append text with strings using the '+'
operator. The latter part of the example explains the application of '+' operator to add
text with string.

3.2 Operators in MATLAB
Operators are the mathematical functions that are used to accomplish the mathematical
computation of two or more operands. As the operands can be numeric values,
variables, or logical expressions, the operators are classified into different categories,
e.g., arithmetic, relational, logical, etc. These mathematical operators take the
mathematical expressions in the form of linear equations, differential equations, etc., as
the input and give a corresponding output when executed in computer programming
languages.

3.2.1 Arithmetic operators
Arithmetic operators are the mathematical functions that are used to perform different
mathematical operations. The most commonly used operators in MATLAB are as shown
in Table 3.1.

Table 3.1: Commonly used arithmetic operators [3].

Symbol Definition MATLAB function Example Output

+ Addition plus() 4+2 6

- Subtraction minus() 4-2 2

* Multiplication times() 4*2 8

/ Division rdivide() 4/2 2

^ Exponentiation power() 4^2 16

IT Workshop| 39

Add two numbers and multiply them by a real number.
Solution:

>> x = 2; y = 3;

>> z = x + y;

z =

5

>> m = 5*z;

m =

25

(Continue using inbuilt MATLAB functions): Using inbuilt MATLAB
functions to solve the above example.
Solution:

>> z = plus(x, y);

z =

5

>> m=times(5, z);

m =

25

Description of Example 3.5: The example first assigns two numbers 2 and 3 to the
variables 𝑥 and 𝑦, respectively. Sum value of these two variables is assigned to another
variable 𝑧. Further, the variable 𝑧 is multiplied by the number 5 and the final result is
assigned to a variable 𝑚. MATLAB has its own inbuilt functions to perform arithmetic
operations. Table 3.1 illustrates these inbuilt mathematical functions. The use of plus()
and times() are shown in the example.

MATLAB is useful for complex mathematical computation. So, the use of parentheses
becomes crucial for such complex expressions. When these parentheses are used,
they are given the highest precedence for computation.

Compute 2 + 3 × 4 using MATLAB.
Solution:

>> 2+3*4

ans =

● Addition/subtraction are given the lowest precedence.

The multiplication/division is given third priority and
computed from left to right.

●

● The exponentials are given second priority and computed
from left to right.

Higher to
lower

priority
order

● Parentheses are computed with the highest priority.

Operator/parentheses Precedence

40 | Basics of MATLAB

 14

(Continue using parentheses): Solve (2+3)×4 using MATLAB.
Solution:

>> (2+3)*4;

ans =

20

Discussion on Example 3.6: The output of 2 3 4) is 14, on the other hand, the
use of the parentheses 2 3 4 leads to the outcome of 20. This is due to the fact
that MATLAB works on a precedence basis. It gives the highest precedence to
parentheses than another mathematical operator [4]. The order of preference for
mathematical operators is shown in Table 3.2.

Table 3.2: Precedence of the operators and parentheses.

Note: MATLAB by default displays four digits after the decimal point. A user can change
the number of such digits using the format command. format bank, format long, and
format short commands are used to display two, fifteen, and four digits, respectively
after the decimal point.

3
Evaluate 2 ∗ (4 + 2)/3 ∗ (5 + 1) expression.
Solution:

>> 2 ∗ (4 + 2 ∗ 2 ∗ 2)/3 ∗ (5 + 1)

ans =

IT Workshop| 41

1.3333

3
(Continue for highly precise output): Evaluate 2 ∗ (4 + 2)/3 ∗ (5 + 1)
expression and display the output up to 15 digits.
Solution:

>> format long

>> 2 ∗ (4 + 2 ∗ 2 ∗ 2)/3 ∗ (5 + 1)

ans =

1.333333333333333

(Continue for moderate precise output):
3

Evaluate 2 ∗ (4 + 2)/3 ∗ (5 + 1) and display the output up to 4 digits.
Solution:

>> format short

>> 2 ∗ (4 + 2 ∗ 2 ∗ 2)/3 ∗ (5 + 1)

ans =

1.3333

3
(Continue for low precise output): Evaluate 2 ∗ (4 + 2)/3 ∗ (5 + 1) and
display the output up to 2 digits.
Solution:

>> format bank

>> 2 ∗ (4 + 2 ∗ 2 ∗ 2)/3 ∗ (5 + 1)

ans =

1.33

Discussion on Example 3.7: MATLAB displays the output in 4 digits after decimal
point. The accuracy becomes crucial many times, thus, it requires more digits to express
the results. For this, format long command can be used. format long command will
increase the number of digits to 15 after the decimal point. Example shows the
application of the format long command. It is clear that the format long command is
useful if the user wants high accuracy in the results. format short command will lead to 4
digits after the decimal point. Moreover, format short command is useful when moderate
accuracy is required. An extra number of bits at the outcome requires more memory
space and it leads to an increase in processing time. In the long MATLAB programs, the

0

42 | Basics of MATLAB

aforementioned constraints become significant. Thus, the format bank command can be
used to reduce the number of bits after decimal points. format bank command reduces
the number of digits to two after the decimal place as shown in the example.

Mathematical functions in MATLAB: There are several mathematical functions given
in MATLAB [5]. Users can give the input to these mathematical functions within the
parentheses and MATLAB will give the corresponding output in terms of the numeric
value or graphical representation. Some of the generally used inbuilt mathematical
functions are mentioned in Table 3.3.

Table 3.3: Commonly used mathematical functions.

Symbol Definition Example Output

sin Sine 𝑠𝑖𝑛 𝑝𝑖/6 0.5000

cos Cosine 𝑐𝑜𝑠 𝑝𝑖/6 0.8660

tan Tangent 𝑡𝑎𝑛 𝑝𝑖/6 0.5774

exp Exponential 𝑒𝑥𝑝 1/2 1.6487

𝑙𝑜𝑔 .
𝑒

Natural logarithm 𝑙𝑜𝑔 10
𝑒

2.3026

𝑙𝑜𝑔 .
10

Logarithm with
base 10

𝑙𝑜𝑔 10
10

1.0000

Square root . 9 3.0000

Apart from the above mathematical functions, MATLAB has some other inbuilt

mathematical representation. MATLAB gives the outcome of the expression 0 , which is
0

denoted by 𝑁𝑎𝑁 (Not a number). For 1 , MATLAB gives 𝑖𝑛𝑓 (infinity) as output. Some of

the mathematical representations available in MATLAB are illustrated in Table 3.4.

Table 3.4: Mathematical representation in MATLAB [4].

Mathematical
representation

Input command at
prompt

Output

Infinity 1
0

Inf

Imaginary number 𝑖 1+1.0000𝑖

Not a number 0
0

NaN

IT Workshop| 43

π 𝑝𝑖 3.1416

Factorial (!) factorial(3) 6

Note:

● factorial (𝑁) function in MATLAB works perfectly when 𝑁 21.
● MATLAB identifies the inbuilt function ‘i’ as an imaginary number that has the

value equal to 1 .

3.2.2 Relational operators
Relational operators compare the two expressions. The expressions can be represented
in terms of the false statement (expressed as 0) or true statement (expressed as 1).
Considering two variables 𝑥 and 𝑦. The statement 𝑥 𝑦 returns true if the value
assigned to 𝑥 is greater than the value assigned to 𝑦, otherwise, the statement returns
false. For example, if the values assigned to 𝑥 and 𝑦 are 1 and 2, respectively. Then, the
statement 𝑥 𝑦 is false and returns 0 as the output command window. MATLAB also
has relational functions to compare the mathematical expressions. Table 3.5 shows the
relational operators and their corresponding MATLAB functions [6].

Table 3.5: Relational operators and their corresponding MATLAB functions.

Operators Description MATLAB
function

Example Output Remark

 greater than 𝑔𝑡 2 3 0 False statement

 greater than or equal 𝑔𝑒 3 2 1 True statement

 less than 𝑙𝑡 2 3 1 True statement

 Less than or equal 𝑙𝑒 3 2 0 False statement

∼ not equal 𝑛𝑒 2~ 3 1 True statement

 equal 𝑒𝑞 3 2 0 False statement

Calculate 2 × (1 + 4) >= (2 + 8) using MATLAB.
Solution:

>> 2 ∗ (1 + 4) >= (2 + 8)

3

44 | Basics of MATLAB

 ans =

1

(Continue using MATLAB function): Calculate 2 × (1 + 4) >= (2 + 8)
using function ge().
Solution:

>> ge(2 ∗ (1 + 4), (2 + 8))

ans =

1

Discussion on Example 3.8: The statement is to compare the two expressions
2 1 4 and 2 8 . The condition of greater than or equal to is satisfied and

the corresponding output is displayed as logical "1". MATLAB function ge() can also be
used to compare the two expressions as shown in the example.

2 4

Compute (3) ∼= (1 + 2).
Solution:

>> 3 ∗ 3 ∼= (1 + 2 ∗ 2 ∗ 2∗ 2)

ans =

1

(Continue using MATLAB function): Calculate 2 × (1 + 4) ~= (2 + 8)
using MATLAB function.
Solution:

>> ne(2*(1+4), (2+8))

ans =

0

Discussion on Example 3.9: It compares the two mathematical expressions
2

 and

1 2
4

for the condition ‘not equal to’. The output displays the logical "1" as the condition

IT Workshop| 45

is satisfied. The second part of the example compares the expressions using the
MATLAB function ne() for not equal to condition.

3.2.3 Logical operators
Logical operators operate two logical statements or expressions. OR, AND, NOT are
called fundamental logical operators. Apart from these three fundamental logical
operators, there are other logical operators (called as universal logical operators),
namely, EX-OR, EX-NOR. These other logical operators can be implemented from the
fundamental logical operators. In MATLAB, the fundamental logical operators OR,
AND, NOT are expressed as ‘|', ‘&’, ' ∼ ', respectively. The logical operators in MATLAB
are shown in Table 3.6 [7].

Table 3.6: Logical operators with their MATLAB functions.

Logical operator Symbol MATLAB
function

Example Output

Logical OR | and () 1|0 1

Logical AND & and () 1&0 0

Logical NOT ~ not () ~ 1 0

Logical OR (with
short-circuiting)

|| 1||0 1

Logical AND (with
short-circuiting)

&& 1&&0 0

Consider 𝐴 and 𝐵 to be the two logical expressions. Table 3.7 illustrates OR, AND, NOT
for different possible conditions of logical expressions 𝐴 and 𝐵 and corresponding logical
output.

Table 3.7: Truth table of logical operators [7].

Expression A Expression B OR | AND & NOT A
~ 𝐴

NOT B
~ 𝐵

0 0 0 0 1 1

0 1 1 0 1 0

1 0 1 0 0 1

1 1 1 1 0 0

46 | Basics of MATLAB

Note: MATLAB provides the higher precedence for AND operation (&) as compared to
OR operation (|). The computation takes place from left to right. For better results, use
parentheses. Moreover, short-circuit AND (&&) and short-circuit OR (||) have the same
order of precedence [3].

Compute the output of the logical expression (Y OR NOT(Z)) AND (Y OR
Z), where both expressions Y and Z are true.
Solution:

>> Y = 1;

>> Z = 1;

>> (Y||(∼ Z))&&(Y||Z);

ans =

1

(Continue for Y = 0, Z = 0): Compute the output of the above expression
when Y and Z are false.
Solution:

>> Y = 0;

>> Z = 0;

>> (Y||(∼ Z))&&(Y||Z);

ans =

0

Discussion on Example 3.10: Let 𝑌 and 𝑍, both are true, i.e., 𝑌 1 and 𝑍 1. The
expression 𝑌 𝑂𝑅 𝑁𝑂𝑇 𝑍 𝐴𝑁𝐷 𝑌 𝑂𝑅 𝑍 can be expressed as
1 𝑂𝑅 𝑁𝑂𝑇 1 𝐴𝑁𝐷 1 𝑂𝑅 1 , which gives the result as logic ‘1’. In the latter part,
both 𝑌 and 𝑍 are false. Therefore, the expression 𝑌 𝑂𝑅 𝑁𝑂𝑇 𝑍 𝐴𝑁𝐷 𝑌 𝑂𝑅 𝑍
results in 0 𝑂𝑅 𝑁𝑂𝑇 0 𝐴𝑁𝐷 0 𝑂𝑅 0 . Thus the output is finally logic "0".

1

IT Workshop| 47

3.3 Rational expressions in MATLAB
A rational number expresses the ratio of two numbers i.e.,

 𝑝 , where
𝑞

and

𝑞 are the

integers and 𝑞 is not equal to zero. MATLAB has a command, simplifyfraction(expr), to
simplify the rational expressions. The common terms in numerator and denominator are
excluded in the command. Another command, simplifyFraction(expr, 'Expand', true),
expands the numerator and denominator in simplified forms.

2

Write a MATLAB program to simplify the expression 𝑧 𝑦 1 .
𝑦 1 𝑦 1

Solution:

>> syms y, z

>> Var1 = z*(y^2-1)/(y+1)*(y-1);

>> simplifyFraction(Var1)

ans =

z

Description of Example 3.11: Symbols y and z are initialized by using syms y, z
2

command. Next, assign the expression 𝑧 𝑦 1
𝑦 1 𝑦 1

2

to a variable ‘Var1’. Command

simplifyFraction simplifies the expression 𝑧 𝑦 1 𝑧 𝑦 1 𝑦 1 to 𝑧.
𝑦 1 𝑦 1 𝑦 1 𝑦 1

Commands 𝑟𝑎𝑡 and 𝑟𝑎𝑡 determine the rational approximation of the expression. The
approximated values are in the form of an array that has the reduced version of the
fraction extension. It is often preferable to express the floating numbers as rational
numbers with numerators and denominators. 𝑟𝑎𝑡 command returns the approximate

value of the variable in the form of 𝑃
𝑄 . Similarly, the 𝑟𝑎𝑡 command gives the

approximate value of the variable in the following form of 𝑄 1 , where 𝑄 , 𝑄
1 𝑄 1 2

2 𝑄 1
𝑄
𝑛

,…,𝑄 are integers.
𝑛

(π in terms of rational numbers):
Display the approximate value of π in terms of rational numbers.
Solution:

>> format rat

𝑝

3

48 | Basics of MATLAB

 >> pi

ans =

355/113

(π in terms of continued fraction expansion):
Display the approximate value of π in terms of continued fraction expansion.
Solution:

>> p = rat (pi);

p =

‘3 1/ 7 1/ 16 ’

Description on Example 3.12: The example illustrates the value of π in terms of
rational numbers. By using rat command, it gives in the form of 𝑃 . Using command

𝑄

rat(.) for representing the value of π in continued fraction expression.

Extracting numerator and denominator from the rational expression: MATLAB uses
numden function to draw out the numerator and denominator from a given symbolic
number, expression, function, vector, or matrix expression.

Extract the numerator and denominator from number 1 .
4

Solution:

>> [p, q] = numden(sym(1 / 4))

p = 1

q = 4

(Continue for expression): Extract the numerator and denominator from

rational expression 𝑦 𝑧 .
2 2
𝑦 𝑧

Solution:

>> syms y z

>> [p, q] = numden(y-z) / (y^2+z^2)

p = y - z

𝑓 𝑧 𝑒

2

IT Workshop| 49

q = y^2 + z^2

𝑧

(Continue for function): Consider the functions 𝑓 𝑧 𝑒 and 𝑔 𝑧 𝑠𝑖𝑛 𝑧 .
3 2
𝑧 𝑧

Extract the numerator and denominator from 𝑓 𝑧 and 𝑓 .
𝑔

Solution:

>> syms f(z) g(z)

>> f(z) = exp(z) / z^3;

>> g(z) = sin(z) / z^2;

>> [p, q] = numden (f);

p(z) = exp(z)

q(z) = z^3

>> [p, q] = numden (f / g);

p(z) = exp(z)

q(z) = z*sin(z)

(Continue for rational expression): Extract the numerator and denominator

from transformed rational expression 𝑦
2 2

.

 𝑧
𝑧 𝑦

Solution:
>> [p, q] = numden(y^2 / z + z^2 / y)

p = y^3 + z^3

q = y ∗ z

Discussion on Example 3.13: It separates numerator and denominator from
expressions sym 1 , 𝑦 𝑧 using the numden command. In the next part, the

4 2 2
𝑦 𝑧

numerator and denominator are separated from the expression

 𝑓
𝑔

, where

𝑧

3
𝑧

and 𝑔 𝑧 𝑠𝑖𝑛 𝑧 . The function numden transforms the numerator and denominator into
𝑧

one rational form such that the greatest common factor is equal to 1.

50 | Basics of MATLAB

3.4 Type range and type casting
As we have seen in the previous sections, MATLAB supports different data types. Table
3.8 summaries the data types and specifications [8]. It shows that each data type has a
fixed format and utility. Using the proper data type helps to simplify the program.
Furthermore, Table 3.9 gives the range of the numeric data type [9].

Table 3.8: Illustration of data types in MATLAB.

Data type Significance

Numeric types Integer values, floating-point numbers, etc. are included

Characters and
strings

These include text in terms of character and string arrays

Date and time It shows date and time arrays in distinct representations

Categorical arrays It contains qualitative data arrays, e.g., finite impulse response
data

Tables Tabular arrays include numerical or categorical data

Timetables It includes time-stamped data in tabular representation

Structures Structures contain arrays of different sizes and types

Cell arrays Cell arrays include arrays of different sizes and types

Functional handles It allows a variable for a functional call when required

Map containers It contains different keys which are assigned with different
values

Time series It includes time-sampled data

Data type
identification

These data types assist to identify the variable

Data type
conversion

It leads to the conversion of data type to another data type

Table 3.9: Illustration of the details of numeric data types in MATLAB.

Class Storage Range Description

int8 1 byte 7 7
 2 , 2 1 8-bit signed integer arrays

IT Workshop| 51

int16 2 byte 15 15
 2 , 2 1 16-bit signed integer arrays

int32 4 byte 31 31
 2 , 2 1 32-bit signed integer arrays

int64 8 byte 63 63
 2 , 2 1 64-bit signed integer arrays

uint8 1 byte 8
0, 2 1 8-bit signed integer arrays

uint16 2 byte 16
0, 2 1 16-bit signed integer arrays

uint32 4 byte 32
0, 2 1 32-bit signed integer arrays

uint64 8 byte 64
0, 2 1 64-bit signed integer arrays

Type casting is used to change an expression from one data type to another. It helps to
perform the operations effectively. For example, type casting converts a floating value
into an integer value. This section covers the transformation of one data type to another.
To convert a given data type of a variable into the desired data type, MATLAB uses
typecast() command.

Convert 𝑢𝑖𝑛𝑡8 31 and 𝑢𝑛𝑖𝑡8 255 into 𝑖𝑛𝑡 8 .
Solution:

 𝑡𝑦𝑝𝑒𝑐𝑎𝑠𝑡 𝑢𝑖𝑛𝑡8 31 , ′ 𝑖𝑛𝑡8′

𝑎𝑛𝑠

31

 𝑡𝑦𝑝𝑒𝑐𝑎𝑠𝑡 𝑢𝑖𝑛𝑡8 255 , ′ 𝑖𝑛𝑡8′

𝑎𝑛𝑠

 1

(Continue for vector) Convert 𝑢𝑖𝑛𝑡32 256 31 1 vector into 𝑖𝑛𝑡 8 .
Solution:

 𝑍 𝑢𝑖𝑛𝑡32 256 31 1

 𝑡𝑦𝑝𝑒𝑐𝑎𝑠𝑡 𝑍, ′ 𝑖𝑛𝑡8 ′

𝑎𝑛𝑠

52 | Basics of MATLAB

 1 0 0 0 31 0 0 0 1 0 0 0

Discussion on Example 3.14: It converts 𝑢𝑖𝑛𝑡8 31 and 𝑢𝑛𝑖𝑡8 255 to 𝑖𝑛𝑡 8 data
type using 𝑡𝑦𝑝𝑒𝑐𝑎𝑠𝑡() command. Then, for ‘Continue for vector’, the first element of Z is
exceeding 8-bits. Thus, it is transformed from Z(9) to Z(10) as an overflow. It should be
noted that each bit in uint32 is represented as 4 bits. Therefore, the total length in uint8
will be four times the length of uint32.

The data type can also be classified as a single-precision array and double-precision
array, on the basis of the number of digits required to express a floating-point number.
Single precision arrays have applications where it requires low accuracy whereas double
precision arrays have applications in scientific calculations where high accuracy is
required. Single precision arrays are 32-bit floating-point values. Users can convert a
given data type to a single-precision data type using the 𝑠𝑖𝑛𝑔𝑙𝑒 command. Further, the
information can be extracted from the variable using the 𝑤ℎ𝑜𝑠 command. MATLAB uses
‘double precision’ data type to store 64-bit floating-point values. Double-precision is the
default data type if the data type of a given variable is not defined. Double precision
variables can be either created by using
bracket, i.e., ‘[]’.

𝑑𝑜𝑢𝑏𝑙𝑒 or putting the data in a square

Represent a numerical value using a single-precision array, and extract the
information of the variable.
Solution:

>> x = single(2);
>> whos x

Name Size Byte Class Attributes

x 1×1 4 single

Represent a numerical value using a double-precision array, and extract the
information about the variable.
Solution:

>> x = 2;

>> whos x

Name Size Byte Class Attributes

x 1×1 8 double

𝑞

Unit Summary

IT Workshop| 53

Description of Example 3.15: Initially, It assigns single-precision value 2 to the variable
‘x’ by using single(2) command. Then, it uses whos command to extract the information
in terms of name, size, byte, class, and attributes about the variable ‘x’. Continuing the
example for double-precision value. The numerical value ‘2’ is assigned to the variable
‘x’. The default data type is a double data type associated with the variable ‘x’.

Following points summarize the unit:

● Variables reserve the values in different forms to avoid repetition in the program.
● MATLAB supports character arrays and string arrays to represent the text.

- In character arrays, the text is confined to single quotes.

- In string arrays, the text is represented in double-quotes.

● MATLAB operators are used to accomplish the mathematical computation of two
or more operands.

● MATLAB operators include arithmetic operators, relational operators, logical
operators, etc.

- Arithmetic operators include addition, subtraction, division, multiplication, and
perform different mathematical operations.

- Relational operators compare the two expressions. Relational operators
include >, >=, <, <=, ~=, = =.

- Logical operators operate the two logical statements or expressions. The
fundamental logical operators are

- OR (|),

- AND (&),

- NOT (~).

● A rational number expresses the ratio of two numbers i.e., 𝑝 , where 𝑝 and 𝑞 are

the integers and 𝑞 is a non-zero value.
● numden command in MATLAB can be used to draw out the numerator and

denominator from a given rational expression.
● Data type decides the properties associated with the numerical and character

values.

- Data types include Numeric types, Characters, and strings, Date and time,
Categorical arrays, Tables, Timetables, Structures, Cell arrays, Functional
handles, Map containers, Time series, Data type identification, and Data type
conversion.

- Numeric data types include int8, int16, int32, int64, uint8, uint16, uint32,
uint64.

Multiple Choice Questions

54 | Basics of MATLAB

● Single precision arrays and double precision arrays represent the floating-point
numbers to denote the number of bits after the decimal point.

