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Introduction

INTRODUCTION

Topology can be defined as the study of qualitative properties of certain objects,
known as topological spaces, which are invariant under certain kind of
transformations, particularly those properties that are invariant under
homeomorphism. Topology is a major area of mathematics concerned with
properties that are preserved under continuous deformations of objects, such as
deformations that involve stretching. It emerged through the development of
concepts from geometry and set theory, such as space, dimension and
transformation. The term topology is also used to refer to a structure imposed
upon a set X, a structure that essentially distinguishes the set X as a topological
space by considering properties, such as convergence, connectedness and
continuity, upon transformation. Topological spaces appear unsurprisingly in almost
every branch of mathematics; hence this has made topology one of the great
unifying concepts of mathematics. The motivating insight behind topology is that
some geometric problems depend not on the exact shape of the objects involved,
but rather on the way they are put together.

A function or map from one topological space to another is called continuous
if the inverse image of any open set is open. If the function maps the real numbers
to the real numbers (both spaces with the standard topology), then this definition
of continuous is equivalent to the definition of continuous in calculus. If a continuous
function is one-to-one and onto, and if the inverse of the function is also continuous,
then the function is called a homeomorphism and the domain of the function is said
to be homeomorphic to the range. If two spaces are homeomorphic, they have
identical topological properties, and are considered topologically the same.

This book is divided into five units which explains countable and uncountable
sets, infinite sets and the axiom of’ choice, Schröder-Bernstein theorem, Cantor’s
theorem and the continuum hypothesis, Zorn’s lemma, well-ordering theorem,
definition and examples of topological spaces, bases and sub-bases, subspaces
and relative topology, Kuratowski closure. operator and neighbourhood systems,
continuous functions and homeomorphism, first and second countable spaces,
Lindelöf’s theorem, separable spaces, second countability and separability,
Urysohn’s lemma, Tietze extension theorem, compactness, continuous functions
and compact sets, compactness and finite-intersection property, sequentially and
countably compact sets, Stone–Čech compactification, equivalence of
compactness, countable compactness and sequential compactness in metric
spaces, connected spaces, connectedness on the real line, components, locally
connected spaces, Tychonoff product, separation axioms and product spaces,
connectedness and product spaces, countability and product spaces, embedding
and metrization, embedding lemma and Tychonoff embedding, Urysohn metrization
theorem, nets and filters, topology and convergence of nets, Hausdorffness and
nets, compactness and nets, filters and their convergence, ultra-filters and
compactness, metrization theorem and paracompactness - local finiteness, Nagata-
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Introduction Smirnov metrization theorem, paracompactness, Smirnov metrization theorem,
the fundamental group and covering spaces, the fundamental theorem of Algebra.

The book follows the self-instruction mode or the SIM format where in
each unit begins with an ‘Introduction’ to the topic followed by an outline of the
‘Objectives’. The content is presented in a simple and structured form interspersed
with Answers to ‘Check Your Progress’ for better understanding. A list of
‘Summary’ along with a ‘Key Terms’ and a set of ‘Self-Assessment Questions
and Exercises’ is provided at the end of each unit for effective recapitulation.
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UNIT 1 COUNTABLE AND
UNCOUNTABLE SETS

Structure
1.0 Introduction
1.1 Objectives
1.2 Countable and Uncountable Sets
1.3 Infinite Sets and the Axiom of Choice

1.3.1 Infinite Set Theorem
1.3.2 Axiom of Choice
1.3.3 Existence of a Choice Function

1.4 Cardinal Numbers and Its Arithmetic
1.4.1 Ordering
1.4.2 Addition of Cardinal Numbers
1.4.3 Multiplication of Cardinal Numbers
1.4.4 Exponentiation

1.5 Schröder-Bernstein Theorem
1.5.1 Schröder-Bernstein Theorem and Cardinal Numbers

1.6 Cantor's Theorem and the Continuum Hypothesis
1.6.1 Continuum Hypothesis
1.6.2 Continuum Hypothesis based on Cantor’s Theorem

1.7 Zorn’s Lemma
1.8 Well-Ordering Theorem

1.8.1 Properties
1.8.2 Well-Ordering Theorem

1.9 Definition and Examples of Topological Spaces
1.9.1 Euclidean Spaces
1.9.2 Metric Spaces
1.9.3 Properties of Metric Topologies

1.10 Closed Sets, Closure and Neighbourhoods
1.10.1 Neighbourhoods
1.10.2 Open Sets
1.10.3 Closed Sets
1.10.4 Closed Sets and Accumulation Points
1.10.5 Closure

1.11 Dense Subsets
1.12 Interior, Exterior and Boundary Operations
1.13 Bases and Subbases
1.14 Subspaces and Relative Topology
1.15 Solved Examples
1.16 Answers to ‘Check Your Progress’
1.17 Summary
1.18 Key Terms
1.19 Self-Assessment Questions and Exercises
1.20 Further Reading

1.0 INTRODUCTION

A set is countable if it is finite, or it has the same cardinality (size) as the set of
natural numbers (i.e., denumerable). Equivalently, a set is countable if it has the
same cardinality as some subset of the set of natural numbers. Otherwise, it is
uncountable.
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In mathematics, the set of all those natural numbers are defined as infinite or
limitless, whose existence can be typically postulated through the axiom of infinity.
Characteristically, the axiom of infinity directly uses the set of such natural numbers
for mathematical analysis and also the axioms precisely require them to be infinite.
The axiom of choice is precisely defined as an axiom of set theory which is
equivalent to the mathematical notion or statement which uniquely specifies that a
Cartesian product which typically includes a collection or group of non-empty
sets is also non-empty.

Fundamentally, in mathematics, the term cardinal numbers or simply the
cardinals are defined as the generalisation of the natural numbers specifically used
for measuring the cardinality of sets.

The Schröder-Bernstein theorem also called Cantor-Schröder-Bernstein
theorem it is the fundamental theorem of set theory. Basically, it states that if two
sets are such that each one has at least as many elements as the other then the two
sets have equally many elements.

Cantor’s intersection theorem uniquely defines that the intersections are
used to decrease the nested sequences or structures of non-empty compact sets.
In mathematics, the term Continuum Hypothesis (CH) is typically defined as a
unique hypothesis which defines the possible sizes of the infinite sets. It states that
there is no set whose cardinality is precisely between the integers and the real
numbers.

Zorn’s lemma, also termed as the Kuratowski–Zorn lemma, uniquely states
that a partially ordered set which contains the upper bounds for every chain, i.e.,
every totally or completely ordered subset, essentially contains at least one maximal
(maximum) element. In mathematics, the well-ordering theorem also termed as
the Zermelo’s theorem, precisely states that every single set can be well-ordered.
Characteristically, a topological space is referred as a geometrical space in which
the closeness property is uniquely defined but cannot essentially be measured by
means of a numeric distance.

In the field of geometry, topology and other associated and related fields of
mathematics, a closed set is considered as a set whose complement is an open set
and a set which typically contains all its limit points. In mathematical analysis, the
closure of a subset S of specific points in a precise topological space typically
contains all points in S which is exclusively organized with all limit points of S. The
closure of S may be equivalently defined as the union of S and its unique boundary,
in addition to the intersection of all closed sets which typically contains S. In
topological analysis, a neighbourhood of a point is precisely defined as a set that
belongs to the neighbourhood system at that point.

In topology and related areas of mathematics, a subset A of a topological
space X is termed as dense (in X) if every point x in X either belongs to A or is a
limit point of A, i.e., the closure of A constitutes the whole set X.

Fundamentally in mathematical analysis and more specifically in the
topology, the interior of a subset S belonging to a topological space X is
considered as the union of all subsets of S that are open in X, which is a point in
the interior of S and is therefore termed as an interior point of S. In topological
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analysis, the exterior of a subset S of a topological space X is considered as the
union of all open sets of X which typically are disjoint from S. Alternatively, the
boundary of a subset S of a precise topological space X is considered as the set
of points which can be uniquely managed both from the inside of S and also from
the outside of S.

Bases in topology are considered as ubiquitous. The sets in topology are
precisely defined as a normal base and are typically termed as the basic open sets,
which can be often described and used rather than the arbitrary open sets. In
topology, a subbase for a topological space X along with topology T is defined as
a subcollection B of T that uniquely generates T, such that T is defined as the
smallest topology containing B. A subspace of a topological space X is defined as
a subset S of X which is uniquely equipped with a topology that is typically induced
from that of X termed as the subspace topology.

In this unit, you will study about the countable and uncountable sets, infinite
sets and the axiom of choice, cardinal numbers, Schröder-Bernstein theorem,
Cantor’s theorem and the continuum hypothesis, Zorn’s lemma, well-ordering
theorem, topological spaces, closed sets, closure, and neighbourhoods, dense
subsets, interior, exterior, and boundary operations, bases and subbases, subspaces
and relative topology.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic properties of countable and uncountable sets

 Comprehend on the infinite sets and the axiom of choice

 Discuss about the cardinal numbers and its arithmetic

 State the Schröder-Bernstein theorem

 Elaborate on the Cantor’s theorem and the continuum hypothesis

· Analyse the Zorn’s lemma

 State the well-ordering theorem

 Explain about the topological spaces

 Discuss the closed sets, closure and neighbourhoods

 Comprehend on the dense subsets

 Understand the interior, exterior and boundary operations

 Define the bases and subbases

 Explain about the subspaces and relative topology

1.2 COUNTABLE AND UNCOUNTABLE SETS

A set X is defined as countable if it is finite or it can be positioned in 1, –1
correspondence with the positive integers. The non-negative integers are countable
by mapping n to n + 1. The even numbers are countable; map n to n/2. The
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integers are countable.  Map n to 2n for n – 0, and map n to 1–2n for n < 0. To
check that whether given set is countable or not, we must check that:

 Every element of set is represented in order,

 No element is repeated,

 X is infinite.

All the finite sets of integers are termed as countable, but not for the infinite
subsets.  Here is a simple diagonalization argument.  If the infinite sets are countable
then the correspondence builds a list of all possible subsets. 

Lemma 1: If a set A is countable and infinite, then there is a bijection between the
set A and set of natural numbers N.

Lemma 2: If set A is countable and 'A A , then A is also countable.

Let us consider few examples. Set of integers Z form a countable set as

there is a bijection from Z to N and it is defined as, : ( ) ( ) 2 , 0Z N f n f n n n   

: ( ) ( ) 2 , 0Z N f n f n n n     and ( ) 1 2 , 0f n n n   . From this bijection, f maps

0,1,2,3,…. to 0,2,4,6,…… and -1,-2,-3…. to 1,3,5,7…. And in this way set of
integers maps on set of natural numbers, that satisfies definition of countable sets.

If a set is not countable, then it is called uncountable set. For example, set
of binary sequences forms uncountable sets.

1.3 INFINITE SETS AND THE AXIOM OF CHOICE

If a set has an infinite number of elements it is an infinite set then the elements of
such a set cannot be counted by a finite number. A set of points along a line or in
a plane is called a point set. A finite set has a finite subset. An infinite set may have
an infinite subset.

Examples of Infinite Sets: A few examples of infinite sets are given below:

(a) A set X comprising of all points in a plane is an infinite set.

(b) Z = {……… -2, -1, 0, 1, 2, ……….},i.e., set of all integers is an infinite
set.

(c) Set of all positive integers which are multiple of 5 is an infinite set.

Equivalent Sets: Two sets A and B are said to be equivalent if these exist a one-
one onto mapping from A to B. If A and B are equivalent, we denote this relation
by the symbol ‘~’.

Thus A ~ B  A & B are equivalent.

For Example: The sets N = {1, 2, 3,......} of natural numbers and E =
{2, 4, 6, ....} of all even natural number are equilavent because these exists the
mapping.

F : N  E defined by,

f (n) = 2n, n N 

which is one-one and onto from N to E.
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1.3.1 Infinite Set Theorem

Theorem 1.1: Let X be a set such that:

(a) There exists an injective function f : Z
+
  X.

(b) There exists a bijection of X with a proper subset of itself.

(c) X is infinite.

Proof : In order to prove the theorem we will first prove that if (a) is true it implies
(b), then we will prove that if (b) is true it implies (c), then finally if (c) is true it
implies (a).

Let f be an injective function defined as,

f : Z
+
  X. Let the image set f (Z

+
) be denoted by Y; and let f (n) be

denoted by x
n
. Now since f is injective, for all n  m, x

n
  x

m
.

Now let us assume a function f 1

f 1 : X  X – {x
1
} such that

f 1(x
n
) = x

n+1 
for all x

n
  Y

f 1(a) = a
 
for all a  X – Y

It can be seen from the above that the function f 1 is a bijection.

Now for the second step; let us assume that Y is a proper subset of X and

f : X  Y is a bijection. By assumption, there is a bijection f :
X  {1, 2, .....n} for some n. Then the composite h o f-1 is a bijection of Y with
{1, 2, ....n}. This is a contradiction and cannot be true.

For the third step, we assume that X is infinite and define an injective function
f : Z

+
  X by principle of induction. The set X is a non-empty set, so let us assume

an element x
1
 of X such that it is equal to f (1).

The set X – f ({1, 2, ......n–}) is a non-empty set because if it was empty,
then the function f : {1, 2, ..... n–1}  X would be a surjective function and X
would be finite. Now we can select an element of set X – f ({1, 2, ...... n–1}) and
accept f(n) to be this element. Therefore, utilising the principle of induction we
have defined the function f for all n  Z

+
.

It can be noted that the function f is injective. Let m < n. Then f(m) belongs
to the set f({n–1}), whereas f(n), by definition, does not. Therefore,
f (n)  f (m).

1.3.2 Axiom of Choice

‘Axiom of Choice’ is a very significant axiom which is extensively utilised in
mathematics. The axiom can be stated in many ways. It is also true that many
seemingly unrelated statements on closer analysis appear to be equivalent to it.

Definition. Let X be a non-empty collection of non-empty and disjoint sets, then
there exists a set Y consisting of exactly one element from each element of X. In
other words, a set Y such that Y is contained in the union of the elements of X, and
for each X  X, the set X  Y has only one element.
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Another way of stating this axiom is that for any family X of non-empty and
disjoint sets, there exists a set that consists of exactly one element from each
element of X.

Example 1.1

Let X be the set of countries in the world. Now each country can be considered
as a set with the cities of that country as its elements. Then the union of X is the set
of all cities in the world. A function which picks up the capital city and matches it
with the country is a choice function. Similarly the function that matches the most
densely populated city or the largest city of each country with its country is also a
choice function.

Example 1.2

Let S be a set which has all pairs of shoes in the world as its elements. Then there
exists a function that picks the left shoe out of each pair. This is a choice function
for S.

It may be observed that in the examples quoted above and in any other
example that can be stated, the choice function can be defined as a rule that
identifies the element to be selected, i.e., select the capital city, select the largest
city, select the left shoe of the pair, in the above example. The rule that is defined
seems to be fairly simple and straight forward no matter how dense or large the
set might be. In fact no axiom is required for such decisions, a simple rule is
adequate. Therefore, what the ‘Axiom of Choice’ does by a consequence is that
it ensures existence of a rule or function that will meet the choice.

Axiom  of Choice

Choice Function: A choice function is a function f. defined on a collection X of
non-empty sets, such that for every set A in X, f (A) is an element of A.

Axiom: For any set X of non-empty sets, there exist a choice function f
such that when is defined on X it maps each set of X to an element of the set. It can
be expressed as follows:

[ : ( ( ) )]X X F X UX X f A A      

Each choice function on a collection X of non-empty sets is an element of
the Cartesian product. Given any family of non-empty sets their Cartesian product
is a non-empty sets.

Remark: There are many other equivalent statements of the axiom of choice.

 Given any set X of pairwise disjoint non-empty sets, these exist at least one
set C that contains exactly one element in common with each of the sets in
X.

 Every set has a choice function, which is equivalent, For any set A there is
a function F such that for any non-empty subset B of A, F (B) lies in B.

For any set A, the power set of A (empty set removed) has a choice function.

The basic property of the individual non-empty sets in the collection may
make it possible to avoid the axiom of choice even for certain infinite collections.
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Example 1.3: Suppose X is the collection of non-empty subsets of natural
numbers. Every such subset has a smallest element, therefore to specify the choice
function we can simply say that it maps each set to the last element of that set. This
gives us a definite choice of an element from each set, and makes it essential to
apply the axiom of choice.

Remark: The difficulty appears when there is no natural choice of elements
from each set. If we can not make explicit choices then how do we know that our
set exists?

Example 1.4: Suppose that X is the collection of non-empty subsets of
real numbers. If we try to choose one element from each set then our choice
procedure will never come to an end because X is an infinite set. We shall never be
able to provide a choice function for all of x.

Zermelo’s Postulate: Let { : }A i I  be any non-empty family of disjoint

non-empty sets. Then there exists a subset B of the union 0
i I

A
i
 such that the

intersection of B and each set A
i
 consists of exactly one element.

Remark: In Zermelo’s postulate the sets are disjoint whereas in the axiom
of choice they may not be disjoint.

Theorem 1.2: Show that the axiom of choice is equivalent to Zermelo’s
postulate.

Proof: Axiom of Choice   Zermelo’s Postulate

Let {Ai : iI} be a non-empty family of disjoint non-empty sets and set f
be a choice function on {Ai : iT}. Set B = {f (Ai) : iI} Then

Ai   B = {f (A
i
)}

Consists of exactly one element since the A
i
 are disjoint and f is a choice

function.

Zermelo’s Postulate Axiom of Choice

Set {A
i
 : iI} be a non-empty family of non-empty sets which may or may

not be disjoint.

Set A
i
k = {A

i
} × {i} or every iI

Then {A
i
*} is a disjoint family of sets since i i implies { } { }iA i Aj i

even if Ai = Aj.

By Zermelo’s postulote, there exists a subset B of *{ : }iA i I  such that

* {( , )}iB A ai i  consists of exactly one element. then ,ai Ai  and so the

function f on  { : }Ai i I  defined by ( )f Ai ai  is a choice function.

1.3.3 Existence of a Choice Function

Lemma. Let X be a non-empty collection of non-empty sets, then there exists
a function f such that it selects one member of each of the sets which are elements
of X.

f : X U X for all X  X, such that f (X) is an element of X
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The function f is called choice function for X.

Note the difference between this lemma and axiom of choice: sets are not required
to be disjoint.

Let X be an element of X. Then let XI = {(X,x) : x  X).

In other words we have constructed XI as a collection of ordered pairs,
where the first element is the set X, and the second element is an element of X.
That is the set XI is a subset of the Cartesian product XI  U X for all X  XI.

Since X is a collection of non-empty sets, means X has at least one element
x. Therefore, XI contains at least one element given as (X, x) implying it is non-
empty. It can now be seen that if XI

1
 and XI

2
 are two different sets belonging to X

then there corresponding elements (XI
1
, x

1
) and (XI

2
, x

2
) are different sice there

coordinates are different.

Now let us define another collection of sets Y such that,

Y = { XI : X  X];

Please note that Y by the definition above is a collection of disjoint non-
empty subsets of,

XI  U X for all X  XI

Now from the choice axiom we know that there exists a set Y consisting of
exactly one element from each element of Y. Now we need to prove that Y is the
rule for the desired choice function.

It can be seen that Y is a subset of XI  U X for all X  XI.

Further, Y contains exactly one element from each set XI, therefore, for
each X  X, the set Y contains only one ordered pair (X, x). Therefore, Y is the
rule for a function from the collection X to the set U X such that X  X.

Also, if (X, x)  Y, then x is an element of X, thus Y(X) is an element of X.

1.4 CARDINAL NUMBERS AND ITS
ARITHMETIC

The two sets A and B are said to be equivalent or equipotent if there exists a
bijective map f: A  B and we write A~B. It is easy to see that the relation of
equipotence ~ is an equivalence relation on P[X]. Therefore, this relation must
divide P[X] into equivalence classes and we shall use the term cardinal number
(or power) to designate the property that equipotent sets  have  in  common. The
cardinal number will be, therefore, a measure of the number of points in sets. It
can be that all equipotent sets have the same cardinal number. The cardinal number
of a set A will be denoted by| A |.

It follows that A~B  |A| = |B|.

For finite sets, the concept of cardinal number is easy to grasp. We say that
any set which is equipotent to the set,

{1, 2,..., n}

has the cardinal number n. We postulate that |0| = 0.
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Among  infinite  sets, we denote by a or N
0
 (read ‘Aleph Nought’) the

cardinal number of all denumerable sets and by c the cardinal number of all those
sets which are equipotent to the set R of all real numbers. The cardinal c is often
called the  cardinal number of the linear continuum.

1.4.1 Ordering

We write A  B if A is equipotent to a subset of B. We shall now define an ordering
for cardinal numbers, denoted as usual by . We will say that,

|A| = |B| if A and B are equipotent.

|A|  |B| if A is equipotent to a subset of B.

|A| < |B| if A is equipotent to a subset of B and |A|  |B|.

The relation  is evidently reflexive and transitive on the set of all cardinal
numbers.

According to Schröder–Bernstein theorem if A and B are two sets, such that

|A|  |B| and |B|  |A|

Then |A| = |B|.

We can now say that the relation   is a partial order relation in any set of
cardinal numbers.

1.4.2 Addition of Cardinal Numbers

Let  and  be cardinal numbers and let A and B be disjoint sets with,

|A| =  and |B| = .

Then we define the addition of  and , written as  + , by

 + , = |A  B|  i.e. |A| + |B| = |A  B|.

The operation of addition of cardinal numbers as  defined earlier is  a well-defined
operation. For if C and D are disjoint sets with |C| =  and |D|= , then A ~ C and
B ~ D and consequently A  B ~ C  D. It follows that,

|A B | = |C  B| so that |A| + |B| = |C| + |D|

It can be easily seen that addition of cardinal numbers is commutative and
associative.

1.4.3 Multiplication of Cardinal Numbers

 Let ,  be two cardinal numbers and let A, B be sets such that,

|A| = , | B | = .

Then the product of  and  written as  is defined by,

= |A × B| i.e.,|A|  |B| = |A × B|.

It is easy to see that the product of cardinal numbers is  well-defined.

If {A :   } is any arbitrary collection of sets, then we write, by definition, their
product as,

II {|A| : } = {|A| : }.
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Multiplication of cardinal numbers is (i) Commutative (ii) Associative
(iii) Distributive over Addition.

Also 1 is the identity element for multiplication.

Theorem 1.3: Each of the following subsets of R has the cardinal number c of the
linear continuum.

(i) ]0, l[ = {x  R : 0 < x < 1}

(ii) [0, l[ = {x  R : 0  x < 1}

(iii) [0, l] = {x  R : 0  x  1}

(iv) [0, 2] = {x  R : 0  x < 2}

(v) [0, [ = {x  R : x  0}

Proof: The mapping,

 
1 2

:]0,1[ : ( ) ]0,1[
1–

x
f R f x x

x x


   

is evidently one-one and onto so that ]0, i[~R.

Therefore |]0, 1[| =  |R| = c

Again it is obvious that

c = |]0, 1[|  |[0, 1[|  | [0, 1]|

 | [0, 2[ |  | [0, [  | R | = c.

Now applying the Schröder-Bernstein theorem, we observe that each of
the sets in (ii), (iii), (iv) and (v) also has the cardinal number c of the linear continuum.

The unit segment S
1
 = ]0, l[on the real line the unit square

S
2
= ]0, l[×]0, l[ in the plane and the unit cube

S
3

= ]0, 1[×]0, 1[×]0, l[

in space all have cardinal number c.

Theorem 1.4: The cancellation laws of addition and multiplication do not hold for
infinite cardinal numbers.

Proof: Recall that we denote the cardinal number of denumerable sets by a.

a = a + 1

But a + l =(a + l) + l = a + (l + l)

[By Associative Law]

Since 1  2, we see that the left cancellation law  does  not  hold.

Similarly, right cancellation law cannot hold.

Again the sets N
0
= {1, 3, 5,...} and N

c
 = {2, 4, 6...} of odd and even positive

integers are disjoint, have each the cardinal number a and have as their union the
set of positive integers,

N = {1, 2, 3,.......}

which also has the cardinal number a.
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Thus N
0 
N

c
= N

So that |N
0 
N

c
| = |N|

Or |N
0
| + |N

c
| = |N|   [By Definition of Addition]

Or a + a = a.

Hence by distributive law, we have

(1 + 1) a = 1. a = or 2a = 1a.

Since  2  1, the cancellation laws for multiplication of cardinal numbers do not
hold.

Theorem 1.5:   n < a < c,

where n is any finite cardinal, and a, c have their usual meanings.

Proof: It is evident that n < a. Since N is equipotent with N which is subset
of R, we have a  c. It only remains to show that a  c. For this purpose it is
enough to show that there exists no one-one mapping of N onto the unit interval
[0, 1]. Suppose if possible that such a function

f :  N  [0, 1]

exists and let the decimal expansion of f(n),  N, be

1 2 30. ......n na a a

We define 0.b
1
 b

2
 b

3
 by taking b

i
 to be 5 if a

ij
  5 and b

i
 to be 7 if a

ii
 = 5. Then

0.b
1
 b

2
 b

3
 is an element of [0, 1] but can never be among the values of f since it

differs from f(n) in the nth place, for each n  N. This contradicts our assumption
that f is onto. Thus, no such mapping f can exist. Hence, we must have a  c, and
this together with a  c gives a < c, thus completing the proof of the theorem.

1.4.4 Exponentiation

We now define the final arithmetic operation of taking powers for cardinal numbers,
if A and B are sets, we denote by AB the set of all mappings f : B  A. Before, we
give the formal definition, let us consider the case when A and B are finite sets
consisting of m and n elements, respectively, so that |A|= m and |B| = n. To count
the number of all  possible  distinct mappings f: B  A, we observe that the first
element b

1
 of B has just |A| possible images and for each of these there are |A|

choices for the images of the second element b
2
 of B and  so  on. Hence the total

number of ways of choosing all |B| images is |A| multiplied by itself |B| times, that
is, |A| |B|. It follows that the total number of functions from B into A is |A | |B|. This
combinatorial characterization of |A| |B| can be extended to infinite cardinal numbers.
Thus, we are led to the following definition.

Let  A, B be any sets, finite or infinite. Then we write by definition

|AB| =| A||B|.

It is evident that if A ~ C and B ~ D, then

|A||B| = |C||D|

So that the preceding definition is unambiguous.
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Let us pay particular attention to the cardinal number 2|A| where A is any set. The
symbol 2 here stands both for the number 2 and any two element sets, say {0, 1}.

Hence 2|A| = 2A | = |[0, 1]A|

is the cardinal number of the set of all mappings f : A {0, 1}.

Theorem 1.6: If A is any set, then

(i) |P(A)| = 2|A| where P(A) denotes the power set of A.

(ii) |A| < | P(A)|.

(iii) |A| < 2|A|

i.e.,  < 2 for any cardinal number .

Proof: (i) As remarked earlier 2|A| is the cardinal number of the set {|0; 1}4 of all
mappings of A into the two element set {0, 1). So we have to establish a one-one
correspondence between P(A) and {0, 1}A. Recall that the characteristic function
X

B
 of a subset B of A is a function on A defined by,

  1 when

0 when –B

x B
X x

x A B


  

Now consider the function,

F : P(A)  {0, 1}A :   ( )BF B X B P A  

F is one-one. For we have,

F(B) = F(C)  X
B
 = X

C
  B = C.

F is onto. Let f be any member of [0, 1]A, i.e., any function from A into {0, 1} and
let f–1 {1} = E. Then  evidently XE = f. Hence f is onto. Thus f establishes a one-
one correspondence between P(A) and {0, 1}A and consequently,

j p {A) | = | |0, ]}A | = 2 ‘%’  .

(ii) To prove this, we must establish a  one-one  correspondence between
A and a proper subset of P (A). The mapping,

g : A P(A) : g(x) = {x}   x  A

is evidently one-one and into. It follows  that | A |  | P(A). We now show that |A|
|| P(A)| i.e, A and P(A) are not equipotent. Suppose, if possible, there exists a
one-one  mapping f of A onto P(A). Thus f assigns to each point x  A, a subset
f (x) of A. Let B denote the subset of A consisting of all those points x for which
x  f(x). Since f is a mapping of A onto P(A) and B  P(A), there must exist
some point y in A such that f(y) = B. Now either y  B or y  A – B. If y  B, then
by the definition of B. we have y  f(y) = B. On the other hand if y  B,  then y 
f(y) = B. Thus in their case, we arrive at a contradiction.

Hence we must have |A|  |P(A)| and consequently,

|A| <|P(A)|.

(iii) This follows from (i) and (ii).
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Theorem 1.7: 2a = c

Proof: Since a is the cardinal number of the set,

N = {l, 2, 3,...}

of natural numbers we may write,

2a = 2|N|

By the previous Theorem 1.6,

2|N| = |P(N)|.

Also c is the cardinal number of the interval,

I = [0, 1].

Our proof then amounts to showing that there exists a one-one
correspondence between P(N) (i.e. the power set on N) and I. First we define a
mapping f : P(N)  I as follows:

If A  P(N), then f[A] is the real number x in I whose decimal expansion.
x = 0. 

1


2


3
... is defined by the rale that 

n
= 3 if  n  A and a

n
= 5 if n  A. We

can use any other two digits provided none of them is 9. The mapping is evidently
one-one so that P(N) is equipotent to a subset of I.

Again we construct a one-one mapping g of I into P(N) as follows. Let x be any
real number in I and let its binary expansion be x = 0. 

1


2


3
... so that 

n
 is either

0 or 1. Then g(x) is defined to be that member A of P(N) consisting of positive
integers n for which 

n
= l, that is,

A = {n  N : 
n
= l}.

It is evident that the mapping g is also one-one so that I is equipotent to a subset
of P(N). We now use the Schröder-Bernstein theorem to conclude that P(N) and
I are equipotent sets, that is, P(N)~I and consequently,

|P(N)| = |I|.

But |P (N) | = 2|N| and |I| = c

Hence 2|N| = c

So, 2a = c.

Theorem 1.8: The set of all real valued functions defined on the closed unit interval
[0, 1] has the cardinal number 2c.

Proof: Let I = [l, 0]. Recall that the set of all real functions defined on I is denoted
by RI. Hence,

|RI| = |R||I |  = cc

Also by 2a = c. It follows that,

|RI| = (2a)c = 2c

Thus the cardinal number of the set of all real valued functions defined on [0, 1]
is 2c.

Continuum Hypothesis: There exists no cardinal number  such that,
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a <  < c.

The generalized continuum hypothesis asserts that there is no cardinal number
strictly between  and 2 for any cardinal number .

Check Your Progress

1. Define the term countable.

2. What is uncountable?

3. Define an infinite set.

4. State about the axiom of choice.

5. What do you understand by cardinal number?

6. Define the cardinal number of linear continuum.

1.5 SCHRÖDER-BERNSTEIN THEOREM

In set theory, the Schröder–Bernstein theorem specifically states that, if there exists
injective functions f: A  B and g: B  A between the sets A and B, then there
also exists a bijective function h: A  B.

According to the cardinality property of the two sets, this classically implies
that if |A|  |B| and |B|  |A|, then |A| = |B|, i.e., A and B are equipotent. This is
a significant feature in the ordering of cardinal numbers.

The theorem is named after Felix Bernstein and Ernst Schröder and is
also sometimes termed as Cantor–Bernstein theorem, or Cantor–Schröder–
Bernstein, named after Georg Cantor who first published it without proof.

Proof

The following proof is attributed to Julius König.

Assume that A and B are disjoint. For any a in A or b in B we can form a
unique two-sided sequence of elements that are alternately in A and B, by repeatedly
applying f and g-1 to go from A to B and g and f-1 to go from B to A, where the
inverses f-1 and g-1 are considered as the partial functions.

…. f-1 (g-1(a))  g-1(a)af(a)g(f(a))

For any particular a, this sequence may terminate to the left, at a point
where f-1or g-1 is not defined.

