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PAPER-III QUANTITATIVE METHODS

{Questions will be set from each Unit/Section)

UNIT-I Mathematical Methods - Concept of of function and types of functions Limil
continuity and derivalive; Simple ru7les of inlegration Detemiranis and thair
basic properties: Solution of simultaneous eguaticns theough cramers' rule
Concept fo malrix- their thpes, simple operalions on mairices. inversion and
rank of a matrix.

UNIT-I - Mathematical Methods - Linear programming- Basic concepl; Formulation of
' a linear programrming problem- optimal solution of linear programming through
rgaphigical method; Concept of a game ; Strategies - simple and mixed: value

of a saddle point solution;

L]

UNIT-HI S_tatistica:l‘ Methods - Meaning assumptions and limtations of simple corralation
and regression analysis; pearons' Concept of the least squares and the lincs
of regression; standard error of estimale Partial and multiple corrclation

UNIT-IV  statistical Methods - Deterministic and non- deterministic axperiments: Various
types of events - classical and empirical definition of probakility: Laws of addition
and mutiplication probability and concept of interdependence: Byas' therem -
and its applic_ati’on; Elementary concept of random variable probability
Expectations, moments and generating functions; properties (without
derivations) ot Binomial poisson and Normal Distributions,

UNIT-V Basic Conecept of sampling - random non-random sampling; Simple random
and p.ps. sampling; Concept of an estimator and its sampling distribution,
Desirable properties of and estimator; Formulation of Statistical hypotheses -
Nuil and altemative Goodness of fit Confidence inervals and leave of significance,
Hypothesis testing based on Z, t. ** (Chi-square) and F tests.
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BLOCK 1 MATHEMATICAL METHODS

The block comprising three units discussed comprehensively the basic
mathematics which is of wide application in day to day life of decision makers in
economic parlance.

The first unit deals systematically with various aspects of types of functional
relationships among economics variables and their applicability in economic
concepts. It also throws light on very useful concepts of integration and related
rules. ’ |

The second unit gives you an insight into Basic calculus-Limits, continuity and
derivatives and acquaints you with some very frequently used methods to find out
derivatives with different techniques.

Subsequently the third unit explains the basic concepts, theoretical operations and
various applications of matrix algebra in quantitative analysis of decisions
pertaining to decision making process.
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UNIT 1

FUNCTIONS AND INTEGRATION
Objectives

After studying this unit, you should be able to understand and appreciate:

The need to identify or define the relationships that exists among
variables.

how to define functional relationships

the various types of functional relationships

concept of integration

different rules of integration

Structure

1.1 Introduction

1.2 Concept of functions

1.3 Types of functions

1.4 Integration

1.5 Rules of Integration ' b
1.6 Summary

1.7 Further readings
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1.1 INTRODUCTION

The concept of a function expresses dependence between two quantities, one of
which is known and the other which is produced. A function associates a single
output to each input element drawn from a fixed set, such as the real numbers,
although different inputs may have the same output.

There are many ways to give a function: by a formula, by a plot or graph, by an
algorithm that computes it, or by a description of its properties. Sometimes, a
function is described through its relationship to other functions (see, for example,
inverse function). In applied disciplines, functions are frequently specified by
their tables of values or by a formula. Not all types of description can be given for
every possible function, and one must make a firm distinction -between the
function itself and multiple ways of presenting or visualizing it.

1.2 CONCEPT OF FUNCTIONS

Functions in algebra are usually expressed in terms of algebraic operations.
Functions studied in analysis, such as the exponential function, may have
additional properties arising from continuity of space, but in the most general case
cannot be defined by a single formula. Analytic functions in complex analysis
may be defined fairly concretely through their series expansions. On the other
hand, in lambda calculus, function is a primitive concept, instead of being defined
in terms of set theory. The terms transformation and mapping are often
synonymous with function. In some contexts, however, they differ slightly. In the
first case, the term transformation usually applies to functions whose inputs and
outputs are elements of the same set or more general structure. Thus, we speak of
linear transformations from a vector space into itself and of symmetry
transformations of a geometric object or a pattern. In the second case, used to
describe sets whose nature is arbitrary, the term mapping is the most general
concept of function.

In traditional calculus, a function is defined as a relation between two terms called
variables because their values vary. Call the terms, for example, x and y. If every

3
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value of x is associated with exactly one value of y, then y is said to be a function
of x. It is customary to use x for what is called the "independent variable," and y
for what is called the "dependent variable"” because its value depends on the value
of x.

Restated, mathematical functions are denoted frequently by letters, and the
standard notation for the output of a function f with the input x is f(x). A function
may be defined only for certain inputs, and the collection of all acceptable inputs
of the function is called its domain. The set of all resulting outputs is called the
image of the function. However, in many fields, it is also important to specify the
codomain of a function, which contains the image, but need not be equal to it. The
distinction between image and co domain lets us ask whether the two happen to be
equal, which in particular cases may be a question of some mathematical interest.
The term range often refers to the co domain or to the image, depending on the
preference of the author.

For example:

The expression f(x) = x2 describes a function f of a variable x, which, depending
on the context, may be an integer, a real or complex number or even an element of
a group. Let us specify that x is an integer; then this function relates each input, x,
with a single output, x2, obtained from x by squaring. Thus, the input of 3 is
related to the output of 9, the input of 1 to the output of 1, and the input of -2 to
the output of 4, and we write f(3) = 9, f(1)=1, f(-2)=4. Since every integer can
be squared, the domain of this function consists of all integers, while its image is
the set of perfect squares. If we choose integers as the co domain as well, we find
that many numbers, such as 2, 3, and 6, are in the co domain but not the image.

It is a usual practice in mathematics to introduce functions with temporary names
like f; in the next paragraph we might define f(x)= 2x+1, and then f(3)= 7.
When a name for the function is not needed, often the form y = x2 is used.

If we use a function often, we may give it a more permanent name as, for
example,

- Y - :
Dquareir) = 1.

[
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The essential property of a function is that for each input there must be a unique
output.

Thus, for example, the formula

Root(z) = £/

Does not define a real function of a positive real variable, because it assigns two
outputs to each number: the square roots of 9 are 3 and —3. To make the square
root a real function, we must specify, which square root to choose. The definition
Posioot(x) = 'z

For any positive input chooses the positive square root as an output.

As mentioned above, a function need not involve numbers. By way of examples,

consider the function that associates with each word its first letter or the function
that associates with each triangle its area.

1.3 TYPES OF FUNCTIONS

In this section some different types of functions are introduced which are
particularly useful in calculus.

1.3.1 LINEAR FUNCTIONS

These are names for functions of first, second and third order polynomial
functions, respectively. What this means is that the highest order of x (the
variable) in the function is 1, 2 or 3.

The generalized form for a linear function (1 1is highest power):

f(x) = ax+b, where a and b are constants, and a is not equal to 0
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The generalized form for a quadratic function (2 is highest power):

f(x) = ax2+bx+c, where a, b and c are constants, and a is not equal to 0

The generalized form for a cubic function (3 is highest power): i 3
f(x) = ax3+bx2+cx+d, where a, b, ¢ and d are constants, and a is not equal to 0

The roots of a function are defined as the points where the function f(x)=0. For
linear and quadratic functions, this is fairly straight-forward, but the formula for a
cubic is quite complicated and higher powers get even more involved.

a system of linear equations (or linear system) is a collection of linear equations
involving the same set of variables.

For example,

3r+ 25— z=
2r - 2y +dz=—

e T N QY

—-r +%y — 2

is a system of three equations in the three variables -': ¥: <. A solution to a linear
system is an assignment of numbers to the variables such that all the equations are
simultaneously satisfied. A solution to the system above is given by

=
li
i
b

3]
!
!

b

since it makes all three equations valid.

In mathematics, the theory of linear systems is a branch of linear algebra, a

subject which is fundamental to modern mathematics. Computational algorithms

for finding the solutions are an important part of numerical linear algebra, and

such methods play a prominent role in engineering, physics, chemistry, computer

science, and economics. A system of non-linear equations can often be
6
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approximated by a linear system (see linearizatidn). a helpful technique when
making a mathematical model or computer simulation of a relatively complex
system.

1.3.2 POLYNOMIAL FUNCTIONS

Stated quite simply, polynomial functions are functions with x as an input
variable, made up of several terms, each term is made up of two factors, the first
being a real number coefficient, and the second being x raised to some non-
negative integer power. Actually, it's a bit more complicated than that. Please
refer to the following links to get a deeper understanding.

Here a few examples of polynomial functions:

f(x)=4x3 +8x2+2x+3

g(x)=25x5+52x2+7

h(x) = 3x2

ix)=22.6

Polynomial functions are functions that have this form:

f(x) = anxn + an-1xn-1 + ... + alx + a0

The value of n must be an nonnegative integer. That is, it must be whole number;
it is equal to zero or a positive integer.

The coefficients, as they are called, are an, an-1, ..., al, a0. These are real
numbers.

The degree of the polynomial function is the highest value for n where an is not
equal to 0.
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So, the degree of g(x) = 2.5x5 + 5.2x2 + 7 is 5.

Notice that the second to the last term in this form actually has x raised to an
exponent of

1, as in:
f(x) = anxn + an-1xn-1 + ... + alx1 + a0
Of course, usually we do not show exponents of 1.

Notice that the last term in this form actually has x raised to an exponent of 0, as
in:

f(x) = anxn + an-1xn-1 + ... + alx + a0x0

Of course, x raised to a power of 0 makes it equal to 1, and we usually do not
show multiplications by 1.

So, in its most formal presentation, one could show the form of a polynomial
function as:

f(x) = anxn + an-1xn-1 + ... + alx1 + a0x0

Here are some polynomial functions; notice that the coefficients can be positive or
negative real numbers.

f(x) =2.4x5+ 1.7x2-5.6x + 8.1
f(x) =4x3 + 5.6x
f(x) =3.7x3-9.2x2 +0.1x - 5.2

1.3.3 ABSOLUTE VALUE FUNCTION

The absolute value (or modulus) of a real number is its numerical value without
regard to its sign. So, for example, 3 is the absolute value of both 3 and =3,
The absolute value of a number a is denoted by | a | .

8
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Generalizations of the absolute value for real numbers occur in a wide variety of
mathematical settings. For ekample an absolute value is also defined for the
complex numbers, the quaternions, ordered rings, fields and vector spaces. The
absolute value is closely related to the notions of magnitude, distance, and norm
in various mathematical and physical contexts.

4

y = |x|

The graph of the absolute value functions for real numbers.
More precisely, if D is an integral domain, then an absolute value is any mapping

|-1 from D to the real numbers R satisfying:

x>0,

Ix] = 0 if and only if x = 0,

Ixyl = Ixllyl,

Ix +yl < Ixl + Iyl. ‘

Note that some authors use the term valuation or norm instead of "absolute value".

1.3.4 INVERSE FUNCTION

If f is a function from A to B then an inverse function for f is a function in the
opposite direction, from B to A, with the property that a round trip (a
composition) from A to B to A (or from B to A to B) returns each element of the
initial set to itself.. Thus, if an input x into the function f produces an output y,
then inputting y into the inverse function f-1 (read f inverse, not to be confused

9
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with exponentiation) produces the output x. Not every function has an inverse;
those that do are called invertible.

>/ \¢,

A function f and its inverse f-1. Because f maps a to 3, the inverse f-1 maps 3
back to a.

For example, let f be the function that converts a temperature in degrees Celsius
to a temperature in degrees Fahrenheit:

FC)=2C + 32
then its inverse function converts degrees Fahrenheit to degrees Celsius:
THF) = XF - 32).

Or, suppose f assigns each child in a family of three the year of its birth. An
inverse function would tell us which child was born in a given year. However, if
the family has twins (or triplets) then we cannot know which to name for their
common birth year. As well, if we are given a year in which no child was born
then we cannot name a child. But if each child was born in a separate year, and if

10
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we restrict attention to the three years in which a child was born, then we do have
an inverse function. For example, '

f(Alan) = 2005, f(Brad) = 2007, f(Cary) = 2001
FH2001) = Cary.  f71(2005) = Alan.  £~1(2007) = Brad

1.3.5 STEP FUNCTION

A step function is a special type of relationship in which one quantity increases in
steps in relation to another quantity.

For example,

Postage cost increases as the weight of a letter or package increases. In the year
2001 a letter weighing between 0 and 1 ounce required a 34-cent stamp. When the
weight of the letter increased above 1 ounce and up to 2 ounces, the postage
amount increased to 55 cents, a step increase.

A graph of a step function f gives a v1sual picture to the term "step function." A
step function exhibits a graph with steps similar to a ladder.

The domain of a step function f is divided or partitioned into a number of -
intervals. In each interval, a step function f{x) is constant. So within an interval,
the value of the step function does not change. In different intervals, however, a
step function f can take different constant values.

One common type of step function is the greatest-integer function. The domain of
the greatest-integer function f is the real number set that is divided into intervals
of the form ...[ 2, 1), [ 1, 0), [0, 1), [1, 2), [2, 3),... The intervals of the greatest-
integer function are of the form [k, k 1), where k is an integer. It is constant on
every interval and equal to k.

fix)=00on [0, 1), or 0<x<1
fix)=1on][l,2), or 1<x<2

11
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fix) =2 o0n [2, 3), or 2<x<3

For instance, in the interval [2, 3), or 2<x<3, the value of the function is 2. By
definition of the function, on each interval, the function equals the greatest integer
less than or equal to all the numbers in the interval. Zero, 1, and 2 are all integers
that are less than or equal to the numbers in the interval [2, 3), but the greatest
integer is 2.

Therefore, in general, when the interval is of the form [k, k + 1), where k is an
integer, the function value of greatest-integer function is k£ So in the interval [5,
6), the function value is 5. The graph of the greatest integer function is similar to
the graph shown below.

=9

There are many examples where step functions apply to real-world situations. The
price of items that are sold by weight can be presented as a cost per ounce (or
pound) graphed against the weight. The average selling price of a corporation's
stock can also be presented as a step function with a time period for the domain.

1.3.6 ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS

An algebraic function is a function f (*}which satisfies  (x, f ()} = U, where (. ¥)
is a polynomial in xand rwith integer coefficients. Functions that can be
constructed using only a finite number of elementary operations together with the _
inverses of functions capable of being so constructed are examples of algebraic
functions. Nonalgebraic functions are called transcendental functions.

12
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An algebraic equation in #variables is an polynomial equation of the form

Fle a0, iy )= Z Cog a8 ety .\'}l ,\‘;: T 3

where the coefficients **1-2-+are integers (where the exponents “:are nonnegative
integers and the sum is finite).

A function which is not an algebraic function. In other words, a function which
"transcends,” i.e., cannot be expressed in terms of, algebra. Examples of
transcendental functions include the exponential function, the logarithmic
functions and the inverse functions of both.

The exponential function is the entire function defined by

expiz)=¢.

where e is the solution of the equation 1 ¢ !/’so that « =x = 2718 ... expG)s also
the unique solution of the equation ¢ /<= = {{zlwithf h = 1,

The exponential function is implemented in Mathematica as Exp[z].

It satisfies the identity

EXPAx 4y = expiviexp v

& =M Y e (cos v b ESinY)
The exponential function satisfies the identities

£ = coshtx 4 sinfiy

sec (gd x) 4 tan (ed x)

tan [11 x4 1 edy)

— |

13
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I + sin(gd x)

cos(gd ) 7

where £4-%is the Gudermannian (Beyer 1987, p. 164; Zwillinger 1995, p. 485).
The exponential function has Maclaurin series

™ _‘..u
expx) = —_
px) Z},"! A
and satisfies the limit
i XA
expixy) = hm (l 1 —) .
B il i

If

athi=egg"¥,

then
“(3)
tan™' | -
¥ = a.
h +
in {hcsr tan ! [—]l}
X = «
(P
n {usec tan [—"}
— ¥l

The exponential function has continued fraction

(Wall 1948, p. 348).

14
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Fig 1.2
1.3.7 LOGARITHMIC FUNCTION

In mathematics, the logarithm of a number to a given base is the power or
exponent to which the base must be raised in order to produce the number.

For example,

the logarithm of 1000 to the base 10 is 3, because 3 is how many 10s you must
multiply to get 1000: thus 10 x 10 x 10 = 1000; the base 2 logarithm of 32 is 5
because 5 is how many 2s one must multiply to get 32: thus
2x2x2x2x2=232. In the language of exponents: 103 = 1000, so log101000
=3, and 25 = 32, s0 log232 = 5.

The logarithm of x to the base b is written logb(x) or, if the base is implicit, as
log(x). So, for a number x, a base b and an exponent y,

if x = b, then y =log,(x).

An important feature of logarithms is that they reduce multiplication to addition,
by the formula:

log(axy) =logxr +logy.

That is, the logarithm of the product of two numbers is the sum of the logarithms
of those numbers. The use of logarithms to facilitate complicated calculations was
a significant motivation in their original development.

15
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1.4 INTEGRATION

Integration is an important concept in mathematics, specifically in the field of
calculus and, more broadly, mathematical analysis. Given a function f of a real
variable x and an interval [a, b] of the real line, the integral

j Flx}de,

is defined informally to be the net signed area of the region in the xy-plane
bounded by the graph of f, the x-axis, and the vertical lines x = @ and x = b.

The term "integral” may also refer to the notion of antiderivative, a function F
whose derivative is the given function f. In this case it is called an indefinite
integral, while the integrals discussed in this article are termed definite integrals.
Some authors maintain a distinction between antiderivatives and indefinite
integrals.

The principles of integration were formulated independently by Isaac Newton and
Gottfried Leibniz in the late seventeenth century. Through the fundamental
theorem of calculus, which they independently developed, integration is
connected with differentiation: if [ is a continuous real-valued function defined on

a closed interval [a, b], then, once an antiderivative F of f is known, the definite
integral of f over that interval is given by

ol
/ f(2)de = F(b) - F(a).

1.5 RULES FOR INTEGRATION

Although integration is the inverse of differentiation and we were given rules for
differentiation, we are required to determine the answers in integration by trial and
error. However, there are some rules to aid us in the determination of the answer.

In this section we will discuss four of these rules and how they are used to

integrate standard elementary forms. In the rules we will let u and v denote a
16
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differentiable function of a variable such as x. We will let C, n, and a denote
constants.

Our proofs will involve searching for a function F(x) whose derivative is :
Ax) dx,
Rule l. fdu=u+C

The integral of a differential of a function is the function plus a

constant.
PROOF: If
a%(u +0_
then

d{u+ C)=du
and
fdu=u+C
Examplel

Evaluate the integral
Jax
Solution: By Rule 1, we have

fdx=x+C

Rule 2. fadu=a [du=au+C

17
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A constant may be moved across the integral sign. NOTE: A
variable may NOT be moved across the integral sign.

PROOF: If

d(@au+ C) _ ()d(u+C')
du

then

d{au+C)=ad(u+C)=adu
and

Jadu=afdu=au+C
Example 2: Evaluate the integral
f4 dx
Solution: By Rule2,
Jady =4 fdx
and by Rule 1,

Jdx=x+C
therefore,

Jédde=4x+ C

n+l

+1+C

u
Rule 3. Iu" du=n

18
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The integral of 4" du may be obtained by adding 1 to the ex-
ponent and then dividing by this new exponent. NOTE: If n is
minus 1, this rule is not valid and another method must be used.

PROOF.- If

d(n&l+C) (n+l_lu”

n+1

= u" du

then

+1

+C

[ du =220
Example 3: Evaluate the integral
I dx

Solution: By Rule 3,

jx’dx——l—‘—l-i-c

3
=X
3 +C

Example 4: Evaluate the integral
j;} dx
Solution: First write the integral

!rd.t
rl

L AR

as

19
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JIx dx
Then, by Rule 2,
7 [£dx
and by Rule 3,
7Ix"dx=7(5_-—22)+c= —-2-1-2-:~C‘

Rule 4. [(du+dv+dw)= [du+ [dv+ [dw

=u+v+w+ C

The integral of a sum is equal to
integrals.

PROOF: If

du+v+w+C)=du+dv+dw

then

fdu+dv+dw)=@m+ C)+(v+C)
+ (w+ Cy)

such that
fdu+dv+dwy=u+v+w+C
where

C=0C, + G+ G

Example 5: Evaluate the integral

f(2x - 5x + 4) dx

20
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Solution: We will not combine 2x and -5x.

J(2x - 5x + 4) dx
=[2vdx — [Sxdx+ [4dx
=2 [xdx—-5 [xdx+ 4 [dx

-2
2"‘ +C,——+Cz+4\+C,

=x=—%x’+4.\-+c

where C is the sum of Ci» Cz, and C,

Example 6: Evaluate the integral

I(xlf: _._xIIS) dx
Solution:

I (x'* + _‘.:n) dx

= ¥ dx s+ [ dx

3/2

3 +C| +C2

2_,(” 3x*l.i

= 3 o= 5 + C

Now we will discuss the evaluation of the constant of integration.

If we are to find the equation of a curve whose first derivative is 2 times the
independent variable x, we may write

dy _
dx"?'r

or
21
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dy = 2x dx (1)

We may obtain the desired equation for the curve by integrating the expression for
dy; thatis, by integrating both sides of equation (1). If

dy = 2x dx
then,

fdy = [2x dx
But, since
Jdy =y
and

J2xdx=x*+C

then

y=x'+C

We have obtained only a general equation of the curve because a different curve
results for each value we assign to C. This is shown in figure 6 -7 . If we specify
that

x=0

And

y=6

we may obtain a specific value for C and hence a particular curve.

Suppose that
22
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y=x+C,x=0,and y = 6
then,

6=0"iC

or

C=

—-—""'_'—-—’d_
e it
_r—'f.’-
X
)hq’,s

Ve 2

Figure 1.1-Family of curves.

By substituting the value 6 into the general equation, we find that the equation
for the particular curve is

y=x'+6

which is curve C of figure 6-7.
23
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The values for x and y will determine the value for C and also determine the
particular curve of the family of curves.

In figure 6-7, curve A has a constant equal to - 4, curve B has a constant equal to
0, and curve C has a constant equal to 6.

Example 7: Find the equation of the curve if its first derivative is 6 times the
independent variable, y equals 2, and x equals 0.

Solution: We may write

dy

dx = 6x

or
fdy = J6xdx

such that,

y=3x+C

Solving for C when

x=0

and

y=2

We have
2=30)+C

or

c= .
24 j
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so that the equation of the curve is

y=3x*+2

Activity 1
1. Consider the quadratic equation 2x2-8x+c=0.for what value of ¢, the equation has

I. Real roots
II. Equal roots
HOI. Imaginary roots

2. Draw the graph of the following functions f
a) Y=3x-5
b) Y=x?
¢) C=log2x
d)

1.9 SUMMARY

The objective of this unit was to provide you exposure to functional relationship
among decision variables. We started with the mathematical concept of function
and defined terms such as constant, parameter, independent and dependent
variable. Different types of function are discussed in depth with the description of
their applications.

Attention is then directed to defining the concept of Integration. Further different
rules of integration are discussed along with suitable examples.

1.10 FURTHER READINGS

* Alle, R.G.D (1974). Mathematical Analysis for Economists, Macmillan
press and ELBS, London.
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® Derivatives and various ways to compute them

UNIT 2

BASIC CALCULUS
LIMITS. CONTINUITY AND DERIVATIVES
- Objectives ;
After studying this unit, you should be able to understand: - :;_i
* Concept of the term ‘calculus’ {1
* Concept of limit and slope which are fundamental to understanding of lf',
calculus ?g
® Meaning of differentiation ;J
af

Structure

2.1 Introduction
2.2 Limits
2.3 Continuity r
2.4 Derivative =
2.5 Summary

2.6 Further Readings

26




M.P BHO] (OPEN JUNIVERSITY

w

2.1 INTRODUCTION

Calculus (Latin, calculus, a small stone used for counting) is ‘a branch of
mathematics that includes the study of limits, derivatives, integrals, and infinite
series, and constitutes a major part of modern university education. Historically, it
has been referred to as "the calculus of infinitesimals”, or "infinitesimal calculus”.
Most basically, calculus is the study of change, in the.same way that geometry is
the study of space.

Calculus has widespread applications in science, economics, and engineering and
is used to solve problems for which algebra alone is insufficient. Calculus builds
on algebra, trigonometry, and analytic geometry and includes two major branches,
differential calculus and integral calculus, that are related by the fundamental
theorem of calculus. In more advanced mathematics, calculus is usually called
analysis and is defined as the study of functions.

2.2 LIMITS

The limit of a function f{x) at some point xo exists and is equal to L it and only if
every "small" interval about the limit L, say the interval (L - €, L + €), means you
can find a "small” interval about xo, say the interval (x - 8, xo + ), which has all,
values of f{x) existing in the former "small" interval about the limit L, except
possibly at xg itself.
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Figure 2. 1

This is a difficult concept to fully appreciate. However, you should be able to

grasp the idea through several examples.

Examples:

1. Consider f(x) = x” - x - 6. Find the limit as x approaches 1. It is not hard to see
from either the graph or from the way you have always evaluated this quadratic
function that as x approaches 1, fix) approaches -6, since f(1) = -6.

“ oy =L €
\ 1. €
\\ X
.l'ﬂ ) |

s

B(l"l.J: ST RS ¢ o I S 2 VIR VR <S4 s B )]

/!

S T
'
~ g

Figure 2. 2
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Fact: Any polynomial, p(x), has as its limit at some x. the value of p(x).

2. Consider the rational function r(x) = (x* - x - 6)/(x - 3). Find the limit as x
approaches 1. If x is not 3, then this rational function reduces to r(x) = x + 2. So as
x approaches 1, this function simply goes to 3.
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o
=y
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w
=

Figure 2. 3

Fact: Any rational function, r(x) = p(x)/g(x), where p(x) and g(x) are polynomials
with g(xy) not zero, then the limit exists with the limit being r(xy).

3. Consider the rational function in Example 2. Now f ind the limit as x
approaches 3. Though r(x) is not defined at xo = 3, we can see that arbitrarily
"close" to 3, r(x) = x + 2. So as x approaches 3, this function simply goes to 5. Its
limit exists though the function is not defined at xp = 3.
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Figure 2. 4

4. Consider the rational function fix) = 1/%. Find the limit as x approaches 0, if it
exists. From our statement above on rational functions, this function has a limit
for any value of xo where the denominator is not zero. However, at xo = 0, this
function is undefined. Thus, the graph has a vertical asymptote it xo = 0. This
means that no limit exists for f{x) at xo = 0.

Y
¢t

[e2]

Figure 2. 5
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Fact: Whenever you have a vertical asymptote at some xg, then the limit fails to
exist at that point. )

2.3 CONTINUITY

Closely connected to the concept of a limit is that of continuity. Intuititvely, the
idea of a continuous function is what you would expect. If you can draw the
function without lifting your pencil, then the function is continuous. Most
practical examples use functions that are continuous or at most have a few points
of discontinuity.

Definition: A function f(x) is continuous at a point xo if the limit exists at xy and is
equal to flxg).

The examples above should also help you appreciate this concept. In all of the
cases except Example 3, the existence of a limit also corresponds to points of
continuity. Example 3 is not continuous at xp = 3 though a limit exists here, as the
function is not defined at 3. Examples 3 and 5 are discontinuous only at xp = 3,
while Examples 4, 6 and 7 are discontinuous only at xo = 0. At all other points in
the domains of these examples are continuous.

Example 5
Comparing Limits and Continuity

An example is provided to show the differences between limits and continuity.
Below is a graph of a function, f{x), that is defined on the interval [-2, 2], except at
x =0, where there is a vertical asymptote.
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Iigure 2. 6

It is clear that the difficulties with this function occur at integer values. At x = -1,
the function has the value f{-1) = 1, but it is clear that the function is not
continuous nor does a limit exist at this point. At x = 0, the function is not defined
(not contiruous nor has any limits) as there is a vertical asymptote. At x = 1, the
function has the value f{1) = 4. The function is not continuous at x = 1, but the
limit does exist with A

lim f{x)=1

2=

Al x = 2, the function is continuous with f{2) = 3, which also means that the limit
exists. At all non-integer values of x the function is continuous (hence its limit
exists). :

2.4 DERIVATIVES

INTRODUCTION

the derivative is a measure of how a function changes as its input changes.

Loosely speaking, a derivative can be thought of as how much a quantity is
' 32
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changing at a given point. For example, the derivative of the position (or distance)
of a vehicle with respect to time is the instantaneous velocity (respectively,
instantaneous speed) at which the vehicle is traveling. Conversely, the integral of
the velocity over time is the vehicle's position.

The derivative of a function at a chosen input value describes the best linear
approximation of the function near that input value. For a real-valued function of
a single real variable, the derivative at a point equals the slope of the tangent line
to the graph of the function at that point. In higher dimensions, the derivative of a
function at a point is a linear transformation called the linearization.!"! A closely
related notion is the differential of a function.

The process of finding a derivative is called differentiation. The fundamental
theorem of calculus states that differentiation is the reverse process to integration.

2.4.1 DIFFERENTIATION AND THE DERIVATIVE

Differentiation is a method to compute the rate at which a dependent output y,
changes with respect to the change in the independent input x. This rate of change
is called the derivative of y with respect to x. In more precise language, the
dependence of y upon x means that y is a function of x. If x and y are real numbers,
and if the graph of y is plotted against x, the derivative measures the slope of this_
graph at each point. This functional relationship is often denoted y = f(x), where f
denotes the function. : , >

The simplest case is when y is a linear function of x, meaning that the graph of y
against x is a straight line. In this case, y = f(x) = m x + ¢, for real numbers m and
¢, and the slope m is given by

changem y Ay

1" = : = —
change in @ Ax

where the symbol A (the uppercase form of the Greek letter Delta) is an
abbreviation for "change in." This formula is true because

J’+Ay=f(x+Ax):m(x+Ax)+c=mx+c+mAx=y+mAx_
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It follows that Ay = m Ax.

This gives an exact value for the slope of a straight line. If the function f is not
linear (i.e. its graph is not a straight line), however, then the change in y divided
by the change in x varies: differentiation is a method to find an exact value for this
rate of change at any given value of x.

i\:'f-‘-":'e”ﬁs-inp 2= F (%)

Figure 2.7 The tangent line at (x, f(x))

The idea, illustrated by Figures 1-3, is to compute the rate of change as the
limiting value of the ratio of the differences Ay / Ax as Ax becomes infinitely
small.

In Leibniz's notation, such an infinitesimal change in x is denoted by dx, and the
derivative of y with respect to x is written

dy
dx

suggesting the ratio of two infinitesimal quantities. (The above expression is read
as "the derivative of y with respect to x", "d y by d x", or "d y over d x". The oral
form "d y d X" is often used conversationally, although it may lead to confusion.)

The most common approach™ to turn this intuitive idea into a precise definition
uses limits, but there are other methods, such as non-standard analysis.[3 ]
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2.4.2 The derivative as a function

Let f be a function that has a derivative at every point a in the domain of f.
Because every point a has a derivative, there is a function which sends the point a
to the derivative of f at ¢. This function is written f(x) and is called the derivative
function or the derivaiive of f. The derivative of f collects all the derivatives of f
at all the points in the domain of f.

Sometimes f has a derivative at most, but not all, points of its domain. The
function whose value at a equals f(a) whenever f(a) is defined and is undefined
elsewhere is also called the derivative of f. It is still a function, but its domain is
strictly smaller than the domain of f.

Using this idea, differentiation becomes a function of functions: The derivative is
an operator whose domain is the set of all functions which have derivatives at
every point of their domain and whose range is a set of functions. If we denote
this operator by D, then D(f) is the function f(x). Since D(f) is a function, it can
be evaluated at a point a. By the definition of the derivative function, D(f)(a) =
fa).

For comparison, consider the doubling function f(x)=2x; f is a real-valued
function of a real number, meaning that it takes numbers as inputs and has
numbers as outputs:

1—2.
24,

3= 0.

The operator D, however, is not defined on individual numbers. It is only defined
on functions:

D(x— 1) = (z+—0),
Dixr— z)=(x+—1).

Dz a?) = (z+2-2).
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Because the output of D is a function, the output of D can be evaluated at a point.
For instance, when D is applied to the squaring function,

2

4 M 2 A

D outputs the doubling function,
X — 21T

L]

which we named f(x). This output function can then be evaluated to get f{l)=2,
f(2) =4, and so on.

The derivative of a function can, in principle, be computed from the definition by
considering the difference quotient, and computing its limit. For some examples,
see Derivative (examples). In practice, once the derivatives of a few simple
functions are known, the derivatives of other functions are more easily computed
using rules for obtaining derivatives of more complicated functions from simpler
ones.

Computation of derivatives of different functions is described as following:
2.4.3 Derivatives of elementary functions
Most derivative computations eventually require taking the derivative of some

common functions. The following incomplete list gives some of the most
frequently used functions of a single real variable and their derivatives.

If,
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| wherever this function is defined. For example, if r = 1/2, then

and the function is defined only for non-negative x. When r = 0, this rule recovers
the constant rule.

o Exponential and logarithmic functions:

4 5
—a” = In(a)a’

il

d . 1

Ehl(l‘) = F x>0
d ; 3 1

dr 0galr) = xIn(a)

s Trigonometric functions:

% sin(ic) = cos(x).
-é;cos(.ar} = —sin(r).
d

tan(r) = sec’(z).

de

e [nverse trigonometric functions:

d 1

— arcsin(x) =
dr’ ()

d 1

——arccos(x) = —

da v1—z2
arctan(z) = 1
T arctan{x) = T4
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2.4.4 Rules for finding the derivative

In many cases, complicated limit calculations by direct application of Newton's
difference quotient can be avoided using differentiation rules. Some of the Inost
basic rules are the following.

