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INTRODUCTION

In mathematics, integral transform theory is the study of transforms, which relate a
function in one domain to another function in a second domain. The essence of
transform theory is that by a suitable choice of basis for a vector space a problem
may be simplified or diagonalized as in spectral theory.

In mathematics, the Laplace Transform (LT), named after its inventor Pierre-
Simon Laplace, is an integral transform that converts a function of a real variable ¢
(often time) to a function of a complex variable s (complex frequency). The
transform has many applications in science and engineering because it is a tool for
solving differential equations. In particular, it transforms differential equations into
algebraic equations and convolution into multiplication. In practice, it is typically
more convenient to decompose a Laplace transform into known transforms of
functions obtained from a table, and construct the inverse by inspection. Laplace’s
use of generating functions was similar to what is now known as the Z-transform.
Laplace also recognised that Joseph Fourier’s method of Fourier series for solving
the diffusion equation could only apply to a limited region of space, because those
solutions were periodic. In 1809, Laplace applied his transform to find solutions
that diffused indefinitely in space.

The Laplace transform is similar to the Fourier transform. While the Fourier
transform of a function is a complex function of a real variable (frequency), the
Laplace transform ofa function is a complex function of a complex variable. Unlike
the Fourier transform, the Laplace transform of a distribution is generally a well-
behaved function. Techniques of complex variables can also be used to directly
study Laplace transforms.

In mathematics, a Fourier Transform (FT) is a mathematical transform that
decomposes functions depending on space or time into functions depending on
spatial or temporal frequency, such as the expression of a musical chord in terms
ofthe volumes and frequencies of its constituent notes. The term Fourier transform
refers to both the frequency domain representation and the mathematical operation
that associates the frequency domain representation to a function of space or time.

This book is divided into five units. The topics discussed is designed to be a
comprehensive and easily accessible book covering, Laplace transform, inversion
of'some elementary functions, initial and final value theorems, inverse Laplace
transforms, the convolution property, ordinary differential equations with constant
coefficients, simultaneous ordinary differential equations, partial differential
equations, Abel’s integral equation, integro-differential equation, differential-
difference equations, Fourier series, odd and even functions, Fourier integral/at
including its complex form, Fourier transforms, convolution theorem including sine
and cosine transforms, elementary properties of the Mellin transforms, Mellin
transforms of derivatives, Hankel inversion theorem, boundary value problems
involving partial differential equations, one dimensional heat conduction equation,
one dimensional wave equation and longitudinal and transverse vibration ofa beam.
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The book follows the Self-Instructional Mode (SIM) wherein each unit
begins with an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined before
going on to the presentation of the detailed content in a simple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding ofthe subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of ‘Key Terms’, and a set of ‘Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective
recapitulation.
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1.0

INTRODUCTION

The Laplace transform, named after its inventor Pierre-Simon Laplace, is an integral
transform that converts a function of a real variable 7 (often time) to a function of a
complex variable s (complex frequency). The transform has many applications in
science and engineering because it is a tool for solving differential equations. In
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particular, it transforms differential equations into algebraic equations and convolution
into multiplication. The Laplace transform is named after mathematician and
astronomer Pierre-Simon Laplace, who used a similar transform in his work on
probability theory. Laplace wrote extensively about the use of generating functions
in Essai Philosophique Sur Les Probabilités (1814), and the integral form of the
Laplace transformevolved naturally as a result. Laplace’s use of generating functions
was similar to what is now known as the z-transform, and he gave little attention to
the continuous variable case which was discussed by Niels Henrik Abel. The
theory was further developed in the 19th and early 20th centuries by Mathias
Lerch, Oliver Heaviside, and Thomas Bromwich.

In inversion of some elementary functions an integral transform is useful to
convent a complicated problem into simpler one. Laplace transform is one of the
important type ofintegral transform that can be used to solve integral and differential
equations. As time approaches zero, the initial value theorem is utilised to link
frequency domain expressions to time domain behaviour. As time approaches
infinity, the Final Value Theorem (FVT) is one of several comparable theorems
used to relate frequency domain expressions to time domain behaviour.

The inverse Laplace transform ofa function F{s) is the piecewise-continuous
and exponentially-restricted real function /(). The Laplace transform and the inverse
Laplace transformtogether have a number of properties that make them useful for
analysing linear dynamical systems. Two integrable functions have the same Laplace
transform only if they differ on a set of Lebesgue measure zero. This means that,
on the range of the transform, there is an inverse transform. In fact, besides
integrable functions, the Laplace transform is a one-to-one mapping from one
function space into another in many other function spaces as well, although there is
usually no easy characterization of the range. Typical function spaces in which this
is true include the spaces of bounded continuous functions, the space L= (0, «),
or more generally tempered distributions on (0, o0). The Laplace transform s also
defined and injective for suitable spaces of tempered distributions. The Laplace
transform and the inverse Laplace transformtogether have a number of properties
that make them useful for analysing linear dynamical systems. The Heaviside step
function, or the unit step function, usually denoted by H or 6 (but sometimes u, 1
or 1), is a step function, named after Oliver Heaviside (1850-1925), the value of
which is zero for negative arguments and one for positive arguments. It is an example
ofthe general class of step functions, all of which can be represented as linear
combinations of translations of this one.

In this unit, you will learn about the Laplace transform, Laplace transform
of elementary continuous and exponential order function, some important properties
of Laplace transforms of derivatives and integrals, inversion of some elementary
functions, initial and final value theorems, multiplication and division by ‘¢’ periodic
functions, inverse Laplace transforms, some elementary inverse Laplace transform,
uniqueness theorem of inverse Laplace transform, inverse Laplace transform of
derivatives and integrals, multiplication and division by powers of ‘s’, the
convolution property, complex inversion formula and Heaviside expansion formula,
and evaluation of integrals.



1.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain the Laplace transform
¢ Analyse the elementary theorems
¢ Describe the Laplace transform of standard functions
¢ Explain the inversion of some elementary functions
e Discuss the initial and final value theorem
¢ Elaborate on the multiplication and division by '# periodic functions
¢ Explain the inverse Laplace transform and standard formula
¢ Explain the uniqueness theorem of inverse Laplace transform

¢ Discuss the basic concept of inverse Laplace transform of derivatives and
mtegrals

¢ Discuss the multiplication and division by powers of 's'

e Explain convolution property, the complex inversion formula and Heaviside
expansion formula

e Describe the evaluation of integrals

1.2 LAPLACE TRANSFORM

In mathematics, the Laplace transform is a widely used integral transform and is
denoted by £ {f(t)}. Itisa linear operator ofa function £{¥) including a real argument
¢ (¢ 2 0) that transforms it to a function F(s) with a complex argument s. As a
bijective transformation the respective pairs of /{£) and F{(s) are matched in tables.
The Laplace transform has the significant property so that various relationships
and operations over the originals f{7) correspond to simpler relationships and
operations over the images F{(s).

The Laplace transform can be related to the Fourier transform. The Fourier
transform resolves a function or signal into its modes of vibration and the Laplace
transform resolves a function into its moments. The original signal depends on
time and therefore Laplace transform is called the time domain representation
of'the signal, whereas the Fourier transform depends on frequency and is called
the frequency domain representation of the signal. Similar to the Fourier
transform, the Laplace transform is also used for solving differential and integral
equations. In physics and engineering, it is used for analysis of linear time-invariant
systems such as electrical circuits, harmonic oscillators, optical devices and
mechanical systems.

Switching from operations of calculus to algebraic operations on transforms
is known as operational calculus which is an essential area of applied mathematics
and with regard to an engineer, the Laplace transform method is basically a very
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essential operational technique. It is particularly useful in problems where the
mechanical or electrical driving force has discontinuities, is impulsive or is a
complicated periodic function, not merely a sine or cosine.

Another benefit ofthe Laplace transform is that it helps insolving the problems
in a straightforward manner, initial value problems regardless of initially obtaining a
basic solution, and nonhomogeneous differential equation exclusive of initially
answering the corresponding homogeneous equation.

In this unit we consider Laplace transforms from a practical approach and
exemplify their usage through essential engineering problems wherein many of them
are associated with ordinary differential equations. Partial differential equations
can also be treated by Laplace transforms.

The Laplace transformis named in honor of mathematician and astronomer
Pierre-Simon Laplace, who used the transform in his work on probability theory.
Leonhard Euler considered integrals of the form,

z=fX(1:)e“d;t: and z:]X(:c);I:'J‘dI

These integrals were the solutions of differential equations but were not
used in the long run. Joseph Louis Lagrange was an admirer of Euler and in his
work on integrating probability density functions, explored expressions of the form,

fX(.r}e_'ua."" dr

This was interpreted within modern Laplace transformtheory. These integrals
have attracted Laplace’s attention for using the integrals themselves as solutions of
equations. He used an integral of the form,

];:cs:;‘h(s) dx

This integral was akin to a Mellin transform, to transform the whole ofa
difference equation in order to look for solutions of the transformed equation.

The Laplace transform of a function f{¢), defined for all real numbers
¢t >0, is the function F{(s), defined by:

F(s) = £{f(t }—/xe-“f(t)dt

The parameter s is a complex number s = ¢ + i® with real numbers ¢ and
©. The meaning of the integral depends on types of functions of interest. A necessary
condition for existence of the integral is that f have to be the neighborhood integrable
on (0, ). For neighborhood integrable functions that decay at infinity or are of
exponential type, the integral can be understood as a (proper) Lebesgue integral.
Though, for various applications it is considered as a conditionally convergent
improper integral at oo.



The Laplace transform can be defined ofa finite Borel measure 1 by the
Lebesgue integral of the form,

ens) = | ()

As aspecial case | is a probability measure or more specifically the Dirac
delta function. In operational calculus, the Laplace transform of a measure is treated
as the measure ofa distribution function f. In such case the expression is of the

form,

o u}
(0@ = [ ey
Jo-
Here the lower limit of 0~ is short notation that means, 1'11'BI+

This limit emphasizes that any point located at 0 is completely acquired by
the Laplace transform.

Bilateral Laplace Transform

When the Laplace transform is defined without condition then the unilateral or
one-sided transformis normally considered. Alternatively, the Laplace transform
can be defined as the bilateral Laplace transform or two-sided Laplace transform
by extending the limits of integration to be the entire real axis. If that is done the
common unilateral transform simply becomes a special case of the bilateral
transform where the definition ofthe function being transformed is multiplied by
the Heaviside step function. The bilateral Laplace transform is defined as follows:

o0

Fio)=£{f0) = [ erwa

—0
Inverse Laplace Transform

The inverse Laplace transform is also known by various names as the Bromwich
integral, the Fourier-Mellin integral and Mellin’s inverse formula. It is given by the
following complex integral:

f(ty= L7HF(s)} = L lim [W 1 e’ F(s)ds

2mi T—o0 Jo_ir
where v is a real number so that the contour path of integration is in the
region of convergence of F{(s).
Region of Convergence

If f is a locally integrable function, then the Laplace transform F{(s) of f converges
provided that the following limit exists:

R

lim flt)e ™ dt

R—ca fi

Laplace Transforms and
Its Inversions

NOTES

Self - Learning
Material 7



Laplace Transforms and
Its Inversions

NOTES

Self - Learning
8 Material

The Laplace transform converges absolutely if the following integral exists:

m ;
[ 1w a
0

The Laplace transform is usually understood as conditionally convergent,

meaning that it converges in the former instead of the latter sense.

The set of values for which F(s) converges absolutely is either ofthe form
Re{s} > a or else Re{s} > a, where a is an extended real constant,
—o0 < g < oo. This follows from the dominated convergence theorem. The constant
a is known as the abscissa of absolute convergence, and depends on the growth
behavior of f(7). Analogously, the two-sided transform converges absolutely in a
strip of the form a < Re{s} < b and possibly including the lines Re{s} =a or
Re{s} = b. The subset of values of s for which the Laplace transform converges
absolutely is called the region ofabsolute convergence or the domain of absolute
convergence. In the two-sided case, it is sometimes called the strip of absolute
convergence. The Laplace transform is analytic in the region of absolute
convergence.

Similarly, the set of values for which F(s) converges (conditionally or
absolutely) is known as the region of conditional convergence or simply the
region of convergence. [fthe Laplace transform converges (conditionally) at s =
s,» then it automatically converges for all s with Re {s} > Re{s }. Therefore the
region of convergence is a half-plane of the form Re{s} > a, possibly including
some points of the boundary line Re {s} = a. In the region of convergence Re {s}
>Re{s }, the Laplace transform of f can be expressed by integrating by parts
as the integral,

F(s}z(s—sﬂ)[e—“—*‘ﬂ”,ﬂ(t}dt. ,-3(u}=[:e—-*ﬂ*f(t}df

That is, in the region of convergence F(s) can effectively be expressed as
the absolutely convergent Laplace transform of some other function. In particular,
it is analytic. A variety of theorems, in the form of Paley—Wiener theorems, exist
concerning the relationship between the decay properties of f and the properties
of'the Laplace transform within the region of convergence.

Differential equations and corresponding initial as well as boundary value
problems can be solved through the Laplace transform method. There are three
basic steps for the process of solution:

Step 1. Transformation of the provided hard problem is done into a simple
equation (subsidiary equation).

Step 2. The use of purely algebraic modifications is done for solving the
subsidiary equation.

Step 3. The answer obtained of the subsidiary equation is again transformed
for getting the answer of'the provided problem.

Through this, Laplace transforms help in decreasing the problem of evaluating



a differential equation to an algebraic problem. Tables of functions as well as their
transforms have made such process an easy task to perform, whose role is quite
equivalent to that of integral tables in calculus. The table is provided at the end of
the chapter.

Consider a given function f/(¢) that is defined for all > 0. Multiply /{7) by

¢ to integrate 7 from zero to infinity. If the resultant integral exists with some
finite value then it is a function of s, represented as F{(s):

F(s)= e flo)

0

This function F(s) of the variable s is the Laplace transform of the basic
function f{7) and is depicted by L( f ) . Hence,

F(s)=L(f)= Te‘“’f (¢)ar (1.1)

Here the basic function fis dependent on 7 and the novel function /' which
is its transform is dependent on s. The process that provides F(s) froma given f{¢)
is the Laplace transform.

The basic function £{¢) in Equation (1.1) is called the inverse transform or

inverse of F(s) and is depicted by L™'(F) Itis written as,

f)=L"(F)
Notation

The basic functions are indicated by lowercase letters and the associated
transforms by the same letters in capitals. Implying F(s) indicates the transform of
f(#) and Y(s) indicates the transform of y(¢).

Example 1.1: If f(z)=1 for />0 then find F(s).
Solution: From Equation (1.1) using integration we get,

00

. I o 1
L(f)=L(1)=I€‘df=—;€ b=" (s>0)

0

The notation is appropriate. Here the interval of integration in Equation
(1.1) is infinite and is termed as an improper integral. According to the rule,

00

Je ()t =min [e F(t)dr

Hence, the notation means,

" T
Ie""dt :mjn[_le‘w} = mjn[_lesr +l€0} - for (s> 0)
0 A

T—>o
0 S
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Laplace Transforms and

Its Inversions Example 1.2: Let f (t) = ¢” for t >0, where a is a constant. Find L( /') of the
exponential function.
Solution: Using Equation (1.1) we get,
NOTES
Lle® )= [e e dr = e—(s—a)/ S
)= et

If s—a>0thenwe gets

L(e‘”)z !

s—a

Theorem 1.1: Linearity of the Laplace Transform

The Laplace transform is a linear operation; which means, for any functions f{7)
and g(f) whose Laplace transforms exist and any constants a and b,

Liaf (t)+ bg(t);= aLif (t);+ bLig(t)}
Proof: By the definition,

Liaf )+ bg(r)} = Ie [af (¢)+ bg o)}t

00

a I e f(t)dt + bT eglt)dt

0

= al (o)} +bLig)

. . 1 at —at
Example 1.3: Using Theorem 2.1 find L(f) if f(t)=coshat = E(e +e )

Solution: Using Theorem 1.1 and Example 1.2 we have,

L(coshat):%L(e“’)+lL(e“’):l( 1,1 )

2 2\s—a s+a

By taking the common denominator while s > a (= 0) we have,

L(coshat)=

2 2
s —a

1.2.1 Transformation Method

As transformation methods provides an effective means for the solution of many
problem in engineering stream so that the knowledge of Laplace transform
becomes essential for engineers and scientists. The main advantage of Laplace
transformation is for the solution of differential equations. As Laplace transformation
this is not necessary to find out the general sol. and then application of boundary
value conditions. We can find out particular solution for differential equation
satisfying the boundary conditions.

Self - Learning
10 Material



Laplace Transformation: Let f{7) be a function of 7 for # > 0, then Laplace Laplace Tm]"l?forms and
transformation of /{7) is denoted by L{f()} or f(s), given by wmersions

L0} =fio)= [ 1w NOTES
provided the integral exists and s is a parameter which may be a real or
complex number.

Laplace Transform of Some Simple Function

1. Let f{(#) =K, a constant

L)y = e f (0

- Te_‘"Kdt
0

=—,5>0
N

2. Letf(ty=1"

L{fin)} = Je“",t”dt
0

SX

oo x n x
=Je s | dt Letst=x,t= —
0 s §

= in ]2 e “x"dx

S0

n+l

= provided that s >0 and (n+ 1) >0

n+l
N

3. Let f{¢) = e

o

Lifi0)} = J-e_‘”e”’dt
0
- J-e_'(s_“)dt
0
et(s—a) -
T -G-a) ],
1

sS—a

» §>a
Self - Learning
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Laplace Transforms and 1
Its Inversions 4. Letf(t) cosh at = E(ear +e—m)
I _ we_st l(eut +e—at)dt
NOTES vr=Je 5
1 1
= —L{e"}+—{e”
Lie}+ o)
I{ 1 1
2\s—a) 2 \s+a
1 2s
zaxsz_ 7> 8> |al
. N
T 2

l at —at
5. Letf(t)=sinhat=5{e —e }

LY} = 5 L") =3 Lie™)

I 1 1 s

a
= 2 _ o s> (a)
6. L(1) =~
()=
+1
L) = s>0,n>-1
s
L(e™) = s s>a
L(sin af) = i s>0
L(cos at) = i s>0
L(cosh at) = g s> (a)

Example 1.4: Find the Laplace transform of
(i)sin2¢sin37 (i) cos®2¢  (iii) sin /* 2¢

1
Solution (i) L {sin 2¢ sin 3¢} = L{E (cost —cos 51)}

Self - Learning
12 Material

1 1
—L(cost)——L(cos5t
5 (cos?) > ( )



1 s s
N 5[sz+12 s +52}
245
T (P +D)(s*+25)
125
T (P +1)(s2+25)

1
Solution (ii) L {cos* 2} = L [Z (3cos2t+cos 61)}

L(cos2t)+ iL(cos 67)

s +l s
sS+2° 45746
s(s” +28)
T (52 +4)(s*+36)

3
4
3
4

. . 3 21 —€_2t ’
Solution (iii) L {sin#* 2t} = L| e 5

p—

= —[L(e")=3L(e)+3L(e™)~ L(e™) ]

o0

I 1 3 3 1
— +

- 8[5—6_5—2 S+2_S+6}

1| L2 L2
- §LZ ~36 —4}
48
T (57 =36)(s" —4)
Example 1.5: Find the Laplace transform of
(i) e’costcos2t (i) et (2 cos5t—3sin5f) (i) # €' sin 4¢

: 1
Solution (i) L[e " cos t cos 2f]= L| e Y {cos3t+cost}

N | =

1
L[e™" cos3t] +E[e‘l cost]

1 s+1 N (s+1)
T2 (5412 +37 (s+1)P+D
(s+1)(s* +2s+6)

B (s +25+9)(s* +25+2)
Solution (ii) L[ (2 cos 57— 3 sin 57)]

= 2L[e” cos5¢]—3L[e" sin 5¢]

Laplace Transforms and
Its Inversions
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Laplace Transforms and 2( S+ 3) 3s
Its Inversions _ —
(s+3)°+s5 (s+3)°+s°

3 25 -9
NOTES 2465434
2
Solution (iii) As L[’ ]= =
2 id #
2(s + 4i)’

T (s—4i) (s +4i)’
2(s” —48s) +8i(3s” —16)
a (s> +16)°
Equating imaginary part on both sides

8(3s° —16)

(s* +16)

Again applying first shifting theorem
8[3(s—1)* —16]
[(s=1)+16]

_ 8(3s” —6s—13)

(s =2s+17)

L[#sin4t] =

L[e'? sin 4f] =

—attn—l
. L
Example 1.6: Evaluate [ 1 }
[n

Solution: L[7" '] = —
s

. ! n—-1 1
n-11 s |n=1

1
=

tn—l 1
Lle™ _ .
[ n—1 } (s+a) (By Ist shifting theorem)

Example 1.7: L(cosh at sin ar)

Solution: As L(cosh at) =

2 2
s —a

(s —ia)

.. L(e" cosh af) = (By Ist shifting theorem)

(s—ia)’ —a’

s—ia
Self - Learning 2 =24* = 2ias
14 Material



(s—ia)[(s* = 2a”)+ 2ias]
(T =2d7) —4i'a’sT

3 s(s* =2a*)+2a’s+ia{2s* — (s> —2a*)}

s*+4a’
Equating imaginary parts
Ilsin at cosh af| = a(2a’ +s°)
[sin af cosh at] T agt

. 1 T
sm|f——|, (>—
4 4

Example 1.8: Find L[a(7)] where a(?) =

Solution: Hence f{7) = sin ¢

) 1
L[f(t)] =L[sint] = ENRE s>0
T . [ T T
I—— | = I— | >—
/ ( 4) Sm( 4 j 4
Lla(f)] = i
=0 1<—
4
e * f(s)
—e 4 ——, s>0(byll shifting theorem)
s”+1

S .
Example 1.9: If L[f{(?)] = 45120 applying the change of scale property
evaluate L[f(37)]

1 s
Solution: L[f(37)] = gf (5)
20—4(5j
3
BEEE
3 3

4(15—s)

s° =125 +80
Example 1.10: Evaluate L[f{f)] where

1
=3

0 O<rx«l

Solution: f{7) = tol<r<2
0 t>2

Laplace Transforms and
Its Inversions
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By definition L[{7)] = | € f (¢)dt

e f(t)dr+ [ f(t)dt+Te‘S’f(t)dt

2
= 0+Je‘s’zdz+0
1
—st 2 —st 2
B te e
l+i e—s _ g_i_i €—2s
s §? s s°

Example 1.11: Obtain L[f{(¢)] where f{f) = cost,0 <¢<2mn
=0,t>2n

Solution: L[f(7)] = Je_‘vt.f ()dt

_ Te“”f(t)dt + T e F(t)dt

27
- J e costdt+0
0

—st
e .
{ ——(—scos?+sin t)}

2w

s”+1 0

s(1—e™™)
1+s°
Example 1.12: Let f{¢) be a periodic function with period 7, then

LI0) = = Jerrwa

T 2T 3T
Solution: By definition L {f{7)} = | €™/ ()t + [ ™ f()dr+ [ & f ()
0 T 2T

— T e f(t)dt +2JT e f(Hdt +3JT e f(t)dt

Putting r=v + T'in second integral and # = v+ 27 in third integral and so
on.

L{fD)} = J.e_‘”f(t)dt +J e f(v+T)dv +J e D £ (v+2T)dvy



As function is periodic with period 7'

fv) =fv+ 1), fiv+2T) ...
- Lifin}= J.e“”f(t)dt + e"“'J e f(0)dt +e‘2STJ- e f(t)dt...

T
= (+e + e"m...)J- e f(t)dt
0

= l_ﬂ je“"f ()dt

l—-e
Example 1.13: Find Laplace transform of the function (Half Wave Rectifier),

) T
sin O, O<t<—

S - w

0, nT/w<i<2n/om

l T
— [ f (o)t
e 0

Solution: 7{f(¢)} = 1

2w/ ®
1

= = J e f(0)dt

—
|
Q
e
o

1 2n/®
- J e Y sinwtdt +0

1 €_xl . T/
= [(=ssino —mcoswr)],
w?

I
e
38
+
%)
[3S)
TN
[—
|
ml
ela
~—

Existence Theorem: Existence theorem states that the Laplace transform of /{7)
exists for all s > a, if f{£) is piecewise continous in every finite interval in the domain

¢t >0 and is of exponential order a.

[function £{7) is said to of exponential order a if, lime™ f(¢) = a finite
f—yoo

quantity. In this case, there exist real constants M, a, T such that
|f ()| < Me” for all £ > T

That’s why Laplace integral exist under certain restriction such as s >0 or

s> q etc.

Laplace Transforms and
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1.3 LAPLACE TRANSFORM OF
ELEMENTARY CONTINUOUS AND
EXPONENTIAL ORDER FUNCTION

The Laplace transformation is an important operational method for solving linear
differential equations. It is particularly useful in solving initial value problems
connected with linear differential equations (ordinary and partial). The advantage
of Laplace transformation in solving initial value problems lies in the fact that initial
conditions are taken care ofat the outset and the specific particular solution required
is obtained without first obtaining the general solution of'the linear differential
equation.

1.3.1 Laplace Transforms of Elementary Functions

Using the definitions, we find the Laplace transfomation of some simple functions.

(i) Transformof f{ir) =1, >0

L{f()} = Te""dz S { es }

0

es—>0as t— oo, ifs>0

L) = §>s>0 (1.2)

(ii) Transform of e, where a is a constant.

@ ® —(s+a)t |°
—S —d —(s+a e
Lle™] = Je e~ dt :je ) gy :{ }
0 0

0 s+a

e " tends to zero as, t — oo, if (s +a>0)

Lle“]=——s>-a (1.3)

Ss+a

(iii) Transform of e, where a is a constant.

L[] = s >a (1.4)

S—a
The result follows from (7i) by changing a to —a.

(iv) Transform of sin az, where a is a constant.

©

o0 —st
. N e .
L[smat] = Je “sinatdt = 5 5 (—ssinat —acosat)

0 s +a .



: . a
= Lt (e "sinat) — — Lt(e " cosat) = ——
s’ +a’ o s*+a’ o s +a

(When s > 0, both (¢ sin af) and (e cos at) tend to zero as t — ).

Llsinaf] = 55> 0 (L.5)

+a

(v) Transform of cos at, where a is a constant.

—st @

T e )
L[cos at] = Ie ’lcosafdf{ > (—SCOSat-i-asmat}
0 s’+a

0

5 Lt (e " cosat) —— Lt (e™ cosat)
s*+a’ o s*+a’ o

i +>s >0 (by the results stated in equation (1.5)
N a

S
= S > 0
L[cos at] R

(vi) Transform of#", where 7 is a positive integer.

L[] = _[ tdt = { ! iﬁ } J(—%je”.nt"ldt
0

0 0

On integration by parts,

1 " ont o,
+—Ie Sy
S

0

If s > 0, by applying L hospital’s rule successively, it can be shown that as
{ — o,

n

"21,5>0 (1.6)

L[] = L[t" Ns>0=

N

By repeated application of equation (1.2)

nn-1n-2 21

L[z‘"]— AL S § 1Y
N N S S
But,
L[t°]=L(l)=%
_ n.(n—l)....Z.l'l
L] = M2
Or L[t]= nn'1’5>0

Note: L[1] = [1/s], L[] = (2/5°)

Laplace Transforms and
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1.3.2 Linearity Property of Laplace Transformation

If£(¢) and g(7) are functions for which Laplace transforms exist, then
@) L[ty +g0]=LIAN]+L[g®)]
i) LIk AD] = KLIAD]

For any constant £.

The result can be proved as follows:

o0

LI +g(0)] = [ 1f 0O +g(@)]dr

0
= Te‘sf f(t)dt +T e g(t)dt
0 0

LA +g()] = LIAD] + L[g®)]

Also LIKAD)] = [k (1)t

0
= k]o e f(t)dt
0

S LIkf(0)]= kL[A(D)]

In view of properties (i) and (ii), the Laplace transformation operator L is a
linear operator.
Note: Laf(t)+ bg(t)] = aL[f(t)] + bL[g(?)] for any constants a and b. Also,

L{Zaifi(f)} _ 34 L)
1 i=1

For any constants a, a,, .... a .

n

Using this property, the Laplace transforms of functions which can be expressed
as linear combination of functions can be written.

1.3.3 Laplace Transforms of sinh at and cosh at

(i) Transform of'sin 4 at

L[sin hat] = L[%(e”’ —e”’)}

[Le)—L(e™)]

N | —

1] 1 1
—[ - },s>a,ands>—a
2ls—a s+a

, a
L[sinhat] = EREE s>|al

(ii) Transformofcos / at



L[cos h at] LB(e"’ + e”’)}

%[L(e”’) +L(e)]

IR
T 2|l s+a s—a’S>|a|

s
L[cos hatl= 5=, s>|a|
s’ —a

Note:

+ Ly e iat] —
L[cos at + i sin at] L[e™] R

o 1 s +ia
.. L[cos at] + iL[sin at] = ia S+d

Equating the real parts, we get,

L[cos at] = R

Equating the imaginary parts, we have,

L[sinat] = ERpE

Example 1.14: Find L(5£ + 37 — 61 + 3¢™)
Solution: L(5£ + 3¢ — 61+ 3e™) = 5L(£)+ 3L(*)— 6L(¢) + 3L(e™)

= 5 .

3! 2! 1 1 30 6 6 3
_+3.__6._+3. = — 4 ——
st s s s+5 st 8§ 545

Example 1.15: Find L[cos? 3¢+ sin 5¢ sin 21]
Solution: L[cos? 37+ sin 5¢ sin 2/]

= L[%(l+cos 6t)+%(cos 3t —cos 7t)}
1|1 K 1 K s
= —|—+ +— -
2ls s7+36] 2| s*+9 s7+49

Example 1.16: Find L(cos® 27)
Solution: Since, cos 67 =4 cos® 2¢—3 cos 2t

cos’ 2t = i[cos 61 +3cos 2]

1 S Ky
L(cos* 21) = Z[ﬁ 136 5 +4}

Example 1.17: Find L[64 sin’ ¢ + cos(27+ 5)]
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Solution:sin’ = 2L4[sin 5t —=5C, sin3t +5C, sint]

= %[sinSt —5sin37+10sin¢]

S L[64 sin’ £+ cos(2¢+ 5)] = L[4(sin 5¢— 5 sin 3¢+ 10 sin 7)] + L[cos(2¢ + 5)]

4 25 -5 23 +10- 21
s*+25 s+9 s +1

+ L[cos 2¢ cos 5 — sin 2¢ sin 5]

20 60 40
2 T2 T
s+25 s57+9 s +1

+cos5-

5 —sin5-—
s*+4 s +4

Example 1.18: Find L[e* sin /#? at]

at —at

2
Solution: L[e* sin A? at] = L[em[e —2e j } _

iL[e” (e2”’ +e " — 2)]

1 ae
_ ZL[emm)t te 2(a-1)t _2ezt:|

1 1 1 2
2 i Jo2 = — + -
L[e* sin i* at] 4{s—2a—2 s+2a-2 s—Z}

Note of Notation: In the functions considered above, the independent variable
is denoted by #. This is suggestive of the fact that, in many applications, functions
involved are functions of time .

Also, Laplace transforms are functions ofthe parameter s. In some books,
the parameter s is replaced by p. In such cases, the Laplace transform of £{¢) is

denoted as F(p) or f(p) and Laplace transforms of sin at, e etc., are [a/p>+
a*], [alp + a], etc.

1.3.4 Transforms of Integrals

The following results show that the Laplace transforms of the derivatives and
integrals of a function f{#) can be expressed in terms of the Laplace transform of
(9). Theseresults are important in solving differential equations using the methods
of Laplace transformation.

Theorem 1.2: Iff{7)is continuous and /" (7) is piecewise continuous in the interval
0 <t < T for any finite 7, and f{7) and /"' (¢) are of exponential order as t — oo}
then,

L[f' (O] = sL[f(n] - A0).
Proof: Under the conditions stated in the theorem, the Laplace transforms of/{7)
and f”(¢) exist and,



©

LIf'(0] = [ 'y

0

= [erdiray

= [ (f)]: —Tf () (=s)e"dt

On integration by parts, we get L[f"(¢)] to be,

oo

= Lime™" /()= f(0) + s[e™ f(t)dt =—F(0) + sLIA1)]

Since Lime™ f(¢) =0, as shown below (see Notes).

L[f"(#)] = sL[An]-A0)
Notes:

1. Asf{¢) is of exponential order at # — oo, there exist constants o and M
such that,

| flO] < Me* for t > ¢,
[| fir)/e’] < Mel®] for t > ¢,
Now, et 5 0,ast—> oo if s>

Lingm , as also Lim&f) vanish if, s > oo

—oo e? —oo eS

2. Although£{7) is of exponential order, it cannot be said that the derivatives
of f(7) will also be of exponential order. However, in most practical cases,
the functions considered and their derivatives are all of exponential order.

Theorem 1.3: Iff{f) and /”(¢) are continuous and /"'(7) is piecewise continuous
in 0 <¢< T for any finite 7, and f{7) and /" (¢) are of exponential order as  — <o,
then
L[f"' (0] = s’LIAD)] - s/(0) -/ (0)
Proof: By applying the previous theorem to the function /”(), we have,
L[f"' ()] = s’LID)] - s£(0) " (0)
Again applying the previous theorem to write L[f”(#)] interms of L[f{?)], we
get,
LIf'(0] =s[sL{f(n)} —f0)]-/"(0)
L[f"(0] = s°LIA10)] - sf(0) - /'(0)
Notes:
1. Conditions stated in the above theorem ensure that the Laplace transforms

of f(?), f'(¢) and f"'(t) exist.
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2. Theresult concerning the Laplace transforms of /”(¢) is as follows:

If A7), f'(2),..., /" (¢) are continuous and /(%) is piecewise continuous in the
interval 0<7<T forany finite 7'and all these functions are of exponential order
as t — oo, then,

LIf (D] = S'LIAD] — $"IR0) — s2f 1(0) — 50 £1(0) — ... — 5/ " (0)
~(0)

This result is obtained by successive application of the result,
L[f'(0] = sL[A(D] -A0)

Example 1.19: Given that L[ sin at] = [(2as)/(s* + a*)?], find L[at cos at + sin
at].

Solution:
. d .
Llat cos at + sin at] = L[E(Z sin at)}

2as

=sL[tsinat] - [tsinat]_ = Sm

2
2as

L +sinat] = —5——5
[at cos at + sin at] R

Example 1.20: Using the result L[f"]=sL[ f]1—(0) and L[f""] = s*L[f ] — sf(0)
—/"(0), find L[e*], L[sin at] and L[cos at].

Solution:
To find L(e”), take f{(¢) = e* in the result L(f") = sL(f) — f(0).
Then, L(e”) =sL(e")— 1 i.e.,al(e")—sL(e”) =-1
1
s—a
Taking f(#) = sin at in the result L[f"'] = s°L[f'] — sf{0) — /'(0), we get,
L[—a?*sin at] = s’L[sin at] — s(0) — a(1)

Le., — d’L(sin at) — s’L(sinat) =—a

L(e") =

L(sinat) = ——
s’ +a

Find L(cos af) in a similar manner is left as an exercise for the students.
IfL[(H)]= f (s), prove that,
LIt (0] ==[s/"(s) T fis)]

Theorem 1.4: If/(7) is of exponential order as # — oo and piecewise continuous
in the interval 0 <7< T for any finite 7', then,

L{j f(u)du} = L1170
0 A



Proof: This result can be proved using the result,
Llg'(1) =sL[g(H)]—g(0) (1.7)

Let f f(u)du be denoted as g(7). Then,

g(H)=A1) and g(0)= .(l)'f(u)du =0

It can be shown that g(7) is continuous in 0 < ¢ < 7"and is of exponential order as
t — oo. Therefore, Laplace transforms of both f{7) and g(¢) exist and by equation
(1.7),

LIAD] = sLﬁ f(u)du} 0

L{j f(u)du} = Litran

s
Notes:

1. Replacing a dummy variable u by ¢, the above result is written in form

YU |-

L{ [r@ar| = =Lir @)

2. Under the conditions stated in the theorem,

L{” . .J‘f(z)(dt)" = inL[f(t)] , for any positive integer 7.

N

3. jf(u)du = j.f(u)du —jf(u)du

L{ j f(u)du} - LU f(u)du}_ L{l‘ f(u)du}
1 1¢
= ~LLf (O]~ [ f(u)du
s 59
Since, j.‘ f(u)du is a constant.
L{ J f(u)du} = Lugpan+ L]
a § 5%
Example 1.21: Find Lj[(sinx)/ x]dx

©

) sint T 1 _
Solution: L[—} = J:L(smt)ds = J:S2 Jrlds = [tan 1(s)}

©
N

t
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1.4 SOME IMPORTANT PROPERTIES OF
LAPLACE TRANSFORMS OF
DERIVATIVES AND INTEGRALS

The Laplace transform is invertible on a large class of functions. Given a simple
mathematical or functional description of an input or output to a system, the Laplace
transform provides an alternative functional description that often simplifies the
process of analysing the behaviour of the system, or in synthesizing a new system
based on a set of specifications.

The Laplace transform can also be used to solve differential equations. The
Laplace transform reduces a linear differential equation to an algebraic equation,
which can then be solved by the formal rules of algebra. The original differential
equation can then be solved by applying the inverse Laplace transform.
Computation of the Laplace transform ofa function’s derivative is often used with
the differentiation property of the Laplace transform to find the transform of a
function’s derivative.

1.4.1 Laplace Transformation of Derivatives

1. It f'(¢) be continuous for every 7> 0 and be of exponential order s, then

S'(@) = sf(s) - f(0)
By definition Z {"(1)} = | € /" (0)dt

o

[ 0] - [ e

_ lim e (- £(0)+ 5[ F 1)

= lime™ f(1) = f(0) +/(s)

As /(1) is of order s, lim e f(t)=0
L LUF(0)} = 5f(s)—A0)

2. Iff"(f) and its first (n — 1) derivative be continuous and /{¢) be of exponential
order s then
L0} = 'f(s) =" ' 0) =" 2/'(0) ... /7 (0)
By definition



L0} = J e
Integrating by parts
LY} = [ /7 0= (=9)e™ [0+ (=) 7o
P ST+ 1 ) [ e
Assuming that 0
lime™ /" (6)=0 form=0,1,2,n-1

LY (@)} = SAs) ="~ 0) =" f/(0) ... /77 (0)
. Multiplication by 7

ItL{f (0} =As)

Where n=1,2 ...n.