By the fact that f and g are injective functions, each a in A and b in B is in
exactly one such sequence to within identity: if an element occurs in two sequences,
then all elements to the left and to the right must be the same in both, by the
definition of the sequences. Therefore, the sequences form a partition of the disjoint
union of A and B. Hence it is essentially sufficient to produce a bijection between
the elements of A and B in each of the sequences separately, as follows:

A sequence is called an A-stopper if it stops at an element of A, or a B-
stopper if it stops at an element of B. Otherwise, it is called doubly infinite if all the
elements are distinct or cyclic if it repeats. Refer Figure (1.1). As per the König’s
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definition of a bijection h: A  B from given example injections f: A  B and
g: B  A.

An element in A and B is denoted by a number and a letter, respectively.
The sequence 3  e  6  ... is an A-stopper, leading to the definitions h (3) =
f (3) = e, h (6) = f (6),…. The sequence d  5  f  ... is a B-stopper, leading
to h (5) = g–1 (5) = d, .... The sequence ...  a  1  c  4  ... is doubly
infinite, leading to h(1) = g–1(1) = a, h(4) = g–1(4) = c, .... The sequence b  2 
b is cyclic, leading to h (2) = g–1 (2) = b.

 For an A-stopper, the function f is a bijection between its elements in A
and its elements in B.

 For a B-stopper, the function g is a bijection between its elements in B
and its elements in A.

 For a doubly infinite sequence or a cyclic sequence, either f or g.

 

                      Fig. 1.1 König’s Definition of a Bijection h: A  B

1.5.1 Schröder-Bernstein Theorem and Cardinal Numbers

Cardinal Numbers: We want to know the size of a given set without necessarily
comparing it to another set. For finite set there is no difficulty. For example, the set
A = {1, 2, 3} has 3 elements. Any other set with 3 elements is equipotent to A. On
the other hand, for infinite sets it is not sufficient to just say that the set has infinitely
many element since not all infinite ses are equiptent. To solve this problem we
introduce the concept of a coordinal number.

Each set A is assigned a symbol in such a way that two sets A and B are
assigned the same symbol if and only if they are equipotent. This symbol is called
cardinality or cardinal number of A and it is denoted by

| A | or card (A)
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Thus

| A | = | B | iff A ~ B.

Finite Cardinal Numbers: For finite cardinal numbers the obvious symbols

are used like 0 is assigned to empty set  , and n is assigned to the set {1, 2, ....n}

Infinite Cardinal Numbers: Infinite sets cardinal numbers are called
infinite cardinal numbers.

The cardinal number of the infinite set L of postitue insegers is 0 . Thus

| A | = 0  iff A ~ L

In particular | Z | = 0  and | | = 0 . Cardinal number of I = [0,1] is

denoted by C. Thus | A | = C iff A ~ T

In particular | R | = C.

Schröder-Bernstein’s Theorem

If | A |   | B | and, then | A | = | B |.

Other equivalent from is,

Let X, Y, X be sets such that 1X Y X   and 1~X X  then X ~ Y.

Proof: Since 1~X X , there exist a mapping 1:f x X .

Which is, one-one and onto.

Since ,X Y  then restuiction of f to Y is also one-one. Let f (Y) = Y
1
.

Then Y and Y
1
 are equivalent, i.e.

1 1X Y X Y  

And 1.f Y Y  is one-one and onto.

We now see that 1Y X  and for similar reason 1 2~X X  where

1 1 2X Y X Y X   

And 1 2:f X X  is one-one and onto.

In this way there exists sets,

1 2 3, , , .....X X X  and 1 2 3, , ........Y Y Y  such that

1 2 2 3 3X Y X X Y Y Y      

And 1: i if X X   and

1: i if Y Y   are one-one and onto.

Let 1 1 2 2 ..........B X Y X Y X Y      

Then 1 1 1( ) ( ) ( ) .....X X Y Y X X Y B      
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1 1 1 1 1 2( ) ( ) ( ) ......Y Y X X Y Y X B     

Also 1 1 2 2( ) ~ ( ) ~ ( ) ~.........X Y X Y X Y  

Specially, the function

1 1: ( ) ( )n n n nf X Y X Y     is one-one and onto.

consider the function

g : X Y defined by the following figure.

1 1 1 1 2X x y y x x y y x B    

1 1 1 1 2 2 2Y y k x y y x x y B    

i.e.
if ( )( ), or ( )

( )
if ( ) or

i i

i i

x X Yf x x X y
g x

x Y Xx X B

   
    

Therefore, g is one-one and onto.

i.e. X ~ Y.

Proof completed.

Cantor’s Theorem: The bower set P (B) of any set B has cardinality greater
than B. i.e., | B | < | P (B) |.

Proof: The function

h : B  P (B) such ta

h (b) = {b}, b B 

i.e., sends each element b B  to set containing b alone. then h is one-one
and hence

| | | ( ) |B P B ... (1.1)

If we show that B is not equivalent to P (B), i.e., ( )B P B  then the theorem
will proved.

Now suppose B ~ P (B), then there exist a mapping

: ( )f B P B  which is one-one and onto. Let us call b B  a

‘bod’ element if ( )b f b .

Let A be the set of all ‘bad’ elements. i.e. { : & ( )}.A x xB x f x

Hence we see that A is the subset of B and hence ( ).A P B
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Since : ( )f B P B  is into   an element a B  sit.

f (a) = A

Now the question is whether a is ‘bad’ or a is a good element.

If a B  then ( )a f a A  , which is a contradiction.

If a A  then ( )a f a A 

which is again a contradiction

Then our assumption that ~ ( )B P B  is wrong and consequentry ( ).B P B

By Equation (1.1)

| | | ( ) |B P B

And ( )B P B

Hence B < P (B) so that

| B | < | P (B) |

Proof completed.

1.6 CANTOR'S THEOREM AND THE
CONTINUUM HYPOTHESIS

A sequence < x
n
> in a metric space (X, d) is said to converge to x

0
 X if it is

eventually in every nhd of x
0
, i.e., if for every > 0 there exists a positive integer

n such that,

n >  n ()   d (x
n
, x

0
) < .

Another definition states that ‘A sequence < x
n
> in a metric space (X, d) is

said to be a Cauchy sequence if for every > 0 there exists a positive integer n
()’ such that

m, n   n ()   d(x
m
, x

n
) <.

It is easy to prove that every convergent sequence in a metric space is Cauchy
sequence.

A metric space X is said to be complete if every Cauchy sequence in X
converges to a point in X.

Theorem 1.9: (Cantor’s Intersection Theorem): Let (X, d) be a complete
metric space and let <F

n
> be a nested sequence of non-empty closed subsets of

X such that  (F
n
) 0 as n  . Then 

1n
  F

n
 consists of exactly one point.

Proof: For each n, we choose x
n
 F

n
. Since  (F

n
)0, for every > 0, there

exists a positive integer m
0
 such that (F

m0
) <. Again since <F

n
> is nested,we

have,

n, m > m
0
   F

n
, F

m
 F

m0   x
n
, x

m
 F

m0
   d(x

n
, x

m
) <.
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Thus < x
n
 > is a Cauchy sequence. Since X is complete so x

n
 x

0 
 for some

x
0
 X. We assert the x

0
 

1n




 F

n
. To prove this, let m be any positive integer..

Then n > m   x
n
 F

m
 ... (1.2)

[ ].n n n mx F and n m F F   
Since x

n
  x

0
, the sequence is eventually in every nhd of x

0
 and by Equation

(1.2), every nhd of x
0
 contains an infinite number of points of F

m
. Thus x

0
 is a limit

point of F
m
. Since F

m
 is closed, x

0
F

m
 and since m is arbitrary, we have x

0
 

1n






F
n
.

Now suppose there is another point x
0
* 

1n




  F

n
. Then d (x

0
, x

0
*) < (F

n
)

for every n.   Therefore,  (x
0
, x

0
*) = 0 since  (F

n
)0 as n . Hence x

0
 = x

0
*

and so 
1n




  F

n
 = {x

0
}.

1.6.1 Continuum Hypothesis
In mathematics, the term Continuum Hypothesis (CH) is uniquely defined as a
hypothesis which defines the possible or probable sizes of the infinite sets. It states
that there is not any set whose cardinality can be uniquely defined between the
integers and the real numbers.

In Zermelo–Fraenkel Set Theory and the Axiom of Choice (ZFC or
Zermelo–Fraenkel Continuum) is considered equivalent to the equation in aleph
numbers:  2N0 = N

1
.

The term ‘Continuum Hypothesis (CH)’ was precisely improved by Georg
Cantor in 1878, who established its truth or false property specifically in the Hilbert’s
first 23 problems described in 1900. The answers to these problems are
independent of the ZFC (Zermelo–Fraenkel Continuum), therefore the continuum
hypothesis and its negation property can be included as an axiom to ZFC set
theory that defines that the theory is consistent and constant if and only if ZFC is
consistent and constant. This independence property was proved in the year 1963
by Paul Cohen, who basically complemented the work done by Kurt Gödel in the
year 1940.

The name continuum hypothesis is precisely given to this hypothesis which
comes from the term the continuum uniquely defined for the real numbers.

Cardinality of Infinite Sets

Two sets are considered to have the same or equivalent cardinality or cardinal
number if there typically exists a bijection, i.e., a one-to-one correspondence
between them. Spontaneously, for two sets S and T to have the same or equivalent
cardinality implies that it is feasible to ‘Pair Off’ elements of S with elements of T
in such a manner that every element of S is paired off with precisely or exactly one
element of T and vice versa.

Specifically for the infinite sets, such as the set of integers or rational
numbers, the existence of a bijection condition between the two sets can hardly
be demonstrated. Characteristically, the rational numbers apparently form a counter
example to the continuum hypothesis, stating that the integers form a proper and
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appropriate subset of the rational, which themselves form a proper and appropriate
subset of the reals, therefore automatically and intuitively there are more rational
numbers as compared to integers and more real numbers as compared to rational
numbers. Even though, this precise intuitive analysis is inconsistent as it does not
consider the fact that all three sets are infinite. Consequently, it can be stated that
essentially the rational numbers can be actually placed in one-to-one
correspondence with the integers, and therefore the set of rational numbers has
the same size the ‘Cardinality’ as the set of integers, proving that they both are
countable sets.

Cantor has given two proofs stating that the cardinality of the set of integers
is precisely and truly less significant than that of the set of real numbers and the
Cantor’s first uncountability proof which states that the cardinality of the integers
is comparatively less than that of the real numbers. Cantor proposed and
recommended the term ‘Continuum Hypothesis’ as a possible and feasible solution
to these problems.

The continuum hypothesis states that, ‘The set of real numbers has minimal
possible cardinality which is greater than the cardinality of the set of integers. i.e.,
every set, S, of real numbers can either be mapped one-to-one into the integers or
the real numbers can be mapped one-to-one into S’. Because the real numbers
are equinumerous with the power set of the integers, therefore, |R|=2N0 and the
continuum hypothesis states that there is no set S for which N

0 
<|S|<2N0.

Assuming the axiom of choice, we can state that there is a smallest cardinal
number N

1
greater than N

0
 and the continuum hypothesis is then equivalent to the

equality 2N0 = N
1
.

Independence from ZFC

The independence property of the Continuum Hypothesis (CH) given by Zermelo–
Fraenkel (ZF) set theory is defined on the basis of the combined work of Kurt
Gödel and Paul Cohen.

Gödel precisely explained and demonstrated that ‘Continuum Hypothesis
(CH)’ cannot be disproved from ‘Zermelo–Fraenkel (ZF)’, even if the ‘Axiom of
Choice’ (AC) is typically adopted and implemented producing the ‘Zermelo–
Fraenkel Continuum (ZFC)’. Gödel’s proof demonstrates and reveals that both
the CH and AC hold in the constructible universe ‘L’, an inner model of ZF set
theory, by precisely assuming only the axioms of ZF. The existence of an inner
model of ZF in which uniquely the additional axioms hold demonstrates and reveals
that the additional axioms are uniquely consistent with ZF, provided that the ZF
itself is consistent. Due to Gödel’s incompleteness theorems, the concluding
condition was not possible to be proved in ZF itself, but it is widely considered to
be true and can be proved in the stronger set theories.

Cohen demonstrated and revealed that CH cannot be proved on the basis
of the ZFC axioms by completing and specifying the overall complete independence
proof. To prove and establish his result, Cohen precisely developed and established
the method of forcing, which has now considered a standard tool in the set theory.
Fundamentally, this method essentially started with a model of ZF in which CH
holds and constructs or structures another model which typically contains more
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sets as compared to the original, in a manner that CH does not hold in the new
model.

Consequently, the independence property uniquely states that CH is
independent of ZFC. The mathematicians precisely define that CH is independent
of all known large cardinal axioms in the context of ZFC.  Subsequently, it was
proved that the cardinality of the continuum can be any cardinal consistent with
‘König’s Theorem’. Solovay, proved after Cohen’s result on the independence
property of the continuum hypothesis that in any model of ZFC, if is a cardinal of
uncountable cofinality, then there is a forcing extension in which 2N0 =  . According
to the König’s theorem, though it is not possibly consistent to assume that 2N0 is
N 

or N or any cardinal with cofinality .The continuum hypothesis is closely
related to many statements in analysis, point set topology and measure theory.

The independence property from ZFC implies that either proving or
disproving the CH within ZFC is not possible. Even though, the negative results or
consequences of Gödel and Cohen are not universally accepted for determining
the continuum hypothesis. The continuum hypothesis and the axiom of choice were
considered as the first mathematical statements that demonstrated to be independent
of ZF set theory.

Generalized Continuum Hypothesis

The Generalized Continuum Hypothesis (GCH) states that if an infinite set’s
cardinality lies between that of an infinite set S and that of the power set P(S) of S,
then it has the equivalent cardinality as either S or P(S).That is, for any infinite cardinal
there is no cardinal such that  GCH is equivalent to:

N+1
 = 2 N

for every ordinal  (called ‘Cantor’s Aleph Hypothesis’).

1.6.2 Continuum Hypothesis based on Cantor’s Theorem

By Cantor’s theoremn, 0
0 2   and also we know that, 0 .C 

In next theorem we will prove relationship between 02  and C.

Theorem 1.10: 02 .C 

Proof: Let P (Q) be the power set of rational number and R be the set of
real numbers.

Let the function

: ( )f R P Q  defined by,,

( ) { : , }f a x x Q x a  

i.e., f is a function which maps each real number a to the set of rational
number less than a. Now, will show f is one-one.

Let 1 2 1 2, ,a a R a a   and for simplicity 1 2.a a

Since rationals are dense into the set of real numbers. These exist a rational

number 1r  such that,

1 1 2a r a 
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Then by the definition of f 1 2( )r f a  and 1 1( )r f a , hence,

1 2( ) ( )f a f a

Therefore f is one-one. Thus,

| | | ( ) |R P Q ... (1.3)

Since,

| R | = C and | Q | = 0

Then by Equation (1.3), we get

02C  ... (1.4)

Let C (L), where L = {1, 2, 3, .... } be the family of characteristics function,

: {0,1}f L   is equivalent to P (L).

Let I = [0, 1] and let the function

H : C [L]   I be defined by

H (f) = 0.f (1) f (2) f (3) f (4)....

on infinite decimal consisting of zeros or one. Suppose . ( )f g C L  and

f g .

Then the decimal would be different and therefore ( ) ( )H f H g .

So, H is one-one. Therefore,

| ( ) | | ( ) | | |P Q C L I  ... (1.5)

Since 0| |Q   and | I | = C, then by Equation (1.5), we can write

0 .Z C  ... (1.6)

By Equations (1.4) and (1.6), we get

02 .C

It is natural to ask if there exists a cardinal number B which lies between 0
and C.

Initially, cantor supported the conjecture, whicyh is known as the continuum
hypothesis that the answer to the above question is in the negative.

Continuum Hypothesis: There exist no cardinal number B such that

0 B C  

Zorn’s Lemma and Well-Ordering Theorem

Partially Order Sets: A relation ( )  on a set A is called a partial order relation
if for every a, b, c in A.
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I. a a

II. a b  and a a  a = b

III a b  and b c  a c

A set ‘A’ together with the partial order relation, i.e., the pair (A, C) is a
partial ordered set. Partial order relation is repeexive, antigymmetric and transitive.

For example, the set inclusion relation in any family of sets is a partial order
relation, i.e.,

(i) A A  for every set A.

(ii) If A B  and B A   A = B

(iii) If andA B B C  A C

Totally ordered set. A partially ordered set ‘A’ is said to be totally ordered

if for each ,a b A  either a b  or b a .

Example 1.5: (I) The set of real numbers with its natural ordering (<) is a
totally ordered set.

(II) Let A = {2, 4, 8, 16, 32} be ordered by a b  to mean a divide b then
A is totally ordered.

Minimal and Maximal Elements

Let ‘Q’ be a partially ordered set. An element 0a A  is called a minimal element

of A if no element of A stoictly proceedes a
0
, i.e., if 0 0x a x a  

Similarly, an element 0b A  is called a maximal element of A is no element

of A strictly succeeds 0 ,b  i.e., if

0 0x b x b   .

Geometrically interpretation is that, 0a  is a minimal element of A if no edge

enters 0a (from below), and 0b  is a maximal element of A if no edge leaves 0b  (in

an upward direction) So a set A can have more than one minimal and more than
one maximal element.

If A is infinite, then A may have no minimal and no maximal element. If A is
finite, then A has at least one minimal element and one maximal element.

First and Last element. An element 0a A  is called a first element of A if

0a x x A  

Similarly an element 0b A  is called a last element of A if

0x b x A  
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Remark: A set ‘A’ can have at most one first element which must be a
minimal element of A and ‘A’ can have at most one last element which must be a
maximal element of A. In general, ‘A’ may have neither a first nor a last element,
even when A is finite.

If A is finite totally ordered. Set, then A has both a first element and a last
element.

Example 1.6: Let A = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} be ordered by the
relation ‘‘x divides y’’

A has two maximal elements, 18 and 24, and neither is a last elekent. A has
only one minimal element, 1, which is also a first element.

Well-Ordered Set: A partially ordered set (x
1
, <) is said to be well-ordered

if every non-empty subset of X has a first element.

Examples 1.7: (I) N with its natural ordering   is well-ordered.

(II) Q and R with its natural ordering   is not well-ordered.

Theorem 1.11: Every well-ordered set is totally ordered.

Proof: Let (A  ) be a well-ordered set Let a & b be may two elements of
A. Then {a, b} CA.

Since A is well-ordered and {a, b} CA therefore {a, b} has a first element.

If a is first element of {a, b} then .a b

If b is first element of {a, b} then .b a

Then we see that for any two elements a & b of A either a b or .b a

Hence (A,  ) is totally ordered.

Well-Ordering Theorem. Every set can be well-ordered.

Proof: Let X be a non-empty set. Let P (X) be the collection of all-subsets
of X and f be a choice function given by,

: ( )f P X X  with

( )f A B A X  

A subset A of X will be called normal if it has well-ordering as well as

a A   : ( ( ))Af X S a a    where 6( ) { : }AS a x A x a

i.e., ( )AS a  is the initial segement of a. Set 0 1 0 2 0 1( ), ( { }), ( { , })x f x x f x x x f x x x    

0 1 0 2 0 1( ), ( { }), ( { , })x f x x f x x x f x x x    

Then 0 1 2{ , , }A x x x  is normal.

Claim: If A & B are normal subsets of X then either A = B or one is initial
segment of the other.

Thus there exist a similarity mapping : A B  .

Set

* { : ( ) }A x A x x   
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If *A    then A = B or A is an initial segment of B.

Suppose *A   . Let 0a  be the first element of A*. Then,

0 0( ) ( ( ))A BS a S a 

But A and B are normal, so

0 0 0 0( ( )) ( ( )) ( )A Ba f X S a f X S dla a

which contradict the definition of A* and so A = B or A is an initial segment

of B. In particular. If a A  and b B  then either ,a b A  or , .a b B  Further

more, if ,a b A  and ,a b B  then a b  as element of A if f a b  as elements
of B.

Now let y consists of all those elements in X which belongs to at least one

normal set if 1a b y , then a A  and b B  where A and B are normal and so

,a b A  or ,a b B .

We define an order in Y as follows. a b  as elements of Y iff a b  as
elements of A or as elements of B. This order is well defined and it is a totally
order.

Claim: We Y is well-ordered

Let Z be any non-empty subset of Y and let a be an arbitrary element element

in Z. Then a belong to a normal set A. Hence A Z is a non-empty subset of a

well-ordered set Also contains a first element 0a . Since 0a A Z 

0a Z 

i.e., 0a is a first element of Z.

Therefore Y is well-ordered.

Now, we will show that Y is normal.

If a Y , then a A , where A is a normal set furthermore, ( ) ( )A YS a S a
and so

( ( ) ( ( ))Y Af X S a f X S a a   

i.e. Y is normal

Claim: Y = X

Suppose Y X  then X Y    and say a = f (X – Y)

Set Y* = { }Y a  and let Y* be ordered by the order in Y together with a

dominating every element in Y. Then 1( ( ) ( )f X S a f X Y a     and so Y* is

normal. Thus a Y . But this conttradict the fact that f is a a choice function i.e.

( )f X Y a X Y     which is disjoint from Y.

Hence Y = X
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Since we have already proved that Y is well-ordered. Therefore X is well-
ordered.

Remarks: Let X be a partially ordered set. Then X contains a maximal
totally ordered subset.

Zorn’s Lemma: Let X be a non-empty partially ordered set in which every
totally ordered subset has an upper bound in X. Then X contains at least one
maximal element.

Proof: We will prove Zorn’s Lemma using well-ordering theorem.

Let X be a partially ordered set in which every totally ordered subset has an
upper bound. We need to show that X has a maximal element by previous remarks
X will have a maximal totally ordered subset let it is denoted by Y. By our assumption
Y will have an upper bound in X. Let this upper bound is denoted by a.

Claim: ‘a’ is maximal element of X.

Let ‘a’ is not maximal element of X. Then there exist b X  such that b

dominates ‘a’. It follows that b Y since ‘a’ is an upper bound for Y. So { }Y b is
a totally ordered set.

Which is, a contradiction because Y is maximal totally ordered subset of X.
So our assumption is wrong.

Therefore, ‘a’ is maximal element of X.

Hence Zorn’s lemma is proved.

Theorem 1.12: Show that Zorn’s lemma implies axiom of choice.

Proof: We have already shown that axiom of choice and Zermelo’s Posulate
are equivalent to each-other. Therefore it is sufficient to show that Zorn’s lemma
implies Zermelo’s postulate.

Let { }Ai  be a non-empty family of disjoint non-empty sets. Let  be the

collection of all subsets of Ai  which intersect each Ai in at most one element.
We partially order by set inclusion. Let B,} be a totally ordered subset of  .

We claim that ,B B   belong to  .

If not, then B intersects some A is in more than one element i.e.

,a b 0B Ai  where .a b

Since ,a b B . These exist 
1JB  and 

2JB  such that 
1Ja B  and 

2Jb B .

But {{ }JB  is a totally ordered by set inclusion, hence &a b  belongs to either

1JB  or 
2JB . This implies that 1BJ  or 2BJ  intersects 

0iA  in more than one

element, a contradiction. Accordingly B  so B is an upper bound for the totally

ordered set { }JB .

We have shown that every totally ordered set in   has an upper bound. By

Zorn’s lemma,   has a maximal elements. If S does not intersect each iA  in

exactly one point, then S and some 
0i

A  are disjoint. Let 
0id A  then { }S d
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belongs to   which contradict the maximality of B. Thus B intersects each iA  in

exactly one point.

Therefore Zorn’s lemma implies Zermelo’s postulate and hence axiom of

choice.

1.7 ZORN’S LEMMA

Zorn’s lemma, also known as the Kuratowski–Zorn lemma, named after
mathematicians Max Zorn and Kazimierz Kuratowski, is a proposition of the set
theory. It states that a partially ordered set containing upper bounds for every
chain, i.e., every totally ordered subset essentially contains at least one maximal
element. As per the Tychonoff’s theorem in topology, every product of compact
spaces is compact and the theorems in abstract algebra states that a maximal ideal
and every field has an algebraic closure.

Zorn’s lemma is equivalent to the well-ordering theorem and also to the
axiom of choice, specified that any one of the three, along with the Zermelo–
Fraenkel axioms of set theory, is sufficient to prove and establish the other two.
The Zorn’s lemma is Hausdorff’s Maximum Principle (HMP) which states
that every totally ordered subset of a given partially ordered set is uniquely contained
in a maximal totally ordered subset of that partially ordered set.

Statement of the Lemma

 The set P has a reflexive, antisymmetric and transitive binary relation 
is said to be (partially) ordered by . Given two elements x and y of P
with x  y, y is said to be greater than or equal to x. The word ‘Partial’
specifies that ‘Not every pair of elements of a partially ordered set is
required to be comparable under the order relation’, i.e., in a partially
ordered set P with order relation  there may be elements x and y with
neither x  y nor y  x. An ordered set in which every pair of elements
is comparable is termed as totally ordered set.

 Every subset S of a partially ordered set P can itself be seen as partially
ordered by restricting the order relation inherited from P to S. A subset
S of a partially ordered set P is called a chain (in P) if it is totally ordered
in the inherited order.

 An element m of a partially ordered set P with order relation  is maximal
(with respect to ) if there is no other element of P greater than m, i.e.,

if there is no s in P with s  m and m  s. Depending on the order
relation, a partially ordered set may have any number of maximal
elements. Even though, a totally ordered set can have at most one maximal

element.

Zorn’s Lemma Can Then Be Stated As Following Form

Zorn’s Lemma: Assume that a partially ordered set P has the property that every
chain in P has an upper bound in P. Then the set P contains at least one maximal
element.
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Zorn’s Lemma (for Non-Empty Sets): Assume that a non-empty partially
ordered set P has the property that every non-empty chain has an upper bound in
P. Then the set P contains at least one maximal element.

Fundamentally, this formulation is considered weaker since it places on P
the additional condition of being non-empty, but obtains the same conclusion about
P, and precisely the two formulations are equivalent. To verify this, first assume
that P satisfies the condition that every chain in P has an upper bound in P. Then
the empty subset of P is a chain, as it satisfies the definition therefore the hypothesis
implies that this subset must have an upper bound in P, and this upper bound
shows that P is uniquely non-empty. Conversely, if P is assumed to be non-empty
and satisfies the hypothesis that every non-empty chain has an upper bound in P,
then P also satisfies the condition that every chain has an upper bound, as an
arbitrary or random element of P considered as an upper bound for the empty
chain.

Example Applications for Zorn’s Lemma

Zorn’s lemma can be used to explain that every non-trivial ring R with unity contains
a maximal ideal.

Let P be the set consisting of all (two-sided) ideals in R except R itself. The
ideal R was excluded because maximal ideals by definition are not equal to R.
Since R is non-trivial, the set P contains the trivial ideal {0}, and therefore P is
non-empty. Furthermore, P is partially ordered by set inclusion. Finding a maximal
ideal in R is the same as finding a maximal element in P.

To apply Zorn’s lemma, take a chain T in P i.e., T is a subset of P, i.e.,
totally ordered). If T is the empty set, then the trivial ideal {0} is an upper bound
for T in P. Assume then that T is non-empty. It is necessary to show that T has an
upper bound, that is, there exists an ideal I  R which is bigger than all members
of T but still smaller than R (otherwise it would not be in P). Take I to be the union
of all the ideals in T. We wish to show that I is an upper bound for T in P. We will
first show that I is an ideal of R, and then that it is a proper ideal of R and so is an
element of P. Since every element of T is contained in I, this will show that I is an
upper bound for T in P, as required.

Because T contains at least one element, and that element contains at least
0, the union I contains at least 0 and is not empty. To prove that I is an ideal, note
that if a and b are elements of I, then there exist two ideals
J, K  T such that a is an element of J and b is an element of K. Since T is totally
ordered, we know that J  K or K  J. In the first case, both a and b are
members of the ideal K, therefore their sum a + b is a member of K, which shows
that a + b is a member of I.

Now, an ideal is equal to R if and only if it contains 1. (It is clear that if it is
equal to R, then it must contain 1; on the other hand, if it contains 1 and r is an
arbitrary element of R, then r1 = r is an element of the ideal, and so the ideal is
equal to R.) So, if I were equal to R, then it would contain 1, and that means one
of the members of T would contain 1 and would thus be equal to R – but R is
explicitly excluded from P.
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The proof depends on the fact that the ring R has a multiplicative unit 1.
Without this, the proof would not work and indeed the statement would be false.
For example, the ring with Q as additive group and trivial multiplication (i.e., ab
=0 for all a,b) has no maximal ideal (and of course no 1): Its ideals are precisely
the additive subgroups. The factor group Q /A by a proper subgroup A is a divisible
group, hence certainly not finitely generated, hence has a proper non-trivial
subgroup, which gives rise to a subgroup and ideal containing A.

1.8 WELL-ORDERING THEOREM

A binary relation R on a set X is a subset of the product X × X. A relation R is
written as x R y for all x, y  X.

1.8.1 Properties

(a) Reflexivity: x R x is true for all x  X

(b) Symmetry: if x R y then y R x for all x  X

(c) Antisymmetry: if x R y and y R x then x = y for all x, y  X

(d) Asymmetry: if x R y then not y R x for all x, y  X

(e) Transitivity: if x R y and y R z then x R z

(f) Connex or Comparability: either x R y or y R x.

Any relation which is reflexive, symmetric and transitive is called an
equivalence relation.

A relation which is reflexive, transitive and antisymmetric is called a partial
order. A relation which is antisymmetric, transitive and comparable is called to be
a total order. It may be stated that comparability implies reflexivity. Therefore,
total order is a special type of partial order but partial order need not be total
order.

A set X along with a binary relation R is called totally ordered if the relation
R is a total order. Similarly a set X along with a binary relation R is called partially
ordered if R is a partial order.

Now let us consider a set Y which is a subset of a partial order X and
y  Y is such that, for every element y

1
Y,  y  y

1
, then y is called the least element

of Y.

A set X which is totally ordered set is called well-ordered if its each non-
empty subset has a minimum element. It may be observed that every finite set with
a total order is well-ordered.

Example 1.8: Let us consider the Cartesian product of Z
+
 with the set {A, B}

Z
+
 X {a, b} = {a1, a2, a3, ...........b1, b2, b3..........}

Alphabetical ordering has been applied on the product set above. In
accordance with the alphabetical ordering it can be assumed that the element that
comes first, or that is to the left is smaller than the one which comes later or the one
that is on the right. It can be noticed that each non-empty subset of the above set
will have a smallest element.
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Example 1.9: The set of positive integers is well-ordered. However, set of integers
is not well-ordered because the subset containing negative integers does not have
a smallest element.

Example 1.10: Consider a set A = Z
+
 x Z

+
. The set A can be represented by

dictionary order of an infinite sequence of infinite sequences.

Consider set B to be a subset of A, and C be the subset of Z
+
 such that its

elements are all first coordinates of elements of set B. Now let c
0
 be the smallest

element of C. Then we have a set Y as a non-empty subset of Z
+
 given as:

{y : c
0
 x y} for all y belonging to B

Now if y
0
 is the smallest element of Y then by dictionary order c

0
 x y

0
 is the

smallest element of B. Therefore A is well-ordered.

From the discussion above following can be summarised:-
(a) Every subset of a well-ordered set A is well-ordered for the restriction

of order on A.
(b) If set X and Y are well-ordered sets, then X × Y is well-ordered in the

dictionary order.

Theorem 1.13: Every non-empty finite ordered set has the order type of a section
of the set of positive integers Z

+
, so it is well-ordered.

Proof: In order to prove the theorem we first show that every finite ordered set X
has a smallest element.

If X has only one element, then that element is the smallest. Now, let it be
true for a subset having m - 1 elements, then let set X have m number of elements
and assume element x

0
 belongs to X. Then the set X – {x

0
} has the smallest

element as x
1
 then the smaller of {x

0
, x

1
} is the smallest element of X.

