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INTRODUCTION

Mathematics includes the study of topics, such as numbers (arithmetic and number
theory), formulas and related structures (algebra), shapes and spaces in which
they are contained (geometry), and quantities and their changes (calculus and
analysis). Most of mathematical activity consists of discovering and proving (by
pure reasoning) properties of abstract objects. Mathematics is essential in various
fields, including natural sciences, engineering, physics, chemistry, medicine, finance,
computer science and social sciences. Mathematics is, therefore, the most important
subject for achieving excellence in any field of Science and Engineering.

Mathematical chemistry studies the applications of mathematics to chemistry,
it is principally concerned with the mathematical modeling of chemical phenomena.
Major areas of research in mathematical chemistry include chemical graph theory,
which deals with topology, such as the mathematical study of isomerism and the
development of topological descriptors or indices which find application in
quantitative structure-property relationships; and chemical aspects of group theory,
which finds applications in stereochemistry and quantum chemistry.

This book, Mathematics For Chemists, is divided into four units, dealing
in introduction vectors and matrix algebra, differential calculus, elementary
differential equations, and permutation and probability. The book follows the self-
instruction mode or the SIM format wherein each unit begins with an ‘Introduction’
to the topic followed by an outline of the ‘Objectives’. The content is presented in
a simple and structured form interspersed with Answers to ‘Check Your Progress’
for better understanding. A list of ‘Summary’ along with a ‘Key Terms’ and a set
of ‘Self-Assessment Questions and Exercises’ is provided at the end of each unit
for effective recapitulation.
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UNIT 1 VECTOR AND MATRIX
ALGEBRA

Structure
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1.0 INTRODUCTION

Vector, in mathematics, a quantity that has both magnitude and direction but not
position. Algebraically, the dot product is the sum of the products of the
corresponding entries of the two sequences of numbers. The cross product a × b
is defined as a vector c, i.e., Perpendicular (orthogonal) to both a and b, with a
direction given by the right-hand rule and a magnitude equal to the area of the
parallelogram that the vectors span. In geometry and algebra, the triple product is
a product of three-dimensional vectors, usually Euclidean vectors.

Vector calculus, or vector analysis, is concerned with differentiation and
integration of vector fields, primarily in 3-dimensional Euclidean space 3. The
Gauss divergence theorem states that the vector’s outward flux through a closed
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surface is equal to the volume integral of the divergence over the area within the
surface. In mathematics, physics, and engineering, a vector space is a set of objects
called vectors, which may be added together and multiplied by numbers called
scalars.

In mathematics, a matrix is a rectangular array or table of numbers, symbols,
or expressions, arranged in rows and columns, which is used to represent a
mathematical object or a property of such an object. In mathematics, particularly
in linear algebra, a skew-symmetric (or antisymmetric) matrix is a square matrix
whose transpose equals its negative. On the main diagonal of a skew-Hermitian
matrix have to be pure imaginary, i.e., on the imaginary axis (the number zero is
also considered purely imaginary).

Diagonalizable matrices hold only over an algebraically closed field (such
as, the complex numbers). In this case, diagonalizable matrices are dense in the
space of all matrices, which means any defective matrix can be deformed into a
diagonalizable matrix by a small perturbation.  Whereas eigenvalues are the special
set of scalar values that is associated with the set of linear equations most probably
in the matrix equations. The eigenvectors are also termed as characteristic roots.
It is a non-zero vector that can be changed at most by its scalar factor after the
application of linear transformations.

In mathematics, the determinant is a scalar value that is a function of the
entries of a square matrix. It allows characterizing some properties of the matrix
and the linear map represented by the matrix.

In mathematics, a tensor is an algebraic object that describes a multilinear
relationship between sets of algebraic objects related to a vector space.

In this unit, you will study about the dot, cross and triple product of vector,
gradient, divergence and curl gradient, vector calculus, Gauss or divergence
theorem, vector space, matrix algebra, eigenvalues, eigenvectors and diagonalizable,
determinant, tensor.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the dot, cross and triple product of vector

 Analyse the gradient, divergence and curl

 Discuss about the vector calculus

 State the Gauss or divergence theorem

 Elaborate on the vector space

 Know about the matrix algebra

 Comprehend the special matrix

 Calculate the homogeneous and non-homogeneous linear equations

 Define the eigenvalues, eigenvectors and diagonalizable

 Explain about the determinant

 Analyse the tensor
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1.2 INTRODUCTION TO VECTORS

Since a vector is the result of abstraction, its magnitude and direction may be
represented by a line OP directed from the initial point O to the terminal point

P and denoted by OP
 . Here the length of vector OP

  denoted by |OP
 | = OP is

called magnitude or module or modulus of the vector and the direction in
space is indicated by an arrow head on the line.









Fig. 1.1  Vector OP


 has been Shown by V


In Figure 1.1, the vector OP
  has been shown by V


 (or in Clarendon print by

V) while its scalar magnitude is stated by V. Thus OP is the length of the vector

V, while the line of indefinite length of which the directed line segment OP
  is only

a part is the support of V and the sense is from O to P.

It should be noted that formulation of a law of physics in terms of vectors is
however independent of the choice of axes of reference, i.e., the vector
representation has a physical content without reference to any coordinate
system.

Kinds of Vectors

Equal vectors: Two given vectors may be equal only when they have the same
magnitude and the same direction, i.e., the given two vectors are equal if and
only if they have the same or parallel support with equal length and the same
sense. For example in Fig. 1.1, we have

V (=OP
 ) = V1 (=O P ) = – V2 (=O P )

where V1 and V2 have the same scalar magnitude as V but V1 has the same and
V2 the opposite sense to that of V.

Null vector: A vector having the initial and the terminal points coincident is
termed as a zero vector or a null vector. Thus a null vector has its module zero.

Unit vector: A vector having its modulus as unity is called a unit vector.

If a is a vector and ‘a’ its modulus, then unit vector a is denoted by â  (read
as ‘a hat’ or ‘a caret’) defined as

ˆ
| | a

 
a a

a
a

Polar vectors: The line vectors representing the quantities like force, velocity,
etc., in which merely a linear action in a particular direction is involved, are
termed as polar vectors.

Axial vectors: The line vectors representing the quantities like angular
velocity, angular acceleration, etc., in which some rotational action is involved
about an axis and which are drawn parallel to the axis of rotation in order that the
magnitude of the quantity is determined by the length of the vector and the
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direction by the rule of right handed screw (i.e., rotation being considered in
clockwise direction), are termed as axial vectors.

Free vector: Evidently a vector can be represented by an infinite number of
equal vectors by drawing parallel supports. Such a vector which can be
transported from place to place such that it remains of the same magnitude and
keep up the same direction is termed as a free vector. In fact a free vector is
assumed to remain the same through transportation, irrespective of its position in
space.

Localised or Line vector: We have defined that the value of a free vector
depends only on its length and direction, but if it depends also on its position in
space, i.e., if a vector is restricted to pass through a given origin, then it is termed
as a localised vector.

Collinear vectors: The vectors parallel to the same line, regardless of their
magnitudes and sense of directions are termed as collinear vectors. In other
words the vectors having the same or parallel supports are known as collinear
vectors. Such vectors are parallel to each other and they may coincide in a
special case. As such there exists a scalar ratio say  between any two collinear
vectors a and b of the form

b =  a

which follows that one of the two collinear vectors can be expressed as the
scalar multiple of the other.

Non-collinear vectors: The vectors whose directions are neither parallel nor
coincident are said to be non-collinear.

Like vectors or co-directional vectors. The vectors which are collinear
and have the same sense of directions, i.e., the vectors directed in the same
sense irrespective of their magnitudes are termed as like vectors.

Unlike vectors. The vectors which are collinear but have opposite sense of
directions from each other are termed as unlike vectors.

Coplanar vectors. A system of vectors lying in the parallel planes or which
can be made to lie in the same plane are said to be coplanar vectors. Evidently
any two vectors are always coplanar.

Non-coplanar vectors. A system of vectors consisting of three or more
vectors which cannot be made to lie in the same plane are called non-coplanar
vectors.

Reciprocal vector. Any vector having its direction the same as that of a
given vector a, but its magnitude as the reciprocal of the magnitude of a is termed

as the reciprocal vector of a and written as a–1 or 
1

a
. As such

1
2 2

1
ˆ ˆ

a a a
   

a a
a a a  (by definition of a unit vector).

In this connection it is notable that the magnitude and so the reciprocal of the
magnitude of a unit vector being unity, the unit vector is reciprocal to itself and it
is said to be self-reciprocal.

Negative vector. The vector having the same magnitude as the vector a but
opposite direction, is known as the negative of a and written as –a.
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Position vector. If a vector OP
  specifies the position of a point relative to an

arbitrarily chosen point O, then OP
  is called the Position vector of P with

respect to O, the origin of vectors.

Example 1.1: If {a, b, c} is a right handed set, which of the following sets
are right handed?

(i) a, c, b; (ii) b, c, a; (iii) b, a, c; (iv) c, a, b; (v) c, b, a.

It is clear that the sets (ii) and (iv), i.e., b, c, a; and c, a, b are right handed.

Example 1.2: Discuss the geometrical significance of aA + bB = 0.

We have aA + bB = 0, a, b being scalars.

This can be written as A = b

a
 B

= B   if    = 
b

a


i.e., A is expressible as a scalar multiple of B so that the vectors A and B are
parallel or collinear.

Addition of Vectors

The charactertisation of process of summation is inherited in the composition of
two or more displacements of a point. Suppose that we have two vectors a and

b acting at a point O as shown in Figure. 1.2. Let OA
  = a and OB

  = b.

Clearly the resultant effect of the vectors a and b is the same as that of their
vector sum v obtained by setting off the vector b at the end of a and then joining
the beginning of a to the end of b. This geometrical construction utilised to find
the vector sum of two vectors a and b is known as the parallelogram law of
addition of vectors (Refer Figure 1.2).

Fig. 1.2 Representation Addition of a Vector by Parallelogram Law

Thus v = OC OA AC
  

   = a + b ... (1.1)

A similar result follows by starting with b and setting off the vectors a on b,
i.e.,

v  = OC OB BC
  

   = b + a ... (1.2)

Conclusively the result of adding two co-initial vectors is the vector
represented by the diagonal of the parallelogram having the two given
vectors as its adjacent sides.

From Equations (1.1) and (1.2), it follows that

a + b = b + a

i.e., the two vectors obey the commutative law of addition, according to
which the vector sum of two vectors is independent of their order.
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We now propose to find the sum of three vectorssay a, b, c. Let OA


 = a,

AB


 = b, BC


 = c as shown in Figure 1.3. Then

Fig. 1.3 Representation Sum of Vector

v = OC OA AB BC
   

    = a + b + c .... (1.3)

Also v = OC OB BC
  

 

= ( ) ( )OA AB BC
  

 

= (a + b) + c. ... (1.4)

Similarly v = a + (b + c) ... (1.5)

and v = (a + c) + b ... (1.6)

It follows from Equations (1.3), (1.4), (1.5) and (1.6) that

v = a + b + c = (a + b) + c = a + (b + c) = (a + c) + b.

i.e., the three vectors obey the associative law of addition, according to
which the vector sum of three vectors is independent of the mode in which
component vectors are associated in different groups.

In general, if there are n vectors a, b, c...n, then their vector sum v is given
by

v = a + b + c + ... + n

Subtraction of Vectors

If there are two vectors a and b, then

a – b = a + (–b),

i.e., the subtraction of b from a may be regarded as the addition of –b to a.
Thus, to substract b from a, reverse the direction of b and add to a (Refer
Figure 1.4).

Fig. 1.4 Subtraction of a Vector
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Multiplication of a Vector By a Scalar

If a be any given vector and s a given scalar, then sa or as is defined as a vector
whose magnitude is | s | times the magnitude of the vector a, i.e., | s | times the
length of a, the support being the same or parallel to that of a and direction being
the same or opposite to that of a, according as s is positive or negative. We thus
have

(i) s(– a) = (– s)a = – sa.

(ii) (– s) (– a) = sa.

(iii) (s + t) a = sa + ta, t being another scalar.

(iv) (st) a = s (ta) = t (sa)

(v) 0a = 0, 0 being the null vector.

(vi) If two non-zero vectors a and b are collinear, then there exists a non-zero
scalar m, such that

a = mb.

Conversely the relation of this type implies that b is parallel or collinear to a.

(vii) If â  is the unit vector co-directional with a while a = | a |, then

a = a â or sa = s ˆ( )aa  = ˆ .asa

Also as â  = 
| | a


a a

a
 and if b is parallel to a, then b = ± b

a

a  according as b

and a have the same or opposite directions.

Note. Division of a vector a by a non-zero scalar s is regarded as the
multiplication of the vector a by a scalar 1/s.

Example 1.3: If there are two vectors a and b represented by the sides AB and
BC of a triangle, then show that their resultant is represented by the third side
AC. Why is this method equivalent to the parallelogram law of addition?

Solution: As shown in Figure, the vectors a and b are represented by the sides

AB and BC of the triangle. Here AC


 is a vector drawn between the initial point
of a and terminal point of b and thus may be obtained by parallelogram law of

addition, for if we complete the parallelogram ABCD, then AC


 represents a
vector along the diagonal of the parallelogram and passing through the common
point of the adjacent sides AB and AD representing the vectors a and b. As such
the vector addition obeys the parallelogram law of forces.

Example 1.4: What vector must be added to the two vectors i – 2j + 2k and
2i + j – k, so that the resultant may be a unit vector along the x-axis?

Solution: Suppose that

a = i – 2j + 2k and b = 2i + j – k.

Then a + b = 3i – j + k.
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Hence, in order that the resultant of a and b, i.e., a + b be i, we have to add
a vector.

i – (3i – j + k), i.e., –2i + j – k.

Vector Space or Linear Space

A vector space (or linear space) over a field F is a set V of elements called
vectors which may be combined by two primary operations—addition and scalar
multiplication; such that

(A) (i)If the vectors a and b belong to V, then a + b also belongs to V. (This is
known as closure property).

(ii) The vector sum of two vectors a and b belonging to V, is commutative,
i.e.,

a + b = b + a.

(iii) The vector sum of three vectors a, b, c belonging to V, is associative,
i.e.,

a + b + c = (a + b) + c = (a + c) + b = a + (b + c).

(iv) In vector addition there exists an additive identity vector known as null
vector, such that

a + 0 = a.

(v) To every vector a in V, there corresponds a vector – a known as additive
inverse vector, such that

a + (– a) = 0.

(B) (i) If m, n are any two scalars and a is a vector in V, then distributive law
holds, i.e.,

(m + n) a = ma + na.

(ii) If m is any scalar and a, b are two vectors belonging to V, then
distributive law of scalar multiplication holds, i.e.,

(a + b) m = am + bm.

(iii) If m, n are any two scalars and a, is a vector belonging to V, then
associative law holds, i.e.,

m (na) = (mn) a = n (ma).

(iv) To every vector a in V, there corresponds a multiplicative identity
scalar, such that

1a = a.

Note. In case of scalar quantities m, n, p, we have the following laws of
combination:

(i) The addition is commutative, i.e.,

m + n = n + m.

(ii) The addition is associative, i.e.,

m + n + p = (m + n) + p = (m + p) + n = m + (n + p).
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(iii) There exists an additive identity scalar 0, which when added to another
scalar, leaves it unchanged, such as

m + 0 = m.

(iv) To every scalar m, there corresponds an additive inverse scalar –m,
such that

m + (– m) = 0.

In fact m and – m are inverse of each other as their sum is zero (identity
scalar).

(v) The multiplication is distributive, i.e.,

m  (n + p)= m  n + m  p.

(vi) The multiplication is commutative, i.e.,

m  n = n  m.

(vii) The multiplication is associative, i.e.,

m  (n  p) = (m  n)  p = n  (m  p).

(viii) There exists a multiplicative identity scalar 1, such that

m.1 = m.

(ix) To every non-zero scalar m, there corresponds a multiplicative inverse

scalar 1
,

m
 such that

m  1

m
= 1 (the identity scalar).

Interpretation: Due to directional properties of vectors these laws cannot be
applied to vectors and laws for vectors are consistent with the physical problems

in which vector quantities occur.

1.2.1 Dot, Cross and Triple Product of Vectors

A careful observation of the ways in which two vector quantities enter into
combinations in various branches of mathematics and mechanics leads us to
define two well marked and distinct kinds of products, one being called scalar
or dot product and other being called vector or cross product. The former
yields a number (scalar) while the latter, a vector quantity. In either case the
product is jointly proportional to the Modules (moduli) of the two vectors.

Conventionally, the scalar or dot product of two vectors a and b is denoted
by a  b or (a, b) and their vector or cross product by a × b or [ab].

(1) The Scalar or Dot Product of Two Vectors

Definition: The scalar or dot product of two vectors a and b, with modules a
and b respectively and their directions being inclined at an angle , is defined to
be the real number ab cos , i.e.,

a  b = ab cos .

Characteristics of dot product: (i)The dot product of two vectors a and b is
independent of their order

i.e., a  b = ab cos  = b  a
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(ii) The dot product of two vectors a and b may be expressed as the product
of two numbers, one being the length of one vector and the other resolute of the
second in the direction of the first, i.e.,

a  b = (length of a) times (scalar projection of b onto a)

= (length of b) times (scalar projection of a onto b).

(iii) If a  b = 0, then either of the two vectors is a null vector or the vectors
a and b are mutually perpendicular, i.e.

a = 0 or b = 0 or  = 1
2
 .

In particular, i  j = j  k = k  i = 0; i, j, k being mutually perpendicular unit
vectors.

(iv) The vectors a and b are parallel if  = 0 or , i.e., if a  b = ± ab, where
a, b are modules of a and b respectively.

(v) The scalar product of two equal vectors a, a is given by

a  a = a  a cos 0° = a2, since then  = 0

In case a is a unit vector i.e., a = â  then | â | = 1 so that â  â  = 12 = 1

In particular i  i = j  j = k  k = 1.

(vi) The scalar product of two unit vectors ,a b  is given by

ˆˆ a b  = cos  since then ˆˆ 1 a b

(vii) The scalar product is associative i.e. if a, b be any two vectors and m,
n be any two scalars, then

(ma)  (nb) = mn (a  b) = mn a  b = a  mnb = na  mb

(viii) The scalar product being a number, can occur as the numerical
coefficient of any vector, e.g., (a  b) c represents a vector parallel to c and
whose module is (a  b) times that of c.

(ix) In the case of scalar product, the distributive law of multiplication holds
i.e. if a, b, c be three vectors, then

a  (b + c) = a  b + a  c

Referred to Figure 1.5, let OA


 = a, OB


 = b, OC


 = c and projections of OB
and BC on OA be respectively OM and MN, so that

Fig. 1.5 Projection of OB and BC on OA

ON = OM + MN.

It is also clear that

OC


= OB BC
 

  = b + c
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Now, a  (b + c) = a  OC


 = (length of a) times (scalar projection of OC


onto a)

= a (ON), a being module of a

= a (OM + MN)

= a (OM) + a (MN)

= a  b + a  c by (ii)

In general, we have

(a + b + c...)  (l + m + n ...) = a  l + a  m +...+ b  l + b  m +... and
in particular,
(a ± b)  (a ± b) = (a ± b)2

= a2 ± 2a  b + b2

and (a + b)  (a – b) = a2 – b2.

(x) If  be the angle between two vectors a and b whose orthogonal
projections (components) in the directions of axes of x, y, z are (a1, a2, a3) and
(b1, b2, b3) respectively and if i, j, k be the unit vectors along the axes, then

a = a1i + a2 j + a3k

b = b1i + b2 j + b3k,

so that cos  = 
ab

a b
= 1 2 3 1 2 3

1 2 3 1 2 3

( ) ( )

( ( )

a a a b b b

a a a b b b

    
    

i j k i j k

i j k i j j

=
   

1 1 2 2 3 3

2 2 2 2 2 2
1 2 3 1 2 3

.
a b a b a b

a a a b b b

 

   

(2) The Vector or Cross Product of Two Vectors

Definition: Given two vectors a and b whose directions are inclined at an angle
, their vector product is defined to be the vector r, whose module is ab in sin
 and whose direction is perpendicular to both a and b, being positive relative to
a rotation from a to b, i.e.,



Fig. 1.6 Representation of the Rotation from a Tab

r = a × b = | a | | b | sin  ̂

= ab sin  ̂

where ̂  is a unit vector perpendicular to the plane of a and b, and has the same
direction as is obtained by the motion of a right handed screw due to rotation
from a to b, and a, b are the modules of a and b respectively.
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Characteristics of vector product. (i) The vector product is not
commutative, i.e., by reversing the order of the factors, the sign of the product
is reversed, e.g.,

b × a = ba sin (– ) ̂  = – ab sin  ̂  = – a × b

(ii) The magnitude of the vector product a × b is equal to the area of the
parallelogram of which a and b are adjacent sides, i.e.,

| a × b |=| ab sin  ̂ | = ab sin , as | ̂  | = 1

=OA multiplied by the perpendicular distance of OA from B.

=Area of the parallelogram OACB.

(iii) The vector product is associative, i.e., if m be a scalar a, b be two
vectors, then

(ma) × b = a × (mb) = m (a × b) = m (ab sin  ̂ )

(iv) The vector a and b are parallel, if the angle  included between their
directions is 0 or  i.e., if  = 0 or  so that

a × b = 0 as sin  = 0 for  = 0 or 
which follows that the vector product of two parallel vectors is a null vector.

(v) The vector product of two equal vectors a, a is given by

a × a = 0.

Since the two vectors are equal if they are either collinear or parallel. So that
the angle  between them being 0 or , sin  = 0 and hence the result follows.

In particular, if i, j, k are the unit vectors along the principal axes, then

i × i = j × j = k × k = 0.

(vi) The two vectors a and b with modules a and b respectively, will be
mutually perpendicular if the angle  between their directions is 90°, so that sin
 = 1.

As such if a, b are at right angles, then a × b = ab ̂ , ̂  being a unit vector
normal to the plane containing a and b.

In case a and b are unit vectors, then ˆ| |a  = 1 and ˆ| |b  = 1, therefore

ˆˆ ˆ,  a b  which shows that the cross product of two mutually perpendicular unit

vectors â  and b̂  is a unit vector ̂  normal to the plane of â  and b̂ .

Fig. 1.7

Hence, in particular if i, j, k be the unit vectors along the principal axes, then
i × j = k = – j × i

j × k = i = – k × j
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k × i = j = – i × k

(vii) The vector product of two unit vectors â  and b̂  is given by

ˆˆ a b = sin  ̂  as ˆˆ| | | |a b  = 1,

where  is the angle between their directions and ̂  is the unit vector normal to

the plane of â  and b̂ .

(viii) The distributive law holds, i.e. in case of vector product if a, b, c are
three vectors, then

a × (b + c) = a × b + a × c.

Let the components of a,  b, c along the principal axes be (a1, a2, a3); (b1, b2,
b3) and (c1, c2, c3) respectively. Then if i, j, k be the unit vectors along the axes,
we have

a = a1i + a2 j + a3k

b = b1i + b2j + b3k

c = c1i + c2 j + c3k

So that, b + c = (b1 + c1) i + (b2 + c2) j + (b3 + c3) k

 a × (b + c) = (a1i + a2j + a3k) × {(b1 + c1) i + (b2 + c2) j + (b3 + c3)
BF}

= {a2(b3 + c3) – a3(b2 + c2)} i + {a3(b1 + c1) – a1(b3 + c3)} j

+ {a1(b2 + c2) – a2(b1 + c1)} k

as i × j = k etc.

= {(a2b3 – a3b2) i + (a3b1 – a1b3) j + (a1b2 – a2b1) k}

+ {(a2c3 – a3c2) i + (a3c1 – a1c3) j + (a1c2 – a2c1) k}

= a × b + a × c.

[Since a × b = (a1i + a2 j + a3k) × (b1i + b2 j + b3k)

= (a2b3 – a3b2) i + (a3b1 – a1b3) j + (a1b2 – a2b1) k

Similarly a × c = (a2c3 – a3c2) i + (a3c1 – a1c3) j + (a1c2 – a2c1) k]

In general, (a + b + c +...) × (l + m + n +...)

= a × l + a × m +...+ b × l + b × m +...+...

(ix) Vector product in terms of components. Consider two vectors a and b
whose components are (a1, a2, a3), (b1, b2, b3) along the principal axes. Then if
i, j, k are the unit vectors along these axes, we have

a = a1i + a2j + a3k

b = b1i + b2j + b3k

 a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k)

= (a2b3 – a3b2) i + (a3b1 – a1b3) j + (a1b2 – a2b1) k

as i × j = k = – j × i etc.

= 1 2 3

1 2 3

a a a
b b b

i j k

Now if  be the angle between the directions of a and b and ̂ , a unit vector
normal to the plane of a and b, then
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(a × b)2 = (ab sin  ̂ )2 = {(a2b3 – a3b2) i + (a3b1 – a1b3) j + (a1b2 –
a2b1) k}2

i.e., a2 b2 sin2  = (a2b3 – a3b2)
2 + (a3b1 – a1b3)

2 + (a1b2 – a2b1)
2 as ̂ 2 = 1

or sin2 = 
2 2 2

2 3 3 2 3 1 1 3 1 2 2 1
2 2 2 2 2 2
1 2 3 1 3 3

( ) ( ) ( )

( ) ( )

a b a b a b a b a b a b

a a a b b b

    
   

as a2 = a2 = a1
2 + a2

3 + a3
2 etc.

(x) Cross product in terms of dot product. By definition,

(a × b)2 = (ab sin  ̂ )2

= a2b2 sin2 ,

= a2b2 (1 – cos2)

= a2b2 – a2b2 cos2
= a2b2 – (a  b)2,  a2 = a2, b2 = b2, a  b = ab cos 

Example 1.5: If a and b are unit vectors and  is the angle between them, show
that

1
sin

2 2


 |a – b|.

Solution: We have | a – b |2 = (a – b)2

= a2 + b2 – 2a  b,

a2 = a2 = 1 and b2 = b2 = 1

= 2 – 2 cos 
= 4 sin2 /2,

i.e. | a – b | = 2 sin /2,

so that sin /2 = 1
2 | a – b |.

Example 1.6: From the relations (Lorentz transformation equations in theory of
relativity).

2

2

1
t ,

t t ,
c

            
         

r r v r v
v

v r

 



where 
2 2

,
( )

c

c
 




v

 prove the reciprocal relations

2

1
,

,
2

t

t t
c

              
           

r r v r v
v

v r

 



Solution: Here, 
2

1
t

          

 
r v r v

v

= 2
2 2 2 2

1 1 1
t t t

c

                                       

v r
r v r v v r v r v v

v v v

    
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= 
2

2
2 2 2

1 1 1
( ) ( ) ( )t

              
 

r v r v v v r v v r v v
v v v

2
2 2

2 2

1
t t

c

  
     v v v v rv

v

= 
2

2 2

( 1) ( 1)
2 ( ) ( ) ( 1)t t
   

         r v r v v v r v v
v v

+ 
2

2 2
2 2 2 2

c
t

c c

 
    

  
v r

v v
v v

= 2 2
2 2 2

1
( ) (2 1) t t t t

c

  
             


v r

r v r v v v v v v
v v

= 
2

2 2 2

1
( )

c

  
  


v r

r r v v v
v v

= 
2

2 2 2 2 2

1
1 ( )

c

c c

  
       

v r
r v r v v

v v v

= 2 2 2 2
= .

c c

 
 

 
v r v r

r v v r
v v

Again   2
t

c

      

 v r

= 
2 2 2

1 1
( )t t

c c v


  
   

                           

v r
v r v r v

= 2 2 2 2
2 2 2 2 2

1
( )

t
t

c c c c

     
        

    v r v r
v r v v

v

= 
2 2

2 2 2 2 2 2 2 2 2

c t t

c c c c c c

   
       

  
v r v r v r v

v r
v v v

 

= 
2 2

2 2 2 2 2 2

( )c t

c c c

  
 

  
v v r v r

v v v

2

2 2 2

1
since

c c

 
 

 



v

= t.

Example 1.7: What is the meaning of (a + b)  (a – b) for the case where
a2 = b2?

Solution: Here (a + b)  (a – b) = a2 – a  b + b  a – b2

= a2 – b2 as a  b = b  a
= 0 as a2 = b2.

This shows that either a + b = 0, a – b = 0 or the vectors a + b and a – b
are mutually at right angles.

In the former case when a + b = 0, or a – b = 0, we have a = 0 and b = 0,
i.e., both the vectors a and b are null vectors.
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Conclusively, either both the vectors a and b are null vectors or the angle

between the vectors a + b and a – b is 1
2

.

Example 1.8: What is the unit vector perpendicular to each of the vectors 2i –
j + k and 3i + 4j – k? Calculate the sine of the angle between these vectors.

Solution: Let a = 2i – j + k and b = 3i + 4j – k.

If ̂  be a unit vector perpendicular to the plane of a and b, then since a × b
is also a vector perpendicular to the plane of a and b, we have

̂ = .
| |

a × b

a × b
... (1)

Now a × b = (2j – j + k) × (3i + 4j – k)

= 2 1 1
3 4 1




i j k
 = – 3i + 5j + 111k

 | a × b | = | – 3i + 5j + 11k | = (9 + 25 + 121) = (155).

Hence ̂ =
3 5 11

| | (155)

a × b i j k

a × b
.

Again | a | = | 2i – j + k | = (4 + 1 + 1) = 6

| b | = | 3i + 4j – k | = (9 + 16 + 1) = 26.

Thus if  is the angle between the directions of a and b, then

a × b = | a |  | b | sin  ̂

i.e. sin  =
| |

by (1)
ˆ| | | | | | | |



a × b a × b

a b a b

=
(155) 155

.
1566 26

   
 

Example 1.9: If a = 3i + 4j – 5k and b = – i + 2j + 6k, then calculate

(i) the module of each,

(ii) the scalar product a  b,

(iii) the vector sum and difference a + b and a – b.

Solution: (i) We have | a | = | 3i + 4j – 5k |

= (9 + 16 + 25) = 52

and | b | = | – i + 2j + 6k |

= (1 + 4 + 36) = 41 .
(ii) a  b = (3i + 4j – 5k)  (– i + 2j + 6k)

= 3 (– 1) + 4 . 2 + (– 5)  6
= – 3 + 8 – 30 = – 25.

(iii) a + b = 3i + 4j – 5k + (– i + 2j + 6k)

= 2i + 6j + k,

a – b = 3i + 4j – 5k – (– i + 2i + 6k) = 4i + 2j – 11k.
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1.2.2 Gradient, Divergence and Curl

Consider a scalar function i.e., a function whose value depends upon the values
of coordinates (x, y, z). Being a scalar its value is constant at a fixed point in
space.

The gradient of any scalar function  is defined as

grad  = 
x y z x y x

        
            

i j k i j k ... (1.7)

=
where operator  is generally known as ‘Del’ or ‘Nabla’ operator and read as
‘Gradient’ or ‘Grad’ in short. We have already mentioned that a scalar field is the
region in which the scalar point function specifies the scalar physical quantity like
temperature, electric potential, density, etc. It is represented by a continuous
scalar function giving the value of the quantity at each point. In scalar field all the
points having same value of  can be connected by means of surfaces, which are
called equal or level surfaces.

Consider a co-ordinate system with axes such that any level surface lies in x-
y plane while z-axis is along the normal to that level surface. Since the value of
 does not change along the level surface, i.e.,

x
=

y
 = 0,

therefore grad  = .
z

k ... (1.8)

Clearly grad  is directed along z-axis, i.e., along the normal to the level
surface. Therefore Equation (1.8) may be written as

grad  =
n

n ... (1.9)

where n is unit vector along the normal to the level surface at any point.

From Equation (1.9) we may state, “The magnitude of grad  at any point
is rate of change of function  with distance along the normal to the level
surface at the point and is directed along unit vector n.”

Note. It is to be noted that gradient of any scalar quantity is a vector.

Example 1.10: Prove  rn = nrn –2 r.

Solution: L.H.S. =  rn = ( )nr
x y z

   
     

i j k

=
n n nr r r

x y z

  
 

  
i j k

= 1 1 1n n nr r r
nr nr nr

x y z
    

 
  

i j k

= 1n r r r
nr

x y z
    

     
i j k
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since r2 = x2 + y2 + z2;    , ,
r x r y r z

x r y r x r

  
  

  

= nrn – 2 (i x + j y + k z) = nrn – 2 r.

Example 1.11: If r is the position vector of a point, deduce the value of grad
(1/r).

Solution: As given, r = xi + yj + zk.

So that
1

r
= 2 2 2 1/ 2

1

( )x y z 
.

 grad (1/r) =  (1/r)

= 2 2 2 1/ 2

1

( )x y z x y z

                  
i j k

= 2 2 2 1/ 2 2 2 2 1/ 2

1 1

( ) ( )x yx y z x y z

    
          

i j

+ 2 2 2 1/ 2

1

( )z x y z

 
    

k

= 2 2 2 3/ 2 2 2 2 3/ 2

1 2 1 2

2 2( ) ( )

x y

x y z x y z

   
       

      
i j

+ 2 2 2 3/ 2

1 2

2 ( )

z

x y z

 
  

  
k

= 2 2 2 3/ 2 2 3/ 2 3( ) ( )

x y z

x y z r r

 
    

 
i j k r r

.

The Gradient of a Scalar-Point Function

If  (x, y, z) be defined and differentiable at each point (x, y, z) in a certain
region of space specified as a scalar field, we have

= l m n
x y z

   
     

 = (li + mj + nk)  
x y z

   
     

i j k ... (1.10)

Its R.H.S. is the scalar product of two vectors (li + mj + nk) and

x y z

   
     

i j k , where the vector (li + mj + nk) is a unit vector along a

line whose direction cosines are l, m, n and the second vector depends only on
the point (x, y, z) and not on any direction. Thus we conclude that directional
derivative along any line can be obtained by multiplying the vector

x y z

  
 

  
i j k  scalarly with the unit vector li + mj + nk.

The vector function 
x y z

  
 

  
i j k  is called the gradient of a scalar-

point function  and is written as grad  or . Thus,
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 = grad   .
x y z x y z

     
    

     
i j k i j k

It is clear that the gradient of a scalar-point function is a vector.

In case,  is a constant, grad  = 0 since , , ,
x y z

  
  

 all will be zero in that

case. Its converse is also true.

The Gradient or Sum of Two Scalar-Point Functions

If u and v are two differentiable scalar functions of x, y, z, then the gradient of
their sum is given by

 (u + v)  = ( )u v
x x x

   
      

i j k

= ( ) ( ) ( )u v u v u v
x y z

  
    

  
i j k

=
u v u v u v

x x y y z z

     
   

     
i i j j k k

=
u u u v v v

x y z x y z

        
               

i j k i j k

= u v
x y z x y z

        
               

i j k i j k

=  u +  v.
Showing that the gradient of sum of two scalar-point functions is equal

to the sum of their gradients.

This rule may be generalised for any number of scalar-point functions.

The Gradient of Product of Two Scalar-Point Functions

If u and v be two differentiable scalar-point functions of x, y, z, then the gradient
of their product is given by

 (uv) = ( )uv
x y z

   
     

i j k

= ( ) ( ) ( )uv uv uv
x y z

  
 

  
i j k

=
v u v u v u

u v u v u v
x x y y z z

          
                   

i j k

=
v v v u u u

u v
x y z x y z

        
               

i j k i j k

= u v v u
x y z x y z

        
               

i j k i j k

= u  v + v  u.
Showing that the gradient of the product of two scalar-point functions is
obtained by the same rule as is valid for derivatives of the algebraic
functions.
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The Divergence of a Vector-Point Function

If V (x, y, z) = V1i + V2 j + V3k be a continuous differentiable vector-point
function specified in a vector field, then the divergence of V is defined as:

x y z

  
    
  

V V V
i j k

and is written as   V or div V and read as divergence V.

   V =  1 2 3V V V
x y z

   
        

i j k i j k

=
31 2 VV V

x y z

 
 

  

which is clearly a scalar quantity.

Note. If   V = 0 then V is known as Solenoidal Vector.

The Divergence of Sum of two Vector Functions

If U and V be two vector-point functions expressed as

U = U1i + U2 j + U3k

V = V1i + V2 j + V3k.

Then

  (U + V)=
x y z

   
     

i j k  [(U1 + V1) i + (U2 + V2) j + (U3 + U3) k]

= 1 1 2 2 3 3[ ] [ ] [ ]U V U V U V
x y z

  
    

  

= 3 31 2 1 2U VU U V V

x y z x y z

       
               

=
x y z

   
     

i j k  × (U1i + U2j + U3k)

+ 
x y z

   
     

i j k   (V1i + V2 j + V3k)

=   U +   V.

= div U + div V.

Showing that the divergence of the sum of two vector functions is equal
to the sum of their divergences.

This rule may be generalised for any number of vector functions.

The Divergence of Product

If the vector point function U is expressed as

U = U1i + U2 j + U3k and V is a scalar point-function.

Then(UV)= 1 2 3[( ) ]U U U V
x y z

   
        

i j k i j k
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= 1 2 3[ ]VU VU VU
x y z

   
        

i j k i j k

= 1 2 3( ) ( ) ( )VU VU VU
x y z

  
 

  

= 31 2
1 2 3

UU UV V V
U V U V U V

x x y y z z

   
    

     

= 31 2
1 2 3

UU UV V V
U U U V

x y z x y z

      
               

= 1 2 3( )
V V V

U U U
x y z

   
        

i j k i j k

+ 1 2 3( )V U U U
x y z

   
        

i j k i j k

= (V)  U + V (  U)
i.e., div (UV) = (grad V)  U + V div U.

The Curl or Rotation of a Vector Point Function

Let f (x, y, z) = f1i + f2 j + f3k be a continuous differentiable vector-point
function; then the curl of f or rotation of f is given by

x y z

   
        

f f f
i j k

and is written as curl f or  × f or rot f.

i.e.,  × f =
x y z

   
     

i j k  × (f1i + f2j + f3k)

=
3 32 1 2 1f ff f f f

y z z z x y

         
                   

i j k

=
1 2 3

x y z
f f f

  
  

i j k

It is clear that curl f or rotatioin f is  a vector quantity and read as del
cross f.

Note. If curl = 0, f is known as Irrotatinal Vector.

Interpretation of the Curl f: If a rigid body is in motion, the curl of its
linear velocity at any point gives twice its angular velocity.

Consider the motion of a rigid body rotating with angular velocity  about an
axis OA; O, being a fixed point in the body. Let r be the position vector of any
point P of the body. Draw PQ perpedicular from P to the axis OA. Then,

Linear velocity V of P due to circular motion
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






Fig. 1.8 Rotation of Rigid Body on Fixed Point

= | V |

= QP = r sin  = | |


r

i.e., V = 


r

where, r = xi + yj + zk

and 
 = 1i + 2 j + 3k.

But we know that curl V =   × V =  × ( ) 


r

= 1 2 3

x y z
    

i j k

=  × [2z – 3y) i + (3x – 1z) j + (1y – 2x) k]

=

2 3 3 1 1 2

x y z
z y x z z x

  
  

        

i j k

= 2 [1i + 2j + 3k]

= 2
  which proves the proposition.

Curl of the Sum of  Two Vector-Point Functions

If u and v be two vector-point functions given by

u = u1i + u2 j + u3k

v = v1i + v2 j + v3k

then  × (u + v) =  × [(u1 + v1)]i + (u2 + v2) j + (u3 + v3) k]

=

1 1 2 2 3 3

x y z
u v u v u v

  
  
  

i j k

= i 3 3 2 2 1 1 3 3( ) ( ) ( ) ( )u v u v u v u v
y z z x

      
               

j

+ k 2 2 1 1( ) ( )u v u v
x y

  
     
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= 3 32 1 2 1u uu u u u

y z z x x y

         
                   

i j k

3 32 1 2 1v vv v v v

y z z x x y

         
                    

i j k

=

1 2 3 1 2 3

x y z x y z
u u u v v v

     


     

i j k i j k

=  × u +  × v. (by the definition)

i.e., curl (u + v) = curl u + curl v.

Hence curl of sum of two vector point functions is equal to the sum of
their curls.

The result may be generalised for any number of vector-point functions.

Note. If r is the position vector of a variable point with respect to a fixed
origin such that r = xi + yj + zk then curl r = 0.

Since curl r =
x y z

   
        

i j k  × (xi + yi + zk)

= ( ) ( ) ( ) ( ) ( ) ( )z y x z y x
y z z x x y

          
                   

j k

= 0.

Curl of the Product of two Vector-Point Functions

We have to consider the curl of the forms uv and u × v where u is a scalar and
u, v vector point functions.

Suppose, u = u1i + u2j + u3k

v = v1i + v2j + v3k

and u is a scalar point function.

Then, curl (uv) =  × (uv) = 
x y z

   
        

i j k  (uv1i + uv2j +

uv3k)

=  × (uv1i + uv2 j + uv3k)

=

1 2 3

x y z
uv uv uv

  
  

i j k

= 3 2 1 3 2 1( ) ( ) ( ) ( ) ( ) ( )uv uv uv uv uv uv
y z z x x y

          
                   

i j k
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= 3 3 1 3
3 2 1 3

v u v u v u v u
u v u v u v u v

y y z z z z x x

          
                   

i j

+ 2 1
2 1

v vu u
u v u v

x x y y

   
       

k

= 3 32 1 2 1v yv v v v
u

y z z x x y

          
                     

i j k

+ 3 2 1 3 2 1
u u u u u u

v v v v v v
y z z x x y

           
                     

i j k

= 

1 2 3 1 2 3

u u u
u

x y z x y z
v v v v v v

     


     

i j k i j k

 = u curl v + (grad u) × v

i.e.,    × (uv) =u  × v + (u) × v.

Again curl(u × v) =  × (u × v)

= 1 2 3

1 2 3

u u u
v v v


i j k

= 3 2 2 3 1 3 3 1 2 1 1 2[( ) ( ) ( ) ]v u v u v u v u v u v u      i j k

=

3 2 2 3 1 3 3 1 2 1 1 2( ) ( ) ( )
x y z

v u v u v u v u v u v u

  
  
  

i j k

= 2 1 1 2 1 3 1 3 3 2 2 3 2 1 1 2( ) ( ) ( ) ( )v u v u v u u v v u v u v u v u
y z z x

      
               

i j

+ 1 3 3 1 3 2 2 3( ) ( )v u v u v u v u
x y

  
     

k

= 2 1 1 2 1 3 3 1
1 2 2 1 3 1 1 3

v u v u v u v u
u v u v u v u v

y y y y z z z z

        
               

i

+ j 3 32 2 2 1 2 1
2 3 3 2 1 2 1 2

v uu v v u v v
u v u v u v v u

z z z z x x x x

       
               

+ k 3 3 3 31 1 2 2
3 1 3 1 2 3 2 3

u v v uv u u v
u v v u u v v u

x x x x y y y y

       
               
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= (u1i + u2 j + u3k) 1 2 3(v v v
x y z

    
          

i j k i j k

–  (v1i + v2 j + v3 ) 1 2 3(u u u
x y z

    
          

i j k i j k

+ 1 2 3 1 2 3( ) ( )v v v u u u
x y z

    
             

i j k i j k i j k

– 1 2 3 1 2 3( ) ( )u u u v v v
x y z

    
             

i j k i j k i j k

= u div v – v div u + (v  ) u – (u  ) v.

Aliter curl f =
x y z x

   
       
   

f f f f
i j k i .

Now curl (u × v) = [ ]

x

 
 


u v

i

 =
x x

  
       

v u
i u v

=
x x

    
             

v u
i u i v

= ( ) ( )
x x x x

      
                   

v v u u
i u i u i v i v

[by vector triple product]

= [ ( )] [ ( )]
x x x x

         
                         

v v u u
i u i u i v i v

= u div v – v div u + (v  ) u – (u  ) v.

To Express Gradient of Scalar Product in Terms of Curl

We have to show that

grad (u  v) = u × curl v + v × curl u + (u  ) v + (v  ) u

We know that

grad (u  v) =
x





i  (u  v)

=
x x

  
      

v u
i u v

=
x x

    
           

v u
i u i v ... (1.11)
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And
x

 
   

v
u i = ( )

x x

  
     

v v
u i u i

or
x

 
  

v
u i = ( )

x x

   
        

v v
u i u i


x

 
   

v
u i = ( )

x x

   
          

v v
u i u i

= u × curl u + (u  ) v ... (1.12)

Similarly
x

 
   

v
v i = v × curl u + (v  ) u ... (1.13)

Substituting values of Equations (1.12) and (1.13) in (1.11) we find

grad (u  v) = u × curl v + (u  ) v + v × curl u + (v  ) u

= u × curl v + v × curl u + (u  ) v + (v  ) u.

To Express Divergence of Vector Product in Terms of Curl

We have to show that     div (u × v) = curl u  v – curl v  u.

We know that,

div (u × v) =
x


 


i  (u × v)

=
x x

  
       

u v
i v u

=
x x

     
               

u v
i v i u

=
x x

 
      

 
u v

i v i u

(interchanging dot and cross)

=
x x

    
             

u v
i v i u

= curl u  v – curl v  u.

1.3 VECTOR CALCULUS

In this section, scalar product and vector product are discussed.

Scalar Triple Product

If , anda b c
  

 be any three vectors, then the scalar product of a b
 

 with c


 is

called the scalar triple product of , anda b c
  

 in this order and is written as

 .a b c
  

or abc  
 

 or , ,a b c  
  

.
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Geometrical Representation of Scalar Triple Product

Geometrically, the scalar product represents the volume of parallelopiped having

, anda b c
  

 as its coterminous edges.

Consider a parallelopiped with , andOA a OB b OC c  
     

 as coterminous

edges (Refer Figure 1.9).

a

b


 is the vector perpendicular to the plane of a


 and b


. Let u  is a unit

vector along a

b


 and  be the angle between u and c


.

Now,  .a b c
  

 = (Area of parallelogram OADB) u . c


= (Area of parallelogram OADB) u c


cos

               = (Area of parallelogram OADB) OC cos

               = (Area of parallelogram OADB) OL

= (Area of parallelogram OADB)  Height

= Volume of parallelopiped

Fig. 1.9 Parallelopiped

Properties of Scalar Triple Product

Let a


, b


 and c


 be three vectors and m be a scalar..

(i) The cyclic permutation of three vectors does not change the value of scalar
product.

     . . .a b c b c a c a b    
        

 or abc bca cab           
       

(ii) The change in the cyclic order of three vectors changes the sign of the
scalar triple product but not the magnitude.

abc bac cba acb                   
          
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(iii) In a scalar triple product, the dot and cross can be interchanged provided
that the cyclic order of the vectors remains the same.

   . .a b c a b c  
     

(iv) The scalar triple product of three vectors is zero if any two of them are
equal.

0abc   
  

 if or ora b b c c a  
     

(v) mabc m abc      
     

(vi) The scalar triple product of three vectors is zero if any two of them are
parallel or collinear.

0abc   
  

 if or ora mb b mc c ma  
     

Note:       . . 1i jk i j k k k      
  , where  , and i j k  stands for the unit vectors

along the axes. Similarly,     1jki ki j       
  and thus        1i jk jki ki j            

   .

Coplanarity of Three Vectors

The necessary and sufficient condition for three non-zero non-collinear vectors,

a


, b


 and c


 to be coplanar is that 0abc   
  

, i.e,

a


, b


, c


 are coplanar  0abc   
  

Proof: Condition is necessary: Since a


, b


 and c


are coplanar, , a

b


is

perpendicular to c


. This means that

 . 0a b c 
  

 or 0abc   
  

Condition is sufficient: Let a


, b


 and c


are three non-zero non-collinear

vectors such that 0abc   
  

 or  . 0a b c 
  

.

Since a


, b


 and c


are non-zero non-collinear vectors; thus, a b
 

 0 and

c


  0. This means that  a b c 
  

. But a b
 

 is perpendicular to the plane of a


and b


.

Therefore, a


, b


 and c


lies in the same plane, i.e., they are coplanar..

Scalar Triple Product in terms of Components

If  
1 2 3a a i a j a k  

  ,  
1 2 3b b i b j b k  

   and  
1 2 3c c i c j c k  

   be three

vectors, then,
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1 2 3

1 2 3

1 2 3

a a a

abc b b b

c c c

   
  

Volume of a Tetrahedron

Let ABCD be a tetrahedron, and its three edges AB, AC and AD represent three

vectors ,a b
 

and c


, respectively (Refer Figure 1.10).

Fig. 1.10 Tetrahedron

Volume of tetrahedron = 
1

3
(area of ABC)  (height of vertex D above the plane

ABC)

=
1

3

1
area of parallelogram whose adjacent edges AB and AC

2
 
 
 

 (height of

vertex D above the plane ABC)

= 
1

6
 (volume of parallelepiped having AB, AC and AD as coterminous edges)

= 
1

6
AB AC AD  
  

 = 
1

6
abc  


Thus, the volume of tetrahedron with three edges AB, AC and AD representing

three vectors ,a b
 

and c


is 
1

6
abc  


.

If , ,a b c
  

and d


 are the position vectors of the vertices A, B, C and D of the

tetrahedron ABCD, then ,  and AB b a AC c a AD d a     
        

.

 Volume of tetrahedron = 
1

6
b a c a d a    
     

Four points A, B, C and D with position vectors , ,a b c
  

and d


 are coplanar if the
volume of tetrahedron ABCD is 0, i.e.,
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1

6
b a c a d a    
     

 = 0        .b a c a d a     
     

 = 0

 0bcd bca bda cda                 
   

Example 1.12: Find the volume of a parallelepiped whose sides are given by

ˆ ˆˆ ˆ–3 7 5 , 5 7 –3i j k i j k      and ˆˆ ˆ7 –5 – 3i j k .

Solution:  Let ˆˆ ˆ–3 7 5a i j k  


, ˆˆ ˆ–5 7 –3b i j k 


 and ˆˆ ˆ7 5 – 3c i j k 


. We know

that the volume of a parallelepiped whose three adjacent edges are , ,a b c
  

 is equal

to abc  
  

.

We have,

abc  
  

 = 

–3 7 5

–5 7 – 3

7 – 5 – 3

= – 3 (–21–15) –7 (15 + 21) + 5 (25 – 49)
= 108 – 252 – 120 = – 264

So, required volume of the parallelepiped = abc  
  

 = | – 264 |

   = 264 cubic units

Example 1.13: Find the value of   for which the four points with position vectors
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 – 2 – ,2 3 – 4 , – 2i j k i j k i j k   and ˆˆ ˆ4 5i j k  are coplanar..

Solution: Let A, B, C, D be the given points. Then,

AB


 = Position vector of B – Position vector of AA

                   =    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 – 4 – 3 – 2 – – 5 – 3i j k i j k i j k  

AC


 = Position vector of C – Position vecor of AA

        =    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ– 2 – 3 – 2 – – 4 3 3i j k i j k i j k    

AD


 = Position vector of D – Position vecor of AA

        =    ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ4 5 – 3 – 2 – 7 ( 1)i j k i j k i j k      

The given points are coplanar iff vectors AB


, AC


, AD


are coplanar..
 Points A, B, C, D are coplanar.

 AB


, AC


, AD


are coplanar,,

 , ,AB AC AD  
  

 = 0


–1 5 – 3

– 4 3 3 0

1 7 1



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 – 1(3  + 3 – 21) – 5 (– 4  – 4 – 3) – 3 (– 28 – 3) = 0

 – 3  + 18 + 20  + 35 + 93 = 0

 17  + 146 = 0

   = – 
146

17

Vector Triple Product

If , anda b c
  

 be any three vectors, then the vector products of a b
 

 with c


 and

a


 with b c
 

 are called the vector triple products of , anda b c
  

. These products

are written as  a b c 
  

 and  a b c 
  

 .

Expansion Formula

For three vectors , anda b c
  

, we have

 a b c 
  

 =    . .a c b a b c
     

Let us prove this formula.

If  
1 2 3a a i a j a k  

  ,  
1 2 3b b i b j b k  

   and  
1 2 3c c i c j c k  

  , then

b c
 

 = 

 

1 2 3

1 2 3

i j k

b b b

c c c



 =        2 3 3 2 3 1 1 3 1 2 2 1b c b c i b c b c j b c b c k    

  a b c 
  

 = 

 

1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

i j k

a a a

b c b c b c b c b c b c  



                     =         
2 1 2 2 1 3 3 1 1 3 3 2 3 3 2 1 1 2 2 1a b c b c a b c b c i a b c b c a b c b c j             



                            1 3 1 1 3 2 2 3 3 2a b c b c a b c b c k    

Now,    . .a c b a b c
     

 =     1 1 2 2 3 3 1 2 3a c a c a c b i b j b k    

        1 1 2 2 3 3 1 2 3a b a b a b c i c j c k   

         1 1 2 2 3 3 1 1 2 2 3 3. and .a b a b a b a b a c a c a c a c       
   



                            =  1 1 1 2 2 1 3 3 1 1 1 1 2 2 1 3 3 1a c b a c b a c b a b c a b c a b c i     

                                  1 1 2 2 2 2 3 3 2 1 1 2 2 2 2 3 3 2a c b a c b a c b a b c a b c a b c j     

                                  1 1 3 2 2 3 3 3 3 1 1 3 2 2 3 3 3 3a c b a c b a c b a b c a b c a b c k    

   =    2 1 2 2 1 3 3 1 1 3a b c b c a b c b c i     

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                                  
3 2 3 3 2 1 1 2 2 1a b c b c a b c b c j     

                                  1 3 1 1 3 2 2 3 3 2a b c b c a b c b c k    

Thus,  a b c 
  

 =    . .a c b a b c
     

Similarly, it can be shown that  a b c 
  

 =    . .a c b b c a
     

Note: (i) The vector triple product  a b c 
  

 is a linear combination of those

two vectors which are within brackets.

(ii)  a b c 
  

 is perpendicular to a


 and b c
 

.

(iii)  a b c 
  

  a b c 
  

, i.e, vectors, triple product is not associative.

 a b c 
  

 is a vector which lies in the plane of b


 and c


 whereas  a b c 
  

is a vector which lies in the plane of b


 and a


 .

 a b c 
  

 = –  c a b 
  

 =

           . . . . . .c b a c a b c a b c b a a c b b c a       
                 

Example 1.14: If , ,a b c
 

 are non-coplanar unit vectors such that

  ,
2

b c
a b c b


  

     and c
  are non-parallel, then find the angles, which a


 makes

with b


and c


.

Solution : We have,  
2

b c
a b c


  

  

   . – .
2

b c
a c b a b c


 

     

1 1
. – – . 0

2 2
a c b a b c
        
   

     

1
. – 0

2
a c 
 

 and 
1

. 0
2

a b  


[ b


and c


are non-collinear vectors]

1
.

2
a c 
 

 and 
1

.
2

a b  


1
cos

2
 

and 
1

cos –
2

  , where  and  are the angles made by a


with b


 and c


,

respectively.
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4

  and
3

4

  .

Scalar Product of Four Vectors

If , , anda b c d
   

 are any four vectors, then the scalar product of a b
 

 with c d
 

 is

called the scalar product of , , anda b c d
   

. This product is written as

   .a b c d 
   

.

   .a b c d 
   

 =   .a b c d   
   

     [interchanging the dot and cross product]

                          =    . . .a c b b c a d  
      

                          =      . . . .a c b d a d b c
       

   .a b c d 
   

=      . . . .a c b d a d b c
       

 is known as Lagrange’s identity. It

can be expressed in the form of determinant as

   .a b c d 
   

=
. .

. .

a c a d

b c b d

Vector Product of Four Vectors

If , , anda b c d
   

 be any four vectors, then the vector product of a b
 

 with c d
 

 is

called the vector product of , , anda b c d
   

. This product is written as

   a b c d  
   

.

Vector product    a b c d  
   

 being a vector perpendicular to a b
 

 is coplanar

with anda b
 

. Also, it being a vector perpendicular to c d
 

 is coplanar with

andc d
 

. Thus, we can look upon    a b c d  
   

as a vector triple product in

two ways by putting a b q 
  

 and c d p 
  

.

(i) Expressing    a b c d  
   

 in terms of anda b
 

.

   a b c d  
   

 =  a b p 
  

, where c d p 
  

                          =    . .a p b b p a
     

                          =    . .a c d b b c d a  
       

                          = acd b bcd a      
   

Here, the vector product appears as the linear combination of anda b
 

.

(ii) Expressing    a b c d  
   

 in terms of andc d
 

.

   a b c d  
   

 =  q c d 
  

, where a b q 
  
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                          =    . .q d c q c d
     

                          =    . .a b d c a b c d  
       

                          = abd c abc d      
   

Here, the vector product appears as the linear combination of andc d
 

.

Thus,    a b c d  
   

= acd b bcd a      
   

 = abd c abc d      
   

Example 1.15: Prove that            . 0. . a b c db c a d c a b d        
         

.

Solution: We know that

         . .. . . b d c ab c a d b a c d  
         

         . .. . . c d a bc a b d c b a d  
         

         . .. . . a d b ca b c d a c b d  
         

Adding we get,

           . 0. . a b c db c a d c a b d        
         

Reciprocal System of Vectors

If , anda b c
  

are non-coplanar vectors, i.e, 0abc   


and if , anda b c  
  

 are

three other vectors such that

, and
b c c a a b

a b c
abc abc abc

      
          

       
  

then , anda b c  
  

 are called the reciprocal system to the vectors , anda b c
  

.

Theorem 1.1: If , anda b c
  

 and , anda b c  
  

 form a reciprocal system of

vectors, then . . . 1a a b b c c    
     

Theorem 1.2: If , anda b c
  

 and , anda b c  
  

 form a reciprocal system of

vectors, then . . . . . . 0a b a c b a b c c a c b          
           

Theorem 1.3: If , anda b c
  

 and , anda b c  
  

  form a reciprocal system of

vectors, then 
1

a b c
abc

        




Proof:   . .
b c c a

a b c a b c c
abc abc

                       

       
 
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                                 .b c c a c       
    

       
1

Let  =
abc

 
 
    



         .b c c a c        
    

                                  . . .b c a c b c c a c       
 

        

     .bca c bcc a c            
    

     .bca c c        
     = 0bcc  




      .bca c c        
  

     bca     
  . 1c c 

 


     
1

bca
abc


     




     
1

abc

  


Theorem 1.4: The orthonormal vector triads i , j  and k  form a self-reciprocal
system, i.e.,

i= i , j = j   and k = k
Proof: Let i , j  and k  be the system of vectors parallel to the system of i , j

and k . Then,  i= 
 
 

j k

i jk


 
 
 = i .

Theorem 1.5: If , anda b c
  

are non-coplanar vectors, i.e, 0abc   


and

, anda b c  
  

 constitute the reciprocal system of vectors, then any vector r


 can

be expressed as      . . .r r a a r b b r c c    
         

Proof: Since , anda b c
  

are non-coplanar vectors, r


 can be expressed as the

linear combination in the form

 r xa yb zc  
   

, where x, y and z are scalars ...(1.14)

Multiplying both sides by b c
 

,

       . . . .r b c xa b c yb b c zc b c      
           
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    .r b c
  

x abc   


 
 .r b c

x
abc




  

  

  = .r a
 

Similarly, y = .r b
 

and z = .r c
 

Substituting the values of x, y and z in Equation (1.14), we get

     . . .r r a a r b b r c c    
         

Example 1.16: Given ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 , 3 ,a i j k b i j k c i j k        
  find the

reciprocal triads , ,a b c  
  

 and verify that , ,a b c  
 

 , ,a b c    
  

 = 1.

Solution : 

2 –1 3

2 1 –1

1 3 –1

a b c   
 

 = 2(– 1 + 3) + 1(– 2 + 1) + 3(6 – 1)

    = 4 – 1 + 15 = 18

Now,

ˆˆ ˆ

2 1 1

1 3 1 1 ˆˆ ˆ2 5
18 18

i j k

b c
a i j k

a b c


         

 
 

ˆˆ ˆ

1 3 1

2 1 3 1 ˆˆ ˆ8 5 7
18 18

i j k

c a
b i j k

a b c


         


 

ˆˆ ˆ

2 1 3

2 1 1 1 ˆˆ ˆ2 8 4
18 18

i j k

a b
c i j k

a b c


          


 

Now, 
 3

2 1 5
1

, , 8 5 7
18

2 8 4

a b c       


  

=  
     3

1
2 20 56 32 14 5 64 10

18
        

=  1
72 18 270

18 18 18
 

 

= 
324 1

18 18 18 18


 

  1
18 1

18
a b c a b c        
 
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1.3.1 The Gauss or Divergence Theorem

The Gauss theorem states that the outward flux of a vector field through a surface
to the behaviour of the vector field inside the surface.

The Gauss (or Divergence) Theorem

The Gauss theorem demonstrates equality between triple integral (volume integral)
of a function over a region of three-dimensional space and double integral (surface
integral) of the function over the surface that bounds the corresponding region.
In vector calculus, the Gauss theorem is also known as Divergence Theorem (Refer
Figure 1.11).

S

V

n

A

Fig. 1.11 Region of Three-Dimensional Space

Let A


 be a vector point function that is continuously differentiable on a closed-
space region, V bounded by a closed surface S. Then,

.A A.
V S

dV n dS  
 

where n  is the outwardly drawn unit normal vector to the surface S.

If we take n  as direction cosines, i.e., n  = i cos  + j cos  + k cos  ,

then, A


. n  = AA
1
cos +  AA

2
cos  + AA

3
cos

 Gauss theorem can also be expressed as:

 
31 2

1 2 3

AA A
(A cos A cos A cos )

V S

dV dS
x y z

  
  

        
 

Check Your Progress

1. What is polar vector?

2. Differentiate between like and unlike vector.

3. Define the dot product.

4. What do you understand by gradient of any scalar function?

5. Define the vector triple product.

6. State the Gauss theorem.
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1.4 VECTOR SPACES

The motivating factor in rings was set of integers and in groups the set of all
permutations of a set. A vector space originates from the notion of a vector that
we are familiar with in mechanics or geometry. You would recall that a vector is
defined as a directed line segment, which in algebraic terms is defined as an ordered
pair (a, b) being coordinates of the terminal point relative to a fixed coordinate
system. Addition of vectors is given by the rule:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

You can easily verify that set of vectors under this forms an abelian group. Also,
scalar multiplication is defined by the rule  (a, b) = (a, b) which satisfies
certain properties. This concept is extended similarly to three dimensions. You can
generalize the whole idea through the definition of a vector space and vary the
scalars not only in the set of reals but in any field F. A vector space thus differs
from groups and rings in as much as it also involves elements from outside itself.

Definition: Let < V, + > be an abelian group and < F, +,  > be a field. Define
a function × (called scalar multiplication) from F × V  V, such that, for all 
 F, v  V,  v  V. Then V is said to form a vector space over F if for all
x, y  V, ,   F, the following hold

(i) ( + ) x = x + x
(ii)  (x + y) = x + y
(iii) () x =  (x)
(iv) 1 . x = x, 1 being unity of F.
Also then, members of F are called scalars and those of V are called vectors.

Note: You can use the same symbol + for the two different binary compositions
of V and F, for convenience. Similarly, the same symbol, is used for scalar
multiplication and product of the field F.

Since < V, + > is a group, its identity element is denoted by 0. Similarly, the
field F would also have zero element which will also be represented by 0. In case
of doubt, you can use di fferent symbols l ike 0v and 0F, etc.

Since you generally work with a fixed field, you would only be writing V as a
vector space (or sometimes V (F) or VF). It would always be understood that
it is a vector space over F (unless stated otherwise).

You have defined the scalar multiplication from F × V  V. You can also define
it from V × F  V and have a similar definition. The first one is called a left vector
space and the second a right vector space. It is easy to show that if V as a left
vector space over F, then it is a right vector space over F and conversely. In view
of this result, it becomes redundant to talk about left or right vector spaces. We
will consider about only vector spaces over F.

You can also talk about the above system when the scalars are allowed to take
values in a ring instead of a field, which leads to the definition of modules.

Theorem 1.6: In any vector space V(F), the following results hold:
(i) 0.x = 0
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(ii) .0 = 0
(iii) (–)x = – (x) = (– x)
(iv) ( – )x = x – x, ,   F, x  V

Proof: (i)  0.x = (0 + 0).x = 0.x + 0.x
 0 + 0.x = 0.x + 0.x

 0 = 0.x (cancellation in V)

(ii) .0 = .(0 + 0) = .0 + .0  .0 = 0

(iii) (–)x + x = [(–) + ]x = 0 . x = 0
 (–x) = – x

(iv) follows from above.

The following examples illustrate Theorem 1.6

(i) If < F, +, . > be a field, then F is a vector space over F as < F, + > =
< V, + > is an additive abelian group. Scalar multiplication can be taken
as the product of F. All properties are seen to hold. Thus F(F) is a vector
space.

(ii) Let < F, +, . > be a field

Let V = {(1, 2) | 1, 2  F}

Define + and . (scalar multiplication) by

(1, 2) + (1, 2) = (1 + 1, 2 + 2)

 (1, 2) = (1, 2)

You can check that all conditions in the definition are satisfied. Here
V = F × F = F2

One can extend this to F3 and so on. In general we can take n–tuples
(1, 2, ..., n), i F and define Fn or F(n) = {(1, 2, ..., n) | i
 F} as a vector space over F.

(iii) If F  K be two fields then K(F) will form a vector space, where addition
of K(F) is + of K and for any F, x  K, . x is taken as product
of  and x in K.
Thus C(R), C(C), R(Q) would be some examples of vector spaces, where
C = complex numbers., R = reals and Q = rationals.

(iv) Let V = set of all real valued continuous functions defined on [0, 1]. Then
V forms a vector space over the field R of reals under addition and scalar
multiplication defined by:

( f + g)x = f (x) + g(x) f, g  V

  ( f )x =  f (x)  R for all x  [0, 1]

It may be recalled here that sum of two continuous functions is continuous
and scalar multiple of a continuous function is continuous.

(v) The set F [x] of all polynomials over a field F in an indeterminate x forms
a vector space over F with respect to, the usual addition of polynomials
and the scalar multiplication defined by:
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For f (x) = a0 + a1x + ... + anx
n  F [x],  F

.( f (x)) = a0 + a1x + ... + anx
n.

(vi) Mm × n (F), the set of all m × n matrices with entries from a field F forms
a vector space under addition and scalar multiplication of matrices.
We use the notation Mn (F) for Mn × n (F).

(vii) Let F be a field and X a non-empty set.
Let F X = {f | f : X  F}, the set of all mappings from X to F. Then F X

forms a vector space over F under addition and scalar multiplication defined
as follows:

For f, g  FX,   F

Define f + g : X  F,  F : X , F such that

( f + g)(x) = f (x) + g(x)

( f )(x) =  f (x)  x  X

(viii) Let V be the set of all vectors in three dimensional space. Addition in V is
taken as the usual addition of vectors in geometry and scalar multiplication
is defined as:
 R, 


v   V   

v  is a vector in V with magnitude |  | times that of

V. Then V forms a vector space over R.

1.5 INTRODUCTION TO MATRIX

A set of mn numbers, real or complex, arranged in a rectangular array of m rows
and n columns, such as

11 12 1

21 22 2

1 2




   


n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
  

is called a matrix of order m × n.

In other words, a scheme of detached coefficients aij arranged in m rows and
n columns is called a matrix of order m by n or an m × n matrix or a matrix
of type m × n.

In case m = n, the rectangular array becomes a square and so the matrix
having number of rows and number of columns equal is called a Square Matrix
of order n.

Any matrix obtained by deleting any number of rows and any number of
columns from a given matrix is said to be a Sub-Matrix of the given matrix.

The mn numbers aij, (i = 1, 2, . . . m; j = 1, 2, . . . n, i  j) constituting the
m × n matrix are called its elements or constitutents. The elements aij (i = j)
of a square matrix A are called its diagonal elements and their sum as trace of

A denoted by tr. A = 
1

.
n

ii
i

a


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A matrix is usually denoted by capital letters like A (in clarendon type) or [aij],
where aij represents the (i, j)th element, i.e., the element in the ith row and jth
column of the matrix.

Thus an m × n matrix may be expressed as

A = [aij]
 

where 1 < i < m 
and 1 < j < n 
but i j 

 

11 12 1

21 22 2

1 2




   


n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
  

We have so far used only a pair of brackets, i.e., [ ] to denote a matrix, but
a pair of parenthess, i.e., ( ) and double bars, i.e., ||  ||, are also sometimes used
to indicate a matrix.

A matrix having all of its elements zero is said to be a null matrix and
denoted by O, e.g.,

0 0 0

0 0 0

0 0 0

 
 
 
  

 or 
0 0 0

0 0 0

 
 
 

A square matrix of order n having all its diagonal elements unity and zero
elements everywhere else is called a unit matrix or an identity matrix and
denoted by In. Thus

I
n
 = 

1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0

0 0 0 ... 1

 
 
 
 
 
 
  

    

It is possible that a matrix may have only a single row or a single column such
as

1 2, , ...  pa a a  and 

1

2

 
 
 
 
 
  



q

b

b

b

the first one being a matrix of order 1 × p is called a row matrix and the second
one being a matrix of order q × 1 is called a column matrix.

A single element constitutes a matrix of order 1 × 1.

In relation to matrices, the numbers are usually known as scalars; for they
behave as operators exactly like ordinary numbers as multipliers and hence are

called scalars.

1.5.1 Addition of Matrices

[1] The Commutative Law

If A and B are two matrices of the same order, say; m × n, then

A + B = B + A
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Let A = [aij] and B = [bij], i = 1, 2, ...m; j = 1, 2, ...n

We have

A + B = [aij] + [bij] = [aij + bij]

= [bij + aij] since bij and aij are scalars

= [bij] + [aij]

= B + A

i.e., the commutative law of addition holds.

[2] The Associative Law

If A, B, C are three matrices of the same order, say, m × n, then

(A + B) + C = A + (B + C)

Let A = [aij], B = [bij], and C = [cij], i = 1, 2, ...m, j = 1, 2, ...n

We have(A + B) + C= ([aij] + [bij) + [cij]

= ([aij + bij] + [cij])

= [(aij + bij) + cij]

= [aij + (bij + cij)], aij, bij, cij, being scalars

= [aij] + ([bij + cij])

= A + (B + C)

i.e., the associative law of addition holds.

[3] The Distributive Law

If A and B are two matrices of the same order, say, m × n and k is a
scalar, then

k (A + B) = kA + kB

Let A = [aij] and B =[bij], i = 1, 2, ...m; j = 1, 2, ...n

We have, k(A + B) = k[aij + bij]

= [k (aij + bij)]

= [kaij] + [kbij]

= k[aij] + k[bij], k being a scalar

= kA + kB.

i.e., the distributive law of addition holds.

[4] Existence of Additive Identity

If A be a matrix of any order, say, m × n and O a null matrix of the same
order such that when it is added to A, leaves it unchanged.

i.e., A + O = A

then O is said to be the additive identity of A.

Its proof immediately follows from the fact that if A = [aij] and O is a null
matrix i.e., a matrix having each of its elements zero, then

A + O = [aij + 0]

= [aij] since a zero added to any scalar leaves it
unchanged.

= A
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Because of this fact O is said to be an additive identity of A.

[5] Existence of Additive Inverse

If A be a matrix of any order say m × n, and there exists a matrix –A of
the same order such that if it is added to A, gives a null matrix O.

i.e. A + (–A) = O

then (–A) is said to be the additive inverse of A.

Let A = [aij]

Then, –A = –[aij] = [–aij]

So that A + (–A) = [aij] + [–aij]

= [aij – aij]

= O

Because of this fact (–A) is said to be an additive inverse of A.

[6] The Cancellation Law

If A, B, C are three matrices conformable for addition then the relation

A + B = A + C

holds if and only if B = C

Let A = [aij], B = [bij], and C = [cij], i = 1, 2, ...m

j = 1, 2, ...n

Then the relation A + B = A + C follows that (i, j)th elements on either side
are identically equal, i.e.,

aij + bij = aij + cij

which yields bij = cij since aij, bij, cij all are scalars.

i.e., (i, j)th element of B = (i, j)th element of C for all values of i and j.

As such B = C

Hence the relation A + B = A + C holds if and only if B = C.

1.5.2 Multiplication of Matrices

Two matrices A and B are conformable for multiplication if and only if the
number of columns in A is equal to the number of rows in B. The product
of the two matrices A and B denoted by AB is then defined as the matrix
whose elements in the ith row and jth column is the algebraic sum of the
products of the elements in the ith row of A by the corresponding elements
in the jth column of B.

In other words, the product AB of two matrices conformable for
multiplication, is the matrix whose element in ith row and jth column is the inner
or scalar product of the ith row of A by the jth column of B, while the inner
product or scalar product of two numbers x and y with components x1, x2,
....xn and y1, y2, ...yn is equal to x1y1 + x2y2 + ............ + xnyn

It should be noted that inner product of two numbers with unequal number of
components is not defined.

As an illustrative example if
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A = 

11 12 13

21 22 23

31 32 33

41 42 43

 
 
 
 
 
  

a a a

a a a

a a a

a a a

 and B = 
11 12

21 22

31 32

 
 
 
  

b b

b b

b b

then it is clear that the two matrices are conformable for multiplication since the
number of columns in A is equal to the number of rows in B.