(1.8)

By definition L{f'(¢)} = Jie_”f (1)dt integrating both sides with respect
0

to s,

d d R —st
) = gle F(t)dt

By Leibniz's rule for differenciation

o

d —st
_ J2—Se F(t)dt

T —te™ f(t)dt
=D L{f 0}

This proves the theorem forn=1

Now assume that (1) is true for n = m (say)

L) = [

m dm+1 im —st  m
(D"~ /() = dsle (" f(t)dt
= T—te“”t’”” f(@)dt
(D" = o) = L[ 0]
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By induction (1) is true.
4. Laplace Transform of Integrals

IELY (0} = A5
Then L{ | f(t)dt} =2 /)

Leta(r) = | /(t)dt
— a(0)=0
And )= [ 1@di= 1)

Now L{a'(¥)} =s L{a(t)} — a(0)
L{f(t)} =s L{a(t)} -0

L0} = L[ ] f(t)dt}

5. Division by #
IEL{f(1)} =fs)

Then T {@} = ].;f ()dt provided {g{)l@ exists
Let a(r) = @

Or A1) = ta(f)
L{f()} = L{t, a(9)}

)= %L{a(z)}

Integrating both sides with respect to s from s to oo

J.f(s)ds =—L {a(t)}j
Tf(S)dS ==limLia(?)} + Lia(1)}

Tf(s)ds =0+ Li{a(t)! [as lim Z{a(1)} = ggfe-S’(z)dt =0

iy’ {@} = [ (s
t S



Example 1.22: Find L(Z‘3e_3’) Laplace Transforms and

Its Inversions

1
Solution: As L{e3'} = ——
s+3

£ NOTES
ds® (s+3)
(-D|3
_ (_1)3 )L4
(s+3)
_6
T (s+3)*
Example 1.23: Evaluate L {¢ sin® ¢}
1—cos 2t }
2

Lif ey =0 —5

Solution: L {¢sin*¢} = L {f

lL{t} ——L{t cos 2t}

[\

11

T (e

1 1=
257 2(s7+4)

2(3s° +4)

s2(s” +4)

Example 1.24: Find L {# cos at}

d’ s
ds’ (S +a’)

d (s> +a*)—s(2s)
" ds (s*+a*)’
4@
Cds (s +a’)

Solution: L{~ cos at} = (-D)—

(s +a° ) (=2s)=1a* =s>-2(s* +a’)-2s
(s*+a’)!

B 2s(s> =3a%)
(s +aY)

—at __ —bt
Example 1.25: Evaluate L {u}
t

—at _ _—bt e e_b’
Solution: L{u} = L{ }—L{ }
¢ t t
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o

=j ! ds—j L s
L sta L s+b
= [log(s + a)]:o —[log(s + b)]j
[lo s+aT
B gS+b R
a
s+a 1+;
=—log—+b+10g b
S s—>°<>1+_
S
_ s+b
BRI

cos 2t —cos 3t
Example 1.26: L f

2t — 3t cos 2¢ cos 3¢
Solution: {M} - L{ } _ L{

t 4 t

N

N

t 1
Example 1.27: Given that L2 = R

1 1
Solution: Prove that 7 =L { N }

t 0
Let f(t) = 2\/% - f0)= 2\/% =0

}

B {S2+4ds—"-sz+9ds
1
2

log(s* +4) | —%mg[(f +9) ]




1 Laplace Transforms and

o — 2 — = ts Inversions
O -
Also L{f"(?)} = sf(s)—A0)

| 1 NOTES
. L ﬁ :SF—O

1
= ﬁ (proved)

Example 1.28: Evaluate [ {sin Ji }

3 5 7
X X X
Assinx= x——+——-——---
I_ I_ 17
\/7 \/_ 5/2 t7/2
sin R
3 I_ 17
+1
ButL{t”}—n
|3/2 1!5/2 1|7/2
L{Sln\/—} $52 §772
r T,
. 122 1222
3/2 5/2 7/2

) {1 s 22553@}

(n) 1 1
" 2sls 22s 2272 23
16 I
= e
Zs S 2S S

(sint
Example 1.29: Evaluate L {J sinf dt}

0 !

Solution: L {J smt }= %Lf(f)

sint

Where f(¢) = -

sint
Y

(1)
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= | L(sint)ds

=

t . l
(1):L{j¥dt}= ;cos“s

1.4.2 Proof of the Laplace Transform of a Function’s
Derivative

It is often convenient to use the differentiation property of the Laplace transform
to find the transform of a function’s derivative. This can be derived from the basic
expression for a Laplace transform as follows:

£y = [ e

— %‘Z_Sf]i - [fo E__:ff(f.} dt (by parts)
- |-+ Se o
Yielding,
L{f()}=s-L{f()} - f(0)
In the bilateral case,
c{rmy=s [ _era=s-cirw)
The general result,
c{fPM} =" L{B} =" f(0) = F7(0)

Where /" is the nth derivative of /, can then be established with an inductive
argument.

Laplace Transform of the Derivative

Consider that the Laplace transform of y(#) is Y(s). Then the Laplace

Transform of y'(7) is,



LIy (£))(s) = sY (s) — 3(0)

For the second derivative we have,

LIy (8)](s) = 5°Y (8) — s3(0) — 4'(0)

For the n'th derivative we have,

Ly (B)(s) = 8"Y (s) — 8"y (0) — 8"y (0) — ... — 4"V (0)
Derivatives of the Laplace Transform
Let Y(s) be the Laplace transform of y(7). Then,

Ly B = (10 2 (a)

We can compute the Laplace transform of 7 sin (7) as follows:

a1 . 2
 ds's? + 1:| T (8?4132

The Laplace transformis method is used for solving differential equations.
The Laplace transformreplaces operations of calculus by operations of algebra
on transforms. Approximately, differentiation off(z) is replaced by multiplication
of L(s) by s and integration of /{?) is replaced by division of L(f) by s.

Ltsint] =

Theorem 1.5: Laplace Transform of the Derivative of f{?)
Suppose that f{7) is continuous for all #> 0, satisfies for some k and M, and has a

derivative f '(t) that is piecewise continuous on every finite interval in the range

1> 0. Then the Laplace transform of the derivative f'(¢) exists when s > k, and

L(f")=sL(f)- f(0) for (s>k)

Proof: Consider the situation when f ’(t) is continuous for all # > 0. Then,
by the definition and by integration by parts we have,

00

L) = [e ot =[e 1) + 5] ey

0

Since f'satisfies the integrated portion on the right is zero at the upper limit
when s >k and at the lower limit it contributes — f (0) . The last integral L(f") is the
existence for s > k. This proves that the expression on the right exists when s >k
and is equal to — f (O)+ sL(t). Consequently, L(f") exists when s > k. If the

derivative f ’(t) is piecewise continuous, then the proofis quite akin. In this case,

the range of integration in the original integral which is split into parts such that /"

is continuous in each such part. This theorem may be extended to piecewise
continuous functions f{7).

Theorem 1.6: Laplace Transform of the Derivative of Any Order n
Let f(7) and its derivatives £'(¢), /"(¢),--, /"")(¢) be continuous functions for all

1> 0, satisfying some k and M, and let the derivative f (") (7) be piecewise continuous
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on every finite intervalin the range #> 0. Then the Laplace transform of f (n) (1)

Its Inversions

exists when s > k and is given by,
L(r")=s"2(/)=s5""(0)=s"71'(0) == 1 (0).
Example 1.30: If (¢) = £ then derive L(f) from L(1).

NOTES

Solution: Since (0)=0, f'(0)=0, f"(¢)=2 and L(2)=2L(1)=2/s
We get,

2

s

=s’L(f), hence L(f2)=

L(r7)=1(2)=3

Example 1.31: Derive the Laplace transform of cos wt -

Solution: Let f(f)=coser. Then f"(t)=-w*cosart=—-wf(t). Also
£(0)=1, £(0) = 0. Now we take the transform, L(f")=-a*L(f).
We get,

~’L(f)=L(f")=5’L(f)~s,

N

2

hence L(f)=L(cosat)= 5
sS+o

Example 1.32: If £(¢)=sin?7 thenfind L(f).

Solution: Givenis, £(0)=0, f'(¢)=2sinzcost = sin 2¢
Which gives,

L(sin2¢)= 23_4 =sL(f)
s

: 2
Or Llisin’t)=
)
Example 1.33: If f(¢)=¢ sin of then find L(f).
Solution: Givenis, f{0)=0and

f’(t) = sin ot + wt cos wt ,
for £(0)=0
1"(t)=2wcos wt — w’*tsin ot

= 2wcoswt—a’ f(t),
Also,

L(f")=20L(cosat)- o’ L(f)=s*L(f).
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Using the formula for the Laplace transform of cos w? , we obtain:

2ws
2 2 — 2 L —
(S +w )L(f) . (cosa)t) S
The outcome is,
) 2ws
Litsin ot )= ——
( ) (s2 + a)z)2 '

1.4.3 Laplace Transform of the Integral of a Function

Differentiation and integration are inverse processes. Consequently, as differentiation
ofa function corresponds to the multiplication of its transform by s, we expect
integration of a function to equates to division of its transform by s, because division
is the inverse operation of multiplication.

Theorem 1.7: Integration of f{r)

Let F(s) be the Laplace transform of £{¢). If f{¢) is piecewise continuous and
satisfies an inequality, then

L{I f(r)dr} =L k(s (19

For (s>0,s>k)

Or; if only the inverse transform on both sides of the above equation is
taken,

J ekte={ L),

Proof: Suppose that £{¢) is piecewise continuous and satisfies the Equation
(1.9) for some k and M. Clearly, if for Equation (1.9) some negative £, it also
holds for positive k£ then we may assume that & is positive. Then the integral,

glt)=[ f(c)dz

0

is continuous and by using Equation (1.9) we obtain for any positive ¢,

t t My, M
Ig(t)|§Ilf(f)ldféMfe'”dF?(ek —1)§7€" for (k> 0).
0 0

This shows that g(7) also satisfies an inequality of the form given in Equation
(1.9). Also, g'(t)= f/(¢), except for points at which £{r) is discontinuous. Hence,

g'(¢) is piecewise continuous on each finite interval and gives,

L{f (1) = L{g' ()} = sL{g(t)i-g(0) for (s> k).
Here, clearly, g(O) =0, so that L(f) = sL(g).
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Check Your Progress

. Define the Laplace transform.

. What is the bilateral Laplace transform?

. State the inverse Laplace transform.

State on the region of convergence.

How will you define the elementary theorem?
Define the transforms of integrals.

What is the linearity of the Laplace transform?

© N U AW

State the Laplace transform of the integral of a function.

1.5 INVERSION OF SOME ELEMENTARY
FUNCTIONS

An integral transform is useful to convent a complicated problem into simpler one.
Laplace transform is one of the important type of integral transform that can be
used to solve integral and differential equations. The idea behind a transform is
simple, suppose we want to solve a differential equations with unknown function
f- We first apply the transform to the given differential equation to turn it into an
algebraic equation that can be solved very easily in terms of transform F of /. One
can solve the resultant agebraic equation for F, and finally applying the inversion
transform to find /. This can be understand diagramatically as follows:

Differential equation for Solve ,
P(t) Solution f'(t)
Apply transform Apply inverse
transform
Algebrai tion f Solve
g° ralcl,‘:e(gsla tonfor > Solution F(s)

Fig. 1.1 Working Principle integral transform to solve a differential equation.

1.5.1 Function of Exponential Order

The function f{7) is said to of exponential order s, as 7 — oo, if
lime™ £(¢) is finite
[—0

i.e., these exists M >0 and z > 0 such that

|e“r"'f(t)| < M vt
or i < Me>' or t>1
We write f(7) = 0(eo) as t—>»®



Example 1.34: (f(1) 1, ¢, #* are of exponential order so for any s >0

Solution: fyel=le’|<1
V>0
or lim— =0
—0 e
= f(t) = lisofexponential order 1 as #— o0
Similarly }L{lf = Oforanys >0

ie., A1)

order s >0

o

In general we have following remark.

¢ is also exponential

Remark are:
(a) Every bounded function f{¢) on [0, o] is of exponential order 0
(b) f(?) = e has exponential order s =c

(c) flry=1"for allz ¢ [0, o] is of exponential order s_ for any s > 0.
(d) The functions £(¢) = e ,1 are not of exponential order
t

Solution. (a)
Let f{¢) is bounded on [0, 0]
= I PBsuchthat [f{(£)| <P v e[0, o]
Consider [f(f)e”| <P vt=0
= f(¢) is of exponential order 0.
(b) Let f(f) = e then

£ (e

that verifics that f{7) = e is of exponential order s = ¢

ct

-8t
ee '’

<1 forc=so

n

.t . .
(c) For f(t) =", we can show that }Lrg = M (using L' Hospital rule)

&

thus 1" = O(e™") for anys >0
Hence 7 is for exponential order s > 0.

t2

(d) f(£) = ¢” is not of exponential order as lim € o for anyso>0.

t—eo esot

1.5.2 Laplace Transform of Some Special Function

Let £{#) is any piecewise continuous function in every finite interval and f{7) = 0 for
all negative values of 7, also /() is given exponential order as # — oo then Laplace
transform of /is denoted by F and is defined as
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Fs) = L@ =["e"f@)di

In a systematic manner we can also define as, Let /: [0, o] > R bea
function such that

(1) f(¢) is piecewise continuous on [0, o]

(i) f{¢) in of exponential order as # — oo then L(f) = F(s) the Laplace transform
offis defined as the improper integral

[Ceripyar

or L(f) = F(s)= j:e*’ £(t) dt

We call e*"as Kernel of Laplace transform.

Note that the conditions (7) and (i7) given in the definition of 1.1 are sufficient

for the existence of Laplace transform of /. But if the integral _[ : e " f(t) dt exists

without obeying (7) and (i7) then may (7) and (ii). In that situation we may state as:
(by dropping (7) and (ii) Laplace transform of /{7) is F(s) and is defined as

L= F(s)= '[: e f(t) dt provided the integral in R.H.S. exists.

This Laplace transform or Laplace transformation is linear. This can be
understood with the following (properties of Laplace transform). Before considering
the properties of Laplace transform let us first consider some trivial examples.

Example 1.35 (a) Let f{¢) = 1 then F(s)l, s>0
s

L(1)= | ledr= lim [ evar

A—o0 —S

_ nn{e” } (s> 0)

_ lim__l(efkt _em‘)

(since lime™ = O)
A—s00 s A—0

-1 -1
= lim—(e™ -1)=—(0-1)=~
kl—r>r°l°s(e ) S( ) Ky
1
L(l) = ;,s>0

(b)Iff(f) =t then L(¢)=F(s) = iz, (s>0)
s



Laplace Transforms and

P ot =1 bt s Inversions
F(s)=L (1) = Le td’_%lilljo’e dt Its Inversion:
t—sl ~ 1 — st r
_ lim{[ = } +—(€ j } NOTES
Ao | —§ S\ —S
0 0
: re ™ 1
— — lim4— +—(—e ™ +1 }
or  F6)=L0 M{ ;e )
IR ST U e
= Clim e lim (e 1)
1 LA Y
= 3 (using lim— =0 and lime™ =0)
N row o d A—0
1
s
1
In general L(t") = nl _Nntl (try yourselfand its solution is given is

n+l n+l
S S

next section using the properties of Laplace transform).

1.5.3 Properties of Laplace Transform

1. Linearity Property: Let ¢, and c, are constants and Laplace transforms of
/,(9) and £ (¢) are F'(s) and F () respectively then laplace transform of ¢ f|
+cf(f)is ¢ F (s) +c,F,(s) This property of linearity can be taken as the
combination of follwing two properties.

L(c /i) = c, L(f()) or L(cf(0)=c F(s)

and L(f, +f) = F, + F,
or L(f, (1) +f(D) = F,(s) +c,F(s)
Proof:
Proof of property of linearity is easily carried using the fact that integral
operator is linear.
Lic, /() +cfi0) = | (e/i(+e.fi(0)edr

I : (c1 fie " +e e ) dt

jo“” ¢ f()edt + j: ¢, f,(0)edt

¢ j: e f(t) dt +c, j: e £,(t) d

Lcf,+ cf) = ¢ F/(s)+cF(D)*
*This property directly infers that Laplace transform is linear transformation. 5o/~ L4 30
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2. Change of Scale Property: If f(s) is the Laplace transform of /(7) then

Laplace transform of f{at) is

that is if L(f(t)) = F{(s)then
L) = ~ F (2)

Proof: F(s)=L(0) = | e /()i

L(fan) = | e f(ar)dt

(taking at =u, dt = @,t
a

= lJ.me_%f(u) du
a 0

= lJ‘wef%uf(u) du
a 0

L(flat)) = éF(i] .

1.5.4 First and Second Shifting Property

Theorem 1.8: IfL(f(7)) = F(s) then L(e” /(1)) = F (s - a)
Proof: Let L)) = F(s)= '[: e f@)dt
Liefin) = | ee" /(o) dr

- j: eV £ (1) dt
L(e” f{1)) = F(s—a))

Second Shifting (Translation) Property (Heaviside Shifting Theorem)

B Ao 0 O<t<a
L) = F&) and g0=1 O
then L(g(?) = e“F(s)
. B 0 O<t<a
Proof: g(f) = f-a) t>a
Lg) = [ e"g(dr (for a > 0)

%)
a



L(g(0) = '[an"” 0 drt +j”°e f(t—a)dt

This  Lg() = [ e"'f(t-a)dt
Taking t—a=u >t=u+alt=a=>u=0
dt =du

f=0=u=00

then  L(g(0) = |, ¢S () du

J:O e e f(u)du

e J? e f(u)du

L(g(1)) = e™F(s)
Before considersing some other properties, let us see first some example of
Laplace transforms.

Example 1.36. L(e”) =
s—a

By L(1) = 1 F () (say) so by first shift property L(1.e) = F(s —a)
s

thus L(e") =
s—a
Example 1.37. (a) L(cosat)=———
s’+a
b) L (sinat)= L(sinat)=
(b) L (sinat) = L(sinar) =———

Solution: (a) L(cosat) = '[ : e " cosat dt
= Re ('[: e‘”e”‘”dt) = Re(L (ei“’ ))

and L(sinat) = Im( '[: e‘”e"‘”dt) =Im (L (e”"” ))

. i l + .
(b) Consider L (') = ——= Sz 1a2
s—ia s +a
‘ s . a
— L( etal) = +1

s’+a’  s+a
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thus L(cosat) =

2 2
s +a

a
NOTES L(sin at) PEgpe

Example 1.38. Obtain L(e“cos wt) and L(e*sin wt)

Solution:

Si L o = S F(s)

mnce (cos wr) R
= L(e“cos wt) = F(s—a)

s—a
B (s—a)+w
a

Simlarly L(e* sin wr) =

(s—a)’ +w
Example 1.39. Obtain Laplace transform of cos? ¢

cos 2t +1

L(c0521+1j
2

- %[L(cos 21)+L(1) ]

1 s 1
= - +_
2|7 +4 s
Theorem 1.9: Multiplication and division by 7 (derivative of Laplace
transform.

If F(s) is the laplace transform of /{7)
ie., L(f(f)) = F(s)then

Solution: Hint: cos’ 7=

L(cos?*)

dF’ ,
LA == F(s)
and in general L(#" f(£)) = (—=1)" F")(s)

d"F(s)

or L(t"+(0)=(-1)" —

Proof: Let F(s) = L(f(f)) = jo‘” e f(t) dt

dF d = _,
Self - Learning —= —J- e At.f(f)df
42 Material ds ds 70



= 0 —st
jo g(e ) f(0) dr

[Cne @y ar

[Te (=t r@)ar
F(s) = L)

or F'(s) = ~D'L (1 +£1)
Repeat this process again we get
d’ f(s)

(1P L(EA) =F(9)= =3

RS A (0

=L((-1)"f(n)

or L fn) = (-1) dnd ”(S)—( )" F™(s)

in general F"(s) =

Example. 1.40 Obtain the Laplace transform of #”.

Solution. Since ~ L(1) = L(1) =%= F(s) (say)

d"F(s)
ds”

-1y H
)
1Y (-1 ( ]

n! n+l

n+l n+l
S

L@ = (D"

L(r) = -

Exampl 1.41 Obtain the Laplace transform of /¢

Vn+l
s"

Solution. L(#") =

( ) ‘/:_\/_H [usingéz\/;]

3/2
)

('.'n'—\/m>

Laplace Transforms and
Its Inversions

NOTES

Self - Learning
Material 43



Laplace Transforms and
Its Inversions

NOTES

Self - Learning
44 Material

-1
Example 1.42. Find L (f A)

Solution. L(t%) _ \/% \/%

S—%Jrl

_Vn_ [z
e

Example 1.43. (a) Obtain Laplace transform of /2 cosat

(b) Find L(#sinat)

Solution. (a) We know that L(cost) =

1

N S
L(COS at)= S2 2 :_F(_j

+a a

d2
L(t* cos at) = (-1 g{

S
=F(s
st +1 )

a

S
ss+a’

S|~

(s2 +

SRS

(s°+a*)

(s2 +a’ )2 (—2s)— (—S2 +a’ ) (2 (s2 +a’ ) 2S)

2 2
s +a

(s> +a*)1—s(2s)
a’)

zl

(s2 +a2){(s2 +a2)(—2s) —4s (a2 —s2)

(s2 + a2)2

2s* —6a’s

= 3
(s2+a2)

4
(s2+a2)



ZS(S2 —3a2)
L(# cos at) = W

(b) Similarly by use of property 4, one can obtain

L(tsinat) = 2as =

(s2+a2)

1.6 INITIAL AND FINAL VALUE THEOREMS

Theorem 1.10: Let /() be a continously differentiable function and

df (t
% =f '(t ) be its first order derivative. Suppose L (f{t)) =F(s) then

d
L(1'(1)) =L(a—fj =5 L)1 (0)

or L(%) =sF (s)-f(0)
where, (0)=f(t=0)

o

Proof : Let L (F (¢)) =F (s) = J.E” (f () d

0

df \_ = s df
men ()= (5

Integrating by parts, we get

L(%) _g .f(t)—I(—s)E‘”. 7(0)d

[°e]

=—1(0)+0+ SJZ‘”f(t)dt

0

d)
L (7{} =—/(0) +s F(s) (using the fact that e — 0 as t —> )

ws L[] =P 6)- 1)

Note : Roughly speaking the Laplace transform of corresponds to multiplication
of'the Laplace transform of f{¢) by s.
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1.6.1 Laplace Transform of Derivative of Order ‘n’

Thorem 1.11: If £{¢) is continuously differentiable function and possesses
derivatives ofall order 1,2,.....,n which all are Laplace transformable, then

LLd”czn(t)J _ SnL(f(t))_gf(i)(o)Snil

=s"F(s) —s™' f(0) = s"2 £ (0) —s"3 [ 2 (0) — ......... D (0)

Proof : We know that

L(f () =sF(s)—7(0)
or L @)=sL{()-f(0) ..(1.9)
replacing f{(¢) by £°(¢) and £°(¢) by / (t) in (Equation 1,9) we get

L{@0)=sL[f” 0]/ (0)

=or L (f"" (1)) =8{3L (1 (1)) =/ (0)} —/" (0).

=s* L(f(1))—s/(0)—f"(0)
Similarly,

LG @)=s'L(f"(0)—-s*f(0)—sf"(0) -1 (0)

n—1 ) )
L((0) = s"L(f() - 2/ (0)s" "
i=0
Theorem 1.12: Initial value theorem:
IfL(f(¢)) = F(s) them show that {l_f)gf (f ) = 11_{10} s F(s) provided limits exist.

Proof: We know that

d
L (7]3 =L(/'(1) = s F(s)-A0)

o |e “(dfj dt = sF(s)~ £ (0)

taking limit s — oo we get
im [~ (%) di = lim sF(5)~ £(0)

“lime™ (%} dt =1im sF (s) - £(0)

(assume —- is continuous on [0, o]

dt

s lims F(s)- £(0)=0



or 11_{{.}5 F(s)=f (O) = }1_1)10} S (by Continuous of /{£)
Hence lim f(7) =lim s F(s)
Theorem 1.13: Final Value Theorem

Let L(f(¢)) = F(s) then prove that }1_{{01 S0 = 1\1_1}01 s F(s) , provided limits on both

sides exist.
Proof: Again we use L(F'(7)) = s F(s) — A0)
=l 9
or e (%}dﬁsF(S)—f(O)

taking limit s — 0 on both sides we get

.o df .
lvl_{% N (Ejdt - 1\1_1)13S F(s)— f(0)

or I:(%jdt = lims F(s)~ /(0)

o S(0)l=lim(sF(s))-F(0)
or lim £ ()~ £ (0) =lim(s # (5)) - / (0)

or lim £ (¢) =lims F(s)

[—0©

1.7 MULTIPLICATION AND DIVISION BY ¢7
PERIODIC FUNCTIONS

Theorem 1.14: IfL(f{(¢)) = F(s) then

’ _F(s)
L( ) f(t)dt) -—
Proof: Let F(s) = L(f(¢))
Let a(t) = L:f(t)dt
= g0 = [ /(r)di=0
g = A0
= L(g(®)) = s(0)

LA = s L(g(n) —g(0) =5 L(g(?))
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= L(g(1)=<L(/ (1)
> offoa)-EY

Division by ‘#
Theorm 1.15: Let L(f{¢)) = F(s)
SO _ L . :
then prove that L )T L F(x)dx  provided integral in R.H.S. exists.

Proof: Let F(s) =L(f(t))

or  Fs)= [ e f (@)t

integrating both sides with respect to s between s to

J.:o F(s)ds= J.:o (J.: e_‘”f(t)dt) ds

Here s and # are independent variables, so we can change order of integration
in the separated integration in R.H.S.

thus TF(s)ds - Tdt?e” £@t) ds

- Tf(t)dtTe” ds

o L[f—t)j :IF(x)dx



Corollary: Prove that J—dt = JF (s)ds
0 0

Proof:

From the previous theorem

or ]‘Oe‘” @dt = Tf(x) dx

N

(=]

taking limit s — 0 on both sides we get
| 1) ft)dt = [ f(x)dx
0 s

Now we consider same applications ofthese properties.

Example 1.44 Find the Laplace transform of 7e*

Solution: L(r"e") = (1)’ jnn F(s)

where  F(s) = L(e") =

sS—a

nd' (]
= Lren=(-1) dn( J

n+l
L(re™) = (s—a)n+l (since n!= n+1)
') eix
Example 1.45: Laplace transforms of j . dx

© —X

Solution: Let /(1) = J ex

dx

-t

= )=
= ! ) =—e"
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= Lero)=Le)=-Le)=

NOTES or %[L (1 (t))] el S

or = sF(s)]:—(asgf(o)zoJ

[S—

d
or E(S F(S)):m

integrating both side
sF(s)=log(s+1)+c

by Final value of theorem

lims F(s)=lim f(¢)

s—>0 t—o0

thus lim s F(s)= lim[log(s +1)+c]

§—>0

B log(s+1)

N

N

1.8 INVERSE LAPLACE TRANSFORMS

If/(¢) be any function of 7 and
Lifn} = As)

then f{7) is known as inverse Laplace transformation and given by

S = LH{f(9)}

. . a
Self - Learning For example, if L{sin at} = ——
50  Material s ta



1 1
Then L {Sz e } =—sinat

a
The uniqueness of the inverse transform for 7> 0 is established by Lerch’s
theorem.

According to Lerch’s theorem if /(7) is picewise continuous in every finite
interval 0 <t <4 and of exponential order for 7> a, then the inverse Laplace
transformation.

L {f(s)} =A?) is unique.
Main Laplace inverse are given below:

R
L'|~| =1
S_
=
L71 = pat
) -
_ 1] 1
L1|:S2+a2 = ;Slnal
o
<+ = cos at
_ 1 1
L{ 2 2} = —sin hat
s —a a
cles |
2 2 = cos hat
s"—a" |
R U i o
S+ T n or n positive mteger
_ 1] t"
L{ p = ——,n>-1
s"+1 ] n+1

1.8.1 Properties of Inverse Laplace Transformation

1. Linearly Property: Let f,(s) and ; (s) be the Laplace transformation of the
functions f,(?) and f(?), respectively, and a and b are the constant, then

LHaf () + b () =aL { ()} +bL{ £ (s)}
2. First Shifting theorem:

If L { (9} =A1)
then L™ {f(s—a)} = e“ f(?)
By definition f{s) = _[: e f(t)dt

fis—a) = J‘:e’(""’” f(t)dt
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Ll

=

=

Ll

= [ e {e"r}d

L{e" f(0)}
e f(H) = L' {f(s—a)}

. There are some important deductions:

_ 1 1
L1 — at .+
{(s—a)z—i-bz} be sin bt

(s—a)

(5— a) e e“ cos bt

-1

(s—a)
(s—a) -

-1
= e” coshbt

(arom] -
ot b
o)
e

t .
—Ssimat
(s> +a*)’ } 2a

) 1 1.
L {m} = g(smat—atcos at)

. Second Shifting Property:

L {/()} =70
Then L™ {e™ f(s)} = G()

- [
By definition,
LG} = [[e G
- J'O”e*”G(t)dt+_|.;e’”G(f)d’
Lett—a=v

O+ e f(t-a)di

= [T v

e J: e f(v)dv



e “L{f(}
= e /(s)
G(t) = e f(9)

4. Change of Scale Properly:
It LYo = /0

Then L' {f(as)} = éf@,po
Bydefinition f(s) = L{f(})}
= | e
flas) = ["e* far
Letar=v

e - 40

Example 1.46: Find the Laplace inverse transformation of

. s+8 . 3s+7 | 3s+7 4 3s+7
@ s*+45+5 (ii) s —=25-3 (ii) {SZ—ZS—3} {(.9—1)2—22

s+8
Lt s+27 +1

(s+2)+6
= L7 |(s+2) +1

s+2 i 1
= L-l{(s+2)2+12}+6L {(Hz)2 +1}

B 1
As Ll{z } = cost

) s+8
Solution: (i) L' {m}

}
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By first shifting property

: {(s+2)2+1

L' R —
s +4s5+5

s+2

s+8

35+7
oo Lfl — Lfl
(“) {sz—Zs—3} {

= 3L_1{(s—1)2 2

e

35+7
(s—1)*=2°

= L_l

cos ¢

3(s—1)+10
(s—1)> =22

(s=1

}

e2cost+ 6e?sint

o]

= 3¢’ cosh 2t + 5¢' sin h 2¢

By first shifting property

Example 1.47: Find the inverse Laplace transform

_5¢
e

O -2

—as

se

(i) 5—

s —0

4
N

3

3

1
Solution: (i)L‘l{m} = ¥ L‘l{—

— L2 t— = et
.. By second shifting property

e—Ss
L (s-2)

(i) As L {

N
2 2
S —w

0

cos h ot

By second shifting property

se
) - |

Example 1.48: L' {

3
S

{é (=5, t>5

coshw(t—a) t>a

0

s° —3s+4}

r<a

t<5

1

(s—1)> =22

}



Laplace Transforms and
C iaes b
Solution: L 'y——5— l o

N

P —3s+4 1 1 1
e —— L= L' t-3L" =4l —
EE STy

4¢?
= 1—3z+7:1—3z+2t2

25 —65+5
el —" -
Example 1.49: L {33 657 +11s—6}

257 —65+5 }_ _1{ 257 —65+5 }

. . 1
Solution: L {s3 65 +115—6 (s =D(s=2)(s—3)

2°~6s45 4 B _C
(s—=D(s=2)(s-3) s—1 s=2 s-3

Solving the partial fraction

A=1,B=1C=2
2 2

25> —65+5 }
2576545 1 1 1 5 1
. -1Y73 2 = —L'{—F-L" +=L"
. L {s —6s5°+11s—6 ) {s—l} {S_z} 2 {S—3}

5
2 3
= —e —-e*+=¢"

2 2

1+2s
Example 1.50: Evaluate L™ | (5 +2)* (s —1)

) 1+2s A B _C D
SOllltlon. AS (S+2)2(S_1)2 - S+2 (S+2)2 (S_l) (s_1)2
Solving the partial fraction

A=0, B="1, C=0, D=~
3 3

{i} -1 1 Lo _1
s LG = T {(s+2)2}+5L {(s—l)z}

Lo iz plep iz
3 s 3 K

_1 -2 1 t
= —e t+t—c¢t
3

_ é(ez _e—zz)
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5s+3
Example 1.51: L 1{(S_1)(Sz +2s+5)}

5543 A, Bs+C
Solution: TS T Sl (57 42s45)

Solving the partial fraction
A=1,B=-1,C=2

{ 55+3 } NE L[ —s+2
A (s—l)(sz+2s+5) =L {E}—i_L {m}
_ e[_L—l S;Z
- (s+1) +4
PRI
(s+1)° +2°

¢—L' {%}HU {%}
(s+D)"+2 (s+1)"+2

_ 3, .
= e’—e’cos2t+5e‘5m21

-1 N
Example 1.52: Evaluate L {( g +1)}

. s _ =
Solution: As ——=— = (@ )y _¢ (5 +1+5)(s* +1-s)

As+ B Cs+D
2 + 2
s +s+1 sT—s5+1

Solving the partial fraction
A=C=0,8="".D=
’ 27 2
s _ 1 1
L_174 2 = -L' 2 T2
stHsT+1 2 s°—s+1 s +s5+1
_ 1 1 2_ 1
I CHEEINCOEE:
2 2 2 2
b
13 4 B 1 = 3
= ———e’sin———=e? sin—
22 2 3
2



2 N3 .t
= —sin—1¢sinh—
2 2

NG}
Example 1.53: Find the inverse transform of
' 1
(1) s(s2 + az)

' 1
@ iy

1
) S 1.
Solution: (i) As L‘ILZ +a2} = —sinat

a
; i1
L_l S(sz+a2) = J‘Ozsinatdt
1 ‘
_2[_COSal]O
a

(1-cosat)

1 l
(il L“{s(ﬁlf} = L“{[(Hl)—l](ﬁlf}

1 :
L {(S—l)s} = J,ed

1
Lt {(S - 1)s} = _|'0' (¢ —ydt

Il
)
),
|
~
|
—

1
and L! {(S—l)f} = _|.0l(e’ —1)dt
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S S G A
LS| = @ 2
2
= 1—e’[1+t+l—j
2

55=2
Example 1.54: L l{m}

Solution: Let — -4, 5
olution: Lel (4 o)-) " s+2 s
Solving the partial fraction

A=4B=1
S5s=2 4 1

= +
(s+2)(s—-1) (s+2) s-—1

L{L} _ 4,1{ ! }W{;
(s+2)(s—1) s+2 s—1

= 4 + ¢

—SS_2 ! -2t 1
L_l{s(s+2)(s—l)} = J 4 ve)a

= =2 +1

552 )
L' (s=-D(s+2)[ = jo(e’—Ze’2’+t)dt

= e +e? +1-2

Example 1.55: L {1ogs—+1}
§—

Solution: As L{#/(#)}= —%[leg (s+1)—log(s—1)]

|
|
TN
=}
+ —_—
[
|
Ly
| —_
[
N~

= —L(e”)—i—L(e’)
= L(e’—e”)
= L (2sin Af)
LA# = 2sinht
ﬂt) _ sin ht

t



Example 1.56: . {tanl ﬂ

i1
Solution: L‘{tan J= —L {—tan

21
Example 1.57: L {logs p }

s
st -1 -1 ., |d

Solution: L‘l{log 3 = —L'<—lo
s t ds
— _—1L1{i
t ds

_ —_lLl{ 2s
t |

Example 1.58: L' {cot™' (1+5)}

1

Solution: L' {cot ™ (1+ )}

e 'sint
t

Example 1.59: L' {log (1 + izj}
S

-1

1

1
_e[Ll{
t

st +1

{log(s2 —1)—logs’ }}

2
7 (1-cos ht)

llﬁ
t 1+(1+5s)

}

;{2cosht -2}

d
-L'{—cot ' (1+
. {dsco ( s)}

}
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_ 1 -1 . |d 1
Solution: L 1{10g(1+s—2j} = TL l{glog(us—zj}

Example 1.60: L! {k)g 1+—

1
Solution:=;L {—bg 1+—

1
Example 1.61: L' {Elog -

1 s> +b }
log——+¢ =

Solution: L! {E

2 et
7'[0 sin tdt

2
7(1 —cost)

)
)

(s—a)’

£ o'+ )1 tonts—)
o+ o)

-1 _,|d 5 ) 1 ., (d
ZL {zlog(s +b) +;L Elog(s_a)



-1 2 1 1
- —Ll{ = +—{L1
2t s +b t s+a

= ;—ll {2cosht}+ %e"”

e cosbt
t

Example 1.62: Apply convolution theorem to evaluate

S
Solution: L' {(Sz +a2)2}

1.
As=L‘1{S2ia2}=cosa‘[, L‘l{ o 2} =—sinat

2
S +a a

We have by convolution theorem

S 1 t 1
L { ) 2}=J cosa(t—u)smaudu
0 a

s+d* st+a

= i '[; {sin at+sin(2au — at)} du

t

= 1 {u sin at — 1 cos(2au — at)}
2a

2a 0

s
1
L_l{ 24 22} = —¢sinat
(s a) o

1
Example 1.63: Apply convolution theorem find L™ {sz (s2 - az)}
1 1 = lsin hat
Solution: As L' {S_z} =t L' ¢- a

We have by convolution theorem
1y 2/( .2 2 N _
L's (s —a ) = '[Ouasmha(t u)du

= lJ‘lusinh(al—au)du
a*o

lH—zcosh(at—au)} +l'|.lcosh(az—au)du}
a a o a’?