» Constant rule: if f(x) is constant, then

r=0

o Sum rule:

! f I
(af +bg) =af' + by for all functions f and g and all real numbers
aand b.

s Product rule:

(fg)l = flg + fgffor all functions f and g.

e Quotient rule:

( £) _Je-Jfg
9 9*  for all functions f and g where g #0.
«  Chain rule: Tf fix) = h(g(x)), then
fl(z) =K (g(x))- g'(2)
Example 6
Computation
The derivative of
f(z) =2* +sin(2?) -~ In(z)e + 7
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is

l{a~ N d i) 2F)
f'(x) = 4281 t—(_l—;coﬁfa’_'} - _d—u—.l-l%).c" ~In .rd (,( J IO

g £ o o =

SRRMDEER- T i IRt [ e Py

Here the second term was computed using the chain rule and third using the
product rule. The known derivatives of the elementary functions x%, x*, sin(x),
In(x) and exp(x) = ¢*, as well as the constant 7, were also used.

2.4.5 Derivatives of Inverse Trigonometric Functions

The following are the formulas for the derivatives of the inverse trigonometric
functions:

dism™w) _ 1 du
N

d(cos ™ u) -_—1 du
x -2 dx

d(tan ' u) - 1 du
dx 1+2 dx

2.4.6 Quotient Rule for Derivatives

Let fand g be differentiable at x with g(x) # 0. Then f/g is differentiable at x and

[f(r)J' _ 9(x)f'(@) - f(2)g' ()
() oGF
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Example 7
If,
22+ 1
f2) = ==3
! Then,
% o) = {1:—3)3‘1;[2x+1}—(2x -}-1)&[:—3}
_ (z-3)(2) - e+ 1))
i (r—3)?
T T E-3

2.4.7 Derivative of the Exponential Function

The importance of exponential functions in mathematics and the sciences stems
mainly from properties of their derivatives. In particular,

That is, ¢ is its own derivative and hence is a simple example of a pfaffian
function. Functions of the form Ke" for constant K are the onl‘jz functions with that
property. (This follows from the Picard-Lindel6f theorem, with y(£) = €', y(0)=K.
and f(z,y(1)) = y(¢).) Other ways of saying the same thing include:

» The slope of the graph at any point is the height of the function at that
point.

o The rate of increase of the function at x is equal to the value of the
function at x.

« The function solves the differential equation y "= y.

e exp is a fixed point of derivative as a functional.

2.4.8 Formulas for Derivatives of Exponential Functions
If u is a function of x, we can obtain the derivative of an expression in the form ¢":
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de’) _ du
dx cZ\

If we have an exponential function with some base b, we have the following
derivative:

i@ =b”1nb.@

ACTIVITY 2
1. Find the derivative of y = 10*.
2. Suppose that 2x* + 6xy + y* = ¢ for some constant c. Find dy/dx.
3. Suppose that the functions f and g are differentiable and g( f(x)) = x for

all values of x. Use implicit differentiation to find an expression for the
derivative f'(x) in terms of the derivative of g.

4. Find A which makes the function

(1) 2 -2 ifz <1
| Az —4 if1 <

continuous at x=1.

5. Find the derivative of y = cos™'5x.
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2.5 SUMMARY

The objective of this unit was to provide you with some exposure to differential
calculus. Differential calculus is useful to solve optimization problems in which
the aim is either to maximize or minimize a given objective function. Applications
of the derivative in both micro economics theory ( cost, revenue, elasticity ) and
macro economic theory (income, consumption, savings) are good examples of its
applications.

The unit begins with a discussion on the limit and continuity and then attention is
directed to defining the slope of a linear functio and puoceeds with a discussion
that extends this to include the slope of non linear function. Thes is followed by
the difinition of the term derivative and rules for obraining the derivatives of the
more commonly encountered functional forms.

2.6 FURTHER READINGS

Budnicks, F.S. 1983. Applied Mathematics for Business, Economics, and Social
Sciences, McGraw Hill: New York.

Gulati, B.R. 1978. College Mathematics with Business Applications to Business
and Social Sciences; Harper & Row: New York.

Hughes, A.J. 1983. Applied Mathematics for Business, Economics and the Social
Sciences, Irwin: Homewood.

Weber, L.E. 1982. Mathematical Analysis: Business and Economics Applications,
Harper & Row: New York.
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UNIT 3

CONCEPTS OF MATRICES AND DETERMINANTS

Objectives

After studying this unit, you should know the:

¢ Basic concepts of the matrix

e Methods of representing large quantities of data in matrix form
e Various operations concerning matrices

e The solution method of simultaneous linear equations

e Concept and properties of determinants

Structure

3.1 Introduction

3.2 Matrix addition and subtraction

3.3 Matrix multiplication

3.4 The rank of matrices

3.5 Transpose of matrix

3.6 Solving system of equations using matrices
3.7 Summary

3.8 Further readings
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3.1 INTRODUCTION

A matrix is a rectangular array of ordered numbers. The term ordered implies that
the position of each number is significant and must be determined carefully to
represent the information contained in the problem.

A matrix is defined as an ordered rectangular array of numbers. They can be used
to represent systems of linear equations, as will be explained below

Here are a couple of examples of different types of matrices:

Symmetric Diagonal [ijizfl;ular Lower Triangular Zero Identity

1 2 -3 1 0 0O 1 2 3 1-8 0 0 0 0O 1 0 N

2 0 -5 0 4 0 0 7 -5 -4 7 0 0 0 O 0 I o
0 o 0 0 1

T -5 6 0 0 & |0 o -4 2 5 3 0
And a fully -expanded mxn matrix A, would look like this:

au 012 ess dh

A = azl an sas anu

R ) P in a more compact form: A={ay)

3.2 MATRIX ADDITION AND SUBTRACTION

DEFINITION: Two matrices A and B can be added or subtracted if and only if

their dimensions are the same (i.e. both matrices have the identical amount of
rows and columns. Take:

juft 2 3 s a2 12
10 2 * 10 3
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Addition
If A and B above are matrices of the same type then the sum is found by adding
the corresponding elements a;+b;;

Here is an example of adding A and B together
12 33 12 1 2 335
= + =
A+B[1 0 2] [1 0 3] [2 0 5]

Subtraction

If A and B are matrices of the same type then the subtraction is found by
subtracting the corresponding elements a;-b;;

Here is an example of subtracting matrices
1 2 3 21 2 =1 1 1
—B = — =
A [l 0 2] [1 0 3] [ 0 0 —1}

3.3 MATRIX MULTIPLICATION

DEFINITION: When the number of columns of the first matrix is the same as the
number of rows in the second matrix then matrix multiplication can be performed.

Here is an example of matrix multiplication for two 2x2 matrices
a blfe f (ae +bg) (af +bk)
c dllg &4 (ce +dg) (¢f +dh)

Here is an example of matrices multiplication for a 3x3 matrix
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a b cl{j k£ I (aj tbm+cp) (ak +bn+cq) (af +botcr)
d e fllm n o|l=|(ditem+fp) (dkc+en+fg) (di+eo+ fr)
g kb illp g r] |(gi+thm+ip) (gk+ha+ig) (gi+ho+ir)

Now lets look at the nxn matrix case, Where A has dimensions mxn, B hag 4
dimensions nxp. Then the product of A and B is the matrix C, which hag 1
dimensions mxp. The ;™ element of matrix C is found by multiplying the entries
of the i row of A with the corresponding entries in the jlh column of B and
summing the n terms. The elements of C are:

X

oy =anby taphy o tapby = Z“l;‘bjl
Fa

€y =anbp tapby *...tapb,

Cap = Caalry ¥ Bpabyy *ooot Ad

wy m1™ 2y nen ny

Note: That AxB is not the same as BxA

3.4 THE RANK OF MATRICES ' A

The column rank of a matrix A is the maximal number of linearly independent
columns of A. Likewise, the row rank is the maximal number of linearly
independent rows of A.

Properties of rank of matrix

We assume that A is an m-by-n matrix over either the real numbers or the complex
numbers, and we define the linear map f by f(x) = Ax as above.

* only a zero matrix has rank zero.
e rank A < min{m,n)
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- fis injective if and only if A has rank 1 (in this case, we say that A has full
column rank). _

f is surjective if and only if A has rank m (in this case, we say that A has
full row rank).

In the case of a square matrix A (i.e., m = n), then A is invertible if and
only if A has rank n (that is, A has full rank).

If B is any n-by-k matrix, then

rank{ AB) < min(rauk A, rank B}

As an example of the "<" case, consider the product
0 0}[0 0]
1 ojlo 1

Both factors have rank 1, but the product has rank 0.

If B is an n-by-k matrix with rank n, then

rank( AR} = rank{ 4}

If C is an /-by-m matrix with rank m, then

rank{C'A} = rank(A}

The rank of A is equal to r if and only if there exists an invertible m-by-m
matrix X and an invertible n-by-n matrix Y such that

e [ O}
sl &= [n (;J
where I, denotes the r-by-r identity matrix.

Sylvester’s rank inequality: If A and B are any n-by-n matrices, then

rank( A} 4+ rank{ B) - » < rank(.ADB}
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* Subadditivity: rank(A+ B) < rank(A) + rank(B)when A and B are of the
same dimension. As a consequence, a rank-k matrix can be written as the

sum of k rank-1 matrices, but not fewer.

* The rank of a matrix plus the nullity of the matrix equals the number of
columns of the matrix (this is the "rank theorem" or the "rank-nullity
theorem").

* The rank of a matrix and the rank of its corresponding Gram matrix are
equal

rank( A’ 4) = rank(AA4") = rank(A)

This can be shown by proving equality of their null spaces. Null space of
the Gram matrix is given by vectors x for which A”Ax = 0. If this condition
is fulfilled, also holds 0 = x"ATAx =1 Ax | . This proof was adapted from.!

Computation

The easiest way to compute the rank of a matrix A is given by the Gauss
elimination method. The row-echelon form of A produced by the Gauss algorithm
has the same rank as A, and its rank can be read off as the number of non-zero
TOWS.

Consider for example the 4-by-4 matrix
g 1 93
-1 =2 10
00
3 6

We see that the second column is twice the first column, and that the fourth
column equals the sum of the first and the third. The first and the third columns
are linearly independent, so the rank of A is two. This can be confirmed with the
Gauss algorithm. It produces the following row echelon form of A:
12 01
o0

g0 00
0000

(B S
(LI (]

which has two non-zero rows.
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A=

b2 e

2
3
1

b3 =

Determine the row-rank of
Solution: To determine the row-rank of A we proceed as follows.

1 2 1 1 2.

2 3 1| Ra(-2),Ra(-1)|0 < 1f.

11 2 g ==
1. :

1 2 1} [1 ) 1}

0 =1 =1|Ra(-1),Rsx(1){0 1 1}.

b ~% 1 00 2
2

1 2 1] 1 o —1]

0 1 1| Ra(1/2),Ru:(-2)|0 1 1}.

00 2 00 1
3. i

1 0 1 1 0 0

0 1 1|Rn(-1)FRs)|o 1 0

0 0 1 0 0 1
4,

The last matrix in Step 1d is the row reduced form of Awhich has 3non-
zero rows. Thus, row rank (A) =3. This result can also be easily dedyced
from the last matrix in Step 1b.

C
e

®
I
o =
(WS

2. Determine the row-rank
Solution: Here we have

1 21 1 2 1
2 32 1 Ba(-2).,Ra(-1){n — =1]|.
Y10
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1 1
Ra(=1), Raa(1) [0 1f.
0D 0

1 2 1
0 -1 -1
0 =1 =1

P4

row-rank(4) = 2.

3.5 TRANSPOSE OF MATRICES

DEFINITION: The transpose of a matrix is found by exchanging rows for
columns ie. Matrix A = (a;) and the transpose of A is:

AT=(a;) where j is the column number and i is the row number of matrix A.

For example, The transpose of a matrix would be:
32 3 5 4 8

A=14 7 1| 4T =|2 7 5
8 5 9 318

In the case of a square matrix (m=n), the transpose can be used to check if a
matrix is symmetric. For a symmetric matrix A = A" :

12y - (12
ole 4oL 3)

3.6 SOLVING SYSTEMS OF EQUATIONS USING MATRICES

DEFINITION: A system of linear equations is a set of equations with n equations
and n unknowns, is of the form of
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anky FapXy et ax, =h
Gy Xy T ApX,y T T a,, X, =b1

QX t A%y Fot A x, =b,

The unknowns are denoted by x;,x»,...x, and the coefficients (a's and b's above)
are assumed to be given. In matrix form the system of equations above can be

written . as:
ay a7 .- 9, (A& ]

ay en - Al | _|&2 .

A, CI,Q e Oy )L Xy bn

A simplified way of writing above is like this ; Ax=b
After looking at this we will now look at two methods used to solve matrices
these are

 Inverse Matrix Method
e Cramer's Rule

3.6.1 Inverse Matrix Method

DEFINITION: The inverse matrix method uses the inverse of a matrix to help
solve a system of equations, such like the above Ax = b. By pre-multiplying both
sides of this equation by A™ gives:

AlAxn =47
(A7 Dz =A%

or alternatively this gives

x=A"%
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So by calculating the inverse of the matrix and multiplying this by the vector b we
can find the solution to the system of equations directly. And from earlier we
found that the inverse is given by

A -1 - adf(‘{)
det(A4)

From the above it is clear that the existence of a solution depends on the value of
the determinant of A. There are three cases:

1. If the det(A) does not equal zero then solutions exist using * = A

2. If the det(A) is zero and b=0 then the solution will be not be unique or
does not exist.

3. If the det(A) is zero and b=0 then the solution can be x = 0 but as in 2. is
not unique or does not exist.

Looking at two equations we might have that

ax+by=c
dxtey=f

Written in matrix form would look like

a bif«x ¢
d elly] |/
and by rearranging we would get that the solution would look like
x) (2 &) (e
y) \d e) \/
Similarly for three simultaneous equations we would have:
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ay x+apy+azz=h
anx+any+tapnz =b
anxtanytapnz=b

Written in matrix form would look like

a2 a3
a1 a3 an =
@3 d33 anj\?

and by rearranging we would get that the solution would look like

e 2

The inverse of a 2x2 matrix

Take for example a arbitury 2x2 Matrix A whose determinant (ad-bc) is not equal
to zero

)

where a,b,c,d are numbers, The inverse is:
-1
a b d -8
-¢ a
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The inverse of a nxn matrix

The inverse of a general nxn matrix A can be found by using the following

equation:
29 - adj(4)
det( 4)

Where the adj(A) denotes the adjoint (or adjugate) of a matrix. It can be calculated
by the following method

« Given the nxn matrix A, define
B =(by)
to be the matrix whose coefficients are found by taking the determinant of
the (n-1) x (n-1) matrix obtained by deleting the i row and ™ column of
A. The terms of B (i.e. B = b;j) are known as the cofactors of A.

o And define the matrix C, where

oy = (D" by

o The transpose of C (i.e CT) is called the adjoint of matrix A.
Lastly to find the inverse of A divide the matrix CT by the determinant of A to

give its inverse.

3.6.2 Cramer's Rule to solve simultaneous equations

Cramer's rule is a theorem in linear algebra, which gives the solution of a system
of linear equations or corresponding square matrices in terms of determinants
Cramer's rules uses a method of determinants to solve systems of equations.
Starting with equation below,
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anx tapx; t..tapx, =b

AyX *apx; t..tayx, =b
allxl "'“azxz ...t Ay iy = bx

The first term x; above can be found by replacing the first column of A by

i
@ & .. by . Doing this we obtain:
bl g Bz e B,
= 1 7 Gy gz eee g,
g E" 3
x G Gy e Gy

Similarly for the general case for solving x, we replace the r'™ column of A by

@ & . b")r and expand the determinant.

This method of using determinants can be applied to solve systems of linear
equations. We will illustrate this for solving two simultaneous equations in x and
y and three equations with 3 unknowns x, y and z.

Two simultaneous equations in x and y

ax+by=p
cx+dy =g

To solve use the following:

, -
r & a p
Det Det
\ a’ d - d \ < g £
x= T = T B
a b il a b
Det Det
Le o] Le @
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or
simplified:
pd-bg ag-cp
X= and y=
ad-bc ad-b¢

Explicit formulas for Cramer’s rule
Consider the linear system

ar+ by =¢
cr+dy=f

which in matrix format is

B}

Then, x and y can be found with Cramer's rule as:

i
T o] ad—1c
¢ d‘
and
a ¢
e f} _af —cc
¥ la b| ad—bc
c dl '

The rules for 3x3 are similar. Given:
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ar + by + ez = .
de+ey+ fz=k,
gr+hy+iz=1,

which in matrix format is

a b e|llx]l |7
d e flly]=|F
g h i}lz !

x, y and z can be found as follows:

b ¢ a« j ¢ a b

ke f d b f d e k

I I o1 g ! 1 | g h
r_a b el = a b :ldmﬂ'—a b el

d e f d e f d e f

g h i g h 1 g h i

3.7 THE DETERMINANT OF A MATRIX

DEFINITION: Determinants play an important role in finding the inverse of a
matrix and also in solving systems of linear equations. In the following we assume
we have a square matrix (m=n). The determinant of a matrix A will be denoted by
det(A) or IAl Firstly the determinant of a 2x2 and 3x3 matrix will be introduced
then the nxn case will be shown

a b
e d

For a 2x2 matrix A = the number ad - bc is called the determinant of
a b
c d

A. We write it as det(A), or | Al or

More generally, associated with any nxn matrix A = (a;;) we have a number, called
the determinant of A, denoted as above.
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The definition of this number is rather complicated. I have given it for 2x2
matrices. The definition for 3x3 matrices is given in terms of 2x2 matrices as
follows:

a1l a12  d13

a1 Q22 Q23 a2z Q@23 a1 an a1 Q22
a3 G2 Qag @iz @33 @31 a3 az  as2
=dy -a| + dy3

For an nxn matrix A the determinant of the (n - 1)x(n - 1) matrix obtained by
deleting the i row and /" column of A is called the (i, j)-minor of A. We denote it
by M ij*

~ We can now write the above definition of the determinant of a 3x3 matrix as

11 a1 13
an ax» a3
@z @32 a33
=anMy - apMiz + asMys,
~ which looks a bit more tidy.

I can now give you the definition of the determinant of an nxn matrix A. It is just
the same as the above, expressing det(A) in terms of the minors of the top row of
A.

det(A) = an My - anpMiz + aiMs - = 2a WM.
Note that the signs are alternating + - + - + - etc.

That's the definition. We don't often work out determinants in this way if we can
help it. It gets to be very hard work if n is much bigger than 4. It can be shown
that, using the above method, it takes in all about (e - 1)n! multiplications to work
out an nxn determinant. The number of multiplications needed to evaluate a
20x20 determinant is 4, 180, 411, 311, 071, 440, 000. If a computer can do a
million multiplications per second, and we don't count the time for the additions
etc., then the evaluation of a 20x20 determinant will take about 130, 000 years by
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this method. This is not practical! There are better methods which will reduce the
time to a matter of seconds. These methods are consequences of the basic
properties of determinants that I will now explain. ‘

Properties of Determinants

Here are some rules:

o =

Interchanging two rows of A just changes the sign of det(A).

Interchanging two columns of A just changes the sign of det(A).

If A has a complete row, or column, of zeroes then det(A) = 0.

det(A) = det(4™).

To any row of A we can add any multiple of any other row without
changing det(A). :

To any column of A we can add any multiple of any other column without
changing det(A).

A common factor of all the elements of a row of A can be “taken outside
the determinant’, in the following sense:

an a1z Q13 a1l a2 aqis

D.az1 p.azz p.a2z an  Q» Gz

as Qaz2 Q33 31 Q32 a3z
=p

The same applies to columns.

If all the elements of A below (or above) the diagonal are zero then the
determinant is equal to the product of the diagonal elements. In particular,
the determinant of a diagonal matrix is equal to the product of the diagonal
elements. For example

a b ¢ d
0 pgqor
0 0 s ¢
0 0 0 u

= 4.p.S.U.
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10. The determinant of a product is the product of the determinants. In
symbols, '

det(AB) = det(A)det(B).
These give us ways to manipulate a determinant into a more manageable form for

calculation.

Example 2: Show that
1 1 1

-k O

2 |
3 1 2

Al 2 1

— =3_

Solution: We aim to produce as many zeros as possible and, ideally to produce a
matrix in which all the elements below (or above) the diagonal are zero.

0 0

1011 10

2 1 2 1 21 0 =1 ) __ T
3-2°1:2 32 -2 -1 [C; =C—Ch); [Ci=Ci-0¢y
1. 1 21 11 1 0 .

Here we have subtracted column 1 from
column 3 and from column 4.

10 0 0
2 1 0 —1 ey ?

- 11 -2 0 [R3 = Ry — Ry
111 0

Here we have taken row 2 from row 3.
- Now switch over rows 2 and 4, which
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changes the sign:

1 0 0O 1]
12 a A , e

A 1 1 -2 0 [R> = Ry]; [R} = Ry]
21 0 -1 .

Finally, subtract column 2 from column

3 to get:
10 0 0
F 1 1 0 0 1 S -y
= 11 -3 0 [Cs=Cs -G
2 1 -1. -1 '

Now all the elements above the diagonal are zero, so the value of the determinant
is the product of the diagonal elements. So '

det(A) =- (Ixlx -3x-1)=-3.

L]

1 » =
1 v y3
1.2z 22
Example 3 Prove that =(x-y)y-z)z-X).

Solution 3: Before we start, remember that a” - b° = (a - b)(a + b). We are going
to use this a lot.

Start by subtracting row 1 from both row 2 and row 3 to get:
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1 = z°

0 y—z y' —2?

0 z—z 2?—2°
det(A) = ;
All the terms in the second row now have common factor (y - x) and al
in the third row have common factor (z - x). So use the rules to pull thes

I 5.
0 1 y+=2
01 z4=z

det(4) = (v - X)(z - )
Next we subtract row 2 from row 3 and get a matrix in which all the te
the diagonal are zero:

1 = 2°
det(A) g (13- ”*_’;
=(y-x)z-x) T =(-0@E-0.11.a-Y)

=(x-y)(y-2(z-x).

Determinant of a 2x2 matrix
Assuming A is an arbitrary 2x2 matrix A, where the elements are given

& @
I

da1 432
then the determinant of a this matrix is as follows:
a1

a21
Now try an example of finding the determinant of a 2x2 matrix

det(4) = |4 =

a2
= 41872 42192
422

Determinant of a 3x3 matrix
The determinant of a 3x3 matrix is a little more tricky and is found as f
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2

r i

~
[E I

[ 3V I 5]

det(A) = .
All the terms in the second row now have common factor (y - x) and all the terms
in the third row have common factor (z - x). So use the rules to pull these out:

OO
f-fl:

—z e
= — X

&y

1 z =z
0 1 y+=2
01 z4r

det(A) = (y - x)(z - x)
Next we subtract row 2 from row 3 and get a matrix in which all the terms below
the diagonal are zero:
2
22

det(A) s

OO =
[
[N~

Ir
u
=(@y-x)(z-x) =-x)(z-x.1.1(z-y)
=@ - -2z -x).

Determinant of a 2x2 matrix
Assuming A is an arbitrary 2x2 matrix A, where the elements are given by:

@& (73
q=|M %3
d31 432
then the determinant of a this matrix is as follows:

&
det(4) = |4 = a“

a2
= 41a3 Tda214)3
az

Now try an example of finding the determinant of a 2x2 matrix

Determinant of a 3x3 matrix
The determinant of a 3x3 matrix is a little more tricky and is found as follows ( for
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this case assume A is an arbitrary 3x3 matrix A, where the elements are given
a1] 412 43
A = daq a 623
below) g1 93 933

then the determinant of a this matrix is as follows:

41 42 a3
det(A) = |4 =|az a6 ap|=ay
3] d3zp a3

a2 4axn az 4

2
a3 433

a1 4n
a31 a3

*+az

a3 as3

Determinant of a nxn matrix
For the general case, where A is an nxn matrix the determinant is given by:

det(4) = |4| = ay3a1y +a13a12 + ...+ 3y,
. 248 : ;
Where the coefficients  are given by the relation
i
&= (-D" 5,
where B Vis the determinant of the (n-1) x (n-1) matrix that is obtained by deleting

row i and column j. This coefficient 7 is also called the cofactor of ajj.

Activity 3
4 -1
Let, A=
6 9
0 3
and B=
3 =2

Find (i) A + B, (ii) 2A - B, (ii;') AB, (iv) BA, and (v) A’ (the transpose of A).
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3
-2

W o S

(a) Is AB defined? If so, find it. (ii) Is BA defined? If so, find it.

Use Cramer's rule to find the values of x and y that solve the following two
equations simultaneously.

3x-2y=11
2x+y =12

1. Use Cramer's rule to find the values of x, y, and z that solve the following
three equations simultaneously.

4x +3y-2z=7
X+ y =85
3x+ z =4
Solve the three equations by using matrix inversion

3.8 SUMMARY

Matrices provide a very convenient and compact system of writing a system of
linear simultaneous equations and methods of solving them.

A number of basic matrix operations ( such as matrix addition, subtraction and
multiplication) were discussed in this unit. This was followed by a discussion on
matrix inversion and procedure for finding matrix inverse. Numbers of examples
were given in support of the above said operations and inverse of a matrix.

Finally Cramer’s rule and determinants of matrix also have discussed in depth in
order to give readers the full exposure of the concepts.
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3.10 FURTHER READINGS

Budnicks, F.S. 1983. Applied Mathematics for Business, Economics, and
Social Sciences, McGraw Hill: New York.

Hughes, A.J. 1983. Applied Mathematics for Business, Economics and the
Social Sciences, Irwin: Homewood

Weber, J.E. 1982. Mathematical Analysis: Business and Economics
Applications, Harper & Row: New York.

SOLUTIONS TO ACTIVITIES

ACTIVITY 1

y=10"
 _ o [d(3x)]
= 10" (In10) ——
= 3In10(10%")
2. dyldx = —(2x + 3y)/(3x + y).
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3.8(f) ') =1,s0 f(x) = 1/g'(f(x)).

4. A=4= -1 orequivalentlyif 4 =3,

7

Putu=>5xsoy=cos'u

y=cos ' §x
e )
& -yt de
1 d(5x)
JI-(5%)% dx
_ -5
=252
ACTIVITY 3
i
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i, 8 -5
9 20 !
i, 3 14 |
27 0
18 27
iv. 0 -2
4
v- -1 }
-3 14 |
i. Yes; 27 0
9 0
ii. No
1 2 11 5
(1/7) =
-3 3 12 2
1 43 2 7 0
wn -1 10 =2 5 =5
39 1 4 4
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BLOCK 2

MATHEMATICAL METHODS

BLOCK 2 MATHEMATICAL METHODS

This block consists of two units. The first unit deals with basic concepts of linear
programming, its uses, forms, slackness and concepts related to duality. The
second unit thoroughly discusses solutions to linear programming problems
including optimal solution of linear programming through graphical method. The
unit also throws light on concept of games, different strategies of game and the
saddle point solution.
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UNIT 1

BASIC CONCEPTS OF LINEAR PROGRA-MMING

Objectives
After studying this unit you should be able to:

* Understand the basic concept of Linear Programming

¢ Analyze the uses of Linear Programming

* Know the different concepts of standard form and augmented form
problems. ,

¢ Have the knowledge of complementary slackness theorem

Structure

1.1 Introduction

1.2 Uses of Linear Programming
1.3 Standard form

1.4 Augmented form

1.5 Duality

1.6 Special cases

1.7 Complementary slackness
1.8 Summary

1.9 Further readings
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1.1 INTRODUCTION

In mathematics, linear programming (LP) is a technique for optimization of a
linear objective function, subject to linear equality and linear inequality
constraints. Informally, linear programming determines the way to achieve the
best outcome (such as maximum profit or lowest cost) in a given mathematical
model and given some list of requirements represented as linear equations.

More formally, given a polytope (for example, a polygon or a polyhedron), and a
real-valued affine function

f('-rle T2ew .- Ty) = 1T + CaT2 + 7+ G +d

defined on this polytope, a linear programming method will find a point in the
polytope where this function has the smallest (or largest) value. Such points may
not exist, but if they do, searching through the polytope vertices is guaranteed to
find at least one of them.

Linear programs are problems that can be expressed in canonical form:

Maximize c’'x
Subject to -Ax < b.

X represents the vector of variables (to be determined), while ¢ and b are vectors
of (known) coefficients and A is a (known) matrix of coefficients. The expression
to be maximized or minimized is called the objective function (ch in this case).
The equations AX = bare the constraints which specify a convex polyhedron over
which the objective function is to be optimized.

Linear programming can be applied to various fields of study. Most extensively it
is used in business and economic situations, but can also be utilized for some
engineering problems. Some industries that use linear programming models
include transportation, energy, telecommunications, and manufacturing. It has
proved useful in modeling diverse types of problems in planning, routing,
scheduling, assignment, and design.
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Theory

Geometrically, the linear constraints define a convex polyhedron, which is called
the feasible region. Since the objective function is also linear, hence a convex
function, all local optima are automatically global optima (by the KKT theorem).
The linearity of the objective function also implies that the set of optimal
solutions is the convex hull of a finite set of points - usually a single point.

There are two situations in which no optimal solution can be found. First, if the
constraints contradict each other (for instance, x > 2 and x < 1) then the feasible
region is empty and there can be no optimal solution, since there are no solutions
at all. In this case, the LP is said to be infeasible.

Alternatively, the polyhedron can be unbounded in the direction of the objective
function (for example: maximize x; + 3 x, subject to x; > 0, x> 0, x; + x, > 10),
in which case there is no optimal solution since solutions with arbitrarily high
values of the objective function can be constructed.

Barring these two pathological conditions (which are often ruled out by resource
constraints integral to the problem being represented, as above), the optimum is
always attained at a vertex of the polyhedron. However, the optimum is not
necessarily unique: it is possible to have a set of optimal solutions covering an
edge or face of the polyhedron, or even the entire polyhedron (This last situation
would occur if the objective function were constant).

1.2 USES OF LINEAR PROGRAMMING

Linear programming is a considerable field of optimization for several reasons.
Many practical problems in operations research can be expressed as linear
programming problems. Certain special cases of linear programming, such as
network flow problems and multicommodity flow problems are considered
important enough to have generated much research on specialized algorithms for
their solution. A number of algorithms for other types of optimization problems
work by solving LP problems as sub-problems. Historically, ideas from linear
programming have inspired many of the central concepts of optimization theory,
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such as duality, decomposition, and the importance of convexity and its
generalizations. Likewise, linear programming is heavily used in microeconomics
and company management, such as planning, production, transportation,
technology and other issues. Although the modern management issues are ever-
changing, most companies would like to maximize profits or minimize costs with
limited resources. Therefore, many issues can boil down to linear programming

problems.

1.3 STANDARD FORM

Standard form is the usual and most intuitive form of describing a linear
programming problem. It consists of the following three parts:

» A linear function to be maximized
e.g. maximize €11 | CaZy
« Problem constraints of the following form

e.g.
ayry | oaprs < b
anry | Qg < b
Wy | Ggaxs < by

« Non-negative variables

e.o. L1 = 0
L > ()

Y,

The problem is usually expressed in matrix form, and then becomes:

maximize ¢ x
subject to AX < b, x =0
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Other forms, such as minimization problems, problems with constraints on
alternative forms, as well as problems involving negative variables can always be
Tewritten into an equivalent problem in standard form.

Example 1

Suppose that a farmer has a piece of farm land, say A square kilometres large, to
be planted with either wheat or barley or some combination of the two. The
farmer has a limited permissible amount F of fertilizer and P of insecticide which
can be used, each of which is required in different amounts per unit area for wheat
(Fy, Py) and barley (Fs, Py). Let S, be the selling price of wheat, and S, the price
of barley. If we denote the area planted with wheat and barley by x; and x,
respectively, then the optimal number of square Kilometres to plant with wheat vs
barley can be expressed as a linear programming problem:

(maximize the revenue — revenue is the "objective

maximize 5111 + Soxy .
function")

subject

i Tptay < A (limit on total area)

Fixy + Fyry < F (limit on fertilizer)
Py 4+ Pyry < P (limit on insecticide)

xy 20.03>0  (cannot plant a negative area)

Which in matrix form becomes:
maximize 2

EHEE

subject to P P
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1.4 AUGMENTED FORM (SLACK FORM)

Linear programming problems must be converted into augmented form before
being solved by the simplex algorithm. This form introduces non-negative slack
variables to replace inequalities with equalities in the constraints. The problem
can then be written in the following form:

Maximize Z in:

SEHIHE

%; Xe 24

where Xsare the newly introduced slack variables, and Z is the variable to be
maximized.

Example 2
The example above becomes as follows when converted into augmented form:

maximize 11 + S22 (objective function)

subject to xy -+ xo + X3 = A (augmented constraint)
Fyry + Foyxs | 24 = F (augmented constraint)
Puxy + Poxo + x5, = P (augmented constraint)

Ty, Ly, Ty, Ty, Ty 2 0
where T3; T4, Thare (non-negative) slack variables.
Which in matrix form becomes:

Maximize Z in:

£y
T2

R EE 20
Iy

1 =5 =5 00 U-| xy
0= 1 1 100

0 F 1 F; 2 010 T3
0O P P 00 1]z

e O
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1.5 DUALITY

Every linear programming problem, referred to as a primal problem, can be
converted into a dual problem, which provides an upper bound to the optimal
value of the primal problem. In matrix form, we can express the primal problem
as:

maximize ¢’ x
subject to Ax < b, x > 0

The corresponding dual problen: is:

minimize b’y
subject to Ay = c. y 2 0

where y is used instead of x as variable vector.

