
M.Sc., Previous Year

Mathematics
(Option - II)

ADVANCED DISCRETE
MATHEMATICS

MADHYA PRADESH BHOJ (OPEN) UNIVERSITY - BHOPAL

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Registrar,
Madhya Pradesh Bhoj (Open) University, Bhopal

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Madhya Pradesh Bhoj (Open) University, Bhopal, Publisher and its Authors
shall in no event be liable for any errors, omissions or damages arising out of use of this information
and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

Copyright © Reserved, Madhya Pradesh Bhoj (Open) University, Bhopal

Published by Registrar, MP Bhoj (open) University, Bhopal in 2020

COURSE WRITERS

VK Khanna & SK Bhambri, Formerly Associate Professors, Department of Mathematics, Kirori Mal College, University of Delhi.
Units (1.0, 1.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.5, 1.6, 1.7, 1.8, 1.9)

N Ch S N Iyengar, Professor, Deptt. of Computer Applications, Vellore Institute of Technology, Vellore.
V M Chandrasekaran, Asstt. Professor, Deptt. of Mathematics, Vellore Institute of Technology, Vellore.
K A Venkatesh, Head – Deptt. of Computer Applications, Alliance Business Academy, Bangalore.
P S Arunachalam. Senior Lecturer, Department of Mathematics, SRM Engineering College, Chennai.
Units (1.2, 1.4, Unit 3, 4.7)

Dr. Shamim Akhtar, Associate Professor, Jaypee Institute of Information Technology (JIIT), Noida.
Unit (Unit 2)

J C Kavitha, Senior Lecturer, Krishna Engineering College, Ghaziabad.
Units (4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.8, 4.9, 4.10, 4.11, 4.12, Unit 5)

3. Dr Rajkumar Bhimte
Professor
Govt. College Vidisha, (MP)

Reviewer Committee
1. Dr Piyush Bhatnagar

Professor
Govt. MLB College Bhopal (MP)

2. Dr Anil Rajput
Professor
Govt. C.S. Azad (PG) College, Sehore (MP)

Advisory Committee
1. Dr Jayant Sonwalkar

Hon’ble Vice Chancellor
Madhya Pradesh Bhoj (Open) University, Bhopal

2. Dr L.S. Solanki
Registrar
Madhya Pradesh Bhoj (Open) University, Bhopal

3. Dr Neelam Wasnik
Dy Director Printing
Madhya Pradesh Bhoj (Open) University, Bhopal

4. Dr Piyush Bhatnagar
Professor
Govt. MLB College, Bhopal

5. Dr Anil Rajput
Professor
Govt C.S.Azad (PG) College, Sehore

6. Dr Rajkumar Bhimte
Professor
Govt College Vidisha, MP

SYLLABI-BOOK MAPPING TABLE
Advanced Discrete Mathematics

Syllabi Mapping in Book

UNIT I
Formal Logic: Statement, Symbolic representation, Tautologies,
Quantifiers, Predicates and Validity, Propositional Logic; Semigroups
and Monoids: Definitions and Examples of Semigroups and Monoids
(including those pertaining to Concentration Operations);
Homomorphism of Semigroups and Monoids, Congruence Relation
and Quotient Semigroups, Sub Semigroups and Sub Mmonoids,
Direct Products, Basic Homomorphism Theorem.
Lattices: Lattices as Partially Ordered Sets, their Properties, Lattices
and Algebraic Systems, Sub Lattices, Direct Products and
Homomorphism, Some Special Lattices, for example, Complimented
and Distributive Lattices.

UNIT II
Boolean Algebra: Boolean Algebra as Lattices, Various Boolean
Identities, Join-Irreducible Elements, Atoms and Minterms, Boolean
Forms and their Equivalence, Minterm Boolean Forms, Sum Of
Products, Canonical Forms, Minimization of Boolean Functions,
Applications of Boolean Algebra to Switching Theory (using AND,
OR and NOT gates), The Karnaugh Map Method.

UNIT III
Graph Theory: Definition of (Undirected) Graphs, Paths, Circuits,
Cycles and Subgroups, Induced Subgraphs, Degree of a Vertex,
Connnectivity, Planar Graphs and their Properties;Trees, Euler’s
Formula for Connected Planar Graphs, Complete and Complete
Bipartite Graphs; Kuratowski’s Theorem (statement only) and its
Use; Spanning Trees, Cut-Sets, Fundamental Cut-Sets and Cycles/
Minimal Spanning Trees and Kruskal’s Algorithm, Matrix
Representations of Graphs, Euler’s Theorem on the Existence of
Eulerian Paths and Circuits, Directed Graphs. Indegree and Outdegree
of a Vertex, Weighted Undirected Graphs, Dijkstra’s Algorithm, Strong
Connectivity & Warshall’s Algorithm, Directed Trees, Search Trees,
Tree Traversals.

UNIT IV
Introductory Computability Theory: Finite State Machines and Their
Transition Table Diagrams, Equivalence of Finite State Machines,
Reduced Machines, Homomorphism, Finite automata, Acceptors,
Non-Deterministic Finite Automata and Equivalence of its Power to
that of Deterministic Finite Automata, Moore and Mealy Machines.

UNIT V
Grammar and Languages: Phrase Structure Grammars, Rewriting
Rules, Derivations Sentential Forms, Language Generated by
Grammar, Regular Context Free and Context Sensitive Grammar and
Languages, Regular Sets, Regular Expressions and the Pumping
Lemma, Kleene’s Theorem, Notions of Syntax Analysis, Polish
Notations, Conversion of Infix Expressions to Polish Notations, The
Reverse Polish Notation.

Unit 1: Formal Logic
(Pages: 3-58)

Unit 2: Boolean Algebra
(Pages: 59-102)

Unit 3: Graph Theory
(Pages: 103-146)

Unit 4: Introductory
Computability Theory

(Pages: 147-172)

Unit 5: Grammar and
Languages

(Pages: 173-221)

CONTENTS
INTRODUCTION 1-2

UNIT 1 FORMAL LOGIC 3-58

1.0 Introduction
1.1 Objectives
1.2 Formal Logic

1.2.1 Mathematical Logic
1.2.2 Logical Operators
1.2.3 Truth Tables
1.2.4 Equivalence Formula
1.2.5 Tautology
1.2.6 Inference Theory
1.2.7 Validity by Truth Table
1.2.8 Rules of Inference
1.2.9 Predicate Calculus

1.3 Semi-Groups and Monoids
1.3.1 Homomorphisms
1.3.2 Homomorphism of Semi-Groups
1.3.3 Homomorphism of Monoids

1.4 Lattices
1.5 Answers to ‘Check Your Progress’
1.6 Summary
1.7 Key Terms
1.8 Self-Assessment Questions and Exercises
1.9 Further Reading

UNIT 2 BOOLEAN ALGEBRA 59-102

2.0 Introduction
2.1 Objectives
2.2 Basic Logic Gates

2.2.1 NOT Gate
2.2.2 AND Gate
2.2.3 OR Gate
2.2.4 XOR Gate

2.3 Universal Logic Gates
2.3.1 Features of Logic Gates

2.4 Drawing Logic Circuits
2.5 Analysing Logic Circuits
2.6 Boolean Algebra
2.7 Boolean Functions

2.7.1 Precedence of Operators
2.7.2 Truth Table
2.7.3 Complement of Functions
2.7.4 Standard Forms
2.7.5 Minterm and Maxterm
2.7.6 Canonical Form: Sum of Minterms
2.7.7 Canonical Form: Product of Maxterms
2.7.8 Conversion of Canonical Forms
2.7.9 Boolen Algebra as Lattices

2.7.10 Atom

2.8 Function Simplification
2.8.1 Algebraic Simplification
2.8.2 Karnaugh Map
2.8.3 Steps for Forming Karnaugh Map
2.8.4 Simplification of Expressions using Karnaugh Map
2.8.5 Join-Irreducible Element

2.9 Don’t Care Conditions
2.10 Representation of Simplified Expressions using NAND/NOR Gates

2.10.1 Implementation of SOP Expressions
2.10.2 Implementation of POS Expressions

2.11 XOR and its Application
2.12 Applications of Boolean Algebra to Switching Theory
2.13 Answers to ‘Check Your Progress’
2.14 Summary
2.15 Key Terms
2.16 Self-Assessment Questions and Exercises
2.17 Further Reading

UNIT 3 GRAPH THEORY 103-146

3.0 Introduction
3.1 Objectives
3.2 Basic Terminology
3.3 Different Types of Graph
3.4 Incidence and Degree
3.5 Path and Circuits of a Graph
3.6 Connected and Disconnected Graphs and Components
3.7 Euler Graphs
3.8 Matrix Representation of Graphs
3.9 Trees

3.10 Planar Graphs
3.11 Dijkstra’s Algorithm
3.12 Warshall’s Algorithm
3.13 Cut-Set

3.13.1 Fundamental Cut Sets
3.14 Answers to ‘Check Your Progress’
3.15 Summary
3.16 Key Terms
3.17 Self-Assessment Questions and Exercises
3.18 Further Reading

UNIT 4 INTRODUCTORY COMPUTABILITY THEORY 147-172

4.0 Introduction
4.1 Objectives
4.2 Finite State Machines and their Transition Table Diagrams
4.3 Regular Languages
4.4 Equivalence of DFA and NFA
4.5 Reduced Machines
4.6 Moore and Mealy Machines
4.7 Turing Machine
4.8 Answers to ‘Check Your Progress’
4.9 Summary

4.10 Key Terms
4.11 Self-Assessment Questions and Exercises
4.12 Further Reading

UNIT 5 GRAMMAR AND LANGUAGES 173-221

5.0 Introduction
5.1 Objectives
5.2 Concept of Languages and Grammar
5.3 Phrase Structure Grammars
5.4 Regular Expressions
5.5 Pumping Lemma for Regular Languages
5.6 Regular Grammar
5.7 Context-Free Grammars
5.8 Derivation Trees
5.9 Sentential Forms

5.10 Notions of Syntax Analysis
5.11 Answers to ‘Check Your Progress’
5.12 Summary
5.13 Key Terms
5.14 Self-Assessment Questions and Exercises
5.15 Further Reading

Introduction

NOTES

Self - Learning
Material 1

INTRODUCTION

Discrete mathematics is the branch of mathematics that deals with objects that can
assume only discrete values. Thus, discrete mathematics is the study of mathematical
structures that are fundamentally discrete rather than continuous. In contrast to real
numbers that have the property of varying smoothly, the objects studied in discrete
mathematics, such as integers, graphs and statements in logic have distinct and
separated values. Hence, discrete mathematics excludes topics of continuous
mathematics, such as calculus and analysis. Discrete objects can often be enumerated
by integers. The set of objects studied in discrete mathematics can be finite or infinite.
Logical formulas are discrete structures which form finite trees or more generally
directed acyclic graph structures. Graphs are one of the prime objects of study in
discrete mathematics. Discrete Algebra includes Boolean algebra which is used in
logic gates and programming, while Relational Algebra is used in databases, discrete
and finite versions of groups, rings and fields, discrete semi-groups and monoids.

The theory of automata and formal languages is the cornerstone of computer
science. It helps you deal with transition systems that are more general than finite
automata. A finite automaton is defined as a device which consists of a finite memory
and either accepts or rejects the given inputs. Using a finite automaton, you can
construct a transition graph and transition table, which help in the evaluation of a
regular expression. A formal language is defined as an organized set of symbols
that denote the language with their shapes and locations. The theory of formal
languages is a branch of mathematics and computer science that exclusively studies
language syntax. Problems based on the computational model are efficiently solved
by the theory of formal languages and finite automata. This theory constitutes a
major part of the theory of computation, which helps you understand the basic
principles of computer science.

This book, Advanced Discrete Mathematics, is divided into five units and
aims to give students the ability to think conceptually in mathematical terms by
presenting mathematical techniques, together with simple and clear explanations
of the concepts behind them. The topics covered include mathematical logic,
propositional logic, semi-groups and monoids, lattices, Boolean algebra, atoms,
minterms, Karnaugh map, graphs, complete and bipartite graphs, Kuratowski’s
theorem, spanning tree, matrix representation of graphs, Eulerian paths and circuits,
trees, tree traversals, finite automata, non-deterministic finite automata, grammars
and languages, pumping lemma, and syntax analysis.

All these topics are important for deducing any formula and theorem with
accurate logic and mathematical functions. The book follows the self-instruction
mode or the SIM format wherein each unit begins with an ‘Introduction’ to the
topic followed by an outline of the ‘Objectives’. The content is presented in a
simple and structured form interspersed with ‘Check Your Progress’ questions for
better understanding. A list of ‘Key Terms’ along with a ‘Summary’ and a set of
‘Self-Assessment Questions and Exercises’ is provided at the end of the each unit
for effective recapitulation.

Formal Logic

NOTES

Self - Learning
Material 3

UNIT 1 FORMAL LOGIC

Structure

1.0 Introduction
1.1 Objectives
1.2 Formal Logic

1.2.1 Mathematical Logic
1.2.2 Logical Operators
1.2.3 Truth Tables
1.2.4 Equivalence Formula
1.2.5 Tautology
1.2.6 Inference Theory
1.2.7 Validity by Truth Table
1.2.8 Rules of Inference
1.2.9 Predicate Calculus

1.3 Semi-Groups and Monoids
1.3.1 Homomorphisms
1.3.2 Homomorphism of Semi-Groups
1.3.3 Homomorphism of Monoids

1.4 Lattices
1.5 Answers to ‘Check Your Progress’
1.6 Summary
1.7 Key Terms
1.8 Self-Assessment Questions and Exercises
1.9 Further Reading

1.0 INTRODUCTION

In this unit, you will learn about Boolean logic and group theory. It resembles the
algebra of real numbers, but with the numeric operations of multiplication (xy),
addition (x + y) and negation (–x) are replaced by the respective logical operations
of conjunction (xy), disjunction (xy) and negation (x). Boolean algebra is the
algebra of two values. These are usually taken to be 0 and 1. In mathematics,
group theory studies the algebraic structures known as groups. A group is an
algebraic structure consisting of a set together with an operation that combines
any two of its elements to form a third element. To qualify as a group, the set and
the operation must satisfy a few conditions called group axioms, namely closure,
associativity, identity and invertibility. A subgroup is a subset of group elements of
a group that satisfies the four group requirements. A monoid is an algebraic structure
with a single associative binary operation and an identity element. Monoids are
studied in semi-group theory as they are naturally semi-groups with identity.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand mathematical logic and its applications

 Write propositions in mathematical form

Formal Logic

NOTES

Self - Learning
4 Material

 Use various logical operators

 Construct truth tables of various propositions

 Explain the equivalence formula, tautology and inference theory

 Check the consistency of a statement formula

 Understand predicate calculus

 Explain groups, semi-groups and monoids

 Understand what lattices are

1.2 FORMAL LOGIC

Formal logic is a set of rules used in deductions which are self evident. Logic
assumes something that can be True or False.

1.2.1 Mathematical Logic

One of the main aims of mathematical logic is to provide rules. The rules of logic
give precise meaning to mathematical statements and distinguish between valid
and invalid mathematical arguments. In addition, logic has numerous applications
in computer science. These rules are used in the design of computer circuits,
construction of computer programs, verification of the correctness of programs,
and in many other ways.

Propositions: A proposition is a statement to which only one of the terms, true
or false, can be meaningfully applied.
The value of a proposition if true is denoted by 1and if false is denoted by 0.
Occasionally they are also denoted by the symbols T and F.

The following are propositions:

(i) 4 + 2 = 6

(ii) 4 is an even integer and 5 is not.

(iii) 5 is a prime number.

(iv) New Delhi is the capital of India.

(v) 2 { 1, 3, 5, 7}

(vi) 42 51

(vii) Paris is in England.

Of the above propositions, (i)–(iv) are true whereas (v)–(vii) are false.

The following are not propositions:

(i) Where are you going? (ii) x + 2 = 5

(iii) x + y < z (iv) Beware of dogs

The expressions (i) and (iv) are not propositions since neither is true or false. The
expression (ii) and (iii) are not propositions, since the variables in these expressions
have not been assigned values and hence they are neither true or false.
Note: Letters are used to denote propositions just as letters are used to denote variables.
The conventional letters used for this purpose are p, q, r, s, …

Formal Logic

NOTES

Self - Learning
Material 5

1.2.2 Logical Operators

There are several ways in which we commonly combine simple statements into
compound ones. The words or, and, not, if… then and if and only if, can be added
to one or more propositions to create a new proposition. New propositions are
called compound propositions. Logical operators are used to form new propositions
or compound propositions. These logical operators are also called connectives.

Conjunction (AND): If p and q are propositions, then the proposition ‘p AND
q’, denoted by p q, is true when both p and q are true and is false otherwise.
The proposition p q is called the conjunction of p and q.

The truth table for p q is shown in Table 1.1. Note that there are four rows in
this truth table, one row for each possible combination of truth values of the
propositions p and q.

Table 1.1 Truth Table for Conjunction

p q p q

0 0 0
0 1 0
1 0 0
1 1 1

Example 1.1: Find the conjunction of the propositions p and q where p is the
proposition ‘Today is Sunday’ and q is the proposition ‘It is raining today’.

Solution: The conjunction of these two propositions is p q, the proposition,
‘Today is Sunday and it is raining today’.

Example 1.2: Let p be ‘Ravi is rich’ and let q be ‘Ravi is happy’. Write each of
the following in symbolic form:

(i) Ravi is poor but happy.

(ii) Ravi is neither rich nor happy.

(iii) Ravi is rich and unhappy.

Solution:

(i) ~ p q (ii) ~ p ~ q (iii) p ~ q

Disjunction (OR): If p and q are propositions, then disjunction p or q, denoted
as p q, is false when p and q are both false and true otherwise (Refer Table
1.2). The proposition p q is called the disjunction of p and q.

Note that connectives ~ and defined earlier have the same meaning as the
words ‘NOT’ and ‘AND’ in general. However, the connective is not always
the same as the word ‘OR’ because of the fact that the word ‘OR’ in English is
commonly used both as an ‘Exclusive OR’ and as an ‘Inclusive OR’. For example,
consider the following statements:

(i) I shall watch the movie on TV or go to cinema.
(ii) There is something wrong with the fan or with the switch.
(iii) Ten or twenty people were killed in the fire today.
In statement (i), the connective ‘OR’ is used in the exclusive sense; that is to

say, one or the other possibility exists but not both. In (ii) the intended meaning is
clearly one or the other or both. The connective ‘OR’ used in (ii) is the ‘Inclusive

Formal Logic

NOTES

Self - Learning
6 Material

OR’. In (iii) the ‘OR’ is used for indicating an approximate numbr of people, and
it is not used as a connective. From the definition of disjunction it is clear that is
‘Inclusive OR’.

Table 1.2 Truth Table for Disjunction

p q p q

0

0

1

1

0

1

0

1

0

1

1

1

Negation (NOT): If p is a proposition, its negation not p is another proposition
called the negation p. The negation of p is denoted by ~ p. The proposition ~ p is
read ‘not p’.

Alternate symbols used in the literature are p, p and ‘NOT p’.

Note that a negation is called a connective although it only modifies a statement.
In this sense, negation is the only operator that acts on a single proposition.

Truth table of ~ p is shown in Table 1.3.

Table 1.3 Truth Table for Negation

p ~p

0 1
1 0

Example 1.3: Find the negation of the propositions:

(i) It is cold.
(ii) Today is Sunday.
(iii) Ravi is poor.

Solution: The negation of the propositions are:

(i) It is not cold.

(ii) Today is not Sunday.

(iii) Ravi is not poor.

Conditional Operator (if … then): Let p and q be propositions. The implication
p q is false when p is true and q is false and true otherwise (Refer Table 1.4).
In the implication, p is called the premise or hypothesis and q is called the
consequence or conclusion.

Table 1.4 Truth Table for If…. Then

p q p q

0
0
1
1

0
1
0
1

1
1
0
1

Formal Logic

NOTES

Self - Learning
Material 7

Because implications arise in many places in mathematical argument, a wide variety
of terminology is used to express p q. Some of the more common ways of
expressing this implication are:

(i) p implies q.

(ii) if p, then q.

(iii) q if p.

(iv) p only if q.

(v) p is sufficient for q.

(vi) q whenever p.

(vii) q is necessary for p.

We shall avoid the word ‘implies’ since it might be used in different contexts.

Example 1.4: Let p denote ‘It is below freezing’ and let q denote ‘It is snowing’.
Write the following statements in a symbolic form:

(i) If it is below freezing, it is also snowing.
(ii) It is not snowing if it is below freezing.
(iii) It is below freezing is a necessary condition for it to be snowing.

Solution: Recall that p q can be read ‘if p, then q’ or ‘p only if q’ or ‘q is
necessary for p’. Then (i) p q (ii) p ~ q (iii) q p

Example 1.5: Let p and q be the propositions, where
p : You drive over 80 kms per hour.
q : You get a speeding ticket.
Write the following propositions in symbolic form:
(i) You will get a speeding ticket if you drive over 80 kms per hour.
(ii) If you do not drive over 80 kms per hour, then you will not get a speeding

ticket.
(iii) Driving over 80 kms per hour is sufficient for getting a speeding ticket.
(iv) Whenever you get a speeding ticket, you are driving over 80 kms per

hour.

Solution: (i) p q (ii) ~ p ~ q (iii) p q (iv) q p

Biconditional Operator (if and only if): Let p and q be propositions. The
biconditional p q is true when p and q have the same truth values and is false
otherwise (Refer Table 1.5).

Note that the biconditional p q is true when both the implications p q and q
 p are true. So ‘p if and only if q’ is used for biconditional. Other common ways
of expressing the proposition p q or p = q are ‘p is necessary and sufficient for
q’ and ‘If p then q, and conversely’.

Table 1.5 Truth Table for If and Only If

p q p q

0

0

1

1

0

1

0

1

1

0

0

1

Formal Logic

NOTES

Self - Learning
8 Material

Each of the following theorems is well known, and each can be symbolized in
the form p q:

(i) Two lines are parallel if and only if they have the same slope.
(ii) Two triangles are congruent if and only if all three sets of corresponding

sides are congruent.

Example 1.6: Let p denote ‘He is poor’ and let q denote ‘He is happy’. Write
each of the following statement in symbolic form using p and q:

(i) To be poor is to be unhappy.
(ii) He is rich if and only if he is unhappy.
(iii) Being rich is a necessary and sufficient condition to being happy.

Solution:

(i) p q (ii) ~ p q (iii) ~ p q

1.2.3 Truth Tables

The truth table of a logical operator specifies how the truth value of a proposition
using that operator is determined by the truth values of the propositions. A truth
table lists all possible combinations of truth values of the propositions in the left
most columns and the truth value of the resulting propositions in the right most
column.
Our basic concern is to determine the truth table of a proposition for each possible
combination of the truth values of the compound propositions. A table showing all
such truth values is called truth table of the formula. In general, if there are n
distinct components in a proposition or formula, we need to consider 2n possible
combinations of truth values in order to obtain the truth table.

Two methods of constructing truth table are shown in the following examples.
Example 1.7: Construct the truth table for the statement formula ~ p q.

Solution: It is necessary to consider all possible values of p and q (for the variables,
as here, four rows are necessary). These values are entered into first two columns
of table for both methods.

Method 1: In this method, the truth values of ~ p are entered in the third column,
and the truth values of ~ p q are entered in the fourth column.

Truth Table (Method 1) Truth Table (Method 2)

p q ~ p ~ p q

0

0

1

1

0

1

0

1

1

1

0

0

0

1

0

0

p q p ~ q

0
0
1
1

0
1
0
1

0
0
1
1

1
1
0
0

0
1
0
0

0
1
0
1

Step
number

1 2 3 1

Method 2: In this method, a column is drawn for each statement as well as for the
connectives that appear. The truth values are entered step by step. The step numbers
at the bottom of the table show the sequence followed in arriving at the final step.

Formal Logic

NOTES

Self - Learning
Material 9

Example 1.8: Construct the truth tables for:

(i) ~ (p q) (ii) p (~ q) (iii) (p q) r
(iv) (p q) (q r) (r p) (v) (~ p) (~ q)

Solution:

(i) ~ (p q) (ii) p (~ q)

Truth Table Truth Table

p q p q ~ (p q)

0
0
1
1

0
1
0
1

0
0
0
1

1
1
1
0

p q ~ q p (~ q)

0
0
1
1

0
1
0
1

1
0
1
0

0
0
1
0

(iii) (p q) r

Truth Table

p q r p q (p q) r

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
1

(iv) (p q) (q r) (r p)

Truth Table

p q r p q q r r p (p q) (q r) (p q) (q r) (r p)

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

1

0

0

1

1

0

0

0

1

0

1

1

1

(v) (~ p) (~ q)

Truth Table

p q ~ p ~ q (~ p) (~ q)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

1

1

1

0

Formal Logic

NOTES

Self - Learning
10 Material

1.2.4 Equivalence Formula

Two propositions are logically equivalent or simply equivalent if they have exactly
the same truth values under all circumstances. We can also define this notion as
follows:

The propositions p and q are called logically equivalent if p q is a tautology..
The equivalence of p and q is denoted by p q.
Notes:

1. One way to determine whether two propositions are equivalent is to use a truth table.
In particular, the propositions p and q are logically equivalent if and only if the
columns giving their truth values agree.

2. Whenever we find logically equivalent statements, we can substitute one for another
as we wish, since this action will not change the truth value of any statement.

Example 1.9: Show that ~ (p q) and ~ p ~ q are logically equivalent.

Solution: Construct the truth table of these propositions as shown in Truth Table.
Since the truth values are same for all combinations, it follows that these propositions
are logically equivalent.

Truth Table

p q ~ p ~ q p q ~ (p q) ~ p ~ q

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

0

0

0

1

1

1

1

0

1

1

1

0

Example 1.10: Show that two propositions p q and ~ p ~ q are logically
equivalent.
Solution: Construct the required truth table. Since the truth values of p q and
~ p q agree,

p q ~ p q

Truth Table

p q ~ p p q ~ p q

0

0

1

1

0

1

0

1

1

1

0

0

1

1

0

1

1

1

0

1

Table 1.6 contains some important equivalences. In these equivalences, 1
denotes any proposition that is a tautology, and 0 denotes any proposition that is
a contradiction. The symbol p, q, r represent arbitrary propositions. Most of the
equivalences in this table have straightforward intuitive interpretations and all of
them can be verified by constructing truth tables.

Formal Logic

NOTES

Self - Learning
Material 11

Table 1.6 Logical Equivalences

Equivalence Name

1. p (p p) Idempotents of

2. p (p p) Idempotents of

3. (p q) (q p) Commutativity of

4. (p q) (q p) Communtativity of

5. (p q) r p (q r) Associativity of

6. (p q) r p (q r) Associativity of

7. ~ (p q) ~ p ~ q De Morgan’s law 1

8. ~ (p q) ~ p ~ q De Morgan’s law 2

9. p (q r) (p q) (p r) Distributive of over

10. p (q r) (p q) (p r) distributive of over

11. p 1 1 (Null) or Domination law 1

12. p 0 0 (Null) or Domination law 2

13. p 1 p Identity law 1

14. p 0 p Identity law 2

15. p ~ p 1 Negation law 1

16. p ~ p 0 Negation law 2

17. ~ (~ p) p Double negation law (involution)

18. p q ~ p q Implication law

19. p q (p q) (q p) Equivalence law

20. (p q) r p (q r) Exportation law

21. (p q) (p ~ q) ~ p Absurdity law

22. p q ~ q ~ p Contrapositive law

23. p (p q) p Absorption law 1

24. p (p q) p Absorption law 2

25. p q (p q) (~ p ~ q) Biconditional law

Example 1.11: Write an equivalent formula for p (q r) (r p) which does
not contain the biconditional.

Solution: Since p q (p q) (q p), p (q r) (r p) p ((
q r) (r q)) ((r p) (p r))

Example 1.12: Write an equivalent formula for p (q r) which contains neither
the biconditional nor the conditional.

Solution: Since p q (p q) (q p) and p q ~ p q

 () (() ())

 ((~) (~))

p q r p q r r q

p q r r q

Formal Logic

NOTES

Self - Learning
12 Material

1.2.5 Tautology

The final column of a truth table of a given formula contains both 1 and 0. There are
some formulae whose truth values are always 1 or always 0 regardless of the truth
value assignments to the variables. Consider for example, the statement formula p
~ p and p ~ p in Truth Table 1.7.

Truth Table 1.7 Tautology and Contradiction

p ~ p p ~ p p ~p

0

1

1

0

1

1

0

0

The truth values of p ~ p and p ~ p, which are 1 and 0 respectively, are

independent of the statement by which the variable p may be replaced.

Tautology: A statement formula which is true regardless of the truth values of
the statements which replace the variables in it is called a tautology or a logical
truth or a universally valid formula.

Contradiction: A statement formula which is false regardless of the truth
values of the statements which replace the variables in it is called a contradiction.

Contingency: A statement formula that is neither a tautology nor a
contradiction is called a contingency.

Note: A straight forward method to determine whether a given formula is a tautology is to
construct its truth table . We may say that a statement formula which is a tautology is
identically true (their truth tables consist of a column of ones) and a formula which is a
contradiction is identically false (their truth tables consist of a column of zeros). Obviously,
the negation of a contradiction is a tautology.

Example 1.13: Verify if the following propositions are tautologies:
(i) (p q) p
(ii) q (p q)
(iii) (p q) (q p)
(iv) p ~ (p q)
(v) ~ (p q) (~ p) (~ q)

Solution: Construct the truth table of the above given propositions.

Truth Table

p q ~ p ~ q p q p q q p ~ (p q) (a) (b) (c) (d) (e)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

0

1

1

1

0

0

0

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Since the truth value of all propositions is 1, for all values of p and q, the given
propositions are tautologies.

Example 1.14: Verify if the proposition (p q) ~ (p q) is a contradiction.

Formal Logic

NOTES

Self - Learning
Material 13

Solution:

Truth Table

p q p q p q ~ (p q) (p q) ~ (p q)

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

1

0

0

0

0

0

0

0

Since the truth value of (p q) ~ (p q) is 0 for all values of p and q, the
proposition is a contradiction.

Example 1.15: Show that the conjunction of two tautologies is also a tautology.

Solution: Let us denote A and B by two statement formulae which are tautologies.
If we assign any truth values to the variables of A and B, then the truth values of
both A and B will be 1. Thus, the truth value of A B will be 1, so that A B will
be a tautology.

Example 1.16: From the formulae given below, indicate if they are tautologies or
contradictions.

(i) p (p q) (ii) (p ~ p) ~ p

(iii) (~ q p) q (iv) (p q) (~ p ~ q)

Solution:
Truth Table

p q ~ p ~ q p q ~ p ~ q p ~ p ~ q p (a) (b) (c) (d)

0

0

1

1

0

1

0

1

1

1

0

0

1

0

1

0

0

1

1

1

1

0

0

0

1

1

0

0

0

0

1

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

Since the truth values of (i) and (ii) are 1 for all values of p and q, (i) and (ii)

are tautologies. Since the truth values of (iii) and (iv) are 0 for all values of p and
q, (iii) and (iv) are contradictions.

Substitution Instance: A formula A is called a substitution instance of another
formula B, if A can be obtained from B by substituting formulae for some variables
of B, with the condition that the same formula is substituted for the same variables
each time it occurs.
Note: Suppose A (p, q, ….) is a tautology. Then it does not depend upon the particular truth
values of its variables p,q,… so we can substitute P for p, Q for q… for any propositions P,
Q,… in the tautology A (p,q…) and still have a tautology A(P, Q,…).

Example 1.17: Produce the substitution instance of the following formulae for the
given substitutions:

(i) (((p q) p) p); substitute (p q) for p and (p q r) for q.

(ii) ((p q) (q p); substitute q for p and (p ~ p) for q.

Formal Logic

NOTES

Self - Learning
14 Material

Solution:

(i) Substitute (p q) for p and (p q r) for q simultaneously, we get

(((p q) (p q r) (p q) (p q))

(ii) Substitute q for p and (p ~ p) for q simultaneously in:

((p q) (q p)), we get (q (p ~ p)) ((p ~ p) q))

Note: In constructing substitution instances of a formula, substitutions are made for the
simple proposition (without connectives) and never for the compound proposition. For
example, p q is not a substitution instance of p ~ r, because it must be replaced by r and
not ~ r.

Check Your Progress

1. What is proposition?

2. What is the use of logical operators?

3. Define truth table.

4. When do the two propositions logically equivalent?

5. How can we draw inference?

1.2.6 Inference Theory

To draw inference we must have some rule or a set of rules that serve the basis of
inference, otherwise inference will not have sound reasoning. This uses the rules of
inference given for the statement calculus along with additional rules needed to
deal with formulas with quantifiers. We can draw inference on any given statement
with symbols and logical connectives either by truth table or by applying rules of
inference that are given in subsequent topic.

If case conclusion has the form of a conditional statement, rule of conditional
proof called CP is used. For using equivalences and implications, some rules are
needed to eliminate quantifiers for such derivation.

Rules of specification, known as rules US (Universal Specification) and ES
(Existential Specification) are used for the purpose of elimination. After
eliminating quantifiers the inference is drawn. If the desired conclusion is to be
quantified, rules of generalization called rules UG (Universal Generalization)
and EG (Existential Generalization) are used to attach a quantifier.

All these rules are given under the section ‘Rules of Inference’.

1.2.7 Validity by Truth Table

We can draw inference on any given statement with symbols and logical connectives
either by truth table or by applying rules of inference that are given in subsequent
topic.

Two statements are equivalent if they have identical truth values. A logical
statement is valid when it is a tautology. To check this, truth tables are constructed.

1.2.8 Rules of Inference

Table 1.8 states the various rules of inference.

Formal Logic

NOTES

Self - Learning
Material 15

Table 1.8 Rules of Inference

Rules of Inference Implication Form

Addition I1

p

p P p

Conjunction I2

 p P p

Simplification I3

 p

p
(p p)

Modus tollens I4

p [)](p p

 p

Disjunctive syllogism I5

 p

p

[)](pp

Modus ponens
p

p

 pp

Hypothetical syllogism I7

p

R

p R RPRP

Conjunctive dilemma

 sRP

p R

s SRpSRp

Disjunctive dilemma

 SRp

 s

 p R [(p) (R S)] [S]
(p R)

Formal Logic

NOTES

Self - Learning
16 Material

The two rules of inference are called rules P and T.

Rule P: A premise may be introduced at any point in the derivation.

Rule T: A formula S may be introduced in a derivation if S is tautologically implied
by any one or more of the preceeding formulae in the derivation of a truth value.

Example 1.18: For the given set of arguments check the validity of conclusion:

(i) If determinism is true then we have no free will.
(ii) If Heisenberg’s interpretation of quantum physics is correct, then there

are events not necessiated by prior events.
(iii) If there are events not necessitated by prior events, then we have free will.

Conclusion: If Heisenberg interpretation of physics is correct then we have free
will.

Solution: D : Determinism is true.

Q : We have no free will.

R : Heisenberg interpretation of quantum physics is correct.

S : There are events not necessitated by prior events.

Arguments: (D) (R S)(S)

Conclusion: R
(i) SR Rule P (ii) R Rule P

From cases (i) and (ii), we get :

(iii) R rule T and hypothetical syllogism.

1.2.9 Predicate Calculus

Consider the two statements ‘Rohit is Brilliant’ and ‘Manaswine is Brilliant’. As
propositions, there is no relation between them, but they have something in
common. Instead of writing two statements we can write a single statement like ‘x
is brilliant’, because both Rohit and Manaswine share the same nature brilliant.
By replacing x by any other name we get many propositions. The common feature
expressed by ‘is brilliant’ is called predicate. Predicate calculus deals with sentences
involving predicates.

A part of a declaritive sentence describing the properties of an object or relation
among objects can be referred as predicate, e.g. ‘Is brilliant’.

Note: A statement of the form p(x1, x2, ..., xn) is the value of the propositional function P at the
nth tuple (x1,..., xn) and P is also called a predicate.

For example, Statements involving variables such as x > 5, x = y + 6, and
x + y = z.

These statement are neither true nor false when the values of the variables are
not specified.

Let us consider the statement x > 5.

Here the variable x is the subject of the statement. The second part predicate
is greater than 5 and > refers to a property that the subject of the statement can
have. Therefore x > 5 can be written in the form p(x). The statement p(x) is also

Formal Logic

NOTES

Self - Learning
Material 17

said to be the value of the propositional function P at x. Once a value has been
assigned to the variable x, the statement can be written as p(x).

Statement Calculus

In logical reasoning, a certain number of propositions is assumed to be true, and
based on that assumption, some other propositions are derived.

Hypothesis: The propositions that are assumed to be true. It may also be referred
to as premises.

Conclusion: The proposition derived by using the rules of inference.

Valid argument: The process of deriving conclusions based on the assumptions
of a premise.

Free and Bound Variables

The variable is said to be bound if it is concerned with either universal () or
existential quantifier and the scope of the variable in the formulae immediately
following the quantifier. The variable, which is not concerned with any quantifier, is
called free variable.

For example, x [p(x, y)] in the statement given above, x is said to be bound
and the scope of x is upto p(x, y), while y is called free variable.

Quantifiers

When all the variables in a propositional function are assigned values, the resulting
statement has a truth value. However, there is another important way to change
propositional functions into propositions, called quantification. It has been broadly
classified into two types, namely

(i) Universal Quantification
(ii) Existential Quantification

Universe of Discourse: Many mathematical statements assert that a property is
true for all values of a variable in a particular domain, called the universe of discourse.
Such a statement is expressed using an universal quantification.

Universal Quantification: The universal quantification of p(x) is a proposition
only when p(x) is true for all values of x in the universe of discourse.

Notation: x p(x) universal quantification of p(x)

It is also expressed as,

‘for all x p(x)’ or ‘for every x p(x)’

Example 1.19: ‘Every student in this class has studied logic’.

Solution: Let p(x) denote the statement ‘x has studied logic’,

 x [s(x) p(x)]

Where s(x) is the statement ‘x is in this class’.

Example 1.20: What is the truth value of x p(x), where p(x): x2< 10 and the
universe of discourse consists of the positive integers not exceeding 4?

Solution: The statement x p(x) is the same as the conjunction. p(1) p(2)
p(3) p (4).

Formal Logic

NOTES

Self - Learning
18 Material

Since the universe of discourse consists of the integers 1, 2, 3,and 4,

 p(4) in the statement ‘42 < 10’ is false, it follows x p(x) is also false.

Reason:

p(1) p(2) p(3) p(4)

T T T F = false

Existential Quantification: The existential quantification of p(x) is the
proposition ‘There exists an element x in the universe of discourse such that p(x)
is true.’

Notation: x p(x)

It is also expressed as,

‘There is an x such that p(x)’

‘There is atleast one x such that p(x)’, or for some x p(x).

Example 1.21: Let p(x) : x > 3, what is the truth value of the quantification x
p(x) where the universe of discourse is the set of real numbers.
Solution: Since x > 3 is true, for example, when x = 4 the existential quantification
of p(x) is x p(x) is true.

Example 1.22: Write the predicate ‘x is the father of the mother of y’.

Solution: Let p(x) : x is a person.

p(x, z) : x is the father of z.

m(z, y) : z is the mother of y.

We assume that there exists a person z such that x is the father of z and z is the
mother of y.

Universal Specification (US)

For a given predicate (x) [p(x)] one can conclude p(b).

Existential Specification (ES): From x [p(x)] one can conclude the value
of p(b) provided that b is not free in any given premise and also not free in any
prior step of the derivation. These requirements can easily be met by choosing a
new variable each time ES is used.

Existential Generalization (EG): From p (b) one can conclude x [p(x)].

Universal Generalization (UG): From p (b) one can conclude x [p(x)]
provided that b is not free in any of the given premises and provided that if b is free
in the prior step which resulted from the use of ES, then no variables introduced
by that use of ES appear free in p(b).

Example 1.23: Some cats are black but all buffaloes are black.

Solution: C(x) : x is a cat.

B(y) : y is a buffalo.

b(x) : x is black.

Thus, x y [C (x) b(x)] [B(y) b(y)]

Formal Logic

NOTES

Self - Learning
Material 19

Example 1.24: Sum of two positive integers is greater than either of the integers.

Solution: I (x) : x is a positive integer.

GT (x, y) : x is greater than y.

Su (x, y) : Sum of x and y.
Thus, x y yIxI [GT(Su(x, y), x] GT [Su(x, y), y]

Example 1.25: Every student in this school is either good at studies or good in
sports.

Solution: S(x) : x is a student of this school.

ST(x) : x is good at study.

SP(x) : x is good at sports.

Thus, x [S(x) (ST(x) SP(x)]
Quantifiers are distributive over the predicate and negation of universe quantifier

is existence quantifier and vice versa. This is being state below.

(i) x [A(x) B(x)] x {A(x)} x {B(x)}

(ii) x [A(x) B(x)] x [A(x)] x [B(x)]

(iii) x A(x) x A(x)

(iv) x A(x) x A(x)

1.3 SEMI-GROUPS AND MONOIDS

Groups occupy a very important place in the study of abstract algebra.

Definition: A non-empty set group (G), together with a binary composition *
(star) is said to form a group, if it satisfies the following postulates.

 Associativity: a * (b * c) = (a * b) * c, for all a, b, c G
 Existence of Identity: an element e G, such that,

a * e = e * a = a for all a G
(e is then called identity)

 Existence of Inverse: For every a G, a G (depending upon a),
such that,

a * a = a * a = e
(a is then called inverse of a)

Notes:
1. Since * is a binary composition on G, it is understood that for all a, b G, a * b is a

unique member of G. This property is called closure property.
2. If, in addition to the above postulates, G also satisfies the commutative law

a * b = b * a for all a, b G
then G is called an abelian group or a commutative group.

3. Generally, the binary composition for a group is denoted by ‘.’ (dot), which is so
convenient to write (and makes the axioms look so natural too).

This binary composition ‘.’ is called product or multiplication (although
it may have nothing to do with the usual multiplication, that you are so familiar
with). In fact, you even drop ‘.’ and simply write ab in place of
a . b.

Formal Logic

NOTES

Self - Learning
20 Material

If the set G is finite (i.e., has finite number of elements) it is called a finite
group; otherwise, it is called an infinite group.

The symbols e is used for identity of a group and a–1 for the inverse of
element a of the group.

Definition: By the order of a group, you will mean the number of elements in
the group and shall denote it by o(G) or | G |.

The following are a few points of systems that form groups or do not form
groups:

1. The set Z of integers forms an abelian group with respect to the usual
addition of integers.

2. In the sets Q of rationals, R of real numbers would also form abelian
groups with respect to addition.

3. Set of integers, with respect to usual multiplication does not form a group,
although closure, associativity and identity conditions hold.
Note 2 has no inverse with respect to multiplication as there does not
exist any integer a such that, 2 . a = a . 2 = 1.

4. The set G of all +ve irrational numbers together with 1 under multiplication

does not form a group as closure does not hold. Indeed 3. 3 3
G, although you would notice that other conditions in the definition of a
group are satisfied here.

5. Let G be the set {1, – 1}. Then it forms an abelian group under
multiplication. It is again easy to check the properties.
I would be identity and each element is its own inverse.

6. Set of all 2 × 2 matrices over integers under matrix addition would be
another example of an abelian group.

7. Set of all non zero complex numbers forms a group under multiplication
defined by,

(a + ib) (c + id) = (ac – bd) + i (ad + bc)

1 = 1 + i.0 will be identity,
2 2 2 2

a b
i

a b a b
 will be inverse of

a + ib.
Note: a + ib non zero means that not both a and b are zero. Thus, a2 + b2 0.

8. The set G of all nth roots of unity, where n is a fixed positive integer,
forms an abelian group under usual multiplication of complex numbers.
The complex number z is an nth root of unity if zn = 1 and also that there
exist exactly n distinct roots of unity.
In fact, the roots are given by,

2
n

ir
e , where r = 1, 2, ..., n and eix = cos x + i sin x.

Formal Logic

NOTES

Self - Learning
Material 21

If a, b G be any two members, then an = 1, bn = 1 thus (ab)n = an

bn = 1.
 ab is an nth root of unity.
 ab G Closure holds.

Associativity of multiplication is true in complex numbers.
Again, since 1. a = a . 1 = a, 1 will be identity.

Also for any a G, 1

a
 will be its inverse as 1

n

a
 =

1
na

 = 1.

So, inverse of
2

n

ir
e is e2i(n – r)/n and identity is

2
n

io
e = 1.

Commutativity is must hence G is an abelian group.
As a particular case, if n = 4 then G is {1, – 1, i, – i}.

9. (i) Let G = {± 1, ± i, ± j, ± k}. Define product on G by usual multiplication
together with,

i2 = j2 = k2 = – 1, ij = – ji = k
jk = – kj = i
ki = – ik = j

Then G forms a group. G is not abelian as ij ji.
This is called the Quaternion Group.
(ii) If set G consists of the eight matrices:

1 0 1 0 0 0 0 1 0 1
, , , , , ,

0 1 0 1 0 0 1 0 1 0

i i

i i

0 0
,

0 0

i i

i i
, where i = 1

Then G forms a non-abelian group under matrix multiplication.

10. Let G = {(a, b) | a, b rationals, a 0}. Define * on G by
(a, b) * (c, d) = (ac, ad + b)

Closure follows as a, c 0 ac 0

[(a, b) * (c, d)] * (e, f) = (ac, ad + b) * (e, f)
= (ace, acf + ad + b)

(a, b) * [(c, d) * (e, f)] = (a, b) * (ce, cf + d)
= (ace, acf + ad + b)

This proves associativity.
(1, 0) will be identity and (1/a, – b/a) will be inverse of any element
(a, b).
G is not abelian as,

(1, 2) * (3, 4) = (3, 4 + 2) = (3, 6)
(3, 4) * (1, 2) = (3, 6 + 4) = (3, 10).

Formal Logic

NOTES

Self - Learning
22 Material

11. (i) The set G of all 2 × 2 matrices of the form
a b

c d
 over reals, where

ad – bc 0, forms a non-abelian group under matrix multiplication. It is
called the general linear group of 2 × 2 matrices over reals and is denoted
by GL(2, R).