EXERCISES

3.1 Correct way of assigning a numerical value ‘20’ to a variable ‘i’.

(a) >> i=20 (b) >> 20=i (c) Both (a) and (b) (d) None of these

3.2 Which of the following is the correct variable name?

(a) 22i (b) I_2 (c) for (d) None of these

3.3 Which of the following is the correct variable name?

(a) if (b) IF (c) 2IF (d) 2_IF

3.4 The correct variable name is

(a) spmd (b) switch (c) Try (d) try

3.5 Which of the following is a predefined variable name?

(a) inf (b) NaN (c) clock (d) All of above

3.6 Which is not a predefined variable name?

(a) ans (b) eps (c). data (d) date

3.7 Which of the following is not a MATLAB keyword name?

(a) through (b) case (c) catch (d) continue

IT Workshop| 55

3.8 Which of the following is a MATLAB keyword name?

(a) for (b) function (c). global (d) All of the above

3.9 Which MATLAB command is used to extract the information about a variable?

(a) whose (b) whos (c) Whos (d) Whose

3.10 whos command in MATLAB gives the information about the variable in terms of

(a) Name, Size, Byte, Class, Attributes

(b) Name, Length, Byte, Class, Attributes

(c) Name, Size, Byte, Keywords, Attributes

(d) Name, Size, Byte, Class, Character

3.11 In the string arrays, the text is confined in

(a) single-quotes (b) double-quotes (c) Both (a) and (b) (d) None of these

3.12 In the character arrays, the text is confined in

(a) single-quotes (b) double-quotes (c) Both (a) and (b) (d) None of these

3.13 In MATLAB, which operators are given highest priority?

(a) Addition (b) Multiplication (c) All parentheses (d) Subtraction

3.14 Compute the output of the MATLAB statement

>> 5+4*2

(a) 18 (b) 13 (c) 9 (d) None of these

3.15 Compute the output of the MATLAB statement

>> (5+4/2)*2

56 | Basics of MATLAB

(a) 14 (b) 9 (c) 12 (d) 16

3.16 Compute the output of the MATLAB statement

>> format bank

>> 4 * (2 + 3 ^ 3)/3 * (7 + 1)

(a) 309.33 (b) 309.3333 (c) 309.00 (d) 309.33333333

3.17 Compute the output of the MATLAB statement

>> format short

>> 4 * (2 + 3 ^ 3)/3 * (7 + 1)

(a) 309.33 (b) 309.3300 (c) 309.0000 (d) 309.3333

3.18 Compute the output of the MATLAB statement

>> 4 * (2 + 3 ^ 3)>=44

(a) 1 (b) 0 (c) NaN (d) Inf

3.19 Compute the output of the MATLAB statement

>> 2 * (1 + 2 ^ 2) ~ = 10

(a) 1 (b) 0 (c) NaN (d) Inf

3.20 Compute the output of the MATLAB statement

>> eq(2 * (1 + 2 ^ 2) , 10)

(a)
7 7 15 15 31 31 63 63

3.1 (a), 3.2 (b), 3.3 (b), 3.4 (c), 3.5 (d), 3.6 (c), 3.7 (a), 3.8 (d), 3.9 (b), 3.10 (a), 3.11

(b), 3.12 (a), 3.13 (c), 3.14 (b), 3.15 (a), 3.16 (a), 3.17 (d), 3.18 (a), 3.19 (b), 3.20 (a),

Answers to Multiple Choice Questions

IT Workshop| 57

(a) 1 (b) 0 (c) NaN (d) Inf

3.21 MATLAB function for ‘>=’ is

(a) gte() (b) get() (c) ge() (d) gt()

3.22 Compute the output for the expression (A OR NOT(B)) AND (A OR B), if A is

true, and B is false.

(a) 1 (b) 0 (c) NaN (d) Inf

3.23 Compute the output for the expression (A OR NOT(B)) AND (A OR B), if A is

false, and B is true.

(a) 1 (b) 0 (c) NaN (d) Inf

3.24 What is the range of int16 data type?

 2 , 2 1 (b) 2 , 2 1 (c) 2 , 2 1 (d) 2 , 2 1

3.25 What is the range of uint32 data type?

(a) 0, 2
8

 1 (b) 0, 2
16

 1 (c) 0, 2
32

 1 (d) 0, 2
64

 1

3.21 (c), 3.22 (a), 3.23 (b), 3.24 (b), 3.25 (c)

Short and Long Answer Type Questions

Category-I

58 | Basics of MATLAB

3.1 What is a variable? Explain the variable naming conventions in MATLAB.

3.2 Enlist the predefined variables in MATLAB. Describe the significance of each
in MATLAB programming.

3.3 Differentiate between the character array and string array.

3.4 Explain how concatenation of two-character arrays is done using MATLAB?

3.5 What is the significance of whos command in MATLAB? Explain with an

example.

3.6 What are the operators in MATLAB. Write a short note on

(a) arithmetic operators,

(b) logical operators,

(c) relational operators.

3.7 Explain the order of preference for mathematical operators in MATLAB
with an example.

3.8 Explain the significance of the following format commands with example

(a) format long

(b) format short

(c) format bank

3.9 Write a brief note on the following logical operators

(a) OR

(b) AND

(c) NOT

2 3

3𝑥

3 3

3 3

Category-II

References

IT Workshop| 59

3.10 Write a short note on the data types.

3.11 Assign the values 2, 4 and 6 to the variables x, x2 and x_2, respectively.

3.12 Retrieve the sequence ‘hi’ from the character array ‘Delhi’ using MATLAB

3.13 Compute the output of the expression 8 3 4 1 2 /3 4 in
MATLAB and display the result with 15 digits after the decimal point.

3.14 Compute the output of the expression 8 3 4 1 2 /3 4 in
MATLAB and display the result with 2 digits after the decimal point.

3.15 Find the output of the logical expression
MATLAB.

4 2 3 1 2) using

3.16 Design an EX_OR operator using MATLAB.

3.17 Design an EX_NOR operator using MATLAB.

3.18 Extract the numerator and denominator from the expression 𝑥 𝑠𝑖𝑛 𝑥

using

MATLAB.
𝑒 𝑐𝑜𝑠 𝑥

3.19 Write a MATLAB program to convert the 𝑢𝑖𝑛𝑡16 31 and 𝑢𝑛𝑖𝑡16 255 to
𝑖𝑛𝑡 16 data type. What conclusions can be drawn from the results?

3.20 Assign a numeric value to a variable. Extract the information about variables

in MATLAB. Convert the default data type to a single-precision data type.

[1] 'List of MATLAB keywords', 2022. [Online]. Available:
https://www.mathworks.com/help/matlab/ref/iskeyword.html [Accessed:
September- 2022].

[2] ‘Predefined values and variables in MATLAB’, 2022. [Online]. Available:

https://www.cdslab.org/matlab/notes/values-variables-types/variables/index.ht
ml [Accessed: September- 2022].

[3] ‘MATLAB Operators and Special Characters’, 2022. [Online]. Available:

60 | Basics of MATLAB

https://www.mathworks.com/help/matlab/matlab_prog/matlab-operators-and-sp
ecial-characters.html [Accessed: September- 2022].

[4] ‘Operator Precedence’, 2022. [Online]. Available:

https://in.mathworks.com/help/matlab/matlab_prog/operator-precedence.html
[Accessed: September- 2022].

[5] ‘Mathematical Functions’, 2022. [Online]. Available:

https://in.mathworks.com/help/symbolic/mathematical-functions.html
[Accessed: September- 2022].

[6] ‘Relational Operators’, 2022. [Online]. Available:

https://in.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relati
onal-operators.html [Accessed: September- 2022].

[7] ‘Logical Operations’, 2022. [Online]. Available:

https://in.mathworks.com/help/matlab/logical-operations.html [Accessed:
September- 2022].

[8] ‘Data Types’, 2022. [Online]. Available:

https://in.mathworks.com/help/matlab/data-types.html [Accessed: September-
2022].

[9] ‘Numeric Data Types with range’, 2022. [Online]. Available:

https://in.mathworks.com/help/matlab/numeric-types.html [Accessed:
September- 2022].

UNIT SPECIFICS

This unit discusses the following aspects:

● Introduction to vectors and matrices
● Generation of different types of vectors and matrices in MATLAB
● Performing operations, arithmetic, relational and logic with vectors and matrices

This unit covers the generation of vectors and matrices in MATLAB and their operations,
including arithmetic, logical and relational operations. Each topic consists of various
examples with a brief discussion on each example, which helps the readers get more
into the content. This also discusses the sequence generation in MATLAB, which helps
students use them in different applications, including signal generation in signal
processing, control systems, etc.

This unit consists of various questions following Bloom's taxonomy's lower and
higher order. These questions are in the form of multiple-choice and short and long
answer questions. These questions help develop logical skills and understanding of the
content. This unit also consists of experiments which are based on the applications of
the content. These will help students to apply the concepts on real world problems. It
also enlisted references and recommended readings which helps the students to explore
more about the content.

Vectors and
Matrices in
MATLAB

4

62 | Vectors and Matrices in MATLAB

RATIONALE

This unit familiarizes the students with vectors and matrices in MATLAB. Initially, it discusses the
generation of sort of vectors and matrices appended with examples. Then, it covers different
operations on vectors and matrices, including arithmetic operations, relational operations, and
logical operations. Arithmetic operation includes addition, subtraction, multiplication division,
and computation of power of the array. In relational operation, it compares the two expressions
in the form of vectors or matrices. Logical operation includes the AND, OR, or NOT operations
of the two or more expressions. These operations are crucial for engineering applications,
applied mathematics, digital systems, etc. It also includes sequence generation which is helpful in
time-varying signal generation, digital circuits, etc.

PRE-REQUISITES

Basics of linear algebra

Operators in MATLAB

Rational expressions in MATLAB

Type range and type casting in MATLAB

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U4-O1: Create vector and matrices in MATLAB

U4-O2: Perform arithmetic, logical, and relational operations with vector and matrices

U4-O3: Generate sequence in MATLAB

Unit-4 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U4‐O1 - 3 1 1 -

U4‐O2 - 3 1 1 -

U4‐O3 - 3 1 1 -

IT Workshop| 63

This unit covers the generation of vectors and matrices in MATLAB and their operations.
Vectors and matrices are used to store the data. Vectors represent either in terms of rows
or columns. A row vector with 𝑖 elements has the dimension of 1 𝑖, and is expressed as
 Similarly, the column vector has the dimension

1 𝑖
𝑗 1 and it can be represented as

 . A single-valued vector (scalar) has the number of rows and columns equal to unity,
𝑗 1

thus, it has the dimension of 1 1. Matrix represents a rectangular array of numbers,
expressions, or symbols. The matrix consists of rows and columns. Consider a matrix 𝐹
that has the dimension of 𝑖 𝑗, i.e. 𝐹 , in which 𝑖 and 𝑗 denote the number of rows and

𝑖 𝑗

columns, respectively.

4.1 Vectors
The array of m-elements can be expressed as ℝ𝑚 𝑎 , 𝑎 𝑎 . The elements in row vector

1 2 𝑚

and column vectors are horizontally and vertically expressed, respectively. Transpose of a
row vector converts it into a column vector and vice versa. Transpose of a vector 𝑣 is
represented as 𝑣'. The element values in the zero vector are equal to zero. Vector allows
the operations, e.g., arithmetic, logical, etc. However, arithmetic operations have to satisfy
the dimensionality rule.

4.1.1 Create row and column vectors
Row vectors are created by putting all elements in a square bracket. The elements are
separated by using the space bar or comma.

Generate a row vector of four elements using the spacebar.
Solution:

 𝑟 1 2 3 4

𝑟

1 2 3 4

Generate a row vector of four elements using commas.
Solution:

 𝑟 1, 2, 3, 4

𝑟

64 | Vectors and Matrices in MATLAB

1 2 3 4

Description of Example 4.1: The row vector 𝑟 consists of 4 elements that are separated
by space. It can also be generated by using commas.

A column vector is created by putting all the elements in a square bracket. Each element is
separated by a semicolon.

Generate a column vector .

Solution:

 𝑐 2; 1; 2; 1

𝑐 2

1

2

1

What is the output of two times transpose of vector 1
Solution:

 𝑐 1 2 3 4 '

𝑐 1

2

3

4

c' = 1 2 3 4

2 3 4 .

Discussion of Example 4.2: It illustrates a column vector ‘𝑐 ’ of 4 elements separated by
semicolon (;). Transpose to transpose of a vector generates the same vector because a
row vector converts to a column vector by taking the transpose and again column vector to
the row vector.

IT Workshop| 65

4.1.2 Operation with vectors
This section discusses the arithmetic, relational, and logical operations
with vectors.

(a) Arithmetic operation with vectors: Vector addition follows the basic
arithmetic formulation i.e., it allows the element-wise addition or
subtraction. For element-wise arithmetic operation, the dimension of the
vector should be matched. Consider two-row vectors 𝑟1 and

1 𝑚
𝑟2 . Then, the vector 𝑟1 can be added to the vector 𝑟2 if 𝑚 and

1 𝑛

𝑛 are equal.

Add the two vectors 2 1
Solution:

 𝑟1 2

 𝑟2 2

 𝑟1 𝑟2

𝑎𝑛𝑠

4 3

3 2 and 2 2 3 3 .

1

3 2 ;

2 3 3 ;

6

5

(Continue with error): Add the two vectors 2 1 3 2 and 3 2 3 .
Solution:

 𝑟1 2 1 3 2

 𝑟3 3 2 2

 𝑟1 𝑟3

𝑟1 𝑟3

“Error: Matrix dimensions must agree”.

Discussion of Example 4.3: In the aforementioned example, the vectors 𝑟1 and 𝑟2 have
the dimension 1 4, thus they are successfully added, and the output vector is 1 4
dimension. When the row vector 𝑟3 3 2 2 of dimension 1 3 is added with 𝑟1 in
MATLAB, it gives an error “Matrix dimensions must agree” as shown in the example.

66 | Vectors and Matrices in MATLAB

MATLAB supports scalar to vector and vector to vector multiplications. The scalar term in
scalar to vector multiplication is multiplied with each element of a vector. Considering a
scalar quantity α and a vector 𝑟1, the result of scalar to vector multiplication is α𝑟1. Vector
to vector multiplication requires the matching of the dimensions of vectors. Vector
multiplication follows the element-wise multiplication where a row vector is multiplied with a
row vector and column vector is multiplied with a column vector. For element-wise
multiplication, ‘ * ’ must be used.

A column vector can also be multiplied with the row vector. In this case, it can be done in
two ways:

● Dot product or inner product: When the product of vectors leads to a scalar value, it
is called a dot product of vectors. If 𝑥 and 𝑦 are the two vectors then 𝑥 𝑦 denotes
the dot product of two vectors. MATLAB function for the dot product is denoted by
𝑑𝑜𝑡 𝑥, 𝑦 .

● Outer product: When the product of vectors results in the formation of a matrix,
then it is known as the outer product of vectors. For the two vectors 𝑥 and 𝑦,
Symbol 𝑥 ⊗ 𝑦 denotes the outer product of the two vectors. 𝑚𝑡𝑖𝑚𝑒𝑠 𝑥, 𝑦 denotes
the MATLAB function for the outer product of vectors.

Multiply a vector 1 2 3 4 5 with a scaler α 5.

Solution:

 𝑟1 1 2 3 4 5

 α 5

 α ∗ 𝑟1

𝑎𝑛𝑠

5 10 15 20 25

(Distributive property in vectors): Generate two vectors 1 2 3 4 5 and
6 7 8 9 10 . Add the vectors and multiply them with a scaler α 5.

Solution:

 𝑟1 1 2 3 4 5 ;

 𝑟2 6 7 8 9 10 ;

 α 5;

 α ∗ 𝑟1 𝑟2

IT Workshop| 67

𝑎𝑛𝑠

35 45 55 65 75

 α ∗ 𝑟1 α ∗ 𝑟2

𝑎𝑛𝑠

35 45 55 65 75

Discussion of Example 4.4: Initially generates two vectors 𝑟1 1 2 3 4 5 and
𝑟2 6 7 8 9 10 . The two vectors are added and the output is multiplied with a
scalar 5. Scalar multiplication follows the distributive property, which states that
α ∗ 𝑟1 𝑟2 α ∗ 𝑟1 α ∗ 𝑟2. The example also illustrates the applicability of
distributive property using MATLAB.

(Multiplication of row vectors and scalar value): Let two vectors are
3 4 1 and 1 4 2 . Multiply the vectors and scale them by 2.

Solution:

 𝑟1 3 4 1 ;

 𝑟2 1 4 2 ;

 α 2;

 α ∗ 𝑟1 . ∗ 𝑟2

𝑎𝑛𝑠

6 32 4

(Multiplication of column vectors and scalar value): Let two vectors are
𝑇 𝑇

3 4 1 and 1 4 2 . Multiply the vectors and scale them by 2.

Solution:

 𝑟1 3 4 1 ';

 𝑟2 1 4 2 ';

 α 2;

 α ∗ 𝑟1 . ∗ 𝑟2

68 | Vectors and Matrices in MATLAB

𝑎𝑛𝑠

6

32

4

(Inner product): Compute the output of the following expression
𝑇

3 4 1 1 4 2

Solution:

 3, 4, 1 ∗ 1; 4; 2 ;

ans =

21

(Outer product): Compute the output of the following expression
𝑇

3 4 1 ⊗ 1 4 2
Solution: 3; 4; 1 ∗ 1, 4, 2

ans=

3 12 6

4 16 8

1 4 2

(Outer product using MATLAB function): Compute the output of the following
expression using MATLAB function

𝑇
3 4 1 ⊗ 1 4 2

Solution: 𝑚𝑡𝑖𝑚𝑒𝑠 3; 4; 1 ', 1, 4, 2

ans=

3 12 6

4 18 8

1 4 2

Description of Example 4.5: The two vectors 𝑟1 3 4 1 and 𝑟2 1 4 2 are
multiplied to give output 3 16 2 . Then the scalar parameter α 2 is multiplied to the
output and gives the final output vector 6 32 4 . Similarly, it multiplies the column

𝑇

IT Workshop| 69

vectors 3 4 1
𝑇

and 1 4 2
𝑇

using element-wise multiplication and gives the output

3 16 2 . It computes the dot product using expression [3; 4; 1]*[1, 4, 2]. Then, it
evaluates the outer product using expression 3; 4; 1 ∗ 1, 4, 2 . MATLAB function can
also be used for vector multiplication as shown in the example.

(b) Relational operation with vectors: The two vectors can also be compared using the
relational operator as mentioned in Table 3.5. For this operation, an element-wise
comparison can be done. Moreover, the vector can also be compared with a scalar. To do
this, it compares the scalar parameter with each element.

Compute the output of the following expression

5 2 6 1 2 5 6 2

Solution:

 5 2 6 1 2 5 6 2

𝑎𝑛𝑠

1 4 logical array

1 0 1 0

(Continue using MATLAB function): Compute the output of the following

expression:

5 2 6 1 2 5 6 2

Solution:

 𝑔𝑒 5 2 6 1 , 2 5 6 2

𝑎𝑛𝑠

1 4 logical array

1 0 1 0

(Comparison with scalar): Compute the output of the following expression:

5 2 6 1 2

70 | Vectors and Matrices in MATLAB

Solution:

 𝑔𝑒 5 2 6 1 , 2

𝑎𝑛𝑠

1 4 logical array

1 1 1 0

(Comparison of row vector with column vector): Compute the output of the
following expression:

𝑇
1: 4 1 2

Solution:

 𝑙𝑒 1: 4, 1; 2

𝑎𝑛𝑠

2 4 logical array

1 0 0 0

1 1 0 0

Description of Example 4.6: This illustrates the use of relational operators for vector
comparison. Initially, in the expression 5 2 6 1 2 5 6 2 , it compares
element-wise and checks whether the condition is true or not? it displays ‘1’ if it is true
else ‘0’. Next, it uses MATLAB function ‘ge()’ to perform the aforementioned operation. This
also compares the vector 5 2 6 1 with a scalar value such that scalar value ‘two’ is
compared with each element of vector 5 2 6 1 . At last, it compares a row vector

1: 4 1 2 3 4 with a column vector 1 2
𝑇
and displays the output as .

(c) Logical operation with vectors: MATLAB allows the logical operation with the vector.
It performs the element-wise operation using the logical operators (AND, OR NOT). Table
3.7 illustrates the basic logical operators.

(AND operation without MATLAB function): Consider
𝑣1 1 2 4 0 𝑎𝑛𝑑 𝑣2 2 0 1 2 vectors. Compute the output
of the following expression

𝑣1 𝐴𝑁𝐷 𝑣2

IT Workshop| 71

Solution:

 𝑣1 1 2 4 0 ;

 𝑣2 2 0 1 2 ;

 𝑣1 & 𝑣2

𝑎𝑛𝑠

1 4 logical array

1 0 1 0

(OR operation Continue using MATLAB function): Compute the output of the

following expression using MATLAB function:

𝑣1 𝑂𝑅 𝑣2

Solution:

 𝑣1 1 2 4 0 ;

 𝑣2 2 0 1 2 ;

 𝑜𝑟 𝑣1, 𝑣2

𝑎𝑛𝑠

1 4 logical array

1 1 1 1

(NOT operation Continue using MATLAB function): Compute the output of the

following expression using MATLAB function:

𝑁𝑂𝑇 𝑣1

Solution:

 𝑣1 1 2 4 0 ;

 𝑛𝑜𝑡 𝑣1

72 | Vectors and Matrices in MATLAB

𝑎𝑛𝑠

1 4 logical array

0 0 0 1

Description of Example 4.7: Initially, it creates 𝑣1 1 2 4 0 , and
𝑣2 2 0 1 2 vectors. In AND operation without MATLAB function, It performs
AND operation using ‘&’ operator. As MATLAB allows its inbuilt logical operators, thus, it
uses ‘or()’ command and ‘not()’ command to perform OR and NOT operations,
respectively.

4.2 Matrices
A matrix is a two-dimensional array often used for linear algebra. Consider a matrix 𝑀

𝑖 𝑗
,

where 𝑖 denotes the number of rows and 𝑗 denotes the number of columns.

4.2.1 Matrices creation
A matrix is created by generating rows and columns. The row elements
are isolated by putting either commas or space and column elements are
generated by putting semicolons within the square bracket. Users can
compute the number of row vectors and column vectors in a matrix 𝐴 using
𝑠𝑖𝑧𝑒 𝐴 command.

Generate a matrix

Solution:

 𝑀 3

𝑀

3 3

2 4

6 4

𝑀

using MATLAB.

3 2

0

4; 2

4

5 2 5; 6 4

1

2

7

2

0

4

 5 2 5

 1 2 7

IT Workshop| 73

(Computing the number of rows and columns): Compute the number of rows
and columns of a matrix 𝑀.