 AB = 

11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23 31 21 12 22 22 23 32

31 11 32 21 33 31 31 12 32 22 33 32

41 11 42 21 43 31 41 12 42 22 43 32

a b a b a b a b a b a b

a b a b a b a b a b a b

a b a b a b a b a b a b

a b a b a b a b a b a b

    
     
    
 

     

It is worth noting that the product BA is not defined, since the number of
columns in B is not equal to the number of rows in A.

In the product AB, the matrix A is known as Prefactor and B as Post
factor.

As an illustration in generalized form if

A = [aij], a matrix of order m × n

B = [bik], a matrix of order n × p

then AB = C (say) is a matrix of order m × p

i.e. C = [cik] is a matrix of order m × p such that

cik =
1


n

ij jk
j

a b

= ai1 + b1k + ai2 b2k +  + ain bnk;i = 1, 2, ..., m and

j = 1, 2, ..., p

Thus

C = 

11 12 1

21 22 2

1 2

p

p

m m mp

c c c

c c c

c c c

 
 
 
 
 
  




   


Corollary. tr (AB) = tr (BA), all matrices being square of order n.

If A = [aij], B = [bij] then AB = C say = [cij]

where cij = 
1


n

ik kj
k

a b

Let BA = D = [dij] where dij = 
1


n

ik kj
k

b a
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Thus tr. (AB) =  ii
i

c  = 
 
  
 

  ik ki
i k

a b

=
1 1 


n n

ik ki
k i

a b

(on interchanging the order of summation)

=
1 1 

 
  
 

 
n n

ki ik
k i

b a

=
1


n

kk
k

d  = tr.. (BA)

which proves the proposition.

Properties of Matrix-Multiplication

[1] The Commutative Law of Multiplication

Consider the matrices,

A =
1 2

2 3

3 1

 
 
 
  

 and B = 
1 0 2

0 1 3

 
 
 

These are conformable for multiplication and so

AB =

1 0 0 2 2 6

2 0 0 3 4 9

3 0 0 1 6 3

   
    
      

 = 

1 2 4

2 3 13

3 1 3

  
 
 
   

And BA =
1 0 6 2 0 2

0 2 9 0 3 3

     
     

 = 
5 0

7 6

 
  

It is apparent that the product matrix AB is of order 3 × 3 while the product
matrix BA is of order 2 × 2 and therefore the two product matrices are quite
different, i.e.,

AB  BA

This follows that the commutative law of multiplication does not hold.

Had the order of the matrices AB and BA been the same, then it would be
possible that AB  BA if every or at least one element in AB would differ from
the corresponding element in BA. Though there are a few exceptions in which
case the commutative law holds good. Such cases will be considered in the
discussion of special matrices.

In fact, for a given pair of matrices A and B it is possible that the products AB
and BA may not be conformable. For example if A is of order m × n and B of
order n × p, then the product AB is conformable and will be of order m × p
while the product BA is not conformable since number of columns in B is not
equal to number of rows in A. Thus the product AB exists while BA does not.
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[2] The Distributive Law for Multiplication

If  A, B, C be three matrices of suitable orders such that the products
A(B + C) and AB, AC are conformable then

A (B + C) = AB + AC.

Suppose that

A = [aij] is of order m × n

B = [bjk] is of order n × p

and C = [cjk] is of order n × p

Then, (B + C) is of order n × p and A is of order m × n so that A (B + C)
is conformable and of order m × p. Also AB and AC both are of order m × p
so that the sum matrix (AB + AC) is of order m × p. Hence the matrices A (B
+ C) and AB + AC are of the same order so that they are comparable for
equality.

Now,

(i, k)th element of A (B + C) = 
1

( )



n

ij jk jk
j

a b c

=
1 1 

 
n n

ij jk ij jk
j j

a b a c

= (i, k)th element of AB + (i, k)th element of AC

= (i, k)th element of (AB + AC)

for all i = 1, 2, ............m and k = 1, 2, ............p

 A(B + C) = AB + AC

A similar procedure will show that

(B + C)A = BA + CA

where B, C and A are of orders m × n, m × n and n × p respectively.

Hence the matrix multiplication is distributive with respect to addition.

[3] The Associative Law for Multiplication

If A, B, C be three matrices of suitable orders such that the products
(AB)C and A(BC) are conformable then

(AB)C = A(BC)

Suppose that

A = [aij] is of order m × n

B = [bjk] is of order n × p

and C = [ckl] is of order p × q

Then, (AB) is of order m × p and C is of order p × q so that (AB)C is of
order m × q. Also (BC) is of order m × q and A is of order m × n so that
A(BC) is of order m × q. Hence the matrices (AB)C and A(BC) are of the
same order so that they are comparable for equality.

Now, (i, k)th element of AB =
1


n

ij jk
j

a b
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so that, (i, l)th element of (AB)C =
1 1 

  
 
  

 
p n

ij jk kl
k j

a b c

=
1 1 


p n

ij jk kl
k j

a b c

Also, (j, i)th element of (BC) =
1

p

jk kl
k

b c



so that (i, l)th element of A(BC) =
1 1 

  
 
  

 
pn

jk kl ij
j k

b c a

=
1 1 
 

pn

ij jk kl
j k

a b c

=
1 1 
 

p n

ij jk kl
k j

a b c

=(i, l)th element of (AB)C

for all i = 1, 2, ...m, l = 1, 2,....p

 A(BC) = (AB)C

Hence the matrix multiplication is associative.

[4] If A be a matrix of order m × n and O a null matrix of order n × p then
the product AO is another null matrix of order m × p, i.e.,

AOn, p = Om, p

Also if O be an m × n null matrix and A a matrix of order n × p then their
product is a null matrix of order m × p, i.e.,

Om, n A = Om, p

Conclusively, if A be an n-rowed square matrix and O an n-rowed null
matrix, then

AO = OA = O

[5] If the product of two matrices A and B is a null matrix then it is not
essential that either of them is a null matrix, i.e.,

If AB = O, it does not necessarily mean that at least one of A and B is a null
matrix,

As an illustrative example if

A =
1 1

2 2

 
 
 

 and B = 
1 1

1 1

 
  

then B =
1 1 1 1

2 2 1 1

   
      

 = 
1 1 1 1

2 2 2 2

   
    

=
0 0

0 0

 
 
 

 = O

i.e. the product of two non-zero matrices A and B is a zero matrix.
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[6] If I be an m-rowed unit matrix and A an m × n matrix,then,

ImA = A

Suppose that A = [aij] is a matrix of order m × n.

Then, ImA is a matrix of order m × n and so is comparable to A.

Now, (i, j)th element of ImA = 
1

( , )th



m

k

i k  element of Im  akj

But the (i, k)th element of Im is zero except when k = i; therefore the right
hand sum of the above expression will have only one term different from zero
and that is the ith term which is equal to

(i, i)th element of Im.aij = 1.aij

= aij

(i, j)th element of ImA= aij

= (i, j)th element of A

from which it follows that

Im A = A

Similarly it may be shown that if A be an m × n matrix and In an n-rowed unit
matrix, then

A In = A

Note. This result shows the existence of a multiplicative identity.

[7] Positive Integral Powers of Square Matrices

If A is a square matrix of order n (say), then

A2 = A A

and the associative law of multiplication leads

A2A = (AA) A = A (AA) = AA2

or A3 = AAA = A2A = AA2

In the generalised form if p, q are two positive integers, then

ApAq = (AA ......... A, p times) (AA ......... A, q times)

= AA .......... A, (p + q) times

= Ap + q

and (Ap)q = (AA.......A, p times)q

= AqAq ....... Aq, p times

= Apq

Corollary. If I is a unit matrix of any order, then

I2 = I3 = ..........= Ip = I.

1.5.3 Inverse of a Matrix

Cayley-Hamilton theorem states that every square matrix satisfies its characteristic
equation.

Proof: Let A be an n  n matrix with characteristic equation
1 2

0 1 2 1A λI λ λ λ λ 0n n n
n na a a a a 
        …(1.15)
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Here, we have to prove that A satisfies Equation (1.15), which means

1 2
0 1 2 1A A A A I On n n

n na a a a a 
      …(1.16)

As the element of  A λI  are atmost of the first degree in , thus the

elements of  adj. A λI  are atmost of degree (n – 1) in  and hence  adj. A λI

can be written as a matric polynomial of degree (n – 1) in , i.e,

  1 2 3
0 1 2 2 1adj. A λI B λ B λ B λ B λ Bn n n

n n
  

                …(1.17)

where 0 1 2 3 2 1B ,B ,B ,B , ,B ,Bn n   are n  n  matrices.

We know that

   A λI adj. A λI A λI I     …(1.18)

Substituting the values from Equations (1.15) and (1.17) in (1.18), we get
1 2 3

0 1 2 2 1A λI B λ B λ B λ B λ Bn n n
n n

1 2
0 1 2 1λ λ λ λ In n n

n na a a a a  ...(1.19)

Comparing the coefficients of like powers of  on both the sides of Equation
(1.19), we get

0 0B I;a   0 1 1AB B I;a  1 2 2AB B I;a 

                     ......................... .........................

2 1 1AB B I;n n na    1AB In na 

Pre-multiplying the above equations by 1 2 2A ,A ,A , ,A ,An n n   , I

respectively and adding we get

1 2
0 1 2 1A A A A I On n n

n na a a a a 
     

This equation is same as Equation (1.16) and hence establishes the theorem.

Inverse of a Matrix using Cayley-Hamilton Theorem

According to Cayley-Hamilton Theorem, the square matrix A satisfies its
characteristic equation

1 2
0 1 2 1A A A A I On n n

n na a a a a 
     

Pre-multiplying both sides by A– 1, we get
1 2 3 1

0 1 2 1A A A I A On n n
n na a a a a   
     

  1 1 2 3
0 1 2 1

1
A A A A In n n

nn
a a a a

a
   




    

Example 1.17: Prove that 
1 0 2

A 0 2 1

2 0 3

 
   
  

 satisfies its characteristic equation.

Also find its inverse.
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Solution: The characteristic equation of given matrix A is

1 λ 0 2

A λI 0 2 λ 1

2 0 3 λ


  


 = 0

 3 2λ 6λ 7λ 2 0    

 3 26 7 2 0      
By Cayley-Hamilton theorem,

3 2A 6A 7A 2I 0   

Now, 2

1 0 2 1 0 2 5 0 8

A A.A 0 2 1 0 2 1 2 4 5

2 0 3 2 0 3 8 0 13

     
            
          

and    3 2

5 0 8 1 0 2 21 0 34

A A .A 2 4 5 0 2 1 12 8 23

8 0 13 2 0 3 34 0 55

     
            
          

 3 2

21 0 34 5 0 8 1 0 2 1 0 0

A 6A 7A 2I 12 8 23 6 2 4 5 7 0 2 1 2 0 1 0

34 0 55 8 0 13 2 0 3 0 0 1

       
                    
              

.

21 0 34 30 0 48 7 0 14 2 0 0

12 8 23 12 24 30 0 14 7 0 2 0

34 0 55 48 0 78 14 0 21 0 0 2

        
                    
               

                         

21 30 7 2 0 34 48 14 0

12 12 0 0 8 24 14 2 23 30 7 0

34 48 14 0 0 55 78 21 2

      
           
       

 

0 0 0

0 0 0 O

0 0 0

 
   
  

Thus, 3 2A 6A 7A 2I O    …(1.20)

and hence A satisfies its characteristic equation.

To find the inverse, multiplying Equation (1.20) by 1A , we get

2 1A 6A 7I 2A O   

 1 21
A A 6A 7I

2
      
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 1

5 0 8 1 0 2 1 0 0
1

A 2 4 5 6 0 2 1 7 0 1 0
2

8 0 13 2 0 3 0 0 1



      
               
            

5 6 7 0 8 12 0
1

2 0 0 4 12 7 5 6 0
2

8 12 0 0 13 18 7

      
           
       

6 0 4
1

2 1 1
2

4 0 2

 
   
  

1.5.4 Adjoint of  Matrix
Definition: The adjoint or adjugate of a square matrix is the transpose of a
matrix whose elements are the cofactors of the original matrix. The adjoint of a
matrix A is denoted by adj A.

Thus, if A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

, then

adj A = 
11 12 13

21 22 23

31 32 33

tA A A
A A A
A A A

= 
11 21 31

12 22 32

13 23 33

A A A
A A A
A A A

Example 1.18: Find adj A where

A = 
2 1 3
4 0 2
1 1 5

Solution: Here

matrix of cofactors of A = 

0 2 4 2 4 0
1 5 1 5 1 1
1 3 2 3 2 1
1 5 1 5 1 1
1 3 2 3 2 1
0 2 4 2 4 0

= 
2 18 4
2 7 1
2 8 4

.

Hence  adj A = 
2 2 2

18 7 8
4 1 4

.
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1.5.5 Transpose of Matrices

If a matrix A is of the type mn, then the matrix obtained by interchanging the
rows and the columns of A will be of the type nm and is known as the transpose

of the matrix A, denoted by Aor AAT. If A , Bbe the transpose matrices of A, B
respectively, then

(i)  A   = AA

(ii)  A + B = A B  where A and B are conformable for addition.

(iii)  Ak = k A  , where k is a scalar..

(iv)  AB = B A   , where A and B are conformable for multiplication.

Check Your Progress

7. When V is said to form a vector space over F?

8. Define the square matrix of order n.

1.6 SPECIAL MATRICES

Matrices arise in many situations of mathematics. In representing rotation
analytically, in solving systems of linear equations, in the study of extrema of functions
of two or more variables and in many other ways matrices come up as natural
habitats of the domain of mathematics.

Some Definitions

Definition 1: A matrix is a rectangular array (i.e., arrangement) of objects. The
number of rows and the number of columns are called its dimensions. The objects
are called its entries. If the objects are real number, it is called a real matrix; if the
objects are complex numbers, it is called a complex matrix. If the objects are
polynomials then it is called a polynomial matrix. It is to be noted that the entries
themselves can be matrices also.

For example, 2 3 1
0 4 3

 is a matrix with 2 rows and three columns. It is

normally referred to as a 2 × 3-matrix, read as 2 by 3 matrix, by convention the
number of rows coming first followed by the number of columns. The above matrix
can be called an integral matrix as all the entries are integers. The matrix

2 3

4
1 2 1

3 2 5 1

x x x

x x
 is a polynomial matrix as the entries are polynomials.

Of special significance are the matrices like [1, 2, 0], 
5

6
 and 

1 2 3
4 0 1
2 2 3

.

The first one has only one row and three columns. Such a matrix is called a row
matrix. The second one is likewise a column matirx having 2 rows and 1 column.
The third one is a square matrix having the same number of rows as the number of
columns.
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Definition 2: A matrix whose number of rows equals the number of columns is
called a square matrix.

A convention has it that for square matrices, we don't refer to the dimensions
but to the order which is, by definition, is the number rows and is therefore also the
number of columns.

Thus 2 3
4 0

 is a square matrix of order 2.

In general a matrix will be referred to by capital letters such as A, B, U, V,
etc. and their corresponding entries by a

ij
, b

ij
, u

ij
, v

ij
, etc. Thus A = [a

ij
]

m × n
 stands

for the matrix

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

m m mn

a a a
a a a

a a a

Note a
32

 is the element which belongs to the 3rd row and the 2nd column.
Similarly, a

ij
 is the element at the crossing of the ith row and the jth column.

Thus a square matrix A of order n should look like

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

a a a

The elements a
11

, a
22

, ..., a
ii
, ..., a

nn
 are said to form the principal diagonal

of the matrix and the elements a
1n

, a
2n – 1

, ..., a
n1

 are said to form its second
diagonal of the square matrix A. The sum of the elements in the principal diagonal
is called the trace of A and is denoted by tr A. Thus

tr A = a
11

 + a
22

 + ... + a
nn

 = 
1

n

ii
i

a .

For the matrix A = 
2 1 3
0 4 1
3 2 2

, tr A = 2 + 4 + 2 = 8.

Definition 3: A matrix is called a zero matrix, if every element of it is zero.

Thus 0 0 0
0 0 0

 is a zero matrix of dimensions 2 × 3.

A square matrix is called an identity matirx if all its principal diagonal
elements are 1 and its non-diagonal elements are zeros.

Thus 1 , 1 0
0 1

, 
1 0 0
0 1 0
0 0 1

 are identity matrices of order 1, 2 and 3

respectively.

A square matrix is called a diagonal matrix if all elements other than the
principal diagonal elements are zero and at least one of the principal diagonal
elements is non-zero.
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Thus 
2 0 0
0 0 0
0 0 3

 is a diagonal matrix; so also 2 0
0 0

.

Definition 4: Two matrices A and B are said to be equal if they have the same
dimensions and the corresponding elements are equal.

For example, 2 3
4 0

a
b

 = 2 0 3
4 0 1

 implies a = 0, b = 1.

A square matrix is called a scalar matrix if every non-principal diagonal
elements is zero and all principal diagonal elements are non-zero and equal. Thus

3 0 0
0 3 0
0 0 3

 is a scalar matrix but 2 0
0 2

 is not a scalar matrix.

Note that the identity matrix is also a scalar matrix.

A square matrix is called an upper triangular if all the elements below the
principal diagonal are zero and at least one above the principal diagonal is
non-zero.

Note A = [a
ij
] is uppertriangular if a

ij
 = 0 for all i > j

Clearly 
2 3 0
0 4 3
0 0 1

 is an upper triangular matrix.

1.6.1 Symmetric and Skew-Symmetric Matrices

A square matrix is called a lower traingular matrix if all the elements above the
principal diagonal are zero and at least one below it is non-zero.

Note A = [a
ij
] is lower triangular if a

ij
 = 0 for all i < j.

Thus 
2 0 0
5 1 0
6 2 3

 is a lower triangular matrix.

A square matrix is called symmetric if the elements situated symmetrically
with respect to the principal diagonal are equal.

Note a square matrix which is also, a zero matrix is symmetric.

Thus A = [a
ij
] is symmetrix if a

ij
 = a

ji
 for all i and j.

Clearly A = 
4 3 5
3 2 1
5 1 7

 is symmetric, as the elements a
12

 = a
21

 = 3,

a
31

 = a
13

 = 5, a
23

 = a
32

 = – 1, the elements {a
12

, a
21

}, {a
31

, a
13

} and {a
23

, a
32

}
being symmetrically situated with respect to the principal diagonal.

A square matrix is called skew symmetric if the elements situated
symmetrically with respect to the principal diagonal have opposite signs but the
same magnitude and the principal diagonal elements are zero. Thus a matrix A =
[a

ij
] is skew-symmetric if a

ij
 = – a

ji
 for all i and j.
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Clearly, 
0 –2 5
2 0 3
5 3 0

 is skew-symmetric since a
12

= – a
21

, a
13

 = – a
31

,

a
31

 = – a
13

 and a
11

 = a
22

 = a
33

 = 0.

Note a square matrix which is also a zero matrix is skew symmetric.

Operations on Matrix

With matrices we can perform a number of operations, defined below:

Transposing: If A is an m × n-matrix, then its transpose is an n × m-matrix
obtained by converting rows into corresponding columns. The transpose of A is
denoted by At. Clearly, if A = [a

ij
]

m × n
, then At = [a

ji
]

n × m
.

Thus if A = 2 1 3
4 0 2

, then At = 
2 4
1 0
3 2

Note:
(1) (At)t = A.

(2) The tranpose of an upper triangular matrix is a lower triangular matrix.

(3) The transpose of a symmetric matrix is the matrix itself, i.e., S t = S if S is symmetric.

(4) The trace of a square matrix remains invariant order transposition i.e., tr (At)  = tr
(A).

(5) The transpose of an indentity matrix is the matrix itself.

Addition: If A and B have the same dimensions, then the sum A + B is defined as
a matrix of the same dimensions obtained by adding the corresponding elements.
Thus, if A = [a

ij
]

m × n
, B = [b

ij
]

m × n
 then A + B = [a

ij
 + b

ij
]

m × n
.

For example, if A = 8 2 3
4 0 5

, B = 3 2 1
1 3 2

, then

A + B = 8 ( 3) 2 2 3 ( 1)
4 1 0 3 5 2

 = 5 4 2
5 3 7

.

Observe that (1) A + B = B + A where A and B are real matrices.

(2) (A + B)t = At + Bt.

(3) A + 0 = A = 0 + A where 0 is the zero matrix of the same dimensions of
those of A.
Subtraction: If A and B are of the same dimensions, then A – B is a matrix of the
same dimensions, obtained by subtracting the elements of B from the corresponding
elements of A.

Thus, if A = [a
ij
]

m × n
, B = [b

ij
]

m × n
, then A – B = [a

ij
 – b

ij
]

m × n
.

For  example, if A = 2 3
4 5

, B = 1 1
0 2

, then A – B = 1 1
4 3

.

Observe that (1) A – B  B – A.

(2) (A – B)t = At – Bt.

(3) A – 0 = A where 0 is the zero matrix.
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Scalar Multiplication: If real numbers are taken as scalar and   , then the
scalar multiplication A is a matrix of the same dimensions of that of  and is
obtained by multiplying each element of A by . Thus, if A = [a

ij
]

m × n
, then

A = [a
ij
]

m × n

For example, if A = 2 1 3
0 4 2

, then 2A = 4 2 6
0 8 4

.

Observe that (1) (A ± B) = A ± B where A and B are two matrices.

(2) (A)t =At.

(3) Every scalar matric is of the form I.

(4) The transpose of a skew-symmetric matrix is negative of the matrix,
i.e., if T is skew-symmetric, Tt = – T = (–1)T.

A result of importance is the following:
Theorem 1.7: Every square matrix can be expressed as the sum of two matrices,
one of which is symmetric and the other skew-symmetric.

Proof: Let A be a square matrix.

Then we can write

A = 1
. 2

2
A  = 1

[ ]
2

A A  = 1
( )

2
t tA A A A

i.e., A = 1 1
( ) ( )

2 2
t tA A A A

= S + T, writing S = 1 1
( ), ( )

2 2
t tA A T A A .

If now suffices to prove that S is symmetric and T is skew-symmetric. To
this end, we observe

St = 1
( )

2

t
tA A  = 1

( )
2

t tA A  = 1
( )

2
tA A  = 1

( )
2

tA A  = S.

So S is symmetric

T t = 1
( )

2

t
tA A  = 1

( )
2

t tA A  = 1
( )

2
tA A  = 1

( )
2

tA A  = – T.

So T is skew-symmetric.

Hence the proof.

Example 1.19: If A = 1 1 2
2 1 3

, B = 3 0 1
1 2 1

, verify

(i) (A + B)t = At + Bt (ii) (A – B)t = At – Bt

(iii) (3A)t = 3At (iv) (2A + 3B)t = 2At + 3Bt

(v) A + B = B + A.

Solution: (i) and (ii) Here

A + B = 4 1 1
3 1 4

, A – B = 2 1 3
1 3 2

, At = 
1 2
1 1
2 3

,  Bt = 
3 1
0 2
1 1

.



Vector and Matrix Algebra

NOTES

Self - Learning
Material 59

 (A + B)t = 
4 3
1 1
1 4

, (A – B)t = 
2 1
1 3
3 2

,

 At + Bt = 
4 3
1 1
1 4

, At – Bt = 
2 1
1 3
3 2

.

Clearly,(A + B)t = At + Bt and (A – B)t = At – Bt.

(iii) Now, 3A = 1 1 2
3

2 1 3
 = 3 3 6

6 3 9

 (3A)t = 
3 6
3 3
6 9

, 3At = 3
1 2
1 1
2 3

 = 
3 6
3 3
6 9

Clearly, (3A)t = 3At.

(iv) Now, 2A + 3B = 1 1 2 3 0 1
2 3

2 1 3 1 2 1

= 2 2 4 9 0 3
4 2 6 3 6 3

= 
11 2 1
7 4 9

 (2 3 )tA B = 
11 7
2 4
1 9

Again, 2At + 3Bt = 
1 2 3 1

2 1 1 3 0 2
2 3 1 1

 = 
1 4 9 3
2 2 3 0 6
4 6 3 3

=  
11 7
2 4
1 9

Clearly, (2A + 3B)t = 2At + 3Bt.

(v) Now B + A = 3 0 1 1 1 2
1 2 1 2 1 3

= 4 1 1
3 1 4

, evidently A + B = B + A.

Example 1.20: Express the following matrices as the sum of a symmetric matrix
and a skew-symmetric matrix:

(i) 2 4
3 2

(ii) 
1 2 3
4 5 6
7 8 9

(iii) 
0 4 3
4 0 2
3 2 0

(iv) 
3 1 5
1 2 4
5 4 1

.

Solution: (i) Let A = 2 4
3 2

.

 At = 2 3
4 2

.
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Hence 1
( )

2
tA A = 

1 4 7
7 42

 = S, say and

1
( )

2
tA A = 

1 0 1
1 02

 = T, say

Clearly, A = S + T, where S is symmetric and T is skew-symmetric.

(ii) Let B = 
1 2 3
4 5 6
7 8 9

. Then Bt = 
1 4 7
2 5 8
3 6 9

.

Hence 1
( )

2
tB B  = 

2 6 101
6 10 14

2 10 14 18
 = 

1 3 5
3 5 7
5 7 9

 = P, say..

and 1
( )

2
tB B  = 

0 2 41
2 0 2

2 4 2 0
 = 

0 1 2
1 0 1
2 1 0

 = Q, say..

Clearly B = P + Q, where P is symmetric and Q is skew-symmetric.

(iii) Let C = 
0 4 3
4 0 2
3 2 0

. Then C t = 
0 4 3
4 0 2
3 2 0

.

Hence 1
( )

2
tC C = 

0 0 01
0 0 0

2 0 0 0
 = U, say..

and 1
( )

2
tC C = 

0 8 61
8 0 4

2 6 4 0
 = 

0 4 3
4 0 2
3 2 0

 = V, say..

Clearly, C = U + V, where U is symmetric and V is skew-symmetric.

(iv) Let D = 
3 1 5
1 2 4
5 4 1

. Then Dt = 
3 1 5
1 2 4
5 4 1

.

 Hence 1
( )

2
tD D = 

6 2 101
2 4 8

2 10 8 2
 = 

3 1 5
1 2 4
5 4 1

 = S, say..

1
( )

2
tD D = 

0 0 01
0 0 0

2 0 0 0
 = 

0 0 0
0 0 0
0 0 0

 = T, say..

Clearly, D = S + T, where S is symmetric, and T is skew-symmetric.
Example 1.21: Given an example of a matrix which is,

(i) symmetric but not skew-symmetric

(ii) skew-symmetric but not symmetric

(iii) both symmetric and skew-symmetric

(iv) neither symmetric nor skew-symmetric.

Solution:



Vector and Matrix Algebra

NOTES

Self - Learning
Material 61

(i) 
2 1 3
1 0 2
3 2 5

(ii) 
0 3 5
3 0 4
5 4 0

(iii) 
0 0 0
0 0 0
0 0 0

(iv) 
2 7 4
4 1 3
6 2 3

Product of Matrices: If A and B are matrix, the product AB is defined only when
the number of columns of A equals the number of rows of B. This condition is
called the conformabitity condition for multiplication. Thus, if A and B are
conformable for the product AB, then the product is a matrix obtained by the
following rule:

If A = [a
ij
]

m × n
, B = [b

jk
]

n × p
, then AB = [c

ik
] where c

ik
 = 

1

n

ij jk
j

a b

For example, if

A = 2 1 3
4 0 2

, B = 
1 1 0
2 1 2
1 3 4

, A and B are conformable for the product

AB and clearly AB has the dimensions 2 × 3.

Now AB = 2 1 1 2 3 1 2 1 1 ( 1) 3 3 2 0 1 2 3 4
4 1 0 2 2 1 4 1 0 ( 1) 2 3 4 0 0 2 2 4

= 7 10 14
6 10 8

.

Observe that to obtain the element c
23

, the 2nd row of A and 3rd column of B
have been multiplied by coordinate-wise and then added (i.e. dot product has
been taken). Similarly other entries of C are calculated.

Observe that for any three matrices A, B and C and a scalar :

(1) AB  BA. [Non-commutativity]

(2) A(B ± C) = AB ± AC [Left Distributivity]

(3) (AB) = (A)B = A(B) [Homogeneity]

(4) (A + B)C = AC + BC [Right Distributivity]

(5) AB = BA  AtBt = BtAt

(6) AI = IA = A [Identity Property]

(7) (AB)C = A(BC) [Associativity]

(8) (AB)t = BtAt.

Example 1.22: If A and B be two symmetric matrices of the same order, then
prove that

(i) A + B is symmetric.

(ii) AB is symmetric if and only if AB = BA.

Solution: Since A and B are symmetric matrices, then At = A, Bt = B

(i) Now (A + B)t = At + Bt = A + B

Hence A + B is symmetric.

(ii) Let AB be symmetric, then (AB)t = AB

 AB = (AB)t = BtAt = BA
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Conversely let AB = BA, then (AB)t = BtAt = BA = AB

Hence AB is symmetric.
Example 1.23: If A and B be commuting matrices, then prove that At and B t

commute.

Solution: Since A and B commute, then AB = BA.

Now AtBt = (BA)t = (AB)t ( AB = BA)

= BtAt

Hence At and Bt commute.

Example 1.24: If A = 1 0
1 1

 
  

, then prove that A2 – 2A + I
2
 = 0. Hence find A50.

Solution: Now A2 = 1 0 1 0
1 1 1 1

   
       

 = 1 0
2 1

 
  

A2 – 2A + I
2

= 1 0 1 0 1 0
2

2 1 1 1 0 1
                 

= 1 0 2 0 1 0
2 1 2 2 0 1

                 

= 0 0
0 0
 
 
 

 = 0

Here A2 = 2A – I
2
 = 1 0

2 1
 
  

.

A3= A.A2 = A(2A – I
2
) = 2A2 – A = 2 0 1 0

4 2 1 1
          

 = 1 0
3 1

 
  

A4 = A2.A2 = A2(2A – I
2
) = 2A3 – A2 = 2 0 1 0

6 2 2 1
          

 = 1 0
4 1

 
  

and so on.

Hence A50 = 1 0
50 1

 
  

.

Example 1.25: (i) If A = 
1 2 3 4
2 0 1 2
3 1 0 5

 
 
 
 

 and B = 
2 1 0
3 2 1
1 0 1

 
 
 
 

, then find AB or BA if

they exist.

(ii) If A and B are square matrices of the same order, does the equality
(A + B) × (A – B) = A2 – B2 hold good? Give reasons.

Solution: (i) Since A is a 3 × 4 matrix and B is a 3 × 3 matrix, then the number of
columns of A  number of rows of B.

Hence AB is not defined.

But the number of columns  of B = number of rows of A.

Hence BA is defined.
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 BA = 
2 1 0 1 2 3 4
3 2 1 2 0 1 2
1 0 1 3 1 0 5

   
   
   
   

= 
2 2 0 4 0 0 6 1 0 8 2 0
3 4 3 6 0 1 9 2 0 12 4 5
1 0 3 2 0 1 3 0 0 4 0 5

        
        
         

= 
4 4 7 10

10 7 11 21
4 3 3 9

 
 
 
 

.

(ii) Now (A + B) (A – B) = A(A – B) + B(A – B) = AA – AB + BA – BB

= A2 – AB + BA – B2

If AB = BA, then only  the equality (A + B) (A – B) = A2 – B2 holds good
otherwise not.
Example 1.26: (i) If A, B and C are matrices of appropriate order with AB = AC,
then does it imply that B = C? Give an example in support of your conclusion.

(ii) If A, B and C are three matrices of order n such that AB = I
n
 and BC =

I
n
, then prove that A = C.

Solution: (i) If A, B and C three matrices of appropriate order with AB = AC,
then it does not necessarily imply that B = C.

For example, let A = 
1 3 2
2 1 3
4 3 1

 
 
   

, B = 
1 4 1 0
2 1 1 1
1 2 1 2

 
 
  

and      C = 
2 1 1 2
3 2 1 1
2 5 1 0

  
   
   

Now AB = 
1 3 2 1 4 1 0
2 1 3 2 1 1 1
4 3 1 1 2 1 2

   
   
        

 = 
3 3 0 1
1 15 0 5
3 11 0 5

  
 
   

and AC =
1 3 2 2 1 1 2
2 1 3 3 2 1 1
4 3 1 2 5 1 0

     
      
         

 = 
3 3 0 1
1 15 0 5
3 11 0 5

  
 
   

 AB = AC But B  C.

(ii) Now AB = I
n

 (AB)C = (I
n
)C

 A(BC) = C[ matrix product is associative and I
n
C = C]

      AI
n
 = C

       A  = C [ AI
n
 = A]

1.6.2 Hermitian And Skew-Hermitian Matrix

Hermitian Matrix

A square matrix A = [a
ij
] over the complex numbers is said to be Hermitian if the

transposed conjugate of the matrix is equal to the matrix itself i.e., A  = A.
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Suppose A = [a
ij
] is of the type mn, then A  = [ ij ] will be of the type

nm where ij  = ji

So, for the matrix A to be Hermitian, m = n and a
ij
 = ji  for all i and j,

i.e., (i, j)th element of A = complex conjugate (j, i) th element of A.

For example

12 1
0 7 2

, 1 9 5 4
7 2 4

5 4 0

i i
i

i i
i

i i

 
            

 are Hermitian

matrices.

Corollary: A Hermitian matrix has all its diagonal elements as real numbers.

Proof: Let A be a Hermitian matrix.

 ija  = jia  for all i and j.

Putting j = i for the diagonal elements, we have

iia  = iia  for all i

 i    = i    [ ii iia i a i        ]

 2i  = 0    = 0

 iia  = 0i    = 

Thus, the diagonal elements of a Hermitian matrix are real numbers.

Note: If a Hermitian matrix has all its elements as real, then it becomes a
symmetric matrix.

Theorem 1.8: The necessary and sufficient condition for a matrix A to be Hermitian
is that θA  = A.

Proof: Condition is necessary: Let A = [ ]ija  be a Hermitian matrix of order n.

 ija  = jia  for all i and j

Since A is of the type nn, thus θA is of the type nn.

  A and θA are of the same type.

Now, (i, j)th element of A = (j, i)th element of A

 = (i, j)th element of (A)= (i, j)th element of A

By equality of matrices A = A

Condition is sufficient: Let us assume that A = A

(i, j)th element of A = (i, j)th element of A
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  ija  = jia  for all i and j

Thus, A is a Hermitian matrix.

Skew-Hermitian Matrix

A square matrix A = [a
ij
] over the complex numbers is said to be Skew-Hermitian

if the transposed conjugate of the matrix is equal to the negative of the matrix itself
i.e., A  = –A.

Suppose A = [a
ij
] is of the type mn, then A  = [ ij ] will be of the type

nm where ij  = – jia

So, the matrix to be Skew-Hermitian we must have m = n and jia  = ija for

all i and j.

i.e., (i, j)th element of A = negative of the complex conjugate (j, i) th element
of A.

Corollary: Skew-Hermitian matrix has all its diagonal elements as either purely
imaginary or zero.

Proof: Let A be a Skew-Hermitian matrix.

 ija  = – jia  for all i and j.

Putting j = i for the diagonal elements, we have

iia  = – iia  for all i

 i    = – ( i   ) [If thenii iia i a i        ]

 2  = 0   = 0

 iia  = 0 i   = i

Thus, the diagonal elements of a Skew-Hermitian matrix are purely imaginary
or zero.

Note: If a Skew-Hermitian matrix has all its elements as real, then it becomes a
skew-symmetric matrix.

Theorem 1.19: The necessary and sufficient condition for a matrix A to be Skew-
Hermitian is that θA = –A.

Proof: Condition is necessary: Let A = [ ]ija  be a Skew-Hermitian matrix of

order n

 ija  = – jia  for all i and j

 A is of the type nn   –A is of the type nn

And θA is of the type nn

  –A and θA are of the same type.
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Now, (i, j)th element of θA = complex conjugate of (i,j)th element of A

= jia for all i and j

= – ija  for all i and j = (i, j)th element of –A

By equality of matrices A= –A

Condition is sufficient: Let us assume that A  = –A

(i, j)th element of A = –(i, j)th element of A

= –(j,i)th element of A  = – jia  for all i and j

  ija  = – jia  for all i and j

Thus, A is a Skew-Hermitian matrix.

Example 1.27: If A is a square matrix then prove that

(i) A + θA is Hermitian matrix.

(ii) A – θA is Skew-Hermitian matrix.

Solution: (i) Consider  θθA A = A+  A


= A+ AA[  A
 = A]A]

= A + A

Thus, A + A is Hermitian matrix.

(ii) Consider  θθA A = A–  A


= A– AA [  A
 = A]A]

= –  θA A

Thus, A – A is Skew-Hermitian matrix.

Example 1.28: Every square matrix A can be expressed in one and only one way
as P + iQ, where P and Q are Herimitian matrices.

Solution. We have  1 1
A 2A A A A A

2 2
       

   1 1
A + A A A

2 2
   

   1 1
A + A . A A

2 2
i

i
    = P + iQ
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where  1
P A + A

2
  and  1

Q A A
2i

 

Now,    1 1
P A A A A P

2 2

      

And    1 1
Q A A A A

2 2i i

         1
A A Q

2i
  

Thus both P and Q are Hermitian.

Hence, A can be expressed as P +iQ, where P and Q are Hermitian matrices

Now, let us prove that this expression of A is unique.

Suppose, if possible A= R + iS be antother expression for A where R and
S both are Hermitian.

We shall prove that R = P and S = Q

Now,  A R S R S R S R Si i i i
           

R andSare Hermitian R R;S S     

    A A R S R S 2Ri i        1
R A A P

2
  

Also,    A A R S R S 2 Si i i        1
S A A Q

2i
  

Hence, the expression for A is unique.

Example 1.29: Prove that every Hermitian matrix A can be written as A = B C,i
where B is real and symmetric and C is real and skew-symmetric.

Solution. We know that, if z a ib   is a complex number, then

   1 1
and

2 2
z z z z

i
   are both real.

Similarly, for Hermitian matrix A,    1 1
A A and A A

2 2i
   are real matrices.

Now,  1
A 2A

2
 =    1 1

A A A A
2 2

  

      1 1
A A . A A B C

2 2
i i

i
     

where    1 1
B A A , C A A

2 2i
   

Now, to show that B is symmetric and C is skew-symmetric.

We have,    1 1
B' A A A + A '

2 2

     
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   1 1
A' A ' A' + A

2 2
      1

A ' A
2

    A A  

     1 1
A ' ' A A A B

2 2
       

Thus, B is symmetric.

And      1 1 1
C' A A A A ' A ' A '

2 2 2i i i

            

   1
A' A A ' A

2 2i i
        A A  

   1 1
A A A A C

2 2i i
      

 C is skew symmetric.

1.7 HOMOGENEOUS AND NON-
HOMOGENEOUS LINEAR EQUATION

A system of m linear equations in n variables is given by,

a
11

x
1
 + a

12
x

2
 + ... + a

1n
x

n
= b

1

a
21

x
1
 + a

22
x

2
 + ... + a

2n
x

n
= b

2

... ...

a
m1

x
1
 + a

m2
x

2
 + ... + a

mn
x

n
= b

m
.

Or AX = B in matrix form where

A = 
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

m m mn

a a a
a a a

a a a

, X = 
1

2

n

x
x

x
 , B = 

1

2

m

b
b

b
 .

The system is called homogeneous if b
1
 = b

2
 = ... = b

m
 = 0. Therefore the

system is called non-homogeneous if it is not homogeneous. i.e. at least one of
b

1
, b

2
, ..., b

m
 is non-zero.

A system of non-homogeneous linear equations is said to be consistent if
the system has at least one solution. i.e., there exists a set of values of x

1
, x

2
, ..., x

n

which satisfies all the equations of the system. A system of non-homogeneous
linear equations is called inconsistent if the system has no solution.

For example, the system

2x + 3y – 2z = 5
x – y + 4z = 0

is a consistent system of non-homogeneous linear equations but the system

x – y + 2z = 2
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2y – z = 1

x + y + z = 4

is inconsistent as the system has no solution. Note that the former system has a
solution (1, 1, 0). Indeed, the system has infinitely many solutions.

The following observations are immediate.

Observation 1: Every homogeneous system of linear equations is consistent.

Observation 2: A system of linear non-homogeneous equations has either no
solution or one solution or infinitely many solutions. Indeed, if such a system has
two solutions, then it can be proved easily that it has infinitely many solutions.

Observation 3: The set of solutions of a system of homogeneous linear equations
is a vector sapce over , called the solution space of the system.

We state here three very important results without proof.

Theorem 1.10: A system of non-homogeneous linear equations AX = B is
consistent if and only if rank (A) = rank ([A, B]) where [A, B], called the augmented
matrix, stands for the matrix formed of the columns of A and B; the matrix A is
called the coefficient matrix.
Theorem 1.11: If AX = 0 represent a system of homogeneous linear equations,
then rank (A) + dim (S) = n

where S denotes the solution space of the system.
Theorem 1.12: (a) A system of homogeneous linear equations AX = 0 containing
n equations in n unknowns has a non-zero solution if and only if rank (A) < n.

(b) A system of non-homogeneous linear equations AX = B containing n
equations in n unknowns has a unique solution if and only if det A  0.
Example 1.30: Discuss the consistency of the following systems of equations

(i)   x – y = 1 (ii)   x – y = 1

2x + y = 5 2x – 2y = 2

(iii)   x – y = 1

 – 3x + 3y = 3.

Solution: (i) Writing the system in the matrix form AX = B we get

A = 1 1
2 1

 and A  = [A, B] = 1 1 1
2 1 5

.

Clearly, rank (A) = rank(A) = 2.

Hence the system is consistent.

[Note that det A  0 implies the solution is unique].

(ii) Here

A = 1 1
2 2

and  A = [A, B] = 1 1 1
2 2 2

.

Clearly, rank(A) = rank ( A) = 1.

Hence the system is consistent.
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[Note that det A = 0 here implies that there are infinitely many solutions].

(iii) Here

A = 1 1
3 3

, A = [A, B] = 1 1 1
3 3 3

Clearly rank (A) = 1 but rank (A) = 2.

Hence the system is inconsistent.
Example 1.31: Determine the number of independent solutions in the following
systems.

(i) x – y – z = 0 (ii)   x – 2y +  z = 0

2x +  z = 0 3x – 6y + 3z = 0

x + y + 2z = 0 – 2x + 4y – 2z = 0.

Solution: (i) The given system consists of 3 equations in 3 unknowns. Writing the
system in the matrix from AX = 0 we get

A = 
1 1 1
2 0 1
1 1 2

and rank (A) = 2

Let S denote the solution space.

Hence dim (S) = 1, as rank (A) + dim (S) = 3.

This implies that the basis of S contains only one independent vector as
solution.

(ii) The given system consists of 3 equations in 3 unknowns. Writing the
system as AX = 0 we get

A = 
1 2 1
3 6 3
2 4 2

and rank (A) = 1.

Hence dim (S) = 2. This implies that the basis of S contains two independent
solutions.

Example 1.32: Solve, if possible.

(i) x + 4y = 2 (ii) x + 4y = 2

2x + 7y = 5 2x + 7y = 5

4x + 9y = 10 4x + 9y = 15

Solution: (i) The coefficient matrix A of the given system is

A = 
1 4
2 7
4 9

 and the augmented matrix A  = 
1 4 2
2 7 5
4 9 10

Let us apply the elementary row operation on A, we get

2 2 1 2 2 1 1 2

3 3 1 3 3 2

2 4
4 7

1 4 2 1 4 2 1 0 6
0 1 1 0 1 1 0 1 1
0 7 2 0 7 2 0 0 5

R R R R R R R R
R R R R R R

A

Therefore rank of A  = 3 and rank of A = 2
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So the system is inconsistent.

(ii) Here A = 
1 4
2 7
4 9

and A  = 
1 4 2
2 7 5
4 9 15

Let us apply the elementary row operation on A, we get

2 2 1 2 2

3 3 1

1 1 2

3 3 2

2
4

4
7

1 4 2
0 1 1
0 7 7

1 4 2 1 0 6
0 1 1 0 1 1
0 7 7 0 0 0

R R R R R
R R R

R R R
R R R

A

The equivalent system has two non-zero rows: Hence the rank of A  is 2
and rank of A = 2. So the system is consistent. The system is equivalent to

x = 6, y = – 1

The system has unique solution.
Example 1.33: Solve the system of equations,

x + 2y + z – 3w = 1

2x + 4y + 3z + w = 3

3x + 6y + 4z – 2w = 4

Solution: Here the co-efficient matrix is A = 
1 2 1 3
2 4 3 1
3 6 4 2

 and the augmented

matrix is A  = 
1 2 1 3 1
2 4 3 1 3
3 6 4 2 4

 
 
  

Let us apply the elementary row operations on A, then we get

2 2 1 1 1 2

3 3 1 3 3 2

2
3

1 2 1 3 1 1 2 0 10 0
0 0 1 7 1 0 0 1 7 1
0 0 1 7 1 0 0 0 0 0

R R R R R R
R R R R R R

A

This equivalent system has two-non-zero rows. Hence rank of A  = 2 and

rank of A = 2
1 1

3 2 1 0
2 3

     
 
 . So the system is consistent. The given

system is equivalent to

x + 2y – 10w = 0

z + 7w = 1

Now we take w = a, y = b where a, b are arbitrary real numbers, then
x = 10a – 2b, y = b, z = 1 – 7a, w = a is the solution of the given system. Since
a, b are arbitrary, the given system has infinitely many solutions.

Example 1.34: For what values of a the system of equations is consistent? Solve
completely in each consistent case.
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x – y + z = 1

x + 2y + 4z = a

x + 4y + 6z = a2

Solution: Here the co-efficient matrix is A = 
1 1 1
1 2 4
1 4 6

 and the augmented matrix

is A  = 
2

1 1 1 1
1 2 4

1 4 6

a

a

.

Nowdet A = 
1 1 1
1 2 4
1 4 6

 = 1(12 – 16) – (– 1) (6 – 4) + 1(4 – 2)

= – 4 + 2 + 2 = 0

Hence rank of A is less than 3.

Now 1 1
1 2

= 2 + 1  0

Hence rank of A = 2

Let us apply the elementary row operation of A, then we get

2 2 1 2 2

3 3 1

1/3

2
2

1 1 1 1
1 1 1 1

1
0 3 3 1 0 1 1

3
0 5 5 1

0 5 5 1

R R R R R
R R R

a
A a

a
a

   
  

        
         

1 1 2

3 3 25
2

1 0 2 ( 2)/3
0 1 1 ( 1)/3

0 0 0 ( 1) 5( 1)/3

  
  

 
  
     

R R R
R R R

a
a

a a

If 2 5( 1)
1

3

a
a  = 0, then rank of A  = 2 = rank of A and therefore system

is consistent.

Now 2 5
1 ( 1)

3
a a  = 0 gives 3a2 – 3 – 5a + 5 = 0 or 3a2 – 5a + 2 = 0

or 3a2 – 3a – 2a + 2 = 0 or 3a(a – 1) – 2(a – 1) = 0 or (a – 1)
(3a – 2) = 0

 a = 1, 2

3

 For a = 1, 2

3
, the system is consistent.

If a = 1, then the equivalent system become

x + 2z = 1

y + z = 0

Let z = c be any arbitrary real number, then x = 1 – 2c, y = – c, z = c i.e.
(1 – 2c, – c, c) is the solution of the given system and since c is arbitrary, the
system has infinitely many solutions for a = 1.



Vector and Matrix Algebra

NOTES

Self - Learning
Material 73

If a = 2

3
, then equivalent system become

x + 2z = 8

9

y + z = 1

9

Let z = c be any arbitrary real number, then x = 8

9
 – 2c, y = 1

9
 – c, z = c

i.e. 8 1
2 , ,

9 9
    
 

c c c  is the solution of the given system and since c is arbitrary,,

the system has infinitely many solutions for a = 2

3
.

Example 1.35: Determine the conditions for which the system

x + y + z = 1

x + 2y – z = b

5x + 7y + az = b2

admits of (i) only one solution (ii) no solution (iii) many solutions.

Solution: Here the coefficient matrix is A = 
1 1 1
1 2 1
5 7 a

 and the augmented matrix

is A  = 
2

1 1 1 1
1 2 1

5 7

b

a b

 det A = 
1 1 1
1 2 1
5 7 a

 = 1(2a + 7) – 1 (a + 5) + 1.(7 – 10)

= 2a + 7 – a – 5 – 3 = a – 1
If det A  0 i.e., if a – 1  0, i.e., if a  1, then the system has only one

solution.

When a = 1, then A = 
1 1 1
1 2 1
5 7 1

 and A  = 
2

1 1 1 1
1 2 1

5 7 1

b

b

Let us apply the elementary row operation on A, we get

2 2 1 1 1 2

3 3 1 3 3 25 2
2 2

1 1 1 1 1 0 3 2
0 1 2 1 0 1 2 1

0 2 4 5 0 0 0 5 2 2

R R R R R R
R R R R R R

b
A b b

b b b

If b2 – 2b – 3 = 0, then rank of A = rank of A = 2 and therefore the system
is consistent.

If b2 – 2b – 3  0, then rank of A = 3, rank of A = 2 and therefore the
system is inconsistent.

(i) If a  1, the the system has only one solution.

(ii) If a = 1, b  – 1, 3(b2 – 2b – 3 = 0  b2 – 3b + b – 3 = 0  b(b – 3) +
1(b – 3) = 0  (b – 3) (b + 1) = 0) the system has no solution.

(iii) If a = 1, b = – 1, or a = 1, b = 3 the system has many solutions.
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Example 1.36: Determine the value of a and b so that the following system of
equation may have (i) unique solution (ii) many solutions (iii) no solution.

2x + 3y + 4z = 9

x – 2y + az = 5

3x + 4y + 7z = b

Solution: Here the co-efficient matrix is A = 
2 3 4
1 2
3 4 7

a  and the augmented

matrix is A  = 
2 3 4 9
1 2 5
3 4 7

a
b

 det A = 
2 3 4
1 2
3 4 7

a  = 2(– 14 – 4a) – 3 (7 – 3a) + 4(4 + 6)

= – 28 – 8a – 21 + 9a + 40 = a – 9

If det A  0, i.e. if a – 9  0, i.e., if a  9, then system has only one solution.

When a = 9, then A = 
2 3 4
1 2 9
3 4 7

 and A  = 
2 3 4 9
1 2 9 5
3 4 7 b

Let us apply elementary row operation on A , we get

12 2 2 1

3 3 1

2 2

2
3

1

7

1 2 9 5
2 3 4 9
3 4 7

1 2 9 5
1 2 9 5 1
0 7 14 1 0 1 2

70 10 20 15 0 10 20 15

R R R R
R R R

R R

A
b

b b

1 1 2

3 3 2

2
10

33
1 0 13

7
1

0 1 2
7

10
0 0 0 15

7

R R R
R R R

b

If 10
15

7
b  = 0 or if  b = 95

7
, then rank of A  = rank of A = 2 and

therefore the system is consistent.

If 10
15

7
b   0 i.e. if b  95

7
, then rank of  A  = 3, the rank of A = 2 and

therefore the system is inconsistent.

Hence (i) if a  9, then system has only one solution.

(ii) If a = 9, b = 95

7
, then the system has many solutions.

(iii) if a = 9, b  95

7
, then the system has no solution.



Vector and Matrix Algebra

NOTES

Self - Learning
Material 75

Example 1.37: Solve by matrix method the system of equations

x + y – z = 6

2x – 3y + z = 1

2x – 4y + 2z = 1

Solution: The above system of equations can be written in the form

AX = B

where A = 
1 1 1

2 3 1

2 4 2

 
  
  

, X = 
x

y

z

 
 
 
 
 

, B = 
6

1

1

 
 
 
 
 

 det A = 
1 1 1

2 3 1

2 4 2

 = 1(–6 + 4) – 1(4 – 2) + (–1) (–8 + 6)

= –2 –2 + 2 = –2  0

Since det A  0, then A–1 exist. Hence the unique Solution is given by
X = A–1 B.

 adj A = 

3 1 2 1 2 3

4 2 2 2 2 4

1 1 1 1 1 1

4 2 2 2 2 4

1 1 1 1 1 1

3 1 2 1 2 3

t
   
     

     
  

 
       

= 
2 2 2

2 4 6

2 3 5

t   
  
    

 =  
2 2 2

2 4 3

2 6 5

  
   
   

 A–1 = adj

det

A

A
= 

2 2 2
1

2 4 3
2

2 6 5

  
    
   

 = 

1 1 1

3
1 2

2
5

1 3
2

 
 
 
 
 
 
  
 

 X = A–1 B = 

1 1 1 6
6

3 11
1 2 1

2 2
15 11

1 3
2 2

   
   

    
              

      
   

 The required solution is x = 6, y = 11

2
, z = 11

2
.
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1.8 EIGENVALUES, EIGENVECTORS AND
DIAGONALIZATION OF MATRICES

Similarity transformation. If A, B are two non-singular matrices and  two
non-singular matrices P and Q s.t. B = QAP with Q = P–1

so that B = P–1 AP ...(1.21)
then this transformation of matrix A into matrix B is termed as similarity
transformation and matrices A and B are known as similar matrices. Now,
(1.21)  PBP–1 = PP–1APP–1  IAI = A which is also a similarity
transformation B into A.

A matrix equation AX = B preserves its structure (form) under similarity
transformation, since

P–1 (AX)P = P–1BP  P–1APP–1XP = P–1BP as PP–1 = I
 (P–1AP) (P–1 XP) = (P–1BP)
 CY = D (say) by Equation (1.23)  The form AX = B.

Unitary transformation. If A be a unitary transformation of order n × n and
X, x are column vectors of order n × 1, then the linear transformation

X = Ax ... (1.22)

is known as unitary transformation. Since

AA = AA = I, therefore

XX = (AX) (Ax) = xAAx = xx

 the norm of vectors is invariant under similarity transformation.

In (1.21), if P be unitary, i.e., PP = PP = I = PP–1 = P–1P.

or P–1 = P, then the transformation B = P–1AP is also unitary.

Orthogonal transformation. Any transformation x = AX that transforms x2

into X2 is said to be an orthogonal transformation and the matrix A is known
as orthogonal matrix.

If A =
11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 





and its transpose A =
11 21 1

12 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 





then AA= I which is the necesary and sufficient condition for a square matrix
X to be orthogonal

since if xr = ar1 X1 + ar2X2 + .... + arn Xn,

then 2 2 2
1 1 2 2

1 1 1

( ... )
n n n

r r r r rn n
r r r

a a a
  

     X x X X X  gives
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and
2 2 2
1 2

1 2 2

... 1

... 0
i i ni

i ij i j ni nj

a a a

a a a a a a

    


    

for i = 1, 2...n, j = 1, 2...n and i  j.

Now AA = I gives |A| |A| = 1.

where |A| = |A| as interchange of rows and columns does not alter the value of
the determinant.

 |A|2 = 1, i.e., |A| = ± 1

Evidently the product of two orthogonal transformations is an orthogonal
transformation. For if x = AX and X = BY be two orthogonal transformations
then AA = I, BB = I.

 [AB] [AB] = ABBA by the law of reversal transpose

= AIA

= AA = I.

In (1.21) if P is orthogonal, then P–1 = P and (1.21) is an orthogonal
transformation.

Orthogonal Set. A set of vectors is said to be an orthogonal set of vectors
if

(i) each vector of the set is a normal vector

(ii) any two vectors of the set are orthogonal

While a complex n-vector X is said to be orthogonal to another complex n-
vector Y if (X, Y) = O i.e., if X Y = O.

The relation of orthogonality in the set of all complex n-vectors is symmetric.
The positive square root of XX is known as the length of X.

In other words, using the Kronecker delta symbol ij = 0 for i  j.

= 1 for i = j.

a set S of complex n-vectors X1, X2,......Xk is termed as an orthogonal set
if (Xi, Xj) = ij, i = 1, 2,....k, j = 1, 2,....k.

Theorem 1.13: Every orthonormal set of vectors is linearly independent.

Proof: Suppose that the vectors X1, X2,....Xk form an orthonormal set of
vectors.

Thus (i) Xi is a normal vector for every i, i.e., Xi
Xj = I

(ii) Xi, Xj are orthogonal vectors for every i, j such that i  j

i.e., Xi
Xj = O for every i and j, i  j ...(1.23)

Consider a relation a1X1 + a2X2 + ... + akXk = O

where a1, a2,........ak are scalars.

Premultiplying Equation (1.23) by X1
 and applying the above condition (i)

and (ii), we find

a1I = O or a1 = O as I  O.
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Similarly premultiplying (3) by X2
, X3

,........ successively, we may get a2 =
0, a3 = 0........, ak = 0.

As such all the scalars a2, a2, ak being zero, the relation (3) follows that
X1, X2,.........Xk form an orthonormal set of linearly independent vectors.

Theorem 1.14: Show that a real matrix is unitary if and only if it is orthogonal.

Proof: If A is a real matrix, then A = A
 A is unitary if AA = I or AA = I, i.e., A is orthogonal.

Conversely, if A is orthogonal then AA = I

i.e., AA = I, i.e., A is unitary.

Diagonalization of Matrices

Diagonalization of matrices. Let 1, 2, 3 ... n be n distinct eigen values of
a matrix A and X1, X2, X3 ... Xn be the n corresponding eigen vectors. Also let
Xt be the column vector given by

Xi =
1

2

i

i

ni

 
 
 
  

X

X

X

...(1.24)

Consider a matrix E whose column vectors are the n eigen vectors such that

E =
11 12 1

21 22 2

1 1

.......

.......

........

n

n

n n nn

 
 
 
 
 

X X X

X X X

X X X

 = [Xij] (say) ...(1.25)

Suppose that D is a diagonal matrix such that

D =
1

2

0........0

0 ........0

0 0........ n

 
 

 
  

 = diag [1, 2...n] ...(1.26)

The ED =

1 11 2 12 1

1 21 2 22 2

1 1 2 2

........

........

........

n n

n n

n n n nn

   
    
 
 
    

X X X

X X X

X X X

  
 = [j Xij] ...(1.27)

(no summation over j)

= (AX1, AX2, ... AXn) (expressing matrix as vectors)

= A (X1, X2, ... Xn)

= AE ...(1.28)

If E be a non-singular matrix, then premultiplying by E–1, we get

E–1AE = D.

Thus premultiplying A by E–1 and post-multiplying by E, we get diagonal
matrix whose diagonal elements are the eigen values. This process is called the
diagonalization of the matrix A.
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Power of a Matrix. An integral power m of a matrix A is defined as

Am = AAA ...... m times ...(1.29)

If A is non-singular then A–1 exists s.t.

AA–1 = I = A–1A

As such a negative integral power, say, m = – n is defined as

A–n = Am = (A–1)n = A–1A–1 ..... m times

and for m = 0, A0 = I.

If E be a diagonalizing matrix for A so that

E–1AE = D and A = EDE–1, ...(1.30)

where D is a diagonal matrix whose diagonal elements are the eigen values of A,
then we can write in functional form as

f (A) = E f (D) E–1 ...(1.31)

Now, (1.24)  Am = (EDE–1) (EDE–1) ... m times

= EDm E–1 and so Dm = E–1 Am E ...(1.32)

For m = – n, An = A–m = E(D–1)m E–1 ...(1.33)

A few properties of trace in relation to eigen values of a matrix:

(i) tr AB = tr BA, (ii) tr ABCD = tr BCDA = tr CDAB,

(iii) tr (A + B) = tr A + tr B, (iv) tr (AB – BA) = tr [A, B] = 0.

For Example,

If A = 
4 2

3 3

2 5

3 3

 
 
 
 
  

, then characteristic equation

– A I = 0  

4 2
–

3 3

2 5
–

3 3




 = 0

 2 – 3 + 2 = 0

 ( – 1) ( – 2) = 0

  = 1, 2 as eigen values

 Diagonal matrixD = 1 0

0 2

 
 
 

By usual method, eigen vectors of A are

 2, –1  and  1, 2 .

 E =
2 1

–1 2

 
 
  

, so that E–1 AE = D = 1 0

0 2

 
 
 

 with |A|  0

For m = 50 (say)
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(1.32)  A50 = ED50E–1 = 
2 1

–1 2

 
 
  

 50

2 1
–1 0 3 3

0 2 1 2

3 3

 
  
  
  
  

=
 

 

50 50

50 51

2 2 2 –1 21

3 2 –1 2 2 1

 
 
   

Matrix as exponent power. Analogous to

ex =
0

,
m

m

x

m




  we have eA = 

2

0 2

m

m m





     A A
I A ...(1.34)

For diagonal matrix D with elements Dij = ij ij, we have

eD =
m

m d m




 D ...(1.35)

with (i, j)th element s.t.

[eD]ij =
m

ij

m d m





 
 
D

 =  
1

m
i ij

m m





 


As such

D =
1

2

0 0

0 0

0 0 n

 
 

 
  





  eD = 

1

2

0 0

0 0

0 0 n

e

e

e







 
 
 
 
  





...(1.36)

In view of Equation (1.32), i.e., Dm = E–1 Am E, (1.28) yields

E–1 eA E = E–1IE + E–1AE + E–1 A2E + 

= I + D + D2 + ... = eD ...(1.37)

so that EeDE–1 = eA ...(1.38)

As such, on using ax = ex loge a, we have

aA = eA loge a = E eE(Dloge a)E–1 ...(1.39)

with eD loge a = aD = 

1

2

0 0

0 0

0 0 n

a

a

a







 
 
 
 
  





A Method of Diagonalization in Practice: Writing the characteristic equation
for a given matrix, the characteristic roots can be determined. If A be an n-
square matrix and its characteristic roots are 1, 2, ... n, then the diagonal
matrix is

A =

1

2

3

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 0 n

 
  
 
 

  
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i.e., if A =
cos – sin 0

sin cos 0

0 0 1

  
   
  

then – A I =
cos – – sin 0

sin cos – 0

0 0 1–

   
    
  

 = 0

i.e., (1 – ) (1 – 2 cos  + 2) = 0

Characteristic roots are 1, 
22 cos 4cos – 4

2

 

i.e., 1, cos  ± i sin 
i.e., 1, e±i

 1 = ei, 2 = e–i, 3 = 1 (say)

Hence the diagonal matrix is –

0 0

0 0

0 0 1

i

i

e

e





 
 
 
 
  

Note. Besides this method we can diagonalize a square matrix

(i) by orthogonally similar matrices

(ii) by unitarily similar matrices

but the above method is rather convenient in practice.

Check Your Progress

9. When complex number is said to be Hermition?

10. What is real matrix?

11. When square matrix is called symmetric?

12. Define the skew symmetric.

13. When system is called homogeneous?

14. Define the unitary transform.

1.9 DETERMINANTS

Determinant of a Square Matrix
The notion of determinant is fundamental in algebra and has tremendous
applications in many spheres of mathematical activities. We begin with its
definition.

Definition: The determinant of a square matrix with real entries, denoted as
det A or |A|, is defined to be a real number obtained as follows:

If A = [a
11

], det A = a
11

.

If A = 11 12

21 22

a a

a a

 
 
 

, det A = a
11

a
22

 – a
12

a
21

.
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If A = 
11 12 13

11 22 33 11 23 32 12 21 33
21 22 23

12 31 23 13 21 32 13 31 22
31 32 33

det
,

a a a
A a a a a a a a a a

a a a
a a a a a a a a a

a a a

and so on.

Thus determinant of a matrix can be taken as a function from the set of
square matrices to the set of real numbers. Sometimes, the determinant of
A = [a

ij
] will also be denoted by |a

ij
| i.e.

det A = 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a a a

a a a

a a a

Note that a determinant can also be defined without reference to a matrix.
Minors and Cofactors: The minor of an element in a determinant is the
determinant obtained by deleting the row and the column which intersect in that
element. Let us consider the determinant of a matrix A as follows:

det A = 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

The minor of a
11

 which lies in first row and first column is given by

M
11

= 22 23

32 33

a a

a a
.

SimilarlyM
12

= 21 23

31 33

a a

a a
, M

22
 = 11 13

31 33

a a

a a
 and M

33
 = 11 12

21 22

a a

a a

are the minors of the elements a
12

, a
22

, a
33

 respectively.

The minor of an element a
ij
 is generally denoted by the capital letter M

ij
.

The cofactor of a
ij 
in det A is defined to be (– 1)i + j × (minor of a

ij
)

i.e., A
ij

= (– 1)i + j M
ij

The cofactor of a
ij
 is generally denoted by A

ij
. The cofactor of a

11
 is given

by

A
11

= 22 231 1

32 33
( 1)

a a

a a
 .

SimilarlyA
12

= 21 231 2

31 33
( 1)

a a

a a


Let us consider the determinant of a matrix A = (a
ij
)

n, n

det A =

11 12 1

21 22 2

1 2

...

...

...

n

n

n n nn

a a a

a a a

a a a

 

The value of det A can be obtained in terms of the elements of the ith row as
det A = a

i1
A

i1
 + a

i2
A

i2
 + ... + A

in
a

in
.
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For the values of i = 1, 2, 3 ... n, there are n different expansions for det A
given by

det A = a
11

A
11

 + a
12

A
12

 + ... + a
1n

A
1n

(for first row)

= a
21

A
21

 + a
22

A
22

 + ... + a
2n

A
2n

(for 2nd row)

...................................................

...................................................

= a
n1

A
n1

 + a
n2

A
n2

 + ... + a
nn

A
nn

(for nth row)

proceeding with similar arguments in respect of columns of A and considering in
particular, the elements of the jth column, the expansion of det A can be obtained
as

det A = a
1j
A

1j
 + a

2j
A

2j
 + ... + a

nj
A

nj
(i = 1, 2, ... n)

If one row and one column be deleted from n × n matrix (a
ij
), the determinant

of the remaining (n – 1) × (n – 1) matrix is called a minor of order (n – 1) of A.

For example, if  = 
a h g

h b f

g f c

, then

Expanding in terms of the first row, we get

 =
b f h f h b

a h g
f c g c g f

 

= a(bc – f 2) – h(hc – gf ) + g (hf – gb)

= abc – af 2 – h2c + hgf + hgf + g2b

Similarly expanding in terms of the 2nd row, we can write

 =   
h g a g a h

h b f
f c g c g f

= – h (hc – gf ) + b(ac – g2) – f (af – hg)

= – h2c + hgf + abc – bg2 – af 2 + fgh

= abc + 2hgf – af2 – bg2 – ch2

Expanding in terms of the first column we can similarly get

 =
b f h g h g

a h g
f c f c b f

 

= a (bc – f 2) – h (hc – gf ) + g (bf – bg)

= abc – af 2 – ch2 + hfg + hfg – bg2

= abc + 2hfg – af 2 – bg2 – ch2.

The Hückel method or Hückel molecular orbital theory, proposed by Erich
Hückel in 1930, is a very simple linear combination of atomic orbitals molecular
orbitals method for the determination of energies of molecular orbitals of -electrons
in -delocalized molecules, such as ethylene, benzene, butadiene, and pyridine.

Within linear algebra, the secular equations in Equation (i) will also have a
non-trivial solution, if and only if, the secular determinant is zero
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……(i)

Or in shorthand notation

Everything in Equation (i) is a known number except E. Since the secular
determinant for ethylene is a 2×2 matrix, finding E , requires solving a quadratic
equation (after expanding the determinant)

There will be two values of E which satisfy this equation and they are the
molecular orbital energies. For ethylene, one will be the bonding energy and the
other the antibonding energy for the  -orbitals formed by the combination of the
two carbon 2pz orbitals (Equation (i)). However, if more than two | atomic
orbitals were used, e.g., in a bigger molecule, then more energies would be
estimated by solving the secular determinant.

Solving the secular determinant is simplified within Hückel method via the
following four assumptions:

 All overlap integrals S
ij
 are set equal to zero. This is quite reasonable

since the –orbitals are directed perpendicular to the direction of their
bonds. This assumption is often call Neglect of Differential Overlap (NDO).

 All resonance integrals H
ij  

between non-neighbouring atoms are set
equal to zero.

 All resonance integrals H
ij
 between neighbouring atoms are equal and

set to .

 All coulomb integrals  H
ii 
 are set equal to .

These assumptions are mathematically expressed as

H
11 

= H
22 

= 

H
12 

= H
21 

= 

First assumptions means that the overlap integral between the two atomic
orbitals is 0

S
11 

= S
22 

= 1

S
12 

= S
21 

= 0

1.10 INTRODUCTION TO TENSOR

In this section we will discuss about the tensor.

Cartesian Tensor

In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to
represent a tensor in a Euclidean space in the form of components. Converting a
tensor’s components from one such basis to another is through an orthogonal
transformation.

The most familiar coordinate systems are the two-dimensional and three-
dimensional Cartesian coordinate systems. Cartesian tensors may be used with
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any Euclidean space, or more technically, any finite-dimensional vector space over
the field of real numbers that has an inner product.

Use of Cartesian tensors occurs in physics and engineering, such as with the
Cauchy stress tensor and the moment of inertia tensor in rigid body dynamics.
Sometimes general curvilinear coordinates are convenient, as in high-deformation
continuum mechanics, or even necessary, as in general relativity. While orthonormal
bases may be found for some such coordinate systems (for example, tangent to
spherical coordinates), Cartesian tensors may provide considerable simplification
for applications in which rotations of rectilinear coordinate axes suffice. The
transformation is a passive transformation, since the coordinates are changed and
not the physical system.

Tensor analysis is the generalization of vector analysis as is evident by
considering a vector function f (r) of a vector r. This function is continuous at
r = r0 if,

0

Lim
r r

 f (r) = f (r0)

and it is linear, if
f (r + s) = f (r) + f (s) ... (1.40)

and f (r) = f (r) ... (1.41)

for arbitrary values of r, s, .

Now, we know that a linear vector function f (r) is completely defined only if
f (a1), f (a2) and f (a3) are given for any three non-coplanar vectors a1, a2, a3.
In terms of a1, a2, a3 as basis if we assume that

r = x1 a1 + x2 a2 + x3 a3 ... (1.42)

then we have from Equations (1.40) and (1.41),

f (r) = x1 f (a1) + x2 f (a2) + x3 f (a3)

As such Equation (1.42) yields

x = r . a,  = 1, 2, 3

Let us put f (a) = b.

So that f (r) = (b1a1 + b2a2 + b3a3) . r

= . r (say)

where the operator  = a1b1 + a2b2 + a3b3 consists of nine components in three
dimensional coordinate geometry and hence it is neither a scalar nor a vector
quantity but is a new mathematical symbol called as the dyadic.

Suppose that there are two vectors u and v such that components of vector
v are linear functions of the components of vector u defined as

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

v a u a u a u

v a u a u a u

v a u a u a u

  
   
   

... (1.43)

In this way the vector v is placed in one-to-one correspondence with the
vector u. The scheme of coefficients a has thus an independent meaning if the
correspondence is such that the passage from u to v is independent of the
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particular coordinate system in which the vectors are resolved into components.
We call the  coefficients a in this case as the coefficients of a tensor.

It is observed that the nine components as mentioned above characterise the
transformation of the components of one vector into those of other. The
coeffcients a in general transform u into one of three parts of v.

The Equations (1.39) are equivalent to a single vector equation,

v = u

where the operator  turns u into v. It is rather graphically known as Tensor.

The essential part of a tensor operation is the array of coefficients like a,
written in the form of a matrix, such as

 =
xx xy xz

yx yy yz

zx zy zz

a a a

a a a

a a a

 
 
 
  

As such the dyadic operator turns a vector r into the vector function f (r) and
is expressed as the sum of dyads ab, i.e.,

 =  

a b

In a similar way a triadic is expressed as the sum of the triads .  

a b c

Considering it as an opearor that converts vector r into the dyadic , we may
write

 . r =   .   a b c r

Similarly a tetradic is the sum of tetrads,    a b c d  and etc.

All such physical quantities as scalars, vectors, dyadics, triadics, tetradics etc.
are collectively known as tensors of rank 1, 2, 3, 4 etc. and as such the tensors
can be regarded as generalized extended form of vectors.

The examples of dyadic, i.e., tensor of rank two are: an operator relating
dielectric displacement vector with the electric vector of an electro-magnetic
wave in an isotropic medium; a stress tensor relating stress and strain in an
isotropic medium in  which case a component of stress T is a function of every
component of strain S.

i.e., T =
3

orS 


  a T S

where  is a nine coefficient operator in three dimensional space.

Note. The dyadic or tensor of rank two is also known as Stress Tensor.

An Explanatory Note on Dyads and Dyadics

We know that the gradient of a vector f such as

f = i fx + j fy + k fz ... (1.44)

is meaningless as it consists of sum of three ordered pairs of vectors, but we
sometimes take it to define as dyadic and the ordered vector pairs as dyads. In
Equation (1.44) we regard f as an operator setting up a one-one
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correspondence between directions e at a point and its directional derivative
d

ds

f
, i.e., 

d

ds

f
 = e .f

Actually the dyadic f replaces an infinite number of vectors 
d

ds

f
, so that any

sum of dyads is called as dyadic, for example, the dyadic

D = a1b1 + a2b2 + ..... + anbn

is a general dyadic in which the vectors a are known as antecedents and b as
consequents, while the dyadic

Dc = b1a1 + b2a2 + ............. bnan

is said to be the conjugate of D, such that D is symmetric if D = Dc and skew
if D = –Dc.

In Equation (1.44) if f is replaced by r = xi + yj + zk

such that

rx = i, ry = j, rz = k then

r = ii + jj + kk = I

where the dyadic I is termed as Idemfactor as it transforms any vector V into
itself, i.e.

