
M.Sc. (IT) Previous Year

MIT - 05

Political Science, Paper - I

OBJECT ORIENTED
PROGRAMMING USING C++

MADHYA PRADESH BHOJ (OPEN) UNIVERSITY – BHOPAL

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Registrar,
Madhya Pradesh Bhoj (Open) University, Bhopal.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Madhya Pradesh Bhoj (Open) University, Bhopal, Publisher and its Authors
shall in no event be liable for any errors, omissions or damages arising out of use of this information
and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

Published by Registrar, MP Bhoj (Open) University, Bhopal in 2020

COURSE WRITERS

Rohit Khurana, Faculty and Head, I.T.L. Education Solutions Ltd., New Delhi
Units (1.0-1.1, 1.2-1.2.1, 1.2.3-1.2.8, 1.3 -1.5, 1.7-1.13, 2.0, 2.1, 2.2- 2.2.1, 2.2.2, 2.3-2.4, 2.5-11, 3.0-3.4, 3.6-3.10, 4.0-4.2.6,
4.3-4.5, 4.7-4.12, 5.2, 5.3.3-5.3.6, 5.5-5.6.3, 5.7-5.12)

R. Subburaj, Former Professor and Consultant, S.R.M. University, Chennai
Units (1.2.2, 1.6, 3.5, 4.6, 5.0-5.1, 5.3-5.3.2, 5.4)

Copyright © Reserved, Madhya Pradesh Bhoj (Open) University, Bhopal

3. Dr. K. Mani Kandan Nair
Department of Computer Science
Makhanlal Chaturvedi National
University of Journalism and
Communication, Bhopal (M.P.)

Reviewer Committee
1. Dr. Anjana Yadav

Assistant Professor
Institute for Excellence in Higher Education,
Bhopal (M.P.)

2. Dr. Romsha Sharma
Professor
Sri Sathya Sai College for Women,
Bhopal (M.P.)

Advisory Committee
1. Dr. Jayant Sonwalkar

Hon’ble Vice Chancellor
Madhya Pradesh Bhoj (Open) University,
Bhopal (M.P.)

2. Dr. L.S. Solanki
Registrar
Madhya Pradesh Bhoj (Open) University,
Bhopal (M.P.)

3. Dr. Kishor John
Director
Madhya Pradesh Bhoj (Open) University,
Bhopal (M.P.)

4. Dr. Anjana Yadav
Assistant Professor
Institute for Excellence in Higher Education,
Bhopal (M.P.)

5. Dr. Romsha Sharma
Professor
Sri Sathya Sai College for Women,
Bhopal (M.P.)

6. Dr. K. Mani Kandan Nair
Department of Computer Science
Makhanlal Chaturvedi National University of
Journalism and Communication, Bhopal (M.P.)

SYLLABI-BOOK MAPPING TABLE
Object Oriented Programming Using C++

UNIT - 1:
Object Oriented Paradigms and Metaphors: Basic Concepts
of Object-Oriented Programming, Objects, What is C++?, A Simple
C++ Program, Initialization Input with C in Tokens, Control
Statements, Decisions Nesting, Type Conversion.
Data Types: Operators and Expressions, Tokens, Basic Data
Types, Constants, User Defined Data Types, Derived Data Types,
Declaration of Variables, Operations and Expressions, Operator
and Function Overloading, Manipulation of Strings Using Operators,
Polymorphism Streams.

UNIT - 2:
Function in C++: The Main Function Passing Arguments to
Function Returning Values From Functions Overload Functions
Inline Functions Default Arguments. Class and Objects: The
Concept of a Class, Classes Versus Objects.

UNIT - 3:
Constructor and Destructor: Constructors, Destructors,
Constructors of the String Class, String Class Assignment, String
Access Operators and Method.
Operator Overloading, Type Casting

UNIT - 4:
Inheritance: Derived Class, Relationships Superclass/Subclass,
Multiple Inheritance, Constructors, Destructors and Inheritance,
Hierarchical Inheritance Hybrid Inheritance, Virtual Base Classes.
What Are Pointers? C++ Memory Map, Free Store, Pointers and
Arrays, Reserving Dynamic Memory, Freeing Dynamic Memory,
Polymorphism, Virtual Functions, Pure Virtual Functions, Early
vs. Late Binding.

UNIT - 5:
Input-Output in C++: Old vs. Modern C++I/O, C++ Streams,
Creating Inserters, Creating Extractors, Creating Manipulator,
Functions.
File Handling in C++: Classes for File Stream Operations, Opening
and Closing a File, Manipulations of File Pointers, Random Access,
Command-Line Arguments, Standard Library Objects, The
Container Classes, Theory of Operation, Vectors, Lists, Maps,
Algorithms, The String Class.

Syllabi Mapping in Book

Unit-1: Object Oriented Paradigms,
Metaphors and Data Types

(Pages 3-88)

Unit-2: Functions, Class and
Objects in C++

(Pages 89-122)

Unit-3: Constructor and Destructor,
Operator Overloading and Type Casting

(Pages 123-169)

Unit-4: Inheritance and Pointers
(Pages 171-225)

Unit-5: Input-Output and
File Handling in C++

(Pages 227-317)

INTRODUCTION 1

UNIT 1 OBJECT ORIENTED PARADIGMS, METAPHORS
AND DATA TYPES 3-88

1.0 Introduction
1.1 Objectives
1.2 Object Oriented Paradigms and Metaphors

1.2.1 Basic Concepts of Object-Oriented Programming
1.2.2 Objects
1.2.3 What is C++
1.2.4 A Simple C++ Program
1.2.5 Initialization Input with C in Tokens
1.2.6 Control Statements
1.2.7 Decisions Nesting
1.2.8 Type Conversion

1.3 Operators and Expressions
1.3.1 Operators Precedence
1.3.2 Expressions

1.4 Tokens
1.4.1 Constants

1.5 Basic Data Types
1.5.1 User Defined Data Types
1.5.2 Derived Data Types
1.5.3 Declaration of Variables

1.6 Operators and Function Overloading
1.7 Manipulation of String using Operators
1.8 Polymorphism and Streams in C++

1.8.1 Polymorphism
1.8.2 Streams

1.9 Answers to ‘Check Your Progress’
1.10 Summary
1.11 Key Terms
1.12 Self-Assessment Questions and Exercises
1.13 Further Reading

UNIT 2 FUNCTIONS, CLASS AND OBJECTS IN C++ 89-122

2.0 Introduction
2.1 Objectives
2.2 Main Function

2.2.1 Passing Arguments to Function
2.2.2 Returning Value from Functions

2.3 Overload Functions
2.4 Inline Functions
2.5 Default Arguments
2.6 Object and Classes

2.6.1 Concepts of a Class
2.6.2 Classes versus Objects

2.7 Answers to ‘Check Your Progress’
2.8 Summary
2.9 Key Terms

2.10 Self-Assessment Questions and Exercises
2.11 Further Reading

CONTENTS

UNIT 3 CONSTRUCTOR AND DESTRUCTOR, OPERATOR
OVERLOADING AND TYPE CASTING 123-169

3.0 Introduction
3.1 Objectives
3.2 Constructor and Destructors
3.3 Constructors of the String Class

3.3.1 String Class Assignment
3.3.2 String Access Operator

3.4 Operator Overloading
3.5 Type Casting
3.6 Answers to ‘Check Your Progress’
3.7 Summary
3.8 Key Terms
3.9 Self-Assessment Questions and Exercises

3.10 Further Reading

UNIT 4 INHERITANCE AND POINTERS 171-225

4.0 Introduction
4.1 Objectives
4.2 Inheritance

4.2.1 Derived Class
4.2.2 Relationships Superclass/Subclass
4.2.3 Multiple Inheritances
4.2.4 Construction, Destructors in Inheritance
4.2.5 Hierarchical Inheritance
4.2.6 Hybrid Inheritance

4.3 Virtual Base Classes
4.4 C++ Memory Map Free Store

4.4.1 Pointers and Arrays
4.4.2 Memory Representation in Free Store

4.5 Reserving and Freeing Dynamic Memory
4.6 Polymorphism
4.7 Virtual Functions

4.7.1 Pure Virtual Functions
4.7.2 Early vs. Late Binding

4.8 Answers to ‘Check Your Progress’
4.9 Summary

4.10 Key Terms
4.11 Self-Assessment Questions and Exercises
4.12 Further Reading

UNIT 5 INPUT-OUTPUT AND FILE HANDLING IN C++ 227-317

5.0 Introduction
5.1 Objectives
5.2 Old vs. Modern C++
5.3 C++ Streams

5.3.1 Stream Classes
5.3.2 Managing Output with Manipulators
5.3.3 Classes for File Stream Operations
5.3.4 Opening and Closing a File
5.3.5 Manipulations of File Pointers
5.3.6 Random Access

5.4 Standard Library Objects

5.5 Container Classes
5.6 Lists, Map and Algorithms

5.6.1 Map in C++ Standard Template Library (STL)
5.6.2 Abstract Data Types (ADTs)
5.6.3 Linked List Implementation

5.7 String Class
5.7.1 Command-Line Arguments

5.8 Answers to ‘Check Your Progress’
5.9 Summary

5.10 Key Terms
5.11 Self-Assessment Questions and Exercises
5.16 Further Reading

Introduction

NOTES

Self - Learning
Material 1

INTRODUCTION

Object Oriented Programming (OOP) has emerged as one of the most impressive
programming paradigms in software development. Today, C++ is one of the most
popular OOP languages which can be used to develop real-world applications.
C++ is a programming language with a heritage extending from the ubiquitous C
language by Bjarne Stroustrup in the 1980s. It treats data as a crucial element—
not allowing it to move freely around the system. Therefore the main emphasis in
C is on data and not on the procedure. You can design programs around the data
being operated upon in C++. An object oriented language helps in combining data
and functions that operate on data into a single unit known as object. The process
of combining data and functions into a single unit is referred to as encapsulation.

C++ is used for developing different types of applications, such as real-time
systems, simulation modelling, expert systems. It also provides flexibility to a user
to introduce new types of objects in his programming on the basis of the requirement
of the application. This feature is known as abstraction. Features like abstraction,
object oriented programming and generic programming make C++ useful to those
who wish to undertake computer programming.

This book, Object Oriented Programming using C++ is divided into five
units that follow the self-instruction mode with each unit beginning with an Introduction
to the unit, followed by an outline of the Objectives. The detailed content is then
presented in a simple but structured manner interspersed with Check Your Progress
Questions to test the student’s understanding of the topic. A Summary along with
a list of Key Terms and a set of Self-Assessment Questions and Exercises is also
provided at the end of each unit for recapitulation.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 3

UNIT 1 OBJECT ORIENTED
PARADIGMS, METAPHORS
AND DATA TYPES

Structure
1.0 Introduction
1.1 Objectives
1.2 Object Oriented Paradigms and Metaphors

1.2.1 Basic Concepts of Object-Oriented Programming
1.2.2 Objects
1.2.3 What is C++
1.2.4 A Simple C++ Program
1.2.5 Initialization Input with C in Tokens
1.2.6 Control Statements
1.2.7 Decisions Nesting
1.2.8 Type Conversion

1.3 Operators and Expressions
1.3.1 Operators Precedence
1.3.2 Expressions

1.4 Tokens
1.4.1 Constants

1.5 Basic Data Types
1.5.1 User Defined Data Types
1.5.2 Derived Data Types
1.5.3 Declaration of Variables

1.6 Operators and Function Overloading
1.7 Manipulation of String using Operators
1.8 Polymorphism and Streams in C++

1.8.1 Polymorphism
1.8.2 Streams

1.9 Answers to ‘Check Your Progress’
1.10 Summary
1.11 Key Terms
1.12 Self-Assessment Questions and Exercises
1.13 Further Reading

1.0 INTRODUCTION

The goal of programmers is to develop software that are correct, reliable and
maintainable, and satisfy all the user requirements. Software development is not a
static process. The software needs to be modified or redesigned according to
change in user requirements, business rules and strategies. In addition, the
complexity of the software also increases. To cope with the dynamic nature and
complexity of the software, different approaches of programming have been
developed since the invention of the computer. These approaches are known as
programming paradigms. To understand the concept of object-oriented
programming, it is necessary to know the fundamental terms and concepts of this
approach. These include objects, classes, data abstraction, encapsulation,
inheritance, polymorphism, and message passing.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
4 Material

A data type determines the type and the operations that can be performed
on the data. C++ provides various data types and each data type is represented
differently within the computer’s memory. Data types that are derived from the
built-in data types are known as derived data types. The various user-defined
data types provided by C++ are structures, unions, enumerations and classes. A
token is defined as the smallest unit of a program. When a program is compiled,
the compiler scans the source code and parses it into tokens to find the syntax
errors. C++ tokens are broadly classified into keywords, identifiers, constants,
operators and punctuators.

C++ has an interesting feature called function overloading. By this feature,
we can build a number of functions with the same name. But the argument lists of
such functions have to be different and unique. In C++, the stream refers to the
stream of characters that are transferred between the program thread and I/O
(Input/Output). Stream classes in C++ are used to input and output operations on
files and I/O devices. These classes include specific features for handling input
and output of the program. The iostream.h library holds all the stream classes in
the C++ programming language.

In this unit, you will study about the object oriented paradigms and metaphors,
basic concepts of objected –oriented programming, C++ and simple C++ program,
initialization input with C in tokens, control statements, decisions nesting and type
conversion, operators and expressions, tokens and basic data types, constants
and user define data, data types derived and declaration of variables, operator
and function overloading, manipulation of strings using operators, polymorphism
and streams in C++.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basics of object oriented paradigms and metaphors

 Explain the basic concept of object-oriented programming

 Explain the initialization input with C in tokens

 Describe the role of control statements in C++

 Analyse the decisions nesting and type conversion

 Discuss the meaning of operators and expressions

 Elaborate on the tokens and basic data types

 Discuss constants and user defined data

 Explain the operator and function overloading

 Describe the manipulation of strings using operators

 State the concept of polymorphism and streams in C++

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 5

1.2 OBJECT ORIENTED PARADIGMS AND
METAPHORS

Initially, when the computers were invented, binary language was used to write the
programs. However, as the programs grew in size, it became difficult to write
programs using binary language. Then the assembly language was invented to
write large programs, however, it was also not user-friendly. With the change in
the user requirements, the size and the complexity of the programs continued to
grow, which led to the development of high-level languages, such as BASIC and
FORTRAN. However, these languages provided an unstructured way of writing
programs. In unstructured programming paradigm, all the instructions of a program
were written one after the other in a single function and hence, suitable for writing
only small and simple programs. For large and complex programs, it became
difficult to trace and debug errors.

To overcome the limitations of unstructured programming paradigm, other
programming paradigms, namely, procedural and object-oriented programming
paradigms were developed, which help the programmers to develop the programs
in structured way.

Features of Object-Oriented Programming

Object-Oriented Programming (OOP) paradigm has revolutionized the process
of software development. It not only includes the best features of structured
programming, but also introduced some new and advanced features that the
procedural programming lacked. The most important feature is that, unlike
procedural programming in which the program is divided into a number of functions,
OOP divides the program into a number of objects. An object is a unit of structural
and behavioral modularity that contains a set of properties (or data) as well as the
associated functions. In addition, programmers can create relationships between
one object and another.

The functions of the object (also known as member functions) provide the
only way to access the object’s data. If the user wants to read or manipulate any
data item, then it is possible only if the member function to do the same is available
in the object. Therefore, the data is hidden from the outside world, and hence safe
from accidental modifications. The basic idea behind OOP is shown in Figure 1.1.

Object 1 Object 2

Data

Data

Functions Functions
Object 3

Data

Functions

Communicating
with other using
functions

Communicating Communicating

 Fig. 1.1 Data and Functions in OOP

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
6 Material

Some of the other features of OOP are as follows:

 OOP emphasises on data rather than the functions or the procedures.

 OOP models the real world very well by binding the data and associated
functions together under a single unit and thus, prevents the free movement
of data from one function to another.

 The data of one object can be accessed by the associated functions of that
object only. Other functions are not allowed to access that data. In other
words, data is hidden from the outside world. However, the functions of
one object can access the functions of other object.

 The objects of the entire system can interact with each other by sending
messages to each other.

 The programs written in OOP are easy to maintain and extend because
new objects can be easily added to the existing system whenever required
without modifying the other objects.

 OOP follows the bottom-up approach for designing the programs. That is,
first objects are designed and then these objects are combined to form the
entire program.

These new OOP features have tremendously helped in the development of well-
designed high-quality software.

1.2.1 Basic Concepts of Object-Oriented Programming

To understand the concept of object-oriented programming, it is necessary to
know the fundamental terms and concepts of this approach. These include objects,
classes, data abstraction, encapsulation, inheritance, polymorphism, and message
passing.

Objects

Objects are the small, self-contained and modular units with a well-defined
boundary. An object consists of a state and behavior. The state of an object is
one of the possible conditions that an object can exist in and is represented by its
characteristics or attributes or data. The behavior of an object determines how an
object acts or behaves and is represented by the operations that it can perform. In
OOP, the attributes of an object are represented by the variables and the operations
are represented by the functions.

For example, an object Biscuit may consist of data product code P001,
product name Britania Biscuits, price 20 and quantity in hand 50. These data
values specify the attributes or features of the object. Similarly, consider another
object Maggi with product code P002, product name Maggi Noodles, price
10, and quantity in hand 20 (Refer Figure 1.2). In addition, the data in the object
can be used by the functions, such as check_qty() and display_
product(). These functions specify the actions that can be performed on
data.

Objects are what actually runs in the computer and thus, are the basic run-
time entities in object-oriented systems. They are the building blocks of object-
oriented programming. Although, two or more objects can have same attributes,

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 7

still they are separate and independent objects with their own identity. In other
words, all the objects in a system take a separate space in the memory independent
of each other. It must be noted that the main objective of breaking down complex
software projects into objects is that changes made to one part of software should
not adversely affect the other parts.

Classes

A class is defined as a user-defined data type which contains the entire set of
similar data and the functions that the objects possess. In other words, a class in
OOP represents a group of similar objects. As stated earlier, in the real world
millions of objects exist and each of them has its own identity. However, each of
them can be categorized under different groups depending on the common properties
they possess and the functions they perform. For example, cars, scooters,
motorbikes, buses, etc., all can be grouped under the category vehicles. Similarly,
dogs, cats, horses, etc., can be grouped under the category animals. Thus, vehicles
and animals can be considered as the classes.

A class serves as a blueprint or template for its objects. That is, once a class
has been defined, any number of objects belonging to that class can be created.
The objects of a class are also known as the instances or the variables of that class
and the process of creating objects from a class is known as instantiation. Note
that a class does not represent an object; rather it represents the data and functions
that an object will have.

For example, a class Product consists of data such as p_code, p_name,
p_price and qty_in_hand, which specify the attributes or features of the
objects of the Product class. In addition, it consists of functions, such as
display_product() and check_qty() that specify the actions that
can be performed on data. (Refer Figure 1.2).

Class: Product

Data:
 p_code
 p_name
 p_price
 qly_in_qty()

Functions:
display_product()
check_qty()

Object: Biscuits

Data:
 P001
 Britania biscuits
 20
 50

Object: Maggis

Data:
 P002
 Maggi noodles
 10
 20

Fig. 1.2 Class and its Objects

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
8 Material

Note that the data belonging to a particular class is known as its data members
and the functions of the class are known as the member functions and both
collectively are known as the members of the class.

Abstraction

Abstraction is a mechanism to hide irrelevant details and represent only the essential
features, so that one can focus on important things at a time. It allows managing
complex systems by concentrating on the essential features only. For example,
while driving a car, a driver only knows the essential features to drive a car, such
as how to use clutch, brake, accelerator, gears, steering, etc., and least bothers
about the internal details of the car like motor, engine, wiring, etc.

Abstraction can be of two types, namely, data abstraction and control
abstraction. Data abstraction (also known as data hiding) means hiding the details
about the data and control abstraction means hiding the implementation details. In
object-oriented programming, one can abstract both data and functions. However,
generally, the classes in OOP are defined in such a way that the data is hidden
from the outside world and the functions form the public interface. That is, the
functions of the class can be directly accessed by other functions outside the class,
and the hidden data can be accessed indirectly with the help of these functions.

Note that the values of the hidden data members cannot be passed to the
outside world unless the functions are written to pass that information outside the
class. Since the internal details of the class are hidden from the outside world, the
data abstraction ensures security of data by preventing it from accidental changes
or manipulations by other parts of the program.

Note: Classes in the object-oriented programming are also known as Abstract Data
Types (ADT) as they use the concept of abstraction.

Encapsulation

Encapsulation is the technique of binding or keeping the data and functions (that
operate on them) together in a single unit called a class. Encapsulation is the way
to implement data abstraction. A well-encapsulated object acts as a ‘Black Box’
for other parts of the program. That is, it provides services to the external functions
or other objects that interact with it. However, these external functions or the
objects do not need to know its internal details. For example, in Figure 1.2 the
data p_code, p_name, p_price and qty_in_hand and the functions
display_product() and check_qty are encapsulated in a class
Product.

Inheritance

Inheritance can be defined as the process whereby an object of a class acquires
characteristics from the object of another class. As stated earlier, all the objects of
a similar kind are grouped together to form a class. However, sometimes a situation
arises when different objects cannot be combined together under a single group
as they share only some common characteristics. In this situation, the classes are
defined in such a way that the common features are combined to form a generalized
class and the specific features are combined to form a specialized class. The
specialized class is defined in such a way that in addition to the individual

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 9

characteristics and functions, it also inherits all the properties and the functions of
its generalized class.

For example, in the real world, all the vehicles cannot be automobiles—
some of them are pulled-vehicles as well. Thus, car and scooter both are vehicles
that come under the category of automobiles. Similarly, rickshaw and bicycle are
the vehicles that come under the category of pulled-vehicles. Thus, automobiles
and pulled-vehicles inherit the common properties of the vehicle class and also
have some other properties that are not common and differentiate them. Thus, the
vehicles class is the generalization of automobiles and pulled-vehicles class, and
automobiles and pulled-vehicles classes are the specialized versions of the vehicles
class. It must be noted that while inheriting the vehicle class, the automobiles and
pulled-vehicles do not modify the properties of the vehicle class, however, can
add new properties that are exclusive for them (Refer Figure 1.3).

Vahicles

Automobiles Pulled-vehicles

Car Scooter Rickshaw Bicycle

Fig. 1.3 Inheritance

In the same way, OOP allows one class to inherit the properties of another class
or classes. The class, which is inherited by the other classes, is known as superclass
or base class or parent class and the class, which inherits the properties of the
base class, is called sub class or derived class or child class. The subclass can
further be inherited to form other derived classes. For example, in Figure 1.3, car
and scooter are the derived classes of automobiles and rickshaw and bicycle are
the derived classes of pulled-vehicles.

Inheritance can be of two types, viz., single inheritance and multiple
inheritance. If a class acquires properties from a single class, it is termed as single
inheritance and if it acquires characteristics from two or more classes, it is known
as multiple inheritance. The main advantage of inheritance is reusability. The existing
classes can be simply reused in new software instead of writing a new code.
Moreover, new features can be added without altering or modifying the features
of the existing class.

Reusability and Extensibility

Inheritance allows code reusability, that is, it facilitates classes to reuse the existing
code. It is useful when several classes having similar features are to be created. In
such a case, one class is created having common features of all the classes, which
is used as the base class. Whenever a new class is to be generated, it inherits this
base class and only the unique features of new class are added, thereby avoiding
repetition of code. The new class acquires the members of the old class that are
already tested and debugged.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
10 Material

The base classes having common features can also be stored in reservoir so
that they can be used by any programmer. These classes stored in reservoir form
part of general-purpose programming tools and new classes generated on the
basis of these classes become their specialized versions. Hence, inheritance allows
extending and reusing already existing classes, thereby, saving time as well as
increasing the reliability. For example, a common class employee can be
created having some basic features, which can be used by any program requiring
classes (like, clerk, manager, part_time_employee, full-
time_employee, etc.) to be generated having similar features. These features
of inheritance play an important role in the program development.

Abstract Classes and Concrete Classes

While inheriting a base class, a derived class not only inherits the data and functions
of its base class, but can also provide a different implementation (definition) for
the functions of the base class. In such a case, the base class may or may not
provide an implementation for its function. It only provides the interface for the
functions.

A class which provides only the interface of one or more functions and
not their implementations is known as an abstract class. An abstract class only
specifies what the function does, what all it requires, etc., but it does not specify
how the function works. Implementations of such functions are provided in the
classes that inherit the abstract class. Note that the instances (objects) of an
abstract class cannot be created. This is because it does not provide the
implementation of the functions. The class that provides an implementation for
all its functions is known as a concrete class. The concrete classes can have one
or more objects. Note that derived classes that provide implementation of all
the functions that have not been implemented in the abstract class are also
considered as concrete classes.

Polymorphism

Polymorphism (a Greek word meaning having multiple forms) is the ability of an
entity such as a function or a message to be processed in more than one form. It
can also be defined as the property of an object belonging to a same or different
class to respond to the same message or function in a different way. For example,
if a message change_gear is passed to all the vehicles then the automobiles will
respond to the message appropriately; however, the pulled vehicles will not
respond. The concept of polymorphism plays an important role in OOP as it
allows an entity to be represented in various forms.

In C++, polymorphism can be achieved either at compile-time or at run-
time. At compile-time, polymorphism is implemented using operator overloading
and function overloading. However, at run-time, it is implemented using virtual
functions (Refer Figure 1.4).

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 11

Polymorphism

Compile-time Run-time

Operator
overloading

Function
overloading

Virutal
functions

Fig. 1.4 Different Ways of Implementing Polymorphism

 Operator overloading is the process that enables an operator to exhibit
different behavior, depending on the data provided. For example, when the ‘+’
operator is used with two numbers, it adds the two numbers and produces the
sum. However, if it is used with two strings, it concatenates the two strings and
produces the third concatenated string (Refer Figure 1.5).

Operator ‘+’

2 + 3 = 5 ‘MNO’ + ‘PQR’ = ‘MNOPQR’

Fig. 1.5 Operator Overloading

Similarly, a single function can behave differently depending on the type of data
provided. For example, in Figure 1.6, the function ‘Add’ can be used to add two
integers and two float-point numbers. This form of polymorphism is known as
function overloading.

Add(int a, int b)
{
 ...
{

Add(float a, float b)
{
 ...
{

Fig. 1.6 Function Overloading

Note: Compile-time polymorphism is also known as static binding as the linking of
function call to the actual code of the function is done at compile-time itself.

Consider another example in which three different classes, square, rectangle
and circle are derived from the base class geometrical_shapes.
The function area() of the base class is implemented in different ways in all its
derived classes and a call to a particular function is determined at run-time. This
form of polymorphism is called run-time polymorphism (Refer Figure 1.7).

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
12 Material

geometrical_shape

Area()

square

area()
{
 implementation
}

ractangle

area()
{
 implementation
}

circle

area()
{
 implementation
}

Fig. 1.7 Run-Time Polymorphism

Message Passing

Message passing is a process of interacting between different objects in a program.
As discussed earlier, a program following the object-oriented paradigm comprises
a set of objects each with a set of data and functions. When the program is executed,
these objects interact or communicate with each other by sending and receiving
messages. The messages are exchanged by calling the member functions of the
classes.

Any object of a class that wants to communicate with the object of another
class requests the object to invoke the required member function of its class.
This function call is different from the normal function call as in this case the
sending object is sending a request for the execution of the function. However,
the receiving object may or may not accept the request depending on whether
the function forms the public interface or it is hidden from the outside world.
Thus, this form of communication is called message sending and not an ordinary
function call.

For example, consider two classes Product and Order. The object
of the Product class can communicate with the object of the Order class
by sending a request for placing order (Refer Figure 1.8).

order1.place_order(qty_in_hand);
Message passing

object_name

function or
message information

(optional)

Object: order1

Place_order(int q)
{
 .
 .
 .
}

Fig. 1.8 Message Passing

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 13

1.2.2 Objects

In our day-to-day life, we come across a number of objects. Some examples are:
PC, television set, radio receiver, telephone, table and car. An object will have the
following two characteristics:

 State or Attributes

 Behaviour or operations

The ‘State or Attributes’ refers to the built-in characteristics of an object.
They remain the same unless disturbed or modified. For example, a color television
set has the following attributes:

 Color Receiver

 64 Channels

 Volume and Picture Controls

 Remote Control unit

The ‘Behaviour or Operations’ of an object refers to its action. It can also
be explicitly defined. The object television set can behave in any of the following
manner at a given point of time:

 Switched on

 Switched off

 Displays picture and sound from

– a TV transmitter

– a cable TV connection

– a VCR

Software objects can be visualized in a similar manner. They also possess
one or more states and a particular behaviour at a given point of time.

Software Objects

One of the most interesting features of OOP is that software objects correspond
to real objects. Software objects are made of data and functions, tied together.
Let us represent an object pictorially. (Refer Fig. 1.9)

Fig. 1.9 Basic Representation of an Object

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
14 Material

An object definition consists of the following:

 Data Members

 Member Functions

The data members establish the state or attributes for the object. The
behaviour of the object is determined by the member functions. The state of the
object can be changed through the member functions. The data members contain
data. Thus, data is the nucleus of the object. The diagram illustrates the concept of
objects clearly. The nucleus i.e., data can only be accessed through the member
functions which are nothing but interfaces to access or manipulate data. The data
is thus well-protected and inadvertent manipulation thereof can be prevented. The
interface or function is the window to the outside world for manipulating the data.
OOP is all about creating useful programs with the help of objects.

1.2.3 What is C++

C is a procedure-based language. Once you write a program in C, you must run
it through a C compiler to turn your program into one that a computer can run
(execute). C allows the input and output control in which a user can input the value
to get the desired result. This language makes hardware devices easy to access
and is used to manipulate individual bits in hardware registers. C++ is an object-
oriented language that uses various concepts in handling of programs, such as
virtual functions, multiple inheritance, exception handling, and polymorphism. Its
object-oriented structure allows the code that can be reused and hence it cuts
down the development time. C++ provides comprehensive coverage of abstract
classes as interfaces, regular error handling, standard strings, I/O streams, etc.
Table 1.1 explains the difference between C and C++ computer languages:

Table 1.1 Differences between C and C++

C C++
C is procedure and function-oriented
language and gives importance to
procedure (functions) rather than data.

C++ is object-oriented language and gives
importance to data.

C provides scanf() function to input the
values and printf() function to display
the result.

C++ provides cin object of class
istream to input the values and cout
object to display the result.

C does not follow the class and object
concept.

C++ supports object and class for data
encapsulation, data abstraction and
polymorphism concept.

In C, macros are used. In C++, an inline function is used
instead of macros.

C supports pointers that basically refer to
record and track the memory address or
location of function.

This language supports GUI programming
feature on a computer.

It is used especially in game programming
and faster than C++.

It is well-suited to platform dependent
applications.

It is structured language and use
extensively pointers for memory, array,
structures and functions.

It is complex for very large high level
programs and difficult to debug the web
applications.

It has no runtime checking and is case
sensitive language.

It is also case sensitive language.

C does not support and C++ supports and keywords

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 15

C does not support new and delete
keywords. The memory operations to free
or allocate memory in C are carried out by
malloc() and free()functions. In C,
malloc() function is used to allocate the
memory. You can use this function to
allocate memory in the following way:

int *x = malloc(sizeof(int)
);
int *x_array = malloc(
sizeof(int) * 10);

Following code is used to release the
memory with the help of free()
function:

free(x);
free(x_array);

C++ supports new and delete keywords
for memory management. In C++, memory
allocation for arrays is different for single
objects. Following code is used to new
keyword:

int *x = new int;
int *x_array = new int[10];

Following code is used to use delete
keyword:

delete x;
delete[] x;

1.2.4 A Simple C++ Program

Programs are a sequence of instructions or statements. These statements form the
structure of a C++ program. C++ program structure is divided into various sections,
namely headers, class definition, member functions definitions and main()
function (Refer Figure 1.10).

C++Headers

Class definition

Member functions definitions

Main function

Fig. 1.10 Structure of a C++ Program

Note that C++ provides the flexibility of writing a program with or without a class
and its member functions definitions. A simple C++ program (without a class)
includes comments, headers, namespace, main() and input/output statements
as shown in Figure 1.11.

// A simple C++ program

#include<iostream> Header
using namespace std; This tells the compiler to use std namespace

This is a comment and is ignored by the compiler

int main()
{

}

Count<< “First C++Program”;
return 0;

main Function

This is the body of main().
It contains the executable code

Fig. 1.11 A Simple C++ Program Without a Class

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
16 Material

Comments

Comments are a vital element of a program that is used to increase the readability
of a program and to describe its functioning. Comments are not executable
statements and hence do not increase the size of a file.
C++ supports two comment styles: single line comment and multiline comment.
Single line comments are used to define line-by-line descriptions. Double slash (//
) is used to represent single line comments.
To understand the concept of single line comment, consider this statement:

// An example to demonstrate single line
comment

It can also be written as follows:

// An example to demonstrate

// single line comment

Multiline comments are used to define multiple lines descriptions and are
represented as /* … */. For example, consider this statement.

/* An example to demonstrate

 multiline comment */

Note: Multiline comment cannot contain another multiline comment. However, it may contain
single line comment. This implies that /*……./*…….*/……*/ is not valid whereas /*….//
…….*/ is valid.

Generally, multiline comments are not used in C++, as they require more space on
the line. However, they are useful within the program statements where single line
comments cannot be used. For example, consider this statement:

for(int i=0; i<10; //loop runs 10 times i++)

A compiler ignores everything written after the single line comment and,
hence, an error occurs. Therefore, in this case, multiline comments are used. For
example, consider this statement.

for(int i=0; i<10; /*loop runs 10 times */
i++)

Headers

Generally, a program includes various programming elements, such as built-in
functions, classes, keywords, constants, operators, etc., that are already defined
in the standard C++ library. In order to use such pre-defined elements in a program,
an appropriate header must be included in the program. The standard headers
contain information, such as prototype, definition and return type of library functions,
data type of constants, etc. As a result, programmers do not need to explicitly
declare (or define) the pre-defined programming elements. Standard headers are
specified in a program through the preprocessor directive #include.

iostream Header File

When a compiler processes the instruction #include<iostream>, it includes
the contents of iostream in the program. This enables a programmer to use

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 17

standard input, output and error facilities that are provided only through the
standard streams defined in <iostream>. These standard streams process
data as a stream of characters, that is, data is read and displayed in a continuous
flow. The standard streams defined in <iostream> are listed here.

 cin: Pronounced ‘see in’ and is the standard input stream that is associated
with the standard input device (keyboard) and is used to take the input
from users.

 cout: Pronounced ‘see out’ and is the standard output stream that is
associated with the standard output device (monitor) and is used to display
the output to users.

 cerr: Pronounced ‘see err’ and is the standard error stream that is
associated with the standard error device (monitor) and is used to report
errors to the users. The cerr object does not have a buffer (temporary
storage area) and hence immediately reports errors to users.

 clog: Pronounced ‘see log’ and is the buffered error stream that is
associated with the standard error device (computer screen) and is used to
report errors to users. Unlike cerr, clog reports errors to users only
when the buffer is full.

Note: The letter c in cin, cout, cerr and clog stands for ‘Console’.

For many years, C++ applied C-style headers, that is, .h extension in the headers.
However, the standard C++ library introduced new style headers that include
only header name. Hence, most modern compilers do not require any extension,
though they support the older .h extension. Some of the C-style headers and
their equivalent C++ style headers are listed in Table 1.2.

Table 1.2 C Style and C++Style Headers

C Style Header C++ Style Header

<assert.h> <cassert>

<ctype.h> <cctype>

<float.h> <cfloat>

<fstream.h> <fstream>

<iomanip.h> <iomanip>

<iostream.h> <iostream>

<limits.h> <climits>

<math.h> <cmath>

<stdio.h> <cstdio>

<stdlib.h> <cstdlib>

<string.h> <cstring>

<time.h> <ctime>

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
18 Material

Namespace

Since its creation, C++ has gone through many changes by the C++ Standards
Committee. One of the new features added to this language is namespace. A
namespace permits grouping of various entities, such as classes, objects, functions
and various C++ tokens, etc., under a single name. Different users can create
separate namespaces and, thus, can use similar names of the entities. This avoids
compile-time error that may exist due to identical name conflicts.

The C++ Standards Committee has rearranged the entities of the standard
library under a namespace called std. The statement using namespace
std informs the compiler to include all the entities present in the namespace
std. The entities of a namespace can be accessed in different ways which are
listed here:

 By specifying the using directive:

using namespace std;

cout<<“Hello World”;

 By specifying the full member name:

std::cout<<“Hello World”;

 By specifying the using declaration:

using std::cout;

cout<<“Hello World”;

Note: All the entities of a namespace are public.

As soon as the new-style header is included, its contents are included in the std
namespace. Thus, all modern C++ compilers support these statements:

#include<iostream>

using namespace std;

However, some old compilers may not support these statements. In that
case, the statements are replaced by this single statement:

#include<iostream.h>

main() Function

The main() is a startup function that starts the execution of a C++ program. All
C++ statements that need to be executed are written within main(). The compiler
executes all the instructions written within the opening and closing curly braces
‘{}’ that enclose the body of the main(). Once all the instructions in the
main()are executed, the control passes out of the main()terminating the
entire program and returning a value to the operating system.

By default, the main()in C++ returns an int value to the operating
system. Therefore, the main() should end with the return 0 statement. A
return value zero indicates success and a non-zero value indicates failure or error.

Following are the features of main() function:

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 19

 The main() function is the mandatory function for all C++ programs.

 All functions require a return type whereas main() function requires
either an int or void return type.

 The main() function also has a variety of input variable formats that are
placed place in the () parentheses.

 The curly braces {and} represent the opening and closing of the scope in
the main() function.

Note: Every C++ program must have one and only one main() function, and it is automatically
called by the compiler.

1.2.5 Initialization Input with C in Tokens

C is a procedure-based language. Once you write a program in C, you must run it
through a C compiler to turn your program into one that a computer can run
(execute). C allows the input and output control in which a user can input the value
to get the desired result. This language makes hardware devices easy to access
and is used to manipulate individual bits in hardware registers. C++ is an object-
oriented language that uses various concepts in handling of programs, such as
virtual functions, multiple inheritance, exception handling, and polymorphism.

In C programming language, the ‘Tokens’ are considered as the most
significant concept typically used for developing a C program. Fundamentally, the
tokens in C language are referred as the building block of C programming language.
The C programming supports the following 6 types of tokens:

1. Keywords: In C programming language, the ‘Keywords’ are predefined
or reserved keywords. The C language has 32 keywords and each keyword
has its special function.

2. Identifiers: In C programming language, the ‘Identifier’ is typically used
for naming functions, variables, structures, unions, arrays, etc. The identifier
is user-defined words and can be uppercase letters, lowercase letters, digits,
and underscore. Remember that identifiers are not used for keywords.

3. Strings: In C programming language, the ‘Strings’ are considered as an
array of characters having null character ‘\0’ at the end of the string. Strings
in C language are enclosed in double quotes (“ “) and Characters are enclosed
in single quotes(‘ ’).

4. Operators: In C programming language, the ‘Operators’ are used to
perform special operations on data. There are following two types of
operators:

Unary Operator: Applied with a single operand.

Binary Operator: Applied between 2 operands.

The types of operators include Arithmetic Operators, Relational Operators,
Shift Operators, Logical Operators, Bitwise Operators, Conditional
Operators, and Assignment Operator.

5. Constants: In C programming language, the ‘Constant’ is used for the
value fixed, i.e., the constant value cannot be changed once declared.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
20 Material

6. Special Symbols: In C programming language, the following ‘Special
Symbols’ are used.

Square Brackets []: The square brackets are used for single and multi-
dimensional arrays.

Simple Brackets (): The simple brackets are used for function declaration.

Curly Braces { }: The curly braces are used for opening and closing the
code.

Comma (,): The comma is used to separate the variables.

Hash/Pre-Processor (#): The hash/pre-processor is used for the header
file.

Asterisk (*): The asterisk is used to specify the Pointers.

Tilde (~): The tilde is used for destructing the memory.

Period (.): The period is used for accessing union members.

C Program Examples to Implement Tokens in C

Example 1.1: C Program for Keywords.

Program Code
#include <stdio.h>//Add all the basic C language libraries

int main()

{

//declare integer variable

int i=121;

//declare float variable

float f=11.11;

//declare character variable

char c=’C’;

//declare String variable in 2 ways

char s1[20]=”VIKAS”;

char s3[]=”VIKAS”;

//declare constant variable

const constant=3.14;

//declare short variable

short s=10;

//declare double variable

double d=12.12;

//displaying output of all the above keywords

printf(“INT: %d\n”, i);

printf(“SHORT: %d\n”, s);

printf(“FLOAT: %f\n”, f);

printf(“DOUBLE: %f\n”, d);

printf(“CHAR: %c\n”, c);

printf(“STRING 1: %s\n”, s1);

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 21

printf(“STRING 3: %s\n”, s3);

printf(“CONSTANT: %d\n”, constant);

return 0;

}

The output of the program

INT: 121

SHORT: 10

FLOAT: 11.110000

DOUBLE: 12.120000

CHAR: C

STRING 1: VIKAS

STRING 3: VIKAS

CONSTANT: 3

Example 1.2: C Program for Switch.

Program Code
#include <stdio.h>//Add all the basic C language
libraries#include

//main method used for running the application

int main()

{

//decalre variable

int n;

//asking enter any choice between 1 to 4

printf(“Enter Any Choice Between 1 to 4=>”);

scanf(“%d”,&n);

//switch case, based on choice it will gives us output

//if we did not take break each case then where ever it is
true that value and rest are printf

//none are true then default value will be print

switch (n)

{

case 1:

printf(“I am Rajesh”);

break;

case 2:

printf(“I am Amanpreet”);

break;

case 3:

printf(“I am Vishal”);

break;

case 4:

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
22 Material

printf(“I am Ashutosh”);

break;

default:

printf(“Opps! I Am Default”);

}

return 0;

}

The output of the program

Enter Any Choice Between 1 to 4=>

Enter Any Choice Between 1 to 4=> 1

I am Rajesh

Enter Any Choice Between 1 to 4=>

Enter Any Choice Between 1 to 4=> 4

I am Ashutosh

Enter Any Choice Between 1 to 4=>

Enter Any Choice Between 1 to 4=> 6

Opps! I Am Default

Example 1.3: C Program for Functions.

Program Code
#include <stdio.h>//Add all the basic C language
libraries#include

int input(void);//declaring method

int getSquareArea(int side);//declaring method

int getCube(int cube);//declaring method

//main method used for running the application

int main()

{

int i=input();

int sArea= getSquareArea(i);

int cube=getCicrcleArea(i);

//displaying output

printf(“Square Area is = %d\n”,sArea);

printf(“Cube of the Number is = %d\n”,cube);

return 0;

}

//method definition

//this for asking the user input

int input(void)

{

int n;

//asking the user to input

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 23

printf(“Enter Any Number=> “);

scanf(“%d”,&n);

return n;

}

//method definition

//this for getting square area

int getSquareArea(int input)

{

return input*input;

}

//method definition

//this for getting cube of the number

int getCicrcleArea(int cube)

{

return cube*cube*cube;

}

The output of the program

Enter Any Number => 25

Square Area is = 625

Cube of the Number is = 15625

Tokens in C programming language are considered to be the building block of the
application and it gives complete structure to the C language code.

1.2.6 Control Statements

A statement is an instruction given to the computer to perform a specific action. In
C++, a statement can be either a single statement or a compound statement. A
single statement specifies a single action and is always terminated by a semicolon
‘;’. A compound statement, also known as a block, is a set of statements that are
grouped as a compound statement and are always enclosed within curly braces
‘{}’.

By default, the statements are executed in the same order in which they
appear in the program and each statement is executed only once. However, the
serial execution of statements makes a program inflexible and unsuitable for most
of the practical applications. To make a program more flexible, control statements
are used to alter the flow of control of the program.

In C++, the control statements are broadly classified into three categories,
namely, conditional statements, iteration statements and jump statements. All these
control statements are commonly used with the logical tests or test conditions to
alter the flow of control conditionally or unconditionally. To alter the flow
conditionally, a particular condition is evaluated to control the flow of execution.
On the other hand, to alter the flow unconditionally, no such condition is evaluated.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
24 Material

Conditional Statements

Conditional statements, also known as selection statements, are used to make
decisions based on a given condition. If the condition evaluates to True, a set of
statements is executed, otherwise another set of statements is executed.

The if Statement

The if statement selects and executes the statement(s) based on a given condition.
If the condition evaluates to True, then a given set of statement(s) is executed.
However, if the condition evaluates to False, then the given set of statements is
skipped and the program control passes to the statement following the if statement.

The syntax of the if statement is:
if(condition)

{

statement 1;

statement 2;

}

statement 3;

The if-else statement

The if-else statement causes one of the two possible statement(s) to execute
depending upon the outcome of condition.

The syntax of the if-else statements is:
if(condition) //if part

{

statement1;

statement2;

}

else //else part

statement3;

Here, the if-else statement comprises two parts, namely, if and else. If
the condition is True, the if part is executed. However, if the condition is
False, the else part is executed.

Example 1.4: A code segment to determine the largest of three numbers
.

.

if(a>b)

{

if(a>c)

cout<<“a is largest”;

}

else //nested if-else statement within else

{

if (b>c)

cout<<“b is largest”;

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 25

else

cout<<“c is largest”;

}

.

.

The if-else-if ladder

The if-else-if ladder, also known as the if-else-if staircase, has
an if-else statement within the outermost else statement. The inner else
statement can further have other if-else statements.

The syntax of the if-else-if ladders is:

Example 1.5: A program to check whether a character is in lower-case or upper
case

#include<iostream>

using namespace std;

int main()

{

char ch;

cout<<“Enter an alphabet: “;

cin>>ch;

if((ch>=’A’) && (ch<=’Z’))

cout <<“The alphabet is in upper case”;

else

if((ch>=’a’) && (ch<=’z’))

cout<<“The alphabet is in lower case”;

else

cout<<“It is not an alphabet”;

return 0;

}

The output of this program
Enter an alphabet: $

It is not an alphabet

Conditional Operator as an Alternative

The conditional operator ‘? :’ selects one of the two values or expressions
based on a given condition. Due to this decision-making nature of the conditional

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
26 Material

operator, it is sometimes used as an alternative to if-else statements. It must
be noted that the conditional operator selects one of the two values or expressions
and not the statements, as in the case of an if-else statement. In addition, it
cannot select more than one value at a time, whereas if-else statement can
select and execute more than one statement at a time. For example, consider the
statement:

max = (x>y ? x : y)

This statement assigns maximum of x and y to max.

The switch Statement

The switch statement selects a set of statements from the available sets of
statements. The switch statement tests the value of an expression in a sequence
and compares it with the list of integers or character constants. When a match is
found, all the statements associated with that constant are executed.

The syntax of the switch statement is:
switch(expression)

{

case <constant1>: statement1;

 [break;]

case <constant2>: statement2;

 [break;]

case <constant3>: statement3;

[default] : statement4;

 [break;]

}

statement5;

The C++ keywords case and default provide the list of alternatives. It
must be noted that it is not necessary that every case label should specify a
unique set of statements. The same set of statements can be shared by multiple
case labels.

The keyword default specifies the set of statements to be executed in
case no match is found. It must be noted that there can be multiple case labels,
but there can be only one default label.

The break statements in the switch block are optional. However, it is
used in the switch block to prevent a fall through. Fall through is a situation that
causes the execution of the remaining cases even after a match has been found. In
order to prevent this, break statements are used at the end of statements specified
by each case and default. This causes the control to immediately break out
of the switch block and execute the next statement.

Example 1.6: A code segment to demonstrate the use of switch statement
.

cin>>x;

int x;

switch(x)

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 27

{

case 1:cout<<“Option 1 is selected”;

 break;

case 2:cout<<“Option 2 is selected”;

 break;

case 3:cout<<“Option 3 is selected”;

 break;

case 4:cout<<“Option 4 is selected;

 break;

default:cout<<“Invalid option!”;

}

.

.

In Example 1.6, depending upon the input, an appropriate message is displayed.
That is, if 2 is entered, then the message Option 2 is selected is
displayed. In case, 5 is entered, then the message Invalid option! is
displayed.

Similar to if and if-else statements, switch statements can also
be nested within one another. A nested switch statement contains one or more
switch statements within its case label or default label (if any).

Note: Switch statement cannot be used for testing floating-point values or string values.

Iteration Statements or Loops

The statements that cause a set of statements to be executed repeatedly either for
a specific number of times or until some condition is satisfied are known as iteration
statements. That is, as long as the condition evaluates to True, the set of
statement(s) is executed. The various iteration statements used in C++ are for
loop, while loop and do-while loop.

The for loop

The for loop is one of the most widely used loops in C++. The for loop is a
deterministic loop in nature, that is, the number of times the body of the loop is
executed is known in advance.

The syntax of the for loop is:
for(initialise; condition; update)

{

//body of the for loop

}

Note that initialise, condition and update are optional expressions
and are always specified in parentheses. All the three expressions are separated
by semicolons. The semicolons are mandatory and hence cannot be excluded
even if all the three expressions are omitted.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
28 Material

Example 1.7: A program to display a count down using for loop
#include<iostream>

using namespace std;

int main ()

{

int n;

for(n=1; n<=10; n++)

cout<< n <<“ “; // body of the loop

cout<<“\nThis is an example of for loop!!!”;

 //next statement in sequence

return 0;

}

The output of this program
1 2 3 4 5 6 7 8 9 10

This is an example of for loop!!!

for loop using comma operator

for loop allows multiple variables to control the loop using comma operator .
That is, two or more variables can be used in the initialise and the update
part of the loop. For example, consider the statement:

for(i=1,j=50;i<10;i++, j—)

This statement initialises two variables, namely i and j and updates them. It
must be noted that for loop can have only one condition.

The while loop

The while loop is used to perform looping operations in situations, where the
number of iterations is not known in advance. That is, unlike the for loop, the
while loop is non-deterministic in nature.

The syntax of the while loop is:
while(condition)

{

// body of while loop

}

The following points should be noted about the while loop:

 Unlike for loops where explicit initialise and update expressions
are specified, while loops do not specify any explicit initialise
and update expressions. This implies that the control variable must be
declared and initialised before the while loop and needs to be updated
within the body of the while loop.

 The while loop executes as long as condition evaluates to True.
If condition evaluates to False in the first iteration, then the body of
while loop never executes.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 29

 while loop can have more than one expression in its condition. However,
such multiple expressions must be separated by commas and are executed
in the order of their appearance.

The do-while loop

As discussed earlier, in a while loop, the condition is evaluated at the beginning
of the loop and if the condition evaluates to False, the body of the loop is not
executed even once. However, if the body of the loop is to be executed at least
once, irrespective of whether the initial state of the condition is True or False,
the do-while loop is used. This loop places the condition to be evaluated at
the end of the loop.

The syntax of the do-while loop is:
do

{

//body of do while loop

}while(condition);

Example 1.8: A program to calculate the sum of an Arithmetic Progression (AP)
#include<iostream>

using namespace std;

int main()

{

int a,d,n,sum,term=0; /*a is the first term,d is

the common difference, n is the number of terms to be
summed*/

cout<<“Enter the first term,common difference,”

<<“and the number of terms to be summed “

<<“respectively:\n”;

cin>>a>>d>>n;

sum=0;

int i=1;

cout<<“\nThe terms are “;

do //do–while loop

{

term= a+(i-1)*d;

sum+=term; //Adding each term to ‘sum’

cout<<term<<“ “;

++i;

}while(i<=n);

cout<<“\nThe sum of A.P. is “<<sum;

return 0;

}

The output of the program
Enter the first term, common difference, and the number
of terms to be summed respectively:

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
30 Material

3

6

5

The terms are 3 9 15 21 27

The sum of A.P. is 75

It must be noted that all the three loops (for, while and do-while) can be
nested within the body of another loop.

Note: C++ allows declaration of variable within the conditional expression of an if or
switch or while or within the initialisation of a for loo,p which is not permitted
in C.

Jump Statements

Jump statements are used to alter the flow of control unconditionally. That is, jump
statements transfer the program control within a function unconditionally. The jump
statements defined in C++ are break, continue, goto and return. In
addition to these jump statements, a standard library function exit()is used to
jump out of an entire program.

The break Statement

The break statement is extensively used in loops and switch statements. A
break statement immediately terminates the loop or the switch statement,
bypassing the remaining statements. The control then passes to the statement that
immediately follows the loop or the switch statement. A break statement
can be used in any of the three C++ loops.

Note that a break statement, used in a nested loop, affects only the inner
loop in which it is used and not any of the outer loops. Similarly, a break statement
used in a switch statement breaks out of that switch statement and not out
of any loop that contains the switch statement.

The continue Statement

The continue statement is used to ‘continue’ the loop with its next iteration.
In other words, continue statement skips any remaining statements in the
current iteration and immediately passes the control to the next iteration. The
continue statement does not terminate the loop (as in the case of break
statements) rather it only terminates the current iteration of the loop. Like a break
statement, a continue statement can be used in any of the three loops.

Example 1.9: A program to add the factors of a number
#include<iostream>

using namespace std;

int main()

{

int x=0,y,sum=0;

cout<<“Enter a number: “;

cin>>y;

while(1)

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 31

{

x++;

if(x>y)

break;

if(y%x!=0)

continue;

sum=sum+x;

}

cout<<“\nSum of factors: “<<sum;

return 0;

}

The output of the program
Enter a number: 8

Sum of factors: 15

The goto Statement

The goto statement can be used anywhere within a function or a loop. As the
name suggests, goto statements transfer the control from one part to another
part in a program which is specified by a label. Labels are user-defined identifiers
followed by a colon that are prefixed to a statement to specify the destination of a
goto statement.

Example 1.10: A program to demonstrate the use of goto statement
#include<iostream>

using namespace std;

int main()

{

int x=10;

loop: cout<<x<<“, “; //loop is a label

x—;

if (x>0)

goto loop;

cout << “\n Here is the example of goto !”;

return 0;

}

The output of the program
10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

Here is the example of goto !

The exit() Function

The exit()function is a standard library function that terminates the entire program
immediately and passes the control to the operating system. This function takes a
single parameter that is, exit status of the program and returns same status to the
operating system upon termination. The status can be either zero or non-zero

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
32 Material

value; where zero shows successful termination and non-zero shows unsuccessful
termination of the program.

Example 1.11: A program to demonstrate the use of exit()
#include<iostream>

#include<cstdlib> //for exit()function

using namespace std;

int main()

{

int a;

cout<<“Enter the value for a: “;

while(cin>>a)

{

if(a<0)

{

cout <<“This program is going “

<<“to terminate!”;

exit(0);

}

cout<<“Enter another value for a: “;

}

return 0;

}

The output of the program
Enter the value for a: 7

Enter another value for a: 8

Enter another value for a: -4

This program is going to terminate!

1.2.7 Decisions Nesting

Nested Structures

We can create a structure within another. The program below illustrates nested
structures.

Program 1.1
 /*Program to demonstrate nested structures*/

 #include<iostream>

 using namespace std;

 int main(){

struct account {

unsigned number;

string name;

int balance;

};

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 33

struct deposit {

account ac;

unsigned amount;

int years ;

} d2;

struct deposit d1 = {001, "VASU", 1000, 50000, 3};

d2=d1; /*structure copy*/

cout<<"Ac No.= "<<d2.ac.number<<" name="<<d2.ac.name

<<" balance= " <<d2.ac.balance<<" deposit= "<<d2.amount

<<" term= "<<d2.years ;

 }

The output of the program
Ac No.= 1 name=VASU balance= 1000 deposit= 50000 term= 3

Analysis of the Program

Here, we wanted to include struct account as a member of struct deposit. Therefore,
we have declared struct account before declaring struct deposit. Note that struct
account has been declared as the first member of struct deposit. We created an
object d2 of struct deposit as soon as declared. Then, we assigned values to
another object of the same struct deposit. Thereafter we copied d1 to d2 to
illustrate structure copy. Note how members of the structures are addressed in the
cout statement. When we refer to a member years of deposit, we simply address
d2.years. But, when we refer to number we cannot declare the same way
because it is not a member of deposit. Only object account ac is the member of
deposit. The number is a member of account ac. Therefore, we have to address
number as d2.ac.number.

Passing Structures to Functions

Passing each member of the structure to a function is a tedious job. Doing so, for
the entire structure can be easier. An example is given below to clarify.

Program 1.2
/*To demostrate passing entire structure to function*/

#include<iostream>

using namespace std;

struct account {

unsigned number;

string name;

int balance;

 };

int main(){

account a1= {001, "Vasu", 1000};

account credit(account x);//function

a1=credit(a1);

cout<<("A/c No Name Balance\n");

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
34 Material

cout<<a1.number<<"\t"<< a1.name<<"\t"<<a1. balance;

}

account credit(account y){

int x;

cout<<("enter deposit made \n");

cin>>x;

y.balance+=x;

return y;

}

If we want to pass a structure, it has to be declared before main function.
Therefore structure account has been declared as a global structure. The function
credit is declared with return data type structure as follows:

account credit(account x);

Thus we are passing and returning account. Then credit is called by
simply passing structure a1. In the called program, deposit is added to the balance
and updated. This is returned to the main() where the updated record is printed.