Next we prove that there exists an order-preserving bijection of X with
{1, 2, ........m } for all m. Once again if X has one element, this proof is trivial.
Now let us assume that it is true for subsets having m-1 elements. Now assume x

m

is the largest element of X. By definition there exists an order preserving bijection
such that g : X – {x}{1, 2, ...... m-1}

Define an order preserving bijection f: X {1, 2, ....... m} by letting

f(x) = g(x) for x  xm.
F(xm) = m.

Hence, a finite ordered set has only one order type.

1.8.2 Well-Ordering Theorem

Well-Ordering Theorem (WOT) states that for any set X there exists an order
relation on X which is well-ordering. This theorem is also termed as Zermelo’s
theorem and was proved by Zermelo in 1904. It is equivalent to ‘Axiom of
Choice’. As per the notion of Georg Cantor’s the well-ordering theorem is
unobjectionable principle of thought. The concept of well-ordering defines
that any random or arbitrary uncountable set without any positive procedure has
been contested by many mathematicians.
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Corollary: There exist an uncountable number of well-ordered sets.

Lemma:There exists a well-ordered set X having a largest element L such that the
section S

L
 of X by L is uncountable but every other section of X is countable.

Proof: Let us assume that set A is an uncountable and well-ordered set.

Let B = {1, 2} x A in the alphabetical order; then some section of B. Let L
be the smallest element of B for which the section of B by is uncountable. Then let
X have this set and L as its elements. It needs to be born in mind that S

L
 is an

uncountable well-ordered set all sections of which are countable. It is called a
minimal uncountable well-ordered set. One of the very important properties of
this set is discussed in the next theorem.

Theorem 1.14: If X is a countable subset of S
L
, then X has an upper bound in S

L
.

Proof: Assume that set X is a countable subset of S
L
. For each x  X, the Section

S
x
 is countable. Therefore, the union Y = U S

x
 for all x  X, is also countable.

Now as S
L
 is uncountable, the set Y does not include all elements of S

L
. Let p be

an element of S
L
 that is not in Y. Then the element p is an upper bound for X, since

if p < x for any x  X, then p belongs to S
x
 and hence to Y in contradiction of our

selection.

1.9 DEFINITION AND EXAMPLES OF
TOPOLOGICAL SPACES

The word topology is typically used to define a family of sets which uniquely has
definite properties that are used to define a topological space, a basic object of
topology. Topological spaces are mathematical structures that provide the formal
definition of concepts, such as convergence, connectedness and continuity. Hence,
the area of mathematics that studies topological spaces is called topology.

Definition

A topological space is a set X together with a collection of subsets of X, satisfying
the following axioms:

1. The empty set and X are in .
  is closed under arbitrary union.

  is closed under finite intersection.

The collection  is called a topology on X. The elements of X are usually
called points, though they can be any mathematical objects. A topological space
in which the points are functions is called a function space. The sets in  are called
the open sets and their complements in X are called closed sets. A subset of X may
be neither closed nor open, either closed or open, or both. A set that is both
closed and open is called a clopen set. The following are examples of topological
sets:

• X = {1, 2, 3, 4} and collection  = {{ }, {1, 2, 3, 4}} of only the two
subsets of X required by the axioms form a topology, the trivial topology
(indiscrete topology).
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• X = {1, 2, 3, 4} and collection  = {{ }, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {1,
2, 3, 4}} of six subsets of X forms a topology.

• X = {1, 2, 3, 4} and collection  = P(X) (the power set of X) form a third
topology, the discrete topology.

• X = Z, the set of integers and collection  equal to all finite subsets of the
integers plus Z itself is not a topology, because the union of all finite sets not
containing zero is infinite but is not all of Z, and so is not in .

Equivalent Definitions

There are various additional equivalent ways to define a topological space.
Consequently, each of the following defines a category equivalent to the category
of topological spaces above. For example, using de Morgan’s laws, the axioms
defining open sets above become axioms defining closed sets:

1. The empty set and X are closed.

2. The intersection of any collection of closed sets is also closed.

3. The union of any pair of closed sets is also closed.

Using these axioms, another way to define a topological space is as a set X
together with a collection  of subsets of X satisfying the following axioms:

1. The empty set and X are in .

2. The intersection of any collection of sets in  is also in .

3. The union of any pair of sets in  is also in .

Under this definition, the sets in the topology  are the closed sets and their
complements in X are the open sets. Topological space can also be defined using
the Kuratowski closure axioms, which define the closed sets as the fixed points of
an operator on the power set of X. A neighbourhood of a point x is any set that
has an open subset containing x. The neighbourhood system at x consists of all
neighbourhoods of x. A topology can be determined by a set of axioms which
specifies all neighbourhood systems.

Various types of topologies can be placed on a set to form a topological
space. When every set in a topology 

1
 is also in a topology 

2
, we say that 

2
 is

better than 
1
 and 

1
 is coarser than 

2
. A proof that relies only on the existence of

certain open sets will also hold for any better topology and similarly a proof that
relies only on certain sets not being open applies to any coarser topology. The
collection of all topologies on a given fixed set X forms a complete lattice: if F =
{

á
 :  in A} is a collection of topologies on X, then the meet of F is the intersection

of F and the join of F is the meet of the collection of all topologies on X that
contain every member of F.

Continuous Functions

A function between topological spaces is termed as continuous if the inverse
image of every open set is open. A homeomorphism is a bijection that is continuous
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and whose inverse is also continuous. Two spaces are called homeomorphic if
there exists a homeomorphism between them. The unique property of of topology,
defines that homeomorphic spaces are essentially identical.

Examples of Topological Spaces

A given set may have many different topologies. If a set is given a different topology,
it is viewed as a different topological space. Any set can be given the discrete
topology in which every subset is open. The only convergent sequences in this
topology are those that are eventually constant. Also, any set can be given the
trivial topology also termed as the indiscrete topology in which only the empty set
and the whole space are open. Every sequence in this topology converges to
every point of the space. This example demonstrates that in general topological
spaces, limits of sequences need not be unique. However, often topological spaces
must be Hausdorff spaces where limit points are unique.

There are several methods of defining a topology on R, the set of real
numbers. The standard topology on R is generated by the open intervals. The set
of all open intervals forms a base or basis for the topology, meaning that every
open set is a union of some collection of sets from the base. In particular, this
means that a set is open if there exists an open interval of non zero radius about
every point in the set. More generally, the Euclidean spaces Rn can be given a
topology. In the usual topology on Rn the basic open sets are the open balls.
Similarly, C and Cn have a standard topology in which the basic open sets are
open balls. Every metric space can be given a metric topology, in which the basic
open sets are open balls defined by the metric. This is the standard topology on
any normed vector space. On a finite dimensional vector space this topology is the
same for all norms.

Many sets of linear operators in functional analysis are endowed with
topologies that are defined by specifying when a particular sequence of functions
converges to the zero function. Any local field has a topology native to it and this
can be extended to vector spaces over that field. Every manifold has a natural
topology since it is locally Euclidean. Similarly, every simplex and every simplicial
complex inherits a natural topology from Rn.

The Zariski topology is defined algebraically on the spectrum of a ring or
an algebraic variety. On Rn or Cn, the closed sets of the Zariski topology are the
solution sets of systems of polynomial equations. A linear graph has a natural topology
that generalizes many of the geometric aspects of graphs with vertices and edges.
The Sierpiñski space is the simplest non-discrete topological space. It has
important relations to the theory of computation and semantics.

There exist numerous topologies on any given finite set. Such spaces are
termed as finite topological spaces. Any set can be given the cofinite topology in
which the open sets are the empty set and the sets whose complement is finite.
This is the smallest T

1
 topology on any infinite set.

Any set can be given the cocountable topology, in which a set is defined as
open if it is either empty or its complement is countable. When the set is uncountable,
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this topology serves as a counterexample in many conditions. The cocountable
topology or countable complement topology on any set X consists of the empty
set and all cocountable subsets of X, i.e., all sets whose complement in X is
countable. It follows that the only closed subsets are X and the countable subsets
of X. Every set X with the cocountable topology is Lindelöf, since every non-
empty open set omits only countably many points of X. It is also T

1
, as all singletons

are closed. The only compact subsets of X are the finite subsets, so X has the
property that all compact subsets are closed, even though it is not Hausdorff if
uncountable.

The real line can also be given the lower limit topology. Here, the basic
open sets are the half open intervals [a, b). This topology on R is strictly finer than
the Euclidean topology defined above; a sequence converges to a point in this
topology if and only if it converges from above in the Euclidean topology. This
example shows that a set may have many distinct topologies defined on it.

If is an ordinal number, then the set  = [0, ) may be endowed with the
order topology generated by the intervals (a, b), [0, b) and (a, ) where a and b
are elements of .

Topological Constructions

Every subset of a topological space can be given the subspace topology in which
the open sets are the intersections of the open sets of the larger space with the
subset. For any indexed family of topological spaces, the product can be given the
product topology, which is generated by the inverse images of open sets of the
factors under the projection mappings. For example, in finite products, a basis for
the product topology consists of all products of open sets. For infinite products,
there is the additional requirement that in a basic open set, all but finitely many of
its projections are the entire space.

A quotient space is defined as follows:

If X is a topological space and Y is a set, and if f : X    Y is a surjective function,
then the quotient topology on Y is the collection of subsets of Y that have open
inverse images under f. In other words, the quotient topology is the finest topology
on Y for which f is continuous.

A common example of a quotient topology is when an equivalence relation
is defined on the topological space X. The map f is then the natural projection
onto the set of equivalence classes.

The Vietoris topology on the set of all non-empty subsets of a topological
space X, named for Leopold Vietoris, is generated on the following basis:

For every n-tuple U
1
, ..., U

n
 of open sets in X, we construct a basis set

consisting of all subsets of the union of the U
i
 that have non-empty intersections

with each U
i
.

Classification of Topological Spaces

Topological spaces can be precisely classified up to homeomorphism by their
topological properties. A topological property is a property of spaces that is invariant
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under homeomorphisms. To prove that two spaces are not homeomorphic find a
topological property not shared by them. Examples of such properties include
connectedness, compactness and various separation axioms.

Topological Spaces with Algebraic Structure

For any algebraic objects we can introduce the discrete topology, under which the
algebraic operations are continuous functions. For any such structure that is not
finite, we often have a natural topology compatible with the algebraic operations in
the sense that the algebraic operations are still continuous. This leads to concepts,
such as topological groups, topological vector spaces, topological rings and local
fields.

Topological Spaces with Order Structure

• Spectral: A space is spectral if and only if it is the prime spectrum of a ring
(Hochster theorem).

• Specialization preorder: In a space the specialization (or canonical)
preorder is defined by x  y if and only if cl{x}  cl{y}. Here cl denotes
canonical preorder.

1.9.1 Euclidean Spaces

For each n  N, let R denote the set of all ordered n-tuples x = (x
1
, x

2
,..., x

n
),

where, x
1
,..., x

n
 are real numbers, called the coordinates of x. The elements of Rn

will be called points or vectors and will always be denoted by letters, a, b, c, x, y,
z, etc. Let y =  (y

1
, y

2
,..., y

n
) and let a be a real number. We define the addition of

vectors and multiplication of a vector by a real number (called scalar) as follows:

x + y = (x
1
 + y

1
,..., x

n
 + y

n
); x = (x

1
,...,x

n
).

These definitions show that  x + y Rn and x Rn. It is easy to see that
for these operations the commutative, associative and distributive laws hold and
thus Rn is a vector space over the real field R. The zero element of Rn (usually
called the origin or the null vector) is the point 0, all of whose coordinates are zero.

The scalar product or inner product of two vectors x and y is defined by,

1
, ,

n

i i
i

x y x y


 

Also the norm of x is defined by 
1/2 2

1
( , )

n

i
i

x x x x


    
 

The vector space Rn with the preceding inner product and norm is called
Euclidean n-space.

In the sequel, we shall need the following inequalities.

   (i) If z
1
, z

2
,..., z

n
 are complex numbers (or in particular real numbers), then
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1 2 1 2| ... | | | | | ... | | .n nz z z z z z      

   (ii) If z
i
, 

i
 (i = 1,...,n) are complex numbers, then,

1/ 2 1/ 2
2 2

1 1 1
| | | |

n n n

i i i i
i i i

z z
  

           
   

                           (Schwarz Inequality)

If a
i
, b

i
(i = 1,...,n) are real numbers, then the above inequality

reduces to 
1/ 2 1/ 2

2 2

1 1 1

n n n

i i i i
i i i

a b a b
  

         
   

   (iii) If z
i
, 

i
(i = 1,...,n) are complex numbers, then

1/ 2 1/ 2 1/ 2
2 2 2

1 1 1
| | | | | |

n n n

i i i i
i i i

z z
  

                     
  (Minkowskis Inequality)

Theorem 1.15: Let x, y, z Rn and let be real. Then,

(i) | | 0x  ,  (ii)  | | 0 if 0,x x 

(iii) |x|=|| | x|, (iv)  | , | | || |,x y x y

(v) | | | | | |,x y x y   (vi) | | |  – | |  – | .x y x y y z  

Proof: The proofs of Cases (i), (ii) and (iii) are trivial but obvious. To prove (iv),
by Schwarz inequality, we have

1/ 2 1/ 2
2 2

1 1 1

n n n

i i i i
i i i

x y x y
  

            

Hence, by the definition of scalar product and norm, we at once obtain |x.y|
< |x| |y|.

Again using Case (iv), we have

|x + y|2 = (x + y) . (x + y) = x.x + 2x.y + y.y

< |x|2 +2| x | | y | + | y |2 = (| x | + | y |)2

so that |x + y| < | x | + | y |. Thus Case (v) is proved.

Finally, Case (vi) follows from Case (v) by replacing x by x – y and y by
y – z.

1.9.2 Metric Spaces

Let X be a non-empty set. A function d from X × X into R (the set of reals) is
called a metric (or distance function) if for all x, y, z  X, the following conditions
are satisfied.

[m 1]: d (x, y) > 0.

[m 2]: d (x, y) = 0 if and only if x = y.
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[m 3]: d (x, y) = d (y, x). (Symmetry)

[m 4]: d (x, z) < d (x, y) + d (y, z). (Triangle Inequality)

(i) The pair (X, d) is called a metric space and d (x, y) is called the distance
between the points x and y.

Another definition is, the diameter of a subset A of a metric space X, denoted
by  (A), is defined by,

 (A) = sup {d(x, y): x, y  A}.

(ii) The distance between two subsets A, B, of X, denoted by d (A, B), is
defined by,

d (A, B) = inf {d (x, y): x  A, y  B}.

(iii) The distance between a point a  X and a set A  X is defined by,

d (a, A) = inf {d(a, x): x  A}.

(iv) A subset A of X is said to be bounded if  (A) is finite. It follows that A is
bounded if there exists a real number M and a point q  X such that d (p, q)
< M for all p  A.

The most important examples of metric spaces, for our purposes, are the Euclidean
spaces Rn, in particular the real line R and the complex plane R2. The distance in
Rn is defined by,

d (x, y) = | x – y | (x, y Rn).                ...(1.7)

The conditions [m1], [m2], [m3] and [m4] are satisfied by Theorem 1.11
and thus Rn is a metric space.

Another example is Let X be any non-empty set. For x, y X, define

0 if
( , )

1 if .

x y
d x y

x y


  

Then it is easy to see that d is a metric on X called the discrete metric.

It can also be defined as,

(i) Let a
i
 < b

i
 for i = 1,..., n. Then the set of all points x = (x

i
,...,x

n
) in Rn

whose coordinates satisfy the inequalities a
i
 < x

i
 < b

i
 (1 < i < n) is a called

n-cell.

Thus 1-cell is an interval and 2-cell is a rectangle, etc.

(ii) Let a Rn and let r > 0. An open (or closed) ball with centre at a and
radius r is defined to be set of all x Rn such that |x – a| < r (or | x – a | <
r and shall be denoted by,

B (a, r) (or B [a, r]), Thus

B (a, r) = {x Rn: | x – a | < r}

and B [a, r]{xRn:| x – a | < r},

(iii) A subset A of Rn is called to be convex if,

x + (1 – ) y A

whenever x A, y A and 0 < < 1.
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A metric space is a kind of topological space. In a metric space any union of open
sets is open and any finite intersection of open sets is open. Consequently a metric
space meets the axiomatic requirements of a topological space and is thus a
topological space. It was, in fact, this particular property of a metric space that
was used to define a topological space.

Theorem 1.16: The collection of open spheres in a set X with metric d is a base
for a topology on X.

Proof : Let d be a metric on a non-empty set X. The topology  on X generated
by the collection of open spheres in X is called the metric topology.

The set X together with the topology x induced by the metric d is a metric
space. A metric space then can be viewed as a topological space in which the
topology is induced by a metric.

Lemma 1: Let d be the usual metric in three dimensional space R. Then the set of
open spheres in R3 constitute a base for a topology on R3. Thus the usual metric
on R3 induces the usual topology on R3, the collection of all open sets.

Lemma 2: Let d be the usual metric on the real line R, i.e., d(a, b) = |a – b|. Then
the open spheres in R correspond to the finite open intervals in R. Thus the usual
metric on R induces the usual topology, the set of all open intervals, on R.

Lemma 3: Let d be the trivial metric on some set X. Note that for any p  X, S(p,
1/2) = {p}. Thus every singleton set (set consisting of only one element) is open
and consequently every set is open. Hence the trivial metric induces the discrete
topology on X.

1.9.3 Properties of Metric Topologies

Theorem 1.17: Let p be a point is a metric space X. Then the countable class of
open spheres {S(p, 1), S(p, 1/2), S(p, 1/3), S(p, 1/4), .....}is a local base at p.

Theorem 1.18: The closure A  of a subset A of a metric space X is the set of
points whose distance from A is zero.

In a metric space all singleton sets {p} are closed.

Theorem 1.19: In a metric space, all finite sets are closed.

Following is an important ‘Separation’ property of metric spaces.

Theorem 1.20: (Separation Axiom). Let A and B be closed disjoint subsets of
a metric space. Then there exist disjoint open sets G and H such that A  G and
B  H.

One might think that the distance between two disjoint closed sets would
be greater than zero. However, this is not necessarily the case as the following
example shows.

For example, the two sets:
A = {(x, y): xy  l, x < 0}

B = {(x, y): xy  l, x > 0}

are closed and they are disjoint. However, d(A, B) = 0.
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Consider another example where let P(x
1
, y

1
) and Q(x

2
, y

2
) be two arbitrary

points in the plane R2. The usual metric d and the two metrics d
1
 and d

2
 defined

by,
d

1
(P, Q) = max (|x

1
 – x

2
|, |y

1
 – y

2
)

d
2
(P, Q) = |x

1
 – x

2
| + |y

1
 – y

2
|

All Induce the usual topology on the plane R2 since the collection of open spheres
of each metric is a base for the usual topology on R2. The open spheres of each of
the three metrics. Thus, the three metrics are equivalent.

Isometric Metric Spaces

A metric space (X, d) is isometric to a metric space (Y, e) if and only if there exists a
one-to-one onto function f: X  Y which preserves distances, i.e., for all p, q  X,

d(p, q) = e(f(p), f(q)

Theorem 1.21: If the metric space (X, d) is isometric to (Y, e), then (X, d) is also
homeomorphic to (Y, e).

Check Your Progress

7. State the Schröder-Bernstein theorem.
8. Differentiate between finite and infinite cardinal number.
9. What is a Cauchy sequence?

10. When is a metric space X said to be complete?
11. What do you mean by continuum hypothesis?
12. Define cardinality of infinite sets.
13. What do you understand by Zorn's lemma?
14. State the well-ordering theorem.
15. Define the topological space.

1.10 CLOSED SETS, CLOSURE AND
NEIGHBOURHOODS

Let X be a metric space. All points and sets mentioned here are understood to be
elements and subsets of X.

(i) If r > 0, the set N (p, r) = {xX: d (p, x) < r}

is called a neighbourhood of a point p. The number r is called the radius of
N(p, r).

In the metric space R, N (p, r) = {x R : | x – p | < r)

= {x R : p – r < x < p + r} = ]p – r, p + r[

Thus in this case, neighbourhood of p is an open interval with p as a mid-point.

(ii) A point p is said to be a limit point of the set A if every neighbourhood of
p contains points of A other than p.
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Derived Set: The set of all limit points of A is called the derived set of A and
shall be denoted by D (A).

The subset A = {1, 1

2
 1

2
} of R has 0 as a limit point since for each

r > 0, we can choose a positive integer n
0
 such that 1/n

0
 < r and since 1/n

0
 0,

we see that every neighbourhood N(0, r) of 0 contains a point of A other than 0.

The set 1 of integers has no limit point whereas the set of  limit points of Q
(the set of rationals) is all of R as the reader can easily verify.

(iii) A point p is called isolated point of a set A if p A but p is not a limit
point of A.

(iv) Set A is said to be closed if D(A) A, that is, if A contains all its limit
points.

(v)A point p is called an interior point of A if there exists a neighbourhood
N of p such that N A.

The set of all interior points of A is called the interior of A and shall be
denoted by A°

For example, if A = [0, 1], then A° = ]0, 1[.

(vi) A set A is said to be open if it contains a neighbourhood of each of its
points, that is, if to each p A, there exists a neighbourhood N(p) of p such that
N(p)A.

Thus A is open if and only if every point of A is an interior point of A.

Thus for every r > 0, the open interval ] p – r, p + r[ is a neighbourhood of a point
pR so a subset A of R is open if and only if to each p A, there exists r > 0
such that

]p – r, p + r[ A.

In particular, every open interval ]a, b[ is an open set.

For if p ]a, b[, take

r = min {p – a, b – p}. Then ]p – r, p + r [] a, b[ showing that ]a, b[ is
open.

(vii) A set A is said to be perfect if A is closed and if every point of A is a
limit point of A.

(viii) The closure of a set A is the union of A with its derived set D(A) and

shall be denoted by A 

(ix) A set A is said to be dense in another set B if A B.

Also, A is said to be dense in X or everywhere dense if A =X.

(x) A set A is said to be nowhere dense or non-dense if A contains no
neighbourhoods.

It is easy to see that a set A is nowhere dense if and only if ( A )º = Ø.
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(xi) A set A is said to be bounded if there is a real number M and a point q
X such that d(p, q) < M for all p A.

Theorem 1.22: In a metric space, every neighbourhood is an open set.

Proof: Let N(a, r) be a neighbourhood of any point a X so that N(a, r) =
{x X : d(a, x) < r}.

If p N(a, r) be arbitrary, then d(a, p) < r.

Let = r – d (a, p) > 0. We shall show that,

N (p, ) N(a, r).

Indeed y N (p, ) implies d (p, y) < and the triangle inequality shows
that,

     d (a, y) < d (a, p) + d (p, y) < d (a, p) + 

= d (a, p) + r – d (a, p) = r.

This implies that y N (a, r).

Thus we have shown that,

y N (p, ) y N(a, r) and so N (p, ) N (a, r)Hence, N (a, r) is
neighbourhood of p and since p was any point in N (a, r), we conclude that
N (a, r) is an open set.

Theorem 1.23: Let p be a limit point of a subset A of a metric space. Then every
neighbourhood of p contains infinitely many points of A.

Proof: Suppose p has a neighbourhood N which contains only a finite number of
points of A. Let q

1
,...,q

n
 be those points of N A, which are distinct from p. Let,

r = min {d (p, q) : 1 < i < n}.

Then r > 0 being the minimum of a finite set of positive numbers. The
neighbourhood N (p, r) contains no point of A different from p so that p is not a
limit point of A which is contradiction. Hence, every neighbourhood of p must
contain infinitely many points of A, thus establishing the theorem.

Corollary: A finite point set has no limit points.

Theorem 1.24: A set A is open if and only if its complement is closed.

Proof: Suppose A is open. To show that its complement Ais closed. Let x be any
limit point of A. Then every neighbourhood of x contains a point of A. This
implies that no neighbourhood of x can be contained in A and so x is not an interior
point of A. Since A is open, this means that x Aand consequently Ais closed.

Conversely, let Abe closed and let x be an arbitrary point of A. Then
x A. Since Ais closed x cannot be limit point of AHence, there exists a
neighbourhood N of x such that N contains no point of A, that is, N A. Thus, A
contains a neighbourhood of each of its points and so A is open.

Theorem 1.25: Let A be a closed subset of R which is bounded above. If u be
the least upper bound or lub of A, then u A.
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Proof: Suppose u A. For every h > 0, there is a point x A such that u – h <
x < u, for otherwise u – h would be an upper bound of A. Thus every
neighbourhood of u contains a point x of A. Also x u since u A. It follows that
u is a limit point of A, which is not a point of A. Therefore, A is not closed which
contradicts the hypothesis. Hence u A as desired.

Note: If A is closed and bounded below and if l is greatest lower bound or glb of
A, then l A.

Proof is similar to that of the preceding theorem.

Theorem 1.26: Let (X, d) be a metric space. Then,

(i) The empty set  and the whole space X are open as well as closed.

(ii) Union of an arbitrary collection of open sets is open.

(iii) Union of finite number of closed sets is open.

(iv) Intersection of an arbitrary collection of closed sets is closed.

Proof: To prove case (i), let {A: A} be an arbitrary collection of open sets.

Let,       A = {A: A}.

x A x A for some  A

There exists  > 0 such that  N( x, ) A Ais open]

N (x,) A  AA]

A is open (By Definition).

Proofs of Cases  (ii) and (iii) at once follow by using De Morgan laws for
complements. Thus to prove Case (ii) let A

i
, i = 1, 2,..., n be a finite collection of

closed sets. Then,

A
i
 is closed X – A

i
 is open –V i = 1, 2,...., n

{X – A
i
 : i = 1, 2,..., n} is open by Case (iii).

X – {Ai : i = 1, 2,..., n} is open.

[By De Morgan Law]

{A
i
 : i = 1, 2,..., n} is closed.

1.10.1 Neighbourhoods

A subset N of R is called a neighbourhood of a point pR if N contains an open
interval containing p and contained in N, that is, if there exists on open interval ] a,
b [such that,

p]a, b[N.

It immediately follows that an open interval is a neighbourhood of each of its
points. For practical purposes, it will therefore suffice to take open intervals
containing a point of its neighbourhoods.

Note if ]a, b[ is an open interval containing a point p so that a < p < b, we
can always find an  > 0, such that ]p – , p + []a, b[. Choose any  less than
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the smaller of the two numbers p–a and b–p]. Clearly ]p–, p + [ is an open
interval containing p and so it is a neighbourhood of p. We shall use this form of
neighbourhood of p, usually called an -neighbourhood of p and shall denote it by
N(p, ). We call  as the radius of N(p, ). The point p itself is a mid-point of
centre of N(p, ). It is evident that,

x Î , (p, ) if –x p < ,

We shall use the abbreviated form ‘nhd’ for the word ‘neighbourhood’.

(i) The closed interval [1, 3] is an nhd of 2 since ]
3 5

,
2 2

[ is an open interval

such that 2 ][
3 5

,
2 2

[[1, 3]. But [1, 3] is not an nhd of 1 since there exists

no open interval which contains 1 and contained in [1, 3]. Similarly [1, 3] is
not an nhd of 3.

(ii) The set N of natural numbers is not nhd of any of its points since no open
interval can be a subset of N.

1.10.2 Open Sets

A subset G of R is called open if for every point p  G, there exists an open
interval I such that p  I  G.

This is equivalent to saying that G is open if for every p  G, there exists
-nhd N(p,) = ]p–, p + [such that N(p, ) G.

For example,

(i) Every open interval is an open set.

(ii) The empty set and the whole real line R are open sets. Since contains no
points, the preceding definition is satisfied. Hence   is open.

To show that R is open, we observe that for every p  R and every  > 0,
we have ]p–, p + [R. Hence, R is open.

Now consider the following examples,

(i) The closed open interval [2, 3[ is not open, since there exists no -nhd of 2
contained in [2, 3[.

(ii) The set A={1/n : n  N} is not open since no point of A has an -nhd contained
in A.

Theorem 1.27: The union of any collection of open sets is an open set.
Proof: Let C be any collection of open sets and let S be their union, that is, let

S =  {G : G  C}. Let pS. Then p must belong to at least one of the sets in C,
say pG. Since G is open there exists and -nhd N(p, ) of p such that
N(p, )G. But GS, and so N(p, )S. Hence S is open.

Theorem 1.28: The intersection of a finite collection of open sets is open.

Proof: Let S = 
1

n

i
i

G
=
 , where each G

i
 is open. Assume pS.
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If S is empty, there is nothing to prove. Then pG
i
 for every i=1, 2,....,n.

Since G
i
 is open, there exists 

i
 > 0 such that N(p, 

i
)G

i
, for every i = 1,

2,..., n. Let  = min [
1
, 

2
,...., 

n
].

Then N(p, )
1

n

i
i

G
=
 = S. Hence S is open.

Note: The intersection of an infinite collection of open sets is not necessarily open.
For example, if G

n
 = ]–1/n, 1/n] (n  N), then each G

n
 is open (being an open

interval), but 
1

n

n
i

G
=
 = {0} which is not open since there exists no > 0 such that]

– , [ Ì {0}.

Example 1.11: Show that complement of every singleton set in R is open. More
generally, the complement of a finite set is open.

Solution: Let {x) be a singleton set in R. To show that its complement {x)’ is
open. Let y{x}’. If {x}’ = , there is nothing to prove. Then y  x. Set –x y =
r > 0. Let 0 <  < r. Then N(y, )=] y–, y + [ does not contain x and therefore
N(y, ){x)’. Hence {x}’ is open. Again, if A={x

1
, x

2
..., x

n
} is any finite subset of

R, then we can write A={x
1
} {x

2
}  ...   {x

n
}. Then A’’=[{x

1
}   ... 

{x
n
}]’= {x

1
}’   ...  {x

n
}’. Since each {x

1
}’ is open.

1.10.3 Closed Sets

Definition: A set F in R is called closed if its complement F is open.

For example, (i) Every closed interval [a,b] is closed, since its complement [a,b]'

=] –, a[ ] b, [is open, being a union of two open intervals.

(ii) Every singletion set in R is closed. More generally every finite set in R is
closed.

(iii) The closed open interval [a,b[ is closed.

Theorem 1.29: (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitary collection of closed sets is closed.

Proof: (i) Let F
i
 (i = 1,2,..., n) be a finite collection of closed sets. Then each F

i


is open. By De Morgan law, we have F
i
 which is open, being the intersection of

finite collection of open sets. Hence F
i
 is closed.

Let C be an arbitrary collection of closed sets. Then each FC is closed

and so its complement F is open. By De Morgan law, we have ( F)=(FC),

which is open. Hence  F (FC) is closed.

For example if A is open and B is closed, then show that AB is open sets and

BA=B A', which is the intersection of two closes sets. Hence, AB is open and

BA is closed.
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Accumulation Points: Adherent Points

If AR, then a point pR is called an accumulation point (or a limit point) of A if
every -nhd N(p, ) of p contains a point of A distinct from p.

The set of all accumulation points of A is called the first derived set (or
simply the derived set) of A and is denoted by D(A). The first derived set of D(A)
is called the second derived set of A and is denoted by D2(A).In general, nth
derived set of A is denoted by Dn(A).

For example,

(i) Every point of the closed interval [a,b] is an accumulation point of the set of
points in the open interval ]a,[b. So in this case D]a,b[=a,b].

(ii) 0 is the only accumulation point of the set A ={1/n:n Î N}.

Hence D(A)={0}.

(iii) Every real number is an accumulation point of the set Q of rational numbers
and so D(Q) = R.

(iv) If A = [2,3[, then D (A) = [2,3].

If AR, then a point pR is called an adherent point of  A if every
-nhd of p contains a point of A. The set of all adherent points of A is called the
adherence of A denoted by Adh (A).

Theroem 1.30: If p is an accumulation point of A,then every -nhd of p contains
infinitely many points of A.

Proof: Assume the contrary, that is suppose there exists an -nhd (b, ) =
p +[of p which cantains only a finite number of point distinct from p, say  p

1,
 p

2

, . . .
p

n,
. Let r denote the smallest of the positive numbers.

1p p- , ap p-  , ...., np p- .

Then N(p, r/2) = ]p–r/2, p + r/2[ is an -nhd of p which contains no points
of A distinct from p. This is a contradiction. Hence every -nhd of p must contain
infinitely many points of A.

