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INTRODUCTION

The subject of differential equations is built upon the subject of calculus. Differential
equations occur frequently in many branches of science and, in both pure and
applied mathematics. One possible explanation for this is to remember that a
derivative describes arate of change, so anytime it is used to describe how changes
in one thing depend on changes in some other thing, differential equations are
lurking in the background. Differential equations allow us to model changing patterns
in both physical and mathematical problems.

A diftferential equation is a mathematical equation for an unknown function
of one or several variables that relates the values of the function itself and its
derivatives of various orders. Differential equations play a prominent role in
engineering, physics, economics and other disciplines. The term differential
equation was coined by Leibniz in 1676 for a relationship between the two
differentials dx and dy for the two variables x and y. Soon after the first usage of
this term, differential equations quickly became understood as any algebraic or
transcendental equation which involved derivatives. Differential equations are
specifically used whenever a deterministic relation involving some continuously
varying quantities (modeled by functions) and their rates of change in space and/or
time (expressed as derivatives) is known or postulated.

Mathematicians also study weak solutions (relying on weak derivatives),
which are types of solutions that do not have to be differentiable everywhere. The
study of the stability of solutions of differential equations is known as stability
theory. Both ordinary and partial differential equations are broadly classified as
linear and nonlinear. A differential equation is linear if the unknown function and its
derivatives appear to the power 1 (products are not allowed) and nonlinear
otherwise. The characteristic property of linear equations is that their solutions
form an affine subspace of an appropriate function space, which results in much
more developed theory of linear differential equations. Homogeneous linear
differential equations are a further subclass for which the space of solutions is a
linear subspace, i.¢., the sum of any set of solutions or multiples of solutions is also
asolution. The coefficients of the unknown function and its derivatives in a linear
differential equation are allowed to be (known) functions of the independent variable
or variables; if these coefficients are constants then one speaks of a constant
coefficient linear differential equation. Linear differential equations frequently appear
as approximations to nonlinear equations. These approximations are only valid
under restricted conditions.

This book is divided into five units. The topics discussed is designed to be a
comprehensive and easily accessible book covering the basic concepts of
homogeneous linear equation with variable coefficient, total differential equation,
Picard’s method of integration, existence theorem, uniqueness theorem, dependence
on initial conditions and parameters, continuity differentiability, higher order
differentiability, Poincare-Bendixson theory, Umlaufsatz, stability of a periodic
solution, linear second order equations, theorems of strum, strum-Liouville boundary

Introduction

NOTES

Self - Learning
Material 1



Introduction

NOTES

Self - Learning

2 Material

value problem, non-oscillatory equations and principle solutions, non-oscillation
theorems, partial differential equation of first and second order and linear partial
differential equation with constant coefficient.

The book follows the Self-Instructional Mode (SIM) wherein each unit
begins with an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined before
going on to the presentation of the detailed content in a simple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding of the subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of ‘Key Terms’, and a set of ‘Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective
recapitulation.



UNIT 1 HOMOGENOUS LINEAR
EQUATIONS AND TOTAL
DIFFERENTIAL EQUATIONS

Structure

1.0 Introduction
1.1 Objectives
1.2 Homogeneous Linear Equation
1.2.1 Homogeneous Differential Equation with Variable Coefficients
1.3 Simultaneous Differential Equation
1.3.1 Simultaneous Equations in a Different Form
1.4 Total Differential Equation
14.1 Condition for Integrability
142 Methods to Solve Total Differential Equations
143 Solution of Exact and Homogeneous Total Differential Equations
1.5 Answers to ‘Check Your Progress’
1.6 Summary
1.7 Key Terms
1.8 Self-Assessment Questions and Exercises
1.9 Further Reading

1.0 INTRODUCTION

In mathematics, a differential equation is homogeneous if it is a homogeneous
function of the unknown function and its derivatives. In the case of linear differential
equations, this means that there are no constant terms. The solutions of any linear
ordinary differential equation of any order may be deduced by integration from the
solution of the homogeneous equation obtained by removing the constant term.

In simultaneous differential equations we’ll look at systems of simultaneous
linear differential equations with one independent variable and two or more
dependent variables next. In general, the number of equations equals the number
of dependent variables, hence there will be n equations if there are n dependent
variables.

An exact differential equation or total differential equation is a certain kind
of ordinary differential equation which is widely used in physics and engineering.
The single equations with one independent variable and several dependent variables.
These equations have the differential coefficients of dependent variables with respect
to one independent variable. Such equations are called total differential equations.
We learn those differential equations which contain one independent variable and
two or more than two dependent variables. The equation may be ordinary or
partial depending upon the ordinary or partial derivatives.

In this unit, you will learn about the homogeneous linear equation with variable
coefficient, simultaneous differential equation and total differential equation.

Homogenous Linear
Equations and Total
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1.1 OBJECTIVES

After going through this unit, you will be able to:
e [earn about the homogeneous linear equation with variable coefficient
¢ Explain the simultaneous differential equation

¢ Analysis the total differential equation

1.2  HOMOGENEOUS LINEAR EQUATION

Any homogeneous differential equation of the from.

dny n—ly > dn—2y
x" ﬁvtplx” + o + pyx" PR DY, =0

is called a homogeneous linear differential equation of nth order, where p , p, - p
are caustants and Q is a function of x _

n

Solution of homogeneous linear equation

Homogeneous linear differential equation is reducible to linear differntial equation
with constant coefficient by subsituation

x=e" .z=logx
dz 1

or—=—
dn x

& _dvds_1dy
dx dzdx xdx

Ly _dy
dx dz

Then
or

d
or xD = D, Where D, =5

o L2 () 4 (10)
>0 dx*  dx\dx) dx\xdz
_—_1@+li(d_y)%

Xy, dz xdz\dz)dx

1 dy d*y
=Tt
X dz dz

x’D* =D, (D, -1)
Proceeding in the same way

x"D" =D, (D, -1)—(D; —n+1)



Now equation is reducible to linear equation with constant coefficient and
may be solved by previously defined methods.

Example L.1:Solve(x* D +xD—4) y = x’
Solution: Let x = ¢
Equation becomes [D (D, 1)+D, 4] y =?*
or (D12 - 4)y =c*

Auxiliary equation is m*—4 =0

or m=x2
CF= clezz +c, —eF
1 2z _ 2z 1
d PI=D2-4° ° [2..)V
an : 1~ <D1+2) -4

-1
= eZZ%.l = eZZL(H&) 1

2z 2z
=£ .1(1—&).1:6 )
4 DU 4 4 D,

2z
y=CF+P.I=ce* +cze_22+e 2 z

2
_ .2 2, X
= x" teyx +Tlogx

Example 1.2: Solve (x’D* +2x°D? +3xD ~3) y = x> +x

Solution: Let x = ¢? . z = log x and equation reduces to
[D,CD, —1)(D,-2)+2D;(D, —1)+3D, -3|y =¢** +¢°
or  (D}-D}+3D,-3)y=¢"+¢"

AEism®*m?+3m 3=0
or (m*+3)(m-1)=0

or m=1+i/3
C.F =¢e” +c¢, cos (\/5 z) + ¢y sin (\/gz)

1
Df—Df+3Dl—3(

and PI= ¥ + ez)
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Homogenous Linear

: 1 2z 1 z
gq‘z{anoniv ;zgd Totgl = 3 3 e+ 3 ) e
ifferential Equations D1 _I)1 +3D1 -3 D1 _D1 .|_3I)1 -3
-t e + e 1 1
NOTES 8-4+6-3 (D, +1)’ =(D, +1)° +3(D, +1)-3
= lezz +e’ — 12 (1)
7 D +2Dy +4D,
:le22+ez 11 > (1)
D' D,
4D [ 1+ —+——
2 4
1 1 [ o b2
=—e¥t+e —|1+—+—| (1)
7 | 2 4
=—e* + ez.L(l)
7 4D,

y=C-F+P-1=¢e +c, cos(ﬁz)+c3 sin(\/gz)+%ezz +%.Z
=cx+c, cos<\/§logx)+c2 sin(\/glogx)+%x2%xlogx

Example 1.3: Solve (¥’D” +7xD+13) y = log x

Solution: Letx = ¢” .. z = log x and equation reduces to

Self - Learning
6 Material

or

1e.,

and

[D}D,+7D, +13]y =2

(D?+6D,+13)y=2

AEism>*+6m+13=0
m= 3+2i

C.F= ¢ [c cos2z+c,sin2z]

-1
1 1
P 1 =2—.z=—(1+£Dl+—Df) .z
D;y+6D,+13 13 13 13

1( 6)—L(132_6)

=—|z——|=
13 13 169



1
=e " 2 in2z]+—(13z-6
y=e [clcos z+c,sin Z]+169( z—6)
=x |:c1 cos(Zlog x)+ C, sin(2log x)+$(l3logx—6):|

Example 1.4: Solve (xzD2 —-xD- 3)y = x* log x
Solution: Let x = ¢ ... z = log x and equation reduces to
[D,(D,-1)-D,-3]y=e*z
or (D?-2D,-3)y = ze”
AEism?>=2m 3=0ie,m= 1,3
3z

CF=ce " +che

_ 1 2z _ 2z 1
and  PI= 2,5 73 (D, +2)-(2D, +2)-3

2z
L P )

=2 x3—£ lo x+z
Y G

X
2d’y dy
Example 1.5: Solve(x+a) ?—4(x+a)£+6y=x
Solution: Let (x+a)= e or z =log(x+a)
dz _ 1
dx x+a
g b 1w
an dx dz x+adz
d
+a)—=—=D
or (+a) =g =D
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Ly d(d) df 1
Also dx®  dx\ldx dx (x+a) dz

I dy, 1 1 d(dy)

(x+a)2 dz x+a'(x+a)dz dz

_ [QQ]

B (x+a)2 de - dz

42
or (x+a)2—2=D12D1 =D, (D, -1)
dx
Substituting the value in the given equation, we get

| D/(D}-1)-4D,+6 |y =" -a

or (Dl2 —-5D, + 6) y=é‘a
AE m? Sm+6=0ie,m=2,3
CF =ce”+ce”
ad  PI= ("~ a)
L D2-5D+6

1 . 1

5 e 5 .a

z 5 D2 -1
=e——3(1——Dl+—1J 1

2 6 6 6
=e——3(1+§D1)1
2 6 6
_e.a
z 6
2z 3z e 9
=ce’ tcet +——=
y=aq 2 2 6
2 3 (x+ta) 9
=¢ (x+a) +c,(x+a) +( 5 )—g

Example 1.6: Solve (1+x)* y'' +(1+x) y' + y = 4coslog(1+ x)

Solution: Let 1+x = e “or z=log (1+ x)

Proceeding as in example 1.4 4 we have

dy dy 2 dly d'y
1+ x)—==—=gand(1 — =
( x) » Zand( +x) W 42



And given equation become
[D1 (D1 —1)+ D, +1]y =4cosz
or (D12+1)y=4cosz

AE.ism*+1=0orm==i

CF=c¢cosz+c,sinz

_ 4cosz)=4 cosz
and PI D12+1( ) D12+1
z . 1 X .
=4| —sinz Dl 5 COsax = —sinax
2 D" +a 2a
=2zsinz
and Y=c cosz+c,sinz+2zsinzand

= ¢, cos| log(1+x) ]+ ¢, sin[ log(1+x)]+2log(1+x)sin[ log(1+x)]
Example 1.7: Solve (x’D? 3x D + 5)y = x?*sin(log x)

Solution: Let x = ¢* or z=log x and equation reduces to

[D,(D,~1)-3D,+5]y=e*sinz

or (Dl2 —4D, +5)y=e22 sinz
AEism?> dm+5=0ie,m=2+1

CF =¢* [c; cosz+c, sinz]

2z _:
=————e€"sinz
and PI D12—4+5

1 )
=% sinz

(D, +2)* -4(D, +2)+5

1 . -z
=% 5 sinz = e?*| —cos z
D2 +1 2

-1
=—ze** cosz
2

. z
y=e* [c cosz+c smz]——ezz cosz
1 2 >

Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
Material 9



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
10 Material

2
= x? [cl cos(log x) + ¢, sin(log x)] — x? log x.cos(log x)

[(x2D2 -3xD+ 1) y =log x.sin(log x) + 1]

Example 1.8:
X

Solution: Let x = e* or z = log x, equation reduces to
[(D,D, —1)-3D, +1]y =(zsinz+1)e”
or (Dl2 —-4D, + l)y =e *(zsinz+1)
AERism* 4m+1=0ie,m=2+.3

CF =¢* I:c1 cos h(\/gz) +¢, sin h(\/gz)]

and PI=—> —— ! (zsinz+1)e_z
s 1 .
=e 5 (2s1nz+1)
(D, —1)"—4(D, -1)+1
=e_22;(zsinz+l)
—z 1 . 1 0.z
=e | —g7———zsinz+ _5;————e¢
N . |
=e | 53— _———zsinz+—
N . |
=e |3 —_——zsinz+—
1 ) -1 ) -2D, -6 )
- zsinz=z— sin z 5 sinz
Now Dy —6D,+6 Dy —6D,+6 (D12+6D1+6)
. (2D,-6) .
=—z———SInz— 5 sinz
—1-6D, +6 (~1-6D; +6)
(5+6D;) . (2D, -6) ,
=z_——>sinz— 3 sin z
25-36D; 25+36D; —60D,
5+6D 2D, -6
zz—( l)sinz+—( ! ) i
61 11+60D,



=i(5+6Dl)sinz+ (2D, _6)(11_621)1) sin z
61 121-3600D,

(~120D] —66+382D, )sin z
3721

=é(55inz+6cosz)+

= i(55inz+6<:osz)JrL(54sinz+382(:osz)
61 3721

y=CF+PI

=x’ |:c1 cosh (\/glog x) +c,sinh (\/glog x) + 106g1x 5sin(log x)+6cos(log x)]

1 .
+ﬁ[54 sin(og x)+382cos(log x)cos(log x)]
1.2.1 Homogeneous Differential Equation with Variable

Coefficients

A differential equation of the form

d’y dy
—+a(x)—+a,(x)y=0
S (1) 2y (3]
Is said to be linear homogeneous differential equation with variable
coefficients where a, (x) and a, (x) are continuous function in the interval [q, b].

For second order homogeneous differential equation there is no general
method for finding a particular solution. While few solution on can be guessed by
using a particular solution. It y, (x) #0 is a particular solution of homogeneous
linear second order equation then the original equation can be converted to a first
order linear equation by substitution y =y, (x) z (x) and the subsequent replacement
z,(x)=u

This method is known as method of reduction of order.

Another method is called method of variation of parameter.

Variation of Parameters

Here we shall explain the method of finding the complete primitive of a linear
equation whose C.F is known.

1. To find particular integral of
2
d_-;} + PQ
dx dx
Let C.F Ay, + By,
Then PI=uy + vy, where

+0y=R (1.1)
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R
u= [-——dx
YiVoy =
NnR
d v=—7 5, —dx
and v YV =0

General solution=C.F+PI

. Lety=Ad(x) + By(x) be the C.F where A and B are constants and ¢(x)

and y/(x) function of x
as  y=4¢(x)+ By(x) satisfies the equation
d?y dx

?'FP E'FQ)/:O

- [AQ"(x) + By"(x)] + P [A¢'(x) + By'(x)] + Q [Ad(x) + By(x)]=0
or A [¢"(x) + P'(x) + Qd(x)] + Bly"(x) + Py'(x) + Qy'(x)] =0

¢"'(x) + Po'(x) + Qd(x) =0 (1.2)
and "' (x) + Py'(x) + Qu(x) =0 (1.3)
Now let us assume that
¥ =Ad() + By() (14)

is complete primitive of (1.1) where A and B are functions of x, so chosen
that (1.1) will be satisfied.

d dA dB
d—i = AY() + By (@) + — Q@) —=w()

Let A and B satisfy the equation.

dA dB
o'(x) E’L‘W)E: 0 (1.5)

D _ A0+ By ()
dx

d’ " by dA - dB
and 5= AQ”(x)+ By (x) + = ¢'(x) + (%)
dx dx dx

Substituting in equation (1.1)
44 144 dA V3 dB ,
[A¢ (x) +By”(x) + e O(xX)+——y (x)]
X dx

+P[ A0’ (x) + By’ (x) |+ QAO(x) + By(x)] =R

Or  A[¢"(x)+Po’(x) + 00(x) |+ Bly” (x) + Py’ (x) + Qy(x)]



+¢’(x)il—‘: + w’(x)% =R (1.6)

As coefficients of A and B are zero by Equations (1.2) and (1.3) from
Equations (1.5) and (1.6)

dA ’ ’
—= =0V @)~ W) | = -Ry ()
dA Ry(x)

of dx  y(x) =000V (x)

or integration we can find the value of A similarly B can be determined from
Equations (1.5) and (1.6) as the solution is obtained by varying the arbitrary constants
of the complementary function the method is known as variation of particular .

Working Rule
. Ay dy
1. Find the C.F of the Equatlon? + I +0y=R
Let C.F=c,0(x) +c,y(x)

Where ¢, and c, are arbitrary constants and ¢(x), y(x) are functions of x.

2. Replacing c ,c, by A and B which are functions of x, taken the general
solution of Equationon (1.1) as

v =A0(x)+ By(x) -(L.7)
3. Differencing Equation (1.7) we have

d dA dB
d—i =A@’ (x)+ By’ (x)+ e o(x) + I w(x)

Now choose Equations (A) and (B) such that

dA dB
E‘P(XVEW(X):O ...(1.8)
@ = AV’ (x)+ By’ (x)
dx

dzy ’7” ’” dA ’ dB ’
4. .~.?=A¢ (x)+ By (X)+E¢(X)+Ellf (x)
2

Substituting these values of d_z and d_;} in Equation (1.1) reduces to
X

dAd dB ,
E¢(x)+$w(x)=R ... (1.9
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A
Solving Equations (1.8) and (1.9) we can find B and e and integration

gives equations (1.7) and (1.8)

5. Substitute these values in equations (1.7) to get the general solution of the
given equation,

Example 1.9: Solve »"+y = cosec x
Solution: Given (D*+1) y=cosec x
AEis m*+1=0,i.e, M=%1
C-F=ccosx+csinxhencey, _cosx,y,=sinx
Let PlI=uytvy,

=ucosx+sinx

Y,cosec x dx
where u= J_

VY2 = ViVa
j SINXXCOsec X dx _ j dx
~ 7 cosx(cosx)-(-sinx) (sinx) cos® x+sin® x

—jdxz—x

J' y,cosec x dx
V =

d 7 7
an Yo =1 V2

COS X cosec x dx
- J. > : = Jcot xdx
cos“x +sin“x
= log sinx
P-1=(—x) cosx + (log sinx) sinx
L y=C-F+PI=c cosx + c,sinx —xcosx + sinx log (sinx)
Alter) C.F = ¢ cosx + ¢ sinx

Let y=Acosx+ Bsinx where A and B are functions

_ Asinx+B +d—A +—Bsinx

o sin x coSx o cosx Ix
choose A and B such that

dB .

—cosx+—sinx =0 (D

dx dx

y )

—=—-Asinx+ B cosx

dx
1 d—zy——d—Asinx+d—Bcosx—Acosx—Bsin bstituting i
also 2 dx x Y substituting in

given equations, equation becames



ﬂsinx+d—B—cosesx 2
dx dx ~(2)

Solving Equations (1) and (2),we have

dA .
E=—1, LA=—x Tt
dB . .
and e cotx . B=log sinx +c,

. general solution y = ¢ cos x + ¢,sin x—xcosx + sinx log sinx

Example 1.10:(D*-1) y =

l+e"
Solution: AE m*—1=0 ie,m=+1
CF=ce +ce™
y=e, y,=e?

Let PI=uytvy,

y 2 2
2 X X
where u = l+e, :—j - _1x+e ——dx
Wh-nmy Celter)-eler)
le xdx
=_2 +e
e
- © _d =| L
1+¢e* e'(1+e")
e’ 1+e*
= exdx—J —dx
e +1
=—e*+log(e*+1)
2 2e*
J’1'1 X e
and V=J te :j te dx
/_ ’ _2
YiV2 =N

X

= - [ “—dv=-log (1+¢")
1+e"
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PI=[(—e™*+log(e*+1)] e~ e*log (1+ev)]
=—1+e*+log (e™+1)—e*log(e++1)
y=ce+c e telog(e™tl)—e™log(e+1) -1
Alter CF=ce'+ce™
Now let y = Ae*+ Be™ where A and B are functions of x

@ = Ae* —Be™” +d—Aex +d—Be_x

dx dx dx
Choose A and B such that

dy dB _

—e'+—e =0

e e o e .. (1)

& =A4e* —Be "

dx

d’y dA . dB

—;} =—¢' ——e "+ 4e" +Be”

dx dx dx

Substituting in given equation, we have

edi_e,xd_B_ 2 5
dx dx 1+¢* - (2)

Solving Equations (1) and (2), we have

L dA 2
2e" —=
dx 1+e*
1 d_A— eix A_ —xl 1+ —X
1e., i 1rof or e log (1+e™)
g B g g(se

an —= =—1lo

dx 1+e* 8

y=cetee e log (1+e™) —elog (1+e*) -1

To find one integral in c-f- by Inspection

: .. d’y pdy
Itglvenequa‘uonlsW-’-E-FQ)/:R... (1.10)

(i) y=e'isasolution of (1.10)if 1 + P+ Q0=0

(i) y=e~isasolutionof (1.10)if | -P+ Q=0

(ii)) y=e™ is a solution of (1.10) if m*+ Pm+ Q=0
(iv) y=xis asolution of (1.10) if P+ Ox=0

(v) y=x"is asolution of (1.10) if 2 + 2 Px+QOx>=0
(vi) y=x?1s a solution of (1) if m(m—1) + pm* + Ox*=0



2 42

xd'y  dy 2 x -
Example 1.11: Solve e +xa—y=x €” by the method of variation of
X
parameters.
PN . . 2d2y+ d_)’_ _ .2 x
Solution: Given equationis X _dx2 xdx y=x"e
ﬁ_klﬂ_i —ex 1
W xa 27 (D)
d’y 1d
Tofind CF 3 +———-22=0
dx x dx X
Here P+ QOx=0
y=xisapartof C-F
Let y=w
So that ﬂ—ﬂx+v
oM T ax
d’y d*y dv
Any —=—5Xx+2—
d dx*  dx? dx
Putting in Equation (1) we h d—2v+éﬂ—0
utting in Equation (1) we have 2
@
d® 3
dv "y
dx
. dv
hltegratmglogE=—310gx+10gc
v_c
dx x3
Inteerating V= —=+¢
tegrating o2
c
C-F of theequationis y = vx =Clx—g
)
or y=cx+—
X
B
Nowlety=Ax+; L (A)

be the complete positive of the given equation, where (A) and (B) are

function of x.
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@: A—B+d—Ax+ld—B
dx dx X dx
Now choosing A and B such that
dA 1dB
x—+——=0
dx x dx

d B
We have d_J;:A_x_z ...(2)

Substituting in the given equation, we get

dd 1dB

d_B_;E e ...(3)

Solving Equations (2) and (3), we get

dA e e’
—_—=— LA=—+¢
dB 2 2
d d—B— —lxzex

an dx 2

B= —%szexdx

1 2 x b X
=-—x"e +txe —-e +c¢,
2
Substituting in (A)

c, 1 1
y=cx+-—2+—xe' +e ——e
x

c |
=cx+—2+e" ——e
X X
2J/ 2
Example 1.12: Solve —-+n"y =secnx
dx
Solution: A-Eism*>+n’=0ie.,m=+1n
or C-F = ¢, cosnx+c, sin nx
where ¢ and ¢, are arbitrary constants

let y = Acosnx +B sin nx ... (A) be the complete primitive of the given
equation where A and B are function of x.



d ) dA4 )
24 Ansin nx + Bncosnx+—cos nx+d—sm nx

E B dx x
Choose A and B such that
dA B .
—-cosnx +—sinax =0 .. (D
dx dx
dy .
we have — = — An cosnx +Bn sin nx
dx
d* . dd .
—f = —An? cos nx — Bn? sin nx — n—— sin nx + n— cos nx
dx dx dx

Substituting in the given equation we have

dA . dB
—n——sinnx + n— COSnx = secnx
X X
Solving Equations (1) and (2), we have

1
A=—Ilogcosnx +c¢,

dA
n—=—tannx
dx n,
dB
and n—=1 .'.B=£+Cz
dx n

substituting the values in A

. 1 .
y= nx + ¢, sin nx +—cos nx -log cos nx + —sin nx
n n
2

Example 1.13: By the method of variation of parameters,

solve

2
L 2x(1+x)%+2(x+l)y:x3
X

—-
Solution: Given equation is

d*y 200+x)dy 2(x+1
y 20 dy 2AxtD)
dx X dx X

Here p=- =
X X

or P+Qx=0
y=xisapartof C.F

Let = thtd—y_ﬂx'*'v
y=vxsothat = -=—~

Q)

Homogenous Linear
Equations and Total

Differential Equations

NOTES

Self - Learning
Material

19



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
20 Material

of x

2 2
4y _dv &

xX+2—

and dx*  dx? dx
d’y 2(0+x)dy 2(x+1)
o B AN —0
substituting in I  dx 2 y (1)
h xd—zv+2ﬂ——2(1+x)(xﬂ+v)+(2x+l)vx—0
wehave dx dx X dx x2
dv_2dv_

or 2 dx
AE=m*-2m=0 e, m=0,2

v=c+ ce”
and solution of Equation (1) is y = vx=cx + cxe™
Now let y = Ax + Bxe* ...(2)

Be the complete primitive of the given equation ,where A and B are function

Py A+ B(e® +2xe**) + xd—A+ xe** 9B
dx dx dx
Now choosing A and B such that
dA 2 dB
x—+xe —=0
I I ...(3)

_ A+ B (e* + 2xe™)
dx

2
Ly A | 2 B (14 2x)+2B & + 2B (14 20)
dx*r dx dx

Substituting in the given equation, we have

A L @(1 +2x)+2B &** + 2B(1+2x)e*
dx dx
1+
—2M[A+B(l+2x)e2x]+Z(X—T)[Ax+Bxe2x]=x
X X
A
—+e (1+2x)—=x
or  — -+ (1+2x) = @)
Solving Equations (3) and (4)
d_A:__l ...A:__x+cl
dx 2 3
dB 1 . -1
and E:Eez .'.BZTe2 +c,



2
xX° —x
.. Requird solutionis y = ¢ x + czxez" —? T
Example 1.14: Apply the method of variation of parameters to solve the equation.

2

d’y dy
l—x)—=+x—=—p=(1-
( mdﬁ XY (I-x)

Solution: Given equation can be written as

d? y x dy 1
+ —_—

dx> l-xdx 1-
Here P+ Qx=0

Now to find the C.F of given equation, i.e., the solution of

y=(01-x)
X

- y=xisapart of C.F

2
d§/+ x dy y _o
de- l-=xdx 1-x

(1)

Lety = vx then equation ¢, reduces to

2
ﬂ+(L+2)ﬂ_o L p

> \l-x x)dx dx
or %+(ﬁ+%)P=O
or fl—f+(—l—ﬁ+%)P:0
or %:(l+ﬁ+%)dx

Integrating log P =xlog (x-1) -2 logx+4 log c,

_dv_ ¢ (x=1)e"

or p 3

dx X

e’ e’
Integrating v=< [j T dx _J x_2 dx:|

c
="1e'+c,
X
.. C.F of the given equation is y = vx
or y=ce tcx
Now let y=Ae"+ Bx be the complete soluation of the given equation where
A and B are functions of x
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.’.d—y:Aex +B + exd—A+x@
dx dx dx
Choose A and B such that,
Q =Ae*+B
dx
2
A

dx? dx  dx

Substituting in the given equation, we have

exd—A+@—1—x 3
dx dx ()

Solving Equations (2) and (3) we have

—(l—x)exd—A:(l—x)x

dx
A
or E:—Xe
or AZ—Jxe_xdx:xe_x+e_x+C
and (1—X)% =1xor %:1
B=x+c¢,

y=ce +ex+x+1+x7

2

d d .
Example 1.15: Solve —;j +(1—cosx) 9 ycotx =sin’ x
dx dx

Solution: Here 1 P+Q=0 - y=e*isapart of the C.F

Putting y=ve* in the given equation.

d*v
@

(1+cotx)@: 0
X dx

dP dv
or ——(+cotx)P=0  whereP =—
dx dx

dP
—=|(l+cos—x)dx
or 5= )
ie., logP=x+log(sinx)+logc,
P= _ c e’ sinx
of dx
e v= cljex sinx dx

e’ .
= 01?(51nx—cosx)+c2



ol

_ S _ —x
.. C.F of the given equation=ve*~ 5 (sinx —cos x)+cye

Lety=A[sinx cosx]+ Be*be the complete solution of the given equation

where A and B are functions ofx.

dy . +
_——= + X
I A (cosx +sinx) Be

A and B are choosen such that

dA | . dB _,
—(sinx—cosx)+—e
dx

d—A(sinx— COS X) +@e'x =0
dx dx

d . _
—y:A(cosx+s1nx)—Be *
X
d? : dB _ : .
and —§/=—(cosx+smx)——e Y+ A(—sinx+cosx)+ Be™*
dx”  dx dx

Putting in the given equation, we have

X

d—A(cosx+sinx)—@e_ =sin® x 2
dx dx @)

Solving Equations (1) and (2) we get

dA ) 1
—=—sinx, A=-—cosx+c¢
dx 2
dB €x . .2

and —=—|(sinxcosx—sin”x
== )

1 )
ie, B :Zjex(sm 2x—1+cos2x)dx+C,

X X X

=—e—(sin2x—2cos2x)—e—+—-e—(cos2x+2sin2x)+c2
45 4 45

X X

e e
=—((3sin2x—cos2x)——+c
20( ) 4 2

y=a(sinx—cosx)+cye " — %(sin 2x—2co0s2x)

Ao

Check Your Progress

Solve by the method of variation of parameter (b*+ 1) y=tan x

Solve by the method of variation of parameter (D? + 1) y-sec x

Solve by the method of variation of parameter (D?-42) y = ’x

Solve by the method of variation of parameter (D?>—3D +2)y=sin x
Solve by the method of variation of parameter (D*—3D +2)y=sec x tan x

Solve by the method of variation of parameter (D* + 1)y = secxtanx

Solve by the method of variation of parameter (D? + 9) y =sec 3x
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1.3 SIMULTANEOUS DIFFERENTIAL
EQUATION

An ordinary differential equation (ODE) is a relation that contains function of only
one indepnedent, and one or more of then derivin a

Methods of Solving Simultaneous Linear Differential Equations with
Constant Coefficients

In this section, we shall discuss two methods for solving the simultaneous linear
differential equation where x, y are two dependent variables and 7 is the independent
variable.

Using Operator D
Let the symbolic form of the equations be F (D)x +F,(D)y =T, ... (L.11)
and o, (Dx+ ¢,(D)y=T, .. (1.12)

d
where D denotes - Also, T and T, are functions of independent variable

tandF (D), F,(D), ¢ (D) and ¢ (D) are all rational integral functions of D with
constant coefficients.

Now, eliminate x from (1.11) and (1.12) by operating on both sides of
(1.11) by ¢ (D) and (1.12) by F (D), we get F (D)¢ (D)x + F,(D)¢ (D)y =
¢,(D)T,

¢ ,(D)F,(D)x + ¢,(D)F (D)y = F,(D)T,
On subtracting these equations, we get
Fz(D) d) 1(D)y - d) 2(D)F1(D)y = (I) I(D)Tl - Fl(D)Tz

= g,(D) y =T (say)
which is alinear equation in y and ¢. This equation can be solved to get the
value of .

Now, by putting this value of yin (1.11) or (1.12), we get the value of x.

Note: Similarly, we can also eliminate y and get a linear differential equation in x
and ¢ which can be solved to get the value of x in terms of 7. Further the value of
y can be obtained from (1.11) or (1.12) by putting the value of x.

Method of differentiation

Sometimes, by differentiating one of the equations (1.11) or (1.12) or both, we
can easily eliminate x or y. From resulting equation, after eliminating one dependent
variable, x or y can be solved to give the other dependent variable and then the
value of the other variable can be obtained by putting these values in equation
(1.11)or (1.12).

Example 1.16: Solve the simultaneous equations

dx dy .
—+4x+3y=t —+2x+5y=e
dt y=t and dt 4



d
Solution: The given equations are 7): +4x+3y=t .. (1)
d ;
and %+2x+5y=e ... (2)

By putting% =D in equations (1) and (2), we get

(D+4)x+3y=t .. (3)
and 2x+(D+5)y=¢ ..(4)
Eliminatingy, we get[ (D +4)(D +5) -6 |x=(D+5)¢ -3¢’
= (D* +9D +14)x=1+5t - 3¢'.

S ItsAE.is D2 49D +14=0 =D=-2,-7

CF. = ce™ +ce”

1 1 t

Pl =——.(1+5t) —-——— 3¢
14+9D+D2( ) 14+9D +D?
—1 P
=i(1+iD+iD2j .(1+5t)—L
14 14 14 14+9+1
=L(1—2D+...j(l+5t)—le’
14 14 8
S A P o
1 4 8 14 14) 8
x=clezl+cze7‘+—t—le’—1
14 8 196
dx 2t g5 1
= —=-2ce " —Tce +———¢
dt : ? 14 8
: dx :
By putting the values of x and o equation (1), we get
3y =—2¢e™ +3c,e”" —&l +t—i+£+le‘ +le’
7 14 49 8§ 2
1 327 5
=—|-2ce” +3c,e”’ —=t+—+=¢
= y 3{ 1 2 98 8 }
5 31 1
x=ce +cet +—t————¢
and TR T 96 8

Example 1.17: Solve the simultaneous equations

dx _dy , dx dy 2
—+2—=—-2x+2y=3e 3—+—=—+2x+y=4e
ddi y=de and 3, d
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. . d . d ,
Solution: The given equations are 7); + 27); —2x+2y=3e

dx dy 2t
d 3—+—=—+2x+y=4e
an i di 4

d
By putting i D inthe equations (1) and (2), we get

Dx+2Dy —2x+2y =3¢

(1)

Q)

. 3)
Ny

= (D—-2)x+2(D +1)y=3¢
and BD+2)x+(D+1)y =4e”
To eliminate y from Equations (3) and (4), multiply Equation (4) by 2 and subtract
from Equation (3).

(D-2)x+2(D+1)y —2(3D +2)x - 2(D +1)y =3¢’ —8e*
= [D-2-6D—4]x=3¢ —8e*
= (=5D — 6)x =3¢’ —8e™

, dx 6 8, 3

= (5D +6)x=8¢" —3¢'=>——+_-x=—e ——_e

dt 5 5 5
C e . . . dx
which is a linear differential equation of the form 7 +Px=Q

6 8 3
h P=—andQ=—¢" —=¢
where 5 Q 5 5

LE = Jra_ fonr_

=e

S, 8 3 S,
Thus, the solution of Equation (5) is 3{65 J = I(g e - getJ e’ dr+c¢

s_qf8 5 3% 85 % 35
— xe’ :I geS —geS dt+c =25 _ 2~
516
6 16 11
= x:eStBeSt 365}+0165
6
= x= ;62’ —%e’+cle '
dx 1 3 6)
—==—2)" —=¢€ +c|-——|e?
= 22 1( 5]

, d d .
From Equation (1),7): —2x+ 27); +2y=3e

Using Equations (6) and (7), we get

. (5)

.. (6)

. (7)



21 3 ! 6 - 1 2t ! : ) !
——e ——ce’ -2|—e'——ée +ce’ |[+2—+2y=3e
11 2
6
= 2dy 2 _30 ’+1 e’ :ﬂer: e +oce’ (8)
d 11 5 dt 11 5

which is a linear differential equation.