%{—lcos h(0)+ {—lsin h(at - au)}l }

0

= L}(—at +sinh al)
a
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Solution: J'OI X" (1=x)"dx = ’% , m>0, n>0
NOTES Let F(t) =[x ds
And F(x) = x' and E(x)=x""
Then F(f) = | R (-x)d
= F *F,
Using covolution, we get
L{F()} = L{F, *F}

= F (S).F,(S)
Where F.(S) = L{F,(9}
F,(S) = L{F,(®}
= L{r'}o{rm'}
_ nilae

N N

[mn

m+n

(=)
F(r) = L! o

_ Tl {1}

m+n—1
S P

m+n
‘ [mln

xmfl {—x n—1 dx — Z‘ernfl
'[0 ( ) m+n

Putting /=1

J-lx'”’l (1-x)""dx = [l
0 m+n

2
N

Example 1.65: L' {W},a #b

S S
Solution: L' {Sz e } = cos at, L {Sz e } =cos bt

2
N

By convolution L™ {W} = J.Ol cos ax cos b(t — x)dx

Self - Learning
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1 ¢
-1
cos (ax + bt — bx) + cos (ax + bx — bt)dx

1[sin{(a—byx+be} sin{(a+b)x—br} ’
2 a-b a+b

0

sin at —sin bt N sin at +sin bt
2(a—»b) 2(a+b)

1.8.2 Some Elementary Inverse Laplace Transform

If Laplace transform of /{7) is F(s) then f{(?) is called inverse Lalplace transform of
F(s) and we write f{(£) = L' (F(s))

L' called inverse Laplace transform operator.
Thus of L({(¢)) = F(s) then L' (F(s)) =A?).

Like Laplace transform, inverse Laplace transform is also linear and

Possesses some similar properties like change to scale property, shift property
(first and second), convolution theorem etc.

In short we are starting these property (without their proof). Proof ofthese

results are very similar to the case considered in case of Laplace transform.
1. Linearity: If L™'(F(s)) =f,(¢) and

L (F(s)) =/(D)

then L (c fi(s) + c,F(s)=c L '(F(s)+2CL"(F)/S)
or L (c F +c,F)=cf)+cfD)
. Change of scale:
L(fin)) = F(s) = LYF(s)=A0)
1 t
then L'(F(as)) = Zf (gj
. First shift/translation property:
If L'(F(s) = f(¢)then
L' (F(s+a)) = e"f1)
and L' (F(sta)) = e™f(®)
. Second shift property:
If L'\(F(s)) = f(t)y then

0 O<t<a

L' (e®F(s)) = g() {f(t—a) i>a

Next we consider some examples to obtain the inverse Laplace transform.
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Example 1.66. Find the inverse Laplace transform of

1 1
@ Js+s O T
Solution: We know that

L) =

2] - G
= n+ = =
s n! n+1

dtr R =
s *5(”52)%

- o[ L)
2 Js
1 ;5, ti%
= —e 2 1
V2 —% +1

1 1 3 1 3
L =L - =—L"
®) (sz—9j (3 s2—32] 3 [S2—32j

1 1
= L71 - — 1
(S2_9j 3 sin A 3¢

Some Elementary Inverse Laplace Transform

A Gj -1 5 L (Sij _ (n’ ”__11)!




7. LN(F(s—a)) = e" A1)

s
g L_l( - 2)zcosat
s’+a
t

9. L‘( j jL (F(s))ds = f(t)d

0

10. L' (e“F(s)=f(t—a) U(f—a)

1.9 UNIQUENESS THEOREM OF INVERSE
LAPLACE TRANSFORM

Suppose f(f) and g(7) are two piecewise continuous functions on [0, o] and are of
exponential order @ and having same Laplace transforms, i.e.

L(f(t)) = L(g(f)) for s>a

or F(s) = G(s) for s>a

then L1'F(s) = L'(G(s)), ie, fity=gt) VvVt=0
Proof: Let L(f) = L(g)

= L )—L(g) = 0

= L(f-g) =0 (Since L is a linear transform)

= L(f()-g(n)) = 0

We wish to show f{(7) — g(¢) =0, i.e., f=g for which it is sufficient to
show that L(f{(¢)) =0 for s >athen f{f)=0. V¢>0or if F(s) =0 fors>a
then f(r) =0 V¢>0.

Fix s > a and make the change of variables in Laplace transform of
e '=u. Then for

”
I

s +n+1,we obtain

0 = L(f(t)) :J'f(t) oottt gy
0= F(s)=Tf(t) e e el dt

0= Jilof(—log u) u”us”u(—l) du

u

= Ju u” [ (—logu)du

et= u
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t = —logu—e'dt=du
du = —e'du
= —ldu
u
t=0 = u=1
t=0o = u=0
If we assume

h(u) = u'f(—logu) then h is piecewise continuous on [0, 1]

and  lmh(u) = lime™ f(1)=0 (as 5, > a)

u—0

Thus we define /2 (0) =0 then /4 is piecewise continuous and satisfies

1
JO h(u) p(u)du =0 for every polynomial p.

This implies that if g has or power series expansion which converges
uniformly on [0, 1] then

I;h(u)g(u) du = 0 ()

If /2 is not then zero function then replacing / with— 4 ifnecessary, we can
findau, €(0, 1) and an interval J = [u,—c, u,+c] =c [0, 1]and onc, >0 so
that 2>c on].

2
u—1u,

Consider the function g(u)= %e( / J . If d> 0 then g has a power

series expansion which converges uniformly on [0, 1] so that (a) holds.

Setting 1= [gdu=["" glu)du
; .
c/d 2
or I = ch/def’ dt ...(b)
1 (l-ug)  _p
and Iz - 40+cg(u)du:-[c/d e’ di ()
(#p—c) —cld
I, = ,[0 g(u)du:'[do/detzdt -(d)
Let A= I “e’dt them A>0

and given € >0 30>0 suchthat 0<d<3

A
then [123, 0</I,<e, 0<I,<g



Because 7> ¢ >0andJand |-h| <N

for some N < oo

L h(u) g(u) du > C‘;

and .[[0,1]\1 h(u) g(u) du|<2Ne
and thus
1 A
joh(u) g(u) duz ¢ =2N &>0
: agd . .
provided € <—— which Contradicting (a).

4N

This proves that /2 is a zero functionand s by definition of /'we must have
equal to the zero function.

we F(s) = 0  for s>0

then fiy=0 v =20

Hence L(f(1)—g(f)) = 0 for s>a

= f(H—g(t)y=0 v t>0

= A0 = g

or L' (F(s)) = L(G(s)) for Allz=0

i.e., inverse Laplace transform is unique, if their Laplace transforms are
given equal for s> 0

Convolution Theorem
If Fl(s) = L(fl(t)) and Fz(S) =L Qg(t)) then

L(J, £ (e) £ (=)

L[ f(@fi (1= y)dy
F (s) F(s)

[ K@ ft-y) dv

or L'(F (s)F(s))

Proof: Left to reader as an exercise.
Applications

For example, obtain the inverse Laplace transform of

1 5
@ (s+a)(s+0) ® (e a)
(a) Solution: L Em] =L (F,(s).F,(s))
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Laplace Transforms and where,
Its Inversions

F/(s)= = L' F @) =f)=e"

NOTES

S 1Y e
F)=5+p = L (EJ‘fz(t)_eb

thus by involution theorem

1 1 -
L [—(M)(Hb)J = [ £@ A6~y dy

t
_ '[ e—alye—(t—y)bdy

0

t
—ay_~th _yb
= Je“}e’eydy

0
t
_ esz J‘O e—(afb)y dy

—(a—b)y !
_m €

—(a=h)

= €

0

b -1 s’ _ 7l S S _ 7!
® L [—(Szmz)z} L (suazj(suaz) LY F©F(5))

N
(o5
S
I
&
(o5
Il
[a—
&
VR
[38)
0o
N—
Il
(@]
e
w2
Q
S
Il
-
—_
~
N—

F(s) = — ; =1 f,(z)=cosat

2
2 S =L—l N N
L[(Sz+a2)J {sz+a2 S2+a2}
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= LHF\(s) Fy(9)}

F(s) = Sziaz =F(s) = L(F(s) =/ ()= cosat

and f, (t) = cosat

thus by Evolution theorem,

Ll(sziaz)z = '[(:cosay cosa(t—y)dy
- %J.;[cosaﬁcos(Zay—at)] dy
- l[ cos at+isin(2a —at)]
) Y 2a 4 0
2 s® _ ;L t t + sin at
(52+a2)2 Ly [at cos at + sin at]

1.10 INVERSE LAPLACE TRANSFORM OF
DERIVATIVES AND INTEGRALS

1. Linearity Property of Inverse Laplace Transform
Theorem 16: If L{F (1)} = f(p), L{F, (1)} = f(p) and ¢, and c, be two
constants, then
LHe fi(p)te, f,(p)}=cF()+c,F, (1)
re.LMe fi(p) te, (P} =c L)} el ()}
Proof: Now L{F (0)}=f, (p) and L{F, (1)} =1, (p) ..(1.10)
By linearity property of Laplace transforms, we get
Lic F () +c,F,(0)} =c, L{F, (O)} +c, L{F, (1)}
=c /i (p)te, [,(p)
By the definition of inverse Laplace transform, we get
LHe fip) +e, f,(p)=c F((D)} + ¢, F(n)}
=c, L fi(p)} ¢, LS, ()}
LY@ =F @0, L/, (p)} =F,0)

Example 1.67: Evaluate (@L']-S __3*4p  8-6p
2p-3 9p*-16 16p* +9
| 2p-5
by L' =2
® {9;72—25}
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Laplace Transforms and

Its Inversions Solution: (a) Now L—l{

6 3+4p 8—6p
T 9.2 + 2
2p-3 9p*—16 16p~ +9

= )b [ g7 1 A7 p
NOTES oL {217—3} o {9;72—16} * {9172—16}

+8 L1 —; —6L—L
16p% +9 16p% +9

13 ..4 4 4 14
=3e3/2’——— sinh—7——cosh—7——.—sin=¢—=cos =t
34 39 3 23
4
=3e3/2’_l smh—t——cosh—l+—smét——cos—t
4 9 4

B 2p -5
b) Now L' i ———
(b) Now {9;72—25}

=1 _2r —5771 _
9p*-25 9p?-25

_ 2.4 p 5.1 1
=7~ £ N _ /iy -
9 {pz—(smz} 9 {pz—(sn)z}

5 5 3 5
2 h =¢ — =x=sinh=¢
/9cos 3 5% 3

I

|
(]
o
w2
=
-

|

|
=z
5
5

Example 1.68: Evaluate L™ {;2}
(p+D(p~+1)

Solution: Here ! {;2}
(p+D(p~+1)

=L {%% - %} [by resolving into partial fractions]
b p+

Ll VL) o L) ]
2 p+l] 2 p?+1 2 P+l

1r _ .
Self - Learning = —|:e " —cost +sin l:|
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2
Example 1.69: Evaluate L' 36!’ + 222;7 +18
p +6p  +1lp+6

. 6p> +22p +18
Solution: Here L 3p +2 Pt
p +6p  +1lp+6

=L-1{ 6p% +22p+18 }

(p+D(p+2)(p+3)
[Let 6p°+22p+18 | _ 4 B C
(p+D(p+2)Xp+3) p+l p+2 p+3

or6p*+22p + 18 =A(p+2) (p+3) + B(p+ D(p+3) + C(p+1) (p+2)
Putting p=-1,6-22+18=A(-1+2)(—1+3)=>4=1
Putting p=-2,24—-44+18=B(-1)(1)=B=2

Putting p=-3,54-66+18=C(-2) (-1)= C=3]

=7 1 N 2 N 3
p+l p+2 p+3

el
p+1 p+2 p+3

=e ' H2e? + 3

2
Example 1.70: EvaluateL—l{iz{\/;—lJ 7 }

p p 3p+2
s (Jp-1) 7
Solution: Here L™ 5+ P -
p p 3p+2
_ 1|5 . p 2\/; 1 7 1
T e e R )
3 2
p p pp P+
3

6L {%}JFL“ {i}—zrl {—;/2}—151 ! 5
p P j2 3 p4s
3
1/2 _2, 1/2 =2
el T T3 —6r+1=2(L) 4_1.3"
il (3j 3 T 3
2

3 5 7
Example 1.71: Show that L {lsinl} = ! S+ ! - ! 5
P p ((E) () ()

Solution: Here L! {i sin l}
p P

_ )11 wpy wp® wp)
¢ {p(p_ 3 Tl +J}
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£ £ ¢!
=1- + - +
B’ B W
2 4 6
SlmﬂarlyL‘{ cosl}—l— ! >+ ! 5= ! >t
p P 2" (@ v

Example 1.72: Show that J'()m e dy = %\/E
Solution: Let F(f) = j:e—fxzdx e
- L{F(f)} = j:e‘p’F(t)dz

— [T {j:e-fxzdx}dtby(l)
—j U Pl dt}lx

[changing the order of integration]

el

_1x

ff_T

T
2
. 1/2 1 P 1
L == —
2Jp ) r(1/2) AN

F(H=L {
or Jwe_mzdx = EL
0 2 Jm
Now putting 7 = 1, in the above result, we get
Jn

I;Oe_xzdx = 7

Example 1.73: For a > 0, prove that L™ {f(p)} = F (¢) implies

bt

L a0y = (L[]
Solution: Here L' {f(p)} = F(?)

) =L{F®} = [ e Fydi

f(ap+b)= _[OOO @R dr = j;o PV E(f)dr



flap+b) =L {ée_bF(é J}

—bt

S L fap + b)) - éeTF(t/a)
Example 1.74: Evaluate L' P
b - {(p2 v +b2)}

Solution: Now L' P
{(p2 +a*)(p? +b2)}

s p D 1
PPidd pPab B -d
_ 1 -1 p -1 P
= L —-L
bz_az{ {p2+a2} {p2+b2

1
= (cos at — cos bt)
—a

2
Example 1.75: Evaluate L' 2p° -4
(p+D(p-2)(p-3)

2p7 -4 _ 4 B C
(p+D(p-20(p-3) p+1 p-2 p-3
or 2p~4=A@P-2)(p-3)+Blp+1)(p-3)+CE+1(p-2)
Putting p =1, 2-4=A4(3)(4)=>-2=124=4=-1/6
Putting p=2, 8-4=B(3)(-1)= 4=-3B=B=—4/3
Puttng c=3, 18-4=C.41=14=4C=C=17/2

L_l{ 2p% -4 }
(p+D(p=-2)(p-3)

Y e S S S
6 p+1 3(p-2) 2p-3

= __lL—l 1 _iL—l o +ZL—1 U
6 p+1] 3 p—2 2 p-3

1
=X A T
2

Solution: Let

6
2. First Translation (Shifting) Theorem

Theorem 1.17. If L' {f (p)} = F (¢), then L {f (p —a)} = e L {f (p)}

Proof: Since L' {f (p)}=F (¢), so L {F(¢)} =f(p). Then by the first translation

property of Laplace transform,
Lie" F()} =f(p—a)
e F(n)=L"f(p—-a)}
or LY f(p—a)} =e" LH{ [/ (p)}
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Example 1.76 (a) L' | —2+ L pypr]_42¥12
P @ {p2+6p+25 ®) p’+8p+16

Solution: (a) Here L-l{zf’iﬂ} - L—l{ M }
p-+6p+25 (p+3)° +16

=e " {}277_2} by the first shifting theorem
p-+16

-1 P 1 1 .
I v L — L N 20 { }‘| I v _ Sln4l
e { {p2+16} p2+16 e cosdt—2 2
= 6‘3’{00541—%sin4t}

(b) Now L 4p+12 _p1)Apt12
P +8p+16 (p+4)°

— 7 4p+16-4 =L‘1 4(p+4)-4
(p+4)7° (p+4)7°

=4e ¥ [} {p—;l}
p
by the first shifting theorem.

- 4e—4'{r1 {%}—L_l {?H = 4e [1-4]

Example 1.77; Evaluate L' | —£
p 2]

Solution: Here L! P —y1jpri-l
{(pﬂ)”} {(p+1)5/2

=e'L! {%} by first shifting theorem
p

ofe ol

11/2 13/2

e
F[3j (5/2)
2

p A2 ( T(n+1)= nl“(n)j

Jz 31zl landr@/2)=vm

31
272

{ 12
e’ (—j (3-21)
T



Example 1.78: Prove L™ {%} = (%] sinh (#/2) sin (%}

p +p2+l

Solution : Now . '{— £l —p1J___ P
{ ! } {(pzﬂ)z—pz}

p +p2+l
_ - p a1 1 1
=L - 2 =L 5{ 2_ ) }
(p” +1=p)p~ +1+p) p-—p+l p +p+l

—SIn—--/

NG
= sinh [%)% sin (?t] = %Sinh Gj sin (?t}

Example 1.79: Evaluate L™ {%}
(p+2)°(p-D

_ 1(e’/2—e_”2) 2 . B

Solution: HereL“{%} =L {l{ ! i ! 2}}
(p+2)°(p-1) 3L(p-D° (p+2)

el
(p-1 (p+2)

Ll LU L) L [by the first shifting theorem]
3 p2 3 p2

N PR P IS U I (PSR VA |
= —(e¢ —e ) —F=—(e —e —
3‘( ) {pz} 3’( )|_1

%(et _e—zt)t
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Laplace Transforms and
Its Inversions

Example 1.80: Evaluate L' {#}
(p-D7(p+2)

NOTES Solution: Here — 2% =4, B , €

(p-D(p+2) ((@=-D (p-D° (P+2)
ordp+t5=A(p-1)(p+2)+B(p+2)+C(p-1)*
For p=1, 9=B.3= B=3

For p=—2,—3=9C:>C=—%

For p=0, 5=-24+2B+C=24=23 5=
gl 4pts (ot b 3 11
(p-1)7(p+2) 3 p-1 (p-1)* 3p+2

=1L-1{;}+3L-1{;}_1L-1{ 1 }
3 (p-l (p-D>] 3 [p+2

— Ly {i} et Ll L [by first shifting theorem]
3 P p2 3

W | N

1
=>A=-
3

2t

el +3e't —le_
3

W | —

2

Example 1.81: Evaluate L™ {p—ﬂ}
p-+p+l1

p+—+—
Solution: Here L‘I{Z‘D—H} =L 2 2 >
p +p+l (p+ 1)2 ) ﬁ
Pry 2

[by the first shifting theorem]

2

1
1 _
2 p+
=22
REE
P

— o 2| P 1. 1
2 2
RSN EER o I I Y
2 2
I U U NE
= e COS—1t + ———=sm| —¢
2 23 2

1
Q
|
N |~
I
(@]
@]

w
TN
~
~
+
&l -
w2
4.
=
TN
|5
~
ﬁ
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Example 1.82: Evaluate L %
(p+1)

Solution: Here L' {%} =L"! {Ll_sl} =e' [ {p__sl}
(p+1 (p+D p
[by the first shifting theorem]

3. Second Translation (Shifting) Theorem

F{t—a)t>a
0 Jt<a

Theorem 1.18: If L' {f(p)} = F (f), then L {e* f(p)} = G(t) = {

Proof: Since L' {f(p) }=F (¢),s0 L {F(t)} =f(p).
~L{G (1)} =e f(p) [ By 2nd shifting theorem of Laplace transform]
L Le S =G = { T

Another form: Let L™ {f(p)} = F(?), then
L e f(p)} = F(t — a) H(t-a)

where H (¢ —a) is Heaviside’s unit function.

=F({t—-a)H(t—a)

o, T
e 2P

Y -3
Example 1.83: Find (a) L™ 273 . (b) L_l{&; ”}
p~+9 pT+9

Solution: (a) Here L' {%} = cos 3¢
p-+9

Then by the second shifting theorem,

cos3(z—ﬁj,t>2—7t
L—l{ p e—ZpE} _ 3 3

2
pm+9 3 0 ,t<23—7t

=cos 3 [,_E)H(,_z_“j
3 3

6

p2+9

(b) We have, L‘l{ } = gsin3t =2 sin 3t = F (¢) (say)

Then by the 2nd shifting theorem

I 6 Py F(t=3)fort>3
p2+9 0 for <3
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Laplace Transforms and

i {2ﬁn30—3ﬂbrt>3
Its Inversions =

0 fort<3

5
Example 1.84: Find L { e’ 4}
(p-2)

3
Solution: Here L! ! 0= e¥ ! {% L
(r-2) p 13

Hence by the second shifting theorem

NOTES

3
I {6—5;: (p_lz)z} _ 82(1—5)%[_]0_5)

-
Example 1.85: Find L 1{-=
p2+1

Solution:NowL‘l{ 21 }=sint
p-+1

Hence by the second shifting theorem,

p2+1

=—sintH (t—m)

L“{e‘l’“ ! }=sin(t—n)H(t—n)

2

o
Example 1.86: Find L' {M}
p-+9

Solution: Now L! { 23

=sin 3¢
p +9

Hence by the second shifting theorem,

_p
] el
p+9 p - +9 p+9

=sin3¢t+sin3 (1—n) H({t—n)=sin3t—3 sin3t H(t— )
Theorem 1.19: Change of Scale Property: If L '{f(p)} =F (¢), then L'{f

t
a

Proof: Since L' { f(p)} = F (¢), so L{F ()} = f(p)

(ap)} = iF( j, where a is constant.
a

We have L{F(ar)} =~ /(2) L(L11)
Now replacing a by Lin equation (1.11), we get
L{F[éj} =a f(pa) or L{éF[ij} =f(pa)

Self - Learning or LY f(pa)} = éF( j

t
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[by the definition of inverse Laplace transform|

Example 1.87: If L' 2‘” S = lzsinz, then find L' | —32P__
(p* +1) 2 (16p* +1)*

Solution: By change of Scale property, we get

4 p? +1)° 424" 4
orl | 320 -
8 16p* +1)°

or L‘l 32—p = isini
(16 p° + 1) 4 4

1

o | —
A~
A~

p NI
Example 1.88: If L& 1 =%V then prove that
p p1/2 ,TCt p

a
e (p) _ cos2at
pl/2 \/E

Solution: By change of scale property, we get

’ Via
L= = a. F (ta) = a. °2
=

Ve Jm | m

Inverse Laplace Transforms of Derivatives

o L_l{e“”l’} a 1 cos(ta) cos(2Nr)

Theorem 1.20: If L7'{f(p)} = F (¢), then L'{f"(p)} =L {d f(P)} (=1)"
"Fi),n=1,2,3... v
Proof: Since L' {f(p)} = F(¢),s0 L {F(£)} = f(p)

=( ) df(P)

We haveL {¢" F(f)} ==D"f"(p)

LD f"(p) = 1" F()
orL ™ {f"(p)}= (=1)" 1" F(2)

Example 1.89: Evaluate L '{— 2
(p2 + a2 )2

ion: -1 4 _ga)_ 1d 1
Solution: Now L {(p%az)z} L { 2dp[p2+a2 ]}
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—_Lp)df 1

= 2L {dp[pz'f‘az]}
1 _ 1

(st

sinat ¢ .
=—sinat
a 2a

1
—t
2

Example 1.90: Evaluate L' __p+l
(p*+2p+2)°

Solution: Now L' {ZLIZ} =/ {P—Jrzl}
(p”+2p+2) [(p+D~ +1]

= [! {( . P = } [by the first shifting theorem]
P+

1d 1
—1 L—l -
¢ { 2dp{p2+l]}
ecfs[
2 dp p2 +1
_ Iy - 1 1 N
= (—Eje "=y {pz +1} =3¢ "tsint

Example 1.91: Evaluate L' {log p—+3}
p+2
Solution: Let f(p) = log : ; —log (p+3)—log(p +2)
, _ 1
f (p) a p+3 p+2
L—l{f!(p)} =L—1{ 1 }_L—l{ 1 }: 8_3’— €_2’
p+3 p+2
or(-1)tLY{f(p)} =g —¥

-2t =3t

or  LYf(p)y ="

3 o2
orL™! <{log pProi-— %
p+2 t

Example 1.92: Evaluate L' {log(l + %J}
p

2
Solution: Let f(p) =log [p :1J=log @P*t1)-2logp
p

2p 2

p2+l P

/') =



LYf'(p)} = 2L—1{2L}— 2 L—l{i}= 2c0s 12
p-+1 p

2—2cost
t

or(-1)t L' {f(p)} =2cost—2 or L'Y{f(p)}=

2(1- t
or L} {10g{1+%} _ 2(1—cos?)
P t

1.1 MULTIPLICATION AND DIVISION BY
POWERS OF 's'

Theorem 1.21: Let F(7) be continuous for all #> 0 and be of exponential order G
ast—ooand L {F (7) } =f(p) exist, then

Lit F(tyy = -4 ;P) ')

Proof: From the definition, f(p)= J: e PIE(t)dt ...(1.12)

Since F(7) is continuous for all # > 0 and is of exponential order G as t — oo,
then Leibnitz’s rule for differentiation under the sign of integral is justified and so
from equation (1.12), we get

— f( )= j (e‘P’F(z))dt [ e P
= j:e‘P’{zF(t)} dt =—L{t F(1)}

or Lit F(f)} = —d%f(p)= ~f(p)

General case: Theorem 1.22: Let F(7) be continuous for all # > 0 and be of
exponential order g as  —> oo and L {F (¢)} =f( p) exists, then

L{t" F(t)} = (- 1y’ % = -1y /" (p)

Proof: We shall use the principle of mathematical induction to prove it.

For n=1, the theorem reduces to the form:

Lt Fay ==L =1 )

which is true by the above theorem

Let us assume that the result is true for n = k, then

Li# F(y) = (1) 4L @) f (p)

o k
or jo PR dr = (—1)"%
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Differentiating both sides w.r.t. p and applying the Leibnitz’s rule for
differentiating under the integral sign, we get

* k+1
| O P E(oydr = (- S P)
0 op

dpk +1

I o dk +1
or jo (e P Foyde = (1) ﬁ

k+1
or J‘O —pt{[k+1F(t)}dt = (- 1)k+1 y kJ:EP)
'p

or L{Z‘ k+1 F(t)} _( 1)k+1 d** f(P)

dpk +1

Hence by the principle of mathematical induction, the result (1) is true for all
positive integers.

Example 1.93: Find L {# sin at}

Solution: We know that L {sin at} = —*— = f(p) (say)
p ta

_ dfp)_d*( a
L{fsin at} = (-1)> df E[ﬁ}

_d —2p
ad— 2. 2.2
p|(p~+a”)

— (= 20)(}7 +a*)? —p2p2(p +a’)
(p* +a*)*
_( 20 )p +a’ 4p _ 2a(3p2—a2)
(p*+a®y (PP +ad?)
Example 1.94: Find L {z (3 sin 27— 2 cos 2¢)}
Solution: Now L {(3sin2#-2 cos 2¢)} =3 L{sin 2t} —2 L{cos 2t}

3.2 2. 23—
== - (2 L) _ f(p).say
p +4 p +4  p +4

df(P)

- L{t(3sin 2t —2cos 2t)} =(1)——=

_ d|23-p)
=(-1) &| 222
( )dp{p%J

(P’ +4) (D-G-p2p

= (=2
(p* +4)
_ —4-6p+2p° _8+12p-2p°
(p*+4? (P’ +4?

Example 1.95: Find L {¢" e}



Laplace Transforms and

Solution: NOWL{E“’} - ﬁ = f(p), say Its Inversions
: wan — 1y 4" (p) _ nd"( 1 ]
. LA{tey =(-1)y ——==(-1)y—
e} =) dp" D dp"\p-a NOTES
— n (‘an |ﬂ
=D T "
(p-a)"*" (p—a)""!

Example 1.96: Find L {# cos ¢}

Solution: We know L {cos 1} = —Z— = f(p), say

p2+l
d3f(p) d’ p
S L{fcostt =(-1)y—LH ="
{ =D dp® dp3 p2+1

. l)d_z{w}__d_z{ 7 +1 }
dp* | (p* +1)? dp* | (p* +1)°

_d @D 2p= (=27 + 2p
dp (p*+1?

_d|2p’+2p-4p’+4p|_ d|2p’-6p
(p*+1)° dp| (p+1y’

dp
_ @+’ (6p° -6 -2p’ —6p)3(p7 +1)* 2p
(p+1)°

_ 6p*=36p” +6
(p* +1?
Example 1.97: Find L {(#*— 3¢+ 2) sin 3¢}

Solution: We know L {sin 3¢} = 3 = f(p), say

p2+9

2
=1 e 2 s

o L{(#? =3¢+ 2) sin 3t}
Ip

_d? 3 d({ 3 3
= — +3—|— +2.—
dp=\ p~+9 dp\ p* +9 p-+9

_d{ —6p} 18p 6

dp| (P2 +97° | (P2 +92 p*+9
_ _6(p2+9)2—2.p(p2+9)2p_ 18p 6
(p*+9)° (P*+9° p*+9

B 6p2+9—4p2 18p 6
- 2 3 2 2 T3
(p”+9) (p"+9° p°+9

18p% —54 18 6
_ 18p B P

(P +9° (P49 pP+9
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1.11.1 Effect of Division by ‘# on Laplace Transform
Theorem 1.23: Let L{F(#)} =f(p), then
L {@} = J: S (p)dp, provided the integral exists
Proof: From the definition of Laplace transform, we get

)= |, e Flodr, (1.13)
Integrating equation (1.13) w.r.t. ‘p’ fromp =p to p = 0, we get

- — ([ -pt
[ 1@ = [{[" e rwld

Since p and ¢ are independent variables, the order of integration in the
double integral of R.H.S. can be interchanged.

5 1o = [ {[T e ap|rra

_ } F(t)dt

— <l e P -
I

P

= Jwe—Pt {m}dt = L{m}
0 t t

Example 1.98: Find the Laplace transform of %al Does the Laplace transform

cosat

of exist?

Solution: We know L{sinar} = —“— = f(p), say
4 +a

inar B _ - _ _
oL {sma} =J. 2a 2dp=£tan 12 —tan ' eo—tan~' £
t P p +a a a » a
= E—tan_lﬁzcot_1£
2 a a
NowL{cos at} = 21’ > =f(p), say
p ta

oo 1 oo
- L COS”’} = Py = ~[log(p? +a*
{ 5 fp a2 P 2[ g(p )L

= l{ lim log(p2 + az)—log (p2 + az)}
2| poe

which does not exist since log (p* + a?) —> 0 asp — .

.2
Example 1.99: Prove thatL{SH; l} = %10g{(p2 +4)/ p*y

Solution: We know L {sin*#} = % L{2sin’t} = % L{1—cos 2t}



N1 _p |- 2
2lp p’+4 p(p? +4)
.2
L s~ ¢ _ —
{t Rt A e U

1 1 o ] 2 o0
= —log p——log(p* +4)/ = —log 2p /
2 4 p A4 “pi+4lp

- 1 P’ 1. p*+4
—Zlog i—log 3 = g

1+ pr4) 4 I3

2 " p-1

Example 1.100: Prove that L {Sinh t} = l1og prl

Solution: Now L {sinh ¢} = = f(p), say

p _
‘.'L{Slnhl‘} J' F(pyp = J' pzl_ldp

1+—

p+1 1 p+1
0+logt——|= —log——
{ gp—l} 2 gp—l

1.12 CONVOLUTION PROPERTY

Definition 1. Let fand g be two functions defined in [0, « ). Then the convolution
of fand g, denoted by f * g, is defined by

F*g) () = [ /(gt-1dt . (a)
Note: it can be shown (easily), that / * g = g * f. Hence,

(F*2) (1) = [ e@re-vdt ... (b)

We use either (a) or (b) depending on which is easier to evaluate.

Theorem 1.24. (Convolution theorem) The convolution / * g has the Laplace
transform property

L((f*2) ())=F(5)G(s).
Or conversely

L' (F(s)G(s))= (f*2) (1)
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Proof: Using definition, we find

L((F*2) @)=, (1*2) @y “dr

z-[ow(.";f(T)g(t—T)dt e dt

@

777777777
—

V4
0 !

Fig. 1.2 Effects of unit step function on a function f (t). Here b > a

The line t =¢. The variable limit of integration is applied on T which varies
fromt=0tot=1+

Let us change the order of integration, thus apply variable limit on z. Then ¢
would vary from#=1to = « and T would vary fromt=0to 1= « . Hence, we
have,

Lrrow) = ([ e se-nd)r@ar

J:(J: ew'g(“)d“)f(T)e’”dt, (—T=u

(J: ef“'“g(u)du) (J: ef‘”f(’c)d’c)

F(s)G(s)
Example 1.101: Consider the same problem as given in Example 1.100 of Lecture.
Note, i.e., find inverse Laplase transform of 1/s (s + 1)

Solution: We write H(s) = F(s)G(s), where F(s) = 1/s and G(s) = 1/(s + 1).
Thus f(f) = 1 and g(¢) = te”'. Hence, using convolution theorem, we find

h(t) = jo ft-T)g(t)dt= jo Tedt=1-(t+1)e”
Example 1.102: Find the Laplace transform of 1/ (s* + ©*).
Solution: Let H(s) = 1(s) G (s), where F(s) = 1/(s* + &) and G(s) = 1/(cs* + @)
Thus, Ar) = sin(wf)/o=g(?). Hence,

% jo sin(@1) sin (o7 - 7)) dt

h(f)

1.
- o (sin(r) — i cos(wr))



1.13 COMPLEX INVERSION FORMULA AND
HEAVISIDE EXPANSION FORMULA

Complex inversion is an useful too for computing the inverse of Laplace transform
) = L7 (F(s)).

This tool is based on the methods of contour integrations and for this technique
it is required that transform parameter s to be a complex variable.

Let us consider a continuous function f{7) possessing Laplace transform.
Extend fto (— o0, o) by defining f(r) = 0 for £ <0

Then fors=a+ib

L) =F(s)=[ e f(0)ar
ZJ':"; e—(a+ib)tf(t) dt

[ ee f @y L (1.14)
L(t) =F(a, b)

Inthisform F(a, b) represents the fourier transform ofthe function e “£{7).
Le., L)) =f(e“f(n)
This may be taken as then relation between Laplace and Fourier transforms.

Suppose f(7) is continuous on [0, o] and f{¢) = 0 for =0 and f'is of exponential
order d. Also f” (t) is continuous on [0, co]. Converges absolutely for

Real(s) =a>a, ie.,

f(t)|dt <o fora>a> a.

[Mer@)a =] e
= g(t) =ef(tr) is absolutely integrable.

And we may write g(7) (in view of Fourier inversion theorem).
0 =ir e”"F(a,b)db t>0
& 2w = ’
This reads to the representation of /(7) as f(t)
= [T e F (a,b) db,1 >0 (1.15)
2n =
Taking s = a + ib in Equation (1.1) since a> o

1
dy = ;dS and so f'in given by

1 a+io
f) =— e F(s)ds
fi) =gl @ F
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_L i a+ib S d
or =S Aam ], e Sf(s)ds
1 . 1 a+ib %
or f(t) == lim — e” f(s)ds ..(1.16)

27i b—e 2700 Ya=ib
This is called complex inversion formula (or Fourier-Mellin form).

Where the integration is to be performed along a vertical sine at a> a,
and the vertical line is called Bromwich line.

Heaviside Expansion Formula

P
Consider F{(s) rational function such that F (s)= ) ES; where degree of Q(s) is
s

greater than the degree of P (s) (both P(s) and Q(s) are polynomials).

Let o, 0, .....o._are roots of Q(s) =0
then (s) = (s—a)(c—-a,) ... (s—a)

P
Thus (s)

using partial function we get

Fls)=—2 4 —2 4 S (1.14)

(s—a,) (s—0a,)

Any coefficient ¢, in (1.14) can be evaluated by multiplying (1.14) by

(s — o) and taking the limit s o . All terms in the partial partial fraction vanish
except (s—c,).

Thus we get

o tmf-a g

¢, = P((xk) ds K
Loy [+(=)

and (1.17) gives



F(s) = =
O 06) B (@) (5-a,)
1 2 P(a,) o 1
= fin = L (F(S)):;Ql((jxk) [S %]
c p(dk)'edkt

This is called Heaviside expansion formula.

Now we consider some applications of this Heaviside expansion formula.

s*+2s5-3

Example 1.103: Find the inverse Laplace transform of —————
s (S - 3) ( s+ 2)

s +2s-3 _P(s)
s(s=3)(s+2) O(s)
Here ) = s(s—3)(s+2)=s—5"—6s
roots of Q(s) : o, = la, = 3, o, = — 2
Q'(s) = 35 —2s—6

Solution: Let F(s)

(say)

F _ i_i_ CZ + c3
(<) s s-3 s+2
LT
Q'(o) 2 03
P2 _3
ST 02 10
thus
3
A = LI(F(S))=Zce‘”
i=1
_ l ot+i63t ie—Zt
2 5 10
— l+i63r ieizt
=743
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Example 1.104: Find the inverse Laplace transform of

S(s+2)3
Solution. H F(s) = s rtial fracti
olution. Heve (s) = S(512) (using partial fractions)
or F(s) = 9 42 5 .5

(S+2)3 (s+2)2 s+2 s

PO [ P(s) ~ 1 1

C4_ , - -
O %Q(S) B {%s(s+s)3} . 8

1 1 1 1
Th F(s) = - + =
ST ) a(se) 4(e2) 8s

2t

S L) = 0= (P - )4

1.14 EVALUATION OF INTEGRALS

Wo know that F(s)=L(F(1))=["e™ f(0)dr (1.18)

Assuming the integral in R.H.S. of (1.18) is convergent and taking s — 0
we get.

j: F(t)dt = F(0) (1.17)

The relations (1.18) and (1.19) can be used to evaluate certain definite
mtegrals.

Example 1.105: Evaluate the following integrals using Laplace transform.

(a) J? t*e”'sint dt (b) J? cos x’dx

e 'sint
t

dt

© [ J,(0)dx @},



Solution: (a) We know that Laplace Trjfl?;ﬂrms and
' 1
L(sint) = I
i NOTES
d 1
= L(2sint) = (—1)2%&2“)
_ d|(=1)(2s)
ds (sz+l)2
(-2)(2s)(2s) 2
= (_1) 5 3 T, 2
(s +1) (s +1)
8sz+2(s2+1) 6s2—2
- (52 + 1)3 (s2 +1)3
-2(1-35)
- (l+sz)3
. -2(1-35)
or '[0 e’ tsintdt = W ..(1)
taking s =1 in equation (1) we get
o -2(1-3
J.e’lt2sintdt = ( 3)=i=l
0 (1+1) g8 2
I 2
(b) I = '[0 cos x“dx
Let F(t) = '[:costnz
there L) = J.:e"‘” (J.:costxzdt)dt
- '[:{I: e cos txzdt} dx
= J.:L(costxz)dx
@ N elf - Learnin
L) = [, =) v o
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or

dx

X

putx’=stan 0 = 2xdx =ssec’0 doO

ssec’ 0

o stan©

0

o0

do

2
= @=tan" (X—j =1
s

— B=tan"' () =%

Then (Equation 1.16) becomes

or

L{A0)

L(A0)

A1)

A

A1)

0

Jn/z s ssec’ O

dao
s’ +s*tan’ 0 YstanO

1 o2 . -12 12
——| sin"’“Bcos’ 0 do
2\/— JO

N

T [

o )
2

AR A D

N 2

1 i

i 1
s gpn WV
sm4 ﬁ

T
225
“cost iy =L —= j
I" (2@
T LI[LJ_ T L
N2 \s) 22 m
1
2\ 2¢



(d) Let 7= j:

w 1
or '[ cosldx = —. | &
0 2\ 2t

taking 7 — 1 we get

B 1
I = '[ cosx’ dx =— r
0 2\2

©) = j: J, () dt
J (9) s the Bessel function of order 0.

