मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: ADVANCE ABSTRACT ALGEBRA

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Prove that every finite group has at least one can composition series.
- Q.2 Prove that a group of oreler Pⁿ (P is Prime) is nilpotent.
- Q.3 Prove that every Finite extension E for F is algebra extension of F.
- Q.4 If K is algebraically closed field then prove that every irreducible polynomial in K (X) is of degree one.
- Q.5 If E is a finite separable extension of a field F and H <G (E/F) Then show that G (E/F_H) = H
- Q.6 Prove that every hormorphic image of a wilpotent group is nilpotent.
- Q.7 State and prove Fundamental theorem of Galois Theory.
- Q.8 If E Is An Algebraic extension of F and $\sigma : E \rightarrow E$ is an embedding of E into itself over F, then prove that σ is an automorphism of E.
- Q.9 Prove that the multiplicative group of non-zero elements of a finite field is cyclic.
- Q.10 Show that the polynomial $2x^5-5x^4+5$ is not solvable by radicals over Q.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: ADVANCE ABSTRACT ALGEBRA

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Let $f: M \to N$ be a R- homomorphism of an R-Module M into R-Module W. Then prove that ker f is a R-Sub Module of M.
- Q.2 Prove that every homomorphism image of Noeterian module is Noetherian.
- Q.3 Let R be Ring with unity then show that an R- Module M is Cyclic iff M-R/I for some left Ideal I or R.
- Q.4 State and prove Hilbert basis theorem.
- Q.5 Show that in a left (right) Antinion Ring, Every nil left (right) Ideal is Nilpotent.
- Q.6 Define
 - (i) Simple Module and Semi simple module
 - (ii) Primary module and P- primary module
- Q.7 State and prove fundamental structure theorem of modules over a principle ideal demain.
- Q.8 For an R- Module M, if every sub module of M is finitely generated, then prove that every non empty set S of sub modules of M has a maximal dements.
- Q.9 State and prove schur's Lemma.
- Q.10 Let M be a noetherian module or any module over a noetherian ring. Then prove that each nonzero sub module contains a uniform module.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: REAL ANALYSIS

ASSIGNMENT QUESTION PAPER-FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

Q.1 Let f be a founded function and a monotonically increasing function an [a,b] Then prove that

$$\int_{a}^{b} f dx \le \int_{a}^{-b} f dx$$

- Q.2 If Σ a_n is a series of complex numbers which converges absolutely, then rearrangement of Σ a_n converges, and the all converge to the same sum.
- Q.3 State and prove implicit function theorem.
- Q.4 State and fundamental theorem of calculus.
- Q.5 If P* is a refinement refiment of P, Then show that.

(i)
$$L(P,F,L) \le L(P^*, F, L)$$

(ii)
$$U(P^*, F, L) \le U(P, F, L)$$

Q.6 Suppose E is an open set in R^n , f maps E into R^m , and XEE, If There exixts a linear transformation A of R^n into R^m such that

$$\underline{\lim}_{h\to 0} \quad \underline{|\text{If } (x+h) - f(x) - Ah|} = 0$$

holds with A=A1 and with A=A₂, then prove that A_1 =A₂

- Q.7 Define with an example.
 - (i) Partition of unity
 - (ii) Jacobian
- Q.8 Let be a power series with unit relives of convergence and let

$$f(x) = \sum_{n=0}^{\infty} (a_n x 4(-1 < c < 1))$$

If the series \sum_{ax} converges, then prove that

$$\underline{\lim} \quad \text{if (x)} = \sum_{n=0}^{\infty} (a_n)$$

 $x \rightarrow 1$

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: REAL ANALYSIS

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।
- Q.9 Support f maps a convex open set E C Rⁿ, f is differentiable in E and there is a real number M such that:

$$||f'(x)|| \le M$$
, for every $x \leftarrow E$

Then
$$| f(b) - f(a) | \le M | b-a|$$
 for all $a \leftarrow E$, $b \leftarrow E$

Q.10 State and prove Taylor's theorem.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: REAL ANALYSIS

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Prove that other measure of an interval is its length.
- Q.2 Prove that the class M is a σ algebra.
- Q.3 State and prove Factor's lemma.
- Q.4 State and prove lebesgue's monotone convergence theorem.
- Q.5 If f is a finite-valued monotone increasing function defined on the finite interval [a,b] then prove that f is measurable and

$$\int_{a}^{b} f'd(x) \le f(b) - f(a)$$

- Q.6 If $f \leftarrow L(a, b)$ then prove that $f(x) \int_a^x f(t) dt$ in a continues function an [a,b].
- Q.7 Prove that every convex function an open interval is continues.
- Q.8 State and prove Jenson's inequality. .
- Q.9 If $fn \rightarrow f$ almost uniform then prove that $fn \rightarrow f$ in measure.
- Q.10 Let $\{fn\}$ be a sequence of non-negative measurable functions and let f be a measurable function such that $fn \rightarrow f$ in measurable then prove that.

