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INTRODUCTION

Complex analysis, also known as the theory of functions ofa complex variable, is
the branch of mathematical analysis that studies complex numbers along with their
derivatives, manipulation and other properties. A complex number is a number
consisting ofa real part and an imaginary part. Complex numbers extend the idea
of'the one-dimensional number line to the two-dimensional complex plane by
using the number line for the real part and adding a vertical axis to plot the imaginary
part. In this way the complex numbers contain the ordinary real numbers while
extending them in order to solve problems that would be impossible with only real
numbers. Complex analysis finds applications in number theory, applied
mathematics, hydrodynamics, thermodynamics and electrical engineering.
Complex analysis is widely applicable to two-dimensional problems in physics
because the separate real and imaginary parts of any analytic function must satisfy
Laplace's equation.

A complex function is one in which the independent variable and the
dependent variable are both complex numbers. More precisely, a complex function
is a function whose domain and range are subsets of the complex plane. Complex
analysis is mainly concerned with the analytic functions of complex variables.
Analytic functions are those which can be locally represented by power series.
One of the important facts about the class of analytic functions is that it includes
majority of the functions which are encountered in the principal problems of
mathematics and its applications to science and technology.

This book is divided into five units which explains complex integration,
Cauchy integral formula, Liouville's theorem, Taylor's theorem, Schwarz lemma,
Laurent's series, Rouche's theorem, zeros, poles, residues, Cauchy's residue
theorem, bilinear transformation, conformal mappings, Hurwitz's theorem, Riemann
mapping theorem, Weierstrass and factorization theorem, gamma function, Riemann
zeta function, Riemann functional equations, Runge's theorem, Schwarz reflection
principle, Dirichlet problem, Green's functions, canonical products, Jensen's
formula, Poisson-Jensen formula, Borel's theorem, Hadamard's factorization
theorem, range ofan entire function, Bloch's theorem, Picard's theorem, Schottky's
theorem and univalent functions. The book follows the self-instruction mode or
the SIM format where in each unit begins with an 'Introduction' to the topic followed
by an outline of the 'Objectives'. The content is presented in a simple and structured
form interspersed with Answers to 'Check Your Progress' for better understanding.
A list of 'Summary' along with a 'Key Terms' and a set of 'Self-Assessment
Questions and Exercises' is provided at the end of each unit for effective
recapitulation.

Introduction

NOTES

Self - Learning
Material 1






UNIT1 COMPLEX INTEGRATION
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1.2.1 Cauchy-Goursat Theorem
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1.7 Summary
1.8 Key Terms
1.9 Self-Assessment Questions and Exercises
1.10 Further Reading

1.0 INTRODUCTION

In the mathematical field of complex analysis, contour integration is a method
of evaluating certain integrals along paths in the complex plane. Contour
integration is closely related to the calculus of residues, a method of complex
analysis. One use for contour integrals is the evaluation of integrals along
the real line that are not readily found by using only real variable methods
like direct integration of a complex-valued function along a curve in the
complex plane (a contour), application of the Cauchy integral formula and
application of the residue theorem. One method can be used, or a combination
of these methods, or various limiting processes, for the purpose of finding
these integrals or sums.

Complex valued functions are functions which produce complex
numbers from complex numbers. Complex function theory is the study of
complex analytic functions. It is a simple and powerful method useful in the
study of heat flow, fluid dynamics and electrostatics. Two-dimensional
potential problem can be solved using analytic functions since the real and
imaginary parts of an analytic function are solutions of two-dimensional
Laplace’s equation.
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The derivative of a function of a real variable measures the sensitivity
to change of the function value (output value) with respect to a change in its
argument (input value). Derivatives are a fundamental tool of calculus. For
example, the derivative of the position of a moving object with respect to
time is the object’s velocity: this measures how quickly the position of the
object changes when time advances.

In this unit, you will study about the complex integration, Cauchy-
Goursat theorem, Cauchy’s integral formula, higher order derivatives,
Morera’s theorem, Cauchy’s inequality, Liouville’s theorem, the fundamental
theorem of algebra, Taylor’s theorem, maximum modulus principle, Schwarz
lemma, Laurent’s series, isolated singularities, meromorphic functions, the
argument principle, Rouche’s theorem and inverse function theorem.

1.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand complex integration
e Explain Cauchy-Goursat theorem
e State Cauchy’s integral formula
e Understand the higher derivatives in complex integration
o State the Morera’s theorem
e Describe Cauchy’s inequality
e Analyse the Liouville’s theorem
o State the fundamental theorem of algebra
e Explain Taylor’s theorem
e State maximum modulus principle and Schwarz lemma
e Explain Laurent’s series
e Define the various types of singularities
e Describe meromorphic functions
¢ Elaborate Rouche’s theorem and inverse function theorem

e Discuss the branches of many valued functions

1.2 COMPLEX INTEGRATION

Definition: Let z=x + iy be a point in the Argand's plane where x = ¢(7), y =
y(?) are functions of a parameter 7. If ¢(7) and () are continuous and 7 € [a.,
B] < R, then z traces out a continuous arc. If the curve crosses itself at a
point, i.e., if at two or more values of f, z assumes the same value, the
corresponding point is called a multiple point.

A continuous arc without multiple points is called a Jordan arc.



A Jordan curve is one which is made of a continuous chain of finite
number of Jordan arcs.

A contour is a closed Jordan curve, i.e., a Jordan curve whose starting
point is the same as its end point.

Let A4 be the starting point of the first arc and B the end point of the last

arc, then integral along such a curve is written as

j I er:

The contour is said to be closed if the starting point 4 ofthe arc coincides
with the end point B of the last arc.

The integral along such a closed contour is written as _[ o (@) dz and is

read as ‘Integral /' (z) taken over closed contour C’.

Riemann's Definition of Integration: Let a function /' (z) be continuous in
a domain D and a, b, be two points in the domain, then the integral of /' (z)
from a to b is defined as below:

Let Cbe a curve joining a to b and lying entirely in the domain D, so that,
f (2) is continuous on C.

Let us consider the partition P=(a =z, z,, 2,, ... Z,_ |, Z,5..., Z, = b) of the
curve C.

22

2]

Zgp =a

Consider the sum,

S=FE)(E—2)+ f(&)(-2)+..+f(E)(,-2,)

where €, &, ..., & are the points on the curve chosen between z and z, |,
i=0,1,2, .., n-1respectively.

n—1
Then clearly S = > f(§)8z; where 8z, =z -z,

i=0

If lim S, exists finitely when the number of points of division n
n—soo

increases in such a way that the largest of the lengths of 6z approaches zero,
then we say that the line integral J f(2)d=z exists.
C
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Thus by definition,
n—1
j f@)dz = lim Y. f(&)8z where 8 = max |3z |
c i ’

Some Elementary Properties of Complex Integrals
() (/@ e d = [ f(2)d+ [g(z) de
C C C
(ii) [ f(z)dz = j f(z)dz + j f(2)dz
c G G,
where C, and C, are the parts of C.

(iii) J k f(z)dz = k Jf(z) dz  where k is a constant.
c c

) [ f@d=-| 1@ d
C -C

where — C is the same curve as C but have the opposite direction of C.

Example 1.1: Evaluate [zdz
C

Solution: From the definition, we get

[zdz = lim [i(z,. —z,._1)f(<%r)]
el o

C

where z <& <z and we consider partitiona=z,z,...z_,z,....z =bof
r r r—1 0 71 r—17r n

the curve C.

[czdz = lim [2 g, (z, —z,__])]
=1

n—oo
r=

[betweenz and z_ since f(z) =z where £_lies on C.]

= 1im |3, (z,.—z,,_])] taking & = z ()
n—ee r=1

Againfzdz = lim | 3z, | (z,.—z,._])]taking £=z (2
aadl P!

By adding Equations (1) and (2), we get

n
2[zdz = lim | Y {z,(z, —2, )+ 2,4(2, —z,_l)}]
C n—»o0 r=1

i n
= lim | ¥ (z7 -z}_))
Cndadl |



G S RAGEED RYCHES EONEYCLEP R

— (2 2y =2 2
= hm(zn—zo)—b —a
n—oo

[Since z = b and z, = a where a, b are the end points of the curve C.]

jzdz = l(b2 —d%)
: 2

Note: If the curve Cis closed, i.e., the end points a and b coincide, then

Izdz =0
c

Example 1.2: Find [d:.
C

Solution: From the definition, we get

j f(2)dz = lim
c n—oeo

2 (Zl' - Zl'—]) f(‘t:r)]
r=1

where z <& <z and partition=P={a=z,z,2z, ..,z = b}.

0> 71 72
Here f(z)=1

jdz lim [i(z,. —z._)) 1]
el O

C

= r}i_l)ll[(zl —zg)+ (2 — 7)) +...4 (2, — 2,,_1)]

= lim [z, — 2]
n—eo

=bh—a

where z = b and z, = a are the end points of the curve.

Example 1.3: Find the value of the integral,

I+i
'[ (x—y+ ixz)dz
0
(a) Along the straight line fromz=0toz=1+i

(b) Along the real axis from z =0 to z = 1 and then along a line parallel to
the imaginary axis fromz=1toz=1+i.

Solution: Let 4 be the point corresponding to z =1 + i and B be the point
corresponding to z = 1.

(a) Let OA be the line fromz=0toz=1+1i.
Along OA y=x,z=x+ix
dz=(1+1i)dx

Complex Integration
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Complex Integration 1 1

s -y ridyde = [ A+ iydx =@y [x7d A
0OA 0 0
X
NOTES S o B
=i-1) |2 ==
3,3

(b) The real axis from z =0 to z =1 is the line OB and then fromz =1 to
z=1+1i aline parallel to imaginary axis is the line BA.

So, the contour of integration consists of the lines OB and BA.

Now, along OB, y=0andz=x+iy=x, dz=dx

1 2 .3 1 .
1
J.(x—y—i-ixz)dz = '[(x+ix2)dx =X X = L
OB 0 2 3 2 3
0

Along the line BA, x = 1; then z = (1 + iy) and dz = idy

1
J.(x—y—i-ixz)dz = J(l—y—i—i)idy
0

BA
, . I N
{(1+1)y—7}0—{(1+z)—5}

i[lﬂ] — g =1
2 2 2
1+i

Hence J (x— y+ix”)dz along the contour OBA
0

1

= Integral along OB + Integral along B4

1+i

Example 1.4: Evaluate the integral [ z* dz

0
Solution: Since f (z) = z* is analytic for all finite values of z, then its integral
along a curve joining two fixed points will be independent of the path. Here
we now integrate z? between two fixed points (0, 0) and (1, 1).

Let the path of integration joining these points be along the curve made
up of,
(1) Part of the real axis from (0, 0) to the point (1, 0). On this line z =x, dz
= dx and x varies from 0 to 1.
(2) Followed by the line parallel to the axis of imaginaries from the point
(1, 0) to the point (1, 1). On this line z =1 + iy, dz = idy and y varies
from O to 1.

Self - Learning
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1+i 1 1
[ = [P+ [(1+ip)*dy
0 0 0

[lxﬂ] + {(l +iy)’ ]
37, 3

0

(T N T
§+§|:(l+l) —1}_5(1“)

Example 1.5: Using the definition of the integral of / (z) on a given path,
find

5+3i
J‘ 2dz
—2+i
Solution: Since f(z) = z* is analytic for all finite values of z, then its integration
along a curve joining two fixed points will be independent of the path. Here
we have to integrate z* between two points (-2, 1) and (5, 3). Let the path of
integration joining these two points be along the curve made up of,

(1) A line parallel to the real axis from the point (-2, 1) to the point (5,1).
On this line, z = x + i, dz = dx and x varies from -2 to 5.

(2) Followed by a line parallel to the imaginary axis from (5, 1) to (5, 3).
Onthislinez=5+iy, dz=idy and y varies from 1 to 3.

5+43i 5 3
L _[ 2dz = J (x+i) dx + I(S +iy)’ i dy along this path.
—24i -2 1

5
_ @+ 1T . ap
—{ 2 }_2+Z[(5+1y) l

_ 1 4 a7 1 4 4
= Z[(S—i—z) —(=2+1) }+Z[(5+31) —(5+1) }
Example 1.6: Find J‘(z2 +3z+2)dz
C

where C is the arc of the cycloid x = a (0 + sin 0), y = a (1 — cos 0) between
the points (0, 0) and (ra, 2a).

Solution: Since f(z) =z* + 3z + 2 is a polynomial function in z, then f'(z) is
analytic in z-plane. Therefore, the integral between two points (0,0) and (na,
2a) is independent of the path joining these points.

Then the path of integration of a curve C consists of:

(1) The part of real axis from the (0, 0) to (na, 0) where z =x, dz = dx and x
varies 0 to ma.

(2) Followed by a line parallel to the imaginary axis (na, 0) to (na, 2a)

Complex Integration
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where z = ma + iy, dz = idy and y varies from 0 to 2a.

'[(22 +3z+2)dz

c

TTa 2a
= [P +3x+2dv+ | [(na + i)’ +3(ra +iy) + 2]idy
0 0

3 3 a .3 3 .2 2a
:{x_+5x2+2x} +{(m+”) j3matiy) +2iy}
0

3 2
0

1 3,3 2
—(ma)” +—=(ma)” + 2ma
S 420
3
+ {%(na + 21'a)3 + %(na+ 2ai)2 + 4ai—%—%(na)2}

= 2ma + %(na +2ai)’ + %(ﬂ:a +2ia)? + 4ai

1

zZ—a

dz round a circle whose

Example 1.7: Find the value of the integral J

equationis |z—a | =Y.

Solution: Onthecircle C, |z—a|=Yy
z—a=re®, where 0 varies from 0 to 27

dz=re"i do

1 2n 1 ]
'[ dz = J‘Wre’eide

z—a
0 re
21
21

=i [ do = i[0]" =2mi
0

Example 1.8: Find the value of the integral j(x + ) de+xydy,

(i) Along y = x*having (0, 0), (3, 9) end points.
(if) Along y = 3x between the same points.

Do the values depend upon path?

Solution: We are required to find [(x +y)dr+xy dy

c

oP 80
— + — 24y - = —_ =
Let P=x+y, Q=x%;then Py 1 and ™ 2x
oP 80
oy ” Ox



The integrals are not independent of path: Complex Integration

(i) Along the curve y =x?, dy = 2x dx and x varies from 0 to 3.

3
Hence [(x+y)dc+2Pydy = | [(x+x2)dx+x2~x2~2xdx] NOTES
c 0

23 3
[(x+x2 +2x5)dx] = x—+x—+2x6
2.3 6 |

O —

9 513
= —-4+94243 = —
2 2

(if) Now along the curve y = 3x, dy =3 dx and x varies from O to 3.

3
Hence J(x+y)dx+x2ydy = J(x+3x)dx+x2.3x.3dx
c 0
3
= j(4x+9x3)dx
0

3
= [2x2+2x4} — 184281 = 18412 = 30
47 4 4 4

Since values of (i) and (ii) are not same, hence the value of integration
depends upon the path of integration.

2+i

Example 1.9: Evaluate J‘ (z)*dz , along (i) the line x = 2y, (ii) along a line
0

parallel to the imaginary axis fromz=2toz=2+i.
Solution: (i) We have, along the line OA4,
x=2y, z=2y+iy

and z =2y—iy, dz=2+i)dy y
2+i 1
L[ @ = Je-i Y @iy A
0 0 x=2y
1
=(@4-7 Q-0 [y 0 P
0

3 1
—502-i) B} =2~
0
(ii) The line parallel to the imaginary axis fromz=2,toz=2 + i is
BA. Along the line BA,x=2,z=2+iyand z = 2 —iy,dz=idy, and y varies
from O to 1.
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2+i

j ()% dz
0

j(Z)2 dz

BA

(2—iy)2idy = j [4—4yi—y2}idy
0

Il
O —_

(@7 i+ay|dy

Il
oS —_

Il
l;|
N
|
w | —
|
N

|
|»—t
[—
~.
+
NS

Cauchy's Theorem

One of the finest results of Complex Analysis is the following theorem:

Theorem 1.1: (Cauchy's Theorem): Let f(z) be an analytic function of z
and / '(z) be continuous at each point within and on a closed contour C; then

[r@d =0
C

Proof: Let R be the region which consists of all points within and on contour

C. We know that if M (x, y), N (x, ), %N , aa— are all continuous functions
of x and y in the region R, then the Green’s theorem states that,

ON oM

ayjd -dy .(1.1)

i(de +Ndy) = jj (

Since f(z) = u + iv is continuous on the simple curve C and f'(z) exists
and is continuous in R, thenu, v, u, v, u, v, are all continuous in R. Hence,
the conditions of Green’s theorem are satisfied.

L jf(z)dz = j(u+iv)(dx+idy)
C C

= J‘(udx—vdy)+iJ‘(vdx+udy)
c

=] (S St - By 1)

= 0 by Cauchy-Reimann equation U=V, U=y,

Hence Jf(z)dz =0
C

1.2.1 Cauchy-Goursat Theorem

Theorem 1.2: Let f (z) be an analytic function of z such that it is single-
valued inside and on a simple closed contour C, then

j f(z)dz =0.
C



Connected Region: A region R is said to be connected region if any two
points of R can be connected by a curve which lies entirely within the region.
(Refer Figure 1.1)

Simply-Connected Region: A connected region R is said to be a simply-
connected region if all the interior points of a closed curve C drawn in R are the
points of R.

Multi-Connected Region: If all the points of the area bounded by two or
more closed curves drawn in the region R, are the points of R, then the region
R is said to be multi-connected region.

Cross-Cut (or Cut): The lines drawn in a multi-connected region, without
intersecting any one of the curves which make a multi-connected region a
simply-connected one, are called cuts or cross-cuts.

Simply-connected =~ Multi-connected
region region

1

Simply-connected region
Fig. 1.1 Connected Regions

Extension of Cauchy's Theorem to Multi-Connected Region

Theorem 1.3: Let C be a closed curve and C, C,, C, ,..., C be the other
closed curves which lie inside C, and f (z) be an analytic function in the
region between these curves and continuous on C, then

[y d = j f(z)dz + j f(z)dz + j F(2)dz +.t j f(z)dz
C C,

G G G n

where integral along C. (i =1, 2, ..., n) is taken in the anti-clockwise direction.
Proof: Beyond the scope of the book.

Extension of Cauchy’s Integral Theorem

If f(z) is analytic inside and on a multiply connected region whose outer
boundary is C and inner boundaries are C\, C,, ..., C, then

J.f(z)dz - J.f(z)dz + j F(2)dz 4ot J’ f(z)dz, where all the integrals are
c q o) c,
taken in the same sense.

Suppose that f(z) is analytic in the multiply-connected region R enclosed
between the two closed curves C and C|. Now we can convert the multiply-
connected region R into a simply-connected region by introducing the strip
cut 4B.
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By Cauchy’s integral theorem, I f(z)dz=0
ABEBAFA

ie., j+j +j+ I £(2)dz=0

AB BEB BA ACA

j f(2)dz+ j f(z)dz - j f(z)dz + j f(z)dz=0

G

e, |/Qd= [ [
G c

= Jr@d=]red
q C

This proofis for a doubly connected region.

Similarly, we can extend this to a multiply connected region whose outer

boundary is C and inner boundaries are Cy, C,, ..., C,.
Hence [/ = [ [+ [ f(2)dz+..+ j /()
c G G Cn

1.2.2 Cauchy's Integral Formula
Theorem 1.4: If f(z) is analytic inside and on a simple closed curve C of a
simply—connected region R and if ‘a’ is any point within C, then

=3 J-f (2) dz, where C is described in the anticlockwise sense.
i

AG)

z—da

Proof: Since f(z) is analytic inside and on C, is also analytic inside

and on C, except at the point z = a.

Hence we draw a small circle C, with centre at z = a and radius p lying
entirely inside C.
YA

Now, /(@) is analytic in the region enclosed

z—da
between C and C,. c

Hence, by Cauchy’s extended theorem,

f(2)
J-ﬁdz = I%dz



. . i0 Complex Integration
If z is any point on C|, then |z—a|=p and hence z—a=pe” (or)

z =01+peie
dz = pe-ido NOTES

[£9- If(a+pe)

ido = jf(a+ pe)-ido (1.3)
pe

In the limit, as p — 0 the circle C, tends to a point.

Hence, in the limit as p — 0, the Equation (1.3) becomes,
f(Z) 2n 2n

[ = j f(a)id0=if(a)- j d0 =2mi f(a)
q: ¢ 0=0 0

Hence using in Equation (1.2), we get J-M dz =27 f(a).
C z—d

e, f@ = o %dz

c
Note: This theorem gives the value of an analytic function at any interior
point of a region R in terms of its values on the boundary of the region.

Cauchy’s Integral Formulas for the Derivatives of an Analytic
Function

By Cauchy’s Integral formula, we have

J'f(Z)

f(a) = (1.4

2

Differentiating partially both sides of Equation (1.4) with respect to ‘a’
and performing the differentiation within the integration symbol in the RHS,
we get

f(2)

1!
1 —_ - —d
fla) = 27‘Cic(z—a)2 -

f(a) = A f(Z)3 dz.
2TElC(z—a)

G

. n+l
27 - (z —a)

7 (”)(a) =

Example 1.10: Evaluate Izzdz, where C is the contour | z| =2
C

Solution: f(z) = z%, is analytic everywhere within and on | z | = 2

Self - Learning
Material 15
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. By Cauchy’s integral theorem, I f(2)dz=0, ie., Izzdz =0.
C C

Example 1.11: Evaluate .[(Z —2)"dz where n > 0 and C is the circle whose

NOTES ) _ C
centre is 3 and radius 1.

Solution: f2) = (z-2)",n>0.
Cisthecircle|z—3 |=1.
£ (2) is analytic everywhere within and on C.

. By Cauchy’s integral theorem, .[(Z -2)"dz=0.
c

e z

Example 1.12: Evaluate j

CZ+2
(i) | z—1]=2.
Solution: Equating denominator to zero, z+2=0

. . 1
dz, where C is the circle (i) |z|:5;

= z=-2 Ya
(i) | z| :% is the circle with centre at z = ‘0’ /\
1 » X
and radius 5 -2 ‘%‘\J;—
z = =2 lies outside this circle.

- The function e+ is analytic within and on C.
z
. e’
By Cauchy’s integral theorem, I o2 dz=0,
C

(i) | z— 1] = 2 is a circle with centre at z =1 and radius 2.
Putz=-2in|z— 1|

lz—1]=|-2-1|=]-3]=3>2
- z=—"2 lies outside this circle.

-z
~. The function ¢

N is analytic within and on C.
z

e’ s —
By Cauchy’s integral theorem, _[ 12T 0.
c

dz

Example 1.13: Evaluate (i) J- - _g (i) j d-
c
c

(z—a)"

closed curve and z = a is a point (i) outside C (ii) inside C.

n>2 where C is a simple

Solution: (i) z = a is a point outside C.

Since z = a is a point outside C both ! and ! are analytic

z—a) (z—a)"

mside and on C.

Self - Learning . By Cauchy’s integral theorem,
16 Material



dz Complex Integration

J- dz =0 and J- —=0.
nzZ—a w(z-a)
(ii) z = a 1s inside C.
(a) Using Cauchy’s integral formula, NOTES
SO — i fa,
L (z-a)

1
f dz = 2mi[l] [Here f(2) = 1]

a (z—a) z=a>
= 2mi-1
= 2mi.
(b) Using Cauchy’s integral formula for derivatives,
f(2) i
————dz _ T n
a (Z _ a)l’H—l — n' f (a),
1 27 - 27
dz _ =2 )= 0)=0.
([(z—a)” = o’ 7@
[ f@)=1, f'(2)=0, f(2)=0,.../"(z2)=0]
2z
Example 1.14: Evaluate Iei dz, where C is the circle | z | = 2.
L+
Solution: | z | = 2 is a circle with centre at the origin and radius 2.
Here f(2) = ¥ g

z+D)*=0 = z+1=0 = z=-1 /\
N
z=—1 lies inside the circle | z | = 2.

. By Cauchy’s integral formula J-(j_r(iz)m dz =2—n'lf "(a),
C z a) n:
2z 2z

I ¢ 2 dz _ 1644(12

- (z+1) wlz—(D]
_ 27 3
= ?f (=D

i

= @

— 2ni &(322)
6 | dz° o

= %[8622]231

-2

= —Tie
3 Self - Learning
Material 17
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Example 1.15: Evaluate J-L
v (z=-1D)(z-2)

using Cauchy’s integral formula.
1
Solution: |z —2| =% is a circle with centre at z = 2 and radius >

Denominator=0 = (z-1)(z—-2)=0=z=1,2
z =1 lies outside the circle C and

z = 2 lies inside the circle C.

Using Cauchy’s integral formula J- f(2)

C( ) A f(2)
( zZ )
Z_l

where C is the circle |z—2|:%,

A\
Jeoea® = [ NG

c c

= 2mi[ f(2)]__,

2ni[ i }
z-1 z=2
2ni[g}

1

= 4ni

COSTI:Z2

Example 1.16: Evaluate jm
zZ— zZ—

c

Solution: | z | = 3 is a circle with centre at the

origin and radius 3. f \
z-1DN(Ez-2)=0 = z=1,2 -~ —

dz, where C is the circle | z | = 3.

z=1, 2 lies inside C. vjs

f(z)=cos nz? is analytic everywhere inside and on C.

1 A B

Now -y ~ Gon -2
1 =4@Z-2)+B(=z-1)
Putz=2, 1 =0+B = B=1
Putz=1, l=4-1)+0 = 4=-1
v 1
(z-D(z-2) (z-D (z-2)
J‘ COSTl:Z2 - _J‘COSTl:Z2 7 J‘COSTEZ2 dZ
(z-1)(z-2) TR IR NP

c

i [f(z)]z:1 + 2TEi[f(Z)]z:2

= —2ni[cos nzz] + 2m’[cosnzz]

z=1 z=2



Example 1.17: Evaluate J-

Cauchy’s integral formula.
Solution: | z+ 1 —i | = 2 can be re-written as,

[z (-1+i)
This is a circle with

z=—1 + i means the point (-1, 1).

2+2z+5=0
_2+4/4-20
- S it
2
=_2i4i=—1i2i
2
z=—-1+2i, - 1-2i
Put z=—1+2i
lz+1-i] = |i|]=1<2
Put z=—1-2i
lz+1—i| =|-3i|=3>2

. Ofthese two points, z=— 1 + 2i lies inside C and z=— 1 — 2i lies outside C.

Using Cauchy’s integral formula,

J' z+4

Cz +2z+5

= —thi[COS 71;] + 2TCi[COS 47-5] Complex Integration

= 2mi(-1) + 2mi(1)

= 2mi+ 27
NOTES

= 4mi

z+4

2

where Cis | z+ 1 —i | =2, using
z"+2z+5

C

|=2

centre at z= — 1 + i and radius 2.

_J- z+4 i
[z—=(-1+20)][z—(-1-20)]

[ z+4 }
B J- z—(-1-2i) i
a [z—(-1+20)]

= 2ni[f(D)],__, .,

_ ,_ z+4 }
= 2ni| ——————
2= (1=2D) ],y

-1+2i+4
| —1+2i+1+2i

::2ni3+2q
4i

= 2mi

I
= —(3+2i
5 3+2D)

Self - Learning
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3
Example 1.18: Evaluate Ii;m d=, where C is the ellipse 4x> + 9y = 1.
-z —-T7z+6

Solution: The ellipse 4x2 +9 y2 =1 can be re-written in the standard form as,

2
5 > = 1 —+ y_2 =11is the standard form
z) ) o

2 3

Y
l Y3
2 N
22-7z+6=(z=1)(z-6)=0 e e
z=1,z=6

Both these points lie outside the ellipse.

Y3

+z+1
. By Cauchy’s integral theorem, J.L dz=0,

-z -T7z+6

Example 1.19: Use Cauchy’s integral formula to evaluate J- COZS = d around
c? -
a rectangle with vertices 2+i, —2+;.
Solution: -1 =(z-1)(z+1)=0
olution (-1 (+1) 2 21

= z=1,-1

\J

- Itisnot analyticatz=1,— 1.

2,-1) 2,-1)
z=1, -1 lies inside the rectangle.

1 4 B _ 1 1
AlSO CTNGED) T GoD) (4D 26-D 2G+D)
1 1
[1 A(z+1)+ B(z—1) gives A = E _—5}
COS Tz COSTZ COS Tz
j71 - j(z—1) __-[(z-i—l)

= %2ni[cos nz] —% 2mifcosmz] _ |

= micosm—micos(—m)
=in-(-)—-in(-1) -+ cos(—0) =cosH
=0
322 +7z+1 . .
Example 1.20: If f(a) :j(i dz where C is |z|=2, find (i) /(3)
zZ—da
C

(i) £ (1 — i) (iii) f'(1—i) and (iv) f"(1-i)




Solution: (i)  f(a) =

32247241
(z-3)

z =3 lies outside C.

- f3) :j
C

I322 +7z+1
(z-a)

dz

dz where Cis |z | = 2.

322 4+7z+1

. By Cauchy’s integral theorem I— dz=0.

Hence f(3) = 0.

(z-3)

322 +7z+1

@fa-i= -[[z (1-9] “

z=1-iisapoint (1,—

which lies inside C.

. By Cauchy’s integral formula,

J‘3zz+7z+1
V-0

dz

i) fla) = |
C
/(@) =I(D

fa-in = _fz

(v) I (@)

322 +7z+1
(z—a)
322 +7z+1 322 +7z+1
Lz v/z+1) J‘—

247z+1

—2m'[i(3z2 +7z+ 1)}
dz

-2
T(.-1)

» -
C

2ni[3zz 4Tz + 1]

z=1—i

2ni[3(1—i)2 +7(1-i)+ 1]

2mi[8 —13i]
2m(8i +13)

dz

(z-a)’ ¢ (z-ay

dz
(z-1

z=1-i
—2TEi[6Z + 7]211_1.
—2mi[6—i6+7]
—2mi[13 - 6i]

2
1) (_2)]‘ 3z° + 7z3+1 s

C (Z _a)

2J' 322 +7z+ 1

. G-a)

1/
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_ o 2md —(3 247241)
21| 422

= 2Tci[6]z:a
fr(-iy = 2mif6]__ .
= 12ni
Example 1.21: Evaluate I i dz if,
2 2(1-2)°

(i) Oand liec outside C.

(i) 0 and 1 lie inside C.

(iii) 0 lies inside C and 1 lies outside C.

(iv) 0 lies outside C and 1 lies inside C.
Solution: z (1 —z)* is not analytic at z=0 and z = 1.

(/) 0 and 1 lie outside C.

dz=0,

.. By Cauchy’s integral theorem I ;
Z 4

(i7) 0 and 1 lie inside C.
1 A B C D

2(-27  z (1—z)+(l—z)2+(1—z)3
1 =40 -2°+Bz(1-2*+Cz(1 -2)+Dz
z=0, 1=4
z=1, 1=D
Coefficient of 22,0 =—A+B = B=A=1
Coefficient of 22,0 = 34 —2B—-C

0=3-2-C = Cc=1

1 1 1 1 1
3T + 2t 3
z(1-2) z (I-2) (1-2)° (-2

1 1 1 1

z (Z—l)+(z—1)2_(z—l)3

e zZ A zZ Z
£2(1_2)3 dz — j%dz_i(ze_l)dpri(zil)z dz—£(2i1)3 dz

c

= 2mi[e®],_o —2mi[e”],_ 1+?{_( ) }
. z=1

2mi| d?
ir-

= 2ni(1) —2mi(e) + 2mi(e) — mi(1)
= Ti

(iii) 0 lies inside C and 1 lies outside C.



z

eZ
[—5—dz = j&dﬁzm{ ¢ 3} — 2mi
cz-2) c ° (=2 ]
(iv) 0 lies outside C and 1 lies inside C.

ILdZ - (eZJ e [ezj

C

_ 2w d (e
20 @\ 2 )|

| d| ze®? =é°
= —TT —_— —
dZ 22 1

dz
c

~

4
z

R 22 (ze® + & — &) — (ze° —ez)-2z}
z=1

4
z

{ 37 —27%¢° +2zez:|
= —mi
z=1

= —mi(e)
= —mei

az

Example 1.22: Evaluate J. ° _d where Cis any closed contour.

n+l
c
Solution: Case (i)- If z = 0 lies outside C then en — 1s analytic inside and on
z
C.
. eaz
. By Cauchy’s integral theorem, _[Wdz =0.
c
Case (ii)- If z = 0 lies inside C then by Cauchy’s integral formula for
derivatives
f(2) i
————dz _ "
a (Z _ a)l’H—l — n' f (a),
[ _2mid ey | ﬁ[an.eﬂ _ i g
vy Z}’H— n! dzn 220 n! z=0 n!
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Check Your Progress
Define multiple point.
State Cauchy’s theorem.

What is a multi-connected region?

Sl A e

State Cauchy’s integral formula.

1.3 HIGHER ORDER DERIVATIVES

Let f'be a function that has a derivative at every point in its domain. We can
then define a function that maps every point x to the value of the derivative
of fat x. This function is written /" and is called the derivative function or the
derivative of /. Sometimes f has a derivative at most, but not all, points of its
domain. The function whose value at a equals /' (a) whenever f'(a) is defined
and elsewhere is undefined is also called the derivative of /. It is still a function,
but its domain is strictly smaller than the domain of /.

Using this idea, differentiation becomes a function of functions: The
derivative is an operator whose domain is the set of all functions that have
derivatives at every point of their domain and whose range is a set of functions.
If we denote this operator by D, then D(f) is the function /. Since D(f) is a
function, it can be evaluated at a point a. By the definition of the derivative
function, D(f)(a) =f'(a).

Higher Derivatives

Let f'be a differentiable function, and let /' be its derivative. The derivative
of /' (if it has one) is written /' and is called the second derivative of f.
Similarly, the derivative of the second derivative, if it exists, is written /"'
and is called the third derivative of /. Continuing this process, one can define,
if it exists, the n” derivative as the derivative of the (n—1)™ derivative. These
repeated derivatives are called higher-order derivatives. The n™ derivative is
also called the derivative of order n.

If x(7) represents the position of an object at time ¢, then the higher-
order derivatives of x have specific interpretations in physics. The first
derivative of x is the object’s velocity. The second derivative of x is the
acceleration. The third derivative of x is the jerk. And finally, the fourth
through sixth derivatives of x are snap, crackle, and pop; most applicable to
astrophysics. A function f need not have a derivative (for example, ifit is not
continuous). Similarly, even if / does have a derivative, it may not have a
second derivative. For example, let

+x2, if x=0
f(x)=

—x2, if x<0.

Calculation shows that f is a differentiable function whose derivative
at g is given by



+2x, ifx=0
=2x, if x<0.

f'(X)={

f'(x) is twice the absolute value function at x, and it does not have a
derivative at zero. Similar examples show that a function can have a k™
derivative for each non-negative integer £ but not a (k + 1)™ derivative. A
function that has & successive derivatives is called k& times differentiable. If
in addition the k" derivative is continuous, then the function is said to be of
differentiability class C*. A function that has infinitely many derivatives is
called infinitely differentiable or smooth.

On the real line, every polynomial function is infinitely differentiable.
By standard differentiation rules, if a polynomial of degree # is differentiated
n times, then it becomes a constant function. All of its subsequent derivatives
are identically zero. In particular, they exist, so polynomials are smooth
functions.

The derivatives of a function f at a point x provide polynomial
approximations to that function near x. For example, if fis twice differentiable,
then

fl@+h) = f(z) + f (2)h + 5 " (x)h?
In the sense that

_ fl@+h)— f(z) - f'(x)h — 5 '(x)h?
lim ! —0.
h—0 h2

If f is infinitely differentiable, then this is the beginning of the Taylor
series for f'evaluated at x + 4 around x.

1.3.1 Morera's Theorem

Morera’s theorem, named after Giacinto Morera, gives an important criterion
for proving that a function is holomorphic. Morera’s theorem states that a
continuous, complex-valued function fdefined on an open set D in the complex
plane that satisfies

if(z) dz=0

For every closed piecewise C’ curve 7 in D must be holomorphic on D.
The assumption of Morera’s theorem is equivalent to fhaving an antiderivative
onD.

The converse of the theorem is not true in general. A holomorphic
function need not possess an antiderivative on its domain, unless one imposes
additional assumptions. The converse does hold e.g. if the domain is simply
connected; this is Cauchy’s integral theorem, stating that the line integral of
a holomorphic function along a closed curve is zero.
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Proof

There is a relatively elementary proof of the theorem. One constructs an anti-
derivative for f explicitly. Without loss of generality, it can be assumed that

D is connected. Fix a point z, in D, and for any » ¢ D, let~y : [{), 1J - D
be a piecewise C’ curve such that y(0) = zy and y(1) = z. Then define
the function F to be

F(z) = f 7(¢) de.

To see that the function is well-defined, suppose 7 : [0, 1] — D is another

piecewise C’ curve such that 7(0) = z; and 7(1) = 2. Thecurve .}17_—1 (ie.,
the curve combining ~y with 7 in reverse) is a closed piecewise C’ curve in
D. Then,

F(¢)d¢ + F(Q)d¢ = f(¢)d¢ = o.
A() [, 70 iﬂ()
And it follows that

Aﬂ0@=£ﬂ0%

Then using the continuity of /to estimate difference quotients, we get
that F2 (z) =f(2).
1.3.2 Cauchy's Inequality

Let f'(z) be an analytic function within circle C, given by | z—a | = R and if
| f(z) £ Mon C, then

Mn
" <
@<=
Proof: We know that /' (a) = ﬁ J‘ Sf(z)dz
2Tflc(z—a)”+1
@=L Ld‘
T (z-a)

S VG TS
|

‘21.”" _a|n+1
2n
< M _F pag
2an+]

(Since z=Re", dz=Ri e", |dz|=|Ri e® dO | = RdO)
2R R™! "

M|n

Rn

| /(@) <



1.3.3 Liouville's Theorem

Liouville’s theorem, named after Joseph Liouville, states that every bounded
entire function must be constant. That is, every holomorphic function f* for
which there exists a positive number M such that | f(z) | £ Mforallz in C
is constant. Equivalently, non-constant holomorphic functions on ¢ have
unbounded images. The theorem is considerably improved by Picard’s little
theorem, which says that every entire function whose image omits two or more
complex numbers must be constant.

Proof

The theorem follows from the fact that holomorphic functions are analytic.
If f'is an entire function, it can be represented by its Taylor’s series about 0:

f(z) = Z a2’
k=0

Where (by Cauchy’s integral formula)

_PO _ 1 19

kK 2mi Jo (R
And C is the circle about 0 of radius 7 > 0. Suppose f'is bounded, i.e.,
there exists a constant M such that |f{(z)| < M for all z. We can estimate directly

ek f MO L Mg M M M
2w Jo vkl T agpktl Jo TN oppkel P

ar

Where in the second inequality we have used the fact that |z| = 7 on the
circle C. But the choice of 7 in the above is an arbitrary positive number.
Therefore, letting » tend to infinity (we let » tend to infinity since f'is analytic
on the entire plane) gives a, = 0 for all k> 1. Thus f(z) = a, and this proves the
theorem.

1.3.4 The Fundamental Theorem of Algebra

Theorem 1.5 (Fundamental Theorem of Algebra): Every polynomial of
degree n> 1 with complex coefficients has a zero in C.

Proof: Let p(z)=z'+a,_z""'+........ +az+a be a polynomial of degree
n>-1 and assume that p(z)'# 0 for all zecC.
By Cauchy's integral theorem we have,

J‘ daz _ 2mi L
EERrO)

where the circle is traversed anti-clockwise.

Also, since
Pz Ll el
|z | |z ]
| j dz I< 2Tcr><max|2|:r 1 =— 2n
e 2p(2) lzp(z)| min__, | p(2)]

as r—oo, which is a contradiction. Hence the theorem is proved.
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1.3.5 Taylor’s Theorem

Theorem 1.6: If /(2) is analytic inside a circle C with centre at a, then for all

z inside C,
N2 n
1) = f@)+(z-a) f(a)+ & 2"’) f”(a)+...+T)f"(a)+....00. ..(0)

Proof: Let z be any point inside the circle C.

(z—a

Draw a circle C ! with centre at ‘e’ and radius smaller than that of C such that
z is an interior point of C,. Let w be any point on C, then

|z—a|<|z—w]

z—a
Le., <l
zZ—w
N 1 1 1
Ow’ = =
w—z (w—a)—(z-a) (w—a) |_Z-a ¢
w—a C1

Il
~
s
| —_
<
~
1
—_
|
|
|
N

w—a
2 n
! 1+Z_a+(z_aj + +(Z_aj 4.0
w—a w—a w—a w—a (15)

. . . z—a
using binomial theorem as <1.
w—a

This series converges uniformly since Gl P Multiplying both sides

w—a

of Equation (1.5) by % f(w) and integrating term by term with respect to
Tl

w, over C|, we get

L[ L0 LSO G f00
o Ve

21 Y w 27 & (w—a) 2mi C(W_a)z
2
Coal 1 SOy,
21 C(w—a)
(z-a)" ¢ fw)
e i(w T (1.6)
Since f'(w) is analytic inside and on C,, by Cauchy’s formula,
L[ - 1
2nid w—z
c
!
Also, fra) = 22 [ L,

27 & (w— a)

LS L @

.C., R +1 =
2mi & (w—a)n n!



Using this in Equation (1), we have Complex Integration

@)= @+ G-a) @+ S0 ” fr@+r D 17 a) o0

This is Taylor’s series about z = a. NOTES
Notes:
1. If a = 0, then Taylor’s series becomes

f(@)= f(0)+f(0)+ f"(0)+ +*f (0)+..0

This series is called Maclaurln s series.
2.Ifz=a+ h, we get

f(a-l—h) f(a)+hf(a)+—f”(a)+ +h—f (a)+...0

Example 1.23: Expand f (z) = cos z in a Taylor’s series at z =§

Solution: Taylor’s series expansion of /' (z) about z = a is,

(z a) (z— a) (z— a)

f@=f@+——f (@) +—F—f"(@)+—F—f"(a)+..o
Given, f(z) = cos z, a=m/4
f(z) = cosz, f(n/4):cosn/4:%
f'(z) = —sin z, f'(n/4)=—-sinn/4=— !

N

f"(z) = —cosz, f"(n/4)=—cosm/4=—

-

f"'(z) = +sinz, f”’(rt/4)=sinrc/4=L

V2

By Taylor’s series expansion,

L= n/4)( 1J+(z—n/4)2( J (z—m/4) (_J
cosz—\/— T NG X 2 3! NG

:L|:1_(z—ﬂ:/4)_(z—rc/4)2 L) +.,.,oo:|

V2 1! 2! 31
Example 1.24: Find Taylor’s expansion of,
(i) f(2)=sinz about z=n (i) f(z)=¢** aboutz=2i

(iii) f(z2)=—22
(z—

about z=n
)

Solution: (i) f(z) = sinz, a==n

f(z) = sinz, f(m)=sint=0
f'(z) = cosz, f(m)=cosm=-1
f"(Z) = —sin z, f”(ﬂ:) =—sint=0 Self - Learning

Material 29
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f"(z) = —cosz,
/Y@ = +sinz

fY(z) = cosz,

By Taylor’s series expansion,

f"(m)=-cosnt=—(-1)=1
fM(m=0
fY(n)=cosm=-1

4
sinz = 0.4+ Eom Ly Co1 g o o
G T‘) (=1)+....0
_(z—n)+(z—rc)3_(z—rc) -
1! 3! st T
(z-n) (z-n)° (z—n)
T s T
(ii) f (z) = €%, z=2i. Here a=2i
f(Z — 622, f(zl-):eZ(Zi):e4i
f'(z) =2e%*, £1(20) = 2¢"
f”(z) — 22 622, f”(zl) _ 22 e4i
f(z)=2%", f2iy=2%e"

By Taylor’s expansion,

. 2
eZz _e4z + (Z 21) 2€4l + (Z 21) 226

+....00

4 (z-2i)° 23 4
3!

1! 2!
Y 42 A3
:e4’{1+(z 2l)-2+(Z 21) 22+(Z 2i) 23+...oo}
1! 2! 31
(iif) f(Z)— about z=m
Put r=z—-n Then Z=T4+1t.
sinz sin(m+¢) —sint 1 .
= = =—=-sin¢
zZ—T t t t
1| 2 7
=——|f——+——..0
t 31 5l
o
= —l+———=+
31 5!
2 2
= 1+(Z m _(z-m) +....0
3! 5!

Example 1.25: Obtain the Taylor’s expansion of f(z)=

power of z — 2.

z

Solution: In powers of z — 2 means about z = 2.

- i
(z+1)(z+2)



Put t=z-2 = z=2+¢
z _ 2+t 2+t
(z+D(z+2) Q+t+1)Q2+1+2) B+ (4+0)

Resolving into partial fraction,

2414 B _ -1 2
Gri)(d+1) — GB+1) (4+1) (B+1) (4+1)
2+t=A4A@+1)+B@B+1)
t=—4,-2=0-B= B=2
t=—3,-1 =A4+0= A=—1]
1 2
2 1@ = Gy YA

f(2)=

_(z_lj_(i_LJH(i_LJﬁ_(i_ij »
4 3) (42 3? 4 3 44 34) T

2 1 2 1 2 1
GHE e (Fgere

: : 227 +1 :
Example 1.26: Find Taylor’s expansion of f(z) = 22 = about the point z = i.
z +z

227 +1

22+Z

Solution: f(z) =

2z+1
z(z+1)

- 2z-2+

=2z—2+l+
z (z+

» [On resolving into partial fraction]

Putt=z—-i=z=i+t¢

1 1
+
(i+1) (+t+1)

fz) = 20+0)-2+

Complex Integration

NOTES
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= Q2i-2)+2t+— ! - ! .
i 1+] (1+i){1+]
| 1+

- -1 -1
=(2i—2)+21+l 1+£} + ! [HL}
il 1+ 1+i

2 3 4
=(2i—2)+2t+l_ 1—£_+(£j —(Ej J{EJ — e oo]
1 ! l l l

1 t i & *
+ —|1-—+ 5= T+ 7
(1+10) I+i A+ A+’ A+

2 .3
:(2i—2)+2t+{l—%+t—3—t—4+....oo}

1 i VA

N 1_t+t2_t3+oo
A+ q+i A+ a+*

(21—2+1+Lj+ Z—L— ! t
i 1+i i (1+0)?

SR S S 1 SR S P
HFEIS it o+

(or)

;3
-(5-2)+ (s )(z—z>+2< >[ (H),,H}( —iy

Example 1.27: Obtain the expansion of log (1 +2z) when |z | <.
Solution: For z#-1, f(z)=log(1+z) is analytic.

We can expand each branch oflog (1 + z) about z = 0 and the expansion is
valid for |z | < 1.

f(@ = log(1+2), f(0)=log1=0

’ _ 1 ! —
f(Z)__l—i—z f1(0)=1

" (=D .
S'(x)= G f(O)——l—l



Complex Integration
(=D(=2)

" — "OY=2 =21
e 1+z2)° S"'(0)
vy =R |
(Z) B (1 + 2)4 » flv (0) =_—6=-3! NOTES
n-1
In general, f"(z) = )" (=1
(1+2)"

By Taylor’s series expansion about z = a,

(z=a)

1!

N2
f(2) = f(a)+ 7'(a) +% @)+ ..o,

2

f(z)=f<0)+§f'(0>+%f”m)+...oo

2 3 4
z z z z
_O+F(1)+§(_1) +§(2)+z(—6) +...

1.3.6 Maximum Modulus Principle

This principle has many uses in complex analysis. It finds applications in the
fundamental theorem of algebra and Schwarz’s lemma.

Theorem 1.7 (Maximum Modulus Principle): Let G = C be a connected
open set and f/:G — C be analytic. If there is any g e G with |[f(a)| > |f(z)| for
allze G, then f'is constant.

Proof: Let us choose § >0, so that D(a,8) = G . Set 0< r <§ and then by
Cauchy’s integral formula, we have

O

2mivlz-al=r z — g

In terms of parameterization,

z=a+re® with 0<0<2n, dz =ire®dd
1 2 f(a+re®) 1 (2= "
f(a)—%jo Tdegfo F(a+re®)do
Hence,
@[T fa+re®) | do<—[| f(@)|d0] f(a)
2o ~2qdo

Using | f(a+re®)l<| f(a)| V0

We must therefore have equality in the inequalities.