V . I = I . V = V for every V

Transformation of Coordinates

If we focus our attention on some point of  Minkowski’s four dimensional world
and consider the transformation from one system of coordinates (x1, x2, x3, x4)
to another system (x1, x2, x3, x4), such that

x1 = f1 (x1, x2, x3, x4) etc.

then we can solve x1, x2, x3, x4 in terms of x1, x2, x3, x4 such that

x1 = 1 (x1, x2, x3, x4) etc.

and the differentials dx1, dx2, dx3, dx4 are then transformed as

dx1 = 1x

x




 dx1 + 1x

x




 dx2 + 1 1
3

3

x x
d x

x x

  


 
 dx4 etc.

 or symbolically

dx =
4 x

x


 



  dx; ( = 1, 2, 3, 4) etc.

The Summation Convention and Kronecker Delta Symbol

Let (x1, x2, x3, x4) and (x1 + dx1, x2 + dx2, x3 + dx3, x4 + dx4) be the
coordinates of two neighbouring events considered in Minkowski’s four
dimensional space. Then the interval ds between these two neighbouring events
in any coordinate system, is given by

ds2 = g11 dx1
2 + g22dx2

2 + g33dx3
2 + g44dx4

2 + 2g12dx1dx2
+ 2g13dx1dx3 + 2g14dx1dx4+ 2g23dx2dx3 + 2g24dx2dx4 + 2g34dx3dx4

... (1.45)
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where the coefficients g (, = 1, 2, 3, 4) are functions of x1, x2, x3, x4. This
follows that ds2 is some quadratic function of the difference of coordinates.

Adopting the convention that whenever a literal suffix appears twice in a
term that term is to be summed for values of the suffix 1, 2, 3, 4; Equation (1.45)
can be written as

ds2 = g dx dx (,  = 1, 2, 3, 4 and g = g) ... (1.46)

Since  and  each appear twice, the right hand side of Equation (1.46)
indicates the summation

4 4

1 1   
 

Any literal suffix appearing twice in a term is said to be a dummy suffix and
it may be changed freely to any other letter not already used in that term. Also
two or more dummy suffixes can be interchanged, for example,

2 xx
g

x x x



  


    

= .
x x

g
x x x

 
 


  

 
    

(by intercharging the dummy suffixes  and  and using g = g)

Illustration. To prove that

.
x x

x x
 

 

 
 

= 0 if
x

x





   



= 1 if  =  where  = 1, 2, 3, 4.

Here, R.H.S. =
1

x

x

  1x

x




 + 
2

x

x



 2x

x




 + 3

3

x x

x x




 
 

 + 
4

x

x



 4x

x




=
x

x








x and x being the coordinates of the same system, their variations are
independent and so

dx = 0 when   

and dx = dx when  = 


x

x







=
x

x







  
x

x







 = 0 when   

= 1 when  = 

Here the multiplier 
x

x





  

x

x







 acts as a substitution operator.

It is rather convenient to write

x

x







=  or 



  which is known as Kronecker delta.

As such the above results can be expressed as

= 0 if

1 if


   


   

... (1.47)
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Thus if A() be an expression involving the suffix , then

x x

x x
 

 

 
 

= A() = A() ... (1.48)

for; the summation on the left, with respect to  gives four terms corresponding
to  = 1, 2, 3, 4; one of which will agree with . Denoting the other three values
by , , , the left hand side of Equation (1.48) is

=1 . A () + 0 . A () + 0 . A () + 0 . A () by Equation (1.47)

=A ()

i.e.


  A ()=A () ... (1.49)

Evidently 

  

 = 



and 

 =4

for, in the latter case, 
 =    

         

= 1 + 1 + 1 + 1 = 4 by Equation (1.47)

1.10.1 Tensors as Classification of Transformation Laws

We have already mentioned that if we consider the transformation from one
system of coordinates (x1, x2, x3, x4) to another system (x1, x2, x3, x4), then
the differentials dx1, dx2, dx3, dx4 are transformed as

1dx = 1

1

x

x




 dx1 + 
2

x

x



 dx2 + 1

3

x

x




 dx3 + 1

4

x

x




 dx4 etc.

or in short as dx =
4

1

x

x


 



  dx  = 1, 2, 3, 4.

Any set of four quantities transformed in accordance with this law is said to be
a Contravariant Vector. Thus if a coordinate system (A1, A2, A3, A4)
transforms to the new coordinate system (A1, A2, A3, A4) where

A =
4

1

x

x


  



  A ... (1.50)

Then (A1, A2, A3, A4) or briefly A is a contravariant vector. Hence the upper
position of the suffix (which is definitely, not an exponent) is reserved to indicate
contravariant vectors.

Now, if we consider an operator  such that it is an invariant function of
position, i.e., it has a fixed value at each point independent of the coordinate
system used, then the four quantities

, , ,
x x x x   

   
   

 are transformed as

x




=
1x

x


  

2 3 4

1 1 3 1 4

x x x

x x x x x x x 

      
  

         , etc.

or in short
x


 =

4

1

x

x x


  

 
   ( = 1, 2, 3, 4).
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Any set of four quantities transformed in accordance with this law is said to
be a Covariant Vector.

Thus if A be a covariant vector, its transformation law is

A =
4

1

x
A

x






 ... (1.51)

where the lower position of the suffix indicates covariance.

Hence the Relations (1.50) and (1.51) give the laws of transformation of
vectors. If we denote by A a quantity with 16 components by assigning  and
 the values 1, 2, 3, 4 independently, then a generalization of these laws yields
quantities classified as

Contravariant Tensors A =
x x

A
x x
 

 

 
 

Covariant Tensors A =
x

x







x

x







A

Mixed Tensors A 
 =

x

x







x
A

x








These are the tensors of second rank.

Similarly A has 64 components and A has 256 components. Thus a
tensor of higher rank is of the type.

A 
 =

v

xx x x
A

x x x x
   


  

   
      

Note. A vector is a tensor of first rank and an invariant or scalar is a tensor of zero rank.

Rank of a Tensor: The rank of a tensor is determined by the number of suffixes
or indices attached to it. As a matter of fact the rank of a tensor when raised as
power to the number of dimensions, yields the number of components of the
tensor and hence the components of the matrix that represents the tensor. As
such a tensor of rank n in four dimensional space has 4n components.
Consequently, the rank of a tensor gives the number of the mode of changes of
a physical quantity when passing from one system to another system which is in
rotation relative to the first. It is clear from this discussion that a quantity that
does not change when the axes are rotated is a tensor of zero rank, since the
number of mode of changes is then zero. These  quantities named as tensor of
zero rank are scalars while the tensors of rank one are vectors.

Contravariant Tensor: If n quantities A ( = 1, 3, ....n) in a coordinate
system (x1, x2, ....... xn) are related to n other quantities A ( = 1, 2, .....n) in
another coordinate system (x1 x2,..........., xn) by the transformation laws

A =
x

A
x
 





  (Contravariant law)

on change of the coordinate x to x according to summation convention, then

A are termed as the components of a contravariant vector or a contravariant
tensor of the first rank.



Vector and Matrix Algebra

NOTES

Self - Learning
Material 91

Covariant Tensor: If n quantities A ( = 1, 2,......n) in a coordinate system
(x1, x2, ..........xn) are related to n other quantities A ( = 1, 2, ..............n) in
another coordinate system ( 1x , 2x , .............. nx ) by the transformation laws

A =
x

x







 A (Covariant law)

according to summation convention, then A are termed as the components of a
covariant vector or a covariant tensor of the first rank.

Example 1.38: Show that the velocity of a fluid at any point is a contravariant
vector of rank one.

Solution: Assuming that x (t) is the coordinate of a moving particle with the
time t, we have

 =
dx

dt


as the velocity of the particle.

In transformed coordinates the components of velocity are

 =
dx

dt


But  = 
d

x
dt

 =
x

x







dx

dt
  = 

x

x







 

which follows that velocity is a contravariant vector of rank one.

Example 1.39: Show that the law of transformation for a contravariant vector is
transitive.

Solution: We haveA=
x

x






  A

Let A =
x

x






   A

 A =
x

x







 
x x

A
x x
 

 

  


 
 A = 

x

x







 A

which shows that contravariant law is transitive.

Example 1.40: Find the components of a vector in polar coordinates whose
components in cartesian coordinates are x, y   and x, y  .

As given, suppose that

x1 = x, x2 = y,

x1 = r,  x2 = 

and (i) A1 = x , A2 = y

(ii) A1 = x , A2 = y .

Then, we have to find C1, A2.

Solution: We have the transformations

x = r cos , y = r sin ,

giving r2 = x2 + y2 and  = tan–1 y

x
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so that
r

x




=
x

r
, 

r

y




 = 
y

r
, 

x




 = 2
–

y

r
 and 

y




 = 2

x

r

Also rr = xx  + yy  and   = 2

 xy yx

r



(i) Transformation law as already defined gives

A =
x

x







 A ( = 1, 2)

=
x

x







 A1 + 2x

A
x








=
x

x







x  + 

2

x

x



y  as A1 = x  and A2 = y

 A1 = 1

1

x

x




x  + 1

2

x

x




y

=
r

x




x  + 
r

y




y as x1 = x, x2 = y and x1 = r

=
x y

x y
r r

 

=
xx yy

r

 
 = 

rr

r


 = r

And A2 = 2

1

x

x




x  + 2

2

x
y

x






=
x


 x  + y

y




as 2x  = , x1 = x and x2 = y

= 2 2
–

y x
x y

r r
 

= – 2

 yx yx

r

  = 

(ii) A1 =  r r
x y

x y

 


 
 as in part (i)

=
xx yy

r

 

But xx yy   = rr  gives on differentiation,

xx  + x 2 + yy  + y 2 = 2rr rr  ,

i.e., xx yy  = 2 2 2– –rr r x y   

= 2rr r  – ( r  cos  – r sin   )2 – ( r  sin  + r cos   )2

= rr  + 2r  – 2r  – r2 

= rr  – r2 

Thus A1 =
2rr – r

r



= r– r 
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And A = x y
x y

 


 
 

= 2

xy yx

r

 
.

But x y  – y x  = r2   gives on differentiation

– –xy xy yx yx     = r2   + 2 rr 

Or xy – yx  = r2   + 2 rr 

 A2 = 2

+ 22r rr

r

  

=
2

+
r

r






1.10.2 Symmetric and Anti-Symmetric Tensors

Let a tensor be such that contravariant or covariant indices of it can be
interchanged without altering the value of the tensor, then the tensor is termed as
symmetrical or symmetric in these indices.

If A and A be two contravariant tensors in a certain system of coordinates
such that

A = A

then if A and A become A and A in another system of coordinates, the
symmetry will be maintained in this system also if A = A.

To show it, let us consider

A =
x

x






  
x

x







 A

=
x

x







 
x

x






  A (on interchanging the indices)

= A as A = A

which shows the symmetry in the other system also.

Similarly if we consider two covariant tensors, A and A such that
A = A in one system, then if they become A

 and A


in another system,
we have

A
 =

xx
A

x x



 




  

=
x x

A
x x
 


 

 


  
 (on interchanging the indices)

= A as A = A.

In case one index is contravariant and other covariant, the symmetry cannot
be easily defined. But it is notable that Kronecker delta which is a mixed tensor
is symmetrical with respect to its indices.

When A is symmetrical, we have

A11 = A11, A22 = A22 etc.
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In all, there are 4C2 + 4 = 5C2 components.

As an example, the components of the angular momentum of a rigid body B
are connected with the components of its angular velocity A by the relations B

= 
3

1

,T A 
 
  where T is the inertia tensor. This tensor is symmetric because

T = T ... (1.52)

Now it has been already mentioned that a tensor can be expressed as a
matrix and the columns and rows of a matrix when interchanged, the resulting
tensor is the conjugate tensor. As such the conjugate of the tensor may be
written as

c =
xx yx zx

xy yy zy

xz yz zz

a a a

a a a

a a a

 
 
 
  

Thus the tensor c is the conjugate of , when

axy = ayx, axz = azx and ayz = azy ... (1.53)

If a single tensor satisfies this condition, it is called a symmetric tensor. It
means that Condition (1.52) is essential for a tensor to be symmetric. It has only
six independent elements in three dimensional space and may be written as

sym =
xx xy xz

yx yy yz

zx zy zz

a a a

a a a

a a a

 
 
 
  

The Relations (1.53) between the components of tensors follow that any
symmetrical tensor corresponds with a transformation from the principal axes to
another rectangular system of axes. To express the symmetrical linear functions
by graphical function, let us suppose that we have two vectors u and v such that

v = sym . u ... (1.54)

Project u upon v so that we calculate

u . v = uxvx + uyvy + uzvz, ... (1.55)

where ux, uy, uz and vx, vy, vz are the components of u and v respectively along
the principal axes.

Multiplying both sides of Equation (1.54) scalarly by u, we get

u . v = u .sym . u

= uxvx + uyvy + uzvz from Equation (1.55)

= ux(axxux + axyuy + axzuz) + uy(ayxux + ayyuy + ayzuz)

+ uz(azxux + azyuy + azzuz)

Say S = axx ux
2 + ayyuy

2 + azz uz
2 + 2(axyux uy + ayz uy uz + azx uz ux)

where S  is a scalar point function.

We get

x

S

u


 =2 [axxux + axyuy + axzuz] = 2vx by Equation (1.43)
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or vx =
1

2
 

x

S

u




Similarly, vy =
1

2
 

y

S

u


  and vz = 

1

2
 

z

S

u




So that v = vx i + vy j + vz k; i, j, k being unit vectors along principal axes

=
1

2 x y z

S S S

u u u

   
  

    
i j k

=
1

2
 grad S.

which shows that v is a vector perpendicular to the surface S = const. in the
direction of the outward normal. But S = const. is an equation of the second
degree in the rectangular components of u regarding these as coordinates
defining the extremity P of the vector u the locus of P is a conicoid.

As a particular case if S = 1, the surface defined under certain conditions is
the tensor ellipsoid as shown in Figure 1.12.

v

Fig. 1.12 Tensor Ellipsoid

Also u . v = S = 1 = resolute of u in the direction of v.

In the direction of grade S, this resolute becomes 
1

v
.

Few other examples of symmetric tensor may be given as below

A = A

and A = A = A = A = A = A

Here the first tensor is symmetric in its first two indices and the second one is
symmetric in first three indices.

If a tensor is such that two contravariant or covariant indices of it when
interchanged, the components of the tensor alter in sign but not in
magnitude, the tensor is said to be anti-symmetric or skew-symmetric.

Hence if A = – A

then, A =
x x

A
x x
 

 

 
 

= –
xx

A
x x

 

 


 

= – A as A = – A
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Similarly if A = – A, then A = – A
Here A12 = – A21 etc. and A11 = 0 = A22 = A33

As such number of numerical components is 4C2 only.

Evidently, the components of an antisymmetric tensor satisfy the relations
A + A = 0 or A = –A ... (1.56)

which follows that the tensor changes its sign when indices are interchanged. If
 = , then Equation (1.56) yields

A + A = 0 or 2A = 0 or A = 0

So in terms of coefficients, axx = ayy = azz = 0

and axy = –ayx, axz = –azx, ayz = –azy

give the conditions for a tensor to be anti- or skew-symmetric.

Thus  will be antisymmetric if

sk =

0

– 0

– – 0

xy xz

xy yz

xz yz

a a

a a

a a

 
 
 
  

The matrix has only three components. The property of having only three
components is possessed by vectors. This leads to the conclusion that an
operation of sk on the vector u, is exactly equivalent to the vector product of
two vectors, since the final result is itself a vector v. For example, consider the
product of the coordinates of two points

A = x  – x ... (1.57)

In 3-dimensional space, suffixes can have only 3 values (1, 2, 3) and so any
pair of suffixes can be replaced by a single one which is not present in the pair
i.e.,

23 32 1

12 21 3

31 13 2

A – A A

A – A A

A – A A

  
  
  

... (1.58)

Thus the anti-symmetric system may be replaced by

 = +1 if (,,) is an even permutation of (1, 2, 3)

= –1 if (,,) is an odd permutation of (1, 2, 3)

= 0 if any of the suffixes are equal.

Now Equations (1.58) yield,

A1 =
1

2
 [2A23], A2 = 

1

2
 [2A13], A3 = 

1

2
 [2A12]

i.e., A1 =
1

2
 

3

, 1

A 
  

 ... (1.59)

There being only two terms in Sum (1.59).

Few other examples of antisymmetric tensors are

A = – A

and A = – A = A = – A = – A = – A
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As an illustration, if A is antisymmetric tensor  of second order and B is
a tensor of rank one, then A B B = 0, summation being taken over
repeated indices.

Intrerchange of dummy suffixes gives

A B
B = A B

 B ... (1.60)

where A being antisymmetric i.e.,

A = – A
renders

A B
 B = – A B

 B

= – A B
 B ... (1.61)

The addition of Equation (1.60) and (1.61) yields

A B
 B = 0 ... (1.62)

1.10.3 Invariant Tensors

It is not known about any vector which has the same components in different
systems of coordinates, but there exist tensors of higher ranks which have the
same components in all the frames of reference. These tensors are called to have
the invariant components or invariant tensors in general. One of the examples
of such a tensor is Kronecker symbol defined as follows:

With respect to the old frame of the reference (i.e., before rotation)
x

x






 =
0 if

1 if

  
   

 since x is independent of x

But
x

x





 =

x

x





  

x

x







Hence
x

x







=

x

x





  

x

x







 = 


where 
 =

1 if = 

0 if  

 
   

The symbol 
  =  =  = 

1 if = 

0 if  

 
   

 is called as Kronecker delta

symbol. In terms of new frame of reference (i.e., after the rotation,) we may write


 =

x

x





  = 

x

x






  
x

x





  = 

1 if  = 

0 if  

 
   

=
x

x







 . x

x







 . 
x

x








=
x

x







x

x





 


  since 

  = 
x

x








(in summation convention)

Hence 
  is invariant and transforms as mixed tensor of rank two. Similarly

 transforms as the components of covariant tensor of rank two while 
transforms as a contravariant tensor of rank two.
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Kronecker symbol can be used as substitution multiplier.

Since A =
x

x







 
x

x  A   (in summation convention)

= 
 A (by substitution of index)

Similarly A =
x

x







 
x

A
x
 







= 
  A

and  
 = =

x xx

x x x
 

  

 
  

 = 


while 
 = 1 2 3

1 2 3      (summation convention)

= 3 (in three-dimensional geometry)

= 4 (in four-dimensional geometry).

Secondly, we define the generalized Kronecker delta symbol, 
  by


 =

 
 

1 if  =   =  and    as 1

–1 if  =   =  and    as – 1

0 for all other combinations of indices.







         
         



Similarly we can define 
  as an absolute (invariant) tensor of rank six.

Conclusively, if both upper and lower indices of a gernalized delta consist of
the same distinct numbers chosen from 1, 2, 3, the delta is 1 of –1 according as
the upper indices form an even or odd permutation of the lower; in all other
pemutations the delta is zero. We have, for example,


 = 1, 

  = –1, 
  = 

  = 0

 = 

  = 1, 
  = 

  = –1, 
  = 0.

Evaluation of the various possible combinations of indices shows that

– 2

–

  
  

    
   

     


      

Alternating or Permutation Epsilon Tensor: This tensor is also an
invariant component tensor of third rank and anti-symmetric in every pair of
indices. Let  be such a tensor, then

 = –  =  = –  =  = – 

But if  =  then  = –  gives  = –
or  = 0

It is clear that whenever two indices are equal, the component is zero.
Moreover a tensor of third rank in three-dimensional geometry has 27
components. But in case of the tensor  only 6 components are non-
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vanishing. All of them have the same absolute value, 3 being positive and the rest
three are negative.

So

and
312 231

321

1

– 1

xyz

 

        


      

while all other components are zero.

Thus all the even permutations of 1, 2 and 3 correspond to the components
with value +1, while all the odd permutations correspond to –1.

The transformation law for this type of tensor in three dimensional space is
given by

 =
3

a a a  
  
  = 

i.e.,  is invariant.

Consequently,

 = 
1 when , ,  are an even permutation,

– 1 when , ,  are an odd permutation,

0 when , ,  contain two or more repeated indices.

  
   
   

Similarly, the contravariant components can also be discussed,

123 312 231 132 213 321

112 233 111

1, – 1,

... 0

            


       

Pseudo Tensor: Let there be a tensor  of rank 4, defined such that

 = 

1 if  is an even permutation of 0, 1, 2, 3

– 1 if  is an odd permutation of 0, 1, 2, 3

0 if two or more indices are equal

 
 



These are termed as components of pseudo tensor of rank four.

In case  is a scalar, the quantities  are called as pseudo scalars since
they have only one component.

From every antisymmetric tensor A of the second rank a pseudo tensor *A

of the same rank can be obtained by multiplying the former with a pseudo-tensor
of rank 4.

i.e., *A =
3

0

1

2
A


  



Thus the product of a tensor with a pseudo-tensor is a pseudo-tensor. It
is called dual of a given tensor.

A Useful Property of  Tensor

 tensor can be used to write the cross-product of two vectors A and B.

Let D = A × B,
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then

D1 = A2B3 – A3B2 = 123 A2B3 + 132 A3B2;

A1, A2, A3, B1, B2, B3 being components of A and B.

= 1 AB

Similarly D2 = 2 AB (in summation convention)

and D3 = 3 AB

or D =  AB

Evaluating the various possible combinations we may have

 = 
  = 



  – 

 


Thus, if r = C . (A × B) = C . D for D = A × B.

then, r = CD
 (in summation convention)

or r = C
 A A

=  C A B

Similarly, vector triple product of three vectors can be given as

E = C × (A × B) = C × D

i.e., E =  C D

=  C ( A
B)

=   C

= 
  C =  –   

       C A
B

Since 
 A = AA etc., we get

E = 
  AC B

 – 
  B C A



= A (CB
) – B (C A)

As such E = A (C . B) – B (C . A).

Evaluation of  × ( V × W) Using  Tensor

Suppose, × (V × W)=  × Z,

then ( × Z) =   Z =   ( V
 W)

   V
 W = 

  (V W
+ WV

)

=  –   
       (V  W

 + W  V
)

= V  W
 – V  W

 + W  V
 – W  V

So  × Z =  × (V × W)

= V (. W) – (V .) W + (W .)V – W (. V)

Similarly all the vector relationships can be derived by using  tensor.
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Krutkov’s Tensor: Let us consider a tensor  of fourth rank having
following properties:

(1) Antisymmetric with respect to the first pair of indices

A,  = – A,

(2) Antisymmetric in second pair of indices

A  = – A,

(3) Symmetric in cyclic order

A + A + A = 0

Then in terms of second derivatives of A, we can form a new tensor given
by

B =
23

0

A

x x



 


   = 0 ... (1.63)

This tensor is called as Krutkov’s tensor. If we differentiate Equation (1.63)
with respect to x, we have

3

0

B

x






 = 0

This is an important property of Krutkov’s tensor.

Example 1.41: Define a tensor. Prove that the Kronecker symbol k
i  is a tensor

where components are the same in every coordinate system.

Solution: We know that the tensors are quantities obeying certain transformation
laws so that tensor may be regarded as an indispensable part of study which is
rather suitable for the mathematical formulation of natural laws which remain
invariant when one coordinate system is changed to another. The rank of a
tensor measures the number of the mode of changes of a physical quantity when
passing from one system to another which is in rotation relative to the first. As
such tensor of zero rank is a scalar quantity and the tensor of rank one is a vector
quantity.

The laws of transformation of vector being defined by

A =
4

1

x
A

x
 





  (contravariant vector)

and A  =
4

1

x
A

x






  (covariant vector)

In Minkowski’s four dimensional space, we define the tensors of rank two as
follows:

Contravariant tensor: A =
x x

x x
 

 

 
 

 A ... (1.64)

Covariant tensor: A =
xx

A
x x




 


   ... (1.65)

Mixed tensor: A 
 =

x x

x x
 

 

 
 

 A ... (1.66)

Each one having 42, i.e., 16 components.



Vector and Matrix Algebra

NOTES

Self - Learning
102 Material

Similarly, we can define the tensors of higher ranks.

Now the Kronecker delta symbol k
i  is defined as

k
i = k

i

x

x




 = k

j

x

x




 
j

i

x

x





which is easily deduced from Equation (1.66) by choosing A
  to be the

Kronecker delta 
  so that

A



=
x

x







 
x

x







 
  = 

x

x







 
x

x







 
x

x







 = 

x

x







 = 


and now replacing  by i,  by j this gives

k
i = Ai

k

i

x

x



 kx

x




 A
  = 

i

x

x



 kx

x




 


From the definition of mixed tensor, it follows that k
i  is a mixed tensor of

order two with 16 components in 4-dimensional space.

In order to show that the components of the tensor k
i  are the same in every

coordinate system, let us define the symbol k
i  as

k
i = 1 if i = k

= 0 if i  k

which is evident from k
i = k

i

x

x




= 0 when i  k

= 1 when i = k

In terms of new frame of reference (or new coordinate system), we may have

k
i
 = k

i

x

x




 = k

j

x

x




 j

i

x

x




= 1 if i = k

= 0 if i  k

or
k

i
 = k

l

x

x




j l

i j

x x

x x

 
 

 = 
jk

l i

xx

x x


 

 l
j  since l

j  = l

j

x

x




From which it is clear that i
k is invariant and transforms as mixed tensor of

rank two.

Example 1.42: Prove that Kronecker delta is a mixed tensor of rank two.

Solution: Its solution has been given in Example 1.41.
Example 1.43: Show that symmetry properties of a tensor are invariant.

Solution: If A = A then we have to show that A A 

The definition follows:

A =  
3

= 1

x xx

x x x
 

   

 
    


 A

and A =
3

= 1 va

x xx

x x x
 

   

 
     A
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The given tensor being symmetrical in first two indices, we have

A = A and A = A

Using this relation and comparing the two equations for A  and A  we find
that both the equations are identical, i.e., A  = A .

Which follows that the tensor in the other system is also symmetrical in first
two indices. Hence the properties of symmetric tensors are invariant.

1.10.4 Rules Which Govern Tensor Analysis

Rule I. The sum and difference of two tensors of the same rank result in a
third tensor of the same rank. Moreover, if F... and G... are the tensors
of the same rank, then pF ... + qG ... is also a tensor of the same rank
(p, q being numbers).

Suppose there are two tensors A and B, then it will be shown that

A + B = C

is another tensor of the same rank.

Expressing the tensor A in the form of a matrix, we have

A =
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
  

,  B = 
11 12 13

21 22 23

31 32 33

b b b

b b b

b b b

 
 
 
  

and C =
11 12 13

21 22 23

31 32 33

c c c

c c c

c c c

 
 
 
  

so that A + B =
11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

a b a b a b

a b a b a b

a b a b a b

   
    
    

If the relations between the coefficient a’s and b’s be such that

a + b = c

then A + B =
11 12 13

21 22 23

31 32 33

c c c

c c c

c c c

 
 
 
  

 = C

which is a tensor of the same rank.

Similarly A – B =
11 12 13

21 22 23

31 32 33

d d d

d d d

d d d

 
 
 
  

 = D

where a – b = dµ.

Here D is again a tensor of the same rank.
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Further,

pA + qB =
11 12 13

21 22 23

31 32 33

e e e

e e e

e e e

 
 
 
  

 = E

where pa + qb = e.

showing that E is also a tensor of the same rank.

The rule of addition may be generalized for any number of tensors of any
rank.

Suppose there are two mixed tensors T and S of rank N, having their r indices
(from 1 to r) contravariant and s indices (from 1 to s) covariant, then laws
of their transformation may be written as

1

...
...

r

s
T  
  =

N
x

x


 

 1 ... s

s

xx

x x




 

 
 

    
 ... r

r

x x

x x




 

 

   
 
   

1

...
...

r

s
T  
 

1

...
...

r

s
S  
  =

N
x

x


 

 ... s

s

xx

x x






 

 
 

    
  ... r

r

x x

x x




 

 

   
 
    1

...
...

r

s
S  
 

If the sum of two tensors 
1 s

...
...

rT  
   and 

1 s

...
...

rS  
 

 be a third tensor

1

...
...

r

s
U  
  , i.e., 

1

...
...

r

s
U  
  , =

1 s 1 s

... ...
... ...

r rT S    
   

Then,
1

...

...
r

s
U  

  =
1 1

... ...

... ...
r r

s s
T S    

    

=
N

x

x


 

... s

s

xx

x x






 

 
 

    
 1 ... r

r

x x

x x


 

 

   
 

   
 

1 1

... ...
... ...

r r

s s
T S    
   

  

=
N

x

x


 

 ... s

s

xx

x x






 



  
 1 ... r

r

x x

x x


 

 

  

 
 

1

...
...

r

s
U  
 

Which is transformation equation for a tensor of rank N having r contravariant
and s covariant indices and follows that the sum of two tensors of the same rank
is a new tensor of the same rank.

Note. Here 
x

x


 

 is the Jacobian of transformation and the tensor 
1

...
...

r

s
T  
   is known as Relative

tensor of weight W. For W = 0, the relative tensor becomes Absolute tensor, whereas for W = 1, the

relative tensor is known as Tensor density.

Rule II. The direct product of two tensors gives a new tensor of rank equal
to the sum of ranks of these tensors.

Consider two tensors 
1

...
...

r

s
T  
   of rank N, weight W and 

1

...
...S

q

 
 

 of rank N

weight W.
Their transformation may be given as,
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1

...
...

r

s
T  
   = 

N
x

x


 

 1

1

... ...s r

s r

xx x x

x x x x




  

   

   

     
 

1

...
...

r

s
T  
 

1 s

...
...

rS  
   = 

N
x

x


 

 1

1

... ...q p

q p

x xx x

x x x x




  

   

  

     
 

1

...
... q

S  
 



Then 
1 s 1

......
... ...

r

q
T S    
       = 

+N N
x

x


 

 1 1

1 1

... ... ... qs r

s r q

xx xx x x

x x x x x x




   

    

    

         

11 1

1 1

1

......
... ...

... p r

s q

p

xx
T S

x x

   
   

 


       



or 1 s 1

1 1

... ,... ...
... , ...

p

s q
U

   
    =

+N N
x

x


 

 1 1

1 1

... ... ......s r

s r

xx x x

x x x x
  

   

   

     

× 1 1... ...q p

q p

x xx x

x x x x
 

  

   

    

     
 × 1 1

1 1

... , ...
... , ...

r p

s q
U

   
    ... (1.67)

where 1 1

1 1

... , ...
... , ...

r p

s q
U

   
    = 1

1 s

...
...

rT  
   1

1

...
...

p

q
S
 
 

The Equation (1.67) transforms a tensor of rank N + N and weight W + W.
Note: This rule may also be stated as:

The outer product of two relative tensors is itself a relative tensor of rank and weight
equal to the sum of the ranks and the sum of weights of the given relative tensors
respectively.

Rule III. Contraction: The algebraic operation by which the rank of a
tensor may be lowered by 2 (or by any even number) is known as
contraction.

The contraction of a tensor may be affected by adding up all the components
which have equal indices in a given pair. Any two indices are converted into a
pair of dummy indices.

Consider a tensor of rank 3 with one contravariant index  and two covariant
indices  and . Then we have

A 
 =

3

 = 0

A



  ..

x x x

x x x
  

  

  
   

Replacing  by , we have

A 
 =

3

, ,  = 0

. .A
x x x

x x x
  


    

  
   

=
3

, ,  = 0

.A
x x

x x
 


   

 
 

But
x

x







=

0 if

1 if

   
    

Choosing the second condition, i.e., if  = , 
x

x







 = 1, above relation

becomes
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A
 =

3

,  = 0

x
A

x



 




i.e., A =
3

 = 0

x
A

x








Which denotes the law of transformation of tensors of rank one, i.e., vectors.
As a general rule we equate a certain covariant index to a contravariant index,
sum repeated indices, and obtain a new tensor of lower rank. This process is
termed as contraction. The contraction of a tensor of rank 2 yeilds a scalar, i.e.,
tensor of rank zero.

Illustration: We know that the scalar product of two vectors is a scalar quantity.
It follows that the scalar product of two tensors of rank one is a tensor of rank
zero. As such the rank is lowered by two.

Rule IV. Extension of the Rank: The differentiation of each component of
a tensor of rank n with respect to x, y, z, gives a new tensor of rank (n + 1),
for example,

A

x







= B

This rule may be proved for a simple case, where the original tensor is of rank
zero, i.e., a scalar say S (x1, x2, x3, t) where derivatives relative to the axes K
are

, ,S S S

x y z

  
  

.

In system K, the scalar is S 1 2 3( , , , )x x x t   

S(x1, x2, x3, t) = S 1 2 3( , , , )x x x t   

So,

1 2 3.

31 1 1 2 1 1

1 2 3

2 1 2 2 2 3 2

1 2 3

3 1 3 2 3 33

SS S x S x x

xx x x x x x

S S x S x S x

x x x x x x x

S S x S x xS

x x x x x xx

      
            

                     
                  

which may be written as a single equation

l

S

x

 


= m

l

x

x




 
m

S

x




 (l, m = 1, 2, 3)

This shows that 
m

S

x




 transforms like the components of a tensor of rank one,

i.e., vector. Thus the differentiation of the tensor of rank zero, yields a tensor of
rank one. The rank of a tensor can also be extended when a tensor depends on
another tensor and a differentiation is performed. For example, consider a scalar,
i.e., tensor of rank zero, say S depending on tensor A, so that
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S

A




= B

is also a tensor of rank two. Thus the rank of the tensor is extended by two.

Rule V. The Quotient Law: If AB is a tensor for all contravariant
tensors A then B is also a tensor.

We have A B
  = A B x








 
x

x







 
x

x







=A B 
x

x







 
x

x







as A = A x

x







or A –
xx

B B
x x


 

 

      
 = 0

But A being arbitrary, A 0 so that

B = B 
x x

x x
 

 

 
  

which shows that B is a covariant tensor.

Note. If A be a symmetric convariant tensor of second order s.t. A  = A  0, and we set,

A =
Cofactor of  in A A a

A A
  ... (1.68)

a being cofactor of A in A, and A also being symmetric, then A and so a
is symmetric. Consequently A is symmetric.

Also if B be an arbitrary vector, then quotient law gives

B = A B


as a convariant vector

 B A
 = AB

 A = A B
 a

A


=
A a

A
   B = 

  B by determinant theory..

or BA
 = B

Here Relation (1.68)  symmetric contravariant tensor of rank 2, known
as conjugate or reciprocal tensor of A.

Example 1.44: Show that there exists no distinction between contravariant and
covariant vectors if we restrict ourselves to trasformation of the type

x = a
  x + b

where b are n constant which do not necessarily form the components of a
contravariant vector and a

  are constant (not necessarily forming a tensor) such
that
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a
  a

 = 


Solution: Given x = a

x + b ... (1)

i.e., a

x = x – b ... (2)

Multiplying Equation (2) throughout by a
  and summing over the index 

from 1 to n, we find

x = a
 x – a

 b ... (3)

Now Equations (1) and (3) yield,

x

x







= a
  and 

x

x







 = a


So that
x

x







=
a

x

x



 = a


This follows that the tranformation laws

A =
x

x







A and A  = 

x

x







 A

define the same type of entity without any distinction between contravariant and
covariant vectors.

1.10.5 Applications of Tensors

In many physical problems, the notion of a vector is too restricted, for example in
an isotropic medium, Stress S and Strain X are related by the vector equation

S = k X

X and S having the same direction.

If the medium is not isotropic, S and X are not in general in the same direction,
it is then necessary to replace the scalar k by a more general mathematical construct
capable, when acting on the vector X, of changing its direction as well as its
magnitude. Such a construct is a tensor.

As an example, let us consider the magnetization M produced in Benzene
molecule in the xy-plane in a magnetic field H. When H is along the x-axis, the
diamagnetic susceptibility results in a small magnetization in the opposite direction
such that,

M
x
 = 

1
H

x
[shown in Figure 1.13]

Fig. 1.13 Small Magnetization in Opposite Direction



Vector and Matrix Algebra

NOTES

Self - Learning
Material 109

Likewise, H along the y-axis produces a magnetization.

My = 
2
H

y
.

But when H is perpendicular to the plane, the ring current leads to a greater
magnetization, again in the opposite direction (such that shown in Figure 1.14.

M
2
 = 

2
H

z

Fig. 1.14 Ring Current Leads to Greater Magnetization

And if H is at some arbitrary angle to the plane, then is at some different
angle to the plane.

ˆˆ ˆ
x y zM M i M j M k

1 2 3 3
ˆˆ ˆ

x yM H j H j H k

Hence we must express the relationship between H and M by,

M = H

Where M and H are three dimensional column matrices

And,
Mj

Hj is a 3 × 3 matrices

Which represent the magnetic susceptibility, therefore

1

2

3

0 0

0 0

0 0

x x

y y

z z

M H

M H

M H

Consequently,  is a tensor (second order tensor)

Another example of an anisotropic situation we might expert that the dipole
moment induced in a Cl

2
 molecule in an electric field will depend upon the

orientation of the field relative to the molecular axis. The dipole moment produced
when the field is perpendicular to the axis is smaller than when the field is along the
axis. And for a random orientation the induced moment will not even be in the
same direction as the field. Therefore we must write

 =  E

Where  is the polarizability tensor.

Check Your Progress

15. What do you understand by determinant of a matrix?

16. Define the Cartesian tensor.



Vector and Matrix Algebra

NOTES

Self - Learning
110 Material

1.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The line vectors representing the quantities like force, velocity, etc., in
which merely a linear action in a particular direction is involved, are termed
as polar vectors.

2. Like vectors or co-directional vectors. The vectors which are collinear
and have the same sense of directions, i.e., the vectors directed in the
same sense irrespective of their magnitudes are termed as like vectors.
Where as unlike vector the vector which are collinear but have opposite
sense of direction from each other are termed as unlike vector.

3. The scalar or dot product of two vectors a and b, with modules a and b
respectively and their directions being inclined at an angle , is defined to
be the real number ab cos , i.e.,

a  b = ab cos .

4. The gradient of any scalar function  is defined as

grad  = 
x y z x y x

        
            

i j k i j k

= 
where operator  is generally known as ‘Del’ or ‘Nabla’ operator and
read as ‘Gradient’ or ‘Grad’ in short.

5. If , anda b c
  

 be any three vectors, then the vector products of a b
 

 with

c


 and a


 with b c
 

 are called the vector triple products of , anda b c
  

.

These products are written as  a b c 
  

 and  a b c 
  

 .

6. The Gauss theorem states that the outward flux of a vector field through
a surface to the behaviour of the vector field inside the surface.

7. Let < V, + > be an abelian group and < F, +,  > be a field. Define a
function × (called scalar multiplication) from F × V  V, such that, for all
  F, v  V,  v  V. Then V is said to form a vector space over F
if for all x, y  V, ,   F, the following hold

(i) ( + ) x = x + x

(ii)  (x + y) = x + y

(iii) () x =  (x)

(iv) 1 . x = x, 1 being unity of F.

Also then, members of F are called scalars and those of V are called vectors.

8. In case m = n, the rectangular array becomes a square and so the matrix
having number of rows and number of columns equal is called a Square
Matrix of order n.
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9. A square matrix A = [a
ij
] over the complex numbers is said to be Hermitian

if the transposed conjugate of the matrix is equal to the matrix itself, i.e.,
A = A.

10.  Matrix is a rectangular array (i.e. arrangement) of objects. The number of
rows and the number of columns are called its dimensions. The objects are
called its entries. If the objects are real number, it is called a real matrix;
if the objects are complex numbers, it is called a complex matrix.

11. A square matrix is called symmetric if the elements situated symmetrically
with respect to the principal diagonal are equal.

12. A square matrix is called skew symmetric if the elements situated
symmetrically with respect to the principal diagonal have opposite signs but
the same magnitude and the principal diagonal elements are zero.

13. The system is called homogeneous if b
1
 = b

2
 = ... = b

m
 = 0. Therefore the

system is called non-homogeneous if it is not homogeneous. i.e. at least one
of b

1
, b

2
, ..., b

m
 is non-zero.

14. Unitary transformation. If A be a unitary transformation of order n × n and
X, x are column vectors of order n × 1, then the linear transformation

X = Ax

is known as unitary transformation. Since

15. Determinant of a matrix can be taken as a function from the set of square
matrices to the set of real numbers. Sometimes, the determinant of
A = [a

ij
] will also be denoted by |a

ij
| i.e.

det A = 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a a a

a a a

a a a

Note that a determinant can also be defined without reference to a matrix.

16. In geometry and linear algebra, a Cartesian tensor uses an orthonormal
basis to represent a tensor in a Euclidean space in the form of components.
Converting a tensor’s components from one such basis to another is through
an orthogonal transformation.

1.12 SUMMARY

 A vector having the initial and the terminal points coincident is termed as
a zero vector or a null vector. Thus a null vector has its module zero.

 Evidently a vector can be represented by an infinite number of equal
vectors by drawing parallel supports. Such a vector which can be
transported from place to place such that it remains of the same magnitude
and keep up the same direction is termed as a free vector.

 The value of a free vector depends only on its length and direction, but if
it depends also on its position in space, i.e., if a vector is restricted to pass
through a given origin, then it is termed as a localised vector.
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 A careful observation of the ways in which two vector quantities enter into
combinations in various branches of mathematics and mechanics leads us
to define two well marked and distinct kinds of products, one being called
scalar or dot product and other being called vector or cross product.

 Scalar field is the region in which the scalar point function specifies the
scalar physical quantity like temperature, electric potential, density, etc. It
is represented by a continuous scalar function giving the value of the
quantity at each point.

 The cyclic permutation of three vectors does not change the value of
scalar product.

 The Gauss theorem demonstrates equality between triple integral (volume
integral) of a function over a region of three-dimensional space and double
integral (surface integral) of the function over the surface that bounds the
corresponding region.  In vector calculus, the Gauss theorem is also
known as divergence theorem.

 A vector space originates from the notion of a vector that we are familiar
with in mechanics or geometry.

 A scheme of detached coefficients aij arranged in m rows and n columns
is called a matrix of order m by n or an m × n matrix or a matrix of type
m × n.

 A matrix whose number of rows equals the number of columns is called a
square matrix.

 A matrix is called a zero matrix, if every element of it is zero.

 A system of linear non-homogeneous equations has either no solution or
one solution or infinitely many solutions. Indeed, if such a system has two
solutions, then it can be proved easily that it has infinitely many solutions.

 The notion of determinant is fundamental in algebra and has tremendous
applications in many spheres of mathematical activities.

 The minor of an element in a determinant is the determinant obtained by
deleting the row and the column which intersect in that element.

 The most familiar coordinate systems are the two-dimensional and three-
dimensional Cartesian coordinate systems. Cartesian tensors may be used
with any Euclidean space, or more technically, any finite-dimensional
vector space over the field of real numbers that has an inner product.

 The rank of a tensor is determined by the number of suffixes or indices
attached to it. As a matter of fact the rank of a tensor when raised as
power to the number of dimensions, yields the number of components of
the tensor and hence the components of the matrix that represents the
tensor.

 The differentiation of the tensor of rank zero, yields a tensor of rank one.
The rank of a tensor can also be extended when a tensor depends on
another tensor and a differentiation is performed.
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1.13 KEY TERMS

 Unit vector: A vector having its modulus as unity is called a unit vector.

 Coplanar vectors: A system of vectors lying in the parallel planes or which
can be made to lie in the same plane are said to be coplanar vectors. Evidently
any two vectors are always coplanar.

 Gauss theorem: The Gauss theorem states that the outward flux of a vector
field through a surface to the behaviour of the vector field inside the surface.

 Square matrix: A matrix whose number of rows equals the number of
columns is called a square matrix.

 Minors and cofactors: The minor of an element in a determinant is the
determinant obtained by deleting the row and the column which intersect in
that element.

 Cartesian tensor: In geometry and linear algebra, a Cartesian tensor uses
an orthonormal basis to represent a tensor in a Euclidean space in the form
of components. Converting a tensor’s components from one such basis to
another is through an orthogonal transformation.

1.14 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the term vector.

2. Differentiate between coplanar and non- coplanar vector.

3. Give the characteristic of cross product.

4. What is divergence of vector?

5. What do you understand by vector product of four vector?

6. State the divergence theorem.

7. Define the vector space.

8. When matrix said to be sub-matrix?

9. What is product of matrix?

10. What do you understand by eigenvalues and eigenvectors?

11. Define the determinant.

12. Give the rules of govern tensor analysis.

13. What are the applications of tensors?

Long-Answer Questions

1. Discuss about the kinds of vector with their relevant examples.

2. Explain in detail about the dot, cross and triple product of vector giving
examples.
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3. Illustrate the gradient, divergence and curl of scalar and vector point function.

4. Elaborate on the vector calculus with appropriate examples.

5. Briefly explain about the vector space with the help of examples.

6. Interpret the addition, multiplication, inverse and adjoint of matrix.

7. Analyse the homogeneous and non-homogeneous linear equations with
appropriate examples.

8. Discuss about the eigenvalues, eigenvectors and diagonalizable with
examples.

9. Explain in detail about the determinant.

10. Describe the tensor and its classification with relevant examples.
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2.0 INTRODUCTION

Continuity of a function is the characteristic of a function by virtue of which, the
graphical form of that function is a continuous wave. A differentiable function is a
function whose derivative exists at each point in its domain. The process of finding
derivative of a function is called differentiation.

In calculus, differentiation is one of the two important concepts apart from
integration. Differentiation is a method of finding the derivative of a function.
Differentiation is a process, in Maths, where we find the instantaneous rate of
change in function based on one of its variables.

Maxwell-Boltzmann distribution, also called Maxwell distribution, a description
of the statistical distribution of the energies of the molecules of a classical gas.

The Bohr radius is a physical constant, approximately equal to the most
probable distance between the nucleus and the electron in a hydrogen atom in its
ground state.

In mathematics, an integral assigns numbers to functions in a way that
describes displacement, area, volume, and other concepts that arise by combining
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infinitesimal data. The process of finding integrals is called integration. In integral
calculus, integration by reduction formulae is method relying on recurrence relations.

In mathematics, a partial differential equation is an equation which imposes
relations between the various partial derivatives of a multivariable function. Curve,
in mathematics, an abstract term used to describe the path of a continuously moving
point.

In this unit, you will study about the function, continuity and differentiability,
rules of differentiation, differential calculus, Maxwell distribution, Bohr radius, integral
calculus, reduction formulae, partial differential equation, curve sketching.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Elaborate on the differential calculus

 Analyse the rules of differentiation

 Understand the function, continuity and differentiability

 Know about the Maxwell distribution

 Discuss the Bohr radius

 Interpret the integral calculus

 Analyse the reduction formulae

 Comprehend the partial differential equation

 Illustrate the curve sketching

2.2 DIFFERENTIATION

Differentiation method is specifically used for finding or estimating the rate of
change when one quantity is compared with another, precisely when the rate of
change is not constant. Following are some definitions of differentiation.

Definitions

1. In mathematics, ‘Differentiation’ is the process of finding the derivative,
or rate of change, of a function.

2. Differentiation is the process of finding or evaluating the rate of change
of dependent quantity with respect to independent quantity, i.e., y = fx
where y is dependent with respect to x.

As defined above, differentiation method is used for “finding a function that
outputs the rate of change of one variable with respect to another variable”.

In differential calculus, the key objects are the derivative of a function
and interrelated notions, such as the differential and its various applications.
Fundamentally, the derivative of a function at a selected input value defines the
rate of change of the function that is close or adjacent to that particular input value.
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Thus, differentiation is the method used to find a derivative. Geometrically, the
derivative of a function at a specified point is approximated as the slope of the
tangent line on the graph of the function at the specified point, as long as the
derivative exists and is well-defined at that selected point. Derivatives are often
used for finding the maxima and minima of a function and the equations which
involve the derivatives are termed as differential equations.

Normally, when we consider a real-valued function of a single real variable,
then the derivative of a function at specified or selected point usually defines or
determines the best linear approximation to the function at that specified or
selected point. The derivative is used for determining the maximum and minimum
values of specific or precise functions, such as profit, loss, cost, etc.

Both the calculus, the differential and the integral are linked or interrelated
through the fundamental theorem of calculus, which specifies that the differentiation
method is the reverse or opposite to integration method.

Differentiation has its applications in almost all types of quantitative disciplines
and helps in solving various types of real-world problems, such as in the field of
physics, the displacement derivative of any object in motion with respect to time is
termed as the velocity of the moving object, and this derivative of velocity with
respect to time is termed as acceleration. Furthermore, in chemistry the derivative
can also be approximated for the reaction rate of any chemical reaction while in
the operations research, the derivatives are specifically used for efficiently
determining the methods for transporting materials or supplies and designing
factories.

In various fields of mathematics, the derivatives and their generalizations are
frequently used for solving the problems related to functional analysis, complex
analysis, differential geometry, abstract algebra and measure theory.

Let us understand the concept of differentiation with the help of a simple
example. Assume that we have to track the position of a moving vehicle on a road.
To track its position we assign it a variable ‘x’. In the meantime the position of the
moving vehicle will change as the time changes, i.e., the variable x is dependent on
time or in other words x = f(t). Differentiation provides a function dx/dt which
characterizes or represents the speed of the moving vehicle, i.e., the rate of change
of the position of moving vehicle with respect to time.

Approximating the ‘Rate of Change’ which is ‘Not Constant’

When we throw a round disc straight up in the air, then after some time the speed
of disc slows down as the gravity or the gravitational force acts on the disc. As a
result the disc direction changes and it starts falling down. During this whole motion,
i.e., when the disc was moving straight up and when the disc was falling down the
velocity keeps changing continuously. Basically, the motion gradually changes from
positive (when the disc is thrown straight up) to negative, i.e., the motion decreases
and becomes zero (when the disc is falling downwards). Therefore, when the disc
is moving straight up then it has negative acceleration while the acceleration becomes
positive when the disc is falling down.
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Figure 2.1 shows the graph of disc height (in metres) against time (in seconds).

Fig. 2.1 Graph of Disc Height at Time ‘t’

In the Figure 2.1 the slope of the disc height at time t graph is continuously
changing or varying while in motion. Initially or at the starting, the graph shows a
steep positive slope which indicates that the velocity is large or enormous at the
time when we throw the disc straight up. Subsequently, the slope decreases
gradually or becomes less until it reaches 0, i.e., when the disc is at its maximum
point then the velocity becomes zero (Refer Figure 2.2). When the disc starts
falling downwards then the slope is referred as negative since it corresponds to
the negative velocity as shown in Figure 2.2.

Fig. 2.2 Graph of Disc Height Showing Slopes

Now if we zoom in the graph at the section near t = 1, i.e., the rectangular
section marked in Figure 2.2, then it looks as shown in Figure 2.3, zoomed view.
The approximation is calculated on the section between t = 0.9 s and t = 1.1 s.



Differential Calculus

NOTES

Self - Learning
Material 119

Fig. 2.3 Zoomed Section of Graph between t = 0.9 s and t = 1.1 s

When the selected curved section of graph is zoomed in then the curved line
appears to be as a straight line. Almost perfect approximation can be made about
the slope of the curve at the specified point t = 1, which is referred as the slope of
the tangent to the curve (see the dim line near the straight line). The approximation
is made by identifying or observing all those points through which the curve passes
near t = 1. Mathematically, a tangent is defined as specific line which touches the
curve only at one point.

Perceiving the graph, we comprehend that it passes through the points (0.9,
36.2) and (1.1, 42). Therefore the slope of the tangent at t = 1 is approximated as
follows:

Since this is velocity therefore the unit of measurement is m/s. The rate of
change is estimated by observing the slope.

Derivative

Assume that for the real numbers x and y, ‘y’ is a function of ‘x’, i.e., for each and
every value of x, there will always be a corresponding value of y. We can write this
equation of x and y relationship as,

y = f(x)

If f(x) is considered as the equation, also termed as linear equation, for a
straight line, then there exist two real numbers m and b such that y = mx + b. In the
slope intercept method, the ‘m’ defines the slope and is determined or evaluated
using the following formula:
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Here the symbol  (Greek letter Delta) is an abbreviation that represents
‘change in’. Therefore y = m x.

Fig. 2.4 The Tangent Line at (x, f(x))

Since the general or common function has no line, hence it has no slope. As
per geometric rules, “the derivative of f at the point x = a is the slope of the
tangent line of the function f at the specified point a” as shown in Figure 2.4.

This is frequently denoted or represented as f  (a) in Lagrange’s notation

and as in  Leibniz’s notation. Because the derivative is defined as the slope

of the linear approximation towards f at the specified point a, therefore the derivative
in conjunction with the value of f at a basically determines or approximates the
best ‘linear approximation’ or the ‘linearization’ of function f near the specified
point ‘a’.

In the domain of ‘f’ there is derivative for each point ‘a’ which defines a
function for sending every specified point ‘a’ to the derivative of ‘f’ at ‘a’, such as

when f(x) = x2, then at that point the derivative function is  
𝑑𝑦

𝑑𝑥
= 2𝑥 .

Another related significant notion is the ‘differential of a function’. For
the real variables x and y, we can state that the derivative of f at x is the slope of
the tangent line for the required graph of f at x. Additionally, the derivative of ‘f’
will be real number because both the source and the target of function f are one-
dimensional. Now if we take the best linear approximation in a single direction
then we can determine a partial derivative denoted as y/x. The total derivative
can be defined as the linearization of f in all directions simultaneously.
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2.2.1 Applications of Differential Calculus Including
Maxima and Minima

Definition 1

The point (c, f (c)) is called a maximum point of y = f (x), if (i)  f (c + h)   f (c),
and (ii)  f (c – h)   f (c) for small h  0. f (c) itself is called a maximum value of
f (x).

Definition 2

The point (d, f (d)) is called a minimum point of y = f (x), if

(i)  f (d +h)   f (d), and

(ii)  f (d – h)   f (d)

for all small h  0.

f (d) itself is called a minimum value of f (x).

Thus, you observe that points P [c – h, f (c – h)] and Q [c + h, f (c + h)], which
are very near to A, have ordinates less than that of A, whereas the points

R[d – h, f (d – h)], and S [d + h, f (d + h)],

Which are very close to B, have ordinates greater than that of B.

Figure 2.5 exhibits these maximum and minima points.

O X

Y

P A Q

R S
B

y=f(x)

Fig. 2.5 Maxima and Minima

We will now prove that at a maximum or minimum point, the first differential
coefficient with respect to x must vanish (in other words, tangents at a maximum
or minimum point is parallel to x-axis, which is, otherwise, evident from
Figure 2.5).

Let [c, f (c)] be a maximum point and let h  0 be a small number.

Since f (c – h)   f (c)

We have, f (c – h) – f (c)  0


( )  ( )

0
f c h f c

h

 



... (2.1)

Again, f (c + h)   f (c)  f (c + h) – f (c)  0
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
( )  ( )

0
f c h f c

h

 
 ... (2.2)

Equation (2.1) implies that
0

( )  ( )
Lim 0,
k

f c k f c

k

 
 [put k = –h]

and Equation (2.2) gives that
0

( )  ( )
Lim 0
k

f c h f c

k

 
 [put k = h]

Thus, 0  
0

( )  ( )
Lim 0
k

f c k f c

k

 



dy

dx
 
 
 

 at x = c is equal to zero.

i.e., f ' (c)  = 0

Again, let [d, f (d)] be a minimum point and let h  0 be a small number.

Since  f (d – h)   f (d)

we have,  f (d – h) – f (d)   0

  
( )  ( )

0
f d h f d

h

 



... (2.3)

Again, f (d + h)  f (d)


( )  ( )

0
f d h f d

h

 
 ... (2.4)

Equations (2.3) and  imply
0

( )  ( )
Lim 0
k

f d k f d

k

 


i.e., f ' (d) = 0

Before we proceed to find out the criterion for determining whether a point is
maximum or minimum, we will discuss the increasing and decreasing functions
of x.

A function f(x) is said to be increasing  (decreasing) if

f (x + c)  f (x)  f (x  – c) [ f (x + c)   f (x)   f (x – c)] for all c   0.

Theorem 2.1

If  f '(x)   0, then f (x) is increasing function of x and if f '(x)  0, then f(x) is
decreasing function of x.

Proof: f ' (x)  0  
0

( )  ( )
Lim 0
x

f x x f x

x 

  



... (2.5)

In case x > 0, put c = x, then Equation (2.5) gives

f(x + c)  f(x)
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In case x < 0, put c = – x, then Equation (2.5) gives

( )  ( )
0

f x c f x

c

 




 f (x – c) – f (x)   0

 f (x)   f (x – c)

Hence, f (x + c)  f (x)  f (x – c)

In other words, f (x)  is increasing function of x.

Suppose that f ' (x)  0

Then,
0

( )  ( )
Lim 0
x

f x x f x

x 

  



... (2.6)

In case x > 0, put c = x, then Equation (2.6) gives

f (x + c) – f (c)  0

i.e., f (x + c)   f (x)

If x < 0, put c = – x, then Equation (2.6) gives

( )  ( )
0

f x c f x

c

 



 f (x – c) – f (x)  0

 f (x)  f (x – c)

So, f (x + c)  f (x)  f (x – c)

This means that f (x) is a decreasing function of x.

Notes:

1. A function f(x) is said to be strictly increasing (strictly decreasing) if

f (x + c) > f (x) > f (x – c) [f(x + c) < f (x) < f (x – c)] for all c > 0.

2. It is seen that f(x) is increasing, if f(x) > f(y), whenever x > y, and f(x)
is decreasing, if

x > y   f(x) < f(y) and conversely.

3. It can be proved as above that a function f(x) is strictly increasing or
strictly decreasing accordingly, if

f '(x) > 0 or f '(x) < 0.

Geometrically, the above theorem means that for an increasing function, tangent at
any point makes acute angle with OX whereas for a decreasing function, tangent
at any point makes an obtuse angle with x-axis. This is shown in Figure 2.6.

Let A be a maximum point (c, f(c)) of a curve y = f(x).

Let P [c – h, f(c – h)] and Q [c + h, f(c + h)] be two points in the vicinity of A
(i.e., h is very small).
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2
O X

Y

Fig. 2.6 Tangent for an Increasing Function Making an Acute Angle with X-axis

Figure 2.7(a) shows the tangent of the function making one obtuse angle with
Y-axis. If 1 and 2 are inclinations of tangents at P and Q respectively, it is quite
obvious from the Figure 2.7(b), that 1 is acute and 2 is obtuse.

Analytically, it is apparent from the fact that function is increasing from P to A and
decreasing from A to Q. So, tan decreases as we pass through A (tan is +ve
when  is acute and it is –ve when  is obtuse).

Y

 Fig. 2.7(a) Tangent of the function          Fig. 2.7(b) Inclinations of
making an Obtuse Angle with Y-axis Tangents at P and Q

Thus, 
dy

dx
= tan is a decreasing function of x. In other words, 

2

2

d y

dx
 0.

Since tan is strictly decreasing function of x, (f(x) is not a constant function), so,
2

2

d y

dx
< 0. Consequently, at a maximum point c (f(c)),

f '' (c)  0.

Similarly, it can be easily seen that if R [d – h, f(d – h)] and S [d + h, f(d + h)] are
two points in the neighbourhood of a minimum point B[d, f(d)], slopes of tangents
as we pass through B increase. (Here 1 is obtuse, so tan < 0 and  is acute,
so tan > 0).

Therefore, for a minimum point (d, f(d)), 
2

2

d y

dx
> 0,  i.e., f '' (d) >0.

Figure 2.8 shows the slopes of the tangent passing through B.
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O X

Y

R S
B

Fig. 2.8 Slopes of the Tangent Passing through B

Notes:
1.  A point (), such that f '() = 0, f ''() 0 and f '''() 0 is

called a point of inflexion.

2. Any point at which 0
dy

dx
 is called a stationary point. Thus, maxima

and minima are stationary points. A stationary point need not be a
maximum or a minimum point (it could be a point of flexion). Value of
f(x) at a stationary point is called stationary value.

We have the following rule for the determination of maxima and minima,
if they exist, of a function y = f(x).

Step I. Putting 0,
dy

dx
 calculate the stationary points.

Step II. Compute 
2

2

d y

dx
 at these stationary points.

In case 
2

2
0,

d y

dx
 the stationary point is a minimum point.

In case 
2

2
0,

d y

dx
the stationary point is a maximum point.

If 
2

2
0

d y

dx
, then compute 

3

3
.

d y

dx

If 
3

3
0

d y

dx
, the stationary point is neither a maximum nor a minmum at that point.

If 
3

3
0,

d y

dx
 find 

4

4
.

d y

dx
 If the fourth derivative is negative at that point, then there is

a maximum and if it is positive then there is a minimum.

Again in case 
4

4
0,

d y

dx
 find the fifth derivative and proceed as above till we get a

definite answer.

Example 2.1: Find the maximum and minimum values of the expression

x3 – 3x2 – 9x + 27.
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Solution: Let y = x3 – 3x2 – 9x + 27

dy

dx
= 3x2 – 6x – 9

For maxima and minima,
dy

dx
= 0

 3x2 – 6x – 9 = 0

 (x– 3) (x + 1) = 0

 x = –1, 3

Now,
2

2

d y

dx
= 6x – 6

At x = –1, 
2

2
12 0,

d y

dx
 so x = –1 gives a maximum point of y.

Again, at x = 3, 
2

2
12 0,

d y

dx
   x = 3 gives a minimum point of y.

Hence, maximum value of y is [(–1)3 – 3 (–1)2 – 9 (–1) + 27]

= 36 + 1 – 3 = 34

While minimum value of y is 33 – 3(3)2 – 9 (3) + 27

= 54 – 27 – 27 = 0

Example 2.2: Find the maximum and minimum values of the function

8x5 – 15x4 + 10x2.

Solution: Let f(x) = 8x5 – 15x4 + 10x2

 f (x) = 40x4 – 60x3 + 20x

For maxima and minima,

f (x) = 0  x = 0, 1, –
2

1

So, these are the points where there can be a maximum or a minimum

Now, f (x) = 160x3 – 180x2 + 20

Thus, f (0) = 20 > 0  There is a minimum at x = 0

Again, f (–
2

1
) = 160 (–

2

1
)3 – 180 (–

2

1
)2 + 20 = –45 < 0

 there is a maximum at x = –
2

1

Since f (1) = 160 – 180 + 20 = 0, we cannot say anything regarding a maximum
or a minimum at x = 1 at this stage. So, we find f (x).

Now, f (x) = 480 x2 – 360 x

But, f (1) = 480 – 360  0

 There is neither a maximum nor a minimum at x = 1

Hence, f (–
2

1
) = 

16

21
 is maximum value and f (0) = 0 is minimum value.
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Example 2.3: Find out maxima and minima of sin x + cos x, when x lies between
0 and 2.

Solution: Let y = sin x  + cos x, 0   x  2

For maxima and minima, 
dx

dy
= 0

 cos x – sin x = 0

 tan x = 1

 x = 
4


or 

4

3
.

Now, 2

2

dx

yd
= – sin x – cos x

At,
2

2

1 1
,

4 2 2

d y
x

dx


     –2 < 0

And at,
2

2

3 1 1
,

4 2 2

d y
x

dx


   2 > 0

So, x = 
4


 gives a maximum and x = 

4

3
gives a minimum point of given

function.

Example 2.4: Find maxima and minima of

sin x + cos 2 x for 0  x  /2.

Solution: Let y = sin x + cos 2x

For maxima and minima 
dx

dy
= 0

 cos x – 2 sin 2x = 0

 cos x(1 – 4 sin x) = 0

 cos x = 0 or sin x = 
4

1

 x = 
2


or x = sin–1

4

1

Now, 2

2

dx

yd
=–sin x – 4 cos 2x

=–sin x – 4 (1 – 2 sin2x)

=8 sin2x – sin x – 4

At, x = /2, 2

2

dx

yd
= 8 – 1 – 4 = 3 > 0

So, x = 
2


 gives a minimum point of sin x + cos 2x



Differential Calculus

NOTES

Self - Learning
128 Material

At, x = 
2

1
2

1
sin ,

4

d y

dx


= 
1 1

8 4
16 4
    
 

 =
1 1

4
2 4
 

 = 
1 17 15

0
2 4 4
   

Consequently, x = sin–1
4

1
 gives  a maximum point of sin x + cos 2x.

Example 2.5: The sum of two numbers is 24. Find the numbers if the sum of their
squares is to be minimum.

Solution: Let x and y be two numbers such that

x + y = 24

Let,     s = x2+ y2 = x2 + (24 – x)2

For maxima and minima, 
dx

ds
= 0

 2x – 2 (24 – x) = 0

 2x = 24  x = 12

Further,
2

2

d s

dx
= 4 > 0

So, x = 12 and y = 12 give minimum value.

Hence, the required numbers are 12 and 12.

2.3 RULES OF DIFFERENTIATION

We will now prove the following results for two differentiable functions f (x) and
g(x).

(1) [ ( ) ( )]
d

f x g x
dx

  = f  (x) ± g (x)

(2) [ ( ) ( )]
d

f x g x
dx

 = f (x) g (x) + f (x) g (x)

(3) 
( )

( )

d f x

dx g x  = 
2

( ) ( ) ( ) ( )

[ ( )]

f x g x f x g x

g x

 

(4) [ ( )]
d

cf x
dx

 = cf (x), where c is a constant

      Where, of course, by f  (x) mean ( )
d

f x
dx

.



Differential Calculus

NOTES

Self - Learning
Material 129

Proof:

(1) [ ( ) ( )]
d

f x g x
dx

= 
δ 0

[ ( ) ( )] [ ( ) ( )]
Lim

δx

f x x g x x f x g x

x

 


    

= 
δ 0

( δ ) ( ) ( δ ) ( )
Lim

δ δx

f x x f x g x x g x

x x

      

= 
δ 0 δ 0

( δ ) ( ) ( δ ) ( )
Lim Lim

δ δx x

f x x f x g x x g x

x x 

   


= f  (x) + g (x)

Similarly, it can be shown that

[ ( ) ( )]
d

f x g x
dx

 = f  (x) – g (x)

Thus, we have the following rule:

The derivative of the sum (or difference) of two functions is equal to the
sum (or difference) of their derivatives.

(2) [ ( ) ( )]
d

f x g x
dx

= 
δ 0

( δ ) ( δ ) ( ) ( )
Lim

δx

f x x g x x f x g x

x

  

= 
   

δ 0

( δ ) ( δ ) ( ) ( ) ( δ ) – ( )
Lim

δx

g x x f x x f x f x g x x g x

x

    

= 
δ 0

( δ ) ( ) ( δ ) ( )
Lim ( δ ). ( )

δ δx

f x x f x g x x g x
g x x f x

x x

                 

= 
δ 0 δ 0

( δ ) ( )
[ Lim ( δ )] Lim

δx x

f x x f x
g x x

x 

     

δ 0 δ 0

( δ ) ( )
Lim ( ) Lim

δx x

g x x g x
f x

x 

         
= g (x) f  (x) + f (x) g(x).

Thus, we have the following rule for the derivative of a product of two
functions:

The derivative of a product of two functions = (the derivative of first
function × second function) + (first function × derivative of second function).

(3)
( )

( )

d f x

dx g x

= 
δ 0

( δ ) ( )

( δ ) ( )
Lim

δx

f x x f x

g x x g x

x





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=
δ 0

( δ ) ( ) ( ) ( δ )
Lim

δ . ( δ ) ( )x

f x x g x f x g x x

x g x x g x

  


= 
δ 0

( )[ ( ) ( )] ( )[ ( ) ( )]
Lim

. ( ) ( )x

g x f x x f x f x g x x g x

x g x x g x

      
  

= 
0 0

1 1 ( )[ ( ) ( )]
[ Lim ] Lim

( ) ( )x x

g x f x x f x

g x x g x x   

   
   

δ 0

( )[ ( ) ( )]
Lim
x

f x g x x g x

x

     

= 
2

1
[ ( ) ( ) ( ) ( )]

[ ( )]
g x f x f x g x

g x
   

= f x g x f x g x

g x

  ( ) ( ) ( ) ( )

[ ( )]2
.

The corresponding rule is stated as under:

The derivative of quotient of two functions=

2

( ) – ( )

( )

Derivative of  Numerator × Denominator Numerator × Derivative of  Denominator

Denominator

(4) d

dx
cf x[ ( )]  = 

0

( ) ( )
Lim
x

cf x x cf x

x 

  


 = 
0

( ) ( )
Lim
x

f x x f x
c

x 

   
  

 = cf (x).

The derivative of a constant function is equal to the constant multi-
plied by the derivative of the function.

Differential Coefficients of Standard Functions

 I. ( )nd
x

dx
 = nxn–1

Proof: Let, y = xn

Then, (y + y) = (x + x)n

 y = (x + x)n – y = (x + x)n – xn

= x
x
x

n
n

1 1F
HG

I
KJ 

L
N
M
M

O
Q
P
P



= x n
x
x

n n x
x

n 1
1

2
1

2

 F
HG

I
KJ 

 F
HG

I
KJ  

L
N
M
M

O
Q
P
P

 ( )

!
...

= 1 2 2( 1)
( ) ( ) ...

2!
 

   n nn n
nx x x x



y

x
= nxn–1 + terms containing powers of x


0

Lim
x

y

x 




= nxn–1

Hence, dy

dx
= nxn–1.
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II. (i) ( )xd
a

dx
 = ax loge a

    (ii) ( )xd
e

dx
 = ex

Proof: (i) Let, y = ax

then, y + y = ax+x

 y = ax+x – ax = ax(ax –1)

 

y

x
= a a

x

x x( )


 1

 dy

dx
= 

0
Lim
x

y

x 




 = 
0

1
Lim

x
x

x

a
a

x



 

 
   

= 

2 2

0

( ) (log )
1 (log ) ... 1

2
Limx

x

x a
x a

a
x 

 
     

  


=  
0

Lim log terms containing x

x
a a x

 
 

= ax log a = ax logea

proves the first part.

(ii) Since loge e = 1, it follows from result (i) that d

dx
ex  = ex.

III. loge
d

x
dx

 = 
1

x

Proof: Let, y = log x

 y + y = log (x + x)

 y = log (x + x) – log x = log
x x

x

F
HG

I
KJ



 

y

x
= 

log 1 F
HG

I
KJ





x
x

x

= 1
1

x

x

x

x

x
 F

HG
I
KJ


log  = 1

1
x

x

x

x x

log
/

F
HG

I
KJ

 


0

Lim
x

y

x 




= 
/

0

1
Lim log 1

x x

e
x

x

x x



 

  
 

= 1

x
eelog  = 1

x

as Lim
n 

n

n
F

HG
I
KJ1

1 = e and logee = 1

Hence,
dy

dx
= 1

x

IV. (sin )
d

x
dx

 = cos x

Proof: Now, y = sin x  y + y = sin (x + x)

 y = sin (x + x) – sin x = 2
2 2

cos sinx
x xF

HG
I
KJ

 
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
y

x


 = 

2
2 2

cos sinx
x x

x

L
NM

O
QP

 


 = cos

sin
x

x
x

x
F

HG
I
KJ 

F

H
G
GG

I

K
J
JJ




2
2

2


0

Lim
x

y

x 




= 
0 0

sin
2Lim cos Lim

2
2

x x

x
x

x
x   

 
             
  

=  
0

sin
2cos Lim

2
x

x

x
x 

 
 
  
  

 = (cos x)(1) = cos x

 dy

dx
= cos x.

 V.  (cos )
d

x
dx

 = – sin x [The proof is similar to that of (IV).]

Notes:

1. The technique employed in the proofs of (I) to (IV) above is known as
‘ab initio’ technique. We have utilized (apart from simple formulas of
Algebra and Trigonometry) the definition of differential coefficient only.
We have nowhere used the algebra of differentiable functions.

2. In (VI) to (XII) we shall utilize the algebra of differentiable functions.

VI.  ( )
d

c
dx

 = 0, where c is a constant.

Proof: Let, y = c = cx0.

Then, dy

dx
= c

dx

dx

0F
HG

I
KJ  = c(0.x0–1) = 0.

VII. (tan )
d

x
dx

 = sec2 x

Proof: Let, y = tan x = sin

cos

x

x

dy

dx
= 

d
dx

x x x
d
dx

x

x

(sin ) cos sin (cos )

(cos )



2

= 2

(cos )(cos ) sin ( sin )

(cos )

x x x x

x

 

s = 
2 2

2

cos sin

cos

x x

x
 = 1

2cos x
 = sec2 x.

VIII. (sec )
d

x
dx

 = sec x tan x

Proof: Let, y = sec x = 1

cos x

Then, dy

dx
= 

d
dx

x
d
dx

x

x

( ) cos ( ) (cos )

(cos )

1 1

2


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= ( ) (cos ) ( sin )

cos

0
2

x x

x

 

= sin

cos

x

x2  = sin

cos cos

x

x x
 1  = tan x sec x.

Before we proceed further, we will introduce hyperbolic functions.

We define hyperbolic sine of x as 
2

x xe e
 and write it as

sin  h x = e ex z 

2
.

Hyperbolic cosine of x is defined to be 
2

x xe e  and is denoted by cos h x.

It can be easily verified that

cos h2 x – sin h2 x = 1

Since (cos h , sin h ) satisfies the equation x2 – y2 = 1 of a hyperbola,
these functions are called hyperbolic functions.

In analogy with circular functions (i.e., sin x, cos x, etc.) we define tan h x,
cot h x sec h x and cosec h x.

Thus, by definition, tan h x = 
xh

xh

cos

sin
, cot h x = 

xhtan

1
,

sec h x = 
xhcos

1
 and cosec h x = 

xhsin

1
.