1

2

and we know that L (J,(¢)) =
sT+1

1

st +1

or j: e, (Odt =
taking limit s — 0 we get
f%@m= 1

e 'sint
t

dt

We know that L ( s1nt atj =cot™ (ij
a

© _. sinat i S
or j e 2= df = cot 1(—]
0 t a

takinga=1,s=1 we get

o 1 T
J‘ o sint dr = cot 1 T
0 ¢ 4

Check Your Progress

. How will you define the function of exponential order?
10.
11.
12.
13.
14.
15.
16.

Define the inverse Laplace transforms.

What is the linearly property of inverse Laplace transform?

State the first shifting theorem.
Define second shifting property.

What do you understand by the change of scale property?

Define the term convolution property.

Give the Heaviside expansion formula.
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1.15 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The Laplace transform is a widely used integral transform and is denoted

by £ {f(¢)}. Itisalinear operator ofa function /{7) including a real argument
¢ (¢ 0) that transforms it to a function F{(s) with a complex argument s.

. When the Laplace transform is defined without condition then the unilateral

or one-sided transform is normally considered. Alternatively, the Laplace
transform can be defined as the bilateral Laplace transform or two-sided
Laplace transform by extending the limits of integration to be the entire real
axis.

. The inverse Laplace transform is also known by various names as the

Bromwich integral, the Fourier-Mellin integral and Mellin’s inverse formula.
It is given by the following complex integral:

y¥+iT'
fO=LFE) = g tm [ e (s)ds

. If f is a locally integrable function, then the Laplace transform F{(s) of f

converges provided that the following limit exists:

R
: —ts
Jm [ 10 i

5. The Laplace transform is a linear operation; which means, for any functions

(#) and g(7) whose Laplace transforms exist and any constants a and b,

Liaf (t)+ bglt)} = al{f ()i +bLiglt)}

6. Differentiation and integration are inverse processes. Consequently, as

differentiation ofa function corresponds to the multiplication ofits transform
by s, we expect integration of a function to equates to division of its transform
by s, because division is the inverse operation of multiplication.

. The Laplace transformation is an important operational method for solving

linear differential equations. It is particularly useful in solving initial value
problems connected with linear differential equations (ordinary and partial).
The advantage of Laplace transformation in solving initial value problems lies
in the fact that initial conditions are taken care of at the outset and the specific
particular solution required is obtained without first obtaining the general solution
of'the linear differential equation.

. The following results show that the Laplace transforms of the derivatives

and integrals of'a function f{7) can be expressed in terms of the Laplace
transform of /(). These results are important in solving differential equations
using the methods of Laplace transformation.

9. The function f{?) is said to of exponential order s as # — oo, if

lime™ £(¢) is finite

i.e., these exists M > 0 and z > 0 such that



10.

11.

12.

13.

14.

15.

|e“r“'f(t)| < M vt
or i < Me*>' or t>1
We write f(7) = 0(e) as t—>
I/ (¢) be any function of L and
L{f(n)} = As)

Then f{¢) is known as inverse Laplace transformation and given by

A= LH{fls)}
Linearly Property: Let /,(s) and £ (s) be the Laplace transformation of the
functions f,(?) and £ (?), respectively, and a and b are the constant, then

LYaf,(s)+bf,(s)} =aL { i)} +bL{ £, (s)}
First Shifting theorem:
If L {7 ()} = A7)
Then L™ {f(s—a)} = e“ f(¢)
By definition f{(s) = _[: e f(t)dt
If L { /(o)) = 7(0)
Then L™ {e™ ()} = G()

t—a), t>
Where G(t)={g( “ t<Z
By definition,
L{G®)} = [ eGadr

jo” e G(t)dt + j“’ e G(t)dt
If LT {fs)y = S0

éf (éj ,a>0

L{f (0}

[Ter r@ar

Then L {f(as)}
By definition f{s)

flas) = ["e* far

Let fand g be two functions defined in [0, « ). Then the convolution of /
and g, denoted by / * g, is defined by

F*g) () = | /@gu-1d
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This is called Heaviside expansion formula.

1.16 SUMMARY

¢ In mathematics, the Laplace transform is a widely used integral transform
and is denoted by £ { f(¢)}. Itisa linear operator ofa function /{#) including

areal argument 7 (73 0) that transforms it to a function F{(s) witha complex
argument s.

e The Laplace transform can be related to the Fourier transform. The Fourier
transform resolves a function or signal into its modes of vibration and the
Laplace transform resolves a function into its moments.

e Switching from operations of calculus to algebraic operations on transforms
is known as operational calculus which is an essential area of applied
mathematics and with regard to an engineer, the Laplace transform method
is basically a very essential operational technique.

e Another benefit of the Laplace transform is that it helps in solving the
problems in a straightforward manner, initial value problems regardless of
initially obtaining a basic solution, and nonhomogeneous differential
equation exclusive of initially answering the corresponding homogeneous
equation.

e When the Laplace transform is defined without condition then the unilateral
or one-sided transform is normally considered. Alternatively, the Laplace
transform can be defined as the bilateral Laplace transform or two-sided
Laplace transform by extending the limits of integration to be the entire real
axis.

e The inverse Laplace transform is also known by various names as the
Bromwich integral, the Fourier-Mellin integral and Mellin’s inverse formula.
It is given by the following complex integral:

il
f(ty= L7HF(s)} = 2%1“11—1»]9]0 [;_g:r e’ F(s)ds

e If f is a locally integrable function, then the Laplace transform F{(s) of f
converges provided that the following limit exists:

R
- —ts
Jm [ f0e i
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e The Laplace transform is a linear operation; which means, for any functions Laplace Transforms and
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(#) and g(7) whose Laplace transforms exist and any constants a and b,

Liaf (t)+ bg(t);= aLif (t);+ bLig(t)}
e The Laplace transformation is an important operational method for solving NOTES

linear differential equations. It is particularly useful in solving initial value
problems connected with linear differential equations (ordinary and partial).

¢ The following results show that the Laplace transforms of the derivatives
and integrals of a function f{7) can be expressed in terms ofthe Laplace
transform of /(7). These results are important in solving differential equations
using the methods of Laplace transformation.

e Differentiation and integration are inverse processes. Consequently, as
differentiation ofa function corresponds to the multiplication of'its transform
by s, we expect integration of a function to equates to division of its transform
by s, because division is the inverse operation of multiplication.

e Iff(¢) be any function of L and
Lifn} = As)

then f{7) is known as inverse Laplace transformation and given by

A= LH{fls)}
e Linearly Property: Let f,(s) and /, (s) be the Laplace transformation of the
functions f,(?) and £ (?), respectively, and a and b are the constant, then

L' a9+ b)) =a L { /(91 +bL { ()}
e First Shifting theorem:
If L' {f ()} = A7)
Then L™ {f(s—a)} = e“ f(¢)
By definition f{(s) = _[: e f(t)dt

e Complex inversion is an useful too for computing the inverse of Laplace
transform f{¢) = L'(F(s)).

1.17 KEY TERMS

e Laplace transform: The Laplace transform is a widely used integral
transform and is denoted by L {f(¢)}. It is a linear operator of a function
() including a real argument # (£>0) that transforms it to a function F(s)
with a complex argument s.

¢ Bilateral Laplace transform: The Laplace transform can be defined as
the bilateral Laplace transform or two-sided Laplace transform by extending
the limits of integration to be the entire real axis.
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e Inverse Laplace transform: The inverse Laplace transform is also known
by various names as the Bromwich integral, the Fourier-Mellin integral and
Mellin’s inverse formula.

e Transform of integrals: The Laplace transform of the derivatives and
integrals of a function f (f) can be expressed in terms of the Laplace
transform of /(7).

e Inverse Laplace transform: Let f{7) be any function of # and
L {f(t)} =f(s), then f{¥) is known as inverse Laplace transformation and
givenby f(t)=L" {f(s)}.

e Linearly property: Let //(S) and f(s) be the Laplace transformation of
the functions /, (¢) and f(?), respectively, and a and b are the constant, then

L' {af (s) + bf(s)} =aL-1 {f(s)+ bL" {f(s)}.

1.18 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. What is the Laplace transform?
Define the bilateral Laplace transform.
What the inverse Laplace transform?
Define region of convergence.
What do you understand by the elementary theorems?
State the transforms of integrals.
State the linearity of the Laplace transform.
How will you define Laplace transform of the integral ofa function?

A S BN

What do you understand by the inversion of some elementary functions?

—
e

Define the term initial and final value theorems.

[u—
p—

. How will you define the multiplication and division by 't' periodic functions?

—
\S]

. Define inverse Laplace transforms.

—
(98]

. Define the linearly property of inverse Laplace transform.

—
o

How will you define the uniqueness theorem of Laplace transform?
. State the first shifting theorem.

—_ =
AN WD

. State the second shifting property.

—
J

. What is the change of'scale property?

—
(0]

. What do you mean by the convolution property?

—
\O

. Define Heaviside expansion formula.



Long-Answer Questions
1. Discuss briefly the Laplace transform.
Analyse the bilateral Laplace transform with the help of example.
Describe the linearity of the Laplace transform.
Explain the Laplace transforms of elementary functions.

Discuss the transforms of integrals.

AN

Find the Laplace transforms of the following:

(i) 268 + 32 -5t +2 (i) Je
(iii) (& + e)? (iv) sin at cos at
(v) sin® bt (vi) 3> + cos® bt
(vii) sin at cos bt
7. Find the Laplace transforms of the following:
(i) Pe't (ii) e sin(2¢ + 3)
(iii) cosh at cos bt (iv) sinh at sin bt
(v) 3¢ + 5¢* cos 2t
8. Find the Laplace transforms of the following:

(i) (2t + 1)sin 2¢ (ii) (¢ + 2)cos 3¢
(iii) # sin at (iv)  cos at
(v) te” cos2t (vi) te™ sin at

9. Find the Laplace transforms of:

(l) e " —cosat (ll) s’ ¢
t t
o [sin2e T ~ (sinat Y
w [22] g (1)
l—e”
) —,
10. Find

t

(i) LD sinar dt} (ii) Prove that Lﬁ&dz} -1 TL[ £(t)ds
0 0 t S K

(iii) Find LD Si‘; tdz} (iv) Find LD f‘f” dz}

0

(v) Find L[e”jtcostdt]

11. Find the Laplace transforms of:
(i) L2 — &™) (ii) L(£ + 1)?
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(iii) L(sin t — cos £)* (iv) L(cosh* 4t)
R e

(vi) L{f e} (vii) L{(t +2)* e}

12. Show that the Laplace transform of I te”'sint dt = 5%
0

13. Solve using L{@} = TF(u)du

(i) Find L{Shf ’} (ii) Find L{I;et}

(iii) Evaluate J. te™ costdt

14. Evaluate laplace transform of
() f(¢) = (sin t — cos 1)*
(i) e* +4£ —2 sin 3¢ + 3 cos 3¢

(i) cos® 2t
() (t+2)¢
(V) e’ sin® ¢
' e 0<+<1
F 0<r<?2
.. r—1 2<t<3
(vii) f(7) =
> t>3

(vi) AH)y=1t—1|+|t+1,>0

) 2 2%
sin|t——=m|, t>—
3 3

(x) L{f(9%)} where f(f) = o
0, 1< —
3
P that L {sin K (—sin hKt)} = LZS
(x) Prove that L{sin K (—sin 4Kt)} Ak
15. Find the Laplace transformation.

N .. e" —cos6t
(1) ¢ sin 37 cos 2t (i) —



_ 1—cost
(i) —
) J- e s1nt

2ol _e
(vii) Prove that Jifdf =
0

Sll’lt

(v J

cos at —cos bt

w [

(iv) J te™ sintdlt
0

= o7 sin>
(vi) Prove that J.f
0

log3

. e sin
(x) Prove thatj ¢
0

(xi) 7 sin h at

dt =

1
dt =—log5
5 g

N

16. Discuss briefly the inverse Laplace transform with help of example.

2
a

O SGrar
s+2

(il) (s—2)°

. 1
(i) s(s* +4)

. 2
) o+
O e
oL
V) s (s7+1)

R S

(vii) (s2 +Zs+5)2

. s+ 65 +14s
(vit) )7
. 4(s+3)
(%) (& v 6s+13)
st—s’+25° -8
(x) s (s> +4)
. 4s+5
) T s42)

§ $*—10s+13
i) 77 —55+6)

. s +s
(i) T 2512)

a(s® —2a*)
st+4a’
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(XVi) s(s+ 2)3
.. 1
(XVH) s (32 +1)
(va) (s+a)
tan ! 2
(xix) tan |~
s(s+1)
(XX) S +4

2
(xxi) log [1 - Z—zj
Using convolution theorem
Lo
O (¢+ar)
PO S
@ 262y

.. S
() e +4)

o sl

in 2t
17. Obtain the Laplace transform of i

18. Discuss convolution property with the help of examples.

19. Explain the complex inversion formula and Heaviside expansion formula.
Give appropriate examples.

20. Discuss the applications of Laplace transformation with the help of examples.
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2.11 Answers to ‘Check Your Progress’
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2.14 Self Assessment Questions and Exercises
2.15 Further Reading

2.0 INTRODUCTION

In mathematics, the Laplace transform, named after its inventor Pierre-Simon Laplace
a mathematician and astronomer, is an integral transform that converts a function of
areal variable ‘7’ to a function of a complex variable ‘s’ (complex frequency). The
‘Laplace Transform’ has many applications. Two of the most significant are the
solution of differential equations and convolution. The Laplace transform operator is
used to solve both the first order and second order differential equations with constant
coefficients. The differential equations must be IVP’s (Initial Value Problem) with
the initial condition (s) specified at x = 0. Essentially, the Laplace transform is an
efficient method for schematically solving the linear differential equations with
constant coefficients. Given an IVP, the Laplace transform operator is applied to
both sides of the differential equation which will transform the differential equation
into an algebraic equation whose unknown function is considered as the Laplace
transform of the desired solution.

The Laplace transform is a powerful integral transform used to switch a
function from the time domain to the s-domain. The Laplace transform can be
used in some cases to solve linear differential equations with given initial conditions.
A linear differential equation is a differential equation that is defined by a linear
polynomial in the unknown function and its derivatives. A linear differential equation
or a system of linear equations such that the associated homogeneous equations
have constant coefficients may be solved by quadrature, which means that the
solutions may be expressed in terms of integrals. This is also true for a linear
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equation of order one, with non-constant coefficients. An equation of order two
or higher with non-constant coefficients cannot, in general, be solved by quadrature.
For order two, Kovacic’s algorithm allows deciding whether there are solutions in
terms of integrals, and computing them if any.

The Laplace transformation is a mathematical tool which is typically used to
solve the differential equations by converting it from one form into another form. It
is very useful and effective tool for solving linear differential equations either ordinary
or partial. To solve these equations simultaneously, the Laplace transform of each
equation is taken for obtaining two simultaneous algebraic equations from which
one can determine X(s) and Y(s), the Laplace transforms of x(¢) and y(?),
respectively. Partial differential equations, which are used to formulate, and thus
aid, the solution of problems involving functions of several variables. Differentiate
a given equation with respect to x and y and then find the solution for the same by
forming partial differential equations.

Convolution is a mathematical operation on two functions (f'and g) that
produces a third function / * g) that expresses how the shape of one is modified by
the other. The term convolution refers to both the result function and to the process
of computing it. It is defined as the integral of the product of the two functions after
one is reversed and shifted. The integral is evaluated for all values of shift, producing
the convolution function. The Wronskian oftwo solutions ofa homogeneous second-
order linear ordinary differential equation in terms ofa coefficient of the original
differential equation is expressed by Abel’s identity (also known as Abel’s formula
or Abel’s differential equation identity). Retarded, neutral, advanced, and mixed
functional differential equations are all terms used to describe differential difference
equations. This classification is based on whether the current state of the system’s
rate of change is influenced by previous values, future values, or both.

In this unit, you will learn about the ordinary differential equations with
constant coefficients, ordinary differential equations with variable coefficient,
simultaneous ordinary differential equations, partial differential equations,
applications to mechanics, electrical circuits, and beams, integral equations of
convolution type, Abel’s integral equation, integro-differential equation and
differential-difference equations.

2.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain the significance of Laplace transform

e Solve the ordinary differential equations with constant and variable
coefficients using Laplace transform

e Describe the method of solving simultaneous linear equations

e Discuss the types and applications of partial differential equations
e Discuss solution of integral equations of convolution type

e Elaborate on the solution of integro-differential equation

e Explain the differential-difference equations



2.2 ORDINARY DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

The Laplace transformis an elegant way for fast and schematic solving of linear
differential equations with constant coefficients. As an alternative of solving the
differential equation with the initial conditions directly in the original domain, a
mapping into the frequency domain is taken where only an algebraic equation has
to be solved. Solving differential equations is performed as per the guidelines given
in Figure 2.1 which involve the following three steps:

e Transformation ofthe differential equation into the mapped space.
e Solving the algebraic equation in the mapped space.

e Back transformation of the solution into the original space.
original: ‘ differential equation ‘

L transformation £ pransformation

Iapp f.trf.'[ algebraic equation

Fig. 2.1 Schema for Solving Differential Equations
Using the Laplace Transformation

The following examples will make the concept clear.
Example 2.1: Consider the differential equation f£(#) + 3f(¢) + 2 f(t) =e~* with
the initial conditions f(04) = f(0+) = 0.
Solution: We can solve the differential equation using the following steps:

1
s+ 1

Step 1: s*F(s)+ 3sF(s) + 2F(s) =

1 ]
s+1 8243542

Step 2: F(s) =

Step 3: The complex function F(s) must be decomposed into partial fractions in
order to get,

1 1 1
s+2_s+1+fs+132'

F fsj =
From the inverse Laplace transformation the solution ofthe given differential
equation is,
fit) = K (Rl N

Example 2.2: Solve the following system of differential equation using Laplace
transform:

% =3% —3x,+2 % (0)=1
Xy =—6x—1 %(0)=-1
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Solution: Notice that the system is not given in matrix form hence matrix form is
not required in solution. The system is nonhomogeneous.

Using Laplace transforms to solve differential equations, we consider the
transform of both differential equations as,

sX,(5)- 5 (0)=3X,(5)-3X, (s)+%

X, (5)-,(0)=—6X,(s) - =

Now use the initial condition and simplify to get,

L Sy ()+ 300, (o) g 1= 2
& &
1 sP+1
6, (5] 48X, (8)= ——l=-—

To solve this for one of the transforms, multiply the top equation by s and
the bottom by —3 and then add. We get,

2
(5" -35-18) X;(s)= 2+s+3‘::3
Solving for X, gives,
ek
X (s)=

52(5+3)(s—6)
On partial fraction we get,
1 (133 28 3 18
X — " o i
() 108} s—6 o g 52]

Taking the inverse transform gives the first solution,

wlt= ﬁ(l?ﬁeﬁ — 28 +3-187)

To find the second solution we can eliminate X, to find the transform for X,
However, in this case notice that the second differential equation is as follows,

X, =—6x —1 = xQ:J.—6x1—tdt

By, endorsing the first solution in and integrating gives,
_ L fit 3t
Bl )= 18]133.9 28e™ + 34t

1
= ——(133e“+56e‘3f +18:)+c
108

Reapplying the second initial condition to get the constant of integration
gives,

—lz—L(133+56)+c e B=
108



The second solution is,
1
t)= ———(133e* + 566 + 18— 81

Putting all this together gives the solution to the system as,
wiit)= L(133eﬂ ~ 28" +3-187)
108
1 it —3t
t)=———|133e" +56e " +18-81
%2(f) 108( © )

Other systems of differential equations of practical significance can be solved
using the Laplace transform method in a related manner, and taking eigenvalues
and eigenvectors as shown in Example 2.3 based on electrical network.

Example 2.3: Find the currents 7, () and i, (¢) inthe network as shown in the
following figure with L and R measured in terms of the usual units, v () =100

volts if 0 <¢<0.5 sec and 0 thereafter, and i(0) =0, i’(0)=0.

13}

30

sab (U
i50t)

10

o i i i ] ]

g 08 1 18 2 28 3 1
Currents

Solution: The method ofthe network is obtained using the Kirchhoff’s voltage
law as,

1
0.8i/ +1(i, —i,)+1.44, :100{1—u(t—5ﬂ

1] +1(i,—i) =0.

Dividing by 0.8 and on ordering we get,

1
il +3i —1.25i, =125[1—u(z‘—5ﬂ

.
ip—i,+1,=0
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With 7, (0)=0, i,(0)=0 weacquire the second shifting theorem as the

subsidiary equations:

N N

—s/2
(s+3)1,-1.251, =125(1—e j

—I+(s+1)1,=0.

Algebraically solving /, and ], gives:

Il _ 125(S+1) (1_6”2)
1 7
s|s+= || s+=
3+
I, = 125

1 - (1-e7),
S(HZJ(HQJ

The right hand sides without the factor | — /2 contain the partial fraction
expansions of the form:

500 125 625 500 250 250

- - , - + :
Tsoafexl) s+ ) 7 3(sal] 2nfs4”
2 2 2 2

The inverse transform of this equation provides the solution 0 < ¢ < %,
il (t) — _ge—zQ _ﬁe—mz +@
3 21 7
1
iz(l‘)=—@€_[/2+@€_7[/2+@ 0 <t<—
3 21 7 2

1
As per the second shifting theorem, the solution for 7 > 5 is obtained by

: 1 . 1
subtracting from this % (f - Ej and b (f - Ej , respectively. We get,

i (l‘) — _g(l_elm)e—nz _@(1_67/4)6—%/2
1

3 21
i (l‘) — _2i30(1_61/4)e—[/2 +%(1_e7/4)€7z/2 (l‘ > %j

Similarly, the systems of differential equations of higher order can also be
solved using the Laplace transform method. The higher order differential equations
involve the higher derivatives x"(¢), x"'(f), etc. These mathematical models are
used to solve physics and engineering problems.



Application of Laplace

2.3 ORDINARY DIFFERENTIAL EQUATIONS Transforms
WITH VARIABLE COEFFICIENT
Considering y as a constant, then the following equalities hold: NOTES
jﬁrm:%fr' (2.0)
[ 2svds =5y (22

In the above given two equations, " is considered as a function ofs.
However, y™ can be used as a constant if the difference stands as much as the
constant coefficient. For example,

Let Y= s>+ 1. Then

'[ $Yds = '[ 2s%ds = §s3

1 2
AIl _S3Y”:_S3
d 3 3

Thus the Equation (2.1) holds. New consider the Equation (2.2).

'[ 25Y'ds = '[ 45°ds = 4
3

And

Y =25,

Basically we can state that is the difference is as much as the constant
coefficient. This specifies that the left-hand side of the equation has a solution
c1 + ¢ X when the right-hand side has a solution X, when both c; and ¢, are
constant terms. Therefore, these formulas are restricted for the form of's” only.

Solution of ODEs with Variable Coefficients
Let the solution Yis ¢, +¢ X.
Then,
J s*Y"ds = J sPe, X" = lcz)(”s3 = lsSch” = lS3Y”.
3 3 3
Similarly,

J 2sY'ds = J 2s¢,X'ds =c,X’s* =s’c, X' =Y.

The result is similar when the right-hand side has a solution X.

Theorem 2.1. Let us denote £(y) =Y = F(s), £(y")=Y and£(y”)=Y".
Then Euler-Cauchy equation 7 2y”” + aty’ + by = 0, Legendre’s equation
y”—t“y ”—2ty’+ n(m+ 1)y = 0 and Bessel equationtzy 7ty + (tz—vz)y
= 0 can be represented by,

—a

1, 4
—s'+
(3

1 1 4—a

S +b—a+2)Y =—y(0)s’ +— v’ (0)s* +—— y(0)s,
) 3)( ) 3) ( ) 2 y( ) Self - Learning
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(§f+§f—w@uﬂ»Y=§wmf+§y%mf+%ymh—y%m,

And (%s4 + %sz +1—v7 )Y = éy(O)S3 + %y’(O)s2 + gy(O)s +7(0),

respectively,
Putting
=2y,
ds
We have the solution y as y = £7'(Y)).

Proof. If we take Laplace transform for above equation, then we have

dY
ds’

d
ds*

d’Y

And (s*+1
( ds’
respectively. Integrating Euler-Cauchy equation with respect to s, we have,

lS3Y”+4;aszY’+(b—a+2)Ys =0.
3 2
Since, Y’=sY—y(0) and Y"’=s*Y —sy (0) — y(0), we have,

— @ 2 (5T = p(0))+ (b —a+2)¥s = 0.

1 , 4
3 (7Y =sp(0) = »"(0)) +
Organizing this equality, we have

1 1, 4—a
3 2(0)s” += " (0)s” + — V(0

3
Y =
ls4+4;asz+b—a+2
3 2
Putting,
)4 =iY,
ds

We obtain the solutiony asy = £ (¥}). For a given number v, we get the
above given results using the similar method.

2.3.1 Solution of System of Differential Equations
Using the Laplace Transformation

The Laplace transform is an elegant way for fast and schematic solving of linear
differential equations with constant coefficients. As an alternative of solving the



differential equation with the initial conditions directly in the original domain, a
mapping into the frequency domain is taken where only an algebraic equation has
to be solved. Solving differential equations is performed as per the guidelines given
in Figure 2.2 which involve the following three steps:

e Transformation ofthe differential equation into the mapped space.
¢ Solving the algebraic equation in the mapped space.

e Back transformation of the solution into the original space.

original: | differential equation | | solution |

£ transformation L7 transformation

mr;p_nf:rf.'l algebraic equation ]_.l solution ]

Fig. 2.2 Schema for Solving Differential Equations
Using the Laplace Transformation

The following examples will make the concept clear.
Example 2.4: Consider the differential equation

F(t)+3f()+ 2f(t) = e~ with the initial conditions f(n+4) = f(04) = 0.
Solution: We can solve the differential equation using the following steps:

1
s+ 1

Step 1: s*F(s) + 3sF(s) + 2F(s) =

1. 1

Step 2: F(s) = PR B P

Step 3: The complex function F{(s) must be decomposed into partial fractions
in order to get,

1 1

; 1
Jt"5)=s+2_s+1Jrferle'

From the inverse Laplace transformation the solution ofthe given differential
equation is,

fff;l =R et -|-fl.=_-_'f :
Example 2.5: Solve the following system of differential equation using Laplace
transform:

% =3% —3x,+2 % (0)=1

Xy =—6x—1 %(0)=-1
Solution: Notice that the system is not given in matrix form hence matrix form is
not required in solution. The system is nonhomogeneous.

Using Laplace transforms to solve differential equations, we consider the
transform of both differential equations as,
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SX,(1) =3 (0) =3,(5) -3, ()4

X, (5)-,(0)=—6X,(s) - =

Now use the initial condition and simplify to get,

L Sy ()+ 300, (o) g 1= 2
& &
1 sP+1
6, (5] 48X, (8)= ——l=-—

To solve this for one of the transforms, multiply the top equation by s and
the bottom by —3 and then add. We get,

2
(5 ~35-18) X, (5)= 2+s+3‘::3
Solving for X, gives,
ek
X (s)=

e (s+3)(5—6)

On partial fraction we get,

X (s)

Taking the inverse transform gives the first solution,

1 (133 28 3 18
108 s—6 s+3 s &

wlt= ﬁ(l?ﬁeﬁ — 28 +3-187)

To find the second solution we can eliminate X, to find the transform for X,
However, in this case notice that the second differential equation is as follows,

Xy =—6x —1 = x2:I—6x1—tdt

By, endorsing the first solution in and integrating gives,
_ L fit 3t
Bl )= 18]133.9 28e™ + 34t

1
= ——(133e“+56e‘3f +18:)+c
108

Reapplying the second initial condition to get the constant of integration
gives,

—lz—L(133+56)+c e B=
108
The second solution is,
1
t)= ———(133e* + 566 + 18— 81
x?( ) 108( © € )

Putting all this together gives the solution to the system as,



xilt)= ﬁ(meﬁur — 28 +3-187)
%)= —%(133.«:6I +56e7 +18—81)

Other systems of differential equations of practical significance can be solved
using the Laplace transform method in a related manner, and taking eigenvalues

and eigenvectors.

2.4 SIMULTANEOUS ORDINARY
DIFFERENTIAL EQUATIONS

Simultaneous ordinary differential equations may be solved by using Laplace
transformation

Working Rule

1. Two equations are given for two dependent variables, depending upon a
single variable. Apply the Laplace transform on both sides of the equations
on both ofthe equations.

2. Now solving these equations, there will be values of dependent variable in
terms of's.

3. Applying Laplace transformation find the value of dependent variables.

Example 2.6: Dx—y = ¢/, Dy +x =sint
x(0) =1, »(0)=0
Given Dx—y = ¢/, Dy +x =sint

Solution: Apply Laplace transform on both sides

[sLEx) =x(O)] - LO) = T

Or [sL(x)—1-L(y)= ;1_—1

And [sL(y) - y(0)] + L(x) =

s +1
Or sL(y)+L(x)= e
Solving Equations
s N 1
L) = 6+ (5 +1)

1 1 s+l 1 o -
=551 + & +D) + 2 +1) (Resolving into partial fraction)

S S
And LO)= (2 7 T ()P 1 1)
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s 11 (s=1) . ‘
TP+ 2ls—1 41 (By Partial fraction)

Apply Laplace inverse on both side.

x=lL‘1 L S 2S + 21 +L! %
2 s=1] 2 sT+1 s7+1 (s7+1)

) 1 .
(e +cost+s1nt)+§(s1nt—tcost)

= N

(e +cost+2sint—tcost)

-1 S _l -1 L_ (s=1)
And y =1 [(52+1)2} L L—l (s2+1)}

. I, :
tsmt—a(e —Ccost+sint)

= = o=

(sinz —e' +cost —sint)

Hence y = —(¢sint—e'+cost—sint)

1 .
= E(e’+cost+2s1nt—tcost)

Example 2.7: DX+ DY=t,D’X-Y=¢"
IfX(0)=3,X"(0)=-2, ¥Y(0)=0

Solution: Taking Laplace transform on both of the eqation

(8.9 D—X(0)] + [5L() ~ Y0)] = 5

sL(x) + sL(y) =3 + Siz ()
And [SLOOSX0) = X(O) |- [5L) - YO =~

s’L(X)—L(Y)=-3s=2 +$ ()

Solving Equations (1) and (2)

341 3 2 1
x_s3(1+sz) 1+s5° 1+s5° (s+1)(s°+1)
4
=i31+2s2—2S4+3S2— 22+ !
s I+s I+s° 145" 2(s+1)
S 1
T A2 + 2
2(s+1) 2(s”+1)



> 11 s 3
=S+ + — .
s 8 2s+]) 20+sY) 20450
L,
Andy ="+ (52 +1)
1 s I 2

= - - +
s 2(s+1) 27+ 27+ s7+1

Apply Laplace transform on these equation

1 1 1 1
20 = |+ L = |+=L"| —
w e |]

LI DR )
2 sP+1| 2 st +1

2 —1
e e 1 )
= 2+?+—+—cost+3smt

T 1171 s 13 I
A et —— |2 ey
And 'y [J 2 L+J 2 L%J 2 L%J
I

| 3.
‘. x=2+—+—+—cost+—sint
2 2 2 2

L1 3.
y= l—e¢' ——cost+—sint
2 2

Example2.8: X' +Y’ =t

X"-Y=e¢"
Solution: Subject to X(0) =0, X" (0)=-2, Y(0)=0
Apply Laplace transform
[sL(X) = X(0)] + [sL(Y) - Y(0)] = 1/s*
1
SL(X)+sL(Y)= = (1)
[s’L(X)—sX(0)— X" (0)]-L(Y) = 1
s+1

[s*L(X)=L(Y)=3s-2+ (2

s7+1
Solving Equations (1) and (2)
1 L3 2t 3 ]
A= (s+D(s*+1) s°+1 s7+1 41 s(s°+1)
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s N 35’ 3 25’ N 3s

r= (s+D(s>+1) s7+1 s*+1 s*+1
21 —3S+2—L
s(s”+1) s+1

Resolving into partial fractions and then applying Laplace inversion.

A 1
X=2+—+———sinf+—_cost
2 2 2 2

1 ., 3. 1
Y=1——e" +—sint——cost
2 2 2

Example 2.9: Solve (D—-2)x—(D + 1)y =6¢*
(2D -3)x+ (D -3)y = 6¢&*
x(0)=3,1(0)=0
Solution: Apply Laplace transform on both equation

[sL(x) = X(0)] = 2L(X) = [sL(Y) =Y (0) + L(¥)] = %
S_
6 3s-3
(s=2DLX)=(s+ DL =3+—= ;_3 ()

[2(sL(x) = x(0) = 3L(x)]+ [sL(y) = y(0) =3L(y)] = %

25D+ -1 =22 @

Solving Equations (1) and (2)
1 N 2(s+1)(s—2)
L) = 5=3) (s =1y
1 2 2
+ +
s—1 s=3 (s—=1y

(Resolving into partial fractions)

3
L= "o T 5=1D)(s-3)

3 3 B 1 B 1 B 2

 (s=1)7 |s=3 s—1 (s=1)
1 1 1

- + -

s—1 s=3 (s=1)

X = ¢ 42 + 2t

!

Y= e —te



Check Your Progress
1. What is significance of Laplace transform to solve an ordinary differential
equations with constant coefficients?

2. Name the three steps for solving an ordinary differential equations with
constant coefficients.

3. Define the solution of ordinary differential equations with variable coefficients
through the integral and Laplace transform.

4. How Laplace transform is useful for solving the differential equations?

5. Define the working rule for the solution of simultaneous ordinary differential
equation.

2.5 PARTIAL DIFFERENTIAL EQUATIONS

Let z=f{x, y) be a function of two independent variables x and y. Then a—za—z

ox Oy

2 2 2
are the first order partial derivatives; 6_58_52 are the second order partial
Ox~ 0Oy~ OxOy
derivatives.
Any equation which contains one or more partial derivatives is called a partial

. . . 16} 16} : : : .
differential equation. =4y = z; a—f + a—f + oz _ 0 are examples for partial
Ox oy ox~ 0oy~  OxOy
differential equation (PDE) of first order and second order respectively.
We use the following notations for partial derivatives,
e e _# P _7:
P ?” 5" " % gt o
Partial differential equation may be formed by eliminating (i) arbitrary constants
(ii) arbitrary functions.

Example 2.10: Form the parital differential equation by eliminating the arbitrary
constants from z = ax + by + a* + b*.

Solution:  Given, z=ax + by + a* + b* (1)

Here we have two arbitrary constants a and b. Therefore, we need two more
equations to eliminate a and b. Differentiating equation (1) partially with respect to
x and y respectively we get,

Oz
= —p-a ®
oz
& == G)
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From equations (2) and (3), we get,
a=p,b=q
Substituting values of aand b in (1) we get,
z=pxtqytp+q
This is the required partial differential equation.
Example 2.11: Eliminate a and b fromz = (x + a)(y + b).
Solution: Differentiating partially with respect to x and y,
p=y+tbg=xta
Eliminating a and b, we get z=pq.

Example 2.12: Form the partial differential equation by eliminating the arbitrary
constants inz = (x —a)* + (y — b)*

Solution: Given, z=(x—a)*+ (y—b)* (1)

Here we have two arbitrary cosntants a and b. To eliminate these two arbitrary
constants we need two more equations connecting a and b. Therefore,
differentiating equation (1) partially with respect to x and y, we get,

0Oz

= —p=2u-a) @
Oz
& —a=20-h) ()

From equation (2), we get,

x—a="% @)

From equation (3), we get,

_4
y=b=7 )

Substituting equations (4) and (5) in (1) we get,

= (8

Simplifying we get, 4z =p* + ¢*
This gives the partial differential equation after elimination of a and b.

Example 2.13: Form the partial differential equation by eliminating the arbitrary
constants fromz = (x>+ a)()? + b).

Solution:  Given, z= (x*+ a)()* + b) (1)



Here we have two arbitrary constants a and b.

Differentiating equation (1) partially with respect to x and y we get,

O _ o2

= =p =2x()*+ b) ?)

oz §

o "4 ta) (€)
From equation (2) we get, 2—I; =)y’ +b “4)
From equation (3) we get, 2 xX*+a ®)

Substituting equations (4) and (5) in (1), we get,

q

pq = 4xyz
This gives the required partial differential equation.

Example 2.14: Form the partial differential equation by eliminating a, b, ¢ from

2 y2 ZZ
—2+—2+—2 =1.
b- ¢

2 2 2
Solution:  Given, % + Z—z +i—2 =1 (D)

Differential partially with respect to x and y we get,

2x 2z
AP @
2y 2z
AP ®

Differentiating equation (2) partially with respect to y,

0+ %(zs+qp)=0

C
zs+qp=0

Note: More than one partial differential equation is possible in this problem. These partial
differential equations are,

xzr+xp?—zp=0, yzt + yg*—zg=0
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Formation of Partial Differential Equation by Eliminating Arbitrary
Functions

The partial differential equations can be formed by eliminating arbitrary junctions.
The following examples will make the concept clear.

Example 2.15: Eliminate arbitrary function from,

2= f + ) (1)

Solution: Differentiating partially with respect to x and y, we get,
p=f'(+y).2x ©)
q=/"(+)").2y 3)

Eliminating f’(x* +)?) from equation (2) and (3), we get, py = gx

Example 2.16: Form the partial differential equation by eliminating the arbitrary
function ¢ from xyz = @(x* +)? — 2%).

Solution: Given, xyz = x> +)*—z%) (D)

This equation contains only one arbitrary function ¢and we have to eliminate

Differentiating equation (1) partially with respect to x and y we get,
yztxp =g+ y? - 22)(2x - 22p) )
xztxyq = # 0+ = 2)(2y - 2zq) A3)

From equation (2), we get,

2 42 o2y = YEEP

P2ty = 4)
From equation (3), we get,

(2 4 ) = Xz + xyq

#+y =) = 5)

Since, LHS ofequations (4) and (5) are equal, we have,

Yz+xyp xz+xyq
2x—2zp 2y—2zq

0z +x0p)(y - 2q) = (xz + xyq)(x — zp)
e,  Yztxp)y—zq) =x(z+yq)(x—zp) (6)
On simplifying equation (6) we get,
px(y* +22) —qy(2 + X)) =z2(x* - )?)
Which gives the required partial differential equation.