. . Ie . . . .
Since, the integrand | f(a+re”)| is a continuous function off, this™ g, ;.
implies Material 33
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| f(a+re®)|= f(a)| for all g.
Put, a=arg (f(a))

Now,
NOTES @l = e /@
- eQn joz”f(awe"‘*)de
_ i [7"e ™ fla+re®)do
R f(@)|=1f@] = 3= fla+ re*)do0

_ 1 (2n —ia i0
= - jo R(e ™ f(a+re®)dd

IA

i [Fle fa+re)|do

using Rw<|w|forweC

IA

1 2n i
ZIO | f(a+re®)|do

L f@ldo f(@)
< 20 -
and so, we must have equality in all inequalities implying,
R(e™f(a+re®))=|e™f(a+re®)|=| f(a)| forall g
Thus,

Re™f(a+re®))=0 and

e fla+re®)=| f(a)lor fa+re”)=€"| f(a)]
Thus, f(z) is constant for z in the infinite compact set {z: |z—a|=r} of G.

Corollary: Suppose R C is a closed bounded region. If /i R—C is
continuous on R, analytic on the interior of R and not constant, then the
maximum value of |f(z)| is attained at a point (or points) on the boundary of
R and never at points in the interior of R. Moreover, if we write

JOriy) =u (x,y) +iv(x, ),

then the maximum value of u(x, y) is attained at a point (or points) on
the boundary of R and never at points in the interior of R.

Proof: The first part follows from the fact that a continuous function on
a closed bounded set attains a maximum value, and from the maximum
modulus principle this value cannot be attained in the interior of R. The
second part follows from the observation that the modulus of the function,

Self - Learni — ) -
34 I\Zz{eri:la e g () =eVis[g(z)| = e ™




Check Your Progress

Define the term higher derivatives in complex integration.
What is Morera's theorem?

Write the statement of Cauchy's inequality.

Define the Liouville's theorem.

9. State the fundamental theorem of algebra.

10. How do you get Maclaurin's series from Taylor's series?

N

11. State the maximum modulus principle.

1.4 SCHWARZ LEMMA

Theorem 1.8 (Schwarz Lemma): Let D be the open unit disc in the complex
plane C, i.e., D = {zC; |z| < 1}. Let f: D— D be a holomorphic mapping
such that, /(0) = 0.

Then, the classical Schwarz lemma states that, |f (z)| <|z| for ze D and
[f'(0)] £1, and the equality |[f'(0)| =1 or the equality |f{z) = |z| at a single point
z# 0 implies f (z) = ez with |[g| = 1.

Proof: Drop the assumption, ' (0) = 0. If /: D— D, is an arbitrary

holomorphic mapping, we fix an arbitrarily chosen point ze D and consider
the automorphisms g and % of D defined by,

g({)=C+z/1+, (. for L D

h(8)= LA f(2)g, for (e D

Then, the composed mapping, F=h .f. g is a holomorphic mapping of D
into itself which sends 0 into itself.

Since,

F(0)=0 and,

F'(0)=h'(1(2))/"(2)g'(0),

We obtain,

1-|zf

POrar

/'(2)
Hence,

1_|Z|2 ' <1
Sl

Or
TG
= f()]  1-]zf
Theorem 1.9: Let / be a holomorphic mapping of the unit disc D into itself.
Then,

forzeD

Complex Integration

NOTES
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‘df‘zs \dz\z’ forzeD
=117 1-[z|

and, the equality at a single point z implies that f'is an automorphism of D.

This result, which we derived from the Schwarz lemma, is actually
equivalent to the Schwarz lemma. In fact, if f: D— D is a holomorphic
mapping such that, /(0) = 0, then by setting z = 0 in the inequality above we
obtain,

FAOIN
And if,
| /'(O) =1,

Then,
/is an automorphism of D.
Moreover,

J‘If(f;)l |df | Sjwcl | dz |

N S VARl Sl F1
Hence,

log 1+ (O)/1-/(E)| < log 1+[C /1 L],
Which implies,

2O =THA(OVI (D) < THE 1T =2/(1-[ -1

It follows that,
[F(OI < T
The equality |/ ({)[=|C| at a single point { = 0 implies the equality,
PO
=1 f@F 1-|zf

For all, z lying in the line segment joining 0 and (. By Theorem 1.9, f'is
an automorphism of D, and hence, f(z) = ¢z for some & with |¢| = 1. This

proves that Theorem 1.9 implies the classical Schwarz lemma.

1.4.1 Laurent's Series

If C, and C, are two concentric circles with centre at ‘a’ and radii »; and r,
(r; > r,) and if f(z) is analytic on C; and C, and in the annular region R
between them, then at each point z in R,

f2) = Zan(z—a)" + an(z —a)™",
n=0 n=l1

1 S ()

n+l

where, a, = dw, n=0,1,2,3, ...

n 2TEiC1 (w—a)



Complex Integration

1
and b = — [ =123, ...
27 & (w—a)
Proof: Let z be any point in the region R, then by Cauchy’s integral formula
. NOTES
for doubly connected region,
S S ()
d d .. (1.
/@) 2mi -[ omi -[ (1.7)
c
For the first integral in Equation (1.7), w lies on C,. C, R
|z—al<|w-al 2
Le., ——_
w—a
N 1 1 1 [1_ z—a ]1
ow, w—z  (w-a)—(z—a) (w-a)| w-a

[ 2

1 z—a z—a

1+ +( j +. oo}
w—a w—a w—a

Multiplying both sides by % f(w) and integrating term by term with
1

respect to ‘w’, along the circle C|, we get

jﬂ% jf<w> maf S0y,
2mi 2mi 2Tc1 (w a)
(z Q" (S
2mi (W a)n+1

= a +a1(z—a)+a2(z—a)2 +...+an(z—a)2 +...00

= Y a,(z-a)" . (1.8)
n=0
where a, =— ﬂiw)nﬂaw forn=0,1,2, ...

i ) (w—a)
For the second integral in Equation (1.7), w lies on C,.
|w—al|<|z—a]

w—a

Le., <1,

z—da

N 1 1 _ 1 [l_w—ar
ow w—z (w—a)—(z—a)_ (z—a) z—a

2
-1 w—a w—a w-a)’
_ 1+ + +...+ +...0 Self - Learning
(Z - a) z—d zZ—a z—a Material 37
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Multiplying both sides by 2L f(w) and integrating term by term with
1

respect to w, along the circles C,, we get
NOTES I f(w) 1

C2mi ) we z (z a) 2ni

jf( )dw+( )zcj;(w—a)f(w)dw—h,,

...+(Z_ n+1j(w a)" f(wW)dw+..0

= b(z—a) ' +by(z—a) P +by(z—a) > +..+b(z—a) " +..
= Zbl(z_a)‘” ..(1.9)
n=1

where, b, = L I (w—a)" f(w) dw
2mi

2

o) b =—[—LY iy forn=1,2,3, ..

2T|:l (W_a)—n+l

From Equations (1.7), (1.8) and (1.9), we have

@) = 2a(z=a)"+ ) b(z—a)”"
n=0 n=l1
Notes:
1. As f'(2) is not analytic inside C|,
1 w4 1@

a = -
n 2nid (w—a)"™! n!
¢

2. However, if f(2) is analytic inside C,, then

" 2mid (w—a)™ n!
G

b, = 0and « L[S g, ST@

/@ = YL@
n=0 :

(z a) (z—- a)

= flay+—F—=f(@+——f"(a)+..o

which is Taylor’s series.
.. In this case Laurent’s series reduces to Taylor’s series.
3.To obtain Taylor’s or Laurent’s series, simply expand f(z) by binomial
theorem, instead of finding a, by complex integration.

4.The part Zan(z —a)", consisting of positive integral powers of (z — a),
n=0
is called the analytic part of the Laurent’s series and the part

Zbﬂ (z—a)™ consisting of negative integral powers of (z — a) is called

n=1

Self - Learning L. , .
38  Material the principal part of the Laurent’s series.
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Example 1.28: Find the Laurent’s series about the indicated points for each
of the following function:
1 622

(i) f(z)= 2% aboutz=0 (ﬁ)f@):( DSaUNHZZI NOTES

7
Solution: (i) f(z) is not analytic at z = 0.

- for [z]>0

S NERENE!
f(z)zzze; _ zz z z z

, oz 1 11 11
=z +—+—+——+——+...0
112 31 z 41,2

(iPutz—1=t= z=1+1

‘ e2z B e2(1+t) _62 _eZZ
Tz-1) P £
2 2 3 4
_ & 1+(2t)+(2t) +(2t) +(2t) +...0
£ 1! 2! 31 4!
= ez[i+2-i+2-l+i+gt+...oo}
£ 2 t 3 3

2 — 0
= e {(2—1)3+(z—1)2+(z—1)+§+§(z D+...

This is valid for [z—1|> 0.

1 2 2 4 2 }

Example 1.29: Expand —

———— in the region,
z"=3z42

() |z]<1 (i) 1<|z|<2(iii)|z]>2 (v)0<|z—1|<1
. _ 1 _ 1 _ 1 3 1
Solution:  /(2) 22 -3z42 z-D)(z-2) (z-2) (z-)
(D) If|z| < 1, then | 5| <.
1 1 1 1
f(z)—z(z_lJ—_(l_Z)——2(1_2j+(l_z)
2 2

1—§j+a—zr1

I

|
N |~
DMs
T/~
NN
<

J’_
DMs

NS

Self - Learning
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1
(@) If1<|z|<2,thenl<|z| = ’; <land|z|<2 = ’% <1
. _ L1
A f(Z)_—(z—2) —(z—l)
1 1

) A

3522
ST

This expansion is valid only if %

<1 and ‘l
4

<1, 1e,if | z | <2 and
1<|z|,ie,ifl<|z|<2.

(ii) | z|>2,1.e.,2<|z]
2

z

<1

=

L
@ =22 -

Tyey L

sG]

2 (]
EREEORCES

<1, 1e,1f 2<|z|and

1
<1}

z

<l=

_1
z

This expansion is valid only if <1 and

NI

N | =

1<|z|ie., if|z]>2.

1@ 1?[3}1 —%Hq

z =0 z z =0 z
= n+l _Z n+l
n=0 % n=0%
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N o 1
B ;)(2 _1).Zn+1
(v)0<|z-1]<1
Put, f=z—-1 = z=1+¢ NOTES
0<|z—1]<1 =  0<|t]<1
I
F@ = 0 -2 1
1
-1 ¢
1 1
T d-0 ¢
=—1—(1—;)‘1
t

= ——|1+ 24P+
1[ t+2 47 ]

1
(z=1)

—[l—i—(z—l)-i—(z—l)z—i—....oo]

o
(z+2)(z+3)
() lz|<2 (ii)|z|>3 and (ii))2<|z|<3
I _ -l a8 C
Solution: f(2) = "5y 33 " T zh2) T 2+3)

Example 1.30: Expand f(z)= m a Laurent’s series if,

3 8

=1+ =12 - 13 [On resolving into partial fraction]
z+ z+
z z
()]z]|<2=|5[<landso |7 |<I]
2 3
3 8

7o = 2(1+;j_3(1+§j

3l 53]
35 (4 (5 o Y53 3 ]

Zl<1 and
2

This expansion is valid only if

Le., |z|<2and|z|<3
ie,|z|<2

Self - Learning
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3w GzY 8 Wz
f(z):1+5;)(—1) (EJ —5;(—1) (gj

3

@lz1>3 = s<lzl = |2
4

38
(z+2) (z+3)

ECECI
R
(2 G 2 o]

2 3
z

z

f@ =1+

3

z

2 <1}

<l =
4

This expansion is valid only if <1 and <l,1e.,2<|z| and3<|z|,

ie,if|z|>2and|z|>3,ie., if|z|> 3.
(i) 2 <|z| <3.

<1

z
2<]|z| = <l and |z|<3 = ’5

2
z

_ 3.8
1@ " @y

3.8
z(1+3j 3(1+5j
z 3
-1 -1
1+§(1+2j —§(1+£J
z z 3 3
3 L2 8L azY
S (2] Sz ()

Tz-2

= 1+

Example 1.31: Find Laurent’s expansion of f(z) = m mnl<|z+
zZ\Z — zZ+
1]<3.
_ 722 _A__B _C
Solution: 1@ = 2@+l 2z (2-2) (z+1)

7z—2=4z-2)(z+1)+Bz(z+ 1)+ Cz(z-2)
z=2, 12=68 = B=2
z=0, -2=-2A = A=1
z=-1, -9=3C = C=-3

12 3
&=y T e

[On resolving into partial fraction]



Putz+1=¢ = z=t-1 Complex Integration

1<|z+1[<3 = 1<|t|<3

t
1<|f] = |L<1 and |7]<3 = ’5 <l
NOTES

1 2 3

= + _z

@ =yt Ciy
1 2 3
= + -
(—1) (-3) 1

1 23

IS 2 e s
1=\t) 34583) ¢

n=0 t n=0
_ i 1 3 %Z 1+z)" 3 3
“H+z)™ 3 3" (1+2)

1.4.2 Isolated Singularities

Zeros of an Analytic Function
A zero of an analytic function f'(z) is that value of z for which f(z) = 0.

Iff(z)) =0 and f’(z))#0 thenz =z, is called a zero of the first order or a
simple zero of /' (2).

If f(z0)=f"(z0)= f"(29) == [ (29)=0 and f"(z,)=0 then z, is
called zero of order n.

For example, f (z) = z* sin z has z = 0 and a zero of 3rd order and it has
z=nm, a simple zero.

Singular Points

A point at which a function f (z) ceases to be analytic is called a singular

point or singularity of f (z). For example, z = 3 is a singular point of
1

f(2)= 3

Types of Singularities

1. Isolated singularity Self - Learning
Material 43
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2. Poles
3. Essential Singularity
4. Removable Singularity

Isolated Singularity
A singular point z = a of a function f'(z) is called an isolated singular point if
there exists a circle with centre at z = a which contains no other singular
point of /().

For example, z = -2, 3 are two isolated singular points of the function

224z

A Sy

The function f(z)= has an infinite number of isolated singular

sin z
points at z=+nn, n=0,1,2, ..... .

When z = a is an isolated singular point of /'(z), we can expand f'(z) in
a Laurent’s series about z = a.

iLe., f(z)= ian(z —a)" + ibn(z —a)™"
n=0 n=l1

! + b, 12+b3 13+....
(z-a) " (z-a) (z-a)

= Zan(z—a)" +b -
n=0
Pole
If z = a 1s an isolated singularity of /' (z) such that the principal part of the
Laurent’s expansion of /(z) at z= a valid in 0 <|z—a | <r, has only a finite
number of terms then z = a is called a pole.

ie.,ifin f@=>a,(z-a)"+> b,(z-a)"
n=0 n=1
b,#0, b, .,=b, .,=..=0,thenz=ais called a pole of order m.

A pole of order one is called a simple pole.
For example,
1

z =0 is a simple pole of f(z)= ,
( 2(z 1)

1
z(z— 1)2

since f(z)= =l, (1-2)72 =1(1+ 2z+3z% +..0)
z

=l+(2+3z+422 +...0)
z

. . 1
and the principal part contains only one term —.
z

Essential Singularity

If z = a is an isolated singularity of f(z) such that the principal part of the
Laurent’s series of /(z) at z=a, valid in 0 <| z — a | <r, has an infinite number
of terms then z = a is called an essential singularity.



1

For example, z = 3 is an essential singularity of f(z) =e?73.

1 1 1 1 1
+ +— + +...00
11(z=3) 2!(z-3) 31(z-3)}

1
Since, ez 3 =1

1
Similarly f(z)=e”? :1+ll+

1z 21z
atz=0.

5 +...0 has an essential singularily

Removable Singularity

z—>a

If a single-valued function f(z) is not defined at z = a, but [ lim f (z)} exists,
then z = a is called a removable singularity.

sinz sinz

For example, f(z)=——is not defined at z= 0 but lin}) =1. The
z z—> yA
Laurent’s series of f(z) is given by,
sinz 1 2 2 7

z)= =—|z-"—4—-"+.. 0

/@) z z 3 57 }
2 4
z z

=l-——+——...00

31 5!

1.4.3 Meromorphic Functions

Entire Function or Integral function
A function f(z) which is analytic everywhere in the finite plane (except at
infinity) is called an entire function or an integral function.

For example, €7, cos z, sin z are all integral functions.

Meromorphic Function
A function f(z) which is analytic everywhere in the finite plane except at
finite number of poles is called a meromorphic function.

For example,

f (z)=Z—+33 is a meromorphic function since it fails to be analytic
(z=-D(z+4)
atz=1and — 4.

1.5 THE ARGUMENT PRINCIPLE

Any function f'is meromorphic in domain D, if it is analytic throughout D,
except for possible poles. Let /' be meromorphic in the domain interior to a
positively oriented simple closed contour C and let it be analytic and non-
zero on C. The image T of C under the transformation w = f (z) is a closed
contour, not necessarily simple in the w plane as shown in Figure 1.2. As a
point z traverses C in the positive direction, its image w traverses ["in a
particular direction that determines the orientation of [". Now, since there
are no zeros in f, the contour [ does not pass through the origin in the w
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P & plane. Let wand w, be points on[", where w, is fixed and ¢, is a value of Arg

(w,). Then, let Arg (w) vary continuously, starting with the value ¢, as the

point w begins at the point w, and traverses ["once in the direction of
NOTES orientation assigned to it by the mapping w = f (z). When w returns to the
point w,, where it started, Arg (w) assumes a particular value of Arg (w),

denoted by,. Thus, the change in Arg (w) as w describes [ once in its
direction of orientation is @, — ¢, . This change is independent of the point w

chosen to determine it. Since, w—f (z), the number ¢, —¢,is the change in

argument of f(z) as z describes C once in the positive direction, starting with

a point z,.
y v
Z w
2o
' U
\ / / 1 VJ‘ ] |
X } u
L_% /)‘/ /
W
Fig. 1.1 Closed Contour
Therefore,

AC argf(z) =0, P

The value of A, arg f(z) is an integral multiple of 25 and the integer,

1
—Acarg f(2)
21

represents the number of times that the point w winds around the origin in
the plane. This integer is sometimes called the winding number of T"with

respect to the origin w= 0. It is positive, if " winds around the origin in the
anti-clockwise direction and negative, if it winds clockwise around that point.
The winding number is always zero, when does not enclose the origin. We
can determine winding number from the number of zeros and poles of f
interior to C. The number of poles is necessarily finite since the accumulation
points of the poles must not be isolated singular points. Likewise, the zeros
of fare finite in number. Now, suppose that, f'has Z zeros and P poles in the
domain interior to C, where we agree that, fhas m zeros at a point z if it has
a zero of order m there and if /' has a pole of order m atz, that pole is to be
counted m, times. The argument principle states that the winding number is
simply the difference Z—P.

Theorem 1.10: Suppose that a function f (z) is meromorphic in the
domain interior to a positively oriented simple contour C, f (z) is analytic
and non zero on C, and counting multiplicities, Z is the number of zeros and
P is the number of poles of f{(z) inside C. Then,

j 1
Self - Learnin, _ =7 —
46 Material # 27[ AC arg f(Z) Z P . .(110)



Proof: To prove this, we will evaluate the integral of f” (z)/f (z) around
C in two ways.

First, let z=z (¢) (a < ¢t < b) be a parametric representation for C, so that,

AG I S0} @
c fle) 5 Sflz(0]
Since, under the transformation w= f(z), the image [ of C never passes

through the origin in the w plane, the image of any point z =z (f) on C can be
expressed in exponential form as,

(1.11)

w=p(t)expligp(?)]
Thus,
fIz()]= p(t) exp™” (a<t<b) ...(1.12)

and along each of the smooth arcs making up the contour [, it follows
that,

d d ;: i i0(1) 41
SO @) =—flz0]=—1p(t )e*]=p' ()" +ip(t)e™ (1)

.. (1.13)

Since, p'(¢) and ¢'(¢) are piecewise continuous on the interval a <7< b,

from Equations (1.12) and (1.13) we can write integral of Equation (1.11) as
follows:

jc—/} ((ZZ)) dz = ”—d‘;((;)) 4 Q0 =np(o)|! +ig(r)
But,  p(b)=p(a) and d(b)—d(a) = A arg £(2)
Hence, IC ]}((ZZ)) dz=IiA arg f(2) ...(1.14)

Another way to evaluate the integral in Equation (1.14) is to use Cauchy’s
residue theorem.

If f'has a zero of order m at z, then

f(@)=(z-z)"g(2) ...(1.15)
where g (z) is analytic and non-zero at z.

Hence,

[z =my(z—2)" " g(2) +(z-2)" g'(2)
And so,
f1@)__m g
f(@) z-z, g(2)
Since g’ (2)/g (2) is analytic at z, it has a Taylor series representation

about that point, and so Equation (1.16) implies that /" (z)/f (z) has a simple
pole at z, with residue m,.

...(1.16)
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If, on the other hand, f'has a pole of order m atz, then,

f(2)=(z-z2,) " p(2) .(1.17)

where, ¢(z)is analytic and non-zero at z;. Equations (1.17) and (1.15)

have the same form, with the positive integer m, in Equation (1.15) replaced
by —m,. Hence, it is clear from Equation (1.16) that ' (z)/f (z) has a simple
pole at z, with residue —m,,.

Thus, we observe that, the integrand /' (z)/f () 1s analytic inside and on
C except at the points inside C at which the zeros and poles of f/ occur.

Let a,,a,,...,a be the zeros of f of ordersm,,m,,...,m_, respectively

inside C, and f,, 3,...., 5, be the poles of f of orders n, n, ..., n, , respectively,
mside C.

From residue theorem,

GRS SACTE A
f(2) o e f(2) T = X f(2)
:2ni[tzmk +2(_”k)] ...(1.18)

=2mi(Z - P)

Equation (1.10) follows by equating the right hand sides of Equations
(1.14) and (1.18).

Hence, the theorem is proved.

Example 1.32: The only singularity of the function 1/z? is a pole of order 2,
at the origin, and there are no zeros in the finite plane. In particular, this
function is analytic and non-zero on the unit circle,

z=e"(0<0<2n)

If we let, C denote that positively oriented circle, then from the argument

principle,
1 1
—A, arg| — |=-2
2 € g(zz j

So, the image T of C under the transformation w = 1/z* winds around
the origin w= 0 twice in the clockwise direction. This can be verified directly
by noting that T has the parametric representation,

w=e°(0<0<2m)
1.5.1 Rouche's Theorem

The Rouche’s theorem is a consequence of the argument principle and is
useful in locating regions of the complex plane in which, a given analytic
function has zeros.



Theorem 1.11 (Rouche’s Theorem): If fand g are analytic inside and Complex Integration
on a simple closed contour C, and |[f(z)| > |g (z)| at each point on C, then fand
f+ g have the same number of zeros, counting multiplicities inside C.

Proof: Let the orientation be positive. Assume that neither the function NOTES
f(z) nor the sum of /(z) + g (z) have a zero on C.

Since,

[F (2> g (2)] 2 0and [f (2) + g (2)| 2 [[f (2)| = |g (2)I| = O

where z is on C.

If Z and Z, denote the number of zeros, counting multiplicities of f{z)

and f(z) + g(z) respectively inside C, then from the argument principle we
have,

1
Z; :ZAC arg f(z)

and,

1
Zre =5 Acarg /() +2(2)]

Hence since,

Acarg[f(2)+g(2)]=A. arg{f(z)|:1+ g(z):|}
f(2)

=ALarg f(2)+ A, arg[l +%}

Therefore,

1
Z., :Z‘erZAC arg F(z) ... (1.19)

8

F(z)=1
Where, £(2) +f(z)

But,

lg(2)]
F(z)-1|l=—=""—<1
FO-1= o

So, under the map w =F (z), the image of C lies in the open disc [w—1| <1
but does not enclose the origin w = 0. Hence, A.argF(z)=0. Since,

Equation (1.19) reduces to Z, =2, the proof is completed.

For example, in order to determine the number of roots of the equation,
z’— 42+ z—1=0 inside the circle |z|-1, write f (z) = —4z* and g (z) =27+ z—1.

Now, observe that, when |z|=1, we have

If ()] = 4lzF'=4
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and,
lg (2)| < |z/+z|+1=3
The conditions in Rouche’s theorem are now satisfied.

Consequently, since f'(z) has three zeros, counting multiplicities, inside

the circle |z]=1, so does f(z) + g (z). Thus, the equation has three roots there.

1.5.2 Inverse Function Theorem

Theorem 1.12: If fis derivable at x and is one-one on some neighbourhood
of x then the inverse function of fis derivable at f{x) and (')’ (fix)) = 1// (x),
provided f'(x) # 0.

1 h
. — lim
Proof: For /'(x) ' 0, () 0 [ (x+h)— [ (x)
po S = )
0 e+ = f(x)
In view of the continuity of f{x) at x and its one-oneness /™' exists on
some neighbourhood of f{(x) and y = f(x + ) — f(x) as # — 0. Consequently,

(£ (f(x)) exists and

L SO/
fix) iy = f(x)
From the Figure 1.3, note that the tangent at the point (x, f{x)) ony =

f(x), if makes an angle ‘o’ to the line y = x then so does tangent at (f{x), x) on
y=f"(x) as shown.

=(/(f(x)

y=r-1

(fx), %)

0 I
Fig. 1.3
Thus,
Sf'(x) =tan (Z - aj , {ffl (y)},y=f(x) — tan (Z + aj



y=/(x)

ie., f'(x){f’l(y)}, tan(%—ajtan(%+aj =

'

1
Hence, {f_l(J’)}y:f(x) = m , provided /' (x) # 0.

The above provides an interpretation for the value of the derivative of
the inverse function /.

Example 1.33

d 1
i) —logx=—VxeR",
M dx 8 X

(i) dixﬂ=gx“vz,eR and x #0, A > 1 when x=0
X

Solution: (i) Since (e*)’ =e* V x € R and e* is one-one on R with range
(0, ), therefore, its inverse function log x is derivable at all points e* and

d 1
(ilogyj = Lx , which is same as (—log xj =—VxeR".
dy bt € dy et X

(ii) We have (x*)" = (e* &%)’ = " log x A 1
X

W'V e R and x # 0.

A

. h
Ifx=0and A > 1, then (x*)' = %glg - =0

It can now be seen that there are functions which have discontinuous
derivatives.

Example 1.34: Let f{x) =tanx, 0 <x < m/2. Then at y = tan x.

N N S,
)y f(x) sec’x 1+)°

(tan' x)' = 0<x<ow

1+x2°

Example 1.35: If fis defined on R by f(x) = x? sin 1/x, if x # 10 and £{0) =0,
then f'(x) exists V x € R. But f'(x) is discontinuous at x = 0.

.1 1
Solution : It easily follows that //x) = 2xsin——cos—, ifx # 0 and

X X
£1(0) = lim @ =7 O i vsint =0
x—0 X x—0 X
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Thus, f1x) is continuous on R* U R™ and since {15} f'(x) does not exist, f'(x) is

discontinuous at x = 0.

The functions, continuous or discontinuous, which are derivative of some

NOTES function possess interesting properties.

Check Your Progress

12. Write the statement of Schwarz lemma.

13. Which is the analytic and principal part of Laurent's series?
14. Define the zero of an analytic function.

15. Give examples of integral functions.

16. State Rouche's theorem.

17. Give the statement of inverse function theorem.

1.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Letz=x+iybe apoint in the Argand's plane where x = ¢(¢), y = y(¢)
are functions of a parameter ¢. If ¢(7) and y(¢) are continuous and
t € [a, B] < R, then z traces out a continuous arc. If the curve crosses
itself at a point, i.e., if at two or more values of f, z assumes the same
value, the corresponding point is called a multiple point.

2. Letf(z) be ananalytic function ofz and f/ '(z) be continuous at each point
within and on a closed contour C; then,

Jr@d =0
C

3. If all the points of the area bounded by two or more closed curves
drawn in the region R, are the points of R, then the region R is said to
be multi-connected region.

4. 1If f(z) is analytic inside and on a simple closed curve C of a simply-
connected region R and if ‘a’ is any point within C, then
1 /()

f(a)= gy ~——=dz, where C is described in the anticlockwise sense.
Y. Z—da
C

5. Let f be a differentiable function, and let /' be its derivative. The
derivative of /' (if it has one) is written /'’ and is called the second
derivative of /. Similarly, the derivative of the second derivative, if it
exists, is written /""" and is called the third derivative of /. Continuing
this process, one can define, if it exists, the #n” derivative as the derivative
of the (n—1)™ derivative. These repeated derivatives are called higher-
order derivatives. The n" derivative is also called the derivative of order .
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10.

11.

12.

13.

14.

Morera’s theorem, named after Giacinto Morera, gives an important
criterion for proving that a function is holomorphic. Morera’s theorem
states that a continuous, complex-valued function f defined on an open
set D in the complex plane that satisfies

if(z) dz=0

Let f(z) be an analytic function within circle C, given by |z —a | =R
and if | f(z) £ M on C, then

M|n
R"

| f"(a) | £

Liouville’s theorem, named after Joseph Liouville, states that every
bounded entire function must be constant. That is, every holomorphic
function f* for which there exists a positive number M such that, | /(z) |
< Mforallz in C is constant.

Every polynomial of degree n>> 1 with complex coefficients has a zero
in C.

If a = 0, then Taylor’s series becomes

2 n
£(2)= £(0)+ £1(0) + % F0) + ot % £(0)+ .0

This series is called Maclaurin’s series.

Let G = C be a connected open set and f:G —s C be analytic. Ifthere is
any g e G with [f(a)|>|f(z)| for all ze G, then f'is constant.

Let D be the open unit disc in the complex plane C, i.e., D = {z C; ||
< 1}. Let f D— D be a holomorphic mapping such that /(0) = 0.

Then, the classical Schwarz lemma states that, |f'(z)| <|z| for ze D and
[/¢(0)| £ 1, and the equality |f¢(0)| =1 or the equality |f{z) =|z| at a single
point z 0 implies f (z) = ez with |g| = 1.

The part Zan(z —a)", consisting of positive integral powers of (z — a),
n=0

is called the analytic part ofthe Laurent’s series and the part Zbﬂ (z—a)™"

n=1

consisting of negative integral powers of (z — a) is called the principal
part of the Laurent’s series.

A zero of an analytic function f(z) is that value of z for which f(z) = 0.

Complex Integration

NOTES

Self - Learning
Material

53



Complex Integration

54

NOTES

Self - Learning
Material

15.
16.

17.

¢, cos z and sin z are all integral functions.

If fand g are analytic inside and on a simple closed contour C, and
[/ (2)| > |g ()| at each point on C, then f'and f+ g have the same number
of zeros, counting multiplicities inside C.

If /'is derivable at x and is one-one on some neighbourhood of x then
the inverse function of f'is derivable at f(x) and (') (fix)) = 1/f(x),
provided f'(x) # 0.

1.7

SUMMARY

Let z=x + iy be a point in the Argand's plane where x = ¢(¢), y = y(?)
are functions of a parameter ¢. If ¢(7) and y(¢) are continuous and ¢ €
[a, B] < R, then z traces out a continuous arc.

If at two or more values of f, z assumes the same value, the
corresponding point is called a multiple point

A continuous arc without multiple points is called a Jordan arc.

A Jordan curve is one which is made of a continuous chain of finite
number of Jordan arcs.

A contour is a closed Jordan curve, i.e., a Jordan curve whose starting
point is the same as its end point.

A region R is said to be connected region if any two points of R can be
connected by a curve which lies entirely within the region.

A connected region R is said to be a simply-connected region if all the
interior points of a closed curve C drawn in R are the points of R.

Ifall the points of the area bounded by two or more closed curves drawn
in the region R, are the points of R, then the region R is said to be multi-
connected region.

The lines drawn in a multi-connected region, without intersecting any
one of the curves which make a multi-connected region a simply-
connected one, are called cuts or cross-cuts.

If f(z) is analytic inside and on a simple closed curve C of a simply-
connected region R and if ‘a’ is any point within C, then

1 . . . . .
f(a) =70 AC) dz, where C is described in the anticlockwise sense.
Y. Z—da

c
An analytic function at any interior point of a region R in terms of its

values on the boundary of the region.

A function that maps every point x to the value of the derivative of f at
x. This function is written ' and is called the derivative function or
the derivative of /.



Morera’s theorem states that a continuous, complex-valued function f
defined on an open set D in the complex plane that satisfies

if(z) dz=0

Liouville’s theorem, named after Joseph Liouville, states that every
bounded entire function must be constant.

Every polynomial of degree n>> 1 with complex coefficients has a zero
in C.

If a = 0, then Taylor’s series becomes

2 n
£(2)= £(0)+ £1(0) + % F0) + .t % £(0)+ .0

This series is called Maclaurin’s series.

Maximum Modulus principle has many uses in complex analysis. It
finds applications in the fundamental theorem of algebra and Schwarz’s
lemma.

To obtain Taylor’s or Laurent’s series, simply expand f(z) by binomial
theorem, instead of finding a, by complex integration.

A point at which a function f'(z) ceases to be analytic is called a singular
point or singularity of /' (z). For example, z = 3 is a singular point of

1
f(Z)Zz-

A singular point z = a of a function f'(z) is called an isolated singular
point if there exists a circle with centre at z = a which contains no other
singular point of /' (z).

If z = a is an isolated singularity of /'(z) such that the principal part of
the Laurent’s expansion of f(z) atz=a valid in 0 <|z—a | <r, has only
a finite number of terms then z = a is called a pole.

If z = a 1s an isolated singularity of /(z) such that the principal part of
the Laurent’s series of f(z) at z=a, valid in 0 <| z— a | <r, has an infinite
number of terms then z = a is called an essential singularity.

If a single-valued function f(z) is not defined at z = a, but [ lim f (z)}

z—>a
exists, then z = a is called a removable singularity.

A function f(z) which is analytic everywhere in the finite plane except
at finite number of poles is called a meromorphic function.
Rouche’s Theorem is a consequence of the argument principle and is

useful in locating regions of the complex plane in which, a given
analytic function has zeros.
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1.8 KEY TERMS
e Continuous arc: Let z=x + iy be a point in the Argand's plane where
x = ¢(?), y = y(?) are functions of a parameter ¢. If ¢(¢) and y(¢) are
continuous and ¢ € [a, B] < R, then z traces out a continuous arc. 1f at
two or more values of f, z assumes the same value, the corresponding
point is called a multiple point.

NOTES

e Cauchy’s theorem: Let /' (z) be an analytic function of z and f '(z) be
continuous at each point within and on a closed contour C; then

[f(2ydz =0
C

e Connected region: Aregion R is said to be connected region if any
two points of R can be connected by a curve which lies entirely
within the region.

e Maclaurin’s series: If @ = 0, then Taylor’s series becomes
2 n
£(2)= £(0)+ £1(0) + % F0) + ot % £(0)+ .0

This series is called Maclaurin’s series.

e Singular point: A point at which a function f'(z) ceases to be analytic
is called a singular point or singularity of /' (z). For example z =3 is a
1

singular point of f(z)= 3
_

e Pole: If z = a is an isolated singularity of /' (z) such that the principal
part of the Laurent’s expansion of f(z) atz=avalidin0 <|z—a|<r,
has only a finite number of terms then z = a is called a pole.

o Essential singularity: If z = a is an isolated singularity of f{z) such
that the principal part of the Laurent’s series of f(z) at z = a, valid in 0
< |z —a | <r, has an infinite number of terms then z = a is called an
essential singularity.

¢ Removable singularity: If a single-valued function f{z) is not defined

at z = a, but [lim f (z)} exists, then z = a is called a removable
zZ—>a

singularity.
e Meromorphic function: A function f{z) which is analytic everywhere

in the finite plane except at finite number of poles is called a
meromorphic function.
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1.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions NOTES

1. Define a closed contour.

. State Cauchy-Goursat theorem.

. Distinguish Cauchy's integral formula and Cauchy's inequality.
. Define the higher derivatives in complex integration.

. What is Morera's theorem?

. State Liouville's theorem.

. Where is the fundamental theorem of algebra used?

. State the Taylor's theorem.

O o0 3 N »n B~ W

. What is the application of maximum modulus principle?

—_
=]

. State a use of Schwarz lemma.

—_—
—

. What is the relation between Laurent's series and Taylor's series?

1/z

—
[\

. Find the nature and location of singularities of the function e

—
[98)

. What is the use of Rouche's theorem?

14. Where is inverse function theorem applied?

Long-Answer Questions

1. Describe analytic function giving examples.

2. State the sufficient conditions that will ensure the analyticity of a
function, w= f(z)=u+iv.

3. State C-R equations in polar coordinates satisfied by an analytic function
giving appropriate examples.

4. Show that, w = log z is analytic everywhere except at the origin and
find its derivative giving appropriate examples.

5. If u + iv is analytic show that v — i and — v + iu are also analytic.

6. Prove that Cauchy-Riemann equations are satisfied along the curve
x —y =1 for the function f'(z) = (x — y)* + 2i (x + ).

7. Describe the higher derivatives in complex integration. Give appropriate
examples.

8. Explain the Morera’s theorem giving examples.

9. Elaborate on the Liouville’s theorem.

10. Discuss about the maximum modulus principle.
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11. Explain Schwarz lemma with the help of examples.
12. Briefly explain the argument principle.
13. Describe Rouche’ theorem with the help of examples.

14. Discuss the applications of inverse function theorem.
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UNIT 2 RESIDUES

Structure

2.0 Introduction
2.1 Objectives
2.2 Residues
2.2.1 Cauchy's Residue Theorem
2.2.2 Evaluation of Integrals
2.3 Branches of Many Valued Functions
2.4 Answers to ‘Check Your Progress’
2.5 Summary
2.6 Key Terms
2.7 Self-Assessment Questions and Exercises
2.8 Further Reading

2.0 INTRODUCTION

In mathematics, more specifically complex analysis, the residue is a complex
number proportional to the contour integral of a meromorphic function along
a path enclosing one of its singularities. Where's real analysis is rich with
plenty of results that give an inside into the topological character of function,
complex analysis highlights a multitude of stunning results that suit the natural
phenomena. So far engineering and technology point of view the study of
complex analysis is of immense importance. In complex analysis, the residue
theorem, sometimes called Cauchy's residue theorem, is a powerful tool to
evaluate line integrals of analytic functions over closed curves; it can often
be used to compute real integrals and infinite series as well. It generalizes
the Cauchy integral theorem and Cauchy's integral formula. From a
geometrical perspective, it can be seen as a special case of the generalized
Stokes' theorem.

In this unit, you will learn about the residues, Cauchy's residue theorem,
evaluation of integrals and branches of many valued functions.

2.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand the basic concept of residue
¢ Know Cauchy’s residue theorem
e Evaluate integrals

e Discuss about the branches of many valued functions

2.2 RESIDUES

If z = a is an isolated singular point of f(z), we can find the Laurent’s series
of f(z) about z =a.
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ie., f@@)= Z a,(z—a)" +Z

nl(z a)

The coefficient b1 of

the residue of f(z) at z=a.
From Laurent’s series,
LSO,

. 1-n
21 &, (z— a)

in the Laurent’s series of f'(z), is called

1
=5 [ 7(2a
G

o [Res f(2)],-, = % j f(z)dz where C is any closed curve around ‘a’
Tt

such that () is analytic inside and on C execpt at z = a.

Formulae for the Evaluation of Residues
1. Ifz=a is a simple pole of /(z), then

[Res f(2)].-, = lim(z~a) /(2)

Since z = a is a simple pole of /' (z), then the Laurent’s series of /' (z) is of
the form,

f()= ;)a (z-a)"+ (_a)

(=) f()= Y a, (—a)'* 4B,

n=0

lim(z—a) f(z)=0+b =Residue of f(z) atz=a.

z—>a

[Res f(2)].-, = lim(z~a) f(2)

2. Ifz=a is simple pole of f(z)= Pi) , then
0(2)
I P(z2) P(a)
R = .
[Res f()]. = lin [ o (Z)} o
By the previous formula,
[Res f(2)],, = lim (z—a) /(2)
. P(z2) 0
= 1 bl —_— —_—
ST [o form}

i [(z a) P'(z)+ P(2)

0 } by L’ Hopital rule



Residues

P(a) _ [ P’(z)}
= ; or llm p
Q'(a) = z=al 0'(2)
3. Ifz=ais a pole of order ‘m’, then
NOTES

m—1

1. d ”
(m—1)! zhfla{dzm—l [z=a)"s (Z)]}

Since z = a is a pole of order m, then the Laurent’s expansion of f (z) is of
the form,

[Res f(2)].= =

f(Z)=Za,,(z—a)”+L+ by . L bwa by

o z—a (z-a) (z—a)"" (z-a)"

-y ()= a(z—ay™ 4 by(z—ay™ 1 by(z—ay™ .
n=0

+b,_ (z=a)+b,

m—1
lim { d [(z—a)’" f(z)]} = (m—-1)!b

z—>a dzm_l

m—1
o b =[Res f()]oeg = — {jl [(z—a)"’f(z)}}

lim
(m - 1)' z—a
Note: The residue at an essential singularity of /() is found out using

the Laurent’s expansion of f'(z) directly.

2.2.1 Cauchy's Residue Theorem

Theorem 2.1: If / (z) is analytic at all points inside and on a simple closed
curve C, except for a finite number of isolated singularities a,, a,, ..., a
mside C, then

n
If(z)dz =2ni [Sum of the residues of /(2) at a,, a,, ...,a,]
C

=2ni[Rj+ Ry +...+ R, ]

where Rl, R,, ..., R, are the residues of f(z) at z=a,z=a,, ..., z=a,
respectively.
Proof: We enclose the singularities a,, a,, ..., a, by small non-intersecting

circles C,, C,, ..., C, with centres at a, a,, ..., a, and raidii r, r, ,..., , lying
wholly inside C.
Then f(z) is analytic in the multiply connected region enclosed by the

curves C, Cy, C,, ..., C . Hence by Cauchy’s extension of integral theorem,
[r@d=[r@d+[r@d+.+ [ f2)d
C G C, c,
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=2mi Ry +2ni Ry +...+27i R,
(By the property of Residue at a point)
=2mi[R+R, +...+ R,].
Example 2.1: Find the nature of singularity for the following functions:

z

e ) 1 1 cotmz
@ oot @ Sm(ﬁj (i) Za—ey ) gy

Solution: (/) Putz—1=¢ = z=1+¢

o7 o J e PR R R
= =¢ =gttt
(z-1 t ot 120 31 41 5!

[1 1 11 11 1 ¢ }
=e|l—+—=+——+——-+—+—+4...0
£ 2042 31t 415

1 1 11 11 1 (z=1)
=e Tt Tt S+t t—F——+...0
(z-D* (z-1° 2! (z-1)%* 3! (z-1 4 5

Since there are finite number of terms containing negative powers of (z— 1),

z=11is a pole of order ‘4°.

C(z+)) 3! 51
11 1 1 1
= o Tto ==
(z+1) 3l'(z+1) Sl(z+))

Since there are an infinte number of terms containing negative powers of
z+ 1, z=—1 is an essential singularity.

3 5
) sin(zil)— ! (Zilj +[zilj -

.

(iii) z(l—;ez. Poles are obtained by equating the denominator (Dr) to
Zero.
Dr=0 = z(1-€)=0
=z=0 and 1-e=1
l-¢&=0 = e=1
= z=i2nm where n=0,+1,+2, ...
Already z = 0.
z=101s a pole of order 2 and

z=1i2nm, n==1,+2, ... are simple poles.



cotmz CcoS Tz
) f(2)= =
@) (z—a)’ sinnz(z-a)’
(z—a)3sinrcz:0 = (Z—a)3=O, sinnz=0

z=ais a pole of order 3.
sintz=0 = mz=nn, n=0,+1,+2,...
= z=n
Le., z =0,+1,+2, ... which are simple poles.

Example 2.2: Find the nature and location of singularities of the following
functions:

() 2=

Solution: (i) Equating to zero the Dr,

z—sinz

(if) (z+1) sin( ! 3) (iti)

z— cosz—sinz

2 = = z=0
z =0 is a singularity.

. 3 5 7
Also z SmZ:L P
7 e 315 7!
1122 2 7
R
213 50 7
_1 2 2
315 7

Since there are no negative powers of z in this expansion, z = 0 is a removable
singularity.

(i) f(2)=(z+1) sin(Lj.
z-3
Put,t=z-3 = z=¢+3

f(2)=(z+]) sin( ! 3] :(t+4)sin(%]

z—

—(t+4) %@3 . GJS _Gy

3! 5! 7!

+...00

[ 11 11 11 } [4 41 41 41 }
=|ll-—=+=—-=— +...0 |+ -t === +...0
3142 514 714 t 318 5P T

4 1 1 4 1
+ —-— TR Tt
(z=3) 3!(z=3)* 3!(z-3)
Since there are infinite number of terms in the negative powers of (z — 3),
z =3 is an essential singularity.

.00
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1 . . .
(iii) f(z) =————. Poles are given by equating the denominator to
cosz —sinz

Zero,
cosz—sinz =0
cosz = sin z

sinz

1 =tanz

cos z
= z=m/4

T . .
z=7 isa simple poles of /' (z).

Example 2.3: Expand each of the following functions in Laurent’s series
about z = 0. Identify the type of singularity also.

1 5, sin
Solution: (i) z* e  (ii) —e 2 (iii) (z—l)cos(lj (iv) =
z z z
2 3
0 e - 22[1_£+Z__Z_+....oo}
20 3
Z3 Z4 Z5
=24 4w .. (1)
20 3!

The Laurent’s series of Equation (1) does not contain negative powers of
z and the circle of convergence |z|=o does not include any singularity.

-. z=01is an ordinary point of 22 =

2 3
, Lo, 1y 22,@Q2° @)
(ii) —e = {1 1!+ ol 3 +...0

z z

+ .00 .. (2)

. . . 1
The principal part of the Laurent’s series contains the only term —.
z

- z=01s a simple pole ofz e

2 4 6
(iii) (zl)am(éj(zl)l(i) [éj (éj

I ORI

ot 11 1t
- 21,2 414 61,6 7T



This is the required Laurent’s series. Residues

The principal part consists of an infinite numbers of terms in the Laurent’s
series.

- z=0 1s an essential singularity. NOTES

(iv) sinz_ 1 z2 z

z +
z z 3 57

-+
3 5t 7!
This is the required Laurent’s series.

Though z = 0 appears to be a singularity of %, the Laurent’s series of
z

sinz

at z = 0 does not contain negative powers of z.
z

. . . sinz
-, z=01s a removable singularity of .
4

22 +4

3 and the

Example 2.4: Find the singularities of f(z)=

2422242z

corresponding residues.
Solution: The singularities of /' (z) are given by Dr = 0.
2+22+22 =0

z(Z+2z+2) =0 z= 5
Le., z =0, -1+i =1+
z=0,—1+1i,—1—1iare simple poles of f(2).

[Res f(2)],_, = lim(z—a) f(2)

zZ—>a
2
4
Resf(2)]._, = lim(z—0)- —— "~
[Resf@)];-o = lim(=—0) 2(2% +22+2)
2
R B = (14D z"+4
Res/@emyvs = im [2=C1ed) e oo
. 2244
= lim ——,
z-l1+i z[z — (=1417)]
1-1-2i+4 _ 2Q2-i)

(~1+)[=1+i+1+i] 2i(—=1+i)

_ 1—(2_i)(_1_i)=i[—2—2i+i—1]
i (14D 2i

1 .
= 53
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—i

= [-3- ’]=%[—1+3i]

2
_ lim [z—(=1-0)] 2 +4
[Resf(D)],- ;= 30, Az -1tz (1-0)]
2
~ohim 4 _ Laas
zo-l-izZ[z+1-0] 2

Example 2.5: Evaluate the following integrals, using Cauchy’s residue
theorem:

z
—dz, where C is the circle

1. [—£
Jé(z—kl)
()|z-3|=3 (ii)|z—1]=3

2. J-%dz, where C is the circle
vz +2z+45
(D) |z]|=1 (@) |z+1-i|=2
Solution: 1. Poles f'(z) are given by Dr = 0.
(z+1)) =0 = z=-1,-1,—-1.z =—1isapole oforder 3.
(i) z2-3] =3
z = —1 lies outside the circle | z—3 | = 3.
.. By Cauchy’s inregral theorem,

z

I ¢ 3dz:0.
w(z+1)

(ii) C1s the circle | z— 1] = 3.

z = — 1 lies inside this circle.
1 .. dz 3 e’
Res f(2)],cj=— lim —|(z+1
[Res /(). 1 mﬁ91¢z{( ) @+D{
2
_l hm d_.[ez]
2 z—>-1 dzz
_ a1
2 2e

.. By Cauchy’s Residue theorem,

z

: :
J ¢ 3a’z=2m'><[—j=E
(z+1) 2¢) e

c
2. Poles are given by 2> + 2z + 5 = 0.
0+ _
=R i

Both are simple poles.
(i) Cisthecircle | z | = 1.



