

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: ADVANCE ABSTRACT ALGEBRA

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 What are the national canonical form and its application?
- Q.2 If a, b in K are algebraic over F then show that $a\pm b$, ab and a/b (if $b\neq 0$) are all algebraic over F.
- Q.3 Explain generalized Jorden form over any field.
- Q.4 What is solution of Polynomial equation by radicals?
- Q.5 State Hilbert basis theorem and Noether Lasker theorem.
- Q.6 If E is a finite separable extension of a field F and H <G (E/F) Then show that G (E/F_H) = H
- Q.7 Prove that every hormorphic image of a wilpotent group is nilpotent.
- Q.8 State and prove Fundamental theorem of Galois Theory.
- Q.9 Show that in a left (right) Artinian Ring, Every nil left (right) Ideal is ring.
- Q.10 Prove that every finite group has at least one can composition series.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: ADVANCE ABSTRACT ALGEBRA

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Prove that primary decomposition theorem.
- Q.2 State and Prove Jordan holder theorem.
- Q.3 Two nilpotent linear transformations, S,T∈A (v) are similar if and only if they have the same invariants.
- Q.4 Show that in a left (right) Antinion Ring, Every nil left (right) Ideal is Nilpotent.
- Q.5 Define
 - (i) Simple Module and Semi simple module
 - (ii) Primary module and P- primary module
- Q.6 State and prove fundamental structure theorem of modules over a principle ideal domain.
- Q.7 State and prove Schuler's Lemma.
- Q.8 Show that x7-10x5+5 is not radically over Q.
- Q.9 Prove that every Homomorphic image of a Noetherian module is Noetherian.
- Q.10 Define and give an example of algebraic and transcendental extension of a field.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: REAL ANALYSIS

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

- Q.1 Explain Cauchy Criterion for Uniform Convergence.
- Q.2 State Taylor's Theorem.
- O.3 Define function and bannded variation.
- O.4 State holder and minkawski in edualisers.
- O.5 State and fundamental theorem of calculus.
- Q.6 If P* is a refinement refiment of P, Then show that.

(i)
$$L(P,F,L) \le L(P^*, F, L)$$

(ii) U (P*, F, L)
$$\leq$$
 U (P, F, L)

- Q.7 Define with an example.
 - (i) Partition of unity
 - (ii) Jacobian
- Q.8 Let be a power series with unit relives of convergence and let

$$f(x) = \sum_{n=0}^{\infty} (a_n x 4(-1 < c < 1))$$

If the series \sum_{ax} converges, then prove that

$$\underline{\lim}$$
 if $(x) = \sum_{n=0}^{\infty} (a_n)$

$$x\rightarrow 1$$

- Q.9 Define point Wise convergence of a sequence of functions. Give an example also.
- Q.10 State and prove chain rule of differentiation.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: REAL ANALYSIS

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:—

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ट को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

Q.1 F be a bounded function and \propto , a monotonically increasing function on (a.b) then show that

$$\int_{-a}^{b} f d \propto \leq \int_{a}^{-b} f d \propto$$

- Q.2 State weiertrass's M-test theorem.
- Q.3 Explain Implicit function theorem.
- Q.4 Define Jensen's inequality.
- Q.5 Explain Measures and outer measures.
- Q.6 If f is a finite-valued monotone increasing function defined on the finite interval [a,b] then prove that f is measurable and

$$\int_{a}^{b} f'd(x) \le f(b) - f(a)$$

- Q.7 If $f \leftarrow L(a, b)$ then prove that $f(x) \int_a^x f(t) dt$ in a continues function an [a,b].
- Q.8 Prove that every convex function an open interval is continues.
- Q.9 If $fn \rightarrow f$ almost uniform then prove that $fn \rightarrow f$ in measure.
- Q.10 Define integration of vector–valued functions and rectifiable curve.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: TOPOLOGY

MAXIMUM MARKS: 30

ASSIGNMENT QUESTION PAPER- FIRST

निर्देश:—

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुरितकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Define homotopic, homotopy, Path homotopy.
- Q.2 Prove that intersection of two topologies is also topology.
- Q.3 State and Prove Uniqueness Theorem.
- Q.4 State and Prove Poincare Bendixson Theorem.
- Q.5 Show that any subspace (Y,Jy) of a first countable space (X,J) is also first countable.
- Q.6 prove that a function $f: x \to y$ is continuous if and only if. The inverse image of every closed subset of Y is a closed subset of X.
- Q.7 Let (X,J) be topological space and let there be given a closure operation which assigns to each subset A of X, a subset A or X then prove that

$$A \cup B = A \cup B$$

- Q.8 State and prove Lindelof's theorem.
- Q.9 State and prove well ordering theorem.
- Q.10 Prove that every open subspace of separable space is separable.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: TOPOLOGY

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Define Connectedness and Product Space.
- Q.2 Describe Ultra-filters and Compactness.
- Q.3 Define and give an example of countable and Uncountable Sets.
- Q.4 State and Prove Urysohn metrization.
- Q.5 Define filter and also define limit of filter.
- Q.6 Define E- net Prove that every sequentially compact metric space is totally bounded.
- Q.7 Prove that a topological space is compact if and only if every ultra filter in it is convergent.
- Q.8 If P: $E \to B$ and $p^1 : E^1 B^1$ is a covering maps then prove that

$$P X P^1 : E X E^1 \rightarrow B X B^1$$
 is a covering map.