Solution:

 𝑠𝑧 𝑠𝑖𝑧𝑒 𝑀 ;

𝑠𝑧

3 5

Description of Example 4.8: Initially, it creates matrix 𝑀 by separating row elements using
space bar and column elements using semicolons. Then, it computes the number of rows
and columns using 𝑠𝑖𝑧𝑒 the command. The number of rows and columns are 3 and 2,
respectively. The significance of 𝑠𝑖𝑧𝑒 is realized when it creates another matrix or vector
of the same size.

Note:

● A matrix whose number of rows is equal to the number of columns is called a
square matrix. A square matrix 𝑆 can be expressed as 𝑆

𝑖 𝑖
.

● A matrix with all the diagonal elements equal to one and the rest equal to zero, is
called an identity matrix. The identity matrix is basically a particular case of the
square matrix. In MATLAB, the user can create an identity matrix using 𝑒𝑦𝑒
command.

● A non-square identity matrix can be created using 𝑒𝑦𝑒 𝑚, 𝑛 command, where 𝑚
and 𝑛 is the number of rows and columns, respectively, and 1's are present only at
the diagonal.

Generate an identity matrix of size 3 3.

Solution:

 𝐼 1 0 0; 0 1 0; 0 0 1

𝐼

1 0 0

0 1 0

0 0 1

74 | Vectors and Matrices in MATLAB

(Generate identity matrix using MATLAB function): Create an identity matrix
of size 4 4 using MATLAB function.

Solution:

 𝐼 𝑒𝑦𝑒 4

𝐼 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(Generate non-square identity matrix): Generate non-square identity matrix of
size 3 2.

Solution:

 𝐼 𝑒𝑦𝑒 3, 2

𝐼

1 0

0 1

0 0

(Generate identity matrix having same size of another matrix):

Compute the size of non-square matrix 𝑀 . Also, create a non-square
identity matrix of resultant size.

Solution:

 𝑀 2 4; 5 6; 7 8 ;

 𝑠𝑧 𝑠𝑖𝑧𝑒 𝑀

𝑠𝑧

3 2

IT Workshop| 75

 𝐼 𝑒𝑦𝑒 𝑠𝑖𝑧𝑒 𝑀 , '𝑙𝑖𝑘𝑒, ', 𝑀

𝐼

1 0

0 1

0 0

Description of Example 4.9: Initially, it creates an identity matrix of dimension 3 3.
Identity matrices of dimensions 4 4 and 3 2 have been created using the command
𝑒𝑦𝑒 4 and 𝑒𝑦𝑒 3, 2 , respectively. Also generate an identity matrix of the same size as the
given matrix.

In MATLAB, an array that contains all elements as ones or zeros can be created. It uses
command 𝑜𝑛𝑒𝑠 to create an array which contains all elements as ones. 𝑧𝑒𝑟𝑜𝑠
command can be used to create an array containing all zeros.

(Generate square matrix): Generate a 3 3 square matrix whose all elements

are one.

Solution:

 𝑂 𝑜𝑛𝑒𝑠 3

𝑂

1 1 1

1 1 1

1 1 1

(Continue to generate non-square matrix): Generate a 3 2 square matrix

whose all elements are one.

Solution:

 𝑂 𝑜𝑛𝑒𝑠 3, 2

76 | Vectors and Matrices in MATLAB

𝑂

1 1

1 1

1 1

(Continue to generate a matrix consisting of all elements equal to one
having same size to that of another matrix):

Generate a non-square matrix 𝑀 . Also, create a matrix consists of all

elements equal to one and having the same size as that of matrix 𝑀.

Solution:

 𝑀 1 3; 5 7; 9 1

 𝑠𝑧 𝑠𝑖𝑧𝑒 𝑀

𝑠𝑧 3 2

 𝐼 𝑜𝑛𝑒𝑠 𝑠𝑖𝑧𝑒 𝑀 , '𝑙𝑖𝑘𝑒 ', 𝑀

𝐼

1 1

1 1

1 1

Discussion of Example 4.10: Initially, it creates a 3 3 matrix containing all elements
equal to one using 𝑜𝑛𝑒𝑠 3 command. In Continue to generate a non-square matrix, it
creates a non-square matrix of dimension 3 2, containing all ones. It creates a matrix
which has the same size as the given matrix.

IT Workshop| 77

(Generate square matrix): Generate a 3 3 square matrix whose all elements

are zeros.

Solution:

 𝑧 𝑧𝑒𝑟𝑜𝑠 3

𝑧

0 0 0

0 0 0

0 0 0

(Continue to generate non-square matrix): Generate a 3 2 non-square

matrix whose all elements are zeros.

Solution:

 𝑂 𝑧𝑒𝑟𝑜𝑠 3, 2

𝑧

0 0

0 0

0 0

(Generate a matrix consisting of all elements equal to zero and the size is
equal to another matrix):

Generate a non-square matrix 𝑀 . Also, create a matrix consisting of
all

elements equal to 1 and having the same size as that of matrix 𝑀.

Solution:

78 | Vectors and Matrices in MATLAB

 𝑀 1 3; 5 7; 9 1

 𝑠𝑧 𝑠𝑖𝑧𝑒 𝑀

𝑠𝑧 3 2

 𝑧 𝑧𝑒𝑟𝑜𝑠 𝑠𝑖𝑧𝑒 𝑀 , '𝑙𝑖𝑘𝑒 ', 𝑀

𝑧 0 0

0 0

0 0

Discussion of Example 4.11: This generates a 3 3 matrix containing all elements
equal to one using 𝑜𝑛𝑒𝑠 3 command. In Continue to generate non-square matrix, it
forms a non-square matrix of dimension 3 2 containing all zeros. Finally, It creates a
matrix which has the same size as the given matrix.

4.2.2 Operation with matrices
(a) Arithmetic operation with matrices: Arithmetic operation (addition, subtraction, etc.)
with the matrices follows the same rule as the vectors. However, the multiplication rules
follow the matrix algebra. Matrix multiplication can be done in two different ways.

Scalar to matrix multiplication: In this type of multiplication, it computes the product of a
scalar with each element of the matrix.

Multiply square matrix

Solution:

 α 3;

 𝑀 1 2

𝑀

1 2 5

2 3 5

4 2 7

3 ∗ 𝑀

𝑀

5; 2

3

5; 4

with scalar value α 3.

2 7

IT Workshop| 79

3 6 15

6 9 15

12 6 21

Matrix to matrix multiplication: To understand the matrix multiplication, consider the two
matrices, 𝐴 and 𝐵 which are having the dimension of 𝑖 𝑘 and 𝑘 𝑗, respectively.
Multiplication of matrix 𝐴 and matrix 𝐵 gives the matrix 𝐶, where 𝐶 𝐴 𝐵. The matrix 𝐶
has the dimension 𝑖 𝑗. The dimension 𝑘 and the dimensions 𝑖, 𝑗 are known as inner and
outer matrix dimensions, respectively. The matrix multiplication does not follow the
commutative property, therefore, 𝐴 𝐵 is not always equal to 𝐵 𝐴.

Consider the two matrices 𝐴
multiplication 𝐴 𝐵 .

Solution:

 𝐴 1 3 4; 2 1

𝐴 1 3 4

2 1 5

7 3 1

 𝐵 2 1 4; 4 2

𝐵 2 1 4

4 2 7

8 4 2

 𝐶 𝐴 ∗ 𝐵

𝐶

46 23 33

48 24 25

and 𝐵

. Compute the

5; 7

3

1

7; 8

2

2

80 | Vectors and Matrices in MATLAB

34 17 51

(Continue to compute 𝐵 𝐴): Calculate the multiplication 𝐵 𝐴. Check
whether matrix multiplication follows commutative property.

Solution:

 𝐷 𝐵 * 𝐴

𝐷

32 19 17

57 35 33

30 34 54

Matrix multiplication with identity matrix follows commutative property.

Solution:

 𝐴 1 3 4; 2 1 5; 7 3 1

𝐴 ∗ 𝐼

1 3 4

2 1 5

7 3 1

𝐼 ∗ 𝐴

1 3 4

2 1 5

7 3 1

Description of Example 4.13: Initiated with assigning values to variables 𝐴 and 𝐵. Then it
computes the product 𝐴 ∗ 𝐵 assigned in variable 𝐶. Then, it evaluates matrix 𝐷 which is
equal to 𝐵 ∗ 𝐴. Here, we have seen that matrix 𝐶 is not equal to matrix 𝐷. Hence, matrix
multiplication does not follow the commutative property. Furthermore, multiplication with the

IT Workshop| 81

identity matrix with any matrix follows the commutative property (when dimensions of
matrix and identity matrix are satisfied), i.e., 𝐴 ∗ 𝐼 𝐼 ∗ 𝐴.

(b) Relational operation with matrices: Two matrices can be compared element-wise
using the relational operators (for relational operators, see Table 2.5). It compares each
element and the output ‘1’ if the condition is true.

Compute the output of the following expression

Solution:

 4 2 5; 3 9 6; 8 1 4 3 4 8; 8 7 3; 3 5 4

𝑎𝑛𝑠

3 3 logical array

1 0 0

0 1 1

1 0 1

(Continue using MATLAB function): Compute the output of the following

expression using MATLAB function

Solution:

 𝑔𝑒 4 2 5; 3 9 6; 8 1 4 , 3 4 8; 8 7 3; 3 5 4

𝑎𝑛𝑠

3 3 logical array

82 | Vectors and Matrices in MATLAB

1 0 0

0 1 1

1 0 1

(Continue comparison with scalar): Compute the output of the following
expression:

 4

Solution:

 𝑔𝑒 4 2 5; 3 9 6; 8 1 4 , 4

𝑎𝑛𝑠

3 3 logical array

1 0 1

0 1 1

1 0 1

Description of Example 4.14: Initially, it compares the expression using
𝑔𝑒 4 2 5; 3 9 6; 8 1 4 , 3 4 8; 8 7 3; 3 5 4 command which scrutinizes
element-wise. Next, it compares the same using the MATLAB function.

(c) Logical operation with matrices: Logical operations can also be performed with
matrices. Element-wise operation is performed using the logical operators (see Table 3.7
for logical operators).

(AND operation without MATLAB function): Display the output of the following
expression

 AND

IT Workshop| 83

Solution:

 𝑣1 2 0 1;

 𝑣2 1 1 0; 3

 𝑣1 & 𝑣2

𝑎𝑛𝑠

3 3 logical array

1 0 0

1 1 0

0 0 1

2

1

1

0;

0;

2

0

0

0

4 ;

2 ;

(OR operation using MATLAB function): Display the output of the following

OR

Solution:

 𝑣1 2 0 1; 2 1 0; 0 0 2 ;

 𝑣2 1 1 0; 3 1 0; 2 0 4 ;

 𝑜𝑟 𝑣1, 𝑣2

𝑎𝑛𝑠

3 3 logical array

1 1 1

1 1 0

1 0 1

(NOT operation using MATLAB function): Display the output of the following

84 | Vectors and Matrices in MATLAB

 expression using MATLAB function:

𝑁𝑂𝑇

Solution:

 𝑣1 2 0 1; 2

 𝑛𝑜𝑡 𝑣1

𝑎𝑛𝑠

3 3 logical array

0 1 0

0 0 1

1 1 0

 1

0; 0

0

2 ;

Description of Example 4.15: It initiates with assigning arrays
2 0 1; 2 1 0; 0 0 2 and 1 1 0; 3 1 0; 2 0 4 to the

variables 𝑣1 and 𝑣2, respectively. Next, it performs the element-wise AND operation using
‘&’ operator. Next, it performs the logical OR operation using MATLAB function 𝑜𝑟 . It also
accomplishes logical NOT operation of the variable 𝑣1 using the MATLAB function 𝑛𝑜𝑡 .

4.3 Sequence generation in MATLAB
Generationing a sequence of finite number of samples is widely used in applied
mathematics, engineering science etc. Most of the periodic or aperiodic signals are
expressed using a sinusoidal waveform where the time is varied in a specific pattern. It
helps to produce these time-varying signals. A small array can be created manually.
However, it becomes very difficult to create a sequence that consists of thousands or lakhs
of samples, e.g. 1 2 10000 . In MATLAB, a sequence of specific patterns can be
generated using the colon. The formulation for generation of sequence is

starting value : increment: end value

A user can form the sequence 1 2 10000 , where 10000 is an
arbitrary value, by considering initial value as 1 and final value as 10000
while considering incremental value is 1. The total number of samples are
10000.

Unit Summary

IT Workshop| 85

MATLAB has an inbuilt linspace command to generate the sequence. This command is
helpful when the initial value, final value, and the total number of samples are known,
whereas the incremental change is unknown. The expression for this command is
𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 𝑥, 𝑦, 𝑁 , where 𝑥 and 𝑦 are initial and final values, respectively, and 𝑁 is the total
number of samples.

Generate a sequence whose initial value is 2, the final value is 10 and the total
number of samples are 6.

Solution:

 𝑧 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 2, 10, 6

𝑧 2. 0000 3. 6000 5. 2000 6. 8000 8. 4000 10. 0000

Generate a sinusoidal signal 𝑥 𝑡 2𝑠𝑖𝑛 4π 𝑡 . Select the time 𝑡 such that initial
value is 0, final value is 10 and total number of samples are 20.

Solution:

 𝑡 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 0, 20, 10

ans=

0 2. 2222 4. 4444 6. 6667 8. 8889 11. 1111 13. 3333 15. 5556 17. 7778 20

 𝑥 2 * 𝑠𝑖𝑛 4 * π * 𝑡

𝑥 0 0. 6840 1. 2856 1. 9696 1. 9696 1. 7321 1. 2856 0. 6840 0

Description of Example 4.16: It generates a sinusoidal signal 𝑥 of amplitude 2 unit and
frequency of 2Hz. For the aforementioned information, the signal 𝑥 at time instance t can
be formulated as 𝑥 𝑡 𝐴𝑠𝑖𝑛 2π𝑓𝑡 . 𝑓 is the frequency of the signal, which indicates the
total number of cycles completed in one second. If the time 𝑡 is selected such that its initial
value, final value, and total number of samples are defined. Then, it can compute the
corresponding signal 𝑥 𝑡 .

● Vectors are represented either in terms of rows or columns
● Matrices consist rows and columns

Multiple Choice Questions

86 | Vectors and Matrices in MATLAB

● A row vector can be created by putting all elements in a square bracket and

separated by using a space bar or commas
● Column vectors are obtained by putting all the elements in a square bracket where

each element is separated by a semicolon
● Different operations can be performed on vectors and matrices
● Vectors can be added together, provided dimensions should be matched
● Vector addition and subtraction follow the distributive property
● Vector multiplication follows the element-wise multiplication
● A matrix can be created in MATLAB by separating row elements by space bar or

commas and column elements by semicolons
● A matrix whose all the diagonal elements are equal to one and the rest are equal to

zero is called an identity matrix
● MATLAB allows a generation of sequences that can be used for different

applications.

EXERCISES

4.1 Which of the following is the correct way of creating a row vector?

(a) 𝑣𝑎𝑟1 1; 5; 7; 4 ;

(b) 𝑣𝑎𝑟1 1, 5, 7, 4 ;

(c) 𝑣𝑎𝑟1 1: 5: 7: 4 ;

(d) 𝑣𝑎𝑟1 1. 5. 7. 4 ;

4.2 Which of the following is the correct way of creating a column vector?

(a) 𝑣𝑎𝑟1 1; 5; 7; 4 ;

(b) 𝑣𝑎𝑟1 1, 5, 7, 4 ;

(c) 𝑣𝑎𝑟1 1: 5: 7: 4 ;

(d) 𝑣𝑎𝑟1 1. 5. 7. 4 ;

4.3 Compute the output of the MATLAB statement

 4 * 1, 4, 6, 3

(a)
𝑇 𝑇 𝑇 (d) None of these

IT Workshop| 87

(a) 1, 4, 6, 12 (b) 4, 4, 6, 3 (c) 4 16 24 12 (d) None of these

4.4 Compute the output of the MATLAB statement

 4 * 1; 4; 6; 3

4 16 24 12 (b) 4, 4, 6, 3 (c) 1, 4, 6, 12

4.5 Compute the output of the MATLAB statement

 4 * 1, 4, 6

(a) 4 16 24 𝑇

(b) 4, 4, 6 𝑇 (c) 4 16 24 (d) None of these

4.6 Compute the output of the MATLAB statement

 2, 7, 3 ∗ 3; 2; 1

(a) 23 (b) 6, 14, 3

𝑇
(c) 6, 14, 3 (d) None of these

4.7 Compute output of the following expression

 1 5 4; 6 0 2; 8 6 1 1 2 0; 2 8 2; 1 6 8

(a) (b) (c) (d)

4.8 Compute output of the following expression

 8 5 4; 6 2 2; 4 3 1 1 5 6; 1 6 4; 8 0 2

(a) (b) (c) (d)

88 | Vectors and Matrices in MATLAB

4.9 Compute output of the following expression

 𝑔𝑒 1 5 3; 8 6 0 , 7 6 1; 3 9 4

(a) (b) (c) (d)

4.10 Compute output of the following expression

 9 5 8; 6 4 1 5 7 1; 2 6 0

(a) (b) (c) (d)

4.11 Compute output of the following expression

 5 3 6; 9 2 1; 8 3 4 5 1 6; 5 6 1; 8 7 6

(a) (b) (c) (d)

4.12 Compute output of the following expression

 𝑙𝑒 9 5 6; 1 8 0; 3 4 7 , 8 1 4; 3 6 1; 7 9 6

(a) (b) (c) (d)

4.13 Compute output of the following expression

 6 5 1; 3 4 8 3 7 1; 2 0 8

(a) (b) (c) (d)

IT Workshop| 89

4.14 Compute output of the following expression

 𝑙𝑒 9 4 3; 1 0 8 , 9 7 1; 2 5 9)

(a) (b) (c) (d)

4.15 Compute output of the following expression

 3 4 7; 1 8 9 1 6 8; 1 0 5

(a) (b) (c) (d)

4.16 Compute output of the following expression

 𝑔𝑡 9 8 0; 4 3 6 , 5 6 3; 1 2 4

(a) (b) (c) (d)

4.17 Compute output of the following expression

 3 6 3; 5 0 1 9 6 4; 7 8 3

(a) (b) (c) (d)

4.18 Compute output of the following expression

 𝑙𝑡 1 9 4; 8 5 2 , 1 3 8; 6 4 3

(a) (b) (c) (d)

90 | Vectors and Matrices in MATLAB

4.19 Compute output of the following expression

 𝑒𝑞 1 5 4; 8 6 2; 7 6 8 , 1 2 0; 2 6 2; 1 6 8

(a) (b) (c) (d)

4.20 Compute output of the following expression

 6 3 4; 8 5 2 1 3 2; 8 7 2

(a) (b) (c) (d)

4.21 Compute output of the following expression

 𝑎𝑛𝑑 6 0 2; 1 8 3; 4 8 1 , 5 2 7; 6 2 0; 8 3 4

(a) (b) (c) (d)

4.22 Compute output of the following expression

 1 4 6; 7 0 2 & 4 8 0; 1 9 2

(a) (b) (c) (d)

4.23 Compute output of the following expression

 9 0 7; 5 8 2; 4 0 0 | 5 0 7; 6 2 0; 9 3 0

(a) (b) (c) (d)

4.1 (b), 4.2 (a), 4.3 (c), 4.4 (a), 4.5 (c), 4.6 (a), 4.7 (d), 4.8 (a), 4.9 (a), 4.10 (a), 4.11 (b),
4.12 (d), 4.13 (a), 4.14 (a), 4.15 (a), 4.16 (a), 4.17 (b), 4.18 (a), 4.19 (a), 4.20 (d), 4.21 (c),
4.22 (a), 4.23 (a), 4.24 (d), 4.25 (a), 4.26 (a)

Answers to Multiple Choice Questions

Short and Long Answer Type Questions

Category-I

IT Workshop| 91

4.24 Compute output of the following expression

 𝑜𝑟 4 6 7; 6 0 2 , 9 0 0; 3 0 8

(a) (b) (c) (d)

4.25 Compute output of the following expression

 𝑛𝑜𝑡 6 0 4; 2 1 1; 3 7 0

(a) (b) (c) (d)

4.26 Compute output of the following expression

 ~ 4 6 2; 9 3 0

(a) (b) (c) (d)

4.1 What is the vector? Describe the methods to generate the row and column

vectors.

4.2 Explain the operation on vectors using arithmetic, logical and relational operators

𝑇

Category-II

92 | Vectors and Matrices in MATLAB

with examples.

4.3 How does a vector compare with another vector and a scalar? Explain with
examples.

4.4 What are the matrices? Describe the methods to generate the matrices.

4.5 What is an identity matrix? How to generate a square and non-square identity

matrices?

4.6 What is a zero matrix? How to generate a square and non-square zero matrix?

4.7 Describe the distributive property. Check the applicability of the distributive
property for vectors with an example.

4.8 What is commutative property? Check the applicability of the commutative

property for matrices with an example.

4.9 How to generate a sequence in MATLAB?

4.10 How does a matrix compare with another matrix and a scalar? Explain with
examples.

4.11 Compare the inner and outer product of two vectors with an example.

4.12 Generate a row vector 3 2 6 1 . Multiply it by a scalar value 4.

4.13 Generate a column vector 4 1 5 2 . Multiply it by a scalar value 3.

4.14 Add the two vectors 3 2 1 7 and 4 1 3 8 . Check whether output of
the addition can be added with the vector 2 5 1 9 4 ?

4.15 Generate two vectors 1 3 3 7 and 2 5 1 6 . Add the vectors and
multiply the output vector with a constant value α 4 . Check the applicability of
the distributive property.

4.16 Compute the output of the following expression

(a)

(b)

𝑇
4 6 2 2 7 5

𝑇
3 4 1 ⊗ 2 3 6

4.17 Compute the output of the following expression:

IT Workshop| 93

(a) 4 4 2 1 3
(b) 3 5 1 5 3 4 2 6

(c) 1: 5 2 3
𝑇

(d) 1: 4 ~ 2 1
𝑇

4.18 Compute the output of the following expression

(a) 2 3 4 0 𝐴𝑁𝐷 1 0 1 0

(b) 2 3 4 0 𝑂𝑅 1 0 1 0

(c) 𝑁𝑂𝑇 7 0 3 0

4.19 Create an identity matrix of the following size using the MATLAB function.

(a) 3 5

(b) 5 5

4.20 Generate a 4 3 square matrix whose all elements are one.

Generate a non-square matrix 𝑀 . Also, create a matrix consists of all

elements equal to one and having the same size as that of matrix 𝑀.

4.21 Generate a 4 3 square matrix whose all elements are zeros.

Generate a non-square matrix 𝑀 . Also, create a matrix consists of all

elements equal to one and having the same size as that of matrix 𝑀.

4.22 Consider the two matrices 𝐴 𝐵 , compute 𝐴 𝐵 .

Calculate the multiplication
commutative property?

𝐵 𝐴. Check whether matrix multiplication follows

4.23 Compute the output of the following expression

94 | Vectors and Matrices in MATLAB

4.24 Compute the output of the following expression

4.25 Compute the output of the following expression

4.26 Compute the output of the following expression

4.27 Compute the output of the following expression

4.28 Generate a sequence whose initial value is 5, final value is 20. Total number of

samples is 10.