Both poles lie ouside the circle | z | = 1.

. -3
-.By Cauchy’s integral theorem, J-zz—dz =0.

-z +2z+s

iy Whenz=-1-2i,|z+1—-i|=]-3i|=3>2
Whenz=-1+2i,|z+1—-i|=|i|=1<2
. This pole z=—1 + zi lies inside C.

_ ) z-3

[Res [z = _Nim [z =4 20— = = o,
_im2
2

. By Residue theorem,
Jz—_3dz = Zni(—l ;2] =n(i-2)

2
oz +2z+5 i

Example 2.6: Evaluate the following integral using Cauchy’s residue theorem:

J- cosmz? +sin nz>

dz  where Cis|z|=3.
(z+1)(z+2)

Solution: Cauchy’s residue theorem

If(z) dz =2ni * [Sum of the residues at its poles]
c
Poles are obtained by equating the denominator to zero.

z+DH(Ez+2) =0 = z=-1,-2

These are simple poles lying inside the circle | z | = 3.

cosmz> + sin mz>

(z+1)(z+2)

[Res f(2)).— = lim [z (-D)]

=cosT+sinwt=-1

cos mz> + sin mz>

(z+D)(z+2)

[Res f(2)];- = lim [2~(-2)]

_cos4n+sindn
==
. By Cauchy’s residue theorem.

-1

Jf(Z)dZ = 2mi[-1-1] = — 4mi
c

Example 2.7: Evaluate J-

zsinz
Solution: Poles are given by, denominator = 0
zsinz =0
= z=0 and sinz=0
sinz=0 = z=xnm,n=0,1,2,3, ...

Le., z=0,tm, £ 2m,...

, where Cis| z| = 1 by using residue theorem.
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Here z = 0 is a double pole and others are simple poles.
Of these poles z = 0 lies inside | z | = 1 and others lie outside C.

[Resf(z)]z:o=%;ig5%{(z—0)2- .1 }

) d[ z }
=lim —| —
z-0 dz | sinz

) sinz—zcosz 0
=lim [—2} [— fOI‘IIlj
z—0 sin” z 0

. C0Sz—COSz+zsinz ) , oo
= lim , , using L” Hopital’s Rule
20 2sinz

zsinz
=0

= lim —
z—0 28inz

-.By Cauchy’s residue theorem,
[ 1()dz=2mif0]=0
c

z

. . d: .
Example 2.8: Using Residue theorem evaluate Ifizz)z, where Cis |z|=4.

w(z7+m

Solution: (22 +7%)* =0
= 22 +n? =0, twice

z = +im, twice

Le., z=in, —jx are poles of order 2.
Both lie inside | z | = 4. [m=3.14]
1.. d ) e’
[Res f(2)],2ir =— lim —| (z —im)
S 1! z»in dz (2—1'7'1:)2(2-1—1'71:)2
. d e’
= lim — 5
Z—iT dZ|:(z+iTc) :I
2 N2z 7 .
_ lim (z+im) e —e 42(z+m)
z—in (z+im)

. (z+in)e® =2¢7
_ i 0027
=it (z41iIm)

_2ime™ -2 2e™ [in—1]

(21'75)3 —8ir’
_ (=1 (in—1) —i(in—1)
an’i 4r’
_mti
4r?



1 .
Similarly, [Res f(2)].-_x :4—3(75 —i).
T

By Cauchy’s residue theorem,

[rea:= dix— [+ i+ m—i]=L
C 4 T
2.2.2 Evaluation of Integrals

Certain types of real definite integrals can be evaluated using residue theorem
and properly chosen contours. The contours chosen consist of straight lines
and circular arcs. Before the evaluation of these real integrals, we will see
some Lemmas which will be used in evaluation of these integrals.

Cauchy’s Lemma I
If f(z) is a uniform continuous function such that | (z—a) f(z) | —» 0 as

|z—al| — 0, then If(z)dz—)O where Cis the circle [z—a |=r
C

Cauchy’s Lemma 11
If £ (z) is a uniform continuous function such that | (z—a) f(z) | —» 0 as

|z—a| — oo, then If(z)dz_>0,as R — o, Where Cisthe circle| z—a|=R.
C

Jordan’s Lemma

If £ (2) is a uniform continuous function such that | f(z) | - 0 as |z|—> o, then

J.eimzf(z)dz —0 as R— o, where C is the semi-circle | z | = R above the
c

real axis and m > 0.

Type I: Integration Around the Unit Circle: Integrals of the type
2n

J.F(cos 0,sin0)d0 , where F(cos6,sin0) is a rational function of cos® and
0

sin 6.

In such type of problems, we take the unit circle | z | = 1 as the contour.

Oan‘:l, Z:reie:eie’ cor=1
2
cosezl(e’eJre_’e):l(erlj:Z *l
2 2 z 2z
2
sinezi(ele—e"e)zi(z—ljzz !
2i 2i z 2iz

. dz
d=ie’do=izdo =  dO=—
As ¢ varies from 0 to 2x, z moves once round the unit circle in the anti-

clockwise direction.
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2n 2 2
, IFXmmeﬁhﬂDdB:IF{z 1z 1]95
. 2z 2iz )iz

0 c
where C is the unit circle | z | = 1. The integral on the right side can be
evaluated by using the residue theorem.

2n 2
Example 2.9: Show that | cos20d6 __ 2ma” 2y,
0

1-2acos@+a’> 1-a

2n
Solution: This is of the type j F (cos®, sin0) db.
0

Take the contour C as the unit circle | z | = 1.
On |z| =1, z=¢"

. d:
dz=e".ido = do=2

174

2
cosezl(e’e +e_’e):l(z+lj: Z +1
2 2 z 2z

1/ 5 0y 1 1 41
c0s20 = —(ez’e + e_z’e) = —[22 +—j _Et
2 2 22 222

ZJZI c0s20

1 dao

7 1-2acos0+a’

(24 +1) dz

] 2 >
Coz? {1—26{224_1}4-612}
z

1 Fals| dz

2i C 2|:Z—CIZ2 —a—i—azz} z
z

z

1 Y11
:_.I > 22 5 dz
2i) 2 [z~az" —a+a’z]

1 zt+1
- d
o) P

1

:Eiﬂﬂ&'

1
=5:% 2ni [Sum of the residues at its poles which lie
inside C], using Residue theorem ... (1)

FAES!|
zz(z—a)(l—az).

f(2)=




Dr=0:>22=O; z—a=0; 1-az=0 Residues

= z=0,0;z=aq; Z:l,

a
1 NOTES
z=01is apole of order ‘2’ and z=a, — are poles of order ‘1°.
a
. > 1 ) 1. . o
Sincea“<1,a<1 = —>1, .. |z|=—lies outside the unit circle |z | = 1.
a a
R, = [Res [(2)]., = lim (z~a) / (2)
4
= lim (z - a) 54— *1
z—a z7(z—a)(l—az)
. FAES!| at+1
=lim — =— 3
z2az"(1—az) a (1-a”)
1, d 2
Ry =[Res [(@)]o =1, lim~{(z =07 / (2)]
4
_lim-L| (22 S *l
>0dz z°(z—a)(1-az)
. d 41
=lim —| ————
>0 dz| (z—a)(1-az)
3 .4 2
_lim (z—a)(-az)-4z” - (z"+1)(1-2az+a”)
20 (z—a)*(1-az)
_—(l+d%)
=——
a
Substituting in Equation (1),
4 2 2
I =2 omi[R + Ry = =L —(”2“ I
2i a-(1-a) a (1-a%)
F cos30
Example 2.10: Evaluate j—de using contour integration.
5—4cos0
2n
Solution: It is of the type | F (cos0, sin ) do.
0
Take the unit circle as the contour C.
On ‘ z ‘ = 1, z= eie
: d:
dz=e®id0=zid0 = do="
1z Self - Learning

Material 71



Residues

72

NOTES

Self - Learning
Material

2
cosezl(e’e+e_’e):l(z+lj:Z 1
2 2

z 2z
6
Cos3e:l(esze+e—3ze):l(z3+ij:z +1
2 2 23 223
6
:J- cos30 dB:I _z +1 _ é
%5 —4cosH cr 3|5 4 2241 iz
2z
1 2 +1
25123[52—222—2](12
C
6
S —
2i . z°[2z7 = 52+2]
1 241

=—— dz

2i) 2 2z-1)(z-2)

1
=—5([f(z)dz

1
= —?x2ni [Sum of the residues at its poles which lie inside C] ...

1
Poles are given by 2> =0,2z—1=0andz—-2=0

= z=01s a pole of order 3.

1
z=3 is a pole of order 1.
z=2is apole of order 1.

Out of these poles z = 2 lies outside the unit circle.

R =[Resf(z)]z=l = lirr{ (z—%jf(z)

7~
2 2

. [ 1) 25 +1
=lim|z——
2Q2z-1)(z-2)

(1)



_ 1 | 5
Ry=IRes J(Dzo =l {Z i (22—1)(2—2)}
1. d|Qz=1)(z=2)62> —(z°* +1)+ (4z-5)

=—lim —
2250 dz (2z-1)* (z=2)
:llim !

2:50 2z-1)* (z=2)*

2z-1% (z=2)*[2z-1)(z=2)18z+(2z-1)- 62> +2(z —2)62°
—(Z 4+ 1)4—-(4z-5)62°1-[2z-1)(z - 2)62°
—Z DBz -5][42z-1)(z=2)* +(2z-1)? - 2(z-2)]

:%x %{(1)(4)[0 +0+0-4-0]-5[4(-1)4+ (1)(2)(—2)]}

_ 84 _21
T 2x16 8

Substituting in Equation (1), we get

1. [ 65 21 1] =«
[=——2mi| ——+ = |=—m| —— |=—
2i 24 8 12] 12

Another method to find R,.

Residue at z = a is the coefficient of in the Laurent’s series.
zZ—d

61 (23 +i3j (23 +i3j
f@=mt e :

23(22—1)(2—2) - (2z-1)(z-2) - _(1_22)(_2)(1_Zj

-1
=1( 3+ij(1—2z)—1(1—5j
2 2 2
2
:l( 3+L\J(1+2Z+422+823+...00) +2+5 4. 0
2 3 2 4

y4

2
[23+Zi3j{1+(2+%)z+1-%+(22)(§)+(422)(1)+...oo:l
(23 +%j[l+§z+(l+l+4jz2 +...oo}

2 274
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.2
Example 2.11: Evaluate j%de, using contour integration.
—3cos
. d
NOTES Solution: On |z|=1, 7 =¢©, de:i_z
Z
2 2_ 2 2
cosf="2 +1, sinf =~ 1 . sin29_(z —i)
2z —4z
I_j sin 0 46— (22 -1)? dz
5

1 2_1)?
:+‘-I 2(2 ) .
lC—2z [10z-3z" -3]

2 2
L,
2i7.z7(32" -10z+3]

L (-1’

200 22(3z-1)(z-3)

I
:EJ-f(z)dz
c

1
=% 27i [Sum of the residues at poles which lie inside C] ... (1)

Dr=0= z2=0;3z—1=0andz-3=0
z=0, 01is a pole of order 2

z :% is a simple pole and z = 3 is also a simple pole.

Out of these poles z = 3 lies outside the unit circle |z | = 1.

2 2
R =[Res f(z)] 1=lim(z—1J (- _8
= 1 3) 1 9
30 7oy z .3(2—3)(2—3)

Ry, =[Res f(z)],-0 = 1 limi{z
—0dz

(-1
1! z

2(Bz-1)(z-3)

~lim - {—(22 -’ }
=0dz | B3z-1)(z-3)
. (322 =10z +3)-2(z* -1)- 222 = (2% —=1)*(6z-10)
=lim
250 Bz-1)*(z-3)
_0-()(-10) _10

9 9
Substituting in Equation (1)

Self - Learning
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9 9
27 4o
Example 2.12: Evaluate J—2, 0<a<l.
1-2asin®+a

0

2n
Solution: This is of the form J F (cos6, sin0)do.
0

. . . dz
Onthecircle |z|=1, z=¢®, dz=¢"ido = dO=—
1z
2
sinezi(ele—e"e)zi(z—ljzz !
2i 2i z 2iz
;T do ~ 1 dz
_jl—Zasin6+a2_I (2 -1) 2?
0 C1—2GT+G
1z

- 1 dz
cl-L2 e
1z

1
:_[ 2 5o dz
Ciz—az +a+ia‘z
=I ! dz

i(l—i—a2)z—az2 +a

1
=—j R 5 dz
vaz'—i(l+a”)z—a

- (az—i)(z—ia)

=-2ni. [Sum of the Residues at its poles which lie inside C] ...

Dr=0—= az—i=0;z—ia=0

. 1
Sincea<1, —>1.
a

z =é lies outside the unit circle | z | = 1.
z = ia is a simple pole.

1

[Res f(&N:mia = fin i) o ey

(1)
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i —i i(a*—1)

Substituting in Equation (1),

NOTES | o
I =-2mi
[z(a —1)}

1-a

2

2n )
sin” 0 2n /
Example 2.13: Show that J.—de 2 [ a’ - b’ }, (a>b>0).
0 a+bcosO b

Solution: It is of the form j F (cos®, sin0) db.

Take unit circle | z | =1 as the contour C.
On ‘Z‘ = 1’ Z=ei9.
de=e® id0=izd0 = 0=

174

z 2z

2
cosf :l(e"e +e_ie) :l[z+lj _Zz +1
2 2
sin? Gzﬂ:Real part of l[1—‘9"26]
2 2

= Real part of l(1— Zz)

I J- sin” O
a+bcos€

2

= Real part ofj (l_zz) é

¢ 2{a+b{z +1]:l ”
2z

1 12
= Real part of —.J %-dz
L, 2az+bz" +b

(1-2%)
— iz
bz +2az+b

1
= Real part of ;,[
C

= Real part of %'2751‘ [Sum of the residues at its poles which
lie inside C]
= Real part of 2z [Sum of the residues at its poles which
lie inside C] .. (1)
Poles are given by Dr = 0.
b2 +2az+b =0

_ —2aix/4a2 —4p? _ —ai\/az —b?
- 2b - b

Self - Learning
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2
andﬁz%

o e e
=bi2{(—a)2 —(\/ﬁﬂ =i[a2 (@ -]

2
of=1

Since 0 <bh<a, |B|>1.

2 2 2
Let oo —dtNa —b" V;f—b

. B lies outside the unit circle |z | = 1.

Also z=a is a simple pole which lies inside | z | = 1.

2
Now bz* + 2az + b= b(zz +7a2+1j=b(z—0t) (z=B).

2
[Res /()] = lim (z—a)- b(z (—1 oc)z(z)— )
_ 1—0(2 _ 1—0(2 ..
e b(a l) S af=1
o

_ (1—0(2)(1 _a_ a—\/a2 -b?

Cb(et-1) b b
Substituting in Equation (1)

2 2
—a? - 2
I =Real part of 2n[%}:b—g[a—\/az —bz}

T

Example 2.14: Evaluate j

where a > | b |.
0

a+bcosO

2a a
Solution: Since [ /(x)dr=2[f (x)dx iff(2a—x)=f (),
0 0

ZI“ do _2T do
5 a+bcosO 5 a+bcosO V)

Take unit circle as the contour C.

. d 2
On |z|=1, z=¢ d0=", cosf=2 d
’ iz 2z
2n

[:J- do J' 1 dz

1
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| —

a— Q=

2z
2az+bz> +b

1
bz* +2az+b

dz

~

dz

~ |

~ |

-2ni- [Sum of the residues at its poles which lie inside C]

=4n [Sum of the residues at its poles which lie inside C] ...(1)
Dr=0 = bz*+2az+b=0

—a++a* -b?
zZz=-——
b
2 2 2 2
Let o= _9tVa —b" VZ’_bandB=$.

af=1
Sincea>|b|, |B|>1.

. z= P lies out side the unit circle | z | = 1.

Also z=a is a simple pole which lies inside | z | = 1.
2
Now bz? +2az+ b= b(z2 +7az+lj =b(z-a)(z—-PB)

1

[Res f(2)]:q = lim (z—00)- 3o

1 1
N e e
1

2Va? - b?

Substituting in Equation (1),

[=4n N
B T _\/az_bz - (2)
From Equation (1) and Equation (2)

do 21

2 = .
a+bcosO a® —b?

O 3

Tde T

, @ +bcosd \/a2 —b?

[ PW
Type : II: Integration of the form I%dx where P (x), O (x) are

polynomials and degree of O (x) > (degree of P (x) + 1).



o 2
Example 2.15: Evaluate J X dx

—00

, using contour integration,
(x* +a*) (x> +b7)

where 0 < b <a.

0

Solution: This is of the type J

e

and deg Q (x) > [deg P(x) + 1].

P(X; dx, where P(x) and Q (x) are polynomials

ZZ

(22 +a*) (22 +b%)

Consider J.
c

segment of the real axis from — R to R and the semicircle C, above the real
axis having the radius as R.

dz, where C is the contour consisting of the

R
j (2)dz = j f(z)dz+j f(2)dz
C -R

G

f(2)=

(z* +a*) (22 +b%)

Poles are given by (z* + %) (22 + b*) =0

= z == ia, z == ib, which are simple poles.

Of these poles z = ia and z = ib lie inside C, and z = — ia and z = —ib lie
outside C.
[- z=—1ia,—ib lie below the real axis].

2
z

(z—ia) (z +ia) (z* + b*)

R =[Res f(2)],, = lim (z—ia)

2
—a a

" dia(—d®+ b)) 2i(a* —b?)

2
z

(22 +a*) (z—ib) (z +ib)

Ry =[Res /(). -y = lim (=~ ib)

~ -b* b
C(=b*+d®)2ib  2i(a* -b?)

By Cauchy’s residue theorem,

2

z
dz=27i(R,+R,)
£(22+a2)(22+b2) b

; a 3 b
2i(a® -b%) 2i(d® -b?)

=2n
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n(a—>b)
(a® =b?)

T
a+b

22 T

R
dx dz = .
IR(x ta )(x +5%) +£(22+a2)(22+b2) " a+h

L ()

[ -+ on the real axis, z = x and so dz = dx]

3
z

(Z2+d*) (22 +b%)

1
Since z f(2)= =0(—j—>0 as|z|= R— .
z

-.By Cauchy’s lemma, jf (z)dz—>0 as R — . ..(2)
G

Using Equation (2) in Equation (1) and letting R — oo, we get

jf(z)dz—]o < dr=—"

: Y P +d) (B a+b
Example 2.16: Show that J'—X“dex EL
X +10x%2 +9 12

2
Solution: Consider J‘ﬁd z, where C'is the contour shown in Figure.
Y 4102% +9

jf(z)dz_ j F(2)dz + j f(2)dz

C1
-R 9 T R «x
. .. 22—z+2 .
The singularities of f(z) =—————— are given by,
z +10z" +a
+102+9=0

@E+DEE +9) =0
z == i, £ 3i, which are simple poles.
The poles z = i and 3i lie inside C and z = — i and — 3i lie outside C.

2 j j
R i ~ z"—z+2 _ 1-i :l_l
[Res f(2)],_ lin(z i) (z+i)(z—)(22+9) ()8 l6i

22 —z+42 73 7430

(22 41) (z=3i)(z+3) (-8)(6)) 48

[Res / (2)).3; = lim (2= 30)



By residue theorem, Residues

[ 1@ :zm[ﬁ+ 7+3’}—5—“
c

16i 48 | 12

R NOTES

But [r@d= [ redc+| f(2)dz (1)
c R C
22242z 1
zf(z)=4—:0(—J—>0 as |z|=R—wo

z ' +10z+9 z

. By Cauchy’s lemma, jf(Z)dZ—>0 as |z|=R—>x .. (2)
G

Letting R — oo and using Equation (2) in Equation (1), we get

J.f (2)dz = T £ (x)dx, [-+ On the real axis z = x]
C —0

oo

P —x+2 5w
B e e it
S (xT+10x7+9) 12
Example 2.17: Use contour integration to prove that,
]3 LA here a > 0
= » where .
7 4 2\2a a

x+a

2

z . . .
4z, where Cis the contour shown in Figure.
z +a

Solution: Consider I
C

R
[r)dz= [ r@)dz+] f2)ez
c -R

G

2
z

f@)=—7—

z +a

Poles are given by z* + a* = 0
S Y LI L
2= Cmhnl4 o wheren=0,1,2,3
i‘e.’ = aein/4’ z :aei3n/4
poles.

=ae™™* z=ae'’™*, all of which are simple

b b

The poles 7 =g¢'™* and 7 =g4¢7"* lie inside C and _
Self - Learning
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z=ae”™*and z =ae'’™* lie outside C.

[ S5n/4 and 7n/4 are > n]

2
NOTES [Res /()] a = lim [z—}

i 3
z—>aem/4 4z

[If f(2) =% then [Res f(2)],_, = P(a)}

0'(a)

= lim (ij:_l :Le—in/4
Z*)aeinM 4z 4aein/4 4a

1 1(1 1
=—1/cosn/4—isinn/4|=—| —=—i—
ia! al )
1
4\ 2a

-1

2
Similarly R, [Res f(2)]__ i34 = 11%”4[42?J
z—ae

b 1 iswa
Brid g
4ae a

:L[cos3n/4—isin3n/4]

da

1 .
=—/[cos(n—n/4)—isin(n—n/4)]

4a

1 .
=—/[—cosn/4—isinm/4]

da

=_—](1+i)

4a 2
-.By Cauchy’s Residue theorem,

2
z .
£Z4+a4dz:2m[Rl+R2]
i [l—i—1—]
4a\/§
-
a2
R
Jf(z)dz: jf(x)dﬁjf(z)dz (1)
c -R c
[-+ On the real axis z = x]
3
|zf(2)|= 4Z 7 =0(lj—>0 as R — oo
z +a z

Self - Learning
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By Cauchy’s lemma, J. f(z)dz=0. ..(2)
G
Letting R —» « and using Equation (2) in Equation (1), we get
B NOTES
T
z)dz = xX)dx=——=
if( ) _£f( dv=—
© 2
X T
Le., dx =
- *+at a2
ie ZT x? dy=—"
2 x4 at a2
© 2
x T
= dx =
'([ x*+4 2a\/§
Example 2.18: Evaluate j < dx, using contour integration, where a> 0.
X —da

4

Soluiton: Consider I%dz.
C zZ —da

Poles are given by 20 — a® =0

Zézgé zl-aézelznn-aé’ n:O, 1,2,...

2nm

z=e % -aq, n=0,1,2,3,4,5.

: ; 2n/3 ; ;
Le., z=a, aem/3’ ae , aelﬂ, aet4n/3, aezSn/Ts‘

All are simple poles.
= ge™’3 and ,,/27/3 lie inside c.
z=a,ae™ =—alie on the x-axis.
z=ae™™3 and ,,57/3 lie outside C.

For the evaluation of this type of integrals, no singularity of /(z) should lie
on the real axis. To avoid them, we modify C by introducing small semicircles
of small radius at z = + g, as shown in Figure.
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Now the modified contour C contains only the simple poles z = g¢™*'3 and

i2n/3
=aqae .

i 5
z—>azem/3 6z

4
RI:[ReSf(Z)]z:aem/a = lim {Z—}

I 1 s

6aein/3 6a

:%[cosn/3—isinn/3]=L{l—i£}
a

6a

1 1 oi27/3

Similarly R, =[Res f(2)]___i2w/3 T 6ad?™®  6a

1] 2n 275}

=—/| cosS— —isin—
3 3

1 T . T
=—/| cos| t—— |—isin| T——
6a| 3 3

Cz6—a6 S 6al2 2 2 2 a3
—a-r| 4 - 4 4
X
ie., j — 6dx+j Zdzt j — 6dx+j e
-R X a SZ a —a+r1 SZZ a
R 4 4
x z T
+ dx + dx = (1
aJﬁx6_a6 £24_a6 5 ()

where | and r, are the radii of the semicircles S| and S, whose equations are
|z+a|=r and|z—a|=r,. These two circles taken along S, and S, vanish

as 5 >0 and r, — 0.

4
Also J. 62 = =0as Roo, by Cauchy’s lemma.

ClZ —a

Now, letting -0, , >0 as R — o In Equation (1), we get

—-a a © 4
J.+I+J. i dx = T
6 6 :
el L X —a a\/g
o0
J‘ x4 d T
X = .
1.e
? _oox6—a6 a\/g



Type 111: Residues

T cosax —ab
Example 2.19: Evaluate |————
p ,([ (2 + %)
b>0. NOTES
Solution: Consider J.ze—b22dz, where C is the contour shown in Figure.
c

:i[1+ab]e , where @ > 0 and
4p°

The poles of f(2) :m are given by (22 + b2)2 =0

z == ib, twice.
-, z==ib are poles of order 2.

z=1ib lies inside C and z = — ib lies outside C.

1 i (Z—lb)
[Res f(2)], - = 1- %bdz{(z—lb) 2(z+ib)? :I

] d eiaz
= lim — 5
z—>ibdZ|:(z+ib) }

i {(z—i—lb) el _ gl 2(z+ib):|

z—ib (z+ lb)
~ im (z+ib)iae 3— 2e
z—ib (z+ib)

_ 2ib-iae™™ —2¢™
(2ib)*

_(ab+1)e™®
4ib’
By Cauchy’s residue theorem,

iaz

e . 1 —ab
————dz=2mix (ab+1)e
I 4ib?

L +bP)
R iaz
i ————dz=——(ab+1)e”
1 < 1
NOW, (22 + b2 )2 - (R2 _b2 )2

Since the RHS — O0as R >, LHS also - 0as R >0 On|z|=R
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By Jordan’s lemma,

eiaz
—————dz—>0as Rswon|z|=R . (2
&[1(22+b2)2 ®© ‘ ‘ ( )

Letting R —» « in Equation (1) and using Equation (2), we get

© eiax
————dx=——(ab+1)e” ab
_{O (x* +b%)? 2b3

Equating real and imaginary parts on both sides, we get

T cosax ab
j ™ 2b3 T (ab+l)e
T cosax ab
j iy 2b3 _(ab+T)e”
0
[ -+ The integrand is an even function]
T coS ax
N j > (ab+ 1)e 4
7 (x +b7)
cos X . . .
Example 2.20: Evaluate j dx, using contour integration,

(X +d’) (xF +b7)
where a > b > 0.

iz
e

Solution: Consider I dz, where C is the contour shown in

C(22 +az)(z2 +b2)

Figure.

The poles of f(z) are given by z* + a*> = 0
and 22+ b> =0

.., z ==+ ia, + ib, which are simple poles.

Of these poles z = ia, and z = ib lie inside C.

elZ e—a

(z—ia) (z +ia) (22 +b?) B 2ia(b* —a°)

R =[Res f(2)], _;, = lim =(z—ia)-

eiz e—b

(22 +a®)(z—ib) (z+ib)  2ib(~b* +a%)

Ry =[Res /(). -5 = lim (z = ib)-

By Cauchy’s residue theorem,



,[ 2 26122 s dz=2mi 6_2“ PN e;b 2
v (z7+a’)(z7+b7) —2ia(a” —b") 2ib(a”—-b")

o et e
C@-)| b a

F iz b —a
d ¢ PR

J;Q()c +a )(x +b%) x+c'[l(22+a2)(22+b2) - (az—bz)l: b a (1)

Now ! < !
2 +ad®) 22+ | (RP-a>)(R*-b?)
RHS —0as r— «. Hence
1 p—

lim >—|=0 on|z|=R
R-w| (22 +a%) (2> +b%)
-.By Jordan’s lemma, J. ¢ dz—>0 as R - . . (2)

b (2 +a) (2 +0%)
Letting R —» « in Equation (1), and using Equation (2), we get

e

T dx = T i -
Oo(xz-i—a)(x +5%) @-v*)| b a

Equating real and imaginary parts, we get

T COS X = T i_e_”
Yo ra) (b (@®>-b>)| b a

Example 2.21: Evaluate J. zsm); dx, by contour integration.
X" +a
0

iz
Solution: Consider I 226 5—dz, where C is the contour shown in Figure.

CZ+CI

The poles are given by 2> + a*> =0
= z == ia. Both are simple poles.

z=ia lies inside C and z = — ia lies outside C.
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ze"” iae”® ¢

(z+ia)’* (z—ia)  2ia 2

[Res f(2)];— o = lim (z —ia)

By Cauchy’s residue theorem,

—a

iz
J zze 5 dz = Zni[ez ] =rie ¢

CZ +a

R ix iz
. xe ze .-
Le., J‘ > dx+j dz = mie™
-R

¥ +a 22 +d?
G

z < R

R*-a°

Now

22 +d?

Since the limit of the RHS is zero asp — «

lim =0on|z|=R
R—x©

z +a2

iz
Z
———dz—0 as R — .
2 2
z +a

~.By Jordan’s lemma, J.
G

Letting R —» « in Equation (1) and using Equation (2), we get

. .
xe™ oy
5 dx =ine
x“+a
—00

— 7 —a
5 5 dx =ime

o0 . o
. x(cosx+isinx)
Le., J—
X" +a

—00

Equating the imaginary parts on both sides,

xsin x _
we get J 5 zdxzne a
S X ta

- (1)

5 J‘ MY k=me® [~ The integrand is an even function of x]

2 2
0 X +a
xsin x T _
= J > 2dx——ea
X +a 2



2.3 BRANCHES OF MANY VALUED

FUNCTIONS
Let n be an integer, then, e+277 = e, ... (2.1
If we write,
(et+2na ) 1s2nii = o, ... (2.2)
And, (e2nm ) 42nti = g \tdnai-4n’z’= ¢ @ -4n'x’, ...(2.3)
It follows that, e 4r°~* = 1. ...(24

There also exist a number of paradoxes involving square roots. For
example,

1= J1=J=D() = y1Jo1=ii=-1 . (2.5)

1/-1=-1/1
/21 = 421N ... (2.6)
1i=iNn

P?=1

Let us look at some properties of elementary transcendental functions.

For, z = x + iy, the complex exponential function is defined by, e = ¢*
(cos y + i sin y). It satisfies the property e“™ = ¢*¢*, but does it satisfy the

property (&) = ¢®? For answering this, we use the complex logarithm
function. We define the principal argument by, z = |z| ¢t and Arg (2)

€ (-r,7]. We do not define the principal argument of 0. Assume that z is

different from 0. We have defined the principle argument on the negative
axis also, but notice that it is not continuous there.

We then define the principal logarithm Log (z) by Log (z) = Log |z| +
i Arg (z), where log |z| denotes the usual real logarithm of |z]. We have e '°¢@
=z but not Log (¢°) = z. For the reason, following terminology is introduced:

Definition 1: Define the imaginary remainder Imr (z) and the imaginary
quotient Imgq (z) by,

Imr (z) = Imr (z) + 2 7 Imq (z), where Imr (z)e (-z,7z] and Imq (z)
e’

Here,
Imq (z) =T'(Img (z) +7)/2x |, where I" 1is the ceiling function.
Now, prove the following.

Theorem 2.2: We have, Log (¢?) = Re (z) + i Imr (z) or Log (¢°) = z, if and
only if Im (2) e (—x,x].
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Proof: We have,
Log (¢) =Log | & | +iArg(e’) =x + i Arg (e™@ = x + i Arg (¢"™ @+ 2 7 Imq
()
=x +iArg (e™©@)=x+iImr (2).

To find whether the complex logarithm satisfies the property,

Log (zw) = Log (z) + Log (w).

We define,

Arg (zw) = Arg (z) + Arg (w) + d2 1, where dis 0 or + 1.

Definition 1: Define the principal product excess (ppe), ppe (u, v) of
two complex numbers by,

ppe (2, W) = (Arg (2w) — Arg (2) — Arg (W))/ (2 7).
Definition 2: Define the complex sign (csgn), csgn (z) of a complex
number by,
1, if Re(z)>0or (Re(z)=0and Im(z) > 0)
Csgn(z)=40,if z=0
-1,if Re(z)<0or (Re(z)=0and Im(z) <0).
The right (left) half-plane is the set of points where csgn (z) is positive
(negative).
Lemma
1. ppe (z, w) is always O or + 1.
2. If either z or w is positive, then ppe (z, w) = 0.
3. If both z and w lie in the right half-plane, then ppe (z, w) = 0.
4. If both z and w lie in the left half-plane, then ppe (z, w) % 0.
5. ppe (z, w) = 0 if and only if z lies in the right half-plane.
Theorem 2.3: We have, Log (zw) = Log (z) + Log (w) + 2 wippe (z, w).

In particular, Log (z*) = 2 Log (z), if and only if z lies in the right half-
plane.

Proof: Log (zw) = log |zw| + i Arg (zw)
= log |z| + log [w| + i (Arg (2) TArg (w) + 2 z ippe (z, w))
=Log (z) + Log (w) + 2 rippe (z, w)

Theorem 2.4: We have,

- Arg(z),if zis not negative

Arg (1/2) = {— Arg(z)+2,if zis negative

Hence,



-Log(z),if zis not negative
Log (1/2) = Cap .
-Log(z)+2i,if zisnegative
Proof
We have, 1/z = 2/\2\2, but Arg (z) = —Arg z, unless z is negative, in
which case both Arg (z) and Arg (1/z) are equal to .
We will now define the complex power and exponential functions.

Definition: We define the complex power and exponential functions
by,

z¢ =@ and o = e+ fora ze.

Now, we will check whether (¢°)” equals . Here, (¢°)" involves the
exponential function with base ¢*and not just e. So, while ¢"is a single-
valued function, we need to choose a branch in order to make (¢°)" single
valued.

Theorem 2.5: (¢7)¥ = ¢ g2 T Ima©).
Proof

(ez)w — eLog (ez)w

— e(Re (z) +ilmr (z))w
— e(zfi2 7T Imq (2))w
=W efwiZ 7T Imq (2)
Using Theorem 2.5, we can easily resolve Clausen’s paradox.

In Equation (2.3) we said that,

(e 1+2nm ) 14+2nm = e 1+4nizi—4n2;1—2_

Replace this by,

(e 1+2n7 ) W+2n7i = @ l+4nri-4n* z* e~ (142n 7T )2 77 Imq (14 2n 7T i)
. 2 . - .
:el 4 n 72'26 (142n 7T )2 7T in

2
= 61*4"2 ” 62”7ﬂ+4”2”2

= e’
This agrees with the Equation (2.2).
We can also prove the following corollary.

Corollary: (¢)"*= (-1)™1©e” or (¢9)'? = ¢?, if and only if Im (z) e
((4n-1) z,(4n+1) zl,ne Z.

Theorem 2.6: (&) = a*e? 7T tmaGLog(@),
Theorem 2.7: (zw)® = zwre® 70 tppe (W)

Proof
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— ea(Log (z) + Log (w) + 2 7T ippe (z, w))
— ZaM/aeaZ JT ippe (z, w).

Theorem 2.8: /7y = (—1) P> WAz VW or Jo2 ~csen (2)z
So,

NOTES

7> =z, if and only if z lies in the right half-plane.
Theorem 2.9: We have,

1/~z , if z is not negative
lz= —1/~z, ifzis negative

In particular, if z is real, then,

17z =sgn(2)/ |z,
Proof
If z is negative, we have,
1/ 2= elog (112)2
= o Log@+27T 2

- efLog (2)2

=1/

Hence, the two square root paradoxes are resolved.

Check Your Progress

. What is a residue?
. State Cauchy's residue theorem.

. State Jordan's lemma.

AW N~

. List some paradoxes involving square roots.

2.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Ifz=ais an isolated singular point of f{z), we can find the Laurent’s
series of f(z) about z = a.

0 bn

o (z—a)"

ie., f@)=Y a,(z—a)"+
n=0

1

The coefficient b1 of

in the Laurent’s series of f'(z), is called
the residue of f'(z) at ZZ= cg)
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2. Iff(z) is analytic at all points inside and on a simple closed curve C,
except for a finite number of isolated singularities a,, a,, ..., a,
mmside C, then

If(z)dz =2ni [Sum of the residues of /(2) at a,, a,, ...,a,]
C
=2ni[Rj+ Ry +...+ R, ]
3. Iff(z) is a uniform continuous function such that | f(z) | - Oas |z |> o,
then |€"“f(z)dz—0 as R— oo, where C is the semi-circle | z | = R
C
above the real axis and m > 0.
4. Following are some paradoxes which includes the square roots:
L= 1= (D)= J=1 Jo1=ii=-1
1/-1=-1/1
1/ /-1 =4-1/1
1/i=i/1
P?=1
2.5 SUMMARY

If z = a is an isolated singular point of f(z), we can find the Laurent’s
series of f(z) about z = a.

0 bn

o (z—a)"

ie., f@)=Y a,(z—a)" +
n=0

The coefficient b, of !

the residue of f/'(z) at ZZ= cf

Ifz=ais a pole of order ‘m’, then

in the Laurent’s series of f'(z), is called

1 . am! m
[Res f():=a =y Jim {W[(z—m / (z)]}

The residue at an essential singularity of /' (z) is found out using the
Laurent’s expansion of f'(z) directly.

We enclose the singularities a,, a,, ..., a, by small non-intersecting
circlés C,, G, oo Cn with centres at a, a,, ..., a, and raidii r|, 7, ,...,
r, lying wholly inside C.

If /(2) is a uniform continuous function such that | (z—a) f(z) | - 0

as|z—al| — 0, then If(z)dz—)O where Cis the circle [z—a |=r
C

If £ () is a uniform continuous function such that | (z—a) f(z) | - 0
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as|z—al| — oo, then If(z)dz—)o, as R — o, where C is the circle
C
|z—a|=R.
e [ff(z) is a uniform continuous function such that | f(z) | - 0 as

imz

|z|> o, then |€"" f(2)dz—>0 as R — o, where C is the semi-circle
C
| z | = R above the real axis and m > 0.
e We define the complex power and exponential functions by,

z¢=¢ee@ and o = e+ @ fora 2 e.

2.6 KEY TERMS

e Residues: Ifz = a is an isolated singular point of f{z), we can find the
Laurent’s series of f(z) about z = a.

0 bn

o (z—a)”

ie., f@=> a,(z-a)"+
n=0

The coefficient b1 of !

the residue of /'(z) at ZZ:_CZ

e Jordan’s Lemma: Iff(z) is a uniform continuous function such that |

in the Laurent’s series of f'(z), is called

f@|— 0as|z|>o,then J.eimzf(z)afz—>0 as R — o, where Cis the
c

semi-circle | z | = R above the real axis and m > 0.

e Complex Power: We define the complex power and exponential
functions by, z¢ = €t @ and o* = e"¢ @ for a ze.

2.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. Write the various formulae for the evaluation of the residue.
2. Find the nature and location of signification of the function e'.
3. State the Cauchy’s lemma for the evaluation of integral.
4. Define the term complex power.
Long-Answer Questions
1. Classify the nature of singularities of the following functions. Find
also the residue at each point.

z+2 1

D) (i) f(2)=—— .

(1) f(2)= (2 +1)2



_ 22 . _ 22 +4
(i) /(=)= (z-1)* (z+2)° () f2)= 24224 +2z
2 2
WO ra )@=

2 +a

. Find the residue at the essential singularity of each of the following

functions using Laurent’s expansion:

PNETE N
(1) e’". (i) ——.
z
..., COSZ . l—coshz
(1) . av) ——
z z

. Find the residues at the isolated singularities of each of the following

functions:

] B B ze
(i) cotz (at z=0). (i1) _(Z e

z? ( ) 1
1v
4 +16

(iif)

2 +a?

. Evaluate the following integrals using Cauchy’s residue theorem:

() [-=—22"1d:, where C's the circle | z | =2
Cz(z—i—l) (z=3)
z°4+2z+5

(ii) [5-—2—de, where Cis |z + 1 +i]=2.
C

® g, where C is the unit circle |z|=1.

(iii) j

cos Tz

2
. 2z-2 . .. .
(iv) j“—idz, where C is a closed curve containing the point
-
C

z =4 1in its interior.

. Evaluate the following integrals by contour integration technique:

2n
cos 20 2n
i .[ 5+4cos@de. (i) J‘#de (@>0).
0 o a° +sin 0
2n 2n
(iii)jL,pwo. (iv) IL,a>b>o.
: a+bcosO a+bsin0O
2n 2n
) j _ 49 4>, (vi) j _add >y
o 1+acos0 a? +sin? 0
0
2n T
(vii) j a9 (viii) 2] cos” 38
\% . \% —_—
0 2+cos0 0 5—4cos20
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cosO T dx
(ix) J. 13— 12c0526 ’ (x) 0 1+x*
) [ ; Tﬂ
(xi) ) (1+x2)? (xii) J 1) > a>0.
2 @ 2

(x111)_[ 2 a7 (2 +9) (xiv) 2[ (x +1)3‘dx.

6. Discuss the branches of many valued functions.
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TRANSFORMATIONS
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3.0 INTRODUCTION

In mathematics, bilinear transform (also known as Tustin’s method) is used
in digital signal processing and discrete-time control theory to transform

continuous-time system representations to discrete-time and vice versa.

A conformal map is a function that locally preserves angles, but not
necessarily lengths. Let U and V be open subset of R”. A function f/: U— V'is
called conformal (or angle-preserving) at a point u, € U if it preserves angles
between directed curves through u, as well as preserving orientation.
Conformal maps preserve both angles and the shapes of infinitesimally small
figures, but not necessarily their size or curvature. Let z=x+ iy and w=u + iv,
then the point z in the z-plan or xy-plane correspond to the points w in the
w-plane or uv plane. The corresponding points of the two plans are called
images of each other. The correspondence between z-point and w-point is
required to be one-one. Hence under suitable conditions the mapping w =
f(z) maps a region R of the z- plane to a region R of w-plane and a curve C of

the z- plane is mapped to a curve g of the w-plane.

In this unit, you will learn about the bilinear transformation, conformal

mappings, spaces of analytic functions and Riemann mapping theorem.

Bilinear Transformations
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3.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain bilinear transformation

e Define conformal mapping
e Describe the spaces of analytic function
e State Montel’s theorem and Hurwitz’s theorem

e Elaborate on Riemann mapping theorem and Weirstrass’
factorization theorem

3.2 BILINEAR TRANSFORMATIONS

The transformation of the form

az+b

w= ..(3.1)

cz+d

where z,w are complex variables, a, b, ¢, d are complex constants and
ad — bc # 0 1s called a bilinear transformation.

Equation (3.1) can be written as

cwz+dw—az—b=0
which is linear in w and as well as in z; that is why the relation in Equation
(3.1) is called a bilinear transformation. It is also sometimes called as linear

transformation. Bilinear transformation is known as Mobius transformation
after the name of A.F. Mobius (August Ferdinand Mobius) (1790 — 1868).

From Equation (3.1), we get

ﬁ.z—i-b/a
c z+d/c

w =

(3.2)

We see that if b/a = d/c, i.e., if ad — bc = 0, then we get the same values
of w for the different value of z and if ad — bc # 0, then we get the different
values of w for different values of z.

.. ad — bc 1s called the determinant of the transformation.

b
. _dw-b _ a ",
From Equation (3.1), we get z= “ovia e a ..(3.3)

Ww——
[

From Equation (3.2), every point of the z-plane is mapped into a unique
point in the w-plane except z = — d/c.

From Equation (3.3), every point of the w-plane is mapped into a
unique point in the z-plane except w = a/c.

. 3z+5. . .
For example, the transformation w = S sa bilinear transformation

z+
because (3.4—-5.4)=12-5=7=0.

Theorem 3.1: Every bilinear transformation is the resultant of three basic
bilinear transformations.



Proof: Let the bilinear transformation be, Bilinear Transformations

w= Erh (3.4)

cz+d

where ad — bc # 0 and ¢ # 0. NOTES

b b

Z+— z+—

or w=2 =—+
c d

|

|
+

|

This transformation is the resultant of the three transformations,

_ d 1 _ bc—ad
Zl_Z+—’ ZZ__’Z3_ 5 22
c 21 c
a
c 3

. . d .
which can be effected in the same way as z, = — + z is effected. The above
C

three auxiliary transformations are of the form,

1
w=z+to,w=—,w=0z
z

which are bilinear transformations.

Hence the given bilinear transformation is the resultant of bilinear
transformations of the form,

1
w=z+tao, w=pBz, w=—
z

Basic Transformations
Translation: The transformation w =z + o is called translation, where

o=a-+ib.
w=u+tiv=(x+iy)t+(a+tib)y=x+a)+i(y+b)

u=x+a, v=y+b

Therefore, the point P(x, y) in the z-plane is mapped onto the point

P'(x+ a, y + b) in the w-plane. Similarly, other points of z-plane are mapped ~ 5¢/- Learning
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Bilinear Transformations onto the w-plane. Thus if the w-plane is superposed on the z-plane, the figure
of w-plane is shifted through a vector a.

Y
NOTES
D C
A B
e) X
z-plane
v
D/ c’
A’ B’
D| _____________ : C
Yroeeeeeeeip
0) u
w-plane
Magnification and Rotation
The transformation w = Pz is called magnification and rotation where w, 3,
z are complex numbers.
Let w=Re*, B = ae™, z=re®
Then we get from w = f3z,
Rei(]) — (aei(l) (,,.eie) — (a’,.) ei(9+(7.)
R=ar and $=0+a
This shows that the transformation w = Bz corresponds to a rotation
together with magnification.
y
D C
A B
o) X
z-plane
DI
v
A!
CI
DI _____________ ‘C B!
A _ip
Self - Learning o u
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Inversion
The transformation w = é is called inversion.
Let z=re"and w= Re®. Then, we get
Re = L = le_"e

re’® r

R=1ando=-0
r
Therefore the point P(r, 0) in the z-plane is mapped onto the point
P (l - ej in the w-plane.
r

Hence, the transformation is an inversion of z and followed by
reflection into the real axis. The points inside the unit circle (| z| = 1) map
onto the points outside it, and points outside the unit circle into points inside
it.

P(r, 0)
X, U
P(1/r, 0)
Theorem 3.2: The bilinear transformation,
az+b
cz+d
z— 2z w—w

= A into a similar circle arg
Z— 2 w—=Ww,

Constant where w,, w, correspond to z , z, respectively.

transforms the circle arg

az+b
cz+d

Proof: Here w=

Since w,, w, correspond to z, z, respectively, then

az; +b az, +b

w, = o+ d ande—

CZy +d

az+b az+b

w—w, cz+d cz+d _ czy+d z-z
w—w, az+b _az+b cz1+d z—1zy
cz+d czp+d

_ +d
=B <=L where p= Card

zZ—1z, cz1+d

arg [—::_::' ] =arg [Bj_j ]
- " — 42

Bilinear Transformations
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=arg 3 +arg [—Z_Z' ]

zZ—Zy

=argB+A
arg [ il ] =k
w—=Ww
where £ is real which is a circle in a w-plane passing through two fixed
points w,, w, which are the images of z , z,.

Cross-Ratio

Letz, z,, z,, z, be the four points taken in order, then the ratio

(z1 —2p) (53 — 24)

(22 = 23) (24 — 71)
is called the cross-ratio of z, z,, z,, z, which is denoted by (z, z,, z,, z,).
Theorem 3.3: Every bilinear transformation preserves the cross-ratio.

b
Proof: Let w= i

N be a bilinear transformation where w,, w,, w,, w, are
(74

the images of z , z,, z,, z, respectively, then we shall prove that the cross-ratio

of w,, w,, w,, w, is equal to the cross ratio of z, z,, z,, z,, i.e.,

(W17 W27 W37 W4) = (21’ 227 Z37 Z4)
Since w, w,, w,, w, are the images of z , z,, z,, z, respectively, then
az; +b az, +b azy +b

w, = W, = s Wy =
czy+d czy +d czz +d

and w, =ath
CZy +d
_az+b az+b _ (ad—be)(z - z)
CZl+d CZy +d (CZ] +d) (CZZ +d)
_ (ad = bc) (z; — z3)
(czg +d)(czz +d)
_ (ad = bc) (z3 — z4)
(cz3 +d) (czy +d)
and W, —w, = Ead—bc)(zjél—z])
CZy + (]) (CZ] + d)
From Equations (3.5), (3.6), (3.7) and (3.8), we get
B (W —wy) (w3 —wy) _ (21 = 29) (23 — 24)
(), Wy, Wy, W) = (W —w3) (wy —wy) (21— 23) (24 — 7))

or(w,, w,, w,, w)= (2, 2,, 2y, Z,).

