
M.Sc. Previous Year
Chemistry, MC-05(B)

COMPUTERS FOR CHEMISTS

MADHYA PRADESH BHOJ (OPEN) UNIVERSITY - BHOPAL

COURSE WRITERS

Sanjay Saxena, Renowned Author of over 130 books on Information Technology
Unit (1.0-1.1, 1.2, 1.3-1.4, 1.5-1.7, 1.8-1.9, 1.10, 1.11-1.15)

Dr. Himanshu Pandiya, Professor, H.O.D. and Dean, F.O.S., Department of Chemistry, Faculty of Science, People’s
University, Bhopal (M.P.)
Units (2.0-2.4, 2.9-2.18, 3, 4)

Prof. S. Mohan Naidu, Former Principal (I.C.), V.R.N. College of Computer Science and Management, Tirupati
Unit (2.5-2.6)

Dr. Subburaj Ramasami, Former Professor and Consultant, S.R.M. University, Chennai
Unit (2.7-2.8)

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Registrar,
Madhya Pradesh Bhoj (Open) University, Bhopal

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Madhya Pradesh Bhoj (Open) University, Bhopal, Publisher and its Authors
shall in no event be liable for any errors, omissions or damages arising out of use of this information
and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

Copyright © Reserved, Madhya Pradesh Bhoj (Open) University, Bhopal

Published by Registrar, MP Bhoj (open) University, Bhopal in 2020

Reviewer Committee
1. Dr. Ila Jain

Professor
Govt. Dr. Shyama Prasad Mukharjee Science and
Commerce College, Bhopal (M.P.)

2. Dr. Neetupriya Lachoria
Assistant Professor
Govt. Dr. Shyama Prasad Mukharjee Science and
Commerce College, Bhopal (M.P.)

Advisory Committee
1. Dr. Jayant Sonwalkar

Hon’ble Vice Chancellor
Madhya Pradesh Bhoj (Open) University,
Bhopal, (M.P.)

2. Dr. L.S. Solanki
Registrar
Madhya Pradesh Bhoj (Open) University,
Bhopal, (M.P.)

3. Dr. Kishor John
Director
Madhya Pradesh Bhoj (Open) University,
Bhopal, (M.P.)

4. Dr. Ila Jain
Professor
Govt. Dr. Shyama Prasad Mukharjee Science
and Commerce College, Bhopal (M.P.)

5. Dr. Neetupriya Lachoria
Assistant Professor
Govt. Dr. Shyama Prasad Mukharjee Science
and Commerce College, Bhopal (M.P.)

6. Dr. S.D. Dwivedi
Professor
Govt. Dr. Shyama Prasad Mukharjee Science
and Commerce College, Bhopal (M.P.)

3. Dr. S.D. Dwivedi
Professor
Govt. Dr. Shyama Prasad Mukharjee Science and
Commerce College, Bhopal (M.P.)

SYLLABI-BOOK MAPPING TABLE
Computers for Chemists

Unit-1: Introduction to Computer and
Computing

(Pages 3-90)

Unit-2: Computer Programming in
FORTRAN/C/Basic

(Pages 91-160)

Unit-3: Programming in Chemistry
(Pages 161-188)

Unit-4: Use of Computer Programmes
(Pages 189-213)

Unit I
Introduction to Computer and Computing
Basic structure and functioning of computers with a PC as an
illustrative example. Memory, I/O devices. Secondary storage.
Computer languages, Operating systems with DOS as an example.
Introduction to UNIX and WINDOWS, Data Processing, principles
of programming, Algorithms and flow charts.

Unit II
Computer Programming in Fortran/C/Basic
(The language features are listed herewith reference to FORTRAN.
The instructor may choose another language such as BASIC or C
and the features may be replaced appropriately). Elements of the
computer language, Constants and variables, Operations and
symbols, Expressions, Arithmetic assignment statement, Input and
Output, Format statement, Termination statements, Branching
statements such as IF or GO TO statements, LOGICAL variables,
Double precision variables, Subscripted variables and DIMENSION,
DO statement, FUNCTION and SUBROUTINE, COMMON and
DATA statements. (Students learn the programming logic and these
language features by hands on experience on a personal computer
from the very beginning of this topic).

Unit III
Programming in Chemistry
Development of small computer codes involving simple formulae
in chemistry, such as van der Waals equation, pH titration, kinetics,
radioactive decay. Evaluation of lattice energy and ionic radii from
experimental data, Linear simultaneous equations to solve secular
equations within the Huckel theory, Elementary structural features
such as bond lengths, bond angles, dihedral angles etc. of molecules
extracted from a databases such as Cambridge data base.

Unit IV
Use of Computer Programmes
The students will learn how to operate a PC and how to run standard
programmes and packages. Execution of linear regression, X- Y
plot, numerical integration and differentiation as well as differential
equation solution programmes, Monte Carlo and Molecular
dynamics, Programmes with data preferably from physical
chemistry laboratory. Further, the students will operate one or two
or the packages such as MATLAB, EASYPLOT, LOTUS, FOXPRO
and Word Processing software such as WORDSTAR/MSWORD.

INTRODUCTION 1

UNIT 1 INTRODUCTION TO COMPUTER AND COMPUTING 3-90

1.0 Introduction
1.1 Objectives
1.2 Basic Structure and Functioning of Computers
1.3 I/O Devices
1.4 Memory
1.5 Computer Languages
1.6 Operating System with DOS
1.7 Introduction to Windows
1.8 Introduction to UNIX
1.9 Data Processing

1.10 Principles of Programming: Algorithms and Flow Charts
1.11 Answers to ‘Check Your Progress’
1.12 Summary
1.13 Key Terms
1.14 Self-Assessment Questions and Exercises
1.15 Further Reading

UNIT 2 COMPUTER PROGRAMMING IN FORTRAN/C/BASIC 91-160

2.0 Introduction
2.1 Objectives
2.2 Introduction to C Language

2.2.1 Importance of C
2.2.2 Execution of a C Program

2.3 Elements of the Computer Language
2.3.1 Character Set
2.3.2 Identifiers and Keywords
2.3.3 Data Types

2.4 Constants and Variables
2.5 Operators and Expressions

2.5.1 Operators
2.5.2 Expressions

2.6 Input/Output Operations
2.7 Branching

2.7.1 if Statement
2.7.2 if...else Statement
2.7.3 Nesting of the if...else Statements
2.7.4 Logical Operators and Branching
2.7.5 Conditional Operator and if...else

2.8 Loops and Control Constructs
2.8.1 Iteration using if
2.8.2 for Statement
2.8.3 Symbolic Constants and Looping
2.8.4 Other Forms of the for Loop
2.8.5 The while Loop
2.8.6 do . . . while Loop
2.8.7 switch Statement
2.8.8 Break, Continue, Return and goto

CONTENTS

2.9 Logical Variables
2.10 Double Precision Variable
2.11 Subscripted and Dimension Variable
2.12 Function and Subroutine
2.13 Common and Data Commands
2.14 Answers to ‘Check Your Progress’
2.15 Summary
2.16 Key Terms
2.17 Self-Assessment Questions and Exercises
2.18 Further Reading

UNIT 3 PROGRAMMING IN CHEMISTRY 161-188

3.0 Introduction
3.1 Objectives
3.2 Chemistry and Basic Programming

3.2.1 Elements of Programming
3.3 Determination of Molecular Weight
3.4 Debye-Huckel Limiting Law Theory
3.5 Ionic Mobilities of Ions
3.6 Thermodynamic Parameters
3.7 Van der Waal’s Equation
3.8 Radioactive Decay
3.9 Application of Chemical Kinetics

3.10 Determination of Lattice Energy
3.11 pH Titration
3.12 Program to Obtain the Value of Atomic Mass Unit in MeV
3.13 Determination of RMS, Average and Most Probable Velocities of Gases
3.14 Answers to ‘Check Your Progress’
3.15 Summary
3.16 Key Terms
3.17 Self-Assessment Questions and Exercises
3.18 Further Reading

UNIT 4 USE OF COMPUTER PROGRAMMES 189-213

4.0 Introduction
4.1 Objectives
4.2 Standard Programmes and Packages

4.2.1 Programming Process
4.3 Execution of Linear Regression
4.4 Numerical Integration and Differentiation
4.5 Monte Carlo and Molecular Dynamics
4.6 Introduction to Software Packages

4.6.1 MATLAB
4.6.2 EasyPlot
4.6.3 FoxPro

4.7 Answers to ‘Check Your Progress’
4.8 Summary
4.9 Key Terms

4.10 Self-Assessment Questions and Exercises
4.11 Further Reading

Introduction

NOTES

Self - Learning
Material 1

INTRODUCTION

Computers have today changed the face of the world of business and management.
Today, it is essential for a successful manager to be comfortable using computers
and also be aware of the great potential they offer in improving efficiency and
productivity in all aspects of business. Students need to understand the functional
components of a computer. They should also have thorough knowledge of the
characteristics, performance and interactions of these components. Without
knowledge of computer architecture, it will not be possible for students to structure
a program and ensure that it runs efficiently.

C is a programming language and is substantially different from C++ and
C#. Many operating systems are written using C, UNIX being the first. Later,
Microsoft Windows, Mac OS X and GNU/Linux were written in C. Not only is C
the language of operating systems, it is the precursor and inspiration for almost all
the popular high-level languages available today. Perl, PHP, Python and Ruby are
also written in C. In fact, one of the strengths of C is its universality and portability
across various computer architectures. Therefore, C can be used for the
development of different types of applications that include real-time systems and
expert systems. C also provides flexibility to users for introducing new types of
features in their programs, depending upon the requirement and definition of user-
defined functions. The various features of C—algorithms, flow charts, decision-
making statements, functions, arrays, structures and pointers—are useful for
program developers.

This book, Computers for Chemists, follows the SIM format wherein
each Unit begins with an Introduction to the topic followed by an outline of the
‘Objectives’. The detailed content is then presented in a simple and an organized
manner, interspersed with ‘Check Your Progress’ questions to test the
understanding of the students. A ‘Summary’ along with a list of ‘Key Terms’ and a
set of ‘Self-Assessment Questions and Exercises’ is also provided at the end of
each unit for effective recapitulation.

NOTES

Self - Learning
Material 3

Introduction to Computer
and ComputingUNIT 1 INTRODUCTION TO

COMPUTER AND
COMPUTING

Structure

1.0 Introduction
1.1 Objectives
1.2 Basic Structure and Functioning of Computers
1.3 I/O Devices
1.4 Memory
1.5 Computer Languages
1.6 Operating System with DOS
1.7 Introduction to Windows
1.8 Introduction to UNIX
1.9 Data Processing

1.10 Principles of Programming: Algorithms and Flow Charts
1.11 Answers to ‘Check Your Progress’
1.12 Summary
1.13 Key Terms
1.14 Self-Assessment Questions and Exercises
1.15 Further Reading

1.0 INTRODUCTION

Computers can store huge amounts of data and are designed to cater to the end
user’s need for speed, accuracy, diligence, versatility and storage capacity. A
computer can perform no function unless it is able to communicate with the outside
world. Therefore, a system for receiving information from and communicating results
to the external world of other computers and users is necessary for computers. An
output device is an electromechanical device that accepts data from the computer
and translates it into a form that can be understood by the outside world. The
processed data, stored in the memory of the computer, is sent to an output unit,
which then transforms the internal representation of data into a form that can be
read by the users.

Computer language is the computer’s native language that can only be
understood by the computer itself. FORTRAN, COBOL, BASIC, PASCAL,
ADA, LISP, C, C#, C++ and Java are the frequently used computer languages.
All computer languages can be classified as machine language or first generation
language, assembly language or second generation language or high-level language
or third generation language. An assembly language is a low-level programming
language which implements a symbolic representation of the machine codes and
other constants needed to program a given CPU architecture.

Introduction to Computer
and Computing

NOTES

Self - Learning
4 Material

Interpreters and compilers are translation or conversion programs that
produce the machine code from high-level languages. An interpreter translates the
instructions of the program one statement at a time. A compiler takes an entire
high-level language program to produce a machine code version for running as a
single program.

Microsoft Disk Operating System (MS DOS) is a single user, single tasking
operating system. DOS has a command-line, text-based/non-graphical user-
interface commonly referred to as Character Based User Interface (CUI). When
the computer is switched on, a small program checks all internal devices, electronic
memory and peripherals. Once this process is completed, MS DOS is loaded.
UNIX is a multi-user and multitasking operating system. In a multi-user
environment, the computer can receive the commands from a number of end users
to run programs, access files, and print documents simultaneously. In this unit, you
will learn about the basic structure and functioning of computers, I/O devices,
memory, computer languages, operating system with DOS, Windows and UNIX
and principles of programming.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic structure and functioning of computers

 Explain the different types of I/O devices

 Explain the concept memory

 Discuss the various categories computer languages

 Explain the basics of DOS, Windows and UNIX

 Understand the term data processing

 Describe the principles of programming

1.2 BASIC STRUCTURE AND FUNCTIONING
OF COMPUTERS

You know that computers can store huge amounts of data and are designed to
cater to the end user’s need for speed, accuracy, diligence, versatility and storage
capacity. Their characteristics are as follows:

 Speed: The internal processes of computers operate at the speed of light.
This speed is checked only due to the programs controlling these processes
and the amount of data being processed. A computer can perform in a
minute what a human being may require a lifetime to perform. The speed of
computers is not referred to in terms of seconds or milliseconds. It is referred
to in terms of microseconds (10–6), nanoseconds (10–9) and picoseconds
(10–12).

NOTES

Self - Learning
Material 5

Introduction to Computer
and Computing

 Accuracy: A computer is extremely accurate. Although there are chances
of errors, they occur mostly due to human error and not due to technological
drawbacks. Errors originate due to imprecise thinking by the programmer
or due to the input of erroneous data. They could also arise due to the poor
design of systems. Garbage In Garbage Out (GIGO) is the term used to
refer to computer errors resulting from incorrect data input or due to lack
of reliability of programs.

 Diligence: Unlike human beings, computers are capable of working for
long hours without breaks. A computer can perform a million calculations
with accuracy and speed. The speed or level of accuracy will be consistent
and will not deteriorate till the last calculation.

 Versatility: Computers can perform any task, as long as it can be broken
down to a series of logical steps. For example, a task such as preparing a
payroll can be reduced to a few logical tasks or operations performed in a
logical sequence. This breaking down of a process into steps facilitates
computerized processing.

A computer does have its limitations also. It can perform only four basic
operations:

(i) It can exchange information with the outside world via input/output
(I/O) devices.

(ii) It can transfer data internally within the CPU.
(iii) It can perform basic arithmetic operations.
(iv) It can perform comparisons.

 No intelligence: A computer does not possess any intelligence of its own.
It needs to be told what it has to do and in what sequence.

 Information explosion: The speed with which computers can process
information in huge volumes, has resulted in information explosion or
generation of information on a large scale. Human beings have the ability to
sift through data or knowledge and choose to retain only the important
information and forget the irrelevant or unimportant stuff. There is clearly a
difference in the way computers store information and the way human beings
do. The secondary storage capacity of computers assists in storing and
recalling any amount of information. Therefore, it becomes possible to
retain information for as long as desired and recall it whenever needed.

Basic Anatomy of a Computer

The size, shape, cost and performance of computers have changed over the years.
However, the basic logical structure remains the same (Figure 1.1). A computer
system has three essential parts:

 Input device

 CPU (consisting of the main memory, the arithmetic logic unit and the control
unit).

 Output device

Introduction to Computer
and Computing

NOTES

Self - Learning
6 Material

In addition to these basic parts, computers also use secondary storage
devices (also called auxiliary storage or backing storage), used for storing data
and instructions on a long-term basis.

(Central Processing Unit)

Fig. 1.1 Schematic Representation of a Computer System

Inputting, storing, processing, outputting and controlling are the basic
operations that help convert raw data into relevant information.

1. Input units

Inputting is the process of entering data and instructions into the computer system.
Both program and data need to be in the computer system before any kind of operation
can be performed. Program refers to the set of instructions which the computer has
to carry out, and data is the information on which these instructions are to operate.
For example, if the task is to rearrange a list of telephone subscribers in alphabetical
order, the sequence of instructions that guide the computer through this operation is
the program, whilst the list of names to be sorted is the data.

The input unit performs the process of transferring data and instructions
from the external environment into the computer system. Instructions and data
enter the input unit depending upon the particular input device used (keyboard,
scanner, card reader, etc). Regardless of the form in which the input unit receives
data, it converts the data and instructions into a form that is acceptable by the
computer (binary codes). It then supplies the converted data and instructions for
further processing to the computer system.

Main memory (primary storage)

Storing is the process of saving instructions and data so as to make them available
for future use, as and when required.

Instructions and data are stored in the primary storage before processing
and are transferred when there is need, to the arithmetic logic unit (ALU) where
the actual processing takes place. After completing the process, the final results

NOTES

Self - Learning
Material 7

Introduction to Computer
and Computing

are again stored in the primary storage till they are released to an output device.
Also, any intermediate results generated by the ALU are temporarily transferred
back to the primary storage till there is a need for them. Thus, data and instructions
may move back and forth many times between the primary storage and the ALU
before the processing is completed. It may be worth remembering that no processing
is done in the primary storage.

Arithmetic logic unit

Processing refers to the performing of arithmetic or logical operations on data, to
convert them into useful information. Arithmetic operations include operations of
add, subtract, multiply, divide and logical operations are operations of comparison
like less than, equal to, greater than.

After the input unit transfers the information into the memory unit, the
information can then be further transferred to the ALU where comparisons or
calculations are done and results are sent back to the memory unit. Since all data
and instructions are represented in numeric form (bit patterns), ALUs are designed
to perform the following four basic arithmetic operations: multiply, divide, add,
subtract, and logical operations like less than, equal to, greater than.

Secondary storage

A computer has limited storage capacity. It becomes necessary to store large
volumes of data. Therefore, additional memory called secondary storage or auxiliary
memory is used in most computer systems.

Storage other than the primary storage is called secondary storage and it
enables permanent storage of programs and huge volumes of data belonging to
the users. Examples of such storage are hardware devices like magnetic tapes and
magnetic disks.

2. Output unit

Outputting is the process of providing the results to the user. These could be in
the form of visual display and /or printed reports.

Since computers work with binary codes, the results produced are also in
binary form. The basic function of the output unit, therefore, is to convert these
results into human-readable form before providing the output through various output
devices like terminals, printers, etc.

Control unit

Controlling refers to the process of directing the sequence and manner of
performance of all these operations. It is the function of the control unit to ensure
that according to the stored instructions, the right operation is done on the right
data at the right time. It is the control unit that obtains instructions from the program
stored in the main memory, interprets them and ensures that other units of the
system execute them in the desired order. In effect, the control unit is comparable
to the central nervous system in the human body.

Introduction to Computer
and Computing

NOTES

Self - Learning
8 Material

3. Central processing unit

The control unit and arithmetic logic unit are together known as the central
processing unit. It is the brain of any computer system.

A CPU is the most important component of a digital computer that interprets
the instructions and processes the data contained in computer programs. The CPU
works as the brain of the computer and performs most of the calculations. It is
also referred to as the processor and is the most important component of a computer.
For large computers, a CPU may require one or more printed circuit boards
(PCBs) but in the case of PCs it comes in the form of a single chip called a
microprocessor. PCB is a board that contains the circuitry used to connect the
components of a PC.

Basic Design and Components of a Computer

Personal computers are microcomputers that are commonly used for commercial
data processing, Desktop Publishing (DTP), engineering applications and so on.
Figure 1.2 shows a personal computer.

Fig. 1.2 Personal Computer

A personal computer comprises a Hard Disk Drive (HDD), Random Access
Memory (RAM), processor, a keyboard, a Floppy Disk Drive (FDD), a mouse,
a CD drive, a colour monitor and Read Only Memory (ROM). The RAM, ROM,
microprocessor and other circuits are connected on the motherboard, which is a
single board as shown in Figure 1.3.

NOTES

Self - Learning
Material 9

Introduction to Computer
and Computing

Monitor, Keyboard
and Mouse Ports

Microprocessor/CPU

Expansion slots

Sound card

Video/graphics card

ROM

RAM
Motherboard

Hard disk drive

Floppy disk
drive

Data bus

Networking
ports

Fig. 1.3 Motherboard and CPU

Processor

The microprocessor control the control unit, memory unit (register) and arithmetic
logic unit (Figure 1.4). The processing speed of a computer depends on the
clockspeed of the system and is measured in megahertz (MHz).

The Intel Corporation’s Pentium processors are used in most personal
computers. Motorola, Cyrix and AMD (Advanced Micro Devices) are other
makers of processors which are also used in personal computers.

Fig. 1.4 A Microprocessor

1.3 I/O DEVICES

A computer can perform no function unless it is able to communicate with the
outside world. Therefore, a system for receiving information from and
communicating results to the external world of other computers and users is
necessary for computers. Computers have an input-output sub-system, referred
to as I/O sub-system, which provides an efficient mode of communication
between the central system and the outside world. Programs and data must be
entered into the computer memory for processing, and results obtained from
computations must be displayed or recorded for the user’s benefit.

Introduction to Computer
and Computing

NOTES

Self - Learning
10 Material

This can be explained with a very common scenario where the average
marks of a student need to be calculated, based on the marks obtained in various
subjects by the student. The marks would typically be available in the form of a
document containing the student’s name, roll number and marks scored in each
subject. This data must first be stored in the computer’s memory after converting
it into machine – readable form. The data will then be processed (average marks
calculated) and sent from the memory to the output unit, which will present the
data in a form that can be read by users. (Figure 1.5)

Input
Device

CPU &
Memory Data

Input
from

External
World

Data
Coded

in
Internal

Form

Processed
Data in
Internal

Form

Data
Converted
to Human-
Readable

Form

Output
Device

Fig. 1.5 Role of I/O Devices in a Computer System

The I/O devices that provide a means of communication between the
computer and the outside world are known as peripheral devices. This is because
they surround the CPU and the memory of a computer system. While input devices
are used to enter data from the outside world into the primary storage, output
devices are used to provide the processed results from primary storage to users.

As mentioned earlier in this unit, input devices transfer instructions and user
data to the computer. The most commonly used input devices can be classified
into the categories of:

• Keyboard devices (general and special purpose, key-to-diskette, key-
to-disk, key-to-tape)

• Point-and-draw devices (mouse, trackball, joystick, light pen, touch
screen)

• Scanning devices (optical mark recognition, magnetic ink character
recognition, optical bar code reader, digitizer, electronic-card reader)

• Voice recognition devices

• Vision-input devices (webcam, video camera etc.)

Keyboard

Keyboard devices allow input into the computer system by pressing a set of keys,
mounted on a board connected to the computer system. Keyboard devices are
typically classified as general-purpose keyboards and special-purpose keyboards.

General-purpose keyboard

The most familiar means of entering information into a computer is through a
typewriter-like keyboard that allows a person to enter alphanumeric information
directly.

NOTES

Self - Learning
Material 11

Introduction to Computer
and Computing

QWERTY Keyboard

Function Keys

Numeric Keypad

Cursor Movement Keys

Space Bar

Enter Key

Shift Key

Fig. 1.6 QWERTY Keyboard Layout

The most popular keyboard used today is the 101-keys keyboard with a
traditional QWERTY layout, having an alphanumeric keypad, twelve function keys,
a variety of special-function keys, numeric keypad, and dedicated cursor-control
keys. It is so called because of the arrangement of its alphanumeric keys in the
upper left row (as refer the Fig. 1.6).

• Alphanumeric Keypad: Contains keys for the English alphabets, 0 to
9 numbers, special characters like * + – / [] etc.

• Twelve Function Keys: These are keys labeled F1, F2 ... F12 and
are a set of user programmable function keys. The actual function
assigned to a function key differs from one software package to another.
These keys are also called soft keys since their functionality can be
defined by the software.

• Special-function Keys: Have special functions assigned to each of
them. For example, the enter key is used to send the keyed-in data into
the memory. Other special keys include:
• Shift (used to enter capital letters or special characters defined above

the number keys)
• Spacebar (used to enter a space at the cursor location)
• Ctrl (used in conjunction with other keys to provide added functionality

on the keyboard)
• Alt (like Ctrl, it is used to expand the functionality of the keyboard)
• Tab (used to move the cursor to the next tab position defined)
• Backspace (used to move the cursor one position to the left and also

delete the character in that position)
• Caps Lock (to toggle between the capital letter lock feature – when

‘on’, it locks the keypad for capital letters input)
• Num Lock (to toggle the number lock feature on and off – when ‘on’,

it inputs numbers when you press the numbers on the numeric keypad)
• Insert (used to toggle between the insert and overwrite mode during

data entry – when ‘on’, entered text is inserted at the cursor location)

Introduction to Computer
and Computing

NOTES

Self - Learning
12 Material

• Delete (used to delete the character at the cursor location)
• Home (used to move the cursor to the beginning of the work area

which could be the line, screen or document depending on the software
being used)

• End (used to move the cursor to the end of the work area)
• Page Up (used to display the previous page of the document being

currently viewed on screen)
• Page Down (used to view the next page of the document being currently

viewed on screen)
• Escape (usually used to negate the current command)
• Print Screen (used to print what is being currently displayed on the

screen)

• Numeric Keypad: Consists of keys having numbers (0 to 9) and
mathematical operators (+, – , *, /) defined on them. It is usually
located on the right side of the keyboard and supports quick entry of
numerical data.

• Cursor-control Keys: Defined by the arrow keys used to move the
cursor in the direction indicated by the arrow (top, down, left, right)

The Dvorak system, designed for easier use and learning, is yet another
popular key arrangement. In this keyboard, the vowels are located on one side
and the most commonly used consonants are located on the other side of the
home or middle row. This ensures that when a user types words, the keystrokes
tend to alternate between the two hands. Though the Dvorak system has not
gained wide popularity, nevertheless, some user do favour it over the QWERTY
keyboard.

Special-purpose keyboard

These are standalone data entry systems used for computers deployed for specific
applications. These typically have special purpose keyboards to enable faster
data entry. A very typical example of such kind of keyboards can be seen at the
Automatic Teller Machines or the ATMs where the keyboard is required for limited
functionality (support for some financial transactions) by the customers. Point-of-
Sale or POS terminals at fast food joints and air/railway reservation counters
constitute other examples of special-purpose keyboards.

These keyboards are specifically designed for special types of applications
only.

Mouse

A mouse is a small device that is pushed across a desk surface by a user. It serves
the function of indicating a point on the display screen and selects one or more
possible actions from that particular location. It gained popularity as a computer
device when it was made a standard tool of the Apple Macintosh by Apple
Computer. It now forms an integral component of the graphical user interface

NOTES

Self - Learning
Material 13

Introduction to Computer
and Computing

(GUI) of all personal computers. It derives its name from being similar in colour
and size to a toy mouse.

Fig. 1.7 Mouse

Traditional mouses have two buttons on top, with the left one being used
most often. In the windows operating system, clicking once on it sends a ‘Select’
signal that informs users that a specific position has been selected, and that it is
ready for further action. Double-clicking (clicking the mouse twice in quick
succession) a selected position initiates a specific action on the object that has
been selected. For instance, in a Windows operating system, double-clicking an
object launches the program associated with it. The button on the right offers
certain infrequently used functions. For instance, while a Web page is being viewed,
clicking on an image opens a pop-up menu that offers the option of saving the
image on the hard disk. Some mouses even come with a third button. Models for
left-handed users are also available.

Variants of a mouse

Touchpad

A touchpad is a touch sensitive input device which takes user input to control
the onscreen pointer and perform other functions similar to that of a mouse.
Instead of having an external peripheral device such as a mouse, the touchpad
enables the user to interact with the device through the use of a single or multiple
fingers being dragged across relative positions on a sensitive pad. (Figure 1.8)
They are mostly found in Notebooks and laptops where convenience, portability
and space are the prime design concerns.

Touchpads are pressure and touch sensitive. They use finger drag movement
and tapping combinations to perform multiple control operations. For instance, a
user can also perform the scroll function of a mouse by sliding a finger in-between
certain points, usually the extreme top and bottom corners on the right side of the
pad. Their user interface is much more convenient to use and puts less strain on
the wrist and hand, which is a very common side effect of using computers with a
mouse over a long period of time. The functionality of a touchpad isn’t limited by
the manufacturers’ user interface. They can be user programmed to recognize a
combination of finger and tap movements to perform new actions as an input
device.

Touchpads have shown a steady growth in market demand and user
acceptability over all phases of their development cycles. Their growth is further

Introduction to Computer
and Computing

NOTES

Self - Learning
14 Material

expected to continue in the same way as the demand for touch sensitive portable
devices with more functionality and better appearance is on the rise.

Fig. 1.8(a) Touchpad Fig. 1.8(b) Touchpad

Hand-Held Devices

Trackball

The trackball is a pointing device that is much like an inverted mouse. It consists of
a ball inset in a small external box, or adjacent to–and in the same unit as–the
keyboard of some portable computers. (Figure 1.9)

Fig. 1.9 Trackball

It is more convenient and requires much less space than the mouse since
here the whole device is not moved (as in the case of a mouse). Trackball comes
in various shapes but supports the same functionality. Typical shapes used are a
ball, a square, and a button (typically seen in laptops).

Joystick

The joystick is a vertical stick that moves the graphic cursor in the direction the
stick is moved. (As shown in Fig. 1.10)

Fig. 1.10 Joystick

NOTES

Self - Learning
Material 15

Introduction to Computer
and Computing

It consists of a spherical ball, which moves within a socket, and has a stick
mounted on it. The user moves the ball with the help of the stick that can be moved
left or right, forward or backward, to move and position the cursor in the desired
location. Joysticks typically have a button on top that is used to select the option
pointed by the cursor.

Video games, training simulators and control panels of robots are some
common uses of a joystick.

Light pen

A light pen is a pen-shaped tool that allows natural on-screen movement. (Fig.
1.11) It is made up of a light sensitive cell and a lens assembly designed in such a
way that it focuses onto itself any light in its field of view. It has a light receptor or
scanning beam that locates the position of the pen (X and Y coordinates on the
screen). It gets activated when the pen is pressed against the display screen. Once
the light pen locates a particular section on the display screen, the required action
is initiated by the appropriate system software.

Fig. 1.11 Light Pen

Light pens are typically used in CAD (Computer Aided Design) applications
to directly draw on screen.

Touch Screen

A touch screen is probably one of the simplest and most intuitive of all input devices.
It uses optical sensors in, or near, the computer screen that can detect the touch of
a finger on the screen. Once the user touches a particular screen position, sensors
communicate the position to the computer. This is then interpreted by the computer
to understand the user’s choice for input.

The most common usage of touch screens is in information kiosks where
users can receive information at the touch of a screen. These devices are becoming
increasingly popular today.

Optical Input Devices

Scanning Devices

Scanning devices are input devices used for direct data entry from the source
document into the computer system. Scanners capture and store information in a
graphical format, and then display it on the graphical screen. A scanner consists of
two parts, one that illuminates the page for capturing the optical image, and the

Introduction to Computer
and Computing

NOTES

Self - Learning
16 Material

other that converts and stores the graphical image in a digital format. Once this is
done, the computer can then see and directly process this scanned graphical image.

Fig. 1.12 Hand-held Scanner

There are two types of scanners, Contact and Laser. In both types, a beam
of light is bounced off an image, and the value of the image is determined by
measuring the reflected light. Hand-held contact scanners make contact as they
are brushed over the printed matter to be read (Figure 1.12). Laser-based scanners
are more versatile and can read data passed near the scanning area. (Figure 1.13).

Fig. 1.13 Flat-bed Scanner

Hand-held scanners are used where the information to be scanned or the
volume of documents to be scanned is very low. They are much cheaper as
compared to the flat-bed scanners.

Capturing information using scanners reduces the possibility of human error
typically seen during large data entry. The reduction in human intervention improves
the accuracy of data and provides for timeliness of the information processed.

The latest trend in inputting data is source data automation. Data is captured
by the source data automation equipment as the by-product of a business activity.
This wholly eliminates manual data input. A few common examples of these are
described below.

Optical Mark Recognition (OMR)

Optical mark recognition devices sense the marks on computer readable paper.
They are usually used by academic institutions for grading aptitude tests where the
correct option is marked from multiple options given on special kinds of answer
sheets (shown in Fig. 1.14). The OMR device directly reads this paper, and the
computer can then use it for further processing.

NOTES

Self - Learning
Material 17

Introduction to Computer
and Computing

The actual technique used by an OMR device once again involves focusing light
on the page being scanned, thereby detecting the reflected light pattern for the
marks. Pencil marks made by the user reflect the light determining which responses
are marked.

Page 1 of 4

Answer Sheet

a1.

2.

3.

4.

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

Fig. 1.14 An Example of a Pre-printed Answer Sheet that can be Read by an OMR Device

Magnetic Ink Character Recognition (MICR)

MICR is similar to optical mark recognition and is used exclusively by the banking
industry. The banking industry makes use of MICR devices for directly reading
the account numbers written on cheques and for processing them further as required.

Banks using MICR technology print cheque books on special types of paper.
(As shown in Figure 1.15) The necessary details of the bank (like the bank’s
identification code, relevant account number, and cheque number) are pre-printed
on the cheques using an ink that contains iron oxide particles that can be magnetised.

Magnetic Ink Characters

Fig. 1.15 A Bank Cheque using MICR Technology

Optical Barcode Reader (OBR)

Data coded in the form of small vertical lines forms the basis of barcoding.
Alphanumeric data is represented using adjacent vertical lines called barcodes.
These are of varying widths and the spacing between them is used to uniquely
identify books, merchandise in stores, postal packages etc.

Below is an example of a bar code used on one of the books for its unique
identification.

Introduction to Computer
and Computing

NOTES

Self - Learning
18 Material

Fig. 1.16(a) Barcode Fig. 1.16(b) Barcode Reader

A barcode reader uses laser beam technology. The laser beam is moved
across the pattern of bars in a barcode. These bars reflect the beam in different
ways. The reflected beam is then sensed by a light-sensitive detector, which then
converts the light patterns into electrical pulses, thereby transmitting them to logic
circuits for further conversion to alphanumeric value.

Barcode devices are available as hand-held devices.

Digitizer

Digitizers are used to convert drawings or pictures and maps into a digital format
for storage into the computer. (Figure 1.17)

Fig. 1.17 A Digitizer

A digitizer consists of a digitising or graphics tablet, which is a pressure
sensitive tablet, and a pen with the same X and Y co-ordinates as on screen.
Some digitising tablets also use a crosshair device instead of a pen. The movement
of the pen or crosshair is reproduced simultaneously on the display screen. When
the pen is moved on the tablet, the cursor on the computer’s screen moves
simultaneously to the corresponding position on screen (X and Y coordinates).
This allows the user to draw sketches directly or input existing sketched drawings
easily.

Digitizers see most common usage by architects and engineers as a tool for
Computer Aided Designing (CAD).

Electronic-card reader

Card readers are devices that allow direct data input into a computer system. The
electronic-card reader is connected to a computer system and reads the data
encoded on an electronic card and transfers it to the computer system for further
processing.

NOTES

Self - Learning
Material 19

Introduction to Computer
and Computing

Electronic cards are plastic cards with data encoded on them and meant for
a specific application. Typical examples of electronic cards are the plastic cards
issued by banks to their customers for use in Automatic Teller Machines or ATMs.
(Figure 1.18) Electronic cards are also used by many organizations for controlling
access of various types of employees to physically secured areas.

Fig. 1.18 Access Card Security System

Depending on the manner in which the data is encoded, electronic cards
may be either magnetic strip cards or smart cards. Magnetic strip cards have a
magnetic strip on the back of the card. Data stored on magnetic strips cannot be
read with the naked eye, a useful way to maintain confidential data.

Smart cards, going a stage further, have a built-in microprocessor chip where
data can be permanently stored. They also possess some processing capability,
making them suitable for a variety of applications. For example, to gain access, an
employee inserts a card or badge in the reader. This device reads and checks the
authorization code before permitting the individual to enter a secured area. Since
smart cards can hold more information as compared to magnetic strip cards, they
are gaining in popularity.

Output Devices

An output device is an electromechanical device that accepts data from the
computer and translates it into a form that can be understood by the outside world.
The processed data, stored in the memory of the computer, is sent to an output
unit, which then transforms the internal representation of data into a form that can
be read by the users.

There are two ways in which output can normally be produced – on paper,
or on a display device/unit. Some applications also use other types of output such
as mechanical output and speech output. Output produced on display units, or
speech output that cannot be touched, is referred to as softcopy output while
output produced on paper or material that can be touched is known as hardcopy
output.

A wide range of output devices are available today and can be broadly
classified under the categories of:

• Display devices (monitors, multimedia projectors, terminals—dumb,
smart, intelligent, X terminals)

Introduction to Computer
and Computing

NOTES

Self - Learning
20 Material

• Printers (dot matrix, inkjet, laser)

• Plotters (flatbed, drum)

• Computer Output Microfilms (COM)

• Voice response systems (voice reproduction system, speech synthesizer)

Monitors

Display devices

The display device is an important peripheral component of a computer system.
Display terminals called alphanumeric terminals were used by conventional
computers. These used a form of of multi-dot (7 × 5 or 9 × 7) array to display
characters. Their chief use lay in reading the text information displayed on the
screen. The increasing demand for displaying graphs and pictures for presenting
information in a visual form (more effectual in user interaction) led to the popularity
of graphic display devices.

An image is produced by patterns created through a sequence of dots known
as ‘pixels’ (picture elements) that comprise a graphic display. Every dot that forms
a part of this pattern can be addressed uniquely and directly. Owing to the fact that
each dot can be addressed as a separate unit, it provides greater flexibility for
drawing pictures.

Display screen technology may belong to one of the three following
categories:

Cathode Ray Tube (CRT): A display screen coated with phosphor, an
electron gun and an electromagentic field controlling the electon beam form the
major contituents of a cathode ray terminal. The screen’s phosphor-coating is
organized into a grid of dots called pixels.

An electron beam is emitted by the electron gun, which the electromagnetic
field directs towards the display screen coated with phosphor; and this is how an
image is created.

CRT displays can be either of the two following types:

• Raster scan display: In a raster scan display, the electron beam is
directed across all rows of pixels from the top to the bottom of the
screen to project the image. Because the image is constantly refreshed,
a high dynamic capability is provided. The raster screen display is gaining
popularity now as it makes available full colour displays at reasonably
low costs.

• Vector CRT display: In vector CRT displays, only the positions where
the image is to be created have the electron beam directed at them.

The display device’s resolution indicates the quality of the display. The number
of horizontal and vertical pixels determine the resolution. Typical resolutions in
graphic display range from (800 × 600) to (640 × 768) to (1024 × 1024) pixels.

Based on the resolution and the number of colours supported, several
standards for colour monitors have evolved. The most popular of these include:

NOTES

Self - Learning
Material 21

Introduction to Computer
and Computing

• Colour Graphics Adapter (CGA), which has a resolution of (320 ×
200) and supports up to sixteen colours.

• Extended Graphics Adapter (EGA), which has a resolution of (640 ×
350) and supports up to sixteen colours.

• Video Graphics Adapter (VGA), which has a resolution of (640 × 480)
and supports up to 256 colours.

• Super VGA, having a resolution ranging from (800 × 600) to (1280 ×
1024) and supporting up to 256 or more colours.

Note that each one of these is implemented by installing an add-on card in
the computer, commonly known as graphics adapter or the video card. This card
is then connected to the appropriate monitor.

Liquid Crystal Display (LCD): Though LCD technology is now being
used for display terminals, it was first introduced in the 1970s in clocks and watches.
In LCD screens, liquid crystals substitute cathode ray tubes to produce images.
They do not have a superior colour capability and the quality of the images they
produce is comparatively poor. The main advantage of LCD is its low energy
consumption. It finds its most common usage in portable devices where low energy
requirements and compactness are of prime importance.

Projection display: Projection display technology is characterized by
replacing the personal size screen with large screens upon which the images are
projected. Projection display systems are connected to the computer and an
enlarged version of the object appearing on the computer display terminal is
projected on a large screen. These are being used today for large group
presentations.

Monitors

Monitors use a Cathode Ray Tube (CRT) to display information. It resembles a
television screen and is similar to it in other respects.

The monitor is typically associated with a keyboard for manual input of
characters. The screen displays information as it is keyed in, enabling a visual
check of input before it is transferred to the computer. It is also used to display the
output from the computer and hence serves as both an input and an output device.

The monitor along with the keyboard is called a Visual Display Unit (VDU).

This is the most commonly used input/output device today and is also known
as a soft copy terminal. A printing device is usually required to provide a hard
copy of the output.

Sound Systems

Voice response systems enable the computer to talk to its users. It consists of an
audio-response device that produces the audio output.

Voice response systems are typically of two types: voice reproduction system
and speech synthesiser.

Introduction to Computer
and Computing

NOTES

Self - Learning
22 Material

Voice reproduction systems

Voice reproduction systems produce an audio output by selecting the appropriate
response from a predefined set of responses. These responses may be in the form
of speech (words or phrases spoken by human beings), musical sounds, alarms,
or other sounds. The pre-recorded responses are first converted into digital data
and stored in the computer. Once the appropriate response is selected, it is
converted back to analog form to produce the audio output.

This is an appropriate method where standard replies to requests for
information are all that is required. Potential applications of voice response systems
include automatic answering machines, audio help on how to operate a system,
enquiry on product availability, talking alarm clocks and the like.

Speech synthesizers

Text is converted into spoken words by speech access systems. A synthesizer
forms the hardware component of the system that takes care of the speaking, and
the screen access program forms the software component that gives directions to
the synthesizer. Some speech access programs and synthesizers are sold together
as a single package, while others are sold independently.

Users can acess commercial software applications and convert the display
or text into audio output with the help of the screen access software. It allows
users to listen to their keystrokes spoken aloud and read the display when desired.

Phonemes are the smallest segments of sounds from which sound output is
produced. The meaning of a word alters if even a single phoneme is changed. For
instance, changing the last phoneme in the word ‘bat’ can modify the word to
‘bad’. Although there are believed to be about forty-four phonemes in the English
language, it is impossible to arrive at an accurate figure because of the subjective
nature of the definition.

Synthetic speech has many applications, particularly for the disabled: it
offers computer access to the visually challenged and supports augmentive
communication. The latter uses computer-based technology for facilitating personal
communication. This means that speech disabled people can indicate the
utterances to be communicated through certain devices. Voice is substituted in
such devices that use synthetic speech as a medium of communication.
Cosmologist Stephen Hawking uses one of these devices.

Computer access to the visually challenged relies on the convertability of
text into speech. A ‘screen reader’ assists in carrying out this function. A ‘screen
reader’ refers to software that runs along with other programs and captures
whatever is displayed on the screen by them. The greatest merit of a screen reader
is its ability to work with standard application software; this ensures that there is
no need to develop, say, talking spreadsheets or talking word processors.

Recently, along with the price of all computer technology, the price of speech
synthesizers has also declined greatly. Currently, improving the quality is at the
centre of R&D, and some progress has been made. Even now synthesizers are
available that produce voices that are similar to recordings of human speech to a

NOTES

Self - Learning
Material 23

Introduction to Computer
and Computing

large extent. Butthey still cannot carry out real time conversion of text to sppech.
Nevertheless, there is no doubt that in time, this too will be possible with the help
of innovative technology.

Printers

Printers serve to produce output on paper. A large variety of commercially available
printers exist today (estimated to be 1500 different types). These printers can be
classified into categories based on:

• Printing technology

• Printing speed

• Printing quality

Printing technology: Printers can be classified as non-impact or impact
printers, based on the technology they use for producing output.