4.29 Generate a sinusoidal signal 𝑥 𝑡 4𝑐𝑜𝑠 6π 𝑡 . Select the time 𝑡
value is 0, final value is 20. The total number of samples are 30.

such that initial

Experiment 4.1: Experiment on vector operation
Aim
Design a half adder using MATLAB. Compute the sum and carry for the two vector inputs

𝐴 1 4 0 1 and 𝐵 0 1 0 1 .

Apparatus
MATLAB

Theory
Half adder is a combinational circuit that adds two inputs (input can be a number, vector,

PRACTICAL

>>myprog

Command Window

IT Workshop| 95

etc.) and yields a sum and a carry as an output. The block diagram for half adder is as
represented in Figure 4.1. The truth table for a half adder is as given in Table 4.1.

Figure 4.1: Half adder

Table 4.1: Truth table for a half adder.

Input A Input B Sum Carry

1 1 0 1

1 0 1 0

0 1 1 0

0 0 0 0

The expressions for sum and carry are 𝐴𝐵’ + 𝐴'𝐵 and 𝐴𝐵, respectively.

MATLAB simulation

clear all

close all

clc

A = [1 4 0 1];

B = [0 1 0 1];

Sum = A & (~B) | (~A) & B

Carry = A & B

Results

Sum =

1×4 logical array

1 0 0 0

Carry =

1×4 logical array

0 1 0 1

96 | Vectors and Matrices in MATLAB

Conclusions
This experiment presents an application of vector operation as half adder. The two vectors
are introduced as inputs to the half adder. The simulation results show the output in terms
of sum and carry of the half adder.

Experiment 4.2: Experiment on matrix operation
Aim

Design an EX OR gate using MATLAB. Perform the EX OR operation for the two

matrices and .

Apparatus
MATLAB

Theory
EX-OR gate is the abbreviation of ‘Exclusive OR gate’. It takes two or more inputs and
gives one output as shown in Table 4.2. It gives the output as ‘logic 1’, when all the inputs
are not at the same potential and ‘logic 0’ when all the inputs are at the same potential.

Table 4.2: Truth table of Ex-OR gate.

Input A Input B Output

1 1 0

>>myprog

Output =

3×3 logical array

1 1 0

1 0 1

1 1 0

Command Window

IT Workshop| 97

1 0 1

0 1 1

0 0 0

The expression for EX-OR is 𝐴𝐵’ + 𝐴'𝐵. It gives the output as logic ’1’ when both the inputs
are at different potential and it gives the output as logic 0 when both the inputs are at same
potential.

MATLAB simulation

clear all

close all

clc

A = [1 0 3; 0 1 0; 2 1 -1];

B = [0 1 2; 1 2 4; 0 0 1];

Output = A & (~B) | (~A) & B

Results

Conclusions
This experiment shows an application of matrix operation as EX-OR gate. The two
matrices are introduced as inputs to the EX-OR gate. The simulation results show the
output as 3×3 logical array.

The plot of cosine wave is as shown in Figure 4.2. As 4 cycles are completed in 1

second , thus, its frequency is 4Hz. Peak to peak amplitude of the wave is 8 units.

Command Window

98 | Vectors and Matrices in MATLAB

Experiment 4.3: Generation of signal waveform
Aim
Generate a cosine waveform of amplitude two units and frequency 4Hz.

Apparatus
MATLAB

Theory

Mathematical formalism of cosine wave is
𝑠 𝑡 𝐴

𝑚
𝑐𝑜𝑠 2π𝑓𝑡 ,

where 𝐴
𝑚

and 𝑓 denote the maximum amplitude and frequency of the wave, respectively.

MATLAB simulation
clear all

close all

clc

t = 0:0.01:1

x=4*cos(8*pi*t)

figure

plot(t, x, 'k','LineWidth', 2)

xlabel('Time');

ylabel('Amplitude');

title('Cosine wave')

Results

Figure 4.2: Cosine wave

IT Workshop| 99

Conclusions
This experiment demonstrates the cosine wave generation using MATLAB. Initially, it
defines the time and mathematical formalism of the cosine wave. Then, it displays the plot
of cosine waveform, so obtained.

Experiment 4.4: MATLAB program on convolution process
Aim
Compute the convolution of two vectors.

Apparatus
MATLAB

Theory

For the two vectors, x and y, the convolution shows the area between the x and y.
Mathematically, convolution gives same results as polynomial multiplication. MATLAB uses
conv(x, y) command to compute the convolution between two vector x and y.

MATLAB simulation

100 | Vectors and Matrices in MATLAB

clear all
close all
clc
x = [2 4 1 2]; %Representation of 2x^3 + 4x^2 + x + 2
y = [2 0 3]; %Representation of 2x^2 + 3
z = conv(x, y)

Results

Command Window

>>myprog

z =

4 8

8

16

3

6

Conclusions
This experiment demonstrates the convolution of two vectors x=[2 4 1 2] and y=y = [2 0
3]. The output vector computed using the convolution is the multiplication of the two vectors
i.e., z =[4 8 8 16 3 6].

UNIT SPECIFICS

This unit covers the following aspects:

● MATLAB scripts
● Functions in MATLAB
● Different types of functions with applications

This unit introduces MATLAB scripts and functions, which have a wide range of
applications in different domains. It initiates with the creation of MATLAB scripts and the
need for MATLAB functions. It also discusses the different types of functions which will
help students with research and development. This includes a vast variety of solved
examples that covers all types of MATLAB functions under different cases.

This unit contains a vast variety of questions, including multiple choice questions, and
long and short answer-type questions. It follows the lower and higher order of Bloom’s
taxonomy. The lower order leads the students to understand, remember and apply for
practical applications. Higher order skills improve students' creativity, analysis, and
evaluation skills. This unit contains experiments which will help students to apply the
content on practical applications. It has references and recommended readings through
which students can explore more theoretical and practical aspects of the main content.

MATLAB Scripts
and Functions 5

102 | MATLAB Scripts and Functions

RATIONALE

This unit familiarizes students with MATLAB scripts and functions. Initially, it discusses the
basics of MATLAB scripts and the procedure to save and execute a MATLAB program in the
editor window. Next, it gives a brief introduction to MATLAB functions. MATLAB function
programs consist of definition statements that include function keyword, inputs, and output
arguments. This unit also covers the classification of MATLAB functions. It covers the local,
nested, private, and anonymous functions. Apart from these, it also introduces the MATLAB
handle and its type. This also contains a variety of examples to explain these functions.

PRE-REQUISITES

Basics of MATLAB environment

Operation with variables and matrices

Basic knowledge of linear algebra

Vectors and matrices in MATLAB

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U5-O1: Describe MATLAB script

U5-O2: Functions in MATLAB

U5-O3: Different types of functions

Unit-5 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U5‐O1 - 2 3 1 -

U5‐O2 - 2 3 1 -

U5‐O3 - 2 3 2 -

IT Workshop| 103

This unit covers MATLAB scripts and functions. Initially, it starts with the creation of MATLAB
scripts. Next, it introduces MATLAB function and their different classification. This unit also
discusses the examples of every possible formulation of MATLAB functions.

5.1 MATLAB scripts
A MATLAB script consists of a sequence of MATLAB commands or statements which are
stored in m-file [1]. This employs an editor window to create a new script. In the editor file,
the program statements are edited and saved. Following are the steps involved in creating
the MATLAB script:

Step 1: First create a new m-file by clicking on the new script file on the toolbar of MATLAB
default environment as given below

𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 → 𝑆𝑐𝑟𝑖𝑝𝑡 (→)

New script can also be created by clicking 𝑐𝑡𝑟𝑙 𝑁.

Step 2: The user must save the m-file to the desired location on the drive. To save the m-file,
the user must click the save icon on the toolbar. The new script can also be saved by clicking
𝑐𝑡𝑟𝑙 𝑆.

Step 3: In the editor window, the user can write the program statement line, which includes
the MATLAB functions, commands, expressions, etc.

Note:

● Script file has workspace along with its own current directory.
Therefore, the variable names are carefully selected as there can
be more than one variable of the same name. To get rid of this
issue, users are advised to initiate the program with, 𝑐𝑙𝑐, 𝑐𝑙𝑒𝑎𝑟 𝑎𝑙𝑙,
and 𝑐𝑙𝑜𝑠𝑒 𝑎𝑙𝑙.

● It uses the percent signs ‘%’ to insert the non-executable text in
MATLAB program statements.

Write a MATLAB script to evaluate the parameters of a cone of 2 unit radius and 5
unit height.
Solution:

clc

clear all

close all

% Mention the radius and height

r = 2; %Radius

h = 5; %Height

% Volume of the cone

Volume = pi * r * r * h/3

% Lateral surface area of a cone

LSA = pi * r * (r^2 + h^2)^0.5

% Total surface area of a cone

TSA = pi * r * (r+(r^2 + h^2)^0.5)

46.4024

TSA =

33.8360

LSA =

20.9440

Volume =

Command Window

104 | MATLAB Scripts and Functions

Description of Example 5.1: Initially, it clears the command window, current directory using,
𝑐𝑙𝑐, 𝑐𝑙𝑒𝑎𝑟 𝑎𝑙𝑙, and 𝑐𝑙𝑜𝑠𝑒 𝑎𝑙𝑙 commands. It assigns the radius and height of the cone to the
variables ‘r’ and ‘h,’ respectively. This example displays the cone's volume, lateral surface
area, and total surface area, which are assigned to the variables Volume, LSA, and TSA.
This example also explains the use of the percent sign ‘%’ to include non-executable text.

5.2 Functions in MATLAB
Function is a series of commands in MATLAB to perform a given task. It consists of input and
output arguments. The input arguments are accessible by the user after a specific command,
which is known as ‘function’. Output arguments contain the output after completion of the
task. The syntax for defining a function is

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑧1, 𝑧2 , . . . , 𝑧𝑀 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁 (5.1)

IT Workshop| 105

where 𝑥1, 𝑥2, . . . 𝑥𝑁 are the 𝑁 inputs and 𝑧1, 𝑧2 , . . . , 𝑧𝑀 are the 𝑀 outputs. 𝑓𝑢𝑛𝑛𝑎𝑚𝑒
denotes the function name. Equation (5.1) is the definition statement and it must be the first
line while defining a function [2].

5.2.1 Definition of function
In the editor window, the user can write the program statement line, which
includes the word function followed by output, function name, and input.

I. Function keyword: It is written in lowercase character.
II. Output: The output of the function is defined after the function

keyword. The number of outputs can vary for the definition
statement.

(a) No output: MATLAB allows to omit the output when it is not
required. A function with no output can be expressed as

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑥 (5.2)

(b) One output: When there is one output in a definition statement, it must be
written immediately after the function keyword. It is expressible as

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡1 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑥 (5.3)

(c) Multiple outputs: It also allows multiple outputs for a program statement.
Multiple outputs are enclosed with square brackets as represented below

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡2, 𝑜𝑢𝑡𝑝𝑢𝑡3 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑥 (5.4)

III. Function name: Following points should be noted while defining a function name:
● It must start with an alphabetic character.
● It can have numbers.
● It can also include the underscore.
● Special characters, e.g., #, $ are not allowed.
● Function name should match with the file name.

IV. Input: A statement definition can have one or multiple inputs separated by commas.
Multiple inputs can be written within parentheses.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁 (5.5)

If there is no input, then parentheses can be omitted.

(Valid function name): Create a MATLAB function to print Hello India with its
function name containing alphameric characters.
Solution:

function PrintName1()

disp('Hello India')

106 | MATLAB Scripts and Functions

 end

Command Window

>> PrintName1

Hello India

(Continue for valid function name): Create a MATLAB function to print Hello India
with its function name as MyProg_2.
Solution:

function MyProg_2()

disp('Hello India')

end

Command Window

>>MyProg_2

Hello India

(Continue for invalid function name): Create a MATLAB function to print Hello
India with its function name as MyProg#.

Solution:

function MyProg#()

disp('Hello India')

end

Command Window

Error: Invalid Character

(Continue for invalid function name): Create a MATLAB function to print Hello
India with its function name as 2MyProg.
Solution:

function 2MyProg()

disp('Hello India')

end

Parse error: Invalid MATLAB syntax

Command Window

IT Workshop| 107

Discussion of Example 5.2: This example initially creates a function PrintName1 which
displays ‘Hello India’. MATLAB also allows the underscores in the function names as shown
in the example. However, it does not allow the special characters like #, $, etc, and it gives
an error. The function name should start with an alphabetic character otherwise, it displays
Invalid MATLAB syntax.

(No output): Create a MATLAB function with no output.
Solution:

function PrintName()

disp('Hello India')

end

(Continue with one output): Create a MATLAB function to compute the average of
numbers.
Solution:

function Output1 = MyAverage(y)

Outout1 = sum(y(:))/numel(y);

end

>> z = 1:4;

>>Output = MyAverage(z)

Output1 =

2.5000

Command Window

>> PrintName

Hello India

Command Window

(Continue with multiple output): Create a MATLAB function to calculate mean,
variance, and standard deviation of the data.
Solution:

function [m, v, s] = MyProg(z)

n = length(z);

m = sum(z)/n;

v = (sum((z - m).^2 / n));

s = sqrt(sum((z - m).^2 / n));

end

DataValues = [10.32, 23.84, 86.93, 47.6, 34.17, 12.8];

[Avg, Var, SD] = MyProg(DataValues)

Avg =

35.9433

Var =

679.5538

SD =

26.0683

Command Window:

108 | MATLAB Scripts and Functions

Discussion on Example 5.3: This example shows the function definition statement for
different numbers of outputs.

(No input): Create a MATLAB function with no input.
Solution:

function [x, y] = MyData()

x=[1.42, 5.23, 7.96, 3.14, 2.11];

y=[2.06, 3.08, 6.86, 4.87, 5.14];

IT Workshop| 109

end

Command Window

>> [x, y]=MyData()

x =

1.4200 5.2300 7.9600 3.1400 2.1100

y =

2.0600 3.0800 6.8600 4.8700 5.1400

(Continue for one input): Create a MATLAB function to compute the area of a
circle.

Solution:

function [Area] = CircleArea(r)

Area=pi*r*r;

end

Command Window

Area = CircleArea(2)

Area =

12.5664

(Continue for multiple input): Create a MATLAB function to compute the area
and perimeter of a rectangle.
Solution:

function [Area, Perimeter] = MyProg(Length, Width)

Area=Length*Width; %Area of the rectangle

Perimeter=2*(Length+Width); %Perimeter of the rectangle

end

Command Window

>> [Area, Perimeter] =MyProg(2, 5)

Area =

10

Perimeter =

14

110 | MATLAB Scripts and Functions

Discussion of Example 5.4: This example illustrates the function definition statement for
different numbers of inputs. It starts without input where the function MyData displays the
data assigned to variables x and y. Next, it uses one input to compute the area of a circle.
The function definition statement also allows multiple inputs, as shown in the example.

5.2.2 Function handle
A function handle denotes a function in MATLAB that moves a function to
another function. It can be begun with a symbol @ followed by the name of
the function [3]. Function handle express as

𝑓 @𝑀𝑦𝑃𝑟𝑜𝑔

where 𝑀𝑦𝑃𝑟𝑜𝑔 is the function. 𝑓 denotes the function handle.

The function handles are further classified as

(a) Named function handle includes the MATLAB functions and user-defined function
keywords. It is created by using @ operator followed by the function name.

(b) Anonymous function handle denotes the single workable program statement which
gives single output. It encloses the input within the parentheses after the @ operator,
followed by a program statement. The major advantage of the anonymous function is
that it allows multiple inputs and provides single output.

(Named function handles): Compute the zero of the cosine function if the initial
value is 3.
Solution:

>> f = @cos; % function

z0 = 3; % initial value

z = fzero(f, z0)

z =

1.5708

(Continue for anonymous function handles) Compute the output of the following

integral
2

 𝑧 2𝑧 1 𝑑𝑧
0

2

Solution:

function y = MyPoly(z)

y = z.^2 +2*z + 1;

end

I = integral(@MyPoly, 0, 2)

I =

8.6667

Command Window

IT Workshop| 111

Discussion of Example 5.5: This example illustrates the named and anonymous function
handles. Initially, it evaluates the zero of the cosine function using named function handles
for a given initial condition (z0=3). Here, cos and fzero are the MATLAB functions. It displays
the output 1.5708 in radians (90 in degrees) when it executes z = fzero(f, z0). Next, it

2

computes the output of the integral
2

 𝑧
0

 2𝑧 1𝑑𝑧 using anonymous function handles. It

starts with the definition statement function y = MyPoly(z), where the function keyword is
followed by the output (y) and function name MyPoly and input (z). It displays the output
8.6667 when integral(@MyPoly, 0, 2) is executed in the command window.

5.3 Types of functions
A program statement can include numerous functions. It becomes complex
to edit and read the program statements. Therefore, to make the MATLAB
code readable, it is necessary to divide the program into compact tasks. On
this basis, the function can be classified into the following categories:

(i) Local functions: These are general methods to split the tasks. These
functions are a sequence of program instructions accessible in the same file. The first
function is known as the main function. The main function can be seen in other files. The
other function in the same file is known as local functions. The order of calling the local
function can vary, provided the main function remains the same. The local functions are also
called as subfunctions [4].

(Local functions): Compute the volume and surface area of a sphere of radius 2
unit.
Solution:

function [SurfaceArea, Volume] = myprogram(r)

SurfaceArea = myarea(r);

Volume = myvolume(r);

end

function A = myarea(r)

A = 4*pi*r;

end

% myarea example of a local function.

function V = myvolume(r) % myvolume is example of a local function.

V=4/3*pi*r^3;

end

Command Window

>>[SurfaceArea, Volume] = myprogram(2)]

SurfaceArea=

25.1327

Volume=

33 5103

112 | MATLAB Scripts and Functions

Description of Example 5.6: This example computes the total surface area and volume of a
sphere. Initially, it starts with the main function definition statement line, which includes
‘SurfaceArea, Volume’ as output arguments, ‘myprogram’ as the main function, and ‘r’ as
input argument. Then it declares the two local functions i.e., myarea and myvolume. The
local function myarea has the input and output as r and A. The local function myvolume
has the input and output as r and V. It displays the output as ‘SurfaceArea=25.1327,
Volume=33.5103’ when the program statement [SurfaceArea, Volume] = myprogram(2)] is
executed in the command window.

(ii) Nested functions: These are accommodated inside a parent function. The variables
defined in the parent function can be accessed and modified. This creates a handle in a

IT Workshop| 113

parent function that includes mandatory data to execute the nested function [5]. Following
are the requirements which should be fulfilled while using the nested function:

● All functions must have an end statement in the nested function program statements.
● Users cannot introduce a nested function within program control commands, e.g.,

switch/case, if/else, etc.
● Nested function can be called by either @ operator or by its name directly.
● Users must define all the variables in the nested function.

Discussion of Example 5.7: This example explains the nested function formulation to solve
the linear equation. Initially, it declares function L = LinearEquation(m,c) as a definition
statement, where L is the output, m and c are the inputs. LinearEquation is the parent
function. Next, it defines the function Line using @ operator and output y = m*x + c. In the
command window, it gives the output y=7 for x=2, when L=LinearEquation(2, 3) is executed.

(iii) Private functions: A private function is observable to a finite category of functions.
These functions have applications where the user does not disclose the execution of the
functions. These are saved in separate subfolders with specific names [6].

(Nested functions): Generate a MATLAB function to solve the following linear
equation

𝑦 𝑚𝑥 𝑐
Solution:

function L = LinearEquation(m,c)

L = @Line;

function y = Line(x)

y = m*x + c;

end

end

>> L=LinearEquation(2, 3);

>> x=2;

>> y=L(x)

y =

7

Command Window

function [y1, y2] = MyQuadratic(k1, k2, k3)

d = Disc(k1, k2, k3);

y1 = (- k2 + d) / (2 * k1);

y2 = (- k2 - d) / (2 * k1);

end

Editor Window 2

>>[y1, y2] = MyQuadratic(2,4,3)

y1 =

-1.0000 + 0.7071i

y2 =

-1.0000 - 0.7071i

Command Window

114 | MATLAB Scripts and Functions

(Private functions): Compute the roots of the following quadratic equation using a
private function.

Solution:

2
𝑘 𝑦

1
 𝑘 𝑦 𝑘 0

2 3

Description of Example 5.8: This example illustrates the private function formulation to
compute the roots of a quadratic equation. Initially, It declares the definition statement
function D = Disc(k1, k2, k3) where Disc is the private function that computes the
discriminant. This is to be saved in a separate subfolder in the working directory with the
filename Disc.m. The output D is set as D = sqrt(k2^2 - 4 * k1 * k3), where k1, k2, k3 are
the inputs to the definition statement. Next, create another editor window and define the
function MyQuadratic, which has the output as two roots of the quadratic equation. In the

function D = Disc(k1, k2, k3)

D = sqrt(k2^2 - 4 * k1 * k3);

end

Editor Window 1

IT Workshop| 115

command window, by assigning the value of the constant values as k1 = 2, k2 = 4, and k3 =
3, it displays roots of quadratic equation as y1= -1.0000 + 0.7071i, y2= -1.0000 - 0.7071i.

(iv) Anonymous functions: These are actually not present in program files but these are
related to the variables which have function_handle data type. Anonymous functions can
have many inputs and give a single output [7].

(Anonymous functions): Compute the output of the following expression for x = 1
using anonymous function formulation.

𝑥 2
Solution:

>> MyPoly1 = x.^0.5+2;

>> y = MyPoly1(1)

y =

3.4142

(Continue to solve polynomial with coefficients): Solve the expression
3 2

𝑦 𝑚 𝑧 𝑚 𝑧 𝑚 𝑧 𝑚 for 𝑦, if coefficients 𝑚 , 𝑚 , 𝑚 , and 𝑚 are 1, 2, 3
! 2 3 4 1 2 3 4

and 4, respectively. Assume 𝑧 1.
Solution:

m1 = 1;

m2 = 2;

m3 = 3;

m4 = 4;

MyPoly2 = @(z) m1 * z.^3 + m2 * z.^2 + m3 * z + m4;

Command Window

>> clear m1 m2 m3 m4

>> z = 1;

>> y = MyPoly2(z)

y =

31.5000

(Continue for multiple anonymous functions): Solve the following integral using
multiple anonymous functions

116 | MATLAB Scripts and Functions

 2

𝑦 𝑎𝑧 1 𝑑𝑧
0

Solution:
y = @(a) (integral(@(z) (a*z + 1),0,2));

@(z) (a*z + 1);

integral(@(z) (a*z + 1),0,2);

y= @(a) (integral(@(z) (a*z + 1),0,2));

Command Window

>>y(2)

ans =

6.0000

(Continue for anonymous functions with multiple inputs): Solve the following
expression

𝑧 𝑥 𝑦 𝑥 𝑦
Solution:

MyPoly3 = @(x,y) (x - y)*(x+y);

z = MyPoly3(x,y);

Command Window

>> z =MyPoly3(2,1)

z =

3

2
(Continue for anonymous functions arrays): Store the functions 𝑦 3 ,

2
𝑧 1 , 𝑦 𝑧 𝑦 𝑧 2 using anonymous functions arrays and compute the

value of the functions at 𝑦 2, 𝑧 4.
Solution:

f = {@(y) (y.^2+3);

@(z) (z.^2-1);

@(y,z) (y+z)*(y-z+2)};

𝑥

>> y = 2;

>>z = 5;

>>f{1}(y)

>>f{2}(z)

>>f{3}(y,z)

ans =

7

ans =

24

ans =

-1

Command Window

UNIT SUMMARY

IT Workshop| 117

Description of Example 5.9: This example encapsulates the anonymous functions for

different applications. Initially, it computes the value of polynomial 2 using the
anonymous function MyPoly1. Anonymous functions can also be used to solve the
polynomials with multiple coefficients as shown in the example. It also allows multiple
anonymous functions and multiple inputs. It can store several expressions simultaneously
using the anonymous functions arrays as explained in the example.