There are two ideas fundamental to duality theory. One is the fact that the dual of
a dual linear program is the original primal linear program. Additionally, every
feasible solution for a linear program gives a bound on the optimal value of the
objective function of its dual. The weak duality theorem states that the objective
function value of the dual at any feasible solution is always greater than or equal
to the objective function value of the primal at any feasible solution. The strong
duality theorem states that if the primal has an optimal solution, x*, then the dual
also has an optimal solution, y*, such that ch*=bTy*.

A linear program can also be unbounded or infeasible. Duality theory tells us that
if the primal is unbounded then the dual is infeasible by the weak duality theorem.
Likewise, if the dual is unbounded, then the primal must be infeasible. However,
it is possible for both the dual and the primal to be infeasible (See also Farkas'
lemma).
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Example 3

Revisit the above example of the farmer who may grow wheat and barley with the
set provision of some A land, F fertilizer and P insecticide. Assume now that unit
prices for each of these means of production (inputs) are set by a planning board.
The planning board's job is to minimize the total cost of procuring the set amounts
of inputs while providing the farmer with a floor on the unit price of each of his
crops (outputs), S1 for wheat and S2 for barley. This corresponds to the following
linear programming problem:

- S % (minimize the total cost of the means of
minimize A% - Fyr |+ Pyp . . o
production as the "objective function")

subject . (the farmer must receive no less than §, for his
yat Fiyr+ Piyp 2 5 .
to wheat)

(the farmer must receive no less than S, for his

i+ Foyp - P > 5,
Ya gl 2aYp = D barley)

ya > 0, yr > 0, yp > 0 (prices cannot be negative)

Which in matrix form becomes:

—.UA
[z'l F .P] Yr A
minimize Lye
] -Fl f)i- . Ya Sl Ya
[1 .Pr_) P'_J [yF 2 52 s |YF 2 0
subject to T Lye yp

The primal problem deals with physical quantities. With all inputs available in
limited quantities, and assuming the unit prices of all outputs is known, what
quantities of outputs to produce so as to maximize total revenue? The dual
problem deals with economic values. With floor guarantees on all output unit
prices, and assuming the available quantity of all inputs is known, what input unit
pricing scheme to set so as to minimize total expenditure?
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To each variable in the primal space cotresponds an inequality to satisfy in the
dual space, both indexed by output type. To each inequality to satisfy in the
primal space corresponds a variable in the dual space, both indexed by input type.

The coefficients which bound the inequalities in the primal space are used to
compute the objective in the dual space, input quantities in this example. The
coefficients used to compute the objective in the primal space bound the
inequalities in the dual space, output unit prices in this example.

Both the primal and the dual problems make use of the same matrix. In the primal
space, this matrix expresses the consumption of physical quantities of inputs
necessary to produce set quantities of outputs. In the dual space, it expresses the
creation of the economic values associated with the outputs from set input unit
prices.

Since each inequality can be replaced by an equality and a slack variable, this
means each primal variable corresponds to a dual slack variable, and each dual
variable corresponds to a primal slack variable. This relation allows us to
complementary slackness.

1.6 SPECIAL CASES

A packing LP is a linear program of the form

maximize c"x
subject to Ax< b, x >0

such that the matrix A and the vectors b and c are non-negative.
The dual of a packing LP is a covering LP, a linear program of the form

. . AT
minimize b’y
subjectto A’y 2 ¢,y 20

such that the matrix A and the vectors b and ¢ are non-negative.
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Example 4

Covering and packing LPs commonly arise as a linear programming relaxation of
a combinatorial problem. For example, the LP relaxation of set packing problem,
independent set problem, or matching is a packing LP. The LP relaxation of set
cover problem, vertex cover problem, or dominating set problem is a covering LP.

Finding a fractional coloring of a graph is another example of a covering LP. In
this case, there is one constraint for each vertex of the graph and one variable for
each independent set of the graph.

1.7 COMPLEMENTARY SLACKNESS

It is possible to obtain an optimal solution to the dual when only an optimal
solution to the primal is known using the complementary slackness theorem. The
theorem states:

Suppose that x = (xy, X2, . . ., X,) is primal feasible and that y = (y1, y2, . . ., Ym) 18
dual feasible. Let (w;, wa, . . ., w,,) denote the corresponding primal slack
variables, and let (z), Z, . . . , Z,) denote the corresponding dual slack variables.

Then x and y are optimal for their respective problems if and only if x;z; = 0, for j
=1,2,....0,Wwy=01Tori=1,2,...,m

So if the ith slack variable of the primal is not zero, then the ith variable of the
dual is equal zero. Likewise, if the jth slack variable of the dual is not zero, then
the jth variable of the primal is equal to zero.

Activity 1

1. Discuss the uses of Linear Programming.
2. Explain briefly the concept of Duality.

78




rf

M.P BHO] (OPEN )UNIVERSITY
“MM-_——\_‘W

1.8 SUMMARY

Linear programming is an important field of optimization for several reasons.
Many practical problems in operations research can be expressed as linear
programming problems. Followed by the basic concept the concepts of duality,
standard form and augmented form have described in the chapter.

The different kind of problems can be solved using Linear Programming approach
is discussed in special case section. Further the theorem of Complementary
slackness was discussed in brief to have more clear understanding of solution to
Linear programming problems.

1.9 FURTHER READINGS

* Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried:
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Springer-Verlag. J '

V. Chandru and M.R.Rao, Linear Programming, Chapter 31 in Algorithms
and Theory of Computation Handbook, edited by M.J .Atallah, CRC Press

* V. Chandru and M.R Rao, Integer Programming, Chapter 32 in Algorithms
and Theory of Computation Handbook, edited by M.J .Atallah,
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UNIT 2

SOLUTIONS TO LINEAR PROGRAMMING PROBLEMS AND
THEORY OF GAME

Objectives
After studying this unit you should be able to:

e Understand the basic concepts of computation of linear programming
problems. :

e Know the approaches to solve prototype and general linear programming
problems.

¢ Solve the linear programming problems using graphical method.

* Appreciate the concept and strategies pertaining to game theory.

e Be aware about the saddle point solution:

Structure

2.1 Introduction

2.2 Prototype LP Problem

2.3 General LP problem

2.4 Optimal solution through graphical method
2.5 Concept of game

2.6 Game strategies

2.7 The saddle point solution

2.8 Summary

2.9 Further readings
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2.1 INTRODUCTION

A Linear Programming problem is a special case of a Mathematical
Programming problem. From an analytical perspective, a mathematical program
tries to identify an extreme (i.e., minimum or maximum) point of a function

T1, T2y 0o T : . _
. "), which furthermore satisfies a set of constraints, e.g.,

T1,F2...3F) 2 b _ . ore oL ;
§(%1, 2., Za) . Linear programming is the specialization of mathematical

programming to the case where both, function f - to be called the ohjective
Junction - and the problem constraints are linear.

Solution procedure used when a Linear Programming (LP) problem has two (or at
most three) decision variables. The graphical method follows these steps:

(1) Change inequalities to equalities.

2) Graph the equalities.

(3) Identify the correct side for the original inequalities.

(4) Then identify the feasible region, the area of Feasible Solution.

(5) Determine the Contribution Margin (CM) or cost at each of the corner poinis
(basic feasible solutions) of the feasible region.

(6) Pick either the most profitable or least cost combination, which is an Optimal
Solution.

2.2 APROTOTYPE LP PROBLEM

Consider a company which produces two types of products P1 and P2 .
Production of these products is supported by two workstations W1 and W2 , with
each station visited by both product types. If workstation W1 is dedicated
completely to the production of product type P1, it can process 40 units per day,
while if it is dedicated to the production of product P2, it can process 60 units per
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day. Similarly, workstation W2 can produce daily 50 units of product P1 and 50
units of product P2 , assuming that it is dedicated completely to the production of
the corresponding product. If the company's profit by disposing one unit of
product P1 is $200 and that of disposing one unit of P2 is $400, and assumning
that the company can dispose its entire production, how many units of each
product should the company produce on a daily basis to maximize its profit?

Solution: First notice that this problem is an optimization problem. Our objective
is to maximize the company's profit, which under the problem assumptions, is
equivalent to maximizing the company's daily profit. Furthermore, we are going
to maximize the company profit by adjusting the levels of the daily production for
the two items P1 and P2 . Therefore, these daily production levels are the
control/decision factors, the values of which we are called to determine. In the
analytical formulation of the problem, the role of these factors is captured by
modeling them as the problem decision variables:

e X1 = number of units of product P! to be produced daily
« X2-= number of units of product P2 to be produced daily

In the light of the above discussion, the problem objective can be expressed
analytically as:

max f(X1,X2) := 200X; +400X> (1)

Equation | will be called the objective function of the problem, and the
coefficients 200 and 400 which multiply the decision variables in it, will be called
the objective function coefficients.

Furthermore, any decision regarding the daily production levels for items P1 and
P2 in order to be realizable in the company's operation context must observe the
production capacity of the two worksations W1 and W2 . Hence, our next step in
the problem formulation seeks to introduce these technological constraints in it.
Let's focus first on the constraint which expresses the finite production capacity of
workstation W1 . Regarding this constraint, we know that onc day's work
dedicated to the'production of item PI can result in 40 units of that item, while
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the same period dedicated to the production of item P2 will provide 60 units of it.
Assuming that production of one unit of product type Pi,i=1,2 requires a constant

; . : . =g
amount of processing time ar workstation W] , it follows that: Dand

Ti2 = &

. Under the further assumption that the combined production of both
items has no side-effects, i.c., does not impose any additional requirements for
production capacity of workstation Wi (e.g., zero set-up times), the total capacity
(in terms of time length) required for producing Xlunits of product Pland X2

: ) LX1 + &X . ;
units of product P2 is equal to - Hence, the technological constraint

imposing the condition that our total daily processing requirements for
workstation W1 should not exceed its production capacity, is analytically
expressed by:

1 1
Iﬂ—Xl -+ Eﬁxz < 1.0 (2]

Notice that in Equation 2 time is measured in days.

Following the same line of reasoning (and under similar assumptions), the

constraint expressing the finite processing capacity of workstation ~ “is given by:

.4

1 1
—X1+-5-ﬁ

ED X2 <10 (3)

Constraints 2 and 3 are known as the technological constraints of the problem. In

i P
_ , _ Xi, =12 i Hr=1,2
particular, the coefficients of the variables ~ *in them, ™7 77 ’ :

are known as the technological coefficients of the problem formulation, while the
values on the right-hand-side of the two inequalities define the right-hand side
(rhs) vector of the constraints.

Finally, to the above constraints we must add the requirement that any permissibie
; Xi, =12 L
value for variables * *° " “must be nonnegative, ic.,

X:;>20 i=1,2 (4)
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since these values express production levels. These constraints are known as the
variable sign restrictions. '

Combining Equations 1 to 4, the analytical formulation of our problem is as
~ follows:

max f{X;, X3} 1= 200X; + 400X,

2.3 THE GENERAL LP FORMULATION

Generalizing formulation 5, the genera! form for a Linear Programming problem
is as follows:

Objective Function:

rm‘lx[millf(xl,.XQ,...,X,,} =X +eaXs A+ ...+ s (5}

s.t.
Technelogical Constraints:

<
guXi+apXo+... +tmXa| = | b, i=1,..,m (7
2
Sign Restrictions:
(20 or(X; <Q)or (Xjurs), #=1,....n (8)

where ““urs" implies unrestricted in sign.

The formulation of Equations 6 to 8 has the general structure of a mathematical
programming problem, presented in the introduction of this section, but it is
further characterized by the fact that the functions involved in the problem
objective and the left-hand-side of the technological constraints are linear. It is the
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assumptions implied by linearity that to a large extent determine the applicability
of the above model in real-world appiications.

To provide a better feeling of the linearity concept, let us assume that the different

w ; ) P ~ . L .
decision variables ?*T" P correspond to various activities from which any

solution will be eventually synthesized, and the values assigned to the variables
by any given solution indicate the activity level in the considered plan(s). For
instance, in the above example, the two activities are the production of items P1
and P2 , while the activity levels correspond to the daily production volume.
Furthermore, let us assume that each technological constraint of Equation 7
imposes some restriction on the consumption of a particular resource. Referring
back to the prototype example, the two problem resources are the daily production
capacity of the two workstations W1 and W2. Under this interpretation, the
linearity property implies that:

Additivity assumption:
the total consurption of each resource, as well as the overall objective
value arc the aggregates of the resource consumptions and the
contributions to the problem objective, resulting by carrying out each
activity independentiy. and

Proportionality assumption:

these consumptions and contributions for each activity are proportional to

the actual activity level.
It is interesting to notice how the above statement reflects to the logic that was
applied when we derived the technological constraints of the prototype example:
(1) Our assumption that the processing of each unit of product at every station
requires a constant amount of time establishes the proportionality property for our
model. (ii) The assumption that the total processing time required at every station
to meet the production levels of both products is the aggregate of the processing
times required for each product if the corresponding activity took place
independently, implies that our system has an addifive behavior. Tt is also
interesting to see how the linearity assumption restricts the modeling capabilities
of the LP framework: As an example, in the LP paradigm, we cannot immediately
model effects like economies of scale in the problem cost structure, and/or
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situations in which resource consumption by one activity depends on the
corresponding consumption by another comp]ementafy activity. In some cases,
onc can approach these more complicated problems by applying some
linearization scheme. The resulting approximations for many of these cases have
been reported to be quite satisfactory.

Another approximating element in many real-life LP applications results from the
so called divisibility assumption. This assumption refers to the fact that for LP
theory and algortihms to work, the problem variables must be real. However, in
many LP formulations, meaningful values for the levels of the activities involved

can be only integer. This is, {or instance, the case with the preduction of items

Py .. ) :

and  “in our prototype <xample. Introducing integrality requirements for some of
the variables in an LP formulation turns the problem to one belonging in the class
of (Mixedj Integer Programming (MIP). The complexity of a MIP problem is
much higher than that of LP's. Actually, the general IP formulation has be shown
to belong to the notorious class of NP-complete problems. (This is a class of
problems that have been “formally" shown to be extremely ““hard"
computaticnally). Given the increased difficulty of solving IP problems,
sometimes in practice, near optimal solutions are obtained by solving the LP
formulation resulting by relaxing the integrality requirements - known as the LP
relaxation of the corresponding IP - and (judiciously) rounding off the fractional
values for the integral variables in the optimal solution. Such an approach can be
more easily justified in cases where the typical values for the integral variables are
in the order of tens or above, since the errors introduced by the rounding-off are
rather small, in a relative sense.

We conclude our discussion on the general LP formulation, by formally defining
the solution search space and optimality. Specifically, we shall define as the

feasible region of the LP of Equations 6 to 8, the entire set of vectors

< X1, Xz, X DT _ , :
that satisfy the technological constraints of Eq. 7 and the

sign restrictions of Eq. 8. An optimal solution to the problem is any feasible
veclor that further satisfies the optimality requirement expressed by Eq. 6. In the
next section, we provide a geometric characterization of the feasible region and
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the optimality condition, for the special case of LP's having only two decision
variables. :

24 OPTIMAL SOLUTION THROUGH GRAPHICAL
METHOD

This section develops a solution approach for LP problems, which is based on a
geometrical representation of the feasible region and the objective function. In
particular, the space to be considered is the n-dimensional space with each
dimension defined by one of the LP variables Xj . The objective function will be
described in this n-dim space by its contour plots, ie., the sets of points that
correspond to the same objective value. To the extent that the proposed approach
requires the visualization of the underlying geometry, it is applicable only for LP's
with upto three variables. Actually, to facilitate the visualization of the concepts
involved, in this section we shall restrict ourselves to the two-dimensional case,
Le., to LP's with two decision variables. In the next section, we shall generalize
the geometry introduced here for the 2-var case, to the case of LP's with n
decision variables, providing more analytic (algebraic) characterizations of these
concepts and properties.

Graphical solution of the prototype example 1: 2-var LP with a unique
optimal solution

The ™ sliding motion" described Suggests a way for identifying the optimal

values for, let's say, a max LP problem. The underlying idea is to keep “sliding”

. . eaXi X, =g, L : . , :
the isoprofit line “**** T %242 1n the direc.ion of increasing o's, until we

cross the boundary of the LP feasible region. The implementation of this idea on
the prototype LP of Equation 5 is depicted in Figure 3.
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X3
£
i

¥
# Direction of Improvement

/' =4007200 = 3

Optimal oprofit Lice

Figure 2.1: Graphical sclution of the prototype example LP

From this figure, it follows that the optimal daily production levels for the

protoype LP are given by the coordinates of the point corresponding to the

55X+ X2 =0 X
intersection  of  line ™ % with  the 2axis, ie.,
XF =0, X35 =50
. The maximal daily profit is
FIXPP, X07) = 200 -0 + 400 50 = 20,000 (8] , .
. Notice that the optimal point is
one of the ““corner” points of the feasible region depicted in Figure 3. Can you

argue that for the geometry of the feasible region for 2-var LP's described above,

if there is a bounded optimal solution, then there will be one which corresponds to -

one of the corner points? (This argument is developed for the broader context of
n-var LP's in the next section.)

2-var LP's with many optimal solutions

Consider our prototype example with the unit profit of item Plbcing $600 instead
of $200. Under this modification, the problem isoprofit lines become:

eoaxwmﬁa@xz:_:;’.xﬁﬁ

and they are paraliel to the line corresponding to the first problem constraint:
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1 1 3
—X —Xys=18 X, ==X i
o Tt 2==5A1+60

Therefore, if we try to apply the optimizing technique of the previous paragraph in
this case, we get the situation depicted below (Figure 4), i.e., every point in the

line segment CD is an optimal point, providing the optimal objective value of
$24,000.

X2
Dircton of Impwyemem
e e=400/600=223
-

v"“

: - "wim.u:mpmﬁtum :
: D

Figure 2.2 : An LP with many optimal solutions

It is worth-noticing that even in this case of many optimal solutions, we have two
of them corresponding to “*corner" points of the feasible region, namely points. C
and D.

2.5 CONCEPT OF A GAME

Game theory attempts to mathematically capture behavior in strategic situations,
in which an individual's success in making choices depends on the choices of
others. While initially developed to analyze competitions in which one individual
does better at another's expense (zero sum games), it has been expanded to treat a
wide class of interactions, which are classified according to several criteria.
Today, "game theory is a sort of umbrella or 'unified field' theory for the rational
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side of social science, where 'social’ is interpreted broadly, to include human as
well as non-human playvers (computers, animals, plants)" (Aumann 1987)..

Representation of games

The games studied in game theory are well-defined mathematical objects. A game
consists of a sci ol players, a set of moves (or strategies) available to those
players, and u specification of payoffs for each combination of strategies. Most
cooperative games are presented in the characteristic function form, while the
extensive and the normal forms are used to define noncooperative games.

Extensive form

Main article: Extensive form game

b B 00 Hia 0N
R

An extensive form game

The extensive form can be used to formalize games with some important order.

Games here are often presented as trees (as pictured to the left). Here each vertex

(or node) represenis a peint of choice for a player. The player is specified by a
number listed by the vertex. The lines out of the vertex represent a possible action
for that player. The payoffs are specified at the bottom of the tree.

In the game pictured here, there are two players. Player I moves first and chooses
cither F or U. Player 2 sees Player 1's move and then chooses A or R. Suppose
that Player I chooses U and then Player 2 chooses A, then Player 1 gets 8 and
Player 2 gets 2.

The extensive form can also capture simultaneous-move games and games with

imperfect information. To represent it, either a dotted line connects different
vertices to represent them as being part of the same information set (i.e., the
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players do uot know at which point they are), or a closed line is drawn around
them.

Normal form

The normal (or strategic form)
game is usually represented by
a matrix which shows the

Player 2 Player 2
chooses Left chooses Right

players, strategies, and payoffs Player 1

(see the example to the right). chooses Up 4,3 -1,-1
More generally it can be

represented by any function Player 1 0.0 3. 4
that associates a payoff for chooses Down | ’
each player with every possible

combination of actions. In the Nprrnal form or payoff matrix of a 2-player, 2-
accompanying example there S!/%/€8y game
are two players; one chooses
the row and the other chooses the column. Each player has two strategies, which
are specified by the number of rows and the number of columns. The payoffs are
provided in the interior. The first number is the payoff received by the row player
(Player 1 in our example); the second is the payoff for the column player (Player 2
_in our example). Suppose that Player | plays Up and that Player 2 plays Leff.
Then Player 1 gets a payoff of 4, and Player 2 gets 3. a

When a game is presented in normal form, it is presumed that each player acts
simultaneously or, at least, without knowing the actions of the other. If players
have some information about the choices of other players, the game is usually
presented in extensive form.

Characteristic function form
Main article: Cooperative game

In cooperative games with transferable utility no individual payoffs are given.
Instead, the characteristic function determines the payoff of each coalition. The
standard assumption is that the empty coalition obtains a payoff of 0.
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The origin of this form is to be found in the seminal book of von Neumann and
Morgenstern who, when studying coalitional normal form games, assumed that

when a coalition C forms, it plays against the complementary coalition (*N \ C’)
as if they were playing a 2-player game. The equilibrium payoff of C is
characteristic. Now there are different models to derive coalitional values from
normal form games, but not all games in characteristic function form can be
derived from normal form games.

Formally, a characteristic function form game (also known as a TU-game) is

given as a pair (N,v), where N denotes a set of players and ? @ 2% — Risa
characteristic function.

The characteristic function form has been generalised to games without the
assumption of transferable utility.

Partition function form

The characteristic function form ignores the possible externalities of coalition
formation. In the partition function form the payoff of a coalition depends not
only on its members, but also on the way the rest of the players are partitioned
(Thrall & Lucas 1963).

2.6 GAME STRATEGIES

The particular behavior or suite of behaviors that a player uses is termed a
strategy (see important note). Strategies can be behaviors that are on some
continuum (e.g., how long to wait or display) or they may represent discrete
behavior types (e.g., display, fight, or flee). Sometimes the terms pure strategy
and mixed strategy are used.

A simple or pure strategy provides a complete definition of how a player will
play a game. In particular, it determines the move a player will make for any
situation they could face. A player's strategy set is the set of pure strategies
available to that player. A pure strategy in fact, is a stratégy that is not defined in
terms of other strategies present in the game.
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A mixed strategy is an assignment of a probability to each pure strategy. This
allows for a player to randomly select a pure strategy. Since probabilities are
continuous, there are infinitely many mixed strategies available to a player, even
if their strategy set is finite.

Mixed strategy

Suppose the payoff matrix pictured to the right (known
as a coordination game). Here one player chooses the
row and the other chooses a column. The row player

_ A 1,1 {0,0
receives the first payoff, the column the second. If row
opts to play A with probability 1 (i.e. play A for sure),
then he is said to be playing a pure strategy. If column
opts to flip a coin and play A if the coin lands heads and
B if the coin lands tails, then she is said to be playing a -
mixed strategy, and not a pure strategy.

A B

B 0,0 | 1,1

Pure coordination game

Significance

In his famous paper John Forbes Nash proved that there is an equilibrium for
every finite game. One can divide Nash equilibria into two types. Pure strategy
Nash equilibria are Nash equilibria where all players are playing pure strategies.
Mixed strategy Nash equilibria are equilibria where at least one player is playinga
mixed strategy. While Nash proved that every finite game has a Nash equilibrium,
not all have pure strategy Nash equilibria. For an example of a game that does not
have a Nash equilibrium in pure strategies see Matching pennies. However, many
‘games do have pure strategy Nash equilibria (e.g. the Coordination game, the
Prisoner's dilemma, the Stag hunt). Further, games can have both pure strategy
and mixed strategy equilibria.

The Nash equilibrium concept is used to énalyze the outcome of the strategic
interaction of several decision makers. In other words, it is a way of predicting
what will happen if several people or several institutions are making decisions at
the same time, and if the decision of each one depends on the decisions of the
others. The simple insight underlying John Nash's idea is that we cannot predict
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the resuit of the choices of multiple decision makers if we analyze those decisions
in isolation. Instead, we must ask what each player would do, taking into account
the decision-making of the others. )

Formal definition

Let (S, f) be a game with n players, where S is the strategy set for player i, §=S;X
Sy ... X S, is the set of strategy profiles and f=(fi(x), wonr Su(x)) is the payoff
function. Let x - ; be a strategy profile of all players except for player i. When
each player i {1, ..., n} chooses strategy x; resulting in strategy profile x = (x, ...,
x,) then player i obtains payoff fi(x). Note that the payoff depends on the strategy
profile chosen, ie. on the-strategy chosen by player i as well as the strategies
chosen by all the other players. A strategy profile ¢ €S is a Nash equilibrium
(NE) if no unilateral deviation in strategy by any single player is profitable for
that player, that is

Vi,x; € Siyxi # 73 fil@hh ) 2 fi(zi 223)-

A game can have a pure strategy NE or an NE in its mixed extension (that of
choosing a pure strategy stochastically with a fixed frequency). Nash proved that
if we allow mixed strategies, then every n-player game in which every player can
choose from finitely many strategies admits at least one Nash equilibrium.

When the inequality above holds strictly (with > instead of =) for all players and
all feasible alternative strategies, then the equilibrium is classified as a strict Nash

¥
equilibrium. If instead, for some player, there is exact equality between Tiand
some other strategy in the set S, then the equilibrium is classified as a weak Nash
equilibrium.
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Coordination game

Player 2 adopts|Player 2 adopts
strategy A strategy B

Player 1 adopts strategy A 4,4 1,3

Player 1 adopts strategy B : Fid 3,3

A sample coordination game showing relative payoff for playerl / player2 with each
combination

The coordination game is a classic (symmetric) two player, two strategy game,
with an example payoff matrix shown to the right. The players should thus
coordinate, both adopting strategy A, to receive the highest payoff, i.e., 4. If both
players chose strategy B though, there is still a Nash equilibrium. Although each
player is awarded less than optimal payoff, neither player has incentive to change
strategy due to a reduction in the immediate payoff (from 3 to 1). An example of a
coordination game is the setting where two technologies are available to two firms
with compatible products, and they have to elect a strategy to become the market
standard. If both firms agree on the chosen technology, high sales are expected for
both firms. If the firms do not agree on the standard technology, few sales result.
Both strategies are Nash equilibria of the game. '

Driving on a road, and having to choose either to drive on the left or to drive on
the right of the road, is also a coordination game. For example, with payoffs 100
meaning no crash and 0 meaning a crash, the coordination game can be defined
with the following payoff matrix:

Drive on the Left | Drive on the Right| In this case there are

two pure strategy

Drive on the Left {100, 100 0,0 Wagi equilibria,
Drive on the Right |0, 0 100, 100 when both choose to
The driving game either drive on the

left or on the right.
If we admit mixed strategies (where a pure strategy is chosen at random, subject
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to some fixed probability), then there are three Nash equilibria for the same case:
two we have seen from the pure-strategy form, where the probabilities are
(0%,100%) for player one, (0%, 100%) for player two; and (100%, 0%) for player
one, (100%, 0%) for player two respectively. We add another where the
probabilities for each player is (50%, 50%).

2.7 THE SADDLE POINT SOLUTION

a saddle point is a point in the domain of a function of two variables which is a
stationary point but not a local extremum. At such a point, in general, the surface
resembles a saddle that curves up in one direction, and curves dewn in a different
direciion (like a mountain pass). In terms of contour lines, a saddle point can be
recognized, in general, by a contour that appears to intersect itself. For e .ample,
two hills separated by a high pass will show up a saddle point, at the top of the
pass, like a figure-eight contour line.

A simple criterion for checking if a given stationary point of a real-valued
function F(x.y) of two real variables is a saddle point is to compute the function's
Hessian matrix at that point: if the Hessian is indefinite, then that point is a saddle
point. For example, the Hessian matrix of the function z = x> — y* at the stationary
point (0,0) is the matrix ’

b 5

which is indefinite. Therefore, this point is a saddle point. This criterion gives
only a sufficient condition. For example, the point (0,0) is a saddle point for the
function z = x* — *, but the Hessian matrix of this function at the origin is the null
matrix, which is not indefinite.

In the most general terms, a saddle point for a smooth function (whose graph is a
curve, surface or hypersurface) is a stationary point such that the
curve/surface/etc. in the neighborhood of that point is not entirely on any side of
the tangent space at that point.
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In one dimension, a saddle point is a point which is both a stationary point and a
point of inflection. Since it is a point of inflection, it is not a local extremum.

THE VALUE AND METHOD OF SADDLE POINT

In mathematics, the steepest descent method or saddle-point approximation is
a method used to approximate integrals of the form

b -
/ M= g0
@

where f(x) is some twice-differentiable function, M is a large number, and the
integral endpoints a and b could possibly be infinite. The technique is also often
referred to as Laplace's method, which in fact concerns the special case of real-
valued functions f admitting a maximum at a real point.

Further, In dynamical systems, a saddle point is a periodic point whose stable and
unstable manifolds have a dimension which is not zero. If the dynamic is given by
a differentiable map f then a point is hyperbolic if and only if the differential of f"
(where n is the period of the point) has no eigenvalue on the (complex) unit circle
when computed at the point.

In a two-player zero sum game defined on a continuous space, the equilibrium
point is a saddle point.

A saddle point is an element of the matrix which is both the smallest element in its
column and the largest element in its row.

For a second-order linear autonomous systems, a critical point is a saddle point if
the characteristic equation has one positive and one negative real eigenvalue '),

simple discussion (where the method is termed steepest descents).

The idea of Laplace's method
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Assume that the function f{x) has a unique global maximum at x,. Then, the value
flxo) will be larger than other values f{x). If we multiply this function by a large

number M, the gap between Mf{xo) and Mfix) will only increase, and then it will
grow exponentially for the function

ﬂﬂ!f{.z{] :

As such, significant contributions to the integral of this function will come only
from points x in a neighborhood of x,, which can then be estimated.

General theory of Laplace's method
To state and prove the method, we need several assumptions. We will assume that
Xo 1s not an endpoint of the interval of integration, that the values f{x) cannot be

very close to flxp) unless x is close to xg, and that f'(x) < 0.

We can expand fix) around x; by Taylor‘s theorem,

e — .o o

(@) = flao) + f'(xe) (@ — 20) + = f (2o){x — 20)* + 0O ((F*— To) )

Since f has a global maximum at xy, and since x, is not an endpoint, it is a *
stationary point, the derivative of f vamshes at xo. Therefore, the function f{x) may
be approximated to quadratic order

f(;r) = f(l’ﬂ} - %'f”(:fn)“lr - ;1:0)2

for x close to xo (recall that the second. derivative is negative at the global
maximum f{xg)). The assumptions made ensure the accuracy of the approximation

> Mf) Mfire) [ —arifeo) o
fe* ) gr o oM Fiwo) f e Mif w0 )iz—z0)* /2 4.
7] a

where the integral is taken in a neighborhood of x,. This latter integral is a

Gaussian integral if the limits of integration go from —w to +w (which can be
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assumed so because the exponential decays very fast away from xg), and thus it
can be calculated. We find

b | 2=
( Zn A ¥
/ e dr oy [ 20 oMIza) g5 M s e

! .
Ja \'! Jlljlf}'(ilfu‘}l

A generalization of this method and extension to arbitrary precision is provided by
Fog (2008).

Steepest descent

In extensions of Laplace's method, complex analysis, and in particular Cauchy's
integral formula, is used to find a contour of steepest descent for an
(asymptotically with large M) equivalent integral, expressed as a line.integral. In
particular, if no point x, where the derivative of [ vanishes exists on the real line, it
may be necessary to deform the integration contour to an optirhal one, where the
above analysis will be possible. Again the main idea is to reduce, at least
asymptotically, the calculation of the given integral to that of a simpler integral
that can be explicitly evaluated. See the book of Erdelyi (1956) for a Other uses

Activity 2

1. Make a linear programming graph from the following LP model and find out
the most profitable solution.

Maximize CM = $25A + $40B
Subject to: 2A + 4B < 100 hours
3JA+2B <90

A>0,B>0

2. Discuss briefly the saddle point solution and find out its applications.
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2.8 SUMMARY : _ \

It has been discussed in this chapter that linear programming problem is basically
a type of mathematical programming problem, which was discussed with the help 8
of a prototype LP problem. Graphical method to optimal solution was discussed F
with suitable examples on 1 and 2 variable case solutions.

Concept o game with the representation of different games was explained in , 3
_depth. Further different strtegies of game theory were discussed. '
Finally the saddle point solution was explained briefly.

2.9 FURTHER READINGS

e Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill

e Michael R. Garey and David S. Johnson (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman. '

e Bernd Girtner, Jifi MatouSek (2006). Understanding and Using Linear
Programming, Berlin: Springer

¢ Jalaluddin Abdullah, Optimization by the Fixed-Point Method, Version 1.97.
31

e Alexander Schrijver, Theory of Linear and Integer Programming. John Wiley
& sons ' '
¢ Michael J. Todd (February 2002). "The many facets of linear programming".
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ANSWERS TO ACTIVITIES

ACTIVITY 2

1. After going through steps 1 through 4, the feasible region (shaded area) is
obtained, as shown in the following exhibit. Then all the corner points in the
feasible region are evaluated in terms of their CM as follows:

LINEAR PROGRAMMING GRAPH
0, 50
50 { )
_ Shaded area = area of feasible solution

40
-é a (0, 30) Assembly consiraint

30 2A +4B=100
2 L/ - )

Finishing constraint
20 ,II L2 3A+2B=90
// D
] W)
0 - l /ll".
5 10 15 20 25 30 50
d(0,0) " Production of B
Corncr Points M
A B S25A + 5408

() 3 0 S25{30; + 340y = S750
{b}) ) 15 $25¢20) + S40¢15; = ST100
{c) { 25 S25(0) + S40025) = S1000
{dy 0 1] 8250y + $40i) = S0

The corner 20A. 158 produces the most profitable solution.