(3.5

Similarly, w, — w,

.(3.6)

W, =W,

(3.7

(3.8

Example 3.1: Find the bilinear transformation which transforms the points

z,, Z,, Z, of the z-plane respectively into the points w,, w,, w, of the w-plane.

az+b

Solution: Let w = be a bilinear transformation.

cz +

Since w, w,, w,, are the image of z , z,, z,, respectively, then,



az; +b az, +b azy +b
w, = , W, = and w,= ——
CZl+d CZ2 +d CZ3 +d

_ az—i—b_az]—i-b _ (ad =bc) (z-z7)

cz+d cz+d (cz+d) (czy +d)

.. _ (ad —bec) (z; — zy)

Similarl —-w, = .2
ALY, W, = (cz + d) (¢zy + d) @)

_ (ad = bc) (z; — z3)

- (1)

T T v d) ez + d) (3)
and W, —w= PO E ) (4

(cz3 +d) (cz+d)

From Equations (1), (2), (3) and (4) we get

(w=w) (w, —w3) _ (z2—7)(z —z3)

(W —wy) (w3 —w) (zp—23) (23— 2)

This is the required transformation. This transformation can be
written in the form,

oz +

w= YZ—JFS where a, 3, y and  are complex constants.
Example 3.2: Find the bilinear transformation which maps the points z = oo,
i, 0 into the points w = 0, i, co respectively.
Solution: We know that the bilinear transformation, mapping z = z , z,, z,
into
w=w, w,, w, respectively, is

(w=w) (W, —w3) _ (z—2)(z; —z3)

(W —wy) (w3 —w) (zp—23) (23— 2)

Here z,=i, z,=0,w, =0, w, =i,z — o0 and w, > .

(w=0)(i-w3) _ (z—z)(i—-0)

(0—1) (w3 —w) (z1 -1 (0-2)

or w= —-——

which is the required transformation.
Example 3.3: Find the bilinear transformation which transforms the points
z=2,1,0,intow=1,0, i.
Solution: We know that the bilinear transformation which transforms the
points z = z,, z,, z, resectively into w=w,, w,, w, is

(w=w) (W, =w3) _ (z—2) (25 —2z3)

W =w) (w3 —w)  (z1—23)(z3—2)
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i—iw 2—z
or : =
I— W z
(i—iwz=(>G{-w)(2-2)
NOTES or iz—iwz=i(2-2)-w(2-2)
or{—iz+2—-z}w=i(2-z)—iz=2i-2iz
2i—2iz _ 2i(z-1)
or =

W 2—-(1+1i)z z(1+1)-2

which is the required transformation.
Example 3.4: Find the bilinear transformation which maps the points z = 1,
z=1i,and z = -1 into the points w=1i, w=0 and w = —i.
Solution: We know that the bilinear transformation which transforms the
points z = z,, z,, z, respectively into w=w,, w,, w, is

w=w) (W, —wy) _ (z—2)(z; —z3)
W —wy) (w3 —w) (zp—23) (23— 2)

Herez =1,z,=i,z,=-1,w =i,w,=0and w, = —i
(w=0)(O0+i) _ (-D@+D
(i-0)(=i-w) (A-0)(-1-2)

iw=i) _ (z-D{d+)

—-i(w+i) (+D)(E-1)
or (w=DE+tDH@(E-H)=-w+i)(Ez-1){A+1i)
or Wi—#—wt+i)z+1)=(1-z)(Ww+wi+i*+1i)
or Wi—-w+1l+i)z+1)=(Q-2)wtwi+i-1)
orw{(i-1)(+1)-0-2)A+)i={G-1)(1-2)-(+1)A+)}
orw{zi—z+i—-1-1—-i+z+zi}={i—-1-zitz—z—zi—1-1i}
or w{2zi — 2} = {2 —2zi}
W= —(zi+1)

zi—1

or

or

which is the required transformation.

Bilinear Transformation of a Circle

. . +b .
Theorem 3.4: The bilinear transformation w = — transforms a circle of

cz+
the z-plane into a circle of the w-plane and inverse points transform into

inverse points.

Proof: Here the transformation is w = ZZIS ..(3.9)
A
We know that |Z—2| = ..(3.10)
z—q

represents a circle in the z-plane with inverse points p, g. If = 1, the equa-
tion represents a line which is the right bisector of the join of the points p, g.
From Equations (3.9), we see that the points p, ¢ in the z-plane

Self - Learning . . +b +b
104 Material correspond respectively to the points = a4

i the w-plane.
cp+d cq + WP



From Equation (3.9) and (3.10), we get

_ap+b
p+d| _ k‘cq+d|
‘W_aq+b‘ ‘cp-}-dl

cqg+d

(3.11)

dw—>b

—cw+a

where z =

This equation shows that it represents a circle in the w-plane, whose
inverse points are,

+b +b
ap and 24

cp+d cq+d

Hence a circle in the z-plane transforms into a circle in the w-plane, and
the inverse points transform into the inverse points.

. .- . +b
Example 3.5: Find the condition that the transformation w = = trans-

cz+
forms the unit circle in the w-plane into a straight line in the z-plane.

Solution: Here the transformation is,

b
az+b a Z+;

cz+d C d
zZ+—
C

Therefore the unit circle [w]| = 1 in the w-plane gives,

b
al 124
w=1=|= a
i a
z4+ =
c
b
z4 =
al| _
or = |—
d a
z4+ =

which represents a line when

C

—‘ =1 or |a|=|c|
a

Hence the required condition is |a| = |c|.

Notes:

z-p

z—q

1. The equation =k

represents a line or a circle according as k=1 or k# 1.

az +b

2. The bilinear transformation w = transforms a circle in the z-plane

cz +
into a straight line in the w-plane and the inverse points transform into

points symmetrical about this line.

Example 3.6: Find the bilinear transformation which transforms the plane
1(z) > 0 into the unit circle |w| < 1.

Solution: The bilinear transformation is

Bilinear Transformations
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b
_aZ+b:g.Z+; (1)
cz+d ¢ d
z+—

C
which transforms 7 (z) = 0 into |w| = 1.

Therefore, the real axis in the z-plane transforms into the unit circle in
the w-plane. Hence, the points w, 1/ (inverse with respect to the unit circle)
transform respectively into the points z, z (inverse with respect to the real
axis in the z-plane). The points w= 0, w = oo correspond to the point o, g .

Therefore from Equation (1) we get b a, —% =
a

Rl

az—o

2

The point z = 0 corresponds to the point |w| = 1; then from Equation (2),
we get,

w= —
cz—0

\w\=1=g Plor1=4] |12
-0 clla
or 1= (o Jof=la])
or % = e ...(3)

where A is real.
From Equations (2) and (3) we get

270

w=e

z-0
which is the required transformation for mapping /(z) =0 into [w| = 1.

. _ z—0 5, Z—0O .
Again ww —1="Z¢* —— e* -1
z—0 z -0

G- E-®) | _ (--7) (a0
2 1= 1=
o i -0 (-0 T
_2i1(2)2il(0) _  4(2) (@)
lz—al Exris

Since w= 0 corresponds to a, then /(o) > 0.
Hence |w|*— 1 <0 for I(z) > 0.

or |[w]* <1 corresponds to /(z) > 0,

Hence w = e™* % which is the required transformation.
-
Example 3.7: Find the bilinear transformation which transforms the half
plane Re (z) = 0 into the unit circle [w| < 1.

Solution: The bilinear transformation is,



Bilinear Transformations

2+l
_a+b _a a (D)
cz+d ¢ _ d
z+—
C
which transforms Re(z) = 0 into |w| = 1. Therefore, the imaginary axis in NOTES

z-plane transforms into the unit circle in w-plane.

Hence the points w, 1/w (inverse with respect to the unit circle) in
w-plane transform into the points z, —z (inverse with respect to the imagi-
nary axis) in z-plane.

The points w= 0, o correspond to the points o, —g.

Hence from Equation (1) we get - a, % =0
a
_ ﬁ zZ—0

W= —— ..(2)

The point z = 0 corresponds to the point |w| = 1, then from Equation (2),
we get
wi=1= 2| |=
cl| @
or 1=2 (- faf=]a])
C

or 2l =en ...(3)

C

where A is real.
From Equations (2) and (3), we get
w=er =2
which is the required transformation for mapping Re(z) into [w| = 1.

Since w = 0 corresponds to a, then Re(z) > 0.

— Qem~€j eﬁik_ 1
z4+ O zZ+ 0
2=z (E-W
or -1 z+o) (z+o)
N IR
(z+al
_ _2Re(@)2Re() o Re(a) >0
(z+af’
|w[>— 1 <0 for Re(z) > 0

That is, |[w| < 1 corresponds to Re(z) > 0.

z—a . . .
Hence w = 1 the required transformation.
z+0

Example 3.8: Find all the bilinear transformations which transform the unit
circle |z| £ 1 into unit circle |w| < 1.

Solution: The bilinear transformation is Self - Learning
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b
az+b a Z+ =

= a 1
cz+d c d -
z+—
C

which transforms the circle |z| = 1 into the circle [w| = 1.

Hence the points w, 1/w (inverse with respect to the circle |[w| = 1) in

w-plane correspond to the points z, % (inverse with respect to the circle |7 =1) in

z-plane.

The points w = 0, o correspond to the points o, é , then from Equation (1)
a

we get
-b -d 1
—_— :a’ —_— = :
a ¢ o
w=422"¢% (2
¢, 1
a

The point z =1 corresponds to the point |w| = 1; then from Equation (2)
we get

4y _lal-a| _l|a&| 1-a| _ |ad| 1-«
w=1=| == === —=
c l—l c||o—1 c||l-a
o
or 1= 9% (c1-oa|=|1-al)
C
or 991 = o where A is real. ...(3)
C

From Equations (2) and (3), we get

This is the transformation which maps |z| =1 into |w| = 1.

p 270 2O

Agam ww —1=e - E(x—l_l
2= EZWE-D
ot W =1= EhGasy
_ (-2 (-ad)
|za — 1]
2 2
_ _(d-lz| )(1_2|0L‘) where |a| < 1
|za —1]

or |w| <1 corresponds to |z | < 1.

. z—0 . . .
Hence w=e* — ] is the required transformation.
z



+3 .
1 transform the circle

Example 3.9: Show that the transformation w = 2ZZ_
x* +y? —4x = 0 into the straight line 4u + 3 = 0 where w=u + iv.
Solution: Here the transformation is
_ 2z+3
z—4
or wz —4w=2z+3
or (wz—-22)=4w+3

_ 4w+3
w—2

or

_ 4w+ 3
Z:

w—2

The given circle is x> + y* —4x =0

or (x+iy)(x—iy)—4x=0

or zz =2(z+z)=0 [cz+ Z =2x]

or

4w+ 3 4w+3 dw+3 4w+3 )
w-2 w2 _2[ wo2 w2 ]_O
or (Aw+3)@w +3)-2[4w+3)(w =2)+ (4w +3) (w—-2)]=0
or 16ww + 12w+ 12w + 9 — 8wiw + 16w — 6w + 12 — 8ww + 16w — 6w
+12=0
or 22w+22w +33=0
or 22+ w)+3=0
or 4u+ 3 =v, writing w=u + iv.
which is a straight line in the w-plane.
Example 3.10: Find the mapping of x-axis under the transformation

i—z
W=, onto the w-plane.
1+ Zz

i—z

Solution: The given transformation is w = -
1 z

} i—x—1i —x—i(y-1
or utiv= - y = ,(y )
i+x+iy x+i(y+1)

_ —x—i(y-1) x—i(y+1)
x+i(y+1) x-i(y+1

_ —x2+ix+ix—y2+l _ —xz—y2+1+i(2x)

xZ-i-(y—i-l)2 xZ-i-(y—i-l)2

Equating real and imaginary parts, we get

_—xz—y2+1 _ 2x
U= - 2 VT 3 2
x“+(+D x“+(y+1

To get the mapping of x-axis, we put y = 0 in the above equation; and
thus get
—x? +1

u= (1)

2 +1

Bilinear Transformations
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and v=

2

2 +1

From Equation (1), we get ux* +u=—-x*+ 1

NOTES or  xX(utl)=l-u
or xt=174
1+u

Putting the value of x in Equation (2), we get

1—u
1+
—u

v= = b Tru _ L v w
+1 I+u 2 2
I+u
2
or yr =1z
4
or 42 +ur=1
le V2
or —+— =1
4 1

which represents an ellipse.

Critical Point: A point at which f7(z) = 0 is called a critical point of the
transformation.

Some Special Transformations
1. The transformation w = z” where # is a positive integer:

d
Here w = 2", then LY = !
dz
dw
— =0atz=0.
dz z

Hence the transformation is conformal at all points except at z = 0.

Let z=re"® and w= Re®, then w = z" gives,

Ret =" o™
S R=r ..(3.12)
and o =n0 ..(3.13)

From the Equations (3.12) and (3.13), we conclude that:

(i) The circle r = a = constant about the origin in the z-plane is
transformed on the circle R = a” = constant about the origin in the
w-plane.

(if) The lines 6 = 3 = constant about the origin in z-plane is transformed
into the lines ¢ = nf3 = constant about the origin in the w-plane and the
slope of ¢-line is » times the slope of 0-line.

(iii) The circular sector with its vertex at origin in the z-plane is
transformed into a circular sector with its vertex at origin and » times
the central angle.

_ (iv) The interior of the circular sector with central angle nt/» is transformed
1o ijé’:e'rf;"mmg conformably upon the upper half plane 7(w) > 0.



2. The transformation w = z%

d
Here, w = z%, then Lo
dz
dw
- 0forz=0

Hence the transformation is conformal at all points except at z = 0.

Now w=_z>gives u+iv=(x+iy)?=x>+2xyi—y*=(x*—)*) +i (2xy)
u=x*-y* ...(3.14)

and v =2xy ..(3.15)

From the Equations (3.14) and (3.15), we may include the following
facts of the transformation.

(7)) When x = constant = a, then from Equations (3.14) and (3.15), we
get

u=a*—y*and v=_2ay
Eliminating y from the above relations, we get
Vi =4a*? =4’ [a* — u?]

Therefore the line x = a in the z-plane is transformed into the parabola
in the w-plane whose vertex is at (a?, ¢) and focus is at the origin. For
a =—a, we get the same parabola.

S

o 0] 2
-a| 7 |i-a o
z-plane w-plane

(ii) For a strip between the lines x = a and x = b in the z-plane, the line
x = A where a <\ < b is transformed into the parabola v* = 4\ *(\* — u)
in the w-plane. Hence, the area enclosed by the lines x =a and x = b in
the z-plane is transformed to the area enclosed by the parabola
V2 =4a* (a* — u) and Vv* = 4b* (b* — u) in the w-plane. For x = —ag and A

=—b, we get the same parabolas.
y

z-plane
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(a7, 0) "
w-plane
(iii) The region x > a and x < — a in the z-plane is transformed into the
exterior of the parabola v* = 4a*(a® — u) in the w-plane.
y
1 x=-—a XxX=aq —
——— 5 ——— x
z-plane
v
v/
(@, 0) .
O \®§
A\
w-plane
(iv) The region 0 < x < a in the z-plane is transformed into the interior
of the parabola v* = 4a*(a’ — u) in the w-plane.
y v
7
X u
O xXxX=a 2 O ( az’ 0)
7=z
Self - Learning z-plane w-plane

112 Material



3. The transformation z = /w (which is inverse mapping of w = z?):
Here, z= ~/w, thenw=Z or u + iv=(x + iy)> = x> — > + i (2xy)
u=x*-y* ...(3.16)
and v =2xy ..(3.17)
From the Equations (3.16) and (3.17), we may conclude the following
facts of the transformation.
(/) When u = constant = a (> 0), then from Equation (3.16) we get
X*—y*=a
which is a rectangular hyperbola.

Therefore the line # = a in the w-plane is transformed into the
rectangular hyperbola x* — y* = u in the z-plane.
v
y

T

w-plane z-plane
(ii) The strip between the lines # = a and u = b in the w-plane is transformed
to the region enclosed between the rectangular hyperbolas x> — )? = a

and x* — > = b in the z-plane.
v

y
0] u § 0] % *
u=a u=>b
w-plane z-plane

(iii) The region u > a in the w-plane is transformed to the region of
interior of the rectangular hyperbola x* — )? = @? in the z-plane.

v y

w-plane z-plane

N
|
Q
N
|
S
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(iv) When v = constant = a (> 0), then we get from Equation (3.17),
xy = a/2 which is a rectangular hyperbola.

Hence the line v = a in the w-plane is transformed to the rectangular
hyperbola xy = a/2 in the z-plane.

v y
— v=a MZ
0 u 0O X
w-plane z-plane

(v) The region between the lines v = a and v = b in the w-plane is trans-
formed to the region enclosed by the rectangular hyperbolas xy = a/2
and xy = b/2 in the z-plane.

v y

T~ e

19} u Ol xy=ar

w-plane z-plane

(vi) The region v > a in the w-plane is transformed to the region of
interior of the rectangular hyperbola xy = a/2 in the z-plane.

v Y

o - u xy =al2

w-plane z-plane

4. The transformation w = %(z + lj:

d
Here w=l z+l ,then—WZl 1—l
2 z 2

d

£ =0 forz==+1
dz

Hence, the given transformation is conformal except at z ==+ 1.
Let z =re®, thenw= %(z + lj = %{re’e + le"'e}

z r

or utiv= %{r(cose+isin9)+l(cose—isin6)}
r



= lcose(r+l)+i(r—ljsin6
2 r 2 r

u= %(rJrljcose ..(3.18)

7

and Y= %(r—ljsine .(3.19)

B
Then we consider the following cases of the transformation:

Case (i) When r = constant, then from Equations (3.18) and (3.19), we
get

2 2
. u \%
cos’ 0 +sin’? 0= >+ >
1 1 1
—|r+- —|r——
u2 V2
or + =1

1 1Y 1Y
—|\r+=| —=|r--
4 r 4 r

in the w-plane.
When r = 1, the circle | z| = 1 in the plane is transformed to the part of
the real axis between —1 to 1 in the w-plane described twice.

Case (ii) When 6 = constant, then from Equations (3.18) and (3.19), we

get
u? v 11 1V
et K Bl e =1
cos“® sin“9 4 r 2 r

Hence the radial line 6 = constant in the z-plane is transformed to the
hyperbola in the w-plane.

5. The transformation w = ¢°:

d
Here, w = &, then d—w = ¢

Z

aw # 0 forall z
dz

Hence the given transformation is conformal for all values of z in the
z-plane.

Let w=Re® and z= x + iy, then Re® = "™V = ¢*. &V

o R=e¢" ..(3.20)
and o=y ..(3.21)
Now we consider the following cases of the transformation:

(/) When y = constant = 3, then from Equation (3.31), we get

o=
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Thus, the line y = B in the z-plane is transformed to the line ¢ =3 in
the w-plane.

(if) The region enclosed by the lines y = B and y = y in the z-plane is
transformed to the region bounded by the radial lines ¢ = and ¢ =y
in the w-plane.

- 4

(7ii) When x = 0, then from Equation (3.21) weget R=¢€"=1, i.e., W] = 1.
Hence, the imaginary axis (i.e., x = 0) in the z-plane is transformed
to the unit circle [w| = 1 in the w-plane.

z-plane w-plane
(iv) The region bounded by the lines y = 0, y =1 and x = 0 in the z-plane
is transformed to the region bounded by ¢ =0, ¢ =m and [w| =1 in
the w-plane.

z-plane w-plane

Example 3.11: Find the bilinear transformation which transforms the circle
|zl = 1 onto |w| = 1 and makes the point z =1, —1 correspond to w =1, —1
respectively.

Solution: We know that the transformation which transform the circle |z| = 1
into [w| =1 is,

PR A} .
w = e* —— where A is real and |0 < 1
Z0—

Since the points z = 1, —1 maps into the points w= 1, —1, we get



| =t ;—_01‘ (D)
and —1=e" _]_—_a
—o—1

or 1=e™ (_;%;X) ..(2)

From Equations (1) and (2), we get
=@ 1w

o-—1 a+1

I-o —-(1+a
or l—o ( _)

o-—1 1+a

orlta—-oa—oa=—a+1-aa t+to
or 20 =200 = o=@
—o

. . . o Z
Hence, the required transformation is w = e’k—] .
o —

Example 3.12: Find the image of |z — 2i| = 2 under the mapping w = 1
z

. 1 1
Solution: Here, w= —; thenz= —
z w
or x+iy= I u—iv _  u LV
= _ = = ;
utiv. 4?42 u? £ u? +0?
u -V
x= and y= (1)
1/[2 +V2 1/[2 +V2

Now lz—2i|=2 or |x+iy—2i=2
or [x+i(y—2)=2
or xX*+(y-2)=4

2 2
or{ 2u 2] +[ 2—v 2 _2j =4 [By Equation (1)]

u - +v u - +v
or wW+[v+2@+Vv)]F=4 W+ V)
or ¥+ Vv +4utv+ 42 +4 (P +v)Y? =4 (1P +?)?

or wHV+dutv+47°=0
or W+ Vv +4v (@ +1v)=0
or @+v)(1+4v)=0 (o ur+ Vv #0)

Hence, 1 + 4v = 0 is the required equation of the image.

Example 3.13: Find the image of the straight line x + y = 1 under the trans-
formation w = z2.

Solution: Here w=z% then u + iv = (x + iy)* = x* — * + 2xyi

u=x*—y*and v=2xy (1)
Now x+ty=lor(x+y) =1
or X*+y*+2xy=lorx*+)y?=1-2xy=1-v [By Equation (1)]
or +y)*=C1-v) [By Squaring]
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or(x? — y?)* + 4x*? = (1 — v)?
or w+Vvi=1-2u+v?

or w+2v=1

[By Equation (1)]

Hence, the required transformation is > + 2v = 1.

Example 3.14; Find the image of the infinite strip 1/6 <y < 1/3 under the
transformation w = 1/z and draw the graphical region.

Solution: Here, w= 1

1 1
Z:—: X
w u-+1
or x+iy= oW o ¥ LV,
w? +v: ot vttt
u -V
xX= and y =
u? +v? u? +v?
2
1 -V 1 2 2 2 3 9
When y<-: —— <= or *+vV+3v>0 or *+ |v+=| >=
3 w4 3 4

which represent the outer region of the circle with radius 3/2 and centre
(0,-3/2).

4

u? +1?

1 1
Wheny>g: >— or w+vV+6v<0 or v+ (v+3)P2<9

which represent the inner region of the circle with radius 3 and centre (0, —3).

The graphical region is,

Example 3.15: Prove that the circle [w] = 1 corresponds to the circle x* + )? =

2y —1 = 0 under the transformation w = % (z+z7h.
Solution: The given transformation is w = % (z+zhH
Here, w =1

or ’%(z+z_]) =1

(4



2 Bilinear Transformations

or (z+lj =4
z

1 1 — .o = = |2
or z+—||z+—|=4 [ zZ =|z)]

z z NOTES
or (z+lj(2+éj=4

z z
or Z+1D)(z*+1)=4zz

or Zz*z?+z22+z7 —4zz +1=0

or (22z?-2zz +1)+(Z2+z?-222)=0

or (zz =1+ (z-2z%)=0

or (2 + 72— 172+ (2iy)2 =0 [z = =2yi]
or P+ —-1)—-4*=0

or (2 +y =172 =47=(2y)

or X+yP—1=+2y

or X*+yP+2y—-1=0

Hence the result.

Example 3.16: Prove that the transformation w = sin z maps the families of
lines x = constant and y = constant into two families of confocal conics.

Solution: Here, w = sin z

or u+iv=sin (x +iy) = sinx cosh y + i cos x sinh y
o u=sin x cosh y (1)
and v =cos x sinh y ..(2)

Eliminating y from Equations (1) and (2), we get
2

2
. u v
1 = cosh ?y —sinh %y = -
s 2 2
sm-x COS™ X

u? V2 _
or ——-—— =1
SiIn"x COS X

This shows that the straight lines x = constant in the z-plane are
mapped into confocal hyperbolas in w-plane.
Again, eliminating x from Equations (1) and (2), we get
sin® x + cos*x =1

u2 v2
or =1

coshzxy sinhzy -
This shows that the straight line y = constant in the z-plane are mapped
into confocal ellipse in w-plane.
Example 3.17: Find the transformation of w = cosh z.
Solution: Here w = cosh z

or u + iv=cosh (x + iy) = cosh x cos y + i sinh x sin y

u=coshxcosy (1)

. . Self - Learning
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Eliminating y from Equations (1) and (2), we get
sin’y + cos?y =1

v u’

=1

+ =
sinh>x  cosh? x
This shows that the lines parallel to y-axis (i.e., x = constant) in the
z-plane transform into ellipse in the w-plane.

or

Again, eliminating x from Equations (1) and (2), we get
cosh? x — sinh? x =1

u? v

or ——— =1
cos“y sin“y

This shows that the lines parallel to x-axis (i.e., y = constant) in the

z-plane transform into hyperbola in the w-plane.

3.2.1 Conformal Mappings

A transformation is said to be isogonal if two curves in the z-plane intersecting
at the point z,, at an angle 6 are transformed into two corresponding curves in
the w-plane intersecting at the point w,, which corresponds to the point z, at
the same angle 0. Hence if only the magnitude of the angle is preserved the
transformation is called isogonal.

y v
G &)
@ %@ i
X u
0 z-plane 0 w-plane

If the sense of the rotation as well as the magnitude of the angle is preserved,
then the transformation is called conformal.

y v

C ch

Z Wo

o o
z-plane w-plane

Theorem 3.5: If /() is analytic, then the mapping is conformal.

Proof: Let ¢, and ¢, be the two continuous curves in the z-plane, intersecting
at the point z,, and let the tangents at this point make angles o, and a,, with
the real axis. Let z; and z, be the points on the curves ¢, and ¢, near to z, and
at the same distance r from z,; so we have,

01 02

— Ll — 0
ZI—ZO—I"e , ZZ—ZO—I"e



When r — 0, then 6, - o, and 6, — a,

Y

N7
0 X
v
B
= u

w-plane

Let w, be the point in the w-plane corresponding to z,, and let z; and z,
correspond to points w, and w, in the w-plane which describes the curves vy,
and v, in the w-plane.

Let, Wy — W, = pe®l, W, — W, = pe’®2

f(zg)= lim 220
2120 Z1 — 2

i
7\’ T p . . 7\’
or Re' = lim rleiel (Since f"(z,) may be written as Re™)
. iv_ o Proi -0
1e., Re'™ = lim LN~

r

Hence, lim {pr—’} =R=

/'(zo)| and lim (¢, — 6,) =X or lim ¢, — lim 8, = 1

or By—o,=rorB,=a, +A
Similarly it can be proved that 8, = o, +A.

Therefore the curves v, and v, have tangents at w, making angles o, + 2
and a, + A with real axis and the angle between y, and y, at w;, is B, — 3, =
(o, +A) = (a0, +2) =, — o, which is same as the angle between ¢, and ¢,
at z,. Hence the curves v, and vy, intersect at the same angle as the curve ¢,
and ¢,; also the angle between v, and y, has the same sense as angle between
¢, and ¢,.

Hence the transformation is conformal.

Theorem 3.6 (Converse): If a mapping w = f(z) is conformal, then it is
analytic.

Proof: Let u = u (x, y) and v = v (v, y) be two conformal transformations
from xy-plane to uv-plane.
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Bilinear Transformations Let dr and ds be the elementary length in #v-plane and xy-plane respectively
and w=u + iv=f(z) where z = x + iy and u, v are differentiable functions of

x and y, then
ds* = d* + dy? .(3.22
NOTES e (3.22)
dr* = d* + dv
Since u and v both are functions of x, y, then
du=Lac+ M and dv= L+ Ly
Ox oy Ox oy
di? + dv? = {6—”61 o 4 } + {6 dx+@dy}
Ox Oy Ox oy

or, d* = {(&cj +(2x)2}d + 2{2;’ Z:+Z: g;}dxdy
{%T{%ﬂ .(3.23)

Since the mapping is conformal, then the ratio dr : ds is independent of
direction; then from Equations (3.22) and (3.23) we get

(a) [av) o ou v ov m m
Ox ox) _ Ox Oy Ox 0Oy _\9 ox .(3.24)
1 0 1
2 2 2 2
(a_”j +[@j - (‘3—”} {ﬂJ .(3.25)
ox Ox oy oy
6u ou Ov Ov
and . 6y+8x Py =0 ...(3.26)
Equation (3.25) is satisfied when,
U=V, U=—V, ..(3.27)
(Cauchy-Riemann equations)
and Equation (3.26) is satisfied if u = V= U, ..(3.28)

Equations (3.28) reduce to Equations (3.27) by writing — v for v, that is, by
taking as image figure by reflection in the real axis of the w-plane. Hence,
Equations (3.28) correspond to an isogonal but not conformal transformation.

We see that if the mapping of z-plane to w-plane is conformal, the only
form of transformation is w = f (z) where f'(z) is an analytic function of z.

Transformations which are Isogonal but not Conformal

In this case, the magnitude of the angles of a transformation is conserved but
their sign is changed. For example, consider the transformation,

w=x—iyand z=x +iy.
Therefore, w=x — iy is the reflection of z in the real axis where the angles
are conserved but their signs are changed.

In general, this is true for every transformation of the form

Self - Learning w= f(2) ..(3.29)
122 Material




where f (z) is analytic because such a transformation is combination of the
two transformations,

E=z ...(3.30)
and w=£(&) ..(3.31)

In Equation (3.30) the angles are conserved but their signs are changed, in
Equation (3.31) angles and their signs are conserved. Hence, in the resultant
transformation Equation (3.29), the angles are conserved and their signs are
changed.

Hence, the transformation is isogonal but not conformal.

Check Your Progress

1. What is bilinear transformation?
2. Define the term isogonal transformation.
3. What is translation?

3.3 SPACES OF ANALYTIC FUNCTIONS

Let Q2 be an open subset of C. Then 4(Q) will denote the space of analytic
functions on 2, while C(Q2) will denote the space of all continuous functions
onQ.Forn=1,2,3,...,let

K, =D(0,n)N{z:|z—w|21/n forall we C\Q}
By basic topology of the plane, the sequence {K } has the following three
properties:

1. K is compact.

2. K ,cK¢,,where K’ is the interior of K, .

n+l?

3. If K< Q is compact, then K < K, for » sufficiently large.

3.3.1 Montel’s Theorem

Definition: A conformal one-to-one map of a domain D, onto D, is said to
be a conformal isomorphism, while the domains D, and D, that admit such a
map are called isomorphic or conformally equivalent. Isomorphism of a
domain onto itself is called conformal automorphism.

It is easy to see that the set of all automorphisms ¢: D—D of a domain
D forms a group that is denoted by 4 at D. The group operation is the
composition ¢, 0 ¢,, the unity is the identity map and the inverse is the inverse
map z = ¢~'(w).
Theorem 3.7: Let f/: D, — D,be a fixed isomorphism. Then any other
isomorphism of D, onto D, has a form

f=bof, ...(3.32)

where ¢ is an automorphism of D,
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Proof: First, it is clear that all maps of the form of the right side of Theorem
3.7 are isomorphisms from D, onto D,. Furthermore, if /. D, — D, is an
arbitrary isomorphism then

¢ =fof, " is a conformal map of D, onto itself, that is, an automorphism of
D,. This completes the proof.

Theorem 3.8: Any conformal automorphism of a canonical domain is a
fractional linear transformation.

Proof: Let ¢ be automorphism of ¢ . There exists a unique point z, that is
mapped to infinity. Therefore ¢ is holomorphic everywhere in C except at z,
where it has a pole. This pole has multiplicity one, since in a neighborhood
of'a pole of higher order the function ¢ could not be one-to-one. Therefore,
since the only singularities of ¢ are poles, ¢ is a rational function. Since it has
only one simple pole, ¢ should be of the form ¢(z) = A/z—z + B if z, # o and
d(z) = . The case of the open complex plane C is similar.
Let ¢ be an arbitrary automorphism of the unit disc U. Let us denote w, =
¢(0) and consider a fractional linear transformation,

Mw— o-afl - W_uw
of the disc U, that maps w, into 0. The composition /=X o ¢ is also an
automorphism of U so that (0) = 0. Moreover, |f(z)| < 1 for allze U. Therefore
the Schwarz lemma implies that |f(z)| < |z| for all ze U. However, the inverse
map z = f'(w) also satisfies the assumptions of the Schwarz lemma and
hence | f'(w)| < [w| for all we U that in turn implies that |z|< |f'(z)| for allze U.
Thus, |f (z)| = |z| for all ze U so that, the Schwarz lemma implies that f(z) =
€z.
Then, ¢ =L7' o f=L"!(e"2) is also a fractional-linear transformation.
We obtain the complete description of all conformal automorphisms of the
canonical domains as:

(1) The closed complex plane:

Aut ={z—az+blcz+d, ad—bc # 0}. ...(3.33)
(2) The open plane:

Aut C={z—>az+b,a=0}. ..(3.34)
(3) The unit disc:

Aut U= {z > e*z—al/l-a, |a| < 1, a € R}. ...(3.35)

It is easy to see that different canonical domains are not isomorphic to
each other. Indeed, the closed complex plane (¥ is not even holomorphic to

C and U and hence it may not be mapped conformally onto these domains.
The domains C and U are holomorphic but there is no conformal map of C
onto U since, such a map would have to be realized by an entire function
such that |[f'(z)| < 1 which has then to be equal to a constant by the Liouville
theorem.

A domain that has no boundary coincides ¢* with . Domains with

boundary that consists of one point are the plane (¥ without a point which

are clearly conformally equivalent to C.



Theorem 3.9: If a domain D is conformally equivalent to the unit disc U
then, the set of all conformal maps of D onto U depends on three real
parameters. In particular, there exists a unique conformal map f'of D onto U
normalized by,

f(z)=0,Argf(z)=0 ...(3.36)

where z_ is an arbitrary point of D and 0 is an arbitrary real number.
Proof: The first statement follows from Theorem 3.7 since, the group Aut U
depends on three real parameters: two coordinates of the point a and the
number o.

In order to prove the second statement, let us assume that there exist
two maps f, and f, of the domain D onto U normalized as in Equation (3.36).
Then ¢ =7, o f", is an automorphism of U such that ¢(0) = 0 and Arg f'(0) = 0.
Equation (3.35) implies that then @ = 0 and oo = 0,

thatis ¢(z) =zand f, = f,.
In order to prove the Riemann theorem we need to develop some methods
that are useful in other areas of the complex analysis.

The Compactness Principle

Definition: A family {f} of functions defined in a domain D is locally
uniformly bounded if for any domain K properly contained in D there exists
a constant M = M (K) such that,

f(z)) <M for allzeK and all f € {f}. ...(3.37)

A family {f} is locally equicontinuous if for any € > 0 and any domain K
properly contained in D there exists 6 = 0 (g, K) so that,

f)y-fiE"<e ...(3.38)
forallZ, z"" € K so that |z —Z"'| < d and all f € {f}.

Theorem 3.10: If a family {f} of holomorphic functions in a domain D is
locally uniformly bounded then it is locally equicontinuous.

Proof: Let K be a domain properly contained in D. Let us denote the distance

between the closed sets ¥ and 0D°by 2p andlet KP=U _ {z:|z—z | <p} be
a p-enlargement of K. The set K is properly contained in D and thus there
exists a constant M so that |f(z)| < M for allz € KPand f € {f}. Let z’ and 2’
be arbitrary points in K so that |z’ —z"'| < p. The disc U, = {zi]z—Z'| < p} is
contained in K™ and hence |f'(z) - fz')| < 2M for all z € U . The mapping
€= 1/p(z — z") maps U, onto the disc |€| < 1 and the function g () = 1/2M
{f(z' +Cp) — f(z')} satisfies the assumptions of the Schwarz lemma.

This lemma implies that g (£)< || for all £, || < 1, which means

f2) —fiz)<2M/p |z—Z'| forallz € U, ...(3.39)
Given € > 0 we choose 6 = min (p, ep/2M) and obtain from Equation (3.39)
that |[f(z") — f(z'")| < € for all f € {f} provided that |z’ —z"'| < 3.

Definition: A family of functions {f} defined in a domain D is compact in D
if any sequence f of functions of this family has a subsequence f that
converges uniformly on any domain K properly contained in D.

Bilinear Transformations
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Bilinear Transformations  Theorem 3.11 (Montel Theorem): Ifa family of functions {f} holomorphic
in a domain D is locally uniformly bounded then it is compact in D.

Proof: (@) We first show that if a sequence /, < {f} converges at every point
of an everywhere dense set £ — D then it converges uniformly on every
compact subset K of D. We fix € > 0 and the set K. Using equicontinuity of
the family {f} we may choose a partition of D into squares with sides parallel
to the coordinate axes and so small that for any two points z', z'' € K that
belong to the same square and for any f € {f} we have,

f(z)—-f('") < e/3. ...(3.40)

The set K is covered by a finite number of such squares q,P= l,....,p.

Each q, contains a point z, €k since the set £ is dense in D. Moreover, since
the sequence {f } converges on E there exists N so that,

If,(z,) =1, ()| <&/3. ...(3.41)
for all m, n > N and allzp,p =1,......p.

NOTES

Let now z be an arbitrary point in K. Then there exists a point z, that
belongs to the same square as z. We have for all m, n > N:

[, =£@I<11,@ =1+ (z) -/ () -1l <e
due to Equations (3.40) and (3.41). The Cauchy criterion implies that the
sequence {z, } converges for all z € K and convergence is uniform on K.

(b) Let us show now that any sequence {f } has a subsequence that converges
at every point of a dense subset £ of D. We choose £ asthesetz=x+iy € D
with both coordinates x and y rational numbers. This set is clearly countable

and dense in D; let £ = {Zv}] =1.
The sequence f (z,) is bounded and hence it has a converging subsequence

Ja =T @),

k=1, 2,....The sequence f (z,) is also bounded so we may extract its
subsequence

Jio =11, k=1,2,... The sequence f,, converges at least at the points z and z,.

Then we extract a subsequence f;; =/, , of the sequence f (z,) so that, f .

converges at least at z , z, and z,. We may continue this procedure indefinitely.
It remains to choose the diagonal sequence,

YT SSUTUIY U

This sequence converges at any point z € E since by construction all its
entries after index p belong to the subsequence /. , that converges at z,.
Parts (a) and (b) together imply the statement of the theorem.

Note: The Montel’s theorem is often called the compactness theorem.
Definition: A functional J of a family {f} of functions defined in a domain D
is a mapping J: {f} — C, that is, J(f) is a complex number. A functional J is

continuous if given any sequence of functions f/ € {f} that converges
uniformly to a function f; € {f} on any compact set K — D we have,

lim.J(f,)=J(f,)
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Example 3.18: Let O (D) be the family of all functions f holomorphic in D
and let a be an arbitrary point in D. Consider the p-th coefficient of the Taylor
series in a:

¢, () =/"(a)/p!
This is a functional on the family O (D). Let us show that it is continuous. If
S, — f, uniformly on every compact set K — D we may let K be the circle y =
{lz—a|l=r} cD.
Then given any & > 0 we may find N so that |f (z) — f(2)| < € for all n>N and
all z € y. The Cauchy formula for C,

¢, =121 [ f (2)/(z—a)" dz
This implies that,
e (f) —c, (fl <elr

for all » > N which in turn implies the continuity of the functional c, .

Definition: A compact family of functions {f} is sequentially compact if the
limit of any sequence f, that converges uniformly on every compact subset
K < D belongs to the family {f}.

Theorem 3.12: Any functional J that is continuous on a sequentially compact
family {f} is bounded and attains its lowest upper bound. That is, there exists
a function f € {f} so that we have |J (/)| = |J (f)|, for all f € {f}.

Proof: We let 4= sup | J(f)|. This is a number that might be equal to infinity.
reif

By definition of the supremum there exists a sequence /. € {f} so that |J (f )|
— A. Since {f} is a sequentially compact family there exists a subsequence
/., that converges to a function /| € {f}. Continuity of the functional J implies
that,

V(I = (£, )] = 4.
This means that first 4 < oo and second, |J (f))| 2 |J (f)| for all f € {f}.

3.3.2 Hurwitz’s Theorem

We will consider below families of univalent functions in a domain D. The
following theorem is useful to establish sequential compactness of such
families.

Theorem 3.13 (Hurwitz Theorem): Let a sequence of functions /' holomorphic
in a domain D converge uniformly on any compact subset K of D to a function
S # constant. Then if /' (z)) = 0 then given any disc U = {|z—z | <r} there exists
N so that all functions f vanish at some point in U when n > N.

Proof: The Weierstrass theorem implies that f is holomorphic in D. The
uniqueness theorem implies that there exists a punctured disc {0 < |z—z,| < p
} < D where f# 0 (we may assume that p <r). We denote v={|z—z, |=p}

and &7 ﬂ;g} [f(z)|, and observe that p > 0. However, f converges uniformly

to f'on y and hence there exists N so that, |[f (z)-f (z)| < p for all z£ ¥ and all
n > N. The Rouche’s theorem implies that for such 7 the function f = f'+ (f —f)
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has as many zeroes (with multiplicities) as f inside vy, that is, / has at least
one zero inside U,

Corollary 1: If a sequence of holomorphic and univalent functions f, in a
domain D converges uniformly on every compact subset K of D then, the
limit function f'is either a constant or univalent.

Proof: Assume that /' (z)) = f(z) but z, # z, z,z, € D and f # constant.
Consider a sequence of functions g (z) = f,(2)-f,(z,) and a disc {|z—z | < |r]}
with 7 < |z —z,|. The limit function g(z) vanishes at the point z,. Hence,
according to the Hurwitz theorem all functions f, starting with some N vanish
in this disc. This however contradicts the assumption that f (z) is univalent.

3.3.3 The Riemann Theorem

Theorem 3.14: Any simply connected domain D with a boundary that contains
more than one point is conformally equivalent to the unit disc U.

Proof: Consider the family S of holomorphic and univalent functions f'in D
bounded by one in absolute value, that is, those that map D into the unit disc
U. We fix a point a € D and look for a function f that maximizes the dilation
coeflicient |f'(a)| at the point a. Restricting ourselves to a sequentially compact
subset S| of S and using continuity of the functional J (f) = |f'(a)| we may find
a function f; with the maximal dilation at the point a. Finally, we check that
Jf, maps D onto U and not just into U as other function in S.

Such a variational method when one looks for a function that realizes the
extremum of a functional is often used in analysis.

(7) Let us show that there exists a holomorphic univalent function in D that
is bounded by one in absolute value. By assumption the boundary 0D
contains at least two points o and 3. The square root \/z—o/z—f admits
two branches ¢, and ¢, that differ by a sign. Each one of them is univalent
in D* since the equality ¢ (z,) = ¢, (z,) (v =1 or 2) implies,

z —a/z—B=z—-az,—-f ...(3.42)
which implies z, = z, since fractional linear transformation are univalent.
The two branches ¢, and ¢, map D onto domains D* _¢ (D) and D*,_¢,(D)
that have no overlap. Otherwise there would exist two points z,z, € D so
that ¢, (z,) = ¢, (z,) which would in turn imply Equation (3.42) so that z =z,
and then ¢, (z,) = — ¢,(z,). This is a contradiction since ¢ (z) # 0 in D.

The domain D*, contains a disc {|w—w,| < p}. Hence ¢, does not take values
i this disc. Therefore the function,

5@ =p () -w, ...(3.43)
is clearly holomorphic and univalent in D and takes values inside the unit
disc: we have [f (z)| < 1 for allz € D.

(if) Let us denote the family of functions that are holomorphic and univalent
in D, and are bounded by one in absolute value by S. This family is not empty
since it contains the function f|. It is compact by the Montel’s theorem. The
subset S, of the family § that consists of all functions /¢ S such that,

@ zlf (@>0 ...(3.44)



at some fixed point, a € D is sequentially compact. Indeed Corollary 1 implies ~ Bilinear Transformations
that the limit of any sequence of functions / € S, that converges on any

compact subset K of D may be only a univalent function or be a constant but

the latter case is ruled out by Equation (3.44).

Consider the functional J(f) = |f'(a)| defined on §,. Therefore, there exists a
function /| € § that attains its maximum, that is, such that

[f(@]<|f'(a)l ...(3.45)

NOTES

forallf € S.

(iii) The function f| € S, maps D conformally into the unit disc U. Let us
show that,

f,(a) = 0. Otherwise, the function g (z) = £, (z) — £, (a)/1- f,(a) f,(z) would

belong to S, and have |g'(a)| = 7 I (@) > |f'(a)], contrary to the

1
I=| fufa) |
extremum property of the function f.

Finally, let us show that /, maps D onto U. Indeed, let /, omit some value b € U.
Then b = 0 since £, (a) = 0. However, the value b* = 1/b is also not taken by
J,n D since |b*| > 1. Therefore, one may define in D a single valued branch

of the square root
_ / fo(2)-b
Y(z)= 1-5/.() ...(3.46)

That also belongs to S: it is univalent for the same reason as in the square
root in part (i), and |y (z)| < 1. However, then the function

_ Y)Y

A=y ave

also belongs to S. We have,
1+b]
b' — '
|b'(a)| N [/ o(a)]

However, 1+|b > 2\/m since |b|<1 and thus /2 € S| and |’ (a) > |f'(a)| contrary
to the extremal property of f,.

The Riemann theorem implies that any two simply connected domains
D, and D, with boundaries that contain more than one point are conformally
equivalent. Indeed, as we have shown there exists conformal isomorphism
ﬁ :D—->U of these domains onto the unit disc. Then f=/"', o f, is a conformal

isomorphism between D and D,.

3.3.4 Riemann Mapping Theorem

In complex analysis, the Riemann mapping theorem states that if U is a non-
empty simply connected open subset of the complex number plane ¢ which
is not all of C, then there exists a biholomorphic (bijective and holomorphic)
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Bilinear Transformations  mapping f from U onto the open unit disc,
D={zeC:|z|<1}.

This mapping is known as a Riemann mapping.

NOTES .
Theorem 3.15 (Riemann Mapping Theorem): Let U ¢ C be a simply

connected domain. Then there is a biholomorphic map 7 :U — B,(0).
Note: Holomorphic functions are very rigid. They are determined by a small

amount of information. But they can be used to transform any simply
connected domain to a simple open disc.

Corollary: Every simply connected domain is homeomorphic to the
open unit disc.

Proof: Let 7 — C be a domain. When [/ = C, then this follows from
the Riemann mapping theorem, since a biholomorphic map is a
homeomorphism. We know that an injective holomorphic map automatically
is biholomorphic onto its image. An injective holomorphic function has non-
vanishing derivative, hence the inverse function is again holomorphic. So it
suffices to show that there is an injective holomorphic map from U onto
B (0). To show this, we prove the following lemma:

Lemma 1: Let U ¢ C be a simply connected domain. Then there is an
injective holomorphic function f:U — B,(0).

Proof: First, we want to map U biholomorphically to a domain whose
complement contains an open ball. This need not be the case for U itself; an
example for this is the slit plane C\R_, .

Let aeC\U . The function z — a does not vanish on U. Since U is simply
connected, there is a “square root” s of this function of U, i.e., a holomorphic
function s : U — C such that s(z)> =z — a. This function s is injective: s(z) = s(w)
implies z — a = s(z)*= s(w)* = w — a and hence z = w. Let U, = s(U) be the
image of U under s. Since non-constant holomorphic maps are open, there is
beU, and r > 0 such that B (b) < U,. Claim that B (-b) = C\U,. Assume

that there is we U, (N B,(-b). Then w = s(z) for some ;e U ; also —w = s(z)
for some ;'c U (since —we B.(b) U ). But this implies z = s(z)* + a =w* +
a=s(Z)Y+a==z,s0w=s(z) = s(z') = —w, which is a contradiction, since
0gU,.

Now we let,

-
s(z)—b

/(@)=

then f'is injective and holomorphic on U and AU) < B (0).

Lemma 2: Let U c C be a simply connected domain and let a € U.

_ Then there is an injective holomorphic function,
Self - Learning
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f:U—> B (0)
such that f{a)=0.

