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INTRODUCTION

The subject of differential equations is built upon the subject of calculus. Differential
equations occur frequently in many branches of science and, in both pure and
applied mathematics. One possible explanation for this is to remember that a
derivative describes a rate of change, so anytime it is used to describe how changes
in one thing depend on changes in some other thing, differential equations are
lurking in the background. Differential equations allow us to model changing patterns
in both physical and mathematical problems.

A differential equation is a mathematical equation for an unknown function
of one or several variables that relates the values of the function itself and its
derivatives of various orders. Differential equations play a prominent role in
engineering, physics, economics and other disciplines. The term differential
equation was coined by Leibniz in 1676 for a relationship between the two
differentials dx and dy for the two variables x and y. Soon after the first usage of
this term, differential equations quickly became understood as any algebraic or
transcendental equation which involved derivatives. Differential equations are
specifically used whenever a deterministic relation involving some continuously
varying quantities (modeled by functions) and their rates of change in space and/or
time (expressed as derivatives) is known or postulated.

Mathematicians also study weak solutions (relying on weak derivatives),
which are types of solutions that do not have to be differentiable everywhere. The
study of the stability of solutions of differential equations is known as stability
theory. Both ordinary and partial differential equations are broadly classified as
linear and nonlinear. A differential equation is linear if the unknown function and its
derivatives appear to the power 1 (products are not allowed) and nonlinear
otherwise. The characteristic property of linear equations is that their solutions
form an affine subspace of an appropriate function space, which results in much
more developed theory of linear differential equations. Homogeneous linear
differential equations are a further subclass for which the space of solutions is a
linear subspace, i.e., the sum of any set of solutions or multiples of solutions is also
a solution. The coefficients of the unknown function and its derivatives in a linear
differential equation are allowed to be (known) functions of the independent variable
or variables; if these coefficients are constants then one speaks of a constant
coefficient linear differential equation. Linear differential equations frequently appear
as approximations to nonlinear equations. These approximations are only valid
under restricted conditions.

This book is divided into five units. The topics discussed is designed to be a
comprehensive and easily accessible book covering the basic concepts of
homogeneous linear equation with variable coefficient, total differential equation,
Picard’s method of integration, existence theorem, uniqueness theorem, dependence
on initial conditions and parameters, continuity differentiability, higher order
differentiability, Poincare-Bendixson theory, Umlaufsatz, stability of a periodic
solution, linear second order equations, theorems of strum, strum-Liouville boundary
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value problem, non-oscillatory equations and principle solutions, non-oscillation
theorems, partial differential equation of first and second order and linear partial
differential equation with constant coefficient.

The book follows the Self-Instructional Mode (SIM) wherein each unit
begins with an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined before
going on to the presentation of the detailed content in a simple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding of the subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of ‘Key Terms’, and a set of ‘Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective
recapitulation.
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UNIT 1 HOMOGENOUS LINEAR
EQUATIONS AND TOTAL
DIFFERENTIAL EQUATIONS

Structure

1.0 Introduction
1.1 Objectives
1.2 Homogeneous Linear Equation

1.2.1 Homogeneous Differential Equation with Variable Coefficients
1.3 Simultaneous Differential Equation

1.3.1 Simultaneous Equations in a Different Form
1.4 Total Differential Equation

1.4.1 Condition for Integrability
1.4.2 Methods to Solve Total Differential Equations
1.4.3 Solution of Exact and Homogeneous Total Differential Equations

1.5 Answers to ‘Check Your Progress’
1.6 Summary
1.7 Key Terms
1.8 Self-Assessment Questions and Exercises
1.9 Further Reading

1.0 INTRODUCTION

In mathematics, a differential equation is homogeneous if it is a homogeneous
function of the unknown function and its derivatives. In the case of linear differential
equations, this means that there are no constant terms. The solutions of any linear
ordinary differential equation of any order may be deduced by integration from the
solution of the homogeneous equation obtained by removing the constant term.

In simultaneous differential equations we’ll look at systems of simultaneous
linear differential equations with one independent variable and two or more
dependent variables next. In general, the number of equations equals the number
of dependent variables, hence there will be n equations if there are n dependent
variables.

An exact differential equation or total differential equation is a certain kind
of ordinary differential equation which is widely used in physics and engineering.
The single equations with one independent variable and several dependent variables.
These equations have the differential coefficients of dependent variables with respect
to one independent variable. Such equations are called total differential equations.
We learn those differential equations which contain one independent variable and
two or more than two dependent variables. The equation may be ordinary or
partial depending upon the ordinary or partial derivatives.

In this unit, you will learn about the homogeneous linear equation with variable
coefficient, simultaneous differential equation and total differential equation.
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1.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn about the homogeneous linear equation with variable coefficient

 Explain the simultaneous differential equation

 Analysis the total differential equation

1.2 HOMOGENEOUS LINEAR EQUATION

Any homogeneous differential equation of the from.
1 2

2
1 2 ......

1 2

 


  


n n n
n n n

n zn n n

d y d y d y
x p x p x p y

dx dx dx
 = 

is called a homogeneous linear differential equation of nth order, where p
1
, p

2 
- p

n

are caustants and Q is a function of x .

Solution of homogeneous linear equation

Homogeneous linear differential equation is reducible to linear differntial equation
with constant  coefficient by subsituation

log 

1

zx e z x

dz
or

dn x

 Then
1dy dy dz dy

dx dz dx x dx

or
dy dy

x
dx dz

or 1xD D  Where D
1 
=

d

dz

Also
2

2

1d y d dy d dy

dx dx dx x dzdx

2

1 1dy d dy dz

x dz x dz dz dx

2

2 2

1 dy d y

dzx dz

2 2
1 1 1x D D D

Proceeding in the same way

1 1 1D D D 1 D 1n nx n
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Now equation is reducible to linear equation with constant coefficient and
may be solved by previously defined methods.

Example 1.1:Solve 2 2 24x D xD y x

 x = ez

 Equation becomes [D
1
(D

1
 1)+D

1
 4] y = 2ze

or 2 2
1 4 zD y c

 Auxiliary equation is m2 –4 = 0
or m  =  2

 C.F = 2 2
1 2

z zc e c e

and P.I = 
2 2

2 221 1

1 1

D 4 D 2 4

z ze e

1
2 2 1

2
11 1

D1 1
.1 1 1

4D 4D 4D
z ze e

2 2
1

1

D1 1
. 1 .1 1

4 D 4 4

z ze e

D

2

.
4

ze
z

2
2 22

1 2C.F P.I
4

z
z e z

y c e c e

2
2 2

1 2 log
4

x
c x c x x

Example 1.2: Solve 3 3 2 2 2D 2 D 3 D 3x x x y x x

Solution: Let 2 logx e z x and equation reduces to

2
1 1 1 1 1 1D CD 1)(D 2) 2D (D 1) 3D 3 z zy e e

or 3 2 2
1 1 1D D 3D 3 z zy e e

A.E is m3 m2 + 3m  3 = 0
or (m3 + 3)(m1) = 0

or m = 1,+ 3i

C.F = 1 2 3cos 3 z sin 3zc e c c z

and P.I = 3 2
1 1 1

1

D D 3D 3
2z ze e
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2
3 2 3 2
1 1 1 1 1 1

1 1

D D 3D 3 D D 3D 3
z ze e

2
3 2

1 1 1

1 1
.1

8 4 6 3 D 1 D 1 3 D 1 3

z ze e

2
3 2
1 1 1

1 1
1

7 D 2D 4D
z ze e

2
21

1
1

1 1
1

7 DD
4D 1

2 4

z ze e

121
2 1

1

D1 1 D
1 1

7 4D 2 4
z ze e

2

1

1 1
. 1

7 4D
z ze e

21 1
.

7 4
z ze e z

2
1 2 3

1
I cos 3 sin 3 .

7 4

z
z z e

y C F P c e c z c z e z

 
2

1 2 2
1 1

cos 3 log sin 3 log log
7 4

c x c x c x x x x

Example 1.3: Solve 2 2D 7 D +13 logx x y x

Solution:  Let logzx e z x and equation reduces to

2
1 1 1D (D 7D 13 y z

or 2
1 16 13D D y z

 A.E is m2 + 6m + 13 = 0

i.e., m =   3 + 2i

C.F = 3
1 2cos 2 sin 2ze c z c z

and P. I  

1
2

1 12
1 1

1 1 6 1
. 1 D D .

13 13 13D 6D 13
z z

1 6 1
13 6

13 13 169
z z
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 3
1 2

1
cos 2 sin 2 13 6

169
zy e c z c z z

3
1 2

1
cos 2log sin 2log 13log 6

169
x c x c x x

Example 1.4: Solve 2 2 2D D 3 logx x y x x

Solution: Let logzx e z x and equation reduces to

2
1 1 1D D 1 D 3 .zy e z

or 2
1 12 3 zzD D y ze

 A.E is m2 = 2m   3 = 0 i e., m=  1, 3

 C.F 3
1 2

z zc e c e

and P.I 
2 2

2
1 11 1

1 1

D 2 2D 2 3D 2D 3
z zze e z

2
2 2

1 12
1 1

1 2 1
1 D D

3 3 3D 2D 3

z
z e

e z z

2 2
1

1 2 1 2
1 D

3 3 3 3
z ze z e z

 Solution is y = C.F + P.I 
2

3
1 2

2

3 3

z
z z e

c e c e z

1
2

3
2

2
log

3 3

c x
c x x+

x

Example 1.5:  Solve
2

2
2

4 6
d y dy

x a x a y x
dxdx

Solution: Let zx a e or logz x a


1dz

dx x a

and
1dy dy dy

dx dz x a dz

or 1D
d d

x a
dx dz
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Also
2

2

1d y d dy d dy

dx dx dx x a dzdx

2

1 1 1
.

dy d dy

dz x a x a dz dzx a

2

2 2

1 d y dy

dzdzx a

or
2

2 2
1 1 1 12

D D D D 1
d

x a
dx

Substituting the value in the given equation, we get

2
1 1 1D D 1 4D 6 zy e a

or 2
1 1D 5D + 6 zy e a

A.E m2   5m + 6 = 0 i.e., m =2,3

 C.F  = c
1
e2z + c

2
e3z

and P.I 2
1

1

D 5D 6
ze a

2 2
1 1 1 1

1 1
.

D 5D 6 D 5D 6
ze a

12
1

1
D5

1 D .1
2 6 6 6

ze a

1
5

1 D 1
2 6 6

ze a

6

ze a

z

 2 3
1 2

9

2 6

z
z z e

y c e c e

2 3
1 2

9

2 6

x a
c x a c x a

Example 1.6: Solve 2 11 11 1 4cos log 1x y x y y x

Solution: Let 1+x = e zor z =log (1+ x)

Proceeding as in example 1.4   4 we have

1
dy dy

x
dx dz

and
2 222

2 2
1

d y d y
x

dx dz
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And given equation become

1 1 1D D 1 D 1 4cosy z

or 2
1D 1 4cosy z

A.E. is m2 + 1= 0 or m =  i

 C.F = 1 2cos sinc z c z

and  P.I = 2 2
1 1

1 1
4cos 4 cos

D 1 D 1
z z

4 sin
2

z
z

2 2

1
cos sin

2D

x
ax ax

aa


= 2 z sin z

and 1 2cos sin 2 siny c z c z z z and

1 2cos log 1 sin log 1 2log 1 sin log 1c x c x x x

Example 1.7:  Solve (x2D2   3x D + 5)y = x2 sin(log x)

Solution: Let  x = ez or z = log x and equation reduces to

2
1 1 1D D 1 3D 5 sinzy e z

or 2 2
1 1D 4D 5 sinzy e z

A.E is m2   4m + 5 = 0 i.e., m = 2 + 1

 C.F 2
1 2cos sinze c z c z

and P.I 
2

2
1

1
sin

D 4 5
ze z

2
2

1 1

1
sin z

D 2 4 D 2 5

ze

2 2
2
1

1
sin cos

2D 1
z z z

e z e z

21
cos

2
zz e z

 2 2
1 2cos sin cos

2
z zz

y e c z c z e z
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2
2

1 2cos(log ) sin(log ) log .cos(log )
2

x
x c x c x x x

Example 1.8: 
2 2D 3 D 1 log .sin log 1x x y x x +

x

Solution: Let x = ez  or z = log x, equation reduces to

1 1 1D D 1 3D 1 sin 1 zy z z e

or 2
1 1D 4D 1 sinz 1zy e z

 A.E is m2   4 m + 1= 0 i.e., m = 2 + 3

 C.F 
2

1 2cos 3 sin 3ze c h z c h z

and P.I 2
1 1

1
sin 1

D 4D 1
zz z e

2
1 1

1
2sin 1

D 1 4 D 1 1

ze z

2
1 1

1
sin 1

D 6D 6
ze z z

0.
2 2
1 1 1 1

1 1
sin

D 6D 6 D 6D 6
z ze z z e

2
1 1

1 1
sin

6D 6D 6
ze z z

2
1 1

1 1
sin

6D 6D 6
ze z z

Now 
1

2 2 221 1 1 1 1 1

2D 61 1
sin sin sin

D 6D 6 D 6D 6 D 6D 6
z z z z z

1
2

1 1

2D 61
sin sin

1 6D 6 1 6D 6
z z z

1 1
2 2
1 1 1

5 6D 2D 6
sin sin

25 36D 25 36D 60D
z z z

1 1

1

5 6D 2D 6
sin sin

61 11 60D
z z z
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1 1
1 2

1

2D 6 11 60D
5 6D sin sin

61 121 3600D

z
z z

2
1 1120D 66 382D sin

5sin 6cos
61 3721

zz
z z

1
5sin 6cos 54sin 382cos

61 3721

z
z z + z z

 y = C.F + P.I

2
1 2

log
cos 3 log sin 3 log 5sin log 6cos log

61

1
54sin og 382cos log cos(log )

3721

x
x c h x c h x x x

x x x

1.2.1 Homogeneous Differential Equation with Variable
Coefficients

A differential equation of the form

2

1 22
0

d y dy
a x a x y

dxdx

Is said to be linear homogeneous differential equation with variable
coefficients where a

1
 (x) and a

2
 (x) are continuous function in the interval [a, b].

For second order homogeneous  differential equation there is no general
method for finding  a particular solution. While few solution on can be guessed by
using a particular solution. It y

1
 (x) 0 is a particular solution of homogeneous

linear second order equation then the original equation can be converted to a first
order linear equation by substitution y = y

1
 (x) z (x) and the subsequent replacement

z
1
 (x) = u

This method is known as method of reduction of order.

Another method is called method of variation of parameter.

Variation of Parameters

Here we shall explain the method of finding the complete primitive of a linear
equation whose C.F is known.

1. To find particular integral of

2

2

d y dy
P Qy = R

dxdx
(1.1)

Let  C.F Ay
1
, + By

2

Then  P.I = uy
1 
+ vy

2 
 where
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u = 
2

1 2 1 2

y R
dx

y y y y

and v
1

1 2 1 2

y R
dx

y y y y

General solution = C.F + P.I

2. Let y = A(x) + B(x) be the C.F  where A and B are constants  and (x)
and (x) function of x

as y = A (x) + B(x) satisfies the equation

2

2
  0

d y dx
P Q y

dxdx

 [A(x) + B(x)] + P [A(x) + B(x)] + Q [A(x) + B(x)]= 0

or A [(x) + P(x) + Qd(x)] + B[(x) + P(x) + Q(x)] =0

 (x) + P(x) + Q(x) = 0 (1.2)

and  (x) + P(x) + Q(x) = 0 (1.3)

Now let us assume that

y = A(x) + B(x) (1.4)

is complete primitive of (1.1) where A and B are functions of x, so chosen
that (1.1) will be satisfied.

dy

dx
A(x) + B(x) + 

A B
Q ( )+ ( )

d d
x x

dx dx

Let A and B satisfy the equation.

(x) 
A B

( ) 0
d d

x
dx dx

(1.5)

 A ( ) B ( )
dy

x x
dx

and
2

2

A B
A ( ) B ( ) ( ) ( )

d y d d
x x x x

dx dxdx

Substituting in equation (1.1)

A B
A ( ) B ( ) ( ) ( )

d d
x x x x

dx dx

P A ( ) B ( ) Q[A ( ) B ( )] Rx x x x

Or ( ) P ( ) ( ) B[ ( ) P ( ) Q ( )]A x x Q x x x x
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A B
( ) ( ) R

d d
x x

dx dx
(1.6)

As coefficients of A and B are zero by Equations (1.2) and (1.3) from
Equations (1.5) and (1.6)

A
( )ψ ( ) ( )ψ( ) ( )

d
x x x x R x

dx

or
A Rψ( )

ψ( ) ( )ψ ( )

d x

dx x x x

or integration  we can find the value of A similarly B can be determined from
Equations (1.5) and (1.6) as the solution is obtained by varying the arbitrary constants
of the complementary function the method is known as variation of particular .

Working Rule

1. Find the C.F of the  Equation
2

2

d y dy
Qy R

dxdx

Let C.F 1 2( ) ψ( )c x c x

Where c
1 
and c

2
 are arbitrary constants and (x), (x) are functions of x.

2. Replacing c
1
,c

2
 by A and B which are functions of x, taken the general

solution of Equation on (1.1) as

A ( ) Bψ( )y x x …(1.7)

3. Differencing Equation (1.7) we have

A B
Aφ ( ) Bψ ( ) ( ) ψ( )

dy d d
x x x x

dx dx dx

Now choose Equations (A) and (B) such that

( )+ ( ) 0
dA dB

x x
dx dx

…(1.8)

( ) ( )
dy

A x B x
dx

4. 
2

2
( ) ( ) ( ) ( )

d y dA dB
A x B x x x

dx dxdx

Substituting these values of 
dy

dx
and 

2

2

d y

dx
in Equation (1.1) reduces to

( ) ( )
dA dB

x x R
dx dx

… (1.9)
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Solving Equations (1.8) and (1.9) we can find 
dA dB

and
dB dx

, and integration

gives equations (1.7) and (1.8)

5. Substitute these values in equations (1.7) to get the general solution of the
given equation,

Example 1.9: Solve y+y = cosec x

Solution: Given (D2+1) y = cosec x

A.E is  m2 +1 = 0, i.e., M =  1

 CF = c
1
cos x + c

2
sin x hence y

1 = 
cosx, y

2
= sin x

Let P.I = uy
1
+vy

2

      = u cos x + sin x

where u = 
2

1 2 1 2

cosecy  x dx

y y y y




= 2 2

sinx×cosec 

cosx(cosx)-(-sinx) (sinx) cos sin

x dx dx

x x
 

= dx x 

and v = 
1

1 2 1 2

cosec y x dx

y y y y

= 2 2

cos cosec
cot

cos  + sin

x x dx
x dx

x x

=  log sinx

 PI = (x) cosx + (log sinx) sinx

 y = CF + P.I = c
1
cosx + c

2
sinx xcosx + sinx  log (sinx)

Alter) C.F = c
1
cosx + c

2
sinx

Let y = A cosx + B sin x where A and B are functions


dy

dx
= A sin x + B cosx +

dA

dx
cosx +

dB
sin

dx
x

choose A and B such that

cos sin 0
dA dB

x x
dx dx

…(1)


dy

dx
= –A sin x + B cosx

also
2

2

d y

dx
= sin cos cos sin

dA dB
x x A x B y

dx dx
 substituting in

given equations,  equation becames
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sin coses
dA dB

x x
dx dx

…(2)

Solving Equations (1) and (2),we have

dA

dx
=  1,  A = x + c

1

and
dB

dx
= cotx  B = log sinx +c

2

general solution y = c
1
cos x + c

2
sin xxcosx + sinx log sinx

Example 1.10:(D21) y = 
2

1 xe

Solution: AE m21= 0 i.e., m = + 1

 CF = c
1
ex + c

2
ex

y
1
= ex, y

2
 = ex

Let PI = uy
1
+vy

2

where u =  
2

1 2 1 2

2 2

1 1
( ) ( )

x

x x

x x x x

e
y

e e dx
e e e ey y y y



 



 

= 12
2

x

x

e
dx

e





= 
1

1 (1 )

x

x x x

e
dx dx

e e e



= 
1 1

1x x
dx

e e


= 
1

x
x

x

e
e dx dx

e


 

= ex  + log (ex + 1)

and  V = 
1

1 2 1 2

2 2

1 1
2

x

x x

e
y

e e dx
y y y y 

= log (1 )
1

x
x

x

e
dx e

e
 
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 PI = [(ex + log (ex+1)] ex  ex log (1+ex)]

= 1+ex + log (ex+1)  ex log (ex+1)

y = c
1
ex + c

2
 ex+exlog (ex+1)  ex log (ex+1) 1

Alter C.F = c
1
ex + c

2
ex

Now let y = Aex+ Bex where A and B are functions of x

 x x x xdy dA dB
Ae Be e e

dx dx dx
 

Choose A and B such that

0x xdy dB
e e

dx dx


… (1)

 x xdy
Ae Be

dx



2

2
x x x xd y dA dB

e e Ae Be
dx dxdx

 

Substituting in given equation, we have

2

1

x
x

x

e dA dB
e

dx dx e
 … (2)

Solving Equations (1) and (2), we have

2
2

1
x

x

dA
e

dx e

 i.e.,
1

x

x

dA e

dx e



or A =  ex log (1+ex)

and
1

x

x

dB e

dx e


 B =  log (1+ex)

 y = c
1
ex+c

2
ex+ex log (1+ex) ex log (1+ex) 1

To find one integral in cf by Inspection

It given equation is 
2

2

pdyd y
Qy R

dxdx
… (1.10)

(i) y = ex is a solution of  (1.10) if 1 + P + Q = 0

(ii) y = ex is a solution of  (1.10) if 1 P + Q = 0

(iii) y = emx is a solution of  (1.10) if m2 + Pm + Q = 0

(iv) y = x is a solution of (1.10) if P + Qx = 0

(v) y = xm is a solution of (1.10) if 2 + 2 Px+Qx2 = 0

(vi) y = x2 is a solution of (1) if m(m1) + pmx + Qx2 = 0
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Example 1.11: Solve 
2 2

2
2

xx d y dy
x y x e

dxdx
  by the method of variation of

parameters.

Solution: Given equation is 
2

2 2
2

xd y dy
x x y x e

dxdx


or
2

2 2

1 1 xd y dy
y e

x dxdx x
 … (1)

To find CF 
2

2 2

1
0

d y dy y

x dxdx x


Here P + Qx = 0

 y = x is a part of CF
Let y = vx

So that
dy dv

x v
dx dx

And
2 2

2 2
2

d y d y dv
x

dxdx dx

Putting in Equation (1) we have 
2

2

3
0

d v dv

x dxdx



2

2 3
d v

dx
dv x
dx



Integrating log 3log log
dv

x c
dx



3

dv c

dx x

Integrating 122

c
v c

x

 CF of the equation is 1 2

c
y vx c x

x


or 2
1

c
y c x

x

Now let 
B

y Ax
x

… (A)

be the complete positive of the given equation, where (A) and (B) are
function of x.
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
1dy dA dB

A B x
dx dx x dx



Now choosing A and B such that

1
0

dA dB
x

dx x dx

We have 2

dy B
A

dx x
    …(2)

and 
2

2 2 3

1 2d y dA dB
B

dB dxdx x x


Substituting in the given equation, we get

1 xdA dB
e

dB x dx
 …(3)

Solving Equations (2) and (3), we get

2

xdA e

dB
 12

xe
A c

and
21

2

dB
x ex

dx


 21

2
xB x e dx

2
2

1

2
x x xx e xe e c 

Substituting in (A)

2
1

1 1

2
x x xc

y c x xe e e
x x



2
1

1x xc
c x e e

x x


Example 1.12: Solve 
2

2 sec
x

d y
n y nx

dx

Solution: AE is m2 + n2 = 0 i.e., m = + 1 n

or CF = 1 2cos sinc nx c nx

where c
1 
and c

2
 are arbitrary constants

let y = Acosnx +B sin nx … (A) be the complete primitive of the given
equation  where A and B are function of x.
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sin cos cos sin
dy dA dB

An nx Bn nx nx nx
dx dx dx

Choose A and B such that

cos sin 0
dA dB

nx nx
dx dx

… (1)

we have 
dy

dx
 An cosnx +Bn sin nx


2

2 2
2

cos sin sin cos
d y dA dB

An nx Bn nx n nx n nx
dx dxdx

Substituting in the given equation we have

sin cos sec
dA dB

n nx n nx nx
dx dx

 … (2)

Solving Equations (1) and (2), we have

tan
dA

n nx
dx

  1
2

1
log cosnx cA

n

and 1
dB

n
dx

 2
x

B c
n

substituting the values in  A

1 2
2

1
cos sin cos log cos sin

x
y c nx c nx nx nx nx

n n

Example 1.13: By the method of variation of parameters,

solve

2
2 3

2
2 (1 ) 2( 1)

d y dy
x x x x y x

dxdx


Solution: Given equation is

2

2 2

2( 1)d y x dy x
y x

x dxdx x

 


Here
2 1 x

p
x

 , 2

2 1x
Q

x

or P + Qx= 0

 y = x is a part of C.F

Let y = vx so that 
dy dv

x v
dx dx
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and
2 2

2 2
2

d y d v dv
x

dxdx dx

substituting in 
2

2

2(1 ) 2( 1)
0

d y x dy x
y

dx x dx x
  (1)

we have 
2

2

2(1 ) 2 1
2 0

d v dv x dv x
x x v vx

dx dx x dx x


or
2

2

2
0

d v dv

dxdx


AE = m22m = 0 i.e., m = 0,2

 v = c
1 
+  c

2
e2x

and solution of Equation (1) is y = vx= c
1
x  + c

2
xe2x

Now let y = Ax + Bxe2x …(2)

Be the complete primitive of the given equation ,where A and B are function
of x

2 2 2( 2 )x x xdy dA dB
A B e xe x xe

dx dx dx

Now choosing A and B such that

2 0xdA dB
x xe

dx dx
…(3)


dy

dx
 A + B (e2x + 2xe2x)


2

2 2 2
2

A B
1 2 2B 2B 1 2x x xd y d d

e x e x e
dx dxdx

Substituting in the given equation, we have

2 2 2A B
(1 2 ) 2B 2B(1+2 )x x xd d

e x e x e
dx dx

2 2
2

1 1
2 A B 1 2 2 A Bx xx x

x e x x e x
x x

or
2A B

1 2xd d
e x x

dx dx
(4)

Solving Equations (3) and (4)

1
A 1

A
2 3

d x
c

dx

and
2 2

2
B 1 1

B = 
2 4

x xd
e e c

dx
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 Requird solution is y = c
1
x + c

2
xe2x

2

2 4

x x

Example 1.14: Apply the method of variation of parameters to solve the equation.

2

2
(1 ) (1 )

d y dy
x x y x

dxdx

Solution: Given equation can be written as

2

2

1
(1 )

1 1

d y x dy
y x

x dx xdx

Here P + Qx = 0  y = x is a part of C.F

Now to find the C.F of given equation, i.e., the solution of

2

2
0

1 1

d y x dy y

x dx xdx
(1)

Let y = vx then equation c
1 
reduces to

2

2

v 2 v
0

1

d x d

x x dxdx
Let P

dv

dx

or
P 2

P = 0
1

d x

dx x x

1 2
1 0

1

dP
P

dx x x

or
P 1 2

1
P 1

d
dx

x x

Integrating log P = x log (x-1) -2 log x+4 log c
1

or 1
2

( 1)
P = 

xc x edv

dx x

or dv = c
1 2

x xe e
dx

x x

Integrating  v = 1 2

x xe e
c dx dx

x x

1
2

xc
e c

x

 C.F of the given equation is y = vx

or y = c
1
ex + c

2
x

Now let y = Aex+ Bx be the complete soluation of the given equation where
A and B are functions of x
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A B
A B + x xdy d d

e e x
dx dx dx

Choose A and B such that,

A Bxdy
e

dx

and  
2

2

A B
Ax xd y d d

e e
dx dxdx

Substituting in the given equation, we have

A B
1x d d

e x
dx dx

Solving Equations (2) and (3) we have

A
1 1x d

x e x x
dx

or
A xd

xe
dx

or A = Cx x xxe dx xe e

and
B

1
d

x
dx

 = 1 x or 
B

1
d

dx

 2B =  + x c

 2
1 2 1xy c e c x x x

Example 1.15:  Solve 
2

2
2

(1 cos ) cot sin
d y dy

x y x x
dxdx

Solution: Here 1   P + Q = 0  y = e–x is a part of the C.F

Putting  y = ve x in the given equation.

2

2
(1 cot ) 0

d v dv
x

dxdx

or
P

(1 cot )P = 0 
d

x
dx

where P 
vd

dx

or
P

1 cos
P

d
x dx

i.e., log P = x+ log (sinx) + log c
1

or P 1 sinxdv
c e x

dx

i.e v 1 sinxc e x dx

1 2(sin cos )
2

xe
c x x c
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 C.F of the given equation = ve x
1

2sin cos
2

xc
x x c e

Let y = A [sinx   cosx] + Be x be the complete solution of the given equation
where A and B are functions of x.


dy

dx
 A (cosx + sinx)   Be x

A B
(sin cos ) xd d

x x e
dx dx

A and B are choosen such that
B

(sin cos ) 0xdA d
x x e

dx dx

 A(cos sin ) B xdy
x x e

dx

and
2

2
(cos sin ) ( sin cos )x xd y dA dB

x x e A x x Be
dx dxdx

Putting in the given equation, we have

2A B
(cos sin ) sinxd d

x x e x
dx dx

Solving Equations (1) and (2) we get

1
A 1 1

sin , A cos
2 2

d
x x c

dx

and 2B
sin cos sin

2

xd e
x x x

dx

i.e., 2
1

B (sin 2 1 cos 2 )
4

xe x x dx C

2
1 1

(sin 2 2cos 2 ) (cos 2 2sin 2 )
4 5 4 4 5

x x xe e e
x x x x c

2(3sin 2 cos 2 )
20 4

x xe e
x x c

 2
1

(sin cos ) (sin 2 2cos 2 )
10

xy a x x c e x x

Check Your Progress

1. Solve by the method of variation of parameter (b2 + 1) y = tan x

2. Solve by the method of variation of parameter (D2 + 1) y-sec x

3. Solve by the method of variation of parameter (D2-42) y = e2x

4. Solve by the method of variation of parameter (D2 – 3D + 2)y = sin x

5. Solve by the method of variation of parameter (D2 – 3D + 2)y = sec x tan x

6. Solve by the method of variation of parameter (D2 + 1)y = secxtanx

7. Solve by the method of variation of parameter (D2 + 9) y = sec 3x
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1.3 SIMULTANEOUS DIFFERENTIAL
EQUATION

An ordinary differential equation (ODE) is a relation that contains function of only
one indepnedent, and one or more of then derivin a

Methods of Solving Simultaneous Linear Differential Equations with
Constant Coefficients

In this section, we shall discuss two methods for solving the simultaneous linear
differential equation where x, y are two dependent variables and t is the independent
variable.

Using Operator D

Let the symbolic form of the equations be F
1
(D)x + F

2
(D)y = T

1
 … (1.11)

and 
1
(D)x + 

2
(D)y = T

2
  … (1.12)

where D denotes 
d

dt
. Also, TT

1
 and T

2
 are functions of independent variable

t and F
1
(D), F

2
(D), 

1
(D) and 

2
(D) are all rational integral functions of D with

constant coefficients.

Now, eliminate x from (1.11) and (1.12) by operating on both sides of
(1.11) by 

1
(D) and (1.12) by F

1
(D), we get F

1
(D)

1
(D)x + F

2
(D)

1
(D)y =


1
(D)T

1


1
(D)F

1
(D)x + 

2
(D)F

1
(D)y = F

1
(D)T

2

On subtracting these equations, we get

F
2
(D)

1
(D)y  

2
(D)F

1
(D)y = 

1
(D)T

1 
 F

1
(D)T

2

 g
1
(D) y = T (say)

which is a linear equation in y and t. This equation can be solved to get the
value of y.

Now, by putting this value of y in (1.11) or (1.12), we get the value of x.

Note: Similarly, we can also eliminate y and get a linear differential equation in x
and t which can be solved to get the value of x in terms of t. Further the value of
y can be obtained from (1.11) or (1.12) by putting the value of x.

Method of differentiation

Sometimes, by differentiating one of the equations (1.11) or (1.12) or both, we
can easily eliminate x or y. From resulting equation, after eliminating one dependent
variable, x or y can be solved to give the other dependent variable and then the
value of the other variable can be obtained by putting these values in equation
(1.11) or (1.12).

Example 1.16: Solve the simultaneous equations

4 3
dx

x y t
dt

    and 2 5 tdy
x y e

dt
  
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Solution: The given equations are 4 3
dx

x y t
dt

   … (1)

and 2 5 tdy
x y e

dt
   … (2)

By putting
d

dt
= D in equations (1) and (2), we get

 D 4 3x y t   ... (3)

and  2 D 5 tx y e   ...(4)

Eliminating y, we get     D 4 D 5 6 D 5 3 tx t e        

  2D 9D 14 1 5 3 tx t e     .

 Its A.E. is 2D 9D 14 0    D 2, 7  

 C.F. = 2 7
1 2

t tc e c e 

 P.I.  2 2

1 1
. 1 5 .3

14 9D D 14 9D D
tt e  

   

        
1

21 9 1 3
1 D D . 1 5

14 14 14 14 9 1

te
t


         

        1 9 1
1 D ... 1 5

14 14 8
tt e

      
 

       
1 9 1 1 31 1

1 5 .5 5
14 14 8 14 14 8

t tt e t e
            
   

  2 7
1 2

5 1 31

14 8 196
t t tx c e c e t e     

   2 7
1 2

5 1
2 7

14 8
t t tdx

c e c e e
dt

     

By putting the values of x and 
dx

dt
in equation (1), we get

   3y 2 7
1 2

10 5 31 1 1
2 3

7 14 49 8 2
t t t tc e c e t t e e         

  2 7
1 2

1 3 27 5
2 3

3 7 98 8
t t ty c e c e t e         

and      2 2
1 2

5 31 1

14 196 8
t t tx c e c e t e      .

Example 1.17: Solve the simultaneous equations

2 2 2 3 tdx dy
x y e

dt dt
     and 23 2 4 tdx dy

x y e
dt dt

   



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
26 Material

Solution: The given equations are 2 2 2 3 tdx dy
x y e

dt dt
     … (1)

and 23 2 4 tdx dy
x y e

dt dt
    … (2)

By putting D
d

dt
  in the equations (1) and (2), we get

D 2D 2 2 3 tx y x y e   

 (D 2) 2(D 1) 3 tx y e    … (3)

and 2(3D 2) (D 1) 4 tx y e    … (4)

To eliminate y from Equations (3) and (4), multiply Equation (4) by 2 and subtract
from Equation (3).

2(D 2) 2(D 1) 2(3D 2) 2(D 1) 3 8t tx y x y e e        

   2D 2 6D 4 3 8t tx e e    

 2( 5D 6) 3 8t tx e e   

 2(5D 6) 8 3t tx e e    26 8 3

5 5 5
t tdx

x e e
dt

                          … (5)

which is a linear differential equation of the form P Q
dx

x
dt

 

where 26 8 3
P and Q

5 5 5
t te e  

 I.F. = 
6 6

P
5 5

dt tdt
e e e  

Thus, the solution of Equation (5) is
6 6

25 5
1

8 3

5 5

t tt tx e e e e dt c
        

  



6 16 11

5 5 5
1

8 3

5 5

t t t
xe e e dt c

 
   

 
  

16 11

5 5
1

8 5 3 5

5 16 5 11

t t
e e c  


6 16 11 6

5 5 5 5
1

1 3

2 11

t t t t
x e e e c e

  
   

 


6

2 5
1

1 3

2 11

tt tx e e c e


   … (6)

 
6

2 5
1

1 3 6
(2)

2 11 5

tt tdx
e e c e

dt

     
 

… (7)

From Equation (1), 2 2 2 3 tdx dy
x y e

dt dt
   

Using Equations (6) and (7), we get
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6 6
2 25 5

1 1

3 6 1 3
2 2 2 3

11 5 2 11

t tt t t t tdy
e e c e e e c e y e

dt

  
        

 


6

5
1

30 16
2 2

11 5

t
tdy

y e c e
dt


     

6

5
1

15 8

11 5

t
tdy

y e c e
dt


   … (8)

which is a linear differential equation.

1
I.F.

dt te e 

Thus the solution of Equation (8) is

                   
6

5
1 2

15 8

11 5

tt t tye e c e e dt c
 

   
 


 
1

2 5
1 2

15 8

11 5

tte c e dt c
 

   
 
  

1
2 5

1 2

15
8

22

tte c e c


  


6

5
1 2

15
8

22

tt ty e c e c e
   

Hence the required solutions of given equations are

6
2 5

1

1 3

2 11

tt tx e e c e


   ; 
6

5
1 2

15
8

22

tt ty e c e c e
   

Example 1.18: Solve the simultaneous equations 0, 0
dx dy

t y t x
dt dt

   

given that x(1) = 1,  y(–1) = 0.