The matrix
1 0

0 1
 will act as identity and

the matrix

d b

ad bc ad bc

c a

ad bc ad bc

 will be inverse of
a b

c d
.

(ii) If G be the set of all n × n invertible matrices over reals, then G forms
a group under matrix multiplication.

12. Let G = {2r | r = 0, ±1, ±2, ...}
It can be shown that G forms a group under usual multiplication.

For any 2r, 2s G, 2r. 2s = 2r + s G
Thus closure holds. Associativity is obvious.
Again as 1 G, and x . 1 = 1 . x = x for all x G, 1 is identity.
For any 2r G, as 2–r G and 2r. 2–r = 20 = 1. Here each element of
G has inverse. Commutativity is evidently true.

13. Group of Residues: Let G = {0, 1, 2, 3, 4}. Define a composition 5
on G by a 5 b = c where c is the least non –ve integer obtained as
remainder when a + b is divided by 5. For example, 35 4 = 2, 35 1
= 4, etc. Then 5 is a binary composition on G (called addition modulo
5). It is easy to verify that G forms a group under this.

You can generalize this result to,
G = {0, 1, 2, ..., n – 1}

under addition modulo n where n is any positive integer.
Here,

a n b =
if

if

a b a b n

a b n a b n

Drop the sub suffix n and simply write . This group is generally denoted
by Zn.

14. Let G = {x Z | 1 x < n, x, n being co-prime} where Z = Set of
integers and x, n being co-prime means H.C.F of x and n is 1.
You define a binary composition on G by a b = c where c is the
least +ve remainder obtained when a . b is divided by n. This composition
 is called multiplication modulo n.
Consequently, G forms a group under .
Closure: For a, b G, let a b = c. Then c 0, because otherwise
n | ab which is not possible as a, n and b, n are co-prime.

Formal Logic

NOTES

Self - Learning
Material 23

Thus c 0 and also then 1 c < n.
Now if c, n are not co-prime then some prime number p such that, p |c
and p |n.
Again, as ab = nq + c for some q.
We obtain p |ab [p |n p |nq, p |c p |nq + c]
 p |a or p |b (as p is prime)
If p |a then as p |n it means a, n are not co-prime.
But a, n are co-prime. Similarly, p |b leads to a contradiction.
Hence, c, n are co-prime and thus c G, showing that closure holds.
Associativity: Let a, b, c G be any elements.
Let a b = r1, (a b) c = r1 c = r2 then r2 is given by
r1c = nq2 + r2

Also a b = r1 means ab = q1n + r1

Thus, ab – q1n = r1 (ab – q1n)c = r1c = nq2 + r2

 (ab)c = r2 + nq2 + nq1c = n(q1c + q2) + r2

or that r2 is the least non-negative remainder got by dividing (ab)c by n.

Similarly, if a (b c) = r3 then you can show that r3 is the least non
–ve remainder obtained by dividing a(bc) by n.
But since a(bc) = (ab)c, r2 = r3. Hence a (b c) = (a b) c.

Existence of Identity: It is observed that
a 1 = 1 a = a for all a G or that 1 acts as identity.
Existence of Inverse: Let a G be any element then a and n are co-
prime and thus you can find integers x and y such that, ax + ny = 1.
By division algorithm,

x = qn + r, where 0 r < n
 ax = aqn + ar
 ax + ny = aqn + ar + ny
 1 = aqn + ar + ny

Or that ar = 1 + (–aq – y)n

i.e., a r = 1. Similarly r a = 1. If r, n are co-prime, r will be inverse
of a.
If r, n are not co-prime, you can find a prime number p such that, p | r,
p | n

 p | qn and p | r p | qn + r p | x
 p | ax also p | ny p | ax + ny = 1

Which is not possible. Thus, r, n are co-prime and so r G and is the
required inverse of a.
This proves that G will be abelian. You denote this group by Un or U(n)
and call it the group of integers under multiplication modulo n.

Formal Logic

NOTES

Self - Learning
24 Material

Note: Suppose n = p, a prime, then since all the integers 1, 2, 3, .. .,
p – 1 are co-prime to p, these will all be members of G. This can be represented as,

G = {2, 4, 6, ..., 2(p – 1)}

Where p > 2 is a prime and forms an abelian group under multiplication modulo 2p.

15. Let G = {0, 1, 2} and define * on G by
a * b = | a – b |

Then closure is established by taking a look at the composition table

0 1 2*
0 0 1 2

1 1 0 1

2 2 1 0

Since a * 0 = | a – 0 | = a = 0 * a, 0 is identity and a * a =
| a – a | = 0 shows each element will be its own inverse.
But the system (G, *) fails to be a group as associativity does not hold.

Indeed 1 * (1 * 2) = 1 * 1 = 0
But (1 * 1) * 2 = 0 * 2 = 2

16. Let S = {1, 2, 3} and let S3 = A(S) = Set all permutations of S. This set
satisfies associativity, existence of identity and existence of inverse conditions
in the definition of a group. Also clearly, since f, g permutations on S
imply that fog is a permutation on S the closure property is ensured.
Hence, S3 forms a group. That it is not abelian follows by the fact that
fog gof. This would, in fact, be the smallest non-abelian group and
we shall have an occasion to talk about this group again under the section
on permutation groups.

Note: Let X be a non-empty set and let M(X) = Set of all maps from X to X, then A(X)
 M(X). M(X) forms a semi-group under composition of maps. Identity map also
lies in M(X) and as a map is invertible iff it is 1–1, onto, i.e., a permutation, we find
A(X) the subset of all permutations forms a group, denoted by SX and is called
symmetric group of X. If X is finite with say, n elements then o(M(X)) = nn and o(SX)

= n and in that case, we use the notation Sn for SX.

In the definition of a group, only the existence of identity and inverse
of each element is considered. This can be shown that these elements are
unique and provide an elementary but exceedingly useful result.

Lemma: In a group G,
1. Identity element is unique.
2. Inverse of each a G is unique.

3. (a–1)–1 = a, for all a G, where a–1 stands for inverse of a.

4. (ab)–1 = b–1 a–1 for all a, b G.
5. ab = ac b = c.

ba = ca b = c for all a, b, c G.
These are called the cancellation laws.

Formal Logic

NOTES

Self - Learning
Material 25

Proof:
1. Suppose e and e are two elements of G which act as identity.

Then, since e G and e is identity, ee = ee = e
and as e G and e is identity, ee = ee = e
The two e = e, which establishes the uniqueness of identity in a
group.

2. Let a G be any element and let a and a be two inverse elements of
a, then

aa = aa = e and aa = aa = e
Now a = ae = a(aa) = (aa)a = ea = a.
Showing thereby that the inverse of an element is unique. We can denote
inverse of a by a–1.

3. Since a–1 is inverse of a

aa–1 = a–1a = e
which also implies a is inverse of a–1. Thus (a–1)–1 = a.

4. We can prove that ab is inverse of b–1a–1 for which we show

(ab) (b–1a–1) = (b–1a–1) (ab) = e.

Now (ab) (b–1a–1) = [(ab) b–1] a–1

= [(a(bb–1)] a–1

= (ae) a–1 = aa–1 = e

Similarly (b–1a–1) (ab) = e and thus the result follows.
5. Let ab = ac, then

b = eb = (a–1a)b

= a–1(ab) = a–1 (ac)

= (a–1 a)c = ec = c
Thus, ab = ac b = c

This is called the left cancellation law.
Similarly, the right cancellation law can be proved.

17. (i) Let X = {1, 2, 3} and let S3 = A(X) be the group of all permutations
on X. Consider f, g, h A(X), defined by,

f (1) = 2, f (2) = 3, f (3) = 1
g (1) = 2, g (2) = 1, g(3) = 3
h (1) = 3, h(2) = 1, h(3) = 2

It is easy then to verify that fog = goh
But f h.
(ii) If (1, 2) * (3, 4) = (3, 6) = (3, 0) * (1, 2) and (3, 4) (3, 0)
Hence, the cross cancellations may not hold in a group.

Definition: A non-empty set G together with a binary composition ‘.’ is called
a semi-group if,

a . (b . c) = (a . b) . c for all a, b, c G

Formal Logic

NOTES

Self - Learning
26 Material

This holds that every group is a semi-group. That the converse is not true
follows by considering the set N of natural numbers under addition.

The set G in point 15 is not a semi-group.

Theorem 1.1: Cancellation laws may not hold in a semi-group.

Proof: Consider M the set of all 2 × 2 matrices over integers under matrix
multiplication, which forms a semi-group.

If we take A =
1 0

0 0

, B =
0 0

0 2

, C =
0 0

3 0

Then clearlyAB = AC =
0 0

0 0

But B C.

Set of natural numbers under addition is an example of a semi-group in
which cancellation laws hold.

Theorem 1.2: A finite semi-group in which cancellation laws hold is a group.

Proof: Let G = {a1, a2, ..., an} be a finite semi-group in which cancellation
laws hold.

Let a G be any element, then by closure property
aa1, aa2, ..., aan are all in G.

Suppose any two of these elements are equal

say, aai = aaj for some i j

Then ai = aj by cancellation

But ai aj as i j

Hence, no two of aa1, aa2, ..., aan can be equal.

These being n in number, will be distinct members of G [Note o(G) = n].
Thus, if b G be any element then b = aai for some i
i.e., for a, b G the equation ax = b has a solution (x = ai) in G.
Similarly, the equation ya = b will have a solution in G.
G being a semi-group, associativity holds in G.
Hence, G is a group.

Note: The above theorem holds only in finite groups. The semi-group of natural numbers
under addition being an example where cancellation laws hold but which is not a group.

Theorem 1.3: A finite semi-group is a group if and only if it satisfies cancellation
laws.

Proof: Follows by Theorem 1.2.

Definition: A non-empty set G together with a binary composition ‘.’ is said
to form a monoid if

(i) a(bc) = (ab)c a, b, c G
(ii) an element e G such that, ae = ea = a a G

e is then called identity of G. It is easy to see that e is unique.

Formal Logic

NOTES

Self - Learning
Material 27

So all groups are monoids and all monoids are semi groups.
When we defined a group, we insisted that an element e which acts

both as a right as well as a left identity and each element has both sided inverse.
We now show that it is not really essential and only one sided identity and the
same sided inverse for each element could also make the system a group.

Theorem 1.4: A system < G, . > forms a group if and only if

(i) a(bc) = (ab)c for all a, b, c G

(ii) e G, such that, ae = a for all a G

(iii) for all a G, a G, such that, aa = e.
Proof: If G is a group, we have nothing to prove as the result follows by definition.
Conversely, let the given conditions hold.

All we need show is that ea = a for all a G
And aa = a for any a G
Let a G be any element.

By (iii) a G, such that, aa = e

 For a G, a G, such that, aa = e [using (iii)]

Now, aa = a(ae) = (a a)e = (aa)(aa)
= a(aa)a = a(e)a = (ae)a = aa= e.

Thus, for any a G, a G, such that, aa = aa = e

Again, ea = (aa)a = a(aa) = ae = a

 ae = ea = a for all a G

i.e., e is identity of G.
Hence, G is a group.

Theorem 1.5: A system < G, . > forms a group if and only if
(i) a(bc) = (ab)c for all a, b, c G
(ii) e G, such that, ea = a for all a G
(iii) for all a G, some a G, such that, aa = e.

A natural question to crop up at this stage would be what happens, when
one sided identity and the other sided inverse exists. Would such a system also
form a group?

18. Let G be a finite set having at least two elements. Define ‘.’ on G by
ab = b for all a, b G then clearly associativity holds in G.
Let e G by any fixed element.
Then as ea = a for all a G, e will act as left identity.
Again a . e = e for all a G
 e is right inverse for any element a G.
But G is not a group (cancellation laws do not hold in it).
Hence, for a system < G, . > to form a group it is essential that the same

sided identity and inverse exist.

Formal Logic

NOTES

Self - Learning
28 Material

Notation: Let G be a group with binary composition ‘.’. If a G be any
element then by closure property a . a G. Similarly, (a . a) . a G, and so
on.

It can be denoted as a . a by a2 and a . (a . a) or (a . a). a by a3, and
so on. Again a–1. a–1 would be denoted by a–2. And since a . a–1 = e, it can
be denoted as e = a0. The notation states,

am . an = am+n

(am)n = amn

Where m, n are integers.
In case the binary composition of the group is denoted by +, it describes

sums and multiples in place of products and powers. Thus, here 2a = a + a,
and na = a + a + ... + a (n times), if n is a +ve integer. In case n is –ve integer
then n = – m, where m is +ve and we define na = – ma = (– a) +
(– a) + ... + (– a) m times.

Example 1.26: If G is a finite group of order n then show that for any a G,
 some positive integer r, 1 r n, such that, ar = e.

Solution: Since o(G) = n, G has n elements.
Let a G be any element. By closure property a2, a3, ... all belong to G.

Consider, e, a, a2, ..., an

These are n + 1 elements (all in G). But G contains only n elements.
 at least two of these elements are equal. If any of a, a2, ..., an equals

e, our result is proved. If not, then ai = aj for some i, j, 1 i, j n. Without
any loss of generality, we can take i j.

Then, ai = aj

 ai . a–j = a j . a–j

 ai–j = e, where 1 i – j n.

Putting i – j = r gives us the required result.

Example 1.27: Show that a finite semi-group in which cross cancellation holds
is an abelian group.

Solution: Let G be the given finite semi-group. Let a, b G be any elements.
Since G is a semi-group, by associativity

a(ba) = (ab)a
By cross cancellation then ba = ab G is abelian.
Since G is abelian, cross cancellation laws become the cancellation laws.

Hence, G is a finite semi-group in which cancellation laws hold.
Thus, G is a group.

Subgroups

We have seen that R, the set of real numbers, forms a group under addition,
and Z, the set of integers, also forms a group under addition. Also Z is a subset
of R. It is one of the many situations which prompts us to make the following
definition:

Formal Logic

NOTES

Self - Learning
Material 29

Definition: A non-empty subset H of a group G is said to be a subgroup of
G, if H forms a group under the binary composition of G.

Obviously, if H is a subgroup of G and K is a subgroup of H, then K is
subgroup of G.

Abelianization of a Group and its Universal Properties

The abelianization of a group G is defined in the following equivalent ways:

1. It is the quotient of the group by its commutator subgroup, i.e., it is the
group G / [G, G].

2. It is the quotient of G by the relation xy = yx.

3. It is an abelian group A such that there exists a surjective homomorphism
f : G A with the property that whenever : GH is a homomorphism
and H is an abelian group, there is a unique homomorphism : A H such
that = o f.

All of the aforementioned properties can be explained as follows:

In abstract algebra, the commutator subgroup of a group is the subgroup
generated by all the commutators of the group.

For elements g and h of a group G, the commutator of g and h is [g, h]: =
g – 1h –1gh. The commutator [g, h] is equal to the identity element e if and only if gh
= hg, i.e., if and only if g and h commute. In general, gh = hg[g, h].

Abelianization as a homomorphism is the quotient map G G/[G, G],
where the kernel, [G, G], is the commutator subgroup of G. It can also be defined
as a homomorphism f : G A to an abelian group A with the property that
whenever : GH is a homomorphism and H is an abelian group, there is a
unique homomorphism : A H such that = o f.

Given a group G, a factor group G/N is abelian if and only if [G, G] N.
The quotient G / [G, G] is an abelian group called the abelianization of G. It is
usually denoted by Gab or G

ab
.

Let : G Gab Then is universal for homomorphisms from G to an
abelian group H and for homomorphism of groups f : G H there exists a unique
homomorphism F : G ab H such that f = F o . This shows the uniqueness of
the abelianization Gab up to canonical isomorphism; whereas, the explicit construction
G G/[G, G] shows existence.

Congruences

Let a, b, c, (c > 0) be integers. We say a is congruent to b modulo c if c divides
a – b and we write this as a b (mod c).This relation ‘’ on the set of integers
is an equivalence relation as seen earlier.

Addition, subtraction and multiplication in congruences behave naturally.

Let a b (mod c)

a1b1 (mod c) ca – b, ca1 – b1

 c (a + a1) – (b + b1)

 a + a1 b + b1 (mod c)

Formal Logic

NOTES

Self - Learning
30 Material

Similarly, a – a1 b – b1 (mod c)

Also, ca – b, ca1 – b1

 caa1 – ba1, cba1 – bb1

 c(aa1 – ba1) + (ba1 – bb1)

 caa1 – bb1

 aa1 bb1 (mod c)

We may, however, not be able to achieve the above result in case of division.

Indeed
1 1

or
a b

a b
 may not even be integers.

Again, cancellation in congruences in general may not hold.

i.e., ad bd (mod c) need not essentially imply

a b (mod c)

For example, 2.2 2.1 (mod 2)

But 2 1 (mod 2)

However, cancellation holds if g.c.d.(d, c) = 1.

i.e., if ad bd (mod c)

And g.c.d.(d, c) = 1

Then a b (mod c).

Proof: ad bd (mod c)

 cad – bd

 cd (a – b)

 ca – b as g.c.d.(c, d) = 1

 a b (mod c).

Example 1.28: If a b (mod n), prove that g.c.d.(a, n) = (b, n).

Solution: Let d = g.c.d.(a, n)

Then da, dn. But na – b

 da – b, da

 da – (a – b) = b

 db, dn

Let cb, cn cb, ca – b as na – b

 ca – b + b = a

 ca, cn

 cd as d = g.c.d.(a, n)

 g.c.d.(b, n) = d

Exammple 1.29: Establish that if a is an odd integer, then
2n

a 1 (mod 2n +2) for any n 1.

Formal Logic

NOTES

Self - Learning
Material 31

Solution: We prove the result by induction on n.

Let n = 1.

Then 2n

a = a2

And 2n + 2 = 23 = 8

Let a = 2k + 1.

Then a2 = 4k2 + 4k + 1

= 4k (k + 1) + 1

 a2 – 1 = 4k (k + 1)

= Multiple of 8 as either k is even or k + 1 is even.

 a2 1 (mod 8)

So, result is true for n = 1.

Assume that the result is true for n = k.

Then a2k 1 (mod 2k + 2)

Now a2k + 1 – 1 = (a2k
)2 – 1

= (a2k – 1) (a2k + 1)

= (multiple of 2k + 2) (a2k + 1) by induction hypothesis.

But a = odd a2k = odd a2k + 1 = even

 a2k + 1 – 1 = multiple of 2k + 3

 a2k + 1 1 (mod 2k + 3)

So, result is true for n = k + 1.

By induction, result is true for all n 1.

1.3.1 Homomorphisms

In this section we will discuss about an isomorphism which can also be termed as
an ‘Indirect’ equality in algebraic systems. Indeed, if two systems have the same
number of elements and behave exactly in the same manner, nothing much is lost
in calling them equal, although at times the idea of equality may look little
uncomfortable, especially in case of infinite sets.
Definition: Let < G, * > and < G', o > be two groups.

A mapping f : G G' is called a homomorphism if,

f (a * b) = f (a) o f (b) a, b G

We can use the same symbol ‘.’ for both binary compositions.
With that as notation we find a map

f : G G' is a homomorphism if,

f (ab) = f (a) f (b)

If, in addition, f happens to be one-one, onto, we say f is an isomorphism and
in that case write G G'.

Also clearly then,

f (a1a2 an) = f (a1) f (a2) f (an)

holds under an isomorphism (homomorphism)

Formal Logic

NOTES

Self - Learning
32 Material

An onto homomorphism is called epimorphism.
A one-one homomorphism is called monomorphism.
A homomorphism from a group G to itself is called an endomorphism of G.
An isomorphism from a group G to itself is called automorphism of G.
If f : G G' is onto homomorphism, then G' is called homomorphic image

of G.

Let < Z, + > and < E, + > be the groups of integers and even integers.
Define a map f : Z E, s.t.,

f (x) = 2x for all x Z

Then f is well defined as x = y 2x = 2y f (x) = f (y) such that f is
1-1 is clear by taking the steps backwards.

f is a homomorphism as,

f (x + y) = 2(x + y) = 2x + 2y = f (x) + f (y)

Also f is onto as any even integer 2x would have x as its pre-image.
Hence f is an isomorphism.
In fact this example shows that a subset can be isomorphic to its superset.

Example 1.30: Let f be a mapping from < Z, + > the group of integers to the
group G = {1, –1} under multiplication defined as

f : Z G, s.t.,
f (x) = 1 if x is even

= –1 if x is odd

Then f is clearly well defined. Verify, if it is a homomorphism.
Solution: Let x, y Z be any elements.

Case (i): x, y are both even, then x + y is even and as

f (x + y) = 1, f (x) = 1, f (y) = 1

Then f (x + y) = 1 = 1.1 = f (x) . f (y)

Case (ii): x, y are both odd, then x + y is even and

f (x + y) = +1 = (–1)(–1) = f (x) f (y)

Case (iii): x is odd, y is even, then x + y is odd and

f (x + y) = –1 = (–1) (1) = f (x) f (y)

thus in all cases f (x + y) = f (x) f (y)

This proves that f is a homomorphism.
Ontoness is obvious, but f is not 1–1 as f (x) = f (y) does not necessarily mean

x = y. Indeed f (2) = f (4) but 2 4.

Example 1.31: Let R+ be the group of positive real numbers under multiplication
and R the group of all real numbers under addition. Then show that the map

 : R+ R s.t.,

(x) = log x

is an isomorphism.

Formal Logic

NOTES

Self - Learning
Material 33

Solution: is clearly well defined.
(x) = (y)

 log x = log y

 elog x = elog y

 x = y

This shows that is one-one.

Since, (xy) = log xy = log x + log y = (x) + (y)

We find is a homomorphism.
Finally, if y R be any member, then

Since ey R+ and (ey) = y, we gather that is onto and hence on isomorphism.
The map f : R R+, such that, f (a) = ea can also be considered.)

Theorem 1.6: If f : G G' is a homomorphism then

(i) f (e) = e'

(ii) f (x–1) = (f (x))–1

(iii) f (xn) = [f (x)]n, n an integer.

where e, e' are identity elements of G and G' respectively.

Proof: (i) We have

e . e = e

 f (e . e) = f (e)

 f (e) . f (e) = f (e)

 f (e) . f (e) = f (e) . e'

 f (e) = e' (cancellation)

(ii) Again, xx–1 = e = x–1x

 f (xx–1) = f (e) = f (x–1x)

 f (x) f (x–1) = e' = f (x–1) f (x)

 (f (x))–1 = f (x–1).

(iii) Let n be a +ve integer.

f (xn) = (.)
(times)

f x x x
n

= f (x) . f (x) f (x) (n times)
= (f (x))n.

If n = 0, we have the result by (i). In case n is –ve integer, result follows by
using (ii).

Example 1.32: Show that < Q, + > cannot be isomorphic to < Q*, . >,
where Q* = Q –{0} and Q = rationals.

Solution: Suppose f is an isomorphism from Q to Q*. Then as 2 Q*, f is onto,
< Q, + >, such that, f () = 2.

 2
2 2

f

Formal Logic

NOTES

Self - Learning
34 Material

or 2
2 2

f f

 x2 = 2 where x =
2

f Q*

But that is a contradiction as there is no rational no. x such that, x2 = 2. Hence
the result follows.

Example 1.33: Find all the homomorphisms from
4

Z

Z
 to

6

Z

Z
.

Solution: Let :
4 6

f
Z Z

Z Z
 be a homomorphism.

Then f (4Z + n) = n f (4Z + 1)

So, f is completely known if f (4Z + 1) is known.

Now order of (4Z + 1) is 4 and so o(f (4Z + 1)) divides 4.

Also o(f (4Z + 1)) divides 6 and thus o(f (4Z + 1)) = 1 or 2

If o(f (4Z + 1)) = 1, then f (4Z + 1) = 6Z = zero of
6

Z

Z

Hence, f (4Z + n) = zero

If o(f (4Z + 1)) = 2, then f (4Z + 1) = 6Z + 3

 f (4Z + n) = 6Z + 3n

Also, f (4Z + n + 4Z + m) = f (4Z + n + m)

= 6Z + 3(n + m)

= (6Z + 3n) + (6Z + 3m)

= f (4Z + n) + f (4Z + m)

Thus there are two choices for f and it can be defined as,

:
4 6

f
Z Z

Z Z
s.t.,

f (4Z + n) = 6Z + 3n

Notice 4Z + n = 4Z + m

 n – m 4Z

 3(n – m) 12Z 6Z

 3(n – m) 6Z

 6Z + 3n 6Z + 3m

i.e., f is well defined.

So there are two homomorphisms from
4 6

Z Z

Z Z
. In fact, in general, there are

d homomorphisms from
m n

Z Z

Z Z
where d = g.c.d.(m, n)

Definition: Let f : G G' be a homomorphism. The Kernel of f, (denoted by
Ker f) is defined by

Formal Logic

NOTES

Self - Learning
Material 35

Ker f = {x G | f (x) = e'}

where e is identity of G'.

Theorem 1.7: If f : G G' be a homomorphism, then Ker f is a normal
subgroup of G.

Proof: Since f (e) = e', e Ker f, thus Ker f . Again,

x, y Ker f f (x) = e
f (y) = e

Now f (xy–1) = f (x) f (y–1) = f (x)(f (y))–1 = e' . e–1 = e'

 xy–1 Ker f

Hence, it is a subgroup of G.

Again, for any g G, x Ker f

f (g–1xg)= f (g–1) f (x) f (g)

= (f (g))–1f (x) f(g) = (f (g))–1 e' f(g)
= (f (g))–1f (g) = e'

 g–1xg Ker f

Also, it is a normal subgroup of G.

Theorem 1.8: A homomorphism f : G G' is one-one iff Ker f = {e}.

Proof: Let f : G G' be one-one.
Let x Ker f be any element

Then f (x) = e' and as f (e) = e'

f (x) = f (e) x = e as f is 1-1

Hence, Ker f = {e}.

Conversely, let Ker f contain only the identity element.

Let f (x) = f (y)

Then f (x) (f (y))–1 = e'

 f (xy–1) = e'

 xy–1 Ker f = {e}

 xy–1 = e
 x = y or that f is one-one.

Example 1.34: Let f : G G' be a homomorphism. Let a G be such that
o(a) = n and o(f (a)) = m. Show that o(f (a)) | o(a) and f is 1-1 iff m = n.

Solution: Since o(a) = n

We obtain an = e f (an) = f (e)

 f (a . a a) = f (e)

 (f (a))n = e

 o(f (a)) | n = o(a)

Again, let f be 1-1.

Since o(f (a)) = m

We obtain (f (a))m = e'

Formal Logic

NOTES

Self - Learning
36 Material

 f (a) . f (a) f (a) = e'

 f (a . a a) = e'

 f (am) = e' = f (e)

 am = e (f is 1-1)

i.e., o(a) | m or n | m, but already m | n

Hence, m = n.

Conversely, let o(a) = o(f (a)).

Then, f (x) = f (y)

 f (x) (f (y))–1 = e'

 f (xy–1) = e'

 o(f (xy–1)) = 1

 o (xy–1) = 1 xy–1 = e x = y

 f is 1-1.

Note: Under an isomorphism, order of any element is preserved.

Example 1.35: Show that the group (R, +) of real numbers cannot be isomorphic
to the group R' of non zero real numbers under multiplication.

Solution: –1 R' and order of –1 is 2 as (–1)2 = 1. But R has no element of
order 2. As if x R is of order 2 then 2x = x + x = 0. But this does not hold
in (R, +) for any x except x = 0.

By above remark, under an isomorphism order of an element is preserved.
Thus there cannot be any isomorphism between R and R'.

Example 1.36: Let G be a group and f : G G such that, f (x) = x–1 be a
homomorphism. Show that G is abelian.

Solution: Let x, y G be any elements.

xy= (y–1x–1)–1 = f (y–1x–1)

= f (y–1) f (x–1)

= yx, hence G is abelian.

Theorem 1.9: (Fundamental Theorem of Group Homomorphism). If f : G G'

be an onto homomorphism with K = Ker f, then
G

G
K

.

In other words, every homomorphic image of a group G is isomorphic to a
quotient group of G.

Proof: Define a map :
G

G
K

, such that,

(Ka) = f (a), a G

We show is an isomorphism.
That is well defined follows by,

Ka = Kb

 ab–1 K = Ker f

 f (ab–1) = e'

Formal Logic

NOTES

Self - Learning
Material 37

 f (a)(f (b))–1 = e'

 f (a) = f (b)

 (Ka) = (Kb)

By retracing the steps backwards, we will prove that is 1-1.

Again as (KaKb) = (Kab) = f (ab) = f (a) f (b)

= (Ka) (Kb)

We obtain that is a homomorphism.
To check that is onto, let g' G' be any element. Since f : G G' is onto,
 g G, such that,

f (g) = g'

Now (Kg) = f (g) = g'

Showing thereby that Kg is the required pre-image of g' under .
Hence is an isomorphism.

Note: The above theorem is also called first theorem of isomorphism.

Direct Products

The reader is well acquainted with the idea of product of two sets as a set of
ordered pairs. We explore the possibility of getting a new group through the product
of two groups. Let G1, G2 be any two groups.

Let G = G1 × G2 = {(g1, g2) | g1 G1, g2 G2}.

What better way could there be than to define multiplication on G by
(g1, g2) (g1, g2) = (g1 g1, g2 g2). That G forms a group under this as its
composition should not be a difficult task for the reader. Indeed (e1, e2) will be
identity of G where e1, e2 are identities of G1 and G2 respectively. Also (g1, g2)

–

1 = (g1
–1, g2

–1).
We call G = G1 × G2 direct product or External Direct Product (EDP) of

G1, G2.
Again, if G1, G2 are abelian then so would be G1 × G2.
In a similar way, we can define external direct product G1 × G2 × ... × Gn of

arbitrary groups G1, G2..., Gn as

G1 × ... × Gn = {(g1,..., gn) | gi Gi}

Where compostion is component wise multiplication.

Let G = G1 × ... × Gn = direct product of G1,..., Gn.

Define H1 = {g1, e2,..., en} | g1 G1, ei = identity of Gi}

H2 = {(e1, g2, e3..., en) | g2 G2}.
...................

Hn = {(e1, e2, e3..., gn) | gn Gn}

We show that H1 is normal in G.

H1 as (e1, e2,..., en) H1

Let (g1, e2,..., en) (g1, e2,..., en) H1

Then (g1, e2,..., en) (g1, e2,..., en)
–1

Formal Logic

NOTES

Self - Learning
38 Material

= (g1, e2,..., en) (g1
–1, e2,...en)

= (g1g1
–1, e2,...en) H1

Thus, H1 G

Let g = (g1........gn) G

x = (x1, e2,..., en) H1

Then, gxg–1 = (g1,..., gn) (x1, e2..., en) (g1
–1,..., gn

–1)

= (g1 x1 g1
–1, e2,...en) H1

 H1 is normal in G.
Similarly, each Hi is normal in G for all i = 1,..., n.

Let g = (g1,..., gn) G

Then, g = (g1, e2,..., en) (e1, g2, e3...en)...(e1, e2 ,..., en–1 , gn) H1 H2...Hn

Suppose g = h1 h2...hn = h1 h2,...,hn, hi, hi Hi

Then, (g1, e2,..., en) ... (e1,... en–1, gn) = (g1,..., en)...(e1,...en–1, gn)
 (g1,..., gn) = (g1...gn)
 gi = gi for all i = 1,..., n

 hi = hi for all i = 1,..., n

So, g G can be written uniquely as product of elements from H1,..., Hn.
We summarize this through the following definition.
Let H1 ,..., Hn be normal subgroups of G. G is said to be an internal direct

product (IDP) of H1,..., Hn if G = H1H2... Hn and each g G can be written
uniquely as product of elements from H1,..., Hn.

Consider the groups Z2 = {0, 1}, Z3 = {0, 1, 2} under addition modulo. Here
Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0) (1, 1), (1, 2)} will form a group under
element wise multiplication (addition).

Indeed, 2 (1, 1) = (1, 1) + (1, 1) = (121, 131) = (0, 2),
 3(1, 1) = (1, 1) + (1, 1) + (1, 1) = (1, 0) etc.
We further note that since two cyclic groups of same order are isomorphic, we

must have Z2 × Z3 Z6.

On the other hand one can show that Z2 × Z2 is not isomorphic to Z4. In fact
Z2 × Z2 is not cyclic (whereas Z4 is). If Z2 × Z2 is cyclic then it has a generator
whose order should be same as o(Z2 × Z2) = 4. But no element of Z2 × Z2 has
order 4. Notice, 2(1, 1) = (0, 0), i.e., order of (1, 1) is less then or equal to 2
etc. Hence no element can be generator of Z2 × Z2. One can show that Zn × Zm
 Znm iff n and m are relatively prime.
Theorem 1.10: Let H1, H2 be normal in G. Then G is an IDP of H1 and H2 if
and only if

(i) G = H1H2

(ii) H1 H2 = {e}.

Proof: Suppose G is an IDP of H1 and H2. Let g G.

Then g = h1h2, h1 H1, h2 H2.

Then G H1H2. But H1H2 G

Formal Logic

NOTES

Self - Learning
Material 39

 G = H1H2

Let g H1 H2 g H1, g H2

 g = ge = eg is written in 2 ways as product of elements from H1 and H2.

 g = e H1 H2 = {e}.

Conversely, let G = H1H2 and H1 H2 = {e}

Let g G g H1H2 g = h1h2, h1 H1, h2 H2

Let g = h1h2 = h1h2, h1, h1 H1, h2, h2 H2

 h1
–1 h1 = h2h2

–1 H1 H2 = {e}

 h1 = h1, h2 = h2
 G is an IDP of H1 and H2.

For example, let G = < a > be of order 6. Let H = {e, a2, a4}, K = {e, a3} then
H and K are normal (G is abelian) subgroups of G. H K = {e}.

HK= {e, ea3, a2e, a2a3, a4e, a4a3}

= {e, a2, a3, a4, a5, a} = G

Hence, G is IDP of H and K.

Theorem 1.11: Let H1, H2,..., Hn be normal in G. Then G is an IDP of H1,
H2,..., Hn if and only if

(i) G = H1H2... Hn

(ii) Hi H1H2... Hi–1 Hi+1...Hn = {e}

for all i = 1,... n

Proof: Suppose G is an IDP of H1,..., Hn. Then (i) follows from the definition of IDP

Let g Hi H1... Hi–1 Hi+1 ... Hn

Then g = hi, hi Hi and g = h1h2...hi–1 hi+1... hn, hj Hj

 g = ee ... hi ... e

g = h1h2 ... hi–1 e hi+1 ... hn

Since this representation of g should be unique we get e = h1, e = h2,..., hi =
e,...

Or that g = e, which proves the result.

Conversely, let g G then g H1... Hn g = h1... hn, hi Hi

We show this representation is unique.

Let g = h1 hn, hi Hi

 h1 hn = h1 hn
By (ii) Hi Hj = {e} for all i j because if x Hi Hj

Then x Hi, x Hj. (j i)

x Hj x H1 ... Hj ... Hi–1 Hi+1 ... Hn

As x = e ... x ... e. e ... e

 x Hi H1 ... Hi–1 Hi+1 ... Hn = {e}

Also Hi is normal in G, Hj is normal in G for all i, j, thus hihj = hjhi for all
i j

Formal Logic

NOTES

Self - Learning
40 Material

 h1 hn = h1 hn
 hn = (h1

–1 h1) (h2
–1 h2) (hn–1

–1 hn–1) hn
 hn hn

–1 = (h1
–1 h1) (hn–1

–1 hn–1) H1 Hn–1 Hn = {e}

 hn = hn
Similarly, hn–1 = hn–1,......, h1 = h1
Hence, G is an IDP of H1,......, Hn.

Note: If G is an IDP of H1, H2,......, Hn then Hi Hj = {e}, i j.

We now show that IDP of subgroups of G is isomorphic to their External Direct Product
(EDP).

Example 1.37: Let G be a finite abelian group. Prove that G is isomorphic to
the direct product of its Sylow subgroups.

Solution: Let o(G) = p1
1 ... pr

r

Where p1,..., pr are distinct primes.

Since G is abelian, each Sylow subgroup Hi of G is normal. o(Hi) = pi
i.

Let g Hi H1 ... Hi–1 Hi+1 ... Hr

 g Hi, g H1 ... Hi–1 Hi+1 ... Hr

Let t = p1
1 ... pi–1

–1 pi+1
i+1 ... pr

r

g H1 ... Hi–1 Hi+1 .. Hr

 g = h1 ... hi–1 hi+1... hr, hj Hj

 gt = h1
t ... hi–1

t hi+1
t ... ht

r = e as hj
t = e for all j i

 o(g) | t

But g Hi o(g) | o(Hi) = pi
i

 o(g) = pi
i, i 0

 pi
i | t

 pi
i | p1

1 ... pi–1
i–1 pi+1

i+1 ... pr
r

 i = 0

 o(g) = 1 g = e.

 Hi H1 ... Hi–1 Hi+1 ... Hr = {e} for all i = 1, ..., r

Now o(H1......Hr) = 1 2

1 2

() (...)

(...)
r

r

o H o H H

o H H H
 = o(H1) o(H2......Hr)

Again, o(H2H3...Hr) = 2 3

2 3

(). (...)

(...)
r

r

o H o H H

o H H H

Now x H2 H3 ... Hr

 x H2 and x H3 Hr H1H3......Hr

 x H2 H1H3 ... Hr = {e}

So x = e

 o(H2.........Hr) = o(H2) o(H3......Hr)

Formal Logic

NOTES

Self - Learning
Material 41

In this way, we get

o(H1........Hr) = o(H1) o(H2)........o(Hr) = o(G)

 G = H1 Hr

By Theorem 1.11, G is an IDP of H1,...... Hr and so isomorphic to EDP of
H1,..., Hr.

Note: If G is a finite group and all its Sylow subgroups are normal then G is direct product
of its Sylow subgroups.

Example 1.38: Show that if G is a group of order 45, it is IDP of its Sylow
subgroups.

Solution: o(G) = 45 = 32 × 5.
Number of Sylow 5-subgroups is (1 + 5k) s.t., (1 + 5k) | 9 which gives

k = 0
i.e., a unique normal Sylow 5-subgroup H of G where o(H) = 5.
Similarly, a unique normal Sylow 3-subgroup K of order 9.
Since o(H K) | 9, 5, we find o(H K) = 1 H K = {e}

Also o(HK) = 5 9

1

 = 45 = o(G) G = HK

Hence, G is IDP of its sylow subgroups H & K.

Example 1.39: Let N be normal in G. If G = H × K where H, K are subgroups
of G, then prove that either N is abelian or N intersects H or K non-trivially.

Solution: Suppose N H = {e}, N K = {e}.
Since G = H × K, H is normal in G, K is normal in G. So nh = hn for all n

 N, h H and nk = kn for all n N, k K.
Let n1, n2 N.

n2 N n2 G n2 = h2k2, h2 H, k2 K

 n1n2 = n1h2k2

= h2n1k2

= h2k2n1

= n2n1

So, N is abelian.

Example 1.40: Let G be the set of matrices of the type
1

0 1

0 0 1

a b

c

 where

a, b, c F3. Here, F3 = {0, 1, 2} mod 3.
Then one can check that G forms a non-abelian group. In fact, it would be a

subgroup of the groups of all 3 × 3 non-singular matrices over F3.
Since each of a, b, c have three choices, o(G) = 33.
Order of each non-identity element of G will be 3 as

Formal Logic

NOTES

Self - Learning
42 Material

21

0 1

0 0 1

a b

c

 =
1 2 2

0 1 2

0 0 1

a b ac

c

 I as one of a, b, c is non-zero

And

31

0 1

0 0 1

a b

c

 =

31 0 0

0 1 0

0 0 1

.

If we consider the group Z3 × Z3 × Z3, then it is an abelian group of order 27
in which each non-identity element is of order 3. Thus both the groups have 26
elements of order 3 (plus one identity). But G and Z3 × Z3 × Z3 cannot be
isomorphic as one is abelian and the other a non-abelian group.

1.3.2 Homomorphism of Semi-Groups

In mathematics, a semi-group is an algebraic structure consisting of a set along
with an associative binary operation. A semi-group generalizes a monoid such that
there may not exist an identity element. Initially, it generalized a group (a monoid
with all inverses) to a type in which every element may not have an inverse, hence
named as semi-group.

The binary operation of a semi-group is most often denoted multiplicatively,
x • y or simply xy, denotes the result that apply the semi-group operation to the
ordered pair (x, y). The operation must be associative so that (x • y) • z = x • (y
• z) for all x, y and z, but must not be commutative so that x • y does not have to
equal y • x, this is contrast to the regular multiplication operator where xy = yx.

By definition, a semi-group is an associative magma. A semi-group with an
identity element is called a monoid. A group is then a monoid in which every
element has an inverse element. Semi-groups must not be confused with quasigroups
which are sets with a not necessarily associative binary operation such that division
is always possible.

Definition

A semi-group is a set ‘S’ together with a binary operation ‘•’ that satisfies the
following properties:

Closure: For all a, b in S, the result of the operation a • b is also in S.

Associativity: For all a, b and c in S, the equation (a • b) • c = a • (b • c) holds.

In mathematical notation we have:

a • b S a, b S and (a • b) • c = a • (b • c) a, b, c S.

This proves that a semi-group is an associative magma.

Examples of Semi-group: The following are the various examples of semi-group:

 Empty semi-group: The empty set forms a semi-group with the empty
function as the binary operation.

 Semi-group with one element: There is essentially just one, the singleton
{a} with operation a • a = a.

 The set of positive integers with addition.

Formal Logic

NOTES

Self - Learning
Material 43

 Square nonnegative matrices with matrix multiplication.

 A monoid is a semi-group with an identity element.

 A group is a monoid in which every element has an inverse element.

Identity and Zero

Every semi-group has at most one identity element. A semi-group with identity is
called a monoid. A semi-group without identity may be embedded into a monoid
simply by adjoining an element e S to S and defining e • s =

s • e = s for all { }s S e . The notation S1 denotes a monoid obtained from S by
adjoining an identity if necessary (S1 = S for a monoid).

Similary, every semi-group has at most one absorbing element which in
semi-group theory is called a zero. For every semi-group S, you can define S0, a
semi-group with 0 that embeds S.

Subsemi-Groups and Ideals

The semi-group operation induces an operation on the collection of its subsets:
given subsets A and B of a semi-group, A*B, written commonly as AB, is the set
{ab | a in A and b in B }. In terms of this operations, a subset A is called.

 A subsemi-group if AA is a subset of A.

 A right ideal if AS is a subset of A.

 A left ideal if SA is a subset of A.

If A is both a left ideal and a right ideal then it is called an ideal or a two-
sided ideal. If S is a semi-group, then the intersection of any collection of subsemi-
groups of S is also a subsemi-group of S. So the subsemi-groups of S form a
complete lattice.

An example of semi-group with no minimal ideal is the set of positive integers
under addition. The minimal ideal of a commutative semigroup, when it exists, is
termed a group.

Homomorphisms and Congruences

A semi-group homomorphism is a function that preserves semi-group structure.
A function f: S T between two semi-groups is a homomorphism if the equation,
f(ab) = f(a)f(b) holds for all elements a, b in S, i.e., the result is the same when
performing the semi-group operation after or before applying the map f.

A semi-group homomorphism between monoids preserves identity iff it is a
monoid homomorphism. But there are semi-group homomorphisms which are not
monoid homomorphisms, for example the canonical embedding of a semi-group S
without identity into S1.

Let f : S
0
 S

1
 be a semi-group homomorphism. The image of f is also a

semi-group. If S
0
 is a monoid with an identity element e

0
, then f(e

0
) is the identity

element in the image of f. If S
1
 is also a monoid with an identity element e

1
 and e

1

belongs to the image of f, then f(e
0
) = e

1
, i.e., f is a monoid homomorphism.

Particularly, if f is surjective, then it is a monoid homomorphism.

Formal Logic

NOTES

Self - Learning
44 Material

Two semi-groups S and T are said to be isomorphic if there is a bijection
f : S T with the property that, for any elements a, b in S, f(ab) = f(a)f(b).
Isomorphic semi-groups have the same structure.

A semi-group congruence ~ is an equivalence relation that is compatible
with the semi-group operation. That is, a subset ~ S S that is an equivalence
relation and x ~ y and u ~ v implies xu ~ yv for every x, y, u, v in S. Similar to any
equivalence relation, a semi-group congruence ~ induces congruence classes,

[] ~ { }| ~ }a x S x a

The semi-group operation induces a binary operation on the congruence
classes as follows:

[] ~ [] ~ [] ~u o v uv

Because ~ is a congruence, the set of all congruence classes of ~ forms a
semi-group with o, called the quotient semi-group or factor semi-group and
denoted S / ~. The mapping x [x]~ is a semi-group homomorphism, called the
quotient map, canonical surjection or projection; if S is a monoid then quotient
semi-group is a monoid with identity. Conversely, the kernel of any semi-group
homomorphism is a semi-group congruence.

Every ideal I of a semi-group induces a subsemi-group via the congruence
xy either x = y or both x and y are in I.

Structure of Semi-Groups

For any subset A of S there is a smallest subsemi-group T of S which contains A,
and we say that A generates T. A single element x of S generates the subsemi-
group {xn | n is a positive integer}. If this is finite, then x is said to be of finite
order, otherwise it is of infinite order. A semi-group is said to be periodic if all of
its elements are of finite order. A semi-group generated by a single element is said
to be monogenic or cyclic. If a monogenic semi-group is infinite then it is isomorphic
to the semi-group of positive integers with the operation of addition. If it is finite
and nonempty, then it must contain at least one idempotent. It follows that every
nonempty periodic semi-group has at least one idempotent.

A subsemi-group which is also a group is called a subgroup. There is a
close relationship between the subgroups of a semi-group and its idempotent.
Each subgroup contains exactly one idempotent, namely the identity element of
the subgroup. For each idempotent e of the semi-group there is a unique maximal
subgroup containing e. Each maximal subgroup arises in this way, so there is a
one-to-one correspondence between idempotent and maximal subgroups. Here
the term maximal subgroup differs from its standard use in group theory.

Group of Fractions

The group of fractions of a semi-group S is the group G = G(S) generated by the
elements of S as generators and all equations xy = z which hold true in S as
relations. There is an obvious map from S to G(S) by sending each element of S to
the corresponding generator.