IX. (sin )
d

h x
dx

 = cos h x

Proof: Before proving this result, we say that

( )xd
e

dx
= – e–x,

Because,
e–x = (e–1)x


( )xd e

dx
= (e–1)x loge (e–1) = e–x(– 1) = – e–x

Now, let y = sin h x = 
1

( )
2

x xe e

Then,
dy

dx
= 

1
( ) ( )

2
  

 
x xd d

e e
dx dx

= 1
[ ( )]

2
 x xe e  = 1

( )
2

x xe e = cos h x.

X. (cos )
d

 h x
dx

 = sin h x

Proof is similar to that of (IX).

XI. (tan )
d

h x
dx

 = sec h2 x

Proof: Let, y = tan h x = 
sin h

cos h

x

x
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dy

dx
= 

d

dx
x x x

d

dx
x

x

(sin h ) cos h (cos h )

(cos h )



2

sin h

= 
      

2

cos   cos   sin   sin   

cos   

h x h x h x h x

h x



= 
cos h sin h

cos h

2 2

2

x x

x


 = 

1

cos h2 x
 = sec h2 x.

XII. (sec )
d

 h x
dx

 = – sec h x tan h x

Proof: Let, y = sec h x = 
1

cos h x

dy

dx
= 

d

dx
x

d

dx
x

x

( ) cos h ( ) (cos h )

cos h

1 1

2



= 
( )(cos h ) sin h

cos h

0
2

x x

x



= 
F
HG

I
KJ
F
HG

I
KJ

sin h

cos h cos h

x

x x

1
 = – tan h x sec h x.

Example 2.6: If y = x2 sin x, find 
dy

dx
.

Solution: This is a problem of the type 
d

dx
(uv).

By applying the formula,

dy

dx
= 

d

dx
x x x

d

dx
x( ) sin (sin )2 2

= 2x sin x + x2 cos x.

Example 2.7: If y = x2 cosec x, find 
dy

dx
.

Solution: We can write y as 
x

x

2

sin

Applying the formula,

y = 
x

x

2

sin

 dy

dx
= 

d
dx

x x x
d
dx

x

x

( ) sin (sin )

sin

2 2

2



= 
2 2

2

x x x x

x

sin cos

sin


.

Chain Rule of Differentiation
This is the most important and widely used rule for differentiation.

The rule states that:

If y is a differentiable function of z, and z is a differentiable function
of x, then y is a differentiable function of x, i.e.,

dy

dx
= 

dy

dz

dz

dx
 .



Differential Calculus

NOTES

Self - Learning
Material 135

Proof: Let y = F(z) and z = f (x).
If x is change in x and corresponding changes in y and z are y and z

respectively, then y + y = F(z + z) and z + z = f (x + x).
Thus, y = F(z + z) – F(z) and z = f (x + x) – f (x)

Now, 

y

x
= 







y

z

z

x



0

Lim
x

y

x 




= 
0 0

Lim Lim
x x

y z

z x   

 
 

 dy

dx
= 

0
Lim
z

y dz

z dx 

 
  

,

Since x  0 implies that z  0

= 
dy

dz

dz

dx
 .

Corollary: If y is a differentiable function of x1, x1 is a differentiable function
of x2, ... , xn–1 is a differentiable function of x, then y is a differentiable
function of x.

And
dy

dx
= 11

1 2
... n

n

dxdxdy

dx dx dx
 .

Proof: Apply induction on n.

Example 2.8: Find the differential coefficient of sin log x with respect to x.

Solution: Put z = log x, then,  y = sin z

Now,
dy

dx
= 

dy

dz

dz

dx
  = cos z

x


1
 = 

1

x
xcos (log ).

Example 2.9: Find the differential coefficient of (i) esin x2
 (ii) log sin x2 with

respect to x.

Solution: (i) Put x2 = y, sin x2 = z and u = esin x2

Then, u = ez, z = sin y and y = x2

By chain rule,
du

dx
= 

du

dz

dz

dy

dy

dx

= ez cos y 2x = esin y cos y 2x = 2xesin x2
 cos x2.

(ii) Let, u = x2

v = sin x2 = sin u
Then, y = log sin x2 = log sin u = log v

So,
du

dx
= 2x, 

dv

du
 = cos u and 

dy

dv
 = 

1

v

Then,
dy

dx
= 

dy

dv

dv

du

du

dx
 

= 
1

2
v

u x cos

= 
1

2
sin

cos
u

u x  = 2x cot u = 2x cot x2.

Note: After some practice we can use the chain rule, without actually going
through the substitutions. For example,
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If y = log (sin x2), then 
dy

dx
 = 

1
2

2
2

sin
cos

x
x x  = 2x cot x2.

Note that we have first differentiated log function according to the formula
d

dt
t(log )  = 

1

t
. Since, here we have log (sin x2), so the first term on differentiation

is 
1

2sin x
.

Now, consider sin x2 and differentiate it according to the formula 
d

du
u(sin )

= cos u. Thus, the second term is cos x2.

Finally, we differentiated x2 with respect to x, so, the third term is 2x.

Then, we multiplied all these three terms to get the answer 2x cot x2. We
will illustrate this quick method by few more examples.

Example 2.10: Find 
dy

dx
, when y = 

3(2 3)xe  .

Solution: Since, d e

dt

t( ) = et and du

du

3
 = 3u2

And d v

dv

( )2 = 2

We get, dy

dx
= 

2(2 3) 23(2 3) (2.1 0)xe x     = 6 2 3 2 2 3 2
( ) ( )x e x 

Example 2.11: Differentiate y = log [sin (3x2 + 5)] with respect to x.

Solution: dy

dx
= 

1

3 5
3 5 6

2
2

sin ( )
cos ( )

x
x x


 = 6x cot (3x2 + 5).

Example 2.12: Differentiate y = tan2 ( 3x  ).

Solution: dy

dx
= 2 3 3

1

2
2tan ( ) sec ( )x x

x
     = 

tan ( ) sec ( )x x

x

 3 32

.

2.4 FUNCTION, CONTINUITY AND
DIFFERENTIABILITY

In Mathematics, you usually deal with two kinds of quantities, namely constants
and variables. A quantity which is liable to vary is called a variable quantity or
simply a variable. Temperature, pressure, distance of a moving train from a
station are all variable quantities. On the other hand, a quantity that retains its
value through all mathematical operations is termed as a constant quantity or a
constant. Numbers like 4, 5, 2.5, , etc., are all constants.

If x is a real variable (i.e., x takes up different values that are real numbers).
Then in quantities log x, sin x, x2, etc., log, sin, square are the functions.

Let us write y = x2.

Therefore, if x = 2, then y = 4, if x = 3, then y = 9, etc.
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Thus, for each value of x, y gets a unique corresponding value and this value is
assigned each time by a certain rule (namely, square). This rule is what we call a
function.

So, in general, by a function of x, we mean a rule that gives us a unique value
corresponding to each value of x.

So, if y =  sin x, then whenever we give a different value to x, we get a
corresponding unique value for y with the assistance of the function sine.

When we are dealing with any function, we simply write

y = f (x)

and say that y is a function of x although to be very correct we should say that y is
the value assigned by the function f corresponding to a value of x. And we call x as
the independent variable and y as dependent variable.

Functions play important role in Mathematics, Physics and Social Sciences.

A function which assigns a fixed value for every value of x is called a constant
function. For example, f (x) = 3 is a constant function, since for any value of x,
f (x) remains equal to 3.

The next important notion is that of the limit of a function. It is quite possible
that f (x) may not be defined for all values of x. As an illustration, consider

f (x) = 
x

x

2 25

5


 . This is a function of x, provided x takes all real values except 5. If

it were defined at x = 5, we would have got f (5) = 
25 25

5 5


  = 

0

0
; a meaningless

quantity. 
0

0
 can take any finite value whatsoever, like 

0

0
 = 5. 

0

0
 = , etc., since

0 × 5 = 0, 0 × = 0. One could perhaps say here that why don’t we cancel
x – 5 first and then put x = 5 to get f (5) equal to 10. There is a lapse in this
argument as x – 5 is zero when x = 5 and cancellation of zero factor is not allowed
in Mathematics, because you would get very absurd results like 1 = 2 and 3 = 15,
etc., since 0 × 1 = 0 × 2 and 0 × 3 = 0 × 15. As a consequence you cannot
determine f (5), the value of f (x) at x = 5. But you should not leave the problem
here. Instead you try to evaluate the value of f (x) when x is very near to 5
(and this will finally lead you to a value that would almost be the value of f (5)).

Thus, you can evaluate f (x) at x = 4.9998 or x = 5.00001. The technique is
quite simple. Cancel x–5 first (this step is perfectly legitimate as x is not equal
to 5); then substitute the value of x. For example, f (4.9998) = 4.9998 + 5 9.9998
and f (5.00001) = 5.00001 + 5 = 10.00001.

We now write down some of the values given to x and the corresponding
values acquired by f (x) in Tables 2.1 and 2.2. In first table values of x are
increasing upto 5 (being always less than 5) and in second table values of x are
decreasing down to 5 (being always greater than 5).



Differential Calculus

NOTES

Self - Learning
138 Material

Table 2.1  Increasing Value of x

Value of x Value of f (x)

4 9

4.235 9.235

4.976 9.976

4.99998 9.99998

4.9999999 9.999999

 

Table 2.2 Decreasing Value of x

Value of x Value of f (x)

7 12

6.31 11.31

5.7984 10.7984

5.2175 10.2175

5.0039 10.0039

5.0000001 10.0000001

 

The above is expressed mathematically as: x tends to 5 from the left
(in Table 2.1) and x tends to 5 from the right (in Table 2.2). In the first case we
write x  5– and in the second case we write x  5+.

Observe the pattern of change in the second column of each table. One could,
after slight concentration see that in the first situation f (x)  10– while in the
second case f (x)  10+. Thus, you are tempted to assert that f (x) approaches
10 (both from left and from right) as x approaches 5. This number 10, we call limit
of f (x) as x approaches 5.

This fact is denoted by, 
5

Lim ( )
x

f x


= 10.

Consider now any small positive number, say, 0.01. When | x – 5 | < 0.01,
i.e., – 0.01 < x – 5 < 0.01 or 4.99 < x < 5.01, then – 0.01 < f (x) – 10 < 0.01

Or, | f (x) – 10 | < 0.01

 (4.99 < x < 5.01 and x  5  f (x) = x + 5

This yields in turn f (x) – 10 = x – 5

So, – 0.01 < f (x) – 10 < 0.01)

One can repeat the above experiment by starting with another small positive
number say 0.00002 and note that whenever | x – 5 | < 0.00002,

Then, | f (x) – 10 | < 0.00002.
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The expected conclusion will be that, however a small positive number  we
may start with, we shall always be able to find a  > 0 such that whenever
| x – 5 | <  then | f (x) – 10 | < . In the above illustration  =  will suffice.

Thus, you are led to the following definition of limit.

You say that Lim ( )
x a

f x


 = l if corresponding to any  > 0, we can find  > 0,

such that | f (x) – l | <  whenever | x – a | < .

Let us evaluate some limits using this definition. Later on we’ll give other con-
venient methods too.

Example 2.13: Evaluate Lim
x a

x


.

Solution: Let  > 0 be any number.

Take,  = . Evidently  > 0.

Now, | x – a | <    | f (x) – a | < 
Since, f (x) = x.

Hence, Lim
x a

a


.

Example 2.14: Evaluate 2Lim
x a

x


.

Solution: Let  > 0 be any number.

Take,  = – 2 + 4   . Clearly  > 0

Now, | x + 2 | = | x – 2 + 4 | < | x – 2 | + 4 <  + 4

So, | x – 2 | <  | x2 – 4 | = | x + 2 |  |x – 2| < d2 + 4  =


Hence, 2
2

Lim
x

x


 = 4.

Example 2.15: Determine 
3

1Lim
x

.
x

Solution: Let  > 0.

Put,  = 
9

1 3


 

Now, | x – 3 | < | x – 3 | < 
9

1 3


 

...(1)

Also, | x – 3 | < – < x – 3

 x > 3 –  = 3 – 9

1 3


 

 = 3

1 3 

 1

x
< 

1 3

3

 
...(2)
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Equations (1) and (2) imply

1 1

3x
= 

3

3

x

x
 < 

9

1 3


 

 1 3 1

3 3

 
  = 

Consequently, 
3

1Lim
x x

 = 
1

3
.

Example 2.16: Find out the limit of 
2 1

1

x

x




 as x  1.

Solution: Let  > 0 be any number.

Take  = .
Now | x – 1 | < | x – 1 | <

 | x + 1 – 2 | <


2 1

2
1

x

x
 <


2

1

1
Lim

1x

x

x




 = 2.

h-Method for Determining Limits
You put a + h in place of x and simplify such that h gets cancelled from denomi-
nator and numerator. Putting h = 0, you get limit of f (x) as x  a.

Example 2.17: Evalute 
2

21

1
Lim

1x

x

x




.

Solution: 
3

21

1
Lim

1x

x

x




= 

3

20

(1 ) 1
Lim

(1 ) 1h

h

h

 

 

= 
2 3

20

3 3
Lim

2h

h h h

h h

 



= 
2

0

3 3
Lim

2h

h h

h

 


= 
3

2
.

Expansion Method for Evaluating Limits
This method is applicable to the functions which can be expanded in series. Fol-
lowing expansions are often utilized.

(1) (1 + x)n = 1 + nx + 
2 3( 1) ( 1)( 1)

2! 3!

n n x n n n x
 + . . . provided | x | < 1

and n is any real number.

Note: If n is a positive integer, the expansion on RHS has finite number of terms
only.
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(2) log (1 + x) = x – 
2 3 4

. . .
2 3 4

x x x
    provided | x | < 1.

(3) ex = 1 + x + 
2 3

. . .
2! 3!

x x

(4) sin x = x – 
3 5

. . .
3! 5!

x x

(5) cos x = 1 – 
2 4

. . .
2! 4!

x x

The method will be illustrated by means of the following examples.

Example 2.18: Show that 
0

sin
Lim
x

x

x
 = 1.

Solution:
0

sin
Lim
x

x

x
= 

3 5

0

. . .
3! 5!Lim

x

x x
x

x

 

= 
2 4

0
Lim 1 . . .

3! 5!x

x x



 
   

 
 = 1.

Note: The result of Example 2.6 shall be frequently used later on.

Example 2.19: Evaluate 
0

Lim
x x

x

e e

x





 .

Solution: 
0

Lim
x x

x

e e

x







= 

2 3 2 3

0

1 . . . 1 . . .
2! 3! 2! 3!

Lim
x

x x x x
x x

x

   
            

   

= 

3 5

0

2 ...
3! 5!

Lim
x

x x
x

x

 
   

 

= 
2 4

0
Lim 2 1 . . .

3! 5!x

x x



 
    

 

= 2.
Notes:
       1. 

0
Lim ( )
x

f x


= l if and only if

           Lim ( )
x a

f x
  = l = Lim ( )

x a
f x

  .

If one of the two equalities fails to hold, then we say that limit of f (x) as
x  a does not exist.

Consider 
0

1Lim
x x

. It can be easily seen that, if x  0 –, then 
1

x
  – 

while, if x  0+, then 
1

x
  . So, 1

0
Lim

xx
 does not exist.

2. If Lim
x a

 f(x) exists, then it must be unique.
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Example 2.20: f(x) is defined as under

f (x) = 0         for x < 0

= 1

2
 – x  for x > 0.

Show that 
2

( )Lim
x

f x


 does not exist.

Solution:
0

Lim ( )
x

f x
 

= 
0

(0 )Lim
h

f h


  = 0.

Also,
0

( )Lim
x

f x
 

= 
0

(0 )Lim
h

f h
 

  = 
0

1
Lim

2h
f h



  
 

=  
1

2

Since, 
0 0

Lim ( ) Lim ( )
x x

f x f x
   

 ,

           
0

Lim ( )
x

f x


 does not exist.

Notes: 1. If Lim ( )
x a

f x


 = l and Lim ( )
x a

g x


 = m, then

(i) Lim [ ( ) ( )]
x a

f x g x


  = l ± m

(ii) Lim[ ( ) ( )]
x a

f x g x


 = lm

(iii) 
( )

Lim
( )x a

f x

g x
 = 

l

m
 provided m  0

(iv) 
( )Lim[ ( )]g x

x a
f x


 = lm, provided lm is defined.

2. If f (x) < g (x) for all x, then Lim ( ) Lim ( )
x a x a

f x g x
 

 .

Continuous Functions

We have seen in Example 2.2 that 2

2
Lim
x

x


= 4, which is same as value of x2 at x = 2.

Whereas, in Example 2.4, 
2

1

1
Lim

1x

x

x




 = 2, but the function itself is not defined as

x = 1.

Again consider, f (x) = 
2 9

3

x

x
, x  3

= 1,    x = 3

In this case, 
2

3

9
Lim

3x

x

x




= 6, and f (3) = 1.

Thus, a function may possess a limit as x  a but it may or may not be
defined at x = a. Even if it is defined at x = a, its value may not be equal to its limit.
This prompts us to define the following type of functions.

A function f (x) is said to be continuous at x = a, if Lim ( )
x a

f x


 = f (a).
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In other words,  f (x) is said to be continuous at x = a, if given  > 0, there
exists  > 0, such that |  f (x) – f (a) | < , whenever | x – a | < .

Example 2.21: Check for continuity at x = 0, the function (x) = | x |.

Solution: By definition of absolute value, we can write.
f (x) = x for all x  0

= – x for all x < 0
We note that, f (0) = 0

Further,
0

Lim ( )
x

f x
 

= 
0

Lim (0 )
h

f h


  = 
0

Lim ( )
h

h


   = 0

Also,
0 0

Lim ( ) Lim (0 )
x h

f x f h
  

 = 
0

Lim
h

h


 = 0.

Thus,
0

Lim ( )
h

f x


= 0 = f (0)

Hence,  f (x) is continuous at x = 0.

2.5 MAXWELL DISTRIBUTION

For a closed system involving only pressure-volume work, the four fundamental
equations are

dE = TdS – PdV
dH = TdS + PdV
dA = – PdV – SdT
dG = VdP – SdT

Since dE, dH, dA and dG are exact differentials, the mixed partial second
order derivatives of the coefficients of the two terms on the right are equal.
Applying this criterion to the equation, Maxwell’s equations are obtained.

Now, dE = TdS – PdV


V

E

S

 
  

= T and
S

E

V

 
  

 = – P

Taking the second derivative,

V S

E

V S

    
      

=
S

T

V

 
  

and,
V

E

S V

    
     

=
V

P

S

   

Since the mixed partial derivatives are equal,

V S

E

V S

    
      

=
V

E

S V

    
     

Hence,
S

T

V

 
  

=
V

P

S

   
...(2.7)

The enthalpy change dH = TdS + VdP


P

H

S

 
  

= T and
S

H

P

 
  

 = V
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Taking second derivatives

P S

H

P S

   
     

=
S

T

P

 
  

and
S P

H

S P

    
      

 = 
P

V

S

 
  

Since the mixed partial derivatives are equal,

S

T

P

 
  

=
P

V

S

 
  

...(2.8)

The Helmholtz free energy change,

dA = – PdV – SdT


V

A

T

 
  

= – S and
T

A

V

 
  

 = – P

Taking second derivatives,

V T

A

V T

    
      

=
V

S

V

   
and

T V

A

T V

   
     

 = 
V

P

T

   

Since the mixed partial derivatives are equal,

T

S

V

 
  

=
V

P

T

 
  

...(2.9)

Gibbs free energy change dG = VdP– SdT


P

G

T

 
  

= – S and
T

G

P

 
  

 = V

Taking second derivative,

P T

G

P T

   
     

=
T

S

P

   
and

T P

G

T P

   
     

 = 
P

V

T

 
  

Since the mixed partial derivatives are equal, then

T

S

P

   
=

P

V

T

 
  

...(2.10)

These four relations are known as Maxwell’s relations. These relations are
quite useful because they help to express any thermodynamic property of a system
in terms of easily measured physical quantities.

Check Your Progress

1. Define the term differentiation.

2. State the chain rule of differentiation.

3. Define the variable quantity.

4. How Maxwell’s equation is obtain?

2.6 BOHR RADIUS

The Bohr radius is a physical constant, approximately equal to the most probable
distance between the nucleus and the electron in a hydrogen atom in its ground
state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its
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value is 5.29177210903×10–¹¹ m. In the Bohr model for atomic structure, put
forward by Niels Bohr in 1913, electrons orbit a central nucleus under electrostatic
attraction. The original derivation posited that electrons have orbital angular
momentum in integer multiples of the reduced Planck constant, which successfully
matched the observation of discrete energy levels in emission spectra, along with
predicting a fixed radius for each of these levels. In the simplest atom, hydrogen,
a single electron orbits the nucleus, and its smallest possible orbit, with the lowest
energy, has an orbital radius almost equal to the Bohr radius. (It is not exactly the
Bohr radius due to the reduced mass effect. They differ by about 0.05%.)

The Bohr model of the atom was superseded by an electron probability
cloud obeying the Schrödinger equation as published in 1926. This is further
complicated by spin and quantum vacuum effects to produce fine structure and
hyperfine structure. However, the Bohr radius formula remains central in atomic
physics calculations, due to its simple relationship with fundamental constants.

In Schrödinger’s quantum-mechanical theory of the hydrogen atom, the
Bohr radius represents the most probable value of the radial coordinate of the
electron position, and therefore the most probable distance of the electron from
the nucleus.

The Bohr radius is defined as following formula

Where as

  is the Reduced Planck Constant

 is the Permittivity of Free Space,

h is the Planck Constant,

m
e 
is the Mass of Electron,

e is the Elementary Charge,

c is the Speed of Light in Vacuum,

 is the Fine-Structure Constant.

The CODATA (Committee on Data of the International Science Council)
value of the Bohr radius (in SI units) is 5.29177210903(80) ×10–11 m.

Hydrogen Atom and Similar Systems

The Bohr radius including the effect of reduced mass in the hydrogen atom is given
by

Where  is the reduced mass of the electron–proton system

(with m
p
 being the mass of proton). The use of reduced mass is a generalization of

the classical two- body problem when we are outside the approximation that the
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mass of the orbiting body is negligible compared to the mass of the body being
orbited. Since the reduced mass of the electron–proton system is a little bit smaller
than the electron mass, the ‘Reduced’ Bohr radius is slightly larger than the Bohr

radius meter).

This result can be generalized to other systems, such as Positronium (an
electron orbiting a positron) and Muonium (an electron orbiting an anti-muon) by
using the reduced mass of the system and considering the possible change in charge.
Typically, Bohr model relations (radius, energy, etc.) can be easily modified for
these exotic systems (up to lowest order) by simply replacing the electron mass
with the reduced mass for the system (as well as adjusting the charge when
appropriate). For example, the radius of Positronium is approximately 2a

0
, since

the reduced mass of the Positronium system is half the electron
mass

A hydrogen-like atom will have a Bohr radius which primarily scales as
r

Z
 =a

0
/Z  the number of protons in the nucleus. Meanwhile, the reduced mass (

only becomes better approximated by m
e
 in the limit of increasing nuclear mass.

These results are summarized in following equation

A Table of Approximate Relationships is given below.

2.7 EXACT AND INEXACT DIFFERENTIAL IN
THERMODYNAMICS AND THEIR
APPLICATIONS

In thermodynamics, when dQ is exact, the function Q is a state function of the
system. Generally, neither work nor heat is a state function. An exact differential is
sometimes also called a ‘Total Differential’, or a ‘Full Differential’, or, in the study
of differential geometry, it is termed an exact form.

For a state function, each infinitesimal step that we add together by the
process of integration is called an exact differential. When integrated, the sum of
exact differentials is a value that is independent of path, depending only on the
initial and final states.
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State functions depend only on the state of the system. Quantities whose
values are independent of path are called state functions, and their differentials are
exact (dP, dV, dG,dT...). Quantities that depend on the path followed between
states are called path functions, and their differentials are inexact (dw, dq).

A first-order differential equation (of one variable) is called exact, or an
exact differential, if it is the result of a simple differentiation. The equation P(x, y)
y2  + Q(x, y) = 0, or in the equivalent alternate notation P(x, y) dy + Q(x, y) dx
= 0, is exact if P

x
(x, y) = Q

y
(x, y).

Determine whether the following differential is exact or inexact. If it is exact,
determine z=z(x,y). If this equality holds, the differential is exact. Therefore,
dz=(2x+y)dx+(x+y)dy is the total differential of z=x2+xy+y2/2+c.

In multivariate calculus, a differential is said to be exact or perfect, as
contrasted with an inexact differential, if it is of the form dQ, for some differentiable
function Q.

Definition

We work in three dimensions, with similar definitions holding in any other number
of dimensions. In three dimensions, a form of the type

is called a differential form. This form is called exact on a domain D 3 in
space if there exists some scalar function Q = Q(x,y,z) defined on D such that

Throughout D. This is equivalent to saying that the vector field (A, B, C) is
a conservative vector field, with corresponding potential Q.

Note: The subscripts outside the parenthesis indicate which variables are being
held constant during differentiation. Due to the definition of the partial derivative,
these subscripts are not required, but they are included as a reminder.

One Dimension

In one dimension, a differential form

                                    A(x)dx

Is exact as long as A has an antiderivative (but not necessarily one in terms
of elementary functions). If A has an antiderivative, let Q be an antiderivative of A
and this Q satisfies the condition for exactness. If A does not have an antiderivative,
we cannot write dQ=A(x) dx and so the differential form is inexact.

Two and Three Dimensions

By symmetry of second derivatives, for any ‘Well-Behaved’ (non-
pathological) function Q, we have

Hence, it follows that in a simply-connected region R of the xy-plane, a
differential
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Is an exact differential if and only if the following holds:

For three dimensions, a differential

Is an exact differential in a simply-connected region R of the xyz-coordinate
system if between the functions A, B and C there exist the relations:

These conditions are equivalent to the following one: If G is the graph of this
vector valued function then for all tangent vectors X,Y of the surface G then s(X,
Y) = 0 with s the symplectic form.

These conditions, which are easy to generalize, arise from the independence
of the order of differentiations in the calculation of the second derivatives. So, in
order for a differential dQ, that is a function of four variables to be an exact
differential, there are six conditions to satisfy.

In summary, when a differential dQ is exact:

 the function Q exists;

  independent of the path followed.

In thermodynamics, when dQ is exact, the function Q is a state function of
the system. The thermodynamic functions U, S, H, A and G are state functions.
Generally, neither work nor heat is a state function. An exact differential is sometimes
also called a ‘total Differential’, or a ‘full Differential’, or, in the study of
differential geometry, it is termed an exact form.

Partial Differential Relations

If three variables, x, y and z are bound by the condition F(x,y,z) = Constant for
some differentiable function F(x,y,z), then the following total differentials exist

Substituting the first equation into the second and rearranging, we obtain
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Since y and z are independent variables, dy and dz may be chosen without
restriction. For this last equation to hold in general, the bracketed terms must be
equal to zero.

Reciprocity Relation

Setting the first term in brackets equal to zero yields

A slight rearrangement gives a reciprocity relation,

There are two more permutations of the foregoing derivation that give a
total of three reciprocity relations between x, y and z. Reciprocity relations show
that the inverse of a partial derivative is equal to its reciprocal.

Cyclic Relation

The cyclic relation is also known as the cyclic rule or the Triple product rule.
Setting the second term in brackets equal to zero yields

Using a reciprocity relation for    is used with subsequent rearrangement,

a standard form for implicit differentiation is obtained:

An ‘Inexact Differential’ or ‘Imperfect Differential’ is a type of
differential used in thermodynamics to express changes in path dependent quantities.
In contrast, an integral of an exact differential (a differential of a function) is always
path independent since the integral acts to invert the differential operator.
Consequently, a quantity with an inexact differential cannot be expressed as a
function of only the variables within the differential, i.e., its value cannot be inferred
just by looking at the initial and final states of a given system. Inexact differentials
are primarily used in calculations involving heat and work because they are path
functions, not state functions.

Definition

An inexact differential is commonly defined as a differential form  for which

there is no corresponding function f such that:  . More precisely, an
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inexact differential is a differential form that cannot be expressed as the differential
of a function. In the language of vector calculus, for a given vector field F,

 is an inexact differential if there is no function f such that

The fundamental theorem of calculus for line integrals requires path
independence in order to express the values of a given vector field in terms of the
partial derivatives of another function that is the multivariate analogue of the
antiderivative. This is because there can be no unique representation of an
antiderivative for inexact differentials since their variation is inconsistent along
different paths. This stipulation of path independence is a necessary addendum to
the fundamental theorem of calculus because in one-dimensional calculus there is
only one path in between two points defined by a function.

First Law of Thermodynamics

Inexact differentials are known especially for their presence in the first law of
thermodynamics:

Instead of the differential symbol d, the symbol  is used instead, a
convention which originated in the 19th century work of German mathematician
Carl Gottfried Neumann, indicating that Q (heat) and W (work) are path-
dependent, while U (internal energy) is not.

Internal energy U is a state function, meaning its change can be inferred just
by comparing two different states of the system (independently of its transition
path), which we can therefore indicate with U

1 
and U

2
. Since we can go from

state U
1
 to state U

2 
either by providing heat ΔQ = U

2 
– U

1
 or work ΔW = U

2 
–U

1
,

such a change of state does not uniquely identify the amount of work W done to
the system or heat Q transferred, but only the change in internal energy ΔU.

Heat and Work

A fire requires heat, fuel, and an oxidizing agent. The energy required to overcome
the activation energy barrier for combustion is transferred as heat into the system,
resulting in changes to the system’s internal energy. In a process, the energy input to
start a fire may comprise both work and heat, such as when one rubs tinder (work)
and experiences friction (heat) to start a fire. The ensuing combustion is highly
exothermic, which releases heat. The overall change in internal energy does not
reveal the mode of energy transfer and quantifies only the net work and heat. The
difference between initial and final states of the system’s internal energy does not
account for the extent of the energy interactions transpired. Therefore, internal energy
is a state function (i.e., exact differential), while heat and work are path functions
(i.e., inexact differentials) because integration must account for the path taken.

Integrating Factors

It is sometimes possible to convert an inexact differential into an exact one by
means of an integrating factor. The most common example of this in thermodynamics
is the definition of entropy:
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In this case, Q is an inexact differential, because its effect on the state of
the system can be compensated by W. However, when divided by the absolute
temperature and when the exchange occurs at reversible conditions, it produces
an exact differential: the entropy S is also a state function.

2.8 INTEGRAL CALCULUS

Definite integration is a significant and an essential constituent of integral calculus.
Both the integrations – indefinite and definite are interrelated processes.
Fundamentally, the indefinite integration provides the basis for definite integral.

Definitions of Definite Integral

1. The definite integral of a function has a unique value. A definite integral is
denoted by,

In the above notation, ‘a’ is termed as the lower limit of the integral while
‘b’ is termed as the upper limit of the integral.

2. When it is definite or specific that how to start and end the process of
integration, i.e., the upper and lower limits of integration (b and a) are
defined then the integral is termed as ‘Definite Integral’. A definite integral
is denoted by,

3. Principally, the definite integral of the form is evaluated

either as,

1. The limit of the sum.

Or as,

2. The anti-derivative ‘F’ for the interval [a, b].

When we consider the case as anti-derivative ‘F’ for the interval [a, b],
then its evaluated value is defined as the difference between the values of
‘F’ at the specified end points, to be precise F(b) – F(a).

2.8.1 Evaluation of Definite Integral as the Limit of a
Sum

Assume that ‘f’ is a continuous function that is specified on close by interval [a, b].
Let the function has all non-negative values. In this case the graph of the function
will be a curve above the x-axis.



Differential Calculus

NOTES

Self - Learning
152 Material

The definite integral certainly will be , which is the specified

area bounded by the curve ‘y = f(x)’ with x = a, x = b on the x-axis. For estimating
the area between the curve, we evaluate the segment PRSQP along with,
x = a, x = b and the x-axis (Refer Figure 2.9).

Fig. 2.9 Area Between the Curve

The interval [a, b] is further divided into ‘n’ number of equivalent subintervals
which are represented or denoted by,

 [x
0
, x

1
], [x

1
, x

2
], . . . . . . . . ., [x

r – 1
, x

r
], . . . . . . . , [x

n – 1
, x

n
]

Here,

x
0
 = a,     x

1
 = a + h,     x

2
 = a + 2h,  . . . . . . . ,     x

r
 = a + rh

And,

x
n
 = b = a + nh or n = (b – a)/h

As per, n   ,   h    0.

The segment PRSQP is defined as the sum of n subsegments and subsegment
is defined on the basis of subintervals [x

r – 1
, x

r
], where r = 1, 2, 3, 4, . . . . , n.

From Figure 2.9, we can state that,

ABLC (Area of the Rectangle)    ABDCA (Area of the Segment)  
ABDM (Area of the Rectangle)  …(2.11)

Evidently, since,

[x
r
 – x

r – 1
]   0,   specifically as,   h    0

Consequently, with this condition all the three regions that are specified in
the Equation (2.11) are considered almost equivalent to each other.

Accordingly, we can define the sum of intervals as follows.

…(2.12)

And, …(2.13)
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The term ‘s
n
’ is used to represent the sum of the regions for all the lower

rectangles while the term ‘S
n
’ is used to represent the sum of the regions for all the

upper rectangles considered over the subintervals, [x
r – 1

, x
r
], where r = 1, 2, 3, 4,

. . . . , n.

Now, taking into account the Equation (2.13) inequality we can define the
following state for an arbitrary or random subinterval [x

r – 1
, x

r
],

s
n
    Area of the Segment PRSQP    S

n
…(2.14)

When ‘n    ’ turn out to be narrow then we assume that the limiting
values of Equations (2.12) and (2.13) will be similar or equivalent in both the
conditions. Hence, under this situation the limiting value which is common will be
the required segment under the curve.

Symbolically, the common limiting value can be expressed as,

    = Area of the Segment PRSQP

    …(2.15)

The area specified under the segment PRSQP can also be defined as the
limiting value of some other specific area which exists between the rectangles
either below the stated curve or above the stated curve. We limit the condition and
will consider only those rectangles which are of height equivalent to the stated
curve and are at the left side edge of every subinterval.

Therefore, in limit form the Equation (2.15) can be expressed as,

Or,

…(2.16)

Here,   as n    .

Precisely, the Equation (2.16) is defined as the definition of the definite
integral as the ‘limit of sum’.

Definition. The value of the definite integral of a function for some precise interval
is specifically determined on the basis of function and the interval, but it will not
consider the variable of integration selected for representing the independent
variable.

Therefore, if the independent variable is symbolized through ‘t’ or ‘u’ in
place of ‘x’ then the integral of Equation (2.15),
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Will be represented as,

Subsequently, the variable of integration will be termed as a ‘dummy
variable’.
Example 2.22: Evaluate the given definite integral of the form as the limit of a
sum,

Solution: Follow the steps given below.
According to the definition,

For  h = (b – a)/n.
Hence we can state that,
a = 0,     b = 2,     f(x) = x2 + 1,       h = (2 – 0)/n = 2/n
Therefore,

= 2  [1 + (4/3)] = 14/3

2.8.2 Fundamental Theorems of Calculus – Area
Function

The fundamental theorems of calculus defines how to evaluate the area of the
segment that is bounded by the curve y = f(x).
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Area function can be defined with regard to the Equation (2.15),

It states the area of the segment that is bounded through the curve y = f(x),
the coordinates x = a and x = b on the x-axis. Consider that ‘x’ is a specific point
in the interval [a, b] as shown in Figure 2.10.

Then, will specifically represent the area that is on the left-

hand side of ‘x’ denoted as ‘A(x)’, as shown in Figure 2.10.

Fig. 2.10 Area Function

Consider that f(x)  0 for x  [a, b]. The area of the stated segment is
determined on the value of ‘x’, i.e., the area of the stated segment is a function of
‘x’ denoted by A(x).

Therefore, the function of ‘x’ denoted by A(x) is termed as the ‘Area
Function’ and is represented as equation,

…(2.17)

On the basis of Equation (2.17) the basic two fundamental theorems of
integral calculus can be stated as given below.

Theorem 2.2: Let ‘f’ be a continuous function on the closed interval [a, b] and let
A(x) be the area function. Then,

A(x) = f(x), for all x  [a, b]

Theorem 2.3: Let ‘f’ be a continuous function defined on the closed interval [a, b]
and ‘F’ be the anti-derivative of ‘f’. Then,

Theorem 2.3 is considered as significant theorem of integral calculus as it
helps in evaluating the definite integral using anti-derivative.

Example 2.23: Evaluate the given definite integral of the form,
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Solution: Follow the steps given below.
Consider that,

D = 

Because,

Hence, applying the Theorem 2 of integral calculus we obtain,
D = F (3) – F (2)
    = (27/3)  –  (8/3)
    = 19/3

Evaluation of Definite Integrals by Substitution Method

For evaluating the definite integrals using the substitution method follow the steps
given below.

Step 1. To evaluate the definite integral of the form by the substitution
method we first define it to the known indefinite integral form.

Step 2. Reduce the definite integral form to the indefinite integral form by substituting
‘y = f(x)’ or ‘x = g(y)’, i.e., the integer is without upper and lower limits.

Step 3. Now integrate the new obtained integrand with reference to new variable
but no need to mention or use the constant of integration.

Step 4. Again substitute for the new variable to obtain the answer in the form of
original expressions of the variable.

Step 5. Use this answer obtained in Step 4, to find the values for the specified
limits of the integral, i.e., evaluate the difference of values at the specified upper
limit and the lower limit.

Example 2.24: Evaluate the given definite integral of the form using substitution,

Solution: Follow the steps given below.

Let,  t = x5 + 1 and then   dt = 5x4 dx

Hence,

       

Consequently,
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2.8.3 Properties of Definite Integrals

Following are some significant properties of definite integrals using which we can
easily evaluate the definite integrals.

Property 1. 

To evaluate we substitute as ‘x = t’.

Property 2. 

Specifically, 

Assume that ‘F’ be the anti-derivative of ‘f’.
As per the Theorem 2 of integral calculus,

When a = b then we can state that,

Property 3. 

Assuming that ‘F’ be the anti-derivative of ‘f’. Then we can state,

…(2.18)

       …(2.19)

…(2.20)

We add Equations (2.19) and (2.20) to obtain,

Hence the Property 3 is proved.
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Property 4. 

Consider that t = a + b – x. Thus, dt = – dx.
While x = a, t = b and also when x = b, t = a.
We can state the definite integral as,

 

           …..By Property 2

     …..By Property 1

Property 5. 

Consider that, when t = a – x, then dt = – dx.
While x = 0, t = a and also when x = a, t = 0.
The proof is similar to Property 4.

Property 6. 

Applying Property 3, we obtain,

Assume that,
t = 2a – x for the right-hand side second integral.

Thus, dt = – dx.
While x = a, t = a and also when x = 2a, t = 0 and precisely x = 2a – t.
Consequently, the right-hand side second integral has the form,

  

   

Therefore,

Integration by Parts

In calculus and in mathematical analysis, integration by parts or partial
integration method is used for finding the integral of a product of functions
using expressions of the integral, specifically derivative and anti-derivative.

The rule is simply derived by integrating the product rule of differentiation.
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Definitions

Following are the standrard definitions for the process integration by parts.

1. The integration by parts or partial integration process is specifically
used to find the integral of a product of functions.

If   u = u(x) and du = u(x) dx
When   v = v(x) and dv = v(x) dx 

Then integration by parts states that,

Or more precisely,

2. Sometimes an integration is the product of ‘2’ functions which can be
integrated using Integration by Parts.

If u and v are functions of x, then using the product rule for differentiation we
obtain the following equation,

Reorganizing the equation we have,

Integrating with reference to ‘x’ the following formula is obtained for
integration by parts:

Precisely, we use the function ‘u’ for the reason that ‘du/dx’ can be simple
than ‘u’. When in an equation the expression contains mix functions that are to be
integrated then we can define these mix functions as ‘u’ to make the integration
process easy, for example we can define ‘u’ as,

u = ln x,  u = xn,u = enx,   etc.
3. If ‘u’ and ‘v’ are any two differentiable functions of a single variable

‘x’ then through the product rule of differentiation,

When both the sides are integrated then we obtain,
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Alternatively,    …(2.21)

Consider that,
u = f(x)    and     dv/dx = g(x)

Then,
du/dx = f (x)   and    v = +”g(x) dx

Consequently, we can express Equation (2.23) as follows,

Specifically,

Consider that if first function is ‘f’ and the second function is ‘g’ then we
can state,

Integral of the Product of Two Functions = [First Function] × [Integral
of Second Function] – Integral of [(Differential Coefficient of First Function)
× (Integral of Second Function)]

Remember that integration by parts as product of functions can be applied
only to specific cases and is not applicable to all.

For example, integration by parts as product of functions will not evaluate
the expression of the form  because there is not any function which has
required derivative as

Example 2.25: Evaluate the given integral using integration by parts,

Solution: Follow the steps given below.
Consider that u = x  and dv = sin 2x dx.
Since u = x  then  du = dx.
On integrating dv = sin 2x dx gives,

 Now we substitute these expressions into the formula of integration by
parts as follows.

Substitute the following in the above expression,

u = x,    dv = sin 2x dx,    du = dx,    v 



Differential Calculus

NOTES

Self - Learning
Material 161

We obtain,

Therefore,

 

 

Where K is a constant.

2.8.4 Reduction Formulae

In integral calculus, the integration by reduction formula is a specific technique
or method of integration of the form recurrence relation.

Typically, a Reduction Formula is used to solve an integral by reducing it
to an easier integral form and then further reducing it to the more easier form, and
so on.

Definition: A reduction formula for a specified integral is an integral of the
form which is equivalent in form as the specified integral but of a lower degree
or order.

Characteristically, the reduction formula is used for evaluating those specified
integrals which cannot be approximated otherwise. The specified integral is
evaluated by repeatedly using the reduction formula.

Definition: For some specified integrals, both definite and indefinite, typically
the function to be integrated, i.e., the ‘integrand’ comprises of a product of
two functions, where one function contains an unspecified or indefinite integer
‘n’. To evaluate such a specified integral in expressions of similar analogous integral
we use the method integration by parts where ‘n’ is replaced by either (n – 1)
or at times by (n – 2). The correlation between these two integrals is termed as
‘reduction formula’. We can determine the original integral in terms of ‘n’ by
repeatedly using this reduction formula.

Definition. Reduction formulae are certain integrals which contain some
variable ‘n’ in addition to the standard variable ‘x’, generally obtained by means
of integration by parts. The notation I

n
 is used for denoting reduction formulae.

Following are some commonly used significant reduction formulae for
trigonometric integrals.
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Specifically, we can state that,

Reduction Formula for Sine

Reduction Formula for Cosine

Reduction Formula for Natural Logarithm

Let us understand the concept of reduction formula with the help of following
example in which an integral is solved by reducing it to the form of more easy
integral.

Let,

   

This expression is simplified with regard to integration by parts as follows.

 

      I
n
 = xnex – nI

n–1

Thus, we obtain the above reduction formula.
Similarly, when,

    

Again this expression is also simplified with regard to integration by parts as
follows.

   

Applying the trigonometric identity tan2 () = sec2 () – 1, we obtain,
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Rearrange or reorganize to obtain,

When we obtain n = 1 or n = 2 then we stop integrating, where ‘n’ is either
odd or even, respectively.

Example 2.26: Evaluate the reduction formula for the given integral of the form,

 (Where n is a constant)

Solution: Follow the steps given below.

Use the form udv.

Select u = (x2 + 1)n    and    dv = dx
Then du = n (x2 + 1)n–1 2x   and   v = x

Therefore,

Rearrange the expression to obtain,

Therefore, we obtain the following two recursive formulae.

11.

And,

Here Formula 1 is for positive ‘n’ while Formula 2 is for negative ‘n’.

Bernoulli’s Formula

Bernoulli equation is termed as the nonlinear differential equations of the
first order and is represented as,

y  + a (x) y = b (x) ym
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Here a (x)  and  b (x) are termed as the continuous functions.

When m = 0, then the equation is defined as linear differential equation
while when m = 1 then the equation is defined as separable.

Generally, when m  0, 1 then the Bernoulli equation is converted to linear
differential equation using the method change of variable,

z = y1–m

The function z(x) will be defined as differential equation of the form,

z  + (1 – m) a (x) z = (1 – m) b (x)

Example 2.27: Evaluate the general solution of the equation y  –  y = y2 ex.

Solution: Follow the steps given below.
Assume that m = 2 for the specified Bernoulli equation and then apply the

substitution as follows.

z = y 1–m = 1/y

Differentiating the equations on both sides, considering ‘y’ in the right-hand
side expression as composite function of ‘x’, we have

Now the original differential equation is divided both sides by y2, we have,

Substituting z and z , we obtain,
 – z – z = ex

 z  + z = – ex

Then obtain the linear equation for the specified function z(x). For solving
we apply the integrating factor as follows,

Consequently, the linear equation has the general solution as follows,

When we return to the function y(x), we have the following implicit
expression of the form,

This can be expressed as,
y (C – x) = ex

Therefore,

y (C – x) = ex,     y = 0
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2.9 FUNCTIONS OF SEVERAL VARIABLES

In mathematics, a function of several real variables also sometimes termed as
the real multivariate function can be defined as a function having more than one
argument in which all the arguments must be real variables. This concept or notion
gives the concept or notion of a real variable function to function of several variables.
Characteristically, the ‘Input’ variables include real values, while the ‘Output’
variable, also termed as the ‘Value of the Function’, can be either ‘Real’ or
‘Complex’.

Typically, as per the definition, “The domain of a function of n variables is
considered as the subset of n specifically for which the function is defined.
Generally, the domain of a function of several real variables is assumed to contain
a non-empty open subset of n.”

The term single variable refers to the functions that typically map the real
numbers  to , occasionally termed as the ‘Real Functions of One Variable’,
implying that for the single real number ‘Input’ there will be the single real number
‘Output’.

Additionally, if the function is considered as the real number which takes the
vector form, then it can be perceived as functions f:   3 which specifies that
for each and every input value we have a precise position in space. Now if the
function of several variables is considered, then it specifies that for the ‘Several
Input Variables’, the functions can be perceived as f:   n.

Fundamentally, the function of ‘n’ variables is specifically termed as
‘Functions of Several Variables’.

Essentially, a real valued function of n real variables is referred as a function
that typically takes as input n real numbers, generally represented by means of
the variables x

1
, x

2
, …, x

n
, for generating another real number, in which the value of

the function is normally denoted by f(x
1
, x

2
, …, x

n
).

Image of a Function

The image of a function f(x
1
, x

2
, …, x

n
) is referred as the set of all values of f when

the n-tuple (x
1
, x

2
, …, x

n
) occurs in the whole or full entire domain of f. For a

continuous real valued function having a connected domain, the image is defined
to be either an interval or a single value. In the latter instance or argument, the
function is defined as a constant function.

Additionally, the preimage of a given real number c is termed as a level
set. The level set is defined as the set of the solutions of the equation of the form,

             f(x
1
, x

2
, …, x

n
) = c

Domain

The domain of a function of several real variables is specifically defined as a subset
of n which can be occasionally explicitly defined. Actually, if we restrict or confine
that the domain X of a function f as a subset Y  X, then we formally or properly
obtain a different function which typically states the restriction f to Y and is
denoted by f 

Y 
.
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In mathematical analysis, we often identify f and  f 
Y
 and can ignore or exclude the

restrictor 
Y
.

On the contrary, it is also at times possible to naturally enlarge or expand
the domain of a given function either by means of continuity or by means of analytic
continuation.

Additionally, several functions are typically defined in such a manner that it
is sometimes difficult to identify or explicitly specify their domain. For example,
for a given function f, it may possibly be difficult to identify or specify the domain
of the function g(x) = 1 / f(x). If f is a multivariate polynomial having n as a domain,
then it is yet difficult to check whether the domain of g is also n. 

Example 2.28: If D be a subset of n, then define the function F of several
variables for domain D giving specific notations.

Solution: Given is that D be a subset of n.

Consequently, now consider a function F of n variables, also termed as the
function F of several variables. Basically, the function F of n variables with domain
D is considered as a relation that is typically assigned to each and every ordered
n-tuple in domain D is a unique real number in .

Each specific relation can be denoted by means of the following types of
notations:

F :  D  
x  y

(x
1
, x

2
, ……, x

n
)  y

X

 y

     (x
1
, x

2
, ……, x

n
)  y

The range of F refers to the set of all outputs of F.

Therefore, it is typically a subset of  and not of n.

2.9.1 Partial Differentiation

Assume that for a function of two variables, ƒ(x, y), basically the derivative of f is
defined simply with respect to x while y is considered as a constant. This derivative
is termed as the “partial derivative of ƒ with respect to x” and is represented
either in terms of f / x or ƒ

x
. The ‘’symbol is used for denoting partial derivative.

Likewise, we can also define the derivative of ƒ simply with respect to y while
x is considered as a constant. This derivative is termed as the ”partial derivative
of ƒ with respect to y” and is represented either in terms of f / y or ƒ

y
.

Definition 1: The partial derivative of a function f(x, y, . . . .) with reference to
the variable x is represented using the following specified notations:

f x,    fx,    
x
 f,    D

x
 f,    D

1
 f,   f / x,   or   
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In addition, for a function z = f(x, y, . . . .), the partial derivative of z with
regard to x is represented by z/ x.

Generally, the arguments of a partial derivative is same as the original function,
however, occasionally its functional dependency is explicitly denoted or represented
by the notation as shown below.

Definition 2: Mathematically, a partial derivative of a function of several
variables is its derivative with respect to one of those variables, while the remaining
others are considered as constant. Partial derivatives has its applications in vector
calculus, differential geometry, etc.

Definition 3: The function f can be interpreted or deduced as a family of functions
of one variable which is indexed by the other variables as,

f(x, y) = f
y
(x) = x2 + xy + y2

Definition 4: A differential equation which expresses one or more measures in
terms of partial derivatives is called a partial differential equation.

(1) Partial Derivative, the Function of One Variable (x):

f (x) = x2

      Its derivative by means of the Power Rule is:

f (x) = 2x

      In calculus, the Power Rule is frequently used to find the derivative.

      As per the Power Rule, the derivative of xn is nx(n  1)

Example 2.29: Find the derivative of x2 using the Power Rule.

Solution: To find the derivative of x2 by means of Power Rule using n = 2, follow
the given method.

The derivative for,

 x2 = 2x(2  1)

     = 2x 1

     = 2x

Thus, the derivative of x2 is 2x.

(2) Partial Derivative, the Function of Two Variables (x and y):

f(x, y) = x2 + y3

(i) For finding the partial derivative of the above expression of two variables
with regard to x, we consider y as constant and evaluate the derivative as follows:

f x = 2x + 0 = 2x

Interpretation: Let us understand the process.

(a) The derivative of x2 with regard to x is defined as 2x.

(b) Here, since y is considered as a constant, hence y3 will also be a constant
and consequently the derivative of a constant will be 0 (zero).
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(ii) For finding the partial derivative of the above expression of two variables
with regard to y, we consider x as constant and evaluate the derivative as follows:

f y = 0 + 3y = 3y2

Interpretation: Let us understand the process.

(a) The derivative of y3 with regard to y is defined as 3y2.

(b) Here, since x is considered as a constant, hence x2 will also be a constant
and consequently the derivative of a constant will be 0 (zero).

How a Variable Constant is Hold as a Constant in Case of Two Variables

Let us understand the concept with the help of the following example of cylinder
where we will consider the variables r (radius of cylinder) and h (height of cylinder)
as a contant, each at a time (Refer Figure 2.11).

Fig. 2.11 Radius and Height of a Cylinder

We know that the volume of a cylinder is evaluated by,

 V =  r2 h

Now in variable form,

V = f(r, h)

Hence,

f(r, h) =  r2 h

For defining the partial derivative with reference to r we consider h as a
constant, as variable r changes (Refer Figure 2.12):

f r =  (2r) h = 2  r h

Fig. 2.12 Radius ‘r’ Changes
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Therefore, the derivative of r2 with reference to r is 2r, where  and h are
considered as constants.

Thus it states that, “in this case the radius r only changes by the smallest
amount and accordingly the volume of the cylinder changes by 2  r h”. The
change in the radius is very less as shown in the Figure 2.12 and it seems as if it is
a membrane having a circle circumference (2  r) and a height h.

For defining the partial derivative with reference to h we consider r as a
constant, (Refer Figure 2.13):

f h =  r2 (1) = r2

Fig. 2.13 Height ‘h’ Changes

Therefore, the derivative of h with reference to h is 1, and where  and r2

are considered as constants.

Thus it states that, “In this case the height h only changes by the smallest
amount and accordingly the volume of the cylinder changes by r2”. The change in
the height is very less as shown in the Figure 2.13 and it seems as if a thin disk is
added on the top having a circle area of r2.

Notations

(i) The partial derivative of ‘f’ with respect to ‘x’ is expressed as,

f
x

or f / x

(ii) The partial derivative of ‘f’ with respect to ‘y’ is expressed as,

f
y

or f / y

(iii) The analogous notation to the most familiarized form is expressed as,

df / dx      or     f 

(iv) For z = f(x, y).

 We can also write the partial derivative f
x
 (x, y) as,
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In the same way, we can write the partial derivative f
y
 (x, y) as,

(v) We can evaluate the partial derivative f
y
 (x, y) at the point (x

0
, y

0
) and

express as follows:

Or,

Try finding the equivalent expression for f
y
 (x

0
, y

0
).

We have previously discussed that for a function of one variable f(x),
characteristically the derivative f (x) denotes the rate of change of the function
when x changes. This is significant interpretation of derivatives.

Example 2.30: Consider the function f(x, y) = 2x2y3 and then determine the rate
of change by which the function is changing at the specified point (a, b),

(i) When y is constant and x is a varying variable.

(ii)  When x is constant and y is a varying variable.

Solution: To determine the rate of change by which the function f(x, y) = 2x2y3 is
changing at the specified point (a, b), let us first consider the case when y is
constant and x is a varying.

Hence, we have y = b, because y is a constant.

Therefore, then there be a function of the form which will include only ‘x’
and can be defined as follows:

g(x)  =  f(x, b)  =  2x2b3

At this time, this function has only one variable and for determining the rate
of change we take, g(x) at x = a.

Alternatively, we evaluate g(a), the function of one or single variable.

Accordingly the rate of change of the function at (a, b), when x is varying
and y is considered as a constant, is evaluated as follows:

g(a) = 4ab3

The notation g(a) is termed as the partial derivative of f(x, y) with
reference to x at (a, b) and is represented as follows.

f
x
 (a, b) = 4ab3

Again, let us now consider the case where the variable y is varying and x is
a constant. Similarly as we can derive the equation as we have derived in the case
when the variable x is varying and y is a constant.

Therefore, when x is a constant then it is constant at x = a.
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Therefore, then there be a function of the form which will include only ‘y’
and can be defined as follows:

h(y)   =   f(a, y)  =  2a2y3

 h(b)  =  6a2b2

The notation h(b) is termed as the partial derivative of f(x, y) with
reference to y at (a, b) and is represented as follows.

f
y
 (a, b) = 6a2b2

The two partial derivatives that we have derived in this Example 2.28
are also occasionally termed as the first order partial derivatives.

Generally, for partial derivatives the notation (a, b) is not always used, instead
for partial derivatives we use the standard notation (x, y). Hence, the partial
derivatives of Example 2.28 can be written as follows using the standard notation
(x, y):

 f
x
 (x, y) = 4xy3      and       f

y
 (x, y) = 6x2y2

Basically, to evaluate  f
x
 (x, y) we consider ‘y’ as constant for differentiating

‘x’ and similarly to evaluate  f
y
 (x, y) we consider ‘x’ as constant for differentiating

‘y’.

Using the limit definition we can write the above two partial derivatives in
limit form as follows:

Following are some precise and probable alternate notations to evaluate
partial derivatives.

For the function z = f(x, y) we have the following equivalent notations:

The following fractional notations of partial differentiation specify that how
the partial derivative is different from the ordinary derivative with reference to
single variable calculus.

In the following examples, all the remaining variables are considered as a
constant value and then we differentiate the derivative taking it as a function of
single variable.
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Example 2.31: For the following given functions, find all the first order partial
derivatives.

(i)

(ii)  

Solution: The first order partial derivative is evaluated as follows.

 (i) 

We first evaluate the partial derivative of the function

 with regard to x considering y as a constant.

Therefore, the partial derivative with regard to ‘x’ is,

 f
x 
(x, y) = 4x3

In this case, the second and the third terms differentiate to ‘0’ (zero). Since
as per the standard rule of differentiation, the term that is considered as a constant
differentiates to zero. Now when we differentiate with respect to ‘x’ and consider
‘y’ as a constant, then all the terms with ‘y’ will be considered as constants and
therefore will be differentiated to ‘0’ (zero).

Accordingly, when we differentiate with respect to ‘y’ and consider ‘x’ as a
constant, then the term which includes ‘x’ will be considered as constants and
therefore will be differentiated to ‘0’ (zero). Following partial derivative is evaluated
with regard to ‘y’:

Therefore, the partial derivative with regard to x is,      f
x 
(x, y) = 4x3

And the partial derivative with regard to ‘y’ is, 

(ii)  

We evaluate the derivatives with reference to ‘x’ and ‘y’ of the given function

when ‘z’ is considered as a constant. On the right-hand

side, the ‘z’ in the denominator is a constant.

The derivatives for x and y are as follows,
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Additionally, to differentiate ‘x’ and ‘y’ with regard to ‘z’, the derivative is,

Example 2.32: Find dy/dx for 3y4 + x7 = 5x.

Solution: To find dy/dx for 3y4 + x7 = 5x we first consider y as a function of x, or
we can say that y = y(x).

When a term including y is differentiated with regard to x then dy/dx is
added to that term as illustrated below.

On either side we differentiate with regard to x as follows:

Solving for dy/dx,

Now we will discuss about the second partial derivative of ‘f’. It is
represented in the following four notations.

Notations

(i) Differentiate ‘f’ two times with regard to ‘x’, i.e., we first differentiate ‘f’
with reference to ‘x’ and then again differentiate the result with reference to
‘x’ that is obtained after the first differentiation.

Thus, 2f / x2 or f
xx

(ii) Differentiate ‘f’ two times with regard to ‘y’, i.e., we first differentiate ‘f’
with reference to ‘y’ and then again differentiate the result with reference to
‘y’ that is obtained after the first differentiation.

Thus, 2f / y2 or f
yy

Mixed Partials

(iii) We first differentiate ‘f’ with reference to ‘x’ and then again differentiate the
result with reference to ‘y’ that is obtained after the first differentiation.

Thus, 2f / y x or f
xy

(iv) We first differentiate ‘f’ with reference to ‘y’ and then again differentiate the
result with reference to ‘x’ that is obtained after the first differentiation.

Thus, 2f / x y or f
yx

Example 2.33: Given is f(x, y) = 3x2y + 5x – 2y2 + 1, then find the partial
derivatives f

x
, f

y
, f

xx
, f

yy
, f

xy
 and f

yx
.

Solution: We evaluate the partial derivatives in the following way.

We first differentiate f with regard to x when y is considered as a constant.
This will yield,

f
x
  =  6xy + 5
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Next, we first differentiate f with regard to y when x is considered as a
constant. This will yield,

f
y
  =  3x2 – 4y

The f
xx

 is considered as the second partial derivative of f
x
, i.e., the partial

derivative of f
x
 with regard to x.

This will yield,

The f
yy

 is considered as the second partial derivative of f
y
, i.e., the partial

derivative of f
y
 with regard to y.

This will yield,

The f
xy
 is considered as the mixed second partial derivative of f

x
 with regard

to y, i.e., the partial derivative of f
x
 with regard to y.

This will yield,

The f
yx
 is considered as the mixed second partial derivative of f

y
 with regard

to x, i.e., the partial derivative of f
y
 with regard to x.

This will yield,

Consequently, see the result in case of the mixed second partial derivatives,
f
xy

 and f
yx

, both are similar as both the result yield ‘6x’, i.e.,

f
xy

  =  f
yx

Example 2.34: Given is z = 4x2 – 8xy4 + 7y5 – 3. Find all the partial derivaties of
first order and second order.

Solution: The partial derivaties of first order and second order are evaluated as
follows.
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2.10 CURVE SKETCHING

In geometry and mathematical analysis, the term curve sketching or curve tracing
are specific techniques used for producing a rough idea of overall shape of a plane
curve given its equation, without computing the large numbers of points required
for a detailed plot.

Curves are specifically described by means of parametric equations, also
termed as the ‘Parametric Curves’ can range from graphs of the most basic equations
to those of the most complex. Parametric equations are typically used for describing
all types of curves that can be illustrated or represented and typically exemplified
on a plane but are generally used in situations when it is difficult to describe the
curves by means of functions on a Cartesian plane, for example when a curve
crosses itself. Characteristically, the parametric equations are precisely used in
three-dimensional spaces, and also in the spaces with more than three dimensions
by applying or implementing additional and essential required parameters.

Mathematically, the curves can be described through the non-parametric
curve or parametric curve equations. Non-parametric equations can be either
explicit or implicit. For a non-parametric curve, the coordinates y and z of a point
on the curve are typically expressed as two distinct and separate functions of the
third coordinate x as the independent variable. Parametric curves are used to
graph the relationships between two or more quantities and at the same time
represent each quantity’s directions or orientations.

A parametric equation defines a group of quantities as functions of one or
more independent variables termed as parameters. Fundamentally, the parametric
equations are generally used to express the coordinates of the points that make up
a geometric object, such as a curve or surface and the equations are collectively
termed as a parametric representation or parameterization of the object.

Parametric Curves

Parametric curves are used to graph the relationships between two or more quantities
and at the same time represent each quantity’s directions or orientations.
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Characteristically, the parametric curve is defined by its corresponding
parametric equations of the form, x = f(t) and y = g(t) within a given particular
interval. Parametric curves emphasize the orientation of each set of quantities with
respect to time.

Parametric Curves and Its Endpoints: We consider the parametric equations
of the form,

x = f(t) and y = g(t)

If there are two plane curves that are typically redefined as parametric curves
within the interval [a, b], then the parametric curve will have initial points and
terminal points at (x(a), y(a)) and (x(b), y(b)), respectively.

Following are the three key or most significant advantages of using parametric
curves:

1. The parametric curve is considered as a remarkable model that
emphasizes both the direction and orientation of (x, y) based on ‘t’.
This indicates that the physical representations of quantities can be
demonstrated that depend on time.

2. The value of parametric curve can be changed or adjusted for switching
of shifting the orientations.

3. The parametric curves, specifically the implicit curves can only be
modelled by means of parametric equations, i.e., both the volume of a
container and its spillage can be simultaneously modelled with respect
to time.

Parametrizing a Plane Curve

The plain curve can be parameterized by precisely redefining the given constraints
x and y of a parametric curve as a set of parametric equations characteristically
defined by parameter ‘t’. Considerably, there are numerous significant methods
to parametrize a given curve but remember that their definition as a plane curve
will remain the same. The simplest and easiest method for parametrizing a plain
curve is done by setting x = t.

The extremely simple and basic option while parametrizing a plane curve is
defined by the form of equation y = f(x) which typically uses the following
parametric equations:

x = t

y = f(t)

Remember that t should always be within the domains of f(x).

This precise method is explicitly used when a line is to be parametrized. The
following form of the parametric equations are used:

x = t

y = mt + b

This helps in observing the behaviours and actions of the curve specifically
as ‘t’ increases. Even though, this can be best approximated when the right
parametric equations are preferred. The standard methodology includes by
redefining the equations of circles using parametric equations.
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Parametric Representation of a Circle

A circle can be parametrized specifically when the circle is centred typically at the
origin. The following form of parametric equations are used:

                             x = r cos t

                             y = r sin t

Circles which are centred at (h, k) can be parametrized using the following
form of parametric equations:

        x = h + r cos t

                             y = k + r sin t

In both the instances, remember that always 0  t  2.

These two are considered as the extremely common and popular curves
that can be generally parametrized.

Parabola

Mathematically, a parabola is the locus of a fixed point which moves on a plane
such a way that its distance from a fixed point in the plane is always equidistant
from the fixed point and the fixed straight line.

Consider that S be a fixed point and L, a fixed straight line which is not
passing through S on a plane. Figure 2.14 illustrates the basic concept of parabola.

If a point P moves on this plane in such a way that it is always equidistant
from the fixed point S and the fixed straight line L then the locus of the point P is
termed as a ‘Parabola’.

Fig.  2.14   Basic Concept of Parabola

Therefore, by definition,

                    SP = PM

Where, PM is referred as the length of the perpendicular from P on the
directrix ZZ.

Directrix of the Parabola: The fixed point S is termed as the focus and the fixed
straight line L is termed as the ‘Directrix’ of the parabola.
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Axis of the Parabola: The straight line through the focus and perpendicular to
the directrix is termed as the ‘Axis’ of the parabola.

Vertex of the Parabola: The point at which the axis intersects the parabola is
termed as the ‘Vertex’ of the parabola. Alternatively, the point on the axis midway
between the focus and directrix is called the vertex of the parabola.

Focal Chord of the Parabola: A chord passing through its focus is termed as the
‘Focal Chord’ of the parabola.

Double Ordinate of the Parabola: Any chord perpendicular to the axis of the
parabola is termed as its ‘Double Ordinate’.

Hyperbola

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by
its geometric properties or by equations for which it is the solution set. A hyperbola
has two parts, termed as connected components or branches, that are mirror
images of each other and resemble two infinite bows. The hyperbola is one of the
three kinds of conic section, formed by the intersection of a plane and a double
cone, the other conic sections are the parabola and the ellipse. A circle is a special
case of an ellipse. If the plane intersects both halves of the double cone but does
not pass through the apex of the cones, then the conic is a hyperbola.

There are two methods to write the parametric form for a hyperbola, namely
the east-west opening hyperbola and north-south opening hyperbola, as discussed
below.

2.10.1 Curve Tracing in Cartesian Coordinates

The procedure of tracing a curve in Cartesian coordinates is as follows (Refer
Figure 2.15 (a) (b) (c) (d) and (e).

1. Symmetry. Apply the following rules to ascertain whether the given curve
is symmetrical about any line or not:

(i) Symmetry about the x-axis: If the equation of a curve remains
unaltered when y is changed to – y, i.e., if all the powers of y in the
given equation are even, the curve is symmetrical about the x-axis.
For example, since in the parabola y2 = 4ax, power of y is even,
hence it is symmetrical about the x-axis.

(ii) Symmetry about the y-axis: If the equation of a curve remains
unaltered when x is changed to – x, i.e., if all the powers of x are even
in the given equation, the curve is symmetrical about the y-axis. For
example, since the curve x2 = 4ay has the even power of x, hence it is
symmetrical about the y- axis.

(iii) Symmetry about both axes: If all the powers of both x and y are
even in the given equation, the curve is symmetrical about both the

axes. For example, since in the ellipse 
2 2

2 2
1

x y

a b
  , powers of  both

x and y are even, thus it is symmetrical about both the axes.
(iv) Symmetry in opposite quadrants: If the equation of the curve

remains unchanged when x and y are changed to –x and –y,
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respectively, the curve is symmetrical in opposite quadrants. For
example, the hyperbola xy = c2 and the curve y = x3 are symmetrical
in opposite quadrants.

(v) Symmetry about the line y = x: If the equation of the curve is
unchanged when x and y are interchanged (i.e., x is changed to y and
y to x), the curve is symmetrical about the line y = x. For example, the
curve x3 + y3 = 3axy is symmetrical about the line y = x.

                 

Y

O

(x, –y)

y  = 4ax
2

(x, y)

X       

x  = 4ay
2

(–x, y) (x, y)

O X

Y

 

y = x
3

Y

O X

(–x, y)–

(x, y)

       (a)  (b)            (c)

Y

O
X

(y, x)

(x, y)

  

Y

(x, y)

(–y, –x)
(–2, 2)

XOx  + Y  + 4x – 4y + 1 = 0
2 2

         (d) (e)

Fig. 2.15 Tracing a Curve in Cartesian Co-ordinates

(vi) Symmetry about the line y = –x: If the equation of the curve is
unchanged when x is changed to –y and y is changed to –x, the curve
is symmetrical about the line y = –x. For example, the curve x2 + y2 +
4x – 4y + 1 = 0 is symmetrical about the line y = –x.
Note: The curve which has symmetry about both the axes also has
symmetry in opposite quadrants but the converse is not true. For

example, in ellipse 
2 2

2 2
1

x y

a b
  (symmetrical about both the axes), the

equation of the curve remains unchanged when x and y are changed
to –x and –y, respectively. Thus, it is symmetrical in opposite quadrants

also. But the curve 
1

y x
x

  (symmetrical in opposite quadrants) does

not have even powers of x or y. Thus, it is not symmetrical about both
the axes.

2. Origin: Find whether the curve passes through the origin or not.
(i) It will pass through the origin if the equation of the curve does not

have any constant term. In this case, find the equation of the tangents
at the origin by equating the lowest degree terms (present in the equation
of curve) to zero.
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(ii) If the origin is a double point, then find its nature. The origin is a node
if the tangents are real and distinct; cusp if the tangents are real and
coincident; and conjugate point if the tangents are imaginary.

3. Asymptotes: To find the direction in which the curve extends to infinity,
find the following asymptotes:

(i) Asymptotes parallel to x-axis or y-axis: Find the asymptotes
parallel to x-axis or y-axis by equating the co-efficients of highest
powers of x or y (in the equation of the curve) to zero.

(ii) Oblique asymptotes: Put x = 1 and y = m in the highest degree
terms of x and y to find f

n
(m). Then, equate f

n
(m) to zero and solve to

get the values of m, which gives the slopes of the asymptotes. Put x =
1 and y = m in the next lower degree terms of x and y to find f

n–1
(m)

and similarly find f
n–2

(m) and obtain the values of m.

If m has real and distinct values, then find c using 
1( )

( )

n

n

m
c

m

 
  and if

m has real and equal values, then find c using
2

1 2( ) ( ) ( ) 0
2! n n n

c
m c m m 

       .

Finally, find the oblique asymptotes by putting the values of m and c in
the equation y = mx + c.

4. Point of intersection with the axes
(i) Find the points where the curve meets the co-ordinate axes. If the

curve meets the x-axis, then on putting y = 0, we get the real values of
x. Similarly, examine for y-axis where x = 0.

(ii) Shift the origin to all such points and find the tangents at all such points
(new origin) by equating to zero the lowest degree terms. If any one
of them is a double point, find its nature.

(iii) Find the points of intersection of the curve with the lines y = ± x if the
curve is symmetrical about these lines.

5. Region: Find the region to which curve is bounded in the quadrants using
the following steps:

(i) Solve the equation of the curve for y. Find the corresponding values
of x for which y is real. The curve lies between these obtained values
of x.

(ii) Ignore the values of x and y for which L.H.S. and R.H.S. of the
equation has opposite sign.

(iii) Put x = 0. Examine how y varies when x increases and tends to ,
keeping in mind those values of x for which y = 0 or y  .

(iv) Examine how y varies when x decreases from 0 and tends to –. If
the curve is symmetrical about y-axis, take only the positive values of
x and trace the curve for negative values of x by symmetry.

6. Special points:
(i) Find the points on the curve where:
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(a) 0
dy

dx
 , i.e., the points where the tangents are parallel to the x-

axis.

(b)
dy

dx
 , i.e., the points where the tangents are parallel to the y-

axis.

(c)
dy

dx
 is positive, i.e., the points where the curve is increasing or

(d)
dy

dx
 is negative, i.e., the points where the curve is decreasing.

(ii) Find the points on the curve where:

(a)
2

2

d y

dx
 is positive, i.e., the points where the curve is concave

upward

(b)
2

2

d y

dx
 is negative, i.e., the points where the curve is concave

downward
(iii) Find points of inflexion on the curve by equating

2 3

2 3
to zero where 0

d y d x

dx dy


2.10.2 Some Elementary Curves

Some curves which are useful in drawing the approximate shape of the curves
near the origin when either x-axis or y-axis is a tangent at the origin as given  in
Figure 2.15(a), (b), (c), (d), (e), (f), (g) and (h).

These figure display the cubic parabola.

Figure 2.16(a), (b), (c) and (d) show semi-cubic parabola.
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2

AxisY´
Y´

(d)
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y = – x
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X´ X
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3

(e) (f)
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Fig. 2.16 Cubical Parabola
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Fig. 2.17 Semi-Cubical Parabola

2.10.3 Basic Notation of Curve
The curvature is the amount by which a curve deviates from being a straight line,
or a surface deviates from being a plane. For curves, the canonical example is that
of a circle, which has a curvature equal to the reciprocal of its radius. Smaller
circles bend more sharply, and hence have higher curvature.

The curvature at a point of a differentiable curve is the curvature of its
osculating circle, i.e., the circle that best approximates the curve near this point.
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The curvature of a straight line is zero. The curvature of a curve at a point is
normally a scalar quantity such that it is expressed by a single real number.

The curvature of a differentiable curve was originally defined through
osculating circles. A French mathematician, engineer, and physicist Augustin-Louis
Cauchy showed that the center of curvature is the intersection point of two infinitely
close normal lines to the curve.