Solution: The given equations are 0
dx

t y
dt

  … (1)

and 0
dy

t x
dt

  … (2)

Differentiating Equation (1) with respect to t, we have
2

2
0

d x dx dy
t

dt dt dt
  

Multiplying by t, we get 
2

2
2

0
d x dx dy

t t t
dt dt dt

   … (3)

Subtracting Equation (2) from (3), we get
2

2
2

0
d x dx

t t x
dt dt

   … (4)

which is an homogeneous linear equation.

Put t = ez  log t = z

 D
d d

t
dt dz

   and 
2

2

2
D(D 1)

d
t

dt
 

 Equation (4) becomes  [D(D 1) (D 1)] 0x   

 2[D 1] 0x 
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 Its A.E. is D 2  1 = 0   D2 = 1  D = 1

Thus the solution is 1 2
z zx c e c e 

 1 2
1 2 1

c
x c t c t c t

t
    … (5)

Differentiating Equation (5) with respect to t, we get 2
1 2

cdx
c

dt t
 

By putting this value of 
dx

dt
 in Equation (1), we get  2

1 2
0

c
t c y

t
     

 2
1 0

c
c t y

t
    2

1

c
y c t

t
   … (6)

Given, x(1) = 1; y(1) = 0
Putting t = 1, x = 1 in Equation (5), we have 1 = c

1
 + c

2
… (7)

Putting t = 1, y = 0 in Equation (6), we have 0 = c
1
  c

2
… (8)

Solving Equations (7) and (8), we get 1 2

1

2
c c 

Thus, the required solutions are
1 1 1 1

;
2 2

x t y t
t t

          
   

.

1.3.1 Simultaneous Equations in a Different Form

If the equations are given in the form P
1
dx + Q

1
dy + R

1
dz = 0

… (1.13)

and P
2
dx + Q

2
dy + R

2
dz = 0   … (1.14)

where P
1
, P

2
, Q

1
, Q

2
, R

1
, R

2
 are all function of x, y, z.

Dividing Equations (1.13) and (1.14) by dz, we get

1 1 1P Q R 0
dydx

dz dz
    … (1.15)

and 2 2 2P Q R 0
dydx

dz dz
   … (1.16)

Solving Equations (1.15) and (1.16), by cross-multiplication method, we
get

1 2 2 1 1 2 2 1 1 2 2 1

1

Q R Q R R P R P P Q P Q

dydx

dz dz 
  


1 2 2 1 1 2 2 1 1 2 2 1Q R Q R R P R P P Q P Q

dydx dz
 

  

which is of the form P Q R

dydx dz
  … (1.17)

where P, Q, R  are functions of x, y and z.

Thus, simultaneous Equation of the type (1.13) and (1.14) can always be
put in the form Equation (1.15).



Homogenous Linear
Equations and Total

Differential Equations

NOTES

Self - Learning
Material 29

Methods for solving the equation
P Q R

dx dy dz
 

First method: Let the multipliers l, m, n be such that

P Q R P Q R

dy ldx mdy ndzdx dz

l m n

 
  

 

Choose l, m, n such that lP + mQ + nR = 0, and hence ldx + mdy + ndz = 0

If it is an exact differential equation say du, then on integrating, we get, one
part of the complete solution of Equation (1.15).

Again, if we choose another set of multipliers , ,l m n   such that

'P 'Q 'R 0l m n    we get ' ' ' 0l dx m dy n dz  

Then, on integration, it will give another equation. The two equations thus
obtained by using two sets of multipliers will form the complete solutions of given
simultaneous equations.

Note: Sometimes it may also happen that we choose multipliers l, m, n such that

ldx mdy ndz

lP mQ nR

 
   is of the form that numerator is the exact differential coefficient of

the denominator.

Second method: The given equations are P Q R

dydx dz
   … (1.18)

First take any two members of P Q

dydx
 (say) and integrate it to get one of

the equation of the complete solution.

Again, take other two members 
Q R

dy dz
 (say) and integrate it also to get

another equation of the complete solution. These two equations so obtained form
the complete solution.

Example 1.19: Solve the simultaneous equations
1cos( ) sin( )

dx dy dz

x y x y z
z

 
  

.

Solution: The given equations are 
1cos( ) sin( )

dx dy dz

x y x y z
z

 
  

… (1)

Choosing 1, 1, 0 as multipliers, we get

1cos( ) sin( )

dx dy dz

x y x y z
z

 
   cos( ) sin( )

dx dy

x y x y




  


2 1 sin( ) cos( )

zdz dx dy

z x y x y




   

 2

2 ( )

2( 1)
2 sin

4

zdz d x y

z
x y




    
 



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
30 Material

 2

1 2
cosec ( ) ( )

1 42

zdz
x y d x y

z

            
Integrating both sides, we get

2
1

1 1
log( 1) log tan ( ) log

2 42
z x y c

      
 

 2 1/ 2
1log( 1) log tan log

2 8

x y
z c

      
 

 

2 1/ 2

1

( 1)
log log

tan
2 8

z
c

x y



   

 


2 1 / 2

1

( 1)

tan
2 8

z
c

x y




   
 

  … (2)

Now, choosing 1, 1, 0 and 1, 1, 0 as multipliers in Equation (1), we get

cos( ) sin( ) cos( ) sin( )

dx dy dx dy

x y x y x y x y

 


     


 cos( ) sin( )

( )
cos( ) sin( )

x y x y
dx dy dx dy

x y x y

  
  

  


 cos( ) sin( )

( ) ( )
sin( ) cos( )

x y x y
d x y d x y

x y x y

  
  

  

Integrating both sides, we have 
2log sin( ) cos( ) logx y x y x y c      


2log sin( ) cos( ) ( ) logx y x y y x c      


2log sin( ) cos( ) logy xx y x y e c     


2sin( ) cos( ) y xx y x y e c      … (3)

Thus, Equations (2) and (3) together form the complete solution of the
given equations.

Example 1.20: Solve the simultaneous equations
2 22

xdx dy dz

z yz y y z y z
 

   
.

Solution: The given equations are 
2 22

xdx dy dz

z yz y y z y z
 

   
… (1)

Choosing Equation (1), y, z as multipliers, we get

     2 22

xdx dy dz

z yz y y z y z
 

   

2 22 ( ) ( )

xdx ydy zdz

z yz y y y z z y z

 


      0

xdx ydy zdz 


     xdx + ydy + zdz = 0

Integrating both sides, we get
2 2 2

1

2 2 2 2

cx y z
   , where c

1
 is any arbitrary

constant.
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 x2 + y2 + z2 = c
1

 … (2)

From last two fractions of Equation (1), we have 
dy dz

y z y z


 

 (y  z) dy = (y + z) dz  ydy  (zdy + ydz)  zdz = 0

Integrating both sides, we get 
2 2

2

2 2 2

cy z
yz   , where c

2
 is any arbitrary

constant.

  y2  2yz  z2 = c
2

… (3)

Thus, equations (2) and (3) together form the complete solution of the given
equations.

Example 1.21: Solve
dx dy dz

y z z x x y
 

  
.

Solution: The given equations are 
dx dy dz

y z z x x y
 

  
            … (1)

From Equation (1), we have

 2

dx dy dy dz dx dy dz

y x z y x y z

   
 

   

Choosing the first two members, we have 
dx dy dy dz

y x z y

 


 

On integrating both sides, we get     1log log logy x z y c   

 1

y x
c

z y





  1( )x y c y z      … (2)

Again choosing the first and the last members, we have

    2

1
log log log

2
x y x y z c     

    2

2x y x y z c       …(3)

Thus, equations (2) and (3) together form the complete solution of the given
equations.

1.4 TOTAL DIFFERENTIAL EQUATION

Let a relation be f(x, y, z) = c where x, y, z are variables and c is a constant.

Differentiating this relation, we get

0df  Or 0
f f f

dx dy dz
x y z

  
  

   …(1.19)

The general form of the Equation (1.19) in three variables can be written as

Pdx + Qdy + Rdz = 0 …(1.20)

where P, Q and R are functions of x, y and z, respectively.
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The equations of the form Equation (1.20) are known as the total differential
equations or the single equations in three variables x, y, z.

Also, the equations of the form P
1
dx

1
 + P

2
dx

2
 + P

3
dx

3
 + … + P

n
dx

n 
= 0

where P
1
, P

2
, P

3
, …, P

n 
are functions of x

1
, x

2
, x

3
, …, x

n
, respectively are

known as the total differential equations in n variables.

1.4.1 Condition for Integrability

Theorem 1.1: The necessary and the sufficient condition for the integrability of
the total differential equation Pdx + Qdy + Rdz = 0 is

Q R R P P Q
P Q R 0

z y x z y x

                           
.

Proof: Necessary Condition:

The given total differential equation is Pdx + Qdy + Rdz = 0 …(1.21)

Let the integral of equation Equation (1.21) be f(x, y, z) = c.

So, we have 0
f f f

dx dy dz
x y z

  
  

   …(1.22)

Comparing Equation (1.21) and (1.22), we get 
P Q R

ff f
yx z

 
      (say)

 P, Q, R
f f f

x y z

  
     

  

As
f f

y x x y

               
,

2 2f f

y x x y

  
     



    P Q
y x

 
  

 


P Q

+P +Q
y y x x

   
  
   

   
P Q

Q P
y x x y

   
    
      

P Q
Q P

y x x y

    
        

…(1.23)

Similarly, we can get

Q R
R Q

z y y z

    
        

  …(1.24)

And R P
P R

x z z x

            
          …(1.25)

 Multiplying the Equations (1.23), (1.24) and (1.25) by R, P and Q,
respectively and then adding we get

P Q Q R R P
R P Q 0

y x z y x z

                                
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
Q R R P P Q

P Q + R 0
z y x z y x

                          
…(1.26)

which is the necessary condition for the Equation (1.26) to possess an
integral Equation (1.22).

This condition can also be written as 
P Q R

P Q R 0

x y z


  
  

Sufficient Condition

Let the coefficients P, Q and R of the Equation (1.21) satisfy the condition (1.26).

Consider the equation Pdx + Qdy = 0 where P and Q are the functions of
x and y, respectively.

If this equation is not an exact differential equation, then we can found an
integrating factor , by which the equation can be multiplied to make the equation
exact.

Now, we have Pdx + Qdy = dV

 Pdx + Qdy = 
V V

dx dy
x y

 


 

 P = 
V

x




 and Q = 
V

y





2P V

z z x

 


  
 and 

2Q V

z z y

 


  

Also,
2P V

y y x

 


    and 
2Q V

x x y

 


  


P Q

y x

 


    
2 2V V

y x x y

  
     



Substituting the above values in Equation (1.26), we get

2 2V V R V R V Q Q
+ R 0

x z y y y x z x x x

                                 


2 2V V R V R V

0
x z y y y x z x

        
                


V V V V

. R . R 0
x y z y x z

                      

which implies that there exists a relation independent of x and y between V

and 1

V
R R

z

    
. Thus, R

1
 can be expressed as a function of z and V..
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 1 1

V V
R R R = R

z z

 
   

 

Now, Pdx + Qdy + Rdz = 1

V V V
Rdx dy dz

x y z

         

                                      = 1V Rd dz

                                     =  V ( ,V)d f z dz

[ R
1
 is a function of z and V.]

Thus, the Equation (1.21) reduces to V ( ,V)d f z dz  = 0.

Since this is an equation in two variables (z , V) and the solution is of the
form f(z, V) = 0, thus the condition is sufficient.

Condition to be Satisfied for Exactness

The conditions for the differential equation to be exact are

P Q Q R R P
, ,

y x z y x z

     
  

     

1.4.2 Methods to Solve Total Differential Equations

Inspection method

In this method, first check if 
Q R R P P Q

P Q +R 0
z y x z y x

                          
 to

see whether the condition for integrability is satisfied and then rearrange the terms
to make the equation exact. Finally, find the solution.

Example 1.22: Solve the differential equation

     2 2 2 23 2 2 3 0x xy y z dx x xy y z dy x y dz         

Solution: The given differential equation is

          2 2 2 23 2 2 3 0x xy y z dx x xy y z dy x y dz          …(1)

Comparing Equation (1) with Pdx + Qdy + Rdz = 0, we get

P = 2 23 2x xy y z   , Q = 2 22 3x xy y z    and R = x y

           
P

y




 2x – 2y, 
Q

x





2x – 2y, 

Q

z





 1, 

R

y




 1, 
R

x





1 and

P

z





1

Putting these values in 
Q R R P P Q

P Q +R
z y x z y x

                         
, we get

 2 23 2x xy y z   (1 – 1) +  2 22 3x xy y z   (1 – 1) +  x y

       {(2x – 2y) –(2x – 2y)}= 0

 The condition of integrability is satisfied.

Now, Equation (1) can be written as
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     2 2 2 23 3 2 2x dx y dy xydx x dy y dx xydy         0zd x y x y dz    

  3 3 2 2{ } 0d x y x y xy z x y     

Integrating, we get  3 3 2 2x y x y xy z x y c     

which is the solution of the given equation.

Example 1.23:  Solve the differential equation log log 0yz z dx zx z dy xy dz   .

Solution: The given differential equation is

log log 0yz z dx zx z dy xy dz    ...(1)

Comparing Equation (1) with P Q R 0dx dy dz   , we get

P log ,Q logyz z zx z    and R xy


P

log ,z z
y





Q

log ,z z
x


 


Q

logx z x
z


  


, R

x
y





, R

y
x






    and     
P

logy z y
z


 



Putting these values in
Q R R P P Q

P Q R
z y x z y x

                          
, we get

      log log log log log logyz z x z x x zx z y y z y xy z z z z       

   log log 2 log log 2 logxyz z z xyz z z xyz z      0
The condition of integrability is satisfied.

Dividing Equation (1) by logxyz z , we get

0
log

dx dy dz

x y z z
  

Integrating, we get log log log log logx y z c  


log

log log
x z

c
y



 logx z
c

y
  logx z cy

which is the solution of the given equation.

Taking one variable as constant from three variables

Step 1: Check if 
Q R R P P Q

P Q + R 0
z y x z y x

                          
 to see whether

the condition for integrability is satisfied.

Step 2: Take one variable z (say) as constant out of three variables in Pdx + Qdy
+ Rdz = 0 and differentiate it to get dz = 0.

Step 3: Let the solution of Pdx + Qdy = 0 be u = f(z), where f(z) is a function of
z and considered as constant with respect to variables x and y.
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Step 4: Differentiate u = f(z).

Step 5: Compare the result obtained in Step 4 with Pdx + Qdy + Rdz = 0.

Step 6: Eliminate the functions of x and y if the coefficients of df or dz contain

functions of x and y. Thus, we obtain 
f

z




 which is independent of x and y.

Step 7: Integrate to obtain f, which is the solution of the given equation.

Example 1.24: Solve the total differential equation

     2 1 0yz dx zx dy xy z dz    .

Solution: The given differential equation is

 2 1 0yz dx zx dy xy z dz    …(1)

Comparing Equation (1) with P Q R 0dx dy dz   , we get

     P 2 ,Qyz zx   and R  1xy z  


P

2 ,z
y





Q

,z
x





Q

x
z





,

R
x xz

y


  

 ,
R

y yz
x


  


and 

P
2y

z






Putting these values in Q R R P P Q
P Q + R

z y x z y x

                         
,

we get

      2 2 1 2yz x x xz zx y yz y xy z z z        

               2 2 3yz x xz zx y yz xy xyz z      

         2 2 24 2 3xyz xyz xyz xyz xyz xyz      = 0

 The condition of integrability is satisfied.

Taking z as constant  dz = 0

Now, Equation (1) can be written as

2 0yz dx zx dy   2 0y dx x dy 

Dividing both sides by xy, we get 2 0
dx dy

x y
 

Integrating, we get

2log logx y   constant which contains terms of z

  2log log logx y z  

  2log logx y z    2x y z   ...(2)

Differentiating it, we get

 22 'xy dx x dy z dz     22 ' 0xy dx x dy z dz   

Multiplying both sides by ,
z

x
 we get

 2 ' 0
z

yz dx xz dy z dz
x

    ...(3)
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Comparing Equations (1) and (3), we get

   ' 1
z

z xy z
x
  

   2 1
'

z
z x y

z

    
 

   1
' ( )

z
z z

z

     
 

[From Equation (2)]


 
 
' 1

1
z

z z

      

Integrating, we get  log log logz z z c   

  log log log logzz z e c   

   zz cze   2 zx y cze

which is the solution of the equation.

Homogeneous Equations

Step 1: Check if 
Q R R P P Q

P Q + R 0
z y x z y x

                          
 to see whether

the condition for integrability is satisfied.

Step 2: If in the total differential equation Pdx + Qdy + Rdz = 0, the P, Q and R
are homogeneous functions of x, y and z, then separate one variable z (say) from
the other two variables by putting x = uz and y = vz, i.e., dx = zdu + udz and dy
= zdv + vdz.

Step 3: Integrate the reduced equation to find the solution of the given equation.

Example 1.25: Solve the total differential

equation       0yz y z dx zx x z dy xy x y dz      .

Solution: The given differential equation is

                 0yz y z dx zx x z dy xy x y dz     

      2 2 2 2 2 2 0y z yz dx x z xz dy x y xy dz      …(1)

Comparing Equation (1) with P Q R 0dx dy dz   , we get

2 2 2 2P = , Qy z yz x z xz    and 2 2R x y xy 


2P

2 ,yz z
y


 


2Q

2 ,xz z
x


 



2Q
2x xz

z


 


,

2R
2x xy

y


 

 , 2R
2xy y

x


 



and 2P
2y yz

z


 


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Putting these values in 
Q R R P P Q

P Q + R
z y x z y x

                         
,

   we get

     2 2 2 2 2 2 2 22 2 2 2y z yz x xz x xy x z xz xy y y yz        

   2 2 2 22 2x y xy yz z xz z    

           2 2 2 2 2 22 2 2 2 2 2y z yz xz xy x z xz xy yz x y xy yz xz        

2 2 3 3 2 2 3 2 22 2 2 2 2 2xy z xyz xy z xy z x yz x yz     

2 2 3 2 2 32 2 2 2x yz xyz x y z xy z    3 2 22 2x yz x y z  = 0

 The condition of integrability is satisfied.

The equation is homogeneous function in x, y and z.

Taking x uz  and y vz

 dx z du u dz   and dy z dv v dz 

Putting these values in Equation (1), we get

         3 3 31 1 0v v z z du u dz u u z z dv v dz uvz u v dz       

        1 1 0v v z du u dz u u z dv v dz uv u v dz       

      1 1 2 1 0v v z du u u z dv uv u v dz      

Dividing by  1uv u v z  , we get

   
1 1

2 0
1 1

v u dz
du dv

u u v v u v z

 
  

   


 
 

 
 

1 1
2 0

1 1

u v u u v v dz
du dv

u u v v u v z

     
  

   


1 1 1 1

2 0
1 1

dz
du dv

u u v v u v z
                

 2 0
1

du dv du dv dz

u v u v z

       

Integrating, we get  log log log 1 2log logu v u v z c     

   2log log log 1 log logu v u v z c     


2

log log
1

uvz
c

u v


 

  2 1uvz c u v  

 2. . 1
x y x y

z c
z z z z

    
 

  xyz c x y z  

which is the solution of the given equation.
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Auxiliary Equation

This method is used in case when the differential equation Pdx + Qdy + Rdz = 0
is not exact and the methods discussed above are not convenient.

Step 1: Check if 
Q R R P P Q

P Q + R 0
z y x z y x

                          
 …(1.27)

 to see whether the condition for integrability is satisfied.

Step 2: Compare Equation (1.27) with Pdx + Qdy + Rdz = 0 to obtain the

auxiliary equations   Q R R P P Q
dx dy dz

z y x z y x

 
       
     

Step 3: Solve the auxiliary equation obtained in Step 2 just like simultaneous
equations.

Step 4: Let the integrals of the auxiliary equations be u = a and v = b.

Step 5: Compare Adu + Bdv = 0 with the given differential equation to find the
values of A and B.

Step 6: Put the values of A and B in Adu + Bdv = 0.

Step 7: Integrate the equation obtained in Step 6 to find the solution of the given
equation.

Example 1.26: Solve the differential

equation       0z z y dx z x zdy x x y dz     

Solution: The given differential equation is

      0z z y dx z x zdy x x y dz       ...(1)

Comparing Equation (1) with P Q R 0dx dy dz   , we get

    2 2P , Qz z y z zy z x z z xz         and   2R x x y x xy   


P

,z
y


 


Q

,z
x





Q

2z x
z


 


,

R
x

y




 ,
R

2x y
x


 


and 

P
2z y

z


 



Putting these values in 
Q R R P P Q

P Q +R
z y x z y x

                         
, we get   …(2)

           2 2 22 2 2z zy z x x z xz x y z y x xy z z           

        2 2 22 2 2 2 2z zy z z xz x y z x xy z       

2 2 2 22z z yz x z xy yz x xy          = 0

 The condition of integrability is satisified.

Comparing Equation (2) with P Q R 0dx dy dz   , we get

Q R R P P Q
dx dy dz

z y x z y x

 
       
     
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 2 2 2 2 2

dx dy dz

z x y z z
 

  


dx dy dz

z x y z z
 

     …(3)

From first and last members, we get 
dx dz

z z



  0dx dz 
Integrating, we get x z u 

From Equation (3),
dx dy dz

x y z




 

Integrating, we get  log logx y z   constant

  log logx y z v 

  x y z v 

If A B 0du dv  is identical with Equation (1), then

       A B 0dx dz x y dz dx dy z          is identical with Equation (1)

     A B B A B 0z dx z dy x y dz         is identical with Equation (1)

Comparing it with Equation (1), we get

      A Bz z x y   ,  Bz z x z   and    A B x y x x y   

      B z x u    and

        A Bx y x     x y x z x     x y z v    

By putting the value of A, B in A B 0du dv  , we get

    0v du u dv    0
du dv

u v
  

Integrating, we get
log log logu v c  

 log log
v

c
u


  
v

c
u
  v cu     x y z c x z  

which is the solution of the given equation.

1.4.3 Solution of Exact and Homogeneous Total
Differential Equations

Theorem 1.2: The solution of the total differential equation Pdx + Qdy +
Rdz = 0 when it is exact and homogeneous of degree n  –1 is xP + yQ + zR = c.

Proof: Consider the total differential equation

Pdx + Qdy + Rdz = 0  …(1.28)

where coefficients P, Q and R are homogeneous functions of x, y and z of
degree n  –1.
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Now,

P P P
P

Q Q Q
Q

R R R
R

x y z n
x y z

x y z n
x y z

x y z n
x y z

  
      

  
      

  
   

   

…(1.29)

[By Euler’s Theorem]

Suppose the solution of equation (1.28) is given by

xP + yQ + zR = c …(1.30)

Differentiating Equation (1.30), we get

P Q R P Q R P Q R
P + Q R 0x y z dx x y z dy x y z dz

x x x y y y z z z

                                      
…(1.31)

As equation (1.28) is exact, so the conditions for exactness must be satisfied,
i.e.,

 
P Q Q R R P

, ,
y x z y x z

     
  

     

Putting these values in equation (1.31), we get

P P P Q Q Q R R R
P + Q R 0x y z dx x y z dy x y z dz

x y z x y z x y z

             
                            

      P + P Q Q R R 0n dx n dy n dz     [Using Equation (1.29)]

  1 (P Q R ) 0n dx dy dz     P Q R 0dx dy dz  

So, the assumption is true and hence the solution of the Equation (1.28) is
xP + yQ + zR = c.

Example 1.27: Solve the differential equation

                                2 2 2 2 2 22 2 2 2 ( 2 2 ) 0y z xy xz dx x z xy yz dy x y xz yz dz           

Solution: The given differential equation is

   2 2 2 2 2 22 2 2 2 ( 2 2 ) 0y z xy xz dx x z xy yz dy x y xz yz dz             …(1)

Comparing Equation (1) with P Q R 0dx dy dz   , we get

2 2 2 2P 2 2 , Q 2 2y z xy xz x z xy yz         and
2 2R 2 2x y xz yz   


P

2 2 ,y x
y


 


Q

2 2 ,y x
x


 


Q

2 2z y
z


 


,

R
2 2z y

y


 

 ,

            
R

2 2x z
x


 


and 

P
2 2x z

z


 


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 The given equation is exact and P, Q and R are homogeneous functions in x,
y and z.

The solution of the given equation is xP + yQ + zR = c

     2 2 2 2 2 22 2 2 2 ( 2 2 )x y z xy xz y x z xy yz z x y xz yz c           

 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2xy xz x y x z x y z y xy y z x z y z xz yz c           

 2 2 2 2 2 23 3 3 3 3 3xy xz x y x z y z yz c     

 2 2 2 2 2 2
1xy xz x y x z y z yz c     

 2 2 2 2 2 2
1( ) ( ) ( )x y z y x z z x y c     

which is the solution of the given equation.

Check Your Progress

8. 7 0
dx

x y
dt

    and 2 5 0
dy

x y
dt

   .

9. 5 tdx
x y e

dt
    and  23 tdy

x y e
dt

  

10. 2 , 2 , 2
dx dy dz

y z x
dt dt dt

   .

11. ( ) ( ) ( )

adx bdy cdz

b c yz c a zx a b xy
 

  

12. 3 4 4 3 3 32 2 9 ( )

dx dy dz

y x x y x y z x y
 

  

13. ( )

dx dy dz

x y x y z
 

  

14. 2 2 2 2 2

dx dy dz

y x x y z
 

15. Solve the following differential equations by the inspection method:

(a)       0yz xyz dx zx xyz dy xy xyz dz     

(b)    2 21 0z z dx zdy x y xz dz      .

16. Solve the differential equation  2 2 3 3 23 3 0zx dx y dy x y e dz     by
regarding one variable as constant.

1.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. y = c
1
cosx + c

2
 sin x – cosx log (secx + tanx)

2. y = c
1
cosx + c

2
 sin x + x sin - x + cosx log(cosx)

3. – y = c
1
e2x + c

2
e-2x + e2x-

4. y = c
1
cosx + c

2
 sin x-cosx + sin x
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5. y = c
1
ex + c

2
e2x + (3 cosx + sin x)

6. y = c
1
cosx + c

2
sin x + xcosx + sin x log(sec x) – sin x

7. y = c
1
cos 3x + c

2
 sin 3x + cos 3x log (cos 3x ) + sin 3x

8. 6
1 2( cos sin )tx e c t c t  ; y 6

1 2 1 2[( )cos ( )sin ]te c c t c c t   

9. x = (c
1 
+ c

2
t)e4 + 

24

25 36

t
t e

e  ;    4 2
1 2

1 7
1

25 36
t t ty c c t e e e     

10. 2
1 2 3cos( 3 )t tx c e c e t c   ;

2
1 2 3

2
cos 3

3
t ty c e c e t c      

 
and

2
1 2 3cos 3

3
t tz c e c e t c      

 

15. (a)  log xyz x y z c     (b) 
x y

xz c
z


 

16. 3 3 2z zx y e ce  

1.6 SUMMARY

 Any homogeneous differential equation of the from.
1 2

2
1 2 ......

1 2

 


  


n n n
n n n

n zn n n

d y d y d y
x p x p x p y

dx dx dx
 = 

is called a homogeneous linear differential equation of nth order, where p
1
,

p
2 
- p

n 
are caustants and Q is a function of x .

 Homogeneous linear differential equation is reducible to linear differntial
equation with constant  coefficient by subsituation

log 

1

  



zx e z x

dz
or

dn x
 A differential equation of the form

2

1 22
0

d y dy
a x a x y

dxdx

Is said to be linear homogeneous differential equation with variable
coefficients where a

1
 (x) and a

2
 (x) are continuous function in the interval

[a, b].

 For second order homogeneous  differential equation there is no general
method for finding  a particular solution.

 The equation P Q R

dydx dz
  can be solved by using two sets of multipliers to

get the complete solutions. This equation can also be solved by taking any



Homogenous Linear
Equations and Total
Differential Equations

NOTES

Self - Learning
44 Material

two members and then integrating them. Again we need to take other two
members and integrate. These two equations are thus obtained form the
complete solution.

 x or y can also be eliminated by differentiating one of the given equations or
both. Then, we can solve the resulting equation to get other variables.

 Simultaneous equations of the type 1 1 1P Q R 0
dydx

dz dz
    and

2 2 2P Q R 0
dydx

dz dz
    can always be put in the form P Q R

dydx dz
  , where

P, Q, R are functions of x, y and z.

 By eliminating x, we can get a linear differential equation in y and t which
when solved gives the value of y in terms of t. Further, the value of y can be
obtained by putting the value of x in the given equation.

 We need as many numbers of simultaneous differential equations as are the
number of dependent variables to solve such type of equation.

 The solution of the total differential equation Pdx + Qdy + Rdz = 0, which
is exact and homogeneous of degree n  –1, is xP + yQ + zR = c.

 There are various methods to solve total differential equations, such as
inspection method, taking one variable as constant out of three variables in
Pdx + Qdy + Rdz = 0, in case of homogeneous equations and auxiliary
equations. In all these methods, first of all we need to verify the condition of
integrability and then follow the steps specific to each method.

 The conditions for the differential equation to be exact are

P Q Q R R P
, ,

y x z y x z

     
  

      .

 The necessary and the sufficient condition for the integrability of the total
differential equation Pdx + Qdy + Rdz = 0 is

Q R R P P Q
P Q R 0

z y x z y x

                           
.

1.7 KEY TERMS

 Homogeneous linear equation: Any homogeneous differential equation
of the from.

1 2
2

1 2 ......
1 2

 


  


n n n
n n n

n zn n n

d y d y d y
x p x p x p y

dx dx dx
 = 

is called a homogeneous linear differential equation of nth order, where p
1
,

p
2 
- p

n 
are caustants and Q is a function of x .

 Linear differential equation: It is a differential equation in which the
dependent variable and all its derivatives appear only in the first degree and
are not multiplied together.
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 Total differential equations in n variables: The equations of the form
P

1
dx

1
 + P

2
dx

2
 + P

3
dx

3
 + … + P

n
dx

n
 = 0, where P

1
, P

2
, P

3
, …, P

n
 are

functions of x
1
, x

2
, x

3
, …, x

n
, respectively, are known as the total differential

equations in n variables.

 Total differential equations: The equations of the form Pdx + Qdy +
Rdz = 0, where P, Q and R are functions of x, y and z, respectively, are
known as the total differential equations or the single equations in three
variables x, y, z.

1.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is homogeneous linear equation?

2. Give the solution of homogeneous linear equation.

3. Define the method of variation of parameters.

4. Solve the following differential equations by the homogeneous equation
method.

(i)      2 22 2 0xz yz dx yz xz dy x xy y dz      

(ii)      2 3 2 2 2 3 2 2 0x y y y z dx xy x z x dy xy x y dz       

(iii)      2 2 2 2 2 2 0yz x yz dx zx y zx dy xy z xy dz     

(iv)    2 2 22 2 0z dx z yz dy y yz xz dz     

(v)        2 2 2 2 22 2 0z xy y zdx z x xy zdy x y xy z dz        

5. Solve the following differential equations by taking one variable as constant
from the three variables method:

(i)    2 2 0yzdx x y zx dy x z xy dz    

(ii)      2 2 2 0y yz dx xz z dy y xy dz     

(iii)      2 2 2 2 0z x yz z dx x z dy x z x xy dz       

(iv)             0y b z c dx x a z c dy x a y b dz        

(v)       0x z y x y x ye y e dx e z e dy e e y e z dz      

5. Solve the following differential equations by the inspection method:

(i)      2 2 2 0yz x dx zx z dy xy y dz     

(ii)  2 2 2 2 2 0y z x dx xy dy xz dz    

(iii)      2 2 2 2 2 2 0x y a dx y x z dy z y a dz     
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(iv)      2 3 2 2 2 3 2 2 0x y y y z dx xy x z x dy xy x y dz       

(v)        2 2 2 2 2 21 0
dy dz

y z x y z dx x y z xy xz x dy dz
y z

 
        

 

Long-Answer Questions

1. Discuss briefly about the homogeneous linear equation with the help of
giving examples.

2. Solve the following simultaneous equations:

(i) 3 2 ; 5 3 0
dx dy

x y x y
dt dt

    

(ii)
22

2 2
2 cos ; 2 sint tdy d yd x dx

x e t y e t
dt dtdt dt

     

(iii) ; ' '
dx dy

ax by a x b y
dt dt

   

(iv) 2 2cos 7sin ; 2 4cos 3sin
dx dy dx dy

y t t x t t
dt dt dt dt

       

(v) 5 2 , 2 0
dx dy

x y t x y
dt dt

      ; given that x = y = 0 when t = 0

(vi)
2

2
2 4 2 ;2 4 3 0

d y dz dy dz
y x z

dx dx dx dx
     

(vii)
2 2

2
2 2

4 5 ; 5 4 1
d x d y

x y t x y t
dt dt

      

(viii) ( ) ( ) ( )

mdyldx ndz

m n yz n l zx l m xy
 

  

(ix) 2 2 2 2( ) ( ) ( )

dx dy dz

x y z y x z z x y
 

   

(x) 2 2 2 2 2

dx dy dz

x y z xy xz
 

 

(xi) 1 1

dx dy dz

y x z
 

 

(xii) 2 2 2( )

dx dy dz

y x xyz x y
 



(xiii) ( ) ( ) ( )(2 2 )

dydx dz

x x y y x y x y x y z


 

    

(xiv) 21 2 3 sin( 2 )

dx dy dz

x y x
 
 
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3. Solve the following differential equations by the auxiliary equation method:

(i)      2 2 2 2 2 22 2 2 0xyz y z yz dx x z xyz xz dy x y xy xyz dz        

(ii)    2 2 22 2 0z dx z yz dy y yz xz dz     

(iii)       2 2 2cos 1 sin 0
dx dy dz

z z x z z z y x
dt dt dt

      

(iv)    2 2 3 2 2 2 22 2 2 1 2 2 2 1x y xy xyz dx x x y x z xyz y z yz dy         

 2 3 2 1 0xy y y z dz    
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2.0 INTRODUCTION

In mathematics, Picard’s method of integration for solving differential equations in
many of the Engineering problems, we are often confronted with the differential
equations whose solution cannot be obtained by standard techniques. For such
problems, we find an approximation solution using the Picard’s iteration method
which gives an approximation solution of the initial value problem. The existence
and uniqueness theorems are specifically used for solving differential equations
when any differential equation cannot be solved using standard methods. The system
of differential equations for local and nonlocal existence theorems for nth order
equations. There are many instances where a physical problem is represented by
differential equations with initial or boundary conditions. Existence of solutions in
the large is also known as nonlocal existence. Approximate solutions are arrived
at using approximations. Approximate solutions of differential equations can be
formulated by obtaining the analytic expressions (formulas) or numerical values
that approximate the desired solution of a differential equation to some degree of
accuracy. If a solution is represented by means of an infinite series, a finite portion
of the series can be taken as the approximate solution.

An existence theorem is a theorem which asserts the existence of a certain
object. It might be a statement which begins with the phrase ‘There exist(s)’, or it
might be a universal statement whose last quantifier is existential. In the formal
terms of symbolic logic, an existence theorem is a theorem with a prenex normal
form involving the existential quantifier, even though in practice, such theorems are
usually stated in standard mathematical language. A uniqueness theorem is a
mathematical theorem that asserts the uniqueness of an entity that meets particular
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circumstances, or the equivalence of all objects that meet those conditions. The
Picard–Lindelöf theorem, which proves the uniqueness of solutions to first-order
differential equations, is an example of a uniqueness theorem.

In this unit, you will learn about the Picard’s method of integration, existence
theorem, uniqueness theorem and existence and uniqueness theorem proof’s by
Picard’s method.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain Picard’s iteration method

 Define the significance of successive approximations

 Understand the various methods of successive approximations

 Find solution of a given differential equation using Picard’s iteration method

 Describe the existence and uniqueness of initial value problems

 Identify the Lipschitz condition

 State the existence and uniqueness theorems

 Understand the system of differential equations

 Define the equations for local and nonlocal existence theorems for nth order
equations

 Approximate the error using the error approximation theorem

 Find the existence and uniqueness solutions for linear systems

 Explain about the uniqueness theorem

 Discuss about the existence and uniqueness theorem - proofs by Picard’s
method

2.2 PICARD’S METHOD OF INTEGRATION

Picard’s method of solving a differential equation (initial value issues) is an iterative
method in which the numerical answers grow more and more accurate the more
times it is employed. Finding the solution to a differential equation might be
challenging at times. The approximate solution of a given differential equation can
be obtained in such instances.