Proof: By Lemma 1, f;:U — B,(0) is holomorphic and injective. Then,
we want

@)=~ £@)

Now let,
F={f:U — B,(0): f holomorphic and injective, f(a) = 0}.
F is non-empty. Choose some point beU \{a}. Let p=sup{| f(b)|: f € F}.
Note that p>0 since F'is non-empty and f(b) #0 for every feF .
Claim 1: There is some f e F such that | /(b)|=p.
Proof: By definition of p there is a sequence (f)) in F such that

| £,(b)|> p as n— . Also, F'is bounded, so by Montel’s theorem, there is a
compactly convergent subsequence, and without loss of generality, we can
assume that (f)) itself converges compactly. Let f=lim,_ f, be the limit

function. Then clearly, | /(b)|=p. Now we will prove that f e F .

/is not constant. f is injective as the limit of a sequence of injective
holomorphic functions. Also, f{U) is open and contained in B(0), so
JU)< B(0).

Lemma 3: Let we B,(0) and define,
wW—2ZzZ

0,() =77

Then ¢, is an involutory automorphism of B (0) that interchanges
0 and w.

Proof: For z e B (0), we have

A= w)(A=|z[)>0,s0 | w[’ +|z[ <1+ |w[|z[

Therefore,

lw—z P wf —wz—wz+|z<l—wz —wz+|wP|z 51— wz |

Hence,

19, (2)[<1

Also,

19,(9,(2) =z

This implies that ¢ is an automorphism. We can say that, ¢, (0) =wand
¢, (w)=0.
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Claim 2: The function f above satisfies f(U)= B,(0) .

Proof: Assume that the claim is false. Then there is we B, (0)\ f(U).
We construct another function ge F such that |g(b)|>| f(b)|, which
contradicts the choice of /.

Here, notice that ¢, o f is an injective holomorphic function U — B,(0)

whose image does not contain zero.

Since U'=(¢,0 f)U) is simply connected, there is then a holomorphic
square root function s on /', which is injective. So so¢, o0/ is an injective
holomorphic function that maps U into B (0) again. We have

(s00,0 f)a)=s(w), hence if we define g=¢,,,0500 0 f, then g is an

injective holomorphic function that map U into B (0) and such that g(0) = 0,
so geF.

To show that, | g(b)|>p = f(b)|, define
h(z)=¢,,(9,,,(2)")
then % is a holomorphic map B'(0) — B,(0), which is not an automorphism
|h(z)|<| z| for all ze B,(0)\{0} . In particular,
| 8(D)[>[ h(g () |=| 1 ()]

(since 4 o g =f). This is the desired contradiction.

Check Your Progress

. Define the spaces of analytic function.
. State the Montel's theorem.

. Define the Riemann theorem.

N N L B

. What is Riemann mapping?

3.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

az+b
cz+d

1. The transformation of the form w =

where z,w are complex variables, a, b, ¢, d are complex constants and
ad — bc # 0 is called a bilinear transformation.

2. The transformation w = z + o is called translation, where
a=a+tib.

3. A transformation is said to be isogonal if two curves in the z-plane
intersecting at the point z,, at an angle 0 are transformed into two

corresponding curves in the w-plane intersecting at the point w,
which corresponds to the point z,, at the same angle 6.

4. Let Q be an open subset of C. Then 4(€2) will denote the space of
analytic functions on Q, while C(Q) will denote the space of all
continuous functions on Q.



5. A family of functions {f} defined in a domain D is compact in D ifany  Bilinear Transformations
sequence f of functions of this family has a subsequence f  that
converges uniformly on any domain K properly contained in D.

6. Any simply connected domain D with a boundary that contains more

than one point is conformally equivalent to the unit disc U. NOTES

7. In complex analysis, the Riemann mapping theorem states that if U is
a non-empty simply connected open subset of the complex number
plane ¢ which is not all of C, then there exists a biholomorphic
(bijective and holomorphic) mapping f from U onto the open unit

disc, D={zeC:|z|<1}.

3.5 SUMMARY

* The transformation of the form

az+b
cz+d

where z,w are complex variables, a, b, ¢, d are complex constants
and ad — bc # 0 is called a bilinear transformation.

» The transformation w = z + o is called translation, where
o=a+ib.

* The transformation w = Bz is called magnification and rotation
where w, [, z are complex numbers.

) 1. ) )
* The transformation w = = is called mversion.
z

* The transformation is an inversion of z and followed by reflection
into the real axis.

« The ratio 1 =720 (%~ %)
(z3 —2z3) (24 — 7)

is called the cross-ratio of z, z,, z,, z, which is denoted by (z, z,,
Z,, Z,)-

transforms a circle of the

.- . +b
* The bilinear transformation w = aZ+
(674

z-plane into a circle of the w-plane and inverse points transform
into inverse points.

* A point at which f'(z) = 0 is called a critical point of the
transformation.

* The circle » = a = constant about the origin in the z-plane is
transformed on the circle R = a” = constant about the origin in the
w-plane.

* The lines 6 = B = constant about the origin in z-plane is trans-
formed into the lines ¢ = nf3 = constant about the origin in the w-
plane and the slope of ¢-line is » times the slope of 6-line.
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Bilinear Transformations * The circular sector with its vertex at origin in the z-plane is trans-
formed into a circular sector with its vertex at origin and » times
the central angle.

* The interior of the circular sector with central angle n/n is trans-

NOTES formed conformably upon the upper half plane /(w) > 0.

* A transformation is said to be isogonal if two curves in the z-plane
intersecting at the point z, at an angle 6 are transformed into two
corresponding curves in the w-plane intersecting at the point w,
which corresponds to the point z,, at the same angle 6.

 If only the magnitude of the angle is preserved the transformation
is called isogonal.

» If a mapping w = f(z) is conformal, then it is analytic.

* The magnitude of the angles of a transformation is conserved but
their sign is changed.

* Let Q be an open subset of C. Then 4(€2) will denote the space of
analytic functions on 2, while C(Q) will denote the space of all
continuous functions on Q.

* A conformal one-to-one map of a domain D, onto D, is said to be a
conformal isomorphism, while the domains D, and D, that admit
such a map are called isomorphic or conformally equivalent.

* The Montel’s theorem is often called the compactness theorem.

* Any simply connected domain D with a boundary that contains
more than one point is conformally equivalent to the unit disc U.

* Riemann mapping theorem states that if U is a non-empty simply
connected open subset of the complex number plane ¢ which is
not all of C, then there exists a biholomorphic (bijective and
holomorphic) mapping f from U onto the open unit disc,

D={zeC:|z|<1}.

3.6 KEY TERMS

* Bilinear transformation: The transformation of the form

az+b .
w=—— where z,w are complex variables, a, b, ¢, d are complex
czZ

constants and ad — bc # 0 is called a bilinear transformation.

The transformation w=z + a is called translation, where o. = a + ib.

. ) 1 . ) )
¢ Inversion: The transformation w = = is called mversion.
z

* Critical point: A point at which f”(z) = 0 is called a critical point
of the transformation.

* Isogonal: If only the magnitude of the angle is preserved the
transformation is called isogonal.
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3.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions NOTES

1. Name the various types of transformation.

. What is cross-ratio?

. Give a transformation which is isogonal but not conformal.
. Define conformal isomorphism.

. State Hurwitz’s theorem.

. In which problem the Weierstrass factorization theorem is applied?

~N N L B W

. What are the significations of Reimann mapping theorem?

Long-Answer Questions

1. Under the transformation w = z? show that the circle |z — o.| = 3 in the
z-plane correspond to the limacon R =2 (o + 3 cos ¢) in the w-
plane where a and [ are real.

2. Find the transformation of w = cos z.

3. Show that the transformation w = z + [(a? — b?)/4z] transform the

circle of radius GTer and centre at origin in the z-plane into ellipse
of semi-axis a, b, is the w-plane.

4. Prove that in general circle |z| = constant and lines arg z = constant
correspond to conic with focii at w =+ 1 in the w-plane by the
transformation w=1/2 (z + 1/z).

5. Prove that the following transformations are bilinear.

2z+3
(i) w= ==

3z+5 .. z+T ..
(yw=r5 (i)w=577

z+8

. . iz + 2 . o
6. Prove that the following transformation w = ;Z " is a bilinear
zZ 1

transformation. Find the transformation of the line y = %x by this
transformation.
7. Find the bilinear transformation which maps:
(i) The points z =1, i, —1 into the points w=2, i, —2
(ii) The points z =2, i, —2 into the points w=1, i, —1

8. Find the fixed points (invariant points) and critical point of the
following transformation.

N il=z2) .o (A+D)-(1-Dz ,.. _ (2i-62)
(D) w= l (iyw=-———"= (il w= —7=
1+ 2z 2 (iz - 3)
. _ 3 _ 2z+3
(v)y w=2z> (v)w 1
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Bilinear Transformations i(i— z)
9. Prove that the transformation w=

N transforms the circle |z | = 1
z

into the real axis of w-plane and interior of the circle |z| <1 into the
upper half of the w-plane.

NOTES 10. (i) Find the image of the circle |z — 1| = 1 under the transformation
w=1/z.

(ii) Find the image of |z — 3i| = 3 under the transformation w= 1/2.
(iii) Find the image of the circle |z | = a@ under the transformation

w=2(1+i)z
11. Describe the spaces of analytic functions giving examples.
12. Explain the Montel’s theorem.
13. Explain Hurwitz’s theorem giving examples.

14. Elaborate the applications of Riemann mapping theorem.
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UNIT 4 WEIERSTRASS
FACTORISATION
THEOREM, ANALYTIC
CONTINUATION,
INEQUALITY THEOREM
AND FUNCTIONS

Structure

4.0 Introduction
4.1 Objectives
4.2 Weierstrass Factorisation Theorem
42.1 Gamma Function and its Properties
4.2.2 Riemann Zeta Function
4.2.3 Riemann's Functional Equation
4.2.4 Runge's Theorem
4.2.5 Mittag-Leffler's Theorem
4.3 Analytic Continuation
43.1 Power Series Method of Analytic Continuation
432 Schwarz Reflection Principle
43.3 Monodromy Theorem and Its Consequences
4.3.4 Harmonic Functions on a Unit Disk
4.4 Harnack's Inequality Theorem
4.4.1 Dirichlet Problem
4.4.2 Green's Function
4.5 Answers to ‘Check Your Progress’
4.6 Summary
4.7 Key Terms
4.8 Self-Assessment Questions and Exercises
4.9 Further Reading

4.0 INTRODUCTION

In mathematics, Weierstrass factorization theorem in complex analysis, a
product involving their zeroes can represent the entire functions. In addition,
every sequence tending to infinity has an associated entire function with zeroes
at precisely the points of that sequence.

A second form extended to meromorphic functions allows one to
consider a given meromorphic function as a product of three factors: the
function’s poles, zeroes and an associated non-zero holomorphic function.

In gamma functions a lot of important functions in applied sciences are
defined using improper integrals and Riemann zeta function, {(s), is a function
of a complex variable s = ¢ + it (here, s, o and ¢ are traditional notations
associated to the study of the {-function).
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Riemann’s Functional Equation implies that {(is) has a simple zero at each
even negative integer s =—2n. These zeros are the trivial zeros of {{s). Riemann
established the functional equation which is used to construct the analytic
continuation in the first place. An equivalent relationship was conjectured by Euler
for the Dirichlet eta function or the alternating zeta function and Runge’s theorem
(also known as Runge’s approximation theorem) is named after the German
mathematician Carl Runge who first proved it in the year 1885 and in Weierstrass
factorisation theorem you will learn about analytic continuation. Ifthere exist two
functions f](z) and f(z), such that they are analytic (regular) in domains D and
Dy, respectively, and that D] and D) have a common part, throughout which £] (2)
=/(z), then the aggregate of values of f1(z) and />(z) at the interior points of D
or Dy, canbe regarded as a single regular function (say) F(z). It is obvious that
F{(z) is regular in the common part say D of the two domains and F(z) =f](z) in
domain D and F(z) = f7(z) in domain D). We thus regard the function />(z) as
one, extending the domain in which f](z) 1s defined and so it is called an analytic
continuation off1(z).

In this unit, you will learn about the Weierstrass factorisation theorem, gamma
function and its properties, Riemann zeta function, Riemann’s functional equation,
Runge’s theorem, Mittag-Leffler’s theorem, analytic continuation, power series
method ofanalytic continuation, Schwarz reflection principle, monodromy theorem
and its consequences, harmonic functions on a disk, Harnack’s inequality and

theorem, Dirichlet problem and Green’s function.

4.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain Weirstrass’ factorization theorem
¢ Discuss gamma function and its properties
e Define Riemann zeta function and Riemann’s functional equation
¢ Elaborate on Runge’s theorem and Mittag-Leftler’s theorem
¢ Define analytic continuation
e Describe the power series method ofanalytic continuation
e Understand Schwarz reflection principle
¢ Explain monodromy theoremand its consequences
e Describe Harnack’s inequality theorem
¢ Discuss Dirichlet problem and Green’s function

4.2 WEIERSTRASS FACTORISATION
THEOREM

According to Weierstrass factorization theorem, in complex analysis a product
involving their zeroes can represent the entire functions. In addition, every
sequence tending to infinity has an associated entire function with zeroes at
precisely the points of that sequence.



A second form extended to meromorphic functions allows one to consider a
given meromorphic function as a product of three factors: the function’s poles,
zeroes and an associated non-zero holomorphic function. Consider a polynomial
p(z) with (all) zerosz,z, .....,z . Then,

Piz) = C(z,~2)...(z,—2) (C Constant)

=(Cz ..z (l_ij'“(l_ij
1 n Zl Zn
_ P(0) (1—ij...(1—ij
Zl Zn

Let now f(z) be an entire function with zeros z , z,, ..., z , ... arranged by increasing
modulj, ie.,

0<z <z, <.z, <.

By the uniqueness theorem of analytic functions, lim, |z, |=o .Assume z #0.
Then a factorization similar to the polynomial case above is not immediate, since

-]

may diverge. Therefore, we must somehow modify the situation to ensure the
convergence. This may be done by the following:

Theorem 4.1 (Weierstrass Theorem): Let (z,) _, be an arbitrary

neN

sequence of complex numbers different from zero arranged by increasing moduli
and lim, |z, |=o andlet m e NU {0} . Thenthere exist ve NU{0}, v=v(})),

suchthat D" |z, """ converges uniformly in C and that for the polynomial,

Qv(z):zz-i-%zz-i-...-i-lzv, vl Q)(2)=0
v

Also, for an arbitrary function g(z),

G(z) = eg“)""f[(l —i}g{;f] (40

j=l Z;

is an entire function with a zero of multiplicity m at z = 0 and with the other
zeros exactly at (z ).
Note: The sequence (z,) is not necessarily formed by distinct points.

Before proving the Theorem 4.1, we consider the entire function,

E(2)=(1-2)e%",  v2l; E(z)=1-z2

Weierstrass Factorisation

Theorem, Analytic
Continuation, Inequality
Theorem and Functions

NOTES

Self - Learning
Material 139



Weierstrass Factorisation
Theorem, Analytic

Continuation, Inequality
Theorem and Functions

NOTES

Self - Learning
140 Material

also called the Weierstrass factor.

We first prove three basic properties for £ (z):
(1)  E(z)=—z"¢*? forv>1:
E(2)=-e*? +(1-z)(1+z+...+2")e??

=2 (141442 =z~ =)=z

@) E@=1+3 az with ) la;|=1for y>0.

For v=0, this is trivial. Since E () is entire, we may consider its Taylor
expansion around z = 0:

E (2)= Zajzj
=0

Differentiating, we get

s

; 1 _ _ 0,(2)
Z]ajz’ =F (z)=-z"e""

=
Expanding the right hand around z=0, we get —z" Z_;:o B,z with B, =0 forall;.
Therefore a, =a,=...=a, =0 and a,<0 forj>v, hence |a | = —a forj>v.
Moreover, a,= E (0) = 1 and
0=E,W)=1+a;

Jj>v

Thus

Za.i Z_Z| a;|=-1,

Jj>v Jj>v

resulting in the assertion.

(3) If|z|<1,then |E (2)-1|<|z",v>0. By (2),

o0 o0
E@)-1E| Y a2'|< Y la | z)
J=v+l J=v+1
. v+1 S j—(v+1)< v+l _ v+l
Sz D a2 Lz M Y a, =2
Jj=v+l j>v

z
Proof of Theorem 4.1: We consider £, (z_} for j € N. The ideais to determine

J

© z
v so that H_,-:l E, (z_] converges absolutely and uniformly for |z |< R, R large

j
enough. To thisend, fix g~1and 0<a <1.Since lim, |z, |=o, we find g
R ) R q zZ . . .
such that, |z, [< o while |z, [> o Then H_,-:l E, (z—] is an entire function as
j

a finite product of entire functions. Consider now the remainder term



w Ev z
.11;!1 (Zj}

. . . . R
inthe disc |z|<R . Since j>¢,|z; |>aand SO

|z/z;|<a<]
Writing

E, (iJ - {1 —ij eQV[ij —1+U,(2),
Z; Zj

we proceed to estimate Uj.(z). Since j > ¢, and \Z/Zj.\ <1, (3) above implies

E, (iJ -1
Zj

We now divide our consideration in two cases:

v+l
z

U, (2) = S ..(42)

Z;

Case I: There exists p € N such that ZZJ z, [P <. Inthis case, we define
v:=p—1. From Equation (4.2), we obtain

U2 <R |2, [,

since | z|< R . Therefore,

0 0

YIU@ER Y|z, ["<e

= j=1
for |z|€R.

Now,

= - z
[1a+v,en=1]E (Z_} converges uniformly and absolutely.

J=q+1 J=q+1 Jj

Casell: Forall peN, ZTJ z, [”=. In this case, we take v=;—1,s0 v
depends on j. Then, by Equation (4.2) again

J

U, (2) <

z
Z.

J

z
provided j > g (which means .

<a<lyand |z|<R. Since |z/z,|<a<],

we have

and therefore, by the root test, which carries over from the (real) analysis

word by word, Z? |U;(z)| converges. As above, we get that

=q+1
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o z
1_[.,-:(7+1 E, (z_} converges absolutely and uniformly for | z|< R . [fwe now have

J

z

proved that H; E, (z—
j

desired zeros. Therefore, it remains to prove.

Theorem 4.2: If (f (2)) is a sequence of analytic functions in a domain G
and if there exists

lim f,(2) = /() ...(43)

uniformly in closed subdomains of G, then f(z) is analytic and
S@=lim £,(2).
Proof: This is a consequence of the Cauchy integral formula. In fact, fix
ze G arbitrarily and let B(z, r) be a disc, such that,
B(z,r)c G
By the Cauchy formula,

1,(2)=

} is analytic in C, then G(z) is entire and has exactly the

A e

Since the convergence formula is uniform on g,

11, - f(Q)<e
for n>n_ and for all C € 0B . Therefore,
1.8 4 J‘
Qi Jo -z 2mi B

—j M| §|<8271:r
T opdes 1C—z| g,

/ (C) f(C)
imatf, £ Qa1 1 [ T

1) 4,

and so

By Equation (4.3),

1= .LB g(_C)

Now, /' (z) exists since,

! iy ! /Q) 1@
LG+ f(z)]—m,,”.fw[C jdc

—(z+h) C-z

1 (ST f(C)

2nijﬁB(§—z)(§—(z+h)) 2mi (€ —-2)) a5

Therefore, f(z) is analytic. Since, the limit of Equation (4.3) is uniform in
OB , we get

, £(©) 1 dq
f(Z)_znlLB )2 dc= o lJ‘oB(n—)oof (C)) €- )




Q) (C)
"_>°°2TCI oB(C
4.2.1 Gamma Function and its Properties

A lot of important functions in applied sciences are defined using improper integrals.
One ofthe most famous among them is the gamma function. In the search for a
function generalizing the factorial expression for the natural numbers, one will come
upon the well-known formula,

J‘m e 't"dt =n!
0
By replacing » by x in the improper integral, we generate the function
R R
f(x)= IO e 't'dt

The only possible bad points in this definition are 0 and +o . Now, since, ¢ ~ 1
when ¢ ~ 0, then we have

B_th ~ tx =
t

when ¢~(0. We have convergence around 0 if and only if —x < 1 (or
equivalently x > —1). Alternatively, the improper integral is convergent at

+ 00 regardless of the value of x. Therefore, the domain of f{xx) is (-1, +00). If
we want (0, +0c) as a domain, we will need to translate the x-axis to get the

new function,
F(x)=f(x—1)= jo”” et dt

Now the domain of this new function called the gamma function is (U, +00 )

The above formula is also known as Euler’s second integral.
Basic Properties of Gamma Function
e T(n)=(n-1),n=1,2,.
e One of the most important formulas satisfied by the gamma function
is,
I'(x+1)=xI'(x)

for any x > 0. To prove this formula from the definition of T'(x), we
will use the following identity,

b _ X —Y X b b, x-1 .
L e't'dt = [—e 't ]a +xL e 't dt [Integration by parts]

If we let a tend to 0 and b to oo, we get the desired identity. In

particular, we get
I'x+n)=(x+n-Dx+n-2)..(x+DxI['(x)

for any x > 0 and any integer , >1. This formula makes it possible for
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the function T'(x) to be extended to (—o0,0) except for the negative

integers. In particular, it is enough to know I'(x) on the interval (0, 1]
to know the function for any x > 0. Note that since,

J‘Om e'dt=1
we get I'(1)=1. Combined with the above identity, we get what we
expected before:
I'(n)=(m-1!for n=1, 2,...

o Ifwe notice that in (I'(x)) is a convex function then we get the inequality,

X X
n'n! n'n! X+n
<I'(x)<

x(x+1)...(x+n) ()< x(x+1)..(x+n) n

or
n n'n!

C'(x) < <I'(x)

x+n x(x+1)..(x+n)

forevery 5 >1 andx> 0. If we let n tend to +o0 , then we get the identity

!
()= ki n'n!

e x(x+1)..(x +n)

e Weierstrass Identity: A simple algebraic manipulation gives,

X x/1 x/2 x/n
n'n! _ x(ln(n)—l—l/Z—M—l/n)l € € €

x(x+1)..(x+n) xl+x/11+x/2 1+x/n

Knowing that the sequence (In(n)—1-1/2—...—1/n) converges to the
constant, C, where

C= lim1+l+l+...+l—1n(n)
2 3 n

n—>+0

is the Euler’s constant, we get,

I'ix)=¢e" lhml—[ ¢

or

x/n

IF(x)=e“ —H

l+x/n

e For the logarithmic derivative of the gamma function we consider that,
I'(x) >0 for any x> 0, we can take the logarithm of the above expression
to get,

In(I'(x)) = —Cx —In(x) + Z[— - ln(l += D

n=1 \ 1

By taking the derivative, we get



d 1 &1 1
E(ln(r(x)))__C_T;(Z_Hnj
Or

+00

o __

1 X
I'(x) x Snlx+n)
tre

1

» tY
Lemma 1: 0<e —[1——j < forevery neN and 7 €[0,n].

n
‘ Y
Proof: The function Xn(f)Ze[l—;j has the property that

x,(0)=1,7%,(n)=0 and
¥ ()=¢ Kl —iJn ; n(l _ijn_ [_lﬂ ¢ (1 _Ljn_ (_Lj <0
! n n n n n .

, Y
For the other inequality, we consider 0, (1) =1—¢ [1 - ;j - Clearly 0,(0)=0

and
t Y2t Y
wo-tefi-t] 2t it ]
n n n n n

n—1
; t
Let g,(t)=e (1—;j -2,

Then,
n-1 n-2 n-2
g;,(,):e[(l_zj 1) }é(l_z) 1
n n n n n

g, (1)=0 onlywhenz=1, and g (1) is a maximum for g (). One checks that for

1 n-1
n>2, [1—;j <1/2 hence g, (1)<e/2-2<0. This implies that 0 () is

always decreasing when ,>2. For n = 1, we know that g () <0 when
t€[0, log2], g,(1)>0 when ze[log2,1]. Hence 6,(s) is decreasing on
[0, log2], increasing on [log2,1]. Nevertheless 6,(1)=0.

Hence the lemma is proved.

Let us define the auxiliary functions ¢, for e N by

n t nz—l
(pn(z).—jo(l—;jt dr

Lemma 2: The functions ¢, converge to  locally uniformly in the
half-plane {z|Rez>0}.
Proof: Let x=Rez. If0<x <1,

® —tx- x-1 (% - e’
S.[ et 'dt<n IJ. e'dt<

n

‘F(z) - jo" e dt

nl—x
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Ifx > 1 we can integrate by parts and obtain
J‘Oc et 'dt=e"n"" +(x - I)J‘Do et dt

It is clear that for any 0 <4 < B < o there is a constant C such that whenever
A<Rez<B we have

‘F(z) - Ione"ttz"ldt <Cn® e 50 as o0

On the other hand,

¢, (2) - jo" e ldt

n 2 _—t
sj tx'l{e"—(l—iJ ]dtSJ. e
0 n 0 n

I'x+2)
n

sl I Ce Ty <
n 0

Hence the lemma is proved.

Let us make the change of variable 1 =p»t In ¢, :

n tY . i - .n il el _z
0.(2) = j [1—;)1 ‘dt=n Io(l—t) v dt=n ;J-O(l—t) dt=...

0

z n' 1 z+n-1 nzn!
n. j dti=———
z(z+1)..(z+n—-1)°° z(z+1)...(z+n)

z

EREIEn

. . 1
Define the Euler-Mascheroni constant ¥ = llm,,%(z—, —logn) , and let

J=1

n

1 ..
y, = Z_.—logn —v. Rewriting »* as

=
Z {n 1 }
n=exp|| Y ——v-v, |z |.
( j=1J

Putting it into the last expression ¢, (z), let n—

I(z) = lim {ze”ﬁ(l + ij e_;]

j=l J

when Re z > 0. Also, note that the product is a Weierstrass product.
Hence it is an entire function and coincides with 1/ everywhere. This proves
that T~ never vanishes and has simple poles only at all non-positive integers.

From the Weirestrass product of the gamma function, we get

ME)(-2) = —Zif[[l —fl—j



Put,

f(z)= mH(l—;JeZ "

n#0

Hence, fis also a Weierstrass product. Taking the logarithmic differentiation
of fterm by term, we get

L0151 1) e )
f(z) z =\z—-n n sin mz

We know that there is a constant C such that f{z) = C sin nz. Dividing both
sides by iz and let z tend to 0, we get C= 1. Therefore,

sinmz = nzH(l —ij el = Tczﬁ (1 —éj L (44)

T(2)(1-z) = —2[(2)[(=2) = siritnz .(45)

Putting z = 1/2 and noting that T'(x) is positive when x is positive, we get

4.2.2 Riemann Zeta Function

The Riemann zeta function, {(s), is a function of a complex variable s = o +
it (here, s, o and ¢ are traditional notations associated to the study of the
{-function).

The following infinite series converges for all complex numbers s with real
part greater than 1 and defines {(s) in this case:

C(S)=Zn's =l+L+i+... c=R(s)>1
=i 15 2s 3s

The Riemann zeta function is defined as the analytic continuation of the function
defined for ¢ > 1 by the sum of the preceding series.

Riemann showed that the function defined by the series on the half-plane of
convergence can be continued analytically to all complex values s = 1.

For s = 1 the series is the harmonic series which diverges to + oo, and
lim(s —1)5(s) =1

Thus the Riemann zeta function is a meromorphic function on the whole
complex s-plane, which is holomorphic everywhere except for a simple pole
at s = 1 with residue 1.
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For any positive even number 2n,

_ 1y an(zn)zn
2n)=(=1) B

where B, is a Bernoulli number; for negative integers, one has

(o)=L
n+1

for n > 1, so in particular £ vanishes at the negative even integers because
B =0 for all odd m other than 1. No such simple expression is known for
odd positive integers.

If Re z>1+¢ where ¢~ ( then

PILELDI LA DI . (4.6)

k=
implies » " |n~* | converges uniformlyon {zeC|Rez>1+¢}.
Thus the series

=Y (47

converges normally inthe halfplane H = {z € C|Re z > 1} and so defines an analytic
function ¢ in H. The function {is called the Riemann zeta function.

Substituting »¢ for ¢ yields,

I'(z)= I: et dt = nZI: e "t \dt ....(4.8)
Therefore,
LG =) [ e di .. (4.9)
n=l1
for Rez>1.
Now,
0 e—t
—nt — — t _1 -1
;e =D ... (4.10)
if > 0. Ifz=x + iy then,
Jo Dt de=[ (@ -t (411

For large f we have (¢’ —1)"' ~ ¢ and for smallz we have (¢' —1)" =¢'. It
follows that the integral in Equation (4.11) converges if x > 1. Now, we can
interchange the order of integration in Equation (4.9).

Thus,

§(2)(z) = j: (¢ =)' dt .. (4.12)



The integral in Equation (4.12) is badly behaved for Re znear 1 since then
the integrand behaves roughly for small . Riemann therefore considers a related
contour integral where we avoid the origin.

1@ = -0 413)

N
N

Fig. 4.1 Countour along the Real Axis from o« to 8> 0

In Figure 4.1, the y is the contour along the real axis from o to & > 0,
counterclockwise around the circle of radius 6 with center at the origin, and then
along the real axis from & to co. We take —w to have argument —t when we are
going towards the origin and argument © when we are going towards oo. (Strictly
speaking we should open this contour up a little and then pass to a limit, or else
view it as lying in the appropriate Riemann surface.

The integral in Equation (4.13) converges for all z and defines an entire
function. Moreover, by Cauchy’s theorem it is independent of the choice of
&> 0. Additionally, w(e” —1)"' has a removable singularity at the origin and
so by Cauchy’s theorem,

I(k)=0 for k=2,34,.. ... (4.14)

Since, when z is an integer, the integrals along the real axis in Equation (4.13)
cancel and so we may regard vy as just the circle of radius 8.

Now,
I(2) = jg(e’ 1) gloer-in dt
) t

+ jl L@ =Dy d—v:V

dt
t

.. (4.15)

n .[3 ( _1)—lez(log(t)+irc)

We cannot use the Cauchy’s formula to evaluate the middle integral in

. w
Equation (4.15), but with w=38e” , we have o id® and so since w(e” —1)"'
has a removable singularity at the origin we see the integral is bounded by
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c&%="1. In particular, the integral goesto 0 as § —» 0 provided that Rez> 1.
Thus, letting § — (0 we obtain,

I(Z) — (em'z _ e—niz )J.OOO (et _ 1)—1 tz_ldt

. : ...(4.16)
=2isin(nz){(z)I'(z) if Rez>1.
Recalling the functional equation for the gamma function,
s
Ir'd-=)I'(z)=
(1-9r@) = L (4.17)
we obtain,
r(-z)
=2y
G = (). . (4.18)

Now, Equation (4.18) has been proved for Re z> 1, but the right side is analytic
in the whole plane, except that I'(1—z) has simple poles at z =1, 2, 3, ....On
the other hand, /(z) has zeros at z= 2, 3, ... Thus {(z) is actually analytic in
C~{l1}.Atz=1, there is at worst a simple pole. We can see the pole is actually
there by computing the residue.

L

. (z-DI'1-2)
lim—————=1(z) = I(1
2ol 2mi ) 2mi @
B A R L)
2mj JIvi=d w
= —lim(e" ~1)" (-w)

=1

Theorem 4.3: The zeta function ¢ continues analytically to a meromorphic
function in C with a simple pole at z = 1. The residue at the pole is 1.

Riemann now goes on to deduce the functional equation for the zeta function,
but first he remarks that £ vanishes at the negative even integers. This fact
may be seen as follows:

If 5> 0 is an integer then,

n!
G =51 . (420)

Ien) = =

Y w  dw (421)
= V] e

Now w(e” —1)" isanalytic in a neighborhood of the origin.




Thus,

0

\ 1 Y
i ey A .. (422)

n=01:

for [ w|< 2n. The numbers B, defined by Equation (4.22) are called the Bernoulli
numbers. Since,
w w

J’__
e ... (4.23)

is an even function we see that B, =—1/2 and the other odd Bernoullinumbers all
vanish. We can easily compute the even ones: for example

1
BZ - g
-1
B =—
t30
1
B =——
S 40 ... (4.24)
-1
B =—
Y30
Now by Cauchy’s integral formula we have,
(n+1)! woodw
27 J.|W|:6 " —1 w? - Bn+1 e (425)
And therefore,
B
—n)=(—1)" ==L
Gy =1y et .. (4.26)

for each integer »>0. It follows,

C(=2)=C(-4)=C(-6)=...=0.

These roots are called the trivial zeros of the zeta function. The remaining
roots are called the nontrivial zeros or critical roots of the zeta function.

4.2.3 Riemann's Functional Equation

The functional equation implies that () has a simple zero at each even negative
integer s =—2n. These zeros are the trivial zeros of {(s). Riemann established the
functional equation which is used to construct the analytic continuation in the first
place. An equivalent relationship was conjectured by Euler for the Dirichlet eta
function or the alternating zeta function.

n+l

=3 - 2s)

n

This relation exhibits € (s) as a Dirichlet series of the 7-function which is
convergent although non-absolutely in the larger half-plane ¢ > 0 and not just
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G > 1, up to an elementary factor. Riemann also found a symmetric version of the
functional equation, given by first defining

i(s)=l i2g(s - 1)r( jz;(s>

The functional equation is then given by,
&(s) =&l -s)
Riemann defined a similar but different function which he called 7).

Let us define the contour 7, consisting of two circles centered at the origin and a
radius segment along the positive real as shown below in Figure 4.2.

)
Y

(
\
\

an
D

Fig. 4.2 Contour of Two Circles ¥,

The outer circle has radius (27 + 1) and the inner circle has radius § < .

The outer circle is traversed clockwise and the inner one counterclockwise. The
radial segment is traversed in both directions. If we open the contour a little bit
along the real axis, we can employ the residue theorem and then pass to a limit, to
obtain

e S

2m

= Z iRes( -y — o) W) W= 27Ukj ...(4.27)

k=—n-n, k=0

= —Z":((zmk)z-1 +(~2mik))
k=1
Since,

+( l)z 1 ( zlog(i) ezlog(—i))

1 = =
=;[ P -e 2} ...(4.28)

=2sin (Ej
2



We get,
—1( W) z-1 N z-1
—I j (e =1)"' —dw=2(2m) sm[ : jZk ..(4.29)
Onthecircle, | w|=(2rn+1)n, wehave |¢* —1| is bounded independently of » and

we have| (—w)* / w|<|w[™*". Thus, if Re z <0, the integral over the large circle
tends to 0 as n—o. Therefore

L - E =20y lsm[ - jzn -.(4.30)

But,
-2
Hence,
L) =200 lsm( jr(l ) (431
for Re z< 0.

Now, by uniqueness of analytic continuation, Equation (4.31) is valid for all
z# 1. Note that {(1-z) has asimple pole at z= 0 and roots at the positive odd

integers greater than 1, T'(1- z) has simple poles at the positive integers and

sin(nz/2) has roots at the even integers. Hence, we can conclude that all the

singularities on the right hand side of Equation (4.31), except at
z=1, are removable.

4.2.4 Runge’s Theorem

If K is a compact subset of C (the set of complex numbers), 4 is a set containing
at least one complex number from every bounded connected component of
C\K, and fis a holomorphic function on an open set containing K, then there
exists a sequence (r ) of rational functions all of whose poles are in 4 such
that the sequence (r ) approaches the function f uniformly on K.

Theorem 4.4 (Runge’s Theorem): For any compact set K < C we have R(K)
=A(K) and P(K) = A(K) provided C—K is connected.

Proof: For the first result, suppose f{(z) is analytic on a smoothly bounded
neighborhood U of K. Then we can write

S(@)dt
f@)=-— i J.OU [— _J-aUFz(t)dt

Since d(z,0U)2d(K,0) >0, the functions {F } range in a compact subset of

C(0U) . Thus we can replace this integral with a finite sum at the cost of an

error that is small and independent of z. But the terms f{#)/(¢, — z) appearing
in the sum are rational functions of z, so R(K) = A(K).

The second result is proved by pole-shifting. By what we have just done,

it suffices to show that f,(z) =1/(z— p) e P(K) forevery pg K .Let Ec C—K
denote the set of p for which this is true.
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Clearly E contains all p which are sufficiently large, because then the power
series for ]; (z) converges uniformly on K. Also E'is closed by definition. To complete
the proof, it suffices to show £ is open.

The proofthat E is open is by ‘Pole Shifting’. Suppose pe E, g B(p, r)
and B(p, )N K = 0. Note that fq (z) is analytic on C— B(p, r) and tends to zero

as |z|—»> . Thus fq (z) can be expressed as a power series in 1/(z—p):

c-q)' = az-p)" =S af (),

convergent for|z — p [>| z—¢|, and converging uniformly on K. Compare the
expression,

1 <!
=2

z-1 45z

valid for | z[>1.) Since (z—¢g)"' — 0 as | z|—> oo, only terms with , >0 occur on
the right. But f, € A(K) by assumption, and A(K) is an algebra, so it also contains
f, . Thus, f, € A(K) as well.

This completes the proof.
We can use Runge’s theorem to show that there is a sequence of
polynomials f (z) that converge pointwise but whose limit is not even

continuous.

4.2.5 Mittag-Leffler's Theorem

This concerns the existence of meromorphic functions with prescribed poles
and asserts the existence of holomorphic functions with prescribed zeros.

Suppose fis meromorphic in a region Q with a pole at p ¢ 3 . Then, recalling
the Laurent expansion,

n-1

c, c q B e
f(z)_(z—b)"+(z—b)"‘1+m+(z—b)+a°+al(z by+a,(z-b)" +...,

for z near b. The sum of the first # terms,

n Cn—l Cl

S,(2)=— ot
(z=b)" (z-D)" (z—b)

is called singular part of f at b. If f is rational, then by a partial fraction
expansion

=35, @)+ p(a)

where p is a polynomial and {4 } are the poles of /. If /'is meromorphic in a
region Q with only finitely many poles {b,} and singular parts S, , k=1,...,n,
then

=35, ()+2(2)



where g is analytic in Q. This follows because f(z) - z S, (z) 1s analytic at each

b, and therefore in all of Q). In this section, we will find a similar expansion for
meromorphic functions in Q with infinitely many poles. We say that an infinite

sequence b, € Q — 0Q as k — o ifeachcompact g — (o contains only finitely

many b, .

Theorem 4.5 (Mittag-Leffler Theorem): Suppose 5, € QO — 0Q

3

C.
S, ()= —L—
Set O« _,Z:;(Z—bk)"

where each 7, is a positive integer and ¢;; € C. Then there is a function

meromorphic in Q with singular parts S, at b,, k=1, 2, ..., and no other
singular partsin Q.

Proof: Let,
K, ={zeQ:dist (z, 6(2)2l and |z |<n}.
n
Then K is a compact subset of Q such that each component of C\ K, contains

apomntof C\Q and K, cK,,, cUK, =Q.

n+l

By Runge’s theorem we can find a rational function / with poles in C/C2
so that,

Y S@-f()k2"

by ek, \K

forallz e K .
Then,

> Y S/,

nzm b ek, ,\K,

converges uniformly on K to an analytic function on K by the Weierstrass M-
test and Weierstrass’s Theorem.

Thus,
=Y 50+ Y Se-£0) . (432)

b ek, n=1 b€k, ,\K,,,

is the desired function.

Suppose we have to find a function meromorphic in C with singular part
a, /(z-b,) at {b.},where |b, | > . Then,

o0
k=1 Z —

> a"bk . (433)

will work, provided the sum converges. When does it converge? If | z|< R < o,
write
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> akbk= Y S+ Y S .. (434)

k=1 £~ {ki|b,|<2R} Z _bk {k:|b|>2R} Z _bk

The first sum has only finitely many terms. For the second sum, |z |<R <|b, |/2,
so that,

Thus if,

s

.. (4.35)

k=1 | bk

Then the second sum in Equation (4.34) converges uniformly on {|z| < R}
to an analytic function, by Weierstrass again. The right side of Equation (4.34)

then is meromorphic in |z| < R with singular part a, /(z—b,) at {b :|b, |<R}.
Since R is arbitrary, the sum in Equation (4.34) is meromorphic.

Mittag-Leffler’s idea was to subtract a polynomial from each term so that the
result converges.

L LZ(_j
z=b, _bk(l_zj =b, i=\ b,

b,

So it is natural to subtract a few terms of the expansion to make it smaller:

1 1 \&( z g 1 &z ’
z—b, _(_bk}iz(;(bkj =b, .i%l[bkj

n+1
1

provided |z |<|b, |.
For example, the following proposition holds.

Proposition 4.1: If 5, — « and if for some n <

|ak|
Z|b |n+2

f(z)=§(zf"b ( jz(b_] ]

atb,k=1,2,...,and

Then,

is meromorphic in C with singular part S, (z) =
Z—b;
no other poles.



To prove Proposition 4.1,

if | z|< R, split the sum into two pieces: a finite sum of the terms with

|b, | <2R and a convergent sum of the terms with |5, | >2R.

For example,

e a2 1

= ... (4.36)

sin®nz 2 (z—n)?

The right side of Equation (4.36) converges uniformly on compact subsets
of C and the limit is meromorphic with singular parts S (z)=1/(z—n)* atz=n
and has no other poles.

Fix R < oo and shift the sum into two pieces: a finite sum of terms with
|n|< 2R and the remaining infinite sum. In the second sum when |z |[< R , the nth

term is uniformly bounded by 1/(| n| —R)* < 4/n*. Thus the second (infinite) sum

converges uniformly and absolutely on |z|<R to an analytic function by
Weierstrass’s Theorem.

The function nz/sinnz , # as a removable singularity at z =0 and is an even
function

So that,

nz

——=1+0(z"),
sinmz

near 0. By squaring and dividing by z* we conclude that the the singular part
of 72 /sin?nz at z= 0 is 1/z% Since sin® n(z —n) =sin’ 1z, we conclude that
the singular part of the left side of Equation (4.36) is the same as the singular part
of the right side of Equation (4.36) at z = n for each n. Set

e a2 1

F(z)=

sinnz S (z—n)
Then F is entire and F(z + 1) = F(z2).

Write z = x + iy and suppose 0<x <1. We claim that

| F(z)|—> 0, ...(4.37)

as | y[=> . If so, F'is bounded in the strip 0 < x <1 and since F(z+1)=F(z),
the function £ is bounded in C. By Liouvulle’s Theorem, F is constant and
by
Equation (4.37) F'=0, proving the Example. To see Equation (4.37) first observe
that,

|sinnz |= ‘e"“y”m - e“y"im‘/2 —> o0,
as | y |- o. Thus the left side of (4.36) tends to 0 as | y|—> o, with o< x<1.
Likewise in the strip 0 < x <1, the right side of Equation (4.36) is dominated by
Z 1

(|n]=17"+y
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which also tends to 0 as | y |- oo by comparison with the integral LOC de /(x> + 7).
This proves Equation (4.37) and the example.

Again consider an example.

ncotnz—lJrZ( : +lj 4.38
D (g | ...(4.38)
i incotnz—— u ——Z;
First observe that p sin’ 1z (z—ny -

1
But ncot mz #
ut Z:z—n’

because the latter sum does not converge. The difficulty is that for |z|<R,
the nth term behaves like 1/n. However,

1 1 z 1

p— ~—

z—n n _(z—n)n n’

for large n and z n"* < 0. To prove this example suppose |z/< R and split the sum

on the right side of Equation (4.37) into the sum ofthe terms with |#|<2R and the
sum of'the terms with || > 2R. The first sum is finite and the second sum has terms
satisfying

1 1

+ —
Z—n n

z R 2R

<= ==
n n2
—.n

(z—n)n

Since z 2R/n’ < oo, the right side of Equation (4.37) is meromorphic in || < R with
poles only at the integers and prescribed singular parts 1/(z—n), for each R <oo.
Furthermore by Weierstrass’s Theorem and previous example the right side of
Equation (4.38) has derivative

1 1

d
—— — =—TCcot mz.

2 =(z-n) dz

Thus the two sides of Equation (4.38) differ by a constant.

The convergence of the right side of Equation (4.38) is absolute, so that we can
rearrange the terms and the sum will converge to the same limit. This allows us to
conclude that the right side of Equation (4.38) is an odd function. Since the left
side of Equation (4.38) is also odd, the difference between the left and right sides
is odd and constant and hence is identically 0.

Check Your Progress

. State Weierstrass' factorization theorem.

. What is the logarithmic derivative ofthe gamma function?
. Define Riemann zeta function.

. What does the functional equation implies?

. What does Runge's theorem state?

. What does Mittag-Leffler theorem state?
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4.3 ANALYTIC CONTINUATION

Suppose that V'is a connected, open subset of Cand thatf: V' — Candf,: V—
C are holomorphic functions. Ifthere is an open, non-empty subset U of J'such
that /, =/, on U, then f, =/, on all of V. We can also say that, if we are given f
holomorphic on U, then there is at most one way to extend fto V' so that the
extended function is ho lomorplgc.

Example 4.1: Define f(@)= z z’ This series converges normally on the disc
D={zeC: |z <1}. =0

It diverges for |z| > 1. On summing the series, we observe that

In this formula, the natural domain of definition for f'is a large set
C\{1}. o
Again consider the gamma function, ['(z) = I’ Tledt

The size of the term £ in this function is |=!|=*¢ =1, Thus, the
singularity at the origin will be integrable when Re z > 0. Because of the
presence of the exponential factor, the integrand will certainly be integrable
at infinity. The function 1 is holomorphic on the domain U= {z: Re z > 0}.

The functions,
1/a

Itz_le_’dt ’

where a > 0 are holomorphic by differentiation under the integral sign and I'(z) is
the normal limit of these integrals as a — 0*. The given definition of gamma function
makes no sense when Re z < 0 because the improper integral diverges at 0.

We can write,
o0

I'(z)= J.tzflefrdt = ltzeff
o z

+lj'mtze”dt
o Z%°
This function is holomorphic on U, = {z: Re z> -1}/ {03}.

Again integrating by parts,
1

r =
(Z) z (z + 1)

which converges on U, = {z: Re z>-2}/{0, —1}.

j e dt
0

Hence, the gamma function can be analytically continued to U= {z& C: z#
0,-1,-2,...}.

There can be atmost one way to affect the analytic continuation process.
Any attempt of analytic continuation along two different paths results in ambiguities
in the process.
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Function Elements: A function element is an ordered pair (f, U), where U'is a
disc D (P, r) and f'is a holomorphic function defined on U. If Wis an open set,
then a function element in W 'is a pair (f, U) such that U c W.

Direct Analytic Continuation: Let (f, U) and (g, V) be function elements. We
say that (g, V) is a direct analytic continuation of (f, U) if U ~ V' #¢, and fand g
are equal on U\ V. Obviously (g, V) is a direct analytic continuation of (f, U) if
and only if (f, U) is a direct analytic continuation of (g, V).

Analytic Continuation of a Function: If (/, U)), . .., (f,, U,) are function
elements and if each (/?, Uj.) is a direct analytic continuation of (/?1’ UH)’ j=2,.
.., k, then we say that (f, U)) is an analytic continuation of (f,, U)). Clearly, (f,,
U,) is an analytic continuation of (f,, U)) if and only if (f,, U)) is an analytic
continuation of (f,, U,). Also if (,, U)) is an analytic continuation of (f, U,) via a
chain(f,,U), ..., (f, U)andif(f_,, U ) is an analytic continuation of (f,, U,)
viaachain(f,, U), /.., U,,), . ... (f,,» U,,), thenstringing the two chains together
into (f, U)), ..., (f,,,U,,) exhibits (f_,, U, ) as an analytic continuation of (7,
U)). Obviously, any function element (f; U) is an analytic continuation of itself.

Analytic Continuation Along a Curve

Lety :[0,1] > C be a curve and let (f, U) be a function element with Y(0) the
centre of the disc U. An analytic continuation of (f, U) along the curve is a
collection of function elements (f, U), ¢ € [0, 1], such that (f,, U)) = (f, U),
for each 7 € [0, 1], the centre of the disc U, is y(#), 0 <7 < 1 and for each
t € [0, 1], there is an >0, such that for each 7' [0,1] with |- 7|<g, it holds that:

y(t) € Uandhence U, nU, # ¢ and f,=f. onU,NU,.