● MATLAB scripts consist of a series of commands or statements stored in an m-file.
They are saved and edited in the editor window.

● Script file has workspace along with its own current directory.
● Function consists of input and output arguments.
● The syntax for defining a function is

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑧1, 𝑧2 , . . . , 𝑧𝑀 𝑓𝑢𝑛𝑐𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁

● A function can have zero or multiple input and output arguments depending on the
task.

● Function handle helps to move a function to another function and it begins with a
symbol @ followed by the name of the function.

● Function handle can be classified as

Multiple Choice Questions

118 | MATLAB Scripts and Functions

(a) Named function handles: It contains MATLAB functions and user-defined

function keywords
(b) Anonymous function handles: It is a single workable program statement that

gives single output

● The function can be of the following type
(a) Local functions: Local functions are used to split the tasks into the

subfunctions.
(b) Nested functions: These are accommodated inside a parent function. The

variables defined in the parent function can be edited and modified.
(c) Private functions: These functions are saved in separate subfolders with

specific names. They are useful when the user does not reveal the simulation
of the functions.

(d) Anonymous functions: Anonymous functions can have many inputs and give
a single output. They are not present in program files but these are related to
the variables which have function_handle data type.

EXERCISES

5.1 Which symbol is used to insert the non-executable text?

(a) & (b) ~ (c) % (d) @

5.2 MATLAB scripts are edited in

(a) editor window (b) command window (c) workspace (d) none of above

5.3 In the following definition statement

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑧1, 𝑧2 , . . . , 𝑧𝑀 𝑓𝑢𝑛𝑐𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁
‘𝑧1, 𝑧2 , . . . , 𝑧𝑀’ denote

(a) outputs (b) inputs (c) keywords (d) function name

5.4 In the following definition statement

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑧1, 𝑧2 , . . . , 𝑧𝑀 𝑓𝑢𝑛𝑐𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁
‘𝑥1, 𝑥2 , . . . , 𝑥𝑀’ denote

(a) outputs (b) inputs (c) keywords (d) function name

IT Workshop| 119

5.5 Select the valid function name

(a) myfile$ (b) myfile# (c) myfile_1 (d) myfile@

5.6 Which is not a valid function name

(a) Myprog (b) Myprog_1 (c) Myprog1 (d) 1Myprog

5.7 Which of the following program statement is correct to print New Delhi

(a) function PrintName_1()

disp('New Delhi')

end

(b) function 1PrintName()

disp('New Delhi')

end

(c) function PrintName#()

disp('New Delhi')

end

(d) function PrintName%()

disp('New Delhi')

end

5.8 Which of the following program statement shows a correct function with no output

(a) function y= PrintName1()

disp('New Delhi')

end

(b) function y=1PrintName()

disp('New Delhi')

end

(c) function 1PrintName(x)

disp('New Delhi')

end

(d) function PrintName(x)

disp('New Delhi')

end

5.9 Which of the following program statement shows a correct MATLAB function with one
output

(a) function y=myfun1(z1, z2)

y=z1 + z2;

(b) function [y1, y2] = myfun(z1, z2)

y1=z1*z2 - z1*z2;

120 | MATLAB Scripts and Functions

end y2=z1 - z2;

end

(c)

function y= 1myfun(z1, z2)

y=z1+z2;

end

(d)

function [y1, y2] = myfun(z)

y1=z;

y2=z+4;

end

5.10 Which of the following is the correct way to begin a function handle

(a) 𝑓 @𝑀𝑦𝐹𝑢𝑛 (b) 𝑓 &𝑀𝑦𝐹𝑢𝑛 (c) 𝑓 #𝑀𝑦𝐹𝑢𝑛 (d) 𝑓 %𝑀𝑦𝐹𝑢𝑛

5.11 Compute the output of the following in the command window

function y = MyPoly(z)
y = z + 1;

end

I = integral(@MyPoly, 0, 1)

(a) 2.0000 (b) 1.5000 (c) 3.0000 (d) None of these

5.12 Which of the following is the correct for solving linear equation 𝑦 𝑚𝑥 𝑐

(a) function L = MyEquation(m,c)

L = @Line;

function y = Line(x)

y = m*x + c;

end

end

(b) function L = MyEquation(m,c)

L = @Line;

function y = L(x)

y = m*x + c;

end

end

(c) function L = MyEquation(m,c)

L = @Line;

(a) function L = MyEquation(m,c)

L = @Line;

5.1 (d), 5.2 (a), 5.3 (a), 5.4 (b), 5.5 (c), 5.6 (d), 5.7 (a), 5.8 (d), 5.9 (a), 5.10 (a), 5.11 (b),
5.12 (a), 5.13 (d)

Multiple Choice Questions Answers

Short and Long Answer Type Questions

Category-I

IT Workshop| 121

function y = L(x)

y = m*x + c;

end

end

function y = Line(x)

L= m*x + c;

end

end

5.13 Which is not a type of MATLAB function

(a) Local (b) Nested (c) Private (d) Public

5.1 Define MATLAB script. How to create a MATLAB script?

5.2 What are MATLAB functions? What is the need for the MATLAB function?

5.3 Describe the MATLAB handles in brief.

5.4 Explain the different types of MATLAB function.

5.5 What are local functions? Explain with an example.

5.6 What are nested functions? Explain with an example.

5.7 Explain the private functions with an example.

5.8 Explain the anonymous functions with an example.

5.9 Consider the following definition statement for defining a function
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑧1, 𝑧2 , . . . , 𝑧𝑀 𝑓𝑢𝑛𝑐𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁

Describe the following condition with one example of each
(a) no input
(b) one input

Category II

122 | MATLAB Scripts and Functions

(c) multiple input

5.10 Consider the following definition statement for defining a function
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑧1, 𝑧2 , . . . , 𝑧𝑀 𝑓𝑢𝑛𝑐𝑛𝑎𝑚𝑒 𝑥1, 𝑥2, . . . 𝑥𝑁

Describe the following condition with one example of each
(a) no output
(b) one output
(c) multiple output

5.1 Write a MATLAB script to evaluate the perimeter of a rectangle of length 2 unit and
width of 5 unit.

5.2 Create a MATLAB function to print New Delhi with its function name containing

alphameric characters.

5.3 Create a MATLAB function to compute the average of the following
[2.12 4.34 3.97 5.11 7.32]

5.4 Create a MATLAB function to calculate the mean, variance and standard deviation

of the following
[4.52 3.54 2.07 7.18 8.12 8.11 3.34]

5.5 Compute the zero of the sine function if the initial value is 1.5.

5.6 Compute the output of the following integral

1
3

 𝑧
0

2
 2𝑧

 𝑧 2 𝑑𝑧

5.7 Compute the area and circumference of a circle of radius 4 unit.

5.8 Generate a MATLAB function to solve the following linear equation for 𝑥 4,
𝑦 5.

𝑦 𝑚𝑥 𝑐

5.9 Compute the roots of the following quadratic equation for

using a private function.

𝑘 3, 𝑘 4, 𝑘 5

1 2 3

2
𝑘 𝑦

1
 𝑘 𝑦 𝑘 0

2 3

5.10 Store the functions

3 2 2
𝑦 𝑦 3 , 𝑧 5 , 𝑦 𝑧 𝑦 𝑧 5

using

anonymous functions arrays and compute the value of the functions at
𝑦 5, 𝑧 8.

PRACTICAL

>> [Area, Perimeter] = myprog(5)

Area =

10.8253

Perimeter =

15

Command Window

IT Workshop| 123

Experiment 5.1: Experiment on scripts and functions

Aim
Design a function to compute the area and perimeter of an equilateral triangle.

Apparatus

MATLAB

Theory
The equilateral triangle has equal sides. The perimeter of the equilateral triangle is
3 𝑠𝑖𝑑𝑒 and the area of an equilateral triangle is 3 2

.
4 𝑠𝑖𝑑𝑒

MATLAB simulation

clear all

close all

clc

function [Area, Perimeter] = myprog(side)

Area=((3^0.5)/4)*side^2; %Area of the equilateral triangle

Perimeter=3*side; %Perimeter of the equilateral triangle

end

Results

References

124 | MATLAB Scripts and Functions

Conclusions

This experiment presents a function that computes the area and perimeter of an

equilateral triangle. Initially, it sets ‘Area, Perimeter’ as output and the side of the

equilateral triangle as an input. Then it defines the mathematical formulation for area and

perimeter of an equilateral triangle. Command window displays the results for perimeter

and area when the side of the triangle is set as five.

[1] ‘Programming and scripts’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/learn_matlab/scripts.html [Accessed:
September- 2022].

[2] ‘Function’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/ref/function.html [Accessed: September-
2022].

[3] ‘Function handle’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/ref/function_handle.html [Accessed:
September- 2022].

[4] ‘Local function’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/matlab_prog/local-functions.html
[Accessed: September- 2022].

[5] ‘Nested function’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/matlab_prog/nested-functions.html
[Accessed: September- 2022].

[6] ‘Private function’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/matlab_prog/private-functions.html
[Accessed: September- 2022].

[7] ‘Anonymous function’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html
[Accessed: September- 2022].

UNIT SPECIFICS

This unit covers the following aspects:

● if, if-else, if-elseif-else statements
● nested if-else statements and its application
● switch-case statements
● ‘is’ function and its application

This unit familiarizes the branch statements, which include if, if-else, nested if-else, and
switch-case statements. It also covers the ‘is’’ function in MATLAB. This initially
introduces the if-else statements and the need for engineering science and
mathematical science. Then it discusses the application of nested if-else statements and
‘is’ function in MATLAB.

This unit consists of various examples to improve the student’s creative and logical
skills. These will help the students to develop new ideas for different applications. It has
a wide variety of unsolved multiple choice questions, and short and long answers type
questions. This unit consists of experiments which will help students to apply the content
on practical applications. This also contains the references and recommended readings
through which students can explore more theoretical and practical aspects of the main
content.

Branch
Statements in
MATLAB

6

126 | Branch Statements in MATLAB

RATIONALE

This unit introduces branching statements in MATLAB. The branching statements include if, if-
else, nested if-else and switch-case statements. The ‘if expression’ consists of relational operation-
based expression, if this condition is satisfied, then the statement is executed. Nested if-else
statements consist of ‘if-else statements’ and other if-else statements are within previous if-else
statements. The switch-case statements contain ‘case statements’ to select the different choices
available. These types of statements have several applications in engineering science, e.g.,
digital circuits, integrated circuits, etc. Apart from these, this unit also covers ‘is function’. These
functions have applications in detecting the state of the MATLAB entity. Each topic of the unit
consists of examples to elaborate the content.

PRE-REQUISITES

Operation with variables and matrices

Vector and matrices in MATLAB

Functions in MATLAB

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U6-O1: Describe about if, if-else statements

U6-O2: Explain nested if-else statements

U6-O3: Illustrate switch-case statements U6-

O4: Apply ‘is function’

Unit-6 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U6‐O1 - 1 2 3 -

U6‐O2 - 1 2 3 -

U6‐O3 - 1 2 3 -

U6‐O4 - 1 2 3 -

IT Workshop| 127

6.1 Branching statement
MATLAB can perform several actions based on the situation. For performing these actions, it
has decision-making commands, i.e., if, else-if, and switch statements [1]. These statements
accomplish the program if the given conditions are satisfied.

6.1.1 if statement
MATLAB employs ‘if statement’ as a decision control command. if
statement acts as a keyword in MATLAB, and it is always followed by the
end keyword [1]. Following syntax is used for executing if statements:

if expression

statement (s)

end

(6.1)

In the above syntax for if statement, the expression is represented in terms of relational
operator and checks for the applicability of the expression. If it is true, the statement is
executed; otherwise, it will not be executed.

(if statement when the condition is true): Check whether a number is greater
than five. If the condition is true, then display ‘Number is greater than five’.

Solution:

>> N = 7;

>> if N >= 5

disp('Number is greater than five')

end

Command Window

>>myfile

Number is greater than five

(if statement when condition is false): Repeat the above when number is equal
to four.

Solution:

N = 4;

(if statement for vectors): Check whether the sequence 3 : 7 is greater than or
equal to three. Display ‘Sequence is having the larger value’ if the condition is
satisfied.

Solution:

if 3 : 7 >= 3

disp('Sequence is having larger value.')

end

Solution:

if [3 2 1; 2 6 4; 5 4 5] == [1 0 0; 0 1 0; 0 0 1]

disp('The matrices are equal.')

end

is equal to the (if statement for matrices): Check whether the matrix
identity matrix of size 3 3.

>>myfile

Sequence is having larger value.

Command Window

128 | Branch Statements in MATLAB

 if N >= 5

disp('Number is greater than five')

end

Description of Example 6.1: This example illustrates the if statement for the two different
conditions. Initially, it compares the variable N with the numeric value 5 for the condition
‘greater than or equal to’, and it displays the output as ‘Number is greater than or equal to 5’
as the condition is satisfied. The latter part of the example explains the if statement when the
if condition is not satisfied, then It does not display the output for this case.

MATLAB allows the comparison of the vectors and matrices also as the logical expression
for equation (6.1). For this operation, it makes the element-wise comparison of the vectors
or matrices. It will execute the program statements when the condition is fulfilled.

IT Workshop| 129

Description of Example 6.2: This example explains the if statement for vectors and
matrices. Initially, it creates a vector [3 4 5 6 7]. It compares the vector with numeric
value three for ‘greater than or equal to’ condition. It displays the output as ‘Sequence is
having larger value’ as the condition is satisfied. ‘if statement’ can also compare the matrices
also on the element-wise basis as shown in the example.

6.1.2 if-else statement
if-else statement in MATLAB checks the correctness of the expression. If the expression is
true, it will execute the statement; otherwise, it will execute the false statement [1]. The
syntax for if-else statements is

if expression

statement (s)

else

statement (s)

end

(6.2)

The rational operator operates on the expression and checks the validity of the expression
output.

(if-else statement): Write a program to check whether the number is even or odd.

Solution:

N = 6; % Enter the number

Expression = (-1)^N; % Compute the expression

if Expression = = -1

disp('N is odd')

else

disp('N is even')

end

>>myfile

N is even.

Command Window

A vehicle has traveled a total distance equal to 150 km in 1.2 hours. If the speed
limit is 100km/h, find whether the speed is below or above the speed limit using
if-else.

Solution:

D= 150; %Distance traveled in KMs

T = 1.2; % Total time taken in hours

S= D/T; % Speed of the vehicle

if S < 100

disp('Vehicle speed is below the speed limit')

else

disp('Vehicle speed is above the speed limit')

end

>>myfile

Vehicle speed is above the speed limit

Command Window

130 | Branch Statements in MATLAB

Description of Example 6.3: This example uses the if-else statement to check (i) whether
the given number is even or odd, (ii) to compute the speed of a vehicle is below or above the
speed limit. Initially, it computes the expression which is equal to (-1)^N, where N denotes
the number. This displays the even number if (-1)^N is positive otherwise, it will display it as
an odd number. MATLAB programming can also be used for computing and displaying
vehicle speed, as shown in the example.

6.1.3 elseif statement
The elseif statement is also decision control instructions. It computes the correctness and
falsity of the expression and displays the corresponding results. The major difference
between the if statement and the elseif statement is that the elseif also displays the result for
the false statement. It first checks the authenticity of the statement, if it is false, then it
computes the elseif statement [1]. The syntax used for executing elseif statements is:

if expression

statement (s)

elseif expression

(if, elseif, else statement): Check whether the mean of a sequence z=3:8 is within
the range of four to six.

Solution:

n = length(z);

Mean = sum(z) / n;

MinimumMean = 4; % Minimum mean value

MaximumMean = 6; % Maximum mean value

if (Mean > = MinimumMean) & & (Mean < = MaximumMean)

disp('Mean is in specified limit')

elseif (Mean > MaximumMean)

disp('Mean is exceeding the specified limit')

else

disp('Mean is lower than specified limit')

end

>> myfile

Mean is in specified limit

Command Window

IT Workshop| 131

statement (s)

else

statement (s)

end

(6.3)

In the above syntax for if statement, the expression is represented in terms of relational
operator and checks for the applicability of the expression. If it is true, the statement is
executed; otherwise, it will not be executed.

Description of Example 6.4: This example demonstrates the if, elseif, else statement to
check the mean range. It initiates with defining all the variables. It then defines the if
expression as ‘(Mean > = MinimumMean) & & (Mean < = MaximumMean)’ and displays this

132 | Branch Statements in MATLAB

as ‘Mean is in specified limit’. Next, it also checks for the minimum and maximum limit of the
mean, as shown in the example.

6.1.4 Nested if-else statement
It contains another statement in them that is of the same type as the main statement. For
example, when an if-else statement contains another if-else in it, it is said to be a nested
if-else statement [1]. The syntax for nested if-else statement is

if expression

if expression

statement (s)

elseif expression

statement (s)

else

statement (s)

end

(6.3)

else

if expression

statement (s)

elseif expression

statement (s)

else

statement (s)

end

end

Write a program to demonstrate nested if-else statements.

Solution:

function [output] = MyProg(x, y)

if x>5

if y<5

output=2*x+3*y+5;

else

output=x-2*y+3;

end

else

if y>5

output=x*y+y/x;

else

output=(3*x)/(2*y);

end

end

end

>> output= MyProg(5, 5)

output =

1.5000

Command Window

IT Workshop| 133

Description of Example 6.5: This example demonstrates the nested if else statement.
Firstly, it initiates a function with one output and two inputs (x, y). For the first if condition
(x>5), it executes for (y>5) or (y<5). It gives the output 2*x+3*y+5 for y<5 and x-2*y+3 for
y>5. In the second case, i.e., (x<5), it again checks for two conditions (y<5 and y>5) and
gives the corresponding output.

6.1.5 Switch case statement
Switch case statement is useful when a user needs to accomplish one set
of statements from many sets of statements. It uses ‘case statements’ to
select the available choices. It considers the switch and case expressions
as a scalar or a string [2]. The syntax for switch case statement is

switch expression 1

Create a MATLAB program to simulate EX OR gate using switch case statement.

Solution:

A = input('Enter the first input: ');

B = input('Enter the second input: ');

Output = (A & (~ B))|((~ A) & B);

switch Output

case 1

disp('Output is Logic 1')

case 0

disp('Output is Logic 0')

otherwise

disp('Other value')

end

Enter the first input: 1

Command Window

134 | Branch Statements in MATLAB

case expression 2

statements

case expression 3

statements

otherwise

statements

(6.4)

end

Initially, it computes the expression 1 and examines the given condition. It executes the
corresponding statement if it matches the case expression. If the condition does not match
with any of the cases, it will execute the otherwise statement. The main difference between if-
else statements and switch-case statements is that if-else statements allow the vector
expression, whereas switch-case statements do not.

Enter the second input: 1

Output is Logic 0

IT Workshop| 135

Description of Example 6.6: This example illustrates the switch-case statement using EX-
OR gate implementation. For the two inputs A and B, the EX-OR output is (A & (~ B)) | ((~
A) & B). The switch expression contains this output. In the case expression, logic 0 and logic
1 are set. It gives the output as logic 0 for A=1, B=1 In the command window.

6.2 is function in MATLAB
MATLAB uses the ‘is’ function to detect the state of the MATLAB entity.
These functions have applications in several other statements, e.g., if-else
statements, and switch-case statements, to check the correctness of the
state of the MATLAB entity. Table 6.1 illustrates the ‘is functions’ in MATLAB
[3].

Table 6.1: is functions in MATLAB.

‘is’ function Description Syntax Example

isa It finds the object of the
specified class.

x = isa(F, dataType)
x = isa(F, typeCategory)

Check for single(2) is of single
class:
>>F = single(2);
isa(F, ‘single’)
ans = 1

isappdata This function gets the
information of a given
application and data.

x = isappdata(obj,name) Check the today's date :
>>F = figure; D = date;

setappdata(f,'todaysdate',d);
>>isappdata(F,'todaysdate')
ans=1

isbanded isbanded function can be
used to get the information
of matrix bandwidth.

x =
isbanded(A,lower,upper)

Check for the identity matrix
bandwidth:
>>I = eye(2);
>>isbanded(I, 1, 1)
ans = 1

isbetween It denotes the array
elements appearing in date
and time gaps.

x=
isbetween(t,lower,upper)

Find the time appearing
between one to five for given
lower and upper time:
>>lower_t = seconds(2);
>>upper_t=seconds(4);
>>t = seconds(1:5);
>>isbetween(t,lower_t,upper_t)

136 | Branch Statements in MATLAB

ans = 2sec 3sec 4sec

iscategorical iscategorica can check
categorical array input.

x = iscategorical(F) Check for the categorical array
'yellow' 'green' 'orange':
>>F = categorical({'yellow'
'green' 'orange' });
>>iscategorical(F)
ans = 1

iscategory It is used to find categorical
array input.

x =
scategory(F,catnames)

Check for the categorical array
["pen","pencil"; "rubber", "note”].
>> F =
categorical(["pen","pencil";

"rubber","notes"]);
>>categories(F)
statname =

["notes","shoes","table","pen"];
>>iscategory(F, statname)
ans = 1 0 0 1

iscalendardurati
on

iscalendarduration can be
used to check duration array
input.

x = iscalendarduration(t) Check duration array
c1 = calyears(1:3);
c2 = caldays(1:3); c = c1 + c2;
iscalendarduration(c)
ans = 1

iscell It can be used to detect cell
array input.

x = iscell(F) Detect cell array {6, 7, 4; 4,
rand(2, 1, 8), {1; 6; 8}}.
>>F= {6, 7, 4;

4, rand(2, 1, 8),{1; 6; 8}};
>> iscell(F)
ans =1

iscellstr It checks if the input is
character vectors.

x = iscellstr(F) Checks if the variable {'Delhi',
'Haryana', 'Mumbai'} is
character vectors.
>>C = {'Delhi', 'Haryana',

'Mumbai'};
>> iscellstr(C)
ans =1

ischar It gets the information for
input as a character array.

x = ischar(F) Detect New Delhi as character
array:
>>c = 'New Delhi';
>>ischar(c)
ans =1

iscolumn It checks for input as a
column vector.

x = iscolumn(F) Check for [1; 5; 8] as a column
vector
>> c = [1; 5; 8];
>> iscolumn(c)
ans =1

iscom This gives the output as x = iscom(F) Detect COM object

IT Workshop| 137

logic 1 for COM object
variables.