LF.= eIld, =é
Thus the solution of Equation (8) is

) 15, 8 -4,
yezj(ﬁe+scl Jeaft+c2

1
J‘(lseﬂ tzce jdﬂrcz =1—562’ —86‘16_;[ +c,
5 22

15, _gt —
= yzze —8ce +cye

Hence the required solutions of given equations are

dy

. . d
Example 1.18: Solve the simultaneous equations ¢ i y =01 r +x=0

dt
given thatx(1) =1, y(-1)=0.

. . d
Solution: The given equations are (Rt y=20

dt
dy
t—+x=0
and L
. . . . d’x  dx
Differentiating Equation (1) with respect to ¢, we have ¢ 0 + o
dx dy _ 0
dt dt
. . ,d’x dx
Subtracting Equation (2) from (3), we ge " + 15 -x=0
which is an homogeneous linear equation.
Putt=e=logt=z
d d , d’
a g P and =Pl

.. Equation (4) becomes [D(D-1)+(D-1)]x=
= [D* —1]x=0

LY

(D)

Q)
=0
dt

. 3)

(@)

Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
Material 27



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
28 Material

S~ ItsAE. isD?-1=0 =D*=1=D=+#I

Thus the solutionis x = ce” +c,e”
_ -1 _ )
= x=ct+c,t _Clt+7 .. (5

. - . . dx ¢,
Differentiating Equation (5) with respect to ¢, we get R

d c
By putting this value of ;); in Equation (1), we get ¢ [Cl - t_j} +y=0

= clt—%+y=0:>y=—clt+072 ... (6)
Given, x(1)=1;y(-1)=0

Putting =1, x = 1 in Equation (5), we have 1 = ¢, +¢, .. (7
Putting #=—1, y = 0 in Equation (6), we have 0 =c, —c, ... (8)

1
Solving Equations (7) and (8), we get ¢, =¢, = 3

1 1

1 1
Thus, the required solutions are X = 5(1 + ;J V= 5(—1 + ;j .

1.3.1 Simultaneous Equations in a Different Form

If the equations are given in the form P dx +Q dy+R dz=0

... (1.13)
and P,dx + Qdy + R,dz=0 ...(1.14)
where P ,P,,Q,, Q,,R, R, are all function ofx, y, z.

Dividing Equations (1.13) and (1.14) by dz, we get
dx d
PIE+QId—§+RI=o ... (1.15)
dx dy
P,~+Q,=+R, =0
and de+Q2 dZ+ 2 (116)
Solving Equations (1.15) and (1.16), by cross-multiplication method, we
get
& Y
dz _ dz _ 1
Q1R2 _Q2R1 R1P2 _R2P1 P1Q2 _P2Q1
dx B dy B dz
= Q1R2 _Q2R1 R11)2 - R2P1 P1Q2 _Ple
" & _dy_d
which is of the form P O R ... (L.17)

where P, Q, R are functions of x, y and z.

Thus, simultaneous Equation of the type (1.13) and (1.14) can always be
put in the form Equation (1.15).



dx dy d
Methods for solving the equation— = gy_&

P Q R
First method: Let the multipliers /, m, n be such that

dx _dy dz _ldx+mdy+ndz

P Q R [P+mQ+nR
Choose /, m, n such that /P + mQ + nR = 0, and hence /dx + mdy + ndz =0

Ifitis an exact differential equation say du, then on integrating, we get, one
part of the complete solution of Equation (1.15).

Again, if we choose another set of multipliers /', m’,»n' such that
I'P+m'Q+n'R=0wegetl'dx+m'dy+n'dz=0
Then, on integration, it will give another equation. The two equations thus

obtained by using two sets of multipliers will form the complete solutions of given
simultaneous equations.

Note: Sometimes it may also happen that we choose multipliers /, m, n such that

ldx +mdy + ndz ) ) ) )
P+ mO+nR_ 0 +nR is of the form that numerator is the exact differential coefficient of
the denominator.
dx dy dz
Second method: The given equations are = Q "R ... (1.18)

dx dy
First take any two members of 7 6 (say) and integrate it to get one of

the equation of the complete solution.

Again, take other two members P_ % (say) and integrate it also to get

another equation of the complete solution. These two equations so obtained form
the complete solution.

Example 1.19: Solve the simultaneous equations =— y _ &
cos(x+y) sin(x+y) . 1
z

Solution: The given equations are d b dz (D

cos(x + y) - sin(x + ) - z+l
z

Choosing 1, 1, 0 as multipliers, we get

dx _dy  dz dx +dy
cos(x+y) sin(x+y)

1 - cos(x + y) +sin(x + )

z+
z
zdz dx +dy
= =—
z2+1  sin(x+ y)+cos(x+ y)
2zdz d(x+y)
N _

> =
2(Z +1) \/ESin(X'i‘y-FZ)
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L{ 2zdz
= \/E z7+1
Integrating both sides, we get

1 1 i
—log(z* +1)=logtan—| (x + y)+— | +logc
7 g( ) =log 2(( ») 4j g¢

}zcosec[(x+y)+§}d(x+y)

= log(2® +1)”ﬁ —logtan(x;y +gj =logc
2 1/42 24 1/42
log& = ]og G (Z ) =q
:> tan x+y+E :> tan M_FE coe (2)
2 8 2 8

Now, choosing 1, 1,0 and 1, —1, 0 as multipliers in Equation (1), we get
dx+dy B dx —dy
cos(x+ y)+sin(x+y) cos(x+y)—sin(x+ y)

[cos(x + y) —sin(x + y)]
cos(x + y) +sin(x + y)

(dx+dy)=dx—dy

[cos(x + y) —sin(x + )]
sin(x + y) +cos(x + y)

= dx+y)=d(x-y)

Integrating both sides, we have log | sin(x + y) + cos(x + y) |= x— y + logc,

= log‘sin(x+y)+cos(x+y)’+(y—x)=logc2
= log ‘ sin(x + y)+cos(x + y) | = logc,
= |sin(x+y)+cos(x+y) e =c, ...(3)

Thus, Equations (2) and (3) together form the complete solution of the
given equations.

xdx dy dz

Example 1.20: Solve the simultaneous equations = = .
z"=2yz—y" y+4+z y-—z

Solution: The given equations are xdx Y dz .. (D)

22 —2yz -y’ _y+z_y—z

Choosing Equation (1), y, z as multipliers, we get

xdx _dy  dz
22 =2yz—y" y+z y-z

_ xdx + ydy + zdz _ xdx + ydy + zdz
2 =2yz=y +y(y+)+z(y-z) 0
= xdx + ydy + zdz=0
x>y 2 e
Integrating both sides, we get Y + 5 + 5= 31 , Where ¢ is any arbitrary

constant.



= ¥ +y+z2=c ...(2)
_dz

y+Z_y—Z

= y-2)dy=(W+z)dz= ydy — (zdy + ydz) —zdz=0

From last two fractions of Equation (1), we have

2 2

Integrating both sides, we get y? —yz— % = %2 , where c, is any arbitrary
constant.
= V-2yz-2=c, .. (3)

Thus, equations (2) and (3) together form the complete solution of the given
equations.

d d d
Example 1.21: Solve Al e
y+z z+x x+y
Solution: The given equations are & _dy _ & (1)
y+z z+x x+y
From Equation (1), we have
dx—dy dy—dz dx+dy+dz
y—X z—y ﬂx+y+ﬂ
Choosing the first two members, we have di—dy _dy—dz
y—x z=y
On integrating both sides, we get log(y —x) =log(z—y)+logc,
y—-x
=¢ > x-y=¢(y-2) ...(2)
z—y
Again choosing the first and the last members, we have
—log(x—y)= %log(er y+z)-loge,
= (x—gﬁz(x+)w+z)=cz .3

Thus, equations (2) and (3) together form the complete solution of the given
equations.

1.4 TOTAL DIFFERENTIAL EQUATION

Let arelation be f(x, y, z) = ¢ where x, y, z are variables and c is a constant.

Differentiating this relation, we get

oF o o
df =00r 5dx+5dy+gd2—0 ...(1.19)
The general form of the Equation (1.19) in three variables can be written as
Pdx +Qdy +Rdz=0 ...(1.20)

where P, Q and R are functions of x, y and z, respectively.
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The equations of the form Equation (1.20) are known as the total differential
equations or the single equations in three variables x, y, z.

Also, the equations of the form P dx, + P dx, + P.dx,+ ...+ P dx =0

where P, P, P, ..., P arefunctions ofx,x,,x,, ..., x ,respectively are

known as the total differential equations in # variables.

1.4.1 Condition for Integrability

Theorem 1.1: The necessary and the sufficient condition for the integrability of
the total differential equation Pdx + Qdy + Rdz=01s

P @_a_R +Q(8_R_6_PJ+R a_P_@ =0
oz Oy ox 0Oz oy Ox
Proof: Necessary Condition:

The given total differential equation is Pdx + Qdy + Rdz=0 ...(L21)
Let the integral of equation Equation (1.21) be f(x, y,z)=c.

o . .o o
Y i+ L ay+ L gz =0
So, we have - x+ay Y ...(1.22)
A,
Comparing Equation (1.21) and (1.22), we get 2x _ & _ &z _, (say)
P Q R
o o o
Y oap, L0, L=ar
= ox oy P
i(@j_i 9 oL oS
As oy\ox) ox\oy) " Oyox  Oxdy
0 0
2 opy=Z(n
£ )= 00)
P oL . 0Q _on
A—+P—=A—+Q—
= o oy | ox Va

oP . 0Q oA O\ oP 0Q o\ O\
- A——A—=Q——P— S A|——|=Q—-P—
oy ox an Oy {8y ﬁxj Q@x oy --(1.23)

Similarly, we can get

0Q OR oA oM
7 S P A Y

( = 6y] o (1.24)

And x(a_R_a—Pj:P@—R@ ..(1.25)
ox Oz oz Ox

Multiplying the Equations (1.23), (1.24) and (1.25) by R, P and Q,
respectively and then adding we get

x[R(a_P_@}p(@_a_R}Q(a_R_a_Pﬂ=0
oy Ox oz oy ox Oz



= p(a_Q—a_R
0z Oy

R _P), (P 0
}Q(ax azjﬂz[&y ﬁxJ 0 ..(126)

which is the necessary condition for the Equation (1.26) to possess an

integral Equation (1.22).

This condition can also be written as

Sufficient Condition

P|o © O
Qo OO
Rl m =

Let the coefficients P, Q and R of the Equation (1.21) satisfy the condition (1.26).
Consider the equation Pdx + Qdy =0 where P and Q are the functions of

x and y, respectively.

Ifthis equation is not an exact differential equation, then we can found an
integrating factor A, by which the equation can be multiplied to make the equation

exact.

Now, we have Pdx + Qdy = dV

= Pdx + Qdy = oy y
ov N
P= e and Q= £y
o OV q Q _ v
= oz Ozox ane o 0z0y
P _ >V aQ_ &V
Also,  Fr= 5, and 5T 55
P _Q L0V v
oy Ox " oyox  oxdy

Substituting the above values in Equation (1.26), we get

x| azoy

= x| zoy

av(azv _

av(azv _

oz

2
R VIR _ OV +R(@_@)=0
oy oy\ Ox 0zox ox Ox

R, V(R _OV)_
oy oy \ Ox 0z0x

v g[av_Rj_a_V Q(Z_V_Rjzo
/4

= ooy

which implies that there exists a relation independent of x and y between V

dy ox

oV ,
and (— - Rj =R,.Thus, R, can be expressed as a function of zand V.

Oz
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a_V_R R a_V_R R
0z 0z
ov ov ov
Now, Pdx + Qdy + Rdz = —dx+a—d (82 ledz
=dV-Rdz
= dV - f(z,V)dz

[+ R,isafunctionofzand V.]
Thus, the Equation (1.21) reduces to dV — f(z,V)dz =0.

Since this is an equation in two variables (z , V) and the solution is of the
form f{(z, V) =0, thus the condition is sufficient.

Condition to be Satisfied for Exactness

The conditions for the differential equation to be exact are

®_Q Q_ R R_oP

c'iy_ ox’ oz 6y’8x_62
1.4.2 Methods to Solve Total Differential Equations

Inspection method

0Q R oR oP) (P Q
——— |*R| ——— =0
In this method, first check if { o ay}rQ( . 82} ( o axj to

see whether the condition for integrability is satisfied and then rearrange the terms
to make the equation exact. Finally, find the solution.

Example 1.22: Solve the differential equation
(3x2 +2xy—y° +z)dx+(x2 —2xy -3y’ +z)dy+(x+y)dz =0
Solution: The given differential equation is
(3> +2xy =7+ z)dx+ (%" = 2xp=3y" +z)dy+(x+y)dz=0 ...(1)
Comparing Equation (1) with Pdx + Qdy + Rdz =0, we get

P=3x"+2xy—1y"+2z,Q=x"-2xy-3y’+z andR=x+y

> _ Q Q_ R__ &R op
£y 2x—2y, . =2x-2y, — P 1, = £y =1, ax—landaz—l
5Q &R oR oP) (0P o8Q
- T s S I [ Y
Putting these values in ( 5 ay} Q( ™ azj (ay o j we get

(3x2 +2xy—y° +Z) (1 — 1) + (x2 -2xy -3y’ +z) (r —1) +(x+y)
{(2x—2y) (2x - 2y)}=0
.". The condition of integrability is satisfied.

Now, Equation (1) can be written as



(3x2dx — 3y2dy) + (2xydx + xzdy) — (yzdx + 2xydy) +zd (x + y) + (x + y)dz =0
= d{x3—y3+x2y—xy2+z(x+y)}=0
Integrating, we get x* —y° +x’y —xp” + Z(x + y) =c
which is the solution of the given equation.
Example 1.23: Solve the differential equation yzlog zdx — zxlogzdy + xydz = 0.
Solution: The given differential equation is
yzlogzdx —zxlogzdy + xydz =0 ..(1)
Comparing Equation (1) with Pdx + Qdy + Rdz =0, we get

P=yzlogz,Q=-zxlogz and R =xy

oP 0
=zlogz, —Qz—zlogz, Q =_x10gz_x,a_R_x,aR _

oy ox oz Gy_ o y

OP
and —=ylogz+y
Oz

Putting these values in P (% - Z—I;J +Q (2—5 - Z—Zj +R (Z—i - %) , we get

(yzlogz)(—xlogz—x—x) —leogz(y—ylogz—y)+xy(zlogz+zlogz)
= xyzlogz(—logz - 2) - xyzlogz(—logz) +2xyzlogz =0

.. The condition of integrability is satisfied.

Dividing Equation (1) by xyzlog z,, we get
dx d dz
7_7)/+ zlogz

=0

Integrating, we get log x —log y + loglogz =logc

xlogz

= log =logc

xlogz
y
which is the solution of the given equation.

= =c=>xlogz=cy

Taking one variable as constant from three variables

OR OP oP 0
j* R| —- QI 0 to see whether
oy Ox

oQ R
. opl &X_2 om_ar
Step 1: Check if (82 aijrQ(ax .

the condition for integrability is satisfied.

Step 2: Take one variable z (say) as constant out of three variables in Pdx + Qdy
+ Rdz =0 and differentiate it to get dz=0.

Step 3: Let the solution of Pdx + Qdy =0 be u = f(z), where f(z) is a function of
z and considered as constant with respect to variables x and y.
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Step 4: Differentiate u =f{z).
Step 5: Compare the result obtained in Step 4 with Pdx + Qdy + Rdz=0.
Step 6: Eliminate the functions of x and y if the coefficients of df or dz contain

0
functions of x and y. Thus, we obtain a—J; which is independent of x and y.

Step 7: Integrate to obtain £, which is the solution of the given equation.
Example 1.24: Solve the total differential equation
2yzdx+ zxdy —xy(l + z)dz =0.
Solution: The given differential equation is
2yzdx+zxdy —xy(1+z)dz =0 ...(D)
Comparing Equation (1) with Pdx + Qdy + Rdz =0, we get
P=2yz,Q=zx and R =—xy(1+z)

oP Q oQ IR oR opP
=2z, oy Soy =X XZ =y —=2
Ty x oy R and oz 7

Putting these values in P RQ_R +Q(6—R—8_P)+R P _RQ ,
oz Oy ox 0Oz oy Ox

we get
2yz(x+x+xz)+zx(—y—yz—2y)—xy 1+z)(2z—z)
= 2yz(2x -+ xz) + 2x(=3y - yz) (3 + xy2) (2)
=4xyz + 2xyz" = 3xyz—xyz° —xyz—xyz° =0
The condition of integrability is satisfied.

Taking z as constant = dz=0

Now, Equation (1) can be written as
2vzdx+zxdy=0=2ydx+xdy=0

Dividing both sides by xy, we get 27 + 7 =
Integrating, we get

2log x +log y = constant which contains terms of z
logx* +logy =log¢(z)

= logx’y =logd(z) = x*y=¢(z) ..(2)
Differentiating it, we get

2xydx +x°dy = ¢'(Z)dz = 2xydx+x’dy - d)'(z)dz =0
Multiplying both sides by i, we get

2yzdx+xzdy—§¢'(z)dz=0 ..(3)



Comparing Equations (1) and (3), we get

id)'(z) = xy(1+z)

:>¢'(Z)=XZJ’(1J;ZJ =¢'(z) =¢(Z)(1J;Zj [From Equation (2)]
e

Integrating, we get log¢(z) =logz +z+loge
=log(z)=logz+loge” +logc
=¢(z)=cze’ =>x’y =cze’

which is the solution of the equation.

Homogeneous Equations

0Q R OR P P AQ

Step 1: Check if P (g - 5] + Q(a - Ej* R (5— aj =0 to see whether

the condition for integrability is satisfied.

Step 2: If in the total differential equation Pdx + Qdy + Rdz=0, the P, Qand R
are homogeneous functions of x, y and z, then separate one variable z (say) from
the other two variables by putting x =uz and y=vz, i.e., dx =zdu + udz and dy
=zdv + vdz.

Step 3: Integrate the reduced equation to find the solution of the given equation.
Example 1.25: Solve the total differential
equation yz(y +z)dx + zx(x+z)dy +xy(x+y)dz =0.

Solution: The given differential equation is
yz(y + z)dx+ zx(x +z)dy + xy(x+ y)dz =0
= (yzz+yzz)dx+(xzz+xzz)dy+(x2y+xy2)dz:0 ...(1)
Comparing Equation (1) with Pdx + Qdy + Rdz =0, we get

P:y22+y229 QZ.X:ZZ"‘)CZ2 and R:x2y+xy2

—=2yz+2°, a—Q=2xz+zz,

Ox
6Q 2 aR 2 aR
—==x"42xz, =X T2y —=2xp+)°
10/4 > oy > ox Yy
oP
and —=y2+2yz
Oz
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oQ @R OR 0OP P aQ
. . Pl =—=_- + —— [+ R| ——
Putting these values in ( Pe ayj Q( P 62) (6)} ax] ’

we get
(yzz+yz2)(x2 +2xz—x" —2xy)+(xzz+xzz)(2xy+y2 -y —2yz)
+(x2y+xy2)(2yz+zz —2xz—zz)
=1’z + 32" ) (222 = 2xp) + (¥ 2+ 227 ) (2xp = 2yz) + (2 y + 7 ) (22 - 2x2)
=22 2% 4 22’ — 2xp°z = 2x° 2% 4 20 yz + 2Py

2xPyz® =2xyz +2x° Yz 4 2xy’z 2x°yz —2x7y’z=0
.. The condition of integrability is satisfied.

The equation is homogeneous function in x, y and z.
Taking x =uz and y =vz

=dx=zdu+udz and dy=zdv+vdz

Putting these values in Equation (1), we get
v(v+1)Z’ (zdu+udz)+u(u+1)z° (zdv+vdz) +uvz’ (u+v)dz =0
= v(v+1)(zdu+udz)+u(u+1)(zdv+vdz)+uv(u+v)dz=0
= v(v+l)zdu+u(u+1)zdv+2uv(u+v+1)dz=0
Dividing byuv(u +v+1)z, we get

L A S NP

u(u+v+1) v(u+v+1) z

(u+v+1)—ud (u+v+1)—vvar
u(u+v+1) v(u+v+1) z

= (l— ! jdqu(l— ! jdv+2%=0
u u+v+l v u+v+l z

2% g

0

du dv (dqudv) dz
= —+—- +2—=

u+v+l1 z

u v
Integrating, we get logu +logv—log(u +v+1)+2logz =logc
= logu+logv—log(u+v+1)+logz® =logc

uvz?
u+v+l1

= log =logc

= wz’ =c(u+v+1)

Xy x oy
— =z =c|—+—+1 =
= S (z - j:xyz c(x+y+z)

which is the solution of the given equation.



Auxiliary Equation

This method is used in case when the differential equation Pdx + Qdy + Rdz=0
is not exact and the methods discussed above are not convenient.

0Q R 0R OP oP  oQ
) opl R_B ——— |+R| ———
Step 1: Check if (az aijrQ(ax azj {5‘y 8xj

to see whether the condition for integrability is satisfied.
Step 2: Compare Equation (1.27) with Pdx + Qdy + Rdz = 0 to obtain the

dx  dy dz
auxiliary equations NQ_R JR_oP P_Q
0z o0y Ox 0z 0Oy Ox
Step 3: Solve the auxiliary equation obtained in Step 2 just like simultaneous

equations.

0 ..(127)

Step 4: Let the integrals of the auxiliary equations be u =a and v=">.

Step 5: Compare Adu + Bdv = 0 with the given differential equation to find the
values of A and B.

Step 6: Put the values of Aand B in Adu + Bdv=0.

Step 7: Integrate the equation obtained in Step 6 to find the solution of the given
equation.

Example 1.26: Solve the differential
equation z(z — y)dx +(z+x)zdy +x(x+y)dz =0
Solution: The given differential equation is
z(z—y)dx+(z+x)zdy +x(x+y)dz=0 ..(1)
Comparing Equation (1) with Pdx + Qdy + Rdz =0, we get
P=z(z-y)=z"—zy, Q=(z+x)z=2z"+xz and R=x(x+y)=x"+xy

®___Q__ A R _ R

OP
z,—=2z+x, 7 =X —=2x+ —=2z-
oy n e " yand o 4

0Q @R OR oP oP 0Q
: i P| —=-—|+Q| == |+R| ===
Putting these values in {62 3J+ (Gx 82) [ 2 ax},we get ...(2)

(22 —zy)(Zz-l—x—x)Jr(z2 +xz)(2x-I—y—22+y)+(x2 -l—xy)(—z—z)
= (22 —zy)(Zz)nL(z2 +xz)(2x-|—2y—2z)—(x2 +xy)(22)

=22[22—yz+x2—zz+xy+yz—x2—xy]=0

.". The condition of integrability is satisified.
Comparing Equation (2) with Pdx + Qdy + Rdz =0, we get

ddx  dy dz
0Q OR OR oP 0P 0Q

0z 0Oy Ox 0z 0Oy Ox
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dx _ dy _dz
= 2z 2x4+2y-2z 2z

& & _d
= z Xx+y-z -z -3

dx d
From first and last members, we get 7x = _—i
= dx+dz=0
Integrating, we get x + z=u
) dx+dy _dz

From Equation (3), Tt y -z

Integrating, we get log(x + )+ log z = constant
= log(x+y)z=logv
= (x+y)z=v
If A du + Bdv = 0is identical with Equation (1), then
A(dx+dz)+ B[(x +y)dz +(dx + dy)z] =0 is identical with Equation (1)
= (A+zB)dx+Bzdy+[ A+B(x+y)]dz =0isidentical with Equation (1)

Comparing it with Equation (1), we get

A+zB=z(x-y), Bz=(z+x)z andA+B(x+y)=x(x+y)

B=(z+x)=u and

A=(x+y)(x—B) =(x+y)(x—z—x) =—(x+y)z=—v

By putting the value of A, Bin Adu + Bdv =0, we get

du dv
= —vdut+udv=0=> —+—=0

u v
Integrating, we get

—logu +logv=1logc

= logzzlogc
u

v
= ;=C3 v=cu3(x+y)z=c(x+z)
which is the solution of the given equation.

1.4.3 Solution of Exact and Homogeneous Total
Differential Equations

Theorem 1.2: The solution of the total differential equation Pdx + Qdy +
Rdz =0 when it is exact and homogeneous of degree n #—1 is xP +yQ +zR =c.

Proof: Consider the total differential equation
Pdx + Qdy + Rdz=0 ...(1.28)

where coefficients P, Q and R are homogeneous functions of x, y and z of
degree n #—1.



Now,

oP oP  oP
X—+y—+z—=nP
ox oy oz

xa—Q—i- ya—Q + Z@_Q =nQ
Ox oy 0z
R R OR

x—+y—+z—=nR

Ox oy 0z

[By Euler’s Theorem]

...(1.29)

Suppose the solution of equation (1.28) is given by

xP+yQ+zR=c¢ ...(1.30)
Differentiating Equation (1.30), we get

(P+xap+yaQ+zaRjdx+(xaP+Q+yaQ+zaRjdy+(xaP+yaQ+R+26Rjdz—0
Ox Ox Ox oy oy oy z o
.(1.31)

As equation (1.28) is exact, so the conditions for exactness must be satisfied,
1e.,

P 3Q 9Q R OR P

oy ox 0z oy ox oz
Putting these values in equation (1.31), we get

P+xa—P+ya—P+26P dx + xa—Q+Q+ya—Q+za—Q dy + xa—R+ya—R+R+za—R dz=0
Ox oy Oz Ox z Ox oy 0z

= (P+nP)dx+(Q+nQ)dy+(R+Rn)dz=0  [Using Equation (1.29)]
= (n+1)(de+Qdy+Rdz)=03 Pdx+Qdy+Rdz=0

So, the assumption is true and hence the solution of the Equation (1.28) is
xP+yQ+zR=c.

Example 1.27: Solve the differential equation

(y2 +2° +2xp + 2xz)dx+ (x2 +27 4+ 2xp+ 2yz)dy +(X* +y* +2xz+2y2)dz=0
Solution: The given differential equation is
(y2 +z° +2xy+2xz)dx+(x2 +20 42y + 2yz)dy +(x*+ )" +2xz+2yz)dz=0 .. .(1)
Comparing Equation (1) with Pdx + Qdy + Rdz =0 , we get

P=y)"+2"+2xy+2xz, Q=x"+2z"+2xy+2yz and

R=x>+y"+2xz+2yz

oP oQ oQ OR
—=2y+2x, <=2y 42x, —~=2z+2y,—=22+2y
Y ox Y oz y’ay ’
a—R=2x+ZZa,nd a—P=2x+22

ox Oz
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The given equation is exact and P, Q and R are homogeneous functions in x,
yandz.

The solution of the given equation is xP +yQ +zR=c¢

x(y2 +z° +2xy—i—2xz)+y(x2 +z° +2xy+2yz)-}—z(x2 +y +2xz+2yz)=c
= X)X 22X A XY+ Y+ 200 42V 4 Xz Yz 2x2” 2y =c
= 3xp° +3xz° +3x°y+3x°z+3y’z+3yz" =¢
= 0’ +x + X0y +x’z+ylz 4y =¢

= x(y2 —i—zz)—i—y(x2 —i—zz)+z(x2 +y2) =

which is the solution of the given equation.

Check Your Progress
dx dy
= _Tx+y=0 = _2x -5y =0
8. 7 y and it y .
dx t dy 2t
—+5x+y=ce ——-x+3y=ce
9. 7 y and Ul y

dx - dy dz

y,—=2z,—=2x,

10.

dt ar dt
adx _ bdy B cdz
11. b-¢c)yz (c—a)zx (a—-buxy
dx B dy B dz
12. y3x _ 2x4 2y4 _ x3y 9Z(x3 _ y3)
dx _ dy _dz

13. x+y —(x+y) =z

dx _dy = dz
14 y2 x2 x2y222

15. Solve the following differential equations by the inspection method:
(a) (yz+xyz)dx+(zx+xyz)dy+(xy+xyz)dz=0
(b) z(l—zz)dx+zdy—(x+y+xzz)dz=O,

16. Solve the differential equation 3x7dx +3y°dy — (x3 +y +e” )dz =0by
regarding one variable as constant.

1.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. y=ccosx + ¢, sin x — cosx log (secx + tanx)

2. y=ccosx + ¢, sinx + x sin - x + cosx log(cosx)
— 2x -2x 2-_

3.-y=ceFtcert+ex

4. y = c cosx + ¢, sin x-cosx + sin x



5. y=ce +c,e”+ (3 cosx + sin x)
6. y = c,cosx + ¢,sin x + xcosx + sin x log(sec x) — sin x
7. y=c,cos 3x + ¢, sin 3x + cos 3x log (cos 3x ) + sin 3x
8. x=e"(c,cost+c,sint);y= e"[(c, — c,)cost + (¢, + ¢,)sint]
4 , & w1 Ty
9. x=(c, +c,f)e—+ ¢ 36 y=—{c +c,(t+1)}e +5¢ +3ce

10. x=ce* +c,e cos(\Bt+¢,);
2 - 2n
y=ce +c,e cos (\/gt +c+ ?] and

- 4n
z=ce’ +ce” cos(\/gl+c3 +?J

x+y

15. (a) logxyz+(x+y+z)=c (b) —xz=c

z

16. X’ +y’ =& +ce

1.6 SUMMARY

¢ Any homogeneous differential equation of the from.

d" y n—' y > d" -2 y
! +px" + + P Xt ——— Y, =
dx" s dx""1 P2 dx" =2 Pale =0
is called a homogeneous linear differential equation of nth order, where p,

p,-p,are caustants and Qs a function of x

X

e Homogeneous linear differential equation is reducible to linear differntial
equation with constant coefficient by subsituation

x=e" . .z=logx
dz 1

or—=—
dn x

o A differential equation of the form

d
LT () Ly (1) y =0

Is said to be linear homogeneous differential equation with variable
coefficients where a, (x) and a, (x) are continuous function in the interval

[a, b].

e For second order homogeneous differential equation there is no general
method for finding a particular solution.

. dx _dy _dz . .
e The equation 1~ = 6 ~ R can be solved by using two sets of multipliers to

get the complete solutions. This equation can also be solved by taking any

Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
Material 43



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
44 Material

two members and then integrating them. Again we need to take other two
members and integrate. These two equations are thus obtained form the
complete solution.

x or y can also be eliminated by differentiating one of the given equations or
both. Then, we can solve the resulting equation to get other variables.

. . d. d
Simultaneous equations of the type Pld—JZCJrQId—)Z}JrR1 =0 and

P, & +Q, ol + R, =0 can always be putin the formﬁ = & = & where
dz dz P Q R’

P, Q, R are functions of x, y and z.

By eliminating x, we can get a linear differential equation in y and # which

when solved gives the value of y in terms of ¢. Further, the value of y can be

obtained by putting the value ofx in the given equation.

We need as many numbers of simultaneous differential equations as are the
number of dependent variables to solve such type of equation.

The solution of the total differential equation Pdx + Qdy + Rdz =0, which
is exact and homogeneous of degree n #—1,is xP + yQ + zR =c.

There are various methods to solve total differential equations, such as
inspection method, taking one variable as constant out of three variables in
Pdx + Qdy + Rdz =0, in case of homogeneous equations and auxiliary
equations. In all these methods, first of all we need to verify the condition of
integrability and then follow the steps specific to each method.

The conditions for the differential equation to be exact are
®_2Q 0Q_R R_2P

oy ox 0z oy ox oz

The necessary and the sufficient condition for the integrability of the total
differential equation Pdx + Qdy+ Rdz=01s

22 R[22,
oz Oy ox Oz oy Ox

1.7

KEY TERMS

Homogeneous linear equation: Any homogeneous differential equation
of the from.
dn y n-' y n—2
n n —
o +px + = + poxt T ———... P.Y.: =¢
is called ahomogeneous linear differential equation of nth order, wherep ,
p,-p,are caustants and Qs a function of x

X

Linear differential equation: It is a differential equation in which the
dependent variable and all its derivatives appear only in the first degree and
are not multiplied together.



o Total differential equations in n variables: The equations of the form
P dx +Pdx, + P.dx, + ... + P.dx =0, where P, P,, P,, ..., P_are
functions of x , x,, x,, ..., X , respectively, are known as the total differential
equations in 7 variables.

¢ Total differential equations: The equations of the form Pdx + Qdy +
Rdz =0, where P, Q and R are functions of x, y and z, respectively, are
known as the total differential equations or the single equations in three
variables x, y, z.

1.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is homogeneous linear equation?

2. Give the solution of homogeneous linear equation.
3. Define the method of variation of parameters.
4

. Solve the following differential equations by the homogeneous equation
method.

() (2xz—yz)dx+(2yz—xz)dy —(x* —xy+y*)dz=0

(i) (¥y-y" —y’z)dxc+(x* —x’z=x)dy+ (0 +x7y)dz =0

(iii) vz (x* = yz)dx+ 2’ (¥ —2x)dy + 0 (27 = xp)dz =0

(iv) Zdx+(z" =2yz)dy+(2)" - yz—xz)dz =0

V) (228 —xy+y?)zdx+ (227 + 57 —xy)zdy — (x+ y)(xy+2*)dz =0

5. Solve the following differential equations by taking one variable as constant
from the three variables method:

() yzdx+(x’y —zx)dy+ (¥ z - xp)dz =0
(ii) (yz+yz)dx+(xz+zz)dy+(y2—xy)dzzO
(iii) z(x* —yz—2*)dx+(x+2)dy+x(2° —x* —xp)dz =0
(V) (y+b)(z+c)dx+(x+a)(z+c)dy+(x+a)(y+b)dz=0
) (ey+e)de+(e’z+e )dy+(e’ —ey—e'z)dz=0
5. Solve the following differential equations by the inspection method:
(i) (yz+2x)dx+(zx—2z)dy+(xy—2y)dz=0
(i) (*+2"—x")dx—2xpdy—2xzdz=0

@) 30" -0 a3 =2 )3 =0
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(iv) (xzy—y3 —yzz)dx+(xy2 —xzz—x3)dy+(xy2 +x2y)dz =0
V) (y + Z)(xzyzz2 - l)dx +x*y’z’ (xy + xz) & +£ + x(dy + dz) =0
y oz
Long-Answer Questions

1. Discuss briefly about the homogeneous linear equation with the help of
giving examples.

2. Solve the following simultaneous equations:
dx dy
i) —=3x+2y;—+5x+3y=0
W) G =Ry Ty

d’x _dy d’y dx .
i —-2——x=¢€ cost; +2-=—y=¢€"sint
() dr’ dt dr’ a7

.. dx dy
—=ax+by;—=a'x+b'
W) 2 dr Y

(@) @ﬁLQ—Zy=2cost—7sint;ﬂ—d—y+2x=4cost—3sinl
dt dt dt dt

d d .
v) d—j+5x—2y=f,7);+2ﬁy=0;glventhatx =y=0whent=0

 dy dz dy  dz
2 ———4y=2x;2—+4—-32z=0
() dx*  dx e dx  dx ‘
. d’x d’y
(vii) o +4x+5y=t2;dt2 +5x+4y=t+1
ldx ~  mdy ndz
(viii) (m—n)yz (n—Dzx (—m)xy
) dad dy  dz
® 0P a2y
dx _dy _ dz
(x) -y -z2 2xy 2xz
_dx _dy _%
(xi) I+y 1+x z
A Ay &
Ga) T T2 (-0
-dx  dy dz
®) S+ )yt (- p)Qr2y2)
_dx_dy dz
(V) 7T T3 sin(p+ 20)



3. Solve the following differential equations by the auxiliary equation method:

1) (2xyz+yzz +y22)dx+(x22 +2xyz +xzz)dy+(x2y +x)° + 2xyz)dz =0
(i) 22a7x+(z2 —2yz)dy+(2y2 —yz—xz)dz =0

(iif) (z+22)cosx%—(przz)%+(1_22)(y_sinx)%=0
(iv) (2x2y+ 2xy? JFZXJ’ZJFI)”Z’“r(x3 +xX°y+x7z 4 2xpz + 2y z + 2y2° +1>dy

+(xy2 +y’ +y22+1)dz =0
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UNIT 2 PICARD’S METHOD OF
INTEGRATION AND
SUCCESSIVE
APPROXIMATION
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2.2.1 Successive Approximation
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24.1 Existence and Uniqueness Theorem for Proof’s by Picard’s Method
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2.6 Summary
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2.8 Self-Assessment Questions and Exercises
2.9 Further Reading

2.0  INTRODUCTION

In mathematics, Picard’s method of integration for solving differential equations in
many of the Engineering problems, we are often confronted with the differential
equations whose solution cannot be obtained by standard techniques. For such
problems, we find an approximation solution using the Picard’s iteration method
which gives an approximation solution of the initial value problem. The existence
and uniqueness theorems are specifically used for solving differential equations
when any differential equation cannot be solved using standard methods. The system
of differential equations for local and nonlocal existence theorems for nth order
equations. There are many instances where a physical problem is represented by
differential equations with initial or boundary conditions. Existence of solutions in
the large is also known as nonlocal existence. Approximate solutions are arrived
at using approximations. Approximate solutions of differential equations can be
formulated by obtaining the analytic expressions (formulas) or numerical values
that approximate the desired solution of a differential equation to some degree of
accuracy. If a solution is represented by means of an infinite series, a finite portion
of'the series can be taken as the approximate solution.