Let U be a disc with function element (f; U) and centre P. Let Y be a curve
such that y(0) =P. Now, if (f , U ) is the terminal element of one analytic

continuation (fr ,U) and if (? = U ) is the terminal element of another analytic
continuation (7;,(7 z) then fm and 7;1 areequalon U~ U,,. This result says

that analytic continuation of a given element along a curve is unique.

4.3.1 Power Series Method of Analytic Continuation

A series of geometrically increasing numbers,

S=14+x+x*+x*+... +x"

can be expressed in terms of just the second and the last number by noting
that,
1+xS =1+x+xX+x+ . +x"+x"=8 +x"!

Solving for § gives,

1
=l+x+x2+x3+.. +x" ... (4.39)



Now, if the magnitude of x is less than 1, the quantity x"*' goes to zero as n
increases, so we immediately have the sum of the infinite geometric series,

1
:=1+x+x2+x3+... ... (4.40)
Archimedes evaluated the area enclosed by a parabola and a straight line
essentially by determining the sum of such a series. This is perhaps the first example
of'a function being associated with the sum of an infinite number of terms. To

illustrate, if we set x equal to 1/2, this equation gives,
1 1 1
2=14+—+—+—+..
2 4 8

There is, of course, a very significant difference between Equations (4.39)
and (4.40), because the former is valid for any value ofx, whereas the latter is
not—at least not in the usual sense of finite arithmetical quantities. For example, if
we set x equal to 2 in Equation (4.41) we get,

1=1+2+4+8+...

which is surely not a valid arithmetic equality in the usual sense, because the right
hand side does not converge on any finite value. This shows that the correspondence
between a function and an infinite series, such as Equation (4.40) may hold good
only over a limited range of the variable. Generally speaking, an analytic function /'
(2) can be expanded into a power series about any complex value of the variable
z by means of Taylor’s expansion, which can be written as

f'(Zo) f"(Zo) 2 fm(zo) 3

f(zo+2)=f(z))+ T zZ+ Y z + 3 z +...

but the series will converge on the function only over a circular region ofthe complex
plane centered on the point z, and extending to the nearest pole of the function
(i.e., apoint where the function goes to infinity). For example, the functionf(z) =
1/(1—z) has apole at z= 1; so the disc of convergence of the power series for this
function about the origin (z = 0) has a radius of 1. Hence, the series given by
Equation (4.41) converges unconditionally only for values of x with magnitude
less than 1.

The analytic function f(z) = 1/ (1-z) can also be expanded into a power
series about any other point (where the function and its derivatives are well
behaved). The derivatives of f'(z) are,

(o] (e 2 iy 6
1'(2) (l—Z)z’f() (1_2)3,f() (1_2)4,andsoon.

Inserting these into the expression for Taylor’s series, we get

1 z z’ z
f(zo+2)= + + + +...

(1-2z,) (1_20)2 (1—20)3 (1—20)4
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Hence, the power series for this function about the point z, =2 is,
fR+z)y=-1+z-22+2 -+ ..

Each of the power series obtained in this way is convergent only on the
circular region of the complex plane centered on z, and extending to the nearest
pole ofthe function. For example, since the function f(z) =1/ (1—z) has a pole at
z =1, the power series with z = 2 is convergent only in the shaded region as
shown in the Figure 4.3.

MR+z)=-1+z-2+2— ...

Fig. 4.3 Power Series Convergent in Shaded Region

So far we have discussed only the particular function f(z) = 1/ (1-z) and
have shown how this known analytic function is equal to certain power series in
certain regions of the complex plane. However, in some circumstances we may be
given a power series having no explicit closed-form expression for the analytic
function it represents in its region of convergence. In such cases, we can often still
determine the values of the underlying analytic function for arguments outside the
region of convergence ofthe given power series by a technique called analytic
continuation. To illustrate with a simple example, suppose we are given the power
series, f(z) = 1+ z+z* + 2 +..., and suppose we do not know the closed-form
expression for the analytic function represented by this series. As noted above,
the series converges for values of z with magnitudes less than 1, but it diverges for
values of z with magnitudes greater than 1. Nevertheless, by the process of analytic
continuation we can determine the value ofthis function at any complex value of z
(provided the function itself is well behaved at that point). To do this, consider
again the region of convergence for the given power series as shown below in
Figure 4.4.

Feo+2)= fz)+ Sz +) ';Zo)zz ‘.

il.
. .
T .
P
. i
, o

fo)y=1+z+2+2+ ..

Fig. 4.4 Region of Convergence



Since the known power series equals the function within its radius of
convergence, we can evaluate f(z) and its derivatives at any point in that region.
Therefore, we can choose a point, such as z, shown in the Figure and determine
the power series expression for f(z, + z), which will be convergent within a circular
region centered on z, and extending to the nearest pole. Thus, we cannow evaluate
the function at values that lie outside the region of convergence of the original
power series. Once we have determined the power series for f(z,+ z), we can
repeat the process by selecting a point z inside the region of convergence and
determining the power series for f(z, +z), which will be convergent in a circular
region centered on z, and extending to the nearest pole (whichisat z= 1 in this

example). This is illustrated in the following Figure 4.5.

fo)=1+z+2+2+ ...

Fig. 4.5 Convergence in Circular Region

Continuing in this way, we can analytically extend the function throughout
the entire complex plane, except where the function is singular, i.e., at the poles of
the function. In general, given a power series of the form,

f)=aftaz-o)++az-a)+az-a)+..

where the aare complex coefficients and o is a complex constant, we can express
the same function as a power series centered on a nearby complex number 3 as,

fD)=bstb(z=P) +b(z—P)*+b(z—P)+ ...
where the bj are complex coefficients. In order for these two power series to be
equal for arbitrary values of z in this region, we must equate the coefficients of
powers of z, so we must have
by — Bb, + B°b, — Bb, + ...
b, —2pb, +3p°b, —45°b, +...
b, —38b, +63°b, —103°b, +...

2 3
a,—oaa taa,—aa,+..

2 3
a,—2aa,+3a’a; —4a’a, +...

2 3
a, —3aa, +6a’a, —10a’a; +...

In matrix form these conditions can be written as,

l —a o - o .. _ao_ 1 - p> -p B _bo_
0 1 20 3a> -4 .| q 0 1 -283B —4p b,
0 0 1 Ba 6a> ..[|a|l |0 0 1 38 68 b,
00 0 1 —4a .||la|llo 0o o 1 -4 b,
0 0 0 O 1 . a 0 0 0 0 1 b,
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Multiplying through by the inverse ofthe right hand coefficient matrix, this

gives
b, | 1 e &£ £ & ——ao_
b, 0 1 2& 3¢ 4 .| q
bi 10 0 1 3 65 .||a
bl lo o 0 1 4 .. |a L (441)
b, 0 0 0 O 1 a,

where ¢ = § — a.. Naturally, this is equivalent to applying Taylor’s expansion.
Now, it might seem as ifthis precludes any extension of the domain ofthe original
power series. For example, suppose the original function was the power series for
1/(1 - z) about the point a. = 0, so the power series coefficients a, a,, ... would
all equal 1. According to the above matrix equation, the coefficient b, for the

power series about the point § would be simply by =1+ F+ 2+ +...
This of course converges only over the same region as the original power

series. In addition, it is ofno help to split up the series transformation into smaller
steps, because the compositions of the coefficient matrix are given by,

(1 & £ £ & 1|1 (ng)(ng)z(ng)3 (ng)4

0 1 2 35 4¢ 0 1 2(ns)3(ns) 4(ne) ...
0 0 1 3 6 _ 0 0 1 3(ne)6(ne)
00 0 1 4 00 0 1 4
o0 0 0 1 00 0 0 1

Thus, the net effect of splitting € into » segments of size /n and applying the
individual transformation » times is evidently identical to the effect of performing
the transformation in a single step. From this we might conclude that it is impossible
to analytically continue the power series 1 +z+2z*+ ... to any point such as 3i/2
with magnitude greater than 1. However, it actually is possible to analytically
continue the geometric series, but only because of conditional convergence. This
is most easily explained with an example. Beginning with the power series,

f)=1+z+22+2+.. ...(4.42)

centered on the origin, we can certainly express this as a power series centered on
the complex number € = 3i/4, because the power series f(z) and it derivatives are
all convergent at this point as it is inside the unit circle of convergence. By Equation
(4.41)witha,=a =a,=... =1, the coefficients of
fl)y=b,+b(z-e)+b(z—e)+b(z—¢e)+..



30.(3.Y (3. 16+12i
by=1+| —i | 0|+ —i ] +. -
4 4 4 25
2 3 )
bo=t+2 Jila3[ 2] waf 2] 4. 112H384
4 4 4 625

2 3 .
b=1+3( 2| +6[ 2] +10[ 2 L _ 7281647488
4 4 4 15625

The absolute values ofthese coefficients are b =(4/5)"*'. Now if we take
these as the a values and apply the same transformation again, shifting the center
ofthe power series by another € =3i/4, so that the resulting series is centered on
3i/2, we find that the zeroth coefficient given by Equation (4.41) is,

[16+121} [3.)[11%3841} [3,)2[—2816+7488i} 4+ 6i
b, = +|—i||— |+ =i | | —————— |+...=
25 4 625 4 15625 13

in agreement with the analytic expression for the function. This series clearly

converges, because each term has geometrically decreasing magnitude.
Similarly, we can compute the higher order coefficients for the power series
centered on the point 3i/2, which is well outside the radius of convergence of
the original geometric series centered on the origin. We have essentially just
multiplied the unit column vector by the coefficient vector for € twice, which we
know gives the divergent result

e )G

To examine this more closely, let us expand the quantities in the square
brackets in the preceding expression for b,. This gives,

3 3 (3Y
by=1+|=i|+|—=i| +|—=i| +...
4 4 4
2 3 4
+[éij+2(éij +3(éij +4[§ij +...
4 4 4 4
2 3 4 5
+[éij +3(§ij +6(§ij +10(éij +...
4 4 4 4
3 4 5 6
+[§jj-+4(§ij +10(§i] +20[§i] +...,etc.
4 4 4 4

Each individual row is convergent and the rows converge on geometrically
decreasing values; so the sum of the sums ofthe rows is also convergent. However,
if we sum the individual values by diagonals we get,
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Thus, the terms for b, are divergent if we sum them diagonally, but they
are convergent if we sum them by rows. In other words, the series is conditionally
convergent, which is to say, the sum of the series— even whether it sums to a finite
value at all—depends on the order in which we sum the terms. The same applies
to the series for the other coefficients.

Since the terms of a conditionally convergent series can be rearranged to
give any value we choose, whether analytic continuation—which is based so
fundamentally on conditional convergence—really gives a unique result? To show
that we can also continue the geometric series to points on the other side of the
singularity using this procedure. Consider again the initial power series in Equation
(4.42), and this time suppose we determine the sequence of series centered on
points located along the unit circle centered on the point z=1 as indicated in the

Figure 4.6.

Fig. 4.6 Sequence of Series

Thus, letting o = €*, we wish to carry out successive shifts of the power
series center by the increments,

g=1-«a gzza(l—a) €3=a2(1—a) 54=a3(1—a)

and so on. Applying Equation (4.41) with £ = ¢, to perform the first of these
transformations we get the sequence of coefficients,

b=1+(1-a)+(1-af +(1-a) +.=+

[24

b=1+2(1-a)+3(1-a) +4(1-a) +.=—

aZ
b=1+3(1-a)+6(1-a) +10(1-a) +..=—

3
[24

Now if we call these the a, coefficients and perform the next transformation
using Equation (4.42) withe = ¢, we get



bO=é+[a(l—a)]$+[a(l—a)]zé%—[a(l—a) 3?4—...:?
b, =é+2[a(l—a)]%+3[a(l—a)]z%4—4[0{(1—0{)}3%4—...:%
b, =%+3[0{(1—0{)}%4—6[0{(1—0{)}2%10[05(1—05)}3%—i—...:%

Each of these sums is clearly convergent, because |o = 1 and |1-a < 1.
Continuing in this way, the nth power series in this sequence is,

f;}(z):e—nie 1 2mio (Z—,Lln)+€73m—€(z—,un)2 1o (Z_,Un)3 T

where p = (1 —e™) is the nth point around the circle. This can also be

written in the form,
2 3
—nif Z_Iun Z_Iun Z_lun
.](;I(Z):e (1+( eni€ j—i_( enit9 j +( eniﬁ j +j
B e—ni@ B 1
Z—H, l1-z
1_ . n
em€

These examples demonstrate that Equation (4.41) can be used consistently
to give the analytic continuations of power series; although in cases where the
sums cannot be explicitly identified by closed-form expressions there is a problem
of sensitivity to the precision of the initial conditions and the subsequent
computations. At each stage, we need to evaluate infinite series and the higher
order coefficients tend to require more and more terms before they converge, and
there are infinitely many coefficients to evaluate. Smaller incremental steps require
fewer terms for convergence of each sum, but they also require more
transformations to reach any given point, and this necessitates carrying a larger
number of coefficients. So, in practice, the pure numerical transformation of series
using Equation (4.41) often leads to difficulties. Also note that many power series
possess a ‘Natural Boundary’, i.e., the region of convergence is enclosed by a
continuous locus of points at which the function is singular or not well-behaved in
some other sense (e.g., not differentiable), and this prevents analytic continuation
of'the series. Nevertheless, it is interesting that an analytic function can, at least
formally, be represented by a field of infinite-dimensional complex vectors, and
that the process of analytic continuation can be represented by non-associative
matrix multiplication. The failure ofassociativity is because the convergence ofthe
conditionally convergent series depends on the order in which we add the terms
and this depends on the order in which the matrix multiplications are performed.

Incidentally, in each when analytically continuing the geometric series f(z) =
1 +z+2*+2°+ ... by the procedure described above, we could have noted that
the transformed functions centered on the point z  are expressible in the form,

Weierstrass Factorisation

Theorem, Analytic
Continuation, Inequality
Theorem and Functions

NOTES

Self - Learning
Material 167



Weierstrass Factorisation
Theorem, Analytic

Continuation, Inequality
Theorem and Functions

NOTES

Self - Learning
168 Material

/(2) =f(zo)f(z‘z°j

1-z,

This is a simple functional equation and can be applied recursively to give
the analytic continuation of the function to all points on the complex plane except
for the pole at z= 1. For any z we can choose a value of z that is close enough to
z so that the absolute value of (z—z)/ (1-z,) is less than 1 and hence the function
fofthat value converges. Of course, to apply the above equation we must also be
able to evaluate f(z ), even if the magnitude of z, exceeds 1, but we can do this by
applying the formula again. For example, if we wishto evaluate /(37) we could use
the power series centered on z, = 7i/4, which requires us to evaluate /' (7i/4), and
this can be done using the power series centered on z = 3i/4. Thus, we can write

1) =r[20)r (T_}?jf =

The argument of each of the right hand side functions has magnitude less than 1, so

they can each be evaluated using the original geometric series to give /' (37) =0.1
+0.3i, which naturally agrees with the value 1/(1-3i). In general, to evaluate /(2 )
for any arbitrary value ofz , we could split up a path from the origin to z_into
small increments Az and then multiply together the values of f (Az/(1-z)) to give
the overall result. [f we take the natural log of both sides, the expression could be
written in the form,

et (g ol i)l

In the limit as the increments become arbitrarily small we can replace Az

with dz and integrate the right hand side. In this limiting case only the first-order
term ofthe geometric series is significant, so we have

f( dz j—>1+ dz ln[1+ dz }—) dz

1-z 1-z -z 1-z

Therefore, the integral of the right hand side reduces to,

l(e)] - -

from which it follows that,

Another important aspect of analytic continuation is the fact that the
continuation of a given power series to some point outside the original region of
convergence can lead to different values depending on the path taken. This
phenomenon did not arise in our previous examples, because the analytic function
1/(1—2) is single-valued over the entire complex plain, but some functions are



found to be multi-valued when analytically continued. To illustrate, consider the
power series

F(2)=(z 1) (21 +2(z1) — 1) 4
2 3 4
which of course equals In(z) within the region of convergence. This series is centered
about the point z =1 and at z = 0 it yields the negative of the harmonic series,
which diverges. So the function is singular at z = 0. Now suppose we analytically
continue this power series to a sequence of power series centered on points on
the unit circle around the origin, i.e., the sequence of points €?, ¢*°, &, ... for
some constant angle 0. Noting that the nth derivative of In(z) s,

L ey = (-1 ZZI)!

¥4

We see that the power series centered on the point ¢ is given by the Taylor
series expansion,

£i(2) = () 1) (2= o g () -e) g (e (e

2 e
2 3
z 1( z 1 z
=0+ ——1|——| ——-1| +=| ——-1| —...
(819 j 2(816 ) 3(@19 )
:i€)+f(%j
e

Repeating this calculation for each successive point, we find

fn(z)znieJrf( fiej
e

This converges provided | z—e"°| < 1. For n0 =2k we have f (z) = (2mi)k
+ f(z). So each time we circle the singularity at the origin, the value ofthe function
increases by 27i. This is consistent with the fact that the natural log function (i.e.,
the inverse ofthe exponential function) ofany given complex number has infinitely
many values, separated by 2rti. Notice that, in this case, our functional equation
is

/(=)= (Zo)+f(ij

Zy

which can be used in a way analogous to how the functional equation for
the geometric series was used to analytically continue the power series to all non-
singular points. In this regard, it is interesting to recall that the matrix formulation
given by Equation (4.41) is entirely generic, and applies to all power series,
represented as infinite dimensional vectors. So whether or not a certain power

series continues to a single-valued function like the geometric series, a multi-valued
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function like the series for the natural log, or cannot be continued at all, depends

entirely on the initial vector.

4.3.2 Schwarz Reflection Principle

Theorem 4.6 (Schwarz Principle): Given a piecewise continuous function U(0)
on 0 <6 <2, the Poisson integral,
1 e +z

2n
—— [TReE
(Z) 27'5 0 eeIG_Z

P

U

U(6)do

is harmonic for |7/ < 1and lim__ ,, B, (z)=U(8,) provided U is continuous at 6,

1 + d
Proof: The function, /(%) :%I |§|1§£U (C)?C is analytic on |z] < 1 and

hence P (z) is harmonic for |z| < 1. P is a linear operator which maps piecewise
continuous functions U on the unit circle to harmonic functions B, on the
open unit disc. It satisfies £, ,,, = £, + £, and P, =cP, for constant c. Now,
P =c andm<U<Mimplies m< P, <M . Let U(6,)=0; otherwise we can
take U — U(6,) instead. Now, take a short arc C, <dD containing 6, in its
interior, such that |U(6)|<& on C,. Let C, be its complement in gp . Let U,

i=1, 2, equal Uon C and zero elsewhere. ThenU =U, +U,. £, is harmonic
away from C, or we can say that it is harmonic in a neighbourhood of ¢ .

On the other hand, £, satisfies | B, | <& since |U,| <e. Adding up £, and £,
we see that |B,| can be made arbitrarily small in a neighbourhood of ¢ .

Therefore, there is a 1-1 correspondence between continuous functions on
the unit circle and continuous functions on the closed unit disk that are
harmonic on the open unit disk. The correspondence is given by U - P, , and
its inverse map is just the restriction £, |, .

Goal of Schwarz Reflection Principle: The goal of the Schwarz reflection
principle is to extend or continue an analytic function f:Q— C to a larger
domain. The ultimate goal is to find the maximal domain on which f can be
defined.

Observation: Iff{z) is analytic on Q, then £(z) isanalyticon Q'={z |zeQ}.
If f(z) is an analytic function, defined on a region Q which is symmetric about
the x-axis, and f(z)=f(Z), then f(z) is real on the x-axis. We have the
following converse:

Theorem 4.7: Let Q be a symmetric region about the x-axis and let
Q" =Qn{Imz>0}, c=Qn{Imz=0}. If f(z) is continuous on QO Uy,
analytic on (* and real for all z e o, then f(z) has an analytic extension to
allofQsuchthat f(z)= f(z).

Proof: Given f(z) = u(z) + iv(z) on Q*, extend f(z) to ¢~ by defining
f(2)=f(Z) =u(@)-ivz) for zeQ . From above, v(z) is extended to a
harmonic function /(z) onall of () asabove. Since —(z) is the harmonic conjugate
ofv(z) on (»*, we define U(z) to be a harmonic conjugate of —}(z) (at least ina



neighborhood D; (z, )of z, € 5). Adjust U(z) (by adding a constant) so that U(z)
= u(z) onthe upper half disc.

We prove that, g(z)= U(z)-U(zZ) =0on D,(z,) . Indeed, U(z) =U(zZ)

og g ou ov

—==0 =2 =2 =0 .

on o, S0 . on o . Also, oy Py . on o . Therefore, the analytic
og .0g

—]—

function A oy vanishes on the real axis, and hence is constant. Since g(z) =0

on o , g(z) is identically zero. This implies that U(z) - U(Z) onall of D;(z,),
hence proving the theorem.

Theorem 4.8: Suppose v(z) is continuous on Q" U o, harmonic on )+ and zero
on o . Then v has a harmonic extension to () satisfying v(z)=-v(z).

Proof: Define V(z) to be v(z) for zeQ", 0 for zeo, and —v(z) for
zeQ =Qn{Imz<0}. We want to prove that ¥(z) is harmonic. For each
z, € o, take an open disc D;(z,) c Q.

Now, we define P, to be the Poisson integral of /' with respect to the boundary
8D;(z,) . P, is harmonic on D;(z,) and continuous on D,(z,). Now, we will
show that V' =P, .

On the upper half disc, V" and B, are both harmonic, so V- P, is
harmonic. ¥ - P, =0 on the upper semicircle, since V' (z)=v(z) by definition
and P, (z) =v(z) by the continuity of P, (here z is on the semicircle). Also,

1
V —B, =0 on cnDs(z,), since v(z) = 0 by definition and £, (Z):Z J.mzﬁ

&—|zf - .
C—zf V(£)d0 | and we note that the contributions from the upper semicircle

cancel those from the lower semicircle.

Summarizing, ¥ — P, is harmonic on the upper halfdisc D,(z,) Q"
continuous on its closure and zero on its boundary. Therefore, ' = B, on the
upper half disc.

4.3.3 Monodromy Theorem and its Consequences

In complex analysis, the monodromy theorem is an important result about analytic
continuation of a complex-analytic functionto a larger set. The idea is that one can
extend a complex-analytic function (from here on called simply analytic function)
along curves starting in the original domain of the function and ending in the larger
set. A potential problem of this analytic continuation along a curve strategy is there
are usually many curves, which end up at the same point in the larger set. The
monodromy theorem gives sufficient conditions for analytic continuation to give
the same value at a given point regardless of the curve used to get there, so that the
resulting extended analytic function is well defined and single-valued.
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Before stating this theorem, it is necessary to define analytic continuation
along a curve and study its properties.

Analytic Continuation Along a Curve

The definition of analytic continuation along a curve is a bit technical, but the basic
idea is that one starts with an analytic function defined around a point, and one
extends that function along a curve via analytic functions defined on small

overlapping discs covering that curve.

Formally, consider a curve (a continuous function) y:[0,1] > C . Let f be

an analytic function defined on an open disc U centered at y (0). An analytic
continuation of the pair (f, U) along v is a collection of pairs (fr ,U) for o<¢<1
such that,

e f,=fand U =U.

o Foreachz e [0, 1], U, is an open disc centered at y(¢) and f,:U, - C
is an analytic function.

e Foreacht € [0, 1] there exists € > 0 such that for all #' € [0, 1] with
|t—1'|<e,y(t") e U, (which implies that U and U, have a non-empty
intersection) and the functions f; and f/, coincide on the intersection
UunuU,.

Properties of Analytic Continuation along a Curve

Analytic continuation along a curve is essentially unique in the sense that
given two analytic continuations (f, U) and (g, V) (0 <7 <I) of (f, U) along
v, the functions f, and g, coincide on U, N7, . Informally, this says that any

two analytic continuations of (f, U) along y will end up with the same values
in a neighborhood of 'y (1).

If the curve y is closed, i.e., y (0) =y (1) one need not have f, equal /| in
a neighborhood of'y(0). For example, we start at a point (a, 0) with @ > 0 and
the complex logarithm defined in a neighborhood of this point, and let y be
the circle of radius a centered at the origin travelled counterclockwise from
(a, 0), then by doing an analytic continuation along this curve we will end up
with a value of the logarithm at (a, 0) which is 2w plus the original value.

Theorem Statement

Two analytic continuations along the same curve yield the same result at the
curve’s endpoint. However, given two different curves branching out from
the same point around which an analytic function is defined, with the curves
reconnecting at the end, it is not true in general that the analytic continuations
ofthat function along the two curves will yield the same value at their common
endpoint.

Consider the complex logarithm defined in a neighborhood of a point
(a, 0), and the circle centered at the origin and radius a. Then, it is possible to
travel from (a, 0) to (—a, 0) in two ways, counterclockwise, on the upper half-
plane arc ofthis circle and clockwise, on the lower half-plane arc. The values of



the logarithm at (—a, 0) obtained by analytic continuation along these two arcs will
differ by 2.

If, however, one can continuously deform one of the curves into another
while keeping the starting points and ending points fixed, and analytic
continuation is possible on each of the intermediate curves, then the analytic
continuations along the two curves will yield the same results at their common
endpoint. This is called the monodromy theorem.

Let U be an open disc in the complex plane centered at a point P and
f :U — C be acomplex-analytic function. Let O be another point in the complex
plane. Ifthere exists a family of curves vy :[0,1]— C with s €[0,1] suchthaty (0)
=Pand y (1) = Q for alls €[0,1] the function (s,7) €[0,1]x[0,1] >y, () C s
continuous, and for each s €[0,1] it is possible to do an analytic continuation of /'
along v, then the analytic continuations of falong y, and y, will yield the same
values at Q.

The monodromy theorem makes it possible to extend an analytic function to
a larger set via curves connecting a point in the original domain of the function to
points in the larger set. The theorem below is called the monodromy theorem.

Let U be an open disc in the complex plane centered at a point P and
fi U—C be a complex-analytic function. If W is an open simply-connected
set containing U, and it is possible to perform an analytic continuation of /
on any curve contained in /¥ which starts at P, then f admits a direct analytic
continuation to ¥, meaning that there exists a complex-analytic function

g: W—C whose restrictionto U'is f.

4.3.4 Harmonic Functions on a Unit Disk

In mathematics, a positive harmonic function on the unit disc inthe complex numbers
is characterized as the Poisson integral of a finite positive measure on the circle.
The result ofthe Herglotz-Riesz representation theorem was proved independently
by Gustav Herglotz and Frigyes Riesz in 1911. It can be used to give a related
formula and characterization for any holomorphic function on the unit disc with
positive real part.

Such functions had already been characterized in 1907 by Constantin
Carathéodory in terms of the positive definiteness oftheir Taylor coefficients.

Herglotz-Riesz Representation Theorem for Harmonic Functions

A positive function f on the unit disk with f{0) =1 is harmonic ifand only if
there is a probability measure p on the unit circle, such that,

- 2w 1— ?’*2
= d
fre") ,/(; 1—2rcos(f —¢) + 712 up)

The formula clearly defines a positive harmonic function with f{0)=1.

Conversely if /s positive and harmonic and 7, increases to 1, we can define,

fulz) = flraz).
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Then,
. 1 pi= 1— 72
i
7 == 17 d
fa(re?) 2ﬂf0 e E P
2 2
1—17r
— d 7
/(; 1 —2rcos(f — @) +r? tn (1)
Where,

1 ; . -
dpn () = - f(rne*) dy is a probability measure.
By a compactness argument, a subsequence ofthese probability measures
has a weak limit which is also a probability measure p.

Since r, increases to 1, so that /() tends to f(z), the Herglotz formula
follows.

4.4 HARNACK'S INEQUALITY THEOREM

Theorem 4.9: Let u be a harmonic function on an open neighborhood of the
compact disc U, (a) . Assume that u(z) >0 for |z - a| <R . For any number r
such that, 0 <7 <R and for all z such that |z — a| = r, the Harnack inequality

R- R-
" u(a) <u(z) < —Lu(a) holds.
R+r R+r

The proof follows from the Poisson formula applied to U(z) = u(a + Rz),
together with the trivial inequality,

T
<K(wz)< z|<|w
PEIE i = N G

Corollary 1: Let u be a harmonic function on an open neighborhood ofthe compact
disc U, (a) suchthat

(a) u(a)=0;
(b) m<u(z) < M for zeU,(a) (Where m, M are real constants).
Then,
2 2
m—=" Su(z)<M A for |z—a|—r<R
+7r R+r

Proof: We apply Harnack’s inequality to the functions u (z) —m and M — u (2).
Because of the maximum principle, it is enough to know that the inequality (b) holds
on the boundary of the disc. The most important application of Harnack’s inequality
is the following statement.



Harnack’s Principle

Theorem 4.10: Let U be a monotonically increasing sequence of harmonic
functions,

u,:D—R,D c C open,

u(z)<u,(z)<..forzeD .

The set ofall points ze D for which the sequence (U (z)) remains bounded
is open and closed in D.

Corollary 2: Let D be a (connected) domain. When the sequence (U, (z,))
converges for some z, € D, thenit converges for all z € D and the convergence
is locally uniform. In particular, the limit function is harmonic.

Proof: Since u (z) can be replaced by u (z) — u (z), we may assume that
u,(z)=0forall ze D
Now let a € D be a point such that (z (a)) is bounded, i.e.,
u (a)<C

It follows from Harnack's inequality that

R+r
R—-r

u,(z)<C (r=|z—ad))

for all z in a full neighborhood of a. Hence, the set ofallz € D on which (¢ ) remains
bounded is open in D. By means of an estimation of # (z) from below, it can be
shown analogously that the set ofall points z € D on which (u ) is unbounded is
open as well.

It remains to prove the locally uniform convergence as stated in the corollary.
Again this follows from Harnack’s inequality, applied to the functions.

u, (z)—u,(z), mzn

Namely, let @ € D be a given point; it then follows from Harnack's inequality

that there exists a neighborhood U (say {/ = U, (a) ) such that each € > 0 admits
=R

2

an N € N with
0<u, (z)-u(z)<eform=2n=>Nandz e U.

Hence the sequence (u ) is a locally convergent Cauchy sequence.

Theorem 4.11 (Harnack’s Inequality): If« (z) is a positive harmonic function
on the open unit disc D, then
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1_—ru(O) <u(re®)< H—ru(O), re® eD
1+7 |
Proof:
l-r 1—#? 1—#? 1+

<P (0)

l+r 1472 +2r 7 e (4.43)

1472 =2r 1-r

We can always approximate u(z) by a dilate u(pz), p < 1, and assume that
u(z) extends harmonically across the unit circle. Then u(z) is represented by the
Poisson integral formula.

Substituting the estimates for p (6) into Poisson integral formula and using
the positivity of u(z), we obtain

:_: Oznu(e,-(ef@ )% gj'jnu(e"(e"”) )P,((P)% < t_: Oznu(e,-(e,(p) )%

Since, the average value of (ei(ef"’) ) is u(0), this becomes Equation (4.43).
It becomes an equality for the function,
u(z)=Re((1+z)/(1-2))atz==r.

If we scale and translate Harnack's inequality to an arbitrary disc, of radius
R >0 and center z, we obtain

R—r R+r
u(zy)<u(z)<
R+r (2)=u(z) R—r

for all positive harmonic functions u(z) onthe disk |z —z | <R.

”(Zo)a

z—ZO|Sr,r<R ...(4.43)

The Equation (4.44) is also referred to as Harnack’s inequality. From the left
hand inequality, it follows that if {u (z)}is a sequence of positive harmonic
functions on the disc {|z -z | <R} suchthat u,(z,) — +co, then u,(z) —» +c0n
any subdisc {|z-z,|< p}, p<R.From the right hand inequality it follows
that if {u (z,)} is bounded then u (2) is uniformly bounded on any subdisc
{lz—z 1< p} )
P<R.

Lemma 1: Suppose {u (z)}is a sequence of positive harmonic functions on a

domain D. Ifthere is z, € D such that u,(z,) -+, then u,(z) — +co uniformly
on each compact subset of D. If there is z, € D such that {u (z )} is bounded,
then {u ()} is uniformly bounded on each compact subset of D.

To see this, let U be the set of z € D such that u, (z) — +oo . The remarks

preceding the lemma show that both U and D\U are open. Since D is a domain,
either U= D or U is empty. In the case U= D, we can cover any compact set by



a finite number of discs on which u, (z) - +oo uniformly, and we see that

u,(z) — +oo uniformly on compact subsets of D. If U is empty, we cover any

compact set by a finite number of discs, and we see that {u (2)} is uniformly
bounded on each compact subset of D.

If we combine the preceding lemma and the compactness theorem for families
ofharmonic functions, we obtain immediately the following compactness theorem
for families of positive harmonic functions.

Theorem 4.12: Let F'be a family of positive harmonic functions on a domain D.

Every sequence in F'has a subsequence that either converges uniformly on compact

subsets of D to a harmonic function or converges uniformly on compact subsets of
Dto +oo.

The compactness theorem for positive harmonic functions can be applied
to monotone sequences of harmonic functions.

Theorem 4.13: Let {u (2)} be an increasing sequence of harmonic functions on
adomain D. Then {u (z)} converges uniformly on compact subsets of D, either to
a harmonic function or to +oo.

Consider the functions v (z) = u (z) — u (2). For each fixed z the sequence
{v (2)} is increasing, hence convergent either to a finite value or to +oo. The
preceding theorem shows that {v (z)} has a subsequence that converges uniformly
on compact subsets of D, either to a harmonic function or to +oo. It follows that
{u (2)} also converges uniformly on compact subsets of D.

4.4.1 Dirichlet Problem

Assume that we have a 2n periodic function fand a summation of trigonometric
functions of varying frequencies that converges to it. Thus we have,

f(e) = Z::()ak sin(k9) = b, cos(k9)

But, by Euler’s identity we have,
e™ = cos(kB) + isin(k0)

So, with the correct complex, C.S, we have,

f(0)= ZZO a, sin(k0) + b, cos(k0) :Z:;OC c.e”

Assuming that this sum converges uniformly, we now must determine the actual
values for the C, §'. Consider the functions which are periodic in [0, 1] which
prevents us from dividing out constants later. So, solving for the C, S in

D Ce™  wehave

0

f(x) — Z Ckebrikx

k=—0
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Multiplying each side by e "™ and integrating, we get

1 . a2 1, . .
—2 2zikx -2
I f(x)e ™™ dx = E ckj e e dx
0° —o 0

Then, we note that the >

g, h)y= : gl(x h(x)dx . It can easily be verified that,
( . y

J‘leZm'kre—Zﬁirmcdx — 0 (k * m)
0 1 (k=m)

are orthogonal with respect to the inner product,

Thus,

C, = I;f(x)e’z”imxdx
Now, let

A 1 .
f(k) :J‘Of(x)ezmkxdx
be the kth Fourier coefficient of /. Then the Fourier series is defined as,

k;ﬁ J}(k)ezmkv

Dirichlet’s Problem on the Disc
Given a connected open set Q and a function f defined on the boundary of
Q,0Q the solution to the Dirichlet’s problem is a function, u, such that
Au=0 xeQ
u=f xeoQ
Here, for the open disc, we will find a function that is harmonic on the
interior of the disc and periodic on the circle. First we will show that the

solution will be unique, and then we will explicitly solve the Dirichlet problem
on the disc.

Theorem 4.14: Let Q be any bounded domain and let u(x, y) in
C’(Q)NC*(Q) be harmonic in Q. Then u attains its maximum value on
somewhere on 50 .

Corollary: Let Q be any bounded domain and let u(x, y) in C°(Q)nC*(Q)
be harmonic in Q and let wu(x,y)=0V(x,y)edQ. Then,
u(x,y)zOV(x,y)eQ.

Proof: By the theorem, u(x,y)<0V(x,y)eQ. Then, since —u(x,y)
=0V(x,y)€0Q, we also have that —u(x,y) <0V(x,y)eQ. Thus, u(x,y)
=0 V(x,y) eQ.
Now we will prove the uniqueness of the Dirichlet problem.
Theorem 4.15: Suppose we have two functions # and v such that,
Au=Av=0 xeQ
{u =v=f x€oQ



Then,
u(x) = v(x)Vx eQ

Proof: Consider w(x)=u(x)—v(x). The function w is harmonic in Q, since
Aw=Au—Av=0-0=0,and wx)=u(x) —v(x)=f(x)—f(x)=0 Vx e dQ. So, by the
Corollary, w(x)=0 vxe Q. Thus, u(x)=v(x)VxeQ.

Solution of Unit Disc

When solving the Dirichlet problem on the unit disc, we first observe that
we are looking for a harmonic function that approximates the function, f,
from the interior from the disc. Noting that fis periodic, it would be sufficient
to find a harmonic function that is equivalent to the Fourier series of f on the
boundary of the disc. First, we note that the Fourier series of /'is equivalent
to the limit as » — 1~ of]

0

u(z)zzj}(k)zk +Zl ]A‘(k)z‘k‘ where z = re*™

k=0

In order for this expression to be useful in this situation, we need to
know that this function is harmonic. For this, we will use the fact that every
holomorphic function is harmonic. Thus, since u is the sum of a holomorphic

function, > " £ (k)z* and an antiholomorphic function, Z;m F(k)2" in
the unit disc, we know that # is harmonic.

Combine the two sums in the definition of  to get,
u (reZHie ) — Z j‘(k)r‘k‘eZm'k@
k=—
If this converges nicely enough, then

i j}(k),,\k\ezmke :F.f(t) i A g2k (0-0) 1.
k=—o0 -2

k=—c0

Now, we will find a closed form for this convolution operator,

0

i r\k\ezmk(t) _ Z r\k\ezm’k(t) + ir‘k‘e—Zﬂik(t)
k=—x k=0 k=1

Since each of the above terms is a geometric series,

1 }/'672”” 1 _ re*Zﬂit + re*Zﬂit _ (re727rit )(}/,627[” )

k| 27ik(r)
Z re = 2 it + —2 it = 2rit —2 it 2rit —2 it
= 1-re 1-re 1—(re +re )+(re )(re )

So, we finally have

i k| 2zik(r) _ 1-7°
rle =
Pl 1-2rcos (27rt) +7?

This convolution operator is known as the Poisson kernel for the unit disc and is
denoted by,
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1—7*

B 1- 2rcos(2m) +72

P(1)
Thus, the solution is

u(re'™ )= j £(6)P.(0—1)dt

4.4.2 Green's Function

Consider a linear differential equation written in the general form,
L(x)u(x)=f(x) ... (4.45)
where L(x) is a linear, self-adjoint differential operator, u(x) is the unknown

function and f{x) is a known non-homogeneous term. Operationally, we can write
a solution to Equation (4.5) as,

u(x)=L"(x) f(x) ...(4.46)

where L' is the inverse of the differential operator L. Since L is a differential

operator, it is reasonable to expect its inverse to be an integral operator. We
expect the usual properties of inverses to hold,

LL'=L'L=1 ... (4.47)

where / is the identity operator. More specifically, we define the inverse operator
as,

L’lf:J.G(x;x')f(x')dx' ... (4.48)

where the kernel G (x; x') is the Green’s function associated with the
differential operator L. Note that G (x; x') is a two-point function which
depends on x and x'. To complete the idea of the inverse operator L, we
introduce the Dirac delta function as the identity operator /. The properties
of the Dirac delta function are,

]ié(x—x')f(x')dx'zf(x)

[(x)ax=1 ... (4.49)
The Green’s function G (x; x') then satisfies,
L(x)G(x;x")=5(x—x") ... (4.50)

The solution to Equation (4.45) can then be written directly in terms of the
Green’s function as,

(x)= ] Gl (x)ar s



To prove that Equation (4.51) is indeed a solution to Equation (4.45), simply
substitute as follows:

:f(x) (4.53)

Note that we have used the linearity of the differential and inverse operators
in addition to Equations (4.48), (4.49) and (4.50) to arrive at the final answer. The
Green’s function can be interpreted physically for a variety of differential operators
encountered in mathematical physics. For example, consider the two-dimensional
Laplace’s equation,

B o*u  O'u

Au=—s+—
ox;  ox

The Green’s functions for this particular differential operator is known to
be,

G(x;x'):—Llnr

T

where,

r= \/(x1 - X ')2 +(x2 - X, ')2
In basic physics, the Green’s function gives the potential at the point x
due to a point charge at the point x’ (the source point) and only depends on
the distance between the source and field points. In electrostatics, the Green’s
function represents the displacement in the solid due to the application of a
unit force. In heat transfer, the Green’s function represents the temperature at the
field point due to a unit heat source applied at the source point.

Free-Space and Region Dependent Green’s Functions

In the discussion above concerning the solution of a differential equation with a
Green’s function, no mention was made of boundary conditions for the problem.
This is true when we are seeking a particular solution to Equation (4.50),

L(x)G(x;x') =§(x—x')
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The particular solution is independent of any boundary conditions for the
problem. However, we can always add homogeneous solutions to the Green’s
function,

G(x;x') =G, (x;x') +G, (x;x')
where,

L(x)GR (x;x') =0
L(x)G,(x;x")=8(x—x")

Here, G, the particular solution, is termed the free-space Green’s function
and is also referred to as the fundamental solution for the differential operator
L(x). As we have seen with the example of Laplace’s equation given in the previous
section, the free-space Green’s function is singular. The homogenous solution G,
is non-singular. Since G, is a homogenous solution, it will contain constants, which
can be evaluated to satisfy any boundary conditions for the problem. We term the
full Green’s functions G(x; x') a region-dependent Green’s function since, in
general, it contains not only the particular solution, but also the necessary terms to
satisfy any boundary conditions for the problem.

Green’s Function for a Partial Differential Equation
Consider the Helmholtz equation in three dimensions,
(A +k° )u =0

o0 0 0
i A=—+—+— i
where A is the Laplace operator, o7 od | oc In this case,

L(x)G(x;x')z—é(x—x')
and we seek the Green’s function,
L(x)G(x;x')z—é(x—x').

Note that the three-dimensional Dirac delta function is simply a compact

representation for the product of delta functions in each coordinate,
5(x - x') = §(x1 X ')5(x2 X% ')5()% X ')

To obtain the free-space Green’s function for this example problem, we will
use a Fourier transform method. Since we will only be calculating the free-space
component of the Green’s function, we can use a single variable » =x—x' , as the
free-space Green’s function will only depend on the relative distance between the
source and field points, and not on their absolute positions. The Fourier transform
pair is,




u(r)= Tooﬁ(q)eiq’dq

Applying the forward transform to the differential equation for the Green’s
function, we have

(¢ +45+43—K)G(q)= (20

Now, let ¢° = ¢ +¢; +¢; . Then

I
(27)

((]2 —kz)é(q)z

In transform space the Green’s function is then,
A 1
= o ()
In physical space, the Green’s function is then given through the inversion
ntegral,
1 5 e
o )

The integral is an isotropic Fourier integral since it depends only on the

G(r):

dq

magnitude of q, which is g. The general result for isotropic Fourier integrals in
three dimensions is,

[ 7(q)e"dq =%IQf(61)Sin(qR)dq

where R is the magnitude of r. Utilizing this result, the inversion integral seek
isthen

47z 17 .
)=y x) 7 sz) sin(¢R)dg

Since the integrand is even,

dr 1 5 q .
G(r)= — sin(gR)dq
This integral can be evaluated by contour integration. First, the sine term is
written in terms of complex exponentials as,
igR e—iqR
2i

and the integral is written as,

sin(qR) =
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B 4r L qeth ~ ge iqR
) ey an {L(q—k)(wk)dq f(q—k)(q”‘)dq}

Az 1
(2”)3 ﬁ{ll _]2}

The first integral will be evaluated by considering a contour in the complex

¢q plane. Since the denominator of the integrand has poles on the real axis, we
introduce a small imaginary part to offset the poles from the real g axis,

I, =lim ge”
=03 (q—[k+ie])(q+[k+ie]

We next take a contour in the upper half-plane due to the behavior of the

K

numerator of the integrand as g becomes large. Using the theory of integration by
residues, we then have

I =27y : ge” :
R (q + [k + zg])(q - [k + zg])
_ ﬂ_l.ei(k+i5)R

Taking the limit as € tends to zero we then have, 7, = zie™"

Similarly, for 7,, we take a contour in the lower half plane and obtain,
1, = zwie"™®

The Green’s function is then,

G(r) =

47 1 L w
—{me’kR + me’kR}

(2ﬂ)3 4iR

Check Your Progress

7. Define function element.
8. Define direct analytic continuation.
9. Define the analytic continuation ofa curve.
10. Define the goal of Schwarz reflection principle.
11. When the Harnack’s inequality hold?
12. When u attains its maximum value on QQ?
13. What is region-dependent Green's function?

4.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. According to Weierstrass factorization theorem in complex analysis, a
product involving their zeroes can represent the entire functions. In
addition, every sequence tending to infinity has an associated entire function
with zeroes at precisely the points ofthat sequence.



7.

10.

. For the logarithmic derivative of the gamma function we consider that,

I'(x) >0 for anyx> 0, we can take the logarithm ofthe above expression
to get,

In(T'(x)) = —Cx — In(x) + f[f - ln(l + iD
n

n=1 \ 1

. The Riemann zeta function, {(s), is a function ofa complex variable s = o +

it (here, s, o and # are traditional notations associated to the study ofthe -
function).

The Riemann zeta function is defined as the analytic continuation of the
function defined for o > 1 by the sum of the preceding series.

. The functional equation implies that {(s) has a simple zero at each even

negative integer s =—2n. These zeros are the trivial zeros of z(s). Riemann
established the functional equation which is used to construct the analytic
continuation in the first place.

. Runge’s theorem states that for any compact set K < C we have R(K)

=A(K) and P(K) = A(K) provided C—K is connected.

. The Mittag-Leffler’s theorem state the following:

Suppose b, € Q — 0Q

3

C.
S ()= —-—
Set O« _,Z:;(Z—bk)"

where each 7, is a positive integer and ¢;; € C. Then there is a function
meromorphic in Q with singular parts S, at b, k=1, 2, ..., and no other

singular partsin Q.

A function element is an ordered pair (f, U), where U is a disc D (P, ) and
/s a holomorphic function defined on U. If Wis an open set, then a function
element in Wis a pair (f, U) suchthat U < W.

. Let (f, U) and (g, V) be function elements. We say that (g, V) is a direct

analytic continuation of (f, U) if U n V' #¢, and f and g are equal on U\ V.
Obviously (g, V) is a direct analytic continuation of (f, U) if and only if (£,
U) is a direct analytic continuation of (g, V).

. Lety:[0,1] > Cbe acurve and let (f, U) be a function element with Y(0)

the centre of the disc U. An analytic continuation of (f, U) along the curve is
a collection of function elements (f, U), ¢ € [0, 1], such that (f, U) =(f,
U), for each 7 € [0, 1], the centre of the disc U, is y(#), 0 < #< 1 and for
each 7 € [0, 1], there is an £>0, such that for each #'¢ [0,1] with |£'—7|<g,

it holds that: y(¢') € U and hence U, nU, = #f and f, = f, on U, NU,.
The goal of the Schwarz reflection principle is to extend or continue an

analytic function f:Q — C to alarger domain. The ultimate goal s to find
the maximal domain on which f can be defined.
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11. Let u be a harmonic function on an open neighborhood ofthe compact disc
U, (a) . Assume that u(z) > 0 for |z — a| < R . For any number r such that, 0

<r<Rand for all z such that |z — a| = r, the Harnack inequality

() <u(z) < ~—Lu(a) holds.

R+r R+r

12. Let Q be any bounded domain and let u(x, y) in C°(Q)NC*(Q) be

harmonic in Q. Then « attains its maximum value on ¢ somewhere on
oQ .

13. We term the full Green’s functions G(x; x") a region-dependent Green’s
function, since in general, it contains not only the particular solution, but
also the necessary terms to satisfy any boundary conditions for the
problem.

4.6 SUMMARY

e According to Weierstrass factorization theorem in complex analysis, a
product involving their zeroes can represent the entire functions. In addition,
every sequence tending to infinity has an associated entire function with
zeroes at precisely the points of that sequence.

e If(f (2)) is asequence of analytic functions in a domain G and if there exists
lim 7,(z) = /(2) uniformly in closed subdomains of G, then f{z) is analytic
and f'(z)= lggﬁ;(z) .

¢ A lot of important functions in applied sciences are defined using improper
integrals. One of the most famous among them is the gamma function.

e The Riemann zeta function, {(s), is a function ofa complex variable s = o +
it (here, s, o and 7 are traditional notations associated to the study ofthe (-
function).

e The Riemann zeta function is defined as the analytic continuation of the
function defined for o > 1 by the sum of the preceding series.