The corner 20A, 15B produces the most profitable solution.
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BLOCK 3

STATISTICAL METHODS

BLOCK 3 STATISTICAL METHODS

This block on Statistical methods consists of three units.

Unit 1 presents the concepts of correlation which is central in model development
for forecasting. Various measures of association between variables are described
with potential applications. The unit also discusses a very important technique for
establishing relationships between variables, namely Regression. Fundamentals of
linear regression are presented with applications and interpretations of statistical
computation.

Unit 2 deals with basic concepts of probability including classical and empirical
definitions of probability, basic concepts of Experiments, sample space and
events, random variable, probability expectations and generating functions.

Unit 3 explains various probability laws and distributions. Laws of addition,

multiplication are discussed with discussing normal, poison and binomial
distributions.
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UNIT 1

CORRELATION AND REGRESSION

Objectives
After completing this unit, you should be able to:

® Understand the meaning of correlation

¢ Compute the coefficient of correlation between two variables from sample
observations _

®* Become aware of the concept of Pearson Product moment correlation

¢ Understand the role of regression in establishing mathematical
relationships between dependent and independent variables from given
data '

¢ Determine the standard errors of estimate of the estimated parameters

* Know the basic concepts of partial and multiple correlation and their
applications

Structure

1.1 Introduction to correlation

1.2 The sample correlation

1.3 Pearson Product moment correlation coefficient
1.4 Regression

1.5 Linear regression

1.6 Standard error of the estimate

1.7 Partial correlation

1.8 Multiple correlation

1.9 Summary

1.10 Further readings

103




M.P BHOJ (OPEN JUNIVERSITY
w

1.1 INTRODUCTION

CORRELATION

correlation (often measured as a correlation coefficient) indicates the strength and
direction of a linear relationship between two random variables. That is in
contrast with the usage of the term in colloquial speech, denoting any relationship,
not necessarily linear. In general statistical usage, correlation or co-relation refers
to the departure of two random variables from independence. In this broad sense
there are several coefficients, measuring the degree of correlation, adapted to the
nature of the data.

Correlation in fact, is a statistical measurement of the relationship between two
variables. Possible correlations range from +1 to —1. A zero correlation indicates
that there is no relationship between the variables. A correlation of —1 indicates a
perfect negative correlation, meaning that as one variable goes up, the other goes
down. A correlation of +1 indicates a perfect positive correlation, meaning that
both variables move in the same direction together. Some of the basic
assumptions of correlation are discussed as follows:

Mathematical properties

The correlation coefficient px y between two random variables X and Y with
expected values iy and py and standard deviations oy and oy is defined as:

cov(X.Y) _ E((X — pux)(Y — uy))

XY
P, OxOy OxOy

where E is the expected value operator and cov means covariance. A widely used
alternative notation is

corr( X.Y) = pxv.

Since px = E(X), ox” = E[(X - E(X))*] = E(X?) - E*(X) and likewise for ¥, we may
also write
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E(XY) - E(X)E(Y)
pxy = )

VE(X?) - E2(X) \/E(Y?) - EX(Y)

The correlation is defined only if both of the standard deviations are finite and
both of them are nonzero. It is a corollary of the Cauchy-Schwarz inequality that
the correlation cannot exceed 1 in absolute value.

The correlation is 1 in the case of an increasing linear relationship, —1 in the case
of a decreasing linear relationship, and some value in between in all other cases,
indicating the degree of linear dependence between the variables. The closer the
coefficient is to either —1 or 1, the stronger the correlation between the variables.

If the variables are independent then the correlation is 0, but the converse is not
true because the correlation coefficient detects only linear dependencies between
two variables. Here is an example: Suppose the random variable X is uniformly
distributed on the interval from —1 to 1, and ¥ = X° Then Y is completely
determined by X, so that X and Y are dependent, but their correlation is zero; they
are uncorrelated. However, in the special case when X and Y are jointly normal,
uncorrelatedness is equivalent to independence.

A correlation between two variables is diluted in the presence of measurement
error around estimates of one or both variables, in which case disattenuation
provides a more accurate coefficient.

Geometric Interpretation of correlation

For centered data (i.e., data which have been shifted by the sample mean so as to
have an average of zero), the correlation coefficient can also be viewed as the
cosine of the angle between the two vectors of samples drawn from the two
random variables.

Some practitioners prefer an uncentered (non-Pearson-compliant) correlation
coefficient. See the example below for a comparison.

As an example, suppose five countries are found to have gross national products
of 1,2, 3, 5, and 8 billion dollars, respectively. Suppose these same five countries
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(in the same order) are found to have 11%, 12%, 13%, 15%, and 18% poverty.

Then let x and y be ordered 5-element vectors containing the above data x=(1,2,
3,5.8)and y = (0.11, 0.12, 0.13, 0.15, 0.18).

By the usual procedure for finding the angle between two veetors (see dot
product), the uncentered correlation coefficient is:

Xy 2.93
cosfl = ——— = _
Ixlivll v103v0.0983

= 0.920814711.

Note that the above data were deliberately chosen to be perfectly correlated: y =
0.10 + 0.01 x. The Pearson correlation coefficient must therefore be exactly one.
Centering the data (shifting x by E(x) = 3.8 and y by E(y) = 0.138) yields x =

(-2.8, -1.8, -0.8, 1.2, 4.2) and y = (-0.028, 0. 018, -0.008, 0.012, 0.042), from
which

p X'y 0.308 ’

cosfl = — = — =1=p,,
Ixl iyl — v/30.8,/0.00308 =

as expected.

1.2 THE SAMPLE CORRELATION

A
If we have a series of n measurements of X and ¥ written as x; and y; wherei =
1,2, ..., n, then the Pearson product-moment correlation coefficient can be used to
estimate the correlation of X and ¥ . The Pearson coefficient is also known as the
"sample correlation coefficient”. The Pearson correlation coefficient is then the

best estimate of the correlation of X and ¥ . The Pearson correlation coefficient is
written:

2Ty — nry Y — L > Y
Tay = . e ——
(m=1sesy VT al (T Ty - (Ty)
N >lxi — ‘}(yx_.)')
Py 2
(= 1)s.8y
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| where Tand Yare the sample means of X and Y, s, and s, are the sample
standard deviations of X and ¥ and the sum is from i = 1 to n. As with the
w population correlation, we may rewrite this as

Z Tiy; — nTy 1 Z ;Ui X €Ty Z Yi
r.l'lj' R 40 7 - ! . . 3 2 7 N
(n—1)s,8, \f-nE-rr’ = ()P V"nZyr ~ LUV

Again, as is true with the population correlation, the absolute value of the sample

correlation must be less than or equal to 1. Though the above formula

conveniently suggests a single-pass algorithm for calculating sample correlations,
| it is notorious for its numerical instability (see below for something more
i accurate).

The square of the sample correlation coefficient, which is also known as the
coefficient of determination, is the fraction of the variance in y; that is accounted
: for by a linear fit of x; to y; . This is written

2 yr

T =1= "5
E Sy

where S‘{‘-z is the square of the error of a linear regression of x; on y; by the
equation y = g + bx: :

: 1 n ,
&y = — Y (yi — a - bay)?,
s

n

and s,” is just the variance of y:

. "( — )2
i l—_l Yi Y-

Note that since the sample correlation coefficient is symmetric in x; and y;, we
will get the same value for a fit of y; to x; :
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This equation also gives an intuitive idea of the correlation coefficient for higher
dimensions. Just as the above described sample correlation coefficient is the
fraction of variance accounted for by the fit of a 1-dimensional linear submanifold
to a set of 2-dimensional vectors (x;, y;), so we can define a correlation
coefficient for a fit of an m-dimensional linear submanifold to a set of n-
dimensional vectors. For example, if we fit a plane z = a + bx + ¢y to a set of
data (x;, ¥;, z; ) then the correlation coefficient of z tox and y is

The distribution of the correlation coefficient has been examined by R. A.
Fisher™™ and A. K. Gayen."”

1.3 PEARSON PRODUCT-MOMENT CORRELATION
COEFFICIENT

In statistics, the Pearsen product-moment correlation coefficient (sometimés
referred to as the MCV or PMCC, and typically denoted by r) is a common
measure of the correlation (linear dependence) between two variables X and Y. It
is very widely used in the sciences as a measure of the strength of linear
dependence between two variables, giving a value somewhere between +1 and -1
inclusive. It was first introduced by Francis Galton in the 1880s, and named after
Karl Pearson.!"

In accordance with the usual convention, when calculated for an entire population,
the Pearson product-moment correlation is typically designated by the analogous
Greek letter, which in this case is p (rho). Hence its designation by the Latin letter
r implies that it has been computed for a sample (to provide an estimate for that of
the underlying population). For these reasons, it is sometimes called "Pearson’s r."
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The statistic is defined as the sum of the products of the standard scores of the two
measures divided by the degrees of freedom.”” If the data comes from a sample,
then

where

JY]' e 4§:

Sy

X, and sy

are the standard score, sample mean, and sample standard deviation (calculated
using n — 1 in the denominator). (2

If the data comes from a population, then

1 & Xi—px (Y- FY)
= n;( ax )( oy

where

Xi— px
————— uyx, and €y
ox

are the standard score, population mean, and population standard deviation
(calculated using n in the denominator).

The result obtained is equivalent to dividing the covariance between the two
variables by the product of their standard deviations.

Interpretation

The coefficient of correlation ranges from =1 to 1. A value of 1 shows that a
linear equation describes the relationship perfectly and positively, with all data
points lying on the same line and with Y increasing with X. A score of —1 shows
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that all data points lie on a single line but that Y increases as X decreases. A value

of 0 shows that a linear model is not needed — that there is no linear relationship
between the variables.™ '

The linear equation that best describes the relationship between X and Y can be
found by linear regression. This equation can be used to "predict” the value of one
measurement from knowledge of the other. That is, for each value of X the
equation calculates a value which is the best estimate of the values of Y
corresponding the specific value. We denote this predicted variable by Y".

Any value of Y can therefore be defined as the sum of ¥’ and the difference
between ¥ and "

Y=Y 4 (¥F=Y)
The variance of Y is equal to the sum of the variance of the two components of Y-
) ke 2
S = hy.i I S.‘F-f"

Since the coefficient of determination implies that s,,_rz = .sj,.z(l - rz) we can derive
the identity
2
2 __
P =0
S5

The square of r is conventionally used as a measure of the association between X
and Y. For example, if 7 is 0.90, then 90% of the variance of ¥ can be "accounted
for" by changes in X and the linear relationship between X and Y.

Example 1

Let's calculate the correlation between Reading (X) and Spelling (Y) for the 10

students whose scores appeared in Table 3. There is a fair amount of calculation

required as you can see from the table below. First we have to sum up the X
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values (55) and then divide this number by the number of subjects (10) to find the
mean for the X values (5.5). Then we have to do the same thing with the Y values
to find their mean (10.3).

Correlation Between Reading and Spelling for Data in Table 3 Using the
[Definitional Formula
Reading ([Spellin
Student X g (Yp) g X—,UX Y- ,&g,(X- ,flx)(Y_ ,q;)
1 3 11 a 0.7 175
2 7 1 1.5 9.3 -13.95 |
3 B 19 L35 8.7 -30.45
4 9 5 3.5 -5.3 -18.55
5 8 17 2.5 6.7 [16.75
6 3 15 7.3 | 10.95
7 1 15 45 4.7 91 15
8 10 9 4.5 =13 -5.85
9 15 0.5 4.7 2.35
10 8 0.5 23 1.15
Sum |55 13 Joo  Joo |05
Mean 5.5 10.3
ls)‘::;::;‘:l 2872 |5.832

Then we have to take each X score and subtract the mean from it to find the X
deviation score. We can see that subject 1's X deviation score is -2.5, subject 2's X
deviation score is 1.5 etc. We could make another column of the squares of the X
deviation scores and sum up this column to use to calculate the standard deviation
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of X using the definitional formula for the standard deviation of a populdnon as
we did in Lesson 6.

We can then find each subject's Y-deviation score. Subject 1's Y deviation score is
0.7 (11 - 10.3) and subject 2's Y deviation score is -9.3 (1 - 10.3). We could then
add another column to square the Y-deviation scores and use the sum of this
column to find the standard deviation for the Y scores.

We can then fill in the last column in which we multiply each subject's X
deviation score times the same subject's Y deviation score. For subject 1 this is - i
1.75 (-2.5 times 0.7) and for subject 2 this is -13.95 (1.5 times -9.3). Finally if we
sum up the last column (X deviation score times Y deviation score) we can use
that quantity (-60.5), along with the standard deviations of the two variables and
N, the number of subjects, to calculate the correlation coefficient.

(X~ u XY - u)

T Nega

-60.5 -605

= = - - -0.36
(10X2.872)(5.832)  167.495

We have calculated the Pearson Product Moment Correlation Coefficient for the.
association between Reading and Spelling for the 10 subjects in Table 3. The

correlation we obtained was -.36, showing us that there is a small negative

correlation between reading and spelling. The correlation coefficient is a number

that can range from -1 (perfect negative correlation) through 0 (no correlation) to

1 (perfect positive correlaticn).

You can see that it is fairly difficult to calculate the correlation coefficient using
the definitional formula. In real practice we use another formula that is
mathematically identical but is much easier to use. This is the computational or
raw score formula for the correlation coefficient. The computational formula for
the Pearsonian r is

re_ NIXY-(3X)5Y)
VNEX - (X} N3P - (50
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The number of subjects, N

The sum of each subjects X score times the Y score, summation XY
The sum of the X scores, summation X
The sum of the Y scores, summation Y
The sum of the squared X scores, summation X squared
The sum of the squared Y scores, summation Y squared

By looking at the formula we can see that we need the following items to calculate
r using the raw score formula: '

Each of these quantities can be found as show in the computation table below:

Correlation Between Reading and Spelling for Data in Table 3 Using
Computational Formula

Student  |Reading (X) Spelling (Y) X2 Y2 |XY

1 3 11 o 2t 33

2 7 1 49 |1 7

3 2 119 4 361 |38

4 9 5 81 |25 45

5 I8 17 64 289 |36

6 4 3 16 |9 12

7 1 15 1 225 |l15

8 10 9" 1100 {81 90

o 6 15 36 Je2s o0 |
10 5 8 25 |64 40

Sum 55 103 385 [1401 |s06 |

N3XY-(3XX3Y)

" NS X - (3XF NSV - (ZY)
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. (10)(506) - (55X103)
~(10Y385) - (55F +/(10X1401) - (1037

5060 - 5665 -605
~3850 -3025/14010 - 10609 /825-/3401

=605 -605

= - -, —0.36
(28.723)(58.318)  1675.0679

We can see that we got the same answer for the correlation coefficient (-.36) with
the raw score formula as we did with the definitional formula.

It is still computationally difficult to find the correlation coefficient, especially if
we are dealing with a large number of subjects. In practice we would probably use
a computer to calculate the correlation coefficient. We will consider just that
(Using the Excel Spreadsheet Program to Calculate the Correlation Coefficient)
after we have considered the Spearman Rank Order Correlation Coefficient.

N S 5115 IR

1.4 REGRESSION

Regression Equation

Regression analysis is most often used for prediction. The goal in regrcssioAn
analysis is to create a mathematical model that can be used to predict the values of
a dependent variable based upon the values of an independent variable. In other
words, we use the model to predict the value of Y when we know the value of X.
(The dependent variable is the one to be predicted). Correlation analysis is often
used with regression analysis because correlation analysis is w.ed to measure the
strength of association between the two variables X and Y.

In regression analysis involving one independent variable and one dependent
variable the values are frequently plotted in two demensions as a scatter plot. The
scatter plot allows us to visually inspect the data prior to running a regression
analysis. Often this step allows us to see if the relationship between the two
variables is increasing or decreasing and gives only a rough idea of the
relationship
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A regression equation allows us to express the relationship between two (or more)
variables algebraically. It indicates the nature of the relationship between two (or
more) variables. In particular, it indicates the extent to which you can predict
some variables by knowing others, or the extent to which some are associated
with others.
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Regression analysis is any statistical method where the mean of one or more
random variables is predicted based on other measured random variables
[Wikipedia2006R]. There are two types of regression analysis, chosen according
to whether the data approximate a straight line, when linear regression is used, or
not, when non-linear regression is used.

A regression line is a line drawn through a scatterplot of two variables. The line is
chosen so that it comes as close to the points as possible. Regression analysis, on
the other hand, is more than curve fitting. It involves fiiting a model with both
deterministic and stochastic components. The deterministic component is called
the predictor and the stochastic component is called the error term.

The simplest form of a regression model contains a dependent variable, also calied
the "Y-variable" and a single independent variable, also called the "X-variable".

.9

It's customary to use "a" or "alpha” for the intercept of the line, and "b" or "beta"
for the slope; so linear regression gives you a formula of the form: y = bx+a

L
y b = slope of regression line
| distance from the line to a
iypical data point
(= "error” between the line
and this y value)
a -
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1.5 LINEAR REGRESSION

Introduction to linear regression

Linear regression analyzes the relationship between two variables, X and Y. For
each subject (or experimental unit), you know both X and Y and you want to find
the best straight line through the data. In some situations, the slope and/or
intercept have a scientific meaning. In other cases, you use the linear regression
line as a standard curve to find new values of X from Y, or Y from X.

The term "regression”, like many statistical terms, is used in statistics quite
differently than it is used in other contexts. The method was first used to examine
the relationship between the heights of fathers and sons. The two were related, of
course, but the slope is less than 1.0. A tall father tended to have sons shorter than
himself; a short father tended to have sons taller than himself. The height of sons
regressed to the mean. The term "regression” is now used for many sorts of curve
fitting.

Prism determines and = graphs the best-fit linear regression line, optionally

including a 95% confidence interval or 95% prediction interval bands. You may

also force the line through a particular point (usually the origin), calculate
residuals, calculate a runs test, or compare the slopes and intercepts of two or
more regression lines.

In general, the goal of linear regression is to find the line that best predicts Y from
X. Linear regression does this by finding the line that minimizes the sum of the
squares of the vertical distances of the points from the line.

Note that linear regression does not fest whether your data are linear (except via
the runs test). It assumes that your data are linear, and finds the slope and intercept
that make a straight line best fit your data.
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Minimizing sum-of-squares

The goal of linear regression is to adjust the values of slope and intercept to find
the line that best predicts Y from X. More precisely, the goal of regression is to
minimize the sum of the squares of the vertical distances of the points from the
line. Why minimize the sum of the squares of the distances? Why not simply
minimize the sum of the actual distances?

If the random scatter follows a Gaussian distribution, it is far more likely to have
two medium size deviations (say 5 units each) than to have one small deviation (1
unit) and one large (9 units). A procedure that minimized the sum of the absolute
value of the distances would have no preference over a line that was 5 units away
from two points and one that was 1 unit away from one point and ¢ units from
- another. The sum of the distances (more precisely, the sum of the absolute value
of the distances) is 10 units in each case. A procedure that minimizes the sum of
the squares of the distances prefers to be 5 units away from two points (sum-of-
squares = 50) rather than ! unit away from one point and 9 units away from
another (sum-of-squares = 82). If the scatter is Gaussian (or nearly so), the line
determined by minimizing the sum-of-squares is most likely to be correct.

The calculations are shown in every statistics book, and are entirely standard.

-

Slope and intercept

Prism reports the best-fit values of the slope and intercept, along with their
standard errors and confidence intervals.

The slope quantifies the steepness of the line. It equals the change in Y for each
unit change in X. It is expressed in the units of the Y-axis divided by the units of
the X-axis. If the slope is positive, Y increases as X increases. If the slope is
negative, Y decreases as X increases.

The Y intercept is the Y value of the line when X equals zero. It defines the
elevation of the line.
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Slope=AYIAX
Y intercept -

X

The standard error values of the slope and intercept can be hard to interpret, but
their main purpose is to compute the 95% confidence intervals. If you accept the
assumptions of linear regression, there is a 95% chance that the 95% confidence
interval of the slope contains the true value of the slope, and that the 95%
confidence interval for the intercept contains the true value of the intercept.

r2, a measure of goodness-of-fit of linear regression

The value r2 is a fraction between 0.0 and 1.0, and has no units. An 12 value of
0.0 means that knowing X does not help you predict Y. There is no linear
relationship between X and Y, and the best-fit line is a horizontal line going
through the mean of all Y values. When r2 equals 1.0, all points lie exactly on a
straight line with no scatter. Knowing X lets you predict Y perfectly.

= 0.0 =05 =10
= L] "
g e
; B . --.. -. £ C 1]
- .l ] [
: = .._...,_ ™
2 e o =

This figure demonstrates how Prism computes r2.
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SSeg = 0.8 S Sy = 4.907

I

i

04 i}

SS |
2 L . 0.86 =0.83
ss,, 4.91

The left panel shows the best-fit linear regression line This lines minimizes the
sum-of-squares of the vertical distances of the points from the line. Those vertical
distances are also shown on the left panel of the figure. In this example, the sum
of squares of those distances (SSreg) equals 0.86. Its units are the units of the Y-
axis squared. To use this value as a measure of goodness-of-fit, you must compare
it to something.

The right half of the figure shows the null hypothesis -- a horizontal line through
the mean of all the Y values. Goodness-of-fit of this model (SStot) is also
calculated as the sum of squares of the vertical distances of the points from the
line, 4.907 in this example. The ratio of the two sum-of-squares values compares
the regression model with the null hypothesis model. The equation to compute r2
is shown in the figure. In this example 12 is 0.8248. The regression model fits the
data much better than the null hypothesis, so SSreg is much smaller than SStot,
and r2 is near 1.0. If the regression model werc not much better than the null
hypothesis, r2 would be near zero.

You can think of 12 as the fraction of the total variance of Y that is "explained" by
variation in X. The value of r2 (unlike the regression line itself) would be the
same if X and Y were swapped. So 12 is also the fraction of the variance in X that
is "explained” by variation in Y. In other words, 12 is the fraction of the variation
that is shared between X and Y.
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In this example, 84% of the total variance in Y is "explained” by the linear
regression model. That leaves the rest of the vairance (16% of the total) as
variability of the data from the model (SStot) '

Example 2

The following data set gives the average heights and weights for American
women aged 30-39 (source: The World Almanac and Book of Facts, 1975).

Heig 1.5 1.7
ht 147 15 152155 )° 160 163 165 1.68 1.7 1.73 [ 1.78 1.8 1.83

5
(m)

;V"‘g 52.2 53.1 54.4 55.8 57. 58.5 59.9 61.2 63.1 64.4 66.2 68. 69.9 72.1 74.4
ko L 2 8 4 27 3 9 1.7 8 12 96

A plot of weight against height (see below) shows that it cannot be modeled by a
straight line, so a regression is performed by modeling the data by a parabola.

Yi=%+5Xi+ ,.','7'-1_,\’;-’ £

where the dependent variable Y; is weight and the independent variable X; is
height. '

.'-, & -
Place the observations Lis £33 £=1,... + 1 in the matrix X.
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Residuals fromregression

cale. weight / kg
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The values of the parameters are found by solving the normal equations
(XTX)B = Xy

Element ij of the normal equation matrix, X*Xis formed by summing the
products of column i and column j of X.

15
Xjj == Z Tji g
k=1

Element i of the right-hand side vector X"yis formed by summing the products of
column i of X with the column of dependent variable values.

15
(X.Ty)’, = Z Lilli

k=i

Thus, the normal equations are

15 2476 4105\ [ 931
2476 4105 6837 |3, | =] 1548
41.05 6837 11435/ \ 3, 2586
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W

Jo = 129 £ 16 (value +standard deviation)
3 =_143+20
3 =62+6

The calculated values are given by
g." == 31‘?[; | -':3‘1.1',' | l‘.r_:;'_‘gil‘?
The observed and calculated data are plotted together and the residuals, ¥i — ¥i,

are calculated and plotted. Standard deviations are calculated using the sum of
squares, S = 0.76.

1.6 STANDARD ERROR OF THE ESTIMATE

The standard error of the estimate is a measure of the accuracy of predictions
made with a regression line.

Example 2
Consider the following data.
% ¥ v v=v (r-v)®

325 18.71 17.79 052 026
396 18.15 2011 -1.96 ze3
435 19.72 2138 -1.66 277
4.40 23.02 21.55 147 217
442 2226 21 61 065 0.42
451 1961 2191 -230 528
487 27.74 23.09 465 2167
5.65 24.39 2564  -0.75 0.56
568 27.23 25.74 209 4329
5.71 23.09 2583  -274 753
6.28 24.25 2770 -34S 11.89
6.52 31.55 2848 207 9.40

= 7o

The second column (Y) is predicted by the first column (X). The slope and Y
intercept of the regression line are 3.2716 and 7.1526 respectively. The third
column, (Y"), contains the predictions and is computed according to the formula:
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Y = 3.2716X % _ 7.1526.

The fourth column (Y-Y") is the error of prediction. It is simply the difference
between what a subject's actual score was (Y) and what the predicted score is (Y").

The sum of the errors of prediction is zero. The last column, (Y-Y")?, contains the
squared eITors of prediction.

The regression line seeks to minimize the sum of the squared errors of prediction.
The square root of the average squared error of prediction is used as a measure of
the accuracy of prediction. This measure is called the standard error of the
estimate and 1s designated as o.,. The formula for the standard error of the
estimate ' is:

o = |2
“ ¥V N

where N is the number of pairs of (X,Y) points. For this example, the sum of the
squared errors of prediction (the numerator) is 70.77 and the number of pairs is
12. The standard error of the estimate is therefore equal to:

-

—
177 243,
Vo2

0..=

An alternate formula for the standard error of the estimate is:

[P

o, =0, yl-p

where is oy is the population standard deviation of Y and p is the population
correlation between X and Y. For this example,

0., =395V-0.7887 = 2.43.
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One typically does not know the population parameters and therefore has to
estimate from a sample. The symbol s, is used for the estimate of Gey. The
relevant formulas are:

R :M b
Ty N2 '

and

1

s =8 vl-r’
sl >

\}1\’:5

where r is the sample correlation and Sy is the sample standard deviation of Y.
(Note that Sy has a capital rather than a small "S" so it is computed with N in the
denominator). The similarity between the standard error of the estimate and the
standard deviation should be noted: The standard deviation is the square root of
the average squared deviation from the mean; the standard error of the estimate is
the square root of the average squared deviation from the regression line. Both
statistics are measures of unexplained variation.

1.7 PARTIAL CORRELATION

The partial correlation between X and Y given a set of n controlling variables Z =
{Z), Z,, ..., Z,}, written pxyz, is the correlation between the residuals Ry and Ry
resulting from the linear regression of X with Z and of ¥ with Z, respectively. In
fact, the first-order partial correlation is nothing else than a difference between a
correlation and the product of the removable correlations divided by the product
of the coefficients of alienation of the removable correlations.
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Scatterplots, correlation coefficients, and simple linear regression coefficients are
inter-related. The scattterplot shows the data. The correlation coefficient measures
of linear association between the variables. The regression coefficient describes
the linear association through a number that gives the expected change in the
response per unit change in the predictor.

The coefficients of a multiple regression equation give the change in response per
unit change in a predictor when all other predictors arc held fixed. This raises the
question of whether there are analogues to the correlation coefficient and the
scatterplot to summarize the relation and display the data after adjusting for the
effects of other variables.

This note answers these questions and illustrates them by using the crop yield
example of Hooker reported by Kendall and Stuart in volume 2 of their Advanced
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Theory of Statistics, Vol, 2, 3 rd ed.(example 27.1) Neither Hooker nor Kendall &
Stuart provide the raw data, so I have generated a set of random data with means,
standard deviations, and correlations identical to those given in K&S. These
statistics are sufficient for all of the methods that will be discussed here (sufficient
is a technical term meaning nothing else to do with the data has any effect on the
analysis. All data sets with the same values of the sufficient statistics are
equivalent for our purposes), so the random data will be adequate.

The variables are yields of "seeds' hay" in cwt per acre, spring rainfall in inches
and the accumulated temperature above 42 F in the spring for an English area over
20 years. The plots suggest yield and rainfall are positively correlated, while yield
and temperature are negatively correlated! This is borne out by the correlation
matrix itself.

Pearson Correlation Coefficients, N = 20
Prob > |r| under HO: Rho=0

YIELD RAIN TEMP

YIELD 1.00000 0.80031 -0.39988
<.0001 0.0807

RAIN 0.80031 1.00000 -0.55966
<.0001 0.0103

TEMP =0..39988 =0.55966 1.00000
0.0807 0.0103

Just as the simple correlation coefficient between Y and X describes their joint
behavior, the partial correlation describes the behavior of Y and X; when Xo.Xp
are held fixed. The partial correlation between Y and X, holding X,..X, fixed is

r orr
denoted ' H¥+¥e-%, T XXX,

A partial correlation coefficient can be written in terms of simple correlation
coefficients
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Pyy — Tzlyg

JA-r2a-r2)

Fevaz =

Thus, rxyiz = rxy if X & Y are both uncorrelated with Z.

A partial correlation between two variables can differ substantially from their
simple correlation. Sign reversals are possible, too. For example, the partial
correlation between YIELD and TEMPERATURE holding RAINFALL fixed is
0.09664. While it does not reach statistical significance (P = 0.694), the sample
value is positive nonetheless.

The partial correlation between X & Y holding a set of variables fixed will have
the sume sign as the multiple regression coefficient of X when Y is regressed on X
and the set of variables being held fixed. Also,

i1

S ——
- Jit +Resdf

where ¢ is the t statistic for the coefficient of X in the multiple regression of Y on
X and the variables in the list.

Just as the simple correlation coefficient describes the data in an ordinary
scatterplot, the partial correlation coefficient describes the data in the partial
regression residual plot.

Let Y and X, be the variables of primary interest and let X,..X,, be the variables
held fixed. First, calculate the residuals after regressing Y on X..X,,. These are the
parts of the Ys that cannot be predicted by X,..X,. Then, calculate the residuals
after regressing X; on X,..X,. These are the parts of the X;s that cannot be
predicted by X,..X,,. The partial correlation coefficient between Y and X, adjusted
for X,.. X, is the correlation between these two sets of residuals. Also, the
regression coefficient when the Y residuals are regressed on the X, residuals is
equal to the regression coefficient of X, in the multiple regression equation when
Y is regressed on the entire set of predictors.
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For example,

the partial correlation of YIELD and TEMP adjusted for RAIN is the correlation
between the residuals from regressing YIELD on RAIN and the residuals from
regressing TEMP on RAIN. In this partial regression residual plot, the correlation
is 0.09664. The regression coefficient of TEMP when the YIELD residuals are
regessed on the TEMP residuals is 0.003636. The multiple regression equation for
the original data set is

YIELD = 9.298850 + 3.373008 RAIN + 0.003636 TEMP

Because the data are residuals, they are centered around zero. The values, then,
are not similar to the original values. However, perhaps this is an advantage. It
stops them from being misinterpreted as Y or X; values "adjusted for X»..X,".

While the regression of Y on X,..X,, seems reasonable, it is not uncommon to hear
questions about adjusting X,, that is, some propose comparing the residuals of Y
on X».. X, with X,directly.
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This approach has been suggested many times over the years. Lately, it has been
used in the field of nutrition by Willett and Stampfer (AJE, 124(1986):17-22) to
produce "calorie-adjusted nutrient intakes", which are the residuals obtained by
regressing nutrient intakes on total energy intake. These adjusted intakes are used
as predictors in other regression equations. However, total energy intake does not
appear in the equations and the response is not adjusted for total energy intake.
Willett and Stampfer recognize this, but propose using calorie-adjusted intakes
nonetheless. They suggest "calorie-adjusted values in multivariate models will
overcomethe problem of high-collinearity frequently observed between nutritional
factors", but this is just an artifact of adjusting only some of the factors. The
correlation between an adjusted factor and an unadjusted factor is always smaller
in magnitude than the correlation between two adjusted factors.

This method was first proposed before the ready availability of computers as a
way to approximate multiple regression with two independent variables (regress Y
on X1, regress the residuals on X2) and was given the name two-stage regression.
Today, however, it is a mistake to use the approximation when the correct answer
is easily obtained. If the goal is to report on two variables after adjusting for the
effects of another set of variables, then both variables must be adjusted.

1.8 MULTIPLE CORRELATION

In statistics, regression analysis is a method for explanation of phenomena and
prediction of future events. In the regression analysis, a coefficient of correlation r
between random variables X and Y is a quantitative index of association between
these two variables. In its squared form,-as a coefficient of determination ”
indicates the amount of variance in the criterion variable Y that is accounted for by
the variation in the predictor variable X. In the multiple regression analysis, the set
of predictor variables X;, X5, ... is used to explain variability of the criterion
variable Y. A multivariate counterpart of the coefficient of determination r* is the
coefficient of multiple determination, R®. The square root of the coefficient of
multiple determination is the coefficient of multiple correlation, R.
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Let Y be one variable, and (X;, X, ..., X;) a set of other variables. Let X be a
linear combination of the X/'s : '

X= Z; a,-X,-

and consider the correlation coefficient p(X, ¥).

When the coefficients a; are made to vary in every possible way, the value of
pchanges. It can be shown that, in general, there is a single set of values of the
coefficients that maximizes p. This largest possible value of (X, Y)is usually
denoted R, and is called the Multiple Correlation Coefficient between ¥ and the
set of variables (X, X5, ..., X,,). -

The Multiple Correlation Coefficient plays a central role in Multiple Linear
Regression, as R? is then equal to the ratio of the explained variance to the total
variance, and is therefore a measure of the quality of the regression. So, in this
respect, there is a complete similarity between Simple and Multiple Linear
Regression.