An existence theorem is a theorem which asserts the existence of a certain
object. It might be a statement which begins with the phrase ‘There exist(s)’, or it
might be a universal statement whose last quantifier is existential. In the formal
terms of symbolic logic, an existence theorem is a theorem with a prenex normal
form involving the existential quantifier, even though in practice, such theorems are
usually stated in standard mathematical language. A uniqueness theorem is a
mathematical theorem that asserts the uniqueness of an entity that meets particular
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circumstances, or the equivalence of all objects that meet those conditions. The
Picard-Lindel6f theorem, which proves the uniqueness of solutions to first-order
differential equations, is an example of a uniqueness theorem.

In this unit, you will learn about the Picard’s method of integration, existence
theorem, uniqueness theorem and existence and uniqueness theorem proof’s by
Picard’s method.

2.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain Picard’s iteration method

¢ Define the significance of successive approximations

Understand the various methods of successive approximations

e Find solution of a given differential equation using Picard’s iteration method
e Describe the existence and uniqueness of initial value problems

e Identify the Lipschitz condition

e State the existence and uniqueness theorems

¢ Understand the system of differential equations

¢ Define the equations for local and nonlocal existence theorems for nth order
equations

e Approximate the error using the error approximation theorem
¢ Find the existence and uniqueness solutions for linear systems
¢ Explain about the uniqueness theorem

¢ Discuss about the existence and uniqueness theorem - proofs by Picard’s
method

2.2 PICARD’S METHOD OF INTEGRATION

Picard’s method of solving a differential equation (initial value issues) is an iterative
method in which the numerical answers grow more and more accurate the more
times it is employed. Finding the solution to a differential equation might be
challenging at times. The approximate solution of a given differential equation can
be obtained in such instances.

Picard’s iteration method was first used to show that an initial value problem
exists. Despite the fact that this approach is not practical and is rarely utilized for
actual determination of a solution to the initial value problem (due to sluggish
convergence and difficulties with doing explicit integrations), there are known
enhancements in this procedure that make it feasible. Picard’s iteration approach
is significant because it yields an equivalent integral formulation that may be used
to build a variety of numerical algorithms.



When a user applies Picard’s iteration method in a computer, it aids in the
development of algorithmic thinking. It was the first method for solving nonlinear
differential equations analytically. Everyone can improve their computing skills by
working with Picard’s iterations and revisions.

2.2.1 Successive Approximation

In many of the Engineering problems, we are often confronted with the differential
equations whose solution cannot be founded by standard methods.

In such problems, it is sufficient to obtain an approximation solution only,
We shall mention here the Picards iteration method for giving an approximation
solution of the initial value problem of the form,

f%:f@yx Y) = ¥, @.1)

By the initeration method we mean a method which consists of repeated
application of exactly the same type of steps where in each step is picards method.
By integration, we may write Equation (2.1) in the form.

Y@=y, + [ flo 0] 2.2)

Where  is the variable of integration. It is easy to check that the integral is
zero when x = x,, so thaty =y,. Thus Equation (2.2) satisfies the intial condition
in Equation (2.1). Also if we differentiale Equation (2.2), we obtained the given
differential equation.

In order to obtain a solution y (x) of Equation (2.2), we proceed stepwise
as follows:

Puty =y, = Constant. on the right. This gives,
n@ =y + [ Sy de
We now substitute y, (x) in the same manner and get
@ =y, + [ o o]t

Continuing in this way at the 4th step of itegration process, we get,

@) =50+ [ v, 0)di (2.3)
Thus we obtain a sequence of approximation solutions.

V(X)) = Py (X) e, v, (x)
Example 2.1: Apply Picard’s iteration method of intial value problem.

dy
—=y t0)=1
dx » t(0)
and show that the successive approximations tends to the limit y = ¢*, the exact

solution.
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Solution: Here x, =0, y, =1, f(xy)=y

So that Equation ,(X) =¥, +j: St v, (O]dt of preeeding section

becomes,
y@ =y, + [y,

Taking y, =1, we obtain

yl(x):yo+jjyo(x) dt=1+j|-dt=1+x
‘ 0

X 2
¥, (xX) =y, +_[ »(t)de= 1+J.(1+l) dt = l+x+%
0 0

x X t2
y@=yo+ [ @ de=1+[ A+ e+ 2y dr
‘ 0

2 3
X X

=l+x+—+—
21 3!
In general, we get,
x’ x"
yn(x)=1+x+§+---+

n!

Thus the successive approximation tend to the limit y = ¢*as n — oo, which
is the exact solution.
Example 2.2: Apply Picard’s method of the initial value problem.

Y1, y0)=0
dx
and find the successive approximation.
Solution: Here x, =0, y, =0, f(x, y)=xy+1,So that
Equation ¥, (x) =y, + LO [t v @]de of preceeding section becomes,

v@ =y + [ [y, (0+1]di
Starting from x, =0 and y, =0, we get
W)=y +[t o) +1]de = [ de=x

(%) =y +[t () +1]de = | (7 + Dyt

x3
= —+x
3



(X)) =y, +[t yz(t)"'l]dt

_ Jox[t[t+§:|+1:|dt

3 xS
=x+—+—
3 35

Hence, we have,

3 3 5

X
=0,y =x,y,=x+—, y, =x+—+—celc.
Yo Y b 3 V3 3 35

Example 2.3: Using Picard’s method find the third approximation of the solution
of the equation,

v _,

y y—2x" =3 where y=2 when x=0

Solution: Here x, =0, y, =2
And f(x,y)=2u-2x"-3
We have V,(x) =y, + LO |:2y,,_1 (t)—2t* - 3] dt

First appoximation : Taking x, = 0 and y, = 2

W) =3y + [ 2y, =20 =3)de

_ o 2 _ 2 ;
= 2+j0 (4-20 =3)dr =2+x-2x
Second appoximation:

y,(x) = 2+j0"(2yl —27* —3)dt
2+_[x(4+2t+2t2 L2 3 op —3)dr
0 303

=2+x+x’ —lx4 —ix5
3 15
Example 2.4: Find the third approximation of the solution of the equation,
dy_,_ >
dx X

By Picard’s method, where y =2when x =1
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Solution: x,=1,y,=2 and f(x,y)= 2_§

x t
We have ,(x) =0+ LO (2 —yn_Tl()) dt,

First approximation: Taking x, =1and y, =2

3,(x) = ¥, +j( —%)dt: 2+J'1X(2_%)dt

= 2+[2x—2logt| =2x—2logx

Second approximation:

x 1
»(0)=2+] [2—;% (r)]dr
- 2+Lx[2—%(2t—2logt)]dt

x2 2
= 2+J‘1 7logt dt =2+ (logx)
Third approximation:

yy(x) = 2+jlx(2 —%yz(t))dt E 2+J.lx[2—%{2+(logt)2 }] dt

_ 2+Jlx[2—%—%{(logt)2}:| dt

= 2x—2logx—%(logx)3

Example 2.5: Apply Picard’s method to find third approximation of the solution
of the equation,

d
d—y:x+y2, where y =0, when x =0
X

Solution: Here x, =0, y, =0 and f(x, y) = x+ )”

We have »,(x) =, +J.):]f[t1 yn—l(t)]dt

(0= [ e+ vl ]de (1)



First approximation: From Equation (1), we have

= [e+rw]=] rdi= %

Second approximation: From Equation (1), we have

X

= [ [ o]a=[ (e At ar

2 5
X X

220
Third approximation: From Equation (1), we have

R R 2P
— 2 — Loy
»() =] [t+23 ©]ar=] [z+(2 + 20)]dt
) 4 7 10
=I t+t—+t—+t dt
o 420 400

xZ xS xS xll

—_— + —_—
2 20 160 4400
Example 2.6: Find the third approximation of the solution of the equation,

ﬂ:Zl %:xzz+x4y
dx dx

By Picard’s method, y =5 and ;=1 when x=0

Solution: Here the given simultaneous equations are,
% =Z=f(x,,2); % =x"2+x'y=g(x,y,2)
And x,=0,y,=5,z,=1
Vo= Yot I flt v, (@), 2, (0] dt
= Yo+ j Z, (t) dt
And Z,=Z,+ ] g[t.y,.0]Z, (@) dr
- Z, +j0 (2.2, )+t y, (0] dr
First approximation: Taking y, =5, Z, =1and x, =0
Y=Y +J:)ZO(Z) dt = 5+J.Oxl-dt: S5+x

Z =2, +j: [2Z,(0)+1* -y, (1) ]

= 1+J.:(t2'1+t4~5) dt=l+x?3+x5
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Second approximation:

x X [3 5
Yy =, +f0 Z,(t)dt = 5+.|'0 (1+?+t )dt
NOTES

4 6

=5+x+—+—
12 6

Z,=7, +_[0x[t221 O+ y,(0)]at

_1+j[ (1+ +t] (5+t)]dt

3 8
= 1+x—+x5+2x6+x—
3 9 8

Third approximation:

4 6

N 2
Vs =yo+_[0 Z,(t)ydt=5+x B

6 63

Z,=7,+ j:[tzzz (0)+1y,(1) | de

3 8

x 2
S P L LI
3 9 & 224

L
264

11

dz

X

dyZ

(x+2
i =x"(x+2)

By Picard’s method where y =1, Z =

Solution: Here the given simultaneous equations are,

E:Zf(xay’z)

dx
Vo= v+ | 63,0 0.2,,0)d
_— +j Z, . (t) di

And Z, =%, +J:] g[l‘, Vui(Ds 2, (t)]dt

=Z,+ Lx £ [yn—l +2,, (t)]dt

Self - Learning
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X x 5
+—+—+—x

Y, when x=0.

9
X

+_
72

6 8 4 6
_1+J 1+ + +2i+t +¢* 5+t+t—+t— dt
9 8 12 6

Example 2.7: Find the third approximation of the solution of the equation,

d
Lo X (y+2)=g(y.2) and x=0, y, =1,Z, = %



. . . . _ _ _, Picard’s Method of
First approximation: Taklng Xo = 0, Yo = 1, ZO - % Integration and Successive

Approximation

ZI:ZO+jxt Yo+ Z,)d :—+J (1+ )d
13, NOTES
= —4+=Xx
2 8
Second approximation:

Yo +j0 Z/(t)dt=1 +j:(%+§t4) dt

Y2

= 1+lx+ix5
2 40

Z, = Z,+ jox[f 2O+ Z, (1) ] dt

_ %+J0x|:t3 W (0)+2,0)]dr

+'|'xt3 3cL 30 ar
o \2 2 8
5

1 3x* ¥ 3,
= —+—+—+—
8

X
2 10 64

Third approximation:

1
2

S IPAGY

= 1+J'( +=¢ +—t +it )dt
64

1 3 51 ¢ 1 5
= l+—x+—xX"+—x"+—Xx
2 40 60 192

Z, = Zy+| [P0+ 2,0 ]dt

1 §x4 1 5 3 8+Lx9+Lx12
2 8 10 64 360 256

Example 2.8: Find the third approximation of the solution of the equation,
ﬂ _ady

dxz =X E+x y,

d
Where y =5, and d—y:1 whenx=0
X

d
Solution: Let — = Z
dx Self - Learning
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e _dy

Tdx  dx’
Andx,=0,y,=5,and Z =1

Which is the same problem as Example 7.

=x’z+xy

Third approximation:

(x)—5+x+£+x—6+£+£
¥ 26 6 nm

Existence and Uniqueness of Solutions

It may happen that an intial value problem has no solution or it may have exactly
one solution or it may have more than one solution. Our aim in this section is to find
under what condition an intial value problem has at least one solution and under
what conditions does that problem have one and only one solution, that is, a unique
solution. This lead us to the existence theorem and uniqueness theorem, respectively.
These existence and uniqueness theorems play an important role when a differential
equation cannot solved by elementary standard methods.

The Lipschitz Condition

If f(x, y) be a function defined for (x, y) is a domain D in x — y plane, then the
function f(x, y) is said to satisfy the Lipschitz condition in D if there exists a positive
constant K such that,

| fCy,) = ) ISK |y, =y

for every pair of points (x, y,), (x,y,) € D. The constant K being independent of
x,y,and y, and is called the Lipschitz constant.

Existence Theorem

The intial value problem,
dy
dx

has at least one solution y(x) provided the function f{x, y) is continuous and bounded
for the values of x, in a domain D and there exists positive constants M and K such
that

=S (x1), y(%) = ¥, -(2.4)

|f(x,y)SM| ..(2.5)
Which satisfies the Lipschitz condition.
| eyy) = £ 3)]€ K|y (2.6

For all points in domain D.

Proof'by Picard’s Method: Consider the iterative Equence.

Y, (x)=y, +J.;f[t1yn—1(t)]dt ..(2.7)
n=1,2...



Withyy, (#) =y, for the intial value problem of Equation (2.4). In order that the intial
value problem of Equation (2.4) may have a solution, it is necessary that the
sequence {y, (x)} of functions converges to a limiting function y (x) whichis a
solution of of Equation (4) or of the equivalent integral equation.

y@=y,+ [ floy©]di -28)
To ensure the existence of the limiting function.

y(x)=limy, (x) ..(2.9)
We use the fact thaty may be written as a sum of successive differeness:

n—1

Yo=Y+ 2 (¥ =¥ ..(2.10)

i=0
This follows that the sequence {y —y } converges.

From Equation (2.7) we have,
y;(x) =W +J.x(]f[t1yz—1(t)]dt

And Vi (%) =y, +L:f[t1 yl.(t)] dt

Vin ()= yi(x) = J‘:U {f[tl yi(t)]_[tl y[—l(t)]} ..(2.11)
The Equation (2.11) is true for all intigeri =1, 4

Also from Equation (2.7) y,(x) =y, + jx £t ] dt

y1(x)_J70:J:)f[t1J/0]dt ..(2.12)

The condition in Equation (2.5) ensure the existence of integrals in Equations
(2.11)and (2.12), Considering Equation (2.12), we have,

‘yl(x)—yo <] |l s)1ar
< LZM || by Equation (2.5)
M x - x| ..(2.13)

Again making use of Lipschitz condition in Equation (2.6), we get from
Equation (2.11),

D)= 3@ < |7 @)= 7 (20|

SJ‘):K|g1(t)_yo||d’| by Equation (2.6)
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< | KMt —x||di by Equation (2.13)
| = xf
- KMz—!O ..(2.14)
Similarly |, (x) - y, (x)| < w
In general, we shall have |

|y, () =y (0)|<M K™ .(2.15)

i!

Thetruthnessof result of Equation (2.15) for all valuesof i can be established
by the mathematical induction method.

We must show that the identify Equation (2.15) holds when i is replaced by
i+ 1. For this purpose, we again make use of Equation (2.11) and Equation (2.6),
we have.

INE A0 B M LSAG) RV S0 (7

<[ K| = 0

< "k Bl gy el

I paCl D! (2.16)
The relation Equation (2.16) establishes the validity of Equation (2.15) for

all values of i.

From Equation (2.16), we see that absolutes values of terms in the series
Equation (2.10) are term by term smaller than the corresponding terms in the
series.

2 3
=] |

y0+M|x—x0|+M.KT+M.K2|x_3—)!CO

+...

Whose sumis ¥, +%|:exp{K|x - x0|} - 1]

Now the above Taylor’s series converges for all values of (x—x,), and so
the function y (x) for all values of x in any finite interval, i.e., lim y (x) =y (x).

Now proceeding to the limit as n — oo, we get from Equation (12).

lim y, (x) =y, +lim [ f[t, 5, ,(0)]dr

Or )= yo+lim [ £l y, () di] (217

Since f(x, y) is continous function of both x and y in the range of values
considered and hence y (x) converges to g(x) uniformly over the interval the
following interchanges of limiting operations are justified.



lim [ f[4 () de] =] tim £ 1, ,,(0)]de

- f[z1 lim yn_l(t)]dt = [ flo v

This shows that interative sequence Equation (2.7) converges to a solution
of the differential equation, problem in Equation (2.4) for all values of x € Dunder
the given conditions thus the theorem is completely established.

Uniquesness Theorem
The intial value problem,

§: £y 7(5) = 7, (2.18)
X

has a unique solution provided the function f{x, y) is continuous and bounded for
all values of x in a domain D and there exist positive constants M and K such that,

|f ey <M
And satisfy the Lipschitz condition,
VIESHENICSNEDSIAESY

For all points in domain D.

Proof by Picard’s Method: Suppose if possible the intial value problem of
Equation (2.18) has two district solution y(x) and u(x).

Then,

u(x) =y, +j £t u@)de

and ()=, +J;Zf[ﬁ y(0)]dt

) =u(@)= [ [{ yO} - f{tu(o)}]di (2.19)

Since f(x, y) is bounded and satisfies Lipschitz condition, we have,
|f(x,p)| <M ..(2.20)
And  |f(upy) = fp)| <K |y, -y .(2.21)

Using Equations (2.19) and (2.20), we have

|y(x) —4(x)| < j| £t y@®)] = £, 40)] |
< j (/12 yO I+~ 112 4] ]|

< j (M +M)|dt| = 2M |x — x,| (2.22)
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Again using Equations (2.19) and (2.21), we have

)4 < [ Ky -4 (2.23)
Combining Equations (2.22) and (2.23), we obtain

|y(x) — 4(x) gj;K.2M|z—xo||dt|

- 2MK|x;—'x°| (2.24)
Employing inquality in Equation (2.24) on the right hand side of Equation

(2.23), we have

2
) -4 <[ KQMK@W

2
o= x|
= 2MK* 3'0 ..(2.25)
Continuing in this way, we shall obtain.
MKn—l _ 4
|y(x)—4(x)|s2(—f’%),n=1,2,3... ..(2.26)
n!

Now the right-hand side of Equation (2.26) tends to zero as # tends to
infinity for all finite values of x. Thus,

|Y(x) =4(x)| = 0= y(x) = 4(x)
for all finite values of x. This shows that the solution is unique.
Existence and Uniqueness Theorem (In General Case)

The intial value problem

fl—y = f). () =3
X

has aunique solution for all values of x in the range
|x - x0| <a,
Provided the function f{x, y) is continuous and satisfy the conditions.
) |x — y| <M
@) |fnr)— )| <K |y, - (Lipschitz condition)

For all values x and y. M.K being positive constants, in the rectangle R
defined by,

|x—x0|S a and |y—yo|SMa

Proof by Picard’s Method: The point of difference in two theorem is that here
we are considering the limited range.

|x—xo|Sa ..(2.27)



Instead of considering all values of x so that theorem may be applicable to
wider class of function f{x, y), we have seen that the proof of the existence theorem
depended upon obtaining the inequality.

i+l
| —x, |

|yi+1(x)_yi(x)| < MK' G+ 1)

(2.28)

For all valees of x, here our aim is to esbablish the inequality Equation
(2.28) for limited Equation (2.27).

For this we again consider the relation,

Vi =g = [ [t &0} =1 {t .} dr

i=1,2,... .(2.29)

Since we do not require the conditions given in Equations (2.27) and (2.28)
to be applicable for all values of y but merely in a suibable neighourhood of y,, we
shall consider the possibility of obtaining bounds not fory., —y but fory —y,.

Now vimyo =] Sty olar (2.30)

Aslongas |/ (#,y)|< M for|t—x0|<aand y=y,

We get from Equation (2.30), |, (x) — | < J:] |/ (4, »)||dt]

:>|y1(x)—yo(x)|SM|x—xO|SMa ..(2.31)
For |x—x0| <aand |y—yo| < Ma,

We conclude from,
Y, (X) =y, = J:)f[tl y1(t)]dt
|y2(x)_y0| < J.:U‘f[t’ yl(t)]Hdt|

< ij|dt| = M|x—xo|
< Ma ..(2.32)
Then by induction, we get

|y,(x) = 3| < Ma .(2.33)

For |x - x0| <a andallz.

After finding the bound of Equation (2.33) for y, we formulate our Lipschitz
condition for Equation (2.29) as follows:

|f(x,y2)—f(x,y1)| SM|y2 _y1| -(2.34)
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In the range |x — x,| < a and |y — y,| < Ma, we then have

V)= 2@ < [ Ky 0=, )] (2.35)
Using Equation (2.31) in Equation (2.35) with i = 1, we obtain

2
|y2(x)—y1(x)|SI;MK|t—x0||dt|=MKq .(2.36)

Continuing in this way, we shall write as,

i+1
|x = x,|

Vi1 (¥) = 3, ()| < MK’ (i+1)!

Valid in the interval |x — x| < a

)
Note: Iff{(x, y) satisfies the condition af
y

<M (2.37)

For all values ofx, y in the given range, then the Lipschitz condition is also satisfied
with the same constant M. For, we have by the mean value theorem of differential
calculus.

S y) = fey) =, —»)

o _  _
3/ = PN ST .(2.38)

Where (x, y,) and (x, ,) are assumed in the given range. From Equations
(2.37) and (2.38), we have,
|Gy = f () S My, =3

Which is Lipschitz condition. Thus the Lipschitz condition can be replaced
by the stronger condition Equation (2.37).

d
Example 2.9: Show that for the problem Y ¥, ¥(0) =1, the constant a in

dx
Picard’s theorem must be smaller than unity.

Solution: Here the condition for boundness off; i.e.,

|f(x,y)| <M for

Y y0| < Ma take the form

|y|SM for |y—l|SMa

Andifwechoose ps > 1, Lipschitz condition is also satisfied since in this case of
Lipschitz condition assumes the form.

|f(x:J’2)_f(x:y1)|:|J/2 —y1|SM|y2 —y1| M 21

Now |y —1| < Ma implies that |y| - 1< Ma



Hence the inequlity |y| < M will be satisfied forall values of |y — 1| < Ma provided
it is satisfied for,

| y| =1+ Ma
According, we must have,

M -1 1
=l-—=uax<l
M

l+Ma< oras

(Since M is a positive finite constant)

Example 2.10: For the initial value problem,

dy !
e, y(0)=0
2 © (0)

Find the largest interval |x| < a in which the Picard’s theorem gurantees existence
of'aunique solution.

Solution: The condition for boundedness of f(x,y), i.e., <M for

S(x,y

|y—y0| < Ma takes the form ¢ < )7, for |y—0| < Ma
If y,,», withy, <y, lies in the range |y| < Ma, we have by the mean value

theorem, ¢ —€¢ =n-y)--¢ where  y <y<y, or

ay
e”—e" <(y, - )M [ e SM]

So that Lipschitz condition is also satisfied. Now the inequality > < j7 will be

satisfied for all values of |y| < Ma

Provided it is satisfied if y = Ma. Accordingly, we must have,

log M

M <M oras

Since a is positive, M lies in the range 1 < M < . It is easy to see that

logM

1S maximum when M =e=2.718.

The Picard’s theorem then assure existence of a unique solution in the interval

|x|£a

Where a= l =0.308
e

Example 2.11: If Sis defined by the rectangle |x| < a,

| < b, show that the function

f(x,y)=x"+y°, satisfies the Lipschitz condition. Find the Lipschitz constant.
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Solution: (x, y,) and (x, y,) be two points in the rectangle S, then

f ()= £y = | + D) = (2 + 37|
= |3 =y [=lv, + 2y, - 3]

= |, 3,) = f(x,p)| < 2b]y, -y

= f(x, y) satisfy the Lipschitz condition, and the Lipschitz constant
K=2b.
Aliter: Here f(x, y) = x> +)?

‘aif (x, y)‘ =[2y|<2b, for (x,y) € S
y

Thus 5 exists is continuous and bounded for all (x, y) e § . Hence f(x, y) satisfies

Lipschitz condition and Lipschitz constant is 2.

Example 2.12: Examine existence and uniqueness of the solution of the initial
value problem.

dy 2
2=y y1)=-1
o y(1)

Solution: Here f(x, y) = & =y’ and ﬂz 2y obviously fand~ are both
) W dy Y dy
continous for all (x, y). We consider the rectangle R.
|x =1/ < a, (y+1) < b, about the point (1,—1)

N

\ 4

y=—1+b

x=1+a

= b | (=D

Obviously in this rectangle,
f ()= £ Gy =[v3 = 7]

= |y2+y1||y2 _y1|

<(2+20) |y, - ¥

Thus the Lipschitz condition is satisfied in the rectangle R.




Now let M =Max |f(x,y)| forx,y € Rand h=Min (a, b/m)

Then the given problem possesses a unique solution for |x - 1| <h.

In this case,
M=Max | f(x,y)|= Max. |y*|=|[(-1-5)’| = (1+b)’
h=Min {a,b/m} =Min{a,b/(1+b)’}

Now let b/(1+b)* = ¢(b)
h=Min {a,b/m}=Min{a,b/(1+b)’}

Now let b/(1+b)> = ¢(b)

., 2b—-4
b and ¢”(b) =

P LT
¢"(b) = RES (1+b)*

For Max or Min of ¢(b), ¢’ (b)) =0= b =1 and Max. ¢(b) =¢(1)=1/4

ifa>1/4, ¢(b) =

<a,forallb>0

(1+b)*
po_ b 1
(1+b)2 4
Andifa<t, then h<t, . Max —o— is -
ndif a 4,ten 4,,-, aX(1+b)2IS4.

. : . L. .
Hence the given problem possesses a unique solution when |x — 1| < 1 Le, inthe

interval E <x<=.
4 4

Example 2.13: [llustrate by an example that a continous function may not satisfy
a Lipschitz condition on a rectangle.

Solution: Let us consider the function,

f(x,y)=y*"?, on the rectangle |x|<1,|y|<1 obviously fix, y) is
continous in the rectangle as it is a polynomial in y.

3y1/3

_‘2

But ‘aif (x,»)
y
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Which does not exist at y =0, which is a point of the rectangle. Hence the
Lipschitz condition is not satisfied on the rectangle.

Check Your Progress

1. Why is Picard’s iteration method used?

2. When is an approximation solution required?
3. What does iteration method specify?
4
5

. Define the term unique solution.

. Explain the term Lipschitz condition.

2.3 EXISTENCE THEOREM

System of Ordinary Differential Equations: First let us consider a system of
n-ordinary differential equations of first order where the derivatives y/, y;,--- v/
appear explicity,

= ALY,
Vs = LG yLy. )

Vo= LG yL s p,)
We can write it in a vector form as,

) (4
yEl i El =Ly

) \U,
It is the analogue of the single variable case:
V' =fx,y)

Heref,f,, ....f, are given complex-valued functions defined in some set R.
Inthe (x,y,, ... y )-space, where x isreal and y , y,, ... y, are complex.

Now, we have to find ‘»’ differentiable functions.
¢,, ... ¢, on some interval 7 such that,

@) (x, ¢,(x), ¢,(x) ... ¢,(x)) €R, for xel

(i) 0/(x) = /1(x,0,(0),..,0, (x))

o (x)= 1, (x,0,(x),...,0,(x)), forall xel

If “n> such functions exist we say ¢ = (¢,, ¢,, ... ¢ ) is a solution of the
system given earlier on the interval /.

Local Existence Theorem: Let f be a continuous vector-valued function defined

on



R: |x—xo|S a,

y=y|<b.(a,b>0)
Andsuppose / satisfies a Lipschitz condition on R. If M is the constant such that,

/(e y)| <M V(x.p)eR

The successive approximations {(])k ywhere, K=0, 1,2, ... given by
0,}x)=y,

0,(0) =y, +[ 00, ()dk=1,2,3...

Converge on the interval,
I: |x—x0| <o= Min{a,i},
’ M
To asolution ¢ of the initial value problem,

Y =[f(xy)y(x) =y, onl

Error Approximation Theorem: If | satisfies the same conditions as defined
in the previous local existence theorem and K is a Lipschitz constant for /* inR,
then

M (K™

e, (0] <52 e, forall e

Theorem of Non-Local Existence: Let [ be a continuous vector-valued
function defined on the strip.

S. |x—x0| <a, Z‘ < oo, (a>0),
which satisfy that there is a Lipschitz condition, then the successive approximation

{9} for the problem,

y_,i(xaz)az(xo) =X0’(|ZO |< 00)5
existon | x—x, |< a and converges there to a solution ¢ of this problem.
Corollary: Suppose [ is a continuous vector-valued function defined on

| x|< oo,| y|< o0, and satisfy a Lipschitz condition on each strip| x |< a, | Y |< oo,
where a is any positive number. Then every initial value problem:

Y= f(x,»), ¥(x,) = y, has asolution which exists Vx e R.

Uniqueness Theorem: Let f, g be two continuous vector-valued functions
defined on R: |x—xy[<a,| y—y [<b,(a,b>0), and suppose f satisfied a

Lipschitz condition on R with Lipschitz constant K. Suppose ¢, Y are solutions of
the problem:
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y_, = i(x’y)’z(x()):Xl

V' =8x),y(x)=y,,

respectively, on same interval / containing x,. If for €,8 > 0

| y(x,»)—g(x,y)|<eand |y —y) s 3, then

OB

X — X 8 X—X|
<et °‘+E(6‘ "'—1) forall xel.

In particular, the problem y’= f(x,¥),(x)) =y , has at most one
solution on any interval containing x,.

Existence and Uniqueness Theorems for Linear Systems

Case I: Let us consider a linear system

y' = f(x,y) with

fl(va) = [i ali(x)yi]+b1(x)

fi(ey) = [ﬁanmx)y,]wn )

Here {al.j} and {bj} are complex-valued functions defined for real x in
some interval /.

If for all the {al_j} are continous on an interval,

| x— X, |< a,(a > 0), then the corresponding vector-valued function y

satisfy a Lipschitz condition on the strip

S:lx—=x)|<a,| yl<oo:

5.9 = ()] = Zfes (0] K

Case II: Consider a linear system,

Y’ =f(x, y) where the components of fare given by,

£ ) = 2 (0 +b, ()
(G=1,2,..,n), and the function {ajk}, {bj} are continuous on an interval /
containing x,.. If ¥ is any vector in ¢",3 unique solution 2 of the initial value
problem:

Y =/ (), y(x)=y, onl

Equation of Order n: An n—m order equation y" = f(x, y, )’ ..., ') may be
viewed as a system of n equations of the first order.



Define  y =y= y/=)"=y,

=V =y=y"=y

vy, =yl o=y =f

Now the system is,
N W2
Yo |_| Vs
o) \Sf

In the vector form we write,
y_, = 1(x5y1"":yn)

Ji(xp153,)

f;l(xaylﬂ"'yn)
Here f, (x,y,¥,...7) =Y,
fz (xaylayz yn) =y3

L 6y Yy ¥) =Xy 0,)
Moreover if ¢ is a solution of the nth order equation then the vector,

0 =(9,9",....¢"") isasolution of the vector equation,

Conversely, if 2 =(91,9,,---9,) is the solution of the vector equation then
the first component ¢, is solution of the nth order equation.

Y=oy, ey
Since we have,
¢f = q)z

1”= (D; = ¢3

(n=1) _
1” - q)n

0" () =0 = f(6,0,(x),.... 01" (x))

Now all the above results are proved for first order system may be applied
to give results for nth order equations.

yn :ﬂx’ y’ y” i yn_l)
Theorem 2.1: Let fbe a complex-valued continuous function defined on,

R: |x_x0 |Sa’|X_ZO |Sb,((l,b>0)
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Suchthat | f'(x, y) |< N forall (x, ) € R. Suppose there exists a constant
L <0 such that,

| f(x, ) - f(x,2)|SL]y-z]
Forall x, ) and (x,z) €R
Then 3 unique solution ¢ of Y™ =f{x, y, )" ... ") on the interval

. b
Lx=x,|< Mln{a,ﬁ}

(M=N+b+|y), which satisfies §(x,)) = o, §'(x)) = o0, ..., ¢ '(x,)) =0t ,
(7, = (. 0L,...00,))

Proof: Consider the system: 3’ = f(x, )

I
[~

Y, Sy, y,0,)

and observe the continuity and the Lipschitz continuity of 1.

| S =+ s+ + ]y, [+ f(x )]
S[yl+]f(xp)]
S|y, |+b+M

Since [y [=|y, [$[y=y,[<b.

Then prove the continuity of f

Now Lipschitz continuity,

| )= =y, =z [+ s =z |+ 4]y, — 2,

| f(y )= f(x2)]

A

y—z|+L|y—z|

Il
~

1+L)|y—z]

Thus f satisfya Lipschitz condition on R with Lipschitz constant K =1+ L

Theorem 2.2: Leta , ..., a , b be continuous complex-valued function on an
interval contuning a pointx,. If o , ... o are any n constants, 3 unique solution ¢
of'the equation.

Ve, Lt a (0y = b)
on / satisfying,

¢(X0) = O‘laq),(xo) =0,y q)(n_l)(xo) =Q,



Proof: Let Y, = (0l;,...,0, ) and consider a linear system,

=Y,
V5= Vs,
yn’—l =yn’

yn==a,(X)y —a, (X)y,..a,(x)y, +b(x)
By the existence and uniqueness theorem there is a unique solution.

9 =(9,,...9,) ofthis system on /satisfying
0,(x) = 9,(xp)=01,,..0,(x,) =0,

Butsince ¢, = ¢/, 0, = ¢7,...,0, = O

The f, - 0,1s arequired solution on /.

2.4 UNIQUENESS THEOREM

The ‘Cauchy Problem’ is exactly the initial value problem or IVP and is used to solve
X'(t)=1{t,x) with the condition x(t )= x. Picard’s theorem is explained for given any
point in the plane, (x, y,) and a function f{x,y), continuous on some neighborhood of
(X,» ¥,) and Lipschitz in y on that neighborhood, then there exist a unique function
y(x) satisfying y'=f(x,y) and y(x )=y, A ‘neighborhood’ of a point is an open set
containing that point. A function, f(x), is ‘Lipschitz’ on a set if and only if there exist a
positive number C such that for any x, y in that set, [f(x)—f(y)|< Cjx—y|.