Example 2.17: Eliminate the arbitrary function fromz= (x +y) f{x*—)?)
Solution: Given, z= (x +y) f(x*—)?)
Differentiating partially with respect to x and y we get,
p =G+ =3)2x + fix* =) -1
q =+ )" =y)(2y) + i =17 1
Eliminating /(x> —)?) from equations (2) and (3) we get,
(x+y) _ p-f( =)
2y(x+y)  q-f(x"=y)
2x[q — x> = )] =-2[p - AAx* = 7)]
xq = xfix* = y*) =—yp + yx* = %)
xq +yp = (x +y) fix* =7

z

(x+y)

=(x+y)

z=xq+)p
This is a required equation.
Example 2.18: Eliminate the arbitrary function fromz =xy + f(x* +)?)
Solution: Given, z=xy + f{x* +)?)

Differentiating partially equation (1) with respect to x and y we get,
p=y+f'(+y) 2
q=x+f'(x+y) 2y

Eliminating /'(x* + y?*) from equations (2) and (3) we get,

P-yly =(q—x)x
py—y =gx-x’
py—qx =y’ —x

Which is a required equation.

(D

@)
€)

ey

)
©)

Example 2.19: Eliminate the arbitrary functions f and ¢ from the relation

z=flx+ay) + fx—ay)

Solution: Differentiating partially with respect to x and y we get,
p=fxtay)+ ¢ (x-ay)
q =af’(x +ay)—ag’(x—ay)

Differentiating these again, with respect to x and y we get,

622 14} 14}
Sl )+ - ay)

(D)
@)

)
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62
gf =t=a*f"(x+ay) +d¢" (x—ay) 4)
From equations (3) and (4) we get,

t =a’r

2.5.1 Equations Solvable by Direct Integration

A solution in which the number of arbitrary constants is equal to the number of
independent variables is called complete integral or complete solution.

In complete integral, if we give particular values to the arbitrary constants, we
get particular integral. If ¢(x, y, z, a, b) =0, is the complete integral of a partial

. . . .. . 0
differential equation, then the eliminant of @ and b from the equations 6_¢ =0,
a

Z—Z =0, is called singular integral.

Let us consider four standard types of nonlinear partial differential equations and
the procedure for obtaining their complete solution.

Type I: Equations ofthe form F(p, g) = 0. In this type of equations we have only
p and g and there is no x, y and z. To solve this type of problems, let us
assume that z = ax + by + ¢ be the solution and then proceed as in the
following examples.

Example 2.20: .Solve p* +¢>=4
Solution: Given, p>+¢*=4 (1)
Let us assume that z = ax + by + ¢ be a solution of equation (1). )

Partially differentiating equation (1) with respect to x and y, we get,

0z %: _
5 P aanday q=>b 3)

Substituting equation (3) in (1) we get,
a+ b =4 4)

To get the complete integral we have to eliminate any one of the arbitrary
constants from equation (2).

From equation (4) we get,

b=+J4-a 5)
Substituting equation (5) in (2) we get,

z=axtyJ4-a +C (6)

Which contains only two constants (equal to number of independent variables).
Therefore, it gives the complete integral.



To check for Singular Integral:

Differentiating equation (6) partially with respect to a and c and equating to
zero, we get,

Oz 1
— =x=* (=2a) =0 7
da 2W4—-d 2
Oz

and, Pl 1=0

Here, 1 =0 is not possible.

Hence, there is no singular integral.
Example 2.21: Solve p* + ¢* = npq

Solution. The solution is, z= ax + by + ¢, where a* + b> = nab

a(ni\/m)

Solving, b= 5

The compete integral is,

z= ax+%(ni\/n2—4)+c

Differentiating partially withrespect to ¢, we see that there is no singular integral,
as we get an absurd result.

Example 2.22: Solve p + ¢ =pq
Solution: This equation is of the type, F(p, q¢) = 0.

.. The complete solution is of the form, z=ax + by + ¢ (1)
Differentiating equation (1) partially with respect to x and y we get,
p=a,q=b
Therefore, the given equation becomes,
at+b=ab

a=b(a-1), bza

Therefore, the complete solution is,

a
z = ax+ y+c
o=
This type of equation has no singular solution.
Let, c = @(a)

z= ax+(ijy+¢(a) )
a—1
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Differentiating partially with respect to g,

0= x{%}ywm

— _ 1 '
0= (a_1)2y+¢(a) 3)

The elimination of a between equations (2) and (3) gives the general solution.

Type II: Equation ofthe formz = px + qy + F(p, ¢) (Clairaut’s form). In this
type of problems assume that, z = ax + by + F'(a, b) be the solution.

Example 2.23: Solve z=px + gy + ab

Solution: This equation is of Clairaut’s type. Therefore, the complete solution is
obtained by replacing p by a and g by b, where a and b are arbitrary constants.

i.e., the complete solution is, z = ax + by + ab (D)

Differentiating equation (1) partially with respect to a and b, and equating
these to zero we get,

0=x+b )
0=y+a 3)
Eliminating a and b from equations (1), (2) and (3) we get,
Z=-Xy—Xxytxy
ie., z+xy =0

This gives the singular solution of the given partial differential equation and to
get the general solution.

Put, b = ¢(a) inequation (1)

z=ax+ Hay +aka) )
Differentiating partially with respect to a we get,

0 =x+d(a)y+ag(a)+ Ha) ®)

Eliminating a from equations (4) and (5) we get the general solution.
Example 2.24: Obtain the complete solution and singular solution of,
z=pxtqytp +tpq+q
Solution: This equation is of Clairaut’s form. Therefore, the complete solution is,
z=ax+by+a*+ab+ b’ (1)
Where, a and b are arbitrary constants.
Differentiating equation (1) partially with respect to @ and b we get,
0=x+2a+b 2)



0=y+2b+a
2x—y =3a, and 2y —x=3b

2x—y 2y—x
a= , b=
3 3

Substituting this in equation (1) we get,

2x—y 2y —x 2x—y]2
= + +
: [ 3 jx [ 3 jy( 3

+(2x—y>(2y—x)+[2y—xj2
9 3

Simplifying we get, 3z =xy —x*—)”. This is the singular solution.
To find singular integral:

Differentiating equation (2) partially with respect to a and b, and then equating
to zero, we get,

oz N a 0 3)
— =X —_ =

Oa Vi+a* +b’

oz b

— =yt = 4
ob Nl+a* +b° ¥

From equation (3), we get,

2

a
vy ©
From equation (4), we get,
b2
Y oTar ©
From equations (5) and (6) we get,
2 b2
2402 = _a+b
vy 1+a* +b
2 bZ
-2+ =1-—27
o+ ) l+a’ +b’
-
l+a’ +b°
1
1 2 a2 = -
Le., Il —-x"—y s
1
\/1+az+b2 = m (7)
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Substituting equation (7) in (3) and (4) we get,

a=——— b=— 2 ®)

2 22
l—x _y 2 2

Substituting equations (7) and (8) in (2) we get,

2 2 1
z=—m— 7 +
\/l—x2—y2 \/1—x2—y2 \/l—xz—y2
_ 1_x2_y2
1_x2_y2

z=l-x*=y* or, ZZ=1—-x*—)"

Xty +2 =1

This is the singular integral.
Type I11: Equation of the form, F(z, p,q) =0
Example 2.25: Solve z=p* + ¢*

Solution: Given, z=p*+¢* (D)

Assume that, z= f{x + ay) is a solution of equation (1). 2)
Put, x + ay = u in equation (2)

Then, z =f(u) 3)
Partially differentiating equation (3) with respect to x and y we get,

( oz 0z ou 0z 0z Ou
vw— =——and —=——
ox Ou Ox Oy Ou dy

Substituting equation (4) in (1) we get,

() ()
z = _— +a _
du du

2
Le., [Ej (I+d°) =z
u

e & _
du  \1+4°



dz du

He NEREN Y

Integrating equation (5) we get,

dz 1
‘l.ﬁ - 1+d° J.du
Wz =—2—+b

:

1+ d*

. +
Le., Wz =22 )

Ji+d?

This gives the complete integral.
Example 2.26: Solve ap + bg +cz=0
Solution: Given, ap + bg +cz=0
Let us assume that, z = f{x + ky)
By the solution of equation (2).

Put x + ky = u in equation (2)

z =flu)
dz dz
p - Ea _kz

Substituting equation (4) in (5) we get,

a~£+b~k£+c-z =0
u du
. d:
ie., Za+bk) = ¢z
du
du a+ bk
dz c
i — = - du
kEes z a+ bk
Integrating equation (5) we get,
£ - ¢ J.du
z a+ bk
logz = ———(u)+logh
082 == bk &
Le., logz = A[x+ ky] + log b, where 4 = -

c
a+ bk

®)

(1)
@)

)

)

®)
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ie, logz—logh =A(x+ ky)

b%%j=A@+b0

% — pAGHh)
s z = btk
This gives the complete integral.
Type IV:  Equation of the form, F', (x, p) = F, (v, q)
Example 2.27: Solve the equation,p+g=x+y
Solution: We can write the equation in the form, p—x=y—¢q
Let, p—x=a,theny—g=a
Hence, p=x+a,qg=y—a

dz = 6—Zd)c-i-a—zdy = pdx + gdy
Ox oy

=(x+a)dx+ (y—a)dy
On Integrating,

2 2
__ray -0’
2 2

There is no singular integral and the general integral is found as usual.

Example 2.28: Solve p* + ¢*=x+y
Solution: Given, p’+¢*=x+y
P ox=y-q=k
pP-x=ky-¢=k

p = INx+k,q= ty—k

dz = pdx + qdy
= +(Nx+k)dx £(\y—k)dy

Integrating we get the complete solution.

z= i%(x—i—k)m i%(y—k)m +C

= i%[(x—i—k)m +(y—ky"?]+C

Example 2.29: Solve p + ¢ =sinx +siny



Solution:
p—sinx=siny—qg==k
p=kt+sinx;qg=siny—k
dz = pdx + qdy
= (k + sin x)dx + (sin y — k)dy
On integrating, we get,
z =(kx—cosx)—(ky+cosy)+C
z=k(x—y)—(cosx+cosy)+C

This is the complete solution.

2.6 APPLICATIONS TO MECHANICS,
ELECTRICAL CIRCUITS AND BEAMS

In this section, we will study the applications of Laplace transform to mechanics,
electrical circuits and beams.

Electric Circuit

Considers an electric circuit considering of a resistance R, inductance L, a
condenser of capacity C and electromotive power of voltage E in a series. A
switch is also connected in the circuit.

R

nl |

D\
) —
E S

Fig. 2.3 Electric Circuit
Here

._dq
T
Voltage developed are

. Ldi q
Ri, — and —
dt c

By Kirchhoff’s law,
“2 iR+ Lok 23
7 1 . . ..(2.3)

We can apply/use the Laplace transform to solve the differential equation
arises in electronic circuit. Where we first take the Laplace transform of((2.3) and
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Application of Laplace this results (1) will be converted into an algebraic equation in Laplace transform of
Transforms . . . . . .
‘ i and by the use of inverse Laplace transform may retrieve the solution i. This can
be better understand by the following adjoined examples.

Example 2.30: A resistance R is a series with inductance L is connected with
NOTES g
e.m.f E(7). The current i is give by

Ldi | pi_E
an i =
dt
Ifthe switch is connected at 7= 0 and disconnected at # = a then find the
current 7 in terms of'7.

Solution:
Given condition are
E O<t<a
E(t) =
0 t>a

and current i=aat7=0, 1.e., i(0)=0.

Given equation of circuit is

Ldi
o+ Ri=E@) (1)

Taking Laplace transformof (1) we get
L[si —i(0) ]+ Ri = TE(t)e“" at
0
(Where i = L(i) = Laplace transform of i)
or Lsi +Ri = J: e " .Edt+ J.j e ".0dt

Lsi +Ri = j: e Edt

or (Ls+R)7=E(e‘ J

- FE ,
or (LS + R)l = —(1 - ef"“)
s
T E(1-e*)
= s(Ls+R)
— E Ee ™
or I =

s(Ls+R) s(Ls+R)

Self - Learning
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Taking inverse Laplace transform we have

L'@=i=r" [—E j—L‘ [—
s(Ls+R s(Ls+ R)

—-R R
or i(t):£ l-et _E l-e i
R R

1 t>a
Where u(t—a)= 0 O<i<a u(t—a)
E ot
or i="7|17¢ for0<7<a

and for 7> a

fort>a

E R/ R,
ity=—e | el —1
0-£e7[d"]

Example 2.31: Find the current i(¢) in the LC-circuit (given in adjoining figure)
using Laplace transform. Given L = 1 Henry, C =1 ford, zero initial current and

charge on the capacitor and

t when 0O<r<l1
V() :
0 otherwise
Solution:
The differential equation for the LC circuit is given by

AN

7.
1

20000

o o
V(1)

Fig 2.4 LC Circuit
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2
Li§+1=E
2
GivenL=1,C=1 and E = V() we get
d’q
—+q' =V(t
el Al A0
Taking Laplace transform of (1)

L [%} +L(q)=L(V(2)

Denote L(g) =g thenwe have

5°7 —5q(0)=q'(0)+7 = | v(t)e™"d

It is given that ¢(0) =0, i(0)=¢'(0)=0

So (2) becomes
s’g-q = '[va(t)e""dt

1 ©
= IO e tds+ L o.e dt

! e~ e
[ ear==—|} -] (
0 —S 0

—st

—s
. -1 -5 I —st
qu_q = T(@ _0)+;J‘0€ dt
1 1)
= _+_
s s\ =s ),
1 .1 ,
=——e ' —(-e’+1
e (e )
N
r(s°=1)g B )
_ 1 |—-® e 1
f— = - -
g sP+1] s ¢ st
-’ e’ 1

= - +
s(s*+1) s7(s7+1) sP(sP+1)

Taking inverse Laplace transform we get

j.l.dt

(1)

)



g+ L'(g) and using Linearity property

_7! —e”’ _r! e’
Or 4 {s(seJrl)] [sz(s2+2J

a 1
+ L (—SZ(Sz +l)j ..(3)
We know that L' (e (s))=f(t—a) u (t—a)

= Since L (;j = ,[Or sintdt

s(s>+2)
—1—cos1
Lljgaézﬁjzﬁkkwmwyﬁzt—ﬂnt
L' S(;f; 1)} = [1—cos(t—Du(t~1)
and L S(;l 1)} — [(t—1)—sin(r — Du(t-1)].

puting that values of inverse laplace transfrom in (3) we get

g =[1—cos(t — Ju(t —1)—[(t — 1) —sin(t — )Ju(t — 1) + ¢ —sin

tza
for0<r<1 where u(1—1)= 0 O<t<a
ut—1)=0 (in the unit step function)
then q(t)=t—sint¢
and for t>1,u(t—1)=1 in that case

q(t) = —[1-cos(t—1)]-[(t—1)—sin(t —1)] + ¢ —sin¢

da
thus the current i(f) = ——

dt
for0<r<1
i()y=1—cost
and forz>1

i(fy=-sin(¢t—-1)—1 +cost (z—1)+ 1 —cos ¢
i(fy=cos (t—1)—sin(t—1)—cos ¢

Similarly we can solve the differential equation arising in mechanics and

beams.
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Now consider application of Laplace transform in beam.

Beam: A bar whose length in much greater than its cross-section and its
thickness is called a beam. There are various types of beams. defined so for. We
explain few of them.

If'abeam may just rest a support like a knife edge then it in called supported
beam.

It one or both edges ofa beam are firmly fixed then it is called fixed beam.

If one end of a beam in fixed and the other end is loaded, then it is called
cantilever.

Bending of Beam: Let a beam be fixed at one end and the other is loaded.
The upper surface is elongated and therefore under tension and lower surface is
shortened so under compression. Wherever beam is loaded it deflects from its
original position. [fM is the bending moment of the forces acting on it, then

_ER
"R
Where E =Modules of classify of the beam

I=Moment of inertia of the cross-section ofbeam about neutral

areas
R =Radius of curvature of'the curved beam
) 3/2
1+ (dy]
dx = (ne lectin d_yj
SO, R= dzy @ g g dx
dx* dx*
d? y
Thi M= EI
s d?
Boundary Condition

(1) End freely supported: At the freely supported end 0, there will be no
deflction and no bending moment

dzy

dx? =0

ie., y=0,

O

~
N4
4

v
Y

Fig 2.5 End Freely Supported



(i) Fixed end horizontally: Deflection and slope ofthe beam are zero

CZ‘)/
= —:0
y=0and i

S —

A B
Fig 2.6 Fixed End Horizontally

(i) Perfectly free end: At the free end there is no bending moment or shear

force, then

2 3
4y _o, 4V _g
dx dx

XW

w

Y

Fig 2.7 Perfectly Free End

Example 2.32: The differential equation satisfied by a beam uniformly loaded
(Wkg/meter), with one end fixed and the other end tensile force P, is given by

dy
= = — t =
y=0 o AX 0
Solution:
. dzy 1 2
Given E.I i =Py—§Wx (1)

taking Laplace transform both sides (denote L(y)= )

— _ 1 2!
EI(s’5 =5y =y (0)) = pr=—W.=5
. _w . .
Or EI (s y—s50- 0) =py 3 (using the given conditions)
o ENy=Py-2
s
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_ W
Or (ET SZ—P))’Z—ST

4
Or y S3(EI S2 —P) (2)

Taking inverse Laplace transform of (2) curve y can be obtained.

ie. y=L'()=L" [L]

s’(EI s* — p)
_ I —W
B s*(EI s* — p)
Consider
w w

SES—p) g o P
El

o !
EI f /
s s— v s+ v
EI EI
=% C;+ §+C—3+ 4 S
ils s s / /
S — P s+ P
EI EI
1 -1
c = =—
el
L EI s=0 EI
|4 1 e |
dS SZ_L SZ_L
L ElJ]._, EI .
A
c, =|ds’ (Sz pj
L EI s=0
i 2s
=|ds 2
Ly
( EIJ 1s=0




€3 = 2 7| t0=- : 2
5L )
El) |, El
ya
V)
a, = —
v
/%]
Where p(s) = 1
q(s) = S{Sz—%j

'(s) = 5s°—
q'(s) Z

Application of Laplace

2
V4
o /2{5)
1 1 -2) 1
S A d B BPIE
s’(Els—p) EI (ﬁjs (ijs
EI EI
1 1 1 1
7 + 7
2 £ S — £ 2 i S+ £
EI EI El El
Hence y=L'(y)

2

ARG
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2
i x+(2)+1cosh&

) &) B

Put n?= % then (ie., n* EI=p)
W icoshnx—i—i
Y- p/n*|n' n*  2n’
2
— Wx +(2—coshnx)—;
2p pn
wx* W
- + 2 —coshnx

Application to Mechanices

Example 2.33: Consider the mechanical system in (Figure 2.3) consists of two
bodies of mass 1 on these springs and is governed by the differential equations.

u'" =ku+ R(v—u)
V'=—R(Vv—u)—Rv

e
L

B

Fig 2.8 Mechanical system of two bodies

Where £ is the spring constant of each of the three springs and # and v are
the displacements ofthe bodies from their position of static equilibrium, the masses
of the springs and damping are neglected.

We shall determine the solution corresponding to the initial conditions #(0)
=1,4'(0)= /3R and W(0) =1,V (0) =—/3k

Donote & = L(u) and v = L(v) and taking the Laplace transform of given
system of differential equations, we get,



s’ —su(0)—u'(0) = kit + k(v —r)
sV —su(0)—v'(0)=—k(v—u)—kv

2 o T - =
Or {su s=—ku+k(v—u)

SV —s=—k(v-u)-kv
Solving this system for 7; and 3 we get,
s
2 2
s*+k s7+3k
s
s'+k 7 +3k
Hence by use of inverse laplace transform, the solutions is given by
u=L"(r) = cos~Jkt +sinVkt
v=L"(¥)=coskt—sinkt

S|
I

From the solution it is obvious that the motion of each mass is harmonic
(the system in undamped).

2.7 INTEGRAL EQUATIONS OF
CONVOLUTION TYPE

Consider the integral equations of Volterra type (of fifth kind).

Ax) = jo k(x—1)y(t)dt (2.3)
Taking Laplace transform of (2.3) both sides

L(fx) = L{ [(k(z-1) y(t)dt}

F(s)
Or fis)=k(s)y(s) = y(s)= m ..(2.4)

By inverse Laplace transform one can

Where

L(f(u))= f(s) find by (Equation 2.4)
L(k(x)) = k(s) y(x)=L"(9(5)
L(y(x))=1/(s)

Similarly the Laplace transform method is applicable to the Volterra integral
equation of 2™ kind with a convolution type kernel.
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Consider a non-homogeneous integral equation of 2™ kind as

Y0 = f()+ [ k(x=0)p(0)di (2.5
Taking Laplace transform of back sides to (2.5) we get,
L0 = L@+ L([[ k=030

Using convolution theorem we get,

¥(s) = F(s)+K(s)y(s)

Or W) (1 =k(s)) =fx)
/()
= W)= 1C ks(s) (2.6)

And again by use of inverse Laplace transfrom we get,

SO

The resolvant kernel of the non-homogeneous integral equation can also be
determined by the method of Laplace transfrom.

Let k(x, ?) is defined as difference kernel and so is the resolvent kernel.

Since the resolvent karnel k(x, 7) is the sum of the iterated kernel and they
all depend on the difference (x — 7) then

W) = k(0= kx—2)k(z-1)d
Let z—t = u = z=utt
= dz=du
thus Ren = [ k(e—t-u)k(u)du (2.8)

The other integrals can be determined similarly. Thus we can obtain the
resolvent kernel.

e, 1,0) = 2 Mk, (60)
v=1

With the help of resolvent kernel we can find the solution of integral equation
(2.5) as

W) = @+ k=0 f@)dr
Taking the Laplace transform of (2.9) both sides

X

Loy = L)L k(x=0) fo dl



or Ys) = F(s)+k(s)F(s)
(where k (s) = L(k(x~1)))

F _
or ﬁ = F(s)+k(s)F(s)
o (14K()F(s) = T§£%3
_ 1
o K& = ke !
_ K
or K(s) = 1_;2) (2.10)

and thus the resolvent kernel k(x,7) = L (l; (s)) ,i.e., from(2.9) we can
recover the resolvent kernel.

Now we consider some example.
Example 2.34

Solve the integral equation.

x = La@mﬁ
Solution: The given integral equation can be writen as

x = yx)*e (1)
where * denotes the convolution product. Taking Laplace transform of (1)
we get.

1
= = LOW)LE)
1 1
— = Y(s)=—
= (s) 1
s—1 1 1
Ys) = ==
o ) 5 s 8
I 1
thus s) = ———
s S

Taking inverse Laplace transform one can get solution of given integral

equation as
L' () =L" H ya (ij
S S

1—x

()

(x)
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Example 2.35 Find the solution of the integral equation.
sinx = [ JoGe=0p(0) d
Solution: Taking Laplace transform of given integral equation both sides.
L(sinx) = L ( [RACEHNG! dt)

and using convolution theorem we get.

Ly, 3 ['.'L(Jo(x)): 21 j

st+1 s*+1

1
or Yis) =
© Vs® +1
taking inverse Laplace we get solution y(x)
Y(x) = L7(¥(s)) = J ().
Example 2.36 Solve the integral equation of convolution

[ 3(0) y(x—1) di =165in 4x

Solution: Taking the Laplace transform of given integral, in view of convolution
theorem, we have

4
Y(s) Y(s) = 16S2+16
(where L((x)) = X))
_ / 64
or Ys5) = £ ENT;
8

or Ys) = =
\s*+4

by inverse Laplace transform the desired solution of given integral
equation is given by

8
= L'+
) [ J—J

or yx) = £8J(4x)

Example 2.37: Solve the following inhomogeneous integral equations.

@) = 1= [ (x=0y() di

(by(x) =1+ J‘Or sin(x—1)y(t) dt



ssin wd

©y(x) = L(x"* 1 (D)

T

(dy(x) = € =2 cos (x—0)y(1) d

Solution: (a) Given integral equation is (a) can be written (in term of
convolution product *)

yx) = 1-px) *x (1)
taking Laplace transform of (1) bron side.

we get,

Ys) - %—y(s)siz

or 14— |Y(s) = -
S N

or Ys) = il

st +1

(b) By taking inverse Laplace transform we get the solution as

(x) )

L'(Y(s)=L" [Sf j
or y(x) = cosx
(c) Givenequation is given as

y(x) = x+2p(x)* cosx ..(2)

taking Laplace transform of (2) we get

1 S
Ys) = —+2Y(s)——
) s? ( )s2 +1
2s 1
1- Y -
or ( S2+1j (S) S2
v st +1
or (S) - SZ(S)
1 1
or Ys) =

+
(s— l)2 s*(s— 1)2
(d) By Taking inverse Laplace transform we get.
y(x) = xet+(x—2)e"+x+2
or y(x) =2e"(x-1)+x+2

Parts (b) and (d) can be solved is the same way. Let fas an exercise to the
reader.
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2.8 ABEL'S INTEGRAL EQUATION

The following Abel integral equation.

fo) = J:(x_—t)adt O<a<l _(2.11)

This (2.11) can be rewritten as

fx) = yx) *x° ..(2.12)
taking Laplace transform of (2.12) we get

Fo) = ot
S
_ F(s™) __F(s)s Y
or Y(s) o \/;m(\/as )
or Y(s) = ﬁ@s“F(s)
s o1
or Y(s) = WL(X f(f))
or Y = Ssinnd L(x*"% £ ()
or Ys) = O‘Sin““.and.L( [ =0 F () dt)
o 0
denote g = [ =0 @) dr
then g0 = 0
thus Y(s) = Sino’:asL(g(x)) L2.13)
We know that
Lgx) = sL(g(x))-g'(0)
L(g(x) = sL(g(x)
or L) = ~L(g'w)

From (2.13) we get

sin ol

Y(s) = o L(g’(x))




o L) = sin o (di g(x))j
sinmto.( d
or y(ix) = o (d—g(x)j
o W) = s1nanocdi(j ( _t)afl F o) dt)
1s the desired solution.

But if the Abel integral equation is given the following form:

* (1) dt
Sx) = ,[0 \/;

..(2.14)

Then we may proceed as

Here k(x) = x% and the given equation is f{x) = y(x) % k(x)

-1
Here k(x)=x % is not piecewise continuous but it does have a Laplace

transform as
R e N L A
K(x) = Jl)x e dx= 2s
or K(s) = \/Es%

Taking Laplace transformof(1.14) we get
K(s) = Y(s).K(s)

B F(s)
Yis) = (y( )) K(s)

 F@)

or y(S) \/Esf )
M

or ws) = ﬁF(S)

= ( ns% F(S))
or ) = ~(KOF()
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these fore (by use of inverse Laplace transform)

1dex f(t
yx) = prny \/]% dt is the required solution of((2.13)

Example 2.38 Solve the following integral equations

RLQ N
a) JO (x_t)% dt = x(1+x)

y(t)y dt=1+x+x*
—1

(x—t)?

-1
Solution: (a) The given integral equation is given as y(x) * x . x(1+ x)

(2.15)

® I,

*denotes the convolution product taking the Laplace transform we get.

L(y(x)L (x%)

L(x + x?)

PA )
Y(s) el —t=

)
)

N

R P
N 7R 2

4 1 ! 01
- S T/{L #)e ()
3
1 x% %
or Y(x) = +2

s sl

2x% | 3
o " - W( =

N o - 2 (1 3 x}
4 (n/sinm/3) \ 2
or yx) = %xm (2+3x)

Past (b) is similar and it is left as an exercise to the readers.
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2.9 INTEGRO-DIFFERENTIAL EQUATION Transforms

Laplace transforms can be used to solve Integro-Differential Equation (IDE)
consisting the kernel of convolution type, i.e., the kernel k(x, #) depends on (x—7) NOTES
like K(x, ) = e, cos (x — 1), (x — f)*ect. This is also called difference kernel.
Consider an Integro-difference equation.

d"y(x)

= = S+ k=) dr .(2.16)
dx 0
we can rewrite (1) as
YO(x) = fx)+ A k(x) * p(x) .(2.17)

where * denotes the consolution.

Taking Laplace transform of (2.17) both sides and using Convolution
theorem we get

s"Y (s)—zs”ily(i>(0) = F(s) + K(s).Y(s)

Solution (2.18) for ¥(s) and by the use of inverse Laplace transform one
can find y(x) as

Example 2.39 Solve the following Volterra integro differential equation.

dy x .
e 1+'[0 ¥(#) dt subject to y(0) =1
taking Laplace transform both sides we get.
@) -30) = LO+L([ 1y d]
or sY(s)—1 = l+L(l).L(y(x))
s
1 1
sY(s)—1 = —+=Y(s)
s s
(s—lJY(s) = l+1:1+_s
s s s
I+s
M) = =
s
v - L
or 5) = 1
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L (p(s)) =L (LJ

= y(x) 1
= yx) = ¢

Example 2.40 Solve the following integro differential equation of order z.

Y@ = —lex+ [ (x—1) y(o) di
Subject so the conditions

w0 =1, y(0)=1
Solution: The given IDF can be written as y" Y(x) =—1 —x + (x) * y(x)
Taking Laplace transform both sides.

I 1 1

yzY(S)_Sy(O)_y'(O) = _;_S_2+S_2Y(S)
-1 1 1
or s?¥(s)-s.1-1 = T—S—2+S—2.Y(s)
1 - 1
or (Sz_—ij(S) = ———2+S+l
s s S
4 2
s =1 —s—1+s5+s
or ( 5 jY(S) = —
s s
3 2
s +s —s—1
or Ys5) = ——M——
© st-1
Y6) S +s+s7—1
r e e
° : st -1
(sz—l)(s+l)
or Y = —
S Ty
s+1
or Y(is) =
) st+1
S 1
Y(s) = -
of © sT+1 st+1
= L'(v(s)) = y(x)=cosx+sinx



2.10 DIFFERENTIAL-DIFFERENCE EQUATIONS

Like differential equations, differential-difference equations also used to model
variety of problems in mechanics, electrical and electronic systems. These equations
also arise frequently in economics, business and particularly in problems concerning
nterest, annuities, amortization, loan and mortgages. Here we see the use of Laplace
transfer to find the solution of simple diffrential-difference equations.

Suppose {y,}” | is a given sequence. We first see the definitions of

difference operators. A, A% ... A" defined as

Av= Y, =V, ..(2.19)
Ay = AAy) = AAy,, — )
or A=y, =2,y .(2.20)
Similarly ANy = A(Ay)=AN(y,, —Y)
or Ay = Y. =3y, 3.~ ..(2.21)

In general

A"y, =A"" i — )

or Ay = D (D Cy, (2.22)
k=0

These operaters A, A%, A®, ... A" respectively called as first, second, third
and nth order finite differences. Any equation consisting the finite differences is
called difference equation.

The highest order finite difference involved in the equation is referred to as
its order. A difference equation containing the derivatives of the unknown function
is called the differential-difference equation. Thus the differential-differnce equation
has two distinct orders — one is realted to the highest order finite difference and the
other is associated with highest order derivatives.

The equations

Ay=y =0

A’y =2Ay.=0

are the example of difference equations of the first and second order
respectively. The general n” order differnce equation has the form:

a=Ay+a Ay +..+a Ay +a y=[fn) ..(2.23)

where a, a,, ...a , and f(n) are either constans or functions of non negative
integer 7.

Like in ordinary defferential, Equation (2.23) is called a homogenous or
inhomogeneous according to f{n) =0 or #0.

Application of Laplace
Transforms

NOTES

Self - Learning
Material 151



Application of Laplace
Transforms

NOTES

Self - Learning
152 Material

The following equations

V@ -y@-1)=0..2.24)

Vi@ —ay(@-1)=£()...(2.25)

are the examples of differential-difference equations where f{7) is a given

function of 7. The study of above such equations can be carried by introducing the
function.

S (O=H({-n-H({-n-1),n<t<ntl

where H (t) is the Heaviside unit function. The Laplace transform ofp (t)is

given by
Sn(s) =L (S, (1) = [T (H(t-m) ~H (1—n— 1)}dr
= J‘Me"” dt = l(l—e_s)e"”
" s
= T
_ 1 .
where S, (s) = ;(l—e ‘ )

We, next define the function y(t) by a series
W?) = 28,0 (2.26)
n=0

where {y, }n:O is a given sequence.

Thus it follows that
W=y, for n<¢t<nt+l,and
represents a staircase function.
Further
y(t+1) = ZynSn(t+l)
n=0
or vy = 2y [r(erl=n)-u(i-n)]
n=0
= > 3.5,
n=1
or Wr+1) = 2 0aS(0)  (227)
n=0



Similarly,
Wi+2) = D VuaS,(0)
n=0
In general

Wi+k) = iymSn(t)

The Laplace transform of y(7) is given by

['e]

L0ty = [ ¢yt

() = 0
| ,
or (s) = ;(l—eﬂ)z_‘,yném
Thus 56 = ~(1-¢7)£S) = S,()LS)
1 L _
Thus gs) =~(1=¢") 6= 5,() G0s)

where G(s) represents the Dirichlet function defined by
Gs) = 2 vt (=ns)
n=0

Thus we canreduce that
) = LYY ()
or y(@) = L7(S,(5) G(s))

Inparticular if y = a” is a geometric sequence then

[e]

as) = 2 (ae”)

n=0

or 5_1[50(3) ¢ j =q"

e’ —a

From the identity

['e]

4 (n+l)(aeis)n = (1 - ae”)?

n

it follows that

.(2.28)

(2.29)

.(2.30)

(2.31)
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L((n+1)a") = S, (s) (1 —ae™)?

ezs§o (s)
= (es - a)2
€2s§0 (s)
-1 — n
Thus L (es _a)2 = (n+1)a
. ae’
or D na"e—ns = (l—ae"‘)z
n=0
ae’
Hence L((na") = S,(s) ( o a)2

aS,(s)e’ _
£ {(es a)zl "

Theorem 2.2. If1((1) = £ (»(1)) = ¥(s) then

Ly (1) = & (F()-y, S, (), y,=10)
Proof: Consider

['e]

L (+]) = I e y(t+Ddt (pyt t+ 1 =1)

0
0

— Ie‘ve’”y(r)dr
0

S f(s)—Je“"y(t)dT

S f(s)—y(O)Je‘”dT

LO@D) = e [y6)-2,5 ()]

Similarly we derive
Ly (t+2)) = e' [L(+1)) = p(1) ~(s)]



= e [e((s) =y ()] = ¥(1(s))
Ly t+2)) = e [(s)— (v, Ty, ()]
where  y;=(0), y, = (1)

Similarly

Ly (+3)) = €*[(s) = (v, Ty, et y,e™) (9)]
In general

Lo (+h) = € (f(s) -5, (S)Z_, yi ej

Example 2.41 Solve the following differential-difference equation

y () =y (1), p(0)=1
Solution: Taking the Laplace transform of given equation we get

$()=y(0) = e ((s)—»(0) (s))
or (s)(s—e®) = 1+ e: (e_s —1)

1 —s -2s
or () = {se‘ﬁ_s(ses)}-i_s(ses)

_ e e e
y(s)=—+ t—t+t—Ft...t+

(1)

. e—as (t— )n—l
Since we know that £—1 o |z ~———H(t—a)

Thus we get (from (1))
yy = L1(y(s)
(t—2)+(t—3) (t—n)" )

=1+ T > +...+ (n 1)1

> n.
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Example 2.42 Solve the following differntial-difference equation.

y () —au(t—1)=b,y(0)=0
Solution: Taking the Laplace transform of given equation

b
sV ($)=»0)—ae*[(s) =0) (] =7 -

—s 2 _2s n_—ns n _—ns

1 ae’ ae™ a’e a'e
+...

Or y(s) =b[s_2+ S3 + S4 + Sn+2 +...+ Sn+2

Taking inverse Laplace transform we get

a(t—l)2 o (1—2)3 a’ (t—n)wr1
w(t) =b [1+ |§ + |Z +...+W t>n

Example 2.43 Solve the following difference equation.
yn+2_27\'yn+1+7\'2yn=0
Subject to the conditions y,=0andy = 1.

Solution: Taking the Laplace transform of given difference equation we get

e[ F(s)—e *3,(5) |- 205 (s)e* +A’F(s) = 0 (using y, =0 and y, = 1)

_ e'S, (s)

y()=—-3
or (es B 7\,)2

'S, (s)
or VL) = L7 (e -
_1 n\" = n\"!
or yn - 7\’ . -
Check Your Progress

What are partial differential equations?
How is a partial differential equation formed?

What do you mean by the terms 'Complete integral' and 'Particular integral'?

A e B

What is the electric circuit?

10. Define the term beam.

11. What do you understand by the bending of beam?
12. State the Abel integral equation.

13. Where are differential-difference equations used?
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2.11 ANSWERS TO ‘CHECK YOUR PROGRESS’ Transforms

1. The Laplace transform is an elegant way for fast and schematic solving of
linear differential equations with constant coefficients. As an alternative of NOTES
solving the differential equation with the initial conditions directly in the original
domain, a mapping into the frequency domain is taken where only an
algebraic equation has to be solved.

2. These are three steps for solving an ordinary differential equations with
constant coefficients:

e Transformation of'the differential equation into the mapped space.
e Solving the algebraic equation in the mapped space.
¢ Back transformation of'the solution into the original space.

3. Considering ) as a constant, then the following equalities hold:
2yt 1 3yrrr
J. sY'ds==s5"Y
3

J. 2sY’ds = s*Y’

In the above given two equations, y» is considered as a function of's.
However, y» can be used as a constant if the difference stands as much as
the constant coefficient.

4. The Laplace transform is an elegant way for fast and schematic solving of
linear differential equations with constant coefficients. As an alternative of
solving the differential equation with the initial conditions directly in the original
domain, a mapping into the frequency domain is taken where only an
algebraic equation has to be solved.

5. Working Rule:

e Two equations are given for two dependent variables, depending upon
a single variable. Apply the Laplace transform on both sides of the
equations on both of the equations.

e Now solving these equations, there will be values of dependent variable
in terms of's.
Applying Laplace transformation find the value of dependent variables.
6. Any equation which contains one or more partial derivatives is called a partial
. . . 0. 16} : : :
differential equation. Zy y—z =z a—f + a—f + oz
ox " Oy ox~ 0Oy~ OxOy
for partial differential equation of first order and second order respectively.