¢ Riemann showed that the function defined by the series on the half-plane of
convergence can be continued analytically to all complex values s = 1.

¢ The functional equation implies that {(s) has a simple zero at each even
negative integer s =—2n.

o These zeros are the trivial zeros of {(ss). Riemann established the functional
equation which is used to construct the analytic continuation in the first
place.

¢ Anequivalent relationship was conjectured by Euler for the Dirichlet eta
function or the alternating zeta function.

¢ A function element is an ordered pair (f, U), where Uis adisc D (P, r) and
/f1s a holomorphic function defined on U. If Wis an open set, then a function



element in Wis a pair (f, U) suchthat U < W.

Let (f, U) and (g, V) be function elements. We say that (g, V) is a direct
analytic continuation of (f, U) if U ~ V' #¢, and f and g are equal on U\ V.
Obviously (g, V) is a direct analytic continuation of (f, U) if and only if (£,
U) is a direct analytic continuation of (g, V).

A series of geometrically increasing numbers,
S=1+x+x+x+ .. +x
Given a piecewise continuous function U(0) on 0 <0 < 2x, the Poisson
ntegral,
1 e’ +z

2n
PU(Z):Z 0 Reeie_z

U (0)do
is harmonic for |2/ < 1and lim__ ,, P, (z)=U (8, ) provided Uis continuous
ato,.

0

The goal of the Schwarz reflection principle is to extend or continue an
analytic function f:Q — C to alarger domain. The ultimate goal s to find
the maximal domain on which f can be defined.

In complex analysis, the monodromy theorem is an important result about
analytic continuation of a complex-analytic function to a larger set.

Given a connected open set Q) and a function f'defined on the boundary of
Q,0Q the solution to the Dirichlet’s problem is a function, «, such that

Au=0 xeQ
u=f xeoQ

Let Q be any bounded domain and let u(x, y) in C°(Q)nC*(Q) be

harmonic in Q). Then « attains its maximum value on ) somewhere on
oQ .

Let Q be any bounded domain and let u(x, y) in C°(Q)nC*(Q) be
harmonic in Q and let u(x,y)=0V(x,y)edQ. Then,
u(x,y)zOV(x,y)eQ.

We term the full Green’s functions G(x; x") a region-dependent Green’s
function since, in general, it contains not only the particular solution, but also
the necessary terms to satisfy any boundary conditions for the problem.

4.7

KEY TERMS

Weierstrass factorization theorem: According to Weierstrass
factorization theorem, in complex analysis a product involving their zeroes
can represent the entire functions. In addition, every sequence tending to
infinity has an associated entire function with zeroes at precisely the points
of'that sequence.
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e Gamma function: A lot of important functions in applied sciences are defined

using improper integrals. One of the most famous among themis the gamma
function.

Riemann zeta function: The Riemann zeta function, {(s), is a function of a
complex variable s = ¢ + it (here, s, 0 and ¢ are traditional notations
associated to the study of the {-function).

Zeta function: If Re z >1+¢ where ¢ > 0 then

Z| k2 |: Z| k—‘J?ez |S Zk—l—a
k=m k=m k=m

Mittag-Leffler's theorem: This concerns the existence of meromorphic
functions with prescribed poles and asserts the existence of holomorphic
functions with prescribed zeros.

Function elements: A function element is an ordered pair (f;, U), where U
isadisc D (P, r) and fis a holomorphic function defined on U. If Wis an
open set, then a function element in W'is a pair (f, U) suchthat U < W.

Harnack’s inequality: Let » be a harmonic function on an open

neighborhood of the compact disc U,(a). Assume that u(z)>0 for
|z—a| <R . For any number 7 such that 0 <7 <R and for all z such that

|z —a| = r, the Harnack inequality

R— R—
! u(a)<u(z)< d u(a) holds.
R+r R+r

4.8

SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

_
e

© 0 N A W N

. When is Weierstrass’ factorization theorem applied?
. State a property of gamma function.

. What is the significance of Riemann zeta function?

. What is the alternating zeta function?

. State Runge’s theorem.

Write the statement of Mittag-Leffler’s theorem.
Define the analytic continuation ofa function.
What is power series?

What is the goal of Schwarz reflection principle?

State monodromy theorem.



11. What is Harnack’s inequality? Weierstrass Factorisation
Theorem, Analytic

12. State the Dirichlet’s problem. Continuation, Inequality

Theorem and Functions
13. What is Green’s function?

Long-Answer Questions NOTES

1. Briefly discuss the Weierstrass factorization theorem with the help of
examples.

2. Provethat for zeC\S, §:={0,-1,-2,-3,...}

im I'(z+n) 1
n—>0 nzr(n)

3. Explain Riemann zeta function with the help of examples.
4. Briefly discuss Riemann’s functional equation giving examples.

5. Let K < Cis compact. If (R ) and (S ) are sequences of elements of C(K)

which converge uniformly on K to fand g, then prove that R S converges
uniformly on K to fg.

6. Show that there exists a sequence of polynomials (R ) such that R (0)=1 for
alln while R (z) > 0asn—oifz € Candz#0.

7. Determine a meromorphic function on the complex plane whose poles are

simple poles at the positive integers with residues all equal to 1.
2

. 1 =z . .
8. Show that the series, —+—+— +... represents the function which can
a a

be continued analytically outside the circle of convergence.

9. If /(2) =Y. d(m)z" | |Z<1, d(n) being the number of divisors of 7 then prove
n=0

that the unit circle is a natural boundary of this function.
10. Discuss Schwarz reflection principle giving examples.

11. Describe the consequences of monodromy theorem with the help of
examples.

12. Prove from Harnack’s inequality that any harmonic function on the whole of
C which is bounded from above or below is constant.

13. Let D be a bounded domain with a smooth boundary, and let «(z) and v(z)
be smooth functions on D @D such that u(z) is harmonic on D and v(z)=

u(z) on 9p . Prove that,

ij| Vv, [? dx dy =ij| V. P dx dy +ij| Vv —u)[* dx dy

14. Let D be the complement of the segment [a, b], including the point at co.
Find the Green’s function for D with singularity at co and evaluate,

K= |1|im {G(z;0)—log| z |}
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5.7 Summary
5.8 Key Terms
5.9 Self-Assessment Questions and Exercises
5.10 Further Reading

5.0 INTRODUCTION

In mathematics a canonical, normal, or standard form of'a mathematical object is
a standard way of presenting that object as a mathematical expression. Often, it is
one which provides the simplest representation ofan object and which allows it to
be identified in a unique way. The distinction between ‘Canonical’ and ‘Normal’
forms varies from subfield to subfield. In most fields, a canonical form specifies a
unique representation for every object, while a normal form simply specifies its
form, without the requirement of uniqueness.

The canonical form ofa positive integer in decimal representation is a finite
sequence of digits that does not begin with zero. More generally, for a class of
objects on which an equivalence relation is defined, a canonical form consists in
the choice of a specific object in each class.

In Poisson-Jensen formula relates the average magnitude of an analytic
function on a circle with the magnitudes of its zeros inside the circle. It forms an
important statement in the study of entire functions.

An entire function, also called an integral function, is a complex-valued
function that is holomorphic on the whole complex plane and the Bloch theorem
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Functions and Theorems states that in large quantum systems, the expectation value ofthe U(1) current
operator averaged over the entire space vanishes. An analytic function is a function
that is locally given by a convergent power series. There exist both real analytic
functions and complex analytic functions. Functions of each type are infinitely

NOTES differentiable, but complex analytic functions exhibit properties that do not generally
hold for real analytic functions. A function is analytic ifand only if its Taylor series
about x converges to the function in some neighbourhood for every x  inits domain.

In this unit, you will study about the canonical products, Jensen’s formula,
Poisson-Jensen formula, Hadamard’s three circles theorem, Hadamard’s
factorization theorem, order ofan entire function, exponent of convergence, Borel’s
theorem, the range of an analytic function, Bloch’s theorem, Picard’s theorem,
Schottky’s theorem, Montel Caratheodory theorem, univalent functions and
Bieberbach’s conjecture and the %4 theorem (Koebe’s one-quarter theorem).

5.1 OBJECTIVES

After going through this unit, you will be able to:
e Describe canonical products
o State Poisson-Jensen formula
¢ Define order ofan analytic function
¢ Describe exponent of convergence
e State and prove Borel’s theorem
¢ Define the range of an analytic function
¢ Discuss Picard’s theorems
¢ Explain Schottky’s theorem
e State and prove Montel Caratheodory theorem
¢ Explain univalent functions

¢ Prove Koebe’s one-quarter theorem

5.2 CANONICAL PRODUCTS

Infinite Products

We know that TT(1+a,) converges to an element of ¢* if and only if ) |a,
converges. In the same way, H(l + 1, (z)) defines an entire function on ¢ ifand
only if Z| £ (z)| converges uniformly on compact sets.

Polynomials work for finitely many zeros. We can try to address the case of infinitely
many zeros by defining f(z)=II(z—a,). But this product has no chance of

converging. Assuming a, # 0, a better choice is IT(1-z/a,).
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Theorem 5.1: If 21/

function with zeros exactly at these points.

aﬂ

is finite then f(z)=II(1-z/a,) defines an entire

Multiplicities of zeros correspond to repetitions of the same number in the
sequence a.. But, this result is too weak to address the case a = n needed for
constructing sin(mz).

Weierstrass Factors: It is an elegant expression for an entire function with a
zero only atz= 1 which is also close to 1 for [z] < 1. It is known as the Weierstrass
factor of order p:

£ | z zP
=(1- .+

r (Z) ( Z) eXp Z 2 p

By convention, E (z) = (1 —z). The basic idea behind this expression is,

log(1/(1-z))=z+z"/2+2’ /3+...and hence, the two terms almost cancel to

give (1 —z)/(1 —z) = 1. Since the term z” is truncated, it is easy to see that for
|z < 1/2, we have

+1
[, (2)-1=0("")
Although this bound is sufficient, however it is sometimes useful to have a
bound which works for any z € A and where the implicit constant is explicit.

Theorem 5.2: For |z| < 1, we have |Ep (z)- 1| <|2"".

Proof: Now,
—E; (Z)/Ep(z)=1/(1—z)—1—z—...z”’1 =z? /(l—z)

Hence, for all z we have

0

—E! (z)=2z2" exp(z+z2 /2+...z”/p)z”2akzk

0

with a, >0 forall k. Integrating term by term and using the fact that £, (0) =1,
we get

0

1-E,(z) :Z””Zbkzk
0
with b, >0. We also have » b, =1-E (1)=1, and hence for |z| < | we have
-, ()< S =
Theorem 5.3: For any sequence of non zero complex numbers a, — o, the

formula f(z)=II7E,(z/a,) converges for all z and defines an entire analytic
function with zero set exactly (a ).

Proof: The previous estimate yields convergence ofthe tail of the series. For all
zeB(0,R),

Z |1—En (z/an)| < §1(|z|/|an|)n+1 < Z.O:(R/2R)n+1 <
1 1

|a,|>2R
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Functions and Theorems

Theorem 5.4: If Y a/|a,|”" <o, then P(z)=TIE,(z/a,) defines an entire

analytic function.

Proof: For |z| < R, we have

Z ‘I—Ep (z/an)‘i(|z| /|an|)p+1 << R””Zl/

|a,|>2R

NOTES

p+l
<

a, ]

p+l

If p > 0 is the least integer such that »'1/|a,|"" <oo, then we say P(z) =

I1E,(z/a,) is the canonical product associated to (a).

The Counting Function: It is defined as N(r)= ‘{n:|an| < r}‘ .r’N(r)isa

rough approximation to Z e 1 |4, 7. Consequently, we have
log N
o = lim Sup()g—(r)
r—w log r

Or, suppose N (r)<r”. Collecting the points @, into groups where 2" <|a,|<2""',

Yla[ <> (27) “N(2) <2 Y2V <o if o> B
So, Bis an upper bound for the critical exponent. Similarly, if N (r)>r”
then is a lower bound because » |a,| “ 2+ “N(r)2r"“ 5> wif a<f.

Observe that knowledge of M(r) is the same as knowledge of » =|a | for all
n. Thus we can also express functions of 7 in terms of M(r). A typical example is:

Z - =J.OOON(V)0W’”‘i

r
A similar expression will arise in connection with Jensen’s formula.

a

n

Entire Function of Finite Order: An entire function f:C — C is of finite order

ifthereisa p >0 such that |f(Z)| = O(eXp|Z|p) . The infimum of all such pis the

order o(f) . Denote the maximum and minimum of |f| on |z| = » by M(r) and m(7).
Thus, the order fis given by,

p(f) _ Jimsup loglogM(r)

r—m IOg r

For example, polynomials have order 0; sin(z), cos(z) and exp(z) have order
1; Ep(z) has order p; exp(exp(z)) has infinite order.

5.2.1 Hadamard’s Three Circles Theorem

This result applies not only to entire functions, but also to functions analytic in an

annulus of the formr <|z|<r.,.
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Functions and Theorems

Theorem 5.5 (Hadamard’s): For any analytic function f{z), the quantity
log M (r)is a convex function oflog 7.

Proof: A function ¢(s) of one real variable is convex if and only if ¢(s) + ar
satisfies the maximum principle for any constant a. This holds for log M(exp(s)) by NOTES
considering f{z)z* locally.

Corollary 1: We have M(\/X)S M(r)M(s).

The convex function satisfying F(log r) = log M(r) look roughly linear for
polynomials, e.g., like F{(x)=deg(f)x + ¢ and look roughly exponential for functions
of finite order, e.g., F(x) = exp(p(f)x).

Hadamard’s Factorization Theorem

This formula describes every entire function of finite order in terms of'its zeros and
an additional polynomial.

Theorem 5.6: An entire function f{z) # 0 of finite order p can be uniquely expressed
in the form,

f(z)=2"TIE,(z/ an)eQ(Z)
where (a ) are the zeros of f, p>0 is the least integer such that
D1/a, """ <0 and O(z) is a polynomial of degree g. We have, p,g<p.

The number p is called the genus of /. Ordinary polynomials arise when
p=qg=p=0.

Note: This theorem shows that the zeros of /' determine fupto finitely many
additional constants, namely the coefficients of Q(z). If f(z) has no zeros, it is

determined by its values at any | p+1 | points. This is not quite true, however,

since f{z) only determines Q(z)mod27iZ . For example, exp(2miz) and the
constant function 1 agree on the integers.

But it is true that /7/f = Q' in this case. Hence, knowing the logarithmic
derivative at enough points almost determines Q.

Corollary 2: Suppose f(z) and g(z) are entire functions of order 2 with the same

zerosand f' f=g' gat| p| distinct points where neither function vanishes.
Then fis a constant multiple of g.

Proof of the Hadamard Factorization Theorem: Let / (z) be an entire
function of order p with zeros (a,), and let P(z) be the corresponding canonical
product. Then P also has order p. Since f'and P have the same zeros, the
quotient f/P is an entire function with no zeros. The lower bound on m(r) just
established implies that f/P also has order p and hence f/P = exp Q (z) where

deg O <p.
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Functions and Theorems Entire Functions without Zeros

The most simple case of Hadamard’s theorem in which there is no canonical product
is handled by the following theorem:

NOTES Theorem 5.7: Let f(z) be an entire function of finite order with no zeros. Then
f(z) =29 where Q(z) is a polynomial of degree dand p(f)=d .

For proving this theorem, we strengthen our characterization of polynomials by
M(r) = O@).

Lemma 1: Let O(z) be an entire function satisfying Re 0(z) < A|z|d + B forsome
A, B>0. Then Q is a polynomial of degree atmost d.

Proof: There is a constant C > 0 such that for R > 1, O maps A(2R) into half-
plane U(R) = {z: Re z< CR?} . By Schwarz lemma, Q is distance-decreasing from

the hyperbolic metric on A(2R) to the hyperbolic metric on U(R). Since,
A(R)<= A(2R)has bounded hyperbolic diameter, the same is true for

Q(A(R)) cU(R). So, inthe Euclidean metric,
diam Q(A(R))=0(d(2(0).0U (R)))=0(R")

This shows that |Q(Z)| = 0(|Z|d ) for |z| > 1 and hence Q is a polynomial of degree
atmost d.
Proof of Theorem 5.8: Since, /has no zeros, f(z) = 2@ for some entire function

Q(z). Since f has finite order, f(2)|=0(€‘z‘d) for some d and thus

ReQ(z)< |z|d +0(1). Now, applying the above lemma completes the proof.

Functions with Zeros: Now we will analyse entire functions with zeros.
Theorem 5.9: Let f{(z) be an entire function of order p with zeros (a,). Then

Zl/|an

In general, a sequence a, — o has a critical exponent o, the least number such

that »'1/

7" <o foralle>0.

ate

a,| <o . The result above states that the critical exponent of the

zeros of fsatisfies o < p( f). Thusif p =|_p(f)_| thenp +1> p(f)2 o and hence
>la

Corollary 3: The genus offsatisfies p < p(f).

p+l

<0,
n

Informally, the result above says that if f has many zeros, then M(r) must grow
rapidly.

5.2.2 Jensen’s Formula

Theorem 5.10 (Jensen’s Formula): Let /' (z) be a holomorphic function on
B(0, R) with zeros a,, ....,a . Then
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Functions and Theorems

avgg ., (R)log|f(z)| = 10g|f(0)| + Zlog%

Proof: First note that if fhas no zeros, then log |f(z)| is harmonic and the formula
holds. Moreover, if the formula holds for fand g, then it holds for fg and the case NOTES
of general R follows from the case R = 1. Now, we verify that the formula holds

when f(z)=(z-a)/(1-az) onthe unit disc, with |a| < 1. Indeed, in this case

log |f(z)| =0 on the unit circle and log |f{0)| +log (1/|a]) =log |a/a| = 0 as well. The
general case now follows, since a general function f{z) on the unit disc can be

written in the form f(z)=g(z)II(z —a,)/(1-az) where g(z) has no zeros.
Note: The physical interpretation of Jensen’s formula is that log |f] is the potential
for a set of unit point charges at the zeros of /-

Counting Zeros: Here is another way to write Jensen’s formula. Let N(r) be the
number of zeros of finside the circle of radius . Then,

W) = avgg (R gl () - Tog 7 (0)

0

Proof of Theorem 5.11: Since V(r) is an increasing function, by integrating from
r/2 to r we find,

N(r / 2)10g(r / 2) < logM(r) + O(l)
and hence,
a =limsuplog N(r) /logr <limsuplog M(2r) / 10g(2r) =p

Functions can grow rapidly without having any zeros. But, then Jensen’s formula
shows that the average oflog |/ is constant over every circle |z| = R; so if fis large
over much of the circle, it must also be close to zero somewhere on the same
circle.

5.2.3 Canonical Products

Canonical Products: Now, we will determine the order ofa canonical product.
It will be used to complete the proof of Hadamard’s theorem to obtain lower
bounds for such a product.
Theorem 5.12: Let a be the critical exponent of the sequence a, — o . Then the
canonical product P(z)=T1E,(z/a,) hasorder p(P)=a.
Proof: Let r,=|a,| and r=|z|. Now, p is the least integer such that
>'(1/r,)"" <o.Sowealso have Y 1/r” =+ . This implies p <a < p+1.For
convenience assume Z(l /r, )“ <o . For small z, the Weierstrass factor,
z z?
E (2)= (l—z)exp(z +?+ +?j

satisfies the inequality [1 - £, (2) [<] z |P"'<1/2 and hence also the inequality,
[log E,(2) |=O(| z ")
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Functions and Theorems While for large Z we get
[logE,(z)|=O(|log(1-2)[+]|z]")

The term log (1—z) can be ignored unless z is very close to 1, in which case
NOTES E ,(z) is close to zero. So, it can also be ignored when bounding £,(z) from

above.
Combining these estimates for P(z) = H E, (z/a,),we get theupper bound,

log| P(z)|< o[r"“ > %+ "y ip}

rn>2r 'y r,<2r v,

In the second term, since p <o, we have

1 ap 1
Y = s T =00")

rn,<2r l"n n n

Similarly, in the first sum, since a <p + 1, we have

Z 1+1 :Z +11—a la S(Z}”)a_p_lz%ZO(},ﬂ—p—l)
r? r? -

r

n>2r 'y rn>2rty n n

Altogether this gives,
log| P(z)[< O(r)

Thus, log M(r)=0(r*) and hence p(P)<« . By Jensen’s theorem, the
order of P(z) is equal to a.
The Minimum Modulus: For controlling the result of division by a canonical
product, we now estimate its minimum modulus.
Theorem 5.13: The minimum modulus of the canonical product P(z) above
satisfies m(r)> exp(—r***) for large r.
Proof: We will show [log m(r) | = O (r**). The proof follows the same lines as
the bound log M () = O(*) just obtained, since Theorem 5.1 and Theorem 5.3
give bounds for |log Ep(z) |. We cannot ignore the logarithmic term in Theorem

5.3. We must also decide which values of » to choose, since m (r) =0, whenever
r=la|l.

We fix € > 0 and exclude from consideration the balls B defined by |z—a |
< r***. Since the sum of the radii of the excluded balls in finite, there are plenty of
large circles |z| = whichavoid U B, .

To complete the proof, it suffices to show that for z on such circles, we have

> [log(1-2/a,)|=0("")

|z—a,|<r,

Note that the number of terms in the sum above is at most N (2r) = O (#*).
Because we have kept z away from a , we have
|log(l1-z/a,)|=O(logr)
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Consequently,
> Jlog(l-z/a,) = O(N(2r)logr) = O(r*")
=g l<r,

as desired.

Trignometric Functions: We determine the canonical factorization of the sine
function:

Theorem 5.14: We have,

sin(zz) = HZH(I - é]
n

n#0

Proof: Indeed, the right hand side is a canonical product, and sin (7z) has order
one, so the formula is correct up to a factor exp Q(z) where Q(z) has degree one.
But, since sin (nz) is odd, we conclude Q has degree zero, and by checking the
derivative at z =0 ofboth sides we get Q =0.

Use of the Logarithmic Derivative: Some useful properties of the logarithmic
derivative f'/f of an entire function f(z) are as follows:

1. We have (fg)'/fg=1/f+g'/g.
2. Iff'/f=g'/g, then f= Cg for some constant C # 0.
3. We have /' (az + b)/f (az + b) = a (f'/f) (az + b).

Sine, Cotangent and Zeta: The product formula above gives, under logarithmic
differentiation,

—(s1.n(1tz)) ncot(nz) =l+ Z ! + !
sin(mz) z Sz—-n z+n

This formula shows that «t cot (nz) has simple poles at all points of z with residue
one. This property can be used, for example, to evaluate {(2k) = Zfl /n** and
other similar sums by the residue calculus.

We note that, the product formula for sine(z) can also be used to prove
¢(2)=n’/6,bylooking at the coefficient of z> on both sides of the equation. The
sine formula also shows ZMI /(ab)* =n* /5!, za<b<cl /(abc)* =7 /7!, etc.

So with some more work it can be used to evaluate {(2k) . For example we have,

1 1 1 ot

H=S 1= -2 ==

“4 (Zazj(ztﬁj (;(ab)zJ 36 60 90
Translation and Duplication Formulas: Many of the basic properties of the
sine and cosine functions can be derived from the point of view ofthe uniqueness

of'an odd entire function with zeros at zr. For example, equations sin (z+7) = sin
(z) and sin (2z) =2 sin (z+7/2) hold up to a factor of exp (az + b) as a consequence

ofthe fact that both sides have the same zero sets.
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5.2.4 Poisson-Jensen Formula

Poisson-Jensen formula relates the average magnitude ofan analytic functionon a
circle with the magnitudes of its zeros inside the circle. It forms an important
statement in the study of entire functions.

Theorem 5.15 (Poisson-Jensen Formula): Iff{z) is meromorphic in |z| < R and

has zeros a, and poles b , and if ¢ = re', f(£)#0,thenfor 0<»< R wehave

; Flog|(Re™)|(R? —r*)dr
10g f(l”ee) J‘ 2g|( )|( )
21y R* —2Rrcos(¢p—0)+7°

+Zlogi(§_7_;£ M

~bCG

—Zlo

4

(5.1

Proof:

Let f(z) # 0, in |z| < 1. Then, since we can define an analytic branch oflog f{z) in
|z| < 1, we have by the residue theorem

2— [ 1og f(Z)——logf(O)
T

|z|=1

By change of variable,
1 2n )
—— [ log f(&*)d¢ = log/ (0)
2m sy
And now taking the real part on both sides,
1 2n )
= f log| f(e*)| dd =log|f(0)]
2n g

For any € with || < 1, we effect the conformal transformation w=

z-C
= C for the integral I log f(z ) . This in turn becomes,
|2]=1

En_ f 10g<1>(W)— log /(€) where ¢(w) = /{z(w)}

[wl=1
so that ¢(0) = f{£). Substituting in the integral z = ¢ and taking real part we get

LT log| f(e")]

2n 0 1—2r005(¢_e)+r2 (l—l’ )d¢:10g|f(C)|,C=I"€l

Note for the function f{z) with poles b and zeros a, none ofthem being on
|z =1, let us define

_(z-b)
(1 va)
)

(1 apz)

v(2)=f(z



On |z |=1|y(2) |4 f(z)| and the function has no zeros or polesin | z |[<1. By
the above result,

a-r)
1-2rcos(¢p—0)+r

[ tog|w(e")| -do=log | ()
Tl:O

C=re r<l

Substitution for y gives the theorem for R = 1. In the case when there are
poles and zeros on the circumference ofthe unit circle we proceed as follows. We
have only to show that if /(z) has no zeros or poles in |z| < 1, but has poles and
zeros on |z| = 1, then

1

L [ tog £(2)E = log £(0)
T z

|z|=1
for if /() has zeros and poles in |z| < 1 we can consider y (z), in place of /(2).
Further we can assume that there is only one zero (the case of pole being treated
in the same manner) on |z| = 1. For the case when f(z) has a finite number (it can
have atmost only a finite number) of zeros (poles) can be treated similarly.

Let therefore z=a, |[a|= 1 be a zero of f(z) on |z] = 1. Let p be the point z=a and
consider a circle of radius p < 1 about p, p being small. Consider the counter SOR
(Refer Figure 5.1). Inside it, f(z) has no zeros or poles. Hence, by the residue

theorem Ilogf(Z)dZ =log /(0). Thus, it is enough to prove that
I log f(2)dz tends to zero as p tends to zero.
OR

P

Q - R

|

\ /'l
N
Fig. 5.1

Let z = a be zero of order k. Then f(z)=(z-a)*Mz),Ma)#0, in a certain

neighbourhood of @ and we can assume the choice of p such that this expansion is
valid within and on the circle of radius p about p.

| 1ogf(z)@=kj 1og(z—a)@+jlogx(z)£
OR 4 OR 4 4

Since A(z) remains bounded the second integral tends to zero. So we have only to

) dz
prove that I og(z - a)7 tends to zero as p — 0. Now,
OR
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log|(z—a)|

|z

j log(z - a)% <m
OR z

<[log(1/p)+0()]tp —> 0 if p< %

}

This proves the result in case when the function f(z) has zeros or poles on the unit
circle. Incase R # 1, we consider the function /' (Rz) instead off(z) and arrive at
the result. Hence the theorem is proved completely.

Corollary: In the special case, when & =0 we get the Jensen’s formula,

Zlog

10g|f(0)|——f10g| f(Re'¢)|d¢+Zlog . (5.2)

The summation ranging over poles and zeros of /(z) in |z| < R. the above formula
does not hold if zero is a pole or a zero of f(z). If /(0) =0 or o and f'(z) is not

identically constant thenf(z) = C,z" +...+... . Consider f(z)/z". This has neither

zero nor pole at zero. Hence we get,
2n

log |, =2 [ 1o ‘”Re )‘d¢ S log %1 S iog

:ijlogf(Ref¢)|d¢+21og%—21og%—uogze

where sums are taken over zeros and poles of f(z) are in 0 <|z| <R.
The Characteristic Function
Set x, real and positive.

log" x =log x if x>1,

loghx=0 if x<1,

Then clearly, logx =log" x—log*(1/ x).

[log| #(Re®)|dd=[log" | f(Re*)|do~ [log’ do.

1
0 | f(Re™)]
We note that the first term represents the contribution when f'is large and the
second term when /s small. Let 0 <7, <r, <...<r, <R be the moduli ofthe poles

in the order of increasing magnitude. Let # () denote the number of poles in
|z| <7 of f(z). Then the Riemann-Stieljes integral formula is,

jlog dn(t) = Zlog|b|

Given on integrating by parts,

n(t)log +j n(t)— Zlog(R/|b )



The first term is zero, in the consequence of the fact #(¢) = 0, near zero.

We write n (7, f) for the number of poles of /(z) in |z| <, so that n (7, 1/f)
is equal to the number of zeros of /() in |z| < r. We define N (7, f) to be

In(t,f)%

If /()= we define N(r, ) = [0, ) =0, NI+ n(0, f)logr:

Then the Equation (5.1) becomes for, /(0) 0, 0

log| £(0)|= % [log™| f(re®)|d0 —;—nj log* |f(:T)'are +N(r.f)
~N(r1/ f).
We define,
T(r,f)=N(@r,f)+m(r,[)
where,

m(r, )= [ log’ | f(re") | 0

Again Equation (5.1) takes the form, for /(0) =0, o0

T(r, /)=T(r,1/ f)+log| £(0)] ...(5.3)
If f(z)~C,Z" near z =0, where ) =0, then we obtain T(r, f)=T(r,1/ f)
+log| C, | . In future such modifications will be taken for granted.

The function 7{r, f) is called the characterstic function of /(z). This is the Nevanlinna
characteristic function.

Theorem 5.16 (First Fundamental Theorem): For any complex a,

T(r, f)=T[r,1/(f —a)+log| f(0) —a| +e(a)

where |g(a)|<log"|a|+log2.

Proof: Note that,

log" |z +z,|<log" |z |+log" | z, | +log2
and log" |z —z,[>log" |z |-log" |z, |-log2. Whence,

log" | f(z)—al-log" | f(z)|<log2+log" |a]

Integrating we get,
—log2—log" |a|+m(r, f —a)<m(r, f)<log2+log" |a|+m(r, f —a)
Since f, f—a has the same poles,

N(r, f)=N(r,f -a).

Therefore,

T(r,f—a)—log" |a|-10g2<T(r,f)<log2+log" |a|+T(r,f —a)
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Thatis, |T(r, /)=T(r, f —a)|<log2 +log* |a|

T(r,/)+T(r,f —a)+e(a), where |e(a)|<log2+log"|al

From Equation (5.3) we have,

1
T s —T s

—da

j+10g|f(0)—a|+8(a)

where | g(a) |<log2 +log” | a|. Hence the theorem is proved.

If we write m (r, a), N (r, a) for

m(r,;J,N(r, ! j
f-a f-a

then m (r, a) represents the average degree of approximation of /(z) to the value

a on the circle |z| = r and N(r, a) the term involving the number of zeros of f(z) —
a. Their sum can be regarded as the total affinity of /(z) for the value a and we see
then apart from a bounded term the total affinity for every value of a. However,
the relative size ofthe two terms m, N remains in doubt.

5.3 ORDER OF AN ENTIRE FUNCTION

Entire function is a function that is analytic in the whole complex plane except,
possibly, at the point at . It can be expanded in a power series,

w ()
f@=Yaz o= =0
par k!
which converges in the whole complex plane, lim,  |a, ["*=0.

Now, if f{z) # 0 everywhere, then f(z)=e"®, where P(z) is an entire
function. Ifthere are finitely many points at which f{z) vanishes and these points

are z,,...,z, (the zeros of the function), then

f(2)=(z-2)..(z=2,)e"?
Now, when f(z) has infinitely many zeros z, z, ..., there is a product representation,
P T z z z
flz)=z2""¢ (1 ——]exp[— +... +—J,

[Tt fer v - (5.4)
where P(z) is an entire function, ) = ¢ if {0) # 0, and A is the multiplicity of the
zero z=01f£0)=0.

Let
M(r) =max | f(2)]

If for large  the quantity M(r) grows no faster than 7", then f(z) is a
polynomial of degree not exceeding 1. Therefore, if /{z) is not a polynomial, then
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M(r) grows faster than any power of 7. To estimate the growth of M(r) in this case,
take the exponential function as the comparison function.

By definition, f{z) is an entire function of finite order ifthere is a finite number
such that, NOTES

Mr)y<e™, r>F.
The greatest lower bound p ofthe set of numbers p satisfying this condition

is called the order of the entire function f{z). The order can be computed by the
formula,

TN kink
>eln|l/a, |

Iff(z) of order p satisfies the condition,

M@r)<e”, o < o, r>p, ...(5.5)

then we can say that f{z) is a function of order p and of finite type. The greatest
lower bound o of the set of numbers o satisfying this condition is called the type of
the entire function f{z). It is determined by the formula,

,I{L_rg kl/p ‘ a, ‘1/1{ _ (G e p)l/p.

Among the entire functions of finite type, one distinguishes entire functions

ofnormal type (¢ > 0) and of minimal type (¢ =0). Ifthe Equation (5.5) does not

hold for any o < oo, then the function is said to be an entire function of maximal

type or of infinite type. An entire function of order 1 and of finite type, and also an

entire function of order less than 1, is said to be of exponential type if it is
characterized by the condition,

lim k|a, ["*=p <o,
k—o0

The zeros of an entire function f{z) of order p have the property,

Z%<oo, foralle>0
i A
Suppose p is the least integer (p <p) suchthat Y ° |z, [*"' <oo. Then,

f(Z)ZZXBP(Z)ﬁ(l—i}exp[iJr...Jr c j

p
k=1 Zy Zy Pz;

where P(z) is a polynomial of degree not exceeding p.
Theorem 5.17: Let f:C — C be an entire function. Assume that there exist real

constants C, >0, >0, such that Re( f(z)) < C(1+|z[") forallz € C. Thenfisa
polynomial, atmost of degree [A].

Proof:

j:n cos(k0)sin(/0) =0
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0, k=l
n, k=1
NOTES I££(0) # 0, then we can just substitute the function /— f{0) for /. Thus we can

assume without loss of generality that f{0) =0. Developing fin a power series
around 0, we write

jj“cos(ke) cos(10) = e[ " sin(k6) sin(/6) :{

2
0

f(2)= i(an +ib,)z"
n=1
where a and bn are real numbers. Thererore
Re(f(2))= i r"(a, cos(n®) — b, sin(n0))
n=1

where z = re®. So for each t ¢ N we have

joz“cos(ke)Re( £(2)d0 = ar'r.

Similarty
joz“sin(ke) Re(f(2))d0=b,r'n
Also,
["Re(f(2))d0 = £(0)=0
n=1
Therefore,

L [Re(/(2)) |0
r

_
=
IN

- i [T (Re(/(2))|+Re(f (2)))d0

= [T max(Re(/(2)),0)d0
" =0

4C(1+r")

I"k

Therefore, taking r — oo, we see that if ¢ > A thena, =0. An analogous argument
shows also that b, = 0.

Definition: An entire function /s said to have finite order if there exists some real
number p >0, and a constant C > 0, such that

| f(2)|<Ce™
for all z e C. The infimumover all such p is the order of /. We can say that o is
the order of fif | f(z)|< Cé”™ , forall e> 0 and ze C.If | f(z)|<Ce , forall
z € C then a is the strict order of /.
5.3.1 Exponent of Convergence

Theorem 5.18 (Weierstrass): Given a nonnegative integer A and an increasing

sequence ofnon zero complex numbers { &, } converging to infinity, there exists

, an entire function f{z) whose zeros coincide with the points
Self - Learning ’
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0,00, §yveiin G e
%f_/

A times

... (5.6)

Proof: Consider the sequence of entire functions,

f.(2)= leﬂ[(l—ci]emz) (m=1,2,.),

n

where the p (z) are polynomials. Obviously, the zeros off (z) coincide with the
first m + A points ofthe sequence Equation (5.6). In general, f, (z) has multiple
zeros, since Equation (5.6) can contain the same point several times ( this possibility
is explicitly indicated for the point z = 0). The idea of the proofis to choose the
polynomials p (z) in such a way that the sequence {f, (z)} is uniformly convergent
on every compact subset.

Deducing the limit function, we get
f(2)=lim 7,(2) .. (5.7)

Let K, denote the disc ‘ z ‘ < R, and let N(R) be the smallest integer such that
|¢.|> 2R forall n > N(R). Then, ifz € K, and m > N(R) , we can write /(z) in
the form,

1,2 :fN(R)(Z) ﬁ (l_ijeﬂm ...(5.9)

n=N(R)+1 n

=fN<R>(z)exp{ 3 {ln(l—gi}a(z)}},
n=N(R)+1 "

where every logarithmic term can be expanded as a power series,

( z j z Zn Zn+1
In|1-— :___"'__n_—m—l_“"

&) & nG, (n+1)g,
since | 2/C | < 1/2 for allz € K, and n > N(R).

Choosing p (z) so as to cancel the first  terms of this series, i.¢.,

n

P,,(z)=i+...+ z

¢ nC” ...(59)
we have,
n+l
z z
Injll-— |+P(z)=————..,,
n( Cn] n(Z) (n+1)Cz+l .(510)
implying,
1 n+l 1 n+2
In|1-—= |+ P ()| < —|= Z
- n+1|C, n+2|C,
1 1 1 ...(5.11)
< + +..=—
2n+1 2n+2 2n

Then, the series

i {ln[l—f}ﬂ(z)} .(5.12)

n=N(R)+1 n
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is uniformly convergent on K, since

1n[1—ij+13n(z) <L icw
C,a n:12

Comparing Equation (5.7) and (5.8), and using the continuity of the exponential
function, we find that

f(Z):fN(R)(Z)exR(Z) (zeKky) (513)

This shows that f(z) is analytic on K, a fact which also follows from the
uniform convergence of the sequence {f (z)} K. Since the disc K, can have
arbitrarily large radius, {/, (z)} is uniformly convergent on every compact set and
hence the function f(z) is analytic in the whole plane, i.e., f(z) is entire. The fact
that the zeros of /(z) coincide with the points of Equation (5.6) is almost obvious,
and follows from the representation Equation (5.13) and the arbitrariness of R,

0

2

n=N(R)+l

since exp[X,(2)] is nonvanishing, while, by construction, the zeros of fyx)(2) in

K, are precisely those points of the sequence Equation (5.6) which lie in K.
Finally, recalling the definition of f (z), we note that

. ”’ z R
f(z)=igi;z*l}(l—g—}”"( ) (5.14)
Corollary 1: The finite product,
= z z z"
f(z)=zA1;[(1—C—jexp(C—+...+ ncnj ..(5.15)

is an entire function satisfying the requirements of Theorem 5.18.

Proof: Equation (5.15) is another way of writing Equation (5.14) and hence the
prooffollows.

Corollary 2: Let f(z) be an entire function with zeros given by the increasing
sequence,

0,..,0,a,,...,a,,...
%f_/

A times

Then, f(z) can be represented in the form,

AT z z z"
f(z)=eg( )len_ll(l—a—jexpﬂa—-i-...-i-mj, (516)
where g(z) 1s an entire function.
Proof: The function,
2T -2 AN
=212 foo| 2002

is entire, with the same zeros as f{z), and hence the quotient f(z)/¢(z) is entire
and non-vanishing. Therefore,

M — eg(Z)
0(z)

where g(z) 1s an entire function.



The Exponent of Convergence: Let{C } be an arbitrary increasing sequence of
non zero complex numbers, which converges to infinity and consider the series

Ay,

1
o .. (5.17
2] 617

where o is non negative. If the series Equation (5.17) converges for some o, > 0
then it converges for all o.> o, (since the numbers |C [ are all less than 1, starting
from some value of n). The greatest lower bound of the values of a for which
Equation (5.17) converges is a non negative number t called the exponent of
convergence of the sequence {C }. [fEquation (5.17) diverges for alla> 0, we
set T = oo and say that the exponent of convergence of the sequence {C } is
infinite.

For, example, the exponent of convergence of the sequences,

"y, {(n""Y  and  {In(n+1)}
are 0, T and oo, respectively.

Theorem 5.19: The exponent of convergence t ofthe sequence {C } is given by
the formula,

— Inn

t=lim .. (5.18)

=g, |
Proof: Suppose 1 is infinite. Then the series,
i 1
SICT

converges for any o > t. Since the terms of this series are non increasing, it
follows that

lim 0

n —_—
1C, I*
Therefore,

Inn
o>—
In|C,|

for all sufficiently large », implying

OLZE
e ln | § |

or

rzﬁ
> 1n | C, |

...(5.19)

since o is an arbitrary number exceeding t.

Next let o' be any number exceeding the right hand side of Equation (5.18).
Then there is aninteger N = N(a') such that,

Inn

In|¢, |

<a'
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for all » > N. Therefore

1 Uy
<nl/a

G, |
for all » > N, meaning that the series
1
n=1 | Cn |ﬁ
converges for any 3 > a'. It follows from the definition of the convergence
exponent that t < o, and hence
< m Inn
ol | |
because of the definition of o’. Comparing Equation (5.19) and Equation
(5.20), we obtain Equation (5.18). Moreover, if the right hand side of Equation
(5.20) 1s finite, so is . In other words, if T is infinite, so is the right hand side of
Equation (5.18) and the proofis complete.

Corollary 1: Ifthe right hand side of Equation (5.18) is finite and equal to T, then

... (5.20)

the exponent of convergence of the sequence {C, } equals t. Ifthe right hand side
of Equation (5.18) is infinite, so is t.
Theorem 5.20: Given anonnegative integer A and an increasing sequence of non

zero complex numbers { {, } converging to infinity. Let x be the largest nonnegative

integer k for which the series,

> 1
nZ:; CT diverges.

Then the expression,

1) =z”ﬁ(1—g—njexp(gi+...+xz—;;j

n

known as a canonical product, where the exponential factors disappear if
x =0, represents an entire function whose zeros coincide with the points,

N S
%f_/
A times
Proof: We have,
=z Z'V if x>1
P (2)=1¢, xC, ..(5.21)
0 if x=0
and
x+1
In|1-=|+P(z)=——— .,
- (x+1E,"

instead of Equation (5.9) and Equation (5.10), and
z
In|1-— [+ P/(2)
[ g j

n

Zx+1 0 Zp—l | Rx+1

G+ p)eyt

1 2R

)
< =

1 -1 x+1

% = A




instead of Equation (5.11). Therefore Equation (5.12) is again uniformly ~ Functions and Theorems

convergenton K, :| z|< R, but this time because of the convergence of the series,

S|
Z; G, 1 NOTES
instead ofthe series
v L
n=1 2"
The remaining proofis identical with that of Theorem 5.18.

Corollary 1: Let f(z) be an entire function with zeros given by the increasing
sequence,

0,000,0, @ysrnr iy ... (5.22)

A times
and let x be the largest nonnegative integer k for which the series,
|
Doy .(5.23)

n:1|a |

n

diverges. Then f(z) can be represented in the form,

f(z)= eg(ﬁlei[(l—aijexpﬂai-i-... + Zxxj ...(5.24)

n n xal‘l

where g(z) is an entire function and the exponential factors disappear if x =0.

Note: Theorem 5.20 and its corollary remain valid if we replace x by any larger
integer.

Theorem 5.21: Iff(z) is an entire function of finite order p with zeros given by
Equation (5.19) and if the sequence {a } has convergence exponent t, thent <p.

Proof: Givenany € >0,

1 < e(p+2¢)
| an |p+8 n
or
1
(p+2¢)/(p+e)
W <[e(p+2¢)] (P20 (pre)
n

for all sufficiently large n. Therefore the series,

1
S

n=1 | an

converges for all a>p+2¢, and hence for all a > p, since € > 0 is arbitrary,
T < p, by the definition of the convergence exponent.

Note: In particular, ifx is the largest non negative integer k for which the series
Equation (5.23) diverges, then x <[p].
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Note: The importance of Equation (5.24) over Equation (5.16) is that polynomials
of'the same fixed degree x can be used in all the exponential factors, instead of
polynomials whose degree becomes arbitrarily large (with 7). In the special case
where x = 0, the exponential factors in Equation (5.24) disappear and we have
the particularly simple infinite product expansion,

_ g AT _Zz
f(z)=e 21’1(1 a}

n

For example, x =0 if T = 1 and the series,

converges. Iff(z) is of finite order p, then x=0ifp<l,orifp>1butt<1.
5.3.2 Borel's Theorem

Theorem 5.22 (Borel): If fis a continuous functions on [a, b], then for any
€ >0 the interval can always be divided into a finite number of sub-intervals in
each of which the variation of f{x) is less than €.

Proof: Let the theorem be untrue. Divide [a, b] into two-halves [a, c], [c, b]

1
where ¢ = 5 (a+ b) . Then at least in one of these the theorem is untrue. Ifuntrue

in both, for definiteness, take right hand side half. Denote this half interval by
[a,, b ]. As earlier divide [a , b ] into two halves, at least in one the theorem must

be untrue, denote this halfby [a,, b,]. Continuing this process of division indefinitely;

we get a sequence of closed interval([a , b ]) such that
a<a <a,.<a <a_..<b <b ..<b <b <b,withb —a =(b-a)/2".
Hence by the nested interval theorem, <a >, <b >, converge to a unique
point, say a.. Then g [a , b ] < [a, b] wn € N.

Let us assume that o # a or b. Then, on account of continuity of fat o, for
€> 030> 0 such that

X, X, € (=98, a+08)=|f(x)—f(x) <e.

Since b —a = (b—a)/2" — 0asn—oo, for 6>0 3 m € N such that

b —a <&y nzm. Inparticular, b5 —a <dwitha €[a ,b ]
=la, b,]c(a—-135,5+09).

Hence, (*) gives thatx , x, € [a , b ] = [f(x)) -fx,)| <€

This shows that the variation of fin [a , b, ] is less than & > 0. This
contradiction leads to the fact that the theorem must be true.

A slight modification would establish this fact even when o= a or b.
The possibility of oo = a or b necessitates that the interval from a to » must be
closed.



Check Your Progress

When is an entire function said to be of finite order?
. State Poisson-Jensen formula.
Define the order of an entire function.

State Weierstrass theorem.

N N

. Give the statement of Borel’s theorem.

5.4 THE RANGE OF AN ANALYTIC FUNCTION

Here, the range of an analytic function is investigated.

Lemma 1: Let fbe analyticin D= {z: | z| <1} suchthat £(0)=0, /" (0)=1 and
| 7(z)| <Mforallzin D. Then M> 1 and

L
f(D)> B(O, 6M]

Proof: Let f(z)=z+a,z" +az’ +...

Since £ (z) is analytic in D = B(0; 1), so by Cauchy’s estimate
|an|SMforn21
|a1 | <M
M>1 [--a,=1]
Let z € D such that ‘Z ‘ =1/4M. Then

| f(2)[2]z]-) | a,z" |
n=2
4M o

1 1 ( 1 1 j
= - + + +...
AM 16M 4M 16M*
S 1 _1_1_1(12M—4)>1
4M 16M( 1) AM 16M -4 4M\16M—-4) 6M

1_7
AM

**Minimum value of 12M -4 is Z when M =1
16M -4 3

Suppose w € B(0; 1/6 M) then ‘w‘ <1/6 M
Consider the function g (z) =f(z) -
= |w| <16M< |f(2)]

For |z|=

So by Rouche’s theorem, f and g have the same number of zeros in

B(0; 1/4M). Since £ (0) =0,
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s0 g (z,) =0 for some z, € B(0; 1/4M)

- f(z) —w=0, for somez, € D [B(0; 1/4M) c D]
Le., w=f(z), forsomez, € D

Le., wef(D)

Hence, B(0; 1/6 M) c f (D).

Lemma 2: Suppose g (z) is analytic on B(0; R), g (0) =0,
and | g(2) | < M for all z, then

2(0)=p>0

: R
g(B(0; R))> B(O, Y j

2(Rz)
Let () =502 .
Proof: Let Rg'(0) forz € D where D= {z: ‘Z‘ <l1}.