The output of the program
enter deposit made

2400

A/c No Name Balance

1 Vasu 3400

Structure Pointers

We know how to declare pointers to various data types and arrays. Similarly
pointers to structures can also be declared. An example is given below:

account a1 = { 1, "Vasu", 1000 };

account * sp;

sp = & a1;

Now sp is a pointer to a structure. Therefore if we assume the latter as
another data type, declaring it as an array or as a pointer follows the same rule.
Structure is, in fact, a user defined data type.

The access to individual elements of a structure defined in the form of a
pointer, is similar but instead of dot we put an arrow pointer ->. Arrow pointer is
formed by typing minus followed by greater than sign. An example will clarify the
point.

Program 1.3
/*To demonstrate structure pointers */

#include<iostream>

using namespace std;

int main(){

struct account {

 unsigned number;

 string name;

 int balance;

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 35

 }a5;

account a1= {001, "VASU", 1000};

account *sp;

sp=&a1;

cout<<"A/c No\t Name\t Balance\n";

cout<<sp->number<<"\t"<<sp->name<<"\t"<<sp->balance<<"\n";

a5=*sp;

cout<<a5.number<<"\t"<< a5.name<<"\t"<< a5.balance << "\n";

}

The output of the program
A/c No Name Balance

1 VASU 1000

1 VASU 1000

In this program sp is a pointer to structure account*sp is assigned the
address of structure a1. Then the contents of structure *sp are printed. Then the
elements of *sp are copied to a5 and then printed (to demonstrate copying of
structures). Note the difference between the notations when accessing elements
of a structure and a structure pointer.

Passing Structure by Reference

Structures can also be passed by reference. But remember that the structure should
be defined as a global variable. The following example illustrates passing structures
by reference.

Program 1.4
/*structure pointers & functions*/

#include<iostream>

using namespace std;

struct account {

unsigned number;

string name;

int balance;

};

int main(){

account a1= {001, "VASU", 1000};

account debit(account *, int);

int deb;

cout<<"Enter amount to be withdrawn \n";

cin>>deb;

debit(&a1, deb);

cout<<"A/c No \t Name \t Balance \n";

cout<<a1.number<<"\t"<< a1.name<<"\t"<<
a1.balance<<"\n";

}

struct account debit(struct account *x, int y) {

x->balance-=y;

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
36 Material

return *x;

}

The output of the program
Enter amount to be withdrawn

200

A/c No Name Balance

b1 VASU 800

Note that the address of a1 is passed. The prototype declares passing
structure by reference and the amount of debit by value. In the called program the
debit is adjusted. Note the pointer notation in subtracting the debit amount from
the balance.

Structure and Vector

A structure can be declared as a data type for a vector. A program declaring a
structure as vector is given below:

Program 1.5
/*Using vector */

#include<iostream>

#include<vector>

using namespace std;

struct account{

unsigned number;

string name;

int balance;

};

int main(){

vector<account>a1(3);

int i, num, deb;

cout<<"Enter number, name and balance for 3 accounts
\n";

for(i=0; i<3; i++){

cin>>a1[i].number>>a1[i].name>>a1[i].balance;

}

cout<<"Enter account number &amount to be withdrawn
\n";

cin>>num>>deb;

for(i=0; i<3; i++){

if(a1[i].number==num)

a1[i].balance-=deb;

}

cout<<"statement after transaction \n";

for(i=0; i<3; i++){
cout<<a1[i].number<<"\t"<<a1[i].name<<"\t"<<a1[i].
balance<<"\n";

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 37

}

}

We have to declare structure as a global variable in such programs, otherwise
we will get compilation error. A structure account is declared before main function.
In the main function, we have declared a vector as given below:

vector<account>a1(3);

The above declares a vector array of size 3 with structure account as the
data type. After this, we create three records of accounts. Then, we carry out a
debit operation in the same function. We look for the account number, which
matches with the typed account number and stored as num. When they are equal,
we debit the amount typed by the user and stored as deb. The last part of the main
function brings out a statement of the accounts after the transaction. The result of
the example is given below:

The output of the program
Enter number, name and balance for 3 accounts

001 Lakshmi 100000

002 Vishnu 200000

003 Parvathi 300000

Enter account number &amount to be withdrawn

003 50000

statement after transaction

1 Lakshmi 100000

2 Vishnu 200000

3 Parvathi 250000

1.2.8 Type Conversion

An expression may involve variables and constants either of same data type or of
different data types. If an expression consists of mixed data types, then they must
be converted to the same type while evaluation to avoid compatibility issues. This
is accomplished by the type conversion, which is defined as the process of
converting one data type to another. This section discusses conversions between
objects and basic data types and advanced type casting.

Conversions between Objects and Basic Types

The compiler cannot handle the type conversions in the expression involving user-
defined data types, such as classes. This is because the operators are overloaded
explicitly by the user to handle user-defined data types. Thus, the user has to
provide the conversion mechanisms to handle the type conversions for the user-
defined data types. This can be achieved by using either a constructor or an
appropriate conversion function.

Note that as long as the expression involves the objects of the same class
type, the operations are carried out smoothly without any problem. However, if
the expression involves incompatible data types, then only the conversions are to
be carried out explicitly. There can be three types of type conversions in an
expression involving user-defined data types, which are as follows:

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
38 Material

 Basic Type to Class Type

 Class Type to Basic Type

 One class Type to Another Class Type

Basic Type to Class Type

The conversion of the basic data type to a class type is accomplished by defining
a constructor of the class that accepts an argument of any basic type, which is to
be converted to class type. The object of the class type that calls the constructor
is passed implicitly. Hence, the operand on the left-hand side of the type conversion
using a constructor should always be an object of the class.

Example 1.12: A program to demonstrate the concept of conversion from the
basic type to a class type.

#include <iostream>

using namespace std;

class weight

{

int kg;

int gm;

public:

weight()

{

kg = 0;

gm = 0;

}

weight(int i) //constructor for type conversion

{

kg = i/1000; //converts int to data members kg and gm

gm = i%1000;

}

void display()

{ cout<<“\nkilogram= “<<kg<<“ and gram= “<<gm; }

};

int main()

{

weight w1;

int t = 4500;

w1 = t; //implicit call to the constructor for conversion

cout<<“Weight is”;

w1.display();

return 0;

}

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 39

The output of the program
Weight is

Kilogram = 4 and gram = 500

In this example, a constructor weight accepting an argument of type int is
defined. It converts the integer value to the class type weight. Note that the
statement w1 = t implicitly calls the constructor for the conversion. The
constructor can also be called explicitly using the following statement:

w1 = weight(t); //explicit call to the constructor

Class Type to Basic Type

Sometimes a situation may arise when a class type needs to be converted to a
basic type. In this case, the constructor cannot be used, as it requires a class
object on the left-hand side of the type conversion. To handle such conversions,
an overloaded casting operator function (also known as conversion function) must
be defined. A conversion function is a special member function that specifies the
implicit conversion of a class object to another type. The syntax for defining the
conversion function inside the class is as follows:

operator data_type()

{ //function body }

Example 1.13: A program to demonstrate the concept of conversion function
#include<iostream>

using namespace std;

class weight

{

int kg;

int gm;

public:

weight(int i,int k)

{

kg = i;

gm = k;

}

operator int() //conversion function for int

{

int i;

i =kg*1000 + gm;

return i;

}

operator float() //conversion function for float

{

float i;

i = (float)gm/1000;

i += kg;

return i;

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
40 Material

}

};

int main()

{

weight w1(2,500);

int total1 = w1; //implicit call to int()

float total2 = w1; //implicit call to float()

cout<<“Total weight in grams: “<<total1<<endl;

cout<<“Total weight in Kilograms: “<<total2<<endl;

return 0;

}

The output of the program
Total weight in grams: 2500

Total weight in Kilograms: 2.5

In this example, two conversion functions operator int() and operator
float() are defined. The operator int()converts the object w1 of
class weight to int type and operator float()converts w1 to float.
Note that the statements total1 = w1 and total2 = w1 implicitly call
the conversion functions. However, these functions can also be called explicitly
using the following statements:

int total1 = int(w1); //explicit call to operator
int()

float total2 = float(w1); //explicit call to operator
float()

The following points must always be kept in mind while defining a conversion function:

 The conversion function must be a non-static member function of the class.

 The conversion function cannot have an argument list or a return type.

 Like constructor, the conversion function can also be called explicitly.

 The compiler implicitly invokes the conversion function whenever a class
object present on the right-hand side of the assignment statement does not
match with the data type of the variable present on the left-hand side of the
assignment statement.

One Class Type to Another Class Type

When one class type is to be converted into another class type, the class type
(object) that appears on the right-hand side is known as source class and the
class type (object) that appears on the left-hand side is known as the destination
class. The conversion of one class type to another can be handled by using either
the constructor or the conversion function (casting operator function). The compiler
treats both of them in the same way. However, if the constructor is used for
conversion, it must be defined in the destination class and if the casting operator
function is used, it must be defined in the source class.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 41

Example 1.14: A program to demonstrate the conversion between one class
type to another using constructor

#include<iostream>

using namespace std;

class weight_kg //source class

{

int kg;

public:

weight_kg(int k)

{

kg = k;

}

int getweight() {return kg;}

void display()

{ cout<<“Weight in Kg: “<<kg<<endl;}

};

class weight_gm //destination class

{

int gm;

public:

weight_gm()

{

gm = 0;

}

weight_gm(weight_kg w) //constructor for conversion

{

gm = w.getweight()*1000; //converting kg to gm

}

void display()

{ cout<<“Weight in gm: “<<gm<<endl;}

};

int main()

{

weight_kg wkg(1);

weight_gm wgm;

wgm = wkg; //implicit call to constructor

//wgm=weight_gm(wkg); //explicit call to constructor

wkg.display();

wgm.display();

return 0;

}

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
42 Material

The output of the program
Weight in Kg: 1

Weight in gm: 1000

In this example, two classes weight_kg and weight_gm are defined. A
constructor to convert weight in kilograms to grams is defined in the destination
class, weight_gm. Note that the statement wgm = wkg calls the constructor
implicitly. However, wgm = weight_gm(wkg)calls the constructor explicitly.
Since the data members of the source class are private, they are accessed indirectly
using the public member function getweight()in the constructor.

Example 1.15: A program to demonstrate the conversion between one class
type to another using conversion function.

#include<iostream>

using namespace std;

class weight_gm //destination class

{

int gm;

public:

weight_gm(){gm=0;} //default constructor

void putweight(int g){gm=g;}

void display()

{cout<<“Weight in gm: “<<gm<<endl;}

};

class weight_kg //source class

{

int kg;

public:

weight_kg(int k){kg=k;} //parameterized constructor

operator weight_gm() //conversion function in source
class

{

weight_gm w;

int g = kg*1000;

w.putweight(g);

return w;

}

void display()

{cout<<“Weight in Kg: “<<kg<<endl;}

};

int main()

{

weight_kg wkg(5);

weight_gm wgm;

wgm = wkg; //implicit call to conversion function

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 43

//wgm=weight_gm(wkg); //explicit call to conversion
function

wkg.display();

wgm.display();

return 0;

}

The output of the program
Weight in Kg: 5

Weight in gm: 5000

In this example, a conversion function operator weight_gm()is defined
in the source class weight_kg to convert weight in kilograms to grams. Note
that the statement wgm = wkg calls the conversion function implicitly. However,
the statement wgm = weight_gm(wkg)calls the conversion function explicitly.

Advanced Type Casting

ANSI C++ has also introduced four new casting operators, namely,
static_cast , const_cast , reinterpret_cast and
dynamic_cast. Although, C++ allows explicit conversion from one data type
to another, this traditional typecasting works correctly if performed on simple
variables of built-in data types. However, it can generate a run-time error or produce
an unexpected result if used to convert one pointer variable to another, independent
of the types they are pointing to.

Example 1.16: A program to demonstrate the limitation of traditional typecasting.
#include<iostream>

using namespace std;

int main()

{

int a=5;

float f=10.9;

int *p=&a;

float *fp=&f;

cout<<“*p= “<<*p<<“\t*fp= “<<*fp<<endl;

p=(int*)(fp); //explicit conversion of float pointer

//to int

cout<<“*p= “<<*p;

return 0;

}

The output of the program
*p = 5 *fp = 10.9

*p = 1093559910

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
44 Material

In this example, since a float pointer is explicitly converted to an int pointer,
it displays a garbage value. Note that these types of conversions do not generate
any compile-time error.

In order to control these types of conversions between pointer variables,
ANSI C++ has added a new casting operator, namely, static_cast operator.
In addition to static_cast, other cast operators, namely, const_cast,
reinterpret_cast and dynamic_cast are also introduced. The
conversions performed using these casting operators are checked at compile-
time (except dynamic_cast operator).

static_cast Operator

The static_cast operator is used to perform safe and portable conversions
between fundamental data types. The syntax for using the static_cast
operator is as follows:

static_cast<data_type>(variable)

where,
static_cast=C++ keyword
data_type=target data type
variable=an already declared variable that needs to be converted into

target data type

To understand the use of static_cast operator, consider the following statements:
int a;

float f;

a=static_cast<int>(f); //equivalent to a=int(f);

Here, the static_cast operator is used to convert the float variable into
int.

As stated earlier, the static_cast operator is also used to control conversions
between different types of pointer variables. For example, the statement converting
the float pointer to the int pointer in Example 1.16 can be rewritten using
the static_cast operator.

p=static_cast<int*>(fp); //using static_cast operator to

//convert float* to int*

Now, this statement results in compile-time error ‘Cannot convert from
float * to int *’. Thus, the use of static_cast operator prevents
the conversion of one pointer type to another at compile-time.

The static_cast operator is also used to prevent conversions from const
char* to non-const char *. For example, consider the following statements:

const char *str=”Hello”;

unsigned char *p; //non-const

p=(unsigned char*)(str); //traditional typecasting,no error

p=static_cast<unsigned char*>(str); //error

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 45

The static_cast operator is also used to convert a derived class pointer to a
base class pointer. For example, consider the following statements:

base *b1;

derived *d1;

b1=static_cast<base*>(d1); //converting derived* to base*

const_cast Operator

The const_cast operator is used to change the const-ness of a variable
either of built-in or user-defined data type. It is generally used to remove the
const qualification of the variable. The syntax for using the const_cast
operator is as follows:

const_cast<data_type>(variable)

Since the const_cast operator is used to change the const-ness of the variable
only and not its type, that is, the source and the target data type must be the same.

Example 1.17: A program to demonstrate the concept of const_cast
operator.

#include<iostream>

using namespace std;

int main()

{

const char *str=”Hello”;

char *p;

p=const_cast<char*>(str); //no error

return 0;

}

In this example, str (declared as const) is assigned to p after removing its
const-ness using the const_cast operator. Note that the source and the target
data types are same (char *). Moreover, no compile-time error is generated.

reinterpret_cast Operator

The reinterpret_cast operator is used to perform conversions between
fundamentally different data types. For example, conversion of the int pointer
to the int variable or vice versa, the float pointer to the float variable or
vice versa, etc. It also enables to convert one pointer type to another. The syntax
for using the reinterpret_cast operator is as follows:

reinterpret_cast<data_type>(variable)

Unlike static_cast, reinterpret_cast performs unsafe and non-
portable conversions. Note that while using the reinterpret_cast, the
programmer, rather than the compiler, is responsible for the results.

Example 1.18: A program to demonstrate the use of reinterpret_cast
operator

#include<iostream>

using namespace std;

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
46 Material

int main()

{

int f=100;

int *p;

p=&f;

cout<<“Original value of p= “<<p<<endl;

cout<<“Original Value of f= “<<f<<endl;

p=reinterpret_cast<int *>(f); //int to int*

cout<<“After converting f to p “;

cout<<“\np= “<<p<<endl;

f=reinterpret_cast<int>(p); //int* to int

cout<<“After converting p to f “;

cout<<“\nf=”<<f<<endl;

return 0;

}

The output of the program
Original value of p = 0x0012ff88

Original Value of f = 100

After converting f to p

P = 0x00000064

After converting p to f

F =100

In this example, firstly, the integer variable f is converted to the integer pointer p
using the reinterpret_cast operator and the value of p is displayed.
Note that the value of f (that is, 100) is converted to the hexadecimal form as p
is a pointer variable and it can hold only the address values. The pointer variable
p is converted back to the integer variable using the reinterpret_cast
operator and hence, the original value 100 is displayed.

dynamic_cast Operator

C++ also provides another casting operator known as dynamic_cast
operator. This operator differs from all other three casting operators
as it allows conversions of objects at run-time and thus, is used only with pointers
and references to the objects. The dynamic_cast operator is used when
the conversion must access the Run-Time Type Information (RTTI) of an object
rather than its static type. The syntax for using the dynamic_cast operator is
as follows:

dynamic_cast<data_type>(object)

It allows the program to attempt conversion of a polymorphic base class object
into its derived class object in a safe manner. Polymorphic objects are
the objects of the base class that contains virtual

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 47

functions. The dynamic_cast operator always performs
a valid conversion by special checking during run-time. If the conversion is invalid,
it returns a NULL pointer to indicate the failure.

Note: To use dynamic_cast operator , the <typeinfo> header is included,
which provides the RTTI of an object.

Example 1.19: A program to demonstrate the concept of dynamic_cast
operator.

#include<iostream>

#include<typeinfo>

using namespace std;

class base

{

public:

virtual void display(){cout<<“\nInside the base class”;}

};

class derived:public base

{

public:

void display(){cout<<“\nInside the derived class”;}

};

int main()

{

base *b1,b;

derived *d1,d;

d1=dynamic_cast<derived *>(&d);

if (d1==NULL)

cout<<“NULL pointer”;

else

{

cout<<“Successful casting from derived* to derived*”;

d1->display();

}

b1=dynamic_cast<base *>(&d);

if (d1==NULL)

cout<<“NULL pointer”;

else

{

cout<<“\nSuccessful casting from derived* to base*”;

b1->display();

}

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
48 Material

b1=dynamic_cast<base *>(&b);

if (d1==NULL)

cout<<“NULL pointer”;

else

{

cout<<“\nSuccessful casting from base* to base*”;

b1->display();

}

d1=dynamic_cast<derived *>(&b);

if (d1==NULL)

cout<<“\nNULL pointer”;

else

{

cout<<“\nSuccessful casting from base* to derived*”;

d1->display();

}

return 0;

}

The output of the program
Successful casting from derived* to derived*

Inside the derived class

Successful casting from derived* to base*

Inside the derived class

Successful casting from base* to base*

Inside the base class

NULL pointer

In this example, four dynamic casts between pointer objects of type base* (b1)
and pointer object of type derived* (d1) are performed. The
first three conversions, namely, derived* to derived*, derived* to base* and base*
to base* are successful. The last conversion, that is, base* to derived* results in
NULL pointer as it is invalid to cast a base class object to a derived class object.

Check Your Progress

1. What is the most important feature of OOP paradigm?

2. Define the term class.

3. What do you mean by the term superclass?

4. List the two ways of achieving polymorphism in C++.

5. What is C?

6. What do you understand by programs?

7. Define single statement and compound statement.

8. What is an iteration statement?

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 49

1.3 OPERATORS AND EXPRESSIONS

In addition to the operators, such as arithmetic operators, relational operators,
logical operators, conditional operators and assignment operators that most of the
languages support, C++ provides some additional operators which are listed in
Table 1.3.

Table 1.3 Some Additional C++ Operators

Operators Description
:: Scope resolution operator
::* Pointer-to-member declarator
->* Pointer-to-member operator
.* Pointer-to-member operator
new Memory allocation operator

delete Memory release operator

Here, only scope resolution, and new and delete operators are discussed.

Scope Resolution Operator (::)

In C++, variables in different blocks or functions can be declared with the same
name, that is, the variables in different scope can have the same name. However,
a local variable overrides the variables having same name in the outer block or the
variable with global scope. Hence, a global variable or variable in the outer block
cannot be accessed inside the inner block. This problem is solved by introducing
new operator scope resolution operator ::introduced in C++.

The scope resolution operator :: is a special operator that allows to access a
global variable that is hidden by a local variable with the same name.

Example 1.20:

A program to demonstrate the use of scope resolution operator:
#include<iostream>

using namespace std;

int x = 5; //global variable

int main()

{ //outer block

 int x = 3; //local variable

 cout<<“The local variable of outer block is: “<<x;

 cout<<“\nThe global variable is: “<<::x;

 { //inner block

 int x = 10; //local variable

 cout<<“\nThe local variable of inner block is: “<<x;

 cout<<“\nThe global variable is: “<<::x;

 }

 return 0;

}

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
50 Material

The output of the program
The local variable of outer block is: 3

The global variable is: 5

The local variable of the inner block is: 10

The global variable is: 5

In this example, three variables with same name x are declared. The x declared
outside main() has global scope which is hidden by both the variables x
declared in the outer block and the inner block inside main(). The variable x
inside the inner block overrides both the variables (global variable and the variable
declared in the outer block). Thus, the global version of variable x is accessed
using ::x in the inner and the outer block.

Note that the main application of the scope resolution operator is in the
classes that will be discussed when classes are introduced.

new and delete

C++ provides two dynamic allocation operators new and delete to allocate
and de-allocate memory at run-time respectively. The new operator is a unary
operator that allocates memory and returns a pointer to the starting of the allocated
space. The syntax of allocating memory using the new operator is

p_var= new data_type;

where,

p_var=the name of a pointer variable

new=C++ keyword

data_type=any valid data type of C++

To dynamically allocate memory to a variable of type int at run-time, for example,
a pointer to type int is defined first and then the memory is allocated at run-time
using the new operator as shown here.

int *iptr; //pointer declaration

iptr=new int; //allocating memory to an int variable

In these statements, the new operator returns the address of the memory allocated
for an int variable from the free store and this address is stored in the pointer
iptr. The pointer declaration and allocation of the memory can also be performed
using a single statement as given here.

int *iptr=new int;

Moreover, the allocated memory using new operator can also be initialized. The
syntax to initialize the memory using new operator is

p_var =new datatype(value);

where, value = initial_value.

For example, consider this statement.
float *fptr=new float(20.45);//initializing the newly

 // created variable

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 51

Like built-in data types, the memory can also be allocated dynamically to derived
and user-defined data types, such as arrays, structures and classes. These examples
illustrate this concept.

 To allocate memory to a one-dimensional array, consider these statements:
int *arr_iptr=new int[20];

//allocating memory space to an array of // 20 integers

float *arr_fptr=new float[10];

//allocating memory space to an array of //10 float numbers

 To allocate memory to a multi-dimensional array, consider these statements:
int (*arr_iptr)[3] = new int[3][3];

//allocating memory to a 2-D array

int (*arr_iptr)[5][5] = new int[3][5][5];

//allocating memory to a 3-D array

Note that all the dimensions must be specified while creating multi-dimensional
arrays with the new operator. However, the first dimension can be a variable
whose value is provided at run-time. For example, consider these statements.

int (*arr_iptr)[3][5] = new int[][5][5]; //invalid

int (*arr_iptr)[3][5] = new int[x][5][5]; //valid

int (*arr_iptr)[3][5] = new int[3][5][]; //invalid

The lifetime of a variable created at run-time using the new operator is not restricted
till the execution of the program. Rather, it remains in the memory until it is explicitly
deleted using the delete operator. When a dynamically allocated variable is no
longer required, it must be destroyed using the delete operator to ensure safe
and efficient use of the memory.

The syntax for using the delete operator is
delete p_var;

For example, to delete the pointers iptr and fptr of types int and float
respectively, these statements are used.

delete iptr;

delete fptr;

Similarly, to delete the array pointers arr_iptr and arr_fptr of types
int and float respectively, these statements are used.

delete [] arr_iptr;

delete [] arr_fptr;

Note: It is necessary to put square brackets ([]) after the delete operator to delete
dynamically created arrays. The square brackets indicate that it is an array and, hence,
avoids unpredictable results.

The function performed by the new and delete operator is similar to
the malloc() and free() (library functions used in C). However, new
and delete operators have several advantages over malloc()and free(),
which are listed here.

 new automatically returns a pointer to the appropriate data type. There is
no need to explicitly typecast the pointer as required in malloc().

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
52 Material

 It automatically allocates enough memory to accommodate the object without
using the sizeof operator.

 An object can be initialized while allocating space using the new operator.

 Both new and delete operators can be overloaded.

1.3.1 Operators Precedence
Generally, an expression consists of more than one operator, hence, a compiler
needs to know which operator is to be evaluated first. For this, it is important to
determine the precedence and associativity of operators. The order in which
different operators in an expression are evaluated is determined by the precedence
of operators. The operators with a higher precedence are evaluated before the
operators with a lower precedence. However, the order in which operators of the
same precedence are evaluated is determined by the associativity of the operators.
The associativity of an operator can be either from the left to the right or from the
right to the left. The operators with the left to right associativity are evaluated from
the left-hand side while the operators with the right to left associativity are evaluated
from the right-hand side.

The precedence and associativity of the C++ operators are listed in
Table 1.4. Note that the precedence of operators decreases from the top to bottom.

Table 1.4 Precedence and Associativity of C++ Operators

Operator Description Associativity
:: Global scope resolution Right to left
:: Class scope resolution Left to right
() Function call Left to right
[] Array subscript Left to right
-> Indirect member selector Left to right
. Direct member selector Left to right
++ Post increment Left to right
-- Post decrement Left to right
! Logical negation Right to left
~ Bitwise complement Right to left
+ Unary plus Right to left
- Unary minus Right to left
++ Pre increment Right to left
-- Pre decrement Right to left
& Address of Right to left
* Dereference Right to left

(type) Cast Right to left
sizeof Size in bytes Right to left
new Allocate memory Right to left

delete Deallocate memory Right to left
.* Direct pointer to class member

selection
Left to right

->* Indirect pointer to class member Left to right
* Multiplication Left to right
/ Division Left to right
% Modulus Left to right
+ Addition Left to right
- Subtraction Left to right
<< Bitwise shift left Left to right
>> Bitwise shift right Left to right
< Less than Left to right

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 53

Bitwise shift right Left to right
< Less than Left to right
<= Less than or equal to Left to right
> Greater than Left to right
>= Greater than or equal to Left to right
= = Equal to Left to right
!= Not equal to Left to right
& Bitwise AND Left to right
^ Bitwise exclusive OR Left to right
| Bitwise inclusive OR Left to right
&& Logical AND Left to right
|| Logical OR Left to right
?: Conditional operator Left to right

=, *=, /=, %=, +=, -
=, &=, ^=, |=, <<=,

>>=

Assignment operator Right to left

, Comma Left to right
 Note: In C++, there is no operator for exponentiation. It is implemented using a standard

library function pow().

1.3.2 Expressions

A combination of variables, constants and operators that represents a computation
forms an expression. Depending upon the type of operands involved in an
expression or the result obtained after evaluating expression, there are different
categories of an expression. These categories of an expression are discussed here.

 Constant Expressions: The expressions that comprise only constant values
are called constant expressions. Some examples of constant expressions
are 20, ‘a’ and 2/5+30.

 Integral Expressions: The expressions that produce an integer value as
an output after performing all the type of conversions are called integral
expressions. As for example, x, 6*x-y and 10+int(5.0) are integral
expressions. Here, x and y are variables of type integer.

 Float Expressions: The expressions that produce floating-point value as
output after performing all type of conversions are called float expressions,
for example, 9.25, x–y and 9+float(7) are float expressions. Here,
x and y are variables of type float.

 Relational or Boolean Expressions: The expressions that produce a
bool type value, that is, either true or false are called relational or boolean
expressions, for example, x+y<100, m+n==a–b and a>= b+c are
relational expressions.

 Logical Expressions: The expressions that produce a bool type value
after combining two or more relational expressions are called logical
expressions, for example, x==5 && m==5 and y>x||m<=n are
logical expressions.

 Bitwise Expressions: The expressions that manipulate data at bit level
are called bitwise expressions, for example, a>>4 and b<<2 are
bitwise expressions.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
54 Material

 Pointer Expressions: The expressions that give address values as output
are called pointer expressions, for example, &x, ptr and —ptr are
pointer expressions. Here, x is a variable of any type and ptr is a pointer.

Note: An expression may be formed by combining various combination of the expressions
discussed earlier. Such expression is known as compound expression.

 Special Assignment Expressions: An expression can be categorized
further depending upon the way the values are assigned to the variables.

 Chained assignment: Chained assignment is an assignment expression in
which same value is assigned to more than one variable using a single
statement, for example, consider these statements.

 a=(b=20); or a=b=20;

In these statements, the value 20 is assigned to variable b and then to
variable a. Note that, the variables cannot be initialized at the time of
declaration using chained assignment. For example, consider these
statements.
int a=b=30; //illegal

int a=30, int b=30; //valid

 Embedded Assignment: Embedded assignment is an assignment
expression that is enclosed within other assignment expression, for example,
consider this statement.
a=20+(b=30); //equivalent to b=30; a=20+30;

 In this statement, the value 30 is assigned to variable b and then the result
(20 + 30), that is, 50 is assigned to variable a. Note that the expression (b
= 30) is an embedded assignment.

 Compound Assignment: Compound assignment is an assignment
expression that uses a compound assignment operator that is a combination
of the assignment operator with a binary arithmetic operator. Consider this
statement, for example:

a+=20; //equivalent to a=a+20;

In this statement, the operator += is a compound assignment operator, also known
as a short-hand assignment operator.

Type Conversion

An expression may involve variables and constants either of same data type or of
different data types. However, when an expression consists of mixed data types
then they are converted to the same type during evaluation to avoid compatibility
issues. This is accomplished by the type conversion, which is defined as the
process of converting one predefined data type into another. Type conversions
are of two types, namely (i) implicit conversions and (ii) explicit conversions
also known as typecasting.

Implicit Conversions

Implicit conversion, also known as automatic type conversion, refers to the
type conversion that is automatically performed by a compiler. Whenever the

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 55

compiler confronts a mixed-type expression, first of all char and short int
values are converted to int. This conversion is known as integral promotion.
After applying this conversion, all the other operands are converted to the type of
the largest operand and the result is of a type of the largest operand. Table 1.5
illustrates the implicit conversion of data types starting from the smallest to largest
data type. In expression 5 + 4.25, for example, the compiler converts the
int into float as float is larger than int and then performs the addition.

Table 1.5 Order of Data Types

Data Types
char short int
int
unsigned
long int
unsigned long int
float
double
long double

smallest

 largest

Note: If one operand is long and the other is unsigned int, and if the value of the
unsigned int cannot be represented by a long, both operands are converted to
unsigned long.

Typecasting

Typecasting refers to the type conversion that is performed explicitly using type
cast operator. In C++, typecasting can be performed by using two different forms
which are given here.

data_type(expression) //expression in parentheses

 (data_type)expression //data type in parentheses

where,

data_type = data type (also known as cast operator) to which the
expression is to be converted.

Note: The cast operator is considered as a unary operator and thus has the same precedence
as other unary operators.

To understand typecasting, consider this example.

float(num)+ 3.5 ; //num is of int type

In this example, float() acts as a conversion function that converts int to
float. However, this form of conversion cannot be used in some situations.
Consider this statement, for example:

ptr=int*(x);

In such cases, conversion can be done using the second form of typecasting (which
is basically C-style typecasting) as shown here.

ptr=(int*)x;

In addition, C++ introduces four new cast operators, namely (i) const_cast,
(ii) static_cast, (iii) dynamic_cast and (iv)reinterpret_cast.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
56 Material

1.4 TOKENS

 A token is defined as the smallest unit of a program. When a program is compiled,
the compiler scans the source code and parses it into tokens to find the syntax
errors. C++ tokens are broadly classified into keywords, identifiers, constants,
operators and punctuators.

Keywords
Keywords are the predefined words that have special significance in any language.
Every keyword is reserved for a specific purpose and hence must not be used as
user-defined names (identifiers). All the keywords of C++ are listed in Table 1.6.

Table 1.6 C++ Keywords

Keywords
asm const_cast export inline public static_cast typename
auto continue explicit int register switch using
bool default extern long return this union
break delete float mutable reinterpret_cast throw unsigned
case do for new short true virtual
catch double friend namespace signed typedef void
char dynamic_cast false operator sizeof template volatile

class else goto private struct try while
const enum if protected static typeid wchar_t

Identifiers

Identifiers are the names given to uniquely identify various programming elements,
such as variables, arrays, functions, classes, structures, namespaces, and so
on. While defining identifiers in C++, programmers must follow the rules listed
here.

 An identifier must be unique in a program.

 An identifier must contain only upper case and lower case letters, underscore
character (_) or digits 0 to 9.

 An identifier must start with a letter or an underscore.

 An identifier in an upper case is different from that in a lower case.

 An identifier must be different from a keyword. In addition, identifiers that
start with a double underscore ‘—’ or an underscore followed by an upper-
case letter must be avoided, as these names are reserved by the Standard
C++ Library.

 An identifier must not contain other characters such as ‘*’, ‘;’ and whitespace
characters (tabs, space and newline).

Some valid and invalid identifiers in C++ are given here.
Pol78_ddm //valid

 _78hhvt4 //valid

902gt1 //invalid as it starts with a digit

Tyy;ui8 //invalid as it contains the ‘;’ character

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 57

for //invalid as it is a C++ keyword

Fg026 neo //invalid as it contains spaces

Note: Unlike C, there is no limit to the length of an identifier in C++. Thus, all the characters
are significant in C++, however, in C, the first 32 characters are significant.

1.4.1 Constants

Constants, also known as literals, are the values that a program cannot alter
during its execution, for example, ‘391’, ‘Byron’, ‘51.072’ and ‘p’ are all
constants. Based on the type of value (data), C++ constants are broadly classified
into three categories, namely (i) numeric constants, (ii) character constants and
(iii) string constants.

Numeric Constants

Numeric constants refer to the numbers consisting of a sequence of digits (with
or without decimal point) that can be either positive or negative. However, by
default, numeric constants are positive. Numeric constants can be further classified
as integer constants and floating-point constants, which are listed in Table 1.7.

Table 1.7 Type of Numeric Constants

Type Description Example
Integer constants Integer constants refer to integer-valued

numbers. Integer constants can be
represented by three different number
systems, namely decimal (base 10),
octal (base 8) and hexadecimal numbers
(base 16). The octal constants are
preceded by a 0 (zero) and
hexadecimal constants are preceded by
a 0x or 0X.

54, -646,
01612, 0x38A

Floating-point constants Floating-point constants refer to the real
numbers, that is, the numbers with a
decimal point. Floating-point constants
are also written in the floating-point
notation in which the constant is
divided into a mantissa and an
exponent.

64.23, -74.32,
537E-9

Note: Use of special characters, such as comma ‘,’, semicolon ‘;’and question mark ‘?’ are not

permitted in numeric constants.

Character Constants

Character constants refer to a single character enclosed in single quotes (‘ ’).
The examples of character constants are ‘f’, ‘M’, ‘8’, ‘&’, ‘7’, etc. All
character constants are internally stored as integer value.

Character constants can represent either the printable characters or the
non-printable characters. The examples of printable character constants are ‘a’,
‘5’, ‘#’, ‘;’, etc. However, there are a few character constants that cannot
be included in a program directly through a keyboard, such as backspace, newline,
and so on. These character constants are known as non-printable constants and

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
58 Material

are included in a program using the escape sequences. An escape sequence
refers to a character preceded by the backslash character (\). Some of the escape
sequences used in C++ are listed in Table 1.8.

Table 1.8 Escape Sequences

Escape Sequences Character Constants

\a Alert (bell)

\b Backspace

\f Form feed

\n Newline (Linefeed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\0 Null

\’ Single quote

\” Double quote

\\ Backslash

\? Question mark

\C Octal constant (C is a three-digit octal constant)

\xC Hexadecimal constant (C is a three-digit hexadecimal constant)

In addition to character constant, C++ supports another character literal known
as wide character literal. This wide character literal uses two bytes of memory
and is specified by preceding character with an L. The examples of wide character
literals are L‘b’, L‘mn’, and so on.

String Constants

String constants refer to a sequence of any number of characters enclosed in
double quotes (“ “). The examples of string constants are “hello”, “name”,
“color”, “date”, etc. Note that string constants are always terminated by
the null (‘\0’) character.

The presence of a backslash character in a string constant indicates an
escape sequence. The string constant, for example, “welcome\”home” is
displayed as welcome” home. Note that the double quote next to the backslash
is an escape sequence and not a delimiter for the string constant.

Operators

Operators are the symbols that represent various computations (such as addition,
subtraction, etc.) performed on various data-items. These data-items on which
operators act are known as operands.

Depending on the number of operands and functions performed, the C++
operators can be classified into various categories. This includes arithmetic
operators, relational operators, logical operators, the conditional operator

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 59

assignment operators, bitwise operators and other operators. These categories
are further classified into unary operators, binary operators and ternary
operators, as shown in Figure 1.12.

 Operators

Arithmetic
operators

Unary
operators

Binary
operators

+
-
++
--

*
/
%
+
-

Relational
operators

Binary
operators

<
>
<=
>=
==
!=

Logical
operators

Unary
operator

Binary
operators

! &&
||

Conditional
operator

Ternary
operator

? :

Assignment
operators

Binary
operators

=
+=
-=
*=
/=
%=

Bitwise
operators

Unary
operators

Binary
operators

~
<<
>>

&
|
^

Other
operators

Unary
operator

Binary
operator

sizeof comma

Fig. 1.12 Types of Operators

In addition to these operators (basically C operators), C++ also provides some
new operators which you will learn later in this unit.

Punctuators

Punctuators, also known as separators, are tokens that serve different purposes
based on the context in which they are used. Some punctuators are used as
operators, some are used to demarcate a portion of the program, and so on. The
various punctuators defined in C++ are asterisk ‘*’, braces ‘{ }’, brackets ‘[
]’, colon ‘:’, comma ‘,’, ellipsis ‘…’, equal to ‘=’, semicolon ‘;’, parentheses
‘()’ and pound (hash) ‘#’.

1.5 BASIC DATA TYPES

A data type determines the type and the operations that can be performed on the
data. C++ provides various data types and each data type is represented differently
within the computer’s memory. The various data types provided by C++ are
(i) built-in data types, (ii) derived data types and (iii) user-defined data types,
as shown in Figure 1.13.

 C++ Data Types

Integral Type

int char

Floating Type

Derived
Data Types

Array
Function
Pointer
Reference

void

User-Defined
 Data Types

Structure
Union
Class
Enumeration

Built-in
Data Types

float double

Fig. 1.13 Various Data Types in C++

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
60 Material

Built-in Data Types
The basic (fundamental) data types provided by C++ are integral, floating point
and void data type. Among these data types, the integral and floating-point
data types can be preceded by several type modifiers. These modifiers (also known
as type qualifiers) are the keywords that alter either the size or range or both of the
data types. The various modifiers are short, long, signed and unsigned.
By default the modifier is signed.

Note: The size and range of built-in data types vary from compiler to compiler and are
specified in the header climits.

In addition to these basic data types, ANSI C++ has introduced two more
data types namely, bool and wchar_t.

Integral Data Type
The integral data type is used to store integers and includes char (character)
and int (integer) data types.

char
Characters refer to the alphabet, numbers and other characters (such as {, @, #,
etc.) defined in the ASCII character set. In C++, the char data type is also
treated as an integer data type as the characters are internally stored as integers
that range in value from –128 to 127. The char data type occupies 1 byte of
memory (that is, it holds only one character at a time).

The modifiers that can precede char are signed and unsigned.
The various character data types with their size and range are listed in Table 1.9.

Table 1.9 Character Data Types

Type Size (in Bytes) Range
char 1 –128 to 127
signed char 1 –128 to 127
unsigned char 1 0 to 255

int
Numbers without the fractional part represent integer data. In C++, the int data
type is used to store integers, such as 4, 42, 5233, –32, –745. Thus, it cannot
store numbers, such as 4.28, –62.533. The various integer data types with their
size and range are listed in Table 1.10.

Table 1.10 Integer Data Types

Type Size (in Bytes) Range

int 2 –32,768 to 32,767

signed int 2 –32,768 to 32,767

unsigned int 2 0 to 65,535

short int 2 –32,768 to 32,767

signed short int 2 –32,768 to 32,767

unsigned short int 2 0 to 65,535

long int 4 –2,147,483,648 to 2,147,483,647

signed long int 4 –2,147,483,648 to 2,147,483,647

Unsigned long int 4 0 to 4,294,967,295

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 61

Floating-Point Data Type

A floating-point data type is used to store real numbers, such as 3.28, 64.755765,
8.01, -24.53. This data type includes float and double data types. The
various floating-point data types with their size and range are listed in Table 1.11.

Table 1.11 Floating-Point Data Types

Type Size (in Bytes) Range Digits of Precision
float 4 3.4*10-38 to 3.4*1038 7
double 8 1.7 * 10-308 to 1.7*10308 15
long double 10 3.4 * 10-4932 to 1.1*104932 18

void

The void data type is used for specifying an empty parameter list to a function
and return type for a function. When void is used to specify an empty parameter
list, it indicates that the function does not take any arguments, and when it is used
as a return type for a function, it indicates that the function does not return any
value. For void, no memory is allocated and, hence, it cannot store anything.
As a result, void cannot be used to declare simple variables, however, it can be
used to declare generic pointers.

bool and wchar_t

The bool data type can hold only boolean values that is either true or false,
where true represents 1 and false represents 0. It requires only one bit of
storage, however, it is stored as an integer in the memory. Thus, it is also considered
as an integral data type. The bool data type is most commonly used for expressing
the results of logical operations performed on the data. It is also used as a return
type of a function indicating the success or the failure of the function.

In addition to char data type, C++ provides another data type
wchar_t,which is used to store 16- bit wide characters. Wide characters are
used to hold large character sets associated with some non-English languages.

Note: In C++, wchar_t is a built-in data type, while in C, it is defined in
standard header file stddef.h.

1.5.1 User Defined Data Types

The various user-defined data types provided by C++ are structures, unions,
enumerations and classes.

Structure, Union and Class

Structure and union are the significant features of C language. They provide a way
to group similar or dissimilar data types referred to by a single name. However,
C++ has extended the concept of structure and union by incorporating some new
features in these data types to support object-oriented programming.

C++ offers a new user-defined data type known as class, which forms the
basis of object-oriented programming. A class acts as a template that defines the

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
62 Material

data and functions that are included in an object of a class. Classes are declared
using the keyword class. Once a class has been declared, its object can be
easily created.

Enumeration

An enumeration is a set of named integer constants that specify all the permissible
values that can be assigned to enumeration variables. These set of permissible
values are known as enumerators. For example, consider this statement.

enum country {US, UN, India, China} ;//declaring an

 // enum type

In this statement, an enumeration data-type country (country is a tag
name, consisting of enumerators US, UN,and so on, is declared. Note that
these enumerators represent integer values, so any arithmetic operation can be
performed on them.

By default, the first enumerator in the enumeration data type is assigned the
value zero. The value of subsequent enumerators is one greater than the value of
previous enumerator. Hence, the value of US is 0, value of UN is 1, and so on.
However, these default integer values can be overridden by assigning values
explicitly to the enumerators as shown here.

enum country {US, UN=3, India, china} ;

In this declaration, the value of US is 0 by default, the value of UN is 3, India is
4, and so on.

Once an enum type is declared, its variables can be declared using this
statement. country country1,country2;

These variables country1, country2 can be assigned any of the
values specified in enum declaration only. For example, consider these statements.

country1 = India; //valid

country2 = Japan; //invalid

Though the enumerations are treated as integers internally in C++, the compiler
issues a warning, if an int value is assigned to an enum type. Consider these
statements, for example:

country1 = 3; //warning

country1= UN; //valid

country1= (country)3; //valid

Note: In C++, the enum type variables can be declared without using enum
keyword while in C, it is necessary to use enum keyword.

C++ also allows to create anonymous enums, that is, enums without using
tag name as shown in this statement.

enum {US, UN=3, India, China} ;

The enumerators of an anonymous enum can be used directly in the program as
shown here.

 int count = US;

Note: In C++, an enum declared within a structure or class is visible to that
structure or class only.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 63

1.5.2 Derived Data Types

Data types that are derived from the built-in data types are known as derived
data types. The various derived data types provided by C++ are arrays, functions,
references and pointers.

Array

An array is a set of elements of the same data type that are referred to by a same
name. All the elements in an array are stored at contiguous (one after another)
memory locations and each element is accessed by a unique index or subscript
value. The subscript value indicates the position of an element in an array.

Function

A function is a self-contained program segment that carries out a specific well-
defined task. In C++, every program contains one or more functions that can be
invoked from other parts of a program, if required.

Reference

A reference is an alternative name for a variable, that is, a reference is an alias for
a variable in a program. A variable and its reference can be used interchangeably
in a program as both refer to the same memory location. Hence, changes made on
any of them (say, a variable) are reflected in the other (on a reference).

Pointer

A pointer is a variable that can store the memory address of another variable.
Pointers allow to use the memory dynamically, that is, with the help of pointers, the
memory can be allocated or de-allocated to the variables at run-time, thus, making
a program more efficient.

1.5.3 Declaration of Variables

Variables must be declared in a program before they are used. The declaration of
a variable informs the compiler, the specific data type to which a variable is
associated and allocates sufficient memory for it. The syntax for declaring a variable
is as follows:

data_type variable_name;

For example, a variable a of type int can be declared using this statement.
int a;

At the time of the variable declaration, more than one variable of the same data
type can be declared in a single statement, for example consider this statement.

int x, y, z;

Note that in C++, it is not necessary to declare the variables in the beginning of a
program as required in C. It can be declared at the place where it is used first.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
64 Material

1.6 OPERATORS AND FUNCTION
OVERLOADING

Operators are one of the five tokens of the language. C++ supports many built-in
operators. The operators in C++ language can be classified into various categories
as:

 Arithmetic Operators

 Relational Operators

 Boolean Logical Operators

 Bitwise Operators

The operators use one or more operands and perform the desired operations.
The operands can be literals (constants), variables or expressions. C++ also
supports three types of operations based on the number of operands used. They
are:

 Binary (involving two operands)

 Unary (involving single operand only)

 Ternary (involving three operands)

Arithmetic Operators

The basic arithmetic operators are:

Addition (+) e.g. c = a + b

Subtraction (–) e.g. c = a – b

Multiplication (*) e.g. c = a * b

Division e.g. c = a/b

Modulus e.g. c = a % b

To get the value of the remainder, we use c = a % b.

The symbol % is also popularly called as modulus operator. Modulus operator
can be used only with integers.

Therefore, c = 100/6; will produce c = 16.

d = 100 % 6; will produce d = 4

Let us execute a program to understand the arithmetic operators.

Program 1.6
/*to demonstrate use of arithmetic operators*/

#include<iostream>

using namespace std;

int main(){

int var1=4, var2=17;

float var4=2.5f, var5=12.0f;

cout<<“\n addition of floats =”<< (var4+var5);

cout<<“\n multiplication of integers =”<< (var1*var2);

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 65

cout<<“\n modulus of integers =”<< (var2%var1);

cout<<“\n division of floats =”<< (var5/var4);

cout<<“\n subtraction of integers =”<< (var2-var1);

}

Here var1 and var2 are declared as integers and are assigned initial
values of 4 and 17 respectively; var4 and var5 are declared as floats and assigned
initial values of 2.5f and 12.0f respectively. (Note: if we don’t assign the suffix ‘f’,
the numbers will be treated as doubles, needing double the amount of storage
space.) Various operations are carried out as part of the print (cout) statement
itself. Addition of floats, subtraction of integers and multiplication of integers are
simple. Let us calculate modulus of integers.

Integer

17%4=1 – which is the remainder.

Let us now look at the division. In case of float, the quotient will be found to
the defined precision and hence 12/2.5 gives quotient of 4.8.

Now look at the result.

The output of the program
addition of floats =14.5

multiplication of integers =68

modulus of integers =1

division of floats =4.8

subtraction of integers =13

Expressions

We can form expressions by combining the following:

i. Data types (variables and constants)

ii. Operators (Arithmetic operators, relational operators, logical operators)

For instance, a = 100 + 2/4;

What is the right answer?

Is it 100 + 0.5 = 100.5 or, 102/4 = 25.5

Precedence of Operators

To avoid ambiguity, there are precedence rules for operators in C++. Precedence
denotes which operator has to be evaluated first. The operator precedence is
given in Annexure 3. In the above example, since “/” has precedence over “+”, the
expression will be evaluated as 100 + 0.5 = 100.5.

Let us confirm the operator precedence through a program. It is given in the
example below:

Program 1.7
/*to demonstrate operator precedence*/

#include<iostream>

int main(){

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
66 Material

std::cout<<“\n first calculation: “<< 24/6*4;

std::cout<<“\n second calculation: “<< (24/2–8/4+3);

}

Let us evaluate the second expression.

 24/2 – 8/4 + 3 = 12 – 8/4 + 3 = 12 – 2 + 3 =13

Look at the result of the program to confirm our discussion.

The output of the program
 first calculation: 16

 second calculation: 13

Whenever you are in doubt about the outcome of an expression, it is better
to use parentheses to avoid ambiguity. Use of parentheses does not cause any
overhead to the program and hence can be used liberally.

Arithmetic Assignment Operators

The assignment statements can be written in a shorthand notation when the variable
on the Right Hand Side (RHS) of the expression repeats on the Left Hand Side
(LHS). The following example will make it clear.

The general form is exp1 = exp1 + exp2.

This can also be written as exp1 + = exp2.

Example

Simple form Shorthand form
a = a+1; a + = 1;

a= a – b; a – = b;

a = a*(b+c); a* = b+c;

a = a/b; a / = b;

d = d – (a+b); d – = a+b;

x = x%y; x% = y;

An example involving shorthand assignment operators is given below for
illustration.

Program 1.8
/*to demonstrate shorthand assignment operators*/

#include<iostream>

using namespace std;

int main(){

int var1=15, var2=4;

float var3=15.0f, var4=5.5f;

cout<<“\n var1+=5 is “ <<(var1+=5);

cout<<“\n var3-=2.4 is “ <<(var3-=2.4f);

cout<<“\n var1/=4 is “ <<(var1/=4);

cout<<“\n var1%=var2 is “ <<(var1%=var2);

cout<<“\n var3*=var4 is “ <<(var3*=var4);

 }

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 67

The output of the program
var1 += 5 is 20

var3 –= 2.4 is 12.6

var1/ = 4 is 5

var1% = var2 is 1

var3* = var4 is 69.3

The program demonstrates the use of all the five shorthand assignment
operators.

We may think there is something wrong with the result. After the execution
of the first print statement, var1 gets the new value of 20 and after execution of
second print var3 gets the new value of 12.6. After the third print var1 gets the
value of 5. Now you will understand why we got unexpected result.

Binary Operators

We need two operands for any of the basic arithmetic operation such as addition,
subtraction, division and multiplication. Since these operators need two operands,
the operators are called binary operators. Don’t confuse this with binary numbers.

Unary Operators

C++ has special operators for a single operand. These are called unary operators.
These operators can be used for adding 1 (increment) to an integer variable or
subtracting 1 (decrement) from an integer variable. The increment operator ‘++’
and decrement operator ‘– –’ are the unary operators.

Both the unary operators can be used either as prefix or as postfix. In both
the cases, the operands will be incremented or decremented, but there is a difference.
Suppose we write y = x++; then y will be assigned the value of x before it is
incremented.

x = 5;

y = x++

In this case, y will become 5 and x will become 6 after execution of the
second statement.

On the other hand if we write
x = 5:

y = ++ x;

y will become 6 since x will be incremented before y is assigned the value.
Now look at the example given below for confirming the above concept.

Program 1.9
/*to demonstrate usage of unary operators as prefix and
suffix*/

#include<iostream>

int main(){

int var1=9, var2;

var2=++var1;

std::cout<<“\n var2= “<< var2 << “ var1= “<<var1;

var2=var1—;

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
68 Material

std::cout<<“\n var2= “<< var2 << “ var1= “<<var1;

}

The program starts with declaration and assignment as follows:
var1=9;

var2=++var1; /*var2 is assigned value of var1 after
increment */

Therefore, value of both var1 and var2 is 10.

Now

var1=10;

var2=var1– –; /*var2 is assigned value of var1 before
decrement*/

The output of the program
var2= 10 var1= 10

var2= 10 var1= 9

In some cases prefixing or suffixing may not cause any difference, but in
some it will cause a difference as illustrated in the example above.

Relational Operators

The relational operators are used to check the relationship between two numeric
operands or expressions. The relational operators of C++ are given below:

i. Greater than (>) e.g. x > y means, Is x greater than y?

ii. Less than (<) e.g. x < y means, Is x less than y?

iii. Greater than or equal (> =) e.g. x > = y means, Is x greater than or equal to
y?

iv. Less than or equal (< =) e.g. x < = y means, Is x less than or equal to y?

v. Equal (==) e.g. x==y means, Is x equal to y?

vi. Not Equal (!=) e.g. x!=y means, Is x not equal to y?

The outcome of a relational expression involving integers, characters or
floating point numbers, is either true or false. These operators help in finding out
the relationship between two operands or expressions.

Assignment operators are written as follows:
identifier = expression;

Example
vari = 3;

int A = 3;

For instance, in the statement,

int vari = 3;

int vari is the declaration of the variable;

vari = 3 is an assignment statement;

= is the assignment operator.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 69

C++ allows multiple assignment in the following form:
identifier 1 = identifier 2 = (...)= expression

Example
va = vb = vz = 25;

But one should know the difference between assignment operator and
equality operator. In other languages both are represented by =. But in C++ as
well as in C, equality operator is expressed as == (pronounced as equal to equal
to) and assignment is represented by =.

The relational operators are evaluated to check whether they are true or
false. Let us look at an example to illustrate the concept of relational operator.

Program 1.10
/*to demonstrate relational operators*/

#include<iostream>

int main(){

int var1=5;

bool b1, b2;

b1= (var1>3);

std::cout<<“\n expression1 is “<<b1;

b2= (var1>5);

std::cout<<“\n expression2 is “<<b2;

 }

Here the expression1 turns out to be true. Hence, b1 will be true and will be
equal to 1. Since the expression2 is false, b2 will be false and equal to 0. Result of
program confirms this.

The output of the program
expression1 is 1

expression2 is 0

Logical Operators

The relational operators are useful for checking a single condition. Of course they
compare two numeric operands or expressions and result can be true or false.
When we want to combine multiple conditions, we need logical operators.
Examples involving multiple conditions are given below:

 If (A >B) AND if (A>C) print A is larger.

 If year = 50 OR if year =1950, print 1950

The logical operators such as AND, OR are used to combine multiple
conditions as above. Thus, the logical operators are used with relational operators,
which operate on numeric operands. Table 1.12 gives a list of logical operators
defined in C++.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
70 Material

Table 1.12 Logical Operators

Operator Symbol Example Remarks

Logical AND && C=A&&B C is true if both A&B are true

Logical OR || C=A||B C is false if both A & B are false

Logical NOT ! C=!A C is true if A is false

Bitwise Operators

Bit wise operators access the internal representation of the numbers in bits, viz. bit
0 and 1. These operators apply only to the integer family operands including char.
There are six operators for bit wise operation or manipulation. The operators and
their symbols are given below:

& bitwise AND
| bitwise OR
^ bitwise exclusive OR
<< left shift
>> right shift
~ bitwise unary NOT

Hexadecimal and Octal Representation

In C++, we can represent numbers as decimal, octal and hexadecimal numbers.
Any problem involving bit wise operation involves conversion of the integers into
binary numbers. After the operation, the system will convert the binary number
into decimal and give the result.

In software, we organize the digits byte wise. But the hardware handles it
bit wise. Therefore, the bit wise operators are very useful for directly interacting
with the hardware. But in programs we give decimal numbers. The bit wise operator
recognizes the number, carries out bit wise operation and gives the result in decimal
numbers. To check whether the operation is correct or not, we have to convert
the operand and the result to bits and then see whether it is correct. This is done
only in the beginning stage, till we gain confidence. Later on, we don’t have to do
it. Although bit wise operators manipulate the bits, they understand the decimal,
octal and hexadecimal numbers and carry out the operation at one go.

If we use decimal numbers, we have to convert them to binary, which is
easy for the computer, but we will take time. Let us use hexadecimal, or octal
numbers for discussing the use of bit wise operator since it will be easy for us to
convert them to binary and vice versa. But, unless otherwise specified, the program
will accept decimal numbers for bit wise operation and give the result in decimal
form. For ease of discussions, we will specify the operand in the hex or octal
number system and the result in the same radix.

Let us take a decimal number 6666. Let us convert it into binary, octal and
hexadecimal numbers.

16-bit binary number equal to 6666-0001101000001010

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 71

equivalent hexadecimal number-1a0a

equivalent octal number-015012

What do you notice? The hexadecimal number groups 4 bits each from
right(LSB) in the 16-bit binary number and gives equivalent hexadecimal of the 4
bits. Thus, we have 4 digits of hexadecimal number for the 16-bit binary number.