Formal Logic

NOTES

Self - Learning
Material 45

An important question is to characterize those semi-groups for which this
map is an embedding. This need not always is the case: for example, take S to be
the semi-group of subsets of some set X with set-theoretic intersection as the
binary operation (this is an example of a semi-lattice). Since A.A = A holds for all
elements of S, this must be true for all generators of G(S) as well: which is therefore
the trivial group. It is clearly necessary for embeddability that S have the cancellation
property. When S is commutative this condition is also sufficient and the semi-
group provides a construction of the group of fractions.

1.3.3 Homomorphism of Monoids

In abstract algebra, a monoid is an algebraic structure with a single associative
binary operation and an identity element. Monoids are already discussed in semi-
group theory as they are natural semi-groups with identity. Monoids occur in several
branches of mathematics; for example, they can be regarded as categories with a
single object. Thus, they summarize the idea of function composition within a set.

Definition

A monoid is a set, S, together with a binary operation ‘•’ (pronounced ‘dot’ or
‘times’) that satisfies the following three axioms:

Closure: For all a, b in S, the result of the operation a • b is also in S.

Associativity: For all a, b and c in S, the equation (a • b) • c = a • (b • c) holds.

Identity Element: There exists an element e in S, such that for all elements a in S,
the equation e • a = a • e = a holds.

In mathematical notation we can write these as follows,

 Closure: a, b S : a • b S.

 Associativity: a, b, c S : (a • b) • c = a • (b • c).

 Identity element: e S : a S : e • a = a • e = a.

More efficiently, a monoid is a semi-group with an identity element. It can
also contain associativity and identity. A monoid with invertibility property is termed
a group.

The symbol for the binary operation is generally ignored, for example the
monoid axioms require (ab)c = a(bc) and ea = ae = a.

Monoid Structures

Generators and Submonoids: A submonoid of a monoid M is a subset N of M
containing the unit element such that if x,y N then x · y N. It is obvious that N
is itself a monoid, under the binary operation induced by that of M. Equivalently, a
submonoid is a subset N such that N=N*, where the superscript * is the Kleene
star, i.e., the set is closed under composition or concatenation of its elements. For
any subset N of M, the monoid N* is the smallest monoid that contains N.

A subset N is said to be a generator of M if and only if M=N*. If there is
a finite generator of M, then M is said to be finitely generated.

Formal Logic

NOTES

Self - Learning
46 Material

Commutative Monoid

A monoid whose operation is commutative is called a commutative monoid or
less commonly an abelian monoid. Commutative monoids are often written
additively. Any commutative monoid is endowed with its algebraic preordering
, defined by x y if and only if there exists z such that x + z = y. An order-unit
of a commutative monoid M is an element u of M such that for any element x of M,
there exists a positive integer n such that x nu. This is often used in case M is the
positive cone of a partially ordered abelian group G, in which case we say that u is
an order-unit of G.

Examples of Monoids

 Every singleton set {x} gives rise to a particular one-element (trivial) monoid.
The monoid axioms require that x*x = x in this case.

 Every group is a monoid and every abelian group a commutative monoid.

 Every bounded semilattice is an idempotent commutative monoid.

 Any semi-group S may be turned into a monoid simply by adjoining an
element e not in S and defining e*s = s = s*e for all s S.

 The natural numbers, N, form a commutative monoid under addition (identity
element zero) or multiplication (identity element one). A submonoid of N
under addition is called a numerical monoid.

 The positive integers, N-{0}, form a commutative monoid under multiplication
(identity element one).

 Given any monoid M, the opposite monoid Mop has the same carrier set
and identity element as M and its operation is defined by x *op y = y* x. Any
commutative monoid is the opposite monoid of itself.

 Given two sets M and N endowed with monoid structure (or, in general,
any finite number of monoids, M

1
, ..., M

k
), their Cartesian product

M × N is also a monoid (respectively, M
1
 × ... × M

k
). The associative

operation and the identity element are defined pair wise.

 Fix a monoid M. The set of all functions from a given set to M is also a
monoid. The identity element is a constant function mapping any value to
the identity of M; the associative operation is defined point wise.

 Fix a monoid M with the operation * and identity element e, and consider
its power set P(M) consisting of all subsets of M. A binary operation for
such subsets can be defined by S * T = {s * t : s in S and t in T}. This turns
P(M) into a monoid with identity element {e}. In the same way the power
set of a group G is a monoid under the product of group subsets.

 Let S be a set. The set of all functions S S forms a monoid under function
composition. The identity is just the identity function.

 The set of homeomorphism classes of compact surfaces with the connected
sum. Its unit element is the class of the ordinary 2-sphere.

Formal Logic

NOTES

Self - Learning
Material 47

 Let f be a cyclic monoid of order n, that is, 0 1 1{ , ,..., }nf f f f .

Then fn = fk for some 0 k n . In fact, each such k gives a distinct monoid
of order n, and every cyclic monoid is isomorphic to one of these.

Moreover, f can be considered as a function on the points {0, 1, 2, ...,
n – 1} given by,

0 1 2 ... 2 1

1 2 3 ... 1

n n

n k

Or, equivalently

1, if 0 1
() :

, if 1.

i i n
f i

k i n

Multiplication of elements in f is then given by function composition.

Note also that when k = 0 then the function f is a permutation of {0, 1, 2, ...,
n – 1} and gives the unique cyclic group of order n.

Properties

In a monoid, you can define positive integer powers of an element x : x1=x, and
xn=x*...*x (n times) for n>1 . The rule of powers xn+p=xn * xp is evident.

From the definition, it is evident that the identity element e is unique. Then,
for any x we can set x0=e and the rule of powers is still true with nonnegative
exponents.

It is possible to define invertible elements: an element x is called invertible if
there exists an element y such that x*y = e and y*x = e. The element y is called the
inverse of x . If y and z are inverses of x, then by associativity y = (zx)y = z(xy) =
z. Thus inverses, if they exist, are unique.

If y is the inverse of x, we can define negative powers of x by setting
x–1=y and x–n=y*...*y (n times) for n>1 . And the rule of exponents is still verified
for all n,p rational integers. This is why the inverse of x is usually written x–1. The
set of all invertible elements in a monoid M, together with the operation *, forms a
group. Hence, every monoid contains a group if only the trivial one consisting of
the identity alone.

If a monoid has the cancellation property and is finite, then it is in fact a
group, for example fix an element x in the monoid. Since the monoid is finite, xn =
xm for some m > n > 0. But then, by cancellation we have that
xm–n = e where e is the identity. Therefore x * xm–n–1 = e, so x has an inverse.

An inverse monoid is a monoid where for every a in M, there exists a
unique a–1 in M such that a=a*a–1*a and a-1=a–1*a*a–1. If an inverse monoid is
cancellative, then it is a group.

Monoid Homomorphisms

A homomorphism between two monoids (M,*) and (M2 ,•) is a function
f : M M' such that

Formal Logic

NOTES

Self - Learning
48 Material

• f(x*y) = f(x)•f(y) for all x, y in M

• f(e) = e2

where e and e' are the identities on M and M' respectively. Monoid
homomorphisms are sometimes simply called monoid morphisms.

Not every semi-group homomorphism is a monoid homomorphism since it
may not preserve the identity. Contrast this with the case of group homomorphisms:
the axioms of group theory ensure that every semi-group homomorphism between
groups preserves the identity. For monoids this isn’t always true and it is necessary
to state it as a separate requirement.

A bijective monoid homomorphism is called a monoid isomorphism. Two
monoids are said to be isomorphic if there is an isomorphism between them.

1.4 LATTICES

Lattice: A poset in which every pair of elements have both a least upper bound
and a greatest lower bound is called a lattice.

For example,

(i) The poset ({1, 2, 4, 8},1) is a lattice.

(ii) The poset (P(S),) is a lattice.

Here, AB = Least upper bound (LUB) of A and B and A B = Greatest
lower bound (GLB) of A and B, for any A S, B S.

Definition and Basic Properties

A lattice is a partially ordered set (L,) in which every pair of elements a, bL
has a greatest lower bound (GLB) and a least upper bound (LUB).

The greatest lower bound (GLB) of a subset {a, b} L will be denoted by
a b and the least upper bound (LUB) by a b. So GLB {a, b} = a b,
called the meet of a and b and LUB {a, b} = a b, called the join of a
and b.

Note that and are binary operations and we denote the lattice by (A,,
). From the definition of and , it is clear that,

(i) a a b; b a b (i.e., a b is an UB of a and b)

(ii) a ba; a bb (i.e., a b is a LB of a and b)

(iii) If a c and b c then a b c (i.e., a b is the LUB of a and b)

(iv) If ca and cb then ca b (i.e., a b is the GLB of a and b)
For example, Lattices

Formal Logic

NOTES

Self - Learning
Material 49

For example, Posets but not lattices

For example, Let A be any set and L = P (A) be its power set. The poset (L,) is
a lattice in which for any x, y,L, x y = x y and x y = x y..
For example, Let I be the set of positive integers. For any x, yI, x y if x/y.
Define x y = LCM (x, y) and x y = GCD(x, y). Then (I,,) is a lattice.

Theorem 1.12: Let (L,) be a lattice in which and denote the operations of
meet and join respectively. For any a, b, cL, we have

(i) a a = a ; a a = a (Idempotent)

(ii) a b = b a; a b = b a (Commutative)

(iii) (a b)c = a (b c); (a b)c = a (b c) (Associative)

(iv) a (a b) = a; a (a b) = a (Absorption)

Proof:

(i) Since, aa, we know that a is a lower bound of {a, a} = {a}. If b is also
a lower bound and if a b then we have ba and ab. By antisymmetry,,
a = b. So, a is the GLB of {a}. Therefore, a a = a. Dually, a a = a
follows.

(ii) Let, x = a b = GLB {a, b}. Since {a, b} = {b, a}, GLB {b, a} = x. So
b a = x. Hence, x = a b = b a. Dually, a b = b a follows.

(iii) Let x = a (b c) and y = (a b)c.

Now, x = a (b c) xa, xb c
 xa, xb, x c

 x a b, x c

 x (a b)c = y.
Similarly, y x follows. By antisymmetry, x = y and hence,

a (b c) = (a b)c.

Dually, a (b c) = (a b)c follows.

(iv) By definition, for any aL,

aa and aa b

Therefore, aa (a b). But a (a b) a. Hence a (a b) = a.
Dually, a (a b) = a follows.

Theorem 1.13: Let (L,) be a lattice in which and denote the operations of
meet and join respectively. For any a, b L,

ab a b = a

 a b = b

Formal Logic

NOTES

Self - Learning
50 Material

Proof: Assume that a a. Since a b, it follows that aa b. But by definition
of , a ba. Therefore a b = a. Conversely, suppose a b = a. Then a
b. Hence, ab a b = a. Similarly a b a b = b follows.

Isotonicity Law: Let (L,) be a lattice in which and denote the operations
of meet and join respectively. For any a, b, c,L,

b c

caba
caba

Proof: Assume that b c. Since a b b, by Transitivity, , a b c. Since a
b a, it follows that,

a b a c
Now, b c and ca c implies b a c. But a a c. Hence a b a

 c.

Note: For any a, b, cL, by Isotonicity law,,
a b a c a b c
a b a c a b c
c b a a b c a
c b a a b c a

Distributive Inequality: Let (L,) be a lattice. For any a, b, c,L, the following
inequalities are hold.

(i) a (bc) (a b)(a c)
(ii) (a b) (a c) a (b c)
(i) Since a a b and a a c, we have

 a (a b) (a c) (1.1)
Since bc b a b and b c c a c,
 b c (a b) (a c) (1.2)
From Equations (1.1) and (1.2)
a (b c) (a b) (a c).
Similarly, case (ii) follows.

Modular Inequality: Let (L,) be a lattice. For any a, b, cL,
a c a (b c) (a b) c

Proof: Suppose a c. Then a c = c.

By Distributive inequality, a (b c) (a b)(a c)

Since a c = c,
a (b c) (a b)c

Conversely, let us assume that a (b c) (a b)c.

Since,

()

()

a a b c

a b c

c

We get a c. Hence proved.

Example 1.41: Prove that in a lattice (L,), for any a, b, cL, if a b c a
b = bc, and (a b) (b c) = b = (a b) (a c).

Formal Logic

NOTES

Self - Learning
Material 51

Solution: Since ab and a c, a b c. Again b b and b c implies b b
c.

Now a bc and b bc ab bc (1)
Again, b c b a b (2)
From Equations (1) and (2), a b = b c.
Hence a b b and b c b, we get (a b) (b c)b. Since b c and

b b implies b b c. Again this implies b (b c) (a b). Hence (a b)
 (b c) = b. Similarly, (a b) (a c) = b follows.

Example 1.42: Prove that in a lattice (L,), for any a, b, c, d,L, if a b and
cd then a c b d.
Solution: Since a c a b and a c c d, a c b d.

Distributive Lattices and Complemented Lattices
Distributive Lattice: A Lattice (L,) is said to be distributive lattice if for any a, b,
c,L,

a (b c) = (a b)(a c)
a (b c) = (a b) (a c)

Theorem 1.14: Let a, b, cL, where (L,) is a distributive lattice. Then a b = a
c and a b = a c b = c.

Proof: We know that
 b = b (b a) (Absorption)

= b (a b) (Commutative)
= b (a c) (a b = a c)
= (b a) (b c) (Distributive)
= (a b) (c b) (Commutative)
= (a c) (c b) (a b = a c)
= (c a) (c b) (Commutative)
= c (a b) (Distributive)
= c (a c) (a b = a c)
= c (c a) (Commutative)
= c (Absorption)

Hence the proof.

Modular Lattice: A lattice (L,) is said to be modular lattice if ac a (b c)
= (a b)c.

Bounded Lattice: A lattice (L,) which has both, a least element denoted by 0, and
the greatest element denoted by 1 is called a bounded lattice.

Note: If L = {a1, a2,...,an} with 0
1

i

n

i
a and .1

1

i

n

i
a It satisfies a 0 = a, a 1 = 1, a 1

= a and a 0 = 0.

Complement of an Element: In a bounded lattices (L,), an element bL is
called a complement of an element aL if a b = 0 and a b = 1, we denote b
by a.

Formal Logic

NOTES

Self - Learning
52 Material

Complement Lattice: A lattice (L,) is said to be complemented lattice if every
element of L has at least one complement.

Example 1.43: Show that De Morgan’s laws holds in a complemented distributive
lattice.

Solution: To process that baba)(and

),()(baba consider

() () () () (Distributive)

() ((Commutative)

() () (Associative)

(0) (0)

0 0 0

a b a b a b a a b b

b a a a b b

b a a a b b

b a

Again,

() () (() (Distributive)

() () (Commutative)

() () (Associative)

(1) (1)

1 1 1

a b a b a a b b a b

a a b b b a

a a b b b a

b a

Hence, ba is the complement of (a b). So)(baba . Similarly,,

baba)(follows.

Example 1.44: Show that in a complemented lattice (L,),
abbababa 01

Solution: Consider, a b ab = a

1
1)(1

1)()(
1)(

ba
ba

baaa
baaaa

Again, a b a b = b

.0

00)(
1)()(

0)(

ba
ba

bbba
bbabb

To prove the last one,

()

(Commutative)

.

a b a b b

a b b

a b b

a a b

b a

Formal Logic

NOTES

Self - Learning
Material 53

Example 1.45: Consider the lattice L = {1, 2, 3, 4, 6, 12}, the divisions of 12
ordered by divisibility. Find,

(i) The lower bound and upper bound of L.

(ii) The complement of 4.

(iii) Is L a complemented lattice?

Solution:
(i) The lower bound of L is 1and the upper bound is 12.
(ii) Since 4 3 = gcd (4,3) = 1

 4 3 = lcm (4,3) = 12,
 The complement of 4 is 3

(iii)Since 6 x = gcd (6, x)
 1 for x 1
 6 1 = lcm (6,1)
 12

6 has no complement and hence L is not a complemented lattice.

Sublattice: Let M be a non-empty subset of a Lattice (L,). We say that M is
a sublattice of L if M itself is a lattice with respect to the operations of L.

Note: So M is a sublattice of L if and only if M is closed under the operations
and of L.

Example 1.46: Consider the following lattice L.

Determine whether each of the following is a sublattice of L.
M = {a, b, c, g}
N = {a, b, f, g}
O = {b, d, e, g}
P = {a, d, e, g}

Solution: Since b c = d, and dM, M is not a sublattice. Since d e = b and
bp, p is not a sublattice. But N and O are sublattices.

Example 1.47: Suppose M is a sublattice of a distributive lattice L. Show that M is
a distributive lattice.

Solution: For a distributive lattice L, a (b c) = (a b) (a c) and a (b
c) = (a b) (a c)

for all a, b, c L. Since M is closed, each element of M is also in L, the
distributive laws hold for all elements in M. Hence, M is a distributive lattice.

Example 1.48: Prove that in a distributive lattice (L,), if an element has a
complement then this complement is unique.

Formal Logic

NOTES

Self - Learning
54 Material

Solution: Suppose for any aL has two complements say b and c in L. Then a b
= 1; a b = 0 and a c = 1; a c = 0.

Consider

1 ()

() () (Distributive)

0 () () ()

() (Distributive)

1

b b b a c

b a b c

b c a c b c

a b c

c c

Check Your Progress

6. Write the condition for a valid logical statement.

7. What are the two rules of inference?

8. Elaborate on the two types of quantifiers.

9. What is a semi-group?

10. Define monoid.

11. What do you mean by a lattice?

1.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A proposition is a statement to which only one of the terms, true or false,
can be meaningfully applied.

2. Logical operators are used to form new propositions or compound
propositions.

3. The truth table of a logical operator specifies how the truth value of a
proposition using that operator is determined by the truth values of the
propositions.

4. Two propositions are logically equivalent or simply equivalent if they have
exactly the same truth values under all circumstances.

5. We can draw inference on any given statement with symbols and logical
connectives either by truth table or by applying rules of inference that are
given in subsequent topic.

6. A logical statement is valid when it is a tautology.

7. The two rules of inference are called rules P and T.

8. Two types of quantifiers are Universal Quantification and Existential
Quantification.

9. A semi-group is an algebraic structure consisting of a set along with an
associative binary operation.

10. A monoid is an algebraic structure with a single associative binary operation
and an identity element.

Formal Logic

NOTES

Self - Learning
Material 55

11. A poset in which every pair of elements has both a least upper bound and a
greatest lower bound is called a lattice.

1.6 SUMMARY

 A proposition is a statement to which only one of the terms, true or false,
can be meaningfully applied.

 Logical operators are used to form new propositions or compound
propositions.

 The truth table of a logical operator specifies how the truth value of a
proposition using that operator is determined by the truth values of the
propositions.

 A truth table lists all possible combinations of truth values of the propositions
in the left most columns and the truth value of the resulting propositions in
the right most column.

 The final column of a truth table of a given formula contains both 1 and 0.

 A statement formula which is true regardless of the truth values of the
statements which replace the variables in it is called a tautology or a logical
truth or a universally valid formula.

 A statement formula which is false regardless of the truth values of the
statements which replace the variables in it is called a contradiction.

 A statement formula that is neither a tautology nor a contradiction is called
a contingency.

 We can draw inference on any given statement with symbols and logical
connectives either by truth table or by applying rules of inference that are
given in subsequent topic.

 Two statements are equivalent if they have identical truth values.

 A logical statement is valid when it is a tautology.

 The two rules of inference are called rules P and T.

 Two types of quantifiers are universal quantification and existential
quantification.

 In a group G, identity element is unique.

 A finite semi-group is a group if and only if it satisfies cancellation laws.

 A non-empty set G together with a binary composition ‘.’ is said to form a
monoid.

 All groups are monoids and all monoids are semi-groups.

 A non-empty subset H of a group G is said to be a subgroup of G, if H
forms a group under the binary composition of G.

 A non-empty subset H of a group G is said to be a subgroup of G, if H
forms a group under the binary composition of G.

Formal Logic

NOTES

Self - Learning
56 Material

 An onto homomorphism is called epimorphism.

 A one-one homomorphism is called monomorphism.

 A homomorphism from a group G to itself is called an endomorphism of G.

 A semi-group is an algebraic structure consisting of a set along with an
associative binary operation. A semi-group generalizes a monoid such that
there may not exist an identity element.

 Every semi-group has at most one identity element. A semi-group with identity
is called a monoid.

 A semi-group homomorphism is a function that preserves semi-group
structure.

 A monoid is an algebraic structure with a single associative binary operation
and an identity element.

 A poset in which every pair of elements has both a least upper bound and a
greatest lower bound is called a lattice.

1.7 KEY TERMS

 Propositions: A proposition is a statement to which only one of the terms,
true or false, can be meaningfully applied.

 Truth tables: The truth table of a logical operator specifies how the truth
value of a proposition using that operator is determined by the truth values
of the propositions.

 Tautology: A statement formula which is true regardless of the truth values
of the statements which replace the variables in it is called a tautology or a
logical truth or a universally valid formula.

 Substitution instance: A formula A is called a substitution instance of
another formula B, if A can be obtained from B by substituting formulae for
some variables of B, with the condition that the same formula is substituted
for the same variables each time it occurs.

 Semi-group: It is an algebraic structure consisting of a set along with an
associative binary operation and generalizes a monoid such that there may
not exist an identity element.

 Monoid: It is an algebraic structure with a single associative binary operation
and an identity element.

1.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Write some applications of logic in computer science.

2. What are logical operators?

Formal Logic

NOTES

Self - Learning
Material 57

3. Mention two methods of constructing truth table.

4. What do you mean by tautology?

5. What is the use of universal specification and existential specification?

6. State the rule P and rule T?

7. Define quantifiers.

8. Explain the terms semi-group and monoid.

9. What is modular lattice?

Long-Answer Questions

1. Discuss the concept of mathematical logic.

2. Explain briefly how to use logical operators.

3. Illustrate the concept of truth tables.

4. Describe equivalence formula.

5. Discuss inference theory.

6. Write a note on validity by truth tables.

7. Explain rules of inference theory.

8. Discuss about quantifiers.

9. Discuss the significant points of systems that form groups or do not form
groups.

10. Explain the concept of homomorphism, semi-group and monoid.

11. Explain briefly the concept of lattices with the help of examples.

1.9 FURTHER READING

Iyengar, N Ch S N. V M Chandrasekaran, KA Venkatesh and PS Arunachalam.
Discrete Mathematics. New Delhi: Vikas Publishing House Pvt. Ltd., 2007.

Tremblay, Jean Paul and R. Manohar. Discrete Mathematical Structures with
Applications to Computer Science. New York: McGraw-Hill Inc., 1975.

Deo, Narsingh. Graph Theory with Applications to Engineering and Computer
Science. New Delhi: Prentice-Hall of India, 1999.

Singh, Y.N. Mathematical Foundation of Computer Science. New Delhi: New
Age International Pvt. Ltd., 2005.

Malik, D.S. Discrete Mathematical Structures: Theory and Applications.
London: Thomson Learning, 2004.

Haggard, Gary, John Schlipf and Sue Whiteside. Discrete Mathematics for
Computer Science. California: Thomson Learning, 2006.

Cohen, Daniel I.A. Introduction to Computer Theory, 2nd edition. New Jersey:
John Wiley and Sons, 1996.

Formal Logic

NOTES

Self - Learning
58 Material

Hopcroft, J.E., Rajeev Motwani and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 3rd edition. Boston: Addison-
Wesley, 2006.

Linz, Peter. An Introduction to Formal Languages and Automata, 5th edition.
Boston: Jones and Bartlett Publishers, 2011.

Mano, M. Morris. Digital Logic and Computer Design. New Jersey: Prentice-
Hall, 1979.

Boolean Algebra

NOTES

Self - Learning
Material 59

UNIT 2 BOOLEAN ALGEBRA

Structure

2.0 Introduction
2.1 Objectives
2.2 Basic Logic Gates

2.2.1 NOT Gate
2.2.2 AND Gate
2.2.3 OR Gate
2.2.4 XOR Gate

2.3 Universal Logic Gates
2.3.1 Features of Logic Gates

2.4 Drawing Logic Circuits
2.5 Analysing Logic Circuits
2.6 Boolean Algebra
2.7 Boolean Functions

2.7.1 Precedence of Operators
2.7.2 Truth Table
2.7.3 Complement of Functions
2.7.4 Standard Forms
2.7.5 Minterm and Maxterm
2.7.6 Canonical Form: Sum of Minterms
2.7.7 Canonical Form: Product of Maxterms
2.7.8 Conversion of Canonical Forms
2.7.9 Boolen Algebra as Lattices

2.7.10 Atom
2.8 Function Simplification

2.8.1 Algebraic Simplification
2.8.2 Karnaugh Map
2.8.3 Steps for Forming Karnaugh Map
2.8.4 Simplification of Expressions using Karnaugh Map
2.8.5 Join-Irreducible Element

2.9 Don’t Care Conditions
2.10 Representation of Simplified Expressions using NAND/NOR Gates

2.10.1 Implementation of SOP Expressions
2.10.2 Implementation of POS Expressions

2.11 XOR and its Application
2.12 Applications of Boolean Algebra to Switching Theory
2.13 Answers to ‘Check Your Progress’
2.14 Summary
2.15 Key Terms
2.16 Self-Assessment Questions and Exercises
2.17 Further Reading

2.0 INTRODUCTION

In this unit, you will learn that ‘gates’ are the basic building blocks of any digital
logic circuitry. Logic High at the output is treated as gate ‘ON’ and Logic Low as
gate ‘OFF’. In digital electronics, the ‘ON’ state is often represented by 1 and the
‘OFF’ state by 0. The basic logic gates are NOT, AND, OR, XOR and XNOR.
The details of all the logic gates will be discussed in this unit, along with their truth
tables and circuit symbols.

Boolean Algebra

NOTES

Self - Learning
60 Material

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Analyse basic logic gates

 Explain universal logic gates

 Draw logic circuits

 Analyse logic circuits

 Understand the basic laws of Boolean algebra

 Explain Boolean functions

 Understand the importance of Karnaugh map

 Explain minterm and maxterm

 Represent simplified expressions

2.2 BASIC LOGIC GATES

2.2.1 NOT Gate

The basic NOT gate has only one input and one output. The output is always the
opposite or negation of the input. The following is the truth table for NOT gate:

Table 2.1 Truth Table for NOT Gate

A F

0 1

1 0

Symbol: F = A

The following is the figure of NOT gate representation:

A F

Fig. 2.1 NOT Gate

2.2.2 AND Gate

A basic AND gate consists of two inputs and an output. In the AND gate, the
output is ‘High’ or gate is ‘On’ only if both the inputs are ‘High’. The relationship
between the input signals and the output signals is often represented in the form of
a truth table. It is nothing but a tabulation of all possible input combinations and
the resulting outputs. For the AND gate, there are four possible combinations of
input states: {A = 0, B = 0}; {A = 0, B = 1}; {A = 1, B = 0} and {A = 1, B = 1}.
In the truth table, these are listed as follows:

Boolean Algebra

NOTES

Self - Learning
Material 61

 Table 2.2 Truth Table for AND Gate

A B F

0 0 0

0 1 0

1 0 0

1 1 1

In Table 2.2, F represents the output of two inputs in the AND gate with input
signals A and B.

Symbol: F = A.B (where ‘.’ implies AND operation)

The Figure 2.2 represents the AND gate:

A

B

F

Fig. 2.2 AND Gate

2.2.3 OR Gate

A basic OR gate is a two input, single output gate. Unlike the AND gate, the
output is 1 when any one of the input signals is 1. The OR gate output is 0 only
when both the inputs are 0. The truth table for the OR gate is as follows:

 Table 2.3 Truth Table for OR Gate

A B F

0 0 0

0 1 1

1 0 1

1 1 1

Symbol: F = A + B (where ‘+’ implies OR operation)

The following figure represents OR gate:

A

B

F

Fig. 2.3 OR Gate

2.2.4 XOR Gate

A gate related to the OR gate is the XOR gate or exclusive OR gate in which the
output is 1 when one, and only one, of the inputs is 1. In other words, the XOR
output is 1 if the inputs are different. The truth table for the XOR gate is as follows:

 Table 2.4 Truth Table for XOR Gate

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Boolean Algebra

NOTES

Self - Learning
62 Material

Symbol: F = A B (where ‘’ implies XOR operation)

The following figure represents XOR gate:

A

B

F

Fig. 2.4 XOR Gate

2.3 UNIVERSAL LOGIC GATES

In addition to the NOT, AND, OR and XOR gates, three more common gates are
available. These are identical to AND, OR and XOR, except that the gate output
has been negated. These gates are called NAND (‘Not AND’), NOR (‘Not
OR’) and XNOR (‘Exclusive Not OR’). Their symbols are just the symbols of
the un-negated gates with a small circle drawn at the output.

• NAND Gate: AND followed by NOT

(A.B)' A
B

Fig. 2.5 AND Gate followed by NOT Gate

Symbol: NAND

(A.B)'

A

B

Fig. 2.6 NAND Gate

• NOR Gate: OR followed by NOT

(A+B)'
A

B

Fig. 2.7 OR Gate followed by NOT Gate

Symbol: NOR

(A+B)'
A

B

Fig. 2.8 NOR Gate

• XNOR Gate: XOR followed by NOT

Symbol: NOR

A

B
(A B)'

Fig. 2.9 XNOR Gate

Boolean Algebra

NOTES

Self - Learning
Material 63

NAND and NOR gates are also called Universal Logic Gates. The reason
being that all the basic logic gates (NOT, AND and OR) can be realized
using NAND/NOR gates only.

Realization of NOT using NAND and NOR

 (a)

 (b)

x x'

x x'

Fig. 2.10 (a), (b) NOT Gate Realization using NAND and NOR Gates

Realization of AND using NAND and NOR

 (a)

 (b)

x
x.y

(x.y)'

x

x.y

y

x'

y'

y

Fig. 2.11 (a), (b) AND Gate Realization using NAND and NOR Gates

Realization of OR using NAND and NOR

 (a)

 (b)

x

x+y

y

x'

x
x+y

(x+y)'

y'

y

Fig. 2.12 (a), (b) OR Gate Realization using NAND and NOR Gates

Boolean Algebra

NOTES

Self - Learning
64 Material

2.3.1 Features of Logic Gates

Similar to the two input gates, you can have more than two inputs to all the logic
gates, except the NOT gate. Some points must be remembered while using logic
gates. These are as follows:

 For multi-input AND and NAND gates, the unused input pin should not be
left unconnected. It should be connected either to Logic High or to any of
the used inputs. This will not affect the overall functionality of logic gate.

 For multi-input OR and NOR gates, the unused input pin should not be left
unconnected. It should be connected to Logic Low. This will not affect the
overall functionality of the logic gate.

 For multi-input XOR gate, the output is Logic High when the total number
of Logic High in the inputs signal is Odd; otherwise, the output is Logic
Low.

 For multi-input XNOR gate, the output is Logic High when the total number
of Logic High in the inputs signal is Even; otherwise, the output is Logic
Low.

 When one of the inputs of two-input XOR gates is Logic High, the output
will be NOT of the other input.

 When one of the inputs of two-input XOR gates is Logic Low, the output
will be the same as the other input.

2.4 DRAWING LOGIC CIRCUITS

When a Boolean expression is provided, you can easily draw the logic circuit. For
example, draw a circuit for F

1
 = ABC.

Since the number of inputs is three and one input is in the complemented
form, it can be realized by using a three-input AND gate and one NOT gate,
which is as follows:

A
B

C

F1

C'

Fig. 2.13 Circuit Diagram for F
1
 = ABC

For examples, (i) F
2
 = x + yz

x

z

F2

y'z

y'

Fig. 2.14 Circuit Diagram for F
2
 = x + y’z

Boolean Algebra

NOTES

Self - Learning
Material 65

(ii) F
3
 = xy + xz. Assuming that complemented inputs are available:

x'

F3

x'z

xy' x

y'

z

Fig. 2.15 Circuit Diagram for F
3
 = xy+ xz

2.5 ANALYSING LOGIC CIRCUITS

When a logic circuit diagram is given, you can analyse the circuit to obtain the logic
expression. For example, find the expression of F

1
 for the following circuit:

F1

A'

B'

C

Fig. 2.16 Analysing Logic Circuit

You have to start analysing from the input side towards the output side and
depending on the logic gate in the path, keep on writing the expression. In the
circuit shown in Figure 2.16, , A and B are applied to the AND gate and the
output is given to the OR gate whose second input is C. So you can write the
output of the OR gate as AB+C. The output of the OR gate is given to the NOT
gate for getting F

1
, so F

1
 = (AB+C).

2.6 BOOLEAN ALGEBRA

Boolean algebra is named after George Boole, who used it to study human logical
reasoning. For example, any event can be true or false. Similarly, connectives can
be of any of the following three basic forms:

1. a OR b

2. a AND b

3. NOT a

Boolean algebra consists of a set of elements B, with two binary operations {+}
and {.} and a unary operation {}, such that the following axioms hold:

 The set B contains at least two distinct elements x and y.

 Closure: For every x, y in B,
 x + y
 x . y

Boolean Algebra

NOTES

Self - Learning
66 Material

 Commutative laws: For every x, y in B,
 x + y = y + x
 x . y = y . x

 Associative laws: For every x, y, z in B,
 (x + y) + z = x + (y + z) = x + y + z
 (x . y) . z = x .(y . z) = x . y . z

 Identities (0 and 1):
 0 + x = x + 0 = x for every x in B
 1 . x = x . 1 = x for every x in B

 Distributive laws: For every x, y, z in B,
 x . (y + z) = (x . y) + (x . z)
 x + (y . z) = (x + y) . (x + z)

 Complement: For every x in B, there exists an element x in B such that,
 x + x = 1
 x . x = 0

Duality Principle: Every valid Boolean expression (equality) remains valid if the
operators and identity elements are interchanged.

+ .
1 0

For example, given the expression,

a + (b .c) = (a + b). (a + c)

Its dual expression is:

a. (b + c) = (a. b) + (a. c)

The advantage of this theorem is that if you prove one theorem, the other
follows automatically.

For example, if (x + y + z) = x. y. z is valid, then its dual is also valid:

(x. y. z) = x + y+ z

Apart from the axioms/postulates, there are other useful theorems. These
entire theorems are useful for reducing the expression.

1. Idempotency
(a) x + x = x (b) x . x = x

Proof of (a):

x + x = (x + x).1 (Identity)

= (x + x). (x + x) (Complement)

= x + x. x (Distributive)

= x + 0 (Complement)

= x (Identity)

Boolean Algebra

NOTES

Self - Learning
Material 67

2. Null elements for ‘+’ and ‘.’ operators
(a) x + 1 = 1 (b) x . 0 = 0

3. Involution
(x) = x

4. Absorption
(a) x + x . y = x (b) x . (x + y) = x

5. Absorption (variant)
(a) x + x. y = x + y (b) x . (x + y) = x. y

6. De Morgan
(a) (x + y) = x. y (b) (x . y) = x + y

7. Consensus
(a) x. y + x. z + y. z = x . y + x. z
(b) (x + y) . (x + z) . (y + z) = (x + y) . (x + z)

The set B = {0, 1} and the logical operations OR, AND and NOT satisfy all the
axioms of Boolean algebra.

A Boolean expression is an algebraic statement containing Boolean variables
and operators. Theorems can be proved using the truth table method. They can
also be proved by an algebraic manipulation using axioms/postulates or other
basic theorems.

Check Your Progress

1. What is a NOT gate? Give the truth table for a NOT gate.

2. How is NOT represented?

3. What is an AND gate? Give the truth table for an AND gate.

4. Describe the OR gate and its truth table.

5. What do the ‘.’ and ‘+’ symbols imply?

6. Give the diagrammatic representation of NOT, AND and OR gates.

7. What is a NAND gate?

8. What is an XNOR gate?
9. Explain the duality principle.

10. What is a Boolean expression?

2.7 BOOLEAN FUNCTIONS

A Boolean function is an expression formed with binary variables, the two binary
operators OR and AND, the unary operator NOT, and the equal and parenthesis
signs. Its result is also a binary value. The general usage is ‘.’ for AND, ‘+’ for OR
and ‘’ for NOT.

Boolean Algebra

NOTES

Self - Learning
68 Material

2.7.1 Precedence of Operators

To lessen the brackets used in writing Boolean expressions, operator precedence
can be used. Precedence (highest to lowest): . +

For example,

a .b + c = (a. b) + c

b + c = (b) + c

a + b. c = a + ((b). c)

In order to avoid confusion, use brackets to overwrite precedence.

2.7.2 Truth Table

A truth table is a table, which consists of every possible combination of inputs and
its corresponding outputs.

IN PU TS O U TPU TS
… …
… …

For basic logic gates, the truth table is already being discussed. Now, for
the complex digital systems, it is very important to derive the truth table.

A truth table describes the behaviour of a system that is to be designed.
This is the starting point for any digital system design. A designer must formulate
the truth table first. It is the responsibility of the designer to decide the number of
output bits to represent the behaviour of the system.

For example, if you have to design a 2-bit multiplier, which multiplies two
inputs A and B, each of the two bits, then it should be noted that the output must
be at least of 4 bits since the maximum result that you can have from this
multiplication is 1001(9) corresponding to the maximum value of both the inputs,
i.e., 11(3). The block diagram and the truth table are shown as follows:

A1
A0

B1

B0

P3

P2

P1

P0

Two Bit
Multiplier

 Fig. 2.17 2-Bit Multiplier Block Diagram

In the truth table formation, inputs are taken as A
1
A

0
for A input and B

1
B

0
for B

input. Output resulting from multiplication is to be represented as P
3
P

2
P

1
P

0
, where

P
3
 is the MSB and P

0
 is the LSB bit. If A = 10, i.e., 2 and B = 11, i.e., 3, then the

result of multiplication will be 0110, i.e., 6. So, the bits at the output will be P
3
= 0,

P
2
= 1, P

1
= 1, P

0
= 0. The complete truth table for the multiplier will be as shown

in Table 2.5.

Boolean Algebra

NOTES

Self - Learning
Material 69

 Table 2.5 Truth Table for 2-Bit Multiplier

A
1

B
0

B
1

B
0

P
3

P
2

P
1

P
0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

After the truth table, you have to write the Boolean expression for the output
bit and then realize the reduced expression using logic gates.

Whenever a Boolean expression for any output signal is to be written from
the truth table, only those input combinations for which the output is high is to be
written. As an example, let us write the Boolean expression for Table 2.6.

 Table 2.6 Truth Table

x y z F1 F2 F3 F4
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 0

The Boolean expression for the output F

1
 will be F

1
 = x. y. z. This is in the

Sum-of-Products form, which will be discussed later.

As can be seen from Table 2.6, output F
1
 is 1 only when input xyz is 110.

This is represented as x. y. z. Similarly, you can write the output expression for the
rest of the output signals.

F
2
= x. y. z + x .y. z + x. y. z + x. y. z + x. y. z

F
2
 can be reduced using Boolean algebra and can be written as follows:

F
2

= x. y. z + x .y. (z + z) + x. y. (z + z)

= x. y. z + x .y + x. y

= x. y. z + x .(y + y)

= x. y. z + x

Boolean Algebra

NOTES

Self - Learning
70 Material

= (x + x). (y. z + x) (Using Absorption rule)

= 1. (y. z + x)

= (y. z + x)

Similarly, it can be shown that F
3
 = F

4
 = x. y + x. z

2.7.3 Complement of Functions

For a function F, the complement of this function F is obtained by interchanging
1 with 0 and vice versa in the function’s output values. As an example, take the
following function F

1
 and its complement, F:

 Table 2.7 Truth Table of Function and its Complement

x y z F1 F1
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 1 0
1 1 1 0 1

The same can also be verified using the Boolean algebra technique. In Table 2.7,
if F

1
 = xyz, then its complement will be:

F
1
' = (x. y. z).

= x + y + (z) (Using De Morgan's theorem)

= x + y + z

This is the same as that obtained from the truth table by algebraic manipulation,
which is given as follows:

F
1
 = x.y.z + x.y.z + x.y.z + x.y.z + x.y.z + x.y.z + x.y.z

= x.y.(z + z) + x.y.(z + z) + x.y.(z + z) + x.y.z

= x.y + x.y + x.y + x.y.z

= x.(y + y) + x.(y + y.z)

= x + x.(y + y.z)

= x + x(y + y). (y + z)

= x + x. (y + z)

= (x + x).(x + y + z)

= (x + y + z)

The following are some more general forms of De Morgan’s Theorems used
for obtaining complement functions:

(A + B + C + ... + Z) = A. B.C… . Z

(A. B. C... .Z) = A + B + C + … + Z

Boolean Algebra

NOTES

Self - Learning
Material 71

2.7.4 Standard Forms

Certain types of Boolean expressions lead to gating networks, which are desirable
from the implementation point of view. The following are two standard forms for
writing a Boolean expression:

 Sum-Of-Product (SOP)

 Product-Of-Sum (POS)

Before using SOP and POS forms, you must know the following terms:

 Literal: A variable on its own or in its complemented form is known as a
literal.

Examples: x, x, y, y

 Product Term: It is a single literal or a logical product (AND) of several
literals.

Examples: x, x.y.z, A.B, A.B

 Sum Term: It is a single literal or a logical sum (OR) of several literals.

Examples: x, x +y + z, A+B, A+B

 Sum-Of-Products (SOP) Expression: It is a product term or a logical
sum (OR) of several product terms.

Examples: x, x + y. z, x .y + x. y. z , A.B+A.B
 Product-Of-Sum (POS) Expression: It is a sum term or a logical product

(AND) of several sum terms.

Examples: x, x.(y + z), (x +y).(x + y+ z), (A+B).(A+B)

Every Boolean expression can either be expressed as a Sum-Of-Product or Product-
Of-Sum expression. For example,

 SOP: x.y + x.y + x.y.z

 POS: (x + y).(x + y).(x + z)

 Both: x + y + z or x.y.z

 Neither: x.(w + y.z) or z + w.x.y + v.(x.z + w)

2.7.5 Minterm and Maxterm

Consider two binary variables x, y. Each variable may appear as itself or in the
complemented form as literals (i.e., x, x and y, y). For two variables, there are
four possible combinations with the AND operator, namely:

x.y, x.y, x.y and x.y

These product terms are called Minterms. In other words, A Minterm of
n variables is the product of n literals from the different variables. In general, n
variables can give 2n Minterms.

Similarly, a Maxterm of n variables is the sum of n literals from the different
variables.

Examples: x+y, x+y, x+y, x+y

In general, n variables can give 2n Maxterms.

Boolean Algebra

NOTES

Self - Learning
72 Material

The Minterms and Maxterms of 2 variables are denoted by m
0
 to m

3
 and

M
0
 to M

3,
 respectively. In Table 2.8, all the Minterms and Maxterms are written.

 Table 2.8 Minterms and Maxterms

Minterms Maxterms

x y Term Notation Term Notation

0 0 x' .y' m0 x + y M0

0 1 x' .y m1 x + y' M1

1 0 x .y' m2 x' + y M2

1 1 x .y m3 x' + y' M3

 If you examine carefully, each Minterm is the complement of the
corresponding Maxterm. For example, m

2
 = x.y and m

2
 = (x.y) = x + (y) =

x+y = M
2
. In other words, Maxterm is the sum of terms of the corresponding

Minterm with its literal complemented.

2.7.6 Canonical Form: Sum of Minterms

Canonical form is a unique way of representing Boolean expressions. Any Boolean
expression can be written in the form of the sum of Minterm. A symbol is used
for showing the sum of Minterms. For example,

Table 2.9 Sum of Minterms

x y x F1 F2 F3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0

 Sum-of-Minterms by gathering/summing the Minterms of the function (where
result is a 1) can be obtained as follows:

F
1
 = x.y.z = m (6)

F
2
 = x.y.z + x.y.z + x.y.z + x.y.z + x.y.z = m(1,4,5,6,7)

F
3
 = x.y.z + x.y.z + x.y.z + x.y.z = m(1,3,4,5)

2.7.7 Canonical Form: Product of Maxterms

Maxterms are sum terms. For Boolean functions, the Maxterms of a function are
the terms for which the result is 0. Boolean functions can be expressed as Products-
of-Maxterms. For Table 2.9, each output F

1
, F

2
 and F

3
 can be represented in

Product-of-Maxterm. A symbol is used to represent Product-of-Maxterms.

 F
1

= (x + y + z).(x + y + z).(x + y + z).(x + y+ z).(x + y + z)
 .(x + y + z).(x + y + z)

= M(0,1,2,3,4,5,7)

Boolean Algebra

NOTES

Self - Learning
Material 73

F
2

= (x + y + z).(x + y + z).(x + y + z)
= M(0,2,3)

F
3

= (x + y + z).(x + y + z).(x + y + z).(x + y + z)
= M(0,2,6,7)

2.7.8 Conversion of Canonical Forms

Sum-of-Minterms Product-of-Maxterms

 Rewrite Minterm shorthand using Maxterm shorthand.

 Replace Minterm indices with indices not already used.

For example, F
1
(x,y,z)= m(6) = M(0,1,2,3,4,5,7).

Product-of-Maxterms Sum-of-Minterms

 Rewrite Maxterm shorthand using Minterm shorthand.

 Replace Maxterm indices with indices not already used.
For example, F

2
(x,y,z)= M(0,2,3) = m(1,4,5,6,7).

Sometimes, you are given the reduced expression for any Boolean
expression. In this case, you need to find Minterms or Maxterms present in the
expression. To convert from a general expression to a Minterm or Maxterm
expression, you can use either the truth table or the algebraic manipulation.

For example, suppose you wish to find all the Minterm expansions of F =
AB + AC.

The truth table for the expression is represented as shown in Table 2.10:

Table 2.10

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

 From the Table 2.10, F = A.B.C + A.B.C + A.B.C + A.B.C
= m (1, 3, 4, 5)

Using Algebraic Manipulation

Use X + X = 1 to introduce the missing variables in each term; this introduction
will not change the overall expression value. Therefore, for the Boolean expression
F = AB + AC, the missing variable in the first term is C and in the second term is
B. So, the missing variable can be introduced as follows:

= A.B.(C + C) + A.C.(B + B)
= A.B.C + A.B.C + A.B.C + A.B.C
= m

5
 + m

4
 + m

3
 + m

1

= m (1, 3, 4, 5)

Boolean Algebra

NOTES

Self - Learning
74 Material

Similarly, you can find all the Maxterms for reduced expressions. Find the Maxterms
expansion of F = (A + B) (A + C)

Using Algebraic Expression: In this case, XX = 0 is used to introduce missing
variables in each term.