Fairly similar to the standard printing mechanism used in a typewriter, impact
printers work by striking a hammer on the paper through an inked ribbon. Such
printers create images by touching the paper. Character printers and dot matrix
printers fall under this category.

The mechanism of non-impact printers is such that the paper is not touched
when the images are created. Instead, electrical, heat or chemical signals are used
for etching symbols on paper. Specially treated or coated paper is required for
many non-impact printers. Inkjet, laser and thermal printers fall under this category
of printers.

Printing speed: This refers to the number of characters printed in a unit of
time. Based on speed these may be classified as character printer (prints one
character at a time), line printers (print one line at a time), and page printers (print
the entire page at a time). Printer speeds are therefore measured in terms of
characters-per-second or cps for a character printer, lines-per-minute or lpm for
a line printer, and pages-per-minute or ppm for a page printer.

Printing quality: This determined by the resolution of printing and is
characterized by the number of dots that can be printed per linear inch, horizontally
or vertically. It is measured in terms of dots-per-inch or dpi. Printers can be classified
as near-letter-quality or NLQ, letter-quality or LQ, near-typeset-quality or NTQ,
and typeset-quality or TQ based on their printing quality. NLQ printers of resolutions
of about 300 dpi, LQ of about 600 dpi, NTQ of about 1200 dpi, and TQ of
about 2000 dpi are available. NLQ and LQ printers are used for ordinary printing
in day-to-day activities, while NTQ and TQ printers are used to produce top-
quality printing, typically required in the publishing industry.

The section that follows explains the working of some commonly used
printers.

Dot Matrix

Dot matrix printers were the most popular impact printers used in personal
computing. These printers use a print head consisting of series of tiny pins that
strike an ink-coated ribbon, and thus transfer the ink to the paper at the point of

Introduction to Computer
and Computing

NOTES

Self - Learning
24 Material

impact. Characters thus produced are in a matrix format. The shape of each
character, i.e. the dot pattern, is obtained from information held electronically.
(Fig. 1.19(a) and 1.19(b))

 Fig. 1.19(a) Characters formed using Dots Fig. 1.19(b) Dot Matrix Printer

The speed, versatility and ruggedness, combined with low cost, tend to
make such printers particularly attractive in the personal computer market.

Typical printing speeds in case of dot matrix printers range between 40 –
1000 cps (characters-per-second). The one major shortcoming of dot matrix
printers is that they do not offer a superior quality print.

Inkjet

In inkjet printers, ink is directly sprayed onto the paper by means of a series of
nozzles. These therefore fall under the category of non-impact printers (Figure
1.20).

Fig. 1.20 Inkjet Printer

The print head of an inkjet printer consists of a number of tiny nozzles that
can be selectively heated up in a few microseconds by an IC register. When this
happens, the ink near it vapourizes and is ejected through the nozzle to make a dot
on the paper placed in front of the print head. The character is printed by selectively
heating the appropriate set of nozzles as the print head moves horizontally.

If you look at a paper printed through an inkjet printer, you will notice that:

• the size of the dots is exceedingly small (typically 50-60 microns in
diameter); in fact, smaller than the diameter of a human hair (70 microns)

• the position of the dots is extremely precise, with upto a 1440×720 dpi
resolution

NOTES

Self - Learning
Material 25

Introduction to Computer
and Computing

• it is possible to combine different colours within the dots for creating
photo-quality images

Inkjet printers are slower than dot-matrix printers (40 – 300 cps), cheaper
to buy but are more expensive in running costs (the ink cartridge cost is considerably
higher than that of the DMP ribbon) and are used by people/organisations where
the speed of printing is not the most important factor.

Laser

Laser printers use heat, static electricity and dry ink (toner) to place and bond
the ink onto the paper (Figure 1.21). They use a combination of laser and
photocopier technology. In order to print an object, the laser beam is defleced
onto a drum’s photosensitive surface, after which, the toner is attracted to the
image by the latent image. It is then electro-statistically transferred to the paper
and set into a permanent image.

Fig. 1.21 Laser Printer

Laser printers are capable of converting computer output into print, page
by page. Since characters are formed by very tiny ink particles, they can produce
very high quality images (text and graphics); they generally offer a wide variety of
character fonts, and are silent and fast in use.

Laser printers are faster in printing speed than the other printers discussed
above. Their speeds range between about ten pages per minute and 200 pages a
minute, depending upon the make/model.

Laser is high quality, high speed, high volume, and non-impact technology
that works on pre-printed stationary or plain paper. Although the laser technology
involves relatively more expenditure, it is still gaining popularity because of the
speed, quality and noiseless nature of its operations.

Plotters

A plotter is used for producing graphical output on paper. It is a device capable of
producing charts, drawings, graphics, maps etc. It is much like a printer but is
designed to print graphs instead of alphanumeric characters.

Introduction to Computer
and Computing

NOTES

Self - Learning
26 Material

Based on the technology used, plotters may be categorized as electrostatic
plotters or pen plotters. While in the latter, an ink pen is attached for drawing
images, the functioning of the former is similar to laser printers. The image is
produced by charging the paper with a high voltage. This voltage attracts the
toner, which is then melted on the paper with heat. Electrostatic plotters are fast,
but the quality is generally considered to be poor when compared to pen plotters.
This is why pen plotters are more extensively used as compared to electrostatic
plotters.

Flatbed plotters and drum plotters constitute the most commonly used
plotters.

Flatbed Plotters

Flatbed plotters have a flat base like a drawing board on which the paper is laid
(as shown in Fig. 1.22(a)). One or more arms, each of them carrying an ink pen,
moves across the paper to draw. The arm movement is controlled by a
microprocessor (chip). The arm can move in two directions, one parallel to the
plotter and the other perpendicular to it (called the X and Y directions). With this
kind of movement, it can move very precisely to any point on the paper placed
below.

The computer sends the commands to the plotter which are translated into
X & Y movements. The arm moves in very small steps to produce continuous and
smooth graphics.

The size of the plot in a flatbed plotter is limited only by the size of the
plotter’s bed.

The advantage of flatbed plotters is that the user can easily control the
graphics. He can manually pick up the arm anytime during the production of graphics
and place it in any position on the paper to alter the position of graphics to his
choice.

The disadvantage here is that flatbed plotters occupy a large amount of
space.

Drum Plotters

Drum Plotters use a drum revolver to move the paper during printing (as shown in
Figure 1.22(b)). The arm carrying a pen moves only in one direction, perpendicular
to the direction of the motion of the paper. Thus, in drum plotters, while one
dimension or axis is provided by the pen moving in a single track or axis, the other
is provided by the paper moving on a cylindrical drum. The combination of the
pen and paper movement creates the graphics.

Thus, the graph’s size is restrained only by the drum’s width, without there
being any restrictions on the length of the graph.

Drum plotters are very compact and lightweight as compared to flatbed
plotters. This is one of the advantages of such plotters.

NOTES

Self - Learning
Material 27

Introduction to Computer
and Computing

 Fig. 1.22(a) Top View of a Flatbed Plotter Fig. 1.22(b) Drum Plotter

The disadvantage, however, is that the user cannot freely control the graphics
when they are being created.

Plotters are more expensive than printers. Typical application areas for
plotters include CAE (computer-aided engineering) applications such as CAM
(computer-aided manufacturing) and CAD (computer-aided design), architectural
drawing and map drawing.

1.4 MEMORY

The most common properties used for characterizing and evaluating the storage
unit of the computer system are expressed below:

1. Storage capacity: Represents the size of the memory. It is the amount of
data that can be stored in the storage unit. Primary storage units have less
storage capacity as compared to secondary storage units. The capacity of
internal memory and main memory can be expressed in terms of the number
of words or bytes.The capacity of external or secondary storage, on the
other hand, is measured in terms of bytes.

2. Storage cost: Cost is another key factor that is of prime concern in a
memory system . It is usually expressed per bit. It is obvious that lower
costs are desirable. It is worth noting that with the increase in the access
time for memories , the cost decreases.

3. Access time: The time required to locate and retrieve the data from the
storage unit. It is dependant on the physical characteristics and access mode
used for that device.

Primary storage units have faster access time as compared to secondary
storage units.

4. Access mode: Memory comprises various locations. Access mode is
the mode in which information is accessed from the memory. The user can
access memory devices in any of the following ways:

(a) Random access memory (RAM): This refers to the mode in which
any memory location can be accessed in any order in the same amount

Introduction to Computer
and Computing

NOTES

Self - Learning
28 Material

of time. Ferrite and semiconductor memories, which usually constitute
the primary storage or main memory, are of this nature.

(b) Sequential access: Memories that can be accessed only in a pre-
defined sequence are sequential access memories. Here, since
sequencing through other locations precedes the arrival at a desired
location, the access time varies according to the location. Information
on a sequential device can be retrieved in the same sequence in which
it was stored. Songs stored on a cassette, that can be accessed only
one by one, are an example of sequential access. Typically, magnetic
tapes are sequential access memory.

(c) Direct access: Sometimes, the information is neither accessed
randomly nor in sequence but something in between. In this type of
access, a separate read/write head exists for each track, and on a
track , you can access the information serially. This semi-random
mode of access exists in magnetic disks.

5. Permanence of storage: If the storage unit can retain the data even after
the power is turned off or interrupted, it is termed as non-volatile storage.
And, if the data is lost once the power is turned off or interrupted, it is
called volatile storage. It is obvious from these properties that the primary
storage units of the computer systems are volatile, while the secondary
storage units are non-volatile. A non-volatile storage is definitely more
desirable and feasible for storage of large volumes of data.

Static and Dynamic RAM

The main memory is the central storage unit in a computer system. It is a relatively
large and fast memory. It is used to store programs and data during computer
operations. The principal technology used for the main memory is based on
semiconductor-integrated circuits. There are two possible modes in which the
integrated circuit RAM chips are available. These modes are: static and dynamic.

The static RAM (SRAM) stores binary information using clocked sequential
circuits. The stored information remains valid only as long as power is applied to
the unit. On the other hand, dynamic RAM (DRAM) stores binary information in
the form of electric charges that are applied to capacitors inside the chip. The
stored charge on the capacitors tends to discharge with time and so must be
periodically recharged by refreshing the dynamic memory. The dynamic RAM
offers larger storage capacity and reduced power consumption. Therefore, large
memories use dynamic RAM, while static RAM is mainly used for specialized
applications.

The different types of memory discussed above are both of the read/write
type. What about a memory where only one of the operations is possible, e.g., if
we allow only reading from the memory (cannot change the information in the
memory)? The memory might have some major importance; like an important bit

NOTES

Self - Learning
Material 29

Introduction to Computer
and Computing

of the computer’s operating system which normally does not change can be stored
in this kind of memory. Such a memory is called ROM (Read Only Memory).

Read-Only Memory (ROM)

Most of the memory in a general-purpose computer is made of RAM integrated
circuit chips, but a portion of the memory may be constructed using ROM chips.
Originally, RAM was used to refer to random-access memory, but now we use
the term read/write memory to distinguish it from read-only memory (since ROM
is also random access). RAM is used for storing the bulk of the programs and
data that are subject to change, while ROM is used to store programs that are
permanently resident in the computer and do not change once the production of
the computer is completed.

Among other things, the ROM portion of the main memory is used for
storing an initial program called the bootstrap loader, whose function is to get the
computer software operating when power is turned on. Since RAM is volatile, its
contents are destroyed when power is turned off. The contents of ROM remain
unchanged even after the power is turned off and on again.

Read-only memories can be manufacturer-programmed or user-
programmed. When the data is burnt into the circuitry of the computer by the
manufacturer, it is called manufacturer-programmed ROM. For example, a personal
computer manufacturer may store the boot program permanently in the ROM
chip of the computers manufactured by it. Such chips are supplied by the
manufacturer and are not modifiable by users. This is an inflexible process and
requires mass production. Thus, a new kind of ROM , known as Programmable
Read-only Memory (PROM), was designed. This is also non-volatile in nature. It
can be written only once using some special equipment. The supplier or the customer
can electrically perform the writing process in PROM.

In both ROM and PROM, you can perform write operations only once and
you cannot change whatever you have written. But what about the cases where
you mostly read but also write a few times? Another type of memory chip called
EPROM (Erasable Programmable Read-only Memory) was developed to take
care of such situations. EPROMs are typically used by R&D personnel who
experiment by changing micro-programs on the computer system to test their
efficiency.

Further, EPROM chips are of two types: EEPROMs (Electrically EPROM)
in which high voltage electric pulses are used to erase stored information, and
UVEPROM (Ultra Violet EPROM) in which stored information is erased by
exposing the chip for a while to ultraviolet light.

Introduction to Computer
and Computing

NOTES

Self - Learning
30 Material

Figure 1.23 summarizes the various types of Random Access Memories.

RAM (Random Access Memory)

Read/ Write
(Volatile)

Read Only – ROM
(Non-Volatile)

SRAM
(Static)

DRAM
(Dynamic)

Manufacturer
Programmed

User
Programmed

PROM EPROM

EEPROM

UVEPROM

Fig. 1.23 Types of Random Access Memories

Cache Memory

Cache memories are small, fast memories placed between the CPU and the main
memory. They are faster than the main memory with access times closer to the
speed of the CPU. Caches are fast, but very expensive. So, they are used only in
small quantities. As an example, caches of size 64K, 128K are normally used in
PC-386 and PC-486, which can have 1 to 8 MB of RAM or even more. Cache
memories provide fast speed memory retrieval without compromising the size of
the memory.

If the memory is so small, would it be advantageous to increase the overall
speed of memory? This can be answered with the help of a phenomenon known
as locality of reference. Let us examine what this means.

Locality of reference: If we analyse a large number of typical
programs,we would find that memory references at any given interval of time tend
to be confined to a few localized areas in the memory. This phenomenon is called
the property of locality of reference. This is true because most of the programs
typically contain iterative loops (like ‘for’ or ‘while’ loops). During the execution
of such programs, the same set of instructions (within the loop) are executed many
times. The CPU repeatedly refers to the set of instructions in the memory that
constitute the loop. Every time a specific subroutine is called, its set of instructions
is fetched from the memory. Thus loops and subroutines tend to localize the
references to memory for fetching instructions.

NOTES

Self - Learning
Material 31

Introduction to Computer
and ComputingCPU

Cache Memory

Main Memory

Accessed
Word

Address of
Accessed Word

Block of Words
Including

Accessed word

If Word not Found
in Cache

Fig. 1.24 Functioning of the Cache Memory

Figure 1.24 explains the functioning of the cache memory.

Based on the locality of reference, we understand that the cache has a copy
of certain portions of main memory. First, the memory read or write operation is
checked with the cache, and in case of availability of desired data in the cache, it
is used directly by the CPU. Otherwise, a block of words is read from main
memory to cache and the word is then used by the CPU from cache.

Secondary Storage Devices

As discussed earlier, RAM is a volatile memory with limited storage capacity. The
cost of RAM is also relatively higher as compared to secondary memory. Logic
dictated that a relatively cheaper media, showing some sort of permanence of
storage, be used. As a result, additional memory called external or auxiliary
memory or secondary storage is used in most computers.

The magnetic medium was found to be long lasting and fairly inexpensive,
and therefore became an ideal choice for large storage requirements. The use of
magnetic tapes and disks as storage media is very common. As optical technology
is advancing, optical disks are turning out to be one of the major secondary storage
devices.

Magnetic Storage Devices

Magnetic tapes are used for storing files of data that are sequentially accessed or
not used very often and are stored off line. They are typically used as backup
storage for archiving of data.

In case of magnetic tapes, a tape (plastic ribbon usually 1/2 inch or 1/4 inch
wide and 50 to 2400 feet long) is wound on a spool and its other end is threaded
manually on a take-up spool. The beginning of the tape (BOT) is indicated by a
metal foil called a marker. When a write command is given, a block of data
(records are usually grouped in blocks of two or more) is written on the tape. The
next block is then written after a gap (called Inter Block Gap or IBG). A series of
blocks are written in this manner. The end of tape (EOT) is indicated by an end-
of-tape marker which is a metal foil stuck in the tape. After the data is written, the

Introduction to Computer
and Computing

NOTES

Self - Learning
32 Material

tape is rewound and kept ready for reading. Figure 1.25(a) shows the data
organization on a magnetic tape. Figure 1.25(b) and 1.25(c) show magnetic tape
reels and magnetic tape cartridges.

Unused
Tape

Unused
Tape

Block of
Records

 IBGIBG IBG IBG IBG IBG

Tape
Header
Label

File
Header
Label

File
Trailer
Label

File
Trailer

Label of
Last File

EOT
Marker

BOT
Marker

Fig. 1.25(a) Data Organization on a Magnetic Tape

Fig. 1.25(b) Magnetic Tape Reel Fig. 1.25(c) Magnetic Tape Cartridge

The tape is read sequentially, i.e., data can be read in the order in which the
data has been written. This implies that if the desired record is at the end of the
tape, all the earlier records have to be read before it is reached. A typical example
of a tape can be seen in a music cassette, where, to listen to the fifth song one must
listen to, or traverse, the earlier four songs. The access time of information stored
on tape is therefore very high as compared to that stored on a disk.

The storage capacity of the tape depends on its data recording density and
the length of the tape. The data recording density is the amount of data that can be
stored or the number of bytes that can be stored per linear inch of tape. The data
recording density is measured in BPI (Bytes per inch).

Thus,

Storage capacity of a tape = Data recording density × Length of tape

It is worth noting that the actual storage capacity for storing user data, is
much less owing to the file header labels, file trailer labels, BOT and EOT markers,
and the use of IBGs.

Some commonly used magnetic tapes are:

• 1/2 inch tape reel

• 1/2 inch tape cartridge

NOTES

Self - Learning
Material 33

Introduction to Computer
and Computing

• 1/4 inch streamer tape

• 4 mm DAT (Digital Audio Tape) – typical capacity of 4GB to 14 GB

Magnetic Disks

Magnetic disks are direct-access medium, and so are the most popular online
secondary storage devices. Direct-access devices are also called random-access
devices because information is literally available at random or in any order.
There is direct access to any location on the device. Thus, approximately equal
access time is required for each location. An example of this is a music CD
where if you wish to listen to the fifth song, you can directly select the fifth track
without having to fast forward the previous four.

Track

Inter -
track
Gap

Sector

Fig. 1.26 Logical Layout of a Magnetic Disk

A magnetic disk refers to a circular plate made of metal or plastic and
coated with magnetized material (as shown in Figure 1.26). Often both sides of
the disk are used. Data is recorded on the disk in the form of magnetized and non-
magnetized spots (not visible to the naked eye) representing 1s and 0s.

Disk Devices

A disk drive is a peripheral device used to store and collect information. It can be
removable or fixed, high capacity or low capacity, fast or slow speed, and magnetic
or optical.

Structurally, a drive is the object inside which a disk(s) is either permanently
or temporarily stored. While a disk contains the media on which the data is stored, a
drive contains the machinery and circuitry required for implementing the read /
write operations on the disk.

The disk looks literally like a flat circular disk. The computer writes information
onto the disk, where it is stored in the same form as it is stored on a cassette tape.
Disks, as such, are just magnetically coated rolls or circular disks which are divided
into sectors and tracks. The data is accordingly stored and numbered with respect
to the track and sector number on the disk. Only the structure of the media is
different from one to another. Examples of removable disk drives are DVD, CD-
ROM, floppy disk drive, etc. The examples of non-removable disk drives include
hard disk.

The method of accessing data could be sequential access (Magnetic Tape
Drives) or random access (HDD, DVD), where the read/write head can directly go
to any location on the disk and perform action.

Introduction to Computer
and Computing

NOTES

Self - Learning
34 Material

Diskettes

Based on the size and packaging of the disks, they can be classified into two types
– floppy disks and hard disks. Further, disks that are permanently attached to the
unit assembly and cannot be removed by the occasional user are called hard disks.
A drive using removable disks is called a floppy disk drive.

Floppy disks

The disks used with a floppy disk drive are small removable disks made of plastic,
and coated with magnetic recording material. There are two sizes commonly used,
with diameters of 5.25 and 3.5 inches.

• The 5.25 inch disk is a 5.25 inch diameter floppy disk. Earlier, such disks
recorded data only on one side and were called single-sided (SS) disks. Today
both the surfaces are used for recording and are called double-sided (DS)
disks. These are available in two capacities – double density (DD), and high
density (HD), where density refers to the number of bits that can be stored
per square inch area.

Write-protect tab

Sliding
metal piece

cover

Label for
Identification

Fig. 1.27 A 3.5 Inch Floppy Disk

• The 3.5 inch disk is a disk of 3½ inch diameter. These record data on both
sides and are therefore double sided disks. These disks come in three different
capacities – double density, high density and very high density. These are
smaller and can store more data than can the 5.25 inch disks.

The storage capacity for any disk can be calculated as:

Storage capacity = Number of recording surfaces × Number of tracks
per surface × Number of sectors per track ×
Number of bytes per sector

Thus, for a 3.5 inch high density disk which has 80 tracks, 18 sectors/ track,
and 512 bytes/sector, the disk storage capacity can be calculated as follows:

2 × 80 × 18 × 512 = 14,74,560 bytes or 1.4 MB (approximately)

Table 1.1 provides the necessary details and associated storage capacities of
various kinds of floppy disks.

Floppy disks were extensively used in personal computers as a medium for
distributing software to computer users. Nowadays, CDs or DVDs are used for
that purpose.

NOTES

Self - Learning
Material 35

Introduction to Computer
and Computing

Table 1.1 Storage capacities of floppy disks

Size
(diameter
in inches)

No. of
Recording
Surfaces

No. of
Tracks

No. of
Sectors/
Tracks

No. of
Bytes/
Sector

Storage Capacity
(approx)

5.25 2 40 9 512 3,68,640 bytes or
360kB

512 12,28,800 bytes
or 1.2 MB

512 7,37,280 bytes or
720 kB

512 14,74,560 bytes
or 1.4 MB

512 29,49,120 or
2.8 MB

80 15

80 18

80 36

40 18

2

2

2

2

5.25

3.5

3.5

3.5

Hard Disks

Unlike floppy disks, hard disks are made up of rigid metal. The sizes for the disk
platters range between 1 to 14 inches in diameter. Depending on the way they are
packaged, hard disks can be categorised as disk packs or Winchester disks.

• Disk packs consist of two or more hard disks mounted on a single central
shaft. Because of this, all disks in a disk pack rotate at the same speed. It
consists of separate read/write heads for each surface (excluding the upper
surface of the topmost disk platter and the lower surface of the bottommost
disk platter, as mentioned earlier). Disk packs are removable in the sense
that they can be removed and kept offline when not in use (typically stored
away in plastic cases). They have to be mounted on the disk drive before
they can be used. Thus different disk packs can be mounted on the same disk
drive at different instances, thereby providing virtually unlimited (modular)
storage capacity.

Fig. 1.28 A Disk Pack

• Winchester disks also consist of two or more hard disk platters mounted on
a single central shaft but are of the fixed type. The disk platters are sealed in
a contamination-free container. Due to this fact, all the disk platters, including
the upper surface of the topmost disk platter and the lower surface of the
bottommost platter, are used for storing data. So, even though Winchester

Introduction to Computer
and Computing

NOTES

Self - Learning
36 Material

disks have limited storage capacity as opposed to disk packs, they can store
larger amounts of data as compared to the same number of disk platters.

Fig. 1.29 A Winchester Disk

Another kind of disk called the zip disk is very common today. This consists
of a single hard disk platter encased in a plastic cartridge. Such a disk typically has
a capacity of about 100 MB. The zip drive can further be fixed or portable. The
fixed zip drive is permanently connected to the computer system while the portable
ones can be carried around and connected to any computer system for the duration
of its use. In both cases, however, the zip cartridge (the actual storage medium) is
portable just like a floppy, albeit with a nearly 100 times larger storage capacity.

Fig. 1.30 Zip Disks and Zip Drive

Optical disks

Optical disks are storage devices with huge storage capacities. They are a relatively
new storage medium and use laser beam technology for writing and reading of data.

Optical disks consist of one large track that starts from the outer edge and
spirals inward towards the centre (this is unlike the magnetic disk in which tracks
are concentric circles on the disk platter). An optical disk is also split into sectors but
these are of the same length regardless of their location on the track. Data is therefore
packed at maximum density over the disk.

The storage capacity of an optical disk is determined as follows:

Storage Capacity = Number of sectors × Number of bytes per sector

(Note that we do not consider the number of tracks since there is only one
track in this case)

NOTES

Self - Learning
Material 37

Introduction to Computer
and Computing

Thus, a 5.25 inch optical disk having 3,30,000 sectors and storing 2,352 bytes
per sector, will have a storage capacity

3,30,000 × 2352 = 77,61,60,000 bytes or 740 MB (approx.)

The technology used in optical disks uses laser beams to write and read data
as opposed to the read /write head used in magnetic disks. Data is recorded by
etching microscopic pits (burnt surface) on the disk surface. A high- intensity laser
beam is used to etch the pits, while for retrieving data, a low-intensity laser beam is
used.

Fig. 1.31 An optical disk and disk drive

There are three optical memory devices that are becoming increasingly popular
in various computer applications: CD-ROM, WORM, and Erasable Optical disks.
We shall discuss these below.

CD-ROM: The compact disk read-only memory(CD-ROM) is a direct
extension of the audio CD. It is generally made from a resin called polycarbonate
that is coated with aluminium to form a highly reflective surface. The information on
a CD-ROM is stored as a series of microscopic pits on the reflective surface (using
a high-intensity laser beam). The process of recording information on these disks is
known as ‘mastering’. This is so-called because this master disk is then used to
make a ‘die’that is used to make copies.

The information is retrieved from a CD-ROM using a low-powered laser
that is generated in an optical disk drive unit. The disk is rotated and the laser beam
is aimed at the disk. The intensity of the laser beam changes when it encounters a
pit. A photo-sensor detects the change in intensity, hence recognizing the digital
signals that are recorded on the surface of the CD-ROM and converts them into
electronic signals of 1s and 0s.

As the name suggests, information stored in a CD-ROM can be read only. It
cannot be modified in any way. It is therefore useful for applications in which there
is a database of information that is useful as it is and does not need changing in any
way, for example, a directory such as Yellow Pages. CD-ROMs are very handy in
the distribution of large amounts of information to a large number of users. The
strengths of CD-ROMs lie in the fact that they provide for:

• large storage capacity for information/data.
• fast and inexpensive mass replication.
• suitable for archival storage since they are removable disks.

Introduction to Computer
and Computing

NOTES

Self - Learning
38 Material

The weaknesses of CD-ROMs are:

• they are read-only and cannot be updated.
• access time in them is greater than that of a magnetic disk.

WORM: The drawbacks of CD-ROM were partially resolved by the
introduction of WORM (‘write-once, read many’).

In some applications, only a limited copies of compact disks are required to
be made. This makes the CD-ROM production economically not viable. This is
because manufacturers duplicate CD-ROMs by using expensive duplication
equipment. To overcome such a problem, write-once read-many CDs have been
developed.

WORM disks allow users to create their own CDs by using a CD-Recordable
(CD-R) drive. This can be attached as a peripheral device to the computer system.
WORM disks recorded like this can be read by any CD-ROM drive.

Erasable optical disk: The erasable optical disk is the latest development
in optical disks. Like magnetic disks, the data in the erasable optical disk can be
changed repeatedly. Erasable optical disks are therefore also known as rewritable
optical disks.

These disks integrate the magnetic and optical disk technologies to enable
rewritable storage with the laser-beam technology and so are also called magneto-
optical disks. In such systems, a laser beam is used along with a magnetic field to
read or write information on a disk that is coated with a magnetic material.

To write, the laser beam is used to heat a specific spot on the magnetic
coated material. At this increased temperature, a magnetic field is applied so as to
change the polarization of that spot, thereby recording the data that is required. It
may be noted here that this process does not cause any physical changes in the disk.
Hence, it can be repeated many times. The degree of rotation of the polarized laser
beam reflected from the surface is detected to perform reading function. This implies
that as the disk spins, the polarized spots pass under the laser beam, and depending
on their orientation or alignment, some of them reflect the light while others scatter
it. This produces patterns of ‘on’ and ‘off’ that are converted into electronic signals
of binary 1s and 0s.

The capacity of an erasable disk is very high in comparison to a magnetic
disk; for example, a 5.25 inch optical disk can store around 650 MB of data while
Winchester disks normally can store a maximum capacity of 320 MB. This is why
magneto-optical disks are ideal for multimedia applications that require large storage
capacities.

DVD: Known as the Digital Versatile Disk or the Digital Video Disk, it has
the same physical dimensions as that of a CD-ROM, but it can hold up to 4.4GB
data on a Single layer disk and up to 8.47GB on a Dual layer disk with the maximum
data transfer of 27MB/s at 20x speeds. The laser used to read/write data on a DVD
is much more precise and has a wavelength of 650mm, which is one reason why a
DVD can hold more data.

HD-DVD: This is a high density, mostly single sided, double layered optical
disc that can hold up to 15GB on a single layer and 30GB on a dual layer disc. The
read/write speed on an HD-DVD varies between 36 MBPS to 72 MBPS. These
were primarily designed for the storage of high definition videos and large volumes

NOTES

Self - Learning
Material 39

Introduction to Computer
and Computing

of data. The basic look and feel of an HD-DVD drive and disk is the same as that
of a CD-ROM and DVD except that it uses a laser of a different wavelength and
the microscopic structure of storage on a disk is different.

Blu-Ray: Another high density optical storage media format is gaining
increasing popularity these days. Its main uses are high-definition video and data
storage. A dual layer Blu-ray Disc can store 50 GB, almost six times the capacity of
a double-dual layer DVD (or more than 10 times if single-layer). The data can be
read from 36 MBPS to 432 MBPS which is much higher than HD-DVD. When
used for HD video playback, the video is encoded on it in MPEG-2, AVC, VC-1
(H.264) format, which is the same as HD-DVD.

With the wide variety of storage choices available and constant increase in
their number due to changes in technology, it is impossible to say that a single medium
of storage can suit the needs of all. Therefore, it is necessary to make the choice of
right media based upon factors like capacity, speed, durability, life span and cost of
media.

Tape Drives

Computer Output Microfilm (COM)

COM refers to a process characterized by copying/printing data from media located
on personal computers, mini, or mainframe computers onto a microfilm. It comprises
a high-speed recorder, which transfers digital data onto a microfilm applying laser
technology, and a processor which develops the microfilm once exposed to the light
source.

A computer output microfilm device translates information normally held on
magnetic tape into miniature images on a microfilm (also called microfiche–‘fiche’
pronounced as ‘fish’). The device displays information as characters on a CRT
screen and then using photographic methods, records the display onto the film.
Drawings and images can also be displayed along with narrative text.

A special reader/printer can be subsequently used to view the processed
film. The reader operates on a ‘back projection’ principle displaying one frame at a
time on a translucent screen, typically about A4 size. The printer can then be used
selectively to produce a hard copy of what is presented on screen.

Figure 1.32 identifies the various steps in COM production.

Fig. 1.32 Steps in a COM Production

Introduction to Computer
and Computing

NOTES

Self - Learning
40 Material

A COM system provides an easy and compact way of recording and storing
information, and subsequently retrieving desired pieces of information. It offers various
advantages like reduction of paper, reduction in cost (since it is cheaper than most
electronic media), improved quality (COM technology provides superior image
quality), and electronic record retention/archiving.

COM is best suited for data requiring long-term storage. This is because
microfilm is less volatile than magnetic media like disks and tapes. COM stores
data in a very compact format. It is to be noted that up to 270 pages can be contained
in a single 4 × 6 inch fiche.

Conversion of magnetic tapes to microfilms is cost-effective for closed files.
However, in case of highly active data or data requiring regular updating, using
microfilms may not be as efficient as retaining the information online. It is therefore
useful for data that must be archived for long periods of time and referenced only
occasionally, e.g., information that must be archived to comply with legal regulations,
information maintained by insurance companies, banks, government agencies, and
various other organizations of this type.

Measuring Drive Performance

The performance of a disk is measured in terms of how fast it can read or write
data. Over the years there have been changes in disk drive interface, rotation speeds,
number of heads and cylinders and storage format, all of which have led to a decrease
in data access time.

The various types of disks currently available in the market are:

1. IDE – Integrated Drive Electronics

2. EIDE – Enhanced Integrated Drive Electronics

3. SCSI – Small Computer System Interface

4. SATA I & II – Serial Advanced Technology Attachment

There are two standard methods for accessing and writing data on a disk –
sequential access and random access.

Sequential Access is when you read or write to the disk blocks in sequential
or continuous order, that is, one block after another. Examples of where Sequential
Access is used in computing or data storage would be the backing up of data onto
tape drives or the process of writing data onto CDs and DVDs. Any storage medium
based on magnetic tape, VHS, audio cassette etc, are read and written by Sequential
Access.

Random Access, as the name suggests, is performed when the hard drive
head needs to read/write data from/at various locations on the disk. In this case, the
disk heads move rapidly from one place to another and the seek time to access data
is increased because it involves mechanical operations. Most of the disk operations
performed during routine computer work are random access. This is also the reason
why random access time is more important while measuring disk performance than
sequential access time. While data is written onto optical media sequentially, data on
CDs and DVDs can be read randomly.

For Random Access, the average seek time and average latency time are
added to come up with the total time it takes for the disk to read and write data on it.

NOTES

Self - Learning
Material 41

Introduction to Computer
and Computing

The average seek time is the time it takes to move the head arm from one position
to another, and average latency time is the time it takes for the required data block
to come under the head for the read/write operations. The average latency time
depends on the rotations per minute (RPM) of the disk, which is the speed at which
the magnetic or optical disk rotates.

Fig. 1.33 Data accessed by Different Disk Drives

The above Bar Chart shows the relative amount of Data accessed by each type of
Disk Drive.

1.5 COMPUTER LANGUAGES

A computer language is a language that can be understood by the computer. It is
the computer’s native language. A computer language consists of lexicon and syntax,
i.e., characters, symbols and rules of usage that allow the user to communicate
with the computer. Each and every problem to be solved by the computer needs
to be broken down into discrete logical steps before the computer can execute it.
The process of writing such instructions in a computer or programming language is
called programming or coding.

All computer languages can, however, be classified under the following categories:

 Machine language (First-Generation Language or 1 GL)

 Assembly language (Second-Generation Language or 2 GL)

 High-Level language (Third-Generation Language or 3 GL)

Low-level Language

Low-level languages are basically machine codes or assembly languages that
can easily be converted to run on a computer with a separate CPU. However,
for this, it is translated into a machine code by an assembler program. Basically,
assembly languages and machine languages are known as low-level languages.
They do not hide the details of machines and bit patterns. They are often difficult
to write the program. When mnemonic based low-level language replaces the
instructions, these instructions are very difficult to read, write and remind. Writing

Introduction to Computer
and Computing

NOTES

Self - Learning
42 Material

codes in low-level languages is very difficult. There are an infinite number of
such programs available in each language. There is no limit on the size of such
programs and the average length of each program is generally infinite. This is
the main reason that low-level language is not successful.

Machine Language (1 GL)

The computer understands only a binary-based language. As already explained,
this is a combination of 0s and 1s. Instructions written using sequences of 0s and
1s are known as a machine language. First-generation computers used programs
written in the machine language.

The machine language is very cumbersome to use and is tedious and time
consuming for the programmer. It requires thousands of machine language
instructions to perform even simple jobs like keeping track of a few addresses
for mailing lists. Every instruction in the machine language is composed of two
parts—the command itself, also known as the ‘operation code’ or opcode
(such as add, multiply, move, etc.), and the, operand, which is the address of
the data that has to be acted upon.

Assembly Language (2 GL)

Assembly language was the first step in the evolution of programming languages.
It used mnemonics (symbolic codes) to represent operation codes and strings
of characters to represent addresses. Assembly language was designed to replace
each machine code by an understandable mnemonic and each address with a
simple alphanumeric string. A program written in the assembly language needs
to be translated into the machine language before the computer can execute it.
This is done by a special program called ‘assembler’ which takes every assembly
language program and translates it into its equivalent machine code. The assembly
language program is known as the source program while the equivalent machine
language program is known as the object program. It may be useful to know
that the assembler is a system program supplied by the computer manufacturer.
Second-generation computers used assembly language.

High-level Languages (3 GL)

The lack of portability of programs (written using machine or assembly languages)
among various computer systems led to the development of high-level languages.
Since they allowed a programmer to overlook a lot of low-level particulars of the
hardware of the computer system, they were called high-level language programs.
They contained commands that were particularly suited to one type of application,
for example, a number of languages were designed to process scientific or
mathematical problems. Others emphasized on commercial applications. These
languages varied very little between different computer systems, unlike machine
or symbolic languages. However, a complier or an interpreter program was required
to translate these machine codes. The high-level program is called the source
code while its equivalent machine language program is referred to as the object
code. The following are the various types of high level languages.

NOTES

Self - Learning
Material 43

Introduction to Computer
and Computing

FORTRAN: FORmula TRANslation (FORTAN) was the first high-level
language developed by John Backus at IBM in 1956. FORTRAN has a number
of versions with FORTRAN IV being one of the earlier popular versions. In 1977,
the American National Standards Institute (ANSI) published standards for
FORTRAN with a view to standardizing the form of the language used by
manufacturers. This standardized version is called FORTRAN 77.

COBOL: COmmon Business Oriented Language (COBOL), the first
language used for commercial applications, was developed under the leadership
of Grace Hopper, a US Navy programmer, with a group of computer
manufacturers and users in 1959. COBOL was standardized by ANSI in 1968
and in 1974. COBOL became the most widely used programming language for
business and data processing applications.

BASIC: Beginner’s All-purpose Symbolic Instruction Code (BASIC) was
developed as a teaching tool for undergraduate students in 1966 by John Kemeny
and Thomas Kurtz, two professors at Dartmouth College. Eventually BASIC
was used as the main language among the personal computer users. One of the
newer versions of BASIC, commonly known as Visual Basic, has also evolved
from the original BASIC language. It contains various statements and functions
that can be used to create applications for a Windows or a GUI environment.

PASCAL: PASCAL was designed by Niklaus Wirth, a Swiss professor,
in 1971. It was developed as a better structured language used for teaching which
Wirth named after the French mathematician Blaise Pascal, who also designed the
first successful mechanical calculator. In addition to manipulation of numbers,
PASCAL supports manipulation of vectors, matrices, strings of characters, records,
files and lists, thereby supporting non-numeric programming. Hence, it has proved
to be an attractive language for professional computer scientists. PASCAL has
been standardized by International Standards Organization (ISO) and ANSI.

PL/1: Programming Language 1 or PL/1 was developed by IBM in the
1960s and was the first language that was attempted to be used for a variety
of applications rather than one particular area, such as business or science or
artificial intelligence.

LISP: LISt Processing (LISP) was developed in the early 1950s but was
implemented in the 1959 by John McCarthy at the Massachusetts Institute of
Technology. It became a standard language with the artificial intelligence community
and was a program that could easily handle recursive.

C: C language was developed by Dennis Ritchie of Bell Laboratories in
order to implement the operating system 'UNIX'.

C ++: C++ was developed by Bjarne Stroustrup of Bell Laboratories by
enhancing C. C++ is also used to write procedural programs, such as C but the
reason for its increased popularity is perhaps because of its capability to handle
rigours of object oriented programming. C and C++ are the most extensively used
general-purpose languages among programming experts.

Introduction to Computer
and Computing

NOTES

Self - Learning
44 Material

Java: Java is again an object oriented language like the C++ but is a
simplified version with extra features. It is prone to less programming errors. It
was developed for writing programs that could be safely and easily executed
through the Internet. It is free from any kind of common virus threats. It is basically
a network-oriented language that can develop Website pages with enhanced
multimedia features using small Java programs known as Java applets, Java is a
‘secure to use over’ the Internet and is a platform independent language.

Fourth-Generation Language (4 GL)

The Fourth-Generation Languages are non-procedural. This means that they signify
what needs to be accomplished but do not specify how to do it. Fourth-generation
languages are characterized by simple English-like instructions and a quick and
easy learning process. They are so user-friendly that with little training and practice
an individual can write his/her own programs and generate the desired reports.
The fourth-generation languages refer to software packages that are mostly written
in one of the languages (FORmula TRANslation or FORTRAN, C, and so on) for
any specific application. This language is also called command line language. Some
of the commonly used 4 GL packages are dBase, FoxPro, Oracle, SQL (database
management); WordStar, Microsoft Word, PageMaker (desktop publishing); Lotus
123, Microsoft Excel (electronic spreadsheets); AutoCAD (computer-aided design
and drafting); IDEAS, PRO/E, Unigraphics, Solidworks (computer-aided design
and solid modelling); ANSYS, NASTRAN, and ADINA (finite element analysis
for engineering components).

Fifth-Generation Language (5 GL)
Fifth-Generation Languages are an outgrowth of research in the area of artificial
intelligence. They are, however, still in their infancy. PROLOG (PROgramming
LOGic) was designed in the early 1970s by Alain Colmerauer, French computer
scientist, and Philippe Roussel, a logician. Logical processes can be program and
deductions can be made autmatically by using PROLOG. A number of other 5 GL
have been developed for meeting specialized needs. Some of the more popular
ones include Programmed Instruction Learning or Testing (PILOT) used to write
instructional software; LOGO, a version of LISP, developed in the 1960s to help
educate children about computers; String-Oriented Symbolic Language
(SNOBOL), designed for list processing and pattern matching; and General
Purpose System Simulator (GPSS), used for modelling environmental and physical
events.

Interpreters and Compilers
Programs written in high-level languages need to be converted into machine language
before the computer can execute them. ‘Interpreters’ and ‘compilers’ are translation
or conversion programs that produce the machine code from high-level languages.
The interpreter and compiler perform the same function but in fundamentally different
ways. An interpreter translates the instructions of the program one statement at a
time. This translated code is first executed before the interpreter begins work on

NOTES

Self - Learning
Material 45

Introduction to Computer
and Computing

the next line (refer Figure 1.34). Thus, instructions are translated and executed
simultaneously. The object code is not stored in the computer’s memory for future
use. The next time the instruction is to be used, it needs to be freshly translated by
the interpreter. During repetitive processing of instructions in a loop, every instruction
in the loop will need to be translated every time the loop is executed.

Output Result of
Program

Execution

Interpreter
(Translates and executes
one statement at a time)

 Input Program in
High-level
Language

(Source Program) (Object Program)

Fig. 1.34 Translation Process using an Interpreter

A compiler, on the other hand, takes an entire high-level language program
and produces a machine code version out of it. This version is then run as a single
program. Source statements are created, which are then compiled by running the
appropriate language. These statements are converted into their corresponding
machine code, which can then be executed by the computer. The object code can
be stored in the computer’s memory for executing in future. A compiler does not
need to translate the source program every time it needs to be executed, thereby
saving execution time (refer Figure 1.35).

Output Program
in Machine
Language

(Object Program)

Program in
High-level
Language

(Source Program)

 Input
Compiler

Fig. 1.35 Translation Process using a Compiler

Check Your Progress

1. List any two basic operations of a computer.

2. What are the three essential parts of computer?

3. Name the various hand-held input devices.

4. What are electronic-card readers?

5. What are the different types of printers?

6. How is the storage unit of a computer system evaluated?

7. Sate about the disk drive.

8. Define the term of computer language.

1.6 OPERATING SYSTEM WITH DOS

Microsoft Disk Operating System (MS DOS) is a single user, single tasking
operating system. DOS has a command-line, text-based/non-graphical user-
interface commonly referred to as Character Based User Interface (CUI). When
the computer is switched on, a small program checks all internal devices, electronic
memory and peripherals. Once this process is completed, MS DOS is loaded.