Similarly the 16-bit binary number is grouped into 3 bits each from the
LSB. Therefore, 6 octal numbers will arise for a 16-bit binary number. The last
group contains only the MSB. It can either be 0 or 1. In this case, it is zero. The
other numbers could be from 0 to 7. Therefore, it is easy to convert binary numbers
to octal numbers. Similarly, it is easy to convert an octal number to binary; convert
each octal digit to its equivalent binary digit.

Now using examples, let us understand the operation of bit-wise operators.

Bitwise NOT Operator

The NOT operator inverts all bits i.e. it converts 1 to 0 and 0 to 1.

If x is the number x = 1100

~x = 0011.

This can be used to encrypt the information at the sending end and decrypt
it at the receiving end.

It changes 1 to 0 and 0 to 1

The usage is as follows

Let us declare I, J as integers ;

I = 6666 ;

J = ~ I ;

I = 015012 -octal

J = 762765 -octal

Note the symbol for bit-wise NOT is different from logical NOT.

Bitwise AND Operator

It compares two bits and if both are 1, the output is 1, otherwise zero. This can be
used to mark some sets of bits. Suppose we want to check only the 16th bit in 16-
bit word of a number say A, we can carry out AND of A and another word whose
16th bit is 1 and all other 15 bits are 0. When you AND it, the 15 bits will be 0 and
16th bit will be a 0 or 1 depending on A.

Thus, it operates on 2 operands.

Given A = 015012 octal

B = 177777

C = A & B will provide an output of C = 015012 octal. This can be verified
by converting into bits.

A = 1A0A hexadecimal

B = 0000

C = A & B will produce C = 0000 hexadecimal because B is all zeros.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
72 Material

OR Operator

This is also a binary operator.

Let A = 015012 octal

B = 000000

C = A | B ; will produce C = 015012 octal

Let A = 015012 octal

X = 177777 octal

Y = A | X ; will produce Y = 177777 octal.

This is because X is all ones and hence A | X will automatically produce all
1s even without looking at A.

When B is zero, the output will be 1 wherever A is 1. Therefore, the output
will be same as A.

Exclusive OR operator

Only when one of the 2 operands is 1 we get the output of exclusive OR as
1; otherwise output will be 0.

A = 1A0A Hex

= 0001101000001010

Let B = 1111111111111111 = FFFF hex

A ̂ B = 1110010111110101 = E5F5 hex

Let C = 0000000000000000 = 0000 hex

A^ C = 0001101000001010 = IA0A hex

B^C =FFFF hex

Let us take a break and confirm the use of above 4 bit-wise operators.

Program 1.11
/*to demonstrate use of bit-wise operators*/

#include<iostream>

using namespace std;

int main(){

int C, A=6666, B=0;

C=A&B;

cout<<“\n Result of AND “ << C;

C=A|B;

cout<<“\n Result of OR “ << C;

C=A^B;

cout<<“\n Result of Exclusive OR “ << C;

C=~A;

cout<<“\n Result of NOT “ << C;

}

We have declared A as 6666 and B as 0. We get the following results:

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 73

The output of the program
 Result of AND 0

 Result of OR 6666

 Result of Exclusive OR 6666

 Result of NOT –6667

You can easily verify the correctness of results in respect of AND, OR and
Exclusive OR. You may find it difficult in the case of NOT. It is explained below.
The binary equivalent of 6666 = 0001 1010 0000 1010

B=~A= 1110 0101 1111 0101

This is a negative number since MSB =1 and therefore the number is in 2’s
complement notation. To find the value of the number, we have to invert the bits
and add 1. When we invert, we get the original number 6666 and when we add 1,
we get 6667 and since it is a negative number the result –6667 is correct.

Right Shift Operator
int A, B;

B = A >> 2;

Here the bits in A will be shifted 2 places to the right. The resulting number
will be stored in B. We have to answer two questions that may arise during this
operation.

 What happens to the bits shifted out?

 What is stored in the vacuum created in the number?

Assume that we are shifting the number 1101 by 2 bits to the right. Then what
happens to 01 on the right. Obviously they will be lost. Since we have shifted the
number by 2 bits, 11 on the left would have moved to the rightmost positions. Then
what will be stored in the two leftmost positions? The bit corresponding to MSB i.e.
leftmost bit will fill these. Had it been zero, indicating that it is a positive number, the
positions will be filled with 0. In this case, since MSB was 1, the positions will be
filled with 11. Thus the result of shifting 1101 by 2 bits to the right will be 1111. This
helps in preserving the sign bit and hence this function is called sign extension.

Now A = 6666. In hex, it will be 1A0A= 0001 1010 0000 1010

Let B = A >> 4 ;

The bits will be shifted by 4 places. Because sign bit is 0, the vacuum will be
filled with 0s.

Therefore, B = 01A0

Let us take another case.

Let K = – 25 and let it be represented as a byte.

25 = 00011001

K in 2’s complement representation will be 1110 0111

Now, let L=K >> 4

Then, L = 1111 1110

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
74 Material

Left Shift Operator

j = i << p

will shift i by p bits and store the result in j.

What happens to the rightmost position from where the bits were shifted?
Zeros will be placed whenever a bit is shifted.

i = 015012; / * octal number * /

j = i << 3 ;

The result will be 150120. Let us take one more example.

A=1A0A ; / * hexadecimal number * /

B = A << 4 ;

the shifted number will be,

A0A0

Shifting again by 4 bits will give 0A00

Check by shifting the octal number 150120 to the left by 3 bits. The result
will be 101200. Let us confirm the use these three operators with a program.

Program 1.12
/*to demonstrate use of bit-wise shift operators*/

#include<iostream>

int main(){

long B, A=6666;

B=A>>4;

std::cout<<“\n Result of right shift “ <<B;

B=A<<4;

std::cout<<“\n Result of left shift “ <<B;

}

We have declared A as 6666 and execute both types of shifts.

The output of the program
Result of right shift 416

Result of left shift 106656

The result of left shift needs needs explanation. We have,

A = = 6666, it’s hexadecimal equivalent will be 1A0A= 0001 1010 0000
1010

We now shift A to the left by 4 bits. Since A and B are long integers with at
least 32 bits wide, the 4 bits shifted will not be lost. B will be actually 0001 1010
0000 1010 0000 which is equal to 106656 in decimal.

Bit Field

The bit wise operators don’t really need bytes for their operation. However, the
minimum size that is available is a character of 8-bit width. Some variables may
require only one or two bits. In such cases, we will declare the variable as a char
and we will not use the balance of the bits. However in some applications, we may

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 75

have to conserve memory space. In such cases, we can declare the size of the
variable in terms of bits, for instance,

bool flag:1;

The above statement declares a variable flag of type bool. The size of the
variable flag is 1 bit as indicated by the number following variable’s name and
preceded by a colon. Had it been 2, the size of flag will be 2 bits. In this way, we
can put multiple variables on a single byte. For this purpose, such variables are
bundled together as fields in a structure. An example is given below:

struct name {

bool flag:1 ;

int var:3 ;

int:4 ;

} ;

The above declares three binary variables i.e. variables using binary digits
or bits. In the last statement, we have not given any variable name and so the
corresponding four bits will be unused. A member of the structure is defined to be
a bit field by specifying the number of bits it will occupy, after a colon.

Bit field is not attractive because it increases the programming overheads. It
is also more difficult to implement. Hence it is not advisable to use bit fields. On
the contrary, dynamic allocation of memory can be used to overcome memory
problems.

Function Overloading

C++ has an interesting feature called function overloading. By this feature, we can
build a number of functions with the same name. But the argument lists of such
functions have to be different and unique. However, the return data type of such
functions need not be unique. Or in other words, function overloading is achieved
through multiple functions with same names, but with unique argument list. An
example of such overloaded functions are given below:

string add(string str1, string str2){

double add(double var1,double var2){

int add(int var1,int var2){

In the above example, there are three different functions with the same
name add, but with different list of arguments. Since all are functions for add, this
helps in readability of the code. Then how does it work? The compiler resolves
the specific function to be called by looking at the number and type of arguments
passed at the time of the call to a function. For instance, if we call add (4.5, 3.5),
the function whose arguments match with the actual arguments, will be called. In
this case, the function with arguments declared as double will be called. The example
below illustrates function overloading.

Program 1.13
//To demonstrate function overloading

#include<iostream>

using namespace std;

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
76 Material

inline string add(string str1, string str2){

str1+=str2;

return str1;

}

inline double add(double var1,double var2){

var1+=var2;

return var1;

}

inline int add(int var1,int var2){

var1+=var2;

return var1;

}

int main(){

cout<<add(10, 5)<<"\n";

cout<<add(56.10, 5.5)<<"\n";

cout<<add("function ","overloading")<<"\n";

}

In the above example, the first print statement calls the function returning
integer. Similarly, the next print statement calls the function returning double and
the last statement calls the function returning string because both the arguments
are strings.

The output of the program
15

61.6

function overloading

Rules for Overloading

Overloading is preferred when similar functions are to be carried out on different
data types or when the number of arguments needed by the functions vary, although
they may be of the same type. The arguments listed in the function header are
called formal parameters or formal arguments. The arguments supplied along with
the call to the functions are called actual parameters or actual arguments. While
selecting the appropriate functions, a number of situations may arise as given below:

1. The arguments match exactly–in this case selecting the function is trivial.

2. Sometimes, the formal arguments and arguments passed will match with
promotions. For instance,

char to int

short to int

bool to int

float to double

3. We can also match using standard conversion of the arguments as given
below:

long to unsigned long, int to double etc.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 77

Thus, when there is no exact match for the arguments, promotions and
conversions of data type are permissible.

Symbolic Constants and Macros

Both symbolic constants and macros are preprocessor directives. Both are defined
using #define directive. We will see the difference between them later. But first
let us look at symbolic constants. A symbolic constant is declared on top of the
program. For instance,

#define PRINT cout

The above definition is a preprocessor directive. This means that the compiler
shall substitute PRINT in the program with cout throughout, before compilation.
The above definition improves readability. The symbolic constant in the above
instance is ‘PRINT’. Symbolic constants are given in upper case letters to
differentiate them from other identifiers such as variables, function names etc. Some
more examples of symbolic constants are given below:

#define SIZE 64

#define PI 3.14

#define NULL '\0'

#define FALSE 0

#define TRUE 1

#define PLUS +

#define MINUS -

Note the syntax carefully. There is no semicolon or comma. This is a directive
to the compiler to substitute the symbolic constants with the specified tokens
everywhere in the file except in strings and character constants.

Macro is a variation of symbolic constant. Macro is like an inline function.
Therefore, it is defined with arguments. Macros can also carry out small functions
as the following example illustrates.

Program 1.14
//To demonstrate macros

#include<iostream>

using namespace std;

#define ADD(a, b) (a+b)

int main(){

cout<<ADD(10, 5)<<"\n";

cout<<ADD(56.10, 5.5)<<"\n";

}

In the above example, the macro ADD(a, b) will be substituted with (a+b)
before compilation. Using this we have added both integers and real numbers in the
above program. Function overloading has also been achieved in the above program.
Don't try to concatenate strings with macros. The compiler will flag an error.

The output of the program
15

61.6

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
78 Material

The macro definition is reproduced below for further discussion.
#define ADD(a, b) (a+b)

From the above, we can generalize the macro definition as follows:
#define Name(arguments) to_be_substituted_with

Let us look at some more examples of macros:
#define MAX(a, b) ((a)>(b) ? (a):(b))

#define MIN(a, b) ((a)>(b) ? (b):(a))

Note the parentheses carefully. Thus macros carry out operations unlike
symbolic constants.

Macros are popular in C. But they are rarely used in C++, since some
programming tools are unable to handle them properly. For instance, some compiler
implementations may not check the syntax after substitution. Since, function
prototype is not applied to macros, checking of argument types may also not take
place. It is also difficult to diagnose macros in case of run time errors. Thus, use of
inline functions is preferred in C++.

1.7 MANIPULATION OF STRING USING
OPERATORS

In C++, built-in operators cannot be used directly with string variables. However,
some built-in functions, such as strcmp, strcpy, strcat, etc., are used to
compare two strings, copy one string to another and concatenate two strings,
respectively. For example, if str1, str2, str3 are three string variables, then
this statement generates a compile-time error.

str3=str1+str2; //invalid

Note that other operators, such as <, ==, <=, etc., do not generate any compile-
time error when used with strings however, do not give accurate results. Thus,
these operators have to be overloaded for string manipulations.

Example 1.21

A program to demonstrate the concept of operator overloading for string
manipulations.
#include<iostream>
#include<cstring>
using namespace std;
class string_class
{

char *str;
int size;

public:
string_class()
{

str = “ “;
size = 0;

}

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 79

string_class(char *p)
{

strcpy(str,p);
size = strlen(str);

}
void display()
{cout<<str;}
int operator<(string_class s); //overloading

 < operator
int operator==(string_class s); //overloading

 == operator
string_class operator+(string_class s); //
overloading + //operator

};
int string_class::operator<(string_class s)
{

if (size == s.size)
{

if (strcmp(str,s.str)<0)
return 1;

else
return 0;

}
else

if (size<s.size)
return 1;

else
return 0;

}
int string_class::operator==(string_class s)
{

if (strcmp(str,s.str) == 0)
return 1;

else
return 0;

}
string_class string_class::operator+(string_class s)
{

string_class s3;
strcpy(s3.str,str);
strcat(s3.str,s.str);
return s3;

}
int main()
{

string_class str1(“Hello”),str2(“World”),str3;
cout<<“First string is: “;
str1.display();
cout<<“\nSecond string is: “;
str2.display();

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
80 Material

if (str1 == str2) //calling operator==
function

cout<<“\nStrings are equal”;
else

if (str1 < str2) //calling operator<
function

cout<<“\nString 1 is less than string
2”;
else

cout<<“\nString 2 is less than string
1”;

str3 = str1 + str2; //calling operator+
function
cout<<“\n\nConcatenated string is: “;
str3.display();
return 0;

}

The output of the program
First string is: Hello
Second string is: World
String 1 is less than string 2
Concatenated string is: HelloWorld

In this example, a class string_class containing a pointer str to an array of
type char and a variable size of type int, is defined. Three operators <, ==
and + are overloaded to compare, to check the equality and to concatenate two
objects of string_class, respectively.

Overloading using Friend Functions

In addition to member functions, an operator function can be defined as a friend
function of the class for which it is being overloaded. The operator function defined
as a friend function of the class is known as the friend operator function. Like
other friend functions of the class, the friend operator function is declared inside
the class, however, defined outside the class definition. The syntax to declare the
friend operator function inside the class is as follows:

friend return_type operator op(parameter_list);

The syntax to define the friend operator function outside the class is as follows:
return_type operator op(parameter_list)

{

//function body

}

Since the operator function is defined as a friend function of the class, it is invoked
like an ordinary function, that is, without using the object name and the dot operator.

1.8 POLYMORPHISM AND STREAMS IN C++

C++ is a general-purpose programming language created by Bjarne Stroustrup
as an extension of the C programming language, or ‘C with Classes’, i.e., C++

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 81

introduces Object-Oriented Programming (OOP) features to C. It offers classes,
which provide the four features commonly present in OOP and also in some non-
OOP languages, namely abstraction, encapsulation, inheritance, and polymorphism.

1.8.1 Polymorphism

In C++ programming, polymorphism refers to the fact that the same entity (object
or function) acts differently in different conditions. In Object-Oriented Programming
(OOP), polymorphism is an essential and significant concept. The term
‘Polymorphism’ is made of two terms ‘Poly’ and ‘Morphs’, which means ‘Multiple
Types’.

Polymorphism enables one common interface for many implementations,
and for objects to act differently under different circumstances. C++ supports
several kinds of ‘Static’ (resolved at compile-time) and ‘Dynamic’ (resolved at
run-time) polymorphisms. Compile-time polymorphism does not allow for certain
run-time decisions, while runtime polymorphism typically incurs a performance
penalty.

Static Polymorphism

Function overloading allows programs to declare multiple functions having the
same name but with different arguments (i.e., ad hoc polymorphism). The functions
are distinguished by the number or types of their formal parameters. Thus, the
same function name can refer to different functions depending on the context in
which it is used. The type returned by the function is not used to distinguish
overloaded functions and differing return types would result in a compile-time
error message.

When declaring a function, a programmer can specify one or more parameters
as the default value. Consequently, the parameters with default values can optionally
be omitted when the function is called, in this condition the default arguments will
be used. When a function is called with fewer arguments then there are declared
parameters, explicit arguments are matched to parameters in left-to-right order,
with any unmatched parameters at the end of the parameter list being assigned
their default arguments. In most of the cases, specifying default arguments in a
single function declaration is desirable to provide overloaded function definitions
with different numbers of parameters.

Templates in C++ provide a sophisticated mechanism for writing generic,
polymorphic code (i.e., parametric polymorphism). Particularly, through the
curiously recurring template pattern, it is possible to implement a form of static
polymorphism that closely copycats the syntax for overriding virtual functions.

Dynamic Polymorphism

Variable pointers and references to a base class type in C++ can also refer to
objects of any derived classes of that type. This permits arrays and other kinds of
containers to hold pointers to objects of differing types, remember that the
references cannot be directly held in containers. This enables dynamic (run-time)
polymorphism, where the referred objects can behave differently, depending on
their (actual, derived) types.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
82 Material

C++ also provides the dynamic_cast operator, which allows code to
safely attempt conversion of an object, via a base reference/pointer, to a more
derived type, the downcasting. The user must know which derived type is
referenced. Upcasting, conversion to a more general type, can always be checked/
performed at compile-time by means of static_cast, as ancestral classes
are specified in the derived class’s interface, visible to all. The dynamic_cast
relies on Run-Time Type Information (RTTI), metadata in the program that enables
differentiating types and their relationships. If a dynamic_cast to a pointer
fails, the result is the nullptr constant, whereas if the destination is a reference,
which cannot be null, the cast throws an exception. Objects known to be of a
certain derived type can be cast to that with static_cast, bypassing RTTI
and the safe runtime type-checking of dynamic_cast.

Therefore in C++, polymorphism means having many forms and usually
polymorphism occurs when there is a hierarchy of the classes and they are related
by the inheritance.

1.8.2 Streams

In C++, the stream refers to the stream of characters that are transferred between
the program thread and I/O (Input/Output).

Stream classes in C++ are used to input and output operations on files and
I/O devices. These classes include specific features for handling input and output
of the program. The iostream.h library holds all the stream classes in the
C++ programming language.

Basically, in C++ programming language, the ‘Stream’ is a flow of data into
or out of a program, such as the data written to cout or read from cin. For this
there are different classes, such as istream is a general purpose input stream,
cin is an example of an istream, and ostream is a general purpose output
stream.

Stream Class

The stream class in C++ has the following features:

 A C++ class is a collection of data and the methods essential for controlling
and maintaining that data, it is done using stream classes.

 A C++ object is a specific variable having a class as its data type, the cin
and cout are special pre-specified objects with different classes as their
data types.

 A C++ stream is a flow of data into or out of a program, such as the
data written to cout or read from cin.

 The stream class includes the following four different classes:

o istream is a general purpose input stream, the cin is an example
of an istream.

o ostream is a general purpose output stream, cout and cerr both
are the examples of ostream.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 83

o ifstream is an input file stream. It is a special type of an istream
that reads in data from a data file.

o ofstream is an output file stream. It is a special type of ostream
that writes data out to a data file.

Object Oriented Programming (OOP), for example the C++ uses the
concept inheritance. Inheritance is the mechanism of basing an object or class
upon another object (prototype-based inheritance) or class (class-based
inheritance), retaining similar implementation. Also defined as deriving new classes
(sub classes) from existing ones, such as super class or base class and then forming
them into a hierarchy of classes. In inheritance, typically the classes inherit the
properties of previously written classes. The descendant classes then add on
additional properties, therefore making them specializations of their parent class.

Input/Output (I/O) Stream in C++

C++ Input/Output (I/O) streams are primarily defined by iostream, a header
file that is part of the C++ standard library (the name stands for Input/Output
Stream). In C++ and its predecessor, the C programming language, there is no
special syntax for streaming data input or output. Instead, these are combined as
a library of functions. Like the cstdio header inherited from C’s stdio.h,
iostream provides basic input and output services for C++ programs.
iostream uses the objects cin, cout, cerr, and clog for sending data
to and from the standard streams input, output, error (unbuffered), and log
(buffered), respectively. As part of the C++ standard library, these objects are a
part of the std namespace. A namespace is a set of signs (names) that are used
to identify and refer to objects of various kinds. A namespace ensures that all of a
given set of objects have unique names so that they can be easily identified.

The cout object is of type ostream, which overloads the left bit-shift
operator to make it perform an operation completely unrelated to bitwise
operations, and notably evaluate to the value of the left argument, allowing multiple
operations on the same ostream object, essentially as a different syntax for
method cascading, exposing a fluent interface. The cerr and clog objects are
also of type ostream, so they overload that operator as well. The cin object
is of type istream, which overloads the right bit-shift operator. The directions
of the bit-shift operators make it seem as though data is flowing towards the output
stream or flowing away from the input stream.

Check Your Progress

9. What is type conversion?

10. What are integral expressions?

11. Define the term tokens.

12. What is derived data types?

13. What do you mean by binary operators?

14. Define the term friend operator function.

15. What is stream in C++?

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
84 Material

1.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The most important feature is that, unlike procedural programming in which
the program is divided into a number of functions, OOP divides the program
into a number of objects.

2. A class is defined as a user-defined data type which contains the entire set
of similar data and the functions that the objects possess. In other words, a
class in OOP represents a group of similar objects. As stated earlier, in the
real world millions of objects exist and each of them has its own identity.
However, each of them can be categorized under different groups depending
on the common properties they possess and the functions they perform.

3. The class, which is inherited by the other classes, is known as superclass or
base class or parent class.

4. In C++, polymorphism can be achieved either at compile-time or at run-
time. At compile-time, polymorphism is implemented using operator
overloading and function overloading. However, at run-time, it is
implemented using virtual functions.

5. C is a procedure-based language. Once you write a program in C, you must
run it through a C compiler to turn your program into one that a computer
can run (execute). C allows the input and output control in which a user can
input the value to get the desired result.

6. Programs are a sequence of instructions or statements. These statements
form the structure of a C++ program.

7. A single statement specifies a single action and is always terminated by a
semicolon ‘;’. A compound statement, also known as a block, is a set of
statements that are grouped as a compound statement and are always
enclosed within curly braces ‘{}’.

8. The statements that cause a set of statements to be executed repeatedly either
for a specific number of times or until some condition is satisfied are known
as iteration statement.

9. An expression may involve variables and constants either of same data type
or of different data types. If an expression consists of mixed data types, then
they must be converted to the same type while evaluation to avoid
compatibility issues. This is accomplished is called type conversion.

10. The expressions that produce an integer value as an output after performing
all the type of conversions are called integral expressions.

11. A token is defined as the smallest unit of a program. When a program is
compiled, the compiler scans the source code and parses it into tokens to
find the syntax errors.

12. Data types that are derived from the built in data types are knows as derived
data types.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 85

13. We need two operands for any of the basic arithmetic operation, such as
addition, subtraction, division and multiplication. Since these operators need
two operands, the operators are called binary operators.

14. An operator function can be defined as a friend function of the class for
which it is being overloaded. The operator function defined as a friend
function of the class is known as the friend operator function.

15. In C++, the stream refers to the stream of characters that are transferred
between the program thread and I/O (Input/Output). Stream classes in C++
are used to input and output operations on files and I/O devices. These classes
include specific features for handling input and output of the program. The
iostream.h library holds all the stream classes in the C++ programming
language.

1.10 SUMMARY

 The most important feature is that, unlike procedural programming in which
the program is divided into a number of functions, OOP divides the program
into a number of objects.

 Objects are the small, self-contained and modular units with a well-defined
boundary.

 A class is defined as a user-defined data type which contains the entire set
of similar data and the functions that the objects possess. In other words, a
class in OOP represents a group of similar objects.

 Abstraction is a mechanism to hide irrelevant details and represent only the
essential features, so that one can focus on important things at a time.

 Inheritance can be defined as the process whereby an object of a class
acquires characteristics from the object of another class. As stated earlier,
all the objects of a similar kind are grouped together to form a class.

 Inheritance allows code reusability, that is, it facilitates classes to reuse the
existing code. It is useful when several classes having similar features are to
be created.

 The class, which is inherited by the other classes, is known as superclass or
base class or parent class.

 In C++, polymorphism can be achieved either at compile-time or at run-
time. At compile-time, polymorphism is implemented using operator
overloading and function overloading. However, at run-time, it is
implemented using virtual functions.

 Programs are a sequence of instructions or statements. These statements
from the structure of a C++ program.

 Standard headers are specified in a program through the preprocessor
directive #include.

 In C programming language, the ‘Tokens’ are considered as the most
significant concept typically used for developing a C program. Fundamentally,

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
86 Material

the tokens in C language are referred as the building block of C programming
language.

 A single statement specifies a single action and is always terminated by a
semicolon ‘;’. A compound statement, also known as a block, is a set of
statements that are grouped as a compound statement and are always
enclosed within curly braces ‘{}’.

 The statements that cause a set of statements to be executed repeatedly either
for a specific number of times or until some condition is satisfied are known
as iteration statements.

 An expression may involve variables and constants either of same data type
or of different data types. If an expression consists of mixed data types, then
they must be converted to the same type while evaluation to avoid
compatibility issues. This is accomplished is called type conversion.

 The expressions that produce an integer value as an output after performing
all the type of conversions are called integral expressions.

 A token is defined as the smallest unit of a program. When a program is
compiled, the compiler scans the source code and parses it into tokens to
find the syntax errors.

 A data type determines the type and the operations that can be performed
on the data. C++ provides various data types and each data type is
represented differently within the computer’s memory.

 Data types that are derived from the built in data types are knows as derived
data types.

 We need two operands for any of the basic arithmetic operation such as
addition, subtraction, division and multiplication. Since these operators need
two operands, the operators are called binary operators.

 An operator function can be defined as a friend function of the class for which
it is being overloaded. The operator function defined as a friend function of
the class is known as the friend operator function.

1.11 KEY TERMS

 Unstructured programming paradigm: In this type of programming, all
the instructions of a program are written one after the other in a single function
and hence, suitable for writing only small and simple programs.

 Object: A unit of structural and behavioral modularity that contains a set of
properties (or data) as well as the associated functions.

 State: State of an object is one of the possible conditions that an object
can exist in and is represented by its characteristics or attributes or data.

 Class: It is defined as a user-defined data type which contains the entire
set of similar data and the functions that the objects possess.

 Inheritance: It can be defined as the process whereby an object of a class
acquires characteristics from the object of another class.

Object Oriented
Paradigms, Metaphors

and Data Types

NOTES

Self - Learning
Material 87

 Abstract class: It refers to a class which provides only the interface of one
or more functions and not their implementations.

 Statement: It refers to an instruction given to the computer to perform a
specific action.

 Type conversion: It is the process of converting one data type to another.

 Expression: It is a combination of variables, constants and operators that
represents a computation.

 Token: The smallest unit of a program, C++ tokens are broadly classified
into keywords, identifiers, constants, operators and punctuators.

 Arithmetic operators: Arithmetic operators refer to addition, subtraction,
multiplication, division, modulus.

 Relational operators: The relational operators are used to check the
relationship between two numeric operands or expressions. These are
greater than, less than, greater than or equal, equal, not equal.

 Bit wise operators: Bit wise operators access the internal representation
of the numbers in bits, viz., bit 0 and 1.

1.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What are the various features of OOP?

2. Differentiate between a class and an object.

3. Define the term concrete class.

4. What do you understand by function overloading?

5. How can the entities of a namespace be accessed?

6. Mention the types of tokens in C programming.

7. Write in brief about the control statements.

8. How to passing nesting structure to function.

9. What do you mean by advanced type casting?

10. State the three types of special assignment expressions.

11. What is the use of scope resolution operator (::) in C++?

12. What do you understand by the term built-in data types?

13. What is declaration of variables?

14. Define the term unary operators.

15. Write in brief about the manipulation of strings using operators.

Long-Answer Questions

1. Explain inheritance in detail explaining its property of reusability and
extensibility.

Object Oriented
Paradigms, Metaphors
and Data Types

NOTES

Self - Learning
88 Material

2. Explain polymorphism with the help of an example and differentiate between
compile-time and run-time polymorphism.

3. Describe the objects with the help of diagram.

4. Differentiate between C and C++ with the help of example.

5. Discuss the standard streams defined in the iostream header.

6. Discuss initialization input with C in tokens with the help of example.

7. Describe the categories of control statements with appropriate examples.

8. Describe the decisions nesting with the help of examples.

9. Discuss the type conversion and its types with the help of example.

10. Explain the operators and expressions with the help of example.

11. Describe tokens and its types.

12. Illustrate various data types in C++ with the help of diagram.

13. Explain the operators and its types with the help of example.

14. Write a program to demonstrate the concept of operator overloading for
sting manipulations.

15. Explain the polymorphism and streams in C++.

1.13 FURTHER READING

Jeyapoovan, T. 2006. Computer Programming: Theory and Practice (with
CD). New Delhi: Vikas Publishing House.

Khurana, Rohit. 2008. Object Oriented Programming with C++. New Delhi:
Vikas Publishing House.

Saxena, Sanjay. 2009. Introduction to Information Technology. New Delhi:
Vikas Publishing House.

Rumbaugh, James, Fedrick Blaha, William Premerlani, and Federick Eddy.1990.
Object- Oriented Modelling and Design. New Jersey: Prentice Hall.

Balaguruswamy, E. 1998. Object-Oriented Programming. New Delhi: Tata
McGraw-Hill.

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 89

UNIT 2 FUNCTIONS, CLASS AND
OBJECTS IN C++

Structure

2.0 Introduction
2.1 Objectives
2.2 Main Function

2.2.1 Passing Arguments to Function
2.2.2 Returning Value from Functions

2.3 Overload Functions
2.4 Inline Functions
2.5 Default Arguments
2.6 Object and Classes

2.6.1 Concepts of a Class
2.6.2 Classes versus Objects

2.7 Answers to ‘Check Your Progress’
2.8 Summary
2.9 Key Terms

2.10 Self-Assessment Questions and Exercises
2.11 Further Reading

2.0 INTRODUCTION

A function is a program with a group of statements performing specific operations.
The behavior of objects is implemented through functions. The dynamic properties
of objects are facilitated only through functions. Thus, functions provide interfaces
to communicate with the objects. Whenever a function is invoked, a set of operations
is performed which includes passing the control from the calling function to the
called function, managing stack for arguments and return values, managing registers,
etc. All these operations take much of compiler time and slow down the execution
process. This overhead can be avoided by making function calls execute faster
and to perform type checking to make the function inline.

When a function is invoked, the control passes from the calling function to
the called function. Consequently, the called function body is executed and the
control returns to the calling function either when a return statement is encountered
or the end of the calling function is reached. If a return statement is encountered, a
function returns either a value or a reference to the calling function. You will also
learn about function overloading. In some cases when a similar action is to be
performed on different types of data, different functions having different names are
to be defined for all types of data. This approach makes the program very complex
as the programmer must keep a track of the names of all the functions defined in
the program. To prevent such situations, C++ allows the functions to be overloaded.
Class is a definition of an object. All class members are private. A class is a type
and an object of the class is a variable. In C++, the data and functions (procedures
to manipulate the data) are worked together as a self-contained unit called an
object.

Functions, Class and
Objects in C++

NOTES

Self - Learning
90 Material

In this unit, you will study about the main function, passing arguments to
function, returning value from functions, overload functions, inline functions, default
arguments, class and objects, concept of a class, and classes versus objects.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basics of main function

 Discuss the passing arguments to function

 Explain the returning values from functions

 Describe the overload functions, inline functions and default arguments

 Discuss the basics of class and objects

2.2 MAIN FUNCTION

Functions mean operations. A function is a program with a group of statements
performing specific operations. The function main is special and important, not
only in C++, but also in C, Java and C #(Sharp). The behavior of objects is
implemented through functions. The dynamic properties of objects are facilitated
only through functions. Thus, functions provide interfaces to communicate with
the objects.

User-Defined vs Library Functions

As the name indicates, user-defined functions are coded by the user for his specific
requirement. The standard library provides a number of library functions. The C
functions such as printf () and scanf() are available for C++ programs. In addition
to library functions, the user can develop additional functions. In this unit, user-
defined functions will only be discussed.

Function Declaration—Prototype

A function has to be declared before using it in a manner similar to variables and
constants. A function may be declared either in the main function or in a class. The
function declaration has to be done in the standard format known as function
prototype. The general format of a function prototype is given below:

return_data_type function_name (type of argument 1,
type of argument 2,….);

Note the semicolon at the end of the declaration is similar to declaration of
other data types. A function, after execution, may return a value to the function
that called it. It may return an integer, character or float value. It may also not
return a value at all, but may perform some operations. For instance, if it returns a
float value, you may declare a function as:

float func1(float arg 1, int arg 2);

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 91

If it does not return any value at all, you may declare the function as:
void func2(float arg1, int arg2) ; / * v o i d

means nothing*/.

Even if no arguments are passed into a function, empty parentheses must
follow the function name as illustrated below:

char func4();

While defining arguments, the data type of the argument and the name of the
variable – for instance, float arg1 is given, where float is the data type
and arg1 is the name of the variable. The name given is just a dummy and it does
not serve any useful purpose except for better readability. The compiler simply
ignores the names of arguments in the prototype. You can even omit it and write
as:

char func3(float, int);

The programmer can use either method.

2.2.1 Passing Arguments to Function

The objects of a class can be passed as arguments to member functions as well as
non-member functions either by value or by reference. When an object is passed
by value, a copy of the actual object is created inside the function. This copy of
object is destroyed when the function terminates. Moreover, any changes made to
the copy of the object inside the function are not reflected in the actual object. On
the other hand, in pass by reference, only a reference to that object (not the entire
object) is passed to the function. Thus, the changes made to the object within the
function are also reflected in the actual object.

Whenever an object of a class is passed to a member function of the same
class, its data members can be accessed inside the function using the object name
and the dot operator. However, the data members of the calling object can be
directly accessed inside the function without using the object name and the dot
operator.

Note: The non-member functions can access only the public members of the
class with the help of objects passed as arguments and the private data
members are not accessible to them.

Program 2.1: A program to demonstrate passing objects by value to a member
function of the same class

#include<iostream>

using namespace std;

class weight

{

int kilogram;

int gram;

public:

void getdata();

void putdata();

Functions, Class and
Objects in C++

NOTES

Self - Learning
92 Material

void sum_weight(weight,weight);

};

void weight :: getdata() //input weight from user

{

cout<<“\nKilograms: “;

cin>>kilogram;

cout<<“Grams: “;

cin>>gram;

}

void weight :: putdata() //display weight

{

cout<<kilogram<<“ Kgs. and “<<gram<<“ gms.\n”;

}

//passing objects by value

void weight :: sum_weight(weight w1,weight w2)

{

gram = w1.gram + w2.gram;

kilogram=gram/1000;

gram=gram%1000;

kilogram+=w1.kilogram+w2.kilogram;

}

int main()

{

weight w1,w2,w3;

cout<<“Enter weight in kilograms and grams\n”;

cout<<“\nEnter weight #1”;

w1.getdata(); //input weight1

cout<<“\nEnter weight #2”;

w2.getdata(); //input weight2

w3.sum_weight(w1,w2); //add two weights

cout<<“\nWeight #1 = “;

w1.putdata(); //display weight1

cout<<“Weight #2 = “;

w2.putdata(); //display weight2

cout<<“Total Weight = “;

w3.putdata(); //display total weight

return 0;

}

The output of the program

Enter weight in kilograms and grams

Enter weight #1

Kilograms: 12

Grams: 560

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 93

Enter weight #2

Kilograms: 24

Grams: 850

Weight #1 = 12 Kgs. and 560 gms.

Weight #2 = 24 Kgs. and 850 gms.

Total Weight = 37 Kgs. and 410 gms.

In this program, the sum_weight() function has direct access to the data
members of calling object (w3 in this case). However, the members of the objects
passed as arguments (w1 and w2) can be accessed within function using the object
name and the dot operator. Note that the objects w1 and w2 are passed by value;
however, they can be passed by reference also. For example, to pass w1 and w2
by reference to the function sum_weight() (defined in Program 2.1), the
function will be declared and defined as follows:

//function prototype inside the class

void sum_weight(weight &,weight &); //pass by reference

//function definition outside the class

void weight :: sum_weight(weight &w1,weight &w2)

{

. //body of function

. //as defined in Example 2.1

}

Figure 2.1 shows accessing of member variables inside the sum_weight() function.

kilogram
gram

w2.kilogram
w2.gram

w1.kilogram
w1.gram

w2 w1

w3

w3.sum_weight(w1,w2)

Fig. 2.1 Accessing Data Members within Called Member Function

2.2.2 Returning Value from Functions

When a function is invoked, the control passes from the calling function to the
called function. Consequently, the called function body is executed and the control
returns to the calling function either when a return statement is encountered or the
end of the calling function is reached. If a return statement is encountered, a function
returns either a value or a reference to the calling function.

The return statement is a jump statement that unconditionally passes the
control out of a called function to its calling function. The syntax of a return
statement is as follows:

return value;

Functions, Class and
Objects in C++

NOTES

Self - Learning
94 Material

where,
return = A C++ keyword.
value = A variable, constant, expression or a reference which may or
may not be provided with return.

Return by Values
If the return type of a function is void, the called function terminates and returns
the control when it encounters the closing curly brace (}) or a return statement
with no arguments. However, if the return type is not void, the called function
terminates when it encounters the first return statement with an argument. The
function with non-void as its return type must have at least one return statement
otherwise a compilation error is raised. If no specific value is returned through the
return statement, a garbage value is returned.

Example 2.1

A program to demonstrate the concept of functions returning values.
 #include<iostream>

using namespace std;

int average(int,int,int);

int main()

{

int a,b,c,r;

cout<<“Enter three numbers :\n”;

cin>>a>>b>>c;

r=average(a,b,c);

cout<<“The average of three numbers is: “<<r;

return 0;

}

int average(int x,int y,int z)

{

int avg;

avg=(x+y+z)/3;

return avg;

}

The output of the program
Enter three numbers
78 36 42

The average of three numbers is: 52

In this example, the three variables a, b and c are passed as arguments to
average()which calculates the average and returns its value to main()with
the help of the statement return avg. This returned value is then assigned to
the variable r in the calling function.

Note: Calls to functions with a void return type cannot be used directly in cout statements
or as operands in an expression as they do not explicitly return a value.

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 95

Return by Reference

In addition to returning values, a function can return references as well. Returning
references is useful in those situations when the function call is to be used as an
Lvalue. An Lvalue is an expression that can appear on the left-hand side of
an equals-to sign. In other words, a function returning a reference can be placed
on the left-hand side of the assignment statement. To return a reference, the reference
operator (&) is suffixed to the return type in the function prototype and definition.

Example 2.2

A program to demonstrate the concept of returning a reference.
#include<iostream>

using namespace std;

char &change(int i); // return a reference

char arr[50] = “Hello World”;

int main()

{

 change(5); //simple call

 cout<<arr<<endl;

 change(5) = ‘X’;// using function call as an Lvalue

 cout << arr;

 return 0;

}

char &change(int i)

{

return arr[i];

}

The output of the program
Hello World

HelloXWorld

In this example, the first function call is a simple call. However, the second function
call appears on the left-hand side of an assignment statement and ‘X’ is assigned
to it by specifying it on the right-hand side.

Returning Values from main()

Unlike C, C++ enables to return values from main(). However, it can only
return a value of type int. After specifying the return type, the function header of
main() can be written as

int main()

It can also be written as
int main(int argc, char **argv)

When the execution of the program gets over, it returns either a zero or non-zero
value. This value is passed to the operating system to indicate either the success of
the program or the error. Generally, a return value of zero indicates success and a
non-zero value indicates failure or error.

Functions, Class and
Objects in C++

NOTES

Self - Learning
96 Material

Note: Most C++ compilers display a warning ‘Function should return a value’ if return
statement is not specified in main().

Recursion

Generally, a function definition makes a call to other functions, however, a C++
function can call itself. When a function definition includes a call to itself, it is
referred to as a recursive function and the process is known as recursion or
circular definition.

When a recursive function is called for the first time, a space is set aside in the
memory to execute this call and the function body is executed. Then a second call
to a function is made; again a space is set for this call and so on. In other words,
memory spaces for each function call are arranged in a stack. Each time a function
is called, its memory area is placed on the top of the stack and then is removed
when the execution of the call is completed (Refer Figure 2.2).

1st call 1st call
1st call

2nd call
2nd call

3rd call

(a) Memory allocation

(Empty
stack)

(empty
stack)

(b) Memory allocation

1st call
2nd call

1st call

Fig. 2.2 Calling Recursive Functions

Note: A stack is a ‘Last-In-First-Out structure.

Example 2.3

A program to demonstrate the concept of recursive function.
 #include<iostream>

using namespace std;

void reverse();

int main()

{

 reverse();

 cout<<“ is the reverse of the entered characters”;

 return 0;

}

void reverse()

{

 char ch;

 cout<<“Enter a character (‘/’ to end program) : “;

 cin>>ch;

 if (ch != ‘/’)

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 97

 {

 reverse();

 cout<<ch;

 }

 }

The output of the program
Enter a character (‘/’ to end program) : h

Enter a character (‘/’ to end program) : i

Enter a character (‘/’ to end program) : /

ih is the reverse of the entered characters

In this example, function reverse() is called to accept a character from the
user. The function reverse() calls itself again and again until the user enters ‘/
’ and prints the reverse of the characters entered.

Note: A recursive function must include a condition or a statement to terminate the function.

Note that the recursive functions can also be defined iteratively using for, while
and do...while loops. This is because recursion makes the program execution
slower due to its extra stack manipulation and more memory utilization. In addition,
recursion sometimes results in stack overflow as for each function call new memory
space is allocated to local variables and function parameters on the stack. However,
in some cases, recursive functions are preferred over their iterative counterparts
as they make code simpler and easier to understand. For example, it is easier to
implement Quicksort algorithm using recursion.

Note: Recursive function can be declared as inline where the number of calls is known. The
compiler cannot generate the inline code at compile time if the number of recursion is unknown
till runtime.

2.3 OVERLOAD FUNCTIONS

In some cases when a similar action is to be performed on different types of data,
different functions having different names are to be defined for all types of data.
This makes the program very complex as the programmer must keep a track of
the names of all the functions defined in the program. To prevent such situations,
C++ allows the functions to be overloaded.

Overloading affirms the role of a single entity for multiple tasks. Function
overloading is a way to implement compile-time polymorphism that allows multiple
functions to share the same name with different parameters. The compiler identifies
the function either on the basis of the number of parameters, the data type of the
parameters or the order of the data type of the parameters passed to the function.
Moreover, functions with different return type but with similar function signature
are not considered as overloaded functions.

Note: Constructors are the most commonly overloaded functions and main()is the only
function that cannot be overloaded.

To understand the concept of function overloading, consider these function
declarations.

Functions, Class and
Objects in C++

NOTES

Self - Learning
98 Material

void func(int);

void func(int,int);

In these statements, two functions named, func() are different as the number
of arguments passed are different. Now, consider these statements.

void func(int);

void func(char);

In these statements, two functions named, func() are different as the data
type of arguments passed is different. Now, consider these statements.

void func(int,float);

void func(float,int);

In these statements, two functions named, func() are different as the order of
the data type of the arguments passed is different.

The compiler follows these steps to perform comparison between the actual and
the formal arguments to find the best match (the most appropriate overloaded
function).

 Exact Match: If the number and type of the arguments exactly match the
number and type of parameters of any one of the overloaded functions then
that function is called.

 Match through Type Promotions: If an exact match is not found, the
compiler tries to promote the type of the argument to the type of the
parameter of an overloaded function. For example, if the argument is of
type char, the compiler promotes it to type int or to the equivalent
type unsigned int.

 Match through Standard Conversions: If a match is also not found after
performing type promotions, the compiler tries to convert type of the
argument to type of the parameter through standard conversion rules. For
example, if the argument is of type int, the compiler can convert it to type
float, double or long double.

 Match through User Defined Conversions: If a match is also not found
after performing standard type conversions, the compiler tries to convert
type of the argument to type of the parameter through the user defined
conversions.

 Match through Ellipsis: If a match is not found after performing the
previous steps, the compiler tries to find an ellipsis in the definition (or
declaration) of any of the overloaded functions.

Example 2.4

A program to demonstrate the concept of function overloading.
#include<iostream>

#include<math>

using namespace std;

int area(int); //function prototype 1

float area(float, float); //function prototype 2

float area(float, float, float); //function prototype 3

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 99

int main()

{

int side;

float length, width, a, b, c;

cout<<“Enter side of a square : “;

cin>>side;

cout<<“Area of a square is : “<<area(side)<<endl;

cout<<“Enter length and width of a rectangle : “;

cin>>length>>width;

cout<<“Area of a rectangle is :
“<<area(length,width)<<endl;

cout<<“Enter three sides of a triangle : “;

cin>>a>>b>>c;

cout<<“Area of a triangle is : “<<area(a, b,
c)<<endl;

return 0;

}

int area(int s)

{

return (s*s);

}

float area(float len, float wid)

{

return (len*wid);

}

float area(float a, float b, float c)

{

float s,area;

s=(a+b+c)/2;

area=sqrt(s*(s-a)*(s-b)*(s-c));

return area;

}

The output of the program
Enter side of a square : 12

Area of a square is : 144

Enter length and width of a rectangle : 34.5 67.7

Area of a rectangle is : 2335.65

Enter three sides of a triangle : 12.5 20.5 25.5

Area of a triangle is : 126.791

In this example, three functions are declared with the same name area(),
however, accepting different arguments. The compiler examines the number, type
of arguments or order of data type in the function call and calls the appropriate
function.

Functions, Class and
Objects in C++

NOTES

Self - Learning
100 Material

In some situations, when only number of arguments is different then instead of
function overloading, default arguments can be used. This is because default
arguments combine different operations into one function and hence, reduce the
overhead of writing multiple functions.

Example 2.5

A program to demonstrate the use of default arguments as an alternative to function
overloading.
#include<iostream>
void disp(char=’*’,int=4);
int main()
{

disp();
disp(‘^’);
disp(‘@’,5);
return 0;

}
void disp(char ch, int n)
{

for(int i=0; i<=n; i++)
{

for(int j=0; j<i; j++)
{

cout<<ch;
cout<<“ “;

 }
 cout<<endl;
}

}

The output of the program
*
* *
* * *
* * * *
^
^ ^
^ ^ ^
^ ^ ^ ^
@
@ @
@ @ @
@ @ @ @
@ @ @ @ @

In this example, three calls with different number of arguments are made to the
same function void disp(char=’*’,int=4). In this way, default arguments
are used to reduce number of functions and hence, serve as an alternative to
function overloading.

Note: Overloading of unrelated functions should be avoided.

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 101

Example 2.6: A program to demonstrate function overriding
#include<iostream>

using namespace std;

const int MAX=5;

class queue

{

 public :

int q[MAX];

int rear;

int front;

 public:

queue()

 {

rear=-1 ; front=-1;

}

 void qinsert(int qu)

 {

q[++rear]=qu;

if(front=-1)

front++;

 }

void display()

 {

for (int i=front;i<=rear;i++)

cout<<q[i]<<endl;

 }

void qdelete()

 {

cout<<“Element deleted :”<<q[front++]<<endl;

}

};

class queue2:public queue

{

public :

void qinsert(int var)

{

if (rear==MAX-1)

cout<<“\nQUEUE FULL\n\n”;

else

queue::qinsert(var);

}

void qdelete()

{

Functions, Class and
Objects in C++

NOTES

Self - Learning
102 Material

if(front==MAX)

{

cout<<“\nQUEUE EMPTY”;

}

else

queue::qdelete();

}

};

int main()

{

queue2 q1;

q1.qinsert(10);

q1.qinsert(11);

q1.qinsert(17);

q1.qinsert(23);

q1.qinsert(25);

q1.display();

q1.qinsert(34); // Array is Full element cannot be
added

q1.qdelete();

q1.qdelete();

q1.qdelete();

q1.qdelete();

q1.qdelete();

q1.qdelete(); // No elements present

return 0;

}

The output of the program is
10

11

17

23

25

QUEUE FULL

Element deleted :10

Element deleted :11

Element deleted :17

Element deleted :23

Element deleted :25

QUEUE EMPTY

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 103

In Example 2.6, the derived class queue2 inherits the base class queue. The
derived class queue2 redefines the member functions qinsert() and
qdelete() of the base class queue. The base class queue member functions
insert and delete the elements of the array. However, the base class does not
check the maximum number elements that an array can contain, hence, undesired
result can appear. Therefore, the derived class overrides the member function
qinsert() by first performing the check and then calling the base class
qinsert() (queue::qinsert()) to insert the elements in the list.
Similarly, qdelete() member function of derived class overrides the base
class function qdelete().

Check Your Progress

1. What is a function?

2. How can the objects of a class be passed?

3. What is Lvalue?

4. What is circular definition?

5. Define the term function overloading.

6. Write one restriction about main() function.

2.4 INLINE FUNCTIONS

Whenever a function is invoked, a set of operations is performed which includes
passing the control from the calling function to the called function, managing stack
for arguments and return values, managing registers, etc. All these operations take
much of compiler time and slow down the execution process. This overhead can
be avoided by using macros in a program. However, macros are not considered
as true functions, as they do not perform type checking. Another way to make
function calls execute faster and also perform type checking is to make the function
inline.

An inline function is a function whose code is copied in place of each
function call. In other words, each call to inline function is replaced by its code.
Inline functions can be declared by prefixing the keyword inline to the return type
in the function prototype. An inline function ‘Requests’ the compiler to replace its
each and every call by the code in its body. That is, specifying a function as inline
is just a request to the compiler and not a command. So, it does not change the
behaviour of a function. Moreover, the compiler may or may not choose to replace
each call by the body. In case, it does, the function becomes ‘in line’ with the rest
of the source code.
The syntax for inline function declaration is as follows:

inline return_type function_name(parameter_list);

A difference between a normal function call and inline function call is shown in
Figure 2.3.

Functions, Class and
Objects in C++

NOTES

Self - Learning
104 Material

#include<iostream>
using namespace std;
void prod()int, int);
int main()
{
 int a, b;
 a = 10;
 b = 20;
 prod(a, b);
}

void prod(int x, int y)
{
 cout<< “The product of number is”<<(x*y)’
}

Calling Function

Called Function

Transfer control
to body

(a) Normal Function Call

Calling Function

Called Function

#include<iostream>
using namespace std;
void prod()int, int);
int main()
{
 int a, b;
 a = 10;
 b = 20;
 prod(a, b);
}

void prod(int x, int y)
{
 cout<< “The product of number is”<<(x*y)’
}

Replaces call
with body

(b) Inline Function Call

Fig. 2.3 Difference between a Normal and Inline Function Call

In Figure 2.3(a), when the compiler reads the statement prod(a,b), it transfers
the control to the prod() function. However, in Figure 2.3(b), the prod()
function is declared as an inline function. As a result, when the compiler reads the
statement prod(a,b), it replaces the function call with the definition of the
prod() function.

Inline functions are ideal for functions that are small in size and frequently used by
the programs. This is because inline functions reduce the time consumption and
overhead involved in function calls. However, they also significantly increase the
size of the program which in turn may adversely affect the readability of the program.
Also, these functions restrict the portability of the program.

Note: The functions containing static variables, loops or switch statements cannot be inlined.

Example 2.7

A program to demonstrate how inline function works.
#include <iostream>

using namespace std;

int multiply (int);

void main()

{

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 105

 int x;

 cout << “\n Enter the Input Value: “;

 cin>>x;

 cout << “\n The Output is: “ << multiply (x);

}

inline int multiply(int x1)

{

 return 5*x1;

}

The output of the program
Enter the Input Value: 10

The Output is: 50

Program 2.2
//To demonstrate inline functions

#include<iostream>

using namespace std;

inline string conc(string str1, string str2){

str1+=str2;

return str1;

}

int main(){

string s1="Programming ";

string s2="in C++";

cout<<conc(s1, s2)<<"\n";

cout<<conc("ya ", "it works");

}

Result of Program 2.2
Programming in C++

ya it works

The function ‘conc’ in the above example concatenates two strings.

2.5 DEFAULT ARGUMENTS

Whenever a function is called, the calling function must provide all the arguments
specified in the function’s declaration. If the calling function does not provide the
required arguments, the compiler raises an error. However, C++ allows a function
to be called without specifying all of its arguments. This can be achieved by assigning
a default value to the argument. Default value is specified in the function declaration
and is used when the value of that argument is not passed while calling the function.
The syntax for providing a default value to an argument is as follows:

 return_type function_name(type param1=value1,…… type
paramN=valueN);

Note: Default arguments appear only in function declarations and not in function definitions.

Functions, Class and
Objects in C++

NOTES

Self - Learning
106 Material

Default arguments are used in situations where the value of an argument is same in
most of the function calls. Default arguments provide a lot of flexibility during
function calls. If a function call does not specify an argument, the default value is
passed as an argument to the function. In case a function call specifies an argument,
the default value is overridden and the specified value is passed to the function.

Example 2.8

A program to demonstrate the concept of default arguments.
 #include<iostream>

 using namespace std;

 float calc(float tax, float originalval, float
disc=25.50);

 int main()

 {

 int price;

 price=calc(4.25,1250.50); //default argument missing

 cout<<“Calculated price with default discount value: “;

 cout<<price<<endl;

 price=calc(4.25,1250.50,15.25);

//default argument overridden

 cout<<“Calculated price with assigned value : “<<price;

 return 0;

 }

 float calc(float tax, float originalval, float disc)

 {

float discvalue=originalval*disc/100;

float taxvalue=tax/100;

float price=originalval-discvalue+taxvalue;

return price;

 }

The output of the program
Calculated price with default discount value : 931.665

Calculated price with assigned value : 1059.84

In this example, the function declaration of calc() specifies a default value for
the third argument disc. In the first call to calc(), only two arguments (4.25,
1250.50) are passed. As a result, the third argument disc is assigned the
default value 25.50. In the second call to calc(), the third argument is passed
explicitly, and hence, it overrides the default value.

Note that all the default arguments must be specified at the end of the
parameter list. If any default value of an argument is to be omitted, it should be
omitted from the end and not in-between the argument list. For example, consider
the declaration of the function average().

average(int, int, int = 5,int = 10,int = 15,int = 20);

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 107

Some of the invalid function calls to average() are given here.
 average(1,2, ,4, ,6);
 average(1,2,3,4, ,6);

Since default arguments are missing from in-between the list, an error is raised
during the compilation process.

Some of the valid function calls to average() are given here.
 average(1,2,3,4,5);
 average(1,2,3,4);
 average(1,2);

Since default arguments are missing from the end of the list, no error is raised
during the compilation process.

Structure As Arguments

Like ordinary variables, structure variables can also be passed by value to a function.

Example 2.9

A program to demonstrate the concept of structure variables as arguments.
#include<iostream>

using namespace std;

struct details

{

int pcode;

 float qty;

 float amt;

 float total;

};

void calc(details);

int main()

{

 details d1={1,15,100,0}; //initializing structure

 calc(d1);

 cout<<“Total amount in main(): “<<d1.total;

 return 0;

}

void calc(details dd)

{

dd.total=dd.amt*dd.qty;

 cout<<“Total amount in called function :
“<<dd.total<<endl;

}

The output of the program
Total amount in called function : 1500

Total amount in main(): 0

Functions, Class and
Objects in C++

NOTES

Self - Learning
108 Material

In this example, the structure variable d1 of structure details is passed by value to
function calc(). The function calc() calculates the total amount and displays
it. Since the structure variable is passed by value, the new value of the data member
total of structure details is not reflected in main().

2.6 OBJECT AND CLASSES

Class

Class in C++ is similarly a framework for user defined data type. Class and structure
provide convenient tools to the programmer to build their own type. These types
are convenient to represent real entities. They are useful because built in types
cannot be easily used to represent real entities. A structure or class is an aggregate
of built in types. Thus, they are quite handy to represent various real entities like
bank account, student record, payroll, etc.

Class Definition

A class definition is similar to a structure. A structure can also be built with data
elements and functions as in the above example. However, rarely are structures
built with functions. A class will have declaration of data elements as well as functions.
A class has a name or a tag. It contains variables and functions as illustrated in
Figure 2.4.

Class _______

{
 name

 variable 1

 variable n

Function 1

Function n

};

Fig. 2.4 Structure of Class

Note that similar to structures, a class definition also ends with a semi colon.
A class definition may consist of one or more variable declarations and additional
function declaration(s). The class is a keyword and template just like struct.

A class can be defined as a user-defined data type with a name tag and
declaration of member variables and member functions.

A Simple Class

Let us look at an example of a class without any function. It is given below:
class Account {

int number;

double balance;

};

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 109

Every class is declared by class keyword. The class name or tag follows it.
In the above example, class name is Account. Then there is an opening brace.
Just after the opening brace, the variables are to be declared. In class Account,
we have declared two variables, i.e., number as an integer and balance as a
double.