X O 

Y 

P 

R 

Q 
N 

C 

A 
s 

 
 

 +   

s 

Fig. 2.18 Curvature

In Figure 2.18, Let P, Q be two neighbouring points on a curve AB. Let arc
AP = s and arc AQ = s + ds so that the length of the arc PQ = ds, A being the fixed
point on the curve, from where arc is measured. Let the tangents at P and Q make
angles y and y + dy, respectively with a fixed line  say x-axis. Then, angle dy
through which the tangent turns as its point  of contact travels along the arc PQ is
called the total curvature of arc PQ.

The ratio 
δψ

δs
represents the average rate of change in the angle y per unit of

arc length along the curve. It is called the average curvature of arc PQ.

The limiting value of the average curvature when Q  P is called the curvature
of the curve at the point P.

In general, the ratio
δψ

δs
 approaches a limit 

ψd

ds
 as s  0.

Thus, the curvature at a point P = 
0

lim lim
Q P s

d

s s ds  

  
 

  .

The curvature of a curve C at a point (x, y) on C is usually denoted by the

Greek letter  (kappa). It is given by the equation κ =
d

ds


 where s is the arc

length measured along the curve and  is the angle made by tangent line to C at
(x, y) with positive x-axis.

The reciprocal of the curvature of the curve at P, is called the radius of

curvature of the curve at P and is usually denoted by . Thus, 
1

ρ
κ

ds

d
 



If PC is normal at P and PC = , then C is called the centre of curvature of
the curve at P.

The circle with centre C and radius PC =  is called the circle of curvature
of the curve at P.
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The length of the chord drawn through P, intercepted by the circle of curvature
at P, is called a chord of curvature.

Note: A straight line does not bend at all (because ψd

ds
is zero as  is constant).

Therefore, the curvature of a straight line is zero (Refer Figure 2.19).

P T 

Q 

O 

 

 
r 

s 

Fig. 2.19 Chord of Curvature

Curvature of a Circle

Let O and r be the centre and radius of a circle, respectively. Let P and Q be two
points on the circle.

So that, arc PQ = s and the tangent at Q  make an angle  with the tangent
at P. Then, POQ = . Therefore, s (= arc PQ ) = r .

Differentiating with respect to , we get 
ds

d = r

 Curvature = 
ψd

ds
= 

1

r
(constant)

Thus, the curvature at every point of the circle is equal to the reciprocal of
its radius and therefore, it is constant.

Note: Circle is the only curve of constant curvature.

Radius of Curvature for Intrinsic Curves
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Fig. 2.20 Radius of Curvature for Intrinsic Curves

Let P, Q be two neighbouring points on a curve AB. Let the lengths of  arc
AP = s and arc AQ = s + s.

Therefore, the length of the arc PQ = s.
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Let angles made by the tangents at P and Q with x-axis be  be + s,
respectively. Also let the normals at P and Q intersect at N. Join P and Q.

PNQ = 
From the triangle PQN, by sine-rule, we get

chord PQPN

sin PQN sin




         
chord PQ

PN .sin PQN
sin




              
chord PQ

. . .sin PQN
sin

s

s

 


  

If  be the radius of curvature, then we have

lim PN
Q P

 

   0

chord PQ
lim . . .sin PQN

sins

s

s 

 


  

[ s 0, 0,   0

chord PQ
lim 1
s s 


 , PQN

2


   and 1

sin




 ]


ds

d
 



The angle between the tangents to the curve at P and Q, i.e.,  is called
the angle of contingence of the arc PQ. The relation between s and  for a curve
is called its intrinsic equation.

Thus, we can say that at a point P

arc PQ
lim

Angle of Contigence of arc PQQ P
.

Check Your Progress

5. What do you understand by Bohr radius?

6. What is perfect differential in thermodynamics?

7. What is definite integral?

8. Give the formula of integral product of two function.

9. Define the partial derivative.

10. What do you understand by point of inter-section with the axes?

2.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In mathematics, ‘Differentiation’ is the process of finding the derivative,
or rate of change, of a function.

2. If y is a differentiable function of z, and z is a differentiable function of x,
then y is a differentiable function of x, i.e.,
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dy

dx
= 

dy

dz

dz

dx
 .

3. In Mathematics, you usually deal with two kinds of quantities, namely
constants and variables. A quantity which is liable to vary is called a variable
quantity or simply a variable.

4. The mixed partial second order derivatives of the coefficients of the
two terms on the right are equal. Applying this criterion to the equation,
Maxwell’s equations are obtained.

5. The Bohr radius is a physical constant, approximately equal to the most
probable distance between the nucleus and the electron in a hydrogen atom
in its ground state. It is named after Niels Bohr, due to its role in the Bohr
model of an atom. Its value is 5.29177210903×10– ¹¹ m.

6. In thermodynamics, when dQ is exact, the function Q is a state function of
the system. Generally, neither work nor heat is a state function. An exact
differential is sometimes also called a ‘Total Differential’, or a ‘Full
Differential’, or, in the study of differential geometry, it is termed an exact
form.

7. The definite integral of a function has a unique value. A definite integral
is denoted by,

In the above notation, ‘a’ is termed as the lower limit of the integral while
‘b’ is termed as the upper limit of the integral.

8. Integral of the Product of Two Functions = [First Function] × [Integral of
Second Function] – Integral of [(Differential Coefficient of First Function)
× (Integral of Second Function)]

9. The partial derivative of a function f(x, y, . . . .) with reference to the variable
x is represented using the following specified notations:

f x,    fx,    
x
 f,    D

x
 f,    D

1
 f,   f / x,   or   

In addition, for a function z = f(x, y, . . . .), the partial derivative of z with
regard to x is represented by z/ x.

10. Point of intersection with the axes
(i) Find the points where the curve meets the co-ordinate axes. If the

curve meets the x-axis, then on putting y = 0, we get the real values of
x. Similarly, examine for y-axis where x = 0.

(ii) Shift the origin to all such points and find the tangents at all such points
(new origin) by equating to zero the lowest degree terms. If any one
of them is a double point, find its nature.

(iii) Find the points of intersection of the curve with the lines y = ± x if the
curve is symmetrical about these lines.
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2.12 SUMMARY

 Differentiation method is specifically used for finding or estimating the rate
of change when one quantity is compared with another, precisely when the
rate of change is not constant. Following are some definitions of
differentiation.

 In differential calculus, the key objects are the derivative of a function and
interrelated notions, such as the differential and its various applications.
Fundamentally, the derivative of a function at a selected input value defines
the rate of change of the function that is close or adjacent to that particular
input value. Thus, differentiation is the method used to find a derivative.

 Both the calculus, the differential and the integral are linked or interrelated
through the fundamental theorem of calculus, which specifies that the
differentiation method is the reverse or opposite to integration method.

 In various fields of mathematics, the derivatives and their generalizations
are frequently used for solving the problems related to functional analysis,
complex analysis, differential geometry, abstract algebra and measure theory.

 Geometrically, the above theorem means that for an increasing function,
tangent at any point makes acute angle with OX whereas for a decreasing
function, tangent at any point makes an obtuse angle with x-axis.

 If y is a differentiable function of x1, x1 is a differentiable function of
x2, ... , xn–1 is a differentiable function of x, then y is a differentiable
function of x.

 In Mathematics, you usually deal with two kinds of quantities, namely con-
stants and variables. A quantity which is liable to vary is called a variable
quantity or simply a variable.

 Temperature, pressure, distance of a moving train from a station are all
variable quantities. On the other hand, a quantity that retains its value through
all mathematical operations is termed as a constant quantity or a con-
stant. Numbers like 4, 5, 2.5, , etc., are all constants.

 The Bohr radius is a physical constant, approximately equal to the most
probable distance between the nucleus and the electron in a hydrogen atom
in its ground state. It is named after Niels Bohr, due to its role in the Bohr
model of an atom.

 In thermodynamics, when dQ is exact, the function Q is a state function of
the system. Generally, neither work nor heat is a state function. An exact
differential is sometimes also called a ‘Total Differential’, or a ‘Full
Differential’, or, in the study of differential geometry, it is termed an exact
form.

 State functions depend only on the state of the system. Quantities whose
values are independent of path are called state functions, and their differentials
are exact (dP, dV, dG,dT...). Quantities that depend on the path followed
between states are called path functions, and their differentials are inexact
(dw, dq).
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 An ‘Inexact Differential’ or ‘Imperfect Differential’ is a type of differential
used in thermodynamics to express changes in path dependent quantities.
In contrast, an integral of an exact differential (a differential of a function) is
always path independent since the integral acts to invert the differential
operator.

 Integrating factors is sometimes possible to convert an inexact differential
into an exact one by means of an integrating factor.

 Definite integration is a significant and an essential constituent of integral
calculus. Both the integrations – indefinite and definite are interrelated
processes. Fundamentally, the indefinite integration provides the basis for
definite integral.

 The value of the definite integral of a function for some precise interval is
specifically determined on the basis of function and the interval, but it will
not consider the variable of integration selected for representing the
independent variable.

 Integration by parts or partial integration method is used for finding the
integral of a product of functions using expressions of the integral, specifically
derivative and anti-derivative.

 A reduction formula for a specified integral is an integral of the form which
is equivalent in form as the specified integral but of a lower degree or order.

 A function of several real variables also sometimes termed as the real
multivariate function can be defined as a function having more than one
argument in which all the arguments must be real variables. This concept or
notion gives the concept or notion of a real variable function to function of
several variables.

 The domain of a function of several real variables is specifically defined as
a subset of n which can be occasionally explicitly defined. Actually, if we
restrict or confine that the domain X of a function f as a subset Y  X, then
we formally or properly obtain a different function which typically states the
restriction f to Y and is denoted by f 

Y 
.

 A function of two variables, ƒ(x, y), basically the derivative of f is defined
simply with respect to x while y is considered as a constant. This derivative
is termed as the “partial derivative of ƒ with respect to x” and is represented
either in terms of f / x or ƒ

x
. The ‘’symbol is used for denoting partial

derivative.

 In symmetry about the x-axis the equation of a curve remains unaltered when
y is changed to – y, i.e., if all the powers of y in the given equation are even,
the curve is symmetrical about the x-axis. For example, since in the parabola
y2 = 4ax, power of y is even, hence it is symmetrical about the x-axis.

 In symmetry about the line y = –x the equation of the curve is unchanged
when x is changed to –y and y is changed to –x, the curve is symmetrical
about the line y = –x. For example, the curve x2 + y2 + 4x – 4y + 1 = 0 is
symmetrical about the line y = –x.
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 Asymptotes parallel to x-axis or y-axis is to the asymptotes parallel to x-
axis or y-axis by equating the co-efficients of highest powers of x or y (in
the equation of the curve) to zero.

2.13 KEY TERMS

 Differentiation: In mathematics, ‘Differentiation’ is the process of finding
the derivative, or rate of change, of a function.

 Derivative: Derivative, in mathematics, the rate of change of a function
with respect to a variable.

 Variable quantity: In Mathematics, you usually deal with two kinds of
quantities, namely constants and variables. A quantity which is liable to vary
is called a variable quantity or simply a variable.

 Bohr radius: The Bohr radius is a physical constant, approximately equal
to the most probable distance between the nucleus and the electron in a
hydrogen atom in its ground state.

 Reduction formula: A reduction formula for a specified integral is an integral
of the form which is equivalent in form as the specified integral but of a
lower degree or order.

2.14 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is differentiation?

2. Define derivative.

3. State the chain rule of differentiation.

4. What do you understand by continuity and differentiability?

5. Determine the Maxwell equation.

6. Calculate the Bohr radius.

7. What is exact differential in chemistry?

8. Why state functions are exact differentials?

9. Define the definite integration.

10. What do you understand by reduction formula?

11. Give the mathematical definition of partial derivative.

12. State the symmetry about line.

Long-Answer Questions

1. Analyse the rules of differentiation with relevant examples.

2. Illustrate the differential calculus including maxima and minima giving
examples.
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3. Describe the function, continuity and differentiability with the help of
examples.

4. Analyse the Maxwell distribution.

5. Discuss about the Bohr radius.

6. Briefly explain about the exact and inexact differential in thermodynamics
and their applications.

7. Explain in detail about the integral calculus with their relevant examples.

8. Elaborate on the partial differentiation with the help of examples.

9. Illustrate the curve sketching with appropriate examples.
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UNIT 3 ELEMENTARY DIFFERENTIAL
EQUATIONS

Structure

3.0 Introduction
3.1 Objectives
3.2 Exact First Order Differential Equations

3.2.1 Solution of Differential Equation of First Order and First Degree
3.2.2 Variable Separable
3.2.3 Homogeneous Equations
3.2.4 Non-Homogeneous Equations
3.2.5 Exact Differential Equations and Integrating Factors
3.2.6 Applications of Chemical Kinetics
3.2.7 Secular Equilibria

3.3 Quantum Chemistry
3.4 Power Series Method

3.4.1 Convergence—Interval and Radius
3.4.2 Operations on Power Series
3.4.3 Existence of Power Series Solutions and Real Analytic Functions

3.5 Harmonic Oscillator
3.5.1 Spherical Harmonics

3.6 Fourier Series
3.7 Legendre’s Equation
3.8 Differential Equations of Second  Order
3.9 Answers to ‘Check Your Progress’

3.10 Summary
3.11 Key Terms
3.12 Self Assessment Questions and Exercises
3.13 Further Reading

3.0 INTRODUCTION

A Differential Equation (DE) is an equation that defines a relationship between a
function and one or more derivatives of that function. Differential equations play a
central role in the mathematical treatment of chemical kinetics.

Secular radioactive equilibrium exists when the parent nucleus has an
extremely long half-life. This type of equilibrium is particularly important in nature.

Quantum chemistry, also called molecular quantum mechanics, is a branch
of chemistry focused on the application of quantum mechanics to chemical systems.
In general, the Differential Equations (DE) of quantum mechanics are special cases
of eigenvalue problems. Parallel to the DE eigenvalue problems is an equivalent
class of eigenvalue problems expressed in Linear Algebra (LA).

In mathematics, the power series method is used to seek a power series
solution to certain differential equations. In general, such a solution assumes a
power series with unknown coefficients, then substitutes that solution into the
differential equation to find a recurrence relation for the coefficients.
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The harmonic oscillator model is very important in physics, because any
mass subject to a force in stable equilibrium acts as a harmonic oscillator for small
vibrations. Harmonic oscillators occur widely in nature and are exploited in many
manmade devices, such as clocks and radio circuits. In mathematics and physical
science, spherical harmonics are special functions defined on the surface of a sphere.
They are often employed in solving partial differential equations in many scientific
fields.

In mathematics, a Fourier series is a periodic function composed of
harmonically related sinusoids, combined by a weighted summation. The Legendre
differential equation is a second-order ordinary differential equation, it has two
linearly independent solutions. A solution, which is regular at finite points is called
a Legendre function of the first kind, while a solution, which is singular at is called
a Legendre function of the second kind. A second order ordinary differential equation
is an ordinary differential equation in which any derivatives with respect to the
independent variable have order no greater than two.

In this unit, you will study about the exact first order differential equation,
applications of chemical kinetics, secular equilibria, quantum chemistry, power
series method, harmonic oscillator, spherical harmonics, Fourier series, Legendre
equation and second order differential equation.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the exact first order differential equation

 Discuss about the applications of chemical kinetics

 Elaborate on the secular equilibria

 Define the quantum chemistry

 Analyse the power series method

 Comprehend the Fourier series

 Interpret the Legendre equation

 Explain about the second order differential equation

3.2 EXACT FIRST ORDER DIFFERENTIAL
EQUATIONS

In mathematics, a differential equation is a mathematical equation for an unknown
function of one or several variables that relates the values of the function itself and
its derivatives of various orders.

Basic Definitions

Equations in which an unknown function, and its derivatives or differentials occur
are called differential equations.
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For example,

(i) x + y
dy

dx
 = 3y (ii)

dy x y

dx x y





 = 0

(iii)
2

2

d y
y

dx
  = sin x, and (iv)

2 2

2 2

z z

x y

 


 
 = 0

are all differential equations.

If, in a differential equation, the unknown function is a function of one
independent variable, then it is known as an ordinary differential equation. If the
unknown function is a function of two or more independent variables and the
equation involves partial derivatives of the unknown function, then it is known as a
partial differential equation. In the above examples, equations from (i) to (iii)
are ordinary differential equations while the fourth is a partial differential equation.

The order of a differential equation is the order of the highest differential
coefficient which occurs in it. In the examples given above, (i) and (ii) are of first
order while (iii) and (iv) are of second order.

The degree of a differential equation is the degree of the highest order differential
coefficient which occurs in it, after the equation has been cleared of radicals and
fractions. The above listed equations are all of degree 1. To decide, for example, the
degree of the differential equation,

 = 

3/ 22

2 2

1 ( / )
,

/

dy dx

d y dx

    we rewrite it as

22
2

2

d y

dx


 
 
 

= 

32

1
dy

dx

    
   

 and observe that it is of degree 2.

If in a differential equation, the derivatives and the dependent variables appear
in first power and there are no products of these, and also the coefficients of the
various terms are either constants or functions of the independent variable, the
equation is said to be a linear differential equation.

Solution of Differential Equations

A relation between the dependent and independent variables, which, when
substituted in the equation, satisfies it, is known as a solution or a primitive of the
equation. Note that, in the solution, the derivatives of the dependent variable should
not be present.

The solution, in which the number of arbitrary constants occurring is equal to
the order of the equation, is known as the general solution or the complete
integral. By giving particular values to the arbitrary constants appearing in the
general solution we obtain particular solutions of the equation.

For example, y = Ae2x + Be–2x, y = 3e2x + 2e–2x are respectively the general

solution and the particular solution of the equation 
2

2
– 4 0

d y
y

dx
 .

Solutions of equations which do not contain any arbitrary constants and which
are not derivable from the general solution by giving particular values to one or
more of the arbitrary constants, are called singular solutions.
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Formation of Differential Equations

Consider the relation y = Aex + Be–x ...(3.1)

Where A and B are constants.

dy

dx
= Aex – Be–x

2

2

d y

dx
= Aex + Be–x

2

2

d y

dx
= y ...(3.2)

Equation (2.2), which is obtained from Equation (3.1) by eliminating the arbitrary
constants A and B, is the differential equation whose primitive is Equation (3.1).
Further, Equation (3.1) is the general solution of Equation (3.2).

The order of the ordinary differential equation and the number of arbitrary
constants appearing in the general solution will be always equal. Also, if there are
n arbitrary constants in the relation between the dependent and the independent
variables, then by eliminating them, we will arrive at a differential equation of
order n.

Example 3.1: Obtain the differential equation associated with the primitive
y = Cx + C – C3, where C is an arbitrary constant.

Solution:
y   = Cx + C – C3 …(1)

dy
C

dx
 …(2)

Using equations (2) and (1), we get the differential equation,
3

– ( 1)
dy dy

x y
dx dx

    
 

= 0

Example 3.2: Form the differential equation satisfied by all circles having their
centres on the straight line y = 10 and touching the x-axis.

Solution: As the centre lies on the line y = 10 and the circle touches the x-axis,
the centre of the circle is (a, 10) and its radius will be 10.

Equation of the circle is,

(x – a)2 + (y – 10)2 = 100 …(1)

Where a is an arbitrary constant. Differentiating equation (1) with respect
to x,

2( ) 2( 10)
dy

x a y
dx

   = 0

(x – a) = – (y – 10)
dy

dx
…(2)

Substituting equation (2) in (1) we get,
2

2 2( 10) ( 10)
dy

y y
dx

    
 

 = 100
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i.e.,

2
2( 10) 1

dy
y

dx

     
   

= 100

This is the equation for which equation (1) is the primitive.

Example 3.3: Eliminate A and B from y = Aex + Be2x

Solution: y = Aex + Be2x …(1)
dy

dx
= Aex + 2Be2x …(2)

2

2

d y

dx
= Aex + 4Be2x …(3)

  
dy

dx
 – 2y = –Aex …(4)

2

2

d y

dx
 – 4y = –3Aex …(5)

Eliminating A between equations (4) and (5), we get the following differential
equation,

2

2
– 3 2 0

d y dy
y

dx dx
 

3.2.1 Solution of Differential Equation of First Order
and First Degree

An ordinary differential equation of first order and first degree can be written as
dy

dx
 = f (x, y) ...(3.3)

The differential equation can be classified as

(1) Exact equations.

(2) Equations solvable by separation of variables.

(3) Homogeneous equations.

(4) Linear equation of first order.

Exact Equations

An equation of the form

M(x, y)dx + N(x, y)dy = 0

is called exact if there exists a function u(x, y) such that
du = Mdx + Ndy

A necessary and sufficient condition for the exactness of the differential
equation Mdx + Ndy = 0 is

M

y
 = N

x

If the differential equation Mdx + Ndy = 0 is exact, then the general solution
of this differential equation can be obtained by the following rules:

(1) Integrate Mdx taking y as constant.
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(2) Integrate Ndy taking x as constant.

(3) Then add the two integrates ignoring the repeated terms if there be any
but add a constant of integration to get the general solution.
Example 3.4: Solve (x2 – y)dx + (y2 – x)dy = 0.

Solution: Here M = x2 – y and N = y2 – x

Now
M

y
= – 1 and N

x
 = – 1

 M

y
= N

x
, hence the differential equation is exact.

Now integrating M with respect to x keeping y as constant, we get

M dx = 2( )x y dx  = 
3

3

x
yx

Integrating N w.r.t. y keeping x as constant, we get

N dy = 2( )y x dy  = 
3

3

y
xy

Then the general solution (or complete primitive) is 
3 3

3 3

x y
xy  = c, where

c is an arbitrary constant.
Definition: A function f(x, y) is said to be an Integrating Factor (I.F.)
of the equation Mdx + Ndy = 0 if we can find a function u(x, y) such that
f (x, y) (M dx + N dy) = du. In other words, an I.F. is a multiplying factor
by which the equation can be made exact.

For solving differential equations, the following results will be of much help:

 Sl. Given Integrating Exact Differential

 No. Expression Factor

1. x dy – y dx 2

1

x 2

x dy y dx

x
= y

d
x

2. x dy – ydz
2 2

1

x y 2 2

x dy y dx

x y
= 1tan

y
d

x

3. x dx + y dy
2 2

1

x y 2 2

x dx y dy

x y
= 

2 2

2 2

1
( )

2
d x y

x y

= 2 21
[log ( )]

2
d x y

4. x dy – y dx
1

xy

x dy y dx

xy
 = dy dx

y x
= log

y
d

x

5. y dx – x dy
2

1

y 2

y dx x dy

y
= x

d
y
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Example 3.5: Solve 
2 2

x dy y dx
x dx y dy

x y
 = 0.

Solution: Here 
2 2

x dy y dx
x dx y dx

x y
 = 0

or
2

2 2
2

1
( )

2
1

x dy y dx

xd x y
y
x

 = 0

or 2 2 11
( ) tan

2

y
d x y d

x
 = 0

By integrating, we get

2 2 11
( ) tan

2

y
x y

x
 = c, where c is an arbitrary constant.

Example 3.6: Solve x dx + y dy = m(x dy – y dx).

Solution: Here x dx + y dy = m(x dy – y dx)

or
2 2

x dx y dy

x y
 = 

2 2

x dy y dx
m

x y 2 2

1
Multiplying both sides by

x y

or
2 2

2 2

1
( )

2
d x y

x y
= 

2

2

2
1

x dy y dx

xm
y

x

or         2 21
{log ( )}

2
d x y  = 1tan

y
m d

x

By integrating, we get 2 21
log ( )

2
x y  = 1tan

y
m c

x
, where c is an arbitrary

constant.

3.2.2 Variable Separable

Differential equations of the form f(x) dx = g(y) dy are called equations with
variables separated.

Integrating the equation, we get,

( )f x dx  = ( )g y dy C

Example 3.7: Solve 3ex tan y dx + (1 – ex) sec2 y dy = 0

Solution: Rearranging we get,

3

1

x

x

e
dx

e
= 

2sec
–

tan

y
dy

y

–3
1

x

x

e
dx

e = 
2sec

tan

y
dy

y
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3 log(1 – ex) = log tan y + log C

(1 – ex)3 = C tan y

Example 3.8: Solve 
( , ) ,
( , )

dy f x y

dx g x y


Solution:
dy

dx
= 

2

2

1
–

1

y

x





21

dy

y
 = 

2
–

1

dx

x


sin–1y = – sin–1 (x) + C

3.2.3 Homogeneous Equations

These equations are of the form 
( , ) ,
( , )

dy f x y

dx g x y
 where f(x, y) and g(x, y) are

homogeneous functions of x and y of the same degree.

To solve these equations, put y = vx. Then,

dy

dx
= 

dv
v x

dx


Substituting this in the given equation it reduces to the type in which the
variables are separable.

Example 3.9: Solve 
2

3 3

dy x y

dx x y




Solution: Put y = vx, then,

dy

dx
= 

dv
v x

dx


Using these in the given equation we get,

dv
v x

dx
 = 

3

3 3 3

vx

x v x


dv

x
dx

= 
4

31

v

v
3

4

1 v
dv

v


= 

dx

x


4

1 1
dv dv

v v
  = 

dx

x

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3

1
log

3
v

v
  = C – log x

log vx = 3

1

3
C

v


 log y = 

3

3
3

3
3

or
3

x

yx
C y Ae

y
 

Homogeneous Equations with Constant Coefficients

An equation of the form,

1 21 2 2
... ...

n n n n

nn n n n

z z z z
a a a

x x y x y y 

   
    

     
 = F(x, y) ...(3.4)

Where a
1
, a

2
,..., a

n
 are constants and the equation is called a homogeneous linear

partial equation of nth order with constant coefficients.

Let, Dn = n

z

x




; Dn = 
n

z

y




Substituting above Equation in (3.4) we get,

(Dn + a
1
Dn-1 D+ a

2
Dn–2 D2+....+ a

n
Dn)z = F(x, y)

f(D, D)z = F(x, y)

The solution will contain two parts:

1. Complementary Function (CF)

2. Particular Integral (PI)

To find complementary function, consider f(D, D)z = 0.

Auxiliary equation is,

f(m, 1) = 0 when (D = m, D = 1)

Now let us find the roots of the equation.

Roots CF

1. m
1
, m

2
, m

3
... 

1
(y + m

1
x) + 

2
(y + m

2
x) +

3
(y + m

3
x) +...

2. m
1
, m

1
, m

1
,... 

1
(y + m

1
x) + x

2
(y + m

1
x) + x2

3
(y + m

1
x) +...

For example,

1. If the roots are –1, 2, 6

CF = 
1
(y – x) + 

2
(y + 2x) + 

3
(y + 6x)

2.  If the roots are –2, –2, –2

CF = 
1
(y – 2x) + x

2
(y – 2x) + x2

3
(y – 2x)
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3. If the roots are 1, 1, 2

CF = 
1
(y + x) + x

2
(y + x) + 

3
(y + 2x)

Rules to Find PI

Let, u(x, y) be the PI

Then, f(D, D) u(x, y) = F(x, y)

 u(x, y) = 
1

( , )
( , ')

F x y
f D D

1.
1

( , ')
ax bye

f D D
  = 

1
, ( , )

( , )
ax bye f a b

f a b
   0

2. (a) 
1

sin( )
( , ')

ax by
f D D

 (b) 
1

cos( )
( , ')

ax by
f D D



Replace D2 by – a2, D2 by – b2, DD by –ab

3.
1

( , ')
r sx y

f D D

Expand 
1

( , ')f D D
 in ascending powers of 'D

D
 up to 

'

r
D

D
 
 
 

 and operate on

xr ys.
or,

Expand 
1

( , ')f D D
 in ascending powers of 

'

D

D
 up to '

s
D

D
 
 
 

 and operate on

xr ys.

4.
1

( , )
( , ')

ax bye g x y
f D D

  = 
1

( , )
( , ' )

ax bye g x y
f D a D b



 

5. 1
( , )

'
f x y

D mD

Change y to y – mx in f(x, y) and integrate with respect to x treating y as
constant. In the resulting integral change y to y + mx.

Notes: 1. (1 + x)–1 = 1 – x + x2 – x3 +...; 2. (1 – x)–1 = 1 + x + x2 +....

Example 3.10: Solve 2 2

1
cos

' 6 '
y x

D DD D 

Solution:  
1

cos
( 2 ')( 3 ')

y x
D D D D 

Replace y by y + 3x. Keep y as a constant.

= 
1

( 3 )cos
( 2 ')

y x x dx
D D


 
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=  1
( 3 )sin 3( cos )

2 '
y x x x

D D
  



After integration replace y by y – 3x

= 
1

sin 3cos
2 '

y x x
D D




Replace y by y – 2x. While integrating keep y as a constant.

=  ( 2 )sin 3cosy x x x dx 
= (y – 2x)(– cos x) – (–2)(– sin x) + 3 sin x

After integration replace y by y + 2x

= (y + 2x – 2x)(– cos x) – 2 sin x + 3 sin x

= – y cos x + sin x

Example 3.11: Solve 2
2 2

1

4 ' 4 '
x ye

D DD D


 

Solution: = 2
2

1

( 2 ')
x ye

D D



 when, D = 2, D = 1, Dr = 0

= 21

( 2 ')( 2 ')
x ye

D D D D


 

= 2 21

2 '
x y xe dx

D D
 

 

= 
1

2 '
ye x

D D




= 21
.

2 '
y xe x

D D




= 2 2y x xe x dx    = ye x dx

= 
2

2
y x

e

= 
2

2

2
y x x

e  

Example 3.12: Solve (2D2 + 5DD + 2D2)z = 0

Solution: Auxiliary equation is,

2m2 + 5m + 2 = 0

2m2 + 4m + m +2 = 0

2m(m +2) + 1(m + 2) = 0
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(2m +1)(m + 2) = 0

m = 
1

, 2
2




 z = 1 2 ( 2 )
2

x
y y x     

 

Example 3.13: Solve (D3 – 4D2D + 4DD2)z = 0

Solution:

Auxiliary equation is,

m3 – 4m2 + 4m = 0

m(m2 – 4m + 4) = 0

m(m – 2)2 = 0

m = 0, 2, 2

 z = 
1
(y) + 

2
(y + 2x) + x

3
(y + 2x)

3.2.4 Non-Homogeneous Equations

The general form of the equation of this type is,

dy

dx
= 

1 1 1

2 2 2

a x b y c

a x b y c

 
  ...(3.5)

Where atleast one c
1
 and c

2
 is non-zero.

The cases of this type are considered below:

Case (1): When b
1
 = – a

2

Then the equation becomes,

dy

dx
= 1 1 1

1 2 2

a x b y c

b x b y c

 
  

Cross-multiplying we get,

(–b
1
x + b

2 
y + c

2
)dy = (a

1
x + b

1 
y + c

1
)dx

b
2
ydy + c

2
dy – a

1
xdx – c

1
dx = b

1
(ydx + xdy)

i.e., (b
2 
y + c

2
)dy –(a

1
x + c

1
)dx = b

1
d(xy)

Integrating we get,

2 2

2 2 1 12 2

y x
b c y a c x   = b

1
xy + K

Example 3.14: Solve 
dy

dx
= 

2 3

3 1

x y

x y

 
 

Solution: Cross-multiplying and rearranging the terms, we get,

(xdy + ydx) = (2x + 3)dx + (3y + 1)dy
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Integrating we get, ( )d xy = (2 3) (3 1)x dx y dy   

xy = 2 23
3

2
x x y y K     is the solution.

Case (2): When a
1
 = b

2
 and b

1
 = a

2

Then the equation becomes,

dy

dx
= 

1 1 1

1 1 2

a x b y c

b x a y c

 
 

1 1 1

dy

a x b y c  = 
1 1 2

dx

b x a y c 

= 
1 1 1 2

( )

( )( )

d x y

a b x y c c


   

= 
1 1 2 1

( )

( )( )

d x y

b a x y c c


   

1 1 1 2

( )

( )( )

d x y

a b x y c c


    = 

1 1 2 1

( )

( )( )

d x y

b a x y c c


   

    1 1 1 2
1 1

1
log[( )( ) ( )]

( )
a b x y c c

a b
   



= 1 1 2 1
1 1

1
log[( )( ) ( )]

( )
b a x y c c K

b a
    



Example 3.15: Solve 
dy

dx
= 

3 4 1

4 3 2

x y

x y

 
 

Solution:

 3 4 1

dy

x y  = 4 3 2

dx

x y   = 
( )

7( ) 1

d x y

x y


   = 

( )

( ) 3

d x y

x y


 

( )

7( ) 1

d x y

x y


  = 

( )

( ) 3

d x y

x y


 

1
log[7( ) 1]

7
x y  = log[( ) 3] logx y c  

1
log[7( ) 1]

7
x y  = log [( ) 3]c x y 

log [7(x + y) + 1] = log c[(x – y) + 3]7

7x + 7y +1 = K(x – y + 3)7

Non-Homogeneous Equations with Constant Coefficients

Consider the equation of the form,

f(D, D)z = F(x, y) ...(3.6)

If f(D, D) is not homogeneous then Equation (3.6) is called a non-homogeneous
linear equation.

PI can be found as in homogeneous linear equations.
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To find CF, consider f(D, D)z = 0 ...(3.7)

Assume, z = Cehx + ky as a trial solution.

Substituting in Equation (3.7) we get, f(h, k) = 0

Find k in terms of h [or h in terms of k]

Let the r values of k be,

f
1
(h), f

2
(h),..., f

r
(h)

Then, z = ( )nhx f h y
nC e  , n = 1, 2, .... , r

will be the seperate solution of Equation (3.7).

The general solution of Equation (3.7) is of the form,

z = 1 2( ) ( ) ( )
1 2 ... rhx f h y hx f h y hx f h y

rC e C e C e      
Example 3.16: Solve (D2 – DD + D – 1)z = ex

Solution:

To find CF, consider,

(D2 – DD + D – 1)z = 0

Let, z = Cehx + ky as a trial solution.

f(h, k) = 0

h2 – hk + k – 1 = 0

h = 
2 4( 1)

2

k k k  

= 
2( 2)

2

k k 

= 
( 2)

2

k k 
 = k – 1, 1

 CF = ( 1)
1 2

k x ky x kyC e C e   
= ( )

1 2
x k x y x kye C e e C e   

= e–x
1
(y + x) + ex

2
(y)

PI = 2

1

' ' 1
xe

D DD D  

Put,  D = 1, D = 0, Dr = 0

= 
1

( ' 1)( 1)
xe

D D D  

= 
1

1
xe

D 

= 
1

(1)
1 1

xe
D  

= xex

 z = e–x
1
(y + x) + ex

2
(y) + xex
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Example 3.17: Solve (D2 + DD + D – 1)z = cos(x – y)

Solution:

To find CF, consider

(D2 + DD + D – 1)z = 0

Assume, z = Cehx + ky as a trial solution.

f(h, k) = 0 becomes, h2 + hk + k – 1 = 0

h = 
2 4( 1)

2

k k k   

= 
2( 2)

2

k k  

= 
( 2)

2

k k  

= –1, – k + 1

CF = ( 1)
1 2

x ky k x kyC e C e     
= ( )

1 2
x ky x k y xe C e e C e  

= 1 2( ) ( )x xe y e y x   

PI = 2

1
cos( )

' ' 1
x y

D DD D


  

Put, D2 = –a2 = –1

DD = –ab = 1

D2 = –b2 = –1

= 
1

cos( )
1 1 ' 1

x y
D


   

= 
1

cos( )
' 1

x y
D




= 2

( ' 1)
cos( )

' 1

D
x y

D






= 
1

(sin( ) cos( ))
2

x y x y   

  z = e–x f
1
(y) + ex f

2
(y – x) –

1
[sin( ) cos( )]

2
x y x y  

Example 3.18: Solve (D2 + 2DD + D2 – 2D – 2D)z = ex – y + x2y

Solution: To find CF, consider

(D2 + 2DD + D2 – 2D – 2D)z = 0

f(h, k) = 0 becomes,
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h2 + 2hk + k2 – 2h – 2k = 0

h2 + 2h(k – 1) + k2 – 2k = 0

h = 
2 22( 1) 4( 1) 4( 2 )

2

k k k k     

= 
2( 1) 4

2

k  

= 1 – k ± 1

= 2 – k, – k

CF = (2 )
1 2

k x ky kx kyC e C e    
= 2 ( 2 ) ( )

1 2
x k y x k y xe C e C e  

= e2x 
1
(y – 2x) + 

2
(y – x)

PI
1

= 
1

( ' 2)( ')
x ye

D D D D


  

= 
1

(1 1 2)( ')
x ye

D D


  

= ( )1

2
x y xe dx  

= 
1

2
ye x

= 
1

2
x yxe 

PI
2

= 2
2 2

1

2 ' ' 2 2 '
x y

D DD D D D   

= 2

2

1

' '
2 1 '

2 2

x y
D D D

D D
D D

 
     

 

= 21

'
2 1 '

2

x y
D D

D D
D

         

 2 2' ( ) 0D x y 

= 
1

21 '
1 '

2 2

D D
D x y

D D


         

=
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2
2 21 ' 3 3

1 ' ' ' ' '
2 2 4 4 4

D D D
D DD D DD D D x y

D D

 
         

 

= 
2

2 21 ' 1 3
1 ' '

2 2 4 4 4

D D D
DD D D x y

D D

 
      

 

= 2
2

1 1 1 ' ' 3
'

2 2 4 4 4

D D D
DD x y

D D
        

= 
3 4 2

21 1 3

2 3 2 12 4 2 2

x x x xy x
y x y

 
      

 

  z = e2x 
1
(y – 2x) + 

2
(y – x) –

3 2 4 21 3

2 2 3 2 12 4 2 2
x yx x y x y x x xy x

e   
      

 

3.2.5 Exact Differential Equations and Integrating
Factors

In mathematics, an integrating factor is a function that is used to solve the given
equation with the help of differential equations.

Exact Differential Equation
A differential equation is said to be exact if it can be derived directly from its primitive
without any further operation of elimination or reduction. Thus the differential
equation,

M(x, y)dx + N(x, y)dy = 0 ...(3.8)

is exact if it can be derived by equating the differential of some function U(x, y) to
zero.

Let, U(x, y) = C be the solution of the Equation (3.8).

Differentiating this we get,

U U
dx dy

x y

 


 
 = 0 ...(3.9)

Equations (3.8) and (3.9) are identical,

M = 
U

x




,    N = 
U

y




If we eliminate U between these by means of the equivalence of the relation,
then we get,

U

x y

  
   

= 
2U U

x y y x

         

And,
N

x




= 
M

y



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Thus, the condition for M dx + N dy = 0, to be an exact equation is,

 
M

y




= 
N

x




Rules for Solving Mdx + Ndy = 0, when it is Exact
(i) First integrate M with respect to x regarding y as a constant.

(ii) Then integrate with respect to y those terms in N which do not contain x.

(iii) The sum of the expressions obtained in (i) and (ii), when equated to an
arbitrary constant, will be the solution.

Example 3.19: Solve (sin x cos y + e2x)dx + (cos x sin y + tan y )dy = 0

Solution:

Here, M = sin x cos y + e2x

N = cos x sin y + tan y

 
M

y




=  –sin x sin y; 
N

x




= –sin x sin y

Since, 
M

y




= N

x




, the equation is exact. Integrating M with respect to x

regarding y as a constant, we get, 21
– cos cos

2
xx y e

   

In N, the term not involving x namely tan y is integrated with respect to y
giving log sec y.

  The solution is,

2

– cos cos logsec
2

xe
x y y C  

Example 3.20: Solve (yexy – 2y3)dx + (xexy – 6xy2 – 2y)dy = 0

Solution: M = yexy – 2y3, 
M

y




  = exy + xyexy – 6y2

N = xexy – 6xy2 – 2y, 
N

x




 = exy + xyexy – 6y2

Since, 
M

y




= 
N

x




, the equation is exact.

  Mdx =  (yexy – 2y3 )dx

= 3 32 2
xy

xye
y xy e xy

y
  
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Integrating those terms in N which do not contain x with respect to y, we
get,

 Ndy =   – 2ydy  = –y2, omitting terms involving x in N.

 The solution is, exy – 2xy3 – y2 = C

Note: Sometimes when the equation is not apparently exact, by suitably regrouping the
terms we can find an integrating factor, which when multiplied by the equation will make it an
exact equation.

Example 3.21: Solve y (2x2y + ex)dx – (ex + y3) dy = 0

Solution:

M = 2x2y2 + yex , 24 xM
x y e

y


 



N = –(ex + y3), – xN
e

x






As M N

y x

 


 
, the equation is not exact. However, we can rearrange the

equation as,

yexdx – exdy + (2x2dx – ydy)y2 = 0

Now dividing by y2, we have

2
2

–
2

x xye dx e dy
x dx ydy

y
  = 0

i.e.,
22

xe
d x dx ydy

y

 
  

 
= 0

Integrating, we find the solution as, 
3 22

–
3 2

xe x y
C

y
 

Note that, in this example, we used the integrating factor 2

1

y
.

Rules for Finding Integrating Factors

Rule I When Mx + Ny = 0, and the equation is a homogeneous one, then 
1

Mx Ny
is

an integrating factor.

Example 3.22: Solve x2ydx – (x3 + y3)dy = 0

Solution: The equation is not exact and Mx + Ny = –y4  0. Hence, –
4

1

y
can be

used as an integrating factor. Then,
2 3 3

3 4
–

x x y
dx dy

y y

 
  
 

= 0
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M

y




= 
2

4

3x

y

N

x




= 
2

4

3x

y

Hence, the equation has become exact,

 Mdx = 
2 3

3 3
–

3

x x
dx

y y
 

In N, integrating the term not containing x, namely 
1

y
 with respect to y we

get log y.

  The solution is 
3

3
– log

3

x
y C

y
 

Rule II  If the equation is of the form yf
1
(xy)dx + xf

2
(xy)dy = 0 and Mx – Ny  0,

then 
1

–Mx Ny  is an integrating factor..

Example 3.23: Solve y(x2y2
 
+ xy + 1)dx + x(x2y2 – xy + 1)dy = 0

Solution: The equation is not exact, since, M N

y x

 


 

3 3 2 2 3 3 2 2 2 2– 2 0Mx Ny x y x y xy x y x y xy x y       

Using,
2 2

1 1

2Mx Ny x y



 as an integrating factor we get,

2 2 2 2

2 2

1 – 1

2 2

x y xy x y xy
dx dy

x y xy

     
   

   
 = 0

2 2

1 1 1 1
y dx x dy

x yx y xy

   
       

   
 = 0

Now,
2 2

1
1–

M

y x y





and 

2 2

1
1–

N

x x y






 The equation is exact and the solution is,

2

1 1 1
–y dx dy

x yx y

 
   

 
  = C

xy + log x – 1
log y

xy
 = C
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Rule III

(i) If 1
–

M N

N y x

  
   

is a function of x alone, say f(x), then e f(x)dx is an integrating

factor.

(ii) If
1

–
N M

M x y

  
   

is a function of y alone, say g(y), then e g(y)dy is an integrating

factor.

Example 3.24: Solve (xy3 + y)dx + 2(x2y2 + x + y4)dy = 0

Solution: The equation is not exact and,

M

y


 = 3xy2 + 1

N

x




= 4xy2 + 2

1
–

N M

M x y

  
   

 = 
1

y
= g(y)

e g(y)dy = elog y = y is an integrating factor.

Multiplying by y we get the equation,

4 2 2 3 5( ) 2( )xy y dx x y xy y dy    = 0

Now, the equation is exact and the solution is,

4 2 5( ) 2xy y dx y dy   = C

i.e., 3y4x2 + 6xy2 + 2y6 = C

Rule IV  If the equation Mdx + Ndy = 0, is of the form xayb (my dx + nx dy) +
xrys(pydx + qxdy) = 0, where a, b, m, n, r, s, p, q are constants, then xhyk, is an
integrating factor, where h and k are determined using the condition that after
multiplication by xhyk, the equation becomes exact.

Example 3.25: Solve (y3 – 2yx2)dx + (2xy2 – x3)dy = 0

Solution: The equation is not an exact one and it can be rewritten as,

y(y2 – 2x2)dx + x(2y2 – x2)dy = 0

or,y2(ydx + 2xdy) + x2(–2ydx – xdy) = 0

So that, this is of the form mentioned in Rule IV above.

Multiplying the equation by xhyk we get,

   3 2 1 1 2 3– 2 2 –h k h k h k h kx y x y dx x y x y dy       = 0 …(1)

Now,
M

y


 = 2 2(3 ) 2( 1)h k h kk x y k x y       and,
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N

x


 = 2 22( 1) ( 3)h k h kh x y h x y   

Using the condition 
M

y




= 
N

x




and equating the coefficients of like powered

terms on both sides, we get

3 + k = 2(h + 1) or, k – 2h = –1

2k + 2 = h + 3 or,     2k – h = 1

Solving them we get, k = 1, h = 1, so that the integrating factor is xy.

The equation (1) for these values of h and k becomes,

(xy4 – 2x3y2)dx + (2x2y3 – x4y)dy = 0

As this equation is exact, the solution is,

(xy4 – 2x3y2)dx = C

2 4 4 22

2 4

x y x y
 = C

x2y4 – x4y2 = K

3.2.6 Applications of Chemical Kinetics

Chemical kinetics, also known as reaction kinetics, is the branch of physical
chemistry, i.e., concerned with understanding the rates of chemical reactions. It is
to be contrasted with thermodynamics, which deals with the direction in which a
process occurs but in itself tells nothing about its rate. Chemical kinetics includes
investigations of how experimental conditions influence the speed of a chemical
reaction and yield information about the reaction’s mechanism and transition states,
as well as the construction of mathematical models that also can describe the
characteristics of a chemical reaction. Rate laws are mathematical descriptions of
experimentally verifiable data. In other hand rate laws may be written from either
of two different but related perspectives. A differential rate law expresses the
reaction rate in terms of changes in the concentration of one or more reactants
(Δ[R]) over a specific time interval (Δt). Following applications which are related
to a differentiations.

 Ordinary Differential Equations: Ordinary differential equations
applications in real life are used to calculate the movement or flow of
electricity, motion of an object to and fro like a pendulum, to explain
thermodynamics concepts. Also, in medical terms, they are used to check
the growth of diseases in graphical representation.

 Differential Equation: In mathematics, differential equation is an equation
that relates one or more functions and their derivatives. In applications, the
functions generally represent physical quantities, the derivatives represent
their rates of change, and the differential equation defines a relationship
between the two. On the other hand the differential method has the advantage
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of allowing one to use all of the experimental data. The simplest case would
be for a reaction, which is some non-integer order with respect to a reactant.
If the reaction is dependent on another reactant, the excess method can be
employed to suppress this effect.

 Differential Rate Laws: It is the express the rate of reaction as a function
of a change in the concentration of one or more reactants over a particular
period of time; they are used to describe what is happening at the molecular
state level during a reaction. These rate laws help us determine the overall
mechanism of reaction (or process) by which the reactants turn into
products.

For example: Rate = –d[A] /dt = [A]n

 Integrated Rate Laws: integrated rate laws express the reaction rate as a
function of the initial concentration and a measured (actual) concentration
of one or more reactants after a specific amount of time (t) has passed; they
are used to determine the rate constant and the reaction order from
experimental data. For example (when n = 1):

                              ln [A] = – kt + ln [A]
0

Where [A]
0
  is the initial concentration of the reactant and [A] is the

concentration after a time t has passed.

 Mathematical Models: The mathematical models that describe chemical
reaction kinetics provide chemists and chemical engineers with tools to better
understand and describe chemical processes, such as food decomposition,
microorganism growth, stratospheric ozone decomposition, and the chemistry
of biological systems. These models can also be used in the design or
modification of chemical reactors to optimize product yield, more efficiently
separate products, and eliminate environmentally harmful by-products. When
performing catalytic cracking of heavy hydrocarbons into gasoline and light
gas, for example kinetic models can be used to find the temperature and
pressure at which the highest yield of heavy hydrocarbons into gasoline will
occur.

 Numerical Methods: In some cases, equations are unsolvable analytically,
but can be solved using numerical methods if data values are given. There
are two different ways to do this, by either using software programmes or
mathematical methods, such as the Euler method. Examples of software for
chemical kinetics are:

(i) Tenua, a Java app which simulates chemical reactions numerically and
allows comparison of the simulation to real data.

(ii) Python coding for calculations and estimates.

(iii) The Kintecus software compiler to model, regress, fit and optimize
reactions.

Numerical integration: for a 1st order reaction A->B

The differential equation of the reactant A is:

d [A] /dt = –k [A]



Elementary Differential
Equations

NOTES

Self - Learning
214 Material

It can also be expressed as:

d [A] /dt = f (t, [A])  (Which is, the same as y’=f(y, x)

To solve the differential equations with Euler and Runge-Kutta methods
we need to have the initial values.

 Euler method: Euler method  simple but inaccurate.

At any point y’ = f(y, x)  is the same as;

                     y= dy/dx

 y= dy/dx

We can approximate the differentials as discrete increases:

        y= dy/dx                     ~    
The unknown part of the equation is y(x+Δx), which can be found if we
have the data of initial values.

 Runge-Kutta Methods: Runge-Kutta methods is the more accurate than
the Euler method. In this method, an initial condition is required: y = y

0
 at

x = x
0
. The proposal is to find the value of y when x= x

0
 + h, where h is a

given constant. It can be shown analytically that the ordinat at that moment
to the curve through (x

0
, y

0
) is given by the third-order Runge-Kutta formula.

In first-order ordinary equations, the Runge-Kutta method uses a
mathematical model that represents the relationship between the temperature
and the rate of reaction. It is worth it to calculate the rate of reaction at
different temperatures for different concentrations.

The equation obtained is: dr/dt=R/T+r H0/ RT2

 Stochastic Methods: Stochastic methods  probabilities of the differential
rate laws and the kinetic constants. In an equilibrioum reaction with directed
and inverse rate constants, it’s easier to transform from A to B rather than B
to A. As for probability computations, at each time it choose a random
number to be compared with a threshold to know if the reaction runs from
A to B or the other way around.

3.2.7 Secular Equilibria

In nuclear physics, secular equilibrium is a situation in which the quantity of a
radioactive isotope remains constant because its production rate (for example
due to decay of a parent isotope) is equal to its decay rate.

In Radioactive Decay

Secular equilibrium can occur in a radioactive decay chain only if the half-life of
the daughter radionuclide B is much shorter than the half-life of the parent
radionuclide A. In such a case, the decay rate of A and hence the production rate
of B is approximately constant, because the half-life of A is very long compared to
the time scales considered. The quantity of radionuclide B builds up until the number
of B atoms decaying per unit time becomes equal to the number being produced
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per unit time. The quantity of radionuclide B then reaches a constant, equilibrium
value. Assuming the initial concentration of radionuclide B is zero, full equilibrium
usually takes several half-lives of radionuclide B to establish. The quantity of
radionuclide B when secular equilibrium is reached is determined by the quantity
of its parent A and the half-lives of the two radionuclide. That can be seen from the
time rate of change of the number of atoms of radionuclide B:

                                     

Where λ
A
 and λ

B 
are the decay constants of radionuclide A and B, related

to their half-life t
1/2 

by λ = ln (2)/ t
1/2 

and N
A
 and N

B
 are the number of atoms of A

and B at a given time.

Secular equilibrium occurs when dN
B
 /dt=0, or

N
B 

= λ
A 

/ λ
B
 N

A

Over long enough times, comparable to the half-life of radionuclide A, the
secular equilibrium is only approximate; N

A
 decays away according to

N
A
(t) = N

A
(0) e λ

A
t

And the ‘Equilibrium’ quantity of radionuclide B declines in turn. For times
short compared to the half-life of A, λ

A 
t << 1 and the exponential can be

approximated as 1.

3.3 QUANTUM CHEMISTRY

An operator is a rule for transforming a given mathematical function into Another
function. Operators will be indicated by their symbols with caret ( /\ ) over it.

Example 3.26: The operator A is represented as Â . In general if Â  denotes an
operator which transforms the function effects into another function g(x) then

mathematically it is written as Â .f(x) = k.g(x)

where, Â  is called operator

f(x) is an operand and

g(x) is an another function and K is constant.

This equation is called as an operator equation. This function which is operated by
the operator is called operand.

Example 3.27

Name of the operator Symbol Operator on the given function 

Differentiate operator d/dx F(x) = x2 

d/dx (x2) = 2x 

Integrate operator ?(c) dx ?x2  dx = x3/3 
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Algebra of An Operator

Addition and Subtraction Operators

If operator Â  and operator B̂  the two operators then the new operator obtained
by addition and subtract10n of operators are called addition and subtraction
operator respectively .It can be represented as:

ˆ ˆˆ ˆA B f x Af x Bf x

ˆ ˆˆ ˆA B f x Af x Bf x

Example 3.28: Â  = square root (v)

B̂ =d/dx

(v+d/dx) x2 =
2d

x
dx

= x + 2x
= 3x

Similarly for subtraction operator

(v–d/dx)x2 =
2 2d

vx x
dx

= x – 2x

Linear Non - Linear Operators

Linear Operators

The action of an operator that tunrns the function f(x) into the function g(x) is

represented by ˆ ( ) ( )AF x g x  most common kind of operator encountered are

linear operators which satisified the following conditions:

ˆ ˆ( ( ) ( ) ( ) ( )A F x g x AF x Bg x

Example 3.29:
2 2 2 24 5 4 5

d d d
x x x x

dx dx dx

2 2 29 4 5
d d d

x x x
dx dx dx

18x = 8x + 10x
18x = 18x

L.H.S. = R.H.S

Non - Linear Operators

In operating on the sum of two functions, if an operator does not give the same
result as the sum of operations on the two functions separately. Then operator is
said to be non linear. Mathematically it can be written as

Â (f(x) + g(x)) = Â f(x) + Â g(x)
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Example 3.30:

Taking the square root function, if Â  is non-linear then

f x g x f x g x

f(x)=4x2, g(x)= 16x2

2 2 2 24 16 4 16x x x x

2 2 220 4 16x x x

20 2 4x x x

20 6x x

Del Operator 

Operator is a vector quantity or complex quantity, represented in terms of its
components

for Example:


d d d

i j k
dx dy dz

where i, j, k are the unit vectors along x, y and z axes respectively. Laplacian
operator :

Laplacian Operator 

The square of the () Del operator 2 is also called Laplacian operator. It is
obtained as a dot product of 

i.e. .  = 2

2 2 2
2 2 2

2 2 2

d d d d d d d d d
k j k i j k i j k

dx dy dz dx dy dz dx dy dz

2 2 2
2

2 2 2

d d d

dx dy dz

where i.i = 1, J.J = 1

k.k = 1 and i.j = 0

j.k = 0 and k.i = 0

where x, y and z are cartesian co-ordinates

Position Operator

Position is represented by letter r(x, y, z) in Cartesian co-ordinate system. In
tenns of its components

r ix jy kz
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Momentum Operator

These are two types

1. Linear momentum operator (p)

2. Angular momentum operator (L)

Linear Momentum Operator (P):

Total linear momentum operator is represented by P. In terms of its components

P = iP
x
 + JP

y
 + KP

z

where P
x
 is component of the linear momentum along the x direction

P
y
 is component of the linear momentum along the y direction and

P
z
 is component of linear momentum along z direction.

Properties of Linear Momentum Operator

1. It is a differential operator

2. It is a linear operator

3. It is a hermitian operator

4. Linear momentum operator will not commute with position operator

5. It will commute with Hamiltonian operator .

6. Linear momentum operator is Hermitian

Angular Momentum Operator (L)

Total angular momentum (L) is written in terms of its components as L= iL
x
+ jL

y
+

kL
z
 where L

x
, L

y
, L

z
 are the components of the angular momentum about x, y, z

axes respectively.

Total angular momentum is obtained by the cross or vector product of the
position and the linear momentum vectors. Angular momentum of a particle moving
around a fixed point is given by the vector product or cross product of r and p.

Where r is the radius vector and p is the linear momentum vector

L = ˆ ˆr p

iLx+ jLy+ kLz = (ix + jy + kz) x (ipx+ jpy+kpz)

iLx + jLy + kLz

x y z

i j k

x y z

p p p

= i(ypz – zpy) – j(xpz – zpx) + k(xpy – ypz)
iLx + jLy + kLz = i(ypz – zpy) + j(zpx – xpz) + k(xpy – ypz)

ˆ
xL = ˆ ˆ ˆˆz yyp zp

ˆ
yL = ˆ ˆˆˆ x zzp xp

ˆ
zL = ˆˆ ˆ ˆy xxp yp



Elementary Differential
Equations

NOTES

Self - Learning
Material 219

Replacing the momentum operators by quantum mechanical operator, we
get

ˆ
xL = 2 i

h d d
y z

dz dy

ˆ
yL 2 i

h d d
z x

dx dz

ˆ
zL 2 i

h d d
x y

dy dx

2L̂ is the dot product of L with L

L2 = L.L.

L2 =(iL
x
 + jL

y
 + kL

z
).(iL

x
 + jL

y
 + kL

z
)

L2 =L2
x
 + L2

y
 + L2

z

Hamiltonian Operator, Ĥ

The operator correspondin to the physically observable quantity, energy is known
as Hamiltonian Operator.

E=T+V

where, T = Kinetic energy

V = Potential energy

Linear momentum

p = mv

p2 = m2v2

Divide through out by 2m

2
21

2 2

p
mv

m

we know that

T = 
21

2
mv

So 
21

2
E mv V

2

2

p
E V

m

If we represent energy (E) by Mamiltonian Operator H

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Then,

2

2x

p x
H V

m

2 2

2

1

2 2 xV
m m x

p
i x

2 2

22x xH V
m x

i2 = –1

T he above equation is for x co-ordinate and for x, y, z coordinates

2
2

2
H V

m

2 2 2 2

2 2 22
H V

m x y z

Hermitian Operator

The given operator Â is said to be Hermitian if it obeys “tum over rule” which is
defined mathematically as

* * *ˆ
i j i jA d A d

Where 
i
 and 

j
 are the e1gen functions of the operator Â  and *

j is the

complex conjugate of 
i
 .

Check Your Progress

1. Give the basic definition of differential equation.

2. What is singular solutions?

3. What did you meant by reaction kinetics?

4. State the differential rate laws.

5. What do you understand by secular equilibrium?

6. When operator is said to be non-linear operator?

3.4 POWER SERIES METHOD

The power series method is used to search a power series solution to certain
differential equations. Basically, such a solution assumes a power series with
unknown coefficients and then substitutes that solution into the differential equation
for finding a recurrence relation for the coefficients. The power series method can
also be applied to certain non-linear differential equations with less flexibility.
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If a homogeneous linear different equation has constant coefficients, then
it can be solved using algebraic methods and its solutions are elementary functions
known from calculus ex, cos x, etc. However, if such an equation has variable
coefficients functions of x, it must be solved by other methods. The standard basic
technique used for the purpose of answering linear differential equations containing
variable coefficients is known as the power series method. The answer is provided
in the form of power series which explains the name. The use of these series can
be done for the purpose of evaluating the values of solutions, for exploring their
properties and for obtaining different kinds of representation of those solutions.
The operations on power series include the methods of differentiation, addition,
multiplication, etc.)

Power Series

A power series about a or just power series is any series that can be written in the
form,

Where a and c
n
 are numbers. The c

n
’s are often called the coefficients of the

series. The most important thing about a power series is that it is a function of x. We
know from calculus that a power series (in powers of x – x

0
) is an infinite series of

the form,

     





0

2
020100

m

m
m xxaxxaaxxa  (3.10)

Where a
0
, a

1
, a

2
, ... are constants, known as the coefficients of the series.

Here 0x  is a constant, known as center of the series and x is a variable.

If 00 x , we obtain a power series in powers of x as,







0

3
3

2
210

m

m
m xaxaxaaxa  (3.11)

Assume here that all variables and constants are real. Well known examples
of power series are the Maclaurin series.







 0

21
1

1

m

m xxx
x

(|x| < 1, is geometric series),







0

32

!3!2
1

!m

m
x xx

x
m

x
e 

 
 









0

422

!4!2
1

!2

1
cos

m

mm xx

m

x
x 

 
 













0

5312

!5!3!12

1
sin

m

mm xx
x

m

x
x 
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The power series method is used for solving differential equations because
this method is considered easy and universally used as standard. We first describe
the procedure and then exemplify it using simple equations. For a given differential
equation,

    0 yxqyxpy

Now represent  xp  and  xq  as power series in powers of x or of 0xx 

if the solutions are required in powers of 0xx  . If,  xp  and  xq  are polynomials

then this step can be escaped. Let us assume an answer in the form of a power
series with anonymous coefficients as,







0

3
3

2
210

m

m
m xaxaxaaxay  (3.12)

Insert this series and the series that we have obtained by term wise
differentiation into the equation.

(a) 




 
1

2
321

1 32
m

m
m xaxaaxmay  (3.13)

(b)  




 
2

2
432

2 342321
m

m
m xaxaaxammy  (3.14)

Now accumulate like powers of x and evaluate the sum of the coefficient of
each power of x to zero that occurs beginning with the constant terms that includes
the terms having x, the terms having x2, etc. This provides relations from which the
unknown coefficients can be determined in Equation (3.12) of series successively.
This can be explained using some simple equations that can be solved with the
help of elementary methods.

Example 3.31 : Solve 0 yy .

Solution: Step 1, We insert series Equations (3.12) and (3.13) into the equation
as follows:

    032 2
210

2
321   xaxaaxaxaa

Step 2, Accumulate the like powers of x to find,

      032 2
231201  xaaxaaaa

Step 3, Evaluating the coefficient of each power of x to zero we get,

001  aa , 02 12  aa , ,03 23  aa

Step 4, After solving these equations, ,, 21 aa  can be expressed in terms

of 0a which are arbitrary:

01 aa  ,
!22
01

2

aa
a  , ,

!33
02

3

aa
a 
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Step 5, Using these coefficients the series in Equation (3.12) becomes,

.
!3!2

3020
00  x

a
x

a
xaay

Step 6, Finally we have obtained the known and common general solution
as,

xea
xx

xay 0

32

0 !3!2
1 








  .

Example 3.32: Solve xyy 2 .

Solution: Following the same method insert series of Equations (3.12) and (3.13)
into the equation:

   2
210

2
321 232 xaxaaxxaxaa

Now do the multiplication by 2x. The resulting equation can be easily written
as,

 5
6

4
5

3
4

2
321 65432 xaxaxaxaaa

=  5
4

4
3

3
2

2
10 22222 xaxaxaxaa

Thus, we conclude that:

a
1
 = 0,  2a

2
 = 2a

0
,   3a

3
 = 2a

1
,   4a

4
 = 2a

2
,   5a

5
 = 2a

3
    ...

Therefore, ,0,0 53  aa  and for the coefficients having even subscripts

it becomes,

;,
!33

,
!22

, 04
6

02
402 aa

a
aa

aaa 

Where a
0
 remains arbitrary. Using these coefficients the series in Equation

(3.12) provides the solution in the form given below,

2

0

864
2

0 !4!3!2
1 xea

xxx
xay 








 

The answer can be verified using the method of separating variables.

Example 3.33 : Solve 0 yy

Solution: Insert series Equations (3.12) and (3.14) into the equation that we have
obtained,

    034232 2
210

2
432   xaxaaxaxaa

By accumulating the like powers of x we get,

      034232 2
241302  xaaxaaaa
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On evaluating the coefficient of each power of x to zero we get,

02 02  aa Coefficient of 0x

023 13  aa Coefficient of 1x

034 24  aa Coefficient of 2x , etc.

After solving the given equations, we observe that ,, 42 aa  can be

expressed in terms of 0a and similarly  ,, 53 aa  can be expressed in terms of 1a ,

where 0a  and 1a  are arbitrary. :

;,
!434

,
!3

,
!2

02
4

1
3

0
2 aa

a
a

a
a

a 




Using these coefficients the series in Equation (3.12) can be written as,

 5103120
10 !5!4!3!2

x
aa

x
a

x
a

xaay

The acceptable reordering terms for a power series can be written in the
form as,


















 

!5!3!4!2
1

53

1

42

0

xx
xa

xx
ay

The known and common general solution can be distinguished as,

xaxay sincos 10  .

Probably we finish up using new functions specified by power series. If
these equations and its solutions are of realistic or theoretical importance then the
names are given to them and are systematically examined. This is how the
Legendre’s, the Bessel’s and the Gauss’s hypergeometric equations were
established.

Basic Concepts

In calculus, a power series is an infinite series of the form,

     





0

2
020100

m

m
m xxaxxaaxxa  (3.15)

If the variable x, the center 0x , and the coefficients ,, 10 aa  to be real

then the nth partial sum of series Equation (3.15) is,

       nnn xxaxxaxxaaxs 0
2

02010   (3.16)

Where ,1,0n . If the terms of s
n
 are omitted from Equation (3.15), then

the remaining expression becomes,
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       





2
02

1
01

n
n

n
nn xxaxxaxR (3.17)

This expression is termed as the remainder of Equation (3.15) subsequent

to the term  nn xxa 0 .

For example, consider the following geometric series,

  nxxx 21

We can include,

10 s .  32
0 xxxR ,

xs 11 ,  432
1 xxxR ,

2
2 1 xxs   543

2 xxxR , etc.

In this manner, Equation (3.15) is associated with the series of the partial

sums      ,,, 210 xsxsxs . If 1xx   series converges as,

   11lim xsxsn
n




Then the series in Equation (3.15) is termed convergent at 1xx   and the

number  1xs  is termed the value or sum of Equation (3.15) at 1x . This is written

as,

   





0

011
m

m
m xxaxs

For every n we have,

     111 xRxsxs nn  (3.18)

If the series diverges at 1xx  , then the series in Equation (3.15) is termed

divergent at 1xx 

In convergence, for any positive  there must be an N which depends on
. Using Equation (3.18) we get,

       111 xsxsxR nn for all  n > N (3.19)

Mathematically, this signifies that all  1xsn  with n > N be positioned between

  1xs  and   1xs . In fact, it refers that for convergence the sum  1xs  of

Equation (3.19) can be accurately approximated at 1x  by  1xsn  considering n

too large.

3.4.1 Convergence—Interval and Radius

The convergence of the series may depend upon the value of x that we put into the
series.  A power series may converge for some values of x and not for other values
of x.
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We can consider that there is a number R so that the power series will
converge for,   and will diverge for . This number is termed as
the radius of convergence for the series.  Remember that the series may or may
not converge if . If something happens at these points it will not change
the radius of convergence.

Secondly, the interval of all x’s, including the end points, for which the power
series converges is termed as the interval of convergence of the series. These
two concepts are quite strongly coupled together. If we know that the radius of
convergence of a power series is R then we have the following:

a – R < x < a + R power series converges

x < a – R  and x > a + R power series diverges

The interval of convergence must then contain the interval 
since we know that the power series will converge for these values.  We also
know that the interval of convergence can not contain x’s in the ranges 
and x > a + R since we know the power series diverges for these value of x.
Therefore, to completely identify the interval of convergence we have to determine
if the power series will converge for   or .

If the power series converges for one or both of these values then we must
include those in the interval of convergence.

1. If the series of Equation (3.15) converges at 0xx  , then all its terms

are zero except for the first 0a . In special cases it can be the just x for

Equation (3.15) which converges. Such a series is not considered
significant.

2. If there are any other values of x for which convergence is done by
the series, then such values form an interval, termed as the convergence

interval. If this interval is finite, then it contains the midpoint’s 0x  of the

form,

Rxx  0 (3.20)

The series in Equation (3.20) converges for all x such that Rxx  0

and diverges for all x such that Rxx  0 . Here the number R is the

radius of convergence of Equation (3.15). It can be acquired using
any one of the following formulas, provided these limits exist and are
not zero.

(a) ||lim1 m
m

amR


 (b) 
m

m

m a

a
R 1lim1 


 (3.21)

If they are infinite, then the series in Equation (3.15) converges only at

the center 0x .
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3. The convergence interval can at times be infinite, i.e, series in Equation
(3.15) converges for all x. For example, if the limit in Equation (3.21a)
or (3.21b) is zero, then such case takes place and can be written
as R . For each x, for which the series in Equation (3.15)
converges, has a definite value s(x). We state that series in Equation
(3.15) denotes the function s(x) in the convergence interval and can
be written as,

   





0

0
m

m
m xxaxs  Rxx  0

The following examples will make the concept clear.

Convergence at the Center: Consider the series,







0

32 621!
m

m xxxxm 

 We include !mam   in Equation (3.21b),

 



 1

!

!11 m
m

m

a

a

m

m as m

This series only converges at the center x = 0 and hence it is useless series.

Convergence in a Finite Interval: Consider the geometric series,







 0

21
1

1

m

m xxx
x



We include !/1 mam  . Hence, the Equation (3.21b) becomes,

 
0

1

1

!/1

!1/11 







mm

m

a

a

m

m as m

This series converges for all x and is considered significant.

The following hint will help you to solve some specific problems:

 







0

963
3

512648
1

8

1

m

m
m

m xxx
x 

This is considered as a series in powers of 3xt   having coefficients

  mm
ma 8/1 , so that the series in Equation (3.21b) becomes,

8

1

8

8
1

1  


m

m

m

m

a

a

The R = 8 and therefore the series converges for |t| < 8, i.e., |x| < 2.
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Example 3.34: Determine the radius of convergence and interval of convergence
for the power series,

Solution: This power series will converge for x = – 3 at this point. We have to
determine the remainder of the x’s for which it convergences by using any one of
the appropriate test. Using the test we derive the condition(s) on x which can be
used to determine the values of x for which the power series will converge and the
values of x for which the power series will diverge. From this we evaluate the
radius of convergence and also the interval of convergence. The most suitable test
in this case is the ratio or root test. Using the test we get,

Here x is not dependent on the limit hence it can be factored out of the limit.
We must keep the absolute value bars on it so that everything remains positive.
The limit then becomes,

The ratio test defines that if L < 1 the series will converge, if L > 1 the series
will diverge and if L = 1 then any thing may happen. Thus,

Now consider the case L = 1. Now we have the radius of convergence for
this power series which are the required conditions for the radius of convergence.
Hence, the radius of convergence for this power series is R = 4.

Next we obtain the interval of convergence. For this we obtain most of the
interval by solving the first inequality from the above series.

Hence, the interval of validity is given by –7 < x < 1. Now we determine
whether the power series will converge or diverge at the endpoints of this interval.
Remember that these values of x will correspond to the value of x to give L = 1.
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The convergence at these points can be determined by just plugging them into the
original power series and observing if the series converges or diverges.

For x = –7: In this case the series is,

This series is divergent since .

For x = 1: In this case the series is,

This series is also divergent since  does not exist.

Hence, in this case the power series will not converge for either endpoint.
The interval of convergence is .

Example 3.35: Determine the radius of convergence and interval of convergence
for the power series,

Solution: Using the ratio test we get,

Thus the convergence or divergence can be determined as follows,

                        

For the interval of convergence we need  and , i.e., we
have to factorize 4 out of the absolute value bars to obtain the accurate radius of
convergence. This gives,
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Thus, the radius of convergence for this power series is R = 
1

8
. Next we

find the interval of convergence by first solving the inequality that gives convergence.

                             

Now verify the end points.

For : The series is,

 This series is considered as the alternating harmonic series and it converges.

For : The series is,

                        

This series is the harmonic series and it diverges. Hence, the power series
converges for one of the end points but not the other. Then, the interval of
convergence for this power series is given as,

Example 3.36: Determine the radius of convergence and interval of convergence
for the power series,
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Solution: Using the ratio test we get,

Here, the limit is infinite but we can use the term with the x’s in front of the
limit. We have L =  – > 1 provided . Hence, this power series will only
converge if .

The basic principle defines that every power series will converge for 
and here it is . We get a from and the coefficient of x must be one.
The radius of convergence is R = 0 and the interval of convergence is .

Example 3.37: Determine the radius of convergence and interval of convergence
for the power series,

                                                

Solution: In this case we use the root test to get,

Since L = 0 < 1, so despite of the value of x this power series will converge
for every x. In such conditions we define that the radius of convergence is 
and interval of convergence is .

Example 3.38: Determine the radius of convergence and interval of convergence
for the power series,

                                            

Solution: In this case the significant difference is the exponent on the x, which is
2n rather than the standard n. We use the root test again to determine the
convergence. It gives,
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 We acquire convergence if,

In this case the radius of convergence is NOT 3, however the radius of
convergence needs an exponent of 1 on the x.  As a result,

                                 

Here the absolute value bars looks like the radius of convergence and is

. The inequality for divergence is the interval for convergence. Next we

obtain the interval of convergence. From the inequality we have,

                               

 Now verify the end points.

For : The power series is,

                     

This series is divergent since  does not exist.

For : Here we square the x so this series will be similar to the preceding
step which is divergent.

                           

The interval of convergence is .
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3.4.2 Operations on Power Series

In the power series, the acceptable operations are differentiation, integration,
addition, subtraction, division and multiplication of power series. A condition
regarding the desertion of every coefficient of a power series is listed, which is
considered the basic tool for solving power series.

Differentiation

The differentiation of a power series can be done term by term. More specifically,
if the series,

   





0

0
m

m
m xxaxy

Converges for Rxx  0 , where R > 0, then the series acquired after

differentiating term by term also converges for those x and it also characterizes the
derivative y and y for those x, so that,

   





1

1
0

m

m
m xxmaxy  Rxx  0 .

Also,

     





2

2
01

m

m
m xxammxy  Rxx  0 , etc.

Addition

Two power series can be added term by term. More specifically, if the series,

   









0

0
0

0
m

m
m

m

m
m xxbandxxa (3.22)

Contain positive radii of convergence and the sum is f(x) and g(x), then the
series:

  





0

0
m

m
mm xxba

Converges and denotes f(x) + g(x) for each x which is in the interior of the
convergence interval of each of the given series.