Introduction to Computer
and Computing

NOTES

Self - Learning
46 Material

DOS Prompt: The DOS prompt known as the command prompt looks like C:\>
or D:\> where ‘C’,‘D’ represent the hard drives of the computer system. All
commands are typed at the DOS prompt. ENTER key is pressed to view the
output of the typed command. If the command is correctly typed desired output
would be displayed. Otherwise an error message (bad command or filename/
Invalid parameter) is displayed on the screen.

Limitations of MS DOS

1. It has a text based user interface where the commands have to be typed for
each operation that the user wants to perform. The user is expected to
remember the commands as well as their syntax.

2. It is a single-user, single-task operating system and the working is limited to
one megabyte of memory. 640 kilobytes of the memory is used for the
application program.

3. It does not allow using long file names. The user is restricted to eight-character
file names with three-character extensions.

Below is the list of commonly used DOS commands. All DOS commands are
case-insensitive (i.e., there is no difference whether you type COPY, copy or
coPY). The same is true for the attributes, parameters and filenames. To view the
complete description of each command type HELP followed by the command
name, for example HELP COPY. Alternatively help can also be displayed using
<command>/? (COPY/?).

Directory Related Commands

Command Syntax Explanation Example Notes

DIR DIR Drive/
Directory - Name
Name>

Displays all the sub-directories and files of
the specified drive/directory. It also shows
the size of the files and the date and time
they were last modified.

C:\>DIR D: Displays all the contents (files and
directories) of the D: drive.

DIR/P DIR Drive/ Directory
-Name>/P

Displays the contents of directory one
screen at a time and pauses until any other
key is pressed to continue the display.

C:\>DIR
DATA/P

Displays the contents of the ‘DATA’
directory by pausing the screen.

DIR/W DIR <Drive/
Directory>/W

Displays the contents of the directory
width-wise. It omits file size, date and time
of creation of file so that more files can be
displayed at one time on the screen.

C:\>DIR
DATA/W

Displays the contents of the ‘DATA’
directory width-wise.

DIR/W/P DIR <Drive/
Directory>/W/P

The Wide and Pause display option can be
combined.

C:\>DIR
DATA/W/P

Displays the contents of the ‘DATA’
directory width-wise and by pausing
the screen.

CD CD<Directory-
Name> CD\ -Directly
takes to the root
directory.

Displays the name of the current directory if
no parameter is specified with the
command. Changes the current directory
to the specified directory.

C:\>CD DATA\
SUBDATA

Changes the current directory to
‘DATA\SUBDATA’.

MD
MD <Drive/
Directory-Name>

Creates a new directory in the specified
location.

C:\>MD
‘HELLO’

Creates a directory named ‘HELLO’
in the C: Drive.

RD RD <Directory-
Name>

Removes the specified directory. C:>RD HELLO To remove a directory first you
should come to one level above the
current directory and then remove
command should be given. This
command will delete the ‘HELLO’
directory from the C:drive.

DELTREE DELTREE
<Directory-Name>

Deletes a directory and all the sub-
directories and files in it.

C:\>DELTREE
TEMP

Prompts the user for confirmation. If
user selects ‘Y’ (Yes) then the
directory ‘TEMP’ and all its sub-
directories will be deleted.

NOTES

Self - Learning
Material 47

Introduction to Computer
and Computing

Simple DOS Commands

Command Syntax Explanation Example Notes

COMMAND COMMAND Starts a new Window for the DOS
command interpreter.

C:\>Command Starts a new Window for the DOS
command interpreter.

EXIT EXIT Quits the COMMAND.COM
program (command interpreter).

C:\>EXIT Quits the command interpreter.

CLS CLS Clears the screen display completely
leaving only the DOS prompt.

C:\>CLS Clears the screen and displays C:
Prompt at the top of the screen.

DATE DATE Displays the system’s current date and
prompts to enter the new date.

C:\>DATE Current date is Fri 05-09-2003
Enter new date <mm-dd-yy>:

TIME TIME Displays the current time and prompts
the user to enter the new time.

C:\>TIME Current time is 12:55:25.34p Enter
new time.

VER VER Displays the Windows version. C:\>VER Displays the Windows version
installed on your computer.

HELP HELP
<Command
Name> or
Command
Name/?

Provides complete, information about
queried MS-DOS commands.

C:\>HELP/? Help is used to access the
information and help file from MS
DOS prompt.

DOSKEY DOSKEY Edits lines of command, recalls
commands of MS-DOS, and creates
macros.

C:\>DOSKEY Once the Doskey is installed then
Up and Down arrow keys can be
used in the subsequent commands to
recall the previous commands.

PROMPT PROMPT
[Text]

Changes the MS-DOS command
prompt to the specified text. If the
command is typed without any
parameters then the default prompt
setting is restored.

D:\>PROMPT Changes the prompt to the default
setting.

PRINT PRINT
<Filename>

Prints a text file while other MS-DOS
commands are being used.

C\DATA>PRINT
TEMP.TXT

Prints ‘TEMP.TXT’ stored in the
‘DATA’ folder of the C: drive.

LABEL LABEL Makes, changes, or deletes the label of
volume of a disk.

C:\>LABEL Displays the current volume label
and volume serial number. Also
prompts to enter a new label.

MEM MEM Displays the amount of and free and
used memory in your system.

C:\>MEM Displays the total amount of
memory, amount of used and free
memory in the system.

MORE MORE
<Filename>

Displays output on the screen at a time
for the text files. Useful in cases where
the content of text file does not fit in a
single screen.

C:\DATA>
MORE
TEMP.TXT

Breaks the contents of ‘TEMP.TXT’
in multiple screens. Subsequent
screens can be viewed by pressing
the ‘ENTER’ key.

ECHO ECHO Displays messages, or turns on or off
the echoing command.

C:\>ECHO Displays the current echo setting.
(‘OFF’ or ‘ON’).

EDIT EDIT Starts MS-DOS editor, which
produces and changes ASCII files.

C:\>EDIT Opens the MS-DOS editor.

SET SET Displays, sets, or removes MS-
DOS environment variables.

C:\>SET Displays the settings for the current
environment variables.

CHKDSK CHKDSK
<Drive-Name>

Checks a disk and gives the
information like how many bytes have
been used and how many are free and if
any bad sectors are there on the disk.

C:\>CHKDSK
A:

Checks A: drive and gives
information about the disk.

SCANDSK SCANDISK
<Drive-Name>

Finds errors from a drive and fixes any
problem it encounters.

SCANDISK A: Scans the A: drive and repairs the
disk if any problem is there, like
damaged area or virus, etc.

DISKCOPY DISKCOPY Copies the content of one floppy disk
to another.

DISKCOPY
A:

Copies the entire content of one
floppy to another.

FORMAT FORMAT
<Drive-Name>

Formats the specified drive. C:\>Format A: Floppy inserted in the A: drive will
be formatted. Any information in the
floppy A: will be erased.

Introduction to Computer
and Computing

NOTES

Self - Learning
48 Material

Simple File Operations

Command Syntax Explanation Example Notes

MOVE MOVE <Source>
<Destination>

Moves the file from one source to the
specified destination. File will exist only
at the specified destination.

C\DATA>MOVE
TEST.TXT
\LETTER

Moves the file‘TEXT. TXT’ from
‘DATA’ folder in the C: drive to the
‘LATTER’ folder in the C: drive.

COPY COPY <Source>
<Destination>

Creates a copy of the specified file and
places it in the specified location, file will
exist at the specified location as well as
the source location.

C:\DATA>
COPY
HELLO.TXT
\LETTER

Creates a copy of HELLO.TXT in
the LETTER folder of the C: drive.

REN REN <Path>
<O1dfile> <Newfile>

Renames the old file name by the
specified new file name.

C:\DATA>REN
HELLO.TXT
Hi.TXT

Renames ‘HELLO.TXT’ as ‘Hi.TXT’

DEL/ERASE DEL
<Path><Filename>

Deletes the specified file present in the
Specified path/location from the hard disk.

C:\DATA>DEL
Hi.TXT

Deletes the file ‘Hi.TXT’ located in
the ‘DATA’ folder of the C: drive.

TYPE TYPE <Filename> Displays the contents of a text file. C:\DATA>TYPE
TMP.TXT

Displays the contents of TMP.TXT.

 ATTRIB [+A|-A]
[+R|-R][+H|-H] [+S |
-S] <filename> +
Sets an attribute

ATTRIB + Clears an attribute
A-Archive attribute
R-Read only attribute
H-Hiddenfile
attribute S-System
file attribute

Displays or changes file attributes. C:\>ATTRIB+H
+R FIRST.TXT

Sets the attributes of ‘FIRST.TXT’ as
Read only and hidden.

FC FC <Filel> <File2> Compares two files or sets of files, and
displays the dissimilarities between them.
Generally used to compare files with same
names located in different directories.

C:\FC
C:\DATA\
ONE.TXT
C:\INFO\O
NE.TXT

Compares the file ‘ONE.TXT’
located in DATA folder with
‘ONE.TXT’ located in INFO folder
and displays the differences between
them.

XCOPY XCOPY <Source>
<destination>

Copies files and subdirectories to the
specified location.

C:\>XCOPY
C:\DATA
C:\INFO

Copies the entire contents of the
‘DATA’folder to ‘INFO’folder. Ifthe
‘DATA’ folder contains ‘ami’
subdirectories then they will also be
copied to the 'INFO' folder.

BACKUP BACKUP <Source>
<Destination>

Copies the files onto diskettes or to other
source.

C:\>BACKUP
C:\DATA\TEMP.
TXT C:\INFO

Copies ‘TEMP.TXT’ file in the
‘DATA’ folder into the ‘INFO’ folder.

RESTORE RESTORE<Source>
<Destination>

Reinstates files that were backed up by
using the BACK UP command.

C:\>RESTORE
C:\DATA\TEMP.
TXT C:\INFO

Restores ‘TEMP.TXT’ file in the
‘DATA’ folder into the ‘INFO’ folder.

Wild Cards

Wild card characters can be used in specifying filenames in DOS. There are two
types of wild cards (?,*):

? : It is used to represent any single character in the file name.

SYNTAX: C:\ DIR BA?.TXT

Displays all the text files in the C: drive starting with ‘BA’ and ending with any
single character.

Examples: BAT.TXT, BAG.TXT, BAR.TXT, BAD.TXT, etc.

* : It is used to represent one or more characters in a file name.

SYNTAX: C:\ DIR CON*.TXT

Displays all the text files in the C: drive starting with ‘CON’.

Examples: CONCEPT.TXT, CONCATENATE.TXT, CONTEMPT.TXT,
CONSOLE.TXT, etc.

NOTES

Self - Learning
Material 49

Introduction to Computer
and Computing

Path Command

MS DOS uses PATH= statement which resides in the autoexec.bat file. PATH
command is used to display or set a search path for executable files.

PATH [[drive:]path[;...]]

PATH ;

Concept of File

A file is created with the help of another application program. A user, for instance,
may create a text document in Notepad. So the application program in this case in
Notepad and the file is a Notepad file.

It is a portion of a software program that is used to store data, information,
settings, and/or commands used with that program. Examples of files are Word
document files, Excel files, PowerPoint presentation files, database files, and so
on.

Apart from the normal application program files such as MS Word, MS
Excel, MS PPT, a computer system includes other file types also. These are as
follows:

 Batch File: A batch file allows the users of MS Windows and MS DOS to
generate a list of commands for running in sequence after the execution of
the batch file. A batch file can be used for running the commands that are
frequently run, deleting files, moving files, etc. No special programming
skills are required for a simple batch file and can be prepared by users who
have a basic knowledge of MS DOS commands.

An instance of a batch file is a file that is somewhat similar to an icon on the
Mac OS or a shortcut in Windows. Similar to a shortcut, batch files can be
used for running one or more commands and/or programs through the
command line. Another popular instance of a batch file is a simple boot file
called autoexec.bat, which is loaded every time the OS is loaded. It works
on computers with early Windows. This batch file had all the required
commands and programs used for running MS DOS and Windows every
time the computer started.

 Executable File: It is a file that performs different functions or operations
on a computer. Since an executable file is compiled, unlike a data file, it is
generally not readable. On an IBM-compatible computer, the common
executable files are .COM, .BAT, .BIN and .EXE. Other types of executable
files can also be there depending on the operating system and its setup.

 System File: A file that is being used by an operating system and cannot
be deleted or changed without the stopping of the operating system is known
as a system file. Since these files are in use by the operating system, generally
they cannot be deleted.

A system file is also an attribute that can be added to any file in Microsoft
operating systems that allows the OS to know the file is an important system file.
Files that are marked as system files will also be hidden files.

Introduction to Computer
and Computing

NOTES

Self - Learning
50 Material

Naming Files

A filename is a special type of string which is used for identifying a file stored on
the file system of a computer.

A filename is divided in two parts: basename (the primary filename) and the
extension (which indicates the type of file related to a certain format of file).

A filename includes one or more of the following components:

 Protocol (or scheme) — Method of accessing (e.g., ftp, http, file, etc.)
 Host (or network ID) — Host name, IP address, domain name, or the

network name of LAN (e.g., wikipedia.org, 207.142.131.206,
\\MYCOMPUTER, SYS:, etc.)

 Device (or node) — Port, socket, drive, root mountpoint, disc, volume
(e.g., C:, /, SYSLIB, etc.)

 Directory (or path) — Directory tree (e.g., /usr/bin, \TEMP,
[USR.LIB.SRC], etc.)

 File – Base name of the file
 Type (format or extension) — Indicates the nature / type of the content of

the file (e.g., .txt, .exe, .dir, etc.)
 Version — Revision number of the file

An extension name of a computer file is usually a three- character addition
after the file’s name. This extension assists IBM-compatible computers, such as
those running Microsoft Windows, in identifying the program to relate the file with
and correctly open the file.

Given below are the characters that cannot be used in filenames or directory
names in most operating systems.

\, /, :, *, ?, “, <, > and |

Creating Directories

A hierarchical file system in the operating system, such as UNIX, Linux, DOS,
OS/2, etc., contain directories. To refer to a directory, a user usually indicates it
by name. Some of the important directories are: root directory, home directory
and current directory.

Therefore, in Windows, there is no concept of a directory unless we create
a folder and then create sub-folders and sub-sub folders within it.

The following is an example of a directory path in MS DOS.

C:\Windows\System32>

In the above example, C: denotes the drive, and System32 – which is in the
directory of the Windows – is the present directory one would see.

The following is an example of a directory in a Linux/UNIX variant.

/usr/bin

In the above example, you are located in the bin directory which is a
subdirectory of the usr directory.

NOTES

Self - Learning
Material 51

Introduction to Computer
and Computing

For changing a directory in Linux, MS DOS, UNIX and other command
line operating systems, the ‘cd’ command is used.

Given below are the special characters that cannot be used file or directory
names in most operating systems:

\, /, :, *, ?, “, <, > and |

The AUTOEXEC.BAT File

AUTOEXEC.BAT is a system file found originally on DOS type operating systems.
It is a plain text batch file that is located in the root directory of the boot device.
The following is a basic DOS AUTOEXEC.BAT configuration consisting only of
essential commands:

@echo off

prompt PG

PATH=C:\DOS;C:\WINDOWS

set TEMP=C:\TEMP

set BLASTER=A220 I7 D1 T2

lh smartdrv.exe

lh doskey

lh mouse.com /Y

win

The CONFIG.SYS File

The CONFIG.SYS file is found in the root directory of the C: drive or other boot
drive of every PC. The CONFIG.SYS tells DOS which peripherals and devices
are installed on your computer. Following statement is set as default values in
CONFIG.SYS file:

DOS=HIGH

HIMEM.SYS

SETVER.EXE

FILES=60

BUFFERS=30

LASTDRIVE=Z

STACKS=9,256

FCBS=4

1.7 INTRODUCTION TO WINDOWS

Windows XP is a line of proprietary operating systems which was developed by
Microsoft and is meant to be used for general-purpose computers, such as home
computers and business desktops, notebook computers and various types of media
centres. Windows XP succeeds Windows 2000 and Windows ME, and is the first
consumer-oriented operating system produced by Microsoft to be built on the
Windows NT kernel and architecture. The most popular operating systems versions
are Windows XP Home Edition which is primarily meant for home users, and

Introduction to Computer
and Computing

NOTES

Self - Learning
52 Material

Windows XP Professional, which boasts additional features, such as support for
Windows Server domains and dual processors, and is meant for professionals
and other experts. Windows XP Media Center Edition has additional multimedia
features. Windows XP has an edge over the earlier versions of Microsoft Windows
because of enhanced efficiency and better stability.

Windows XP helps you access and manage your files on the PC using a
Graphical-User Interface GUI. All Programs and files stored on the PC are
represented as pictures are called icons. These icons are stored on the desktop.

Components of Windows XP

The Windows XP user interface consists of various components and concepts
that help make Windows XP user-friendly and intuitive. We will discuss these
components and their use in Windows XP in this unit. Some of the components
that we will discuss are as follows:

 Desktop

 Start menu

 Taskbar

 Icons

 Recycle Bin

 Windows

 Applications

 Folders

 Files

 Control Panel

We will explain what these components are and how to make use of them
to make the most of your operating system.

Features of Windows XP

Following are the features of Windows XP:
1. All PCs give you the liberty to personalize your system according to your

liking. XP makes it easy to personalize your computer by adding color,
patterns, pictures, and even sound to improve your screen’s appearance.

2. The User Accounts feature in Windows XP enables storing personalized
settings and preferences by numerous users. Every time a new user logs in
and request data, the computer retrieves it as though it has the information
related to that user alone. User Accounts also help by securing your PC.

3. A Web browser called Internet Explorer comes as part of Windows XP. It
gives you access to a rich knowledge base by accessing the Web.
Another interesting feature of Microsoft Windows XP is the Internet
Connection Sharing (ICS). The computer using ICS, called the ICS host,
can share its Internet connection with the other computers on the network.

4. Outlook Express is another widely used application in Microsoft Windows
XP. With Outlook Express, you can send and receive e-mail messages. It
also lets you to manage these messages by organizing them into different
folders.

5. Windows Messenger provides the facility of instant text, chat voice, and
video communication with friends and family all around the world.

NOTES

Self - Learning
Material 53

Introduction to Computer
and Computing

6. Windows XP’s Security Zone feature lets you to assign security options for
Website access. It restricts you from exploring different sites by selecting
the desired security level and asks for your approval before opening a file
or running a program from the Internet.

7. With Microsoft Windows XP, you can download music from the Internet,
arrange tunes in the order of your preference and compile them into a CD
of your own. You can also store music on a portable MP3 player to enjoy
your favourite tunes while you are away from your computer.

8. With its new Photo Album feature you need not worry about getting your
photographs developed in the photo studio. You can categorize your
photographs and keep them in a digital album on Windows XP. You can
even edit these pictures to make them look more exciting and interesting.
Moreover, Windows XP has some additional features which help you to
view photos, as well as print, store and share them.

9. It also enables to play games on separate computers or with each other, as
well as on the Internet. With its Internet gaming feature users can play
multiplayer games with networked computers.

10. Windows XP has the option of linking computers to create a network,
thereby sharing expensive resources, peripherals and even Internet
connections. You can share scanners, printers, hard disks, files, folders and
play multicomputer games.

Working with Windows

Whenever you open a program, file or folder, it appears on your screen in a box
or frame called a window.

Parts of a Window
Most windows have the following basic parts:

 Title Bar: It displays the name of the document and program or the folder
name, if you are working in a folder.

 Minimize, Maximize and Close Buttons. These buttons hide the window,
enlarge it to fill the whole screen and close it, respectively.

 Menu Bar: It contains items that you can click to make choices in a
program.

 Scroll Bar: It lets you to scroll the contents of the window to see information
that is currently out of view.

 Borders and Corners: You can drag these with your mouse pointer to
change the size of the window.

Start Menu and the Taskbar

Menus are very useful parts of the Windows system. They consist of various
commands and subcommands for default and other applications and programs
stored on your computer.

Introduction to Computer
and Computing

NOTES

Self - Learning
54 Material

Start Menu

Windows XP also has a new Start menu for enabling faster access to commonly
used programs and common system areas, such as My Computer, Control Panel
and Search.

The Start menu and the Start button are user interface elements in Microsoft
Windows, and serve as the central launching point for all applications. By default,
the Start button is always visible in the lower left-hand corner of the screen. It
exhibits the Windows logo and the word ‘start’.

For choosing a program from the Start menu click on the Start menu option
on the Taskbar. Once the Start Menu is expanded you can drag the mouse to the
right and switch over to the submenus.

Switching between Programs

When you have more than one program running you can switch between these to
make any one of them current. You can switch between two programs by simply
clicking on the desired program button on the Taskbar shown below. You will
notice that the active program window button will be darker in color.

Alternatively, you can perform the same task by using a combination of
keys on your keyboard, by pressing the Tab key while holding the Alt key. On
pressing this combination you will see a box around the icons for the running

NOTES

Self - Learning
Material 55

Introduction to Computer
and Computing

programs. Each time you press the Tab key, the box moves to the next program.
As soon as you release the Tab key the highlighted icon window will open. In
case of the figures shown the window for ‘My Computer’ will open.

Quitting Windows

It is always a good idea to shut down all applications before switching off your
computer. Directly switching off the power can corrupt your data.

In order to shut down your PC go to the Start menu on the Taskbar and
select the Turn off computer option. On doing so a screen (below, right) is
displayed. This gives you options to Log Off, Restart or Turn Off the PC.
Select the Turn Off option for it to close all applications before powering off.

Windows Explorer — Managing Files and Folders

Windows is responsible for maintaining all your files and subfolders on your disk.
You are aware by now that you store information in individual files. Groups of files
on a common subject can be kept in a specially earmarked place called a folder.

Introduction to Computer
and Computing

NOTES

Self - Learning
56 Material

Starting Windows Explorer
Click on the Windows Explorer command from All Programs option of the
Start menu. (Some versions of Windows call it Programs instead of All Programs.)

Moving Files

 Click on the file which you wish to move.
 Click on the Move this file icon from the Standard buttons toolbar. The

Move Items dialog box will be displayed.
 Click on the location/folder you wish to place the file. In our example, we

have taken Ink as the folder we want to move the file to.
 Click on the Move button to move the file.

Copying Files by Click and Drag Method

 Click on the file that you want to copy to another folder.

 Keeping the left mouse button pressed on the highlighted file, drag it to the
folder which you want to copy. Make sure that the folder you want to drag

NOTES

Self - Learning
Material 57

Introduction to Computer
and Computing

the file to is visible. Once you have dragged the selected file to the desired
folder, you can release the mouse button.

You will now see the file displayed in the required folder. Note that when
you drag a file to a folder on the same disk, it will be moved, but if you drag
it to a folder on another disk, it will be copied.

Copying Multiple Files

 Click on a file that you want to copy.
 Press the Ctrl key and while keeping it pressed, click on another file. Repeat

the same process for as many files as you wish to select. Now, follow the
steps that you take to copy a file to another folder. This option of copying
files is easier in the sense that you do not have to copy the required files one
by one to another folder.

Renaming a File

 Highlight the file you want to rename.
 Click on the Rename this file option from the left panel or press the right

mouse button once and select the Rename option from the pop-up menu.
 You can type in the new name for the file here.
A The file name has been changed.

Introduction to Computer
and Computing

NOTES

Self - Learning
58 Material

Deleting Files

 Highlight the file you want to delete.

 Click on the Delete this file option from the left panel or press the Delete
key from your keyboard.

 Click on the Yes button once.

A You will see that the desired file has been deleted.

Searching a File or Folder

 Place your mouse pointer on the Start button. Press the right mouse button
once and select the Search option.

A You can search for the files or folders as desired based on the criteria you
select.

The Recycle Bin

 Click on the Recycle Bin icon on the Desktop.

A You can select from the options available. These include deleting the files
from the Recycle Bin permanently or restoring it to the position where they
had been deleted from.

NOTES

Self - Learning
Material 59

Introduction to Computer
and Computing

The Control Panel

Adding or Removing programs (Adding All Programs and changing Windows
Components).

 Click on the Start menu and go to Control Panel.

 Select the Add or Remove Programs option by double-clicking on it.

A The following screen will be displayed.

Introduction to Computer
and Computing

NOTES

Self - Learning
60 Material

You will see icons in the left panel of the screen that say Change or Remove
Programs, Add New Programs, and Add/Remove Windows Components.

Change or Remove Programs

This option allows you to change or remove existing installed programs. To remove
a program

 Select the program by clicking on it.

 Click once the Remove button shown against the program

Add New Programs

To install and/or uninstall additional software programs click on the Add New
Programs buttons.

A The following window would be displayed. By clicking once on the CD or
Floppy button you can install a new program from either a CD or a floppy.

B You can choose Windows Update to add new Windows features or system
updates over the Internet.

NOTES

Self - Learning
Material 61

Introduction to Computer
and Computing

Date and Time

There is a small component inside your computer called Real Time Clock (RTC).
This RTC and CMOS setup are powered by a battery cell to ensure that the basic
settings of your computer are not lost when you switch off your system. RTC
stores the current date and time in your computer and passes on this information
to put a date and time stamp on all file operations. The date and time option gives
you the liberty of adjusting the system’s date and time to correct settings. It is
important that your computer works on the correct clock and calendar timings, so
that it uses current date and time information to create and update your files.

Windows allows you to set the date, time, and time zone for your computer using
the Date and Time option of the Control Panel.

Changing the Date and Time

 Click once on the Date and Time icon.

 Click on the month drop-down list to change the month.

 Click on this button to change the year.

 Click on any of the dates to change the date.

 Click on this draw to change the time.

 Click on Apply button to apply the changes you have made.

 Click on OK button to continue.

Setting Time Zone

Following steps are required to set time zone in Windows XP system:

 Open Date and Time in Control Panel.

 On the Date & Time tab, select the item you want to change.

Introduction to Computer
and Computing

NOTES

Self - Learning
62 Material

 To change the hour, double click the hour and then click the arrows to
increase or decrease the value. To change the minutes, double-click the
minutes and then click the arrows to increase or decrease the value. To
change the seconds, double-click the seconds and then click the arrows to
increase or decrease the value. To change the AM/PM indicator, select it
and then click the arrows.

 To change your time zone, click the Time Zone tab and then click the drop-
down arrow to set the current time zone.

Screen Saver

A screen saver is a moving image or pattern that appears on your monitor when
you have left your computer idle for a specified time.

This makes sure that nobody peeps and messes with your computer files
while you are away from your desk.

 Click on the Screen Saver tab.
 The drop-down list lets you choose the screen saver that you want to

apply.
 Click on the Settings button to change other settings.
 You can preview the selected screen saver before applying it. To do

so click on the Preview button once.
 You can increase or decrease the time (in minutes) for activating the

screen saver.
 Click on Apply button for applying the changes made.
 Click on OK button to continue.

NOTES

Self - Learning
Material 63

Introduction to Computer
and Computing

Wallpaper or Background

Desktop wallpapers do exactly what your room wallpaper does—decorate your
surrounding and add more colour and fun to your life. Use this option to modify
and apply different pictures and images as your desktop wallpaper. You can also
use repetitive designs called Patterns to get a woven fabric or block printed look
on your desktop.

 Click once on the Desktop option from the Display Properties pop-up
screen.

 Click once on the background/wallpaper you desire from the list.
Background lists the available wallpapers you can use to decorate your
desktop. When you click on a wallpaper in this list, a preview of how the
wallpaper will look will appear on the dialog box screen. Alternatively, you
can click on the Browse tab to select a file from the desired location.

 You can define the position of the wallpaper here, i.e., whether you want
the wallpaper in the centre of the screen, tiled across your screen, or you
want it stretched to fit the screen.

 Click on the Apply button to apply the settings that you have changed.

 Click on the OK button to continue.

A You can further customize your desktop. These include options like choosing
the icons displayed on your desktop and icons used for representing a
program. Click on the Customize Desktop button to see available options.

Mouse

As explained earlier, a mouse is a small hand-held device through which you can
quickly and easily navigate different parts of the screen. You can customize various
aspects of the mouse to make it work the way you prefer. You can control the
mouse pointer speed, shape, button configuration, double-click speed, etc. You

Introduction to Computer
and Computing

NOTES

Self - Learning
64 Material

can even swap the left and right buttons. If you frequently lose track of where your
mouse pointer is, you can choose to have a mouse trail effect, which will make the
mouse pointer more visible. To change any of the above-mentioned mouse settings:

A Choose Mouse option from the Control Panel.

Button Configuration

To customize button configuration follow the steps given below:

 Click on the Buttons tab.

 Click on the check box under the Button configuration option to convert
your left mouse button into right button and vice versa.

 Drag this button to increase or decrease the clicking speed of the mouse.

 Click on the Apply button to apply the changes that you have made.

 Click on the OK button to continue.

Pointer Configuration

To customize pointer configuration:

 Click on Pointers tab.

 Click on the pull-down list to choose the scheme that you want to apply.

NOTES

Self - Learning
Material 65

Introduction to Computer
and Computing

A You can choose a scheme from another location by clicking on the Browse
button.

 Click on Apply button to apply the chosen scheme.

 Click on the OK button to continue.

Motion Configuration

You can also customize the motion configuration of the mouse. To do so:

 Click on the Pointer Options tab.

 Click on this button to increase or decrease the pointer speed.

 You can also click on the Hide pointer while typing option to hide the
pointer while you are typing.

 Click on the Apply button to apply the changes you have made.

 Click on the OK button to continue.

Introduction to Computer
and Computing

NOTES

Self - Learning
66 Material

Printers and Faxes
Use this option to install new printers. You would need the Windows XP CD or
the Printer Installation CD to run this option. Windows XP installation CD includes
many printer drivers from various well-known printer manufacturers. However, if
your printer or its exact model is not listed in the driver’s list provided by Windows
XP, you need not worry — simply insert the CD or floppy (which must have come
along with the printer) and complete the printer installation procedure.

 Choose the Printers and Faxes option from the Control Panel to see the
printers installed.

A You will get a list of the printers installed on your machine.

Cameras and Scanners

Scanners and Cameras option in Control Panel enables you to install scanners,
digital cameras, digital video cameras and other image-capturing devices. After a
device is installed, you can use the Scanners and Cameras Wizard to download
and save pictures on your computer in a folder you specify. You can also view
device properties, delete pictures from your camera or print photos. You can even
test your device to make sure everything is working properly. You can use Scanners
and Cameras to link your device to a program on your computer. For example,
you can set your computer to automatically open all of your scanned pictures in
your program of choice. Windows automatically saves pictures to the My Pictures
folder or to a subfolder you specify. If you save your files to any My Pictures
subfolder or any folder customized as a pictures folder Windows provides
specialized tools and features you can use Windows Picture and Fax Viewer
and the ability to view your pictures as a slide show.

Sound and Audio Devices

Multimedia, as the name suggests, is a combination of many mediums—sounds,
static pictures, movie clips, animation, text, etc. The main components of Windows
XP Multimedia are: Sound Recorder, CD player, Media Player and Active Movie
Player. Although most new computers today have inbuilt multimedia facilities,
multimedia is not a standard or necessary feature of all computers. You must have
multimedia hardware like the CD Rom drive, sound card, speakers and microphone
pre-installed before you can use multimedia features.

NOTES

Self - Learning
Material 67

Introduction to Computer
and Computing

Sounds

You can use this option for assigning different sounds to various system events,
such as error messages, warning dialog boxes, starting and exiting windows, etc.
Needless to say, this option will work only if you have a sound card and speakers
installed. To do so:

 Choose the Sounds and Audio Devices option from the Control Panel.

 Choose the Sounds icon from the Sound and Audio Devices Properties
pop-up menu.

 Click on the Sound scheme drop-down list to choose a scheme. This list
displays schemes that you can use to simultaneously change the sounds
assigned to many system events.

 Click on the OK button to apply the changes that you have made.

Network

In a computer network you can link several computers so that they can exchange
information between themselves. Another advantage of a computer network is
that expensive resources like plotters, scanners and printers can be shared between
many computers, thereby eliminating the need for duplicating these resources for
each computer.

Introduction to Computer
and Computing

NOTES

Self - Learning
68 Material

The Network Connections window contains utilities like Network Setup,
Mail, Schedule and Remote Access.

 Choose the Network Connections command from the Control Panel.

 Double-click on the Local Area Connection icon.

A You will get this Local Area Connection Status pop-up window.

 Choose Properties from the window.

 You can modify any network setting you want and then click on OK once
to apply the settings.

1.8 INTRODUCTION TO UNIX

In 1960, the Massachusetts Institute of Technology, American Telephone Telegraph
or AT&T Bell Laboratories and General Electric worked on an operating system,
MULTiplexed Information and Computing Service (MULTICS). The MULTICS
operating system was designed to run the GE-645 mainframe computers. The
operating system was not very successful. Ken Thompson, who was a developer
in the AT&T Bell Laboratories, developed a game called Space Travel for the

NOTES

Self - Learning
Material 69

Introduction to Computer
and Computing

GE-645 mainframe computers. The system was running at a very slow speed.
Then, he wrote the game in the assembly language with the help of Dennis Ritchie.

Ken Thompson and Dennis Ritchie included Rudd Canady and formed a
team of developers. The aim of the team was to develop an operating system with
the support for file system and multitasking for the Program Decision Package or
PDP-7 machines. The operating system included a command line interpreter and
different utility programs.

In 1970, an operating system named UNiplexed Information and Computing
System (UNICS) was developed, which allowed two users to work simultaneously.
The name was changed to UNIX from UNICS. UNIX as an operating system
was developed in the early 1970s at AT&T Bell Laboratories.

UNIX as an Operating System

UNIX is a multi-user and multitasking operating system. In a multi-user environment,
the computer can receive the commands from a number of end users to run
programs, access files, and print documents simultaneously. Figure 1.36 shows a
multi-user environment.

Fig. 1.36 Multi-user Environment

The host computer, which has a UNIX operating system, provides services
to the terminals, such as file access services. Four terminals are connected to one
host computer and all the terminals are sharing resources from the host computer.

Multitasking feature performs scheduling of work while one task is waiting
for input and another task reads input from the hard disk. As a result, you can
perform more that one task simultaneously.

Features of UNIX

UNIX as an operating system supports all features that are expected in an operating
system. UNIX also provides additional features that are not supported in any
other operating system. The general and additional features of UNIX operating
system are as follows:

 File and Process: File and process are two entities that are supported by
UNIX. A file contains information, such as text, code or directory structure
that you need to save in the computer. The file is stored in the hard disk of
the computer at a particular location which can be easily remembered
whereas a process is the name given to a file or a program that is currently
running. UNIX provides various tools that enable you to control a process,
change the sequence of the process and kill the process.

Introduction to Computer
and Computing

NOTES

Self - Learning
70 Material

 Multi-user System: UNIX supports multitasking system as the kernel is
designed to handle multiple processes. A single user can run multiple
processes simultaneously. For example, an end user can print a file and edit
another file simultaneously. The kernel handles the multiple processes as
foreground and background processes. The current process runs in the
foreground and the other processes run in the background. The foreground
and background processes can be switched according to the requirements.
This multitasking feature is an advantage for the programmers, as they do
not have to close the editor and run the program; this can be done
simultaneously.

 UNIX Toolkit: The UNIX toolkit provides various tools that enable you
to perform different tasks in UNIX as kernel alone cannot perform every
task. The tools that are included in the UNIX toolkit are as follows:

o General purpose tools, such as vi editor.
o Text manipulation utilizes filters that are used to retrieve the output

from two or more commands simultaneously.
o Compiler and interpreter.
o Network administration and system tools, such as mailx and pine.

 Pattern Matching: UNIX supports pattern matching feature that enables
you to retrieve the output according to the required pattern. Pattern matching
in UNIX can be implemented using a special characters, such as * known
as metacharacter. The * character denotes multiple characters. For example,
if you need to retrieve all the files whose name start with A, you can give the
argument for the list command as A*, instead of specifying all the names of
the files.

 Programming Facility: UNIX provides a programming facility known as
shell that is developed specifically for programmers and not for the users.
The shell programming includes all programming features, such as variables,
loops and control structures that help you to create a shell script.

1.9 DATA PROCESSING

Information is handled in the computer by electrical components such as transistors,
integrated circuits, semiconductors and wires, all of which can indicate only two
states or conditions. Transistors are either conducting or non-conducting; magnetic
materials are either magnetised or non-magnetised in a direction; a pulse or voltage
is either present or not present. All information can therefore be represented within
the computer by the presence (ON) or absence (OFF) of these various signals.

Thus, all data to be stored and processed in computers are transformed or
coded as strings of two symbols, one symbol to represent each state. The two
symbols normally used are 0 and 1. These are known as BITS, an abbreviation
for BInary digiTS.

NOTES

Self - Learning
Material 71

Introduction to Computer
and Computing

Let us now understand some commonly used terms:
Value Meaning

 0 Off

1 On

Fig. 1.37 Bits

BITS: The smallest element that a computer uses. It can hold one of two
possible values.

A bit which is ON is seen as SET or TRUE; and a bit which is OFF is seen
as NOT SET or FALSE.

Since only two values can be stored in a single bit, there can only be four
unique combinations:

00 01 10 11

Bits therefore have to be combined together into larger units for holding
greater ranges of values.

NIBBLE: A set of FOUR bits. There can only be a maximum of sixteen
different values possible:

24 = 16 (2 to the power of the number of bits)

BYTES: A set of two nibbles or eight bits. Characters are often stored in
bytes along with numeric values.

28 = 256 (2 to the power of the number of bits)

WORD: Just like we express information in words, so do computers. A
computer ‘word’ is a group of bits, the length of which varies from machine to
machine, but is normally pre-determined for each machine. The word may be as
long as 64 bits or as short as 8 bits.

Character Representation

Binary data is not the only data handled by the computer. We also need to process
alphanumeric data like alphabets (upper and lower case), digits (0 to 9) and special
characters like + – * / () space or blank etc. These also must be internally
represented as bits.

Decimal Number

0

1

2

3

4

5

6

7

8

9

Binary Equivalent

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

Fig. 1.38 Data Representation in Bits

Introduction to Computer
and Computing

NOTES

Self - Learning
72 Material

BCD

Binary Coded Decimal (or BCD) is one of the early memory codes. It is based on
the concept of converting each digit of a decimal number into its binary equivalent
rather than converting the entire decimal value into a pure binary form. It further
uses 4 digits to represent each of the digits. The table below shows the BCD
equivalent of the decimal digits.

Converting 42
10

 into its BCD equivalent would result in:

42
10

=
 0100 0010 or 01000010 in BCD

4 2

As seen, 4-bit BCD code can be used to represent decimal numbers only.
Since 4 bits are insufficient to represent the various other characters used by the
computer, instead of using only 4-bits (giving 16 possible combinations), computer
designers commonly use 6 bits to represent characters in BCD code. In this the 4
BCD numeric place positions are retained, but two additional zone positions are
added. With 6 bits it is possible to represent 26 or 64 different characters. This is
therefore sufficient to represent the decimal digits (10), alphabetic characters (26),
and special characters (28).

EBCDIC

A major drawback of the BCD code is that only sixty-four distinct characters can
be represented by it. Since this proved insufficient for representing many special
characters (28 plus), uppercase letters (26), lowercase letters (26) and decimal
numbers (10), the BCD code was extended from a 6-bit to an 8-bit code. The
additional two bits function as zone bits, thus expanding the zone bits to four. The
code that results is known as the Extended Binary-Coded Decimal Interchange
Code (EBCDIC). It was developed by IBM and is used in many computers,
particularly the majority of IBM models. It allows 28 or 256 characters to be
represented. This takes care of the character requirement along with a large quantity
of non- printable and printable control characters (movement of the cursor on the
screen, vertical spacing on printer etc.).

Since EBCDIC is an 8-bit code, it is possible to divide it into two groups of
4-bits each. One hexadecimal digit represents each group (explained earlier in this
unit). Thus, computers using the EBCDIC code for internal representation of
characters can use the hexadecimal number system as a notation for memory
dump.

ASCII

A computer code that is very widely used for data interchange is called the
‘American Standard Code for Information Interchange’ or ASCII. Several
computer manufacturers have adopted it as their computers’ internal code. This
code uses 7 digits to represent 128 characters. Now an advanced ASCII is used
having 8-bit character representation code allowing for 256 different characters.
This representation is being used in Micro Computers.

We will now study the encoding method. The following table presents the
bit combinations that are required for each character.

NOTES

Self - Learning
Material 73

Introduction to Computer
and Computing

Bit Combinations for Each Character

R

00

10

20

30

40

50

60

70

00

NUL

DLE

0

@

P

'

p

01

SOH

DC1

!

1

A

Q

a

q

02

STX

DC2

"

2

B

R

b

r

03

ETX

DC3

#

3

C

S

c

s

04

EOT

DC4

$

4

D

T

d

t

05

ENQ

NAK

%

5

E

U

e

u

06

ACK

SYN

&

6

F

V

f

v

07

BEL

ETB

‘

7

G

W

g

w

08

BS

CAN

(

8

H

X

h

x

09

TAB

EM

)

9

I

Y

i

y

0A

LF

SUB

*

:

J

Z

j

z

0B

VT

ESC

+

;

K

[

k

{

0C

FF

FS

,

<

L

\

l

|

0D

CR

GS

-

=

M

]

m

}

0E

SO

RS

.

>

N

^

n

~

0F

SI

US

/

?

O

_

o

DEL

Thus, the text string ‘Hello.’ is coded in ASCII using hexadecimal digits as
follows:

H e l l o .

48 65 6C 6C 6F 2E

The byte sequence 48 65 6C 6C 6F 2E represents the string.

Processing of Data

Data processing can be defined as the process of converting raw data into suitable
information using a series of operations like classifying, sorting, summarizing and
tabulating it for easy storage and retrieval. Processed data is called information.

Data, especially large volumes of it, unless processed properly, are not of
much use in the current information driven world. Relevant information can give a
definite edge to a business to stay ahead of its competition and plan for the future.
In fact, the speed at which information can be extracted from data (a process
called data processing) is just as crucial as the information itself. Information usually
loses it value if it’s not up-to-date. Automatic Data Processing (ADP) applications
are gaining wide popularity in the market to solve this very problem. They not only
save time but also reduce the cost of data processing. An ADP application, once
configured, is ideal for converting similarly structured data into specific sets of
information using predefined rules of selection, processing and presentation. Data
processing can also include the conversion of one type of information into another
for legacy systems transfer.

Typically, a data processing cycle can be broadly divided into five stages:

Data Collection

Data Preparation

Data Input

Data Processing

 Information Output

Just as there are different types of data (classified either by usage, attributes
or content), there are different methods of processing data. These are:

1. Real-time Processing: In this mode, data is processed almost immediately
(in real time) and in a continuous flow. This is of particular advantage when

Introduction to Computer
and Computing

NOTES

Self - Learning
74 Material

the lifespan of information is small and core business activities are involved.
The advantages of real-time processing are that the derived information is
up-to-date and so it is more relevant for decision making. For instance, in a
bank or in an ATM (Automatic Teller Machine), as soon you deposit money
in your account, your account status (balance standing to your credit) is
updated instantaneously. This enables you as well as the bank to know the
exact status of funds, in real time mode, or in other words, as of this minute.
Similarly, in a railway reservation system, a train ticket booked from anywhere
in the world MUST update the central database in real-time to ensure that
the seat once booked is not sold to anybody else in the world. Real time
processing also requires relatively little storage compared to batch
processing.

2. Batch Processing: Real time processing requires high speed broadband
connections so that the data inputted from different computers or locations
can be used to update a centralized server and database. Setting up such
networks is expensive and not always feasible because sometimes the data
does not need to be processed immediately. For instance, in a BPO (Business
Processing Outsourcing) outfit, hundreds of operators may be inputting data,
which can be made available to the client only after it is checked and verified
by a supervisor(s). Such situations call for batch mode processing, which is
used when the conversion of data into information is not required to be
done immediately and therefore this data processing is done in lots or
batches. The advantages of batch processing are that it is cheaper and
processing can be done offline.