Let us now add a function to the class as given below:
class Account {

int number;

double balance;

void display () {

cout<<balance;

};

We have added a function called display to the class Account. It returns
void or nothing. It does not receive any parameter. The function header is similar
to ‘C’ function headers. It follows the same method as the function prototype of
“C” language. Here, we have given the complete function as part of the class.

Example 2.10: Class CRectangle:
// classes example

#include <iostream>

using namespace std;

class CRectangle {

 int x, y;

 public:

 void set_values (int,int);

 int area () {return (x*y);}

};

void CRectangle::set_values (int a, int b) {

 x = a;

 y = b;

}

int main () {

 CRectangle rect;

 rect.set_values (3,4);

 cout << “area: “ << rect.area();

 return 0;

}

The output of the program is as follows:
area: 12

The most important new thing in this code is the operator of scope (::,
two colons) included in the definition of set_values(). It is used to define a
member of a class from outside the class definition itself.

Functions, Class and
Objects in C++

NOTES

Self - Learning
110 Material

Notice that the definition of the member function area() has been included
directly within the definition of the CRectangle class given its extreme simplicity,
whereas set_values() has only its prototype declared within the class, but
its definition is outside it. In this outside declaration, you must use the operator of
scope (::) to specify that you are defining a function that is a member of the class
CRectangle and not a regular global function.

The scope operator (::) specifies the class to which the member being
declared belongs, granting exactly the same scope properties as if this function
definition was directly included within the class definition. For example, in the
function set_values() of the previous code, variables x and y are used,
which are private members of class CRectangle, which means they are
only accessible from other members of their class.

The only difference between defining a class member function completely
within its class or to include only the prototype and later its definition, is that in the
first case the function will automatically be considered an inline member function
by the compiler, while in the second it will be a normal (not-inline) class member
function, which in fact supposes no difference in behaviour.

Members x and y have private access (remember that if nothing else is
said, all members of a class defined with keyword class have private access). By
declaring them private access is denied to them from anywhere outside the class.
This makes sense, since a member function has already been defined to set values
for those members within the object: the member function set_values().
Therefore, the rest of the program does not need to have direct access to them.
Perhaps in a simple example as this, it is difficult to see the utility in protecting
those two variables, but in greater projects it may be very important that values
cannot be modified in an unexpected way (unexpected from the point of view of
the object).

One of the greater advantages of a class is that, as any other type, you can
declare several objects of it. For example, following with the previous example of
class CRectangle, you could have declared the object rectb in addition to
the object rect:

Example 2.11: one class, two objects
#include <iostream>

using namespace std;

class CRectangle {

 int x, y;

 public:

 void set_values (int,int);

 int area () {return (x*y);}

};

void CRectangle::set_values (int a, int b) {

 x = a;

 y = b;

}

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 111

int main () {

 CRectangle rect, rectb;

 rect.set_values (3,4);

 rectb.set_values (5,6);

 cout << “rect area: “ << rect.area() << endl;

 cout << “rectb area: “ << rectb.area() << endl;

 return 0;

}

The output of the program is as follows:
rect area: 12

rectb area: 30

In this concrete case, the class (type of the objects) is CRectangle, of
which there are two instances or objects: rect and rectb. Each one of them
has its own member variables and member functions.

Notice that the call to rect.area() does not give the same result as
the call to rectb.area(). This is because each object of class CRectangle
has its own variables x and y, as they, in some way, have also their own function
members set_value() and area() that each uses its object’s own variables
to operate.

That is the basic concept of object-oriented programming: Data and functions
are both members of the object. The sets of global variables that passed from one
function to another as parameters are no longer used, but instead the objects that
have their own data and functions embedded as members are handled. Notice
that no parameters are required in the calls to rect.area or rectb.area.
Those member functions directly used the data members of their respective objects
rect and rectb.
Example 2.12: How to declare an object:

class abc

{

private:

int a, b, c;

public:

void add()

{

c= a+b;

}

};

void main()

{

Functions, Class and
Objects in C++

NOTES

Self - Learning
112 Material

abc obj_abc; // obj_abc is the object of class abc

}

Next is an example program on how to access class members through object:
#include<iostream.h>
#include<conio.h>
class area
{

private:
float area;

public:
float area_square(float x)

{
area= x * x;
return area;

}
};
void main()
{

area obj_area;
cout<<obj_area . area_square(5.0); // calling a member

function
// of a class with its object using dot operator
}

Output:
25.0

In the above example, area is the class which has one private data member,
i.e., float area, and one publicly defined member function, i.e.,
area_square(). In the main(), we have created one object of class
area. The created object is obj_area. Using the dot operator, we have
accessed the publicly defined member function and finally got the output (i.e.,
25.0).

Definition of an Object

Object is an instance of a class or in other words object is a replica of the class.
When analysed in the context of structure, an object can be considered to be a
variable of type class, similar to structure variables. A class provides a blueprint
for the object. In the above example, Account is a class. Every person’s account
is an object. This means that each account holder has a number and balance. Any
number of objects can be created for a class just as any number of accounts can
be opened in a bank, but all accounts use the same template. This is the relationship
between object and a class. The relationship is illustrated pictorially in Figure 2.5.

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 113

Account
Data members
Number
Balance

Member Function
Display

 Vinay

001

10001.00

Mani

002

2467.45

Lakshmi

003

200075.00

Fig. 2.5 Objects or Instances of Class Account

While class holds generic data structure, objects hold specific and unique
data as illustrated in Figure 2.5

Objects are exact replica of the class. They each have a name as illustrated.
They have their own data. The data members of the class provide for declarations
for the type of variables in a class which in turn the objects will use. The functions
may contain code. In C++, the variables and the functions declared within the
class are called members of the class. The objects, which are instances of the
class, will have their own copy of the blueprint for the variables. Although the
objects can have their own copy of the member functions, it may not be necessary.
They can share one copy of the member functions.

An object is nothing but a variable of type class. It is a self-contained
computing entity with its own data and functions. This means that an object will
have its own copy of the variables. However, the functions being common to all
the objects, do not need to be kept in each object, one copy may suffice.

A class can give rise to a number of objects, but is not an object on its own.
The objects thus created have a common structure but with different characteristics.
Thus, the two objects of a class with different names will have same variable
names but with different values, i.e., they have the same data type but different
data. In some special cases, the two objects can also have same data. A class is a
framework for proper encapsulation of objects. The data members of the objects
can be accessed only through the interface available in public.

2.6.1 Concepts of a Class

Class is a definition of an object. All class members are private. A class is a type
and an object of the class is a variable. In C++, the data and functions (procedures
to manipulate the data) are worked together as a self-contained unit called an
object. A class is an extended concept similar to that of structure in C programming
language; this class describes the data properties alone. In C++ programming
language, class describes both the properties (data) and behaviors (functions) of
objects. Classes are not objects but they are used to instantiate objects. Classes
contain data known as members and member functions. As a unit, the collection of
members and member functions is an object. Therefore, this unit of objects makes
up a class. In C programming language, a structure is specified with a name. The
C++ programming language extends this concept. A class is specified with a name
after the class keyword. Access specifiers are used to identify access rights

Functions, Class and
Objects in C++

NOTES

Self - Learning
114 Material

for the data and member functions of the class. The three main types of access
specifiers in C++ programming language are private, public and
protected. Generally, in class, all members (data) will be declared as
private and the member functions would be declared as public. Private
is the default access level. If no access specifiers are identified for members of a
class, the members are defaulted to private access. Once the class is created, one
or more objects can be created from the class as objects are instance of the class.
The concept of specifying a class and defining member function are discussed in
subsequent sections:

Specifying a Class

As you must be aware, a class is a user defined data type that binds data and the
functions that operate on the data together in a single unit. Like other user defined
data types, it also needs to be defined before using its objects in the program. A
class definition specifies a new data type that can be treated as a built-in data
type.

The syntax for defining a C++ class is as follows:
class class_name

{

private:

variables;

functions;

public:

variables;

functions;

protected:

variables;

functions;

};

where,
class, private, public, protected = C++ keywords

class_name= The name of the class

variables= Variables (data) of the class

functions= Functions of the class

Note: The semicolon used immediately after the closing curly brace in the class definition is
mandatory.

The variables and functions declared within the curly braces are collectively known
as members of the class. The variables declared in the class are known as data
members while the functions declared in the class are known as member
functions.
Note: Members of a class cannot be declared with the auto, extern and register
keywords. In addition, the data members cannot be initialized at the time of their declaration
in the class.

The keywords private, public and protected are known as
access specifiers (also known as visibility mode). Each member of a class is
associated with an access specifier. The access specifier of a member controls its

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 115

accessibility as well as determines the part of the program that can directly access
the member of the class. When a member is declared private, it can be accessed
only inside the class while a public member is accessible both inside and outside
the class. Protected members are accessible both inside the class in which they
are declared as well as inside the derived classes of the same class. Once an
access specifier has been used, it remains in effect until another access specifier is
encountered or the end of the class declaration is reached. An access specifier is
provided by writing the appropriate keyword (private, public or protected) followed
by a colon ‘:’. Note that the default access specifier of the members of a class is
private, that is, if no access specifier is provided in the class definition, the
access specifier is considered to be private.

Note: The private, public and protected access specifiers can appear in any order
in the class definition. In addition, a particular access specifier can appear more than once in
the class definition.

Example 2.13

A simple class definition.
 class book

 { //private by default

 char title[30]; //variables declaration

 float price;

 public:

 void getdata(char [],float); //function declaration

 void putdata();

 };

In this example, a class named book with two data members title and price
and two member functions getdata() and putdata() is created. As no
access specifier is provided for data members, they are private by default whereas
the member functions are declared as public. It implies that the data members are
accessible only through the member functions while the member functions can be
accessed anywhere in the program.

Generally, data members are declared as private and member functions are
declared as public. Declaring the data members as private hides them from
the rest of the program. This safeguards the data members and prevents any
accidental changes to them by other parts of the program, thereby, implementing
the concept of data hiding of object oriented programming. Similarly, specifying
the member functions as public provides an interface that is visible and accessible
to the other parts of the program.

Note that the member functions can be declared as private, however, it is
useful if the member functions are to be accessed only within other member functions
of the same class and not outside. In addition, all the members (data as well as
functions) of a class can be declared as private. However, such a class prevents its
access from the outside world and does not serve any purpose.

Note: The only difference between a C++ structure and a class is that the data and functions
in a structure are by default public whereas the data and functions in a class are by
default private.

Functions, Class and
Objects in C++

NOTES

Self - Learning
116 Material

Defining Member Functions

Member functions of a class can be defined either outside the class definition or
inside the class definition. In both the cases, the function body remains the same;
however, the function header is different.

Outside the Class

Defining a member function outside a class requires the function declaration (function
prototype) to be provided inside the class definition. The member function is
declared inside the class like a normal function. This declaration informs the compiler
that the function is a member of the class and that it has been defined outside the
class. After a member function is declared inside the class, it must be defined
(outside the class) in the program.

The definition of member function outside the class differs from the normal
function definition, as the function name in the function header is preceded by the
class name and the scope resolution operator (::). The scope resolution operator
informs the compiler what class the member belongs to. The syntax for defining a
member function outside the class is:

return_type class_name :: function_name(parameter_list)

{

 //body of the member function

}

Example 2.14

Definition of member function outside the class.
 class book

 {

// body of the class as in Example 2.13

 };

 void book :: getdata(char a[],float
b)

 { //defining member function outside the class

 strcpy(title,a);

 price = b;

 }

 void book :: putdata()

 {

 cout<<“\nTitle of Book: “<<title;

 cout<<“\nPrice of Book: “<<price;

 }

Note that the member functions of the class can directly access all the data members
and other member functions of the same class (private, public or
protected) by using their names. In addition, different classes can use the
same function name.

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 117

Inside the Class

A member function of a class can also be defined inside the class. However, when
a member function is defined inside the class, the class name and the scope resolution
operator are not specified in the function header. Moreover, the member functions
defined inside a class definition are by default inline functions.

Note: Member functions that are small in size and frequently used are best suited to be
defined inside the class.

Example 2.15

Definition of a member function inside a class.
 class book

 {

 char title[30];

 float price;

 public:

 void getdata(char [],float); // declaration

 void putdata() //definition inside the class

 {

 cout<<“\nTitle of Book: “<<title;

 cout<<“\nPrice of Book: “<<price;

 }

 };

In this example, the member function putdata() is defined inside the class
book. Hence, putdata() is by default an inline function.

Note that the functions defined outside the class can be explicitly made inline by
prefixing the keyword inline before the return type of the function in the function
header. For example, consider the definition of the function getdata().

inline void book :: getdata(char a[],float b)

{

//body of the function

}

2.6.2 Classes versus Objects

In C++, a class is a user-defined type or data structure declared with keyword
class that has data and functions, also called member variables and member
functions, as its members whose access is governed by the three access specifiers
private, protected or public. By default access to members of a C++
class is private. The private members are not accessible outside the class;
they can be accessed only through methods of the class. The public members
form an interface to the class and are accessible outside the class.

Instances of a class data type are known as objects and can contain member
variables, constants, member functions, and overloaded operators defined by the
programmer.

Functions, Class and
Objects in C++

NOTES

Self - Learning
118 Material

The ‘Class’ and ‘Object’ are the basic building blocks in Object Oriented
Programming (OOP) languages. A class is written by a programmer in a defined
structure to create an object in an OOP language. It defines a set of properties
and methods that are common to all objects of one type.

Characteristically,

Classes: The class is the definitions for the data format and available
procedures for a given type or class of object; may also contain data and
procedures, known as class methods, themselves, i.e., classes contain the data
members and member functions.

Objects: The objects are defined as the instances of classes.

Objects sometimes correspond to things found in the real world. For
example, a graphics program may have objects, such as ‘Circle’, ‘Square’,
‘Triangle’, etc.

Each object is said to be an instance of a particular class, for example an
object with its name field set to ‘Vikas’ might be an instance of class Employee.
Procedures in Object Oriented Programming (OOP) are known as methods;
variables are also known as fields, members, attributes, or properties. This leads
to the following terms:

Class Variables: It belongs to the class as a whole; there is only one copy
of each one.

Instance Variables or Attributes: The data that belongs to individual
objects; every object has its own copy of each one.

Member Variables: It refers to both the class and instance variables that
are defined by a particular class.

Class Methods: It belongs to the class as a whole and have access to only
class variables and inputs from the procedure call.

Instance Methods: It belongs to individual objects, and have access to
instance variables for the specific object they are called on, inputs, and class
variables.

Fundamentally, an object can be a variable, a data structure, a function, or
a method, and as such, is a value in memory referenced by an identifier. In the
OOP paradigm, object can be a combination of variables, functions, and data
structures; in particular in class-based variations of the paradigm it refers to a
particular instance of a class.

Check Your Progress

7. What do you mean by the term inline function?

8. State benefit of inline functions.

9. What is the use of default arguments?

10. Define the term class.

11. What are access specifiers?

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 119

2.7 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A function is a program with a group of statements performing specific
operations. The behavior of objects is implemented through functions. The
dynamic properties of objects are facilitated only through functions. Thus,
functions provide interfaces to communicate with the objects.

2. The objects of a class can be passed as arguments to member functions as
well as non-member functions either by value or by reference. When an
object is passed by value, a copy of the actual object is created inside the
function.

3. An Lvalue is an expression that can appear on the left-hand side of an
equalsto sign.

4. When a function definition includes a call to itself, it is referred to as a
recursive function and the process is known as recursion or circular definition.

5. Function overloading is a way to implement compile-time polymorphism
that allows multiple functions to share the same name with different parameters.

6. The main() is the only function that cannot be overloaded.

7. An inline function is a function whose code is copied in place of each function
call. In other words, each call to inline function is replaced by its code.

8. Inline functions are ideal for functions that are small in size and frequently
used by the programs. This is because inline functions reduce the time
consumption and overhead involved in function calls.

9. Default arguments are used in situations where the value of an argument is
same in most of the function calls. Default arguments provide a lot of flexibility
during function calls. If a function call does not specify an argument, the
default value is passed as an argument to the function. In case a function call
specifies an argument, the default value is overridden and the specified value
is passed to the function.

10. A class definition is similar to a structure. A structure can also be built with
data elements and functions. However, rarely are structures built with
functions. A class will have declaration of data elements as well as functions.
A class has a name or a tag.

11. The keywords private, public and protected are known as access specifiers
(also known as visibility mode).

2.8 SUMMARY

 A function is a program with a group of statements performing specific
operations. The behavior of objects is implemented through functions. The
dynamic properties of objects are facilitated only through functions. Thus,
functions provide interfaces to communicate with the objects.

 The objects of a class can be passed as arguments to member functions as
well as non-member functions either by value or by reference. When an

Functions, Class and
Objects in C++

NOTES

Self - Learning
120 Material

object is passed by value, a copy of the actual object is created inside the
function.

 If the return type of a function is void, the called function terminates and
returns the control when it encounters the closing curly brace (}) or a return
statement with no arguments.

 An Lvalue is an expression that can appear on the left-hand side of an
equalsto sign.

 When a function definition includes a call to itself, it is referred to as a
recursive function and the process is known as recursion or circular definition.

 When a recursive function is called for the first time, a space is set aside in
the memory to execute this call and the function body is executed. Then a
second call to a function is made; again a space is set for this call and so on.

 Function overloading is a way to implement compile-time polymorphism
that allows multiple functions to share the same name with different parameters.

 An inline function is a function whose code is copied in place of each function
call. In other words, each call to inline function is replaced by its code.

 Inline functions can be declared by prefixing the keyword inline to the return
type in the function prototype.

 An inline function ‘Requests’ the compiler to replace its each and every call
by the code in its body. That is, specifying a function as inline is just a
request to the compiler and not a command. So, it does not change the
behaviour of a function.

 Inline functions are ideal for functions that are small in size and frequently
used by the programs. This is because inline functions reduce the time
consumption and overhead involved in function calls.

 Whenever a function is called, the calling function must provide all the
arguments specified in the function’s declaration. If the calling function does
not provide the required arguments, the compiler raises an error.

 Default arguments are used in situations where the value of an argument is
same in most of the function calls. Default arguments provide a lot of flexibility
during function calls.

 A class definition is similar to a structure. A structure can also be built with
data elements and functions. However, rarely are structures built with
functions. A class will have declaration of data elements as well as functions.
A class has a name or a tag.

 Object is an instance of a class or in other words object is a replica of the
class. When analysed in the context of structure, an object can be considered
to be a variable of type class, similar to structure variables. A class provides
a blueprint for the object.

 Class is a definition of an object. All class members are private. A class is a
type and an object of the class is a variable. In C++, the data and functions
(procedures to manipulate the data) are worked together as a self-contained
unit called an object.

Functions, Class and
Objects in C++

NOTES

Self - Learning
Material 121

 The keywords private, public and protected are known as access specifiers
(also known as visibility mode).

2.9 KEY TERMS

 Recursion function: When a function definition includes a call to itself, it is
referred to as a recursive function.

 Function overloading: It is a way to implement compile-time polymorphism
that allows multiple functions to share the same name with different parameters.

 Default arguments: Default arguments are used in situations where the
value of an argument is same most of the function calls.

 Class: It refers to a user defined data type that binds data and the functions
to operate on the data together in a single unit.

 Objects: It refers to the physical entities through which data and functions
can be used in a program.

2.10 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is the difference between user-defined and library functions?

2. What are term non-member functions?

3. What is recursive function?

4. State the function of overloading.

5. Define the term inline function.

6. What do you understand by default arguments?

7. What are classes and objects in C++?

8. How is a member function declared?

9. How is a class specified?

Long-Answer Questions

1. Write a program to demonstrate passing objects by value to a member
function of the same class.

2. Differentiate between return by values and return by reference.

3. Write a program to demonstrate the concept of recursive function.

4. Illustrate the program to demonstrate the use of default arguments as an
alternative to function overloading.

5. Differentiate between normal and inline function call with the help of diagram.

6. Write a program to demonstrate the concept of structure variables as
arguments.

Functions, Class and
Objects in C++

NOTES

Self - Learning
122 Material

7. Explain the concept of specifying a class and defining member functions
with the help of C++ statements.

8. Discuss the concept of member functions outside and inside the class with
the help of examples.

2.11 FURTHER READING

Jeyapoovan, T. 2006. Computer Programming: Theory and Practice (with
CD). New Delhi: Vikas Publishing House.

Khurana, Rohit. 2008. Object Oriented Programming with C++. New Delhi:
Vikas Publishing House.

Saxena, Sanjay. 2009. Introduction to Information Technology. New Delhi:
Vikas Publishing House.

Rumbaugh, James, Fedrick Blaha, William Premerlani, and Federick Eddy.1990.
Object- Oriented Modelling and Design. New Jersey: Prentice Hall.

Balaguruswamy, E. 1998. Object-Oriented Programming. New Delhi: Tata
McGraw-Hill.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 123

UNIT 3 CONSTRUCTOR AND
DESTRUCTOR, OPERATOR
OVERLOADING AND TYPE
CASTING

Structure

3.0 Introduction
3.1 Objectives
3.2 Constructor and Destructors
3.3 Constructors of the String Class

3.3.1 String Class Assignment
3.3.2 String Access Operator

3.4 Operator Overloading
3.5 Type Casting
3.6 Answers to ‘Check Your Progress’
3.7 Summary
3.8 Key Terms
3.9 Self-Assessment Questions and Exercises

3.10 Further Reading

3.0 INTRODUCTION

A constructor is a special member function that constructs storage area for the
data members of an object by allocating and initialising memory for them. Hence,
it makes the object functional by converting an object with the unused (uninitialised)
memory into a usable (initialised) object.

Once an object is declared, memory space is allocated to the data members.
In addition, during the execution of the program, the object may use other resources
like files and so on. These resources and the memory allocated to objects must be
released when an object is destroyed. This is accomplished by another special
member function called destructor that is automatically invoked to release all the
resources and memory that an object acquires during its lifetime.

One of the key features of C++ is that the objects of a class can be treated
as variables of built-in data types. That is, C++ permits to perform all the arithmetic
and logical operations on the objects of a class in the same way as these are
performed on simple variables. To perform operations on simple variables, some
built-in operators, such as ‘+’, ‘–’, ‘*’, ‘/’, ‘<’, ‘>’, ‘==’, etc. are provided. To
use these operators with the objects of a class, C++ provides a way by which an
additional meaning can be given to these operators, which is known as operator
overloading. It is one of the most important concepts of object-oriented
programming and is a method of implementing compile-time polymorphism.
Sometimes we need to carry out conversion from one data type to another. This
can be achieved explicitly through what is known as type casting.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
124 Material

In this unit, you will study about the constructor and destructors, constructors
of the string class, string class assignment, string access operators and method,
operator overloading, type casting.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the meaning of constructor and destructors

 Explain constructors of the string class and the string class assignment

 Describe the string access operators and operator overloading

 State the meaning of type casting

3.2 CONSTRUCTOR AND DESTRUCTORS

A constructor is a special member function that constructs storage area for the
data members of an object by allocating and initialising memory for them. Hence,
it makes the object functional by converting an object with the unused (uninitialised)
memory into a usable (initialised) object. It is special as it has the same name as
that of the class and is automatically invoked whenever an object of the class is
created.

Unlike other member functions, a constructor does not have any return
type (not even void). This is because the constructor is invoked automatically
by the system and hence, no program has been defined for it to return anything to.
The name and the absence of a return type help the compiler to distinguish a
constructor from the other member functions of the class. Note that a constructor
must be declared as public otherwise the objects of the class cannot be instantiated.

Like other member functions of the class, a constructor can also be defined
either inside or outside the class definition. The syntax to define a constructor
(inside the class) is:

class class_name

{

.

.

 public:

class_name(parameter_list) //header of the constructor

{

//body of the constructor

}

};

where,

parameter_list is optional.

Note: Inside the class, a constructor is treated as an inline function.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 125

The syntax to define the constructor outside the class is:
class class_name

{

.

.

 public:

class_name(parameter_list); //constructor prototype

.

.

};

class_name::class_name(parameter_list) //constructor
definition

{

//body of the constructor

}

where,

paramter_list is optional.

Example 3.1: Implementing CRectangle including a constructor:
// example: class constructor

#include <iostream>

using namespace std;

class CRectangle {

 int width, height;

 public:

 CRectangle (int,int);

 int area () {return (width*height);}

};

CRectangle::CRectangle (int a, int b) {

 width = a;

 height = b;

}

int main () {

 CRectangle rect (3,4);

 CRectangle rectb (5,6);

 cout << ‘rect area: ‘ << rect.area() << endl;

 cout << ‘rectb area: ‘ << rectb.area() << endl;

 return 0;

}

The output of the program is :
rect area: 12

rectb area: 30

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
126 Material

Example 3.2: on constructors and destructors
#include <iostream>

using namespace std;

class CRectangle {

 int *width, *height;

 public:

 CRectangle (int,int);

 ~CRectangle ();

 int area () {return (*width * *height);}

};

CRectangle::CRectangle (int a, int b) {

 width = new int;

 height = new int;

 *width = a;

 *height = b;

}

CRectangle::~CRectangle () {

 delete width;

 delete height;

}

int main () {

 CRectangle rect (3,4), rectb (5,6);

 cout << ‘rect area: ‘ << rect.area() << endl;

 cout << ‘rectb area: ‘ << rectb.area() << endl;

 return 0;

}

When executed we get the following output of the program:
rect area: 12

rectb area: 30

Example 3.3: A program to demonstrate the order in which constructors and
destructors are called in inheritance

#include<iostream>

#include<cstring>

using namespace std;

class wood

{

protected:

char type[10];

public:

wood()

{

strcpy(type, “Teak”);

cout<<“\nBase class constructor wood called “;

}

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 127

~wood()

{cout<<“\nBase class destructor called”;}

};

class table:public wood

{

char dimension[5];

public:

table()

{

strcpy(dimension, “2X4”);

cout<<“\nDerived class constructor table called”;

}

~table()

{cout<<“\nDerived class destructor called”;}

};

int main()

{

table t1;

return 0;

}

The output of the program is
Base class constructor wood called

Derived class constructor table called

Derived class destructor called

Base class destructor called

In this example, the derived class table inherits the base class wood.
When the object t1 of the class table is declared in main(), constructor of
wood is called first and then the constructor of table is called. However, when
t1 is destroyed (when main()terminates), the destructor of table is called
first and then the destructor for wood.

Note: The public and the protected members of the base class can be
directly initialized using assignment statements in the body of the derived class
constructor.

In case of multiple inheritance, the base class constructors are called in the
order in which the base classes are specified in the derived class definition, that is,
from left to right. However, when an object of the derived class is destroyed, the
derived class destructor is called before any of the base class destructors is called.
The base class destructors are called in the reverse order of calling the base class
constructors, that is, from right to left.

Calling Constructors

Once a constructor is defined, it can be called implicitly as well as explicitly. If the
name of the constructor is not used in the object declaration, the call is known as
an implicit call to the constructor. On the other hand, if the name of the constructor

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
128 Material

is used in the object declaration, the call is known as an explicit call to the
constructor.

Example 3.4: A code segment to demonstrate the calling of constructor implicitly
and explicitly

class display

{

int x, y;

 public:

display() //constructor

{

x=1;

y=2;

cout<<“Value of x and y is : “<<x<<“, “<<y<<endl;

}

};

int main()

{

display disp; //implicit call

display disp1 = display(); //explicit call

}

name of the
constructor

In Example 3.4, two objects, namely, disp and disp1 of the class display
are declared and initialised. The object disp is initialised by implicitly calling the
constructor, whereas disp1 is initialised by explicitly calling the constructor, that
is, by using the constructor name, display().

Note: A constructor and the other member functions of the same class can call each other.

Types of Constructor

Constructors are classified into three types, namely, default constructor,
parameterised constructor and copy constructor. In this section, only default
constructor and parameterised constructor are discussed.

Default Constructor

A default constructor is a constructor that has an empty parameter list and is used
to initialise all the objects of a class with the same values. There can be only one
default constructor in a class. If it is not defined explicitly, the compiler automatically
provides a default constructor to construct the objects of a class. However, the
default constructor provided by the compiler initialises all the data members with
garbage values.

Note: A default constructor for a class X has a form of X::X().

To understand the concept of default constructor, consider Example 3.2. In
this example, the class display defines a default constructor named

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 129

display() to initialise the data members x and y of the class with values 1
and 2, respectively. Both the objects disp and disp1 are initialised with same
values using the default constructor display(). Note that to invoke the default
constructor, no parentheses (())are required in the implicit call to the constructor
at the time of declaring an object. For example, consider the statements:

display disp; //valid

display disp(); //invalid

A default constructor can also be defined without a body. In such situations, it can
be defined as shown in the statement:

display(){}

Such default constructors are ‘Do-Nothing’ functions as they do not perform any
task, however, they are invoked at an appropriate time by the compiler. In addition,
they initialise data members with garbage values.

Parameterised Constructor

When different objects need to be initialised with different values, a parameterised
constructor can be defined. A parameterised constructor is a constructor that
accepts one or more parameters at the time of declaration of objects and initialises
the data members of the objects with these parameters.

Example 3.5: A program to demonstrate the concept of parameterised constructor
#include<iostream>

using namespace std;

class library

{

int roll;

char name[30];

int b_code;

 public:

library(int r, char n[], int code)

//parameterised constructor

{

roll=r;

strcpy(name, n);

b_code=code;

}

void show()

{

cout<<“Roll no.: “<<roll<<endl;

cout<<“Student Name: “<<name<<endl;

cout<<“Code of Book Issued: “<<b_code<<endl<<endl;

}

};

int main()

{

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
130 Material

library lib1(1, “Kanika”, 101); //implicit call to

//parameterised constructor

lib1.show();

library lib2=library(2, “Mansi”, 102); //explicit call
to

//parameterised constructor

lib2.show();

return 0;

}

The output of the program
Roll no.: 1

Student Name: Kanika

Code of Book Issued: 101

Roll no.: 2

Student Name: Mansi

Code of Book Issued: 102

In Example 3.5, the class library has a parameterised constructor that accepts
three parameters, r, n[] and b. The objects lib1 and lib2 are declared
and initialised with different values. The object lib1 calls the parameterised
constructor implicitly whereas the object lib2 calls the parameterised constructor
explicitly.

Note that an explicit call to this constructor can also be made by using the
statement library(2,”Mansi”,102).show() which allows to create
a temporary instance of a class. A temporary instance or a temporary object
remains in the memory as long as the statement is being executed. Once the
execution of the statement terminates, the temporary instance is destroyed.

Note: The temporary instances do not have any name and hence, cannot be referred to
further in the program. They are automatically deleted when no longer required.

A special case of parameterised constructors is one-parameter constructor
that provides another way to initialise the objects of a class. In one-parameter
constructor, the objects of a class are initialised using the assignment operator ‘=’.
Such constructor automatically converts the parameter of any type into class type
to which it is assigned.

Initialiser List

So far, the data members of the class are initialised inside the body of a constructor
using assignment statements in which the data members are first created and then
the assignment operation takes place. There is an efficient way to initialise data
members of a class using an initialiser list (also known as member-initialisation
list). An initialiser list is provided at the end of the header and before the body of
constructor. Using initialiser list, data members are initialised when they are created,
that is, even before the execution of constructor. Note that an initialiser list can be
defined for both default constructor and parameterised constructor. The syntax to
define a default constructor with an initialiser list is:

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 131

class class_name

{

.

.

 public:

class_name():datamember1(val1),datamember2(val2),……,

datamemberN(valN)

{

//body of the constructor

}

.

.

};

For example, the constructor in Example 3.5 can be alternatively defined using an
initialiser list as shown in the code segment:

display(): x(1),y(2) //initialiser list

{

cout<<“Value of x and y is : “<<x<<“, “<<y<<endl;

}

In this code segment, when the constructor is called for the object disp, the
initialiser list initialises x and y with the values 1 and 2, respectively. The syntax to
define a parameterised constructor with an initialiser list is:

class class_name

{

.

.

 public:

class_name(type1 param1, type2 param2,…typeN paramN)

:datamember1(param1),datamember2(param2),

……,datamemberN(paramN)

{

//body of the constructor

}

.

.

};

For example, the constructor in Example 3.5 can be alternatively defined using an
initialiser list, as shown in the code segment:

count(int x):counter(x)

{}

In this code segment, when the constructor is called for the object c, the initialiser
list initialises counter with the value of x.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
132 Material

Constructor Overloading

A class with a single constructor has been discussed so far. However, C++ allows
defining multiple constructors with different number, data type or order of parameters
in a single class and it is known as constructor overloading. Constructor overloading
enables multiple constructors to initialise different objects of a class differently.
These objects can be initialised with the same values or different values or with the
existing objects of the same class. In C++, a class can simultaneously have a
default constructor, a parameterised constructor and a copy constructor.

Note: When an object is initialised with an overloaded constructor, the compiler
determines which constructor is to be called based on the number, data type and order
of the parameters.

Example 3.6: overloading class constructors
#include <iostream>

using namespace std;

class CRectangle {

 int width, height;

 public:

 CRectangle ();

 CRectangle (int,int);

 int area (void) {return (width*height);}

};

CRectangle::CRectangle () {

 width = 5;

 height = 5;

}

CRectangle::CRectangle (int a, int b) {

 width = a;

 height = b;

}

int main () {

 CRectangle rect (3,4);

 CRectangle rectb;

 cout << ‘rect area: ‘ << rect.area() << endl;

 cout << ‘rectb area: ‘ << rectb.area() << endl;

 return 0;

}

The output of the program is as follows:
rect area: 12

rectb area: 25

In this case, rectb was declared without any arguments, so it has been
initialized with the constructor that has no parameters, which initializes both width
and height with a value of 5.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 133

It is very important that if a new object is declared and its default constructor
has to be used (the one without parameters), parentheses () are not included:

CRectangle rectb; // right

CRectangle rectb(); // wrong!

Example 3.7: A program to demonstrate the concept of overloaded constructors
#include<iostream>

using namespace std;

class weight

{

int kg;

int gm;

 public:

weight(){} //default constructor

weight(int kilogram, int gram) //parameterised constructor

{

kg=kilogram;

gm=gram;

}

void show()

{

cout<<kg<<“ Kgs and “<<gm<<“ gms\n”;

}

weight sum_weight(weight w2)

{

weight w;

w.gm = gm + w2.gm;

w.kg=w.gm/1000;

w.gm=w.gm%1000;

w.kg+=kg+w2.kg;

return(w);

}

};

int main()

{

//call to parameterised constructor

weight w1(10,100);

weight w2(20,200);

weight w3; //call to default constructor

w3=w1.sum_weight(w2);

cout<< “Weight1 = “;

w1.show();

cout<< “Weight2 = “;

w2.show();

cout<< “Weight3 = “;

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
134 Material

w3.show();

return 0;

}

The output of the program
Weight1 = 10 Kgs and 100 gms

Weight2 = 20 Kgs and 200 gms

Weight3 = 30 Kgs and 300 gms

In Example 3.7, default and parameterised constructor are defined. The default
constructor is invoked by the statement weight w3 and parameterised
constructor is invoked by the statements weight w1(10,100) and weight
w2(20,200). Note that the default constructor weight(){} does nothing,
however, if it is not specified in the class, the compiler generates an error on the
statement weight w3. This is because in case of multiple constructors in a
class, the compiler does not provide the default constructor implicitly. Hence, a
default constructor must be defined explicitly in the class with multiple constructors
if any of its objects is to be created without arguments.

Constructors with Default Arguments

Like other member functions, parameterised constructors can also have default
arguments. These arguments are used when no corresponding value is passed at
the time of declaration of the object. When a parameterised constructor is defined
inside the class, the values for the default arguments are provided in the definition
of constructor. However, when parameterised constructor is defined outside the
class, the values for the default arguments are provided only in its prototype and
not in its definition. For example, the parameterised constructor weight() (as
defined in Example 3.5) with default arguments can be written as shown:

weight(int kilogram, int gram=100);

In this statement, the default value of gram is 100 and weight() can be
invoked by the statement weight w1(l0). However, if the value of gram is
specified in the statement, it overrides the default value of gram. It should be
noted that either all the arguments or only the trailing arguments can be omitted in
the parameter list of the constructor.

The parameterised constructor that has all default arguments can be
considered as a default constructor since it can be invoked without arguments.
This implies that if an object is declared without parentheses, all the data members
are initialised with the default values. For example, a default argument constructor
of the form weight::weight(int = 0) can be called either with one or
no argument. If no argument is specified, it can be considered as a default
constructor of the form weight::weight(). A problem arises if both the
forms of constructor are used in the same program. The statement weight w
creates ambiguity whether to call the constructor weight::weight(int
= 0) or weight::weight(). Thus, in case of constructors with all default
arguments, the use of default constructor must be avoided.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 135

Dynamic Initialisation of Object

Parameterised constructors can also be used to dynamically initialise the objects
of a class. That is, the parameterised constructor can initialise the object with the
values provided by the user at run-time. Moreover, by using multiple constructors
in a class, different formats of initialisation can be provided.

Example 3.8: A program to demonstrate dynamic initialisation of objects
#include<iostream>

using namespace std;

class item

{

float price, discount, tax, total;

 public:

item(float p, float t, float d=0.25) //first constructor

{

price=p;

discount=p*d;

tax=t;

}

item(float p, float t, int d) //second constructor

{

price=p;

discount=p*(float)d/100;

tax=t;

}

void show()

{

total=price-discount+tax;

cout<<“Total price: “<<total<<endl;

}

};

int main()

{

float p, t, d1;

int d2;

cout<<“Enter the price and tax of Item 1 (in decimal):”;

cin>>p>>t;

item i1(p,t); //dynamic initialisation, call to

 //first constructor

i1.show();

cout<<“\nEnter the price, tax and discount of Item 2”

<<“ (in decimal):”;

cin>>p>>t>>d1;

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
136 Material

item i2(p,t,d1); //dynamic initialisation, call to

 //first constructor

i2.show();

cout<<“\nEnter the price, tax and discount (in integer)”

 <<“ of Item 3:”;

cin>>p>>t>>d2;

item i3(p,t,d2); //dynamic initialisation, call to

 //second constructor

i3.show();

return 0;

}

The output of the program
Enter the price and tax of Item 1 (in decimal): 10000
0.12

Total price: 7500.12

Enter the price, tax and discount of Item 2 (in decimal):
10000 0.12 0.30

Total price: 7000.12

Enter the price, tax and discount (in integer) of Item 3:
10000 0.12 30

Total price: 7000.12

In Example 3.8, the values of p, t, d1 and d2 are provided by the user at run-
time and thus, the data members of the class are initialised dynamically. Since the
constructor item() is overloaded, it provides different formats of initialisation,
that is, item i1(p, t), item i2(p, t, d1) and item i3(p,t,
d2). Both the statements item i1(p, t) and item i2(p, t, d1)
invoke first constructor and the statement item i3(p, t, d2) invokes
second constructor.

Destructors

Once an object is declared, memory space is allocated to the data members. In
addition, during the execution of the program, the object may use other resources
like files and so on. These resources and the memory allocated to objects must be
released when an object is destroyed. This is accomplished by another special
member function called destructor that is automatically invoked to release all the
resources and memory that an object acquires during its lifetime. A destructor
releases the resources and memory at run-time to clean up the unused storage
area.

Like a constructor, a destructor is also special as it has the same name as
that of the class of which it is a member, but with a tilde (~) prefixed to its name.
A tilde (~) is a C++ complement operator, which reminds that a destructor is a
complement of the constructor (creation). A destructor neither accepts any
parameter nor has a return type (not even void). A destructor cannot be

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 137

overloaded, that is, a class can have only one destructor. Hence, a single destructor
is used to destroy all the objects of a class created either using default, parameterised
or copy constructor.

Note: Like a constructor, the destructor can be called within any other member functions.
Similarly, other member functions can be called within a destructor.

The syntax to define a destructor of a class is:
class class_name

{

.

.

 public:

~class_name() //header of the destructor

{

//body of the destructor

}

.

.

};

Note: Destructor can also be defined either inside or outside the class. However, it
should be defined in the public section of the class to avoid the compile-time error.

A destructor is invoked implicitly by the compiler when the object goes out
of scope. However, if object is created dynamically, it is difficult for the compiler
to know whether the pointer points to something possessed by the object and that
also has to be deleted along with the object or something independent of the
object. Hence, the destructor must be explicitly provided.

To understand the concept of destructor, consider Example 3.9. In this
example, the destructor for the class library can be specified as shown:

class library

{

.

public:

.

~library()

{

cout<<“\nObject destroyed...”;

}

.

.

};

The output of the program
Roll no.: 1

Student Name: Kanika

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
138 Material

Code of Book Issued: 101

Roll no.: 2

Student Name: Mansi

Code of Book Issued: 102

Object destroyed...

Object destroyed...

In Example 3.9, since two objects namely lib1 and lib2 were created, the
destructor is called twice.

Order of Calling Constructors and Destructors

The constructor and the destructor of a class are automatically invoked when
memory is allocated and de-allocated to an object, respectively. Moreover, when
multiple objects of a class are created, the constructor for each object is called in
the order in which the objects are declared. However, the destructor for each
object is called in the reverse order of the constructors, that is, in the reverse
order of the object creation.

Note that for the objects with local scope, the constructor is called when
their declaration is encountered in the respective block or function, while the
destructor is called when the block or function terminates. For objects with global
scope, the constructor is called only once when their declaration is encountered
(generally before main()) in the program and the destructor is called when the
program terminates.

Example 3.10: A program to demonstrate the order of calling constructor and
destructor

#include<iostream>

using namespace std;

int counter; //to count the number of objects

class memory

{

 public:

memory() //constructor

{

counter++;

cout<<“\tAllocating memory to object “<<counter<<endl;

}

~memory() //destructor

{

cout<<“\tDe-allocating memory to object “<<counter<<endl;

counter—;

 }

};

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 139

int main()

{

cout<<“Memory allocation in Main()”<<endl;

memory m1, m2;

{

cout<<“\nMemory allocation in Block 1”<<endl;

memory m3;

{

cout<<“\tMemory allocation and de-allocation in”

 <<“ Block 2”<<endl;

memory m4;

}

cout<<“\nMemory de-allocation in Block 1”<<endl;

}

cout<<“\nMemory de-allocation in Main()”;

return 0;

}

The output of the program
Memory allocation in Main()

 Allocating memory to object 1

 Allocating memory to object 2

Memory allocation in Block 1

 Allocating memory to object 3

 Memory allocation and de-allocation in Block 2

 Allocating memory to object 4

 De-allocating memory to object 4

Memory de-allocation in Block 1

 De-allocating memory to object 3

Memory de-allocation in Main()

 De-allocating memory to object 2

 De-allocating memory to object 1

In Example 3.10, the objects m1 and m2 are declared within the main() and
the objects m3 and m4 are declared within block 1 and block 2, respectively.
The constructor is first called for m1, then for m2 and so on. When the inner block
terminates, the destructor for each of the objects is called in the reverse order of
the constructors. That is, the destructor is first called for m4, then for m3, then for
m2 and finally for m1.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
140 Material

3.3 CONSTRUCTORS OF THE STRING CLASS

The constructor of the string Class is used to construct a string object and
initializing its value depending on the constructor version used.

Even though the constructors are basically functions that are typically created
as part of a class, but they are special functions. Constructor functions are
automatically called or invoked whenever a new object is created or instantiated.
The constructor function construct, build, or initialize the new object.

Prototype Example Comments

string(); string s1; Default Constructor: Builds an empty
string.

string(const char*
s);

string s2("Hello,
World!");

Conversion Constructor: Converts a C-
string into a string.

string(const
string& s);

string s3(s2); Copy Constructor: Makes a new string by
copying a string.

String Class Constructors: The string class includes many constructors

but above mentioned string constructors are used in day-to-day programming.

Instances of the string class manage their own memory and are able to
grow automatically as characters are added to them.

Declaration: Following is the declaration for
std::string::string.

string();

The string class has the following basic functionalities:

1. Constructor with No Arguments: The constructor with no
arguments allocates the storage for the string object in the heap and
assigns the value as a NULL character.

2. Constructor with Only One Argument: The constructor with only
one argument accepts a pointer to a character or it can pass an array
of characters, accepts the pointer to the first character in the array
then the constructor of the String class allocates the storage on
the heap memory of the same size as of the passed array and copies
the contents of the array to that allocated memory in heap. It copies
the contents using the strcpy() function declared in cstring
library.

Before performing the above mentioned operation it checks that if
the argument passed is a NULL pointer then it performs as a
constructor with no arguments.

3. Copy Constructor: The copy constructor is called when any object
is created of the same type from an already created object then it
performs a profound copy. It allocates new space on the heap for
the object that is to be created and copies the contents of the passed
object (that is passed as a reference).

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 141

4. Move Constructor: The move constructor is typically called when
an object is initialized (by direct-initialization or copy-initialization)
from rvalue of the same type. It accepts a reference to
an rvalue of an object of the type of custom string class.

Following C++ program illustrates the implementation of the above
defined methods using the custom string class Mystring.

Example 3.11
// C++ program for illustrating the

// above defined functionality

#include <cstring>

#include <iostream>

using namespace std;

// Custom string class

class Mystring {

 // Initialise the char array

 char* str;

public:

 // No arguments Constructor

 Mystring();

 // Constructor with 1 arguments

 Mystring(char* val);

 // Copy Constructor

 Mystring(const Mystring& source);

 // Move Constructor

 Mystring(Mystring&& source);

 // Destructor

 ~Mystring() { delete str; }

};

// Function to illustrate Constructor

// with no arguments

Mystring::Mystring()

 : str{ nullptr }

{

 str = new char[1];

 str[0] = '\0';

}

// Function to illustrate Constructor

// with one arguments

Mystring::Mystring(char* val)

{

 if (val == nullptr) {

 str = new char[1];

 str[0] = '\0';

 }

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
142 Material

 else {

 str = new char[strlen(val) + 1];

 // Copy character of val[]

 // using strcpy

 strcpy(str, val);

 cout << "The string passed is: "

 << str << endl;

 }

}

// Function to illustrate

// Copy Constructor

Mystring::Mystring(const Mystring& source)

{

 str = new char[strlen(source.str) + 1];

 strcpy(str, source.str);

}

// Function to illustrate

// Move Constructor

Mystring::Mystring(Mystring&& source)

{

 str = source.str;

 source.str = nullptr;

}

// Driver Code

int main()

{

 // Constructor with no arguments

 Mystring a;

 // Convert string literal to

 // char array

 char temp[] = "Hello";

 // Constructor with one argument

 Mystring b{ temp };

 // Copy constructor

 Mystring c{ a };

 char temp1[] = "World";

 // One arg constructor called,

 // then the move constructor

 Mystring d{ Mystring{ temp } };

 return 0;

}

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 143

The output of the program

The string passed is: Hello

The string passed is: Hello

3.3.1 String Class Assignment

The member function assign() is used for the assignments, it assigns a new
value to the string, replacing its current contents.

Syntax 1: Assign the value of string str.

string& string::assign (const string& str)

str : This is the string to be assigned.

Returns: *this

Example 3.12
// C++ code to assign (const string& str)

#include <iostream>

#include <string>

using namespace std;

// Function to demonstrate assign

void assignDemo(string str1, string str2)

{

 // Assigns str2 to str1

 str1.assign(str2);

 cout << "After assign() : ";

 cout << str1;

}

// Driver code

int main()

{

 string str1("Hello World!");

 string str2("Vikas Delhi");

 cout << "Original String : " << str1 << endl;

 assignDemo(str1, str2);

 return 0;

}

The output of the program

Original String : Hello World!

After assign() : Vikas Delhi

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
144 Material

Syntax 2: Assigns at most str_num characters of str starting with index

str_idx. It throws out_of _range if str_idx > str. size().

string& string::assign (const string& str,
size_type str_idx, size_type str_num)

str : This is the string to be assigned.

str_idx : This is the index number in str.

str_num : This is the number of characters picked from str_idx
to assign.

Return : *this

Example 3.13
// C++ code to illustrate

// assign(const string& str, size_type

// str_idx, size_type str_num)

#include <iostream>

#include <string>

using namespace std;

// Function to demonstrate assign

void assignDemo(string str1, string str2)

{

 // Assigns 8 characters from

 // 5th index of str2 to str1

 str1.assign(str2, 5, 8);

 cout << "After assign() : ";

 cout << str1;

}

// Driver code

int main()

{

 string str1("Hello World!");

 string str2("VikasforDelhi");

 cout << "Original String : " << str1 << endl;

 assignDemo(str1, str2);

 return 0;

}

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 145

The output of the program

Original String : Hello World!

After assign() : forDelhi

3.3.2 String Access Operator

As string class is a container class, therefore, we can iterate over all its
characters using an iterator similar to other containers, such as vector, set and
maps, but generally, we use a simple for loop for iterating over the characters
and index them using [] operator, the square brackets.

Fundamentally, the characters in a string can be accessed by referring to its
index number inside square brackets [].

The following C++ example prints the first character in myString:

Example 3.14

#include <iostream>

#include <string>

using namespace std;

int main() {

 string myString = “Hello”;

 cout << myString[0];

 return 0;

}

The output of the program

H

String indexes in the above example start with 0: [0] which is the first
character and [1] is the second character, etc.

In the following example the second character in myString is printed:

Example 3.15

#include <iostream>

#include <string>

using namespace std;

int main() {

 string myString = “Hello”;

 cout << myString[1];

 return 0;

}

The output of the program

e

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
146 Material

Changing Characters in the String: To change the value of a specific character
in a string, refer to the index number, and use single quotes as illustrated in the
following program.

Example 3.16

#include <iostream>

#include <string>

using namespace std;

int main() {

 string myString = “Hello”;

 myString[0] = ‘Y’;

 cout << myString;

 return 0;

}

The output of the program

Yello

Check Your Progress

1. What do you mean by the term constructor?

2. Define the term destructors.

3. State the use of string class constructors.

3.4 OPERATOR OVERLOADING

Operator overloading is the process that enables an operator to exhibit different
behavior, depending on the data being provided. It enables to change the
functionality of the existing operators so that they can be used with user-defined
data types, such as classes in addition to with built-in data types. For example,
consider the statements:

int a, b, c;

c = a + b; //‘+’ is used with simple variables

In these statements, two simple variables are added and the result is stored in the
third variable. However, the ‘+’operator cannot be directly used (without
overloading) to add two objects of a class. For example, if ob1, ob2 and ob3
are three objects of class A, then the following statement results in compile-time
error, if the ‘+’ operator is not overloaded:

ob3 = ob1 + ob2; //invalid

Thus, to make this statement valid in C++, the ‘+’ operator needs to be overloaded.
Almost all the unary, binary and some special operators except few can be
overloaded in C++. The operators that can be overloaded are listed in Table 3.1.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 147

Table 3.1 List of Operators that can be Overloaded

Type Operator
Unary ! (logical negation),& (address-of), * (pointer dereference), + (unary plus), –

(unary minus), ~ (one’s complement), ++ (increment) and -- (decrement)
Binary arithmetic (+,–,*,/,%), logical (&&,||),relational (<,>,<=,>=,!=,==),

shorthand (+=,–=,%=,*=,/=)
Special <<,>>,(),=,[],new, delete, new[],delete[]

Some operators that cannot be overloaded are listed as follows:

 dot operator (.)

 dereference pointer to class members (.*)

 scope resolution operator (::)

 conditional operator (?:)

 sizeof operator

 preprocessor symbol (#)

An operator is overloaded with the help of a special function called an operator
function. It defines the operations that the overloaded operator will perform on
the objects of the class for which it is redefined. An operator function can be
defined either as a public member function of the class or as a friend function. In
other words, an operator can be overloaded either using member functions or
using friend functions. To overload an operator, the following steps are to be
followed:

(i) Create the class for which an operator is to be overloaded.

(ii) Declare the operator function either as a public member function of the
class or as a friend function of the same class.

(iii) Define the operator function either inside or outside the class definition, (if it
is a member function) and outside the class (if it is a friend function).

Some rules must always be kept in mind while overloading operators. These rules
are as follows:

 The implementation of the operator can be changed, however, not the syntax
for using the operator.

 The precedence and the associativity of an operator cannot be changed.
However, parentheses can be used to change the order of evaluation.

 The number of operands required (unary, binary, ternary) with the operator
cannot be changed.

 New operators cannot be created; however, new definitions for the existing
operators can be created.

 Overloaded operators except the function call operator ‘()’ cannot have
default arguments.

 All overloaded operators except the assignment operator ‘=’ can be inherited
by the derived classes.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
148 Material

 There is no automatic ‘composition’ of operators. That is, overloading ‘=’
and ‘+’ operators does not imply that the ‘+=’ operator has been overloaded
automatically. It has to be overloaded explicitly.

 The operators (), [], -> and = can be overloaded only as member
functions and not as friend functions.

Overloading Using Member Functions

The operator function defined as a member function of the class is known as
member operator function. Like other member functions of the class, the member
operator function can be defined either inside or outside the class definition.

The syntax to define the member operator function inside the class is:
return_type operator op(parameter_list)

{

//function body

}

where,

return_type = data type of the value returned by the function

operator = C++ keyword

op = operator being overloaded

parameter_list = list of arguments

operator op() = name of the operator function

Note: An operator function is defined as a member function of the class must be a public
non-static member function.

If the member operator function is defined outside the class, it has to be first
declared inside the class.

The syntax to declare the operator function inside the class is:
return_type operator op(parameter_list);

The syntax to define the member operator function outside the class is:
return_type class_name::operator op(parameter_list)

{

//function body

}

Note: It is optional to provide a space between the keyword operator and the operator
op in the operator function header.

Overloading Unary Operators

When unary operators are overloaded using member functions, the member
operator function does not accept any argument. That is, the parameter_list
has no arguments for unary operators (except the postfix forms of ++ and —
operators). This is because the operand for the unary operator, that is, the object
that invokes the member operator function, is passed implicitly to the function.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 149

Example 3.17: A program to demonstrate the concept of overloading logical
negation operator

#include<iostream>

using namespace std;

class logical

{

bool a;

bool b;

 public:

void getdata(bool x,bool y);

void putdata();

void operator!(); //overloading ‘!’ operator

};

void logical::getdata(bool x,bool y)

{

a = x;

b = y;

}

void logical::putdata()

{

cout<<“\na= “<<a<<“\tb= “<<b;

}

void logical::operator!() //operator!()defined outside
the class

{

a = !a; //logically negating the data members

b = !b;

}

int main()

{

logical logic;

logic.getdata(true,false);

cout<<“Original values are:”;

logic.putdata(); //displaying the original
values

!logic; //calling the operator!() function

cout<<“\nNew values are:”;

logic.putdata(); //displaying new values

return 0;

}

The output of the program
Original values are:

a= 1 b= 0

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
150 Material

New values are:

a= 0 b= 1

In Example 3.17, a class logical containing the data members a and b of
bool type, is defined. The unary operator ‘!’ is overloaded to logically negate
the values of a and b. Note that the function operator!()does not accept
any argument as the object invoking the function is passed implicitly and the operator
works on that object only. Moreover, the function operator!() does not
return any value. Thus, it is invalid to write the statement:

logic2=!logic1 //invalid as function does not return any
value

However, if the function is modified to return a value of type logical, then this
statement becomes valid.

Example 3.18:

#include<iostream>

using namespace std;

class locate

{

Int a;

Int b;

public:

void getdata(int x,int y);

void show(void);

void operator-(); //overloading the - operator

};

void locate :: getdata(int x, int y)

{

a=x;

b=y;

}

void locate :: show(void)

{

cout << a << “ “;

cout << b << “ “;

}

void locate :: operator-()

{

a=-a;

b=-b;

}

int main()

{

locate L;

L.getdata(-7,9);

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 151

cout << “L : “;

L.display();

-L; //the function operator-() activated

cout << “S : “;

L.display();

return 0;

}

The output of the program is as follows:
L : -7 9

L : 7 -9

The function operator-() just changes the sign of the data member of the
object L. Since this function is a member function of the same class, it can directly
access the members of the object which activated it. As the function operator-()
does not return any value so if you write

L = -L;

It will not work.

Overloading Increment and Decrement Operators

In C++, increment and decrement operators exist in two forms, namely, prefix
and postfix. C++ enables to overload both these forms. Note that the prefix
forms of ++ and — operators are overloaded exactly the same way as any other
unary operator. That is, the member operator functions of prefix forms of both the
operators do not accept any argument. However, the postfix forms accept an
additional argument of type int.

The compiler uses the int argument to distinguish between the member
operator functions of both the forms. By default, the value of this argument is zero.
However, if any value is passed at the time of function call, the operator function
should be called explicitly using the object name and the dot operator.

The syntax to define the member operator functions of prefix ++ and – operators,
inside the class is:

return_type operator++() / / p r e f i x
increment

{

//function body

}

return_type operator—() / / p r e f i x
decrement

{

//function body

}

The syntax to define the member operator functions of postfix ++ and – operators,
inside the class is:

return_type operator++(int a) / / p o s t f i x
increment

{

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
152 Material

//function body

}

return_type operator—(int a) / / p o s t f i x
decrement

{

//function body

}

The member operator function for both the forms returns an object of the class for
which it is being overloaded. The prefix form returns the incremented or decremented
value of the object, however, the postfix form returns the original value of the
object before incrementing or decrementing. This is because when the prefix form
is used in an assignment statement, the value is incremented or decremented first
and then is assigned to another variable. However, when the postfix form is used in
an assignment statement, the original value is first assigned to the variable and then
it is incremented or decremented.