Multiplication

The two given power series can also be multiplied term by term. Assume that the
series in Equation (3.22) contains positive radii of convergence and f(x) and g(x)
are their sums. Then we obtain the series by multiplying each term of the first series

with each term of the second series and accumulating like powers of 0xx  , so

that,

    
m

mmm xxbababa 00110 

       2
00211200011000 xxbababaxxbababa
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Converges and denotes f(x) g(x) for each x in the interior of the convergence
interval of every given series.

Vanishing of Coefficients

In case there is a positive radius of convergence of a power series as well as an
identically zero sum all through its interval of convergence, then every coefficient
of the series will be zero.

Shifting Summation Indices

This can be explained using specific example. Consider the following given series,

  








 
2 1

12
2 21

m m

m
m

m
m xmaxammx

     2
321

2
432

2 3221262 xaxaaxaxaax

This series can be written as a single series. For this, we first use x2 inside
the summation, to obtain,

  









2 1

121
m m

m
m

m
m xmaxamm .

Assume that we have used s as the summation letter of the series which is to
be obtained. We just replace s with m in the first series. This change of notation is
possible because a summation letter is only a dummy index and we can use any
letter for this dummy index which has not been used before. In the second series
shifting happens where you can shift by one unit as sm 1 . Then, 1 sm .

Now the summation starts with s = 0 because 110 m , which is the previous
start. Collectively, it becomes:

    









2 0
1

2 121
s s

s
ss xasxass .

In the first series we replace s = 2 by s = 0 to obtain,

    





0

2
1121

s
ss xasass

     3
43

2
3221 865242 xaaxaaxaa

3.4.3 Existence of Power Series Solutions and Real
Analytic Functions

We have already learned the various properties of power series. We know that an
equation has power series solutions. Consider the series where we have the
coefficients p and q, and the function r in on the right side of the equation,

     xryxqyxpy  (3.23)

The power series solution has the form as represented in Equation (3.23).

This is true if qph ~,~,
~ and r~  in the series,

     xryxpyxh ~~~
 (3.24)
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The power series can be represented as shown in Equation (3.24) where

  0
~

0 xh , here 0x  is the center of the series.

Real Analytic Function

A real function f(x) is termed as analytic at a point x = x
0
 if it can be denoted by

a power series in powers of 0xx   by radius of convergence R > 0. In mathematics,

an analytic function is a function that is locally given by a convergent power series.
There exist both real analytic functions and complex analytic functions. Functions
of each type are infinitely differentiable, but complex analytic functions exhibit
properties that do not hold generally for real analytic functions. A function is analytic
if and only if it is equal to its Taylor series in some neighborhood of every point.
This concept can be stated with the help of following basic theorem.

Theorem 3.1: Existence of Power Series Solutions

In Equation (3.23) if p, q and r are analytic at 0xx  , then every solution of series

in Equation (3.23) is analytic at 0xx   and can be denoted by a power series in

powers of 0xx   by radius of convergence R > 0. The same is true if qph ~,~,
~  and

r~  in Equation (3.24) are analytic at 0xx   and   3
0 0

~
xh .

Using this theorem you can prove the existence of power series.

3.5 HARMONIC OSCILLATOR

Bohr’s theory based on the quantization of angular momentum and energy of the
electron in hydrogen atom was successful in explaining broad features of hydrogen
atom and of the spectral lines emitted by it. The concepts used in the theory were
new but of fundamental importance and inspired further researches in atomic
physics.

Bohr’s theory was extended by Arnold Sommerfeld in the year 1915 by
introducing elliptical orbits for the electrons in atoms.

In the same year Wilson and Sommerfeld postulated independently a more
general statement of quantization rule for systems undergoing periodic motion.

If a periodic system of s degrees of freedom described by generalized
coordinates q

1
 ... qs and generalized momenta p

1
, p

2
 ..., ps then phase integrals of

the system are defined as

...(3.25)

the integration being carried over one complete cycle of the variable qi.
Wilson and Sommerfeld stated that the stationary states (allowed orbits) for the
system are those for which the phase integrals are integral multiples of Planck’s
constant h, i.e.,
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...(3.26)

In the case of motion of electron in circular orbits, the number of degrees of
freedom is only one and the angular momentum l = mvr is a constant of motion so
that the quantization rule given by Equation (3.26) reduces t

or 

so that  ...(3.27)

We may note that Equation (3.27) is the quantization rule postulated by
Bohr for the electron in hydrogen atom rotating in circular orbits.

The general quantization rule of Wilson and Sommerfeld was used in a
number of problems of interest, particularly for finding out the energies that periodic
systems could assume. In the following, we present a brief outline of some such
systems in the microscopic domain.

The Harmonic Oscillator

Consider a harmonic oscillator of mass m oscillating along the x-axis about the
equilibrium position x = 0. The displacement of the particle from the equilibrium
position at any instant t is given by

...(3.28)

where a is amplitude and w0 is the natural frequency related to the force
constant according to

 ...(3.29)

The potential energy of the oscillator is given by

 ...(3.30)

The kinetic energy of the oscillator is

 ...(3.31)

Thus, the total energy of the oscillator becomes

 ...(3.32)
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3.5.1 Spherical Harmonics

In mathematics and physical science, spherical harmonics are special functions
defined on the surface of a sphere. They are often employed in solving partial
differential equations in many scientific fields.

Since the spherical harmonics form of a complete set of orthogonal functions
and thus an orthonormal basis, each function defined on the surface of a sphere
can be written as a sum of these spherical harmonics. This is similar to periodic
functions defined on a circle that can be expressed as a sum of circular functions
(sines and cosines) via Fourier series. Like the sines and cosines in Fourier series,
the spherical harmonics may be organized by (spatial) angular frequency, as seen
in the rows of functions in the illustration on the right. Further, spherical harmonics
are basis functions for irreducible representations of SO(3), the group of rotations
in three dimensions, and thus play a central role in the group theoretic discussion
of SO(3).

Spherical harmonics originates from solving Laplace’s equation in the
spherical domains. Functions that are solutions to Laplace’s equation are called
harmonics. Despite their name, spherical harmonics take their simplest form in
Cartesian coordinates, where they can be defined as homogeneous polynomials
of degree l in (x,y,z) that obey Laplace’s equation.

The connection with spherical coordinates arises immediately if one uses
the homogeneity to extract a factor of radial dependence rl from the above-
mentioned polynomial of degree l the remaining factor can be regarded as a function
of the spherical angular coordinates  and φ only, or equivalently of the orientational
unit vector r specified by these angles. In this setting, they may be viewed as the
angular portion of a set of solutions to Laplace’s equation in three dimensions, and
this viewpoint is often taken as an alternative definition.

A specific set of spherical harmonics, denoted Y
l
m ( , φ) or Y

l
m (r), are

known as Laplace’s spherical harmonics, as they were first introduced by Pierre
Simon de Laplace in 1782. Spherical harmonics are important in many theoretical
and practical applications, including the representation of multipole electrostatic
and electromagnetic fields, electron configurations, gravitational fields, geoids, the
magnetic fields of planetary bodies and stars, and the cosmic microwave background
radiation. In 3D computer graphics, spherical harmonics play a role in a wide
variety of topics including indirect lighting (ambient occlusion, global illumination,
precomputed radiance transfer, etc.) and modelling of 3D shapes.

Spherical harmonics were first investigated in connection with the Newtonian
potential of Newton’s law of universal gravitation in three dimensions. In 1782,
Pierre-Simon de Laplace had, in his Mécanique Céleste, determined that the
gravitational potential 3 at a point x associated with a set of point masses m

i

located at points x
i
 was given by following equation
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Each term in the above summation is an individual Newtonian potential for
a point mass. Just prior to that time, Adrien-Marie Legendre had investigated the
expansion of the Newtonian potential in powers of r = |x| and r

1
 = |x

1
|. He

discovered that if r r
1
 then

Where is the angle between the vectors x and x
1
. The functions P

i
: [-1,

1]  are the Legendre polynomials, and they can be derived as a special case
of spherical harmonics. Subsequently, in his 1782 memoir, Laplace investigated
these coefficients using spherical coordinates to represent the angle between x

1

and x.

In 1867, William Thomson (Lord Kelvin) and Peter Guthrie Tait introduced the
solid spherical harmonics in their Treatise on Natural Philosophy, and also first
introduced the name of ‘Spherical Harmonics’ for these functions. The solid
harmonics were homogeneous polynomial solutions 3 of Laplace’s equation

By examining Laplace’s equation in spherical coordinates, Thomson and
Tait recovered Laplace’s spherical harmonics. The term ‘Laplace’s Coefficients’
was employed by William Whewell to describe the particular system of solutions
introduced along these lines, whereas others reserved this designation for the Zonal
spherical harmonics that had properly been introduced by Laplace and Legendre.

Whereas the trigonometric functions in a Fourier series represent the
fundamental modes of vibration in a string, the spherical harmonics represent the
fundamental modes of vibration of a sphere in much the same way. Many aspects
of the theory of Fourier series could be generalized by taking expansions in spherical
harmonics rather than trigonometric functions. Moreover, analogous to how
trigonometric functions can equivalently be written as complex exponentials,
spherical harmonics also possessed an equivalent form as complex-valued functions.
This was a boon for problems possessing spherical symmetry, such as those of
celestial mechanics originally studied by Laplace and Legendre.

The prevalence of spherical harmonics already in physics set the stage for
their later importance in the 20th century birth of quantum mechanics. The (complex-
valued) spherical harmonics S2 C are Eigen functions of the square of the
orbital angular momentum operator

i r
and therefore they represent the different quantized configurations of atomic

orbitals.
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Check Your Progress

7. What do you understand by power series method?

8. What is convergence of power series?

9. Give the basic tools for solving power series.

10. State the Bohr’s theory based on quantization.

11. Define spherical harmonics.

3.6 FOURIER SERIES

The use of periodic functions is very frequent in engineering problems. But the
periodic functions may not be simple all the time. So it is desirable to represent
these into simple periodic functions. Trigonometric functions are the simplest
periodic functions. A Fourier series decomposes the periodic functions into the
sum of a set of simple oscillating functions, namely sines and cosines.

General Properties

Half Range Fourier Series:

1. If a function is defined over half the range, say 0 to L, instead of the full
range from -L to L, it may be expanded in a series of sine terms only or of
cosine terms only. The series produced is then called a half range Fourier
series. An even function can be expanded using half its range from 0 to L
or –L to 0 or L to 2L, i.e., the range of integration is L. the Fourier series
of the half range even function is given by

0

1
( ) cos ,

2 nn

a n t
f t a

L




   for n = 1, 2,…..

2. An odd function can be expanded using half its range from 0 to L, i.e. the
range of integration = L. The Fourier series of the odd function is:
Since a

o
 = 0 and a

n
 = 0, we have

1
( ) sin ,nn

n t
f t b

L




  for n = 1, 2,….

Harmonic Analysis:
We can rearrange the Fourier series

And write it as:

0
1 1 2 2 3 3( ) ( cos sin ) ( cos 2 sin 2 ) ( cos3 sin 3 ) ...

2

a
f t a t b t a t b t a t b t      
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The term (a
1
 cos t + b

1
 sin t) is known as the fundamental.

The term (a
2
 cos 2t + b

2
 sin 2t) is called the second harmonic.

The term (a
3
 cos 3t + b

3
 sin 3t) is called the third harmonic, etc.

Mean Value Convergence Theorem

If a periodic function with period is piecewise continuous over the interval

, the Fourier Series of converges to the mean value at point where both

the left-hand and right-hand first derivatives of exist.

Fourier Coefficient
A function f(x) defined in the interval c

1
<x<c

2
 can be expressed in the Fourier

series,

 

Where a
0
, a

n
, b

n
, (n =1, 2,…) are constants, called the Fourier coefficients of

f(x).

3.7 LEGENDRE’S EQUATION

Legendre’s Differential Equation
This equation is represented following form

2
2

2
(1– ) – 2 ( 1)

d y dy
x x n n y

dxdx
   = 0. ...(3.33)

The Legendre’s differential equation of such type can be solved in series of
ascending or descending powers of x. Suppose, we have to integrate it in a
series of descending powers of x. There is no singularity at x = 0, so the solution
of the equation can be obtained in the form of a series developed about x = 0.

Let us assume the solution of the given equation in the form of series.

y = –

0

k r
r

r

a x





 dy

dx
= – –1

0

( – ) k r
r

r

k r a x





And
2

2

d y

dx
= – –2

0

( – ) ( – –1) k r
r

r

k r k r a x



 .

Substituting these values in (3.33), we have

2 – –2 – –1 –

0

[(1– ) ( – ) ( – –1) – 2 ( – ) ( 1) ]k r k r k r
r

r

x k r k r x x k r x n n x a



    0

or 2

0

[( ) ( 1) { ( 1) 2( ) ( ) ( 1)} ] 0k r k r
r

r

k r k r x n n k r k r k r x a
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or – –2 –

0

[( – ) ( – – 1) { ( 1) – ( – )( – 1)} ]k r k r
r

r

k r k r x n n k r k r x a




     0. ...(3.34)

The relation Equation (3.34) is an identity and therefore the coefficients of
various powers of x can be equated to zero.

Let us first equate the coefficient of xk the highest power of x {by putting r =
0 in (3.34)} to zero; then we get

a0 {n (n + 1) – k(k + 1) = 0,

where a0 being the coefficient of the first term of the series cannot be zero, i.e.
a0  0 and thus

n (n + 1) – k (k + 1)= 0

or n2 + n – k2 – k = 0

or n2 – k2 + (n – k) = 0

or (n – k) (n – k + 1) = 0

which gives k = n or – n – 1 ...(3.35)

Again equating the coefficient of xk–1 to zero, by putting r = 1 in Equation
(3.34), we have

{n (n + 1) – (k – 1) k} a1 = 0 ...(3.36)

From Equation (3.35),{n (n + 1) – k (k – 1)}  0

and therefore a1 =0.

Let us now equate the coefficient of xk–r, the general term in Equation (3.34),
to zero,

(k – r + 2) (k – r + 1)ar–2 + {n (n + 1) – (k – r) (k – r + 1)} ar = 0

Or ar = –2
( – 2) ( – 1)

– .
( 1) – ( – ) ( – 1) r

k r k r
a

n n k r k r

 
 

...(3.37)

Putting k = n, the recurrence formula is

ar = –22

( – 2) ( – 1)
–

– ( – ) ( – 1)
r

n r n r
a

n n n r n r

 
 

= –22 2 2

( – 2) ( – 1)
–

– –
r

n r n r
a

n n n nr n nr r r

 
    

= –2
( – 2) ( – 1)

–
(2 – 1) r

n r n r
a

r n r

 



...(3.38)

Again putting k = – n – 1 in Equation (3.37), we have the recurrence formula
as

ar = –22

(– – 1) (– – )
–

– (– – –1) (– – )
r

n r n r
a

n n n r n r




= –22

( –1) ( )
–

– ( 1) ( )
r

n r n r
a

n n n r n r

 
   

= –2
( –1) ( )

.
(2 1) r

n r n r
a

r n r

 
 

...(3.39)
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Case I. When k = n, we have by putting r = 2, 3,....in Equation (3.38),

a2 = 0
( –1)

–
2(2 –1)

n n
a

n

a3 = 1
( –1) ( – 2)

–
3(2 – 2)

n n
a

n

= 0 since a1 = 0.

Similarly a5, a7, a9....etc. all the a’s having odd suffixes are zero.

a4 = 2 0
( – 2)( – 3) ( –1) ( – 2) ( – 3)

–
4(2 – 3) 2 4(2 –1) (2 – 3)

n n n n n n
a a

n n n



 (by putting value of a2

etc.)

In general, a2r = (–1)r 0
( – 1) ( – 2) ( – 3) ( – 2 1)

2 4 2 (2 – 1) (2 – 3) (2 – 2 1)

n n n n n r
a

r n n n r

   
       

(by putting value of a2, etc.)

Hence the series solution when k = n, is

y = –2 –4
0

( –1) ( –1) ( – 2) ( – 3)
–

2(2 –1) 2 4 (2 –1) (2 – 3)
n n nn n n n n n

a x x x
n n n

 
   

...(3.40)

where a0 is an arbitrary constant and is equal to

1 3 5...(2 –1)n

n

 
...(3.41)

where n is a positive integer.

This solution of Legendre’s equation is known as Pn (x), i.e.

Pn (x) = –2 –41 3 5...(2 –1) ( –1) ( –1) ( – 2) ( – 3)
– –

2(2 –1) 2 4(2 –1) (2 – 3)
n n nn n n n n n n

x x x
n n n n

  
    

...(3.42)

Case II. When k = – n – 1, we have by putting r = 2, 3,... in Equation
(3.39),

a2 = 0
( 1) ( 2)

.
2(2 3)

n n
a

n

 


Now a3 will contain a1 and hence is zero. As such a5, a7, a9... all the zero.

a4 = 2
( 3) ( 4)

4(2 5)

n n
a

n

 


= 0
( 1) ( 2) ( 3) ( 4)

,
2 4 (2 3) (2 5)

n n n n
a

n n

   
  

by putting value of a2 etc.
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In general, a2r = 0
( 1)...( 2 )

.
2 4...2 (2 3)...(2 2 1)

n n r
a

r n n r

 
   

Hence the series solution is

y = – 1 – –3 – –5
0

( 1) ( 2) ( 1) ( 2) ( 3) ( 4)

2(2 3) 2 4 (2 3) (2 5)
n n nn n n n n n

a x x x
n n n

      
          

...(3.43)

With a0 =
1 3 5...(2 1)

n

n  
...(3.44)

this solution is known as Qn(x).

 Qn(x) = – –1 – –3( 1) ( 2)

1 3 5...(2 1) 2 (2 3)
n nn n n

x x
n n

  
   

– –5( 1) ( 2) ( 3) ( 4)

2 4(2 3) (2 5)
nn n n n

x
n n

   
      

...(3.45)

which does not terminate when n > –1.

The most general solution of the Legendre’s equation is

y = APn (x) + BQn (x). ...(3.46)

where A and B are arbitrary constants.

Thus the series Equations (3.40) or (3.43) will be convergent if |x| > 1 i.e. the
above solutions for Legendre equation are not convergent in the interval – 1 < x
< 1. In order to find the convergent solution of (3.33) we seek for solution in
descending powers of x.

Suppose a series solution of (3.33) is

y = 0
0

, 0k r
r

r

a x a





 ...(3.47)

So that y = –1

0

( ) k r
r

r

k r a x







y = –2

0

( ) ( –1) k r
r

r

k r k r a x





 

Subsituting these values of y, y and y in (3.33) we get the identity

–2

0

( ) ( –1) – ( – ) ( 1)k r k r
r

r

k r k r x k r n k r n x a


 



          0 ...(3.48)

Equating to zero the coefficient of xk–2 (when r = 0) the first term in Equation
(3.48) under the assumption a0  0 yields k(k – 1) = 0 giving k = 0, 1.

Now equating the coefficient of second term i.e. xk+1 to zero, we have a1 (k
+ 1)k = 0 giving a1  0 for k = –1 while a1 may or may not be zero for k = 0.

Equating the coefficient of general term i.e. xk+r to zero, we find the recursion
formula
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ar+2 =
( – ) ( 1)

( 2) ( 1) r
k r n k r n

a
k r k r

   
   

...(3.49)

Putting k = 0, Equation (3.49) gives ar+2 = 
( – ) ( 1)

( 2) ( 1) r
r n r n

a
r r

 
 

...(3.50)

And putting k = 1, Equation (3.49) gives ar+2 = 
(1 – ) (2 )

(3 ) (2 ) r
r n r n

a
r r

  
 

...(3.51)

Case I. When k = 0, we have by putting r = 0, 1, 2, 3, 4, 5, ... in Equation
(3.50)

a2 = 0
( 1)

–
2

n n
a


 and a3 = 1

( –1) ( 2)
–

3

n n
a



a4 = 0
( – 2) ( 1) ( 3)

4

n n n n
a

 
 and

a5 = 1
( –1) ( – 3) ( 2) ( 4)

5

n n n n
a

 

and in general a2r = (–1)r 0
( – 2)...( – 2 1)

2

n n n r
a

r



a2r+1 = 1
(–1) ( –1) ( – 3)...( – 2 1) ( 2)...( 2 )

2 1

r n n n r n n r
a

r

  


Hence the series solution for k = 0, is

y = 2 4
0

( 1) ( – 2) ( 1) ( 3)
1 –

2 4

n n n n n n
a x x

   
    

 

2 4
1

( –1) ( 2) ( –1) ( – 3) ( 2) ( 4)
1–

3 5

n n n n n n
a x x x

   
   

 
...(3.51a)

Case II. When k = 1, we have from (3.51),

a2 = 0
( –1) ( 2)

–
3

n n
a

  and a1 = a3 = a5 = a2 r+1 = ...= 0

a4 = 0
( –1) ( – 3) ( 2) ( 4)

5

n n n n
a

 

a2 r = 0
(–1) ( –1) ( – 3)...( – 2 1) ( 2)...( 2 )

2 1

r n n n r n n r
a

r

  


Hence the series solution for k = 1 is

y = 2 4
0

( –1) ( 2) ( –1) ( – 3) ( 2) ( 4)
1–

3 5

n n n n n n
a x x x

   
    

 
...(3.52)

The solution of Equation (3.52) is included in (3.51a) in the coefficient of a1

except that a1 is to be replaced by a0. Hence setting a1 = 0 for k = 0 also, the
solution (3.51a) reduces to
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y = 2 4
0

( 1) ( – 2) ( 1) ( 3)
1 –

2 4

n n n n n n
a x x
   

     
 

...(3.53)

It may be shown by ratio test that the solutions of Equations (3.52) and
(3.53) are convergent in the interval – 1 < x < 1.

Calling the solution of Equations (3.53) as Sn (x) and (3.52) as Tn (x), the
general solution of Legendre equation in ascending powers of x is

y = A Sn (x) + B Tn(x). ...(3.54)

where A and B are arbitrary constants.

Legendre Polynomials

If we put n = 2r (say) i.e. if n be taken as even positive integer then Equation
(3.55) gives the Legendre polynomial as

y= 2 / 2
0

( 1) ( – 2) 4.2 ( 1) ( 3) (2 –1)
1– (–1)

2
n nn n n n n n n

a x x
n

       
      

 
...(3.56)

While Equation (3.40) gives

y = –2 / 2 –
0

( –1)
1– (–1)

2(2 –1) ( – 2)...2( 1) ( 3)...(2 –1)
n n nn n n

a x x x
n n n n n n

 
     

...(3.57)
Equations (3.56) and (3.57) will be identical if (3.57) is multiplied by

(–1)n/2 ( – 2)...4 2 ( 1) ( 3)...(2 –1)n n n n n

n

  

and then the solutions of Equations (3.40), (3.53) will become identical.

Again if we take, n as an odd negative integer then Equation (3.53) is identical
with Equation (3.43). Also if n is an odd positive integer then Equation (3.52)
reduces to

y = 3 ( –1) / 2
0

( –1) ( 2) ( –1) ( – 3)....2( 2)...(2 –1)
– (–1)

3
n nn n n n n n

a x x x
n

  
    

 

...(3.58)

and Equation (3.40) reduces to

y = –2 ( –1) / 2 – 1
0

( –1)
1– (–1)

2(2 –1) 2 4....( –1) ( – 3)...(2 –1)
n n nn n n

a x x x
n n n n

 
    

...(3.59)

which becomes identical when multiplied by the coefficient of last term in
Equation (3.59).

Further if n is an even negative integer, Equations (3.52) and (3.43) become
identical.

These discussions follow the conclusions:

(i) For integral values for n, the solutions Equations (3.40) and (3.43) have
great utility of them.
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(ii) For positive integral n, Equation (3.40) is a polynomial but Equation
(3.43) is an infinite series and the complete integral is a linear combination
of them.

(iii) For negative integral n, Equation (3.40) is an infinite series and Equation
(3.43) is a polynomial.

(iv) For positive integral n, in Equations (3.41) or (3.42) we have chosen

a0 =
1 3 5...(2 1)n

n

  

(v) For negative integral n, in Equations (3.43) or (3.44) we have chosen

a0 =
1 3 5...(2 1)

n

n  
.

(vi) For positive integral n, the polynomial Pn (x) has the expansion given by
Equation (3.44) ending with term from x i.e.

Pn(x) = –2

0

1 3 5...(2 –1) ( –1)...( – 2 1)
(–1)

2 4...2 (2 –1) (2 – 3)...(2 – 2 1)
r n r

r

n n n n r
x

n r n n n r

  
 

=
/ 2

–2

0

1 3 5...(2 – 2 –1)
(–1)

2 – 2

n
r n r

r
n

n r
x

r n r

  ...(3.60)

or more concisely

Pn(x) =
/ 2

2 –

0

2 – 2
(–1)

2 – – 2

n
r n r

n
n

n r
x

r n r n r
 ...(3.61)

3.8 DIFFERENTIAL EQUATIONS OF SECOND
ORDER

The general form of a linear differential equation of nth order is,

1 2

1 2 11 2
...

n n n

n nn n n

d y d y d y dy
P P P P y

dxdx dx dx
 = Q

Where P1, P2 ..., Pn and Q are functions of x alone or constants.

The linear differential equation with constant coefficients are of the form,
1 2

1 2 11 2
...

n n n

n nn n n

d y d y d y dy
P P P P y

dxdx dx dx
 = Q (3.62)

Where P1, P2, ..., Pn are constants and Q is a function of x.

The equation,

1 2

1 21 2

n n n

n n n

d y d y d y
P P

dx dx dx

 

 
  + ... + Pn–1 y

dy
P y

dx
 = 0 (3.63)

This is then called the Reduced Equation (R.E.) of  the Equation (3.62)

If y = y1 (x), y = y2 (x), ..., y = yn (x) are n-solutions of this reduced equation,
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then y = c1y1 + c2 y2 + ... + cn yn is also a solution of the reduced equation where
c1, c2, ..., cn are artbitrary constants.

The solution y = y1 (x), y = y2 (x), y = y3 (x), ..., y = yn (x) are said to be
linearly independent if the Wronskian of the functions is not zero where the
Wronskian of the functions y1, y2,..., yn, denoted by W (y1, y2, ...,yn), is defined
by,

W (y1, y2, ....yn) = 

1 2 3...

1 2 3

1 2 3

( 1) ( 1) ( 1) ( 1)
1 2 3

...

...

...

n

n

n

n n n n
n

y y y y

y y y y

y y y y

y y y y

  

Since the general solution of a differential equation of nth order contains n
arbitrary constants, u = c1y1 + c2y2 + ... + cn yn is its complete solution.

Let v be any solution of the differential Equation (3.62), then,
1 2

1 21 2

n n n

n n n

d v d v d v
P P

dx dx dx

 

 
  + ... + Pn–1 n

dv
P v

dx
 = Q (3.64)

Since u is a solution of Equation (3.63), we get,

1 2

1 21 2

n n n

n n n

d u d u d u
P P

dx dx dx

 

 
  + ... + Pn–1 n

du
P u

dx
 = 0 (3.65)

Now adding Equations (3.64) and (3.65), we get,

1 2

1 2 2

( ) ( ) ( )n n n

n n n

d u v d u v d u v
P P

dx dx dx
+ ...+ Pn –1

( )d u v

dx
 + Pn(u + v) = Q

This shows that y = u + v is the complete solution of the Equation (3.62).

Introducing the operators D for 
d

dx
, D2 for 

2

2

d

dx
, D3 for 

3

3

d

dx
etc. The Equation

(3.62) can be written in the form,

Dny + P1Dn–1y + P2Dn–2 y +.......+ Pn –1 Dy + y Pn = Q

Or (Dn + P1 Dn –1 + P2Dn–2 +.....+ Pn–1 D + Pn) y = Q

Or F(D) y = Q where F (D) = Dn + P1Dn–1 P2Dn–2 + .......+ Pn–1D + Pn

From the above discussions it is clear that the general solution of F (D)y = Q
consists of two parts:

(i) The Complementary Function (C.F.) which is the complete primitive of the
Reduced Equation (R.E.) and is of the form

y = c1 y1 + c2 y2 + ... + cn yn containing n arbitrary constants.

(ii) The Particular Integral (P.I.) which is a solution of F (D) y = Q containing
no arbitrary constant.

Rules for Finding The Complementary Function
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Let us consider the 2nd order linear differential equation,

2

1 22

d y dy
P P y

dxdx
  = 0 (3.66)

Let y = A emx be a trial solution of the Equation (3.64); then the auxiliary equation
(A.E.) of Equation (3.66) is given by,

m2 + P1m + P2 = 0 (3.67)

The Equation (3.67) has two roots m = m1, m = m2. We discuss the following
cases:

(i) When m1  m2, then the complementary function will be,

y = c1em1x + c2 em2x where c1 and c2 are arbitrary constants.

(ii) When m1= m2, then the complementary function will be,

y = (c1 + c2 x) em1x where c1 and c2 are arbitrary constants.

(iii) When the auxiliary Equation (3.67) has complex roots of the form  + i
and  – i, then the complementary function will be,

y = ex (c1 cos  x + c2 sin  x)

Let us consider the equation of order n,

1 2

1 21 2

n n n

n n n

d y d y d y
P P

dx dx dx

 

 
  + ... + Pn –1 n

dy
P y

dx
= 0 (3.68)

Let y = A emx be a trial solution of Equation (3.68), then the auxiliary equation
is,

mn + P1 mn–1 + P2 mn – 2 + ......+ Pn –1 m + Pn = 0 (3.69)

Rule (1): If m1, m2, m3, ..., mn be n distinct real roots of Equation (3.69), then
the general solution will be,

y = c1 em1x +c2e m
2x + c3em3x + ... + cnemnx

Where c1, c2, c3.....cn are arbitrary constants.

Rule (2): If the two roots m1 and m2 of the auxiliary equation are equal
and each equal to m, the corresponding part of the general solution will be (c1 + c2
x) emx and if the three roots m3, m4, m5 are equal to  the corresponding part of
the solution is (c3 + c4x + c5x2) ex and others are distinct, the general solution
will be,

y = (c1 + c2x) emx + (c3 + c4 + c5x2) ex + c6 em6x +......+ cnemnx

Rule (3): If a pair of imaginary roots  ± i occur twices, the corresponding part
of the general solution will be,

ex [(c1 + c2x) cos  x + (c3 + c4x) sin x]

And the general solution will be,

y = ex [(c1 + c2x) cos  x + (c3 + c4x) sin x] + c5em5x + ......+ cnemnx

Where c1, c2..., cn are arbitrary constants and m5, m6, ...., mn are distinct real
roots of Equation (3.69).

Rule (4): If the two roots (real) be m and – m, the corresponding part of the
general solution will be c1emx + c2e – mx
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= c1 (cosh mx + sinh mx) + c2 (cosh mx – sinh mx)

= c1 cosh mx + c2 sinh mx where c1 = c1 + c2, c 2 = c1 – c2

And general solution will be,

y = c1 cosh mx + c 2 sinh mx + c3em3x + c4 em4x +......+ cnemnx

Where c 1, c2, c3, .....cn are arbitrary constants and m3, m4 ... mn are distinct real
roots of Equation (3.69).

Rules for Finding Particular Integrals

Any particular solution of  F (D) y = f(x) is known as its Particular Integral (P.I).
The P.I. of F(D)y = f(x) is symbolically written as,

P.I. = 
1

( )F D
{f (x)} where F(D) is the operator..

The operator 
1

( )F D  is defined as that operator which, when operated on

 f (x) gives a function  (x), such that F (D) (x) = f (x)

i.e.,
1

( )F D  { f (x)} =  (x) (= P.I. )

 F (D) 1
( )

( )
f x

F D

 
 
 

= f (x) 1
( ) ( )

( )
f x x

F D


Obviously, F (D) and 1/F(D) are inverse operators.

Case I: Let F (D) = D, then 1
( )f x

D
= ( )f x dx .

Proof: Let y = 1
{ ( )}f x

D
, operating by D, we get Dy = D . 1{ ( )}f x

D
 or Dy = f (x) or

dy

dx
 = f (x) or dy = f (x) dx

Integrating both sides with respect to x, we get,

y = ( )f x dx , since particular integrating does not contain any arbitrary constant.

Case II: Let F (D) = D – m where m is a constant, then,

1
{ ( )}f x

D m
= emx ( )mxe f x dx .

Proof: Let 
1

{ ( )}f x
D m

 = y, then operating by D – m, we get,

(D – m) . 
1

{ ( )}f x
D m

= (D – m) y

Or f (x) = 
dy

my
dx



Or 
dy

my
dx

  = f (x) which is a first order linear differential equation and

I.F. = 
mdx mxe e

   .

Then multiplying above equation by e–mx and integrating with respect to x, we
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get,

y e – mx = ( ) mxf x e dx , since particular integral does not contain any arbitrary

constant,

Or y = emx ( ) mxf x e dx .

Note: If 
1

( )F D
= 1 2

1 2
..... n

n

aa a

D m D m D m
 where ai and mi (i = 1, 2, ..., n)

are constants, then

1
{ ( )}

( )
f x

F D
= a1em1x 1( ) m xf x e dx 2 2

2 ( )m x m xa e f x e dx

... ( )n nm x m x
na e f x e dx

= 
1

( )i i
n

m x m x
i

i

a e f x e dx


 

We now discuss methods of finding particular integrals for certain specific types
of right hand functions

Type 1: f (D) y = emx where m is a constant.

Then P.I. = 
1

{ }
( )

mxe
F D

 =
( )

mxe

F m
 if  F (m)  0

If F (m) = 0, then we replace D by D + m in F (D),

P.I. = 
1

{ }
( )

mxe
F D

 = emx . 
1

{1}
( )F D m

Example 3.39: (D3 – 2D2 – 5D + 6) y = (e2x + 3)2 + e3x cosh x.

Solution: The reduced equation is,

(D3 – 2D2 – 5D + 6) y = 0 ...(3.70)

Let y =Aemx be a trial solution of Equation (3.70). Then the auxiliary equation
is,

m3 – 2 m2 – 5m + 6 = 0 or m3 – m2 – m2 + m – 6m + 6 = 0

Or m2 (m – 1) – m (m – 1) – 6 (m – 1) = 0

Or (m – 1) (m2 – m– 6) = 0 or (m – 1) (m2 – 3m + 2m – 6) = 0

Or (m – 1) (m – 3) (m + 2) = 0 or m = 1, 3, –2

 The complementary function is,

y = c1ex + c2e3x + c3 e–2x where c1, c2, c3 are arbitrary constants.

Again (e2x + 3)2 + e3x cosh x = e4x + 6 e2x + 9 + e3x

2

x xe e 
  
 

.

= e4x + 6 e2x + 9e0 . x + 
4 2

2 2

x xe e

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= 4 2 0.3 13
9

2 2
x x xe e e

 The particular integral is,

y = 4 2 0.
3 2

1 3 13
9

2 22 5 6
x x xe e e

D D D

= 4 2 0.1 3 13
9

( 1)( 3)( 2) 2 2
x x xe e e

D D D

= 4 23 1 13 1
{ }

2 ( 1)( 3)( 2) 2 ( 1)( 2)( 3)
x xe e

D D D D D D

+ 0.1
9

( 1)( 3)( 2)
xe

D D D

= 
4 23 13

2 (4 1) (4 3) (4 2) 2 (2 1) )(2 2) (2 3)

x xe e

0.

9
(0 1)(0 3)(0 2)

xe

= 
4 2 0.3 13

9
2 3 .1. 6 2 1. 4 . ( 1) ( 1)( 3) . 2

x x xe e e

= 
4

213 3

12 8 2

x
xe

e  .

Hence the general solution is,

y = C.F. + P.I.

= c1ex + c2 e3x + c3 e
–2x +

4
213 3

12 8 2

x
xe

e  .

Notes: 1. When F (m) = 0 and F(m)  0, P.I. = 
1

{ }
( )

mxe
F D

= x 
1

{ }
( )

mxe
F D

= 
( )

mxxe

F m

2. When F (m)= 0 F(m) = 0 and F(m)  0, then P.I. = 
1

{ }
( )

mxe
F D

= 2 1

( )
mxx e

F D
 = 

2

( )

mxx e

F m

And so on.

Type 2: f (x) = emx V where V is any function of x.

Here the particular integral (P.I.) of F (D) y = f (x) is,

P.I. = 
1

{ }
( )

mxe V
F D

 = emx 1
{ }

( )
V

F D m
.

Example 3.40: Solve (D2 – 5D + 6) y = x2 e3x

Solution: The reduced equation is,
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(D2 –5D + 6) y = 0 (1)

Let y = Aemx be a trial solution of Equation (1) and then auxiliary equation is

m2 – 5m + 6 = 0 or m2 – 3m – 2m + 6 = 0

Or m (m – 3) – 2 (m – 3) = 0 or (m – 3) (m – 2) = 0

 m = 2, 3

 The complementary function is,

y = c1 e2x + c2 e3x where c1 and c2 are arbitrary constants.

The particular integral is,

y = 2 3
2

1
{ }

5 6
xx e

D D 
= 

3
2

2
{ }

( 3) 5( 3) 6

xe
x

D D   

= e3x 2
2

1
{ }

6 9 5 15 6
x

D D D    
= e3x 2

2

1
{ }x

D D

= e3x 
2 3 1 21 1

{ } (1 ) { }
(1 )

xx e D x
D D D

 


= 
3

2 3 4 2(1 ...){ }
xe

D D D D x
D

= 
3

2 3 2{ 2 2} 2
3

x
xe x

x x e x x
D

 
      

 

Hence the general solution is,

y = C.F. + P.I.

= 
3

2 3 3 2
1 2 2

3
x x x x

c e c e e x x .

Recall: (i) (1+ x)–1 = 1 – x + x2 – x3 + x4 – x5 + ...

(ii) (1 – x)–1 = 1 + x + x2 + x3 + x4 + x5 + ...

Type 3: (a) F (D) y = sin ax or cos ax where F (D) =  (D2).

Here P.I. = 
1

{sin }
( )

ax
F D

 = 
2

1
sin

( )
ax

a
(if  (– a2)  0)

 Or P.I. = 
1

{cos }
( )

ax
F D

= 
2

1
cos

( )
ax

a
(if  (–a2)  0)

[Note D2 has been replaced by – a2 but D has not been replaced by –  a.]

(b) F (D) y = sin ax or cos ax and F (D) =  (D2, D)

Here P.I. = 
1

{sin }
( )

ax
F D

= 
2 2

1 1
{sin } {sin }

( , ) ( , )
ax ax

D D a D

if (– a2, D)  0

Or y = 
1

{cos }
( )

ax
F D

 = 
2 2

1 1
{cos } {cos }

( , ) ( , )
ax ax

D D a D

if (–a2, D)  0
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(c) F (D) y = sin ax or cos ax and F(D) = 2

( )

( )

D

D

Here  P.I. = 
1

{sin }
( )

ax
F D

= 2

( )
{sin }

( )

D
ax

D
 = 

2

( )
{sin }

( )

D
ax

a
if (–a2)  0

Or y = 
1

{cos }
( )

ax
F D

= 2

( )

( )

D

D
{cos ax}

= 
2

( )

( )

D

a
{cos ax} if  (– a2)  0

(d) F (D) y = sin ax or cos ax, F (D) =  (D2) but  (–a2) = 0.

Here P.I. = 
1

( )F D
{sin ax or cos ax} = 

1

( )
x

F D
{sin ax or cos ax}

Alternatively, sin ax and cos ax can be written in the form sin ax = 
2

i xa ixae e

i

And cos ax = 
2

aix aixe e , then find P.I. by the method of Type 1.

Example 3.41: Solve (D4 + 2D2 + 1) y = cos x.

Solution: The reduced equation is (D4 + 2D2 + 1) y = 0

Let y = Aemx be a trial solution. Then the auxiliary equaiton is,

m4 + 2m2 + 1 = 0 or [(m2 + 1)]2 = 0 or m = ± i, ± i

 C.F. = (c1 + c2x) cos x + (c3 + c4x) sin x where c1, c2, c3 and c4 are
arbitrary constants.

 P.I. = 
4 2

1
{cos }

2 1
x

D D 

 = 
3

1
{cos }

4 4
x x

D D

[ (D2) = D4 + 2D2 + 1

(–12) = 1 – 2 + 1 = 0, then 
1

{ ( )}
( )

f x
F D

 = x
1

{ ( )}
( )

f x
F D

]

= 
3

1
{cos }

4

x
x

D D
= 

2
. {cos }

4 3 1

x x
x

D 

= 
2

4

x 2 2

2

1 cos
{cos } . cos

4 3 1 83 1

x x x
x x

D

Hence the general solution is,

y = C.F. + P.I.

= (c1 + c2x) cos x + (c3 + c4x) sin x – 
2

cos
8

x
x .

Example 3.42: Solve (D2 – 4)y = sin 2x.



Elementary Differential
Equations

NOTES

Self - Learning
254 Material

Solution: The reduced equation is,

(D2 – 4)y = 0

Let y = Aemx be a  trial solution and then auxiliary equation is,

m2 – 4 = 0  m = ± 2

The complementary function is,

y = c1 e2x + c2 e–2x where c1, c2 are arbitrary constants.

The particular integral is,

y = 2

1
{sin 2 }

4
x

D 
= 2 2

2

1
sin 2 [Replace by 2 ]

2 4
x D

= 1
sin 2

8
x

The general solution is y = C.F. + P.I. = c1e2x + c2e–2x 1
sin 2

8
x.

Example 3.43: Solve (3D2 + 2D – 8)y = 5 cos x.

Solution: The reduced equation is,

(3D2 + 2D – 8)y = 0

Let y = Aemx be a trial solution and then the auxiliary equation is,

3m2 + 2m – 8 = 0 or 3m2 + 6m – 4m – 8 = 0

Or 3m (m + 2) – 4 (m + 2) = 0 or (m + 2) (3m – 4) = 0

Or m = – 2, m = 
4

3

 The complementary function is,

y = c1e–2x + 
4

3
2

x
c e  when c1 and c2 are arbitrary constants.

The particular integral is,

y = 
2

1
{5cos }

3 2 8
x

D D 
= 

1
5 {cos }

(3 4)( 2)
x

D D 

= 2 2

(3 4)( 2)
5 {cos }

(9 16)( 4)

D D
x

D D

 

 
 = 2 2

(3 4)( 2)
5 {cos }

[9( 1 ) 16][ 1 4]

D D
x

 

   

[D2 is replaced by – 12 in the denominator] 2

( )
form

( )

D

D

= 25
[3 6 4 8]{cos }

( 25) ( 5)
D D D x  = 21

[3 2 8]cos
25

D D x 

= 
2

2

1
3 (cos ) 2 (cos ) 8cos

25

d d
x x x

dxdx

 
   

 

 =  1
3cos 2sin 8cos

25
x x   = 

1
(2sin 11cos )

25
x x
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The general solution is,

y = C.F. + P.I.

= c1e –2x + c2e4/3x + 
1

(2sin 11cos )
25

x x .

Type 4: F (D) y = xn, n is a positive integer.

Here P.I. = 
1

{ }
( )

nx
F D

 = [F(D)]–1 {xn}

In this case, [F (D)]–1 is expanded in a binomial series in ascending powers of
D upto Dn and then operate on xn with each term of the expansion. The terms in
the expansion beyond Dn need not be considered, since the result of their operation
on  xn will be zero.

Example 3.44: Solve D2 (D2 + D + 1)y = x2.

Solution: The reduced equation is,

D2 (D2 + D + 1)y = 0 (1)

Let y = Aemx be a trial solution of Equation (1) and then the auxiliary equation
is,

m2 (m2 + m + 1) = 0

 m = 0, 0 and m = 1 1 4

2

   = 1 3 3

2 2

I i    


 The complementary function is,

y = (c1 + c2 x) e 0 . x + 
1

2
3 4

3 3
cos sin

2 2

x
e c x c x

= c1 + c2x + 
1

2
3 4

3 3
cos sin

2 2

x
e c x c x

Where c1, c2, c3, c4 are the arbitrary constant.

The particular integral is,

y = 2
2 2

1
{ }

( 1)
x

D D D 
= 2 1 2

2

1
(1 ) { }D D x

D
 

= 2 2 2 3 2
2

1
{1 ( ) ( ) ( ) ...}{ }D D D D D D x

D

= 2 2 3 4 2 3 2
2

1
{1 ( ) ( 2 ) ( ) ...}{ }D D D D D D D x

D

= 2
2

1
{ (2 2) (2) 0}x x

D

= 2
2

1
{ 2 }x x

D
 = 

3
21

3

x
x

D
 = 

4 3

12 3

x x

The general solution is y = C.F. + P.I.
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= c1 + c2x + 
4 3

/2
3 4

3 3
cos sin

2 2 12 3
x x x

e c x c x .

Example 3.45: Solve (D2 + 4)y = x sin2x.

Solution: The reduced equation is,

(D2 + 4) y = 0

The trial solution y = A emx gives the auxiliary equation as,

m2 + 4 = 0, m = ± 2i

The complementary function is y = c1 cos 2x + c2 sin 2x

The particular integral is y = 2
2

1
{ sin }

4
x x

D

= 
2

1
(1 cos 2 )

24

x
x

D
 = 

2

1
cos 2

2 24

x x
x

D

= 
2 2

2 2

1 1 ( )

2 2 24 4

ix ixx x e e

D D

= 
12 2 2

2 2

1 1
1 { } { }

4 4 2 4 ( 2 ) 4 4( 2 ) 4

ix ixD x e e
x x

D i D i

 = 
2 2

2 2

1 1 1
{ } { }

4 2 4 44 4 4 4 4 4

ix ixx e e
x x

D Di D Di

= 
2 21

{ } { }
8 4

4 1 4 . ( 4 ) 1
4 4

ix ixx e e
x x

D D
Di Di

i i

= 
1 12 21

. 1 { } 1 { }
8 4 4 4 4( 4 ) 4

ix xix e D e D
x x

Di i Di i

= 
2 2 21

. 1 ... { } 1 ... { }
8 4 4 4 16 4( 4 ) 4

ix xix e D D e D
x x

Di i Di i

= 
2 21 1 1

.
8 4 4 4 4 . 4 4

ix xix e e
x x

Di i Di i

= 
2 2 2 2

8 2 . 8 2 4 2 . 8 2 4

ix xix e x x e x x

i i i i

= 
2 2 2 2 2

28 2 . 8 2 22 .16 .

ix xi ix xix x e e x e e

i i

= 
2

sin 2 cos 2
8 2.8 2.16

x x x
x x 

= 
2

sin 2 cos 2
8 16 32

x x x
x x 

Hence the general solution is y = C.F. + P.I.
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= c1 cos 2x + c2 sin 2x + 
2

8 16

x x
 sin 2x – cos 2

32

x
x .

Example 3.46: Solve (D4 + D3 – 3D2 – 5D – 2) y = 3xe–x.

Solution: The reduced equation is,

(D4 + D3 – 3D2 – 5D – 2) y = 0 (1)

The trial solution y = Aemx gives the auxiliary equation as,

m4 + m3 – 3m2 –  5 m – 2 = 0

Or m4 + m3 – 3m2 –  3 m – 2m – 2 = 0

Or m3 (m + 1) – 3m (m + 1) – 2 (m +1)

Or (m + 1) (m3 – 3m – 2) = 0 or (m + 1) {m3 + m2 – m2 – m – 2m –2) = 0

Or (m + 1) {m2 (m + 1) – m (m + 1) – 2 (m + 1)} = 0

Or (m + 1) (m + 1) (m2 – m – 2) = 0

Or (m + 1)2 (m2 – 2m + m – 2)  = 0

Or (m + 1)2 (m + 1) (m – 2) = 0

 m = – 1, –1, –1, 2

The complementary function is y = (c1 + c2 x + c3x2) e–x + c4e2x.

The particular integral is,

y = 
3

1
{3 }

( 1) ( 2)
xe x

D D

= 3e–x
3

1
{ }

( 1 1) ( 3)
x

D D
 = 3e–x

3

1
{ }

( 3) (1 /3)
x

D D

= – e–x
1 2

3 3

1 1
1 { } 1 ... { }

3 3 9
xD D D

x e x
D D

= – e–x 
2 3 2

3 2

1 1 1 1

3 2 3 6 6
x xx x x x

x e e
DD D

= –e–x 
4 3

24 18

x x

The general solution is y = C.F. + P.I.

= (c1 + c2 x + c3 x2) + c4 e2x – e–x 
4 3

.
24 18

x x

Type 5: (a) F (D) y = xV where V is a function of x.

Here P.I. = 
1

{ }
( )

xV
F D

 = 1 1
( ) { }

( ) ( )
x F D V

F D F D

 
  

 
.

Example 3.47: Solve (D2 + 9) y = x sin x.

Solution: The reduced equation is (D2 + 9) y = 0 (1)

The trial solution y = Aemx gives the auxiliary equation as,

m2 + 9 = 0 or m = ± 3i
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 C.F. = c1 cos 3x + c2 sin 3x where c1 and c2 are arbitrary constants.

AndP.I. = 
1

{ sin }
( )

x x
F D

where F (D) = D2 + 9

= 1 1
( ) {sin }

( ) ( )
x F D x

F D F D

 
  

 

= 
2 2

2 1
{sin }

9 9

D
x x

D D

= 2 2

2 sin 2 sin
=

1 9 89 9

D x D x
x x

D D

= 
sin 1 1

{sin }
8 4 1 9

x x
D x  = 

sin 1
cos

8 32

x x
x

Hence the general solution is,

y = C.F. + P.I. = c1 cos 3x + c2 sin 3x + 
sin 1

cos
8 32

x x
x

(b)  F (D) y = xnV where V is any function of x.

HereP.I.= 
1

{ ( )}
( )

f x
F D

 = 1 ( ) 1
{ } { }

( ) ( ) ( )

n
n F D

x V x V
F D F D F D

Example 3.48: Solve (D2 –1)y = x2 sin x

Solution: The reduced equation is (D2 –1)y = 0 (1)

Let y = Aemx be a trial solution. Then the auxiliary equation is,

m2 – 1 = 0 or m = ± 1

 C.F. = c1ex + c2e–x where c1 and c2 are arbitrary constants.

P.I.= 21
{ sin }

( )
x x

F D
 where F(D) = D2 – 1

= 
2

( ) 1
{sin }

( ) ( )

F D
x x

F D F D
 = 

2

2 2

1 1
2 {sin }

1 1
x D x

D D

  
   

= 
2 2 2

1 1 1
2 2 sin

1 1 1 1
x D x D x

D D

= 
2 2

1 1
2 2 { 1/ 2sin }

1 1
x D x D x

D D

= 
2 2

1 1
2 sin {cos }

21 1

x
x D x x

D D

= 
2

1 1
2 sin cos

2 21

x
x D x x

D

      
   

= – 
2

2

1
sin cos { ( sin cos )}

2 2 1

x x
x x D x x x

D
  



= – 
2

2

1
sin cos {sin cos sin }

2 2 1

x x
x x x x x x

D
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= –
2

2

1
sin cos { cos }

2 2 1

x x
x x x x

D
 



Again
2

1
{ cos }

1
x x

D 
= 

2 2

1 1
2 {cos }

1 1
x D x

D D

  
   

= 
2

1 1
2 cos

1 11
x D x

D

        

= 2

1 1
cos { sin }

2 1
x x x

D

= 2

1 sin
cos

2 1 1

x
x x  = – 1 1

cos sin
2 2

x x x

P.I.= – 
2 1

sin cos cos sin
2 2 2 2

x x x
x x x x  

= 21 1
sin cos sin

2 2
x x x x x

Hence the general solution is,

y = C.F. + P.I. = c1ex + c2e–x 21 1
sin cos sin

2 2
x x x x x.

Check Your Progress

12. What is half range Fouier series?

13. Give the Legendre’s differential equation.

14. Write the general linear differential equation with constant coefficients.

3.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Equations in which an unknown function, and its derivatives or differentials
occur are called differential equations.

2. Solutions of equations which do not contain any arbitrary constants and
which are not derivable from the general solution by giving particular values
to one or more of the arbitrary constants, are called singular solutions.

3. Chemical kinetics, also known as reaction kinetics, is the branch of physical
chemistry, i.e., concerned with understanding the rates of chemical reactions.
It is to be contrasted with thermodynamics, which deals with the direction
in which a process occurs but in itself tells nothing about its rate.

4. It is the express the rate of reaction as a function of a change in the
concentration of one or more reactants over a particular period of time;
they are used to describe what is happening at the molecular state level
during a reaction. These rate laws help us determine the overall mechanism
of reaction (or process) by which the reactants turn into products.

5. In nuclear physics, secular equilibrium is a situation in which the quantity of
a radioactive isotope remains constant because its production rate (for
example due to decay of a parent isotope) is equal to its decay rate.
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6. In operating on the sum of two functions, if an operator does not give the
same result as the sum of operations on the two functions separately. Then
operator is said to be non-linear.

7. The power series method is used to search a power series solution to certain
differential equations. Basically, such a solution assumes a power series
with unknown coefficients and then substitutes that solution into the
differential equation for finding a recurrence relation for the coefficients.
The power series method can also be applied to certain nonlinear differential
equations with less flexibility.

8. The convergence of the series may depend upon the value of x that we put
into the series. A power series may converge for some values of x and not
for other values of x.

9. In the power series, the acceptable operations are differentiation, integration,
addition, subtraction, division and multiplication of power series. A condition
regarding the desertion of every coefficient of a power series is listed, which
is considered the basic tool for solving power series.

10. Bohr’s theory based on the quantization of angular momentum and energy
of the electron in hydrogen atom was successful in explaining broad features
of hydrogen atom and of the spectral lines emitted by it. The concepts used
in the theory were new but of fundamental importance and inspired further
researches in atomic physics.

11. Spherical harmonics form of a complete set of orthogonal functions and
thus an orthonormal basis, each function defined on the surface of a sphere
can be written as a sum of these spherical harmonics. This is similar to
periodic functions defined on a circle that can be expressed as a sum of
circular functions (sines and cosines) via Fourier series.

12. If a function is defined over half the range, say 0 to L, instead of the full
range from -L to L, it may be expanded in a series of sine terms only or of
cosine terms only. The series produced is then called a half range Fourier
series.

13. Legendre’s Differential Equation

     This equation is represented the following form

14. The linear differential equation with constant coefficients are of the form,

Where P
1
, P

2
, …., P

n
 are constants and Q is a function of x.
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3.10 SUMMARY

 In mathematics, a differential equation is a mathematical equation for an
unknown function of one or several variables that relates the values of the
function itself and its derivatives of various orders.

 A relation between the dependent and independent variables, which, when
substituted in the equation, satisfies it, is known as a solution or a primitive
of the equation. Note that, in the solution, the derivatives of the dependent
variable should not be present.

 The solution, in which the number of arbitrary constants occurring is equal
to the order of the equation, is known as the general solution or the complete
integral. By giving particular values to the arbitrary constants appearing in
the general solution we obtain particular solutions of the equation.

 A differential equation is said to be exact if it can be derived directly from its
primitive without any further operation of elimination or reduction.

 An operator is a rule for transforming a given mathematical function into
Another function. Operators will be indicated by their symbols with caret
( /\ ) over it.

 Total angular momentum is obtained by the cross or vector product of the
position and the linear momentum vectors. Angular momentum of a particle
moving around a fixed point is given by the vector product or cross product
of r and p.

 The operator correspondin to the physically observable quantity, energy is
known as Hamiltonian Operator.

 If a homogeneous linear different equation has constant coefficients, then it
can be solved using algebraic methods and its solutions are elementary
functions known from calculus ex, cos x, etc.

 The standard basic technique used for the purpose of answering linear
differential equations containing variable coefficients is known as the power
series method.

 The power series method is used for solving differential equations because
this method is considered easy and universally used as standard. We first
describe the procedure and then exemplify it using simple equations.

 A real function f(x) is termed as analytic at a point x = x
0
 if it can be

denoted by a power series in powers of 0xx   by radius of convergence
R > 0. In mathematics, an analytic function is a function that is locally given
by a convergent power series.

 Bohr’s theory based on the quantization of angular momentum and energy
of the electron in hydrogen atom was successful in explaining broad features
of hydrogen atom and of the spectral lines emitted by it. The concepts used
in the theory were new but of fundamental importance and inspired further
researches in atomic physics.

 The general quantization rule of Wilson and Sommerfeld was used in a
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number of problems of interest, particularly for finding out the energies that
periodic systems could assume.

 The use of periodic functions is very frequent in engineering problems. But
the periodic functions may not be simple all the time. So it is desirable to
represent these into simple periodic functions. Trigonometric functions are
the simplest periodic functions.

 A Fourier series decomposes the periodic functions into the sum of a set of
simple oscillating functions, namely sines and cosines.

 The Fourier Series of converges to the mean value at point where both the
left-hand and right-hand first derivatives of exist.

 The Particular Integral (P.I.) which is a solution of F (D) y = Q containing
no arbitrary constant.

3.11 KEY TERMS

 Differential equation: In mathematics, a differential equation is a
mathematical equation for an unknown function of one or several variables
that relates the values of the function itself and its derivatives of various
orders.

 Integrated rate laws: Integrated rate laws express the reaction rate as a
function of the initial concentration and a measured (actual) concentration
of one or more reactants after a specific amount of time (t) has passed; they
are used to determine the rate constant and the reaction order from
experimental data.

 Laplacian operator: The square of the () Del operator 2 is also called
Laplacian operator. It is obtained as a dot product of 

 Power series method: The standard basic technique used for the purpose
of answering linear differential equations containing variable coefficients is
known as the power series method.

 Spherical harmonics: Spherical harmonics form of a complete set of
orthogonal functions and thus an orthonormal basis, each function defined
on the surface of a sphere can be written as a sum of these spherical
harmonics.

3.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is differential equations?

2. Write a short note on non-homogeneous equations with constant coefficients.

3. State the integrated rate laws in chemical kinetics.

4. Define the secular equilibrium.
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5. What is quantum chemistry?

6. Define the Laplacian operator.

7. Give the uses of power series method.

8. What is real analytic function?

9. State the Bohr’s theory based on quantization.

10. What is harmonic oscillator?

11. Define spherical harmonic.

12. Give the important properties of Fourier series.

13. Define the Fourier series.

14. What is Legendre’s differential equation?

15. Give the general form of linear differential equation.

Long-Answer Questions

1. Briefly explain about the variable separable and exact first order differential
equation giving appropriate examples.

2. Discuss in detail about the applications of chemical kinetics with the help of
examples.

3. Analyse the secular equilibrium.

4. Describe the quantum chemistry and Hermitian operator giving its
mathematical relation.

5. What is power series method? Explain their convergence and operations
with relevant examples.

6. Discuss the concept of harmonic oscillator giving appropriate examples.

7. Explain in detail about the spherical harmonics.

8. Elaborate on the Fourier formula and Fourier coefficient.

9. What is Legendre’s differential equation? Find a convergent solution of
Legendre’s equation in descending powers of x giving examples.

10. Analyse the differential equation with various types of examples.
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UNIT 4 PERMUTATION AND
PROBABILITY
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4.0 INTRODUCTION

Permutation and combination are the ways to represent a group of objects by
selecting them in a set and forming subsets. When we select the data or objects
from a certain group, it is said to be permutations, whereas the order in which they
are represented is called combination.

Probability is the branch of mathematics concerning numerical descriptions
of how likely an event is to occur, or how likely it is that a proposition is true.
Probability theory is the branch of mathematics concerned with probability.
Although there are several different probability interpretations, probability theory
treats the concept in a rigorous mathematical manner by expressing it through a set
of axioms.

This probability curve is bell shaped, has a peak at mean μ and spread
across from entire real line, it use for the probability distributions come in many
shapes with different characteristics, as defined by the mean, standard deviation,
skewness, and kurtosis. The mean of a probability distribution is the long-run
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arithmetic average value of a random variable having that distribution. In
mathematics and its applications, the Root Mean Square (RMS) is defined as the
square root of the mean square. The RMS is also known as the quadratic mean.

In statistics, probable error defines the half-range of an interval about a
central point for the distribution, such that half of the values from the distribution
will lie within the interval and half outside.

The kinetic theory of gases is a simple, historically significant classical model
of the thermodynamic behaviour of gases, with which many principal concepts of
thermodynamics were established. The model describes a gas as a large number
of identical sub microscopic particles (atoms or molecules), all of which are in
constant, rapid, random motion.

Curve fitting is the process of constructing a curve, or mathematical function
that has the best fit to a series of data points, possibly subject to constraints.

In this unit, you will study about the permutation and combination, probability
and probability theorem, probability curve, average, root mean square, most
probable error, kinetic theory of gases, curve fitting.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss about the permutation and combination

 Elaborate on the probability and probability theorem

 Know about the probability curve

 Understand the various measure of average

 Analyse the standard error

 Explain the kinetic theory of gases

 Define the curve fitting

4.2 PERMUTATION AND COMBINATION

If there are n objects and they can be placed in any arrangement or order, then
any given order of these n objects is called a permutation of the n objects.

For instance, assume that there are 4 persons A, B, C and D who can sit on
any of the 4 chairs for a group photograph. Since the first person can sit on any
one of these chairs, there are 4 ways that person A can be seated. Now, there are
3 chairs left and person B can be seated in 3 ways. Similarly, C can be seated in 2
ways and D must take the last seat left. Hence, by fundamental counting , there are
4 × 3 × 2 × 1 = 24 possible arrangements of these 4 people occupying 4 seats in
any given order. Therefore, the number of permutations of 4 things taken four at a
time is 24. This sequential multiplication of 4 × 3 × 2 × 1 is also known as 4
factorial, symbolized as 4!
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In general, the number of different permutations of n distinct items, taken all
at a time, is given by,

n! = n(n – 1)(n – 2)..... 1

For instance, if there are 6 horses running in a race, so that n = 6, then
there are 6! number of orders in which these horses can finish as first, second,
third, fourth, fifth and sixth. In other words, the total number of such finishing
orders is

6! = 6 × 5 × 4 × 3 × 2  ×1 = 720

Permutation of x out of n distinct items

Now, let us consider a situation in which we are not interested in taking all n items
in a given order, but only some items x in a given order out of the total of n items
so that xx .n  For instance, in the horse race of 6 horses, we may be interested
only in the order of first, second and third finish, for which prizes can be awarded.
Since there are 6 horses, any one of these horses could finish first. Hence, there
are 6 ways to finish in the first place, 5 ways to finish in the second place, since the
first place has already been filled by one horse, and there are 4 ways to finish in
the third place, and hence, the total number of distinct orders of finish for the first
3 places is,

6 × 5 × 4 = 120

In general, the number of different permutations of x out of n distinct items
is given by,

n(n – 1)(n – 2)....(n – x + 1) OR 
!

( – )!

n

n x

Combination of x items out of n distinct items

So far, we have taken either x items out of n distinct items or all the n items in a
given order. The order of items has been necessary in the permutation formula. In
many cases, however, the order is unimportant. For instance, the probability of
any two heads out of three tosses would be different than having two heads and a
tail in that order.

Accordingly, the number of combinations of n distinct items taken x at a
time without any given order is given by:

!

!(  – )!

n

x n x
, where x  n

The notation 
!

!(  – )!

n

x n x
 is also simply written as C orn

x
n

x
.

(For x = 0 or x = n, we define 0! = 1)

Example 4.1: A committee of ten Members of Parliament (MPs) has been selected
to investigate the ethical conduct of the ministers. A sub-committee of four MPs is
to be selected out of the ten MPs to investigate one Minister. Determine the number
of ways in which any four members can be selected out of these ten.
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Solution: Since the order of such selection is unimportant, the number of ways of
choosing the sub-committee is given by:

    
10

4
10 10!

C C
4 4!(10 – 4)!

n
x

10! 10 9 8 7 6 5 4 3 2 1

4!6! 4 3 2 1 6 5 4 3 2 1

        
 

        
5040

210
24

Problems Based on Permutation and Combination

Example 4.2: In the throw of a die, find the probability of obtaining a number
greater than 2.

Solution: The numbers on the die are 1, 2, 3, 4, 5, 6 i.e., six in number. Out of these,
the numbers 3, 4, 5, 6 are greater than 2 and these are four in number and the
numbers 1, 2  are not greater than 2 and these are two in number.

 The required probability 
 
  

a

a b
 = 

 
  

4

4 2
 = 

4

6
 = 

2

3

Example 4.3: A bag contains 5 red, 5 white and 6 green balls. Three balls are
drawn at random. What is the probability that a red, a white and a green balls are
drawn?

Solution: Three balls can be drawn from (5 + 4 + 6) = 15  balls in 15C3 ways
(n(S) = 15C3). Similarly, the no. of ways in which one red ball can be drawn out of
5 red balls, one white ball out of 4 white balls and one green ball out of 6 green balls
= 5C1 × 4C1 × 6C1 = n(E)

 The required probability = P(E) = 
( )

( )

n E

n S

=  
 
 

1 1 1

3

5 4 6

5 4 6

C C C

C

=
 

3

5 4 6

15C

=

 
   

  
   

5 4 6
15 14 13

1 2 3

=
24

91

4.3 PROBABILITY AND THEOREM OF
PROBABILITY

It seems that the word ‘Statistics’ was derived from the Latin word ‘Status’ which
means a political state. The dictionary gives the meaning of statistics as ‘Numerical
data collected systematically’ or ‘the science of collecting and interpreting such
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information’. According to its popular use, by statistics we mean quantitative data
affected to a marked extent by multiplicity of causes.

Primarily statistics was supposed to be the science of kings used for the
purpose of administration, but later on it was regarded as a branch of economics.
Nowadays the meanings of statistics are interpreted in different ways by different
classes, for example, for a layman statistics is nothing but a collection of figures,
to an economist the field of statistics lies in quantitative analysis and to a physicist
statistics is a probability distribution which forms the basis of the theory of errors.

Statistics, which was accepted for some time as necessarily a branch of
economics has now become so popular and its application so wide that no
branch of human knowledge escapes its approach. Today the naturalists, the
biologists, the astronomers, the administrators, the businessmen, the economists,
the chemists, the physicists, the photographers, all make frequent use of statistical
methods of which probability is the fundamental tool. An astronomer uses
statistical methods in making predictions about eclipses, a biologist utilzes them
to generalize the laws of variations and heredity, a meteorologist uses them for
weather forecasts, regarding temperature pressure and rainfall, etc.

So far as the applications of statistics to social and physical sciences are
concerned, the statistical probability can be successfully employed in finding
certain inferences in social and physical fields. Dealing with probability, we are
able to show that the distribution of r balls in n cells has nr different ordered
samples with replacement of size r and without replacement it has nPr =

!

( ) !

n

n r different ordered samples of size r. Thus to find the possible configuration

of birthday of people in a year, take r the number of people and n the number
of days in a year; to clssify accidents according to the weekdays, take r the
number of accidents and n the number of days in a week; to classify people
according to age or profession, take a group of r people and n will be the
number of classes; to observe irradiation in biology when the cells in the retina of
the eye are exposed to light r is the number of light particles and n the number of
cells; in cosmic ray experiments, r is the number of particles hitting the Geiger
counters and n is the number of counters function; in an elevator to find the
possible arrangements of discharging the passengers, r is the number of
passengers and n is the number of floors; in dice throw r is the number of dice
and n is the number of faces, i.e., six; in tossing coins r is the number of coins
and n = 2; in coupon collecting r is the number of coupons collected and n are
the kinds of coupons; in chemistry when a long chain polymer reacts with
oxygen, r is the number of the reacting oxygen molecules and n is the number of
polymer chains, etc.

Based on classical concepts, we give two definitions of probability.

[A] The Mathematical or ‘a Priori’ Probability: If there are q number of
exhaustive, mutually exclusive and equally likely cases of an event and suppose that
p of

them are favourable to the happenings of an event A under the given set of
conditions, then the mathematical probability of the event A is defined as
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P(A) = .
p

q

We sometimes put this definition in the words ‘the odds in favour of A are p
to (q – p) or ‘the odds against A are (q – p) to p. More precisely if we assume
that the odds in favour of the event A are m to n (or n to m against A), the
probability of happening the event A is defined as

P(A) = .
m

m n
For example, the probability of drawing a white ball from a bag containing 3

white and 4  red balls is 3

3 4
, i.e., 3

.
7

Note 1. The word ‘exhaustive’ used in the definition assures the happening of an event
either in favour or against and rules out the possibility of happening of neither (in
favour or against) in any trial. The word, ‘mutually exclusive, is a safeguard against the
probability of two simultaneous happenings in a trial, for example, in tossing a coin,
the head and tail cannot fall together,  but falling of either excludes the other. The word
‘equally likely’ means equally probable, i.e., no happening is biased or partially bound
to occur.

[B] The Statistical or Empirical or ‘a Posteriori’ Probability: If in a large
number of trials performed under the same conditions, the limit of the ratio of the
number of happenings of an event A to the total number of trials is unique and
finite when the number of trials tends to infinity, then this limit measures the
probability of the happening of the event A.

Thus if in a large number of trials performed under the same set of conditions,
p is the probability of happening of  an event A and q that of its failure, then the

probability of its happening in the next trial is ,
p

p q
 being assumed to determine

the empirical probability that there is no known information relative to the
probability of the happening of the event other than the past trials.

In other words, if an event A happens on pN occasions when a large number
N is taken out of a series of trials, then the probability P(A) of the event A is p
defined as

P(A) = Lim .
N

pN
p

N


Precisely if m is the number of times in which the event A occurs in a series

of n trials, then P(A) = Lim .
N

m

n

Note 2. If p is the probability of happening of an event A, i.e., P(A) = p and q that of not happening

of that event denoted by ( )P A is given by ( )P A  = q = 1 – p, so that

P(A) + ( )P A = 1.

Conclusions: (i) The probability P(A) of an event A lies between 0 and 1, i.e.,

0  P(A)  1.

(ii) The probability of an impossible event is zero, i.e.,

P(0) = 0.

(iii) The probability of a certain event E is one, i.e.,

P(E) = 1.
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Example 4.4: From a pack of 52 cards two are drawn at random; find the
chance that one is a knave and other a queen.

Solution : Total number of ways of drawing 2 cards from 52 cards = 52C2.

The required cards a knave and a queen appear in different four colours,
therefore each card can be drawn in 4 different ways. But the two events happen
simultaneously and hence the number of favourable ways = 4 × 4 = 16.

 required probability = 52
2

16 16 8
.

52.51 663
1.2

C
 

Example 4.5: What is the chance that a leap year, selected at random, will
contain 53 Sundays?

Solution: There are 366 days in a leap year. Dividing 366 by 7, the number of
days of a week, we conclude that the leap year consists of 52 complete weeks and
2 days more. These two days can be combined in 7 different ways as under :

(i) Sunday and Monday, (ii) Monday and Tuesday (iii) Tuesday and
Wednesday, (iv) Wednesday and Thursday, (v) Thursday and Friday, (vi)
Friday and Saturday, (vii) Saturday and Sunday,

Of these seven combinations only (i) and (vii) are favourable so that the

required chance = 2

7
.

Example 4.6: From a bag containing 4 white and 5 black balls a man draws 3
at random; what are the odds against these being all black?

Solution: Total number of ways in which 3 balls can be drawn = 9C3.

Number of ways in which 3 black balls can be drawn = 5C3.

Required chance = 
5

3
9

3

5.4.3. 9.8.7 5
.

1.2.3. 1.2.3. 42

C

C
 

Example 4.7:: A card is drawn from an ordinary pack and a gambler bets that
it is a spade or an ace. What are the odds against his winning this bet?

Solution :  Number of ways in which a card can be drawn from 52 cards = 52C1

= 52.

There are four aces so that the number of ways in which a card can be an ace
is 4C1 = 4.

Now there are 13 spade cards of which one is an ace. Out of the remaining
12 spade cards, a spade card can be drawn in 12C1, i.e. 12 number of ways.

 The number of ways in which the drawn card may be a spade or an ace
= 12 + 4 = 16.

Hence the required probability = 
16 4 4

,
52 13 9 4

 


i.e., the odds against the gambler’s winning are as 9 to 4.

Example 4.8: The chance of an event happening is the square of the chance of
a second event but the odds against the first are the cube of the odds against the
second. Find the chance of each.
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Sobution: Let the chance to the happenings of the first and the second events be
p and p respectively. Then according to the first condition, we have

p = p. ... (1)

According to the second condition, we have

1 p

p


=

3
1

.
p

p

 
  

... (2)

Substituting the value of p from Equations (1) to (2), we get
2

2

1 p

p




=
3

1 p

p

 
  

or 2

(1 ) (1 )p p

p

  
 =

2

2

(1 ) (1 2 )p p p

p

    


or p(1 + p) = 1 – 2p + p2

or p + p2 = 1 – 2p + p2

or 3p = 1, i.e., p = 
1

3

and then from Equation (1) p = 
1

.
9

Example 4.9: Three cards are drawn at random from an ordinary pack. Find
the chance that they are a king, a queen and a knave.

Solution: Total number of ways in which 3 cards can be drawn from 52 cards
= 52C3.

The pack of cards consists of 4 kings, 4 queens and 4 knaves and therefore
each of a king, a queen and a knave can be drawn in 4C1, i.e. 4 ways. But all the
three events happen together, hence the number of ways in which a king, a queen
and a knave can be drawn

= 4 × 4 × 4 = 64.

required probability= 52
3

64 64.1.2.3 16
.