It should be noted that data processing and data conversion are technically
quite different; while data conversion only means converting data from one form
to another, data processing means conversion of data into information or sometimes
vice versa.

CPU

Execution of programs is the main function of the computer. The program to be
executed is a set of instructions that is stored in the computer’s memory. Tasks are
completed when the instructions of the program are executed by the Central
Processing Unit (CPU). Also, all the major calculations and comparisons are carried
out inside the CPU. Additionally, the CPU is responsible for activating and
controlling the operations of various units of the computer system. It activates the
peripherals to perform input or output.

Arithmetic Logic
Unit (ALU)

Register Set

Control Unit

Fig. 1.39 Major Components of a CPU

NOTES

Self - Learning
Material 75

Introduction to Computer
and Computing

The CPU is made up of three major components (as seen in Figure 1.39):
the register set (associated with the main memory) that stores the intermediate
data during the execution of instructions, the Arithmetic Logic Unit (ALU) that
performs the required micro-operations for executing the instructions, and the
control unit that supervises the transfer of information among the registers and
instructs the ALU as to which operation to perform.

Control unit

The control unit is necessary if the CPU is to function efficiently and information/
data is to be transferred between the CPU and other devices. It does not perform
the actual processing of the data, but manages and coordinates the entire computer
system, including the input and, output devices. It retrieves and interprets the
instructions from the program stored in the main memory, and issues signals that
cause the other units of the system to execute them.

It does this through some special purpose registers and a decoder. The
special purpose register called the Instruction register holds the current instruction
to be executed, and the Program control register holds the next instruction to
be executed. The decoder interprets the meaning of each instruction supported by
the CPU. Each instruction is also accompanied by a Microcode, i.e., the basic
directions to tell the CPU how to execute the instruction.

Arithmetic logic unit

The arithmetic logic unit or ALU provides arithmetic and logic operations. This
means that when the control unit encounters an instruction that involves an arithmetic
operation (add, subtract, multiply, divide) or a logic operation (equal to, less than,
greater than), it passes control to the ALU. The ALU has the necessary circuitry
to carry out these arithmetic and logic operations.

As an example, a comparison of two numbers (a logical operation) may
require the control unit to load the two numbers in the requisite registers and then
pass on the execution of the ‘compare’ function to the ALU.

Introduction to Computer
and Computing

NOTES

Self - Learning
76 Material

Figure 1.40 represents the basic structure of a CPU.

Arithmetic Logic
Unit (ALU)

Accumulator
(AC)

Data
Register (DR)

Program
Counter (PC)

Instruction
Register (IR)

Memory Address
Register (MAR)

Control Unit

Control Signals

Program Control Unit

Data Processing Unit

To/ From
 Main Memory
or Input/Output

Devices

Fig. 1.40 Basic Structure of a CPU

Instruction set

The primary function of the processing unit in the computer is to interpret the
instructions given in a program and carry out the instructions. Processors are
designed to interpret a specified number of instruction codes. Each instruction
code is a string of binary digits. All processors have input/output instructions,
arithmetic instructions, logic instructions, branch instructions and instructions to
manipulate characters. The number and type of instructions differ from processor
to processor. The list of specific instructions supported by the CPU is termed as
its Instruction set.

An instruction in the computer should specify the following:

• The task or operation to be carried out by the processor. This is termed
as the opcode.

• The address(s) in memory of the operand(s) on which the data
processing is to be performed.

• The address in the memory that may store the results of the data
processing operation performed by the instruction.

• The address in the memory for the next instruction, to be fetched and
executed.

The next instruction which is executed is normally the next instruction following
the current instruction in the memory. Therefore, no explicit reference to the next
instruction is provided.

NOTES

Self - Learning
Material 77

Introduction to Computer
and Computing

Instruction representation

An instruction is divided into a number of fields and is represented as a sequence
of bits. Each of the fields constitutes an element of the instruction. A layout of an
instruction is termed as the instruction format. (See Figure 1.41)

 Opcode Operand Address

4 Bits 12 Bits

Fig. 1.41 A Sample Instruction Format

In most instruction sets, many instruction formats are used. An instruction is
first read into an instruction register (IR), then it is decoded by the CPU which
extracts the required operands on the basis of references made on the instruction
fields, and processes it. Since the binary representation of the instruction is difficult
to comprehend, it is seldom used for representation. Instead, a symbolic
representation is used. (See Figure 1.42)

Instruction Interpretation Number of
Addresses

ADD A,B,C Operation A = B + C is executed 3

2

1

ADD A,B A = A + B. In this case the original
content of operand location is lost

ADD A

AC = AC + A. Here A is added to the
accumulator

Fig. 1.42 Examples of Typical Instructions

Typically, CPUs manufactured by different manufacturers have different
instruction sets. This is why machine language programs developed for a particular
CPU do not run on a computer with a different CPU (having a different instruction
set).

Registers

The primary task that the CPU performs is the execution of instructions. It executes
every instruction by means of a number of small operations known as micro-
operations. Thus, it can be seen that:

• The CPU needs an extremely large main memory

• The speed of the CPU must be as fast as possible

To understand further, let us define two relevant terms:

Memory cycle time: Time taken by the CPU to accesse the memory.

Cycle time of the CPU: The time that the CPU takes for executing the
shortest well-defined micro-operation.

It has been observed that the time taken by the CPU to access the memory
is about 1–10 times higher than the time that the CPU takes for executing the
shortest well-defined micro-operation. Therefore, CPU registers serve as temporary

Introduction to Computer
and Computing

NOTES

Self - Learning
78 Material

storage areas within the CPU. CPU registers are termed as fast memory and can
be accessed almost instantaneously.

Further, the number of bits a register can store at a time is called the length
of the register. Most CPUs sold today have 32-bit or 64-bit registers. The size of
the register is also called the word size and indicates the amount of data that a
CPU can process at a time. Thus, the bigger the word size, the faster the computer
can process data.

The number of registers varies among computers, but typical registers found
in most computers include:

Memory Buffer Register (MBR): Data is received from the memory (in
the case of read operations), and it is held in the memory (in the case of write
operations) by MBR.

Memory Address Register (MAR): The memory location’s address where
data is to be stored (in case of write operations) and the location from where data
is to be accessed is (in case of read operations) is specified by MAR.

Accumulator (AC): Interactions with the ALU are carried out by the
accumulator, in which the output and input operands are stored. This register,
therefore, holds the initial data to be operated upon, the intermediate results and
the final results of processing operations.

Program Counter (PC): The next instruction to be executed subsequent
to the current instruction being executed is kept track of by the program counter.

Instruction Register (IR): Instructions are loaded in the instruction register
prior to being executed, i.e., the instruction register holds the current instruction
that is being executed.

Instruction processing, in its simplest form, can be defined as a two-step
process:

1. Codes or instructions are read (fetched) from the CPU one by one.
2. The operation indicated by that particular instruction is performed or

executed.

The PC fetches the instruction and tracks which instruction to fetch next.
Since the execution of a program is in a sequential manner, the PC usually fetches
the next instruction in the sequence. This instruction appears in the binary code
form and is loaded into an IR. It is then interpreted by the CPU, and the desired
action is carried out. Generally, the following categories can be identified for these
actions:

• Data transfer: From I/O to CPU, from CPU to I/O, from memory to
CPU, or from CPU to memory.

• Data processing: A logic or an arithmetic operation may be carried
out on the data by the CPU.

• Sequence control: This action is typically required for altering the
sequence in which the instructions are executed. For instance, if an
instruction from location 50 specifies that the next instruction to be fetched
should be from location 100, then the program counter will need to be

NOTES

Self - Learning
Material 79

Introduction to Computer
and Computing

modified to contain the location 100 (which otherwise would have
contained 51).

Instructions can be executed involving many combinations of these actions.

Processor speed

The term processor has replaced the term central processing unit (CPU). The
processor in a personal computer that is embedded in small devices is often called
a microprocessor.

The speed at which the processor executes commands is called the processor
speed or clock speed. Every computer contains an internal clock (known as the
system clock) that regulates the rate at which the instructions are executed and
synchronises the various computer components. The processor requires a fixed
number of clock cycles (electric pulses per second) to execute each instruction.
Clock cycles are required to fetch, decode and execute a single program instruction.
Thus, the shorter the clock cycle, the faster the processor.

In a computer, clock speed therefore, refers to the number of pulses per
second generated by an oscillator that sets the tempo for the processor. It is usually
measured in MHz (Megahertz - Million pulses per second) or GHz (Gigahertz
- Billions pulses per second).

Computer clock speed has been roughly doubling every year. The Intel
8088, common in computers around the year 1990, ran at 4.77 MHz. Today’s
personal computers run at clock speeds of a 100–1000 MHz and some even
exceed one gigahertz.

Although the processing speed in personal computers is measured in terms
of megahertz, the processing speed of mini computers and mainframe systems is
measured in terms of MIPS (millions of instructions per second) or BIPS (billions
of instructions per second). This is because personal computers generally employ
a single microprocessor chip as their CPU while other classes of computers employ
multiple processors to speed up their overall performance. Thus a minicomputer
having a speed of 500 MIPS is capable of executing 500 million instructions per
second.

Clock speed is a measure of computer ‘power,’ but it is not always directly
proportional to the performance level. If you double the speed of the clock, leaving
all other hardware unchanged, you will not necessarily double the processing speed.
The type of microprocessor, the bus architecture, and the nature of the instruction
set, all make a difference. In some applications the amount of random access
memory (RAM) is important too.

Memory

Data and instructions are stored and subsequently retrieved from a computer’s
memory. We saw earlier that the CPU contains several registers for storing data
and instructions. But these can store only a few bytes. If all the instructions and
data being executed by the CPU were to reside in Secondary storage (like magnetic
tapes and disks), and be loaded into the registers of the CPU as the program
execution proceeded, it would lead to the CPU being idle for most of the time

Introduction to Computer
and Computing

NOTES

Self - Learning
80 Material

since the speed at which the CPU processes data is much higher than the speed
at which data can be transferred from disks to registers. Every computer thus
requires storage space where instructions and data of a program can reside
temporarily when the program is being executed. This temporary storage area is
built into the computer hardware and is known as the primary storage or main
memory. Devices that provide backup storage (like magnetic tapes and disks) are
called secondary storage or auxiliary memory.

Thus, the following three sets of memories form the memory system:
(a) Primary storage or main memory: The primary storage refers to a

large memory that is faster than the auxiliary memory and slower than
the internal memory. It is primarly based on internal circuits and directly
interacts with the CPU.

(b) Secondary storage or auxiliary memory or backing store: This
exceeds the main memory in size, but falls behind it in speed. All the
software and system programs are usually stored in the secondary
memory.

(c) Internal processor memory: It consists of a small set of high-speed
registers that are internal to a processor and are used as temporary
locations for the actual processing to be done.

Another type of memory, the cache memory, is widely gaining acceptance
in modern computers. Its logical position is between the main memory and the
internal memory (registers). Its primary function is to store and cache parts of the
main memory’s contents that the processor is currently using.

Cache Memory

Main Memory

Secondary Memory

CPU Registers

Fig. 1.43 The Memory Hierarchy

The total memory capacity of the computer can therefore be visualized as
being a hierarchy of components consisting of all storage devices employed in a
computer system from the slow but high-capacity auxiliary memory, to a relatively
faster main memory, to an even smaller and faster cache memory accessible to the
high-speed processing logic. Thus, as one goes down in the hierarchy, the following
conditions occur:

1. Decreasing cost per bit
2. Increasing capacity

NOTES

Self - Learning
Material 81

Introduction to Computer
and Computing

3. Increasing access time
4. Decreasing frequency of access of the memory by the processor

Memory Capacity

Capacity, in a computer system, is defined in terms of the number of bytes that it
can store in its main memory. This is usually stated in terms of kilobytes (kB)
which is 1024 bytes, or Megabytes (MB) which is equal to 1024 KB (10,48,576
bytes). The rapidly increasing memory capacity of computer systems has resulted
in defining the capacity in terms of Gigabytes (GB) which is 1024 MB
(1,07,37,41,824 bytes).

Thus, a computer system having a memory of 256 MB is capable of storing
(256 × 1024 × 1024) 26,84,35,456 bytes or characters.

Factors Affecting Speed

The speed or performance of a computer depends both upon the combination of
hardware and software, and data. The fastest CPU, overloaded with fragmented
data, or combined with a sluggish Operating System, will result in slower operations.
Generally, if the speed of a computer decreases over time, it’s either because of
failing hardware, software clutter or due to the presence of malicious software.

The factors affecting the speed of a computer can be broadly classified into
two major groups:

Hardware

Different components inside a computer work together in unison, and their combined
efficiency determines the final throughput speed of the computer. The main
components inside a computer which determine computer speeds are:

Processor: The CPU (Central Processor Unit) which is both the heart and
the brain of a computer is responsible for performing all the calculations and all
tasks pertaining to processing the data. The clock speed, bit size, and the amount
of cache present in the CPU collectively affect the overall speed. A burned out
CPU from over-clocking or over-heating is bound to perform low.

Motherboard: All the components on the computer are interconnected via
the motherboard, also known as the backbone of the computer. The motherboard’s
design, technology and compatibility affect the overall performance of the computer,
and determine how well the parts integrated on it perform collectively. A fast
processor on a slow motherboard with lower bus speed would not perform at its
optimum level.

RAM: Random Access Memory is the basic memory in which the operating
system, the application software as well as the data in question are loaded for
processing. An insufficient RAM would cramp the performance of a computer
since there is little working space for the computer to store its interim results and
semi-processed data, thereby necessitating data to be continuously deleted or
moved from memory (to the hard disk) to make space for new calculations.
Different types of RAM also determine their respective speeds, for instance a
DDR DIMM RAM is slower than DDR2 and DDR3 RAM.

Introduction to Computer
and Computing

NOTES

Self - Learning
82 Material

Hard Disk Drive: The speed of a HDD, measured in RPM (Rotations per
Minute) determines the optimum speed at which the HDD can retrieve and store
data. A HDD at, or near, full capacity provides less space to the operating system
for making temporary files, such as page files, thereby causing the computer
operations to slow down. If the hard disk drive has too many bad clusters or has
highly fragmented data, this slows down the read and write speed—also called
the Input / Output (IO) operations- of the computer.

Unused network drives and printers: The operating system reconnects
and maps network drives and other shared resources such as printers and plotters
every time it boots, or prepares itself for any input, output or printing operations,
thus causing the system to slow down.

Besides these, the availability of specific performance boosting hardware
such as a graphics card (used for games and heavy graphics processing), or a
sound card with built-in memory for sound processing reduce the load on the
CPU and memory space, and thus increase the overall computer speed.

Software and Data

The speed at which your computer performs now is probably much slower then
what it was a few months ago. This cannot only be attributed to new and more
resource demanding applications but to the fact that over time, computers get
slower for a number of reasons such as:

Fragmentation of Data: Over a period of time when files are routinely
created, edited and deleted, this causes data to be stored in a fragmented manner
on the HDD. Whenever the user creates a file, the entire file is not stored in a
physically contagious location, different pieces of this file are scattered all over the
HDD, depending upon wherever free space is available. These different pieces
are linked to each other through a File Allocation Table (FAT) which tells the
computer how to link these pieces together. Similarly, deleting files causes different
segments of the HDD to become free. Over time, this continuous deletion of old
files and creation of new ones causes the data to be stored on the HDD in a highly
fragmented manner. This fragmentation increases the disk read/write time because
the read/write head has to continuously move from one location to another to read
or write files. More fragmentation means that the HDD has to move over a larger
physical area for reading and writing data, thereby causing the computer to slow
down.

Corruption of Programs and Data: The presence of malicious softwares
such as Viruses, Adware and Malware causes computer resources to become
overloaded with unnecessary and undesirable activities being processed in the
background, thereby significantly slowing down the computer’s ability to process
authentic data. Since most of the time viruses and malware function in the
background, the users are unaware of their presence, but suffer the consequences
in terms of reduced overall speed and efficiency of the computer.

Applications: When several applications or processes are running at the
same time, this necessitates the system resources such as CPU time and memory
to be shared (called multi tasking) across different applications. Therefore, the

NOTES

Self - Learning
Material 83

Introduction to Computer
and Computing

greater the number of applications that are running simultaneously, the less system
resources are available for each of them, thereby reducing the speed of operations.
Also, there are some applications that run faster than others even though they use
the same amount of system resources. This variation occurs due to the better
compatibility that exists between the software and hardware, which enables the
higher optimization of computer resources, resulting in improved speed of
operations.

System Registry: Every time you install or uninstall software, the Systems
Registry is updated automatically. Over a period of time, when you have completed
several installation or un-installation processes, this tends to clutter the Systems
Registry, which if cluttered, can really slow down the computer operations.

Desktop: Giving the desktop a beautiful make-over, installing multimedia
themes and making too many shortcuts on the desktop will slow down its
performance as they constantly use up system resources, specially the RAM. You
have to keep in mind that every icon stored on your desktop takes up a bit of your
RAM space. Similarly, loading a beautiful but big-sized image as your wallpaper
may improve the look of your desktop but will certainly slow down the speed of
your computer since this large image effectively blocks up a small portion of the
computer memory permanently.

Startup Programs: Some softwares load a small monitor or assistant
program at windows startup. This helps them to monitor related trigger events or
to decrease their startup time, as in the case of Power DVD, Microsoft Office,
etc. This slows the overall speed of the system.

1.10 PRINCIPLES OF PROGRAMMING:
ALGORITHMS AND FLOW CHARTS

In order to write computer programs without any logical error, it is recommended
to programmers to prepare a rough writing to show the steps involved in the
program. This is called an algorithm. An algorithm is a rough writing of a program.
It contains step-by-step instructions to solve a given problem. The steps must
appear in the order in which they are executed. The information to be given (input),
computed (processing) and printed are identified. The sequence of instructions in
an algorithm is written with the following characteristics:

(i) Instructions should be written in the correct sequence in which they are to
be executed.

(ii) Instructions should be precise and unambiguous.

(iii) Instructions should be executed or repeated only a finite number of times.

(iv) Check for possible infinite loop.

(v) Make sure the instructions in the algorithm are written in the correct order.

Example 1.1. Write an algorithm and draw a flowchart to find the biggest of the
given two numbers.

Introduction to Computer
and Computing

NOTES

Self - Learning
84 Material

Solution: For this problem, a new name big is used to store the biggest value.
Initially, a is assumed as big, then b is compared with the existing big to get the
biggest value.

1. Read a, b

2. big a

3. If b > big then

big b

4. Print big

5. Stop

Flowcharts

An algorithm gives the step-by-step instructions required to solve any problem.
These steps can be shown diagrammatically using a flowchart. The flowchart ‘as
mentioned is a symbolic or diagrammatic representation of an algorithm. It uses
several geometrical figures to represent the operations and arrows to show the
direction of flow. The following are the commonly used symbols in flowcharts.

Symbol Operation Meaning

Start/Stop Represents the beginning and the
end of the flowchart.

Input/Output Represents the values to be given

by
the user and the results to be

displayed.

Processing Represents the arithmetic opera-
tions to compute a value.

Checking/decision-making Represents the logical checking to
decide the flow sequence.

Looping Represents the looping which is
repeated based on a condition/
value of a variable.

Connector Represents the continuity of the
flowchart in another place/page.

Arrows Represents direction of flow.

It is recommended that beginners must practice algorithm and flowcharts
before starting to write programs.

Before writing a program code, the sequence of statements and the
relationship between the various elements are shown with the help of a flowchart

NOTES

Self - Learning
Material 85

Introduction to Computer
and Computing

or pseudocode. The flowchart is a common method to define the logical steps of
flow within the program. It uses various symbols to represent the functions within
the program. A flowchart shows the sequence, selection and iterations within a
program. Consider the following flowchart to find the biggest of given two numbers.

Rules for Flowcharting

(i) Use consistent methods in drawing a flowchart.

(ii) Use common and easily understandable words.

(iii) Use consistent words or names in the flowchart.

(iv) Avoid crossing flow lines in the flowchart.

(v) Draw the flowchart from top to bottom and left to right.

(vi) Flowcharts that exceed a page should be properly linked using connectors
to the portions of the flowchart on different pages.

Advantages of Flowchart

(i) A flowchart can easily explain the program logic to a program development
team.

(ii) It is useful to prepare a detailed program documentation.

(iii) Its detail help prepare efficient program coding.

(iv) The flowchart helps detect and remove the mistakes in a program.

(v) It is useful to test the logic of the program.

Limitations of Flowchart

(i) Flowcharting is a laborious process when proper symbols are used.

(ii) Modifications in flowcharting are very difficult and it consumes more time.

(iii) Redrawing the flowchart is also a tedious task.

(iv) No standards are strictly followed to draw the flowchart.

Example 1.2. Draw a flowchart to find the biggest of the given two numbers.

Example 1.3. Write the algorithm and draw the flowchart to find the sum and
product of given two numbers.

Introduction to Computer
and Computing

NOTES

Self - Learning
86 Material

Solution: It is necessary to understand the data given in the problem and the
results expected.

In this problem, two numbers, say a and b, are given (input) and the results,
Sum (a + b) of two numbers and Product (a × b) of two numbers, are to be
calculated.

Algorithm

1. Read a, b
2. Sum a + b
3. Product a × b
4. Print Sum, Product
5. Stop

Notes:
(i) Usually words, such as Read, Accept or Input can be used to represent input

operation to give values of variables to the computer.

(ii) The words print, Write or Display can be used to represent output operations to
show the results computed by the computer.

(iii) Back arrow () represents the value obtained by evaluating the right side expression/
variable to the left side variable. The symbol ‘=’ can also be used instead of ‘ ’ but
it leads to confusion in certain applications. (for example, S = S + X) representing the
logical equivality, and so on.

(iv) Down arrow () is optional.

Check Your Progress

9. What is MS DOS?

10. Write one of the security features of Windows XP.

11. Why was MULTICS operating system designed?

12. What is bit?

13. What does an algorithm contain?

14. What is a flowchart?

1.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The two basic operations of computers are as follows:
i. It exchanges information with the outside world via Input/Output (I/

O) devices.
ii. It transfers data internally within the CPU.

2. The three essential parts of computers are the input device, the CPU and
the output device.

3. Hand-held input devices include trackball, joystick, and light pen and touch
screen.

NOTES

Self - Learning
Material 87

Introduction to Computer
and Computing

4. An electronic card reader is a device that allows direct data input into a
computer system. It is connected to a computer system and reads the data
encoded in an electronic card and transfers it to the computer for further
processing.

5. Printers can be classified on the basis of their printing technology, printing
speed, or their printing quality.

6. The storage unit of a computer system is evaluated on the basis of its storage
capacity, storage cost, access time, access mode and permanence of storage.

7. A disk drive is a peripheral device used to store and collect information. It
can be removable or fixed, high capacity or low capacity, fast or slow speed,
and magnetic or optical.

8. Instructions written using sequences of 0s and 1s are known as a machine
language.

9. Microsoft Disk Operating System (MS DOS) is a single user, single tasking
operating system.

10. Windows XP’s Security Zone feature lets you assign security options for
Website access. It restricts you from exploring different sites by selecting
the desired security level and asks for your approval before opening a file
or running a program from the Internet.

11. The MULTICS operating system was designed to run the GE-645 mainframe
computers.

12. A BIT is the smallest element that a computer uses. It can hold one of two
possible values.

13. An algorithm is a rough writing of a program. It contains step-by-step
instructions to solve a given problem.

14. The flowchart is a symbolic or diagrammatic representation of an algorithm.

1.12 SUMMARY

 The input unit performs the process of transferring data and instructions
from the external environment into the computer system. Instructions and
data enter the input unit depending upon the particular input device used
(keyboard, scanner, card reader, etc).

 Processing refers to the performing of arithmetic or logical operations on
data, to convert them into useful information. Arithmetic operations include
operations of add, subtract, multiply, divide and logical operations are
operations of comparison like less than, equal to, greater than.

 A computer has limited storage capacity. It becomes necessary to store
large volumes of data. Therefore, additional memory called secondary storage
or auxiliary memory is used in most computer systems.

 The control unit and arithmetic logic unit are together known as the central
processing unit. It is the brain of any computer system.

Introduction to Computer
and Computing

NOTES

Self - Learning
88 Material

 Keyboard devices allow input into the computer system by pressing a set
of keys, mounted on a board connected to the computer system. Keyboard
devices are typically classified as general-purpose keyboards and special-
purpose keyboards.

 A mouse is a small device that is pushed across a desk surface by a user. It
serves the function of indicating a point on the display screen and selects
one or more possible actions from that particular location.

 A touchpad is a touch sensitive input device which takes user input to control
the onscreen pointer and perform other functions similar to that of a mouse.

 The trackball is a pointing device that is much like an inverted mouse. It
consists of a ball inset in a small external box, or adjacent to–and in the
same unit as–the keyboard of some portable computers.

 The joystick is a vertical stick that moves the graphic cursor in the direction
the stick is moved.

 An output device is an electromechanical device that accepts data from the
computer and translates it into a form that can be understood by the outside
world.

 The display device is an important peripheral component of a computer
system. Display terminals called alphanumeric terminals were used by
conventional computers. These used a form of of multi-dot (7 × 5 or 9 × 7)
array to display characters.

 The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory. It is used to store programs and data
during computer operations.

 The storage unit of a computer system is evaluated on the basis of its storage
capacity, storage cost, access time, access mode and permanence of storage.

 A disk drive is a peripheral device used to store and collect information. It
can be removable or fixed, high capacity or low capacity, fast or slow
speed, and magnetic or optical.

 A computer language is a language that can be understood by the computer.
It is the computer’s native language. A computer language consists of lexicon
and syntax, i.e., characters, symbols and rules of usage that allow the user
to communicate with the computer.

 Microsoft Disk Operating System (MS DOS) is a single user, single tasking
operating system.

 Windows XP’s Security Zone feature lets you assign security options for
Website access. It restricts you from exploring different sites by selecting
the desired security level and asks for your approval before opening a file
or running a program from the Internet.

 Menus are very useful parts of the Windows system. They consist of various
commands and subcommands for default and other applications and
programs stored on your computer.

NOTES

Self - Learning
Material 89

Introduction to Computer
and Computing

 UNIX is a multi-user and multitasking operating system. In a multi-user
environment, the computer can receive the commands from a number of
end users to run programs, access files, and print documents simultaneously.

 A bit is the smallest element that a computer uses. It can hold one of two
possible values.

 An algorithm is a rough writing of a program. It contains step-by-step
instructions to solve a given problem.

 The flowchart is a symbolic or diagrammatic representation of an algorithm.

1.13 KEY TERMS

 Central Processing Unit: It is the portion of a computer that retrieves and
executes instructions.

 I/O Devices: These are the devices that provides a means of communication
between the computer and the external world.

 Keyboard: It that allows input into the computer system by pressing a set
of keys, mounted on a board connected to the computer system.

 Mouse: A small device that is pushed across a desk surface by a user. It
serves the function of indicating a point on the display screen and selects
one or more possible actions from that particular location.

 Touchpad: A touch sensitive input device which takes user input to control
the onscreen pointer and perform other functions similar to that of a mouse.

 Printers: Devices used for producing output on paper.

 Cache Memory: This memory provides data retrieval without loss of
memory size.

 Interpreter: A computer program executing instructions written in a
programming language.

1.14 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. State about the control unit.

2. What is arithmetic logic unit?

3. State about the dot matrix printer.

4. What is the function of I/O devices in a computer system?

5. What are special-purpose keyboards?

6. Write the functions of interpreter.

7. Write the limitations of MS DOS.

8. How to switch between programs in Windows XP?

Introduction to Computer
and Computing

NOTES

Self - Learning
90 Material

9. What is UNIX?

10. Define the term instruction set.

11. What are the advantages of flowchart?

Long-Answer Questions

1. Briefly explain the basic design and components of a computer with the
help of diagram.

2. Discuss the special function keys on a keyboard giving appropriate examples.

3. Describe the input/output devices with the help of appropriate example.

4. Discuss the functioning of the cache memory.

5. Briefly explain the memory and its types with the help of example.

6. Discuss the difference between machine language and assembly language
with the help of examples.

7. Describe the simple DOS commands and file operations commands with
the help of examples.

8. Explain the installation process of mouse and printers in Windows XP.

9. Briefly explain UNIX operating system and its features.

10. Describe some of the memory codes used to represent data.

11. Briefly explain the importance of algorithms and flowcharts.

1.15 FURTHER READING

Dey, Pradip and Manas Ghosh. Computer Fundamentals and Programming
in C. New Delhi: Oxford Higher Education, 2006.

Bronson, Gary J. A First Book of ANSI C, 3rd edition. California: Thomson,
Brooks Cole, 2000.

Kanetkar, Yashwant. Understanding Pointers in C. New Delhi: BPB Publication,
2001.

Kanetkar, Yashwant. Let us C. New Delhi: BPB Publication, 1999.

Kernighan, Brian W. and Dennis Ritchie. C Programming Language, 2nd edition.
New Jersey: Prentice Hall, 1988.

Foster, W. D. and L. S. Foster. C by Discovery. Boston: Addison-Wesley, 2005.

Kanetkar, Yashwant. Working with C. New Delhi: BPB Publication, 2003.

Horton, Ivor. Instant C Programming. New Jersey: Wrox Press (John Willey &
Sons), 1995.

Lawlor, Steven C. The Art of Programming Computer Science with ‘C’. New
Jersey: West Publishing Company, 1996.

NOTES

Self - Learning
Material 91

Computer Programming
in FORTRAN/C/BasicUNIT 2 COMPUTER

PROGRAMMING IN
FORTRAN/C/BASIC

Structure

2.0 Introduction
2.1 Objectives
2.2 Introduction to C Language

2.2.1 Importance of C
2.2.2 Execution of a C Program

2.3 Elements of the Computer Language
2.3.1 Character Set
2.3.2 Identifiers and Keywords
2.3.3 Data Types

2.4 Constants and Variables
2.5 Operators and Expressions

2.5.1 Operators
2.5.2 Expressions

2.6 Input/Output Operations
2.7 Branching

2.7.1 if Statement
2.7.2 if...else Statement
2.7.3 Nesting of the if...else Statements
2.7.4 Logical Operators and Branching
2.7.5 Conditional Operator and if...else

2.8 Loops and Control Constructs
2.8.1 Iteration using if
2.8.2 for Statement
2.8.3 Symbolic Constants and Looping
2.8.4 Other Forms of the for Loop
2.8.5 The while Loop
2.8.6 do . . . while Loop
2.8.7 switch Statement
2.8.8 Break, Continue, Return and goto

2.9 Logical Variables
2.10 Double Precision Variable
2.11 Subscripted and Dimension Variable
2.12 Function and Subroutine
2.13 Common and Data Commands
2.14 Answers to ‘Check Your Progress’
2.15 Summary
2.16 Key Terms
2.17 Self-Assessment Questions and Exercises
2.18 Further Reading

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
92 Material

2.0 INTRODUCTION

C language is a powerful programming language that is used to write programs for
a variety of applications. It was developed in the 1970’s by Dennis Ritchie at Bell
Laboratories. It has several flexible features to write programs for numerical,
commercial and graphical applications. In addition, it is used by software developers
to write programs for lower level accessing along with assembly language. Several
operating system programs for the latest computers and compilers are written
using C language. In this unit, you will learn about the basics of C language, elements
of computer language, constants and variables, operators, expressions, I/O
operations, decision, looping and branching statements.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basics of C language

 Describe the various elements of computer language

 Explain the significance of constants and variables

 Enumerate the operators and expressions used in a C program

 Discuss the concept of type casting

 Understand the input and output operations

 Describe the formatting of output in C programs

 Understand the basic concept of branching

 Use if and if...else branching statements in C programs

 Use if, for, while and do...while in a program

 Define switch, break, continue and goto statements

 Define the logical and double precision variables

 Elaborate on the subscripted variables and dimension

 Describe the function and subroutine

2.2 INTRODUCTION TO C LANGUAGE

The C language was developed under the influence of BCPL (Basic Combined
Programming Language) and B. it is developed in 1960s at Cambridge University.
B language was modified by Dennis Ritchie and was implemented at Bell
Laboratories in 1972. The new language was named as C. Since, it was developed
along with the UNIX operating system, it is strongly associated with UNIX. This
operating system was developed at Bell Laboratories and was coded almost entirely
in C.

NOTES

Self - Learning
Material 93

Computer Programming
in FORTRAN/C/Basic

C was used mainly in academic environments for many years, but eventually
with the release of C compiler for commercial use and the increasing popularity of
UNIX, it began to gain widespread support among compiler professionals. Today,
C is running under a number of operating systems including MS-DOS. It is now
standardized by American National Standard Institute (ANSI C).

2.2.1 Importance of C

The popularity of C is increasing probably due to its many desirable qualities. It is
a robust language having rich set of built-in functions and operators that can be
used to write any complex program. The C compiler combines the capabilities of
an assembly language with the features of a high-level language and therefore it is
well suited for writing both system software and business packages. In fact, many
of the C compilers available in the market are written in C. Programs written in C
are efficient and fast. This is due to its rich set of data types and powerful operators.
It is many times faster than BASIC (Beginners All Purpose Symbolic Instruction
Code – a high level programming language).

There are only 32 keywords and its strength lies in its built-in functions.
Several standard functions are available which can be used for developing programs.
C is highly portable. This means that C programs written for one computer can be
run on another with little or no modification. C Language is well suited for structured
programming thus requires the user to think of a problem in terms of function
modules or blocks. A proper collection of these modules would make a complete
program. This modular structure makes program debugging, testing, and
maintenance.

Another important feature of C is its ability to extend itself. A C program is
basically a collection of functions that are supported by the C library. We can
continuously add our own function to the C library. The structure of a C program
is given below.

Fig. 2.1 Basic Structure of a C program

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
94 Material

The documentation section consists of a set of comment lines giving the
name of the program, the programmer, and other details which the programmer
would like to use later. The link section provides instructions to the compiler to
link function from the system library. The definition defines all the symbolic constants.
There are some variables that are used in more than one functions. Such variables
are called global variables and are declared in global declaration section that is
outside of all the function.

Every C program must have one main () function section. This section
consists two parts: declaration part and executable part. The declaration part
declares all the variables used in the executable part. These two parts must appear
between the opening and the closing braces. The program execution begins at the
opening braces and ends at the closing braces. The closing brace of the main ()
function section is the logical end of the program. All the statements in the declaration
and executable parts ends with a semicolon.

The subprogram section contains all the user-defined functions that are called
in the main () function. User-defined functions are generally placed immediately
after the main () function, although they may appear in any order. All section,
except the main () function section may be absent when they are not required.

2.2.2 Execution of a C Program

A program written in C involves a series of steps for executing:

1. Creating the program;

2. Compiling the program;

3. Linking the program with functions that are needed from the C library; and

4. Executing the program.

The program can be created using any word processing software in non-
document mode. The file name should end with the characters “.c” like program
.c, lab1.c, etc. Then, the command under MS DOS operating system would load
the program stored in the file program.c i.e. MSC pay .C and generate the object
code. This code is stored in another file under name ‘program.obj’. In case any
language errors are found, the compilation phase generate errors. Then, the program
should be corrected and compiled again. The linking is done by the command link
program.obj which generates the executable code with the filename program.exe.
Now the command.Program would execute the program and generate the results.

Program 1: write a C program to print Hello, World and save it as hello.c.

include <stdio.h> /* header file */

main () /* main () function */

{

Print (“Hello, World \n”); /* statement */

}

Output: Hello, World

NOTES

Self - Learning
Material 95

Computer Programming
in FORTRAN/C/Basic

Program 2: write a C program to calculate the area of a circle.

include <stdio.h> /* library file access */

main() /* function heading */

{

float radius, area; /* variable decleration */

clrscr (); /* Console function :Used to clear screen */

printf (“Enter radious?=”); /* output statement */

scanf (“%f”, & radius); /* input statement */

area = 3.14159 * radius*radius ; /* assignment statement
 */

printf (“Area=%f”, area); /* output statement */

getch (); /* Console function :Used to hold the same
screen */

}

2.3 ELEMENTS OF THE COMPUTER
LANGUAGE

C Fundamentals is concerned with the basic elements used to construct simple C
statements. These elements include the C character set, identifiers and keywords,
data types, constants, variables and arrays, declaration of expressions and
statements.

A programming language is designed to help process certain kinds of data
consisting of numbers, characters and strings and to provide useful output known
as information. The task of programming of data is accomplished by executing a
sequence of precise instructions called a program. These instructions are formed
using certain symbols and words according to some rigid rules known as syntax
rules.

2.3.1 Character Set

C uses the uppercase letters A to Z, the lowercase letters a to z, the digits 0 to 9,
and certain special characters as building blocks to form basic program elements
(e.g. constants, variables, operators, expressions, etc.). The special characters
are listed below:

+ - * / = % & # ! ? ̂ “ ‘ ~ \ | < > () [] { } : ; . , - (Blank space) (Horizontal
tab) (White Space)

Most versions of the language also allow certain other characters, such as
@ and $ to be included with strings & comments.

2.3.2 Identifiers and Keywords

C Tokens: In a passage of text, individual words and punctuation marks are
called tokens. Similarly, in a C program the smallest individual units are also known
as C tokens. C has six types of tokens:

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
96 Material

Identifiers e.g.: x, area, temperature, PI

Keywords e.g.: int, float, for, while

Constants e.g.: -15.5 100

Strings e.g.: “ABC”, “year”

Operators e.g.: + - *

Special Symbols e.g.: () [] { }

Identifiers: Identifiers are names that are given to various program elements,
such as variables, functions and arrays. Identifiers consisted of letters and digits, in
any order, except that first character must be a letter. Both upper and lower case
letters are permitted, though common usage favors the use of lowercase letters for
most type of identifiers. Upper and lowercase letters are not interchangeable (i.e.
an uppercase letter is not equivalent to the corresponding lowercase letters). The
underscore (_) can also be included, and considered to be a letter. An underscore
is often used in middle of an identifier. An identifier may also begin with an
underscore.

Rules for defining identifier:

1. First character must be an alphabet (or Underscore).

2. Must consist of only letters, digits or underscore.

3. Only first 31 characters are significant.

4. Cannot use a keyword.

5. Must not contain white space.

The following names are valid identifiers:

X, a12, sum_1, _temp, name, area, tax_rate, TABLE

The following names are not valid identifier for the reason stated

4th The first character must be letter

“x” Illegal characters (“)

Order-no Illegal character (-)

Error flag Illegal character (blank space)

Keywords: There are certain reserved words, called keywords that have standard,
predefined meanings in C. These keywords can be used only for their intended
purpose. They cannot be used as programmer-defined identifiers. Some of the
standard keywords are given below:

auto Break case char const

continue default do double else

enum extern float for goto

if Int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile While

NOTES

Self - Learning
Material 97

Computer Programming
in FORTRAN/C/Basic

All the keywords are in lowercase. Since upper and lowercase characters
are not equivalent, it is possible to utilize an uppercase keyword as an identifier.
However, this is not done, as it is considered a poor programming practice.

2.3.3 Data Types

C language is rich in its data types. C supports different types of data, each of
which may be represented differently within the computer memory. There are
three categories of data types.

1. Basic data types (Primary or Fundamental) e.g.: int, char

2. Derived data types e.g.: array, pointer, function etc.

3. User defined data types e.g.: structure, union, enum etc.

The basic data types are also known as built in data types. Some of the
built-in data types are listed below. Typical memory requirements are also given:

Data Types Description Typical Memory
Requirement

char single character 1 byte

int integer quantity 2 bytes

float floating-point number 4 bytes

double double-precision floating point number 8 bytes

In order to provide some control over the range of numbers and storage
space, C has following classes: signed, unsigned, short, long.

Types Size

char or signed char 1 byte

unsigned char 1 byte

int 2 bytes

short int 1 byte

unsigned short int 1 byte

signed int 2 bytes

unsigned int 2 bytes

long int 4 bytes

signed long int 4 bytes

unsigned long int 4 bytes

float 4 bytes

double 8 bytes

long double 10 bytes

void is also a built-in data type used to specify the type of function. The void
type has no return values.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
98 Material

2.4 CONSTANTS AND VARIABLES

Constants in C refer to fixed values that do not change during the execution of a
program. There are four types of constants in C. They are integer constants, floating
point constants, character constants and string constants.

Integer and floating point constants represent numbers. They are often
referred to collectively as numeric type constants. The following rules are applied
to all numeric type constants.

1. Commas and blank spaces cannot be included within the constants.

2. The constant can be preceded by a minus (-) if required. The minus sign
is an operator that changes the sign of a positive constant though it can
be thought of as a part of the constant itself.

3. The value of a constant cannot exceed the specified minimum and
maximum bounds. For each type of constant, these bounds will vary
from one C compiler to another.

Integer Constants

An integer constant is an integer-valued number. Thus it consists of a sequence of
digits. Integer constants can be written in three different number systems: decimal
(base 10), octal (base 8) and hexadecimal (base 16).

A decimal integer constant can consists of any combination of digits taken
from the set 0 through 9. If the constant contains two or more digits, the first digit
must be something other than 0. Several valid decimal integer constants are shown
below:

0 1 143 5280 12345 9999

The following decimal integer constants are written incorrectly for reason
stated:

12,452 Illegal character (,)

36.0 Illegal character (.)

10 20 30 Illegal character (blank space)

123-45-6743 Illegal character (-)

0900 the first digit cannot be zero.

An octal integer constant can consist of any combination of digits taken
from the set 0 through 7. However, the first digit must be 0, in order to identify the
constant as an octal number.

Valid octal number (integer) constants are shown below:

0 01 0743 07777

NOTES

Self - Learning
Material 99

Computer Programming
in FORTRAN/C/Basic

The following octal integer constants are written incorrectly for the reason
stated:

743 Does not begin with 0.

05280 Illegal character (8)

777.777 Illegal character (.)

A hexadecimal integer constant must begin with either 0x or 0X. It can then
be followed by any combination of digits taken from the sets 0 through 9 and a
through f (either upper or lower case). The letters a through f (or A through F)
represent the (decimal) quantities 10 through 15 respectively. Several valid
hexadecimal integer constants are shown below:

0x 0X1 0X7FFF 0xabcd

The following hexadecimal integer constants are written incorrectly for the
reason stated:

0X12.34 Illegal character (.)

013E38 Doesn’t begin with 0x or 0X.

0x.4bff Illegal character (.)

0XDEFG Illegal character (G)

Unsigned and Long Integer Constants

Unsigned integer constants may exceed the magnitude of ordinary integer constants
by approximately a factor of l, though they may not be negative. An unsigned
integer constant can be identified by appending the letter () (either upper or
lowercase) to the end of the constant.

Long integer constants may exceed the magnitude of ordinary integer
constants, but require more memory within the computer. A long integer constant
can be identified by appending the letter L (either upper or lowercase) to the end
of the constant.

An unsigned long integer may be specified by appending the letters UL to
the end of the constant. The letters may be written in either upper or lowercase.
However, the U must preceded the L. Some unsigned and long integer constants
are shown below:

Constant Number System

50000 U decimal (unsigned)

123456789 L decimal (long)

123456789 UL decimal (unsigned long)

0123456 L octal (long)

0777777 U octal (unsigned)

0X50000 U hexadecimal (unsigned)

0XFFFFFUL hexadecimal (unsigned long)

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
100 Material

Floating Point Constants

A floating point constant is a base 10 number that contains either a decimal point
or an exponent (or both).