Therefore, F = (A + B+ CC). (A + C + BB)

Assuming that (A + B) = X and C.C = YZ, you can use the expression rule

= X+YZ =(X+Y)(X+Z)

F = (A + B+C)(A+B+C)(A+B+C)(A+B+C)

 = (2, 3, 4, 6)

Using the Truth Table:

A B C F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

 F (A,B,C) = (2, 3, 4, 6)

2.7.9 Boolen Algebra as Lattices

Let B be a non-empty set with two binary operations + (or) and, (or), a
unary operation, and two distinct elements 0 and 1. Then B is called a Boolean
algebra if the following axioms hold wher a,b, c are any elements in B.

(i) a + b = b + a; a . b = b. a (commutative laws)

(ii) a + (b . c) = (a + b) . (a + c); a.(b + c) = (a . b) (a . c) (Distributie laws)

(iii) a + 0 = a; a . 1 = a (Identity laws)

(iv) a + a =1; a . a = 0 (Complement laws)

Boolean algebra is a lattice which contains a least element and a greatest
element and which is both complemented and distributive.

We denote the Boolean algebra B by (B, +, ., 1, 0, 1). Here we call 0 as the
zero element, 1 as the unit element, and a is complement of a, + and . are called
sum and product.

Let B = {0,1}, the set of binary digits with the binary operations of + and
. and the unary operation defined by

1 0

1 1 1

0 1 0

 1 0

1 1 0

0 1 0

1 0

0 1

'

Then B is a Boolean algebra.

Boolean Algebra

NOTES

Self - Learning
Material 75

2.7.10 Atom

A non zero element ‘a’ in a Boolean algebra (B, +, .,) is called an atom if for every
x B, x a = a or x a = 0.

Note: Here the condition x a = a means that x is a successor of a and x a = 0 is true only
when x and a are ‘not connected’. So in any Boolean algebra, the immediate successors of
the 0-element are called atoms.

Let A be any non-empty set and P(A) the power set of A. In Boolean
algebra (p(A), , , ́) over , the singleton sets are the atoms since each element
p(A) can be described completely and uniquely as the union of singleton sets.

Let B = {1,2, 3, 5, 6, 10, 15, 30} and let the relation be divides. The
operation is GCD and is LCM. The 0-element is 1. Then the set of atoms of
the Boolean algebra is {2,3,5}.

Notes:

1. Let (B, +, . ,´) be any finite Boolean algebra and let A be the set of all atoms. Then (B,
+,., ́) is isomorphic to (p(A), , , ́).

2. Every finite Boolean algebra (B,+,.,´) has 2n elements for some position integer n.

3. All Boolean algebra of order 2n are isomorphic to each other. Finite Boolean algebras
are n-tuples of 0´s and 1 ś.

The simplest nontrivial Boolean algebra is the Boolean algebra B = {0, 1},
the set of binary digits with the binary operations of + and . and the unary operation
´ given by,

1 0

1 1 1

0 1 0

 1 0

1 1 0

0 1 0

 1´
1 0

0 1

If we form B2 = B × B, we obtain the set B2={(0,0), (0,1), (1, 0), (1, 1)}.
Define +, . and ́ by

(0, 1) + (1, 1) = (0 + 1, 1+1) = (1, 1),

(0, 1).(1,1) = (0.1, 1.1) = (0, 1) and

(0,1)´ = (0´, 1´) = (1, 0).

The B2 is a Boolean algebra.

Note: Here B2 is a Boolean algebra of order 4 under component wise operations. Since all
Boolean algebra of order 4 are isomorphic to each other, this is a simple way of describing all
Boolean algebras of order 4. In general, any Boolean algebra of order 2n are isomorphic to Bn.

Example 2.1: Find the atoms of the Boolean algebra (i) B2 (ii) B4 (iii) Bn for n 1.

Solution:

(i) (0, 1) and (1, 0)

(ii) (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1)

(iii) The n-tuples with exactly one 1.

Boolean Algebra

NOTES

Self - Learning
76 Material

2.8 FUNCTION SIMPLIFICATION

Sometimes, you need to simplify the Boolean expression. The main advantage in
doing so is that, it then uses less logic gates and less power to realize and thus, it is
considered sometimes cheaper and faster.

There are basically two types of simplification techniques:

 Algebraic Simplification

 Karnaugh Maps (K-map)

2.8.1 Algebraic Simplification

This involves simplifications using Boolean theorems. Algebraic simplification aims
to minimize the number of literals and terms.

For example, to reduce the Boolean expression F = (x+y).(x+y).(x+z)

(6 literals)
F = (x.x + x.y + x.y + y.y).(x+z) (Associative)

= (x+x.(y+y)+0).(x+z) (Idempotency, Associative,
Complement)

= (x+x.(1)+0).(x+z) (Complement)

= (x+x+0).(x+z) (identity 1)

= (x).(x+z) (Idempotency, Identity 0)

= (x.x+x.z) (Associative)

= (0+x.z) (Complement)

= x. z (Identity 0)

Number of literals reduced from 6 to 2.

For example,

1. Finding the minimal SOP and POS expressions of :
F(x,y,z) = x.y.(z + y.x) + y.z

= x.y.z + x.y.y.x + y.z (Distributive)

= x.y.z + 0 + y.z (Complement, Null element 0)

= x.y.z + y.z (Identity 0)

= x.z + y.z (Absorption)

= (x + y).z (Distributive)

Minimal SOP of F = x.z + y.z (Two 2-input AND gates and one 2-input
OR gate)

Minimal POS of F = (x + y).z (One 2-input OR gate and one 2-input
AND gate)

2. Finding the minimal SOP expression of:
F(a,b,c,d) = a.b.c + a.b.d + a.b.c + c.d + b.d

= a.b.c + a.b.d + a.b.c + c.d + b.d(Absorption on underlined terms)

= a.b.c + a.b + a.b.c + c.d + b.d (Absorption on underlined terms)

Boolean Algebra

NOTES

Self - Learning
Material 77

= a.b.c + a.b + b.c + c.d + b.d (Absorption on underlined terms)

= a.b + b.c + c.d + b.d (Distributivity on underlined terms)

= a.b + c.d + b.(c + d) (DeMorgan on underlined terms)

= a.b + c.d + b.(c.d) (Absorption on underlined terms)

= a.b + c.d + b (Absorption on underlined terms)

= b + c.d

Number of literals is reduced from 13 to 3.

However, the difficulty with this method is that it needs good algebraic
manipulation skills.

2.8.2 Karnaugh Map

It is a diagram-based simplification technique. It is easy for the circuit designer and
involves pattern-matching skills. It gives simplified Boolean expressions in standard
forms. However, this can be effectively utilized for reducing Boolean expressions
with input variables less than 6.

It is a systematic method to obtain simplified Sum-Of-Products (SOP)
Boolean expressions with the objective of fewest possible terms/literals. It is a
diagrammatic technique based on a special form of Venn diagram. Here, Venn
diagrams represent the space of Minterms. An example of a 2 variable (4 Minterms)
Venn diagram is shown in Figure 2.18.

ab' a'b

a'b'

ab
a

b

Fig. 2.18 Venn Diagram (4 Minterms)

Each set of Minterms represents a Boolean function. For example,

{a.b, a.b } a.b + a.b = a.(b+b) = a

{a.b, a.b } a.b + a.b = (a+a).b = b

{a.b } a.b

{a.b, a.b, a.b } a.b + a.b + a.b = a + b

{ } 0

{ a.b,a.b,a.b,a.b } 1

2-Variable K-Map

A Karnaugh map (K-map) is an abstract form of Venn diagram, organized as a
matrix of squares, where each square represents a Minterm. Also, adjacent squares
always differ by just one literal (so that the unifying theorem may apply: a + a = 1).
For 2-variable case (e.g., variables a, b), assuming that a is the MSB and b is the
LSB, the map can be drawn as follows:

Boolean Algebra

NOTES

Self - Learning
78 Material

Alternative 1:

{–symbol implies that corresponding literal is in normal form.

Alternative 2:

{–symbol implies that corresponding literal is in normal form.

Equivalent Labelling:

a

b

Equivalent to:

a
b

0 1

0

1

b

a

Equivalent to:

b
a

1 0

0

1

The K-map for a function, which is the sum of Minterms, is specified by putting:

 ‘1’ in the square corresponding to a Minterm

 ‘0’ otherwise

For example, if F
1
 = a.b and F

2
= a.b + a.b, then the K-map entry for F

1
 and F

2

will be as follows:

0 0

0 1 a

b

0 1

1 0 a

b

F1 = ab F2 = ab' + a'b

Here 1 is entered to the locations of Minterms of Boolean expression.

3-Variable K-Map

There are 8 Minterms for 3 variables (a, b, c). Therefore, there are 8 cells in a 3-
variable K-map.

Boolean Algebra

NOTES

Self - Learning
Material 79

It is to be noted that the above arrangement ensures that Minterms of adjacent
cells differ by only one literal.

00 01 11 10

0

1

a

b

c

bc

m1 m2m3

m4 m5 m6m7

m0

a

It is to be noted that there is wrap-around in the K-map:

 a.b.c (m
0
) is adjacent to a.b.c(m

2
) since only one literal b is different.

 a.b.c (m
4
) is adjacent to a.b.c (m

6
) since only one literal b is different.

Each cell in a 3-variable K-map has 3 adjacent neighbours. In general,
each cell in an n-variable K-map has n adjacent neighbours. For example, m

0
 has

3 adjacent neighbours m
1
, m

2
 and m

4
.

4-Variable K-Map
There are 16 cells in a 4-variable (w, x, y, z) K-map. The K-map for the same is
given as follows:

m4 m5

w

y

m7 m6

m0 m1 m3 m2 00

01

11

10

00 01 11 10

z

wx
yz

m12 m13 m15 m14

m8 m9 m11 m10

Every cell thus has 4 neighbours. For example, the cell corresponding to Minterm
m

0
 has neighbours m

1
, m

2
, m

4
 and m

8
.

2.8.3 Steps for Forming Karnaugh Map

The K-map of a function is easily drawn when the function is given in canonical
Sum-of-Products form or Sum-of-Minterms form. When the function is not in the

Boolean Algebra

NOTES

Self - Learning
80 Material

Sum-of-Minterms form, then first convert it to Sum-Of-Products (SOP) form.
Expand the SOP expression into Sum-of-Minterms expression or fill in the K-
map directly based on the SOP expression.

To Summarize:

 Find all the Minterms of the function using the method already discussed.

 Fill ‘1’ for the Minterms in the appropriate location.

 Fill ‘0’Otherwise.

Example 2.2: Draw the K-map for the function F:

F(a, b, c) = a.b + b.c + a.b.c

Solution: Find all the Minterms.

F(a, b, c) = a.b(c + c) + b.c(a + a) + a.b.c
= a.b.c + a.b.c + b.c.a + b.c.a + a.b.c

Rearranging the terms with the MSB first and then the next bit up to the
LSB, and removing repeated Minterms, you get,

F(a, b, c) = a.b.c + a.b.c + ab.c + a.b.c = m(1,2,6,7)

0 0a

b

1 1

0 1 0 1 0
1

00 01 11 10

c

a
bc

Example 2.3: The K-map of a 3-variable function F is as follows.

0 1 a

b

0 0

1 0 0 1 0

1

00 01 11 10

c

a
bc

What is the sum-of-Minterms expression of F?

Solution: Assuming that a is the MSB and c is the LSB and function is of the form
F (a, b, c), then by seeing the entry of 1, you can say that Minterms are m

0
, m

2
 and

m
5
. So,

F = m (0, 2, 5) = a.b.c + a.b.c + a.b.c

2.8.4 Simplification of Expressions using Karnaugh Map

Once the K-Map for any Boolean expression is known, it can be used to find the
minimized expression, which consists of less number of literals. The main advantage

Boolean Algebra

NOTES

Self - Learning
Material 81

of reduction is that it needs less hardware in terms of logic gate. Less number of
literals gives realization based on logic gate with less input pin.

The K-map based Boolean reduction is based on the following Unifying Theorem:

A + A = 1

In a K-map, each cell containing a ‘1’ corresponds to a Minterm of a given function
F. Each group of adjacent cells containing ‘1’ (a group must have size in powers
of twos: 1, 2, 4, 8, …) then corresponds to a simpler product term of F.

 Grouping 2 adjacent squares eliminates 1 variable, grouping 4 squares
eliminates 2 variables, grouping 8 squares eliminates 3 variables and so on.
In general, grouping 2n squares eliminates n variables.

 Group as many squares as possible. The larger the group, the fewer the
number of literals in the resulting product term.

 Select as few groups as possible to cover all the squares (Minterms) of the
function. The fewer the groups, the fewer the number of product terms in
the minimized function.

Example 2.4: Find the reduced expression for the function given by:

F(w,x,y,z) = w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z

= m(4, 5, 10, 11, 14, 15)

Solution: First draw the K-map. Cells with ‘0’ are not shown for clarity.

1 1

w

y

00

01

11

10

00 01 11 10
wx

yz

1 1

1 1

x

Each group of adjacent Minterms (group size in powers of twos) corresponds to
a possible product term of the given function.

1 1

w

00

01

11

10

00 01 11 10

z

wx
yz

1 1

1 1

x

A

B

y

Boolean Algebra

NOTES

Self - Learning
82 Material

There are 2 groups of Minterms: A and B, where:

A = w.x.y.z + w.x.y.z
= w.x.y.(z + z)
= w.x.y

B = w.x.y.z + w.x.y.z + w.x.y.z + w.x.y.z
= w.x.y.(z + z) + w.x.y.(z + z)
= w.x.y + w.x.y
= w.(x+ x).y
= w.y

Each product term of a group, w.x.y and w.y, represents the Sum-of-
Minterms in that group. The Boolean function is, therefore, the Sum-Of-Product
terms (SOP), which represents all groups of the Minterms of the function.

F(w,x,y,z) = A + B = w.x.y + w.y

Another way of getting the expression for the groups A and B is based on the
intersection area concept. For example, take a look at four variables of K-map
given as follows:

The notation w pointed to by an arrow shows that the complete region has Minterms
in which w is 1. The region above w shows w region. Similarly, the notation x
pointed by the arrow shows that the complete region is having Minterms in which
x is 1 and the region above and below x is termed as x. The same is true for y and
z. Using this technique, the K-map shown in the previous example can be solved
directly.

1 1

w

00

01

11

10

00 01 11 10

z

wx
yz

1 1

1 1

x

A

B

y

Boolean Algebra

NOTES

Self - Learning
Material 83

The intersection area A shows intersection of w, x and y. So, the Boolean
expression for the region A can be written as w.x .y. Similarly, region B is the
intersection of y, w and the Boolean expression for B = w.y; so the overall expression
can be written as follows:

F(w,x,y,z) = A + B = w.x.y + w.y.

Larger groups correspond to product terms of fewer literals. In the case of a 4-
variable K-map, if you have 1 cell, then you have 4 literals; if you have 2 cells, then
3 literals; if 4 cells, then 2 literals; if 8 cells, then 1 literal and at last, if 16 cells, then
no literal. Also, some other possible valid groupings of a 4-variable K-map are
shown as follows:

1

11

1

1

1

1

1 1

11

1 1

111

1

11

1

2.8.5 Join-Irreducible Element

In a lattice, an element x is join-irreducible if x is not the join of a finite set of other
elements. Equivalently, x is join-irreducible if it is neither the bottom element of the
lattice (the join of zero elements) nor the join of any two smaller elements. For
example, in the lattice of divisors of 120, there is no pair of elements whose join is
4, so 4 is join-irreducible. An element x is join-prime if it differs from the bottom
element, and whenever x y z, either x y or x z. In the same lattice, 4 is
join-prime: whenever LCM(y, z) is divisible by 4, at least one of y and z must itself
be divisible by 4.

In any lattice, a join-prime element must be join-irreducible. Equivalently,
an element that is not join-irreducible is not join-prime. For, if an element x is not
join-irreducible, there exist smaller y and z such that x = y z. But then x y z,
and x is not less than or equal to either y or z, showing that it is not join-prime.

There exist lattices in which the join-prime elements form a proper subset
of the join-irreducible elements, but in a distributive lattice the two types of elements
coincide. For example, suppose that x is join-irreducible, and that x y z. This
inequality is equivalent to the statement that x = x (y z), and by the distributive
law x = (x y) (x z). But since x is join-irreducible, at least one of the two
terms in this join must be x itself, showing that either x = x y (equivalently x y)
or x = x z (equivalently x z).

The lattice ordering on the subset of join-irreducible elements forms a partial
order, Birkhoff’s theorem states that the lattice itself can be recovered from the
lower sets of this partial order. In any partial order, the lower sets form a lattice in
which the lattice’s partial ordering is given by set inclusion, the join operation

Boolean Algebra

NOTES

Self - Learning
84 Material

corresponds to set union, and the meet operation corresponds to set intersection,
because unions and intersections preserve the property of being a lower set.
Because set unions and intersections obey the distributive law, this is a distributive
lattice. Birkhoff’s theorem states that any finite distributive lattice can be constructed
in this way.

Check Your Progress

11. What is a Boolean function? Why are operators used in an expression?

12. What is a truth table?

13. How is the complement of a function represented?

14. Explain the standard form of writing Boolean expressions.

15. Explain Minterm with the help of an example.

16. Define the types of simplification techniques.

17. What is a K-map? Why is it used?

18. What is the advantage of reduction in the simplification of expression using
a K-map?

19. Define the join-irreducible element.

2.9 DON’T CARE CONDITIONS

As you know, a function with n variable in an input can have 2n possible combinations.
If you have four variables in an input, then you have 16 possible combinations for the
input. In designing some digital systems, it may happen that for some input
combination(s), a designer may not be interested in output(s) corresponding to those
input combinations. In these cases, the outputs can be either ‘1’ or ‘0’. They are
called don’t care conditions, denoted by X (or sometimes, d).

How to represent Boolean Expression with the Don’t Care Term

If any Boolean expression has the following Minterms (m
0
, m

3
, m

7
, m

9
) and the

don’t care term is (m
11

, m
12

), then it will be represented as follows:

F = m (0, 3, 7, 9) + d (11, 12)

For example, a truth table for a system, which is taking BCD as an input and
generating output P = 1 whenever the number of 1’s in the BCD input is even
would be as follows:

Boolean Algebra

NOTES

Self - Learning
Material 85

Table 2.11 BCD Range

No. A B C D P
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1

10 1 0 1 0 x
11 1 0 1 1 x
12 1 1 0 0 x
13 1 1 0 1 x
14 1 1 1 0 x
15 1 1 1 1 x

As there are four input bits, you can have 16 possible combinations ranging from
0000 to 1111. As you know, valid BCD inputs range from 0000 to 1001. The
output corresponding to the valid BCD range is listed in Table 2.11. The input
range from 1010 to 1111 is an invalid BCD, so the output is not of much concern
for the designer. So these output are shown as ‘X’, which means that the output is
a don’t care output.

F = m(0,1,2,3,4,5,6,7,8,9) + d(10,11,12,13,14,15)

Don’t care conditions can be used for simplifying Boolean expressions in
K-maps. The don’t care value could be chosen to be either ‘1’ or ‘0’, depending
on which gives the simpler expression. Therefore, don’t care terms help in giving
the reduced expression without affecting the overall behaviour of the desired system.
So, it is the responsibility of the designer to judge whether don’t care should be ‘1’
or be ‘0’.

It should be kept in mind that don’t care terms should be used along with
the terms that are present in Minterms. It may happen that some of the don’t care
terms are assigned as ‘1’ while others are kept as ‘0’.

In the following K-map, putting the don’t care term as ‘0’ is beneficial
because putting 1 is not helping in reduced expression.

Boolean Algebra

NOTES

Self - Learning
86 Material

1

C

00

01

11

10

00 01 11 10

D

AB
CD

B

1

1

X

1 1

A

1

If you are putting the don’t care term as ‘1’, then you are getting four product
terms formed by Minterms (m

0
, m

1
, m

4
, m

5
), (m

4
, m

12
), (m

4
, m

6
) and (m

1
, m

9
). If

you are putting don’t care terms as ‘0’, then the following K-map will result:

1

A

C

00

01

11

10

00 01 11 10

D

AB
CD

1

B

1

1

1

1

X X

The final expression will consist of three product terms formed by Minterms (m
0
,

m
1
, m

4
, m

5
), (m

4
, m

6
) and (m

1
, m

9
). So this will give the reduced expression. Take

another example of K-map as shown in Table 2.12. Putting the don’t care term at
Minterm location m

12
 and m

14
 as ‘1’ is beneficial so that it can be combined with

Minterm m
4
 and m

6
 to form a group of 4 adjacent cells.

Table 2.12 Truth Table with Don’t Care Term

A B C Z

0 0 0 0

0 0 1 1

0 1 0 X

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Boolean Algebra

NOTES

Self - Learning
Material 87

Example 2.6: For the truth table shown in Table 2.12 with the don’t care term,
find the K-map and then find the reduced Boolean expression.
Solution:

1. The K-map is as follows:

00 01 11 10
BC

A

0

1

0

0

1 1

11
4 5 7 6

0

3 2
X

10

2. Minterms presentation:

F (A, B, C) = m (1, 3, 6, 7) + d (2)

3. Maxterms presentation:

F (A, B, C) = M (0, 4, 5) + d (2)

It is to be noted that the don’t care term is appearing with both the
presentations.

4. The reduced expression will be obtained when the don’t care term is taken
as ‘1’ since this will result in grouping with other adjacent ‘1’s to form a
grouping of 4 cells, causing two variables to get eliminated.

F(A, B, C) = B + AC

Example 2.7: Find the reduced expression for the K-map shown as follows:

1

C

00

01

11

10

00 01 11 10

D

AB
CD

B

1

1

X

XXX X

1 1

X
A

Solution: It should be noted that don’t care terms at Minterm locations
m(11,13,14,15) are being taken as ‘1’ while the rest of the don’t care terms are
kept at ‘0’. Therefore, you have the following K-map for grouping.

1

A

C

00

01

11

10

00 01 11 10

D

AB
CD

1

B

1

1

1

1 X

111X

Boolean Algebra

NOTES

Self - Learning
88 Material

2.10 REPRESENTATION OF SIMPLIFIED
EXPRESSIONS USING NAND/NOR GATES

It is possible to implement any Boolean expression using NAND gates. The
following procedure is to be followed:

 Obtain Sum-Of-Products of Boolean expression: e.g., F
3
 = xy+xz

 Use De Morgan theorem to obtain expression using 2-level NAND gates.

e.g., F
3

= xy+xz
= {(xy+xz)} Involution

= ((xy). (xz))De Morgan theorem

Implement this modified expression using NAND gate.

x'

z

F3

(x'z)'

(xy')'
x
y'

Fig. 2.19 Implementation Using NAND Gate

It is also possible to implement any Boolean expression using NOR gates. The
following procedure is to be followed:

(i) Obtain Product-Of-Sums Boolean expression: e.g., F
6
 = (x+y).(x+z)

(ii) Use DeMorgan theorem to obtain expression using 2-level NOR gates

e.g., F
6

= (x+y).(x+z)

= ((x+y).(x+z)) Involution

= ((x+y)+(x+z)) De Morgan theorem

Implement this modified expression using NOR gate.

x'

z

F6

(x'+z)'

(x+y')'
x

y'

Fig. 2.20 Implementation Using NOR Gate

2.10.1 Implementation of SOP Expressions

Sum-of-Products (SOP) expressions can be implemented using either (1) 2-level
AND-OR logic circuits or (2) 2-level NAND logic circuits.

(1) 2-level AND-OR logic circuit: F = AB + CD + E

Boolean Algebra

NOTES

Self - Learning
Material 89

F

A

B

D

C

E

It can be proved that the OR gate with all its input complemented is equivalent to
the AND gate with bubble at the output, i.e., NAND gate.

A

B
F

A

B
F

 Proof: With OR gate

F = A + B
= (A.B) De Morgan theorem

Similarly, it can be proved that the AND gate with all its input complemented is
equivalent to the OR gate with bubble at the output, i.e., NOR gate.

A

B
F

A

B
F

Proof: With AND gate

F = A. B
= (A+B) De Morgan theorem

So using the transformation method discussed, you can realize any SOP realization
of AND-OR with only NAND. This is known as NAND-NAND circuit
transformation. The following steps are involved:

(i) Add double bubbles in the path between the AND gate outputs and the OR
gate inputs.

(ii) Change OR with inverted inputs to NAND and bubbles at inputs to their
complements.

F

A

B

D

C

E

A

B

D

C

E'

F

Boolean Algebra

NOTES

Self - Learning
90 Material

2.10.2 Implementation of POS Expressions

Product-of-Sums expressions can be implemented using:

 2-level OR-AND logic circuits

 2-level NOR logic circuits

(1) OR-AND logic circuit: G = (A+B). (C+D).E

G

A
B

D

C

E

(2) NOR-NOR-based realization:

Using the transformation method discussed, you can realize any POS realization
of OR-AND with only NOR. This is known as NOR-NOR circuit transformation.
The following steps are involved:

(i) Add double bubbles in the path between OR gate outputs and AND gate
inputs.

(ii) Changed AND-with-inverted-inputs to NOR and bubbles at inputs to their
complements.

G

A

B

D

C

E

A

B

D

C

E'

G

2.11 XOR AND ITS APPLICATION

There are many situations in logic design in which simplification of logic expression
is possible in terms of XOR and XNOR operations. These logic gates are widely
used in digital design and therefore are available in IC form. This section discusses
the recognition of K-map pattern indicating XOR and XNOR functions. This is
proposed by Donald K Fronek and is known as Ring map. In AND-OR or OR-
AND simplification, the adjacent ones or zeros are grouped. The adjacency used

Boolean Algebra

NOTES

Self - Learning
Material 91

in earlier K-maps is horizontal or vertical. In case of XOR/XNOR simplification,
you have to look for the following:

 Diagonal Adjacencies

 Offset Adjacencies

Example of diagonal and offset adjacencies for single ones is as follows:

Two-Variable K-Map

0

1

0 1 B
A

1

1 0

1

0 1B
A

1

1

 K-map for F
1

 K-map for F
2

 F
1
= A.B + A.B= (AB)= AB F

2
= A.B + A.B= AB

Three-Variable K-Map

0

1

00 01 11 10
C

AB

1

1

 0

1

00 01 11 10
C

AB

1

1

K-map for F
3

 K-map for F
4

All the possible diagonal and offset adjacencies are marked in the figures and the
terms corresponding to each group of such adjacency involving XOR or XNOR
are also given.

These entries are known as offset mapping and the resultant expression is as
follows:

F
3
= (A.B + A.B).C = (AB).C F

4
= (A.B + A.B).C = (AB).C = (AB). C

0

1

00 01 11 10
C

AB

1

1

 0

1

00 01 11 10
C

AB

1

 1

K-map for F
5

 K-map for F
6

Entries known as diagonal mapping are as follows:

The resultant expression is given as:
 F

5
= A.B.C + A.B. C = A. (BCF

6
= A.B.C + A.B.C = A. (BC

From this, you can observe that if a standard K-map grouping of two ones
occurs in a diagonal or offset adjacent pattern, then this can be recognized as

Boolean Algebra

NOTES

Self - Learning
92 Material

XOR or XNOR function and the function can be simplified in terms of XOR or
XNOR functions.

The direct method for obtaining expressions when there are offset or diagonal
adjacencies in K-map are very interesting. For diagonal element grouping, identify
the following terms, i.e., input variables, which are not changing and then identify
the pattern from the rest of the variables, for {01 to 10 or 10 to 01} or {00 to 11
or 11 to 00} types.

Case 1. When variables are changing in the pattern, 01 to 10 or 10 to 01, then the
XOR gate is to be taken for the realization.

Case 2. When variables are changing in the pattern, 11 to 00 or 00 to 11, then
XNOR gate is to be taken for the realization.

For example, take the following K-map:

0

1

00 01 11 10
C

AB

1

1

 1

1

In this case, there are two diagonal adjacencies. They are at {010 and 001} and
{100 and 111} locations.

As discussed above, 010 and 001 can be combined and can be written in
terms of XOR expression. It can be seen that for the above diagonal element, A is
not changing and it is in the complemented form, and BC values are changing from
10 to 01. So you can directly write the combined expression as A. (BC).

Similarly, for the other diagonal grouping, i.e., for 100 and 111, you can write
A(BC).

So, the overall expression can be written as follows:

F = A.(BC) + A(BC)

Example 2.8: Using the technique discussed above, find the realization of circuit
resulting from the following K-map grouping:

0

1

00 01 11 10
C

AB

1

 1

1

1

Solution: Diagonal elements for grouping are {m
0
, m

3
} and {m

6
, m

5
}. For the

grouping of m
0
 and m

3
, i.e., for 000 and 011, A is constant and pattern is of 00 to

11 type, so the expression can be written for this combination as A.(BC).

Similarly, for the other grouping, which is for 110 and 101 grouping, the term,
which is not changing is A and the pattern of 10 to 01 type, so you can write
A. (BC).

So you can write, F = A. (BC) + A. (BC)

= A(BC)

Boolean Algebra

NOTES

Self - Learning
Material 93

2.12 APPLICATIONS OF BOOLEAN ALGEBRA TO
SWITCHING THEORY

Boolean algebra is used to simplify the practical use of logic circuits. The function
of logic circuit is translated into symbolic form. Some rules of algebra are used for
the resulting equation which is able to lessen the number of arithmetic operations
and the simplified equation is translated again into the form of logic circuit. This
equivalent function is achieved with the help of components. Various rules are
presented to reduce the Boolean expressions into the simplest way. The identities
and properties are used to review the many identities. For example, ‘A’ can be
proved symbolically in two terms, such as A+1 = 1 and 1A=A to achieve the final
result and the logical circuit is designed in the following way (refer Figure 2.21).

Fig. 2.21 Logical Circuit for Expression A + AB =A

Let take an expression as A+AB and factoring A out of both terms. Applying
identity A+1 = 1 and in the next step, applying identity 1A=A that returns value A.
It can be proved in the following way:

The rule A+1 = 1 is used to reduce (B+1) term to 1. If rule A+1=1 is expressed
by using alphabet A then it is not necessary that it only applies to expression
containing A. The Boolean expression ABC+1 reduces to 1 with the help of A+1=1
identity. The term A in identity’s standard form is used to represent ABC in the
expression. The following Figure 2.22 shows the arrangement of logical circuit for

the expression A + AB = A + B .

Boolean Algebra

NOTES

Self - Learning
94 Material

:

Fig. 2.22 Logical Circuit for Expression

The expression can be explained in the following way:

The expression (A+AB=A) is used with the rule to simplify ‘A’ term and then
change ‘A’ into the expression ‘A+AB’. Other rule is involved to simplify the
product-of-sum expression and the logical circuit is designed for the expression
(A+B) (A+C) = A + BC (Refer Figure 2.23).

Fig. 2.23 Logical Circuit for Expression

Boolean Algebra

NOTES

Self - Learning
Material 95

This expression can be simplified in the following way:

Basically, the three useful Boolean rules are implied to simplify the Boolean
expression in the following way:

Check Your Progress

20. What is a Don’t Care condition? Explain with the help of an example.

21. What is a valid range for BCD inputs?

22. How are Sum-Of-Product expressions implemented?

23. How are Product-Of-Sum expressions implemented?

24. How is AND-OR and OR-AND simplification done?

25. State the three useful Boolean rules implied to simplify the Boolean
expression.

2.13 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The basic NOT gate has only one input and one output. The output is
always the opposite or negation of the input. The following is the truth table
for NOT gate:

A F

0 1

1 0

2. For example, NOT A is represented as A.
3. A basic AND gate consists of two inputs and an output. In the AND gate,

the output is ‘High’ or gate is ‘On’ only if both the inputs are ‘High’. The
relationship between the input signals and the output signals is often

Boolean Algebra

NOTES

Self - Learning
96 Material

represented in the form of a truth table. It is nothing but a tabulation of all
possible input combinations and the resulting outputs. For the AND gate,
there are four possible combinations of input states: {A = 0, B = 0}; {A =
0, B = 1}; {A = 1, B = 0}; and {A = 1, B = 1}. In the truth table, these are
listed as follows:

A B F

0 0 0

0 1 0

1 0 0

1 1 1

4. A basic OR gate is a two input, single output gate. Unlike the AND gate,
the output is 1 when any one of the input signals is 1. The OR gate output is
0 only when both the inputs are 0. The truth table for the OR gate is as
follows:

A B F

0 0 0

0 1 1

1 0 1

1 1 1

5. (‘.’ implies AND operation) (‘+’ implies OR operation)

6. The following figure shows NOT gate representation:

A F

The following figure represents AND gate:

A

B

F

The following figure represents OR gate:

A

B

F

7. NAND Gate: AND followed by NOT

(A.B)' A
B

NAND

(A.B)'

A

B

Boolean Algebra

NOTES

Self - Learning
Material 97

8. XNOR Gate: XOR followed by NOT

NOR

A

B
(A B)'

9. Duality Principle: Every valid Boolean expression (equality) remains valid if
the operators and identity elements are interchanged.

+ .

1 0

10. A Boolean expression is an algebraic statement containing Boolean variables
and operators.

11. A Boolean function is an expression formed with binary variables, the two
binary operators OR and AND, the unary operator NOT, and the equal
and parenthesis signs. Its result is also a binary value. The general usage is
‘.’ for AND, ‘+’ for OR and ‘’ for NOT.

To lessen the brackets used in writing Boolean expressions, operator
precedence can be used. Precedence (highest to lowest): . +

12. A truth table is a table, which consists of every possible combination of
inputs and its corresponding outputs.

13. For a function F the complement of this function F is obtained by
interchanging 1 with 0 and vice versa in the function’s output values.

14. The following are two standard forms for writing a Boolean expression:
 Sum-Of-Product (SOP)
 Product-Of-Sum (POS)

15. A Minterm of n variables is the product of n literals from the different variables.
In general, n variables can give 2n Minterms.

16. There are basically two types of simplification techniques:
 Algebraic Simplification
 Karnaugh Maps (K-Map)

17. It is a diagram-based simplification technique. It gives simplified Boolean
expressions in standard forms. It is a systematic method to obtain simplified
Sum-Of-Products (SOP) Boolean expressions with the objective of fewest
possible terms/literals. It is a diagrammatic technique based on a special
form of Venn diagram. A Karnaugh map (K-map) is an abstract form of
Venn diagram, organized as a matrix of squares, where each square represents
a Minterm.

18. The main advantage of reduction is that it needs less hardware in terms of
logic gate. Less number of literals gives realization based on logic gate with
less input pin.

19. In a lattice, an element x is join-irreducible if x is not the join of a finite set of
other elements. Equivalently, x is join-irreducible if it is neither the bottom
element of the lattice (the join of zero elements) nor the join of any two

Boolean Algebra

NOTES

Self - Learning
98 Material

smaller elements. For example, in the lattice of divisors of 120, there is no
pair of elements whose join is 4, so 4 is join-irreducible. An element x is
join-prime if it differs from the bottom element, and whenever x y z,
either x y or x z. In the same lattice, 4 is join-prime: whenever LCM(y,
z) is divisible by 4, at least one of y and z must itself be divisible by 4.

20. A function with n variable in an input can have 2n possible combinations. If
you have four variables in an input, then you have 16 possible combinations
for the input. In designing some digital systems, it may happen that for some
input combination(s), a designer may not be interested in output(s)
corresponding to those input combinations. In such cases, the outputs can
be either ‘1’ or ‘0’. These are called don’t care conditions, denoted by X
(or sometimes, d).

21. Valid BCD inputs range from 0000 to 1001.

22. Sum-of-Products expressions can be implemented using either (i) 2-level
AND-OR logic circuits or (ii) 2-level NAND logic circuits.

23. Product-of-Sums expressions can be implemented using:

 2-level OR-AND logic circuits
 2-level NOR logic circuits

24. In AND-OR or OR-AND simplification, the adjacent ones or zeros are
grouped.

25. The three useful Boolean rules implied to simplify the Boolean expression
are:

1. A + AB = A

2. A + A B = A + B

3. (A + B)(A + C) = A + BC

2.14 SUMMARY

 The output of the NOT gate is always the opposite or negation of the input.

 In the AND gate, the output is ‘High’ or gate is ‘On’ only if both the inputs
are ‘High’.

 In the OR gate, the output is 1 when any one of the input signal is 1 and 0
otherwise.

 The output of the XOR gate is 1 when one and only one of the inputs is 1.

 In addition to the NOT, AND, OR and XOR gates, three more common
gates are available. These gates are called NAND (‘Not AND’), NOR
(‘Not OR’) and XNOR (‘Exclusive Not OR’).

 When a Boolean expression is provided, you can easily draw the logic
circuit.

 When a logic circuit diagram is given, you can analyse the circuit to obtain
the logic expression.

Boolean Algebra

NOTES

Self - Learning
Material 99

 Boolean algebra consists of a set of elements B, with two binary operations
{+} and {.} and a unary operation {}, such that the following axioms hold:

o The set B contains at least two distinct elements x and y.
o Closure
o Commutative laws
o Associative laws
o Identities
o Distributive laws
o Complement

 Every valid Boolean expression remains valid if the operators and identity
elements are interchanged.

 A Boolean expression is an algebraic statement containing Boolean variables
and operators.

 A Boolean function is an expression formed with binary variables, the two
binary operators OR and AND, the unary operator NOT, and the equal
and parenthesis signs.

 To lessen the brackets used in writing Boolean expressions, operator
precedence can be used.

 A truth table is a table, which consists of every possible combination of
inputs and its corresponding outputs.

 For a function F, the complement of this function F is obtained by
interchanging 1 with 0 and vice versa in the function’s output values.

 The two standard forms for writing a Boolean expression are Sum-Of-
Product and Product-Of Sum.

 A Minterm of n variables is the product of n literals from the
different variables.

 A Maxterm of n variables is the sum of n literals from the different variables.

 Canonical way is a unique way of representing Boolean expressions.

 Boolean algebra is a lattice which contains a least element and a greatest
element and which is both complemented and distributive.

 A non-zero element ‘a’ in a Boolean algebra (B, +, .,) is called an atom if
for every x B, x a = a or x a = 0.

 The two basic techniques for simplification of Boolean expression are
algebraic simplification and Karnaugh maps.

 Algebraic simplification involves simplifications using Boolean theorems.
Karnaugh map is a diagram-based simplification technique.

 In designing some digital systems, it may happen that for some input
combination(s), a designer may not be interested in output(s) corresponding
to those input combinations. In these cases, the outputs can be either ‘1’ or
‘0’.

 It is possible to implement any Boolean expression using NAND and NOR
gates.

Boolean Algebra

NOTES

Self - Learning
100 Material

 There are many situations in logic design in which simplification of logic
expression is possible in terms of XOR and XNOR operations.

 Boolean algebra is used to simplify the practical use of logic circuits.

2.15 KEY TERMS

 Basic OR gate: A basic OR gate is a two-input, single-output gate. Unlike
the AND gate, the output is 1 when any one of the input signals is 1. The
OR gate output is 0 only when both inputs are 0.

 Boolean expression: It is an algebraic statement containing Boolean
variables and operators.

 Minterm: Minterm of n variables is the product of n literals from the different
variables.

 Maxterm: It is the sum of terms of the corresponding Minterm with its
literal complemented.

 Canonical form: It is a unique way of representing Boolean expressions.
Any Boolean expression can be written in the sum-of-Minterm form.

 Karnaugh map (K-map): It is a diagram-based simplification technique
which is easy for a circuit designer and involves pattern-matching skills.

2.16 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What are the basic logic gates?

2. What will be the OR gate output if both the inputs are 0?

3. What will be the XOR output if the inputs are different?

4. Explain XOR gate with the help of a truth table and draw the symbolic
representation.

5. What are universal logic gates?

6. What are the basic laws of Boolean algebra?

7. Explain Boolean expression.

8. Explain Minterm and Maxterm.

9. What is a Karnaugh map?

Long-Answer Questions

1. Define a basic OR gate. Compare it with the AND gate.

2. Explain NOT and XOR gates. What are their applications?

3. ‘Similar to the two input gates, we can have more than two inputs to all the
logic gates excluding the NOT gate’. Is the statement true? Explain.

Boolean Algebra

NOTES

Self - Learning
Material 101

4. What are universal logic gates? Why are they so called? Describe each
type with the help of symbols.

5. Draw a logic circuit for F = xy + xz.

6. Explain the laws of Boolean algebra.

7. What is a Boolean function? Explain with the help of a truth table.

8. Discuss canonical form.

9. Explain the basic types of function simplification techniques.

10. ‘There are many situations in logic design in which simplification of logic
expression is possible in terms of XOR and XNOR operations’. Elaborate
further on the statement.

11. Discuss the Karnaugh Map (K-map) technique.

12. What is a Don’t Care condition?

13. Explain XOR and its applications.

14. Convert the following into other canonical forms:

(a) F(x, y, z) = (1, 3, 7)

(b) F(A, B, C, D) = (0, 2, 6, 11, 13, 14)

(c) F(x, y, z) = (0, 3, 6, 7)

(d) F(A, B, C, D) = (0, 1, 2, 3, 4, 6,12)

15. Express the following function in a Sum of Minterms and a Product of
Maxterms:
(a) F(A, B, C, D) = D(A+ B) + BD
(b) F(w, x, y, z) = yz + wxy + wxz + wxz
(c) F(A, B, C, D) = (A + B + C)(A + B)(A + C + D)
(d) F(A. B, C) = (A + B)(B + C)
(e) F(x, y, z) = (xy + yz)(y + xz)

16. Identify the prime implicants and the essential prime implicants of the following
K-map:

1
C

00

01

11

10

00 01 11 10

D

AB
CD

B

1

1

1

A

1 1

1 1

111

17. F(A,B,C,D) = m(2,8,10,15) + d(0,1,3,7), find the reduced expression
using K-map.

Boolean Algebra

NOTES

Self - Learning
102 Material

18. Simplify each of the following functions and implement them with NAND
gates. Give two alternatives.

(a) F
1
 = ac + ace + ace + acd + ade

(b) F
2
 = (b + d)(a + c + d)(a + b + c + d)(a + b +c + d)

19. Simplify the following functions and implement them with NOR gates. Give
two alternatives.

F
1
 = ac + ace + ace + acd + ade

2.17 FURTHER READING

Iyengar, N Ch S N. V M Chandrasekaran, K A Venkatesh and P S Arunachalam.
Discrete Mathematics. New Delhi: Vikas Publishing House Pvt. Ltd., 2007.

Tremblay, Jean Paul and R. Manohar. Discrete Mathematical Structures with
Applications to Computer Science. New York: McGraw-Hill Inc., 1975.

Deo, Narsingh. Graph Theory with Applications to Engineering and Computer
Science. New Delhi: Prentice-Hall of India, 1999.

Singh, Y.N. Mathematical Foundation of Computer Science. New Delhi: New
Age International Pvt. Ltd., 2005.

Malik, D.S. Discrete Mathematical Structures: Theory and Applications.
London: Thomson Learning, 2004.

Haggard, Gary, John Schlipf and Sue Whiteside. Discrete Mathematics for
Computer Science. California: Thomson Learning, 2006.

Cohen, Daniel I.A. Introduction to Computer Theory, 2nd edition. New Jersey:
John Wiley and Sons, 1996.

Hopcroft, J.E., Rajeev Motwani and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 3rd edition. Boston: Addison-
Wesley, 2006.

Linz, Peter. An Introduction to Formal Languages and Automata, 5th edition.
Boston: Jones and Bartlett Publishers, 2011.

Mano, M. Morris. Digital Logic and Computer Design. New Jersey: Prentice-
Hall, 1979.

Graph Theory

NOTES

Self - Learning
Material 103

UNIT 3 GRAPH THEORY

Structure

3.0 Introduction
3.1 Objectives
3.2 Basic Terminology
3.3 Different Types of Graph
3.4 Incidence and Degree
3.5 Path and Circuits of a Graph
3.6 Connected and Disconnected Graphs and Components
3.7 Euler Graphs
3.8 Matrix Representation of Graphs
3.9 Trees

3.10 Planar Graphs
3.11 Dijkstra’s Algorithm
3.12 Warshall’s Algorithm
3.13 Cut-Set

3.13.1 Fundamental Cut Sets
3.14 Answers to ‘Check Your Progress’
3.15 Summary
3.16 Key Terms
3.17 Self-Assessment Questions and Exercises
3.18 Further Reading

3.0 INTRODUCTION

After reading this unit you will learn about the fundamentals of graph theory. A
graph contains a set of vertices, a set of edges and a function that connects two
vertices to form an edge. Every graph has its associated graph which is useful for
understanding problems. Nodes are represented by small circles and edges by
lines. We denote a graph as a set of vertices V and edges E. Mathematically, it is
written as G = (V, E). There are simple graphs with no self loops and parallel
edges. There are other types of graphs too, like directed and undirected graphs,
pseudographs, bipartite graph, regular graph, etc.

You will also learn about matrix representation of graphs. Such matrix is known
as incidence matrix and adjacency matrix. This type of matrix representation is
used to verify isomorphism between two graphs.

After reading this unit you will learn the basic properties of trees and graphs.
These are important data structures in computer science. You will be able to make a
distinction between a tree and a graph. A graph contains nodes and paths joining
these nodes. A graph is cyclic when one starts from a node and after traversing a few
nodes, it returns to that node. A graph in which the starting node is not reached after
traversal is known as an acyclic graph. A connected acyclic graph is known as tree.

You will also learn about various types of trees like, directed tree, rooted tree,
binary tree, k-ary tree, etc., and enhance your concept. A directed tree is one in
which every edge has a direction. A vertex that is a starting node is the vertex of
zero degree and is called a root. A tree with its root is called a rooted tree. A

Graph Theory

NOTES

Self - Learning
104 Material

vertex may be connected to another and those above, are called parent node and
those below, that are called children. A root node has no parent and a node that
has no child is known as leaf. In a tree, if a node has maximum of two nodes, then
it is called binary tree.