Picard’s iteration method was first used to show that an initial value problem
exists. Despite the fact that this approach is not practical and is rarely utilized for
actual determination of a solution to the initial value problem (due to sluggish
convergence and difficulties with doing explicit integrations), there are known
enhancements in this procedure that make it feasible. Picard’s iteration approach
is significant because it yields an equivalent integral formulation that may be used
to build a variety of numerical algorithms.
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When a user applies Picard’s iteration method in a computer, it aids in the
development of algorithmic thinking. It was the first method for solving nonlinear
differential equations analytically. Everyone can improve their computing skills by
working with Picard’s iterations and revisions.

2.2.1 Successive Approximation

In many of the Engineering problems, we are often confronted with the differential
equations whose solution cannot be founded by standard methods.

In such problems, it is sufficient to obtain an approximation solution only,
We shall mention here the Picards iteration method for giving an approximation
solution of the initial value problem of the form,

1 0 0, ( )
dy

f x y y x y
dx

(2.1)

By the initeration method we mean a method which consists of repeated
application of exactly the same type of steps where in each step is picards method.
By integration, we may write Equation (2.1) in the form.

0
0 1( ) ( )

x

x
y x y f t y t dt (2.2)

Where t is the variable of integration. It is easy to check that the integral is
zero when x = x

0
, so that y = y

0
. Thus Equation (2.2) satisfies the intial condition

in Equation (2.1). Also if we differentiale Equation (2.2), we obtained the given
differential equation.

In order to obtain a solution y (x) of Equation (2.2), we proceed stepwise
as follows:

Put y = y
0
 = Constant. on the right. This gives,

0
1 0 1( ) ( )

x

x
y x y f t y t dt

We now substitute 1( )y x  in the same manner and get

0
2 0 1 1( ) ( )

x

x
y x y f t y t dt .

Continuing in this way at the 4th step of itegration process, we get,

0
0 1 1( ) ( )

x

n nx
y x y f t y t dt (2.3)

Thus we obtain a sequence of approximation solutions.

1 1 2 1( ) ( ) ................. ( )ny x y x y x

Example 2.1: Apply Picard’s iteration method of intial value problem.

1 (0) 1
dy

y t
dx

and show that the successive approximations tends to the limit ,xy e the exact

solution.
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Solution: Here 0 0 10, 1, ( )x y f x y y

So that Equation 
0

0 1 1( ) ( )
x

n nx
y x y f t y t dt  of prceeding section

becomes,

0
0 1( ) ( )

x

n nx
y x y y t dt

Taking 0 1,y  we obtain

0
1 0 0

0

( ) ( ) 1 | 1
x

x

x
y x y y x dt dt x

0

2

2 0 1

0

( ) ( ) 1 (1 ) 1
2

x
x

x

x
y x y y t dt t dt x

0

2

3 0 2

0

( ) ( ) 1 (1 )
2

x
x

x

t
y x y y t dt t dt

= 
2 3

1
2! 3!

x x
x

In general, we get,

2

( ) 1
2! !

n

n

x x
y x x

n


Thus the successive approximation tend to the limit xy e as n , which

is the exact solution.

Example 2.2: Apply Picard’s method of the initial value problem.

1, (0) 0
dy

xy y
dx

and find the successive approximation.

Solution: Here 0 0 10, 0, ( ) 1,x y f x y xy So that

Equation 
0

0 1 1( ) ( )
x

n nx
y x y f t y t dt  of preceeding section becomes,

0
0 1( ) ( ) 1

x

n nx
y x y t y t dt

Starting from 0 0x and 0 0y , we get

1 0 0 0
( ) ( ) 1

x
y x y t y t dt dt x

2
2 0 1 0
( ) ( ) 1 ( 1)

x
y x y t y t dt t dt

= 
3

3

x
x



Picard’s Method of
Integration and Successive

Approximation

NOTES

Self - Learning
Material 53

3 0 2( ) ( ) 1y x y t y t dt

= 
3

0
1

3

x t
t t dt

= 
3 5

3 3.5

x x
x

Hence, we have,

3 3 5

0 1 2 30, , , .
3 3 3.5

x x x
y y x y x y x etc

Example 2.3: Using Picard’s method find the third approximation of the solution
of the equation,

32 2 3
dy

y x
dx

 where 2y  when 0x

Solution: Here 0 00, 2x y

And 2( , ) 2 2 3f x y u x

We have 
0

2
0 1( ) 2 ( ) 2 3

x

n nx
y x y y t t dt

First appoximation : Taking 0 0x and 0 2y

2
1 0 00
( ) (2 2 3)

x
y x y y t dt

2 3

0

2
2 (4 2 3) 2

3

x
t dt x x

Second appoximation:

2
2 10
( ) 2 (2 2 3)

x
y x y t dt

2 4 3 3

0

2 4
2 4 2 2 2 3

3 3

x
t t t t t dt

= 3 4 51 2
2

3 15
x x x x

Example 2.4: Find the third approximation of the solution of the equation,

2
dy y

dx x

By Picard’s method, where 2y when 1x
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Solution: 0 01, 2x y and ( , ) 2
y

f x y
x

We have 
0

1
1

( )
( ) 0 2

x
n

n x

y t
y x y dt

t

First approximation: Taking 0 1x and 0 2y

0

0
1 0 1

2
( ) 2 2 2

x x

x

y
y x y dt dt

t t

= 
1

2 2 2log 2 2log
x

x t x x

Second approximation:

2 11

1
( ) 2 2 ( )

x
y x y t dt

t

= 
1

1
2 2 2 2log

x
t t dt

t

= 
2

1

2
2 log 2 log

x
t dt x

t

Third approximation:

2

3 21 1

1 1
( ) 2 2 ( ) 2 2 2 log

x x
y x y t dt t dt

t t

= 
2

1

2 1
2 2 (log )

x
t dt

t t

= 31
2 2log (log )

3
x x x

Example 2.5: Apply Picard’s method to find third approximation of the solution
of the equation,

2 ,
dy

x y
dx

 where 0,y  when 0x

Solution: Here 0 00, 0x y  and 2( , )f x y x y

We have 
0

0 1 1( ) ( )
x

n nx
y x y f t y t dt

2
10

( ) ( )
x

n ny x t y t dt ...(1)
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First approximation: From Equation (1), we have

2
2

1 00 0
( ) ( )

2

x x x
y x t y t t dt

Second approximation: From Equation (1), we have

2 41
42 10 0

( ) ( )
x x

y x t y t dt t t dt

= 
2 5

2 20

x x

Third approximation: From Equation (1), we have

2 5
2

3 20 0
( ) ( )

2 20

x x t t
y x t y t dt t dt

= 
4 7 10

0 4 20 400

x t t t
t dt

= 
2 5 8 11

2 20 160 4400

x x x x

Example 2.6: Find the third approximation of the solution of the equation,

2 4
1

dy dz
Z x z x y

dx dx

By Picard’s method, 5y  and 1z  when 0x

Solution: Here the given simultaneous equations are,

( , , );
dy

Z f x y z
dx

 2 42 ( , , )
dz

x x y g x y z
dx

And 0 0 00, 5, 1x y z

0
0 1 1, ( ), ( )

x

n n nx
y y f t y t z t dt

= 
0

0 1( )
x

nx
y Z t dt

And 
0

0 1 1, ( ) ( )
x

n n nx
Z Z g t y t Z t dt

= 
0

2 4
0 1 1, ( ) ( )

x

n nx
Z t Z t t y t dt

First approximation: Taking 0 05, 1y Z and 0 0x

0
1 0 0 0

( ) 5 1 5
x x

x
y y Z t dt dt x

0

2 4
1 0 0 0( ) ( )

x

x
Z Z t Z t t y t dt

= 
3

2 4 5

0
1 1 5 1

3

x x
t t dt x
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Second approximation:

3
5

2 0 10 0
( ) 5 1

3

x x t
y y Z t dt t dt

= 
4 6

5
12 6

x x
x

2 4
2 0 1 10

( ) ( )
x

Z Z t Z t t y t dt

= 
3

2 5 4

0
1 1 5

3

x t
t t t t dt

= 
3 8

5 62
1

3 9 8

x x
x x

Third approximation:

4 6 9
7

3 0 20

2
( ) 5

12 6 63 72

x x x x
y y Z t dt x x

2 4
3 0 2 40

( ) ( )
x

Z Z t Z t t y t dt

= 
3 5 6 8 4 6

2 4

0

2
1 1 5

3 1 9 8 12 6

x t t t t t t
t t t dt

= 
3 8

5 6 9 112 11 7
1

3 9 8 224 264

x x
x x x x

Example 2.7: Find the third approximation of the solution of the equation,

3, ( 2)
dy dz

Z x x
dx dx

By Picard’s method where 1
21,y Z , when 0x .

Solution: Here the given simultaneous equations are,

( , , )
dy

Z f x y z
dx

3 ( ) ( , , )
dy

x y z g x y z
dx

 and 1
20 00, 1,x y Z

0
0 1 1, ( ), ( )

x

n n nx
y y f t y t Z t dt

= 
0

0 1( )
x

nx
y Z t dt

And 
0

0 1 1, ( ), ( )
x

n n nx
Z Z g t y t Z t dt

= 
0

3
0 1 1( ) 2 ( )

x

n nx
Z t y t t dt
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First approximation: Taking 20 0 00, 1, xx y Z

0

3 3 1
21 0 0 0 0

1
1

2

x x

x
Z Z t y Z dt t dt

= 41 3

2 8
x

Second approximation:

y
2

=
0

4
0 1 0

1 3
( ) 1

2 8

x x

x
y Z t dt t dt

= 51 3
1

2 40
x x

Z
2

= 3
0 10

, ( ) ( )
x

Z t y t Z t dt

= 3
1 10

1
( ) ( )

2

x
t y t Z t dt

=
3 4

0

1 3 3

2 2 2 8

x t
t t dt

=
4 5

81 3 3

2 8 10 64

x x
x

Third approximation:

y
3

= 0 20
( )

x

x
y Z t dt

=
4 5 8

0

1 3 1 3
1

2 8 10 64

x
t t t dt

= 5 6 91 3 1 1
1

2 40 60 192
x x x x

Z
3

=
0

3
0 2 2( ) ( )

x

x
Z t y t Z t dt

=
3 4 5 8

0

1 3 3 7 3

2 2 2 8 40 64

x t
t t t t dt

= 4 5 8 9 121 3 1 3 7 1

2 8 10 64 360 256
x x x x x

Example 2.8: Find the third approximation of the solution of the equation,

2
2 2

2
,

d y dy
x x y

dx dx

Where y = 5, and 1
dy

dx
 when x = 0

Solution: Let 
dy

Z
dx



Picard’s Method of
Integration and Successive
Approximation

NOTES

Self - Learning
58 Material

 
2

2 4
2

dz d y
x z x y

dx dx

And x
0
 = 0, y

0
 = 5, and Z

0
 = 1

Which is the same problem as Example 7.

Third approximation:
4 6 7 9

3

2
( ) 5

12 6 63 72

x x x x
y x x

Existence and Uniqueness of Solutions

It may happen that an intial value problem has no solution or it may have exactly
one solution or it may have more than one solution. Our aim in this section is to find
under what condition an intial value problem has at least one solution and under
what conditions does that problem have one and only one solution, that is, a unique
solution. This lead us to the existence theorem and uniqueness theorem, respectively.
These existence and uniqueness theorems play an important role when a differential
equation cannot solved by elementary standard methods.

The Lipschitz Condition

If f (x, y) be a function defined for (x, y) is a domain D in x – y plane, then the
function f(x, y) is said to satisfy the Lipschitz condition in D if there exists a positive
constant K such that,

2 1 2 1| ( , ) ( , ) | | |f x y f x y K y y

for every pair of points (x, y
1
), (x, y

2
) D. The constant K being independent of

x, y
1 
and y

2
 and is called the Lipschitz constant.

Existence Theorem

The intial value problem,

0 0( , ), ( )
dy

f x y y x y
dx

...(2.4)

has at least one solution y(x) provided the function f(x, y) is continuous and bounded
for the values of x, in a domain D and there exists positive constants M and K such
that

( , )f x y M ...(2.5)

Which satisfies the Lipschitz condition.

2 1 2 1( , ) ( , )f x y f x y K y y ...(2.6)

For all points in domain D.

Proof by Picard’s Method: Consider the iterative Equence.

0
0 1 1( ) ( )

x

n nx
y x y f t y t dt ...(2.7)

n = 1, 2....
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With y
0
(t) = y

0
 for the intial value problem of Equation (2.4). In order that the intial

value problem of Equation (2.4) may have a solution, it is necessary that the
sequence {y

n 
(x)} of functions converges to a limiting function y (x) which is a

solution of of Equation (4) or of the equivalent integral equation.

0
0 1( ) ( )

x

x
y x y f t y t dt ...(2.8)

To ensure the existence of the limiting function.

( ) lim ( )ny x y x ...(2.9)

We use the fact that y
n 
may be written as a sum of successive differeness:

1

0 1
0

n

n i i
i

y y y y ...(2.10)

This follows that the sequence {y
n 
– y

i
} converges.

From Equation (2.7) we have,

0
0 1 1( ) ( )

x

i ix
y x y f t y t dt

And 
0

1 0 1( ) ( )
x

i ix
y x y f t y t dt

0
1 1 1 1( ) ( ) ( ) ( )

x

i i i ix
y x y x f t y t t y t ...(2.11)

The Equation (2.11) is true for all intiger i = 1, 4

Also from Equation (2.7) y
1
(x) = y

0
 + 

0
1 0

x

x
f t y dt

0
1 0 1 0( )

x

x
y x y f t y dt ...(2.12)

The condition in Equation (2.5) ensure the existence of integrals in Equations
(2.11) and (2.12), Considering Equation (2.12), we have,

0
1 0 1 0( ) | |

x

x
y x y f t y dt

0

x

x
M dt by Equation (2.5)

M |x – x
0
| ...(2.13)

Again making use of Lipschitz condition in Equation (2.6), we get from
Equation (2.11),

0
2 1 1 1 1 0( ) ( ) ( )

x

x
y x y x f t y t f t y dt

0
1 0( )

x

x
K g t y dt by Equation (2.6)



Picard’s Method of
Integration and Successive
Approximation

NOTES

Self - Learning
60 Material

0
0.

x

x
K M t x dt by Equation (2.13)

= 
2

0

2!

x x
KM ...(2.14)

Similarly 
2

0
3 2( ) ( )

3!

K M x x
y x y x

In general, we shall have

01
1( ) ( )

!

i

i
i i

x x
y x y x M K

i
...(2.15)

The truthness of result of Equation (2.15) for all values of i can be established
by the mathematical induction method.

We must show that the identify Equation (2.15) holds when i is replaced by
i + 1. For this purpose, we again make use of Equation (2.11) and Equation (2.6),
we have.

0
1 1( ) ( ) , ( ) , ( )

x

i i i ix
y x y x f t y t f t y t dt

0
1( ) ( )

x

i ix
K y t y t dt

0

0 01.
! ( 1)!

x
i i

x

x x x x
K M dt MK

i i
...(2.16)

The relation Equation (2.16) establishes the validity of Equation (2.15) for
all values of i.

From Equation (2.16), we see that absolutes values of terms in the series
Equation (2.10) are term by term smaller than the corresponding terms in the
series.

2 3

0 02
0 0 . . ...

2! 3!

x x x x
y M x x M K M K

Whose sum is 0 0exp 1
M

y K x x
K

Now the above Taylor’s series converges for all values of (x – x
0
), and so

the function y (x) for all values of x in any finite interval, i.e., lim y
n
(x)  y (x).

Now proceeding to the limit as n , we get from Equation (12).

0
0 1 1lim ( ) lim ( )

x

n nxn n
y x y f t y t dt

Or
0

0 1 1( ) lim ( )
x

nxn
y x y f t y t dt ..(2.17)

Since f(x, y) is continous function of both x and y in the range of values
considered and hence y

n
(x) converges to g(x) uniformly over the interval the

following interchanges of limiting operations are justified.
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0 0
1 1 1 1lim ( ) lim ( )

x x

n nx xn n
f t y t dt f t y t dt

= 
0 0

1 1 1lim ( ) ( )
x x

nx xn
f t y t dt f t y t dt

This shows that interative sequence Equation (2.7) converges to a solution
of the differential equation, problem in Equation (2.4) for all values of x D under
the given conditions thus the theorem is completely established.

Uniquesness Theorem

The intial value problem,

0 0( , ), ( )
dy

f x y y x y
dx

...(2.18)

has a unique solution provided the function f(x, y) is continuous and bounded for
all values of x in a domain D and there exist positive constants M and K such that,

( , )f x y M

And satisfy the Lipschitz condition,

2 1 2 1( , ) ( , )f x y f x y K y y

For all points in domain D.

Proof by Picard’s Method: Suppose if possible the intial value problem of
Equation (2.18) has two district solution y(x) and u(x).

Then,

0
0 1( ) ( )

x

x
u x y f t u t dt

and
0

0 1( ) ( )
x

x
y t y f t y t dt

0

( ) ( ) , ( ) , ( )
x

x
y x u x t t y t f t u t dt ...(2.19)

Since f(x, y) is bounded and satisfies Lipschitz condition, we have,

( , )f x y M ...(2.20)

And 2 1 2 1( , ) ( , )f x y f x y K y y ...(2.21)

Using Equations (2.19) and (2.20), we have

0

( ) 4( ) , ( ) , 4( )
x

x
y x x f t y t f t t dt

0

, ( ) , 4( )
x

x
f t y t f t t dt

0
0( ) 2

x

x
M M dt M x x ...(2.22)
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Again using Equations (2.19) and (2.21), we have

0

( ) 4( ) ( ) 4( )
x

x
y x x K y t t dt ...(2.23)

Combining Equations (2.22) and (2.23), we obtain

0
0( ) 4( ) 2

x

x
y x x K M t x dt

= 02
2!

x x
MK ...(2.24)

Employing inquality in Equation (2.24) on the right hand side of Equation
(2.23), we have

0

2

0( ) 4( ) 2
2!

x

x

t x
y x x K MK dt

= 
3

022
3!

t x
MK ...(2.25)

Continuing in this way, we shall obtain.
1 4

0( )
( ) 4( ) 2 , 1,2,3...

!

nMK x x
y x x n

n
...(2.26)

Now the right-hand side of Equation (2.26) tends to zero as n tends to
infinity for all finite values of x. Thus,

( ) 4( ) 0 ( ) 4( )y x x y x x

for all finite values of x. This shows that the solution is unique.

Existence and Uniqueness Theorem (In General Case)

The intial value problem

0 0( , ), ( )
dy

f x y y x y
dx

has a unique solution for all values of x in the range

0 ,x x a

Provided the function f(x, y) is continuous and satisfy the conditions.

(i) x y M

(ii) 2 1 2 1( , ) ( , )f x y f x y K y y (Lipschitz condition)

For all values x and y. M.K being positive constants, in the rectangle R
defined by,

0x x  a and 0y y Ma

Proof by Picard’s Method: The point of difference in two theorem is that here
we are considering the limited range.

0x x a ...(2.27)
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Instead of considering all values of x so that theorem may be applicable to
wider class of function f(x, y), we have seen that the proof of the existence theorem
depended upon obtaining the inequality.

1

0
1( ) ( )

( 1)!

i

i
i i

x x
y x y x MK

i
...(2.28)

For all valees of x, here our aim is to esbablish the inequality Equation
(2.28) for limited Equation (2.27).

For this we again consider the relation,

0
1 1 1 1( ) ( ) ( ) ( )

x

i i i ix
y x g x f t g t f t y t dt

i = 1, 2,...... ...(2.29)

Since we do not require the conditions given in Equations (2.27) and (2.28)
to be applicable for all values of y but merely in a suibable neighourhood of y

0
, we

shall consider the possibility of obtaining bounds not for y
i + 1 

– y
i 
but for y

i
 – y

0
.

Now
0

0 1, ( )
x

i ix
y y f t y t dt ...(2.30)

As long as ( , ) for 0f t y M t x a and 0y y

We get from Equation (2.30), 
0

0 1,( ) ( )
x

x
y x y f t y dt

1 0 0( ) ( )y x y x M x x Ma ...(2.31)

For 0x x a and 0 ,y y Ma

We conclude from,

0
2 0 1 1( ) ( )

x

x
y x y f t y t dt

0
2 0 1( ) , ( )

x

x
y x y f t y t dt

0
0

x

x
M dt M x x

Ma ...(2.32)

Then by induction, we get

0( )iy x y Ma ...(2.33)

For 0x x a  and all t.

After finding the bound of Equation (2.33) for y
i
 we formulate our Lipschitz

condition for Equation (2.29) as follows:

2 1 2 1( , ) ( , )f x y f x y M y y ...(2.34)
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In the range 0x x a and 0 ,y y Ma we then have

0
1 1( ) ( ) ( ) ( )

x

i i i ix
y x y x K y t y t dt ...(2.35)

Using Equation (2.31) in Equation (2.35) with i = 1, we obtain

0

2

0
2 1 0( ) ( )

2!

x

x

x x
y x y x MK t x dt MK ...(2.36)

Continuing in this way, we shall write as,
1

0
1( ) ( )

( 1)!

i

i
i i

x x
y x y x MK

i

Valid in the interval 0x x a

Note: If f(x, y) satisfies the condition 
f

M
y

...(2.37)

For all values of x, y in the given range, then the Lipschitz condition is also satisfied
with the same constant M. For, we have by the mean value theorem of differential
calculus.

2 1 2 1 1 2( , ) ( , ) ( ) ,
f

f x y f x y y y y y y y
y ...(2.38)

Where (x, y
1
) and (x, y

2
) are assumed in the given range. From Equations

(2.37) and (2.38), we have,

2 1 2 1( , ) ( , )f x y f x y M y y

Which is Lipschitz condition. Thus the Lipschitz condition can be replaced
by the stronger condition Equation (2.37).

Example 2.9: Show that for the problem 1 (0) 1,
dy

y y
dx

 the constant a in

Picard’s theorem must be smaller than unity.

Solution: Here the condition for boundness of f, i.e.,

( , )f x y M  for 0,y y Ma  take the form

y M  for 1y Ma

And if we choose 1M , Lipschitz condition is also satisfied since in this case of
Lipschitz condition assumes the form.

2 1 2 1 2 1( , ) ( , )f x y f x y y y M y y  1M

Now 1y Ma implies that 1y Ma
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Hence the inequlity y M will be satisfied for all values of 1y Ma provided

it is satisfied for,

1y Ma

According, we must have,

1 Ma  or 
1 1

1 1
M

a a
M M

(Since M is a positive finite constant)

Example 2.10: For the initial value problem,

, (0) 0ydy
e y

dx

Find the largest interval x a in which the Picard’s theorem gurantees existence

of a unique solution.

Solution: The condition for boundedness of ( , )f x y , i.e., ( ,f x y M for

0y y Ma  takes the form ,ye M  for 0y Ma

If  y
1
, y

2
 with y

1
 < y

2
 lies in the range ,y Ma  we have by the mean value

theorem, 
2 1

2 1( )y y y

y y

e e y y e
y  where 1 2y y y  or

2 1
2 1( )y ye e y y M

ye M

So that Lipschitz condition is also satisfied. Now the inequality ye M will be

satisfied for all values of y Ma

Provided it is satisfied if y = Ma. Accordingly, we must have,

Mae M  or 
log M

a
M

Since a is positive, M lies in the range 1 .M  It is easy to see that

log M

M
is maximum when M = e = 2.718.

The Picard’s theorem then assure existence of a unique solution in the interval

x a

Where
1

0.308a
e

Example 2.11: If S is defined by the rectangle , ,x a y b show that the function

2 2( , ) ,f x y x y  satisfies the Lipschitz condition. Find the Lipschitz constant.
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Solution: (x, y
1
) and (x, y

2
) be two points in the rectangle S, then

2 2 2 2
2 1 2 1( , ) ( , ) ( ) ( )f x y f x y x y x y

= 2 2
2 1 2 1 2 1y y y y y y

 2 1 2 1( , ) ( , ) 2f x y f x y b y y

 f(x, y) satisfy the Lipschitz condition, and the Lipschitz constant
K = 2b.

Aliter: Here f(x, y) = x2 + y2

( , ) 2 2 , for ( , )f x y y b x y S
y

Thus y  exists is continuous and bounded for all (x, y) S . Hence f(x, y) satisfies

Lipschitz condition and Lipschitz constant is 2b.

Example 2.12: Examine existence and uniqueness of the solution of the initial
value problem.

2 , (1) 1
dy

y y
dx

Solution: Here f(x, y) = 2dy
y

dx
and 2

df
y

dy obviously f and
df

dy  are both

continous for all (x, y). We consider the rectangle R.

1 , ( 1) ,x a y b about the point (1, –1)

Obviously in this rectangle,

2 2
2 1 2 1( , ) ( , )f x y f x y y y

= 2 1 2 1y y y y

2 1(2 2 )b y y

Thus the Lipschitz condition is satisfied in the rectangle R.



Picard’s Method of
Integration and Successive

Approximation

NOTES

Self - Learning
Material 67

Now let M = Max ( , )f x y  for x, y R and h = Min (a, b/m)

Then the given problem possesses a unique solution for 1 .x h

In this case,

M = Max ( , ) Max.f x y  2 2 2( 1 ) (1 )y b b

h = Min 2, / Min , /(1 )a b m a b b

Now let 2/(1 ) ( )b b b

h = Min 2, / Min , /(1 )a b m a b b

Now let 2/(1 ) ( )b b b

3

1
( )

(1 )

b
b

b
 and 4

2 4
( )

(1 )

b
b

b

For Max or Min of ( ), ( ) 0 1b b b  and Max. ( ) (1) 1/ 4b

if 2
1/ 4, ( ) , for all 0

(1 )

b
a b a b

b

2

1

(1 ) 4

b
h

b

And if 
1

,
4

a  then 
1

,
4

h   Max 2(1 )

b

b  is 
1

4
.

Hence the given problem possesses a unique solution when 
1

1 . ,
4

x i e  in the

interval 
3 5

4 4
x .

Example 2.13: Illustrate by an example that a continous function may not satisfy
a Lipschitz condition on a rectangle.

Solution: Let us consider the function,

2 /3( , ) ,f x y y  on the rectangle 1, 1x y  obviously f(x, y) is

continous in the rectangle as it is a polynomial in y.

But 1/3

2
( , )

3
f x y

y y
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Which does not exist at y = 0, which is a point of the rectangle. Hence the
Lipschitz condition is not satisfied on the rectangle.

Check Your Progress

1. Why is Picard’s iteration method used?

2. When is an approximation solution required?

3. What does iteration method specify?

4. Define the term unique solution.

5. Explain the term Lipschitz condition.

2.3 EXISTENCE THEOREM

System of Ordinary Differential Equations: First  let us consider a system of
n-ordinary differential equations of first order where the derivatives 1 2, , ny y y
appear explicity,

1y  = 1 1 2( , , , )nf x y y y

2y  = 2 1 2( , , , )nf x y y y


ny  = 1 2( , , , )n nf x y y y

We can write it in a vector form as,

1 1

( , )

n n

y f

y f x y

y f

 

It is the analogue of the single variable case:

y = f(x, y)

Here f
1
, f

2
, ..., f

n
 are given complex-valued functions defined in some set R.

In the (x, y
1
, ... y

n
)-space, where x is real and y

1
, y

2
, ... y

n
 are complex.

Now, we have to find ‘n’ differentiable functions.


1
, ... 

n
 on some interval I such that,

(i) (x, 
1
(x), 

2
(x) ... 

n
(x)) R, for xI

(ii) 1 1 1( ) ( , ( ),..., ( ))nx f x x x

        

1( ) ( , ( ),..., ( )),n n nx f x x x  for all xI

If ‘n’ such functions exist we say = (
1
, 

2
, ... 

n
) is a solution of the

system given earlier on the interval I.

Local Existence Theorem: Let f  be a continuous vector-valued function defined

on
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R: 0 0, , ( , 0)x x a y y b a b

And suppose f  satisfies a Lipschitz condition on R. If M is the constant such that,

( , ) ( , )f x y M x y R

The successive approximations { }
k

 where, K = 0, 1, 2, ... given by

0 00
{ }( )x y

( )
k

x  = 
0

0 1
( , ( )) , 1,2,3...

x

kx
y t t dt k

Converge on the interval,

I: 0 Min , ,
b

x x a
M

To a solution  of the initial value problem,

0 0( , ), ( ) ,y f x y y x y  on I

Error Approximation Theorem: If f  satisfies the same conditions as defined

in the previous local existence theorem and K is a Lipschitz constant for f  in R,

then

1( )
( ) ( ) ,

( 1)!

K
K

k

M K
x x e

K K
 for all xI

Theorem of Non-Local Existence: Let f  be a continuous vector-valued

function defined on the strip.

S. 0 , , ( 0),x x a y a

which satisfy that there is a Lipschitz condition, then the successive approximation

{ }
k

 for the problem,

0 0 0
( , ), ( ) , (| | ),y f x y y x y y

exist on 0| |x x a  and converges there to a solution  of this problem.

Corollary: Suppose f  is a continuous vector-valued function defined on

| | ,| | ,x y and satisfy a Lipschitz condition on each strip | | ,| | ,x a y

where a is any positive number. Then every initial value problem:

0 0( , ), ( )y f x y y x y  has a solution which exists .x R

Uniqueness Theorem: Let ,f g  be two continuous vector-valued functions

defined on R: 0 0
| | ,| | , ( , 0),x x a y y b a b  and suppose f  satisfied a

Lipschitz condition on R with Lipschitz constant K. Suppose ,  are solutions of
the problem:
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y  = 0 1
( , ), ( )f x y y x y

y  = 0 2
( , ), ( ) ,g x y y x y

respectively, on same interval I containing x
0
. If for , 0

| ( , ) ( , ) |y x y g x y  and 
1 2

| ) | ,y y  then

0 0| | | |( ) ( ) ( 1)K x x x xx x e e
K

 for all xI.

In particular, the problem 0 0
( , ), ( ) ,y f x y y x y  has at most one

solution on any interval containing x
0
.

Existence and Uniqueness Theorems for Linear Systems

Case I: Let us consider a linear system

y  = ( , )f x y  with

1( , )f x y  = 1 1
1

( ) ( )
n

i i
i

a x y b x

  

( , )nf x y  = 
1

( ) ( )
n

ni i n
i

a x y b x

Here {a
ij
} and {b

j
} are complex-valued functions defined for real x in

some interval I.

If for all the {a
ij
} are continous on an interval,

0| | , ( 0),x x a a  then the corresponding vector-valued function y

satisfy a Lipschitz condition on the strip

S: 0| | , | | :x x a y

1( , ) ( ( ), , ( ))k nk
k

f
x y a x a x

y
  = 

1

( )
n

jk
j

a x K

Case II: Consider a linear system,

Y = f(x, y) where the components of f are given by,

f
j
(x, y) = 

1

( ) ( )
n

jk k j
k

a x y b x

(j = 1, 2, ..., n), and the function {a
jk
}, {b

j
} are continuous on an interval I

containing x
0
. If 

0
y  is any vector in ,n  unique solution  of the initial value

problem:

y  = 0 0
( , ), ( ) ,f x y y x y  on I.

Equation of Order n: An n–m order equation yn = f(x, y, y ..., yn–1) may be
viewed as a system of n equations of the first order.
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Define  y
1
 = y  1 2y y y

 y
2
 = y  2 3y y y


y

n
 = yn–1  n

ny y f

Now the system is,

1 2

2 3

n

y y

y y

y f

 

In the vector form we write,

y  = 1( , ,..., )nf x y y

   = 

1 1

1

( , ,... )

( , ,... )

n

n n

f x y y

f x y y



Here f
1
 (x, y

1
, y

2
 ... y

n
) = y

2

f
2
 (x, y

1
, y

2
 ... y

n
) = y

3


f
n
 (x, y

1
, y

2
 ... y

n
) = f(x, y

1
, ... y

n
)

Moreover if  is a solution of the nth order equation then the vector,
1( , ,..., )n  is a solution of the vector equation.

Conversely, if 1 2( , ,... )n  is the solution of the vector equation then
the first component 

1
 is solution of the nth order equation.

y(n) = f(x, y, y ... yn–1)

Since we have,

1 2

1 2 3


( 1)
1

n
n

( ) ( 1)
1 1 1( ) ( , ( ),..., ( ))n n

nx f x x x

Now all the above results are proved for first order system may be applied
to give results for nth order equations.

yn = f(x, y, y, ... yn–1)

Theorem 2.1: Let f be a complex-valued continuous function defined on,

R: 0 0
| | ,| | , ( , 0)x x a y y b a b
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Such that | ( , ) |f x y N for all ( , ) .x y R  Suppose there exists a constant
L < 0 such that,

| ( , ) ( , ) | | |f x y f x z L y z

For all , )x y  and ( , )x z  R

Then  unique solution  of y(n) = f(x, y, y ... yn–1) on the interval

I: 0| | Min ,
b

x x a
M

(M = N + b + |y
0
|), which satisfies (x

0
) = 

1
, (x

0
) = 

2
, ..., n–1(x

0
) = 

n
,

1 20
( ( , ,... ))ny

Proof: Consider the system: ( , )y f x y

1

2

n

y

y

y

  = 

2

3

1 2( , , ... )n

y

y
f

f x y y y



and observe the continuity and the Lipschitz continuity of .f

| ( , ) |f x y  = 2 3| | | | | | | ( , ) |ny y y f x y

| | | ( , ) |y f x y

0| |y b M

Since 0 0| | | | | | .y y y y b

Then prove the continuity  of f

Now Lipschitz continuity,

2 2 3 3| ( , ) ( , ) | | | | | | |n nf x y f x z y z y z y z

| ( , ) ( , ) |
n

f x y f x z

| | | |y z L y z

(1 ) | |L y z

Thus f  satisfy a Lipschitz condition on R with Lipschitz constant K = 1 + L

Theorem 2.2: Let a
1
, ..., a

n
, b be continuous complex-valued function on an

interval contuning a point x
0
. If 

1
, ... 

n
 are any n constants,  unique solution 

of the equation.

yn + a
1
(x)yn+1 + ... + a

n
(x)y = b(x)

on I satisfying,

0( )x  = ( 1)
1 0 2 0, ( ) , ..., ( )n

nx x
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Proof: Let 10
( ,..., )ny and consider a linear system,

1 2 ,y y

2 3 ,y y


1 ,n ny y

1 1 2 1( ) ( ) ... ( ) ( )n n n ny a x y a x y a x y b x

By the existence and uniqueness theorem there is a unique solution.

 = 1( ,... )n  of this system on I satisfying

1 0( )x  = 2 0 2 0( ) ,... ( )n nx x

But since ( 1)
2 1 3 2 1, ,..., n

n ]

The 1nf is a required solution on I.

2.4 UNIQUENESS THEOREM

The ‘Cauchy Problem’ is exactly the initial value problem or IVP and is used to solve
x'(t)= f(t,x) with the condition x(t

0
)= x

0
. Picard’s theorem is explained for given any

point in the plane, (x
0
, y

0
) and a function f(x,y), continuous on some neighborhood of

(x
0
, y

0
) and Lipschitz in y on that neighborhood, then there exist a unique function

y(x) satisfying y'= f(x,y) and y(x
0
)= y

0
. A ‘neighborhood’ of a point is an open set

containing that point. A function, f(x), is ‘Lipschitz’ on a set if and only if there exist a
positive number C such that for any x, y in that set, |f(x)f(y)|< C|xy|.

If f(x) is Lipschitz on a set then it is continuous at every point of that set. The
mean value theorem can be used to show that if a function is differentiable at every
point of a set, then it is Lipschitz on the set while ‘continuous’ and ‘differentiable’
are defined at points. If f(x,y) is continuous but not Lipschitz on a set, then there
may be many functions satisfying the differential equation and ‘initial condition’.
The Picard's method for solving an initial value problem is considered as the basis
for his proof.

Uniqueness

The system is equivalent to the integral equation. If we have a Lipschitz condition,
then we can use the Picard iterates method on the integral equation to get a unique
solution. We define,

y
0
 (x) = y

0

0
1 0( ) ( , ( )) .

x
n nx

y x y f t y t dt

As we commented above, this converges to a unique solution if f is Lipschitz
in y.

Alternately, we could use Gronwall's Inequality
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Gronwall's Inequality

Let u, v be nonnegative continuous functions [a, b] such that

( ) ( ) ( ) , ,
t

a
v t C v s u s ds a t b

then

( )
( )

t

a
u s ds

v t Ce

In particular, if C = 0, then v = 0.