Conceptualization of multiple correlation

<
An intuitive approach to the multiple regression analysis is to sum the squared

correlations between the predictor variables and the criterion variable to obtain an
index of the over-all relationship between the predictor variables and the criterion
variable. However, such a sum is often greater than one, suggesting that simple
summation of the squared coefficients of correlations is not a correct procedure to
employ. In fact, a simple summation of squared coefficients of correlations
between the predictor variables and the criterion variable is the correct procedure,
but only in the special case when the predictor variables are not correlated. If the
predictors are related, their inter-correlations must be removed so that only the
unique contributions of each predictor toward explanation of the criterion.
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Fundamental equation of multiple regression analysis

Initially, a matrix of correlations R is computed for all variables involved in the
analysis. This matrix can be conceptualized as a supermatrix, consisting of the
vector of cross-correlations between the predictor variables and the criterion
variable ¢, its transpose ¢’ and the matrix of intercorrelations between predictor
variables R.. The fundamental equation of the multiple regression analysis is

2 -1
R=c"Ry c.

The expression on the left side signifies the coefficient of multiple determination
(squared coefficient of multiple correlation). The expressions on the right side are
the transposed vector of cross-correlations ¢’, the matrix of inter-correlations R,
to be inverted (cf., matrix inversion), and the vector of cross-correlations, c. The
premultiplication of the vector of cross-correlations by its transpose changes the
coefficients of correlation into coefficients of determination. The inverted matrix
of the inter-correlations removes the redundant variance from the of inter-
correlations of the predictor set of variables. These not-redundant cross-
correlations are summed to obtain the multiple coefficient of determination R>.
The square root of this coefficient is the coefficient of multiple correlations R.

Activity 1 :

I. with the following data in 6 cities calculate the coefficient of correlation by
Pearson’s method between the density of population and death rate:

City  Areain kilometres  Population in ‘000  No. of deaths

A 150 30 300
B 180 90 1440
% 100 40 560
D 60 42 840
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E 120 T 1224
F 80 24 | 312

2. Obtain regression equation of Y and X and estimate Y when X=55 from the
following: '

X: 40 50 38 60 65 50 35
. o 38 60 55 70 60 48 30

3. Heights of fathers and sons are given below. Find height of the son when the
height of father is 70 inches.

Father (inches): 71 68 66 67 70 71 70 73 72
65 66

Son (inches): 69 64 65 63 65 62 65 64 66
59 62

1.9 SUMMARY

In this chapter the concept of correlation or the association between two variaﬁales
has been discussed. It has been made clear that the value of Pearson correlation
coefficient r quantifies this association. The correlation coefficient r may assume
values between -1 and 1.

Further the concepts of regression and linear regression was also discussed in this
chapter. Broadly speaking, the fitting of any chosen mathematical function to
given data is termed as regression analysis. The estimation of the parameters of
this model is accomplished by the least squares criterion which tries to minimize
the sum of squares for all the data points. There are simultaneous linear equations
equal in number to the number of parameters to be estimated, obtained by
partially differentiating the sum of squares of errors with respect to the individual
parameters.
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Finally the concepts of partial and multiple correlations have been discussed with
the help of suitable examples.

1.10 FURTHER READINGS

S o U L e

e Altman D.G. (1991) Practical Statistics. Chapman & Hall, London.
e Campbell M.J. & Machin D. (1993) Medical Statistics a Commonsense
Approach. 2nd edn.Wiley, London.

® Draper, N and H.Smith, 1966. Applied Regression Analysis. John Willey:
New York.

e Edwards, B. 1980. The Readable Maths and Statistics Book, George Allen
and Unwin. London
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UNIT 2

BASIC CONCEPTS OF PROBABILITY
Objectives

After reading this unit, you should be able to:

* Appreciate the relevance of probability theory in decision makin g
~®  Understand the different approaches of probability
® Identify the basic concepts of probability including experiments, sample
space and events.
* Calculate probabilities using random variable approach
* Have deep understanding of various kind of generating functions.

Structure

2.1 Introduction

2.2 The classical definition of probability

2.3 The empirical definition of probability

2.4 Basic concepts: Experiments, sample space and events
2.5 Random variable

2.6 Probability expectations

2.7 Generating functions

2.8 Summary

2.9 Further readings
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2.1 INTRODUCTION

Probability, or chance, is a way of expressing knowledge or belief that an event
will occur or has occurred. In mathematics the concept has been given an exact
meaning in probability theory, that is used extensively in such areas of study as
mathematics, statistics, finance, gambling, science, and philosophy to draw
conclusions about the likelihood of potential events and the underlying mechanics
of complex systems.

Probability theory in fact, is the branch of mathematics concerned with analysis
of random phenomena. The central objects of probability theory are random
variables, stochastic processes, and events: mathematical abstractions of non-
deterministic events or measured quantities that may either be single occurrences
or evolve over time in an apparently random fashion. Although an individual coin
toss or the roll of a die is a random event, if repeated many times the sequence of
random events will exhibit certain statistical patterns, which can be studied and
predicted. Two representative mathematical results describing such patterns are
the law of large numbers and the central limit theorem.

As a mathematical foundation for statistics, probability theory is essential to many
human activities that involve quantitative analysis of large sets of data. Methods
of probability theory also apply to descriptions of complex systems given only”
partial knowledge of their state, as in statistical mechanics. A great discovery of

- twentieth century physics was the probabilistic nature of physical phenomena at
atomic scales, described in quantum mechanics..

Discrete probability distributions

Main article: Discrete probability distribution

Discrete probability theory deals with events that occur in countable sample
spaces.

Examples: Throwing dice, experiments with decks of cards, and random walk.
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Classical definition: Initially the probability of an event to occur was defined as
number of cases favorable for the event, over the number of total outcomes
possible in an equiprobable sample space.

For example, if the event is "occurrence of an even number when a die is rolled",
41

the probability is given by 6 2, since 3 faces out of the 6 have even numbers
and each face has the same probability of appearing.

Modern definition: The modern definition starts with a set called the sample
space, which relates to the set of all possible outcomes in classical sense, denoted

by = {:L‘l"yﬂ' ' } . It is then assumed that for each element = € {2, an

intrinsic "probability" value f (‘ Jis attached, which satisfies the following
properties:

1. flx)yeo, 1] forall 2 € Q;
3 flry=1.
2. e

That is, the probability function f{x) lies between zero and one for every value of x
in the sample space £, and the sum of f{x) over all values x in the sample space Q
is exactly equal to 1. An event is defined as any subset {~of the sample space Q _
The probability of the event [“defined as

P(EY= 3 f(x).
reE

So, the probability of the entire sample space is 1, and the probability of the null h
event is 0.

The function ./ (r }mapping a point in the sample space to the "probability” value
is called a probability mass function abbreviated as pmf. The modern definition
does not try to answer how probability mass functions are obtained; instead it
builds a theory that assumes their existence.
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Continuous probability distributions

Main article: Continuous probability distribution

Continuous probability theory deals with events that occur in a continuous
sample space.

Classical definition: The classical definition breaks down when confronted with
the continuous case. See Bertrand's paradox.

Modern definition: If the outcome space of a random variable X is the set of real
numbers (&) or a subset thereof, then a function called the cumulative
distribution function (or cdf) Fexists, defined by F(x) = P(X £2), That is,.
F(x) returns the probability that X will be less than or equal to x.

The cdf necessarily satisfies the following properties.

1. Flis a monotonically non-decreasing, right-continuous function;
2. rl-l-lll‘x F(I) = 0 .
3 m F{z)=1.

. ZT—X

If Fis absolutely continuous, i.., its derivative exists and integrating the

derivative gives us the cdf back again, then the random variable X is said to have a
. dF(x)

probability density function or pdf or simply density fla) = de

Measure-theoretic probability theory

The raison d'étre of the measure-theoretic treatment of probability is that it unifies
the discrete and the continuous, and makes the difference a question of which
measure is used. Furthermore, it covers distributions that are neither discrete nor
continuous nor mixtures of the two.

An example of such distributions could be a mix of discrete and continuous
distributions, for example, a random variable which is O with probability 1/2, and
takes a random value from a normal distribution with probability 1/2. It can still
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be studied to some extent by considering it to have a pdf of (5[1'] + p(x)) _,f"'z‘

where 8[x] is the Dirac delta function.

Other distributions may not even be a mix, for example, the Cantor distribution
has no positive probability for any single point, neither does it bave a density. The
modern approach to probability theory solves these problems using measure
theory to define the probability space:

Given any set £, (also called sample space) and a o-algebra Fon it, a measure
Pdefined on Fis called a probability measure if P(Q) =1.

If Fis the Borel c-algebra on the set of real numbers, then there is a unique
probability measure on JFfor any cdf, and vice versa. The measure corresponding
to a cdf is said to be induced by the cdf. This measure coincides with the pmf for
discrete variables, and pdf for continuous variables, making the measure-theoretic
approach free of fallacies.

The probabiiity of a set Fin the o-algebra Fis defined as

P(E) = [ ()

JweE
where the integration is with respect to the measure /¢ Finduced by F.

Along with providing better understanding and unification of discrete and
continuous probabilities, measure-theoretic treatment also allows us to work on
_probabilities outside B”, as in the theory of stochastic processes. For example to
study Brownian motion, probability is defined on a space of functions.

Mathematical treatment

In mathematics, a probability of an event A is represented by a real number in the
range from 0 to 1 and written as P(A), p(A) or Pr(A). An impossible event has a
probability of 0, and a certain event has a probability of 1. However, the converses
are not always true: probability O events are not always impossible, nor
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probability 1 events certain. The rather subtle distinction between "certain" and
"probability 1" is treated at greater length in the article on "almost surely".

The opposite or complement of an event A is the event [not A] (that is, the event of
A not occurring); its probability is given by P(not-A) = | - P(A). As an example,
the chance of not rolling a six on a six-sided die is 1 - (chance of rolling a six) =
1-3=1 See Complementary event for a more complete treatment.

If both the events A and B occur on a single performance of an experiment this is
called the intersection or joint probability of A and B, denoted as F(-11 B), If two
events, A and B are independent then the joint probability is

P(A and B) = P(An B) = P(A)P(B).

for example, if two coins are flipped the chance of both being heads is

IR T
7 X371

If either event A or event B or both events occur on a single performance of an
experiment this is called the union of the events A and B denoted as P(1U B), If
two events are mutually exclusive then the probability of either occurring is

P(A or B) = P(AU B) = P(A) + P(B).

For example, the chance of rolling a 1 or 2 on a six-sided die is
P(lor2)=P(1)+P(2)=L+1=1

6 3.
If the events are not mutually exclusive then

P(Aor B) =P (A)+P(B) - P(Aand B),

For example, when drawing a single card at random from a regular deck of cards,

the chance of getting a heart or a face card (J,Q,K) (or one that is both) is
13,12 3 _ 11
52 T5 — 52— 25, because of the 52 cards of a deck 13 are hearts, 12 are face

cards, and 3 are both: here the possibilities included in the "3 that are both" are
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included in cach of the "13 hearts" and the "12 face cards" but should only be
counted once.

Conditional probability is the probability of some event A, given the occurrence of
some other event B. Conditional probability is written P(AIB), and is read "the
probability of A, given B". It is defined by

Ca o (AN B)
If P(B) = 0 then P(:1 ! I3} is undefined.

Above discussed treatments will be discussed deeply in next chapter.

2.2 THE CLASSICAL DEFINITION OF PROBABILITY

_ The classical definition of probability is identified with the works of Pierre Simon
Laplace. As stated in his Théorie analytique des probabilités,

“The probability of an event is the ratio of the number of cases favorable to it, to
the number of all cases possible when nothing leads us to expect that any one of*
these cases should occur more than any other, which renders them, for us, equally
possible”.

This definition is essentially a consequence of the principle of indifference. If
elementary events are assigned equal probabilities, then the probability of a
disjunction of elementary events is just the number of events in the disjunction
divided by the total number of elementary events.

The classical definition of probability was called into question by several writers
of the nineteenth century, including John Venn and George Boole. The frequentist
definition of probability became widely accepted as a result of their criticism, and
especially through the works of R.A. Fisher. The classical definition enjoyed a
revival of sorts due to the general interest in Bayesian probability
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The classical definition of probability came from the gambling games theory: the
ratio of a number of successful outcomes to the number of all possible outcomes,
presuming they are all equally likely. Imagine a certain experiment that can
equally likely produce some known finite number n of outcomes, for example, a
die is rolled, n = 6. Imagine also that we bet on some kind of outcomes, for
example, that a die comes up an even number, here 2, 4, or 6. Intuitively, the
probability P of us winning is the number of k successful outcomes divided by the
total number of outcomes n: P =k/n

2.3 THE EMPIRICAL DEFINITION OF PROBABILITY

Empirical probability, also known as relative frequency, or experimental
probability, is the ratio of the number favorable outcomes to the total number of
trials, not in a sample space but in an actual sequence of experiments. In a more
general sense, empirical probability estimates probabilities from experience and
observation. The phrase a posteriori probability has also been used an alternative
to empirical probability or relative frequency. This unusual usage of the phrase is
not directly related to Bayesian inference and not to be confused with its equally
occasional use to refer to posterior probability, which is something else.
A

In statistical terms, the empirical probability is an estimate of a probability. If
modelling using a binomial distribution is appropriate, it is the maximum
likelihood estimate. It is the Bayesian estimate for the same case if certain
assumptions are made for the prior distribution of the probability

An advantage of estimating probabilities using empirical probabilities is that this
procedure is relatively free of assumptions. For example, consider estimating the
probability among a population of men that they satisfy two conditions: (i) that
they are over 6 feet in height; (ii) that they prefer strawberry jam to raspberry jam.
A direct estimate could be found by counting the number of men who satisfy both
conditions to give “the empirical probability the combined condition. An
alternative estimate could be found by multiplying the proportion of men who are
over 6 feet in height with the proportion of men who prefer strawberry jam to
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raspberry jam, but this estimate relies on the assumption that the two conditions
are statistically independent.
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The classical interpretation of probability is a theoretical probability based on the
physics of the experiment, but does not require the experiment to be performed.
For example, we know that the probability of a balanced coin turning up heads is
equal to 0.5 without ever performing trials of the experiment. Under the classical
interpretation, the probability of an event is defined as the ratio of the number of
outcomes favorable to the event divided by the total number of possible outcomes.
Sometimes a situation may be too complex to understand the physical nature of it
well enough to calculate probabilities. However, by running a large number of
trials and observing the outcomes, we can estimate the probability. This is the
empirical probability based on long-run relative frequencies and is defined as the
ratio of the number of observed outcomes favorable to the event divided by the
total number of observed outcomes. The larger the number of trials, the more
accurate the estimate of probability. If the system can be modeled by computer,
then simulations can be performed in place of physical trials.

A manager frequently faces situations in which neither classical nor empirical
probabilities are useful. For example, in a one-shot situation such as the launch of
a unique product, the probability of success can neither be calculated nor
estimated from repeated trials. However, the manager may make an educated
guess of the probability. This subjective probability can be thought of as a
person's degree of confidence that the event will occur. In absence of better
information upon which to rely, subjective probability may be used to make
logically consistent decisions, but the quality of those decisions depends on the
accuracy of the subjective estimate.

24 BASIC CONCEPTS: EXPERIMENTS, SAMPLE SPACE
AND EVENT '

2.4.1 EXPERIMENT

Any activity that yields a result or an outcome is called as experiment. There are
two types of experiment we observe in our natural phenomenon.
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1. Deterministic Experiments
2. Non-deterministic Experiments (or Random Experiments)

Deterministic Experiments

The experiment in which the outcome can be predicted in advance under
essentially homogeneous conditions is known as deterministic experiment. For
example, in a physics laboratory if we insert a battery into a simple circuit, we can
predict the current flow

(C) by Ohm's law:

C=ER

where E (potential difference between the two ends of the conductor) is the known
value and R is the resistance.

Non-Deterministic (or Random) Experiments

The experiment in which the outcome cannot be predicted in advance is known as
nondeterministic experiment. For example, if we toss an unbiased coin, the
outcome may be either 'head’ or 'tail'. But we cannot predict in advance which one
will occur exactly. Similarly, throwing a die is also a nondeterministic
experiment. The probability theory is associated with this type of random
experiments only.

Probability theory is based on the paradigm of a random ex;. siment; that is, an
experiment whose outcome cannot be predicted with certainty, before the
experiment is run. We usually assume that the experiment can be repeated
indefinitely under essentially the same conditions. This assumption is important
because probability theory is concerned with the long-term behavior as the
experiment is replicated. Naturally, a complete definition of a random experiment
requires a careful definition of precisely what information about the experiment is
being recorded, that is, a careful definition of what constitutes an outcome.
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2.4.2 SAMPLE SPACE

A sample space is a collection of all possible outcomes of a random experiment.
A random variable is a function defined on a sample space. We shall consider
several examples shortly. Later on we shall introduce probability functions on the
sample spaces. A sample space may be finite or infinite. Infinite sample spaces
may be discrete or continuous.

Finite Sample Spaces

Tossing a coin. The experiment is tossing a coin (or any other object with two
distinct sides.) The coin may land and stay on the edge, but this event is so
enormously unlikely as to be considered impossible and be disregarded. So the
coin lands on either one or the other of its two sides. One is usually called head,
the other fail. These are two possible outcomes of a toss of a coin. In the case of a
single toss, the sample space has two elements that interchangeably, may be
denoted as, say,

{Head, Tail}, or {H, T}, or {0, 1}, ...

Rolling a die. The experiment is rolling a die. A common die is a small cube
whose faces shows numbers 1, 2, 3, 4, 5, 6 one way or another. These may be the
real digits or arrangements of an appropriate number of dots, e.g. like these

o8 PPN e S L ]
] 9 ®

® : [ ]
[y @

‘see
!‘ b

There are six possible outcomes and the sample space consists of six elements:
{1,2,3,4,5,6)}.

Many random variables may be associated with this experiment: the square of the
outcome f(x) = x%, with values from
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{1,4,9, 10, 25, 36},
centered values from

{-235,-1.5,-6.5,05; 1.5, 2.5},
with the variable defined by f(x) = x - 3.5, etc.

Drawing a card. The experiment is drawing a card from a standard deck of 52
cards. The cards are of two colors - black (spades and clubs) and red (diamonds
and hearts), four suits (spades, clubs, diamonds, hearts), 13 values (2, 3, 4, 5, 6, 7,
8,9, 10, Jack. Queen, King, Ace). (Some decks use 4 colors, others use different
names. For example, a Jack may be called a Knave. We shall abbreviate the
named designations as J, Q, K. A.) There are 52 possible- outcomes with the -
sample space

{24,248, 26,29 36 34 3¢ 3% . As As Ae AV).

Of course, if we are only interested in the color of a drawn card, or its suite, or
perhaps the value, then it would be as natural to consider other sample spaces:
A
{b, rl;
[, LR ¢, ¥) or
{2,3,4,5,6,7,8,9,10,1,Q, K, A}.

Choosing a birthday. The experiment is. to select a single dat= during a given
year. This can be done, for example, by picking a random pers:..: and inquiring for
his or her birthday. Disregarding leap years for the sake of simplicity, there are
365 possible birthdays, which may be enumerated

{1,2,3,4, ..., 365).

Tossing two coins. The experiment is tossing two coins. One may toss two coins
simultaneously, or one after the other. The difference is in that in the second case

we can easily differentiate between the coins: one is the first, the other second. If
146




M.P BHOJ (OPEN JUNIVERSITY

e e e R 7 = R RO i e e S S e e R

the two indistinguishable coins are tossed simultaneously, there are just three
possible outcomes, {H, H}, {H, T}, and {T, T}. If the coins are different, or if
they are thrown one after the other, there are four distinct outcomes: (H, H), (H,
T), (T, H), (T, T), which are often presented in a more concise form: HH, HT, TH,
TT. Thus, depending on the nature of the experiient, there are 3 or 4 outcomes,
with the sample spaces

Indistinguishable coins
{{H,H}, {H, T, {T, T}}.

Distinct ceins
{HH, HT, TH, TT}

Rolling two dice. The experiment is rolling two dice. If the dice are distinct or if
they are rolled successively, there are 36 possible outcomes: 11, 12, ..., 16, 21, 22,
..., 06. If they are indistinguishable, then some outcomes, like 12 and 21, fold into
one. There are 6x5/2 = 15 such pairs giving the total number of possible outcomes
as 36 - 15 = 21. In the first case, the sample space is

£11.12;.... 16,21,22, ..., 66}

When we throw two dice we are often interested not in individual numbers that
show up, but in their sum. The sum of the two top numbers is an example of a
random variable, say Y(ab) = a + b (where a, b range from 1 through 6), that takes
values from the set {2, 3,4, 5,6.7, 8,9, 10, 11, 12}. It is also possible to think of
this set of a sample space of a random experiment. However, there is a point in
working with random variables. It is often a convenience to be able to consider
several random variables related to the same experiment, i.e., to the same sample
space. For example, besides Y, we may be interested in the product (or some other
function) of the two numbers. ( Concept of Random variable will be described in
depth in the later section.)
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infinite Discrete Sample Spaces

First tail. The experiment is to repeatedly toss a coin until first tail shows up.
Possible outcomes are sequences of H that, if finite, end with a single T, and an
infinite sequence of H::

{T, HI, HHT, HHHT, ..., {HHH...}}-

As we shall sece elsewhere, this is a remarkable space that contains a not
impossible event whose probability is 0. One random variable is defined most
naturally as the length of an outcome. It draws values from the set of whole
numbers augmented by the symbol of infinity:

{1,2,3,4,.., o}
Continuous Sample Spaces

Arrival time. The experimental setting is a metro (underground) station where
trains pass (ideally) with equal intervals. A person enters the station. The
axperiment is to note the time of arrival past the departure time of the last train. If
T is the interval between two consecutive trains, then the sample space for the
experiment is the interval [0, T], or

[0, TI={t:0<y<T).

243 EVENT

In probability theory, an event is a set of outcomes (a subset of the sample space)
to which a probability is assigned. Typically, when the sample space is finite, any
subset of the sample space is an event (i.e. all elements of the power set of the
sample space are defined as events). However, this approach does not work well
in cases where the sample space is infinite, most notably when the outcome is a
real number. So, when defining a probability space it is possible, and often
necessary, to exclude certain subsets of the sample space from being events.
148

e b A AR g BT 8 A AR 1 M) €3 =y
\

-3
|
L 3
:.é
:
|
i




M.P BHOJ (OPEN JUNIVERSITY

e

Example 1

If we assemble a deck of 52 playing cards and no Jokers, and draw a single card
from the deck, then the sample space is a 52-element set, as each individual card
is a possible outcome. An event, however, is any subset of the sample space,
including any single-element set (an elementary event, of which there are 52,
representing the 52 possible cards drawn from the deck), the empty set (an
impossible event, defined to have probability zero) and the sample space itself
(the entire set of 52 cards), which is defined to have probability one. Other events
are proper subsets of the sample space that contain multiple elements. So, for
example, potential events include:

A Venn diagram of an event. B is the sample space and A is an event
By the ratio of their areas, the probability of 4 is approximately 0.4.

* "Red and black at the same time without being a joker" (0 elements),
e "The S of Hearts" (1 element),

¢ "AKing" (4 elements),

* "A Face card" (12 elements),

* "A Spade" (13 elements),

* "A Face card or a red suit" (32 elements),

e "Acard" (52 elements).

Since all events are sets, they are usually written as sets (e.g. {1, 2, 3)), and
represented graphically using Venn diagrams. Venn diagrams are particularly
useful for representing events because the probability of the event can be
identified with the ratio of the area of the event and the area of the sample space.
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(Indeed, each of the axioms of probability, and the definition of conditional
probability can be represented in this fashion.)

Types of events: Independent and Dependent Events

By independent we mean that the first event does not affect the probability of the
second event. Coin tosses are independent. They cannot affect each other's
probabilities; the probability of each toss is independent of a previous toss and
will always be 1/2. Separate drawings from a deck of cards are independent events
if you put the cards back.

T RS T LT S T TV A RTINS SRR £ T

An example of a depe.:dent event, one in which the probability of the second
event is affected by the first. is drawing a card from a deck but not returning it. By
not returning the card, you've decreased the number of cards in the deck by 1, and
you've decreased the number of whatever kind of card you drew. If you draw an
ace of spades, there are 1 fewer aces and 1 fewer spades. This affects our simple
probability: (number of favorable outcomes)/ (total number of outcomes. This
type of probability is formulated as follows:

If A and B are not independent, then the probability of A and B is

P(A and B) = P(A) x P(BIA)

where P(BIA) is the conditional probability of B given A. s

Example 2

If someone draws a card at random from a deck and then, without replacing the
first card, draws a second card, what is the probability that both cards will be
aces?

Solution

Event A is that the first card is an ace. Since 4 of the 52 cards are aces, P(A) =
4/52 = 1/13. Given that the first card is an ace, what is the probability that the
second card will be an ace as well? Of the 51 remaining cards, 3 are aces.
Therefore, p(BIA) = 3/51 = 1/17, and the probability of A and B is 1/13 x 1/17 =
1/221. The same reasoning is applied to marbles in a jar. (assume event was
successful)
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Example 3

If there are 30 red and blue marbles in a Jar, and the ratio of red to blue marbles is

2:3, what is the probability that, drawing twice, you will select two red marbles if

you return the marbles after each draw?

Solution

First, let's determine the number of red and blue marbles respectively. The ratio
2:3 tells us that the total of 30 marbles must be broken into 5 groups of 6 marbles,
each with 2 groups of red marbles and 3 groups of blue marbles. Setting up the
equation 2x + 3x = 5x =30 employs the same reasoning. Solving, we find that
there are 12 red marbles and 18 blue marbles. We are asked to draw twice and
return the marble after each draw. Therefore, the first draw does not affect the
probability of the second draw. We return the marble after the draw, and
therefore, we return the situation to the initial conditions before the second draw.
Nothing is altered in between draws, and therefore, the events are independent.

Now let's examine the probabilities. Drawing a red marble would be 12/30 = 2/5.
The same is true for the second draw. Since we want two red marbles in a row, the
question is really saying that we want a red marble on the first draw and a red
marble on the second draw. The "and" means we should expect a lower
probability than 2/5. Understanding that the "and" is implicit can help you
eliminate choices d and e which are both too big. Therefore, our total probability
is:

PA and B) = PA) x. PB) = 255 x 2/5 = 4/25.

Now consider the same question with the condition that you do not return the
marbles after each draw. The probability of drawing a red marble on the first draw
remains the same, 12/30 = 2/5. The second draw, however, is different. The initial
conditions have been altered by the first draw. We now have only 29 marbles in
the jar and only 11 red. Don't panic! We simply use those numbers to figure our
new probability of drawing a red marble the second time, 11/29. The events are
dependent and the total probability is:
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P(A and B) = P(A) x. P(B) = 2/5 x 11729 = 132/870 = 22/145.
If you return every marble you select, the probability of drawing another marble is

unaffected; the events are independent. If you do not return the marbles, the
number of marbles 1s affected and theretore dependent.

2.5 RANDOM VARIABLE

random variables are used in the study of chance and probability. They were
developed to assist in the analysis of games of chance, stochastic events, and the
results of scientific experiments by capturing only the mathematical properties
necessary to answer probabilistic questions. Further formalizations have firmly
grocunded the entity in the theoretical domains of mathematics by making use of
measure theory.

Broadly, there are two types of random variables — discrete and continuous.
Discrete random variables take on one of a set of specific values, each with some
probability greater than zero. Continuous random variables can be realized with
any of a range of values (e.g., a real number between zero and one), and so there
are several ranges (e.g. 0 to one half) that have a'probability greater than zero of
occurring. :

A random variable can be thought of as an unknown value that may change every
time it is inspected. Thus, a random variable can be thought of as a function
mapping the sample space of a random process to the real numbers. A few
examples will highlight this.

Example 4

For a coin toss, the possible events arc heads or tails. The number of heads
appearing in one fair coin toss can be described using the following random
variable:

fl, if heads,

1(‘). if Lails.
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with probability mass function given by:

ifr=0.
ifage=1.

otherwise.

px(r) =

T = 13—

A random variable can also be used to describe the process of rolling a fair die
and the possible outcomes. The most obvious representation is to take the set {1,
2,3, 4,5, 6} as the sample space, defining the random variable X as the number
rolled. In this case ,

f . &
I, if alisrolled,
2, if a2 is rolled,

3, if a3 is rolled,

4, if a 4 is rolled,

5, ifad isrolled,

(6, if a6 is rolled.

syl {37 ifz=1,2,3,4,5,86,
Ky =

0, otherwise.

; A
A random variable has either an associated probability distribution (discrete
random variable) or probability density function (continuous random variable).

Discrete Probability Distributions
If a random variable is a discrete variable, its probability distribution is called a
discrete probability distribution.

Example 5

Suppose you flip a coin two times. This simple statistical experiment can have
four possible outcomes: HH, HT. TH, and TT. Now, let the random variable X
represent the number of Heads that result from this experiment. The random
variable X can only take on the values 0, 1, or 2, so it is a discrete random
variable.
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The probability distribution for this statistical experiment appears below.

'rNumber of heads Probablhty

; 0 0.25
1 0.50
2 0.25

The above table represents a discrete probability distribution because it relates
each value of a discrete random variable with its probability of occurrence.

Continuous Probability Distributions

If a random variable is a continuous variable, its probability dlstrlbutmn is called a
continuous probability distribution.

A continuous probability distribution differs from a discrete probability
distribution in several ways.

The probzibility that a continuous random variable will assume a particular value
is zero.

As a result, a continuous probability distribution cannot be expressed in tabular
form.

Instead, an equation or formula is used to describe a continuous probability”
distribution. _

Most often, the equation used to describe a continuous probability distribution is
called a probability density function. Sometimes, it is referred to as a density
function, a PDF, or a pdf. For a continuous probability distribution, the density
function has the following properties:

Since the continuous random variable is defined over a continuous range of values
(called the domain of the variable), the graph of the density function will also be
continuous over that range. .

The area bounded by the curve of the density function and the x-axis is equal to 1,
when computed over the domain of the variable.

The probability that a random variable assumes a value between a and b is equal
to the area under the density function bounded by a and b.
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For example, consider the probability density function shown in the graph below.
Suppose we wanted to know the probability that the random variable X was less
than or equal to a. The probability that X is less than or equal to a is equal to the
area under the curve bounded by a and minus infinity - as indicated by the shaded
area.

Figure 2.1

Note: The shaded area in the graph represents the probability that the random
variable X is less than or equal to a. This is a cumulative probability. However,
the probability that X is exactly equal to a would be zero. A continuous random
variable can take on an infinite number of values. The probability that it will equal
a specific value (such as a) is always zero.

2.6 PROBABILITY EXPECTATIONS

In probability theory and statistics, the expected value (or expectation value, or
mathematical expectation, or mean, or first moment) of a random variable is
the integral of the random variable with respect to its probability measure. For
discrete random variables this is equivalent to the probability-weighted sum of the
possible values, and for continuous random variables with a density function it is
the probability density -weighted integral of the possible values.

The term "expected value" can be misleading. It must not be confused with the
"most probable value." The expected value is in general not a typical value that
the random variable can take on. It is often helpful to interpret the expected value
of a random variable as the long-run average value of the variable over many
independent repetitions of an experiment.
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The expected value may be intuitively understood by the law of large numbers:
The expected value, when it exists, is almost surely the limit of the sample mean
as sample size grows to infinity. The value may not be expected in the general
sense — the "expected value" itself may be unlikely or even impossible (such as
having 2.5 children), just like the sample mean. The expected value does not exist
for all distributions, such as the Cauchy distribution.

It is possible to construct an expected value equal to the probability of an event by
taking the expectation of an indicator function that is one if the event has occurred
and zero otherwise. This relationship can be used to translate properties of
expected values into properties of probabilitics, e.g. using the law of large
numbers to justify estimating probabilities by frequencies.

Example 6

The éxpected value from the roll of an ordinary six-sided die is

24! 5+6
E(Roll With 6 Sided Die) = - -2+ 3*6'4 e A

which is not among the possible outcomes.

A common application of expected value is gambling. For example, an American
roulette wheel has 38 places where the ball may land, all equally like!y.xA
winning bet on a single number pays 35-to-1, meaning that the original stake is
not lost, and 35 times that amount is won, so you receive 36 times what you've
bet. Considering all 38 possible outcomes, the expected value of the profit
resulting from a dollar bet on a single number is the sum of what you may lose
times the odds of losing and what you will win times the odds of winning, that is,
E(winnings §1 bet) = (-s: " ‘j—s) ¥ (53.5 % ‘;%) » _s% ~ —50.0526.

The change in your financial holdings is —=$1 when you lose, and $35 when you
win. Thus one may expect, on average, to lose about five cents for every dollar
bet, and the expected value of a one-dollar bet is $0.9474. In gambling, an event
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of which the expected value equals the stake (of which the bettor's expected profit
is zero) is called a "fair game."

2.7 GENERATING FUNCTIONS

2.7.1 The ordinary generating function

We define the ordinary generating function of a sequence. This is by far the most
common type of generating function and the adjective “ordinary” is usually not
used. _
But we will need a different type of generating function below (the exponential
gen-

erating function) so we have added the adjective “ordinary” for this first type of
generating function. .

2.7.2 Moment-generating function

The moment-generating function is so called because, if it exists on an open
interval around = 0, then it is the ordinary generating function of the moments of
the probability distribution:

d* My

g

E(X")y = MP0) = (0).

In probability theory and statistics, the moment-generating function of a random
variable X is

Mx(t):=F (c"'\') , teR,
wherever this expectation exists.

A key problem with moment-generating functions is that moments and the
moment-generating function may not exist, as the integrals need not converge. By
contrast, the characteristic function always exists (because the integral is a
bounded function on a space of finite measure), and thus may be used instead.

157




M.P BHOJ (OPEN JUNIVERSITY

More generally, where X = (Xi.....- X.), an n-dimensional random vector, one
uses t - X =t Xinstead of £X:

Mx(t):=E (L*T") .