Note: If the overloaded functions for ++ and — operators have return type void, then they
cannot be used in an expression or in an assignment statement.

Example 3.19: A program to demonstrate the concept of overloading increment
and decrement operators

#include<iostream>

using namespace std;

class weight

{

int kg;

int gm;

 public:

weight(int k, int g) //parameterised constructor

{

kg = k;

gm = g;

}

void display()

{

cout<<“kilogram= “<<kg<<“ and gram= “<<gm<<endl;

}

weight operator++(); //overloading prefix ++ operator

weight operator++(int a); //overloading postfix ++ operator

weight operator—(); //overloading prefix — operator

weight operator—(int a); //overloading postfix — operator

};

weight weight::operator++()

{

++kg;

++gm;

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 153

return weight(kg,gm); //returning the incremented value
as

//unnamed temporary object

}

weight weight::operator—()

{

—kg;

—gm;

return weight(kg,gm); //returning the decremented value

}

weight weight::operator++(int a)

{

int k = kg;

int g = gm;

if (a == 0)

{

kg++; //if a is 0, increment by 1

gm++;

}

else

{

kg += a; //if a is not 0, increment by a

gm += a;

}

return weight(k,g); //returning the value before increment

}

weight weight::operator—(int a)

{

int k = kg;

int g = gm;

if (a == 0)

{

kg—; //if a is 0, decrement by 1

gm—;

}

else

{

kg -= a; //if a is not 0, decrement by a

gm -= a;

}

return weight(k,g); //returning the value before decrement

}

int main()

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
154 Material

{

weight w2(0,0);

weight w1(12,500);

cout<<“Original Values...\n”;

cout<<“w1: “;

w1.display();

cout<<“w2: “;

w2.display();

w2 = ++w1;

cout<<“\nAfter prefix increment...\n”;

cout<<“w1: “;

w1.display();

cout<<“w2: “;

w2.display();

w2 = —w1;

cout<<“\nAfter prefix decrement...\n”;

cout<<“w1: “;

w1.display();

cout<<“w2: “;

w2.display();

w2 = w1++;

cout<<“\nAfter postfix increment...\n”;

cout<<“w1: “;

w1.display();

cout<<“w2: “;

w2.display();

w2 = w1—;

cout<<“\nAfter postfix decrement...\n”;

cout<<“w1: “;

w1.display();

cout<<“w2: “;

w2.display();

//w2 = w1++(5); //invalid

w2 = w1.operator++(5); //explicit call

cout<<“\nIncrement by 5...\n”;

cout<<“w1: “;

w1.display();

cout<<“w2: “;

w2.display();

//w2 = w1—(2); //invalid

w2 = w1.operator—(2); //explicit call

cout<<“\nDecrement by 2...\n”;

cout<<“w1: “;

w1.display();

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 155

cout<<“w2: “;

w2.display();

return 0;

}

The output of the program
Original Values...

w1: kilogram= 12 and gram= 500

w2: kilogram= 0 and gram= 0

After prefix increment...

w1: kilogram= 13 and gram= 501

w2: kilogram= 13 and gram= 501

After prefix decrement...

w1: kilogram= 12 and gram= 500

w2: kilogram= 12 and gram= 500

After postfix increment...

w1: kilogram= 13 and gram= 501

w2: kilogram= 12 and gram= 500

After postfix decrement...

w1: kilogram= 12 and gram= 500

w2: kilogram= 13 and gram= 501

Increment by 5...

w1: kilogram= 17 and gram= 505

w2: kilogram= 12 and gram= 500

Decrement by 2...

w1: kilogram= 15 and gram= 503

w2: kilogram= 17 and gram= 505

In Example 3.19, increment (++) and decrement (—) operators are overloaded in
both the prefix and postfix forms. When the statements w2 = ++w1 and w2 =
-–w1 are executed, the prefix form of increment and decrement operator is
invoked, and the incremented and decremented values of w1 are assigned to w2
respectively. However, when the statements w2 = w1++ and w2=w1— are
executed, the postfix form of increment and decrement operator is invoked, and
the original value of w1 is first assigned to w2 and then w1 is incremented and
decremented respectively. The return statement in all the functions returns a
temporary instance of the class created by explicitly calling the constructor of the
class.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
156 Material

Note that if an argument is passed while calling the postfix increment or
decrement operator, the operator function is invoked explicitly using the object
name and the dot operator. Thus, the statements w2 = w1++(5) and w2 =
w1—(2) are invalid and generate compile-time error.

Overloading Binary Operators

Since the binary operators operate on two operands, one operand, that is, the
object of the class invoking the function is passed implicitly to the member operator
function. The other operand is passed as an argument, which can be passed either
by value or by reference.

Example 3.20: A program to demonstrate the concept of overloading binary
operators

#include<iostream>

using namespace std;

class weight

{

int kg;

int gm;

 public:

weight() //default constructor

{

kg = 0;

gm = 0;

}

weight(int k, int g) //parameterised constructor

{

kg = k;

gm = g;

}

void display()

{cout<<“\nkilogram= “<<kg<<“ and gram= “<<gm;}

weight operator+(weight w); //overloading +
operator

weight operator-(weight w); //overloading -
operator

int operator==(weight w); //overloading ==
operator

};

weight weight::operator+(weight w)

{

weight temp;

temp.gm = gm + w.gm;

temp.kg = temp.gm/1000;

temp.gm = temp.gm%1000;

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 157

temp.kg += kg+w.kg;

return temp;

}

weight weight::operator-(weight w)

{

weight temp;

if(gm < w.gm)

{

gm += 1000;

kg—;

}

temp.gm = gm - w.gm;

temp.kg = kg - w.kg;

return temp;

}

int weight::operator==(weight w)

{

int total1,total2;

total1 = (kg*1000) + gm;

total2 = (w.kg*1000) + w.gm;

if(total1 == total2)

 return 1;

else return 0;

}

int main()

{

weight w1(13,400),w2(13,400),w3,w4;

cout<<“First weight is:”;

w1.display();

cout<<“\n\nSecond weight is:”;

w2.display();

if(w1 == w2) //calling operator==() function

cout<<“\n\nWeights are equal”;

else

cout<<“\n\nWeights are not equal”;

w3 = w1 + w2; //calling operator+()
function

w4 = w1 - w2; //calling operator-()
function

cout<<“\n\nTotal weight is:”;

w3.display();

cout<<“\n\nDifference of weights is:”;

w4.display();

return 0;

}

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
158 Material

The output of the program
First weight is:

kilogram= 13 and gram= 400

Second weight is:

kilogram= 13 and gram= 400

Weights are equal

Total weight is:

kilogram= 26 and gram= 800

Difference of weights is:

kilogram= 0 and gram= 0

In Example 3.20, three binary operators +, – and == are overloaded to add,
subtract and compare the two objects of the class weight respectively. Note
that all these functions accept only one argument of type weight. The other
operand, that is, the object invoking the function is passed implicitly. To understand
this concept, consider the statements:

w3 = w1 + w2; //implicit call to operator+()

w4 = w1 - w2; //implicit call to operator-()

In these statements, the first operand w1 that invokes operator+() and
operator–() is passed implicitly to both the functions. Thus, the data members
of w1 are accessed directly without using the dot operator, whereas the data
members of w2 (passed as an argument) are accessed using the object name and
the dot operator (Refer Figure 3.1). However, these two statements can be replaced
by normal function calls. To understand this concept, consider the statements:

w3=w1.operator+(w2); //calling the operator functions
using

w4=w1.operator-(w2); //the object name and the dot
operator

//explicit call

Fig. 3.1 Overloading ‘-’ Operator

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 159

In Figure 3.1, w.x and w.y refer to the object w2 and x and y refer to the
calling object w1 in main(). The local object temp is created to hold the
results of addition of w1 and w2. The object temp is returned and is assigned to
w4 in main().

Note: While overloading binary operators through member functions, the operand that
appears on the left-hand side of the overloaded binary operator must be an object of the
class for which the operator is overloaded.

Overloading Shorthand Operators

If the data members of the class need to be incremented or decremented by some
value other than 1, then instead of overloading the postfix forms of increment or
decrement operators (as in Example 3.20), the shorthand operators (+= and -=)
can be overloaded.

Example 3.21:
include<iostream>

using namespace std;

 class sample

{

float a;

float b;

public:

sample(){}

sample(float n1, float n2)

{a=n1;b=n2;}

sample operator+(sample);

void display(void);

};

sample sample :: operator+(sample s)

{

sample temp;

temp.a=a+s.a;

temp.b=b+s.b;

return(temp);

}

void complex :: display(void)

{

cout << a << “ +j” << b << “\n”;

}

int main()

{

sample S1,S2,S3;

S1=sample(1.8,5.2);

S2=sample(2.4,3.5);

S3=S1+S2;

cout << “S1= “; S1.display();

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
160 Material

cout << “S2=”;S2.display();

cout << “S3=”;S3.display();

return 0;

}

The output of the program would be:
S1=1.8+j5.2;

S2=2.4+j3.5;

Here the function operator+() has the following features:

 It receives only one sample type argument explicitly.

 It returns a sample type value.

 It is a member function of sample.

Example 3.22:
For example: 3.20

class compute

{

private:

int cvalue;

public:

compute()

{

cvalue = 15;

}

void compute :: operator ++()

{

cvalue++;

}

void compute :: operatoe –()

{

cvalue —;

}

void showCompute()

{

 cout << endl

<< “Current compute value =”

<< cvalue

<< eldl;

}

Here the increment and decrement operators have been overloaded. The
system has no way to determine that whether these operators are overloaded for
prefix or postfix operations. Hence, these operations must be overloaded in such
a way that work both for prefix and postfix operations.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 161

To make a distinction between the prefix and postfix notation of these
operators, the following syntax is used.

operator ++ () // for prefix notation

operator ++ (int) //for postfix notation

In the above syntax, the use of int in parentheses is to indicate the compiler
that this operator is being overloaded for postfix use.

Example 3.23: A program to demonstrate the concept of overloading shorthand
operators

#include<iostream>

using namespace std;

class weight

{

//data members as in Example 3.20

 public:

//constructor and display() function as in Example 3.20

void operator+=(weight w); //overloading +=
operator

void operator-=(weight w); //overloading -=
operator

};

void weight::operator+=(weight w)

{

gm += w.gm;

kg += w.kg + (gm/1000);

gm = gm % 1000;

}

void weight::operator-=(weight w)

{

if(gm < w.gm)

{

gm += 1000;

kg—;

}

kg -= w.kg;

gm -= w.gm;

}

int main()

{

weight w1(12,500), w2(10,200);

cout<<“Original Values...\n”;

w1.display();

w1 += w2; //calling operator+= function

cout<<“\nAfter increment...\n”;

w1.display();

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
162 Material

w1 -= w2; //calling operator-= function

cout<<“\nAfter decrement...\n”;

w1.display();

return 0;

}

The output of the program
Original values

kilogram= 12 and gram= 500

After increment...

kilogram= 22 and gram= 700

After decrement...

kilogram= 12 and gram= 500

In Example 3.23, the shorthand operators += and -= are overloaded for the
class weight. Note that the data members of the calling object (w1) can be
accessed directly without using the dot operator. However, the data members of
the object (w2), passed as an argument, are accessed with the help of object
name and the dot operator.

Overloading Binary Operators for String Manipulations

In C++, built-in operators cannot be used directly with string variables. However,
some built-in functions such as strcmp, strcpy, strcat, etc. are used to
compare two strings, copy one string to another and concatenate two strings,
respectively. For example, if str1, str2, str3 are three string variables,
then the following statement generates a compile-time error:

str3=str1+str2; //invalid

Note that other operators such <, ==, <=, etc. do not generate any compile-
time error when used with strings however, do not give accurate results. Thus,
these operators have to be overloaded for string manipulations.

Example 3.24: A program to demonstrate the concept of operator overloading
for string manipulations

#include<iostream>

#include<cstring>

using namespace std;

class string_class

{

char *str;

int size;

 public:

string_class()

{

str = “ “;

size = 0;

}

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 163

string_class(char *p)

{

strcpy(str,p);

size = strlen(str);

}

void display()

{cout<<str;}

int operator<(string_class s); //overloading <
operator

int operator==(string_class s); //overloading == operator

string_class operator+(string_class s); //overloading +

//operator

};

int string_class::operator<(string_class s)

{

if (size == s.size)

{

if (strcmp(str,s.str)<0)

return 1;

else

return 0;

}

else

if (size<s.size)

return 1;

else

return 0;

}

int string_class::operator==(string_class s)

{

if (strcmp(str,s.str) == 0)

return 1;

else

return 0;

}

string_class string_class::operator+(string_class s)

{

string_class s3;

strcpy(s3.str,str);

strcat(s3.str,s.str);

return s3;

}

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
164 Material

int main()

{

string_class str1(“Hello”),str2(“World”),str3;

cout<<“First string is: “;

str1.display();

cout<<“\nSecond string is: “;

str2.display();

if (str1 == str2) //calling operator== function

cout<<“\nStrings are equal”;

else

if (str1 < str2) //calling operator< function

cout<<“\nString 1 is less than string 2”;

else

cout<<“\nString 2 is less than string 1”;

str3 = str1 + str2; //calling operator+ function

cout<<“\n\nConcatenated string is: “;

str3.display();

return 0;

}

The output of the program
First string is: Hello

Second string is: World

String 1 is less than string 2

Concatenated string is: HelloWorld

In Example 3.24, a class string_class containing a pointer str to an
array of type char and a variable size of type int, is defined. Three operators
<, == and + are overloaded to compare, to check the equality and to concatenate
two objects of string_class respectively.

3.5 TYPE CASTING

Sometimes we need to carry out conversion from one data type to another. This
can be achieved explicitly through what is known as type casting. The programmer
can force the compiler to convert one type into an appropriate one at the required
places.

Examples
int x ;

float y = 2.5 ;

x = int (y) + 5 ;

Here int (y) will convert y into integer 2. Therefore, x will be equal to 7.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 165

There is a difference between C and C++ with regard to the notation of
casting as given below:

(data type) expression – for instance, (int) var [C notation]

data type (expression) – for instance, int (var) [C++ notation]

But either of the notations will work in C++.

Example

15.0/int (3.14) will be equal to 5.0 since int(3.14) will be equal to 3. Since the
expression is in a mixed mode, result will be a float.

Example
Z = float (5/2 * 2);

You would expect Z to be 5.0

But it will be 4.0.

Since cast operator has a lower precedence, the expression within
parentheses will be evaluated first in this order, 5/2 = 2 * 2 = 4.

It will be type cast as 4.0.

But the type casting takes place in the statement where the type casting
appears explicitly. The data type is not redefined permanently. It continues to be
of the type as originally defined. Look at the example given below:

Program 3.1
/*to demonstrate type casting*/

#include<iostream>

using namespace std;

int main(){

int varint;

float varfloat=20.67f;

varint=(int)varfloat;

cout<<“\n value of varint “ << varint;

cout<<“\n value of varfloat remains “<< varfloat;

varfloat=varint; //automatic conversion

cout<< “\n value of varfloat “ << varfloat;

cout<<“\n value of varint remains “ << varint;

}

The following declarations were made.
int varint;

float varfloat =20.67;

varint=(int) varfloat;

The fractional part will be truncated and we will get varint=20. On the
contrary, if we try to assign varfloat to varint without type casting, compiler will
flag an error. However, the following statement will be accepted:

varfloat=varint;

It is accepted because we are widening varint and now varfloat gets the
value of 20.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
166 Material

The output of the program
value of varint 20

value of varfloat remains 20.67

value of varfloat 20

value of varint remains 20

Check Your Progress

4. What is operator overloading?

5. Define the term operator function.

6. On what do the binary operators operate?

7. What is type casting?

3.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A constructor is a special member function that constructs storage area for
the data members of an object by allocating and initialising memory for
them. Hence, it makes the object functional by converting an object with
the unused (uninitialised) memory into a usable (initialised) object. It is special
as it has the same name as that of the class and is automatically invoked
whenever an object of the class is created.

2. An object is declared, memory space is allocated to the data members. In
addition, during the execution of the program, the object may use other
resources like files and so on. These resources and the memory allocated
to objects must be released when an object is destroyed. This is
accomplished by another special member function called destructor that is
automatically invoked to release all the resources and memory that an object
acquires during its lifetime.

3. The constructor of the string class is used to construct a string object and
initializing its value depending on the constructor version used. The string
class includes many constructors but above mentioned string constructors
are used in day-to-day programming.

4. Operator overloading is the process that enables an operator to exhibit
different behavior, depending on the data being provided.

5. An operator is overloaded with the help of a special function called an
operator function.

6. Binary operators operate on two operands, one operand, that is, the object
of the class invoking the function is passed implicitly to the member operator
function. The other operand is passed as an argument, which can be passed
either by value or by reference.

7. Sometimes we need to carry out conversion from one data type to another.
This can be achieved explicitly through what is known as type casting.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 167

3.7 SUMMARY

 A constructor is a special member function that constructs storage area for
the data members of an object by allocating and initialising memory for
them. Hence, it makes the object functional by converting an object with
the unused (uninitialised) memory into a usable (initialised) object.

 An object is declared, memory space is allocated to the data members. In
addition, during the execution of the program, the object may use other
resources like files and so on. These resources and the memory allocated
to objects must be released when an object is destroyed.

 The constructor of the string Class is used to construct a string object and
initializing its value depending on the constructor version used.

 The string class includes many constructors but above mentioned string
constructors are used in day-to-day programming.

 The member function assign() is used for the assignments, it assigns a new
value to the string, replacing its current contents.

 Operator overloading is the process that enables an operator to exhibit
different behavior, depending on the data being provided.

 An operator is overloaded with the help of a special function called an
operator function.

 The operator function defined as a member function of the class is known
as member operator function.

 When unary operators are overloaded using member functions, the member
operator function does not accept any argument.

 In C++, increment and decrement operators exist in two forms, namely,
prefix and postfix.

 The member operator function for both the forms returns an object of the
class for which it is being overloaded. The prefix form returns the incremented
or decremented value of the object, however, the postfix form returns the
original value of the object before incrementing or decrementing.

 Since the binary operators operate on two operands, one operand, that is,
the object of the class invoking the function is passed implicitly to the member
operator function. The other operand is passed as an argument, which can
be passed either by value or by reference.

 If the data members of the class need to be incremented or decremented by
some value other than 1, then instead of overloading the postfix forms of
increment or decrement operators

 Sometimes we need to carry out conversion from one data type to another.
This can be achieved explicitly through what is known as type casting.

Constructor and Destructor,
Operator Overloading and
Type Casting

NOTES

Self - Learning
168 Material

3.8 KEY TERMS

 Constructor: Constructor is a special member function that constructs
storage area for the data members of an object by allocating and initialising
memory for them.

 Default constructor: It is a constructor that has an empty parameter list
and is used to initialise all the objects of a class with the same values.

 Destructor: It releases the resources and memory at run-time to clean up
the unused storage area.

 Copy constructor: The copy constructor makes a new string by copying
a string.

 Member operator function: It refers to the operator function defined as
a member function of the class.

3.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What do you mean by the term calling constructors?

2. Differentiate between constructor and destructors.

3. Define the term copy constructor for string class.

4. What is string class assignment?

5. Write in brief about member operator function.

6. List the operators that can be overloaded in C++.

7. State the points that must be kept in mind while overloading operators.

8. What do you understand by overloading a binary and unary operator?

Long-Answer Questions

1. Explain the types of constructor with appropriate examples.

2. Differentiate between string class assignment and string access operator
with the help of example.

3. Discuss the need of operator overloading.

4. Explain the concept of overloading unary and binary operators as member
functions with the help of suitable examples.

5. Describe the type casting with appropriate examples.

NOTES

Constructor and Destructor,
Operator Overloading and

Type Casting

Self - Learning
Material 169

3.10 FURTHER READING

Jeyapoovan, T. 2006. Computer Programming: Theory and Practice (with
CD). New Delhi: Vikas Publishing House.

Khurana, Rohit. 2008. Object Oriented Programming with C++. New Delhi:
Vikas Publishing House.

Saxena, Sanjay. 2009. Introduction to Information Technology. New Delhi:
Vikas Publishing House.

Rumbaugh, James, Fedrick Blaha, William Premerlani, and Federick Eddy.1990.
Object- Oriented Modelling and Design. New Jersey: Prentice Hall.

Balaguruswamy, E. 1998. Object-Oriented Programming. New Delhi: Tata
McGraw-Hill.

Inheritance and Pointers

NOTES

Self - Learning
Material 171

UNIT 4 INHERITANCE AND
POINTERS

Structure

4.0 Introduction
4.1 Objectives
4.2 Inheritance

4.2.1 Derived Class
4.2.2 Relationships Superclass/Subclass
4.2.3 Multiple Inheritances
4.2.4 Construction, Destructors in Inheritance
4.2.5 Hierarchical Inheritance
4.2.6 Hybrid Inheritance

4.3 Virtual Base Classes
4.4 C++ Memory Map Free Store

4.4.1 Pointers and Arrays
4.4.2 Memory Representation in Free Store

4.5 Reserving and Freeing Dynamic Memory
4.6 Polymorphism
4.7 Virtual Functions

4.7.1 Pure Virtual Functions
4.7.2 Early vs. Late Binding

4.8 Answers to ‘Check Your Progress’
4.9 Summary

4.10 Key Terms
4.11 Self-Assessment Questions and Exercises
4.12 Further Reading

4.0 INTRODUCTION

Inheritance property facilitates reusability of software components. The user-
defined types, namely the classes, facilitate inheritance. Assume that we have
developed a program, taking into consideration, the user’s requirement. Usually,
the client will require some additional features, at the time of delivery after seeing
the product. Inheritance allows code reusability. This implies that it facilitates classes
to reuse existing code. The new class acquires members of the old class that are
already tested and debugged. Hence, inheritance saves time and also increases
reliability.

A dynamic data structure is one in which the memory for elements is allocated
dynamically at runtime. The successive elements of a dynamic data structure may
not be stored in contiguous memory locations but they are still linked together by
means of some linkages or references. However, arrays have certain problems
associated with them. As array elements are stored in adjacent memory locations,
a sufficient block of memory is allocated to an array at compile time. Once the
memory space is allocated to an array, it cannot be expanded or contracted. That
is why an array is called a static data structure.

Inheritance and Pointers

NOTES

Self - Learning
172 Material

The addresses of these elements can be accessed in the program through
the use of pointers, which are the vital elements of C++ programming that provide
the means for accessing and manipulating the memory locations of the variables
directly thus, making the programs more effective and efficient. Moreover, certain
features of C++, such as virtual functions and this pointer, also require the use of
pointers. The concept of virtual functions further helps in implementing run-time
polymorphism, thereby achieving dynamic binding.

In this unit, you will study about the inheritance, derived class, relationships
superclass/subclass, multiple inheritance, constructors and destructors, hierarchical
inheritance, hybrid inheritance, virtual base classes, C++ memory map and free
store, pointers and arrays, reserving and freeing dynamic memory, polymorphism,
virtual functions and pure virtual function, early vs. late binding.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basics of inheritance

 Explain the derived class

 Discuss the relationship superclass and its subclass

 Describe the concept of multiple inheritance

 Explain the constructors and destructors

 Analyse the hierarchical inheritance and hybrid inheritance

 Explain the meaning of virtual base classes

 Elaborate on the C++ memory map and free store

 Discuss the pointers and arrays

 Analyse the reserving and freeing dynamic memory and polymorphism

 Explain the virtual function and pure virtual functions

 Describe the difference between early and late binding

4.2 INHERITANCE

Inheritance property facilitates reusability of software components. The user-
defined types, namely the classes, facilitate inheritance. Assume that we have
developed a program, taking into consideration, the user’s requirement. Usually,
the client will require some additional features, at the time of delivery after seeing
the product! After the completion of the project, adding a new feature in the
conventional programming languages is not an easy job. It can lead to new errors.
On the contrary, in OOP, adding a new feature, after a class has been developed,
is rather easy. The class, which is already available (after thorough testing) is known
as a base class in C++. Adding a new feature may require either adding a new
data element or a new function. This can be achieved by extending the program in
OOP. For this, a new class has to be defined as inheriting the base class. This new

Inheritance and Pointers

NOTES

Self - Learning
Material 173

class is called a derived class in C++. The derived class can inherit some or all of
the properties of the base class as per requirements. Adding a new class does not
alter the base class. The base class is called the super class and the derived class
as the sub-class in some languages. Conceptually there is no difference.

The derivation of properties through inheritance is akin to that in human
beings. The child inherits all or some of the properties of the parent. The child may
add his own properties. Both the inherited property and the newly acquired property
can be used simultaneously by the child. However, the parent is aware of only
what he has lent. The child can, in turn become a parent and, lend his properties to
his child in a similar manner. This can go on and in C++ there is no limitation to the
number of either the levels of inheritance or the derived classes for a base class.

4.2.1 Derived Class

Inheritance is a process of deriving a new class from an already existing class in
such a way that the new class inherits all the members of the already existing class.
In inheritance, the class which is inherited by the new class is known as base class
or superclass or parent. The class which inherits the members of the existing class
is known as derived class or sub class or child class. For example, Figure 4.1
shows four classes, named, animal, carnivore, herbivore and
omnivore. The class animal is a base class inherited by the derived classes
carnivore, herbivore and omnivore. The derived classes
carnivore, herbivore and omnivore inherit all the members (properties
and functionality) of the base class animal.

Fig. 4.1 Inheritance

In addition to the members of the base class, the derived class also includes
its own members. That is, the derived class extends the base class, which is shown
in Figure 4.2.

base class

members

derived class

own members

basee class
members

Fig. 4.2 Derived Class Members

Inheritance and Pointers

NOTES

Self - Learning
174 Material

Defining a Derived Class

Inheritance is implemented while defining the derived class. The name of the base
class appears in the definition of derived class. Since the derived class is nonexistent,
when base class is defined the inheritance is implemented only at the time of derived
class definition.

The syntax to define a derived class is:
class derived_class : access_specifier base_class

{

//data members and member function of derived class

};

where,

class = C++ keyword

derived_class = the name of the derived class

: = depicts that derived_class is inherited from base_class

access_specifier = the access specifier of the base class—can be any
of the three keywords, private, public or protected

base_class = the name of the base class

Example 4.1: A code segment defining a derived class
class polygon // base class

{

 protected:

int length, height;

 public:

void setval(int a, int b);

};

class triangle: public polygon //Definition of derived
class

{

 public:

int area();

void display();

};

In Example 4.1, two classes, namely, polygon and triangle are defined.
Here, the class triangle inherits the class polygon. This implies,
triangle is the derived class and polygon is the base class. The keyword
public is the access specifier of the base class polygon.

Note: The friend functions of a base class are not inherited as they are not the members
of the base class.

Inheritance and Pointers

NOTES

Self - Learning
Material 175

Accessibility of Base Class Members in Derived Class

As stated earlier, the derived class inherits all the members (public, protected and
private) of the base class. However, only the public and protected members can
be accessed. The private members are accessed indirectly using the protected
and the public member functions of the base class.

Example 4.2: A program to demonstrate the accessibility of the members of the
base class within a derived class

#include<iostream>
using namespace std;
class Shapes3D
{
 private:

int length;
 protected:

int breadth;
 public:

int height;
void setval(int, int, int);

};
void Shapes3D::setval(int a, int b, int c)
{length=a; breadth=b; height=c; }
class cube: public Shapes3D
{
 public:

int volume(){return (length *breadth* height);}
//error,length is private data member and is not

//accessible
void displayvol(){cout<<“Volume : “<<volume();}

};

In Example 4.2, the class cube inherits the class Shapes3D. In the member
function volume of the class cube, the base class members, namely, length,
breadth and height are accessed. Note that the statement int
volume(){return (length *breadth* height);} generates
a compile-time error as length is a private member of class Shapes3D and
hence it is not accessible inside cube. However, the protected base class member
breadth and the public base class member height can be directly accessed.

The accessibility of base class members by objects of the base class and
inside a derived class is listed in Table 4.1.

Table 4.1 Accessibility of Base Class Members

Base Class Members Accessibility by Objects of
Base Class

Accessibility Inside the Derived
Class

Public Members Accessible Accessible
Protected Members Not Accessible Accessible
Private Members Not Accessible Not Accessible

Note: The derived class members cannot be accessed inside its base class or by the
objects of the base class.

Inheritance and Pointers

NOTES

Self - Learning
176 Material

Access Specifier of the Base Class

The access specifier of the base class in the derived class definition determines the
way the derived class inherits the base class. It determines the access specifier of
the base class members inside the derived class. The access specifier of a base
class member in the derived class depends on the access specifier (visibility mode)
provided while defining the derived class. Depending on the access specifiers
public, protected or private, a base class can be publicly inherited,
protectedly inherited or privately inherited, respectively.

Public Inheritance

base class

public members

protected members

private members

public members

protected members

private members

derived class

Fig. 4.3 Publicly Inherited Base Class

When the access specifier of the base class in the derived class definition is
public, the base class is publicly inherited. The access specifier of the members
of the base class remains the same in the derived class. This implies, the public
members and protected members of the base class remain the public members
and protected members of the derived class, respectively, as shown in Figure 4.3.

Note: Since private members of a base class are not accessed in the derived class the
concept of data hiding is not violated.

When a base class is publicly inherited, the derived class object can access only the
public members of the base class. The protected members of the base class are
inaccessible by the objects of the derived class. However, they can be accessed by
the member functions, friend classes and the friend functions of the derived class.

The syntax to define a derived class that publicly inherits its base class is:
class derived_class:public base_class

{

 . //members of the derived_class

 .

};

Inheritance and Pointers

NOTES

Self - Learning
Material 177

Example 4.3: A program to demonstrate a publicly inherited base class
#include<iostream>

#include<cstring> //for strcpy()

using namespace std;

class employee

{

 protected:

int age;

char name[20];

char address[30];

 public:

int ssn;

void getval(int, int, char [], char []);

};

void employee::getval(int sn, int ag, char str[], char
add[])

{

ssn=sn;

age=ag;

strcpy(name, str);

strcpy(address, add);

}

class engineer:public employee //Base class publicly
inherited

{

char engtype[15];

 public :

void gettype(char type[]){strcpy(engtype, type);}

void showeng(void);

};

void engineer::showeng()

{

cout<<“Serial no :”<<ssn<<endl;

cout<<“Age :”<<age<<endl;

cout<<“Name :”<<name<<endl;

cout<<“Address :”<<address<<endl;

cout<<“Engg Type :”<<engtype<<endl;

}

int main()

{

engineer e1;

e1.getval(20,63,”Sqn Ldr N Wesley”,”R.K Puram”);

e1.gettype(“Aeronautical Engineer”);

e1.ssn=15;//public member of base class can be accessed

Inheritance and Pointers

NOTES

Self - Learning
178 Material

 //when inherited publicily

 //e1.age=45;protected member age is inaccessible

e1.showeng();

return 0;

}

The output of the program
Serial no :15

Age :63

Name :Sqn Ldr N Wesley

Address :R.K Puram

Engg Type :Aeronautical Engineer

In Example 4.3, the class employee is publicly inherited by the class
engineer. This implies that the public member ssn and the protected members
age, name, address of the class employee become public and protected
members of class engineer, respectively. In main(), the object e1 of the
class engineer is used to access the data members ssn and age. Note that
the statement e1.age=45 generates a compile-time error as age is a protected
member of engineer and is not accessible by the objects of the derived class.

Protected Inheritance

base class

public members

protected members

private members

public members

protected members

private members

derived class

Fig. 4.4 Protectedly Inherited Base Class

When the access specifier of the base class in the derived class definition is
protected, the base class is protectedly inherited. Both the public and the
protected members of the base class become the protected members of the derived
class.

When a base class is protectedly inherited, public and protected members
of the base class are not accessible by the objects of the derived class. However,
these base class members are accessible by the member functions, the friend
classes and the friend functions of the derived class (Refer Figure 4.4).

Inheritance and Pointers

NOTES

Self - Learning
Material 179

The syntax to define a derived class that protectedly inherits its base class is:
class derived_class : protected base_class

{

 . //members of the derived_class

 .

};

Example 4.4: A program to demonstrate a protectedly inherited base class
#include<iostream>

using namespace std;

class figure

{

 protected:

float area;

 public:

float perimeter;

};

class rectangle: protected figure //class inherited
protectedly

{

 public:

float length,breadth;

void calarea(){ area=(length*breadth);}

void calperimeter(){perimeter=2*(length+breadth);}

};

int main()

{

rectangle r;

r.length=4.7;

r.breadth=5.5;

r.calarea();

r.calperimeter();

// cout<<“area is: “<<r.area;

//area the protected member, object cannot access

// cout<<“\nperimeter is: “<<r.perimeter;

//perimeter the protected member in rectangle class

//object cannot access protected member perimeter

return 0;

}

In Example 4.4, the class figure is protectedly inherited by the class
rectangle. This implies that the protected member area and the public
member perimeter of the base class figure become the protected members
of rectangle. In main(), if the object r of the class rectangle tries to
access the data members area and perimeter of the base class, a compile-

Inheritance and Pointers

NOTES

Self - Learning
180 Material

time error is generated as area and perimeter are now the protected
members of rectangle.

Private inheritance

base class

public members

protected members

private members

public members

protected members

private members

derived class

Fig. 4.5 Privately Inherited Base Class

When the access specifier of the base class in the derived class definition is
private, the base class is privately inherited. In this case, both the public and
the protected members of the base class become the private members of the
derived class, as shown in Figure 4.5.

When a base class is privately inherited, the public and the protected
members of the base class are not accessible by the objects of the derived class.
However, these base class members are accessible by the member functions,
friend classes and the friend functions of the derived class.

The syntax to define a derived class that privately inherits its base class is:
class derived_class : private base_class

{

 . //members of the derived_class

 .

};

Note: By default, the access specifier of a base class in the derived class definition is
private.

Restoring the Access Specifier of the Base Class Members

When a base class is privately or protectedly inherited, the access specifier of all
its public and protected members changes in the derived class. Sometimes, the
access specifier of a public or protected member of the base class may need to be
retained in the derived class. This can be accomplished by declaring such member
in the derived class explicitly with its original access specifier.

Inheritance and Pointers

NOTES

Self - Learning
Material 181

The syntax to restore the access specifier of a base class member in the derived
class is:

class derived_class : access_specifier base_class

{

.

.

 access_specifier:

base_class::member_name;

.

};

where,

:: = the scope resolution operator—indicates that member_name is a
member of base_class

member_name = the name member of the base class whose access specifier
needs to be restored
 Note that while declaring a base class member in the derived class, only name of
the base class member is provided. The data type (for data members) or the parameter
list and the return type (for member functions) need not be specified.

Example 4.5: A program to restore the access specifier of a base class member
in the derived class

#include<iostream>

using namespace std;

class triangle

{

 public:

int s1,s2,s3,perimeter;

};

class righttriangle : protected triangle

{

 public:

int angle1,angle2;

triangle::perimeter; //restoring access specifier

};

int main()

{

righttriangle rt;

rt.perimeter=25; //valid as perimeter has become

//the public data member

return 0;

}

In Example 4.5, the class triangle is protectedly inherited by the class
righttriangle. Thus, the public members s1, s2, s3 and perimeter
of triangle become protected members of righttriangle. However,
in righttriangle, the access specifier of perimeter is restored by

Inheritance and Pointers

NOTES

Self - Learning
182 Material

declaring it with the public access specifier. As a result, perimeter now
becomes a public member of righttriangle.

Some points must always be kept in mind while inheriting the classes. They are as
follows:

 The base class should be inherited with the public visibility mode if the
access specifier of the members of the base class is not required to be
altered.

 The base class should be inherited with the private visibility mode if the
members of the base class are not required to be further inherited.

 The base class should be inherited with the protected visibility mode if
the members of the base class are to be hidden outside the class but can be
further inherited.

Allocating Memory to the Objects of Base Class and Derived Class

Like ordinary variables, memory is also allocated to the objects of a class. The
total number of bytes allocated to an object of a class is equal to the sum of the
bytes allocated to the public, protected and private data members of the class.
However, the size of an object of the derived class is equal to the sum of the size
of all the data members of the base class as well as derived class.

Example 4.6: A program to demonstrate the memory space occupied by the
base class and derived class objects

#include <iostream>

using namespace std;

class base

{

char x[20]; //20 bytes

 protected:

char y[30]; //30 bytes

 public:

float z; //4 bytes

};

class derived: public base

{

float a; //4 bytes

char b[20]; //20 bytes

};

int main()

{

base b;

derived d;

cout<<“Size of object of base class: “<<sizeof(b);

cout<<“\nSize of object of derived class: “<<sizeof(d);

return 0;

}

Inheritance and Pointers

NOTES

Self - Learning
Material 183

The output of the program is
Size of object of base class: 54

Size of object of derived class: 78

In Example 4.6, the size of the object b of the base class base is sum of the sizes
of its data members, that is, 20+30+4=54. However, the size of the object d of
the derived class derived is equal to the sum of the sizes of its data members
and the size of the base class data members, that is, 4+20+54=78.

4.2.2 Relationships Superclass/Subclass

Inheritance is a relationship between a superclass and its subclasses. It is a
mechanism by which a new class be built from an existing class.

Superclass and Subclass

The class that is inherited by other classes is called a base class or superclass or
parent class. The class that inherits the properties of the superclass is called a
subclass or derived class or child class. A subclass inherits all the instance variables
and methods defined by the superclass, at the same time it also contains its own
members. For example, in Figure 4.6, Animal is the superclass which is inherited
by three subclasses Carnivore, Herbivore and Omnivore. Hence,
Carnivore, Herbivore and Omnivore inherit all members of the
superclass Animal.

 Animal

 Carnivore Herbivore Omnivore

 Superclass

Fig. 4.6 Superclass and Subclasses

Defining a Subclass

Inheritance is implemented while defining a subclass. The name of the superclass
is specified in the subclass definition. A subclass can be defined by using extends
keyword.

The syntax to define a subclass is as follows:
class sub_class extends super_class

{

//variables and methods declaration

}

where,
sub_class is the name of the subclass that inherits the superclass.
super_class is the name of the superclass that is being inherited.
extends is the keyword that indicates that the super_class properties
have been extended to the sub_class.

4.2.3 Multiple Inheritances

When a derived class inherits from more than one base class simultaneously, it is
referred to as multiple inheritance. In multiple inheritance, the derived class inherits

Inheritance and Pointers

NOTES

Self - Learning
184 Material

the members of all its base classes and can directly access the public and the
protected members of its base classes. For example, Figure 4.7 shows multiple
inheritance in which the derived class owner is inherited from two base classes,
namely, person and company.

Fig. 4.7 Multiple Inheritance

The syntax to define the derived class that implements multiple inheritance is:
class derived_class: access_specifier1 base_class1,

access_specifier2 base_class2. . .,access_specifierk
base_classk

{

 .

 .

};

Example 4.7: A program to demonstrate multiple inheritance
#include<iostream>

#include<cstring> //for strcpy()

using namespace std;

class person

{

int ssn, age;

char name[20], address[30];

 public :

void getval(int sn, int ag, char st[], char add[])

{

ssn=sn; age=ag;

strcpy(name,st);

strcpy(address,add);

}

void show_person();

};

void person::show_person()

{

cout<<“Serial No. :”<<ssn<<endl;

cout<<“Name :”<<name<<endl;

cout<<“Age :”<<age<<endl;

cout<<“Address :”<<address<<endl;

}

Inheritance and Pointers

NOTES

Self - Learning
Material 185

class company

{

char cname[20], caddress[30];

 public:

void setval(char cn[], char cadd[])

{

strcpy(cname, cn);

strcpy(caddress, cadd);

}

void show_com(void)

{

cout<<“Company Name :”<<cname<<endl;

cout<<“Company Address :”<<caddress<<endl;

}

};

class owner : public person, public company

//inheriting multiple base classes

{

int licenceno;

 public :

void getlicno(int lno)

{

licenceno=lno;

}

void show_lno()

{

cout<<“Licence No :”<<licenceno<<endl;

}

};

int main()

{

owner o1;

o1.getval(111,33,”N Suzana Wesley”,”R.K Puram”);

o1.setval(“MS Vision”,”Cannaught Place”);

o1.getlicno(123456);

o1.show_person();

o1.show_com();

o1.show_lno();

return 0;

}

The output of the program
Serial No. :111

Name :N Suzana Wesley

Inheritance and Pointers

NOTES

Self - Learning
186 Material

Age :33

Address :R.K Puram

Company Name :MS Vision

Company Address :Cannaught Place

Licence No :123456

In Example 4.7, the class owner simultaneously inherits two classes, namely,
person and company. This implies that person and company are the
base classes of owner.

Ambiguity Resolution in Multiple Inheritance

In multiple inheritance, an ambiguity may arise when a member of two or more
base classes has same name. In order to resolve such ambiguities, the member
name is qualified with the base class name by using the scope resolution operator
(::).

Example 4.8: A program to demonstrate the ambiguity in multiple inheritance
#include<iostream>

#include<cstring>

using namespace std;

class bank

{

 protected :

int code;

char bname[15], baddress[25];

 public :

void getdetail(int c, char bn[], char badd[])

{ code=c; strcpy(bname,bn);

strcpy(baddress,badd);

}

};

class person

{

 protected:

int code, age;

char name[20], address[30];

 public :

void getval(int sn, int ag, char st[], char add[])

{ code=sn; age=ag; strcpy(name,st);

strcpy(address,add);

}

};

class owner:public bank, public person

{

int regno;

 public :

Inheritance and Pointers

NOTES

Self - Learning
Material 187

void getregno(int reg){regno=reg;}

void showreg();

};

void owner::showreg()

{

cout<<“Serial No. :”<<person::code<<endl;

//code of person class

cout<<“Age :”<<age<<endl;

cout<<“Name :”<<name<<endl;

cout<<“Address :”<<address<<endl;

cout<<“Bank code :”<<bank::code<<endl;

//code of bank class

cout<<“Bank name :”<<bname<<endl;

cout<<“Bank address :”<<baddress<<endl;

cout<<“Registeration No: “<<regno<<endl;

}

int main()

{

owner o1;

o1.getdetail(1345,”PNN Bank”,”Anand Vihar”);

o1.getval(112,27,”Himanshu Ahuja”,”Anand Vihar”);

o1.getregno(12345);

o1.showreg();

return 0;

}

The output of the program

Serial No. :112

Age :27

Name :Himanshu Ahuja

Address :Anand Vihar

Bank code :1345

Bank name :PNN Bank

Bank address :Anand Vihar

Registeration No: 12345

In Example 4.8, the class owner simultaneously inherits the classes bank and
person. The class bank and person have the same data member code
which can lead to ambiguity. The ambiguity can be resolved using name of the
class and the scope resolution operator (::) along with the code data member
in the showreg() member function. However, if the scope resolution operator
is removed, a compile-time error is generated.

Inheritance and Pointers

NOTES

Self - Learning
188 Material

4.2.4 Construction, Destructors in Inheritance

A constructor allows the object to be initialised with the valid values at the time of
(its) object declaration. A constructor is required in inheritance to initialise the data
members of the base class through derived class. The derived class defines its
own constructor in order to initialise its new members. However, to initialise the
data members inherited from the base class, constructor of the base class is called.
After the constructors are called, the destructors are also called to destroy the
objects. However, constructors and destructors are called in a particular order.

Note: A derived class does not inherit the constructors and the destructor of its base
class. However, constructor and destructor of the base class are explicitly called inside
the derived class.

Order of Calling of Constructor and Destructor

When an object of the derived class is declared, the base class constructor is
called first and then the derived class constructor is called. The constructor of the
base class is called first because the base class is unaware of the derived class.
Moreover, the base class members need to be initialised first as the derived class
initialisation depends on the base class initialisation. In other words the, derived
class uses base class members for its initialisation.

However, when an object of the derived class is destroyed, the destructors
are called in reverse order. The destructors are executed in reverse order as base
class is a foundation for the derived class, therefore, the destruction of the base
class object implies destruction of the derived class object. Hence, the derived
class destructor is called before the base class destructor.

Example 4.9: A program to demonstrate the order in which constructors and
destructors are called

#include<iostream>

#include<cstring>

using namespace std;

class wood

{

 protected :

char type[10];

 public:

wood ()

{ trcpy(type, “Teak”);

cout<<“Base class constructor wood called “<<endl;

}

~wood()

{

cout<<“Base class destructor called “<<endl;

}

};

class table:public wood

{

Inheritance and Pointers

NOTES

Self - Learning
Material 189

char dimension[5];

 public:

table()

{

strcpy(dimension, “2X4”);

cout<<“Derived class constructor table called\n”;

}

~table()

{

cout<<“Derived class destructor called “<<endl;

}

};

int main()

{

table t1;

return 0;

}

The output of the program
Base class constructor wood called

Derived class constructor table called

Derived class destructor called

Base class destructor called

In Example 4.9, the derived class table inherits the base class wood. When
the object t1 of the class table is declared in main(), constructor of
wood is called first and then the constructor of table is called. However, when
t1 is destroyed (when main()terminates), the destructor of table is called
first and then the destructor for wood.

Note: The public and the protected members of the base class can be directly initialised
using assignment statements in the body of the derived class constructor.

Constructors and Destructors in Multiple Inheritance

In multiple inheritance, the base class constructors are called in the order in which
the base classes appear in the definition of derived class, that is, from left to right.
However, when an object of the derived class is destroyed, the derived class
destructor is called before any of the base class destructors is called. The base
class destructors are called in the reverse order of calling the base class constructors
that is, from right to left.

Constructors and Destructors in Multilevel Inheritance

In case of multilevel inheritance, constructors are called in the order of their
inheritance and destructors in the reverse order of inheritance. The constructor of
the indirect base class is called first, then the constructor of the direct base class
and finally, the derived class constructor is called. However, in case of destructor,
the derived class destructor is called first, then the destructor of direct base class
is called, and finally, the destructor of indirect base class.

Inheritance and Pointers

NOTES

Self - Learning
190 Material

Constructors and Destructors of Virtual Base Classes

If a derived class inherits both a virtual base class and a non-virtual base class,
then the constructor of the virtual base class is called before the constructor of the
non-virtual base class. The destructors are called in the reverse order of calling of
the constructors. This implies, the destructor of the non-virtual base class is called
before the destructor of the virtual base class.

Note that if a derived class is inherited from multiple virtual base classes,
then the constructors of the virtual base classes are called in the order in which
they are specified in the derived class definition, while the destructors are called in
the reverse order of calling of constructors.

Parameterised Constructor of Base Class

Parameterised constructors are used to dynamically initialise the object of the
class. The parameterised constructors of the base class can be initialised by
providing the values through the derived class. This is accomplished by explicitly
calling the parameterised constructor of the base class in the header of the derived
class constructor. The arguments of the parameterised constructor can be provided
through the arguments of the derived class constructor.

The syntax to define a derived class constructor that explicitly calls one or more
base class constructor is:

Derived_class::derived_class(parameter_list):base_class1(parameter_list1),
base_class2(parameter_list2),..,base_classk(
parameter_listk)

{

 . //body of the constructor

 .

}

Here, base_class1(parameter_list1),
base_class2(parameter_list2)and so on are the explicit calls to the
base class constructors.

Note: In the case of multiple inheritance, the parameterised constructor of the base classes
are called in the order in which they appear in the definition of derived class and not in the
order in which they are called in the header of the derived class constructor.

Example 4.10: A program to demonstrate the calling of a parameterised
constructor of the base class

#include<iostream>

using namespace std;

class aaa

{

int i;

 public:

 aaa(int x)

{

i=x;

cout<<“Value of i in the base class aaa “<<i<<endl;

}

Inheritance and Pointers

NOTES

Self - Learning
Material 191

~aaa()

{

cout<<“Destructor aaa called\n”;

}

};

class bbb

{

int j;

 public:

bbb(int y)

 {

j=y;

cout<<“Value of j in the base class bbb “<<j<<endl;

}

~bbb()

{

cout<<“Destructor bbb called\n”;
}
};
class ccc:public bbb, public aaa
{

int k;
 public:

ccc(int z, int m, int n):aaa(z), bbb(m)
// ex-

plicit call to the base class constructor
{
k=n;
cout<<“Value of k in the derived class ccc “<<k<<endl;
}
~ccc()
{
cout<<“Destructor ccc called\n”;
}
};
int main()
{
ccc c1(1,2,3);
return 0;
}

The output of the program
Value of j in the base class bbb 2

Value of i in the base class aaa 1

Value of k in the derived class ccc 3

Destructor ccc called

Destructor aaa called

Destructor bbb called

Inheritance and Pointers

NOTES

Self - Learning
192 Material

In Example 4.10, when the object c1 of the class ccc is declared, the constructor
of c1 explicitly calls the constructors of aaa and bbb and passes the
appropriate arguments to them. Note that constructor of bbb is called before
the constructor of aaa and then the constructor of ccc is called. When c1 is
destroyed, the destructors are called in the reverse order of constructors.

Note: If a base class has a parameterised constructor, it is mandatory for the derived
class to define a constructor and pass the arguments for the base class constructor.

4.2.5 Hierarchical Inheritance

Hierarchical inheritance is a type of inheritance in which more than one class is
derived from a single base class. In hierarchical inheritance, a base class provides
members that are common to all of its derived classes. For example, Figure 4.8
shows hierarchical inheritance in which two classes graduate and undergraduate
are derived from single base class student.

student

graduate undergraduate

Fig. 4.8 Hierarchical Inheritance

In hierarchical inheritance, all the base class members are inherited by each
of the derived class. In addition, the public and protected members of the base
class are directly accessible by all the derived classes. However, members of any
derived class cannot be accessed by another derived class.

The syntax to implement hierarchical inheritance (with two derived classes) is:
class base_class

{

 . //members of base_class

 .

};

class derived_class1: access_specifer1 base_class

{

 . //members of derived_class1

 .

};

class derived_class2: access_specfier2 base_class

{

 . //members of derived_class2

 .

};

Note: If multiple classes are derived from a single base class, each derived class maintains its
own copy of the private, public and protected data members of the base class.

Inheritance and Pointers

NOTES

Self - Learning
Material 193

4.2.6 Hybrid Inheritance

According to the user requirement the various types of inheritance, can be
combined. This type of inheritance is known as hybrid inheritance. For example,
Figure 4.9 shows hybrid inheritance that involves multilevel and multiple inheritances.

Multilevel
inheritance

Item

Sell

Bill

Discount

Multiple inheritance

Fig. 4.9 Hybrid Inheritance

Example 4.11: A program to demonstrate hybrid inheritance
#include<iostream>

#include<cstring>

using namespace std;

class item

{

 protected:

char itemcode[5], itemname[15];

int costp,qtyoh;

 public:

void getitem(char code[], char itnm[], int cp, int
qt)

{

strcpy(itemcode,code); strcpy(itemname,itnm);

costp=cp; qtyoh=qt;

}

void itemdis();

};

void item::itemdis()

{

cout<<“Item code :”<<itemcode<<endl;

cout<<“Item name :”<<itemname<<endl;

cout<<“Cost price :”<<costp<<endl;

cout<<“Quantity on hand :”<<qtyoh<<endl;

}

class sell:public item

{

 protected:

int sp ;

 public:

Inheritance and Pointers

NOTES

Self - Learning
194 Material

void getval(int slprice)

{

sp=slprice;

}

void showsp(){cout<<“Selling Price :”<<sp<<endl;}

};

class discount

{

 protected:

int dis;

 public :

void getdis(int d){dis=d;}

};

class bill:public sell,public discount

{

int qty, totalprice;

 public :

int calprice(int q)

{

qty=q; totalprice=(sp*qty)-dis;

return totalprice;

}

void showbill();

};

void bill::showbill()

{

showsp();

cout<<“Qty to be purchased :”<<qty<<endl;

cout<<“Discount :”<<dis<<endl;

cout<<“Total price :”<<totalprice<<endl;

}

int main()

{

bill b1;

b1.getitem(“co01”,”Computer”,20000,15);

b1.getval(30000);

b1.getdis(2000);

b1.calprice(2);

b1.itemdis();

b1.showbill();

return 0;

}

Inheritance and Pointers

NOTES

Self - Learning
Material 195

The output of the program
Item code :co01

Item name :Computer

Cost price :20000

Quantity on hand :15

Selling Price :30000

Qty to be purchased :2

Discount :2000

Total price :58000

In Example 4.11, the derived class bill inherits the base class sell, which in
turn is derived from the base class item. Hence, multilevel inheritance is formed.
The class bill inherits two base classes discount and sell forming the
multiple inheritance. The multiple and multilevel inheritance in this example together
form hybrid inheritance.

Ambiguity Resolution in Hybrid Inheritance

In some hybrid inheritance ambiguity arises when the derived class directly accesses
a member of its indirect base class. For example, as shown in Figure 4.10, the
class apprentice is inherited from two base classes employee and
student, which in turn are inherited from the class person. Therefore, an
indirect base class person is inherited twice by the apprentice class. Hence,
the class apprentice has two copies of all the members of its indirect base
class person twice. Thus, ambiguity arises while accessing these members.

person

employee student

apprentice

Fig. 4.10 Hybrid Inheritance

Example 4.12: A program to demonstrate the ambiguity when multiple, hierarchical
and multilevel inheritance are combined

#include<iostream>

#include<cstring>

using namespace std;

class person

{

Inheritance and Pointers

NOTES

Self - Learning
196 Material

 protected:

int ssn,age;

char name[20],address[30],gender[2];

 public:

void getper(int sn, int ag, char nm[],

char add[], char gen[])

{

ssn=sn; age=ag; strcpy(name,nm);

strcpy(address,add); strcpy(gender,gen);

}

void showper();

};

void person::showper()

{

cout<<“Security Serial Number :”<<ssn<<endl;

cout<<“Name :”<<name<<endl;

cout<<“Age :”<<age<<endl;

cout<<“Address :”<<address<<endl;

cout<<“Gender :”<<gender<<endl;

}

class employee:public person

{

 protected:

int salary;

 public:

void getsal(int sal){salary=sal;}

void showsal(){cout<<“Salary :”<<salary<<endl;}

};

class student:public person

{

 protected:

char majordept[15];

 public:

void getmaj(char maj[]){strcpy(majordept,maj);}

void showmaj(){cout<<“Major :”<<majordept<<endl;}

};

class apprentice:public employee, public student

{

 protected:

int duration;

 public:

void getdur(int d){duration=d;}

void showdur()

{cout<<“Duration : “<<duration<<“ years”<<endl;}

Inheritance and Pointers

NOTES

Self - Learning
Material 197

};

int main()

{

apprentice a1;

a1.getper(111,29,”N Suzana Srivastava”,”R.K Puram”,”F”);

//error

a1.getsal(20000);

a1.getmaj(“History”);

a1.getdur(4);

a1.showper();//ambiguity

a1.showsal();

a1.showmaj();

a1.showdur();

}

In Example 4.12, two derived classes employee and student are derived
from the base class person. The classes employee and student become
base classes to apprentice. Hence, the derived class apprentice has
all the members of the direct base classes (employee and student) as well
as its indirect base class person. Note that class apprentice inherits two
copies of members of class person through class employee and class
student. This leads to ambiguity. Hence, a compile-time error is generated
when the object a1 uses the member function getper() and showper()
as two copies of base class members are present in object a1.

The ambiguity discussed in Example 4.13 can be resolved by qualifying the
member with the name of either of the direct base classes using the scope resolution
operator.

To resolve the ambiguity, the program in Example 4.12 can be rewritten as
shown in this example.

Example 4.13: A program to resolve the ambiguity
#include<iostream.h>

class person

{

//body same as in the Example 4.12

};

class employee:public person

{

//body same as in the Example 4.12

};

class student:public person

{

//body same as in the Example 4.12

};

Inheritance and Pointers

NOTES

Self - Learning
198 Material

class apprentice:public employee, public student

{

//body same as in the Example 4.12

};

int main()

{

a1.student::getper(111,29,”Krishna Masih”,”R.K
Puram”,”F”);

a1.student::showper();//ambiguity resolved

}

In this example, the class name student and scope resolution operator is used
to resolve the ambiguity.

The output of the program
Security Serial Number :111

Name :Krishna Masih

Age :29

Address :R.K Puram

Gender :F

Salary :20000

Major :History

Duration :4 years

4.3 VIRTUAL BASE CLASSES

In Example 4.13, the scope resolution operator enables to refer to specific class
for accessing its members; however, it does not prevent the duplication of indirect
base class members. The duplication of inherited members due to multiple paths
can be prevented by making common base class as virtual base class at the time
of declaration of intermediate base class. Virtual base class is an indirect base
class declared using the keyword virtual in order to prevent its duplication.
Specifying a base class as virtual ascertains that only one copy of the base class
members exists for its derived classes. In other words, the virtual base class can
be derived several times without its duplication. (Refer Figure 4.10)

The syntax to specify a virtual base class is:
class derived_class: virtual access_specifier base_class

{

 . //member function of derived_class

 .

};

Note: The position of the virtual keyword and the access specifier of the base
class can be interchanged. This implies, the syntax class derived_class :
access_specifier virtual base_class {..}; is also valid in C++.