52.51.50 5525C
 

Example 4.10: Eight letters, to each of which corresponds an envelope, are
placed in the envelopes at random. What is the probability that all letters are not
placed in their right envelopes.

Solution : Total number of ways in which 8 letters can be placed in 8 envelopes
= 8 !.

Also there is only one way in which all the letters are placed in their right
envelopes.

Therefore, probability that all the letters are placed in the right envelopes =
1

.
8!

Hence the required probability that all letters are not placed in their right
envelopes = 1

1 .
8!


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Example 4.11: A and B stand in a ring with 10 other persons. If the arrangement of
the persons is at random, find the chance that there are exactly 3 persons between A
and B.

Solution: In a ring 12 persons can stand in 11 ! ways and 3 persons between A
and B can be selected in 10C3 ways. A and B interchange their positions in 2 !
ways. Also 3 persons between A and B can stand in 3 ! ways and the other 7
persons in 7 ! ways.

Number of favourable ways= 2 ! 3 ! 7 ! 10C3

= 10 !
2 !3! 7 !

7 !3!

= 2 ! 10 !,

Required probability = 
2 !10 ! 2

.
11! 11



Example 4.12: A number is chosen from each of two sets

(1, 2, 3, 4, 5, 6, 7, 8, 9); (1, 2, 3, 4, 5, 6, 7, 8, 9).

Solution:  If p1 denotes the probability that the sum of the two numbers be 10
and p2 the probability that their sum is 8, find p1 + p2.

Each set consists of 9 numbers and hence the total number of ways of choosing
one from each = 9C1 × 9C1 = 81.

A sum of 10 may be found in 9 different ways, like (1, 9), (2, 8), (3, 7), (4,
6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1) so that

p1 =
9 1

.
81 9



Similarly a sum of 8 can be found in 7 ways so that p2 = 7
.

81

 p1 + p2 = 1 7 16
.

9 81 81
 

Simple Properties of Probability

Probability is the measure of the likelihood that an event will occur. Principally, the
probability quantifies as a number between 0 and 1, where 0 indicates impossibility
and 1 indicates certainty. The higher the probability of an event, the more likely it
is that the event will occur. A simple example is the tossing of a fair (unbiased)
coin. Since the coin is fair, the two outcomes ‘Heads’ and ‘Tails’ are both equally
probable, the probability of ‘Heads’ equals the probability of ‘Tails’ and since no
other outcomes are possible, the probability of either ‘Heads’ or ‘Tails’ is ½,
which can also be written as 0.5 or 50%. Similar to other theories, the theory of
probability and its simple properties can be represented using the rules of
mathematics and logic as discussed below.

Events

A collection of all possible outcomes of an experiment is said to be an event.

If such a collection contains the outcome of an event, then that event is said
to have occurred.
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An event is said to be simple or compound according as it cannot or can be
decomposed.

For example, if we toss a coin, it will turn up either a head or a tail. Thus
there are only two possible outcomes giving a simple event.

If we throw a pair of dice, then to have sum of 5 is a compound event as a
sum of 5 can be obtained as (1, 4), (2, 3), (3, 2), (4, 1). Thus this compound
event consists of 4 elementary events.

Mutually Exclusive Events: Two or more events are said to be mutually exclusive
if the happening or occurrence of any one of them excludes the happening of the
others.

For example, if we toss a coin and it falls with head up, then the falling of the
head up excludes the simultaneous happening of the tail up, i.e., the two events
of the falling head and tail up with a coin cannot happen together, but the
happening of one excludes the happening of the other. So the two events are
mutually exclusive.

Compound Events (Joint Occurrence): The simultaneous occurrence of two
or more events in connection with each other is said to be a compound event.

For example, if we have an urn containing 100 balls of different colours say
red and green, and suppose 60 are red and 40 are green. If then it is proposed
to draw 10 balls each of red colour, it is a simple event. But if it is proposed to
draw first 20 balls of red colour and then 10 balls of green colour, then it is a
compound event.

Dependent and Independent Events: Two or more events are said to be
dependent or independent according as the occurrence of one does or does
not affect the occurrence of the other or others. The dependent events are
sometimes known as contingent.

For example, if from an urn containing 10 balls, it is proposed to draw 2 balls,
then if a ball is drawn and it is not replaced unless the second ball is drawn, the event
of the drawing of the second ball is dependent on that of the first. But if the first ball
is replaced and then the second ball is drawn, the event of drawing the second ball
is independent.

Random Variable

In probability and statistics, a random variable or a random quantity is a variable
whose possible values are outcomes of a random phenomenon. More specifically,
a random variable is defined as a function that maps the outcomes of an
unpredictable process to numerical quantities, typically real numbers. It is referred
as a variable, precisely a dependent variable, in the sense that it depends on the
outcome of an underlying process providing the input to this function, and it is
random in the sense that the underlying process is assumed to be random.

The possible values of a random variable may possibly represent the possible
or probable outcomes of an experiment that is yet to be performed or the possible
outcomes of a past experiment whose already-existing value is uncertain, i.e., not
certain. The potential or probable values assigned to a random variable helps in
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the interpretation of probability. As a function, a random variable is required to be
measurable, which allows for probabilities to be assigned to sets of its potential or
probable values. It is common that the outcomes depend on some physical variables
that are not predictable. For example, when tossing a fair coin, the final outcome
of heads or tails depends on the uncertain physical conditions. Which outcome
will be observed is not certain, i.e., there are only two possible outcomes, namely
heads or tails. Therefore, the domain of a random variable is the set of possible
outcomes.

A random variable, usually written X, is a variable whose possible values
are numerical outcomes of a random phenomenon. There are two types of random
variables, discrete and continuous.

Discrete Random Variables: A discrete random variable is one which may
take on only a countable number of distinct values, such as 0,1,2,3,4,........ Discrete
random variables are usually (but not necessarily) counts. If a random variable
can take only a finite number of distinct values, then it must be discrete. Examples
of discrete random variables include the number of children in a family, the employee
attendance at an organization, the number of children present in the class/school
on the specific day, the number of defective light bulbs in a box of ten, etc. The
probability distribution of a discrete random variable is a list of probabilities
associated with each of its possible values. It is also sometimes called the probability
function or the probability mass function.

Continuous Random Variables: A continuous random variable is a random
variable whose cumulative distribution function is continuous everywhere. There
are no ‘Gaps’, which would correspond to numbers which have a finite probability
of occurring, for example a continuous random variable can be based on a spinner
that can select a horizontal direction. Then the values taken by the random variable
are directions and these directions can be represented by North, West, East,
South, North-West, South-East, etc. However, it is generally more convenient to
record the sample space to a random variable which takes values which are real
numbers. Essentially, the continuous random variables typically state Probability
Density Functions (PDF).

Characteristically, a random variable takes on different values as a result of
the outcomes of a random experiment. In other words, a function which assigns
numerical values to each element of the set of events that may occur (i.e., every
element in the sample space) is termed a random variable. The value of a random
variable is the general outcome of the random experiment. One should always
make a distinction between the random variable and the values that it can take on.

Theorem of Total Probability

If there are n mutually exclusive events A1, A2, A3, ..., An whose
probabilities are P(A1), P(A2), P(A3),..., P(An) respectively, then the
probability that one of them will happen is the sum of their separate
probabilities, i.e.,

P(A1 + A2 + A3 +...+ An) = P(A1) + P(A2) + P(A3) +...+ P(An), where P(A1 +
A2 +...+ An) denotes the probability of occurrence of at least one of the n
events A1, A2, A3, ..., An.
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Suppose there are N total number of exhaustive, mutually exclusive and
equally likely cases of which m1, m2,...mn are favourable to the events A1,
A2,...An, respectively. Then the total number of cases favourable to either A1 or
A2 or A3 or ... or An is m1 + m2 + m3 +...+ mn so that the probability of
happening of at least one of these events is

P(A1 + A2 + A3 +...+ An) = 1 2 3 ... nm m m m

N

   

= 1 2 .... nmm m

N N N
  

= P(A1) + P(A2) + P(A3) +...+ P(An).

Conclusions: (i) In case an event A is comprised by n mutually exclusive forms
A1, A2,....An, i.e.,

A = A1 + A2 +...+ An,

then probability A, i.e., P(A) is the sum of the probabilities of A1, A2, ..., An

separately, i.e.,

P(A) = P(A1) + P(A2) +...+ P(An).

(i) In case the n mutually exclusive events are exhaustive also, so that there is
certainty of happening of at least one, i.e., P(A1 + A2 +...+ An) = 1, we have

P(A1) + P(A2) +...+ P(An) = 1.

Note. We generally use the following notations:

P(A) denotes the probability for an event A to happen,

( )P A denotes the probability for an event A not to happen,
P(A + B) denotes the probability of the occurrence of at least one of the events

A and B

P(AB) denotes the probability of the occurrence of both the events A and B,

( )P AB denotes the probability of the hpening of A and not of B,

( )P AB denotes the probability of the happening of B and not of A,

( )P AB denotes the probability of the happening of neither of A and B.

If A and B are two events such that AB and AB  are two exhaustive and mutually
exclusive forms in which A can occur, then we have

P(A) = P(AB) + ( )P AB  from conclusion (ii)

Similarly, P(B) = P(BA) + ( )P B A

= P(AB) + ( ).P A B

so that P(A) + P(B) = P(AB) + { ( ) ( ) ( )}.P AB P AB P AB 

But from the above theorem of total probability, we can write

P(A + B) = ( ) ( ) ( ),P AB P AB P AB 

i.e., probability that at least one of A and B happens = the sum of probabilities
that A happens B not, B happens A not, and A, B both happen.

Thus, P(A) + P(B) = P(AB) + P(A + B)

or P(A + B) = P(A) + P(B) – P(AB). ... (4.1)
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Generalization of this Result: To prove that the formula for the probability
of occurrence of at least one of the n given events A1, A2,...An is

P(A1 + A2 +...+ An) = S1 – S2 + S3 – ...+ (–1)n–1 Sn

where S stands for the sum of probabilities of simultaneous occurrence of
exactly r of n events, the summation extending over all possible
combinations.

For two mutually exclusive events A1 and A2 the Result Equation (4.1) gives
P(A1 + A2) = P(A1) + P(A2) – P(A1A2).

Similarly,

P(A1 + A2 + A3) = P(A1) + P(A2 + A3) – P{A1(A2 + A3)}

= P(A1) + P(A2) + P(A3) – P(A2A3) – P(A1A2 + A1A3)

= P(A1) + P(A2) + P(A3) – P(A2A3)

– P(A1A2) – P(A1A3) + P(A1A2A3)

=
3 3

1 2 3
1 , 1

( ) ( ) ( ).i i j
i i j

i j

P A P A A P A A A
 



   ... (4.2)

Thus it follows from induction method that if there are n events A1, A2,
A3,...An, then the generalization of the Result Equation (4.2) gives

P(A1 + A2 +...+ An) =
3 3

1 , 1 , , 1

( ) ( ) ( )
n

i i j i j k
i i j i j k

i j i j k

P A P A A P A A A
  

  

   

– ...+ (–1)n–1 P(A1A2...An) ... (4.3)

Denoting by S1, S2, ..., Sn the sum of the probabilities of simultaneous
occurrence of exactly 1, 2,..., n of the n events, the summation extending over
all possible combinations, we have

P(A1 + A2 +...+ An) = S1 – S2 + S3 –...+ (–1)n–1 Sn.

COROLLARY. In case the events A1, A2,..., An are mutually exclusive, then

P(AiAj) = 0,

P(AiAjAk) = 0,

........................

P(A1A2...An) = 0,

so that Result Equation (4.2) reduces to the theorem of total probability, i.e.,

P(A1 + A2 +...+ An) = 1 2
1

( ) ( ) ( ) ... ( ).
n

i n
i

P A P A P A P A


   

Example 4.13: If the probability of a horse A winning a race is 1

5
 and the

probability of a horse B winning the same race is 1

6
, what is the probability that

one of the horses wins.

Solution: Let p1 and p2 be the probabilities of A and B respectively; then

p1 = 1

5
 and p2 = 1

.
6
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The two events being mutually exclusive, the probability that one of them wins

= p1 + p2

=
1 1 11

.
5 6 30
 

Example 4.14: Six cards are drawn at random from a pack of 52 cards. What
is the probability that 3 will be red and 3 black?

Solution: Total number of ways of drawing 6 cards out of 52 = 52C6.

There are 26 red and 26 black cards; therefore the number of ways in which
3 red and 3 black cards can be drawn

= 26C3 × 26C3.

Required probability = 
26 26

3 3
52

6

C C

C



=

26.25.24 26.25.24
130001.2.3 1.2.3

52.51.50.49.48.47 39151
1.2.3.4.5.6




Example 4.15:  The first twelve letters of the alphabet are written down at
random. What is the probability that there are four letters between the letters A
and B?

Solution: Denoting the positions of letters as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

when A is kept at 1, B should be placed at 6 to have four letters in between

” 2 ” 7 ”

” 3 ” 8 ”

” 4 ” 9 ”

” 5 ” 10 ”

” 6 ” 11 ”

” 7 ” 12 ”

Thus A and B can be placed in 7 ways so as to have four letters in between.
Also A and B can interchange their positions in 2! ways. The four letters between
A and B can be chosen in 10C4 ways out of remaining 10 letters when A and B
have already been placed. Moreover, these four letters can be arranged in 4!
ways and the remaining 6 letters in 6! ways.

 Number of favourable ways = 7.2!. 10C4 4! 6!

and total number of arrangements in which 12 letters can be put = 12!

Hence the required probabilities =
10

47.2!. 4! 6!

12!

C

=
7.2!.10! 4! 6! 14

4! 6! 12! 12.11

 


 
 = 

7

6.6

Example 4.16: One of two events must happen; given that the chance of the
one is two-thirds that of the other, find the odds in favour of the other.
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Solution: Let p1, p2 be the probabilities of the two events and suppose that x is
the chance of happening of either, say

p1 = x so that p2 = 
2

.
3

x

But we have p1 + p2 = 1 for a sure event,

i.e., 2

3
x x = 1 or 5

1
3

x   giving x = 
3

.
5

p1 = 3

5
 and as such p2 = 

2 3 2
.

3 5 5
 

Thus odds in favour of the other = 
2 3

: ,
5 5

i.e., 2 : 3.

Theorem of Compound Probability or Multiplicative Law of Probability

If there are two events A and B, probabilities of their happening being P(A)
and P(B) respectively, then the probability P(AB) of the simultaneous
occurrence of the events A and B is equal to the probability of A multiplied
by the conditional probability of B (i.e., the probability of B when A has
occurred) or the probability of B multiplied by the conditional probability of
A, i.e.,

P(AB) = P(A) P(B/A)

= P(B) P(A/B),

where P(B/A) denotes conditional probability of B and P(A/B) that of A and
that if the two events are independent, then the theorem of compound
probability is

P(AB) = P(A) P(B).

Suppose there are N total number of mutually exclusive and equally likely
cases of which m are favourable to A. Let m1 be the number of cases favourable
to A and B both, while m1 included in m. Thus

P(B/A) = 1m

m
 and P(A) = .

m

N

Now P(AB) = the probability of happening of A and B both

= 1m

N
 = 1m m

m N


= P(A) P(B/A). ... (4.4)

The interchange of A and B will yield a similar result

P(AB) = P(BA) = P(B) (A/B) ... (4.5)

In case the two events A and B are independent, i.e., the occurrence of one
does not affect the other, P(B/A) is the same as P(B) and P(A/B) is the same as
P(A), so that the Results Equations (4.4) and (4.5) both become P(AB) = P(A)
P(B).

Generalization. The result Equation (4.4) may be generalized as, if there are A1,
A2,...An, n mutually independent events, then the compound probability is given
by

P(A1, A2, A3...An) = P(A1) P(A2)...P(An) ... (4.6)
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In case of n mutually exclusive events A1, A2,...An, the Result Equation (4.4)
may be generalized as

P(A1A2...An) = P(A1) P(A2/A1) P(A3/A1A2)...P(An/A1A3...An–1).

Conclusions: (i) If p be the chance that an event will happen in one trial, the
chance that it will happen in any assigned succession of r trials is pr; for in this
case

P(A1) = P(A2) =...= P(Ar) = p

 required probability = P(A1) P(A2)...P(Ar)

= p.p...r times = pr.

(ii) If p1, p2, p3,...pn are the probabilities that n events happen, then
probability that all the events fail is

(1 – p1) (1 – p2) (1 – p3)...(1 – pn)

Hence the chance that at least one of these events happens

= 1 – (1 – p1) (1 – p2)...(1 – pn)

Example 4.17:  In shuffling a pack of cards three are accidentally dropped; find
the chance that the missing cards should be from different suits.

Solution: The pack consists of 52 cards.

The chance of dropping a card = 
52

1
52

1

1.
C

C


When one card is dropped, there remain 51 cards of which 39 cards are of
suits different from that of dropped one. Thus the chance of dropping a card of
different suit in second draw

=
39

1
51

1

39
.

51

C

C


When two cards are dropped, there remain 50 cards of which 26 cards are
of suits different from that of dropped cards. Thus the chance of dropping a card
of different suit in third draw.

26
1

50
1

26
.

50

C

C


The events being dependent, the required chance

= 1 × 
3 9 2 6 169

.
5 1 5 0 425

 

Example 4.18:  The face cards (three from each suit) are removed from a full
pack. Out of the 40 remaining cards, 4 are drawn at random:

(a) What is the probability that they belong to different suit?

(b) What is the probability that the 4 cards drawn belong to different suits and
different denominations.

Solution: Having removed 12 face cards, the remaining 40 consist of 10 cards of
each suit :

(a) Chance of drawing a card in first draw = 
40

1
40

1

1.
C

C

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Having drawn 1 card, there remain 39 cards of which 30 are of suits different
from the drawn one.

 Chance of drawing a card of different suit in second draw

=
30

1
39

1

30
.

39

C

C


Having drawn two cards, there remain 38 cards of which 20 are of suits
different from the drawn cards.

 Chance of drawing a card in third draw = 
20

1
38

1

20

38

C

C


Having drawn three cards, there remain 37 cards of which 10 are of suits
different from drawn cards.

 Chance of drawing a card in fourth draw = 
10

1
37

1

10
.

37

C

C


All the events being dependent, the required probability

= 30 20 10 1000
1 .

39 38 37 9139
   

(b) Chance of drawing a card in first draw = 
40

1
40

1

1.
C

C


Having drawn one card, there remain 39 cards of which 9 cards are of the
same suit and 3 of the same denomination (value) so that 27 cards out of 39 are
such that they are of different colours and different denominations from the
drawn one.

 Chance of drawing a card in second draw = 
27

1
39

1

27
.

39

C

C


Similarly chance of drawing a card in third draw = 
16

1
38

1

16

38

C

C


and chance of drawing a card in fourth draw = 
7

1
37

1

7
.

37

C

C


Example 4.19: From a pack of cards two cards are drawn, the first being
replaced before the second is drawn. Find the probability that the first is a
diamond and the second is a king.

Solution: Let A denote the event of drawing a diamond and B denote the event
of drawing a king in the second draw, when the first card has been replaced.
Then

P(A) = Probability of drawing a diamond

=
13

1
52

1

1
.

4

C

C


P(B) = Probability of drawing a king

=
4

1
52

1

1
.

13

C

C

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The two events being independent, we have

P(AB) = P(A) P(B)

= 1 1 1
.

4 13 52
 

Example 4.20: Find the chance of throwing a 6 at least once in two throws of a
single die.

Let A denote the event of throwing a six in the first throw and B that in the
second throw. Then probability of throwing a 6 at least once in two throws may
be represented by P(A + B).

Now P(A) = Prob. of throwing a 6 in first throw.

=
1

6

and P(B) = Prob. of throwing a 6 in second throw

=
1

.
6

But we have

P(A + B) = P(A) + P(B) – P(AB)

where P(AB) = P(A) P(B), A, B being independent events

 P(A + B) = 1 1 1 1

6 6 6 6
  

=
1 1 11

.
3 36 36
 

Example 4.21: A coin is tossed three times. Find the probability of getting head
and tail alternately.

Solution: Let P(A) and P(B) represent the probability of getting head and tail
respectively. Then

P(A) =
1

2
 = P(B).

The alternate occurring of head and tail may happen in two ways:

(i) starting with head,

(ii) starting with tail.

In case of first, the probability of the event

= P(A) P(B) P(A)

=
1 1 1

2 2 2
   = 

1
.

8

In second case the probability of the event

= P(B) P(A) P(B)

=
1 1 1

2 2 2
   = 

1
.

8

But the two events being mutually exclusive, the total probability of happening

of  any one of them = 
1 1 1

.
8 8 4
 



Permutation and Probability

NOTES

Self - Learning
Material 283

Probability: A New Standpoint

[A] Sample Space or Outcome Space: A set consisting of the elementary
events as its elements is said to be a sample space. It is generally denoted
by S.

A sample space provides a mathematical model of an ideal experiment in the
sense that every conceivable outcome of the experiment is completely described
by one and only one sample point.

In fact an element in S is known as sample point or sample and an event, for
example, event A is a subset of the sample space S. The event A = {a} consisting
of a single sample point a  S is said to be an elementary event. The null sets
 and S itself are events. The null set  is said to be an impossible event while
S is said to be a sure or certain event.

[B] Correspondence between Sets and Events: Let there be two events A
and B. Then

(i) A  B denotes an event which occurs iff (if and only if) A occurs or B
occurs (or both occur).

(ii) A  B denotes an event which occurs iff A occurs and B occurs.

(iii) The complementary event of A denoted by A or A  is an event which
occurs iff A does not occur.

B – A will be the event consisting of all points not contained in the event A but
contained in B, i.e.,

B – A = B  A

 A – A =  = A  A.

Also A  A = S.

A complementary event A is always mutually exclusive and exhaustive.

(iv) Two events A and B are called mutually exclusive or disjoint if A  B
= .

Example 4.22: A coin is tossed and it is observed whether a head or tail is up.
Describe the suitable sample space of the experiment.

Solution: Denoting by H the event in which the coin turns up head and by T, the
event in which the coin turns up tail, the sample space of the experiment consists
of only two elements, i.e., S = {H, T}.

Example 4.23:  An urn contains three red and two white balls. Two balls are
drawn and their colour is noted. Set up the sample space of this experiment.

Solution: Let the red balls be numbered as R1, R2, R3 and white balls as W1, W2.

Denoting the event of drawing ball R1 in first draw and R2 in second draw by

R1 R2, the sample space consists of 20 outcomes as given below:

S = {R1R2, R1R3, R1W1, R1W2, R2R1, R2R3, R2W1, R2W2, R3R1, R3R2, R3W1,
R3W2,

W1R1, W1R2, W1R3, W1W2, W2R1, W2R2, W2W3, W2W1}.
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[C] The Modern Concept of Probability: It is a well known fact that the
concept of probability developed from evil habits of games of chance or gambling
used in France in the 17th century. In this connection the French nobleman and
gambler Chevalier de méré consulted the well known mathematician Blaise Pascal
(1623-1662) who began to think over the problem how and to what degree of
accuracy a gambler can be assured of his chance of success. Pascal solved the
problem of de méré and had a correspondence with Pierre de Fermat (1601-1665)
who becam interested in this and other similar problems.

The phenomena occurring in nature of any secrets can be either
Deterministic or Probabilistic, for example, if a train moves at the rate of 20
km./hr., it is deterministic that it  will travel 100 km. in 5 hours, but if a coin is
tossed, then it is probabilistic to say that the chance of each either ‘head up’ or
‘tail up’ is equal.

Actually the theory of probability deals with the things likely to occur and their
chance or probable values. It is a measure of degree of uncertainty rather than
accuracy.

The concepts of probability are connected with the events or occurrences and
the repeated trials.

[D] Probability of an Event: If in a series of n trials all made under the same
conditions an event A is observed m times, then m is said to be the frequency of

success and the ratio 
m

n
 is said to be the relative frequency of success.

The probability of the event A is defined to be the limit p of the ratio 
m

n
 when

n tends to infinity (if it exists), i.e.,

P(A) = p = Lim .
n

m

n

This is sometimes known as the frequency definition of probability. In other
words, if the event A consists of r clear events out of n, then

P(A) = 
Number of elementary events in ( )

.
Number of elementary events in sample space ( )

r A N A

n S N S
 

In terms of sample space S associated with  the class of events if P be a real-
valued function defined on , then P is said to be the probability function and
P(A) the probability of the event A which satisfies the following conditions:

(i) For every event A, 0  P(A)  1.

(ii) P(S) = 1, i.e., 
1

( ) 1
n

i
i

P A




where S = {A1}  {A2}  ...  {An}.

If S =  (a null set), then 
1

( ) 0, . ., ( ) 0,
n

i
i

P A i e P


  

(iii) If A and B are two mutually exclusive (i.e., disjoint) events, i.e., A  B =
, then

P(A  B) = P(A) + P(B).
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(iv) If A1, A2, A3,..., An are n mutually exclusive events then

P(A1  A2  ...  An) = P(A1) + P(A2) +...+ P(An).

4.3.1 Baye’s Theorem

In order to prove the thorem given by Thomas Baye, let us first introduce a
Lemma, required for its proof.

Lemma. Let {A1,A2,..., An} be a partition of the sample space S and
suppose that each of the events A1, A2,..., An has non-zero probability, i.e.,
P(Aj) > 0 for j = 1, 2,....n. Then for any event A, we have

P(A) = P(A1).P(A | A1) + P(A2).P(A | A2) +...+ P(An). P(A | An)

=
1

( ) ( | ).
n

j j
j

P A P A A



Its proof. As A1, A2,..., An are partitions of S, therefore

{A  A1, A  A2,..., A  An}

will represent the partition of A.

Thus A = (A  A1)  (A  A2)  ...  (A  An).

so that P(A) = P(A  A1) + P(A  A2) +...+ P(A  An)

=
1

( )
n

j
j

P A A




Applying the result of the conditional probability, i.e.,

P(A | Aj) =
( )

( )
j

j

P A A

P A


 giving P(A  Aj)

= P(Aj). P(A | Aj)

we have P(A) =
1

( ). ( | ),
n

j j
j

P A P A A

 ... (4.7)

which proves the lemma.

Statement of Bayes’ Theorem: If an event A can occur only if one of the

mutually exclusive events A1, A2,..., An, i.e.,
1

,
k

k
k

A A


   Ak  Aj =  when

k  j and suppose we are given the probabilities P(Ak), k = 1, 2,..., n and the
conditional probabilities P(A | Ak), then we are required to find the probability
of Ak when it is given that A has already occurred and P(A) > 0 for each
integer k (1  k  n) then Baye’s formula is

P(Ak | A) =

1

( ) ( | )

( ) ( | )

k k
n

j j
j

P A P A A

P A P A A



.

Proof. By the definition of conditional probability, we have

P(Ak | A) =
( )

( )
kP A A

P A


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i.e., P(A  Ak) = P(A) P(Ak) | A)

= P(Ak) P(A | Ak)

and by Equation (4.7). P(A) =
1

( ). ( | ).
n

j j
j

P A P A A



 P(Ak/A) =

1

( ). ( / )

( ). ( / )

k k
n

j j
j

P A P A A

P A P A A



.

Example 4.24: There are three coins, identical in appearance, one of which is

ideal and the other two biased with probabilities 
1

3
 and 

2

3
 respectively for a

head. One coin is taken at random and tossed twice. If a head appears both the
times, what is the probability that the ideal coin was chosen.

Solution: Let A1, A2, A3 denote the events of choosing the 1st (ideal), 2nd and
3rd coins respectively. Then

P(A1) = P(A2) = P(A3) = 
1

.
3

Let A be the event of obtaining 2 heads in two tosses of the selected coin.

Probability of getting a head in a toss = 
1

.
2

 P(A/A1) =
2

1 1

2 4
   
 

.

Probability of turning head up with 2nd coin is 
1

3
 and that with 3rd coin is 

2
;

3
therefore in two tosses,

P(A/A2) =
2

1 1

3 9
   
 

 and P(A/A3) = 
2

2 4

3 9
   
 

Using Bayes’ formula,

P(A1/A) = 1 1
3

1

( ) ( / )

( ). ( / )j j
j

P A P A A

P A P A A



=

1 1

3 4
1 1 1 1 1 4
3 4 3 9 3 9



    

=

1 1
1 108 912 12 .

1 1 4 29 12 29 29
12 27 27 108

   
 

Example 4.25: In a bolt factory, machines A, B, C manufacture respectively 25,
35 and 40% of the total. Of their output, 5, 4 and 2% are defective bolts. A bolt
is drawn random from the procedure and is found defective. What are the
probabilities that it was manufactured by machine A, B or C?

Solution: Here P(A) = 
25

,
100

 P(B) = 
35

100
, P(C) = 

40

100
.
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Let E denote the event of drawing a defective bolt.

P(E/A) =
5

100
, P(E/B) =  

4

100
, P(E/C) = 

2

100
.

Using Bayes’ formula

P(A/E) =
( ) ( | )

( ) ( | ) ( ) ( | ) ( ) ( | )

P A P E A

P A P E A P B P E B P C P E C 

=

25 5

100 100
25 5 35 4 40 2

100 100 100 100 100 100



    

=
125 125

.
125 140 80 345


 

Similarly P(B | E) = 
140

345
 and P(C | E) = 

80
.

345

[E] Independent Events: The two events A and B are said to be
stochastically independent if and only if P(A | B) = P(A), i.e., the happening
of the event B does not affect the happening of A.

We have

P(A | B) = 
( )

( )

P A B

P B


 and P(B | A) = 

( )

( )

P B A

P A



The two events are independent of each other when

P(A | B) = P(A), P(A) > 0,

P(B | A) = P(B), P(B) > 0.

Thus the two events A and B are stochastically independent if and only if

P(A  B) = P(A) P(B).

In general, m(m > 2) events A1, A2 ..., Am are independent if

P(A1  A2  ...  Am) = P(A1).P(A2)...P(Am).

Example 4.26: If A and B are two independent events in a sample space S, then
prove that

(i) A  and B  are independent,
(ii) A  and B are independent,
(iii) A and B  are independent,
(iv) P(A  B) = 1 – ( )P A  ( )P B .

Solution: (i) We have ( )P A B = 1 – P(A  B)

= 1 – [P(A) + P(B) – P(A  B)]

= 1 – P(A) – P(B) + P(A).P(B)
as A and B are independent

= [1 – P(A)] [1 – P(B)]

= ( ). ( )P A P B

showing that A  and B  are independent.
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(ii) We have ( )P A B = P(B) – P(A  B)

= P(B) – P(A).P(B)

= P(B) [1 – P(A)]

= P(B). ( )P A

showing that A  and B are independent.

(iii) We have A = .A B A B  

 P(A) = ( ) ( )P A B P A B  

= ( ) ( ). ( )P A B P A P B 

or ( )P A B = P(A) [1 – P(B)]

= P(A)  ( )B

showing that A and B  are independent.
(iv) We have ( ) ( ) .A B A B S   

 ( ) ( )P A B P A B    = P(S) = 1

or P(A  B) = 1 ( )P A B 

= 1 ( ). ( )P A P B  as A  and B  independent by (i).

Example 4.27: From a pack of cards if the event of drawing a spade card is
denoted by A and that of drawing an honour card by B, then show that A and
B are independent events.

Solution: We haveP(A) =
13

1
52

1

C

C
 = 

1
,

4

P(B) =  
12

1
52

1

C

C
 = 

12 3
,

52 13


P(A  B) =
3

1
52

1

C

C
 = 

3
.

52

Then P(A | B) =
( )

( )

P A B

P B


 = 

3

52
3

13

= 1

4
 = P(A).

Since P(A | B) = P(A), the events A and B are independent.

4.4 PROBABILITY CURVE

Having started with certain general hypotheses, if it is possible to deduce
mathematically the frequency distributions of certain populations or universes,
then such distributions are said to be theoretical distributions, which constitute
three types of distributions.

(i) Binomial Distributions: It was discovered by James Bernoulli (1654 –
1705) in the year 1700 and was first published in 1713, eight years after
the death of Bernoulli.
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(ii) Poisson Distribution: It was discovered by the French mathematician
and physicist Siméon Denis Poisson (1781-1840) who published it in
1837.

(iii) Normal Distribution: Though it was first discovered by De Moivre as
early as 1733, but associated with the names of the distinguished French
mathematician Pierre Simon, Marquis de Laplace (1749-1827) and the
German mathematician and physicist Carl Friedrich Gauss (1777-1855)
who discussed it independently at the close of 18th and the beginning of
19th centuries.

Here below we shall discuss these theree distributions taking one by one.

4.4.1 The Binomial Distribution

If we toss a coin which is a uniform, homogeneous circular disc, then nothing is
biased to make it to tend to fall more often on the one side than on the other. It
is therefore expected that in a series of throws the coin will fall heads-up and
tails-up an approximately equal number of times and so the chance of throwing

heads or tails with a coin is 
1

2
. Similarly the chance of throwing an ace with a fair

die is 
1

6
. Instead of considering the particular instances we generally use to say

that the chance of success of an event is p and chance of its failure is q such that
p + q = 1. Assuming the events in a number of trials to be independent, the
chances p and q may be supposed to remain constant throughout.

If we take a number of sets of n trials and count the number of successes in
each set, then there will be some sets with no success, some with one success,
some with two successes, some with three successes and so on. the classification
of the sets according to the number of successes which they contain, will give us
a frequency distribution.

Suppose there are N sets of n trials in which the chances of the success and
failure are respectively p and q. We have to find the frequencies of 0, 1, 2, 3, ...
successes in cases of one event, two events, three events and so on.

When n = 1, i.e. in case of single event, out of N sets of 1 trial each we
expect Np successes and Nq failures.

When n = 2, i.e., there are N sets of two events or N sets of two trials each,
the event which has taken place once is repeated again. We have Nq failure of
the first event or trial and the events being independent among these Nq there will
be Nq × q failures and Nq × p sucesses of the second event on the average.
Similarly among the Np successes of the first event there are Np × p successes
and Np × q failures of the second event on the average. Hence there are in total
Nq2 failures of both events. 2Nqp cases of the two events with one success and
one failure and Np2 successes of both events. Thus the frequencies of 0, 1, 2
successes are respectively.

Nq2, 2Nqp, Np2

When n  = 3, i.e., there are N sets of three events, we see that of the Nq2

cases in which the first two events were failures, we have Nq2 × q a third  failure
and Nq2 × p one success; of the 2Nqp cases, 2Npq2 will give two failures and
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one success; and 2Np2q one failure and two successes; of the Np2 cases, Np2q
will give one failure and two successes and Np3 a third success. Hence the
frequencies of 0, 1, 2, 3 successes are respectively

Nq3, 3Nq2p, 3Nqp2, Np3.

From the foregoing discussions we conclude that the frequencies 0, 1, 2, ...
successes are given:

for one event by the binomial expansions of N(q + p)

for two events by the binomial expansion of N(q + p)2

for three events by the binomial expansion of N(q + p)3.

In general, for N sets of n-events (trials) the frequencies of 0, 1, 2, 3,...
successes are given by the successive terms in the binomial expansion of N(q +
p)n, i.e.,

N[qn + nqn–1 + 
 – 1

1.2

n n
 qn–2p2 + 

  – 1 – 2

1.2.3

n n n
 qn–3 q3 +...]

This is called the Binomial Frequency Distribution or simply Binomial
Distribution and the quantities n, p(or q) are said to be parameters of Binomial
distribution.

Characterisitcs of Binomial Distribution

(1) Its general form depends on parameters p, q and n.

(2) The probability that there are r successes in n independent trials is given by
nCr p

rqn–r and hence in all the N sets, this is given by N.nCr p
rqn–r.

(3) The numerical coefficients of the binomial expansions can be found by
Pascal’s triangle
Exponent Coefficients of terms Sum of coefficients
power of
(p + q) i.e. n

1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
... ... ... ... ... ... ... ... ... ... ... ... ...
10 1 10 45 120 210 252 210 120 45 10 1 1024
11 1 11 55 ... ... ... ... ... ... ... ...

etc.

(4) It is chiefly applied when the population being sampled is infinite so that ‘p’
remains unchanged by sampling.

(5) It can be applied to finite poplations also if they are not too small.

(6) It is used under the conditions:

(i) The variable is discrete.

(ii) A dichotomy (i.e., process of classification of collected individuals into
two classes according to whether they do or do not possess a particular
attribute) exists.
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(iii) Statistical independence is assumed.

(iv) The exponent power n is finite and small.

(v) For symmetrical distribution p = q and for asymmetrical p  q.

Constants of the Binomial Distribution

Let us take an arbitrary origin at 0 (zero) successes so that the successive
deviations are 0, 1, 2, 3,...n.

1. The Mean

We have the mean = 1 (about the origin)

=
0

. .
n

n r n r
r

r

C p q r




= (q.0) + (nC1q
n–1p.1) + (nC2q

n–2p2.2) + ...+ (pn.n)

= p[nqn–1 + n(n – 1) qn–2 p + ...+ npn–1]

= np[qn–1 + (n–1) qn–2 p +...+ nn–1]

= np(q + p)n–1

= np since q + p = 1

2. The Variance and Standard Deviation

We have, 2 (about the origin)

=
– 2

0

.
n

n r n r
rC p q r

= (qn.0) + (nC1q
n–1 p.12) + (nC2q

n–2p2.22) +...+ (pn.n2)

or 2 = np     –1 –2 –3 2 –13 – 1 – 2
2 – 1 ...

2
n n n nn n

q n q p q p np
 

    
 

= np [(n – 1) p + 1]

since the bracketed expression is the first moment of (q + p)n–1 about origin –1
and hence is equal to (n – 1) p + 1.

As an alternative,

2 =  
–

0

n
n r n r

rC p q .r2 = 
0

n
n r n r

rC p q   [r (r – 1) + r]

= n(n – 1) p2 n–2Cr–2 p
r–2 qn–r + np n–1Cr–1 p

r–1 qn–r

= n(n–1) p2 (p + q)n–2 + np (p + q)n–1

= n(n–1) p2 + np as p + q = 1

= np [(n – 1) p + 1].

 The variance = 2 = 2 = 
    

= np [(n – 1)p + 1] – (np)2

= np (1 – p)

= nqp,

so that standard deviation =  = 2  = ( ).nqp
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3. Third Moments about the Origin and about the Mean

3 =
– 3

0

.
n

n r n r
rC p q r

=
–

0

n
n r n r

rC p q  {r (r – 1) (r – 2) + 3r (r – 1) + r}

= n(n – 1) (n – 2).p3 n–3Cr–3 p
r–3 qn–r + 3n (n – 1) p2 n–2Cr–2 p

r–2qr–r

+ np n–1Cr–1 + pr–1 qn–r

= n(n – 1) (n – 2)p3 (p + q)n–3 + 3n(n – 1)p2 (p + q)n–2 + np (p + q)n–1

= n(n – 1) (n – 2)p3 + 3n (n – 1)p2 + np as p + q = 1
= np{(n – 1) (n – 2)p2 + 3 (n – 1)p + 1}

and 3 = 3 – 32 1 + 21
3

= npq (q – p).
4. Fourth Moments about the Origin and about the Mean

4 =
–

0

n
n r n r

rC p q .r–4

=
–

0

n
n r n r

rC p q . {r(r – 1) (r – 2) (r – 3) + 6r (r – 1) (r – 2) + 7r (r – 1) + r}

= np {(n – 1) (n – 2) (n – 3) p3 + 6 (n – 1) (n – 2)p2 + 7(n – 1) p + 1}
as above

and

4 = 4 – 431 + 62 1
2 – 31

3

= 3p2q2n2 + pqn (1 – 6qp).

Example 4.28: A perfect cubic die is thrown a large number of times in sets of
8. The occurrence of a 5 or a 6 is called a success. In what proportion of the
sets would you expect 3 successes.

Solution: Number of faces in a die = 6.

a ‘5’ + a ‘6’ = 2 successes.

 p = 
2

6
 = 

1

3
, so that q = 1 – p = 

2

3
 and n = 8.

The binomial distribution is therefore N 
8

2 1

3 3
  
 

.

Probability of 3 successes in one set of 8 = 8C3 p
3q5

=
8.7.6

1.2.3
 

3
1

3
 
 
 

5
2

3
 
 
 

 = 
8 7 32

81 81

 


.

 Probability of 3 successes in 100 sets = 
8 7 32

81 81

 


 × 100

=
179200

6561
 = 27.31%.

Example 4.29: An irregular six-faced die is thrown and the expectation that in
10 throws it will give 5 even numbers is twice the expectation that it will give four
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even numbers. How many times in 10,000 sets of 10 throws would you expect
it to give no even numbers?

Solution: If p is the expectation of getting an even number then the probability
of 5 even numbers in 10 throws of a die is twice the probability of 4 even
numbers in 10 throws of the die, i.e.,

10C5 p
5q5 = 2 × 10C4 p

4q6,

2

5
p = q = 1 – p giving p = 

5

8
 and q = 

3

8
.

Therefore, frequency for no even number in 10,000 sets of 10 throws

= 10,000.q10 = 10,000 
10

3

8
 
 
 

 = 1 nearly..

Example 4.30: Show the results of throwing 12 dice, 4096 times, a throw of
4,5 or 6 being called a success.

Find the expected frequencies and compare the actual mean with those of the
expected distribution. Calculate the standard deviation.

Solution: Probability of success of falling 4, 5 or 6 = 
3

6
 = 

1

2
 = p (say).

 q = 1 – p = 
1

2
.

 Success 0 1 2 3 4 5 6 7 8 9 10 11 12

 Frequency – 7 60 198 430 731 948 847 536 257 71 11 – Total 4,096

Binomial distribution is 4096 
12

1 1
.

2 2
  
 

Frequency of 0 successes = 4096 
12

1

2
 
 
 

 = 1,

Frequency of 1 success    = 4096 12C1q
11.p = 12 × 12

4096

2
 = 12.

Frequency of 2 successes = 4096 12C2 q
10p2 = 66

Frequency of 3 successes = 4096 12C3q
9p3 = 220

Frequency of 4 successes = 4096 12C4q8p4 = 495...etc.

Now, expected mean = np = 12.
1

2
 = 6,

 = nqp = 12  1

2


1

2
 = 3.

Standard deviation  = 3  = 1.732.

Example 4.31: If a coin is tossed N times, where N is a very large even number,

show that the probability of getting exactly 
1

2
N – p heads and 

1

2
N + p tails is

approximately
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2
12

2 /2 p Ne
N

 
  

Solution: Since the coin is unbiased p = q = 
1

2
.

 Required probability = 1
N

2

N

p
C



–
2

n
p

p 2

n
p

q


= !
1 1

! !
2 2

N

N p N p       
   

. 
1

2N  as p = q = 
1

2

Applying Stirling’s theorem, i.e.,

n! =  2 n .nn e–n approx.

= e–n.
1

2
n

n


  2 , n being large,

We have the required probability

= 
 

 

1

2

1 1 1 1
1 1

2 2 2 2 2
2 2

2 . 1
.
21 1

2   
2 2

N N

N
N p N p

N p N p

N e

N p e N p e

 

            
   



              

= 
 
1

2
. 

1

2

1 1 1 1
1 –

2 2 2 21 2 2
1 – 1

2

N

N N p N p

N

p p
N

N N



   
          
     

.
1

2N

= 
 

1 1 1
1

2 2 2

1

2

2 2 2
1 1

2

N p N p
p p

N N
N

   
       
   



= 
1

22

N
 
  

 
/ 22

2

4
1 –

N
p

N

 
 
 

 neglecting other terms

= 
1

22

N
 
  

 e–2p2/N approx. when N is large, for then

Lim
N

 
/ 22

2

4
1 –

N

N

 
 
 

= Lim
N

 
22 /

1 –
1

2

p N

N

 
 
 
  
 

 – e–2p2/N

Limiting form of the Binomial Distribution when n is Large

We know that for large values of n, each term of the binomial becomes small, but
we consider the sum of the terms lying within certain ranges. It is observed that
as n increases and becomes infinitely large, the curve representing the binomial
distribution becomes smooth and continuous and approaches the normal curve
which is a symmmetrical curve such that the maximum frequencies are clustered
around the mean and the deviations below the mean are equal in number and
magnitude to the deviations above the mean. Thus normal curve is a
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standardized and special case of the binomial and the distribution giving this
particular curve is said to be the normal distribution. We consider it in two
cases:

Case I. Normal distribution as a limiting case of binomial distribution where
p = q.

When p = q = 
1

2
, the terms of the series N

1 1

2 2

n
  
 

 are

N
1

2

n
 
 
 

 
     – 1 – 1 – 2

1 ...
1.2 1.2.3

n n n n n
n

 
    

 

The frequency of m successes is

N
1

2

n
 
 
 

.nCm, i.e., N
1

2

n
 
 
 

  
!

! – !

n

m n m

and the frequency of (m + 1) success in N
2

n 
 
 

 nCm+1

=
1

2

n

N
 
 
 

    
!

1 ! – – 1 !

n

n n m

=  
1 !

2 ! ! 1

n
n n m

N
m n m m

    
       

=
–

1

n m

m
 
  

th times the frequency of m successes.

So that the frequency of (m + 1) successes is greater than that of m successes
if

–

1

n m

m 
> 1

or if n – m > m + 1

or if m <
– 1

2

n

For the sake of convenience let us suppose that n = 2k; then the frequency of

k successes sayy0 = N
2

1

2

k
 
 
 

  2 !

! !

k

k k
 and the frequency of (k + x) successes

yx =
2

1

2

k

N  
 
 

 
 

   
2 !

–

k

k x k x


0

xy

y
=    

! !

! – !

k k

k x k x
 = 

       
       

! –1 – 2 ... – 1 – !

! 1 2 ... . – !

k k k k k x k x

k k k k x k x



  

=

1 2 –1
1– 1 – ... 1 –

1 2 –1
1 1 ... 1 1

x

x

x
k

k k k
x x

k
k k k k

    
    
    

                 
       

or log 
0

xy

y
 = log 

1
1 –

k
 
 
 

 + log 
2

1 –
k

 
 
 

 + ... log 
– 1

1 –
x

k
 
 
 
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–log 
1

1
k

  
 

 – log 
2

1
k

  
 

 – ...– log 
– 1

1
x

k
  
 

 – log 1 –
x

k
 
 
 

.

Supposing k to be very large as compared with x so that 
2

x

k
 
 
 

 may be

neglected, expanding the logarithmic functions as log (1 + z) = z– 
2 3

2 3

z z
 ... and

log (1 – z) = – z – 
2 3 2 3

– –
2 3 2 3

z z z z
... and then neglecting the squares of 

x

k
, i.e.,

2
x

k
 
 
 

, we find

log 
0

xy

y
 = 1 2 3 1 1 2 1

... ...
x x x

k k k k k k k k

 
        

= –
2

k
 (1 + 2 + 3+...+ – 1x ) – x

k

= –
2

k
. 

 – 1

2

x x
–

x

k

= –
2x

k

or
0

xy

y
=

2 /x ke

i.e., yx =
2 /

0
x ky e

But for a binomial distribution with p = q = 
1

2
, n = 2k, we have

2 = npq = 2k. 
1

2
. 

1

2
 = 

1

2
 k, i.e., k = 22

Hence yx =  2 2– / 2

0

x
y e



which gives the normal distribution and the equation /
0

2 2x 2y y e 
represents normal curve.

Case II. Normal distribution as a limiting case of binomial distribution
p  q but p  q.

The frequency of m successes is

N.nCmqn–mpm = N.  
!

! – !

n

m n m
 qn–mpm

and the frequency of (m + 1) successes is N.NCm+1 q
n–m–1 pm+1

=    
!

1 ! – – 1 !

n

m n m
 qn–m–1pm+1

=  
–!

.
! – !

n m mn
N q p

m n m

  
 
  

. 
–

1

n m

m 
.

p

q
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=
–

.
1

n m p

m q

 
  

th times the frequency of m successes.

so that the frequency of (m + 1) successes is greater than that of m successes if
–

.
1

n m p

m q
 > 1 or if (n – m) p > (m + 1)q, i.e., if m < n p – q.

Assuming that np is a whole number, since there is no loss of generality as n
ultimately tends to infinity, the frequency of np successes may be taken as the
maximum frequency.

The frequency of np successes (say)

y0 = N.
!

!( )!

n

np n np
. qn–np pnp

= N. 
!

! !

n

np nq
 qnq pnp as 1 – p = q

and the frequency of (np + x) succcesses (say)

yx =
!

.
( )!( )!

nq x np xn
N q p

np x np x
 

 

=
!

.
! !

nq npn
N q p

np nq
 as 1 – p = q


0

xy

y
=

( )! ( )!

( )!( )!

np nq

np x nq x 
 q–xpx.

Applying the Stirling’s theorem that when n is large

n! = (2 )n  nn e–n = e–nnn + 1/2 (2  approx.

we have

0

xy

y
 = 

       
           

1/ 2 1/ 2

1/ 2 1/ 2

2 2
.

2 2

np nq xnp nq

np x nq xnp x nq x

e np e nq np

nqe np x e nq x

  

      

    
 

      

=
   

 

1/ 2 1/ 2

1/ 2 – 1/ 2
1/ 2

1 1 –

xnp nq

np x nq x
np x

np nq np

nqx x
np

np nq

 

  
 

 
 

     
    

   

= 1/ 2 – 1/ 2

1

1 1 –
np x nq x

x x

np nq

  
   
   

   

or log
0

xy

y
= –(np + x + 

1

2
) log 1

x

np

 
 

 
 – (nq – x + 

1

2
) log  1 –

x

nq

 
 
 

=
1

2
np x
   
 

 
2

2 2
...

2

x x

np n p

 
  

 
 + 

1
–

2
nq x
  
 

 
2

2 2
...

2

x x

nq n q

 
  

 

=
2 2 2

– – – –
2 2 2 2

x x x x x x
x x

np np np nq nq nq
   

neglecting the terms containing 2

1

n
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=
2x

n

1 1 1 1
–

2 2p p q q

 
  

 
–

2

x

n
 

1 1
–

p q

 
 
 

=
   2 –

–
2 2

x p q x q p

npq npq


 = 

2 ( )

2 2

x q p

npq npq


  x as p + q = 1

Since q and p both are less than 1 and very nearly equal, therefore 
–

2

q p

npq  can

be neglected and then we are left with

log
0

xy

y
= –

2

2

x

npq
 = –

2

22

x


 as 2 = npq

or
0

xy

y
=

2 2/ 2xe 

i.e., yx =
2 2/ 2

0
xy e 

Note: The curve given by 
2 2/ 2

0
xy y e  is said to be the normal curve.

A normal curve is symmetrical about the point x = 0 where the ordinate
has its maximum value. In a normal curve, the mean, the median and mode
coincide.

4.4.2 The Normal Distribution

The normal distribution is a probability distribution or specifically a continuous
probability distribution. It is also termed as Gaussian or Gauss distribution because
it was discovered by Carl Friedrich Gauss. The standard normal distribution, also
known as the Z distribution, is the normal distribution and is often called the ‘Bell
Curve’ because the shape of the graph of its probability density looks like a bell.

Normal distributions are a family of distributions of the same general form.
These distributions differ in their location and scale parameters, the mean ‘average’
of the distribution defines its location while the standard deviation ‘variability’ defines
the scale. Typically, the normal distributions are important in statistics and are
often used to represent real-valued random variables whose distributions are not
known. A random variable with a Gaussian distribution is said to be normally
distributed and is called a normal deviate.

We have just introduced that the equation to the normal curve is

y =
2 2/ 2

0
xy e  ... (4.8)

Its area =
2 2/ 2

0
xy e dx

  


= 2y0 
2 2– / 2

0

xe
  dx, being symmetrical

= 2y0
2

2







 as 
2 2–a xe dx



  = 
2a


 if a > 0

= y0 (2 ... (4.9)

= 2.506627 y0  by putting the value of 2 . 
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In order to make Equation (4.8), the normal probability curve, the value of y0
be so determined that the total frequency is one, i.e., the area of the normal curve
is unity and this will be so if from Equation (4.9).

y0 (2 = 1

Fig. (b)

i.e., y0 =
 2



 
... (4.10)

Substituting this value of y0 in Equation (4.8), the standard form of the normal
curve becomes

y =
 

2 2/ 2

2

xe 

 
... (4.11)

which is the normal distribution.

In deriving the Form Equation (4.8) of normal curve, we have taken the mean
at the origin, but if however we take another point as the origin such that the
excess of the mean over the arbitrary origins is m, the form of the normal curve
is

y =
2 2( ) / 21

(2 )
x me  

 
... (4.12)

which represents the standard form of the normal curve with origin at (m, 0).

Physical Conditions Leading a Normal Curve

(i) The casual forces that affect individual events are mutually independent.

(ii) The casual forces of equal magnitude are very large in number.

(iii) The casual forces operate in such a way that the maximum frequencies
are clustered around the mean value thereby giving a symmetrical curve.
Conclusively the deviations below the mean are equal in number and magnitude
to those above the mean.

(iv) The normal distribution can be used as an error distribution by inquiring
what law of distribution errors of observation should obey in order to make the
mean of a set of measurements the most probable value of the ‘true’ magnitude.

Hence according to Gauss, if we call the ‘Precision’ h, such that h2 = 22




,
the form Result (4.10) becomes

y =
2 2– h xh

e


... (4.13)

It is clear form Result (4.13) that as h increases, the normal curve would
become narrower and as such h is a measure of closeness of the mass of
observations to the true value.
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Definition of a Normal Distribution: A normal distribution is a continuous
distribution given by

y =
 
1

2 
  21

/
2

x m
e
    

where x is a continuous normal variate distributed with probability density

function f(x)  = 
 
1

2 
  21

– – /
2

x m
e

   , with mean m and standard deviation .

Properties of a Normal Distribution

(1) When p = q or p  q (i.e., p is very nearly equal to q), the distribution
fitted is symmetrical. But a normal curve is distinguished from the other
symmetrical curves in a markable point that a normal curve is symmetrical
not only with regard to skewness as are all symmetrical curves; but it is
also symmetrical with regard to peakedness (i.e., kurtosis).

(2) The normal curve is a mathematical abstraction, not found in practical
work, but used to describe the form of distribution that would be obtained
by some continuous data in very large numbers.

(3) The normal curves are based upon regular variation and uniformity
conjoined so that no single force playing on each item of the distribution is
dominating.

(4) In a normal distribution, items differing from the mean (or median or mode
which coincide in a symmetrical distribution) by the same amount in either
direction occur with the same frequency. As such above and below the
mean at equal distances, there are same number of measurements.

Fig. 4.1 Normal Distribution Graph

(5) Normal curve is a single peaked.

(6) Normal curve is asymptotic to the horizontal base as y decreases rapidly
when x increases numerically.

(7) The mean, median and mode coincide and lower and upper quartiles are
equidistant from the median.

(8) The curve can be completely specified by mean (i.e. origin of x) and the
standard deviation along with the value of y0 found as in Equation (4.13).
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(9) The points of inflexion of the normal curve are obtained by putting
2

2

d y

dx
 = 0 provided 

3

3

d y

dx
  0 for these points.

These are found to be

x = ±, y = 
 

–1/ 21

2
e

 
.

Note. The points of inflexion are the points where the curvature changes its direction.

Constants of Normal Distribution

1. Mean
Mean = 1 (about the origin)

=
 
1

2 
 2 2– – / 2

–
.

x m
x e dx

    

  Put 
–

2

x m


 = z, i.e., dx = 2  dz

=
 
1

2 
   2–

–
2. zm z e




  dz. 2

=
2m


 

2–

–

ze


  dz, the second integral vanishes, being an odd function of z

=
2m






 = m.

2. Standard Deviation and Variance

We have 2 (about the origin)

=
 


 
 

2 22 –[( – ) / 2 ]

–
. x mx e dx



or 2 =
 
1

2 
   22

2 zm z e
 


  2 dz   Put 

–

2

x m


 = z, i.e., dx

= 2 dz

=
2 2 2

2 2
22 2 2

. .z z zm
e dz z e dz z e dz

    

  

 
 

    

=
2 2

2 2
2

0 0

2 4
0z zm

e dz z e dz
  

 
  

the second integral vanishes by the property of definite integrals

=
22m


 


 + 



 
2– zz e

 

 dz

= m2 – 
22


   2–

0
–2 zz z e



 dz

=m2 – 
22


  2 2– –

00
–z zze e dz

  
    integrating by parts

= m2 + 
22



2


 = m2 + 2.

 The variance 2 = 2 – 1
2

= m2 + 2 – m2 = 2

 Standard deviation =   = .
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3. Mean Deviation from the Mean

The Mean deviation about the mean

m =
–

–x m


  
 

  21
/

2
1

2

x m
e dx
    

 

=
 

2

2



 
 

–
2 z




  2ze dz Put 

–

2

x m


 = z

=
2 20

0

2
, . ., 2z zze dz ze dz i e dx dz

 


         

=
2




 
2 20

– –

– 0
2 –2

z ze e




         
        

=
2 1 1

2 2
   

  
 = 

2



 = 0.7979 = 

4

5
 approx.

4. Moments about the Mean

Let us first consider the odd moments about the mean

2n+1 =  2 1

–
–

n
x m

 

  
 

2 2( ) 21
.

2

x me dx  

 

Put 
–

2

x m


 = z, i.e., dx = 2  dz

=
22 11

( 2 ) n zz e dz
  



 

= 0 being an odd function of z, by the properties of definite
integral.

 3 = 5 = 7 = ... = 0

i.e., all odd moments about the mean are zero.

Let us now consider the even moments about the mean

2n =
1

2 
  2

–
–

n
x m



 .  2– – / 2x me dx Put 
–

2

x m


 = z, dx = 2 dz

=
2

2
22

.
n n

n zz e dz
 




 

=
1 22 .n n 


 
2 2 –1–

0

nz ze


  z dz Put z2 = t, 2z dz = dt

=
 

2
2 –1 / 2–

0

2n n
nte t dt


   =  

2
1/ 2 –1–

0

2n n
nte t dt

 
 

=
22 1

2

n n

n
      

by the definition of Gamma integral.

In particular, k = 
/ 22 . 1

2

k k k     
 when k = 2n
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Now we have 2 = 
22 3

2





 = 

22 1
.
2


   = 2

2 4 4
4

4
2 5 4 3 1

3 .
2 2 2

 
         

 

5. The Normal Probability Integral or Error Functions

It has been shown that the total area of the normal curve being unity, it is given by

y =
2 2/ 2xe 

 

or putting 




 = h2, this becomes

y =
2 2– h xh

e


where h is known as percision.

Thus the probability that a deviation lies between x and –x is

P =
h


 

2 2–

–

x h x

x
e dx

=
2h


2 2–

0

x h xe dx

=
2


 

2 2–

0

x h xe h dx

or (hx) =
2


2 2–

0

x h xe h dx

so that (y) =
2–

0

2 y ye dy
 

which is known as error function or the probability integral.
Note. The Probable error  or quartile deviation is defined to be the error such that the chance of
an error lying within the limits m –  and m +  is exactly the same as the chance of an error lying

outside these limits, i.e.,

1

 
  21

– – /
2

–

x mm

m
e

   

 dx = 
1

2
. Put 

–x m


 = z

or
1

  
2– / 2

0

ze dz


 =
1

4

whence from table 



 = 0.6745, i.e.,  = 0.6745 = 
2

3
approx.

 Q1 = m – 2

3
   and   Q2 = m + 

2

3
.

Fig. 4.2 Normal Probability Interal or Error Function Graph
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Table for Ordinates: Normal curve is given by

y =
2 2/ 21 xe 

 

So the tables are to be prepared to give the values of 
 

3 2– / 21 xe 


, the origin

of x being taken at the origin whence division of these values by  will yield the

ordinates y as required by normal curve equation.

Table 4.1 Area Under the Normal Curve

 x/ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 0.319 0.359
 0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0754
 0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
 0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
 0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
 0.5 .1915 .1960 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
 0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549
 0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
 0.8 .2881 .2910 .2939 .2966 .2956 .3023 .3051 .3078 .3106 .3133
 0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
 1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
 1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
 1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
 1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
 1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
 1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4329 .4441
 1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
 1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4626 .4633
 1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
 1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
 2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
 2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4836 .4850 .4854 .5857
 2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
 2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
 2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .3932 .4934 .4936
 2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
 2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
 2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
 2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
 2.9 .4981 .4982 .4983 .4983 .4984 .4984 .4985 .4985 .4986 .4986
 3.0 .49865 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
 3.1 .49903 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
 3.2 .499313 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
 3.3 .499517 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
 3.4 .499663 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998
 3.5 .499767 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998
 3.6 .499841 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
 3.7 .499892 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
 3.8 .499928 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
 3.9 .499952 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000

 4.0 .499968 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000



Permutation and Probability

NOTES

Self - Learning
Material 305

Table 4.2 Ordinates of the Standard Normal Curve

z = x/ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .3989 .3989 .3989 .3988 .3986 .3984 .3982 .3980 .3977 .3973
0.1 .3970 .3965 .3961 .3956 .3951 .3945 .3939 .3932 .3925 .3918
0.2 .3910 .3902 .3894 .3885 .3876 .3867 .3857 .3847 .3836 .3825
0.3 .3814 .3802 .3790 .3778 .3765 .3752 .3739 .3725 .3712 .3697
0.4 .3683 .3668 .3653 .3637 .3621 .3605 .3589 .3772 .3555 .3538
0.5 .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352
0.6 .3332 .3312 .3292 .3271 .3251 .3230 .3209 .3187 .3166 .3144
0.7 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920
0.8 .2897 .2874 .2850 .2827 .2803 .2780 .2756 .2732 .2709 .2685
0.9 .2661 .2637 .2613 .2589 .2565 .2541 .2516 .2492 .2468 .2444
1.0 .2420 .2396 .2371 .2347 .2323 .2299 .2275 .2251 .2227 .2203
1.1 .2179 .2155 .2131 .2107 .2083 .2059 .2036 .2012 .1989 .1965
1.2 .1942 .1919 .1895 .1872 .1849 .1826 .1804 .1781 .1758 .1736
1.3 .1714 .1691 .1669 .1647 .1626 .1604 .1582 .1561 .1539 .1518
1.4 .1497 .1476 .1456 .1435 .1415 .1394 .1354 .1354 .1334 .1315
1.5 .1295 .1276 .1257 .1238 .1219 .1200 .1182 .1163 .1145 .1127
1.6 .1109 .1092 .1074 .1057 .1040 .1023 .1006 .0989 .0973 .0957
1.7 .0940 .0925 .0909 .0893 .0878 .0863 .0848 .0833 .0818 .0804
1.8 .0790 .0775 .0761 .0748 .0734 .0721 .0707 .0694 .0681 .0669
1.9 .0656 .0644 .0632 .0620 .0608 .0596 .0584 .0573 .0562 .0551
2.0 .0540 .0529 .0519 .0508 .0498 .0488 .0478 .0468 .0459 .0449
2.1 .0440 .0431 .0422 .0413 .0404 .0396 .0387 .0379 .0371 .0363
2.2 .0355 .0347 .0339 .0332 .0325 .0317 .0310 .0303 .0297 .0290
2.3 .0283 .0277 .0270 .0264 .0258 .0252 .0246 .0241 .0235 .0229
2.4 .0224 .0219 .0213 .0208 .0203 .0198 .0194 .0189 .0184 .0180
2.5 .0175 .0171 .0167 .0163 .0158 .1054 .0151 .0147 .0143 .0139
2.6 .0136 .0132 .0129 .0126 .0122 .0119 .0116 .0113 .0110 .0107
2.7 .0104 .0101 .0099 .0096 .0093 .0091 .0088 .0086 .0084 .0081
2.8 .0079 .0077 .0075 .0073 .0071 .0069 .0067 .0065 .0063 .0061
2.9 .0060 .0058 .0056 .0055 .0053 .0051 .0050 .0048 .0047 .0046
3.0 .0044 .0043 .0042 .0040 .0039 .0038 .0037 .0036 .0035 .0034
3.1 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 .0025 .0025
3.2 .0024 .0023 .0022 .0022 .0021 .0020 .0020 .0019 .0018 .0018
3.3 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 .0013 .0013
3.4 .0012 .0012 .0012 .0011 .0011 .0011 .0010 .0010 .0009 .0009
3.5 .0009 .0008 .0008 .0008 .0008 .0007 .0007 .0007 .0007 .0006
3.6 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 .0004
3.7 .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 .0003
3.8 .0003 .0003 .0003 .0003 .0003 .0002 .0002 .0002 .0002 .0002

3.9 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001

Fig. 4.3 Standard Normal Curve
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Proportions of Items Included Within ± , ± 2, ± 3 of the Mean in
Normal Curve: The total area of a normal curve being treated as unity, the
probability corresponding to any interval in the range of the variate is measured
by the area under the curve within that interval given by Table 4.1. Hence if m is
the mean of the normal distribution, then P, the probability from m to any value
x of the variate is given by

P =
 
1

 
  2 2– – / 2x x m

m
e   dx Put 

–x m


 = z, i.e., dx =  dz

=
 
1

2
 

2– / 2

0

x ze dz

This value P is known as the Probability integral or Error function. Thus

P[m –  < x < m + ] = 
 
1

 

  21
/

2
x mm

m
e dx
     



Put 
–x m


 = z, dx = dz

 P [–1 < z < 1] =
 
1

2
 

21 – / 2

–1

ze dz

=
 

21 – / 2

0

2

2

ze dz
 

= 2 × .3413 since from table 1, for z = 1,

 
21 / 2

0

1

2

ze dz

   = .3413

 = .6826

which follows that 68.26% of the items in the normal distribution fall between the
range ±  of the mean.

Now
P[m – 2 < x < m + 2]

=
 

  21
/2

2

2

1

2

x mm

m
e
      

    Put 
–x m


 = z, i.e., dx =  dz

=
 

22 – / 2

–2

1 ze dz
 

=  
22 – / 2

0

2 ze dz
 

= 2 × .4772 from Table 4.1 for z = 2

= .9544.

So that 95.44% of the items in the normal distribution fall within the range
± 2 of the mean.

Again

P[m – 3 < x < m + 3]=
 

  21
/3

2

3

1 x mm

m
e dx
      

   
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Put 
–x m


 = z,     dx =  dz

=
 

23 – / 2

–3

1

2

ze dx
 

=
 

23 – / 2

0

2

2

ze dz
 

= 2 × .49865

= .99720,

i.e., 99.72% of the items in the normal distribution fall within the range ± 3 of
the mean.

Conclusively, a normal curve can be used to find:

(i) The number of cases at any given distance from the mean

(ii) The number of cases lying within certain range of values in the distribution;

(iii) The probability that a case selected at random lies above or below a given
point.

Example 4.32: If n is large and neither of p and q is too close to zero, then
show that the binomial distribution can be closely approximated by a normal

distribution with standarized variable given by z = 
 
–x np

npq
, where x is the

binomial variate with mean np and standard deviation  npq .

Solution: From the given properties of x, we conclude that z is a variate with
mean zero and variance unity. Also as x goes from 0 to n, z takes values

 
–np

npq
 to 

 
nq

npq
 so that the total range of z is 

 
nq

npq
 – 

 
–nq

npq

 
 
 
 

 =

 
 

n p q

npq

  
 
 

 = 
 

n

npq
, i.e. z jumps 

 
1

npq
 at each stage.

Now
 

1

npq
 0 as 

 
nq

npq
 +  as n , p, q  0

 
–nq

npq
 –  as n , p, q  0

As such the distribution of z is a continuous distribution from –  to + , with
mean zero and variance unity.

If P(n, x) denotes the probability for the variate taking the value x, then

P(n,x) = nCx p
xqn–x

=  
–!

! – !
x n xn

p q
x n x
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Applying Stirling’s theorem, i.e., n! =   1/ 22 . n ne n  , we get

Pn = Lim
n

 P(n, x) = Lim
n

 
 

       

– 1/ 2 –

– 1/ 2– –– 1/ 2

2 . . .

2 . . . 2 . –

n n x n x

n xn xx x

e n p p

e x e n x







 

= Lim
n   

1 1
.

2B npq

 
 
 
 

where B =
1/ 2x

x

np


 
 
 

 
– 1 / 2

–
n x

n x

nq


 
 
 

(1)

Now given substitution is z = 
 

x np

npq



or x = np + z  npq

1
i.e., 1 and [

1

1

x q n x
z n np z npq

np np nq nq

nq z npq
np

p
z

nq

(2)

Taking logarithms of both sides of Equation (1), we have

log B = 
1

2
x

  
 

 log 
x

np
 + 

1
–

2
n x
  
 

 log 
–n x

nq
.

Making substitution from Equation (2), this becomes

log B =  np z npq    log 1
q

z
np

  
   
   

+  –nq z npq 
   log 1

p
z

nq

  
   
   

=  np z npq    
21

– ...
2

q z q
z

np np

     
   

+  –nq z npq 
   

21
...

2

p z p
z

nq np

       
   

= 
2

z

n
–

q p

p q

 
  
 

+
2 2

–
2 4

z z

n
terms

q p

p q

 
  

 
containing higher power of (1/n)

when n  , log B  
2

2

z
, i.e., B  2 / 2ze

Now as x takes integral values, z jumps  through 
 

1

npq
, i.e.,

(npq)–1/2 so that increment in z, i.e., dz = (npq)–1/2 when n  . Thus, if dP

represents the probability for the variate z to lie within the range z – 
1

2
 dz to

z + 
1

2
 dz, then



Permutation and Probability

NOTES

Self - Learning
Material 309

dP =
 
1

2
 

2 / 2 ,ze dz  –  z  

which is the required normal distribution for z.

Hence f (z) =
 
1

2
e–z2/2 as dP = f(z) dz.

If m be the mean and  the standard deviation of the normal distribution, then

we can replace z by –x m


 and dz by 1


 dx, whence we have

dP =
 
1

 
   21

– – /
2

x m
e

   dx

giving f (x) =
 
1

2 
   21

– – /
2

x m
e

  

so that y = f (x), i.e., y =
 
1

2 
   21

– – /
2

x m
e

  

gives the normal probability curve.

Example 4.33: If skulls are classified A, B, C according as the length, breadth
idex as under 75, between 75 and 80 or over 80 find approximately (assuming
that the distribution is normal) the mean and standard deviation of series in which
A are 58 per cent, B are 38 per cent and C are 4 per cent being given that if

f (t) =
 
1

2
 

2( / 2)

0

t xe dx,

then f (0.20) = 0.08 and f (1.75) = 0.46.

Solution: Let m be the mean and  the standard deviation for the given
distribution.

As given the area between t = 0 and t = 0.20 is 0.08, so that the area to the
left of this ordinate is 0.5 + 0.08 = 0.58 which corresponds to x = 75.


75 – m


 = 0.20

Also the area to the right of the ordinate at x = 80 is 0.04, so that the area to

the left of this ordinate is 1 – 0.04 = 0.96, i.e., the area from 0 to t = 
80 – m


 is

0.96 – 0.5 = 0.46, which corresponds to t = 1.75.


80 – m

 = 1.75.

are 0.20 =75 – m, 1.75 = 80 – m.
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Subtracting 1.55 = 5, i.e.  = 
5

1.55.
 = 3.2 approx.

and then m = 75 – 0.20 × 3.2

= 75 – 0.64 = 74.4 approx.

Example 4.34: In a normal distribution 31 per cent of the items are under 45
and 48 per cent are over 64. Find the mean and standard deviation of the
distribution.

Solution: Let m be the mean and s the standard deviation of the distribution. Since
31 per cent of the items are under 45; therefore 19 per cent of the items lie
between 45 and m.

Thus if (t) =
 

2– / 21

2

te


where t = 
–x m


,

then  
 

0

45 m
t dt

 
 = .19, i.e.   45 /

0

m
t dt

 
  = .19.

From Table I, we have  
0.5

0
t dt  = .1915

So
– 45m

 = .5 approx ... (1)

Again since 8 per cent of the items are over 64, therefore 42 per cent lie

between m and 64, so that   64

0

m
t dt

 
  = .42 =  

1.4

0
t dt  nearly from Table I.


64 – m


= 1.4. ... (2)

Solving Equations (1) and (2), we get m = 50,  = 10.

Example 4.35: If x is a normal variate with mean x and S.D. , find the mean
and variance of variate y defined by

y =
1

2
 

2
–

2

x x 
 
 

.

Solution: For the normal variate x, we have

f(x) dx =
 
1

2 
   21

– – /
2

x x
e

 dx. ... (1)

If y = 
2

1 –

2

x x 
  

, i.e. dy = 
–x x


. 

dx


 or dx = 

 2y


 dy,

then Equation (1) becomes

f(y) dy =
 
1

2 
 e–y. 

 2y


 dy = 

1

2 
 y–1/2 e–y dy,

so that

mean = 1 (about the origin), for a normal distribution

= 2  
0

y f y


 dy = 
1


 1/ 2

0

yy e dy
 
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=
1


. 

3

2
  (by gamma integrals) = 

1


.

1

2
   = 




And 2 = 2  2

0
y f y dy





= 3/ 2

0
.

1 1 5 1 3 1 3

2 2 2 4
yy e dy

      
  

 2 = 2= 2 – 1
2 = 

3

  – 
1

  = 
1

  = variance.

Example 4.36:If a normal distribution is grouped in intervals of total frequency
N and S is the sum of squares of the frequencies, an estimate of the standard

deviation  is given by 
2

2

N

S 
.