You will learn about the application of trees in a binary search, decision tree,
spanning tree and searching strategies like, depth first search, breadth first search,
etc. A binary search tree is a binary tree and each child node is either left child or
right child. No node has more than two children, one left and another right. A
decision tree is a rooted tree in which each internal node is assigned with a decision
for a sub-tree at the vertices and such outcome forms a decision tree.

You will familiarize yourself with traversal of a tree, pre-order, in-order and
post-order traversals.

You will also understand searching strategies and two most popular algorithms,
Prism’s algorithm and Kruskal algorithm. Finally, you will learn about planar graphs
Dijkstra’s algorithm and Warshall’s algorithm.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic terminology used in Graph theory

 Define different types of graphs

 Understand the importance of graphs in visualizing problems

 Understand the path and circuits of graphs

 Differentiate between connected and disconnected graphs

 Explain Euler’s graph

 Represent a graph as a matrix

 Find the minimum spanning tree of a weighted graph

 Define trees and graphs

 Understand the applications of trees and graphs

 Write algorithms for pre-order, in-order and post-order traversals

 Develop an understanding of Prim’s and Kruskal’s algorithms for finding
spanning tree of a graph

 Know about planar graphs, Dijkstra’s algorithm and Warshall’s algorithm.

3.2 BASIC TERMINOLOGY

Graph

A graph G, a triplet)),(),((GGEGV consisting of a non-empty set V(G) of

vertices, a set)(GE of edges, and a function G assigns to each edge, a subset {u,
v} of V(G) (u, v need not be distinct). If e is an edge and u, v are vertices such

Graph Theory

NOTES

Self - Learning
Material 105

that ,)(uveG then e is a line (edge) between u and v; the vertices u and v are the
end points of the edge e.

For example, () ((), (),)Gi G V G E G

1 2 3 4

1 2 3 4 5 6

1 1 2 2 2 2 3 2 3

4 1 3 5 4 5 6 1 4

Where, () { , , , }

() { , , , , , }

() { }, () { }, () { }

() { }; () { }; () { }
G G G

G G G

V G v v v v

E G e e e e e e

e v v e v v e v v

e v v e v v e v v

1 2 3 1 2 3

1 1 2 2 2 3 3 3 1

() ((), (),)

Where, () { , , }; () { , , }

() { }; () { }; () { }

G

G G G

ii G V G E G

V G v v v E G e e e

e v v e v v e v v

Every graph has a diagram associated with it. These diagrams are useful for
understanding problems involving such a graph. In the pictorial representation, we
represent the vertices by small circles and the edges by lines whenever the
corresponding pair of vertices forms an edge.

The following are the pictorial representation of examples (i) and (ii):

Notes:

1. In example (i), e2 joins the vertex v2 to itself. Such an edge is called self loop (loop).

2. Suppose there is more than one edge between a pair of vertices in a graph, these edges
are called parallel edges.

3. Hereafter, we denote the graph),(EVG for simplicity..

4. A graph, which consists of parallel edges, is called a multigraph.

Simple Graph: A graph with no self loops and parallel edges is called a simple
graph.
Complement of a Graph: The complement G of a graph G is a graph with

)()(GVGV and such that uv is an edge of G if and only if uv is not an edge of G.

For example,

Graph Theory

NOTES

Self - Learning
106 Material

There are also some useful terminology for graphs with directed edges.

Graphs with directed edges: When (u, v) is an edge of the graph G with
directed edges, u is said to be adjacent to v and v is said to be adjacent from u.
The vertex u is called the initial vertex of (u, v) and v is called the terminal or end
vertex of the edge (u, v).

For example,

In-Degree and Out-Degree: In a graph with directed edges, the in-degree of
a vertex v denoted by d–(v) is the number of edges with v as their terminal vertex.
The out-degree of v denoted by d+(v) is the number of edges with v as their initial
vertex.

Note: Self loop at a vertex contributes 1 to both in-degree and out-degree of this vertex.

Example 3.1: Find the in-degree and out-degree of the following graphs.

Solution:

(i)i. () 3; () 1; () 1; () 2; and () 1

() 2; () 2; () 1; () 2; () 1

ii. () 1; () 1; () 1

() 1; () 1; () 1

d a d b d c d d d e

d a d b d c d d d e

d u d v d w

d u d v d w

(ii)

Notes:

1 Let),(EVG be a graph with directed edges. Then, () ()
v V v V

d v d v e .

2 By ignoring directions of edges in a graph with directed edges, we will get an undirected

graph. Such graphs are called underlying undirected graphs.

3.3 DIFFERENT TYPES OF GRAPH

Null Graph

A null graph is a totally disconnected graph. A null graph does not have any edge.
Every vertex in a null graph is an isolated vertex. Figure 3.1 shows a null graph
with six vertices.

Graph Theory

NOTES

Self - Learning
Material 107

Fig. 3.1 Null Graph

Directed and Undirected Graph

In a directed graph every edge has a direction (refer Figure 3.2). If there is movement
from a vertex to its adjacent vertex the direction is notified. If movement is from
vertex v1 to vertex v2, then v1v2 and v2v1 are different. Here movement is in one
direction only. But in undirected graph, if there is movement in between v1 and v2,
then movement in both the direction is possible. Such graphs are known as undirected
graphs (Refer Figure 3.3).

v1

v4

v3

v2

v5

v1

v4

v3

v2

v5

Fig. 3.2 Directed Graph Fig. 3.3 Undirected Graph

Simple Graph

A graph with no self loop and parallel edges is known as simple graph. Figure 3.4
shows a simple graph.

Fig. 3.4 Simple Graph

Multigraph

A graph which has loops and parallel edges is a multigraph. Figure 3.5 shows a
multigraph.

Fig. 3.5 Multigraph

Pseudograph

A graph with self loops and parallel edges is called a pseudograph.
Note: Every simple graph and every multigraph is a pseudograph, but the converse is not
true.

Graph Theory

NOTES

Self - Learning
108 Material

For example,

The above graph G is neither a simple graph nor a multigraph.

Complete Graph

A simple graph in which each pair of distinct vertices is joined by an edge is called
a complete graph. A complete graph on n vertices is denoted by kn.

For example,

Complete graphs on 2 and 4 vertices respectively.

Notes:

1. Every complete graph kn is a (n–1) regular graph.

2. There is no 1-regular or 3-regular graphs with 5 vertices. (since no graph has an odd
number of vertices).

Subgraphs

Let there be a graph given by G(V, E). If another graph (denoted as H(V', E')) is
obtained by deleting few vertices and edges then it is the subgraph of G, if V’ in
graph H contains all the terminal points of edges in E'. If we remove an edge, its
terminal points remain in place, but if a vertex is removed, then edges that are
meeting on this vertex are also removed.

Examples of graph and its subgraph are shown below:

v1

v2

v3

v4

v5

Fig. 3.6 Graph G

v1

v2

v3

v4

v5
v1

v2

v3

v4

Fig. 3.7 (i) Subgraph H of G with Edges (ii) Subgraph H of G with Vertex v
5

v
1
v

4
 and v

1
v

2
 Removed Removed

Graph Theory

NOTES

Self - Learning
Material 109

Regular graph

In a regular graph every vertex is of the same degree. If every vertex in a graph is
of degree 2, then, it is called a regular graph of degree 2. Thus, a null graph may be
called a regular graph of degree zero.

Bipartite Graph

A simple graph G is called bipartite if its vertex set V can be partitioned into two
disjoint non-empty sets V1 and V2, such that, every edge in the graph connects a
vertex in V1 and a vertex in V2. Note that no edge in G connects either two
vertices in V1 or two vertices in V2.

For example, G is bipartite, because its vertex set 1 2 3 4 5 6{ , , , , , }V v v v v v v is

partitioned into two non-empty sets 1 1 3 5 2 2 4 6{ , , } and { , , }V v v v V v v v . Also

every edge in G connects a vertex in V1 and a vertex in V2.

3.4 INCIDENCE AND DEGREE

Degree of a Vertex: The degree of a vertex v is the number of edges incident
with that vertex. In other words, the degree of a vertex is the number of
edges, having that vertex as an end point, and is denoted by d(v).

For example,

1

2

3

4

Here, () 2

() 3

() 2

() 3

d v

d v

d v

d v

A loop contributes 2 to the degree of vertex.

Isolated Vertex: A vertex with degree zero is called an isolated vertex.

Pendant Vertex: A vertex with degree one is called a pendant vertex.

Adjacent Vertices: A pair of vertices that determine an edge are called adjacent
vertices.

Note: A vertex is even or odd if as its degree is even or odd.

Example 3.2: Let G be a simple graph with n vertices. Prove that the number of
edges)(GE is atmost nC2.

Solution: Let)),(),((GGEGVG be a simple graph with .|)(| nGV

Since G assigns to each edge, a 2 element subset {u, v} of V(G), there are
atmost nC2 number of 2 element subsets.

Hence,
2

)1(
)(

nn
GE

Theorem 3.1: Let G be a graph with n vertices and e edges. Then

1

() 2
n

i
i

d v e

Graph Theory

NOTES

Self - Learning
110 Material

Proof: Let G be a graph with n vertices and e edges.

Since every edge contributes degree 2 to this sum,
1

() 2
n

i
i

d v e

Theorem 3.2: In a graph G, the number of odd vertices is an even number.

Proof: Let G be a graph with n vertices and e edges.

By Theorem 3.1, we have

1

() 2
n

i
i

d v e

 = Even number (3.1)

Among n vertices, some are even vertices and some are odd vertices. Let Ve
and Vo be the even and odd vertices respectively.

Now Equation (3.1) can be written as,

0

0

() () Even number

() Even number ()

n

v V v Ve

n

v V v Ve

d v d v

d v d v (3.2)

Since every term in the right side of Equation (3.2) is even, the sum on the left
side must contain an even number of terms, i.e., the number of odd vertices in G is
even.

Minimum and Maximum Degrees: Let G be a graph. The minimum and

maximum degrees of G are respectively () and ()G G and given as

() min { (); ()}

() max { (); ()}

G d v v V G

G d v v V G

k-Regular: A graph G is k-regular or regular of degree k, if every vertex of G has
degree k.

3.5 PATH AND CIRCUITS OF A GRAPH

Walk

A walk is a sequence of vertices and edges starting from any vertex and travelling
through edges to a destination vertex, such that no edge appears more than once.
But in a walk a vertex may be visited more than once. Examples of walk are being
given below:

v1
v2

v3
v4 v5

v1

v2
v3

v4
v5

Fig. 3.8 This Shows a Walk with Fig. 3.9 This Shows a Walk with
Single Visit on Every Vertex. Two Visits on Vertex v

2

Graph Theory

NOTES

Self - Learning
Material 111

Spanning Tree

A connected graph might contain more than one spanning tree. Consider the
following graphs.

Fig. 3.10 Spanning Trees

In T1, the edges e1, e2, e5, e6 are present, whereas in T2, edges e2, e4, e5, e6
are present.

Edges of G, which are present in a spanning tree T, are called as the
branches of G with respect to T. The edges of G, which are not present in its
spanning tree T, are called the chords of G with respect to T.

In the above example, the branches of G are e1, e2, e5, e6, with respect to
T1 and the branches of G are e2, e4, e5, e6, with respect to T2.

Note: Let G be a connected graph on n vertices; e-edges and T be one of its spanning tree.
Since T is a tree on n vertices, it has (n –1) edges, i.e., the number of branches of G with
respect to T is (n –1); the number of chords of G with respect to T is e– (n –1). Often the
number of branches of G is called as rank of G and is denoted by r(G); the number of chords
of G is called as the nullity of G, denoted by (G). In general, for a connected graph of n-
vertices and e-edges, r(G), the rank of G is (n –1); (G), the nullity of G is e – n + 1.

Fundamental Circuit

Let T be the spanning tree of a connected graph G, and e be a chord of G with
respect to T. Since the spanning tree T is minimally acyclic, the graph T+e
contains a unique cycle. This cycle is called a fundamental cycle in G with
respect to T.

Every chord of G gives rise to a fundamental cycle. Therefore, the number
of fundamental cycles possible for a connected graph is atmost (G).

Graph Theory

NOTES

Self - Learning
112 Material

For example,

Fig. 3.11 Fundamental Circuit
Cyclic Interchange

Let T be a spanning tree of G and e be a chord of G with respect to T. The graph
T+e is a fundamental circuit. In this circuit other than edge e, all the other edges
are branches of G with respect to T. On removal of any of the branches from the
fundamental circuit, we get a spanning tree T1, i.e., b is a branch in the fundamental
circuit with respect to a chord e, then spanning tree T1 is obtained by removing b
from T + e, i.e, T1 = T + e – b. This process is called cyclic interchange.

For example,

G – Connected graph, T – Spanning tree

T + e – Fundamental circuit, T1 – Spanning tree obtained by cyclic
interchange

Check Your Progress

1. What are graphs with directed edges?

2. What is null graph?

3. State degree of vertex.

4. What is walk?

Graph Theory

NOTES

Self - Learning
Material 113

3.6 CONNECTED AND DISCONNECTED GRAPHS
AND COMPONENTS

In this section, we study the structure of graphs. A walk in a graph G is an alternating
sequence.

)0(,,,...,,,,: 12110 nvevevevW nnn of vertices and edges, beginning and

ending with vertices, such that .,...,2,1,1 nivve iii It is denoted by (v0 – vn)
walk. The number of edges (not necessarily distinct) is called the length of
walk. In graph G, uexeweveu ,,,,,,,, 4621 is a walk of length 4.

Fig. 3.12 Structure of Graph

A trail is a walk in which no edge is repeated and a path is a trail in which
no vertex is repeated. Thus, a path is a trail, but not every trail is a path. In
the above graph G,

yeweuevewex ,,,,,,,,,, 72136 is a trail that is not a path, and ,,,,,,, 364 vewexeu

is a path.

Result: Every (u – v) walk in a graph contains a (u – v) path.

Proof: Let W be a (u – v) walk in a graph G. If u = v, then w is the trail path,
i.e., walk of length zero.

Suppose .,...,,,:and 210 vuuuuuWvu n If no vertex of G appears in W
more than once, then w itself is a (u – v) path. Otherwise, there are vertices of
G that occur in w twice or more. Let i and j be distinct positive integers such

that i < j with ui = uj. Then say 121 ,,...,, jjii uuuu are removed from w, and the

resulting sequence is (u – v) walk w1 whose length is less than that of w. (By
induction hypothesis, this w1 contains a (u – v) path and hence w has a (u – v)
path). If no vertex of G appears more than once in w1, then w1 is a (u – v) path.
If not, apply the above procedure, until we get a (u – v) path.

Cycle: A cycle is a walk. nvvv ,...,, 10 is a walk in which nvvn 0,3 and the
‘n’-vertices v1, v2,…,vn are distinct. We say that a (u – v) walk is closed if u = v
and open if .vu

Connection: Let u and v be vertices in a graph G. We say that u is connected
to v if G contains a (u – v) path. The graph G is connected, if u is connected to v
for every pair u, v of vertices of G.

Graph Theory

NOTES

Self - Learning
114 Material

Disconnection: A graph G is disconnected, if there exists two vertices u and v
for which there is no (u – v) path.

Component: A sub-graph H of a graph G is called a component of G, if H is a
maximal connected sub-graph of G and component is denoted by).(G

Note: If ,1)(G then G is disconnected.

For example,

(i) (ii)

Fig. 3.13 Components of Graph

Graph (i) is connected and (ii) is disconnected.

Note that graph (ii) has 3 components.

Connectedness in Directed Graph

Strongly Connected: A directed graph is strongly connected if there is a path
from u to v and v to u, whenever u and v are vertices in the graph.

Weakly Connected: A directed graph is weakly connected, if there is a path
between any two vertices in the underlying undirected graph.

Unilaterally Connected: A directed graph is said to be unilaterally connected, if
in the two vertices u and v, there exists a directed path either from u to v or from
v to u.

For example,

Fig. 3.14 G
1
 is Weakly Fig. 3.15 G

2
 Unilaterally Fig. 3.16 G

3
 is Strongly

Connected Connected Connected

Operations on Graphs

i. The union of two simple graphs),(and),(222111 EVGEVG is the simple
graph with vertex set 21 VV and edge set 21 EE and is denoted by .21 GG

For example,

Graph Theory

NOTES

Self - Learning
Material 115

ii. The intersection of two simple graphs),(111 EVG and),(222 EVG is the
simple graph with vertex set 21 VV and edge set 21 EE and is denoted by

.21 GG (Note that for 2121 , VVGG is non-empty always.)

For example,

iii. The ring sum of two graphs G1 and G2 is a graph consisting of the vertex set

21 VV and edges that are either in G1 or in G2, but not in both and is denoted

by .21 GG

1 1 1 2 2 2

1 2 1 2 1 2

i.e., if (,); (,)

then (,),

G V E G V E

G G V V E E

Where is the symmetric difference.

3.7 EULER GRAPHS

A trail that traverses every edge of G is called an Euler trail of G. A circuit (tour) of
G is a closed walk that traverses each edge of G atleast once. An Euler tour is a tour
which traverses each edge exactly once. A graph is Eulerian if it contains an Euler
tour.

Theorem 3.3: A connected graph is Eulerian iff it has no vertices of odd degree.

Proof: Let G be Eulerian and let C be an Euler tour of G, which begins and ends
at some vertex u.

Claim: G has no vertices of odd degree, i.e., to prove that every vertex of G is
even. Consider a vertex .uw Since w is neither the first nor the last vertex of C,
each time w is encountered, it is reached by some edge and left by another edge.
Hence each occurrence of w in C contributes 2 to its degree. Thus w is of even
degree. This is true for all internal vertices of C. The initial occurrence and final
occurrence of the vertex u in C contributes 1 to the degree of u. Therefore, every
vertex of G is of even degree.

Conversely, let us assume that every vertex of a connected graph G is even.

Claim: G is Eulerian.

Suppose G be a connected non-Eulerian graph with no vertices of odd degree.

Among such graphs, choose one, say G having least number of edges.

Since each vertex of G has atleast two edges, G contains a trail. Let C be a
closed trail of maximum possible length in G. By assumption, C is not a Euler
circuit of G and hence)(CEG has edges.

Graph Theory

NOTES

Self - Learning
116 Material

Therefore)(CEG has some component G with edges. Since C itself is
Eulerian, degree of every vertex in C is even. Hence degree of every vertex in

)(CEG is also even. Therefore degree of every vertex in G is even. Since
() ()E G E G .

G is Eulerian and hence G has an Euler circuit (tour) say C . Since G is
connected, there is a vertex v in)()(CVCV and we may assume without
loss of generality that v is the initial and the terminal vertex of both circuits
C and .C Now)(CC is a closed trail of G with).()(CECCE This
contradicts the choice of C. Hence, every non-empty connected graph with
no vertices of odd degree is Eulerian.

For example,

Fig. 3.17 Eulerian Graphs

G and H are Eulerian graphs.

Theorem 3.4: A connected graph G has an Eulerian trail iff G has exactly two odd
vertices.

Proof: Let G be a connected graph with an Eulerian (u – v) trail. By the similar
argument in the previous theorem, we conclude that all the vertices on the trail
except u and v, have even degree. Conversely, let G be connected graph with two
odd vertices u and v. Let G be the graph obtain from G by adding a new edge e
= uv between u and v. By applying the previous theorem to G, we can obtained
an Eulerian tour in which the edge e is the first edge. Hence, this Eulerian trail of G
can be obtained that starts at v and ends at u. Therefore, G has an Eulerian trail.

Eulerian Digraphs

An Eulerian trail of a connected directed graph D, is a trail of D that contains all
the edges of D; while an Eulerian circuit of D, is a circuit which contains every
edges of D. A directed graph that contains an Eulerian circuit is called Eulerian
digraph.

For example,

Fig. 3.18 Eulerian Digraphs

Graph Theory

NOTES

Self - Learning
Material 117

Theorem 3.5: Let D be a connected directed graph. D is Eulerian iff d+ (v) = d–

(v), ,v G G is called balanced digraph.

Proof: Let D be an Euler directed graph. Then D contains an Euler circuit C
with common initial and terminal vertex v. Let bu be the number of occurrence of
an internal vertex u in C.

Whenever C enters u through some edge incident into u, there is another edge
incident out of u through which C leaves u. Thus, each occurrence of u contributes
one in-degree and one out-degree. Moreover, C contains all the edges of D.
Thus,

() () .d u d u bu Similarly () ()d v d v

Hence, () (), ()d v d v v V D

Conversely, suppose the connected digraph D is balanced. Then, for each

vertex u, 0)()(udud . Start with an arbitrary vertex .0)(, 11 udu There
exists an edge, incident out of u1. Let u2 be the terminal vertex of this edge,

.0)(2 ud Hence, there exists an edge, incident out of u2. Continuing like

this, we reach a vertex which has been traversed directly. Thus, we obtain a
directed circuit C1 in D. If),()(1 DECE then, C1 is the required Euler circuit.

If not, i.e.,),()(1 DECE then remove all the edge of C1 from D to obtain a
spanning subgraph D1. Since D is balanced, D1 is also balanced. Applying
the above process to D1, we will obtain a circuit C2 in D1. If E(D) = E(C1)
E(C2) and C1 then C2 can be combined to obtain an Euler circuit in D1.
Otherwise, we remove the edges of C2 from D1 to obtain a spanning subgraph
D2 of D. We repeat the above process in D2 and after a finite number of
steps, we obtain edge disjoint circuits C1, C2,…, Ck such that

).(...)()()(21 kCECECEDE Since D is connected, any two of these cycles
have a common vertex. Then the circuits C1, C2,…,Ck can be combined to
obtain an Euler circuit in D. Hence, D is an Euler graph.

Check Your Progress

5. What is component?

6. Define Euler trail.

3.8 MATRIX REPRESENTATION OF GRAPHS

Incidence and Adjacency Matrices
To any graph G, there corresponds a V × E matrix called the incidence matrix of
G and is denoted by I(G) = ,][EVija where

1, if th edge is incident with th vertex

0, otherwiseij

j i
a

One more matrix associated with graph G is the adjacency matrix, e is denoted
by ,][)(VVijbGA

Graph Theory

NOTES

Self - Learning
118 Material

1, if th edge is incident with th vertex

0, otherwiseij

j i
a

Some authors used to define aij as the number of times (0, 1, and 2) vi and
ej are incident ; bij is the number of edges vi and vj.

For example,

01000

10000

11110

00101

00011

5

4

3

2

1

54321

v

v

v

v

v

eeeee

I(G), incidence matrix of G

01000

01000

11011

00101

00110

5

4

3

2

1

54321

v

v

v

v

v

vvvvv

 A(G), adjacency matrix of G

The adjacency matrix A(G) = [bij] of a directed graph is also a V × V matrix,

1, if there is a directed edge from to
Where

0, otherwise

i j

ij

v v
b

(Similarly one can define the incidence matrix of a directed graph)

For example,

00000

11000

10000

11000

01110

)(GA

Example 3.3: Write the adjacency matrix of the following graphs:

Solution:

(i)

01000

00011

11000

00100

00010

)(GA

Graph Theory

NOTES

Self - Learning
Material 119

(ii)

00001

10000

11001

10100

00010

)(GA

(iii)

011000

101000

110000

000001

000001

000110

)(GA

Notes: From Example 3.3 one can conclude that:

1. The diagonal entries of an adjacency matrix are all zero, iff the graph is a graph with no
self-loops.

2. If G is disconnected and it has two components, then its adjacency matrix A(G) can be
written as,

,
)(0

0)(
)(

2

1

GA
GA

GA G1 and G2 are components.

With the help of these matrices, one can verify whether the given graphs
are isomorphic or not.

Example 3.4: Verify if G and G1 are isomorphic.

Solution: First we shall write the adjacency matrices of G and G1.

010010

101000

010101

001010

100101

001010

)(GA

010100

101001

010100

101010

000101

010010

)(1GA

By keeping one matrix fixed, and by applying permutation of rows and
corresponding columns permutations on the unfixed matrix, yields the fixed
one. Then the given graphs are isomorphic.

Here keep A(G) fixed.

Also G and G1 have 4 vertices of degree 2 and two vertices of degree 3.
Since d(v1) = 2 and v1 is not adjacent to any other vertex of degree 2, corresponding
vertex in G1 is either w4 or w6, the only vertices of degree 2 in G1 not adjacent to
a vertex of degree 2.

Graph Theory

NOTES

Self - Learning
120 Material

Without loss of generality, let us take .61 wv Suppose this 61 wv is not
ending with isomorphism, we have to take 41 wv .

Simi l arl y, f or other verti ces of G, we can set 2 3 3 4; ;v w v w

4 5 5 1; ;v w v v 6 2v v .

Thus, we can modify A(G1) as

6 3 4 5 2 1

6

1 3

4

5

1

2

0 1 0 1 0 0

() 1 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 1

0 1 0 0 1 0

w w w w w w

w

A G w

w

w

w

w

1 1() () and hence .A G A G G G

3.9 TREES

In this section we shall study the characteristics of a tree.

Acyclic Graph: A graph G which has no cycles is called an acyclic graph.

Tree: A connected acyclic graph G is called a tree.

For example,

Fig. 3.19 Trees

Notes:

1. Trees are often known as open graphs.

2. Any organizational hierarchy is also an example of tree.

Theorem 3.6: Every two vertices in a tree, are joined by a unique path.

Proof: By contradiction: Let G be a tree and assume that there are two distinct
(v, w) paths P1 and P2 in G. Since P1 P2, there is an edge e = V1V2 of P1 that
is not in P2. Clearly (P1 P2) – e is connected. Therefore it contains a (V1–V2)
path P. Now P + e is a cycle in the acyclic graph G, which is a contradiction to the
fact that G is a tree.

Theorem 3.7: If G is a tree of n vertices, then G has (n –1) edges.

Proof: By induction on the number of vertices.

When n = 1,)(10)(1KGnGE

When n = 2,)(11)(2KGnGE

Graph Theory

NOTES

Self - Learning
Material 121

Let us assume that this theorem is true for all trees of G with fewer than n
vertices.

Now, let G be a tree on n vertices. Let e = uv be an edge in G. Then G – e is
disconnected and G has two components say G1 and G2 of G – e. Since G is
acyclic, G1 and G2 are also acyclic and hence G1 and G2 are also trees. Moreover
G1 and G2 has fewer than n vertices say n1 and n2 respectively. Therefore, by
induction hypothesis,

G1 has (n1– 1) edges and G2 has (n2 – 1) edges.

1)()()(21 GGEGE (Here 1 in the sum corresponds to the edge e)

1 2

1 2

(1) (1) 1

1

1

n n

n n

n

Therefore, an n vertex tree has (n – 1) edges.

Theorem 3.8: Every tree has atleast two vertices of degree one in a tree, i.e.,
there are atleast two pendant vertices.
Proof: Let G be a tree on n vertices. Then,

)(,1)(Gvvd (3.3)

Already we have, “ eGEvdvv .2)(.2)(” (3.4)

Since G is an n-vertex tree, it has (n –1) edges.

)22()()(nvdGvv (3.5)

From Equations (3.3) and (3.5), it follows that d(v) = 1 for atleast two vertices.

Note: In a tree, every edge is a cut-edge.

Rooted and Binary Trees

Rooted Tree: In a directed tree (every edge assigned with a direction), a particular
vertex is called a root if that vertex is of degree zero. A tree together with its root
produces a graph called a rooted tree.

(Note that in the rooted tree, every edge is directed away from the root)

For example,

Suppose T is a rooted tree. If a vertex u is a vertex in T other than the root, the
parent of u is the unique vertex u1 such that there is a directed edge from u1
to u. Here u is called as a child of u1. Vertices of the same parent are called as
siblings. A vertex of a rooted tree is called as a leaf if it has no children and those
vertices which have children, are called as internal vertices.

Fig. 3.20 Rooted Trees

Graph Theory

NOTES

Self - Learning
122 Material

If v is a vertex in a tree, the subtree with v as its root is the subgraph of the tree
consisting of v and its children and all edges incident to these children.

For example,

Fig. 3.21 Rooted Tree T Fig. 3.22 Subtree of T with
its Root u

k-Ary Tree: A rooted tree is called a k-ary tree if every internal vertex has, not
more than k-children. The tree is called a full k-ary tree if every internal vertex
has, exactly k-children. A k-ary tree with k = 2 is called a binary tree.

For example,

Fig. 3.23 K-ary Trees

T2, not a 2-ary tree. (vertex u has only one child, whereas all the other vertices
have two children).

A tree T is called as a binary tree if there is only one vertex with degree 2 and
the remaining vertices are of degree 1 or 2.

Example 3.5: Prove that a full k-ary tree with i-internal vertices contains ki+1
vertices.

Solution: In a full k-ary tree, every internal vertex has k-children and hence a full
k-ary tree with i-internal vertices can have ki vertices. If we include the root, the
tree has ki + 1 vertices. By looking at the full k-ary tree, we can observe the
following:

(i) n vertices has i = (n –1)/k internal vertices and p = [(k –1)n + 1]/k leaves.

(ii) i internal vertices has n = ki + 1 vertices and p = (m –1)i + 1 leaves.

Graph Theory

NOTES

Self - Learning
Material 123

(iii) p leaves has n = (kp –1)/(k –1) vertices and i = (p –1)/(k – 1) internal
vertices.

Level and height in a rooted tree: The level of a vertex v in a rooted tree is
the length of the path from the root to this vertex. The height of a rooted tree
is the length of the longest path from the root to any vertex.

For example,

Fig. 3.24 Levels of Trees

A rooted tree T with its levels. Height of T is 4.

Balanced Tree: A rooted k-ary tree of height h is balanced if all the leaves are at
level h or (h – 1).

Application of Trees

In this section, we shall discuss problems using trees.

Binary Search Trees

Binary search tree is a binary tree in which each child is either a left or right child;
no vertex has more than one left child and one right child, and the data are associated
with vertices.

Example 3.6: Build a binary search tree for the words banana, peach, apple,
pear, coconut, mango and papaya using the alphabetical order.

Solution:

Fig. 3.25 Binary Search Tree

For if apple < peach, coconut < pear.

Further mango is the right child of coconut and papaya is the right child of
mango.

Graph Theory

NOTES

Self - Learning
124 Material

Decision Trees

A rooted tree in which each internal vertex is assigned to a decision with a subtree
at the vertices, then each possible outcome of the decision is called a decision
tree.

Traversal of a Tree

A systematic method for visiting every vertex of an ordered rooted tree is called as
a ‘Traversal algorithm’.

Pre-Order: Let T be an ordered rooted tree with root r. Suppose T has one and
only vertex say r, then r is the pre-order traversal of T. Suppose that T1, T2, ..., Tk
are the subtrees at r from left to right in T, then pre-order traversal begins by
visiting r. It continues by traversing T1 in pre-order, then T2 in pre-order and so
on, until Tk is reached.

Fig. 3.26 Pre-Order Traversal

Step 1: Visit the root r.

Step 2: Visit T1 in pre-order.

Step 3: Visit T2 in pre-order.

Step k+1: Visit Tk in pre-order.

Let us try to understand the above with an example.

Let T be an ordered root tree. The steps of the pre-order traversal of T are as
follows:

We traverse T in pre-order by listing the root r, followed by the pre-order list
of subtree with root a, the pre-order list of subtree with root b, and the pre-order
list of subtree with root c.

Graph Theory

NOTES

Self - Learning
Material 125

Algorithm: Pre-Order Traversal

Step 1: Visit root r and then list r.
Step 2: For each child of r from left to right, list the root of first subtree then

next subtree and so on until we complete listing the roots of subtrees
at level 1.

Step 3: Repeat Step 2, until we arrive at the leaves of the given tree.
Step 4: Stop.

In-Order Traversal: Let T be an ordered rooted tree with its root at vertex r.
Suppose T consists only root r, then r is the in-order traversal of T. If not, i.e.,
suppose T has subtrees T1,T2,...,Tk at r from left to right. The in-order traversal
begins by traversing T1 in-order, then visiting r. It continues by traversing T2
in-order, then Ts inorder and so on and finally Tk in-order.

Fig. 3.27 In-Order Traversal

Step 1: Visit T1 in-order.

Step 2: Visit root.

Step 3: Visit T2 in-order.

Step k+1: Visit Tk in-order.

Graph Theory

NOTES

Self - Learning
126 Material

Example 3.7: Determine the order in which the vertices of the following rooted
tree is visited using an in-order traversal.

Solution: The in-order traversal begins with an in-order traversal of the subtree
with root at a, followed by the root r, and the in-order listing of the subtree with
root b.

Definition Post-Order Traversal

Let T be an ordered rooted tree with root r. If T has only one vertex r, then r is the
post-order traversal of T. But if T has subtrees T1,T2,...,Tk at r from left to right,
the post-order traversal begins by traversing T1 in post-order, then T2 in post-
order and so on until Tk and ends by visiting r.

Graph Theory

NOTES

Self - Learning
Material 127

For example,

For example,

The post-order traversal begins with the post-order traversal of the subtree
with root a, the post-order traversal of the subtree with root b and the post-
order traversal of the subtree with root c, followed by the root r.

Path Length

In a rooted tree, every vertex has a path length which is given by the number of
edges it has to traverse from the root to that vertex. Every vertex has a unique path
length. A tree has been shown here. To find the path length of any vertex, one has
to start from the root and travel up to that vertex. For example: Path length of
vertex D, E, F and G is 2 whereas for H, I and J it is 3 and for K and L it is 4.

Graph Theory

NOTES

Self - Learning
128 Material

A

B C

D E F G

H I J

K
L

Fig. 3.28 Path Length

Spanning Trees

In this section, we shall study the spanning acyclic subgraph of a connected
subgraph and its optimality.

Let G be a simple connected graph. A spanning tree of G is a subgraph of G,
i.e., a tree containing every vertex of G.
For example,

Fig. 3.29 Simple Graph G and its Spanning Tree T

Theorem 3.9: A simple graph is connected if there exists atleast one spanning
tree.

Proof: Let G be a simple connected graph.Suppose G has no circuits then G
itself is a spanning tree. Suppose G has a simple circuit. By deleting an edge
from one of these simple circuits, the resulting subgraph is still connected if
it is a spanning subgraph. If this subgraph has simple circuits, then delete an
edge from one of these simple circuits. Repeat this process until no simple
circuits are there. Thus in this manner a tree T is obtained in which V(T) = V(G).
Therefore T is a spanning tree of G.

Note: The converse of the above theorem is obvious.

Depth-First Search and Breadth-First Search

We can build the spanning tree of a connected graph using DFs and BFs. First we
shall see how DFs are useful in construction of a spanning tree from a given
connected graph.

Graph Theory

NOTES

Self - Learning
Material 129

Depth-First Search

Let G be the given connected graph. Arbitrarily choose a vertex as the root. Find
a path starting from this choosen vertex by successively adding edges, where each
edge is incident with the last vertex in the path and a vertex not already in the path.
Continue adding edges to this path as long as possible. If this path consists of all
the vertices of G, this path is the required spanning tree. If not, more edges should
be added. Move back to the next to last vertex in this path, and if possible, form
a new path starting at this vertex passing through vertices that were not already
visited. If this is not possible, move back to another vertex in this path (i.e., 2
vertices back from the last) and try again. Repeat this procedure, beginning at the
last vertex visited, moving back up the path one vertex at a time, forming new long
paths until no more edges can be added. This process ends with a spanning tree.

When this procedure returns to vertices previously visited, it is also called as
backtracking.

Example 3.8: Construct a spanning tree for the following graph G.

Solution: First we choose arbitrarily a vertex say e as the root. Form a path at e,
i.e., c d f is the path. Backtrack to d. Form a path beginning at d in such a way that
it has to visit the vertices which where not visited in the previous path, d e b a.
Since all the vertices of G are visited, this procedure gives the spanning tree T.

Breadth-First Search

First choose a vertex arbitrarily as the root. Add the edges of G which are incident
with this vertex. The new vertices added at this stage becomes level 1 in the
spanning tree. Order these vertices arbitrarily. Next, for each vertex at level 1
visited in order, add each edge incident to this vertex to the tree as long as it does
not create a simple circuit. Order the children of each vertex at level 1 arbitrarily.
This produces the vertices at level 2 in the tree. Continue in this manner until all the
vertices of G have been added. Ultimately we end with a spanning tree.

Prim’s Algorithm

Let G be a connected graph.

Step 1: Choose arbitrarily a vertex say v1 and an edge e1 with minimum
weight among the edges incident with v1.

Graph Theory

NOTES

Self - Learning
130 Material

Step 2: Having selected the vertices v1,v2,..,vk and the edges e1,e2,..,ek
choose the edge ek+1 as follows. ek+1 is incident with any one of
the vertices {v1,v2,..,vk} and incident with v(G) –{v1,v2,..,vk}.
Moreover the subgraph formed with v1,v2,...,vk, vk+1 and the
edges e1,e2,..,ek,ek+1 is acyclic and of the remaining edges ek+1
has minimum weight.

Step 3: Repeat Steps 1 and 2 till (n –1) edges are arrived at.

For example,

Fig. 3.30 Prim’s Algorithm

Step 1: Choose arbitrarily vertex v3 and apply Step 2 and Step 3. Now we
get the spanning tree.

Weight of the spanning tree is 8.

Kruskal’s Algorithm

Let G be a connected graph on n vertices.

Step 1: Arrange the edges in ascending order according to their weights.
Choose the minimum weight edge say e1.

Step 2: Having selected e1,e2,...,ek in such a way that the subgraph formed
by these edges <e1,e2,...,ek> is acyclic, choose ek+1 such that of
the remaining edges, weight of ek+1 is minimum.

Graph Theory

NOTES

Self - Learning
Material 131

Step 3: Repeat Steps 1 and 2 until (n –1) edges are selected.

For example,

Fig. 3.31 Kruskal’s Algorithm

Step 1: e9, e7, e8, e3, e2, e5, e4, e1, e6

Among these equations e9 has the minimum weight 1.

After applying Step 2 and Step 3, we get the spanning tree as,

Weight of the optimal spanning tree is 2 + 3 + 1 + 2 = 8.

3.10 PLANAR GRAPHS

A graph G is said to be planar if there exists some geometric representation of G
which can be drawn on a plane such that no two of its edges intersect (‘meeting’ of
edges at a vertex is not considered an intersection). A graph that cannot be drawn
on a plane without a crossover between its edges is called nonplanar. A drawing of
a geometric representation of a graph on any surface such that no edges intersect
is called embedding.

Kuratowski’s Two Graphs and Euler’s Formula: Statement and Corollary
To show a graph G is nonplanar we have to prove that of all possible geometric
representations of G, none can be embedded in a plane.

Theorem 3.10: The complete graph of fine vertices is nonplanar.

Proof: Let the fine vertices in the complete graph be v1, v2, v3, v4 and v5.
Using the definition of complete graph, we must have a circuit going from v1 - v2
- v3 - v4 - v5 to v1, i.e., a pentagon. This pentagon must divide the plane of the
paper into two regions, one inside and the other outside.

Since v1 is to be connected to v3 by means of an edge, this edge may be
drawn inside or outside the pentagon. Suppose that we choose to draw a line

Graph Theory

NOTES

Self - Learning
132 Material

from v1 to v3 inside the pentagon, we have to draw an edge from v2 to vH and
another one from v2 to v5. Since neither of these edges can be drawn inside
the pentagon without crossing over the edge already drawn, we draw both
these edges outside the pentagon. The edge connecting v3 and v5 cannot be
drawn outside the pentagon without crossing the edge between v2 and v4.
Therefore v3 and v5 have to be connected with an edge inside the pentagon.

Fig. 3.32

Note: Complete graph is nothing but a simple graph in which every vertex is joined to every
other vertex by means of an edge.

Theorem 3.11: Kuratowski’s (Polish mathematician) second graph is also
nonplanar. k3,3 is nonplanar.
Note: In the plane, a continuous non-self intersecting curve whose origin and terminus
coincide is said to be a jordan curve. If j is a jordan curve in the plane , then – j is a union
of two disjoint connected open sets called the interior and the exterior of j.

For example, Prove that k5 is nonplanar.

Step 1: Draw a circuit c on 5 vertices. This circuit c divides the plane into two
regions called interior and exterior of c.

Step 2: Draw the edges v1v3, v1v4 in the interior. We cannot draw any more edge
in the interior of c, without intersecting any edge.

Now draw the edges v2v5, v2v4 in the exterior of c. But the edge v3v5 cannot
be drawn in the interior or exterior of c, without intersecting the edge of c.

Graph Theory

NOTES

Self - Learning
Material 133

Thus k5 is nonplanar.

We can prove that k3, 3 is nonplanar in the following manner.

Proof: Assume that k3,3 is planar. Let the vertex of k3,3 is {v1,...,v6}. Let P =
{v1, v3, v5} and Q = {v2, v4, v6}.

Let C be the cycle of v1 v2 v3 v4 v5 v6 v1. It is a Jordan curve. The other
three edges v1v4, v2v5, v3v6 are chords of the cycle C. So either interior of C
or exterior of C contains two of the three chords. Say there are two chords in
Int c. These two chords must cross each other, which is a contradiction hence
k3,3 is nonplannar.

Contour: Let G be a connected planar graph. A region of G is the domain of the
plane surrounded by edges of the graph such that any two points in it can be
joined by a line not crossing any edge. The edges ‘touching’ a region contain a
simple cycle called the contour of the region. Two regions are said to be adjacent
if the contours of the two regions have atleast one edge in common.

For example,

G, a planar graph: Ri, i = 1, 2, 3, 4 are the regions of G. Here R4 is the infinite
region.

Euler’s Formula

If G, a connected planar graph has n vertices, e edges and r regions, then, n – e +
r = 2

Proof: By induction on e, the number of edges.

If e = 0, then G = K1(G is connected)

 n = 1 ; r = 1 (infinite face) n – e + r = 1 – 0 + 2 = 2

If e = 1 then n = 2 (G is connected) and r = 1 (infinite face)

n – e + R = 2 – 1 + 1 = 2 This result is true for e = 0 and e = 1

Let us assume that this result is true for all the connected planar graphs on
(e – 1) edges.

Let G be a connected planar graphs with e edges.

Case 1. If G is a tree with e edges then n = e +1 [Tree on n vertices has
(n–1) edges]. r = 1

 n – e + r = e + 1 – e + 1 = 2

Graph Theory

NOTES

Self - Learning
134 Material

Case 2. If G is not a tree.

Since G is connected, it contains cycles.

Let e1 be an edge in some simple circuit of G.

Let G1 be the graph obtained from G by deleting the e1, i.e., G1 = G – e1

Now, number of vertices in G1 = n

Number of edges in G1 = e–1

Number of regions in G1 = r–1

Since G1 has less then e edges, the result is true for G1 also.

 By induction hypothesis, n1 – e1+ r1 = 2, where n1 is the number of vertices,
e1 is the number of edges and r1 is the number of regions of G1 respectively.

 n – (e – 1) + r – 1 = 2 n – e + r = 2
In all the cases, the result in true.

Corollary: If G is a connected simple planar graph without loops and has n
vertices, e 2 edges and r regions, then 3/2 r e 3n – 6.

Proof: If r = 1 then 3/2 e 3n – 6 is true, since e 2.

If r > 1. Let k be the number of edges in the contours of the finite regions.

Since G is simple, each region (finite) is bounded by atleast 3 edges.

Therefore, k 3 (r – 1) (3.6)

But, in a planar graph, an edge belongs to the contours of atmost two regions
and atleast 3 edges touch the infinite region.

 k 2e – 3 (3.7)

From Equations (3.6) and (3.7), 3r – 3 k 2e–3

 3r – 3 2e – 3

 3r 2e 3/2 r e (3.8)

Since G is planar, n – e + r = 2, by Euler’s Formula.

 n – e + 2/3 e 2 [From Equation (3.8) r 2/3 e]

 3n – 3e + 2e6

 – e – 3n + 6

 e 3n – 6 (3.9)

From Equations (3.8) and (3.9), 3/2r e 3n – 6

Example 3.9: Prove that K5 is nonplanar.

Solution: Suppose K5 is planar, then by the above corollory, e 3n – 6. In K5 n
= 5, e = 10;

,965310 which is absurd. K5 is nonplanar

Note: K5, K3,3 are called Kuratowski’s first graph, second graph respectively.

Corollary: If G is a simple connected planar graph on n vertices, e edges and r
regions and does not contain any triangle, then 2r e (2n – 4).

Subdivision: A subdivision of a graph G is obtained by inserting vertices (of
degree 2) into the edges of G.

Graph Theory

NOTES

Self - Learning
Material 135

For example,

Fig. 3.33 Subdivision of a Graph

H is the subdivision of G.

Kuratowski Theorem: A graph is planar if it contains no subgraph that is
isomorphic to or is a subdivision of K5 or K3,3.

Detection of Planarity

Using planar drawings, it is easy to understand the structure of a given graph by
removing crossing edges. These crossing edges are often confused as additional
vertices. Graphs in many applications, like road networks or PCBs (Printed Circuit
Boards), are planar as they are defined by surface structures.

Every planar graph is sparse, which is a remarkable property of planar graphs.
For planar graph G = (V, E), Euler’s formula gives a relationship in between its
edges (E) and vertices (V) which is |E| 3|V| – 6. Every linear graph has linear
number of edges. Further, every planar graph has a vertex of degree not more
than 5.

Algorithms for planarity detection begin by embedding an arbitrary cycle from
the graph in the plane. After this, additional paths in G between vertices on this
cycle are considered. In the event of crossing of two such paths, one must be
drawn outside the cycle and another inside. If three such paths cross mutually, the
graph is not planar.

1

2

3

45 1 2

3

4

5

Fig. 3.34 Given Graph Fig. 3.35 Redrawn Graph

In the above figure, the graph for detection of planarity is shown on the left
side and redrawn graph is shown on the right side.

3.11 DIJKSTRA’S ALGORITHM

Shortest path problem deals with ways of finding the minimum path distance form
a selected node, say s which is source to a destination node d. Such problems
arise in our real life and also in the field of computer science. For example, vertices
of a weighted graph may represent cities and weights on edges represent costs of
driving distances between pairs of cities connected by a direct road or rail link.

Graph Theory

NOTES

Self - Learning
136 Material

Edsger Dijkstra, a Dutch computer scientist, devised an algorithm to solve
this problem and is known as Dijkstra’s algorithm, on his name. It is an algorithm
for graph search solving the single-source shortest path problem for a weighted
graph having non-negative edge path costs, producing a tree that gives the shortest
path. This algorithm is of great use in routing. The concept of ‘shortest path first’
finds extensive use in network routing protocols, like IS-IS and OSPF (Open
Shortest Path First).