A set is said to be of first species if it has only a finite number of derived
sets. It is said to be of second species if the number of its derived sets is infinite.

Note that if a set is of first species, then its last derived set must be empty.

A set whose (n + 1)th derived set is empty is called a set of nth order.

For example, the set Q of all rational numbers is of second species, since

D(Q) = R, D2(Q) = D(R) = R.

D3(Q) = D(R) = R, etc.

Hence, all the derived sets of Q are equal to R.

Consider that A = {1/n : n  N}. Then D(A) = {0}. Since D(A) consists of a
single point, it cannot have any limit point and so D2(A) = . Therefore A is of first
species and first order.
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Again let A = {1,
1

2
, 

1

3
, 

1

2
+

1

3
,

1

4
,

1

2
+

1

4
,
1

5
, 

1

2
+

1

5
....}. Then A has the limit

point 0 and also the limit point 
1

2
, for the subset {1,

1

2
,
1

3
,
1

4
,....} is dense at the

origin and the subset {
1

2
,

1

2
+

1

3
,

1

2
+

1

4
,....} is dense at

1

2
. Therefore

D(A) = {0,
1

2
} and D2(A) =. Hence A is of first species and first order..

For example, let A = {1, 
1

2
, (

1

2
)2, 

1

2
 + (

1

2
)2, (

1

2
)3, 

1

2
 + (

1

2
)3, (

1

2
)2 + (

1

2
)3,

(
1

2
)4, 

1

2
 + (

1

2
)4, (

1

2
)2 + (

1

2
)4, (

1

2
)3 + (

1

2
)4, (

1

2
)5,...}.

Then it is clear by inspection that,

D(A) = {0, 
1

2
, (

1

2
)2, (

1

2
)3, ....}, D2(A) = {0} and D3(A) =.

Hence in this case, A is of first species and second order.

Let the points of a set A be given by,

1

1

3S +
2

1

5S +
3

1

7S +
4

1

11S ,

Where S
1
, S

2
, S

3
, S

4
 each have all positive integral values.

Hence D(A) consists of the four sets of points given by,

1

1

3S +
2

1

5S +
3

1

7S , 
1

1

3S +
2

1

5S +,
4

1

11S , 
1

1

3S +
3

1

7S ,
4

1

11S

2

1

5S +
3

1

7S +
4

1

11S  and the six sets of the points,

1

1

3S +
2

1

5S , 
1

1

3S +
2

1

7S , 
1

1

3S +
4

1

11S , 
2

1

5S +
3

1

7S

2

1

5S +
4

1

11S , 
3

1

7S +
4

1

11S  and four sets of the points,

1

1

3S , 
2

1

5S , 
3

1

7S ,
4

1

11S  together with the single point 0.

D2(A) consists of the last ten of these sets and the point 0, D3(A) consists of the
last four sets and the point 0 and D4(A) consists of the point 0 only. Thus, the set
A is of the first species and fourth order.
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Example 1.12: Show that, zeros of sin (1/x) form a set of first order, zeros of sin

1
1

sin
x

 
 
 
 
 

 form a set of second order; zeros of sin
1

1
sin

1
sin x

 
 
 
 
 
 
  
 

 form a set of

third

 

order, and so on.

Solution: The zeros of sin
1

x
are given by sin

1

x
=0, which gives

1

x
= n or

x =
1

np
, where n is an integer. Hence if A is the set of zeros of sin

1

x
, then A

consists of all of the form 
1

np
 where n is an integer. Clearly D(A) = {0} and

therefore A is of first order.

Again sin 
1

1
sin

x

= 0, gives 
1

1
sin

x

= n, where n is an integer..

Then sin
1

x
=

1

np
, from which the general value 

1

x
 is given by,,

1

x
= n + sin–1 =

1

np
 where m is an integer

Or x = 
1

1
1

sinm
n

      

   ....(1)

Thus the zeros of sin
1

1
sin

x

 
 
 
 
 

 form a set, say B, of points of the form

 Equation (1). It is clear that D(B) consists of points of the form
1

m
and the point

0 and so D2(B) consists of the single point 0. Hence B is of second order.

Similarly we can show that the zeros of sin
1

1
sin

1
sin x

 
 
 
 
 
 
  
 

 form a set of third order, and

so on.

Theorem 1.31 (Bolzano-Weierstrass Theorem): A bounded infinite set of real
numbers has at least one limit point.
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Proof: Let A be an infinite bounded subset of R. Then, there exist finite constants
m and M such that m  a  M for all aA. At least one of the intervals [m,
(m+M), M] must contain an infinite number of points of A. We rename such an

interval as [a
1
+b

1
]. Similarly, one of the intervals [a

1,

1

2
 (a

1 
+ b

1
),  [a

1 
+ b

1
],

[
1

2
(a

1 
+ b

1
), b

1
] contains infinitely many points of A and we desingnate it as

[a
2
, b

2
]. Now proceed with [a

2
, b

2
] as we did with [a

1
, b

1
]. Continuing in this way,

we obtain a sequence of closed intervals, {I
n
}={[a

n
, b

n
]} such that I

n
I

n
 
+1

 and


n
] = b

n
– a

n
=

–

2n

M m
0 as n Hence I

n
 consists of a single point, say x

0
.

We choose n such that b
n
–a

n
<

Then I
n
 x

o
–, x

0
+ and consequently the interval x

o
–, x

0
+contains

an infinite number of points of A. It follows that x
0
 is a limit point of A. This

completes the proof.

1.10.4 Closed Sets and Accumulation Points

A closed set was defined to be the complement of an open set. The Theorem 1.18
describes closed sets in another way.

Theorem 1.32: A set A is closed if and only if it contains all its accumulation
points.

Proof: Assume A closed and P is an accumulation point of A. We have to prove
that PA. suppose, if possible, PA . Then PA and  since A is an open, there
exists an -nhd N(p,)=]sP-, P + [such that N (p, ) A. Consequently
N (p,) contains no point of A, contradicting the fact that p is an accumulation
point of A. Hence, we must have PA.

Conversely, we assume that A contains all its accumulation points and show
that A is closed. Let PA. Then PA, so by hypothesis p is not an accumulation
point of A. Hence there exists an -nhd N (p,) of p which contains no point of
A other then p. Since PA, N((p, ) contains no point of A and consequently
N (p,) A. Therefore A is open, and hence A is closed.

Theorem 1.33: All the derived sets D (A), D2 (A), ... Dn (A),... of a given set A
are closed sets and each of these derivatives, after the first, consists of points
belonging to the preceding one and therefore to D (A).

Proof: We first prove that D (A) is closed. Let p be any accumulation point (limit
point) of  D. Then every -nhd of p contains infinitely many points of  D (A) and
since point of  D (A) is an accumulation point of A, every -nhd of p must contain
infinitely many points of A. Thus, p is also a limit point of A and so pD (A).
Therefore, D (A) contains all its accumulation points and so D (A) is closed.
Again since D2 (A) is the derived set of D (A), and so it must be closed as proved
earlier. Similarly D2 (A), ..Dn (A), ... are closed sets.
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To prove the second part of the theorem, let xDn (A), n  2 and suppose,
if  possible, that pD (A). Then there can be found an -nhd of x which contains
only a finite number of points of A or no such points and this nhd would therefore
contain no points of D (A) and consequently it can contain no point of D2 (A). D3

(A), ..., Dn (A) which is contrary to the hypothesis that xDn (A). Hence every
point of Dn (A) (n 2) must belong to D (A).

1.10.5 Closure

The closure of a set A in R is the smallest closed set containing A and is denoted

by A .

By this definition , A A . Also A  is always a closed set of A.

Theorem 1.34: Let A be a set in R. Then A  = AAD (A), i.e., A is the set of all
adherent points of A.

Proof: We first observe that AD (A) is closed. For if p is any limit of AD (A).
then either p is a limit point of A or a limit of D (A). If p is a limit point of A, then
pD (A). If p is a limit point of D(A), then since D (A) is closed pD (A). So on

either case, pD (A) and surely then pAD (A). Hence AD (A) is closed.

Now AD (A) is a closed set containing A, and since A  is the smallest
closed set containing  A, we have

AAD (A). ...(1.8)

Also A A D (A)D(A) .. (1.9)

Since A  is closed, we have D ( A ) A . ... (1.10)

 From Equations (1.9) and (1.10), D (A) A .

Moreover, A A , and D (A) A A AD (A) A ... (1.11)

 From Equations (1.8) and (1.9), A = AD (A).

Theorem 1.35: Let A, B be subsets of R, Then:

(i)  A B  A B , (ii)  A B  A  B .

(iii) A B  A  B , (iv) A = A .

Proof: (i) Given A B. But B B  always. Hence A B, Thus B  is a closed set

containing A. But A  is the smallest closed set containing A. Hence AB .

(ii) A A B  A A B  and B A B  B A B  by Case (i).

     Hence, A  B  A B . ... (1.12)

    Again A  A  and B  B A  B  A  B . But A  B  is closed, being the

union of two closed sets. Thus A  B  is a closed set containing AB. But A B

is the smallest closed set containing A B. Hence A B  A  B    ... (1.13)
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              From Equations (1.12) and (1.13), A B = A  B .

(iii)  ABA A B A   and AABB AB B  by Case (i).

      Hence A B A B   .

(iv) Since A  is closed, hence A = A .

Consider the following examples:

(i)  If Q is the set of rational numbers, then

D(Q) = R and so Q = QD (Q) = QR = R.

(ii)  Let A =]2, 3[. Then D(A)=[2, 3] and so,

A  = AD(A) = [2, 3].

(iii) Let A be any finite set in R. Since every finite set of real numbers is closed, we

have A =A.

1.11 DENSE SUBSETS

In topology, a subset A of a topological space X is called dense (in X) if any point
x in X belongs to A or is a limit point of A. Generally, for every point in X the point
is either in A or arbitrarily ‘Close’ to a member of A, for example every real
number is either a rational number or has one arbitrarily close to it. Formally, a
subset A of a topological space X is dense in X if for any point x in X, any
neighborhood of x contains at least one point from A. Equivalently, A is dense in X
if and only if the only closed subset of X containing A is X itself. This can also be
expressed by saying that the closure of A is X or that the interior of the complement
of A is empty. The density of a topological space X is the least cardinality of a
dense subset of X.

Definition: Let A, B be subset of R. Then.

(i)   A is said to be dense in B if B A .

(ii)  A is said to be dense in R or everywhere dense if A = R.

(iii) A is said to be non-dense or nowhere dense if ( A )° = , that is, if the
interior of the closure is empty.

Thus, A is non-dense if A  contains no (non-empty) open interval. It follows
that a closed set is non-dense if it contains no open intervals.

(iv) A is said to be dense-in-itself if A D(A), that is, if every point of A is
limit point of A.

(v) A is said to be perfect if A is dense-in-itself and closed.
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Let A be a subset of R and let p A. Then p is called an isolated point of A
if there exists an -nhd of a which contains no point of A other than p itself. A set
A is called isolated or discrete if all its points are isolated points.

An isolated point of a set is characterized by the fact that it is not a limit
point of that set.

It follows from this definition that a set is perfect if and only if it is closed and
has no isolated points.

Theorem 1.36: A set A is perfect if and only if A = D (A).

Proof: A is perfect  A is dense-in-itself and closed.

 Every point of A is a limit point of A and every limit point of A
belongs to A.

 AD(A) and D(A)A

A = D(A).

Theorem 1.37: Every countable set is of first category.

Proof: Let A be a countable set, so that we may write it as,

A = {x
1
, x

0
, x

3
, ...., x

n
, ....}.

A can also be written as a countable union of one point sets as,

A = 
1i

¥

=
  {x

i
}.

Since every one point set {x
n
} is nowhere dense, we see that A is of first

category.

Consider the following examples:

(i) Since Q = R, the set Q of all rational points is everywhere dense. It is

also dense-in-itself since Q D(Q) = R. It is not, however, perfect since it is not
closed. It is of first catagory since it is countable.

(ii) Let A = [0, 1]. Then A is perfect since A = D(A).

(iii) Let A = {1/n : nN}. Then every point of A is an isolated point since it

is not a limit point of  A. Hence A is discrete. A is also non-dense, since A = A

 {0} and so no open interval can be a subset of A .

Theorem 1.38: If A and B are sets of first category, then A B is also of first

category.

Proof: Let A = 
1n

¥

=
  A

n
 and B =

1n

¥

=
  B

n
, where each A

n
 and each B

n
 is nowhere

dense. Then A B is the union of all A
n
’s and B

n
’s. But all the sets A

n
 and B

n
 form

a countable collection. Hence A B is of first category..
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Thus the assumption was inadmissible and as per reduction ad absurdum,
the theorem follows.

For the converse, the same proof will apply with the necessary difference in
the first paragraph.

Theorem 1.39: If a set A is dense-in-itself, then its first derived set D(A) is perfect.

Proof: Since A is dense-in-itself, we have AD (A). This implies that:

AD (A)=D(A).

 D [AD(A)]

= D(D(A))

Or D(A)D(D(A))

= D(D(A)

Or D(A)D2(A)

= D2(A).

Since D(A) is closed, we have D2(A) D(A)D(A)

which implies that D(A)D2(A)=D(A).

Thus, D(A)=D2(A).

Hence D(A) is perfect.

Theorem 1.40: Every isolated set of point is countable.

Proof:  Let A be an isolated set. Then each point of A is an isolated point and
hence can be enclosed in an interval containing no other point of the set. If any
two of these intervals intersect, one or both may be shortened so that they
become disjoint. We now show that the collection C of these intervals is
countable. To show this, let {x

1
, x

2
, x

3 
...}denote the countable set of rational

numbers. In each interval of the collection C, there will be infinitely many x
n
,

but among these there will be exactly one with smallest index n. We now
define the mapping f:N by the equation f (I)=n, if x

n 
is the rational number in

I with the smallest index n. This mapping is one-one since I, JC and
f(I)=F(J)=n implies that I and J have x

n 
in common and this implies that I=J.

Note that since the intervals in C are disjoint, they cannot have a point in
common unless they are identical.

Thus f established a one-one correspondence between the intervals of C
and a subset of N (the set of natural numbers). Hence C is countable.

Since each intervals in C contains one and only one point of A, it follows
that A is countable.
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1.12 INTERIOR, EXTERIOR AND BOUNDARY
OPERATIONS

The sets of all interior points, all exterior points and all boundary points are
respectively called the interior, the exterior and the boundary.

(i) Let A be a subset of R and let pA. Then p is called an interior point of A if
there exists and an -nhd of p contained in A, i.e., if there exists an  > 0 such
that ]p–, p + [  A. The set of all interior points of A is called the interior of
A and is denoted by A° or by int A.

(ii) A point p is called an exterior point of A if there exists an -nhd of p contained
in the complement A of A. The set of all exterior points of A is called exterior
of A and is denoted by ext A.

(iii)  A point p is called a boundary point (or frontier point) of A if it is neither an
interior nor an exterior point of A. The set of all boundary points of A called
the boundary (or frontier) of A and is denoted by b (A) [or Fr (A)].

Theorem 1.41: Let A be a subset of R, then

(i)  A° is an open set.

(ii)  A° is the largest open set contained in A.

(iii) A is open if and only if A° = A.

The easy proof is left for the reader.

Theorem 1.42: Let A, B be any subsets of R. Then prove that,

(A B)° = A°  B°,

Proof: The following is the proof of the theorem:

A B A  (A B)° A° and A BB  (A B)° B°.

  (A B)°  A° B°. ......(1.14)

Again A°A and B°B  A° B° A B.

Also A° B° is open, being the intersection of two open sets.

Thus A° B° is an open set contained in AB. But (AB)° is the largest

open set contained in A B. Hence,

A° B° (A B).             .......(1.15)

From Equation (1.15) (A B)°= A° B°.

For example, (i) Let A = ]0, 1[. Since A is open A° = A=]0, 1[.

Since   A'=] – , 0] [1, ,[,   ext A = (A)° = ] – , 0[ ]1, [.

Note that 0 and 1 are not the interior points of A'.
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 b (A) ={0, 1}, since boundary of A consists of those points of A which
are neither interiror points of A  nor exterior points of A.

(ii) Let Q be the set of all rational points. Then Q° = , since no point of Q
can have an -nhd contained in Q.

ext Q = (Q)° = , since Q consists of all irrational points and no -nhd
of an irrational point can be contained in Q. Note that every -nhd of a point
always consists of an infinite number of rational as well as irrational points. Hence

b(Q) = R.

1.13 BASES AND SUBBASES

Consider a set X and a proper subset, X. Then  Xis a topology
containing A. Actually, it is the smallest topology. Further, suppose B X.
The smallest possible topology that contains both A, B is clearly  B, AB,
AB, XSimilarly, if there are several different sets A

1
, …., A

n
 in the topology,

many other sets must be also there. This is the idea behind generating a topology.

Definition 1Let X, Tbe a topological space. A set  T is called a base for
T if,

TA A B

Any G  is called a basic open set. We will obtain the topology T by
taking all arbitrary unions of sets in .

Let us consider the following collection of subsets in R,

S a, a Rb b R

It is not a base for the standard topology of R, because the intersection of
two such subsets may not be in itself. However, these finite intersections are all the
open intervals and hence they form a base. This becomes the typical example for
a subbase.

Definition 2: Let X, Tbe a topological space. A set S T is called a subbase

if S
1
 S

n
 S

j 
S, nZis a base for T. Equivalently, T  B  X :

 for some finite subset  S

Here, we can also say that T is generated by S. However, the same T may
be generated by different subbases. A topological space X, Tmay have different
bases or subbases.

Theorem 1.43: Any non-empty collection C  Xdefines a topology T such
that C is a subbase for T.

Proof: Let :  C, . Then, the topology is generated by C,

T :  . In order to verify that T is a topology, use the De Morgan’ss

law.
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However, not every C can be a base; additional conditions are needed. The
rest of the proof is left as an exercise.

1.14 SUBSPACES AND RELATIVE TOPOLOGY

Topological SpacesIf X is a set, a family   of subsets of X defines a topology
on X if,

(i)  X .

(ii) The union of any family of sets in  belongs to .

(iii) The intersection of a finite number of sets in  belongs to .

If  defines a topology on X, then we say that X is a topological space. The
sets in  are called open sets. The sets of the form X\U, U  , are called closed
sets. If Y is a subset of X, then the closure of Y is the smallest closet set in X that
contains Y.

Let Y be a subset of a topological space X. Then we may define a topology


Y
 on Y, called the subspace or relative topology or the topology on Y induced by

the topology on X, by taking


Y
Y U  U 

Asystem  of subsets of X is called a basis or basefor  the topology  if
every open set is the union of certain sets in . Equivalently, for each open set U,
given any point x U, there exists B   such that x B U.

For example, the set of all bounded open intervals in the real line R forms a basis
for the usual topology on R.

Let x  X. A neighbourhood of x is an open set containing x. Let 
x
 be the

set of all neighborhoods of x. A subfamily 
x
 of 

x
 is a basis or base at x, a

neighborhood basis at x, or a fundamental system of neighbourhoods of x, if for
each U

x
, there exists B

x
 such that BU. A topology on X may be specified

by giving a neighbourhood basis at every xX.

If X and Y are topological spaces, then there is a natural topology on the
Cartesian product XY that is defined in terms of the topologies on X and Y, called
the product topology. Let xX and yY. The sets U

x
 V

y
 as U

x 
ranges over all

neighbourhoods of x and V
y
 ranges over all neighbourhoods of y, forms a

neighbourhood basis at the point x, y X Y, for the product topology

If X and Y are topological spaces, a function f X Y is continuous if
whenever U is an open set in Y, the set f–1UxX|fx Uis an open set in X.
A function f X Y is a homeomorphism of X onto Yif f is bijective and both f and
f–1 are continuous functions.

An open covering of a topological space X is a family of open sets having
the property that every xX is contained in at least one set in the family. A subcover
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of an open covering is an open covering of X which consists of sets belonging to
the open covering. A topological space X is compact if every open covering of X
contains a finite subcover.

A subset Y of a topological space X is compact if Y is compact in the subspace
topology. A topological space X is locally compact if for each x X there exists a
neighbourhood of x whose closure is compact.

A topological space X is Hausdorff or T
2
if given distinct points x and

yX, there exist neighbourhoods U of x and V of y such that UVA closed
subset of a locally compact Hausdorff space is locally compact.

Topological Groups

A topological group G is a group that is also a topological space, having the
property the maps g

1
, g

2
 g

1
g

2 
from G G  G and g  g–1 from G to G

are continuous maps. In this definition, G G has the product topology.

LemmaLet G be a topological group. Then

(i) The map g  g–1 is a homeomorphism of G onto itself.

(ii) Fix g
0
G. The maps g  g

0
g, g  gg

0
 and g  g

0
gg g

0
–1 are

homeomorphisms of G onto itself.

A subgroup H of a topological group G is a topological group in the subspace
topology. Let H be a subgroup of a topological group G and let
pG G/H be the canonical mapping of G onto G/H. We define a topology U

G/

H
 on G/H, called the quotient topology, by 

G/H
pUU 

G
Here, 

G
is

the topology on G By definition the canonical map p is open and continuous. If H
is a closed subgroup of G, then the topological space G/H is Hausdorff. If H is a
closed subgroup of G, then G/H is a topological group.

If G and Gare topological groups, a map f G Gis a continuous
homomorphism of G into G if f is a homomorphism of groups and f is a continuous
function. If H is a closed normal subgroup of a topological group G, then the
canonical mapping of G onto G/H is an open continuous homomorphism of G
onto G/H.

A topological group G is a locally compact group if G is locally compact as
a topological space.

Theorem 1.44: Let G be a locally compact group and let H be a closed subgroup
of G. Then,

(i) H is a locally compact group in the subspace topology

(ii) If H is normal in G, then G/H is a locally compact group.

(iii) If Gis a locally compact group, then G G is a locally compact group in
the product topology
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Check Your Progress

16. Define the term derived set.
17. What happens when p is called an interior point of A?
18. What are closed and open sets?
19. Define the term dense subset in topology.
20. When a point p is called an exterior point?
21. What is base?
22. What is topological group?

1.15 SOLVED EXAMPLES

Examples 1: If X and Y are countable sets, then XY is also a countable
Sets.

Solution: Suppose that X and Y are countable.

By theorem : If X is a non-empty set then,

1. X is countable.

2. There exists a surjection  f :   X

3. There exists a injection g : X .

By the above theorem,

There exists surjection f :   X and g :   Y..

Define a function h =   (X  Y) by,,

 is even
2

( )
1

 is odd.
2

k
f k

h k
k

g k

Since f and g are subjective, we have that,

h() = f() g() = X  Y

And thus h is a subjective function.

Hence, by the above Theorem we have that X Y is countable.

Example 2: Show that  is Countably Infinite

Solution: As we know that  is countable since there is an injection f: \
{0}  . By definition  f(x) = x for all x

By theorem: if X is a non-empty set, and Y is a countably set then:

1. X is countable

2. There exists a surjection function f: Y  X

3. There exists an injection function g: X  Y.

By above Theorem, we also have That \{0} is countable.
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Theorem: Let n , and let X
1
, X

2
,......X

n
 be non-empty countable sets.

Then 
1

n

I
 X

i
 = X

1
 × X

2
 ×......× X

n 
is countable

By the above theorem we have that ×(\{0}) is countable

Consider the function g = ×(\{0}) Q

defined by g(a,b)=a\b

Note that this is well defined, as b  0. Moreover since carry element of 
can be expressed in an least one way as a ratio of integers with a non-zero
denominator, we have that g is rejective.

But we know that Q is constable by theorem 1 finally, Q is not finite as
 < Q and any subset of a finite set must also be finite.

Therefore, Q is countably infinite.

Example 3: Use the choice axiom to show that if f: A  B is surjective,
then f has a right inverse h: B  A.

Solution: Suppose that h: B  A is a right inverse to f so foh = I
B
.

The identity map I
B
 is bijective, hence f is surjective by theorem.

Conversely if f is surjective, then for each bB, there is some aA so that
f(a) = b.

Thus for each bB. The set S
b
= {aA: f(a) = b} is non-empty.

So, X = {S
b
:bA} is a set of non-empty sets according to Axiom of choice,

there is a choice function is,

F:X UX so that f(s
b
)S. for each bB Notice that since F(S

b
) is an

element of S
b
. We must have f(F(S

b
)) = b for any possible choice function. If

follows that we may take the choice function h = F itself as a right inverse, and the
choice function F exists.

(i.e, the hypothesis of the Axiom of Choice that X is a set of non-empty sets
is satisfied)

Because f is a surjection.

Hence, if  f: A  B is surjective, thus f has right inverse h: B  A.

Example 4: Let X be a set, let B be a basis for a topology  on X. Then 
equals the collection of all unions of elements of B.

Solution: Given a collection elements of B. They are also elements of . Because
is a topology. There union is in .

Conversely, given U, choose for each XU an element Bx of B such
that,  x

x
  U. Then = U=  x

x U
B  so U equals a union of elements of B.

Example 5: Let X be a non-empty set and  = {{X}: x X}.  Then B is a
basis for topology on X.

Solution: (i) for every xX there exists B= {X}   such that x B

      (ii) B
1
, B

2 
  and XB

1 
B

2
 implies There exists

B
3 
= {X}  such that XB

3 
B

1 
B

2
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Hence, both (B
1
) and (B

2
) are satisfied,

This implies that the collection ={{X}: xX) is a basis for a topology
on X.

Now let us find out  . The topology generated by 

We define   as 
B
 = {U X: xU implies there exists B  such that

XBU is a topology on X.

In this case for any non-empty subset U of X, xU implies. There exists
B={x} such that xB< U.

Hence, by the definition of  . AB  whenever A is a non-empty subset of
X. Also the full set  .

Hence AX implies A  implies P(X)  . Also by the definition,
  P(X), the collection of all subset of X this implies that   is same as the
discrete   defined on X.

Example 6: Let X={1, 2, 3} and {, X, {1}, {2}, {1,2}, {1,3}, {2,3}}, Is a
topology on X?

Solution: (i) Let A={1, 3}, B = {2, 3} here A, Bbut AB = {3
Hence is not a topology on X.

(ii) Let X = {1, 2, 3} and ={, X, {1}, {2},{1,2} then is a topology
on X. Now A={2, 3} is a subset of X. 2A and also there is an open set U ={2}
such that 2U and U A. Hence 2 is an interior point of A. But 3 is not an
interior point of A. How to check 3 is an interior point of A or not?

Step 1. First check whether 3A (if x is an interior point of A. Then it is
essential that xA) so yes here 3{2,3}=A.

Step 2. Now find out all the open sets containing 3. X be the only open set
containing 3 but this open set is not contained in A. Hence 3 is not an interior point
of A.

What will happen if the given set A is an open subset of a topological space
X. Our aim is to check whether an element xX is an interior point of A.

Step 1. It is essential that xA.

Step 2. It is necessary to find out all the open set containing X ? Of-course
not necessary. It is enough if we find at least an open Usuch that xU and
U  A.

In this case the given set A is an open set and hence there exists an open set
U=A such that xU and U=A A.

Therefore every element x of A is an interior point of A. That is A A°.

By definition A°A, Hence A° =A that is if A is an open set then A° = A.

What about the converse?

Suppose for a subset A of X, A° = A

Is A an open set? Yes, A is an open subset of X.

Take xA Then xA°. Hence by the definition of A° there exists at least
one open set say Ux such that xUx and Ux A.
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This implies that A = x
x A

U .

Now by the definition,  is closed under arbitrary union. Hence, for each
xA, Uximplies 

x A
x implies A.

That is, A is an open set. Thus we have proved.

Example 7: Let X be a topological space. Then prove that following points:

(i) and X are closed.

(ii) Arbitrary intersections of closed sets are closed.

(iii) Finite unions of closed sets are closed.

Solution: (i) and X are closed because they are the complements of the sets X
and , respectively

(ii) Given a collection of closed sets {A}J
, we apply De-Morgan’s law

( )
n

J J

X A X A 
Since the set X – A are open by definition, the right side of this equation

represents an arbitrary union of open sets and is thus open. Therefore  A is
closed.

(iii) Similarly if A
i
 is closed for i = 1,....n, consider the equation,

1 1

( ) 
n n

i i
i i

X A X A

The set on the right side of this equation is a finite intersection of open sets
and is therefore open hence A

i
 is closed.

Example 8: Let A be a subset of the topological space X, let A be the set
of all limit points of A. Then

A = A A

Solution: If x is in A every neighbourhood of x then intersects A (in a point
different from x)

Therefore, by theorem that if A be a subset of the topological space X.

Then x A   iff every open set U containing x intersects A.

So, x belongs to A   hence A A  since by definition AA A , it follows

that A A A .

To demonstrate the reverse inclusion, we let x be a point of A  and show
that xAA.

If x happens to lie in A, it is trivial that xA; suppose that x does not lie

in A. Since x A , we know that every neighbourhood U of x intersects A, because
X,  the set U must intersects A a point different from x. Then xA, so that
xAA, as described.
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Example 9: Let A be a subset of the topological space x if

(a) Then X Α , iff every open set U containing x intersects A.

(b) Supposing the topology of X is given by a basis, then x Α , iff
carry basis element B containing x intersects A.

Solution: Consider the statement in (a). It is a statement of the form P Q let in
transform each implication to its contrapositive. Thereby obtaining the logically
equivalent statement (not P)(not Q).

x A   There exists an open set U containing x that does not intersects A.

If x does not in , the set U= X- A is an open set containing x that does not
intersects A, as desired conversely if there exists an open set U containing x
which does not intersects A, then X–Uis a closed set containing A. By definition

of the closure A , the set X–Umust contain A, therefore x can not be in A .

Statement (b) follows readilay if every open set containing x intersects A,
so does every basis element B containing x, because B is an open set.

Conversely, if every basis element containing x intersects A, so does every
open set U containing x, because U contains a basis element that contains x.

Example 10: (a) Let X be a topological space and suppose that we can
write X = F

1
, U...UF

n
, where each F

i
 is closed. Let Y be another topological

space, Let f: X  Y and let f
i
:  Y be the restriction of f to F

i
.  That is

for XF
i
 we set f

i
(X) = f(X) show that f is continuous iff F

i
 is continuous

for all i.

Solution: Let G Y be closed observe that,

fi-1(G) = f-1(G)F
i

If f is continous then f -1(G) is closed in X, so f -1(G)F
i
 is closed in F

i
 by

definition of the subspace topology thus f
i
 is continous.

Conversely, suppose that f
i
 is continous for all i because X = F

i 
...,F

n
,

we have,

 f -1(G) = f -1  (G)(F
1
........F

n
)

= (f -1(G)F
1
).........( f -1(G)F

n
)

= f
i
-1(G)..... f

n
-1(G).

Because f
i
 is continous, we know that f

i
-1(G) is closed in f

i
, here is closed in

X.

So, f -1(G) is a finite union of closed sets hence is closed thus f is continous.

(b) Show that if A is closed in Y and Y is closed in X then A is closed
in X.

Solution: Since A is closed in Y we can write,

A = FY

Where F is closed in x.
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Since an interaction of closed set is closed and Y is closed in X, it follows
that.

FY = A

So, A is closed in x.

Example 11: The principle of well-ordering may not be true over real number
or negative integers. In general not every set of integers or real numbers
must have a smallest element. Explain by giving examples.

Solution: The set 
The set   has no smallest element because given any integers x, it is clear

that x – 1 < x, and this argument can be repeated indefinitely. Hence,   does not
have a smallest element

2. The open interval (0,1)

A similar problem occurs in the interval (0,1) If x lies between 0 and 1, then

so 
2

x
 and 

2

x
 lies between 0 and x.

such that

0 < x < 1  0 < 
2

x
 < x < 1

This process can be repeated indefinitely. Yielding

3 20 ... ... 1
2 2 2 2n

x x x x
x

We keep getting and smaller numbers. All of them are positive and less
than 1. There is no end in sight, hence the interval (0,1) does not have a smallest
dement.