If f(x) is Lipschitz on a set then it is continuous at every point of that set. The
mean value theorem can be used to show that if a function is differentiable at every
point of a set, then it is Lipschitz on the set while ‘continuous’ and ‘differentiable’
are defined at points. If f(x,y) is continuous but not Lipschitz on a set, then there
may be many functions satisfying the differential equation and ‘initial condition’.
The Picard's method for solving an initial value problem is considered as the basis
for his proof.

Uniqueness

The system is equivalent to the integral equation. If we have a Lipschitz condition,
then we can use the Picard iterates method on the integral equation to get a unique
solution. We define,

Yo ) =y,
X
IRIOES TR WIS
As we commented above, this converges to a unique solution if /s Lipschitz
mny.
Alternately, we could use Gronwall's Inequality
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Gronwall's Inequality

Let u, v be nonnegative continuous functions [a, b] such that

v(O)C + [ V(su(s)ds, a<1<b,
then

(1) < Cla O

In particular, if C =0, then v=0.
Proof.Let A(¢):=C + J: v(s)u(s)ds Therefore,

R (@) :=v(t)u(t) < h(t)u(t)
This reduces to the differential inequality

h —uh<0
Multiplying the LHS by
e—Ja[ u(s)ds

we get

(h(z)e—ﬁ”(s)‘*), <0

And integrate from 0 to x to get

u(s)ds

h(x)e’ff —h(a)<0

V() < (@) "®
Finally,

V()< h(x) < Cela O

This allows us to state a new uniqueness theorem.

Theorem Uniqueness of Solutions to IVPs

Assume that £ R2 —s R is continuous on

Q::{(x,y):|x—x0|Sa, y—yO|Sa}

and satisfies

| (e = fC )| S K|y —».

o
Then the solution to the IVP exists on [x, — o, x, + 0], where O: :ﬁ ,

and the solution is unique.



Proof. Existence follows,

If there exists two solutions ¢,(7) and ¢,(7) then define
W(t) 1= 0y(1) = 0,(1)
Then,  w/(f) = 0 (£) — 05 (¢), and
[ wdi=w() = w(xo) = [ [f(.0,0)= f@.020)]d
w(xp) = 0, (xp) — 0 (39) =0

So, we get the following for w :

W)= [ [10 010 S@050)]d

Therefore,

|w(s)| <

I 10)= st
SL;If(t, o) =t 0 dt <K j;|¢1(z) — &, ()| dt

=K jx | w(?)| dt

Thus, from Gronwell's Inequality with u(¢) : = K, v(¢) :=| w(¢)|,and C=0,

we get [w(?)|. Thus, ¢, = ¢,, and the uniqueness is shown.

2.4.1 Existence and Uniqueness Theorem for Proof’s
by Picard’s Method

The Peano theorem can be compared with another existence result in the same
context, the Picard—Lindel6f theorem. The Picard-Lindel6f theorem both assumes
more and concludes more. It requires Lipschitz continuity, while the Peano theorem
requires only continuity; but it proves both existence and uniqueness where the
Peano theorem proves only the existence of solutions. To illustrate, consider the

1
ordinary differential equation, )’ =|y|> on the domain [0,1].

According to the Peano theorem, this equation has solutions, but the Picard-
Lindel6f theorem does not apply since the right hand side is not Lipschitz continuous
in any neighbourhood containing 0. Thus we can conclude existence but not
uniqueness. It turns out that this ordinary differential equation has two kinds of
solutions when starting at y(0) = 0, either y(x) = 0 or y(x) = x*/ 4. The transition
between y =0 and y = (x —C)? / 4 can happen at any C.

The Carathéodory existence theorem is a generalization of the Peano existence
theorem with weaker conditions than continuity. In mathematics, in the study of
differential equations, the Picard—Lindelof theorem, Picard's existence theorem or
Cauchy—Lipschitz theorem is an important theorem on existence and uniqueness
of solutions to first order equations with a given initial value problems.
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Picard—Lindelof Theorem

Consider the initial value problem,

V(@) =f(600), ytp)=yy teliy—gt)+e]

Suppose f'is Lipschitz continuous in y and continuous in 7. Then, for some
value £ >0, there exists a unique solution )(¢) to the initial value problem within the
range [t —&,t +€].

Proof

The proofrelies on transforming the differential equation, and applying fixed-point
theory. By integrating both sides, any function satisfying the differential equation
must also satisfy the integral equation,

t
y(0) = ytg) = f(s,1(5)ds
A simple proof of existence of the solution is obtained by successive
approximations. In this context, the method is known as Picard iteration.

Set

0,0 =,
And

Qr1 (D) =yo+ L:) S (8,0, (s))ds.

It can then be shown, by using the Banach fixed point theorem, that the
sequence of Picard iterates is convergent and that the limit is a solution to the
problem.

Analysis of Proof

Let be the compact cylinder where f is defined, this is and . Let , this is, the
maximum slope of the function in modulus. Finally, let L be the Lipschitz constant
of fwith respect to the second variable.

Analysis of Proof

Let C,; = 1,(fy) X By (xy) be the compact cylinder where fis defined and is
represented as e /,(t)) =[ty—a,ty+aland B, (x,)=[x,—b,x,+b]. Let

M = sup|| f||, which is considered as the maximum slope of the function in
a,b

modulus. Finally, let L be the Lipschitz constant of f with respect to the second
variable.

An operator between two functional spaces of continuous functions, Picard’s
operator, is defined as follows:

I C(1, (1), By (x0)) = C(L, (ty), By, (xp))
It can defined by:



Lo(1)=xp+ [ f(s.()ds

We presume that it is well defined and that its image must be a function
taking values on B,(x,) or equivalently that the norm of T'g(#) —x, is less than b.

ITo() =gl =117 (. @sll <| [ | (505D ds| < M | ~to] <M<

The last step is the imposition, hence we require o< b/ M. Let, the Picard’s
operator to be contractive under certain hypothesis over a that later on we will be
able to omit.

Given two functions @, @, € C({, (¢y), B, (x;)) we want:
t
ITQ1 =Tl =], (/(5.91() = /(5,02

<[ 176,915 = /(5,02 ds

Then since fis Lipschitz with respect to the second variable, we have that:

t
LIf, 19165 = 02(5) 11 ds| < Lot 91 =]

This is contractive if a < 1/ L or equivalently, in order to have equality, if
a 1/(2L).

Therefore, since the Picard’s operator is an operator between Banach spaces
(in particular, metric spaces induced by the norm) and contractive, by means of
the Banach fixed point theorem there exists a unique function ¢ € C(Z (¢,), B,(x,))
such that "¢ = @ is, solution of the initial value problem defined on /o where o
must satisfy the condition given above, a=min{a,b/M,1/(2L)}.

Optimization of the Solution’s Interval

There is a corollary of the Banach fixed point theorem that states that if an operator
T is contractive for some 7 € N then 7 has a unique fixed point. This theorem is
applied to the Picard’s operator. For this, let us use the following lemma that will
be very useful for this situation.

m_,m

Lemma: |[T"¢, - T, || < o — @, |

m!
This can be checked by induction as follows:
Form =1, let us assume that it is true for m ““ 1 and let us check it for m:

m m m— m— ¢ m— m—
[T =", | =TT gy =TT gy [|<] [ 11 (5T 91 () = /(57" () 1 ds |

m_,m

L o

¢ - m—
<LI[ T o) =T o) 1ds 1< ==l o1 =2 |

m!

Now taking into account this inequality we can guarantee that for some m

m

<1 and hence I will be contractive. So using the

large enough, the quantity Lr;a,
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previous corollary I will have a unique fixed point. Thus, the interval of the solution
can be optimized by taking oo =min{a,b/ M}.

The importance of this consequence is that the interval of definition of the
solution does eventually not depend on the Lipschitz constant of the field, but
essentially depends on the interval of definition of the field and its maximum absolute
value of it.

The Picard-Lindel6f theorem shows that the solution exists and that it is
unique. The Peano existence theorem shows only existence and not uniqueness,
but it assumes only that f is continuous in y instead of Lipschitz continuous. For
example, the right-hand side of the equation )’ = y'* with initial condition (0)=0
is continuous but not Lipschitz continuous. In fact, the solution of this equation is
not unique; two different solutions are given besides the trivial one y(¢) =0

y(t)i(gt)yz'

Check Your Progress

6. Give the system of ordinary differential equations and then write its
vector form.

7. Define the term ‘equation of order n’ for existence and uniqueness.
8. Whatis uniqueness?
9. Define Picard-Lindelof theorem.

2.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Picard’s iteration method is used for giving an approximation solution of the
initial value problem.

2. In many of the Engineering problems, we are often confronted with the
differential equations whose solution cannot be obtained by standard
methods. In such problems, it is must to obtain an approximation solution
only.

3. The iteration method specifies a method which consists of repeated
application of exactly the same type of steps where in each steps is Picard’s
method.

4. Aninitial value problem has no solution or it may have exactly one solution
or it may have more than one solution. To find under what condition an
initial value problem has at least one solution and under what conditions
does that problem have one and only one solution, that is, a unique solution.

5. If fix, y) be a function defined for (x, y) is a domain D in x — y plane, then
the function f{x, y) is said to satisfy the Lipschitz condition in D if there
exists a positive constant K.



6. First let us consider a system of n-ordinary differential equations of first

order where the derivatives y/, y;,--- v, appear explicity,
yl, = fl(xﬂylﬂyza"'yn)
y; = fz(x’ylayza"'yn)

y:; = fn(xaylayzf"yn)
We can write it in a vector form as,

1 /i
vel =] = sy
v.) \U,

. An n—m order equation y"=f(x, v, ..., ') may be viewed as a system

of n equations of the first order.

. The system is equivalent to the integral equation. If we have a Lipschitz

condition, then we can use the Picard iterates method on the integral equation
to get a unique solution. We define,

Yy X) =y,
Mdm=m+gfm%mma

As we commented above, this converges to a unique solution if /s Lipschitz
mny.

. The Picard-Lindel6ftheorem requires Lipschitz continuity to prove both

existence and uniqueness of solutions. It shows that the solution exists and
that it is unique. It guarantees a unique solution on some interval containing
tiff is continuous onaregion containing £, and y, and satisfies the Lipschitz
condition on the variable y.

2.6

SUMMARY

In many of the Engineering Problems, we are often confronted with the
differential equation whose solution cannot be obtained by standard methods.

In such problems, it is must to obtain an approximation solution only.

The Picard’s iteration method is used for giving an approximation solution
of the initial value problem.

The iteration method specifies a method which consists of repeated
applications of exactly the same type of steps where in each steps is Picard’s
method.

An initial value problem has no solution or it may have exactly one solution
or it may have more than one solution.

To find under what condition an initial value problem has at least one solution
and under what conditions does that problem have one and only one solution,
that is, a unique solution.
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¢ The existence and uniqueness theorems plays an important role in solving
differential equations when any differential equation cannot be solved by
elementary standard methods.

e Iff(x,y) be a function defined for (x, y) is a domain D in x —y plane, then
the function f(x, y) is said to satisfy the Lipschitz condition in D if there
exists a positive constant K.

e f.f,....f, are given complex-valued functions defined in some set R. In
the (x,y,, ...y )-space, where xisreal and y , y,, ... y, are complex.

e Let f beacontinuous vector-valued function defined on the strip.

S. |x—x0|Sa,

Y| <e.(@>0),
which satisfy that there is a Lipschitz condition, then the successive

approximation {9 } for the problem,

Y Ix ), y(x)=y,.(y, 1<),
existon | x —x, |[< a and converges there to a solution Cl_) of'this problem.

e Suppose / isa continuous vector-valued function defined on
| x|<oo,| y|<e,and satisfy a Lipschitz condition on each
strip| X [< a,| y |< eo, where a is any positive number. Then every initial
value problem: y’= f(x,y),y(x,) =y, has a solution which exists
Vx e R.

¢ Linear system,

Y =f(x, y) where the components of fare given by,

[, y) = 25 (), +b,(x)
k=1
(j=1,2,...,n), and the function {ajk}, {bj} are continuous on an interval /

containing x,. If V' is any vectorin ¢",3 unique solution i of'the initial

value problem:

Y =1 (), y(x)=y, onl

e The Picard-Lindel6ftheorem requires Lipschitz continuity to prove both
existence and uniqueness of solutions. It shows that the solution exists and
that it is unique. It guarantees a unique solution on some interval containing
tiff is continuous onaregion containing £, and y, and satisfies the Lipschitz
condition on the variable y.

2.7 KEY TERMS

e Picard’s iteration method: Picard’s iteration method is used for giving an
approximation solution of the initial value problem.



e Equation of order n: An n—m order equation y” =f{x, y, ' ..., »"") may

Iteration method: Iteration method specifies a method which consists of
repeated applications of exactly the same type of steps where in each steps
is Picard’s method.

Initial value problem: Initial value problem has no solution or it may have
exactly one solution or it may have more than one solution.

Lipschitz condition: If f(x, y) be a function defined for (x, y) is a domain
D inx —yplane, then the function f(x, y) is said to satisfy the Lipschitz
condition in D if there exists a positive constant K.

Uniqueness theorem: Let /', g be two continuous vector-valued functions
defined on R: [x—x,[<a,|y—y [<b,(a,b>0), and suppose f

satisfied a Lipschitz condition on R with Lipschitz constant K.

be viewed as a system of n equations of the first order.

2.8

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1.
2.
3.

° > 2o

10.

11.

. Define the equations that are used in Picard’s iteration method to give an

. Explain the method involved for the existence and uniqueness solutions of

Why and when the Picard’s iteration method used?
Explain the significance of various methods of successive approximations.

How many different types of successive approximations can be obtained in
asolution?

approximation solution.

initial value problems.

What do you mean by Lipschitz condition and Lipschitz constant?

State the existence and uniqueness theorems.

Define the importance of nonlocal existence method of finding solutions.
Differentiate between approximation to solutions and uniqueness of solutions.

How is existence and uniqueness of solutions obtained for the systems of
nth order equations?

State the following theorems:

o Local existence theorem

¢ Error approximation theorem
¢ Nonlocal existence theorem
e Uniqueness theorem

e Existence and uniqueness for linear systems
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12. What do you understand by the uniqueness theorem?
13. How will you define the Picard-Lindelof theorem?
Long-Answer Questions

1. Apply Picard’s method to the following initial value problems and find the

succsessive approximation:

. d
@) - =1+" 3(0)=0

(i1) % =xy, y(0)=2

o d
(iii) —y:x+y, y(0)=-1
dx

d
(V) 2 =x+y,y(0)=1
dx

d
&) Zoxy-1,9(0)=0
dx

dy
(i) d—§=y (0)=1

d
(i) D 3 +2y,y(0)=0
dx

d
(viid) d—yzzx—y2 where y =0 at x = 0.
X

. Find the third approximation of the solution for the following equation.

2
d_y= 2x+2,d—=3xy+xzz
dx dx

Where y=2andz=0whenx=0

. Find the first three approximations in the solution of the following equation.

d—y:1+xy,y(0)=2
dx

. Apply Picard’s method to find the solutions of the problem.

d
= y-xy(0)=2
dx

Show that the iterative solution approaches the exact solution.

. Apply Picard’s method up to third approximation to solve the equation.

d d
_y:x+ Z_x_yZ

z,— =
dx dx



10.

11.

12.

13.

14.

15.

16.

Giventhaty=2,z=1whenx=0

dy

. Solve the differential equation e x — y with the condition y= 1 when
X

x =0, and show that the sequence of approximation given by Picard’s
method tends to the exact solution as a limit.

. Use Picard’s method to obtain a solution of the differential equation,

d
d—y =x>—y,»(0)=0. Find at least the fourth approximation to each
X

solution.

d
. Obtain the solution of the equation d—y = x’ +y?; y(0) =1 by Picard’s
X

method, the term involving x*.

. Use Picard’s method of approximation to find the solution of the equation

d
d—y =2xy” =0 with y=1 when x =0 and hence show that y = 1/(1 +x?).
X

If (x, y) = y*3, show that the Lipschitz condition is not satisfied in any
containing the origin and that the solution of the differential equation,

d
d—i = f(x,)

satisfying the initial condition y =0 when x =0 is not unique.

If S is defined by the rectangle |x| < a, |y| < b, show that the function.

f(x,y)=xSin y+y Cos x
satisfy the Lipschitz condition. Find Lipschitz constant.
Examine the existence and uniqueness of solution of the intial value problem,
Ly, 00
Show that the Picard’s theorem, ensure existence of a unique solution in the

interval |x| < 4 for the initial value problem.

ey =0 2.
dx

Discuss the conditions when nonlocal existence theorem is used for finding
solutions for the systems of nth order equations.

Prove that approximation method for finding solutions using existence and
uniqueness theorems gives accurate system of required ordinary differential
equations.

Consider an initial value problem:

¥ =), x()=x,
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Give proofs and system of equations reference to the local and nonlocal
existence theorems.

17. Denote the column vector x with components x , x,, ..., x_and vector f
with components f,, f,, ..., f, for the system of equations of the form

x’ =ft, x).
18. Briefly explain about the uniqueness theorem with the help of giving examples.

19. Explain Picard-Lindelof existence and uniqueness theorem for solving
differential equations with the help of examples.
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3.0 INTRODUCTION

In mathematics, one of the most essential topics in mathematics is continuity and
differentiability, which helps concepts like as continuity at a point, continuity on an
interval, derivative of functions, and many more. Continuity and Differentiability of
functional parameters, on the other hand, are extremely difficult to achieve. To
explain the concept of higher order differentiability, consider a function y = f{x)
differentiable in the interval (a, b). For defining the first-order differential of the
function at the point x € (a, b) the formula is dy =f"(x) dx.

Poincare-Bendixson theorem gives the complete determination of the
asymptotic behaviour of a large class of flows on the plane and cylinder. An
autonomous system is one that does not depend on the independent variable. The
critical point of a function of a real variable is any value in the domain where either
the function is not differentiable or its derivative is zero.

A stationary point of a differentiable function of one variable is a point on the
graph of the function where the function’s derivative is zero. Informally, it is a point
where the function ‘Stops’ increasing or decreasing (hence the name). For a
differentiable function of several real variables, a stationary point is a point on the
surface of the graph where all its partial derivatives are zero (equivalently, the gradient
1s zero). Stationary points are easy to visualize on the graph of a function of one
variable: they correspond to the points on the graph where the tangent is horizontal
(i.e., parallel to the x-axis). For a function of two variables, they correspond to the
points on the graph where the tangent plane is parallel to the xy plane.
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Periodic solutions of equations are solutions that describe regularly repeating
processes. Floquet theory is a theory concerning the structure of the space of
solutions and the properties of solutions, of a linear system of differential equations
with periodic coefficients for periodic systems. The limit cycle is an isolated closed
trajectory that occurs only in nonlinear systems.

The critical point provides useful information about the behaviour of the
system and hence is considered important.

In this unit, you will learn about the continuity and differentiability, Poincare-
Bendixson theorem, higher order differentiability, autonomous system, Umlaufsatz,
index of a stationary point, stability of periodic solutions, rotational point, foci,
nodes and saddle points.

3.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Understand the basic concept of continuity and differentiability of solutions
¢ Explain about the higher order differentiability

¢ Define Poincare-Bendixson theory

Analysis the autonomous systems

Learn about the term Umlaufsatz

Elaborate on the index of a stationary point
¢ Define periodic solutions and Floquet theory for periodic systems
¢ Define and classify critical points

e Know stability of critical points

3.2 CONTINUITY AND DIFFERENTIABILITY
OF SOLUTIONS

The dependence of solutions of initial value problems on the initial values and on
parameters in the differential equation can be studied with the knowledge of a
fundamental estimate.

Definition: x(7) is defined as an p-approximate solution of the DE dx/di=1 (t, x)
on an interval /if

x () —f(t,x(t)<p v tel(p)
Fundamental Estimate

Let /(¢ x) be continuous in # and x, and uniformly Lipschitz continuous in x with
Lipschitz constant L. Suppose x'(?) is an p,-approximate solution and x"'(¢) is an
p,-approximate solution of dx/dt =£(z, x) on an interval / with z € 1, and suppose
x'(z,) —x'(¢,)| < 8. Then

¥ (10) - (10) 8 4 22 (1) g ret




Continuity with Respect to Panameters and Initial Conditions
Let us consider initial value problems as:
Dx/dt=f (¢, x, 1), x(t,) =y,
where g is a vector of parameters and gy belongs to n Euclidian space. .

Assuming that for each value of y, f(¢, x, p) is continuous in # and x and Lipschitz
inx with Lipschitz constant L locally independent of p. For each fixed y, y, this is
a standard intial value problem, which has a solution on some interval about £, as
tx(, w, »).
Theorem 3.1: If /is continuous in ¢, x, p and Lipschitz in x with Lipschitz constant
independent of # and u, then x(z, 1, ¥) is continuous in (z, y, y) jointly.

Differentiability

Dependence on parameters can be transformed into initial conditions, it will suffice
to prove the following.

Suppose f'is continuous in t, x and C in X, and x(t, y) is the solution of the
Initial Value Problem dx/dt=1{t, x), x(t0) =y (say on an interval [a, b] containing
t0 for yin some closed ball B={y € Fn:|y—x0|<r}). Thenx isa C function of
tand y on [a, b] xB.

3.3 HIGHER ORDER DIFFERENTIABILITY

To explain the concept of higher order differentiability, consider a function y =£{x)
differentiable in the interval (a, b). For defining the first-order differential of the
function at the point x € (a, b) the formula is dy =f"(x) dx.

The differential dy depends on the following two quantities:
1. The variable x (through the derivative y =f"(x)).
2. The differential of the independent variable dx.

On fixing the increment dx, it is assumed that dx is constant. Then the
differential dy becomes a function only of the variable x for which the differential
can also be defined by taking the same differential dx as the increment Ax.
Consequently, the second differential or differential is obtained of the second order,
denoted as d?y or d*f(x). Therefore, by definition,

dy = d(dy) = d[f' (@)da] = df' (@)da = §" (w)dade = " () (dz)"
Normally it is denoted as (dx)* = dx*. Hence, we have:
diy= f" (m)dmg.

Similarly, it can be established that the third differential or differential of the
third order has the form,

dy = " (z)da’.
Usually, the differential of an arbitrary order 7 is given by,

d™y = ™ (x)da™

2
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This can be meticulously proved by means of mathematical induction. This
formula indicates the following expression for the nth order derivative:

d'n
O @) =
dx™
Remember that in case of the linear function y = ax + b, the second and
subsequent higher-order differentials are zero. Certainly,

42 (a:c—i—b):(a:c—i—b)”dxz:U-datzz(},”.,dn(aa:—i—b]:0‘

In this instance, it is obvious that,
afmesl) Lol

Properties of Higher-Order Differentials

Ifthe functions « and v have the nth order derivatives, then the following properties
are valid:

o I (ou+ Gv) = ad™u + Bd"y;
o I (uw) = Zﬂ: Cl dmbydt.
=0

The last equality follows directly from the Leibniz formula.

Higher Order Differential of a Composite Function

Consider the composition of two functions such that y = f(u) and u = g(x). In this
instance, y is a composite function of the independent variable x.

y=5(gx)

The first differential of y can be written as,

dy =[f (g(@)]'de=f" (g(x))g (x)da.

Compute the second differential d%y (assuming dx is constant by definition).
Using the product rule, the equation becomes:

dy=[f ()¢ @) d® = [ (g ()7 @)+ £ (9 @)g" (2)]de” = " (g (2)) (' ()

Consider that,

g (z)de = du and g¢" (z)dz® = d*u.
Consequently,

diy=F" (w)du? + F (u)du
Or,

dﬁy 2 y”dug 4+ yfdﬁu.



Similarly, we can obtain the expression for the third order differential of a
composite function of the form:

Py = £ (W)du® + 377 (w)dud®u + £ (w)du.
It follows from the above that the higher order differentials
dty, d*y, . . ., d™y are generallynot invariant.

The degree of the differential equation is represented by the power of the
highest order derivative in the given differential equation.

3.4 POINCARE-BENDIXSON THEORY

Itis a part of the qualitative theory of differential equations and theory of dynamical
systems involving the limiting (when ¢ — + o) behaviour of trajectories of
autonomous systems of two differential equations of the first order:

X = fi(x,x2), i=12 (3.

In the most important case when the system has only a finite number of equilibrium
positions in a bounded part of the plane, the basic result of H. Poincare and L.
Bendixson is that any bounded semi-trajectory (positive or negative) either tends
to an equilibrium position or coils round (like a spiral) to a limit cycle, or in an
analogous way coils to a closed separatrix or separatrix contour consisting of
several separatrices joining certain equilibrium positions, or is itself an equilibrium
position or a closed trajectory. The corollary used most often is: If the semi-trajectory
does not leave a given compact domain not containing an equilibrium position,
then there is a closed trajectory in this domain. For cases when there are an infinite
number of equilibrium positions or when the semi-trajectories are not bounded,
there is also a fairly complete, although more complicated, description. Finally one
can consider a continuous flow in the plane without assuming that it is given by the
differential equations (3.1), because in this case it is still possible to use the basic
technical premises of the Poincare—Bendixson theory: the Jordan theorem and the
Poincare return map for local cross-sections which are homeomorphic to a segment.

The Poincare-Bendixson theory borders on: the connection, discovered by
Poincare, between the rotation of a certain field on the boundary of a domain and
the indices of the equilibrium positions inside it; results of Bendixson and L.E.J.
Brouwer on the possible types of behaviour of trajectories near equilibrium
positions; results making the role of singular trajectories (equilibrium positions,
limit cycles and separatrices) more precise in the qualitative picture arising on the
phase plane.

Although the general theory gives complete information about the possible
types of behaviour of the phase trajectories for the system (3.1), this does not
answer the question of which type is realized for a certain actual system.
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Theorem

Let S+ be a positive semi orbit contained in a closed subset K of an open subset
D of'the real (x, y) plane. If L(S+) consists of regular points only, then either

a. S+ (=L(St)isaperiodic orbit, or
b. L(S+)isaperiodic orbit.

A periodic orbit corresponds to a special type of solution for a dynamical system,
namely one which repeats itself in time.

3.5 AUTONOMOUS SYSTEMS

Autonomous system of ordinary differential equations is a system of ordinary
differential equations which does not explicitly contain the independent variable ¢
(time). The general form of a first-order autonomous system in normal form is:

)’cj = fj(xl,---xn), Jj=1L---,n, or,in vector notation,

x= f(x). ....(3.2)
A non-autonomous system x = f(#,x) can be reduced to an autonomous

one by introducing a new unknown functionx_+ 1 =¢. Historically, autonomous
systems first appeared in descriptions of physical processes with a finite number
of degrees of freedom. They are also called dynamical or conservative systems.

A complex autonomous system of the form Equation (3.2) is equivalent to a
real autonomous system with 2z unknown functions

%(Re x)=Re f(x), %(Im x)=Im f(x).

The essential contents of the theory of complex autonomous systems —
unlike in the real case — is found in the case of an analytic f{(x) .

Consider an analytic system with real coefficients and its real solutions. Let
x =¢(¢) be an (arbitrary) solution of the analytic system Equation (3.2), let A= (+—
, t+) be the interval in which it is defined and let x(z, 7, x°) be the solution with
initial data x|t = ¢, = x°. Let G be adomain in R"and f '€ C'(G) The pointx’ e G
is said to be an equilibrium point, or a point of rest, of the autonomous system
Equation (3.2) if f(x°)=0. The solution ¢(f)=x", f € R = (— 00, + ), corresponds
to such an equilibrium point.

Local properties of solutions:

(1) If ¢(7) is a solution, then ¢(¢ +c) is a solution for any ¢ € R.

(2) Existence: Forany #) € R, x° € G, a solution x(z, °, x°) exists in a certain
interval A .et.

(3) Smoothness: If f e C?(G), p > 1, then ¢(r) I P (A).

(4) Dependence on parameters: Let /= f(x, o), a € G, < R”, where G, is
adomain; if fe C" (G x Gy),p>1,thenx(t, ¢, x°, o) € C°(A x G,).

0°



(5) Letx° be anon-equilibrium point then there exist neighbourhoods ¥V, W of
the points x°, A{x°), respectively, and a differentiable homeomorphism

¥ =h(x) : V— Wsuch that the autonomous system has the form y = const

nW.

A substitution of variables x =¢ (y) in the autonomous system Equation
(3.2) yields the system

y=(0 ) £(0(»), .(33)

where ¢’(y)is the Jacobi matrix.

Global properties of solutions:

(1) Any solution x = ¢(¢) of the autonomous system Equation (3.2) may be
extended to an interval A = (¢_, t4+). [f A=R, the solution is said to be
unboundedly extendable; ifz =+ o0, £ > — oo, the solution is said to be
unboundedly extendable forwards in time (and, in a similar manner,
backwards in time). If £ <+ oo then, for any compact set K < Q, x° € K,
there exists a
7= 1(K) < t+ such that the point x(z, ¢ , x°) is outside K for t < 7(K) and
analogously, for > —oo;

0°

(2) The extension is unique in the sense that any two solutions with common
initial data are identical throughout their range of definition.

(3) Any solution of an autonomous system belongs to one of the following three
types: a) aperiodic, with ¢(¢,) # ¢(z,) forall ¢, # £, 1.€R; b) periodic, non-
constant; or c) ¢(z) = const .

To each solution x = ¢(¢) is assigned a corresponding curve I': x = ¢(¢),
t € A, inside the domain G. G is then said to be the phase space of the autonomous
system, is its trajectory in the phase space and the solution is interpreted as motion
along this trajectory in the phase space. The mapping g’ : G — G defined by the
formula gx’=x(¢, 0, x°) (i.e., each point moves along the phase trajectory during
time ¢ ) is called the phase flow. In its domain of definition the phase flow satisfies
the following conditions: (1) g’x is continuous in (¢, x); and 2) the group property

Wty . b b
g X=8 87X

The Liouville theorem is valid: Let D < G be a domain with a finite volume
and let v; be the volume of the domain g'D — G, then

d :
% o= Idlv f(x)dx. ..(3.4)
D

For a Hamiltonian system, a consequence of Equation (3.4) is the
conservation of the phase volume by the phase flow. A second variant of Equation
(3.4) is obtained as follows. Let x = (¢, ) be a family of solutions of Equation

(3.2), OL=(OL1,~-, Ocn_l)eGa Jlet G be a domain and let ¢ € c! (AxG,),
then
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Cini(o)=divf(x), -(33)

where 7 (z,01) = det dx /9 (z,0) .

Structure of phase trajectories:
(1) Any two phase trajectories have either no point in common or coincide.

(2) Any phase trajectory belongs to one of the following types: (a) a smooth,
simple, non-closed Jordan arc; (b) a cycle, i.e., a curve diffeomorphic
(differentiable homeomorphism) to a circle; or (¢) a point (an equilibrium
point). The local structure of phase trajectories in a small neighbourhood of
apoint other than an equilibrium point is trivial: The family of phase trajectories
is diffeomorphic to a family of parallel straight lines. For a linear autonomous
system the structure of phase trajectories in a neighbourhood of an
equilibrium point is known, since the autonomous system is integrable. For
non-linear autonomous systems this problem has not yet been completely
solved, even for n =2. One aspect of this problem is the question of stability
of an equilibrium point.

Let x°, y° be equilibrium points of the system Equation (3.2).

Let y=g(») ..(3.6)

and let U, V'be neighbourhoods of the points x°, }°. The systems (3.3) and
(3.7) are said to be equivalent in neighbourhoods of their equilibrium points
x°, 30 if there exist neighbourhoods U, V and a bijective mapping

h:U—V such that (hof‘)x:(gtoh)x(for xeU, [f!

xeU, (g' o f")x eV ), ie., as aresult of the substitution y = A(x) the

trajectories of the autonomous system Equation (3.2) go into trajectories of
the autonomous system Equation (3.6). The equivalence is said to be
differentiable (topological) if A is a diffeomorphism (homeomorphism). Let
x"be an equilibrium point of the autonomous system Equation (3.2), let the
matrix /”(x") be non-degenerate, and let it not possess any pure imaginary
eigen values. Then the autonomous system Equation (3.2) in a neighbourhood

of x”is topologically equivalent to its linear part j = £”( ¥ )y -Animportant

example is the autonomous system x = Ax, y = By where 4, B are constant

matrices with pure imaginary eigen values and n > 2; it is not known when
these autonomous systems are topologically equivalent. One of the most
fundamental problems in the theory of autonomous systems is that of the
structure of the entire family of phase trajectories. The most complete results
have been obtained for n =2, but even in this case the solution is far from
complete.

A plane autonomous system is an autonomous system for which n=2. It
follows that the general equation is given by
X' =fix, y)
V' =g, )



Or

dy _gxy)
dx  f(x,y)

The solutions, P(x, )= 0, of this latter equation are called the characteristics
of the system. Note that the two representations are not necessarily equivalent
since the case f(x, y) = 0 presents no problems in the time-domain, but generates
an ill-defined problem in phase space.

The topological properties of the orbits are generally determined by the
nature of the critical points, f=g =0, and can be discussed through studying the
properties of the equation

dy _ Ax+ By
dx Cx+Dy
which is obtained by linearizing g(x, y) and f(x, y) and shifting the coordinate

of origin. Alternatively, the phase-plane topology can be determined by considering
the nature of the eigenvalues, (A, 1), of the linearized time-domain system.

Check Your Progress

1. Give the equation of continuity and differentiability of solutions.
2. How do you find the differential of a function with two variables?

3. State Bendixson non-existence theorem.

4. Define aplane autonomous system.

3.6 UMLAUFSATZ

Let Q be an open connected subset of the plane R?, and letn = (n,,m,) be a C°
non-vanishing vector field defined in Q. For z € Q, define a real number Qq(z)
which represents the angle between n(z) and the positive x”direction.

An appropriate approach to do this is by using the complex variables. The
positive x”’direction is represented by the complex number 1 (or the real vector
(1, 0)), and let,

el e H(E)
&) = Ty
denote the unit vector in the direction of n(z).

Let 7 € R be any real number such that e” = (2). It can be said that #is an
angle between 1)(z) and the positive x”direction. This is also an angle between 1(z)
and (1, 0).

Consider any other real number 0 such that 8¢ = 2nn for some integer  also
gives us an angle between 1)(z) and the positive x” direction. Consequently, this

angle really is an element in the circle 57 ;i.e., it is well-defined up to an

integral multiple of 2.
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Definition. A region Q is simply connected if every closed curve in Q is
homotopic to a constant curve.

Consequently, the region € is simply connected if and only if, for every
continuous functiony : [0, 1] — Q such that y(1) =y(0), there is a continuous
function F : [0, 1] x [0, 1] > Q such that F{(z, 0) =v(¢) and F(z, 1) =7(0) =vy(1)
forallz € [0, 1].

There is one more significant criterion for simply connectivity. Aregion € is
simply connected if'and only if every continuous function from the unit circle S'in
R? extends to a continuous function on the closed unit disk D? in R*.

Proposition

Lety, and y, be two Jordan curves which can be continuously deformed
into one another without passing through a singularity of the vector field /. Then, jf

(v,)=Jf (v,)
Theorem (Umlaufsatz)

Letybe a C! positively oriented Jordan curve in the plane and lety ' be its tangent
vector field. Then,

jﬁl.l ("J )=1
Proof.

The result is evidently independent of the position of the curve y in the plane.
Therefore, translate the curve y so that it is above and tangent to the x—axis.

Let the curve be given by s — y(s) = (x(s), ¥(s)) with 0 < s < 1, 9(0) =y(1)
and y(s) y(¢) fors<¢<1.

Consider the triangle A= {(s,7) : 0 <s <7< 1}, and the subset A = {(s, ?)
:0<s<t<1}.