The Algorithm

We take a node as initial node or starting node. We select a destination X and find
it’s the distance from the initial node. This algorithm will assign some initial distance
values and then will go step-by-step. These are as below:

1. Assigning every node, a distance value. For initial node, it is zero and for all
other nodes, it is infinity.

2. Initially all unvisited nodes are marked. Initial node is set as current.

3. For current node, distance from the initial node to every unvisited neighbour
is calculated. For example, if current node (A) has distance of 7, and an
edge connecting it with another node (B) is 3, the distance to B through A
will be 7 + 3 = 10. If it is less than the previously recorded distance which
is infinity in the beginning as in Step 1. The distance is overwritten.

4. When all neighbours of the current node are done with, it is marked as
visited so that it is not visited node again and the distance recorded is
final and minimal.

In the figure below problem of shortest path is presented. There are 10
nodes and starting node is node 1.

2

1

4 9

10

7

(10)

19

3 20

(1)(40)

1

(8)

7

(10)

2

8

3

(4) (2)

5

10

(2)
12

(12)
(1)

6

9 14(6)

6

5

(6) (4)4

(2) 17

(4)
13

(3)
21

(0)

11 16

8

(10)
(2)

18

(20)

(20) 15

It is required to find the set of paths which is minimum from the source
node to another node in the network. This problem of shortest path is a tree
which is solved as below:

This has m number of nodes, starting with the source node alone, this
procedure makes the number of iterations one less than the number of vertices,
i.e., m – 1 for finding shortest path and construct a shortest path tree. In the
above example, there are 10 number of nodes and will require 9 iterations.

Let S be the the set of nodes already visited. Nodes that are not solved are
not in S. In each iteration, a number is assigned to each node. A node d

i
denotes

the length of minimum distance or shortest path from source node to ith node.
After finishing the traversal d

i
 shows the shortest path to that node. algorithm

Graph Theory

NOTES

Self - Learning
Material 137

assigns numbers di to each node in the network, where di is the length of the
shortest path to node i from the source node. At the end of the algorithm pi is the
length of the shortest path to node i. Let M be the set of all edges which is also
called arcs.

In the beginning, at source node S = {s} and d
s
 = 0.

Repeat until all nodes are in set S.

Find the edge, p(i, j), where i is the solved node and j is the unsolved node
and arc moves from a node already solved to those not yet solved.

p(i, j) = arcmin{di’ + cp’ : p’(i’, j’) M, i’ S, j’ Sc}

Add node j and arc p to the tree. Add node j to the solved set S.

Let dj = di + cp.

In each iteration this algorithm computes the length of path, (which is path-
length) from solved node to unsolved nodes. Node having the shortest length is
included in the set of solved nodes. After the spanning tree is created, the process
terminates.

The spanning tree obtained is shown below:

1

4

3

2

5

6

9

8 10

7

[0] [8] [14] [15]

[12]

[10] [13]

[18]

[14]

[10]

(8)

2

(10)

3

7 (4)

(4)

11

(0)

17

(4)

13

(3)

14

(2)

20

(2)

6

The numbers in bold, put under brackets indicate the value of length which
is associated with nodes . For example shortest path of node 6 is 10. The numbers
in the bracket for the nodes in S

c
 indicates the shortest path length to unsolved

nodes passing through the solved nodes in the set S. After this the arc is selected
with the smallest dj value for i Sc. Hence, choice is made from minimum of 18,
22, 14, 13 and is expressed as min{18, 22, 14, 13}. So, node 9 and arc 14 are
included in the spanning tree.

Tabular Presentation of This Algorithm

The algorithm creates a table of seven columns as shown here. Column 1 shows
the value of h which shows the number of nodes in the set S. Second column lists
the members of the set S which contains solved nodes having minimum one arc
connected to a node which is not yet traversed and called unsolved node. Third
column shows the closest unsolved node for each node listed in column 2. Column

Graph Theory

NOTES

Self - Learning
138 Material

4 contain every i, which is the index of nodes listed in second column, third column
lists j as the index of the node which is listed in third column. We set d as the index
of the path or arc oining nodes i and j and carrying out computation for each case
dj’ = di + pk.

Fifth Column selects the least number from fourth column. Second column
has nodes denoted by i and j is that for node in third column from where, this
number was calculated. Fifth column contains node j and sixth column lists the
length of the shortest path to the node which is added. This is the minimum and is
obtained from fourth column. Seventh column 7 has the arc p(i, j) Shortest path
tree is formed by adding the node j and arc p and j is added to the set S.

h Solved
Nodes

Unsolved
Node, Closest

to Solved
Node

Path
Length to
Unsolved

Node

Node Added
to the Set of
Solved Node

Shortest
Path

Arc
Added
to Tree

1 1 3 8 3 8 2
2 1 4 10
 3 6 10 4 10 3

3 1 2 40
 3 6 10
 4 6 11 6 10 6

4 1 2 40
 3 2 12
 6 9 13 2 12 7

5 2 5 18
 6 9 13 9 13 14

6 2 5 18
 6 8 14
 9 10 15 8 14 13

7 2 5 18
 8 5 14
 9 10 15 5 14 17

8 2 7 22
 5 7 18
 8 10 34
 9 10 15 10 15 20

9 2 7 22
 5 7 18 7 18 11

3.12 WARSHALL’S ALGORITHM

This algorithm is more efficient in determining the access of all pairs of node in a
graph whether directed or undirected. A graph G with n nodes, this method
constructs a sequence of n adjacency matrices, P

1
,...,P

n
, using the same set of

nodes. We start by setting P
0
= G.

If P
k
 is already defined then P

k+1
has all the edges of P

k
, and additional

edges, if any, needed to ensure that every pair of nodes joined by an edge of P
k
 to

Graph Theory

NOTES

Self - Learning
Material 139

node k + 1 are joined by an arc of P
k+1

(in the undirected case) and also for every
path a k + 1 b. The pair (a, b) is an edge of P

k+1
 (in the directed case).

The algorithm terminates after n iterations and P
n
 contains all adjacency

relationships which are shown as edges.

Floyd-Warshall algorithm is an algorithm for graph analysis that finds
shortest paths in a graph that is weighted and directed. The algorithm computes
the shortest paths between all pairs of vertices. This algorithm is an example of
dynamic programming.

We define a path in the matrix k such that path k[i][j] is true if and only if
there is a path from node i to node j and there is no node higher than k, except i
and j themselves. For any i and j if path k[i][j] = true, this implies that path
(k+1)[i][j] is also true. If there is a situation in which path (k+1)[i][j] is true while
path k[i][j] is false, is possible if there is a path from i to j via node k + i, but no
path from i to j via nodes i through k. This means that there is a path from i to k +
1 through nodes i through k and a similar path from k + i to j. This follows that the
path (k+ i)[i][j] is true if and only if one of the following two conditions holds:

(i) path k[i][j] is true.

(ii) (path k[i][k+1]) (path k[k+1][j]) is true.

Also, path 0[i][j] = adjacent. This is since, direct path is there from node i
to node j with no intermediate node. It can also be noted that, path (MAXNODES–
1)[i][j] = path[i][j], because if a path exists through any node, then any path from
node i to node j may be selected.

This is Warshall’s algorithm which is named, after its discoverer.

This algorithm compares every possible path between every pair of vertices
in the graph. It makes only V3 comparisons. Maximum number of edges may be
given as V2 in the graph with every combination of edges tested. It estimates the
shortest path between two vertices, by improving it incrementally to find an optimal
solution.

Let there be a graph with a set V, of vertices and each vertex numbered 1
through N. Let there be a function defined as shortest path (i, j, k) which returns
the shortest possible path from i to j using only vertices 1, 2, 3, ….., k as intermediate
nodes. The objective is to find the shortest possible path from each i to each j
using only nodes 1, 2, 3, …., k + 1.

There are two alternative paths:

(i) Shortest path that only uses nodes in the set (1...k);

or

(ii) Another path that goes from i to j, via k + 1.

Best path from i to j is one that uses only nodes 1…. k which is defined by
the function, shortest path (i,j,k). If there was a better path from i to j via k + 1,
then the length of this path would be the sum total of the shortest path from i to k
+ 1, traversing vertices 1.....k and the shortest path from k + 1 to j using same set
of vertices, i.e., 1…....k.

We may define shortest path (i,j,k), which is recursive in nature.

Graph Theory

NOTES

Self - Learning
140 Material

This formula is the heart of Floyd Warshall algorithm which works by first
computing shortest path (i, j, 1) for all (i, j) pairs, then using that to find shortest
path (i, j, 2) for all (i, j) pairs, and so on and terminates when k = n. This finds the
shortest path for all (i, j) pairs using any intermediate vertices.

3.13 CUT SET

In graph theory, a cut is a partition of the vertices of a graph into two disjoint
subsets. Any cut determines a cut-set, the set of edges that have one endpoint in
each subset of the partition. These edges are said to cross the cut. In a connected
graph, each cut-set determines a unique cut, and in some cases cuts are identified
with their cut-sets rather than with their vertex partitions.

In a flow network, an s–t cut is a cut that requires the source and the sink to
be in different subsets, and its cut-set only consists of edges going from the source’s
side to the sink’s side. The capacity of an s–t cut is defined as the sum of the
capacity of each edge in the cut-set.

A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S
and T. The cut-set of a cut C = (S, T) is the set {(u,) E, T} of edges that
have one endpoint in S and the other endpoint in T. If s and t are specified vertices
of the graph G, then an s–t cut is a cut in which s belongs to the set S and t belongs
to the set T.

In an unweighted undirected graph, the size or weight of a cut is the number
of edges crossing the cut. In a weighted graph, the value or weight is defined by
the sum of the weights of the edges crossing the cut. A bond is a cut-set that does
not have any other cut-set as a proper subset.

Keep repeating the delection process so that all the circuits are ‘Broken’
and the resultant subgraph is connected and circuit-free which contains all the
vertices of G.

Subsequently, at the end of the total producure we will obtain a spanning
tree.

Hence, it proves that every connected graph has atleast one spanning tree.

Example 3.10: Describe a method of find all spanning tree of a graph.

Solution: Let G be a connected graph.

If G is a tree then G itself will be one and only one spanning tree of G.

Now, as shown in the Figure 3.36 consider a connected graph G. It is not a
tree because it has one circuit. Let T

1
 be a spanning tree of G that contains the

branches a, b, c, d.

Graph Theory

NOTES

Self - Learning
Material 141

Fig. 3.36 Finding a Spanning Tree

Add a chord, say h, to the tree which will form a fundamental circuit through
b, c, h, d. Removal of the branch c of T

1
from the fundamental circuit b, c, h, d will

break the circuit and will create another spanning tree, say T
2
.

Instead of deleting C, if we delete d or b then we will obtain two more
different spanning trees, namely a, b, c, h and a, d, h, c. This process generates all
possible trees corresponding to the chord h and associated fundamental circuit.

Restarting with the initial tree T
1
 and repeating the process of deletion or

removal with the chord h, using another chord e or f or g you can obtain all
possible different spanning trees corresponding to each chord addition to T

1
.

Therefore, we can obtain all possible spanning trees of a connected graph.

3.13.1 Fundamental Cut Sets

For defining the concept of Cut Set, let us consider a spanning tree T of a connected
graph G. In graph G take any branch b in T. Subsequently (b) is cut set in T,
therefore (b) partitions all vertices of T into two disjoint sets–one at each end of b.

Consdider the same partition of vertices in G,and the cut set S in G that
corresponds to this partition. Cut set s will contain only one branch b of T, and the
rest (if any) of the edges in S will be referred as chords with respect to T. This cut-
set S containing exactly one branch of a tree T is termed as Fundamental Cut
Set with respect to T. In addition a fundamental cut set is also termed as Basic
Cut Set.

In Figure 3.37, a spanning tree t (shown with dark lines) and all five of the
fundamental cut sets with respect to T are shown with broken lines cutting through
each cut set.

Fig. 3.37 Fundamental Cut Set of a Graph

Graph Theory

NOTES

Self - Learning
142 Material

Every chord of a spanning tree defines a Unique Fundamental Circuit
while every branch of a spanning tree defines a Unique Fundamental Cut Set.
Remember that the term fundamental cut set can be defined only with respect to a
given spanning tree.

The cut sets of a graph can be obtained from a given set of cut sets.

Theorem 3.12: The ring sum of any two cut sets in a graph is either a third cut set
or an edge-disjoint union of cut sets.

In the Figure 3.37 consider that ring sums of the following three pairs of cut
sets are given:

{d, e, f} {f, g, h} = {d, e, g, h}, Another cut set.

{a, b} {b, c, e, f} = {a, c, e, f}, Another cut set.

{d, e,g, h} {f, g, k} = {d, e, f, h, k},

= {d, e, f} {h, k}, An edge-disjoint

 Union of cut sets

Check Your Progress

7. What is incidence matrix?

8. What is tree?

9. Define planar graph.

10. Where is the concept of shortest path first used?

11. What does Floyd-Warshall algorithm find?

12. Elaborate on the cut-set of a graph.

3.14 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. When (u, v) is an edge of the graph G with directed edges, u is said to be
adjacent to v and v is said to be adjacent from u. The vertex u is called the
initial vertex of (u, v) and v is called the terminal or end vertex of the edge
(u, v).

2. A null graph is a totally disconnected graph. A null graph does not
have any edge.

3. The degree of a vertex v is the number of edges incident with that vertex. In
other words, the degree of a vertex is the number of edges, having that
vertex as an end point and is denoted by d(v).

4. A walk is a sequence of vertices and edges starting from any vertex
and travelling through edges to a destination vertex, such that no edge
appears more than once.

5. A sub-graph H of a graph G is called a component of G, if H is a maximal

connected sub-graph of G and component is denoted by Gω .

6. A trail that traverses every edge of G is called an Euler trail of G.

Graph Theory

NOTES

Self - Learning
Material 143

7. To any graph G, there corresponds a V × E matrix called the incidence
matrix of G.

8. A connected acyclic graph G is called a tree.

9. A graph G is said to be planar if there exists some geometric representation
of G which can be drawn on a plane such that no two of its edges intersect.

10. The concept of ‘shortest path first’ finds extensive use in network routing
protocols, like IS-IS and OSPF.

11. Floyd-Warshall algorithm is an algorithm for graph analysis that finds shortest
paths in a graph that is weighted and directed.

12. In graph theory, a cut is a partition of the vertices of a graph into two disjoint
subsets. Any cut determines a cut-set, the set of edges that have one endpoint
in each subset of the partition. These edges are said to cross the cut. In a
connected graph, each cut-set determines a unique cut, and in some cases
cuts are identified with their cut-sets rather than with their vertex partitions.

3.15 SUMMARY

• A graph G, a triplet)),(),((GGEGV consisting of a non-empty set V(G) of
vertices, a set of)(GE edges, and a function G assigns to each edge, a
subset {u, v} of V(G) (u, v needn’t be distinct).

• A graph with no self loops and parallel edges is called a simple graph.

• The complement G of a graph G is a graph with)()(GVGV and such that
uv is an edge of G if and only if uv is not an edge of G.

• In a graph with directed edges, the in-degree of a vertex v denoted by d–

(v) is the number of edges with v as their terminal vertex. The out-degree of
v denoted by d+(v) is the number of edges with v as their initial vertex.

• In a directed graph every edge has a direction.

• A simple graph in which each pair of distinct vertices is joined by an edge is
called a complete graph.

• Let there be a graph given by G(V, E). If another graph (denoted as H(V,
E)) is obtained by deleting few vertices and edges then it is the sub-graph
of G, if V in graph H contains all the terminal points of edges in E.

• The degree of a vertex is the number of edges incident with that vertex.

• A walk is a sequence of vertices and edges starting from any vertex and
travelling through edges to a destination vertex such that no edge appears
more than once.

• A connected graph might contain more than one spanning tree.

• Let T be the spanning tree of a connected graph G, and e be a chord of G
with respect to T. Since the spanning tree T is minimally acyclic, the graph
T+e contains a unique cycle. This cycle is called a fundamental cycle in G
with respect to T.

Graph Theory

NOTES

Self - Learning
144 Material

• A cycle is a walk. nvvv ,...,, 10 is a walk in which nvvn 0,3 and the ‘n’-
vertices v

1
, v

2
,…,v

n
 are distinct.

• Let u and v be vertices in a graph G. We say that u is connected to v if G
contains a (u – v) path.

• A directed graph is strongly connected if there is a path from u to v and v to
u, whenever u and v are vertices in the graph.

• A trail that traverses every edge of G is called an Euler trail of G. A circuit
(tour) of G is a closed walk that traverses each edge of G at least once. An
Euler tour is a tour which traverses each edge exactly once. A graph is
Eulerian if it contains an Euler tour.

• Graphs can be represented using adjacency and incidence matrices.

• A graph G which has no cycles is called an acyclic graph. A connected
acyclic graph G is called a tree.

• Binary search tree is a binary tree in which each child is either a left or right
child; no vertex has more than one left child and one right child, and the data
are associated with vertices.

• A systematic method for visiting every vertex of an ordered rooted tree is
called as a ‘Traversal algorithm’.

• Let G be a simple connected graph. A spanning tree of G is a sub-graph of
G, i.e., a tree containing every vertex of G.

• A graph G is said to be planar if there exists some geometric representation
of G which can be drawn on a plane such that no two of its edges intersect
(‘meeting’ of edges at a vertex is not considered an intersection).

• To show a graph G is nonplanar we have to prove that of all possible
geometric representations of G, none can be embedded in a plane.

• If G, a connected planar graph has n vertices, e edges and r regions, then,
n – e + r = 2.

• Dijkstra’s algorithm is an algorithm for graph search solving the single-source
shortest path problem for a weighted graph having non-negative edge path
costs, producing a tree that gives the shortest path.

• Warshall’s algorithm is an efficient algorithm in determining the access of all
pairs of node in a graph whether directed or undirected.

3.16 KEY TERMS

• Simple graph: A graph with no self loops and parallel edges is called a
simple graph.

• Multigraph: MultigraphA graph which has loops and parallel edges is a
multigraph.

• Pseudograph: A graph with self loops and parallel edges is called a
pseudograph.

Graph Theory

NOTES

Self - Learning
Material 145

• Complete graph: A simple graph in which each pair of distinct vertices is
joined by an edge is called a complete graph.

• Isolated vertex: A vertex with degree zero is called an isolated vertex.

• Pendant vertex: A vertex with degree one is called a pendant vertex.

• Adjacent vertices: A pair of vertices that determine an edge are called
adjacent vertices.

3.17 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is a graph?

2. Name the different types of graphs.

3. Define degree of a vertex.

4. Define a path.

5. What is the difference between connected and disconnected graphs?

6. Define Eulerian graph.

7. What are adjacency matrices?

8. What are rooted trees?

9. State Kuratowski’s theorem.

10. State the basic idea behind Dijkstra’s algorithm.

11. What is the complexity of Floyd-Warshall algorithm?

Long-Answer Questions

1. Discuss briefly about graphs.

2. Explain different types of graphs.

3. Illustrate incidence and degree of graphs.

4. Explain fundamental circuit and cyclic interchange with examples.

5. Discuss the properties on graphs with the help of diagrams.

6. Explain the concept of Eulerian digraphs.

7. Illustrate matrix representation of graphs.

8. Describe briefly the concept of traversal of a Tree.

9. State and prove Euler’s formula.

10. Write the pseudocode of Dijkstra’s algorithm.

11. Illustrate Floyd-Warshall algorithm.

Graph Theory

NOTES

Self - Learning
146 Material

3.18 FURTHER READING

Iyengar, N Ch S N. V M Chandrasekaran, K A Venkatesh and P S Arunachalam.
Discrete Mathematics. New Delhi: Vikas Publishing House Pvt. Ltd., 2007.

Tremblay, Jean Paul and R. Manohar. Discrete Mathematical Structures with
Applications to Computer Science. New York: McGraw-Hill Inc., 1975.

Deo, Narsingh. Graph Theory with Applications to Engineering and
Computer Science. New Delhi: Prentice-Hall of India, 1999.

Singh, Y.N. Mathematical Foundation of Computer Science. New Delhi:
New Age International Pvt. Ltd., 2005.

Malik, D.S. Discrete Mathematical Structures: Theory and Applications.
London: Thomson Learning, 2004.

Haggard, Gary, John Schlipf and Sue Whiteside. Discrete Mathematics for

Computer Science. California: Thomson Learning, 2006.

Cohen, Daniel I.A. Introduction to Computer Theory, 2nd edition. New Jersey:

John Wiley and Sons, 1996.

Hopcroft, J.E., Rajeev Motwani and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation, 3rd edition. Boston: Addison-

Wesley, 2006.

Linz, Peter. An Introduction to Formal Languages and Automata, 5th edition.

Boston: Jones and Bartlett Publishers, 2011.

Mano, M. Morris. Digital Logic and Computer Design. New Jersey: Prentice-

Hall, 1979.

Introductory
Computability Theory

NOTES

Self - Learning
Material 147

UNIT 4 INTRODUCTORY
COMPUTABILITY THEORY

Structure

4.0 Introduction
4.1 Objectives
4.2 Finite State Machines and their Transition Table Diagrams
4.3 Regular Languages
4.4 Equivalence of DFA and NFA
4.5 Reduced Machines
4.6 Moore and Mealy Machines
4.7 Turing Machine
4.8 Answers to ‘Check Your Progress’
4.9 Summary

4.10 Key Terms
4.11 Self-Assessment Questions and Exercises
4.12 Further Reading

4.0 INTRODUCTION

In this unit we will learn about the introductory computability theory. Computability
theory, also called recursion theory, is a branch of mathematical logic that originated
in the 1930s with the study of computable functions and Turing degrees. A regular
language is a formal language that can be expressed using a regular expression.
Finite automata are computing devices that accept/recognize regular languages
and are used to model operations of many systems. Their operations can be
simulated by a very simple computer program. A Moore machine is a finite-state
machine, whose output values are determined solely by its current state. A Mealy
machine is a finite-state machine whose output values are determined both by its
current state and the current inputs.

4.1 OBJECTIVES

After going through this unit, you will be able to:

• Understand finite state machines and their transition table diagrams

• Explain regular languages

• Discuss equivalence of DFA and NFA

• Describe the concept of reduced machines

• Illustrate the concept of Moore and Mealy machines

Introductory
Computability Theory

NOTES

Self - Learning
148 Material

4.2 FINITE STATE MACHINES AND THEIR
TRANSITION TABLE DIAGRAMS

Finite automata are mathematical models of machines which are used for accepting
languages over the input alphabets. In finite automata, the number of input symbols
and the number of states are finite.

The components of finite automata are input tape, finite control and reading
head (Refer Figure 4.1).

Input Tape a b c d e f a b c d $

Reading Head

Finite Control

Fig. 4.1 Block Diagram of Finite Automata

1. Input Tape: It consists of input symbols with $ at the end to indicate the
end of the input tape. If $ is not present it means that it is an infinite input
string. The input symbols are processed from left to right in sequence.

2. Reading Head: It reads data from the input tape.

3. Finite control: The control moves from one state to another state depending
on the current input symbol.

DFA

Deterministic Finite Automata (DFA) refers to the system where on reading each
input symbol the system may have a transition from the current state to only one
state or it may remain in the same state itself.

A deterministic finite automata or DFA is defined by 5-tuples (Q, , , q
0
,

F). Here,
1. Q is a finite non-empty set of states.
2. is a finite non-empty set of input symbols.
3. is a transition function which maps Q × into Q. Transition functions

represent the change of state during the transition for a given input
symbol.

4. q
0
 represents the initial state such that q

0
 Q.

5. F represents the final state and it is otherwise known as accepting
state.

DFA can be described using the following two notations:
1. Transition diagram or transition graph
2. Transition table

Transition Diagram or Transition Graph

A transition diagram is a finite directed labelled graph in which each vertex (node)
represents a state and the directed edges indicate the transition of a state; the

Introductory
Computability Theory

NOTES

Self - Learning
Material 149

edges are labelled with input/output. The initial state is represented by an arrow
pointing towards the state. The final or accepting state is represented by double
circles.

By means of an input symbol the system moves from one state to another
state.

1. If q
0
 is the initial state, then it is represented as

 q0

2. If q
1
 is the final state, then it is represented as

 q0 a q1

3. If there is a transition from one state to another state by means of two
input symbols, then the transition diagram is given by

 q0 q1

a

b

The transitions (q
0
, a) = q

1
 and (q

0
, b) = q

1
.

Generalized Transition Graph

Generalized transition graphs are transition graphs where the labels of the edges
are regular expressions but not strings. The labels of the edges may be

A generalized transition graph is a finite directed labelled graph in which
each vertex (node) represents a state and the directed edges indicate the transition
of a state; the edges are labelled with input. The labels may be input symbols,
regular expressions or . The initial state is represented by an arrow pointing
towards the state. The final or accepting state is represented by double circles.

ab

b

Transition Table

A transition table is a tabular representation of a transition. It has two arguments,
namely states and inputs. The rows of the table correspond to states and the
columns correspond to input symbols.

In the transition table, the start state is marked with an arrow and the accepting
state is marked with a circle or star.

Example 4.1: Design a DFA for the language that consists of 101 as a substring
over the alphabet = {0, 1} and draw the transition table.

Introductory
Computability Theory

NOTES

Self - Learning
150 Material

Solution:

q0 q1 q2 q3

0 1
0,1

0 1 1

0

States 0 1

q0 q0 q1

q1 q2 q1

q2 q0 q3

q3 q3 q3

Example 4.2: Design a DFA that has even number of 0s and even number of 1s.

Solution: L = {w | w has even number of 0s and even number of 1s}.

Transition Table

State 0 1

q0 Even 0 Even 1

q1 Even 0 Odd1

q2 O dd 0 Even 1

q3 O dd 0 Odd1

For example, if the input string is 10101010

q0 q1

q3 q2

1

1

0 0 0 0

1

1

Suppose if the input string is 10101010, then initially we consider (q
0
, 1). By

default we have assigned q
0
 as even 0, even 1. If 1 is the input, then q

0
 becomes

even 0, odd 1 which is q
1
. Again, q

1
 = even 0, odd 1 and by receiving the input 0

it becomes odd 0, odd 1. Similarly, the process continues until the input string is
completed.

Example 4.3: Design a finite automata that accepts all possible strings that start
with 00 and end with 11 over the alphabet S = {0, 1}.

Introductory
Computability Theory

NOTES

Self - Learning
Material 151

Solution:

q0 q1 q2 q3

0,1

0 0 1 q4

1

1

Acceptance of Strings by Finite Automata

A string x is accepted by a finite automata M = (Q, , , q
0
, F) if (q

0
, x) = q for

some q F.

Example 4.4: Consider the finite state automaton whose transition table is given
below, where Q ={q

0
, q

1
, q

2
, q

3
}, = {0,1} and F = q

0
. Check whether or not

the input string 110101 is accepted by the finite automata.

States 0 1

q0 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

Solution:

 (q
0
, 110101) = [(q

0
, 1), 10101]

= (q
1
, 10101)

= [(q
1
, 1), 0101]

= (q
0
, 0101)

= [(q
0
, 0), 101]

= (q
2
, 101)

= ((q
2
, 1), 01)

= (q
3
, 01)

= ((q
3
, 0), 1)

= (q
1
, 1)

= q
0

It has reached the final state. Hence, the given input string is accepted.

Properties of Transition Function

1. In a finite automaton (q,) = q, i.e., the state of the transition system is
changed only by means of an input symbol.

2. For all strings w and input symbols a

 (q, aw) = ((q, a), w)

or

 (q, wa) = ((q, w), a)

Example 4.5: Prove that if (q, x) = (q, y) then show that (q, xz) = (q, yz)
for all strings.

Introductory
Computability Theory

NOTES

Self - Learning
152 Material

Solution:

LHS: (q, xz) = ((q, x), z) By Property 2

= ((q, y), z) Given

= (q , yz)

RHS:

(q, yz) = ((q, y), z) By Property 2

= ((q, x), z) Given

= (q, xz)

Language of DFA

The language of DFA is denoted by L(A) and it is defined by

L(A) = {w | (q̂
0
, w) is in }

In other words, the language of A is defined as the set of strings w that
assumes the start state as q

0
 and reaches one of the final states. If L is L(A) for

some DFA, A, then we say that L is a regular language.

NFA
A Non-deterministic Finite Automata (NFA) is defined by 5-tuples (Q, , ,q

0
,

F), where

1. Q is a finite non-empty set of states.

2. is a finite non-empty set of inputs.

3. is the transition function mapping from Q × into P(Q), the power set of
Q.

4. q
0
 is the initial state.

5. F is the set of final states.

Basic Difference between NFA and DFA

1. In NFA by means of the same input symbol, the system can change its state
from one state to more than one state, e.g., (q

0
, a) = {q

1
, q

2
}. It can move

to either q
1
 or q

2
.

2. A state can move to the next state without having any input symbol (i.e., by
means of an empty string).

 (q̂
0
,) = q

1
 or (q

0
,) = q

1

3. In NFA, the transition (q
0
, a) may be empty, i.e., no transition for this

particular state.

Extended Transition Function

In non-deterministic finite automata the transition function ̂ is extended to the
transition function , such that it maps Q × into 2Q resulting in

̂ (q,) = {q}

Introductory
Computability Theory

NOTES

Self - Learning
Material 153

Language of Non-Deterministic Finite Automata

A language L accepted by an NFA is defined as

L (A) = {w | ̂ (q
0
, w)) F }

In other words, the language accepted by the NFA is the set of strings such that

L(A) = {w * : ̂ (q
0
, w) F = at least one final state}

A string w * is accepted by the NFA if it contains at least one final state.

Acceptance of Strings by Non-Deterministic Finite Automata

Example 4.6: Consider the following NFA:

q0 q1 q2

q3

0,1

0 0

q4

0,1

1

0,1

1

Check the acceptance of 01001.

Solution:

Transition Table

States 0 1

q0 { q0, q1 } { q0 , q3 }

q1 { q2 } -

q2 { q2 } { q2 }

q3 - { q4 }

q4 { q4 } { q4 }

Let the input string be 01001.

 (q
0
, 0) = (q

0
, 0) = (q

0
, q

1
)

̂ (q
0
, 01) = [(q

0
, 0), 1]

= [(q
0
, q

1
), 1]

= (q
0
, 1), ̂ (q

1
, 1)

= (q
0
, q

3
)

= (q
0
, q

3
)

̂ (q
0
, 010) = ((q

0
, 01), 0)

= [(q
0
, q

3
), 0]

= [(q
0
, 0) (q

3
, 0)]

Introductory
Computability Theory

NOTES

Self - Learning
154 Material

= (q
0
, q

1
) = (q

0
, q

1
)

̂ (q
0
, 0100) = ((q

0
, 010), 0)

= [(q
0
, q

1
), 0]

= [(q
0
, 0) (q

1
, 0)]

= (q
0
, q

1
) (q

2
)

= (q
0
, q

1
, q

2
)

̂ (q
0
, 01001) = [(q

0
, 0100),1]

= [(q
0
, q

1
, q

2
),1]

= [(q
0
, 1) (q

1
, 1) (q

2
, 1)]

= (q
0
, q

2
, q

3
)

Since it contains one of the final states q
2
, the given input string is accepted.

Conversion of NFA to DFA

For every NFA, there exists an equivalent DFA.

Example 4.7: Convert the following NFA into DFA.

 q0 q1 q2 q3

a, b b

a a

b

a, b

Solution:

Step 1:

Start from the initial state q
0
 for every input symbol. If we get a set of states as the

output then consider them as a new state.

Let q
0
 = A

(q
0
, a) = {q

0
, q

1
}= B

(q
0
, b) = {q

0
} = A

Step 2:

Now we consider {q
0
, q

1
} as a single state

 ({q
0
, q

1
}, a) = (q

0
, a) (q

1
, a)

= {q
0
, q

1
} {q

2
}

= {q
0
, q

1
, q

2
} = C

 ({q
0
, q

1
 }, b) = (q

0
, b) (q

1
, b)

= {q
0
} {q

1
}

= {q
0
, q

1
} = B

Step 3:

 ({q
0
, q

1
, q

2
}, a) = (q

0
, a) (q

1
, a) (q

2
, a)

= {q
0
, q

1
, q

2
, q

3
} = D

Introductory
Computability Theory

NOTES

Self - Learning
Material 155

 ({q
0
, q

1
, q

2
}, b) = (q

0
, b) (q

1
, b) (q

2
, b)

= {q
0
, q

1
, q

3
} = E

 ({q
0
, q

1
, q

2
, q

3
}, a) = (q

0
, a) (q

1
, a) (q

2
, a) (q

3
, a)

= {q
0
, q

1
, q

2
, q

3
} = D

 ({q
0
, q

1
, q

2
, q

3
}, b) = (q

0
, b) (q

1
, b) (q

2
, b) (q

3
, b)

= {q
0
, q

1
, q

2
, q

3
} = D

 ({ q
0
, q

1
, q

3
}, a) = { q

0
, q

1
, q

2
} = C

 ({ q
0
, q

1
, q

3
}, b) = { q

0
, q

1
, q

2
} = C

States a b

A B A

B C B

C D E

D D D

E C C

Transition Diagram

A B C D

b b

a a

a,b

a

E

a,b b

NFA with -Moves

In non-deterministic finite automata there is a transition from one state to another
state by means of zero, one or more transitions.

NFA also makes a transition from one state to another state without receiving
any input symbol.

The transitions without any input symbols are called NFA with -transitions.

Consider the following NFA:

q0 q1 q2
ε ε

a b a,b

This is an example of NFA with -transitions. It starts from the initial state q
0
 and

reaches the final state q
2
 by means of -transitions.

Introductory
Computability Theory

NOTES

Self - Learning
156 Material

Non-Deterministic Finite Automata with -Transitions

The non-deterministic finite automata with -transitions is denoted by 5-tuples,
A = { Q, , , q

0
, F }

Here, all the elements are same as non-deterministic finite automata, except
the input alphabet .

Here, = { }, i.e., the input alphabet includes , i.e., empty string
also.

Acceptance of a String by NFA with -Moves

A string x in * is accepted by the NFA, if there exists at least one path that
corresponds to x, that starts from the initial state. But the path is formed by means
of -transitions as well as non -transitions. To find whether the given string x is
accepted or not by the NFA, we define a function, -closure (q), where q is the
state of automata.

The function -closure (q) is defined as follows:

-closure (q) is a set of all those states that can be reached from q on a path
labelled by .

Example 4.8: Consider the following NFA and find its -closure.

q0 q1 q2

a, b

ε ε

b a

Solution:

-Closure (q
0
) = {q

0
, q

1
, q

2
}

-Closure (q
1
) = {q

1
, q

2
}

-Closure (q
2
) = {q

2
}

Conversion of NFA with -Transitions into DFA without -Transitions

The main idea behind NFA to DFA conversion is that each DFA state corresponds
to a set of NFA states. The DFA uses its state to keep track of all possible states,
the NFA can be in, after reading each input symbol.

-Closure(s): Set of NFA states reachable from NFA states on -transitions
alone.

4.3 REGULAR LANGUAGES

In theoretical computer science, a regular grammar is a formal grammar that
describes a regular language. A regular grammar is a left or right regular grammar.
Right regular grammar is also known as right linear grammar and left regular grammar
are also known as left linear grammar.

Introductory
Computability Theory

NOTES

Self - Learning
Material 157

Right Linear and Left Linear Grammar

Right Linear Grammar

A grammar G is said to be right linear if each production has one variable at the left
side and the right side consists of zero or more number of terminals followed by an
optional single variable or .

A aB, A a

These are the examples of right linear grammar.

Left Linear Grammar

A grammar G is said to be left linear if each production consists of a single variable
at the left side and the right side consists of an optional single variable followed by
any number of terminals.

A Ba, A a

These are the examples of left linear grammar.

A regular grammar is one that is either right linear or left linear.

A linear grammar is a grammar in which at most one variable can occur on
the right side of any production, but the position of the variable in not restricted.

Example 4.9: Consider the grammar G = {{S, A, B}, {a, b}, S, P}, where P is
given as

S A

A bA /
B Ba

Check whether the grammar is regular or not.

Solution: The productions for A, B are right linear and left linear but the production
for S is neither left linear nor right linear.

Therefore, it is not regular. But it is a linear grammar.
Notes:

1. Regular and linear grammars are context free.

2. Context-free grammars are not always linear.

Sentential Forms

If G = (V, T, P, S) is a CFG, then any string in (V T)* such that S is a
sentential form.

If L(G) then

S
1

2
………..

n
 is the derivation of . The strings

1
,

2
,

n
 may contain variables as well as terminals. These are called sentential

forms of the derivation.

If S * and if the variable is replaced from the left side, then it is called
left sentential form.

If S * and if the variable is replaced from the right side, then it is called
right sentential form.

Introductory
Computability Theory

NOTES

Self - Learning
158 Material

Two grammars G
1
 and G

2
 are said to be equivalent if they generate the

same language, i.e.,

L(G
1
) = L(G

2
)

4.4 EQUIVALENCE OF DFA AND NFA

An NFA is easily constructed than a DFA. Every language, described by some
NFA is also described by some DFA. The smallest DFA can have 2n states while
the smallest NFA for the same language has only n states.

‘Subset construction’ involves constructing all subsets of the set of states of
the NFA, which are eventually DFA.

The subset construction starts from the NFA and is given as,

N = (Q
N
, ,

N
, q

0
, F

N
)

The goal is to make DFA, D = (Q
D
, ,

D
, {q

0
}, F

D
)

so that L(D) = L(N)

The input alphabets of the two automata are the same and the start state of D is the
set having only the start state of D.

Other components of D are constructed as follows:

1. Q
D
 is the power set of Q

N
. Q

N
 has n states and hence, Q

D
 will have 2n

states. All are accessible states and can be ‘thrown away’ so effectively that
the number of states of D may be much smaller than 2n.

2. F
D
 is the power set of Q

N
 such that,

S F
N

F
D
 is set of N states that have at least one accepting state of N.

3. For each set S Q
N

and for each input symbol in
δ

D
(S, a) = p in S δ

N
(p, a)

To compute δ
D

(S, a), you can look at all states of p in S (N goes to form p on
input a) and take the union of all those states.

 0 1
Φ Φ Φ

{ q0 } { q0, q1 } { q0 }

{ q1 } Φ Φ
{ q2 } Φ Φ
.
.
.

.

.

.

.

.

.
{ q0, q1 } { q0, q1 } { q0, q2 }
*{ q0, q2 } { q0, q1 } { q0 }
*{ q1, q2 } Φ { q2 }
*{ q0, q1, q2} { q0, q1 } { q0, q2 }

4.5 REDUCED MACHINES

Minimization refers to constructing an automata with minimum number of states to
a given automata M. In this we delete the states of the automata that do not affect
the language accepted by the automata.

Introductory
Computability Theory

NOTES

Self - Learning
Material 159

Equivalence of relations:
1. Two states q

1
 and q

2
 are equivalent if both (q

1
, x) and (q

2
, x) are

final states or both of them are non-final states for all x *.
2. Two states q

1
and q

2
 are k-equivalent (k > 0) if both (q

1
, x) and

(q
2
, x) are final states or both are non-final states for all strings x of

length k.
3. Any two final or any two non-final states are also 0-equivalent.

Construction of Minimum Automata

Step 1: Construction of
k
. By definition of 0-equivalence,

0
 = {Q

1
0, Q

2
0},

where Q
1

0 is the set of all final states and Q
2

0 = Q – Q
1

0.

Step 2: Construction of
K+1

 from
K
. Let Q

i
k be any subset in

k
. If q

1
 and q

2

are in q
1
k, they are (k +1) equivalent, provided (q

1
, a) and (q

2
, a) are k-

equivalent for every a . Repeat this procedure for every Q
1

k in
k
 to get

k+1
.

Step 3: Construct
n
 =

n+1
 for n = 1, 2, ……

Step 4: Now for the required minimum state automata, the states are the equivalence
classes obtained in Step 3.

The transition table is obtained by replacing a state q by the corresponding
equivalence class q.

Example 4.10: Construct the minimum state automata equivalent to the given
transition diagram.

q0 q3 q4 a b

a b

q5

q1 q2 q7 q6

b

b

b

b

b

b

a a

a

a a

Solution:

Transition Table

States 0 1

q0 q1 q0

q1 q0 q2

q2 q3 q1

q3 q3 q0

q4 q3 q5

q5 q6 q4

q6 q5 q6

q7 q6 q3

Introductory
Computability Theory

NOTES

Self - Learning
160 Material

Since there is only one final state

0
1Q = {q

3
}

0
2Q = Q – 0

1Q = {q
0
, q

1
, q

2
, q

4
, q

5
, q

6
, q

7
}

0

= {{q
3
}, {q

0
, q

1
, q

2
, q

4
, q

5
, q

6
, q

7
}}

Now q
0
 is 1 equivalent to q

1
, q

5
, q

6
 but not to q

2
, q

4
, q

7
.

 0
3Q = {q

0
, q

1
, q

5
, q

6
}

q
2
 is 1,which is equivalent to q

4
.

 1
3Q = {q

2
, q

4
}

 1
4Q = {q

7
}

Therefore,

1

= {{q
3
}, {q

0
, q

1
, q

5
, q

6
}, {q

2
, q

4
}, {q

7
}}

Now

q
0
 is 2, which is equivalent to q

6
 but not to q

1
, q

5
.

 2
2Q = {q

0
, q

6
}

 2
3Q = {q

1
, q

5
}

Again q
2
 is 2, which is equivalent to q

4
.

2
3Q = {q

2
, q

4
}

2
5Q = {q

7
}

2

= {{q
3
}, {q

0
, q

6
}, {q

1
, q

5
}, {q

2
, q

4
}, {q

7
}}

As q
0
 is 3, which is equivalent to q

6

3
2Q = {q

0
, q

6
}

q
1
 is 3, which is equivalent to q

5

3
3Q = {q

1
, q

5
}

q
2
 is 3, which is equivalent to q

4

3
4Q = {q

2
, q

4
}

3
5Q = {q

7
}

3

= { {q
3
}, {q

0
, q

6
}, {q

1
, q

5
}, { q

2
, q

4
}, {q

7
}}

The minimum state automata is given as

M = (Q
1
, {a, b},, 1

0q , F1)

Here, Q1 = {{q
3
}, {q

0
, q

6
}, {q

1
, q

5
}, {q

2
, q

4
}, {q

7
}}

1
0Q = {q

0
, q

6
} F1 = {q

3
}

Introductory
Computability Theory

NOTES

Self - Learning
Material 161

Transition Table

States 0 1

[q0, q6] [q1, q5] [q0, q6]

[q1, q5] [q0, q6] [q2, q4]

[q2, q4] [q3] [q1, q5]

[q3] [q3] [q0, q6]

[q7] [q0, q6] [q3]

[q0, q6] [q3] [q7]

[q1, q5] [q2, q4]

a

a

a
a a

b

b

b

b b

4.6 MOORE AND MEALY MACHINES

Two equivalent theoretical machines with output are discussed here.

Moore Machine

The value of the output function z (t) depends only on the present state and it is
independent of the current input.

The output function may be written as
z (t) = λ q (t)

Moore machine is defined by a 6-tuple M = (Q, , , , λ, q
0
), where

Q – Non-empty finite set of states
 – Non-empty finite set of input symbols
 – Non-empty finite set of outputs
 – Transition function that maps × Q into Q
λ – Output function that maps Q into

q
0

– Initial state

Representation of Moore Machine

Moore machine is represented by a transition table and transition diagram.

Let M be a Moore machine.

Introductory
Computability Theory

NOTES

Self - Learning
162 Material

Transition Table

Next State Present State

a = 0 a = 1

Output

q0 q3 q1 0

q1 q1 q2 1

q2 q2 q3 0

q3 q3 q0 0

Transition Diagram

 q0 / 0 q1 / 1

 q3 / 0 q2 / 0

1
1 0

1

1

0 0

In the transition diagram, state is represented by a circle. Inside the circle
the state is separated by a slash and the output of the present state is marked after
the state. The left side symbol which is present represents the state and the right
side is the output from that state.

Acceptance of Strings by Moore Machine

Let the input string be 0111.

When the input string is processed, the transition of states is given by:

0 0 0 1 0

q0 q3 q0 q1 q2
1 1 0 1

The corresponding output string is 00010.

In Moore machine we always start with the input string. For the input string, the
output is given as:

 (q
0
) = 0

In the Moore machine the first symbol printed is the character (output)
specified in the start state.

If the input string is of length n then the output string is of length n + 1.

For example, if the input string has seven letters then the output string will
have eight letters, because it has eight states in its path. In Moore machine, the
process terminates whenever the last input symbol is read and the last output
character is printed.

Introductory
Computability Theory

NOTES

Self - Learning
Material 163

Mealy Machine

The value of the output function z (t) is a function of the present state q (t) and
present input x (t).

z (t) = (q (t), x (t))

A Mealy machine is a 6-tuple,

M = (Q, , , , , q
0
), where all the symbols except have the same meaning

as that in Moore machine.

In Mealy machine, is the output function that maps Q into .

Representation of Mealy Machine

The Mealy machine can be represented by a transition table and transition diagram.

Next State

a = 0 a = 1

Present State

State Output State Output

q1 q3 0 q2 0

q2 q1 1 q4 0

q3 q2 1 q1 1

q4 q4 1 q3 0

Transition Diagram
 q3

q2

q1

1/0
1/1

0/0

1/0

1/0

0/1

1/0

0/1 q4

The edges are labelled by a/b, where a represents the input symbol and b is the
output character.

Acceptance of Strings by Mealy Machine

Let the input string be 0111.

When the string is processed by Mealy machine, the transition is as follows:

q1 q3 q1 q2 q4
0 1 1 1
0 1 0 0

Output string is 0100.

In the case of Mealy machine we get an output string only on the application
of an input symbol.

Introductory
Computability Theory

NOTES

Self - Learning
164 Material

Here, if the input string is of length n then the output string is also of the same
length n.
Equivalence of Moore and Mealy Machines

In general, two machines are said to be equivalent if they accept the same language.
Similarly, two automata are said to be equivalent if they produce the same output
with the same input.