$$\int f \, d\mathbf{u} \le \lim \inf \int f \, n \, du$$

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: TOPOLOGY

ASSIGNMENT QUESTION PAPER-FIRST

MAXIMUM MARKS: 30

निर्देश:-

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Prove that if X, and X_2 are creatable, then X_1 , X_2 is also countable.
- Q.2 State and prove Schroeder Bernstein theorem.
- Q.3 Define:
 - (a) Continues function and Homomorphism.
 - (b) Base and sub base for a topology.
 - (c) Interior point of a set and Bendery point of a set.
- Q.4 Show that any subspace (Y,Jy) of a first countable space (X,J) is also first countable.
- Q.5 prove that a function $f: x \to y$ is continuous if and only if. the inverse image of every closed subset of Y is a closed subset of X.
- Q.6 Let (X,J) be topological space and let there be given a closure operation which assigns to each subset A of X, a subset A or X then prove that

$$A \cup B = A \cup B$$

- Q.7 State and prove Lindelof's theorem.
- Q.8 Prove that every separable metric space is second countable.
- Q.9 State and prove Urysohn's lemma.
- Q.10 Prove that a space X is locally connected if and only if for every open set U of X each component of U is open in X.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: TOPOLOGY

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 Prove that a one to one mapping of a compact space onto a Hausdorff space is a homomorphism.
- Q.2 Define open cover prove that any closed subspace of a compact space is compact.
- Q.3 Prove that the space R^n and C^n are connected.
- Q.4 Define projection mappings. If (X,T) Is the product of topological space (X,T) and (X_2, T_2) then prove that the projection map T_1 is continuous.
- Q.5 Define E- net Prove that every sequentially compact metric space is totally bounded.
- Q.6 Prove that a topological space is compact if and only if every ultra filter in it is convergent.
- Q.7 Define filter and also define limit of filter.
- Q.8 If P: $E \to B$ and $p^1 : E^1 B^1$ is a covering maps then prove that

$$P \times P^1 : E \times E^1 \to B \times B^1$$
 is a covering map.

- Q.9 If the product space X_1 , X_2 is connected then prove that X_1 , and X_2 and connected.
- Q.10 Prove that In a connected space X, any two paths having the same initial and final points are path homotopic.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: COMPLEX ANALYSIS

ASSIGNMENT QUESTION PAPER-FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

- 1. Evaluate $\int_C z^2 dz$, where C is an arc of the circle $x = r \cos \theta$, $y = r \sin \theta$ from $\theta = \alpha$ to $\theta = \beta$.
- 2. If |f(z)| has a maximum M on $|z-a|=r < \rho$, then $|a_n| \le M/r^n$ where $a_n = \frac{f^{(n)}(a)}{n!}$.
- 3. Define poles and show that poles are isolated.
- 4. Prove that $\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}$.
- 5. Define bilinear and conformal transformations with example.
- $1. \quad If \ |z| \leq 1 \ and \ p \geq 0, \ then \ show \ that \ |1-E_p(z)| \leq |z|^{p+1}.$
- 7. Let V and U be open subsets of C with $V \subseteq U$ and $\partial V \cap U = \phi$. If H is a component of U and H $\cap V = \phi$ then $H \subseteq V$.
- 8. Let (f, D) be a function element which admits unrestricted continuation in the simply connected region G. Then there is an analytic function F:G \rightarrow C such that F(z) = f(z) for all z in D.
- 9. If G is a bounded Dirichlet region then for each a in G, there is a Green's function on G with singularity at a.
- 10. Let f be a analytic function on the disk B(a, r) such that

$$|f'(z) - f'(a)| \le |f'(a)|$$

for all $z \in B(a, r)$, $z \neq a$, then show that f is one-one.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: COMPLEX ANALYSIS

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- 1. State and prove Taylor's theorem.
- 2. State and prove Cauchy's residue theorem.
- 3. State and prove Rouche's theorem.
- 4. State and prove Liouville's theorem.
- 5. State and prove Morera's theorem.
- 6. State and prove that Weierstrass factorization theorem.
- 7. State and prove that Runge's theorem.
- 8. State and prove that Schwartz reflection theorem.
- 9. State and prove that Hadamard's factorization theorem.
- 10. State and prove that Bloch's theorem.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: ADVANCE DISCRETE MATHEMATICS

ASSIGNMENT QUESTION PAPER- FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

- 1. State and prove fundamental theorem of semi group homomorphism.
- 2. In (L, \leq) prove that:

(i)
$$\overline{(a \lor b)} = \overline{a} \land \overline{b}$$

(ii)
$$\overline{(a \wedge b)} = \overline{a} \vee \overline{b}, \forall a, b \in L$$

3. Let $B = \{1, 2, 3, 5, 6, 10, 15, 30\}$, then show that $(B, \land, \lor, .)$ is a Boolean algebra where \forall a, b $\in B$.