3.7 INDEX OF A STATIONARY POINT

Let f(x,y,z) be the objective function for an unconstrained optimization problem
then the index of a stationary point can be defined as the number of negative eigen
values of the hessian matrix of f(x,y,z).

Stationary Points

A point is said to be stationary point of a differentiable function of one variable is
apoint of the function where the function’s derivative is zero. At the stationary
point, the function stops increasing or decreasing, therefore the name stationary is
given. To find a stationary point of a function f(x) mathematically, it is defined as a
point where the derivative of f(x) is equal to 0 . Graphically, this corresponds to
points on the graph of f(x) where the tangent to the curve is a horizontal line.

Stationary points are categorised as: maximum point, minimum point and
point of inflection



Maximum Point

The point at which function attaints its maximum value, is said to be its maximum
point. At this point gradient of the function is positive just before the maximum
point, zero at the maximum point, then negative just after the maximum point.

Mathematically, dy/dx is decreasing with respect to x at this point; i.e. d*y/dx?
is negative at maximum point.

Minimum Point

The point at which function attaints its minimum value, is said to be its minimum
point. At this point gradient of the function is negative just before the minimum
point, zero at the minimum point, then positive just after the minimum
point. Mathematically, dy/dx is increasing with respect to x at this point; i.e.
d?y/dx?is positive at minimum point.

Point of Inflection

The point at which function is neither maximum not minimum, is said to be point of
inflection. Just before a minimum point the gradient is negative, at the minimum the
gradient is zero and just after the minimum point it is positive. d*y/dx? is zero at the
point of inflection.

The stability of solutions of Ordinary Differential Equations is determined
by the sign of real part of eigenvalues of the Jacobian matrix. These eigenvalues
are often referred to as the eigenvalues of the equilibrium. An equilibrium point of
a dynamical system generated by an autonomous system of ordinary differential
equations (ODEs) is defined as a solution that does not change with time. For an
ordinary differential equation, x2 =f{x) an equilibrium solution is defined as
x(t)y=x*, if f(x*)=0 .

Jacobian matrix for a system of ODE can be defined as

where all the derivatives are defined at equilibrium point. While solving linear
differential equations, behaviour of solutions can be understood by studying various
points. An equilibrium is said to be asymptotically stable if all eigenvalues have
negative real parts and it is said to be unstable if at least one eigenvalue has positive
real part. The behaviour of solutions near a saddle point is explained by the
eigenvalues of the Jacobian matrix. the eigenvalues of a 2x2-matrix can also be
both negative or both positive. When both factors will either both decrease in
time or both increase in time, then equilibrium points are called nodes. An
equilibrium point is called a saddle point if the Jacobian matrix J has one negative
and one positive eigenvalue.
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3.8 STABILITY OF PERIODIC SOLUTIONS

Periodic solution of an ordinary differential equation or system is the one that
periodically depends on the independent variable ¢. For a periodic solution x(¢)
(in the case of a system, x is a vector), there is a number 7 # 0 such that
x(t+T)=x(t) for teR.

All possible such T are called periods of this periodic solution; the continuity
of x(¢) implies that either x(#) is independent of # or that all possible periods are

integral multiples of one of them — the minimal period 7|, > 0. When one speaks

of a periodic solution, it is often understood that the second case applies, and 7,
is simply termed the period.

A periodic solution is usually considered for a system of ordinary differential
equations where the right-hand sides either are independent of:

x=f(x), xeU, ...(3.7)
where is aregion in, or else periodically depend on ¢:
i=f(t.x), f(t+5.x)=f(tx), xeU. ..(3.8)

(In a system with a different type of dependence on ¢ for the right-hand
sides there is usually no periodic solution.) In Equation (3.8) the period 7, of the

periodic solution usually coincides with the period 7', of the right-hand side or is
an integer multiple of 7' ; other 7| are possible only in exceptional cases. Periodic
solutions with periods 7, = kT, k >1, describe subharmonic oscillations and
therefore are themselves sometimes called subharmonic periodic solutions.

System Equation (3.8) determines the Poincare return map F'(dependent
on the choice of the initial moment £,): If x (¢, £) is the solution to Equation (3.8)
with initial value x (7, &) =& then

FE)=x (1, + T, 9).

The properties of Equation (3.8) are closely related to those of F ; in
particular, the value at ¢ = £, for the periodic solution with period AT is a fixed
point of F for k = 1, while for £ > 1 itis a periodic point with period £, i.e., a
fixed point for the iterate F* . The research on periodic solutions reduces to a
considerable extent to examining the corresponding fixed or periodic points of the
Poincare return map.

The following modification of this construction is used for an autonomous
system Equation (3.7): One takes some local section in the phase space at some
point on the trajectory of the periodic solution (which is a closed curve), i.e., one
takes a smooth manifold [ | of codimension 1 transversal to this trajectory, and
considers the mapping that converts a point e [ [ to the point of intersection of
the trajectory of Equation (3.7) through £ with [ | that is first in time.

The behaviour of solutions close to a given periodic solution is described in
linear approximation by the corresponding variational system. The coefficients in
this linear system in that case periodically depend on ¢, and therefore one can



speak of the corresponding monodromy operator and multipliers. The latter are
also termed multipliers for the given periodic solution. The linear approximation
determines the properties of the periodic solution to the same extent as for an
equilibrium solution.

The periodic solutions to system Equation (3.7) have some specific features:
one of the multipliers is always one (if the periodic solution does not reduce to a
constant), which in particular has to be borne in mind when examining the stability
of these periodic solutions, and the period may change in response to small
perturbations, which has to be borne in mind in perturbation theory.

The search for periodic solutions and the examination of their behaviour are
of interest not only from the purely mathematical point of view but also because
the periodic regimes of real physical systems usually correspond to periodic solutions
in the mathematical description of these systems. However, this is a very difficult
problem, since there are no general methods for establishing whether periodic
solutions exist for a particular system. Various arguments and methods are used in
different cases.

3.9 ROTATION POINT, FOCI, NODES AND
SADDLE POINTS

A critical point is any point x = ¢ for which F(c) =0. Clearly, any such point is then
asolution of

1x
== = F(x) forall (<0< <+w).
dt '

Example 3.1: Suppose we have the autonom system
:ri = +3x1— 5.1‘%:1'3 = F(x1, x2)
xh = —2x3 4 6x1200 = By(x, x2)

Find the critical points of this system.

Solution: For the critical points, we look for the points for which F' (x,, x,) =0
and F (x, x,) = 0.

For F\(x,, x,) = 0 we have x (3 — 5x x,) = 0. Thus, we have two cases:
eitherx =0 or3 — 5xx, = 0.

Casel: x, =0
We require that (x4, x2) = —2.1‘% L 6xqx2 = 0 when x; = 0. Thuswe
musthavey, = (.

Casell: 3 _ 5y x, =0
We  require that Fy(xq,x3) = —2x5 +6x3x0 = 0  when
3 — Bxyxp = 0. Thuswemusthave y;y, = 3 /5sothat
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~223 +6x10y =0— ~223+ =0
Or

. 9 _,38 E_i 1
R=FV5 NTEEVSTEA

3.9.1 Stability of Critical Points

We will now discuss the concepts of stability, asymptotic stability and instability of
a solution of the autonomous system

dx/dt = F(x,y), dyldt=G(x,y) ....(3.9)

Here we will give a precise mathematical meaning to these con-cepts.

A critical point x = x, y =y, (an equilibrium solution x = x,, y =y,) of the
autonomous system (3.9) is said to be a stable critical point if, given any € >0,

itis possible to find a d such that every solution x = ¢ (¢), y = y(¢) of the system
(3.9), which at = 0 satisfies

{[6(0) — x> + [W(0) -y I’} '* <5, ...(3.10)
and satisfies
{[o() — x>+ [P(O) -y P} <k, ..(3.11)

for all #> 0. These mathematical statements say that all solutions that start
sufficiently close to (x,, y,) stay close to (x,.y,)-

A critical point (x,, y,) is said to be asymptotically stable if it is stable and
if there exists a 6, 0 <8,< 9, such that if a solution x = 0(¢), y = y(?) satisfies

{[6(0) — x, I + [W(0) -y ]’} <8, .(3.12)
Then
ILIP (1) =x,, ltily v() =y, ..(3.13)

Trajectories that start sufficiently close to (x,, y,) must not only stay close
but must eventually approach (x,, y,) as # approaches infinity. Asymptotic stability
1s a stronger requirement than stability, since a critical point must be stable before
we can even talk about whether it is asymptotically stable. On the other hand, the
limit condition, which is an essential feature of asymp-totic stability, does not by
itself imply even ordinary stability. Geometrically, all that is needed is a family of
trajectories having members that start arbitrarily close to (x,. y,), then recede an
arbitrarily large distance before eventually approaching (x,. ,) as f approaches
infinity. For the linear system,

dx/dt = ax + by, dyldt =cx + dy ...(3.14)
with ad — bc # 0, the type and stability of the critical point (0, 0) as a
function of the roots ,# 0 and r,# 0 of the characteristic equation,

r* —(a+d)yr + ad — bc =0 ...(3.15)

are summarized in the following theorem:



Theorem 3.2: The critical point (0, 0) of the linear system (3.15) is

(i) asymptotically stable if the roots 7, , of the characteristic Equation (3.15)
are real and negative or have negative real parts.

(i) stable, butnot asymptotically stable, if 7 and , are pure imaginary.

(i) unstableif7 and r, are real and either is positive, or if they have positive real
parts.

Notice that if a critical point of the linear system (3.13) is asymptotically
stable then not only do trajectories that start close to the critical point approach

the critical point, but, in fact, since every solution is a linear combination ¢/ of

and "' every trajectory approaches the critical point. In this case the critical
point is said to be globally asymptotically stable. This property of linear systems
is not, in general, true for nonlinear systems. Often an important practical problem
in considering an asymptotically stable critical point of a nonlinear system is to
estimate the set of initial conditions for which the critical point is asymptotically
stable. This set of initial points is called the region of asymptotic stability for the
critical point.

We now want to relate the results for the linear system (3.13) to the nonlinear
system.

dx
o X Tyt Fix,y),
dy
r =cx+dy+G(x,y), ...(3.16)

We assume that (0,0) is a critical point of the system (3.16) and that ad —
bc#0. Also we assume that /7, and G| have continuous first partial derivatives
and are small near the origin in the sense that /' (x, y)/r -0 and G (x, y)/r =0
as r — 0, where r = (x?+ y*)"2. Recall that such a system is said to be almost
linear in the neighborhood of the origin. As an example, the system

& _

g X,

dy 1 1 3

TR Are Sl ...(3.17)

satisfies the stated conditions. Herea=1,5=0,c=0,d=1/2. F (x,y)=—x*—
xy, and G (x,y) = —74 y*—Ya xy. To show that ' (x,y)/r — O0asr— 0, letx=r
cos 0,y =rsin 0. Then

Fy(x,y) _ =’ cos’®—r’sinBcos6
1(’; y) _ Zr”cos : O Hcos?0+cos 0sin0) >0 ...(3.18)

as 7 — 0. The argument that G (x, y)/r — 0 as r—> 0 is similar.

Theorem 3.3: Let r and r, be the roots of the characteristic Equation (3.15) of
the linear system (3.13) corresponding to the almost linear system (3.16). Then
the type and stability of the critical point (0, 0) of the linear system (3.14) and the
almost linear system (3.17) are as shown in the table below:
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rir; Linear System Almost Linear System
Type Stability Type Stability
rn>r,>0 IN Unstable IN Unstable
ri1<r,<0 IN Asymptotically IN Asymptotically
stable stable
r,<0<r, SP Unstable SP Unstable
ri=r,>0 PN or IN Unstable PN, IN, or SpP Unstable
ri=r,<0 PNorIN  Asymptotically PN, IN or SpP Asymptotically
stable stable
ri=r;=Azip
A>0 SpP Unstable SpP Unstable
A>0 SpP Asymptotically SpP Asymptotically
stable stable
=iy, ry=—ip C Stable C or SpP Indeterminate

IN = Improper node, PN = Proper node; SP = Saddle point,
SpP = Spiral point; C = Center

Theorem 3.3 says that for x and y near zero the nonlinear terms ' (x, )
and G (x, y) are small and do not affect the stability and type of critical point as
determined by the linear terms except in two sensitive cases: 7, and 7, pure imaginary,
and r and r, real and equal. Small pertur-bations in the coefficients of the linear
system (3.14), and hence in the roots  and r can alter the type and stability of the
critical point only in these two sensitive cases. When r and 7, are pure imaginary,
a small perturbation can change the stable center into either an asymptotically
stable or an unstable spiral point or even leave it as a center. When » =7, a small
perturbation does not affect the stability of the critical point, but may change the
node into a spiral point. It is reasonable to expect that the small nonlinear terms in
Equation (3.16) might have a similarly substantial effect, at least in these two sensitive
cases. This is so, but the main significance of Theorem 3.3 is that in all other
cases the small nonlinear terms do not alter the type or stability of the critical
point. Thus, except in the two sensitive cases, the type and stability of the critical
point of the nonlinear system (3.16) can be determined from a study of the much
simpler linear system (3.14).

Even ifthe critical point is of the same type as that of the linear system, the
trajectories of the almost linear system may be considerably different in appear-
ance from those of the corresponding linear system.

Classification of Critical Points
1. Nodes A, A,>0
o I[fthe eigenvalues are both negative, then we have a stable node.
¢ Ifthe eigenvalues are both positive, then we have an unstable node.
2. Saddle points A, A, < 0

¢ Since one eigenvalue is necessarily positive, then the critical point is
necessarily unstable.

3. Spiral Point or Focus A, = o.+ i3
e The spiral point is stable if oo <0 and unstable if o > 0.
4. Centre: A ==if



e The centre point is said to be uniformly stable and the phase-plane orbits
are circles or ellipses.

A PR B Nd

10.

Check Your Progress

Give definition of Umlaufsatz.

How will you define the index of stationary point?
What do you mean by period of the periodic solution?
When is a critical point stable?

What is region of asymptotic stability?

Name the various types of critical points.

3.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

. x(f) is defined as an p-approximate solution of the DE dx/dr=f(t,x) on an

interval 7if |x (t) = (t, x(t))|<r v tIL (r)

. The differential dy depends on the following two quantities:

e The variable x (through the derivative y =£"(x)).
e The differential of the independent variable dx.

. Bendixson’s criteria states that if D is a simply connected open subset of R

and if the expression is not identically zero and does not change sign in D
then there are no periodic orbits of the autonomous system in D.

. A plane autonomous system is an autonomous system for whichn=2. It

follows that the general equation is given by

¥ = fxald
!

¥y = glx,y)

. Aregion Q is simply connected if every closed curve in Q is homotopic to

a constant curve.

. Let f(x,y,z) be the objective function for an unconstrained optimization

problem then the index of a stationary point can be defined as the number
of negative eigen values of the hessian matrix of f(X,y,z).

. Foraperiodic solution x(7) (in the case of a system, x is a vector), there is

anumber 7# 0 such that x(¢ +T)=x(¢) for ¢t € R.

. A critical point x =x(), y = () (an equilibrium solution x = x(), y =) of the

autonomous system dx/dt = F(x,y), dy/dt=G(x,y) s said to be a stable
critical point if, given any € >0, it is possible to find a 6 such that every
solution x =d(?), y = y(?) of the system, which at = 0 satisfies

{[6(0) —x]2 + [¥(0) ~ 302} /2 < & and satisfies
{[0() — x012 + [¥(1) —yol?} 12 <&
forall £> 0.
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9. Often an important practical problem in considering an asymptotically stable
critical point of a nonlinear system is to estimate the set of initial conditions
for which the critical point is asymptotically stable. This set of initial points is
called the region of asymptotic stability for the critical point.

10. Nodes, saddle points, focus and centre are the various types of critical
points.

3.11 SUMMARY

¢ The dependence of solutions of initial value problems on the initial values
and on parameters in the differential equation can be studied with the
knowledge of a fundamental estimate.

¢ Dependence on parameters can be transformed into initial conditions

¢ To explain the concept of higher order differentiability, consider a function y
= f(x) differentiable in the interval (a, b). For defining the first-order
differential of the function at the point x € (a, b) the formula is dy =f"(x)
dx.

¢ On fixing the increment dx, it is assumed that dx is constant. Then the
differential dy becomes a function only of the variable x for which the
differential can also be defined by taking the same differential dx as the
increment Ax.

¢ Bendixson’s criteria and Dulac’s criteria give the sufficient conditions that
rule out the possibility of periodic solutions.

e The basic result of H. Poincare and I. Bendixson is that any bounded semi-
trajectory (positive or negative) either tends to an equilibrium position or
coils round (like a spiral) to a limit cycle, or in an analogous way coils to a
closed separatrix or separatrix contour consisting of several separatrices
joining certain equilibrium positions, or is itself an equilibrium position or a
closed trajectory.

e The general form of a first-order autonomous system in normal form is:
X; =fj(x1,~-xn), J =1,-+,n, or, invector notation, x = f (x).

e The composition of two functions such that y = f{u) and u = g(x). In this
instance, y is a composite function of the independent variable x.

e LetQbean open connected subset of the plane R?, and letn=(n,,n,) be
a C’ non-vanishing vector field defined in Q. For z € Q, define a real
number (@) which represents the angle between 1(z) and the positive
x"direction.

e Aregion Q2 is simply connected if every closed curve in €2 is homotopic to
a constant curve.

e Letf(x,y,z) be the objective function for an unconstrained optimization
problem then the index of a stationary point can be defined as the number
ofnegative eigen values of the hessian matrix of f{x,y,z).



¢ A point is said to be stationary point of a differentiable function of one Dependence on Initial
. . . . -, C e . Conditions and
variable is a point of the function where the function’s derivative is zero. Parameters

e The point at which function attaints its maximum value, is said to be its
maximum point. At this point gradient of the function is positive just before
the maximum point, zero at the maximum point, then negative just after the
maximum point.

NOTES

e Thepointat which function attaints its minimum value, is said to be its minimum
point. At this point gradient of the function is negative just before the minimum
point, zero at the minimum point, then positive just after the minimum point.

e The point at which function is neither maximum not minimum, is said to be
point of inflection. Just before a minimum point the gradient is negative, at
the minimum the gradient is zero and just after the minimum point it is positive.

e Periodic solution of an ordinary differential equation or system is the one
that periodically depends on the independent variable z.

e A critical point can be a node, saddle point, focus and centre.

3.12 KEY TERMS

e Autonomous system: Autonomous system of ordinary differential equations
is asystem of ordinary differential equations which does not explicitly contain
the independent variable.

¢ Stationary points: A point is said to be stationary point of a differentiable
function of one variable is a point of the function where the function’s
derivative is zero.

e Maximum point: The point at which function attaints its maximum value, is
said to be its maximum point. At this point gradient of the function is positive
just before the maximum point, zero at the maximum point, then negative
just after the maximum point.

e Minimum point: The point at which function attaints its minimum value, is
said to be its minimum point. At this point gradient of the function is negative
just before the minimum point, zero at the minimum point, then positive just
after the minimum point.

¢ Point of inflection: The point at which function is neither maximum not
minimum, is said to be point of inflection. Just before a minimum point the
gradient is negative, at the minimum the gradient is zero and just after the
minimum point it is positive.

e Periodic solution: Periodic solution of an ordinary differential equation or
system is the one that periodically depends on the independent variable.

¢ Index of a critical point: For a function of n variables, the number of
negative eigenvalues of a critical point is called its index.
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3.13 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

l.

e S e

Define the continuity and differentiability of solutions.
What do you mean by the higher order differentiability?
State the Poincare-Bendixson theory.

Give the local properties of autonomous systems.
What is Umlaufsatz?

How will you define the index of a stationary point?
Define asymptotic stability of a critical point.

When is a critical point said to be stable?

Long-Answer Questions

l.

Discuss the continuity with respect to parameters and initial conditions with
the help of giving examples.

What do you understand by the higher order differentiability? Discuss the
properties of higher-order differentials with the help of relevant examples.

. For the following system of equations, use the Poincare-Bendixson theorem

to show that at least one limit cycle solution exists:
a. #=2r+2y—r(222 + 3%, §=-2r+2y—p(2:* + )

bi=z—-y-z(@®+3P), p=x+y—yl2*+ 3°)

. Briefly explain about the autonomous systems with the help of giving

examples.

5. Discuss the definition of Umlaufsatz. Give appropriate examples.

6. Explain about the index of stationary point with the help of giving examples.

7. Determine the periodic solution of

t=z—y—z(z® +9°)
g =z+y—ya®+17).

8. Find the critical points of f{x) = [x*—x|.

9. Find the critical points of the function,

10.

f(x)=6x"+33x*-30x" +100

Find the critical points and trajectories of the following system,

dx
at
'IIJ|
— =12 - 327
at
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4.0 INTRODUCTION

A linear differential equation or a system of linear equations with constant coefficients
for the associated homogeneous equations can be solved using quadrature, which
means the solutions can be represented in terms of integrals. This is also true for a
non-constant coefficient linear equation of order one. In general, quadrature cannot
solve an equation of order two or higher with non-constant coefficients. For order
two, Kovacic’s approach allows determining whether there are integral solutions
and, if so, computing them. Holonomic functions are the solutions to linear
differential equations with polynomial coefficients. Many common and special
functions, such as exponential, logarithm, sine, cosine, inverse trigonometric
functions, error function, Bessel functions, and hypergeometric functions, belong
to this class of functions, which are stable under sums, products, differentiation,
and integration. Most calculus operations, such as computation of antiderivatives,
limits, asymptotic expansion, and numerical evaluation to any precision with a
certified error bound, can be made algorithmic (on these functions) thanks to their
representation by the defining differential equation and initial conditions.

Sturm sequence of a univariate polynomial p is a sequence of polynomials
associated with p and its derivative by a variant of Euclid’s algorithm for polynomials.
Sturm’s theorem expresses the number of distinct real roots of p located in an
interval in terms of the number of changes of signs of the values of the Sturm
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sequence at the bounds of the interval. Applied to the interval of all the real numbers,
it gives the total number of real roots of p.

In differential equations, a boundary value problem is a differential equation
together with a set of additional restraints, called the boundary conditions. A solution
to a boundary value problem is a solution to the differential equation which also
satisfies the boundary conditions. A large class of important boundary value
problems include the Sturm-Liouville problems. The analysis of these problems
involves the eigen functions of a differential operator. In mathematical applications,
a boundary value problem should be well established. This means that given the
input to the problem there exist a unique solution, which depends continuously on
the input.

Oscillation theory was initiated by Jacques Charles Frangois Sturm in his
investigations of Sturm—Liouville problems from 1836. There he showed that the
nth eigen function of a Sturm—Liouville problem has precisely n-1 roots. For the
one-dimensional Schrodinger equation the question about oscillation/nonoscillation
answers the question whether the eigenvalues accumulate at the bottom of the
continuous spectrum.

In this unit, you will learn about the linear differential equations of second
order, theorems of Strum, Sturm—Liouville boundary value problem, non-oscillatory
equations and principle solutions, nonoscillation theorems and numbers of zeros in
second order linear equation.

4.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Understand the basic concept of linear differential equations of second order
¢ Discuss about the theorems of strum

¢ Define Lagrange’s identity and Green’s formula for second order differential
equations

¢ Learn about the nonoscillation theorem
¢ Analysis the nonoscillatory equations and principle solutions

¢ Explain about the numbers of zeros

4.2 LINEAR DIFFERENTIAL EQUATIONS OF

SECOND ORDER
Linear differential equation of second order is an equation of the form
d’y  Ldy
+P=4+Qy=R
Tt

where P, Q and R are the functions of x.



4.2.1 Solution by Changing the Dependent Variable
when One Integral Belonging to the C.F. is
Known

Let the linear differential equation of second order be
d’y

dx’

where P, Q and R are the functions of x only.

d
+P1Qy=R .(4.1)
dx

Let y =u be a known integral belonging to the C.F. of the equation (4.1).

Thus, its solution is

d’y o dy

—+P—+Qy=0 ..(4.2
dx’ dx (4.2)
Taking y = uv and differentiating with respect to x, we get

d 2
2 uv+uv, and —2/ =u,v+2uy, +uv,
dx dx

Putting these values in Equation (4.1), we get
(uv+2uv, +uvy )+ P(uy+uv )+ Q(uv) =R
= uv, +(2u, +Pu)v, + (u, + Pu, + Qu)v=R .(43)

Since y = u is the solution of Equation (4.2), thus Equation (4.2) can be
written as

u, +Pu, +Qu =0
Using this value in equation (4.3), we get

uv, -+—(2u1 —}—Pu)v1 +0=R

[eer)isd
= v, +| —u, +P |y, =—
u u
: dp
Now, putting v, = p and v, = oo We get
dp (2 R
—+|—u,+P|p=—
dx (u 1 jp y ..(44)

This is a linear equation in p. Thus, its
) 2 dx d;
ILF. = eI(%uwP]dx = eZlogu'eJ.P * _ elogu .6‘[P _ uzeIP x

Now, we have the solution of equation (4.4) as

p.uzejpdx = I(%.wzejpdx)dx +c

=p= u’zeIdeI(RueIde ) dx + clu"zefjm

dx

= 4 = uze_ImJ‘(Ruejmjdx + clu’ze_Jde [ p= ﬂ}
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Integrating both sides, we get

V= j(uze_IMr f Ruejpdxdx] dx + clj.u’ze_Idedx +c,

The complete solution of Equation (4.1) is given by y=uv
=>y= uJ‘(uze—JMJ.RueJdedxj dx + clu'l.u’2e_jpdxdx +cu

where ¢, and ¢, are two arbitrary constants.

.. . . d’ d
Determining the particular integral of 7 )2/ + Pd—y +Qy=0
X X

In case the integral of C.F. is not known while solving linear differential equations
of second degree, one of the following rules helps us in finding the particular integral
of

d’y oy

—+P—+Qy=0 ..(4.

dx’ dx R .5)
Rule 1: Let y = ¢™ be the solution of Equation (4.5).

Differentiating with respect to x, we get

d d?
_y — memx and y
dx

Putting these values in Equation (4.5), we get

2 _mx

Z:me

m*e™ +Pme™ +Qe™ =0
:>(m2 +Pm+Q)e”“ =0
=m +Pm+Q=0
Thus, y = ¢™ is the solution of Equation (4.5) if m* + Pm+Q =0.

Corollary: Taking m = 1, y = ¢* is a solution of Equation (4.5) if
1+P+Q=0.

Taking m =—1, y = e™is a solution of Equation (4.5) if | -P+Q=0.
Taking m = a, y= e is a solution of Equation (4.5) if a> + aP + Q=0.
Rule 2: Let y = x™ be the solution of Equation (4.5).

Differentiating both sides with respect to x, we get

d . d’ _
d—izmx "and dxy—m(m—l)x’” :

=
Putting these values in Equation (4.5), we get
m(m—1)x""> +Pmx"" +Qx" =0

= m(m—1)+Pmx+Qx* =0

Thus, y = x" is the solution of equation (4.5) if m(m —1) + Pmx +Qx* =0.



Corollary: Taking m =1, y=x1s a solution of Equation (4.5) if P+ Qx=0.
Taking m =2, y = x? is a solution of Equation (4.5) if 2 + 2Px +Qx>=0.

Example 4.1: Solve the differential equation

d’y dy .
—= —cotx——(l—cotx)y=e"sinx.
dx? dx ( )y

Solution: The given differential equation is

d’y dy .
—cotx——(1—cotx)y=e"sinx (1
dx’? dx ( )y 1)
. dzy dy
t with +P—+Qy =R, t
Comparing it wi P Qy we ge

P=—cotx,Q=-1+cotx,R=¢"sinx
Now, P+Q+1=—-cotx—1+cotx+1=0

Since P+ Q + 1=0, thus y =¢* is a part of C.F.

Taking y = ve*,
dy dv d’y d’v _dv
D_o o LA, L
dx ¢ dx eVanddx2 ¢ dx? dxe v
Substituting these values in Equation (1), we get
Ld*v dv . Ldvo P
' —+2—." +ve' —cotx| e —+e'v |- (1—-cotx)ve' =e'sinx
dx dx dx
2
:>d—:+(2—cotx)ﬂ=sinx
dx dx
dp . dv dp d’v
—+(2—cotx)p=sinx =— a7
= ( )p where p e and R -(2)

I . ... d ,
This is a linear differential equation in p l-e-,d—i +P'p=Q', whereP'=2

—cotx and Q" =sin x. Thus, its L.F.

2x 2x
I (2—cotx)dx

= P'dx L=
= 2x—logsinx —
eI =e 2

=e sin x

logsin x
e g

Now, the solution of Equation (2) is given by
pLF)=[ Q(UF)dx+¢,

er 2x
= — =I sinx.——dx +¢,
sin x sin x
er 2x
= p——= +¢
sinx 2
e sinx N sin x
= p= —t e ——
2 er e2x
dv sinx e Lo dv
= —= +ce sinx Sp=—
dx 2 dx
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sin x 2x .
— dv=( +ce” smxjdx
2

sin x

Integrating both sides, we get I dv = _f { >

+ce” " sin x} dx

cosx ce " .
=v=-— +T[—2s1nx—cosx]+c2

Thus, the complete solution of Equation (1) is given by y = ve*

—X
. ce

1
= y=——e€ CoSX—
4 2

[2sinx +cosx]+c,e"

4.2.2 Solution by Removing the First Derivative and
Changing the Dependent Variable

In case the integral of the C.F. is neither known nor can be found using the rules,

there is aneed of other method to find the solution of linear differential equation of

second order. Here, we will learn the method which is independent of integral of
C.F.

Consider the linear differential equation of second order
d’y
dx’

+P@+QV:R ...(4.6)
dx

Change the dependent variable in the Equation (4.6) by putting y = uv, where
u and v are the functions of x.

dy dv du d’y dv _dudv du
oy —+— =U—+2— —+Vv—s-
Now, dx udx dxv and dx’ udx2 dx dx de2

Putting these values in Equation (4.6), we get

2 2
[ v pdudv . d ”j+P(u§V Z”vj+Q(uv)=R

U—s : > —+—
dx dx dx dx X x

2 2
:ud—:+(Pu+2ﬂjﬂ+(d - +P%+QMJV=R
X

dx dx ) dx dx*
:>d_2v+(l)+g%jﬂ+ ld2u+£ﬂ+Q V_E
dx* u dc)de \u d® u dx u +(4.7)

. . . .dv : :
Taking u such that the coefficient of first derivative o 0 (i.e., removing

first derivative from Equation (4.7)), we get

P+£@=O:>@ = idx
u dx u

Integrating both sides, we get

[ = 5 fpas



-1 1 pax
= logu = ?dex Su=e? ...(4.8)
) 2 du .
Since P +—— =0, Equation (4.8) becomes
u dx
d_2V+ ld2u+2ﬂ+Q V_B
d* \u dx*  udx u -(4.9)
From Equation (7.8),
%=e%1jpdx _—lP =_—1Pu
dx 2 2
dv -1(Pdu dP\ -1(-1_, APy 1., 1 dP
and > =—|—+tu— |=—| —Putu— |=—Pu——u—
dx 2\ dx dx 22 dx ) 4 2 dx

Putting these values in Equation (4.9), we get

2 _ 1 pa
d—‘;—i- l(leu—lu£J+R(—lPuj+Q v=Rez'[Pd
dx u\ 4 2 dx) ul\?2

dx* | 4 2dx 2
d*v 1dP 1, Meae gy
=—+4+|Q—=—-——=P" |yv=Re¢? —+Pv=Q'
I [Q T 4 } :>dx2 v=Q ...(4.10)
1 dP 1 lJ'Pdr
here PP =Q—-—.———P?,Q' = Re?
W Q 2 dx 4 Q

The Equation (4.10) is called the normal form of the Equation (4.6). Equation
(4.10) can easily be integrated and then can be solved for v.

Thus, the general solution of Equation (4.6) is y=uv, which contains two
arbitrary constants.

. . . d 2 dy 2
Example 4.2: Solve the differential equation” - cos™ x I +ycos x=0,

. . . . .. d 2 dy 2
Solution: The given differential equation is I Cos™ x I +ycos'x=0
d’y

dx?

+(—Zsinxcosx)%vLycos2 x=0

. cos’ x

2
Y anx® 1 y-0 ()

dx? - dx

=

. . L d? d
Comparing Equation (1) with d_); + Pd—y +Qy =R, we get
X X

P=-2tanx,Q=1and R=0
Putting y =uv in Equation (1), the equation is transformed into
d*v

oo Thv=Q e
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1 1
where | _ 7] P —e 7] 2 _ gloeseex _ oo
1dP 1, 1d 1 ,
P'=Q-————-—P"=1-——(—-2tanx)——(4tan" x
Q 2dx 4 2dx( ) 4( )

=1+sec2x—tan2x=1+(1+tan2x)—tan2x=2

lPclx

and Q'=Re* =0

. . . . . d
Putting these values in Equation (2), it gets transformed into ) +2v=0
X

...(3)
Symbolic form of'this equation is (D2 + 2) v=0
Its auxiliary equationis D> + 2 =0 =>D>*=-2 = D=+2i

Now, the solution of Equation (3) is given by v = ¢, cos J2x + ¢, sin J2x
Thus, the solution of Equation (1) is given by y = uv

= y= secx[c1 cos~/2x + ¢, sin \/Ex]

4.2.3 Solution by Changing the Independent Variable

Consider the linear differential equation of second degree

L(4.11)

d’y L dy

—+P—+Qy=R

dx’ dx Qy
Changing theindependent variable x to z with the help of relation z=f{(x) ,

we get
b _dd
dx dz dx

<y _ i(d_yj

= dx*  dx\ dx
_i(d_y %) _ﬂ(éf L dz
dx\dz dx) dz* \dx dz dx’
Substituting these values in the Equation (4.11), we get
2 2 2
d f(%j +Q.d—f+P(ﬂ.éj+Qy=R
dz" \ dx dz dx dz dx
LZZ +P %

N d’y . dy’ dxdy+ Qy __R

)l (@

dx dx dx

d’y o dy

= = -I—PIEJrQIyzR1

(4.12)
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where p — dx dx,Q = R =—
1 2 1 2 1 2
o @
dx dx dx NOTES

Here, P, Q, and R, are the functions of x but can be expressed as the
functions of z with the help of the relation between z and x.

1. Choosing z such that the coefficient of P, is zero.
d’z dz
72 + -
p —dx dx _

(&)
dx

d’z
d’z dz d’z dz — dx” _ _p
i PE=0>——=-P=
= dx’ dx dx’ dx @
dx
Integrating both sides, we get
1%%={mm3@=dm
dx x

Integrating again, we get Z = j(eI o ) dx

For the relation z = _[(ej . ) dx P , will be zero and Equation (4.12) reduces to

d2
lrQy=r, - (4.13)

1
If Q, is constant or a constant multiplied by EE then Equation (4.13) can

be solved easily giving the value of y in terms of z. Then, by replacing z in terms of
x, we get the general solution of Equation (4.11).

2. Choosing z such that the coefficient of Q, is constant.

leaz(say)
2 2 dzjz
=a = — | =
(&) i
dx
:>a£= Q:ﬁzl\/a
dx dx a

Integrating both sides, we get

zzéj\/adx

1
For the relation z = ;I\/adx , Q, =a* and Equation (4.12) reduces to
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d’y dy

e +Plz+a2y=R1 ..(4.14)
If P, is a constant, then Equation (4.14) can be solved easily giving the

value of y in terms of z. Then, by replacing z in terms of x, we get the general

solution of Equation (4.11).