In this sense, we cannot compare a Moore machine with a Mealy machine.
Two Moore machines may be equivalent, two Mealy machines may be equivalent,
but a Moore machine can never be directly equivalent to a Mealy machine. This is
because the length of the output string is different in both the cases for the same
input string. The length of the output string in a Moore machine is one greater than
that in the Mealy machine, because a Moore machine always starts with one
automatic start symbol.

Definition

Given the Mealy machine M
e
 and Moore machine M

0
 which prints the automatic

start state character x, we say that these two machines are equivalent if for every
input string the output string from M

0
 is exactly x concatenated with the output

from M
e
.

Example 4.11: Draw a transition table for the Mealy machine for the given
transition diagram.

q3

q1

q0
q2

b/1
a/0

a/1
a/0 b/0

b/1

a/1

b/1

Solution:

Transition Table

Next State

Input a = a Input a = b

Present State

State Output State Output

q0 q3 0 q1 0

q1 q1 1 q0 1

q2 q1 0 q1 1

q3 q1 1 q2 1

Conversion of Moore Machine into Mealy Machine

Procedure:

1. First we define the output function 1 for Mealy machine as a function of the
present state and input symbol.

Introductory
Computability Theory

NOTES

Self - Learning
Material 165

We define 1 by
1 (q, a) = ((q, a)) for all states q and input symbol a.

2. The transition function is the same as that of given Moore machine.

Conversion of Mealy Machine into Moore Machine

1. We first look into the next state column for any state, say q
i
 and determine

the number of different outputs associated with q
i
in that column.

2. Split the q
i
 into several different states, the number of such states being

equal to the number of different outputs associated with q
i
.

4.7 TURING MACHINE

It can be visualized as a single, one dimensional array of cells, each of which can
hold a single symbol. This array extends indefinitely in both directions and is therefore
capable of holding an unlimited amount of information. This information can be
read and changed in any order. It has a storage device called Tape which is quite
analogous to the magnetic tapes used in actual computers. Read-Write head is
associated with the tape that can travel right or left on the tape and that can read
and write a single symbol on each move. The automaton that we use as a Turing
machine will have neither an input file nor any output file. Whatever input and
output is necessary will be done on the machine’s tape.

A turing machine M is defined by },,,,,,{ 0 FBqQM

Where Q is the set of internal states,

 is the input alphabet,
 is a finite set of symbols called the tape alphabet,
 is the transition function,

B is a special symbol called blank, Qq 0 is the initial state, and
QF is the set of final states.

Assumption We assume };{B that is, the input alphabet is a subset of
the tape alphabet, not including the blank.

Note: The transition function is defined as },{: RLQQ

Where is a partial function on Q . Its interpretation gives the principle
by which a Turing machine operates. The arguments of are the current state of
the control unit and the current tape symbol being read. Then the result is a new
state of the control unit, a new tape symbol, which replaces the old one, and a
move symbol L or R. The move symbol indicates whether the read-write head
moves left or right, one cell after the new symbol has been written on the tape.

Introductory
Computability Theory

NOTES

Self - Learning
166 Material

For Example,

},,,,,{ 0 BFqQM

where }{and},,{},,{},,{ 110 qFBbabaqqQ

),,(),(

),,(),(

),,(),(and

00

00

00

LBqBq

Rbqbq

Rbqaq

We can think of a Turing machine as a simple computer. It has a processing
unit, which has a finite memory, and the tape, is a secondary storage of unlimited
capacity. Here defines how this computer acts and is often called the “Program”
of the machine.

We know that the automaton always start in the given initial state with some
information on the tape. It then goes through a sequence of steps controlled by the
transition function . During this process, the contents of any cell on the tape may
be examined and changed many times. Eventually, the whole process may terminate.
We say this situation as the turing machine is brought into halting state. A Turing
machine is said to be at halt whenever it reaches a configuration for which is not
defined; this is possible because is a partial function.

 In fact, we will assume that no transitions are defined for any final state. So the
Turing machine will halt whenever it enters a final state.

Note: If the read-write head moves alternatively between right and left, but makes
no modifications to the tape, this is an instance of the Turing machine not at halt. As
an analogy with programming terminology, we say that the Turing machine is in an
infinite loop.

Instantaneous Description of a Turing Machine

An instantaneous description (ID) is defined as 21 q where 1 is the string
processed already, 2 is the string to be processed when the turing machine is in
the state q.

Language accepted by a Turing Machine Let M be a Turing machine. Then
the language accepted by M denoted by wqwMT 0:{)(

},andsomefor *
2121 Fqq ff

Example 4.12: Let }.1,0{ Design a Turing machine that accepts the language
denoted by the regular expression 00*

Introductory
Computability Theory

NOTES

Self - Learning
Material 167

Solution

),,(),(

),0()0,(

00

,00

RBqBq

Rqq

Starting at the left end of the input, we read each symbol and check that it
is a 0. If it is, we continue by moving right. If we reach a blank without encountering
it, we continue by moving right. If we reach blank without encountering any thing
but 0, we terminate and accept that string. If the input contains 1 anywhere, the
string is not in L(00*) and we halt in a non final state. To keep track of the
computation, two internal states)(1,0 qqQ and one final state)(1qF are
sufficient. As long as 0 appears under the read-write head, the head will move to
the right. If at any time a 1 is read, the machine will halt in the non final state q

0
,

since)1,(0q is undefined.

Example 4.13: Design a turing machine that accepts }1;{ nbaL nn

Solution

Let },,,,{},,{ 43210 qqqqqQba , },,,,{and}{ 4 ByxbaPqF

The transitors can be broken into several parts. The set

),,(),(

),,(),(

),,(),(

),,(),(

21

11

11

0

Lyqbq

Ryqyq

Raqaq

Rxqaq

replaces the leftmost a with an x, then canses the read - write head to travel right
to the first b, replacing it with a y when y is written, the machine enters a state q

2

indicating that a has been successfully poined with ab.

The next set of transition reverses the direction until an x is encountered,
repositions the read-write head over the leftmost a, and returns to the initial state.

),,(),(

),,(),(

),,(),(

02

22

22

Rxqxq

Laqaq

Lyqyq

This gives the initial state q
0
, ready to deal with next a and b.

Computation after first pass

babbaaq0 baybaxq0

After second pass

babbaaq0 bayyxxq0

To detect input where an a follows ab

),,(),(

),,(),(

),,(),(

43

33

30

RBqBq

Ryqyq

Ryqyq

The particular input aabb gives the following successive instantaneous descriptions.

aabbq0 aabbqx 1 bbxaq1

 aybqx 2

Introductory
Computability Theory

NOTES

Self - Learning
168 Material

 aybxq2

 aybqx 0

 ybqxx 1

 byqxx 1 yyxxq2

 xyyqx 2

 yyqxx 0

 yqxxy 3

 Bqxxyy 3

 BBqxxyy 4

At this point the turing machine halts in a final state, so the string aabb is
accepted.

Example 4.14: Let x and y be two positive integers represented in Mary
notation. Construct a Turing machine that halts in a final state yxqy if and that
will halt in non final state .if yxqn

i.e.)()(0 ywOxwq yxywOxwqy if)()(

)()(0 ywOxwq yxywOxwqn if)()(

Solution To solve this problem in the previous example instead of matching a’s,
we match each 1 on the left of the dividing 0 with 1 on the right. At the end of
matching, we will have on the tape either

xBxxxxx ...110... or ,11...0... Bxxxxxxx

depending an whether x > y or y > x. In the first case, when we attempt to match
another 1, we encounter the blank at the right of the working space. This can be
used as a signal to enter the state qy.

We still find 1 on the right when all 1’s on the left have been replaced. We use
this to get into the other state qn (case two).

Example 4.15: Desingn a turing machine that computes the function

yx

yxyxyxf

if0

if),(

Solution

Introductory
Computability Theory

NOTES

Self - Learning
Material 169

The diagram shows that first we use a comparing machine to determine
whether or not .yx If so, the comparator sends a start signal to the adder, which
then computes x + y. If not, an erasing program is started that changes every 1 to
blank. For the eraser E, we construct a Turing machine having states indexed with
E. The computations to be done by C are

)()(, ywOxwq oc yxywOxwq oA if)()(,

And

)()(, ywOxwq oc yxywOxwq oE if)()(,

If we take oAq , and oEq , as the initial states of A and E respectively, we see
that C starts either A or E.

Computations performed by the adder A

)()(, yOwxwq oA ,)(, Oyxwq fA

Computations performed by Eraser E

)()(, yOwxwq oE ., Oq fE

Check Your Progress

1. What is the use of finite automata?

2. Define right linear grammar.

3. How many states the smallest DFA can have?

4. What do you mean by minimization?

5. What are the two equivalent theoretical machines?

6. Elaborate on the Turing machine.

4.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Finite automata are used for accepting languages over the input alphabets.

2. A grammar G is said to be right linear if each production has one variable at
the left side and the right side consists of zero or more number of terminals
followed by an optional single variable or .

3. The smallest DFA can have 2n states.

4. Minimization refers to constructing an automata with minimum number of
states to a given automata M.

5. Moore and Mealy are the two equivalent theoretical machines.

6. The automaton that we use as a Turing machine will have neither an input
file nor any output file. Whatever input and output is necessary will be done
on the machine’s tape.

Introductory
Computability Theory

NOTES

Self - Learning
170 Material

4.9 SUMMARY

• Finite automata are mathematical models of machines which are used for
accepting languages over the input alphabets.

• In finite automata, the number of input symbols and the number of states are
finite.

• A generalized transition graph is a finite directed labelled graph in which
each vertex (node) represents a state and the directed edges indicate the
transition of a state; the edges are labelled with input.

• A transition table is a tabular representation of a transition.

• NFA also makes a transition from one state to another state without receiving
any input symbol.

• The main idea behind NFA to DFA conversion is that each DFA state
corresponds to a set of NFA states.

• A regular grammar is a formal grammar that describes a regular language.

• A regular grammar is a left or right regular grammar.

• Right regular grammar is also known as right linear grammar and left regular
grammar are also known as left linear grammar.

• A regular grammar is one that is either right linear or left linear.

• A linear grammar is a grammar in which at most one variable can occur on
the right side of any production, but the position of the variable in not
restricted.

• The smallest DFA can have 2n states while the smallest NFA for the same
language has only n states.

• Minimization refers to constructing an automata with minimum number of
states to a given automata

• In Moore Machine, the value of the output function z (t) depends only on
the present state and it is independent of the current input.

• In Moore machine we always start with the input string.

• If the input string is of length n then the output string is of length n + 1.

• In Mealy Machine, the value of the output function z(t) is a function of the
present state q(t) and present input x(t).

• In general, two machines are said to be equivalent if they accept the same
language.

• Two automata are said to be equivalent if they produce the same output
with the same input.

4.10 KEY TERMS

• Input tape: It consists of input symbols with $ at the end to indicate the
end of the input tape.

Introductory
Computability Theory

NOTES

Self - Learning
Material 171

• Reading head: It reads data from the input tape.

• Finite control: The control moves from one state to another state depending
on the current input symbol.

• Generalized transition graph: Generalized transition graphs are transition
graphs where the labels of the edges are regular expressions but not strings.

• Transition table: A transition table is a tabular representation of a transition.

4.11 SELF-ASSESSMENT QUESTIONS AND EXERCISES

Short-Answer Questions

1. What are the components of finite automata?

2. Define regular grammar.

3. What is equivalence of DFA and NFA?

4. State equivalence of relations in reduced machines.

5. How is Moore machine represented?

Long-Answer Questions

1. Explain the concept of finite automata machines with the help of transition
table diagrams.

2. Make a note on regular languages.

3. Discuss the construction components of DFA.

4. Explain briefly the steps to construct minimum automata.

5. Illustrate Moore and Mealy machines with the help of transition tables.

6. Analyse the Turing machine giving examples.

4.12 FURTHER READING

Iyengar, N Ch S N. V M Chandrasekaran, K A Venkatesh and P S Arunachalam.
Discrete Mathematics. New Delhi: Vikas Publishing House Pvt. Ltd., 2007.

Tremblay, Jean Paul and R. Manohar. Discrete Mathematical Structures with
Applications to Computer Science. New York: McGraw-Hill Inc., 1975.

Deo, Narsingh. Graph Theory with Applications to Engineering and Computer
Science. New Delhi: Prentice-Hall of India, 1999.

Singh, Y.N. Mathematical Foundation of Computer Science. New Delhi: New
Age International Pvt. Ltd., 2005.

Malik, D.S. Discrete Mathematical Structures: Theory and Applications.
London: Thomson Learning, 2004.

Haggard, Gary, John Schlipf and Sue Whiteside. Discrete Mathematics for
Computer Science. California: Thomson Learning, 2006.

Introductory
Computability Theory

NOTES

Self - Learning
172 Material

Cohen, Daniel I.A. Introduction to Computer Theory, 2nd edition. New Jersey:
John Wiley and Sons, 1996.

Hopcroft, J.E., Rajeev Motwani and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 3rd edition. Boston: Addison-
Wesley, 2006.

Linz, Peter. An Introduction to Formal Languages and Automata, 5th edition.
Boston: Jones and Bartlett Publishers, 2011.

Mano, M. Morris. Digital Logic and Computer Design. New Jersey: Prentice-
Hall, 1979.

Grammar and Languages

NOTES

Self - Learning
Material 173

UNIT 5 GRAMMAR AND
LANGUAGES

Structure

5.0 Introduction
5.1 Objectives
5.2 Concept of Languages and Grammar
5.3 Phrase Structure Grammars
5.4 Regular Expressions
5.5 Pumping Lemma for Regular Languages
5.6 Regular Grammar
5.7 Context-Free Grammars
5.8 Derivation Trees
5.9 Sentential Forms

5.10 Notions of Syntax Analysis
5.11 Answers to ‘Check Your Progress’
5.12 Summary
5.13 Key Terms
5.14 Self-Assessment Questions and Exercises
5.15 Further Reading

5.0 INTRODUCTION

In this unit, you will learn about the concept of languages and grammar. Languages
accepted by finite automata are called regular expression. A language that can be
defined by regular expression is called a regular language. Any set represented by
a regular expression is called a regular set. Grammars are used to provide the
structure of files. A regular grammar is a formal grammar that is used to describe a
regular language. You will also learn about the classification of grammar by Noam
Chomsky. He classified grammar into four types, namely Type 0 grammar, Type 1
grammar, Type 2 grammar and Type 3 grammar. Chomsky hierarchy is the
relationship among languages. A context-free language is a language generated by
some context-free grammar. We can represent the context-free languages or the
derivations by means of parse trees. You will also learn normal forms of context-
free grammars and pumping lemma. Pumping lemma is used to prove that the
given language is not context-free. The decidability properties of context-free
languages check the emptiness of the string, decide whether the language is infinite
or not and also check whether the given string is present in the language or not.
Derivation of trees, sentential forms and notations of syntax analysis are also
explained in this unit.

5.1 OBJECTIVES

After going through this unit, you will be able to:

• Know the concept of languages and grammar

Grammar and Languages

NOTES

Self - Learning
174 Material

• Illustrate phrase structure grammars

• Explain regular expressions, languages and grammars

• Understand context free grammars and derivation trees

• Discuss sentential forms

• Give notations of syntax analysis

5.2 CONCEPT OF LANGUAGES AND GRAMMAR

A language processor is a type of software that bridges a specification or execution
gap in software programming. The software design expresses the ideas in terms
related to the application domain of the software. These ideas are then implemented
in the execution domain.

However, a semantic gap may result in poor quality of software. A
Programming Language (PL) facilitates in overcoming quality issues in the software.

The programming language comprises the following:

 Specification, design and coding

 Implementation steps

Software implementation using PL introduces PL domain between the application
domain and the execution domain.

 Specification gap is between application domain and PL domain

 Execution gap is between PL domain and execution domain

A language processor is a type of software that bridges a specification or execution
gap. It takes input from the source program, checks it and makes it error-free so
that it can be a target program. The target program is executed to give the desired
performance.

Components of Language Processors

1. A language processor bridges an execution gap of the machine language of
a computer system. An assembler is a language translator whose source
language is assembly language. A compiler is any language translator that is
not an assembler.

2. A processor bridges the same direction gap as the language translator but in
the reverse direction.

3. A preprocessor is a language processor that bridges an execution gap but is
not a language translator.

4. A language migratory bridges the specification gap between two PLs.

For example,

1. A language processor that converts C++ program into C is also called
preprocessor.

2. Language translator for C++ produces a machine language program. The
target programs are the C program and the machine language program (Refer
Figures 5.1 a and b).

Grammar and Languages

NOTES

Self - Learning
Material 175

C++ Program C++ Processor C++ Program

(a)

C++ Program C++ Translator C++ Program

(b)

Fig. 5.1 A Language Processor and Translator

Interpreter

An interpreter is a program that executes a code to display the desired result to a
user without generating a machine language program. The interpreter executes the
programming language domain code to the execution domain (Refer Figure 5.2).

Application
Domain

Interpreter
Domain

PL Domain
Execution
Domain

Fig. 5.2 An Interpreter

Language Processing Activities

Language processing activities involve two steps:

(i) Program generation

(ii) Program execution

Program Generation

A program generation activity comprises changing a source code into a target
program that can be executed to give a desired result. The program generator can
either be converted to an executable code (maybe a machine code or bytecode)
by a compiler, or an interpreter can directly use it for execution.

For example,

1. In C and C++, the compiler generates a machine code from the source
program.

2. In Java, the source program is compiled to target a program that is known as
a bytecode. It is portable and can be taken into another machine for execution.

3. Languages like PERL, LISP and PROLOG— used for writing the source
code—are immediately generated for execution by the compiler that also
works for the interpreter.

You can say that the compiler compiles code that is further executed by the
interpreter.

In LISP, PERL and PROLOG the interpreter does both compilation and
interpretation at the same time. Thus, it compiles and interprets codes. These are
also called interpreter languages (Refer Figure 5.3).

Grammar and Languages

NOTES

Self - Learning
176 Material

 Program
generator or
compiler

Target
program Application

domain
Execution
domain

Fig. 5.3 Interpreter Domain

Program Execution

Program execution is done in two steps:

1. Translation

2. Interpreter

1. Translation

 A program must be translated before it can be executed.

 The translated program may be saved in a file. The saved program may be
executed repeatedly.

 A program must be retranslated following any modification (Refer Figure
5.4).

Translator

Machine code
 Source

program
Target
program

Error

Memory

Fig. 5.4 Translation Model

2. Interpreter

An interpreter reads the source program and stores it in its memory. There are
two steps for interpretation:

(a) Instruction cycle
(b) Interpretation cycle

(a) Instruction Cycle

The Central Processing Unit (CPU) here uses a Program Counter (PC) to note
the address of the next instruction to be executed. This instruction is subject to the
instruction execution cycle that consists of the following steps:

a. Fetching the instruction
b. Decoding the instruction to determine the operations to be performed and its

operands
c. Executing the instruction

The instruction address in the PC is updated and the cycle is repeated for
the next instruction. Program interpretation can proceed in an analogous manner.
The PC can indicate which statement of the source program is to be interpreted
next.

Grammar and Languages

NOTES

Self - Learning
Material 177

(b) Interpretation Cycle

The interpretation cycle consists of the following steps (Refer Figure 5.5):

a. Fetching the statement
b. Analysing the statement and its meaning
c. Executing the statement

PC

CPU

Source
program

+ Data

Machine
language
program

+ Data

Memory

 Memory

Error

PC

CPU

Error
(a) (b)

Fig. 5.5 Steps in Interpretation

Phases and Passes of a Language Processor

A program is first analysed and then synthesized by a language processor (Refer
Figure 5.6). A language processor consists of two phases.

(i) Analysis phase
(ii) Synthesis phase

Source
program

Language processor

Target
program

Error

Synthesis
phase

Error

Analysis
phase

Fig. 5.6 A Language Processor

Forward References

A forward reference of a program entity is a reference to the entity that precedes
its definition in the program.

Consider the program.

Interest = (principal* rate * time)/100;

Long Interest;

.

.

.

Interest has double precision value, but it comes later in the statement
of the source code. Thus, reference to Interest in assignment statement

Grammar and Languages

NOTES

Self - Learning
178 Material

comes later in a program. So, it is not possible to generate correct code statement
by statement. Here, you will need multiple pass model of language processing.

Language Processor Pass

A language processor pass is the processing of every statement in a source or its
equivalent representation to perform a language processing function.
Pass 1: It performs analysis of the program and notes relevant information.
Pass 2: It performs synthesis of the target program.

Information collecting type about Interest is noted in Pass 1. This
information is used during Pass 2 to perform code generation.

Intermediate Representation

An Intermediate Representation (IR) is a representation of a source program that
reflects the effect of some, but not all, analysis and synthesis tasks performed
during language processing.

Take the following example. The first pass performs analysis of the source
program and reflects its results in the intermediate representation. The second
pass reads and analyses the IR, instead of the source program, to perform synthesis
of the target program. This avoids repeated processing of the source program.
The first pass is called front-end as it works with the source language and the
second pass is called back-end as it produces the target program (Refer Figures
5.8 and 5.9).

The front-end and back-end language processors do not necessarily co-
exist in the memory. This reduces the memory requirement (Refer Figure 5.7).

Pass1

Pass2

Source
program

Target
program

IR

Fig. 5.7 Language Passes

Compiler

The front-end language processor performs the following functions:
 Lexical analysis—scanning of lines of code
 Syntax analysis—parsing of codes
 Semantic analysis—meaning of codes

The output of the front-end language processor is (Refer Figure 5.8).
 Table of information—constant table, symbol table, etc.
 Intermediate information—intermediate code and intermediate

representation

Grammar and Languages

NOTES

Self - Learning
Material 179

Lexical
analysis

Syntax
analysis

Semantic
analysis

Lexical
Analysis
ERROR

Symbol table

Constant table

Other table

IR

Syntax
analysis
ERROR

Semantic
analysis

 ERROR

Source Program

Token

Trees

Fig. 5.8 Front-End of a Compiler

Memory
allocation

Code
generation

Symbol table

Constant table

Other table

IR

IC

Target Program

Fig. 5.9 Back-End of a Compiler

Fundamentals of Language Processing Specification

Programming Language Grammar

(i) Terminal Symbols, Alphabets and Strings

Alphabet: An alphabet is a finite non-empty set of symbols. Common alphabets
are:

(a) ={0,1}

(b) ={a, b, c,…,z}

(c) The set of all ASCII characters

Grammar and Languages

NOTES

Self - Learning
180 Material

Terminal symbols: The symbol in the alphabet is known as a terminal symbol T.

Metasymbols: Symbols like |, (,), , : are part of notation. These are called
metasymbols.

Non-terminal symbols: A Non-Terminal (NT) is the name of a syntax category
of a language, e.g., noun, verb, etc. An NT is written as a single capital letter or as
a name enclosed between <…>, e.g., <Noun> represents a noun.

Strings: A string is a finite sequence of symbols chosen from some alphabet, for
example, 0101 is a string from binary alphabet ={0,1}.

Empty string: The empty string is the string with zero occurrences of symbols.
This string denoted by is a string that may be chosen from any alphabet.

(ii) Grammar

(a) Type 0 Grammar: This grammar, known as phase structure grammar,
contains production of the form

where and can be strings of Ts and NTs. Such productions permit
arbitrary substitution of strings during derivation or reduction.
Therefore, these are relevant to specification of programming
languages.

(b) Type 1 Grammar: These grammars are called context sensitive
grammars as their production, derivation or reduction of strings can
take place only in a specific context. Type 1 production has the form

 A
Thus, a string in a sentential form can be replaced by ‘A’ only when
it is closed by the string and .

(c) Type 2 Grammar: These impose no context requirements on
derivation or reduction. A typical Type 2 production is of the form

A
which can be applied independent of its context. These grammars
are, therefore, known as Context-Free Grammar (CFGs). CFGs are
ideally suited for programming language specification ALGOL60.
PASCAL specification uses Type 2 grammar.

(d) Type 3 Grammar: These are characterized by production of the
form

A tB | t
A Bt | t

This grammar satisfies the requirement of Type 2 grammar. The use of
Type 3 production is restricted to specification of lexical units,
identifiers, constants, labels, etc.
The production for <constant>, <identifier> are Type 3

<id> l |<id> l | <id > d
Where l and d stand for letter and digit respectively. This is also called
linear grammar or regular grammar.

Grammar and Languages

NOTES

Self - Learning
Material 181

(e) Operator Grammar: An Operator Grammar (OG) is a grammar
none of whose production contains two or more consecutive NTs in
any RHS. Thus, nonterminals occurring in a RHS string are separated
by one or more terminal symbols. All the terminal symbols occurring
in the RHS strings are called operators of the grammar. The symbols
*, +, (,) and are operator grammar.

(iii) Ambiguity of Grammar

A grammar that produces more than one parse tree for some sentence is said to
be ambiguous. An ambiguous grammar produces more than one leftmost or more
than one rightmost derivation for the same sentence.

Consider the example of the expression

E + E * E

Now, there are two parse trees for this expression.

E

E

E

E *

E

+

E

E E *

E

+ E

Now, this derivation shows the ambiguity of the grammar. Thus, G = (V, T,
P, S) is ambiguous if there is at least one string w in T* for which you can find two
different parse trees each with root labelled s and yield w. If each string has just
one parse tree in the grammar then the grammar is unambiguous.

(iv) Binding and Binding Time

(a) Binding

Each program has many entities, such as interest, principal, rate and time, etc.
Now, each of the entities have many attributes—variable, procedure or reserve
identity (keyword). A variable attribute includes type, demotionality, scope and
memory address. Thus, the attribute of one program entity may be another program
entity like type is an attribute of a variable. It is also a program entity with its own
attribute size (number of memory bytes). The values of the attributes of a type
should be determined as follows:

A Int;

B String;

C Long;

Here, C is binding with Long datatype.

Binding is the association of an attribute of a program entity with a value.

Grammar and Languages

NOTES

Self - Learning
182 Material

(b) Binding Time

Binding time is the time at which a binding is performed. Thus, the type attribute of
variable C to Int in declaration is processed.

Binding times are:

 Language definition time of T
L

 Language implementation of T
L

 Compilation time of a program P is T
P

 Execution init time of procedure T
PROC

 Execution time of procedure PROC is T
PROC

 L is a language.

 P is a program written in L.

 PROC is procedure in program P.

Language implementation time is when a language translator is designed.
The preceding list of binding times is not exhaustive. Other binding times can be
defined, such as binding at the linking time of P, etc. The binding time of an attribute
of a program entity determines the manner in which a language processor can
handle the use of the entity. A compiler can generate code specifically tailored to a
binding performed during or before compilation time. However, compilers cannot
generate such code for binding performed later than compilation time. This affects
execution efficiency of the target program.

(c) Static Binding

A static binding is a binding performed before the execution of program begins.

(d) Dynamic Binding

A dynamic binding is a binding performed after the execution has begun.

Automation is based on the mathematical concept of computation which includes
symbols, alphabets and strings.

Length of a String

Length of a string is defined as the total number of symbols or number of positions
of symbols present in the string.

If w is the string, the length of the string is denoted by | w |.

For example, (i) If w = 00111, | w | = 5.

(ii) If w = aab, | w | = 3.

(iii) If the string is empty , then | | = 0.

Powers of an Alphabet

If is an alphabet, the set of all strings of a certain length from that alphabet can
be expressed using an exponential notation. We define k to be the set of strings
of length k, each of whose symbols is in .

Grammar and Languages

NOTES

Self - Learning
Material 183

For example, 0 = {}, whatever be .

If = { 0,1 }, then 1 ={ 0,1 }, 2 ={ 00,11,01,10 } ,

3 = { 000,001,010,100,101,110,111}

Kleen’s Closure and Positive Closure

The Kleen’s Closure denotes the set of all strings including the empty string over
the alphabet . Kleen’s Closure is otherwise known as Star Closure and it is
denoted by *.

If = { 0,1}, then * = { , 0, 1, 01, 10, 11, 101, 000,…..}.

In other words, * = 0 1 2 ……

Positive Closure:

The set of non-empty strings from alphabet is denoted by +.

+ = 1 2 ……

In other words,

 + = * – { }

Concatenation of Strings

Let x, y be any two strings of alphabet . The concatenation of two strings is a
new string obtained by combining the two strings x and y.

Let x = x
1
x

2
…..x

m
, y = y

1
y

2
…y

n
 , then xy = x

1
x

2
…..x

m
 y

1
y

2
…y

n.

Length of the string is given by

| xy | = | x | + | y |

Reverse of a String

The reverse of a string is obtained by writing symbols in the reverse order. If s is a
string then sR is the reverse of s. For example, if s = xyz, then sR = zyx.

Substring

 Let s be a string. Any string of consecutive characters from s is known as substring
of s. If s = abcdef, then bcd is the substring of s.

Prefix and Suffix of a Substring

A prefix of a string is a substring of leading symbols of that string. If w = vy for
some y, then v is called the prefix of w.

In other words, v is a prefix of w if there exists y * such that w = vy.

A suffix of a string is a substring of trailing symbols of that string. If w = xv
for some x, then v is called the suffix of w.

In other words, v is a suffix of w if there exists x * such that w = xv.

Palindrome

A palindrome is a string that can be read the same way in both forward and
backward directions, e.g., madam.

Grammar and Languages

NOTES

Self - Learning
184 Material

Languages

A set of strings all of which are chosen from some * , where is an alphabet is
called a language. If is an alphabet and L * then L is a language over .
There are some languages that appear in automata.

1. The languages of all strings consisting of n 0s followed by n 1s for some,

n 0 : { ε, 01, 0011, 000111, …..}

2. Set of strings over 0s and 1s with equal number of 0s and 1s

{ ε , 01,0011,10,1100, …..}

3. Set of binary numbers whose value is a prime { 10, 11, 101,111,1011, …}
4. * is a language for any alphabet .

5. φ, the empty language is a language over any alphabet.

6. {ε}, the language consisting of only the empty string.
If we start with an alphabet having only one letter, the letter x

 = {x}

Then, we can define a language by saying that any non-empty string of
alphabet characters is L

1
= { x xx xxx xxxx………}

In other words,

L
1
= { xn for n = 1, 2, 3, …….}

Concatenation of Languages

Concatenation of languages is usually used for combining two words. When two
words in a language are concatenated, they produce a new word.

For example, if the language is L
1
= { a aa aaa aaaa………}

 = { a odd }

 = {a 2n+1 for n= 0, 1, 2, 3…..}

If x = aaa , y = aaaaa then xy= aaaaaaaa which is not in L
1
.

Similarly, if we concatenate a with b it is ab which is the same as concatenating
b with a (ba). But the situation is different while using words in English. For example,
classroom is different from roomclass, which does not has any meaning in English.

Concatenation of languages can be defined in the following way:

If L
1
 and L

2
are two languages, their concatenation is given as

L = L
1
 . L

2

 Here, L = {w/w = xy, where x ε L
1
, y ε L

2
}

For example, if = { 0,1 }

 L
1
= {u in * : number of 0s in u is even }

 L
2
= { u in * : u starts with 0 and all the remaining characters are 1s}

 L
1
 . L

2
= { u is in * : number of 0s in u is odd }

Grammar and Languages

NOTES

Self - Learning
Material 185

Union of Languages

If L
1
 and L

2
 are two languages then the union of two languages is given by

L
1
 L

2
.

For example, if L
1
 = { x { 0 }* | x has even number of zeroes.}

 L
2
 = { x { 0 }* | x has odd number of zeroes.}

Then the union of two languages L
1
 L

2
= {0}*.

Intersection of Languages

If L
1
 and L

2
 are two languages then the intersection of two languages is given by

L
1 L

2
.

For example, if L
1
 = { x { a }* | x has even number of ‘a’s.}

 L
1
 = {, aa, aaaa, aaaaaa , …….}

L
2
 = {x {a, b}* | x has even number of ‘a’s or even number of ‘b’s.}

L
1
 = {, aa, bb, aaaa , bbbb, aaaaaa, bbbbbb,…….}

Then the intersection of two languages L
1
 L

2
= {ε, aa, aaaa, …….}

Reversal of Languages

If L is a language then reversal of the language is given by LR.

For example, if L = {0}* then LR = L.

If L = {0n1n} then LR = {1n0n}.

Complement of Languages

If L = {x {a, b}* | x has even number of ‘a’s}, then the complement is L = {x
{a, b}* | x has odd number of ‘a’s}.

5.3 PHRASE STRUCTURE GRAMMARS

The classification of grammar that Chomsky put forward is called the phrase
structure grammar. It is classified into four types:

(i) Type 0: Unrestricted Grammar

(ii) Type 1: Context-Sensitive Grammar

(iii) Type 2: Context-Free Grammar

(iv) Type 3: Regular Grammar

(i) Type 0: Unrestricted Grammar

A grammar G is said to be restricted if the productions are of the form
where a (V

N
 V

T
)+ and is in (V T)*.

In an unrestricted grammar, there is no restriction on productions. Also,
there is no restriction on the number of variables or terminals, on the left or right,
but the null symbol should not be present on the left side.

Grammar and Languages

NOTES

Self - Learning
186 Material

Unrestricted grammars are more powerful than restricted grammars like
regular and context-free grammars.

(ii) Type 1: Context-Sensitive Grammar

The language generated by a Type 1 grammar is called context-sensitive grammar.
In Type 1 grammar, the production of the form S is allowed.

A grammar G is said to be context sensitive if the productions of the left
hand side are not longer than the right side.

The productions are of the form, x y

where x , y (V
N
 V

T
)+ and | x | | y |

Example 5.1: Construct grammar for the language L = {an bncn | n is a positive
integer}.

Solution:

S abc | aAbc
Ab bA
Ac Bbcc
bB Bb
aB aa | aaA

For the input string aabbcc

S aAbc abAc abBbcc aBbbcc aabbcc

(iii) Type 2: Context-Free Grammar

A grammar is called Type 2 grammar if the production is of the form A
where A V

N
 and a (V

N
)*.

It is otherwise called context-free grammar. The language generated by a
context-free grammar is called context-free language.

S Aa, A a, B abc, A are Type 2 productions.

(iv) Type 3: Regular Grammar

A production of the form A a or A aB, where A, B V
N
 and a is

called Type 3 production.

A production S is allowed in Type 3 grammar, but S does not appear
on the right hand side of any production. Type 3 grammar is otherwise called a
regular grammar.

Example 5.2: Consider the grammar whose productions P are given as:

S aY | b, X a | b. Find the type of the grammar.

Solution: Since the left hand side of the production consists of single variable,
it is an example of Type 3 grammar or regular grammar.

Grammar and Languages

NOTES

Self - Learning
Material 187

Chomsky Hierarchy

In 1955, Chomsky developed a theory of transformation grammar that
revolutionized the scientific study of language. He classified the grammars into four
types. The relationship among languages is named as Chomsky Hierarchy. The
original Chomsky hierarchy is given in Figure 5.10.

Type - 0

Type - 1

Type - 2

Type - 3

Fig. 5.10 Chomsky Hierarchy

The extended Chomsky hierarchy includes the families of deterministic context-
free languages and recursive languages. The extended hierarchy is shown in Figure
5.11.

Regular language

Deterministic context-
free language

Context-free language

Context-sensitive
languages

Recursive enumerable
languages

Recursive languages

Fig. 5.11 Extended Chomsky Hierarchy

The context-free language L = {w: n
a
 (w) = n

b
(w)} where the number of ‘a’s

and ‘b’s are equal is deterministic but not linear.

On the other hand, the language L = {anbn } { anb2n } is linear but not
deterministic. This shows the relationship between regular, linear deterministic
context free and non-deterministic context-free languages (Refer Figure 5.12).

Grammar and Languages

NOTES

Self - Learning
188 Material

Regular languages

Deterministic Context–
free languages

Context-free
languages

Fig. 5.12 Relationship among Different Languages

Example 5.3: Find the type of grammar for the following:

a) S Aa, A c | Ba B abc

b) S ASB | d, A aA

Solution:

a) S Aa, A Ba, B abc are Type 2 grammars and A c is Type
3 grammar.

b) S ASB is Type 2 grammar and S d, A aA are Type 3
grammars.

Example 5.4: Consider the grammar G = {V, T, P, S } where the productions P
are given by S , S ABA, AB aa, aA aaaA, A a. Find the type
of grammar.

Solution: In this, there are two productions AB aa and aA aaaA such that
the left hand side of these productions is not a single variable, hence it is not Type
2 grammar. However, if the length of the left side of the production is not exceeding
the length of the right side of the production, the grammar is Type 1 or context-
sensitive grammar.

Relation between Recursive and Context-Sensitive Languages

Theorem 5.1: Every context-sensitive language L is recursive.

Proof:

Every context-sensitive language is accepted by the Turing machine and it is
therefore, recursively enumerable.

If w is a string then the number of steps in deriving a string is a bounded
function of | w |. If the set of productions are finite and the string w can be derived
from the context-free grammar then w L, otherwise not. Therefore, every context-
sensitive language is recursive.

Theorem 5.2: There exists a recursive language that is not context-sensitive.

Grammar and Languages

NOTES

Self - Learning
Material 189

Proof:

Consider the set of context-sensitive grammars on T = {a , b}. The grammar has
a variable set V denoted by

V = { v
0
, v

1
, v

2
,
………………..

 }.

Every context-sensitive grammar is specified by its productions.

x
1
 y

1
 ; x

2
 y

2
 ;……………………; x

m
 y

m

We apply homomorphism to the string:

h (a) = 010

h (b) = 0110

h () = 01110

h (;) = 0140

h (v
i
) = 01i+50

The context-sensitive grammar can be represented by a string L ((011*0)*).

Let us introduce a proper ordering on { 0, 1 }+, so that we can write strings
in the order w

1
,

w

2
 , ………………………… .

A given string w
j
 may not define a context-sensitive grammar. If it defines, it

denotes the grammar G
j
.

The language L is defined by:

L = { w
i
 : w

i
 defines a context-sensitive grammar G

i
 and w

i
 L (G

i
) }.

(i) L is well defined and recursive, you can construct a membership algorithm.
Given w

i
, check whether it defines a context-sensitive grammar G

i
. If it

does not defines, w
i
 L. If the string defines a grammar, then L (G

i
) is

recursive. You can use an algorithm to find out if w
i
 L (G

i
), and if not

then w
i
belongs to L.

(ii) L is not context-sensitive. There exists some w
j
 such that L = L (G

j
). If you

assume that w
j
 L (G

i
), then by definition w

j
 is not in L. But L = L (G

j
),

hence, there is a contradiction. If you assume that w
j

L (G

j
), then by

definition, w
j
 L and hence again there is a contradiction. Therefore, L is

not context sensitive.

5.4 REGULAR EXPRESSIONS

The definition of regular expression over the alphabet is defined as follows:

1. ε is a regular expression and it is denoted by { ε } .

2. ø or φ is a regular expression and it denotes the null set or empty set.

3. For any input alphabet a ε , a is the regular expression and it is denoted by
{a}.

Grammar and Languages

NOTES

Self - Learning
190 Material

Operators of Regular Expression

1. Union of languages: If L and M are two languages, the union of two
languages is denoted by L M. The regular expression is denoted by
L + M. Union of languages specifies the strings that belong to entire L or M
or both.

2. Concatenation of languages: If L and M are two languages, the
concatenation of two languages is denoted by LM. It is derived by
concatenating L and M.

3. Closure (Kleen’s closure or star closure): The closure of any language
L is denoted by L*.

4. If L is a regular expression then (L) is also a regular expression.

Example 5.5: Describe the following sets by regular expression:

1. {0, 1} = Union of 0 and 1 = 0 + 1

2. { , 1,11, 111 , ………………..} = (1)*

3. {1, 11, 111, 1111, ………………} = 1 (1)*

4. {10} = Concatenating 1 with 0 = 10

5. { , ab} = + ab

6. { 01 , 10 } = 01 + 10

Example 5.6: Describe the following language by regular expression.

1. Set of strings of one or more zeroes followed by 1

Set of one or more zeroes = 0 (0)*

Set of one or more zeroes followed by 1 = 0 (0)* 1

2. Set of strings of 0s and 1s ending with 01.

Set of strings of 0s and 1s = (0 + 1)*

Ends with 01 = (0 + 1)* 01

3. Set of strings of one or more 0s followed by 1

Set of strings of one or more 0s = 0 (0)*

Followed by 1 = 0 (0)*1

4. Set of all strings of 0s and 1s beginning with 0 and ending with 1.

Set of strings of 0s and 1s = (0 + 1)*

Beginning with 0 and ending with 1 = 0 (0 + 1)* 1

5. Set of strings that has at least one pair of consecutive zeroes

(0 + 1)* 00 (0 + 1)*

6. All strings having at least two occurrences of substring 00.

00 (0 + 1)* 00

7. Set of strings with even number of as followed by an odd number of ‘b’s

(aa)* (bb)* b

Grammar and Languages

NOTES

Self - Learning
Material 191

8. Set of all strings over = {a, b} that begins with a and ends with a

a (a + b)* a

9. Set of all strings over = {a, b} that as exactly two a’s.

 b* ab* ab*

10. Set of all strings over = {a, b} ending with bb and starting with a.

a(a + b)* bb

11. Set of all strings of 0s and 1s in which every 0 is immediately followed by at
least two 1s.

(1 + 011)*

12. Set of all strings of 0s and 1s that end with 11 or 0.

(0 + 1)* (11 + 0)

13. Set of all strings of ‘a’s and ‘b’s that contain at least two ‘a’s.

(a + b)* a (a + b)* a (a + b)*

Example 5.7: Find the language for the given regular expression.

1. For = {0, 1}, the regular expression is r = (0 + 1)* (0 + 11).

L (r) ={ 0, 11, 00, 011, 10, 111,……………….}

2. For = {a, b}, the regular expression is r = (aaa)*(bb)* b.

L(r) = {a3n. b2m+1: n > 0, m > 0}

3. For = {a, b}, the regular expression is ab*a.

L (r) = {aa, aba, abba, abbba, …………….}

4. For = {a, b}, the regular expression is r = (ab)*.

L (r) = { , ab, abab, ababab,…..}

Example 5.8: Give the regular expression for the following languages:

1. L = { an bm : n > 3 , m > 2 }

The regular expression is (aaa) a* (bb) b*.

2. L = {aodd}

The regular expression is a (aa)* or (aa)*a

3. L = {a, ab, abb, abbb,……} over the alphabet = {a, b}

The regular expression is a (b*).

4. L = {abnc : n > 2 , c (a, b)+ }

The regular expression is abbb* (a + b)+.

5. L = {w : | w | mod 3 = 0 where w (a, b)* }

Here, | w | represents the length of the string, which should be in multiples of
3.

The regular expression is ((a + b)3)*.

6. L = {w (a, b)* : n
a
 (w) mod 3 = 0 }

The regular expression is (b*ab* ab* ab*)*.

Grammar and Languages

NOTES

Self - Learning
192 Material

Example 5.9: Give the regular expression and the language for the following set:

1. Set of strings of even number of ‘a’s followed by odd number of ‘b’s.

L = {a2n.b2m+1: n > 0, m > 0}

 Regular expression: (aa)* (bb)* b

2. Set of strings of ‘a’s and ‘b’s of length exactly three.

L = {aaa, aab, aba, abb, baa, bab, bba, bbb}

 Regular expression: (a + b) (a + b) (a + b)

5.5 PUMPING LEMMA FOR REGULAR
LANGUAGES

Let L be a regular language. Then there exists a constant n such that for every
string w in L where | w | > n, we can represent w = xyz such that

1. | y | > 0

2. | xy | < n

3. For all k > 0, the string xykz is also in L.

Proof of Pumping Lemma

If L is regular then L = L (A) for some DFA, A. Let n be the number of states of M.

Consider w ε A, where w = a
1
a

2
………….a

m
(m > n) and each a

i
 is an

input symbol. Let q
i
= ̂ (q

0
,

a

1
a

2
…..a

i
) for i = 0, 1, ……….., n, where δ is the

transition function and q
0
 is the start state of A.

Since there are only n different states it is not possible for (n +1) different
q

i
’s for i = 0, 1,………….., n to be distinct. Thus, we can find two different

integers i and j with 0 < i < j < n, such that q
i
= q

j
.

We can break xyz as follows

x = a
1
a

2
.. a

i

y = a
i+1

a
i+2

.................................. a
j

z = a
j+1

a
j+2

.................................. a
m

Then by repeating the loop from q
i
 to q

i
 with label a

i+1
…………….a

j
, zero

or more times, we can show that xyiz is accepted by A.

 y

 x z

q0 qi qm

Every string longer than the number of states must cause a state to repeat.

Grammar and Languages

NOTES

Self - Learning
Material 193

Applications of Pumping Lemma

Pumping Lemma is used to prove that certain sets are not regular. The steps
needed for proving that a given set is not regular are as follows:

1. Assume L is regular. Let n be the number of states in the corresponding
finite automata.

Check Your Progress

1. What is a language processor?

2. Define context free language.

3. Write any one operator of regular expression.

4. What is the use of pumping lemma?

5.6 REGULAR GRAMMAR

In theoretical computer science, a regular grammar is a formal grammar that
describes a regular language. A regular grammar is a left or right regular grammar.
Right regular grammar is also known as right linear grammar and left regular grammar
are also known as left linear grammar.

Right Linear and Left Linear Grammar

Right Linear Grammar

A grammar G is said to be right linear if each production has one variable at the left
side and the right side consists of zero or more number of terminals followed by an
optional single variable or .

A aB, A a

These are the examples of right linear grammar.

Left Linear Grammar

A grammar G is said to be left linear if each production consists of a single variable
at the left side and the right side consists of an optional single variable followed by
any number of terminals.

A Ba, A a

These are the examples of left linear grammar.

A regular grammar is one that is either right linear or left linear.

A linear grammar is a grammar in which at most one variable can occur on
the right side of any production, but the position of the variable in not restricted.

Example 5.10: Consider the grammar G = {{S, A, B}, {a, b}, S, P}, where P is
given as

S A

A bA /
B Ba

Grammar and Languages

NOTES

Self - Learning
194 Material

Check whether the grammar is regular or not.

Solution: The productions for A, B are right linear and left linear but the production
for S is neither left linear nor right linear.