$$a \lor b = lcm of \{a, b\}$$

$$a \wedge b = hcf of \{a, b\}$$

- 4. Prove that in a graph G, the number of odd vertices is an even number.
- 5. Explain the concept of spanning tree.
- 6. Explain Dijkstra's Algorithm and its application.
- 7. Show that the two finite state machine shown in the following tables are equivalent:

states	input		output
	1	2	
A	В	C	0
В	В	D	0
С	Α	Е	0
D	В	Е	0
Е	F	Е	0
F	A	D	1
G	В	С	1
	(a)		

states	input		Output	
	1	2		
A	Н	C	0	
В	G	В	0	
С	Α	В	0	
D	D	С	0	
Е	Н	В	0	
F	D	Е	1	
G	Н	С	1	
Н	Α	Е	0	
(b)				

- 8. Describe Moore and Mealy machines with examples.
- 9. Design a Turing machine to recognize all strings consisting of even number of 1's.
- 10. Define:
 - (i) Contex free Grammer
 - (ii) Contex-Sensitive Grammer
 - (iii) Contex-Sensitive Language
 - (iv) Contex free Language

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: ADVANCE DISCRETE MATHEMATICS

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

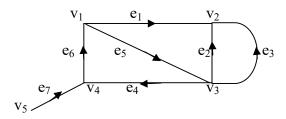
- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुरितका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

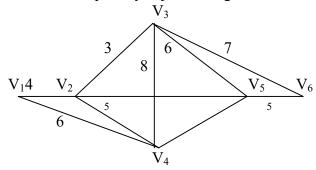
- 1. Prove that by truth table:
 - (i) $p \lor (q \land r) = (p \lor q) \land (p \lor r)$
 - (ii) (a) \sim (p \vee q) \Leftrightarrow (\sim p) \wedge (\sim q)

(b)
$$\sim$$
 (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)

- 2. Show that dual of a lattice is a lattice.
- 3. State and prove Cayley's theorem.
- 4. Define and give example of the following:
 - (a) Isomorphic and Homeomorphic graph.
 - (b) Finite graph and infinite graph.
 - (c) Simple graph and complement of simple graph.
 - (d) Connected and disconnected graph.
 - (e) Find the incidence matrix of the digraph (given):



- 5. The maximum number of edges in a simple graph with n vertices is $n(n \square 1)/2$.
- 6. State and prove Turing machine.
- 7. Explain difference between Moore machine and Mealy machine.
- 8. State and prove Kleen's theorem.
- 9. Find shortest path by Dijkatra's algorithm.



10. Explain homomorphism of finite state machine.

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: DIFFERENTIAL EQUATION

ASSIGNMENT QUESTION PAPER-FIRST

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

नोटः सभी प्रश्न हल करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

1. Solve:
$$x^2 \left(\frac{dy}{dx}\right)^2 - 2xy \frac{dy}{dx} + (2y^2 - x^2) = 0$$

2. Solve:
$$\frac{d^2x}{dt^2} - 3x - 4y = 0, \frac{d^2y}{dt^2} + x + y = 0$$

- 3. Explain Picard iteration method.
- 4. State and prove Existence and uniqueness theorem.
- 5. State and prove Poincare Bendixson theorem.
- 6. State and prove Sturm theorem.
- 7. State and prove Nonoscillation theorem.
- 8. Write a short note on Sturm-Liouville Boundary value problems.
- 9. Solve that:

$$2\frac{dy}{dx} - ysecx = y^3 tanx$$

10. Solve that:

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$$

मध्य प्रदेश भोज (मुक्त) विश्वविद्यालय, भोपाल

MASTER OF SCIENCE (MSC) MATH PREVIOUS YEAR (SESSION 2022-23) SUBJECT: DIFFERENTIAL EQUATION

ASSIGNMENT QUESTION PAPER- SECOND

MAXIMUM MARKS: 30

निर्देश:–

- 01. सभी प्रश्न स्वयं की हस्तलिपि में हल करना अनिवार्य है।
- 02. विश्वविद्यालय द्वारा प्रदाय सत्रीय उत्तरपुस्तिकाओं में ही सत्रीय प्रश्नपत्र हल करना अनिवार्य है।
- 03. सत्रीय कार्य उत्तरपुस्तिका के प्रथम पृष्ठ को सावधानीपूर्वक पूरा भरें और उसमें उसी विषय का प्रश्नपत्र हल करें जो उत्तरपुस्तिका के प्रथम पृष्ठ पर अंकित किया है।
- 04. संत्रीय कार्य उत्तरपुस्तिका अपने अध्ययन केन्द्र पर जमा कर उसकी पावती अवश्य प्राप्त करें।

- Q.1 State and prove Poincare Bendixson theorem.
- Q.2 State and prove Sturm theorem.
- Q.3 Defined as-Linear partial differential equation.
- Q.4 Prove that Uniqueness Theorem.
- Q.5 Write a short note on Sturm-Liouville Boundary value problems.
- O.6 Solve:

$$x (y^2 + z) p- y (x^2+z) q = z (x^2-z^2)$$

Where
$$p = \frac{\partial z}{\partial x}$$
, $q = \frac{\partial z}{\partial y}$

- Q.7 Defined as Existence theorem.
- Q.8 State and prove Nonoscillation Theorem
- Q.9 Explain Simultaneous differential equation with example.
- Q.10 Defined as Existence theorem.