Several valid floating point constants 0.

1. 0.2 827.602

500. 0.000743 12.3

2E.8 0.006e.3 1.6667e+8

The following are invalid floating point constants for the reason stated.

1. Either a decimal point or an exponent must be present.

1,000.0 Illegal character (,)

2. E+10.2 The exponent must be an integer (it cannot contain a decimal
point)

3. E 10 Illegal character (blank space) in the exponent.

The quantity 3×105 can be represented in C by any of the following floating
point constants:

300000. 3e5 3e+5 3E5 3.0e+5

.3e5 0.3E6 30E4 30.E4 300e3

Character Constants

A character constant is a single character, enclosed in apostrophes (i.e. single
quotation marks). Some character constants are: ‘A’ ‘X’ ‘3’ ‘?’ ‘ ́

Character constants have integer values that are determined by the
computer’s particular character set. Thus, the value of a character constant may
vary from one computer to another. The constants themselves, however, are
independent of the character set. This feature eliminates the dependence of a C
program on a particular character set.

Most computers, and virtually all personal computer make use of ASCII
(i.e. American Standard Code for Information Interchange) character set, in which
each individual character is numerically encoded with its own unique 7-bit
combination (hence a total of 27=128 Different characters).

Some character constant and their corresponding values, as defined by
ASCII character set are shown below:

Constant Value

‘A’ 65

‘X’ 120

‘3’ 51

‘?’ 63

‘ ’ 32

These values will be the same in all computer that utilize the ASCII character
set.

NOTES

Self - Learning
Material 101

Computer Programming
in FORTRAN/C/Basic

String Constants

A string consists of any number of consecutive characters (including none), enclosed
in (double) quotation marks. Some string constants are shown below:

“green” “Washinton, D.C. 2005” “207-32-345”

“$19.95” “THE CORRECT ANSWER IS” “2*(I+3”

“ ” “Line 1\n Line 2\n line 3” “ ”

The string constants “Line 1\n Line 2\n Line 3” extends over three lines,
because of the newline characters that are embedded within the string. Thus, the
string would be displayed as

Line 1

Line 2

Line 3

The compiler automatically places a null character (\0) at the end of every
string constant, as the last character within the string (before the closing double
quotation mark). This character is not visible when the string is displayed.

A character constant (e.g. ‘A’) and the corresponding single-character string
constant (“A”) are not equivalent. A character constant has an equivalent integer
value, whereas a single character string constant does not have an equivalent integer
value and in fact, consists of two characters – the specified character is followed
by the null character (\0).

Variables

A variable is an identifier that is used to represent some specified type of information
within a designated portion of the program. In its simplest form, a variable is an
identifier that is used to represent a single data item, i.e., a numerical quantity or a
character constant. The data item must be assigned to the variable at some point in
the program. A given variable can be assigned different data items at various places
within the program. Thus, the information represented by the variable can change
during the execution of the program. However, the data type associated with the
variable cannot be changed.

Check Your Progress

1. What is logical variables?

2. State about the popularity of C language.

3. Define the term program.

4. Define identifiers.

5. Write the types of constants.

6. State about the term variables.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
102 Material

2.5 OPERATORS AND EXPRESSIONS

2.5.1 Operators

An operator refers to a symbol which indicates an operation to be executed.
Operators are used to manipulate data in a program. The data items that operators
act upon are called operands.

E.g.: Sum = A + B

Where ‘A’ and ‘B’ are operands and ‘+’ is an operator.

Classification of Operators

 Arithmetic [+, –, *, /, %(modulo division)]

 Assignment [=, +=, “=, *=, /=, %=]

 Relational [>, <, <=, >=, ==, !=]

 Logical [&&, ||, !]

 Conditional [<expression 1> ? <expression 2> : <expression 3>]

 Increment and Decrement [++, ––]

 Bitwise [~, >>, <<, &, |, ^]

 Comma Operator [,]

 Address operator [&]

 Indirection operator [*]

 sizeof operator [sizeof()]

Note: ~ : is complement
 >>: is right shift

 <<: is left shift

 &: bitwise AND

 |: bitwise OR

 ^: bitwise Exclusive OR (XOR)

Arithmetic operators: These operators are used for arithmetic calculations.
C has the following arithmetic operators:

Operator Name Purpose

 + plus addition

 – minus subtraction

 * asterisk multiplication

 / slash division (returns quotient)

 % modulus division (returns
remainder)

Note: Precedence of the arithmetic operators while manipulating arithmetic
expressions

NOTES

Self - Learning
Material 103

Computer Programming
in FORTRAN/C/Basic

First preference is for the expression within the brackets (). Second
precedence is for the asterisk (*), slash (/) and modulus (%) and the precedence
for plus (+) and minus (–) is equal.

Demo program based on arithmetic operators
/*—————START OF PROGRAM————*/

#include<stdio.h>

void main()

{ printf(“%d “,10+2);

 printf(“%d “,10–2);

 printf(“%d “,10*2);

 printf(“%d “,10/2);

 printf(“%d”,10%2);

}

/*————END OF THE PROGRAM————*/

Output: 12 8 20 5 0

Explanation: In the preceding (arithmatic operator) program, all basic arithmetic
operations have been used on integer values.

Demo program based on the precedence of arithmetic operators
/*—————START OF PROGRAM————*/

#include<stdio.h>

void main()

{ printf(“%d “, 2+3*2);

 printf(“%d “, 6/6*3);

 printf(“%d “, 3+3/6);

 printf(“%d”, (3+3)/6);

}

/*————END OF THE PROGRAM————*/

Output: 8 3 3 1

Explanation: In the preceding, printf(“%d “, 2+3*2); statement, asterisk
has got more precedence than plus; so the expression value is 8 rather than 10. In
the printf(“%d “, 6/6*3); statement, asterisk and slash have got same
precedence and the manipulation will take place from left to right; so value of the
expression is 3. In the printf(“%d “, 3+3/6); statement, slash has got
more precedence than plus; so the expression value is 3. In the printf(“%d”,
(3+3)/6); statement, expression within the brackets has got more precedence
than slash; so the expression value is 1.

Relational Operators

These operators are used to compare arithmetic, logical and character expressions.

Operator Activity

 == equal

 != not equal

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
104 Material

 < less than

 > greater than

 <= less than or equal

 >= greater than or equal

Note:

• All the above operators compare their left-hand side with their right-hand
side.

• All binary operators and expression returns Boolean value (0 or 1). So the
returning type is integer. If the expression is TRUE, it returns 1; otherwise,
0.

Demo program to show typical characteristics of relational operators
#include<stdio.h>

void main()

{

 printf(“%d “,2<3); /* true returns 1 */

 printf(“%d “,2>3); /* false returns 0 */

 printf(“%d “,2==3); /* false returns 0 */

 printf(“%d “,2!=3); /* true returns 1 */

 printf(“%d “,2<=3); /* true returns 1 */

 printf(“%d “,2>=3); /* false returns 0 */

 printf(“%d “,2<5<3); /* 2<5 = true(=1) */

 /* 1<3 = true(=1) */

 /* so, 2<5<3 is true */

 }

/*——————END OF THE PROGRAM——————*/

Output:1 0 0 0 1 1 0

Logical Operators

These operators are used to compare or evaluate logical and relational expressions.
The result of the logical expression will be either true (1) or false (0).

Operator Activity

 && AND

 || OR

 ! NOT

&& (AND) operator: If the expressions each side of the && are true the result
of the && is true. If one of them is false the result is false.

Tips to remember the functioning of && and || operators:
General representation Representation in C

‘false’ AND <anything> becomes false. (0 && true/false) == 0

‘true’ OR <anything> becomes true. (1 || true/false) == 1

NOTES

Self - Learning
Material 105

Computer Programming
in FORTRAN/C/Basic

|| (OR) operator: If either of the expressions each side of the || are true the result of
the whole expression is true. The expression is only false if both expressions are
false.

! (NOT) operator: For ! if operand is false (zero value) then result will be true vice
versa.

Demo program to display truth table of && (AND)
/*—————START OF PROGRAM——————*/

#include<stdio.h>

void main()

{

 printf(“0 && 0 = %d \n”,0 && 0);

 printf(“0 && 1 = %d \n”,0 && 1);

 printf(“1 && 0 = %d \n”,1 && 0);

 printf(“1 && 1 = %d \n”,1 && 1);

}

/*——————END OF THE PROGRAM————*/

Output: 0 && 0 = 0

 0 && 1 = 0

 1 && 0 = 0

 1 && 1 = 1

Note: For && if either operands are true (any non-zero value), then result will be
true.

Demo program to show the typical characteristics of && (AND)
/*—————— START OF PROGRAM ————————*/

#include<stdio.h>

void main()

{

 int i=5,j=5;

 printf(“%d “, 0 && (i=10));

 printf(“%d “, 1 && (j=10));

 printf(“i=%d j=%d”,i,j);

}

/*—————— END OF THE PROGRAM ————————*/

Output: 0 1 i=5 j=10

Explanation: If operand1 is false, then && operator will not allow to check the
second operand and return value of the result will be 0. For example, in the above
example, first printf statement’s first operand is 0; so irrespective of second
expression’s value, it will return 0.

Demo Program to display truth table of || (OR)
/*—————START OF PROGRAM——————*/

#include<stdio.h>

void main()

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
106 Material

{ printf(“0 || 0 = %d \n”,0 || 0);

printf(“0 || 1 = %d \n”,0 || 1);

printf(“1 || 0 = %d \n”,1 || 0);

printf(“1 || 1 = %d \n”,1 || 1);

}

/*——————END OF THE PROGRAM————*/

Output: 0 || 0 = 0

 0 || 1 = 1

 1 || 0 = 1

 1 || 1 = 1

Explanation: If operand1 is true, then || operator will not allow checking the
second operand and returning value of the result will be 1. For example, in the
above example, second printf statement’s first operand is 1, so irrespective
of the second expression, returns 1.

Note: For || if both operands are false (zero), then result will be false.

Demo program to display truth table of ! (NOT) operator
/*————Program Beginning——————*/

#include<stdio.h>

void main()

{

 printf(“!0 = %d “,!0);

 printf(“!1 = %d “,!1);

}

/*——————END OF THE PROGRAM————*/

Output: !0 = 1

 !1 = 0

Explanation: The above out put shows the truth table of ! operator

Note: for ! if operand is false (zero value), then result will be true and vice versa.

Increment and Decrement Operators

C has two useful operators: ++ (increment operator) and –– (decrement
operator).

The ++ operator adds 1 to its operand and –– operator subtracts 1 from its
operand. These operators may be either pre-incremented/pre-decremented
(precedes the operand) or post-incremented/post-decremented (follows the
operand).

E.g.

1. int k,i=1;

 k=i++; /* k=i; i= i+1; */

 printf(“k=%d, i=%d.”,k,i);

Result of the preceding statements will be k=1, i=2

NOTES

Self - Learning
Material 107

Computer Programming
in FORTRAN/C/Basic

Note: The expression i++ will assign first and increments value of k later.

 int k,i=1;

 k=++i; /* i=i+1; k=i; */

 printf(“k=%d, i=%d.”, k,i);

Result of the statements will be k=2, i=2.
2. int k,i=1;

 k=++i; /* i=i+1; k=i; */

 printf(“k=%d, i=%d.”, k,i);

 Result of the preceding statements will be k=2, i=2.

Note: The expression ++i will increment 1 first and this value is assigned to k.

Note: pre- or post-increments difference exists when we are assigning values;
otherwise, there will be no difference.

E.g.: i++ or ++i

Bitwise Operators

These operators are used to operate with bits of data for complementing, testing,
setting or shifting the bits of data in a byte or word.

Operator Operator Purpose

~ complement for 1’s complementation

>> right shift to move bits to right

<< is left shift to move bits to left

& bitwise AND to reset (0)/compare bits

| bitwise OR to set (1) /compare bits

^ bitwise Exclusive OR (XOR) to toggle or clear the bits

Note: Bitwise operators work only with char and int data types with its qualifiers
and are not useful for float, double, void or complex data types.

Demo program for ~ (complement operator):
/*—————START OF PROGRAM———————*/

#include <stdio.h>

void main()

{

 char num=10;

 printf(“%d”,~num);

}

/*—————END OF THE PROGRAM——————*/

Output: –11

Note:

1’s complement of a binary number obtained by changing 0s to 1s and vice versa.

2’s compliments = 1’s compliment + 1

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
108 Material

Comma (,) Operator

The comma operator separates the expressions.

 Syntax: exp1, exp2, … expn

 Where expl, exp2, ...expn are expressions.

E.g.: k= (i=5, j=10, i+j);

Here, first the value 5 is assigned to i, then 10 is assigned to j and the result i+j
is assigned to k.

Generally, the comma operator is used in for loops.

E.g.: for(i=0, j=1; i<=10; i++, j++)

Demo program using comma operator
#include<stdio.h>

void main()

{

 int a,b,c;

 a=(b=10,c=20,b+c,b–c);

 printf(“%d”,a);

}

Output: –10

Explanation: In the statement a=(b=10,c=20,b+c,b-c); first b-c will be
calculated, i.e. 10 “ 20 = “10 and it will be assigned to the variable a.

Address operator (&): This operator is useful in finding the address of a variable
of any data type.

Indirection operator (*): This operator is used to find the value at a particular
memory location. This operator is also called as de-referencing operator.

Note: If both address operator (&) and indirection operator (*) are used side by
side (&* or *&), they do nothing to the variable. For example, If ‘ptr’ is a
pointer variable, then &*ptr and *&ptr equal to ptr.

sizeof() operator: This operator is used to obtain the size of a variable, which
occupies system’s memory. The sizeof() return value(in bytes) is the size of
a variable or type within the parentheses .

Syntax: sizeof(object);
 (Where object may be any data type, variable or expression.)

E.g.: 1. int n1;
 n1 = sizeof(int);

 2. int n2;

n2 = sizeof(n1);

Explanation:

In the first example, sizeof(int) returns 2, because the size of the int data
type is 2.
In the second example, n2 returns 2, because the size of the integer variable
also 2.

NOTES

Self - Learning
Material 109

Computer Programming
in FORTRAN/C/Basic

2.5.2 Expressions

All valid combinations of variables, constants, operators and functions are termed
as expressions. Expressions always return a result. They can be as simple as a
single value and as complex as a large calculation.

Algebraic Expression equivalent C expression
a + b a + b

a x b a * b

(a + b)2 (a + b) * (a+b)

x2+xy+10 x*x+x*y+10

 zyx

q)(p

 (p+q) / (x+y+z)

Examples of C:

Type Casting

Conversion of a value of one data type to another is called type casting.

 Explicit type casting

 Automatic type casting

 Mixed type casting

Explicit type casting

In explicit type casting, the compiler converts the value of an expression to a
particular data type, which is given explicitly.

 Syntax: (data type) expression;

E.g.: The expression (float) 3/2 evaluates to type float and gives output as 1.5.
Without cast (float), only integer division would have been performed and the
output would be 1 (ignores the fractional part).

#include<stdio.h>
void main()
{
printf("%d",(int)5.0/2);
}
Output:2

Program based on casting

Explanation: In the preceding program, double value (5.0) has cast to integer
value 5, so the integer division will take place and result of the expression (int)5.0/
2 is 2.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
110 Material

Automatic type casting

If an expression contains different types of constants and variables, they are all
converted to the same data type. The C compiler automatically converts all
operands to the higher type of the existing operands.

Table 2.1 Different Conversion Tables

Type conversion in C for various
data types with char data type:

 Type of Type of Resultant
oprand 1 operand 2 type
char char char
shot int char short int
int char int
long int char long int
float char float
double char double
long double char long double

Type conversion in C for various
data types with char data type:

 Type of Type of Resultant
oprand 1 operand 2 type
char int int
shot int int int
int int int
long int int long int
float int float
double int double
long double int long double

Type conversion in C for various
data types with char data type:

 Type of Type of Resultant
oprand 1 operand 2 type
char long int long int
shot int long int long int
int long int long int
long int long int long int
float long int float
double long int double
long double long int long double

Type conversion in C for various
data types with char data type:

 Type of Type of Resultant
oprand 1 operand 2 type
char float float
shot int float float
int float float
long int float float
float float float
double float double
long double float long double

Type conversion in C for various
data types with char data type:

 Type of Type of Resultant
oprand 1 operand 2 type
char double double
shot int double double
int double double
long int double double
float double double
double double double
long double double long double

Type conversion in C for various
data types with char data type:

 Type of Type of Resultant
oprand 1 operand 2 type
char long double long double
shot int long double long double
int long double long double
long int long double long double
float long double long double
double long double long double
long double long double long double

E.g.: The expression 3 + 2.0 evaluates to type double and gives output as 5.0.
Without cast (double), addition would have been performed casting the result to
double automatically.

Demo program based on auto type casting
#include<stdio.h>

void main()

{ printf(“%d”,sizeof(3+2.0));

}

Output: 8

Explanation: In the preceding program, int value (3) is added to double
value (2.0), which is type cast to double value (3.0). So the size of value
(3.0) is 8. The C compiler automatically converts all operands to the higher
type of the existing operands.

NOTES

Self - Learning
Material 111

Computer Programming
in FORTRAN/C/Basic

Mixed type casting

If an expression contains different types of constants and variables, some of them
have external type casting, then C compiler automatically converts all operands to
the higher type of the existing operands.

E.g.: The expression 3 + (int)2.0 evaluates to type int and gives output
as 3.

Demo program based on mixed type casting
#include<stdio.h>

void main()

{ printf(“%d”,sizeof(3+(int)2.0f));

}

Output: 2

Explanation: In the preceding program, float value (2.0f) is type cast
to int value (2.0). Then it is added to the int value (3) resulting int
value (5). So the size is 2.

2.6 INPUT/OUTPUT OPERATIONS

Input and output operations are very much concerned with interacting with
programmers and so their form is highly dependent on the specific programming
language used, and occasionally, even on the computer system itself.

Here, two new types of statement are defined to handle input and output.
The read statement allows us to read given values into indicated variables and the
write statement allows us to display results. Input may come from a terminal or
from some other form of input device. Output may appear on a display screen or
printed on paper.

The form of the read statement is as follows:
Read(input list)

The input list gives the names of the variables to which values are to
be given as they are encountered in the input stream.
For example:

Read(A, B, C)

The next three values encountered would be given to the variables A, B,
and C. The first to A, the second to B, and the third to C.

Suppose the actual values entered were 16, 3, 7, 21, 16, 0, 4, 8, 1. These
could be either on one input line, or spread over several. Consider the following
three read statements:

Read(A, B, C)

Read(D, E, F, G)

Read(X, Y)

The values are given to the variables A, B, C, D, E, F, G, X, Y
one, by one in the order written. The process of giving these values to the indicated
variables is like the assignment operation in two aspects. First, it is a destructive

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
112 Material

operation in the same sense that the assignment operation was a destructive
operation. Whatever values, if any, that the variables had previously possessed
are overwritten. Data of any type can be input; if the value in the input stream is of
a different type from that of the input list, a conversion is required.

The output statement is like the input statement in format. It is possible to
display the contents of any variable, the result of any expression or the value of
any constant. The general form is as follows:

Write(output list)

The following sequence of statements illustrates the action of a write statement.
Assume that all variables are real.

MARK1 73

MARK2 65

MARK3 94

MARK4 87

AVERAGE (MARK1 + MARK2 + MARK3 + MARK4) / 4

Write(AVERAGE)

The first four statements assign the indicated variables on four tests. The
fifth statement computes the average grade. The write statement then displays this
calculated result:
 Preceding sequence of 79.75

Let us observe the case when we replace the write statement with
Write(MARK1, MARK2, MARK3, MARK4, AVERAGE)

The resulting output would be as follows:

73 65 94 87 79.75

Note that all numbers are written as real numbers. This is because the variables
themselves are all real variables. Now, however, you have simply five numbers
displayed. Suppose, instead, you provided the following output statements:

Write(‘Individual grades are’, MARK1, MARK2, MARK3,
MARK4)

Write(‘Final average is’, AVERAGE)

In this case, the output displayed would be as follows:
Individual grades are 73 65 94 87

Final average is 79.75

In terms of information content, the last form is definitely superior. This last
example shows the use of two different kinds of items in an output list. You used
variables such as MARK1 and AVERAGE. You have also used constants, in this
case string constants, i.e., Final average is.

There can be many special features associated with input and output. Here,
a very general approach has been provided.

Finally while designing the input portion of an algorithm, some consideration
should be given to robustness of an algorithm. A robust algorithm is one, which

NOTES

Self - Learning
Material 113

Computer Programming
in FORTRAN/C/Basic

produces reasonable results no matter what input is supplied. The requirements of
robustness are:

(i) the program should check the validity of its input

(ii) the program should take some appropriate action for unacceptable input.

In a batch environment, these actions may involve including proper messages
in the output stream and ending execution. For example, in an interactive
environment, a more proper action may include output of a message followed by
a prompt for input of a corrected value. Checking for types of invalid data is
relatively easy. Here, in this example, negative grades should be rejected. Most
compilers automatically terminate execution with a standard message for some
types of errors. These often include illegal characters when expecting numeric
input and many more.

Input–Output Operations

In C, input and output operations can be classified as follows:

 Console Input/Output operations

 Disk Input/Output operations

 Port Input/Output operations

Console Input/Output Operations

These functions get input from the keyboard and gives output to the VDU. These
functions can be further classified into two categories:

Formatted Console Input/Output functions

Unformatted Console Input/Output functions. All these functions are defined in
standard input–output library and the header files stdio.h and conio.h includes
all input/output functions.

Formatted Input/Output functions get the input from the keyboard and give the
output to the VDU as per the specified requirement. The scanf() and printf()
comes under the formatted input/output functions.

The scanf() function allows the user to enter numerical values and string
values. This function is described in the system file stdio.h.

Syntax for scanf():
int scanf(<format string>, arguments)

Where

<format string> consists of format specifiers

Arguments represent address of variables and this function returns an integer value
that shows the number of successful input readings.

Note: In scanf() function, space(s) should not give after the last format specifier
in the format string.

The printf() function is the opposite of scanf(). It writes data available in
the variables to the screen and like scanf(), it is also described in the system file
called stdio.h.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
114 Material

Syntax for printf():
int printf(<format string>, arguments)

Where

<format string> may consists of format specifiers

Arguments represent variables, constants or addresses and this function returns
an integer value that shows the number of characters printed out to the screen.

Unformatted Input/Output functions/macros get the input as a single character
or multiple characters by using the keyboard and gives output of a single character
or multiple characters to the VDU.

Function Name Operation

int getch(void) Reads a character form keyboard without
echo and without pressing enter key it returns
character value.

int getche(void) Reads a character from keyboard with echo
and without pressing enter key it returns
character value.

int fgetc(stdio) Reads characters from keyboard with echo
and with pressing enter key it returns first
character value.

int getc(stdin) Reads characters from keyboard until enter
key is pressed having echo and with pressing
key it returns first character value. It is a macro
version of fgetc().

int getchar(void) Reads characters from keyboard until enter key
is pressed having echo and with pressing enter
key it returns first character value. It is the macro
form of getc().

int putch(int) Prints a character to the screen.

int fputc(int, stdout) Prints a character to the screen.

int fputc(int, stdprn) Prints a character to the printer.

int putc(int, stdout) Prints a character to the screen. It is the macro
version of fputc(stdout).

int putc(int, stdprn) Sends a character to the printer. It is the macro
version of fputc(stdout).

int putchar(int) Prints a character to the screen. It is the macro
form of putc(stdout).

Note:

 getch(), getche(), fputc(), putchar() and putc()
are defined in <conio.h>,

 getchar(), getc(), fgetc() and putch are defined in
<stdio.h>

 stdout refers to standard output buffer.

 stdin refers to standard input buffer.

NOTES

Self - Learning
Material 115

Computer Programming
in FORTRAN/C/Basic

 stdprn refers to standard printer buffer.

 In reading a character, all functions and macros first check whether there
are any characters in the console buffer. If any characters are present, it
directly reads from the buffer without waiting for input. To clear the input
buffer, use fflush(stdin).Where stdin points input buffer and
fflush clears the input buffer.

Unformatted I/O functions/macros for string type:

Function Name Operation

char * gets(char *string) Receives a string until a newline character
(\n) is found (until enter key is pressed).
It returns a pointer to the argument string.

int puts(const char *s) Sends a string to the screen and appends
a newline character. It returns the last
character written. Otherwise, a value of
EOF is returned.

char *cgets(char *str) Reads a string from console. str[0] must
contain the maximum length of the string
to be read. On return, str[1] is set to the
number of characters actually read. The
string begins at str[2]. The function
returns &str[2].

int cputs(const char *str) Writes a string to the text window on
the screen. It returns the last character
printed.

Note: getch() and puts() are defined in
<stdio.h>.

cgets() and cputs() are defined
in <conio.h>.

Check Your Progress

7. Define the term operator.

8. Give the definition of expressions.

9. State the functionality of the read statement and write statement.

10. What is a robust algorithm?

2.7 BRANCHING

Real-life application programs do not merely consist of simple multiplication or
addition. They call for solving complex problems. Depending on the occurrence
of a particular situation, we may follow different paths; the if and else keywords
are quite handy in branching to different segments of the program. ‘C’ is ideal for
handling branching because the syntax is clear and unambiguous. You will now
read about the branching constructs. Relational operators are used in conjunction
with branching constructs. Hence, you look at them first.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
116 Material

2.7.1 if Statement

The syntax of the if statement is as follows:
if (condition)

 {statements}

If the condition is true, then a single statement or group of statements
following the if will be executed. If more than one statement is to be executed,
then the statements are grouped within braces. If it is a single statement, then curly
braces are not required.

If the condition turns out to be false, then the next statement after those
belonging to the if will be executed. Example 2.1 will make the concept clear.

Input two integers from the keyboard. If they are equal, then the program
will print, ‘you typed equal numbers’; otherwise, it will print nothing.

/*Example 2.1

This program demonstrates the use of if*/

#include <stdio.h>

main()

{

unsigned int a,b;

printf (“enter two integers\n”);

scanf(“%u%u”, &a, &b);

if (a==b)

{

printf(“you typed equal numbers\n”);

}

}

Each opening curly brace has to have a matching closing curly brace. In
Example 2.1 the first closing curly brace corresponds to the if statement and the
second one to the main function. Execute the program by first keying in two equal
valued unsigned integers.

Result of the program
enter two integers

56 56

you typed equal numbers

 After you are satisfied, you can try the program with unequal numbers.
You will not get any message.

2.7.2 if...else Statement

You did not get any message when the numbers were unequal and this can be
avoided by using the else statement.

NOTES

Self - Learning
Material 117

Computer Programming
in FORTRAN/C/Basic

The usage of if .. else is shown below.
if (condition true)

{

statements s1

}

else

{

statements s2

}

statements s3;

The statement else is always associated with an if.

If the condition is true, then statements s1 will be executed. After executing
them, the program will skip the else block and control goes to statement s3 that
follows the else block.

If the condition is false, then the statements in the else block, i.e., s2 will
be executed followed by statement s3.

Statements s1 will not be executed at all when the condition becomes false.
The usage of braces clearly brings out which statements belong to the if block
and which to the else block.

Example 2.2 brings out the usage of if... else.
/*Example 2.2

This program demonstrates use of if.. else*/

#include <stdio.h>

main()

{

unsigned int a,b;

printf (“enter two integers\n”);

scanf(“%u%u”, &a, &b);

if (a==b)

{

printf(“you typed equal numbers\n”);

}

else

{

printf(“numbers not equal\n”);

}

}

The output of the program when unequal numbers were keyed in is as
follows.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
118 Material

Result of the program

enter two integers

17 13

numbers not equal

2.7.3 Nesting of the if...else Statements

You witnessed the usage of a single if statement in Example 2.1. You saw if
followed by else in Example 2.2. There is no restriction to the number of if,
which can be used in a program. This applies to else as well, but else can only
follow an if statement.

You can have the following in a program:
{

if (condition1)

{

if (condition2)

{statements–s1}

else

if (condition3)

{statements–s2,}

}

else

{statements–s4}

statements–s5

}

This is called a nested if and else statement. As the level of nesting
increases, it will be difficult to analyse and logical mistakes will be made more
easily.

In the above example, when condition1 is false, statements–s4
will be executed. If condition1 is true and condition2 is also true, then
statements–s1 will be executed.

If condition1 is true and condition2 and condition3 are false,
statements–s5 will be executed directly.

To execute statements–s2

Condition1 has to be true;

Condition2 has to be false,

And condition3 has to be true.

Try to analyse this yourself. There are better methods to solve the above
problem, which will be discussed later.

For example, three unequal integers are keyed in and are called x, y and z.
Write a program to find the greatest of the three numbers.

Before writing a program, we must write the algorithm. We should not straight
away get down to programming.

NOTES

Self - Learning
Material 119

Computer Programming
in FORTRAN/C/Basic

ALGORITHM 1

Algorithm for finding the greatest of 3 integers.

Step 1: Print a message to enter 3 integers.

Step 2: Get three numbers and store them at &x, &y and &z.

Step 3: Check if x > y

Step 4: If false, go to step 9

Step 5: If true

Step 6: Check if x > z

Step 7: If true, write x is the greatest; End

Step 8: If false, write z is the greatest; End

Step 9: Check if y>z

Step 10: If true, write y is the greatest; End

Step 11: If not, write z is the greatest.

Step 12: End

Now code these steps into a ‘C’ program, which is shown in Example 2.3.
/*Example 2.3

This program demonstrates the use of the nested if..
else*/

#include <stdio.h>

main()

{

int x,y,z;

printf (“enter three unequal integers\n”);

scanf(“%d%d%d”, &x, &y, &z);

if(x>y)

{

 if(x>z)

{

printf(“x is greatest\n”);

}

 else

{

printf(“z is greatest\n”);

}

}

else

{

if(y>z)

{

printf(“y is greatest”);

}

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
120 Material

else

{

printf(“z is greatest”);

}

}

 }

Test the correctness of the program by giving a different set of values for x,
y and z.

Result of the program
enter three unequal integers

908 231 907

x is greatest

Look at the example. It uses multiple nesting of if .. else.

Take care to see that every opening brace has a corresponding closing
brace. It is better to indent the braces as shown in the example so that no mistake
is committed. Take care to see that else matches with the corresponding if and
each opening brace {matches with a corresponding closing brace}; if either an
opening {or closing} is extra, then an error will result.

2.7.4 Logical Operators and Branching

In the above examples you have been checking one condition at a time. It would
be nice if you could check more than one condition at a time. ‘C’ provides three
logical operators for combining more than one condition. These are as follows:

Logical AND represented as &&

Logical OR represented as ||

Negation or NOT represented as ! (exclamation).

Take a look at some examples of usage of the logical operators. In Example
2.3 it was concluded that,

if x > y and if x > z, then x is the greatest.

You will represent the same as,
if ((x > y) && (x > y))

printf (“x is the greatest”);

You will see that the program has become much more elegant.

The syntax for && is,
if ((condition1) && (condition2))

{

statements–s1

}

Statements–s1 will be executed only if both the conditions are true.

NOTES

Self - Learning
Material 121

Computer Programming
in FORTRAN/C/Basic

The syntax for ‘or’ is as follows:
if ((condition 1) ||(condition 2))

{

statements–s2

}

In this case, even if one of the conditions is true, the statements–s2 will
be executed. At least one condition has to be true for the execution of s2. However,
if both are false, s2 will not be executed.

The NOT operator with symbol ! can be used along with any other relational
or logical operator or as a stand-alone operator. It simply negates the operator
following it. The syntax of ‘!’ is as follows:

 if ! (condition) statement s3;

s3 will be executed only when the condition is not true or the condition is
false.

Now rewrite Algorithm 1 by using the logical operators. The revised
Algorithm 2 is shown here:

ALGORITHM 2

Step 3: If (x > y) and (x > z), x is the greatest.

Step 4: Else if (x<y) and (y>z), y is the greatest.

Step 5: Else print z is the greatest.

The complete program is given in Example 2.4.
/*Example 2.4

This Example demonstrates the use of logical operators*/

#include <stdio.h>

main()

{

int x,y,z;

printf (“enter three unequal integers\n”);

scanf(“%d%d%d”, &x, &y, &z);

if ((x>y) && (x>z))

printf(“x is greatest\n”);

else

{

if((x<y) && (y>z))

printf(“y is greatest\n”);

else

printf(“z is greatest\n”);

}

}

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
122 Material

Result of the program
enter three unequal integers

12 23 78

z is greatest

Now write a program to convert a lower case letter typed into an upper
case letter. For this purpose you may have to refer to the ASCII table in Annexure 1.

It is obvious that if you subtract 32 from the ASCII value of a lower case
alphabet, you will get the ASCII value of the corresponding upper case letter.
Now write
an algorithm for the conversion of lower case to an upper case letter. It is given in
Algorithm 3.

ALGORITHM 3

Step 1: Send a message for getting a character

Step 2: Get a character

Step 3: Check whether the character typed is >=a and <=z

(This is essential since you can only convert a lower case alphabet into
upper case.)

Step 4: If so, subtract 32 from the value of the character; if not, go to step 6

Step 5: Output the character with the revised ASCII value; END

Step 6: Print ‘an invalid character’ END

The algorithm is implemented in Example 2.5.
/*Example 2.5

Conversion of lower case letter to upper case*/

#include <stdio.h>

main()

{

char alpha;

printf (“enter lower case alphabet\n”);

alpha=getchar();

if ((alpha >=’a’)&& (alpha<=’z’))

{

alpha= (alpha-32);

putchar (alpha);

}

else

printf(“invalid entry; retry”);

}

Now you can test the program by giving both the valid and invalid inputs;
valid inputs are the lower case letters and invalid inputs are all other characters.

NOTES

Self - Learning
Material 123

Computer Programming
in FORTRAN/C/Basic

Result of the program

The result for the invalid input is as follows:
enter lower case alphabet

8

invalid entry; retry

The result when tried with a valid input is given below:
enter lower case alphabet

n

N

The programs should be executed, i.e., tested with both the valid and invalid
inputs.

2.7.5 Conditional Operator and if...else

The syntax for the conditional operator is as shown here:

(Condition)? statement1: statement2;

What does it mean? If the condition is true, execute statement1; else,
execute statement2. Here nesting is not possible. The if...else statement
is more readable than the conditional(?) operator. However, the conditional
operator is quite handy in simple situations as follows:

(a > b) ? print a greater

: print b greater;

Thus, the operator has to be used in simple situations. If nothing is written in
the position corresponding to else, then it means nothing is to be done when
the condition is false.

Example 2.2 is rewritten using the ? operator in Example 2.6.
/*Example 2.6

This Example demonstrates use of the ? operator*/

#include <stdio.h>

main()

{

unsigned int a,b;

printf (“enter two integers\n”);

scanf(“%u%u”, &a, &b);

(a==b)?printf(“you typed equal numbers\n”):

printf(“numbers not equal\n”);

}

Result of the program
enter two integers

123 456

numbers not equal

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
124 Material

2.8 LOOPS AND CONTROL CONSTRUCTS

Quite often, you have to perform the same operation a number of times. You may
also have to repeat the same operation with one or more of the values changed,
which is known as loop or iteration. It is definitely possible to write a program for
such situations with the concepts you have learned so far. However, there are
special constructs in any programming language for carrying out repeated
calculations.

2.8.1 Iteration using if

Before you look at loop constructs, let us consider an example to see the need for
repetitive calculations. Assume that you want to find the sum of the first 10 natural
numbers 1 to 10. This can be achieved through successive addition, i.e., first you
initialize the sum to 0 and then add 1 to the sum. Next you add 2 to the sum, then
3, and so on till you add 10 to the sum. Thus, by repeated addition 10 times, you
have found the sum of first 10 natural numbers.

The algorithm below summarizes what you have done:

Step 1: Sum = 0

Step 2: I = 1

Step 3: If I < = 10 perform the following operations:
 sum = sum + I; I = I + 1;

Step 4: Print the sum

Now analyse the algorithm:

At the beginning, steps 1 and 2 are entered with sum = 0 and I = 1

since I < = 10

Sum will be equal to sum + I,

i.e., sum = 0 + 1 = 1

I = I + 1, i.e., I = 2

Now the program goes to step 3.

with I = 2 and sum = 1

Since I < = 10

sum = sum + I

sum was 1 and I is 2

sum = 1 + 2 = 3

Next I will be incremented to 3

Third iteration:

Step 3 is approached with I = 3 and sum = 3

since I < = 10

sum = sum + I = (1 + 2) + 3

I = 4

NOTES

Self - Learning
Material 125

Computer Programming
in FORTRAN/C/Basic

Ninth iteration:

Step 3 is approached with I = 9

since I < = 10

sum = (1 + 2 + 3 +............+ 8) + 9

I is incremented to 10

Tenth iteration:

Step 3 is approached with I = 10

since I < = 10

sum = sum + I

 = (1 + 2 + 3 +........+ 8 + 9) + 10

Now I is incremented to 11

since I <= 10 is not true, the program does not execute the statements
following the if and jumps to step 4.

In step 4 the sum is printed.

This algorithm is implemented in program 2.7.
/*Example 2.7

Demonstrates use of if for iteration*/

#include <stdio.h>

main()

{

int sum=0, i=1; /*declaration and initialization
combined*/

step3: /*label- loop starts here*/

if (i <=10)

{

Sum = sum + i;

i = i + 1;

goto step3;

}

printf(“sum of first 10 natural numbers=%d\n”, sum);

}

Result of the program
sum of first 10 natural numbers = 55

The program has implemented the algorithm in goto. The program uses
if and goto keywords. According to the algorithm, the program has to go to
step3. Step3 in this program is called a label, which is followed by a colon. The
rules for coining a label name are the same as for an identifier. The label can be
placed anywhere in the same function where the goto statement is found. Usage
of goto is considered to be bad programming practice since it leads to errors
when changes are made in the program and also affects readability. It is always
possible to write a program without using goto. The program can be rewritten
without goto by using a for statement.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
126 Material

2.8.2 for Statement

The for statement is meant for the easy implementation of iterations unlike if.
The syntax of for is given ahead:

for (exp1; exp2; exp3)

{statements;}

Note the keyword, the parentheses and semicolons. There is no semicolon
after exp3, exp1, exp2 and exp3 are expressions. The usage of the for loop
is given below:

exp1– Contains the initial value of an index or a variable.

exp3– Contains the alteration to the index after each iteration of the body
of the for statement. The body of the statement is either a single statement or a
group of statements enclosed within braces.

If a single statement has to be executed, then braces are not required.

exp2– Condition that must be satisfied if the body of statements is to be
executed.

An example of a for loop is given below:
for (i = 0; i < 5; i++)

printf(“%d”, i);

The loop will start with an initial value of i = 0. Since i < 5, the body of
the for loop will be executed and it will print 0. Now the exp3 will be executed
and i will be incremented to 1. Since i is less than 5, body of the loop will again
be executed to print 1. This will continue till 4 is printed. i will now be incremented
to 5 and since i is not less than 5, the for loop will be terminated. This is how
for is used to carry out repetitive operations.

Now write a program for finding the sum of the first 10 natural numbers
using the for statement.

The program is given in Example 2.8
/*Example 2.8

demonstrates the use of the for statement to find the sum

of the first 10 natural numbers*/

#include <stdio.h>

main()

{

int sum=0, i; /*declaration and initialization
combined*/

for (i=1; i<=10; i++) /*loop starts here*/

{

Sum = sum + i;

}

printf(“sum of the first 10 natural numbers=%d\n”,
sum);

}

NOTES

Self - Learning
Material 127

Computer Programming
in FORTRAN/C/Basic

Result of the program
sum of first 10 natural numbers = 55

Note the difference between Example 2.7 and Example 2.8.

You have eliminated the label Step 3 and the goto statement.

The initialization of i = 1 is carried out as part of the for statement.

The incrementing of i is also carried out as part of the for statement. The
program has, therefore, been simplified.

How does the program work?

Step 1: i = 1

i is checked with i <= 10

Since i is less than 10, the for loop is executed.
sum = sum + i = 0 + 1 = 1

Step 2: i is incremented to 2
2 is <=10

Therefore, the for loop is executed.
sum = sum + i = (1) + 2

Step 9:

i is incremented to 9
9 is < = 10

Therefore, the for loop is executed.
sum = sum + i = (1 + 2 +........+ 8) + 9

Step 10:

i is incremented to 10
10 is < = 10

sum = sum + I = (1 + 2 +..........+ 9) + 10

Step 11:

i is incremented to 11.
11 is not < = 10.

Therefore, the for loop is now terminated.

The printf() function is now executed automatically.

Now summarize the operation of the for loop.

When a program encounters a for loop, it first checks the condition through
the expression in the middle. If the condition is satisfied, it executes the group of
statements. After executing the statements in the body of the loop, the program
transfers the execution to the for statement and the third expression is executed,
which is usually incrementing or decrementing. Then the condition is checked. If
the condition is not satisfied, the group of statements will not be executed and the
program will skip to the next statement after the statements pertaining to the for
statement.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
128 Material

By chance if the initial value was typed as 11 instead of 1 in the program,
the condition will turn out to be false and the group of statements will not be
executed at all.

Three Components of for

The three components of a for statement are as follows:

exp1 and exp3 are assignments or function calls. Function calls will be
discussed at a later stage; exp2 is a relational expression. The three expressions
may not always be present. However, even if an expression is not present, the
associated semicolon should be present.

For example,
for (; exp2 ;)

{s1}

Here, the initial value is not specified and the incrementing does not take
place after every iteration. Presumably, the initial value is assigned elsewhere and
incrementing or a similar operation takes place as part of the group of statements
following the for. However, since exp2 is present, the loop will terminate.

However, if all three expressions are omitted as follows:
for (; ;)

the loop will never terminate because the conditional statement is absent. If exp2
i s
not present, it is assumed that the condition is true always. Such a statement should
not be used.

Instead of incrementing, you can use i + = 2 as exp3 when i will be
incremented by 2 every time.

Now try to print the list of even numbers up to 50. The program is as
shown:

/*Example 2.9

variation in for statement - to print even numbers*/

#include <stdio.h>

main()

{

int i=2;

for (; i<10; i+=2) /*loop starts here*/

{

printf(“%i is an even number\n”,i);

}

}

Here you initialize i = 2 before the for loop itself. However, the
corresponding semicolon is present at the right place.

NOTES

Self - Learning
Material 129

Computer Programming
in FORTRAN/C/Basic

Result of the program
2 is an even number

4 is an even number

6 is an even number

8 is an even number

2.8.3 Symbolic Constants and Looping

So far you have been giving the initial value, the increment and final value as part of
the programs. Assuming you want to change one or more of them later on, how
are you to go about it? You would then have to painfully rewrite the program. C
provides a method by which this can be done with the least changes by using the
define statement. The format of this statement is as follows:

define name constant

For example, you can define,
define INITIAL 1

Which defines INITIAL as 1. The INITIAL types of definitions are called
symbolic constants. They are not variables and hence, they are not defined as
part of the declarations of variables. They are specified on top of the program
before the main(). The symbolic constants are to be written in capital or upper
case letters. Wherever the symbolic constant names appear in a program, the
compiler will replace them with the corresponding replacement constants defined
in the # define statement. In this case, 1 will be substituted wherever INITIAL
appears in the program. Note that there is no semicolon at the end of the # define
statement.

You can now write a program to print out the numbers between a given
range, say 100 to 150, which are divisible by 3, i.e., when divided by 3 the
modulus = 0. Such numbers are ‘evenly divisible by 3’.