= 0 are examples

7. Partial differential equation may be formed by eliminating (i) Arbitrary
constants (i) Brbitrary functions.

8. A solution in which the number of arbitrary constants is equal to the number

of independent variables is called complete integral or complete solution. Self - Learning
Material 157
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10.

11.

In complete integral, if we give particular values to the arbitrary constants,
we get particular integral. If ¢(x, y, z, a, b) =0, is the complete integral ofa
partial differential equation, then the eliminant of @ and b fromthe equations

o9 _ . 0 _ . . . .
% 0, % 0, is called singular integral.
. An electric circuit considering ofa resistance R, inductance L, a condenser

of capacity C and electromotive power of voltage E in a series. A switch is
also connected in the circuit.

A bar whose length in much greater than its cross-section and its thickness
is called a beam. There are various types of beams. defined so for. We
explain few of them.

A beam be fixed at one end and the other is loaded. The upper surface is
elongated and therefore under tension and lower surface is shortened so
under compression. Wherever beam is loaded it deflects from its original
position. If M is the bending moment of the forces acting on it, then

_ER
R

12. The following Abel integral equation.

0
s =l Gy

13 Laplace transforms can be used to solve Integro-Differential Equation (IDE)

14.

consisting the kernel of convolution type, i.e., the kernel £(x, #) depends on
(x—1) like K(x, 1) = e, cos (x—£), (x —t)*ect. This is also called difference
kernel. Consider an Integro-difference equation.

Differential-difference equations are used to model variety of problems in
mechanics, electrical and electronic systems. These equations also arise
frequently in economics, business and particularly in problems concerning
interest, annuities, amortization, loan and mortgages.

2.12 SUMMARY

e The Laplace transform is an elegant way for fast and schematic solving of

linear differential equations with constant coeflicients. As an alternative of
solving the differential equation with the initial conditions directly in the original
domain, a mapping into the frequency domain is taken where only an
algebraic equation has to be solved.

e Considering y(n) as a constant, then the following equalities hold:

1
J. SZYNdS — §S3YN

J. 2sY’ds = s*Y’



In the above given two equations, y™ is considered as a function of's.
However, y™ canbe used as a constant if the difference stands as much as
the constant coefficient.

The Laplace transform is an elegant way for fast and schematic solving of
linear differential equations with constant coeflicients. As an alternative of
solving the differential equation with the initial conditions directly in the original
domain, a mapping into the frequency domain is taken where only an
algebraic equation has to be solved.

Two equations are given for two dependent variables, depending upon a
single variable. Apply the Laplace transform on both sides of the equations
on both ofthe equations.

In this unit, you have learned about partial differential equations and the
formation of partial differential equations by eliminating arbitrary constants
and arbitrary functions from ordinary equations.

Considers an electric circuit considering ofa resistance R, inductance L, a
condenser of capacity C and electromotive power of voltage E in a series.
A switch s also connected in the circuit.

A bar whose length in much greater than its cross-section and its thickness
is called a beam. There are various types of beams. defined so for. We
explain few of them.

If'abeam may just rest a support like a knife edge then it in called supported
beam.

It one or both edges ofa beam are firmly fixed then it is called fixed beam.

If one end of a beam in fixed and the other end is loaded, then it is called
cantilever.

A beambe fixed at one end and the other is loaded. The upper surface is
elongated and therefore under tension and lower surface is shortened so
under compression. Wherever beam is loaded it deflects from its original
position. If M is the bending moment of the forces acting on it, then

ER
M=%
Laplace transforms can be used to solve Integro-Differential Equation (IDE)
consisting the kernel of convolution type, i.e., the kernel &(x, 7) depends on
(x — ) like K(x, 1) = e, cos (x — 1), (x — ©)*, ect. This is also called
difference kernel. Consider an Integro-difference equation.

Differential-difference equations are used to model variety of problems in
mechanics, electrical and electronic systems. These equations also arise
frequently in economics, business and particularly in problems concerning
interest, annuities, amortization, loan and mortgages.
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2.13 KEY TERMS

¢ Solving ODE with constant coefficient: As an alternative of solving the
differential equation with the initial conditions directly in the original domain,
amapping into the frequency domain is taken where only an algebraic equation
has to be solved.

e ODE:s with variable coefficients: Considering y(»n) as a constant, then
the following equalities hold:

1
J. $Yds = ESSY"

J. 2sY'ds = s*Y’

¢ Solution of ODE using Laplace transform: The Laplace transformis an
elegant way for fast and schematic solving of linear differential equations
with constant coefficient.

¢ Solution of simultaneous ordinary differential equation: Simultaneous
ordinary differential equations may be solved by using Laplace transformation.

. . .. 0z 0
e First order partial derivatives: - =

—, — are the first order partial
x oy

derivatives.

2 2 2
e Second order partial derivatives: a—f a—f 2 arethe second order
Ox~ Oy° 0OxOy
partial derivatives.

e Complete integral: A solution in which the number of arbitrary constants
is equal to the number of independent variables is called complete integral
or complete solution.

¢ Partial differential equation: Any equation which contains one or more

. T C . . 0. 16}
partial derivatives is called a partial differential equation. xa—z +y a—z =z
X Y

2 2 2
% + % + aax—azy = 0 are examples for partial differential equation of first
order and second order respectively.
e Beam: A bar whose length in much greater than its cross-section and its
thickness is called beam.

2.14 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the significance of Laplace transform to solve an ordinary differential
equations with constant coefficients.



N s

8.
9.
10.
11.
12.

What is the three steps for solving an ordinary differential equations with
constant coefficients?

Define the solution of ordinary differential equations with variable coefficients
through the integral and Laplace transform.

Why Laplace transform is useful for solving the differential equations?
Give the solution of simultaneous ordinary differential equations.
Define partial differential equation.

How will you identify the order of a partial differential equation? Give an
example.

What do you understand by the beam?

State solution of integral equations of convolution type.
What is Abel integral equation?

Define integro-differential equation.

Write a short note on differential- difference equations.

Long-Answer Questions

1.

Discuss briefly the significance of Laplace transform to solve an ordinary
differential equations with constant coefficients. Give appropriate example.

. Describe the three steps for solving an ordinary differential equations with

constant coefficients.

. Discuss the solution of ordinary differential equations with variable

coefficients through the integral and Laplace transform.

. Explain why Laplace transform is useful for solving the differential equations.

5. Discuss the solution of simultaneous ordinary differential equations with the

help of example.
. Explain the working rule for the solution of simultaneous ordinary differential
equations.
. Obtain a partial differential equation by eliminating the arbitrary constants
of the following:
2 2 2
(i) z=ax+by+a* + b (i) 2_24'2_24';_2:1
(iii) z=xy+ yNx’ —a’ +b (iv) z=ax’ + by’
(V) (x—a) +(y-by +z° =a’ +b’ (vi) 2z=(ax+y) +b
. Eliminate the arbitrary function from the following:
(i)z=¢e flx+y) (ii) z=f(my — Ix)
(iii) z = f(x* + y* + 2%) (iv)z=x+y+ flxy)
(v) z=flx) + e'g(x) (vi) z=flx + 4y) + g(x — 4y)

(vii) z=f(2x +3y) + y g(2x +3y)  (viii) z=fx+y) - Hx—y)
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9. Solve the following differential equations:
(i) Bz—4y)p + (4x —22)g =2y —3x (ii) y’zp + x’2zq = y*x
(iii) X’p = y*q = (x = y)z (iv) xp + yq =2z
() x(z* =y )p + y(x* = 2)q = 2()* — x?)
10. Eliminate the arbitrary function(s) from the following and form the partial

differential equations:
(l)xy+yz+zx=f( er j (ii) z=f(x* + > + 2%)
Xy

(iii) u=¢e fix—y) (iv) z = f(sinx + cos )

V) Hx+yt+tzx*+)y?—z)=0 (vi) z = f(2x + 3y) +Hy + 2x)

(vii) u = fix’ + y) + g(x* = y) (viit) u=x flax + by) + g(ax + by)
11. Discuss the applications of mechanics, electrical circuits and beams with

the help of examples.

12. Explain the Abel integral equation with the help of examples.

13. Explain the integro-differential equation. Give appropriate examples.

d x
14. Solve the following IDE % +2y+5[ " y(t)di = /(1) 9(0)=0

Hint: Take differente Kernel k(x —7)=1.
15. Discuss the differential-difference equation with the help ofrelevant examples.
16. Find the solution of

Ayb—y =0,y,= 1 using Laplace transforms.
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UNIT3 FOURIER SERIES AND
INTEGRALS
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3.0 Introduction
3.1 Objectives
3.2 Fourier Series
3.3 0Odd and Even Functions
3.4 Half Range Fourier Sine and Cosine Series
34.1 HalfRange Series
3.4.2 Complex Form of Fourier Series
3.5 Parseval's Identities for Fourier Cosine and Sine Transform
3.5.1 The Generalization of Parseval’s Theorem
3.5.2 The Convolution Theorem and the Auto-Correlation Function
3.6 Fourier Integral at Including its Complex Form
3.6.1 Fourier Transforms
3.7 Convolution Theorem Including Sine and Cosine Transforms
3.7.1 Relations Between Fourier and Laplace Transforms
3.8 Multiple Finite Fourier Transform
3.8.1 Solution of Simple Partial Differential Equations by Means of Fourier Transforms
3.9 Answers to ‘Check Your Progress’
3.10 Summary
3.11 Key Terms
3.12 Self Assessment Questions and Exercises
3.13 Further Reading

3.0 INTRODUCTION

A Fourier series is a periodic function composed of harmonically related sinusoids,
combined by a weighted summation. With appropriate weights, one cycle (or period)
of the summation can be made to approximate an arbitrary function in that interval
(or the entire function ifit too is periodic). As such, the summation is a synthesis of
another function. The discrete-time Fourier transform is an example of Fourier series.
The process of deriving weights that describe a given function is a form of Fourier
analysis. For functions on unbounded intervals, the analysis and synthesis analogies
are Fourier transform and inverse transform.

Even functions and odd functions are functions which satisfy particular
symmetry relations, with respect to taking additive inverses. They are important in
many areas of mathematical analysis, especially the theory of power series and
Fourier series. They are named for the parity of the powers of the power functions
which satisfy each condition: the function f{x) = x"1is an even function if  is an
even integer, and it is an odd function if # is an odd integer.

f(z),z & [0, L] A halfrange Fourier series is a Fourier series defined on an
interval [0, L]instead of the more common [-L, L], with the implication that the
analysed function should be extended to [-L, 0] as either an even (f{(-x)=f(x)) or
odd function (f{-x)=-f(x)). This allows the expansion of the function in a series
solely of sines (odd) or cosines (even). The choice between odd and even is
typically motivated by boundary conditions associated with a differential equation
satisfied by f{(x).
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The Parseval’s identity, named after Marc-Antoine Parseval, is a fundamental
result on the summability of the Fourier series of a function. Geometrically, it is a
generalised Pythagorean theorem for inner-product spaces (which can have an
uncountable infinity of basis vectors).

The Fourier transform can be formally defined as an improper Riemann
integral, making it an integral transform, although this definition is not suitable for
many applications requiring a more sophisticated integration theory. For example,
many relatively simple applications use the Dirac delta function, which can be
treated formally as ifit were a function, but the justification requires a mathematically
more sophisticated viewpoint. The Fourier transform can also be generalized to
functions of several variables on Euclidean space, sending a function of
3-dimensional ‘Position Space’ to a function of 3-dimensional momentum (or a
function of space and time to a function of 4-momentum). A Fourier Transform
(FT) is a mathematical transform that decomposes functions depending on space
or time into functions depending on spatial or temporal frequency, such as the
expression of a musical chord in terms of the volumes and frequencies of its
constituent notes. The term Fourier transform refers to both the frequency domain
representation and the mathematical operation that associates the frequency domain
representation to a function of space or time.

The convolution theorem states that under suitable conditions the Fourier
transform of'a convolution oftwo functions (or signals) is the pointwise product of
their Fourier transforms. More generally, convolution in one domain (e.g., time
domain) equals point-wise multiplication in the other domain (e.g., frequency
domain). Other versions of the convolution theorem are applicable to various
Fourier-related transforms.

In this unit, you will learn about the Fourier series, odd and even functions,
halfrange Fourier sine and cosine series, complex form of Fourier series, Parseval’s
identities for Fourier cosine and sine transform, Fourier integral, Fourier transforms,
convolution theorem including sine and cosine transforms, relation between Fourier
and Laplace transform, multiple finite Fourier transform and solution of simple
partial differential equations by means of Fourier transform.

3.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain the Fourier series
e Elaborate on the even and odd functions in Fourier series
e Discuss the halfrange Fourier series
¢ Explain complex Fourier transform
e Discuss the Parsival’s identity in Fourier transforms
e Describe Fourier’s integral formula and Fourier transformation
¢ Explain the convolution theorem including sine and cosine transform

¢ Discuss the multiple finite Fourier transform
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3.2 FOURIER SERIES

Fourier series is used as infinite series representation of periodic function and it
uses trigonometric sine and cosine functions for expansion. Its main application is NOTES
to solve ordinary and partial differential equations. It is a powerful tool to solve
differential equations specially with periodic functions appearing as non-
homogeneous terms. It has wider applications as it is valid for periodic functions
as well as continuous functions and for functions, which are discontinuous.

Function f{(x) is said to be periodic if f{x + 7) = f(x), and real x for some
positive number 7'is period of f{xx). Smallest positive period of f{x) is called primitive
or fundamental period of f{x).

For example, cosecx, sinx, secx, cosecx are periodic function with period
2m and cotx, tanx, are periodic with period rt. In general, it can be defined as

If fix+nT)=fx), n#0
Then T'is period of f(x) and nT is also period of f for any integer 7.
If f(x) is a periodic function of period 7, then f{ax) with a # 0, is a periodic

T
function ofperiod —.
a

2 ) .2
For example cos2x has period 5" and sin 3x has period ER

If f{x) and g(x) have period 7, then f{x) = af(x) + bg(x) has period 7,
where a and b are constants.

A constant function is periodic for any positive period 7. The period of a
sum of'a number of periodic functions is the least common multiple of the periods.

Ifa function is periodic with period 27, then the trigonometric series of f{x)
is given as

ay  ~ :
= —+ x+b
Sx) 5 nz:;(an cosnx + b, sinnx)
21
1
Where a, = —Jf(x)dx
/s
ao
1 21
a = —Jf(x)cosnxdx
n 7r 0
1 21
And b = —j F(x)sinnx dx
%
Where n=12,3.......

a,a and b are called Fourier coefficients as
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2
1. J cosmx.cosnx dx =0
0

2
2. J cosmx =0
0

2
3. J sinmx =0
0

2r
4. J sinmxsinnx dx =0
0

2r
5. J sinmxcosnx dx =0
0

2

6. J sin’mxdx =1
0
2

7. J cos>mx dx =T
0
2

8. J cosmx sinmx dx =0
0

m#n, m#=0, nz0

m#n, m#=0, nz0

m#n, m#=0, nz0

Example 3.1: Obtain Fourier series for f{x) = ¢* in (0, 27)

Solution: We know that Fourier expansion is,

o0

flx) = a—0+2(an cos nx +b,, sinax)

2

n=l1

a, = %J‘Oznf(x)dx

2
=lj " o™ dx
50

- 2n
=& _
0
1 2am
ay=—e""" -1
o=2e™)
1 ¢2n
a =—j f(x)cosnx dx
n TE 0



1 27
= —I e™ cos nx dx
790

ax . 27
1| e™ [acosnx + nsinnx]

a’ +n’

1{ ae®™ —1
a,=—|———
T 612+I’12

21 .
.[0 e sin nx dx

0

1
And b =—
T

n

ax . 27
1| ™ [asinnx+ncosnx]
T

2 2
a +n
0

— o = 2n 2 (1 ezan)
Tc(a +n )
2 2
(e -l l+§:—nsinnx +("e [m_l) Z\ COS nx
Therefore ~ flx) =" _ 2 = T =2

Example 3.2: Find the Fourier series of f{x) = x for (0, 2n) and sketch the graph
of f(x) from —67 to 6.

Solution: We know that

fix) = a70+ > (a, cosnx+b, sinnx)

n=l1
1 27
Where a,= ;.[0 S (x)dx
1 27
= ;J‘o xdx
ol 2
0
- i(4n2 —0): 2n
27
aO ZZTC

a = %Ioznf(x)cosnxdx
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1 ¢2n
— I X.CoSs nx dx
790

[S—

r . 21
xXSimnx CoSnx
— +
0

a
N
N

And b

Therefore, Fourier series is

s L n2
%L:Ef(x) sin nx dx

1 en .
—I xsin nx dx
790

. 27
1| —xcosnx sinnx
— +
0

T n n2
=
T n
2
n

Sx)
n=l1 h
0o -
Sin 71x
)
n=l1 h
¥
A
21
—67 —4r —2n 0 —27 47 6m » X

Solution: We know that

2
T—X
Example 3.3: Obtain Fourier series for f{x) = (TJ in (0, 2m)



And

1

4r

1
47

Where

a, <~ :
fx) = 70 + Y (a, cosnx+ b, sin nx)
n=1

a, =~ | e ds
— ljzn(n;xfdx
T 0
_L 2n —(TC—)C)3 :
S

2
T
ay =—
0
6

l 2n
a =—I f(x)cosnx dx
n TC 0

2
=lj2n X cos nx dx
Y0 2

(n—x)2 sinnx 2[—(n—x)](cosnx)

n

e

21
. —2xsin nx
n’ n

0

b = %Ioznf(x)sinnxdx

2
—ljzn X sin nx dx
Yo 2

27
—Ccosnx sinnx 2
2w _ L
B () S22 o) |
1
=—(0+0
41t( i )
b, =0
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Example 3.4: Find Fourier series of /{xx), where

) = -, —n<x<0

S x, O<x<m
1 1 1 2

And hence prove that _2+_2+_2+____:n_
235 g

. a,  ~ .
Solution: ~ We know that f{x) = o + Z a, cos nx + b, sin nx

n=l1
Where a,= lr f(x)dx
Ty ™

- %[ jO F(x0)dx + j” f(x)dx}

= %Uon (—m)dx + '[: xdx}

a = ljn f(x)cosnx dx
Ty ™

%Uonf(x).cos nx dx + Ionf(x).cos nx dx}

1 n
= —UO —TTCOS NX dx+'[ xcosnxdx}
TE —T 0

2

nl on ) nl on n
— 0+ m112 [(-1)" —1}
a, = mlf (1)1
And b = % [" Feoysinmx

%Uonf(x).sinx dx+j0nf(x).sin nx dx}

1 ) T
= —UO —7sin nx dx+I xs1nnxdx}
Tc —T 0

. 0 . T
—T| sinnx 1| xsinnx cosnx
= + +
T 0



0 . T
cos nx 1| —xcosnx sinx
+— +
- T 0

n n n
! 1 (D
S I T O B
-
1 n
b =—|1-2(-1
(]
Therefore
1(-n) 1&|(-1"-1 “ 1 "
) = E(T}L;;{( - _)}cosnx+”zl:;{l2(l) }smnx
Now x =0 is a point of discontinuity of f{x)
1
As fx) = E[f(0—0)+f(0+0)]
- %[—Tc+0)]
_ T
2
Putting x = 0 in Fourier expansion, we have
=’ -1 1l 2
_— = O =—+—
> - 107 n,,Z:l:(zn—l)2
T 2 1
or s ;(2;4—1)2
11 11
TETRTRTE

Example 3.5: Expand f(x) as Fourier series if
— for —-m<x<0
fx) = ¢ for O<x<m

I 1

And hence prove that 1—l+—+——__ _r
3 57 4

Solution: We know that

a o0
flx) = =2+ a,cosnx+b,nx

n=1

Where a,= l'rt f(x)dx
Tc =T

_ %[ [" redes [ 1 dx}
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Uon —cdx + Ionc dx}
(o)), + =[x

T

Q|~ al~

NOTES

a,=0

1 ¢0
a= —I f(x).cosnx dx
n TC —T

Q|~ a|~

_Ilf(x).cos nx dx + ij(x).cos nx dx}

[ 0 T
I —C.COSnX a’x+J0 C.COS nx dx}
—T

ro. 0 . n
Sin zx n C | S nx
n . T n 0

alo

b = lf f(x).sinnx dx
R
= %Uonf(x).sin nx dx+_[0nf(x).sin nx dx}

17 o . .
= ;Un(—c).sm nx abc+j0 c.sin nx dx}

0 T
_ —C| —COSnx +C —COS7nx
T n n T n 0

Therefore

fx) = ig[l—(—l)"}.sinnx

n=l1 nt

c . ) .
= —.smnx=0 nisodd,niseven
T

Now putting x = g

c= f@

. T
» SIn(2n—)—
Self - Learning 4 ( ) )
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) T
4 wsm(2n—)5
0 =
' T ,,Z::‘ 2n—1
4_, 11t
n 357

Example 3.6: Expand f{x) = xsinx for the interval (0, 27)
Solution: We know that

['e]

fix) = —0 Z sin nx + b, sin nx)

1 2n
Where a,= ;IO S (x)dx

1 2n
a = —I f(x).cosnx dx
n T Y0
1 p2n
= —I xsin x cos nx dx
n O

=ijzn {s1n(n+l)x sm(n—l)x}dx

1 _—xcos(n+1)x+cos n—1) —sin(n+1)x —sin(n—l) ?
27‘5_ n+l1 n+l1 n—1 o
F (- +1)2 1)2
=L2n cos(n )n cos(n—
27 n+1
_L__
a”_ -1 n+
g = 2
n I’l2—1 forn#1
1 p2n
Atn=1, a1=—j X sinx cos dx
n O
= ljznxsinx dx
n O
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_ l[—x cos2x . sin 2xTT
T

2 4 |,
NOTES P
L2
1 p2n )
b =—I f(x)sinnx dx
n 7T 90
= ljmxsinnx.sinnxa’x
T 0
= l'[zjtx[cos(n—1)x—cos(n+1)x]dx
T 0
1_ sin(n-1)x sin(n+1)x —cos(n—1)x cos(n+1)x
= —|x _ _ _
T n—1 n+1 (n—l)2 (n+1)2
1o 1 1 1
- 2 7t 2 7| n#l
TC_(n—l) (n+l) (n—l) (n+l) }
b =0| forn=1
1 p2n .
Atn=1, b, = ;L xsin® x dx
1 2n
- EIO x(1-cos2x) dx
r 2n
1 (x—sin2xj X’ cos2x
= —| x| ———— || —+
27:_ 2 2 4 .
_ L 2n(2n—0)—(2n2+1j+l}
2n| 4) 4
=7
Therefore
£x) = xsin x = l(—Z)—lcos+2§ L cosme+msinx+0
2 2 —n’ -1
1 ZSOSY L rgin 2] SO
n=2 N _l
3.3 ODD AND EVEN FUNCTIONS
Functions can be defined as even and odd functions.

Self - Learning When f{—x) = fix), Vx, then function f{x) is said to be even. For even functions,
176 Material graph is symetric about y-axis. It uses the property of Integration,
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j F(x)de =2 j F(x)dx
Even functions contains only even powers of x and in trignometric terms, they contain
only cosx and secx. NOTES
For example, —x?, x* + 2, x8 + cosx, 3x® + cos2x etc.

When f{x) and g(x) are even functions, then sum oftwo even functions is even,
Le., fix)=/f (x)+g(x) is also even. Product of two even function is even, i.c.,

1) - fx). g(x)

. ) 1 (= )
For even functionsall b 's will be zero as integer and b = —j f(x)sinnxdx
TE —T

becomes an odd function. Fourier series for even function is defined

As fx) = %+Zan COS nx
n=1
Where a,= ljn f(x)dx
Ty ™
2 en
=~ S
And an=gr f(x)cosnx dx
TE —T

= gjnf(x).cosnx dx
T 0

This is also called Fourier cosine series.

When f(—x) = —f(x), Vx, then function f(x) is said to be odd function.
Graph of odd function is symmetric about origin and it uses the property of
mntegration,

[" reoax =0
Odd functions contain only odd powers ofx and in trignometric function, it contains
only sinx and cosecx.
For example — x°, 3sinx + x, 4sin2x + x? etc.
It f{x) and g(x) are odd functions, then sum of odd functions is odd, for example,
J,(x) =A(x) + g(x) is odd
S, (x) =/,(x) . g(x) is even.

For odd function, all ¢ and a, are zero as integrand become an odd function.
Therefore, Fourier series for odd function is defined as

flx) = an sin nx
n=1

1 = . .
When b = —I f(x).sinnx dx Self - Learning
n Ti-n Material 177
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= gr f(x).sinnx dx
TE —T

It is called Fourier sine series.

To work out the Fourier series, first step is to identify whether the given function is
even or odd.

If f'is odd then only b 's are calculated and subsituted in the formula. If fis even
function, there a and a 's are calculated.

Example 3.7: Expand f(x) = x* in (—=, ©t) as Fourier series.
Solution: As f{x) = x* and
f(—=x) = —f(x), therefore f{x) is odd function.

Therefore fix) = Z b, sin nx
n=1
2 (e .
Where b == j f(x)sinnxdx
n TE 0

T
3 .
= _[0 X~ sin nx dx

r . . . s
2| —x’sinmx  3x’sinmx 6xcosmx 6sinnx
- + 7 T 3 4
n n n n .
2| —x’cosnx 67
= | ———+— cosnn
nl n n
2
n| X 6
“ay[ et
n o n

flx) = 22[’%+%2J(—1)" sin x

Example 3.8: Expand f{x) = sinx in (—nr, 7) as Fourier series.
Solution: As f{—x) = —f(x), f(x) is odd function.

Therefore fix) = Z f(x).sin x
n=l1
2 ¢m . .
Where b =— j sin x.sin nx dx
n 7T 90
= lLﬁ[cos(l—n)x—cos(l+n)x]dx
T
_ l sin(l—n)x_sin(1+n)x "
T 1-n 1+n .
b =0, n#1




2 ¢n . .
b =—J sin x.sin x dx
1 bIs 0

gj-n (1-cos2x)dx
7T 90 2

1 x—sin2x |
2 0

n
_T
T
b =1
flx) =sinx
= b, sinx
= sinx
X
Example 3.9: Expand f{x) as Fourier series in f{x) = R (-mm)
Solution: As f{x) = f(x), f(x) is even function.
Therefore fx) = % + Z a, cos nx
n=1

ay = 2] f(x)dx
T

2 2

_EI“ T _ X
no o\ 12 4

And a = Ejnf(x).cosnx dx
n TE 0

2

2 e 7
=—j r_x cosnx dx
no{ 12 4
2 n_z_x_z sinnx  (2x cosnx+lsinnx i
nl\12 4 ) n 4 ) n* 2

0
2(—1}2
=—| = —.CcoSnt
T\ n T
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» _1 n+l
Therefore fx) = Z( Z cos nx
n=1

n
Example 3.10: Expand f(x) = |x| in (—r, 7) as Fourier series.
Solution: We know that f{x) = |x|
And S=x) = ||
= x|
=)

Therefore, f{x) is an even function and

a 0
flx) = 7”+Zan cosnx

n=1

2 en
Where a,= ;.[0 x|dx
2 en
= [ xe
2[2 ]
ol 2 0
a, =™
2 en
And a, = =" f(x)cos nxdx
n TE 0

2 rn
= —j | x|.cos nxdx
n 0

T[
= —IO X cos nxdx
i

2

T n n

- 22 [(_1)" _1}

n

4 :
a,=—, nisodd

n

=0, n1s even

. T
2| xsinnx cosnx
+
0



45: ~cos(2n—1)x
T

T
Therefore 2 1 2n 1

Example 3.11: Expand f{x) = x sinx for (-, 7) and hence prove that
n—2

1 1 1 1

=

4 1.3 35 57 79
Solution: We know that

S=x) = (=) sin (=x)
= —x[-sinx]
= X sinx
=flx)

Therefore, f{x) is even function and

2 )
Where a =—I xsin nx dx
0 0
T
2
= Z[-xcosx+sinx]
T
2
= Z(-mcosm)
T
a, =2

Q|

Ionxsinxcosnxdx
— %Ionx[sin(n+l)x+sin(l—n)x]dx

= 1H‘C"S(””)x_COS(H_—II)X}_{Sm(HI)x_sin(n—l)xH“

n+1 n (n+1)° (n-1y

0

cos nv + cosnm

n+l 1-n

n+l

Fourier Series and Integrals
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T
And a, = —J.O xsin xcosx dx
T

zg T xsin2x i
Yo 2

| L
= —j xsin2x dx
n 0

1 [—xcos 2x sin 2xT
= +

T 2 4
-1
611:?
- 2 _1 n+l
Therefore (x sinx) = 2 lcos X+ Zz—)cos X.
2 2 =~ n -1
- _1 n+l
= l_cosx+2z ( 2) CoS nx
n=2 N _1
. i
Puttingx= —
S
' » _1 n+l
EsmE = 1—O+2z( 2) cosﬂ
2 2 n=2 l’l _1
P » _1)n+l nm
——1=2 ( cos—
2 Z;f n -1 2
mT—2 1

3.4 HALF RANGE FOURIER SINE AND
COSINE SERIES

Fourier expansion has been defined for function, which is periodic with period 2/.
Now suppose we are given a function f{x), which is non-periodic and is defined in
half interval (0, /) of length /. These types of expansions are known as half range
Fourier series. In this case, f{x) is neither even nor odd nor periodic. Only information
is to obain Fourier cosine series for f{x) in the interval (0, /). In this negard, let as

define a new function f|(x) such that
1. f,(x) =f(x) in interval (0, /) and
2. f,(x) is even function in (-/, /) and is periodic with period 2/.



This, f,(x) s called ‘even period extension off{x),” and can be expressed = Fourier Series and Integrals
as follows:

Y
fx) NOTES
X
0 /
Fig. 3.1
Y
.......... A
A L0 L x
Fig. 3.2

Figure 3.1 represents function f{x), whereas Figure 3.2 represents the extension of
fx), ie., f,(x).

Since by construction f{x) and f,(x) are equal in (0, 1), the half range Fourier cosine
series for f{x) is given as follows:

a = COS X
fo) =+ a,

2 n=1 l
2 el
Where a,= 7J0 f(x)dx
And a,= 2] 10 I g
LR /

It can be conderstand as f,(x) = f(x) for (0, 1) = f{—x) for (-1, 0) and this
series expansion of f{x) is valid only for the interval (0, I) but not outside of this
mterval.

Now suppose we are interested in finding half range Fourier sine series for f{x) in
(0, /) let f,(x) 1s a function such that

L. £,(x) = Ax) n (0, 1)
2. f,(x) 1s odd function in (-/, /) periodic with period 2/.

Then £)(x) is called ‘odd periodic continuation of f{x)” and can be expressed as,
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Pode
-

Fig. 3.4

Figure 3.3 represents function f{x), whereas Figure 3.4 represents the extension
of fx), i.e., £,(x).

Since by construction f{x) and f,(x) are equal in (0, 1), the required half range
Fourier sine series expansion of f{x) in interval (0, /) is given as,

flx) = Z b, sin ?dx
n=1

2 ¢! . NTX
= 7jof(x)s1n7dx
Example 3.12: Find Fourier series expansion of
fx) = “;” no<x<4.
Solution: Given that interval=4—0
21=0
[=0
Now flx) = &+Z a, cosﬂ+bnsin@
2 2 2
Wh LY.
ere a,= 5'[0 f(x)dx

Self - Learning
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= %[4n—8]

a, =(Tc—2)

a = %j:f(x)cos%dx

=1J‘4 nor cos@dx
20 2 2

1
- _ 2nm—cos0
o (cos2nm—cos0)
1
= _nznz (l_l)
a =0
And b = % [ f(x).sin?dx
= lr n_x.sin@dx
27 2 2
_1 (Tc—x)(—cos—nxj.i 4 —I%—l)(—cos—j —dx
4 2 ) nm|, -° nm
4
_ 2 (n—4)cos2nn—ncosO]—Li[sin@}
4nm 2nm nn 2
-2
= __ _4_
4nn(n n)
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Therefore

['e]

T—x mn—2 2 nmx

= + ) —sin—
J) 2 2 = N7

Example 3.13: Find Fourier series expansion of /().

0, -5<x<0
When ﬂx)=3, 0<x<5
Solution: Given that interval =5 — (-5)
21 =10
/=5

And flx) = %+Z(an cos%mn sin?j

n=1

When a,= %I S (x)dx

15 nmx
an = gj‘isf(X)COSde

= %Dosf(x)cos%dx+ij(x)cos%dx}

= O+J‘53cosﬂdx}
L - 5

1
5

W | W

r 5

. nmx S

= —|sin—.—
5 nm],



- i[sin 5m—sin0]
nm

a =0

n

And b = % jss f(x).sin”sﬂdx

1] o sin nmx 5 sin nmx
=§U5 )= dx+j0 @)= dx}

_ 0+f3.smnmdx}
L -0 5

W | =

r 5
—cosnmx 5 }

5 nm |,

= _—3[cos nm—cos 0]
nm

Therefore

fi = 3 3 () [

n=1 nt

Example 3.14: Find Fourier series for f{x) =x?in (-1, 1)
Solution: We are given that interval = 1—+(-1)

21=2
[=1
As Sx) = (=)
= xz
=)
() is even function, therefore 5. =0 and Fourier series is given as,
fx) = a_n+ian Cos nTx
P — 1
Wh = 2(' fwyd
ere a,= T.[Of(x) x
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, 1.
= | X" —SInnmnx + 7 2
ntm nT

Therefore

Example 3.15: Find half range sine series for f{x) = x(m —x) 0 for 0 <x <.

1
X 2 .
COS N+ ——Sin 11

2
CIO_E
4 =Ejlf(x) cosnnxdx
noo 1o S

1
= 2'[0 x? cos nmx dx

3.3

nn 0

fix) = §+Z 24 2 (_1)” COs nmx

Solution: Half range sine series is give as,

Where

- E{X(n—x)(‘“’s”x

T n

There

fx) = an sin nx
n=1
2 ¢ .
b =—j f(x)sinnx dx
n TE 0

= gJ‘ﬁx(n—x)sinnx dx
n 0

(22 o]




Example 3.16: Find half range series (sine and cosine) in 0 <x <. Fourier Series and Integrals

2
flx) =x. Hence, deduce that % = 1 + 1 + 1

2325

Solution: Halfrang sine series is given as

NOTES
Ax) = Db, sinnx
n=1
2 ¢ .
Where b == J f(x)sinnx dx
T 0

2 n .
=—j xsin nx dx
n 0

. T
2| —xcosnx sinnix
+ 2

T n n |,
-2 n
b =—(-1
=2 ()
Therefore,
n+l
fx) = x:2z(_l) sin nx

Fourier halfrange cosine series is

fix) = %+Zan cos nx

Where a = —Inf(x)dx
T 0

_2[aT
n20

And — [7 £ (0).cos nx dx
T 0

2 en
= —j x.cosnx dx
Y0 Self - Learning
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2

. T
_ 2| xsinnx N COS nx
n n

0

2 n
a,=— (1)1
Therefore,
-1)" -1
Sfx) =x= —+iZMcosnx
n
Putting x=0
0 E+iicos(2n—12)x
2 T = (2}’1—1)
O 7[_2 — i+i+L____
! g I 3 5

Example 3.17: Find Fourier sine and cosine series for f{x) = x* in (0, 7).

Solution: Halfrange sine series ifs

fx) = an sin nx
n=1

Where b = gjnf(x).sinnx dx
T 0
= Ejnxz sin nx dx
T 0
2[ —x*cosmx 2xsinmx 2cosnx |
- + 2 3
m| n n n .
2| =@ (<17 2(-1)" 2
- + 3 3
T n n n
Therefore,
- > 1 ntl 9 (-] " -1
f(x)=x2=zz n( ) + [( 2 } sin nx
= n n

Fourier cosine series is



Where a =

and a =Erf(x)cosnxdx
n TE 0

2 en
—I x* cos nx dx
n O

Qo

3 ——351nnx

—_ . n
x? sin nx . 2xcosnx 2
n n n

0

Qo

I 1
[\)
a

Therefore

3.4.1 Half Range Series
The given finction is defined in the interval (0, x).

To get the series of cosines only assume that /(x) is an even function in the
interval (—m, )

a,= ][ () cosmude & b, =0
n Yo n
So when f(x) is defined as sine halfrange series then

b = =] fsinmds, & q =0
n Yo n
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Example 3.18: Represent the following function by a halfrange fourier series.

t O<t<m/2
D=1/

T
—<t<m
2

Solution: For half sine series a =0

p =2 |7 f@sinndr
n TE 0

2 n/2 /2T .
= — J ¢ sin ntdt +J —sin ntdt
0 n/2 2

o
. m/2 -7
2 —cosnt —sin nt T | —cosnt
)
TE{ n n o 2 no .,
i CoOSnm  sinnm COSNT |
_E 2 22 L|zcosnm 2
=ml 2 n n n n
2[—mcosm sinm COST
h=—|— + +| —cosm+
R o 2 } [ 2 }
=z[0+1]+(1)=3+1
o o
2[ —m cosm sinm —COS2T  COST
h =—|— + 3 + +
2 w2 2 2 2 2
_ 3 __nﬂ_FO + __l_l
2 2 2 2
2(m)_ 21 .
o\ 4 2 2
b 2,1
591 3

2+1 sint_—lsin2t+ _—2+l sin 3¢
0=z 2 o 3
Change of Interval and Functions Having Arbitrary Period

Now suppose period for the function is 2¢ instead of 27, then independent variable
x is also to be changed proportionally.