Then, fis analyticon D, (0)=0, /" (0) =1 and

|g(Rz)|:|g(RZ)| :M for all z in D
[Rg'©|  Ru  Ru '

So by Lemma 1,

. HR
B(O, 6Mj c (D)

/(@)=

2.2

RM RZHZ
B| 0; —— B(0; R)), let B| 0;
To show ( 6Mch( (0; R)), let we [ Y

R2 2
Then |w|< B B
6M

w

Wi Ru
Ru

oM

<

w . bR
= R—MEB(O, 6Mjcf(D)

= Rl:f(z) for some ze D

o _&R)
Ru  Rg'(0)
= w=g(Rz) where|Rz|<R

where | z |[<1

= weg(B(0O;R) [ Rz € B(0; R)]
Hence, the result is proved.
Lemma 3: Let f/ be an analytic function on the disc B (0; r) such that
| f'(2)= f'(a)|<] f'(a)| forallzin B (a; r), z # a, then fis one one.

Proof: Suppose z, and z, are points in B (a; r) such that z # z_. Let y be the line
segment [z,,z,] then



[~ [ @[ S (2)d

z

[/ (@)~ 1 (@)

v

[ /(@)

>| @)z~ |=[| £ ()~ (@)l dz |

< +

[ (a)ez

(1 @)= 1(2)1dz

[ 1)z

|

> f@)lz, -z, |- f(@)]z—-z|=0
=  fz)#* f(z,)

Hence f'is one one.

5.4.1 The Little Picard Theorem

Theorem 5.23 (Little Picard Theorem): An entire function f: C—C, which omits
two values, must be constant.

Corollary 1: A meromorphic function on C can omit atmost two values on C.

The Little Picard theorem is equivalent to the assertion that there is no solution
to the equation ¢/ 42 =1 where fand g are non constant entire functions.
Similarly, it implies that there is no solution to Fermat’s equation /" +g" =1, n>3,
unless the entire functions fand g are constant.

Proof of the Little Picard Theorem: Suppose if /: C — C is nonconstant and
omits 0 and 1. Thenf (z) =/ " (z) omits more and more points on the unit circle.
We can rescale in the domain so that the spherical derivative satisfies
|| £,(0)||,,—> o . Passing to a subsequence and reparameterizing, we obtain in the
limit a non constant entire function that omits the unit circle. This contradicts
Liouville’s theorem.

Classical Proof: This proofofthe little Picard theorem is based on the fact that
the universal cover of C — {0, 1} can be identified with the upper half plane.

Consider the subgroup I'; < Isom(A) generated by reflections in the sides
of'the ideal triangle 7 with vertices {1, i,—1}. Now let = : 7— H be the Riemann
mapping sending 7'to H and its vertices to {0, 1, «o}. Developing in both the domain
and range by Schwarz reflection , we obtain a covering map r: A — C- {0, 1, o0} .

Given this fact, we lift an entire function f/: C - C — {0, 1} to a map
7 :C — H, which is constant by Liouville’s theorem.

Uniformization of Planar Regions: Once we know that C—{0, 1, o} is
uniformized by the disc, it is straight forward to prove.
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Theorem 5.24: The universal cover of any region U= C with| C— U] >3 is
isomorphic to the unit disc.

Proof: Consider a base point p in the abstract universal cover n:U — U and let
Fbe the family of all holomorphic maps,

£:(U,p)—>(A,0)

that are covering maps to their image. Using the uniformization of the triply-punctured
sphere, we have that F'is non empty. It is also a closed, normal family of functions
in O ({7 ) and by the classical square-root trick, it contains a subjective function
(which maximizes |f' (p)|). By the theory of covering spaces, this external map must
be bijective.

5.4.2 Great Picard Theorem

Theorem 5.25 (Great Picard): An analytic function f/: U — C takes on every
value in C, with atmost one exception, in every neighborhood of an essential
singularity p.

Proof of the Great Picard Theorem: Let f:A*—> C- {0, 1, oo} be an analytic
function. We will show fdoes not have an essential singularity at z=0.

Consider a loop y around the puncture of the disc. Iff'sends to a contractible
loop on the triply-punctured sphere, then £ lifts to a map into the universal cover
H, which implies by Riemann’s removability theorem that fextends holomorphically
over the origin.

Otherwise, by the Schwarz lemma, f(y) is a homotopy class that can be
represented by an arbitrarily short loop. Thus, it corresponds to a puncture, which
we can normalize to be z = 0; so again the singularity is not essential.

Lemma 1: If/ — fand fis non constant, then any value omitted by all / is also
omitted by /-

5.4.3 Bloch’s Theorem

Theorem 5.26 (Bloch’s Theorem): There exists a universal R > 0 such that for
any /: A > C with |/ (0)| = 1, not necessarily univalent, there is an open set
U c A such that fmaps U univalently to a ball of radius R.

Corollary 2: For any analytic map on A, the image /' (A) contains a ball of radius
Rf (0).

Note that the ball usually cannot be centered at /(0); for example, f'(z) = exp (nz)
/n satisfies f' (0) =1 but the largest ball about f(0) = 1/n in f (A) C+ has radius
1/n.

The optimal value of R is known as Bloch’s constant. It satisfies 0.433 < /3 /4 <
R < 0.473. The best-known upper bound comes from the Riemann surface
branched with order 2 over the vertices of the hexagonal lattice.



Lemma 1: Let /< O(V) be non constant and satisfy| /'|,<2| f'(a)|. Then

By(f(@) e (7). with Ri= (=220 f(@)]. (3-22>9)

Proof: We may assume that, a = f (a) = 0. Set 4 (z) = f(z) —f (0)z. Then,
A(z)= Lo,z][f (€)= /'(0)]dC  whence | A(z) |< jol| 7(zt)= f'(0)|| z| dr .

Forv eV, Cauchy’s integral formula and standard estimates give,
'©)d
Fo-ro=2 ] ZESrm - o,
4(a r=|v|
It follows that,

IZfIIfI ES

zldt<—
2r=|z]

| A(z)|< j =1, .. (5.25)
Now let pe(0,7). The inequality | 7(2)= 1'(0)z]=] £'(0)|p—| f(2)| holds forz

such that |z| = p. Since | /|, < 2| /'(0)|, it follows from Equation (5.25) that,

If(Z)IZ( p_pjlf'(O)l

Now p—pz/(r—p) assumes its maximum Value,(3—2\5)r, at p*:=

(1—%\/5}6(0, r)

It follows that, | f(z)|=2(3— 2\5)r | £'(0)|=R forall|z|=p

Proof of Bloch’s Theorem: Given /: A — C, let || £'(z) ||| f'(2) |*“=(1/2)
| /'(z)| (1= | z ") denote the norm of the derivative from the hyperbolic metric to
the Euclidean metric. By assumption, ||f' (0)|| = 1/2. We can assume that fis smooth
on S'. Then ||f' (z)|| — 0 as |z] — 1, and thus sup |||’ (2)|| is achieved at some p
eA.

Now replace f with ' ¢ » where r € Aut (A) moves p to zero. Replacing f with
af +bwith |a| < 1, we can also arrange that /(0) = 0 and ||/'(0)||= 1. This will only
decrease the size of its unramified disc. Then ||f'(z)|| < ||f'(0)|| = 1, thus f]A(1/2)|
ranges in a compact family of non constant analytic functions. Thus, the new /'
has an unramified disc of definite radius, but then the old fdoes as well.

Theorem 5.27: Let f : C— C be a sequence of non constant entire functions.
Thereafter passing to a subsequence, there is a sequence of Mobius transformations
A and anon constant entire function g: C — Csuch that g=1limf 04 uniformly
on compact subsets of C.
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Note here that the 4 need not fix infinity, so /, 04 is unidentified at some point
p, € C, but we will have p, —> .

For example, f (z) =z". We cantake f o 4 (2) = (1+2z/n)" — €.
Metrics: As a preliminary to the proof, for g: C — C we define

[£'(2)]
(+|g(=)[)

and ||g’||_ =sup ||g'(z)|| over allz e C. This is the norm of the derivative from the

1g'@) .=

scaled Euclidean metric p_ = 2 |dz| to the spherical metric. Note that g(z) =
exp (z) has||g’|| =1/2.

Similarly, for g: A (R) —» C, we define

@ =g’y 2R
le@l=lg @l =

This is the derivative froma suitably rescaled hyperbolic metric p, on A(R) to C.
Clearly, p, — p_ uniformly on compact sets. Its key property is that,
1 (go4)'|,=llg'll, forall4 € Aut(C ) stabilizing A(R).

We also note that the set of maps with uniformly bounded derivatives in one
of these norms is compact.

Theorem 5.28: Let us first consider an arbitrary non constant analytic function f
(z) and a radius R > 0. We claim there exists an § > R and an 4 €
Aut (C ), such that g=f0A isanalytic on A (S), and

1" Olls=llg"ls=1

Indeed, by replacing f with f (az + b), we can assume || /'(0)||,=1. Then
| f'lz=1. On the other hand, the R-norm of'the derivative of f tends to zero at
the boundary of A (R). Thus we can choose Be Aut (A(R)), such that
M =[|(f 0 B)O)[[z=[|(f 0 B)'|lz=1
Now just let g (z) = (fo B)(z/M) and S= RM.

Applying this claim to / and a sequence R — oo, we obtain § — o and
maps g =/ oA with|lg’ (0)]| =1and|lg’ |IS <1.Now pass to a convergent
subsequence.

5.4.4 Schottky's Theorem

Lemma 1: Let Q be a connected open set in C. Suppose that there is a function
A € C*(Q), such that



AMz)>0, zeQ A°(logh)=>A on Q
Let f:D, — Q be aholomorphic map. Then,
| F@F Mf(2)<0,(2)=2R*/(R*~|z")’,  zeD,
Proof: Let 0<r<R. Consider the function u defined on D by,
u(z)=| f'(2)' Mf(2))/0,(2), zeD,
Clearly, 6 (z) »> o as |z] = r; hence u(z) —> 0 as|z| = r. Hence, unless u
= (0—where the lemma is trivial—there is a € D, , such that
u(a)=sup u(z)>0
zeD,
Since, u(a) > 0, log u is C* in a neighbourhood of a, so that we have,
A (logu)(a)<0
This implies,
02 A*(logu)(a) = A"logh(f(2))|.., —A"(log®, )(a)
= | fY(a)[ A*(logh)(f(a)-,(a)
2| f(@] Mf(a)~0,(a)
Since, A°(logi) > . Hence, u(a) <1, so that u(z) <1 for z e D, . Thus,
| f'@F Mf()<2r7 /(7= | 2])? for |z|<r
Putting » — R proves the lemma.

Corollary 1: Let fe H(D),D =D, and suppose that f(D)c D. Then, for
zeD

FAGIIPE
= /GF 1-]zF

Proof: Putting A(z)=2/(1-|z[")*, Q=D inLemma 1 gives,

2 < 2
(-1fF)  (=|z[)
Lemma 2: Let C | = C— {0} — {1} be the complex plane with the points 0 and

| f(2)F

1 removed. There exists a function » € C*(C,,) with the following properties:
@) Mz)>0forze C ,
() A°(logh) =X on CO’1
(i) There exists a constant ¢ >0, such that for ze C,

C
>
(1+] z )(log(2+] z["))*

Az)
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Proof: Let us construct a C* function ¢ on C such that ¢(z)=|z|* for [z] < 1/2,
d(z)=1/2 for |z| 2 3/4 and 0 < ¢(z) <1 for z = 0; $(0) =0.

Now, there exists a C* function o on R such that o) =1 for 1< 1/2, a(f) =0 for
t>3/4and0<o(r) <1 forallt e R.
1

Let B(t)=au(t).t> +(1— oc(t)).E

We have,

B(t)=¢ fort<1/2, B(r)=1/2 for t>3/4 and 0 <B(r) <1 forallz>0.

We only have to set,

o(2)=B(lz))
Similarly construct a function,

yeC”(C) such that y(z) = 2 for [z|<2, y(z)=z[* for |z]|23 and
y(z)>2 forall zeC.

Now, let 0 <& <1 and put
u(z)=py(2)=|z[” (log(8¢(2)))*, z#0

Thenu(z) — 0 as & — 0 uniformly on |z| > p for any p> 0. Since A°(log |z]*) = 0
for z# 0, we have, for 0 <|z| < 1/2,

) _ o L))_af 2 1
A (logu)(z) = 826;( 21°g(1°g 8¢(z)n_ 82( = log(Sz;)]

2
= =2
2P oGz ¢

For |z| 2 1/2, we have

A (logu)(z) = 856; [—2 log [log ;Zj]

E[ 2 1 @j
0z\  log(dd(z)) d(z) oz
~ 2 1 o) 2 o 1 &
~ (0g(36(2)))” @(2)” |ez| 1og(a¢(z))£[¢(z) ?j
Now, since ¢(z)=1/2 for |z| > 3/4 therefore for |z| > 3/4, the above

expression is equal to 0. Also, the above expression tends to 0 uniformly for
|zl = 1/2 as & — 0.

Similarly, set

v(z)=vs(z)= [log %j_

Then v(z) — 0 as & — 0 uniformly in z and we have,

A°(logv)(z) = | 2|2 v(z) for|z|=3
z



Whereas
2 1

10 ¥V

oy

A° (logv)(2) = -

g
log% oz\ y(z) oz

for |z <3. Hence, A°(logv)(z) — 0 as & — 0, uniformly for |z| <3.

Let us now define,
Mz)=s(2) =1+ | z P u(2)u(z = )w(z), z#0,1
We will now show that if 6 is sufficiently small, then A has the properties
stated in the lemma.
Let K, ={zeC:|z|<1/2}, K, ={zeC:|z—1]|<1/2}.Now A log(1+| z ")
= (1+|z[*)*. Hence, if ze K, we have
A°(logh)(z) = (1+] 2 ) + A (logu)(z — 1) + A° (log v)(z) + 2u(z)
(A°logu=2u on K,). Since A°(logu)(z—1) and A°(logv)(z) >0 as § -0,
uniformly on K (and since (1 + |z[*) > > 1/4), we have
A°(logh)(z) >2u(z), zeKk,
if 8 is sufficiently small. Since, moreover (1+ | z | Ju(z —1)v(z) <2 for ze K,
and small enough 0, this will give
A°(logW)(z) > M(2)
and
A°(logr) > A on K if & is sufficiently small.
Now, let |z > 3. Then,

1
A (logh =—+ Al
(logA)(2) (1+|z|2)2+ (logv)(2)
> 22v(z)
| z|
We know that,
1+|z| 1

(1+|z|2)u(z)u(z—l)= , |z|>3

=121 og o)y
If & is sufficiently small, this expression is less than 2/|z[*. Thus,
Af(logh) > on|z|>3.
Now consider, K ={zeC:|z|<3}-K, - K, . We have,
(1+1z7)?>1/100if z € K. Since u(z), u(z— 1), v(z), A° log u(z), A° log u(z— 1),
A¢log v(z), all > 0 as & — 0 uniformly for ze€ K, we have

A(logh)(z) = ﬁ +A°logu(z)+ A logu(z—1)+ A logv(z)
+|z

> 1 >A(z) if 8 is sufficiently small
200
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This proves that there exists 6> 0, such that
A (logh)(z) > M(z2), zeC,,, 853,
So that A satisfies (ii).
Now, set the value of 6. Then there exists constants ¢ ,c, >0 depending

upon O such that for |z| > 3, we have

1+|z] 1 1

T1zZFlz-1F(, (1 OV (. 1zF )}
log| —o 1
Og[z j 0og 5

1 CZ

> >
2" (og| z[)*  (1+] z[")(log(2+] z "))’

Since, clearly u(z) - o as 7z — ¢ for fixed 6, and u(z —1) > as z—>1,
while u(1)#0, u(-1)#0, v(0) =v(1) 20, it follows that A(z) >« as ; — 0 and
as z — 1. This along with the inequality proved above for |z |>3 proves that A

satisfies (iii).

Theorem 5.29 (Landau’s): There is a function oo — R(a) from C'into the positive

real numbers with the following property:

If feH(D,) and f(0)=a, f'(0)=1andif R > R(a) thenfassumes one

ofthe values 0, 1 on D,.
Proof: Let feH(D;), f(z)=a+z+.. and suppose f#0,1 onD,. Then
f(Dy)cC, . Hence, if A is the function constructed in Lemma 2 then Lemma 1
gives,

| /'@ M) 2R (R*~[z)7?,  |zKR
Forz=0, we get

Mo)<2R*.R™ie, R<(2/ Ma))"?

Theorem 5.30 (Schottky’s): Let R >0 and C> 0. Let F'be the family of functions
f € H(D,) whichdo not assume the valuesO or 1 and F. ={f e F:| f(0)|<C}.
Then for 0 <7 <R, there exists a constant M depending only on r, R and C, such
thatforall feF,.,|f(z)|<M for|z|<r.

Proof: Let A be the function constructed in Lemma 2. By Lemma 1, we have
| f'@F Mf(2) 2R (R*~|z[)” for ze Dy, feF
Hence, if 1, <R, we have
| f'@F Mf()<M, for |z|<n,feF
where M depends only on R and r,. Now, from

Cc
>
(I+|w)(log2+| w[*))’

Aw)



we get Functions and Theorems
| (@M 2+] f(2) ) 1og2+| f(2)[), |zI<h, feF

where M, = M, /Jc . Let 0 be fixed in the interval 0 < 0 < 2w and define,
NOTES

u(r)=log(2+| £(re")) for 0<r <,
We have,

du 1

d 0\ 770y
;—W-E(f(re )f(re™))

Now,

e 7 ))% e P T 4 e e T

dr

<2| f(re®) | f(re™)|
<2M, | f(re®) | (2+] f(re®) ) log(2+] £ (re™) )
<2M,(2+| f(re®) P)log(2+] f(re™) ")

Therefore,

<2M,log(2+| £ (re®) ") =2M u(r)

du
dr
This implies that,

dlogu(r)

= <2M,, logu(r)<logu(0)+2Mr
3

so that u(r) <u(0)e**" . Hence, log(2+| f(re)[*) <log(2+ C*)e** for f e F,

and r <r,. Thus, the theorem is proved.

5.4.5 Montel Caratheodory Theorem
Theorem (Montel Caratheodary) 5.31: If 5 = O(Q, C) omits three values, then

< 1s normal.

Proof: Without loss of generality, we may assume that Q= D, and that 5 omits 0,
1, and . Inparticular 3 < O(D) and each f € 3 admits a holomorphic n-th root
for any neN. Let us collect all 2”-th roots of elements of 3 and form the family,

3, ={geO0(D): g"" = f pointwise for some f € I}

It is obvious that 3, omits 0, c and 2"-th roots of unity. Expecting a
contradiction, suppose that J is not normal. Then 3, is not normal, because
convergence ofa sequence implies convergence of the sequence composed of 2"-
th power ofthe elements from the original sequence. Let g, €0(C, C ) be the limit
function from Zalcman’s lemma applied to 3, . We have || ¢’ |< g/ (0)=1,and g

omits 0, o, and the 2"-th roots of unity. In particular, {g } is normal by Marty’s  seif - Learning
Material 223
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theorem, and pasing to a subsequence, the limit functiong=limg e O(C,C)
omits 0, oo, and the 2"-th roots of unity for all ». Moreover, g is not constant since
g"(0) =1.It follows from the open mapping theorem that g omits 51 , hence either
g(C)c D or g(C)c C\D. Finally, Liouville’s theorem applied to either g or 1/g
implies that g is constant, reaching a contradiction.

Theorem 5.32: If /e O(D*) omits 2 values in C, then fextends to 7 e O(D, @) )

Proof: With a positive sequence ¢, -0, let g,(z) = f(¢,z) for zeD*. Then {g }
omits 3 values in C, so it is normal. Passing to a subsequence, let
g=limg, € O(D",C). So either g is a meromorphic function on *, or g =oo.

If g # o, then there is a circle 6D, that does not pass through any pole of g, i.e.,
suchthat || g | < M for some M > 0. This means that || g | < M foralllarge
n, or in other words, that |f(z)| < M for |z| = ¢ r for all large n. By the maximum
principle, [f{ < M on the annulus of inner and outer radii ¢, rand ¢, respectively,
and this is true for all large »; hence 0 is a removable singularity of /. For the case
g=ow,wehave | f(z)|>was z—0,s0 0is apole of /.

5.5 UNIVALENT FUNCTIONS

Let D — C be a domain, i.e., an open and connected non empty subset of the
complex plane. We know that a function f: D — Cis analytic at z ifit is complex
differentiable at every point in some neighborhood of z, € D. We say that fis
analytic on D if /s analytic at z for everyz, € D.

Definition 1: A function f/: D — C'is called univalent on D if / (z ) # f(z,) for all
z,z,€ Dwithz # z,.
Note: It follows from Rouche’s theorem that if/is analytic on D, then /"(z ) # 0 if

and only if /1s locally univalent at z , i.., if /is univalent in some neighbourhood of

z,.
Definition 2: A function /: D — C which is both analytic on D and univalent on D

is called conformal on D. Such an fis often referred as a conformal mapping of D.
It is important to remember that the underlying domain is an integral part of
the definition of'a univalent function ( or a conformal mapping). Suppose that
D:{ze(C:O<‘Z|<1,Im{z}>0,Re{z}>}:{ze(C:0<|z|<1,O<argz<Tc/2}
which is that part of the unit disc in the first quadrant. The function f(z) = z* then
maps D conformallyonto DN H={ze C:0< ‘Z‘ < 1,Im{z} > 0}. Thatis, f: D

— D N His analytic and univalent on D, and onto. However, the function g(z) =
z2does not map D conformally onto the unit disc D, although g(D) = D. While g:
D—D is analytic, it is not univalent. For instance, g(1/2) = g(-1/2) = 1/4. In fact,
g' (0) =0 meaning that there is no neighbourhood of 0 in which g is univalent.



Again note that an analytic fnction may be locally univalent throughouta  Funetions and Theorems

domain although it need not be univalent in that domain. Consider the domain,
D={zeC:l<|7<2, O<argz<3n/2}

and the functionf: D —C givenby f(z) =z It is clear that fis analytic on D and NOTES

locally univalent at every z, € D since f'(z)) =2z,# 0 forallz € D.

However, fis not univalent on D since,

9

o 2
= - - = —1

AN EA S

Suppose that,

D={zeC:(Re{z}-1)’+Im{z}’ <1/4} ={(x,y) e R*:(x=1)>+y* < 1/4}

Letf: D — Cbe given by f(z) = z*. We will show that fis univalent on D.

Recall from the Riemann mapping theorem that any simply connected proper subset
of the complex plane is conformally equivalent to the unit disc. Thatis, it D C C
is simply connected and z, € D, then there exists a unique conformal transformation
S D—D with f(0) =z and f'( 0) > 0. Therefore, statements about univalent
functions on arbitrary simply connected domains can be translated to statements
about univalent functions on the unit disc.

Notation: Let S denote the set of analytic, univalent functions on the unit disc D
normalized by the conditions that /(0) =0 and f( 0) = 1. That is,

S={f: D—C: fis analytic and univalent on D, A0) =0 and /' (0)=1}.
It follows that every f € S has a Taylor expansion of the form,
f@=z+taz+az+.., [2<I,
wherea € C,n=2,3,.... We will often be setting a, = 1 for f € S.

The most important member of S is the Koebe function, whichis given by

=742z 4322 +...

k(z) =

a-2°
and maps the unit disc to the complement of the ray (—oo, —1/4]. This can be
verified by writing,
1(1+z) 1
k(z)=— ——
=7 (1 - z) 4

I+z
and noting that 1, maps the unit disc conformally onto the right half-plane

{Re{z}>0}.

1+z

1=
‘/—Z\
D

) Self - Learning
(Refz} > 0 \ (=, 0 (oo, —1/4 ¥
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Many of the results that we will discuss give bounds for function in .S which
will be attained only by the Koebe function.

Other examples of functions belonging to S'include

(1) The identity map, f(z) =z.

z
(@) f(2) =1, ° + z2 + Z° + ... which maps D onto the half-plane
{Re{z} >-1/2}.

z
(i) f(z)= 7?2 + 2%+ 23+ ... which maps D onto the plane minus the two
-z

half-lines [1/2, ) and ( — o0, —1/2].

1 1+z
) f(2) =5 log 12 which maps D onto the horizontal strip {—n/4 <Im{z}

< m/4}.

The following example shows that /'€ Sand g € Sneed not imply that f+g € S
so that §'is not closed under addition.

Here,let f(z)= é and g(z) =

1+iz
So that f, g € S. However,
1

f'(2)= a _2)2
and

g@= (i)
So that,

2-2(1-i)z

FO+¢@= 1 iy
From which we conclude that /”(z) + g'(z) = 0 if,

I 1+

1-i 2

z=

This shows that, f+g ¢ S.
Theorem 5.33: The class S'is preserved under the following transformations:

(i) (Rotation) Iff€ S, 0 R, and g(z) = e ™ f(e”z), then geS.
1
(1) (Dilation) Iffe S,0<r<1,and g(z) = - f(rz),thenges..

(iii) (Conjugation) Iff e Sandg(z)= f(Z),theng € S.



Proof: In order to prove that S'is preserved under rotation, dilation and conjugation, Functions and Theorems

we consider that the composition of one-to-one mapping is again a one-to-one
mapping.
(i) Suppose that f € S. Let R(z) = ¢z and T(z) = ¢z so that R: C — C and NOTES
T: C — Care clearly one-to-one. Since g(z) =e ™ f(€°z) = (T'0 fo R)(2)
is a composition of one-to-one mappings, we conclude that g is univalent
on D. Since,

g)=e®. e . e . f(e"2)=f"(e"z)
we see that g is analytic on D. Furthermore, g(0) =7(0) =0 and g'(0) =
/'(0) =1 so that g € § as required. Note that the Taylor expansion of g is
given by,
g(Z) = (eiGZ + a262iez2 + a3e3iez3 + ) =74+ 612€i622 + a3e2i923 + e

(i) Suppose that f1Sandlet0<r<1.Let R(z)=rz and T(z) = z/r so that R:

1

C — Cand T: C — C are clearly one-to-one. Since g(z) = - f(rz) =
(T o fo R) (z) is acomposition of one-to-one mappings, we conclude that
g isunivalent on D. Since,

1
g@=— rfr)=1(r2)
we notice that g is analytic on D. Additionally, g(0)=/0)=0andg'( 0) =
f'( 0) =1sothatg e Sasrequired.

We also note that the Taylor expansion of g is given by,
! ‘+arZtarz+-)=z+ 2+ arizi+
gl2)= r(rz ayrztarz +-)=z+arz +arz+t

(i) Suppose thatf'e S. Letw(z) = ; sothat w: C— C'is clearly one-to-one.

Since g(z) = f(z_) = (wo fo w)(z)is a composition of one-to-one

mappings, we conclude that g is univalent on D. Note that w(z) is not analytic
on D and so we cannot simply use the fact that a composition of analytic
functions is analytic. Instead, we note that the Taylor series for £, namely

o

z+y.a,7 ...(5.26)

has radius of convergence. That is, the Taylor series Equation (5.26)
converges to f(z) for all |z| < 1 with the convergence uniform on every
closed disc |z| <7 < 1. It then follows that the Taylor series,

z+y az .(5.27)
n=2
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has radius of convergence 1 and so Equation (5.27) defines an analytic
function on D. Hence, we conclude that

g2)= f(z) =zT+az’+az +-- =zt @z taz +-
is analyticon D withg(0)=0andg’( 0) =1.Thus,g e S.
Hence proved.

Theorem 5.34: The class S'is preserved under the following transformations,

(1) (Disc automorphism) Iff € Sand,

f(z+zo jf(z())

1+ z,z
(1_|ZO|2)f,(ZO)

forany |z |<1,theng € S.

gl2)=

(1) (Range transformation) Iff € S, ¢ : AD) — C'is analytic and univalent on
AD), and

_ ©0NE)-0(0)
700

theng € S.

(1)) (Omitted-value transformation) Iff € S with f(z) # wand,
wf(2)
g(z)=—"——,
w— f(2)

theng € S.

Proof: In order to prove that S is preserved under disc automorphism, range
transformation and omitted value transformation, we again note as in the proof of
Theorem 5.34 that the composition of one-to-one mappings is a one-to-one

mapping.

Z+z,

(i) Suppose that f € Sand let W(2) = be the mobius transformation

1+2z,z

which maps the unit disc D conformally onto itself with w(0) =z. Since
z,€D, we conclude that

_S(2) - f(z)
SOz )
is univalent on D with g(0) =0. Furthermore,
w2/ W2) __ [(2)
(=12, ) f'(z))  (1-z02)* f'(2,)
so that g is analyticon Dwithg'( 0) =1.Thus, g € Sasrequired.

g'(z)=



(1) Suppose that /'€ Sandlet ¢ : /(D) — C be analytic and univalent on f{D).
If

(¢ 0 f(2)—4(0)
$'(0)
then g is clearly univalent on D with g(0) = 0. Furthermore,
/'(2)9'(f(2))
$'(0)
so that g is analytic on D withg (' 0) =1. Thus, g € Sas required.
(1) Suppose that /'€ S with f{z) # wand let

_ W@
w-/(2)

g(z)=

g'(z)=

g(2)

If 70 = WW—C which is clearly one-to-one if £ # w, then it follows that

-C
g(z)=(T o f)(z) isunivalent on D. Furthermore,
w f(2)
(w—f(2))°
and since w# f(2) it follows that g is analyticon Dwithg’( 0) =1. Thus,g

g'(z)=

€ S as required.

Lemma 1: Iffis analytic on D with 0 # f(D), then there exists an analytic function
hon D with i*=/.

Proof: Let g(0) be any complex number with exp{g(0)} = /(0). For any other
we D, let

JAO)

/(2)

where y: [0, 1] — Dis any C' curve from 0 to w. From the fundamental theorem

g =g(O)+]

of calculus, it follows that

gm:%% .(528)

Note that f(z) # 0 forz € Dso that g’( z) is well-defined for all z € D implying
that g is analytic on D. It now follows from Equation (5.28) that,

[fe #1(w) = f'(we *™ = g'(w)e *™ f(w) = e * [ [ (w) - g '(w) f(w)] =0
The equation [fe¢]'(w)=0 implies that f(w)=e*"" . Hence, the proof is

completed by taking /(2) = exp {%Z)} so that /2 is analytic on D with 7 (z) = £(z2)

foreveryz € D.
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Note: The analytic function g in the previous lemma is unique upto translation by
integral multiples of 27i. In fact,

g(z)=log| f(2)| +iarg f(z)
Lemma 2: Iff € S, then there exists an odd function / € S such that #*(z) = f(z?)
foreveryz € D.

AG)

z

Proof: Iff € S, then f(z)=z+a,z* +a,2° +... so that =l+a,z+a,;z" +...

is a non zero, analytic function on D. By Lemma 1 there exists an analytic function
FonD with,
2 /()

F(z)= -
If we define h(z) = zF(z%), then it is clear that / is odd with #%(z) = f(z%), h(0)=0
and #'(0)=F(0)=1. Let z , z, € D and suppose that /(z,) = h(z,). The univalent
of fimplies that z >=z *. Therefore, it must be the case that either z =z, orz, =
— z,, then this implies that /(z,) = —h(-z ) =—h(z,) since h is odd. However, this
contradicts the assumption that /(z,) = /(z,), and so we conclude that z =z, This
shows that 4 € S, thus completing the proof.

Theorem 5.35: The class S is preserved under the square root transformation.
Thatis, if f € Sand g(z)=+/ f(z*),theng € S.

Proof: Suppose that f'e Sand g(z)=,/f(z*) . Since f{z) =0 only whenz =0, it
is possible to choose a single-valued branch of the square root by writing,
g(2)=Af(Z)=z(1+a 2" +a,z* +a,z° +..)?)=z+ b2 + bz +...

for |z| <1 for some coefficients b € C. It now follows from Lemma 2 that g is
univalent on D and that g is analytic on D with g(0) =0 and g'(0) = 1. That s,

g € Sasrequired.
5.5.1 Bieberbach's Conjecture

Theorem 5.36 (Area Theorem): If / :ID — f(ID) is a conformal mapping of D
with f{0)=0 and f'(0) > 0 so that f has a Taylor expansion,

f(D)=az+a,z’ +az +.., |z|<1 ...(5.29)

with @, e R, g, >C then,
Area (f(D))=n) n|a,f
n=1

Proof: Write D = (D) as shown in the Figure.



f
~~

D
f(MDM=D
z-plane w-plane
From Green’s theorem,
1 —_
Area (D) = EJ.ﬁD wdw

that upon changing variables gives,

o dw=%fwmf'(z)dz

2jdaoD
Substituting this in Equation (5.29) and changing to polar coordinates, we get

Area(D) = 2i ﬂD(ZEn}"J(Zmamzm—lez
17 n=1

m=1

_ 2i OZn(ZEne_,-nej[zmamei(m—l)eJl-eie 4o
1

n=1 m=1

= %jjn(i;ne'i"ej[ y mamei”’ejde
n=1

m=1

as oD ={e":0<0<2m}.

Now, expanding the product of sums, we get

Area(D) = % I;n(i;ne_i"ej(imameimej d9 =%j§n(§:k5mkj do
n=l1 m=1 k=1
© 1 2n
:(;Hak |2j5j0 do

=3 k|a,
k=1
The off-diagonal terms integrate to 0 over the range 0 <0 < 2r. Suppose that
feSsothat f:D— f(D) is analytic and univalent on D with {0)=0and /' (0) =
1. We say that fis bounded if Area( (D)) < . Theorem 5.36 gave the following
characterization of Area( f(DD)):

Area (£ (D)) :ninlan & ...(5.30)

From the change-of-variables theorem,

Area(fD)=|[ | dvdy=[[ |/ dxdy

S (D)

The expression,

[[1F@)F dx dy
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Functions and Theorems is sometimes called the Dirichlet integral of /. In other words, the function f € S'is
bounded if and only if it has a finite Dirichlet integral. Equation (5.30) implies that

the coefficients a ofa bounded function in Sare o(n™"?) . So, if /'€ Sis bounded

NOTES then,
la, |

lim~— =lim|a |[Jn=0
n—0 1/2 n—»00 n

n

We have followed the convention that a = 1 for '€ S.

Corollary 1: Iff € Sthen,

LI @F drdy=n>nla,
Iff € Sis bounded so that
LGP drdy=x3 nla, P<e

then, a, = 0(n—1/2)

Theorem 5.37: There exists an absolute constant 8> 0 such that, g = O(n™"*™)
for every bounded function f € S.

Now we will introduce another area theorem for functions which are analytic
and univalent on the domain U={z:|z|>1} except for a simple pole at infinity
with residue 1. Such functions have a Laurent expansion ofthe form,

g(z):z+b0+ﬁ+b—§+...:z+b0+ib—:, [z]>1
z z =z
where b € C. Wewrite £ for denoting the set of such functions. Here, also note
that if g € £, then gmaps U onto the complement of a compact and connected
set E. Additionally, iff € S and g is defined by inversion as,

1
f(1/z)

g(z)=
then,

g(2)=z—a,+(@ —a)z"' +..,|z|>1 ...(5.31)

In fact, inversion establishes a one-to-one correspondence between S'and
the subclass £’ of £ for which 0 € £, i.e., for which g(z)#0 in U. Univalence
places a strong restriction on the size of the coefficients of g € L.

Theorem 5.38 (Area Theorem): If g € L so that g has a Laurent expansion,

g(z)=z+b,+ 2 bz, |z]>1 ...(5.32)
n=1
then,

2
<
Self - Learning Z}’l | b" | <1
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Proof: Let g € £ and let E denote the compact, connected set of points which ~ F#netions and Theorems

are omitted by g. Suppose that 7>1 and let C be the image of the circle of radius
runder g. Since g is a univalent function, it follows that C is a Jordan curve.

Therefore, C encloses a domain £ which contains £ as shown in the Figure. NOTES
g:UsES
— ™
{lzl=r} C.=0E,

It now follows from Green’s theorem and change-of-variables that,

- PR
Area(E,)=—- L,, waw=—{ 2@\

Substituting in Equation (5.32) and changing to polar coordinates, we get

el e BT o L, el —i(j+1)0 i0
Area(Er)—EIO (re +;bnr e J[l—;ijr e re”do

o0
:TC(}"Z _Zn|bn |2,.—2nj
n=1

Limit » — 1+ implies,

Area(E) = liIPArea(Er):n(l—ann |2J

n=1

Now, as Area(E) > 0, so

i nlb P<1
o
as required.
Corollary 2: If ge L then
|b, I<n?, n=1,2,3,..
However, ifn > 2, the upper bound given in this corollary is not sharp because
g(2)=z+n"?z"
is not univalent on U. In fact,
g'(z)=1-n"z""

which equals zero at certain points in Uifn > 2. But, it can be easily checked that
the function,

b
g(2)=z+b+— ...(5.33)
z

with |b | = 1is univalent on U and so the upper bound is sharp for » = 1. In fact, the
function g of Equation (5.33) maps U conformally onto the complement ofa line
segment of length 4.
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Theorem 5.39 (Bieberbach) : If f(z)=z+a,z’ +a,z" +...e S, then|a | <2.

Proof: Suppose that /'€ S. Apply a square root transformation (Theorem 5.35 of
univalent functions) and invert fto give,

g@ =/ =z=T 2

%

2

so that g € £ . It therefore follows from the Corollary 2 that, | 5, |=|—-<1and so

la,| <2 as required.
Theorem 5.40 (Bieberbach Conjecture-de Brange’s Theorem): If

f(2)=z+a,z +a,z’ +..eS,then|a | <nforalln>2.

5.5.2 Koebe’s One Quarter(1/4)

In complex analysis, the Koebe one-quarter (1/4) theorem is named after Paul
Koebe, who conjectured the result in 1907. The theorem was proven by Ludwig
Bieberbach in 1916. The example of the Koebe function shows that the constant
1/4 in the theorem cannot be improved (increased).

Theorem 5.41 (Koebe One-Quarter Theorem): The range of every f € S
contains the disc {weC: |w|<1/4},1.e., dist(0,0f(D))>1/4.

Proof: Letfe S,sothat f(z)=z+a,z* +a,z’ +..., |z|<] and note that |a,| <2

by Bieberbach’s theorem. Suppose that z, ¢ /(D) and consider the omitted-value
transformation,

g. (2) =ﬂ=z+(a2 —i—ijz2 +...
’ z, = f(2) Z,
From Theorem 5.34 of univalent functions that, g, € §and so from Bieberbach’s

theorem we can conclude that,

<2

a, +—
Z

Combined with the fact that |a,| <2, we can conclude that

V4

<4 or |zO|2l
o 4

In other words, every omitted value of / € S lies outside the disc of radius 1/4
centered at the origin.

Note: Univalence is crucial to the Koebe one-quarter theorem. If

1.(2) =l(e"z -1, n=1,2,..,
n

then f (0) =0and’ (0)=1(sothatf islocally univalentat 0), but / omits the
value —1/n.
Theorem 5.42: If F: D — D' is a conformal transformation with F(z) =Z', then
d' 4d'
—<F'(2)K—
2d | F'(2) | 7



where d =dist(z, dD) and d'=dist(z', dD")

/
/’—\

D D’
Proof: Without loss of generality, suppose that z=z'=0. In order to prove this
theorem we will establish the following generalization of the Koebe one-quarter
theorem. Let F: D — D’ be a conformal transformation with F(0)= 0. It then
follows that F'has a Taylor expansion converging for all z in the disc of radius

d =dist(0, 6D) centered 0 which is given by,
F(z)=Az+ A2 + A2 +..., | z|<d.
The function f defined for z € D by,

2
Flaz) _ Fde) =z+ Ad 22+ Ad D to=zva, vaz +.., | z|<],
dF'(0)  dd, 4 4

is therefore analytic and univalent on D with f(0) =0 and /' (0) =1, 1.e.,f € S.
Suppose that wis an omitted-value of F'restricted to the disc of radius d centered
at 0. That is, suppose that w ¢ F'(dD) or, in other words, suppose that F(z) #w
for any |z| <d. This is equivalent to supporting that,

F(dz) LW

dF'(0) " dF(0)
for any |z| < 1,or, that the function f omits the value w, = w/(dF'(0)). Consider the
omitted-value transformation,

mf(2) _ Wf'(z) =z+ (az + dr (0)jzz +.., | z|<1,

wy = f(z) w=dF'(0)f(2)

which belongs to S by Koebe one-quarter theorem. As in the proofofthe Koebe

one-quarter theorem, we know that Bieberbach’s theorem implies that both,

, dF'(0)
w

f(2)=

g(z2)=

|a,|<2 and <2.

a,

Hence, we conclude that

‘ dF'(0)
w

<4 andso |w|>

d|F'©)|
YR

Thus, if F: D — D' is a conformal transformation with £(0) =0, then D’ necessarily
contains the disc of radius d|F"'(0)|/4 centered at 0. If we write d' = dist(0, 0D'"),
then

d|F'O)]
4
and the upper bound follows. To derive the lower bound, we consider the inverse
function G(z) = F'(z) and note that G: D — D’ is a conformal transformation of
D' onto D. If we then define the function g for z € D by,

<d' ...(5.34)
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g0 =2 pq,
d'G'(0)
so that g € S, we see that argument as above implies,
d'|G'o
-Jjgkd .(5.35)

Noting that G'(0) =1/ F'(0) so that Equation (5.34) implies d'<4d| F'(0) |, gives
the lower bound and together with Equation (5.35) this proves the theorem.

Check Your Progress
6. State anecessary condition for an analytic function on the disc to be
one-one.
7. State Bloch's theorem.
8. Write the statement of Schottky's theorem.
9. State Montel Caratheodory theorem.
10. Define conformal function.

11. State Koebe's one quarter theorem.

5.6 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Anentire function f:C — C is offinite order ifthereisa o >0 such that,
’ f(z | (exp|z‘ )

2. As per Poisson-Jensen formula, if /(z) is meromorphic in |z| < R and has

zerosa, and poles b , and if ¢ = re', f(£)=0,thenfor 0 << R wehave

; Flog|(Re™) | (R? —r*)dr
logf(ree)— J‘ 2g|( )|( )
21y R* —2Rrcos(¢p—0)+ 7’

R(G-a,) MCb)
I
+Z° P e

3. f(z) isan entire function of finite order if there is a finite number such that,

~2lo

4

M(ry<e*, r>r,.
The greatest lower bound p ofthe set of numbers p satisfying this condition
is called the order of the entire function f{z).

4. Asper Weierstrasstheorem, Given anonnegative integer A and an increasing

sequence of non zero complex numbers { &, } converging to infinity, there

exists an entire function f{z) whose zeros coincide with the points,

0,000,0, &yyerns Gy
%f_/

A times



. If fis a continuous functions on [a, b], then for any & > 0 the intervalcan ~ Functions and Theorems
always be divided into a finite number of sub-intervals in each of which the
variation of f{x) is less than €.

. Let f be an analytic function on the disc B (0; r) such that NOTES
| f'(2)= f'(a)|<] f'(a)| forallzin B (a; r), z # a, then fis one one.

. There exists a universal R > 0 such that for any /: A > Cwith |/ (0)| =1,
not necessarily univalent, there is an open set U c A such that f maps U
univalently to a ball of radius R.

. Let R>0and C> 0. Let F'be the family of functions f € H(D,) whichdo

not assume the valuesOor 1 and F,. ={f e F:| f(0)|<C}. Thenfor 0 <r
<R, there exists a constant M depending only on 7, R and C, such that for
all feF.,|f(z)|<M for|z|<r.

. If 3= 0(Q,C) omits three values, then 5 is normal.

. A function f: D — C which is both analytic on D and univalent on D is called
conformal on D. Such an fis often referred as a conformal mapping of D.

. The range of every f € S contains the disc {weC: |w|<1/4}, ie.,
dist (0,0 (D) >1/4

SUMMARY

It is an elegant expression for an entire function with a zero only at z=1
which is also close to 1 for |z| < 1. It is known as the Weierstrass factor of
order p:

Ep(z)z(l—z)exp(z+§+...+ij

p

For any sequence of non zero complex numbers a, — o, the formula
f(z)=007E,(z/a,) converges for all z and defines an entire analytic
function with zero set exactly (a ).

It is defined as N (r)= ‘{n a,| < r}‘ . r"”N(r) is arough approximation to

Z \an\<r1 /

An entire function f:C — C is offinite order ifthereisa p >0 such that
|f(z)| = O(exp|z|p) .

A function ¢(s) of onereal variable is convex if and only if ¢(s) + ar satisfies

B

ai‘l

the maximum principle for any constant a. This holds for log M(exp(s)) by
considering f{z)z* locally.

Hadamard’s factorization formula describes every entire function of finite

order in terms of'its zeros and an additional polynomial. Self - Learning
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its minimum modulus.

e Many ofthe basic properties of the sine and cosine functions can be derived
NOTES from the point of view of'the uniqueness of an odd entire function with zeros

at zT.

¢ Entire function is a function that is analytic in the whole complex plane except,
possibly, at the point at c. It can be expanded in a power series,

© (k) 0
f(z)zZakzk, akzw, k>0,
pan) k!
¢ An entire function f'is said to have finite order if there exists some real

number p >0, and a constant C> 0, such that | 7(z)|< ce*" forall zeC.

¢ Given a nonnegative integer A and an increasing sequence of non zero

complex numbers { ¢, } converging to infinity, there exists an entire function

. . . o0,..,0,¢,....C_,...
f(z) whose zeros coincide with the points, — CuosG

1mes

e Let{C } be anarbitrary increasing sequence of nonzero complex numbers,
. . . . . . 1
which converges to infinity and consider the series o, Z CF

n=1

e Iffis a continuous functions on [a, b], then for any € > 0 the interval can

always be divided into a finite number of sub-intervals in each of which the
variation of f{x) is less than €.

¢ An entire function f: C—C, which omits two values, must be constant.

e There exists a universal R > 0 such that for any /: A > C with |/’ (0)| =1,
not necessarily univalent, there is an open set U — A such that fmaps U
univalently to a ball ofradius R.

e The little Picard theorem is based on the fact that the universal cover of C—
{0, 1} can be identified with the upper halfplane.

o If 3= 0(Q,C) omits three values, then 5 is normal.

e Afunctionf. D — Cis called univalent on Dif f(z ) # f(z,) forallz , z, €
Dwithz # z.

e A function f: D — C which is both analytic on D and univalent on D is called
conformal on D. Such an fiis often referred as a conformal mapping of D.

o If /:D— f(D)is aconformal mapping of D with /{0)=0and f"(0)>0 so
that fhas a Taylor expansion,

f(D=az+a,z’ +az +.., |z|<1

o If f(z)=z+a,2* +a,2 +...e S, then|a,|<2.

e The range of every f € § contains the disc {weC: |w|<1/4}, ie.,

Self - Learning dist (0,0 (D)) =21/ 4.
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5.8 KEY TERMS

e Weierstrass factors: It is an elegant expression for an entire function with
a zero only at z= 1 which is also close to 1 for |z| < 1. NOTES

e Counting function: It is defined as N(r)= ‘{n:|an| < r}‘ .r’N(r)isa

B
a

n

rough approximation to Z aer 1/

e Counting zeros: Here is another way to write Jensen’s formula. Let N(r)
be the number of zeros of f inside the circle of radius r. Then,

UM ()L = avgg (R gl () - Tog 1 (0)

0

¢ Entire function: It is a function that is analytic in the whole complex plane
except, possibly, at the point at co. It can be expanded in a power series,

_IPO sy,

f@=xaz, g ,
k!

e Little Picard: An entire function f: C—C, which omits two values, must be
constant.

5.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. Define canonical products.
Give the utility of Poisson-Jensen formula.
When is entire function said to be of exponential type?
Define exponent of convergence.
State an application of Borel’s theorem.
Define the range of an entire function.
State little Picard theorem and great Picard theorem.
Where is Schottky’s theorem applied?
What do you understand by disc automorphism?

e e B A o

_
e

Define Koebe’s one-quarter theorem.

Long-Answer Questions

1. Prove that every entire function, ./ (2) = Z a,z" oforder 1 and infinite type
0

must have infinitely many zeros.

2. Explain the Poisson-Jensen formula with the help of examples and illustrations.

3. Find the order of the functions sin z and cos z. Self - Learning
Material 239



Functions and Theorems Describe exponent of convergence with the help of examples.

State and prove Borel’s theorem.
Discuss the range of analytic function with the help of examples.

NOTES Prove the little Picard theorem by using Montel’s theorem.

® Nk

Prove great Picard theorem using little Picard theorem and Schottky’s
theorem.

9. State and prove Montel Caratheodory theorem.
10. Describe univalent functions with the help of examples and illustrations.

11. Prove Koebe’s quarter theorem and illustrate its uses.
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