Solution: The normal frequency distribution with mean m and standard deviation
 is given by

dF = f(x) dx = y dx = 
 2

N

 
  21

– – /
2

x m
e

  

where the ordinate of the normal curve is

y =
 

  21
– – /

2

2

x mN
e

  

 

 Square of the ordinate is

y2 =   22
/

2
,

.2
x mN

e
s

    
 

As such the distribution function for y2 is

dP = y2dx =   22
– – /

2
.

2
x mN

e
  


 dx

=
2 212

( ) /( / 2 )
2

1
,

2 (2
2

x mN
e dx
  

 
    

 

which gives a normal distribution with S.D. / 2  and total frequency

 2 /N   .

Hence taking S as equivalent to this value, we have

S =
2

2

N

 
, i.e.,  = 

2

2

N

S 
.

Example 4.37: The local authorities in a certain city instal 200 lamps in the
streets of the city. If the lamps have an average life of 1000 burning hours with
a standard deviation of 200 hours, (i) what number of lamps might be expected
to fail in first 700 burning hours, and (ii) after what period of burning hours would
we expect that 10 per cent of the lamps would have failed? Assume that the lives
of the lamps are normally distributed. You are given that

F(1.50) = .933, F(1.28) = .900 where F(z) = 
 

2– / 2

–

1

2

z ze dz
 
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(i) We have the average life of the lamp, i.e., m = 1000 hours and standard
deviation  = 200 hours.

Solution: (i) The normal distribution being symmetrical, the area of the normal
curve to the left of x = 700 is equal to that to the right of x = (2000 – 700) =
1300.

 z =
–x m


 = 

1300 – 1000


 = 1.50

and area to the left of x = 1300 is = 
 
1

2
 

2– / 2

–

z ze dz
  = F(z)

where z = 1.50 and also F(1.50) = 0.933 which gives the probability of a value
of x lying to the left of x = 1300 or right of x = 700.

 probability of its failure = 1 – .933 = 067.

So the number of lamps expected to fail in first 700 hours

= 2000 × .067 = 134.

(ii) The failure of 10 per cent of lamps gives that a value of x is to be so

found that the area of the standard normal curve to the left of it is 
10

100
, i.e., 0.1

But the area to the left of z = 1.28 is .900, hence by symmetry in the distribution
of a normal curve it follows that the area to the left of z = –1.28 is equals to the
area to the right of z = 1.28, i.e., 0.1.

Solution: (ii)

Hence z = –1.28 = 
–x m


 = 

–1000x



giving x = 1000 – 256 = 744.

Hence after 744 hours, it is expected that 10 per cent of the lamps fail.

4.4.3 The Poisson Distribution

We have shown in the preceding sections that the normal curve is the limit to the
binomial, whether p is or is not equal to q provided that n becomes sufficiently

large in order to make (q – p) negligibly small as compared to  npq . Now we

have to consider the limit to the same series if p (or q) becomes sufficiently small
and n is increased sufficiently to keep the product np (or nq) a finite number say
m, i.e., np = m.

The probability of r successes in the binomial distribution is given by the
(r + 1)th term in the binomial expansion (q + p)n, i.e.

P(r) = nCr p
rqn–r =  

–!

! –
r n rn

p q
r n r

=  
!

! –

n

r n r
 

r
m

n
 
 
 

 
–

1 –
n r

m

n
 
 
 

(  np = m, i.e., p = 
m

n
 and so

q = 1 – p = 1 – 
m

n
 as p + q = 1)
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=
!

rm

r
 1 –

m

n
 
 
 


( )! 1

r
n

n

m
n r n

n
    
 

Here Lim
n

1 –
n

m

n
 
 
 

= Lim
n

 

–– /

1 –

mn m
m

n

   
  
   

 = e–m

and applying Stirling’s approximation, i.e., n! = nn e–n  2 n , when n is large,

P(r) =
–

!

r mm e

r
. 

 

    

–

– ––

2

( – ) 2 – 1 –

n n

r
n rn r r

n e n

m
n r e n r n

n



    
 

=
– –

!

r m rm e e

r
 

–

1 –
n

r

n
 
 
 

 
1

–
2

1 –
r

r

n
 
 
 

 
–

1 –
r

m

n
 
 
 

=
– –

!

r m rm e e

r
   Lim

n
 

–

1 –
n

r

n
 
 
 

 = Lim
n

 = 
– /

1 –

rn r
r

n

   
  
   

 = er;

Lim
n

 
1

–
2

1 –
r

r

n
 
 
 

 = 1 and Lim
n

 
–

1 –
r

m

n
 
 
 

 = 1

=
–r mm e

r

Hence successive terms in the expansion of (q + p)n are

e–m, e–m, m, e–m
2

,
2!

m  e–m. 
3

3!

m , etc.

and the limiting value of (q + p)n is

–me

2 3

1 ......
2! 3!

m m
m

 
    

 

This expression is known as Poisson’s distribution or Poisson’s
Exponential limit.
Note 1: The limiting form of N (q + p)n is

N. –me
2 3

1 ......
2! 3!

m m
m

      
  

Note 2: The quantity m introduced in Poisson distribution is said to be the parameter of
Poisson distribution.

Note 3: Characteristics of the Poisson distribution.

(i) This is the limiting form of binomial distribution when n is large and p (or q) is small.

(ii) Here p or q is very close to zero or unity, but if p is close to zero, the distribution is
J-shaped or unimodal.

(iii) Since it consists of a single parameter m, the entire distribution can therefore be obtained
by knowing the mean only.

Note 4: Some examples of Poisson distribution are:

(i) The number of defective screws per box of 100 screws.

(ii) The numebr of typographical errors per page in typed material.

(iii) The number of cars passing through a certain street in time t.
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Constants of the Poisson Distribution

Assume that origin is located at the first term of the distribution, so that the
values  of the deviation from the assumed origin are 0, 1, 2....

1. The Mean

Mean = 1 (about the origin) –

0

.
!

r
m m

e r
r





= e–m 
2 3

0 2 3 ...
2! 3!

m m
m

    
         

    

= me–m 
2

1 ...
1! 2!

m m 
   

 
 = me–m.em = m

2. The Variance

We have 2 (about the origin)

= – 2

0

.
2!

r
m m

e r




= e–m
2 3

2 20 2 3 ...
2! 3!

m m
m

    
         

    

= me–m 
2

1 2 3 ...
1! 2!

m m          
    

= me–m    
2

1 1 1 2 1 ...
1! 2!

m m 
     

 

= me–m 
2 2 3

1 ... ...
1! 2! 1! 2!

m m m m
m

    
          

    

= me–m 
2

1 ...
1! 2!

m m m
e m
  

     
  

= me–m [em + mem] = m (m + 1)

 variance = 2 = 2 = 2 – 
2 = m2 + m – m2 = m

So that standard deviation,  = m .

3. The Moments

3 (about the origin) = e–m 
!

rm

r
. r3

= e–m mr. 
    – 1 – 2 3 – 1

!

r r r r r r

r

   
 
  

= e–m m3  
–3

– 3 !

rm

r
 + e–m.3m2   

–2

– 2 !

rm

r
 + e–m.

m   
–1

– 1 !

rm

r

or 3 = m3 + 3m2 + m

so that 3 = 3– 32. 1 + 21
3

= m3 + 3m2 + m – 3m2 – m3 + 2m3 = m
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and 4 = e–m.
!

rm

r
. r4

= e–m mr. ( 1) ( 2) ( 3) 6 ( 1) ( 2) 7( 1)

!

r r r r r r r r r r

r

         
 
 

= e–m m4.  
4

( 4)!

rm

r



 + e–m. 6m3  
3

( 3)!

rm

r




 + e–m. 7m  

2

( 2)!

rm

r




 + e–m.

m
1

( 1)!

rm

r





= m4 + 6m3 + 7m2 + m

so that 4 = 4 – 431 + 621
2 – 31

4

= m4 + 6m3 + 7m2 – 4m (m3 + 3m2 + m) + 6m2(m2 + m) – 3m4

= 3m2 + m.

Example 4.38: Define a Poisson random variable and give some physical
situations illustrating it. Find out its mean and variance.

If X and Y are independently distributed as Poisson random variates with
parameters  and  respectively find the probability distribution of X + Y.

Solution: We know that a random variable is a function defined as a sample
space. A random variable x assuming values 0, 1, 2,...r,... with probabilities

e–m, me–m, 
2

2!

m
 e–m,..., 

–

!

r mm e

r
,...

i.e., P(x = r) = , 0, 1, 2,...
!

r mm e
r

r





is said to be a Poisson random variable.

In order to illustrate it with the help of a physical situation, let us consider a
random variate X denoting the number of calls during time t at a telephone switch
board. Let us assume that the calls are independent and the probability of a call
in time dt is dt.

Denoting by Px(t) and Px (t + t), the chance of x calls in times t and t + t
respectively we have two mutually exclusive possibilities, (i) there are x-calls in
t and no call in time dt, (ii) there are (x – 1) calls in t and one call in dt,
neglecting the possibility of more than one call in dt, for it would be of order 2
(i.e., dt2) and higher.

Thus, Px (t + t) = Px(t). {1 –  t} + Px–1 (t)  t

= Px(t) – Px(t). t + Px–1 (t) . t

or Px (t + t) – Px(t) = {Px–1 (t) – Px(t)}.  t

or
   1 –x xP t P t

t

 


=  [Px–1(t) – Px(t)]

Proceeding to the limit as t  0, we have

0
Lim

t 

   –x xP t t P t

t

 


=
0

Lim
t 

     –1 –x xP t P t  

i.e.,
 xdP t

dt
= [Px–1(t) – Px(t)]
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Putting Px(t) =
 

!

x
t

x


 f(t)

So that P0(t) = f(t) and P0(0) = F(0) = 1 ... (1)

We have
d

dt
 
   

!

x
t

f t
x

 
 
  

 = 
 
 

     
–1

–
– 1 ! !

x x
t t

f t f t
x x

  
  
  

or
 

!

x
t

x


f (t) + 

!

x

x


f (t). xtx–1 =  

–1

– 1 !

x xt

x


 f (t) – 

t

x


.  

–1

– 1 !

x xt

x


 f(t)

Dividing throughout by 
 

–1

– 1 !

x xt

x


 f (t), this reduces to

t

x


.

 
 

f t

f t


 + 1 = 1–

t

x


 or 

 
 

f t

f t


 = –.

Integrating with regard to t, this yields

log f (t) = –t + A, A being constant of integration.

Initially when t = 0, f (0) = 1, from Relations (1), giving A = 0

 log f (t) = –t or f (t) = e–t

or
 

!

x
t

x


f (t) = Pz(t) = e–t.

 
!

x
t

x



where  
0

x
x

P t



  = e–t 

 
0 !

x

x

t

x






  = e–t, et = 1.

If follows that the number of calls in a fixed time t is a Poisson variate with
parameter t.

For the second part, we have

P(X = x) = e–, 
!

x

x


, P(Y = y) = e–

!

y

y



so that P(X = x, Y = y) = P (X = x). P(Y = y)

= – –.
! !

x y

e e
x y

  
 =  

x y

e
x y

     

Since the variables take values 0, 1, 2, 3,..., let us find the Probability that
their sum, i.e., X + Y takes values r so that y = r – x. Summing for all values of
x from 0 to r, we have

P(x + y = r) =  –e     
–

0 –

x r xr

x x r x

   = e–( + ).
x

r


 

0 –

xr

x

r

x r x

 
  



= e–(+) 
r

r


 

0

C
r

r
x

x
  

x
 
  

= e–(+) 
r

r


 

2

0 1 2C C C ... C
r

r r r r
r

      
              

= e–(+) 
r

r


 1

r
 
  

 = e–( + ).
 r

x + y

  
   r = x + y

which is a Poisson distribution with mean ( + ).
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Example 4.39: Find the probability that at most 5 defective fuses will be found
in a box of 200 fuses if experience shows that 2 per cent of such fuses are
defective.

Solution: Heren = 200, q = 
2

100
 = .02, so that m = nq = 4.

HenceP(x  5) = 
5

–4

0

4
.

!

x

x

e
x



= e–4 
2 3 4 54 4 4 4

1 4
2! 3! 4! 5!

 
     

 

= e–4 
32 32 128

1 4 8
3 3 15

       

= e–4. 643

.15
 = 0.0183 × 

643

15
 = 0.785

approx. [  e–4 = 0.0183]

Example 4.40: Fit a Poissons’s distribution to the set of observations:

Deaths 0 1 2 3 4

Frequency 122 60 15 2 1

and calculate theoretical frequencies.

Solution: We have, Mean = 0 122 1 60 2 15 3 2 4 1

122 60 15 2 1

        
   

=
100

200
 = 0.5

 e–0.5 = 1 – (0.5) + 
1

2
 (0.5)2 – 

1

6
 (0.5)3 +...

= 1 – 0.5 + 0.125 – 0.0208 +...= 0.61 approx

The theoretical frequency of r deaths is given by

Ne–m.
!

rm

r
= 200. e–0.5 

 0.5

!

r

r
 = 122. 

 0.5

!

r

r

which gives for r = 0, 1, 2, 3, 4 the theoretical frequencies as 122, 61, 15, 2 and
0 respectively.

Example 4.41: In a certain factory turning out razor blades, there is a small

chance 
1

500
 for any blade to be defective. The blades are supplied in packets of

10. Use Poisson distribution to calculate the approximate number of packets
containing no defective, one defective and two defective respectively in a
consignment of 10,000 packets, given that e–.02 = 0.9802.

Solution: Here N = 10,000, m = np = 10 × 
1

500
 = 0.02 and e–.02 = .9802.

 Required frequencies are given by Ne–m, Ne–m.m, Ne–m. 
2

2!

m

i.e., 10,000 × .9802; 10,000 × .9802 × 0.02; 10,000 × .9802 × 
2(.02)

2

i.e., 9802; 196, 2 packets
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Example 4.42: If x is a Poissonian variate with mean m,

(a) What would be the expectation of e–kx. kx where k is a constant.

(b) Show that, expectation of (e–kx) = e–m(1–e–k).

Solution: (a) We have, E(kxe–kx) =
–

0

. kx

x

kx e



 .

–

!

m xe m

x

= mke–(m + k)  – –1

0

k x

x

e



   

–1

– 1 !

xm

x

= mke–(m + k). 
 
 

–1–

0 – 1 !

xk

x

me

x






= ( ) ( 1)k km k me m e kmke e mke
    

and E(e–kx) =
–

0 !

m x
kx

x

e m
e

x





  = e–m 

 –

0 !

xk

x

me

x






= e–m.eme–k = e–m(1–e–k)

4.4.4 Central Limit Theorem

In probability theory, the Central Limit Theorem (CLT) establishes that, in some
situations when independent random variables are added then their appropriately
normalized sum tends toward a normal distribution, usually a ‘Bell Curve’ even if
the original variables themselves are not normally distributed. The theorem is a
key concept in probability theory because it implies that probabilistic and statistical
methods that work for normal distributions can be applicable to many problems
involving other types of distributions.

Definition: The Central Limit Theorem (CLT) is a statistical theory which states
that given a sufficiently large sample size from a population with a finite level of
variance, the mean of all samples from the same population will be approximately
equal to the mean of the population.

For example, suppose that a sample is obtained containing a large number
of observations, each observation being randomly generated in a way that does
not depend on the values of the other observations, and that the arithmetic mean
of the observed values is computed. If this procedure is performed many times,
the central limit theorem says that the distribution of the average will be closely
approximated by a normal distribution. A simple example of this is that if one flips
a coin many times the probability of getting a given number of heads in a series of
flips will approach a normal curve, with mean equal to half the total number of flips
in each series.

Thus, the Central Limit Theorem (CLT) is considered significant in the
probability theory and statistics.

Example 4.43: Under certain conditions, the sum of a large number of random
variables is approximately normal. Consider the CLT that is applied to Independent
and Identically Distributed (I.I.D.) random variables or alternatively random
variables.
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Solution: Suppose that X
1
, X

2
 , ... , X

n
 are I.I.D. random variables with,

Expected values  = 

And, Variance  = 

Then, the sample mean,  has mean and

variance .

Thus, the normalized random variable,

has mean EZ
n
 = 0 and variance Var (Z

n
) = 1. The central limit theorem states that

the CDF (Cumulative Distribution Function) of (Z
n
) converges to the standard

normal CDF.

Check Your Progress

1. What is permutation of n objects?

2. Define the event.

3. What is random variable?

4. Define the normal distribution.

5. State the central limit theorem.

4.5 VARIOUS MEASURES OF AVERAGE

In statistics, the term central tendency specifies the method through which the
quantitative data have a tendency to cluster approximately about some value. A
measure of central tendency is any precise method of specifying this ‘Central Value’.
In the simplest form, the measure of central tendency is an average of a set of
measurements, where the word average refers to as mean, median, mode or
other measures of location. Typically the most commonly used measures are
arithmetic mean, mode and median. These values are very useful not only in
presenting the overall picture of the entire data but also for the purpose of making
comparisons among two or more sets of data. As an example, questions like
‘How hot is the month of June in Delhi?’ can be answered, generally by a single
figure of the average for that month. Similarly, suppose we want to find out if boys
and girls at age 10 years differ in height for the purpose of making comparisons.
Then, by taking the average height of boys of that age and average height of girls
of the same age, we can compare and record the differences.

While arithmetic mean is the most commonly used measure of central location,
mode and median are more suitable measures under certain set of conditions and
for certain types of data. However, each measure of central tendency should meet
the following requisites.

1. It should be easy to calculate and understand.

2. It should be rigidly defined. It should have only one interpretation so that
the personal prejudice or bias of the investigator does not affect its usefulness.
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3. It should be representative of the data. If it is calculated from a sample, then
the sample should be random enough to be accurately representing the
population.

4. It should have sampling stability. It should not be affected by sampling
fluctuations. This means that if we pick 10 different groups of college students
at random and compute the average of each group, then we should expect
to get approximately the same value from each of these groups.

5. It should not be affected much by extreme values. If few very small or very
large items are present in the data, they will unduly influence the value of the
average by shifting it to one side or other, so that the average would not be
really typical of the entire series. Hence, the average chosen should be such
that it is not unduly affected by such extreme values.

All these measures of central tendency are discussed in this section.

4.5.1 Mean

There are several commonly used measures, such as arithmetic mean, mode and
median. These values are very useful  not only in presenting the overall picture of
the entire data, but also for the purpose of making comparisons among two or more
sets of data.

As an example, questions like ‘How hot is the month of June in Delhi?’ can
be answered generally by a single figure of the average for that month. Similarly,
suppose we want to find out if boys and girls of age 10 years differ in height for the
purpose of making comparisons. Then, by taking the average height of boys of that
age and the average height of girls of the same age, we can compare and record the
differences.

While arithmetic mean is the most commonly used measure of central tendency,
mode and median are more suitable measures under certain set of conditions and
for certain types of data. However, each measure of central tendency should meet
the following requisites:

(i) It should be easy to calculate and understand.

(ii) It should be rigidly defined. It should have only one interpretation so
that the personal prejudice or the bias of the investigator does not affect
its usefulness.

(iii) It should be representative of the data. If it is calculated from a sample,
the sample should be random enough to be accurately representing the
population.

(iv) It should have a sampling stability. It should not be affected by sampling
fluctuations. This means that if we pick ten different groups of college
students at random and compute the average of each group, then we
should expect to get approximately the same value from each of these
groups.

(v) It should not be affected much by extreme values. If few, very small or
very large items are present in the data, they will unduly influence the
value of the average by shifting it to one side or other, so that the average
would not be really typical of the entire series. Hence, the average chosen
should be such that it is not unduly affected by such extreme values.
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Arithmetic mean is also commonly known as the mean. Even though average,
in general, means measure of central tendency, when we use the word average in
our daily routine, we always mean the arithmetic average. The term is widely used
by almost everyone in daily communication. We speak of an individual being an
average student or of average intelligence. We always talk about average family
size or average family income or Grade Point Average (GPA) for students, and so
on.

For discussion purposes, let us assume a variable X which stands for some
value such as the ages of students. Let the ages of 5 students be 19, 20, 22, 22 and
17 years. Then variable X would represent these ages as,

X: 19, 20, 22, 22, 17
Placing the Greek symbol (Sigma) before X would indicate a command that

all values of X are to be added together. Thus,

X = 19 + 20 + 22 + 22 + 17

The mean is computed by adding all the data values and dividing it by the

number of such values. The symbol used for sample average is X , so that,

19 20 22 22 17

5
X

In general, if there are n values in the sample, then,

1 2 ......... nX X X
X

n

In other words,

1 , 1,  2 ... 

n

i
i

X

X i n
n

According to this formula, mean can be obtained by adding all values of X
i
,

where the value of i starts at 1 and ends at n with unit increments so that i = 1, 2, 3, ... n.

If instead of taking a sample, we take the entire population in our calculations
of the mean, then the symbol for the mean of the population is (mu) and the size of
the population is N, so that,

1 , 1,  2 ...

N

i
i

X

i N
N

If we have the data in grouped discrete form with frequencies, then the sample
mean is given by,

( )f X
X

f

Here,  f = Summation of all frequencies
= n

f(X) = Summation of each value of X multiplied by its
 corresponding frequency ( f )
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Example 4.44: Let us take the ages of 10 students as follows:

19, 20, 22, 22, 17, 22, 20, 23, 17, 18

Solution: This data can be arranged in a frequency distribution as follows:

(X) (f) f(X) 
17 2 34 
18 1 18 
19 1 19 
20 2 40 
22 3 66 
23 1 23 

 Total = 10 200 

In this case, we have f = 10 and f(X) = 200, so that,

X =
( )f X

f

= 200/10 = 20

Characteristics of the Mean

The arithmetic mean has some interesting properties. These are as follows:

(i) The sum of the deviations of individual values of X from the mean will always
add up to zero. This means that if we subtract all the individual values from
their mean, then some values will be negative and some will be positive, but if
all these differences are added together then the sum will be zero. In other
words, the positive deviations must balance the negative deviations. Or
symbolically,

1

( )
n

i
i

X X = 0, i = 1, 2, ... n

(ii) The second important characteristic of mean is that it is very sensitive to
extreme values. Since the computation of mean is based upon inclusion of all
values in the data, an extreme value in the data would shift the mean towards
it, thus making the mean unrepresentative of the data.

(iii) The third property of mean is that the sum of squares of the deviations about
the mean is minimum. This means that if we take the differences between
individual values and the mean and square these differences individually and
then add these squared differences, then the final figure will be less than the
sum of the squared deviations around any other number other than the mean.
Symbolically, it means that

2

1

( )
n

i
i

X X = Minimum, i = 1, 2, ... n

(iv) The product of the arithmetic mean and the number of values on which the
mean is based is equal to the sum of all given values. In other words, if we
replace each item in series by the mean, then the sum of these substitutions
will equal the sum of individual items. Thus, if we take random figures as an
example like 3, 5, 7, 9, and if we substitute the mean for each item 6, 6, 6, 6
then the total is 24, both in the original series and in the substitution series.

This can be shown like,
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Since, X = 
X

N
 N X = X

For example, if we have a series of values 3, 5, 7, 9, the mean is 6. The
squared deviations will be:

2

2

3 3 6 3 9

5 5 6 1 1

7 7 6 1 1

9 9 6 3 9

20

X X X X X

X

This property provides a test to check if the computed value is the correct
arithmetic mean.

Example 4.45: The mean age of a group of 100 persons (grouped in intervals 10–
, 12–,..., etc.) was found to be 32.02. Later, it was discovered that age 57 was
misread as 27. Find the corrected mean.

Solution: Let the mean be denoted by X. So, putting the given values in the formula
of arithmetic mean, we have,

32.02 = 
100

X
, i.e., X  = 3202

Correct X = 3202 – 27 + 57 = 3232

 Correct AM = 
3232
100

 = 32.32

Example 4.46: The mean monthly salary paid to all employees in a company is
 500. The monthly salaries paid to male and female employees average  520 and
 420, respectively. Determine the percentage of males and females employed by the

company.

Solution: Let N
1
 be the number of males and N

2
 be the number of females employed

by the company. Also, let x
1
 and x

2
 be the monthly average salaries paid to male and

female employees and x  be the mean monthly salary paid to all the employees.

x = 
1 1 2 2

1 2

N x N x

N N




Or 500 = 
520 4201 2

1 2

N N

N N




  or       20N1= 80N2

Or
N

N
1

2

= 
80
20

4
1



Hence, the males and females are in the ratio of 4 : 1 or 80 per cent are males
and 20 per cent are females in those employed by the company.

Example 4.47: The ages of twenty husbands and wives are given in the following
table. Form frequency tables showing the relationship between the ages of husbands
and wives with class intervals 20 – 24; 25 – 29; etc.
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Calculate the arithmetic mean of the two groups after the classification.

S.No. Age of Husband Age of Wife

1 28 23
2 37 30
3 42 40
4 25 26
5 29 25
6 47 41
7 37 35
8 35 25
9 23 21

10 41 38
11 27 24
12 39 34
13 23 20
14 33 31
15 36 29
16 32 35
17 22 23
18 29 27
19 38 34

20 48 47

Solution:
Calculation of Arithmetic Mean of Husbands’ Age

Class Intervals Midvalues Husband x1' = 
m  37

5
f1x1'

m Frequency ( f1)

20–24 22 3 –3 –9
25–29 27 5 –2 –10
30–34 32 2 –1 –2

21

35–39 37 6 0 0
40–44 42 2 1 2
45–49 47 2 2 4

6

f1 = 20 f1x1' = –15

Arithmetic mean of husbands age,

x  = 
f x

N
i A1 1 15

20
5 37

 
  × ×  = 33.25

Calculation of Arithmetic Mean of Wives’ Age

Wife

Class Intervals Midvalues Frequency x2' = 
m  37

5
f2x2'

m ( f2)

20–24 22 5 –3 –15
25–29 27 5 –2 –10
30–34 32 4 –1 –4

35–39 37 3 0 0
40–44 42 2 1 2
45–49 47 1 2 2

f2 = 20 f2x2' = –25
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Arithmetic mean of wife’s age,

x  = 2 2 5 37
25

20
i A

f x

N
    

   = 30.75

Advantages of Mean

(i) Its concept is familiar to most people and is intuitively clear.

(ii) Every data set has a mean, which is unique and describes the entire data to
some degree. For example, when we say that the average salary of a professor
i s

 25,000 per month, it gives us a reasonable idea about the salaries of
professors.

(iii) It is a measure that can be easily calculated.

(iv) It includes all values of the data set in its calculation.

(v) Its value varies very little from sample to sample taken from the same
population.

(vi) It is useful for performing statistical procedures, such as computing and
comparing the means of several data sets.

Disadvantages of Mean

(i) It is affected by extreme values, and hence are not very reliable when the
data set has extreme values especially when these extreme values are on
one side of the ordered data. Thus, a mean of such data is not truly a
representative of such data. For example, the average age of three persons
of ages 4, 6 and 80 years gives us an average of 30.

(ii) It is tedious to compute for a large data set as every point in the data set is to
be used in computations.

(iii) We are unable to compute the mean for a data set that has open-ended
classes either at the high or at the low-end of the scale.

(iv) The mean cannot be calculated for qualitative characteristics, such as beauty
or intelligence, unless these can be converted into quantitative figures such as
intelligence into IQs.

4.5.2 Median

The second measure of central tendency that has a wide usage in statistical works
is the median. Median is that value of a variable which divides the series in such a
manner that the number of items below it is equal to the number of items above it.
Half  the total number of observations lie below the median, and half above it. The
median is thus a positional average.

The median of ungrouped data is found easily if the items are first arranged in
order of the magnitude. The median may then be located simply by counting, and its
value can be obtained by reading the value of the middle observations. If we have
five observations whose values are 8, 10, 1, 3 and 5, the values are first arrayed: 1,
3, 5, 8 and 10. It is now apparent that the value of the median is 5, since two
observations are below that value and two observations are above it. When there is
an even number of cases, there is no actual middle item and the median is taken to
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be the average of the values of the items lying on either side of (N + 1)/2, where N
is the total number of items. Thus, if the values of six items of a series are 1, 2, 3, 5,
8 and 10, then the median is the value of item number (6 + 1)/2 = 3.5, which is
approximated as the average of the third and the fourth items, i.e., (3+5)/2 = 4.

Thus, the steps required for obtaining median are as follows:
(i) Arrange the data as an array of increasing magnitude.

(ii) Obtain the value of the (N+ l)/2th item.

Even in the case of grouped data, the procedure for obtaining median is
straightforward as long as the variable is discrete or non-continuous as is clear from
Example 4.48.

Example 4.48: Obtain the median size of shoes sold from the following data:

Number of Shoes Sold by Size in One Year

Size Number of Pairs Cumulative Total

5 30 30

5 1
2

40 70

6 50 120

6 1
2

150 270

7 300 570

7 1
2

600 1170

8 950 2120

8 1
2

820 2940

9 750 3690

9 1
2

440 4130

10 250 4380

10 1
2

150 4530

11 40 4570

11 1
2

39 4609

Total 4609

Solution: Median is the value of 
( )N  1

2
th =

4609 + 1

2
th  = 2305th item. Since the

items are already arranged in ascending order (size-wise), the size of 2305th item is
easily determined by constructing the cumulative frequency. Thus, the median size
of shoes sold is 8½, the size of 2305th item.

In the case of grouped data with continuous variable, the determination of
median  is a bit more involved. Consider the following table where the data relating
to the distribution of male workers by average monthly earnings is given. Clearly the
median of 6291 is the earnings of (6291 + l)/2 = 3l46th worker arranged in ascending
order of earnings.

From the cumulative frequency, it is clear that this worker has his income in
the class interval 67.5 – 72.5. However, it is impossible to determine his exact
income. We therefore, resort to approximation by assuming that the 795 workers of
this class are distributed uniformly across the interval 67.5 – 72.5. The median
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worker is (3146–2713) = 433rd of these 795, and hence, the value corresponding to
him can be approximated as,

67 5
433
795

72 5 67 5. × ( . . )   = 67.5 + 2.73 = 70.23

Distribution of Male Workers by Average Monthly Earnings

Group No. Monthly No. of Cumulative No.
Earnings ( ) Workers of Workers

1 27.5–32.5 120 120

2 32.5–37.5 152 272

3 37.5–42.5 170 442

4 42.5–47.5 214 656

5 47.5–52.5 410 1066

6 52.5–57.5 429 1495

7 57.5–62.5 568 2063

8 62.5–67.5 650 2713

9 67.5–72.5 795 3508

10 72.5–77.5 915 4423

11 77.5–82.5 745 5168

12 82.5–87.5 530 5698

13 87.5–92.5 259 5957

14 92.5–97.5 152 6109

15 97.5–102.5 107 6216

16 102.5–107.5 50 6266

17 107.5–112.5 25 6291

  Total  6291

 The value of the median can thus be put in the form of the formula,

Me = l

N
C

f
i




1

2 ×

Where l is the lower limit of the median class, i its width, f its frequency, C the
cumulative frequency upto (but  not including) the median class, and N is the total
number of cases.

Advantages of Median

(i) Median is a positional average and hence the extreme values in the data set
do not affect it as much as they do to the mean.

(ii) Median is easy to understand and can be calculated from any kind of data,
even from grouped data with open-ended classes.

(iii) We can find the median even when our data set is qualitative and can be
arranged in the ascending or the descending order, such as average beauty or
average intelligence.
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(iv) Similar to mean, median is also unique, meaning that, there is only one median
in a given set of data.

(v) Median can be located visually when the data is in the form of ordered data.

(vi) The sum of absolute differences of all values in the data set from the median
value is minimum. This means that, it is less than any other value of central
tendency in the data set, which makes it more central in certain situations.

Disadvantages of Median

(i) The data must be arranged in order to find the median. This can be very time
consuming for a large number of elements in the data set.

(ii) The value of the median is affected more by sampling variations. Different
samples from the same population may give significantly different values of
the median.

(iii) The calculation of median in case of grouped data is based on the assumption
that the values of observations are evenly spaced over the entire class interval
and this is usually not so.

(iv) Median is comparatively less stable than mean, particularly for small samples,
due to fluctuations in sampling.

(v) Median is not suitable for further mathematical treatment. For example, we
cannot compute the median of the combined group from the median values of
different groups.

4.5.3 Mode
Mode is that value of the variable which occurs or repeats itself the greatest number
of times. The mode is the most ‘Fashionable’ size in the sense that it is the most
common and typical, and is defined by Zizek as ‘the value occurring most frequently
in a series (or group of items) and around which the other items are distributed
most densely’.

The mode of a distribution is the value at the point around which the items
tend to be most heavily concentrated. It is the most frequent or the most common
value, provided that a sufficiently large number of items are available, to give a
smooth distribution. It will correspond to the value of the maximum point (ordinate),
of a frequency distribution if it is an ‘Ideal’ or smooth distribution. It may be regarded
as the most typical of a series of values. The modal wage, for example, is the wage
received by more individuals than any other wage. The modal ‘hat’ size is that,
which is worn by more persons than any other single size.

It may be noted that the occurrence of one or a few extremely high or low
values has no effect upon the mode. If a series of data are unclassified, not have
been either arrayed or put into a frequency distribution, the mode cannot be readily
located.

Taking first an extremely simple example, if seven men receive daily wages
of  5, 6, 7, 7, 7, 8 and 10, it is clear that the modal wage is  7 per day. If we have
a series such as 2, 3, 5, 6, 7, 10 and 11, it is apparent that there is no mode.
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There are several methods of estimating the value of the mode. However, it is
seldom that the different methods of ascertaining the mode give us identical results.
Consequently, it becomes necessary to decide as to which method would be most
suitable for the purpose in hand. In order that a choice of the method may be made, we
should understand each of the methods and the differences that exist among them.

The four important methods of estimating mode of a series are: (i) Locating
the most frequently repeated value in the array; (ii) Estimating the mode by
interpolation; (iii) Locating the mode by graphic method; and (iv) Estimating the
mode from the mean and the median. Only the last three methods are discussed in
this unit.

Estimating the Mode by Interpolation: In the case of continuous frequency
distributions, the problem of determining the value of the mode is not so simple as it
might have appeared from the foregoing description. Having located the modal class
of the data, the next problem in the case of continuous series is to interpolate the
value of the mode within this ‘modal’ class.

The interpolation is made by the use of any one of the following formulae:

(i) Mo = l
f

f f
i1

2

0 2




× ;   (ii) Mo = l
f

f f
i2

0

0 2




×

(iii) Mo = l
f f

f f f f
i1

1 0

1 0 1 2




  ( ) ( )
×

Where l1 is the lower limit of the modal class, l2 is the upper limit of the modal class,
f0 equals the frequency of the preceding class in value, f1 equals the frequency of
the modal class in value, f2 equals the frequency of the following class (class next to
modal class) in value, and i equals the interval of the modal class. Example 4.63
explains the method of estimating mode.

Example 4.49: Determine the mode for the data given in the following table:

Wage Group Frequency (f)

14 — 18 6
18 — 22 18
22 — 26 19
26 — 30 12
30 — 34 5
34 — 38 4
38 — 42 3
42 — 46 2
46 — 50 1
50 — 54 0

54 — 58 1

Solution:
In the given data, 22 – 26 is the modal class since it has the largest frequency. The
lower limit of the modal class is 22, its upper limit is 26, its frequency is 19, the
frequency of the preceding class is 18, and of the following class is 12. The class
interval is 4. Using the various methods of determining mode, we have,
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(i) Mo = 
12

22 4
18 12

(ii) Mo = 26 – 
18

4
18 12

= 22
8
5

 = 26 – 
12

5

= 23.6 = 23.6

(iii) Mo = 
19 18

22 4
(19 18) ( 19 12)

= 
4

22
8

 = 22.5

In formulae (i) and (ii), the frequency of the classes adjoining the modal class
is used to pull the estimate of the mode away from the midpoint towards either the
upper or lower class limit. In this particular case, the frequency of the class preceding
the modal class is more than the frequency of the class following and therefore, the
estimated mode is less than the midvalue of the modal class. This seems quite
logical. If the frequencies are more on one side of the modal class than on the other
it can be reasonably concluded that the items in the modal class are concentrated
more towards the class limit of the adjoining class with the larger frequency.

Formula (iii) is also based on a logic similar to that of (i) and (ii). In this case,
to interpolate the value of the mode within the modal class, the differences between
the frequency of the modal class, and the respective frequencies of the classes
adjoining it are used. This formula usually gives results better than the values obtained
by the other and exactly equals results obtained by graphic method. The formulae
(i) and (ii) give values which are different from the value obtained by formula (iii)
and are more close to the central point of modal class. If the frequencies of the
class adjoining the modal are equal, the mode is expected to be located at the midvalue
of the modal class, but if the frequency on one of the sides is greater, the mode will
be pulled away from the central point. It will be pulled more and more if the difference
between the frequencies of the classes adjoining the modal class is higher and higher.

Advantages of Mode

(i) Similar to median, the mode is not affected by extreme values in the data.

(ii) Its value can be obtained in open-ended distributions without ascertaining the
class limits.

(iii) It can be easily used to describe qualitative phenomenon. For example, if
most people prefer a certain brand of tea, then this will become the modal
point.

(iv) Mode is easy to calculate and understand. In some cases, it can be located
simply by observation or inspection.

Disadvantages of Mode

(i) Quite often, there is no modal value.

(ii) It can be bi-modal or multi-modal, or it can have all modal values making its
significance more difficult to measure.

(iii) If there is more than one modal value, the data is difficult to interpret.

(iv) A mode is not suitable for algebraic manipulations.
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(v) Since the mode is the value of maximum frequency in the data set, it cannot
be rigidly defined if such frequency occurs at the beginning or at the end of
the distribution.

(vi) It does not include all observations in the data set, and hence, less reliable in
most of the situations.

4.6 STANDARD  ERROR

By far the most universally used and the most useful measure of dispersion is the
standard deviation or root mean square deviation about the mean. We have seen
that all the methods of measuring dispersion so far discussed are not universally
adopted for want of adequacy and accuracy. The range is not satisfactory as its
magnitude is determined by most extreme cases in the entire group. Further, the
range is notable because it is dependent on the item whose size is  largely matter of
chance. Mean deviation method is also an unsatisfactory measure of scatter, as it
ignores the algebraic signs of deviation. We desire a measure of scatter which is
free from these shortcomings. To some extent standard deviation is one such
measure.

The calculation of standard deviation differs in the following respects from
that of mean deviation. First, in calculating standard deviation, the deviations are
squared. This is done so as to get rid of negative signs without committing algebraic
violence. Further, the squaring of deviations provides added weight to the extreme
items, a desirable feature for certain types of series.

Secondly, the deviations are always recorded from the arithmetic mean,
because although the sum of deviations is the minimum from the median, the sum
of squares of deviations is minimum when deviations are measured from the
arithmetic average. The deviation from x  is represented by d.

Thus, standard deviation,  (sigma) is defined as the square root of the
mean of the squares of the deviations of individual items from their arithmetic
mean.

  = ( )x x

N

 2

...(4.14)

For grouped data (discrete variables)

  =  f x x

f

( )


2

...(4.15)

and, for grouped data (continuous variables)

  = f M x

f

( )


...(4.16)

where M is the mid-value of the group.

The use of these formulae is illustrated by the following examples.
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Example 4.50: Compute the standard deviation for the following data:

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21.

Solution:  Here formula (7) is appropriate. We first calculate the mean as x  =
x N/  = 176/11= 16, and then calculate the deviation as follows:

x (x – x ) (x – x )2

11 –5 25

12 –4 16

13 –3 9

14 –2 4

15 –1 1

16 0 0

17 +1 1

18 +2 4

19 +3 9

20 +4 16

21 +5 25

176 10

Thus by formula Equation (4.21).

 = 110

11
10  = 3.16

Example 4.51: Find the standard deviation of the data in the following distributions:

x 12 13 14 15 16 17 18 20

f 4 11 32 21 15 8 6 4

Solution:  For this discrete variable grouped data, we use Equation 4.22. Since

for calculation of x , we need fx and then for s we need f x x( ) 2 , the
calculations are conveniently made in the following format.

x f fx d = x – x d2 fd2

12 4 48 –3 9 36
13 11 143 –2 4 44
14 32 448 –1 1 32
15 21 315 0 0 0
16 15 240 1 1 15
17 8 136 2 4 32
18 5 90 3 9 45
20 4 80 5 25 100

100 1500 304

Here x  = /fx f  = 1500/100 = 15

And   = fd

f

2


   = 
304
100

 = 3 04.  = 1.74
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Example 4.52: Calculate the standard deviation of the following data.

Class 1–3 3–5 5–7 7–19 9–11 11–13 13–15

 frequency 1 9 25 35 17 10 3

Solution: This is an example of continuous frequency series and formula 9 seems
appropriate.

Class Mid- Frequency Deviation Squared Squared
point of mid-  deviation deviation

point x times
x f fx from d2 frequency

mean (8) d2

1–3 2 1 2 –6 36 36
3–5 4 9 36 –4 16 144
5–7 6 25 150 –2 4 100
7–9 8 35 280 0 0 0

9–11 10 17 170 2 4 68
11–13 12 10 120 4 16 160
13–15 14 3 42 6 36 108

100 800 616

First the mean is calculated as

x  = fx x/  = 800/100 = 8.0

Then the deviations are obtained from 8.0. The standard deviation

 =
f M x

f
 


( )2

 = fd

f

2 616
100






= 2.48

4.6.1 Calculation of Standard Deviation by Short-cut
Method

The three examples worked out above have one common simplifying feature, namely
x  in each, turned out to be an integer, thus, simplifying calculations. In most cases,
it is very unlikely that it will turn out to be so. In such cases, the calculation of d and
d2 becomes quite time-consuming. Short-cut methods have consequently been
developed. These are on the same lines as those for calculation of mean itself.

In the short-cut method, we calculate deviations x'  from an assumed mean A. Then,

for ungrouped data

 =  
F

HG
I
KJ

x
N

x
N

2 2

...(4.17)

and for grouped data

 = fx

f

fx

f








F
HG

I
KJ

2 2

...(4.18)

This formula is valid for both discrete and continuous variables. In case of continuous
variables, x in the equation x' = x – A stands for the mid-value of the class in question.
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Note that the second term in each of the formulae is a correction term because of the
difference in the values of A and x . When A is taken as x  itself, this correction is
automatically reduced to zero. Examples 4.7 to 4.11 explain the use of these formulae.

Example 4.53: Compute the standard deviation by the short-cut method for the
following data:

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

Solution: Let us assume that A = 15.

x' = (x – 15)  x'2

11 –4 16
12 –3 9
13 –2 4
14 –1 1
15 0 0
16 1 1
17 2 4
18 3 9
19 4 16
20 5 25
21 6 36

N = 11  x  = 11  x 2  = 121

 =  
F

HG
I
KJ

x
N

x
N

2 2

= 121
11

11
11

2

 F
HG

I
KJ

= 11 1

= 10

= 3.16.

Another method

If we assumed A as zero, then the deviation of each item from the assumed mean is
the same as the value of item itself. Thus, 11 deviates from the assumed mean of
zero by 11, 12 deviates by 12, and so on. As such, we work with deviations without
having to compute them, and the formula takes the following shape:

x x2

11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441

176 2,926
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 = x
N

x
N

2 2
  F

HG
I
KJ

=   F
HG

I
KJ

926
11

176
11

2

 = 266 256  = 3.16

Example 4.54: Calculate the standard deviation of the following data by short
method.

Person 1 2 3 4 5 6 7

Monthly income

(Rupees) 300 400 420 440 460 480 580

Solution: In this data, the values of the variable are very large making calculations
cumbersome. It is advantageous to take a common factor out. Thus, we use x' =

x A
20

. The standard deviation is calculated using x' and then the true value of  is

obtained by multiplying back by 20. The effective formula then is

 = C x
N

x
N

×
 

F
HG

I
KJ

2 2

where C represents the common factor.

Using x' = (x – 420)/20.

x Deviation from x' x'2

Assumed mean
x = (x – 420)

 300 –120 –6 36
400 –20 –1 1
420 0 0 0

–7

440 20 1 1

460 40 2 4

480 60 3 9

580 160 8 64

+ 14

N = 7 7 115

 = 20
2 2

×
 

F
HG

I
KJ

x
N

x
N

= 20
115
7

7
7

2

 F
HG

I
KJ

= 78.56

Example 4.55: Calculate the standard deviation from the following data:

Size 6 9 12 15 18

Frequency 7 12 19 10 2
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Solution:

x Frequency Deviation Deviation x' times x'2 times
f from divided frequency frequency

assumed by common fx' fx'2

mean 12 factor 3
x'

6 7 –6 –2 –14 28

9 12 –3 –1 –12 12

12 19 0 0 0 0

15 10 3 1 10 10

18 2 6 2 4 8

N = 50 fx  fx  2

= –12 = 58

Since deviations have been divided by a common factor, we use

 = C fx

N

fx

N

 
F

HG
I
KJ

2 2

= 3 58
50

12
50

2

 F
HG

I
KJ

= 3 1 1600 0576. .  = 3 × 1.05 = 3.15.

Example 4.56: Obtain the mean and standard deviation of the first N natural numbers,
i.e., of 1, 2, 3, ..., N – 1, N.

Solution: Let x denote the variable which assumes the values of the first N natural
numbers.

Then

x = 
x

N

N N

N

N

N

1

1

2 1

2









( )

because x
N

1
 = 1 + 2 + 3 + ... + (N – 1) + N

= 
N N( ) 1

2

To calculate the standard deviation , we use 0 as the assumed mean A. Then

 = x
N

x
N

2 2
  F

HG
I
KJ

But x2 = 12 + 22 + 32 + ... (N – 1)2 + N2 = 
N N N( ) ( ) 1 2 1

6
Therefore

 = N N N

N

N N

N

( ) ( ) ( ) 


1 2 1

6

1

4

2 2

2

= 
( )N N N 


L

NM
O
QP

1

2

2 1

3

1

2
 = 

( 1) ( 1)

12

N N
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Thus for first 11 natural numbers

x = 
11 1

2
6




and  = 
( ) ( )11 1 11 1

12

 
 = 10  = 3.16

Example 4.57:

Mid- Frequency Deviation Deviation Squared
point f from class time deviation

x of assumed frequency times
mean fx' frequency

x' fx'2

0–10 5 18 –2 –36 72

10–20 15 16 –1 –16 16

–52

20–30 25 15 0 0 0

30–40 35 12 1 12 12

40–50 45 10 2 20 40

50–60 55 5 3 15 45

60–70 65 2 4 8 32

70–80 75 1 5 5 25

– 60

79 60 242

–52

fx  = 8

Solution: Since the deviations are from assumed mean and expressed in terms of
class-interval units,

 = i x
N

fx

N
×

 
F

HG
I
KJ

2 2

= 10
242
79

8
79

2

×  F
HG

I
KJ

= 10 × 1.75 = 17.5.

4.6.2 Combining Standard Deviations of Two
Distributions

If we were given two sets of data of N
1
 and N

2
 items with means x1 and x2 and

standard deviations 
1
 and 

2
 respectively, we can obtain the mean and standard

deviation x  and  of the combined distribution by the following Equation:

x = 
N x N x

N N
1 1 2 2

1 2




...(4.19)

and  = 
N N N x x N x x

N N
1 1

2
2 2

2
1 1

2
2 2

2

1 2

     



( ) ( )
...(4.20)

Example 4.58: The mean and standard deviations of two distributions of 100 and
150 items are 50, 5 and 40, 6 respectively. Find the standard deviation of all taken
together.
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Solution: Combined mean

x = 
N x N x

N N
1 1 2 2

1 2




 = 
100 50 150 40

100 150

× ×


= 44

Combined standard deviation

 =  
2 2 2 2

1 1 2 2 1 1 2 2

1 2

( ) ( )N N N x x N x x

N N

= 
100 5 150 6 100 44 50 150 44 40

100 150

2 2 2 2× ( ) ( ) ( ) ( )    


= 7.46.

Example 4.59: A distribution consists of three components with 200, 250, 300
items having mean 25, 10 and 15 and standard deviation 3, 4 and 5, respectively.
Find the standard deviation of the combined distribution.

Solution: In the usual notations, we are given here

N
1

= 200, N
2
= 250, N

3
 = 300

x1 = 25, x2 = 10, x3 = 15

The Equations (4.19) and (4.20) can easily be extended for combination of three
series as

x = 
N x N x N x

N N N
1 1 2 2 3 3

1 2 3

 
 

= 
200 25 250 10 300 15

200 250 300

× × × 
 

= 12000
750

 = 16

And

 = 

2 2 2 2
1 1 2 2 3 3 1 1

2 2
2 2 3 3

1 2 3

( )

( ) ( )

N N N N x x

N x x N x x

N N N

= 
200 9 250 16 300 25 200 81 250 36 300 1

200 250 300

× × × × × ×    
 

= 51 73 7 19. . .

4.6.3 Comparison of Various Measures of Dispersion

The range is the easiest to calculate the measure of dispersion, but since it depends
on extreme values, it is extremely sensitive to the size of the sample, and to the
sample variability. In fact, as the sample size increases the range increases
dramatically, because the more the items one considers, the more likely it is that
some item will turn up which is larger than the previous maximum or smaller than
the previous minimum. So, it is, in general, impossible to interpret properly the
significance of a given range unless the sample size is constant. It is for this reason
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that there appears to be only one valid application of the range, namely in statistical
quality control where the same sample size is repeatedly used, so that comparison
of ranges are not distorted by differences in sample size.

The quartile deviations and other such positional measures of dispersions
are also easy to calculate but suffer from the disadvantage that they are not amenable
to algebraic treatment. Similarly, the mean deviation is not suitable because we
cannot obtain the mean deviation of a combined series from the deviations of
component series. However, it is easy to interpret and easier to calculate than the
standard deviation.

The standard deviation of a set of data, on the other hand, is one of the most
important statistics describing it. It lends itself to rigorous algebraic treatment, is
rigidly defined and is based on all observations. It is, therefore, quite insensitive to
sample size  (provided  the  size  is ‘large enough’) and is least affected by sampling
variations.

It is used extensively in testing of hypothesis about population parameters
based on sampling statistics.

In fact, the standard deviations has such stable mathematical properties that
it is used as a standard scale  for measuring  deviations from the mean. If we are
told that the performance of an individual is 10 points better than the mean, it really
does  not  tell  us  enough, for 10 points may or may not be a large enough
difference to be of significance. But if we know that the s for the score is only 4
points, so that on this scale, the performance is 2.5s better than the mean, the
statement becomes meaningful. This indicates an extremely good performance.
This sigma scale is a very commonly used scale for measuring and specifying
deviations which immediately suggest the significance of the deviation.

The only disadvantages of the standard deviation lies in the amount of work
involved in its calculation, and the large weight it attaches to extreme values because
of the process of squaring involved in its calculations.

Check Your Progress

6. What did you meant by measure of central tendency?

7. Define the median.

8. How will you calculate the standard deviation?

4.7 EXAMPLES OF KINETIC THEORY OF
GASES BASED ON PROBABILITY

The kinetic theory of gases is a simple, historically significant classical model of the
thermodynamic behaviour of gases, with which many principal concepts of
thermodynamics were established. The model describes a gas as a large number
of identical sub microscopic particles (atoms or molecules), all of which are in
constant, rapid, random motion. Their size is assumed to be much smaller than the
average distance between the particles. The particles undergo random elastic
collisions between themselves and with the enclosing walls of the container. The
basic version of the model describes the ideal gas, and considers no other
interactions between the particles.
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The kinetic theory of gases explains the macroscopic properties of gases,
such as volume, pressure, and temperature, as well as transport properties, such
as viscosity, thermal conductivity and mass diffusivity. The model also accounts
for related phenomena, such as Brownian motion. Historically, the kinetic theory
of gases was the first explicit exercise of the ideas of statistical mechanics. The
kinetic theory of gases explains the macroscopic properties of gases, such as
volume, pressure, and temperature, as well as transport properties such as viscosity,
thermal conductivity and mass diffusivity. The model also accounts for related
phenomena, such as Brownian motion. Kinetic Theory describes the random motion
of atoms.

There are Four Assumptions of the Theory

1. A large number of molecules are present, but the space they occupy is also
large and keeps the individual molecules far apart.

2. The molecules move randomly.

3. The collisions between molecules are elastic and therefore exert no net
forces.

4. The molecules obey Newtonian mechanics.

1. The Kinetic Molecular Theory of Matter States: Matter is made up
of particles that are constantly moving. All particles have energy, but the
energy varies depending on the temperature the sample of matter is in. This
in turn determines whether the substance exists in the solid, liquid, or gaseous
state.

2. Diffusion: The kinetic theory of matter is also shown by the process of
diffusion. Diffusion is the movement of particles from a high concentration
to a low concentration. It can be seen as a spreading-out of particles resulting
in their even distribution. Placing a drop of food colouring in water provides
a visual representation of this process – the colour slowly spreads out through
the water. If matter were not made of particles, then we would simply see a
clump of colour, since there would be no smaller units that could move
about and mix in with the water.

The Application of Kinetic Theory to Ideal Gases Makes the Following
Assumptions:

1. The gas consists of very small particles. This smallness of their size is
such that the sum of the volume of the individual gas molecules is
negligible compared to the volume of the container of the gas. This is
equivalent to stating that the average distance separating the gas
particles is large compared to their size, and that the elapsed time of a
collision between particles and the container’s wall is negligible when
compared to the time between successive collisions.

2. The number of particles is so large that a statistical treatment of the
problem is well justified. This assumption is sometimes referred to as
the thermodynamic limit.
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3. The rapidly moving particles constantly collide among themselves and
with the walls of the container. All these collisions are perfectly elastic,
which means the molecules are perfect hard spheres.

4. Except during collisions, the interactions among molecules are negligible.
They exert no other forces on one another.

Thus, the dynamics of particle motion can be treated classically, and the
equations of motion are time-reversible.

As a simplifying assumption, the particles are usually assumed to have the
same mass as one another; however, the theory can be generalized to a mass
distribution, with each mass type contributing to the gas properties independently
of one another in arrangement with Dalton’s Law of partial pressures. Many of the
model’s predictions are the same whether or not collisions between particles are
included, so they are often neglected as a simplifying assumption in derivations.

More modern developments relax these assumptions and are based on the
Boltzmann equation. These can accurately describe the properties of dense gases,
because they include the volume of the particles as well as contributions from
intermolecular and intramolecular forces as well as quantized molecular rotations,
quantum rotational-vibrational symmetry effects, and electronic excitation.

4.8 CURVE FITTING

In this section, we consider the problem of approximating an unknown function
whose values, at a set of points, are generally known only empirically and are, thus
subject to inherent errors, which may sometimes be  appreciably larger in many
engineering and scientific problems. In these cases, it is required to derive a functional
relationship using certain experimentally observed data. Here the observed data
may have inherent or round-off errors, which are serious, making polynomial
interpolation for approximating the function inappropriate. In polynomial interpolation
the truncation error in the approximation is considered to be important. But when
the data contains round-off errors or inherent errors, interpolation is not appropriate.

The subject of this section is curve fitting by least square approximation. Here
we consider a technique by which noisy function values are used to generate a
smooth approximation. This smooth approximation can then be used to approximate
the derivative more accurately than with exact polynomial interpolation.

There are situations where interpolation for approximating function may not be
efficacious procedure. Errors will arise when the function values f (x

i
), i = 1, 2, …,

n are observed data and not exact. In this case, if we use the polynomial interpolation,
then it would reproduce all the errors of observation. In such situations one may
take a large number of observed data, so that statistical laws in effect cancel the
errors introduced by inaccuracies in the measuring equipment. The approximating
function is then derived, such that the sum of the squared deviation between the
observed values and the estimated values are made as small as possible.

Mathematically, the problem of curve fitting or function approximation may be
stated as follows:



Permutation and Probability

NOTES

Self - Learning
342 Material

To find a functional relationship y = g(x), that relates the set of observed data
values P

i
(x

i
, y

i
),   i = 1, 2,..., n as closely as possible, so that the graph of y = g(x)

goes near the data points P
i
’s though not necessarily through all of them.

The first task in curve fitting is to select a proper form of an approximating
function g(x), containing some parameters, which are then determined by minimizing
the total squared deviation.

For example, g(x) may be a polynomial of some degree or an exponential or
logarithmic function. Thus g (x) may be any of the following:

(i) ( )g x x (ii) 2( )g x x x

(iii) ( ) xg x e (iv) ( ) xg x e

(v) ( ) log( )g x x

Here , ,  are parameters which are to be evaluated so that the curve
y = g(x), fits the data well. A measure of how well the curve fits is called the
goodness of fit.

In the case of least square fit, the parameters are evaluated by solving a system
of normal equations, derived from the conditions to be satisfied so that the sum of
the squared deviations of the estimated values from the observed values, is minimum.

4.8.1 Method of Least Squares
Let (x

1
, f

1
), (x

2
, f

2
),..., (x

n
, f

n
) be a set of observed values and g(x) be the

approximating function. We form the sums of the squares of the deviations of the
observed values f

i
 from the estimated values g (x

i
),

i.e.,  2

1

( )
n

i i
i

S f g x


 
(4.21)

The function g(x) may have some parameters, , , . In order to determine
these parameters we have to form the necessary conditions for S to be minimum,
which are

0, 0, 0
S S S

(4.22)

These equations are called normal equations, solving which we get the parameters
for the best approximate function g(x).

Curve Fitting by a Straight Line: Let ( ) ,g x x  be the straight line which
fits a set of observed data points (x

i
, y

i
), i = 1, 2, ..., n.

Let S be the sum of the squares of the deviations g(x
i
) – y

i
, i = 1, 2,...,n, given

by,

2

1

n

i i
i

S x y (4.23)
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We now employ the method of least squares to determine  and  so that S will
be minimum. The normal equations are,

1

0, i.e., ( ) 0
n

i i
i

S
x y (4.24)

And,
1

0, i.e., ( ) 0
n

i i i
i

S
x x y (4.25)

These conditions give,

1 01

1 2 11

0

0

n S S

S S S

where, 2
1 01 2 11

1 1 1 1

, , ,
n n n n

i i i i i
i i i i

S x S y S x S x y

Solving,
01 1

2
1 11 1 2 11 1 01 2 1

1
. Also .

S S

S S S S nS S S nS S n n

Algorithm: Fitting a straight line y = a + bx.

Step 1: Read n [n being the number of data points]

Step 2: Initialize : sum x = 0, sum x2 = 0, sum y = 0, sum xy = 0

Step 3: For j = 1 to n compute

Begin

Read data x
j
, y

j

Compute sum x = sum x + x
j

Compute sum x2 + x
j
 × x

j

Compute sum y = sum y + y
i
 × y

j

Compute sum xy = sum xy + x
j 
× y

j

End

Step 4: Compute b = (n × sum xy – sum x × sum y)/ (n × sum x2 – (sum x)2)

Step 5: Compute x bar = sum x / n

Step 6: Compute y bar = sum y / n

Step 8: Compute a = y bar – b × x bar

Step 9: Write a, b

Step 10: For j = 1 to n

  Begin

Compute y estimate = a + b × x

write x
j
, y

j
, y estimate

  End

Step 11: Stop

Curve Fitting by a Quadratic (A Parabola): Let g(x) = a + bx + cx2, be the
approximating quadratic to fit a set of data (x

i
, y

i
), i = 1, 2, ..., n. Here the

parameters are to be determined by the method of least squares, i.e., by minimizing
the sum of the squares of the deviations given  by,
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2 2

1

( )
n

i i i
i

S a bx cx y

(4.26)

Thus the normal equations, 0, 0, 0,
S S S

a b c
are as follows:

(4.27)

2

1

2

1

2 2

1

( ) 0

( ) 0

( ) 0.

n

i i i
i

n

i i i i
i

n

i i i i
i

a bx cx y

x a bx cx y

x a bx cx y (4.28)

These equations can be rewritten as,

1 2 01

1 2 3 11

2 3 4 21

0

0

0

na s b s c s

s a s b s c s

s a s b s c s (4.29)

where  2 3 4
1 2 3 4

1 1 1 1

2
01 11 21

1 1 1

, , ,

, ,

n n n n

i i i i
i i i i

n n n

i i i i i
i i i

s x s x s x s x

s y s x y s x y (4.30)

It is clear that the normal equations form a system of linear equations in the
unknown parameters a, b, c. The computation of the coefficients of the normal
equations can be made in a tabular form for desk computations as shown below.

2 3 4 2

2 3 4 2
1 1 1 1 1 1 1 1 1

2 3 4 2
2 2 2 2 2 2 2 2 2

2 3 4 2

1 01 2 3 4 11 21

1

2

... ... ... ... ... ... ... ...

Sum

i i i i i i i i i

n n n n n n n n n

x x y x x x x y x y

x y x x x x y x y

x y x x x x y x y

n x y x x x x y x y

s s s s s s s

The system of linear equations can be solved by Gaussian elimination method.
It may be noted that number of normal equations is equal to the number of unknown
parameters.

Example 4.60: Find the straight line fitting the following data:

31.1014.1101.1290.1272.13

1210864

1y

xi
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Solution: Let  y = a + bx, be the straight line which fits the data. We have the

normal equations 0, 0
S S

a b
 for determining a and b, where





5

1

2)(
i

ii bxayS .

Thus,
5 5

1 1

0i i
i i

y na b x
 

   

and ,
5 5 5

2

1 1 1

0i i i i
i I i

x y a x b x
  

    

The coefficients are computed in the table below.

2

4 13.72 16 54.88

6 12.90 36 77.40

8 12.01 64 96.08

10 11.14 100 111.40

12 10.31 144 123.72

Sum 40 60.08 360 463.48

i i i i ix y x x y

Thus the normal equations are,

048.46336040

008.60405




ba

ba

Solving these two equations we obtain,

a = 15.448, b = 0.429

Thus, y = g(x) = 15.448 – 0.429 x, is the straight line fitting the data.

Example 4.61: Use the method of least square approximation to fit a straight line
to the following observed data:

5552484040

6463626160

i

i

y

x

Solution: Let the straight line fitting the data be y = a + bx. The data values being
large, we can use a change in variable by substituting u = x – 62 and v = y – 48.

Let v = A + B u, be a straight line fitting the transformed data, where the normal
equations for A and B are,

 

 

 

 





5

1

2
5

1

5

1

5

1

5

1

5

i
i

i i
iii

i i
ii

uBuAvu

uBAv
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The computation of the various sums are given in the table below,

2

60 40 –2 –8 16 4

61 42 1 6 6 1

62 48 0 0 0 0

63 52 1 4 4 1

64 55 2 7 14 4

0 3 40 10Sum

i i i i i i ix y u v u v u

 



Thus the normal equations are,

3 5 and 40 10

3
and 4

5

A B

A B

This gives the line, 3/5 4v u

or, 20 5 3 0.u v

Transforming we get the line,

20 (x – 62) – 5 (y – 48) – 3 = 0

or, 20 x – 5y – 1003 = 0

Curve Fitting with an Exponential Curve: We consider a two parameter
exponential curve as,

bxy ae (4.31)

For determining the parameters, we can apply the principle of least squares by
first using a transformation,

z = log y, so that Equation (4.31) is rewritten as, (4.32)

z = log a – bx (4.33)

Thus, we have to fit a linear curve of the form ,z x  with z – x variables

and then get the parameters a and b as,

,a e b (4.34)

Thus proceeding as in linear curve fitting,

1 1 1
2

2

1 1

log log
n n n

i i i i
i i i

n n

i i
i i

n x y x y

n x x
(4.35)

and, ,z px  where 
1 1

, log
n n

i i
i i

x x n z y n (4.43)

After computing  and , we can determine a and b given by Equation (4.33).
Finally, the exponential curve fitting data set is given by Equation (4.31).



Permutation and Probability

NOTES

Self - Learning
Material 347

Algorithm: To fit a straight line for a given set of data points by least square error
method.

Step 1: Read the number of data points, i.e., n

Step 2: Read values of data-points, i.e., Read (x
i
, y

i
) for i = 1, 2,..., n

Step 3: Initialize the sums to be computed for the normal equations,

i.e., sx = 0, sx2 = 0, sy = 0, syx = 0

Step 4: Compute the sums, i.e., For i = 1 to n do

Begin

2 2 2

i

i

i

i i

sx sx x

sx sx x

sy sy y

syx syx x y

 

 
 
 

End

Step 5: Solve the normal equations, i.e., solve for a and b of the line y = a + bx
2Compute

( ) /

bar /

bar /

bar bar

d n sx sx sx

b n sxy sy sx d

x sx n

y sy n

a y b x

   
   


  

Step 6: Print values of a and b

Step 7: Print a table of values of , , for 1, 2, ...,i i pi ix y y a bx i n

Step 8: Stop

Algorithm: To fit a parabola ,2cxbxay  for a given set of data points by least
square error method.

Step 1: Read n, the number of data points

Step 2: Read (x
i
, y

i
) for i = 1, 2,..., n, the values of data points

Step 3: Initialize the sum to be computed for the normal equations,

i.e., sx = 0, sx2 = 0, sx3 = 0, sx4 = 0, sy = 0, sxy = 0.

Step 4: Compute the sums, i.e., For i = 1 to n do

Begin

2

2 2 2

3 3 2

4 4 2 2

2 2 2

i

i i

i

i

i i

i

sx sx x

x x x

sx sx x

sx sx x x

sx sx x x

sy sy y

sxy sxy x y

sx y sx y x y

 

 

 

  

  
 
  

  

End
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Step 5: Form the coefficients }{ ija matrix of the normal equations, i.e.,

2
11 21 31

2 3
12 22 32

2 3 4
13 23 33

, ,

, ,

, ,

a n a sx a sx

a sx a sx a sx

a sx a sx a sx

  

  

  

Step 6: Form the constant vector of the normal equations.

b
1
 = sy, b

2
 = sxy, b

3
 = sx2y

Step 7: Solve the normal equation by Gauss-Jordan method

21122

1321232312212222

1111111313111212

,

/,/,/

abbb

aaaaaaaa

abbaaaaaa







13121

232

333

23233

32233333

2222

222323

31133

13313333

12313232

/

/

/

acabba

acbb

abc

babb

aaaa

abb

aaa

abbb

aaaa

aaaa





















Step 8: Print values of a, b, c (the coefficients of the parabola)

Step 9: Print the table of values of 2, and where ,k k pk pk kx y y y a bx cx k  

i.e., print , , for 1, 2,..., .k k pkx y y k n

Step 10: Stop.

Check Your Progress

9. What do you understand by kinetic theory of gases?

10. What is curve fitting by least square approximation?

11. State the function approximation.

4.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. If there are n objects and they can be placed in any arrangement or order,
then any given order of these n objects is called a permutation of the n objects.

2. A collection of all possible outcomes of an experiment is said to be an event.

3. In probability and statistics, a random variable or a random quantity is a
variable whose possible values are outcomes of a random phenomenon. More
specifically, a random variable is defined as a function that maps the outcomes
of an unpredictable process to numerical quantities, typically real numbers.
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4. Definition of a Normal Distribution: A normal distribution is a continuous
distribution given by

y =
 
1

2 
  21

/
2

x m
e
    

where x is a continuous normal variate distributed with probability density

function f(x)  = 
 
1

2 
  21

– – /
2

x m
e

   , with mean m and standard deviation .

5. The Central Limit Theorem (CLT) is a statistical theory which states that
given a sufficiently large sample size from a population with a finite level of
variance, the mean of all samples from the same population will be
approximately equal to the mean of the population.

6. A measure of central tendency is any precise method of specifying this
‘Central Value’. In the simplest form, the measure of central tendency is an
average of a set of measurements, where the word average refers to as
mean, median, mode or other measures of location.

7. The second measure of central tendency that has a wide usage in statistical
works is the median. Median is that value of a variable which divides the
series in such a manner that the number of items below it is equal to the
number of items above it. Half  the total number of observations lie below
the median, and half above it. The median is thus a positional average.

8. The calculation of standard deviation differs in the following respects from
that of mean deviation. First, in calculating standard deviation, the
deviations are squared. This is done so as to get rid of negative signs
without committing algebraic violence. Further, the squaring of deviations
provides added weight to the extreme items, a desirable feature for certain
types of series.

9. The kinetic theory of gases is a simple, historically significant classical model
of the thermodynamic behaviour of gases, with which many principal con-
cepts of thermodynamics were established. It is explains the macroscopic
properties of gases, such as volume, pressure, and temperature, as well as
transport properties, such as viscosity, thermal conductivity and mass diffusivity.

10. The subject of this section is curve fitting by least square approximation.
Here we consider a technique by which noisy function values are used to
generate a smooth approximation. This smooth approximation can then be
used to approximate the derivative more accurately than with exact
polynomial interpolation.

11. To find a functional relationship y = g(x), that relates the set of observed data
values P

i
(x

i
, y

i
),   i = 1, 2,..., n as closely as possible, so that the graph of

y = g(x) goes near the data points P
i
’s though not necessarily through all of

them.

4.10 SUMMARY

 The probability of any two heads out of three tosses would be different than
having two heads and a tail in that order.



Permutation and Probability

NOTES

Self - Learning
350 Material

 Primarily statistics was supposed to be the science of kings used for the purpose
of administration, but later on it was regarded as a branch of economics.

 Statistics, which was accepted for some time as necessarily a branch of
economics has now become so popular and its application so wide that no
branch of human knowledge escapes its approach.

  An astronomer uses statistical methods in making predictions about eclipses,
a biologist utilzes them to generalize the laws of variations and heredity, a
meteorologist uses them for weather forecasts, regarding temperature
pressure and rainfall, etc.

 Probability is the measure of the likelihood that an event will occur. Principally,
the probability quantifies as a number between 0 and 1, where 0 indicates
impossibility and 1 indicates certainty. The higher the probability of an event,
the more likely it is that the event will occur.

 Two or more events are said to be mutually exclusive if the happening or
occurrence of any one of them excludes the happening of the others.

 The simultaneous occurrence of two or more events in connection with
each other is said to be a compound event.

 Two or more events are said to be dependent or independent according as
the occurrence of one does or does not affect the occurrence of the other
or others. The dependent events are sometimes known as contingent.

 A continuous random variable is a random variable whose cumulative
distribution function is continuous everywhere.

 A normal curve is symmetrical about the point x = 0 where the ordinate has
its maximum value. In a normal curve, the mean, the median and mode
coincide.

 The total area of a normal curve being treated as unity, the probability
corresponding to any interval in the range of the variate is measured by the
area under the curve within that interval.

 In probability theory, the Central Limit Theorem (CLT) establishes that, in
some situations when independent random variables are added then their
appropriately normalized sum tends toward a normal distribution, usually a
‘Bell Curve’ even if the original variables themselves are not normally
distributed.

 Typically the most commonly used measures are arithmetic mean, mode
and median. These values are very useful not only in presenting the overall
picture of the entire data but also for the purpose of making comparisons
among two or more sets of data.

 There are several commonly used measures, such as arithmetic mean, mode
and median. These values are very useful  not only in presenting the overall
picture of the entire data, but also for the purpose of making comparisons
among two or more sets of data.

 The median of ungrouped data is found easily if the items are first arranged in
order of the magnitude. The median may then be located simply by counting,
and its value can be obtained by reading the value of the middle observations.
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 By far the most universally used and the most useful measure of dispersion
is the standard deviation or root mean square deviation about the mean.

 The range is the easiest to calculate the measure of dispersion, but since it
depends on extreme values, it is extremely sensitive to the size of the sample,
and to the sample variability.

  In polynomial interpolation the truncation error in the approximation is
considered to be important. But when the data contains round-off errors or
inherent errors, interpolation is not appropriate.

 In the case of least square fit, the parameters are evaluated by solving a
system of normal equations, derived from the conditions to be satisfied so
that the sum of the squared deviations of the estimated values from the
observed values, is minimum.

 The system of linear equations can be solved by Gaussian elimination method.
It may be noted that number of normal equations is equal to the number of
unknown parameters.

4.11 KEY TERMS

 Joint occurrence: The simultaneous occurrence of two or more events in
connection with each other is said to be a compound event.

 Random variable: In probability and statistics, a random variable or a
random quantity is a variable whose possible values are outcomes of a
random phenomenon.

 Continuous random variables: A continuous random variable is a random
variable whose cumulative distribution function is continuous everywhere.

 Central Limit Theorem (CLT): The Central Limit Theorem (CLT) is a
statistical theory which states that given a sufficiently large sample size from
a population with a finite level of variance, the mean of all samples from the
same population will be approximately equal to the mean of the population.

 Kinetic theory of gases: The kinetic theory of gases explains the
macroscopic properties of gases, such as volume, pressure, and
temperature, as well as transport properties, such as viscosity, thermal
conductivity and mass diffusivity. The model also accounts for related
phenomena, such as Brownian motion.

4.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the combination.

2. What is mutually exclusive events?

3. State the theorem of total probability.

4. State the multiplication low of probability.
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5. Give the statement of Bayes’ theorem.

6. Give the characteristics of binomial distribution.

7. What do you understand by poission distribution?

8. Define the median.

9. What is standard error?

10. What do you understand by measure of dispersion?

11. State the kinetic molecular theory of matter.

12. Define the curve fitting.

13. State the least square method.

Long-Answer Questions

1. Discuss about the permutation and combination giving examples.

2. What is probability? Explain about the simple properties of probability giving
appropriate examples.

3. Describe the theorem of probability with the help of examples.

4. Explain in detail about the normal, binomial and poission distribution with
the help of examples.

5. Explain in detail about the mean, median and mode giving appropriate
examples.

6. Elaborate on the standard error with various types of examples.

7. Briefly explain about the kinetic theory of gases with the help of examples.

8. Analyse the curve fitting with appropriate examples.
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