Let f{x) is defined for the interval (—c, c)

Now 2c¢ is the interval for x

X
1 is the interval for —
2c



cz Fourier Series and Integrals

) ) 2x mx
21 is the interval for XX —=—=2z(said) orx=—
2¢c ¢ o

Now  f{c) is the function of period 21t
.". F(z) may be expanded by Fourier series i.e. NOTES

F(z)= f(;) L;O+Ea coscz+Xbh, sincz ..(3.1)

1 2n
Where a,==| " F(z)d
T 0

A

a, =1J.2nf(x)dx
cvo0

COS nmx

Sunﬂarlya——J S(x) dx
sin nx
n——Jtﬂ>
By Equation 3.1
a, COS NTTX sin nmx
=—+Z +2b
Six) 2 T "¢
l 2c
Where a,= —JO S (x)dx
2¢ cosnmy
a——Jf(>
sin i
b = —J f(x) ™ (for interval 0 to ¢)
For Half Range Sine Series
a =0
sin nx
b——Jﬂ)
For HalfRange Cosme Series
b =0
cosnmx
a =0 jﬂ)

%=Zﬁﬂmm

Example 3.19: Obtain Fourier series for
Sx) = nx 0<x<1

= TC(2 — _X,') 1<x<2 Self - Learning
Material 193
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2c=2-0=2
=1
a COS NTX sin nmx
Solution: Let f(x)= 7°+Zan " +2b, 0

1,2 d
Where a. = IJ-O J(x)dx

0

= ['mxde+ | n2-x)d

= ], mxdx 171',( x)dx
27! _ 27T

:nx— +Tt2xx
20 2 1

COoS I’ZTDC

a = Jf()

= TCJO X COSs nTxdx + ch (2 —x) cos nxdx
1

. . 1
SIn nTx —SIn nmx
= m|x - ———
nm nm 0

+TC|:(2—X) SlI;nTEX _( 1)( COSTEI’ZTC)C):|

1

. COSHT 1 t —cosZnn+cosnn
- n2n2 nZTEZ nZTEZ n2n2

=0 even
-4
=— odd
nm
Slnm'tx
b = J /()

= njoxsinmcxdx+njl X sin nToedx
. 1
— COSHTX sin nmx
_ n[( H L ﬂ
nw nmw
0
. 2
—COS HTTX sin nmx
+7| (2—x) - —
nm nrw '

=0

E_i cosnx+cos37cx+c0557r,x
f=5"71"p 3 52



Eample 3.20: Expand f{x) in Fourier series
(-2,2) where
fx)=0 —2<x<0
=1 0<x<2
2c=2(-2)=4
Soe=2

COS NTX sin nmx
+2b,

a
Solution: Let f{x) = ?O"‘ 2a,
1 p2
Where  a = EJ_Z.f(X)dX
1T g0 2
= 5“-2 0ax+j0 ldx}
1,y 2
= E[x]o =1

a——J S

2_cosnmx
=_j1 :

COS I’ZTDC

dx

2
1| sin nmx
=9 onrm
2

=0

sin nTcx

And b——j /()

J‘2 sin I’lTCX

2 0

1
= —(I—cosnm)
nm

=0 (niseven)

2 3 2 5

1 2(sin7cx 1 sin3nmx 1 sin5mx

2

Example 3.21: Expand f{x) =x —x* as a Fourier series in the interval (—1, 1)

Interval2c=1-(-1)2 ...........
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Solution:

a4, ~~  COSHTX
= —+ E a +2b
f(X) 2 n 1 n

n=1

1 ¢l
Where  a,= IJ._lf(X)dx

And

[ =)

= J_ll xdx — J_ll x’dx

0- 2‘[01 x2dx

3 0

2

3
1

IJ.—II (x —x*) cos nmxdx

1 1
J X COS nTxdx —J x? cos nmxdx
-1 -1

0— 2‘[01 x? cos nmxdx

—2[x2 sin nmx _zx(—cozs znx)+
nm nTmT
2cosnm

o2

[ n'r’ }

_4(_1)n B 4(_1)n+1

n'm’ n'n’

J_ll (x — x*)sin nrxdyx

1
2‘[0 (x —x*)sin nmxdx

—CcoSnmx —sin nmx :
()
X nmn 0

—2COSHT
nw
=2(-1)" _2(-Dn+l
o nm

sin ntx
|

—sin nmx
o 22
nm

I



—1 4 (cosmx cos2mx cos3mx
x-x=TrE T T Ty

Z(Sinnx—lsin2nx+l . j

+— sin3mx---

2

Example 3.22: Expand f(x) = ¢* in a cosine series over (0, 1)
fix)=e‘andc=1

b1

2 pe
Solution: a,= =], 10

21,
= TJ.Oe dx
=2(e—1)

COSI’ITDC
02

e’ l
= 2| ———{cosnmx+ nrsin nmx}
I+n'w

1
2[” —(-1)"e— 1}

b =0

0

(e-1) —(e+1)

fix)=e-1+2 1os1|:x+ S——C08 21X ———C0S 37X
T +1 4n” +1 o +1

Example 3.23: Obtain Fourier cosins expansion of periodic function defined by

. (Tt
fH= SIH(TJ;0<t<l

For Fourier cosins transformation bn =0

200 . (Tt
a,= 7_[() sin (7) dt

2
= —— — 0 = —
l(cosn cos0) -

2¢ . (mt nmt
an= 7_[() sin (7) cos —dt

=1J.lsin Tt + nrt _sin nmt — it Jr
/70 / /

1 —cos(n+Dmr 1 1_ I cos(n—D)mt l
" / (n+Dr |, [(n-Drn / .

NOTES

Self - Learning
Material

Fourier Series and Integrals

197



Fourier Series and Integrals

198

NOTES

Self - Learning
Material

[cos(n+1)m—cosO0]

- (n+Dm
n—Dn [cos(n—1)m—cosO0]
S () |
T (n+Dm (n-m
— (=)™ B }+ L
| (n+Dhr (n-Dm| (n+h)n (n-Dmw

|2 2
=D (7 - (nz—l)ﬂ'}

2 n+l
R

4
(7~ ;  (nevenprovidedn+1)

=0; nodd

sin 7t¢ cos 7t
/ /

_lj-lsinZTr,t
L

1(_Lcos2m)l
I\ 2r I 0
=0

2 4| 1cos2nt 1 cosdmit 1 cosomt
n w3 /[ 15 ] 35 |

Example 3.24: Find the Fourier series expansion ofthe periodic function ofperiod 1

dt

2 ¢l
Atn=1, al=7_[0

dt

—l+x- _—l<x<0

9

-X- O<)c<l
2

N | —

1
Interval2c¢=1or ¢ = E
a > nmx . nml
Solution: Let f{x) -+ Z a,cos—-—+ Z b, sin—-
2 n=1 A n=l1 A

1 ¢c
Whete = — [ f(x)ds



I Ly, 1L
48 4 8] 2

¢ 8!
a = %J‘/ (% + x) (cos 2nmxdyx) + 2J0/ (E - Xj (cos 2nmxdx)

1 . 2nmx 2nmx ’
_ 2| =+x [sin —| —cos——
2 2nm 2n°m oy

1 (=1 (=1 1
=2|0+ - +2|0- +
[ An’n®  4n’m’ } [ A'm®  Ann’
1|1 (=D
AL

=—7; n odd

=0 neven

1 ¢e . NmXx
And b = J f(x)sin—dx
nooeY-c c
=2 ’ l+x sin2nndx+2j% l—)c sin 2nmxdx
Y\ 2 AW
1 —COS 2nmx —sin 2nmx ’
_ 2| —+x — —
2 2nm dnm -,
1 —CoSs 2nmx —sin 2nmx K
| z—x||——— |- CD| ————
2 2nm dnm »
2 -1 +2 1 =0
2nm dnm

2[0052nx cosb6mx cosl0mx }
—_ + + ce

1
=377 "¢ 32 52
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Let f{x) be a piecewise continuous in each finite partial interval of (—oo, ) in
which f{(x) is defined and absolutely integrable, then.

F{fix)} = f e f(x)dx (3.2)
It is called Fourier transform of f{x) and is denoted by f{f(x)} . Fourier transform

of f{x) is a function of P and is also denoted as 7(P).

Check Your Progress

What do you understand by the Fourier series?
When a function is called periodic?

Define the even functions in Fourier series.
Learn about the odd functions in Fourier series.

What is the halfrange Fourier series?

AN e

Define the complex Fourier transform.

3.5 PARSEVAL'S IDENTITIES FOR FOURIER
COSINE AND SINE TRANSFORM

In mathematical analysis, Parseval’s identity, named after Marc-Antoine Parseval,
is a fundamental result on the summability of the Fourier series of a function.
Geometrically, it is generalised Pythagorean theorem for inner-product spaces
(which can have an uncountable infinity of basis vectors).

Informally, the identity asserts that the sum of the squares of the Fourier
coefficients of a function is equal to the integral of the square of the function,

1 =[N FGOF de=2mY [c,

n=—co

Where the fourier coefficients ¢ of fare given by

c, = ifﬂ f(x)e™ dx.

More formally, the result holds as stated provided fis square-integrable or,
more generally, in L*[—7, 1t]. A similar result is the plancherel theorem, which
asserts that the integral of the square of the fourier transform ofa function is equal
to the integral ofthe square of the function itself. In one-dimension, for '€ L* (R),

[17@Pae=]"| fx) P ax



3.5.1 The Generalization of Parseval’s Theorem Fourier Series and Integrals
The result is

bl l — — —_ *

|_rog@d=—| 7@3z@) do (3.3) NOTES

This has many names but is often called Plancherel’s formula.

The key step in the proofof'this is the use of the integral representation of
the o-function

I = e _ | e
8(1)= - [ e dw or §(w) = - [ etdn (34
We firstly invoke the inverse Fourier transform
- L Foedo 35
A= A ..(3.5)

And then use this to re-write the LHS of Equation (3.3) as

| rog@y da J_Z(i I f(oa)e"‘”'doaj

(ﬁj; g((o’)...d(o’) dt (3.6)

Re-arranging the order of integration we obtain

—oo

[ ros@a= (ij I f(m)g_(m’)(r e”““-“')'dt)dm'dm

Use delta —,,
..(3.7)
The version of the integral representation of the d-function we use in Equation
(3.4) above is
1 ¢~ . .
do-w)=—/| " dt
(@-0)=——|_ (39)

Using this in Equation (3.7), we obtain

| rwswra=—[ jo)[ gy so-0de)do 69
o A .
Equation (3.9) comes about because of the f{w) general  function property

|~ F(@")8(w-0")do’

Taking g =/ in we immediately obtain

Jotrow=—_[ 1 7@F do -(3.10)
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3.5.2 The Convolution Theorem and the Auto-
Correlation Function

The statement ofthe Convolution theorem is this: for two function f{7) and g(7)
with Fourier transforms F | 7(¢) |= f(w) and F | g(¢) |= g(®), with convolution

integral defined by,
frg= | fegt-ud, LG
Then the Fourier transform of this convolution is given by
F(f*g)= f(®)g(w). -(3.12)
To prove Equation (3.12) we write it as
(e =] e ([ fagt-md)ar LG13)

Now define t = —u and divide the order of integration to find

F(f*g)=[ ™ fadu e™g(tydt=f(w)-F(w)
..(3.14)

This step is allowable because the region of integration in the T —  plane is
infinite. As we shall later, with Laplace transforms this is not the case and requires
more case.

The normalised auto-correlation function is related to this and is given by

=, fa)f (t—u)du
YO=""1 1 f @)} du

Practical Harmonic Analysis: If function is not given by a formula, but by a
graph or by a table of corresponding values, then process of finding the Fourier
series for the function is known as Harmonic analysis.

1
As Mean =5

4= Jj"f(x)dx

- [ s

=2 |[Mean of f{x) in (0, 27)]
Similarly  a = 2[Mean of f(x) cos nx in (0, 27)]
b ~=2[Mean of f{x) sin nx in (0, 27)]

Example 3.25: The turning moment 7 units of the crank shaft ofa steam engine
for a series of values of the crank-angle 6 in degrees:

6: 0° 30° 60°  90° 120° 150° 180°
T: 0 5224 8097 7850 5499 2626 O



Find the first 4 terms in a series of sines to represent 7 also calculate 7' Fourier Series and Integrals

when 0 = 75°
Solution: 7= b, sin 0+ b,sin 20+ b, sin 30 + b, sin 40
b =2[Mean of f(xx) sin nx in (0, 27))]

o° T sin® sin260 sin30 sin40 T'sin 6 T'sin 26

Tsin 360 T'sin 40

0° 0 0 0 0 0 —0 0
30° 5224 05 0866 1 0866 2612 4523984
60° 8097 0.866  0.866 0 0866 —7012.002  7012.002
90° 7850 1 0 -1 0 7850 0

120° 5499 0.866 —0.8660 0 0866 4767.0831 4767.0831
150° 2626 0.5 -0.866 1 —0.866 1313 -2274.116

0 0
5224 4523.984
0 —7012.002
7850 0
0 4767.0831
—2626 -2274.116

23554.08591 14028.9531

0 0

b, =2 [Mean of T'sin6 in (0, 27)]

- 2[23554.0851}
6
=7851.36
b, =2 [Mean of T'sin 20 in (0, 27)]

2[14028.9531}

6
=1358.7725
b, =2 [Mean of T'sin 30 in (0, 27)]
=0
b, =2 [Mean of T'sin 40 in (0, 27)]
=0
T=(7851.36) sin O + (1558.7725) sin 20
At 0=75°

T =7851.56 sin 75° + (1558.7725) sin 150°
— (7851.56) (.9659) + (1558.7725) (0.5)
— (7583.8218) +(799.38625)

Example 3.26: Find the Fourier series as far as the second harmonic to represent

the function given by table below:
X: 0° 30° 60° 90° 120° 150° 180° 210° 240°
fx): 234 301 3.69 415 3.69 220 083 051 0.88

Solution:

270°  300°  330°
1.09 119 164

X sinx sin2x cosx cos2x flx) fix)sinx flx)sin2x Ax)cosx  f{x)cosx

0° 0 0 1 1 234 0 0
30 050 087 0.87 050 3.01 1505 2619
60° 087 087 030 -0.50 3.69 3210 3210

2.340 2.340
2619 1.505
1.845 1.845
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Fourier Series and Integrals 90°  1.00 0 0 -1.00 415 4150 0 0 —4.150

120° 087 -0.87 -050 050 3.69 3210 -3.210 —1.845 —1.845
150° 050 -0.87 -0.87 050 220 1.100 -1.914 -1.914 1.100
180° 0 0 -1 100 083 0 0 —0.830 0.830
NOTES

210° -0.50 087 -0.87 050 051 -0.255 0444 —0.444 0255
240° -0.87 087 -0.50 -0.50 088 —0.766 0.766 —-0.440 —0.440
270° —1.00 0 0 -1.00 109 -1.090 0 0 —-1.090
300° -0.87 -0.87 050 -0.50 1.19 -1.035 —-1.035 0.595 —0.595
330° -0.50 -0.87 0.87 050 1.64 -0.820 —1.427 1.427 0.820

2522 9209 —0.547 3353 -3.115

b, = 2[Mean of f(x) sin x]
_ 2(wj:1.535
12
b, = 2[Mean of f(x) sin 2x]

_ 2(_0'547) =-0.091
12

a . :
fx) = ?0+a1 cosx+a, cos 2x + b, sin x+ b, sin 2x

=2.1018 +0.557 cos x — 0.519 cos 2x + 11.535 sinx — 0.091
sin 2x
Example 3.27: The following values of y give the displacement ofa certain machine
part for the rotation x ofthe flywheel.
x: 0° 60° 120° 180° 240° 300° 360°
y: 198 2,15 277 -022 -031 143 193

Express y is Fourier series upto the I1Ird harmonic.
Solution: Lety = % + (a, cosx + b, sin x) + (a, cos2x + b, sin 2x)

+(a, cos3x+ b, sin 3x)

x v cosx sinx  cos 2x  sin 2x cos 3x sin 3x ycosx  ysinx  ycos2x ysin2x ycos 3x y sin 2x
0° 198 1.0 0 1.0 0 1.0 0 1.98 0 1.98 0 1.98 0
60° 2.15 0.5 0.866 -0.5 0.866 -1.0 0 1.075 1.8619 -1.075 1.8619 -2.15 0
120° 2.77 -05 0.866 -0.5 -0.866 1.0 0 -1.385 2.3988 -1.385 —2.3988 2.77 0
180° -0.22 7.0 0 1.0 0 -1.0 0 0.22 0 0 0 22 0
240° -0.31 -0.5 -0.866 -0.5 0.866 1.0 0 0.155 0.2685 0.2685 —0.2685 -.31 0
360° -1.43 0.5 -0.866 -0.5 -0.866 -1.0 0 0.715 -1.2383  —-715 -1.2383 -1.43 0
7.8 2.76  3.2909 -1.4635 —-2.0437 1.08 0

b, =0

y=1.3+(0.92 cos x + 1.0969 sin x)
+ (~0.4878 cos 2x — 0.6812 sin 2x) + (0.36 cos 3x)
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Example 3.28: The following table gives the variations of a periodic current over
a period

t(sec): 0 T/6 T/3 T2 2773 57/6 T
A (amp): 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98

Show that there is a direct current part of 0.75 amp. in the variable current,
and obtain the amplitude of the first harmonic.

) a, 2wt . 2wt
Solution: Let 4 = 5"+ cos7+b1 sin— -
27t . [ 2mt 27t . 2wt
¢ A cos (Tj sin (Tj AcosT ASIHT
.0 1.98 1 0 1.98 1.1258
T/6 1.3 0.5 0.866 0.65 0
T/3 1.05 -0.5 0.866 —0.525 0.9093
T2 1.3 -1 0 -1.3 0
2T/3 —0.88 -0.5 —0.866 44 0.76208
5T/6 —0.25 0.5 —0.866 —0.125 0.2165
4.5 1.12 3.01348
a,a and a,
27t 27t
. A=0.75+0.373 cos(Tj + 1.005 sin (Tj

.. A has a direct current part of 0.75 amp.
The amplitude of first harmonic is given by

= J(373)* +(1.005)’

= +/1.1491

=1.072
1. Analyse the current i(amp) given in the table below upto III harmonic.

6°: 0 30 60 9 120 150 180 210 240 270 300 330

i 0 24 335 275 182 13 0 24 335 275 -182 -13
2. Find the Fourier series upto I1I harmonic.

o, = oom s
@) x: 3 3 T 3 3 T
y: 0.8 0.6 0.4 0.7 0.9 1.1 0.8

@@ x: 0 30 60 9 120 150 180 210 240 270 300 330
y: 25 40 505 575 615 633 682 592 522 442 358 287
3. The turning moment 7 on the crank-shaft of a steam engine for the crank
angle 0 (degrees)
0: 0° 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 180°
T 0 27 57 7 81 83 79 68 55 41 26 12 0
Expand 7'in a series of sines upto second harmonic.
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3.6 FOURIER INTEGRAL AT INCLUDING ITS
COMPLEX FORM

Let f(x) be a function defined in (-, ¢) that satisfies Dirichlet’s condition. Suppose

at every point of discontinuity, A{x) is defined as, %[ f(x+0)+ f(x—0)]and f{x)

is absolutely integrable in —oo <x < oo, then

fx) = ﬁ.‘.i S () {r; cosv(x — u)du}

1 0 0
Or fix) = —I dvj S(u)cosv(x—u)du ....(3.15)
2g e O
This is called Fourier Integral formula.

3.6.1 Fourier Transforms

Let f{x) be a function on the interval (a, b), then it is said to satisfy Dirichlet’s
conditions: (i) f{x) is defined and single valued except at a finite number of points

in the interval (a, b), and (ii) f{x) and f”(x) are piecewise continuous in the interval
(a, b).

It f(x) is a periodic function with period 2/, that means if f{x) = f(x) + 2/ and
stisfies Dirichlet’s conditions in the interval (—/, /) then at every point of continuity
Fourier series is defined as,

flx) = ?°+Z{a cos—+b nt%x}

n=l1

Where, ——J. f(x cos—dx

And = —I f cos—a’x

a and b are called Fourier coefficients corresponding to f{xx).

If function f{x) is even function in the interval (—/, /)
Or S(=x) =f(x), then,

a = %I:f(x)cos%dx

b =0
In this case, it is called Fourier cosine series.
If function f{x) is odd function in the interval (-, /)
Or J(=x) =—(x), then



In this case, it is called Fourier sine series.

3.7 CONVOLUTION THEOREM INCLUDING
SINE AND COSINE TRANSFORMS

Therom 3.1. Let f,(7) andf)(¢) are two functions having Fourier transforms f‘l (w)

and f‘z (w) respectively then

F(f* 1) = fi(w). fo(w)

*denote the convolution product and is defined as

Cxf @ = [ /00 dr

The Convolution theorem states that the Fourier transform of convolution

product of two functions is equal to the /2 times their product of Fourior
transforms.

Proof: /(1) * (1) = | fi(x).fy (1 —x)dx

= Ff*f) = ﬁ j";( [ ]q(x)]g(t—x)dx)e"mdzdx
Let t-x=u = t=utx

dt = du

F(f, * ) = ﬁjijiﬁ (x) fo(u) e ™ du dx

The double integral in R.H.S. can be written as product of two integrals as
F * _ 1 @ —iwx d « —iwn d
5= 7o [ e ax|” fyae™ du

1

= E.\/EF(fl).\/ﬂF(fz)
thus — F(f, *£) = 20 f(£)-f (1)

or (£, * )W) = 2nf (w).fo(w)
or  Af*S) = N2mf (W f(w)
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Similar convolution theorem for Fourier sine and Fourier cosine transforms
can also be written

ie, F(*f) = f.(w).f.(0)
F (1) = fo(w). S (@)

But proofofthese theorems are beyond the scope ofthe book.

-t 0<z1l

Example 3.29: Let /,(1) = /, ()= {0 otherwise

e’ >0

LD =0 1<o0

—

Solution:

F0) \/;_n [ nwera- ﬁ [ e
1

el . 1 .
j e Mt — j te"”dt}
0 0

f@=F(f) = NG

— 3 1 1
1 e—twt t e—wt 1 1 )
= - +— | le™dt
N2m| —iw l { —iw ‘0 i® -[0 }

I | -1/ | R 1 i
- o —(e 1)+ —e e ﬂ]ﬂ

L iw iw iw

(1 —e ™ ) +e ™

'l -
= \/ﬂ o +V(€ 1)]

f = —+i(—1+e"w)}
Si(o) = \/ﬂ_iw W

e’ >0
Let L) = {0 <0
7 1 © ot _—t
F(f)) = ﬁ(w)zEL e e d




n 1 1
2@ = G

¢ <f) 0 = | A@f(t-1) dr
0 t<0
(£ *f) @) = 12—1=2¢" 0<1
(e=2)e" 121

The Fourier transform of (f, * f)) (¢) will be obtained using convolution

theoremof (f, % f)) = \/ﬂj’l (w)f2 (w)

SR O S . (_1+efw)}

iw(iw+1) w’ (iw+l)

£ 1)

1
J2n

1 1 1 i
\/% + 2)(—1+e )}

_ L1 + ! —1+e"”l
\/ﬂw (—w2+l) (iw2+w)( )

B 1l_(—w2+i)+(w—iw2) e
B 2m w (W2+1) (w2+w4)( )}

. 11 (_W2+i)+ (l—iwz) e
S = J2nw (l—wz) w(1+w2)( tre )}

3.7.1 Relations Between Fourier and Laplace Transforms

We know that the Laplace transform of /{7) is

F(s) = j: () e dt .(3.16)

If we take s = iw along the imaginary axis then (3.16) becomes

F(iw) = '[:f(t) e ™ds
Assume f(t) = for¢t<0then
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Fiw) = [ f@ye™ (3.17)

or F(iw) = \/%F(f)

This is the between Laplace and Fourier transform. In nutshell we can say.
Laplace of f{£) with s = iw converted into Fourier transform.

3.8 MULTIPLE FINITE FOURIER
TRANSFORM

In many physical phenomena we frequently see the function

A

Joo = [ rok(or)d

the function j; (w) is called the integral transform of /{7) by the kernel &(w, 7). by
we choose the kernel e ™" for ¢ € (— o0, 0) then we get

f‘ (o) = '[ jo f(t)e ™ dt and is called as Fourier transform

off{#) and in respect of f (®), f(z) is the inverse Fourier transform of /{7) and in

respect of f (), f(?) is the inverse Fourier Transform.

Fourier transform : Fourier transform of f(z) is as the function

/(o) =ﬁﬁf(t)e"w’dt

wesay F(A?)) f(w)

iwt

F(W)aw is called

1 o
and ) E J:w e

mverse fourier transform.

We write Ve (i(W)) =7 ()

Fourier sine and Fourier cosine transform: :

fow) = \/%I:f(f)coswtdt
R 3 o ‘
fiw) = \/;J‘O F(#) sinwt dt

are respectively called as Fourier cosine and Fourier sine transform.

and their respective inverses are



\/%'[:]AFC(W) con wt dt

[ =
2 e - ,

fly = \/:IO J,(w) sin wt dt
T

3.8.1 Solution of Simple Partial Differential Equations
by Means of Fourier Transforms

An extension of the Fourier Series represent action to an infinite domain, several
additional notions such as ‘Fourier integral representation’ and ‘Fourier transform’
ofa function are presented.

Example 3.30: Solve the following boundary value problem
ou(x,t) o
% 82(xz) x>0,1>0

Subject ofthe boundary conditions:

0 0 ( 0) I 0<x<l
u(@, 0 = N0 x>1
and u(n, t) is bounded.
2
Solution. The given differential equation is 2(3@ = % —1.
t X

Taking Fourior sine transform of (1) both side.

2 o 0u . » 9
\/;J‘O a—?smwxdx = \/7'[ 8_ sin wx dx
(5 2] G
or Iusmwxdx— —|| —sinwx
T Ot 0 0

» Ou
_W.[o gcos wx dx} (2)

20 ~
or but \/;J‘O usinwndx =i, (w,1)

and a—“—)O asx — o
ox

so (2) becomes

%L}S (w,t) = \/%[O—W{(u cos wx)

Fourier Series and Integrals
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+J‘0 wsin wx u dx

0 . 2 o
NOTES Eus,(w,t) \/;W[O—u(olt)—w'[o u sin wx dx}

+\/§W2 Uw u sin wx dx}
n 0

usingu (0,£)=0; u—>0 asx—>o

ou, .
or a—t‘ = —wi, (w, 1)
ou -
—+wu (wt)=0
or 2 i, (1)
or I afl“ = —J‘w28t+logc1
uS
or logai, = —w't+logc,
or u(w,t) = cle‘wz’ ..(3)
using the BC : at =0
i, (w,0) = ¢,
or c = 2rou(x 0)sin wx dx
1 T 0 ?

or c % Jllsinwxdx+Jw05inwxdx
1 T LYo 1
1
{\/g coswx}
X w
0
\/El—cosw
or c, = —m—
i w
thus u, = \/Z—l—coswewz,
i w

Applying inverse Fourier sine transform we get the desired solution of given
BVP as

—1 A
u(r,0) = £ (i)
Self - Learning
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2o, .
= —'[ u_sin wx dx
o
u(x, t) = 2 [ Lzcosw sin wx dx NOTES
0
T w
1s the desired solution

Example 3.31: Using the method of Fourier transform, determine the displacement
u(x, f) of an infinite string, given that the string is initially at rest and the initial
displacement is g(x) — oo <x <oo. Show that the solution can be put in the form

u(x,t):%[g(x+kt)+(x—kt)]

Solution: We know that the displacement of a string is governed by one -
dimensional wave equation.

o*u o0u

where u(x, f) is the displacement of string at any time 7 and — oo <x < oo,

Subject to the boundary conditions (i) u(x, 0) = f{(x)

ou
and (ii) o =0 at #= 0 (since string is initially at rest)
Taking fourier stransform of (1) both sides we get
» 0%u

ey © 0%u
—— e ™dx =k*

L '[ L .[ —e ™dx
2nd= o J2m e ox

82 1 @ —iwx 2773 . 2
or Pl ijue dx |=k"U(w, t)(iw)

(wheve U(w, 1) = F(U(xlf)))

2
or %U(w, 1)+ 2WZU(W,I) ..(2)

The solution of (2) is given by

U(w,f) = ¢, cos k wt + c, sin kwt ..(3)
Using the boundary condition
ou o
P 0 ats=0gives Self - Learning
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I > 2u _,,
— | —e™dx=0
or \/% .Lo ot
o 1 p= _.
———| ve™dx=0
or ot 2 '[ -
oU (w, 1)
——— =0 atr=0 (4
or o a 4)
Using (4) for (3) (i.e., differentiating partially (3) withrespect to # and putting
1=0) we get ¢, = U(w,t):c1 cos kwt ..(5)
Again it is given that
u(x, 0) = fix)

= Flux, 0)) = F(flx))
U(W,O) = ﬁjif(x)eiw"dx

U(w,0) = J(w) (6)
From (5) and (6) we can estimaten the value of ¢, as

A

Uw,0) = ¢ =f(w)

Hence U(w, 1) = F(w) cos kwt

by taking inverse Fourier transform, we have

U(w, t)e ™ dw

1 e
u(x, t) = EL"

1 eo ~
ij Jf (W) cos kwt e™dw
1 © ~ eikwl +€7ikwt o
u(x, 1) = E-Lof(w)[Tje dx

1 1 © 2 iw(x+
or u(x, t) = 5{—\/% Lof(w) O gy

1 R, iw(x—kt) }
+—— w) e dw
=7



u(x, 1) = %[f(x +kt)+(x— kt)]
m view of definition of inverse Fourier transform.

1 . iwx
fo) = = [, T s

Next we consider some examples of ordinary differential equations.
Example 3.32: Find the solution of "' + y = f{¢) given the condition %Lng u(t)=0.
Solution: Taking the Fourier transform of given ODE we have

W) +J(w) = f(w)

or sowy = L (1)

From (1) we can recover the solution of given ODE by ofinverse of Fourier
transform.

F! (tf/(w))

@“@w 1)

(1)

1+w?

1 * -1 1
O C(sz)

w0 = =L

Example 3.33. Obtain the solution of Airy equation
V-1 =0
Solution. Subject to field condition

‘l‘im () =0
-ty = 0 weget
_W2);(W)_M _—
dw
dy(w) .
or = W)
whose solution is
y(w) = ce[%
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taking inverse Fourier we get

—00

w(t) = 2c—n '[ : ei[m%j aw

for the choice c =1, we get

w(t) = i f; ei[WH%] aw

which is called Airy function and is denoted by A (7)
Example 3.34 Find the solution of Laplace equation is upper half plane
o’u 0Ou

y‘i‘y = 0’—0O<_X,'<OO

1e., solve

y>0, u(x,0) = fx), imulx, y)=0
Solution. We denote the Fourier transform in the x variable as

F(u(x,y)) = u(w,y)

_ Ji e ™ u(x,y) dx (1)

we note that the y-derivative commutes with the Fourier integral in x, so
that the transform of U, is simply denoted by U ,,- Taking the Fourier transform of
given equation with boundary conditions we get

~wi+U, =0, Uw,0)= f(w)

limU(w,y) = ¢
y—©

_ 2
u, = wU
whose solution is
~ _ wly —\wly
U(W,y) = c,eH -1‘C2€H

taking y — o0, U (w, y) =0 gives
Ow,y) = e
using
U(W,O) = f(w) we get
¢, = f(w)

Thus U(w,y) = fA(W)efMy



Taking inverse Fourier transform we get Fourier Series and Integrals

u(,y) = f(x)*F (™)
J NOTES
= /() [Tc(x2 +y2j
u(x,y) = lJ‘w _ @ dt

= (x—1)" + )’
(in view of convolution theorem)

is the desired solution of given BVP.

Check Your Progress

7. Define the Parseval's identity in Fourier series.
8. What is the generalisation of Parseval's theorem?
9. State the convolution theorem.
10. What is the auto-correlation function?
11. Define the practical harmonic analysis.
12. What do you understand by the Fourier's integral formula?

13. Define Fourier transformation.

3.9 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Fourier series is used as infinite series representation of periodic function
and it uses trigonometric sine and cosine functions for expansion. Its main
application is to solve ordinary and partial differential equations. It is a
powerful tool to solve differential equations specially with periodic functions
appearing as non-homogeneous terms. It has wider applications as it is
valid for periodic functions as well as continuous functions and for functions,
which are discontinuous.

2. Function f{x) is said to be periodic if f{x + T) = f(x), and real x for some
positive number 7'is period of f{x). Smallest positive period of f{x) is called
primitive or fundamental period of f{x).

3. When fi-—x) = fix), Vx, then function f{x) is said to be even. For even
functions, graph is symetric about y-axis. It uses the property of Integration,

j F(x)dx =2 j F(x)dx

Even functions contains only even powers of x and in trignometric terms,
they contain only cosx and secx.
4. When f(—x) = —f(x), Vx, then function f(x) is said to be odd function.

Graph of 0dd function is symmetric about origin and it uses the property of ' g.r_ /carming
integration, Material 217
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[ f@yax =0
Odd functions contain only odd powers of x and in trignometric function, it
NOTES contains only sinx and cosecx.

5. Fourier expansion has been defined for function, which is periodic with period
2[. Now suppose we are given a function f{x), which is non-periodic and is
defined in half interval (0, /) of length /. These types of expansions are known
as half range Fourier series. In this case, f{x) is neither even nor odd nor
periodic. Only information is to obain Fourier cosine series for f{x) in the
interval (0, /).

6. Let f{x) be a piecewise continuous in each finite partial interval of (—oo, o)
in which f{(x) is defined and absolutely integrable, then.

Fifl= [ e f(d

It is called Fourier transform of f{x) and is denoted by f{f(x)}. Fourier

transform of f{x) is a function of P and is also denoted as 7(P).

7. In mathematical analysis, Parseval’s identity, named after Marc-Antoine
Parseval, is a fundamental result on the summability of the Fourier series of
a function. Geometrically, it is generalised Pythagorean theorem for inner-
product spaces (which can have an uncountable infinity of basis vectors).

- 1 p~= .
8. |_s(gdi=——]_ F()z() do

This has many names but is often called Plancherel’s formula.

9. The statement ofthe Convolution theorem is this: for two function f{7) and
g(?) with Fourier transforms F' | £(¢)|= f(w) and F | g(¢) |= g(®), with
convolution integral defined by

1*g= | feg—ud,

Then the Fourier transform of this convolution is given by

F(f*g)=f()g(®).
10. The normalised auto-correlation function is related to this and is given by
_ s a—udu
YO = 1) P

11. Practical Harmonic Analysis: If function is not given by a formula, but by a
graph or by a table of corresponding values, then process of finding the
Fourier series for the function is known as Harmonic analysis.

1 b
AsMean = —f f(x)dx
b—a’a

a, = | F@ds
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12. Let f{x) be a function defined in (-, ¢) that satisfies Dirichlet’s condition, /0" Series and Iniegrals
Suppose at every point of discontinuity, f(x) is defined as,

%[ f(x+0)+ f(x— 0)] and f{x) is absolutely integrable in —oo < x < oo, NOTES

then

Sx)= ﬁ_fz S () {IZ cosv(x — u)du}

13. Let f{x) be a function on the interval (a, b), then it is said to satisfy Dirichlet’s
conditions: (i) f{x) is defined and single valued except at a finite number of
points in the interval (a, b), and (ii) f{x) and /" (x) are piecewise continuous
in the interval (a, b).

3.10 SUMMARY

e Fourier series is used as infinite series representation of periodic function
and it uses trigonometric sine and cosine functions for expansion. Its main
application is to solve ordinary and partial differential equations. It is a
powerful tool to solve differential equations specially with periodic functions
appearing as non-homogeneous terms. It has wider applications as it is
valid for periodic functions as well as continuous functions and for functions,
which are discontinuous.

e Function f{x) is said to be periodic if f{x + T) = f(x), and real x for some
positive number 7'is period of f{x). Smallest positive period of f{x) is called
primitive or fundamental period of f{x).

e When fl—x) = f(x), Vx, then function f{x) is said to be even. For even
functions, graph is symetric about y-axis. It uses the property of Integration,

J s e =2 fds

Even functions contains only even powers of x and in trignometric terms,
they contain only cosx and secx.

e When f(—x) = —f(x), Vx, then function f(x) is said to be odd function.

Graph of odd function is symmetric about origin and it uses the property of
mntegration,

[" reoax =0

Odd functions contain only odd powers of x and in trignometric function, it
contains only sinx and cosecx.

e Fourier expansion has been defined for function, which is periodic with period
2/. Now suppose we are given a function f{x), which is non-periodic and is
defined in half interval (0, /) of length /. These types of expansions are known
as half range Fourier series. In this case, f{x) is neither even nor odd nor
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periodic. Only information is to obain Fourier cosine series for f{x) in the
interval (0, /).

e Let f{x) be a piecewise continuous in each finite partial interval of (—oo, )
in which f{x) is defined and absolutely integrable, then.

Fifol= [~ e f(x)dx

It is called Fourier transform of f{x) and is denoted by f{f(x)}. Fourier
transform of A(x) is a function of P and is also denoted as 7 (P).

¢ In mathematical analysis, Parseval’s identity, named after Marc-Antoine
Parseval, is a fundamental result on the summability of the Fourier series of
a function. Geometrically, it is generalised Pythagorean theorem for inner-
product spaces (which can have an uncountable infinity of basis vectors).

had 1 — = _ *
|_fgwadi=—|_ 7@z do
This has many names but is often called Plancherel’s formula.
o The statement of the Convolution theorem is this: for two function f{#) and
g(?) with Fourier transforms F' | £(¢)|= f(w) and F | g(¢) |= g(®), with
convolution integral defined by'.

f*g= | fag—upd,
Then the Fourier transform of this convolution is given by

F(f*2)=f(@)g(®).

¢ The normalised auto-correlation function is related to this and is given by

I f@)f - udu
YO= T T f @) du
e Practical Harmonic Analysis: If function is not given by a formula, but by a
graph or by a table of corresponding values, then process of finding the
Fourier series for the function is known as Harmonic analysis.

1 b
AsMean = —_[ f(x)dx
b—a“«

1 p2r
a = — | ()

e InFourier transformation, Let f{x) be a function on the interval (a, ), then
it is said to satisfy Dirichlet’s conditions: (i) f{x) is defined and single valued
except at a finite number of points in the interval (a, b), and (ii) f{x) and

/'(x) are piecewise continuous in the interval (a, b).
e The Convolution theorem states that the Fourier transform of convolution

product of two functions is equal to the times their product of Fourior
transforms.
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3.11 KEY TERMS

¢ Fourier series: Fourier series is used as infinite series representation of
periodic function and it uses trigonometric sine and cosine functions for NOTES
expansion.

¢ Even functions in Fourier series: Functions can be defined as even and
odd functions. When f{-x) = f{x), vx, then function f{x) is said to be even.
For even functions, graph is symmetric about y-axis. Even functions contains
only even powers ofx and in trigonometric terms, they contain only cos x
and sec x.