Example 4.14: A program to demonstrate the concept of virtual base class
#include<iostream>

#include<cstring>

Inheritance and Pointers

NOTES

Self - Learning
Material 199

using namespace std;

class person

{

//body same as Example 4.12

};

class employee:public virtual person

{

//body same as Example 4.12

};

class student:public virtual person

{

//body same as Example 4.12

};

class apprentice:public employee, public student

{

//body same as Example 4.12

};

int main()

{

apprentice a1;

a1.getper(111,29,”N Suzana Srivastava”,”R.K Puram”,”F”);

a1.getsal(20000);

a1.getmaj(“History”);

a1.getdur(4);

a1.showper(); // no ambiguity

a1.showsal();

a1.showmaj();

a1.showdur();

}

In Example 4.14, the class person is specified as a virtual base class while
defining employee and student. This implies that only one copy of data
members and member functions exists for both employee and student. As
a result, when object a1 accesses the members of indirect base class person,
no ambiguity arises.

4.4 C++ MEMORY MAP FREE STORE

A dynamic data structure is one in which the memory for elements is allocated
dynamically at runtime. The successive elements of a dynamic data structure may
not be stored in contiguous memory locations but they are still linked together by
means of some linkages or references. Whenever a new element is to be inserted,
memory is allocated for it dynamically and just linked to the data structure. The
elements can be inserted as far as memory is available; thus, there is no upper limit
on the number of elements in the data structure. Similarly, whenever an element is

Inheritance and Pointers

NOTES

Self - Learning
200 Material

deleted from the data structure, memory is de-allocated so that it can be reused in
future. An example of a dynamic data structure is a linked list.

Static and Dynamic Memory Allocation

Allocation of memory is a unique and special task performed by the compiler
when any program is compiled and run. The specifications for static and dynamic
type of allocation are defined in the program module. Both static and dynamic
memory allocation are discussed as follows:

Static Memory Allocation

In static memory allocation, memory is allocated at compilation time. For example,
if we initialize as int arr[] {1 2 3}, then the compiler will automatically
allocate the required memory space for declared variables, in this case 3 integers,
at the time of compilation. The address of operator is used to acquire the reserved
address which may be assigned to a pointer variable. As most of the declared
variables contain static memory address, hence assigning pointer value to a pointer
variable is termed as static memory allocation. Static memory is pre-allocated at
the time of mapping process into the main memory.

This technique’s application includes a program module (e.g., function or
subroutine), which declares a static data locally. This is done in a manner in which
these data are inaccessible in other modules till it receives references as parameters
or returns them. A single copy of static data is held back and is accessible through
many calls to the function in which it is declared. Static memory allocation, therefore,
has the advantage of modularizing data within a program design in the situation
where these data must be retained through the runtime of the program.

The use of static variables within a class in object-oriented programming
enables a single copy of such data to be shared between all the objects of that class.

Dynamic Memory Allocation

While in dynamic memory allocation, memory is assigned at run time,
malloc()compiler will merely view it as a function and an argument.

It makes use of functions such as malloc() or calloc() to get
memory dynamically. In case these functions are made use of to get memory
dynamically and the values returned by these functions are assigned to pointer
variables, then they are called dynamic memory allocation. Memory is assigned
during run time.

Dynamic memory is allocated on the heap space of the process map. The
pointer reference helps in the visibility throughout the process.

In computer science, dynamic memory allocation (also called heap-based
memory allocation) is the allocation of memory storage that can be used in a
computer program during the runtime of that program. It can also be viewed as a
method of distributing ownership of limited memory resources among several pieces
of data and code.

Dynamically allocated memory exists till it is release either explicitly by the
programmer, or by the garbage collector. On the other hand, static memory

Inheritance and Pointers

NOTES

Self - Learning
Material 201

allocation has a fixed duration. It is said that an object so allocated has a dynamic
lifetime.

Implementations

 Fixed-Size-Blocks Allocation: Fixed-size-blocks allocation, also known
as memory pool allocation, makes use of a free list of fixed-size blocks of
memory (often all of the same size). This is known to work well for simple
embedded systems.

 Buddy Blocks: In this system, memory is allocated from a large block in
memory that is a power of two in size. If the block is more than twice of the
desirable size, it is split into two. One of the halves is selected, and the
process repeats (checking the size again and splitting if needed) until the
block is just large enough.

All the blocks of a particular size are kept in a sorted linked list or tree.
When a block is freed, it is compared with its buddy. In case they are both
free, they are combined and placed in the next largest size buddy-block list.
(When a block is allocated, the allocator will start with the smallest sufficiently
large block avoiding needlessly breaking blocks.)

Static and Dynamic Variables

A static variable upholds the same data all through the execution of a program
while a dynamic variable can have different values during the course of a program.

Dynamic variables are allocated on the stack, so they are by default ‘thread-
local,’ assuming a thread-safe implementation. By specifying them in a set statement
in the thread’s initial function, it makes them available (via use statements) to all
the functions called in the same thread, as if they were global variables.

Theoretically, the set statement creates a set of dynamic variables and
pushes them on the global stack of such sets. Reaching the end of the set statement
pops the stack. The use statement searches the sets from the top of the stack
down for each identifier listed in use statement and, if the identifier is found,
stores the address of the dynamic variable in a local variable of the same name.
Within the use statement, values of the dynamic variables are referenced indirectly.
The set statement can be implemented with no allocation overhead, as all of the
allocations can be done at compile time as local variables. The stack of sets is a list
of structures defined by the following pseudo-C code, one for each dynamic
variable.

struct dVariable {

struct dVariable *link;

const char *name;

Type *type;

void *address;

}

dVariable instances are connected via the link field. The name field
points towards the name of the variable, the type field points towards the type
descriptor sufficient for testing the subtype relation and the address field contains
the address of the variable.

Inheritance and Pointers

NOTES

Self - Learning
202 Material

Dynamic variables are those that can have the space allocated to them at
some point during the execution of a program or procedure and that can also be
disposed of and have their space given back to the system by the program.

Dynamic and Static Variables in C

 Variable declarations can be done outside all functions or inside a function.

 Declarations made outside the functions are global and in fixed memory
locations.

o The static declaration declares a variable outside a function to be a
‘File Global’ (cannot be referenced by code in other source files).

 Declarations within a block statement {} (function body or block statement
nested within a function body) have the following features:

o They are dynamically allocated, unless declared static.
o They are allocated in memory when program execution enters the

block.
o They occur when memory is released and when the execution exits

the block.
o They occur if a function calls itself (directly or indirectly) and it gets a

new set of dynamic variables (called a stack frame).
o They are handled like any other call to the function.

Static Memory Use of Static Variable

When a program begins to execute, there must be some specific blocks of memory
set aside for use that cannot be trespassed upon by any other program or even by
the system for instance, the memory containing the program’s own code. While it
is possible (in machine language) to write a program that can modify its own code,
it is very dangerous practice and must never be done.

Moreover, any variables named in the declaration section must have a specific
memory set aside for their contents, and this action can not be controlled or changed
in any way by the programmer, except by declaring more or fewer variables in the
first place. The memory in question can not itself be relocated to some other place
or expanded or contracted.

Static variables are those that are created in the declaration section of a
program and continue to exist (whether visible or not) and require space until its
conclusion. Their space is allocated at the beginning of the program run.

The only change that can take place in static variable is their content and
this change is done by assignment statements.

Items of all the data types, that have been taken into account till now, are of
the static kind–once declared, they will be at a fixed location and consume a
specific amount of memory during the running of the program. Both the size and
location (relative to the start of the code) are predetermined at the time the program
is compiled. Its location is relative and not absolute as there is no way for the
compiler to determine ahead of time how many programs will be running and what
memory will already be in use when the new program is loaded. However, with
respect to program starting address, it is fixed and cannot be changed by the
program.

Inheritance and Pointers

NOTES

Self - Learning
Material 203

Figure 4.11 illustrates a popular method of allocating memory. A block is a
memory set aside for the program’s use, and within this, the code is placed first (at
the lowest address) and this is followed by the static variable space.

Fig. 4.11 Allocation of Memory for Static Variable

The area of memory into which the procedure activation records are
dynamically and automatically placed is called stack and the marker that delimits
the top end of the currently allocated stack is termed as the stack pointer.

Pointers

A pointer is a programming language data type whose value points directly to
(or ‘Points to’) another value stored elsewhere in the computer memory by using
its address. For high-level programming languages, pointers effectively take the
place of general-purpose registers in low-level languages, such as assembly language
or machine code—in contrast, such languages occupy a certain part of the available
memory. A pointer refers to a location in memory, and by obtaining the value at the
location it is known as dereferencing the pointer.

The pointer can be considered as a simple, less abstracted implementation
of the highly abstracted reference data type. Several languages support some type
of pointer. However, every language imposes restrictions on pointers which make
them unique. Generally, copying and dereferencing pointers is much cheaper in
time and space as compared to copying and accessing the data to which the
pointers point

Pointers to data extensively improve performance for repetitive operations
such as navigating strings, lookup tables, control tables and tree structures. In
addition, in procedural programming, pointers are used to hold the addresses of
entry points of subroutines as well as for run-time linking to Dynamic Link Libraries
(DLLs). Also, in object-oriented programming, the pointers to functions often use
virtual method tables for binding methods.

The term ‘Pointer’ is generally used to refer to references. Additionally, it is
also used by data structures whose interface evidently allows the manipulation of
pointers (by using pointer arithmetic) as a memory address. This is because pointers
allow both protected as well as unprotected access to memory addresses. However,
there are potential risks involved while using them primarily unprotected access to
memory addresses.

Inheritance and Pointers

NOTES

Self - Learning
204 Material

When setting up, it is necessary to have pointers help manage the creation,
implementation and control of data structures such as lists, queues and trees. Start
pointers, end pointers and stack pointers are classic examples of pointers that are
either absolute (the actual physical address or a virtual address in virtual memory)
or relative (an offset from an absolute start address). These pointers actually use
less bits rather than a full address. However, they usually require an additional
arithmetic operation in order to be resolved.

Pointers and Dynamic Memory Allocation

 Dynamically allocated blocks of memory are used to store data objects or arrays
of objects. These blocks make use of pointers to store and manage their addresses.
The dynamic allocation of objects is done in a heap or free store; which refers to
an area of memory that is provided by most of the structured and object-oriented
languages

The memory of your computer can be considered to be a succession of
memory cells, each one of the minimal size—one byte—that your computer
manages. These single-byte memory cells are numbered in a successive way. This
is done so that within any block of memory, every cell has the same number as the
previous one plus one.

Reference Operator (&)

As soon as a variable is declared, the amount of memory needed is assigned at a
specific location in memory (its memory address). Generally, you do not actively
decide the precise location of the variable within the panel of cells of the memory.
Actually, during runtime, this task is automatically performed by the operating
system. However, in some cases, you may want to know the address of where the
variable is being stored during runtime, to operate with the relative positions of it.

Reference to a variable refers to the address that locates a variable within
memory. This reference to a variable can be gained by preceding the identifier of
a variable with an ampersand sign (&), known as a reference operator. This can
be literally translated as the ‘Address of’.

Dereference Operator (*)

As known, a variable which stores the reference of another variable is called a
pointer. So, pointers are said to ‘point to’ the variable whose reference they store.

Using a pointer, you can directly access the value stored in the variable
points to. To do this, you have to precede the pointer’s identifier with an asterisk
(*) only. This sign acts as dereference operator and that can be literally translated
as ‘Value Pointed by’.

Declaring Variables of Pointer Types

Owing due to the ability of a pointer to directly refer to the value that it points to,
it becomes necessary to specify in its declaration which data type a pointer is
going to point to. However, it is not the same thing as pointing a char as to point
to an int or a float.

Inheritance and Pointers

NOTES

Self - Learning
Material 205

The declaration of pointers follows the following format:
type * name;

where type is the data type of the value that the pointer points to. This
type is not the type of the pointer itself, but the type of the data the pointer
points to. For example:

1
2
3

int * number;
char * character;
float * greatnumber;

These are declarations of pointers. Each one is intended to point to a different
data type; In fact all of them are pointers and all of them occupy the same amount
of space in memory (the size in memory of a pointer depends on the platform
where the code is executed). Nevertheless, the data to which they point to do not
occupy the same amount of space nor are of the same type: the first one points to
an int, the second one to a char and the last one to a float. Therefore, although
these example are variables, all of them are pointers which occupy the same size in
memory, but have different types: int*, char* and float* respectively, depending
on the type they point to.

4.4.1 Pointers and Arrays

The concept of array is very much bound to the pointer. In fact, the identifier of an
array is equal to the address of its first element, as a pointer is. For example,
assuming these two declarations:

1
2

int numbers [20];
int * p;

 The following assignment operation would be valid:

 p = numbers;

After that, p and numbers would be equivalent and will have the same
properties. The only difference is that you could change the value of pointer p by
another one, whereas numbers will always point to the first of the 20 elements of
type int with which they were defined. Therefore, unlike p, which is an ordinary
pointer, numbers is an array, and an array can be considered a constant pointer.
Therefore, the following allocation will not be valid:

 numbers = p;

 As numbers is an array, so it operates as a constant pointer, and you
cannot assign values to constants.

Null Pointer

A null pointer is a regular pointer of any type which has a special value that indicates
that it is not pointing to any valid reference or memory address. This value is the
outcome of type-casting the integer value zero to any pointer type.

1
2

int * p;
p = 0; // p has a null pointer value

Inheritance and Pointers

NOTES

Self - Learning
206 Material

Null pointers are different from void pointers. A null pointer is a value that
any pointer may take to represent that it is pointing to ‘Nowhere,’ whereas a void
pointer is a special type of pointer which can point somewhere without a specific
type. One indicates towards the value stored in the pointer itself and the other
towards the type of data it points to.

4.4.2 Memory Representation in Free Store

To maintain a linked list in the memory, two parallel arrays of equal size are used.
One array (for example INFO) is used for the info field and another array (say,
NEXT), for the next field of the nodes of the list. The values in the arrays are
stored such that the ith locations in arrays INFO and NEXT, contain the info and
next fields of a node of the list, respectively. In addition, a pointer variable Start
is maintained in the memory that stores the starting address of the list. Figure 4.12
shows the memory representation of a linked list where each node contains an
integer.

Fig. 4.12 Memory Representation of a Linked List

In Figure 4.12, the pointer variable Start contains 25, that is, the address
of the first node of the list. This node stores the value 37 in the array INFO, and its
corresponding element in the array NEXT stores 49. 49 the address of the next
node in the list. Similarly it is for other nodes. Finally, the node at address 24
stores value 69 in the array INFO and NULL in the array NEXT, thus, it is the last
node of the list. Note that the values in the array INFO are stored randomly and
the array NEXT is used to keep track of the values in the list.

Memory Allocation

As memory is allocated dynamically to a linked list, a new node can be inserted
anytime in the list. For this, the memory manager maintains a special linked list

Inheritance and Pointers

NOTES

Self - Learning
Material 207

known as free storage list or memory bank or free pool that consists of unused
memory cells. This list keeps track of the free space available in the memory and a
pointer to this list is stored in a pointer variable Avail (Refer Figure 4.13). Note
that the end of a free storage list is also denoted by storing NULL in the last available
block of memory.

Avail

Start

INFO NEXT22

25

82

69

21

22

23

24

25

26

37

4549

50

50

49

24

26

NULL

NULL

21

23

Fig. 4.13 Free Storage List

In Figure 4.13, Avail contains 22, hence, INFO[22] is the starting point of the
free storage list. Since NEXT[22] contains 26, INFO[26] is the next free memory
location. Similarly, other free spaces can also be accessed and NULL in NEXT[23]
indicates the end of the free storage list.

While creating a linked list or inserting an element into a linked list, whenever
a request for the new node arrives, the memory manager searches through the free
storage list for the block of desired size. If the block of desired size is found, it
returns a pointer to that block. However, sometimes there is no space available, that
is, the free storage list is empty; this situation is termed as overflow. In this situation,
the memory manager replies accordingly.

Check Your Progress

1. Define the term base class.

2. What are the different ways in which the base class can be inherited?

3. What do you mean by subclass?

4. Name the two base classes in multiple inheritance.

5. What is hierarchical inheritance?

6. Define the term hybrid inheritance.

7. What is a dynamic data structure?

8. What is pointer?

Inheritance and Pointers

NOTES

Self - Learning
208 Material

4.5 RESERVING AND FREEING DYNAMIC
MEMORY

The dimension or array size declaration of an array is an important subject. Array
dimension is to be declared before compiling. For instance, some valid declarations
are:

char name[25] ;

int mark[40] ;

You have not come across any problem since you were initializing the arrays
and hence, the array size was known. If you were to get the array elements at
runtime, sometimes you could give either a lesser number of elements or more
elements. In the former case garbage values will be stored in the empty spaces in
the array misleading the user. In the latter case, the elements will be lost. To avoid
this problem, you may think that you can specify marks [n] and give the value
of n later at runtime. However, this will not work and the compiler will force you
to give the actual dimension. Hence, dynamic memory allocation is useful. malloc
and calloc serves to specify the actual dimension at runtime and hence, enable
memory allocation dynamically. Next time when you execute the program, you
can specify any value for n. It will definitely work.

The functions malloc()and calloc() allocate memory dynamically.
The specifications are as follows:

The statement
void * malloc (n*size n);

returns the pointer to n bytes of memory or NULL if allotment is not possible.
Since it returns a pointer, you have to specify the array as a pointer variable as
shown:

int *b ; / * array declared * /
b = (int *) malloc (x * 2) ; / * x is the array size * /

Similarly, the calloc is defined as void * calloc (sizen,
size_size). Here, the number of arguments are two. The first one is the array
size and the second one is the bytes occupied per element, i.e., the storage space
required for the datatype. The function returns a pointer allocating space for an
array of size sizen, of datatype size but the array contents will be initialized
to zero. In malloc, the initial contents will be garbage values. We can use it as
follows:

int * b;

b = (int *) calloc (x, 4);

Here, 4 indicates the array of type float and space is allocated to store
x floats. When you use calloc or malloc, you must include alloc.h.

Program using Dynamic Memory Allocation

A program to demonstrate malloc and calloc is given below:

Example 4.15: To do string concatenation by using dynamic allocation of memory.
#include <stdio.h>

#include <alloc.h>

Inheritance and Pointers

NOTES

Self - Learning
Material 209

#include <string.h>

main ()

{

char *newstrcat(char *dest, char *src);

char *name1, *name2;

int n1, n2;

printf(“Enter size of 2 names:\n”);

scanf(“%d%d”, &n1, &n2);

name1 = (char *) calloc(n1, 1);

name2 = (char *) calloc(n2, 1);

printf(“Enter 2 names\n”);

scanf(“%s%s”, name1, name2);

printf(“New name:%s\n”,newstrcat(name1,name2));

}

char *newstrcat(char *dest, char *src)

{

char *w;

int i,len,len1,cnt=0;

len=strlen(dest);

len1=strlen(src);

w=(char *)malloc(len+len1+1);

for(i=0;i<len;i++)

w[cnt++]=dest[i];

for(i=0;i<len1;i++)

w[cnt++]=src[i];

w[cnt]=0;

return(w);

}

The output of the program
Enter size of 2 names:

4 4

Enter 2 names

Rama samy

New name:Ramasamy

calloc is used to allot memory to name1 and name2. The function
newstrcat is called while printing. In the called function malloc is used to
allot space equal to the size of name1, name2 +1. The additional space is for
placing NULL. The string is concatenated by copying one character at a time using
two for statements. Finally, the concatenated string is returned to the main
function where it is printed.

The memory allocated using malloc, calloc can also be freed, when it
is no longer necessary by using the function free(). For instance, in the main(
) of the above example, after the last statement we can add the following
statements;

Inheritance and Pointers

NOTES

Self - Learning
210 Material

free(name1);

free(name2);

These statements will deallocate the memory space allocated to them after
the job of printing the concatenated string is over. Thus, dynamic allocation of
memory as per the exact need and freeing it after use is quite useful for conserving
memory. This concept is used by professional programmers when they develop
commercial software products. Memory saved is more than money saved in such
product development.

4.6 POLYMORPHISM

When a class has several different function declarations which are specified by
single name in the same scope, the functions are said to be overloaded. When the
function is called, the correct function is selected by comparing the types of the
actual arguments with the types of the formal arguments. This is called function
overloading. Similarly, operator overloading can be carried out.Therefore, one
operator executes different operations depending upon the type of arguments.
Operator overloading is possible only with the existing operators. In fact, C++
allows declaration of overloaded operators as a function. The basic difference
between an overloaded operator and an overloaded function is that: the number
of arguments for a given operator are predefined and the overloaded operator
may appear in the natural form rather than the function call form. The following
code is an example of operator overloading.

A

B C

D

X Y

X Y

Z2

YX

Z1

X X Y Y

Z1 Z2

Fig. 4.14 Class D with Duplicate Copies of Properties of A.

#include<iostream.h>

class complex

{

private:

int real, imag; public:

complex() {} complex(int re,int im) {

Inheritance and Pointers

NOTES

Self - Learning
Material 211

real = re; imag = im; } complex operator+(const complex
&x)

{

return complex(real + x.real,imag+x.imag); }

void value() {

cout << “real: “<< real <<“ Imaginary: “<<imag; } };

void main() {

complex a(5,3),b(2,4),c;

c = a+b;

c.value(); }

The operator can be overloaded either as a member function or as a friend
function. In the case of a friend function, the friend keyword must be added
before the function name, and the friend function has one more argument in case of
operator overloading. For example, the above overloaded operator with the friend
option is defined as:

friend complex operator+(const complex &x,const complex
&y) {

return complex(x.real+y.real,x.imag+y.imag); }

The friend keyword allows programmers to designate either specific functions
or the classes whose functions can access not only public members but protected
and private members. Operator overloading member functions need only one
argument for the binary operators, and no argument for the unary operator, as one
of the arguments would be the object from which the function is called. This
argument is passed through the this pointer, which passes its own address of the
object. Notice that, friend functions are not a member of the class.

Runtime polymorphism can be obtained by using virtual functions. A virtual
function is declared in a base class by using the keyword virtual in front of its
declaration. The virtual function may then be overloaded in derived classes. A
virtual function overloaded in a derived class is treated differently, as the base
class function is taken by default if the derived class does not have any
implementation of that function. Otherwise, depending on the address of the object
the pointer holds, the respective function will be called. The following program
illustrates this.

Program 4.1
#include<iostream.h>

class A

{

int a ; public:

A() { a=10; } virtual void value()

cout « “a = “<<a<<endl; } };

class B:public A {

int b; public:

B() { b=20; }

void value()

{

Inheritance and Pointers

NOTES

Self - Learning
212 Material

cout « “b = “«b«endl;

} >;

void main() C

A aobj,*aptr;

B bobj;

aobj.value();

bobj.value();

aptr = &aobj;

aptr->value();

aptr = &bobj;

aptr->value(); }

The output of the program
The output of this program is: a = 10 b = 20 a = 10

b = 20

Notice that if a pointer to an object of the base class is declared, then
pointers to objects of the derived class may be assigned to this base class pointer.

Templates and Exception Handling

A template is used to create a parameterized class in which various types of members
are specified using formal parameters when the class is declared. The template
class syntax requires the prefix

template < class T >

before the definition of the template class. It specifies that a template is being
declared and that a type name T will be used in the declaration. The following
sample program shows the usage of class template.

Program 4.2
#include<iostream.h> template <class T> class sample {

T i; public:

sample(T a) {i=a;}

void value()

{

cout << i<< endl;

> };

void main() {

sample<int> si (10);

sample<float> s2(20.5);

si.value();

s2.value(); }

The output of the program

The output of this program is:
10

20.5

Inheritance and Pointers

NOTES

Self - Learning
Material 213

Since sample is the template class, where ever the name is used, the template
argument should be given. A function template can also be used in a similar manner.
The member function value of the above program is defined as a template function
which is given below.

template<class T> void sample<T>::value() { , cout <<
i<< endl; }

The concept of exception handling is used when the programmer wishes to
display or do something on his own if any error occurs while running the program.
The keywords used here are try, throw and catch. Before taking up further
explanation, consider the following program.

Program 4.3
#include <iostream.h> class error_handler

{

int size; public:

error_handler(int x) {

size = x; }

class ranged; //exception class void check(int y) {

if (y>size)

throw range () ; cout << “Given range is accepted”<<
endl; } };

void main() {

error_handler eh(10);

try

{

eh.check(8);

eh.check(15);

eh.check(6); }

catch(error_handler::range) {

cout << “Given range is rejected”<< endl; }

The output of the program

The output of this program is:

Given range is accepted

Given range is rejected

In this program the argument value of the function check is verified with
size. If it is lesser than or equal to the value of size, the value will be accepted,
Otherwise, it will throw out the corresponding exception. Once the thrown exception
is caught, the required operation is carried out. Here, we are simply rejecting the
value. In order to throw out an exception, we must have an exception class such
as range, in this program.

4.7 VIRTUAL FUNCTIONS

Virtual functions are one of the attributes of C++ that support run-time
polymorphism. A virtual function is a member function that is declared inside the

Inheritance and Pointers

NOTES

Self - Learning
214 Material

base class and its functionality can be overridden in the derived classes. When the
base class containing virtual function is inherited, the derived classes may implement
their own versions of that function. The entire function of the base class can be
replaced by a set of new implementation in the derived class. This implies that the
base class provides a common interface and this interface can be implemented in
different ways in different derived classes. A member function can be made virtual
by prefixing its declaration with the keyword virtual in the base class. For
example, consider the base class definition:

class base

{

 public:

virtual void display() //virtual function

{

cout<<“Base class”;

}

};

In this class definition, the function display() of the class base is declared
virtual. Thus, the display() function can be redefined in the derived
classes of the class base.

Note: If the virtual function is declared inside and defined outside the base class, then
the keyword virtual does not require to be specified in the definition

Whenever a virtual function is inherited, its virtual nature also gets inherited into all
its derived classes and it is not required to use the keyword virtual in the
subsequent derived classes. For example, consider the derived class definition:

class derived:public base

{

 public:

void display() //overriding virtual function

{

cout<<“Derived class”;

}

};

In addition, when a derived class that inherits a virtual function and is used as a
base class, the virtual function can still be overridden. This implies that a virtual
function always remains virtual irrespective of the number of times it is inherited.

A virtual function must be accessed using a pointer of base class type and
not of derived class type. However, if the function is not declared virtual and
the pointer of base class is made to point to the derived class, the function of the
base class is always executed. That is, the compiler selects a function on the basis
of type of the pointer instead of its contents. However, if the function is declared
virtual in the base class, the compiler selects which version of the function is
to be executed depending upon the contents of the pointer. Moreover, this decision
is made at the run-time, thereby, employing dynamic binding. Hence, declaring a
member function virtual informs the compiler that the function call is resolved
at run-time. For example, consider the statements:

Inheritance and Pointers

NOTES

Self - Learning
Material 215

base b; //object of base class

derived d; //object of derived class

base *bptr; //pointer of type base

bptr=&b; //pointing to base class

bptr->display(); //display() of base class

bptr=&d; //pointing to derived class

bptr->display(); //display() of derived class

If a virtual function is not redefined in the derived class, a call to that function uses
the function implementation defined in the base class. Moreover, like a non-virtual
member function, a virtual member function is directly accessible in the derived
class with the help of the scope resolution operator (::). However, in this case,
the mechanism of virtual function will not work and the base class implementation
of the function is called.

Memory Management

For each class containing at least one virtual function, a v-table (pronounced as
virtual table) is constructed in the memory by the compiler. The v-table stores the
base addresses of all the virtual functions defined in the class. Each object of the
class (containing one or more virtual functions) contains a vptr (pronounced as
virtual pointer) in the beginning of the object in the memory that points to v-table in
the memory (Refer Figure 4.15). Note that if a virtual function is not implemented
in the derived class, the v-table of derived class stores the address of the function
defined in the base class.

vptr

data
members

virt_func1_ptr
virt_func2_ptr
virt_func3_ptr
……………...
……………...

class object v-table
virtual func1()

virtual func2()

virtual func3()

Fig. 4.15 Virtual Table in Memory

When a virtual function is called by an object, the vptr of that object provides the
base address of the v-table for that class, which in turn provides the address of the
function, called by the object. This is how a virtual function call is resolved at run-
time and dynamic binding is achieved.

Note: There exists only one v-table for each class in spite of the number of virtual functions
contained in it.

Example 4.16: A program to demonstrate virtual function
#include<iostream>

using namespace std;

class person

{

 protected:

char name[20];

 public:

virtual void getdata() //virtual function

Inheritance and Pointers

NOTES

Self - Learning
216 Material

{

cout<<“Name: “;

cin>>name;

}

virtual void display(){ } //empty virtual function

};

class emp : public person

{

int emp_no;

 public:

void getdata() //virtual function overriding

{

cout<<“Employee no.: “;

cin>>emp_no;

person::getdata(); //getdata() of person

}

void display() //virtual function overriding

{

cout<<“\nEmployee’s Details\n”;

cout<<“Employee no.: “<<emp_no<<“\n”;

cout<<“Name: “<<name<<“\n”;

}

};

class stu : public person

{

int roll_no;

 public:

void getdata() //virtual function overriding

{

cout<<“Roll no.: “;

cin>>roll_no;

person::getdata(); //getdata() of person

}

void display() //virtual function overriding

{

cout<<“\nStudent’s Details\n”;

cout<<“Roll no: “<<roll_no<<“\n”;

cout<<“Name: “<<name<<“\n”;

}

};

int main()

{

person* ptr[5]; //array of pointers to person

int i=0; char ch;

Inheritance and Pointers

NOTES

Self - Learning
Material 217

do{

cout<<“Enter data for employee or student(e/s): “;

cin>>ch;

if(ch==’e’)

{

ptr[i]=new emp; //pointing to object of emp

cout<<“Enter details of employee\n”;

}

else

{

ptr[i]=new stu; //pointing to object of stu

cout<<“Enter details of student\n”;

}

ptr[i++]->getdata(); //getdata() of ith object

cout<<“Want to enter another (y/n): “;

cin>>ch;

}while(ch==’y’ || ch==’Y’);

for(int j=0;j<i;j++)

ptr[j]->display(); //display() of jth object

return 0;

}

The output of the program
Enter data for employee or student(e/s): e

Enter details of employee

Employee no.: 103

Name: Smith

Want to enter another (y/n): y

Enter data for employee or student(e/s): s

Enter details of student

Roll no.: 12

Name: Robert

Want to enter another (y/n): n

Employee’s Details

Employee no.: 103

Name: Smith

Student’s Details

Roll no: 12

Name: Robert

In Example 4.16, the functions getdata() and display() of the base
class person are declared as virtual and are overridden in the derived
classes emp and stu. An array of pointers ptr to person is declared in
main() and depending on the user’s choice, the elements of ptr point to the
objects of either emp or stu class. Note that whenever ptr points to the
object of emp class, the functions getdata() and display() of the emp

Inheritance and Pointers

NOTES

Self - Learning
218 Material

class are called. Similarly, the functions getdata() and display() of the
stu class are called when ptr points to the object of the stu class.
Note: A class declaring or inheriting a virtual function is known as polymorphic class and the
objects of such a class are known as polymorphic objects.

The base class virtual function and its redefined versions in the derived
classes must have the same prototype. However, if the prototype differs, the
compiler considers these functions as overloaded functions and the virtual function
mechanism is ignored. Some of the points regarding virtual functions are as follows:

 A virtual function cannot be global or static, however, it can be declared as
a friend function of another class.

 The constructors of a base class cannot be made virtual since at the time
the constructor is invoked, the virtual table is not available in the memory.
However, the destructors can be made virtual.

 On incrementing or decrementing the pointer of base type, it will always
point to the next or the previous object, respectively of its base class type
irrespective of the contents of the pointer.

4.7.1 Pure Virtual Functions

As stated earlier, if a derived class does not redefine a virtual function, the base
class implementation of virtual function is invoked. However, in some cases, either
no meaningful definition of the virtual function exists in the base class or each
derived class is required to define its own version of the virtual function. To handle
such cases, C++ provides pure virtual functions.

A virtual function having no definition within the base class is called pure
virtual function. A virtual function can be made pure by appending the pure specifier
“=0” to its declaration in the base class.

The syntax for declaring a pure virtual function is:
virtual return_type function_name(parameter_list)=0;

To understand the concept of pure virtual functions, consider Example 4.17. In
this example, the virtual function display() of the class person is defined
without a body. Moreover, this function has never been called within the program.
Thus, display() can be made a pure virtual function as shown in this example.

Example 4.17: A code segment to demonstrate pure virtual function
class person

{

... //as defined in Example 4.17

...

virtual void display()=0; //pure virtual function

};

Note that if a virtual function is declared as pure, it must be redefined in all of its
derived classes otherwise a program error occurs. In addition, a virtual function
cannot have both the pure specifier and the definition.

Abstract Classes
A class that contains at least one pure virtual function is known as an abstract class
or abstract base class. An abstract class is different from a polymorphic class. An
abstract class cannot be instantiated, as at least one of its members (that is pure

Inheritance and Pointers

NOTES

Self - Learning
Material 219

virtual function) lacks implementation. This implies that abstract classes can only
be used to act as a base class for other classes and not for instantiation. In addition,
an abstract class cannot be used as an argument or the return type of a function.
However, a pointer to an abstract class can be made. Moreover, an abstract class
can be derived from a non-abstract class by overriding its non-pure virtual function
with a pure virtual function.

For example, the class person (as defined in Example 4.17) is an abstract
class as it contains a pure virtual function display(). Thus, the objects of the
class person cannot be created within the program. If an attempt is made to
create the objects of the class person, the compiler reports an error.

Note: Any class inherited from an abstract class remains abstract until each of its pure virtual
function is overridden.

Virtual Destructors

A destructor of the derived class is called before the destructor of the base class.
However, an exception arises in destructors when the pointer of the base class is
made to point to the object of derived class and memory is allocated to the object
with the use of new operator. Now, if the memory is de-allocated using the
delete operator, only the base class destructor is called and the derived class
destructor is not called as the pointer is of base class type. This results in what is
known as memory leak, which is defined as the loss of memory access due to the
wrong destructor being invoked.

However, by making the base class destructor virtual, both the destructors
will be called in the right order. A destructor can be made virtual by prefixing its
declaration using the keyword virtual in the base class. Note that the virtual
member function and a virtual destructor are different in the sense that if the derived
class redefines the function then in the former case, only the derived class version
of the function is called whereas in the latter case, both the derived and base class
versions of destructor are called.

Note: A destructor can also be declared as pure virtual destructor. However, the body
of a pure virtual destructor must be defined otherwise a run-time error is generated.

Example 4.18: A program to demonstrate virtual destructors
#include<iostream>

using namespace std;

class base

{

 public:

virtual ~base() //virtual destructor

{

cout<<“base class destructor called\n”;

}

};

class derived : public base

{

 public:

~derived()

Inheritance and Pointers

NOTES

Self - Learning
220 Material

{

cout<<“derived class destructor called\n”;

}

};

int main()

{

base *ptr;

ptr=new derived; //memory allocation to derived object

delete ptr; //memory de-allocation

return 0;

}

The output of the program
derived class destructor called

base class destructor called

In Example 4.18, the destructor of the class base is declared virtual. When
the memory allocated to the derived class object is de-allocated using the pointer
ptr of base type and the delete operator, the derived class destructor
is called before the base class destructor.

4.7.2 Early vs. Late Binding

C++ polymorphism can be achieved either at compile-time or at run-time. At
compile-time, polymorphism is implemented using operator overloading and
function overloading. However, at run-time, it is implemented using virtual functions.

Function overloading is a way to implement compile-time polymorphism
that allows multiple functions to share the same name with different parameters.
The compiler identifies the function on the basis of its signature. Operator
overloading is the process that enables an operator to exhibit different behaviour,
depending on the data provided. These types of compile-time polymorphism are
also known as early binding or static binding as the linking of function call to the
actual code of the function is done at compile-time itself.

A virtual function is a member function that is declared inside the base class
and its functionality can be overridden in the derived classes. A virtual function is
accessed using a pointer of base class type and not of derived class type. The
compiler selects which version of the function is to be executed depending upon
the contents of the pointer. Moreover, this decision is made at the run-time, thereby,
employing dynamic binding. Hence, declaring a member function virtual informs
the compiler that the function call is resolved at run-time. This type of runtime
resolution is known as late binding.

Check Your Progress

9. Define the term free storage list.

10. What is calloc?

11. What are virtual functions?

12. Define the term pure virtual functions.

Inheritance and Pointers

NOTES

Self - Learning
Material 221

4.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Inheritance is a process of deriving a new class from an already existing class
in such a way that the new class inherits all the members of the already
existing class. In inheritance, the class which is inherited by the new class is
known as base class or superclass or parent.

2. Depending on the access specifiers public, protected or
private, a base class can be publicly inherited, protectedly inherited or
privately inherited, respectively.

3. Inheritance is implemented while defining a subclass. The name of the
superclass is specified in the subclass definition. A subclass can be defined
by using extends keywords.

4. The derived class owner is inherited from two base classes, namely, person
and company.

5. Hierarchical inheritance is a type of inheritance in which more than one class
is derived from a single base class. In hierarchical inheritance, a base class
provides members that are common to all of its derived classes.

6. According to the user requirement the various types of inheritance, can be
combined. This type of inheritance is known as hybrid inheritance.

7. A dynamic data structure is one in which the memory for elements is allocated
dynamically at runtime.

8. A pointer is a programming language data type whose value points directly
to (or ‘Points to’) another value stored elsewhere in the computer memory
by using its address.

9. As memory is allocated dynamically to a linked list, a new node can be
inserted anytime in the list. For this, the memory manager maintains a special
linked list known as free storage list or memory bank or free pool that consists
of unused memory cells.

10. The calloc is defined as void * calloc (sizen, size_size).
Here, the number of arguments are two. The first one is the array size and
the second one is the bytes occupied per element, i.e., the storage space
required for the datatype. The function returns a pointer allocating space
for an array of size sizen, of datatype size but the array contents
will be initialized to zero.

11. Virtual function is a member function that is declared inside the base class
and its functionality can be overridden in the derived classes. When the base
class containing virtual function is inherited, the derived classes may
implement their own versions of that function.

12. A virtual function having no definition within the base class is called pure
virtual function.

Inheritance and Pointers

NOTES

Self - Learning
222 Material

4.9 SUMMARY

 Inheritance is a process of deriving a new class from an already existing class
in such a way that the new class inherits all the members of the already
existing class. In inheritance, the class which is inherited by the new class is
known as base class or superclass or parent.

 Depending on the access specifiers public, protected or
private, a base class can be publicly inherited, protectedly inherited or
privately inherited, respectively.

 Inheritance is implemented while defining the derived class. The name of
the base class appears in the definition of derived class. Since the derived
class is nonexistent, when base class is defined the inheritance is implemented
only at the time of derived class definition.

 Inheritance is implemented while defining a subclass. The name of the
superclass is specified in the subclass definition. A subclass can be defined
by using extends keywords.

 The derived class owner is inherited from two base classes, namely, person
and company.

 When a derived class inherits from more than one base class simultaneously,
it is referred to as multiple inheritance. In multiple inheritance, the derived
class inherits the members of all its base classes and can directly access the
public and the protected members of its base classes.

 Hierarchical inheritance is a type of inheritance in which more than one class
is derived from a single base class. In hierarchical inheritance, a base class
provides members that are common to all of its derived classes.

 According to the user requirement the various types of inheritance, can be
combined. This type of inheritance is known as hybrid inheritance.

 In some hybrid inheritance ambiguity arises when the derived class directly
accesses a member of its indirect base class.

 A dynamic data structure is one in which the memory for elements is allocated
dynamically at runtime.

 A static variable upholds the same data all through the execution of a program
while a dynamic variable can have different values during the course of a
program.

 A pointer is a programming language data type whose value points directly
to (or ‘Points to’) another value stored elsewhere in the computer memory
by using its address.

 A null pointer is a regular pointer of any type which has a special value that
indicates that it is not pointing to any valid reference or memory address.
This value is the outcome of type-casting the integer value zero to any pointer
type.

 As memory is allocated dynamically to a linked list, a new node can be
inserted anytime in the list. For this, the memory manager maintains a special

Inheritance and Pointers

NOTES

Self - Learning
Material 223

linked list known as free storage list or memory bank or free pool that consists
of unused memory cells.

 Dynamic memory allocation is useful. malloc and calloc serves to
specify the actual dimension at runtime and hence, enable memory allocation
dynamically.

 The calloc is defined as void * calloc (sizen, size_size).
Here, the number of arguments are two. The first one is the array size and
the second one is the bytes occupied per element, i.e., the storage space
required for the datatype. The function returns a pointer allocating space
for an array of size sizen, of datatype size but the array contents
will be initialized to zero.

 When a class has several different function declarations which are specified
by single name in the same scope, the functions are said to be overloaded.
When the function is called, the correct function is selected by comparing
the types of the actual arguments with the types of the formal arguments.
This is called function overloading.

 Virtual function is a member function that is declared inside the base class
and its functionality can be overridden in the derived classes. When the base
class containing virtual function is inherited, the derived classes may
implement their own versions of that function.

 A virtual function having no definition within the base class is called pure virtual
function.

 A class that contains at least one pure virtual function is known as an abstract
class or abstract base class.

 Polymorphism can be achieved either at compile-time or at run-time. At
compile-time, polymorphism is implemented using operator overloading and
function overloading.

 A virtual function is a member function that is declared inside the base class
and its functionality can be overridden in the derived classes. A virtual function
is accessed using a pointer of base class type and not of derived class type.

4.10 KEY TERMS

 Inheritance: It refers to a process of deriving a new class from an already
existing class in such a way that the new class inherits all the members of the
already existing class.

 Multiple inheritance: When a derived class inherits from more than one
base class simultaneously, it is referred to as multiple inheritance.

 Hierarchical inheritance: It is a type of inheritance in which more than
one class is derived from a single base class.

 Hybrid inheritance: According to the user requirement various types of
inheritance can be combined. This type of inheritance is known as hybrid
inheritance.

Inheritance and Pointers

NOTES

Self - Learning
224 Material

 Dynamic data structure: It is a data structure in which the memory for
elements is allocated dynamically at runtime.

 Virtual function: It refer to a member function that is declared inside the
base class and its functionality can be overridden in the derived classes.

 Pure virtual function: It is a virtual function having no definition within the
base class is called pure virtual function.

4.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Defins the term derived class.

2. What do you mean by public inheritance?

3. Differentiate between superclass and subclass.

4. What do you understand by the term parameterised constructor of base
class?

5. What is hybrid inheritance?

6. Define the term null pointer.

7. State the concept of dynamic memory allocation.

8. What is polymorphism?

9. Write in brief about abstract classes.

10. Define the term virtual destructors.

11. Differentiate between early and late binding.

Long-Answer Question

1. Explain how inheritance facilitates code reusability.

2. Discuss different types of access specifiers.

3. Describe how the access specifier of base class members can be restored.

4. Explain the multiple inheritances with the help of diagram.

5. Explain how the constructors and destructors are called in a multiple
inheritance.

6. Differentiate between hierarchical and hybrid inheritance with the help of
diagram.

7. Describe virtual base classes with the help of appropriate examples.

8. Discuss the dynamic data structure and its advantages over a static data
structure.

9. Explain memory representation and memory allocation in free storage.

10. Write the program to do string concatenation by using dynamic allocation
memory.

Inheritance and Pointers

NOTES

Self - Learning
Material 225

11. Explain how the compiler handles calls to virtual functions.

12. Differentiate between virtual and pure virtual functions with the help of
example.

4.12 FURTHER READING

Jeyapoovan, T. 2006. Computer Programming: Theory and Practice (with
CD). New Delhi: Vikas Publishing House.

Khurana, Rohit. 2008. Object Oriented Programming with C++. New Delhi:
Vikas Publishing House.

Saxena, Sanjay. 2009. Introduction to Information Technology. New Delhi:
Vikas Publishing House.

Rumbaugh, James, Fedrick Blaha, William Premerlani, and Federick Eddy.1990.
Object- Oriented Modelling and Design. New Jersey: Prentice Hall.

Balaguruswamy, E. 1998. Object-Oriented Programming. New Delhi: Tata
McGraw-Hill.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 227

UNIT 5 INPUT-OUTPUT AND
FILE HANDLING IN C++

Structure

5.0 Introduction
5.1 Objectives
5.2 Old vs. Modern C++
5.3 C++ Streams

5.3.1 Stream Classes
5.3.2 Managing Output with Manipulators
5.3.3 Classes for File Stream Operations
5.3.4 Opening and Closing a File
5.3.5 Manipulations of File Pointers
5.3.6 Random Access

5.4 Standard Library Objects
5.5 Container Classes
5.6 Lists, Map and Algorithms

5.6.1 Map in C++ Standard Template Library (STL)
5.6.2 Abstract Data Types (ADTs)
5.6.3 Linked List Implementation

5.7 String Class
5.7.1 Command-Line Arguments

5.8 Answers to ‘Check Your Progress’
5.9 Summary

5.10 Key Terms
5.11 Self-Assessment Questions and Exercises
5.16 Further Reading

5.0 INTRODUCTION

In C++, I/O either with the console or other devices, such as disk drive is visualised
as an exchange of streams of bytes between the programs and I/O devices. Buffer
can be visualized as a fast memory device, which can store bytes of data. The
buffer provides for temporary storage of the data. For instance, if a program
wants to output to a printer, the entire text is placed on the buffer. The buffer will
in turn transfer the characters to the printer via the output stream. It is more important
in the case of disc drives since we cannot read or write one character at a time
which will cause a lot of overhead.

The formatting functions defined in ios_base are presented in header file
<ios>. The formatting functions of istream and ostream are in their
respective header files and through inheritance in <iostream>. The basic_ios
is a virtual base class in the C++ standard library. It provides an interface to all the
stream classes and thus provides general properties required of a stream.

The C language introduced library functions to make the job of a programmer
easy and interesting. C++ has also incorporated many standard libraries. For
instance, strings were treated as an array of characters in the earlier versions of

Input-Output and
File Handling in C++

NOTES

Self - Learning
228 Material

C++, as in C. Maps are associative containers that store elements in a mapped
fashion. Each element has a key value and a mapped value. String manipulation is
one of the most common task of any C++ program. A string is defined as a sequence
of characters terminated by null character and can be represented as an array of
char type. However, C++ also provides a better alternative for handling string.

In this unit, you will study about the old vs modern in C++, i/o C++ streams,
creating inserters and extractors, manipulation functions, classes for file stream
operations, opening and closing a file, manipulation of file pointers, random access,
command-line arguments, standard library objects, container classes and vectors,
list, map and algorithms, string class.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the old vs modern in C++

 Explain the i/o C++ streams

 Discuss about the creating inserters and extractors, manipulation functions

 Define the classes for file stream operations

 Explain the opening and closing a file

 Understand the manipulations of file pointers

 Analyse the random access

 Define the command-line arguments

 Elaborate on the standard library objects

 Discuss about the container classes and vectors

 Analyse the lists, map and algorithms

 Explain the map in C++ Standard Template Library (STL)

 Define the string class

5.2 OLD VS. MODERN C++

C++ is a general-purpose programming language created by Bjarne Stroustrup
as an extension of the C programming language, or ‘C with Classes’. The
language has expanded significantly over time, and modern C++ now has object-
oriented, generic, and functional features in addition to facilities for low-level
memory manipulation. It is almost always implemented as a compiled language,
and many vendors provide C++ compilers, including the Free Software
Foundation, LLVM, Microsoft, Intel, Oracle, and IBM, so it is available on
many platforms.

C++ was designed with an orientation toward system programming and
embedded, resource-constrained software and large systems, with performance,
efficiency, and flexibility of use as its design highlights. C++ has also been found
useful in many other contexts, with key strengths being software infrastructure

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 229

and resource-constrained applications, including desktop applications, video
games, servers (for example, e-commerce, web search, or databases), and
performance-critical applications (for example, telephone switches or space
probes).

Modern C++ is standardized by the International Organization for
Standardization (ISO), with the latest standard version ratified and published by
ISO in December 2020 as ISO/IEC 14882:2020 (informally known as C++20).
The C++ programming language was initially standardized in 1998 as ISO/IEC
14882:1998, which was then amended by the C++03, C++11, C++14, and
C++17 standards. The current C++20 standard supersedes these with new
features and an enlarged standard library. Before the initial standardization in
1998, C++ was developed by Danish computer scientist Bjarne Stroustrup at
Bell Labs since 1979 as an extension of the C language; he wanted an efficient
and flexible language similar to C that also provided high-level features for
program organization. Since 2012, C++ has been on a three-year release
schedule with C++23 as the next planned standard.

After C++98, C++ evolved relatively slowly until, in 2011, the C++11
standard was released, adding numerous new features, enlarging the standard
library further, and providing more facilities to C++ programmers. After a minor
C++14 update released in December 2014, various new additions were
introduced in C++17. On January 3, 2018, Stroustrup was announced as the
2018 winner of the Charles Stark Draper Prize for Engineering, “For
conceptualizing and developing the C++ programming language”.

After becoming finalized in February 2020, a draft of the C++20 standard
was approved on 4 September 2020 and officially published on 15 December
2020.

As of 2021 C++ ranked fourth on the TIOBE index, a measure of the
popularity of programming languages, after C, Java, and Python. The TIOBE
programming community index is a measure of popularity of programming
languages, created and maintained by TIOBE Software BV, based in Eindhoven,
the Netherlands. TIOBE stands for The Importance of Being Earnest, the title
of an 1895 comedy play by Oscar Wilde.

C++ Core Guidelines: The C++ Core Guidelines are an initiative led by
Bjarne Stroustrup, the inventor of C++, and Herb Sutter, the convener and
chair of the C++ ISO Working Group, to help programmers write “Modern
C++” by using best practices for the language standards C++14 and newer,
and to help developers of compilers and static checking tools to create rules for
catching bad programming practices.

The main aim is to efficiently and consistently write type and resource safe
C++.

The Core Guidelines were announced in the opening keynote at CPPC
on 2015.

The Guidelines are accompanied by the Guideline Support Library (GSL),
a header only library of types and functions to implement the Core Guidelines

and static checker tools for enforcing Guideline rules.

Input-Output and
File Handling in C++

NOTES

Self - Learning
230 Material

5.3 C++ STREAMS

The purpose of a program is to enable communication between the user and a
computer. The software developed is used for carrying out desired tasks. It takes
input data from the user. The software performs specified tasks using the data
supplied. The computer will communicate the results in the user-defined media.
Visualize any process carried out using software to realize the importance of Input/
Output (I/O). For instance, in air traffic control system, the input data, such as
relative position, speed etc is generated by the aircrafts approaching the station.
The software should process the input and give directions for each flight to land at
the specified time and location, taking into consideration the input. In this case the
output in the form of directions to land may appear on the console. In a departmental
stores, the sales person enters the code and number of items sold as the input data
through the keyboard. The software makes a bill and displays it in the monitor and
prints it out. The external interface is therefore essential for any Information
Technology product.

The basic input for any computer system goes from the keyboard and the
output is displayed in the monitor. The error messages will be displayed in the
console by default. In this chapter, we will discuss about how the C++ programs
communicate with the Input / Output devices, such as console (keyboard and
video monitor). We will discuss about I/O with Disk drives-files later. The principles,
philosophy and methods for I/O are common across devices. Thus C++ stands
apart in giving a unique I/O methodology. It is so flexible to device a suitable
methodology for an application using the facility provided in C++ standard libraries.

We did take input from keyboard by using cin>> and displayed output in
monitor using cout<<. We could not discuss much of the theory behind them
early in the book, since understanding them required advanced concepts, such as
multiple inheritance, operator overloading, and virtual functions. Now that we
understand these advanced concepts, it will be easy to understand the console
input / output methodology. The library functions in C such as printf, scanf
can still be used in C++ also. But in C++ we would love to use the new methodology
since they are much simple to use and at the same time flexible and powerful. In C
as well as in C++ we do not have keywords for input/output unlike programming
languages such as BASIC or FORTRAN. It should not be considered as a
weakness, but as strength. In C we use functions for input / output. In C++, we
use classes, objects, functions and overloaded operators for implementing input /
output.

C++ Streams I/O

In C++, I/O (Input/Output) either with console or other devices, such as Disk
Drive is visualized as exchange of stream of bytes between the programs and I/O
devices. The bytes can be digits or characters. When we get input to a program
either from keyboard or from disk or from another program we extract stream of
bytes. Similarly when a program gives an output, it inserts or sends out a stream of
bytes to an output device, such as console monitor, printer, disk drive or another
program.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 231

A stream can be considered to be an intermediary for I/O, between the
program and I/O devices. Therefore for input we need an intermediary called
input stream, which acts as the interface between the program and input device as
shown inFigure 5.1(a).

Fig. 5.1(a) Use of Input Stream

When we can visualize Input as given in Figure, this can be applied to input
from any device such as keyboard, floppy disc drive, hard disc drive or even any
other program. Similarly we can associate an output stream for output of a program
as shown in Figure 5.1(b).

Fig. 5.1(b) Use of Output Stream

Here again the program can be any C++ program. The output device can
be another program, a printer, disc drive or console monitor. The Input / Output
(I/O) streams are implemented in the form of classes and are part of the standard
libraries supplied with the C++ language system or IDE. This kind of I/O involves
the following:

 Designating an appropriate stream for I/O for the program.

 Linking the I/O device to the stream through the software.

For instance, when the program encounters cin<< var1; the keystrokes
are received at the input stream. From there it is transferred to the main memory
by the program and stored as var1. Similarly, when the program encounters
cout<< var2; the contents of var2 are placed at the output stream by the
program and thereafter displayed in the monitor. The keyboard is the default or
standard input device and the console monitor is the standard output device. A
schematic diagram of I/O between C++ programs and standard I/O devices is
given in Figure 5.2.

Fig. 5.2 I/O with Keyboard and Monitor

The above figure also indicates the conceptual realization of standard I/O
with streams.

Buffer

Since the speed of operation of the various devices, such as main memory,
keyboard, printer etc. are widely varying, there is a need to incorporate a buffer,
another intermediary. Buffer can be visualized as a fast memory device, which can
store bytes of data. The buffer provides for temporary storage of the data. For
instance, if a program wants to output to a printer, the entire text is placed on the

Input-Output and
File Handling in C++

NOTES

Self - Learning
232 Material

buffer. The buffer will in turn transfer the characters to the printer via the output
stream. It is more important in the case of disc drives since we cannot read or
write one character at a time which will cause a lot of overhead. Therefore, the
buffer comes handy. In this case, for an input from disc drive, the entire data is
transferred to the buffer from the file. Then, depending on the requirements, the
necessary bytes are transferred to the program via the input stream. When we
want to send text to a disc drive, the data is put on the buffer. Then when the
buffer is full or when the entire text has been transferred to the buffer, it is flushed
or emptied and written on to the disc. Flushing is basically clearing or emptying the
buffer. In C++, the input buffer is flushed when we hit a Return or Enter key. In the
case of output buffer, flushing takes place when a new line character is encountered.
When we transfer strings line by line to a disc drive, we append new line characters
at the end of the line. This is a signal to the buffer to flush it and pass it on to the
stream for writing to a file. Now, the buffer is ready to receive another line of text.
Therefore, we can insert a buffer in between the stream and the I/O device on
either side. Thus, the buffer makes reading and writing of devices of incompatible
speeds much easier. So far we have been discussing the concept. Now we will
look at the aspects of implementation.

basic_streambuf CLASS

To implement the buffers a class called basic_streambuf is available
in the C++ standard library. It allocates memory (in the computer) for creating a
buffer. It has also member functions for managing the buffer memory. Managing
involves filling the buffer, flushing the buffer and accessing the contents of the buffer.
Thus, this class is quite useful to set up a buffer for I/O in C++ programs. Similarly,
the streams are implemented by classes.

5.3.1 Stream Classes

The basic_ios is a virtual base class in the C++ standard library. It provides
an interface to all the stream classes and thus provides general properties required
of a stream. The properties include whether it is an input stream or output stream
i.e. whether the stream is opened for reading or if it is opened for writing. The
basic_ios class also has a pointer to an object of basic_streambuf class.
Thus it provides the link between the buffer and streams for proper coordination
between them. We will discuss more about the stream classes later.

The basic_ios class contains many member functions for carrying out
input and output. This class is used for input / output operations with all types of
devices, such as Disk / file input / output, standard input / output using console etc.

Insertion Operator << and cout

We have used the insertion << operator extensively. Let us now see its origin.
Actually, it is an overloaded operator. This means there must be an overloaded
operator function and should be in a class. Actually it is a member of
basic_ostream class. The basic_ostream class is derived from
basic_ios class. The cout is an object. It directs the output to the standard
output stream, which points to the console monitor. The cout is an object derived
from basic_ostream class. The relationship of the operator, object and classes
are depicted in Figure 5.3.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 233

Fig. 5.3 Origin of << and Cout

Extraction Operator >> and cin

The >> operator is also overloaded and the cin is an object and they are similarly
derived as given in Figure 5.4.

Fig. 5.4 Origin of >> and Cin

Thus basic_ios is the common base class for both basic_istream
and basic_ostream classes.