Excel.Application
>>A =
ctxserver('Excel.Application');
iscom(A)
ans =1

isdatetime It detects datetime array
input.

x = isdatetime(t) Detect date and time array:
>>F = [datetime('now');

datetime('tomorrow');
datetime(2022,2,1)]

F = 04-Aug-2022 15:17:20
05-Aug-2022 00:00:00
01-Feb-2022 00:00:00

isdiag isdst checks diagonal matrix. x = isdiag(F) Check identity matrix for
diagonal:
>>I=eye(2)
>> isdiag(I)
ans = 1

isdst This detects datetime
happening in daylight time.

x = isdst(t) Check for 2022,8,4 for
Asia/Kolkata timezone
happening in daylight time:
DT =
datetime(2022,8,4:11,'TimeZone
', 'Asia/Kolkata')
isdst(DT)

ans = 0 0 0 0 0 0 0 0

isduration It checks for the duration
array variable.

x = isduration(t) Check for the duration array for
dates 2022,08,16:17.
>> time1 =
datetime(2022,08,16:17);
>>time2 =
datetime(2022,08,20);
>>dt = time2 - time1
>> isduration(dt)
ans = 1

isempty It detects the empty array
input.

x = isempty(F) Check for empty array:
>> F = zeros(0,1,1);
isempty(F)
ans=1

isenum This checks if input is
enumeration

x= isenum(F) isenum function gives output as
1 if F is enumeration.

isequal It detects equal arrays x= isequal(X, Y) >> I1=eye(2);
>> I2=2.*eye(2)-eye(2)
>> isequal(I1, I2)
ans =1

isequaln This checks for a
numerically equal array.

x= isequaln(X, Y) >> I1=ones(2);
>> I2=2.*ones(2)-ones(2)

138 | Branch Statements in MATLAB

>> isequaln(I1, I2)
ans =1

isevent It finds the COM object
events.

x = isevent(c,eventname) It gives output as 1 if an event
perceived by COM object

isfield This determines the
structure array field
variables.

x = isfield(F, field) >>F.x = linspace(0,2*pi);
>>F.y = cos(S.x);
>>F.title = 'y = cos(x)';
>>isfield(F,'title')
ans=1

isfile isfile detects the input files. x = isfile(fileName) >>isfile(myfile1.txt)
ans=0

isfinite It checks for finite array
elements.

x = isfinite(F) >> F=1./[1 0 -1]
>> isfinite(F)
ans =

1 0 1

isfloat isfloat are used to detect
floating-point array inputs.

x = isfloat(F) isfloat(10/3)
ans =1

isfolder isfolder detects the input as
folder.

x = isfolder(folderName) mkdir folder1;
isfolder('folder1')
ans=1

ishandle It determines the justifiable
graphics object handles

ishandle(F) It gives the output as 1 when
elements of F are graphics.

ishermitian This detects the hermitian
property of matrices.

x = ishermitian(F) F =[2 2-i; 2+i 3];
ishermitian(F)
ans =1

ishold ishold detects the hold ON
state.

x=ishold ishold gives the current axes
hold state.

isinf Detect infinite elements of
array

x = isinf(F) >> F=1./[1 0 -1]
>> isinf(F)
ans =

0 1 0

isinteger This find the integer array
variable.

x = isinteger(F) >>isinteger(int16(4))
ans=1

isinterface This detects the COM
interface.

x = isinterface(f) It gives output as true for COM
interface.

isjava isjava determines Java
object variable.

x = isjava(F) Date1 = java.util.Date;
isjava(Date1)
ans =1

iskeyword This checks for MATLAB x = iskeyword(txt) iskeyword('case')

IT Workshop| 139

keyword.

ans =1

isletter It detects alphabetic letters. x = isletter(F) c = 'Delhi 16';
>> isletter(c)
ans = 1 1 1 1 1 0 0 0

islogical islogical finds logical array in
input.

x = islogical(F) islogical(2==3)
ans = 1

ismac It checks for MATLAB
version on the macOS
platform.

x= ismac It gives output if MATLAB
version is for Apple macOS.

ismatrix This detects the matrix as
input.

x= ismatrix(F) >> F=eye(2);
>> ismatrix(F)
ans =1

ismember ismember checks the
members of particular set

x = ismember(A,B) ismember gives the output as
true if data of A is based on B.

ismethod This detects the object
method input.

x =
ismethod(obj,MethName
)

It displays logical 1 when the
method name is not hidden.

ismissing It can detect table elements
with misplaced values.

x = ismissing(F) It displays logical 1 when input
data is missing.

isnan It finds the NaN array
elements.

x = isnan(F) >>isnan(0./[1 0 1])
ans =

0 1 0

isnat It finds the NaT array
elements.

x= isnat(F) >>D = datetime(2022,[2 NaN 4
4], 5);
>> isnat(D)
ans =

0 1 0 0

isnumeric It detects numeric array
variables.

x= isnumeric(F) >>isnumeric(10)
ans =1

isobject This finds MATLAB object
inputs.

x= isobject(F) >>isobject(pi)
ans =0

isordinal This detects ordinal
categorical array variables.

x= isordinal(F) It returns logic 1 for ordinal
categorical array.

ispc This helps to determine it is
executed on Windows
platform for MATLAB

x=ispc It gives output if the MATLAB
version is for Microsoft
Windows.

isprime This function finds the prime
elements.

x = isprime(F) >> isprime([2 3 8 9 11])
ans = 1 1 0 0 1

140 | Branch Statements in MATLAB

isprop This checks object property. x =
isprop(obj,PropName)

It displays the logic 1 if the
property name is object name.

isprotected This function checks for
protected categorical arrays.

x= isprotected(F) It displays logic 1 if categories
of F are preserved.

isreal This determines real
numbers in an array.

x = isreal(A) >>isreal([1, 2, 6, 9])
ans =1

isregular This detects the regular
timetable.

x= isregular(F) >> isregular (seconds(1:3))
ans=1

isrow It checks for row vector
input.

isrow(F) >> isrow([2 6 7])
ans =1

isscalar This checks for scalar input. x = isscalar(F) >>F=eye(2);
>>isscalar(F(1,2))
ans=1

issorted issorted function detects
sorted order

x = issorted(F) >> F=[4 7 10 15];
>> issorted(F)
ans = 1

issortedrows This function determines the
sorted rows.

x = issortedrows(F) >> F = [1 4 8; 2 4 9; 3 0 6];
>> issortedrows(F)
ans = 1

isspace This function finds the space
in an array.

x = isspace(F) c = 'Delhi 16';
>> isspace(c)
ans = 0 0 0 0 0 1 0 0

issparse issparse function detects the
sparse array.

x = issparse(F) It displays logic 1 for sparse
storage class.

isstring This function checks for
string arrays.

x = isstring(F) >> S =
["Delhi","Haryana","Mumbai"];
>> isstring(S)
ans=1

isStringScalar It checks for string array
input consisting of a single
element.

x = isStringScalar(F) >> S="Delhi";
>> isStringScalar(S)
ans = 1

isstrprop This checks for specified
category input.

x= =
isstrprop(str,category)

>> c = 'Delhi 16';
>> isstrprop(c, 'alpha')
ans = 1 1 1 1 1 0 0 0

isstruct It detects the structure array
input.

x = isstruct(F) >> student.name = 'Rahul';
student.fee = 10000.00;
student.marks = [67 65 83; 80
88 67.5; 69 71 78];
isstruct(student)
ans = 1

IT Workshop| 141

isstudent This finds if MATLAB is
running in the student
version.

x = isstudent It displays logic 1 for student
version MATLAB.

issymmetric It checks for symmetricity of
the matrix.

x = issymmetric(F) >> F =[0 2-i; 2-i 0];
issymmetric(F)
ans = 1

istable This detects the input as a
table.

x = istable(F) It displays the logic 1 when F is
a table.

istabular This detects the input as a
table or timetable.

x = istabular(F) >>F = table([2;3.5],[1;3]);
>>istabular(F)
ans=1

istall It checks for tall array input. x = istall(F) >>istall(tall(randn(100,2)))
ans = 1

istimetable This detects the timetable
input.

x = istimetable(F) >> Date =
datetime(["2022-08-05";"2022-0
8-05"]);
>>Temperature = [31.3;33.1];
>>Humidity = [68.9;71.2];
TimeTable =
timetable(Date,Temperature,Hu
midity);
istimetable(TimeTable)
ans = 1

istril This detects the lower
triangular matrices.

x = istril(F) >> F=[1 0; 1 1];
>> istril(F)
ans = 1

istriu This detects the upper
triangular matrices.

x = istriu(F) >> F=[1 1; 0 1];
>> istriu(F)
ans = 1

isundefined This helps to find out
undefined elements.

x = isundefined(F) It displays the output as logic 1
if the element of the categorical
array of F is undefined.

isunix This checks whether
MATLAB is working on
Linux.

x = isunix It displays the output as logic 1
if the MATLAB version is for
Linux.

isvarname It checks for valid variable
name

x = isvarname(v) >> v = 'var_1';
isvarname(s)
ans = 1

isvector It detects the vector input. x = isvector(F) Check for the vector [1; 2; 5]
>> F=[1; 2; 5];
>> isvector(F)
ans =1

UNIT SUMMARY

Multiple Choice Questions

142 | Branch Statements in MATLAB

isweekend This function finds if the
given date is during the
weekend.

x = isweekend(t) Find the weekend date is during
2022,8,4:6.
>> t =
datetime(2022,8,4:6,'Format','ee
e dd-MMM-yyyy')
isweekend(t)
ans = 0 0 1

● ‘if statement’ is a decision control command.
● The if-else statement evaluates the correctness and falsity of the expression and

displays the corresponding results.

● The nested if-else statements contain another statement in it that is of the same type
as the main statement.

● In switch-case statements, users accomplish one set of statements from many sets
of statements.

● ‘is’ function detects the state of the MATLAB entity.

EXERCISES

6.1 Following statement is included in branching statements

(a) iskeywords (b) while (c) if-else (d) for

6.2 Which of the following statement is not included in branching statements

(a) if-else (b) nested if-else (c) switch-case (d) for

6.3 In if statement, the expression is represented in terms of operator.

(a) relational (b) addition (c) division (d) none of these

IT Workshop| 143

6.4 Compute the output of the following statement
>> N = 7;
>> if N > 7

disp('Number is greater than 7')

else

disp('Number is less than 7')

end

(a) Number is greater than 7 (b) Number is less than 7

(c) Both (a) and (b) (d) none of these

6.5 Compute the output of the following statement

>> if N = 2:4<=4;

disp('Condition satisfied')

else

disp('Condition not satisfied')

end

(a) Condition satisfied (b) Condition not satisfied

(c) Both (a) and (b) (d) none of these

6.6 Compute the output of the following

D= 1000; %Distance travelled in KMs

T = 10; % Total time taken in hours

S= D/T; % Speed of the vehicle

if 50 <=S && S <= 100

disp('Vehicle speed is within the speed limit')

elseif S > 100

144 | Branch Statements in MATLAB

disp('Vehicle speed is above the speed limit')

else

disp('Vehicle speed is below the speed limit')

end

(a) Vehicle speed is within the speed limit (c) Vehicle speed is above the speed limit

(b) Vehicle speed is below the speed limit (d) None of these

6.7 Compute the output of the following for x=3 and y=5

if x=5
if y=5

output=x+y;

else

output=x-y;

end

else

if y=5

output=x/y;

else

output=x*y;

end

end

end

(a) 0.6000 (b) 8 (c) -2 (d) 15

6.8 Compute the output of the following for A=1 and B=0

y = (A & B) | ((~ A) & (~ B));
switch y

case 1

disp('y = 1')

IT Workshop| 145

case 0

disp('y = 0')

otherwise

disp('Other value')

end

(a) y = 1 (b) y = 0 (c) Other value (d) None of these

6.9 Compute the output of the following for A=1 and B=0

y = (A & (~ B)) | ((~ A) & B);

switch y

case 1

disp('y =1')

case 0

disp('y = 0')

otherwise

disp('Other value')

end

(a) y = 1 (b) y = 0 (c) Other value (d) None of these

6.10 Which of the following is not a iskeyword

(a) elseif (b) end (c) for (d) and

6.11 Find the output of following program statement

>>S = ["Delhi",Chennai,"Mumbai"];
>> isstring(S)

(a) 1 (b) 0 (c) Both (a) and (b) (d) None of these

6.1 (c), 6.2 (d), 6.3 (a), 6.4 (b), 6.5 (a), 6.6 (a), 6.7 (a), 6.8 (b), 6.9 (a), 6.10 (d), 6.11 (d),
6.12 (b), 6.13 (a), 6.14 (b), 6.15 (a), 6.16 (a)

Multiple Choice Questions Answers

146 | Branch Statements in MATLAB

6.12 Find the output of following program statement
>>F=[1 0; 1 1];
>> istriu(F)

(a) 1 (b) 0 (c) Both (a) and (b) (d) None of these

6.13 Find the output of following program statement

>>F=eye(2);
>>isscalar(F(2,2))

(a) 1 (b) 0 (c) Both (a) and (b) (d) None of these

6.14 Find the output of following program statement

>>>>isobject(pi)

(a) 1 (b) 0 (c) Both (a) and (b) (d) None of these

6.15 Find the output of following program statement

>>c = 'An apple';
>> isletter(c)

(a) 1 1 0 1 1 1 1 1 (b) 0 1 0 1 1 1 1 0 (c) 0 0 0 1 1 1 1 1 (d) None of these

6.16 Find the output of following program statement

>> F=ones(2);
ismatrix(F)

(a) 1 (b) 0 (c) Both (a) and (b) (d) None of these

Short and Long Answer Type Questions

Category I

Category-II

IT Workshop| 147

6.1 What are the branching statements? Give a brief about the different types of
branching statements.

6.2 Explain if statements with an example.

6.3 Explain if-else statements with an example.

6.4 What are nested if-else statements? Explain the significance of nested if-else

statements with an example.

6.5 Explain the switch-case statement with an example.

6.6 What is ‘is function’? Explain the following is functions with an example
(a) iskeyword
(b) iscolumn
(c) isduration
(d) isfinite
(e) isinteger

6.7 Check whether the sequence 6 :10 is less than or equal to 11. Display ‘Sequence
is having the smaller value’ if the condition is satisfied.

6.8 Write a program to check whether the number is a multiple of three.

6.9 A vehicle has traveled the total distance equal to 750 km in 4 hours. If the speed

limit is 80km/h, find whether the speed is below or above the speed limit using if-
else.

6.10 Check whether the mean of a sequence z=6:12 is within the range of nine to ten.

6.11 Create a MATLAB program to simulate EX NOR gate using switch case

statement.

6.12 Check whether the dates 1 January 2023 to 5 January 2023 are during the
weekend.

6.13 Create a MATLAB program to simulate half adder and full adder using switch case

statements.

PRACTICAL

148 | Branch Statements in MATLAB

6.14 Check whether the matrix [5 7-4i; 7+4i 9] is a Hermitian matrix.

6.15 Check whether the matrix elements of 1 ./ [2 0 2 0]

Experiment 6.1: Experiment on conditional branching

Aim
Design a thermometer that reads the temperature in Celsius and converts the results into
Fahrenheit and displays the temperature level of the patient.

Apparatus

MATLAB

Theory

The temperature in Celsius can be converted to Fahrenheit using the following
mathematical formalism

𝑇 9 𝑇 32.
𝐹𝑎ℎ𝑟𝑒𝑛ℎ𝑒𝑖𝑡 5 𝐶𝑒𝑙𝑠𝑖𝑢𝑠

The average body temperature is between 97
𝑜
𝐹 to 99

𝑜
𝐹, where 𝐹 denotes the temperature

units in Fahrenheit. A patient has a high fever if the temperature of the body is above
𝑜

100 𝐹

MATLAB simulation
clear all

close all

clc

T_Celcius = input('Enter the temperature in Celsius: ');

T_Farenheit = (9/5)*T_Celcius+32;

if (T_Farenheit>=97 && T_Farenheit<=99)

.

>>myprog

Enter the temperature in Celsius: 40

High fever

Command Window

References

IT Workshop| 149

disp('Normal body temperature')

elseif(T_Farenheit>99 && T_Farenheit<=100.4)

disp('Moderate fever')

elseif(T_Farenheit>100.4)

disp('High fever')

else

disp('Temperature is below normal temperature')

end

Results

Conclusions
This experiment illustrates the application of conditional branching to design a
thermometer. Initially, it takes the temperature in Celsius as an input and converts it to
Fahrenheit. Next, it displays the patient’s condition (whether the patient is normal. IIt also
displays whether the patient has a high or moderate fever) according to the body
temperature.

[1] ‘if, elseif, else’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/ref/if.html
[Accessed: September-2022].

150 | Branch Statements in MATLAB

[2] ‘switch, case, otherwise’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/reThe legalf/switch.html [Accessed:
September-2022].

[3] ‘is functions’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/ref/is.html [Accessed: September-2022].

UNIT SPECIFICS

This unit covers the following aspects:

● for loop
● nested for loop
● while loop
● time function and its application

This unit introduces the iteration and time functions. Iteration includes for loop, nested
for loop, and while loop. The time function consists of timeit, tic, and toc functions. The
unit starts with the iteration function introduction and discusses several loop functions
with their applications in engineering and mathematical science. It also covers time
functions and its implementation on program statements.

The unit contains several solved examples from each topic to enhance the student’s
logical skills and develop a curiosity to apply in ongoing research applications. This unit
consists of many unsolved multiple choice questions and short and long answers type
questions. These will help the students to explore new ideas for different applications.
The unit also consists of several references and recommended readings that help
students explore more theoretical and practical aspects of the main content.

Loop Statements
in MATLAB 7

152 | Loop Statements in MATLAB

RATIONALE

This unit covers iteration functions, e.g., for loop, nested for loop, while loop, etc. for loop
consists of a series of program statements that are repeated values of the given array.

In the case of a nested for loop, loop another for loop in it. The nested for loop has applications
in iteration on 2-dimensional (2D) and 3-dimensional (3D) arrays. while loop executes the
statement for indefinite times until the expression is false. Appended with these, this unit also
covers the time functions. Time functions are used to measure the run time of program
statements. It uses timeit and stopwatch timer (i.e., tic, toc) functions for this purpose. This unit
comprises solved examples to explain the content for practical implementation.

PRE-REQUISITES

Basics of MATLAB environment

Operation with functions, matrices, and variables

Basic knowledge of branching statements

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U7-O1: Describe for loop

U7-O2: Explain nested for loop

U7-O3: Illustrate while loop

U7-O4: Apply ‘time function’ for practical implementation

Unit-7 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U7‐O1 - 2 1 3 -

U7‐O2 - 2 - 3 -

U7‐O3 - 2 - 3 -

U7‐O4 - 2 - 3 -

IT Workshop| 153

7.1 Loop statements
The loop statements have applications where statements are repeated in a MATLAB script.
In this case, the number of repetitions can be either known or unknown. If the number of
repetitions is fixed, then the for loop is employed. On the other hand, while loop is used for
the unknown number of repetitions. In this case, the number of repetitions is conditional, i.e.,
the three will be repetitions of the statements until the expression becomes false. Repeated
program statements are known as looping statements.

7.1.1 for loop
The for loop in MATLAB is a series of statements that are repeated for all
values of the given array. The corresponding value of the variable with the
current looping value is known as the looping variable. for loop is also
called a definite loop as it has fixed initial and final values [1]. The syntax
for for-loop is as follows

for index = values

statements

end

Execution of the looping variable can take the following form:

Initial value-Final value The loop initiates with an initial index value and executes the
statements; index value is incremented by one followed by statement execution. It repeats
until it reaches the final value.

Initial value-Step-Final value In this way, the loop starts with the initial value and
executes the statements; the increment or decrement in this case is a step value on each
iteration. Increment and decrement indices have positive and negative values, respectively.

Value array: It generates a column vector in the index form, and the number of iterations is
equal to the number of columns of the array. Consider the array ValueArray, then the index
for the initial iteration is ValueArray(:, 1). The ValueArray can have the form character, cell
array data type, etc.

Find the sum of array [1 2 3 4] using for loop.
Solution:

sum = 0;

F = [1, 2, 3, 4];

for k = 1 : length (F)

sum = sum + F(k)

154 | Loop Statements in MATLAB

 end

Command Window

>> myprog

sum =

10

(Continue to compute the sum of the cube): Compute the sum of the cube of all
numbers from 1 to 5.
Solution:

sum = 0;

for k = 1:5

k = k^3;

sum = sum + k

end

Command Window

>> myprog

sum =

225

(Continue to compute the sum of the random array): Calculate the sum of the
array [1:4, 7] using for loop.
Solution:

m=0;

F=[1:4, 7];

for k = 1 : length (F)

m=m + F(k)

end

Command Window

>>myprog

m =

17

Find the prime number from 2 to 20 using a nested for loop.
Solution:

for p = 2:20

for q = 2:20

if(~mod(p,q))

break;

end

end

if(n > (p/q))

fprintf('%d\n', p);

end

end

>>myprog

2

Command Window

IT Workshop| 155

Description of Example 7.1: This example illustrates the summation of elements of an
array. It initializes with the summation value as zero and defines the array to the variable F. It
begins the for loop with the expression ‘k = 1 : length (F)’, where the loop starts at k=1 and
goes up to a length of array F. Then, it computes the sum using ‘sum=sum + F(k)’. For k=1,
the sum is equal to 1. Similarly, for k=2, the sum is equal to 3. The sum is equal to 10 for
k=4. The for loop can be used to compute the sum of the cube of the series. The users can
also use this loop for computing the sum of all array elements, as shown in the example.

7.1.2 Nested for loop
When a for loop contains another for loop, it is said to be a nested for loop statement. The
nested for loop has the application in iteration required in a 2-dimensional array (2D). It can
also be used for 3-dimensional (3D) arrays. For 3D applications, the nested for loop
contains another nested for loop.

156 | Loop Statements in MATLAB

3

5

7

11

13

17

19

(Continue to calculate sum of all elements of matrix):

Compute the sum of all the elements of the matrix
for loop.
Solution:

F=[3 2 4; 8 1 7; 6 2 1];

sum = 0;

for m = 1:3

for n=1:3

sum = sum + F(m, n)

end

end

Command Window

>> myprog

sum =

34

using

a

nested

Description of Example 7.2: This example explains the application of nested for loop.
Nested for loop can be used to find the prime numbers, as shown in the example. The break
keyword stops the loop for the next value of m or n if the condition ~mod(m,n) is satisfied.
Nested for loop can also be used to add all elements of matrices, as shown in the example.

How many times can 81 be divided by 3 such that the result is less than unity?
Solution:

m = 0;

M = 81;

while M >= 1

M = M/3;

m=m+1

end

>> myprog

m =

5

Command Window

IT Workshop| 157

7.1.3 while loop
The while loop in MATLAB executes the statement for indefinite times until
the expression is false. while loop is also called an indefinite loop as
statements are computed repeatedly until the expression is false [2]. The
syntax for a while loop is

while expression

statements

end

The while loop first computes the expressions, then statements are executed. When the
output of the expression is not empty or has elements in the form of numerical or logical
values, then it is said to be true. For the true expression, it computes the statements and
repeats them until the expression is false.