Proof. Let  ( ) : ( ) ( )
t

a
h t C v s u s ds Therefore,

( ) : ( ) ( ) ( ) ( )h t v t u t h t u t

This reduces to the differential inequality

0h uh

Multiplying the LHS by

( ) ,
t

a
u s dse

we get

 
( )( ) 0

t

a
u s dsh t e

And integrate from 0 to x to get

( )
( ) ( ) 0

x

a
u s ds

h x e h a

( ) ( )
x

a
uds

v x h a e
Finally,

( )
( )

x

a
u s ds

v x h x Ce

This allows us to state a new uniqueness theorem.

Theorem Uniqueness of Solutions to IVPs

Assume that 2:f   is continuous on

0 0: ( , ) : ,Q x y x x a y y a

and satisfies

1 2 1 2( , ) ( , )f x y f x y K y y .

Then the solution to the IVP exists on 0 0[ , ]x x , where :
M

,

and the solution is unique.
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Proof. Existence follows,

If there exists two solutions 
1
(t) and 

2
(t) then define

1 2: ( ) ( )w t t t

Then, 1 2( ) ( )w t t t , and

0 0
0 1 2( ) ( ) ( ) ( , ( )) ( , ( ))

x x

x x
w t dt w x w x f t t f t t dt

0 1 0 2 0( ) ( ) ( ) 0w x x x

So, we get the following for w :

0
1 2( ) ( , ( ) ( , ( ))

x

x
w x f t t f t t dt

Therefore,

0
1 2( ) ( , ) ( , )

x

x
w s f t f t dt

0 0
1 2 1 2| ( , ) ( , )| | ( ) ( )|

x x

x x
f t f t dt K t t dt

0
| ( )|

x

x
K w t dt

Thus, from Gronwell's Inequality with ( ) : , ( ) : | ( )|u t K v t w t , and C = 0,

we get |w(t)|. Thus, 
1
 = 

2
, and the uniqueness is shown.

2.4.1 Existence and Uniqueness Theorem for Proof’s
by Picard’s Method

The Peano theorem can be compared with another existence result in the same
context, the Picard–Lindelöf theorem. The Picard–Lindelöf theorem both assumes
more and concludes more. It requires Lipschitz continuity, while the Peano theorem
requires only continuity; but it proves both existence and uniqueness where the
Peano theorem proves only the existence of solutions. To illustrate, consider the

ordinary differential equation, 
1

2y y on the domain 0,1 .

According to the Peano theorem, this equation has solutions, but the Picard-
Lindelöf theorem does not apply since the right hand side is not Lipschitz continuous
in any neighbourhood containing 0. Thus we can conclude existence but not
uniqueness. It turns out that this ordinary differential equation has two kinds of
solutions when starting at y(0) = 0, either y(x) = 0 or y(x) = x2 / 4. The transition
between y = 0 and y = (x –C)2 / 4 can happen at any C.

The Carathéodory existence theorem is a generalization of the Peano existence
theorem with weaker conditions than continuity. In mathematics, in the study of
differential equations, the Picard–Lindelöf theorem, Picard's existence theorem or
Cauchy–Lipschitz theorem is an important theorem on existence and uniqueness
of solutions to first order equations with a given initial value problems.
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Picard–Lindelöf Theorem

Consider the initial value problem,

0 0, 0 0( ) ( , ( )), ( ) [ , ].y t f t y t y t y t t t

Suppose f is Lipschitz continuous in y and continuous in t. Then, for some
value  > 0, there exists a unique solution y(t) to the initial value problem within the
range [t

0
 – ,t

0
 + ].

Proof

The proof relies on transforming the differential equation, and applying fixed-point
theory. By integrating both sides, any function satisfying the differential equation
must also satisfy the integral equation,

0
0( ) ( ) ( , ( )) .

t

t
y t y t f s y s ds

A simple proof of existence of the solution is obtained by successive
approximations. In this context, the method is known as Picard iteration.

Set


0
(t) = y

0

And

0
1 0( ) ( , ( )) .

t
k kt

t y f s s ds

It can then be shown, by using the Banach fixed point theorem, that the
sequence of Picard iterates is convergent and that the limit is a solution to the
problem.

Analysis of Proof

Let be the compact cylinder where f is defined, this is and . Let , this is, the
maximum slope of the function in modulus. Finally, let L be the Lipschitz constant
of f with respect to the second variable.

Analysis of Proof

Let , 0 0( ) ( )a b a bC I t B x be the compact cylinder where f is defined and is

represented as 0 0 0( ) [ , ]at I t t a t a and 0 0 0( ) [ , ]bB x x b x b . Let

,

sup || ||
a bC

M f , which is considered as the maximum slope of the function in

modulus. Finally, let L be the Lipschitz constant of f with respect to the second
variable.

An operator between two functional spaces of continuous functions, Picard’s
operator, is defined as follows:

0 0 0 0( ), ( ) ( ), ( )b bC I t B x C I t B x

It can defined by:
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0
0( ) ( , ( )) .

t

t
t x f s s ds

We presume that it is well defined and that its image must be a function
taking values on B

b
(x

0
) or equivalently that the norm of (t) – x

0
 is less than b.

0 0
0 0|| ( ) || || ( , ( )) || | || ( , )|| | | |

t t

t t
t x f s s ds f s s ds M t t M b

The last step is the imposition, hence we require  < b / M. Let, the Picard’s
operator to be contractive under certain hypothesis over  that later on we will be
able to omit.

Given two functions 1 2 0 0, ( ( ), ( ))bC I t B x we want:

0
1 2 1 2|| || || ( ( , ( )) ( , ( )) )||

t

t
f s s f s s ds

0
1 2| || ( , ( )) ( , ( ))|| |

t

t
f s s f s s ds .

Then since f is Lipschitz with respect to the second variable, we have that:

0
1 2 1 2| || ( ) ( ) || | || ||

t

t
L s s ds L

This is contractive if  < 1 / L or equivalently, in order to have equality, if
  1/(2L).

Therefore, since the Picard’s operator is an operator between Banach spaces
(in particular, metric spaces induced by the norm) and contractive, by means of
the Banach fixed point theorem there exists a unique function   C(I(t

0
), B

b
(x

0
))

such that  =   is, solution of the initial value problem defined on I where 
must satisfy the condition given above,  = min{a,b / M,1 / (2L)}.

Optimization of the Solution’s Interval

There is a corollary of the Banach fixed point theorem that states that if an operator
Tn is contractive for some n   then T has a unique fixed point. This theorem is
applied to the Picard’s operator. For this, let us use the following lemma that will
be very useful for this situation.

Lemma: 1 2 1 2|| || || ||
!

m m
m m L

m

This can be checked by induction as follows:

For m = 1, let us assume that it is true for m “ 1 and let us check it for m:

0

1 1 1 1
1 2 1 2 1 2|| || || || | || (( , ( )) ( , ( )) || |

tm m m m m m

t
f s s f s s ds

0

1 1
1 1 1 2| || ( ) ( ) || | || ||

!

m mt m m

t

L
L s s ds

m

Now taking into account this inequality we can guarantee that for some m

large enough, the quantity 1
!

m mL

m
 and hence m will be contractive. So using the
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previous corollary  will have a unique fixed point. Thus, the interval of the solution
can be optimized by taking  = min{a,b / M}.

The importance of this consequence is that the interval of definition of the
solution does eventually not depend on the Lipschitz constant of the field, but
essentially depends on the interval of definition of the field and its maximum absolute
value of it.

The Picard-Lindelöf theorem shows that the solution exists and that it is
unique. The Peano existence theorem shows only existence and not uniqueness,
but it assumes only that ƒ is continuous in y instead of Lipschitz continuous. For
example, the right-hand side of the equation y = y1/3 with initial condition y(0) = 0
is continuous but not Lipschitz continuous. In fact, the solution of this equation is
not unique; two different solutions are given besides the trivial one y(t) = 0

3/22

3
y t t .

Check Your Progress

6. Give the system of ordinary differential equations and then write its
vector form.

7. Define the term ‘equation of order n’ for existence and uniqueness.

8. What is uniqueness?

9. Define Picard-Lindelöf theorem.

2.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Picard’s iteration method is used for giving an approximation solution of the
initial value problem.

2. In many of the Engineering problems, we are often confronted with the
differential equations whose solution cannot be obtained by standard
methods. In such problems, it is must to obtain an approximation solution
only.

3. The iteration method specifies a method which consists of repeated
application of exactly the same type of steps where in each steps is Picard’s
method.

4. An initial value problem has no solution or it may have exactly one solution
or it may have more than one solution. To find under what condition an
initial value problem has at least one solution and under what conditions
does that problem have one and only one solution, that is, a unique solution.

5. If f(x, y) be a function defined for (x, y) is a domain D in x – y plane, then
the function f(x, y) is said to satisfy the Lipschitz condition in D if there
exists a positive constant K.
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6. First  let us consider a system of n-ordinary differential equations of first
order where the derivatives 1 2, , ny y y  appear explicity,,

1y  = 1 1 2( , , , )nf x y y y

2y  = 2 1 2( , , , )nf x y y y


ny  = 1 2( , , , )n nf x y y y

We can write it in a vector form as,

1 1

( , )

n n

y f

y f x y

y f

 

7. An n–m order equation yn = f(x, y, y ..., yn–1) may be viewed as a system
of n equations of the first order.

8. The system is equivalent to the integral equation. If we have a Lipschitz
condition, then we can use the Picard iterates method on the integral equation
to get a unique solution. We define,

y
0
 (x) = y

0

0
1 0( ) ( , ( )) .

x
n nx

y x y f t y t dt

As we commented above, this converges to a unique solution if f is Lipschitz
in y.

9. The Picard-Lindelöf theorem requires Lipschitz continuity to prove both
existence and uniqueness of solutions. It shows that the solution exists and
that it is unique. It guarantees a unique solution on some interval containing
t
0
 if ƒ is continuous on a region containing t

0
 and y

0
 and satisfies the Lipschitz

condition on the variable y.

2.6 SUMMARY

 In many of the Engineering Problems, we are often confronted with the
differential equation whose solution cannot be obtained by standard methods.

 In such problems, it is must to obtain an approximation solution only.

 The Picard’s iteration method is used for giving an approximation solution
of the initial value problem.

 The iteration method specifies a method which consists of repeated
applications of exactly the same type of steps where in each steps is Picard’s
method.

 An initial value problem has no solution or it may have exactly one solution
or it may have more than one solution.

 To find under what condition an initial value problem has at least one solution
and under what conditions does that problem have one and only one solution,
that is, a unique solution.
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 The existence and uniqueness theorems plays an important role in solving
differential equations when any differential equation cannot be solved by
elementary standard methods.

 If f(x, y) be a function defined for (x, y) is a domain D in x – y plane, then
the function f(x, y) is said to satisfy the Lipschitz condition in D if there
exists a positive constant K.

 f
1
, f

2
, ..., f

n
 are given complex-valued functions defined in some set R. In

the (x, y
1
, ... y

n
)-space, where x is real and y

1
, y

2
, ... y

n
 are complex.

 Let f  be a continuous vector-valued function defined on the strip.

S. 0 , , ( 0),x x a y a

which satisfy that there is a Lipschitz condition, then the successive

approximation { }
k

 for the problem,

0 0 0
( , ), ( ) , (| | ),y f x y y x y y

exist on 0| |x x a  and converges there to a solution  of this problem.

 Suppose f  is a continuous vector-valued function defined on

| | ,| | ,x y and satisfy a Lipschitz condition on each

strip | | ,| | ,x a y  where a is any positive number. Then every initial

value problem: 0 0( , ), ( )y f x y y x y  has a solution which exists

.x R

 Linear system,

Y = f(x, y) where the components of f are given by,

f
j
(x, y) = 

1

( ) ( )
n

jk k j
k

a x y b x

(j = 1, 2, ..., n), and the function {a
jk
}, {b

j
} are continuous on an interval I

containing x
0
. If 

0
y  is any vector in ,n  unique solution  of the initial

value problem:

y  = 0 0
( , ), ( ) ,f x y y x y  on I.

 The Picard-Lindelöf theorem requires Lipschitz continuity to prove both
existence and uniqueness of solutions. It shows that the solution exists and
that it is unique. It guarantees a unique solution on some interval containing
t
0
 if ƒ is continuous on a region containing t

0
 and y

0
 and satisfies the Lipschitz

condition on the variable y.

2.7 KEY TERMS

 Picard’s iteration method: Picard’s iteration method is used for giving an
approximation solution of the initial value problem.
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 Iteration method: Iteration method specifies a method which consists of
repeated applications of exactly the same type of steps where in each steps
is Picard’s method.

 Initial value problem: Initial value problem has no solution or it may have
exactly one solution or it may have more than one solution.

 Lipschitz condition: If f(x, y) be a function defined for (x, y) is a domain
D in x – y plane, then the function f(x, y) is said to satisfy the Lipschitz
condition in D if there exists a positive constant K.

 Uniqueness theorem: Let ,f g  be two continuous vector-valued functions

defined on R: 0 0
| | , | | , ( , 0),x x a y y b a b  and suppose f

satisfied a Lipschitz condition on R with Lipschitz constant K.

 Equation of order n: An n–m order equation yn = f(x, y, y ..., yn–1) may
be viewed as a system of n equations of the first order.

2.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Why and when the Picard’s iteration method used?

2. Explain the significance of various methods of successive approximations.

3. How many different types of successive approximations can be obtained in
a solution?

4. Define the equations that are used in Picard’s iteration method to give an
approximation solution.

5. Explain the method involved for the existence and uniqueness solutions of
initial value problems.

6. What do you mean by Lipschitz condition and Lipschitz constant?

7. State the existence and uniqueness theorems.

8. Define the importance of nonlocal existence method of finding solutions.

9. Differentiate between approximation to solutions and uniqueness of solutions.

10. How is existence and uniqueness of solutions obtained for the systems of
nth order equations?

11. State the following theorems:

 Local existence theorem

 Error approximation theorem

 Nonlocal existence theorem

 Uniqueness theorem

 Existence and uniqueness for linear systems
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12. What do you understand by the uniqueness theorem?

13. How will you define the Picard-Lindelof theorem?

Long-Answer Questions

1. Apply Picard’s method to the following initial value problems and find the
succsessive approximation:

(i) 1 , (0) 0Ldy
y y

dx

(ii) , (0) 2
dy

xy y
dx

(iii) , (0) 1
dy

x y y
dx

(iv) , (0) 1
dy

x y y
dx

(v) 2 1, (0) 0
dy

xy y
dx

(vi) 2 , (0) 1
dy

y y
dx

(vii) 3 2 , (0) 0xdy
e y y

dx

(viii) 22
dy

x y
dx

 where y = 0 at x = 0.

2. Find the third approximation of the solution for the following equation.

2
22 2, 3

dy d
x xy x z

dx dx

Where y = 2 and z = 0 when x = 0

3. Find the first three approximations in the solution of the following equation.

1 , (0) 2
dy

xy y
dx

4. Apply Picard’s method to find the solutions of the problem.

, (0) 2
dy

y x y
dx

Show that the iterative solution approaches the exact solution.

5. Apply Picard’s method up to third approximation to solve the equation.

2,
dy dz

x z x y
dx dx
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Given that y = 2, z = 1 when x = 0

6. Solve the differential equation 
dy

x y
dx

with the condition y = 1 when

x = 0, and show that the sequence of approximation given by Picard’s
method tends to the exact solution as a limit.

7. Use Picard’s method to obtain a solution of the differential equation,

2 , (0) 0
dy

x y y
dx

. Find at least the fourth approximation to each

solution.

8. Obtain the solution of the equation 2 2 ; (0) 1
dy

x y y
dx

by Picard’ss

method, the term involving x4.

9. Use Picard’s method of approximation to find the solution of the equation

22 0
dy

xy
dx

 with y = 1 when x = 0 and hence show that y = 1/(1 + x2).

10. If (x, y) = y2/3, show that the Lipschitz condition is not satisfied in any
containing the origin and that the solution of the differential equation,

( , )
dy

f x y
dx

satisfying the initial condition y = 0 when x = 0 is not unique.

11. If S is defined by the rectangle , ,x a y b  show that the function.

( , ) Sin Cosf x y x y y x

satisfy the Lipschitz condition. Find Lipschitz constant.

12. Examine the existence and uniqueness of solution of the intial value problem,

1/3 , (0) 0
dy

y y
dx

13. Show that the Picard’s theorem, ensure existence of a unique solution in the

interval 1
2x  for the initial value problem.

2 , (0) 0
dy

x y y
dx

2.

14. Discuss the conditions when nonlocal existence theorem is used for finding
solutions for the systems of nth order equations.

15. Prove that approximation method for finding solutions using existence and
uniqueness theorems gives accurate system of required ordinary differential
equations.

16. Consider an initial value problem:

0 0, ,    x f t x x t x
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Give proofs and system of equations reference to the local and nonlocal
existence theorems.

17. Denote the column vector x with components x
1
, x

2
, …, x

n
 and vector f

with components f
1
, f

2
, …, f

n
 for the system of equations of the form

x’ = f(t, x).

18. Briefly explain about the uniqueness theorem with the help of giving examples.

19. Explain Picard-Lindelof existence and uniqueness theorem for solving
differential equations with the help of examples.
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3.13 Self-Assessment Questions and Exercises
3.14 Further Reading

3.0 INTRODUCTION

In mathematics, one of the most essential topics in mathematics is continuity and
differentiability, which helps concepts like as continuity at a point, continuity on an
interval, derivative of functions, and many more. Continuity and Differentiability of
functional parameters, on the other hand, are extremely difficult to achieve. To
explain the concept of higher order differentiability, consider a function y = f(x)
differentiable in the interval (a, b).  For defining the first-order differential of the
function at the point x  (a, b) the formula is dy = f (x) dx.

Poincare-Bendixson theorem gives the complete determination of the
asymptotic behaviour of a large class of flows on the plane and cylinder. An
autonomous system is one that does not depend on the independent variable. The
critical point of a function of a real variable is any value in the domain where either
the function is not differentiable or its derivative is zero.

A stationary point of a differentiable function of one variable is a point on the
graph of the function where the function’s derivative is zero. Informally, it is a point
where the function ‘Stops’ increasing or decreasing (hence the name). For a
differentiable function of several real variables, a stationary point is a point on the
surface of the graph where all its partial derivatives are zero (equivalently, the gradient
is zero). Stationary points are easy to visualize on the graph of a function of one
variable: they correspond to the points on the graph where the tangent is horizontal
(i.e., parallel to the x-axis). For a function of two variables, they correspond to the
points on the graph where the tangent plane is parallel to the xy plane.
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Periodic solutions of equations are solutions that describe regularly repeating
processes. Floquet theory is a theory concerning the structure of the space of
solutions and the properties of solutions, of a linear system of differential equations
with periodic coefficients for periodic systems. The limit cycle is an isolated closed
trajectory that occurs only in nonlinear systems.

The critical point provides useful information about the behaviour of the
system and hence is considered important.

In this unit, you will learn about the continuity and differentiability, Poincare-
Bendixson theorem, higher order differentiability, autonomous system, Umlaufsatz,
index of a stationary point, stability of periodic solutions, rotational point, foci,
nodes and saddle points.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic concept of continuity and differentiability of solutions

 Explain about the higher order differentiability

 Define Poincare-Bendixson theory

 Analysis the autonomous systems

 Learn about the term Umlaufsatz

 Elaborate on the index of a stationary point

 Define periodic solutions and Floquet theory for periodic systems

 Define and classify critical points

 Know stability of critical points

3.2 CONTINUITY AND DIFFERENTIABILITY
OF SOLUTIONS

The dependence of solutions of initial value problems on the initial values and on
parameters in the differential equation can be studied with the knowledge of a
fundamental estimate.

Definition: x(t) is defined as an -approximate solution of the DE dx/dt= f (t, x)
on an interval I if

|x (t) – f (t, x(t))|    t  I. ()

Fundamental Estimate

Let f (t, x) be continuous in t and x, and uniformly Lipschitz continuous in x with
Lipschitz constant L. Suppose x(t) is an 

1
-approximate solution and x(t) is an


2
-approximate solution of dx/dt = f (t, x) on an interval I with t

0
  I, and suppose

|x(t
0
) – x(t

0
)|  δ. Then

0 0L t t L t t1 2Î Î
0 –  0 e  e 1

L
x t x t       t  I.
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Continuity with Respect to Panameters and Initial Conditions

Let us consider initial value problems as:

Dx/dt= f (t, x, µ), x(t
0
) = y,

  where µ is a vector of parameters and y belongs to n Euclidian space.  .
Assuming that for each value of µ, f (t, x, µ) is continuous in t and x and Lipschitz
in x with Lipschitz constant L locally independent of µ. For each fixed µ, y, this is
a standard intial value problem, which has a solution on some interval about t

0
 as

t x(t, µ, y).

Theorem 3.1: If f is continuous in t, x, µ and Lipschitz in x with Lipschitz constant
independent of t and µ, then x(t, µ, y) is continuous in (t, µ, y) jointly.

Differentiability

Dependence on parameters can be transformed into initial conditions, it will suffice
to prove the following.

Suppose f is continuous in t, x and C in x, and x(t, y) is the solution of the
Initial Value Problem  dx/dt= f(t, x), x(t0) = y (say on an interval [a, b] containing
t0 for y in some closed ball B = {y  F n : |y – x0|  r}). Then x is a C  function of
t and y on [a, b] ×B.

3.3 HIGHER ORDER DIFFERENTIABILITY

To explain the concept of higher order differentiability, consider a function y = f(x)
differentiable in the interval (a, b).  For defining the first-order differential of the
function at the point x  (a, b) the formula is dy = f (x) dx.

The differential dy depends on the following two quantities:

1. The variable x (through the derivative y = f (x)).

2. The differential of the independent variable dx.

On fixing the increment dx, it is assumed that dx is constant. Then the
differential dy becomes a function only of the variable x for which the differential
can also be defined by taking the same differential dx as the increment x.
Consequently, the second differential or differential is obtained of the second order,
denoted as d2y or d2f(x). Therefore, by definition,

Normally it is denoted as (dx)2 = dx2. Hence, we have:

  

Similarly, it can be established that the third differential or differential of the
third order has the form,

  

Usually, the differential of an arbitrary order n is given by,

  ,
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This can be meticulously proved by means of mathematical induction. This
formula indicates the following expression for the nth order derivative:

   

Remember that in case of the linear function y = ax + b, the second and
subsequent higher-order differentials are zero. Certainly,

 

In this instance, it is obvious that,

   

Properties of Higher-Order Differentials

If the functions u and v have the nth order derivatives, then the following properties
are valid:

   

The last equality follows directly from the Leibniz formula.

Higher Order Differential of a Composite Function

Consider the composition of two functions such that y = f(u) and u = g(x). In this
instance, y is a composite function of the independent variable x.

             y = f (g (x))

The first differential of y can be written as,

  

Compute the second differential d2y (assuming dx is constant by definition).
Using the product rule, the equation becomes:

Consider that,

   

Consequently,

   

Or,
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Similarly, we can obtain the expression for the third order differential of a
composite function of the form:

   

It follows from the above that the higher order differentials

are generally not invariant.

The degree of the differential equation is represented by the power of the
highest order derivative in the given differential equation.

3.4 POINCARE-BENDIXSON THEORY

It is a part of the qualitative theory of differential equations and theory of dynamical
systems involving the limiting (when t  ± ) behaviour of trajectories of
autonomous systems of two differential equations of the first order:

1 2, , 1,2i ix f x x i …(3.1)

In the most important case when the system has only a finite number of equilibrium
positions in a bounded part of the plane, the basic result of H. Poincare  and I.
Bendixson is that any bounded semi-trajectory (positive or negative) either tends
to an equilibrium position or coils round (like a spiral) to a limit cycle, or in an
analogous way coils to a closed separatrix or  separatrix contour  consisting of
several separatrices  joining  certain equilibrium positions, or is itself an equilibrium
position or a closed trajectory. The corollary used most often is: If the semi-trajectory
does not leave a given compact domain not containing an equilibrium position,
then there is a closed trajectory in this domain. For cases when there are an infinite
number of equilibrium positions or when the semi-trajectories are not bounded,
there is also a fairly complete, although more complicated, description. Finally one
can consider a continuous flow in the plane without assuming that it is given by the
differential equations (3.1), because in this case it is still possible to use the basic
technical premises of the Poincare–Bendixson theory: the Jordan theorem and the
Poincare return map for local cross-sections which are homeomorphic to a segment.

The Poincare–Bendixson theory borders on: the connection, discovered by
Poincare, between the rotation of a certain field on the boundary of a domain and
the indices of the equilibrium positions inside it; results of Bendixson and L.E.J.
Brouwer on the possible types of behaviour of trajectories near equilibrium
positions; results making the role of  singular trajectories  (equilibrium positions,
limit cycles and separatrices) more precise in the  qualitative picture  arising on the
phase plane.

Although the general theory gives complete information about the possible
types of behaviour of the phase trajectories for the system (3.1), this does not
answer the question of which type is realized for a certain actual system.
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Theorem

Let S+ be a positive semi orbit contained in a closed subset K of an open subset
D of the real (x, y) plane. If L(S+) consists of regular points only, then either

a. S+ (= L(S+) is a periodic orbit, or

b. L(S+) is a periodic orbit.

A periodic orbit corresponds to a special type of solution for a dynamical system,
namely one which repeats itself in time.

3.5 AUTONOMOUS SYSTEMS

Autonomous system of ordinary differential equations is a system of ordinary
differential equations which does not explicitly contain the independent variable  t
(time). The general form of a first-order autonomous system in normal form is:

1, , 1, , ,j j nx f x x j n    or, in vector notation,

.x f x ….(3.2)

A non-autonomous system ,x f t x  can be reduced to an autonomous

one by introducing a new unknown function x
n
 + 1 = t . Historically, autonomous

systems first appeared in descriptions of physical processes with a finite number
of degrees of freedom. They are also called dynamical or conservative systems.

A complex autonomous system of the form Equation (3.2) is equivalent to a
real autonomous system with 2n unknown functions

Re Re , Im Im .
d d

x f x x f x
dt dt

The essential contents of the theory of complex autonomous systems —
unlike in the real case — is found in the case of an analytic f(x) .

Consider an analytic system with real coefficients and its real solutions. Let
x = (t) be an (arbitrary) solution of the analytic system Equation (3.2), let  = (t–
, t+) be the interval in which it is defined and let x(t, t

0
, x0) be the solution with

initial data x|t = t
0
 = x0. Let G be a domain in Rn and f  C1(G) The point x0  G

is said to be an equilibrium point, or a point of rest, of the autonomous system
Equation (3.2) if  f (x0)  0. The solution (t)  x0, t  R = (– , + ), corresponds
to such an equilibrium point.

Local properties of solutions:

(1) If (t) is a solution, then (t +c) is a solution for any c  R.

(2) Existence: For any t
0
  R,  x0  G, a solution x(t, t0, x0) exists in a certain

interval    t.

(3) Smoothness: If f  Cp(G), p  1, then (t) Î Cp+1 ().

(4) Dependence on parameters: Let f = f(x, ),   G  Rm, where  G is

a domain; if f  Cp (G × G), p  1, then x(t, t
0
, x0, )  Cp( × G).
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(5) Let x0 be a non-equilibrium point then there exist neighbourhoods V, W of
the points x0, f(x0), respectively, and a differentiable homeomorphism

y =h(x) : V  W such that the autonomous system has the form consty
in W.

A substitution of variables  x = (y) in the autonomous system Equation
(3.2) yields the system

1
,y y f y                                                                ….(3.3)

where  y is the Jacobi matrix.

Global properties of solutions:

(1) Any solution  x = (t) of the autonomous system Equation (3.2) may be
extended to an interval  = (t–, t+). If  = R, the solution is said to be
unboundedly extendable;  if t+ = + , t–  >  – , the solution is said to be
unboundedly extendable forwards in time (and, in a similar manner,
backwards in time). If t+ < +  then, for any compact set K , x0  K,
there exists a
T = T (K) < t+ such that the point x(t, t

0
, x0) is outside K for t <  T (K) and

analogously, for t– > – 

(2) The extension is unique in the sense that any two solutions with common
initial data are identical throughout their range of definition.

(3) Any solution of an autonomous system belongs to one of the following three
types: a) aperiodic, with (t

1
)  (t

2
) for all t

1
  t

2
,t

j 
R;b) periodic, non-

constant; or c) ( ) constt .

To each solution x = (t) is assigned a corresponding curve : x = (t),
t   inside the domain G. G is then said to be the phase space of the autonomous
system,  is its trajectory in the phase space and the solution is interpreted as motion
along this trajectory in the phase space. The mapping gt : G  G defined by the
formula gtx0 = x(t, 0, x0) (i.e., each point moves along the phase trajectory during
time t ) is called the phase flow. In its domain of definition the phase flow satisfies
the following conditions: (1) gtx is continuous in (t, x); and 2) the group property

1 2 1 2 .t t t tg x g g x

The Liouville theorem is valid: Let D  G be a domain with a finite volume
and let  be the volume of the domain gtD  G, then

  0 div ( ) .t
t

D

dv
f x dx

dt                                                   …(3.4)

For a Hamiltonian system, a consequence of Equation (3.4) is the
conservation of the phase volume by the phase flow. A second variant of Equation
(3.4) is obtained as follows. Let  x = (t, ) be a family of solutions of Equation

(3.2), 1 1, , n G ,let G be a domain and let 1C G ,

then
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In , div ,
d

I t f x
dt

` …(3.5)

where , det / ,I t x t .

Structure of phase trajectories:

(1) Any two phase trajectories have either no point in common or coincide.

(2) Any phase trajectory belongs to one of the following types: (a) a smooth,
simple, non-closed Jordan arc; (b) a cycle, i.e., a curve diffeomorphic
(differentiable homeomorphism) to a circle; or (c) a point (an equilibrium
point). The local structure of phase trajectories in a small neighbourhood of
a point other than an equilibrium point is trivial: The family of phase trajectories
is diffeomorphic to a family of parallel straight lines. For a linear autonomous
system the structure of phase trajectories in a neighbourhood of an
equilibrium point is known, since the autonomous system is integrable. For
non-linear autonomous systems this problem has not yet been completely
solved, even for n = 2. One aspect of this problem is the question of stability
of an equilibrium point.

 Let x0, y0 be equilibrium points of the system Equation (3.2).

Let y g y  ...(3.6)

and let U, V be neighbourhoods of the points x0, y0. The systems (3.3) and
(3.7) are said to be equivalent in neighbourhoods of their equilibrium points
x0, y0 if there exist neighbourhoods U, V and a bijective mapping

h:UV such that t th f x g h x  (for xU, f t

xU, ( )t tg f x V ), i.e., as a result of the substitution y = h(x) the

trajectories of the autonomous system Equation (3.2) go into trajectories of
the autonomous system Equation (3.6). The equivalence is said to be
differentiable (topological) if h is a diffeomorphism (homeomorphism). Let
x0 be an equilibrium point of the autonomous system Equation (3.2), let the
matrix f (x0) be non-degenerate, and let it not possess any pure imaginary
eigen values. Then the autonomous system Equation (3.2) in a neighbourhood

of x0 is topologically equivalent to its linear part 0( )y f x y . An important

example is the autonomous system ,x Ax y By   where A, B are constant
matrices with pure imaginary eigen values and n > 2; it is not known when
these autonomous systems are topologically equivalent. One of the most
fundamental problems in the theory of autonomous systems is that of the
structure of the entire family of phase trajectories. The most complete results
have been obtained for n = 2, but even in this case the solution is far from
complete.

A plane autonomous system is an autonomous system for which n = 2. It
follows that the general equation is given by

x = f(x, y)
y = g(x, y)
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Or

( , )

( , )

dy g x y

dx f x y .

The solutions, P(x, y) = 0, of this latter equation are called the characteristics
of the system. Note that the two representations are not necessarily equivalent
since the case f(x, y) = 0 presents no problems in the time-domain, but generates
an ill-defined problem in phase space.

The topological properties of the orbits are generally determined by the
nature of the critical points, f = g = 0, and can be discussed through studying the
properties of the equation

dy Ax By

dx Cx Dy

which is obtained by linearizing g(x, y) and f (x, y) and shifting the coordinate
of origin. Alternatively, the phase-plane topology can be determined by considering
the nature of the eigenvalues, (

1
, 

2
), of the linearized time-domain system.

Check Your Progress

1. Give the equation of continuity and differentiability of solutions.

2. How do you find the differential of a function with two variables?

3. State Bendixson non-existence theorem.

4. Define a plane autonomous system.

3.6 UMLAUFSATZ

Let  be an open connected subset of the plane R2, and let η = (η
1
, η

2
) be a C0

non-vanishing vector field defined in . For z  , define a real number ζ
η
(z)

which represents the angle between η(z) and the positive x”direction.

An appropriate approach to do this is by using the complex variables. The
positive x”direction is represented by the complex number 1 (or the real vector
(1, 0)), and let,

   

denote the unit vector in the direction of η(z).

Let t  R be any real number such that eit = η
1
(z). It can be said that t is an

angle between η(z) and the positive x”direction. This is also an angle between η(z)
and (1, 0).

Consider any other real number θ such that θ”t = 2πn for some integer n also
gives us an angle between η(z) and the positive x”direction. Consequently, this

angle really is an element in the circle ; i.e., it is well-defined up to an

integral multiple of 2π.
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Definition. A region  is simply connected if every closed curve in  is
homotopic to a constant curve.

Consequently, the region  is simply connected if and only if, for every
continuous function  : [0, 1]   such that (1) = (0), there is a continuous
function F : [0, 1] × [0, 1]   such that F(t, 0) = (t) and F(t, 1) = (0) = (1)
for all t  [0, 1].

There is one more significant criterion for simply connectivity. A region  is
simply connected if and only if every continuous function from the unit circle S1 in
R2 extends to a continuous function on the closed unit disk D2 in R2.

Proposition

Let 
1
 and 

2
 be two Jordan curves which can be continuously deformed

into one another without passing through a singularity of the vector field f. Then, jf
(

1
 ) = jf (

2
 ).

Theorem (Umlaufsatz)

Let  be a C1 positively oriented Jordan curve in the plane and let   be its tangent
vector field. Then,

    

Proof.

The result is evidently independent of the position of the curve  in the plane.
Therefore, translate the curve  so that it is above and tangent to the x–axis.

Let the curve be given by s  (s) = (x(s), y(s)) with 0  s  1, (0) = (1)
and (s)  (t) for s < t < 1.

Consider the triangle  = {(s, t) : 0  s  t  1}, and the subset 
0
 = {(s, t)

: 0  s < t  1}.

3.7 INDEX OF A STATIONARY POINT

Let f(x,y,z) be the objective function for an unconstrained optimization problem
then the index of a stationary point can be defined as the number of negative eigen
values of the hessian matrix of f(x,y,z).

Stationary Points

A point is said to be stationary point of a differentiable function of one variable is
a point of the function where the function’s derivative is zero. At the stationary
point, the function stops increasing or decreasing, therefore the name stationary is
given. To find  a stationary point of a function f(x) mathematically, it is defined as a
point where the derivative of f(x) is equal to 0 . Graphically, this corresponds to
points on the graph of f(x) where the tangent to the curve is a horizontal line.

Stationary points are categorised as: maximum point, minimum point and
point of inflection



Dependence on Initial
Conditions and

Parameters

NOTES

Self - Learning
Material 95

Maximum Point

The point at which function attaints its maximum value, is said to be its maximum
point. At this point gradient of the function is positive just before the maximum
point, zero at the maximum point, then negative just after the maximum point. 

Mathematically, dy/dx is decreasing with respect to x at this point; i.e. d2y/dx2

is negative at maximum point.

Minimum Point

The point at which function attaints its minimum value, is said to be its minimum
point. At this point gradient of the function is  negative just before the minimum
point, zero at the minimum point, then positive just after the minimum
point. Mathematically, dy/dx is increasing with respect to x at this point; i.e.
d2y/dx2 is positive at minimum point.

Point of Inflection

The point at which function is neither maximum not minimum, is said to be point of
inflection. Just before a minimum point the gradient is negative, at the minimum the
gradient is zero and just after the minimum point it is positive. d2y/dx2 is zero at the
point of inflection.

The stability of solutions of  Ordinary Differential Equations is determined
by the sign of real part of eigenvalues of the Jacobian matrix. These eigenvalues
are often referred to as the eigenvalues of the equilibrium. An equilibrium point   of
a dynamical system generated by an autonomous system of ordinary differential
equations (ODEs) is defined as a solution that does not change with time. For an
ordinary differential equation, x2 =f(x)  an equilibrium solution is defined as
x(t)=x*, if f(x*)=0 . 

Jacobian matrix for a system of ODE can be defined as

if
J

xj

where all the derivatives are defined at equilibrium point. While solving linear
differential equations, behaviour of solutions can be understood by studying various
points. An equilibrium is said to be asymptotically stable if all eigenvalues have
negative real parts and it is said to be unstable if at least one eigenvalue has positive
real part. The behaviour of solutions near a saddle point is explained by the
eigenvalues of the Jacobian matrix. the eigenvalues of a 2×2-matrix can also be
both negative or both positive.  When both factors  will either both decrease in
time or both increase in time, then equilibrium points are called nodes. An
equilibrium point is called a saddle point if the Jacobian matrix J has one negative
and one positive eigenvalue.