The stream classes have a basic prefix. The classes are stored in header
files in the standard C++ library without prefix as shown in Table 5.1.

Table 5.1 Stream Classes and Header Files

Class Header file

 basic_ios <ios>

 basic_istream <istream>

 basic_ostream <ostream>

We will omit the basic prefix for the sake of convenience.

istream Class

The istream class in the standard library is derived from ios. It contains member
functions to carry out formatted and unformatted input operations. It contains the
overloaded extraction (>>) operator functions. Some of its member functions are:

get()

read()

getline()

ostream Class

The ostream class in the standard library implements a mechanism for converting
value of any type to a sequence of characters. The ostream class contains the
overloaded insertion (<<) operator function and also the following member
functions:

Input-Output and
File Handling in C++

NOTES

Self - Learning
234 Material

put()

write()

iostream Class

The class iostream in the standard library is inherited both from istream and
ostream as indicated in Figure 5.5.

Fig. 5.5 Iostream Class Derivation

Note that the stream classes have a basic prefix, although they have been
omitted in the Figure 5.5 for convenience. Hence the class iostream has also a
basic prefix and stored in header file <iostream>.

Therefore, we could use cin and cout by including routinely <iostream>
in our program file. It supports both cin and cout, assigning them to the standard
input device namely the keyboard and standard output device namely the console
monitor respectively.

The basic_iostream class inherits both from basic_istream and
basic_ostream classes to provide a single interface both for input / output.
Thus all the five functions mentioned above are available with it also, due to
inheritance. The overloaded operator functions call separate functions in the stream
classes for different types of data such as integer, float and character type. It is for
this reason that we do not specify the format such as %d, %f, %c etc. as in C.
The operators << and >> are just symbols. We could cascade them as given
below:

cout << x << y < “\n”;

The actual output appears in the same order as specified. We can also
cascade different data types as input as given below:

float f ;

int in ;

cin >> f >> in;

Since depending on data types, separate function in the class will be called,
there is no problem when mixing data types as in the above example.

Functions get and put

The get function receives one character at a time. There are two prototypes
available in C++ for get as given below:

get (char *)

get ()

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 235

Their usage will be clear from the example below:
char ch ;

cin.get (ch);

In the above, a single character typed on the keyboard will be received and
stored in the character variable ch.

Let us now implement the get function using the other prototype:
char ch ;

ch = cin.get();

This is the difference in usage of the two prototypes of get functions. What
is the difference between the >> operator and get function? We could have
written cin >> ch; In such case, the extraction operator will ignore the white spaces
and new line characters. But the get function will take note of them.

Remember that the get function belongs to the istream class.

The complement of get function for output is the put function of the
ostream class. It also has two forms as given below:

cout.put (var);

Here the value of the variable var will be displayed in the console monitor.
We can also display a specific character directly as given below:

cout.put (‘a’);

Here the program will display the given character on the console monitor.

The program below illustrates the use of get and put function.

Program 5.1
#include<iostream>

using namespace std;

int main(){

char ch;

int i;

cout<<“Enter 10 characters with out giving space\n”;

for (i=0; i<10; i++){

cin.get(ch);

cout.put(ch);

}

cout<<“\n Enter 10 characters with space\n”;

for (i=0; i<10; i++){

cin.get(ch);

cout.put(ch);

}

}

In the above program, in the first loop you are asked to enter ten characters
without giving space. Therefore after entering the characters and pressing Enter
key, the program will reproduce the characters. But in the next loop we enter
characters with space. The get function recognizes white spaces. Hence after
reading the fifth character and the following white space, ten characters (including

Input-Output and
File Handling in C++

NOTES

Self - Learning
236 Material

white spaces) would have been received. The for loop will terminate since it has
executed ten times, five time receiving white space and five times the actual
character. Hence we can receive only five characters interleaved with five white
spaces. The characters entered after that will be ignored. The put function will
therefore display five characters with spaces as the result below indicates.

The output of the Program
Enter 10 characters with out giving space

aeiouaeiou

aeiouaeiou

Enter 10 characters with space

a e i o u a e i o u

a e i o u

Functions getline and write

C++ supports functions to read and write a line at one go. The getline()
function will read one line at a time. The end of the line is recognized by a new line
character, which is generated by pressing the Enter key. We can also specify the
size of the line. The prototype of the getline function is given below:

cin.getline (var, size);

When we invoke the above, the system will read a line of characters contained
in variable var one at a time. The reading will stop when it encounters a new line
character or when the required number (size-1) of characters have been read,
whichever occurs earlier. The new line character will be received when we enter a
line of size less than specified and press the Enter key. The Enter key or Return
key generates a new line character. This character will be read by the function but
converted into a NULL character and appended to the line of characters. Then
what is the difference between getline and cin.

In the case of cin, it will treat the white space as the end of the string.
Therefore it can read only one word and not a string consisting of more than one
word with white spaces in between the words. The program below would help to
understand getline function.

Program 5.2
#include<iostream>

using namespace std;

int main(){

char ch[15];

cin.getline(ch,10);

cout<<“\n”<<ch<<“\n”;

}

The output of the Program
John Joseph

John Jose

In the above example, we have declared a C style string ch of width 15. We first
get the string using the getline function. But note that we want to read only

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 237

(10-1) 9 characters. Then we display it using cout. Therefore ch receives 9
characters and NULL is appended as the 10th character. This is confirmed by the
result of the program where we display ch using cout. The name is truncated.

Similarly, the write function displays a line of given size. The prototype of
the write function is given below:

write (var, size) ;

where var is the name of the string and size is an integer.

Program 5.3
#include<iostream>

using namespace std;

int main(){

char ch[15];

cin.getline(ch, 15);

cout<<“\n”;

cout.write(ch, 10);

}

The output of the Program
Tom Peters John

Tom Peters

In the example, we receive 15 characters using getline function, but
write a line of 10 characters. We input 15 characters including (space). The write
results in truncation since we have specified a line size of 10.

String Stream

The cout is an ostream object. The cin is an istream object. Thus, we were
attaching the streams to the console monitor and keyboard. Similarly, we created
objects of ifstream and ofstream and attached to disk drive for file I/0.
C++ supports handling strings just like files. The counterparts of the input/output
streams corresponding to strings are as given below:

 istringstream for input

ostringstream for output

The equivalent of fstream class for string streams is stringstream. It is
presented in <sstream>. The stringstream inherits both from istringstream and
ostringstream. It may be a bit difficult to visualize attaching strings to stream. The
istringstream by default is opened for reading. Similarly the ostringstream is, by
default, opened for writing. The usage of the string streams will be clear from the
following example.

Output String Stream

The program below implements declaring and initializing an output string object.

Program 5.4
//to demonstrate output stream

#include<sstream>

using namespace std;

Input-Output and
File Handling in C++

NOTES

Self - Learning
238 Material

#include<iostream>

int main(){

//creating ostream object and writing to it

ostringstream ostr(“This is a nice way of creating a
string stream \n”);

cout<<ostr.str();

}

Look at how the object is declared and initialized to the constructor. The
ostr is the object of a class ostringstream. This class will be available
because we have #included sstream. We can initialize the object with any
length of characters. The reason is that a string object will expand as needed.
Notice that the initial value of a string stream is assigned through the constructor.
Now, the ostringstream object ostr has been created. We would always
doubt whether it has been really created. To confirm this, we can read the contents
of the object by calling a function str() as given in the last statement in the
program. In the last statement, we get the contents of ostr and assign it to cout
object. The result of the program confirms that the program is working fine.

The output of the Program
This is a nice way of creating a string stream

Input String Stream

The counterpart of output stream is input stream. The corresponding class is
istringstream. The purpose of the input stream object is to read from a
string object. The following program implements input stream.

Program 5.5
//To demonstrate input stream

#include<sstream>

using namespace std;

#include<iostream>

int main(){

string st=”creating istream object and reading from
it”;

istringstream istr(st);

cout<<“We will print the contents of the string stream
at one go\n”;

cout<<istr.str();

 }

In the above program, we have declared and assigned values to a string
object st. Then, we create an object istr of istringstream. The constructor
of the class receives a string object st. Thus, the istringstream object istr
is created and initial value assigned in one statement as given below:

istringstream istr(st);

Now, istr will hold the entire string, which was in the string st. The
contents of istr can also be brought out, by calling the function str() as given
in the last statement of the program.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 239

The output of the Program
We will print the contents of the string stream at one go

creating istream object and reading from it

Thus, devising string streams is similar to that of file streams. This can be
exploited for using the formatting facilities provided in the ios class.

The “C” type strings are available in the header file strstream.h. For input
of C style strings, we can use the istrstream class and for output the ostrstream
class. These can be used to define streams and read and write array of characters
in the C style. However, the solution provided in the C++ standard library is more
attractive.

Formatted and Unformatted Console

The get function receives one character at a time. There are two prototypes
available in C++ for get as given below:

get (char *)

get ()

Their usage will be clear from the example below:
char ch ;

cin.get (ch);

In the above, a single character typed on the keyboard will be received and
stored in the character variable ch.

Let us now implement the get function using the other prototype:
char ch ;

ch = cin.get();

This is the difference in usage of the two prototypes of get functions. What
is the difference between the >> operator and get function? We could have
written cin >> ch; In such case, the extraction operator will ignore the white spaces
and new line characters. But the get function will take note of them.

Remember that the get function belongs to the istream class.

The complement of get function for output is the put function of the
ostream class. It also has two forms as given below:

cout.put (var);

Here the value of the variable var will be displayed in the console monitor.
We can also display a specific character directly as given below:

cout.put (‘a’);

Here the program will display the given character on the console monitor.

The program below illustrates the use of get and put function.

Program 5.6
#include<iostream>

using namespace std;

int main(){

char ch;

int i;

Input-Output and
File Handling in C++

NOTES

Self - Learning
240 Material

cout<<“Enter 10 characters with out giving space\n”;

for (i=0; i<10; i++){

cin.get(ch);

cout.put(ch);

}

cout<<“\n Enter 10 characters with space\n”;

for (i=0; i<10; i++){

cin.get(ch);

cout.put(ch);

}

}

In the above program, in the first loop you are asked to enter ten characters
without giving space. Therefore after entering the characters and pressing Enter
key, the program will reproduce the characters. But in the next loop we enter
characters with space. The get function recognizes white spaces. Hence after
reading the fifth character and the following white space, ten characters (including
white spaces) would have been received. The for loop will terminate since it has
executed ten times, five time receiving white space and five times the actual
character. Hence we can receive only five characters interleaved with five white
spaces. The characters entered after that will be ignored. The put function will
therefore display five characters with spaces as the result below indicates.

The output of the Program
Enter 10 characters with out giving space

aeiouaeiou

aeiouaeiou

Enter 10 characters with space

a e i o u a e i o u

a e i o u

In the above program we have used both get and put functions. Now let
us see what happens when we use the operators instead of the functions, for the
sake of comparison. Look at the Example below:

Program 5.7
#include<iostream>

using namespace std;

int main(){

char ch;

int i;

cout<<“Enter 10 characters with space\n”;

for (i=0; i<10; i++){

cin>>ch;

cout.put(ch);

}

cout<<“\n Enter 10 characters with space\n”;

for (i=0; i<10; i++){

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 241

cin.get(ch);

cout<<ch;

}

}

Here in the first loop we use the >> operator for input. Since the operator
will ignore white spaces, only characters will be received without spaces. So the
loop will receive all the ten characters in contrast with the previous example. The
next put function will display all the ten characters typed, but without space.
Note the difference between get function and >> operator. Had we used the
get function, we would have received five characters interleaved with five spaces
since it cannot ignore white spaces and the loop would have been executed ten
times getting five characters and five spaces.

In the next loop, since we use get function, although we entered ten
characters, because of the space in between, only five characters and spaces
would have been received. This will be displayed as the result of the Example
indicates.

The output of the Program
Enter 10 characters with space

a e i o u a e i o u

aeiouaeiou

Enter 10 characters with space

a e i o u a e i o u

a e i o u

Formatted Console Input/Output

So far we have been printing out without any specific format. C++ does support
formatted input and output, which will be discussed briefly in the following
paragraphs. There is one more stream class on top of the hierarchy called
ios_base. We can say that the class basic_ios is derived from ios_base
as indicated in Figure 5.6.

Fig. 5.6 Relationship between the Top Stream Classes

Both the classes, ios_base and basic_ios contain functions for
formatting. Since classes istream and ostream are derived from class ios,
they along with class iostream (derived from them) derive the formatting
functions.

Width

The ios class contains a function width(). This is used to define the width of a
display. Therefore, it is used in conjunction with the object cout as given below:

cout << width (10);

Input-Output and
File Handling in C++

NOTES

Self - Learning
242 Material

When such a statement is given, the display following this statement will
have a total width of ten characters. Suppose the print statement following it
occupies more than the specified number of characters, then C++ will not truncate
the display but will accommodate the required width. However, whenever the
next statement has to display a variable of size less than specified, then leading
spaces will be given. For instance, with the above statement, if the display occupies
only seven spaces, then three leading spaces will be left as shown in Figure 5.7.

Fig. 5.7 Operation of Width Function

The following example would confirm this.

Program 5.8
//To demonstrate width()

#include<iostream>

using namespace std;

int main(){

int fvar=123141;

cout.width(8);

cout<<fvar<<“\n”;

cout.width(5);

cout<<fvar<<“\n”;

}

The output of the Program
123141

123141

In the latter case, since the width required exceeds the specified five
characters, the print statement ignores the set width and starts from column 1.

Precision

As we know, the double numbers are represented using double precision and
float numbers are represented with single precision. This means, the float numbers
will have six digits after the decimal point. The programmer can dictate the number
of digits after the decimal point at his will as given below:

cout .precision(4);

In this case, the display will have only four digits after the decimal point.
This is achieved through the function precision() of class ios. In the case of
width(), the specification applies only to the statement following it. However,
in the case of precision, it remains valid for all statements following it, if not
reset. We can also combine width with precision. Then the output will satisfy
both the specifications.

5.3.2 Managing Output with Manipulators

The formatting functions defined in ios_base are presented in header file <ios>.
The formatting functions of istream and ostream are in their respective header

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 243

files and through inheritance in <iostream>. Additional manipulators are available
in the header file called <iomanip>. To use these functions, we must include
iomanip in the program file specifically. For instance, setting the width can be
achieved using manipulator as follows:

cout << setw (5) << var1;

This statement will call the function setw(int width). The var1 will
be displayed with the width of five digits. Of course, if the number of digits is short,
there will be leading spaces meaning that the output will be right justified.

Similarly, for setting the precision there is a function in iomanip as given
below:

setprecision (int precision);

Using this, we can set the precision of the display that follows as given
below:

cout << setprecision (5) << var2 ;

The var2 will be printed with a precision of 5 i.e. there will be five digits
after the decimal points. Of course, if the trailing digits are zero, they will be skipped.

There is another interesting manipulator called endl. This is equivalent of
‘\n’, which is a new line character. Whenever endl is encountered, the display
will jump to the next line. Let us confirm the concepts learnt through a program.

Program 5.9
//To demonstrate setw()

#include<iostream>

using namespace std;

#include<iomanip>

int main(){

float fvar=256.141;

cout<<setw(8)<<fvar<<endl;

cout<<setw(5)<<fvar<<endl;

cout.setf(ios::fixed, ios::floatfield);

cout<<setprecision(2)<<fvar<<endl;

}

The output of the Program
256.141

256.141

256.14

Note that there are only two digits after decimal point in the last line since
we had set the precision to two. In the above example we had used a function
setf with two arguments. We will discuss about it in the next section.

The width() and setw() are identical in operation. Similarly
precision() and setprecision() are also identical. However, the header
file iomanip is to be included if we want to use setw() and setprecision()..

Input-Output and
File Handling in C++

NOTES

Self - Learning
244 Material

Set Flag

In addition, there is another function of class ios_base used to specify what is
known as flags, which can control the display. The function is setf() which stands
for set flag.

It is used in conjunction with the cout object as given below:
cout.setf (argument1, argument2);

The argument1 is called flag and argument2 is known as bit field. The
bit field indicates the group to which the flag belongs.

Using this a number of tasks can be carried out. The tasks are grouped into
three categories as given below:

 adjustfield // deals with left / right justification etc.
 floatfield // deals with floating point numbers
 basefield // deals with various types of number representation such as

octal, hex etc.

One of these arguments is to be given as argument2. Naturally, if we are
interested in left justification of the following display, then the argument2 will be
adjustfield. If it is about conversion to octal, then the argument2 will be basefield.

The setf function needs one more argument namely the argument1. If we
are interested in left justification, then the argument1 for that will be ios::left.
For instance, to display a variable var3 in the left justified manner and width of 5,
we will declare as follows:

cout.setf (ios::left, ios::adjustfield);
cout.width (5) ;
cout << var3 ;

This is how we use the flags for calling setf function. Some of the interesting
flags used for formatting are given in Table 5.2.

Table 5.2 Use of Setf Function

Purpose Argument1 Argument2

Left justified ios::left ios::adjustfield

Right justified ios::right ios::adjustfield

Scientific notation ios::scientific ios::floatfield

Fractional notation ios::fixed ios::floatfield

Octal base ios::oct ios::basefield

Hexadecimal base ios::hex ios::basefield

Let us execute a program to familiarize with the setf function.

Program 5.10
//To demonstrate flag

#include<iostream>

#include<iomanip>

using namespace std;

int main(){

int fvar=25614;

cout<<setw(10)<<fvar<<endl;

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 245

cout.setf(ios::left, ios::adjustfield);

cout<<fvar<<endl; //left justified

cout.setf(ios::right, ios::adjustfield);

cout<<fvar<<endl; //right justified

cout.setf(ios::oct, ios::basefield);

cout<<fvar<<endl; //octal

cout.setf(ios::hex, ios::basefield);

cout<<fvar<<endl; //hex

}

Take out a paper and write the predicted results before looking at the result
of the program given below:

The output of the Program
25614

25614

25614

62016

640e

Filler Character

We observed that leading white spaces were to be left when the number of
characters to be displayed is less than the width. For instance,

cout.width (6);

cout << 456;

In the above case, three leading spaces will be left. The space can also be
filled with a character of our choice as given below:

cout.width (6) ;

cout.fill (‘ * ‘);

cout << 456;

In this case, the leading spaces on the left will be filled with * and the output
will appear as follows:

*** 456

The character used for filling is called filler or paddling character. The
default filler is space.

Bjarne Stroustrup has designed the width function to avoid truncation of
digits. If the width of the number exceeds the specified width then the complete
digits will be printed irrespective of the specified width.

There are some flags with no bit field or second argument. They are given
below:

ios::showbase – base or radix indicator such as octal, hex,
decimal on output

ios::dec – make the conversion to base 10

ios::showpoint – display trailing decimal point and zeros

Input-Output and
File Handling in C++

NOTES

Self - Learning
246 Material

ios::uppercase – use upper case letters for hexadecimal
numbers

ios::skipws – skip white spaces while reading input

ios::showpos – + sign will precede if the number is positive

The flags are set using setf function. We can clear the flags by using the
function unsetf. We saw that function width (d) of ios class is equivalent of
setw (d) of iomanip. Similarly, precision (d) of ios class and
setprecision (d) are equivalent. Some more equivalent functions are listed in
Table 5.3.

Table 5.3 Equivalent Functions

<ios> manipulators <iomanip>

fill (x)
setf (f)
unsetf(f) – clear the flag

setfill (int x)
setiosflags (long f)
resetiosflags (long f)

Example given below would demonstrate some additional functions discussed
above.

Program 5.11
//To demonstrate additional functions

#include<iostream>

#include<iomanip>

using namespace std;

int main(){

int var=256;

cout.fill(‘$’);

cout<<setw(13)<<var<<endl;

//converting to oct and displaying base

cout.setf(ios::oct, ios::basefield);

cout.setf(ios::showbase);

cout<<129<<endl;

//converting to hex and displaying in upper case

cout.setf(ios::hex, ios::basefield);

cout.setf(ios::uppercase);

cout<<7199<<endl;

}

The output of the Program
$$$$$$$$$$256

0201

0X1C1F

Notice that the base of octal number is shown by the prefix of 0 before the
number. This will be clear if we compare the result of the previous program where
the octal number was displayed without the prefix since we did not ask for the
base. The base of hexadecimal number is indicated by 0X and upper case can be
realized by the appearance of C and F.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 247

Flexibility of >> and << Operators

In C++ the extraction and insertion operators have been designed to handle every
data type. It makes the job of input / output effortless. The features of operators
can be summarized as given below:

 Convenient, since there is no need to give the format as in C or other
languages

 Efficient, since it converts any data type into characters automatically

 Safe to use, since it does not lead to any exceptional conditions

 Flexible, since a user can overload it to carry out input / output of more
complex data types

Now, we will overload both the insertion and extraction operators to carry
out input / output of objects. The program below would implement overloading of
the operators.

Program 5.12
//Overloading of >> and << operators

#include<iostream>

using namespace std;

class fps{

public:

int foot;

int inch;

friend ostream& operator <<(ostream&, fps&);

friend istream& operator >>(ostream&, fps&);

};

ostream& operator <<(ostream& A, fps& B){

A<<“foot = “<< B.foot<<“inch = “<< B.inch;

return A;

}

istream& operator >>(istream &C, fps& D) {

cout<<“Enter the length in foot and inch \n”;

C>>D.foot>>D.inch;

return C;

}

int main()

{

fps F;

cin>>F;

cout<<F;

}

In the above program, the operators << and >> are redefined using operator
functions. In the main function, we get input to object F of type fps as if we
would have received a built-in data type. Similarly, we have also used the
overloaded operator << to display the object F at one go. The result of the program

Input-Output and
File Handling in C++

NOTES

Self - Learning
248 Material

confirms that it is possible to overload the insertion and extraction operators to
carry out the respective functions on objects as easily and conveniently as they are
used for built-in data types.

The output of the Program
Enter the length in foot and inch

56 78

foot = 56inch = 78

5.3.3 Classes for File Stream Operations

A file stream refers to the flow of data between a program and files. Depending
on the flow of data from a file or to a file, a stream can be classified into two types
(as shown in Figure 5.8).

 Input Stream: It reads the data from the file and supplies it to the program.

 Output Stream: It receives data from the program and writes it to the file.

Input Stream

read data

write data

Output Stream

Disk Files Program

data input

data output

Fig. 5.8 File Input and Output Streams

There are two modes by which data can be transferred to and from streams:
text mode and binary mode. A file, which is opened in the text mode, is known
as text file, whereas a file opened in the binary mode is known as binary file.
The main aspects where a text file and a binary file differ from one another are as
follows:

 Storage of Numbers: A text file stores data as a sequence of characters
while the binary file stores data as a sequence of bytes. For example, if a
number, say 12345, is stored in the text format, it occupies five bytes of
memory. However, if it is stored in the binary format, it takes two bytes of
memory (as shown in Figure 5.9). Hence, binary files occupy less memory.
Moreover, since data is stored in the same format as in the internal memory,
saving and accessing the data from binary files is faster than text files.

 Handling Newline Character: In text files, some character translations
take place while data is being read from or written to the file. For example,
newline character (\n) is expanded into carriage return/line feed
combination before being written to the disk. Hence, there is a possibility
that the number of characters written (or read) may not be the same as
that in the file. While in binary files, no such character translation takes
place. Thus, the number of bytes read (or written) is same as that in the
file.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 249

 Representation of End of File: In text files, a special character whose
ASCII value is 26 represents the end of file. While in binary files, there is
no such special character to detect the end of file. The end of file is
determined by keeping track of the number of characters present in the
file.

Fig. 5.9 Representation of a Number in Character and Binary Formats

Classes for File Stream

C++ provides different streams to represent different kinds of data flow. Each
stream is associated with a particular class, which contains the member functions
for reading from or writing to the devices. For example, the istream class,
which is derived from ios, provides members like extraction operator (>>), get(),
etc. on console for performing the input-specific operations. The classes used for
the console I/O operations are declared in the header <iostream>.

However, the classes specific to the disk file I/O operations are known as
file stream classes and declared in the header <fstream>. The header
<fstream> defines several classes, including ifstream, ofstream and
fstream, which are used for working with files. These classes are derived from
istream, ostream and iostream, respectively, which in turn are derived
from ios class (Refer Figure 5.10). Thus, the file-specific classes can have access
to all the member functions of ios. In addition, the file-specific classes are also
derived from fstreambase class. The fstreambase class contains the object
of class filebuf, which also inherits member functions of the class streambuf.

ios

streambuf istream ostream

iostream

fstream

iostream

filebuf ifstream fstream ofstream

fstreambase

Fig. 5.10 C++ Stream Class Hierarchy

Input-Output and
File Handling in C++

NOTES

Self - Learning
250 Material

The description of all file-specific classes is as follows:
 ifstream: The ifstream is an input file stream class, which provides

functions for performing the reading operations only. It contains functions,
such as get(), getline(), read(), seekg()and tellg(), which
are derived from the istream class.

 ofstream: The ofstream is an output file stream class, which provides
functions for performing the writing operations only. It contains functions,
such as put(), write(), seekp()and tellp(), which are derived
from the ostream class.

 fstream: The fstream is an I/O file stream class and hence, provides
functions for performing the input as well as output operations. It contains
all the functions of istream and ostream classes, which are inherited
through the iostream class.

 filebuf: The filebuf class is used to manage the buffered I/O of file
stream. It contains open() and close() functions.

 Fstreambase: The fstreambase class serves as a base class for
ifstream, ofstream and fstream classes. It contains open() and
close() functions and also other operations, which are common to all
file streams.

5.3.4 Opening and Closing a File

To perform any operation on a file, it needs to be opened first. A file is opened by
linking it to a stream. Thus, for opening a file, an object of the particular stream
class is created first and then associated with the file. The stream class to be used
for creating the stream object depends upon the type of operations to be performed
on the file. For example, to read data from a file, an object of ifstream is
required, to write data to a file, an object of ofstream is required and to
perform reading and writing to a file, an object of fstream is required. A file
can be opened in two ways, that is either by using the constructor or the member
function open()of the stream class.

Note: In C++, each file is an object of a particular stream class.

Opening a File Using a Constructor

When a file is opened using the constructor of a stream class, the file name is
passed to it as an argument. Thus, the constructor initialises the stream object with
the file name passed to it.

The syntax for opening a file using the constructor is:
stream_class stream_object(“file_name”);

where,

stream_class = the name of the stream class whose object is to be created

stream_object = the object name which can be any valid identifier

file_name = the name of the file to be opened

For example, a file named “marks” can be opened for input using constructor
as shown in the statement:

ifstream infile(“marks”); //for input only

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 251

In this statement, an object infile of the ifstream class (input file stream)
is created and initialised with the file marks. Thus, the object infile can be
used only to read data from the file marks.

Similarly, a file named “result” can be opened for output using constructor
as shown:

ifstream outfile(“result”); //for output only

A single file can also be opened for both reading and writing with the help of the
statement:

fstream iofile(“student”); //for both input and output

Note: When a file is opened as an output file, the operating system either creates a new file
(if the file does not exist) or overwrites the contents of the file (if the file already exists).

The constructor of a stream class can link only a single file to a stream. Thus, in a
program using multiple files, a separate stream for each file is required. For example,
consider the statements:

ofstream out1(“file1”);

ofstream out1(“file2”);

//error: Multiple declarations for ‘out1’

ofstream out2(“file2”);

Hence, opening file using constructor is useful when only one file is to be used with
the stream. However, to manage multiple files using one stream (as required in
case of sequential processing of files), the open() method is used.

Opening a File Using the open() Function

The function open()which is a member function of the fstreambase class
has the same parameter as the constructor of stream class. However, unlike
constructors, the creation of stream object and its linking with a particular file
using open() function are performed in separate statements.

The syntax for opening a file using function open() is:
stream_class stream_object;

stream_object.open(“file_name”);

For example, consider the statements:
ifstream infile; //create input stream

infile.open(“marks”); //connect stream to file marks

ofstream outfile; //create output stream

outfile.open(“result”); //connect stream to file result

fstream iofile; //create input/output stream

iofile.open(“student”); //connect stream to file student

A stream object, created once using the open() function, can be linked repeatedly
with different files. Hence, it helps in managing multiple files without the overhead
of creating a new stream object each time.

Sometimes, opening a file (either using constructor or open()method) fails due
to some reason. In that case, the value of the associated stream evaluates to false.

Input-Output and
File Handling in C++

NOTES

Self - Learning
252 Material

Thus, before performing any operation on a file, it is necessary to know whether
the file is successfully opened or not. This can be accomplished by using the function
is_open(), which is a member function of the classes fstream,
ifstream and ofstream. The prototype of is_open()function is:

bool is_open();

This function checks the value of the associated stream and returns true if the
stream is linked to open file, otherwise it returns false.

File Modes

The file has been opened so far by specifying only one argument (that is, file name)
in both the constructor and open()function. However, another argument can also
be included in both the functions that specifies the file mode. The file mode describes
how a file is to be used, that is, to read from it, to write to it, to append to it and so
on.

The general form of open() function with two arguments is:
stream_object.open(“file_name”, file_mode);

where,

file_mode = an enumeration defined in the ios class that specifies how the
file is opened.

The various modes that a file can have are listed in Table 5.4.

Table 5.4 File Modes for Opening a File

Mode Description

ios::in opens a file for reading
ios::out opens a file for writing
ios::trunk deletes the contents of the file if it already exists,

that is, truncates the file to zero length
ios::app appends the data at the end of the file only
ios::ate moves to the end of file on opening, however

permits addition as well as modification of data
anywhere in the file

ios::binary opens the file in binary mode
ios::nocreate open fails if the file does not exist—does not create

a new file
ios::noreplace open fails if the file already exists—does not

replace the existing file with a new one

Two or more file modes can be combined using the bitwise OR operator (|)
between them as shown:

outfile.open(“example”, ios::app | ios::nocreate)

where,

outfile = an object of ofstream class.

The prototype of both the constructor and open()function contain default mode
for each type of stream. The default mode for the ifstream class is ios::in,
for ofstream class is ios::out , and for fstream class
ios::in|ios::out. Thus, in the absence of this argument, the default value
is provided. For example, consider the statements:

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 253

Equivalent statements
infile.open(“marks”);

infile.open(“marks”, ios::in);

where,

infile = an object of ifstream class.

Note: Depending on the compiler, the open() function may or may not provide the
default mode ios::in|ios::out for fstream class. Hence, it needs to be specified
explicitly.

Some points must always be kept in mind while opening a file, which are as follows:

 A file name can include a path specifier. However, if the path is not specified,
the compiler assumes the file to be present in the current directory.

 Opening a file in the ios::out mode also opens it in the ios::trunc
mode. Hence, an object of the ofstream class is directly opened in the
ios::out|ios::trunc mode by default.

 In both ios::app and ios::ate modes, a file is created by the
specified name, if it does not exist.

 The mode ios::app can be used with the files capable for output only.

 By default, all the files are opened in text mode. Hence, to open a file in
binary mode, the file mode ios::binary must be specified as shown:
ofile.open(“account”, ios::app|ios::binary);

Closing a File

When a stream object goes out of scope, the destructor of the object is invoked
implicitly, which closes the associated file automatically. However, a file can also
be closed explicitly by using the function close(, which is a member function of
the fstreambase class. The close() function takes no parameter and
returns no value.

The syntax for explicitly closing a file is:
stream_object.close();

For example, a stream object, say iofile, can be closed with the help of the
statement:

iofile.close(); //close connection

Note that closing a file only disconnects the file from the stream that is linked to it.
However, the stream object still exists and can be used again for associating with
the same or another file. For example, consider the statements:

ifstream ifile; //create input stream

ifile.open(“student_detail.txt”);

//connect stream to student_detail.txt

ifile.close(); //disconnect stream from
student_detail.txt

ifile.open(“result.dat”);

//connect same stream to result.dat

ifile.close(); //disconnect stream from result.dat

Input-Output and
File Handling in C++

NOTES

Self - Learning
254 Material

Note: If a single stream is used with multiple files using open() function, the file needs to
be closed explicitly.

5.3.5 Manipulations of File Pointers

In C++, every file is associated with two file pointers, namely, get pointer (input
pointer) and put pointer (output pointer). These file pointers are not the usual C++
pointers as the name implies. They simply represent integer values that specify the
current position (byte number) in the file from where writing and reading will start.

The get pointer specifies the position from where the next read operation
will start and the put pointer specifies the position from where the next write operation
will start. When the file is opened in input mode, the get pointer is placed at the
beginning of the file. Similarly, when the file is opened in the output mode, the
existing data is deleted and the put pointer is placed at the beginning of the file.
However, if an existing file is opened in append mode using ios::app mode
specifier, the put pointer is moved to the end of the file so that writing can start
after the end of existing data. The default position of the file pointers is shown in
the Figure 5.11.

 input mode

output
mode

append
mode

get pointer

put pointer

 put
pointer

F I L E P O I N T E R S

F i L E P O I N T E R S

F I L E P O I N T E R S

Fig. 5.11 Default Position of File Pointers

Note that each time a read or write operation is performed, the appropriate pointer
is automatically advanced sequentially in the file. However, in some cases like
adding a record between existing records or modifying the existing records, a file
is required to be read from or written to any other position rather than its default
position. In such cases, the file pointers must be moved to the desired location
explicitly by the programmer. This section discusses how file pointers are
manipulated to move to the desired position in a file.

Specifying the Position

The manipulation of the pointers can be accomplished through the functions namely,
tellg(), tellp(), seekg() and seekp() provided by the file stream
classes. The functions tellg() and seekg()belong to the ifstream
class whereas the functions tellp() and seekp() belong to the ofstream
class. The description of these functions is given in Table 5.5.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 255

Table 5.5 Functions to Manipulate File Pointers

Functions Prototype Purpose
tellg() pos_type tellg() returns the current position of the get pointer
tellp() pos_type tellp() returns the current position of the put pointer
seekg() ifstream&

seekg(pos_type pos)
moves the get pointer to the specified location
pos from the beginning of the file where pos is
a positive integer value

seekp() ofstream
&seekp(pos_type pos)

moves the put pointer to the specified location
pos from the beginning of the file where pos is
a positive integer value

where,

pos_type = a type defined by ios, which is capable of holding the largest
value that can be returned by any of these functions.

To understand the concept of the function tellp(), consider the statements:
ofstream outfile(“myfile”,ios::app);

int current_pos = outfile.tellp();

Here, the first statement moves the put pointer to the end of the file as myfile
is opened in append mode. The second statement returns the number of bytes in
the file.

To understand the concept of the function seekg(), consider the: statements:
ifstream infile(“myfile”);

infile.seekg(5);

The second statement sets the get pointer at the byte number 5, that is, the 6th byte
in the file. Note that the bytes in a file are numbered from zero as shown in
Figure 5.12.

“myfile”

0 1 2 3 4 5 6 7 8 9 10 11 12
F I L E P O I N T E R S

start end

infile.seekg(5)

5 bytes

Fig. 5.12 Use of seekg()

Specifying the Offset

As discussed earlier, the get pointer can be moved to the desired position by
specifying the positive value of pos_type in the function seekg()as an
argument. This positive value represents the absolute position in the file. However,
the get pointer can also be moved to the desired position using an offset value (can
be positive or negative) relative to one of the three specific positions in the file.
These three positions which are defined in the ios class are mentioned in
Table 5.6.

Input-Output and
File Handling in C++

NOTES

Self - Learning
256 Material

Table 5.6 Relative Positions

Value Description
ios::beg offset is relative to the first character in the file

or the beginning of the file
ios::cur offset is relative to the current position of file

pointer
ios::end offset is relative to the last character in the file or

end of the file

The offset value relative to the positions (mentioned in Table 5.6) can be set by
using the overloaded version of seekg() or seekp() that accepts two
arguments as shown in the prototypes:

ifstream &seekg(off_type offset, seek_dir refposition);

ofstream &seekp(off_type offset, seek_dir refposition);

where,

off_type = integer type defined by ios

seek_dir = enumeration defined by ios that determines how seek takes
place

Thus, the functions seekg()and seekp()move the get pointer and put
pointer respectively by offset number of bytes from the position specified by
the parameter refposition. The refposition must be one of the
following positions as mentioned in Table 5.6.

Various examples of the calls to the overloaded forms of the seekg()function with
an object iofile of class fstream are listed in Table 5.7.

Table 5.7 Examples of Seek Calls Using Offset

seek calls Output
iofile.seekg(n,ios::beg);

moves the get pointer to (n+1)th byte in the file

iofile.seekg(0,ios::beg);

sets the get pointer at the beginning of the file

iofile.seekg(2,ios::cur);

moves the get pointer forward by 2 bytes from the
current position

iofile.seekg(0,ios::cur);

get pointer remains at current position

iofile.seekg(0,ios::end);

sets the get pointer at the end of the file

iofile.seekg(-5,ios::end); moves the get pointer backward by 5 bytes from the
end of file

iofile.seekg(3,ios::cur); moves the get pointer forward by 3 bytes from the
current position.

Note that the function seekg() returns a reference to the file stream object.
Thus, it can be combined with an input operation by using an extraction operator
as shown:

file.seekg(5,ios::beg)>>num;

This statement moves the get pointer to byte number 5 from the beginning of the
file, and reads data from that position into num where, num is a variable of any
data type depending upon the contents of the file.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 257

Similarly, the function seekp()can be used to move the put pointer where
the next write operation is to be performed. However, the write operation will
overwrite the data starting from that position.

Note: The offset value in seekg()and seekp() must be positive relative to ios::beg
and negative relative to ios::end.

5.3.6 Random Access

Randomly accessing a file means directly reaching the desired record/object in the
file. To access an object in a file directly, the put pointer is placed at the beginning
of the object by skipping (object_no-1)*object_size number of bytes
from the beginning of the file. Once the put pointer is placed at the appropriate
object number, the object can be modified. Note that an object can be accessed
directly only if the file consists of similar objects, that is, objects of equal size. The
size of each object can be determined using the sizeof operator shown as
follows:.

int object_size=sizeof(object);

Once, the size of an object is determined, the position of the nth object
can be obtained using the following statement:

int position = (n-1)* object_size;

where, position provides the byte number of the first byte of the nth object
and the file pointer can be moved to this position (byte number) by using functions
seekg()or seekp()as discussed earlier.

The total number of objects in a file can also be obtained by using the
following statement:

int num_objects = file_size/object_size;

where, file_size can be determined by using the functions tellg() or
tellp()when the file pointer is located at the end of the file.

Note: Random-access I/O should be performed only on the files opened for
the binary operations to get the correct output.

Example 5.1: A menu-driven program to demonstrate the update of a file
Employee.Dat containing name, id and salary of employees using random access

#include<fstream>

#include<conio>

using namespace std;

class Employee

{

int Emp_No;

char Name[30];

float salary;

public:

void getdata();

void putdata();

int getEno()

{

Input-Output and
File Handling in C++

NOTES

Self - Learning
258 Material

return Emp_No;

}

};

void Employee :: getdata()

{

cout<<“Emp_No: “;

cin>>Emp_No;

cout<<“E_Name: “;

cin>>Name;

cout<<“Salary: “;

cin>>salary;

}

void Employee :: putdata()

{

cout<<Emp_No;

cout<<“\t”<<Name;

cout<<“\t\t “<<salary<<endl;

}

void Add();

void Show();

void Modify();

int main()

{

int choice;

do

{

clrscr();

cout<<“\nMain Menu”;

cout<<“\n1. Add new record”;

cout<<“\n2. Show records”;

cout<<“\n3. Modify a record”;

cout<<“\n4. Exit”;

cout<<“\nEnter your choice . . . “;

cin>>choice;

switch(choice)

{

case 1: Add();

break;

case 2: Show();

break;

case 3: Modify();

break;

case 4: cout<<“\nTerminating the program.”;

break;

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 259

default:cout<<“\nEnter No. from 1 to 4”;

}

getch();

}while(choice!=4);

return 0;

}

void Add()

{

ofstream iofile;

iofile.open(“Employee.DAT”,ios::app|ios::binary);

Employee Emp;

cout<<“\nEnter the data to be appended : “<<“\n”;

Emp.getdata();
iofile.write((char *)&Emp, sizeof(Emp));
cout<<“\nThe record is added in the file”;

}

void Show()

{

ifstream iofile;

iofile.open(“Employee.DAT”, ios::in|ios::binary);

Employee Emp;

ofile.seekg(0);

out<<“Records Of Employees.......\n”;

while(iofile.read((char *)&Emp, sizeof(Emp)))

{

Emp.putdata();

}

}

void Modify()

{

fstream iofile;

i o f i l e . o p e n (“ E m p l o y e e . D A T ” ,
ios::in|ios::out|ios::ate|ios::binary);

Employee Emp;

int total_bytes = iofile.tellg();

int num_records = total_bytes/sizeof(Emp);

cout<<“ Total number of records = “

<<num_records<<endl<<endl;

cout<<“Enter record no. to be updated: “ ;

int recordno;

cin>>recordno;

long pos=(recordno-1)*sizeof(Emp);

iofile.seekp(pos);

Input-Output and
File Handling in C++

NOTES

Self - Learning
260 Material

cout<<“Enter new values for this record\n”;

Emp.getdata();

iofile.write((char*) &Emp, sizeof(Emp));

cout<<“Record is modified\n”;

}

The output of the program

Main Menu

1. Add new record

2. Show records

3. Modify a record

4. Exit

Enter your choice . . . 1

Enter the data to be appended:

Emp_No: 230

E_Name: John

Salary: 34000

The record is added in the file

Main Menu

1. Add new record

2. Show records

3. Modify a record

4. Exit

Enter your choice . . . 1

Enter the data to be appended:

Emp_No: 123

E_Name: Smith

Salary: 34568

The record is added in the file

Main Menu

1. Add new record

2. Show records

3. Modify a record

4. Exit

Enter your choice . . . 1

Enter the data to be appended:

Emp_No: 345

E_Name: Mary

Salary: 35678

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 261

The record is added in the file

Main Menu

1. Add new record

2. Show records

3. Modify a record

4. Exit

Enter your choice . . . 2

Records Of Employees.......

230 John 34000

123 Smith 34568

345 Mary 35678

Main Menu

1. Add new record

2. Show records

3. Modify a record

4. Exit

Enter your choice . . . 3

Total number of records = 3

Enter record no. to be updated

3

Enter new values for this record

Emp_No: 348

E_Name: Peter

Salary: 5678

Record is modified

Main Menu

1. Add new record

2. Show records

3. Modify a record

4. Exit

Enter your choice . . . 2

Records Of Employees.......

230 John 34000

123 Smith 34568

348 Peter 5678

In this example, a new object of type employee can be added, an existing
object can be modified or detail of all the employees can be displayed depending
on the choice entered by the user.

Input-Output and
File Handling in C++

NOTES

Self - Learning
262 Material

To add a new object, the file Employee.DAT is opened using ios::app
mode, which sets the file pointer to the end of the file.

To display the existing objects, the pointer is set to the beginning of the file
using the statement seekg(0). The total number of objects is also determined
using the statement num_records = total_bytes/sizeof(Emp)and
displayed.

To modify the data of an existing object, the file Employee.DAT is opened
using ios::ate mode, which allows to write data anywhere in the file. The file
pointer is set to the first byte of record to be modified using statements long
pos=(recordno-1)*sizeof(Emp)and iofile.seekp(pos).

Check Your Progress

1. Define the term streams.

2. What is istream class?

3. State about the formatting function.

4. What is set flag?

5. Name the various modes by which data can be transferred to and from
streams.

5.4 STANDARD LIBRARY OBJECTS

The language C amply demonstrated that no program is written just using the 24
keywords of the programming language. Always C programs used some library
functions, such as <stdio.h>. The C library functions are available for C++
programs in the global namespace with dot h suffix.

The C++ standard library classes, objects and functions are grouped under
the namespace called std. There are interesting classes in the C++ standard
library under the namespace std. Some of the special classes are:

 string

 stack

 vector

 list

 map

They are part of every standard C++ implementation.

The standard library of C++ is contained in a separate namespace called
std. The user-developed header files will be in their respective namespaces. The
C standard headers are in the global namespace. Any other code, which has not
been specifically grouped under a namespace, will also be in the global namespace
as depicted in Figure 5.13.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 263

Fig. 5.13 Contents of Global Namespace in C++

To illustrate the ease of use of standard library in programs, the following
standard libraries will be discussed:

 string

 vector

Difference between Character Array and C++ String

C treats an array of characters as a string and is thus declared as:
char array[3] ={'g', 'o', 'd'};

When you declare a string as a character array, you may also write it as
follows:

char array[3] ="god";

The system appends a NULL at the end of the string. Still the size of this
array is 3. But in C++, the programmer has to allocate the space for NULL.
Hence the above string requires 4 spaces for storing an array of 3 characters.
Therefore in C++, character arrays can only accept string literals. That means
they cannot be modified. For instance, you may have the following type of
declarations:

char str[]= "Swamy";

char * str= "Swamy";

The string on the RHS will be treated as a string literal incapable of any
modification due to the difference in handling NULL in C and C++. This restriction
has been imposed to enable portability of the old C code to C++. A string in C++
is very easy to be defined and used with the help of the standard library. You do
not even have to specify the length of the string. But when you declare a string as
a character array, you need to keep in mind its treatment in C++.

Strings

The class called string is available in the standard library in std namespace. A
class is a user-defined type. Therefore, in order to use the special functions pertaining
to string, you may declare "using namespace std;" on top of the programs.
This will also allow you to use the i/o objects such as cout and cin. In case the
statement “using namespace std;” is not added, the objects and functions
of the library have to be prefixed with std as:

std::cout

std::cin

Input-Output and
File Handling in C++

NOTES

Self - Learning
264 Material

Either of the two methods is permissible.

Program 5.13 illustrates a string from the keyboard and display it on the
console monitor.

Program 5.13
//use of strings

#include<iostream>

using namespace std;

int main(){

string str1;

cout<<"Enter your name\n";

cin>>str1;

cout<<"Your name is: "<<str1;

}

Here string str1 has been declared in a simple manner. The string is a type
defined in the standard library, and str1 is a variable of the type string. In OOP
terminology, str1 is an object of class string. But for the availability of the standard
library, you should have declared string as an array of characters. This declaration
does not put any restriction on the number of characters in the string. The str1 is
connected to the standard input device, namely, the keyboard in a simple manner
as given below:

cin>>str1;

The output of the Program
Enter your name

Om Venkata chala pathaye namaha

Your name is: Om

You will find that the full name typed has not been reproduced. You may try
another way of assigning a long string and displaying it on the console as given in
Program 5.14.

Program 5.14
//use of strings

#include<iostream>

using namespace std;

int main(){

string str1;

str1="Om Venkatachala Pathaye Namaha";

cout<<"Your name is: "<<str1;

}

In this example, a string has been assigned to str1 in the program itself.

The output of the Program
Your name is: Om Venkatachala Pathaye Namaha

This program displays the complete name. Then, why was it not possible to
reproduce the full name when it was received from the console? What has happened

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 265

is that the system assumed the white space after "Om" as end of input. Therefore,
it did not look for the rest of the characters. To avoid this happening, you may get
the full line as shown in program 5.15.

Program 5.15
//use of strings

#include<iostream>

using namespace std;

int main(){

string str1;

cout<<"Enter your name\n";

getline (cin,str1);

cout<<"Your name is: "<<str1;

}

The above example has accomplished the task of getting one line at a time
through the statement getline (cin,str1);

The getline function has two arguments. The first one is the object cin
and the second is the string str1.

The output of the Program
Enter your name

Om Venkatachala Pathaye namaha

Your name is: Om Venkatachala Pathaye namaha

Concatenation of Strings

With the help of the standard library, you may concatenate or add strings very
easily by simply using the + sign as the Program 5.16 indicates.

Program 5.16
//concatenation of strings

#include<iostream>

using namespace std;

int main(){

string str1, str2, str3;

str1="Vetri ";

str2="Vel";

str3=str1+str2;

cout<<"concatenated string is: "<<str3;

}

Of the three strings declared in the beginning of the main function, the first
two, namely, str1 and str2 are initialized with strings. The following statement,
using the + sign, concatenates the 2 strings.

str3=str1+str2;

The output of the Program
concatenated string is: Vetri Vel

Input-Output and
File Handling in C++

NOTES

Self - Learning
266 Material

Empty string

You may check whether a string is empty or not by using a built-in boolean function
called empty(). Program 5.17 checks whether a string is empty and, if not,
finds out the length of the string.

Program 5.17
//finding string empty and length

#include<iostream>

using namespace std;

int main(){

string str1="Ganesh";

if (str1.empty())

cout<<"empty \n";

else

cout<<"length of string is: "<<str1.length();

}

The functions empty() and length() are to be used in conjunction
with a string object which is nothing but a string variable. In Program 5.17, you
may have declared a string variable “str1”. Then you may check whether it is
empty. If it is so, you may print “empty”, If otherwise the length of the string is
found and displayed by the last statement in the program.

The output of the Program
length of string is: 6

String comparison

Just as numbers can be compared, you can compare strings by using the sign “=
=”. Program 5.18 compares strings.

Program 5.18
//String Comparison

#include<iostream>

using namespace std;

int main(){

string str1="Ganesh";

string str2="Vinayaga";

string str3="Ganesh";

if (str1==str2)

cout<< "strings 1 and 2 are same";

else

if(str1==str3)

cout<<"strings 1 and 3 are same";

}

In Program 5.18, three string variables have been declared and values
assigned to them. You compare the strings str1 and str2 first and then str1
and str3.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 267

The output of the Program
strings 1 and 3 are same

5.4.1 Vector of Operations

A class or a structure may be created only to hold data. Such classes or structures
are called containers. A container object holds other objects or data. C++ provides
this facility. A vector is one such popular container. A vector is a class used to
represent multi-dimensional arrays easily.

It is important to understand the fundamental uses of the vector class provided
in the header file <vector> in the standard C++ library and housed in the
namespace std. For this purpose, you can now demonstrate usage of vector
as a one-dimensional array. You need to make the following declaration of the
library-supplied vector as a one-dimensional array.

vector <double>array(4);

Here vector is the name of the class in the standard library, double is
the data type and array is an object of a vector class. The number enclosed
within parentheses indicates the size of the array. This creates a vector object with
four elements. Each element in this case is of double data type . On the contrary,
if square brackets, as given below are used, it will refer to four empty vector
objects.

vector <double>array[4];

This will mean that four vectors objects are created. Since your purpose is
to create one vector object with four elements, the first declaration with parentheses
is appropriate.

In order to use the vector class, you should use “#include <vector>”
in the program. Now look at the Program 5.19.

Program 5.19
//To demonstrate vectors

#include<iostream>

#include<vector>

using namespace std;

int main(){

vector <double>array(4);

double sum=0.0;

cout<<"Enter 4 real numbers \n";

for(int i=0; i<4; i++){

cin>>array[i];

sum+=array[i];

}

double average=sum/4;

cout<<"Average of the 4 numbers typed="<<average;

}

In Program 5.19, an object “array” of vector has been declared. A general
form of declaration of a vector object is given below:

Input-Output and
File Handling in C++

NOTES

Self - Learning
268 Material

vector <datatype>name;

In the main function, you can get four real numbers through the following
statement.

cin>>array[i];

The individual elements of the vector object are given within square brackets.
Add all the four elements, find the average and print the same.

The output of the Program
Enter 4 real numbers

10.0 20.0 30.0 40.0

Average of the 4 numbers typed=25

In Program 5.19, a new container of type vector has been declared. This
vector holds a one-dimensional array. Vector is more convenient than the arrays
because if the array size is not declared correctly, then you may get into problems
with arrays. However, the vector of the standard library takes care of such
problems.

Storing Strings in Vector Object: The following example string is used as the
type of element. Since you are familiar with the usage of strings, you can modify
the Program 5.19 to declare a vector object of type string. In this program, you
may also sort the strings using bubble sort and display the sorted strings. Look at
Program 5.20.

Program 5.20
//To demonstrate sorting strings using vectors

#include<iostream>

#include<vector>

using namespace std;

int main(){

int i=0, j=0;

vector <string>array(4);

cout<<"Enter 4 strings \n";

for(i=0; i<4; i++)

cin>>array[i];

string temp;

for(i=0; i<3; i++)

for(j=i+1; j<4; j++) {

int k=array[i].compare(array[j]);

if(k>0){

temp=array[i];

array[i]=array[j];

array[j]=temp;

}

}

cout<<"Sorted names are given below \n";

for(i=0; i<4; i++)

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 269

cout<<array[i]<<"\n";

}

In Program 5.20, the vector object of type string is declared in the same
manner as in Program 5.19.

vector <string>array(4);

The first part of the main function gets four strings from the keyboard. The
next part sorts the strings. The function compare of C++ library has been used as
given below:

int k=array[i].compare(array[j]);

The compare function returns 0 if the strings are identical. If string1 is less
than string2, then it will return a negative number. If string1 is greater than string2
then it will return a positive number. The returned integer is assigned to integer k.
If k is greater than 0, then string1 is greater than string2. Since the sorting needs to
be done in ascending order, you may interchange both the strings.

Finally, you may print out the sorted strings.

The output of the Program
Enter 4 strings

karthik

joseph

kanna

ganesh

Sorted names are given below

ganesh

joseph

kanna

karthik

Using Vectors with Two Elements: The convenience of vectors will become
apparent when they are need to define objects with two fields or two elements or
two coordinates. An aggregate of two elements has to be created using a structure.
You may create a structure called Marks with two data types as given below:

struct Marks{

string name;

unsigned short mark;

};

 The above declares a structure named Marks. It has two data items namely,
‘name’ of type string and ‘mark’ of type unsigned short int. A vector with
the structure as above is thus declared.

vector <Marks>Array(4);

This vector object named Array contains four elements. Each element has
a structure of Marks. In the previous example, data type was double. In this
example the data type is a structure called Marks. Program 5.21 initializes one of
the elements of Array and then displays the same.

Input-Output and
File Handling in C++

NOTES

Self - Learning
270 Material

Program 5.21
//To demonstrate structure using vectors

#include<iostream>

#include<vector>

using namespace std;

struct Marks{

string name;

unsigned short mark;

};

int main(){

vector <Marks>Array(4);

Array[2].name="Radha";

Array[2].mark=99;

cout<<(Array[2]). name<<"\t"<<Array[2].mark;

}

Program 5.21 creates a vector of Marks type of size four. Then, the
individual items of the third element, i.e., with index 2 are initialized as given below:

Array[2].name="Radha";

Array[2].mark=99;

Since the second element of the Array object has been referred, square
bracket are used as in the case of simple arrays. Only while declaring a vector
array, parentheses are used. Note also how the contents of each member of the
vector element is printed.

The output of the Program
Radha 99

Sorting Vector Elements Based on a Key – Bubble Sort: You can sort a
vector elements as done with array elements. However, in the vector, you have
two data items in each element. You can sort the vector based on one of the
elements, which you may call the key. The example given in Program 5.20 is
repeated in Program 5.22.

Program 5.22
//To demonstrate sorting vector elements

#include<iostream>

#include<vector>

using namespace std;

struct Marks{

string name;

unsigned short mark;

};

int main(){

vector <Marks>array(4);

int i=0, j=0;

cout<<"Enter 4 names followed by marks \n";

for(i=0; i<4; i++)

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 271

cin>>array[i].name>>array[i].mark;

Marks temp;

for(i=0; i<3; i++)

for(j=i+1; j<4; j++){

int k=(array[i].name). compare(array[j].name);

if(k>0){

temp=array[i];

array[i]=array[j];

array[j]=temp;

}

}

cout<<"Sorted vector is given below \n";

for(i=0; i<4; i++){

cout<<array[i].name<<"\t"<<array[i].mark<<"\n";

}

}

The structure Marks is declared as a global type here as well as in the
previous program. Then it is possible declare a vector object of type Marks with
four elements. The user has to input the names and marks of the four sets using the
cin object. Then, you may sort the array based on one of the elements, namely,
‘name’. The interesting part is in the block, where the data is interchanged when
k is greater than 0. When the name of the preceding element is greater than the
succeeding element, you can interchange not only the names but also the marks,
i.e., the entire element. This is the popular bubble sort. What is new is that a vector
of more than one element can be sorted based on one of the elements called key.
Other sorting methods can also be implemented with vectors. After the sorting is
completed, the contents of vector can be printed.

The output of the Program
John 96

Joseph 93

Anand 87

Xavier 78

Sorted vector is given below

Anand 87

John 96

Joseph 93

Xavier 78

Thus, the vector can be used for handling more complex arrays easily.

5.5 CONTAINER CLASSES

Containership is also referred to as nesting in which a class has an object of another
class as its member. Containership (or containment or aggregation or composition),
like inheritance, enables the implementation of a logical relationship between classes.

Input-Output and
File Handling in C++

NOTES

Self - Learning
272 Material

The class (enclosing class) that contains an object of another class has access only
to the public members of that class. The private and protected members of the
contained class are not accessible to the enclosing class.