Calculation

If X has a continuous probability density function f{x) then the moment generating
function is given by

el

Mgl = / et f(x) de

o =00

- /'x (1+tr+i-;;- +---)f(.'r)d.v

I -0

] 1-21713
= 1 I' in'lrl | 9 I [l

where m; is the ith moment. Mx( — f) is just the two-sided Laplace transform of

flx).

Regardless of whether the probability distribution is continuous or not, the
moment-generating function is given by the Riemann-Stieltjes integral

M(t) = /_’i ¢ dF (x)

where F is the cumulative distribution function.

If X, Xa, ..., X, is a sequence of independent (and not necessarily identically
distributed) random variables, and

n
S, = Z a; "Yig
=1

where the a; are constants, then the probability density function for S, is the
convolution of the probability density functions of each of the X; and the moment-
generating function for S, is given by
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For vector-valued random variables X with real components, the moment-
-generating function is given by

Mx(f) = E ()
where ¢ is a vector and (. Xlis the dot product.
Relation to other functions

Related to the moment-generating function are a number of other transforms that
are common in probability theory:

Characteristic function
The characteristic function ¥~ (*is related to the moment-generating function via

px(t) = Mix(t) = Mx(it) ‘the characteristic function is the moment-generating
function of iX or the moment generating function of X evaluated on the i 1maginary
axis.

cumulant-generating function

The cumulant-generating function is defined as the logarithm of the moment-
generating function; some instead define the cumulant-generating function as the
logarithm of the characteristic function, while others call this latter the second
cumulant-generating function.

probability-generating function

The probability- generatmo function is defined as G(=) = E["] This immediately
implies that G(¢') = E[¢"*] = My(t).

Activity 2
1. Distinguish between the classical and empirical approaches of probability.

2. Try to find out two main events in your life where you faced uncertainty in
taking decisions. Elaborate how you dealt.
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3. under an employment promotion program it is puoposed to allow sale of
newspapers on the buses during off-peak hours. The vendor can purchase
the newspaper at a special rate of 25 paise per copy against the selling
price of 40 paise per copy. Any unsold copies are however, a dead loss. A
vendor has estimated the following probability distribution for the number
of copies demanded.

No of copies 15 16 17 18 19 20

Probability N4 19 33 26 L .07

How many copies should be ordered so that his expected profit will be maximum?

2.8 SUMMARY

Probability in common parlance means the chance of occurrence of event. The
need to develop a formal and precise expression for uncertainty in decision
making, has led to different approaches to probability measurement. These
approaches, namely classical and empirical arose mainly to cater to different types
of situations where we face uncertainties. In this unit followed by main definitions
we discussed the basic concepts of probability including the two types of
experiments — Deterministic and Non Deterministic, Sample space and events and
their types. Further concepts of random variable and probability expectations were
explained using suitable examples. Finally the generating functions ordinary and
moment generating functions were described in brief.

2.9 FURTHER READINGS

®* Mood AM., Graybill FA., Boes D.C. (1974) Inteaduction to the
Theory of Statistics (3rd Edition). McGraw-Hill.
* Kallenberg, O., Foundations of Modern Probability, 2nd edition.
Springer-Verlag, New York, Berlin, Heidelberg (2001).
.® Patrick Billingsley (1979). Probability and Measure. New York,
Toronto, London: John Wiley and Sons.
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UNIT 3

PROBABILITY LAWS AND DISTRIBUTIONS

Objectives
After reading this unit, you should be able to:

e Use the laws of addition, subtraction and multiplication in decision
making.

¢ Understand the Baye’s theorem and its applicability

® Identify situations where discrete and continuous probability distributions
can be applied.

* Find or assess probability distributions for different uncertain situations.

Structure

3.1 Introduction

3.2 law of addition

3.3 multiplication rule of probability \
3.4 Baye’s theorem

3.5 Probability distributions

3.6 Binomial distribution

3.7 Poisson distribution

3.8 Normal distribution

3.9 Summary

3.10 Further readings
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3.1 INTRODUCTION

There are indefinite numbers of ways which can be used in solving probability
problems. These methods include the tree diagrams, laws of probability, sample
space, insight, and contingency table. Because of the individuality and variety of
probability problems, some approaches apply more readily in certain cases than in
others. There is no best method for solving all probability problems. Three laws of
probability the additive law, the multiplication law, and Baye’s theorem are
discussed in this chapter.

Discrete probability distributions — Binomial and Poisson distributions and
continuous distribution - Normal distribution are also explained in detail.

3.2THE LAW OF ADDITION

As we have already noted, the sample space S is the set of all possible outcomes
of a given cxperiment. Certain events A and B are subsets of S. In the previous
Section we defined what was meant by P(A), P(B) and their complements in the
particular case in which the experiment had equally likely cutcomes.Events, like
sets, can be combined to produce new events.

* A U B denotes the event that event A or event B (or both) occur when the
experiment is

performed.

* A (1 B denotes the event that both A and B occur together.

In this Section we obtain expressions for determining the probabilities of these
combined events,

which are written P(A U B) and P(A N B) réspectively.
The law of addition can be bifurcated into two followin g rules as:

A. General Rule of Addition:

when two or more events will happen at the same time, and the events are not
mutually exclusive, then: ‘
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PXorY)=P(X)+P(Y)-PXand Y)

For example, what is the probability that a card chosen at random from a deck
of cards will either be a king or a heart?
P(King or Heart) = P(X or Y) =4/52 + 13/52 - 1/52 = 30.77%

B. Special Rule of Addition:

when two or more events will happen at the same time, and the events are
mutually exclusive, then:

PX orY) =P(X) + P(Y)

Example 1

Suppose we have a machine that inserts a mixture of beans, broccoli, and
other types of vegetables into a plastic bag. Most of the bags contain the
correct weight, but because of slight variation in the size of the beans and
other vegetables, a package might be slightly underweight or overweight. A
check of many packages in the past indicate that:

Weight.....oc Vet e, No. of Packages......... Probability

Underweight.......... . AROT—— 11,0 RSETIIN | 1 | s
Correct weight......Y oo 3600.......cccnnnn. 0.9
Overweight............ < 5,1 D—— 00y
Tk umimmms s 4000...........c....... 1.00

What is the probability of selecting a package at random and having the
package be under weight or over weight? Since the events are mutually
exclusive, a package cannot be underweight and overweight at the same time.
The answer is: P(X or Z) = P(0.025 + 0.075) = 0.1
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3.3 MULTIPLICATION RULE OF PROBABILITY

The addition rule helped us solve problems when we performed one task and
wanted to know the probability of two things happening during that task. This
lesson deals with the multiplication rule. The multiplication rule also deals
with two events, but in these problems the events occur as a result of more
than one task (rolling one die then another, drawing two cards, spinning a
spinner twice, pulling two marbles out of a bag, etc).

When asked to find the probability of A and B, we want to find out the
probability of events A and B happening.

The Multiplication Rule:
Consider events A and B. P(AMB)=P(A) *P(B).

Note: Some books will say to take care that A and B .are independent, but the
rule can also be used with dependent events, you just have to be more careful
in find P(A) and P(B).

What The Rule Means:

Suppose we roll one die followed by another and want to find the probability
of rolling a 4 on the first die and rolling an even number on the second die.
Notice in this problem we are not dealing with the sum of both dice. We are
only dealing with the probability of 4 on one die only and then, as a separate
event, the probability of an even number on one die only.

P(4) = 1/6
P(even) = 3/6

So P(4meven) = (1/6)(3/6) = 3/36 = 1/12

While the rule can be applied regardless of dependence or independence of
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events, we should note here that rolling a 4 on one die followed by rolling an
even number on the second die are independent events. Each die is treated as
a separate thing and what happens on the first die does not influence or effect
what happens on the second die. This is our basic definition of independent
events: the outcome of one event does not influence or effect the outcome of
another event.

We’ll look at examples Jater that deal with dependent events. Just keep in
mind that what happens on one event will effect the other event.

Example 2

Suppose you have a box with 3 blue marbles, 2 red marbles, and 4 yellow
marbles. You are going to pull out one marble, record its color, put it back in
the box and draw another marble. What is the probability of pulling out a red
marble followed by a blue marble?

The multiplication rule says we need to find P(red) sP(blue).

P(red) = 2/9
P(blue) = 3/9

»

P(redMblue) = (2/9)(3/9) = 6/81 = 2/27

The events in this example were independent. Once the first marble was
pulled out and its color recorded, it was returned to the box. Therefore, the
probability for the second marble was not effected by what happened on the
first marble.

Notice that the final answer is always simplified. Some students find it helpful
to simplify before multiplying, but the final answer must always be
simplified.

Consider the same box of marbles as in the previous example. However in
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this case, we are going to pull out the first marble, leave it out, and then pull
out another marble. What is the probability of pulling out a red marble
followed by a blue marble?

We can still use the multiplication rule which says we need to find P(red) »
P(blue). But be aware that in this case when we go to pull out the second
marble, there will only be 8 marbles left in the bag.

P(red) = 2/9
P(blue) = 3/8

P(redMblue) = (2/9)(3/8* = 6/72 = 1/12

The events in this example were dependent. When the first marble was pulled
out and kept out, ii effected the probability of the second event. This is what
is meant by dependent events.

Suppose you are going to draw two cards from a standard deck. What is the
probability that the first card is an ace and the second card is a jack (just one
of several ways to get “blackjack” or 21). '

Pt

Using the multiplication rule we get
P(ace) ®P(jack) = (4/52)(4/51) = 16/2652 = 4/663

Notice that this will be the same probability even if the question had asked for
the probability of a jack followed by an ace.

3.4 BAYES' THEOREM

In probability theory, Bayes' theorem (often called Bayes' law and named after

Rev Thomas Bayes; IPA:/'be1z/) relates the conditional and marginal probabilities
of two random events. It is often used to compute posterior probabilities given
observations. For example, a patient may be observed to have certain symptoms.
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Bayes' theorem can be used to compute the probability that a proposed diagnosis
is correct; given that observation. (See example 2) Bayes' Theorem states that
judgements should be influenced by two main factors: the base rate, and the
likelihood ratio.

As a formal theorem, Bayes' theorem is valid in all common interpretations of
probability. However, it plays a central role in the debate around the foundations
of statistics: frequentist and Bayesian interpretations disagree about the ways in
which probabilities should be assigned in applications. Frequentists assign
probabilities to random events according to their frequencies of occurrence or to
subsets of populations as proportions of the whole, while Bayesians describe
probabilities in terms of beliefs and degrees of uncertainty.

Bayes' theorem relates the conditional and marginal probabilities of events A and
B, where B has a non-vanishing probability:

. P(B|A) P(A
P(4]B) = 24 P) },(Jﬁﬂ =

Each term in Bayes' theorem has a conventional name:

* P(A) is the prior probability or marginal probability of A. It is "prior" in the
sense that it does not take into account any information about B. S

* P(AIB) is the conditional probability of A, given B. It is also called the
posterior probability because it is derived from or depends upon the
specified value of B.

* P(BIA) is the conditional probability of B given A.

* P(B) is the prior or marginal probability of B, and acts as a normalizing
constant.

Intuitively, Bayes' theorem in this form describes the way in which one's beliefs
about observing 'A’ are updated by having observed 'B'.
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Exampie 3

Suppose there is a co-ed school having 60% boys and 40% girls as students. The
girl students wear trousers or skirts in equal numbers; the boys all wear trousers.
An observer sees a (random) student from a distance: all they can see is that this
student is wearing trousers. What is the probability this student is a girl? The
correct answer can be computed using Bayes' theorem.

The event A is that the student observed is a girl, and the event B is that the
student observed is wearing trousers. To compute P(AIB), we first need to know:

* P(A), or the probability that the student is a girl regardless of any other
information. Since the observers sees a random student, meaning that all
students have the same probability of being observed, and the fraction of
girls among the students is 40%, this probability equals 0.4.

* P(A), or the probability that the student is a boy regardless of any other
information (A’ is the complementary event to A). This is 60%, or 0.6.

* P(BlA), or the probability of the student wearing trousers given that the
student is a girl. As they are as likely to wear skirts as trousers, this is 0.5.

* P(BIA"), or the probability of the student wearing trousers given that the
student is a boy. This is given as 1. )

» P(B), or the probability of a (randomly selected) student wearing trousers
regardless of any other information. Since P(B) = P(BIA)P(A) +
P(BIA")P(A"), this is 0.5%0.4 + 1x0.6 = 0.8.

Given all this information, the probability of the observer having spotted a girl
given that the observed student is wearing trousers can be computed by
substituting these values in the formula;

PBAPLY) _ 05x04 _ .
P(B) 08 e

P(A|B) =

Another, essentially equivalent way of obtaining the same result is as follows.
Assume, for concreteness, that there are 100 students, 60 boys and 40 girls.
Among these, 60 boys and 20 girls wear trousers. All together there are 80
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trouser-wearers, of which 20 are girls. Therefore the chance that a random trouser-
wearer is a girl equals 20/80 = 0.25.

It is often helpful when calculating conditional probabilities to create a simple
table containing the number of occurrences of each outcome, or the relative
frequencies of each outcome, for each of the independent variables. The table
below illustrates the use of this method for the above girl-or-boy example

Girls Boys Total
Trousers 20 60 80
Skirts 20 0 20
Total 40 60 100

3.5 PROBABILITY DISTRIBUTIONS

An example will make clear the relationship between random variables and
probability distributions. Suppose you flip a coin two times. This simple statistical
experiment can have four possible outcomes: HH, HT, TH, and TT. Now, let the
variable X represent the number of Heads that result from this experiment. The
variable X can take on the values 0, 1, or 2. In ihis example, X is a random
variable; because its value is determined by the outcome of a statistical
experiment. ' . \

A probability distribution is a table or an equation that links each outcome of a
statistical experiment with its probability of occurrence. Consider the coin flip
experiment described above. The table below, which associates each outcome
with its probability, is an example of a probabilit;, distribution.

Number of heads Probability

0 ' 0.25
1 0.50
2 0.25
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The above table represents the probability distribution of the random variable X.
3.5.1 Cumulative Probability Distributions

A cumulative probability refers to the probability that the value of a random
variable falls within a specified range.

Let us return to the coin flip experiment. It we flip a coin two times, we might
ask: What is the probability that the coin flips would result in one or fewer heads?
The answer would be a cumulative probability. It would be the probability that the
coin flip experiment results in zero heads plus the probability that the experiment
results in one head.

PX<1)=PX=0)+PX=1)=025+0.50=0.75

Like a probability distribution, a cumulative probability distribution can be
represented by a table or an equation. In the table below, the cumulative
probability refers to the probability than the random variable X is less than or
equal o x.

Number of heads: x Probability: P(X =x) Cumulative Prob‘ébility: PX <x)

0 025 0.25
1 0.50 075 -
2 025 1.00

3.5.2 Uniform Probability Distribution

The simplest probability distribution occurs when all of the values of a random
variable occur with equal probability. This probability distribution is called the
uniform distribution.
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Uniform Distribution. Suppose the random variable X can assume k different
values. Suppose also that the P(X = xy) is constant. Then,

P(X =x©) = 1/k

Example 4

Suppose a die is tossed. What is the probability that the die will land on 6 ?
Solution: When a die is tossed, there are 6 possible outcomes represented by: S =
{ 1,2 3,4,5, 6 }. Each possible outcome is a random variable (X), and each
outcome is equally likely to occur. Thus, we have a uniform distribution.

Therefore, the P(X = 6) = 1/6.

Example 5

f Suppose we repeat the dice tossing experiment described in Example 1. This time,

- we ask what is the probability that the die will land on a number that is smaller
- than5?

Solution: When a die is tossed, there are 6 possible outcomes represented by: S =
{1,2,3,4,5, 6 }. Each possible outcome is equally likely to occur. Thus, we

have a uniform distribution.

.f This problem involves a cumulative probability. The probability that the die will
~ land on a number smaller than 5 is equal to:

. P(X<5)=P(X= D+P(X=2)+P(X=3)+P(X=4)=1/6+ 1/6 + 1/6 + 1/6 =
E o3

~ Three main types of probability distributions are discussed in next section.

171




M.P BHOJ (OPEN JUNIVERSITY
3.6 BINOMIAL DISTRIBUTION
To understand binomial distributions and binomial probability, it helps to
understand binomial experiments and some associated notation; so We COVer those
topics first.

Binomial Experiment

A binomial experiment (also known as a Bernoulli trial) is a statistical
experiment that has the following properties:

« The experiment consists of n repeated trials.

e Each trial can result in just two possible outcomes. We call one of these
outcomes a success and the other, a failure.

» The probability of success, denoted by P, is the same on every trial.

« The trials are independent; that is, the outcome on one trial does not affect
the outcome on other trials.

Consider the following statistical experiment. You flip a coin 2 times and count
the number of times the coin lands on heads. This-is a binomial experiment
because:

o The experiment consists of repeated trials. We flip a coin 2 times.

e Each trial can result in just two possib!e outcomes - heads or tails.

e The probability of success is constant - 0.5 on every trial. '

« The trials are independent; that is, getting heads on one trial does not
affect whether we get heads on other trials.

Notation
The following notation is helpful, when we talk about binomial probability.

« x The number of successes that result from the binomial experiment.
« n: The number of trials in the binomial experiment.
« P: The probability of success on an individual trial.
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*  Q: The probability of failure on an individual trial. (This is equal to 1 - P.)

¢ b(x; n, P): Binomial probability - the probability that an n-trial binomial
experiment results in exactly x successes, when the probability of success
on an individual trial is P.

e nCr: The number of combinations of things, taken r at a time.

Binomial Distribution

A binomial random variable is the number of successes X in n repeated trials of a
binomial experiment. The probability distribution of a binomial random variable
is called a binomial distribution (also known as a Bernoulli distribution).

Suppose we flip a coin two times and count the number of heads (successes). The
binomial random variable is the number of heads, which can take on values of 0,
I, or 2. The binomial distribution is presented below.

Number of heads Probability
0 0.25
1 0.50
2 _ 0.25
L

The binomial distribution has the following properties:
The mean of the distribution (ux) is equalton * P,
The variz_ince (62x)isn*P* (1 -P).

The standard deviation (ox)issqrt[n*P* (1 -P) i

Binomial Probability

The binomial probability refers to the probability that a binomial experiment
results in exactly x successes. For example, in the above table, we see that the
binomial probability of getting exactly one head in two coin flips is 0.50.
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Binomial Formula. Suppose a binomial experiment consists of n trials and results
in x successes. If the probability of success on an individual trial is P, then the
binomial probability is:
b(x;n, P)=nCx *Px * (1 -P)n-Xx

A

Example 6

Suppose a die is tossed 5 times. What is the probability of getting exactly 2 fours?

Solution: This is a binomial experiment in which the number of trials is equal to 5,

the number of successes is equal to 2, and the probability of success on a single

trial is 1/6 or about 0.167. Therefore, the binomial probability is:

b(2; B 0.167) = 3C2 ¥ (0.167)2 ¥ (0.833)3
b(2; 5,0.167) = 0.161

Cumulative Binomial Probability

A cumulative binomial probability refers to the probability that the binomial
random variable falls within a specified range (e.g., is greater than or equal to a
stated lower limit and less than or equal to a stated upper limit).

Example 7 \

we might be interested in the cumulative binomial probability of obtaining 45 or
fewer heads in 100 tosses of a coin (see Example 1 Below). This would be the sum
of all these individual binomial probabilities.

bix < 45; 100, 0.5) = b(x = 0; 100, 0.5) + b(x = 1; 100, 0.5) + ... + b(x = 44; 100
0.5) + b(x = 45; 100, 0.5)

Example 8
What is the probability of obtaining 45 or fewer heads in 100 tosses of a coin?

Solution: To solve this problem, we compute 46 individual probabilities, using the
binomial formula. The sum of all these probabilities is the answer we seek. Thus,
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b(x < 45; 100, 0.5) =b(x = 0; 100, 0.5) + b(x = 1; 100, 0.5) + ...+ b(x = 45; 100,

0.5)
b(x < 45; 100, 0.5) =0.184

Example 9

What is the probability that the world series will last 4 games? 5 games? 6 games?
7 games? Assume that the teams are evenly matched.

Solution: This is a very tricky application of the binomial distribution. If you can
follow the logic of this solution, you have a good understanding of the material
covered in the tutorial, to this point.

In the world series, there are two baseball teams. The series ends when the
winning team wins 4 games. Therefore, we define a success as a win by the team
that ultimately becomes the world series champion.

For the purpose of this analysis, we assume that the teams are evenly matched.
Therefore, the probability that a particular team wins a particular game is 0.5.

Let's look first at the simplest case. What is the probability that the series lasts
only 4 games. This can occur if one team wins the first 4 gamés. The probability
of the National League team winning 4 games in a row is:

b(4; 4, 0.5) =4C4 * (0.5)4 * (0.5)0 = 0.0625

Similarly, when we compute the probability of the American League team
winning 4 games in a row, we find that it is also 0.0625. Therefore, probability
that the series ends in four games would be 0.0625 + 0.0625 = 0.125; since the
series would end if either the American or National League team won 4 games in
aTow.

Now let's tackle the question of finding probability that the world series ends in 5
games. The trick in finding this solution is to recognize that the series can only
end in 5 games, if one team has won 3 out of the first 4 games. So let's first find
the probability that the American League team wins exactly 3 of the first 4 games.

s
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b(3; 4, 0.5) = 4C3 * (0.5)3 * (0.5)1 = 0.25

Given that the American League team has won 3 of the first 4 games, the
American League team has a 50/50 chance of winning the fifth game to end the
series. Therefore, the probability of the American League team winning the series
in 5 games is 0.25 * 0.50 = 0.125. Since the National League team could also win
the series in 5 games, the probability that the series ends in 5 games would be

0.125 + 0.125 =0.25.

The rest of the problem would be solved in the same way. You should find that
the probability of the series ending in 6 games is 0.3125; and the probability of the
series ending in 7 games is also 0.3125.

While this is statistically correct in theory, over the years the actual world series
has turned out differently, with more series than expected lasting 7 games.

3.7 POISSON DISTRIBUTION

A Poisson experiment is a statistical experiment that has the following
properties:

* The experiment results in outcomes that can be classified as successes or
failures. '

* The average number of successes () that occurs in a specified region is
known.

* The probability that a success will occur is proportional to the size of the
region.

» The probability that a success will occur in an extremely small region is
virtually zero.

Note that the specified region could take many forms. For instance, it could be a
length, an area, a volume, a period of time, etc.

Notation .
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The following notation is helpful, when we talk about the Poisson distribution.

« e A constant equal to approximately 2.71828. (Actually, e is the base of
the natural logarithm system.)
"« p: The mean number of successes that occur in a specified region.
« x: The actual number of successes that occur in a specified region.
¢ P(r; p): The Poisson probability that exactly v successes occur in a
Poisson experiment, when the mean number of successes 1S [

Poisson distribution

A Poisson random variable is the number of successes that result from a Poisson
experiment. The probability distribution of a Poisson random variable is called a
Poisson distribution.

Given the mean number of successes () that occur in a specified region, we can
compute the Poisson probability based on the following formula:

Poisson Formula. Suppose we conduct a Poisson experiment, in which the
average number of successes within a given region is p. Then, the Poisson
probability is: '

P(x; p) = (™) (1) / x!

where x is the actual number of successes that result from the experiment,’and e is
approximately equal to 2.71828.

The Poisson distribution has the following properties:

o The mean of the distribution is equal to p..
¢ The variance is also equal to .

Example 10

The average number of homes sold by the Acme Realty company is 2 homes per
day. What is the probability that exactly 3 homes will be sold tomorrow?
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Solution: This is a Poisson experiment in which we know the following:

* p=2;since 2 homes are sold per day, on average.

* X = 3; since we want to find the likelihood that 3 homes will be sold
fomorrow.

* e=2.71828,; since e is a constant equal to approximately 2.71828.

We plug these values into the Poisson formula as follows:

Px; p) = (e*) (0 / x!
P(3;2)=(2.71828?%) (2°) / 3!
P(3; 2) = (0.13534) (8) / 6
P(3;2) = 0.180

Thus, the probability of selling 3 homes tomorrow is 0.180 .

Cumulative Poisson Probability

A cumulative Poisson probability refers to the probability that the Poisson
random variable is greater than some specified lower limit and less than some
specified upper limit.

Example 11

Suppose the average number of lions seen on a 1-day safari is 5. What is the
probability that tourists will see fewer than four lions on the next 1-day safari?

Solution: This is a Poisson experiment in which we know the following:

* p=5;since 5 lions are seen per safari, on average.

« x=0,1,2, or 3; since we want to find the likelihood that tourists will see
fewer than 4 lions; that is, we want the probability that they will see 0, 1,
2, or 3 lions.

* e=2.71828,; since e is a constant equal to approximately 2.71828.
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To solve this problem, we need to find the probability that tourists will see 0, 1, 2,

or 3 lions. Thus, we need to calculate the sum of four probabilities: P(0; 5) + P(1;
5) + P(2; 5) + P(3; 5). To compute this sum, we use the Poisson formula:

P(x <3,5)=P(0;5) + P(1;5) + P(2; 5) + P(3; 5)

P(x<3,5)=[(e-5)(50) /0! ]+ [ (e-5)(51)/ 1! T+ [ (e-5)(52) /2! ] + [ (e-5)(53) /
31]

P(x < 3, 5)=[(0.006738)(1) / 1 ] + [ (0.006738)(5) / 1 ] + [ (0.006738)(25)/2 ] +
[ (0.006738)(125)/6 ]

P(x < 3,5) = [0.0067 ] + [ 0.03369 ] + [ 0.084224 ] + [ 0.140375 ]

P(x < 3, 5) = 0.2650

Thus, the probability of seeing at no more than 3 lions is 0.2650.

3.8 NORMAL DISTRIBUTION

The normal distribution refers to a family of continuous probability distributions
described by the normal equation.

The Normal Equation

The normal distribution is defined by the following equation:
Normal equation. The value of the random variable Y is:

Y =[ Vo * sqrt(2m) | * e’ W2

where X is a normal random variable, p is the mean, ¢ is the standard deviation, n
is approximately 3.14159, and e is approximately 2.71828.

The random variable X in the normal equation is called the normal random

variable. The normal equation is the probability density function for the normal
distribution.
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The Normal Curve

The graph of the normal distribution depends on two factors - the mean and the
standard deviation. The mean of the distribution determines the location of the
center of the graph, and the standard deviation determines the height and width of
the graph. When the standard deviation is large, the curve is short and wide; when
the standard deviation is small, the curve is tall and narrow. All normal
distributions look like a symmetric, bell-shaped curve, as shown below.

Figure 3.1

The curve on the left is shorter and wider than the curve on the right, because the
curve on the left has a bigger standard deviation. '

Probability and the Normal Curve N
The normal distribution is a continuous probability distribution. This has several
implications for probability.

o The total area under the normal curve is equal to 1.

e The probability that a normal random variable X equals any particular
value is 0.

e The probability that X is greater than a equals the area under the normal
curve bounded by a and plus infinity (as indicated by the non-shaded area
in the figure below).

¢ The probability that X is less than a equals the area under the normal curve
bounded by a and minus infinity (as indicated by the shaded area in the
figure below).
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Figure 3.2

Additionally, every normal curve (regardless of its mean or standard deviation)
~ conforms to the following "rule".

e About 68% of the area under the curve falls within 1 standard deviation of

the mean.

e About 95% of the area under the curve falls within 2 standard deviations
of the mean. :

* About 99.7% of the area under the curve falls within 3 standard deyiations
of the mean. '

Collectively, these points are known as the empirical rule or the 68-95-99.7 rule.
Clearly, given a normal distribution, most outcomes will be within 3 standard
deviations of the mean.

Example 12

An average light bulb manufactured by the Acme Corporation lasts 300 days with
a standard deviation of 50 days. Assuming that bulb life is normally distributed,
what is the probability that an Acme light bulb will last at most 365 days?

Solution: Given a mean score of 300 days and a standard deviation of 50 days, we
want to find the cumulative probability that bulb life is less than or equal to 365
days. Thus, we know the following:

e The value of the normal random variable is 365 days.
* The mean is equal to 300 days.
* The standard deviation is equal to 50 days.
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We enter these values into the Normal Distribution Calculator and compute the
cumulative probability. The answer is: P( X < 365) = 0.90. Hence, there is a 90%
chance that a light bulb will burn out within 365 days.

Example 13

Suppose scores on an IQ test are normally distributed. If the test has a mean of
100 and a standard deviation of 10, what is the probability that a person who takes
the test will score between 90 and 110?

Solution: Here, we want to know the probability that the test score falls between
90 and 110. The "trick" to solving this problem is to realize the following:

P(90<X<110)=P(X<110)-P(X<90)

We use the Normal Distribution Calculator to compute both probabilities on the
right side of the above equation.

* To compute P( X < 110 ), we enter the following inputs into the calculator:
The value of the normal random variable is 110, thé mean is 100, and the
standard deviation is 10. We find that P( X < 110) 1s 0.84.

* To compute P( X < 90 ), we enter the following inputs into the calculator:
The value of the normal random variable is 90, the mean is 100, and the
standard deviation is 10. We find that P( X <90 ) is 0.16.

We use these findings to compute our final answer as follows:

P 90 <« X < 110 ) = P(- X < 110 ) - P( X < 9 )
P( 90 < X < 110 ) = 0.84 - 0.16
P(90<X<110)=0.68 X

Thus, about 68% of the test scores will fall between 90 and 110.

Activity 3
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1. An urn contains 6 red marbles and 4 black marbles. Two marbles are drawn
with replacement from the urn. What is the probability that both of the marbles are
black?

(A)0.16
(B) 0.32
() 0.36
(D) 0.40
(E) 0.60

2. A card is drawn randomly from a deck of ordinary playing cards. You win $10
if the card is a spade or an ace. What is the probability that you will win the
game?

(A) 1/13

(B) 13/52

(C)4/13

(D) 17/52

(E) None of the above.

3. What is the probability of drawing a Heart and a Club from a deck without
replacement? S

4.Write down the sample space for the following experiments:
(a) tossing a coin;

(b) rolling a dice;

(c) answering a true-false question; and

(d) tossing two coins.

5.The probability that a student is accepted to a prestigeous college is 0.3. If 5
students from the same school apply, what is the probability that at most 2 are
accepted?
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3.9 SUMMARY

We have introduced the laws of addition and multiplication of probability in this
chapter. Certain results in probability which are helpful in ‘making day to day
decisions have been presented. Baye’s theorem and its applications are discussed
in detail in next section which was about the conditional probability approach. -
Probability distribution which can be known as an equation that links each
outcome of a statistical experiment with its probability of occurrence was
discussed with its three forms viz. binomial distribution, poisson distribution and
normal distribution. We also have looked into situations that give rise to these
type of probability distribution and discussed how these distributions are helpful
in decision making.

3.10 FURTHER READINGS

e Glenn Shafer; Vladimir Vovk, The origins and legacy of Kolmogorov’s
Grundbegriffe

e Isaac Todhunter (1865). A History of the Mathematical Theory of
Probability from the time of Pascal to that of Laplace, Macmillan.
Reprinted 1949, 1956 by Chelsea and 2001 by Thoemmes.

o Stephen M. Stigler (1982). "Thomas Bayes' Bayesian Inference," Journal
of the Royal Statistical Society -

e Von Plato, Jan, 2005, "Grundbegriffe der Wahrscheinlichtkeitsrechnung”
in Grattan-Guinness, L., ed., Landmark Writings in Western Mathematics.
Elsevier: (in English)
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Answers to activities

Activity 1

1. .988

2. Y=57.89

3. Height of son when height of father is 70 inches shall be 64.53
inches ;

Activity 2
4. 17 copies will give the maximum expected profit of 84 paise
Activity 3

1. The correct answer is A. Let A = the event that the first marble is black; and let
B = the event that the second marble is black. We know the following:

e In the beginning, there are 10 marbles in the urn, 4 of which are black.
- Therefore, P(A) = 4/10. .
- After the first selection, we replace the selected marble; so there are still
10 marbles in the urn, 4 of which are black. Therefore, P(BIA) = 4/10.

Therefore, based on the rule of multiplication:
P(A N B) =P(A) P(BIA)

P(A N B) = (4/10)*(4/10) = 16/100 = 0.16
Therefore, based on the rule of addition;

P(SUA)=P(S) + P(A)-P(SN A)
P(S U A) = 13/52 + 4/52 - 1/52 = 16/52 = 4/13
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2. The correct answer is C.

3. .064

4. (a) If a coin is tossed, the sample space is S = {H, T}.
(b) In rolling a dice, the sample spaceis S = {1, 2, 3,4, 5, 6}.
(c) In answering a true-false question, the sample space is S ={T, F}.
(d) In tossing two coins, the sample space is S = {HH, HT, TH, TT}.

5b(x <2;5 03 =b(x=0;503) +bx =15 03) + bx =2; 5, 03)

bx < 2, 5 03 = 01681 + 03601 + 03087
b(x <2;5,0.3)=0.8369
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BLOCK 4

BASIC CONCEPTS OF SAMPLING

BLOCK 4 BASIC CONCEPTS OF
SAMPLING

This block comprises two units. The first unit deals with basic concepts of
sampling, concepts of distribution of some commonly used statistics with specific
applications of the same.

The second unit gives you the understanding of hypothesis and it’s testing using
commonly used tests namely the chi-square test, Z test, T test and F test. The unit
. also acquaints you with the concepts of goodness of fit, confidence interval and
level of significance. ‘
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UNIT 1

BASIC CONCEPTS OF SAMPLING AND SAMPLING
METHODS

Objectives
On Succe_:ssful completion of this unit, you should be able to:

" e Appreciate the concept of sampling.
e Identify the potential sampling frame.
e " List the various sampling methods with their applications.
. Distinguish between probability and non probability sampling.
e Know when to use the probability proportional sampling.
e Recognize the factors which affect the sample size decisions.