Therefore, it is not regular. But it is a linear grammar.
Notes:

1. Regular and linear grammars are context free.

2. Context-free grammars are not always linear.

Sentential Forms

If G = (V, T, P, S) is a CFG, then any string in (V T)* such that S is a
sentential form.

If L(G) then

S
1

2
………..

n
 is the derivation of . The strings

1
,

2
,

n
 may contain variables as well as terminals. These are called sentential

forms of the derivation.

If S * and if the variable is replaced from the left side, then it is called
left sentential form.

If S * and if the variable is replaced from the right side, then it is called
right sentential form.

Two grammars G
1
 and G

2
 are said to be equivalent if they generate the

same language, i.e.,

L(G
1
) = L(G

2
)

5.7 CONTEXT-FREE GRAMMARS

Context-free languages play a central role in the natural languages since 1950s
and in the compilers since 1960s. CFG is the basis of Backus-Naur Form (BNF)
syntax.

Context-free grammars are used in the implementation of parsers in compiler
design. We can represent the context-free languages or the derivations by means
of parse trees. Grammars follow the process of derivation by which the strings are
derived from the language of the grammar. Design of compilers and interpreters
for programming languages are obtained from the grammar for the language.

Definition

A context-free grammar or CFG is represented by G= (V, T, P, S) where

V represents a finite set of variables or non-terminals.

T represents a finite set of symbols called terminals.

P is a finite set of productions or rules that represent the recursive definition
of a language.

S represents the start symbol.

A grammar is said to be context free if the left side of the production is a
single non-terminal and the right side has a special form.

Grammar and Languages

NOTES

Self - Learning
Material 195

A is a production where A ε V and (V T)*.

The productions are used to derive one string from another string.

If is a production in a grammar G, then we can replace by in that
string.

In general, it can be written as

Here, indicates unspecified number of steps, i.e., zero or more number
of steps.
If A , then is called a sentential form.
If A is a production, where A ε V, then it is called A-production.
If A

1
, A

2
,, A

n
 are A-productions, then it can be

written as
A

1
|

2
|.................|

n

Construction of a Finite Automata L(G) for a given Regular Grammar G

Let G = {{ A
0
, A

1
,, A

n
}, , P, A

0
 }

The transition system is constructed such that

a) It consists of states corresponding to variables.
b) The initial state q

0
 corresponds to A

0
.

c) Transitions correspond to the productions in P.

If any production is of the form A
i
 , where is any terminal, then the

transition terminates at this state and this is the unique final state.

The transition system A is defined as
{q

0
, q

1
,......., q

f
}, , , q

0
, {q

f
}, if

(i) Each production A
i
 aAj, induces a transition from q

i
to q

j
 with label a.

(ii) Each production A
i
 , induces a transition from q

i
 to q

f
 with label .

Example 5.11: Let G = {{A
0
, A

1
,}, {a, b}, P, A

0
} where the productions are A

0

 aA
1
, A

1
 bA

1
, A

1
 a, A

1
 bA

0
. Construct a transition system A accepting

L (G).

Solution: Since there are two variables A
0
 and A

1
, there are two corresponding

states q
0
 and q

1
, and a final state q

f
.

If the production is A
0
 aA

1
, it has a transition from q

0
 to q

1
 with label a.

Similarly, if the production is A
1
 bA

1
, it has a transition from q

1
 to q

1
 with label

b. If the production is A
1
 bA

0
, it has a transition from q

1
to q

0
with label b.

If the production is A
1
 a, it has a transition from q

1
 to q

f
 with label a.

The transition system A is given by

a
q0 q1 qf

b

a

b

Grammar and Languages

NOTES

Self - Learning
196 Material

Example 5.12: Construct a transition system A, if the productions are given as

S aA
2
, A

2
 bA

1
, A

2
 b, A

2
 a, A

1
 aA

2
, A

1
 a.

Solution: Since there are three variables, there are four states {q
0
, q

1
, q

2
, q

f
}.

Here, q
0
 corresponds to S, q

1
 corresponds to A

1
, q

2
 corresponds to A

2
, q

f
 is the

final state.

S aA
2
 induces a transition from q

0
 q

2
 with label a. A

1
 aA

2
 induces a

transition from q
1
 to q

2
 with label a. A

2
 b and A

2
 a have transitions from q

2

to q
f
with labels a, b.

b q1 q2 qf
a,b

a

q0

a

Construction of Regular Grammar for a Given Regular Language or
Given DFA A

Let A = {{q
0
,…….., q

n
}, , , q

0
, F}.

The grammar is constructed in such a way that the productions correspond
to the transitions.

If there is a transition from q
i
 with a label a to q

j
, then (q

i
, a) = q

j
 F.

Then the production is given as A
i
 aA

j.

If (q
i
, a) = q

j
 F, then the productions are given as A

i
 aA

j
, A

i
 a.

Example 5.13: Construct a regular grammar for a given regular language R = a*

b(a+b)*.

Solution: Given the regular language, it is converted into DFA.

q0 q1

a

b

a,b

From this the grammar is constructed such that

G = {{ A
0
, A

1
}, = {a,b}, P , A

0
}

Where the productions are given by

A
0
 aA

0

A
0
 bA

1
, A

0
 b

A
1
 aA

1
 | bA

1

A
1
 a|b

Language Generated by a Grammar

The set of all terminal strings that can be derived from the start symbol is called the
language generated by the grammar L(G).

Grammar and Languages

NOTES

Self - Learning
Material 197

L (G) = {w in T | S w}

The terminal strings are derived from the context-free grammar by
substituting the variable on the right side of the production.

The substitution can be done any number of times until no non-terminal
variable is present on the right side.

A language L is said to be context free, if and only if, there is a context-free
grammar G such that L = L(G).

Example 5.14: Consider the grammar G = {{S}, {a, b}, S , P } where the
productions are given as

S aSbb

S abb |
Solution:

S aSbb S abb

 aabbbb = a2 b4

S abb S

= a1 b2

Therefore, the language generated by the grammar is

L (G) = { an b2n | i 1 }

5.8 DERIVATION TREES

Another way of representing the derivation, independent of the order in which the
productions are used is the derivation tree. A derivation tree is also known as a
parse tree. A derivation tree is an ordered tree in which the nodes are labelled with
the left sides of the production and the children of the nodes represent the
corresponding right sides. A derivation tree begins with the start symbol (the root)
and ends with the terminals (leaves).

Definition

Let G= (V, T, S, P) be a CFG. A derivation tree for G is possible if and only if it has
the following properties:

1. The label of the root is S.
2. Every vertex has a label V T {}.
3. Every interior vertex has a label from V.
4. If V has a label A V and vertices V

1
, V

2
,…….., V

n
 then the

productions are given as
A V

1
, V

2
,, V

n

 5. A leaf labeled has no siblings, i.e., a vertex with a child labeled can
have no children.

Grammar and Languages

NOTES

Self - Learning
198 Material

Partial Derivation Tree

A tree that has the Properties 3, 4 and 5 but the Property 1 does not necessarily
hold and has the Property – every leaf has a label V T {} – is said to be a
partial derivation tree.

Yield of a Derivation Tree

The string of terminals obtained by traversing the leaves of the tree from the left to
the right (depth-first manner) is said to be the yield of the tree. In other words, the
yield of a derivation tree is the concatenation of the leaves of the parse tree from
left to right.

Example 5.15: Construct a derivation tree for the grammar G = {{ S, A},
{ a, b}, P, S } where P is given by

S aAS, S a, A SbA | ab

Solution: For the string aababa, the derivation tree is given by

 S

a A S

S b A a

a a b

Here, the string aSbAa is a partial derivation tree for G, while the string
aababa is a derivation tree. The yield of a partial derivation tree is a sentential form
of G while the yield of a derivation tree is a sentence of L(G).

Subtree

A subtree of a derivation tree T is a tree whose root is some vertex V of T,
together with all the descendants of V along with their labels and the edges that
connect the descendants of V.

A subtree looks like a derivation tree if the label of the root is not S. It is
called an A-tree if the label of the root is A.

Example 5.16: Consider the grammar G with production

S aAb, A aBb, B bb

For the string aabbbb, construct the derivation tree.

Solution: For the string aabbbb, following is the derivation tree:

S

a A b

a B b

b b

Grammar and Languages

NOTES

Self - Learning
Material 199

Leftmost and Rightmost Derivation

In the derivation of a string, at each step if we replace the leftmost variable by any
one of its productions, it is called the leftmost derivation. The leftmost derivation is
denoted by A , i.e., the terminal string is obtained in zero or more number of
steps.

In the derivation of a string, at each step if we replace the rightmost variable by
any one of its production, then it is called the rightmost derivation. The rightmost
derivation is denoted by A , i.e., the terminal string is obtained in zero or more
number of steps.

Example 5.17: Let G be a CFG where the productions are

S aB | bA

A a | aS | bAA

B b | bS | aBB

For the string aabbabab find:

(i) Leftmost derivation

(ii) Rightmost derivation

(iii) Parse tree

Solution:

(i) Leftmost derivation for aabbabab

S aB aaBB aabSB aabbAB aabbaSB

 aabbabAB aabbabaB aabbabab

(ii) Rightmost derivation for aabbabab

S aB aaBB aaBbS aaBbaB aaBbabS

aaBbabaB aaBbabab aabbabab

(iii) Parse tree

 S

a B

B B a

b S b

b A

a S

b A

a

Grammar and Languages

NOTES

Self - Learning
200 Material

5.9 SENTENTIAL FORMS

A parse tree is a representation of the structure and grammar of a computer
language. The process of parsing helps to translate human understandable grammar
to a computer understandable code. When used in a compiler, the parse tree is the
data structure of choice to represent the source program. In a compiler, the parse
tree facilitates the translation of the source program into executable code by allowing
natural, recursive functions to perform this translation process.

The elements of a parse tree are called nodes. Like in a parent-child
relationship, a node must have one parent. It is drawn above the node. It can have
zero or many children drawn below. Lines connect parents to their children.

Root is a node that has no parent node. This node appears at the top of the
tree. Those nodes that have no children are called leaves and nodes that are not
leaves are called interior nodes.

The child of a child node is a descendant of that node. A parent of a parent
node and so on are called ancestors. In short, nodes are ancestors and descendents
of themselves.

Children of a node are ordered ‘From the Left’ and are drawn likewise. If
node N is to the left of node M, then all the descendants of N are considered to be
the descendants of M.

Abstract Syntax Tree

An Abstract Syntax Tree (AST) represents the structure of a source string in a
more economical manner. The word ‘abstract’ implies that it is a representation
designed by a compiler for its own purpose. Thus, the designer has total control
over the information represented in an AST. It suggest that an AST for a source
string is not unique as a parse tree.

Consider the grammar G = (V, T, P, S). The parse trees for G are trees with
the following given conditions:

1. A variable in V labels each interior node.
2. Again a variable, a terminal or labels each leaf. At the same time, in case of

being the only child of its parents the leaf will be labelled .
3. And if an interior node is labelled A and its children are labelled X

1
, X

2,
X

3
,……, X

k
from the left, then A X

1
, X

2
, X

3
,……, X

k
 is a production in

P. X can be if it is labelled as the only child and A is the production
of G.

See the following production:
1. E I

2. E E +E

3. E E * E

4. E (E)

5. I a

Grammar and Languages

NOTES

Self - Learning
Material 201

6. I b

7. I Ia

8. I Ib

9. I I0

10. I I1

The grammar for this expression is stated as

G = ({ E, I}, T, P, E)

The parse tree shows I + E from E (Refer Figure 5.13).
 E

E E +

I
Fig. 5.13 A Parse Tree

Example 5.18: (Grammar of palindrome)

G
pa

= {{P},{0,1}, A, P}

Where A represents the set of five productions.

Define context-free grammar rule for a palindrome

Solution: P
P 0

P 1

P 0P0

P 1P1

 A parse tree P 00110

 P

1 1 P

0

P

0
 P

Fig. A Parse Tree

Grammar and Languages

NOTES

Self - Learning
202 Material

The production used at the root is

P 1P1

At the middle, the child of the root is

P 0P0

At the bottom, P .

The label is only used once on the parse tree.

Parse Trees and Derivation

A parse tree is a graphical depiction for a source that filters out the options about
the substitution order. Some non-terminal ‘A’ labels every interior node of a parse
tree and so the children of the node are labelled from left to right. This is done by
the symbols in the right side of the production by which this A was replaced in the
source. Non-terminal or terminals label the leaves of the parse tree. These are
read from the left to right and are known as the yield of frontier of the tree.

Sentence and Sentential Form

Given a grammar G with start symbol + you can use relation to define L(G)—
the language generated by G. Strings in L(G) may contain only terminal symbols of
G. A string of terminal w is in L(G) if and only if

 +
S w

The string w is called a sequence of G. A language that can be generated by
a grammar is said to be a context-free language. If two grammars generate the
same language, the grammars are said to be equivalent. If

 +
S

Where may contain non-terminals, then is a sentential form of G. A sentence
is a sentential form with no non-terminals.

Let us take the example of a parse tree –(id * id).

Consider any derivation
1

2

3
 …

n
.

Where
1
 is a single non-terminal A.

For each sentential
1
,

2
, etc., you can construct a parse tree whose yield

is
i
. The process is an induction on i.

Basis: The tree for
1

A is a single node labelled A.

Induction: Suppose you have constructed a parse tree whose yield is

i–1

= X
1
 X

2
 X

3
 … X

k

Suppose,
i
is derived from

i–1
 by replacing X, a non-terminal, by

i–1

= Y
1
 Y

2
 Y

3
 … Y

r

Grammar and Languages

NOTES

Self - Learning
Material 203

At the ith step of the derivation, production is

X
j
 applied to

i–1
 to derive,

i
= X

1
 X

2
… X

j–1

X

j
… X

k

You will find jth leaf from the left in the current parse tree. This leaf is labelled
X

j
, with r children labelled from left (Refer Figure 5.14).

As a special case

If r = 0, i.e.,

B= then you can give the jth leaf one child labelled .

E

) (E

E

id

E
*

id

E

_

Fig. 5.14 A Parse Tree

Top-Down Parsing

In top-down parsing, the derivation is for the leftmost input string. A common type
of top-down parsing known as recursive descent parsing involves backtracking,
i.e., it repeatedly scans the input. In natural language parsing, tabular methods,
such as dynamic programming algorithm, is preferred as the latter backtracking is
not very efficient. The recursive descent parsing where no backtracking is required
is called predictive parsing.

Example 5.19

Consider the grammar

S pQr

Q lm | l

And input string w=plr

In the beginning, you can create a tree consisting of a single node labelled S
to make a parse tree for this string top-down the first symbol of w and an input
point to p.

Grammar and Languages

NOTES

Self - Learning
204 Material

 S

p r Q

Q

l

S

p

r

Q

l
 m

S

p

r

m

()a ()b ()c

Fig. Using the First Alternative for Q to Obtain Tree

The leftmost leaf, labelled p, matches the first symbol of w, so you can now
advance the input pointer to the next leaf, labelled Q.

Expand Q using the first alternative for Q to obtain tree.

Now match a second input symbol, so the next input points to r, the third
input symbol, and compare r against m. Since m and r do not match, a failure is
reported. It goes back to Q to get another alternative for Q. While going back the
input pointer is set to position 2, the position it had when it first came to Q. Thus,
the input pointer should be stored in a local variable for the procedure to access
Q. Now, Figure (c) is obtained. The leaf l matches the second symbol of w and
the leaf r matches the third symbol.

Implementing Top-Down Parsing

The following features are needed to implement top-down parsing:

1. Source String Marker (SSM): This points to the first unmatched symbol in
the source string.

2. Prediction making mechanism: This mechanism systematically selects the right
hand side alternatives of production during prediction-making. It must ensure
that any string in L

G
 can be derived from S.

3. Matching and backtracking mechanism: This mechanism matches every
terminal symbol generated during a derivation with the source symbol pointed
to SSM. Backtracking is performed if the match fails. This involves resetting
the Current Sequential Form (CSF) and SSM.

Predictive Parser

You can get a grammar that can be parsed by recursive descent parser. This needs
no backtracking. To make a predictive parser, given the current input symbol
and the non-terminal A to be expanded, one of the alternatives of production is

A
1
|

2
| …|

n

Bottom-Up Parsing

Bottom-up parsing is also known as shift-reduce parsing. It tries to make a parse
tree for an input string starting at the leaves (the bottom) and writing up towards
the root.

Grammar and Languages

NOTES

Self - Learning
Material 205

Consider the grammar
S pPQt
P Pqr | q
Q s

Consider the sentence pqqrst.

1. pqqrst
2. pPqrst [as P q]
3. pPst [as P Pqr]
4. pPQt [as Q s]
5. S [as S pPQt]

Thus, by a series of four declines, you are able to condense pqqrst to S.

Operator Precedence Grammar and Parsing

A grammar that produces more than one parse tree for some sentence is said to
be ambiguous. An ambiguous grammar produces more than one leftmost or more
than one rightmost derivation for the same sentence.

Consider the expression

E + E * E

There are two parse trees for this expression (Refer Figure 5.15).

E

E

E

E *

E

+

E

E E*

E

+ E

(a) (b)

Fig. 5.15 Two Parse Trees for Expression E + E * E

Now this derivation shows the ambiguity of the grammar. Thus, a CFG,
G = (V, T, P, S) is unclear if there is at least one string w in T* for which you can
find two different parse trees each with root labelled s and yield w. The grammar
is considered unambiguous if each string has only one parse tree in it.

There are two causes for ambiguity of grammar:

1. The precedence operator is not enforced.

In the example E + E * E, if you consider the precedence operator *,
then there is no ambiguity, i.e., E + (E * E) is right parse tree and (E
+E) * E is not considered.

2. A sequence of identical operators can be grouped either from the
right or from the left.

Like in E + E+ E or E* E * E, you can see the two parse trees, each
labelled E (Refer Figure 5.16).

Grammar and Languages

NOTES

Self - Learning
206 Material

E

E E +

E

+ E

(a) (b)

E

E

E

E +

E

+

Fig. 5.16 Two Causes for Ambiguity of Grammar

This is ambiguous grammar, as there are two parse trees for the same
expression. Since addition and multiplication are associative, it does not matter
whether you group them from left to right or vice versa. The conventional approach
is to insist on grouping from the left, so the structure is the only correct grouping of
two + signs.

Operator Precedence Grammar

An Operator Precedence Grammar (OPG) is an operator in which the precedence
between operators is unique.

There are three levels of binding strength in a language:
(i) Factor
(ii) Term
(iii) Expression

(i) Factor

An adjacent operator cannot break apart a factor, either through a * or a+. The
only factors in our expression language are:

 Identifiers: It is not possible to separate the letters of two identifiers by
attaching an operator.

 Parenthesized expression: Parentheses prevent what is inside from
becoming the operand of any operator outside the parentheses.

(ii) Term

A term is an expression that cannot be broken by the + operator. Where + and *
are only operators, a term is a product of one or more factors. A proper grouping of
a+ a * b is a + (a * b) and of (a* b) + a is (a*b) + a.

(iii) Expression

An expression refers to any possible expression, including those that can be broken
by either an adjacent * or an adjacent +.

I a| b| Ia | Ib | I0 | I1

I I | (E)

Grammar and Languages

NOTES

Self - Learning
Material 207

I F | T * F

I T | E + T

is an unambiguous expression grammar.

Now, parse tree for a + a * b for this grammar is shown in Figure 5.17.

E

F T *

E

+ T

T

F
I F

b I
I

a a

Fig. 5.17 Parse Tree for a + a * b

1. The string derived from T is a term which is in a sequence of one more factors,
connected by ‘*’s. A factor by definition is either an identifier or a parentheses
expression. F is defined the same as a factor s.

2. As a production factor, the only parse tree for a sequence of factors is the one
that breaks

f
1
 * f

2
 *f

3
* …* f

n
for n > 1

into a term f
1
 * f

2
 *f

3
* …* f

n –1
and a factor f

n
. Now F cannot derive an

expression like f
n–1

 * f
n
 without introducing parentheses around them. This is

not possible when using the production,

T T * F
The F derives anything but the last of the factors.

3. When the production E E + T is used to derive t
1
 + t

2
 + t

3
+ …+ t

n
the T

must derive only t
n
 and the in the body derives t

1
 + t

2
 + t

3
 + …+ t

n
.

Operator Precedence Parsing

Operator precedence parsing explains three disjointed precedence relations
<·, ·,·>, between certain pairs of terminals.

p <· q means a ‘yields precedence to’ b

p ·> q means a ‘takes precedence over ’ b

p · q means a ‘yields same precedence to’ b

Grammar and Languages

NOTES

Self - Learning
208 Material

For example, if * operator has precedence of + operator then it is written
as

* · > + or + <· *

Operator Precedence Matrix

Operator Precedence Matrix (OPM) represents operator precedence relations
between pairs of operator. The entry OPM (a, b) represents the precedence of
operator a operator b in a sentential form …aPb… where P may be a null string.

The operator-precedence relation is shown in Table 5.1.

Table 5.1 Operator-Precedence Relations

 id + * $
Id · > · > · >
+ <· · > <· · >
* <· · > · > · >
$ <· <· <·

Deterministic parsing refers to parsing algorithms that do not back up. LR-parsers
are an example of deterministic parsing.

LR Parsers

An LR parser is a type of Shift/Reduce (S/R) parser that does not uses
backtracking. It is the most general type of non-backtracking S/R parser. Its main
drawback is the difficulty of constructing suitable parse tables. LR parsers also
tend to produce larger tables than LL parsers. The LR parser was first described
by Knuth in 1965. All LR parsers use the same algorithm and they differ in the way
the table is generated. An LR parser consists of a stack and a state table. It takes
input in the form of a series of symbols. The state table lists actions for each
terminal symbol in each state and also lists goto states for non-terminal symbols.
The stack contains value and state pairs and initially contains just the state 0. The
action table for each state may contain one of the following four values:

 Shift and move to state n

 Reduce using rule number n

 Error

 Accept

The algorithm proceeds by reading the current state from the top of the stack and
the next symbol from the input. It looks up the action for that state and symbol in
the table. A shift action causes the parser to push the read symbol and the new
state onto the stack. A reduce action causes the parser to pop a suitable number
of symbols off the stack, make the state one now on top of the stack and push the
non-terminal representing rule n onto the stack, followed by the state specified for
that non-terminal in the goto part of the state table. Error causes the parser to
enter error handling mode and accept causes the parser to accept the grammar.
Table 5.2 summarizes the two LR(0) parsing tables for this grammar.

Grammar and Languages

NOTES

Self - Learning
Material 209

Table 5.2 Two LR(0) Parsing Tables

 Action goto

State * + 0 1 $ E B

0 s1 s2 3 4

1 r4 r4 r4 r4 r4

2 r5 r5 r5 r5 r5

3 s5 s6 acc

4 r3 r3 r3 r3 r3

5 s1 s2 7

6 s1 s2 8

7 r1 r1 r1 r1 r1

8 r2 r2 r2 r2 r2

 The action table is indexed by a state of the parser and a terminal including a
special non-terminal $ that indicates the end of the input stream and contains three
types of actions. A shift that is written as ‘sn’ to indicate that the next state is n, a
reduce that is written as ‘rm’ and indicates that a reduction with grammar rule m
should be performed, and an accept that is written as ‘acc’ and indicates that the
parser accepts the string in the input stream. An LR(0) item of a grammar G is a
production of G with a dot at some position of the right side indicating how much
of a production we have seen up to a given point. For example, for the production
E E + T the items are appeared as follows:

 [E .E + T]

 [E E. + T]

 [E E +. T]

 [E E + T.]

These are called LR(0) items because they contain no explicit reference to
lookahead. The central idea of the LR method is first to construct a deterministic
finite automaton to recognize viable prefixes from the grammar.

Constructing LR(0) Parsing Tables

Items, item sets and closure of item sets are the prime factors which are used to
construct LR(0) parsing table. They are discussed below:

Items

The construction of these parsing tables is based on the notion of LR(0) item
simply called item which are grammar rules with a special dot added somewhere
in the right hand side. For example the rule E E + B has the following four
corresponding items:

E · E + B

E E · + B

E E + · B

E E + B ·

Grammar and Languages

NOTES

Self - Learning
210 Material

Exceptions are rules of the form A with which only the item A · corresponds.
These rules will be used to denote the state of the parser. The item E E · + B,
for example indicates that the parser has recognized a string corresponding with E
on the input stream and now expects to read a ‘+’ followed by another string
corresponding with E.

Item Sets

It is usually not possible to characterize the state of the parser with a single item
because it may not know in advance which rule it is going to use for reduction. For
example, if there is also a rule E E * B then the items E E · + B and E E
· * B will both apply after a string corresponding with E has been read. Therefore
we will characterize the state of the parser by a set of items—in this case the set
{E E · + B, E E · * B }.

Closure of Item Sets

An item with a dot in front of a non-terminal, such as E E + · B, indicates that
the parser expects to parse the non-terminal B next. To ensure that the item set
contains all possible rules (the parser may be in the midst of parsing), it must
include all items describing how B itself will be parsed. This means that if there are
rules such as B 1 and B 0 then the item set must also include the items B
· 1 and B · 0. In general this can be formulated as follows:

If there is an item of the form A v·Bw in an item set and in the grammar
there is a rule of the form B w’ then the item B · w’ should also be in the item
set.

Any set of items can be extended such that it satisfies this rule: simply continue
to add the appropriate items until all nonterminals preceeded by dots are accounted
for. The minimal extension is called the closure of an item set and written as clos(I)
where I is an item set. We will take these closed item sets as the states of the
parser, although only the ones that are actually reachable from the begin state will
be included in the tables.

5.10 NOTIONS OF SYNTAX ANALYSIS

Another important application of stacks is the conversion of expressions from the
infix notation to the postfix and prefix notations. The general way of writing arithmetic
expressions is known as the infix notation where the binary operator is placed
between two operands on which it operates (For simplicity, we have ignored
expressions containing unary operators). For example, the expressions a+b and
(a-c)*d, ((a+b)*(d/f)-f) are in the infix notation. The order of
evaluation in these expressions depends on the parentheses and the precedence
of operators. For example, the order of evaluation of the expression (a+b)*c
is different from that of a+(b*c). As a result, it is difficult to evaluate an
expression in the infix notation. Thus, the arithmetic expressions in the infix notation
are converted to another notation, which can be easily evaluated by a computer
system to produce the correct result.

Grammar and Languages

NOTES

Self - Learning
Material 211

A Polish mathematician, Jan Lukasiewicz, suggested two alternative notations
to represent an arithmetic expression. In these notations, the operators are written
either before or after the operands on which they operate. The notation in which
an operator occurs before its operands is known as the prefix notation (also
known as Polish notation). For example, the expressions +ab and *-acd are
in the prefix notation. On the other hand, the notation in which an operator occurs
after its operands is known as the postfix notation (also known as the Reverse
Polish or suffix notation). For example, the expressions ab+ and ac-d* are
in the postfix notation.

A characteristic feature of the prefix and postfix notations is that the order
of evaluation of the expression is determined by the position of the operator and
operands in the expression. That is, the operations are performed in the order in
which the operators are encountered in the expression. Hence, parentheses are
not required for the prefix and postfix notations. Moreover, while evaluating the
expression, the precedence of the operators is insignificant. As a result, they are
compiled faster than the expressions in the infix notation. Note that the expressions
in the infix notation can be converted to both the prefix and postfix notation. This
section discusses both types of conversions.

Conversion of Infix to Postfix Notation

To convert an arithmetic expression from an infix notation to a postfix notation, the
precedence and associativity rules of operators are always kept in mind. The
operators of the same precedence are evaluated from left to right. This conversion
can be performed either manually (without using stacks) or by using stacks. The
steps for converting the expression manually are as follows:

1. The actual order of evaluation of the expression in the infix notation is
determined by inserting parentheses in the expression according to the
precedence and associativity of operators.

2. The expression in the innermost parentheses is converted into the postfix
notation by placing the operator after the operands on which it operates.

3. Step 2 is repeated until the entire expression is converted into a postfix
notation.

For example, to convert the expression a+b*c into an equivalent postfix notation,
these steps are followed:

1. Since the precedence of * is higher than +, the expression b*c has to be
evaluated first. Hence, the expression is written as

(a+(b*c))

2. The expression in the innermost parentheses, that is, b*c is converted into
its postfix notation. Hence, it is written as bc*. The expression now becomes

(a+bc*)

3. Now the operator + has to be placed after its operands. The two operands
for + operator are a and the expression bc*. The expression now becomes

(abc*+)

Grammar and Languages

NOTES

Self - Learning
212 Material

Hence, the equivalent postfix expression is
abc*+

When expressions are complex, manual conversion becomes difficult. On the other
hand, the conversion of an infix expression into a postfix expression is simple
when it is implemented through stacks. In this method, the infix expression is read
from left to right, and a stack is used to store the operators and the left parenthesis
temporarily. The order in which the operators are pushed onto and popped from
the stack depends on the precedence of operators and the occurrence of parenthesis
in the infix expression. The operands in the infix expression are not pushed onto
the stack; rather they are directly placed in the postfix expression. Note that the
operands maintain the same order as the original infix notation.

Algorithm 5.1 Infix to Postfix Conversion

infixtopostfix(s, infix, postfix)

1. Set i = 0
2. While (i < number_of_symbols_in_infix)
 If infix[i] is a whitespace or comma
 Set i = i + 1 and go to step 2
 If infix[i] is an operand, add it to postfix
 Else If infix[i] = ‘(’, push it onto the stack
 Else If infix[i] is an operator, follow these steps:

i. For each operator on the top of stack whose precedence is
greater than or equal to the precedence of the current
operator, pop the operator from stack and add it
postfix

ii. Push the current operator onto the stack
 Else If infix[i] = ‘)’, follow these steps:

i. Pop each operator from top of the stack and add it to
postfix until ‘(’ is encountered in the stack

ii. Remove ‘(’ from the stack and do not add it to postfix
 End If
 Set i = i + 1
 End While
3. End

For example, consider the conversion of the following infix expression to the postfix
expression:

a-(b+c)*d/f

Initially, a left parenthesis ‘(’ is pushed onto the stack, and the infix expression is
appended with a right parenthesis ‘)’. The initial states of the stack, infix expression
and postfix expression are shown in Figure 5.18.

a - (b + c) * d / f)

infix

postfix

stack

(

Fig. 5.18 Initial States of the Stack, Infix Expression and Postfix Expression

Grammar and Languages

NOTES

Self - Learning
Material 213

infix is read from left to right and the following steps are performed:

1. The operand a is encountered, which is directly put to postfix.

2. The operator – is pushed onto the stack.

3. The left parenthesis ‘(’ is pushed onto the stack.

4. The next element is b, which being an operand is directly put to postfix.

5. + being an operator is pushed onto the stack.

6. Next, c is put to postfix.

7. The next element is the right parenthesis ‘)’ and hence, the operators on
the top of stack are popped until ‘(’ is encountered in stack. Till now, the
only operator in the stack above the ‘(’ is +, which is popped and put to
postfix. ‘(’ is popped and removed from the stack [Refer Figure
5.19 (a)]. Figure 5.19(b) shows the current position of the stack.

stack

+

(

-

(

/

+ popped

a b c +

postfix

a - (b + c) * d / f)

push to stack pop + from stack
and remove (

infix

Stack
status

-

(

(a) Postfix Expression when + is popped (b) State of the Stack

Fig. 5.19 Intermediate States of Postfix and Infix Expressions and the Stack

8. After this, the next element * is an operator and hence, it is pushed onto the
stack.

9. Then, d is put to postfix.

10. The next element is /. Since the precedence of / is the same as the
precedence of *, the operator * is popped from the stack and / is pushed
onto the stack (Refer Figure 5.20).

11. The operand f is directly put to postfix after which ‘)’ is encountered.

12. On reaching ‘)’, the operators in the stack before the next ‘(’ is reached
are popped. Hence, / and – are popped and put to postfix as shown
in Figure 5.20.

Grammar and Languages

NOTES

Self - Learning
214 Material

/ *

-

(

stack
a

a - (b + c) * d / f)

b c + d * f / -

postfix

infix

Pop -

Pop /

Pop * and
push /

push to stack Pop *
and
push /

Pop /
and -

Fig. 5.20 The State When – and / are Popped

13. ‘(’ is removed from the stack. Since the stack is empty, the algorithm is
terminated and postfix is printed.

The step-wise conversion of the infix expression a-(b+c)*d/f into its equivalent
postfix expression is shown in Table 5.3.

Table 5.3 Conversion of Infix Expression into Postfix Expression

Element Action performed Stack status Postfix expression
a
-
(
b
+
c
)
*
d
/
f
)

Put to postfix
Push
Push
Put to postfix
Push
Put to postfix
Pop +, put to postfix, pop (
Push
Put to postfix
Pop *, put to postfix, push /
Put to postfix
Pop / and -

(
(-
(-(
(-(
(-(+
(-(+
(-
(-*
(-*
(-/
(-/
Empty

A
a
a
ab
ab
abc
abc+
abc+
abc+d
abc+d*
abc+d*f
abc+d*f/-

Conversion of Infix to Prefix Notation

The conversion of an infix expression to a prefix expression is similar to the
conversion of an infix expression to a postfix expression. The only difference is
that the expression in the infix notation is scanned in the reverse order, that is, from
right to left. Therefore, the stack in this case stores the operators and the closing
(right) parenthesis.

Grammar and Languages

NOTES

Self - Learning
Material 215

Algorithm 5.2 Infix to Prefix Conversion

infixtoprefix(s, infix, prefix)

1. Set i = 0
2. While (i < number_of_symbols_in_infix)
 If infix[i] is a whitespace or comma
 Set i = i + 1 go to step 2
 If infix[i] is an operand, add it to prefix
 Else If infix[i] = ‘)’, push it onto the stack
 Else If infix[i] is an operator, follow these steps:

i. For each operator on the top of stack whose precedence is
greater than or equal to the precedence of the current
operator, pop the operator from stack and add it to prefix

ii. Push the current operator onto the stack
 Else If infix[i] = ‘(’, follow these steps:

i. Pop each operator from top of the stack and add it to prefix
until ‘)’ is encountered in the stack

ii. Remove ‘)’ from the stack and do not add it to prefix
 End If
 Set i = i + 1
 End While
3. Reverse the prefix expression
4. End

For example, consider the conversion of the following infix expression to a prefix
expression:

a-(b+c)*d/f

The step-wise conversion of the expression a-(b+c)*d/f into its equivalent
prefix expression is shown in Table 5.4. Note that initially, ‘)’ is pushed onto the
stack, and ‘(’ is inserted in the beginning of the infix expression. Moreover, since
the infix expression is scanned from right to left and the elements are inserted in the
resultant expression from left to right, the prefix expression needs to be reversed.

Table 5.4 Conversion of Infix Expression into Prefix

Element Action performed
Stack
status

Prefix
expression

f
/
d
*
)
c
+
b
(
-
a
(

Put to expression
Push
Put to expression
Push
Push
Put to expression
Push
Put to expression
Pop and + and put to expression, pop
)
Pop *, / and push -
Put to expression
Pop - and put to expression, pop (
Reverse the resultant expression

)
)/
)/
)/*
)/*)
)/*)
)/*)+
)/*)+
)/*
)-
)/*-
Empty

f
f
fd
fd
fd
fdc
fdc
fdcb
fdcb+
fdcb+*/
fdcb+a
fdcb+*/a-
–a/*+bcdf

The equivalent prefix expression is –a/*+bcdf.

Evaluation of Postfix Expression

In a computer system, when an arithmetic expression in an infix notation needs to
be evaluated, it is first converted into its postfix notation. The equivalent postfix
expression is then evaluated. The evaluation of postfix expressions is also
implemented through stacks. Since the postfix expression is evaluated in the order
of appearance of operators, parentheses are not required in the postfix expression.
During the evaluation, a stack is used to store the intermediate results of evaluation.

Since an operator appears after its operands in a postfix expression, the
expression is evaluated from left to right. Each element in the expression is checked

Grammar and Languages

NOTES

Self - Learning
216 Material

whether it is an operator or an operand. If the element is an operand, it is pushed
onto the stack. On the other hand, if the element is an operator, the first two
operands are popped from the stack and the operation is performed on them. The
result of the operation is then pushed back to the stack. This process is repeated
until the entire expression is evaluated.

Algorithm 5.3 Evaluation of a Postfix Expression

evaluationofpostfix(s, postfix)

1. Set i = 0, RES=0.0
2. While (i < number_of_characters_in_postfix)
 If postfix[i] is a whitespace or comma
 Set i = i + 1 and continue
 If postfix[i] is an operand, push it onto the stack
 If postfix[i] is an operator, follow these steps:

i. Pop the top element from stack and store it in operand2
ii. Pop the next top element from stack and store it in

operand1
iii. Evaluate operand2 op operand1, and store the result

in RES (op is the current operator)
iv. Push RES back to stack

 End If
 Set i = i + 1
 End While
3. Pop the top element and store it in RES
4. Return RES
5. End

For example, consider the evaluation of the following postfix expression using
stacks:

abc+d*f/-

Where, a=6, b=3, c=6, d=5, f=9

After substituting the values of a, b, c, d and f, the postfix expression becomes

636+5*9/-

The expression is evaluated as follows:

1. The expression is read from left to right and each element is checked to see
whether it is an operand or an operator.

2. The first element is 6, which being an operand is pushed onto the stack.

3. Similarly, the operands 3 and 6 are pushed onto the stack.

4. The next element is +, which is an operator. Hence, the element at the top
of the stack (6) and the next top element (3) are popped from the stack as
shown in Figure 5.21.

Stack

6

Element = 6 Element = 3 Element = 6 Element = +

Stack Stack Stack

3

6

6

3

6 6
Push 6

Push 3

Push 6 Pop

Pop
6

3
Evaluate 3+6

Fig. 5.21 Evaluation of the Expression using Stacks

Grammar and Languages

NOTES

Self - Learning
Material 217

5. The expression 3+6 is evaluated and the result (that is, 9) is pushed back
to the stack as shown in Figure 5.22.

6. The next element in the expression, that is 5, is pushed to the stack.

7. The next element is *, which is a binary operator. Hence, the stack is popped
twice and the elements 5 and 9 are taken off from the stack as shown in
Figure 5.22.

Stack

9

6

3 + 6 = 9
Push 9

Element = 5

Stack Stack

5

9

6 6

Push 5

Element = *

Pop

Pop
5

9
Evaluate 9*5

Fig. 5.22 Popping 9 and 5 from Stack

8. The expression 9*5 is evaluated and the result, that is, 45, is pushed back
to the stack.

9. The next element in the postfix expression is 9, which is pushed onto the
stack.

10. The next element is the operator /. Therefore, the two operands from the
top of the stack, that is, 9 and 45, are popped from the stack, and the
operation 45/9 is performed. The result 5 is again pushed to the stack.

11. The next element in the expression is –. Hence, 5 and 6 are popped from
the stack and operation 6–5 is performed. The resulting value, that is, 1, is
pushed to the stack (Refer Figure 5.23).

45

6

Stack

9*5 = 45

Push 45

Element = 9

9

45

6 6

Stack Stack

Element = /

Push 9 Pop

Pop

Evaluate 45/9

5

6

Stack

Push 5
45/9 = 5

Stack

Element = -

Pop

Pop
1

Stack

Push 1
6 - 5 =1

9

45 5

6

Fig. 5.23 Final State of Stack with the Result

12. There are no more elements to be processed in the expression. The element
at the top of the stack is popped, which is the result of the evaluation of the
postfix expression. Thus, the result of the expression is 1.

Grammar and Languages

NOTES

Self - Learning
218 Material

The step-wise evaluation of the expression 636+5*9/- is shown in Table 5.5.

Table 5.5 Evaluation of the Postfix Expression

Element Action Performed Stack Status
6
3
6
+

5
*

9
/

-

Push to stack
Push to stack
Push to stack
Pop 6
Pop 3
Evaluate 3+6=9
Push 9 to stack
Push to stack
Pop 5
Pop 9
Evaluate 9*5=45
Push 45 to stack
Push to stack
Pop 9
Pop 45
Evaluate 45/9=5
Push 5 to stack
Pop 5
Pop 6
Evaluate 6-5=1
Push 1 to stack
Pop VALUE=1

6
6 3
6 3 6
6 3
6
6
6 9
6 9 5
6 9
6
6
6 45
6 45 9
6 45
6
6
6 5
6
EMPTY
EMPTY
1
EMPTY

Check Your Progress

5. Define regular grammar.

6. Write an application of context free grammars.

7. What is a derivation tree?

8. Define a root.

9. What is infix notation?

5.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A language processor is a type of software that bridges a specification or
execution gap in software programming.

2. The language generated by a context free grammar is called context free
language.

3. Union of languages one of the operators of regular expression.
4. Pumping lemma is used to prove that certain sets are not regular.
5. A regular grammar is a formal grammar that describes a regular language.
6. Context free grammars are used in the implementation of parsers in compiler

design.
7. A way of representing the derivation, independent of the order in which the

productions are used is the derivation tree.
8. Root is a node that has no parent node.
9. The general way of writing arithmetic expressions is known as the infix

notation.

Grammar and Languages

NOTES

Self - Learning
Material 219

5.12 SUMMARY

• A language processor is a type of software that bridges a specification or
execution gap in software programming.

• The programming language comprises of specification, design and coding,
Implementation steps.

• An assembler is a language translator whose source language is assembly
language.

• A compiler is any language translator that is not an assembler.

• An interpreter is a program that executes a code to display the desired
result to a user without generating a machine language program.

• A program generation activity comprises changing a source code into a
target program that can be executed to give a desired result.

• The program generator can either be converted to an executable code
(maybe a machine code or byte code) by a compiler, or an interpreter can
directly use it for execution.

• A language processor pass is the processing of every statement in a source
or its equivalent representation to perform a language processing function.

• An alphabet is a finite non-empty set of symbols.

• Binding time is the time at which a binding is performed.

• A static binding is a binding performed before the execution of program
begins.

• A dynamic binding is a binding performed after the execution has begun.

• The extended Chomsky hierarchy includes the families of deterministic
context-free languages and recursive languages.

• Minimization refers to constructing an automata with minimum number of
states to a given automata.

• Context-free grammars are used in the implementation of parsers in compiler
design.

• Grammars follow the process of derivation by which the strings are derived
from the language of the grammar.

• A derivation tree is an ordered tree in which the nodes are labelled with the
left sides of the production and the children of the nodes represent the
corresponding right sides.

• A sub tree of a derivation tree T is a tree whose root is some vertex V of T,
together with all the descendants of V along with their labels and the edges
that connect the descendants of V.

• A parse tree is a representation of the structure and grammar of a computer
language.

• The process of parsing helps to translate human understandable grammar
to a computer understandable code.

Grammar and Languages

NOTES

Self - Learning
220 Material

• The elements of a parse tree are called nodes.

• Root is a node that has no parent node.

• A parse tree is a graphical depiction for a source that filters out the options
about the substitution order.

• In top-down parsing, the derivation is for the leftmost input string.

• A grammar that produces more than one parse tree for some sentence is
said to be ambiguous.

• The general way of writing arithmetic expression is known as the infix notation.

• The conversion of an infix expression to a prefix expression is similar to the
conversion of an infix expression to a postfix expression.

5.13 KEY TERMS

• Language processor: It is a type of software that bridges a specification
or execution gap in software programming.

• Intermediate representation: It is a representation of a source program
that reflects the effect of some, but not all, analysis and synthesis tasks
performed during language processing.

• Ambiguity of grammar: A grammar that produces more than one parse
tree for some sentence is said to be ambiguous.

• Static binding: A static binding is a binding performed before the execution
of program begins.

• Empty string or mull string: An empty string or null string is defined as
the string with zero occurrences of symbols.

• Parsing: A parse tree is a representation of the structure and grammar of a
computer language.

• Prefix notation: The notation in which an operator occurs before its
operands is known as the prefix notation.

5.14 QUESTIONS AND EXERCISES

Short-Answer Questions

1. What are the two language processing activities?

2. Define phrase structure grammar.

3. Define regular expression.

4. What is pumping lemma?

5. Define left linear grammar.

6. How can we represent context free languages?

7. Define partial derivation tree.

8. What are sentential forms?

9. Define postfix notation.

Grammar and Languages

NOTES

Self - Learning
Material 221

Long-Answer Questions

1. Explain the concept of languages and grammar.

2. Illustrate different types of phrase structure grammars.

3. Discuss about the operators of regular expression.

4. State and prove pumping lemma for regular languages.

5. Describe the concept of regular grammar.

6. Write a note on language generated by grammar.

7. Discuss briefly about derivation trees.

8. Explain the concept of parsing.

9. Illustrate notations of syntax analysis.

5.15 FURTHER READING

Iyengar, N Ch S N. V M Chandrasekaran, K A Venkatesh and P S Arunachalam.
Discrete Mathematics. New Delhi: Vikas Publishing House Pvt. Ltd., 2007.

Tremblay, Jean Paul and R. Manohar. Discrete Mathematical Structures with
Applications to Computer Science. New York: McGraw-Hill Inc., 1975.

Deo, Narsingh. Graph Theory with Applications to Engineering and Computer
Science. New Delhi: Prentice-Hall of India, 1999.

Singh, Y.N. Mathematical Foundation of Computer Science. New Delhi: New
Age International Pvt. Ltd., 2005.

Malik, D.S. Discrete Mathematical Structures: Theory and Applications.
London: Thomson Learning, 2004.

Haggard, Gary, John Schlipf and Sue Whiteside. Discrete Mathematics for
Computer Science. California: Thomson Learning, 2006.

Cohen, Daniel I.A. Introduction to Computer Theory, 2nd edition. New Jersey:
John Wiley and Sons, 1996.

Hopcroft, J.E., Rajeev Motwani and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 3rd edition. Boston: Addison-
Wesley, 2006.

Linz, Peter. An Introduction to Formal Languages and Automata, 5th edition.
Boston: Jones and Bartlett Publishers, 2011.

Mano, M. Morris. Digital Logic and Computer Design. New Jersey: Prentice-
Hall, 1979.

NOTES

NOTES

NOTES

	Unit 1.pdf
	Unit 2.pdf
	Unit 3.pdf
	Unit 4.pdf
	Unit 5.pdf
	Prelims.pdf
	Intro.pdf