/*Example 2.10

Demonstrates the use of symbolic constants-
program to find numbers between 100 and 150
evenly divisible by 3*/
#include <stdio.h>
#define LOW 100
#define UPPER 125
#define STEP 1
main()
{

int num;
for (num=LOW; num<UPPER; num+=STEP) /*loop starts

here*/
{

if(num%3 == 0)
printf(“%i is evenly divisible by 3\n”, num);

}
}

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
130 Material

Result of the program
102 is evenly divisible by 3

105 is evenly divisible by 3

108 is evenly divisible by 3

111 is evenly divisible by 3

114 is evenly divisible by 3

117 is evenly divisible by 3

120 is evenly divisible by 3

123 is evenly divisible by 3

You can use this technique in future programs. Assume that you want to find
out all the numbers evenly divisible by 3 between 1 and 1000.

 You have to define LOWER as 1 and UPPER as 1000. Assuming that
later on you want to find out the numbers evenly divisible by 7, you would have to
again rewrite the program. This can be avoided by defining the DIVISOR as 7
and substituting within the condition (number % DIVISOR == 0). In this
way, you can write a program to find out the numbers evenly divisible by any
number in any range.

2.8.4 Other Forms of the for Loop

The for loops can be nested as follows:
for (i = 1; i <= 10; i++)

{

for (j = 1; j <= 5; j++)

{

for (k = 1; k <= 2; k++)

{

s1

}

}

}

The statement s1 will be executed as follows:

First time i = 1, j = 1, k = 1

Second time i = 1, j = 1, k = 2

Third time i = 1, j = 2, k = 1

i = 1, j = 2, k = 2

i = 1, j = 3, k = 1

i = 1, j = 3, k = 2

Lastly i = 10, j = 5, k = 2

 s1 will be executed 2*5*10 = 100 times.

Any level of nesting is acceptable; However, the higher the level of nesting
is, the more easy it will be to commit mistakes and more difficult to understand.

NOTES

Self - Learning
Material 131

Computer Programming
in FORTRAN/C/Basic

Now, look at some more for loops.
For (x = –5; – –x >= –10;)

{

 }

Here, the decrement and conditional statements are combined in exp2.

Since decrement is a prefix, the decrement of x is carried out first. The
condition is then checked in order to decide whether to continue or not. Then the
loop is executed. Therefore, the first iteration will be carried out with x = –6 and
the last with x = –10.

Another variation of the statement is as follows:
for (y = 100; y ++<= 200;)

{

s2

}

Here too exp2 and exp3 are combined. This is a postfix notation. The
following sequence is carried out: condition check, increment and execute the
loop. Therefore, the statement s2 following the for loop will be executed the
first time with y = 101 and finally with y = 201 as well.

The for loop is a popular iteration construct not only in ‘C’ but also in
other languages. Here, the initial value, the step and the final value are clear and
unambiguous and simple to write. There are other loop statements also. In the
next section, you will study the while loop.

2.8.5 The while Loop

The while loop is a subset of the for loop. The syntax for the while loop is
given below:

while (expression)

{statements;}

This means that the statement(s), which is a single statement or multiple
statements, will be executed while the expression is true. When it becomes false,
the execution will stop.

The while is similar to the for loop without exp1 and exp3. The for
loop can be simulated or replaced with the while loop as given below.

exp1;

while (exp2)

{

statements

exp3;

}

The programmer can use while or for at his discretion. The for loop is
preferred when the initialization and incrementation are simpler.

Let us look at an example.

Let us write a program for the generation of any multiplication table.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
132 Material

The program is given below:
/*Example 2.11

Use of while - You can generate multiplication

tables of your choice using this program.

caution: Don’t exceed maximum limits of integer */

#include <stdio.h>

main()

{
int a,b,product;
a=1;
b=0;
product=0;
printf(“Enter which table you want”);
scanf(“%d”,&b);
while (a <=10)
{

product = a*b;
printf(“%2d X %d= %3d\n”,a,b,product);
a++;

}
}

When the program asks you to enter a table and you type 12, you will get
the 12th table as given below.

Result of the program

Enter which table you want 12

1 X 12= 12

2 X 12= 24

3 X 12= 36

4 X 12= 48

5 X 12= 60

6 X 12= 72

7 X 12= 84

8 X 12= 96

9 X 12= 108

10 X 12= 120

Note here that the condition is (a < =10); incrementing is done within the
loop in a++. Variable a is initialized as 1 before entering the while loop.

If you want to print the table up to 16 × 12 = 192 then simply change
the condition to while (a < =16). Simple, isn’t it?

NOTES

Self - Learning
Material 133

Computer Programming
in FORTRAN/C/Basic

2.8.6 do . . . while Loop

This is a modification of the while statement. In the while statement, before
the group of statements following the while are executed, the condition associated
with the while is checked. If the condition is true or fulfilled, then the associated
statements are executed. If not, the program skips the statements associated with
the while loop. This is depicted in Figure 2.2.

Fig. 2.2 while Loop

After execution of the statements, the program will check again whether the
condition is true and then continue to execute or skip the statements depending on
the condition. The statements may not be executed even once if the condition was
false at the entry point.

However, the do...while works differently as shown in Figure 2.3.

Fig. 2.3 do...while Loop

Here the statements following do will be executed once before the condition
is checked. If it is true, then the statements will be executed again. If not, the
program will skip the statements and proceed further. Thus, whatever be the
condition, the statements following do will be executed once before checking the
condition. This is the essential difference between do...while and while.
The while loop tests the condition on top of the loop; but do...while tests
at the bottom after executing the statements. The while loop executes the

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
134 Material

statements after checking the condition; but do...while executes the statements
before testing the condition. The syntax of do...while is as follows:

do

{

statements

}

while (expression);

The statement do...while is not used as frequently as the while loop.

Example 2.12 converted upper case alphabets to lower case. Incase you
want to convert more alphabets you will have to execute the program again and
again. This can be avoided by the while loop. The program will continue to run
as long as you want to convert more and more alphabets. The program has been
rewritten with while for converting upper case to lower case. You can convert
as long as you want. When you want to stop, enter 1. The program, which uses
while for converting an upper case character to a lower case is given below:

/*Example 2.12

Conversion of upper case to lower case alphabet*/

#include <stdio.h>

#include<conio.h>

main()

{

int alpha=0;

while (alpha!=’1')

{

printf (“\nenter upper case alphabet- enter 1 to
quit\n”);

alpha=getche();

if (alpha >=’A’&& alpha<=’Z’)

{

alpha= (alpha+32);

putch(alpha);

}

else

{

if(alpha!=’1')

printf(“\ninvalid entry; retry”);

else

printf(“End of session”);

}

}

}

NOTES

Self - Learning
Material 135

Computer Programming
in FORTRAN/C/Basic

Result of the program
enter upper case alphabet- enter 1 to quit

Pp

enter upper case alphabet- enter 1 to quit

p

invalid entry; retry

enter upper case alphabet- enter 1 to quit

Qq

enter upper case alphabet- enter 1 to quit

1End of session

The above program works till 1 is pressed. It continues to convert upper
case to lower case till 1 is pressed. The program has been designed in such a
manner that it will perform at least one iteration of the statements following while.
This can be rewritten using do...while. The rewritten program is as follows:

/*Example 2.13

Conversion of upper case to a lower case alphabet*/

#include <stdio.h>

#include<conio.h>

main()

{

int alpha=0;

do

{

printf (“\nenter upper case alphabet- enter 1 to
quit\n”);

alpha=getche();

if (alpha >=’A’&& alpha<=’Z’)

{

alpha=(alpha+32);

putch(alpha);

}

else

{

if(alpha==’1')

printf(“End of Session”);

else

printf(“\ninvalid entry; retry”);

 }

}while(alpha!=’1');

}

Result of the program

enter upper case alphabet- enter 1 to quit

Gg

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
136 Material

enter upper case alphabet- enter 1 to quit

o

invalid entry; retry

enter upper case alphabet- enter 1 to quit

Dd

enter upper case alphabet- enter 1 to quit

1End of Session

How does it differ? Here too, the program will attempt to convert one
character before it can be terminated. Assuming that the first character was 1, the
program will still attempt to convert it and print the message “End of Session”
before it quits.

Suppose the first character is a valid one and a number of characters are
converted in succession; when you want to terminate the program, 1 has to be
pressed and even then the program will not stop immediately. It will stop only after
the statements are executed. Since the problem is the same, a detailed look at
both the examples will bring out the similarity in operation between both the
constructs. However, there are occasions when it is quite suitable as given in the
next section.

2.8.7 switch Statement

switch statements allow clear and easy implementation of multiway decision-
making. Assuming that a number is received from the keyboard and depending on
the value, we want to carry out some operations, the switch statement can be
used effectively in this situation. In simpler situations if...else could be used,
and in complex situations, switch can be used. For example, if you get numbers
starting from 1 to 4 and print their values in words, you can use the if...else
statement as given in the program 2.14 below:

/*Example 2.14

Converts the digits 1-4 in words using if*/
#include <stdio.h>
#include <conio.h>
main()
{

int a;
char ch =’c’;
while (ch==’c’)

{
printf(“\nEnter a digit 1 to 4\n”);
scanf(“%d”,&a);
if(a== 1)

printf(“One\n”);
else

if (a== 2)
printf(“Two\n”);

else
if(a== 3)

NOTES

Self - Learning
Material 137

Computer Programming
in FORTRAN/C/Basic

printf(“Three\n”);
else

if(a==4)
printf(“Four\n”);

else
printf(“Illegal character\n”);
printf(“enter ‘c’if you want to continue\n”);
printf(“or any other character to end\n”);

ch=getche();
if (ch!=’c’)

printf(“End of
Session”);

}
}

Result of the program
Enter a digit 1 to 4

3

Three

enter ‘c’ if you want to continue

or any other character to end

c

Enter a digit 1 to 4

1

One

enter ‘c’ if you want to continue

or any other character to end

c

Enter a digit 1 to 4

2

Two

enter ‘c’ if you want to continue

or any other character to end

nEnd of Session

You have struggled hard to do this exercise. Assuming that you want to get
a one digit number up to 9 and print its value in words, it would become a more
complex task. The switch statement comes in handy in such situations. The
syntax of the switch statement is as follows:

switch (expression)

{

case constant or expression : statements

case constant or expression : statements

..

default : statements }

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
138 Material

When the switch keyword is encountered, the associated expression is
evaluated. The program now looks for the case, which matches with the value
of the expression. Execution then starts from the statement corresponding to the
case which matches. Each case has to be accompanied by integer expressions,
which must be unique, as otherwise the program will not know where to start. For
example, if the first two cases are as follows:

case 10 : s1;

case 10 : s2;

In this case, the program would not know whether to execute s1 or s2
when the expression of switch evaluates to 10. Therefore, the constant
expressions following the case keyword should all be unique. There may be
occasions when none of the constant expressions matches the switch expression
in which case the default statements will be executed. Thus, switch allows
branching of the program execution to an appropriate place. A program to print
the values of the digits in words is given below:

/*Example 2.15

Converts the digits 0-9 in words*/

#include <stdio.h>

#include <conio.h>

main()

{

int a;

char ch =’c’;

while (ch==’c’)

{

printf(“\nEnter a digit 0 t0 9\n”);

scanf(“%d”,&a);

switch(a)

{

case 0:printf(“Zero\n”);

break;

case 1:printf(“One\n”);

break;

case 2:printf(“Two\n”);

break;

case 3:printf(“Three\n”);

break;

case 4:printf(“Four\n”);

break;

case 5:printf(“Five\n”);

break;

case 6:printf(“Six\n”);

break;

NOTES

Self - Learning
Material 139

Computer Programming
in FORTRAN/C/Basic

case 7:printf(“Seven\n”);

break;

case 8:printf(“Eight\n”);

break;

case 9:printf(“Nine\n”);

break;

default:printf(“Illegal character\n”);

}

printf(“enter ‘c’ if you want to continue\n”);

printf(“or any other character to end\n”);

ch=getche();

if (ch!=’c’)

printf(“End of Session”);

}

}

Result of the program
Enter a digit 0 t0 9

6

Six

enter ‘c’ if you want to continue

or any other character to end

c

Enter a digit 0 t0 9

7

Seven

enter ‘c’ if you want to continue

or any other character to end

nEnd of Session

We have used the do...while concept in this example also. The program
first enters the do loop. After the execution of the loop, the program asks you to
enter c if you want to continue or any other character to end the program. If you
enter c, the program will continue. Thus, if you want to exit you can press any
other letter, say ‘n’. If you press ‘n’ the program stops instantly. This is the right
way of using the do...while loop.

Now the switch is analysed. The program asks for entry of a digit 0 to 9.
The entered digit is stored in variable a. If a = 5, then the program goes to case
5. It is followed by printing the value Five and then break. If you press 8, then
case 8 matches and Eight will be printed.

What is a break statement ?

Assume that all the break statements are removed from the program.
Then if you press 1, ‘One’ will be printed and all the statements following that will
be executed. This means that Two, Three, ... till Nine will be printed. If you enter

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
140 Material

7, it will print all the numbers starting from Seven, which in not desirable. The
break statement has, therefore, been introduced. After printing the value of the
number, the break statement takes the program to the end of the switch
statement. The end is just the closing brace corresponding to switch after the
default printf() statement. Therefore, the combination of switch and break
does the trick.

Assuming that a character other than 0 to 9 is entered, none of the cases
match. Therefore, default is executed. The program will print ‘illegal character’.
The default is optional and even in its absence, when no match is found, the
program will come out of the switch statement without any action.

The case statements need not be in any specified order. The default can
be on top before case 0 and the case can occur in any order. The program is
made to execute, as long as you want, by the do statement. If do is absent, then
the program will be executed only once. The do...while is necessary to make
it an iterative program.

Every switch statement, therefore, contains a condition in the form of an
expression. The expression could also be a single variable as in this case. The
expression will be evaluated at the time of program execution and must be an
integer. Then depending on the value it goes to a case label, which is like a label
in a goto statement. The label should match with the value of the expression.

Unless the program is made to exit by statements such as break after
executing the group of statements corresponding to a particular case, the program
will execute all the statements in the program from then on. This should be noted.
Therefore, the programmer has to specify where to end. In the case of
if...else, where to begin and where to end is clear as also in the case of
switch. The program starts at the beginning of the case that meets the condition,
but ends at the bottom of the switch unless otherwise specified. It will also
execute the statements following default. It will of course not bother about the
keywords. That is the reason for the break statement, since we do not want the
program to execute irrelevant statements.

It is a good programming practice to include a break statement after the
default as well. If this is not done at the inception, at a later stage when more case
statements are added after default, this would lead to problems. Whenever default
is executed all the statements following it, even if they belong to some other case,
will also be executed if break is not included after default.

Now the program can be extended to print the value of the number up to
99 in words. This makes it more complicated since the words are unique up to
nineteen. A program is given below for achieving the task. This is made to loop
using do...while.

/*Example 2.16

To print out in words the value

of a number typed in the range 1-99*/

#include <stdio.h>

#include<conio.h>

main()

NOTES

Self - Learning
Material 141

Computer Programming
in FORTRAN/C/Basic

{

int num,m,ch=’y’;

do

{

printf(“Type a number 1 to 99\n”);

scanf(“%d”,&num);

if ((num >0)&&(num <100))

/*only if the number is within the valid range 0 to
99 the following will be executed*/

{

if (num >= 20)

{

m=num/10;

switch(m)

{

case 2:printf(“TWENTY “);

break;

case 3:printf(“THIRTY “);

break;

case 4:printf(“FORTY “);

break;

case 5:printf(“FIFTY “);

break;

case 6:printf(“SIXTY “);

break;

case 7:printf(“SEVENTY “);

break;

case 8:printf(“EIGHTY “);

break;

case 9:printf(“NINETY “);

break;

}

}

if (num >20)

num= num%10;

switch(num)

{

case 1:printf(“ONE\n”);

break;

case 2:printf(“TWO\n”);

break;

case 3:printf(“THREE\n”);

break;

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
142 Material

case 4:printf(“FOUR\n”);

break;

case 5:printf(“FIVE\n”);

break;

case 6:printf(“SIX\n”);

break;

case 7:printf(“SEVEN\n”);

break;

case 8:printf(“EIGHT\n”);

break;

case 9:printf(“NINE\n”);

break;

case 10:printf(“TEN\n”);

break;

case 11:printf(“ELEVEN\n”);

break;

case 12:printf(“TWELVE\n”);

break;

case 13:printf(“THIRTEEN\n”);

break;

case 14:printf(“FOURTEEN\n”);

break;

case 15:printf(“FIFTEEN\n”);

break;

case 16:printf(“SIXTEEN\n”);

break;

case 17:printf(“SEVENTEEN\n”);

break;

case 18:printf(“EIGHTEEN\n”);

break;

case 19:printf(“NINETEEN\n”);

break;

}

}

else

printf(“number outside range\n”);

printf(“\nenter y if you want to continue\n”);

ch=getche();

if (ch!=’y’)

printf(“End of session”);

}

while (ch==’y’);

}

NOTES

Self - Learning
Material 143

Computer Programming
in FORTRAN/C/Basic

Result of the program
Type a number 1 to 99

123

number outside range

enter y if you want to continue

yType a number 1 to 99

78

SEVENTY EIGHT

enter y if you want to continue

yType a number 1 to 99

6

SIX

enter y if you want to continue

nEnd of session

2.8.8 Break, Continue, Return and goto

The keywords while, for and switch test the condition on top, while
do...while checks at the bottom for quitting the loop. The break statement
helps immediate exit from any part of the loop as demonstrated with the switch
statement. It can be used with any other loop construct or anywhere in the program.
When the break statement is executed it goes to the bottom of the block. Recall
that a block is a group of statements enclosed between an opening brace and the
corresponding closing brace.

The continue statement is related to break. When continue is
executed, it causes the next iteration of the corresponding for, do...while
or while loop to begin. Therefore, continue takes the program to the top of
the block and in the for loop, it will cause the next increment operation, followed
by checking whether the condition is true or false in order to decide the next
course of action. This is similar to skipping the current execution and continuing
with the next operation after incrementing. The statement continue skips the
rest of the statements in the loop for that iteration, whereas break terminates the
loop.

Write a program to check whether a given number is positive or negative. If
it is zero, the program should terminate after printing the value. If it is a positive
integer above zero and <=20000, the value will be printed; if negative, it will go
to fetch the next number. If the number is >20000, the program terminates. The
program is given below:

/*Example 2.17

/*Program to demonstrate continue*/

#include <stdio.h>

main()

{

int a;

do

{

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
144 Material

printf(“enter a number-enter 0 to end session\n”);

scanf(“%d”, &a);

if(a > 20000)

{

printf(“you entered a high value-going out of
range\n”);

break;

}

else

if(a>=0)

printf(“you entered %d\n”, a);

if (a <0)

{

printf(“you entered a negative number\n”);

continue;

}

}

while(a !=0);

printf(“ End of session\n”);

}

Result of the program
enter a number-enter 0 to end session

33

you entered 33

enter a number-enter 0 to end session

-60

you entered a negative number

enter a number-enter 0 to end session

45

you entered 45

enter a number-enter 0 to end session

25000

you entered a high value-going out of range

End of session

If the number typed > 20000, or if it is equal to zero, the program comes
out of the loop and prints “End of session”. If the number is negative, a <
0 and hence, continue will be executed. It will go to the top of the loop. The
next integer will be received. The program, therefore, terminates when a = 0 as
well as a > 20000, but there is a difference. If the number entered is zero, the
program checks whether a > 20000. Since the condition fails, it checks whether
a > = 0 and since it is true, 0 will be printed and then the while condition is
checked. The program terminates after the while condition is checked.

However, if the number entered is > 20000, the loop terminates instantly
without transacting any business except printing messages as shown.

NOTES

Self - Learning
Material 145

Computer Programming
in FORTRAN/C/Basic

The return statement can appear anywhere in a function and when it is
encountered a value is returned to the called function. The return may also not
return a value in statements as shown:

return ;

return (0) ;

The return statement may appear anywhere in the function and not
necessarily at the end of the function. Whenever return is executed, the program
returns to the function called the current function. The program returns to the
place from where it called the function. Thus return is also used to suddenly
exit from a function or a loop in a function.

Exit Function

There is a library function exit(), which causes the termination of the current
program. Note that, exit() terminates the execution of the program itself, and
not the block. The statement break enables coming out of the block or loop in
which it is executed but exit terminates the program at whatever stage the program
may be. The exit is a powerful function.

goto Statement
The goto statement in C refers to structured programming principles. This statement
leads to ‘spaghetti’ code, which is difficult to understand. The syntax of code is
written as follows:

Goto Syscrash

//Other statement

Syscrash:

//Control will begin here following goto

The label is always terminated by a colon. The goto statement is a jump statement,
which jumps from one point to another point within a function. This keyword is
marked by label statement. Label statement can be used anywhere in the function
above or below the goto statement. The following C code displays the list of
numbers from 0 to 9. For this, you need to define the label statement loop above
the goto statement. The given program declares a variable n initialized to 0. The
n++ increments the value of n by 1 till the loop reaches 10. Then on declaring the
goto statement, it will jump to the label statement and prints the value of n. The
code is written in the C language as follows:

#include <stdio.h>

#include <conio.h>

int main()

{

 clrscr(); //Clear the screen

 int n = 0;

 loop: ;

 printf(“\n%d”, n);

 n++;

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
146 Material

 if (n<10)

 {

 goto loop;

 }

 getch();

 return 0;

}

The result of above code is as follows:

0

1

2

3

4

5

6

7

8

9
A goto statement causes your program to unconditionally transfer control

to the statement associated with the label specified on the goto statement. Because,
the goto statement can interfere with the normal sequence of processing, it makes
a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.
If an active block is exited using a goto statement, any local variables are destroyed
when control is transferred from that block. You cannot use a goto statement to
jump over initializations.

Check Your Progress

11. Write the syntax for switch statement.

12. How does the switch keyword function?

13. What does the break statement do?

2.9 LOGICAL VARIABLES

Variables that are declared inside a function or block are called logical variables.
They can be used only by statements that are inside that function or block of code.
Logical variables are not known to functions outside their own. The following
example shows how logical variables are used. Here, all the variables a, b, and c
are logical to main () function.

NOTES

Self - Learning
Material 147

Computer Programming
in FORTRAN/C/Basic

Example: 2.18

#include <stdio.h>

#include <conio.h>

int main () {

 /* logical variable declaration */

 int a, b;

 int c;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

 printf (“value of a = %d, b = %d and c = %d\n”, a, b, c);

 return 0;

}

2.10 DOUBLE PRECISION VARIABLE

Double precision variable is also a data type which is used to represent the floating
point numbers. It is a 64-bit IEEE 754 double precision floating point number for
the value. It has 15 decimal digits of precision.

Syntax:

 double variable_name;
Example: 2.19

#include<stdio.h>

#include<string.h>

int main() {

 float x = 10.327;

 double y = 4244.546;

 int z = 28;

 printf (“The float value : %f\n”, x);

 printf (“The double value : %f\n”, y);

 printf (“The sum of float,

 double and int variable : %f\n”, (x+y+z));

 return 0;

}

Output:

The float value : 10.327000

The double value : 4244.546000

The sum of float, double and int variable : 4282.873000

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
148 Material

2.11 SUBSCRIPTED AND DIMENSION
VARIABLE

Subscripted variables are used to store the values of the same type (for example
in an array). It also helps us to store more values in a single variable name.
Subscripted variables are declared by giving the variable name along with the
subscript.

Example: 2.20

A[10]

Here A is the variable name and 10 is known as the subscripted value through
which we can store 10 values in the variable name A. The 10 values are stored in
A[1], A[2],,…., A[10],. As only one subscript is given for the above variable, the
array is called as the single dimensional array.

Solution:
#include <stdio.h>

#include <conio.h>

 void main()

{

 int arr[10];

 int i;

 printf(“\n\nRead and Print elements of an array:\n”);

 printf(“————————————————————\n”);

 printf(“Input 10 elements in the array :\n”);

 for(i=0; i<10; i++)

 {

 printf(“element - %d : “,i);

 scanf(“%d”, &arr[i]);

 }

 printf (“\n Elements in array are: “);

 for(i=0; i<10; i++)

 {

 printf (“%d “, arr[i]);

 }

 printf(“\n”);

}

Output:

Read and Print elements of an array:

————————————————————

NOTES

Self - Learning
Material 149

Computer Programming
in FORTRAN/C/Basic

Input 10 elements in the array:

element - 0 : 1

element - 1 : 1

element - 2 : 2

element - 3 : 3

element - 4 : 4

element - 5 : 5

element - 6 : 6

element - 7 : 7

element - 8 : 8

element - 9 : 9

Elements in array are: 1 1 2 3 4 5 6 7 8 9

Dimensional Variable

An array is called as a dimensional variable. An array is a group of related items
that store values under the common name.

Syntax:

The syntax for declaring an array is as follows:

 datatype array_name [size];

Types of Arrays

Arrays are broadly classified into two types which are as follows.

1. One dimensional arrays

2. Two dimensional arrays

One Dimensional Array

The syntax for one dimensional array is as follows.

 datatype array name [size]

For example, int a[5]

Example: 2.21
#include<stdio.h>

#include<conio.h>

int main (){

 int a[5] = {10,20,30,40,50};

 int i;

 printf (“elements of the array are”);

 for (i=0; i<5; i++)

 printf (“%d”, a[i]);

}

Output:

Elements of the array are

10 20 30 40 50

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
150 Material

Two Dimensional Array

The syntax for two dimensional array is as follows.

 datatype array_ name [rowsize] [column size];

For example: int a[5] [5];

Example: 2.22
#include<stdio.h>

#include<conio.h>

main ()

{

 int a[3][3] = {10,20,30,40,50,60,70,80,90};

 int i,j;

 printf (“elements of the array are”);

 for (i=0; i<3; i++){

 for (j=0;j<3; j++){

 printf(“%d \t”, a[i] [j]);

 }

 printf(“\n”);

 }}

Output:

Elements of the array are:

10 20 30

40 50 60

70 80 90

2.12 FUNCTION AND SUBROUTINE

A function is a group of statements that together perform a task. Every C program
has at least one function, which is main (), and all the most trivial programs can
define additional functions. We can the divide code into separate functions, but
logically the division is such that each function performs a specific task.

Parts of a Function

 Return Type: A function may return a value. The return_type is the data
type of the value that the function returns. Some functions perform the
desired operations without returning a value. In this case, the return_type is
the keyword void.

 Function Name: This is the actual name of the function. The function name
and the parameter list together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked,
you pass a value to the parameter. This value is referred to as actual parameter
or argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may
contain no parameters.

NOTES

Self - Learning
Material 151

Computer Programming
in FORTRAN/C/Basic

 Function Body: The function body contains a collection of statements that
define what the function does.

Function Declarations

A function declaration tells the compiler about a function name and how to call the
function. The actual body of the function can be defined separately.

Syntax:
return_type function_name (parameter list);

For example,

int max (int num1, int num2);

int max (int, int);

Function declaration is required, when you define a function in one source
file and you call that function in another file. In such case, you should declare the
function at the top of the file calling the function.

Calling a Function

When a program calls a function, the program control is transferred to the called
function. A called function performs a defined task and when its return statement is
executed or when its function-ending closing brace is reached, it returns the program
control back to the main program.

To call a function, you simply need to pass the required parameters along
with the function name, and if the function returns a value, then you can store the
returned value.

Example: 2.23 A function returning the max between two numbers.
#include <stdio.h>

#include <conio.h>

/* function declaration */

int max(int num1, int num2);

 int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf(“Max value is : %d\n”, ret);

 return 0;

}

 /* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
152 Material

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Output:

Max value is: 200

Subroutines

We will use a function if we need to do a complicated calculation that has only one
result which we may or may not want to subsequently use in an expression.
Subroutines, on the other hand, can return several results. However, calls to
subroutines cannot be placed in an expression.

In the main program, a subroutine is activated using a CALL statement
which include the subroutine name followed by the list of inputs and outputs from
the subroutine surrounded by parenthesis. The inputs and outputs are collectively
called the arguments.

A subroutine name follows the same rules as for function names and variable
names: less than six letters and numbers and beginning with a letter. Because of
this, subroutine names should be different than those used for variables or functions.

As with functions, there are some rules for using subroutines. Keep these in
mind when writing your subroutines:

 We do not need to declare the subroutine name in the main program as
we do with a function name.

 They begin with a line that includes the word SUBROUTINE, the name
of the subroutine, and the arguments for the subroutine.

All variables used by the subroutine, including the arguments, must be
declared in the subroutine. The subroutine name is not declared anywhere in the
program. A subroutine is finished off with a RETURN and an END statement.

Example: 2.24
Program Subdem

 Real A,B,C,Sum,Sumsq

 Call Input(+ A,B,C)

Call Calc(A,B,C,Sum,Sumsq)

Call Output(Sum,Sumsq)

End

Subroutine Input(X, Y, Z)

Real X,Y,Z

Print *,’Enter Three Numbers => ‘

Read *,X,Y,Z

Return

End

NOTES

Self - Learning
Material 153

Computer Programming
in FORTRAN/C/Basic

Subroutine Calc(A,B,C, Sum,Sumsq)

Real A,B,C,Sum,Sumsq

Sum = A + B + C

Sumsq = Sum **2

Return

End

Subroutine Output(Sum,Sumsq)

Real Sum, Sumsq

PRINT *,’The sum of the numbers you entered are:
‘,SUM

PRINT *,’And the square of the sum is:’,SUMSQ

RETURN

END

2.13 COMMON AND DATA COMMANDS

Data definition commands are used to create, modify and delete database objects
such as schemas, tables, views, indexes etc. Common data definition commands
are as follows.

Create

The main use of create command is to create a new table in database. It has a
predefined syntax in which we specify the columns and their respective data types.

Syntax:

Create Table <Table Name>

(<Column Name> <Data Type>,

<Column Name> <Data Type>,

<Column Name> <Data Type>,

<Column Name> <Data Type>

);

Example: 2.25

Create a student table with columns student name and roll number.

CREATE TABLE STUDENT

(STUDENT_NAME VARCHAR(30),

ROLL_NUMBER INT

);

Alter

An existing database object can be modified using the alter command. Alter
command can perform following changes to any table.

 Add new columns.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
154 Material

 Add new integrity constraints.

 Modify existing columns.

 Drop integrity constraints.

Syntax:

For adding a new column:

ALTER TABLE <table_name> ADD <column_name>

 For renaming a table:

ALTER TABLE <table_name> RENAME To <new_table_name >

For modifying a column:

ALTER TABLE <table_name> MODIFY <column_name > <data type >

For deleting a column:

ALTER TABLE <table_name> DROP COLUMN <column_name>

Drop

This command can delete an index, table or view. Basically, any component from
a relational database management system can be removed using the Drop
command. Once the object is dropped, it cannot be reused.

The general syntax of drop command is as follows:

Drop Table <table_name>;

Drop Database <database_name>;

Drop Table <index_name>;

Truncate

Using the truncate command, all the records in a database are deleted, but the
database structure is maintained.

Syntax:

Truncate Table <table name>

Comment

This command is used to add comments to the data dictionary.

Syntax:

 Single line comments: use ‘ —‘ before any text.

 Multiline comments: /* comments in between */

Rename

The rename command renames an object in a record.

Syntax:

Rename <old name> to <new name>

NOTES

Self - Learning
Material 155

Computer Programming
in FORTRAN/C/BasicCheck Your Progress

14. Write the use of subscripted variables.

15. Define the term function.

2.14 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Variables that are declared inside a function or block are called logical
variables.

2. The popularity of C is increasing probably due to its many desirable qualities.
It is a robust language whose rich set of built-in functions and operators can
be used of built-in functions and operators can be used to write any complex
program.

3. The task of programming of data is accomplished by executing a sequence
of precise instruction called a program.

4. Identifiers are names that are given to various program elements, such as
variables, functions and arrays. Identifiers consisted of letters and digits, in
any order, except that first character must be a letter.

5. There are four basic types of constants in C. They are integer constants,
floating point constants, character constants and string constants.

6. Variable is an identifier that is used to represent a single data item, i.e., a
numerical quantity or a character constant. The data item must be assigned
to the variable at some point in the program. A given variable can be assigned
different data items at various places within the program.

7. An operator refers to a symbol which indicates an operation to be executed.

8. All valid combinations of variables, constants, operators and functions are
termed as expressions.

9. The read statement allows us to read given values into indicated variables
and the write statement allows us to display results.

10. A robust algorithm is one, which produces reasonable results no matter
what input is supplied.

11. The syntax of the switch statement is given below:

switch (expression)

{

case constant or expression : statements

case constant or expression : statements

..

default : statements }

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
156 Material

12. When the switch keyword is encountered, the associated expression is
evaluated. The program now looks for the case, which matches with the
value of the expression. Execution then starts from the statement
corresponding to the case which matches. Each case has to be
accompanied by integer expressions, which must be unique, as otherwise
the program will not know where to start. There may be occasions when
none of the constant expressions matches the switch expression in which
case the default statements will be executed.

13. The break statement takes the program to the end of the switch statement.
The end is just the closing brace corresponding to switch after the default
printf() statement.

14. Subscripted variables are used to store the values of the same type in an
array. It also helps us to store more values in a single variable name.
Subscripted variables are declared by giving the variable name along with
the subscript.

15. When a program calls a function, the program control is transferred to the
called function. A called function performs a defined task and when its return
statement is executed or when its function-ending closing brace is reached,
it returns the program control back to the main program.

2.15 SUMMARY

 C was an offspring of the ‘Basic Combined Programming Language’ (BCPL)
called B, developed in 1960s at Cambridge University. B language was
modified by Dennis Ritchie and was implemented at Bell Laboratories in
1972.

 The new language was named C. Since it was developed along with the
UNIX operating system, it is strongly associated with UNIX. This operating
system was developed at Bell Laboratories and was coded almost entirely
in C.

 The popularity of C is increasing probably due to its many desirable qualities.
It is a robust language whose rich set of built-in functions and operators can
be used of built-in functions and operators can be used to write any complex
program.

 A programming language is designed to help process certain kinds of data
consisting of numbers, characters and strings and to provide useful output
known as information.

 The task of programming of data is accomplished by executing a sequence
of precise instruction called a program.

 There are four basic types of constants in C i.e. integer constants, floating
point constants, character constants and string constants.

NOTES

Self - Learning
Material 157

Computer Programming
in FORTRAN/C/Basic

 Unsigned integer constants may exceed the magnitude of ordinary integer
constants by approximately a factor of l, though they may not be negative.
An unsigned integer constant can be identified by appending the letter ()
(either upper or lowercase) to the end of the constant.

 Variable is an identifier that is used to represent a single data item, i.e., a
numerical quantity or a character constant. The data item must be assigned
to the variable at some point in the program. A given variable can be assigned
different data items at various places within the program.

 An operator refers to a symbol which indicates an operation to be executed.
Operators are used to manipulate data in a program. The data items that
operators act upon are called operands.

 All valid combinations of variables, constants, operators and functions are
termed as expressions. Expressions always return a result. They can be as
simple as a single value and as complex as a large calculation.

 Input and output operations are very much concerned with interacting with
programmers and so their form is highly dependent on the specific
programming language used, and occasionally, even on the computer system
itself.

 Formatted Input/output functions get the input from the keyboard and give
the output to the VDU as per the specified requirement. The scanf() and
printf() comes under the formatted input/output functions.

 In the if-else syntax, if <statement1> or <statement2> is another if [-else]
statement, then it is said to be a nested if statement.

 Control statements are used in C programs for solving complex problems.

 Depending on the occurrence of a particular situation if and else keywords
are used for branching to different segments of the program. Relational
operators are used in conjunction with branching constructs.

 The syntax of if statement is, if (condition) {statements}. If the
condition is true, then a single statement or group of statements following
if will be executed. If more than one statement is to be executed, then the
statements are grouped within braces. If it is a single statement then curly
braces are not required.

 Each opening curly brace has to have a matching closing curly brace.

 The syntax of if .. else is if (condition true) {statements
s1} else {statements s2}. The statement else is always associated
with an if. If the condition is true, then statements s1 will be executed else
statements s2 will be executed.

 ‘C’ provides three logical operators for combining more than one condition.
These are logical AND represented as &&, logical OR represented as || and
Negation or NOT represented as ! (Exclamation).

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
158 Material

 The syntax for the conditional operator is, (Condition)? statement1:
statement2;. If the condition is true, execute statement1; else execute
statement2.

 The for statement is meant for the easy implementation of iterations unlike
if . The syntax for for loop is, for (exp1; exp2;
exp3){statements;}.

 The while loop is a subset of for loop. The syntax for the while loop is,
while (expression){statements;}.

 switch statements are used for implementation of multiway decision-making.
Every switch statement contains a condition in the form of an expression.

 The break statement is used if we do not want the program to execute
irrelevant statements.

 The return statement can appear anywhere in a function and when it is
encountered a value is returned to the called function.

 Variables that are declared inside a function or block are called logical
variables.

 Logical variables can be used only by statements that are inside that function
or block of code. Logical variables are not known to functions outside their
own function.

 Double precision variable is also a data type which is used to represent the
floating point numbers. It is a 64-bit IEEE 754 double precision floating
point number for the value.

 Subscripted variables are used to store the values of the same type in an
array. It also helps us to store more values in a single variable name.
Subscripted variables are declared by giving the variable name along with
the subscript.

 A function is a group of statements that together perform a task. Every C
program has at least one function, which is main (), and all the most trivial
programs can define additional functions.

 A function declaration tells the compiler about a function name and how to
call the function. The actual body of the function can be defined separately.

 A called function performs a defined task and when its return statement is
executed or when its function-ending closing brace is reached, it returns the
program control back to the main program.

2.16 KEY TERMS

 Tokens: It is the smallest element of a program that is meaningful to the
compiler.

 Constants: It refers to fixed values that do not change during the execution
of a program.

NOTES

Self - Learning
Material 159

Computer Programming
in FORTRAN/C/Basic

 Variables: It is an identifier that is used to represent some specified type of
information within a designated portion of the program.

 Operator: An operator refers to a symbol which indicates an operation to
be executed.

 Expressions: All valid combinations of variables, constants, operators,
and functions are termed as expressions.

 Loop or Iteration: It is used to perform the same operation a number of
times by repeating the same operation with one or more of the values
changed.

 Logical Variables: These are the variables that are declared inside a function
or block.

 Function: It is a group of statements that together perform a task.

2.17 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is C language?

2. Define the term token.

3. Write the use of logical variables.

4. Differentiate between one-dimensional and two dimensional arrays.

5. What are string constants?

6. Define type casting and state its types.

7. State the requirements of a robust program or algorithm.

8. Write all the control structures in C.

9. Define the term do statement.

10. What are the different parts of a function?

Long-Answer Questions

1. Discuss briefly the basic structure of C program with the help of diagram.

2. Describe briefly various elements of the computer language giving appropriate
examples.

3. Explain the constants and its types with the help of appropriate examples.

4. Describe the various types of operators with examples.

5. Discuss the classification of input and output operations in C.

6. Describe briefly control structure in C giving appropriate examples.

7. Briefly explain the logical variables with the help of appropriate program.

8. Describe the double precision variables with the help of appropriate examples.

Computer Programming
in FORTRAN/C/Basic

NOTES

Self - Learning
160 Material

9. Discuss about the subscripted variable and dimension with the help of
example.

10. Briefly explain the function and subroutine with the help of examples.

11. Discuss about the common and data statements giving appropriate examples.

2.18 FURTHER READING

Dey, Pradip and Manas Ghosh. Computer Fundamentals and Programming
in C. New Delhi: Oxford Higher Education, 2006.

Bronson, Gary J. A First Book of ANSI C, 3rd edition. California: Thomson,
Brooks Cole, 2000.

Kanetkar, Yashwant. Understanding Pointers in C. New Delhi: BPB Publication,
2001.

Kanetkar, Yashwant. Let us C. New Delhi: BPB Publication, 1999.

Kernighan, Brian W. and Dennis Ritchie. C Programming Language, 2nd edition.
New Jersey: Prentice Hall, 1988.

Foster, W. D. and L. S. Foster. C by Discovery. Boston: Addison-Wesley, 2005.

Kanetkar, Yashwant. Working with C. New Delhi: BPB Publication, 2003.

Horton, Ivor. Instant C Programming. New Jersey: Wrox Press (John Willey &
Sons), 1995.

Lawlor, Steven C. The Art of Programming Computer Science with ‘C’. New
Jersey: West Publishing Company, 1996.

NOTES

Self - Learning
Material 161

Programming in
ChemistryUNIT 3 PROGRAMMING IN

CHEMISTRY

Structure

3.0 Introduction
3.1 Objectives
3.2 Chemistry and Basic Programming

3.2.1 Elements of Programming
3.3 Determination of Molecular Weight
3.4 Debye-Huckel Limiting Law Theory
3.5 Ionic Mobilities of Ions
3.6 Thermodynamic Parameters
3.7 Van der Waal’s Equation
3.8 Radioactive Decay
3.9 Application of Chemical Kinetics

3.10 Determination of Lattice Energy
3.11 pH Titration
3.12 Program to Obtain the Value of Atomic Mass Unit in MeV
3.13 Determination of RMS, Average and Most Probable Velocities of Gases
3.14 Answers to ‘Check Your Progress’
3.15 Summary
3.16 Key Terms
3.17 Self-Assessment Questions and Exercises
3.18 Further Reading

3.0 INTRODUCTION

Computer programming languages allow us to give instructions to a computer in a
language the computer understands. Just as many human-based languages exist,
there are an array of computer programming languages that programmers can use
to communicate with a computer. Programming has become synonymous with
computers. Millions of programmers are engaged in developing programs all over
the world and billions of lines of program code have been developed and delivered
to be used by a wide cross-section of society. Computer programs, also known
as software systems, have helped in breaking many barriers. Today, an aircraft
may not even take-off without its corresponding software system functioning
properly. Satellite and space shuttle technology, weather forecasting, oil exploration,
e-commerce, e-governance, the Internet, Intranet, e-mail, etc., have been made
easy by successful computer programs. Computer software has helped mankind
to enhance productivity, efficiency and, above all, quality of life.

In this unit, you will learn about the development of programs on
determination of molecular weight, Debye-Huckel law theory, ionic mobilities,
van der Waal’s equation, radioactive decay, application of chemical kinetics, lattice
energy, pH titrations, value of atomic mass unit in MeV and determination of RMS.

Programming in
Chemistry

NOTES

Self - Learning
162 Material

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic programming of chemistry

 Describe the determination of molecular weight

 Explain the Debye-Huckel law theory

 Discuss the about the ionic mobilities

 Define the significance thermodynamic parameters

 Analyze the van der Waal’s equation

 Understand the basic of radioactive decay

 Discuss the various application of chemical kinetics

 Describe the lattice energy

 Explain the pH titrations

 Define the value of atomic mass unit in MeV

 Describe the determination of RMS, average and most probable velocities
of gases

3.2 CHEMISTRY AND BASIC PROGRAMMING

Computer programming languages allow us to give instructions to a computer in a
language the computer understands. Just as many human-based languages exist, there
are an array of computer programming languages that programmers can use to
communicate with a computer. A computer can understand the binary language.
Translating programming language into binary form is known as ‘compiling’. Every
programming language has its own distinct features, though many times there are
similarities between programming languages.

These languages allows computers to quickly and efficiently process large and
complex swaths of information. For example, if a person is given a list of randomized
numbers ranging from one to ten thousand and is asked to place them in ascending
order, chances are that it will take a sizable amount of time and include some errors.
There are dozens of programming languages used in the industry today.

3.2.1 Elements of Programming

Despite notational differences, contemporary computer languages provide almost
programming structures. These include basic control structures and data structures.
The former provide the means to express algorithms, and the latter provide ways
to organize information.