- Q.9 Prove that every metric space is a T2-space.
- Q.10 Explain the term convergence of a net and cluster point of a net.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: COMPLEX ANALYSIS

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 State the Borel's Theorem.
- Q.2 Define the Schwarz's reflection Principle.
- Q.3 State and prove that Taylor's Theorem.
- Q.4 State and prove weierstrass factorization theorem.
- Q.5 State and prove Taylor's theorem.
- Q.6 State and prove Cauchy residue theorems.
- Q.7 Define bilinear and conformal transformations with example.
- Q.8 Prove that $\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}.$
- Q.9 If $|z| \le 1$ and $p \ge 0$, then show that $|1 \square E_p(z)| \le |z|^{p+1}$.
- Q.10 Let V and U be open subsets of C with $V \subseteq U$ and $\partial V \cap U = \phi$. If H is a component of U and $H \cap V = \phi$ then $H \subset V$.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: COMPLEX ANALYSIS

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Prove that Jennsen's formula.
- Q.2 Describe Gamma function and its properties.
- Q.3 Give definition and example of conformal mapping.
- Q.4 State and Prove Laurent's theorem.
- Q.5 State and prove Rouche's theorem.
- Q.6 State and prove Liouville's theorem.
- Q.7 State and prove Morera's theorem.
- Q.8 State and prove that Runge's theorem.
- Q.9 State and prove Hurwitz theorem.
- Q.10 State and prove Monodromy theorem

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: ADVANCE DISCRETE MATHEMATICS

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुरितका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Define connected and disconnected graph with example.
- Q.2 Prove that every finite semi group has an Idempotent elements.
- Q.3 Show that the dual of a lattice is a lattice.
- Q.4 Define binary Relation and Type of binary relation with example.
- Q.5 Prove that in a graph G, the number of odd vertices is an even number.
- Q.6 Explain the concept of spanning tree.
- Q.7 Explain Dijkstra's Algorithm and its application.
- Q.8 Show that the two finite state machines shown in the following tables are equivalent:

states	input		output
	1	2	
A	В	С	0
В	В	D	0
С	A	Е	0
D	В	Е	0
Е	F	Е	0
F	A	D	1
G	В	С	1
	(a)	•	

states	input		Output		
	1	2			
A	Н	С	0		
В	G	В	0		
С	A	В	0		
D	D	С	0		
Е	Н	В	0		
F	D	Е	1		
G	Н	С	1		
Н	A	Е	0		
(b)					

- Q.9 Define partially ordered set with example.
- Q.10 Define Hasse diagram.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: ADVANCE DISCRETE MATHEMATICS

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Define Lattices as Algebraic systems.
- Q.2 What are the properties of Boolean algebra define.
- Q.3 Defined as:
 - (a) Paths
- (b) Circuits
- Q.4 Define Finite state machine with example.
- Q.5 State and prove basic Homomorphism theorem.
- Q.6 Define and give example of the following:
 - (a) Isomorphic and Homeomorphic graph.
 - (b) Finite graph and infinite graph.
 - (c) Simple graph and complement of simple graph.
 - (d) Connected and disconnected graph.
 - (e) Find the incidence matrix of the digraph (given):

- Q.7 The maximum number of edges in a simple graph with n vertices is $n(n \square 1)/2$.
- Q.8 State and prove Turing machine.
- Q.9 Explain difference between Moore machine and Mealy machine.
- Q.10 Every function without constant of a Boolean algebra is equal to a function in disjunctive normal form.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: DIFFERENTIAL EQUATION

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुरितकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

- Q.1 State and prove strum's first comparison theorem.
- Q.2 Solve:

$$(D^2+3DD'+2D'^2)z = x+y$$

Q.3 Solve:

$$x (y^2 + z) p- y (x^2+z) q = z (x^2-z^2)$$

Where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

Q.4 Explain linear partial equation with examples.

Q.5 Solve
$$x^3 \frac{d^3y}{dx^3} - 3x^2 \frac{d^2y}{dx^2} + 6x \frac{dy}{dx} = (\log_e x)^2$$

- Q.6 State and prove Existence and uniqueness theorem.
- Q.7 State and prove Poincare Bendixson theorem.
- Q.8 State and prove Sturm theorem.
- Q.9 Explain total differential equation with examples.
- Q.2 State and prove Uniqueness theorem.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

Accredited with "A" Grade by NAAC

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION JAN 2024 - DEC 24) SUBJECT: DIFFERENTIAL EQUATION

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. सत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Defined as-
 - (i) Stationary Point.
 - (ii) Rotation Point.
- Q.2 State and prove Nonoscillation Theorem.
- Q.3 Prove that partial differential equation of first and second order.
- Q.4 Write a short note on Sturm-Liouville Boundary value problems.
- Q.5 Solve:

$$x (y^2 + z) p- y (x^2+z) q = z (x^2-z^2)$$

Where
$$p = \frac{\partial z}{\partial x}$$
, $q = \frac{\partial z}{\partial y}$

- Q.6 Defind as picard's method of integration with examples.
- Q.7 Defind as:
 - 1. Preliminaries
 - 2. Continuity differentiability.
- Q.8 Explain:
 - 1. Number of zeros
 - 2. Boundary value problems.
- Q.9 State and prove existence E- Uniqueness theorem (proof by picard method)
- Q.10 Explain Poincare Bendixson theory autonomous system.