Structure

1.1 Introduction

1.2 Population _

1.3 Sampling frame _ -
1.4 Probability and non Probability sampling

1.5 Sampling methods

1.6 Sample size :

1.7 Estimation and sampling distributions

1.8 Summary '

1.9 Further readings
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1.1 INTRODUCTION

Sampling is that part of statistical practice concerned with the selection of
individual observations intended to yield some knowledge about a population of
concem, especially for the purposes of statistical inference. Each observation
measures one or more properties (weight, location, etc.) of an observable entity
enumerated to distinguish objects or individuals. Survey weights often need to be
applied to the data to adjust for the sarple design. Results from probability theory
and statistical theory are employed to guide practice.

The sampling process comprises several stages:

¢ Defining the population of concern _
* - Specifying a sampling frame, a set of items or events possible to measure
Specifying a sampling method for selecting items or events from the frame

® Determining the sample size

® Implementing the sampling plan

e Sampling and data collecting

* Reviewing the sampling process
1.2 POPULATION

Successful statistical practice is based on focused problem definition. In sampling,
this includes defining the population from which our sample is drawn. A
population can be defined as including all people or items with the characteristic
one wishes to understand. Because there is very rarely enough time or money to
gather information from everyone or everything in a population, the goal becomes
finding a representative sample (or subset) of that population.

Sometimes that which defines a population is obvious. For example, a

manufacturer needs to decide whether a batch of material from production is of

high enough quality to be released to the customer, or should be sentenced for

scrap or rework due to poor quality. In this case, the batch is the population.

Although the population of interest often consists of physical objects, sometimes

we need to sample over time, space, or some combination of these dimensions.
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For instance, an investigation of supermarket staffing could examine checkout line
length at various times, or a study on endangered penguins might aim to
understand their usage of various hunting grounds over time. For the time
dimension, the focus may be on periods or discrete occasions.

In other cases, our 'population’ may be even less tangible. For example, Joseph
Jagger studied the behaviour of roulette wheels at a casino in Monte Carlo, and
used this to _

identify a biased wheel. In this case, the 'population’ Jagger wanted to investigate
was the overall behaviour of the wheel (i.e. the probability distribution of its
results over infinitely many trials), while his 'sample’ was formed from observed
results from that wheel. Similar considerations arise when taking repeated
measurements of some physical characteristic such as the electrical conductivity
of copper. ’

This situation often arises when we seek knowledge about the cause system of
which the observed population is an outcome. In such cases, sampling theory may
treat the observed population as a sample from a larger 'super population'. For
example, a researcher might study the success rate of a new 'quit smoking'
program on a test group of 100 patients, in order to predict. the effects of the
program if it were made available nationwide. Here the super population is
"everybody in the country, given access to this treatment” - grolups which does not
yet exist, since the program isn't yet available to all.

Note also that the population from which the sample is drawn may not be the

same as the population about which we actually want information. Often there is
large but not complete overlap between these two groups due to frame issues etc
(see below). Sometimes they may be entirely separate - for instance, we might
study rats in order to get a better understanding of human health, or we might
study records from people born in 2008 in order to make predictions about people
born in 2009. '

Time spent in making the sampled population and population of concern precise is
often well spent, because it raises many issues, ambiguities and questions that
would otherwise have been overlooked at this stage.
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1.3 SAMPLING FRAME

In the most straightforward case, such as the sentencing of a batch of material
from production (acceptance sampling by lots), it is possible to identify and
measure every single item in the population and to include any one of them in our
sample. However, in the more general case this is not possible. There is no way to
identify all rats in the set of all rats. Where voting is not compulsory, there is no
way to identify which people will actually vote at a forthcoming election (in
advance of the election).

These imprecise populations are not amenable to sampling in any of the ways
below and to which we could apply statistical theory.

As a remedy, we seek a sampling frame which has the property that we can
identify every single element and include any in our sample. The most
straightforward type of frame is a list of elements of the population (preferably the
entire population) with appropriate contact information. For example, in an
opinion poll, possible sampling frames include:

Electoral register

Telephone directory

Not all frames explicitly list population elements. For example, a street map can
be used as a frame for a door-to-door survey; although it doesn't show individual
houses, we can select streets from the map and then visit all houses on those
streets. (One advantage of such a frame is that it would include people who have
recently moved and are not yet on the list frames discussed above.) :

The sampling frame must be representative of the population and this is a question
outside the scope of statistical theory demanding the judgment of experts in the
particular subject matter being studied. All the above frames omit some people
who will vote at the next election and contain some people who will not; some
frames will contain multiple records for the same person. People not in the frame
have no prospect of being sampled. Statistical theory tells us about the
uncertainties in extrapolating from a sample to the frame. In extrapolating from
frame to population, its role is motivational and suggestive.

"To the scientist, however, representative sampling is the only justified procedure
for choosing individual objects for use as the basis of generaliz2tivn, and is
therefore usually the only acceptable basis for ascert~*Ling truth." (Andrew A.
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Marino) [1]. It is important to undesstand this difference to steer clear of

confusing prescriptions found in many web pages. '

In defining the frame, practical, economic, ethical, and technical issues need to be

addressed. The need to obtain timely results may preve'lt extending the frame far

into the future.

The difficulties can be extreme when the population and frame are disjoint. This is

a particular problem in forecasting where inferences about the future are made

from historical data. In fact, in 1703, when Jacob Bernoulli proposed to Gottfried

. Leibniz the possibility of using historical mortality data to predict the probability
of early death of a living man, Gottfried Leibniz recognized the problem in
replying:
“Nature has established patterns originating in the return of events but only for the
most part. New illnesses flood the human race, so that no matter how many
experiments you have done on corpses, you have not thereby imposed a limit on
the nature of events so that in the future they could not vary.” '
A frame may also provide additional 'auxiliary information' about its elements;

" when this information is related to variables or groups of interest, it may be used
to improve survey design. For instance, an electoral register might include name
and sex; this information can be used to ensure that a sample taken from that
frame covers all demographic categories of interest.” (Sometimes the auxiliary
information is less explicit; for instance, a telephone number may provide some
information about location.) ‘
Having established the frame, there are a number of ways for organizing it to
improve efficiency and effectiveness. j
It's at this stage that the researcher should decide whether the sample is in fact to
be the whole population and would therefore be a census.

1.4 PROBABILITY AND NONPROBABILITY SAMPLING

A probability sampling scheme is one in which every unit in the population has a
chance (greater than zero) of being selected in the sample, and this probability can
be accurately determined. The combination of these traits makes it possible to
produce unbiased estimates of population totals, by weighting sampled units
according to their probability of selection.
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Example 1

We want to estimate the total income of adults living in a given street. We visit
each household in that street, identify all adults living there, and randomly select
one adult from each household. (For example, we can allocate each person a
random number, gencratcd from a uniform distribution between O and 1, and
select the person with the highest number in each household). We then interview
. the selected person and find their income.

People living on their own are certain to be selected, so we simply add thcu‘
income to our estimate of the total. But a person living in a household of two
adults has only a one-in-two chance of selection. To reflect this, when we come to
such a household, we would count the selected person's income twice towards the
total. (In effect, the person who is selected from that household is taken as
representing the person who isn't selected.)

In the above example, not everybody has the same probability of selection; what
makes it a probability sample is the fact that each person's probability is known.
When every element in the population does have the same probability of selection,
this is known as an 'equal probability of selection' (EPS) design. Such designs are
also referred to as 'self-weighting' because all sampled units are given the same
weight. ‘
Probability sampling includes: Simple Random Samg]mg, Systematic Sampling,
Stratified Sampling, Probability Proportional to Siz ‘Samplmg, and Cluster or
Multistage Sampling. These various ways of probabil i sampling have two things
in common: 1) Every element has a known nonzero gfbbability of being sampled
and 2) involves random selection at some point. /

Nonprobability sampling is any sampling method where some elements of the
population have no chance of selection (thesc are sometimes referred to as 'out of
coverage'/" undercovered’), or where the probability of selection can't be accurately
determined. It involves the selection of elements based on assumptions regarding
the population of. interest, which forms the criteria for selection. Hence, because
the selection of elements is nonrandom, nonprobability sampling does not allow
the estimation of sampling errors. These conditions place limits on how much
information a’ sample can provide about the population. Information about the
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relationship between sample and population is limited, making it difficult to
exirapolate from the sample to the population. :

Example 2

We visit every household in a given street, and interview the first person to
answer the door. In any household with more than one occupant, this is a
nonprobability sample, because some people are more likely to answer the door
(e.g. an unemployed person who spends most of their time at home is more likely
to answer than an employed housemate who might be at work when the
interviewer calls) and it's not practical to calculate these probabilities.
Nonprobability Sampling includes: Accidental Sampling, Quota Sampling and
Purposive Sampling. In addition, nonresponse effects may turn any probability
design into a nonprobability design if the characteristics of nonresponse are not
well understood, since nonresponse effectively modifies each element's
probability of being sampled.

1.5 SAMPLING METHODS

Within any of the types of frame identified above, a vaﬁety of sampling methods
can be employed, individually or in combination. Factors commonly influencing
the cheice between these designs include: '

Nature and quality of the frame

Availability of auxiliary information about units on the frame
Accuracy requirements, and the need to measure accuracy
Whether detailed analysis of the sample is expected
Cost/operational concerns

Uk W -

1.5.1 Simple random sampling

In a simple random sample ('SRS') of a given size, all such subsets of the frame
are given an equal probability. Each element of the frame thus has an equal
probability of selection: the frame is not subdivided or partitioned. Furthermore,
any given pair of elements has the same chance of selection as any other such pair
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(and similarly for triples, and so on). This minimises bias and simplifies analysis
of results. In particular, the variance between individual results within the sample
is a good indicator of variance in the overall population, which makes it relatively
easy to estimate the accuracy of results.
However, SRS can be vulnerable to sampling error because the randomness of the
] ﬁ selection may result in a sample that doesn't reflect the makeup of the population.
k- For instance, a simple random sample of ten people from a given country will on
5 - average produce five men and five women, but any given ftrial is likely to
2 ,_:-j overrepresent one sex and underrepresent the other. Systematic and stratified
i techniques, discussed below, attempt to overcome this problem by using
4 information about the population to choose a more representative sample.
3 SRS may also be cumbersome and tedious when sampling from an unusually
: large target population. In some cases, investigators are interested in research
E questions specific to subgroups of the population. For example, researchers might
3 be interested in examining whether cognitive ability as a predictor of job
performance is equally applicable across racial groups. SRS cannot accommodate
the needs of researchers in this situation because it does not provide subsamples of
the population. Stratified sampling, which is discussed below, addresses this
weakness of SRS. '
Simple random sampling is always an EPS design, but not all EPS designs are
simple random sampling. N

1.5.2 Systematic sampling

Systematic sampling relies on arranging the target population according to some
ordering scheme and then selecting elements at regular intervals through that
ordered list. Systematic sampling involves a random start and then proceeds with
the selection of every kth element from then onwards. In this case, k=(population
size/sample size). It is important that the starting point is not automatically the
first in the list, but is instead randomly chosen from within the first to the kth
element in the list. bA‘simple example would be to select every 10th name from the
telephone directory (an 'every 10th' sample, also referred to as 'sampling with a
skip of 10").

As long as the starting point is randomized, systematic sampling is a type of
probability sampling. It is easy to implement and the stratification induced can
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make it efficient, if the variable by which the list is ordered is correlated with the
variable of interest. 'Every 10th' sampling is especially uvseful -for efficient
sampling from databases.

Example 3

Suppose we wish to sample people from a long street that starts in a poor district
(house #1) and ends in an expensive district (house #1000). A simple random
selection of addresses from this street could easily end up with too many from the
high end and too few from the low end (or vice versa), leading to an
unrepresentative sample. Selecting (e.g.) every 10th street number along the street
ensures that the sample is spread evenly along the length of the street,
representing all of these districts. (Note that if we always start at house #1 and end
at #991, the sample is slightly biased towards the low end; by randomly selecting
the start between #1 and #10, this bias is eliminated.) .
However, systematic sampling is especially vulnerabie to periodicities in the list.
If periodicity is present and the period is a multiple or factor of the interval used,
the sample is especially likely to be unrepresentative of the overall population,
making the scheme less accurate than simple random sampling.

A

Example 4

Consider a street where the odd-numbered houses are all on the north (expensive)
side of the road, and the even-numbered houses are all on the south (cheap) side.
Under the sampling scheme given above, it is impossible’ to get a rep_rcs'cntatiw/e
sample; either the houses sampled will all be from the odd-numbered, expensive
side, or they will all be from the even-numbered, cheap side.

Another drawback of systematic sampling is that even in scenarios where it is
more accurate than SRS, its theoretical prdpcrties make it difficult to quantify that
accuracy. (In the two examples of systematic sampling that are given above, much
of the potential sampling error is due to variation between neighbouring houses -
but because this method never selects two neighbouring houses, the sample will
not give us any information on that variation.)

As described above, systematic sampling is an EPS method, because all elements -
have the same probability of selection (in the example given, one in ten). It is not

196




M.P BHOJ (OPEN JUNIVERSITY
W——_-_——__——_

'simple random sampling' because different subsets of the same size have different
selection probabilities - e.g. the set {4,14,24,...,994} has a one-in-ten probability
of selection, but the set {4,13,24,34,...} has zero probability of selection.
Systematic sampling can also be adapted to a non—FPS approach; for an example,
see discussion of PPS samples below.

1.5.3 Stratified sampling

Where the population embraces a number of distinct categories, the frame can be
organized by these categories into separate "strata." Each stratum is then sampled
as an independent sub-population, out of which individual elements can be
randomly selected (Pedhazur & Schmelkin, 1991). There are several potential
benefits to stratified sampling.
First, dividing the population into distinct, independent strata can enable
researchers to draw inferences about specific subgroups that may be lost in 2 more
generalized random sample.
Second, utilizing a stratified sampling method can lead to more efficient statistical
estimates (provided that strata are selected based upon relevance to the criterion in
question, instead of availability of the samples). It is important to note that even if
a stratified sampling approach does not lead to increased statistical efficiency,
such a tactic will not result in less efficiency than would simple random sampling,
provided that each stratum is proportional to the group’s size in the population.
Third, it is sometimes the case that data are more readily available for individual, -
pre-existing strata within a population than for the overall population; in .such
cases, using a stratified sampling approach may be more convenient than
aggregating data across groups (though this may potentially be at odds with the
previously noted importance of utilizing criterion-relevant strata).
Finally, since each stratum is treated as an independent population, different’
sampling approaches can be applied to different strata. potentially enabling
researchers to use the approach best suited (or most cost-efiective) for each
identified subgroup within the population.
There are, however, some potential drawbacks to using stratified sampling. First,
identifying strata and implementing such an approach can increase the cost and
complexity of sample selection, as well as leading to increased complexity of
population estimates. Second, when examining multiple criteria, stratifying
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variables may be related to some, but not to others, further complicating the
design, and potentially reducing the utility of the strata. Finally, in some cases
(such as designs with a large number of strata, or those with a specified minimum
sample size per group), stratified sampling can potentially require a larger sample
than would other methods (although in most cases, the required sample size would
be no larger than would be required for simple random sampling.
A stratified sampling approach is most effective when three conditions are met;

1) Variability within strata are minimized

2) Variability between strata are maximized

3) The variables upon which the population is stratified are strongly correlated
with the desired dependent variable.

Poststratification

Stratification is sometimes introduced after the sampling phase in a process called
“poststratification (Pedhazur & Schmelkin, 1991).” This approach is typically
implemented due to a lack of prior knowledge of an appropriate stratifying
variable or when the experimenter lacks the necessary information to create a
stratifying variable during the sampling phase. Although the method is susceptible
to the pitfalls of post hoc approaches, it can provide several benefits in the right
situation. Implementation usually follows a simple random sample. In addition to
allowing for stratification on an ancillary variable, poststratification can be used to

implement weighting, which can improve the precision of a sample's estimates -

(Pedhazur & Schmelkin, 1991).
Oversampling

Choice-based sampling is one of the stratified sampling strategies. In choice-based
sampling (Scott and Wild 1986), the data are stratified on the target and a sample
is taken from each strata so that the rare target-class will be more represented in
the sample. The model is then built on this biased sample. The effects of the input
variables on the target are often estimated with more precision with the choice-
based sample even when a smaller overall sample size is taken, compared to a
random sample. The results usually must be adjusted to correct for the
oversampling.
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1.5.4 Probability proportional to size sampling (PPS) -

In some cases the sample designer has access to an "auxiliary variable” or "size
measure”, believed to be correlated to the variable of interest, for each element in
the population. This data can be used to improve accuracy in sample design. One
option is to use the auxiliary variable as a basis for stratification, as discussed
above.

Another option is probability-proportional-to-size ('PPS’) sampling, in which the
selection probability for each element is set to be proportional to its size measure,
up to a maximum of 1. In a simple PPS design, these selection probabilities can
then be used as the basis for Poisson sampling. However, this has the drawbacks
of variable sample size, and different portions of the population may still be over-
or under-represented due to chance variation in selections. To address this
problem, PPS may be combined with a systematic approach.

Example 5

suppose we have six schools with populations of 150, 180, 200, 220, 260, and
490 students respectively (total 1500 students), and we want to use student
population as the basis for a PPS sample of size three. To do this, we cou}d
allocate the first school numbers 1 to 150, the second scheol 151 to 330
(=150+180), the third school 331 to 530, and so on to the last school (1011 to
1500). We then generate a random start between 1 and 500 (equal to 1500/3) and
count through the school populations by multiples of 500. If our random start was
137, we would select the schools which have been allocated numbers 137, 637,
and 1137, i.e. the first, fourth, and sixth schools.

The PPS approach can improve accuracy for a given sample size by concentrating
sample on large elements that have the greatest impact on population estimates.
PPS sampling is commonly used for surveys of businesses, where element size
varies greatly and auxiliary information is often available - for instance, a survey
attempting to measure the number of guest-nights spent in hotels might use each
hotel's number of rooms as an auxiliary variable. In some cases, an older
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measurement of the variable of interest can be used as an auxiliary variable when
attempting to produce more current estimates.

1.5.5 Cluster sampling

Sometimes it is cheaper to 'cluster' the sample in some way e.g. by selecting
respondents from certain areas only, or certain time-periods only. (Nearly all
samples are in some sense 'clustered’ in time - although this is r'trely taken into
account in the analysis.)

Cluster sampling is an example of 'two-stage sampling' or 'multistage sampling':
in the first stage a sample of areas is chosen; in the second stage a sample of
respondents within those areas is selected.

This can reduce travel and other administrative costs. It also means that one does
not need a sampling frame listing all elements in the target population. Instead,
clusters can be chosen from a cluster-level frame, with an elemeni-level frame
created only for the selected clusters. Cluster sampling generally increases the
variability of sample estimates-above that of simple random sampling, depending
“on how the clusters differ between. themselves, as comparcd with the within-
cluster variation.

Nevertheless, some of the disadvantages of cluster sampling are the reliance of
sample estimate precision on the actual clusters chosen. If clusters chosen are
biased in a certain way, inferences drawn about population parameters from these
sample estimates will be far off from being accurate.

Multistage sampling: Multistage sampling is a complex form of cluster sampling
in which two or more levels of units are imbedded one in the other. The first stage
consists of constructing the clusters that will be used to sample from. In the
second stage, a sample of primary units is randomly selected from each cluster
(rather than using all units contained in all selected clusters). In following stages,
in each of those selected clusters, additional samples of units are selected, and so
on. All ultimate units (individuals, for instance) selected at the last step of this
procedure are then surveyed.

This technique, thus, is essentially the process of taking random samples of
preceding random samples. It is not as effective as true random sampling, but it

probably solves more of the problems inherent to random sampling. Moreover, It
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is an effective strategy because it banks on multiple randomizations. As such, it is
extremely useful.

Multistage sampling is used frequently when a complete list of a]l members of the
population does not exist and is inappropriate. Moreover, by avoiding the use of
all sample units in all selected clusters, multistage sampling avoids the large, and
perhaps unnécessa;y, costs associated traditional cluster sampling.

1.5.6 Matched random sampling

A method of assigning participants to groups in which pairs of participants are
first matched on some characteristic and then individually assigned randomly to
groups. (Brown, Cozby, Kee, & Worden, 1999, p.371).

The Procedure for Matched random sampling can be briefed with the following
contexts,

a) Two samples in which the members are clearly paired, or are matched
explicitly by the researcher. For example, IQ measurements or pairs of identical
twins.

b) Those samples in which the same attribute, or variable, is measured twice on
each subject, under different circumstances. Commonly called repeated measures.
Examples include the times of a group of athletes for 1500m before and after a
week of special training; the milk yields of cows beforg and after being fed a
particular diet.

1.5.7 Quota sampling

In quota sampling, the population is first segmented into mutually exclusive sub-
groups, just as in stratified sampling. Then judgment is used to select the subjects
or units from each segment based on a specified proportion. For example, an
interviewer may be told to sample 200 females and 300 males between the age of
45 and 60.

It is this second step which makes the technique one of non-probability sampling.
In quota sampling the selection of the sample is non-random. For example
interviewers might be tempted to interview those who look most helpful. The
problem is that these samples may be biased because not everyone gets a chance
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of selection. This random element is its greatest weakness and quota versus
probability has been a matter of controversy for many years

1.5.8 Mechanical sampling

Mechanical sampling is typically used in sampling solids, liquids and gases, using
devices such as grabs, scoops, thief probes, the COLIWASA and riffle splitter.
Care 1s needed in ensuring that the sample is representative of the frame. Much
work in the theory and practice of mechanical sampling was developed by Pierre
Gy and Jan Visman.

1.5.9 Convenience sampling

Convenience sampling (sometimes known as grab or opportunity sampling) is the
method of choosing items in an unstructured manner from the population frame.
Though almost impossible to treat rigorously, it is the method most commonly
employed in many practical situations. This is due largely to the fact that when
most researchers aim to study the behaviors of human beings, very rarely does one
find an ideal environment for carrying out that research. It may be that if not for
the convenience sample, a particular type of research could simply not take place.
Several important considerations for researchers using convenience samples
include: 1. Are there controls within the research design or experiment which can
serve to lessen the impact of a non-random, convenience sample whereby
ensuring the results will be more representative of the population? 2. Is there good "
reason to believe that a particular convenience sample would or should respond or
behave differently than a random sample from the same population? 3. Is the
question being asked by the research one that can adequately be answered using a
convenience sample?

In social science research, snowball sampling is a similar technique, where
existing study subjects are used to recruit more subjects into the sample.
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1.5.10 Lizie-intercept sampling

Line-intercept sampling is a method of sampling elements in a region whereby an
element is sampled il a chosen line segment, called a “transect”, intersects the
element.

1.5.11 Panel sampling

Pane] sampling is the method of first selecting a group of participants through a
random sampling method and then asking that group for the same information
again several times over a period of time. Therefore, each participant is given the
same survey or interview at two or more time points; each period of data
collection is called a "wave". This sampling methodology is often chosen for large
scale or nation-wide studies in order to gauge changes in the population with
regard to any number of variables from chronic illness to job stress to weekly food
expenditures. Panel sampling can also be used to inform researchers about within-
person health changes due to age or help explain chaﬁges in continuous dependent
variables such as spousal interaction. There have been several proposed methods
of analyzing panel sample data, including MANOVA, grow{h curves, and
structural equation modeling with lagged effects. For a more thorough look at
analytical techniques for panel data, see Johnson (1995).

1.5.12 Event Sampling Methodology

Event Sampling Methodology (ESM) is a new form of sampling method that
allows researchers to study ongoing experiences and events that vary across and
within days in its naturally-occurring environment. Because of the frequent
sampling of events inherent in ESM, it enables researchers to measure the
typology of activity and detect the temporal and dynamic fluctuations of work
experiences. Popularity-of ESM as a new form of research design increased over
the recent years because it addresses the shortcomings of cross-sectional research,
where once unable to, researchers can now detect intra-individual variances across
time. In ESM, participants are asked to record their experiences and perceptions in
a paper or electronic diary.
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There are three types of ESM: 1) Signal contingent — random beeping notifies
participants to record data. The advantage of this type of ESM i§ minimization of
recall bias. 2) Event contingent — records data when certain events .occur 3)
Interval contingent — records data according to the passing of a certain period of
time ;
ESM has several disadvantages. One of the disadvantages of ESM is it can
sometimes be perceived as invasive and intrusive by participants. ESM also leads
to possible self-selection bias. It may be that only certain types of individuals are
willing to participate in this type of study creating a non-random sample. Another
concern is related to participant cooperation. Participants may not be actually fill
out their diaries at the specified times. Furthermore, ESM may substantively
change the phenomenon being studied. Reactivity or priming effects may occur,
such that repeated measurement may cause changes in the participants’
experiences. This method of sampling data is also highly vulnerable to common
method variance. (Alliger & Williams, 1993)

Further, it is important to think about whether or not an appropriate dependent
variable is being used in an ESM design. For example, it might be logical to use
ESM in order to answer research questions which involve dependent variables
with a great deal of variation throughout the day. Thus, variables such as change
in mood, change in stress level, or the immediate impact of particular events may
be best studied using ESM methodology. However, it is not likely that utilizing
ESM will yield meaningful predictions when measuring someone perfornﬁng a
repetitive task throughout the day or when dependent variables are long-term in
nature (coronary heart problems). :
Replacement of selected units

Sampling schemes may be without replacement (WOR' - no element can be
selected more than once in the same sample) or with replacement (WR' - an
element may appear multiple times in the one sample). For example, if we catch
fish, measure them, and immediately return them to the water before continuing
with the sample, this is a WR design, because we might end up catching and
measuring the same fish more than once. However, if we do not return the fish to
the water (e.g. if we eat the fish), this becomes a WOR design.

204

jetis:



M.P BHOJ (OPEN JUNIVERSITY

1.6 SAMPLE SIZE

Formulas, tables, and power function charts are well known approaches to
determine sample size.

Where the frame and population are identical, statistical theory yields exact
recommendations on sample size.[1] However, where it is not straightforward to
define a frame representative of the population, it is more important to understand
the cause system of which the population are outcomes and to ensure that all
sources of variation are embraced in the frame. Large number of observations are
of no value if major sources of variation are neglected in the study. In other
words, it is taking a sample group that matches the survey category and is easy to
survey. Bartlett, Kotrlik, and Higgins (2001) published a paper titled
Organizational -Research: Determining Appropriate Sample Size in Survey
Research Information Technology, Learning, and Performance Journal that
provides an explanation of Cochran’s (1977) formulas. A discussion and
illustration of sample size formulas, including the formula for adjusting the
sample size for smaller populations, is included. A table is provided that can be

used to select the sample size for a research problem based on three alpha levels ‘

and a set error rate.
Steps for using sample size tables
1. Postulate the effect size of interest, a, and p.
2. Check sample size table (Cohen, 1988)
a. Select the table corresponding to the selected a
b. Locate the row corresponding to the desired power
c. Locate the column corresponding to the estimated effect size
d. The intersection of the column and row is the minimum sample size
required.

1.7 ESTIMATION AND SAMPLING DISTRIBUTIONS

We sometimes tend to concentrate on sample means and variances. This is natural
as much of the basic statistical techniques are based on these statistics. However,
if we wish to define a general theory of statistical methodology we need to
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consider a more general framework. We have seen that a Binomial distribution
depends only on N and p. The value of N is usually known from the design of the
sampling process, so that we consider only p as the unknown. This is referred to
as the parameter of the distribution, the

parameter controls the properties of the distribution. Knowing the value of p
means we know everything about the distribution including its mean and variance
(and all other moments). If we wished to know the variance of the Binomial
distribution we would determine the value of p and find the variance from this.
We would determine the value of p that matches (fits) the sample data in the
“best” possible way. This process is referred to as estimating the parameter and
the resulting value is the parameter estimate. '

There are several statistical questions we might ask at this stage:

1. What do we mean by “best” estimate?

2. How accurate is the estimate? ,

3. If some theory specifies the value of the parameter how do we decide if the data
provides evidence that the theory is wrong? It is the role of statistical theory to
provide answers to these questions.

Sampling Distribution

An estimator is the mathematical formula (or algorithm) used to derive the
estimate from data. In many of the examples we will consider the®chosen
estimator seems “‘obvious” or “common sense”, but in more complex situations
with more general distributions our common sense will desert us and we need a
general framework. Even in simple cases we can make th: wrong choice. If we
were asked to estimate the median of a Normal distribution (the median is the
value with 50% of the population less than this value) then statistical theory
would recommend that we estimate this by the sample mean not the sample
median. In the previous question we really meant “what do we mean by best
estimator?” After all, in a particular sample we may obtain a very poor estimate,
i.e. one that is far from the true value. This may not be the fault of the estimation
process but rather an unfortunate sample. This will always happen occasionally.
When speaking of a good estimator we are considering that it is good “in the long
run” rather than on a single occasion. In order to establish what might be a good
estimator we must establish its epeated sampling properties.
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Repeated Sampling

We are considering taking a sample of size 100 and estimating the median of the
distribution. We assume that the distribution is Normal. We are considering using
the sample median as our estimator. We wish to establish whether this is a good
estimator in the long run. Conceptually, we could proceed as follows.

Take a sample of 100 and calculate the median. Take another sample of 100 and
calculate another median. Repeat this process ay infinitum. At the end of this
repeated sampling we would have an infinite collection of sample medians. From
this we can form a distribution. This distribution is called the sampling
distribution of the estimator (the median in this case).

Properties of Estimators

In the early development of the theory there was much emphasis on unbiasedness
i.e. that the expectation of the parameter estimate was equal to the true value in
the repeated sampling sense. That is the mean of the sampling distribution is equal
to the true parameter value. In many contexts this is too restrictive and we settle
for consistency whereby the bias decreases to zero as we increase the sample size.

Another property of estimators is efficiency defined in terms of the variance of the

sampling distribution with high efficiency associated with low variance. We have
already seen the we can readily establish the properties of the sample mean as an
estimator of the population mean, it is unbiased and has variance o 2/n. It can be
shown that of all possible unbiased estimators of the parameter u of the Normal
distribution the sample mean has the smallest variance. It is said to be MVUE, the
minimum variance unbiased estimator. Note that since u is also the median of the
distribution we should estimate the median of the distribution by the sample mean
4-5 This measure of efficiency is only sensible when we also insist on
unbiasedness so becomes redundant if we relax this insistence. One measure that
can be useful is mean square error (MSE) defined as follows. Define 0 to

be an estimator for 6 then:
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Activity 1

1. list the various reasons that make sampling so attractive in drawing conclusions
about the population

2. What is the major difference between probability and non probability
sampling?

3. A study aims to quantify the organizational climate in any organization by
administering a questionnaire to a sample of its employees. There are 1000
employees in a company with 100 executives. 200 supervisors and 700 workers. If
the employees are stratified based on this classification and a sample of 100
employees is required, what should be the sample size be from each stratum, if
proportional sampling is used?

Discuss in brief the concept of estimator and sampling distribution pertaining to it.

4. What do you understand by estimation in context of sampling distributions?

discuss main properties of estimators.
A

1.8 SUMMARY

In this unit we dealt with the basic concepts of sampling, first started by sampling
and population definitions. In further sections, concept of sample frame was
discussed in depth. Further we looked at various sampling methods available
when one wants to make some inferences about a population without enumerating
it completely. We started by probability and non probability sampling and their
differences and moved ahead to other methods like simple random sampling,
systematic sampling, _stratified sampling, probability proportional to size
sampling, cluster sampling, matched random sampling, quota sampling,
mechanical sampling, convenience sampling, line intercept sampling, panel
sampling, event sampling along with discussion of areas of their applications.
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Further the concept of sample size have discussed followed by the estimation
approach and distributions pertaining to it.

1.10 FURTHER READINGS

¢ Brown, KW, Cozby, P.C., Kee, D.W., & Worden, P.E. (1999). Research
Methods in Human Development, 2d ed. Mountain View, CA: Mayfield

e Chambers, R L, and Skinner, C J (editors) (2003), Analysis of Survey Data
Wiley

o Cochran, W G (1977) Sampling Techniques, Wiley

e Flyvbjerg, B (2006) "Five Misunderstandings About Case Study
Research." Qualitative Inquiry, vol. 12, no. 2, April 2006

® Kish, L (1995) Survey Sampling, Wiley

e Kom, E L, and Graubard, B I (1999) Analysis of Health Surveys, Wiley

e Lohr, H (1999) Sampling: Design and Analysis, Duxbury

209




M.P BHOJ (OPEN JUNIVERSITY

UNIT 2

TESTING OF HYPOTHESES

Objectives
Upon successful completion of this unit, you should be able to:

® Understand the meaning of statistical hypothesis.

e Absorb the basic concepts of hypothesis testing.

¢ Learn the method of hypothesis formulation.

e Appreciate the concept of hypothesis testing.

* Perform test using student’s T-test, Z-test, F-test and chi-square tests.

Structure

2.1 Introduction

2.2 Rasic concepts of hypotheses testing
2.3 Hypotheses tests '
2.4 Student’s T-test

2.5 Z-test

2.6 Chi-square test

2.7 F-test

2.8 Summary

2.9 Further readings
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2.1 INTRODUCTION

A statistical hypothesis test is a method of making statistical decisions using
experimental data. It is sometimes called confirmatory data analysis, in contrast to
exploratory data analysis. In frequency probability, these decisions are almost
always made using null-hypothesis tests; that is, ones that answer the question
Assuming that the null hypothesis is true, what is the probability of observing a
value for the test statistic that is at least as extreme as the value that was actually
observed?{1] One use of hypothesis testing is deciding whether experimental
results contain enough information to cast doubt on conventional wisdom.
Statistical hypothesis testing is a key technique of frequentist statistical inference,
and is widely used,[citation needed] but also much criticized. The main alternative
to statistical hypothesis testing is Bayesian inference.