1.16 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A set X is defined as countable if it is finite or it can be positioned in 1, –1
correspondence with the positive integers. The non-negative integers are
countable by mapping n to n + 1. The even numbers are countable; map n
to n/2. The integers are countable.  Map n to 2n for n – 0, and map n to 1–
2n for n < 0. To check that whether given set is countable or not, we must
check that:

 Every element of set is represented in order,

 No element is repeated,

 X is infinite.

2. If a set is not countable, then it is called uncountable set. For example, set
of binary sequences forms uncountable sets.

3. If a set has an infinite number of elements it is an infinite set then the elements
of such a set cannot be counted by a finite number. A set of points along a
line or in a plane is called a point set. A finite set has a finite subset. An
infinite set may have an infinite subset.
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4. ‘Axiom of Choice’ is a very significant axiom which is extensively utilised in
mathematics. The axiom can be stated in many ways. It is also true that
many seemingly unrelated statements on closer analysis appear to be
equivalent to it.

Definition. Let X be a non-empty collection of non-empty and disjoint sets,
then there exists a set Y consisting of exactly one element from each element
of X. In other words, a set Y such that Y is contained in the union of the
elements of X, and for each X  X, the set X  Y has only one element.

Another way of stating this axiom is that for any family X of non-empty and
disjoint sets, there exists a set that consists of exactly one element from
each element of X.

5. The two sets A and B are said to be equivalent or equipotent if there exists
a bijective map f: A  B and we write A~B. It is easy to see that the
relation of equipotence ~ is an equivalence relation on P[X]. Therefore, this
relation must divide P[X] into equivalence classes and we shall use the term
cardinal number (or power) to designate the property that equipotent sets
have  in  common. The  cardinal number will be, therefore, a measure of the
number of points in sets. It can be that all equipotent sets have the same
cardinal number. The cardinal number of a set A will be denoted by| A |.

It follows that A~B  |A| = |B|.

6. Among  infinite  sets, we denote by a or N
0
 (read ‘Aleph Nought’) the

cardinal number of all denumerable sets and by c the cardinal number of all
those sets which are equipotent to the set R of all real numbers. The cardinal
c is often called the  cardinal number of the linear continuum.

7. In set theory, the Schröder–Bernstein theorem specifically states that, if
there exists injective functions f: A  B and g: B  A between the sets A
and B, then there also exists a bijective function h: A  B.

8. Finite Cardinal Numbers: For finite cardinal numbers the obvious symbols

are used like 0 is assigned to empty set  , and n is assigned to the set
{1, 2, ....n}

Infinite Cardinal Numbers: Infinite sets cardinal numbers are called infinite
cardinal numbers.

9. A sequence < x
n
> in a metric space (X, d) is said to be a Cauchy sequence

if for every > 0 there exists a positive integer n ().

m, n   n ()   d(x
m
, x

n
) <.

10. A metric space X is said to be complete if every Cauchy sequence in X
converges to a point in X.

11. In mathematics, the term Continuum Hypothesis (CH) is uniquely defined
as a hypothesis which defines the possible or probable sizes of the infinite
sets. It states that there is not any set whose cardinality can be uniquely
defined between the integers and the real numbers.

12. Two sets are considered to have the same or equivalent cardinality or
cardinal number if there typically exists a bijection, i.e., a one-to-one
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correspondence between them. Spontaneously, for two sets S and T to
have the same or equivalent cardinality implies that it is feasible to ‘Pair Off’
elements of S with elements of T in such a manner that every element of S is
paired off with precisely or exactly one element of T and vice versa.

Specifically for the infinite sets, such as the set of integers or rational numbers,
the existence of a bijection condition between the two sets can hardly be
demonstrated.

13. Zorn’s lemma, also known as the Kuratowski–Zorn lemma, named after
mathematicians Max Zorn and Kazimierz Kuratowski, is a proposition of
the set theory. It states that a partially ordered set containing upper bounds
for every chain, i.e., every totally ordered subset essentially contains at
least one maximal element. As per the Tychonoff’s theorem in topology,
every product of compact spaces is compact and the theorems in abstract
algebra states that a maximal ideal and every field has an algebraic closure.

14. Well-Ordering Theorem (WOT) states that for any set X there exists an
order relation on X which is well-ordering. This theorem is also termed as
Zermelo’s theorem and was proved by Zermelo in 1904. It is equivalent to
‘Axiom of Choice’. As per the notion of Georg Cantor’s the well-ordering
theorem is unobjectionable principle of thought. The concept of well-ordering
defines that any random or arbitrary uncountable set without any positive
procedure has been contested by many mathematicians.

15. A topological space is a set X together with a collection of subsets of X,
satisfying the following axioms:

(i) The empty set and X are in .
(ii)  is closed under arbitrary union.

(iii)  is closed under finite intersection.

The collection  is called a topology on X. The elements of X are usually
called points, though they can be any mathematical objects.

16. The set of all limit points of A is called the derived set of A and shall be
denoted by D (A).

17. A point p is called an interior point of A if there exists a neighbourhood N of
p such that N A.

18. A subset G of R is called open if for every point p  G, there exists an open
interval I such that p  I  G.

A set F in R is called closed if its complement F is open.

For example, (i) Every closed interval [a,b] is closed, since its complement

[a,b]' =] –, a[ ] b, [is open, being a union of two open intervals.

19. In topology, a subset A of a topological space X is called dense (in X) if any
point x in X belongs to A or is a limit point of A. Generally, for every point
in X the point is either in A or arbitrarily ‘Close’ to a member of A, for
example every real number is either a rational number or has one arbitrarily
close to it. Formally, a subset A of a topological space X is dense in X if for
any point x in X, any neighborhood of x contains at least one point from A.
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Equivalently, A is dense in X if and only if the only closed subset of X
containing A is X itself. This can also be expressed by saying that the closure
of A is X or that the interior of the complement of A is empty. The density
of a topological space X is the least cardinality of a dense subset of X.

Definition: Let A, B be subset of R. Then.

(i) A is said to be dense in B if B A .

(ii) A is said to be dense in R or everywhere dense if A = R.

(iii) A is said to be non-dense or nowhere dense if ( A )° = , that is, if the
interior of the closure is empty.

20. A point p is called an exterior point of A if there exists an -nhd of p contained
in the complement A of A. The set of all exterior points of A is called
exterior of A and is denoted by ext A.

21. Let X, Tbe a topological space. A set  T is called a base for T if,

TA A B

Any G  is called a basic open set. We will obtain the topology T by
taking all arbitrary unions of sets in .

22. A topological group G is a group that is also a topological space, having the
property the maps g

1
, g

2
 g

1
g

2 
from G G  G and g  g–1 from G

to G are continuous maps. In this definition, G G has the product topology.

1.17 SUMMARY

 All the finite sets of integers are termed as countable, but not for the infinite
subsets.  Here is a simple diagonalization argument.  If the infinite sets are
countable then the correspondence builds a list of all possible subsets. 

 If a set A is countable and infinite, then there is a bijection between the set A
and set of natural numbers N.

 If set A is countable and 'A A , then A is also countable.

 Two sets A and B are said to be equivalent if these exist a one-one onto
mapping from A to B. If A and B are equivalent, we denote this relation by
the symbol ‘~’.

 The set X – f ({1, 2, ......n–}) is a non-empty set because if it was empty,
then the function f : {1, 2, ..... n–1}  X would be a surjective function and
X would be finite. Now we can select an element of set X – f ({1, 2, ......
n–1}) and accept f(n) to be this element. Therefore, utilising the principle
of induction we have defined the function f for all n  Z

+
.

 A choice function is a function f. defined on a collection X of non-empty
sets, such that for every set A in X, f (A) is an element of A.

 Each choice function on a collection X of non-empty sets is an element of
the Cartesian product. Given any family of non-empty sets their Cartesian
product is a non-empty sets.
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 Every set has a choice function, which is equivalent, For any set A there is
a function F such that for any non-empty subset B of A, F (B) lies in B.

 The basic property of the individual non-empty sets in the collection may
make it possible to avoid the axiom of choice even for certain infinite
collections.

 Zermelo’s Postulate: Let { : }A i I  be any non-empty family of disjoint

non-empty sets. Then there exists a subset B of the union 0
i I

A
i
 such that

the intersection of B and each set A
i
 consists of exactly one element.

 Show that the axiom of choice is equivalent to Zermelo’s postulate.

 Let X be a non-empty collection of non-empty sets, then there exists a
function f such that it selects one member of each of the sets which are
elements of X.

 In other words we have constructed XI as a collection of ordered pairs,
where the first element is the set X, and the second element is an element of
X. That is the set XI is a subset of the Cartesian product XI  U X for all
X  XI.

 For finite sets, the concept of cardinal number is easy to grasp. We say that
any set which is equipotent to the set,

{1, 2,..., n}

has the cardinal number n. We postulate that |0| = 0.

 Among  infinite  sets, we denote by a or N
0
 (read ‘Aleph Nought’) the

cardinal number of all denumerable sets and by c the cardinal number of all
those sets which are equipotent to the set R of all real numbers. The cardinal
c is often called the  cardinal number of the linear continuum.

 The operation of addition of cardinal numbers as  defined earlier is  a well-
defined operation. For if C and D are disjoint sets with |C| =  and |D|= ,
then A ~ C and  B ~ D and consequently A  B ~ C  D.

 Each of the following subsets of R has the cardinal number c of the linear
continuum.

 The cancellation laws of addition and multiplication do not hold for infinite
cardinal numbers.

 We now define the final arithmetic operation of taking powers for cardinal
numbers, if A and B are sets, we denote by AB the set of all mappings
f : B  A.

 The set of all real valued functions defined on the closed unit interval [0, 1]
has the cardinal number 2c.

 According to the cardinality property of the two sets, this classically implies
that if |A|  |B| and |B|  |A|, then |A| = |B|, i.e., A and B are equipotent.
This is a significant feature in the ordering of cardinal numbers.

 By the fact that f and g are injective functions, each a in A and b in B is in
exactly one such sequence to within identity: if an element occurs in two
sequences, then all elements to the left and to the right must be the same in
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both, by the definition of the sequences. Therefore, the sequences form a
partition of the disjoint union of A and B.

 A sequence is called an A-stopper if it stops at an element of A, or a B-
stopper if it stops at an element of B. Otherwise, it is called doubly infinite if
all the elements are distinct or cyclic if it repeats.

 We want to know the size of a given set without necessarily comparing it to
another set. For finite set there is no difficulty. For example, the set A = {1,
2, 3} has 3 elements. Any other set with 3 elements is equipotent to A. On
the other hand, for infinite sets it is not sufficient to just say that the set has
infinitely many element since not all infinite ses are equiptent. To solve this
problem we introduce the concept of a coordinal number.

 The bower set P (B) of any set B has cardinality greater than B. i.e.,
| B | < | P (B) |.

 It is easy to prove that every convergent sequence in a metric space is
Cauchy sequence.

 Let (X, d) be a complete metric space and let <F
n
> be a nested sequence

of non-empty closed subsets of X such that  (F
n
) 0 as n  . Then

1n
  F

n
 consists of exactly one point.

 In Zermelo–Fraenkel Set Theory and the Axiom of Choice (ZFC or
Zermelo–Fraenkel Continuum) is considered equivalent to the equation in
aleph numbers:  2N0 = N

1
.

 The name continuum hypothesis is precisely given to this hypothesis which
comes from the term the continuum uniquely defined for the real numbers.

 The independence property from ZFC implies that either proving or
disproving the CH within ZFC is not possible. Even though, the negative
results or consequences of Gödel and Cohen are not universally accepted
for determining the continuum hypothesis. The continuum hypothesis and
the axiom of choice were considered as the first mathematical statements
that demonstrated to be independent of ZF set theory.

 Zorn’s lemma is equivalent to the well-ordering theorem and also to the
axiom of choice, specified that any one of the three, along with the Zermelo–
Fraenkel axioms of set theory, is sufficient to prove and establish the other
two. The Zorn’s lemma is Hausdorff’s Maximum Principle (HMP) which
states that every totally ordered subset of a given partially ordered set is
uniquely contained in a maximal totally ordered subset of that partially
ordered set.

 Every subset S of a partially ordered set P can itself be seen as partially
ordered by restricting the order relation inherited from P to S. A subset S of
a partially ordered set P is called a chain (in P) if it is totally ordered in the
inherited order.

 Assume that a partially ordered set P has the property that every chain in P
has an upper bound in P. Then the set P contains at least one maximal
element.
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 Zorn’s Lemma (for Non-Empty Sets): Assume that a non-empty partially
ordered set P has the property that every non-empty chain has an upper
bound in P. Then the set P contains at least one maximal element.

 A relation which is reflexive, transitive and antisymmetric is called a partial
order. A relation which is antisymmetric, transitive and comparable is called
to be a total order. It may be stated that comparability implies reflexivity.
Therefore, total order is a special type of partial order but partial order
need not be total order.

 A set X which is totally ordered set is called well-ordered if its each non-
empty subset has a minimum element. It may be observed that every finite
set with a total order is well-ordered.

 The word topology is typically used to define a family of sets which uniquely
has definite properties that are used to define a topological space, a basic
object of topology. Topological spaces are mathematical structures that
provide the formal definition of concepts, such as convergence,
connectedness and continuity. Hence, the area of mathematics that studies
topological spaces is called topology.

 There are various additional equivalent ways to define a topological space.
Consequently, each of the following defines a category equivalent to the
category of topological spaces above.

 The Zariski topology is defined algebraically on the spectrum of a ring or an
algebraic variety. On Rn or Cn, the closed sets of the Zariski topology are
the solution sets of systems of polynomial equations. A linear graph has a
natural topology that generalizes many of the geometric aspects of graphs
with vertices and edges. The Sierpiñski space is the simplest non-discrete
topological space. It has important relations to the theory of computation
and semantics.

 The set of all limit points of A is called the derived set of A and shall be
denoted by D (A).

 A subset N of R is called a neighbourhood of a point pR if N contains an
open interval containing p and contained in N, that is, if there exists on open
interval ] a, b [such that,

p]a, b[N.

 A closed set was defined to be the complement of an open set.

 The closure of a set A in R is the smallest closed set containing A and is

denoted by A .

 The sets of all interior points, all exterior points and all boundary points are
respectively called the interior, the exterior and the boundary.

 Consider a set X and a proper subset, X. Then  Xis a
topology containing A. Actually, it is the smallest topology. Further, suppose
B X. The smallest possible topology that contains both A, B is
clearly  B, AB, AB, XSimilarly, if there are several different
sets A

1
, …., A

n
 in the topology, many other sets must be also there. This is

the idea behind generating a topology.
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 If  defines a topology on X, then we say that X is a topological space. The
sets in  are called open sets. The sets of the form X\U, U  , are called
closed sets. If Y is a subset of X, then the closure of Y is the smallest closet
set in X that contains Y.

 Asystem  of subsets of X is called a basis or basefor  the topology  if
every open set is the union of certain sets in . Equivalently, for each open
set U, given any point x U, there exists B   such that x B U.

For example, the set of all bounded open intervals in the real line R forms a
basis for the usual topology on R.

 An open covering of a topological space X is a family of open sets having
the property that every xX is contained in at least one set in the family. A
subcover of an open covering is an open covering of X which consists of
sets belonging to the open covering. A topological space X is compact if
every open covering of X contains a finite subcover.

 A subgroup H of a topological group G is a topological group in the subspace
topology. Let H be a subgroup of a topological group G and let pG G/
H be the canonical mapping of G onto G/H. We define a topology U

G/H
 on

G/H, called the quotient topology, by 
G/H
pUU 

G


1.18 KEY TERMS

 Uncountable set: If a set is not countable, then it is called uncountable
set, i.e., set of binary sequences forms uncountable sets.

 Infinite set: If a set has an infinite number of elements then it is an
infinite set.

 Axiom of choice: It states that for any family of no-empty and disjoint
sets, there exists a set that consists of exactly one element from each
element of that family.

 Well-ordering theorem: It states that for any set there exists an order
relation on the set which is in well-ordering.

 Zorn’s lemma: Consider a set X that is strictly partially ordered. If
every simply ordered subset of X has an upper bound in X, then X has
a maximal element.

 Topological spaces: Topological spaces are mathematical structures
that authorize the formal definition of concepts, such as convergence,
connectedness and continuity.

1.19 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Distinguish between countable and uncountable sets.

2. What do you understand by infinite sets?
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3. Give some examples of infinite sets.

4. Define the term axiom of choice.

5. What do you mean by total order relation?

6. Define the term cardinal number.

7. State about the addition and multiplication of cardinal numbers.

8. What is exponentiation?

9. State the Schröder-Bernstein theorem.

10. What do you understand by Cantor’s intersection theorem?

11. What is continuum hypothesis?

12. State the generalized continuum hypothesis.

13. Define the term Zorn’s lemma.

14. What is well-ordering set?

15. State the well-ordering theorem.

16. Give the equivalent definition of topological spaces.

17. What are Euclidean spaces?

18. What are the metric spaces?

19. Give the properties of metric topologies.

20. Define the terms neighbourhood, limit points, open sets and closed sets.

21. What are dense subsets?

22. Define the terms interior, exterior and boundary.

23. What are bases and subbases?

24. What is a subspace?

25. Define the term topological groups.

Long-Answer Questions

1. Briefly explain about the countable and uncountable sets with the help of
examples.

2. Describe the infinite set theorem and axiom of choice giving suitable examples.

3. Explain in detail about the ordering, addition and multiplication of cardinal
numbers giving appropriate examples.

4. State and prove Schröder-Bernstein theorem with the help of examples.

5. Elaborate on the Cantor’s intersection theorem and continuum hypothesis.

6. Show that Zorn’s Lemma implies Kuratowski lemma which states that if X
is a collection of sets and if for every sub-collection Y of X that is simply
ordered by proper inclusion, the union of the elements of Y is contained in
X. Then X has an element that is properly contained in no other element of
Y.

7. Show that the well-ordering theorem implies the choice axiom and also
prove that a well-ordered set satisfies least upper bound property.

8. Define topology and topological sets with the help of definitions and
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examples.

9. How topological spaces are classified and constructed? Explain giving
examples.

10. Briefly explain about the various types of topological spaces with the help
of definitions and examples.

11. Discuss about the Euclidean and metric spaces with the help of theorems.

12. Explain about the neighbourhood, closure and closed sets on the basis of
topology with the help of relevant examples.

13. Describe the dense subset in topology with the help of theorems and
examples.

14. Discuss about the interior points, exterior points and all boundary points in
topology with the help of theorems and examples.

15. Explain in detail about the bases and subbases with reference to topological
spaces. Give examples.

16. Discuss the significance of relative topology and topological groups with
the help of examples.
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UNIT 2 CONTINUOUS FUNCTIONS
AND HOMEOMORPHISM

Structure

2.0 Introduction
2.1 Objectives
2.2 Alternate Methods of Defining a Topology in Terms of Kuratowski Closure

Operator and Neighbourhood Systems
2.2.1 Kuratowski Closure Axioms
2.2.2 Dense Subsets

2.3 Continuous Functions and Homeomorphism
2.4 First and Second Countable Spaces

2.4.1 First Countable Space
2.4.2 Second Countable Space

2.5 Lindelöf's Theorems
2.6 Separable Spaces, Second Countability and Separability
2.7 Solved Examples
2.8 Answers to ‘Check Your Progress’
2.9 Summary

2.10 Key Terms
2.11 Self-Assessment Questions and Exercises
2.12 Further Reading

2.0 INTRODUCTION

In mathematical analysis, a continuous function is typically defined as form or type
of function which does not has any unexpected or sudden changes in the value,
i.e., the discontinuities. Even though, a function is considered as continuous if there
are certain arbitrarily insignificant changes in the output which can be ensured or
reassured by constraining or restricting to reasonably minor changes in the input.
The mathematical field of topological domain, a homeomorphism, topological
isomorphism or continuous function is precisely defined as a unique continuous
function, which is characteristically specified for the topological spaces having
continuous inverse function. In the field of mathematics and topological spaces,
the term homeomorphism is uniquely defined as the isomorphism, i.e., these terms
are typically defined as the unique mappings that preserve the entire or complete
topological properties of a given space.

In topological analysis and precisely the other related or associated fields,
the Kuratowski closure axioms are described as unique set of axioms that are
used for defining the topological structure of a set. The Kuratowski closure axioms
are named after Kazimierz Kuratowski who first formalised this concept.
Characteristically, the Kuratowski closure axioms are equivalent or similar to more
general and universally applied open set definition.

The first-countable space is described as a topological space which uniquely
satisfies the ‘First Axiom of Countability’. Exclusively, a space X is termed as
the first-countable space if there is a countable neighbourhood base (basis) or
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local base to each point. The term second countability holds more stronger
notion in comparison to the first countability. A topological space is considered
as the first-countable if every single point holds a countable local base. When
the base for a topological space and a point X is given, then it can be stated that
the set of entire or complete basis sets which contains X uniquely forms a local
base at X.

The Lindelöf’s theorem, in mathematics, is named after the Finnish
mathematician Ernst Leonard Lindelöf. In topology, the Lindelöf’s theorem
is defined based on the conclusion or result obtained in the complex analysis.
It uniquely explains about the holomorphic function on a half-strip in the
complex plane which is precisely in bounded or confined direction on the
boundary of the given strip and the growth is not ‘Too Fast’, while in the
unbounded direction of the given strip it should continue as bounded on the
entire given strip.

A topological space, in mathematical analysis, is termed as the separable
space if it precisely comprises of a countable dense subset, i.e., there exists a
unique sequence (series) of precise elements related to the topological space such
that every single non-empty open subset of the given topological space uniquely
holds at least one element of the said sequence.

The terms ‘Axioms of Countability’ and the ‘Axioms of Separability’ is
defined on the basis of the notation ‘Limitation on Size’ specifically in the
topological perception, and not essentially on the basis of cardinality concept.
Particularly, every continuous function whose image is a subset of a Hausdorff
space on a separable space is precisely determined by its values on the countable
dense subset.

In this unit, you will study about the alternate methods of defining a topology
in terms of Kuratowski closure operator and neighbourhood systems, continuous
functions and homeomorphism, first and second countable spaces, Lindelöf's
theorem, separable spaces, second countability and separability.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Define the alternate methods of defining a topology.

 Understand the Kuratowski closure operator and neighbourhood
systems

 Elaborate on the continuous functions and homeomorphism

 Explain about the first and second countable spaces

 Analyse the Lindelöf's theorem

 Discuss about the separable spaces, second countability and separability
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2.2 ALTERNATE METHODS OF DEFINING A
TOPOLOGY IN TERMS OF KURATOWSKI
CLOSURE OPERATOR AND
NEIGHBOURHOOD SYSTEMS

In mathematical analysis and the field of topology, the Kuratowski closure axioms
is named after the Polish mathematician Kazimierz Kuratowski, who first formalized
this axiom. The Kuratowski closure axioms are a set of axioms that are typically
used for defining a topological structure on a set.

The Kuratowski closure axioms characteristically developed a radically
different approach to specifying a topology for a set. Kuratowski considered
particular functions from the set of subsets of K to the set of subsets of K as
explained below.

A topology for a set K is a collection of subsets of K such that,

 The union of any arbitrary subcollection is also a member of the collection.

 The intersection of finite numbers of members of the collection is also a
member of the collection.

 The null set belongs to the collection.

 The whole set K belongs to the collection.

In topology, the elements of the collection are termed as the open sets. The
openness of a set is not a property of the set itself but it refers only to the membership
of the set in the collection of subsets which is called the topology.

A set is defined as being closed with respect to a topology if its complement
is open with respect to the topology, i.e., if its complement belongs to the topology.
At least two sets, the null set and the whole set K are both open and closed in any
topology of K.

If the closed sets of a topology are given the open sets can easily be
constructed since they are simply the complements of the closed sets.

2.2.1 Kuratowski Closure Axioms

Every topological space consists of the following:
 A set of points.

 A class of subsets defined axiomatically as open sets.
 The set operations of union and intersection.

The class of open sets must be defined in such a way that the intersection of
any finite number of open sets is itself open and the union of any infinite collection
of open sets is likewise open. A point p is called a limit point of the set S if every
open set containing p also contains some point (s) of S (points other than p, should
p happen to lie in S ). The concept of limit point is fundamental to topology and it
can be used axiomatically to define a topological space by specifying limit points
for each set according to rules known as the Kuratowski closure axioms. Any
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set of objects can be made into a topological space in various ways, but the
usefulness of the concept depends on the manner in which the limit points are
separated from each other.

The Kuratowski closure axioms are referred as a set of axioms that are
used to define a topology on a set. In mathematical analysis of topology, the
Kuratowski closure axioms are precisely referred as a set of axioms that are
typically used for defining a topology on a set. They were first introduced by
Kuratowski, in a slightly different form that applied only to Hausdorff spaces. In
general topology, if X is a topological space and A is a subset of X, then the
closure of A in X is defined to be the smallest closed set containing A or equivalently
the intersection of all closed sets containing A. The closure operator C that
assigns to each subset of A its closure C (A) is thus a function from the power set
of X to itself. The closure operator satisfies the following axioms:

1. Isotonicity: Every set is contained in its closure.

2. Idempotence: The closure of the closure of a set is equal to the closure of
that set.

3. Preservation of Binary Unions: The closure of the union of two sets is
the union of their closures.

4. Preservation of Nullary Unions: The closure of the empty set is empty.

Definition: An operator C of Xinto itself which satisfies the following four
properties mentioned in Theorem 2.1 is called a closure operator on the set X.

Theorem 2.1: In the topological space X, Tthe closure operator has the
following properties.

K
1
C

K
2
E  C

K
3
C C C

K
4
C AB C C

Proof: K
1
Because the void set is closed and also we know that a set A is

closed if and only if,

A  Ctherefore it follows that C

K
2
It follows from the definition as Cis the smallest closed set

containing E.

K
3
Since Cis the smallest closed set containing E, we have C C

 Cby the result that a set is closed if and only if it is equal to its closure.

K
4
Since A AB and B AB, therefore

C C ABand C C ABand so

CC C AB 2.1

By K
2
 we have

A  Cand B C
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Therefore, AB  CC

Since Cand Care closed sets and so CCis closed. By the
definition of closure, we have

C ABCCC 2.2

From Equations (2.1) and (2.2), we have

C AB CC
Note: CABmay not be equal to CCFor example, if A 0, 1B 1, 2then C
0, 1C1, 2

Therefore,

CCwhere AB 

But CTherefore C ABand thus C AB CC

Note: The closed sets are simply the sets which are fixed under the closure operator.

Theorem 2.2Let C* be a closure operator defined on a set X. Let F be the
family of all subsets F of X for which C*FF and let T be a family of all
complements of members of F. Then T is a topology for X and if C is the closure
operator defined by the topology T. Then C*E CE for all subsets E X.

ProofSuppose GT for all We must show that G  
T,i.e.,   FG C  

.

Thus, we must show that,

C*     CC GG 


By K
2
  CG

 C*   CG


So we need only to prove that,

C*   CG
    CG



By De Morgan’s Law, this reduces to the form,

C*   CG
    CG



Since   CG
    CG for each particular 

C*  CG
 C*  CG for each .

So, C*  CG
  

C*  CG 

But, G  CG F.

Hence, C*  CG   CG

Thus we have C*  CG
   CG



Consequently, if GTthen G  
T.

To check that X we observe that by Kuratowski closure axiom
K

2
,

X C*X X  C*XX  X F

Hence XC T
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Also by Kurtowaski closure axiom K
1
we have C* F

C X T

Finally consider that G
1
G

2 
TThen by hypothesis,

C*G
1
C  G

1
 C and C*G

2
C  G

2
C

We may now calculate,

C*G
1
 G

2
C  C* G

1
 CG

2
C

 C G
1

 C C* G
2

C

 G
1

 C  G
2

C  G
1

  G
2
C

 G
1

  G
2
C F

 G
1

  G
2 
T

Because all the axioms for a topology are satisfied hence T is a topology.
We will now prove that C* C.

As per the analysis and discussion remember that T is a topology for X.
Consequently, the members of T are open sets and therefore the closed sets are
simply the members of the family F.

By K
3
C* C*E C*E

This implies that C*E F. Now by axiom (K
2
) E C*EThus C*E

is a closed set containing E and hence C*E CE 

The consder that C* Eis the smallest closed set containing E. On the
other hand by axiom K

2


E CE F.

So, C*E C*CE CE 

Thusby Equations (2.3) and (2.4),

C*E CEfor any subset E  X

2.2.2 Dense Subsets

Definition: Let A be a subset of the topological space X, TThen A is said to be

dense in X if XA  .

Trivially the entire set X is always dense in itself. Q is dense in R since,

Q R .

Let T be finite complement topology on R. Then every infinite subset is
dense in R.

Theorem 2.3: A subset A of topological space X, Tis dense in X iff for every
nonempty open subset B of X, AB 

Proof: Suppose A is dense in X and B is a non-empty open set in X. If

ABthen A X–B implies that AX–B since X–B is closed. But then X–

B X

 contradicting such that A X.
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Because A  X–B X

 

Conversely assume that A meets every nonempty open subset of X. Thus

the only closed set containing A in X and consequently A X. Hence A is dense in

X.

Theorem 2.4: In a topological space X, T

(i) Any set C, containing a dense set D, is a dense set.

(ii) If A is a dense set and B is dense on A, then B is also a dense set.

Proof: (i) Since D C  CD

ButD  X, hence X C  also C  X so that C X.

Thus C is dense in X, T.

iiSince A is dense, A   X

Also B is dense on A.

B  AB B By Closure Property)

 AB

 X  AB

Thus B is dense in X, T

2.3 CONTINUOUS FUNCTIONS AND
HOMEOMORPHISM

Topological equivalences are said to be redirected here. Fundamentally, for two
spaces to be homeomorphic, there is no necessity of a continuous deformation.
The mathematical analysis precisely for the field of topology, states that the term
homeomorphism or topological isomorphism refers to the deformation of morphe
which is a bicontinuous function occurring between the two topological spaces.
The term homeomorphism is taken from the Greek word ‘homoios’ which means
‘similar’ and the Latin word ‘morphe’ which means ‘shape’. Characteristically,
the ‘Homeomorphisms’ are considered as the ‘Isomorphisms’ as per the notation
of topological space category theory, i.e., the homeomorphism and isomorphism
are the mappings which uniquely preserve the entire topological properties of a
given space. When there is homeomorphism between the two spaces then it is
termed as ‘Homeomorphic’, and according to the topological perspective they are
considered equivalent.

Principally, the topological space is defined as a structure of geometric object
and the homeomorphism is considered as a continuous stretching and bending of
the geometric object into a new shape. Consequently, a square and a circle are
considered as homeomorphic to each other, but a sphere and a donut are not as
the shape is not equivalent.
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Definition: According to the Encyclopaedia Britannica, in mathematics and
topology, the term homeomorphism is defined as. “A correspondence between
two figures or surfaces or other geometrical objects is defined by a one-to-one
mapping that is continuous in both directions is termed as homeomorphism”.

A homeomorphism characteristically maps the points in the ‘First Object’
which are sufficiently ‘Close Together’ to the points in the ‘Second Object’ which
are also sufficiently ‘Close Together’, and the points in the first object which are
not precisely close together to the points in the second object which are also precisely
not close together. Subsequently, the ‘Topology’ is the appropriate study of those
properties of objects which precisely not change when the homeomorphisms are
applied.

A function ‘f’ between two topological spaces ‘X’ and ‘Y’ is called a
homeomorphism if it has the following properties:

 ‘f ’ is a bijection (1-1 and onto).

 ‘f ’ is continuous.

 The inverse function ‘f ’ –1 is continuous (f is an open mapping).

In topology, a function having all these three properties is also sometimes
termed as ‘Continuous’. When such type of function exists, then we state that ‘X’
and ‘Y’ are homeomorphic. Additionally, a self-homeomorphism is defined as a
homeomorphism of a topological space and also itself. Characteristically, the
homeomorphism structure and develop an equivalence relation precisely on the
class of all topological spaces. The resulting or subsequent ‘Equivalence Classes’
are termed as the ‘Homeomorphism Classes’. For example,

 The unit 2-disc D2 and the unit square in R2 are homeomorphic.