Programs written in procedural languages, the most common kind, are like
recipes, having lists of ingredients and step-by-step instructions for using them.
The three basic control structures in virtually every procedural languages are:

1. Sequence—combine the liquid ingredients, and next add the dry ones.

NOTES

Self - Learning
Material 163

Programming in
Chemistry

2. Conditional—if the tomatoes are fresh then simmer them, but if canned,
skip this step.

3. Iterative—beat the egg whites until they form soft peaks.

Sequence is the default control structure in which the instructions are executed
one after another. They might, for example, carry out a series of arithmetic operations,
assigning results to variables, to find the roots of a quadratic
equation ax2 + bx + c = 0. The conditional IF-THEN or IF-THEN-ELSE control
structure allows a program to follow alternative paths of execution. Iteration, or
looping, gives computers much of their power. They can repeat a sequence of
steps as often as necessary, and appropriate repetitions of quite simple steps can
solve complex problems.

These control structures can be combined. A sequence may contain several
loops; a loop may contain a loop nested within it, or the two branches of a
conditional may each contain sequences with loops and more conditionals. In the
‘pseudocode’ used in this article, ‘*’ indicates multiplication and ‘’ is used to
assign values to variables. The following programming fragment employs the IF-
THEN structure for finding one root of the quadratic equation, using the quadratic
formula:

.

The quadratic formula assumes that a is nonzero and that the discriminant
(the portion within the square root sign) is not negative (in order to obtain a real
number root). Conditionals check these assumptions as given below:

 IF a = 0 THEN

 ROOT –c/b

 ELSE

 DISCRIMINANT b*b – 4*a*c

 IF DISCRIMINANT 0 THEN

 ROOT (–b + SQUARE_ROOT(DISCRIMINANT))/2*a

 ENDIF

 ENDIF

The SQUARE_ROOT function used in the above fragment is an example
of a subprogram (also called a procedure, subroutine, or function). A subprogram
is like a sauce recipe given once and used as part of many other recipes. Commonly
used subprograms are generally available in the library provided with a language.
Subprograms may call other subprograms in their definitions, as shown by the
following routine (where ABS is the absolute-value function). SQUARE_ROOT
is implemented using a WHILE (indefinite) loop that produces a good
approximation for the square root of real numbers unless x is very small or very
large. A subprogram is written by declaring its name, the type of input data, and
the output:

 FUNCTION SQUARE_ROOT(REAL x) RETURNS REAL

Programming in
Chemistry

NOTES

Self - Learning
164 Material

 ROOT 1.0

 WHILE ABS(ROOT*ROOT – x) 0.000001

 AND WHILE ROOT (x/ROOT + ROOT)/2

 RETURN ROOT

Subprograms can break a problem into smaller, more tractable subproblems.
Sometimes a problem may be solved by reducing it to a subproblem that is a
smaller version of the original. In that case the routine is known as a recursive
subprogram because it solves the problem by repeatedly calling itself. For example,
the factorial function in mathematics (n! = n.(n–1)...3.2.1—i.e., the product of the
first n integers), can be programmed as a recursive routine:

 FUNCTION FACTORIAL(INTEGER n) RETURNS INTEGER

 IF n = 0 THEN RETURN 1

 ELSE RETURN n * FACTORIAL(n–1)

The advantage of recursion is that it is often a simple restatement of a precise
definition, one that avoids the bookkeeping details of an iterative solution.

At the machine-language level, loops and conditionals are implemented with
branch instructions that say ‘jump to’ a new point in the program. The ‘goto’
statement in higher-level languages expresses the same operation but is rarely
used because it makes it difficult for humans to follow the ‘flow’ of a program.
Some languages, such as Java and Ada, do not allow it. Examples have been
chosen from organic, inorganic and physical chemistry. Some programs presented
in the chapter are very simple and can be solved using a desk calculator. Still they
have been included to illustrate the principles and control statements of the BASIC
language. Each program is discussed under three sections and they are as follows:

Section 1: Explanations for the chemical equations, formulae and symbols
used in the program.

Section 2: The Algorithm of the program.

Section 3: The listing of the computer program along with the output data.

In addition, flow-charts have been included for selected programs.

3.3 DETERMINATION OF MOLECULAR
WEIGHT

THE INPUT STATEMENT

Calculation of the Molecular Weights of Organic Compounds

The first program involves the calculation of the molecular weights of cholesterol
and indigo using the atomic weight data on carbon, hydrogen, oxygen and nitrogen.

Explanations for Symbols and Formulas used in the Program

NAME.COMP.1$ and NAME.COMP.2$ represent the names of the two organic
compounds. A. WT.HYD, A.WT.OXY and A.WT.NIT represent the atomic
weights of carbon, hydrogen, oxygen and nitrogen. MOL.WT.1 is the numeric

NOTES

Self - Learning
Material 165

Programming in
Chemistry

variable representing the molecular weight cholesterol.MOL.WT.2 represents the
molecular weight of indigo. MOL.WT.1 is given by the following basic statement:

MOL.WT.1= 27*A.WT.CAR + 46*A.WT.HYD + A.WT. OXY

The basic statement for MOL.WT.2 is:

MOL.WT.2 = 16*A.WT.CAR + 10*A.WT.HYD + 2.A.WT.NIT +
2*A.WT.OXY

Algorithm

Step 1: Read the names of the organic compounds NAME.COMP.1$ and
NAME.COMP.2$ Read the atomic weights of the elements C, H, O and N.

Step 2:Calculate the molecular weight of the compounds using the formulae for
the molecular weights.

Step 3:Print the titles, name of compound and molecular weight. Print the names
of the compounds and the corresponding molecular weights.

Step 4:Stop.

Flow-Chart

Program Listing and Output

10 REM MOLECULAR WEIGHTS OF CHOLESTEROL AND

20 REM INDIGO

30 REM SIMPLE PROGRAMS USING INPUT STATEMENT

40 REM CALCULATION OF MOLECULAR WEIGHT OF ORGANIC
COMPOUND

50 INPUT “Give Names of the Organic Compounds 1 & 2”,
NAME.COMP.1$,NAME.COMP.2$

60 INPUT “Give the atomic wts of C, H, O, N”, A.WT.CAR, A WT.HYD,
A.WT.OXY, A.WT.NIT

70 PRINT

80 MOL.WT.1= 27*A.WT.CAR + 46*A.WT.HYD + A.WT. OXY

90 MOL.WT.2 = 16*A.WT.CAR + 10*A.WT.HYD + 2.A.WT.NIT +
2*A.WT.OXY

Programming in
Chemistry

NOTES

Self - Learning
166 Material

100 PRINT “Name of compound”, “Molecular Weight”

110 PRINT

120 PRINT NAME.COMP.1$,,MOL.WT.1

130 PRINT NAME.COMP.2$,,MOL.WT.2

140 STOP

150 END

Output:

Name of Compound Molecular Weight

CHOLESTEROL 386.665

INDIGO 262.272

3.4 DEBYE-HUCKEL LIMITING LAW THEORY

The Read Statement and Library Functions

Calculations of mean activity coefficient of an electrolyte.

Explanations for Formulas and Symbols

The program calculates the activity coefficient of CuSO4 using the Debye-Huckel
limiting law as given below:

Log10 f ± = -0.509 |z
1
z

2
| (I) ½

The antilog of log
10

f± has to be calculated to obtain f±. Above equation is
alternatively written I the natural logarithm form as shown below:

 In f ± = -0.509*2.303|z
1
z

2
| (I) ½

The relevant BASIC statements are:

F1 = -.509*P*SQR (IONIC.STR)

Where

P=ABS(CHARGE.1*CHARGE.2)

IONIC.STR = D/2

and

IONIC.STR = D/2

D is given by

D = CONC.1*CHARGE.1*CHARGE.1 + CONC.2*CHARGE.2*
CHARGE.2

F2 = F1*2.303

F2 corresponds to log
e
f±

The variables used in chemical equations and the corresponding basic
variables are given as follows:

NOTES

Self - Learning
Material 167

Programming in
Chemistry

Variables used in equations Basica variables

z
1
z

2
CHARGE.1,CHARGE.2

C
1
C

2
CONC.1, CONC.2

C
1
z

1
D

I IONIC.STR

|z
1
z

2
| (ABS(CHARGE.1*CHARGE.2)) = P

Activty coefficient, ACT.COEF, is evaluated by using the statement 110
ACT.COEF = EXP (F2)

Algorithm

Step1: Read the name of the electrolyte, NAME.ELECT$ and the values of
CHARGE.1,CHARGE.2, CONC.1 AND CONC.2

Step2: Calculate P, D and IONIC.STR using the following statements:

P = ABS(CHARGE.1*CHARGE.2)

D = CONC.1 *CHARGE.1*CHARGE.1 + CONC.2*CHARGE.2*CHARGE.2

IONIC.STR = D/2

Step 3:Calculate F1 and F2 using the statements

F1 = -.509*SQR(IONIC.STR)

F2=F1*2.303

Step 4: Calculate the activity coefficient using the formula

ACT.COEF = EXP (F2)

Step 5: Print the string constant, “Activity coefficient of Copper Sulphate=’ and
the value of ACT.COEF

Step 6: Stop.

Program Listing and Output

10 REM PROGRAM ILLUSTRARTING THE USE OF READ
STATEMENT AND BUILT IN FUNCTION

20 REM IN FUNCTION

30 REM CALCULATION OF MEAN ACTIVITY COEFFICENT OF
STRONG

35 REM ELECTROLYTE

40 READ NAMEELECT$

50 READ CHARGE.1,CHARGE.2, CONC.1,CONC.2

60 P=ABS (CHARGE.1*CHARGE.2)

70 D= CONC.1*CHARGE.1*CHARGE.1 + CONC.2*CHARGE.2*
CHARGE.2

80 IONIC.STR = D/2

90 F1 = -.509*P*SQR (IONIC.STR)

100 F2 = F1.2.303

110 ACT.COEF = EXP(F2)

Programming in
Chemistry

NOTES

Self - Learning
168 Material

120 PRINT “Activity coefficient of copper sulphate=”,ACT.COEF

130 DATA COPPER SULPHATE

140 DATA 2.0, -2.0, 0.01, 0.01

150 STOP

160 END

Output:

Activity coefficient of copper sulphate = .3914954

3.5 IONIC MOBILITIES OF IONS

Using the If-then Statement for Doing Repetitive Calculations

Determination of ionic mobilities of ions from ion conductance data.

Formulas and Symbols Used in the Program:

The ionic mobility of an ion is related to the ion conductance by the formula,

1
 = ?

1/F

In this program, the ionic mobilities of 5 ions are calculated using
conductance data. NAME.ION$ represents the name of the ion. EQ1.COND is

the numeric variable representing .

Algorithm

Step 1: Initialize the value of the numeric variable I as zero.

Step 2:Read NAME.ION$ and EQI.COND

Step 3:Assign to FARADAY to the value, 96484.6. Calculate MOBILITY using
the statement

MOBILITY = EQI.COND/FARADAY

Print the name of the ion and the mobility in cm/sec/unit postgrad. Increase
I by 1, if it is less than 5 go to statement number 50 and read the name of next ion
and its ion conductance. Repeat the calculation of the mobility of the ion. Print the
name of the ion and the mobility. When I equals 5 stop calculations.

10 REM PROGRAM ILLUSTRATING THE USE OF IF
STATEMENT

20 REM TO DO REPETITIVE CALCULATIONS.
DETERMINATION OF

30 REM IONIC MOBILITIES FROM ION CONDUCTANCE
VALUE

40 I = 0

50 READ NAME.ION$.EQI.COND

60 FARADAY = 96484.6

70 MOBILITY = EQ1.COND / FARADAY

80 PRINT “Name of the Ion = “; name.ion$

NOTES

Self - Learning
Material 169

Programming in
Chemistry

90 pint “ionic Mobility = “;MOBILITY;”CM/SEC/UNIT POTGRAD.”

100 PRINT

110 I = + 1

120 IF 1<5 THEN 50

130 DATA HYDROGEN ION, 349.82

140 DATA POTASSIUM ION, 72.12

150 DATA AMMONIUM ION, 73.40

160 DATA LITHIUM ION, 38.69

170 DATA HYDROXYL ION, 198.00

180 STOP

190 END

Output:

Name of the ion = HYDROGEN ION

Ionic Mobility = 3.625656E – 03 cm/sec/unit potgrad

Name of the Ion = POTASSIUMION

Ionic Mobility = 7.578412E – 04 cm/sec/unit potgrad

Name of the Ion = AMMONIUM ION

Ionic Mobility = 7.607432E – 04 cm/sec/unit potgrad

Name of the Ion = LITHIUM ION

Ionic Mobility = 4.009966E – 04 cm/sec/unit potgrad

Name of the Ion = HYDROXYL ION

Ionic Mobility = 2.052141E – 03 cm/sec/unit potgrad

3.6 THERMODYNAMIC PARAMETERS

The if-then-else Statement

Calculation of thermodynamic parameters for adiabatic or isothermal reversible
expansion of one mole of an ideal monoatomic gas. This program is used to calculate
the E. W and S for the adiabatic or isothermal reversible expansion of
monatomic ideal gas.

Formulas and Symbols used in the Program

The formulas for E, W and S for the isothermal reversible expansion of an ideal
monatomic gas are:

∆𝐸 = 0

𝑊 = 𝑅𝑇𝑖𝑛 ൬
𝑉2

𝑉1
൰ 𝑜𝑟 𝑅𝑇𝑖𝑛(

𝑃1

𝑃2
)

∆𝑆 = 𝑅𝑖𝑛 ൬
𝑉2

𝑉1
൰ 𝑜𝑟 𝑅𝑇𝑖𝑛(

𝑃1

𝑃2
)

Programming in
Chemistry

NOTES

Self - Learning
170 Material

If the expansion is carried out adiabatically and reversibly, then

 ∆𝐸, 𝑊 𝑎𝑛𝑑 ∆𝑆 are given by,,

∆𝐸 = 𝐶𝑣(𝑇2 − 𝑇1)

𝑊 = − ∆𝐸

∆𝑆 = 0
N$ corresponds to the string “ISOTHERMAL EXPANSION” OR

“ADIABATIC EXPANSION”. The numeric variables T,P1 and P2 represent
T,P1and P2 and P2 E W S and are represented by the variables, ECH, W
and SCH. The numeric variables, T1 and T2 CV represent T1, T2 and Cv. R
corresponds to the gas constant in joules/deg/mole.

Algorithm

Step 1:Read N$, the type of expansion. If N$ = “ISOTHERMAL
EXPANSION” then go to statement number 70 and read T,P1 and P2. Calculate
ECH, W and SCH using the statements.

ECH = 0

W = R * T * LOG(P1/P2)

SCH = W/T

R is assigned the value 8.314

Step 2:Print ECH, W and SCH. If N$ = “ADIABATIC EXPANSION”, then
go to statement number 120 and read T1, T2 and CV. Calculate ECH, W and
SCH using the statement.

ECH = CV*(T2 – T1)

W = - ECH

SCH = 0

Print ECH, W and SCH

Step 3: Stop

Program Listing and Output

10 REM TO DETERMINE THE THERMODYNAMIC
PARAMETERS

20 REM FOR THE REVIERSIBLE ADIABATIC OR

30 REM ISOTHERMAL EXPANSION OF MONATOMIC IDEAL
GAS

40 REM ILLUSTRATION OF THE USE OF IF-THEN-ELSE
STATEMENT

50 READ N$

60 IF N$ = “ISOTHERMAL EXPANSION” THEN 70 ELSE 120

70 READ T,P1,P2

NOTES

Self - Learning
Material 171

Programming in
Chemistry

80 R = 8.314

90 ECH = 0

95 W = R*T*LOG(P1/P2)

100 SCH = W/T

110 PRINT ECH,W,SCH

115 GO TO 190

120 READ T1,T2,CV

130 ECH = CV*(T2 – T1)

140 W = - ECH

150 SCH = 0

160 PRINT ECH, W, SCH

170 DATA ADIABATIC EXPANSION

180 DATA 300,101.2M12.47

190 END

Output 1 (for adiabatic expansion):

-2479.2036 2479.2036 0.0

Output 2 (for isothermal expansion):

0 5743.108 19.14369

3.7 VAN DER WAAL’S EQUATION

Given integers V, T, and n representing the volume, temperature and the number
of moles of a real gas, the task is to calculate the pressure P of the gas using Van
der Waal’s Equation for real gas.

Van der Waal’s Equation for Real Gas:

(P + a * n2 / V2) * (V – n * b) = n R T)

where, average attraction between particles (a) = 1.360,

volume excluded by a mole of particles (b) = 0.03186,

Universal Gas constant (R) = 8.314

Input: V = 5, T = 275, n = 6

Output: 2847.64

Input: V = 7, T = 300, n = 10

Output: 3725.43

Approach: To solve the problem, simply calculate the pressure P of
real gas by using the equation P = ((n * R * T) / (V — n * b)) — (a* n * n)
/ (V * V) and print the result.

Programming in
Chemistry

NOTES

Self - Learning
172 Material

Implementation in C++

#include <iostream>

#include <string>

#include <cmath>

using namespace std;

// Function to calculate the pressure of a

// real gas using Van der Wall’s equation

void pressure_using_vanderwall(double
V, double T, double n)

{

 double a = 1.382;

 double b = 0.031;

 double R = 8.314;

 // Calculating pressure

 double P = ((n * R * T) / (V - n * b))

 - (a * n * n) / (V * V);

 // Print the obtained result

 cout << P << endl;

}

 // Driver code

int main()

{

 double V = 7, T = 300, n = 10;

 pressure_using_vanderwall(V, T, n);

 return 0;

}

3.8 RADIOACTIVE DECAY

A radioactive nucleus decays according to first order rate equation. The radioactive
decay constant λ, is related to the time t

1,
 the initial concentration a

1
 and the

concentration of reactant remaining at time t . The relation is given below:

λ = (1/t) in (a/a(a-x))

The half-life is given by the equation as:

T
1
/2 = 0.693/λ

The average life is obtained from t
1
/
2
using the relation.

Average life = 1.44t
1/2

NOTES

Self - Learning
Material 173

Programming in
Chemistry

The string variable NUCLES$ represents the name of nucleus. The numeric
variables TIME, INCON, RECON AND S correspond to t, a, (a-x) and λ

HL

refers to t
1
/
2
and AVILFE corresponds to average life. The listing of the program

and output are presented below.

10 REM APPLICATION IN NIORGANIC CHEMISTRY

20 REM PROGRAM TO CALCULATE THE HALF LIFE AND
AVERAGE LIFE

25 REM OF AF RADIOACTIVE NUCLEUS

30 READ N

40 FOR 1 = 1 TO N

50 READ NUCLEUS$

60 READ TIME, INCON,RECON

70 K = LOG(INCON/RECON)

80 S = K/TIME

90 HL = .693/S

100 AVLIFE = 1.44 * HL

110 PRINT “NAME OF THE NUCLESUS IS “;NUCLEUS$

120 PRINT “HALF LIFE=”;HL;”YEARS”

130 PRINT “AVERAGE LIFE = “;AVLIFE;”YEARS”

140 NEXT 1

150 DATA1

160 DATA RADIUM

170 DATA 3180,100,25

180 STOP

190 END

Output:

NAME OF THE NUCLEUS IS RADIUM

HALF LIFE = 1589.663 YEARS

AVERAGE LIFE = 2289.114 YEARS

3.9 APPLICATION OF CHEMICAL KINETICS

In this section, we shall formulate programs to determine; (i) the rate constant of a
first order reaction, (ii) the rate constant of a second order reaction using collision
theory; (iii) the thermodynamic parameters using ARRT theory and (iv) The rate
constant at zero ionic strength using rates for reactions in solution with different
ionic strengths.

Programming in
Chemistry

NOTES

Self - Learning
174 Material

Rate Constant of a First Order Reaction

The decomposition of azomethane (CH
2
N

2
CH

3
) to ethane and N

2
 is a first order

reaction. The rate constant can be obtained by using the values of partial pressure
P, of azomethane remaining at time t. The rate constants is evaluated from the
following equation:

k
1
 = (1/t)In (P/P

0
)

Where P and P
0
 are the partial pressures at time t

0
 and t k

1
 values for

different P values are obtained and finally the average value is determined. The
t
1/2

 is also calculated using the formula,

t
1/2

=0.693/k
av

Rate Constant of a Second Order Reaction using Collision Theory

The decomposition of NO
2
 to NO and O

2
is a second order reaction. The rate

constant of this reaction can be obtained using collision theory.

The pre-exponential term in the Arrhenius equation (frequency factor), A, is
raised to the collision cross section, σ, by the formula,

A = σPN
0
 (8kT/+μ)172

Where P is the probability factor, k is Boltzmann’s constant, I is the absolute
temperature, equals 3.14159 and μ is the reduced mass given by μ =
M

NO2
/(2N

0
)

The rate constant is given by the formula,

k
2
 = A exp(-E/RT)

Where, E is the energy of activation and R is the gas constant.

Thermodynamic Parameters from Absolute Reaction Rate Theory

According to the absolute reaction rate theory, the enthalpy change H for a
second order reaction given by,

H = E
a
 – 2RT

The entropy change is expressed as,

S = R ln(hA/kT)

Where h is planck’s constant, k is Boltzmann’s constant is absolute
temperature and A is pre exponential term in the Arrhenius equation

The free energy change is given by the formula,

G = H - TS

Determination of Rate Constant at Zero Ionic Strength from the Study
Reaction Rates of Different Ionic Strengths.

According to the Bronsted-Bjerrum equation, the rate constant k is related to the
ionic strength of the medium, I by the formula,

log (k/k
0
) = 1.02z

a
z

b
(I)1/2

log (k
0
)can be obtained from this equation as

logk
0
=logk-1.02z

a
(I)1/2

NOTES

Self - Learning
Material 175

Programming in
Chemistry

1nk
0
 is given by the equation,

1nk
0
=2.303(logk-1.02z

a
,z

b
(I)1/2)

k
0
 is determined by taking the exponential of the expression for 1nk

0
, z

a
 and z

b
are

the charges of the ions involved in the rate determining step and k
0
 is the rate

constant at zero ionic strength. k
0
 is determined for each and the average of k

0
 is

reported.

The variables used in the calculations and the corresponding FORTRAN
variable names are given below:

Variables used in the calculation FORTRAN variable names

number of computations N

name of program TITLE

K
1
, P

0
, P, t, k

1
, k

2
, g

1/2
BC, PIN, PT, TIME, Y1; RATEX, HALFL

σ, p, N
0
, .”,

μ SIGMA, PR, AN, PI, YY1*Z1

E, R, A, k
2

AGE,R,FRE,RATEC

AH, E
2
, b, A, AS, AG, T ENTHA, ACE, H, FRE,ENCH,FREEN,T

Number of times k
0
is Computed M2

z
z,

z
b,

k
2
, I, k

0
, k

0
,(av) ZA, ZB, RT1, AIST, ZER, ZERATE

The program uses the computed GO TO statement involving the integer
variable CODE. If CODE=1 then the first order rate constant is evaluated. If
CODE=2, then studies of collision theory and ARRT theory are made. If CODE=3,
the study of rates of reactions in different ionic strengths is made.

The listing of the program along with input and output data are presented below:

C APPLICATIONS IN CHEMICAL KINETICS.

C DETERMINATION OF RATE CONSTANT OF A FIRST ORDER
REACTON

C DETERMINATION OF RATE CONSTANT OF A SECOND ORDER

C REACTION USING COLLISION THEORY

C DETERMINATION OF THE THERMODYNAMIC PARAMETERS
USING

C ABSOLUTE REACTION RATE THEORY

C STUDY OF RATE CONSTANT VARIATION WITH IONIC
STRENGTH

C CODE = 1 INDICATES THE STUDY OF FIRST ORDER REACTIONS

C CODE = 2 INDICATES THE STUDY USING COLLISION THEORY
AND

C STUDY OF THEIR PARAMETERS BY ARRT THEORY.

C CODE = 3 INDICATES THE STUDY OF RATES, VARIATION WITH
IONIC STRENGTH

CHARACTER * 20 TITLE

INTEGER CODE

Programming in
Chemistry

NOTES

Self - Learning
176 Material

READ (1,10)N

10 FORMAT (I2)

DO 150 I = 1,N

READ (1,15) CODE

15 FORMAT (I2)

READ(1,20) TITLE

20 FORMAT(A)

BC = 1.38E – 16

GO TO (30,50,90), CODE

30 CONTINUE

C STUDY OF RATE CONSTANT OF FIRST ORDER REACTIONS

WRITE(2, 31)

31 FORMAT (1X,STUDY OF RATE CONSTANT OF A FIRST ORDER
REACTIONS, I)

SUM = 0.0

READ(1,29)N

29 FORMAT(E8,2)

READ(1,32)M1

32 FORMAT(I2)

DO 40 JJ = 1, M1

READ(1,33)PT, TIME

33 FORMAT(3E8,2)

X1=PT/PIN

Y1 = - ALOG(X1)/TIME

SUM = SUM + Y1

40 CONTINUE

RATEC = SUM/FLOAT(M1)

HALFL – 0.693/RATEC

WRITE(2,35)

35 FORMAT(1X, NAME OF SYSTEM, 10X, RATE CONST.’10X,
HALFLIFE’./)

WRITE (2,37)TITLE,RATEC,HALFL

37 FORMAT(1X,A,E10.4,’PERSEC’,5X,E10.4, ‘SECS’,/)

WRITE(2,38)

38. FORMAT (1X, ‘___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___’,/)

GO TO 150

NOTES

Self - Learning
Material 177

Programming in
Chemistry

50 CONTINUE

C STUDY OF 2ND ORDER REACTION BY COLLISION THEORY.

WRITE(2,51)

51 FORMAT(1X,’STUDY OF 32ND ORDER KINETICS BY
COLL.THEORY’,/)

READ(1,52)PR, SIGMA,AM,T,ACE

52 FORMAT(E8.2)

YY1 = AM/2.

AN = 6.0225E23

R = 8.314E – 3

PI = 3.14159

Z1 = 1./AN

Z2 = 8. * BC* T/(PI*YY1*Z1)

Z3 = SORT(Z2)

FRE = PR* SIGMA* AN* Z3(1000.0

ZZ1 = - ACE/(R* T)

RATEC = FRE* EXP(ZZ1)

WRITE(2,53)

53 FORMAT (1X,’NAME OF REACTION’,5X,’FREQ.FACTOR’,8X,’
RATECONS.’,/)

WRITE(2,54)TITLE,FRE.,RATEC

54 FORMAT(1X,A,2X,E10.4,5X,E10.4,’LIT/MOL/SEC’,/)

WRITE(2,55)

55 FORMAT (1X, ‘___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___’,/)

C STUDY OF THER.PARAMETERS BY ARRT THEORY

WRITE(2,71)

71 FORMAT(1X,’STUDY OF THER.PARAMETERS DEL.S,DEL.H.DEL.
G BY ARRT,/)

H = 6.6256E – 27

TT3 = H* FRE/(BC* T)

TT4 = ALOG(TT3)

ENCH = R* TT4* 1000.0

ENTHA = ACE – 2* R* T

FREEN = ENTHA – (T* ENCH/1000.0)

WRITE(2,74)TITLE

74 FORMAT(1X, ‘THE THER.PARAMETERS FOR ‘A’, ARE’/)

WRITE(2,73)

Programming in
Chemistry

NOTES

Self - Learning
178 Material

73 FORMAT(1X,’FRE.FACTOR’,8X,’DELTA-S’,10X,DELTA-
H’,9X,DECTAF’,/)

WRITE(2,75)

75 FORMAT(1X,’(L/M/SEC)’8X.’(J/DEG/M)’, 10X,’(KJ/M),9X,’(KJ/M)’/
)

WRITE(2,76)FRE,ENCH,ENTHA,FREEN

76 FORMAT(1X,E10.4,6X,E10.4,6X,E10.4,6X,E10.4,/)

WRITE(2,77)

77 FORMAT (1X, ‘___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___’,/)

GO TO 150

90 CONTINUE

C STUDY OF RATE CONSTANT VARIATION WITH IONIC
STRENGTH

WRITE (2,91)

91 FORMAT (1X, STUDY OF RATE CONS.VARIATION WITH IONIC
STR.’,/)

READ(1,92)M2

92 FORMAT(I2)

READ(1,99)ZA,ZB

99 FORMAT(F4,1)

TX1=1.02* ZA * ZB

ZER = 0.0

DO 100 KK = 1,M2

READ(1,93) RTI,AIST

93 FORMAT(F7.4)

TK1 = ALOG10(RTI)

AI1 = SORT(AIST)

TK2 = TX1* AI1

TK3 = TK1 – TK2

TK4 = 2.303* TK3

TK5 = EXP(TK4)

ZER = ZER + TK5

100 CONTINUE

ZERATE = ZER/FLOAT(M2)

WRITE(2,95)TITLE,ZERATE

95 FORMAT(1X,’RATE CONS.AT ZERO ION.STR.FOR’A,’ IS’, E10.4,/
)

150 CONTINUE

NOTES

Self - Learning
Material 179

Programming in
Chemistry

STOP

END

03

01

AZOMETHANE

8.20E - 02

04

5.72E – 02

1.00E + 03

3.99E – 02

2.00E + 03

2.78E – 02

3.00E + 03

1.94E – 02

4.00E + 03

02

2NO2 – 2NO + O2

0.05E + 00

0.10E – 14

4.60E + 01

5.00E – 02

03

BIMOLECULAR REACTION

05

- 1.0

- 2.0

01.0500

00.0025

01.1200

00.0037

01.1600

00.0045

01.1800

00.0065

01.2600

00.0085

Programming in
Chemistry

NOTES

Self - Learning
180 Material

Output data:

STUDY OF RATE CONSTANT OF A FIRST ORDER REACTION

NAME OF SYSTEM RATE CONST. HALFLIFE

AZOMETHANE 3603E – 03PERSEC 1923E + 04SECS

STUDY OF 2ND ORDER KINETICS BY COLL. THEORY

NAME OF REACTION FREQ. FACTOR RATECONS.

2NO2 = 2NO + 02 0.2043E + 10 .5172E- 02 LIT/
MOL./SEC

STUDY OF THER. PARAMETERS DELS, DELH, DELG BY ARRT

THE THER. PARAMETERS FOR 2NO2 = 2NO + 02 ARE

FRE.FACTOR DELTA-S DELTA-H
DELTAF

(J/DEG/M) (KJ/M) (KJ/M)

(L/M/SEC)

0.204E + 10 - 0.7097E + 02 .102E + 03 .1382e + 03

STUDY OF RATE CONS.VARIATION WITH IONIC STR.

RATE CONS. AT ZERO ION STR. FOR BIMOLECULAR REACTION IS .8287E + 00.

3.10 DETERMINATION OF LATTICE ENERGY

The energy of the crystal lattice of an ionic compound is the energy released when
ions come together from infinite separation to form a crystal.

M+ (g) + X- (g) – MX
(s)

This energy can be calculated using the Born-Lande equation which is given
below:

U
0
 = (N

0
AZ + Z- e2) (1/r

0
) (1-(1/n))

Constant, Z + and Z- are the charges of positive and negative ions and e is
the charge of electron in esu. The Born exponent is represented by n and r

0
 is the

inter-nuclear distance in the crystal. For NaCl A, Z + ,Z- r
0
and n assume the values,

1.74756, +1, 2.81A and 8. The Born exponent is the average of the values for Na
+.(7) and C1 – (9). The variables used in the chemical calculations are listed along
with the BASIC variables below.

Variables used in Basic variables

Chemical calculations

N0 AN

A MACON

Z+ Z- Z1,Z2

Name of crystal NAMECRYS$

e CH

Conversion factor from erg to kil. Joule CF

U
0
,r

0
, n LAT, DIS ,BEX

10 REM TO CALUCLATE LATTICE ENERGY OF A CRYSTAL
USING BORN-LAND EQUATION

NOTES

Self - Learning
Material 181

Programming in
Chemistry

20 READ Z1, Z2 BEX, DIS , MACON

30 READ NAMECRYS$

40 AN = 6.0225E + 23

50 CH = 4.8 E – 10

55 CF = 1E – 10

60 P = Z1*Z2

70 X1 = AN * MACON*P

80 Y = 1/BEX

90 X2 = CH*CH*(1-Y)

100 LAT = X1 * (X2/DIS) *CE

110 PRINT “THE LATTICE ENERGY OF “, NAMECRYS$,” IS
“;LAT;”KJ/MOLE”

120 DATA 1 – 1,8,2381E – 8,1.74756

130 DATA NACL

140 STOP

150 END

Output:

THE LATTICE ENERGY OF NACL IS – 755.0802 KJ/MOLE

3.11 PH TITRATION

Inorganic chemist make use of different types of indicators to carry out acid base
titrations. The following program lists the various indicators along with their colors
in acidic and basic media. The pH range the pKa of the many string variables and
the use of TAB() function the numeric variables N and PK refer to the number of
indicators and pKa values for indicators the string variables, IND$, COLACID$
AND PH$ refer to the name of indicator color in acid, color in base and the pH
range for specific indicator. The listing of the program along with the output is
given below.

10 REM INDICATOR AND THEIR COLOUR IN ACIDIC AND BASIC
MEDIA

20 INPUT “GIVE NUMBER OF INDICATORS”;N

30 FOR I=1 TO N

40 INPUT “GIVE NAME OF INDICATORS”;IND$

50 INPUT “COLOR IN ACID MEDIUM”;COLACID$

60 INPUT “GIVE COLOR IN BASIC MEDIUM’’;COLDA$

70 INPUT “GIVE PDA OF INDICATORS”;RK

80 INPUT “PH RANGE”;PH$

90 PRINT TABE(1) ;”NAME “;TAB(20);”COLOUR IN
ACID”;TAB(40);”COLOUR IN BASE”

Programming in
Chemistry

NOTES

Self - Learning
182 Material

100 PRINT TAB (60);”PKA”;TAB (70) PH RANGE”

105 PRINT

110 PRINT TAB(1) IND$;TAB(23);COLACI$;”TAB(43);
COLDA$;TAB(60);PK;TAB(73)’PH$

120 NEXT |

130 STOP

140 END

Output:

3.12 PROGRAM TO OBTAIN THE VALUE OF
ATOMIC MASS UNIT IN MEV

The first part of this program computes the value of one amu in Mev. The value of
one amu is obtained using the Einstein mass energy relation, E = mc2 substituting
the values of proton mass for m and velocity of light for c we get

E = 1.66 x 10-24 x (2.99795 x 1010)2

 = 1.491958 x 10-3ergs.

Using the conversion factor, 1MeV= 1.602 x 10-6 ergs, we can obtain the
value of 1 amu as 932.4744 MeV.

The second part of the program calculates the binding energy of a neutron
or a nucleus and using the IF.THEN. ELSE statements. if the string variable N$ is
neutron, the binding energy of neutron is obtained. The binding energy of neutron
is obtained from the reaction.

6
3
Li + 1

0
n – 7

3
L1

Using the masses of 6Li , 1n and 7L1 the mass defect is calculated. The
binding energy is obtained by multiplying the mass defect by 931.5, if the string
variable N$ is a nucleus then the binding energy is calculated for the nucleus. For
example, let us consider the calculation of binding energy of Argon nucleus. This
nucleus has 18 protons, 22 neutrons and 18 electrons. The mass defect is calculated
using the following equation.

NOTES

Self - Learning
Material 183

Programming in
Chemistry

Mass defect = (22 x m
n
 + 18 x m

n
 + 18 x m

e
) – actual mass of Argon.

Binding energy = mass defect x AMU.

The variables used in the chemical calculations and the corresponding BASIC
variables are listed below.

Variables used in Basic variables

Chemical calculations

c C

m
p

MP, MASP

Conversion factor CF

AMU AMU

M
e
 M

n
MEL, MASN

Number of protons NUP

Number of electrons NUE

Number of neutrons NUN

Mass defect MDE

Binding energy BE

The listing of the program and the output and the output are given below.

10 REM CALCULATION OF BINDING ENERGY OF A
NUCLESUSOF PARTICLE

20 REDAD N$

30 C = 2.99795E + 10

40 MP = 1.66E – 24

50 CF = .0000016

60 AMU = C *C* MP/CF

70 PRINT “ONE ATOMIC MASS UNIT IS =”;AMU;”MEV”

80 IF N$ =”NEUTRON” THEN 90 ELSE 140

90 READ MLI, MIL2

100 MDE = MIL2-(MLI + MN)

110 BE = MDE * AMU

120 PRINT “BINDING ENERGY OF NEUTRON IS “;BE;”MEV”

130 GOTO 230

140 READ NUP, NUN, NUE, ACM

150 READ MEL, MASP, MASN

160 MCAL = NUP * MASP + NUN* MASN + NUE * MEL

170 MDE = MCAL – ACM

180 BE = MDE*AMU

190 PRINT “BINDING ENERGY OF “;N$;”IS = “;BE;”MEV”

200 DATA 18.22,18.39.96238

220 DATA 0.0005986,1.007277,1.008665

Programming in
Chemistry

NOTES

Self - Learning
184 Material

230 STOP

240 END

Output:

ONE ATOMIC MASS UNIT IS = 932.4744 MEV

BINDING ENERGY OF NEUTRON IS = 345.0288 MEV

3.13 DETERMINATION OF RMS, AVERAGE
AND MOST PROBABLE VELOCITIES OF
GASES

Formulas and Symbols used in the Program

The root mean square velocity of a gas is given by the formula,

CRMS = (3RT/M)1/2

The average and most probable velocities of a gas are given by the following
formulas:

C
av

 = (8RT/πM)1/2.

C
mp

 = (2RT/M)1/2

The string variables, N$ and M$ represent the types of velocity and the
name of the molecule respectively. R, T and M represent the gas constant,
temperature and molecular weight of the gas. CMP, CAV and CRMS represent
the most probable, average and RMS velocities of the gas.

Algorithm

Step 1: Read the types of velocity, N$ and the name of the molecule, M$.

Step 2: Read the values of molecular weight, M and temperature, T. Assign to R
the value 8.314E7. Assign to P1, the value 3.14152.

Step 3: If N$ = “RMS VELOCITY” then go to statement number 130 to calculate
CRMS using the statement

CRMS = SQR(3 * R * T/M)

Otherwise go to statement number 80. If N$ =”AVERAGE VELOCITY”
then go to statement number 100 to calculate CAV using the statement,

CAV = SQR(8 * R * T/(P1 *M)

Print the value of CAV in cm/sec.

If N$ is not equal to the string “AVERAGE VELOCITY” go to statement
number 85 to calculate CMP using the statement.

CMP = SQR(2 *R*T/M)

Print CMP in cm/sec units.

Step 4: Stop.

NOTES

Self - Learning
Material 185

Programming in
Chemistry

Flow-Chart

Program Listing and Output

10 REM PROGRAM TO CALUCLATE THE RMS.AVERAGE

20 REM OR MOST PROBABLE VELOCITY OF A GAS

30 REM ILLUSTRATION OF THE USE OF TWO

40 REM IF-TEHN STATEMENTS

50 READ N$

55 READ M,T

60 R = 8.314E7

65 P| = 3.14152

70 IF N$ = “RMS VELCOCITY” THEN 130

80 IF N$ = “AVERAGE VELCOCITY” THEN 100

90 PRINT “THE MOST PROBABLE VELOCITY OF “;M$” IS =
“;CMP;”CM/SEC”

95 GO TO 180

100 CAV = SQR(8*R*T/(P|*M))

110 PRINT “THE AVERAGE VELOCITY OF “;M$ IS = “;CAV;”CM/SEC”

120 GO TO 180

130 CRMS = SQR (3*R*T/M)

Programming in
Chemistry

NOTES

Self - Learning
186 Material

140 PRINT “THE RMS VELOCITY OF “;M$ IS = “;CMP;”CM/SEC”

150 DATA RMS VELOCITY

160 DATA OXYGEN

170 DATA 32,300

180 END

Output:

THE RMS VELOCITY OF OXYGEN IS = 48356.1 CM/SEC

Check Your Progress

1. What is the need of computer languages?

2. Write the Vander Waal’s equation for real gas.

3. What is lattice energy?

4. Write the formula for root mean square velocity of a gas.

3.14 ANSWERS TO ‘CHECK YOUR PROGRESS

1. Computer programming languages allow us to give instructions to a computer
in a language the computer understands. Just as many human-based languages
exist, there are an array of computer programming languages that programmers
can use to communicate with a computer.

2. Van der Waal’s Equation for Real Gas:

 (P + a * n2 / V2) * (V – n * b) = n R T)

where, average attraction between particles (a) = 1.360,

volume excluded by a mole of particles (b) = 0.03186,

Universal Gas constant (R) = 8.314

3. The energy of the crystal lattice of an ionic compound is the energy released
when ions come together from infinite separation to form a crystal.

4. The root mean square velocity of a gas is given by the formula,

CRMS = (3RT/M)1/2

3.15 SUMMARY

 Computer programming languages allow us to give instructions to a computer
in a language the computer understands. Just as many human-based languages
exist, there are an array of computer programming languages that programmers
can use to communicate with a computer.

 Computer languages allow computers to quickly and efficiently process large
and complex swaths of information. For example, if a person is given a list of
randomized numbers ranging from one to ten thousand and is asked to place

NOTES

Self - Learning
Material 187

Programming in
Chemistry

them in ascending order, chances are that it will take a sizable amount of time
and include some errors.

 Despite notational differences, contemporary computer languages provide many
of the same programming structures. These include basic control structures and
data structures. The former provide the means to express algorithms, and the
latter provide ways to organize information.

 The three basic control structures in virtually every procedural languages
are: sequence, conditional and iterative.

 The energy of the crystal lattice of an ionic compound is the energy released
when ions come together from infinite separation to form a crystal.

 This energy can be calculated using the Born-Lande equation which is given
below:

U
0
 = (N

0
AZ + Z- e2) (1/r

0
) (1-(1/n))

3.16 KEY TERMS

 Computer Programming: It the process of creating an executable
computer program to perform a specific task.

 Lattice Energy: It is the energy required to dissociate one mole of an
ionic compound to its constituent ions in the gaseous state.

 Radioactive Decay: It is the process by which an unstable atomic nucleus
loses energy by radiation.

3.17 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. State about the rate constant of a first order reaction.

2. What is pH titration?

3. State about the atomic mass unit in MeV.

4. Define the term thermodynamic parameters.

5. What is radioactive decay?

6. What is ionic mobilities?

Long-Answer Questions

1. Discuss about the various elements of programming with the help of
examples.

2. Briefly explain the molecular weight giving appropriate example.

3. Analyze the Debye-Huckel law theory with the help of example.

4. Briefly explain the van der Waal’s equation with the help of appropriate
program.

Programming in
Chemistry

NOTES

Self - Learning
188 Material

5. Describe the various types of application in chemical kinetics.

6. Analyze the evaluation of lattice energy with the help of example.

7. Briefly explain the pH titration with the help of appropriate examples.

3.18 FURTHER READING

Dey, Pradip and Manas Ghosh. Computer Fundamentals and Programming
in C. New Delhi: Oxford Higher Education, 2006.

Bronson, Gary J. A First Book of ANSI C, 3rd edition. California: Thomson,
Brooks Cole, 2000.

Kanetkar, Yashwant. Understanding Pointers in C. New Delhi: BPB Publication,
2001.

Kanetkar, Yashwant. Let us C. New Delhi: BPB Publication, 1999.

Kernighan, Brian W. and Dennis Ritchie. C Programming Language, 2nd edition.
New Jersey: Prentice Hall, 1988.

Foster, W. D. and L. S. Foster. C by Discovery. Boston: Addison-Wesley, 2005.