Example 5.2: A program to demonstrate the containership of classes
#include<iostream>

#include<stdio>

using namespace std;

class edudetail

{

protected:

char school[20];

public:

char degree[20];

void getdetail()

{

cout<<“\nEnter the school education :”;

gets(school);

cout<<“\nEnter the degree education :”;

gets(degree);

}

void showedu()

{

cout<<“School education :”<<school<<“\n”;

cout<<“Degree education :”<<degree;

}

};

class employee

{

char name[20], empno[6];

public :

edudetail edu1;

void getemp()

{

cout<<“\nEnter the employee code :”;

gets(empno);

cout<<“\nEnter the name :”;

gets(name);

edu1.getdetail();

}

void show();

};

void employee::show ()

{

cout<<“\n\nEmployee Qualification\n”;

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 273

cout<<“Employee Code :”<<empno<<“\n”;

cout<<“Employee Name :”<<name<<“\n”;

// cout<<edu1.school; protected member inaccessible

edu1.showedu();

}

int main()

{

employee e1;

e1.getemp();

e1.show();

return 0;

}

The output of the program
Enter the employee code: em10

Enter the name: Mini Suzana Wesley

Enter the school education: 10 + 2

Enter the degree education: M.Sc IT

Employee Qualification

Employee Code: em10

Employee Name: Mini Suzana Wesley

School education: 10 + 2

Degree education: M.Sc IT

In this example, the object edu1 of the class edudetail is declared in
the class employee. The public data member degree of the class edudetail
can be accessed with the help of object edu1. However, the protected data
member school is inaccessible.

Containership vs Inheritance

Containership and inheritance facilitate the implementation of different real-world
relationships through various classes. However, both differ in the type of relationship
that they implement. Containership implements ‘has-a’ relationship, whereas
inheritance implements the ‘is-a-kind-of’ relationship. Containership is appropriate
in a situation where one real-world object has or contains another real-world
object, whereas inheritance is appropriate in a situation where one real-world
object is a special kind of some other real-world object.

employee

edu1

employee

manager
object

class

classes

(a) Inheritance (a) Containership

Fig. 5.14 Containership and Inheritance

Input-Output and
File Handling in C++

NOTES

Self - Learning
274 Material

Figure 5.14(a) is an example of containership that depicts ‘has-a’ kind of
relationship. Here, the class employee ‘has-a’ object edu1 of the class
edudetail. Figure 5.14(b) is an example of inheritance that depicts ‘is-a-kind-
of’ relationship. That is, manager ‘is-a-kind-of’ employee. The differences
between containership and inheritance are listed in Table 5.8.

Table 5.8 Differences between Containership and Inheritance

Containership Inheritance
The object of one class is used as a
member in another class.

The object of one class inherits the
property of another class.

Does not support the concept of
reusability.

Supports the concept of reusability.

Does not provide additional features
to an existing class.

Provides additional features to an
existing class.

Represents ‘has-a’ relationship. Represents ‘is-a-kind-of’
relationship.

The private and protected members of
the inner class are not accessible to the
enclosing class.

The derived class can access the
protected members of the base class.

Check Your Progress

6. In which header are the disk file I/O operations declared?

7. Write the types of file pointers.

8. State about the command-line arguments.

9. Write the C++ standard library function.

10. Explain the term container class.

5.6 LISTS, MAP AND ALGORITHMS

A list is a sequence of elements of homogeneous type. For example, list of names,
list of marks, list of addresses, list of employees and so on. Lists are once created
and then modified during their lifetime. We need to add a new element, search the
existence of a given element, delete an existing element from the list, etc. In addition,
we can combine two or more lists to create a single list or split a list in two or more
lists as per the requirements.

5.6.1 Map in C++ Standard Template Library (STL)

Maps are associative containers that store elements in a mapped fashion. Each
element has a key value and a mapped value. No two mapped values can have
same key values.

Following are some basic functions associated with Map:

begin() – Returns an iterator to the first element in the map.

end() – Returns an iterator to the theoretical element that follows last
element in the map.

size() – Returns the number of elements in the map.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 275

max_size() – Returns the maximum number of elements that the
map can hold.

empty() – Returns whether the map is empty.

pair insert(keyvalue, mapvalue) – Adds a new element
to the map.

erase(iterator position) – Removes the element at the
position pointed by the iterator.

erase(const g) – Removes the key value ‘g’ from the map.

clear() – Removes all the elements from the map.

Program 5.23
#include <iostream>

#include <iterator>

#include <map>

using namespace std;

int main()

{

 // empty map container

 map<int, int> gquiz1;

 // insert elements in random order

 gquiz1.insert(pair<int, int>(1, 40));

 gquiz1.insert(pair<int, int>(2, 30));

 gquiz1.insert(pair<int, int>(3, 60));

 gquiz1.insert(pair<int, int>(4, 20));

 gquiz1.insert(pair<int, int>(5, 50));

 gquiz1.insert(pair<int, int>(6, 50));

 gquiz1.insert(pair<int, int>(7, 10));

 // printing map gquiz1

 map<int, int>::iterator itr;

 cout << "\nThe map gquiz1 is : \n";

 cout << "\tKEY\tELEMENT\n";

 for (itr = gquiz1.begin(); itr != gquiz1.end(); ++itr)
{

 cout << '\t' << itr->first

 << '\t' << itr->second << '\n';

 }

 cout << endl;

 // assigning the elements from gquiz1 to gquiz2

 map<int, int> gquiz2(gquiz1.begin(), gquiz1.end());

 // print all elements of the map gquiz2

 cout << "\nThe map gquiz2 after"

 << " assign from gquiz1 is : \n";

Input-Output and
File Handling in C++

NOTES

Self - Learning
276 Material

 cout << "\tKEY\tELEMENT\n";

 for (itr = gquiz2.begin(); itr != gquiz2.end(); ++itr)
{

 cout << '\t' << itr->first

 << '\t' << itr->second << '\n';

 }

 cout << endl;

 // remove all elements up to

 // element with key=3 in gquiz2

 cout << "\ngquiz2 after removal of"

 " elements less than key=3 : \n";

 cout << "\tKEY\tELEMENT\n";

 gquiz2.erase(gquiz2.begin(), gquiz2.find(3));

 for (itr = gquiz2.begin(); itr != gquiz2.end(); ++itr)
{

 cout << '\t' << itr->first

 << '\t' << itr->second << '\n';

 }

 // remove all elements with key = 4

 int num;

 num = gquiz2.erase(4);

 cout << "\ngquiz2.erase(4) : ";

 cout << num << " removed \n";

 cout << "\tKEY\tELEMENT\n";

 for (itr = gquiz2.begin(); itr != gquiz2.end(); ++itr)
{

 cout << '\t' << itr->first

 << '\t' << itr->second << '\n';

 }

 cout << endl;

 // lower bound and upper bound for map gquiz1 key = 5

 cout << "gquiz1.lower_bound(5) : "

 << "\tKEY = ";

 cout << gquiz1.lower_bound(5)->first << '\t';

 cout << "\tELEMENT = "

 << gquiz1.lower_bound(5)->second << endl;

 cout << "gquiz1.upper_bound(5) : "

 << "\tKEY = ";

 cout << gquiz1.upper_bound(5)->first << '\t';

 cout << "\tELEMENT = "

 << gquiz1.upper_bound(5)->second << endl;

 return 0;

}

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 277

The output of the program

The map gquiz1 is 5.23:

 KEY ELEMENT

 1 40

 2 30

 3 60

 4 20

 5 50

 6 50

 7 10

The map gquiz2 after assign from gquiz1 is
5.23:

 KEY ELEMENT

 1 40

 2 30

 3 60

 4 20

 5 50

 6 50

 7 10

gquiz2 after removal of elements less than
key=3 :

 KEY ELEMENT

 3 60

 4 20

 5 50

 6 50

 7 10

gquiz2.erase(4) 5.23: 1 removed

 KEY ELEMENT

 3 60

 5 50

 6 50

 7 10

gquiz1.lower_bound(5) : KEY = 5
ELEMENT = 50

gquiz1.upper_bound(5) : KEY = 6
ELEMENT = 50

Input-Output and
File Handling in C++

NOTES

Self - Learning
278 Material

List of the Functions used in Map

Following is the list of all the functions that are used in Map:

 map insert() in C++ STL – Insert elements with a particular
key in the map container.

 map count() function in C++ STL – Returns the number of
matches to element with key value ‘g’ in the map.

 map equal_range() in C++ STL – Returns an iterator of
pairs. The pair refers to the bounds of a range that includes all the
elements in the container which have a key equivalent to ‘k’.

 map erase() function in C++ STL – Used to erase element
from the container.

 map rend() function in C++ STL – Returns a reverse iterator
pointing to the theoretical element right before the first key-value pair
in the map (which is considered its reverse end).

 map rbegin() function in C++ STL – Returns a reverse iterator
which points to the last element of the map.

 map find() function in C++ STL – Returns an iterator to the
element with key value ‘g’ in the map if found, else returns the iterator
to end.

 map crbegin() and map crend() function in C++ STL
– The map crbegin() returns a constant reverse iterator
referring to the last element in the map container. The map
crend() returns a constant reverse iterator pointing to the theoretical
element before the first element in the map.

 map cbegin() and map cend() function in C++ STL –
The map cbegin() returns a constant iterator referring to the
first element in the map container. The map cend() returns a
constant iterator pointing to the theoretical element that follows last
element in the multimap.

 map emplace() in C++ STL – Inserts the key and its element
in the map container.

 map max_size() in C++ STL – Returns the maximum number
of elements a map container can hold.

 map upper_bound() function in C++ STL – Returns an
iterator to the first element that is equivalent to mapped value with
key value ‘g’ or definitely will go after the element with key value ‘g’
in the map.

 map operator= in C++ STL – Assigns contents of a container
to a different container, replacing its current content.

 map lower_bound() function in C++ STL – Returns an
iterator to the first element that is equivalent to mapped value with
key value ‘g’ or definitely will not go before the element with key
value ‘g’ in the map.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 279

 map emplace_hint() function in C++ STL – Inserts the key
and its element in the map container with a given hint.

 map value_comp() in C++ STL – Returns the object that
determines how the elements in the map are ordered (‘<‘ by default).

 map key_comp() function in C++ STL – Returns the object
that determines how the elements in the map are ordered (‘<‘ by
default).

 map::size() in C++ STL – Returns the number of elements in
the map.

 map::empty() in C++ STL – Returns whether the map is empty.

 map::begin() and map::end() in C++ STL –The
map::begin() returns an iterator to the first element in the map.
The map::end() returns an iterator to the theoretical element
that follows last element in the map.

 map::operator[] in C++ STL – This operator is used to
reference the element present at position given inside the operator.

 map::clear() in C++ STL – Removes all the elements from the
map.

 map::at() and map::swap() in C++ STL –The map::at()
function is used to return the reference to the element associated with
the key ‘k’. The map::swap() function is used to exchange the
contents of two maps but the maps must be of same type, although
sizes may differ.

5.6.2 Abstract Data Types (ADTs)

Generally, handling small problems is much easier than handling comparatively
larger problems. The same rule is applied on the programming also. Therefore, a
large program is decomposed into small logical units or modules, each of which
does a well-defined subtask of the whole program. The size of each module is
kept as small as possible and if required, other modules are invoked from it. This
modular design provides several advantages. First, several people can be employed
to work on a single program, which increases the speed of completing the given
task. Second, a well-designed modular program has modules, independent of
each others implementation, which makes the program easily modifiable.

An Abstract Data Type (ADT) is an extension of modular design in a way
that the set of operations of an ADT are defined at a formal, logical level and
nowhere in ADT’s definition is mentioned how these operations are implemented.
The data type integer is an example of abstract data type. We frequently perform
operations on integers that are associated with them like addition, subtraction,
division, multiplication, modulus, etc. However, we do not know how these
operations are actually performed on integers. We only know the syntax of how to
perform these operations in some programming language. For example, C language
defines +, –, /, *, % to perform some basic arithmetic operations on integers.

Input-Output and
File Handling in C++

NOTES

Self - Learning
280 Material

The basic idea of ADT is that the implementation of the set of operations are
written once in the program and the part of program which needs to perform an
operation on ADT accomplishes this by invoking the required operation. If there
is a need to change the implementation details of an ADT, the change will be
completely transparent to the programs using it. The data structures, namely, lists,
stacks and queues are some examples of ADTs.

The List ADT

Mathematically, a list is a sequence of zero or more elements where each element
is of type T. It is generally represented by a comma-separated sequence of
elements as shown here.

a
1
, a

2
, a

3
, …………….., a

n

In the above list, n denotes the size of list and a
1
 and a

n
 are the first and last

element of the list, respectively. In case n=0, the list is called an empty list—a
list having no elements.

One important property associated with lists is that its elements can be linearly
ordered according to their positions in the list. For any list of size n, we can say
that the element a

i
 is the successor of a

i-1
 for 1<i<=n and the predecessor of

a
i+1

 for 1<=i<n. The position of any element a
i
 in the list is i. To form the list

an abstract data type, a set of operations must be defined that can be performed
on the objects of list type. Some common operations that can be applied on lists
include traversing the list, inserting a new element into the list and deleting some
specific element from the list. All these operations are discussed in this chapter.

There are various ways to implement the lists. In this chapter, we will discuss
array, linked list and cursor implementation of lists.

Array-Based Implementation of Lists

One way to implement lists is to use an array. The elements of lists are stored in
contiguous locations in the array. Thus, each element of the list can be directly
accessed using its position in the array and the whole list can be traversed very
easily. Figure 5.15 shows an example of array implementation of lists.

Fig. 5.15 An Example of Array Implementation of Lists

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 281

The array implementation of list is quite simple, however, there are certain
problems associated with it. First, a sufficient block of memory needs to be allocated
to array at compile-time and once the memory is allocated it cannot be expanded
or contracted. This may lead to significant wastage of memory or short of memory
if the number of elements in the list increases or decreases significantly at run-time.
Another problem is that the insertion (except the insertion at the end) and deletion
of an element from an array are expensive operations, since they may require a
number of elements to be shifted to either make space for new elements or cover
the gap created by deleted elements. Because of these problems, arrays are not
generally used to implement the lists.

5.6.3 Linked List Implementation

In this implementation, the successive elements of list are linked by means of pointers
or links; therefore they are named as linked list. This implementation frees the
programmer from the constraint of using contiguous memory to store a list. Also,
the insertion or deletion of elements does not require shifting of the existing elements
as in the case of array implementation; elements can be inserted or deleted merely
by adjusting the pointers. However, one disadvantage associated with this
implementation is the extra space required for storing the pointers.

Formally, a linked list is defined as a linear collection of homogeneous elements
called nodes. Each node of the linked lists stores an element of the list as well as
a pointer to the node containing the next element of the list. For example, in the
linked list representing the list a

1
, a

2
, a

3
, ……………, a

n
, the node containing a

1

stores a pointer to the node containing a
2
 that in turn stores a pointer to the node

containing a
3
 and so on.

Depending on the number of pointers in a node of the linked list or the purpose
for which the pointers are maintained, a linked list can be classified into various
types, such as singly linked list, circular linked list and doubly linked list. In this
section, we will discuss only singly and doubly linked lists.

Singly Linked Lists

In a singly linked list (also called linear linked list), each node consists of two
fields: info and next (Refer Figure 5.16). The info field contains the data
and the next field contains the address of memory location where the next
node is stored. The last node of the singly linked list contains NULL in its next
field that indicates the end of list.

Fig. 5.16 Node of a Singly Linked List

Note: The data stored in info field may be a single data item of any data type or a complete
record representing a student or an employee or any other entity. In this chapter, however,
we assume that the info field contains an integer data.

A linked list contains a list pointer variable Start that stores the address of
the first node of the list. In case, the Start contains NULL, the list is called an

Input-Output and
File Handling in C++

NOTES

Self - Learning
282 Material

empty list or a null list. Since, each node of the list contains only a single pointer
pointing to the next node (not to previous node) thereby allowing traversing in
only one direction, it is also referred to as one-way list. Figure 5.17 shows a
singly linked list with four nodes.

Fig. 5.17 A Singly Linked List with Four Nodes

A number of operations can be performed on the singly linked lists. These
operations include traversing, searching, inserting and deleting nodes, reversing,
sorting and merging linked lists. Before implementing these operations, first, we
need to understand how a node of a linked list is created.

Creating a Node

Creating a node means defining its structure, allocating memory to it and its
initialization. As discussed earlier, the node of a linked list consists of data and a
pointer to next node. To define a node containing an integer data and a pointer to
next node in C language, we can use a self-referential structure whose definition is
shown here.

typedef struct node
{

int info; /*to store integer type data*/
struct node *next;

/*to store a pointer to next
node*/
}Node;

Node *nptr; /*nptr is a pointer to node*/

After declaring a pointer nptr to the new node, the memory needs to be
allocated dynamically to it. If the memory is allocated successfully (that is, no
overflow), the node is initialized. The info field is initialized with a valid value
and the next field is initialized with NULL.

Algorithm 5.1 Creation of Node

create_node(

1. Allocate memory for nptr

//nptr is a pointer to new
node

2. If nptr = NULL

Print “Overflow: Memory not allocated!” and go
to step 7

End If

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 283

3. Read item //item is the value to be
inserted //in the
new node

4. Set nptr->info = item

5. Set nptr->next = NULL

6. Return nptr //returning pointer nptr

7. End

Now, the linked list can be formed by creating several nodes of type Node
and inserting them either in the beginning or at the end or at a specified position in
the list.

Traversing

Traversing a list means accessing its elements one by one to process all or some of
the elements. For example, if we need to display values of the nodes, count the
number of nodes or search a particular item in the list, then traversing is required.
We can traverse the list by using a temporary pointer variable (say, temp), which
points to the node currently being processed. Initially, we make temp to point to
the first node, process that element, then move temp to point to the next node
using statement temp=temp->next, process that element and move so on
as long as the last node is not reached, that is, until temp becomes NULL.

Algorithm 5.2 Traversing a List

display(Start)

1. If Start = NULL //Start points to the
first //node of
list

Print “List is empty!!” and go to step 4

End If

2. Set temp = Start //initializing temp with
Start

3. While temp != NULL

Print temp->info //displaying value
of eachnode

Set temp = temp->next

//moving temp to point to
next node

End While

4. End

Another example of traversing a linked list is counting number of nodes in the
linked list, which is given here.

Input-Output and
File Handling in C++

NOTES

Self - Learning
284 Material

Algorithm 5.3 Counting Number of Nodes

count_node(Start)

1. Set count = 0

2. Set temp = Start //initializing temp with
Start

3. While temp != NULL //traversing the list

Set count = count + 1

//incrementing count

Set temp = temp->next

End While

4. Return count //returning total number
of nodes //in the
list

5. End

Insertion

To insert a node in the linked list, a new node is created (as explained in Algorithm
5.1) and then placed at the desired position by adjusting the pointers. Nodes can
be inserted either in the beginning or at the end or at any specified position in the
list as discussed in this section.

Insertion in Beginning

To insert a node in the beginning of list, the next field of new node (pointed by
nptr) is made to point to the existing first node and the Start pointer is
modified to point to the new node (Refer Figure 5.18).

Fig. 5.18 Insertion in the Beginning of a Linked List

Algorithm 5.4 Insertion in Beginning

insert_beg(Start)

1. Call create_node()

//creating a new node pointed by
nptr

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 285

2. Set nptr->next = Start

3. Set Start = nptr

//Start pointing to new node

4. End

Insertion at End

To insert a node at the end of a linked list, the list is traversed up to the last node
and the next field of this node is modified to point to the new node. However, if
the linked list is initially empty, then the new node becomes the first node and
Start points to it. Figure 5.19(a) shows a linked list with a pointer variable
temp pointing to its first node and Figure 5.19(b) shows temp pointing to the
last node and the next field of last node pointing to the new node.

(a)

(b)

Fig. 5.19 Insertion at the End of a Linked List

Input-Output and
File Handling in C++

NOTES

Self - Learning
286 Material

Algorithm 5.5 Insertion at End

insert_end(Start)

1. Call create_node()

//creating a new node pointed by
nptr

2. If Start = NULL

//checking for empty list

Set Start = nptr

//inserting new node as the first
node

Else

Set temp = Start

While temp->next != NULL

//traversing up to the last node

Set temp = temp->next

End While

Set temp->next = nptr

//appending new node at the end

End If

3. End

Insertion at a Specified Position

To insert a node at a position (say, pos) specified by the user, the list is traversed
up to pos-1 position. Then the next field of new node is made to point to the
node that is already at pos position and the next field of the node at pos-1
position is made to point to the new node. Figure 5.20 shows the insertion of the
new node pointed by nptr at third position.

Fig. 5.20 Insertion at a Specified Position in a Linked List

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 287

Algorithm 5.6 Insertion at a Specified Position

insert_pos(Start)

1. Call create_node()

//creating a new node pointed by
nptr

2. Set temp = Start

3. Read pos

//position at which the new node
is to be

//inserted

4. Call count_node(temp)

//counting total number of nodes
in count //variable

5. If (pos > count + 1 OR pos = 0)

Print “Invalid position!” and go to step 7

End If

6. If pos = 1

Set nptr->next = Start

Set Start = nptr //inserting new node as
the first node

Else

Set i = 1

While i < pos - 1

//traversing up to the node at pos-
1 position

Set temp = temp->next

Set i = i + 1

End While

Set nptr->next = temp->next

//inserting new node at pos
position

Set temp->next = nptr

End If

7. End

Deletion

Like insertion, nodes can be deleted from the linked list at any point of time and
from any position. Whenever a node is deleted, the memory occupied by the
node is deallocated. Note that while performing deletions, we need to keep track
of the node that is the immediate predecessor of the node to be deleted. Thus, two

Input-Output and
File Handling in C++

NOTES

Self - Learning
288 Material

temporary pointer variables are used (except in case of deletion from beginning)
while traversing the list.

Note: A situation where the user tries to delete a node from an empty linked list is termed
as Underflow.

Deletion from Beginning

To delete a node from the beginning of a linked list, the address of the first node is
stored in a temporary pointer variable temp and Start is modified to point to
the second node in the linked list. After that the memory occupied by the node
pointed by temp is deallocated. Figure 5.21 shows the deletion of node from the
beginning of a linked list.

Fig. 5.21 Deletion from the Beginning of a Linked List

Algorithm 5.7 Deletion from Beginning

delete_beg(Start)

1. If Start = NULL //checking for underflow

Print “Underflow: List is empty!” and go to
step 5

End If

2. Set temp = Start //temp pointing to the
first node

3. Set Start = Start->next //moving Start to
point to the / /
second node

4. Deallocate temp //deallocating memory

5. End

Deletion from End
To delete a node from the end of a linked list, the list is traversed upto the last
node. Two pointer variables save and temp are used to traverse the list,
where save points to the node previously pointed by temp. At the end of
traversing, temp points to the last node and save points to the second last
node. Then the next field of the node pointed by save is made to point

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 289

to NULL and the memory occupied by the node pointed by temp is deallocated.
Figure 5.22 shows the deletion of node from the end of a linked list.

Fig. 5.22 Deletion from the End of a Linked List

Algorithm 5.8 Deletion from the End

delete_end(Start)

1. If Start = NULL //checking for underflow

Print “Underflow: List is empty!” and go to
step 6

End If

2. Set temp = Start //temp pointing to the first
node

3. If temp->next = NULL //deleting the only node
of the list

Set Start = NULL

Else

While (temp->next) != NULL

//traversing up to the last
node

Set save = temp

//save pointing to node
previously

//pointed by temp

Set temp = temp->next

//moving temp to point to
next node

End While

End If

4. Set save->next = NULL

//making new last node to point to
NULL

Input-Output and
File Handling in C++

NOTES

Self - Learning
290 Material

5. Deallocate temp //deallocating memory

6. End

Deletion from a Specified Position

To delete a node from the position (say, pos) specified by the user, the list is
traversed upto the pos position using pointer variables temp and save. At the
end of traversing, temp points to the node at pos position and save points to
the node at pos-1 position. Then the next field of the node pointed by save
is made to point to the node at pos+1 position and the memory occupied by the
node pointed by temp is deallocated. Figure 5.23 shows the deletion of node at
third position.

Fig. 5.23 Deletion from a Specified in a Linked List

Algorithm 5.9 Deletion from a Specified Position

delete_pos(Start)

1. If Start = NULL //checking for underflow

Print “Underflow: List is empty!” and go to
step 8

End If

2. Set temp = Start

3. Read pos //position of the node to be
deleted

4. Call count_node(Start)

//counting total number of
nodes in //count variable

5. If pos > count OR pos = 0

Print “Invalid position!” and go to step 8

End If

6. If pos = 1

Set Start = temp->next

//deleting the first node

Else

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 291

Set i = 1

While i < pos //traversing up to the node
//at position pos

Set save = temp

Set temp = temp->next

Set i = i + 1

End While

Set save->next = temp->next

//deleting the node at
position pos

End If

7. Deallocate temp //deallocating memory

8. End

Doubly Linked Lists

In a singly linked list, each node contains a pointer to the next node and it has no
information about its previous node. Thus, we can traverse only in one direction,
that is, from beginning to end. However, sometimes it is required to traverse in the
backward direction, that is, from end to beginning. This can be implemented by
maintaining an additional pointer in each node of the list that points to the previous
node. Such type of linked list is called doubly linked list.

Each node of a doubly linked list consists of three fields: prev, info and
next (Refer Figure 5.24). The info field contains the data, the prev field
contains the address of the previous node and the next field contains the address
of the next node.

Fig. 5.24 Node of a Doubly Linked List

Since, a doubly linked list allows traversing in both forward and backward
directions, it is also referred to as a two-way list. Figure 5.25 shows an example
of a doubly linked list having four nodes. Note that the prev field of the first
node and the next field of the last node in a doubly linked list points to NULL.

Fig. 5.25 An Example of a Doubly Linked List with Four Nodes

Input-Output and
File Handling in C++

NOTES

Self - Learning
292 Material

To define the node of a doubly linked list in C language, the structure used to
represent the node of singly linked list is extended to have an extra pointer, which
points to previous node. The structure of a node of doubly linked list is shown
here.
typedef struct node
{

int info; /*to store integer type
data*/

struct node *next; /*to store a pointer to next
node*/

struct node *prev; /*to store a pointer to
previous node*/
}Node;
Node *nptr; /*nptr is a pointer to node*/

When memory is allocated successfully to a node, that is, no overflow, the
node is initialized. The info field is initialized with a valid value and the prev
and next fields are initialized with NULL.

Algorithm 5.10 Creating a Node of Doubly Linked List
create_node()

1. Allocate memory for nptr

//nptr is a pointer to new
node

2. If nptr = NULL

Print “Overflow: Memory not allocated!” and go
to step 8

3. Read item //item is the value stored
in the node

4. Set nptr->info = item

5. Set nptr->next = NULL

6. Set nptr->prev = NULL

7. Return nptr

8. End

Note that all the operations that are performed on singly linked lists can also
be performed on doubly linked lists. In this section, we will discuss only insertion
and deletion operations on doubly linked lists.

Insertion

To insert a new node in the beginning of a doubly linked list, a pointer (say, nptr)
to new node is created. The next field of new node is made to point to the
existing first node and prev field of the existing first node (that has become the
second node now) is made to point to the new node. After that, Start is modified
to point to new node. Figure 5.26 shows the insertion of node in the beginning of
a doubly linked list.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 293

Fig. 5.26 Insertion in the Beginning

Algorithm 5.11 Insertion in the Beginning

insert_beg(Start)

1. Call create_node() //creating a new node pointed
by //nptr

2. If Start != NULL

Set nptr->next = Start

//inserting node in the
beginning

Set Start->prev = nptr

End If

3. Set Start = nptr //making Start to point to
new node

4. End

To insert a new node at the end of a doubly linked list, the list is traversed
upto the last node using some pointer variable (say, temp). At the end of traversing,
temp points to the last node. Then, the next field of the last node (pointed by
temp) is made to point to the new node and the prev field of the new node is
made to point to the node pointed by temp. However, if the list is empty, the
new node is inserted as the first node in the list. Figure 5.27 shows the insertion of
new node at the end of a doubly linked list.

Fig. 5.27 Insertion at the End

Input-Output and
File Handling in C++

NOTES

Self - Learning
294 Material

Algorithm 5.12 Insertion at the End

insert_end(Start)

1. Call create_node() //creating a new node pointed
by nptr

2. If Start = NULL

Set Start = nptr //inserting new node as
the first node

Else

Set temp = Start //pointer temp used for
traversing

While temp->next != NULL

Set temp = temp->next

End While

Set temp->next = nptr

Set nptr->prev = temp

End If

3. End

To insert a new node (pointed by nptr) at a specified position (say, pos)
in a doubly linked list, the list is traversed upto pos-1 position. At the end of
traversing, temp points to the node at pos-1 position. For simplicity, we use
another pointer variable (say, ptr) to point to the node that is already at pos
position. Then, the prev field of the node pointed by ptr is made to point to the
new node and the next field of the new node is made to point to the node
pointed by ptr. Also, the prev field of the new node is made to point to the
node pointed by temp and the next field of the node pointed by temp is
made to point to the new node. Figure 5.28 shows the insertion of new node at the
third position in a doubly linked list.

Fig. 5.28 Insertion at a Specified Position

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 295

Algorithm 5.13 Insertion at a Specified Position

insert_pos(Start)

1. Call create_node()

//creating a new node pointed by
nptr

2. Set temp = Start

3. Read pos

4. Call count_node(temp)

//counting number of nodes in count

5. If pos = 0 OR pos > count + 1

Print “Invalid position!” and go to step 7

End If

6. If pos = 1

Set nptr->next = Start

//inserting node at the beginning

Set Start = nptr

//Start pointing to new node

Else

Set i = 1

While i < pos-1

//traversing up to the node at pos-
1 postion

Set temp = temp->next

Set i = i + 1

End While

Set ptr = temp->next

Set ptr->prev = nptr

Set nptr->next = ptr

Set nptr->prev = temp

Set temp->next = nptr

End If

7. End

Input-Output and
File Handling in C++

NOTES

Self - Learning
296 Material

Deletion

To delete a node from the beginning of a doubly linked list, a pointer variable (say,
temp) is used to point to the first node. Then Start is modified to point to the
next node and the prev field of this node is made to point to NULL. After that
the memory occupied by the node pointed by temp is deallocated. Figure 5.29
shows the deletion of a node from the beginning of a doubly linked list.

Fig. 5.29 Deletion from the Beginning

Algorithm 5.14 Deletion from Beginning

delete_beg(Start)

1. If Start = NULL

Print “Underflow: List is empty!” and go to
step 6

End If

2. Set temp = Start //temp points to the
node to //be
deleted

3. Set Start = Start->next //making Start
to point to
//next node

4. Set Start->prev = NULL

5. Deallocate temp / / d e a l l o c a t i n g
memory

6. End
Note: The process of deleting node from the end of a doubly linked list is same as that of
singly linked list.

To delete a node from a position (say, pos) specified by the user, the list is
traversed upto the pos position using pointer variables temp and save. At the
end of traversing, temp points to the node at pos position and save points to
the node at pos-1 position. Here, for simplicity, we use another pointer variable
ptr to point to the node at pos+1 position. Then the next field of the node at
pos-1 position (pointed by save) is made to point to the node at pos+1
position (pointed by ptr). In addition, the prev field of the node at pos+1

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 297

position (pointed by ptr) is made to point to the node at
pos-1 position (pointed by save). After that the memory occupied by the
node pointed by temp is deallocated. Figure 5.30 shows the deletion of node at
third position from a doubly linked list.

Fig. 5.30 Deletion from a Specified Position

Algorithm 5.15 Deletion from a Specified Position

delete_pos(Start)

1. If Start = NULL

Print “Underflow: List is empty!” and go to
step 8

End If

2. Set temp = Start

3. Read pos

4. Call count_node(temp)

//counting total number of nodes in count
variable

5. If pos > count OR pos = 0

Print “Invalid position!” and go to step 6

End If

6. If pos = 1

Set Start = Start->next //deleting the
first node

Start->prev = NULL

Else

Set i = 1

While i < pos

//traversing up to the node at pos
position

Set save = temp

Input-Output and
File Handling in C++

NOTES

Self - Learning
298 Material

//save pointing to the node at pos-1
position

Set temp = temp->next

//making temp to point to next node

Set i = i + 1

End While

Set ptr = temp->next

Set save->next = ptr

Set ptr->prev = save

End If

7. Deallocate temp / / d e a l l o c a t i n g
memory

8. End

5.7 STRING CLASS

String manipulation is one of the most common task of any C++ program. A string
is defined as a sequence of characters terminated by null character and can be
represented as an array of char type. However, C++ also provides a better
alternative for handling string. It comes with the built-in string class defined in
string header, which facilitates convenient handling of the strings and the various
operations related to it.

String Class

The string class is the most important class of C++ which is used for
manipulation of strings. The string class automatically manages memory
requirements for strings. One can work with the objects of type string in the
same way as one works with variables of the built-in data type.

The need to include string class in standard library is due to the fact that
the standard C++ operators can be used to perform some basic operations on the
objects that are of string type, while null-terminated strings cannot be
manipulated by any of the standard C++ operators. Another reason is the safety
that it provides while copying a string in another string. In case of copying the
character array, if the size of the target array is less than that of the source array
then a program error or system crash may occur. However, in case of the objects
of string type such problems are automatically handled.

Therefore, the advantages of string class can be summarized as:

 Consistency: a new data type of string type is created

 Convenience: the standard C++ operators can be used to operate on strings

 Safety: array boundaries are automatically taken care of

Some of the simple operations that can be performed on the objects of string
class by using various operators, listed in Table 5.9.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 299

Table 5.9 Operators Applicable on Objects of string Type

Operator Meaning

= Assignment

== Equality

!= Inequality

+ Concatenation

+= Concatenation assignment

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

[] Subscripting

<< Output

>> Input

However, to perform more complex operations, several member functions of
the string class can be used, which are listed in Table 5.10.

Table 5.10 Member Functions of string Class

Function Purpose

append() appends a part of string or entire string to the end of
another string

assign() assigns a part or entire string to another string

at() accesses an individual character of string from a
specified location

begin() returns an iterator to the first character of a string

compare() compares two strings and gives appropriate result

empty() returns 1 if string is empty and 0 if string is not empty

end() returns an iterator to the end of the string

erase() removes the substring from a string

insert() inserts characters in the string at the specified position

length(), size() returns the number of characters present in a string

replace() replaces specified substring with new substring

Creating String Objects

The string class consists of constructors and member functions with multiple
overloaded forms to create and manipulate string objects. The prototypes of
three of its most commonly used constructors are given here.

Input-Output and
File Handling in C++

NOTES

Self - Learning
300 Material

string(); //for creating empty
string object

string(const char *str); //for creating
string object from
//the null-terminated string str

string(const string &str); //for creating
string from another

//string

An object of the string type represents a sequence of characters of the
char type.

The syntax for creating an object of string class is

string string_object;

where,

string = C++ keyword

string_object = name of a variable used to store string

For example, consider these statements.

string str1; //creates an empty string

string str2(“Hello”); //creates a string with
initial value

string str4 = str3; //creating string from
already / / e x i s t i n g
string

Program 5.24: A program to demonstrate the basic functionality of object of
string class type

#include<iostream>

#include<string> //header for
string class

using namespace std;

int main()

{

string str1(“Computer”);

string str2;

cout<<“Enter the second string : ”;

cin>>str2;

cout<<“Length of first string :
”<<str1.length();

cout<<“\nFirst string : ”<<str1;

cout<<“\nLength of second string :

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 301

”<<str2.length();

cout<<“\nSecond string : ”<<str2;

return 0;

}

The output of the program

Enter the second string : Science

Length of first string : 8

First string : Computer

Length of second string : 7

Second string : Science

In this example, two objects str1 and str2 of string type are created
and initialized with the values Computer and Science, respectively. The
length of the strings is then displayed using the length() function of string
class. Note that the length of a string can also be displayed using the size()
function.

Note: If the size of the strings is not specified anywhere, string objects are
automatically sized to hold the string that are assigned to them.

String Operations

Simple string operations can be performed by using string operators and the
advanced operations can be carried out by using the member functions of string
class. Some of the common string operations using member functions of string
class are discussed here.

Concatenating Strings

Concatenation of one string at the end of another string can be accomplished by
using the ‘+’ operator. Concatenation of a string variable with string literal can also
be accomplished with the help of the ‘+’ operator. The string literal can appear on
the either side of ‘+’ operator. For example, consider these statements.

char str[] = “How are you”;

str3 = str1 + str2;

str3 = “Hello ” + str2;

str3 = str1 + str;

where,

str1 and str2 are objects of string type and str is a character
array.

Note: Two string literals cannot be concatenated using the ‘+’ operator. One of the string
operands to be concatenated must be an object of the string type.

The program given here demonstrates the working of the concatenation operator
‘+’ over strings.

Input-Output and
File Handling in C++

NOTES

Self - Learning
302 Material

Program 5.25: A program to demonstrate string concatenation

#include<iostream>

#include<string>

using namespace std;

int main()

{

//Declaring objects of string type

string Fname, Sname, Name, Str1, Str2;

cout<<“Enter your first name : ”;

cin>>Fname; //reading string

cout<<“Enter your last name : ”;

cin>>Sname; //reading string

//Concatenating two objects of string type

//and one string literal

Name = Fname + “ ” + Sname;

//Concatenating one string literal

//and one object of string type

Str1 = “Hello! ” + Name;

//Concatenating one object of string type

//and one string literal

Str2 = Str1 + “, How are you?”;

cout<<“String after concatenation : ”<<Str2;

return 0;

}

The output of the program

Enter your first name : John

Enter your second name : Smith

String after concatenation : Hello! John Smith,
How are you?

In this example, the objects Fname, Sname, Name, Str1 and Str2 of
string type are declared. The values of Fname and Sname read from the
user are concatenated and stored into the third string object Name. After
this, the string literals are concatenated with string object Name and the
resultant concatenated string is displayed using the standard output operator <<.

Comparing and Swapping Strings

The contents of two strings can be compared by using any of the relational operators
(==, !=, <, <=, >=, >). The objects of string type are compared character
by character until either the characters are different or the end of either or both the

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 303

strings are reached. When non-matching characters are encountered then their
ASCII codes determines which of the strings has the lesser value. If all the characters
are same and the strings are of different lengths, the smaller string is ‘less than’ the
longer string. Two strings are said to be equal if they consist the same number of
characters as well as all corresponding characters are matching. Since comparison
is done on the basis of ASCII codes, the comparison is case-sensitive.

Program 5.26: A program to demonstrate the comparison of strings

#include<iostream>

#include<string>

using namespace std;

int main()

{

//Initiallizing the list of names

string Names[] = { “John”, “Scott”, “Julia”,

“Jeniffer”, “Martin” };

string Str1, Str2;

int i, flag=0;

cout<<“List of names : \n”;

for(i=0; i<5; i++)

cout<<Names[i]<<“\n”;

cout<<“Enter the name to be replaced from
list: ”;

cin>>Str1;

for(i=0; i<5; i++)

{

//Comparing two strings using relational
operator ‘==’

if(Str1 == Names[i])

{

cout<<“Enter the new name to replaced
with : ”;

cin>>Str2;

Names[i].swap(Str2); //swapping two
strings

flag = 1;

}

}

if(flag)

Input-Output and
File Handling in C++

NOTES

Self - Learning
304 Material

{

cout<<“List of names after replacement :
”;

for(i=0; i<5; i++)

{

cout<<“\n”<<Names[i];

}

}

else

cout<<“\nEntered name does not exist
in list.”;

return 0;

}

The output of the program

List of names :

John

Scott

Julia

Jeniffer

Martin

Enter the name to be replaced from list: Julia

Enter the new name to replaced with : Miller

List of names after replacement :

John

Scott

Miller

Jeniffer

Martin

In this example, two strings are compared for equality using the relational
operator ‘==’. If the string entered by the user matches with any of the names in
the list then that name is swapped with new string using the swap() function of
string class.

The two strings can also be compared by using the compare() function of
string class. The compare() function returns 0 if two strings are equal,
returns a negative value (<0) if first string is less than the second string and returns
a positive value (>0) if first string is greater than the second string. For example,
consider this code segment.

int main()

{

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 305

//Same as in Program 5.26

//Comparing two strings using compare() member
function

if(Names[i].compare(Str1)==0)

{

cout<<“Enter the new name to replaced with
: ”;

cin>>Str2;

Names[i].swap(Str2); //swapping two
strings

flag = 1;

}

}

Accessing Characters and Substrings

The individual characters of a string object can be accessed either by using
an array notation or by using at() function of the string class. In addition,
the substring from a string can be extracted using the substr() function. For
example, consider these statements.

Name[i]; //accesses ith element of a string
Name

Name.at(i); //accesses ith element of a string
Name

Str1 = Name.substr(4, 6); //substring of six
characters from
//fourth position of string

//Name is assigned to
string Str1

The program given here demonstrates the different ways of accessing individual
character of a string. It also shows how the substring from a main string can be
extracted and stored into another string.

Program 5.27: A program to demonstrate the accessing of characters of a string

#include<iostream>

#include<string>

#include<cctype>

using namespace std;

int main()

{

string Message = “gIVE hAPPINESS aND iT bEGETS

hAPPINESS”;

Input-Output and
File Handling in C++

NOTES

Self - Learning
306 Material

string Sub;

int i;

cout<<“The original string is : ”<<Message;

for(i=0; i<Message.length(); i++)

{

//Accessing individual characters of
a string

if(islower(Message.at(i)))

Message.at(i) =
toupper(Message.at(i));

else if(isupper(Message.at(i)))

Message.at(i) =
tolower(Message.at(i));

}

cout<<“\nString after changes : ”<<Message;

//Retrieving substring from main string

Sub = Message.substr(0, 14);

cout<<“\nSubstring extracted from main
string is :” <<Sub;

return 0;

}

The output of the program

The original string is : gIVE hAPPINESS aND iT bEGETS
hAPPINESS

String after changes : Give Happiness And It Begets
Happiness

Substring extracted from main string is : Give
Happiness

In this example, the at() function is used to access individual characters of a
string and the substr() function is used to extract a substring of fourteen
characters starting from the zero position of the string message. The extracted
substring is stored in another string named Sub.

Searching a String

The string class provides various functions that can be used for performing
search operations on a string. These functions return the position of a substring or
of a character to be searched in a string. The substring to be searched can be
another object of string type or a single character or a null terminated string.
To accomplish different search requirements, various forms of the find() function
are available that are listed in Table 5.11.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 307

Table 5.11 Different Forms of find() Member Function

Function Purpose

find() returns a position from left where substring is located in main
string

find_first_of() returns a position of first occurrence of character in main
string

find_last_of() returns a position of last occurrence of character in main string

rfind() searches a string from right

The program given here demonstrates the working of various forms of
find() function for different searching needs.

Program 5.28: A program to demonstrate the working of different forms of
find() function

#include<iostream>

#include<string>

using namespace std;

int main()

{

string Message = “Give Happiness And It Begets
Happiness”;

string Sub;

char ch;

int pos;

cout<<“The main string is : ”<<Message;

cout<<“\nSize of main string :
”<<Message.size();

cout<<“\n\nEnter a character to be searched
: ”;

cin>>ch;

cout<<“Searching using find() function . .
.”;

pos = Message.find(ch);

cout<<“\nCharacter ”<<ch<<“ is present at ”

<<pos<<“ position.”;

cout<<“\nSearching using find_first_of() function..
.”;

pos = Message.find_first_of(ch);

cout<<“\nCharacter ”<<ch<<“ is present at ”

<<pos<<“ position.”;

Input-Output and
File Handling in C++

NOTES

Self - Learning
308 Material

cout<<“\nSearching using find_last_of() function ..
.”;

pos = Message.find_last_of(ch);

cout<<“\nCharacter ”<<ch<<“ is present at ”

<<pos<<“ position.”;

cout<<“\n\nEnter the substring to be searched
: ”;

cin>>Sub;

cout<<“Searching using find() function . .
.”;

pos = Message.find(Sub);

cout<<“\nSubstring ”<<Sub<<“ is present at ”

<<pos<<“ position from left.”;

cout<<“\nSearching using rfind() function
. . .”;

pos = Message.rfind(Sub);

cout<<“\nSubstring ”<<Sub<<“ is present at
”

 <<pos<<“ position from right.”;

return 0;

}

The output of the program

The main string is : Give Happiness And It Begets
Happiness

Size of main string : 38

Enter a character to be searched : n

Searching using find() function . . .

Character n is present at 10 position.

Searching using find_first_of() function . . .

Character n is present at 10 position.

Searching using find_last_of() function . . .

Character n is present at 34 position.

Enter the substring to be searched : Happiness

Searching using find() function . . .

Substring Happiness is present at 5 position from
left.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 309

Searching using rfind() function . . .

Substring Happiness is present at 29 position from
right.

Modifying a String

After performing various search operations, it might be required to modify a string.
The modifications can be in the form of appending, inserting, replacing a substring
in a string or deleting characters or substring from a string. These tasks are
accomplished by using the functions, append(), insert(), replace()
and erase(), respectively.

The program given here demonstrates various ways of making changes in a
given string.

Program 5.29: A program to demonstrate the working of different functions for
modifying the string

#include<iostream>

#include<string>

using namespace std;

int main()

{

string MainStr = “Give Happiness And ”;

cout<<“Original string : ”<<MainStr;

MainStr.append(“And Begets Sadness”);

cout<<“\nUsing append function : ”<<MainStr;

MainStr.erase(18,4);

cout<<“\nUsing erase function : ”<<MainStr;

MainStr.insert(19, “It ”);

cout<<“\nUsing insert function : ”<<MainStr;

MainStr.replace(29,3,“Happi”);

cout<<“\nUsing replace function : ”<<MainStr;

return 0;

}

The output of the program

Original string : Give Happiness And

Using append function : Give Happiness And And Begets
Sadness

Using erase function : Give Happiness And Begets
Sadness

Input-Output and
File Handling in C++

NOTES

Self - Learning
310 Material

Using insert function : Give Happiness And It Begets
Sadness

Using replace function : Give Happiness And It Begets
Happiness

5.7.1 Command-Line Arguments

As we know that C++ supports command-line arguments by which the arguments
can be passed to the program while invoking it from the command prompt. They
are usually used to pass the name of data file to an application. For example,
consider the statement:

cc sample.cpp

where,

sample.cpp = the command-line argument that follows the name of the program
cc to be executed.

Example 5.3: A program to create a file comparison utility which takes the name
of files as arguments from the command prompt

#include<fstream>

using namespace std;

int main(int argc, char *argv[])

{

int i;

char string1[100], string2[100];

if (argc!=3)

{

cout<<“Usage: comparefile<file1><file2>”<<endl;

//comparefile is the name of program

return 1;

}

ifstream infile1(argv[1],ios::in|ios::binary);

if(!infile1)

{

cout<<“Cannot open file “<<argv[1]<<endl;

return 1;

}

ifstream infile2(argv[2],ios::in|ios::binary);

if(!infile2)

{

cout<<“Cannot open file “<<argv[2]<<endl;

return 1;

}

cout<<“Comparing files.....” <<endl;

do

{

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 311

infile1.read((char *)string1, sizeof(string1));

cout<<“\nThe contents of “<<argv[1]<<“ :
“<<endl<<string1;

infile2.read((char *)string2, sizeof(string2));

cout<<“\nThe contents of “<<argv[2]<<“ : “<<endl<<string2;

if (infile1.gcount()!=infile2.gcount())

// comparing size

{

cout<<“\n\nFiles are of different size”<<endl;

infile1.close();

infile2.close();

return 0;

 }

 else

 {

for(i=0;i<infile1.gcount();i++) // comparing contents

if(string1[i]!=string2[i])

{

cout<<“\n\nFiles are of same size but “;

cout<<“Contents are different”;

infile1.close();

infile2.close();

return 0;

}

}

}while(!infile1.eof() && !infile2.eof());

cout<<“\nFiles are same.”;

infile1.close();

infile2.close();

return 0;

}

The output of the program

First run
C:\>comparefile sample

Usage: comparefile<file1><file2>

Second run
C:\>comparefile sample sample1

Comparing files.....

The contents of sample :

This is an example of command_line

The contents of sample1 :

This is an example of command line

Files are of same size but Contents are different

Input-Output and
File Handling in C++

NOTES

Self - Learning
312 Material

In Example 5.2, two files namely sample and sample1 are passed as
arguments from the command prompt which are accessed using the appropriate
pointer argv[1] and argv[2] respectively. Firstly, the program checks if
the number of command line arguments is correct or not using argc which
represents the total number of command line arguments. If the number of command
line arguments does not match, message is displayed. Further, the program checks
whether the files can be opened or not.

If the files are opened, the number of characters in both the files is determined
using the function gcount(). If the size of both files is different, the message is
displayed accordingly. Otherwise, the characters are compared, and the message
is displayed depending upon whether the contents are same or not.

Check Your Progress

11. What is the basic idea of ADT?

12. Define the term underflow.

13. What are Maps in C++?

14. What is string class?

15. What do you mean by the term string operations?

5.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In C++, I/O either with console or other devices, such as Disk Drive is
visualized as exchange of stream of bytes between the programs and I/O
devices.

2. The istream class in the standard library is derived from ios. It
contains member functions to carry out formatted and unformatted input
operations. It contains the overloaded extraction (>>) operator functions.

3. The formatting function defined in ios_base are presented in header
file <ios>.

4. There is another function of class ios_base used to specify is known
as flags.

5. There are two modes by which data can be transferred to and from
streams: text mode and binary mode.

6. In header <fstream>, the disk file I/O operations are declared.

7. In C++, every file is associated with two file pointers, namely, get pointer
(input pointer) and put pointer (output pointer).

8. C++ supports command-line arguments by which the arguments can be
passed to the program while invoking it from the command prompt. They
are usually used to pass the name of data file to an application.

9. The C++ standard library classes, objects and functions are grouped
under the namespace called std. There are interesting classes in the C++
standard library under the namespace std. Some of the special classes
are:

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 313

 String

 Stack

 Vector

 List

 Map

10. Containership is also referred to as nesting in which a class has an object of
another class as its member. Containership (or containment or aggregation
or composition), like inheritance, enables the implementation of a logical
relationship between classes. The class (enclosing class) that contains an
object of another class has access only to the public members of that class.
The private and protected members of the contained class are not accessible
to the enclosing class

11. The basic idea of ADT is that the implementation of the set of operations
are written once in the program and the part of program which needs to
perform an operation on ADT accomplishes this by invoking the required
operation.

12. A situation where the user tries to delete a node from an empty linked list is
termed as underflow.

13. Maps are associative containers that store elements in a mapped fashion.
Each element has a key value and a mapped value. No two mapped values
can have same key values.

14. The string class is the most important class of C++ which is used for
manipulation of strings. The string class automatically manages memory
requirements for strings. One can work with the objects of type string in the
same way as one works with variables of the built-in data type.

15. Simple string operations can be performed by using string operators and
the advanced operations can be carried out by using the member functions
of string class.

5.9 SUMMARY

 In C++, I/O either with console or other devices, such as Disk Drive is
visualized as exchange of stream of bytes between the programs and I/
O devices.

 Buffer can be visualized as a fast memory device, which can store bytes
of data. The buffer provides for temporary storage of the data. For
instance, if a program wants to output to a printer, the entire text is placed
on the buffer.

 The buffer will in turn transfer the characters to the printer via the output
stream. It is more important in the case of disc drives since we cannot
read or write one character at a time which will cause a lot of overhead.

 C++ is a general-purpose programming language created by Bjarne
Stroustrup as an extension of the C programming language, or ‘C with
Classes’.

Input-Output and
File Handling in C++

NOTES

Self - Learning
314 Material

 The istream class in the standard library is derived from ios. It
contains member functions to carry out formatted and unformatted input
operations. It contains the overloaded extraction (>>) operator functions.

 The ostream class in the standard library implements a mechanism for
converting value of any type to a sequence of characters. The ostream
class contains the overloaded insertion (<<) operator function.

 The cout is an ostream object. The cin is an istream object. Thus,
we were attaching the streams to the console monitor and keyboard.
Similarly, we created objects of ifstream and ofstream and
attached to disk drive for file I/O.

 There is another function of class ios_base used to specify is known
as flags.

 The formatting functions defined in ios_base are presented in header
file <ios>.

 The formatting functions of istream and ostream are in their respective
header files and through inheritance in <iostream>.

 A file stream refers to the flow of data between a program and files.

 There are two modes by which data can be transferred to and from
streams: text mode and binary mode.

 In C++, every file is associated with two file pointers, namely, get pointer
(input pointer) and put pointer (output pointer).

 Randomly accessing a file means directly reaching the desired record/
object in the file. To access an object in a file directly, the put pointer is
placed at the beginning of the object by skipping (object_no-1)*object_size
number of bytes from the beginning of the file.

 C++ supports command-line arguments by which the arguments can be
passed to the program while invoking it from the command prompt. They
are usually used to pass the name of data file to an application.

 The language C amply demonstrated that no program is written just using
the 24 keywords of the programming language. Always C programs used
some library functions, such as <stdio.h>. The C library functions are
available for C++ programs in the global namespace with dot h suffix.

 Containership is also referred to as nesting in which a class has an object
of another class as its member.

 Containership (or containment or aggregation or composition), like
inheritance, enables the implementation of a logical relationship between
classes. The class (enclosing class) that contains an object of another
class has access only to the public members of that class. The private and
protected members of the contained class are not accessible to the
enclosing class.

 The basic idea of ADT is that the implementation of the set of operations
are written once in the program and the part of program which needs to
perform an operation on ADT accomplishes this by invoking the required
operation.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 315

 A situation where the user tries to delete a node from an empty linked
list is termed as underflow.

 In a singly linked list, each node contains a pointer to the next node and
it has no information about its previous node. Thus, we can traverse only
in one direction, that is, from beginning to end.

 The string class defined in the <string> facilitates in convenient handling
of string objects.

 The string class automatically manages memory requirements for strings.

 The string class consists of constructors and member functions with multiple
overloaded forms to create and manipulate string objects.

 Concatenation of a string variable with string literal or string variable can
be accomplished with the help of ‘+’ operator.

 The individual characters of a string object can be accessed either by
using an array notation or by using at() function of the string class.

 Maps are associative containers that store elements in a mapped fashion.
Each element has a key value and a mapped value. No two mapped
values can have same key values.

 The string class meets all the basic requirements necessary to be a container
and hence, it supports common container functions, such as begin(),
end() and size().

 Appending, inserting, replacing a substring in a string or deleting characters
or substring from a string can be accomplished by using the functions,
append(), insert(), replace() and erase(), respectively.

5.10 KEY TERMS

 Buffer: It refer to a fast memory device that can store bytes of data.

 File stream: It is the flow of data between a program and files.

 Input stream: It reads the data from the file and supplies it to the
program.

 Output stream: It receives data from the program and writes it to the
file.

 Text file: It refer to a file which is opened in the text mode.

 Binary file: It is a file which is opened in the binary mode.

5.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is buffer?

2. Differentiate between iostream and ostream class.

Input-Output and
File Handling in C++

NOTES

Self - Learning
316 Material

3. What do you mean by the term precision?

4. How is the end of file represented in text and binary files?

5. Differentiate between ios::ate and ios::app mode.

6. Differentiate between character array and C++ string.

7. Define the term vector.

8. Differentiate between containment and inheritance.

9. What is a linked list?

10. Write in brief about the structure of the node of a singly linked list.

11. Define doubly linked list.

12. State the need for including string class in C++.

13. Differentiate between old and modern C++.

Long-Answer Questions

1. Explain the C++ streams with the help of diagram.

2. Discuss the insertions and extractions function with the help of diagram.

3. Explain how to manage output with manipulators.

4. Describe the modes by which data can be transferred to and from streams.

5. Explain the stream classes commonly used for disk I/O operations with
the help of diagram.

6. Differentiate between opening a file using constructor function and
open() function. What method is preferred to handle multiple files
using one stream and why?

7. Describe the manipulations of file pointer with appropriate examples.

8. Write a program to create a file comparison utility which takes the name
of files as arguments from the command prompt.

9. Describe how different standard library functions pertaining to strings are
declared.

10. Discuss the concept of containership and inheritance with the help of
diagram.

11. Differentiate between the linked list and array implementation.

12. Consider a linked list containing integer values and write an algorithm to
find the average MEAN of the values.

13. Write an algorithm to create a linked list storing the names, age and
salaries of ten employees. Arrange the list in the descending order of
salaries.

14. Explain the different ways in which concatenation of two or more string
objects can be done with the help of examples.

15. Discuss the functions used in map with appropriate examples.

Input-Output and
File Handling in C++

NOTES

Self - Learning
Material 317

5.12 FURTHER READING

Jeyapoovan, T. 2006. Computer Programming: Theory and Practice (with
CD). New Delhi: Vikas Publishing House.

Khurana, Rohit. 2008. Object Oriented Programming with C++. New Delhi:
Vikas Publishing House.

Saxena, Sanjay. 2009. Introduction to Information Technology. New Delhi:
Vikas Publishing House.

Rumbaugh, James, Fedrick Blaha, William Premerlani, and Federick Eddy.1990.
Object- Oriented Modelling and Design. New Jersey: Prentice Hall.

Balaguruswamy, E. 1998. Object-Oriented Programming. New Delhi: Tata
McGraw-Hill.

	Prelims
	Introduction
	U1
	U2
	U3
	U4
	U5
	Blank Page
	Blank Page
	Blank Page