Description of Example 7.3: This example illustrates the while loop for computing the
number of divisions possible. Initially. it initiates with initializing number (M) and divisor. Next,
it applies the condition M >= 1, if this condition is satisfied, then it computes M = M/3;
otherwise, it will stop.

158 | Loop Statements in MATLAB

7.2 Timing functions
MATLAB uses timeit, and stopwatch timer (i.e., tic, toc) functions to
measure program statements' run time. It uses tic and toc for execution
time estimation of a small part of the program, whereas MATLAB profiler is
used for supplementary information of the execution of the program, e.g.,
the execution time of each code line.

7.2.1 timeit function
Users can employ timeit function to compute the time needed to execute a
function. It recalls a function several times and gives the median as output. The syntax for
timeit function is

t = timeit(f)

t = timeit(f,NumberofOutputs)

where t is the measured time (in seconds) using timeit function. f represents a function
described by the function handle. MATLAB allows recalling the function f with requisitioned
number of outputs. It uses timeit(f,NumberofOutputs) for this purpose. The value of
NumberofOutputs is unity by default.

7.2.2 tic and toc function
The tic function in MATLAB can be used to compute the elapsed time. The toc function
follows this function. The tic function and toc function measure initial time and traced time,
respectively, to give the total elapsed time as output. The syntax for tic and toc function is

tic

program statement

toc

It initiates with setting the initial time after the application of the tic function. This will store the
current time. Then, the program statements are executed. Finally, it records the total time
elapsed using the toc function.

Note:

● The two or more successive calls lead to overwriting the previous stored initial time.
● Initial time measured using tic function remains unaffected using clear function.
● If the program statement run time is faster than 0.1 second, then it is preferable to

compute the average for a single run.

IT Workshop| 159

Write a program to perform the arithmetic operation with sinusoidal signals and
compute the execution time using timeit function.
Solution:

>> t=0 : .01 : 1;

>> x = 2.5*sin(4*pi*t);

>> y = 5.0*cos(8*pi*t);

>> f = @() sum(x.*y, 1);

>>timeit(f)

ans =

4.7846e-06

(Continue to use tic and toc functions): Consider Example 7.2, compute the
total elapsed time using tic and toc function.
Solution:

tic

F=[3 2 4; 8 1 7; 6 2 1];

sum = 0;

for m = 1:3

for n=1:3

sum = sum + F(m, n);

end

end

toc

Command Window

>>myprog

Elapsed time is 0.072386 seconds.

(Continue to use a combination of tic, toc functions): Consider Example 7.4,
compute the overall time needed for an element by element matrix product using a
combination of tic and toc functions.
Solution:

t_start= tic;

m = 10;

N = zeros(1,m);

for j = 1:m

t = 0 : 0 .01 : 1;

x =5* sin(4*pi*t);

y =25* cos(8*pi*t);

f = @() sum(x.*y, 1);

T(j) = toc;

end

N_total = sum(N)

9.17023e+06

>>myprog

T_total =

Command Window

160 | Loop Statements in MATLAB

Description of Example 7.4: This example illustrates the application of timeit function for
computing the time required for performing the arithmetic operation of two sinusoidal signal.
Initially, it defines the time period of the signal and two sinusoidal signals. It performs the
arithmetic operation for two sinusoidal signals. The execution time for the program
statements is computed using the timeit function. The tic and toc functions can also be used
for measuring the execution time of the program, as shown in the example. It begins with tic
function, followed by a program statement. The toc function records the total time elapsed
by the program. A combination of tic, toc functions can also be used for the element-by-
element matrix product, as shown in the example.

7.3 Profiling to enhance performance
Profiling is a method to check the execution time of each function. This
helps in improving performance. The users can also profile the program
statements as a debugging mechanism. Profiling can also be used to locate
the error in the program statements so that it can be corrected. Following
are the steps involved in profiling the code:

1) It initiates by typing ‘profile on’ in the command window.
2) After this, the execution of program statements takes place.

IT Workshop| 161

3) After program statement execution, the user can type profile off.
4) profile viewer can be used to check the profile summary.

Profile the MATLAB code for Example 7.4. Also illustrate the profile summary.
Solution:

>> profile on

>> t = 0 : .01 : 10;

>> x = sin(4*pi*t);

>>y = sin(8*pi*t);

>>f = @() sum(x.*y, 1);

>> profile off

>> profile viewer

Description of Example 7.5: This example demonstrates the application of profiling to
improve the performance of the MATLAB code. This begins with ‘turning on’ the profile by
typing ‘profile on’ followed by program statements. After executing the program statements,
the profiling is disabled using ‘profile off’. The profile summary can be displayed using profile
viewer command statement. Figure 7.1 illustrates the profile summary of the example.

Figure 7.1: Profile summary

UNIT SUMMARY

Multiple Choice Questions

162 | Loop Statements in MATLAB

● The for loop in MATLAB is a sequence of statements that are repeated for the
specified array.

● The variable with the current looping value is known as the looping variable.

● If a for loop contains another for loop, then this is said to be a nested for loop
statement. One nested for loop can contain another nested for loop.

● while loop executes the statement for indefinite times until the expression is false. As
loops are executed for indefinite times, thus these are also known as an indefinite
loop.

● Time functions measure the execution time of a program statement. It uses the
following function for this

- timeit
- tic and toc functions

● Profiling is used to check the execution time, which helps improve the program
statement's performance and reduces the possibility of error.

EXERCISES

7.1 Compute the final value of ‘m’ after executing the following program statement

m = 0;

for k = 1:3

k = k^3+2;

m = m + k

end

(a) 42 (b) 39 (c) 36 (d) none of these

7.2 Compute the final value of ‘m’ after executing the following program statement

IT Workshop| 163

m = 0;

for k = 1:3

k = k^2+2*k;

m = m + k

end

(a) 30 (b) 12 (c) 16 (d) 26

7.3 Compute the final value of ‘m’ after executing the following program statement

m=0;

F=[1, 4, 3]

for k = 1 : length (F)

m=m + k*F(k)

end

(a) 8 (b) 18 (c) 10 (d) none of these

7.4 What is the value of ‘s’ after executing the following program statement

F=[1 3 1; 2 5 9; 5 3 2];

s = 0;

for m = 1:3

for n=1:3

s = s + F(m, n)

end

end

(a) 31 (b) 21 (c) 18 (d) none of these

7.5 Compute the final value of ‘s’ after executing the following program statement

164 | Loop Statements in MATLAB

F=eye(3);

s = 0;

for p = 1:3

for q=1:3

s = p*s + q*F(p, q)

end

end

(a) 320 (b)127 (c) 327 (d) none of these

7.6 Compute the final value of ‘s’ after executing the following program statement

F=[1 3 1; 2 5 9; 5 3 2];
s = 0;
for p = 1:3

for q=1:3
s = s + F(p, q)

end
end

(a) 31 (b) 21 (c) 18 (d) none of these

7.7 Compute the final value of ‘m’ after executing the following program statement

m = 0;
M = 27;
while M >= 1

M = M/3;
m=m+1

end

(a) 5 (b) 4 (c) 3 (d) none of these

7.8 Incremental value for ‘for loop’ is

(a) 1 (b) 2 (c) not defined (d) none of these

7.1 (a), 7.2 (d), 7.3 (b), 7.4 (a), 7.5 (c), 7.6 (a), 7.7 (b), 7.8 (a), 7.9 (b), 7.10 (a)

Multiple Choice Questions Answers

Short and Long Answer Type Questions

Category I

Category-II

IT Workshop| 165

7.9 Which loop is used when number of repetitions are fixed

(a) while (b) for (c) both (a) and (b) (d) none of these

7.10 Which loop is used when number of repetitions are conditional

(a) while (b) for (c) both (a) and (b) (d) none of these

7.1 Define loop statements. Give a brief about the different types of loop statements.

7.2 Explain for loop with an example.

7.3 Explain nested for loop with an example.

7.4 Compare for loop and while loop with one example of each.

7.5 Explain time functions with an example of each.

7.6 Describe the need for profiling with an example.

7.7 Compute the sum of array [1 4 6 7 8] using for loop.

7.8 Evaluate the sum of the square of all numbers from 1 to 10.

7.9 Calculate the sum of the array [1:6, 10, 8] using for loop.

7.10 Find the prime number from 2 to 100 using a nested for loop

7.11 Calculate the summation of all matrix elements using a
nested for loop.

References

166 | Loop Statements in MATLAB

7.12 Compute the summation of all the matrix elements using a nested
for loop.

7.13 How many times can 125 be divided by 5 such that the result is less than unity?

7.14 Write a program to perform the arithmetic operation for the following type of
signals and compute the execution time using timeit function:

(a) time-varying exponential signals
(b) time-varying complex signals

7.15 Calculate the total elapsed time while performing element wise multiplication using

tic and toc function for the following signals:
(a) time-varying exponential signals
(b) time-varying complex signals

7.16 Profile the MATLAB code while performing the arithmetic operation and illustrate

the profile summary for the following type of signals:
(c) time-varying exponential signals
(d) time-varying complex signals

[1] ‘for loop’, 2022 [Online]. Available:
https://www.mathworks.com/help/matlab/ref/for.html
[Accessed: September-2022].

[2] ‘while loop’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/ref/while.html [Accessed:
September-2022].

[3] ‘Measure the Performance of Your Code’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/matlab_prog/measure-performance-of-you
r-program.html [Accessed: September-2022].

UNIT SPECIFICS

This unit covers the following aspects:

● Basics of image processing in MATLAB

● Image enhancement methods

● File handling in MATLAB

This unit first introduces the students to the basics of image processing in MATLAB.
Image processing finds applications in various domains, such as intelligent
transportation systems, precision agriculture, pervasive computing, ubiquitous
computing, etc. MATLAB consists of various tools for image processing. IT Workshop
covers the fundamentals of the programming of image processing. This unit then
describes the different image enhancement techniques. Such techniques produce the
results which help to display a more suitable format and also make them easy for further
analysis. It also helps to reduce the time complexity of further image processing. This
unit also covers file handling in MATLAB. This unit contains several solved examples of
different image processing to develop students’ curiosity to explore more about the main
content. It consists of many unsolved multiple choice questions and short and long
answers type questions. These will help the students to explore new ideas for different
applications and develop logical skills. The unit also consists of several references and

Image Processing
and File Handling
in MATLAB

8

168 |Image Processing and File Handling in MATLAB

recommended readings to get more into the theoretical and practical aspects of the main
content.

RATIONALE

This unit includes the basics of image processing which includes importing, exporting, and
processing the image. It also discusses the displaying method of an image. This unit also covers
the image enhancement method. This includes grayscale contrast adjustment and image
transformation methods, i.e., linear, logarithmic, and power law transformation methods. This
unit also consists of file handling in MATLAB. It exclusively focuses on explaining the concepts
with solved examples. This helps students and researchers to apply in practical applications.

PRE-REQUISITES

Basics of MATLAB environment

Basic knowledge of image processing

UNIT OUTCOMES

Following are the outcomes of this unit:

U8-O1: Describe basics of image processing

U8-O2: Apply image enhancement techniques

U8-O3: Illustrate file handling in MATLAB

Unit-8 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U8‐O1 1 - 3 - 2

U8‐O2 1 - 1 - 2

U8‐O3 1 - 1 - 1

Import an image to MATLAB workspace and convert the image into the grayscale
equivalent image. Display the image and its equivalent histogram. Also, extract the
information about the image.

Solution:

Image1 = imread('Original_Image.jpg');

Image2=rgb2gray(Image1)

figure

imshow (Image2)

figure

imhist(Image2)

>>myprog

Command Window

IT Workshop| 169

8.1 Introduction to image processing
An image is a 2D function 𝑔 𝑥, 𝑦 , where 𝑥 and y denote the spatial coordinates. The
amplitude on any coordinate 𝑥 or 𝑦 represents the intensity of the image. The gray level
implies the intensity of monochrome images. The color images comprise red, blue, and
green color arrangements, popularly known as the RGB color system.

8.1.1 Importing and displaying an image
MATLAB allows importing the image into the workspace using 𝑖𝑚𝑟𝑒𝑎𝑑
command. It uses 𝑖𝑚𝑠ℎ𝑜𝑤 command to display the imported image.
MATLAB also allows altering the several attributes of an image, e.g., contrast,
pixels, etc. The information about any image in the workspace can be
extracted using 𝑤ℎ𝑜𝑠 command. It provides the information in terms of name,
byte, class, and size of the image [1].

8.1.2 Write the imported image to another format
MATLAB allows writing the imported image to any other image format using 𝑖𝑚𝑤𝑟𝑖𝑡𝑒
command. The information can be accessed using 𝑖𝑚𝑓𝑖𝑛𝑓𝑜 function.

170 |Image Processing and File Handling in MATLAB

Figure 8.1: Grayscale equivalent of the original image.

Figure 8.2: Histogram equivalent of the grayscale image.

(Continue to change the image file format): Change the file format of the image
in Figure 8.1 and extract the information of the transformed image.

Solution:

I = imread('Original_Image.jpg');

imwrite(I, 'Original_Image.png')

imfinfo('Original_Image.png')

ImageModTime: '13 Sep 2022 10:36:38 +0000'

FileModDate: '13-Sep-2022 16:06:39'

'Original_Image.png'

>>myprog

Filename:

Command Window

IT Workshop| 171

FileSize: 2166908

Format: 'png'

Width: 2921

Height: 2057

BitDepth: 8

ColorType: 'grayscale'

8.2 Intensity transformation
MATLAB allows several image processing methods which can enhance the
contrast level in an image [2]. These methods adjust the intensity of lower
contrast levels and higher contrast levels. Some of the methods are
described below:

8.2.1 Histogram equalization
Histogram equalization spreads the most recurring contrast level. It leads to stretching the
image intensity range. It expands the global contrast, and smaller local contrast increases to
a higher contrast value. MATLAB uses 𝑖𝑚ℎ𝑖𝑠𝑡 function to generate a histogram to check
the intensity distribution of an image. It is worth noting that the figure command should be
used with 𝑖𝑚ℎ𝑖𝑠𝑡 function in order to avoid overwriting of histogram image over the
original image. In MATLAB, users can also enhance the contrast of an image using ℎ𝑖𝑠𝑡𝑒𝑞 .

8.2.2 Linear transformation
Linear transformation can be done using two ways, namely:

𝑗 𝑗

172 |Image Processing and File Handling in MATLAB

(a) Identity transformation: When the input image directly maps to the output image, it

is said to be an identity transformation method. Thus, the graph between input
intensity level and output intensity level is a straight line.

(b) Negative transformation: In the negative transformation, the input image is negated
and mapped onto the output image. Mathematically it is expressed as

𝐼 𝐼 𝐼 (8.1)
𝑂𝑢𝑡𝑝𝑢𝑡 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑛𝑝𝑢𝑡

where 𝐼 and
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼
𝐼𝑛𝑝𝑢𝑡

denote the output and input image intensity.

𝐼
𝑀𝑎𝑥𝑖𝑚𝑢𝑚

is the

maximum intensity of the grayscale image. If the image is expressed by 8-bit
grayscale, then the intensity of the image varies from zero to 255. In negative
transformation, each pixel value of the image gets subtracted from 255.

8.2.3 Logarithmic transformation
In logarithmic transformation, the output image pixels are a logarithmic function of input
image pixels. Mathematically it is expressed as

𝐼 𝑘 𝑙𝑜𝑔 𝐼 1 (8.2)
𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑛𝑝𝑢𝑡

where 𝐼 and 𝐼 denote the output and input image pixel values, respectively. 𝑘 is the

𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑛𝑝𝑢𝑡

constant value. This method is based on the fact that higher values of pixels inside the log
function get compressed, whereas lower values of the pixels get expanded. One must be
added to input pixels inside the log function as it gives the infinite value of output pixel values
for zero input pixel values [3].

8.2.4 Power–law transformation
The power law transformation includes

𝑡ℎ
power transformation and

𝑡ℎ
root transformation.

Mathematically, it is expressed as

𝐼
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

 𝑘 𝐼γ (8.3)
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

where 𝑘 is the constant. As the transformed image is represented in terms of power (gamma,
γ), thus, it is called a gamma transformation. The term γ can be used to obtain the enhanced
image [4]. Figure 8.3 shows the input and output intensity levels for different transformation
methods.

IT Workshop| 173

Figure 8.3: Intensity levels for image transformation methods.

Enhance the contrast of the image using MATLAB. Also, display the histogram of
the original and transformed image.

Solution:

I1 = imread('Original_Image.jpg'); % Actual image

I2=rgb2gray(I1); % Grayscale image

figure

subplot(2,2,1), imshow(I2) %Displaying actual grayscale image

title('Actual grayscale image')

I3 = histeq(I2); % Improved contrast image

subplot(2,2,2), imshow(I3)

title('Image with improved contrast')

174 |Image Processing and File Handling in MATLAB

Figure 8.4: Actual and improved contrast of grayscale image.

Figure 8.5: Histogram of the original image and improved contrast image.

(Continue for negative transformation): Convert a grayscale image to a
negative image.

Solution:

I1 =imread('Image2.jpg'); % Importing actual grayscale image

figure

subplot(2,2,1), imshow(I1) % Displaying actual image

title('Actual grayscale image') % Displaying title to actual image

M=256;

I2 = (M - 1) - I1; % Negative transformed image

subplot(2,2,2), imshow(I2) %Displaying negative transformed image

title('Negative transformed image')

Command Window

>>myprog

Figure 8.6: Comparison of the actual and negative transformed image.

IT Workshop| 175

(Continue for logarithmic transformation): Convert a grayscale image to a
logarithmic equivalent.

Solution:

I1 = imread('Image2.jpg'); % Importing actual grayscale image

I2 = im2double(I1); % Original double datatype image

I3 = k * log(I2 + 1); % Logarithmic transformed image

figure

subplot(2,2,1), imshow(I1) % Displaying actual grayscale image

title ('Actual grayscale image')

subplot(2,2,2), imshow(I3) % Displaying logarithmic transformed image

title('Logarithmic transformed image')

>>myprog

Command Window

176 |Image Processing and File Handling in MATLAB

Figure 8.7: Comparison of the actual and logarithmic transformed image.

(Continue for power law transformation): Transform a grayscale image using
the power law transformation method.

Solution:
Image1= imread('Image2.jpg'); % Actual grayscale image

Image2 = im2double(I1) % Grayscale image to double data type image

subplot(2,2,1), imshow(Image1); %Displaying actual grayscale image

title('Actual grayscale image')

Transformed_Image1 = 2*(Image2.^0.75);

subplot(2,2,2), imshow(Transformed_Image1);

title('Transformed image (\gamma = 0.75)')

Transformed_Image2 = 2*(Image2.^1.25);

subplot(2,2,3), imshow(Transformed_Image2);

title('Transformed image (\gamma = 1.25)')

Transformed_Image3 = 2*(Image2.^1.50);

subplot(2,2,4), imshow(Transformed_Image3);

title('Transformed image (\gamma = 1.50)')

Results

 Command Window

>>myprog

Figure: 8.8: Power law transformation of the image.

IT Workshop| 177

8.3 File handling in MATLAB
File handling includes exporting the data to text files that have low-level
input-output. It involves combining the numerical value and character data
appended with non-rectangular files. For this purpose, it uses 𝑓𝑝𝑟𝑖𝑛𝑡𝑓
function, which is a vector version that can write data from an array [5].
Syntax for 𝑓𝑝𝑟𝑖𝑛𝑡𝑓 is

𝑓𝑝𝑟𝑖𝑛𝑡𝑓 𝑓𝑖𝑙𝑒𝐼𝐷, 𝑓𝑜𝑟𝑚𝑎𝑡𝑆𝑝𝑒𝑐, 𝑋1, 𝑋2,..., 𝑋𝑛

● Opening a file: 𝑓𝑜𝑝𝑒𝑛 can be used to open the file. The file can be accessed in
read-only mode. Thus, users need to define the permission by writing ‘w’, ‘a’, etc. It
generates a file identifier when 𝑓𝑜𝑝𝑒𝑛 is used.

● Writing to a file: It uses several specifiers or symbols to print values. Table 8.1
shows the specifiers which are used to print the different values.

Prepare a table for the expression 𝑡𝑠𝑖𝑛 4π𝑡 and save to a file Sinusoidaltable.txt.
Solution:

t = 0 : 0.01 : 0.1; % Define time series

z = [t; t.*sin(4*pi*t)]; % Define the mathematical expression

fileID = fopen('Sinusoidaltable.txt','w'); % Open the file

fprintf(fileID, 'Mathematical expression\n\n');

fprintf(fileID,'%f %f\n', z);

fclose(fileID); % Close the file

>> type Sinusoidaltable.txt

Mathematical expression

Command Window

178 |Image Processing and File Handling in MATLAB

Table 8.1: Specifiers or symbols with their specifications.

Specifiers or symbols Specification

\n or \r\n This represents proceed to a new line

%f This specifier is used to print floating-point numbers

%d It denotes integer values

%s It prints the character values

● It uses 𝑓𝑐𝑙𝑜𝑠𝑒 function to close the file after finishing.

0.000000 0.000000

0.010000 0.001253

0.020000 0.004974

0.030000 0.011044

0.040000 0.019270

0.050000 0.029389

0.060000 0.041073

0.070000 0.053936

UNIT SUMMARY

Multiple Choice Questions

IT Workshop| 179

0.080000

0.067546

0.090000 0.081434

0.100000 0.095106

● Image enhancement includes
- Histogram equalization
- Linear transformation

(a) Identity transformation
(b) Negative transformation

- Logarithmic transformation
- Power law transformation

● File handling includes exporting the data to text files which have low-level
input-output.