Example 4.3: Solve the differential equation

2

d’y

— +(3sinx — cotx)d—y +2ysin’ x =e “**sin’ x

dx dx

Solution: The given differential equation is
’ dy 2 2
+(3sinx—cotx)—+2ysin“ x=¢ “*"sin" x (1

dx2 ( ) dx y ( )

dl d
Comparing it with )2/ +py Qy=R, we get
dx dx

P=3sinx—cotx, Q=2sin’ x and R = ¢ *gin? x

Let% = e_Ide = e_-ll(kinx_cmx)dx — e3cosx+logsinx =sin X.eSCOSX
Integrating, we get

z= Iemsx sinxdx = _Lsfe“"” (—3 sinx)dx = —%em’”

3cosx

1
On changing the independent variable x to z by therelation z = =3¢

Equation (1) reduces to the form

dy
R Q=R -(2)
)
where P =0,Q, = Q == 2sin” x == 2 2:%
(dzj Sin2 x(e3cosx) (_32) 9Z
dx
—cosx _: 2
and R, = Rzz e sin x2
[dzj Sil’lz x(gScosx)
dx

—cosx 7
_ e _ e—7cosx — (e3cosx )75 = (—32)

~ 6cosx
e

7 )
I

Substituting these values in Equation (2), it becomes

d’y 2 |
e +9?y=_(3)7/3 z?
Multiplying by .2, we get
d’y 2 1 L
2_ S - 3
z dZ2 + 9 y (3)7/3 z (3)

Puttingz=¢' = logz=¢



d d 42
4_49_p 24 _p(p-1
=g~ Dand 25 =D(D-1)

Now, Equation (3) reduces to

2
|:D(D—1)+§j|y=—377€ 3

and Pl =

_ LI P T R T
_1+1+g 3m e _6 3m

9 3 9

1 ’l' 1 1 3cosx:|_

— z 3 = _

6(3)1/3 ( ) 6(3)1/3 |: 3
B 1 1 eosx —cosx

6(3)1/3 '(3)—1/3 6

—COS X

Thus, the solution of Equation (1)is y = A,&*** + A,e**" + ——

6

4.2.4 Solution by Using the Method of Variation of

Parameters

Here, we shall learn the method to find the complete primitive of a linear equation
whose C.F. is known. In this method, the constants of the C.F. are taken as the

functions of independent variables.
Consider the linear differential equation of second degree
Z—;} +P % +Qy=R
Let the C.F. of Equation (4.15) be
y=cu+cy
where ¢ and ¢, are two arbitrary constants.

Clearly, u and v are the integrals of

(4.15)

...(4.16)
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d’y  ody

—+P—+Qy=0

dx’ dx R
= u"+Pu'+Qu=0 ..(4.17)
and Vi+PV+Qv=0 ...(4.18)

Let the constants ¢, and ¢, in Equation (4.15) be the functions of x and the
complete primitive of Equation (4.15) be
y=c(X)u+c,(x)v ...(4.19)
Differentiating with respect to x, we get

& = (X)u+c,(xX)u’ +c, (x)v+c, ()

dx

d r ’ ! r
= d—i = [c1 (u'+c,(x)v ] + [cl (X)u +c, (x)v}
Let ¢ (x) and ¢,(x) satisfy the condition ¢ (x)u + ¢, (x)v=0 ...(4.20)

d , ,
Thus, we getd—i =c,(X)u"+c,(x)v

Again differentiating with respect to x, we get

2

e =c,(X)u"+c ()’ +c, (X" +c, (x)V'
Putting these values in Equation (4.15), we get

e, (" +¢ (X' +c, (X' + ¢, (X + P[c1 (xu'+c, (x)v'} +Q [cl ()u+c, (x)v] =R

= ¢,(0)[u"+Pu'+ Qu]+c,(x) [v" +Pv + Qv} +¢ (u' +¢, (xp' =R
Substituting the values from Equation s (4.17) and (4.18), we get

=¢q (x)[O] +c, (x)[O] +¢/ (' +c¢, (x)' =R

=c (u'+c, (X)W =R =¢ (x)u'+¢, (x)y ~R=0 -.(4.21)
Solving the Equations (4.20) and (4.21) for ¢/ (x),c, (x) , We get

q(_&e@__ 1
—-vR uR  w' —wu'

' —vR ' uR
= o (X)=——=,6(x)=
uv —vu

w' —vu'
. R R
Integrating, we get ¢,(x) = —J.Vde +a,c,(x)= J qux +b

u v

! !

u v

1 ’
where W = uv —vu =

R R
Putting these values in Equation (4.19), we get y = _”IVW“’X +v _[ qux

which is the particular solution of Equation (4.15).



Example 4.4: Apply the method of variation of parameters to solve

d2
4 Y @y =cosecax.

dx?

. . . .. d’
Solution: The given differential equation is 7 2] +a’y =cosecax
X

Symbolic form ofthe equation is (D2 +a’ ) Yy =cosecax

Its auxiliary equationis D* +a’ =0 =D*=-a> =>D=%ia

~.C.F. = Acosax+Bsinax

Let the complete solution of Equation (1) be y = ucos ax +vsin ax
where u, v are unknown functions of x.

= y =uy, +vy, where y, =cosax and y, =sinax

oy
Let W=l 2

!

vy

cosax sin ax

2 =2
. =a(cos ax-+sin ax)za
—asinax acosax

R
Now u= —I y\ZN dx +c, where R = cosecax

sin ax cosec ax _ 1! d X
=—j.—a’x+c1 = Y e =——+¢
a a a

R
and V=Iy1de +c,

COSaxcosec ax cotax i
='[—dx+c='[ dx ., —logsinax

2 2 2

a a

a

Substituting the value of # and v in Equation (2), we get

X logsin ax .
y=| ——+¢ |cosax+| ————+c, |sinax
a

2
a

. x logsinax .
= Y =¢,C08ax + ¢, sin ax——cos ax +————sinax
a a

which is the complete solution of Equation (1).

(1)

-2

+c,

4.3 THEOREMS OF STURM

In the field of ordinary differential equations, Sturm separation theorem describes

the location of roots of homogeneous second order linear differential equations.

Basically the theorem states that given two linear independent solutions of such an

equation the zeros of the two solutions are alternating.
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Sturm Separation Theorem

Given a homogeneous second order linear differential equation and two continuous
linear independent solutions u(x) and v(x) with x, and x, successive roots of u(x),
then v(x) has exactly one root in the open interval Jx, x [.

Proof

The proof'is by contradiction. Assume that v has no zeros in ]x, x [. Since u and
vare linearly independent, v cannot vanish at either x, or x , so the quotient u /v
is well defined on the closed interval [x, x, ] and it is zero at x, and x,. Hence, by
Rolle’s theorem, there is a point £ between x, and x, where,

d (u(x)] _ w(v(x) —u(x)v'(x)
FA) ()’

vanishes. Hence, u'(E)v(§) = u(§)V'(€), which implies that « and v are
linearly dependent. This contradicts our assumption and thus v has to have at least
one zero between x, and x,. On the other hand, there can be only one zero
between x, and x,, because otherwise v would have two zeros and there would
be no zeros of u in between, and it was just proved that this is impossible.

An Alternative Proof

Since v and v are linearly independent it follows that the Wronskian W[v, v] must
satisfy W[v, v] (x) = W (x) # 0 for all x where the differential equation is defined,
say 1. Without loss of generality, suppose that /' (x) <0 V x € 1. Then

v(x) V' (x) — V' (x)v(x) = 0.
So at x = x,

W(x,) = -V’ (x,) v(x,)
and either v’ (x,) and v (x,) are both positive or both negative. Without loss of
generality, suppose that they are both positive. Now, at x = x,

W(x)=-0"(x) v (x)

and since x =x, and x = x, are successive zeros of L(x) it causes v'(x,) <0.
Thus, to keep W(x) <0 we must have v (x,) <0. We see this by observing that if
v'(x) > 0 V x €(x,, x,) then v(x) would be increasing (away from the x-axis),
which would never lead to a zero at x = x,. So for a zero to accur at x =x, at most
v'(x,)=0Ti.e., v (x,) <0and it turns out, by our result from the Wronskian that
V' (x,) <0]. So somewhere in the interval (x,, x, ) the sign of v(x) changed. By the
intermediate value Theorem there exists x* € (x, x,) such that v (x*)=0.

By the same reasoning as in the first proof, v(x) can have at most one zero
for x € (x,, x)).
Sturm-Picone Comparison Theorem
In mathematics, in the field of ordinary differential equations, the Sturm-Picone

comparison theorem is a classical theorem which provides criteria for the oscillation
and nonoscillation of solutions of certain linear differential equations. Let,



L (p1(x)y") +q(x)y=0

2. (p2(x)y) + r(x)y=0

be two homogeneous linear second order differential equations in self-adjoint
form with,

0< py(x) < pi(x)
And, 0< py(x) < py(x)

Let u be anon-trivial solution of case (1) with successive roots atz and z,
and let v be a non-trivial solution of case (2), then one of the following properties
holds;

e Thereexists anxin [z, z,] such that v(x) = 0.

o There exists a A in R such that v(x) = Au(x).

4.3.1 Sturm-Liouville Boundary Value Problems

In differential equations, a boundary value problem is a differential equation together
with a set of additional restraints, called the boundary conditions. A solution to a
boundary value problem is a solution to the differential equation which also satisfies
the boundary conditions. A large class of important boundary value problems include
the Sturm-Liouville problems. The analysis of these problems involves the
eigenfunctions of a differential operator. In mathematical applications, a boundary
value problem should be well established. This means that given the input to the
problem there exist a unique solution, which depends continuously on the input.

A more mathematical way to picture the difference between an initial value
problem and a boundary value problem is that an initial value problem has all of
the conditions specified at the same value of the independent variable in the equation
and that value is at the lower boundary of the domain, thus the term ‘Initial’ value.
On the other hand, a boundary value problem has conditions specified at the
extremes of the independent variable. For example, if the independent variable is
time over the domain [0,1], an initial value problem would specify a value of y(¢)
and y'(¢) at time ¢ = 0, while a boundary value problem would specify values for
y(f)atbotht=0and = 1.

Ifthe problem is dependent on both space and time, then instead of specifying
the value of the problem at a given point for all time the data could be given at a
given time for all space. For example, the temperature of an iron bar with one end
kept at absolute zero and the other end at the freezing point of water would be a
boundary value problem.

Concretely, an example of a boundary value (in one spatial dimension) is
the problem,

y'(x)+ y(x)=0
to be solved for the unknown function y(x) with the boundary conditions,

¥(0) =0, y(m/2)=2.
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Without the boundary conditions, the general solution to this equation is,
y(x) = Asin(x) + Bcos(x).
From the boundary condition y(0) =0 one obtains,
0=4-0+B-1
which implies that B =0. From the boundary condition y(n/ 2) =2 one
finds,
2=4-1
and so 4 =2. One sees that imposing boundary conditions allowed one to
determine a unique solution, which in this case is,
y(x) =2 sin(x).
Sturm-Liouville Theorem and Boundary Value Problem

A differential equation defined on the interval a <x <b having the form of ,

d d
a[”(’”d_ﬂ +1g(x) + A (x)] y =0

and the boundary conditions,

{aly(a) +ayy'(a)=0
by(b)+ by’ (b)=0

is called as Sturm-Liouville boundary value problem or Sturm-Liouville
system, where p(x) >0, g(x); the weighting function 7(x) >0 are given functions;

a, a,, by, by are given constants; and the eigenvalue i1s A an unspecified parameter.

A special case of the Sturm-Liouville boundary value problem includes
examples of generalized Fourier series found in Bessel functions, Legendre
polynomials and other orthogonal polynomials such as Laguerre polynomials,
Hermite polynomials and Chebyshev polynomials. Each of these polynomials
represents a complete orthogonal set in different coordinates or circumstances
and can be considered as a special case of the Sturm-Liouville boundary value
problem.

The non-trivial (non-zero) solutions @ (x), n=1, 2, 3...., of the Sturm-
Liouville boundary value problem only existatcertain A ,n=1,2,3,..., A is
called eigenvalue and @ (x) is the eigenfunction.

The eigenvalues of a Sturm-Liouville boundary value problem are non-
negative real numbers. In addition, the associated eigenfunctions ® (x) are
orthogonal to each other with respect to the weighting function #(x),

b
J r(x)®,(x)®,(x)dx=0 if m#n; m,n=1,2,3,...
a

The complete set of the solutions {<I>n (¥)|a<x<bh,n=1,2,3, } forms

a complete orthogonal set of functions defined on the interval a <x < b . Therefore,
a piecewise continuous function f{x) can be expressed in terms of @ (x),
n=1,2,3, ..., such that



- f(x) Where f(x)is continuous
L@ (=) 70+ 1)

at discontinuous points

Where,

[ ro) £, (x)dx
¢, =
[ 0@, (0@, (xdx

The completeness helps to express any piecewise continuous function in
terms of these eigenfunctions while the orthogonality makes the expression unigue
and compact (no redundant terms). In addition, it can be shown that the orthogonal
series is the best series available, i.e., each additional term fine tunes but not overhauls
the sum of the existing terms. These properties generalize the conventional Fourier
series sin A x and cos A x to any complete orthogonal series ®n(x) and hence
series is called the generalized Fourier series. The method of forming solutions by
the general Fourier series is called the method of eigenfunction expansion which is
an important technique in solving partial differential equations.

Sturm-Liouville Equation

A classical Sturm—Liouville equation, named after Jacques Charles Frangois Sturm
(1803-1855) and Joseph Liouville (1809—-1882), is a real second-order linear
differential equation of the form,

d dy
— [p(x) dx] +q(x)y = Aw(x)y, ..(4.22)
where y is a function of the free variable x. Here the functions p(x) >0, g(x)
and w(x) > 0 are specified at the outset. In the simplest of cases all are continuous
on the finite closed interval [a,b], and p has continuous derivative. In addition,
the function y is typically required to satisfy some boundary conditions at @ and b.
The function w(x), which is sometimes called 7(x), is called the ‘weight’ or ‘density’
function.

The value of A is not specified in the equation; finding the values of A for
which there exists a non-trivial solution of satisfying the boundary conditions. Such
values of A when they exist are called the eigenvalues of the boundary value problem
defined by and the prescribed set of boundary conditions. The corresponding
solutions (for such a A) are the eigenfunctions of this problem. Under normal
assumptions on the coefficient functions p(x), g(x), and w(x) above, they induce a
Hermitian differential operator in some function space defined by boundary
conditions. The resulting theory of the existence and asymptotic behaviour of the
eigenvalues, the corresponding qualitative theory of the eigenfunctions and their
completeness in a suitable function space became known as Sturm-Liouville theory
or S-Ltheory. This theory is important in applied mathematics, where S-L problems
occur very commonly, particularly when dealing with linear partial differential
equations that are separable. Under the assumptions that the S-L problem is regular,
1.e., p(x), w(x)> 0 and p(x), p (x), g(x), and w(x) are continuous functions over
the finite interval [a, b], with separated boundary conditions of the form,
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y(a)cosa— p(a)y’(a)sina=0, ...(4.23)
y(b) cos B— p(b)y’(a) sin B=0, ...(4.29)

where a, B € [0, ), the main tenet of Sturm-Liouville theory states that:

e Theeigenvalues A, A, A, ... of the regular Sturm-Liouville problem (refer

equations 1,2 and 3) are real and can be ordered such that,
M <Ay <A3<--<A, <o —>oo;

e Corresponding to each eigenvalue A is a unique (up to a normalization
constant) eigenfunction y (x) which has exactly n— 1 zeros in (a, b). The
eigenfunction y (x) is called the nth fundamental solution satistying the
regular Sturm-Liouville problem (Refer Equations 4.22,4.23 and 4.24).

¢ The normalized eigenfunctions form an orthonormal basis,

b
[ 3y W) dr =3,
in the Hilbert space L*([a, b],w(x) dx). Here § is a Kronecker delta.

Note: Unless p(x) is continuously differentiable and g(x), w(x) are
continuous the equation has to be understood in a weak sense.

The differential Equation (4.22) is said to be in Sturm-Liouville form or self-
adjoint form. All second order linear ordinary differential equations can be recast
in the form on the left-hand side of Equation (4.22) by multiplying both sides of the
equation by an appropriate integrating factor although the same is not true of
second order partial differential equations or if y is a vector.

The following are significant examples for consideration:

The Bessel equation,

X2y +xy + (kzx2 —vz)y =0

can be written in Sturm-Liouville form as,
(xy'), + (kzx - vz/x)y =0.

The Legendre equation,
(l—xz)y”—ny' +v(v+1)y=0

can easily be put into Sturm-Liouville form, since D(1 —x?) =-2x, so, the
Legendre equation is equivalent to,

[(l—xz)y'] +v(v+1)y=0
Less simple is such a differential equation as,

X’y —xy +2y=0.

Divide throughout by x*:
2
" _ _y/ + —y= 0
3 3



Multiplying throughout by an integrating factor of,
_ 3 _1/.2
e_[ x/x dx _ ej l/x dx _ e]/x ,
Gives,

1/x_ . »

ey e—y'+ y=0
x2 X

which can be easily put into Sturm-Liouville form since,

1/x

X

so the differential equation is equivalent to,

zel/x
x3

(el/xy/)’ + y= 0 .

In general, given a differential equation,

P(x)y" + 0(x)y" + R(x)y =0
dividing by P(x), multiplying through by the integrating factor,

ej O(x)/P(x)dx |
and then collecting gives the Sturm-Liouville form.

Sturm-Liouville Equations as Self-Adjoint Differential Operators

The map,

1 d du
Lu= WO (_E[ (X)E] + q(x)u)

can be viewed as a linear operator mapping a function u to another function
Lu. This linear operator can be studied in the context of functional analysis. Actually,
Equation (4.22) can be written as,

Lu=\u.

This is precisely the eigenvalue problem, i.e., to find the eigenvalues A, A,
A, ... and the corresponding eigenvectors u , u,, u,, ... of the L operator. The
proper setting for this problem is the Hilbert space L*([a, b],w(x) dx) with scalar
product,

(f.g)= J:mg(x)W(x) dx.

In this space L is defined on sufficiently smooth functions which satisfy the
above boundary conditions. Moreover, L gives rise to a self-adjoint operator.
This can be seen formally by using integration by parts twice, where the boundary
terms vanish by virtue of the boundary conditions. It then follows that the eigenvalues
of'a Sturm-Liouville operator are real and that eigenfunctions of L corresponding
to different eigenvalues are orthogonal. However, this operator is unbounded and
hence existence of an orthonormal basis of eigenfunctions is not evident. To
overcome this problem one looks at the resolvent,
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(L-2)", z e C,

where z is chosen to be some real number which is not an eigenvalue. Then,
computing the resolvent amounts to solving the inhomogeneous equation, which
can be done using the variation of parameters formula. This shows that the resolvent
is an integral operator with a continuous symmetric kernel (the Green’s function of
the problem). As a consequence of the Arzela-Ascoli theorem this integral operator
is compact and existence of a sequence of eigenvalues o, which converge to 0
and eigenfunctions which form an orthonormal basis follows from the spectral
theorem for compact operators. Finally, note that (L —z) ~'u = aw is equivalent to
Lu=(z+a YHu.

Ifthe interval is unbounded, or if the coefficients have singularities at the
boundary points, one calls L singular. In this case the spectrum does no longer
consist of eigenvalues alone and can contain a continuous component. There is
still an associated eigenfunction expansion (similar to Fourier series versus Fourier
transform).

Example 4.5: Find a function u(x) which solves the following Sturm-Liouville
problem:

_du_
dx?
where the unknowns are A and u(x). We add boundary conditions as,
u(0) = u(m)
Solution: Observe that if k is any integer, then the function
u(x) = sin kx
is a solution with eigenvalue A = —k%. We know that the solutions of S—L
problem form an orthogonal basis and from Fourier series it is considered that this
set of sinusoidal functions is an orthogonal basis. Since orthogonal bases are always
maximal (by definition) we conclude that the S—L problem in this case has no

other eigenvectors. Given the preceding, let us now solve the inhomogeneous
problem,

Lu Au

Lu=x, x € (0, m)

with the same boundary conditions. In this case, we must write f{x)=xina
Fourier series. The reader may check, either by integrating Jexp(ikx)x dx or by
consulting a table of Fourier transforms, that we thus obtain,

oo k
Lu= 2 —2ﬂ sin kx.
k=1 k

This particular Fourier series is troublesome because of its poor convergence
properties. It is not clear a priori whether the series converges pointwise. Because
of Fourier analysis, since the Fourier coefficients are ‘square-summable’, the Fourier
series converges in L? which is must for this function. Fourier’s series converges at
every point of differentiability and at jump points (the function x, considered as a
periodic function, has a jump at ) converges to the average of the left and right



Therefore, by using the given equation we obtain that the solution is,

= (1)
u= kz_l 2 ( k3)
In this case, we could have found the answer using anti-differentiation. This
technique yields u = (x* — 7°x)/6, whose Fourier series agrees with the solution
we found. The anti-differentiation technique is no longer useful in most cases when
the differential equation is in many variables.

sin kx.

4.3.2 Eigen values and Eigen Function of the Strum-
Louville Problem

To find the solution of problem

Y'+hy=0 .. (4.25)
with boundary condition
y(0)=0andy(n)=0 ...(4.26)

is not difficult to find. Boundary condition are the general solution of the eq”. But
we have to analyse the solution for all possible values of A's. so, three cases arises
as follows

Case 1: A'snegativeor A <1

Let A= —-m?

Then problem (4.25) with (4.26) becomes
Vemty=0 .. 4.27)

¥ (0)=0,and y(m) = 0

So, the general solution is
y(x)=Ce™ +Che™
y(0)=0=C+C, =0 ... (4.28)

W(m)=0=>Ce" +Cre™ =0 ...(4.29)
Equations (4.26) and (4.27) give
C,sinhmn=0= C,; =0 as sinhmmn # 0 form+0

Hence C, = C, =0, so we get only one trivial solution exists

Case2: L=0
The given problems (4.25) and (4.26) becomes
yn =0

y(0)=0andy(n)=0
hence the general solution is
yx)=Cx+C,
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wheny (0)=0,and C,=0
yx)=Cx

wheny (7)=0,C, =0

underboundary condition C, = C,=0

we have trivial solution for given problem for this values of A or y=0

Case3: >0
Let A = m?
The given problems (4.25) with (4.26) reduces to
V' +m’y=0
y(@)=0andy(m)=0
so general solution is

y(x) =C,; sinmx + C, cos mx
Fory (0)=0,and C,=0
y(x) =C; sinmx + C, cos mx
Fory (0)=0,and C,=0
y (x) = C, sin mx
y(m)=0,y(0)=Csinmrx
since C, # 0 for seeking non — trivial solution
sin mm = 0.
sinmm=nwr
mr=nm,n=1,2,3 ........

hence yn = n*, n =1, 2, 3 ..... which is known as eigen values and
corresponding solution is

y,(x)=Csinnx;n=1,2,3 .....
which is called as eigen function

Strum — Louville Problem

A boundary values problem consisting of second order homogeneous linear diff
eq" of the form

d d
a(p“)d_ﬁj g (x)+r(x)]y =0 . (430)

Where p, g and r are condition real valued function definedon a <x < b

such that p her a continuous derivatives, P(x) > Oandg(x) > 0and A is a
parameter independent of x and two homogeneous boundary conditions

4 y(a)+ 4,y (@) =0 ... (431)

B, y(b)+ 4,y (b)=0 ...(4.32)



Where A, A,, B, and B, are real constant such that A, and A, are not both
zero and B, and B, are not both zero simultaneously is called Strum — Louville
problem.

Example 4.6: Check whether the boundary values problem
y"'=Ay =0, with y(0) =0 = y(m)
Sturm — Louville problem or not.

Solution: On comparing with standard form of Sturm — Louville problem, we
have

p(x)=1g(x)=Lr(x)=0,g=0,b=m
A=B,=landA=B,=0
hence given problem is Sturm — Louville problem.

Example 4.7 : Find the eigen values and eigen function of the following Sturm —
Louville problem.
d

2x dy 2x
— — [+(d+1 =0
dx(e dx ( ey

y(0)=0=y(m)
Solution : Transform dependent variable for y to u by using transformation
y=¢e "4
P =e " i _ e ’'u
dx dx

Therefore given diff eq" reduces to

d (ex (e_x @v_ e_xyD +(L+De* e u=0
dx

dx
=2¢* [ex @_ exuj +e™ (—ex & +e " d_€+efo —e " d_yj +he® e u+ee Ty =0
dx dx X dx
dZ
e —;} +u |=0
dx

u"+ =0
and boundary condition reduces to
u(0)=0=u(n) since e #0Vxe A
m=n* - n=14
are the eigen values for reduced problem and corresponding eigen function

are u,(x) =sinnxhence A, = n*,n=1,2,3 ....are the eigen values for given

problem and corresponding eigen functions are

y,(x)e"sinx .. neN
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Check Your Progress
1. Solve the differential equation x° 4y _ (xz + QX)d—y +(x+2)y=x'e"
' q dx’ dx '

2. Solve the differential equation
d’y

. dy . . 2
(xsinx + cosx) —xcosx—- + ycosx =sinx(xsinx +cosx) .

dx? x

2

3. Solve x’ d—f + xd—y —9y =0, given that y=x" isa part of solution.
X X

4. Solve the differential equation
d'y dy

1+ x) +(l+x)—+ y=4cosilog(l+x
(1) ==+ (1+x)—=+ y =4 cos flog 1+ x)} .

5. Solve the differential

2
equation(3x+2)2 dy +3(3x+2)2—y—36y =3x" +4x+1,
x

dx’
. . : d’y d .
6. Solve the differential equation x—2 — % — 4x*y = 8x* sin x°.
dx” dx
, . ) d’ d y
7. Solve the differential equation x° p 2] +3x° d—y +a’y=x7",
X X
8. Apply the method of variation of parameters to solve
2
d 5—5Q+6y=26”,
dx dx

.. d’
9. Applythe method of variation of parameters to solve = 2/ +n’y=secnx,
X

10. Explain Sturm separation and comparison theorem.

11. Define Sturm-Liouville equation.

4.4 NONOSCILLATION THEOREMS

To prove nonoscillation theorem we have to prove two lemma as.
Lemma 1 : Consider the differential eq®

M,—&M'F&

20" a0 o(1)=0, ..(4.33)

Where ¢(7) is continuous on [T, @2], A (¢) is continuously differential on
[T,]and

Let u (¢) be the solution of Equation (4.33) on [T, o |

Where ¢(7) is continuous on [T, « ], A(7) is continuously differential on [T,
oo | and

A(t)> 0, 4'(1) < 0, lim A() =0
f—>o0

Let u (¢) be the solution of Equation (4.33) on [T, oo ]



Satisfying u (f)=0. Then, tlim O(7) = o[ or —eo]implies
—>00

lim u(f) = eo[or — o]

{—>o0

Proof : The solution u(7) is given by the formula

t A (s)

u(t) = —A(t)j q)(s) ds,t>T

If tll_glo O(1) = eo[or—2°] then itis obvious two

}Lm( L’j 8 o(s )ds)—oo[or— o]

hence by L' Hospital’s. rule

’

hmu(t)—hm( j A(S) ()ds]

f—00 )

Y
A(t)

Lemma 2: Let 6(¢) be continuous on [T, ] and Let v(¢) be continuously

lim O(#) = [ o[ or — o]

differentiable on [T, o ]. Ifthe hm [ + D ] exists in the extended real

line R", then the lim v () exists inR*.

t—a

Proof : If the conclusion is false, then there are numbers € and 1) such that

liminf v(7) <{ << lim subv(r)
[—oo [—>o0

Now we can select an inereasing sequence [t ] With the following

properties
limz, =0, v(1,)=0, v=1,22 . (4.34)
V(1) <& v(tp,)>m, v=12 ...(4.35)

According to Equation (4.34)

lim [G (tv) + v(tv)] = lim v(tv)

u—o0 y—>eo

exists in R*. However, this is a contradiction, since Equation (4.35) implies

that the sequence {V ( L, )}v _, cannot have a limit in R *
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4.4.1 Nonoscillatory Equations and Principal Solutions

Let a* (t) = max{a(t),0}
a (t)=max {—af(t),0}
Let following condition hold.

["4, 10" (tdt =, ... (4.37)
["4,a @0)dt <, ... (4.38)
[ 74,401 b(0) | digeo ... (4.39)

Then, all bounded nonoscillatory solution, of

’
’

ha @] 1 <r>{...(rz(z)(w)y'(z))' ———) J

+a(t)+Ay(g(t)) =b (1), ....(4.40)
Where a(t), b(¢), g(t),r(t)...r,_,(¢) are real valued and continous on
[, oo ] and f() is real valued and continuous on (—ee, o)

Proof : Let y (¢) be a boundary nonoscillatory solution of b(¢) we may suppose
without loss of generality that

y (1) > 0 for £21, . By there exists b > to such that g(z)>to for t>t;.
Thus y(g(¢))>0 for r=¢. we defend
GO=y0),GO=r @, G ()i=1..n-1 ..(4.14)

w0 =] Ay ($)Chii ()dsy k=0,1,.n-1
A integration by parts yields

Upa(t) = J: A, ()G, (s)ds

=4, ()G, 1 ()= A, (6) G (1)

g An—k—l (S)
L (S)
A, (Or,_, (1)

- T—T(Z‘) A4, 4 (t)G;,_k_l ()- A,_x (tl ) Gn—k (tl)

+ G, (s)ds e (@)



Linear Second Order

! ’ .
+L An—k—l (S)Gn—k—l (S) ds L (b) Equations
=t ) ) A, ()G 1) NOTES
An—k (t)

This show that v, (¢) satisfies the diff” eq"

A (t
n—k( )v/

: - =0
a0 " %) .. (442)

o — Ay (1) - Ay (1)
An—k (t) An—k (t)

0 (0)=0 ..(4.43)

where 0, (1) =v,_ (1) + 4, (1)Gy (tl)

Since v, (4)=0by Equation (4.41) and since A, ,(t)>0,

A4y (1) <0, tlim A,_;(t) =0, byapply lemma 1 to Equations (4.43) to conclude
—>00
that lim v,_,(¢) = so[or —eo]implies that lim v, (¢) = eo[or — o] . More over,
t—oo —oo
applying lemma 2 to Equation (4.42), we conclude that th_{g Vi (?) existsin R

wherever th_{g Vie1(f) existsin R*. Now multiply both sides of Equation (4.42)

by A,_,(¢) and integrate it over [tl, t] then,

[, 41 )G s+ [ 4, (0" (5)1 (&) ds

t t
= [ AL @b)ds+[ 4, ()0 ()1 (g(oNds—(x) ... (4.44)
we distinguish the following two cases

J A0 O (et =< (4.45)

[ A0 O f (e <o (4.46)

Suppose Equation (4.46) holds. In view of Equations (4.38) and (4.39)
and the boundedner of y(¢) the right hand side of Equation (4.44) tends to a finite

limit as t — oo, so that from (xi7). We see that }g{lo Uy () = —°°.hence lemma 1

applied to (xi) with k=1, we have lim 24, (t) = —oo. Applying lemma 1 again
t—o0
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Equation (4.45) with k£ = 2, we have limu,(t)=-0 . This however
t—oo

Contradictionthe assumption that y (¢) is positive. Now letting  — oo in Equation
(4.45) is impossible. Now, letting  — oo in Equation (4.44) and using Equation
(4.44), we see that is finite. From lemma 2 applied to Equation (4.42) with k=1

it follow that limv,(#) exists in R*. This limit must be finite, since
=300

}l}m uy (1) = —°° would imply tli)n; Y(t) = =2, contradiction to the positivity of

g(®),and limv,(f) == would imply lim y(¢) = — o, a contradiction to the
[—>o0 [— oo
Boundedness of y(#,) continuing in this way, we conclude that is finite. Therefore

lim y(¢) exists as a finite number, so it is easy to verify that
n—yo0

lim inf y(g(¢) = liminf ()= 0
t—0

t—>00

Thus it follow that 1im »(#) =0.

Theorem 4.1 : All bounded non-oscillatory solution of h(¢) or equation (1)
tunnel to zero as  — oo if the following condition are satisfied:

[ 4,0 ()dt < o (4.47)
j°°An_1 ()L (t)dt = oo (4.48)
[ 4,0 dt <o (4.49)

Proof : Let y (x) be abounded non-oscillatory solution equation (4.40) such that
y(g(t)) > 0 for > ¢,. Aparallel argument holdif y(g(¢)) < 0 forz>¢. Defind
the function G (¢) and v,(7) by the formula equation (4.41) Assume that

|7 4 @a” @ f ((g@))dr =
Then, letting t— oo in (a), (b) and using Equations (4.48) and (4.49) and
the boundedness of g (¢), we obtain lim v;,(¢) = oo, so that applying lemma 1 to
n—oo

equation (4.44) with k=1, we see that ,li)m vy (#) = > Repeat application of this
argument show that }Lm V(1) = > which implies that lim y(f)=co. But
°° t—>o0

conducts that fact. That y(¢) is bounded. Consequently, we must have

f Ao @) f (y(g(t)))) dt < oo

The rest of the proof now proceeds exactly as in the second half of the
above proof Theorem.



4.5 NUMBER OF ZEROS IN SECOND ORDER
LINEAR DIFFERENTIAL EQUATION

Second order linear equation :
Y+ p@y +q(0)y = y() .- (4.50)
Homogenous eq" = If y(¢) = 0, then equation (4.30) becomes
'+ p(0)y +4q@)y=0.
It is an homogenous equation

Trivial solution: For the homogenous equationy y(¢) = 0 is always a solution
regardless what p(¢) and ¢(¢) all this constant zero solution is called the trival
solution of such an equation.

Second order linear Homogenous Diff. eq" with constant coefficient
ay”+by +cy=0
Where a, b and ¢ are constant,

A very simple instance of such type of eq” )" —y =0 the equation solution

is any function satisfying the equality )" —y. Obviously y, = ¢ is the solution
and § is any constant multiple of it C,¢’. Not as obvious, but still easy to see, is

that y, = ™' is another solution. It can be easily verified that any function of the
form

y=ce +ce”’
ify, and y, are any two solution of the homogenous eq",
Y+ p(0)y +q()y=0
Then any function of the form
y=cayte )y,
is also a solution of the eq, for any pair of constant C, and C,

For any homogeneous linear eq, any multiple of a solution is again a solution,
any sum and difference of two solution is again a solution.

Example 4.8: Find the general solution of
y’'=5y"=0
Solution: If we let then substitute them into the eq, we get a new eg”
u'—5u=0
Now there is first order linear eq with p(¢) =—5 and y(¢1) =0

The integratintg factoris W = e

u(t) = ﬁ(] u(t)g(t)dt) = [ | dt] =e(c) =™
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The actual solution y is given by the relation u = y’, and can be found by
integration

u() = ﬁ(] wOgyde)=c" | [at]|=e" ()= e = cevt

Equation of non — constant coefficient with missing y — term

Ifthe y — term is missing in a second order linear equation, now the equation can
be readily converted into a first order linear equation and solved using the integrating
factor

Example 4.9: 1" +uy' = -

Solution: The standard form is

u ’
yi+—=y'=t
t

. 7 u u .
Substitute : u +7U =t=p(t)= 7,3’(0 =t

Integrating factoris p=1¢"

u(t) = tiu(jﬁdt) =t (%+ c] = %tz +et?