 The open interval (–1, 1) is homeomorphic to the real numbers R.

 The product space S1 and the two-dimensional torus are homeomorphic.

 Every uniform isomorphism and isometric isomorphism is a homeomorphism.

 Any 2-sphere with a single point removed is homeomorphic to the set of all
points in R2 (a 2-dimensional plane).

 Let A be a commutative ring with unity and let S be a mutiplicative subset of
A.

 An exceptional example of a continuous bijection form which is not a
homeomorphism can be defined as the map which holds the half-open interval
[0,1) and covers it precisely around the circle. In this instance, the inverse
— even though it exists — may not be continuous. The preimage of certain
specific sets which are of real open form in the relative topology stating the
half-open interval [0,1) are then not open in the other natural or usual topology
stating the circle as they are half-open intervals.

Homeomorphisms, as already discussed, are the isomorphisms according
to the topological space category. Essentially, the composition or structure of two
homeomorphisms is yet again a homeomorphism and subsequently the set of all
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self-homeomorphisms ‘X’ forms or structures a group termed as the
homeomorphism group of ‘X’.

For certain reasons, the homeomorphism groups specifically occur to be
too large, but because of the isotope relation the homeomorphism groups can be
reduced to the mapping class groups.

1. Two homeomorphic spaces typically contribute to or share the identical
or equivalent topological properties. For example, if one of the
homeomorphism groups is compact, then the other is also; if one of the
homeomorphism groups is connected, then the other is also; if one of the
homeomorphism groups is Hausdorff, then the other is also; and their
homology groups will uniquely overlap or coincide. Remember that,
however this cannot extend and continue having the properties defined by
means of a metric; there are metric spaces which are considered as
homeomorphic despite the fact that one of the homeomorphisms is complete
while the other is not.

2. A homeomorphism is simultaneously an open mapping and a closed mapping,
that is it maps open sets to open sets and closed sets to closed sets.

3. Every self-homeomorphism in S1 can be extended to a self-homeomorphism.

2.4 FIRST AND SECOND COUNTABLE
SPACES

The countable complement topology on any set X consist of the empty set and all
countable subsets of X, i.e., all sets whose complement in X is countable.

2.4.1 First Countable Space

Characteristically, a topological space X is termed as the 'First Countable Space'
if it precisely satisfies or fulfils the following given axiom termed as the 'First
Axiom of Countability':

For each point p  X there exists a countable class B
p
 of open sets containing p

such that every open set G containing p also contains a member of B
p
. In other

words, a topological space X is a first countable space if and only if there exists
a countable local base at every point p  X.

Fundamentally, the first countable and precisely the separable Hausdorff
space, specifically a separable metric space takes as a maximum the continuum
cardinality c. In such specific space, the closure is uniquely determined and
accurately defined by means of ‘Limits of Sequences’ and any sequence precisely
has at the most just one limit, consequently there is a surjective map from the set of
convergent sequences having unique values in the countable dense subset to the
points of X. Essentially, a separable Hausdorff space holds cardinality at the most
2c where c is referred as the cardinality of the continuum. Consequently, this
closure is distinguished and characterized according to the limits of filter bases: ‘If
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Y is a subset of X and z is a point of X, then z is typically in the closure of Y if and
only if there exists a filter base B which consists of subsets of Y that uniquely

converges to z’. The cardinality of the set S(Y) of such filter bases is at most 
 22
Y

.
Moreover, in a Hausdorff space, there is at most one limit to every filter base.

Therefore, there is a surjection S(Y)  X when Y  = X . The same arguments
establish a more general result: suppose that a Hausdorff topological space X
contains a dense subset of cardinality k. Then X has cardinality at most 22k and
cardinality at most 2k if it is first countable. The consequence or product of at most
continuum many separable spaces is a separable space. In particular the space RR

of all functions from the real line to itself, endowed with the consequence or product
topology, is a separable Hausdorff space of cardinality 2c. More generally, if k is
any infinite cardinal, then a consequence or product of at most 2k spaces with
dense subsets of size at most k has itself a dense subset of size atmost k.

Example 2.1: Let X be a metric space. Let p  X. The countable class of open
spheres {S(p, 1), S(p, 1/2), S(p, 1/3),...} with center at p is a local base at p. Thus
every metric space satisfies the first axiom of countability.

Example 2.2: Let X be any discrete space and let p  X. A local base at point p
is the singleton set {p} — which is countable. Thus every discrete space satisfies
the first axiom of countability.

The first uncountable ordinal 
1
 in its order topology is not separable.

The Banach space l of all bounded real sequences, with the supremum norm, is
not separable.

2.4.2 Second Countable Space

In the field of topological analysis, a topological space X precisely with the topology
 is termed as a ‘Second Countable Space’ if it exceptionally satisfies the following
given axiom termed as the ‘Second Axiom of Countability’.

There exists a countable base B for the topology .

Consider that given the class of open intervals (a, b) together with rational
end points, i.e., a, b  Q where Q is referred as the set of precise rational numbers
— which is countable and is defined as a base for the normal topology on the real
line R. Accordingly, R precisely satisfies the second axiom of countability and is
therefore a second countable space.

Consider the example for real line R together with the discrete topology D.
Now the only unique base specially for a discrete topology on a specific set X is
that distinctive collection B of all or entire singleton sets of X. Remember that R is
typically non-countable and consequently the class of singleton sets {p} of R is
also typically non-countable. Therefore, the topological space R together with the
discrete topology D does not satisfy or comply with the second axiom of
countability. By the similar identical logic, the topological space Q of unique rational
numbers together with the discrete topology D satisfies the second axiom of
countability.
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If B is a countable base for a space X, and if B
p
 consists of the members of

B which contain the point p  X, then B
p
 is a countable local base at p Any

second-countable space is separable: if {U
n
} is a countable basis, choosing any

x
n 
 U

n 
gives a countable dense subset. Conversely, a metrizable space is separable

if and only if it is second countable if and only if it is Lindelöf.

An arbitrary or random subspace of a unique second countable space is
referred as a second countable subspaces of typical separable spaces essentially
may not be separable.

In topology, a consequence of at the most continuum various separable
spaces are defined as the ‘Separable’. Additionally, the countable consequence of
the unique second countable spaces is typically defined as the second countable,
but an uncountable consequence of the unique second countable spaces essentially
may not even be first countable.

Characteristically, any continuous image of a unique and distinct separable
space is defined as ‘Separable’ even though the quotient of a unique second
countable space essentially may not be second countable.

The unique property of separability essentially does not provide any
limitations on the cardinality typically of a distinct topological space, any set
capable with the trivial topology is considered as separable and also second
countable, quasi-compact and connected. The ‘Problem’ with the trivial
topology is referred as its inadequate separation properties, its Kolmogorov
quotient is considered as the one-point space.

Theorem 2.5: A function defined on a first countable space X is continuous at p 
X if and only if it is sequentially continuous at p.

In other words, if a topological space X satisfies the first axiom of countability,
then f: XY is continuous at p  X if and only if for every sequence {a

n
} in X

converging to p, the sequence {f(a
n
)} in Y converges to f(p), i.e.,

( ) ( )n na p f a f p 

Theorem 2.6: A second countable space is also first countable.

Let S be a set. Let A be a subset of S. Then a collection C of subsets of S is
a cover of A if A is a subset of the union of the members of C, i.e.,

 :A c c C 

If each member of C is an open subset of S, then C is called an open cover
of A. If C contains a countable subclass which also is a cover of A, then C is said
to be reducible to a countable cover of A.

Theorem 2.7: Let A be any subset of a second countable space X. Then every
open cover of A is reducible to a countable cover.

Theorem 2.8: Let X be a second countable space. Then every base B for X is
reducible to a countable base for X.
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Lindelöf Space: A topological space X is called a Lindelöf space if every open
cover of X is reducible to a countable cover.

Thus, every second countable space is Lindelöf space.

Check Your Progress

1. Define the term set.

2. Give the Kuratowski closure axioms.

3. Which axioms are satisfied by closure operator?

4. Define homeomorphism.

5. When is homeomorphisms considered isomorphisms?

6. What is homeomorphic?

7. What do you understand by first countable space?

8. What is second axioms of countability?

9. Define Lindelöf's space.

2.5 LINDELÖF'S THEOREMS

Let C={A:be a collection of sets of real numbers. We say that C is a cover
(or covering) of a set A of real numbers if each point of A belongs to Afor same

A, that is, if A Ì  {A:. If C is a collection of open sets, then C is called

an open covering of A.

If C' is a cover of A such that C' Ì C, is called a subcover of A.

A set A is said to be compact if each open cover of A has a finite subcover.

Example 2.3: Let C ={]–n, n[:nN}

And C'={]–3n, 3n[:nN}.

Then C and C' are both open covers of R. Also C' is a subcover of C.

Theorem 2.9 (Lindelöf): Let C be a collection of open sets of real numbers.
Then there exists a countable subcollection {G

1
} of C such that,

 {G:GC}=
1n

¥

=
G

i.
.

Proof: Let S= {G:G Î C} and let xS. Then there is at least one G Î C such

that xG. Since G is open, there exists an open interval I
x
 with centre at x such

that I
x Ì G. Since every interval I

x 
contains infinitely many rational points we can

find an open interval J
x 

with rational end points such that
x J

x 
I

x
. Since the collection {J

x
}, x Î S, is countable, and

S = {J
x
:x S}.

For each interval in {J
x
}, choose a set G in C which contains it. This gives

a countable subcollection

  1i i
G




= of C and 

1
i

i

S G





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Hence {G : G  C} = 
1

i
i

S G




 .

Theorem 2.10 (Lindelöf Covering Theorem): Let A be a set of real numbers
and let C be an open cover of A. Then there exists a countable subcollection of C
which also covers A.

Proof: Since C is an open cover of A, we have

                             A{G : G  C}.

Now show that there exists a countable subcollection   1i i
G




 of C such

that

{G : G  C} = 
1

i
i

S G






And so 
1

i
i

A G




  Hence the theorem.

The Heine-Borel covering theorem states that from any open covering
of an arbitrary set A of real numbers, we can extract a countable covering. The
Heine-Borel theorem tells us that if, in addition, we know that A is closed and
bounded, then we can reduce the covering to a finite covering. The proof makes
use of the nested interval theorem.

Theorem 2.11 (Heine-Borel): Let F be a closed and bounded set of real
numbers. Then each open covering of  F has a finite subcovering. That is, if C is a
collection of open sets such that F  {G : G  C}, then there  exists a  finite

subcollection (G
1
 G

2
,...,G

n
) of C such that 

1

n

i
i

F G


 .

In other words, every closed and bounded set of real numbers is compact.

Proof: Since F is bounded, it is contained in some closed and bounded interval
[a, b]. Let C* be the collection obtained by adding F' (the complement of F) to
C; that is, C* = C {F'}. Since F is closed, F' is open and so C' is a collection of
open sets. By hypothesis, F  {G : G  C}, and so

R = FF'  [{G : G  C}] F'= {G : G  C*}

We now show that [a, b] is covered by a finite sub-collection of C. Suppose the
contrary to be true. Now if  I

0
= [a, b] connot be covered by a finite subcollection

of C*, then one of the intervals [a,
1

2
 (a + b)], [

1

2
(a + b), b] cannot be so

covered. We rename such an interval as [a
1
, b

2
]. Similarly, one of the intervals

   1 1 1 1 1 1
1 1

, , ,
2 2

a a b a b b          
 cannot be covered by a   finite subcollection

of C*. We designate such an interval as [a
2
, b

2
]. Continuing in this way, we obtain

a sequence of closed intervals

{I
n
} = {[a

n
, b

n
]} such that I

n
  I

n+l
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And –
– as

2
n n n n

b a
I b a C n    .

Hence by the nested interval theorem, 
1

n
n

I



  consists of a single point, say

x
0
. This point x

0
 must belong to one of the members, say G

0
 of C*.

Since G
0
 is an open set and x

0
  G

0
, there exists  > 0 such that ]

x
0 

– , x
0
+  [G

0
. Also we can choose k so large that 

2k

b a
  . Then

0 0 0] – , [kI x x G      and so I
k
  is covered by a single member of C*. But this

contradicts the constructed property of the members of {I
n
 : n  N}. Hence [a,

b] must be covered by a finite subcollection of C* and hence F must also be
covered by a finite subcollection of C*. If this finite subcollection does not contain
F', it is a subcollection of C and the conclusion of our theorem holds. If the
subcollection contains F', denote it by {G

l
 G

2
...,G

n
, F'}. Then F  F'

G
1
G

2
...G

n
. Since no point of F is contained in F', we have F  G

1 
 G

2

.....G
n
, and the collection {G

1
, G

2
,..., G

n
} is a finite subcollection of C which

covers F.

This proves the theorem.

The converse of the preceding theorem is given in the next theorem.

Theorem 2.12: Compact subsets of R are closed and bounded.

Proof: Let A be any compact subset of R. If A
n
=]–n, n[, then the collection

C = {A
n
 : n  N} is evidently an open cover of R and so an open cover of A.

Since A is compact, there exist finitely many positive integers n
1
,n

2
...n

k
 such that

the subcollection  1 2
, ,....,

kn n nA A A  of C covers A. Let n
0
= max {n

1
, n

2
...,n

k
],

then evidently 
0 0 0] , [.nA A n n    This implies that A is bounded.

If we can show that no point of R – A can be a limit point of A, then A will
be closed. So let a  R. Then a  A. Consider the family of closed sets F

n
=

[a – 1 /n, a + 1] for each n  N. Then C = {R – F
n
 : n  N} is a collection of

open sets. Also evidently  
1

n
n

F a




 . Since a  AA, we have,

 [ – : ] { – : ]n nA R F n N R F n N      [De Morgan law].

Thus A is   covered by the collection C.  Hence by compactness of A, there
exists finitely many positive integers m

1
; m

2
,...,m

s
 such that every point of A is

contained in one of the open sets 
1 2

– , – ,....., –
sm m mR F R F R F . Hence if x  A,

then for  some i {1, 2, 3,...,s}, x  R – 
imF ,which implies that no point of A is

contained in 
imF – [a – 1/m

i
, a + 1/m

i
]. This implies that a is not a limit point of A.

Hence A is closed.
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A Characterization of Compact Sets on R

Theorem 2.13: A subset of R is compact if and only if it is closed and bounded.

Theorem 2.14: R is not compact.

Proof: Let A
n
=] – n, n[. Then clearly C = {A

n
 : n  N} is an open cover of R. If

 1 2
, ,....,

kn n nA A A  be any finite subfamily of C, let n
0
= max {n

1
, n

2
,...,n

k
}. Then

n
0 
 

inA , for any i = l, 2,...,k.

It follows that no finite subfamily of C can cover R. Hence R is not compact.

Theorem 2.15: Show that open intervals on 1 are not compact.

Proof: Let I = ]a, b[ be any open interval on R.

If ] 1/ , [nA a n b  , then evidently the collection C = {A
n
 : n  N} is an open

cover of ]a, b[ since 
1

] , [n
n

A a b




 . But it is not possible to find a finite subcollection

of C which covers A. For, if C' =  1 2
, ,....,

kn n nA A A  be any finite subcollection of

C, let n
0 
= max  1 2 ,....., kn n n . Then it is evident that the subset ]a, a + 1/n

0
] of

A is not covered by C'. Thus we have shown that there exists an open cover of A

which does not admit of a finite subcover. Hence ]a, b[ is not compact.

2.6 SEPARABLE SPACES, SECOND
COUNTABILITY AND SEPARABILITY

A topological space is called separable if it contains a countable dense subset;
that is, there exists a sequence   1n n

x



of elements of the space such that every

non-empty open subset of the space contains at least one element of the sequence.
In particular, every continuous function on a separable space whose image is a
subset of a Hausdorff space is determined by its values on the countable dense
subset.

In general, separability is a technical hypothesis on a space which is quite
useful and among the classes of spaces studied in geometry and classical analysis
generally considered to be quite mild. It is important to compare separability with
the related notion of second countability, which is in general stronger but equivalent
on the class of metrizable spaces. Following are some examples of separable
space.

 Every compact metric space (or metrizable space) is separable.

 Any topological space which is the union of a countable number of separable
subspaces is separable. Together, these first two examples give a different
proof that n-dimensional Euclidean space is separable.

 The space of all continuous functions from a compact subset of Rn into R is
separable.

 It follows easily from the Weierstrass approximation theorem that the set
Q[t] of polynomials with rational coefficients is a countable dense subset of
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the space C([0,1]) of continuous functions on the unit interval [0, 1] with
the metric of uniform convergence. The Banach-Mazur theorem asserts
that any separable Banch space is isometrically isomorphic to a closed
linear subspace of C([0, 1]).

 The Lebesgue spaces Lp are separable for any 1 < p < .

 A Hilbert space is separable if and only if it has countable orthonormal
basis; it follows that any separable, infinite-dimensional Hilbert space is
isometric to 2 .

 An example  of a separable space that is not second-countable is R
llt,

the
set of real numbers equipped with the lower limit topology.

 A topological space X is separable if and only if there exists a finite or
denumerable subset A of X such that the closure of A is the entire space i.e.,

.A X

 The real line R with the usual topology is separable since the set Q of rational
numbers is denumerable and is dense in R, i.e., Q R .

 Every second countable space is separable but not every separable space
is second countable. For example, the real line R with the topology generated
by the closed-open intervals [a, b) is a classic example of a separable
space which does not satisfy the second axiom of countability.

Check Your Progress

10. State the Lindelöf covering theorem.

11. Define Heine-Borel covering theorem.

12. What is a separable space?

13. Define is saparability.

14. Give some examples of separable space.

2.7 SOLVED EXAMPLES

Example 1: Prove that characteristics function of XY is continuous on Y
iff X is both open and closed in Y.

Solution: Let (Y, T) be a space and let XY. The characteristic function f or X is
defined as,

1

1 if 
( )

0 if or 

x X
f x

x X x X

Let X is both open and closed then to prove that f is continuous,

f:yR let G be an open subset of R.

Then by definition, f –1(G) = {x Y: f(x)G
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And f –1(G) = 
1

if 1 ,0

if 0 ,0

if 0,1

if 0,1

X G G

X G G

Y G

G

In all of the cases, f -1(G) is an open set,

Therefore f is continuous.

Now conversely let f is continuous, then to prove that X is both open and
closed.

Let G can be an open subset of R such 0 G, 1G.

Then f -1(G)=X 1, f is continuous.

 f -1(G) = X 1 is open X is closed.

Now let H is an open subset of R such that 1H, 0H,

Then f -1(H) = X, H is an open in R.

 F -1(H) = X is open in Y.

Thus X is both open and closed.

Example 2: Let f:  R be a constant map, prove that f is continuous.

Solution: Let f:  R be a map defined as f(x)=C
1
 x R …(1)

To prove that f is continuous.

Let G R be an arbitrary open set, then by definition,

f -1 (G) = {XR: f(x)G} …(2)

From Equations (1) and (2) we have,

1 if 
( )

if 

c G
f G

c G

R

 and R both are open sets in R and hence f -1(G) is open in R.

 f is a continuous map.

Example 3: Prove that the interval X=[a,b] is homeomorphic to the unit
interval [0,1].

Solution: Let the map f: X[0,1] is given by,

fx = 
1 0

0 ( ),x a
a b

Or,

f(x) = 
x a

b a

Therefore, f is one-one, onto and bicontinuous.

Example 4: If S={, {1}, {2}, {1,2}, {2, 3, 4}, A} be a topology on A = {1, 2,
3, 4} and f: A  B is defined as f(1)=2, f(2)=4, f(3)=2, f(4)=3. Prove that f
is not continuous at 3 and is continuous at 4.
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Solution: Given that B = {f(1), f(2), f(3), f(4)}

Or       B = {2, 4, 3}

= {2, 3, 4}

Let H= {G B: GS} be a topology on B.

Then H = {, B, {2}}

A map f: A B is continuous at xA if,

 H-open J set containing f(x), f -1(J) is S-open set containing X.

Now to test continuity at x = 3,

H open sets containing f(3) = 2 and B{2}

Also, f -1(B)=A, f -1{2} = {1, 3} S but {2} H

f is not continuous at x = 3

To test continuity at x = 4

H open set, which is contain only B so that,  f(4) = 3

And  f -1(B) = A  which contains 4.

Therefore, f is continuous at x = 4.

Example 5: Prove that a constant map from (R,U) into (R,U) is a closed
map, where U- denotes usual topology on R.

Solution: By definition f: (R, U)  (R,U)  such that,

f(x) = c,  xR

Let X, be any U closed set, then

F(x) = { f (x): xX}

= {c: x A}

= {c}

= a finite set

= a U-closed set

Therefore, f is closed.

Example 6: Let (X, U) and (Y, U) are topological spaces and H X, and
f: (X, T)  (Y, U) be continous. Prove that f

H
: (H, T

H
)  (Y, U) is

continuous where f
H
 is the restriction of f to H.

Solution: Let f (X, T )(Y, T ) is a continuous map and H X. To prove that
f
H 

: (H, T
H
) (Y, U) is continuous,

Let G Y is open that GU

If we prove that 1
Hf (G)T

H
, the result will be proven.

GU, f is continuous  f -1 (G)T

H  f -1(G)T
H
 for (H, T

H
) (X, T)

 1
Hf  (G) = H f -1(G) T

H

 1
Hf  (G) T

H
.
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2.8 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A set is defined as being closed with respect to a topology if its complement
is open with respect to the topology; i.e., if its complement belongs to the
topology. At least two sets, the null set and the whole set K are both open
and closed in any topology of K.

2. The concept of limit point is fundamental to topology and it can be used
axiomatically to define a topological space by specifying limit points for
each set according to rules known as the Kuratowski closure axioms.

3. The closure operator satisfies the following axioms:

  (i) Isotonicity: Every set is contained in its closure.

 (ii) Idempotence: The closure of the closure of a set is equal to the closure
of that set.

(iii) Preservation of Binary Unions: The closure of the union of two sets is
the union of their closures.

(iv) Preservation of Nullary Unions: The closure of the empty set is empty.

4. The term homeomorphism is taken from the Greek word ‘homoios’ which
means ‘similar’ and the Latin word ‘morphe’ which means ‘shape’.
Characteristically, the ‘Homeomorphisms’ are considered as the
‘Isomorphisms’ as per the notation of topological space category theory,
i.e., the homeomorphism and isomorphism are the mappings which uniquely
preserve the entire topological properties of a given space.

According to the Encyclopaedia Britannica, in mathematics and topology,
the term homeomorphism is defined as. “A correspondence between two
figures or surfaces or other geometrical objects is defined by a one-to-one
mapping that is continuous in both directions is termed as homeomorphism”.

5. Homeomorphisms are considered the isomorphisms in the field of topological
spaces, when, they are defined as the mappings which preserve all the
topological properties of a given space.

6. Two spaces with a homeomorphism between them are termed as
homeomorphic and from a topological perspective they are the same.

7. A first countable, separable Hausdorff space (in particular, a separable metric
space) has at most the continuum cardinality c. In such a space, closure is
determined by limits of sequences and any sequence has at most one limit,
so there is a surjective map from the set of convergent sequences with
values in the countable dense subset to the points of X.

8. A topological space X with topology  is termed as a second countable
space if it satisfies the following axiom, termed as the second axiom of
countability.

9. A topological space X is called a Lindelof space if every open cover of X is
reducible to a countable cover. Thus, every second countable space is a
Lindelöf space.
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10. Let A be a set of real numbers and let C be an open cover of A. Then there
exists a countable subcollection of C which also covers A.

11. The Heine-Borel covering theorem states that from any open covering of
an arbitrary set A of real numbers, we can extract a countable covering.
The Heine-Borel theorem tells us that if, in addition, we know that A is
closed and bounded, than we can reduce the covering to a finite covering.

12. A topological space is called separable if it contains a countable dense
subset.

13. In general, separability is a technical hypothesis on a space which is quite
useful and among the classes of spaces studied in geometry and classical
analysis.

14. Let us consider some examples of separable space.

 Every compact metric space (or metrizable space) is separable.

 Any topological space which is the union of a countable number of
separable subspaces is separable. Together, these first two examples
give a different proof that n-dimensional Euclidean space is separable.

 The space of all continuous functions from a compact subset of Rn into
R is separable.

 The Lebesgue spaces Lp are separable for any 1  p  

 A Hilbert space is separable if and only if it has countable orthonormal
basis; it follows that any separable, infinite-dimensional Hilbert space is

isometric to 2 .

 A topological space X is separable if and only if there exists a finite or
denumerable subset A of X such that the closure of A is the entire space

i.e., A X .

 Every second countable space is separable but not every separable
space is second countable. For example, the real line R with the topology
generated by the closed-open intervals [a, b) is a classic example of a
separable space which does not satisfy the second axiom of countability.

2.9 SUMMARY

 In mathematical analysis and the field of topology, the Kuratowski closure
axioms is named after the Polish mathematician Kazimierz Kuratowski, who
first formalized this axiom.

 The Kuratowski closure axioms are a set of axioms that are typically used
for defining a topological structure on a set.

 The Kuratowski closure axioms characteristically developed a radically
different approach to specifying a topology for a set. Kuratowski considered
particular functions from the set of subsets of K to the set of subsets of K.
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 In topology, the elements of the collection are termed as the open sets. The
openness of a set is not a property of the set itself, but it refers only to the
membership of the set in the collection of subsets which is called the topology.

 A set is defined as being closed with respect to a topology if its complement
is open with respect to the topology, i.e., if its complement belongs to the
topology. At least two sets, the null set and the whole set K are both open
and closed in any topology of K.

 If the closed sets of a topology are given the open sets can easily be
constructed since they are simply the complements of the closed sets.

 The Kuratowski closure axioms are referred as a set of axioms that are used
to define a topology on a set.

 In mathematical analysis of topology, the Kuratowski closure axioms are
precisely referred as a set of axioms that are typically used for defining a
topology on a set. They were first introduced by Kuratowski, in a slightly
different form that applied only to Hausdorff spaces.

 In general topology, if X is a topological space and A is a subset of X, then
the closure of A in X is defined to be the smallest closed set containing A or
equivalently the intersection of all closed sets containing A.

 The closure operator C that assigns to each subset of A its closure C (A) is
thus a function from the power set of X to itself.

 A subset A of topological space (X, T) is dense in X iff for every nonempty
open subset B of X, AB 

 Topological equivalences are said to be redirected here. Fundamentally,
for two spaces to be homeomorphic, there is no necessity of a continuous
deformation.

 The mathematical analysis precisely for the field of topology, states that the
term homeomorphism or topological isomorphism refers to the deformation
of morphe which is a bicontinuous function occurring between the two
topological spaces.

 The term homeomorphism is taken from the Greek word ‘homoios’ which
means ‘similar’ and the Latin word ‘morphe’ which means ‘shape’.

 Characteristically, the ‘Homeomorphisms’ are considered as the
‘Isomorphisms’ as per the notation of topological space category theory,
i.e., the homeomorphism and isomorphism are the mappings which uniquely
preserve the entire topological properties of a given space.

 When there is homeomorphism between the two spaces then it is termed as
‘Homeomorphic’, and according to the topological perspective they are
considered equivalent.

 Principally, the topological space is defined as a structure of geometric object
and the homeomorphism is considered as a continuous stretching and bending
of the geometric object into a new shape. Consequently, a square and a
circle are considered as homeomorphic to each other, but a sphere and a
donut are not as the shape is not equivalent.
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 According to the Encyclopaedia Britannica, in mathematics and topology,
the term homeomorphism is defined as. “A correspondence between two
figures or surfaces or other geometrical objects is defined by a one-to-one
mapping that is continuous in both directions is termed as homeomorphism”.

 In topology, a function having all these three properties is also sometimes
termed as ‘Continuous’. When such type of function exists, then we state
that ‘X’ and ‘Y’ are homeomorphic. Additionally, a self-homeomorphism is
defined as a homeomorphism of a topological space and also itself.

 Characteristically, the homeomorphism structure and develop an equivalence
relation precisely on the class of all topological spaces. The resulting or
subsequent ‘Equivalence Classes’ are termed as the ‘Homeomorphism
Classes’.

 Homeomorphisms, as already discussed, are the isomorphisms according
to the topological space category. Essentially, the composition or structure
of two homeomorphisms is yet again a homeomorphism and subsequently
the set of all self-homeomorphisms ‘X’ forms or structures a group termed
as the homeomorphism group of ‘X’.

 Characteristically, a topological space X is termed as the ‘First Countable
Space’ if it precisely satisfies or fulfils the following given axiom termed as
the ‘First Axiom of Countability’:

 In the field of topological analysis, a topological space X precisely with the
topology  is termed as a ‘Second Countable Space’ if it exceptionally satisfies
the following given axiom termed as the ‘Second Axiom of Countability’.
There exists a countable base B for the topology .

 A function defined on a first countable space X is continuous at p  X if and
only if it is sequentially continuous at p.

 A second countable space is also first countable.

 Let A be any subset of a second countable space X. Then every open cover
of A is reducible to a countable cover.

 Let X be a second countable space. Then every base B for X is reducible
to a countable base for X.

 An arbitrary or random subspace of a unique second countable space is
referred as a second countable subspaces of typical separable spaces
essentially may not be separable.

 In topology, a consequence of at the most continuum various separable
spaces are defined as the ‘Separable’. Additionally, the countable
consequence of the unique second countable spaces is typically defined as
the second countable, but an uncountable consequence of the unique second
countable spaces essentially may not even be first countable.

 Characteristically, any continuous image of a unique and distinct separable
space is defined as ‘Separable’ even though the quotient of a unique second
countable space essentially may not be second countable.
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 Lindelöf space: A topological space X is called a Lindelöf space if every
open cover of X is reducible to a countable cover. Thus, every second
countable space is a Lindelöf space.

 Lindelöf Covering Theorem: Let A be a set of real numbers and let C be an
open cover of A. Then there exists a countable subcollection of C which
also covers A.

 The Heine-Borel covering theorem states that from any open covering of
an arbitrary set A of real numbers, we can extract a countable covering. The
Heine-Borel theorem tells us that if, in addition, we know that A is closed
and bounded, we can reduce the covering to a finite covering.

 Compact subsets of R are closed and bounded.

 A subset of R is compact if and only if it is closed and bounded.

 A topological space is called separable if it contains a countable dense subset.

 In particular, every continuous function on a separable space whose image
is a subset of a Hausdorff space is determined by its values on the countable
dense subset.

  Every compact metric space (or metrizable space) is separable.

 Any topological space which is the union of a countable number of separable
subspaces is separable. Together, these first two examples give a different
proof that n-dimensional Euclidean space is separable.

 The space of all continuous functions from a compact subset of Rn into R is
separable.

 The Lebesgue spaces Lp are separable for any 1 < p < .

 A topological space X is separable if and only if there exists a finite or
denumerable subset A of X such that the closure of A is the entire space.

 Every second countable space is separable but not every separable space
is second countable. For example, the real line R with the topology generated
by the closed-open intervals [a, b) is a classic example of a separable space
which does not satisfy the second axiom of countability.

2.10 KEY TERMS

 Kuratowski closure axioms: These are referred as a set of axioms that
are used to define a topology on a set.

 Homeomorphic: Two spaces with a homeomorphism between them are
formed as homeomorphic.

Lindelöf space: A topological space X is called a Lindelöf space if every
open cover of X is reducible to a countable cover. Thus, every second
countable space is a Lindelöf space.

 Lindelöf covering theorem: Let A be a set of real numbers and let C be
an open cover of A. Then there exists a countable subcollection of C which
also covers A.
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 Open sets: In topology, the elements of the collection are termed as the
open sets.

 Homeomorphism: The term homeomorphism is taken from the Greek
word ‘homoios’ which means ‘similar’ and the Latin word ‘morphe’ which
means ‘shape’.

 Heine-Borel covering theorem: The Heine-Borel covering theorem states
that from any open covering of an arbitrary set A of real numbers, we can
extract a countable covering. The Heine-Borel theorem tells us that if, in
addition, we know that A is closed and bounded, we can reduce the covering
to a finite covering.