Dependence on Initial
Conditions and
Parameters

NOTES

Self - Learning
96 Material

3.8 STABILITY OF PERIODIC SOLUTIONS

Periodic solution of an ordinary differential equation or system is the one that
periodically depends on the independent variable t. For a periodic solution x(t)
(in the case of a system, x is a vector), there is a number  T  0 such that
x(t +T) = x(t)     for  t  R.

All possible such  are called periods of this periodic solution; the continuity
of x(t) implies that either x(t)  is independent of t or that all possible periods are
integral multiples of one of them — the minimal period T

0
  > 0. When one speaks

of a periodic solution, it is often understood that the second case applies, and T
0

is simply termed the period.

A periodic solution is usually considered for a system of ordinary differential
equations where the right-hand sides either are independent of:

          , ,x f x x U                                                                            …(3.7)

where is a region in , or else periodically depend on t :

1, , , , , .x f t x f t T x f t x x U …(3.8)

(In a system with a different type of dependence on t for the right-hand
sides there is usually no periodic solution.) In Equation (3.8) the period T

0
 of the

periodic solution usually coincides with the period T
1
 of the right-hand side or is

an integer multiple of T
1
; other T

0
 are possible only in exceptional cases. Periodic

solutions with periods T
0
 = kT

1
, k >1, describe subharmonic oscillations and

therefore are themselves sometimes called subharmonic periodic solutions.

System Equation (3.8) determines the Poincare return map F (dependent
on the choice of the initial moment t

0
): If  x (t,  ) is the solution to Equation (3.8)

with initial value x (t
0
,  ) = then

F() = x (t
0
 + T

1
, ).

The properties of Equation (3.8) are closely related to those of F ; in
particular, the value at t = t

0
 for the periodic solution with period kT

1
 is a fixed

point of F for k = 1, while for k > 1  it is a periodic point with period k, i.e., a
fixed point for the iterate Fk . The research on periodic solutions reduces to a
considerable extent to examining the corresponding fixed or periodic points of the
Poincare return map.

The following modification of this construction is used for an autonomous
system Equation (3.7): One takes some local section in the phase space at some
point on the trajectory of the periodic solution (which is a closed curve), i.e., one
takes a smooth manifold  of codimension 1 transversal to this trajectory, and
considers the mapping that converts a point   to the point of intersection of
the trajectory of Equation (3.7) through  with  that is first in time.

The behaviour of solutions close to a given periodic solution is described in
linear approximation by the corresponding variational system. The coefficients in
this linear system in that case periodically depend on t, and therefore one can



Dependence on Initial
Conditions and

Parameters

NOTES

Self - Learning
Material 97

speak of the corresponding monodromy operator and multipliers. The latter are
also termed multipliers for the given periodic solution. The linear approximation
determines the properties of the periodic solution to the same extent as for an
equilibrium solution.

The periodic solutions to system Equation (3.7) have some specific features:
one of the multipliers is always one (if the periodic solution does not reduce to a
constant), which in particular has to be borne in mind when examining the stability
of these periodic solutions, and the period may change in response to small
perturbations, which has to be borne in mind in perturbation theory.

The search for periodic solutions and the examination of their behaviour are
of interest not only from the purely mathematical point of view but also because
the periodic regimes of real physical systems usually correspond to periodic solutions
in the mathematical description of these systems. However, this is a very difficult
problem, since there are no general methods for establishing whether periodic
solutions exist for a particular system. Various arguments and methods are used in
different cases.

3.9 ROTATION POINT, FOCI, NODES AND
SADDLE POINTS

A critical point is any point x = c for which F(c) = 0. Clearly, any such point is then
a solution of

 for all t (– < t < + ).

Example 3.1: Suppose we have the autonom system

Find the critical points of this system.
Solution: For the critical points, we look for the points for which F

1
(x

1
, x

2
) = 0

and F
2
(x

1
, x

2
) = 0.

For F
1
(x

1
, x

2
) = 0 we have x

1
(3 – 5x

1
x

2
) = 0. Thus, we have two cases:

either x
1
 = 0 or 3 – 5x

1
x

2
 = 0.

Case I: x
1
 = 0

We require that  when . Thus we

must have .

Case II: 
We require that  when

 Thus we must have  so that
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Or

3.9.1 Stability of Critical Points

We will now discuss the concepts of stability, asymptotic stability and instability of
a solution of the autonomous system

dx/dt = F(x,y),    dy/dt = G(x,y) ….(3.9)

Here we will give a precise mathematical meaning to these con-cepts.

A critical point x = x
0
, y = y

0 
(an equilibrium solution x = x

0
, y = y

0
) of the

autonomous system (3.9) is said to be a stable critical point if, given any ε > 0,
it is possible to find a  such that every solution x(t), y = ψ(t) of the system
(3.9), which at t = 0 satisfies

{[(0) – x
0
]2 + [(0) – y

0
]2}1/2 < , …(3.10)

and satisfies

{[(t) – x
0
]2 + [(t) – y

0
]2}1/2 < ,          …(3.11)

for all t > 0. These mathematical statements say that all solutions that start
sufficiently close to (x

0
, y

0
) stay close to (x

0
,y

0
).

A critical point (x
0
, y

0
) is said to be asymptotically stable if it is stable and

if there exists a δ
0
, 0 < δ

0 
< δ, such that if a solution x = (t), y = ψ(t) satisfies

{[(0) – x
0
]2 + [(0) – y

0
]2}1/2 < 

0
,            ...(3.12)

Then

lim
t

 (t) = x
0
,       lim

t
 (t) = y

0
.                                  ….(3.13)

Trajectories that start sufficiently close to (x
0
, y

0
) must not only stay close

but must eventually approach (x
0
, y

0
) as t approaches infinity. Asymptotic stability

is a stronger requirement than stability, since a critical point must be stable before
we can even talk about whether it is asymptotically stable. On the other hand, the
limit condition, which is an essential feature of asymp-totic stability, does not by
itself imply even ordinary stability. Geometrically, all that is needed is a family of
trajectories having members that start arbitrarily close to (x

0
. y

0
), then recede an

arbitrarily large distance before eventually approaching (x
0
. y

0
) as t approaches

infinity. For the linear system,

dx/dt = ax + by, dy/dt = cx + dy    …(3.14)
with ad – bc  0, the type and stability of the critical point (0, 0) as a

function of the roots r
1 
 0 and r

2 
 0  of the characteristic equation,

 r2 –(a+d)r + ad – bc = 0   …(3.15)

are summarized in the following theorem:
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Theorem 3.2: The critical point (0, 0) of the linear system (3.15) is

(i) asymptotically stable if the roots r
1
, r

2 
of the characteristic Equation (3.15)

are real and negative or have negative real parts.

(ii) stable, but not asymptotically stable, if r
1 
and r

2 
are pure imaginary.

(iii) unstable if r
1 
and r

2 
are real and either is positive, or if they have positive real

parts.

Notice that if a critical point of the linear system (3.13) is asymptotically
stable then not only do trajectories that start close to the critical point approach

the critical point, but, in fact, since every solution is a linear combination 1r te  of

and 2r te  every trajectory approaches the critical point. In this case the critical
point is said to be globally asymptotically stable. This property of linear systems
is not, in general, true for nonlinear systems. Often an important practical problem
in considering an asymptotically stable critical point of a nonlinear system is to
estimate the set of initial conditions for which the critical point is asymptotically
stable. This set of initial points is called the region of asymptotic stability for the
critical point.

We now want to relate the results for the linear system (3.13) to the nonlinear
system.

dx

dt
 = ax + by + F

1
(x, y),

dy

dt
 = cx + dy + G

1
(x, y),                   …(3.16)

 We assume that (0,0) is a critical point of the system (3.16) and that ad –
bc  0. Also we assume that F

1 
and G

1
 have continuous first partial derivatives

and are small near the origin in the sense that F
1
(x, y)/r  0 and G

1
(x, y)/r  0

as r  0, where r = (x2 + y2)1/2. Recall that such a system is said to be almost
linear in the neighborhood of the origin. As an example, the system

dx

dt
 = x – x2 – xy,

dy

dt
 = 

1

2
y – 

1

4
y

2
 – 

3

4
xy,                       …(3.17)

satisfies the stated conditions. Here a = 1, b = 0, c = 0, d= 1/2.  F
1
 (x, y) = –x2 –

xy, and G
1
(x,y) = –¼ y2 – ¾ xy. To show that F

1
(x,y)/r  0 as r  0, let x = r

cos θ, y = r sin θ. Then

2 2 2
1( , ) – cos – sin cosF x y r r

r r
 = – r(cos2  + cos  sin )  0   ...(3.18)

as r  0. The argument that G
1
(x, y)/r  0 as r 0 is similar.

Theorem 3.3: Let r
1 
and r

2 
be the roots of the characteristic Equation (3.15) of

the linear system (3.13) corresponding to the almost linear system (3.16). Then
the type and stability of the critical point (0, 0) of the linear system (3.14) and the
almost linear system (3.17) are as shown in the table below:
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r1r2 Linear System Almost Linear System 
 Type Stability Type Stability 
r1 > r 2 > 0 IN Unstable IN Unstable 
r 1 < r 2 < 0 IN Asymptotically IN Asymptotically 
  stable  stable 
r 2 < 0 < r 1 SP Unstable SP Unstable 
r 1 = r 2 > 0 PN or IN Unstable PN, IN, or SpP Unstable 
r 1 = r 2 < 0 PN or IN Asymptotically PN, IN or SpP Asymptotically 
  stable  stable 

r 1 = r 2 =  ± i     

 > 0 SpP Unstable SpP Unstable 

 SpP Asymptotically SpP Asymptotically 

  stable  stable 

r 1 = i, r 2 = – i C Stable C or SpP Indeterminate 

IN = Improper node, PN = Proper node; SP = Saddle point;  
SpP = Spiral point; C = Center 
 

Theorem 3.3 says that for x and y near zero the nonlinear terms F
1
(x, y)

and G
1
(x, y) are small and do not affect the stability and type of critical point as

determined by the linear terms except in two sensitive cases: r
1 
and r

2 
pure imaginary,

and r
1 
and r

2
 real and equal. Small pertur-bations in the coefficients of the linear

system (3.14), and hence in the roots r
1 
and r can alter the type and stability of the

critical point only in these two sensitive cases. When r
1 
and r

2 
are pure imaginary,

a small perturbation can change the stable center into either an asymptotically
stable or an unstable spiral point or even leave it as a center. When r

1 
= r

2 
a small

perturbation does not affect the stability of the critical point, but may change the
node into a spiral point. It is reasonable to expect that the small nonlinear terms in
Equation (3.16) might have a similarly substantial effect, at least in these two sensitive
cases. This is so, but the main significance of Theorem 3.3 is that in all other
cases the small nonlinear terms do not alter the type or stability of the critical
point. Thus, except in the two sensitive cases, the type and stability of the critical
point of the nonlinear system (3.16) can be determined from a study of the much
simpler linear system (3.14).

Even if the critical point is of the same type as that of the linear system, the
trajectories of the almost linear system may be considerably different in appear-
ance from those of the corresponding linear system.

Classification of Critical Points
1. Nodes 

1 


2 
> 

 If the eigenvalues are both negative, then we have a stable node.

 If the eigenvalues are both positive, then we have an unstable node.

2. Saddle points 
1 


2 
<  0

 Since one eigenvalue is necessarily positive, then the critical point is 
necessarily unstable.

3. Spiral Point or Focus 
1  

=  ± i

 The spiral point is stable if  < 0 and unstable if  > 0.

4. Centre: 
  
= ± i
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 The centre point is said to be uniformly stable and the phase-plane orbits
are circles or ellipses.

Check Your Progress

5. Give definition of Umlaufsatz.

6. How will you define the index of stationary point?

7. What do you mean by period of the periodic solution?

8. When is a critical point stable?

9. What is region of asymptotic stability?

10. Name the various types of critical points.

3.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. x(t) is defined as an -approximate solution of the DE dx/dt= f (t, x) on an
interval I if |x (t) – f (t, x(t))|  r  t Î I. (r)

2. The differential dy depends on the following two quantities:

 The variable x (through the derivative y = f (x)).

 The differential of the independent variable dx.

3. Bendixson’s criteria states that if D is a simply connected open subset of R
2

and if the expression  is not identically zero and does not change sign in D
then there are no periodic orbits of the autonomous system in D.

4. A plane autonomous system is an autonomous system for which n = 2. It
follows that the general equation is given by

5. A region  is simply connected if every closed curve in  is homotopic to
a constant curve.

6. Let f(x,y,z) be the objective function for an unconstrained optimization
problem then the index of a stationary point can be defined as the number
of negative eigen values of the hessian matrix of f(x,y,z).

7. For a periodic solution x(t) (in the case of a system, x is a vector), there is
a number  T  0 such that  x(t +T) = x(t)     for  t  R.

8. A critical point x = x0, y = y0 (an equilibrium solution x = x0, y = y0) of the
autonomous system dx/dt = F(x,y),    dy/dt = G(x,y) is said to be a stable
critical point if, given any  > 0, it is possible to find a  such that every
solution x = (t), y = (t) of the system, which at t = 0 satisfies

{[(0) – x0]2 + [(0) – y0]2}1/2 <   and satisfies

{[(t) – x0]2 + [(t) – y0]2}1/2 < 

for all t > 0.
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9. Often an important practical problem in considering an asymptotically stable
critical point of a nonlinear system is to estimate the set of initial conditions
for which the critical point is asymptotically stable. This set of initial points is
called the region of asymptotic stability for the critical point.

10. Nodes, saddle points, focus and centre are the various types of critical
points.

3.11 SUMMARY

 The dependence of solutions of initial value problems on the initial values
and on parameters in the differential equation can be studied with the
knowledge of a fundamental estimate.

 Dependence on parameters can be transformed into initial conditions

 To explain the concept of higher order differentiability, consider a function y
= f(x) differentiable in the interval (a, b).  For defining the first-order
differential of the function at the point x  (a, b) the formula is dy = f (x)
dx.

 On fixing the increment dx, it is assumed that dx is constant. Then the
differential dy becomes a function only of the variable x for which the
differential can also be defined by taking the same differential dx as the
increment x.

 Bendixson’s criteria and Dulac’s criteria give the sufficient conditions that
rule out the possibility of periodic solutions.

 The basic result of H. Poincare and I. Bendixson is that any bounded semi-
trajectory (positive or negative) either tends to an equilibrium position or
coils round (like a spiral) to a limit cycle, or in an analogous way coils to a
closed separatrix or separatrix contour  consisting of several separatrices
joining  certain equilibrium positions, or is itself an equilibrium position or a
closed trajectory.

 The general form of a first-order autonomous system in normal form is:

1, , 1, , ,j j nx f x x j n    or, in vector notation, .x f x

 The composition of two functions such that y = f(u) and u = g(x). In this
instance, y is a composite function of the independent variable x.

 Let  be an open connected subset of the plane R2, and let  = (
1
, 

2
) be

a C0 non-vanishing vector field defined in . For z  , define a real
number (z) which represents the angle between (z) and the positive
x”direction.

 A region  is simply connected if every closed curve in  is homotopic to
a constant curve.

 Let f(x,y,z) be the objective function for an unconstrained optimization
problem then the index of a stationary point can be defined as the number
of negative eigen values of the hessian matrix of f(x,y,z).
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 A point is said to be stationary point of a differentiable function of one
variable is a point of the function where the function’s derivative is zero.

 The point at which function attaints its maximum value, is said to be its
maximum point. At this point gradient of the function is positive just before
the maximum point, zero at the maximum point, then negative just after the
maximum point.

 The point at which function attaints its minimum value, is said to be its minimum
point. At this point gradient of the function is negative just before the minimum
point, zero at the minimum point, then positive just after the minimum point.

 The point at which function is neither maximum not minimum, is said to be
point of inflection. Just before a minimum point the gradient is negative, at
the minimum the gradient is zero and just after the minimum point it is positive.

 Periodic solution of an ordinary differential equation or system is the one
that periodically depends on the independent variable t.

 A critical point can be a node, saddle point, focus and centre.

3.12 KEY TERMS

 Autonomous system: Autonomous system of ordinary differential equations
is a system of ordinary differential equations which does not explicitly contain
the independent variable.

 Stationary points: A point is said to be stationary point of a differentiable
function of one variable is a point of the function where the function’s
derivative is zero.

 Maximum point: The point at which function attaints its maximum value, is
said to be its maximum point. At this point gradient of the function is positive
just before the maximum point, zero at the maximum point, then negative
just after the maximum point.

 Minimum point: The point at which function attaints its minimum value, is
said to be its minimum point. At this point gradient of the function is negative
just before the minimum point, zero at the minimum point, then positive just
after the minimum point.

 Point of inflection: The point at which function is neither maximum not
minimum, is said to be point of inflection. Just before a minimum point the
gradient is negative, at the minimum the gradient is zero and just after the
minimum point it is positive.

 Periodic solution: Periodic solution of an ordinary differential equation or
system is the one that periodically depends on the independent variable.

 Index of a critical point: For a function of n variables, the number of
negative eigenvalues of a critical point is called its index.
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3.13 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the continuity and differentiability of solutions.

2. What do you mean by the higher order differentiability?

3. State the Poincare-Bendixson theory.

4. Give the local properties of autonomous systems.

5. What is Umlaufsatz?

6. How will you define the index of a stationary point?

7. Define asymptotic stability of a critical point.

8. When is a critical point said to be stable?

Long-Answer Questions

1. Discuss the continuity with respect to parameters and initial conditions with
the help of giving examples.

2. What do you understand by the higher order differentiability? Discuss the
properties of higher-order differentials with the help of relevant examples.

3. For the following system of equations, use the Poincare-Bendixson theorem
to show that at least one limit cycle solution exists:

a. 

b. 

4. Briefly explain about the autonomous systems with the help of giving
examples.

5. Discuss the definition of Umlaufsatz. Give appropriate examples.

6. Explain about the index of stationary point with the help of giving examples.

7. Determine the periodic solution of

8. Find the critical points of f(x) = |x2 – x|.

9. Find the critical points of the function,

10. Find the critical points and trajectories of the following system,
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UNIT 4 LINEAR SECOND ORDER
EQUATIONS
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4.0 Introduction
4.1 Objectives
4.2 Linear Differential Equations of Second Order

4.2.1 Solution by Changing the Dependent Variable when One Integral
Belonging to the C.F. is known

4.2.2 Solution by Removing the First Derivative and Changing the Dependent
Variable

4.2.3 Solution by Changing the Independent Variable
4.2.4 Solution by Using the Method of variation of Parameters

4.3 Theorems of Sturm
4.3.1 Sturm-Liouville Boundary Value Problems
4.3.2 Eigen values and Eigen Function of the Strum-Louville Problem

4.4 Nonoscillation Theorems
4.4.1 Nonoscillatory Equations and Principal Solutions

4.5 Number of Zeros in Second order linear differential Equation
4.6 Answers to ‘Check Your Progress’
4.7 Summary
4.8 Key Terms
4.9 Self-Assessment Questions and Exercises

4.10 Further Reading

4.0 INTRODUCTION

A linear differential equation or a system of linear equations with constant coefficients
for the associated homogeneous equations can be solved using quadrature, which
means the solutions can be represented in terms of integrals. This is also true for a
non-constant coefficient linear equation of order one. In general, quadrature cannot
solve an equation of order two or higher with non-constant coefficients. For order
two, Kovacic’s approach allows determining whether there are integral solutions
and, if so, computing them. Holonomic functions are the solutions to linear
differential equations with polynomial coefficients. Many common and special
functions, such as exponential, logarithm, sine, cosine, inverse trigonometric
functions, error function, Bessel functions, and hypergeometric functions, belong
to this class of functions, which are stable under sums, products, differentiation,
and integration. Most calculus operations, such as computation of antiderivatives,
limits, asymptotic expansion, and numerical evaluation to any precision with a
certified error bound, can be made algorithmic (on these functions) thanks to their
representation by the defining differential equation and initial conditions.

Sturm sequence of a univariate polynomial p is a sequence of polynomials
associated with p and its derivative by a variant of Euclid’s algorithm for polynomials.
Sturm’s theorem expresses the number of distinct real roots of p located in an
interval in terms of the number of changes of signs of the values of the Sturm
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sequence at the bounds of the interval. Applied to the interval of all the real numbers,
it gives the total number of real roots of p.

In differential equations, a boundary value problem is a differential equation
together with a set of additional restraints, called the boundary conditions. A solution
to a boundary value problem is a solution to the differential equation which also
satisfies the boundary conditions. A large class of important boundary value
problems include the Sturm-Liouville problems. The analysis of these problems
involves the eigen functions of a differential operator. In mathematical applications,
a boundary value problem should be well established. This means that given the
input to the problem there exist a unique solution, which depends continuously on
the input.

Oscillation theory was initiated by Jacques Charles François Sturm in his
investigations of Sturm–Liouville problems from 1836. There he showed that the
nth eigen function of a Sturm–Liouville problem has precisely n-1 roots. For the
one-dimensional Schrödinger equation the question about oscillation/nonoscillation
answers the question whether the eigenvalues accumulate at the bottom of the
continuous spectrum.

In this unit, you will learn about the linear differential equations of second
order, theorems of Strum, Sturm–Liouville boundary value problem, non-oscillatory
equations and principle solutions, nonoscillation theorems and numbers of zeros in
second order linear equation.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic concept of linear differential equations of second order

 Discuss about the theorems of strum

 Define Lagrange’s identity and Green’s formula for second order differential
equations

 Learn about the nonoscillation theorem

 Analysis the nonoscillatory equations and principle solutions

 Explain about the numbers of zeros

4.2 LINEAR DIFFERENTIAL EQUATIONS OF
SECOND ORDER

Linear differential equation of second order is an equation of the form

2

2
P Q R

d y dy
y

dx dx
  

where P, Q and R are the functions of x.
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4.2.1 Solution by Changing the Dependent Variable
when One Integral Belonging to the C.F. is
Known

Let the linear differential equation of second order be

2

2
P Q R

d y dy
y

dx dx
    ...(4.1)

where P, Q and R are the functions of x only.

Let y = u be a known integral belonging to the C.F. of the equation (4.1).
Thus, its solution is

2

2
P Q 0

d y dy
y

dx dx
    ...(4.2)

Taking y = uv and differentiating with respect to x, we get

1 1

dy
u v uv

dx
  and 

2

2 1 1 22
2

d y
u v u v uv

dx
  

Putting these values in Equation (4.1), we get

     2 1 1 2 1 12 P Q Ru v u v uv u v uv uv     

    2 1 1 2 12 P P Q Ruv u u v u u u v      ...(4.3)

Since y = u is the solution of Equation (4.2), thus Equation (4.2) can be
written as

2 1P Q 0u u u  

Using this value in equation (4.3), we get

 2 1 12 P 0 Ruv u u v   

 2 1 1

2 R
Pv u v

u u
    
 

Now, putting 1v p  and 2

dp
v

dx
 , we get

1

2 R
P

dp
u p

dx u u
    
 

 ...(4.4)

This is a linear equation in p. Thus, its

I.F. = 1
2

Pu dx
ue

  
 

2P P P2log log 2. .
dx dx dxu ue e e e u e    

Now, we have the solution of equation (4.4) as

P P2 2
1

R
. .

dx dx
p u e u e dx c

u
    
 

P P P2 2
1R

dx dx dx
p u e ue dx c u e

        
 

P P P2 2
1R

dx dx dxdv
u e ue dx c u e

dx

        
 

dv
p

dx
   

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Integrating both sides, we get

P P P2 2
1 2R

dx dx dx
v u e ue dx dx c u e dx c

        
   

The complete solution of Equation (4.1) is given by y = uv

P P P2 2
1 2R

dx dx dx
y u u e ue dx dx c u u e dx c u

         
   

where c
1
 and c

2
 are two arbitrary constants.

Determining the particular integral of 
2

2
P Q 0

d y dy
y

dx dx
  

In case the integral of C.F. is not known while solving linear differential equations
of second degree, one of the following rules helps us in finding the particular integral
of

2

2
P Q 0

d y dy
y

dx dx
   ...(4.5)

Rule 1: Let mxy e be the solution of Equation (4.5).

Differentiating with respect to  x, we get

mxdy
me

dx
  and 

2
2

2
mxd y

m e
dx



Putting these values in Equation (4.5), we get
2 P Q 0mx mx mxm e me e  

 2 P Q 0mxm m e   

2 P Q = 0m m  

Thus, mxy e is the solution of Equation (4.5) if 2 P Q = 0m m  .

Corollary: Taking m = 1, y = ex is a solution of Equation (4.5) if
1 + P + Q = 0 .

Taking m = –1, y = e–x is a solution of Equation (4.5) if 1 – P + Q = 0.

Taking m = a, y = eax is a solution of Equation (4.5) if a2 + aP + Q = 0.

Rule 2: Let my x be the solution of Equation (4.5).

Differentiating both sides with respect to  x, we get

1mdy
mx

dx
  and 

2
2

2
( 1) md y

m m x
dx

 

Putting these values in Equation (4.5), we get

2 1( 1) P Q 0m m mm m x mx x    

2( 1) P Q 0m m mx x    

Thus, my x is the solution of equation (4.5) if 2( 1) P Q 0m m mx x    .
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Corollary: Taking m = 1, y = x is a solution of Equation (4.5) if P + Qx = 0.

Taking m = 2, y = x2 is a solution of Equation (4.5) if 2 + 2Px +Qx2 = 0.

Example 4.1: Solve the differential equation

 
2

2
cot 1 cot sin .xd y dy

x x y e x
dx dx

   

Solution: The given differential equation is

 
2

2
cot 1 cot sinxd y dy

x x y e x
dx dx

    ... (1)

Comparing it with 
2

2
P Q R,

d y dy
y

dx dx
    we get

P cot ,Q 1 cot ,R sinxx x e x     

Now, P Q 1 cot 1 cot 1 0x x       

Since P + Q + 1= 0, thus xy e  is a part of C.F..

Taking xy ve ,

 x xdy dv
e e v

dx dx
  and

2 2

2 2
2 .x x xd y d v dv

e e ve
dx dx dx

  

Substituting these values in Equation (1), we get

          
2

2
2 . cot 1 cot sinx x x x x x xd v dv dv

e e ve x e e v x ve e x
dx dx dx

        
 

 
2

2
+ 2 cot sin

d v dv
x x

dx dx
  

  2 cot sin
dp

x p x
dx

    where 
dv

p
dx

 and
2

2

dp d v

dx dx
  ...(2)

This is a linear differential equation in p i.e., P ' Q '
dp

p
dx

  , where P = 2

– cot x and Q = sin x. Thus, its I.F.

=  P ' 2 cot 2 logsindx x dx x xe e e
   

2 2

logsin sin

x x

x

e e

e x
 

Now, the solution of Equation (2) is given by

   p(I.F) 1Q'(I.F)dx c 


2 2

1. sin .
sin sin

x xe e
p x dx c

x x
 


2 2

1.
sin 2

x xe e
p c

x
 


2

12 2

sin sin
.

2

x

x x

e x x
p c

e e
 

 2
1

sin
sin

2
xdv x

c e x
dx

 
dv

p
dx

   

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 2
1

sin
sin

2
xx

dv c e x dx   
 

Integrating both sides, we get 
2

1

sin
sin

2
xx

dv c e x dx     

  
2

1
2

cos
2sin cos

2 5

xc ex
v x x c



     

Thus, the complete solution of Equation (1) is given by xy ve

  1
2

1
cos 2sin cos

2 5

x
x xc e

y e x x x c e


    

4.2.2 Solution by Removing the First Derivative and
Changing the Dependent Variable

In case the integral of the C.F. is neither known nor can be found using the rules,
there is a need of other method to find the solution of linear differential equation of
second order. Here, we will learn the method which is independent of integral of
C.F.

Consider the linear differential equation of second order

2

2
P Q R

d y dy
y

dx dx
   ...(4.6)

Change the dependent variable in the Equation (4.6) by putting y uv , where
u and v are the functions of x.

Now, 
dy dv du

u v
dx dx dx

   and 
2 2 2

2 2 2
2 .

d y d v du dv d u
u v

dx dx dx dx dx
  

Putting these values in Equation (4.6), we get

   
2 2

2 2
2 . P Q( ) R

d v du dv d u dv du
u v u v uv

dx dx dx dx dx dx

           
  

2 2

2 2
P 2 P Q R

d v du dv d u du
u u u v

dx dx dx dx dx

          
   

2 2

2 2

2 1 P R
P . . . Q

d v du dv d u du
v

dx u dx dx u dx u dx u

          
   

...(4.7)

Taking u such that the coefficient of first derivative 
dv

dx
 = 0 (i.e., removing

first derivative from Equation (4.7)), we get

2
P + 0

du

u dx


P
 = 

2

du
dx

u




Integrating both sides, we get

1
 = P

2

du
dx

u


 
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1
log  = P

2
u dx


 

1
P

2 = 
dx

u e

 …(4.8)

Since 
2

P + 0
du

u dx
 , Equation (4.8) becomes

2 2

2 2

1 P R
. . Q

d v d u du
v

dx u dx u dx u

 
    
 

…(4.9)

From Equation (7.8),

1
P

2
1 1

 = P P
2 2

dxdu
e u

dx

     
 

and       
2

2 2
2

1 P P 1 1 P 1 1 P
 = P P

2 2 2 4 2

d u du d d d
u u u u u

dx dx dx dx dx

            
   

Putting these values in Equation (4.9), we get

12
P2 2

2

1 1 1 P P 1
P P Q R

4 2 2

dxd v d
u u u v e

dx u dx u

                 
12

P2 2 2
2

1 1 P 1
P P Q R

4 2 2

dxd v d
v e

dx dx
         

12
P2 2

2

1 P 1
Q P R

2 4

dxd v d
v e

dx dx
        

2

2
P Q

d v
v

dx
    ...(4.10)

where 
1

P2 2
1 P 1

P  = Q . P ,Q  = R
2 4

dxd
e

dx
  

The Equation (4.10) is called the normal form of the Equation (4.6). Equation
(4.10) can easily be integrated and then can be solved for v.

Thus, the general solution of  Equation (4.6) is y = uv, which contains two
arbitrary constants.

Example 4.2: Solve the differential equation
2 2cos cos 0

d dy
x y x

dx dx
    
 

.

Solution: The given differential equation is 
2 2cos cos 0

d dy
x y x

dx dx
    
 

  
2

2 2
2

cos 2sin cos cos 0
d y dy

x x x y x
dx dx

   


2

2
2 tan 0

d y dy
x y

dx dx
   ...(1)

Comparing Equation (1) with 
2

2
P Q R

d y dy
y

dx dx
   , we get

P = –2 tan x, Q = 1 and R = 0
Putting y uv  in Equation (1), the equation is transformed into

2

2
P' Q

d v
v

dx
  ...(2)
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where
1 1

P 2 tan logsec2 2 sec
dx x dx xu e e e x

      

   2 21 P 1 1 1
P ' Q P 1 2 tan 4 tan

2 4 2 4

d d
x x

dx dx
      

     2 2 2 21 sec tan 1 1 tan tan 2x x x x       

and
1

P
2Q' R 0

dx
e  

Putting these values in Equation (2), it gets transformed into 
2

2
2 0

d v
v

dx
 

  …(3)

Symbolic form of this equation is  2D 2 0v 

Its auxiliary equation is 2D 2 0   2D 2 D 2i    

Now, the solution of Equation (3) is given by
1 2cos 2 sin 2v c x c x 

Thus, the solution of Equation (1) is given by y uv

 1 2sec cos 2 sin 2y x c x c x   

4.2.3 Solution by Changing the Independent Variable

Consider the linear differential equation of second degree

2

2
P Q R

d y dy
y

dx dx
   ...(4.11)

Changing the independent variable x to z with the help of relation z = f(x) ,
we get

 .
dy dy dz

dx dz dx



2

2

d y d dy

dx dx dx
    
 

                     
22 2

2 2
. .

d dy dz d y dz dy d z

dx dz dx dz dx dz dx
        
   

Substituting these values in the Equation (4.11), we get
22 2

2 2
. P . Q R

d y dz dy d z dy dz
y

dz dx dz dx dz dx
         
   



2

2 2

2 2 22

P Q R
d z dz

d y dy ydx dx
dz dzdz dz dz

dx dx dx


   

     
     
     


2

1 1 12
P Q R

d y dy
y

dz dz
    ...(4.12)
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where 

2

2

1 1 12 2 2

P Q R
P ,Q ,R

d z dz

dx dx
dz dz dz

dx dx dx


  

     
     
     

Here, P
1
, Q

1
 and R

1
 are the functions of x but can be expressed as the

functions of z with the help of the relation between z and x.

1. Choosing z such that the coefficient of  P
1
 is zero.

2

2

1 2

P
P 0

d z dz

dx dx
dz

dx


 

 
 
 


2

2
P 0

d z dz

dx dx
  

2

2
P

d z dz

dx dx
  

2

2

P

d z

dx
dz

dx

  

Integrating both sides, we get

log P
dz

dx
dx

 
Pdxdz

e
dx

 

Integrating again, we get 
Pdx

z e dx
   

 

For the relation
Pdx

z e dx
   

  , P
1
 will be zero and Equation (4.12) reduces to

2

1 12
Q R

d y
y

dz
   ...(4.13)

If Q
1
 is constant or a constant multiplied by 2

1

z
, then Equation (4.13) can

be solved easily giving the value of y in terms of z. Then, by replacing z in terms of
x, we get the general solution of Equation (4.11).

2. Choosing z such that the coefficient of Q
1
 is constant.

2
1Q a (say)

2
2

Q
a

dz

dx

 
 
 
 

2
2 = Q

dz
a

dx
   
 

Q
dz

a
dx

 
1

Q
dz

dx a
 

Integrating both sides, we get

         
1

Qz dx
a

 

For the relation
1

Qz dx
a

  , Q
1
 = a2 and Equation (4.12) reduces to
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2

2
1 12

P R
d y dy

a y
dz dz

    ...(4.14)

If P
1
 is a constant, then Equation (4.14) can be solved easily giving the

value of y in terms of z. Then, by replacing z in terms of x, we get the general
solution of Equation (4.11).

Example 4.3: Solve the differential equation

      
2

2 cos 2
2

3sin cot 2 sin sinxd y dy
x x y x e x

dx dx
    .

Solution: The given differential equation is

        
2

2 cos 2
2

3sin cot 2 sin sinxd y dy
x x y x e x

dx dx
         ...(1)

Comparing it with 
2

2
P Q R

d y dy
y

dx dx
   , we get

2P 3sin cot , Q 2sinx x x    and cos 2R sinxe x

Let
 P 3sin cotdx x x dxdz

e e
dx

     3cos logsin 3cossin .x x xe x e 

Integrating, we get

 3cos 3cos1
sin 3sin

3
x xz e x dx e x dx  

  3cos1

3
xe 

On changing the independent variable x  to z  by the relation 3cos1

3
xz e  ,

Equation (1) reduces to the form
2

1 1 12
P Q R

d y dy
y

dz dz
   …(2)

where
   

2

1 1 2 2 2 22 3cos

Q 2sin 2 2
P 0, Q

93sin x

x

zzdz x e
dx

    
 

 
 

and
 

cos 2

1 2 22 3cos

R sin
R

sin

x

x

e x

dz x e
dx



 
 
 
 

      
7cos

7cos 3cos 3
6cos

x
x x

x

e
e e

e


    

 

77
33

7 / 3

1
3

3
z z

   

Substituting these values in Equation (2), it becomes

      

72
3

7 / 32 2

2 1

9 3

d y
y z

dz z


  

Multiplying by 2z , we get

      

12
2 3

7 / 32

2 1

9 3

d y
z y z

dz


   ...(3)

Putting logtz e z t  
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 D
d d

z
dz dt

   and  
2

2
2

D D 1
d

z
dz

 

Now, Equation (3) reduces to

  3
7 / 3

2 1
D D 1

9 3

t

y e
      

Its auxiliary equation is 2 2
D D 0

9
  

 2 2 1
9D 9D 2 0 D ,

3 3
    

      C.F. 
2 1

2 / 3 1/ 33 3
1 2 1 2

t t
c e c e c z c z   

    
2 / 3 1/ 3

3cos 3cos
1 2

1 1

3 3
x xc e c e

         
   

2cos cos
1 2A Ax xe e 

and         P.I. 3
7 / 3

2

1 1
2 3D D
9

t

e
 

  
  

              
3 3

7 /3 7 / 3

1 1 9 1
1 1 2 3 6 3
9 3 9

t t

e e
          

    

               
 

 

1
1 3. 3cos3

1/ 3 1/ 3

1 1 1

36 3 6 3
xz e


        

                 

cos
cos

1/ 3 1/ 3

1 1
.