Finally
C

_ I I 3 13 3
y@—ﬁ@w—ﬁf—?'+g—ﬁf+w +C,

In general, given a second order linear eq” with the y —term missing
Y+ p@)y =g()

by the subsisting u =" and u’' =" to change the eg" to a first order linear
eq". Use the integrity factor method to solve for u, and then integrate u to find y;

Substitute : u” + p(t)u = g(¢)

Integrity factor W(f) = eI P
[u@e@ad
Solve foru :u(t)=—+c
w()

Integrate : y(¢) = ju(t) dt
Characteristic polynomial

If ar’ +br+c isacharacteristic polynomial of differential equation

There are 3 —possible cases of the solution found

1. If b*> — 4ac > 0, There are two distinct real root Fit,



2. If p? — 4ac < 0, There are two complex conjugate roots r = A + Wi

3. If b*> —4ac = 0, There is one repeated real root .

Case 1: p? _44¢>0
y=an+oy, =l +oe
Example4.10: y”+5)"+4y=0
Solution: The characteristic eq”
PPsrtu=r+)r+4)=0

r=-1,-4
y=ce’ +cze_4’

Case 2: Two complex conjugate roots:

b* —4ac<0.
K=A+W,rn =A— Wi

= e, Y= e
Example4.11: y” +uy =0

Solution: y, =2+2;

Y =¢; cos2t+c,+/sin 2¢

Example4.12: y”+2y’+5y =0, y(0)=4,y’(0)=6

Solution: 7> +2r+5=0
r=-1x2i
y=cie cos2t+c,e’ sin2t

Case 3 : One repeated real roots :

b*—4ac=0
—b
r=—
2a

Example4.13: y”"-4y’+4y=0, y(o)=4, y'(0)=5

Solution: ;> —4r+4=(r—2)>=0
r=2

_ 2 2t
y=ce +cyle
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12.
13.
14.
15.

Check Your Progress

How will you define the second order differential equation?
Give the nonoscillation theorem equation for differential equation.
Write the conditions for nonoscillation theorem.

Name the equation of all boundary non-oscillatory solution.

4.6

ANSWERS TO ‘CHECK YOUR PROGRESS’

10.

I1.

) , .
. y=xe —xe +cxe +c,x

1 1.
Y =0C,X—¢ COSX+—xCcos2x ——sin2x
4 2
_ -3 3
y=kx” +c,x
tan x sinx
y=cosx| ¢ +¢,x+——|=(¢ +c,x)cosx+——
2 2

(34 3 -2
y=e X’ +e,x

2 2
— . 2
y=ce +ce” —sinx

_ a . a 1
y—CICOS§—0281n F + 7 3

X a x

2 32
y=ce +ce +e

1 X . .
y= —z(logcosnx)cos nx +—sin nx + ¢, Cos nx + ¢, sin nx
n n

Sturm separation theorem describes the location of roots of homogeneous
second order linear differential equations. Basically the theorem states that
given two linear independent solutions of such an equation the zeros of the
two solutions are alternating. The Sturm comparison theorem is a classical
theorem which provides criteria for the oscillation and nonoscillation of
solutions of certain linear differential equations.

A classical Sturm-Liouville equation is a real second order linear differential
equation of the form,

—i [p(r)j—i] + q(z)y = Mw(z)y,

where y is a function of the free variable x. Here the functions p(x) >0,
q(x) and w(x) >0 are specified at the outset. In the simplest of cases all are



12.

continuous on the finite closed interval [a,b] and p has continuous
derivative.

Second order linear equation :

Y+ pt)y +q(t)y = y()

13, lim O() = [ oo or — o]

14. j T4, (Oat (t)dt =,
|4, @0)dt <,
[4,01b@) | diee ... (439)

15, AL (3] (t)(- . -(”2 (f)(’i(t)yl(f)), -— —) ]
+a(t)+Ay(g(1) = b (),

4.7 SUMMARY
¢ Linear differential equation of second order is an equation of the form
flx{ + P% +Qy=R

where P, Q and R are the functions of x.

Let the linear differential equation of second order be

d’y L dy
2rXipiQy=R
dx’? dx &

where P, Q and R are the functions of x only.

In case the integral of the C.F. is neither known nor can be found using the
rules, there is a need of other method to find the solution of linear differential
equation of second order. Here, we will learn the method which is
independent of integral of C.F.

The constants of the C.F. are taken as the functions of independent variables.

In the field of ordinary differential equations, Sturm separation theorem
describes the location of roots of homogeneous second order linear
differential equations.

Given a homogeneous second order linear differential equation and two
continuous linear independent solutions u(x) and v(x) with x, and x,
successive roots of u(x), then v(x) has exactly one root in the open interval
[xp> x,]-
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The field of ordinary differential equations, the Sturm-Picone comparison
theorem is a classical theorem which provides criteria for the oscillation and
nonoscillation of solutions of certain linear differential equations.

In differential equations, a boundary value problem is a differential equation
together with a set of additional restraints, called the boundary conditions.

A solution to aboundary value problem is a solution to the differential equation
which also satisfies the boundary conditions.

The eigenvalues of a Sturm-Liouville boundary value problem are non-
negative real numbers.

A classical Sturm—Liouville equation, named after Jacques Charles Francois
Sturm (1803—1855) and Joseph Liouville (1809-1882)

Let y (¢) be a boundary nonoscillatory solution of () we may suppose
without loss of generality that y (#) > 0 for 1 >¢,

The homogenous equationy y(7) = 0 is always a solution regardless what
p(t) and ¢g(¢) all this constant zero solution. is called the trival solution.

4.8

KEY TERMS

Linear differential equations of second order: It is an equation of the

d’y dy .

form e + Pd_ +Qy =R, where P, Q and R are the functions of x.
X X

Non-negative real number: The eigenvalues of a Strum-Liouville boundary

value problem are non-negative real number.

Sturm-separation theorem: Given a homogeneous second order linear
differential equation and two continuous linear independent solutions z(x)
and v(x) with x, and x, successive roots of u(x), then v(x) has exactly one
root in the open interval [x, x ].

Trivial solution: For the homogenous equationy y(z) = 0 is always a solution
regardless what p(¢) and g(¢) all this constant zero solution. is called the
trival solution.

4.9

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1.

d*x dx dx
—+4—+4+3x=0_o¢i = = —=12
Solve 0 7l , given that for =0, x=0 and 7 .



2

d d
2. Solve;zx+bzx=k008bf , given that x =0 and £=0 ,whenz=0.

3. Define theorems of strum.
4. What are Sturm-Liouville boundary value problems?

5. How will you define the eigen values and eigen functions of the Strum-
Louville problem?

6. State the number of zeros in second order linear differential equation.
7. Give the nonoscillation theorem.
8. What is the boundary non-oscillatory solution?

Long-Answer Questions

1. Apply the method of variable of parameters to solve the following differential

equations:
2
1) e +y=cosecx
X
2
(ii) Z;V+y=tanx
X
d’y _dy _
—+2 +5y=¢e"sec2x
(i) dx’ dx 4
2
(iv) ‘;;V =esine™
X
d’y , dy
1-x? —4x——(1+x*)y=x
W) (1=2) -S4t (14x7)y

3x

L d’ dy _dy e
—-6—=—+9y=
(vi) dx? dx I X

2

(vii) (x+2) —(2x+5) +2y (x+1)e"

2. Verify that y = x and y = x* — 1 are linearly independent solutions of

d’ d . .
(x +1)dy Zxdy+2y 0. Find the general solution of
X

(* +1)ny 2xz+2y=6(x2+1)2,

3. Explain the methodology to solve boundary value problems using Sturm-
Liouville, Sturms separation and comparison theorems.

4. Find eigen values and eigen function of the given Strum— Louville problem
@) y"+iy=0, y(0)=y(m)

(M(WW+%y=QﬂD=y@ﬂ:0

(©) xy"-hy” +hy=0,y(1)=y(2)=0
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) y”"+4y=x*, y(0)=y()=0
@ u”+4u=f(x), u(o)=0, u'(1)=p
O X’y =’ +hy=0,p(1)= p(2)=0

5. Discuss briefly about the number of zeros in second order linear differential
equation with the help of giving examples.

6. Find the general solution of the given differential equation
(@) y"+2y"-8y=0
(b) y"—-13y"+42y =0
(c) y"—10y"+25y=0
d »'+2y"+5y=0
(€) y"+4y +13y=0
® y”"=0
©® »'+2y"=0
(h) 2y”+5y"-3y=0

M y”"-9y=0

G) y'+16y=0

k) y"=2y"+2y=0
O y'=y"-30y=0

7. Find the differential equation y”+ ay’+ by = 0that satisfy by the given
function

@ y(x)=e™,y,(x)=e
(b) y(x)=2xe*

() y(x)=cos™

(d) 3 (1) =3e",y,(x) = —ue™®*

() y(x)=e > sinux
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UNIT S PARTIAL DIFFERENTIAL
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SECOND ORDER

Structure

5.0 Introduction

5.1 Objectives

5.2 Partial Differential Equations of the First Order

5.3 Partial Differential Equations of the Second Order

5.4 Linear Partial Differential Equation with Constant Coefficient
5.5 Answers to ‘Check Your Progress’

5.6 Summary

5.7 Key Terms

5.8 Self-Assessment Questions and Exercises

5.9 Further Reading

5.0 INTRODUCTION

In mathematics, a first-order partial differential equation is a partial differential
equation that involves only first derivatives of the unknown function of n variables.
Such equations arise in the construction of characteristic surfaces for hyperbolic
partial differential equations, in the calculus of variations, in some geometrical
problems, and in simple models for gas dynamics whose solution involves
the method of characteristics. If a family of solutions of a single first-order partial
differential equation can be found, then additional solutions may be obtained by
forming envelopes of solutions in that family. In a related procedure, general solutions
may be obtained by integrating families of ordinary differential equations.

A Partial Differential Equation (PDE) is a differential equation that contains
unknown multivariable functions and their partial derivatives. PDEs are used to
formulate problems involving functions of several variables, and are either solved
by hand, or used to create a computer model. A special case is Ordinary Differential
Equations (ODEs), which deal with functions of a single variable and
their derivatives. PDEs can be used to describe a wide variety of phenomena such
as sound, heat, diffusion, electrostatics, electrodynamics, fluid dynamics,
elasticity, gravitation and quantum mechanics. These seemingly distinct physical
phenomena can be formalised similarly in terms of PDEs. Just as ordinary differential
equations often model one-dimensional dynamical systems, partial differential
equations often model multidimensional systems. PDEs find their generalisation
in stochastic partial differential equations.

Partial differential equations are equations that involve rates of change with
respect to continuous variables. The position of a rigid body is specified by six
parameters, but the configuration of a fluid is given by the continuous distribution of
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several parameters, such as the temperature, pressure, and so forth. The dynamics
for the rigid body take place in a finite-dimensional configuration space; the dynamics
for the fluid occur in an infinite-dimensional configuration space. This distinction
usually makes PDEs much harder to solve than ordinary differential equations, but
here again, there will be simple solutions for linear problems. Classic domains
where PDEs are used include acoustics, fluid dynamics, electrodynamics, and heat
transfer.

In this unit, you will be study about the partial differential equations of the
first order, partial differential equations of the second order and linear partial
differential equation with constant coefficient.

5.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Drive the partial differential equations of the first order
¢ Know solution of the partial differential equations of the second order
¢ Analyse the partial differential equations of second and higher orders
¢ Discuss the classification of partial differential equations of second order

¢ (lassify the homogeneous and non-homogeneous equations with constant
coefficients

¢ Briefly explain the partial differential equations reducible to equations with
constant coefficients

5.2 PARTIAL DIFFERENTIAL EQUATIONS OF
THE FIRST ORDER

Lagrange’s Equation

The partial differential equation Pp + Qg = R, where P, O, R are functions of x, y,
z,1s called Lagrange’s Linear Differential Equation.

dx dy dz
Form the auxiliary equations — = 0 =~ andfind two indpendent solutions

of the auxiliary equations say u(x, y, z) = C, and W(x, y, z) = C,, where C, and C,
are constants. Then the solution of the given equation is F(u, v) =0 or u = F(v).

For example, solve (y* +z*)p — xyg = —xz
The auxiliary equations are,

dx d dz
-2 .1)

Xy —xz

y2+Z2



Taking the last two equations, we get,

& _
y oz
Integrating we get log y=log z + constant,

hd

Each of the Equation (5.1) is equal to,
xdx + ydy + zdz
x(y* +28) —xp* —xz°
. xdx + ydy + zdz
ie., —_—
0
ie., xdx + ydy + zdz =0

Hence after integration this reduces to,
Xty +22 =G,
Hence the general solution of the equation is,

F(l,f +y° +sz =0

z

X

Example 5.1: Solve x’ % +y° Z—Z =(x+y)z
v

Solution: The auxiliary equations are,

de dy dz

¥y (x+y)z
. dx—dy dz
1.€., 2 2 =

xT -y (x+y)z
. dx—dy dz
Le., —_— =
xX—y z

ie., log(x—y)=Ilogz+ constant

X-y

dx d
Also —fz—f
X y
1 1
Hence LT — — +constant
11
y o x =G

Hence the solution is, F (l - l, Y j =0
y
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Example 5.2: Solve (x> —yz)p + (3> —zx)q = 2> — xy

Solution: The subsidiary equations are,

dx dy dz
x’—yz Yy —zx z'—xy
dx—dy d(x—-y)
Xoyz=(-z) (k= p)x+y+z)
d(y-2)

Tty +a)
dx-y) dy-z)
X—y y—z
Integrating log (x—y) =log (y —z) +log C,

x—y:q
y—z

Using multipliers x, y, z, each of the subsidiary equations,

xdx + ydy +zdz xdx + ydy + zdz

x3+y3+Z373xyz_(x+y+z)(x2+y2+zzfxyfyzfzx)

) dx+dy+d
Andis also equal to ————; i P ==
X +y 4z —yz—zx—xy

de+ydy+ZdZ . dx+dy+dz
X+y+z N 1

xdx +ydy +zdz=x+y+z)d(x+y+z)

On Integrating, we get,
Xy +2Z2=@x+y+z?+C,

xytyz+zx=C,

From Equations (1) and (2), we get the solution,

F(x Y oyt yz ij =0, where F'is arbitrary.

y—z
Example 5.3: Solve (a—x)p+(b—-y)g=c-z

Solution: The subsidiary equations are,

dx dy dz
a—x B E: -z
From Equation (1)
dy dz
b-y " o=z
. dy dz
1e., 5=b " 7—e

log (y—b)=log(z—c)+logC,

(1)

2

(1)



Also

x—a y=>b
log (x—a) =log (y—b) +1log C,

xX—a _
=) =G

The general solution is

F(y—b’x—a] 0
z—c y—-b

Example 5.4: Solve y—z)p+(z—x)g=x—y

Solution: The auxiliary equations are,

dx dy _ dz  dx+dy+dz
y—z z—-X X—-y 0
dx+dy+dz=0
Integrating we get, x +y+z=C,

Also eachratio,

xdx + ydy + zdz
x(y=2)+y(z=x)+z(x~y)

xdx + ydy + zdz
0

xdx +ydy +zdz=0
On integrating, we get,
2+ +2=C,
". The general solution is,
Fx+y+z,x*+)y?+25)=0
Example 5.5: Solve (mz — ny)p — (nx —lz)q = Iy — mx

Solution: The auxiliary equations are,

dx dy dz

mz —ny Conx—lz - ly —mx
Using multipliers x, y, z, we get each ratio

xdx + ydy + zdz

x(mz —ny)+ y(nx —Iz) + z(ly — mx)

xdx + ydy + zdz
0
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Xty +22=C,

Also by using multipliers /, m, n, we get each ratio,

_ ldx+mdy +ndz
a 0

Ix+my+nz=C,

.". The general solution s,
F()c2 +y +22,lx+my+nz) =0
Example 5.6: Solvex (y —z)p + y(z—x)g =z(x—y)
Solution: The auxiliary equations are,

dx dy dz

Xy —Xxz yz—yx_zx—zy

dx+dy+dz
0

dx+dy+dz=0
On integrating, we get, x +y +z=C,

& b & b b

x __ Y __z _ X Yy z
y—z z—X X-Y) 0
dx dy dz
— T+ T Zp
x y z

On integrating, log x +log y +logz=1log C,
xyz=C,

(4)

2)

From Equations (1) and (2), the general solution is, F(x +y +z,xyz) =0

Example 5.7: Solve x*p + y%q = z?

Solution: The auxiliary equations are,

dx dy dz
2 7 2
& _d
¥ )
-1 -1
X :y—+C1
-1 -1
1
_l = —+C,
X Yy
11
vy x 6
Also
Q dz
v o7



Example 5.8: Solve (y+z)p+(z+x)g=x+y
Solution: The auxiliary equations are,

dx dy dz

y+z_z+x_x+y
. dx—dy dy—dz dz-—dx
ie., =y = y—z  z-x

dx+dy+dz
- 2(x+y+2)

Considering first two members and integrating, we get,
X—y
y—z
Considering first and last members and integrating, we get,

= C,

1
log(x—y) = 5 log(x+y+z)+log C,

2

1 =log C
e y+z log &,
(=)
X+y+z log €
.". The general solution is,

_ _ 2
y—z x+y+z

5.3 PARTIAL DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

The general form of a linear differential equation of nth order is,

d}’l d}’l—l dn—2 d
y+Pl y+P2 y+...+P_1—y+Py=Q
dx" " dx"? ax "

Where P, P, ..., P, and Q are functions of x alone or constants.
The linear differential equation with constant coefficients are of the form,

n—2y

dxn—Z

dn n—1
y+ad Yy
dx" "

+...+Pn_1%+Pny=Q (5.2)

+ P
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Where P|, P,, ..., P, are constants and Q) is a function of x.

The equation,
d}’ly dﬂ—ly dn—Zy dy _
e +AR o + P e + .. +Pnfla+ Py=0 (5.3)

This is then called the Reduced Equation (R.E.) of the Equation (5.2)

Ify=y, (x),y =y, (), ...,y =y, (x) are n-solutions of this reduced equation,
theny=c,y, +¢,y,*... ¢, y,1s alsoa solution of the reduced equation where
Cy, Cy, ..., C, are artbitrary constants.

The solution y =y, (x), y =y, (x), ¥ =3 (x), ..., ¥ =y, (x) are said to be
linearly independent if the Wronskian of the functions is not zero where the
Wronskian of the functions y|, y,...., y,, denoted by W (y,, y,, ..., ), is defined
by,

N 2 V3. Vn
noo»n Y3Vn
W(yl, Va5 yn) = | vy Viyr

-1 -1 -1 -1
D R

Since the general solution of a differential equation of nth order contains »
arbitrary constants, u = ¢y, +c,y, +... + ¢, y, is its complete solution.

Let v be any solution of the differential Equation (5.2), then,

n n—1 n—-2
v opd v .pdl vy 1p Yipy-0 (5.4)
dxn dx’kl dxn—z n—1 dx

Since u 1s a solution of Equation (5.3), we get,

d"u d" d" %y
dxn +P1 dxn71 +P2 dxn—z

Now adding Equations (5.4) and (5.5), we get,

+o +Pn_1‘;—1+f;1u ~0 (5.5)

n n—1 n-2
d(u—i—v)_H[id (u+v)+P2d (u;v)
dx” dx" dx"”

This shows that y=u + v is the complete solution of the Equation (5.2).

d(u+
bt P, U p ) =0

2 3
Introducing the operators D for ix, D? for 5—2 , D3 for % etc. The Equation
X X

(5.2) can be written in the form, ‘
D'y+P D"y +P,D"?y+..+P  Dy+yP =0
Oor (D'+P, D" '+P,D"?+..+P D+P)y=0
Or  F(D)y=Qwhere F(D)=D"+P D" P,D"?+..+P D+P

From the above discussions it is clear that the general solution of F' (D)y = Q
consists of two parts:

(7)) The Complementary Function (C.F.) which is the complete primitive of the
Reduced Equation (R.E.) and is of the form

y=c,y; t¢c,y,t...+c,y, containing n arbitrary constants.



(1) The Particular Integral (P.1.) which is a solution of (D) y = Q containing
no arbitrary constant.
Rules for Finding The Complementary Function

Let us consider the 2nd order linear differential equation,

d’y dv oo

?J’_RE-‘_%)}_O (5.6)
Lety=A " beatrial solution of the Equation (5.4); then the Auxiliary Equation

(A.E.) of Equation (5.6) is given by,

m*+Pm+P,=0 (5.7)

The Equation (5.7) has two roots m = m, m = m,. We discuss the following
cases:

i) When m, # m,, then the complementary function will be,
1 2 p ry
y= clemlx +c, " where c, and c, are arbitrary constants.
(i) Whenm =m,, then the complementary function will be,
y=(c; +c,x) "' where ¢ , and ¢, are arbitrary constants.

(7if) When the auxiliary Equation (5.7) has complex roots of the form o + i3
and o.— if3, then the complementary function will be,

y=e* (c;cos Bx+c,sinP x)

Let us consider the equation of order n,

d}’ly dn—ly d}’l—zy dy
+R +P +.+P . —+Py=0 5.8
ot et g2 n=l g Y (5-8)
Let y=A ™ be atrial solution of Equation (5.8), then the auxiliary equation is,
m'+ P, m" P, AP m+P =0 (5.9)

Rule (1): If m |, m,, m,, ..., m, be n distinct real roots of Equation (5.9), then the
general solution will be,

1 2 3
— m-x m=x m=-x mnx
y=cy e’ " tcye tee Tt tee
Where ¢, ¢,, c;.....c, are arbitrary constants.

Rule (2): If the two roots m, and m, of the auxiliary equation are equal
and each equal to m, the corresponding part of the general solution will be (¢, +¢,
x) e" and if the three roots ., m,, ms are equal to o the corresponding part of
the solution is (c; +c,x + CSXE) e®* and others are distinct, the general solution
will be,
6

y=(c; +cx) emx+(c3+c4+05x2) eM eyt tce
Rule (3): If a pair of imaginary roots o+ i3 occur twices, the corresponding part
of the general solution will be,

e™ [(c; + cyx) cos PBx + (c; + c,x) sin Bx]
And the general solution will be,

. 5
y=e*"[(c; + c,x) cos Bx+(c;+cyx)sinPx] +ce” ™+ .. Fce
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Where ¢, ¢,..., ¢, are arbitrary constants and ms, my, ...., m, are distinct real
roots of Equation (5.8).

Rule (4): If the two roots (real) be m and — m, the corresponding part of the
general solution will be c,e™ +c,e ™"

= ¢, (cosh mx + sinh mx) + ¢, (cosh mx — sinh mx)

— ! ! 1 [ A— / —

= ¢ cosh mx + ¢, sinh mx where ¢} = ¢, +¢,,c;=c, ¢,

And general solution will be,
. 3 4
y=c|coshmx+c',sinhmx+ce” ™ +c,e”" "+ +ce

Where ¢}, ¢}, c5, .....c, are arbitrary constants and m, m, ... m, are distinct real
roots of Equation (5.9).
Rules for Finding Particular Integrals

Any particular solution of F'(D) y=f{(x) is known as its Particular Integral (P.I).
The P.I. of F(D)y = f{(x) is symbolically written as,

o .
PL= D) {f (x)} where F(D) is the operator.

1
The operator F(D) is defined as that operator which, when operated on

f(x) gives a function ¢ (x), such that F (D) ¢ (x) =f(x)

ie. Fb) @} =9 (=PL)
1 — . 1 —
F(D) {@fm} 1) [ mf(x)—d)(x)]

Obviously, F (D) and 1/F(D) are inverse operators.

Case I: Let F/(D) =D, then %f(x) = jf(x) dx.
Proof: Lety= l—l){f(x)} , operating by D, we get Dy=D . l—l){f(x)} or Dy=f(x)or

L =) or dy=1() dx
Integrating both sides with respect to x, we get,
y= _[ £ (x) dx, since particular integrating does not contain any arbitrary constant.

Case II: Let /(D) = D — m where m is a constant, then,

@) =& [ (.

Proof: Let ! - {/(x)} =y, then operating by D —m, we get,

D—

(D—-m). ﬁ{f(x)} —(D-m)y



d
Or fx) = d—i—"w

Or % —my =f(x) which is a first order linear differential equation and

LF. = ol _ e ™,

Then multiplying above equation by e " and integrating with respect to x, we
get,

ye ™= _[ f(x)e”™dx, since particular integral does not contain any arbitrary

constant,
Or y=e™ j f(x)e ™ dx.
Note: If =4 4 D L+ % wherea.andm. (i=1,2,...,n)
F(D) D-m D-m, D—-m, ! !

are constants, then

F(lD—) {f(x)} = aleMIfo(x)e_mlxdx + a2em2xJ.f(X)e_m2xdx +

ot anem"xjf(x)e_m'lxdx
= i a,-em"xJ'f(x)efm"xdx
i=1

We now discuss methods of finding particular integrals for certain specific types
of right hand functions

Type 1: f (D) y=¢"" where m is a constant.

B 1 mey _ &
Then Pl = D) "™} Fm)
If F(m) =0, then we replace D by D +m in F' (D),

_ 1 mxy _ _mx 1
P.I.——F(D){e j=e 'F(D+m){1}

Example 5.9: (D —2D? - 5D+ 6) y = (¢** + 3)?> + e** cosh .
Solution: The reduced equation is,
(D?-2D*-5D+6)y=0 (1)
Let y=A¢™ be a trial solution of Equation (5.9). Then the auxiliary equation is,
m =2m?—5m+6=00rm’—m*—m*+m—6m+6=0
Or m?>m-1)—-m@m-1)-6m-1)=0
Or (m—1)(m*>-=m—6)=0 or (m—1)(m*>-3m+2m—-6)=0
Or m-1)(m-3)(m+2)=0orm=1,3,-2
.". The complementary function is,

if F(m)#0

y=ce+ cze3x +ey ¢ > where ¢y, ¢y, ¢4 are arbitrary constants.
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Partial Differential
Equation of First and Again (e +3)> + e coshx =¥ + 6 &> + 9 + &
Second Order

2
— 4.x_"_6 2x+9 O.x+ e4x ezx
NOTES ¢ ¢ ¢ *

3 3
— _e4x +_e2x +960.x
2 2

.. The particular integral is,

V== 21 {Ee4x+ﬁezx+9eo'x}
D> -2D"-5D +6 2 2

= 1 {éeé‘x + 262)( + 9804,‘6}
(D-1)(D-3)(D+2) |2 2

3 1 o 13 1

- e+

2(D-1)(D-3)D+2)

1
9 e

(D-1)(D-3)(D+2)

0.x

4x

e 13 >

(4—1)(4—3)(4+2)+?(2—1))(2+2)(2—3)

eO.x

? (0-1)(0-3)(0+2)

3
2

e 13 ¥ 0.x

o0
+— +9

3.1.6 21.4.(-) (-1)3).2
e4x

3
2

B3
12 8 2
Hence the general solution is,

y=C.F. +PL

4x
- 3x o, e 13 50 3
cetc, e teye +12 ST
Notes: 1. When F (m) = 0 and F'(m) = 0, P1. = ﬁ{em"} —x

2. When F (m)=0 F'(m) = 0 and F"'(m) # 0, then P.I. = F(ID)

{e™}
1
F//(D)

x28mx
F//(m)

{em} =

And so on.

Type 2: f(x) = €™ V' where V' is any function of x.

Here the particular integral (P.1.) of F (D) y=f(x) s,
Self - Learning

pL=
Material F(D)

mepy =gy L
"V =¢ F(D+m){V}.

e +e

3

2 {er}
2 (D-1)(D+2)(D-3)

F'(D)

"™}



Example 5.10: Solve (D> — 5D+ 6) y=x* &**
Solution: The reduced equation is,
(D> 5D +6)y=0 (1)
Let y =A™ be a trial solution of Equation (1) and then auxiliary equation is
m*—5m+6=0orm>—3m—2m+6=0
Or m(m-3)—-2(m—-3)=0or(m-3)(m—-2)=0
S m=2,3
.. The complementary function s,

y=c e+ cy e* where c, and ¢, are arbitrary constants.

The particular integral is,
1 &
y: 5 {x2€3x — > {x2}
D*-5D+6 (D+3)>-5(D+3)+6
1
= . ! = —5——{x%)
D*+6D+9-5D-15+6 D™ +D
= L ) )
D(1 + D) D

e3x

=" _(1-D+D*-D*+D* - ){x*}

e3x

3
= (- 2x+2=6* RS 3
D 3

Hence the general solution is,
y=C.F. +PL

3
= ¢qe? + e + e (% -x*+ ZxJ.
Recall: () (1+x) '=1-x+x* -3 +x*—x + ...

() A-x)"=1+x+x2+X +x*+x+ ...
Type 3: (a) F (D) y = sin ax or cos ax where F (D) = ¢ (D?).

Here PI = ;{sin ax} = ;Zsin ax (if  (— a®) # 0)
O(—a”)

Or PL=—'{cosar}= cos ax (if ¢ (—a?) % 0)

F(D) o(-a?)
[Note D? has been replaced by — a® but D has not been replaced by — a.]
(b) F (D) y = sin ax or cos ax and F (D) = ¢ (D?, D)

Here PI =

. _ 1 . 1 .
F D) {sinax} = q)(DZ, D) {sinax} = m {sin ax}

if &(-a®, D)=0
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Or

{cosax} = {cos ax} :;{cos ax}

- 1
Y F(D) o(D?, D) o(-a’, D
if  &(-a® D)#0

(c) F(D)y=sinax or cosax and F(D)=

_ v .. _ (D) 2
Here P.I. = F(D){ axy = o0 {sinax} = o(a ){smax} if ¢(—a“)#0
y(D)
Or y= F(D){ ax} = N {cos ax}

{cos ax} if o(—a®) =0

¢(—
(d) F (D) y =sin ax or cos ax, F (D) = ¢ (D?) but ¢ (-a°) =
1 .
Here PI. = D) {sinaxorcos ax} =x——— D) {sin ax or cos ax}
Alternatively, sin ax and cos ax can be written in the form sin ax = ¢ _;_
1

—aix

, then find P.I. by the method of Type 1.

aix
e +e
Andcosax=

Example 5.11: Solve (D*+ 2D? + 1) y = cos x.
Solution: The reduced equation is (D* +2D*+1)y=0
Let y=Ae" be a trial solution. Then the auxiliary equaiton is,
m*+2m?>+1=0 or [(m*+1)]>?=0 or m=+i,+i
. C.F. = (c; + ¢,x) cos x + (¢ + ¢4x) sin x where ¢, ¢,, ¢; and ¢, are
arbitrary constants.

1

PL=——
D* +2D% +1

{cos x}

B 1
= x3—{cosx}
4D® +4D

[ 6(D?) =D*+2D*+1

d(-1%)=1-2+1=0, then (f(@)} =x

F(D) F(D){f(X)}]

= £;{cosx}Z il L{cosx}
4p%+D 4'3p% +1

Hence the general solution is,
y=C.F. +PL



= (c; +cyx) cos x + (c5 + ¢yx) Sin x — %cosx.
Example 5.12: Solve (D? — 4)y =sin 2x.
Solution: The reduced equation is,
(D*—4)y=0
Lety=A¢e™ be a trial solution and then auxiliary equation is,
m —4=0=>m==%2
The complementary function s,

y=c >+ c, ¢ > where c,, ¢, are arbitrary constants.

The particular integral is,
y=—= {sin2x} = 3 sin2x [Replace D? by—22]
D" -4 —2°-4
= - lsin 2x
8

The general solutionis y=C.F.+P1.= clezx + cze_zx - ésin 2x.

Example 5.13: Solve (3D? + 2D —8)y =5 cos x.
Solution: The reduced equation is,
(3D*+2D—-8)y=0
Let y=Ae"™ be a trial solution and then the auxiliary equation is,
3m*+2m—8=0o0r3m* +6m—4m—-8=0

Or 3m(m+2)—4(m+2)=0or(m+2)(3m—4)=0
Or m=—2,m=§

.". The complementary function is,
R
y= cle’zx + ;e when ¢, and ¢, are arbitrary constants.
The particular integral is,

- 5 = 5;{%”}
Y s M T Y Gp-aD +2)
BD+4)(D-2)

(3D +4)(D -2)
5
[9(-1%)-16][-1* - 4]

(9D? —16)(D* - 4)

cosx} =5

{cos x}

[D?is replaced by — 12 in the denominator] UZ;DZ)) form:|

= #[31)2 —6D +4D—8]{cosx} = L[3D2 —2D —8]cosx
(=25) (=5) 25

1(, d? d
= —|3——(cosx)—2—(cosx)—8cosx
25[ dxz( ) dx( : j
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1 . 1 .
= —[-3cos + 2sinx—8cosx|= — (2sinx—11cosx)
25 25

The general solution is,
y=C.F. +PL

2 43 Lo
=cie et 2—5(2smx—llcosx),
Type 4: F (D) y=x", nis a positive integer.
— 1 ny _ -1 ¢.n
Here P.L FD) "y =[FD)] X"}

In this case, [F (D)]"! is expanded in a binomial series in ascending powers of
D upto D" and then operate on x”* with each term of the expansion. The terms in
the expansion beyond D" need not be considered, since the result of their operation
on x" will be zero.

Example 5.14: Solve D?> (D> + D+ 1)y =x7.
Solution: The reduced equation is,
D*(D*+D+1)y=0 (1)
Lety =A™ be atrial solution of Equation (1) and then the auxiliary equation
is,
mz(m2+m+l)=0

—1++/1- 143 —T+4f3
= m=0,0and m= 1‘21 4 1‘2\/_3: 1—2\/5’

.". The complementary function is,

1
—5x 3 . 3
y=(c +czx)eo'x+ e ? (c3cos%x+c4sm7x]

—5X 3 . 3
=c,tecxte?|c cos£x+c sin — x
1 2 3 P 4 7

Where ¢, ¢,, ¢3, ¢, are the arbitrary constant.

The particular integral is,

v s L pa i
Y D2(D2+D+1){x} D2(+ o
- ﬁ{l_(mpz)+<D+D2)2—<D+D2)3+~--} )
- ﬁ{l_(mpz)+(D2+zD3+D4)—(D+D2>3+-~}{x2}

= ﬁ{xz—(2x+2)+(2)+0}

1 3 4 3
= F{.)(/'2—2)5} = %{%_xz} = X__X_



The general solution is y=C.F. + P.I. Partial Differential
Equation of First and

=c;tex+ e 2 (c3 cos?x +¢y sin%x} + % - é seeondonder
Example 5.15: Solve (D? + 4)y =x sin’x. NOTES
Solution: The reduced equation is,
(D*+4)y=0

The trial solution y = A4 ¢ gives the auxiliary equation as,
m*+4=0,m=%2i

The complementary functionis y = ¢, cos 2x + ¢, sin 2x

The particular integral is y = ———{x sin” x}
D" +4

2;{1(1—0052)0} = +{£—£COS2x}
D*+412 D +412 2
_ 1 {E}_ 1 z (eZix+e—2ix)

D*+4 (2] D442 2

-1
1 D? x| 1 e o2k

1+ = L —

4( " 4} {2} 4(D+2i)2+4{x} 4(D—2i)2+4{x}

1x e2ix 1 e—2ix 1
S : {x}—
42 4 D +4Di-4+4

{x}
4 D*—4Di-4+4

X ele 1 e—2lx

54 [ D) b
4Di(1+_) 4.(—4Di) (1—.)
4i 4i

2ix —1 —2xi -1
—x_¢ .L.HQ.) x}p ——2 .(1—3) x)
8 i 4(—4Di) 4i

X eZix 1 D D2 e—2xi D
=2 f -2 |- 1=+ | i)
8 4 4Di|  4i -16 4(—4Di)\ " 4i

{x

x 1 —2xi 1
T Lo [ S
8 4 4Di 4i) 4.4Di 4i
x e2ix x2 x e—2xi )C2 x

—_— _—— | —] — 4+ —

8 2.8 2 4i) 2.8\2 4

_ ﬁ_i eZL'x_e—in . x e2ix+e—2xi
8 2.8 2i 2.16.4> 2

2
x  x° . X
= ————sin2x———cos2x
2.8
2

= f—x—sian—icosbc
8 16 32

Self - Learning
Material 161



Partial Differential
Equation of First and
Second Order

NOTES

Self - Learning
162 Material

Hence the general solutionis y=C.F.+P.L.