 Separability: Separability is a technical hypothesis on a space which is
quite useful and among the classes of spaces studied in geometry and classical
analysis.

2.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define Kuratowski closure operator.

2. What is Kuratowski closure axioms?

3. State about dense subsets.

4. What is continuous function?

5. Define the term homeomorphism.

6. What is do you mean by topological spaces?

7. State the first countable space.

8. Differentiate between the first and second countable spaces.

9. State Lindelöf’s theorem.

10. Give the Heine-Borel covering theorem.

11. What are separable spaces?

12. Define the term separability.

Long-Answer Questions

1. Briefly explain about the alternate methods of defining a topology in terms
of Kuratowski closure operator and neighbourhood systems with the help
of relevant examples.

2. Describe the significance of continuous functions and homeomorphism  giving
significant examples.

3. Explain in detail about the first and second countable spaces with the help
of appropriate examples.

4. Discuss in detail about the Lindelöf’s and Heine-Borel covering theorems
giving the characteristic featurs and proof.

5. Elaborate on the separable spaces, second countability and separability giving
appropriate examples.
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3.9 Local Compactness and One Point Compactification
3.10 Stone-Čech Compactification
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3.16 Self-Assessment Questions and Exercises
3.17 Further Reading

3.0 INTRODUCTION

In the field of topology, the ‘Separation Axioms’ are typically used in the topological
analysis and specifications for specifying and distinguishing the disjoint sets and
the distinct points. Characteristically, in topological analysis the Urysohn’s lemma
is defined as a specific lemma which states that, ‘A topological space is considered
as normal iff and only iff any two disjoint closed subsets can be uniquely separated
by means of a distinct continuous function’.

In topology, the Tietze extension theorem is also known as the Tietze–
Urysohn–Brouwer extension theorem which states that continuous functions on a
closed subset of a normal topological space can be extended to the entire space,
preserving boundedness if necessary.

In mathematical analysis and specifically in particular in the field of general
topology, the term ‘Compactness’ is defined as a unique and distinctive property
which typically generalises the concept and conventional notion of a subset of the
Euclidean space specifically considered as closed and bounded.
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In topological specifications, a function is considered as ‘Continuous’ if
the random or arbitrary slight or insignificant changes or differences in its output
can be typically guaranteed by simply restricting and limiting to sufficiently and
appropriately slight or insignificant changes in its input. A topological space is
compact if every open cover of X has a finite sub cover. In other words, if X
is the union of a family of open sets, there is a finite subfamily whose union is
X.

In general, in the topological analysis a non-empty family A of subsets
of a set X is characterised to have the Finite Intersection Property (FIP) if and
only if the intersection over any predetermined or finite subcollection of A is
non-empty.

In topological analysis and other associated and related fields in the
mathematical evaluation, a sequential space is uniquely defined as a topological
space which satisfies an exceptionally weak axiom of countability. In mathematics,
a topological space is termed as countably compact if and only if every single
countable open cover holds a finite subcover.

In mathematical evaluation and topological analysis, the locally compact
spaces that typically holds the Hausdorff properties are specifically studied and
analysed which are generally abbreviated as Locally Compact Hausdorff (LCH)
spaces. The LCH spaces are considered as a exceptional and distinctive
topological space in which every single point holds a compact neighbourhood. One
point compactification is also sometimes known as Alexandroff compactification.
The Alexandroff extension is defined as a specific methodology for precisely
extending a non-compact topological space by accurately adjoining and connecting
a single point in such a manner that the subsequent and resulting space can be defined
as compact.

In the mathematical discipline of general topology, Stone–Čech
compactification is a technique for constructing a universal map from a topological

space X to a compact Hausdorff space βX.

In this unit, you will study about the separation axioms, Urysohn’s lemma,
Tietze extension theorem, compactness and basic properties, continuous functions
and compact sets, compactness and finite-intersection property, sequentially and
countably compact sets, local compactness and one point compactification, Stone-
Čech compactification, compactness in metric spaces, countable compactness
and sequential compactness in metric spaces.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the separation axioms

 Discuss about the Urysohn’s lemma

 Comprehend on the Tietze extension theorem

 Interpret about the compactness and its basic properties
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 Understand the continuous functions and its compact sets

 Describe the compactness and finite intersection property

 Elaborate on the sequentially and countably compact sets

 Define the local compactness and one point compactification

 State the Stone-Čech compactification

 Know about the compactness in metric spaces

 Explain about the countable compactness and sequential compactness
in metric spaces

3.2 SEPARATION AXIOMS:
CHARACTERIZATIONS AND BASIC
PROPERTIES

The separation axioms T
i
 specify the degree to which the separate and distinct

points or closed sets may be separated by means of open sets. These completeness
are statements about the richness of topology.

Definition T
i
 axioms:Let X, )be a topological space.

T
0
 Axiom: If a, b are two distinct and separate elements in X, then there

exists an open set U such that either a U and b U, or b U and a U
i.e., U contains exactly one of these points

T
1
 Axiom: If a, b X and a b, then there exists open sets U

a
, U

b
 

containing a, b respectively, such that b U
a
, and a U

b
.

T
2
 Axiom: If a, b X, a b, then there exists disjoint open sets U

a
, U

b
 

 containing a, b, respectively.

T
3
 Axiom: If A is a closed set and b is a point in X such that b A, then

there exist to separate or disjoint open sets U
A
, U

b
  containing A and b,

respectively.

T
4
 Axiom: If A and B are disjoint closed sets in X, then there exists disjoint

open sets U
A
, U

B
  containing A and B, respectively.

T
5
 Axiom: If A and B are separated sets in X, then there exist to disjoint

open sets U
A
 , U

B
  containing A and B, respectively.

If X,  satisfies a T
i
 axiom, then X is called a T

i
 space. A T

0
 space is

sometimes called a Kolmogorov space and a T
1
 space is called a Frechet space.

A T
2
 space is called a Hausdorff space.

Each of axioms in the Definition given above is independent of the axioms
for a topological space; in fact there exists examples of topological spaces which
fail to satisfy any T

i
. But they are not independent of each other, for instance,

axiom T
2
 implies axiom T

1
, and axiom T

1
 implies axiom T

0
.
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More significantly the separation axioms are typically defined successively
stronger properties. Remember that if a space is both T

3
 and T

0
 then it is T

2
, while

a space that is both T
4
 and T

1
 then it must be T

3
. The former spaces are called

regular and the latter spaces are termed as normal.

Specifically a space X is said to be regular if and only if it is both a T
0
 and

a T
3
 space, normal if and only if it is both a T

1
 and T

4
 space, completely normal

if and only if it is both a T
1
 and a T

5
 space. Consequently it holds the following

implications:

Completely Normal  Normal  Regular  Hausdorff  T
1
 T

0

The terms ‘Regular’ and ‘Normal’ are typically used as per the standard
notations and the properties that it holds. While some authors use these terms
interchangeably with ‘T

3
 Space’ and ‘T

4
 Space’, respectively, some others use T

3

Space as a ‘Regular’ space and vice versa, and similarly transpose ‘T
4
 Space’

and ‘Normal’. This helps to define the successively stronger specified properties
that are parallel to increasing T

i
 axioms.

Hausdorff Spaces

Theorem 3.1: Let X,  be a topological space. Then the following statements
are considered equivalent:

 T
2
 axiomAny two distinct points of X have disjoint neighbourhoods.

2. The intersection of the closed neighborhoods of any point of X consists of
that point alone.

3. The diagonal of the product space X X is defined as a closed set.

4. For every set I, the diagonal of the product space Y XI is close in Y.

5. No filter on X has more than one limit point.

6. If a filter  on X converges to x, then x is the only cluster point of .

Proof:  We will proof the following implications:

(1)  (2)  (6)  (5)  (1)



If x y  there is an open neighbourhood U of x and an open

neighbourhood V of y such that  U V ; hence y U .

(2)  (6):Let x y ; then there is a closed neighbourhood V of x such that

y V , and by hypothesis there exists M F  such that M V ; therefore

M CV  . But CV is a neighbourhood of y; hence y is not a cluster point
of .

(6)  (5):Obvious, since every limit point of a filter is also a cluster point.

(5)  (1):Suppose x y  and that every neighbourhood V of x meets
every neighbourhood W of y. Then the sets V W  form a basis of a filter, which
has both x and y as limits points, which is contrary to the hypothesis.
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(1)  (4): Let ( ) ( )ix x  be a point of XI which does not belong to the

diagonal Then there are at least two indices such that x x  . Let V

respectively Vbe a neighbourhood of xrespectively xin X, such that

V V   ; then the set i
i

W V V X


 
 

    where if ,iX X i     is a

neighbourhood of x in XI which does not meet Hence is closed in XI.

(4)  (3):Obvious.

(3)  (1):If x y  then ( , )x y X X   is not in the diagonal hence

there is a neighbourhood V of x and a neighbourhood W of y in X such that

( )V W   , which means that V W  .

Let :f X Y  be a mapping of a set X into a Hausdorff space Y; then it

follows immediately from Theorem 3.1 that f has at the most one limit with respect
to a filter  on X, and that if f has y as a limit with respect to , then y is defined
as the only cluster point of f with respect to .

Theorem 3.2: Let f, g be two continuous mappings of a topological space X into

a Hausdorff space Y; then the set of all x X such that ( ) ( )f x g x  is closed in X.

Corollary 1 Principle of Extension of Identities: Let f, g be two continuous

mappings of a topological space X into a Hausdorff space Y. If ( ) ( )f x g x  at all

points of a dense subset of X, then f g.

In other words, a continuous map of X into Y (Hausdorff) is uniquely
determined by its values at all points of a dense subset of X.

Corollary 2: If f is a continuous mapping of a topological space X into a Hausdorff
space Y, then the growth of f is closed in X  Y.

This graph is the set of all ( , )x y X Y   such that ( )f x y  and the two

mappings ( , ) ( )x y f x  are continuous.

The invariance properties of Hausdorff topologies are defined in Thorem
3.3.

Theorem 3.3:

1. Hausdorff topologies are invariant under closed bijections.

2. Each subspace of a Hausdorff space is also a Hausdorff space.

3. The Cartesian product { | }X   A  is Hausdorff if and only if each X

is Hausdorff.

Proof:

1. Since a closed bijection is also an open map, the images of disjoint
neighborhoods are disjoint neighbourhoods and the result follows.
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2. Let A X  and ,p q A ; since there are disjoint neighbourhoods Up

Uqin X, the neighbourhoods ( )U p A  and ( )U q A  in A are also

disjoint.

3. Assume that each Xis Hausdorff and that { } { }p q  ; then p q 

for some . Therefore, considering and taking the disjoint

neighbourhoods ( )U p , ( )U q  will give the required disjoint

neighbourhoods ( ( ))U p , ( ( ))U q  in X 

 . Conversely, if X 


  is

Hausdorff, then each Xis homeomorphic to some segment in X 

 ,

therefore by Condition (2), Xis Hausdorff since the Hausdorff
property is a topological invariant

Theorem 3.4: If every point of a topological space X has a closed neighbourhood,
then X is Hausdorff which is a Hausdorff subspace of X.

3.3 URYSOHN'S LEMMA

In topological analysis and evaluation, the Urysohn’s lemma is defined as a lemma
which states that a topological space is considered as normal if and only if any two
disjoint or separate closed subsets can be precisely separated through a continuous
function. The Urysohn’s lemma is named after the mathematician Pavel Samuilovich
Urysohn who has defined its concept.

Characteristically, the Urysohn’s lemma is generally used for constructing
the continuous functions in conjunction with various properties on the normal spaces.
The Urysohn’s lemma is extensively applicable and appropriate because all the
metric spaces and all the compact Hausdorff spaces are defined as normal. In
addition, the Urysohn’s lemma is generalized through the Tietze extension theorem
and is commonly used in the proof of Tietze extension theorem.

Theorem 3.5 Urysohn’s Lemma: Let X be a topological space and let any
two disjoint closed sets A, B in X can be separated by open neighbourhoods then
there is a continuous function f  X  0, 1 such that  f | A   and
f | B 

Proof:Here, define f as the pointwise limit of a sequence of functions. Any
collection of sets  

r
 A

0
, A

1
,…, A

r
is considered as an admissible chain (Refer

Figure 3.1)if A A
0  
 A

1 
A

r 
X \B and rkA

k
k A  0,

0

1 . The set

1
1

0

\  k
k

AA is the kth step domainof U
r
where A

r+1
 X and A

–1  

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Fig. 3.1 An Admissible Chain

Figure 3.1 illustrates an advisible chain in which each pair of the adjacent
shaded regions uniquely represent a step domain. This Theorem with 3.5 can be
provedthe help of the following lemmas.

Lemma 1: Each x X lies in some step domain for any U
r
.

Proof:Take x  X and any admissible chain U
r
. Let k, 0 k r be the

smallest number such that x 
kA

0

Then x  2

0

\ k
k

AA .

Lemma 2:Each step domain is open.

Proof:Since 1
1

0

\  k
k

AA    1
1

0

\  k
k

AXA   is the finite intersection of open sets,

hence it is open.

For any U
r
, define the uniform step functionf

r
X 0, 1as,

f
r
|Af

r
|X \A

r
and f

r
|A

k
\A

k–1
k/r, 1 k r

Lemma 3:If x and y are in the same step domain, then |f
r
x f

r
yr.

Proof:Let x, y  1
1

0

\  k
k

AA . If both x and y are in 
1

0

kA  or A
k
, then by definition

of f
r
, f

r
x f

r
yHence | f

r
x f

r
y| If x 

1

0

kA  and y  A
k
, then f

r
x

kr and f
r
y k/r. So |f

r
x f

r
y| r.

The above three lemmas will be used in the last step of the proof.

Now, let the admissible chain 
2r–1
A

0
, A

1
, …, A

r
, A

r
be a refinementof

the admissible chain 
r
A

0
, A

1
, …, A

r


We can say that, the refinement 
2r–1 

of the admissible chain 
r
 contains

every set in 
r
, and for every i 1 contains a set A

i
 such that A

i iAi
.

Naturally, refinements place new sets betweeneach pair of sets in the original
admissible chain.
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Lemma 4:Every admissible chain has a refinement.

Proof:It is appropriate to show that for any subsets M, N of X, with NM
0

 ,

there exists L  X with NL LM
00

 . Now since







  φ\,

00

NN XMM   and since X \ N
0

)is the complement of an open set

and therefore closed, there exist disjoint open sets U, V, with UM     and X \

N
0

V. Again since U and V are disjoint, U X \VAlsobecauseX \Vis

closed and U  is contained in every closed set containing U, so

U X \VMoreover, X \ N
0

V means X \V N
0

. Putting all this

collectively gives   NU VXUM
00

\  . Let L U and the proof is
complete.

Lemma 5:Let  
r
 be an admissible chain with r 1 elements and 

s
 be a

refinementwith 2relements. Then |f
r
x f

s
x| 2r

Proof:Suppose x A
k
\A

k–1
, where A

k
, A

k–1
 U

r
. Then, f

r
xk/r. Also,


s 

 A
0
, A

1
, A

1
, …, A

j
, A

j
, …, A

k
, A

k
 

(     ''''' 212212210 ,,,,....,,,
rrkk

AAAAAAA
 ). Nowx is either inA

k
\A

k 
A

2k
\A

(2k – 1)

or in A
k
\A

kA(2k – 1)
. Therefore either f

s
x1 2k/2r f

r
xor f

s
x

2k/2rf
r
x1/2rBy both the methods we get the desired result.

Now we will define the sequence. Let 
0 
X \Band let 

n+1
 be a

refinement of 
n
.

By Lemma 4, every admissible chain has a refinement. Therefore, we get a
sequence of admissible chains. Let f

n
 be the uniform step function on the nth

admissible chain.

Lemma 6: The sequence f
n
xconverges for each x  X.

Proof:From the definition of the uniform step functions, the sequence is bounded
above by 1. Now it remains to prove that the sequence is non-decreasing. Note
first that 

0
 contains one term excluding A itself and therefore by definition of

refinement, 
1
 will contain 2 terms excluding A.

Applying induction, 
 n
 contains 2n terms excluding A. Notice that for x

A
j
\A

j–1  A
j
, A

j–1 


r
, f

k
xis either 0 or 1, i.e., constant and constant sequences

converge. Suppose x  A
j
\A

j–1
, where A

j
, A

j–1
 U

r
. Then f

k
x 

j/k. Furthermore, 
k A0

, A
1
, A

1
, …, A

j
, A

j
,…, A

k
, A

k


 (     '''' 212212210 ,,.....,,,....,,,
kkjj AAAAAAA

 ) and x is either in A
j
\

 '122
' \




jjj AAA  or in  A
j
\A

j–1 
    '' 2212

\
 jj

AA This implies,

 f
kx12j\2k f

k
x

Or

f
k12j\2kf

k
x
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This proves that the sequence is nondecreasing and hence convergent,
because bounded monotonic sequences converge.

For each x, let fxlim
n f

n
xBecause each f

n
 is constantly 1 on A and

0 on B, f will also have this property. For proving that f is continuous, it is sufficient
to show that if we take any fx0, 1 and any open set a, b0, 1containing
fxthen there is an open set U X such that x U and fU  fxfx
. To prove this, we have to show one more lemma.

Lemma 7:For fixed x and any n,|fx  f
n
x2n.

Proof:|fx f
n
x     |lim| xfxf nk

nk
k 



         |lim|lim| 1 xfxfxfxf kk
nk

knk
nk

k  






           |121 xfxfxfxf nnkk  

            ||.....||||lim 1211 xfxfxfxfxfxf nnkkkk
nk

k  



 11 2/1....2/12/1lim 


  nkk

nk
k

  n

k

kn

nk

k 2/12/12/12/1
1

1

  






.

Take n large enough so that 3/2n and suppose x lies in the kth step domain,

S
k 
 1

1

0

\  k
k

AA  (Since by Lemma 1, every x lies in some step function

Furthermore, by Lemma 2, this step domain is an open neighbourhood of
x. Take any y  S

k
. Then by Lemmas 3 and 6,

    || yfxf 

            || yfyfyfxfxfxf nnnn 

             |||||| yfyfyfxfxfxf nnnn 

ε2/32/12/12/1  nnnn . So every y  S
k
 maps into a, bwhich

proves thatf is continuous

3.4 TIETZE EXTENSION THEOREM

In the field of topological analysis, the Tietze extension theorem, also acknowledged
as the Tietze–Urysohn–Brouwer extension theorem, defines that the explicit and
specific continuous functions considered on a closed subset of a unique normal
topological space can be precisely extended to the entire or complete space by
preserving the boundedness if essential.
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The mathematicians L. E. J. Brouwer and Henri Lebesgue originally proved
a special instance of the theorem for X being a finite dimensional real vector space.
The mathematician Heinrich Tietze extended this concept and notion for all metric
spaces and hence this theorem is termed as Tietze extension theorem. Pavel
Urysohn then typically proved this theorem uniquely for normal topological spaces.

To explain Tietze extension main theorem, Lemma 8 is considered.

Lemma 8: If X is a normal topological space and A is closed in X, then for any
continuous function f: A   R such that |f(x) < 1, there is a continuous function g:

X  R such that |g(x)| < 
1

3
for x  X, and |f(x) – g(x)|  

2

3
for X  A.

Proof: The sets 1 1
– –

3
f       

 and 1 1
,

3
f       

are disjoint and closed in

A. Since A is closed, they are also closed in X. Since X is normal, then by Urysohn’s

lemma and the fact that [0, 1] is homomorphic to 
1 1

– ,
3 3

 
  

, there is a continuous

function g: X  
1 1

– ,
3 3

 
  

such that
–1 1 1

,
3 3

g f c
        

 and

–1 1 1
,

3 3
g f
      

. Thus 
1

| ( ) |
3

g X   for x  X. Now, if –  f(X)  1

3
 ,

then |g(x)|  
1

3
 and thus 

2
( ) – ( )

3
f x g x  . Similarly if 

1
( ) 1,

3
f x   then g(x)

= 
1

3
 and thus 

2
( ) – ( )

3
f x g x  . Finally, for |f(x)|  

1

3
 we have that |g(x)|  

1

3
,

and so 
2

( ) – ( )
3

f x g x  . Hence 
2

( ) – ( )
3

f x g x   holds for all x  A.

Theorem 3.6: First suppose that for any continuous function on a closed subset
there is a continuous extension. Let C and d be disjoint and closed in X. Define f:
C  D  R by f(x) = 0 for x  C and f(x) = 1 for x  D. Now f is continuous
and we can extend it to a continuous function F: X  R. By Urysohn’s lemma, x
is normal because F is continuous function such that F(x) = 0 for x  C and F(x)
= 1 for x  D.

Conversely, let X be normal and A be closed in X. By the Lemma 8,

there is a continuous function g
0
: X  R such that  0

1

3
g x   for x  X

and    0
1

–
3

f x g x  for x  A. Since (f – g
0
): A  R is continuous, the

lemma tells us that there is a continuous function g
1
: X  R such that

 1
1 2

3 3
g x    

 
for x  X and 0 1

2 2
( ) – ( ) – ( )

3 3
f x g x g x    

 
for x  A.

By repeated application of the lemma we can constuct a sequence of continuous
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function 0 1 2, , ,.....g g g , such that
1 2

( )
3 3

n

ng x
   
 

for all x  X, and

0 1 2
2

( ) ( ) ( ) ( ) – ......
3

n

f x g x g x g x
      
 

 for x  A.

Define 
0

( ) ( )nn
F x g x




 . Since 

1 2
( )

3 3

n

ng x    
 

and 
0

1 2

3 3

n

n





 
 
 



converges as a geometric series, then  
0

n
n

g x



  converges absolutely and

uniformly, so F is a continuous function defined everywhere. Moreover, 
0

1 2

3 3

n

n





 
 
 

 =

1, implies that |F(x)|  1.

Now, for x A, we have that 
1

0

2
( ) ( )

3

k
k

nn
f x g x




   
 

 and as k extends

to infinity, then the right hand side is zero and hence the sum extends to F(x). Thus,
|f(x) – F(x)| = 0. Therefore f extends to F.

Notes: If f is considered as a function which uniquely satisfies that |f(x)| < 1, then
the theorem can be strengthended. Find an extension F of f. The set
B F–1 ({–1}  {1}) is considered as closed and disjoint from A because |F(x)| =
|f(x)| < 1 for x  A. By Urysohn’s lemma there is a unique continuous function f
such that (A) = {1} and (B) = {0}. Hence (x)(x) is a continuous extension
of (x) and has the property that |F(x)f(x)| < 1.

If f is unbounded, then, the Tietze extension theorem holds. To verify consider
t(x) = tan–1(x)/(n/2). The function t . f has the property that (t . f) (x) < for x  a,
and therefore it can be extended to a continuous function h: X  R which has the

property |h(x)| < 1. Hence t–1 . h is a continuous extension of f.

3.5 COMPACTNESS: BASIC PROPERTIES

An open cover of a subset A of a metric space X, we mean a collection
C = {G: 1} of open subsets of X such that A {G: A}. We then say
that C covers A.

In particular, C is said to be an open cover of the metric space X if
X = {G: A}.

By a subcover of an open cover C of A, we mean a subcollection C of C
such that C covers A.

An open cover of A is said to be finite if it consists of finite number of open
sets.

Another definition is, a subset of a metric space X is said to be compact if
every open cover of A has a finite subcover, that is, if for every collection
{G: A} of open sets for which

A {G: A},
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there exist finitely many sets G1
,...,Gn

 among the G’s such that

1
...

n
A G G    .

In particular, the metric space X is said to be compact if for every collection

{ : ;G A   of open sets for which

{ : },X G A  

there exist finitely many sets 
1
,...,

n
G G   among the G’ss such that

1
...

n
X G G   

Theorem 3.7:  Let Y be a subspace of a metric space X and let A Y. Then A is
compact relative to X if and only if A is compact relative Y.

Proof: Let A be compact relative to X and let {V, A} be a collection of sets,

open relative to Y, which covers A so that { : }.A V A   Then there exists G

open relative to X, such that V Y G    for every A. It then follows that,

{ : },A G A  

that is, { : }G A  is an open cover of A relative to X. Since A is compact relative

to X, there exist finitely many indices 
1
,...,

n
 such that

1
,..., .

n
A G G   

Since A Y, we have A = Y A.

Hence 
1 1

{ ,..., } ( ) ... ( )
n n

A Y G G Y G Y G           

[By Distributive Law]

Since { 1,2,..., },
i i

Y G A i n    we obtain

1
,..., .

n
A A A    .....(3.1)

This shows that A is compact relative to Y.

Conversely, let A be compact relative to Y and let {G : } be a
collection of open subsets of X which cover A so that,

A  {G : } .....(3.2)

Since A  Y, Equation (3.2) implies that,

A  Y  {G : } = {Y  G : }

[By Distributive Law]

Since Y  G is open relative to Y, the collection

{Y  G : }
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is an open cover of A relative to Y. Since A is compact relative to Y, we must
have

A  (Y G) ..... (Y  Gn
)                                          ....(3.3)

for some choice of finitely many indices 
1
,...,

n
. But (Equation 3.3) implies that,

A  G ..... Gn
.

It follows that A is compact relative to X.

Theorem 3.8: Every compact subset of a metric space is closed.

Proof: Let A be a compact subset of a metric space X. We shall prove that
X – A is an open subset of X. Let p  X – A.

For each q  A, let N
q
 (p) and M(q) be neighbourhoods of p and q,

respectively, of radius less than 1

2
d  (p, q) so that

N
q
 (p)  M (q) = 

Then the collection,

{M (q) : q  A}

is an open cover of A, according to the notion that neighbourhoods are open sets.
Since A is compact, there are finitely many points q

1
,...,q

n
 in A such that

A  M (q
1
)  ... N(q

n
) ......(3.4)

If N =    
1

,.....,
nq qN p N p  then N is a neighbourhood of p. Now

N   
1qN p  and M(q

i
)  N

qi
(p) =  for i = 1,...,n

 M(q
i
)  N

 
= for i = 1,...,n

  {M(q
i
)  N

 
: i = 1,...,n = 

  {M(q
i
) : i = 1,...,n}]  N = 

[By Distributive Law]

   N = 

  X – Y.

Thus we have shown that to each p  X – Y, there exists a neighbourhood
N of p such that N  X – Y and consequently X – Y is open. It follows that Y is
closed.

Theorem 3.9: Closed subsets of compact sets are compact.

Proof: Let Y be a compact subset of a metric space X and let F be a subset of Y,
closed relative to X. To show that F is compact, let

C = {G : }
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be an open cover of F. Then the collection,

D = {G : }  {X – F}

forms an open cover of Y. Since Y is compact, there is a finite subcollection
D of D which covers Y, and hence F. If X – F is a member of D we may remove
it from D and still retain an open finite cover of F. We have thus shown that a finite
subcollection of C covers F. Hence, F is compact.

Corollary 1: If F is closed and Y is compact then F  Y is compact.

Check Your Progress

1. What are the separation axioms?
2. State the principle of extension identities.
3. Define the Urysohn’s lemma.
4. State the Tietze extension theorem.
5. Define an open cover of subset.
6. When an open cover A is said to be finite?

3.6 CONTINUOUS FUNCTIONS AND
COMPACT SETS

D   R is compact if and only if for any given open covering of D we can subtract
a finite sucovering. That is, given (G),  A, a collection of open subsets of R

(A an arbitrary set of indices) such that AD G  , then there exist finitely

many indices 
1
,...,

n
  A such that 

11
N
iD G   .

Let D be an arbitrary subset of R. Then A  D is open in D (or relative
to D, or D-open) if and only if there exists G open subset of R such that
D = G  D. Similarly we can define the notion of D-closed sets. Note that D is
both open and closed in D and so is .

D  R is connected if and only if  and D are the only subsets of D which
are both open in D and closed in D. In other words, if D = A  B and A, B are
disjoint D-open subsets of D, then either A =  or B = 

Let D  R, a  D a fixed element and f : D  R an arbitrary function. By
definition, f is continuous at a if and only if the following property holds:

 0, 0a    

Such that   and ( ) – ( )ax a x D f x f a      

The last implication can be rewritten in terms of sets as follows:

      ( )a a f af B D B    
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Here, we use the notation B
x
(r) : = (x – r, x + r).

Characterization of Continuous Functions Using Preimages

Theorem 3.10: Let D  R and f : D  R a function, then the following propositions
are equivalent:

 f is continuous (on D).

 G R   open, f–1(G) is open in D.

 F R   closed, f–1(F) is closed in D.

Proof: a  b. Let G  R open. Pick a  f–1(G). Then f (a)  G and since G is

open, there must exist  > 0 such that    f aB G  .  By continuity, corresponding to

this  > 0 there exists  > 0 such that       a f af B D B    . But this places

the entire set B
0
()  D inside f–1(G):

   1
aB D f G  

Writing now  = 
a
 to mark the dependence of  on a and varying

a f –1(G), we obtain

       –1
1

a aa f G
f G B D


   

Which shows that f–1 (G) is open in D.

b  c. Let F  R a closed set, which is equivalent to saying that
G = GF (the complement in R) is open.

Then

         1 –1| | –f F x D f x F x D f x G D f G       

Since the complement of a D-open subset of D is D-closed, it means that f
–1(F) is closed in D if and only if f–1(G) is open in D.

c  a: Left as an exercise.

Using this characterization, we can prove that the composition of continuous
functions is a continuous function.

Proposition: Assume f : D  R is continuous, g : E  R is continuous and
f (D)  E. Then the function h := gof : D  M defined by h(x) = g(f(x)) is
continuous.

Proof: Let G  R an open set. Then h–1(G) = f–1(g–1(G)). But g–1(G) = V  E,
for some open set V  R. But then h–1(G) = f–1(V  E) – f–1(V) is open in D. So
h is continuous.

Theorem 3.11: Assume f : D  R is a continuous function, such that f(x)  0,

x D  . Then h : D  R given by h(x) = 1/f(x), is continuous as well.
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Proof: g : R – {0}  R g(x) = 1/x is continuous, f(D)  R – {0}, hence
h = g of is continuous.

General Properties of Continuous Functions

Theorem 3.12: A continuous function maps compact sets into compact sets.

Proof: In other words, assume f : D  R is continuous and D is compact.
Then we need to prove that the image f(D) is a compact subset of R. For that,
we consider an arbitrary open covering f (D)  G 

of f(D) and we will try
to find a finite subcovering. Taking the preimage we have D   f – 1 ( G  ) .
But f–1(G) is open in D, so there must exist V

a
  R open such that f–1(G) =

V  D. Then D  (V  D) which simply means that D  V. We thus
arrived at an open covering of D. So there must exist finitely many indices


1
, . . . ,  

N
 such that D  

1 i

N
i G  , which implies the equality

D=  –1
1 1( )

i i

N N
i iV D f G        . But this implies in turn that 1( )

i

N
if D G  

is compact.

Theorem 3.13: A continuous function maps connected sets into connected sets.

In other words, assume f : D  R is continuous and D is connected. Then
f(D) is connected as well.

Proof: Assume f(D) is not connected. Then there must exist A, B disjoint, non-
empty subsets of f(D), both open relative to f(D), such that f(D) = A  B. Being
open relative to f(D) simply means there exists U, V  R open such that A = f(D)
 U, B = f(D)  V. So f(D)  U  V. But this implies that
D  f–1(U)  f–1(V). Since U, V are open, it follows that f–1(U) and f–1(V) are
open relative to D. But they are also disjoint. Since D is connected, it follows that
at least one of them, say f–1(U), is empty. But A  U, so this forces
f–1(A) =  as well, which is impossible unless A =  (note that A is a subset of the
image of f ), contradiction.

Theorem 3.14: A continuous function on a compact set is uniformly continuous.

Proof: Assume D compact and f : D  R continuous. Given > 0 we need to
find  > 0 such that if x, y  D and |x – y| < , then |f(x) – f(y)| < .