EXERCISES

8.1 Which of the following function is used to import the image

(a) 𝑖𝑚𝑟𝑒𝑎𝑑 (b) 𝑖𝑚𝑎𝑔𝑒𝑟𝑒𝑎𝑑 (c) 𝑟𝑒𝑎𝑑𝑖𝑚 (d) none of these

8.2 Which of the following function is used display the histogram of an image

(a) ℎ𝑖𝑠𝑡𝑖𝑚𝑎𝑔𝑒 (b) ℎ𝑖𝑠𝑡𝑖𝑚 (c) 𝑖𝑚ℎ𝑖𝑠𝑡 (d) none of these

8.3 Consider 𝐼 denotes the output and input image intensity. 𝐼 is the maximum
𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

intensity of the grayscale image. Then, the correct expression for negative transformation
is

(a) 𝐼

𝑀𝑎𝑥𝑖𝑚𝑢𝑚
 𝐼

𝐼𝑛𝑝𝑢𝑡
(b) 𝐼

𝑀𝑖𝑛𝑖𝑚𝑢𝑚
 𝐼

𝐼𝑛𝑝𝑢𝑡
(c) 𝐼

𝑀𝑖𝑛𝑖𝑚𝑢𝑚
 𝐼

𝐼𝑛𝑝𝑢𝑡
(d) 𝐼

𝑀𝑎𝑥𝑖𝑚𝑢𝑚
 𝐼

𝐼𝑛𝑝𝑢𝑡

8.1 (a), 8.2 (c), 8.3 (a), 8.4 (b), 8.5 (a), 8.6 (d), 8.7 (a), 8.8 (d)

Multiple Choice Questions Answers

Short and Long Answer Type Questions

180 |Image Processing and File Handling in MATLAB

8.4 Consider 𝐼 denotes the original image intensity and γ is the constant value. The
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

correct expression for power law transformation is

(a) 𝑘 𝐼 (b) 𝑘 𝐼γ
(c) 𝑘 γ 𝐼γ (d) none of these

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

8.5 Consider 𝐼

𝐼𝑛𝑝𝑢𝑡
denotes the input image intensity. The correct expression for

logarithmic transformation is

(a) 𝑘 𝑙𝑜𝑔 𝐼 1 (b) 𝑘 𝑙𝑜𝑔 𝐼 (c) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝐼 1 (d) none of these
𝐼𝑛𝑝𝑢𝑡 𝐼𝑛𝑝𝑢𝑡 𝐼𝑛𝑝𝑢𝑡

8.6 Which symbol is is used to print floating-point numbers

(a) \f (b) %d (c) %n (d) %f

8.7 Which symbol is is used to print integer numbers

(a) %d (b) %n (c) %i (d) %f

8.8 Which symbol is is used to print character values

(a) %d (b) %n (c) %c (d) %s

8.1 Explain the importing and displaying an image with an example.

8.2 Explain the histogram equalization with an example.

8.3 Describe the grayscale transformation methods

8.4 Explain the following with an example
(a) Identity transformation
(b) Negative transformation

𝑡 𝑐𝑜𝑠 5π𝑡

PRACTICAL

>>myprog

Command Window

IT Workshop| 181

8.5 Describe the following with an example

(c) Logarithmic transformation

(d) Power law transformation

8.6 Describe the file handling with an example.

8.7 Prepare a table for the expression
2

and save to a file
Mathematicaltable.txt.

Experiment 8.1: Extract features of an image using MATLAB.

Aim
Find the features of an image using MATLAB.

Apparatus
MATLAB

Theory

The attributes of an image are defined in terms of width, height, class, and image type.
MATLAB uses 𝑖𝑚𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 for this purpose.

MATLAB simulation
clc

clear all

close all

Image = imshow('Image1.jpg');

Attributes = imattributes(Image)

Results

Figure 8.9: Original image considered for obtaining attributes.

Attributes =

4×2 cell array

{ 'Width (columns)' } {'775' }

{ 'Height (rows)' } {'557' }

{ 'Class' } {'uint8' }

{ 'Image type' } { 'truecolor' }

182 |Image Processing and File Handling in MATLAB

Conclusions
This experiment explains the attributes and method to find the attributes of an image. Initially
the user need to import the image from the memory drive to MATLAB program by giving the

proper path to the image. Then, the attributes are obtained using 𝑖𝑚𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 command.

Experiment 8.2: MATLAB program for image negation.

Aim
Design a MATLAB program for obtaining a negative image.

Apparatus
MATLAB

Figure: 8.10: Comparison of original and negative transformed image.

>>myprog

Command Window

IT Workshop| 183

Theory

The negative image transformation is the linear transformation of an image. It can be used to
detect the various information of an image. It has been widely used by archeologists and
biomedical researchers, etc. In the image negation, the input image is negated and maps
onto the resultant image.

MATLAB simulation

Image1=imread('Image1.jpg'); % Import the actual image

Image2=rgb2gray(Image1); % Actual grayscale image

figure

subplot(2,2,1), imshow(Image2); %Displaying actual grayscale image

M=256;

Image3=(M-1) - Image2; %Negative transformed image

subplot(2,2,2), imshow(Image3) %Displaying negative transformed image

Results

Conclusions

This experiment demonstrates image negation using MATLAB. Initially, it imports the original

image using 𝑖𝑚𝑟𝑒𝑎𝑑 command. Then, it does the image negation of the original image.

Command Window

184 |Image Processing and File Handling in MATLAB

Experiment 8.3: MATLAB program for power law transformation.

Aim
Design a MATLAB program to perform power law transformation of an image.

Apparatus
MATLAB

Theory

The transformed image using power law transformation is expressed as

𝐼
𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

 𝑘 𝐼
γ

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

where 𝑘 is the constant. As the transformed image is represented in terms of power (gamma,
γ), thus, it is called as gamma transformation. The term γ
enhanced image.

can be used to obtain the

MATLAB simulation

I = imread('Image2.jpg'); %Import actual grayscale image

Image_double=im2double(I)

subplot(2,2,1), imshow(I); % Plotting actual grayscale image

title('Actual greyscale image')

Transformed_Image1 = 2*(Image_double.^0.75);

subplot(2,2,2), imshow(Transformed_Image1); %Plotting transformed image(γ 0.75)

title('Transformed image (\gamma = 0.75)')

Transformed_Image2 = 2*(Image_double.^1.25);

subplot(2,2,3), imshow(Transformed_Image2); %Plotting transformed image(γ 1.25)

title('Transformed image (\gamma = 1.25)')

Transformed_Image3 = 2*(Image_double.^1.50);

subplot(2,2,4), imshow(Transformed_Image3); %Plotting transformed image(γ 1.5)

title('Transformed image (\gamma = 1.5)')

Results

Figure: 8.11: Image transformation using power law transformation method.

IT Workshop| 185

Conclusions
This experiment demonstrates the power law transformation of an image using MATLAB.
Initially, it imports the original image using 𝑖𝑚𝑟𝑒𝑎𝑑 command. Then, it does the image

transformation of the image using different values of parameter γ.

Experiment 8.4: File handling in MATLAB

Aim

Illustrate a file handling program using MATLAB for a mathematical expression.

Apparatus

MATLAB

Theory

File handling exports the data to text files that have low-level input-output. It involves
combining the numerical value and character data appended with non-rectangular files.

MATLAB simulation

t = 0 : 0.02 : 0.1;
z = [t; t.*cos(6*pi*t).*sin(4*pi*t)];

References

186 |Image Processing and File Handling in MATLAB

fileID = fopen('Trigotable.txt','w');
fprintf(fileID, 'Mathematical expression\n\n');
fprintf(fileID,'%f %f\n', z);
fclose(fileID);

Results

Command Window

>> type Trigotable.txt

Mathematical expression

 0.000000 0.000000
 0.020000 0.004625
 0.040000 0.014047
 0.060000 0.017488
 0.080000 0.004241
 0.100000 -0.029389

Conclusions

This experiment demonstrates the file handling in MATLAB. Initially, it opens the file using

𝑓𝑜𝑝𝑒𝑛 command. Then, it prints the character ‘Mathematical expression’. It also prints the
numerical values of the mathematical expression after computation.

[1] ‘Basic Image Import’, 2022 [Online]. Available:
https://www.mathworks.com/help/images/image-import-and-export.html
[Accessed: September-2022].

[2] Gonzalez, Rafael C. Digital image processing. Pearson Education India, 2009.

[3] ‘Log Transform’, 2022 [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/50286-log-transform
[Accessed: September-2022].

[4] ‘Power law transformation’, 2022 [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/56934-power-law-transform
ation-of-an-image [Accessed: September-2022].

[5] ‘Export to Text Data Files’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/import_export/writing-to-text-data-files-with
-low-level-io.html [Accessed: September-2022].

UNIT SPECIFICS

This unit covers the following aspects:

● MATLAB program organization

● Menu-driven modular program

● Debugging techniques

● SCILAB programming

This unit familiarizes the students with MATLAB program organization. It then discusses
the menu-driven modular program which takes the inputs and displays the output in
terms of user choices. This unit also covers debugging techniques which help in
removing errors in the program statements. It also contains an introduction to SCILAB
programming.

The unit consists of several solved examples to develop the student’s curiosity to apply
in ongoing research applications. This unit consists of many unsolved multiple choice
questions and short and long answers type questions. These will help the students to
explore new ideas for different applications. The unit also consists of several references

MATLAB Program
Organization and
Debugging
Techniques

9

188 | MATLAB Program Organization and Debugging Techniques

and recommended readings which help students to explore more theoretical and
practical aspects of the main content.

RATIONALE

This unit covers MATLAB program organization that leads to improvement in the readability of
the program statement. It uses a cell folding method for this purpose. It also comprises the
application of menu-driven modular programming. It gives the user’s choice outputs in the form
of several options for a given input. This unit also consists of various debugging techniques that
help the users locate the error in the program statement to remove errors. Besides these, it also
covers the introduction to SCI programming. For developing the student’s curiosity and
understanding of the main content, this contains solved examples to explain the content for
practical implementation.

PRE-REQUISITES

Basics of MATLAB environment

Operation with functions, loops, and branching statements

Basic knowledge of linear algebra

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U9-O1: Describe MATLAB program organization

U9-O2: Apply menu-driven modular programming

U9-O3: Illustrate debugging techniques

U9-O4: Introduce SCILAB programming

Unit-9 Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U9‐O1 1 - - - 3

U9‐O2 1 - - - 3

U9‐O3 1 - - - 3

U9‐O4 1 - - - 3

IT Workshop| 189

9.1 MATLAB program organization
MATLAB program organization is an important technique to improve the readability of the
programs. The cell folding method is a widely used method for this purpose. It allows users
to fold the program lines for long and complex programs [1]. In this method, the user must
turn on the code folding using the following way

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 → 𝐸𝑑𝑖𝑡𝑜𝑟/𝐷𝑒𝑏𝑢𝑔𝑔𝑒𝑟 → 𝐶𝑜𝑑𝑒 𝐹𝑜𝑙𝑑𝑖𝑛𝑔.

Following steps need to perform for code folding:

Step 1: The cell marker (%%) should be inserted to the raw code such that the folded part of
the code must be within the cell marker. After applying the cell marker, the folded part of the
program code is confined to a rectangular strip. This is illustrated in Figure 9.1.

Figure 9.1: Cell marker insertion in cell folding method.

Step 2: In the second step, the user can minimize the chunk of the code by right-clicking the
cursor and selecting ‘𝐶𝑜𝑑𝑒 𝐹𝑜𝑙𝑑𝑖𝑛𝑔 → 𝐹𝑜𝑙𝑑 𝐴𝑙𝑙’. Alternatively, users can use 𝐶𝑡𝑟𝑙 to
minimize the selected chunk of the code. Figure 9.2 shows the minimized code. The users
can again maximize the chunk of the code by clicking on the three dots displayed in the
minimized code chunk.
Following are the merits of program organization:

● It becomes useful for long program statements, where debugging becomes easy
after the proper organization of the program.

● The separation of the program statements is advantageous as it reduces the
complexity of the program.

● The users can also store the data in a different folder and call the program if
required.

Design a menu-driven modular program to enter the details of the students.
Solution:

function output1 = MyComponent(input1)

for j = 1:length(input1)

Editor Window 2

function n = myprog11(x)

while true

n=str2double(input(x, 's'));

if ~isnan(n)

break;

end

end

Editor Window 1

190 | MATLAB Program Organization and Debugging Techniques

Figure 9.2: Minimized program after cell folding method.

9.2 Menu-driven modular program in MATLAB
A modular-driven program gets the input and displays the choices through which the user
selects the preferable option. It consists of several merits as described below:

1) Input is introduced using a single key; thus, there is less chance of error from the
user side.

2) They are easy to use as these systems contain less number of inputs. This makes it
more unambiguous.

fprintf('%d, %s\n', j, input1{ j });

end

output1 = 0;

while ~any(output1 == 1 : length(input1))

output1 = myprog11('Select the option: ');

end

StudentDetails = {'Student Name', 'Branch Name', 'Exit'};

name = '';

while true

out1 = MyComponent(StudentDetails);

if out1 == 1

name = input('Student name: ', 's');

elseif out1 == 2

name = input('Branch name: ', 's');

elseif out1 == 3

break;

end

end

Editor Window 3

>>studentdetail

1, Student Name

2, Branch Name

3, Exit

Select the option: 1

Student name: Ram

Command Window

IT Workshop| 191

1, Student Name

2, Branch Name

3, Exit

Select the option: 2

Branch name: Computer Science and Engineering

1, Student Name

2, Branch Name

3, Exit

Select the option: 3

>>

192 | MATLAB Program Organization and Debugging Techniques

Description of Example 9.1: This example illustrates the menu driven modular program to
display the student’s name or branch, which depends on the option that students choose.
Initially, it uses the function myprog11 in the first editor window to enter only the valid number
to select the option; otherwise, it will ask to enter a valid number to enter again. In the
second editor window, MyComponent function displays the menu of the option through which
the student needs to select the option. In the third editor window, it defines the menu items
i.e., Student Name, Branch Name, Exit. When executing the program in the command
window, it first displays the menu items. If the student selects the first option, then it asks the
student to enter the student's name. Similarly, if the student selects the second option, then it
asks the student to enter the branch name. Choosing the third option leads to the exit of the
program.

Generating multiple option dialog boxes: MATLAB contains an inbuilt
function to create multiple choice boxes, which can be used for different
applications [2]. The syntax for generating multiple boxes is given below

𝑐ℎ𝑜𝑖𝑐𝑒 𝑚𝑒𝑛𝑢 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠

Here, the inbuilt MATLAB function 𝑚𝑒𝑛𝑢 generates the multiple option
boxes, so that user can select any one of the options available.

Design a system that takes the input of several color options and plot the graph
using the same color.
Solution:

Option = menu("Opt a color","Yellow","Blue","Red", "Green", "Black")

colors = ["y" "b" "r" "g" "k"];

Command Window

>> myprogram

Figure 9.3: Options available to select any one of the given choices.

Option =

2

Figure 9.4: Illustration of plotting of the graph in MATLAB.

IT Workshop| 193

PlotColor = colors(Option);

t = 0 : 0.01 : 10;

Signal = exp(-0.25*t) .* cos(6*pi*t);

plot(t,Signal,PlotColor, 'LineWidth', 2)

xlabel('Time');

ylabel('Amplitude');

194 | MATLAB Program Organization and Debugging Techniques

Description of Example 9.2: This example explains the application of 𝑚𝑒𝑛𝑢 function in
MATLAB. Initially, it generates the message as ‘Opt a color’, and options as ‘Yellow, Blue,
Red, Green, Black’ using the menu function as shown in Figure 9.3. A new window is popup
that displays the available color options. After selecting the option, it will select the same
color in plotting the waveform as shown in Figure 9.4.

9.3 Debugging techniques
MATLAB programs can have errors in the program statement, which yields
unexpected output. These errors can be classified as

Syntax errors because of misspelling or incorrect way of writing MATLAB
keywords. Incorrect punctuation also results in syntax errors.

Runtime errors are caused due to invalid loop arrays. These loop arrays sometimes result
in infinite loops.

Logical errors occur when program statements have invalid operators, resulting in wrong
output.

The users can identify the trouble during the execution of the program using the debugging
techniques. It uses the debugging function that can be used in the editor window or
command window. Following are the precautions that must be taken before applying
debugging techniques:

I. Save editor fle: The users must save the program file before executing in debugging
form.

II. Command window execution: If a file is not completely saved, then MATLAB will
execute only the saved statements of the program code.

Following are the debugging methods to detect the problem:

I. Remove semicolons to show results: The user can detect the issue by displaying
the output in the command window. To display the output, the semicolons must be
removed throughout the program statements.

II. ‘Breakpoint’ button: This method checks the variable status in the program
statements. The following steps are involved in this method:

(a) Initially, it begins with selecting the breakpoint on the dashed line which is

next to the line number. It leads to a red circle to appear. At the red circle,
the execution of the program pauses. This red circle indicates that the
breaking point is valid and MATLAB file is saved. If the file is not saved, it

turns gray .

(b) If the code is executed, then a green arrow appears, which means that
the marked statement has not been executed yet. To check the line, Run next

IT Workshop| 195

line button is used. It continues for the entire program until it shows the
error in the command window.

(c) The users can use the Continue to detect the next breakpoint.
(d) Once the error is detected, the debugging can be quit using Debugging Quit

 button.
III. Check variable value: The users can also check the variable value for debugging.

For this method, the cursor should be moved over the variable to display the variable
value. If there is any error, it will not show the variable value. This is illustrated in
Figure 9.5.

Figure 9.5: Illustration of checking the variable value in the editor window.

The users can also check the variable value by typing the variable in the command
window.

IV. MATLAB also allows pausing the long executing program statements. For pausing

the code, the user should click on Pause button . After correcting the issue, the

program can be continued using Continue button .

9.4 SCILAB Programming
SCILAB is abbreviated from the word ‘Scientific Laboratory’. This is a freely
available programming language that operates analogously to MATLAB. It
is written in C, C++, Java, Fortran and the official website is
https://www.scilab.org/. It was developed by the researchers from ENPC
and INRIA in 1990. Since 2012, SCILAB has been maintained and
developed by the ESI group [4].

Unit Summary

196 | MATLAB Program Organization and Debugging Techniques

9.4.1 Features of SCILAB
Following are the key features of SCILAB [5]:

I. Solution to the mathematical equation: SCILAB allows the user to solve
mathematical equations e.g., ordinary differential equations, differential algebraic
equations etc. It has a large number of mathematical functions to accomplish the
task.

II. Helps in developing complex algorithms: SCILAB can help the researchers to
develop the complex algorithms. It is a high programming language that consists of a
wide range of numerical and programming functions.

III. Graphical representation: SCILAB allows the users to display the output in
graphical representation, bar graphs, MathML annotations, etc. These output
representations help the users to visualize the results in a better way.

IV. Supporting operating systems: SCILAB is compatible with operating systems such
as Linux, macOS, Windows, etc.

9.4.2 Installation of SCILAB
Latest version of SCILAB was released in July 2021 [6]. The users need to
download the .exe file, which requires approximately 168MB of memory
space to download. The following steps need to follow to install SCILAB on
a computer:

● The user needs to run the .exe file and agree to make the changes
when it asks for license agreement between the user and ESI group. It is mandatory
to accept the agreement; otherwise, it is not possible to install the SCILAB.

● After the installation, the user can finish the installation, and it is ready to use.

● MATLAB program organization improves the readability of the program statements.

● Cell folding method is a widely used method for MATLAB program organization.

● A modular-driven program takes the input from the user and displays the preferable
options.

● Debugging techniques help in the detection and correction of the trouble in the
program statements. The errors that generally occur are

- syntax error
- logical error
- runtime error

● Debugging techniques include

Multiple Choice Questions

IT Workshop| 197

- Remove semicolons to show results
- ‘Breakpoint’ button
- Check variable value

● SCILAB is a freely available programming language that operates analogously to
MATLAB.

EXERCISES

9.1 In the cell folding method, which symbol is used as a cell marker?

(a) %% (b) $$ (c) @@ (d) ##

9.2 In cell folding method, which shortcut is used to minimize the selected chunk of the
code

(a) 𝐶𝑡𝑟𝑙 (b) 𝐶𝑡𝑟𝑙 (c) 𝐶𝑡𝑟𝑙 / (d) 𝐶𝑡𝑟𝑙 |

9.3 Menu driven modular program contains number of inputs.

(a) more (b) less (c) both (a) and (b) (d) None of these

9.4 Consider the following program statement

Option = menu("Opt a color","Option 1","Option 2","Option 3", "Option 4")

colors = ["r" "b" "g" "k"];

PlotColor = colors(Option);

t = 0 : 0.01 : 10;

Signal = cos(6*pi*t);

plot(t,Signal,PlotColor, 'LineWidth', 2)

xlabel('Time');

ylabel('Amplitude');

Select the correct option after opting ‘Option 2’

198 | MATLAB Program Organization and Debugging Techniques

(a) (b) (c) (d)

9.5 Which of the following is correct sequence after executing following program
statement

Options = menu("Opt a color","Red","Blue", "Green", "Black")

(d) None of these

(a)
(b) (c)

9.6 Statement 1: Runtime errors are caused due to invalid loop arrays.

Statement 2: Incorrect punctuation also leads to runtime errors.

(a) Statement 1 is
correct

(b) Statement 2 is
correct

(c) Both Statements
are correct

(d) None of these

9.7 Statement 1: Logical errors are caused due to invalid loop arrays.

Statement 2: Incorrect punctuation also leads to logical errors.

(a) Statement 1 is
correct

(b) Statement 2 is
correct

(c) Both Statements
are correct

(d) None of these

9.8 The word SCILAB is the abbreviated name of

(a) Science LAB (b) Science
Laboratory

(c) Scientific
Laboratory

(d) Scientific Lab

9.9 In which language SCILAB is written?

Short and Long Answer Type Questions

Category I

IT Workshop| 199

(a) C, C++, Java,
Fortran.

(b) C, C++, Java (c) C, C++, Fortran (d) Java, Fortran

9.10 SCILAB was developed in

(a) 1995 (b) 2000 (c) 1992 (d) 1990

9.11 Which of the following operating system (s) support SCILAB

(a) Linux and
macOS

(b) macOS and
Windows

(c) Windows (d) Linux, macOS,
and Windows

9.1 What is program organization in MATLAB? Explain with an example.

9.2 Explain the cell folding method with a suitable example.

9.3 Enlist the merits and demerits of program organization in MATLAB.

9.4 Describe the menu driven modular program. What are the merits of such a
modular program?

9.5 How to generate a multiple option dialog box? Explain with one application.

9.6 What is needed for debugging? What are the precautions that must be taken before

applying debugging techniques?

9.7 Explain the errors in the program statement that leads to unexpected output.

9.8 Describe the different debugging methods for detecting the error in program
statements.

9.9 Explain the debugging using the ‘Breakpoint’ button with an example.

9.10 Write a short note on SCILAB. What are the key features of SCILAB?

9.1 (a), 9.2 (b), 9.3 (b), 9.4 (b), 9.5 (c), 9.6 (a), 9.7 (d), 9.8 (c), 9.9 (a), 9.10 (d), 9.11 (d)

Multiple Choice Questions Answers

Category-II

References

200 | MATLAB Program Organization and Debugging Techniques

9.11 Design a system that displays the following city name ’Delhi, Chennai, Kolkata,
Mumbai’ as a menu for other applications.

9.12 Design a system that takes the input of several color options and plots the graph of

the system 𝑦 𝑥 𝑡 𝑐𝑜𝑠 4π𝑡 using the selected color.

[1] ‘How to organize your code in blocks’, 2022 [Online]. Available:
https://www.mathworks.com/matlabcentral/answers/23538-how-to-organize-your-co
de-in-blocks [Accessed: September-2022].

[2] ‘Menu’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/ref/menu.html [Accessed:
September-2022].

[3] ‘Debug MATLAB Code Files’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-featu
res.html [Accessed: September-2022].

[4] ‘About SCILAB’, 2022 [Online]. Available:

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-featu
res.html [Accessed: September-2022].

[5] ‘Features of SCILAB’, 2022 [Online]. Available: https://www.scilab.org/about

[Accessed: September-2022].

[6] ‘SCILAB download link’, 2022 [Online]. Available:
https://www.scilab.org/download/scilab-6.1.1 [Accessed: September-2022].