The critical region of a hypothesis test is the set of all outcomes which, if they
occur, cause the null hypothesis to be rejected in favor of the alternative
hypothesis. The critical region is usually denoted by C.

Example 1

As an example, consider determining whether a suitcase contains some
radioactive material. Placed under a Geiger counter, it produces 10 counts per
minute. The null hypothesis is that no radioactive material is in the suitcase and
that all measured counts are due to ambient radioactivity typical of the
surrounding air and harmless objects. We can then calculate how likely it is that
we would observe 10 counts per minute if the null hypothesis were true. If the null
hypothesis predicts (say) on average 9 counts per minute and a standard deviation
of 1 count per minute, then we say that the suitcase is compatible with the null
hypothesis (this does not guarantee that there is no radioactive material, just that
we don't have enough evidence to suggest there is). On the other hand, if the null
hypothesis predicts 3 counts per minute and a standard deviation of 1 count per

211



M.P BHOJ (OPEN JUNIVERSITY

minute, then the suitcase is not compatible with the null hypothesis, and there are
likely other factors responsible to produce the measurements.

The test described here is more fully the null-hypothesis statistical significance
test. The null hypothesis represents what we would believe by default, before
seeing any evidence. Statistical significance is a possible finding of the test,
declared when the observed sample is unlikely to have occurred by chance if the
null hypothesis were true. The name of the test describes its formulation and its
possible outcome. One characteristic of the test is its crisp decision: to reject or
not reject the null hypothesis. A calculated value is compared to a threshold,
which is determined from the tolerable risk of error.

Formulating a hypothesis

To formulate a research hypothesis we start with a research question and:
1. Generate operational definitions for all variables, and

2. Formulate a research hypothesis keeping in mind
e  expected relationships or differences
o operational definitions

3. Hypothesis can also be classified in terms of how they were derived
° inductive hypothesis - a generalization based on observation
e deductive hypothesses - derived from theory

4. A hypothesis can be directional or non-directional.

5. Hypotheses can also be stated as research hypotheses (as we have considered
them so far) or as statistical hypotheses.

6. The statistical hypotheses consist of the null hypotheéis (HO), the hypothesis

of no diffgrenc'e and the alternative hypothesis (H1 or HA) which is similar in
form to the research hypothesis.
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2.2 BASIC CONCEPTS OF HYPOTHESES TESTING

Alternative hypothesis

In statistical hypothesis testing, the alternative hypothesis (or maintained
hypothesis or research hypothesis) and the null hypothesis are the two rival
hypotheses which are compared by a statistical hypothesis test. An example might
be where water quality in a stream has been observed over many years and a test
is made of the null hypothesis that there is no change in quality between the first
and second halves of the data against the alternative hypothesis that the quality is
poorer in the second half of the record.

The concept of an alternative hypothesis in testing was devised by Jerzy Neyman
and Egon Pearson, and is it used in the Neyman—Pearson lemma. It forms a major
component modern statistical hypothesis testing. However it was not part of
Ronald Fisher's formulation of statistical hypothesis testing, and he violently
opposed its use.[1] In Fisher's approach to testing, the central idea is to assess
whether the observed dataset could have resulted from chance if the null
hypothesis were assumed to hold, notionally without prccbnceptions about what
other mode! might hold. Modern statistical hypothesis testing accommodates this
type of test since tyhe alternative hypothesis can be just the negation of the null
hypothesis.

Null hypothesis

n statistical hypothesis testing, the null hypothesis (HO) formally describes some
aspect of the statistical behaviour of a set of data; this description is treated as
valid unless the actual behaviour of the data contradicts this assumption. Thus, the
null hypothesis is contrasted against another hypothesis. Statistical hypothesis
testing is used to make a decision about whether the data contradicts the null
hypothesis: this is called significance testing. A null hypothesis is never proven by
such methods, as the absence of evidence against the null hypothesis does not
establish it. In other words, one may either reject, or not reject the null hypothesis;

one cannot accept it. Failing to reject it gives no strong reason to change decisions
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predicated on its truth, but it also allows for the possibility of obtaining further
data and then re-examining the same hypothesis. '

Example 2

Suppose we wanted to determine whether a coin was fair and balanced. A null
hypothesis might be that half the flips would result in Heads and half, in Tails.
The alternative hypothesis might be that the number of Heads and Tails would be
very different. Symbolically, these hypotheses would be expressed as

HO: P=0.5

Ha: P 4%c 0.5

Suppose we flipped the coin 50 times, resulting in 40 Heads and 10 Tails. Given
this result, we would be inclined to reject the null hypothesis and accept the
alternative hypothesis.

Type I Error

In a hypothesis test, a type I error occurs when the null hypothesis is rejected
when it is in fact true; that is, HO is wrongly rejected.

For example, in a clinical trial of a new drug, the null hypothesis might be that the
new drug is no better, on average, than the current drug; i.e. "
HO: there is no difference between the two drugs on average.

A type I error would occur if we concluded that the two drugs produced different
effects when in fact there was no difference between them. 1
The following table gives a summary of possible results of any hypothesis test:

Decision
Reject HO Don't reject HO

HO Type I Error Right decision
Truth
H1 Right decision Type II Error

A type I error is often considered to be more serious, and therefore more

important to avoid, than a type II error. The hypothesis test procedure is therefore
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adjusted so that there is a guaranteed 'low' probability of rejecting the null
hypothesis wrongly; this probability is never 0. This probability of a type T error
can be precisely computed as

P(type I error) = significance level = &

The exact probability of a type II error is generally unknown. _
If we do not reject the null hypothesis, it may still be false (a type II error) as the
sample may not be big enough to identify the falseness of the null hypothesis
(especially if the truth is very close to hypothesis).

For any given set of data, type I and type II errors are inversely related; the
smaller the risk of one, the higher the risk of the other.

A type I error can also be referred to as an error of the first kind.

Type I Error

In a hypothesis test, a type II error occurs when the null hypothesis HO, is not
rejected when it is in fact false. For example, in a clinical trial of a new drug, the
null hypothesis might be that the new drug is no better, on average, than the
current drug; i.e.

HO: there 1s no difference between the two drugs on average.

A type II error would occur if it was concluded that the two drugs produced the
same effect, i.e. there is no difference between the two drugs on average, when in
fact they produced different ones. “
A type II error is frequently due to sample sizes being too small. .
The probability of a type II error is generally unknown, but is symbolised by i
and written

P(type II error) = 5
A type II error can also be referred to as an error of the second kind.

Level of significance

The significance level of a test is a traditional frequentist statistical hypothesis

testing concept. In simple cases, it is defined as the probability of making a

decision to reject the null hypothesis when the null hypothesis is actually true (a

decision known as a Type I error, or "false positive determination"). The decision
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is often made using the p-value: if the p-value is less than the significance level,
then the null hypothesis is rejected. The smaller the p-value, the more significant
the result is said to be.

In more complicated, but practically important cases, the significance level of a
test is a probability such that the probability of making a decision to reject the null
hypothesis when the null hypothesis is actually true is no more than the stated
probability. This allows for those applications where the probability of deciding to
reject may be much smaller than the significance level for some sets of
assumptions encompassed within the null hypothesis.

The significance level is usually represented by the Greek symbol, a (alpha).
Popular levels of significance are 5%, 1% and 0.1%. If a test of significance gives
a p-value lower than the a-level, the null hypothesis is rejected. Such results are
informally referred to as 'statistically significant’. For example, if someone argues
that "there's only one chance in a thousand this could have happened by
coincidence,” a 0.1% level of statistical significance is being implied. The lower
the significance level, the stronger the evidence.

In some situations it is convenient to express the statistical significance as 1 — a.
In general, when interpreting a stated significance, one must be careful to note
what, precisely, is being tested statistically.

Different a-levels have different advantages and disadvantages. Smaller a-levels

give greater confidence in the determination of significance, but run greater risks
of failing to reject a false null hypothesis (a Type II error, or "false negative

determination”), and so have less statistical power. The selection of an a-level
inevitably involves a compromise between significance and power, and
consequently between the Type I error and the Type II error.

Fixed significance levels such as those mentioned above may be regarded as
useful in exploratory data analyses. However, modern statistical advice is that,
where the outcome of a test is essentially the final outcome of an experiment or
other study, the p-value should be quoted explicitly. And, importantly, it should
be quoted whether or not the p-value is judged to be significant. This is to allow
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maximum information to be transferred from a summary of the study into meta-
analyses. '

Goodness of fit

The goodness of fit of a statistical model describes how well it fits a set of
observations. Measures of goodness of fit typically summarize the discrepancy
between observed values and the values expected under the model in question.
Such measures can be used in statistical hypothesis testing, e.g. to test for
normality of residuals, to test whether two samples are drawn from identical
distributions (see Kolmogorov-Smirnov test), or whether outcome frequcncies
follow a specified distribution (see Pearson's chi-square test). In the analysis of
variance, one of the components into which the variance is partitioned may be a
lack-of-fit sum of squares.

Example 3

( The approach of chi-square will be discussed in later sections however in order
to illustrate goodness of fit we use it in this section )

The chi-square statistic is a sum of differences between observed and expected

outcome frequencies, each squared and divided by the expectation:
’ (0 - E)?
x'= — S

where:

O = an observed frequency
E = an expected (theoretical) frequency, asserted by the null hypothesis

The resulting value can be compared to the chi-square distribution to determine
the goodness of fit.

In order to determine the degrees of Freedom of the Chi-Squared distribution, one
takes the total number of observed frequencies and subtracts one. For example, if
there are eight different frequencies, one would compare to a chi-squared with
seven degrees of freedom.
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Another way to describe the chi-squared statistic is with the differences weighted
based on measurement error:

A . ¥ . . e .
where 6~ is the variance of the observation. This definition is useful when one has
estimates for the error on the measurements.

The reduced chi-squared statistic is simply the chi-squared divided by the number
of degrees of freedom:

) ol Y (o
Npod = — = ;Z-T_

i’
where v is the number of degrees of freedom, usuall y given by N — n, where N is
the number of data points, and n is the number of fit parameters. The advantage of
the reduced chi-squared is that it already normalizes for the number of data points

3
and model complexity. As a rule of thumb, a large \evindicates a poor model fit.
However \ie < Lindicates that the model is 'over-fitting' the data (either the
model is improperly fitting noise, or the error bars have been over-estimated). A
\'f-.-a = lindicates that the fit has not fully captured the data (or that the error bars

. . 2. . a
have been under-estimated). In principle a \i.: = ls the best-fit for the given
data and error bars.

Confidence interval

In statistics, a confidence interval (CI) is an interval estimate of a population
parameter. Instead of estimating the parameter by a single value, an interval likely
to include the parameter is given. Thus, confidence intervals are used to indicate
the reliability of an estimate. How likely the interval is to contain the parameter is
determined by the confidence level or confidence coefficient. Increasing the
desired confidence level will widen the confidence interval,
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A confidence interval is always qualified by a particular confidence level (say, ),
usually expressed as a percentage; thus one speaks of a "95% confidence
interval". The end points of the confidence interval are referred to as confidence
limits. For a given estimation procedure in a given situation, the higher the value
of y, the wider the confidence interval will be.

The calculation of a confidence interval generally requires assumptions about the
nature of the estimation process — it is primarily a parametric method - for
example, it may depend on an assumption that the distribution of errors of
estimation is normal. As such, confidence intervals as discussed below are not
robust statistics, though modifications can be made to add robustness — see robust
confidence intervals.

Confidence intervals are used within Neyman-Pearson (frequentist) statistics; in
Bayesian statistics a similar role is played by the credible interval, but the credible
interval and confidence interval have different conceptual foundations and in
general they take different values. As part of the general debate between
frequentism and Bayesian statistics, there is disagreement about which of these
statistics is more useful and appropriate, as discussed in alternatives and critiques.

2.3 HYPOTHESIS TESTS

Statisticians follow a formal process to determine whether to accepi or reject a
null hypothesis, based on sample data. This process, called hypothesis testing,
consists of four steps. "

State the hypotheses. This involves stating the null and alternative hypotheses.
The hypotheses are stated in such a way that they are mutually exclusive. That is,
if one is true, the other must be false.

Formulate an analysis plan. The analysis plan describes how to use sample data
to accept or reject the null hypothesis. The accept/reject decision often focuses
around a single test statistic.

Analyze sample data. Find the value of the test statistic (mean score, proportion,
t-score, z-score, etc.) described in the analysis plan. Complete other computations,
as required by the plan.
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Interpret results. Apply the decision rule described in the analysis plan. If the
test statistic supports the null hypothesis, accept the null hypothesis; otherwise,
reject the null hypothesis.

There are a number of tests available to test the relevance of hypotheses.
Important ones are discussed in this chapter.

2.4 STUDENT'S T-TEST

A t-test is any statistical hypothesis test in which the test statistic has a Student's ¢
distribution if the null hypothesis is true. Tt is applied when the population is
assumed to be normally distributed but the sample sizes are small enough that the
statistic on which inference is based is not normally distributed because it relies
on an uncertain estimate of standard deviation rather than on a precisely known
value.

Independent one-sample t-test

In testing the null hypothesis that the population mean is equal to a specified value
Ho, one uses the statistic

ees iy

= .
S ;’r \/ﬁ

where s is the sample standard deviation of the sample and n is the sample size.
The degrees of freedom used in this test is 11 — 1.

Independent two-sample t-test
Equal sample sizes, equal variance
This test is only used when both:

* the two sample sizes (that is, the n or number of participants of
each group) are equal;
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e it can be assumed that the two distributions have the same
variance. '

Violations of these assumptions are discussed below.

The ¢ statistic to test whether the means are different can be calculated as follows:

K- %
- Iy
S_\';_\", ' V’f
where
{q2 2
Se . = o/ 2% 5%
SN T \f 5

Here ‘S-\'z-\'zis the grand standard deviation (or pooled standard deviation), 1 =
group one, 2 = group two. The denominator of ¢ is the standard error of the
difference between two means.

For significance testing, the degrees of freedom for this test is 2n — 2 where n is
the number of participants in each group.

Unequal sample sizes, equal variance
This test is used only when it can be assumed that the two distributions have the

same variance. (When this assumption is violated, see below.) The ¢ statistic to
test whether the means are different can be calculated as follows:

- 5-X
Sxixs i+ e
where
o o _ JOn =D +(m-1F,
NNy =y 40 —2 '

221




M.P BHOJ (OPEN )UNIVERSITY

o T T L ST T S8 VIR T T 0 e e T R O T e T L TP U AR B T . T ST it e T Ty AR, i

Note that the formulae above are generalizations for the case where both samples
have equal sizes (substitute n; and n; for n and you'll see).

b‘-\':-\'zis an estimator of the common standard deviation of the two samples: it is
defined in this way so that its square is an unbiased estimator of the common
variance whether or not the population means are the same. In these formulae, n =
number of participants, | = group one, 2 = group two. 12— | is the number of
degrees of freedom for either group, and the total sample size minus two (that is,
n +ny—2) is the total number of degrees of freedom, which is used in
significance testing. '

Unequal sample sizes, unequal variance

This test is used only when the two sample sizes are unequal and the variance is
assumed to be different. See also Welch's t test. The ¢ statistic to test whether the
means. are different can be calculated as follows:

- XN -1
I =
5%, -X»
where

3 F]
s 5

S AR (el

: \' ny D)

Where s° is the unbiased estimator of the variance of the two samples, n = number
2
!5?1 s

of participants, 1 = group one, 2 = group two. Note that in this case, Nis
not a pooled variance. For use in significance testing, the distribution of the test
statistic is approximated as being an ordinary Student's t distribution with the

degrees of freedom calculated using

&8 Ny va
(S7/1y + 85/ 020

{87/ fing — D4 (s3/maV f(na = 1)

D.F.=
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This is called the Welch-Satterthwaite equation. Note that the true distribution of
the test statistic actually depends (slightly) on the two unknown variances: see
Behrens—Fisher problem.

Dependent t-test for paired samples
This test is used when the samples are dependent; that is, when there is only one

sample that has been tested twice (repeated measures) or when there are two
samples that have been matched or "paired".

= Xb— o
sp/ VN
Example 4

Consider the following research problem: We have a random sample of 25 fifth
grade pupils who can do 15 pushups on the average, with a standard deviation of
9, after completing a special physical education program. Does this value of 15
differ significantly from the population value of 127

In this problem we are comparing a sample mean with a population mean but we
do not know the population standard deviation. We can't use the Z-test in this case
but we can use the one-sample t-test. The one sample t-test does not require the
population standard deviation. The formula for the one-sample t-test is

Where Xis the sample mean,

H is the population mean,

S

and “Xis the sample estimate of the standard error of the mean.
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In the problem we are considering, we do not know the population standard
deviation (or the standard error of the mean) so we estimate it from the sample
data. The sample estimate of the standard error of the mean is based on S (the
sample standard deviation) and the square root of n (the sample size).

A}

S, =—
o n

If you look back at the research problem you will see that we have all the data we
need to calculate the value of't.

The sample mean, Xis 15.

The population mean, His 12,

The sample standard deviation, S is 9.
The sample size, n is 25.

We can thus calculate the value of t as follows:

A 9 9

Sg=-==—=-=18
' Jn B35

=X-ﬂ-15_12-—§—-1.667

t
S 18 18

The t statistic is not distributed normally like the z statistic i Lt is distributed as
(guess what) the t-distribution, also referred to as student's distribution. We will
use this distribution when we do the six step process for testing statistical
hypothesis. To use the table for the t-distribution we need to know one other piece
of information and that is the degrees of freedom for the one sample t-test.
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2.5 Z-TEST

A Z-test is any statistical test for which the distribution of the test statistic under
the null hypothesis can be approximated by a normal distribution. Since many test
statistics are approximately normally distributed for large samples (due to the
central limit theorem), many statistical tests can be performed as approximate Z-
tests if the sample size is not too small. In addition, some statistical tests, such as
comparisons of means between two samples, or a comparison of the mean of one
sample to a given constant, are exact Z-tests under certain assumptions.

One sample location test '

The term Z-test is often used to refer specifically to the one-sample location test
comparing the mean of a set of measurements to a given constant. If the observed
data X, ..., X, are (i) uncorrelated, (ii) have a common mean p, and (iii) have a
common variance 67, then the sample average Xhas mean p and variance o*/n. If
our null hypothesis is that the mean value of the population is a given number py,

r

we can use v — foas a test-statistic, rejecting the null hypothesis if - — Hois
large.

In order to calculate the standardized statistic Z = (X' — /t0)/$, we need to either *
know or have an approximate value for o>, from which we can calculate s* = ¢° /
n. In some applications, ¢” is known, but this is uncommon. If the sample size is
moderate or large, we can substitute the sample variance for o7, giving a plug-in
test. The resulting test will not be an exact Z-test since the uncertainty in the
sample variance is not accounted for — however, it will be a good approximation
unless the sample size is small. A t-test can be used to account for the uncertainty
in the sample variance when the sample size is small and the data are exactly
normal. There is no universal constant at which the sample size is genérally
considered large enough to justify vse of the plug-in test. Typical rules of thumb
range from 20 to 50 samples. For larger sample sizes, the t-test procedure gives
almost identical p-values as the Z-test procedure

Example 5
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Suppose that in a particular U.S. state, the mean and standard deviation of scores
on a reading test are 100 points, and 12 points, respectively. Our interest is in the
scores of 55 fifth grade students in a particular elementary school who received a
mean score of 96. We can ask whether this mean score is significantly lower than
the state level mean — that is, are the students in this school comparable to a
simple random sample of 55 students from the state as a whole, or are their scores
surprisingly low?

We begin by calculating the standard error of the mean:

Next we calculate the z-score, which is the distance from the sample mean to the
population mean in units of the standard error:

In our example, the mean score of 96 is —2.47 standard error units from the
population mean of 100. Looking up the z-score in a table of the standard normal
distribution, we find that the probability of observing a standard normal value
below -2.47 is approximately 0.0068. This is the one-sided p-value for the null
hypothesis that the 55 students are a simple random sample from the population of
test-takers in the state. The two-sided p-value is approximately 0.014 (twice the
one-sided p-value).

Another way of stating things is that with probability 1-0.0144.986, a simple
random sample of 55 students would have a mean test score within 4 units of the
population mean. We could also say that with 98% confidence we reject the null
hypothesis that the the 55 test takers are a simple random sample from the
population of test-takers.

The Z-test tells us that the 55 students of interest have an unusually low mean test
score compared to most simple random samples of similar size from the
population of test-takers. A deficiency of this analysis is that it does not consider
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whether the effect size of 4 points is meaningful. If the average score of 900
students (say, all students in a county) were 99, nearly the same z-score and p-
value would be observed, showing that if the sample size is large enough, very
small differences from the null value can be highly statistically significant. See
statistical hypothesis testing for further discussion of this issue.

2.6 CHI-SQUARE TEST

A chi-square test (also chi-squared or y° test) is any statistical hypothesis test n
which the sampling distribution of the test statistic is a chi-square distribution
when the null hypothesis is true, or any in which this is asymptotically true,
meaning that the sampling distribution (if the null hypothesis is true) can be made
to approximate a chi-square distribution as closely as desired by making the
sample size large enough.

Some examples of chi-squared tests where the chi-square distribution is only
approximately valid:

* Pearson's chi-square test, also known as the chi-square goodness-
of-fit test or chi-square test for independence. When mentioned
without any modifiers or without other precluding context, this test
is usually understood. '

¢ Yates' chi-square test, also known as Yates' correction for
continuity.

e Mantel-Haenszel chi-square test.

e Linear-by-linear association chi-square test.

e The portmantean test in time-series analysis, testing for the
presence of autocorrelation

* Likelihood-ratio tests in general statistical modelling, for testing
whether there is evidence of the need to move from a simple model
to a more complicated one (where the simple model is nested
within the complicated one).

One case where the distribution of the test statistic is an exact chi-square
distribution is the test that the variance of a normally-distributed population has a
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given value based on a sample variance. Such a test is uncommon In practice
because values of variances to test against are seldom known exactly.

Pearson's chi-square (y°) test is the best-known of several chi-square iests —
statistical procedures whose results are evaluated by reference to the chi-square
distribution. Its properties were first investigated by Karl Pearson. In contexts
where it is important to make a disiinction between the test statistic and its
distribution, names similar to Pearson X-squared test or statistic are used.

It tests a null hypothesis that the frequency distribution of certain events observed
in a sample is consistent with a particular theoretical distribution. The events
considered must be mutually exclusive and have total probability 1. A common
case for this is where the evenis each cover an outcome of a categorical variable.
A simple example is the hypothesis that an ordinary six-sided die is "fair", i.e., all
six outcomes are equally likely to occur. Pearson's chi-square is the original and
most widely-used chi-square test.

Test for fit of a distribution

In this case N observations are divided among n cells. A simple application is
where it is required to test the hypothesis that, in the general population, values
would occur in each cell with equal frequency. Then the "theoretical frequency”
for any cell (under the null hypothesis of a discrete uniform distribution) is
calculated as

Ei = Njn,

and the reduction in the degrees of freedom is p=1: notiocnally because the
observed frequencies O; are constrained to sum to N. When testing whether
observations are random variables whose distribution belongs to a given family of
distributions, the "theoretical frequencies” are calculated using a distribution from
that family fitted in some standard way.

The reduction in the degrees of freedom is calculated as p=s+1, where s is the
number of parameters used in fitting the distribution. For instance, when checking
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a 3-parameter Weibull distribution, p=4, and when checking a normal distribution
(where the parameters are mean and standard deviation), p=3.

In other words, there will be (n - p) degrees of freedom, where n is the number of
categories. It should be noted that the degrees of freedom are not based on the
number of observations as with a Student's t or F-distribution. For example, if
testing for a fair, six-sided die, there would be five degrees of freedom because
there are six categorics/parameters (each number). The number of times the die is
rolled will have absolutely no effect on the number of degrees of freedom.

The value of the test-statistic is

e ‘}_(Oith}j

1=1
where

X? = the test statistic that asymptotically approaches a y* distribution.

O; = an observed frequency;

E; = an expected (theoretical) frequency, asserted 5y the null hypothesis;
n = the number of possible outcomes of each event.

=4

The chi-square statistic can then be used to calculate a p-value by comparing the
value of the statistic to a chi-square distribution. The number of degrees of
freedom is equal to the number of cells n, minus the reduction in degrees of
freedom, p.

The result about the number of degrees of freedom is valid when the original data
was multinomial and hence the estimated parameters are efficient for minimizing
the chi-square statistic. More generally however, when maximum likelihood
-estimation does not coincide with minimum chi-square estimation, the distribution
will lie somewhere between a chi-square distribution with n — 1 —-pand n—-1
degrees of freedom (See for instance Chernoff and Lehmann 1954).
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Bayesian method

In Bayesian statistics, one would instead use a Dirichlet distribution as conjugate
prior. If one took a uniform prior, then the maximum likelihood estimate for the
population probability is the observed probability, and one may compute a
credible region around this or another estimate.

Test of independence

In this case, an "observation" consists of the values of two outcomes and the null
hypothesis is that the occurrence of these outcomes is statistically independent.
Each outcome is allocated to one cell of a two-dimensional array of cells (called a
table) according to the values of the two outcomes. If there are r rows and ¢
columns in the table, the "theoretical frequency” for a cell, given the hypothesis of
independence, is

E .= k=1 Oik Xy O
.7 ‘\-

and fitting the model of "independence" reduces the number of degrees of
freedom by p = r + ¢ — 1. The value of the test-statistic is

(O Oij— Eij)”

-y 3 G Byl

fe=l jei 1.;

The number of degrees of freedom is equal to the number of cells rc, minus the
reduction in degrees of freedom, p, which reduces to (r — 1)(c = 1).

For the test of independence, a chi-square probability of less than or equal to 0.05
(or the chi-square statistic being at or larger than the 0.05 critical point) is
commonly interpreted by applied workers as justification for rejecting the null
hypothesis that the row variable is unrelated (that is, onlv randomly related) to the
column variable.!"! The alternative hypothesis corresponds to the variables having
an association or relationship where the structure of this relationship is not
specified.
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Example 6

For example, to test the hypothesis that a random sample of 100 people has been
drawn from a population in which men and women are equal in frequency, the
observed number of men and women would be compared (.. » - theoretical
frequencies of 50 men and 50 women. If there were 45 men in the sample and 55
women, then

o (45-50)2 (55— 50)2
o _
X o= e o i

If the null hypothesis is true (i.e., men and women are chosen with equal
probability in the sample), the test statistic will be drawn from a chi-square
distribution with one degree of freedom. Though one might expect two degrees of
freedom (one each for the men and women), we must take into account that the
total number of men and women is constrained ( 100), and thus there is only one
degree of freedom (2 - 1). Alternatively, if the male count is known the female
count is determined, and vice-versa.

Consultation of the chi-square distribution for 1 degree of freedom shows that the
probability of observing this difference (or a more extreme difference than this) if
men and women are equally numerous in the population is approximately 0.3.
This probability is higher than conventional criteria for statistical significance
(.001-.05), so normally we would not reject the null hypothesis that the number of
men in the population is the same as the number of women (i.e. we would
consider our sample within the range of what we'd expect for a 50/50 male/female
ratio.)

2.7 F-TEST

An F-test is any statistical test in which the test statistic has an F-distribution if
the null hypothesis is true. In the simplest case, it is used to examine the effect of
some factor on some outcome. A factor groups events into any number of
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different categories, and we'd like to know if these different categories can help
predict different outcomes. The null hypothesis presumes the factor will NOT
effect the outcome: Differences in the outcome's variation between factor groups
and within factor groups should simply be due to chance. However, when the
variation berween factor groups is much greater than the variation within factor
groups, then F will be high, and the probability that the factor has no effect (the p-
value) will typically be iower (depending on the degrees of freedom). Then, the
null hypoihesis is highly unlikely, and we can conclude that the factor has a
statistically significant effect (well, if our data actually adhere to gaussian
presumptions).

The name was coined by George W. Snedecor, in honour of Sir Ronald A. Fisher.
Fisher initially developed the statistic as the variance ratio in the 1920s.["
Examples include:

s The hypothesis that the means of multiple normally distributed
populations, all having the same standard deviation, are equal. This is
perhaps the most well-known of hypotheses tested by means of an F-test,
and the simplest problem in the analysis of variance (ANOVA).

» The hypothesis that a proposed regression model fits well. See Lack-of-fit
sum of squares. N

e The hypothesis that the standard deviations of two normally distributed
populations are equal, and thus that they are of comparable origin.

Note that if it is equality of variances (or standard deviations) that is being tested,
the F-test is extremely non-robust to non-normality. That is, even if the data
displays only modest departures from the normal distribution, the test is unreliable
and should not be used.

Formula and calculation

The value of the test statistic used in an F-test consists of the ratio two different
estimates of quantities which are the same according to the null hypothesis being

tested. If the null hypothesis were true and if estimated values were not being
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used, this ratio would have a value of 1: however, because estimated values are
used, F would sometimes be above or below 1. If the null hypothesis is not true
the ratio would be rather different from 1. In the usual applications, statistical
modelling assumptions are made founded on using the normal distribution to
describe random errors and the estimates used in the ratio are statistically
independent but are typically derived from the same data set.

In the case of multiple-comparison ANOVA problems, the F-test is used to test if
the variance measuring the differences between groups in a certain pre-defined
grouping of observations is large compared to the variance measuring the
differences within the groups: a large value would tend to suggest that grouping is
good or valid in some sense, or that there are real differences between the groups.
The formula for an F-test is:

(explained variance)

(rmexplained variance)’

or:

lhet\‘ veen-Zroup '\._I.L.L:Ihlht‘\ _

{ within-group variability) '

where the quantities on the top and bottom of this ratio are each unbiased
‘estimates of the within-group variance on the assumption that the between group
variance is zero. Note that when there are only two groups for the F-test,

F=1#,
where ¢ is the Student's ¢ statistic.

One-way ANOVA example

Consider an experiment to study the effect of three different levels of some factor
on a response (e.g. three types of fertilizer on plant growth). If we had 6
observations for each level, we could write the outcome of the experiment in a
table like this, where ay, a», and a3 are the three levels of the factor being studied.
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a,a; as
6 8 13
8 129
49 11
5 118
367
4 8 12

The null hypothesis, denoted Hy, for the overall F-test for this experiment would
be that all three levels of the factor produce the same response, on average. To
calculate the F-ratio: '

Step 1: Calculate the A; values where i refers to the number of the condition. So:

A=) a;=618+31513+4=30
Ar= ap=811219111+618=5
Ag= ay=134 9111 18+ T [ 12=060

Step 2: Calculate Yj; being the average of the values of condition a;

T.n=£—£=5
n 0

== 1, 5d

Y p=—=—=19

- n 4]

_ A, 60

a3 = ~=—=10

Y . F 10

Step 3: Calculate these values:

Total:
T=Y A=A +.L+ 43 =30+ 51+ 60 =144

Average overall score:
Vo= T 144

syt 1
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whcre a = the number of conditions and »n = the number of participants in
each condition.

[¥]=3(¥?) = 1304
This is every score in every condition squared and then summed.’
(42
[4] =
T’
171 = (z(n}

= 1236

= 1152

Step 4: Calculate the sum of squared terms:

SS4=[A]-[T]=84
SSsia=[Y]1-[A]l=

Step 5: The degrees of freedom are now calculated:

dfy=a-1=3-1=2
dfsia=aln-1)=3(6-1)=15

Step 6: The Means Squared Terms are calculated:

S5
MS, = 554 _ 492
df a
5S84
»F'Ar)-“_-" = : '-=-..:—
Mg dfs; A )

Step 7: Finally the ending F-ratio is now ready:

MS,

! = - == !:).2—'
MSsa

Step 8: Look up the Fiy; value for the problem:
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Feil(2,15) = 3.68 at « = 0.05. Since F =9.27 > 3.68, the results are significant at
the 5% significance level. One would reject the null hypothesis, concluding that
the three levels of the factor in this experiment do not all produce the same
response on average.

Note F(x, y) denotes an F-distribution with x degrees of freedom in the numerator
and y degrees of freedom in the denominator.

Activity 2

1.A drug manufacturing company conducted a survey of customers. The research
question is: Is there a significant relationship between packaging preference (size
of the bottle purchased) and economic status? There were four packaging sizes:
small, medium, large, and jumbo. Economic status was: lower, middle, and upper.
The following data was collected.

Lower Middle Upper

Small 24 22 18
Medium 23 28 19
Large 18 27 29 .
Jumbo 16 21 33

2. Discuss different tests that can be applied to hypotheses testing.

3. Here are the results of a public opinion poll broken down by gender. What is
the exact probability that the difference between the observed and expected
frequencies occurred by chance? ( Hint: apply the f-test)

Male Female
Favor 10 14
Opposed 15 9
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2.8 SUMMARY

A hypothesis is a specific statement of prediction. It describes in concrete (rather
than theoretical) terms what you expect will happen in your study. A single study
may have one or many hypotheses formulations. Basic concepts of hypotheses
testing such as confidence interval, level of confidence, degrees of freedom, type I
and II errors and concepts of alternative and null hypotheses must be kept in mind
while testing the hypotheses. In order to prove the relevance of hypotheses,
hypotheses testing are important. A number of tests are available to test the
hypotheses important of which are discussed in detail in this chapter, the student’s
T test, chi-square test, Z-test and f-test.
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Answers to activity

Activity 2

1. Chi-square statistic = 9.743
Degrees of freedom = 6
Probability of chance = .1359

3. Fisher's exact probability = .0828
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