2
=c, cos 2x + ¢, sin 2x + X=X sin 2x — < cos2x.
8 16 32

Example 5.16: Solve (D*+ D* —=3D?— 5D —2) y=3xe™.
Solution: The reduced equation is,
(D*+D*-3D>-5D-2)y=0 (1)
The trial solution y =A™ gives the auxiliary equation as,
m*+m*=3m* - 5m-2=0
Or m*+m*~3m*~ 3m-2m-2=0
Or m> (m+1)=3m (m+ 1)=2 (m +1)
Or m+1)(m®>-3m—2)=00r (m+1) {m>+m>—m*—m—-2m-2)=0
Or m+ 1) {m* m+1)—m@m+1)-2@m+1)}=0
Or m+1)(m+1)(m>—m—-2)=0
Or m+ 12> m*>-2m+m-2) =0
Or m+ 12> m+1)(m-2)=0
~m=-1,-1,-1,2
The complementary functionisy=(c, + ¢, x + c3x2) e+ 0462" :
The particular integral is,

1

= 3
(D+1)3(D—2){e &

y

— —X 1 _ —X 1

(D-1+1*(D-3) b D*(=3) (1-DR3) b

. 1( DY' 1 D D?
=—e F(l——) {x}=—e 5(14‘—4‘74‘){)@

3 3

2 3 2
=—e” L(x+l)=—e‘)‘L R =_e—XL X x
D’ 3 p*\2 3 Dl 6 6

The general solution is y=C.F. + P.L
4 3
2 2x —x | X X
=(c,tcy,xte,x)tc, e —e —+—
(e 3X) Ty (24 18}

Type 5: (a) F (D) y=xV where Vis a function of x.

_ 1 S I L
Here P.I.——F(D){xV} {x F(D)F(D)}F(D){V}-



Example 5.17: Solve (D? +9) y=xsin x.
Solution: The reduced equation is (D*>+9) y=0 (1)
The trial solution y=Ae™ gives the auxiliary equation as,
m*+9=0o0rm==+3i

. C.F.= ¢, cos 3x + ¢, sin 3x where ¢, and ¢, are arbitrary constants.

AndPlI =

F( ) {xsin x} where F (D) =D?+9

= qx- F'(D )} {sin x}
{ F(D) F(D)

= x—i—D %{sinx}
D°+9|D°+9
2D sin x 2D {Sinx}

=¥ =X—— —_—
D*+9|-1+9 D“+9 8

xsinx 1 1 xsinx 1

= ———D{sm x} = ——COS X
8 4 -1+ 8

Hence the general solution is,

y=CUF +PlL=c, cos3x+c,sin3x+ xsinxy 1o
(b) F(D)y=x"Vwhere Vis any function of x.
_ ; F|" 1
HerePlL= - (/) = L - { o } )

Example 5.18: Solve (D> —1)y=x’sinx
Solution: The reduced equation is (D*>—1)y=0 (1)
Let y= A" be atrial solution. Then the auxiliary equation is,
m>—1=0 or m==1

C.F.=c,e" + c,e " where c, and ¢, are arbitrary constants.

~PL=

ID) {x* sinx} where F(D)=D?—1

F'(D) 1
F(D)} Foy T { D?

A
TER

> 2D}{—£smx+ ! }{cosx}
D 2 D* -1

2
ZD} 3 {sin x}
-1 D" -1

}gunmn

I
o
t-
I
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xX— ! 2D —fsinx—lcosx
D* -1 2 2

2 x
=— —sinx——cosx +
2 2

5 {D(xsinx + cosx)}
D" -1
x> x
— —sinx——cosx +
2 2

{sinx + xcosx — sin x}

D? -

X x 1

——sinx——cosx +2—{x cos x}
2 2 D -1

1 1 1
5 {xcos x} = {x— 3 2D} 3 {cos x}
D" -1 D -1 D~ -1

= Jx- ! ZD{ ! cosx}
D* -1 -1-1

Again

1 .
= —SXCOSX+— {—sin x}
2 D -1
1 sin x 1.
= ——XCoSX—— = _——xcosx+—sinx
2 17 -1 2 2
X X X 1.
S PlL=— Z—sinx—=cosx—=cosx +—sinx
2 2 2 2

1 . 1 .
= — —x?sinx—xcosx + —sinx
2 2

Hence the general solution is,
_ 1 1
y=CF. +PL=ci +ce” —Exz sinx—xcosx+Esinx.

Classification of Partial Differential Equations of Second Order

Consider the following linear partial differential equation of the second order in
two independent variables,
2 2 2
Aa L;+B Ou +Ca Z+Da—u+Ea—u+Fu:G
ox Ox0y oy Ox oy

Where 4, B, C, D, E, F, and G are functions of x and y.

This equation when converted to quasi-linear partial differential equation
takes the form,

2 2 2
PEAY R el u+f(x,y,ug—u a—”j:o

o’ 8x8y+ oy* "0
y x Oy

These equations are said to be of:
1. Elliptic Type if B>—44C<0
2. Parabolic Type if B>—44C=0
3. Hyperbolic Type if B2—4A4C>0



Let us consider some examples to understand this:

o’u o’u ,0%u _0u
() ~—2x X ——-2—=
ox ox0y oy oy

=u —2xu +x2u —2u =0
xx xy » y

0

Comparing it with the general equation we find that,
A=1,B=-2x,C=x?
Therefore,
B> —44C=(2x)*-4x*=0, v xand y # 0
So the equation is parabolic at all points.
(i) yu_ + xzuyy =0
Comparing it with the general equation we get,
A=), B=0,C=x?
Therefore,
B>*—44C=0- 4x**<0, v xandy # 0
So the equation is elliptic at all points.
(iii) x*u_ — yzuyy =0
Comparing it with the general equation we find that,
A=x*B=0,C=—7
Therefore,
B*—44C=0- 4x}*>0, yxandy #0

So the equation is hyperbolic at all points.

Following three are the most commonly used partial differential equations

ofthe second order:
1. Laplace equation,
ox® oy’
This is equation is of elliptic type.

0

2. One-dimensional heat flow equation,
ou ,0u
—_— = —
ot o’
This equation is of parabolic type.
3. One-dimensional wave equation,
ot’ o’
This is a hyperbolic type.
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Check Your Progress

. Define Lagrange’s linear differential equation.

Write the general linear differential equation with constant coefficients.

3. What is the complementary function of 2nd order linear differential equation

if the roots of equation m and m, are equal?

What is the particular integral?

5. What are the three types of second order partial differential equations?

5.4

LINEAR PARTIAL DIFFERENTIAL
EQUATION WITH CONSTANT

COEFFICIENT
Homogeneous Linear Equations with Constant Coefficients
Let (D, D" )z=V(x, ) (5.10)
Thenif,
f(D,D")= 4,D" + AD"'D'+ A,D" D} +---+ A, D" (5.11)

form,

Where A|,A,,---,A, are constants.

Then Equation (5.10) is known as Homogeneous equation and takes the

(A,D"+AD"'D'+A,D"?D? +--+ A D" k= V(x,y) (5.12)

Complementary Function

Consider the equation,
(A,D"+A,D"'D'+A,D">D"” +--+A, D" Jz=0 (5.13)
Let,

z=(y +mx) (5.14)

Be a solution of Equation (5.18)
Now D'z =m"¢"(y + mx)
D¥z = ¢(e)(y + mx)
And D'D"z=m"¢"*(y +mx)
Therefore, on substituting Equation (5.14) in Equation (5.13), we get
(Aornn +A M+ A,m" "+t An)¢(“)(y+ mx )=0
Which will be satisfied if,

Am"+Am" +Am"?+.+A =0 (5.15)



Equation (5.15) is known as the auxiliary equation.

Let m,,m,,---,m, betheroots of the Equation (5.15),
Then the following three cases arise:
Case I: Roots m,,m,,---,m_ are Distinct.

Part of C.F. corresponding to m =m is,

z=¢, (y + mlx)
Where ‘¢’ is an arbitrary function.

Part of C.F. corresponding to m =m, is,

z=9¢, (y + m2X)
Where ¢, is any arbitrary function.
Now since our equation is linear, so the sum of solutions is also a solution.
Therefore, our complimentary function becomes,
CE=¢0+mx)+ o,y +mpx)+............... + ¢, +mx)
Case II: Roots are Imaginary.
Let the pair of complex roots of the Equation (5.16) be
uxiv
Then the corresponding part of complimentary function is,
z=¢,(y + ux +ivx) + ¢,(y + ux — ivx) ...(5.16)
Lety+ux=Pandvx=Q
Thenz = ¢ (P +iQ) + ¢,(P — iQ)
Orz=(4,+ 0)P+ (0~ $,)i0

Ifot¢,=¢
And ¢— ¢, =&,
Then,

0, :%(Fn +iE,)
And

1 .
¢, = E(&-l —i&,)
Substituting these values in Equation (5.21), we get,
1 : 1. . 1 ) 1. .
z= EEJI(P+ iQ) +§l§2(P+ i0) +5§1(P— i0) —Eliz(P— i0)
Or

Z=%{il(PHQ)+§1(P—iQ)}+%i{§z(P+iQ)—éz(P—iQ)}
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Case III: Roots are Repeated.

root.

is,

Let m be the repeated root of Equation (5.15).

Then we have,

(D—mD"YD—-mD"z=0

Putting (D —mD")z= U, we get (5.17)
(D-mD"HYU=0 (5.18)
Since the equation is linear, it has the following subsidiary equations,

dx dy dU

1m0

Two independent integrals of Equation (5.19) are,

(5.19)

y + mx = Constant
And U= Constant

U=y +mx)

This is a solution of Equation (5.18) where ¢ is an arbitrary function.
Substituting in Equation (5.17),

—-—m——=¢(y+mx) (5.20)

Which has the following subsidiary equations,
dx dy dz

1 -m (|)(y+mx)

Two independent integrals of Equation (5.17) are,

y +mx = Constant
And z=x¢(y+mx)+ Constant

Therefore 7 =x¢(y +mx)+y(y+mx) (5.21)

This is a solution of Equation (5.20) where  is an arbitrary function.
Equation (5.21) is the part of C.F. corresponding to two times repeated

In general, if the root m is repeated r times, the corresponding part of C.F.

2= X", (y +mx)+ X2, (y + mx)+ -+ ¢, (y + mx)

Where ¢,,0,, ---,¢, are arbitrary functions.

Example 5.19: Solve the equation, (D3 -3D’D'+3DD"* -D" k =0.

Solution: The A E. of the given equation is,

m’-3m?+3m-1=0



Or (m—l)3 =0

= m=1,1,1

CFE = x2¢1(y+ x)+ x¢2(y+ x)+ <1>2(y+ X)-

Non-Homogeneous Linear Equations with Constant Coefficients

If all the terms on left hand side of Equation (5.10) are not of same degree then
Equation (5.10) is said to be Non-Homogeneous equation. Equation is said to

be reducible if the symbolic function f (D, D’) can be resolved into factors each
of which is of first degree in D and D' and irreducible otherwise.
For example, the equation,
f(D,D')z=(D>~D"+2D+1)z=(D+D'+1)D-D'+1)z = x> +xy
It is reducible while the equation,
£(D,D")z = (DD’ + D" ) = D'(D+D"? Jz = cos(x + 2y)
Itis irreducible.
Reducible Non Homogeneous Equations
In the equation,
f(D,D')=(a,D+b,D'+¢, (a,D+b,D'+c,)---(a, D+b, D' +¢c,) ...(522)
Where a’s, b’s and ¢’s are constants.
The complementary function takes the form,
(a,D+b,D'+c, )a,D+b,D'+c,)---(a,D+b D' +c, )z=0 (5.23)
Any solution of the equation given by
(aD+b,D'+c,)z=0 (5.24)
This is a solution of the Equation (5.23)

Forming the Lagrange’s subsidiary equations of Equation (5.24),
de_dy _ dz
a, b, -cz

1 1

(5.25)
The two independent integrals of Equation (5.25) are,

b,;x —a,y =Constant

C:
_Siy

And z=Constant ¢ “ ifa #0
Or

c:

y
z=Constant e ” ,if b, #0
Therefore,

z= e_%x (I)i(biX—aiy), if ai #0
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Or

Ci

= e_;fywi(bix—aiy) ifb, #0

This is the general solution of Equation (5.24). Here ¢, and v, are arbitrary

functions.
Example 5.20: Solve the differential equations,

(D*-D"? -3D+3D')z=0.
Solution: The equation can also be written as,
(D-D')D+D'-3)z=0

CF.= (I)l(y+x)+ e 2(x —y)
Or

v (y+x)+ e3y\|’2(x -Y)
When the Factors are Repeated

Let the factor is repeated two times and is given by,
(aD+bD'+c)

Consider the equation,
(aD+bD’+c)aD+bD'+¢)z=0
Put (aD+bD'+c)z=U
Then the Equation (5.27) reduces to,
(aD+bD'+¢c)U =0
General solution of Equation (5.28) is,
U= e’g" (I)(bx—ay) ifa#0
Or

U= o v wbx—ay)if b#0

Substituting Equation (5.29) in Equation (5.27), we obtain,

(@D +bD+c)z=c¢ « dlbx—ay)
The subsidiary equations are,

d_dy i
a b

eizx(p(bx —ay)—cz
The two independent integrals of Equations (5.32) are given by,
bx —ay = Constant=2\

(5.26)
(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)



d 1 —Ex 1 —Ex
And E4+Sz=—eobx—ay)=—c “ o(L) (5.34)
dx a a a

The Equation (5.34) being an ordinary linear equation has the following
solution:

‘s 1
ze® =—x@(A\)+ Constant
a

‘ 1
Or ze® =—x@(bx—ay)+ Constant
a

Therefore, general solution of Equation (5.31) s,

zZ= ieigxq)(bx - ay)+ d, (bx - ay)ejx
a

e {X¢2(bx_aY)+¢1(bX_aY)} -(3.35)
Where ¢, and ¢, are arbitrary functions.
Similarly from Equations (5.30) and (5.27), we get
2= v {yws(bx—ay)+y, (bx—ay)}
Where y, and y, are arbitrary functions.

In general, for r times repeated factor, (aD+bD’ +c)

zZ=¢ "‘Xin’ld)i(bx—ay) ifaz0

z—eigyzr:yi’l\ui(bx—ay) ifb=0
i=1

Where ¢,,0, ....,¢, and V,V,,...,, are arbitrary functions.
Example 5.21: Solve the differential equation,
(2D-D'+4)D+2D'+1°2=0)
Solution: C.F. corresponding to the factor (2D -D'+ 4) is,
e o(x +2y)
C.F. corresponding to the factor (D = 2D" +1)’ is,
e {xd, (2x —y)+ ¢, (2x - y)}
Hence C.F.=e%¢(x +2y)+e ™ {x0,2x -y)+¢,(2x-y)}
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Irreducible Non-Homogeneous Equations
For solving the equation,
f(D,D')z=0 (5.36)

ax+by

Substitute z = ce where a, b and ¢ are constants. (5.37)

Now  D'z=ca'e™™
D'D"*z=ca'b%e™"™
And D"z =cb®e™*™
Substituting Equation (5.37) in Equation (5.36), we get,
cf(a,b)e™™ =0
Which will hold if;
f(a, b)=0 (5.38)

For any selected value of a (or b) Equation (5.38) gives one or more values
of b (or a). Thus there exists infinitely many pairs of numbers (a, b)) satisfying
Equation (5.38).

Thus

2= ilcieai”biy (5.39)
Where f (a b, ) =0 v i,1sasolution of the Equation (5.38),
If

f(D,D’)=(D +hD’ +k)g(D,D’) (5.40)

Then any pair (a, b) such that,

a+hb+k=0 (5.41)
Satisfies Equation (5.40). There are infinite number of such solutions.
From Equation (5.41),

a=—(hb+k)
Thus

0
7= Z Cie—(hbi+k)x+biy
i=1

0

= e et (5.42)

i=1
This is a part of C.F. corresponding to a linear factor (D +hD' + k) given
in Equation (5.40).



Equation (5.42) is equivalent to,

e ™ (y —hx)
Where ‘¢’ is an arbitrary function.

Equation (5.39) is the general solution if f (D, D') has no linear factor
otherwise general solution will be composed of both arbitrary functions and partly
arbitrary constants.

Example 5.22: Solve the differential equation (2D4 +3D’D’'+D"? )z =0.
Solution: The given equation is equivalent to,
(2D*+D'\D*+ D'} =0

C.F. corresponding to the first factor,

_ icieaix+biy
i=l1
Where a, and b, arerelated by,
2a’+b, =0
Or b, =-2a’
Therefore, part of C.F. corresponding to the first factor,
i d‘e@i(x—@iY)
1
i=1
Where ¢, and d, are arbitrary constants.
CF — Zcieai(X*231Y) + Zdieei(’(*eﬂ)
i=1 i=1
Particular Integral
In the equation,
f(D,D')z=V(x,y) ...(5.43)
AD, D")is anon homogeneous function of D and D'.

PL= V(x,y) (5.44)

f(D,D’)
Here if V(x, y) is of the form ¢*+by where ‘a’ and ‘b’ are constants then

we use the following theorem to evaluate the particular integral:

Theorem 5.1: If f(a,b)# 0, then,

1
f(D,D’)

1
f(a,b)e

ax+by __ ax+by

€
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Proof: By differentiation,
DrD'Seax+by — arbseax+by
Dreax+hy — areax+hy
D'Seaerby — bseaerby

f(D,D')eaHby — f(a,b)eax+by

eaerby — f(a,b) 1 eaerby

f(D,D’)

Dividing the above equation by fla, b)

1 ax+by — 1 ax+by
fab)  fO,D)
1 ax+by — 1 ax+by
Or fo.0)°  f(ab)

Example 5.23: Solve the equation (D2 ~-D”?-3D+ 3D'ﬁ =e* %

Solution: The given equation is equivalent to,
(D-D' D+D'-3)z=e"2
CF = ¢1(y + X)+ e3x¢2(y - X)
_ 1 o2
(D-D'Y(D+D'-3)

1
=——e
12

PI

x=2y

. |
Therefore, z=,(y+x)+¢é’ (pZ(y_X)_Ee 2y

But in case ¥(x, y) is of the form e™*™¢(x,y) where ‘a’ and ‘b’ are
constants then following theorem is used to evaluate the particular integral:
Theorem 5.2: If ¢(x, y) is any function, then

L
f(D,D’)

Proof: From Leibnitz’s Theorem for successive differentiation, we have

D ™ ™ o(x,y)}= e D"9(x, y)+* c,a. D" o(x,y)}

1
f(D+a,D’ +b

eax+by d)(X, y) — eax+by

)¢(X,Y)

+' c2212d'"2(1)(x,y)+---+r cra'd)(x,y)

— eax+by {Dr +° ClDr_l +° CzaZDr—Z Foeeegt Crar}(l)(x,y)

= &= (D +a) d(x.y):



Similarly,
D" g(x,y)f=e"" (D'+b)" o(x, )
And D"D" {e*" o(x,y)|= D'[e™" (D'+b)g(x, )]
=e™™(D+a) (D' +b)o(x,y)
So f(D,D'){ea“byd)(x,y)} e™™f(D+a,D" +b(x,y) (5.45)

Put f(D+a,D +b)(x,y)=y(x,y)

oxy)=—— )

f(D+a,D'+b
Substituting in Equation (5.45), we get,

1
f D DI ax+by — ax+by
( ’ ){e f(D-f-a,D,"r‘b)\lj(X,y)} ¢ \V(Xay)

1
Operating on the equation by m

ax+by 1

f(D+a,D'+b

€

)\u(x,y)=

Replacing y(x,y) by ¢(x,y), we have,

1
f(D+a,D'+b

1 ) (C ax+by (I)(X7 y)) — eax+by

0.0 )¢(Xa}’)

Example 5.24: Solve (D2 ~-D”?-3D+ 3D’)z =xv+e .

Solution: The given equation is equivalent to,
(D-D')D+D'-3)y=xy+e*™
CF.=¢,(y+x)+e™9,(x-y)

1 1 X+2y

(D—D’)(D+D’—3)XY+(D—D’)(D+D’—3)

1 p)"'(. D+D)"
=——9l-— 31- Xy
3iD| D 3
1

1
(D+1-D'-2)D+1+D'+2-3) °

' 12 '
__ L 1+2+D—2+--- {1+D+D +£DD’+---}xy+e"+2y
D D 3 9

PIL =

x+2y
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1
(D—D'—l)(D+D’)'1

1 1+H+—r2+ +K+:’F+E + B ! 1
" 3| D D? SONETREY (R 5o rS 0

3
2=y +2)+e™ ¢, [z —y)- ze™¥ _%Xzy_éxg _T_B_%XF _%x

Example 5.25: Solve (D” - DD'+D'-1)z = cos(x +2y)+ e’ +xy +1 .
Solution: Equation is equivalent to,
(D - 1)(D —D'+1)z = cos(x + 2y)+ e’ +xy+1
Complementary Function=e¢*¢,(y) + e’ ¢, (x+ ).

Particular integral corresponding to cos (x +2y) s,
1
D’-DD'+D'-1
1

= (_1)_(_ 2)+D'—1 cos(x+2y)

cos(x + 2y)

= %cos(x + 2y)
= %sin(x +2y)

Correspondingto e | the particular integral is,

2 1! ' ¢
D°"-DD'+D'-1

y

Particular Integral corresponding to the part (xy + 1) is,

1
:(D—l)(D—D’+1)(XY+1)




~{1-DJ {1+ (D-D"} (xy+1)

z:ex(pl(y)+ey(p2(x+y)+%sin(x+2y)+yey -x(y+1)

Partial Differential Equations Reducible to Equations with Constant

Coefficients

The equation,

f(xD,yD')z=V(x,y)

Where f(xD, yD') = zCrsxrysDrD'S ,¢,, = Constant.

r,8

(5.46)

This is reduced to linear partial differential equation with constant coefficients

by the following substitution:
u=logx,v=logy
By substitution of Equation (5.47)

xD=x—
Ox

0 Ju

ou’  du
=d(d-1)

(5.47)
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Therefore,
x'D" =d(d—-1)d—2)...{d-r—1)
And y'D" =d'(d'~1)d'-2)..{d'~s—1)

= g(d.d’)

Here the coefficients in g(d, d”) are constants.
Thus by substitution Equation (5.46) is reduced to,

g(d,d')z = V(e“,ev)

Or g(d,d")z =U(u,v) (5.48)

Equation (5.48) can be solved by methods that have been described for
solving partial differential equations with constant coefficients.

Example 5.26: Solve the differential equation,
(x>D? —4xyDD' +4y’D" + 6yD'Jz = x’y"*
Solution: Put u =logx

v=logy
The given equation can be reduced to

{d(d-1)-4dd’ +4d'(d'~1)+6d'jz =™

Or (d-2d')d-2d" ~1)z=e™**"

The complementary functionis ¢, (2u + v)+e"d,(2u +v)
= ¢, (logx>y)+x¢,(logx?y)
= v, (x*y)+ xy, (xy)

1 3u+2v

And the particular integral is ( ) d')( d—2d'— 1)

_ 3y
307

Z= \jll(Xzy)-l- xwz(xzy)+%x3y4 .

Example 5.27: Find the solution of, (xzD2 ~y’D"”? —yD'+ xD)z =0
Solution: Put u=logx

v=logy



The given differential can be reduced to,

{d(d-1)-d'(d'~1)-d'+d}z=0

= (@>-d? =0
A.E.is,
m’-1=0

= m=1,-1

= z:(l)l(v+u)+¢2(v—u)
= ¢, (logxy)+ ¢z(log§)

=¥, (xy)+ ¥, (XJ .
X
Example 5.28: Determine the solution of the following equation,
(X2D2 +2xyDD’ + y*D’? )z +nz= n(xD + yD’)z +x*+yr+x’
Solution: Put u =logx
v=Ilogy
The equation reduces to,
{d(d-1)+2dd’ +d'(d'~1)}z—n(d+d")z+nz=e> +e** +e™
Or
[{d+d'}2—{d+ d’}]z —nfd+dYe+nz =™ +e™ +e™
Or
fd+dNd+d' -)-nld+d)+njz =™+ +e™
Or
{(d +d') —(n+1)d+d')+ n}z —e™ +e” +e
Or
(d+d —n)d+d'-1)z=e™ +e* +&™
CF.=e"¢,(u-v)+e"d,(u—v)

n X X
Y Y

1
d+d —n)d+d' -1

Pl = ( ){eZu 4o +e3u}
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__X2+y2_l 1 O
n-2 2 n-3

3

7 =x" i 1x i _Xz“r‘y2 _l X
. Vi y & y n—2 2n-3

, , , 1
Example 5.29: Solve (x’D> —xyDD'—2y’D"” + XD —2yD'Jz = log%—a

Solution: Put u =logx
v=Ilogy

Our equation reduces to,

{d(d—l)—dd’—2d’(d’—1)+d—2d’}z:V—u—%

(dz—dd’—Zd’z)z=v—u—%

Or (d—2d’)(d+d’)z:v—u—%

CF. = ¢,Qu+v)+o,(u-v)

vkl

P1= (d—zd’l)(d+d’)(v_u 2J

1 1{ d’ }( 1)
= == VU ——
d-2d""d d 2

1 2d" 44" , 1
= l+—+——+-pjuv-u"——u
d d d 2



_ uz‘if " i

2 A

— L{logx)* logy —(logx)
2 4

z=v, (x*y)+ wz(§j+%(log><)z logy—%(logX)z.

Example 5.30: Solve the differential equation,

n

(XZD2 +2xyDD’ + yzD’z)z = (X2 +y’ )2
Solution: Put u=logx

v=1logy

n

The equation is reduced to {d(d—1)+2dd' +d'(d' -1)}z = (ezu e )5
Or (dray —(@+d)=(e+e>)

Or (d+d)d+d —1)z=(e +e2V)§

CF.=¢,(u-v)+e"d,(u-v)

= (I)l(logi] + Xd)z(logi]
y y
el
y y

1 u v E
Particular Integral is = (d+d’)(d+d’—l)(ez +e’ )2

n

(eZu + eZV )E

Substituting Z =

d+d' -1
0L 0L B
O —+—=Z+(e"+e" )
' =z ™)
du d dz
The subsidiary equations are Tu = TV =

Z+ (ezu +e’ )5
Two independent integrals of Equation are given by,

u —v = Constant = a (say)
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dz

And __Z:(ezu+ezv)%

dv

e (e + 1)E
Since this equation is linear, therefore,
(n-1)v n
Ze™ = (e +1)

n—l)

—

o

Example 5.31: Solve (XZD2 —2xyDD’+y’D"? —xD +3yD')z ==

Solution: Put u =logx

v =logx

8y



Our Equation reduces to,
{afd—1)-2dd'+ dfd'~ 1)~ d +3d)z = 8e™
or  {a-ay’-2fa-dY =5
S
CF. =¢,(u+v)+e™d,(u+v)

= v, (xy)+x7y, (xy)

_ 8 1 eV*u
Pl = '(d—d')(d—d'—2)
= eV—l,l
_Y
X

z=y(xy)+ Xz\Vz(XY)"‘% .

Example 5.32: Solve (xZD2 +2xyDD’ + yZD’z)z =x"y"
Solution: Put u =logx
v=Ilogy
The equation reduces to,

{d(d-1)+2dd" +d'(d'~ 1)}z =e™™
or {{d+dY-(d+d)f =

Or (d+d')d+d —1)z=e™™

CF. = ¢,(u-v)+e"d,(u-v)

{5l

1
d+d')d+d' -1)
1

- (m+n)(m+n—l)e

mu+nv

PIL = (

mu+nv
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1

8. When is a non-homogeneous equation said to be reducible?

. What is the complementary function of the equation

. Write the homogeneous linear equations with constant coefficients.

. Which mathematical function is used to reduce partial differential

- (ern)(ern—l)X
z=y | = |+xy,| 2|+ 1 x"y"
Wi y V2 y (m+n)(m+n—1) Y
Check Your Progress

(A,D"+A,D"'D'+A,D"?D"? +---+ A D" |z = 0 ifthe roots are
distinct?

equations to equations with constant coefficients?

5.5

ANSWERS TO ‘CHECK YOUR PROGRESS’

. The partial differential equation Pp + Og = R, where P, Q, R are functions

ofx, y, z is called Lagrange’s linear differential equation.

. The linear differential equation with constant coefficients are of the form,

afy+P1 +P, T +P,,,1d—y+Pny=Q
I dx

Where P, P,, ...., P are constants and Q is a function of x.
When m,=m,, then the complementary function will be,
y=(c, +c,x) " where c, and c, are arbitrary constants.

Any particular solution of F'(D)y=f{(x) is known as its Particular Integral
(P.I). The P.I. of F(D)y=f{(x) is symbolically written as,

o .
PL= D) {f (x)} where F(D) is the operator.

. The three types of equations are the elliptic type, the parabolic type and the

hyperbolic type.

Letm ,m,, ..., m be the roots of the equation then C.F. = ¢,(y +m x) +
O rmx) o +¢ (v +m x) where ¢ s are arbitrary functions.

Let (D, D")z=V(x, )
Thenif,

f(D,D")= 4,D" + AD"'D'+ 4,D" D} +---+ A, D"

Where A|,A,,---,A, are constants.



. The equation f{D, D")z = V{(x, y) is said to be reducible if the symbolic

function f(D, D") can be resolved into factors each of which is of first degree
inDandD".

Logarithm function is used to reduce partial differential equations to equations
with constant coefficients

5.6

SUMMARY

The partial differential equation Pp + Qg = R, where P, Q, R are functions
ofx,y,z,1s called Lagrange’s linear differential equation.

The general form of a linear differential equation of nth order is,

n n—1 n-2
d"y iy d _)1/ ‘P, d" "y
dx" dx"
The solution y =y, (x), y =y, (x), ¥y =y (%), ...,y =y, (x) are said to be

linearly independent if the Wronskian of the functions is not zero

dy _
P +...+Pn,1$+P,,y— 0

The Complementary Function (C.F.) which is the complete primitive of the
Reduced Equation (R.E.) and is of the form

y=c,y,t¢y,+...+c,y, containing n arbitrary constants.

The Particular Integral (P.I.) which is a solution of F'(D) y = O containing
no arbitrary constant.

If the two roots m, and m, of the auxiliary equation are equal
and each equal to m, the corresponding part of the general solution will be
(¢, + ¢, x) €™ and if the three roots m,, m,, ms are equal to o the
corresponding part of the solution is (¢ + ¢, x + csxz) €™ and others are
distinct, the general solution will be, 6
y=(c;tex)e™+(c;+ce,+ c5x2) L P S e

If a pair of imaginary roots o= i3 occur twices, the corresponding part of
the general solution will be,

e™ [(c; + cyx) cos Px + (c; + ¢,x) sin Px]

1
The operator ; D) is defined as that operator which, when operated on

f(x) gives a function ¢ (x), such that F' (D) ¢ (x) = f(x)

the following linear partial differential equation of the second order in two
independent variables,
2 2 2
42 ~+B Cu o8 - D g -G
ox ox0y oy ox oy
Where 4, B, C, D, E, F, and G are functions of x and y.
Laplace equation,

+ =
ox® oy’

0

This is equation is of elliptic type.
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¢ One-dimensional heat flow equation,
ou , 0%u
ot Ox
This equation is of parabolic type.
¢ One-dimensional wave equation,
ot ox’
This is a hyperbolic type.

e Equation is said to be reducible if the symbolic function { (D, D’) canbe

resolved into factors each of which is of first degree in D and D' and
irreducible otherwise.

5.7 KEY TERMS

¢ Partial differential equation: Any equation which contains one or more
partial derivatives is called a partial differential equation.

¢ Reducible: Equation is said to be reducible if the symbolic function f
(D, D’) can be resolved into factors each of which is of first degree in D and
D' and irreducible otherwise.

¢ Fundamental mode: The first normal mode is referred as the fundamental
mode.

e Complementary function: Consider the equation,
(A,D"+AD"'D'+A,D"?D"? 4.+ A, D"}z =0
Let,

z=¢(y+mx)

5.8 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1. Define Lagrange’s linear differential equation with suitable examples.
Define partial differential equations with suitable examples.

How will you identify the order of a partial differential equation?

How will you determine the degree of the partial differential equation?
Define Wronskian of functions.

Give the rules for finding the complementary function.

NS kv

Explain the partial differential equation of the second order.



8. Give examples of parabolic, elliptic and hyperbolic type equations.

9. What is the difference between homogeneous and non homogeneous
differential equations?

10. Explain the reducible non homogeneous equations.

Long-Answer Questions
1. Discuss the first order Lagrange’s equations. Give appropriate examples.

2. Solve the equations:
() (D*+DD” -1D" =0
(i) (D*+3D’D'=4D" =0
3. Solve the equations:
@ (D*+2DD'+ D" fp=12xy.
@ (D -2DD'-15D" )z =12xy .
(i) (D2 —6DD'-9D" Jz =12x> +16xy.
V) (D*- 7DD —6D" f=x> +xy’ +y".
V) (D°D'-2DD” +D" )z = %
4. Solve the equations:

@ (D>-DD'-2D” ) =x-y.

(i) (D*-4D°D’'+5DD"” —2D" J = e + Jy+x _
5. Solve the equations:
() (D* =3DD" —2D" )z = cos(x +2y).
(i) (D> +5DD’+5D" )z = xsin(3x - 2y)
6. Solve the equations:
() (D*-Dd'—2D" ) =(y—1)*
(i) (D* ~3DD"™> —2D" )z = cos(x +2y)—e* (3 +2x).
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10.

I1.

12.

13.

14.

15.

Solve the equations:

() (DD'+D™> -3D')z=0.

(i) (2D+D'-1)(D-2D'+2)'z=0.
Solve the equations:

) (2D -D"+D)=0.

(i) (D*+DD'+D+D'+1f=0
Solve the equations:

@ (D-D'-1Y\D+D'-2)z=¢>".

(]1) (DZ _Drk — ex+y .
Solve the equations:

() (D> ~DD’'-2D )z = cos(3x +4y).

(i) (D> -D')z = Acos(Ix+my), where 4, I, m are constants.
Solve the equations:
() (D=D'-1)D+2D'-3)z=4+3x+6y.

X+2

(i) (D’ ~DD"?> =D*+DD')z = i

(i) (D*-D')y=2y-x.
Solve the equations:
@ (D-D" )z =cos(x-3y).
(i) (D+D'—1(D+D'-3)D+D')z=¢""sin(2x +y).
(ii)) (D> +DD'+D'~1)z=4sin h x.

(iv) (DZD' +D"? - 2)2 =% sin3x —e” cos2y .

Solve the equations:
() (XZD3 —y3D'2>z =Xy.
(i) (x’D? +2xyDD'+y*D" fp=xy’.
(ii)) (x>D* —2xyDD’—3yD'> + xD—3yD'}z = x>y cos(logx* ).
Solve (D* —2D°D'~DD"? +2D" p =™

Solve (D* + D’ + D" —3DD'D" Ju = x* = 3xyz.



16. Solve the following equations:
() r=x%¢.

(i) xys=1

17. Solve the following equations:
(1) t—xq=-siny—xcosy.
(i) t—xq=x" _

(i) yt—q=xy
18. Solve the following equations:

i) xr+ys+p=10xy’
(i) 2yt—xs+2q=4yx’
(iii) z+r:xcos(x+y)_

19. Solve the differential equation, r —2yp + y’z = (y —2)e™"*
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