¢ Odd functions in Fourier series: When f{-x) =-f(x), \vx, then function
f(x) is said to be odd function. Graph of odd function is symmetric about
origin. Odd functions contain only odd powers of x and in trigonometric
function, it contains only sin x and cosec x.

¢ Halfrange Fourier series: Fourier expansion has been defined for function,
which is periodic with period 2/. Now, suppose we are given a function
f(x), which is non-periodic and is defined in half interval (0, /) of length /.
These types of expansions are known as halfrange Fourier series.

e Parseval’s identity: The Parseval’s identity, named after Marc-Antoine
Parseval, is a fundamental result on the summability of the Fourier series of
a function. Geometrically, it is a generalised Pythagorean theorem for inner-
product spaces (which can have an uncountable infinity of basis vectors).

¢ Practical harmonic analysis: If function is not given by a formula, but by
a graph or by a table of corresponding values, then process of finding the
Fourier series for the function is known as harmonic analysis.

¢ Fourier transformation: Let f{x) be a function on the interval (a,b), then
it is said to satisfy Drichlet’s conditions: (i) f{x) is defined and single valued
except at a finite number of points in the interval (a,b), and (ii) f{x) and /”'(x)
are piecewise continuous in the interval (a,b).

3.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the Fourier series.
What is the even functions in Fourier series?
How will you define the odd functions in Fourier series?
What do you understand by the the halfrange Fourier series?
State the complex Fourier transform.

Define the Parseval’s identity in Fourier series.

ALl o

State the generalisation of Parseval’s theorem.
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Fourier Series and Integrals 8. State the convolution theorem.
9. What is the auto-correlation function?
10. Define the practical harmonic analysis.
NOTES 11. Write the Fourier’s integral formula.
12. Define the Fourier transformation.
13. State convolution theorem.
14. What is multiple finite Fourier transform?
Long-Answer Questions
1. Discuss the Fourier series with appropriate example.
2. Explain the even functions in Fourier series. Give example.
3. Explain the odd functions in Fourier series.
4. Analyse the halfrange Fourier series.
5

. Find a series of cosine for f(x) in (0, 1)

i
Where f(x)=0 for0<x<5
_T T_
_2 2 X 7T
Deducel_—1+l—l o=
3 5 7 9

6. Find sine and cosine series
fx)y=x+1 forO0<x<m

7. Find halfrange cosine & sine series for
flx)=e¢" forO<x<m

8. Find halfrange cosine series for
fix)=x2 forO0<x<m

9. Find cosine series for f{x)=m—x,0<x<m

10. If fix)=x=m—xfor 0 <x <m/2 m2<x<T
4 . 1 . 1 .
Prove that f{x) = g smx—3—251n3x+5—zsm5x

1
= E—z izcos 2x+i2cos 6x+—200510x)
4 m\l 3 5
11. Find Fourier series corresponding to
fx) =2 is2<x<0

=X 0<x<2

1 l <1 . 2nmx

12. P that T—Xx=—) —sm ,0<x<1

rove tna b T ; " 1
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13. f(x) =—a —<x<0 Fourier Series and Integrals

a O0<x<c
14. fir) = 2t, 0<tr<1
=22-1), 1<t<2 NOTES

Find Fourier halfrange cosine series

15. Find Fourier series of

o=k,  2<x<2
[
16. Let f{x) = 5x, OSXSE
[

=5(-x), ESxSI

45l (=)' . Cr+)nx
PT. fix) = Z(2n+1) . nl

1 T
hence prove that 1+ 7 +——

528
17. Express x(t —x) in a half range sine series is the interval (0, x)

18. Find the Fourier series of

-2 for 4<x<-=-2
fo=|* -2<x<?2
2 2<x<4
19. Discuss the Parseval’s identity in Fourier series.
20. Describe the generalisation of Parseval’s theorem.
21. Analyse the convolution theorem.
22. Explain the convolution theorem and the auto-correlation function.
23. Describe the Fourier integral theorem with the help of giving examples.
24. Discuss the Fourier transformation. Give an example.

25. Explain briefly about the convolution theorem including sine and cosine
transform with the help of giving examples.

26. What do you understand by the multiple finite Fourier transform? Give
appropriate examples.
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43.1 Inverse Mellin Transform
4.4 Inversion Theorem of Mellin Integrals
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4.6 Elementary Properties of Hankel Transforms
4.7 Hankel Inversion Theorem
4.7.1 Mellin Transform Integrals
4.8 Hankel Transforms of the Derivatives of Functions and Some Elementary
Function
4.8.1 Hankel Transform of Somo Elementary Function
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4.10 Parseval Relation for Hankel Transform
4.11 Use of Hankel Transforms in the Solution of Simple Partial Differential
Equations
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4.13 Summary
4.14 Key Terms
4.15 Self Assessment Questions and Exercises
4.16 Further Reading

4.0 INTRODUCTION

In mathematics, the Mellin transform is an integral transform that may be regarded
as the multiplicative version of the two-sided Laplace transform. This integral
transform is closely connected to the theory of Dirichlet series, and is often used
in number theory, mathematical statistics, and the theory of asymptotic expansions;
it is closely related to the Laplace transform and the Fourier transform, and the
theory of the gamma function and allied special functions.

The Hankel transform expresses any given function f{r) as the weighted sum
ofan infinite number of Bessel functions ofthe first kind Jv(k). The Bessel functions
inthe sumare all of the same order 7, but differ in a scaling factor k along the r axis.
The necessary coefficient Fv of each Bessel function in the sum, as a function of
the scaling factor k constitutes the transformed function. The Hankel transform is
an integral transform and was first developed by the mathematician Hermann
Hankel. It is also known as the Fourier—Bessel transform. Just as the Fourier
transform for an infinite interval is related to the Fourier series over a finite interval,
so the Hankel transform over an infinite interval is related to the Fourier—Bessel
series over a finite interval.
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In this unit, you will study about the Mellin and Hankel transforms, elementary
properties of Mellin transforms, Mellin transforms of derivatives, inversion theorem
of Mellin integrals, distribution of potential in a wedge, elementary properties of
Hankel transforms, Hankel transforms of the derivatives of functions and some
elementary function, relations between Fourier and Hankel transform, parseval
relation for Hankel transform and use of Hankel transforms in the solution of simple
partial differential equations.

4.1 OBJECTIVES

After going through this unit you will be able to:
e Describe the basics of Mellin and Hankel transforms
¢ Explain the Mellin transforms of derivatives
¢ Discuss the inversion theorem of Mellin integrals
¢ Elaborate on the distribution of potential in a wedge
e Describe the various elementary properties of Hankel transforms

¢ Explain the basics of Hankel transforms of the derivatives of functions and
some elementary functions

¢ Explain the relations between Fourier and Hankel transform
e State the parseval relation for Hankel transform

e Discuss the use of Hankel transforms in the solution of simple partial
differential equations

4.2 ELEMENTARY PROPERTIES OF THE

MELLIN TRANSFORMS
Denote M) = F(s) = j: £t
or M(fis) = F(s)
1. Scaling: Let M (fis)=F(s)
then M(f(rt).s) =r* F(s), 1>0
Proof:
M(firtis) = | foroye™dt
Put rt=u = t=%inR‘H.S
du
dt = —
r



s—1
Then M(f(rt)i s) =L:O f (u)(zj du
r r
or M(f(rt)is) = r‘Sj: Fa)u' ™ du

or M(f(rt)is) =r= F(s)
2. Raising of'the original variable 7 to a real power by say 7’
M(f(#)is) = F(s) than

M{fP)is) =~ F (ij .~ es, p#0(real)
p \p)p
where s = {s:6,<Re(s)<o,} is the strip of homomorphy.
Proof:

MAP)i, s) = J.:f(tp)ts_ldt

Put r=u = t=u"

I 1/pa
dt=;“p du  inRHS.

s—1
M(f(#)i,s) = '[(:Of(u) u? .%ul/p_ldu

Rl

M(A#)i, s) =lr°f(u) u? du
p 0

)

3. Multiplication by #

If M(f(?)i,s) = F(s) then
on (f)is) = F(s+a)
Proof: M ( f (t)z"i,s) = IOOO SO dr

— L:O F@ e

M(f(?). i, s) = F(s + a)
4. Multiplication by log # and in general (log ?)"
If M(f(£)) = F(s) then
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M(f(?) log ti, s) = %F(s)
Proof: M(f(f) log ti, s) = J: F(@®)logr.t5 \dr
i . i © s—1 )
and dSF(s) = dsUO f()t dt

°° d s—1
= J, FO— i

d ® s—1 t
or gF(S) _Io f(@) ¢ log' dt
= M(f(?) log t; 5)
Similarly
d" d" e ]
F(s) = () £ dt
ds” ds” ‘[0 4

°° d" s—1
_ jo f@) [?z jdz
= [7 7@y og, 1y dr

_ IOOO (log?)" £ (t) *\dr

n

d
—F@) = M ((logt)" £ (1) 5)

n

d s—1 1
o " =(logt)r

Using the fact

5. Inverse of independent variable
If M(f()i,s) = F(s) then

M(%f(t‘l)i,sj ~ F(1-s)
Proof: M(f1 f(fl)i,s) = J.:%f(%) 7 ar

_ J: f Gj 572 d



1
Put - =u
t
-1
t_zdt = du
dt =— 1 du
1
dt = —5 du
u
= s 1
or = [Tt = du =0=u=o0

t=0o=u=0
= J.:f(u) w77

M@ f@Diys) =F(1-s)
6. Derivative of £(7)

Let M(f(?)i,s) = F(s) then
d" )
. (dtn ! (t)l,sj = (-1y (s—n), F(s—n) keZ*
Where (s—n) =@E-n(—n+tl)(s—n+2).(s—1)
Proof: M(j}; f(f)l',Sj = J: jt” (0.5 dr

for n=1

M(% f(t)i,sj - j:;s—lf'(t) dt

integrating by parts we get

d . _ oo o
M(Ef(t)l’sj =7 1f(t)j() - (S—I)JO P 2f(t) dt

=0-(s—1) F(s—-1)
=(-D'(s—1) F(s—1)
provided 1 f(f) >0 asx >oandx —> 0
Similarly for 2™ order derivative we again
assume £ ) > 0and #2 f'(f) > 0 as x — oo and x — 0.
and the M (0)i,s) = (-1)*(s—1) (s—2) F(s-2)

Continue in this way we may derive in general
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M(f(His) =(=1)"(s—1) (s=2) ... (s—n) F (s—n)

provider £ () =0 asx —> 0
for i=0,1,2...(n-1)
or we may rewrite

d'f .
M ( dt{ lS] = (~1)" (s—n) F(s—n)

where (s—n) = (s—n) (s—n+1) ... (s=2) (s—1)

Similarly one can show the property of derivative where derivative is
multiplied by independent variable:

ndn .
Mﬁtwfﬁ%q=44ruxnm

[s+
= (_l)n E

“F(s)

where
(), =s(ntl)...(s+n-1).

4.3 MELLIN TRANSFORMS OF DERIVATIVES

Unlike Fourier and Laplace transform that were introduced to solve physical
problems, Mellin transform arose in a mathematical content Mellin transform was
occurred during the study of famous zeta function.

Mellin transform has wide area of applicability in mathematics as well as
physics and engineering. Its most famous application is found in computation of
solution of potential problem. Another domain of applicability of Mellin
transformation is in the resolution of linear differential equation arising of in electrical
circuit/engineering by a procedure analogous to Laplace transform.

Definition 4.1: Let £{7) be a function defined for 0 <z <o use for positive real
axis. The Mellin transform M is the operation mapping function finto the function
F defined on the complex plane by the relation

MIfs)=F(s)= [ /@0 di A)

The function F(s) in called Mellin transform of /{#). In genral the integral
does exist only for s = a + ib (a complex number) such that a <a, <a, where a,
and a, depend on the function /{7) to transform.

Thus,  M(f(0)=F(s)=[ "7 f @) dr



Where s € c, s=a+ib
a = Re(s)
and b = Im(s)

and a <a, < a,this introduces a strip of definition of the Mellin transform and is
denoted by S(a,, a,). In some cases this strip may be extended to a half plane (a,
= —00 or a, = ) or to the whole complex s-plane (a, =—o and a, = ).

Example 4.1: Consider the function

fO=H(t—1)F
where H is Heaviside function, 7 > 0 and z is complex. Obtain the Mellin
transform of /(7).

Solution:  M(A?)) = F(s) = j: Fo) ™ dr

fo oo
s—1 z,s—1
or M(f)= J0~t dt+J1~tt dt
0

0}

‘Z+S

z+s—1 3, _
Fiy= [ =

provided s in such that Re(s) <—Re(z).
Example 4.2: Obtain the Mellin transform of

fy=e?”p>0
Solution:

M(f() = F(s) = [ e 7't dr
0

—pt 51
or F(s)= Je P dt
0

1
=?Fs.

Js
Fs)="5 R)>0.

Example: 4.3: Find the Mellin transform of
=1+

Solution:

M(f) = F(s) = j: 71— x) S dx

or M(f) = F(s) = B(s,, 1 —s) (using definition of Beta function)
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= \/E\/I—S
T
or F(s)= 5, TS

4.3.1 Inverse Mellin Transform

Let F(s)be the Mellin transform of f{7) then £{7) is called inverse Mellin transform
of F(s) and we write

S =M (F(s))

4.4 INVERSION THEOREM OF MELLIN
INTEGRALS

Since  M(A(1)) = F(s) = j: O at (4.2)
changing the variable in (1) by

t=¢* Sdi=—e dc&tT =D
= x =—logt?
Limits are also changed as
t=0 = x=oo

t = = X=-0

thus Fs) = | ) e (=) dx
or F(s) = Ji fe ) e ™ dx
or Fs) = [ fle™) e ™ dx (4.3)
let g(x) = fle™)
then (2) becomes
Fio) = [ g(x)e™™ dx (44)

0 _ oo _
F(s) = J._wg(x) e dx+ Jo g(x)e ¥ dx

We called the R.H.S o0f (4.4) as two sided Laplace transform and in symbols
we write

M(f0) = Jf(e ™)) (4.5)



J denote 2-side Laplace transform operator in particular if we take s
complex and say s = a + 2mib the (4.3) can be written as

Fis) = [ fle™) e ™ e ™ax (4.6)
or M(f(1)),s =a+i2nb) =T [fle™). e ™, b] ..(4.7)
Where T = F &y =" fe ™ ar

(4.5) and (4.7) repectively represents the selation of Mellin transform with
Laplace and Fourier transform.

With the help of these relations we may redefine the inversion formulas as.

1. Inversion Formula

We know that inverse Fourier transform of f (b) as

sy = [ Fbye*™ab (4.8)
Using this formula to (5) with s =a + i2nth we have
Fe ™)™ =] F(s)e™™db (49)
back substituting t =e* we get

Ay e =" F(s) ™ db

or fy =re | F(s)™db
or sy =] F(s) e ap
1 a+ico —
or M =5-], F(s)t " ds ..(4.10)
. 1
a+i2nb=s = db=—ds
2mi

b=oo = s=a+tio
b=—o0 = Ss=qa-—ic

thus (9) can be written as
. 1 a+ib s
MI(Fs)) =i = lim | — [ F@)ds| @411

where integration is made along the vertical line through Re(s) = a (10) is
the Mellin inversion formula.
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4.5 DISTRIBUTION OF POTENTIAL IN A
WEDGE

The problem s to solve Laplace’s equation in an infinite two-dimensional wedge
with Dirichlet boundary conditions. Polar coordinates with origin at the apex of
the wedge are used and the sides are located at 6 =+ a.. The unknown function
u(r,0) is supposed to verify:

Au=0,0<r<om,—a<0<a ..(4.12)

with the following boundary conditions:

1. On the sides ofthe wedge, if R is a given positive number:

lif 0<r<R
u(r,to) = 0if r>R ..(4.13)
or, equivalently:
u(r,za) = HR-7) ...(4.14)

2. Whenr is finite, u (r, 0) is bounded.
3. When r tends to infinity, u (r, 0) ~r?, > 0.

In polar coordinates, Equation (4.12) multiplied by 7 yields:

,0°'U  ou du
r tr—t—
or’ or 00’

=0 .(4.15)

The above conditions on u(r, 0) ensure that its Mellin transform U(s, 0)
with respect to r exists as a holomorphic function in some region 0 < Re (s) < 3.
The equation satisfied by U is obtained from (4.15) by using property in this book
4.16 of'the Mellin transformation and reads:

*U
00>

(5,0)+5°U(5,6)=0 ...(4.16)

The general solution of this equation can be written as:
U(s,0) = A(s)e’” + B(s)e ™ .(4.17)

Functions 4, B are to be determined by the boundary condition (4.14)
which leads to the following requirement on U:
U (s, £ a)=Rss' for Re(s) >0

Explicitly, this is written as:

A(s)er*+B(s)eP*=ass!



A (S) e+ B (S) el = gs gl Mellin and Hankel

Transforms

and leads to the solution:

R’ NOTES

A(s)=B(s) = 25c0s(s0)

The solution of the form is given by:

_ R’ cos(s0)

v (S’ 9) 5 cos (sa)

4.6 ELEMENTARY PROPERTIES OF HANKEL
TRANSFORMS

1. Scaling:

H, (") = f(s) then [i (s)=[r/,(s7) f(r)dr]

1 (8
H (f(ar)) = ?f (Zj

Proof: Since H_= (f(ar)) = J:O nJ, (rs)f(ar) dr

Tu u du
ar=u |= '([;Jn (s;jf(u);
u 15 s
r—; = ?'([uJ (;ujf(u)dr
dr I ~(s
= | ;f@

2. Parseval’s Relation

v ()

H,(f(n)) and g(s)="H (g(r))
then

['e] [°e]

[rremydr = [s7()&(s)ds

0 0
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Proof: Consider

[°e]

[5 F()8(s) g(r)ds

0

['e] [°e]

= '[Sf(s)ds ern (srg(r))dr

0 0

interchanging the order of integration we get

Tsf(s)g(s)ds — Tr g(r)drT sJ, (sr)f(s)ds

0 0

3. Hankel transform of deriatives:

y:H (fls) = ]j(S) then

) HO) = 5 (=) = (n41) f(5) ]2
(i) H( ) = =51 ©)
provided 7/ (r) >0 asr — 0 and r — oo.
Proof: By definition
H () = |2 6nS ()dr (4.18)

Integrating by parts we get

1 d
H (f(r) = rf(s)J, (sr) I —If (’”)E(VJW(SF))dr

..(4.19)
We know that the properties of Bessel function that,

d
(1, (7)) =g, sy 7 ()

= J (sr)+trs]  (sr)—nJ (sr)

= (1=n)J (sr)+rsJ _ (sr) ...(4.20)
in view 0f (4.20), (4.19) may yield (assuming » /() — 0 asr — 0 and n — o)

H () = (n-1) j: f(r)J, (sr)dr

s[ 7, (s7) F(r)dr

-1 [* f)In(sndr—s /(). @4.21)

Again use the recurrence relation of Bessel fucntion



J (rs) = ;—;[JH (sr)+J,.(6r)]  .(4.22)

Thus, (4.21) can have (in view of (4.22))

M) = st s[5 T (5)+ a9

or H ') = 5| (1) 1) = (n41) 1 (5) ]
i.e. (4.18) established

In particular take n =1 we get
! j— S 7
H(0) = [-(2)46)]

H () = -5 1)

1.e., (ii) follows

By the repeated use of (i) we may generalize this to 2™ derivative

and HGO) = 5 (D) H, ()~ (0 + D H,
" )]
or o) = 5|25 o

4.7 HANKEL INVERSION THEOREM

Let F(s) and G(s) are the Mellin transform of /{#) and g(¢) respectively then

M[If(xt)g(f)df = F(s) G (1-8)

Proof:

['e]

M[I f(xt)g(t)dr =[x @ f(xt)g(t)dt]dx

0
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putting xt=u

du=tdx
dx = 1a’u
t
_ IUSilf(U) du J.t(H)flg(t)dt
0 0
=F(s).G(1-xs)
Hence

M [J Sf(nt)g(?) dtj =1(s) G(1 — )

Example 4.4: Find the Mallin Transform of

1
f()=
(e—1)
1 [ L
Solution. M| — =f(f)=ft ot e
e—1 o €
. - —nt 1
using the result Ze = —
n=0 l_e
e 1
= e =
n=1 e -1

So (1) becomes

w I; I |
1 . s
= M(e*—lj_ IEG(S) LSZI’ZC@ M(e ) p_S‘J
where G(s) = i is (Re(s)>1)is

Riemann Zota Function.



Example 4.5 : Obtain the Mellin transform of

3 2
f(t) - 621‘ _1
2
Solution: M ( % j = F{(s)
e’ -1
R dt
_ Z‘s—l
2 '([ o2

@ |

\

n=1 (2}’1

)_
2s i%s

n=l1

2
M (62, _1] = 2[5 G(s)

Example 4.6: Show that

1
M| —| = (1-2"
(HJ (1-2") s G(s)
Solution : Left as an exercise to the readers.

Example 4.7: Find the Mellin transform of

cos nt and sin nt

We that

M(emis) = —=—=_1%
Equating real and imaginary parts we get
ST
M (cos nt;is) = (n)™* [s cos >
o [ sin 5T
M (sinntis) =n* 1S Sin By
Remark:
Thus M (cos nti s) = (n)™ |?cos %

T [s ST
or jt‘v ‘cosnt dt = — cos—
0 n
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or jci\/%t“J = E cos =

or F(rh) = =
¢ 2

that gives the fourier cosine transforming #'.
. 2 s s
Similarly J N =4 — — sin—
s TN 2

gives the Fourier sine transform of #'.

4.7.1 Mellin Transform Integrals

Theorem:
If, M (f(¢)) =F (s) then
M[If(t) dtj LY/
0 N
Proof : Denote (1) = J‘; S(x)dx
= (t) =/ (D) and /(0) = 0

M(f(@0) ="(®)is)=—(s—1). M{jf(x)dx,s_l}

using the property
M(f'(1),s)=—(s=1). F(s-1)

or M(f'(t),s)=—(s —1)7%“2) f(1) dt

Thus M) =i(t);s)= —(s—1) M{jf(x)dxis —1}

Replacing s by s +1 we get

M {jf(x)dxi s} =—§M(f(r>).

1
——F 1
L (1)



4.8 HANKEL TRANSFORMS OF THE
DERIVATIVES OF FUNCTIONS AND SOME
ELEMENTARY FUNCTION

Theorem: If: H (f(s))=f, (s) then
() Hy (= [(1=D) ] )= (4D ], () [n 21

(i) H, (f(s)==s ]y (5)
provided rfs) — 0 as r — oo and r — oo.
Proof: By definiton

H, (J(s)= | "=J,(sr) f(s)dr - (@)
Integrating by parts we get
1, () =r £ &I, 60 = [ 70V (or) ... 4.23)
We know that the propertie of Bessel function that:
d
i (rJ,(sr)) =J (sr)+ rerll (s7)

=J (sr)+rsd _ (sr)—nJ (sr)
=(-n)J (sr)+rsJ ) (sr) .. (4.24)

In view of (4.24), (4.23) may yeild (assuming 7 f () — 0 as » —> 0 and
n —» o0)

H, (J () == f @) n(sr)dr
s[r ) £ )

_ (n_l)j:f(r) J(s¥)dr—s f(s)n—1 ..(4.25)

Again use the recurrence relatation of Bessel function

J (rs) =% [Jn_l (s7)+ J,Hl(sr)} ... (4.26)

Thus (4.25) can have (in view of (4.26))

P -1
H, (f'(r) =5 Ju (S)"‘S(nz_n)
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[J: of T, )+ T, (0] dr}

[ /() + Foi ()]

or =—S.fA;,,_l (S)+S (}’7—1)
2n
S A A
ot H (') =5 [ (1=1) [y ()= (1) [,y )]

i.e. Equation (a) established
In particular take n =1 we get

H (0 =5 [~ )]
H (f'() ==s fy ()

i.e. (ii) follows.
By the repeated use of (i) we may generalize this to 2™ order derivative.

and  H, (7)) =5 [(1=) Hy (F0)= (0 1) Hy (£

2 1 2 1
oan(f”(r))z%lIn—tljf 5 (8)— 2(’1 jf() En ;f;ﬁ—Z()

4.8.1 Hankel Transform of Some Elementary Function
Example 4.8: Find the nth (n>— 1) order Hankel transform of

(@) f(r)=r"H(a-r) b) f(r)=r"e™

Solution: (a)

()= H, (r"H(a-r)) = J:r " H(a=r).J(rs) dr
= jo P (sr)dr + j” P00 (rs) dr

J:r"+1Jn (rs) dr

n+l

7(s) =aTJn+1(as)
) Hr"e ) <[ rare sy dr

= J: P (rs) e dr



n s

or f()—( e

Example 4.9. Find the first order Hankel transform of following functions

-2r

ORNAGES
r

sinr

@ f()=

Solution:

@ M, (sinr} _ Jw/ si;r Jl (rs) i

= '[wsin rJ, (rs)dr

(b) H, [e—zrj = J:D e J, (rs)ds

I
1
[E—
[\
—_
)
S}
+
[\
[}
|
=
5
| I

4.9 RELATIONS BETWEEN FOURIER AND
HANKEL TRANSFORM

We know that the double (two-dimensional) Fourior transform and its inverse is
given by

TGy = fab) = J [ e f (x.y)dx dy
F(f(a, b)) = fix,y) = I _[ (a,b)da db
where

u = (Y

v = (a,b)
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Let (x,y) = wu(cosH,sind)and
(a, b) = v(cosd, sind) and the polar representation of z and v
respectively.
Then u.yv = wuvcos(6—0¢)and then

_ b " udu Jzn e e 079 £3,0)do 4.0
Fog = o] ], , (427)
assuming f'(u, 0) = e f(u)

T
Then by making a change of variable by setting 6 —¢ = o — o we get

F (Vld)) = i"': uf(ll) du X J’(:)+2nein(¢rzc) Xei(noc—uvsinoc)doc

where ¢, _ ¢ ==—¢

In view of integral representation of Bessel function of order
1 rop+2n .
- 0 l(not—uvsmot)d
Jn (uv) o J.% e o
(4.27) becomes
in ((I) —%) oo
F(v, ¢)=¢ JO uJnv) f (u)du
F = 3, 428
(v,0) e £ ..(4.28)

where f"n (v) is the Hankel transform of /() and is defined as

H (f(w) = f‘n(v) = Iow ul, (uv)f(u)du

and \(4.28) is the desired relation between fourior and Hankel tranform.

Then
oy = S )
or F@ue) = S w)

4.10 PARSEVAL RELATION FOR HANKEL
TRANSFORM

We introduce the definition of Hankel transform from the two-dimensional fourier
transform and its inverse is given by

ef"(”)f(x, v) dxdy

—38

2

.
Jf () =F (a,b) = == |

8



Mellin and Hankel

1 T i ransfjorms
TF'F (a, b)) =f (e, ) == [ [ ¢ f(a,b) dadb framf
2 < 5.
where r = (x,y)and s = (a, b). NOTES
Let (x,¥) = (cos9,sin0)and
(a, b) =s (cos ¢, sin §) be the polar representation of r and s
respectively.

Then r.s = rscos(0—¢)and then

1 £l 2z )

F(s,¢) = ——[rdr [ ™) (r,0) do.

T 0 0
Assume f(r,0) = ™ f(r).
and by make a change of variable by 6 — ¢ = a.— /2

1 o0
we get Fis,4) = 5] ()dr x

0
J‘%”” exp(in (¢p— Ty i(no.— s sin o )dr (4.29)
o > ..(4.
h = 2-¢ 1

where o, = 5 (1)

in view of integral representation of Bessed function of order

1 Oy +27 . .
J (sr) = 2_7c-[ exp (1(no—rs sin o)) da
(4.29) becomes

F(s, ¢) exp(in(d)—%}jjr J, (rs) f(r) dr

en{ oD

where fn (s) s called the Hankel transform of /() and in defined

formally as

Hn (f()= 1,()[r J,(rs) £(r) dr .(4.30)

and the inverse Hankel transform of

H (f(r) = F(s) i designed as
! Self - Learning
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W (5)) = £0)= 50,09, ds

(4.31)

Provided the integrals in (4.30) and (4.31) exist Alliterative Hankel integral formula

[°e]

fin) = js J, (rs) ds

0

["s Jn(sp) 1 (p) dp

can be used to design the Hankel transform (4.30) and its inverse (4.31). In
particular the Hankel transforms of the zero order (» =0) and of order one (n=1)
are often useful for the solution of problems involving Laplace’s equation in an

axisymmetric geometry.
The zero order Hankel transform

['e]

H () = |7 Ju) f(r) dr

0

Example 4.10: Obtain zero-order Hankel transform of

)
o 80

(b) H(a—-r)

—ar

©

r
where H (r) is the Heaviside unit step function.

Solution:
@) fls) = HO(MJ _ Tr@ J,(rs)dr
n r 0 TT
f(s) = TS(r) J,(rs) dr
= J(0)=1
or fils) = 1
() fy(s) = H,(H(a=r)

- J:O rH(a—r)J,(rs) dr

a

= j rJ,(rs)dr + Jo rJ,(rs) dr
0 0

1 as
S AL
0

(4.32)

(1)



where p=
or H,(H(a-r))
/)
(©) H, (le‘”j
r

rs

1 as
(P am”),

27, (as)

N

Ir.le"” Jy(rs)dr
o T

Ie"” J,(rs)dr
0

1

2 2
S"+a

This can be shown using relation

H

n

and settingn =0, i.e.,

s"2"ln+
Jn(a’ +s2)%*"

n>=Y

e .
_rlfn S |=

%,a>0

()

(a2 +5°

and if we takea=0andn=0

H, (lisj
r

1

We now consider the general example as

Example 4.11 Obtain the Hankel transform of orden # for [e J

or show that

Consider Hn[e - isj

1-n

r

2"s" n+l

1ll/l>——

n+—
\/E(a2 +s2) 2

| ”:L J, (sr)dr

n
0

I r'e J (rs)dr
0

j g, +dt (where ¢ =rs)
0

n+l
S
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J.t J(t)evdt

n+1

1 . . _a
o £ (t J,()ip = SJ (1)

=
VR
\'_ m‘
i s
=
N—
|

when 7 = rs and 7 denots the Laplace transform operator.

0 _1 vt2n+2v
Considert"J (1) = z D

I n+v+1422"

_l v
. _ 2n+2v
- £t (1)ip) = ;v, g L(ip)

(—1y[2v+2n+1
Zv,m 22v+1 2n+2v+1

By Legendre Duplication formula, we have the relation

Dn+2v+1 1 1
_—— 22n+2v11n+v+_
Jrn+v+1 Jr 2

or L("J (H)ip) =

Thus
o - (=1’ n+v+;
L(J ()ip) =
\/Epz;m vz::; v!(p2 )v
o - (=1 n+v+; 1Y
or L(J (Dip) = —
\/Epz;mnz::; ! p
but (I+x) " = vacnxn
n=0
= —(_])"
_ y EEDItY
=0 n'ﬁ
-1)"'Vn+
ond wo = EDNnty
" nlly

In view of above relation, we get

2”r+/
L(J (Dip) = W

2”|;+%
J’M]q

or L@J(1):p) = 7> Re(p)>1



n 1
—ar 1 2 n+
Hence, H, [e is] e 2
r

(520) .
or is | = L, Py
" \/E(az +S2) 2 2

for n=0

and for a = 0,n=0(both)

1
)
r

4.11 USE OF HANKEL TRANSFORMS IN THE
SOLUTION OF SIMPLE PARTIAL
DIFFERENTIAL EQUATIONS

)

Hankel transforms are extremely useful in solving variety of partial differrential
equations in cylindrical coordinator. We consider following examples that illustrate
the application of Hankel transforms.

Example 4.12 : (Free vibration of a large circular membrane) : Ifthe free vibration
of alarge circular elastic membrane is governed by the initial value problem:

ar* rdr) g’ r<oo,t

u(r,0) = f(r),u (x,0)=g (1)

for 0 <r<oo,

T
where ¢ = — = constant and T is the tension in the membrane and in &

S

the surface density of the membrane.
Solution: Using zero order Hankel transform with respect to » we get

H, (u (r, 0)iy5) = (s, 0) = j: v, (sr)u(r,t)dr (1)
Taking the Hankel transform of given partial differential equation, i.e.,

d*u d*u 1 du
Hy| == | = Ho| 5+
dt ar- rdr
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2— > oo d2u o 1 dy _ 2—
CZ];! (St)z c (JO rJO(sr)Wdr+J.0 rJO(sr);%dr——c u(s,t)j

2u

or 0 = —c’u (s, 1)
or il +CZL_1(S t) =0 3)
o :

from the initial conditions

i(s,0) = f(s)and #(s,0)=g(s) (4
where f(s) = H,(f(r)is)and g(s) =H, (g (r)is)
General solution of (2) is

i (s,t) = Acos(cst)+ B sin(cst) ..(4.35)

Taking the help of initial conditions (3) we can compute the values 4 and B as
i(5,0)= f(s)=4

du .
and u —A sin (cst). cs + B as (cst). cs
du
—(s5,0)=g(s)=B
i (s ) 2(s) cs
I _
= B= —g()
cs

hence the solution (3) can be written as

i(s,t) = f(s)cos(cst) +( ! jg(s)sin (cst)

cs
then the solution of given p.d.e is obtained by taking inverse Hankel
transform. And the solution is given by

u(nt) = H,'(u(sp)ir)
=jws £ (s)cos(est)J,(rs)ds +ljw g(s)sin(cst)J,(sr)ds ..(4)
0 c 0

In particular if the conditions are given as
u(r0) = f(r)

ka(r2 +a’ )%

and u,(r0) = g(0)=0

then solution is obtained by substituting

f(s)= kaj‘:r(az +r )% J,(sr)dr



f(s)= kf’e ~ and Z(s)=0

thus u(r,t) = ka Iow e J,(sr) cos (cst)ds

u(r,t) = Ka (r2+(a+ict)2)%

Example 4.13: Find the solution of Laplace equation in polar coordinates
d’u +l@+ d’u _ 0
dr’ rdr dr
subject to the boundary conditions 0 <r<1

vzu =

d
u(70)=u,"(70) = 0,r>1
Solution:

Let L_t(s,t) =AH,(u(r, 1)
Taking the Hankel transform of given pd we have

d’u
2—
HO (VZU) = -5 U(SJ)'FW(I",ZL) =0

d*u -

—(s,t)—s"u(g,t)=0
or o (s,2) (g,1)
whose solution is

u(st) = A(s)e*+B(s)e™ (D)

Since potential vanishes as t — oo
SO Bi)=0
thus L_l(Slt) = Alsle™ .. (2)

by inverse Hankel transform we get the solution as u (r, f)
= J:O s A(s)e ™ J,(sr)ds ..(3)

From the bounding conditions
u( 0) = u0;0<r<l1

du
E(’RO)ZO, r>1
u(rIO)) = '[ODOSA(S)JO(SI")dS =u,0<r<l1

and %(40) = j:sz A(s)J,(sr)ds=0r>0

sin s
solving we get A(s) = B
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Hence the desired solution of given Laplace equation (i.e., the potential is
given by)

240 ¢>sin s
= — | —e"J (sr)ds
Check Your Progress

1. What is Mellin transform?

2. Define the term inverse Mellin transform.
3. Give the definition of Hankel transform.
4. Write the use of Hankel transform.

5. State the potential problem in a wedge.

4.12 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Mellin transform has wide area of applicability in mathematics as well as
physics and engineering. It’s most famous application is found in computation
of solution of potential problem.

2. F(s) be the Mellin transform of /(¢) then /(7) is called inverse Mellin transform
of F{(s).

3. We introduce the definition of Hankel transform from the two-dimensional
Fourier transform and its inverse is called Hankel transform.

4. Hankel transform are extremely useful in solving variety of partial differential
equations in cylindrical coordinator.

5. The problem is to solve Laplace’s equation in an infinite two-dimensional
wedge with Dirichlet boundary conditions. Polar coordinates with origin at
the apex of the wedge are used and the sides are located at g =+ a.

4.13 SUMMARY

¢ Fourier and Laplace transform that were introduced to solve physical
problems, Mellin transform arose in a mathematical content Mellin transform
was occurred during the study of famous zeta function.

e Mellin transform has wide area of applicability in mathematics as well as
physics and engineering. It’s most famous application is found in computation
of solution of potential problem.

¢ Another domain ofapplicability of Mellin transformation is in the resolution
oflinear differential equation arising of'in electrical circuit/engineering by a
procedure analogous to Laplace transform.

o F{s) be the Mellin transform of f{£) then /{¢) is called inverse Mellin transform
of F{(s).

e We introduce the definition of Hankel transform from the two-dimensional
Fourier transform and its inverse is called Hankel transform.



¢ Hankel transform are extremely useful in solving variety of partial differential

equations in cylindrical coordinator.

e The problemis to solve Laplace’s equation in an infinite two-dimensional

wedge with Dirichlet boundary conditions. Polar coordinates with origin at
the apex of the wedge are used and the sides are located at g =+ a.

4.14 KEY TERMS

Mellin transform: Mellin transform has wide area of applicability in
mathematics as well as physics and engineering. It’s most famous application
is found in computation of solution of potential problem.

Inverse Mellin transform: F{s) be the Mellin transform of /{¢) then f{(7) is
called inverse Mellin transform of F(s).

Hankel transform: Hankel transform are extremely useful in solving variety
of partial differential equations in cylindrical coordinator.

Potential problem: The problemis to solve Laplace’s equation in an infinite
two-dimensional wedge with Dirichlet boundary conditions. Polar
coordinates with origin at the apex ofthe wedge are used and the sides are
located at g =+ a.

4.15 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

S kv

Give the definition of Mellin transform.

Write the inversion formula of Fourier transform.
What is Mellin transform integrals?

Write the formula of Hankel integral.

State about the scaling in Hankel transform.
Differentiate between Fourier and Hankel transforms.

State the elementary function of Hankel transform.

Long-Answer Questions

1.

S bk

Explain the Mellin transform derivatives with the help of appropriate
examples.

Discuss the relation of Mellin with Fourier and Laplace transforms.
Describe the properties of the Mellin transforms.

Explain the convolution theorem for Mellin transform.

Discuss Hankel transform with the help of appropriate example.

Describe the properties of the Hankel transform by giving appropriate
examples.
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7. Explain the applications of Hankel transforms to partial differential equa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>