66 3 3

x
x e

e



 

Thus, the solution of Equation (1) is
cos

2cos 2 cos
1 2A A

6

x
x x e

y e e


    .

4.2.4 Solution by Using the Method of Variation of
Parameters

Here, we shall learn the method to find the complete primitive of a linear equation
whose C.F. is known. In this method, the constants of the C.F. are taken as the
functions of independent variables.

Consider the linear differential equation of second degree

2

2
P Q R

d y dy
y

dx dx
    ...(4.15)

Let the C.F. of Equation (4.15) be

1 2y c u c v  …(4.16)

where c
1
 and c

2
 are two arbitrary constants.

Clearly, u and v are the integrals of
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2

2
P Q 0

d y dy
y

dx dx
  

 P Q 0u u u      ...(4.17)

and P Q 0v v v     ...(4.18)

Let the constants c
1
 and c

2
 in Equation (4.15) be the functions of x and the

complete primitive of Equation (4.15) be

1 2( ) ( )y c x u c x v   ...(4.19)

Differentiating with respect to x, we get

1 1 2 2( ) ( ) ( ) ( )
dy

c x u c x u c x v c x v
dx

     

 1 2 1 2( ) ( ) ( ) ( )
dy

c x u c x v c x u c x v
dx

       
 

Let c
1
(x) and c

2
(x) satisfy the condition 

1 2( ) ( )c x u c x v  = 0 ...(4.20)

Thus, we get 1 2( ) ( )
dy

c x u c x v
dx

 

Again differentiating with respect to x, we get
2

1 1 2 22
( ) ( ) ( ) ( )

d y
c x u c x u c x v c x v

dx
       

Putting these values in Equation (4.15), we get

 1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) P ( ) ( ) Q ( ) ( ) Rc x u c x u c x v c x v c x u c x v c x u c x v              
 

 1 2 1 2( ) P Q ( ) P Q ( ) ( ) Rc x u u u c x v v v c x u c x v               
 

Substituting the values from Equation s (4.17) and (4.18), we get

   1 2 1 2( ) 0 ( ) 0 ( ) ( ) Rc x c x c x u c x v      

1 2( ) ( ) Rc x u c x v     1 2( ) ( ) R = 0c x u c x v        ...(4.21)

Solving the Equations (4.20) and (4.21) for 
1 2( ), ( )c x c x  , we get

1 2( ) ( ) 1

R R

c x c x

v u uv vu

 
 

  

 1 2

R R
( ) , ( )

v u
c x c x

uv vu uv vu

  
    

Integrating, we get 1 2

R R
( ) , ( )

W W

v u
c x dx a c x dx b     

where W = 
u v

uv vu
u v

  
 

Putting these values in  Equation (4.19), we get
R R

W W

v u
y u dx v dx   

which is the particular solution of Equation (4.15).
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Example 4.4: Apply the method of variation of parameters to solve
2

2
2

cosec
d y

a y ax
dx

  .

Solution: The given differential equation is
2

2
2

cosec
d y

a y ax
dx

      ...(1)

Symbolic form of the equation is  2 2D coseca y ax 

Its auxiliary equation is 2 2D 0a  2 2D a  D ia 

C.F. = A cos Bsinax ax

Let the complete solution of Equation (1) be cos siny u ax v ax     ...(2)

where u, v are unknown functions of x.

 1 2y uy vy   where 1 cosy ax  and 2 siny ax

Let
1 2

1 2

W
y y

y y


 

  2 2cos sin
W cos sin

sin cos

ax ax
a ax ax a

a ax a ax
   


Now   2
1

R

W

y
u dx c    where R cosecax

    1

sin cosecax ax
dx c

a
  

1
dx

a
  1c

x

a
 

1c

and   1R

W

y
v dx  2c

     
cos cosec ax ax

dx
a

 2c
cot ax

dx
a

 2c 2

logsin ax

a


2c

Substituting the value of u and v in Equation (2), we get

  1 22

logsin
cos sin

x ax
y c ax c ax

a a
          
   

 1 2 2

logsin
cos sin cos sin

x ax
y c ax c ax ax ax

a a
   

which is the complete solution of Equation (1).

4.3 THEOREMS OF STURM

In the field of ordinary differential equations, Sturm separation theorem describes
the location of roots of homogeneous second order linear differential equations.
Basically the theorem states that given two linear independent solutions of such an
equation the zeros of the two solutions are alternating.
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Sturm Separation Theorem

Given a homogeneous second order linear differential equation and two continuous
linear independent solutions u(x) and v(x) with x

0
 and x

1
 successive roots of u(x),

then v(x) has exactly one root in the open interval ]x
0
, x

1
[.

Proof

The proof is by contradiction. Assume that v has no zeros in ]x
0
, x

1
[. Since u and

v are linearly independent, v cannot vanish at either x
0
 or x

1
, so the quotient u / v

is well defined on the closed interval [x
0
, x

1
] and it is zero at x

0
 and x

1
. Hence, by

Rolle’s theorem, there is a point  between x
0
 and x

1
 where,

2

( ) ( ) ( ) ( ) ( )

( )

d u x u x v x u x v x

dx v x v x

vanishes. Hence, u()v() = u()v(), which implies that u and v are
linearly dependent. This contradicts our assumption and thus v has to have at least
one zero between x

0
 and x

1
. On the other hand, there can be only one zero

between x
0
 and x

1
, because otherwise v would have two zeros and there would

be no zeros of u in between, and it was just proved that this is impossible.

An Alternative Proof

Since  and  are linearly independent it follows that the Wronskian W[, ] must
satisfy W[, ] (x)  W (x)  0 for all x where the differential equation is defined,
say I. Without loss of generality, suppose that W (x) < 0  x  I. Then

(x)  (x) – (x)(x)  0.

So at x = x
0

W(x
0
) = – (x

0
) (x

0
)

and either  (x
0
) and  (x

0
) are both positive or both negative. Without loss of

generality, suppose that they are both positive. Now, at x = x
1

W(x
1
) = – (x

1
)  (x

1
)

and since x = x
0
 and x = x

1
 are successive zeros of (x) it causes (x

1
) < 0.

Thus, to keep W(x) < 0 we must have  (x
1
) < 0. We see this by observing that if

(x) > 0  x (x
0
, x

1
) then (x) would be increasing (away from the x-axis),

which would never lead to a zero at x = x
1
. So for a zero to accur at x = x

1
 at most

(x
1
) = 0 [i.e.,  (x

1
)  0 and it turns out, by our result from the Wronskian that

 (x
1
)  0]. So somewhere in the interval (x

0
, x

1
) the sign of (x) changed. By the

intermediate value Theorem there exists x*  (x
0
, x

1
) such that  (x*) = 0.

By the same reasoning as in the first proof, (x) can have at most one zero
for x  (x

0
, x

1
).

Sturm-Picone Comparison Theorem

In mathematics, in the field of ordinary differential equations, the Sturm-Picone
comparison theorem is a classical theorem which provides criteria for the oscillation
and nonoscillation of solutions of certain linear differential equations. Let,
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1. 1 1( ) ( ) 0p x y q x y

2. 2 2( ) ( ) 0p x y q x y

be two homogeneous linear second order differential equations in self-adjoint
form with,

2 10 ( ) ( )p x p x

And, 2 10 ( ) ( )p x p x

Let u be a non-trivial solution of case (1) with successive roots at z
1
 and z

2

and let v be a non-trivial solution of case (2), then one of the following properties
holds;

 There exists an x in [z
1
, z

2
] such that v(x) = 0.

 There exists a  in R such that v(x) = u(x).

4.3.1 Sturm-Liouville Boundary Value Problems

In differential equations, a boundary value problem is a differential equation together
with a set of additional restraints, called the boundary conditions. A solution to a
boundary value problem is a solution to the differential equation which also satisfies
the boundary conditions. A large class of important boundary value problems include
the Sturm-Liouville problems. The analysis of these problems involves the
eigenfunctions of a differential operator. In mathematical applications, a boundary
value problem should be well established. This means that given the input to the
problem there exist a unique solution, which depends continuously on the input.

A more mathematical way to picture the difference between an initial value
problem and a boundary value problem is that an initial value problem has all of
the conditions specified at the same value of the independent variable in the equation
and that value is at the lower boundary of the domain, thus the term ‘Initial’ value.
On the other hand, a boundary value problem has conditions specified at the
extremes of the independent variable. For example, if the independent variable is
time over the domain [0,1], an initial value problem would specify a value of y(t)
and y(t) at time t = 0, while a boundary value problem would specify values for
y(t) at both t = 0 and t = 1.

If the problem is dependent on both space and time, then instead of specifying
the value of the problem at a given point for all time the data could be given at a
given time for all space. For example, the temperature of an iron bar with one end
kept at absolute zero and the other end at the freezing point of water would be a
boundary value problem.

Concretely, an example of a boundary value (in one spatial dimension) is
the problem,

( ) ( ) 0y x y x

to be solved for the unknown function y(x) with the boundary conditions,

(0) 0, ( 2) 2.y y
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Without the boundary conditions, the general solution to this equation is,

( ) sin( ) cos( ).y x A x B x

From the boundary condition y(0) = 0 one obtains,

0 = A . 0 + B . 1

which implies that B = 0. From the boundary condition y( / 2) = 2 one
finds,

2 = A . 1

and so A = 2. One sees that imposing boundary conditions allowed one to
determine a unique solution, which in this case is,

y(x) = 2 sin(x).

Sturm-Liouville Theorem and Boundary Value Problem

A differential equation defined on the interval  a  x  b having the form of ,

( ) [ ( ) ( )] 0
d dy

p x q x r x y
dx dx

and the boundary conditions,

1 2

1 2

( ) ( ) 0

( ) ( ) 0

a y a a y a

b y b b y b

is called as Sturm-Liouville boundary value problem or Sturm-Liouville
system, where p(x) > 0, q(x); the weighting function r(x) > 0 are given functions;

1 2 1 2, , ,a a b b  are given constants; and the eigenvalue is an unspecified parameter..

A special case of the Sturm-Liouville boundary value problem includes
examples of generalized Fourier series found in Bessel functions, Legendre
polynomials and other orthogonal polynomials such as Laguerre polynomials,
Hermite polynomials and Chebyshev polynomials. Each of these polynomials
represents a complete orthogonal set in different coordinates or circumstances
and can be considered as a special case of the Sturm-Liouville boundary value
problem.

The non-trivial (non-zero) solutions 
n
(x), n = 1, 2, 3,..., of the Sturm-

Liouville boundary value problem only exist at certain 
n
, n = 1, 2, 3,..., 

n
 is

called eigenvalue and 
n
(x) is the eigenfunction.

The eigenvalues of a Sturm-Liouville boundary value problem are non-
negative real numbers. In addition, the associated eigenfunctions 

n
(x) are

orthogonal to each other with respect to the weighting function r(x),

( ) ( ) ( ) 0 if ; , 1, 2, 3, ...
b

m na
r x x x dx m n m n

The complete set of the solutions ( ) | , 1,2, 3, ...n x a x b n  forms

a complete orthogonal set of functions defined on the interval a  x  b . Therefore,
a piecewise continuous function f(x) can be expressed in terms of 

n
(x),

n = 1, 2, 3, ...,  such that
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1

( ) Where ( ) is continuous

( ) ( ) ( )
at discontinuous points

n n
n

f x f x

c x f x f x

Where,

 

( ) ( ) ( )

( ) ( ) ( )

b
na

n b
n na

r x f x x dx
c

r x x x dx

The completeness helps to express any piecewise continuous function in
terms of these eigenfunctions while the orthogonality makes the expression unique
and compact (no redundant terms). In addition, it can be shown that the orthogonal
series is the best series available, i.e., each additional term fine tunes but not overhauls
the sum of the existing terms. These properties generalize the conventional Fourier
series sin 

n
x and cos 

n
x to any complete orthogonal series n(x) and hence

series is called the generalized Fourier series. The method of forming solutions by
the general Fourier series is called the method of eigenfunction expansion which is
an important technique in solving partial differential equations.

Sturm–Liouville Equation

A classical Sturm–Liouville equation, named after Jacques Charles François Sturm
(1803–1855) and Joseph Liouville (1809–1882), is a real second-order linear
differential equation of the form,

( ) ( ) ( ) ,
d dy

p x q x y w x y
dx dx                                   ...(4.22)

where y is a function of the free variable x. Here the functions p(x) > 0, q(x)
and w(x) > 0 are specified at the outset. In the simplest of cases all are continuous
on the finite closed interval [a,b], and p has continuous derivative. In addition,
the function y is typically required to satisfy some boundary conditions at a and b.
The function w(x), which is sometimes called r(x), is called the ‘weight’ or ‘density’
function.

The value of  is not specified in the equation; finding the values of  for
which there exists a non-trivial solution of satisfying the boundary conditions. Such
values of  when they exist are called the eigenvalues of the boundary value problem
defined by and the prescribed set of boundary conditions. The corresponding
solutions (for such a ) are the eigenfunctions of this problem. Under normal
assumptions on the coefficient functions p(x), q(x), and w(x) above, they induce a
Hermitian differential operator in some function space defined by boundary
conditions. The resulting theory of the existence and asymptotic behaviour of the
eigenvalues, the corresponding qualitative theory of the eigenfunctions and their
completeness in a suitable function space became known as Sturm-Liouville theory
or S-L theory. This theory is important in applied mathematics, where S-L problems
occur very commonly, particularly when dealing with linear partial differential
equations that are separable. Under the assumptions that the S-L problem is regular,
i.e., p(x), w(x) > 0 and p(x), p(x), q(x), and w(x) are continuous functions over
the finite interval [a, b], with separated boundary conditions of the form,
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( ) cos ( ) ( ) sin 0y a p a y a ,                                          …(4.23)

( ) cos ( ) ( ) sin 0,y b p b y a                                           …(4.24)

where ,   [0, ), the main tenet of Sturm-Liouville theory states that:

 The eigenvalues 
1
, 

2
, 

3
, ... of the regular Sturm-Liouville problem (refer

equations 1, 2 and 3) are real and can be ordered such that,

1 2 3 ;n 

 Corresponding to each eigenvalue 
n
 is a unique (up to a normalization

constant) eigenfunction y
n
(x) which has exactly n – 1 zeros in (a, b). The

eigenfunction y
n
(x) is called the nth fundamental solution satisfying the

regular Sturm-Liouville problem (Refer Equations 4.22, 4.23 and 4.24).

 The normalized eigenfunctions form an orthonormal basis,

( ) ( ) ( ) ,
b

n m mna
y x y x w x dx

in the Hilbert space L2([a, b],w(x) dx). Here δ
mn

 is a Kronecker delta.

Note: Unless p(x) is continuously differentiable and q(x), w(x) are
continuous the equation has to be understood in a weak sense.

The differential Equation (4.22) is said to be in Sturm-Liouville form or self-
adjoint form. All second order linear ordinary differential equations can be recast
in the form on the left-hand side of Equation (4.22) by multiplying both sides of the
equation by an appropriate integrating factor although the same is not true of
second order partial differential equations or if y is a vector.

The following are significant examples for consideration:

The Bessel equation,

2 2 2 2 0x y xy x v y

can be written in Sturm-Liouville form as,

2 2 0.xy x v x y

The Legendre equation,

21 2 1 0x y xy v v y

can easily be put into Sturm-Liouville form, since D(1 – x2) = –2x, so, the
Legendre equation is equivalent to,

21 1 0x y v v y

Less simple is such a differential equation as,

3 2 0.x y xy y

Divide throughout by x3:

3 3

2
0

x
y y y

x x
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Multiplying throughout by an integrating factor of,

 
3 21 1x x dx x dx xe e e ,

Gives,

1/ 1/
1/

2 3

2
0

x x
x e e

e y y y
x x

which can be easily put into Sturm-Liouville form since,

1/
1/

2

x
x e

De
x

so the differential equation is equivalent to,

1/
1/

3

2
( ) 0

x
x e

e y y
x

.

In general, given a differential equation,

( ) ( ) ( ) 0P x y Q x y R x y

dividing by P(x), multiplying through by the integrating factor,

( )/ ( )Q x P x dx
e ,

and then collecting gives the Sturm-Liouville form.

Sturm-Liouville Equations as Self-Adjoint Differential Operators

The map,

1
( ) ( )

()

d du
Lu p x q x u

w x dx dx

can be viewed as a linear operator mapping a function u to another function
Lu. This linear operator can be studied in the context of functional analysis. Actually,
Equation (4.22) can be written as,

Lu = u.

This is precisely the eigenvalue problem, i.e., to find the eigenvalues 
1
, 

2
,


3
, ... and the corresponding eigenvectors u

1
, u

2
, u

3
, ... of the L operator. The

proper setting for this problem is the Hilbert space L2([a, b],w(x) dx) with scalar
product,

, ( ) ( ) ( ) .
b

a
f g f x g x w x dx

In this space L is defined on sufficiently smooth functions which satisfy the
above boundary conditions. Moreover, L gives rise to a self-adjoint operator.
This can be seen formally by using integration by parts twice, where the boundary
terms vanish by virtue of the boundary conditions. It then follows that the eigenvalues
of a Sturm-Liouville operator are real and that eigenfunctions of L corresponding
to different eigenvalues are orthogonal. However, this operator is unbounded and
hence existence of an orthonormal basis of eigenfunctions is not evident. To
overcome this problem one looks at the resolvent,
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(L – z)–1,          z  ,

where z is chosen to be some real number which is not an eigenvalue. Then,
computing the resolvent amounts to solving the inhomogeneous equation, which
can be done using the variation of parameters formula. This shows that the resolvent
is an integral operator with a continuous symmetric kernel (the Green’s function of
the problem). As a consequence of the Arzelà-Ascoli theorem this integral operator
is compact and existence of a sequence of eigenvalues 

n
 which converge to 0

and eigenfunctions which form an orthonormal basis follows from the spectral
theorem for compact operators. Finally, note that (L – z) – 1u = u is equivalent to
Lu = (z +  – 1)u.

If the interval is unbounded, or if the coefficients have singularities at the
boundary points, one calls L singular. In this case the spectrum does no longer
consist of eigenvalues alone and can contain a continuous component. There is
still an associated eigenfunction expansion (similar to Fourier series versus Fourier
transform).

Example 4.5: Find a function u(x) which solves the following Sturm-Liouville
problem:

2

2

d u
Lu u

dx

where the unknowns are  and u(x). We add boundary conditions as,

 u(0) = u()

Solution: Observe that if k is any integer, then the function

 u(x) = sin kx

is a solution with eigenvalue  = –k2. We know that the solutions of S–L
problem form an orthogonal basis and from Fourier series it is considered that this
set of sinusoidal functions is an orthogonal basis. Since orthogonal bases are always
maximal (by definition) we conclude that the S–L problem in this case has no
other eigenvectors. Given the preceding, let us now solve the inhomogeneous
problem,

Lu = x, x (0, )

with the same boundary conditions. In this case, we must write f(x) = x in a
Fourier series. The reader may check, either by integrating exp(ikx)x dx or by
consulting a table of Fourier transforms, that we thus obtain,

1

1
2 sin .

k

k

Lu kx
k

This particular Fourier series is troublesome because of its poor convergence
properties. It is not clear a priori whether the series converges pointwise. Because
of Fourier analysis, since the Fourier coefficients are ‘square-summable’, the Fourier
series converges in L2 which is must for this function. Fourier’s series converges at
every point of differentiability and at jump points (the function x, considered as a
periodic function, has a jump at ) converges to the average of the left and right
limits.
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Therefore, by using the given equation we obtain that the solution is,

3

3
1

1
2 sin .

k

u kx
k

In this case, we could have found the answer using anti-differentiation. This
technique yields u = (x3 – 2x)/6, whose Fourier series agrees with the solution
we found. The anti-differentiation technique is no longer useful in most cases when
the differential equation is in many variables.

4.3.2 Eigen values and Eigen Function of the Strum-
Louville Problem

To find the solution of problem

y + y = 0 ... (4.25)

 with boundary condition

y (0) = 0 and y () = 0 ...(4.26)

is not difficult to find. Boundary condition are the general solution of the eqn. But
we have to analyse the solution for all possible values of s. so, three cases arises
as follows

Case 1:  s negative or < 1

Let  =   –m2

Then problem (4.25) with (4.26) becomes

2 0y m y    …. (4.27)

 (o) = 0,y and ( ) 0y  

So, the general solution is

1 2( ) mx mxy x C e C e 

1 2(o) 0 0y C C   … (4.28)

1( ) 0 0m m
Ly C e C e       … (4.29)

Equations (4.26) and (4.27) give

1 1sinh 0 0 as sinh 0 0C m C m for m      

Hence C
1
 = C

2
 = 0, so we get only one trivial solution exists

Case 2 :   = 0

The given problems (4.25) and (4.26) becomes

y = 0

y (0) = 0 and y () = 0

hence the general solution is

y (x) = C
1
x + C

2



Linear Second Order
Equations

NOTES

Self - Learning
128 Material

wheny (o) = 0, and C
2
 = 0

y (x) = C
1
x

wheny () = 0, C
1
 = 0

underboundary condition C
1
 = C

2
 = 0

we have trivial solution for given problem for this values of  or y = 0

Case 3 :   0

Let  = m2

The given problems (4.25) with (4.26) reduces to

y + m2y = 0

y (o) = 0 and y () = 0

so general solution is

1 2( ) sin cosy x C mx C mx 

For y (o) = 0, and C
2
 = 0

1 1( ) sin cosy x C mx C mx 

For y (o) = 0, and C
2
 = 0

y (x) = C
1
 sin mx

y() = 0, y (o) = C sin m
since   C

1
  0 for seeking non – trivial solution

sin 0.m 
sinm = n
m = n, n= 1, 2, 3 ……..

hence yn = n2, n = 1, 2, 3 ….. which is known as eigen values and
corresponding solution is

1( ) sin ; 1, 2,3ny x C nx n   …..

which is called as eigen function

Strum – Louville Problem

A boundary values problem consisting of second order homogeneous linear diff
eqn of the form

( ) [ ( ) ( )] 0
d dy

p x q x r x y
dx dx

      
 

…. (4.30)

Where p, q and r are condition real valued function defined on a x b

such that p her a continuous derivatives, ( ) > 0P x and ( ) > 0q x and  is a
parameter independent of x and two homogeneous boundary conditions

1 2( ) ( ) 0A y a A y a  …. (4.31)

1 2( ) ( ) 0B y b A y b  …(4.32)



Linear Second Order
Equations

NOTES

Self - Learning
Material 129

Where A
1
, A

2
, B

1
 and B

2
 are real constant such that A

1
 and A

2
 are not both

zero and B
1
 and B

2
 are not both zero simultaneously is called Strum – Louville

problem.

Example 4.6: Check whether the boundary values problem

0,  with (o) 0 ( )y y y y      

Sturm – Louville problem or not.

Solution: On comparing with standard form of Sturm – Louville problem, we
have

( ) 1, ( ) 1, ( ) 0, 0,p x q x r x q b

A
1
= B

1
 = 1 and A

2
= B

2
 = 0

hence given problem is Sturm – Louville problem.

Example 4.7 : Find the eigen values and eigen function of the following Sturm –
Louville problem.

2 2( 1) 0x xd dy
e d e y

dx dx
     
 

(0) 0 ( )y y  

Solution : Transform dependent variable for y to u by using transformation

4xy e

x xdy du
e e u

dx dx
  



Therefore given diff eqn reduces to

2( 1) 0x x x xxd dy
e e e y e e u

dx dx
            

2 2 2 2
2

2 0x x x x x x x x x x x xdy dy dy dy
e e e u e e e e u e e e e y

dx dx dxdx
u e                        

   

2

2
0x d y

e u
dx

 
   

 

0u u   
and boundary condition reduces to

(0) 0 ( ) since 0xu u e x

2 1,4n n n

are the eigen values for reduced problem and corresponding eigen function

are ( ) sinnu x nx hence 2 , 1,2,3n n n  …. are the eigen values for given

problem and corresponding eigen functions are

( ) sinx
ny x e x n N
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Check Your Progress

1. Solve the differential equation    
2

2 2 3
2

2 2 xd y dy
x x x x y x e

dx dx
     .

2. Solve the differential equation

   
2

2

2
sin cos cos cos sin sin cos .

d y dy
x x x x x y x x x x x

dx dx
    

3. Solve
2

2 3
2

9 0,given that = isa part of solution.
d y dy

x x y y x
dx dx

  

4. Solve the differential equation

      
2

2

2
1 1 4 cos log 1

d y dy
x x y x

dxdx
      .

5. Solve the differential

equation    
2

2 2
2

3 2 3 3 2 36 3 4 1
d y dy

x x y x x
dx dx

       .

6. Solve the differential equation 
2

3 3 2
2

4 8 sin
d y dy

x x y x x
dx dx

   .

7. Solve the differential equation 
2

6 5 2 2
2

3
d y dy

x x a y x
dx dx

   .

8. Apply the method of variation of parameters to solve
2

2
5 6 2 xd y dy

y e
dx dx

   .

9. Apply the method of variation of parameters to solve 
2

2
2

sec
d y

n y nx
dx

  .

10. Explain Sturm separation and comparison theorem.

11. Define Sturm-Liouville equation.

4.4 NONOSCILLATION THEOREMS

To prove nonoscillation theorem we have to prove two lemma as.

Lemma 1 : Consider the differential eqn

( ) ( )
( ) 0,

( ) ( )

A t A t
u u t

A t A t ...(4.33)

Where (t) is continuous on [T, ], A (t) is continuously differential on

[T, ] and

Let u (t) be the solution of Equation (4.33) on [T,  ]

Where (t) is continuous on [T, ], A (t) is continuously differential on [T,,
] and

( ) 0, ( ) 0, lim ( ) 0
t

A t A t A t

Let u (t) be the solution of Equation (4.33) on [T, ]
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Satisfying u (t) = 0. Then, lim ( ) [or ]
t

t implies

lim ( )
t

u t or

Proof : The solution u(t) is given by the formula

2

( )
( ) ( ) ( ) ,

( )

t

r

A s
u t A t s ds t T

A s

If lim ( ) [or ]
t

t , then it is obvious two

( )
lim ( ) [or ]

( )

t

Tt

A s
s ds

A s

hence by L Hospital’s. rule

( ) 1
lim ( ) lim ( )

( ) ( )

t

Tt t

A S
u t s ds

A s A t

lim ( )
t

Q t or

Lemma 2: Let ( )t be continuous on [T, ] and Let ( )v t  be continuously

differentiable on [T, ]. If the lim
t

t t t  exists in the extended real

line *R , then the lim
t a

t  exists in R*.

Proof : If the conclusion is false, then there are numbers  and  such that

lim inf lim sub
t t

t t

Now we can select an inereasing sequence 1v v
t  With the following

properties

0
lim 0, 0, 1, 2vv
v

vt t v … (4.34)

1 22 , , 1,2v vv t v t v …(4.35)

According to Equation (4.34)

lim limv v v v
u v

t v t v t v t

exists in R*. However, this is a contradiction, since Equation (4.35) implies

that the sequence 1v v
v t cannot have a limit in R*
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4.4.1 Nonoscillatory Equations and Principal Solutions

Let ( ) max{ ( ),0}a t a t

( ) max{ ( ),0}a t a t

Let following condition hold.

1( ) ( ) ,nA t a t dt … (4.37)

1( ) ( ) , nA t a t dt … (4.38)

1( ) | ( ) |nA t b t dt … (4.39)

Then, all bounded nonoscillatory solution, of

1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ))n n Lr t t t t y t a t Ar r r

( ) ( ) ( ) ( ) ( ) ( ) ( ))r t t t t y t a t A ty g =  ( ),b t …. (4.40)

Where 1 1( ), ( ), ( ), ( ) ( )na t b t g t r t r t are real valued and continous on

[, ] and f(y) is real valued and continuous on ( , )

Proof : Let y (t) be a boundary nonoscillatory solution of b(t) we may suppose
without loss of generality that

y (t) > 0 for 0t t . By there exists b
1
 to such that ( )g t to for 1t >t .

Thus ( ( )) > 0y g t  for t t .  we defend

G
0
(t) = y(t), G

i
(t) = r

i
 (t), G

i-1
(t); i = 1.....n –1 ...(4.14)

1

1
1 1 1( ) ( ) ( ) , 0,1, 1

t

k n k h kc
u t A s C s ds k n

A
n
 integration by parts yields

1
1( ) ( ) ( )

t

k n k n kt
U t A s G s ds

1 1( ) ( )n k n k n k n kA t G t A t G t

1

1( )
( )

( )

t n k
n kt

n k

A s
G s ds

r s ….. (a)

1 1 1 1
1

( ) ( )
( ) ( )

( )
n k n k

n k n k n k n k
n k

A t r t
A t G t A t G t

A t
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1
1 1( ) ( )

t

n k n kt
A s G s ds ….. (b)

1 1
( )

( ) ( ) ,
( )

n k
k k n k n k

n k

A t
v t v t A t G t

A t

This show that ( )kv t  satisfies the diff’ eqn

( )
( ) 0

( )
n k

k
n k

A t
v u t

A t … (4.42)

( ) ( )
( ) 0

( ) ( )
n k n k

k
n k n k

A t A t
u v t

A t A t ...(4.43)

where 1 1 1 1 1( ) ( ) ( )k k n k n kt v t A t G t

Since 1 0kv t by Equation (4.41) and since A ( ) > 0,n k t

( ) 0, lim ( ) 0,n k n k
t

A t A t  by apply lemma 1 to Equations (4.43) to conclude

that 1lim ( ) [ ]k
t

v t or implies that lim ( ) [ ]
t

kv t or . More over,,

applying lemma 2 to Equation (4.42), we conclude that lim ( )k
t

v t  exists in *R

wherever 1lim ( )k
t

v t  exists in *R .  Now multiply both sides of Equation (4.42)

by 1A ( )n t  and integrate it over 1, t t   then,

1 1

1
1 1 1( ) ( ) ( ) ( ) ( ( ( )

t t

n n nt t
A s G s ds A s s f g g s ds

1 1
1 1( ) ( ) ( ) ( ) ( ( ))

t t

n n it t
A s b s ds A s s f g g s ds x ….. (4.44)

we distinguish the following two cases

1
1( ) ( ) ( ( ( )))nt

A t t f y g t dt ...(4.45)

1
1( ) ( ) ( ( ( )))ht

A t t f y g t dt ...(4.46)

Suppose Equation (4.46) holds. In view of Equations (4.38) and (4.39)
and the boundedner of y(t) the right hand side of Equation (4.44) tends to a finite

limit as t , so that from (xii). We see that 0lim ( ) .
t

u t hence lemma 1

applied to (xi) with k = 1, we have 1lim 2 ( ) .
t

a t Applying lemma 1 again
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Equation (4.45) with k = 2, we have 2lim ( ) 0
t

u t  . This however

Contradictionthe assumption that y (t) is positive. Now letting t  in Equation
(4.45) is impossible. Now, letting t in Equation (4.44) and using Equation
(4.44), we see that is finite. From lemma 2 applied to Equation (4.42) with k = 1

it follow that lim ,( )
t

v t exists in R*. This limit must be finite, since

1lim ( )
t

u t would imply lim ( ) a
t

y t  contradiction to the positivity of

g(t), and  1lim ( )
t

v t  would imply lim ( )
t

y t , a contradiction to the

Boundedness of y(t
1
) continuing in this way, we conclude that is finite. Therefore

lim ( )
n

y t exists as a finite number, so it is easy to verify that

0
lim ( ( ) lim ( ) 0inf inf

tt
g t ty y

Thus it follow that lim ( ) 0.
t

y t

Theorem 4.1 :  All bounded non-oscillatory solution of b(t)  or  equation (1)
tunnel to zero as t  if the following condition are satisfied:

1( ) ( )t
nA t L t dt (4.47)

1( ) ( )t
nA t L t dt (4.48)

1( ) ( )nA t b x dt  (4.49)

Proof : Let y (x) be a bounded non-oscillatory solution equation (4.40) such that

( ( )) 0y g t  for t > t
1
.  A parallel argument hold if ( ( )) 0y g t  for t > t

1
.  Defind

the function G
i
(t) and v

k
(t) by the formula equation (4.41) Assume that

11
( ) ( ) ( ( ( )))nt

A t t f y g t dt

Then, letting t  in (a), (b) and using Equations (4.48) and (4.49) and

the boundedness of g (t), we obtain 0lim ( )
n

v t , so that applying lemma 1 to

equation (4.44) with k = 1, we see that 1lim ( )
t

v t , Repeat application of this

argument show that 1lim ( )n
t

v t  which implies that lim ( )
t

y t .  But

conducts that fact. That y(t) is bounded. Consequently, we must have

1
1( ) ( ) ( ( ( )))nt

A t t f y g t dt

The rest of the proof now proceeds exactly as in the second half of the
above proof Theorem.
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4.5 NUMBER OF ZEROS IN SECOND ORDER
LINEAR DIFFERENTIAL EQUATION

Second order linear equation :

 ( ) ( ) ( )y p t y q t y y t … (4.50)

Homogenous eqn  If ( ) 0,y t then equation (4.30) becomes

( ) ( ) 0. y p t y q t y

It is an homogenous equation

Trivial solution: For the homogenous equationy y(t) = 0 is always a solution
regardless what p(t) and q(t) all this constant zero solution is called the trival
solution of such an equation.

Second order linear Homogenous Diff. eqn with constant coefficient

0ay by cy

Where a, b and c are constant,

A very simple instance of such type of eqn  y – y = 0 the equation solution

is any function satisfying the equality   y – y.  Obviously  1
ty e is the solution

and S
0
 is any constant multiple of it C

1
et. Not as obvious, but still easy to see, is

that 2
ty e is another solution. It can be easily verified that any function of the

form

1 2
t ty c e c e

if y
1
 and y

2
 are any two solution of the homogenous eqn,

( ) ( ) 0y p t y q t y

Then any function of the form

1 1 2 2  y c y c y

is also a solution of the eq, for any pair of constant C
1
 and C

2

For any homogeneous linear eq, any multiple of a solution is again a solution,
any sum and difference of two solution is again a solution.

Example 4.8:  Find the general solution of

5 0y y

Solution: If we let  then substitute them into the eq, we get a new eqn

5 0u u

Now there is first order linear eq with ( ) 5p t  and ( ) 0y t

The integratintg factor is 5te

5 5
1

1
( ) ( ) ( ) ( )

( )
 t rt tu t t g t dt c dt e c c e

t
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The actual solution y is given by the relation ,u y  and can be found by
integration

5 5
1

1
( ) ( ) ( ) ( )

( )
 t rt tu t t g t dt c dt e c c e

t  = C
1
e5t + C

2

Equation of non – constant coefficient with missing y – term

If the y – term is missing in a second order linear equation, now the equation can
be readily converted into a first order linear equation and solved using the integrating
factor

Example 4.9: ty + uy = tL

Solution: The standard form is

u
y y t

t

Substitute : ( ) , ( )u u t p t g t t
t t

u u 

Integrating factor is  = tu

6
51

( )
6

u
u

t
u t t dt t c

t
2 41

6
t ct

Finally

3 3
2

1
( ) ( )

18 3

c
y t u t dt t t C 3 3

1 2
1

18
t c t C

In general, given a second order linear eqn with the y – term missing

( ) ( )y p t y g t

by the subsisting u = y and u = y to change the eqn to a first order linear
eqn.  Use the integrity factor method to solve for u, and then integrate u to find y;

Substitute : ( ) ( )u p t u g t

Integrity factor 
( )

( )
P t dt

t e

Solve for u :
( ) ( )

( )
( )

t g t dt
u t c

t

Integrate : ( ) ( )y t u t dt

Characteristic polynomial

If  2ar br c  is a characteristic polynomial of differential equation

There are 3 – possible cases of the solution found

1. If 2 4 0, b ac There are two distinct real root r
1
, r

2
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2. If 2 4 0,b ac There are two complex conjugate roots r i

3. If 2 4 0b ac , There is one repeated real root r.

Case 1: 2 4 0b ac

1 2
1 1 2 2 1 2

r rt ty c y c y c e c e

Example 4.10:  5 4 0y y y

Solution: The characteristic eqn

2 5 ( 1)( 4) 0r r u r r

1, 4r

4
1 2

t ty c ce e

Case 2: Two complex conjugate roots:

2 4 0.b ac

1 2,r i r i

1
1

rty e , 2
2

r ty e

Example 4.11: 0y uy

Solution: 1 2 2y i

1 2cos 2 sin 2y c t c t

Example 4.12:   2 5 0y y y , (o) 4, (o) 6y y

Solution: 2 2 5 0rr

1 2r i

1 2cos 2 sin 2t ty c e t c e t

Case 3 : One repeated real roots :

2 4 0b ac

2

b
r

a

Example 4.13:  4 4 0, y y y (o) 4, y (o) 5y

Solution : 2 24 4 ( 2) 0r r r

2r

2 2
1 2

t ty c e c te
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Check Your Progress

12. How will you define the second order differential equation?

13. Give the nonoscillation theorem equation for differential equation.

14. Write the conditions for nonoscillation theorem.

15. Name the equation of all boundary non-oscillatory solution.

4.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. 2
1 2

x x xy x e xe c xe c x   

2. 2 1

1 1
cos cos2 sin 2

4 2
y c x c x x x x   

3. 3 3
2y kx c x 

4.  1 2 1 2

tan sin
cos cos

2 2

x x
y x c c x c c x x        

5.    2/ 33/ 4 3 2
1 2

xy e c x c x  

6. 2 2 2
1 2 sinx xy c e c e x  

7. 1 22 2 2 2

1
cos sin

2 2

a a
y c c

x x a x
    
 

8. 2 3
1 2

x x xy c e c e e  

9.   1 22

1
logcos cos sin cos sin

x
y nx nx nx c nx c nx

n n
   

10. Sturm separation theorem describes the location of roots of homogeneous
second order linear differential equations. Basically the theorem states that
given two linear independent solutions of such an equation the zeros of the
two solutions are alternating. The Sturm comparison theorem is a classical
theorem which provides criteria for the oscillation and nonoscillation of
solutions of certain linear differential equations.