Kanetkar, Yashwant. Working with C. New Delhi: BPB Publication, 2003.

Horton, Ivor. Instant C Programming. New Jersey: Wrox Press (John Willey &
Sons), 1995.

Lawlor, Steven C. The Art of Programming Computer Science with ‘C’. New
Jersey: West Publishing Company, 1996.

NOTES

Self - Learning
Material 189

Use of Computer
ProgrammesUNIT 4 USE OF COMPUTER

PROGRAMMES

Structure

4.0 Introduction
4.1 Objectives
4.2 Standard Programmes and Packages

4.2.1 Programming Process
4.3 Execution of Linear Regression
4.4 Numerical Integration and Differentiation
4.5 Monte Carlo and Molecular Dynamics
4.6 Introduction to Software Packages

4.6.1 MATLAB
4.6.2 EasyPlot
4.6.3 FoxPro

4.7 Answers to ‘Check Your Progress’
4.8 Summary
4.9 Key Terms

4.10 Self-Assessment Questions and Exercises
4.11 Further Reading

4.0 INTRODUCTION

We have to provide the computer with a set of instructions to solve the problem.
This set of instructions is called a program. In other words, the specification of the
sequence of computational steps in a particular programming language is termed
as a program. The special computer understandable notation for the specification
of such a sequence of computation steps is referred to as programming language.
So, the task of developing programs is called programming and the person engaged
in programming activity is known as programmer. A computer is extremely potent
tool in the hands of modern man. It is capable of solving complex problems with
unimaginable ease at incredible speed. To those who are not so much initiated into
the world of computers are bound to look at it with awe. The extent and range of
the works that computers can carry out do make them seem like magic box indeed.

In this unit, you will learn about the standard programmes and packages,
execution of linear regression, X, Y Plot, numerical integration and differentiation,
Monte Carlo and molecular dynamics.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the significance of standard programmes and packages

 Describe the execution of linear regression

Use of Computer
Programmes

NOTES

Self - Learning
190 Material

 Explain the significance of X, Y plot

 Discuss the numerical integration and differentiation equations

 Define the Monte Carlo and molecular dynamics

 Elaborate on the programmes with data preferably

 Explain the MATLAB, EasyPlot, FoxPro

4.2 STANDARD PROGRAMMES AND
PACKAGES

Why Programming?

You may already have used software, perhaps for word processing or spreadsheets,
to solve problems. Perhaps now you are curious to learn how programmers write
software. A program is a set of step-by-step instructions that directs the computer
to do the tasks you want it to do and produce the results you want. There are at
least three good reasons for learning programming:

 Programming helps you understand computers. The computer is only a tool.
If you learn how to write simple programs, you will gain more knowledge
about how a computer works.

 Writing a few simple programs increases your confidence level. Many people
find great personal satisfaction in creating a set of instructions that solve a
problem.

 Learning programming lets you find out quickly whether you like programming
and whether you have the analytical turn of mind programmers need. Even
if you decide that programming is not for you, understanding the process
certainly will increase your appreciation of what programmers and computers
can do.

A set of rules that provides a way of telling a computer what operations to
perform is called a programming language. There is not, however, just one
programming language; there are many. In this chapter you will learn about
controlling a computer through the process of programming. You may even discover
that you might want to become a programmer.

In general, the programmer’s job is to convert problem solutions into
instructions for the computer. That is, the programmer prepares the instructions of
a computer program and runs those instructions on the computer, tests the program
to see if it is working properly, and makes corrections (if required) to the program.
The programmer also writes a report on the program. These activities are all done
for the purpose of helping a user to fulfil its need, such as paying employees, billing
customers, or admitting students to college.

The programming activities just described could be done, perhaps, as solo
activities, but a programmer typically interacts with a variety of people. For example,

NOTES

Self - Learning
Material 191

Use of Computer
Programmes

if a program is part of a system of several programs, the programmer coordinates
with other programmers to make sure that the programs fit together well. If you
were a programmer, you might also have coordination meetings with users,
managers, systems analysts, and with peers who evaluate your work-just as you
evaluate theirs.

4.2.1 Programming Process

It is the process of designing and creating the programs to perform a user specific
task. There are five phases in the programming process.

1. Defining the problem

2. Planning the solution

3. Coding the program

4. Testing the program

5. Documenting the program

Defining the Problem

Suppose that, as a programmer, you are contacted because your services are
needed. You meet with users from the client organization to analyze the problem,
or you meet with a systems analyst who outlines the project. Specifically, the task
of defining the problem consists of identifying what it is you know (input-given data),
and what it is you want to obtain (output-the result). Eventually, you produce a
written agreement that, among other things, specifies the kind of input, processing,
and output required. This is not a simple process.

Planning the Solution

Two common ways of planning the solution of a problem are to draw a flowchart
and to write pseudocode, or possibly both. Essentially, a flowchart is a pictorial
representation of a step-by-step solution to a problem. It consists of arrows
representing the direction the program takes and boxes and other symbols
representing actions. It is a map of what your program is going to do and how it is
going to do it. The American National Standards Institute (ANSI) has developed
a standard set of flowchart symbols. Figure 4.1 shows the symbols and how they
might be used in a simple flowchart of a common everyday act-preparing a letter
for mailing.

Pseudocode is an English-like non-standard language that lets you state your
solution with more precision than you can in plain English but with less precision
than required when using a formal programming language. Pseudocode permits
you to focus on the program logic without having to be concerned just yet about
the precise syntax of a particular programming language. However, pseudocode
is not executable on the computer. We will illustrate these later in this chapter, when
we focus on language examples.

Use of Computer
Programmes

NOTES

Self - Learning
192 Material

Fig. 4.1 Flow Chart Symbols and Flow Chart for Mailing Letter

Coding the Program

As a programmer, your next step is to code the program to express your solution
in a programming language. You will apply the logic from the flowchart or pseudo
code to a programming language. As we know that a programming language is a
set of rules that provides a way of instructing the computer what operations to
perform. There are many programming languages like BASIC, COBOL, Pascal,
FORTRAN, and C. You may find yourself working with one or more of these.

Although programming languages operate grammatically, somewhat like the
english language, they are much more precise. To get your program to work, you
have to follow exactly the rules/ syntax of the language. Of course, using the language
correctly is no guarantee that your program will work, any more than speaking
grammatically correct English means you know what you are talking about. The
point is that correct use of the language is the required first step.

Testing the Program

This phase identifies the errors that occurs during the execution of the program.
You have to debug the error for successful compilation and running the program.
Some experts insist that a well-designed program can be written correctly the first
time. In fact, they assert that there are mathematical ways to prove that a program
is correct. However, the imperfections of the world are still with us, so most
programmers get used to the idea that their newly written programs probably have
a few errors. This is a bit discouraging at first, since programmers tend to be precise,

NOTES

Self - Learning
Material 193

Use of Computer
Programmes

careful, detail-oriented people who take pride in their work. Still, there are many
opportunities to introduce mistakes into programs, and you, just as those who have
gone before you, will probably find several of them.

Documenting the Program

Documentation is a written detailed description of the programming cycle and
specific facts about the program. Typical program documentation materials include
the origin and nature of the problem, a brief narrative description of the program,
logic tools such as flowcharts and pseudocode, data-record descriptions, program
listings, and testing results. Comments in the program itself are also considered an
essential part of documentation. Many programmers document as they code. In a
broader sense, program documentation can be part of the documentation for an
entire system. The wise programmer continues to document the program throughout
its design, development, and testing. Documentation is needed to supplement human
memory and to help organize program planning. Also, documentation is critical to
communicate with others who have an interest in the program, especially other
programmers who may be part of a programming team. And, since turnover is high
in the computer industry, written documentation is needed so that those who come
after you can make any necessary modifications in the program or track down any
errors that you missed.

4.3 EXECUTION OF LINEAR REGRESSION

Machine Learning, being a subset of Artificial Intelligence (AI), has been playing a
dominant role in our daily lives. Data science engineers and developers working in
various domains are widely using machine learning algorithms to make their tasks
simpler and life easier. For example, certain machine learning algorithms enable
Google Maps to find the fastest route to our destinations, allow Tesla to make
driverless cars, help Amazon to generate almost 35% of their annual income, Accu
Weather to get the weather forecast of 3.5 million locations weeks in advance,
Facebook to automatically detect faces and suggest tags and so on.

In statistics and machine learning, linear regression is one of the most popular
and well understood algorithms. Most data science enthusiasts and machine learning
fanatics begin their journey with linear regression algorithms. In this article, we will
look into how linear regression algorithm works and how it can be efficiently used
in your machine learning projects to build better models.

Linear Regression is one of the machine learning algorithms where the result
is predicted by the use of known parameters which are correlated with the output.
It is used to predict values within a continuous range rather than trying to classify
them into categories. The known parameters are used to make a continuous and
constant slope which is used to predict the unknown or the result.

Linear regression attempts to model the relationship between two variables
by fitting a linear equation to observed data. One variable is considered to be an
explanatory variable, and the other is considered to be a dependent variable. For
example, we might want to relate the weights of individuals to their heights using a
linear regression model.

Use of Computer
Programmes

NOTES

Self - Learning
194 Material

Before attempting to fit a linear model to observed data, we should first
determine whether or not there is a relationship between the variables of interest.
This does not necessarily imply that one variable causes the other (for example,
higher SAT scores do not cause higher college grades), but that there is some
significant association between the two variables. A scatterplot can be a helpful
tool in determining the strength of the relationship between two variables. If there
appears to be no association between the proposed explanatory and dependent
variables (i.e., the scatterplot does not indicate any increasing or decreasing trends),
then fitting a linear regression model to the data probably will not provide a useful
model. A valuable numerical measure of association between two variables is
the correlation coefficient, which is a value between -1 and 1 indicating the strength
of the association of the observed data for the two variables.

A linear regression line has an equation of the form Y = a + bX, where X is
the explanatory variable and Y is the dependent variable. The slope of the line is b,
and a is the intercept (the value of y when x = 0).

Linear regression was the first type of regression analysis to be studied
rigorously, and to be used extensively in practical applications. This is because
models which depend linearly on their unknown parameters are easier to fit than
models which are non-linearly related to their parameters and because the statistical
properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of
the following two broad categories:

 If the goal is prediction, forecasting, or error reduction, linear regression
can be used to fit a predictive model to an observed data set of values
of the response and explanatory variables. After developing such a model,
if additional values of the explanatory variables are collected without an
accompanying response value, the fitted model can be used to make a
prediction of the response.

 If the goal is to explain variation in the response variable that can be
attributed to variation in the explanatory variables, linear regression
analysis can be applied to quantify the strength of the relationship between
the response and the explanatory variables, and in particular to determine
whether some explanatory variables may have no linear relationship with
the response at all, or to identify which subsets of explanatory variables
may contain redundant information about the response.

Linear regression models are often fitted using the least squares approach,
but they may also be fitted in other ways, such as by minimizing the “lack of fit” in
some other norm (as with least absolute deviations regression), or by minimizing
a penalized version of the least squares cost function as in ridge regression (L2-

NOTES

Self - Learning
Material 195

Use of Computer
Programmes

norm penalty) and lasso (L1-norm penalty). Conversely, the least squares approach
can be used to fit models that are not linear models. Thus, although the terms ‘least
squares’ and ‘linear model’ are closely linked, they are not synonymous.

When to use Linear Regression?

Linear Regression’s power lies in its simplicity, which means that it can be used to
solve problems across various fields. At first, the data collected from the
observations need to be collected and plotted along a line. If the difference between
the predicted value and the result is almost the same, we can use linear regression
for the problem.

Assumptions in Linear Regression

If you are planning to use linear regression for your problem then there are some
assumptions you need to consider:

 The relation between the dependent and independent variables should be
almost linear.

 The data is homoscedastic, meaning the variance between the results should
not be too much.

 The results obtained from an observation should not be influenced by the
results obtained from the previous observation.

 The residuals should be normally distributed. This assumption means that
the probability density function of the residual values is normally distributed
at each independent value.

You can determine whether your data meets these conditions by plotting it and then
doing a bit of digging into its structure. Few properties of Regression Line are as
follows:

 Regression passes through the mean of independent variable (x) as well as
mean of the dependent variable (y).

 Regression line minimizes the sum of ‘Square of Residuals’. That’s why the
method of Linear Regression is known as “Ordinary Least Square (OLS)”.
We will discuss more in detail about Ordinary Least Square later on.

 B1 explains the change in Y with a change in x by one unit. In other words,
if we increase the value of ‘x’ it will result in a change in value of Y.

Finding a Linear Regression Line

Suppose, we want to predict ‘y’ from ‘x’ given in the following table and assume
they are correlated as y = B

0
+ B

1
x.

Use of Computer
Programmes

NOTES

Self - Learning
196 Material

x y Predicted 'y'

1 2 Β0+B1∗1

2 1 Β0+B1∗2

3 3 Β0+B1∗3

4 6 Β0+B1∗4

5 9 Β0+B1∗5

6 11 Β0+B1∗6

7 13 Β0+B1∗7

8 15 Β0+B1∗8

9 17 Β0+B1∗9

10 20 Β0+B1∗10

Where,

Std. Dev. of x 3.02765

Std. Dev. of y 6.617317

Mean of x 5.5

Mean of y 9.7

Correlation between x & y 0.989938

If the Residual Sum of Square (RSS) is differentiated with respect to B
0
 &

B
1
 and the results equated to zero, we get the following equation:

B
1
 = Correlation * (Std. Dev. of y/ Std. Dev. of x)

B
0
 = Mean(Y) – B

1
 * Mean(X)

Putting values from table 1 into the above equations,

B
1
 = 2.64

B
0
 = -2.2

Hence, the least regression equation will become:
Y = -2.2 + 2.64*x

x Y - Actual Y - Predicted

1 2 0.44

2 1 3.08

3 3 5.72

4 6 8.36

5 9 11

6 11 13.64

7 13 16.28

8 15 18.92

9 17 21.56

10 20 24.2

NOTES

Self - Learning
Material 197

Use of Computer
Programmes

As there are only 10 data points, the result is not too accurate but if we see
the correlation between the predicted and actual line, it has turned out to be very
high; both the lines are moving almost together.

4.4 NUMERICAL INTEGRATION AND
DIFFERENTIATION

Differentiation and integration are basic mathematical operations with a wide range
of applications in many areas of science. It is therefore important to have good
methods to compute and manipulate derivatives and integrals. You probably learnt
the basic rules of differentiation and integration in school. These are important, and
most derivatives can be computed this way. Integration however, is different, and
most integrals cannot be determined with symbolic methods like the ones you learnt
in school. Another complication is the fact that in practical applications a function
is only known at a few points. For example, we may find the position of a car every
minute via a GPS (Global Positioning System) unit, and we want to compute its
speed. If the position is known as a continuous function of time, we can find the
speed by differentiating this function. But when the position is only known at isolated
times, this is not possible. The same applies to integrals. The solution, both when
it comes to integrals that cannot be determined by the usual methods, and functions
that are only known at isolated points, is to use approximate methods of
differentiation and integration. In our context, these are going to be numerical
methods. We are going to present a number of methods for doing numerical
integration and differentiation, but more importantly, we are going to present a
general strategy for deriving such methods. In this way you will not only have a
number of methods available to you, but you will also be able to develop new
methods, tailored to special situations that you may encounter.

We use the same general strategy for deriving both numerical integration and
numerical differentiation methods. The basic idea is to evaluate a function at a few
points, find the polynomial that interpolates the function at these points, and use
the derivative or integral of the polynomial as an approximation to the function.
This technique also allows us to keep track of the so-called truncation error, the
mathematical error committed by integrating or differentiating the polynomial instead
of the function itself. However, when it comes to round off error, we have to treat
differentiation and integration differently: Numerical integration is very insensitive
to round-off errors, while numerical differentiation behaves in the opposite way; it
is very sensitive to round-off errors.

A simple method for numerical differentiation we start by studying numerical
differentiation. We first introduce the simplest method, derive its error, and its
sensitivity to round-off errors. The procedure used here for deriving the method
and analyzing the error is used over again in later sections to derive and analyze
additional methods. Let us first make it clear what numerical differentiation is.

 Let f be a given function that is only known at a number of isolated points.
The problem of numerical differentiation is to compute an approximation to the
derivative f0 off by suitable combinations of the known values off. A typical example

Use of Computer
Programmes

NOTES

Self - Learning
198 Material

is that f is given by a computer program (more specifically a function, procedure
or method, depending on your choice of programming language), and you can call
the program with a floating-point argument x and receive back a floating-point
approximation of f (x). The challenge is to compute an approximation to f 0 (a) for
some real number a when the only aid we have at our disposal is the program to
compute values .The basic idea Since we are going to compute derivatives, we
must be clear about they are defined. Recall that f 0 (a) is defined by f 0 (a) = lim
h0 f (a +h)– f (a) h . In the following we will assume that this limit exists; i.e., that
f is differentiable. We immediately have a natural approximation to f 0 (a); we simply
pick a positive h and use the approximation f 0 (a) f (a +h)– f (a) h .

Note that this corresponds to approximating f by the straight line p1 that
interpolates f at a and a –h, and then using p 0 1 (a) as an approximation to f 0 (a).
The derivative off at a can be approximated by f 0 (a) f (a +h) – f (a) h. In a
practical situation, the number a would be given, and we would have to locate the
two nearest values a1 and a2 to the left and right of a such that f (a1) and f (a2) can
be found. Then we would use the approximation f 0 (a) f (a2)– f (a1) a2 – a1.

Scalar Ordinary Differential Equations

Ordinary differential equations (ODEs) written in the abstract form is as follows:

u (t)=f(u(t),t). (1)

There is an infinite number of solutions to such an equation, so to make the
solution u(t)u(t) unique, we must also specify an initial condition

u(0)=U0. (2)

Given f(u,t)and U0, our task is to compute u(t).

At first sight, (1) is only a first-order differential equation, since only u2 and
not higher-order derivatives like u2 are present in the equation. However, equations
with higher-order derivatives can also be written on the abstract form (1) by
introducing auxiliary variables and interpreting u and f as vector functions. This
rewrite of the original equation leads to a system of first-order differential equations
and will be treated in the section Systems of ordinary differential equations. The
bottom line is that a very large family of differential equations can be written as (1).
Forthcoming examples will provide evidence.

We shall first assume that u(t) is a scalar function, meaning that it has one
number as value, which can be represented as a float object in Python. We
then refer to (1) as a scalar differential equation. The counterpart vector
function means that u is a vector of scalar functions and the equation is known as
a system of ODEs (also known as a vector ODE). The value of a vector function
is a list or array in a program. Systems of ODEs are treated in the section Systems
of ordinary differential equations.

Examples on right-hand-side functions

To write a specific differential equation on the form (1) we need to identify what
the off function is. The equation will be:

y2y =x, y(0)=Y,

NOTES

Self - Learning
Material 199

Use of Computer
Programmes

with y(x) as the unknown function. First, we need to introduce uu and tt as new
symbols: u=y, t=x. This gives the equivalent equation u2u=t and the initial
condition u(0)=Y. Second, the quantity u2 must be isolated on the left-hand side
of the equation in order to bring the equation on the form (1). Dividing by u2 gives

u =tu–2.

This fits the form (1), and the f(u,t) function is simply the formula
involving u and t on the right-hand side:

f(u,t)=tu–2.

The t parameter is very often absent on the right-hand side such
that f involves u only.

Let us list some common scalar differential equations and their corresponding f
functions. Exponential growth of money or populations is governed by

u=αu, (3),

where α>0 is a given constant expressing the growth rate of u. In this case,

f(u,t)=αu. (4).

A related model is the logistic ODE for growth of a population under limited
resources:

u =αu(1–uR), (5),

Where α>0 is the initial growth rate and R is the maximum possible value
of u. The corresponding f is

f(u,t)=αu(1–uR). (6).

Radioactive decay of a substance has the model

u =–au, (7),

Where a>0 is the rate of decay of u. Here,

f(u,t)=–au. (8).

A body falling in a fluid can be modeled by

u +b|u|u=g, (9),

where b>0 models the fluid resistance, g is the acceleration of gravity, and u is
the body’s velocity. By solving for u u we find

f(u,t)=–b|u|u+g. (10).

Finally, Newton’s law of cooling is the ODE

u =–h(u–s), (11),

where u is the temperature of a body, h>0 is a proportionality constant,
normally to be estimated from experiments, and ss is the temperature of the
surroundings. Obviously,

f(u,t)=–h(u–s). (12).

Use of Computer
Programmes

NOTES

Self - Learning
200 Material

Forward Euler Scheme

Our task now is to define numerical methods for solving equations of the form (1).
The simplest such method is the Forward Euler scheme. Equation (1) is to be solved
for t(0,T] , and we seek the solution u at discrete time points.

 ti=iΔt , i=1,2,…,n.

Clearly, tn=nΔt=T, determining the number of points n as T/Δt. The
corresponding values u(ti) are often abbreviated as ui, just for notational simplicity.

Equation (1) is to be fulfilled at all-time points t(0,T]. However, when we
solve (1) numerically, we only require the equation to be satisfied at the discrete
time points t1,t2,…,tn. That is,

u (t
k
)=f(u(t

k
),t

k
),

for k=1,…,n. The fundamental idea of the Forward Euler scheme is to
approximate u (t

k
) by a one-sided, forward difference:

u (t
k
)u(t

k
 +1)–u(t

k
)/Δt = u

k+1
–u

k/
Δt.

This removes the derivative and leaves us with the equation

u
k+1

–u
k/
Δt.= f(u

k
,t

k
).

We assume that u
k
 is already computed, so that the only unknown in this

equation is u
k+1

, which we can solve for:

u
k+1

=u
k
+Δtf(u

k
,t

k
). (13)

This is the Forward Euler scheme for a scalar first-order differential
equation u =f(u,t).

Equation (13) has a recursive nature. We start with the initial
condition, u

0
=U

0
, and compute u

1
 as

u
1
=u

0
+Δtf(u

0
,t

0
).

Then we can continue with

u
2
=u

1
+Δtf(u

1
,t

1
),

and then with u
3
 and so forth. This recursive nature of the method also

demonstrates that we must have an initial condition – otherwise the method cannot
start.

Function Implementation

The next task is to write a general piece of code that implements the forward Euler
scheme (13). The complete original (continuous) mathematical problem is stated
as:

u =f(u,t), t(0,T], u(0)=U
0
, (14)

while the discrete numerical problem reads

u(0)=U
0
, (15)

u
k+1

 = uk+Δtf (u
k
, t

k
), t

k
=kΔt, k=1,…,n, n=T/Δt (16)

NOTES

Self - Learning
Material 201

Use of Computer
Programmes

We see that the input data to the numerical problem consist of f, U
0
, T, and Δt

or n. The output consists of u
1
,u

2
,…,u

n
 and the corresponding set of time

points t
1
,t

2
,…,t

n
.

Let us implement the Forward Euler method in a function Forward
Euler that takes f, U

0
, T, and n as input, and that returns u

0
,…,u

n
 and t

0
,…,t

n
.

import numpy as np

def ForwardEuler(f, U0, T, n):

 “””Solve u=f(u,t), u(0)=U0, with n steps until t=T.”””

 t = np.zeros(n+1)

 u = np.zeros(n+1) # u[k] is the solution at time t[k]

 u[0] = U0

 t[0] = 0

 dt = T/float(n)

 for k in range(n):

 t[k+1] = t[k] + dt

 u[k+1] = u[k] + dt*f(u[k], t[k])

 return u, t

Note: the close correspondence between the implementation and the
mathematical specification of the problem is to be solved. The argument f to
the Forward Euler function must be a Python function
f(u, t) implementing the f(u,t) function in the differential equation. In fact, f is
the definition of the equation to be solved. For example, we may solve
u =u for t(0,3), with u(0)=1, and Δt=0.1 by the following code utilizing
the Forward Euler function:

def f(u, t):

 return u

u, t = ForwardEuler(f, U0=1, T=4, n=20)

With the u and t arrays, we can easily plot the solution or perform data
analysis on the numbers.

4.5 MONTE CARLO AND MOLECULAR
DYNAMICS

Monte Carlo algorithm is a randomized algorithm whose output may be incorrect
with a certain (typically small) probability. Two examples of such algorithms
are Karger–Stein algorithm and Monte Carlo algorithm for minimum Feedback arc
set.

The name refers to the grand casino in the Principality of Monaco at Monte
Carlo, which is well-known around the world as an icon of gambling. The term
‘Monte Carlo’ was first introduced in 1947 by Nicholas Metropolis.

Use of Computer
Programmes

NOTES

Self - Learning
202 Material

Las Vegas algorithms are a dual of Monte Carlo algorithms that never return
an incorrect answer. However, they may make random choices as part of their
working. As a result, the time taken might vary between runs even with the same
input. If there is a procedure for verifying whether the answer given by a Monte
Carlo algorithm is correct, and the probability of a correct answer is bounded above
zero, then with probability one running the algorithm repeatedly while testing the
answers will eventually give a correct answer. Whether this process is a Las Vegas
algorithm depends on whether halting with probability one is considered to satisfy
the definition.

One-sided vs Two-sided error

The answer returned by a deterministic algorithm is always expected to be correct,
this is not the case for Monte Carlo algorithms. For decision problems, these
algorithms are generally classified as either false-biased or true-biased. A false-
biased Monte Carlo algorithm is always correct when it returns false; a true-biased
algorithm is always correct when it returns true. While this describes algorithms
with one-sided errors, others might have no bias; these are said to have two-sided
errors. The answer they provide (either true or false) will be incorrect, or correct,
with some bounded probability.

For instance, the Solovay–Strassen primality test is used to determine
whether a given number is a prime number. It always answers true for prime number
inputs; for composite inputs, it answers false with probability at least 1D
2 and true with probability less than 1D 2. Thus, false answers from the algorithm
are certain to be correct, whereas the true answers remain uncertain; this is said
to be a 1D 2-correct false-biased algorithm.

Amplification

For a Monte Carlo algorithm with one-sided errors, the failure probability can be
reduced (and the success probability amplified) by running the algorithm k times.
Consider again the Solovay Strassen algorithm which is 1D 2-correct false-biased.
One may run this algorithm multiple times returning a false answer if it reaches
a false response within k iterations, and otherwise returning true. Thus, if the number
is prime then the answer is always correct, and if the number is composite then the
answer is correct with probability at least 1–(1–1D 2)k = 1–2–k.

For Monte Carlo decision algorithms with two-sided error, the failure
probability may again be reduced by running the algorithm k times and returning
the majority function of the answers.

Complexity classes

The complexity class BPP describes decision problems that can be solved by
polynomial-time Monte Carlo algorithms with a bounded probability of two-sided
errors, and the complexity class RP describes problems that can be solved by a
Monte Carlo algorithm with a bounded probability of one-sided error: if the correct
answer is false, the algorithm always says so, but it may answer false incorrectly
for some instances where the correct answer is true. In contrast, the complexity
class ZPP describes problems solvable by polynomial expected time Las Vegas
algorithms. ZPP RP BPP, but it is not known whether any of these complexity

NOTES

Self - Learning
Material 203

Use of Computer
Programmes

classes is distinct from each other; that is, Monte Carlo algorithms may have more
computational power than Las Vegas algorithms, but this has not been proven.
Another complexity class, PP, describes decision problems with a polynomial-time
Monte Carlo algorithm that is more accurate than flipping a coin but where the
error probability cannot necessarily be bounded away from 1/2.

Check Your Progress

1. Define term programming.

2. What do you understand by the term linear regression?

3. State about the differentiation and integration.

4.6 INTRODUCTION TO SOFTWARE
PACKAGES

4.6.1 MATLAB

 MATLAB (An abbreviation of “MATrix LABoratory”) is a proprietary multi-
paradigm programming language and numeric computing environment developed
by MathWorks. It allows matrix manipulations, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with
programs written in other languages.

Although, MATLAB is intended primarily for numeric computing, an optional
toolbox uses the MuPAD symbolic engine allowing access to symbolic
computing abilities. An additional package, Simulink, adds graphical multi-domain
simulation and model-based design for dynamic and embedded systems.

Commercial Development

MATLAB was first released as a commercial product in 1984 at the Automatic
Control Conference in Las Vegas. MathWorks, Inc. was founded to develop the
software and the MATLAB programming language was released. The first
MATLAB sale was the following year, when Nick Trefethen from the Massachusetts
Institute of Technology bought ten copies. By the end of the 1980s, several hundred
copies of MATLAB had been sold to universities for student use. The software
was popularized largely thanks to toolboxes created by experts in various fields
for performing specialized mathematical tasks. Many of the toolboxes were
developed as a result of Stanford students that used MATLAB in academia, then
brought the software with them to the private sector. Over time, MATLAB was
re-written for early operating systems created by Digital Equipment
Corporation, VAX, Sun Microsystems, and for Unix PCs. Version 3 was released
in 1987. The first MATLAB compiler was developed by Stephen C. Johnson in
the 1990s.

In 2000, MathWorks added a FORTRAN-based library for linear algebra
in MATLAB 6, replacing the software’s original LINPACK and EISPACK
subroutines that were in C. MATLAB’s Parallel Computing Toolbox was released
at the 2004 Supercomputing Conference and support for graphics processing units

Use of Computer
Programmes

NOTES

Self - Learning
204 Material

(GPUs) was added to it in 2010. As of 2020, MATLAB has more than 4 million
users worldwide. MATLAB users come from various backgrounds
of engineering, science, and economics.

SYNTAX

The MATLAB application is built around the MATLAB programming language.
Common usage of the MATLAB application involves using the “Command
Window” as an interactive mathematical shell or executing text files containing
MATLAB code.

Variables

Variables are defined using the assignment operator, =. MATLAB is a weakly
typed programming language because types are implicitly converted. It is an inferred
typed language because variables can be assigned without declaring their type,
except if they are to be treated as symbolic objects, and their type can change.
Values can come from constants, from computation involving values of other
variables, or from the output of a function. Consider the example given below:

>> x = 17

x =

 17

>> x = ‘hat’

x =

hat

>> x = [3*4, pi/2]

x =

 12.0000 1.5708

>> y = 3*sin(x)

y =

 -1.6097 3.0000

Vectors and matrices

A simple array is defined using the colon syntax: initial:increment:terminator. For
instance:

>> array = 1:2:9

array =

 1 3 5 7 9

Defines a variable named array (or assigns a new value to an existing
variable with the name array) consisting of the values 1, 3, 5, 7, and 9. The
array starts at 1 (the initial value), increments with each step from the previous
value by 2 (the increment value), and stops once it reaches (or is about to exceed)

NOTES

Self - Learning
Material 205

Use of Computer
Programmes

9 (the terminator value). The increment value can actually be left out of this syntax
(along with one of the colons), to use a default value of 1.

>> ari = 1:5

ari =

 1 2 3 4 5

Assigns to the variable named ari an array with the values 1, 2, 3, 4, and
5, since the default value of 1 is used as the increment.

Indexing is one-based,[37] which is the usual convention for matrices in
mathematics, unlike zero-based indexing commonly used in other programming
languages such as C, C++, and Java.

Matrices can be defined by separating the elements of a row with blank space
or comma and using a semicolon to terminate each row. The list of elements should
be surrounded by square brackets []. Parentheses () are used to access elements
and subarrays (they are also used to denote a function argument list).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =

 16 3 2 13

 5 10 11 8

 9 6 7 12

 4 15 14 1

>> A(2,3)

ans =

 11

Sets of indices can be specified by expressions such as 2:4, which
evaluates to [2, 3, 4]. For example, a submatrix taken from rows 2 through
4 and columns 3 through 4 can be written as:

>> A(2:4,3:4)

ans =

 11 8

 7 12

 14 1

A square identity matrix of size n can be generated using the function eye,
and matrices of any size with zeros or ones can be generated with the
functions zeros and ones, respectively.

>> eye(3,3)

ans =

 1 0 0

 0 1 0

 0 0 1

Use of Computer
Programmes

NOTES

Self - Learning
206 Material

>> zeros(2,3)

ans =

 0 0 0

 0 0 0

>> ones(2,3)

ans =

 1 1 1

 1 1 1

Transposing a vector or a matrix is done either by the
function transpose or by adding dot-prime after the matrix (without the dot,
prime will perform conjugate transpose for complex arrays). For example:

>> A = [1 ; 2], B = A.’, C = transpose(A)

A =

 1 2

B =

 1 2

C =

 1 2

>> D = [0 3 ; 1 5], D.’

D =

 0 3

 1 5

 ans =

 0 1

 3 5

Most functions accept arrays as input and operate element-wise on each
element. For example, mod(2*J,n) will multiply every element in J by 2, and
then reduce each element modulo n. MATLAB does include
standard for and while loops, but (as in other similar applications such as R),
using the vectorized notation is encouraged and is often faster to execute. The
following code, excerpted from the function magic.m, creates a magic
square M for odd values of n (MATLAB function meshgrid is used here to
generate square matrices I and J containing 1:n):

[J,I] = meshgrid(1:n);

A = mod(I + J - (n + 3) / 2, n);

B = mod(I + 2 * J - 2, n);

M = n * A + B + 1;

NOTES

Self - Learning
Material 207

Use of Computer
Programmes

Classes and Object-Oriented Programming

MATLAB supports object-oriented programming including classes, inheritance,
virtual dispatch, packages, pass-by-value semantics, and pass-by-
reference semantics. However, the syntax and calling conventions are significantly
different from other languages. MATLAB has value classes and reference classes,
depending on whether the class has handle as a super-class (for reference classes)
or not (for value classes).

Method call behavior is different between value and reference classes. For
example, a call to a method:

object.method();

It can alter any member of object only if object is an instance of a reference
class. Otherwise value class methods must return a new instance if it needs to modify
the object.

An example of a simple class is provided below:

classdef Hello

 methods

 function greet(obj)

 disp(‘Hello!’)

 end

 end

end

When stored into a file named hello.m, this can be executed with the
following commands:

>> x = Hello();

>> x.greet();

Hello!

4.6.2 EasyPlot

EasyPlot for MapInfo is a simple-to-use utility that allows for easy and professional
MapInfo Printing, simply customize templates to your requirements, either for the
production of high quality printed maps or for bulk production of batch processed
maps or images. An example program to create a simple plot is given below.

import matplotlib.pyplot as plt

import numpy as np

Data for plotting

t = np.arange(0.0, 2.0, 0.01)

s = 1 + np.sin(2 * np.pi * t)

Use of Computer
Programmes

NOTES

Self - Learning
208 Material

fig, ax = plt.subplots()

ax.plot(t, s)

ax.set(xlabel=time (s), ylabel=voltage (mV),
title=About as simple as it gets, folks)

ax.grid()

fig.savefig(“test.png”)

plt.show()

4.6.3 FoxPro

FoxPro is programming language as well as it develops an application
development environment. It is also a database manager. It has different tools
which helps in development and design of applications in very easy way. It also
provides platform for new databases and to perform new tasks on that
databases. In earlier times, this language is used to be most powerful and most
used language and database manager. But with the time, many new languages,
database, programming and many software’s were developed. Nowadays, this
language is not used much but still it is most powerful language and database
management system. It has various versions- DBASE I, DBASE II, DBASE
III, DBASE III+, DBASE IV, FOXBASE, FOXBASE +, FOXPRO. The
version 2.5 of FoxPro and versions released after it is can worked with Windows
and DOS operating system. Visual Foxpro, the successor to Foxpro programming,
is often used for application development.

Features of FoxPro

Following are some of the features of FoxPro.

1) It acts as interactive database manager.

2) It acts as programming language.

3) It provides application development environment.

4) It can be used to create database.

5) It can be used to Add/Remove data from database.

6) It is used to manipulate existing data.

Advantages

1) It supports the object-oriented programming syntax.

2) It provides visual tools.

3) It also supports multimedia database.

4) It is inexpensive.

Disadvantages

1) It is not applicable for low-level programming.

NOTES

Self - Learning
Material 209

Use of Computer
Programmes

2) It is not suitable for users or programmers with little or no programming
experience.

3) It has character mode only.

Data Types used in FoxPro

(i) Character

A-Z, a-z, or any arithmetic operation, maximum of 250 characters can be
stored and default width for the same is 10.

(ii) Number

It is used to store numerical values, can store decimal values not exceeding
20.

(iii) Float

It is used to store floating values. Default width is 10.

(iv) Date

It is used to store the date. By default, its width is 10 characters.

(v) Logical

It is used to store the Boolean Values like true/false and yes/no.

(vi) Memo

It is special type of data-type in which large amount of text, images, sound,
audio, video etc. can be stored. It is powerful data-type because when we
store any data, it stores the data in different file, whose files extension is .fpt.

(vii) General

It has same characteristics as Memo and with that it can handle and store
much larger data in word processing systems. The advantage of this data-
type is that, we can increase the size and can store large amount of data.

Visual FoxPro originated as a member of the class of languages commonly
referred to as “x Base” languages, which have syntax based on
the dBase programming language. Other members of the xBase language family
include Clipper and Recital (database).

Visual FoxPro, commonly abbreviated as VFP, is tightly integrated with its
own relational database engine, which extends FoxPro’s xBase capabilities to
support SQL query and data manipulation. Unlike most database management
systems, Visual FoxPro is a full-featured, dynamic programming language that does
not require the use of an additional general-purpose programming environment. It
can be used to write not just traditional “fat client” applications, but
also middleware and web applications.

In late 2002, it was demonstrated that Visual FoxPro can run on Linux under
the Wine Windows compatibility suite. In 2003, this led to complaints by Microsoft:
it was claimed that the deployment of runtime FoxPro code on non-Windows
machines violates the End User License Agreement.

Visual FoxPro had a rapid rise and fall in popularity as measured by
the TIOBE Programming Community Index. In December 2005, VFP broke into

Use of Computer
Programmes

NOTES

Self - Learning
210 Material

the top 20 for the first time. In June 2006 it peaked at position 12, making it (at the
time) a “B” language. As of October 2019, Visual FoxPro holds position 51 on
the TIOBE index.

In March 2007, Microsoft announced that there will be no VFP 10, thus
making VFP9 (released to manufacturing on December 17, 2004) the last
commercial VFP release from Microsoft. Service Pack 2 for Microsoft Visual
FoxPro 9.0 was released on October 16, 2007. The support of Version 9 ended
on January 13, 2015.

Check Your Progress

4. Write the use of MATLAB.

5. How the variables are defined in MATLAB?

6. What is FoxPro?

4.7 ANSWERS TO ‘CHECK YOUR PROGRESS

1. Programming is the process of designing and creating the programs to
perform a user specific task.

2. Linear regression is one of the machine learning algorithms where the result
is predicted by the use of known parameters which are correlated with the
output.

3. Differentiation and integration are basic mathematical operations with a wide
range of applications in many areas of science. It is therefore important to
have good methods to compute and manipulate derivatives and integrals.

4. MATLAB allows matrix manipulations, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with
programs written in other languages.

5. Variables are defined using the assignment operator, =. MATLAB is
a weakly typed programming language because types are implicitly
converted. It is an inferred typed language because variables can be assigned
without declaring their type, except if they are to be treated as symbolic
objects, and that their type can change.

6. FoxPro is programming language as well as it develops an application
development environment. It is also Database Manager. It is also called
Relational Database Management System because of its various features.

4.8 SUMMARY

 In general, the programmer’s job is to convert problem solutions into
instructions for the computer. That is, the programmer prepares the
instructions of a computer program and runs those instructions on the
computer, tests the program to see if it is working properly, and makes
corrections to the program.

NOTES

Self - Learning
Material 211

Use of Computer
Programmes

 In statistics and machine learning, linear regression is one of the most popular
and well understood algorithms. Most data science enthusiasts and machine
learning fanatics begin their journey with linear regression algorithms.

 Linear Regression is one of the machine learning algorithms where the result
is predicted by the use of known parameters which are correlated with the
output.

 Linear regression attempts to model the relationship between two variables
by fitting a linear equation to observed data. One variable is considered to
be an explanatory variable, and the other is considered to be a dependent
variable.

 Differentiation and integration are basic mathematical operations with a wide
range of applications in many areas of science. It is therefore important to
have good methods to compute and manipulate derivatives and integrals.

 Monte Carlo algorithm is a randomized algorithm whose output may be
incorrect with a certain (typically small) probability. Two examples of such
algorithms are Karger–Stein algorithm and Monte Carlo algorithm
for minimum Feedback arc set.

 (An abbreviation of “MATrix LABoratory”) is a proprietary multi-
paradigm programming language and numeric computing environment
developed by MathWorks.

 MATLAB allows matrix manipulations, plotting of functions and data,
implementation of algorithms, creation of user interfaces, and interfacing with
programs written in other languages.

 The MATLAB application is built around the MATLAB programming
language. Common usage of the MATLAB application involves using the
“Command Window” as an interactive mathematical shell or executing text
files containing MATLAB code.

 Variables are defined using the assignment operator, =. MATLAB is
a weakly typed programming language because types are implicitly
converted. It is an inferred typed language because variables can be assigned
without declaring their type, except if they are to be treated as symbolic
objects, and that their type can change.

 EasyPlot for MapInfo is a simple-to-use utility that allows for easy and
professional MapInfo Printing, simply customize templates to your
requirements, either for the production of high quality printed maps or for
bulk production of batch processed maps or images.

 FoxPro is programming language as well as it develops an application
development environment. It is also database manager. It is also called
Relational Database Management System (RDBMS) because of its various
features.

Use of Computer
Programmes

NOTES

Self - Learning
212 Material

4.9 KEY TERMS

 Linear Regression: It is a linear approach for modelling the relationship
between a scalar response and one or more explanatory variables.

 MATLAB: It allows matrix manipulations, plotting of data and functions,
creation of user interfaces, implementation of algorithms and interfacing with
programs written in other languages.

 FoxPro: It is text-based procedurally oriented programming language as
well as it develops an application development environment.

4.10 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. How will you define programming?

2. What are the different phases of programming?

3. Write the use of linear regression.

4. State about the complexity classes in Monte Carlo algorithm.

5. What are the uses of MATLAB?

6. What are the different functions used in vector and matrices in MATLAB?

7. Write the advantages and disadvantages of FoxPro.

Long-Answer Questions

1. Describe the process of programming along with its phases.

2. Briefly explain the linear regression giving appropriate examples.

3. Discuss briefly how to find a line linear regression with the help of
appropriate example.

4. Describe briefly scalar ordinary differential equations with the help of
example.

5. Analyze the Monte Carlo algorithm giving appropriate examples.

6. What do you mean by EASYPLOT? Discuss.

7. Discuss about the FoxPro and its features.

4.11 FURTHER READING

Dey, Pradip and Manas Ghosh. Computer Fundamentals and Programming
in C. New Delhi: Oxford Higher Education, 2006.

Bronson, Gary J. A First Book of ANSI C, 3rd edition. California: Thomson,
Brooks Cole, 2000.

NOTES

Self - Learning
Material 213

Use of Computer
Programmes

Kanetkar, Yashwant. Understanding Pointers in C. New Delhi: BPB Publication,
2001.

Kanetkar, Yashwant. Let us C. New Delhi: BPB Publication, 1999.

Kernighan, Brian W. and Dennis Ritchie. C Programming Language, 2nd edition.
New Jersey: Prentice Hall, 1988.

Foster, W. D. and L. S. Foster. C by Discovery. Boston: Addison-Wesley, 2005.

Kanetkar, Yashwant. Working with C. New Delhi: BPB Publication, 2003.

Horton, Ivor. Instant C Programming. New Jersey: Wrox Press (John Willey &
Sons), 1995.

Lawlor, Steven C. The Art of Programming Computer Science with ‘C’. New
Jersey: West Publishing Company, 1996.

	Prelims
	Introduction
	Unit 1
	Unit 2
	Unit 3
	Unit 4