11. A classical Sturm-Liouville equation is a real second order linear differential
equation of the form,

where y is a function of the free variable x. Here the functions p(x) > 0,
q(x) and w(x) > 0 are specified at the outset. In the simplest of cases all are



Linear Second Order
Equations

NOTES

Self - Learning
Material 139

continuous on the finite closed interval [a,b] and p has continuous
derivative.

12. Second order linear equation :

 ( ) ( ) ( )y p t y q t y y t

13. lim ( )
t

Q t or

14. 1( ) ( ) ,nA t a t dt

1( ) ( ) , nA t a t dt

1( ) | ( ) |nA t b t dt … (4.39)

15. 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ))n n Lr t t t t y t a t Ar r r

( ) ( ) ( ) ( ) ( ) ( ) ( ))r t t t t y t a t A ty g =  ( ),b t

4.7 SUMMARY

 Linear differential equation of second order is an equation of the form

2

2
P Q R

d y dy
y

dx dx
  

where P, Q and R are the functions of x.

 Let the linear differential equation of second order be

2

2
P Q R

d y dy
y

dx dx
  

where P, Q and R are the functions of x only.

 In case the integral of the C.F. is neither known nor can be found using the
rules, there is a need of other method to find the solution of linear differential
equation of second order. Here, we will learn the method which is
independent of integral of C.F.

 The constants of the C.F. are taken as the functions of independent variables.

 In the field of ordinary differential equations, Sturm separation theorem
describes the location of roots of homogeneous second order linear
differential equations.

 Given a homogeneous second order linear differential equation and two
continuous linear independent solutions u(x) and v(x) with x

0
 and x

1

successive roots of u(x), then v(x) has exactly one root in the open interval
[x

0
, x

1
].
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 The field of ordinary differential equations, the Sturm-Picone comparison
theorem is a classical theorem which provides criteria for the oscillation and
nonoscillation of solutions of certain linear differential equations.

 In differential equations, a boundary value problem is a differential equation
together with a set of additional restraints, called the boundary conditions.

 A solution to a boundary value problem is a solution to the differential equation
which also satisfies the boundary conditions.

 The eigenvalues of a Sturm-Liouville boundary value problem are non-
negative real numbers.

 A classical Sturm–Liouville equation, named after Jacques Charles François
Sturm (1803–1855) and Joseph Liouville (1809–1882)

 Let y (t) be a boundary nonoscillatory solution of b(t) we may suppose

without loss of generality that y (t) > 0 for 0t t

 The homogenous equationy y(t) = 0 is always a solution regardless what
p(t) and q(t) all this constant zero solution. is called the trival solution.

4.8 KEY TERMS

 Linear differential equations of second order: It is an equation of the

form 
2

2
P Q R

d y dy
y

dx dx
   , where P, Q and R are the functions of x.

 Non-negative real number: The eigenvalues of a Strum-Liouville boundary
value problem are non-negative real number.

 Sturm-separation theorem: Given a homogeneous second order linear
differential equation and two continuous linear independent solutions u(x)
and v(x) with x

0
 and x

1
 successive roots of u(x), then v(x) has exactly one

root in the open interval [x
0
, x

1
].

 Trivial solution: For the homogenous equationy y(t) = 0 is always a solution
regardless what p(t) and q(t) all this constant zero solution. is called the
trival solution.

4.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Solve
2

2
4 3 0

d x dx
x

dtdt
   , given that for t = 0, x = 0 and 12

dx

dt
 .
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2. Solve
2

2
2

cos
d x

b x k bt
dt

  , given that x = 0 and 0
dx

dt
 , when t = 0.

3. Define theorems of strum.

4. What are Sturm-Liouville boundary value problems?

5. How will you define the eigen values and eigen functions of the Strum-
Louville problem?

6. State the number of zeros in second order linear differential equation.

7. Give the nonoscillation theorem.

8. What is the boundary non-oscillatory solution?

Long-Answer Questions

1. Apply the method of variable of parameters to solve the following differential
equations:

(i)
2

2
cosec

d y
y x

dx
 

(ii)
2

2
tan

d y
y x

dx
 

(iii)
2

2
2 5 sec 2xd y dy

y e x
dx dx

  

(iv)
2

2
2

sinx xd y
y e e

dx
  

(v)    
2

2 2
2

1 4 1
d y dy

x x x y x
dx dx

    

(vi)
2 3

2 2
6 9

xd y dy e
y

dx dx x
  

(vii)
2

2
( 2) (2 5) 2 ( 1) xd y dy
x x y x e

dx dx
     

2. Verify that y = x and y = x2 – 1 are linearly independent solutions of

 
2

2
2

1 2 2 0
d y dy

x x y
dx dx

    . Find the general solution of

   
2

22 2
2

1 2 2 6 1
d y dy

x x y x
dx dx

     .

3. Explain the methodology to solve boundary value problems using Sturm-
Liouville, Sturms separation and comparison theorems.

4. Find eigen values and eigen function of the given Strum – Louville problem

(a) 0, (0) ( )y y y y

(b)
2( ) 0, (1) 0xy y y y e

x

(c) 0, (1) (2) 0x y xy y y y
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(d) 24 , (o) (1) 0y y x y y

(e) 4 ( ), ( ) , (1)u u f x u o u

(f) 2 0, (1) (2) 0x y xy y y y

5. Discuss briefly about the number of zeros in second order linear differential
equation with the help of giving examples.

6. Find the general solution of the given differential equation

(a) 2 8 0y y y

(b) 13 42 0y y y

(c) 10 25 0y y y

(d) 2 5 0y y y

(e) 4 13 0y y y

(f) 0y

(g) 2 0y y

(h) 2 5 3 0y y y

(i) 9 0y y

(j) 16 0y y

(k) 2 2 0y y y

(l) 30 0y y y

7. Find the differential equation  0y ay by that satisfy by the given
function

(a) 2 5
1 2( ) , ( )x xy x e y x e

(b) 3( ) 2 xy x xe

(c) 2( ) cos xy x

(d) 1 6
1 2(1) 3 , ( )x xy e y x ue

(e) 2( ) sinxy x e ux
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UNIT 5 PARTIAL DIFFERENTIAL
EQUATION OF FIRST AND
SECOND ORDER

Structure

5.0 Introduction
5.1 Objectives
5.2 Partial Differential Equations of the First Order
5.3 Partial Differential Equations of the Second Order
5.4 Linear Partial Differential Equation with Constant Coefficient
5.5 Answers to ‘Check Your Progress’
5.6 Summary
5.7 Key Terms
5.8 Self-Assessment Questions and Exercises
5.9 Further Reading

5.0 INTRODUCTION

In mathematics, a first-order partial differential equation is a partial differential
equation that involves only first derivatives of the unknown function of n variables.
Such equations arise in the construction of characteristic surfaces for hyperbolic
partial differential equations, in the calculus of variations, in some geometrical
problems, and in simple models for gas dynamics whose solution involves
the method of characteristics. If a family of solutions of a single first-order partial
differential equation can be found, then additional solutions may be obtained by
forming envelopes of solutions in that family. In a related procedure, general solutions
may be obtained by integrating families of ordinary differential equations.

A Partial Differential Equation (PDE) is a differential equation that contains
unknown multivariable functions and their partial derivatives. PDEs are used to
formulate problems involving functions of several variables, and are either solved
by hand, or used to create a computer model. A special case is Ordinary Differential
Equations (ODEs), which deal with functions of a single variable and
their derivatives. PDEs can be used to describe a wide variety of phenomena such
as sound, heat, diffusion, electrostatics, electrodynamics, fluid dynamics,
elasticity, gravitation and quantum mechanics. These seemingly distinct physical
phenomena can be formalised similarly in terms of PDEs. Just as ordinary differential
equations often model one-dimensional dynamical systems, partial differential
equations often model multidimensional systems. PDEs find their generalisation
in stochastic partial differential equations.

Partial differential equations are equations that involve rates of change with
respect to continuous variables. The position of a rigid body is specified by six
parameters, but the configuration of a fluid is given by the continuous distribution of
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several parameters, such as the temperature, pressure, and so forth. The dynamics
for the rigid body take place in a finite-dimensional configuration space; the dynamics
for the fluid occur in an infinite-dimensional configuration space. This distinction
usually makes PDEs much harder to solve than ordinary differential equations, but
here again, there will be simple solutions for linear problems. Classic domains
where PDEs are used include acoustics, fluid dynamics, electrodynamics, and heat
transfer.

In this unit, you will be study about the partial differential equations of the
first order, partial differential equations of the second order and linear partial
differential equation with constant coefficient.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Drive the partial differential equations of the first order

 Know solution of the partial differential equations of the second order

 Analyse the partial differential equations of second and higher orders

 Discuss the classification of partial differential equations of second order

 Classify the homogeneous and non-homogeneous equations with constant
coefficients

 Briefly explain the partial differential equations reducible to equations with
constant coefficients

5.2 PARTIAL DIFFERENTIAL EQUATIONS OF
THE FIRST ORDER

Lagrange’s Equation

The partial differential equation Pp + Qq = R, where P, Q, R are functions of x, y,
z, is called Lagrange’s Linear Differential Equation.

Form the auxiliary equations 
dx dy dz

P Q R
   and find two indpendent solutions

of the auxiliary equations say u(x, y, z) = C1 and v(x, y, z) = C2, where C1 and C2
are constants. Then the solution of the given equation is F(u, v) = 0 or u = F(v).

For example, solve 2 2( ) –y z p xyq xz

The auxiliary equations are,

2 2

dx

y z = –

dy dz

xy xz


 (5.1)
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Taking the last two equations, we get,

dy

y = 
dz

z

Integrating we get log y = log z + constant,


y

z
= C1

Each of the Equation (5.1) is equal to,

2 2 2 2( ) – –

xdx ydy zdz

x y z xy xz

 


i.e.,
0

xdx ydy zdz 

i.e., xdx + ydy + zdz = 0

Hence after integration this reduces to,

x2 + y2 + z2 = C2

Hence the general solution of the equation is,

2 2 2, 0
y

F x y z
z

    
 

= 0

Example 5.1: Solve 2 2 ( )
z z

x y x y z
x y

 
  

 

Solution: The auxiliary equations are,

2

dx

x
= 2 ( )

dy dz

y x y z




i.e., 2 2

dx dy

x y


 = 

( )

dz

x y z

i.e.,
dx dy

x y


 = 

dz

z

i.e., log (x – y) = log z + constant


x y

z


= C1

Also 2 2

dx dy

x y


Hence
1

x
 =

1

y + constant


1 1

–
y x  = C2

Hence the solution is, 
1 1 –

– ,
x y

F
y x z

 
 
 

 = 0
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Example 5.2: Solve (x2 – yz)p + (y2 – zx)q = z2 – xy

Solution: The subsidiary equations are,

2 –

dx

x yz = 2 2– –

dy dz

y zx z xy


2 2

–

( )

dx dy

x yz y zx   = 
( )

( )( )

d x y

x y x y z


  

= 
( )

( )( )

d y z

y z x y z


  


( )d x y

x y


 = 

( )d y z

y z




Integrating log (x – y) = log (y – z) + log C1

 1

x y
C

y z




 (1)

Using multipliers x, y, z, each of the subsidiary equations,

= 3 3 3 2 2 2– 3 ( )( – – – )

xdx ydy zdz xdx ydy zdz

x y z xyz x y z x y z xy yz zx

   


     

And is also equal to 2 2 2

dx dy dz

x y z yz zx xy

 
    


xdx ydy zdz

x y z

 
  = 

1

dx dy dz 

xdx + ydy + zdz = (x + y + z)d (x + y + z)

On Integrating, we get,

x2 + y2 + z2 = (x + y + z)2 + C2

 xy + yz + zx = C2 (2)

From Equations (1) and (2), we get the solution,

, 0
x y

F xy yz zx
y z

 
    

, where F is arbitrary..

Example 5.3:  Solve (a – x)p + (b – y)q = c – z

Solution: The subsidiary equations are,

dx

a x
= – –

dy dz

b y c z
 (1)

From Equation (1)
dy

b y = 
dz

c z

i.e.,
dy

y b = 
dz

z c

log ( y – b) = log (z – c) + log C1


y b

z c




= C1
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Also
dx

a x
= 

dy

b y


dx

x a
= 

dy

y b

 log (x – a) = log (y – b) + log C2


x a

y b

 
  

= C2

The general solution is

,
y b x a

F
z c y b

  
   

= 0

Example 5.4: Solve (y – z)p + (z – x)q = x – y

Solution: The auxiliary equations are,

dx dy dz

y z z x x y
 

   = 
0

dx dy dz 

 dx + dy + dz = 0

Integrating we get, x + y + z = C1

Also each ratio,

=
( ) ( ) ( )

xdx ydy zdz

x y z y z x z x y

 
    

=
0

xdx ydy zdz 

 xdx + ydy + zdz = 0

On integrating, we get,

x2 + y2 + z2 = C2

 The general solution is,

F(x + y + z, x2 + y2 + z2) = 0

Example 5.5: Solve (mz – ny)p – (nx –lz)q = ly – mx

Solution: The auxiliary equations are,

–

dx dy dz

mz ny nx lz ly mx

Using multipliers x, y, z, we get each ratio

= ( ) ( ) ( – )

xdx ydy zdz

x mz ny y nx lz z ly mx

 
   

= 
0

xdx ydy zdz 
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 x2 + y2 + z2 = C1

Also by using multipliers l, m, n, we get each ratio,

= 
0

ldx mdy ndz 

 lx + my + nz = C2

 The general solution is,

 2 2 2 , 0F x y z lx my nz    

Example 5.6: Solve x (y – z)p + y(z – x)q = z(x – y)

Solution: The auxiliary equations are,

dx

xy xz = 
dy dz

yz yx zx zy


 

= 
0

dx dy dz 

 dx + dy + dz = 0

On integrating, we get, x + y + z = C1 (4)

dydx dz
yx z

y z z x x y
 

  
= 

0

dx dy dz
x y z
 


dx dy dz

x y z
  = 0

On integrating, log x + log y + log z = log C2

xyz = C2 (2)

From Equations (1) and (2), the general solution is, F(x + y + z, xyz) = 0

Example 5.7: Solve x2p + y2q = z2

Solution: The auxiliary equations are,

2 2 2

dx dy dz

x y z
 

 2

dx

x
= 2

dy

y

1

1

x


= 

1

11

y
C






1

x
= 1

1
– C

y


1 1

y x
 = C1

Also

2

dy

y = 2

dz

z
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
1

y
 = 2

1
C

z
 

1 1

z y
 = C2

The general solution is,

1 1 1 1
– , – 0F

y x z y

 
 

 

Example 5.8: Solve ( y + z)p + (z + x)q = x + y

Solution: The auxiliary equations are,

dx dy dz

y z z x x y
 

  

i.e.,
dx dy

x y


 = 

dy dz dz dx

y z z x

 


 

= 2( )

dx dy dz

x y z

 
 

Considering first two members and integrating, we get,

x y

y z


 = C1

Considering first and last members and integrating, we get,

log(x – y) = 
1

2
log(x + y + z) + log C2

 2

log
x y

x y z


 

= log C2

 2
x y

x y z


 

= log C2

 The general solution is,
2( )

, 0
x y x y

F
y z x y z

  
    

5.3 PARTIAL DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

The general form of a linear differential equation of nth order is,

1 2

1 2 11 2
...

n n n

n nn n n

d y d y d y dy
P P P P y

dxdx dx dx
 = Q

Where P1, P2 ..., Pn and Q are functions of x alone or constants.

The linear differential equation with constant coefficients are of the form,

1 2

1 2 11 2
...

n n n

n nn n n

d y d y d y dy
P P P P y

dxdx dx dx
 = Q (5.2)
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Where P1, P2, ..., Pn are constants and Q is a function of x.

The equation,

1 2

1 21 2

n n n

n n n

d y d y d y
P P

dx dx dx

 

 
  + ... + Pn–1 y

dy
P y

dx
 = 0 (5.3)

This is then called the Reduced Equation (R.E.) of  the Equation (5.2)

If y = y1 (x), y = y2 (x), ..., y = yn (x) are n-solutions of this reduced equation,
then y = c1y1 + c2 y2 + ... + cn yn is also a solution of the reduced equation where
c1, c2, ..., cn are artbitrary constants.

The solution y = y1 (x), y = y2 (x), y = y3 (x), ..., y = yn (x) are said to be
linearly independent if the Wronskian of the functions is not zero where the
Wronskian of the functions y1, y2,..., yn, denoted by W (y1, y2, ...,yn), is defined
by,

W (y1, y2, ....yn) = 

1 2 3...

1 2 3

1 2 3

( 1) ( 1) ( 1) ( 1)
1 2 3

...

...

...

n

n

n

n n n n
n

y y y y

y y y y

y y y y

y y y y

  

Since the general solution of a differential equation of nth order contains n
arbitrary constants, u = c1y1 + c2y2 + ... + cn yn is its complete solution.

Let v be any solution of the differential Equation (5.2), then,
1 2

1 21 2

n n n

n n n

d v d v d v
P P

dx dx dx

 

 
  + ... + Pn–1 n

dv
P v

dx
 = Q (5.4)

Since u is a solution of Equation (5.3), we get,

1 2

1 21 2

n n n

n n n

d u d u d u
P P

dx dx dx

 

 
  + ... + Pn–1 n

du
P u

dx
 = 0 (5.5)

Now adding Equations (5.4) and (5.5), we get,

1 2

1 2 2

( ) ( ) ( )n n n

n n n

d u v d u v d u v
P P

dx dx dx
+ ...+ Pn –1

( )d u v

dx
 + Pn(u + v) = Q

This shows that y = u + v is the complete solution of the Equation (5.2).

Introducing the operators D for 
d

dx
, D2 for 

2

2

d

dx
, D3 for 

3

3

d

dx
etc. The Equation

(5.2) can be written in the form,

Dny + P1Dn–1y + P2Dn–2 y +.......+ Pn –1 Dy + y Pn = Q

Or (Dn + P1 Dn –1 + P2Dn–2 +.....+ Pn–1 D + Pn) y = Q

Or F(D) y = Q where F (D) = Dn + P1Dn–1 P2Dn–2 + .......+ Pn–1D + Pn

From the above discussions it is clear that the general solution of F (D)y = Q
consists of two parts:

(i) The Complementary Function (C.F.) which is the complete primitive of the
Reduced Equation (R.E.) and is of the form

y = c1 y1 + c2 y2 + ... + cn yn containing n arbitrary constants.
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(ii) The Particular Integral (P.I.) which is a solution of F (D) y = Q containing
no arbitrary constant.

Rules for Finding The Complementary Function

Let us consider the 2nd order linear differential equation,

2

1 22

d y dy
P P y

dxdx
  = 0 (5.6)

Let y = A emx be a trial solution of the Equation (5.4); then the Auxiliary Equation
(A.E.) of Equation (5.6) is given by,

m2 + P1m + P2 = 0 (5.7)

The Equation (5.7) has two roots m = m1, m = m2. We discuss the following
cases:

(i) When m1  m2, then the complementary function will be,

y = c1em1x + c2 em2x where c1 and c2 are arbitrary constants.

(ii) When m1= m2, then the complementary function will be,

y = (c1 + c2 x) em1x where c1 and c2 are arbitrary constants.

(iii) When the auxiliary Equation (5.7) has complex roots of the form  + i
and  – i, then the complementary function will be,

y = ex (c1 cos  x + c2 sin  x)

Let us consider the equation of order n,

1 2

1 21 2

n n n

n n n

d y d y d y
P P

dx dx dx

 

 
  + ... + Pn –1 n

dy
P y

dx
= 0 (5.8)

Let y = A emx be a trial solution of Equation (5.8), then the auxiliary equation is,

mn + P1 mn–1 + P2 mn – 2 + ......+ Pn –1 m + Pn = 0 (5.9)

Rule (1): If m1, m2, m3, ..., mn be n distinct real roots of Equation (5.9), then the
general solution will be,

y = c1 em1x +c2e m
2x + c3em3x + ... + cnemnx

Where c1, c2, c3.....cn are arbitrary constants.

Rule (2): If the two roots m1 and m2 of the auxiliary equation are equal
and each equal to m, the corresponding part of the general solution will be (c1 + c2
x) emx and if the three roots m3, m4, m5 are equal to  the corresponding part of
the solution is (c3 + c4x + c5x2) ex and others are distinct, the general solution
will be,

y = (c1 + c2x) emx + (c3 + c4 + c5x2) ex + c6 em6x +......+ cnemnx

Rule (3): If a pair of imaginary roots  ± i occur twices, the corresponding part
of the general solution will be,

ex [(c1 + c2x) cos  x + (c3 + c4x) sin x]

And the general solution will be,

y = ex [(c1 + c2x) cos  x + (c3 + c4x) sin x] + c5em5x + ......+ cnemnx
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Where c1, c2..., cn are arbitrary constants and m5, m6, ...., mn are distinct real
roots of Equation (5.8).

Rule (4): If the two roots (real) be m and – m, the corresponding part of the
general solution will be c1emx + c2e – mx

= c1 (cosh mx + sinh mx) + c2 (cosh mx – sinh mx)

= c1 cosh mx + c2 sinh mx where c1 = c1 + c2, c 2 = c1 – c2

And general solution will be,

y = c1 cosh mx + c 2 sinh mx + c3em3x + c4 em4x +......+ cnemnx

Where c 1, c2, c3, .....cn are arbitrary constants and m3, m4 ... mn are distinct real
roots of Equation (5.9).

Rules for Finding Particular Integrals

Any particular solution of  F (D) y = f(x) is known as its Particular Integral (P.I).
The P.I. of F(D)y = f(x) is symbolically written as,

P.I. = 
1

( )F D
{f (x)} where F(D) is the operator..

The operator 
1

( )F D  is defined as that operator which, when operated on

 f (x) gives a function  (x), such that F (D) (x) = f (x)

i.e.,
1

( )F D  { f (x)} =  (x) (= P.I. )

 F (D) 1
( )

( )
f x

F D

 
 
 

= f (x) 1
( ) ( )

( )
f x x

F D


Obviously, F (D) and 1/F(D) are inverse operators.

Case I: Let F (D) = D, then 1
( )f x

D
= ( )f x dx .

Proof: Let y = 1
{ ( )}f x

D
, operating by D, we get Dy = D . 1{ ( )}f x

D
 or Dy = f (x) or

dy

dx
 = f (x) or dy = f (x) dx

Integrating both sides with respect to x, we get,

y = ( )f x dx , since particular integrating does not contain any arbitrary constant.

Case II: Let F (D) = D – m where m is a constant, then,

1
{ ( )}f x

D m
= emx ( )mxe f x dx .

Proof: Let 
1

{ ( )}f x
D m

 = y, then operating by D – m, we get,

(D – m) . 
1

{ ( )}f x
D m

= (D – m) y
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Or f (x) = 
dy

my
dx



Or 
dy

my
dx

  = f (x) which is a first order linear differential equation and

I.F. = 
mdx mxe e

   .

Then multiplying above equation by e–mx and integrating with respect to x, we
get,

y e – mx = ( ) mxf x e dx , since particular integral does not contain any arbitrary

constant,

Or y = emx ( ) mxf x e dx .

Note: If 
1

( )F D
= 1 2

1 2
..... n

n

aa a

D m D m D m
 where ai and mi (i = 1, 2, ..., n)

are constants, then

1
{ ( )}

( )
f x

F D
= a1em1x 1( ) m xf x e dx 2 2

2 ( )m x m xa e f x e dx

... ( )n nm x m x
na e f x e dx

= 
1

( )i i
n

m x m x
i

i

a e f x e dx


 

We now discuss methods of finding particular integrals for certain specific types
of right hand functions

Type 1: f (D) y = emx where m is a constant.

Then P.I. = 
1

{ }
( )

mxe
F D

 =
( )

mxe

F m
 if  F (m)  0

If F (m) = 0, then we replace D by D + m in F (D),

P.I. = 
1

{ }
( )

mxe
F D

 = emx . 
1

{1}
( )F D m

Example 5.9: (D3 – 2D2 – 5D + 6) y = (e2x + 3)2 + e3x cosh x.

Solution: The reduced equation is,

(D3 – 2D2 – 5D + 6) y = 0 ...(1)

Let y =Aemx be a trial solution of Equation (5.9). Then the auxiliary equation is,

m3 – 2 m2 – 5m + 6 = 0 or m3 – m2 – m2 + m – 6m + 6 = 0

Or m2 (m – 1) – m (m – 1) – 6 (m – 1) = 0

Or (m – 1) (m2 – m– 6) = 0 or (m – 1) (m2 – 3m + 2m – 6) = 0

Or (m – 1) (m – 3) (m + 2) = 0 or m = 1, 3, –2

 The complementary function is,

y = c1ex + c2e3x + c3 e–2x where c1, c2, c3 are arbitrary constants.
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Again (e2x + 3)2 + e3x cosh x = e4x + 6 e2x + 9 + e3x

2

x xe e 
  
 

.

= e4x + 6 e2x + 9e0 . x + 
4 2

2 2

x xe e


= 4 2 0.3 13
9

2 2
x x xe e e

 The particular integral is,

y = 4 2 0.
3 2

1 3 13
9

2 22 5 6
x x xe e e

D D D

= 4 2 0.1 3 13
9

( 1)( 3)( 2) 2 2
x x xe e e

D D D

= 4 23 1 13 1
{ }

2 ( 1)( 3)( 2) 2 ( 1)( 2)( 3)
x xe e

D D D D D D

+ 0.1
9

( 1)( 3)( 2)
xe

D D D

= 
4 23 13

2 (4 1) (4 3) (4 2) 2 (2 1) )(2 2) (2 3)

x xe e

0.

9
(0 1)(0 3)(0 2)

xe

= 
4 2 0.3 13

9
2 3 .1. 6 2 1. 4 . ( 1) ( 1)( 3) . 2

x x xe e e

= 
4

213 3

12 8 2

x
xe

e  .

Hence the general solution is,

y = C.F. + P.I.

= c1ex + c2 e3x + c3 e
–2x +

4
213 3

12 8 2

x
xe

e  .

Notes: 1. When F (m) = 0 and F(m)  0, P.I. = 
1

{ }
( )

mxe
F D

= x 
1

{ }
( )

mxe
F D

= 
( )

mxxe

F m

2. When F (m)= 0 F(m) = 0 and F(m)  0, then P.I. = 
1

{ }
( )

mxe
F D

= 2 1

( )
mxx e

F D
 = 

2

( )

mxx e

F m

And so on.

Type 2: f (x) = emx V where V is any function of x.

Here the particular integral (P.I.) of F (D) y = f (x) is,

P.I. = 
1

{ }
( )

mxe V
F D

 = emx 1
{ }

( )
V

F D m
.
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Example 5.10: Solve (D2 – 5D + 6) y = x2 e3x

Solution: The reduced equation is,

(D2 –5D + 6) y = 0 (1)

Let y = Aemx be a trial solution of Equation (1) and then auxiliary equation is

m2 – 5m + 6 = 0 or m2 – 3m – 2m + 6 = 0

Or m (m – 3) – 2 (m – 3) = 0 or (m – 3) (m – 2) = 0

 m = 2, 3

 The complementary function is,

y = c1 e2x + c2 e3x where c1 and c2 are arbitrary constants.

The particular integral is,

y = 2 3
2

1
{ }

5 6
xx e

D D 
= 

3
2

2
{ }

( 3) 5( 3) 6

xe
x

D D   

= e3x 2
2

1
{ }

6 9 5 15 6
x

D D D    
= e3x 2

2

1
{ }x

D D

= e3x 
2 3 1 21 1

{ } (1 ) { }
(1 )

xx e D x
D D D

 


= 
3

2 3 4 2(1 ...){ }
xe

D D D D x
D

= 
3

2 3 2{ 2 2} 2
3

x
xe x

x x e x x
D

 
      

 

Hence the general solution is,

y = C.F. + P.I.

= 
3

2 3 3 2
1 2 2

3
x x x x

c e c e e x x .

Recall: (i) (1+ x)–1 = 1 – x + x2 – x3 + x4 – x5 + ...

(ii) (1 – x)–1 = 1 + x + x2 + x3 + x4 + x5 + ...

Type 3: (a) F (D) y = sin ax or cos ax where F (D) =  (D2).

Here P.I. = 
1

{sin }
( )

ax
F D

 = 
2

1
sin

( )
ax

a
(if  (– a2)  0)

 Or P.I. = 
1

{cos }
( )

ax
F D

= 
2

1
cos

( )
ax

a
(if  (–a2)  0)

[Note D2 has been replaced by – a2 but D has not been replaced by –  a.]

(b) F (D) y = sin ax or cos ax and F (D) =  (D2, D)

Here P.I. = 
1

{sin }
( )

ax
F D

= 
2 2

1 1
{sin } {sin }

( , ) ( , )
ax ax

D D a D

if (– a2, D)  0
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Or y = 
1

{cos }
( )

ax
F D

 = 
2 2

1 1
{cos } {cos }

( , ) ( , )
ax ax

D D a D

if (–a2, D)  0

(c) F (D) y = sin ax or cos ax and F(D) = 2

( )

( )

D

D

Here  P.I. = 
1

{sin }
( )

ax
F D

= 2

( )
{sin }

( )

D
ax

D
 = 

2

( )
{sin }

( )

D
ax

a
if (–a2)  0

Or y = 
1

{cos }
( )

ax
F D

= 2

( )

( )

D

D
{cos ax}

= 
2

( )

( )

D

a
{cos ax} if  (– a2)  0

(d) F (D) y = sin ax or cos ax, F (D) =  (D2) but  (–a2) = 0.

Here P.I. = 
1

( )F D
{sin ax or cos ax} = 

1

( )
x

F D
{sin ax or cos ax}

Alternatively, sin ax and cos ax can be written in the form sin ax = 
2

i xa ixae e

i

And cos ax = 
2

aix aixe e
, then find P.I. by the method of Type 1.

Example 5.11: Solve (D4 + 2D2 + 1) y = cos x.

Solution: The reduced equation is (D4 + 2D2 + 1) y = 0

Let y = Aemx be a trial solution. Then the auxiliary equaiton is,

m4 + 2m2 + 1 = 0 or [(m2 + 1)]2 = 0 or m = ± i, ± i

 C.F. = (c1 + c2x) cos x + (c3 + c4x) sin x where c1, c2, c3 and c4 are
arbitrary constants.

 P.I. = 
4 2

1
{cos }

2 1
x

D D 

 = 
3

1
{cos }

4 4
x x

D D

[ (D2) = D4 + 2D2 + 1

(–12) = 1 – 2 + 1 = 0, then 
1

{ ( )}
( )

f x
F D

 = x
1

{ ( )}
( )

f x
F D

]

= 
3

1
{cos }

4

x
x

D D
= 

2
. {cos }

4 3 1

x x
x

D 

= 
2

4

x 2 2

2

1 cos
{cos } . cos

4 3 1 83 1

x x x
x x

D

Hence the general solution is,

y = C.F. + P.I.
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= (c1 + c2x) cos x + (c3 + c4x) sin x – 
2

cos
8

x
x .

Example 5.12: Solve (D2 – 4)y = sin 2x.

Solution: The reduced equation is,

(D2 – 4)y = 0

Let y = Aemx be a  trial solution and then auxiliary equation is,

m2 – 4 = 0  m = ± 2

The complementary function is,

y = c1 e2x + c2 e–2x where c1, c2 are arbitrary constants.

The particular integral is,

y = 2

1
{sin 2 }

4
x

D 
= 2 2

2

1
sin 2 [Replace by 2 ]

2 4
x D

= 1
sin 2

8
x

The general solution is y = C.F. + P.I. = c1e2x + c2e–2x 1
sin 2

8
x.

Example 5.13: Solve (3D2 + 2D – 8)y = 5 cos x.

Solution: The reduced equation is,

(3D2 + 2D – 8)y = 0

Let y = Aemx be a trial solution and then the auxiliary equation is,

3m2 + 2m – 8 = 0 or 3m2 + 6m – 4m – 8 = 0

Or 3m (m + 2) – 4 (m + 2) = 0 or (m + 2) (3m – 4) = 0

Or m = – 2, m = 
4

3

 The complementary function is,

y = c1e–2x + 
4

3
2

x
c e  when c1 and c2 are arbitrary constants.

The particular integral is,

y = 
2

1
{5cos }

3 2 8
x

D D 
= 

1
5 {cos }

(3 4)( 2)
x

D D 

= 2 2

(3 4)( 2)
5 {cos }

(9 16)( 4)

D D
x

D D

 

 
 = 2 2

(3 4)( 2)
5 {cos }

[9( 1 ) 16][ 1 4]

D D
x

 

   

[D2 is replaced by – 12 in the denominator] 2

( )
form

( )

D

D

= 25
[3 6 4 8]{cos }

( 25) ( 5)
D D D x  = 21

[3 2 8]cos
25

D D x 

= 
2

2

1
3 (cos ) 2 (cos ) 8cos

25

d d
x x x

dxdx

 
   

 
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 =  1
3cos 2sin 8cos

25
x x   = 

1
(2sin 11cos )

25
x x

The general solution is,

y = C.F. + P.I.

= c1e –2x + c2e4/3x + 
1

(2sin 11cos )
25

x x .

Type 4: F (D) y = xn, n is a positive integer.

Here P.I. = 
1

{ }
( )

nx
F D

 = [F(D)]–1 {xn}

In this case, [F (D)]–1 is expanded in a binomial series in ascending powers of
D upto Dn and then operate on xn with each term of the expansion. The terms in
the expansion beyond Dn need not be considered, since the result of their operation
on  xn will be zero.

Example 5.14: Solve D2 (D2 + D + 1)y = x2.

Solution: The reduced equation is,

D2 (D2 + D + 1)y = 0 (1)

Let y = Aemx be a trial solution of Equation (1) and then the auxiliary equation
is,

m2 (m2 + m + 1) = 0

 m = 0, 0 and m = 1 1 4

2

   = 1 3 3

2 2

I i    


 The complementary function is,

y = (c1 + c2 x) e 0 . x + 
1

2
3 4

3 3
cos sin

2 2

x
e c x c x

= c1 + c2x + 
1

2
3 4

3 3
cos sin

2 2

x
e c x c x

Where c1, c2, c3, c4 are the arbitrary constant.

The particular integral is,

y = 2
2 2

1
{ }

( 1)
x

D D D 
= 2 1 2

2

1
(1 ) { }D D x

D
 

= 2 2 2 3 2
2

1
{1 ( ) ( ) ( ) ...}{ }D D D D D D x

D

= 2 2 3 4 2 3 2
2

1
{1 ( ) ( 2 ) ( ) ...}{ }D D D D D D D x

D

= 2
2

1
{ (2 2) (2) 0}x x

D

= 2
2

1
{ 2 }x x

D
 = 

3
21

3

x
x

D
 = 

4 3

12 3

x x
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The general solution is y = C.F. + P.I.

= c1 + c2x + 
4 3

/2
3 4

3 3
cos sin

2 2 12 3
x x x

e c x c x .

Example 5.15: Solve (D2 + 4)y = x sin2x.

Solution: The reduced equation is,

(D2 + 4) y = 0

The trial solution y = A emx gives the auxiliary equation as,

m2 + 4 = 0, m = ± 2i

The complementary function is y = c1 cos 2x + c2 sin 2x

The particular integral is y = 2
2

1
{ sin }

4
x x

D

= 
2

1
(1 cos 2 )

24

x
x

D
 = 

2

1
cos 2

2 24

x x
x

D

= 
2 2

2 2

1 1 ( )

2 2 24 4

ix ixx x e e

D D

= 
12 2 2

2 2

1 1
1 { } { }

4 4 2 4 ( 2 ) 4 4( 2 ) 4

ix ixD x e e
x x

D i D i

 = 
2 2

2 2

1 1 1
{ } { }

4 2 4 44 4 4 4 4 4

ix ixx e e
x x

D Di D Di

= 
2 21

{ } { }
8 4

4 1 4 . ( 4 ) 1
4 4

ix ixx e e
x x

D D
Di Di

i i

= 
1 12 21

. 1 { } 1 { }
8 4 4 4 4( 4 ) 4

ix xix e D e D
x x

Di i Di i

= 
2 2 21

. 1 ... { } 1 ... { }
8 4 4 4 16 4( 4 ) 4

ix xix e D D e D
x x

Di i Di i

= 
2 21 1 1

.
8 4 4 4 4 . 4 4

ix xix e e
x x

Di i Di i

= 
2 2 2 2

8 2 . 8 2 4 2 . 8 2 4

ix xix e x x e x x

i i i i

= 
2 2 2 2 2

28 2 . 8 2 22 .16 .

ix xi ix xix x e e x e e

i i

= 
2

sin 2 cos 2
8 2.8 2.16

x x x
x x 

= 
2

sin 2 cos 2
8 16 32

x x x
x x 
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Hence the general solution is y = C.F. + P.I.

= c1 cos 2x + c2 sin 2x + 
2

8 16

x x  sin 2x – cos 2
32

x
x .

Example 5.16: Solve (D4 + D3 – 3D2 – 5D – 2) y = 3xe–x.

Solution: The reduced equation is,

(D4 + D3 – 3D2 – 5D – 2) y = 0 (1)

The trial solution y = Aemx gives the auxiliary equation as,

m4 + m3 – 3m2 –  5 m – 2 = 0

Or m4 + m3 – 3m2 –  3 m – 2m – 2 = 0

Or m3 (m + 1) – 3m (m + 1) – 2 (m +1)

Or (m + 1) (m3 – 3m – 2) = 0 or (m + 1) {m3 + m2 – m2 – m – 2m –2) = 0

Or (m + 1) {m2 (m + 1) – m (m + 1) – 2 (m + 1)} = 0

Or (m + 1) (m + 1) (m2 – m – 2) = 0

Or (m + 1)2 (m2 – 2m + m – 2)  = 0

Or (m + 1)2 (m + 1) (m – 2) = 0

 m = – 1, –1, –1, 2

The complementary function is y = (c1 + c2 x + c3x2) e–x + c4e2x.

The particular integral is,

y = 
3

1
{3 }

( 1) ( 2)
xe x

D D

= 3e–x
3

1
{ }

( 1 1) ( 3)
x

D D
 = 3e–x

3

1
{ }

( 3) (1 /3)
x

D D

= – e–x
1 2

3 3

1 1
1 { } 1 ... { }

3 3 9
xD D D

x e x
D D

= – e–x 
2 3 2

3 2

1 1 1 1

3 2 3 6 6
x xx x x x

x e e
DD D

= –e–x 
4 3

24 18

x x

The general solution is y = C.F. + P.I.

= (c1 + c2 x + c3 x2) + c4 e2x – e–x 
4 3

.
24 18

x x

Type 5: (a) F (D) y = xV where V is a function of x.

Here P.I. = 
1

{ }
( )

xV
F D

 = 1 1
( ) { }

( ) ( )
x F D V

F D F D

 
  

 
.



Partial Differential
Equation of First and

Second Order

NOTES

Self - Learning
Material 163

Example 5.17: Solve (D2 + 9) y = x sin x.

Solution: The reduced equation is (D2 + 9) y = 0 (1)

The trial solution y = Aemx gives the auxiliary equation as,

m2 + 9 = 0 or m = ± 3i

 C.F. = c1 cos 3x + c2 sin 3x where c1 and c2 are arbitrary constants.

AndP.I. = 
1

{ sin }
( )

x x
F D

where F (D) = D2 + 9

= 1 1
( ) {sin }

( ) ( )
x F D x

F D F D

 
  

 

= 
2 2

2 1
{sin }

9 9

D
x x

D D

= 2 2

2 sin 2 sin
=

1 9 89 9

D x D x
x x

D D

= 
sin 1 1

{sin }
8 4 1 9

x x
D x  = 

sin 1
cos

8 32

x x
x

Hence the general solution is,

y = C.F. + P.I. = c1 cos 3x + c2 sin 3x + 
sin 1

cos
8 32

x x
x

(b)  F (D) y = xnV where V is any function of x.

HereP.I.= 
1

{ ( )}
( )

f x
F D

 = 1 ( ) 1
{ } { }

( ) ( ) ( )

n
n F D

x V x V
F D F D F D

Example 5.18: Solve (D2 –1)y = x2 sin x

Solution: The reduced equation is (D2 –1)y = 0 (1)

Let y = Aemx be a trial solution. Then the auxiliary equation is,

m2 – 1 = 0 or m = ± 1

 C.F. = c1ex + c2e–x where c1 and c2 are arbitrary constants.

P.I.= 21
{ sin }

( )
x x

F D
 where F(D) = D2 – 1

= 
2

( ) 1
{sin }

( ) ( )

F D
x x

F D F D
 = 

2

2 2

1 1
2 {sin }

1 1
x D x

D D

  
   

= 
2 2 2

1 1 1
2 2 sin

1 1 1 1
x D x D x

D D

= 
2 2

1 1
2 2 { 1/ 2sin }

1 1
x D x D x

D D

= 
2 2

1 1
2 sin {cos }

21 1

x
x D x x

D D
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= 
2

1 1
2 sin cos

2 21

x
x D x x

D

      
   

= – 
2

2

1
sin cos { ( sin cos )}

2 2 1

x x
x x D x x x

D
  



= – 
2

2

1
sin cos {sin cos sin }

2 2 1

x x
x x x x x x

D

= –
2

2

1
sin cos { cos }

2 2 1

x x
x x x x

D
 



Again
2

1
{ cos }

1
x x

D 
= 

2 2

1 1
2 {cos }

1 1
x D x

D D

  
   

= 
2

1 1
2 cos

1 11
x D x

D

        

= 2

1 1
cos { sin }

2 1
x x x

D

= 2

1 sin
cos

2 1 1

x
x x  = – 1 1

cos sin
2 2

x x x

P.I.= – 
2 1

sin cos cos sin
2 2 2 2

x x x
x x x x  

= 21 1
sin cos sin

2 2
x x x x x

Hence the general solution is,

y = C.F. + P.I. = c1ex + c2e–x 21 1
sin cos sin

2 2
x x x x x.

Classification of Partial Differential Equations of Second Order

Consider the following linear partial differential equation of the second order in
two independent variables,

GFu
y

u
E

x

u
D

y

u
C

yx

u
B

x

u
A 





















2

22

2

2

Where A, B, C, D, E, F, and G are functions of x and y.

This equation when converted to quasi-linear partial differential equation
takes the form,

0,,,
2

22

2

2




























y

u

x

u
uyxf

y

u
C

yx

u
B

x

u
A

These equations are said to be of:

1. Elliptic Type if B2 – 4AC < 0

2. Parabolic Type if B2 – 4AC = 0

3. Hyperbolic Type if B2 – 4AC > 0



Partial Differential
Equation of First and

Second Order

NOTES

Self - Learning
Material 165

Let us consider some examples to understand this:

(i)  022
2

2
2

2

2

2


















y

u

y

u
x

yx

u
x

x

u

 u
xx

 – 2xu
xy

 + x2u
yy

 – 2u
y
 = 0

Comparing it with the general equation we find that,

A = 1, B = –2x, C = x2

Therefore,

B2 – 4AC = (–2x)2 – 4x2 = 0,   x and y  0

So the equation is parabolic at all points.

(ii) y2u
xx

 + x2u
yy

 = 0

Comparing it with the general equation we get,

A = y2, B = 0, C= x2

Therefore,

B2 – 4AC = 0 –  4x2y2 < 0,   x and y  0

So the equation is elliptic at all points.

(iii) x2u
xx

 – y2u
yy

 = 0

Comparing it with the general equation we find that,

A = x2, B = 0, C = –y2

Therefore,

B2 – 4AC = 0 –  4x2y2 > 0,  x and y  0

So the equation is hyperbolic at all points.

Following three are the most commonly used partial differential equations
of the second order:

1. Laplace equation,

0
2

2

2

2









y

u

x

u

This is equation is of elliptic type.

2. One-dimensional heat flow equation,

2

2
2

x

u
c

t

u








This equation is of parabolic type.

3. One-dimensional wave equation,

2

2
2

2

2

x

u
c

t

u








This is a hyperbolic type.
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Check Your Progress

1. Define Lagrange’s linear differential equation.

2. Write the general linear differential equation with constant coefficients.

3. What is the complementary function of 2nd order linear differential equation
if the roots of equation m

1
 and m

2 
are equal?

4. What is the particular integral?

5. What are the three types of second order partial differential equations?

5.4 LINEAR PARTIAL DIFFERENTIAL
EQUATION WITH CONSTANT
COEFFICIENT

Homogeneous Linear Equations with Constant Coefficients

Let f(D, D' )z = V(x, y) (5.10)

Then if,

  n
n

nnn DADDADDADADDf   2
2

2
1

10, (5.11)

Where n21 A,,A,A   are constants.

Then Equation (5.10) is known as Homogeneous equation and takes the
form,

   y,xVzDADDADDADA n
n

22n
2

1n
1

n
0    (5.12)

Complementary Function

Consider the equation,

  0zDADDADDADA n
n

22n
2

1n
1

n
0    (5.13)

Let,

 mxyz  (5.14)

Be a solution of Equation (5.18)

Now  mxymzD rrr 

   mxyzD es 

And    mxymzDD srrsr  

Therefore, on substituting Equation (5.14) in Equation (5.13), we get

      0mxyAmAmAmA n
n

2n
2

sn
1

n
0   

Which will be satisfied if,

0AmAmAmA n
2n

2
1n

1
n

0    (5.15)
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Equation (5.15) is known as the auxiliary equation.

Let n21 m,,m,m   be the roots of the Equation (5.15),

Then the following three cases arise:

Case I: Roots n21 m,,m,m   are Distinct.

Part of C.F. corresponding to m = m
1
 is,

 xmyz 11 

Where ‘
1
’ is an arbitrary function.

Part of C.F. corresponding to m = m
2
 is,

 xmyz 22 

Where 
2
 is any arbitrary function.

Now since our equation is linear, so the sum of solutions is also a solution.

Therefore, our complimentary function becomes,

C.F. = 
1
(y + m

1
x) + 

2
(y + m

2
x) +……………+ 

n
(y + m

n
x)

Case II: Roots are Imaginary.

Let the pair of complex roots of the Equation (5.16) be

u ± iv

Then the corresponding part of complimentary function is,

z = 
1
(y + ux + ivx) + 

2
(y + ux – ivx) …(5.16)

Let y + ux = P and vx = Q

Then z = 
1
(P + iQ) + 

2
(P –  iQ)

Or z = (
1
+ 

2
)P + (

1
–  

2
)iQ

If 
1
+ 

2  
= 

1

And 
1
–  

2  
= 

2

Then,

)ξξ(
2

1
φ 211 i
And

)ξξ(
2

1
φ 21 2 i

Substituting these values in Equation (5.21), we get,

)(ξ
2

1
)(ξ

2

1
)(ξ

2

1
)(ξ

2

1
2121 iQPiiQPiQPiiQPz 

Or

)}(ξ)(ξ{
2

1
)}(ξ)(ξ{

2

1
2211 iQPiQPiiQPiQPz 
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Case III: Roots are Repeated.

Let m be the repeated root of Equation (5.15).

Then we have,

(D – mD')(D – mD')z = 0

Putting (D – mD')z = U, we get (5.17)

(D – mD')U = 0 (5.18)

Since the equation is linear, it has the following subsidiary equations,

01

dU

m

dydx



 (5.19)

Two independent integrals of Equation (5.19) are,

mxy   = Constant

And U = Constant

  mxyU 

This is a solution of Equation (5.18) where  is an arbitrary function.

Substituting in Equation (5.17),

 mxy
y

z
m

x

z









(5.20)

Which has the following subsidiary equations,

 mxy

dz

m

dy

1

dx







Two independent integrals of Equation (5.17) are,

mxy   = Constant

And   mxyxz  Constant

Therefore    mxymxyxz  (5.21)

This is a solution of Equation (5.20) where  is an arbitrary function.

Equation (5.21) is the part of C.F. corresponding to two times repeated
root.

In general, if the root m is repeated r times, the corresponding part of C.F.
is,

     mxymxyxmxyxz r2
2r

1
1r   

Where r21 ,,,    are arbitrary functions.

Example 5.19: Solve the equation,   0zDDD3DD3D 3223  .

Solution: The A.E. of the given equation is,

01m3m3m 23 
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Or   01m 3 

 m = 1, 1, 1

 C.F. =      xyxyxxyx 221
2  .

Non-Homogeneous Linear Equations with Constant Coefficients

If all the terms on left hand side of Equation (5.10) are not of same degree then
Equation (5.10) is said to be Non-Homogeneous equation. Equation is said to

be reducible if the symbolic function  D,Df   can be resolved into factors each

of which is of first degree in D and D' and irreducible otherwise.

For example, the equation,

       xyxz1DD1DDz1D2DDzD,Df 222 

It is reducible while the equation,

       y2xcoszDDDzDDDzD,Df 23 

It is irreducible.

Reducible Non Homogeneous Equations

In the equation,

      nnn222111 cDbDacDbDacDbDaD,Df   …(5.22)

Where a’s, b’s and c’s are constants.

The complementary function takes the form,

      0zcDbDacDbDacDbDa nnn222111   (5.23)

Any solution of the equation given by

  0zcDbDa iii  (5.24)

This is a solution of the Equation (5.23)

Forming the Lagrange’s subsidiary equations of Equation (5.24),

zc

dz

b

dy

a

dx

iii 
 (5.25)

The two independent integrals of Equation (5.25) are,

 yaxb ii Constant

And z = Constant 
x

a

c

i

i

e


, if a
i
  0

Or

z = Constant 
y

b

ci

e


, if b
i
  0

Therefore,

z = x
a

c

i

i

e
  yaxb iii  , if 0a i 
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Or

z = 0if)(ψ 


iiii

y
b

c

byaxbe i

i

This is the general solution of Equation (5.24). Here  iφ  and  iψ are arbitrary

functions.

Example 5.20: Solve the differential equations,

  0zD3D3DD 22  .

Solution: The equation can also be written as,

   0z3DDDD 

    yxexy.F.C 2
x3

1 

Or

)(ψ)(ψ 2
3

1 yxexy y 

When the Factors are Repeated

Let the factor is repeated two times and is given by,

)'( cbDaD 

Consider the equation,

   0zcDbaDcDbaD  (5.26)

Put   UzcDbaD  (5.27)

Then the Equation (5.27) reduces to,

  0UcDbaD  (5.28)

General solution of Equation (5.28) is,

U = x
a

c

e
   0aifaybx  (5.29)

Or

   y
b

c

eU


   0bifaybx  (5.30)

Substituting Equation (5.29) in Equation (5.27), we obtain,

x
a

c

ezcbDaD


 )'(   aybx (5.31)

The subsidiary equations are,

czaybxe

dz

b

dy

a

dx
x

a

c





)(φ

(5.32)

The two independent integrals of Equations (5.32) are given by,

 aybx  Constant =  (5.33)
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And )λ(φ
1

)(φ
1 x

a

c
x

a

c

e
a

aybxe
a

z
a

c

dx

dz 
 (5.34)

The Equation (5.34) being an ordinary linear equation has the following
solution:

)λ(φ
1

x
a

ze
x

a

c

 + Constant

Or )b(φ
1

ayxx
a

ze
x

a

c

 + Constant

Therefore, general solution of Equation (5.31) is,

    x
a

c

1

x
a

c

eaybxaybxe
a

x
z




=     aybxaybxxe 12

x
a

c


 …(5.35)

Where 
1
 and 

2
 are arbitrary functions.

Similarly from Equations (5.30) and (5.27), we get

y
b

c

ez


     aybxaybxy 12 

Where 
1
 and 

2
 are arbitrary functions.

In general, for r times repeated factor,  cDbaD 

z = e   0aifaybxx
r

1i
i

1i
x

a

c






Or

  0bifaybxyez
r

1i
i

1i
y

b

c

 




Where r2,1 φ....,φ,φ  and r21 ψ,...,ψ,ψ are arbitrary functions.

Example 5.21: Solve  the differential equation,

  0z1D2D4DD2 2 

Solution: C.F. corresponding to the factor  4DD2   is,

e4y  y2xv 

C.F. corresponding to the factor  21D2D   is,

    yx2yx2xe 12
x 

Hence C.F. = e4y       yx2yx2xey2x 12
x  
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Irreducible Non-Homogeneous Equations

For solving the equation,

  0zD,Df  (5.36)

Substitute byaxcez   where a, b and c are constants. (5.37)

Now byaxrr ecazD 
byaxsrar ebcazDD 

And byaxss ecbzD 

Substituting Equation (5.37) in Equation (5.36), we get,

  0eb,acf byax 

Which will hold if,

f (a, b) = 0 (5.38)

For any selected value of a (or b) Equation (5.38) gives one or more values
of b (or a). Thus there exists infinitely many pairs of numbers (a

i
, b

i
) satisfying

Equation (5.38).

Thus







1i

ybxa
i

iiecz (5.39)

Where   0b,af ii     i, is a solution of the Equation (5.38),

If

     D,DgkDhDD,Df  (5.40)

Then any pair (a, b) such that,

0khba  (5.41)

Satisfies Equation (5.40). There are infinite number of such solutions.

From Equation (5.41),

 khba 

Thus

 





1i

ybxkhb
i

iiecz

= 
 







1i

hxyb
i

kx iece (5.42)

This is a part of C.F. corresponding to a linear factor  kDhD   given

in Equation (5.40).
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Equation (5.42) is equivalent to,

 hxye kx 

Where ‘’ is an arbitrary function.

Equation (5.39) is the general solution if f (D, D') has no linear factor
otherwise general solution will be composed of both arbitrary functions and partly
arbitrary constants.

Example 5.22: Solve the differential equation   0zDDD3D2 224  .

Solution: The given equation is equivalent to,

   0zDDDD2 22 

C.F. corresponding to the first factor,

= 






1i

ybxa
i

iiec

Where ia  and ib  are related by,,

0ba2 i
2
i 

Or 2
ii a2b 

Therefore, part of C.F. corresponding to the first factor,








1

)(

i

yexe
i

iied

Where ie  and id  are arbitrary constants.

 C.F. = 
   










 
1i

yexe
i

1i

ya2xa
i

iiii edec

Particular Integral

In the equation,

   y,xVzD,Df  …(5.43)

f(D, D) is a non homogeneous function of D and D.

P.I. =    y,xV
D,Df

1
 …(5.44)

Here if  y,xV  is of the form byaxe   where ‘a’ and ‘b’ are constants then

we use the following theorem to evaluate the particular integral:

Theorem 5.1: If   0b,af  , then,

   
byaxbyax e

b,af

1
e

D,Df

1  

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Proof: By differentiation,

byaxsrbyaxsr ebaeDD  '

byaxrbyaxr eaeD  

byaxsbyaxs ebeD  '

 byaxbyax ebafeDDf   ),()',(

   
byaxbyax e

D,Df

1
b,afe 




Dividing the above equation by f(a, b)

   
byaxbyax e

D,Df

1
e

b,af

1 




Or    
byaxbyax e

b,af

1
e

D,Df

1  


Example 5.23: Solve the equation   y2x22 ezD3D3DD 

Solution: The given equation is equivalent to,

   y2xez3DDDD 

C.F. =    xyexy 2
x3

1 

P.I. =
yxe

DDDD
2

)3')('(

1 



= 
y2xe

12

1 

Therefore, 
yxx exyexyz 2

2
3

1 12

1
)(φ)(φ 

But in case V(x, y) is of the form  y,xe byax   where ‘a’ and ‘b’ are

constants then following theorem is used to evaluate the particular integral:

Theorem 5.2: If  y,x  is any function, then

       y,x
bD,aDf

1
ey,xe

D,Df

1 byaxbyax 







Proof: From Leibnitz’s Theorem for successive differentiation, we have

       y,xD.acy,xDey,xeD 1r
1

rrbyaxbyaxr  

   y,xacy,xdac r
r

r2r2
2

r   

=    y,xacDacDcDe rrr2r2
2

r1r
1

rrbyax   

=    y,xaDe rbyax  .
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Similarly,

  ),(φ)'(),(φ' yxbDeyxeD sbyaxbyaxs  

And   )],(φ)'([),(φ' yxbDeDyxeDD byaxrbyaxsr  

=      y,xbDaDe srbyax 

So         y,xbD,aDfey,xeD,Df byaxbyax   (5.45)

Put      y,xy,xbD,aDf 

      y,x
bD,aDf

1
y,x 




Substituting in Equation (5.45), we get,

       y,xey,x
bD,aDf

1
eD,Df byaxbyax 












 

Operating on the equation by  D,Df

1


        y,xe
D,Df

1
y,x

bD,aDf

1
e byaxbyax 







Replacing    y,xbyy,x  , we have,

        y,x
bD,aDf

1
ey,xe

D,Df

1 byaxbyax 







Example 5.24: Solve   avx22 exvzD3D3DD  .

Solution: The given equation is equivalent to,

   y2xexyy3DDDD 

C.F. =    yxexy 2
x3

1 

P.I. =      
y2xe

3DDDD

1
xy

3DDDD

1 






= xy
3

DD
1

D

D
1

D3

1
11 







 








 


+   132D1D2D1D

1
e y2x




.

exyDD
9

2

3

DD
1

D

D

D

D
1

D3

1 y2x
2

2








 


















 
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   1.
DD1DD

1


y2x
2

xe
9

2
y

3

1

2

x
x

3

2
xy

D3

1 










= 
y2x

322

xex
9

2
xy

3

1

6

x

3

x

2

yx

3

1 








 .



Example 5.25: Solve     12cos1''2  xyeyxzDDDD y  .

Solution: Equation is equivalent to,

     12cos1'1  xyeyxzDDD y

Complementary Function = )(φ)(φ 21 yxeye yx  .

Particular integral corresponding to cos (x + 2y) is,

 y2xcos
1DDDD

1
2




     y2xcos
1D21

1





 y2xcos
D

1





 y2xsin
2

1


Corresponding to ye , the particular integral is,

y
2

e
1DDDD

1




ye
1D

1




1.
D

1
.ey




= yey.

Particular Integral corresponding to the part (xy + 1) is,

    1xy
1DD1D

1




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    )1()'(11 11   xyDDD

       1xy.....DDDD1.....DD1 22 

      2xy1xy.....DD1 2 

  1xyxy.....DD1 2 

    1y1xyxy 

 xxy

 1yx 

 )1()2sin(
2

1
)(φ)(φ 21  yxyeyxyxeyez yyx

Partial Differential Equations Reducible to Equations with Constant
Coefficients

The equation,

   y,xVzDy,xDf 

Where    
s,r

rs
srsr

rs c,DDyxcDy,xDf = Constant. (5.46)

This is reduced to linear partial differential equation with constant coefficients
by the following substitution:

u = log x, v = log y (5.47)

By substitution of Equation (5.47)

x
xxD





u
x

u x

d
u





  (say)

And,













ux

1
DxDx 222

















2

2

22
2

ux

1

ux

1
x

uu 2

2










 1dd 
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Therefore,

    1rd.....2d1ddDx rr 

And     1sd...2d1ddDy ss 

Hence        1rd.....1ddcDy,xDf rs )1').....(1'('  sddd

 d,dg 

Here the coefficients in g(d, d’) are constants.

Thus by substitution Equation (5.46) is reduced to,

   vu e,eVzd,dg 

Or zddg )',(  v,uU (5.48)
Equation (5.48) can be solved by methods that have been described for

solving partial differential equations with constant coefficients.

Example 5.26: Solve the differential equation,

  432222 yxzDy6Dy4DxyD4Dx 

Solution: Put xlogu 

v = log y

The given equation can be reduced to

     v4u3ezd61dd4dd41dd 

Or    v4u3ez1d2dd2d 

The complementary function is    vu2evu2 2
u

1 

=    yxlogxyxlog 2
2

2
1 

=    yxxyx 2
2

2
1 

And the particular integral is   
v2u3e

1d2dd2d

1 



= 
v4u3e

30

1 

= 
43yx

30

1

     432
2

2
1 yx

30

1
yxxyxz  .

Example 5.27: Find the solution of,   0zxDDyDyDx 2222 

Solution: Put u = log x

v = log y
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The given differential can be reduced to,

     0zdd1dd1dd 

   0zdd 22 

A.E. is,

01m 2 

 1,1m 

    uvuvz 21 

  







x

y
logxylog 21

  







x

y
xy 21 .

Example 5.28: Determine the solution of the following equation,

    3222222 xyxzDyxDnnzzDyDxyD2Dx 

Solution: Put xlogu 

ylogv 

The equation reduces to,

       u3v2u2 eeenzzddnz1dddd21dd 

Or

Or

Or

      u3v2u22 eeezndd1ndd 

Or

   u3v2u2 eeez1ddndd 

C.F. =    vuevue 2
u

1
nu 

= 


















y

x
x

y

x
x 21

n

P.I. =    u3v2u2 eee
1ddndd

1



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= 

= 3
22

x
3n

1
.

2

1

2n

yx









 3n

x

2

1

2n

yx

y

x
x

y

x
xz

322

21
n


























Example 5.29: Solve  
2

1

x

y
logzDy2xDDy2DxyDDx 2222 

Solution: Put xlogu 

ylogv 

Our equation reduces to,

    
2

1
uvzd2d1dd2dd1dd 

 
2

1
uvzd2ddd 22 

Or   
2

1
uvzddd2d 

C.F. =    vuvu2 21 

=   









y

x
yx 2

2
1

P.I.=    





 

 2

1
uv

ddd2d

1

= 





 






 


 2

1
uv

d

d
1

d

1
.

d2d

1 

= 






 


u

2

1
uv

d

1
.

d2d

1

= 





 


u
2

1
uuv.

d2d

1 2

                                          = 





 















 u
2

1
uuv

d

d4

d

d2
1

d

1 2
2

2


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= 






  22 uu

2

1
uuv

d

1

= 

=    22 xlog
4

1
ylogxlog

2

1


                                   22
2

2
1 xlog

4

1
ylogxlog

2

1

y

x
yxz 








 .

Example 5.30: Solve the differential equation,

   2

n
222222 yxzDyDxyD2Dx 

Solution: Put u = log x

v = log y

The equation is reduced to       2

n
v2u2 eez1dddd21dd 

Or       2

n
v2u22 eezdddd 

Or     2

n
v2u2 eez1dddd 

C.F.    vuevu 2
u

1 




















y

x
logx

y

x
log 21




















y

x
x

y

x
21

Particular Integral is     2

n
v2u2 ee

1dddd

1





Substituting   2

n
v2u2 ee

1dd

1
Z 




Or  2

n
v2u2 eeZ

v

Z

u

Z









The subsidiary equations are
 2

n
v2u2 eeZ

dZ

1

dv

1

du




Two independent integrals of Equation are given by,

u – v = Constant = a (say)
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And  2

n
v2u2 eeZ

dv

dZ


= 22 )1(
n

anv ee 

Since this equation is linear, therefore,

 

   2

n
a2

v1n
v 1e

1n

e
Ze 







  2

n
a2

nv

1e
1n

e
Z 




 
 1n

ee 2

n
v2u2






 P.I. 
 



















1n

ee

dd

1 2

n
v2u2

=    



 uva

2

n
u2a2u2 duee

1n

1

= 
uva

nu
n

a duee
n










  22 )1(

1

1

=    
uva

2

n
a2nu 1ee

1nn

1












   2

n
v2u2 ee

1nn

1





=    2

n
22 yx

1nn

1




    2

n
22

21 yx
1nn

1

y

x
x

y

x
z 



















 .

Example 5.31: Solve  
x

y8
zDy3xDDyDxyD2Dx 2222 

Solution: Put xlogu 

xlogv 
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Our Equation reduces to,

Or

Or    uve8z2dddd 

C.F.    vuevu 2
u2

1 

=    xyxxy 2
2

1 

P.I. =   
uve

2dddd

1
.8 



= uve 

=
x

y

    
x

y
xyxxyz 2

2  .

Example 5.32: Solve   nm2222 yxzDyDxyD2Dx 

Solution: Put xlogu 

ylogv 

The equation reduces to,

     nvmuez1dddd21dd 

Or

Or    nvmuez1dddd 

C.F. =    vuevu 2
u

1 

= 


















y

x
x

y

x
21

P.I. =   
nvmue

1dddd

1 



=   
nvmue

1nmnm

1 


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=   
nm yx

1nmnm

1



   
nm

21 yx
1nmnm

1

y

x
x

y

x
z



















 .

Check Your Progress

6. What is the complementary function of the equation

  0zDADDADDADA n
n

22n
2

1n
1

n
0     if the roots are

distinct?

7. Write the homogeneous linear equations with constant coefficients.

8. When is a non-homogeneous equation said to be reducible?

9. Which mathematical function is used to reduce partial differential
equations to equations with constant coefficients?

5.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The partial differential equation Pp + Qq = R, where P, Q, R are functions
of x, y, z is called Lagrange’s linear differential equation.

2. The linear differential equation with constant coefficients are of the form,

QyP
dx

dy
P

dx

yd
P

dx

yd
P

dx

yd
nnn

n

n

n

n

n

 







12

2

21

1

1 .....

Where P
1
, P

2
, …., P

n 
are constants and Q is a function of x.

3. When m1= m2, then the complementary function will be,

y = (c1 + c2 x) em1x where c1 and c2 are arbitrary constants.

4. Any particular solution of  F (D) y = f(x) is known as its Particular Integral
(P.I). The P.I. of F(D)y = f(x) is symbolically written as,

P.I. = 
1

( )F D
{f (x)} where F(D) is the operator..

5. The three types of equations are the elliptic type, the parabolic type and the
hyperbolic type.

6. Let m
1
, m

2
, ..., m

n
 be the roots of the equation then C.F. = 

1
(y + m

1
x) +


2
(y + m

2
x) +……………+ 

n
(y + m

n
x) where 

i
’s are arbitrary functions.

7. Let f(D, D' )z = V(x, y)

Then if,

  n
n

nnn DADDADDADADDf   2
2

2
1

10,

Where n21 A,,A,A   are constants.
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8. The equation f(D, D')z = V(x, y) is said to be reducible if the symbolic
function f (D, D') can be resolved into factors each of which is of first degree
in D and D'.

9. Logarithm function is used to reduce partial differential equations to equations
with constant coefficients

5.6 SUMMARY

 The partial differential equation Pp + Qq = R, where P, Q, R are functions
of x, y, z, is called Lagrange’s linear differential equation.

 The general form of a linear differential equation of nth order is,
1 2

1 2 11 2
...

n n n

n nn n n

d y d y d y dy
P P P P y

dxdx dx dx
 = Q

 The solution y = y1 (x), y = y2 (x), y = y3 (x), ..., y = yn (x) are said to be
linearly independent if the Wronskian of the functions is not zero

 The Complementary Function (C.F.) which is the complete primitive of the
Reduced Equation (R.E.) and is of the form

y = c1 y1 + c2 y2 + ... + cn yn containing n arbitrary constants.

 The Particular Integral (P.I.) which is a solution of F (D) y = Q containing
no arbitrary constant.

 If the two roots m1 and m2 of the auxiliary equation are equal
and each equal to m, the corresponding part of the general solution will be
(c1 + c2 x) emx and if the three roots m3, m4, m5 are equal to  the
corresponding part of the solution is (c3 + c4x + c5x2) ex and others are
distinct, the general solution will be,
y = (c1 + c2x) emx + (c3 + c4 + c5x2) ex + c6 em6x +......+ cnemnx

 If a pair of imaginary roots  ± i occur twices, the corresponding part of
the general solution will be,

ex [(c1 + c2x) cos  x + (c3 + c4x) sin x]

 The operator 
1

( )F D  is defined as that operator which, when operated on

 f (x) gives a function  (x), such that F (D) (x) = f (x)

the following linear partial differential equation of the second order in two
independent variables,

GFu
y

u
E

x

u
D

y

u
C

yx

u
B

x

u
A 





















2

22

2

2

Where A, B, C, D, E, F, and G are functions of x and y.

 Laplace equation,

0
2

2

2

2









y

u

x

u

This is equation is of elliptic type.
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 One-dimensional heat flow equation,

2

2
2

x

u
c

t

u








This equation is of parabolic type.

 One-dimensional wave equation,

2

2
2

2

2

x

u
c

t

u








This is a hyperbolic type.

 Equation is said to be reducible if the symbolic function  D,Df   can be

resolved into factors each of which is of first degree in D and D' and
irreducible otherwise.

5.7 KEY TERMS

 Partial differential equation: Any equation which contains one or more
partial derivatives is called a partial differential equation.

 Reducible: Equation is said to be reducible if the symbolic function f
(D, D) can be resolved into factors each of which is of first degree in D and
D and irreducible otherwise.

 Fundamental mode: The first normal mode is referred as the fundamental
mode.

 Complementary function: Consider the equation,

  0zDADDADDADA n
n

22n
2

1n
1

n
0   

Let,

 mxyz 

5.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define Lagrange’s linear differential equation with suitable examples.

2. Define partial differential equations with suitable examples.

3. How will you identify the order of a partial differential equation?

4. How will you determine the degree of the partial differential equation?

5. Define Wronskian of functions.

6. Give the rules for finding the complementary function.

 7. Explain the partial differential equation of the second order.
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8. Give examples of parabolic, elliptic and hyperbolic type equations.

9. What is the difference between homogeneous and non homogeneous
differential equations?

 10. Explain the reducible non homogeneous equations.

Long-Answer Questions

1. Discuss the first order Lagrange’s equations. Give appropriate examples.

2. Solve the equations:

(i)   0zD1DDD 3s2  .

(ii)   0zD4DD3D 323  .
3. Solve the equations:

(i)   xy12zDDD2D 22  .

(ii)   xy12zD15DD2D 22  .

(iii)   xy16x12zD9DD6D 222  .

(iv)   322323 yxyxzD6DD7D  .

(v)  
2

322

x

1
zDDD2DD 

.

4. Solve the equations:

(i)   yxzD2DDD 22  .

(ii)   yxzD2DD3D 22  .

(iii)    y2xlog16zDDD4D4 22  .

(iv)     322323 yxyxyxcoszD6DD7D  .

(v)  323 zD6DD7D   sin (x + 2y) + e3x+y
.

(vi)   y2xzD2DD3D 323  .

(vii)  zD2DD5DD4D 3223   = ey+2x xy  .

5. Solve the equations:

(i)    y2xcoszD2DD3D 323  .

(ii)    y2x3sinxzD5DD5D 22  .
6. Solve the equations:

(i)     x22 e1yzD2dDD  .

(ii)      x23ey2xcoszD2DD3D y323  .



Partial Differential
Equation of First and
Second Order

NOTES

Self - Learning
188 Material

7. Solve the equations:

(i)   0zD3DDD 2  .

(ii)     0z2D2D1DD2 32  .

8. Solve the equations:

(i)   0zDDD2 22  .

(ii)   0z1DDDDD2  .
9. Solve the equations:

(i)    yx2ez2DD1DD  .

(ii)   yx2 ezDD  .
10. Solve the equations:

(i)    y4x3coszD2DDD2  .

(ii)    mylxcosAzDD2  , where A, l, m are constants.

11. Solve the equations:

(i)    y6x34z3D2D1DD  .

(ii)  
3

223

x

2x
zDDDDDD


 .

(iii)   22 xy2yDD  .

12. Solve the equations:

(i)    y3xcoszDD 2  .

(ii)      yx2sinezDD3DD1DD yx   .

(iii)   xhsin4z1DDDD2  .

(iv)   y2cosex3sinz2DDD y222  .

13. Solve the equations:

(i)   xyzDyDx 2332  .

(ii)   222222 yxzDyDxyD2Dx  .

(iii)    322222 xlogcosyxzDy3xDDy3DxyD2Dx  .

14. Solve   yx3223 ezD2DDDD2D  .

15. Solve   xyz3xuDDD3DDD 3333  .
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16. Solve the following equations:
(i) r  = x2 ey.

(ii) x 1ys  .
17. Solve the following equations:

(i) ycosxysinxqt  .

(ii) 2xxqt  .
(iii) xyqyt  .

18. Solve the following equations:

(i) 3xy10pysxr  .

(ii) 3yx4q2xsyt2  .

(iii)  yxcosxrz  .

19. Solve the differential equation,   y3x22 e2yzyyp2r  .
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