From the definition of continuity, given  > 0 and x  D, there exists


x 
 such that if |y – x| < 

x
, then |f(y) – f(x)| < . Clearly

D   1

2x D xB
      
 

. From this open covering we can extract a finite

subcovering (D is compact), meaning there must exists finitely many x
1
, x

2
, ....,x

N

 D such that 1 i

N
i xD B  (

1

2 ix (/2)).

Let now  = min{
1

2 ix (/2)}.
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Take y, z  D arbitrary such that |y – z| < . The idea is that y will be
near some x

j
, which in turn places z near that same x

j
. But that forces both f(y),

f(z) to be close to f(x
j
) (by continuity at x

j
), and hence close to each other.

Since y  D, there must exist some j, 1 <  j < N such that y  B
xj 

(
1

2 jx (/

2)). Thus,

 |y – x
j
|< 

1

2 jx (/2)

 but |y – z|< ()  
1

2 jx (/2)

By the triangle inequality it follows that |z – x| < 
1

2 jx (/2). So y, z are within

1

2 jx (/2) of x.

This implies that,

 |f(y) – f(x
j
)|< /2

 |f(z) – f(x
j
)|< /2

By the triangle inequality once again we have | f(y) – f(z)| <.

Alternative Proof using Sequences: Assume f is not uniformly continuous,
meaning that there exists  > 0 such that no  > 0 completes the proof.

Checking what this means for  = 
1

n
, we see that for any such 3n  1 there exist

x
n
, y

n
  D such that |x

n
 – y

n
| < 1

n
 and yet |f(x

n
) – f(y

n
)| > . However D is

compact; in particular any sequence in D has a convergent subsequence whose
limit belongs to D. Applying this principle twice we find that there must exist n

1
<

n
2
 < ... such that the subsequences  

1kn k
x


 and  

1kn k
y


 are convergent, and x

= lim
kx nx  D, y = lim

kx ny   D. We have the following:

 By construction, 
1 1

– .
k kn n

k

x y
n k

   Taking the limit, we find x = y..

 By continuity,  lim ( )
kk nf x f x  , since x  D. Also

 lim ( )
kk nf y f y  .

 Also by construction,    –
k kn nf x y > . Hence in the limit,

|f(x) – f(y)| >.

We thus reach a contradiction.
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Proposition: Let D  R. Then the following propositions are equivalent:

(a) D is compact

(b) D is bounded and closed

(c) Every sequence in D has a convergent subsequence whose limit    belongs
to D.

Proof: a  b. D  R =  1 – ,n n n   is an open covering of that D. Hence

1N   such that D   1 – ,n n n   = (–N, N). This shows that D is bounded.

To prove D is closed, we prove that R – D is open. Let y  R – D. Then D 

1
1 1

[ – , ]n R y
n n



   
 

. This open covering must have a finite subcovering, so

1N   such that 
1 1

– [ ,D R y y
N N

   ]. But this implies that

1 1
, –y y R D

N N
    
 

. But y was chosen arbitrary in R – D, so this set is

open, and hence D itself is closed.

b  c. This has to do with the fact that every bounded sequence has a convergent
subsequence.

c  b. Here one shows D = D  and this has to do with the fact that D is the set
of limits of convergent sequences of D, etc.

c  a. Let D  1k kG
  be an arbitrary open covering of D.

Note: A covering by a countable collection of open sets is not the most general infinite open
covering one can imagine, of course; we need an intermediate step to prove that from any
open covering of D we can extract a countable subcovering, and this has to do with the fact
that R admits a countable dense set.

We will now prove that there exists n  1 such that D  1k kG
 . Assume this was

not the case. Then 1N  , there exists x
n
  D – 1k kG

 . But x
n
 is a sequence

in D, so it must have a convergent subsequence; call it  
1jn

j
x


, with limit in D. So

lim
jj nx a D   . But a belongs to one of the G

i
’s, say a  G

N
. Since G

N
 is

open, it follows that ,
jn Nx G  for j  j

0
 (j large enough). In particular this shows

that for j large enough (larger than j
0
 and larger than N) we have 1

j

j

n
n N kx G    ,

since n
j
  j > N. This contradicts the defining property of x

n
’s.

Theorem 3.15: R is connected.

Proof: This can be restated as,  and R itself are the only subsets of R which are
both open and closed. To prove this, let E be a non-empty subset of R with this
property. We will prove that E = R. For that, take an arbitrary c  R. To prove
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that c  E, we assume that c  E and look for a contradiction. Since E is non-
empty, it follows that E either has points to the left of c or to the right of c. Assume
that the former holds.

 Consider the set S = {x  E|x < c}. By construction, S is bounded from
above (c is an upper bound for S). Therefore we can consider
y = lub(S)  R.

 Input: E is closed. Then S =  – ,E c   is also closed. Then y  S  = S,

so y < c.

 Input: E is open, y  S  E and E is open. This means that there exists  >
0 such that (y – , y + )  E. Choose  small enough so that  < c – y. In
that case z = y +/2  (y – , y + )  E is an element of E with the
properties,

o z < c, hence z  S

o z > y

Which is in contradiction with the defining property of y.

Theorem 3.16: The only connected subsets of R are the intervals, bounded or
unbounded, open or closed or neither.

Proof: First we prove that a connected subset of R must be an interval.

Let E  R be a connected subset.  We prove that if a < b  E, then [a,b]
 E.  In other words, together with any two elements, E contains the entire interval
between them.  To see this, let c be a real number between a and b. Assume c 
E. Then E = A  B, where A = (–, c)  E and B = (c, +  E.  Note that A
and B are disjoint subsets of D, both open relative to D. Since S is connected, at
least one of them should be empty, contradiction, since
a  A and b  B. Thus c  E.

To show that E is actually an interval, consider inf E and sup E. E is bounded.
Then m = inf E, M = sup E  R, and clearly E  [m, M]. On the other hand, for
any given x  (m, M), there exists a,b  E such that a < x < b. That is because
m, M  E and one can find elements of E as close to m (respectively M) as
desired (draw a picture with the interval (m, M) and place a point x inside it). But
then [a,b]  E, and in particular x  E. Since x was chosen arbitrarily in (m, M),
we must have (m, M)  E  [m, M], so E is definitely an interval. Case two: E is
unbounded. With a similar argument, show that E is an unbounded interval.

Conversely, we need to show that intervals are indeed connected sets. The
proof is almost identical to that in the case where the interval is R itself.

Theorem 3.17: Let D  R be compact and f : D  R be a continuous function.

Then there exists y
1
, y

2
  D such that f (y

1
)   f(x)  f(y

2
), x  D.

Proof: f(D) is a compact subset of R, so it is bounded and closed. This implies
that glb(f(D))  f(D) and lub(f(D))  f(D) as well. But then there must exist y

1
, y

2
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 D such that f(y
1
) = glb f(D) and f(y

2
) = lub f(D). But this implies f(D)  [f(y

1
),

f(y
2
)] and we are done.

Note: We use the notation sup
x D

  f(x) to denote the lub of the image of D. In other words,
sup

x D 
 f(x) = lub{f(y) | y  D}. The theorem says that if D is compact and f is continuous, then

sup
x D 

 f(x) is finite, and moreover that there exists y
1
  D such that f(y

1
) = sup

x D  
f(y). If the

domain is not compact, one can find examples of continuous functions such that either i) sup

f = +  or such that ii) sup f is a real number but not in the image of f.

For case i), take f(x) = 1/x defined on (0,1]. For case ii), take f(x) = x defined on [0,1).

Theorem 3.18: A continuous (real-valued) function defined on an interval in R
has the intermediate value property.

Proof: Assume E is an interval in R and f: E  R a continuous function. Let a,b 
E (say a < b) and y a number between f(a) and f(b). The intermediate value
property is the statement that there exists c between a and b such that f(c) = y. But
this follows immediately from the fact that f(E) is an interval. E is an interval in R

 E is connected  f(E) is a connected subset of R  f(E) is an interval in R.

3.7 COMPACTNESS AND FINITE
INTERSECTION PROPERTY

The Finite Intersection Property or FIP is defined as a unique property of a collection
of subsets of a set X. A collection has this property if typically the intersection over
any finite subcollection of the collection is non-empty.

A centered system of sets is defined as a collection of sets with the specific
finite intersection property.

Let X be a set with A = {A
i
}

iI
, a family of subsets of X. Then the collection

A has the Finite Intersection Property (FIP), if any Finite subcollection J  I has

non-empty intersection i
i J

A

 .

Theorem 3.19: Let X be a precise compact Hausdorff space which typically
satisfies the property that every one point set is open. If X has more than one
point, then X is uncountable.

To prove the Theorem 3.19, we will first consider the following significant examples:

1. The Hausdorff condition cannot be eliminated; since a countable set together
with the indiscrete topology is considered as compact and holds more than
one point satisfying the specific property that by no means one point sets
are considered as open, however it is not uncountable.

2. The compactness condition cannot be eliminated because the set of all rational
numbers shows the properties of discrete topology.

3. The compactness condition cannot be eliminated which specifies that one
point sets cannot be considered open because a given finite space shows
the properties of discrete topology.
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Proof: Consider that X be a precise compact Hausdorff space. If U is a non-
empty and precise open subset of X and also if x is precisely a point of X, then
there is a distinctive neighbourhood V which is typically contained in U whose
closure possibly may not contain x, i.e., x may or may not be contained in U.
Initially, consider for y in U that is different from x, if x is contained in U, then there
must exist such a y to satisfy the condition for otherwise U would be considered
as an open one point set; alternatively, if x is not contained in U, then this is
possible because U is non-empty. Consequently, according to the Hausdorff
condition, consider the disjoint or separate neighbourhoods W and K of x and y,
respectively. Subsequently, (K  U) will be considered as a unique neighbourhood
of y which is contained in U whose closure does not precisely contains x as required.

Now suppose f is a bijective function from Z (the positive integers) to X.
Denote the points of the image of Z under f as {x

1
, x

2
, ...}. Consider that X is

uniquely the first open set and than select uniquely a neighbourhood U
1
 that is

contained in X whose closure does not contains x
1
. Secondly, uniquely select a

neighbourhood U
2
 contained in U

1
 whose closure does not contains x

2
. Continue

analysis and evaluation by typically selecting a unique neighbourhood U
n+1

 contained
in U

n
 whose closure does not contains x

n+1
. Remember, that the collection {U

i
}

for i in the positive integers satisfies the finite intersection property and hence the
intersection of their closures is non-empty (by the compactness of X). Therefore
there is a point x in this intersection. No x

i
 can belong to this intersection because

x
i
 does not belongs to the closure of U

i
. This means that x is not equal to x

i
 for all

i and f is not surjective; a contradiction. Therefore, X is uncountable.

Corollary 1: Every closed interval [a, b] (a < b) is uncountable. Therefore, the
set of real numbers is uncountable.

Corollary 2: Every locally compact Hausdorff space that is also perfect is
uncountable.

Proof: Assume that X is a locally compact and precise Hausdorff space which
is perfect, precise and compact. Consequently, the notion immediately follows
from the Theorem 3.19 that X is uncountable. If X is considered as a typical
locally compact Hausdorff and perfect space which is not compact, then the
one point compactification of X is uniquely a compact Hausdorff space that is
also a perfect space. It exceptionally follows that typically the one point
compactification of X is precisely uncountable. Consequently, X is uniquely
uncountable. When a point is deleted from an uncountable set then the
uncountable set yet preserves the uncountability of that precise set.

A collection   I
A A   of subsets of a set X is said to have the Finite

Intersection Property, abbreviated FIP, if every finite subcollection {A
1
, A

2
,...,

A
n
} of A satisifes 

1

n

ii
A


  .

Characteristically, the Finite Intersection Property (FIP) is most frequently
used for providing the following specific equivalent conditions for defining the
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unique compactness of a topological space. The following proposition may prove
this concept:

Proposition: A topological space X is compact if and only if for every collection

C =   J
C  of closed subsets of X having the finite intersection property has

non-empty intersection.

An important special case of the preceding condition specifies that
C is a countable collection of non-empty nested sets, i.e., when we have C

1
  C

2

 C
3
 .... In this case, C automatically has the finite intersection property and if

each C
i
 is a closed subset of a compact topological space, then by the proposition,

1

n

ii
C


  .

The Finite Intersection Property (FIP) specifications are used for the
characterization of compactness that is typically used for proving a common typical
outcome on the uncountability of certain specific and unique compact Hausdorff
spaces which is also precisely used in a proof of Tychonoff’s Theorem.

Theorem 3.20: A topological space is considered as distinct compact space
if and only if any collection of the compact space is precisely the closed sets
having the exceptional Finite Intersection Property (FIP) which has non-empty
intersection.

The preceding Theorem 3.20 essentially states the precise definition of a
compact space which is distinctively rewritten using de Morgan’s laws. The
standard and common definition of a particular compact space is precisely and
completely based on the open sets and the unions. This characterization and
specification is alternatively written applying the closed sets and intersections.

Proof: Suppose X is compact, i.e., any collection of open subsets that

cover X has a finite collection that also covers X. Further, suppose  i i I
F

 is an

arbitrary or random collection of closed subsets with the finite intersection property.

We claim that i I iF  is non-empty..

Suppose otherwise, i.e., suppose i I iF =  .

Then, X =  
i I

i
c

F


 ( )
i I

i cF

  (Here, the complement of a set A in X is

written as A
c
. Since each F

i
 is closed, the collection  ci i I

F


 is an open cover for

X. By compactness, there is a finite subset J  I such that X =
ci J iF . But then

X =  i J i c
F , so i J iF   , which contradicts the finite intersection property

of  i i I
F

 .

The proof in the other direction is analogous. Suppose X has the finite

intersection property. To prove that X is compact, let  i i I
F

 be a collection of

open sets in X that cover X. We claim that this collection contains a finite
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subcollection of sets that also cover X. The proof is by contradiction. Suppose

that X = i J iF  holds for all finite J  I . Let us first verify that the collection of

closed subsets  ci i I
F


 has the finite intersection property. If J is a finite subset of

I, then 
ci J iF =  i J i c

F    where the last assertion follows since J was

finite. Then, since X has the finite intersection property,  
ci J i i J i c

F F     ,

this contradicts the assumption that  i i I
F

  is a cover for X.

3.8 SEQUENTIALLY AND COUNTABLY
COMPACT SETS

Theorem 3.21: A compact metric space is sequentially compact.

Proof: Let A be an infinite set in a compact metric space X. To prove that A
has a limit point we must find a point p for which every open neighbourhood
of p contains infinitely many points of A. Assume that no such point exists. Then
every point of X has an open neighbourhood containing only finitely many points
of A. These sets form an open cover of X and extracting a finite open cover
gives a covering of X meeting A has finitely many points. This is impossible since
A  X and therefore A is infinite.

Corollary: In a compact metric space every bounded sequence has a convergent
subsequence.

Proof: Given the above limit point p, consider that x
i1
 to be in a 1-neighbourhood

or one-neighbourhood of p, x
i2
 to be in a 1/2 neighbourhood of p,... and we get a

subsequence converging to p.

Together with the Heine-Borel Theorem, this implies the Bolzano-Weierstrass
Theorem.

3.8.1 Compactness vs Sequential Compactness

K is compact if every open cover of K contains a finite subcover. K is sequentially
compact if every infinite subset of K has a limit point in K.

Theorem 3.22: K is compact  K is sequentially compact.

The proof includes the following two auxiliary notions:

1. A space X is separable if it admits a countable dense subset.

2. A collection {V
a
} of open subsets of X is said to be a base for X if the

following is true:

For every x  X and for every open set G  X such that x  G, there exists
 such that x  V G.

In other words, every open subset of X decomposes as a union of a
subcollection of the V’s — the V’s ‘Generate’ all open subsets. The family {V}
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almost always contains infinitely many members. The only exception is if X is
finite. However, if X happens to be separable, then countably many open subsets
are sufficient to form a base, the converse statement is also true and is an easy
exercise.

Lemma 1: Every separable metric space has a countable base.

Proof: Assume X is separable. By definition it contains a countable dense subset
P = {p

1
, p

2
,...}. Consider the countable collection of neighbourhoods {N

r
(x), r 

Q, i = 1, 2,... }. By the definition prove that it is a base.

Consider any open set G  X and any point x  G. Since G is open, there
exists r > 0 such that N

r
(x)  G. Decreasing r if necessary we can assume without

loss of generality that r is rational. Since P is dense, by definition x is a limit point

of P, so N
r/2

(x) contains a point of P. So there exists i such that d(x, p
i
) < 

2

r .

Since r is rational, the neighbourhood N
r/2

(p
i
) belongs to the chosen collection.

Moreover, N
r/2

(p
i
)  N

r
(x)  G. Finally, since d(x, p

i
) < 

2

r
 we also have x  N

r/

2
(p

i
). So the chosen collection is a base for X.

Lemma 2: If X is sequentially compact then it is separable.

Proof: Fix  > 0 and let x
1
  X. Choose x

2
  X such that d(x

1
, x

2
) > , if

possible.

Considering, x
1
,..., x

j
, choose x

j+i
 (if possible) such that d(x

i
, x

j+i
) >  for

all i = 1,... ,j. We first notice that this process has to stop after a finite number of
iterations. Indeed, otherwise we would obtain an infinite sequence of points x

i

mutually distant by at least ; since X is sequentially compact the infinite subset
{x

i
, i = 1,2,...} would admit a limit point y, and the neighbourhood N/2

(y) would
contain infinitely many of the x

i
’s, contradicting the fact that any two of them are

distant by at least d. So after a finite number of iterations we obtain x
1
,..., x

j
 such

that N(x1
)... N(xj

) = X (every point of X is at distance less than  from one
of the x

i
’s).

We now consider this construction for  = 
1

n
 (n = 1, 2,...). For n = 1 the

construction gives points x
11

,..., x
1j1

 such that N
1
(x

11
) N

1
(x

1j1
) = X, for n

= 2 we get x
21

,..., x
2j2

 such that N
1/2

(x
21
...N

1/2
(x

2j2
)
 
X, and so on. Let

S = {x
ki
, k  1,1  i  jk}: clearly S is countable. We claim that S is dense (i.e., S

= X). Indeed, if x  X and r > 0, the neighbourhood N
r
(x) always contains at

least a point of S (choosing n so that 
1

n
 < r, one of the x

ni
’s is at distance less than

r from x), so every point of X either belongs to S or is a limit point of S, i.e., S  =
X.
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At this point we know that every sequentially compact set has a countable
base. We now show that this is sufficient to obtain countable subcovers of any
open cover.

Lemma 3: If X has a countable base, then every open cover of X admits an at
most countable subcover.

Lemma 4: If {F
n
} is a sequence of non-empty closed subsets of a sequentially

compact set K such that F
n
  F

n + 1
 for all n = 1, 2,..., then 1n nF

   .

Proof: Take x
n
  F

n
 for each integer n, and let E = {x

n
, n = 1, 2,... }. If E is finite

then one of the x
i
 belongs to infinitely many F

n
’s. Since F

1
   F

2
  ..., this implies

that x
i
 belongs to every F

n
, and we get that 1n ny F

  is not empty..

Assume now that E is infinite. Since K is sequentially compact, E has a limit
point y. Fix a value of n: every neighbourhood of y contains infinitely many points
of E; among them, we can find one which is of the form x

i
 for

i > n and therefore belongs to F
n
 (because x

i
  F

i
  F

n
). Since every

neighbourhood of y contains a point of F
n
, we get that either y  F

n
, or y is a limit

point of F
n
; however, since F

n
 is closed, every limit point of F

n
 belongs to F

n
. So

in either case we conclude that y  F
n
. Since this holds for every n, we obtain that

1n ny F
 , which proves that the intersection is not empty..

We can now prove the Theorem 3.22. Assume that K is sequentially
compact, and let {G} be an open cover of K. By Lemma 1 and Lemma 2, K has
a countable base, so by Lemma 3 {G} admits an at most countable subcover
that we will denote by {G

i
}

i  1
 . Our aim is to show that {G

i
} admits a finite

subcover which will also be a finite subcover of {G}. If {G
i
} only contains finitely

many members, we are already done; so assume that there are infinitely many G
i
’s

and assume that for every value of n we have G
1
 .....  G

n 
 K, else we have

found a finite subcover.

Let F
n
 = {x  K, x  G

1
 ..... G

n
} = K  c

nG .... c
nG . Because the

G
i
 are open, F

n
 is closed; by assumption F

n
 is non-empty and clearly F

n
  F

n+1

for all n. Therefore, applying Lemma 4 we obtain that 1n nF
     and there

exists a point y  K such that y  G
1
 ..... G

n
 for every n. We conclude that

1 ,n
i iy G  which is a contradiction since the open sets G

i
 cover K.

Hence, there exists a value of n such that G
1
,..., G

n
 cover K. We conclude

that every open cover of K admits a finite subcover and therefore that K is compact.

3.8.2 The Bolzano-Weierstrass Property and Sequential
Compactness

We say that x is a cluster point for a sequence (x
n
) if for any N > 0 and any open

neighbourhood U
x
 of x, there is an n > N such that x

n
  U

x
.
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Bolzano-Weierstrass (B – W) Property

A topological space X satisfies the Bolzano-Weierstrass (B-W) property if every
sequence (x

n
) from X has at least one cluster point.

 If X is compact, then X satisfies B-W property.

 Suppose X is compact, but there is sequence (x
n
) with no cluster point.

Then for every z  X, there is an open neighbourhood U
z
 of z and N

z
 > 0

such that x
n
  U

z
 for n  N

z
. Then since X  

zX
U

z
 and X is compact,

there is a finite set   1

m
i i

z


 such that X    1

m
i i

z


U
z1

. But this contradicts x
n

 1 ,m
i zU  for all n  max  

1i

m

z i
N


.

Sequential Compactness

Suppose (x
n
) is a sequence from X. Now consider any sequence (

n
) of positive

integers such that 
n
 < 

n+i
 for all n. Then    

1n n n
x x



  
 is called a subsequence

of (x
n
), for example,

  If (x
n
) is a sequence, then (x

2
, x

4
, x

6
, ...) is a subsequence of (x

n
).

 If (x
n
) converges, then every subsequence of (x

n
) converges to the same

limit.

We say that X is sequentially compact if every sequence (x
n
) in X has a

convergent subsequence.

 X is sequentially compact if and only if it satisfies B-W property.

 Consider any sequence (x
n
) from X.

 Suppose X is sequentially compact. Then there is a subsequence ( )
n

x
such that 

n
x   x  X. Therefore, for any  > 0, there is an N > 0 such

that n > N implies d(
n

x , x) < . Therefore, x
n
  N(x) for all n > 

N
,

which implies that (x
n
) satisfies B-W property.

 Suppose X satisfies B-W property such that there is a cluster point x  X.
We may construct convergent sequence recursively as follows.

Let 
1
 = 1. For each n choose 

n
  

n–1
 such that 1( ) ( )

n

n

x N x  .

Then 
n

x x  .

 If  X compact, then it is sequentially compact.

 Follows immediately from the fact that sequential compactness is equivalent
to B-W property, which is implied by compactness.

Completeness

 If (X, d) is a compact space, then it is a complete space.

  Suppose X is compact and consider any Cauchy sequence (x
n
) from X.

Since X is compact, it is sequentially compact and therefore there is a

subsequence ( )
n

x such that 
n

x x  .
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 We need to show that x
n
  x. Consider any  > 0. Then (x

n
) Cauchy

implies an N > 0 such that d(x
n
, x

m
) < 

2


 for n, m  N. But 

n
x x  also

implies that we may choose N sufficiently large so that d(
n

x , x) < 
2


.

Then since 
N 
 N, we have, for any n > N, d{x

n
, x)  d(x

n
, 

n
x ) +

d(x, x)  
2


+ 

2


 = .

3.9 LOCAL COMPACTNESS AND ONE POINT
COMPACTIFICATION

Many of important spaces occuring in analysis are not compact, but instead have
a local version of compactness. For example, Euclidean n-space is not compact,
but each point of En has a neighbourhood whose closure is compact.

Definition: A topological space (X, T) is locally compact if each point has a
relatively compact neighbourhood.

For example, En is locally compact; )1,(ρ xB n is compact for each

x  En. Note that this example also shows that a locally compact subset of a
Hausdorff space need not be closed. Also, any infinite discrete space is locally
compact, but not simply compact. The set of rationals in E1 is not a locally compact
space.

Theorem 3.23: If (X, T) is a compact topological space, then X is locally compact.

Theorem 3.24: The following four properties are equivalent:

1. X is a locally compact Hausdorff space.

2. For each x  X and each neighbourhood U(x), there is a relatively compact
open V with x VV U.

3. For each compact C and open U  C, there is a relatively compact open V
with C VV U.

4. X has a basis consisting of relatively compact open sets.

Proof:

(1)  (2) There is some open W with x W W and W compact. Since W is

a regular space and W U is a neighbourhood of x in W , there is a set G

open in W such that x G  
W

G W U. Now G = EW , where E

is open in X and the desired neighbourhood of x in X is
V = EW.

(2)  (3) For each c C find a relatively compact neighbourhood V(c) with

)(cV U; since U is compact, finitely many of these neighbourhoods cover

C and therefore this union has compact closure.
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(3)  (4) Let  be the family of all relatively compact open sets in X; since
each x  X is compact, (3) asserts that  is a basis.

(4)  (1) is trivial.

Hence proved.

Local compactness is not preserved by continuous surjections. For example,
if (X, T) is any non-locally compact space, map f: X X, the identity map. Then
f is a (D, T) continuous surjection, where D is the discrete topology on X. But
while (X, D) is locally compact, (X, T) is not by choice.

However, a continuous open map onto a Hausdroff space does preserve
local compactness.

Theorem 3.25: Let (Y, U) be a Hausdroff space. Let f : X  Y be a (T, U)
continuous, open surjection. Let X be T-locally compact, then Y is U-locally
compact.

Proof: For given y  Y choose x  X so that f(x) = y and choose a relatively
compact neighbourhood U(x). Because f is an open map, f(U) is a neighbourhood

of y, and because )(Uf is compact, we find from )()()( UfUfUf  that

)(Uf  is compact.

Definition: Let (X, T) be a topological space and A  X. Then A is T-locally
compact if and only if A is T

A
 locally compact.

Theorem 3.26: Let (X, T) be a local compact space and A  X. Then A is locally
compact if and only if for any x  A there exists a T-neighbourhood V of x such

that )( VAA  is T-compact.

Example 3.1: A subspace of a locally compact space is not necessarily compact.
For example, the set if irrationals  is not locally compact in E1, although E1 is
locally compact.

To verify this, let V be any neighbourhood of  . If )( V   is compact

then )( V  is bounded and closed. For some  V.

Choose any rational y with < y < . Then y is a cluster point therefore

)( V  , but y  )( V  as y . This means that )( V  is

not closed after all, a contradiction. Then )( V  cannot be compact,

therefore,  is not locally compact.

As with subspaces, a product of locally compact spaces need not be locally
compact. If, however, the coordinate spaces are Hausdorff and if sufficient of
them are compact, then the product will be locally compact.

Theorem 3.27:   }α:{ α Y is locally compact if and only if all the αY  are

locally compact Hausdroff spaces and at the most finitely many are not compact.
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Proof: Assume the condition holds. Given {yα
αY , for each of the atmost

finitely many indices for which Yis not compact, choose a relatively compact

neighbourhood )( 
ii

yV  ; then 
n

VV αα ,...,
1

is a neighbourhood of {y} and


n

VV αα ,...,
1  = 

n
VV αα ,...,

1
is compact.

Conversely, assume that 
α

αY to be locally compact; since each projection

pis a continuous open surjection, each Y is certainly locally compact. But also,

choosing any relatively compact open V 
α

αY , each pV is compact and

since pV Yfor all but atmost finitely many indices , the result follows.

A one point compactification of a non-compact space is Hausdorff space
exactly when the space is Hausdorff and locally compact.

Theorem 3.28: Let (X, T) be a non-compact space and (Y, U) be an Alexandroff
one point compactification of (X, T). Then (Y, U) is a Hausdorff space if and only
if (X, T) is Hausdorff and locally compact.

Theorem 3.29: Every locally compact Hausdorff space is completely regular.

Proof: Let (X, T) be a locally compact Hausdorff space and the space (Y, U) be
an Alexandroff one-point compactification of (X, T). Since (Y, U) is a compact
Hausdorff space, then U is a normal topology. By Urysohn’s lemma, (Y, U) must
be completely regular. Consequently (X, T) is a subspace of a completely regular
space and so is also completely regular.

Check Your Progress

7. When D  R said to be connected?
8. When the propositions are equivalent in continuous function?
9. Define the term Finite Interaction Property (FIP).

10. When topological space is compact?
11. What is limit point in K?
12. Define the term cluster point.
13. When a topological space X satisfies the Bolzane-Weier-strass property?
14. When the topological space is locally compact?

3.10 STONE-ČECH COMPACTIFICATION

In topological evaluations and specifically in the mathematical discipline of general
topology, the Stone–Čech compactification is a technique for constructing a
universal map from a topological space X to a compact Hausdorff space X. The
Stone–Čech compactification X of a precisely defined topological space X is
referred as the biggest compact Hausdorff space typically generated by X,
according to the perception that any map from X to a precise compact Hausdorff
space factors is specifically done uniquely through X. If X is considered as
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a Tychonoff space then typically the map from X to its image in X is defined as a
homeomorphism, therefore X can be considered as a ‘Dense’ subspace of X.
Subsequently, for the general or common topological spaces X, exceptionally the
map from X to X should not be injective.

Characteristically, the specific form of the ‘Axiom of Choice’ is essential
for proving that every single topological space holds a Stone–Čech
compactification. However, for relatively simple spaces X, an accessible and simple
specific description of X often continues to be ambiguous. Particularly, the precise
proof that X \ X is non-empty does not provide an explicit and specific description
of any particular point in X \ X.

Theoretically, the Stone–Čech compactification was implicitly defined in a
paper by Andrey Nikolayevich Tychonoff (1930) and was given explicitly
by Marshall Stone (1937) and Eduard Čech (1937).

Theorem 3.30 Tychonoff’s Theorem:If Xis a compact topological space
for every in some arbitrary index set I, then I

 Xis compact in the product
topology.

Definition:Let X be a T
2
 topological space. A Stone-Čech compactification of

X is a compact T
2
 topological space X containing X so that:

1. The topology induced on X as a subset of X is the original topology of X.

2. Whenever f X Y is a continuous map of X into some compact T
2
 space

Y, there exists a unique continuous map 
~

f X Y whose restriction to X

is f.

Note: A rather non-trivial theorem says that if X is a Stone-Čech compactification of X, then
X is dense in X, namely, the closure of X in X is all of X.

Theorem 3.31:Any two Stone-Čech  compactifications of the similar or equivalent
topological space X are homomorphic.

For the sake of simplicity, the analysis and definition given below only
considers the space X = N, the natural numbers together with the discrete topology.
All the outcomes in this section have analogues or equivalents for an arbitrary or
random and completely regular topological space, and particularly also for an
arbitrary or random metric space.

Definition:Let N be the set of all ultra filters on N. We will identify N as a
subset of N by identifying every integer n with the principal ultra filter 

n 
at n.

Theorem 3.32:There is a topology on N for which it is a Stone-Čech 
compactification of N. A basis for that topology is given by  U

A
A N

where for any set A N, U
A 
N A 

Note: All the sets U
A
 are actually clopen in N.

Theorem 3.33:N is dense in N.
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3.10.1 Stone-Čech One Point Compactification

One point compactification on a topological space X is the minimal compactification
of X. The Stone-Čech compactification on X is the maximal compactification of
X. It was constructed by Marshall Stone and Eduard Čech in 1937.

Theorem 3.34: Let X be  completely regular space. These exists a compactification

Y of X having the property that every bounded continuous map : IRf X  extends

uniquely to a continuous map of Y into .

Proof: Let { } Jf   be the collection of all bounded continuous real valued

functions on X, inclosed by some index set J. For each J . Choose a closed

internal I  in  containing ( )f X . to be defined, choose

 inf ( ), sup ( )I f X f X  

Then define h : X J I  by the rule,

h (x) = ( ( )) Jf x 

Here h refers to homeomorphism and H refers to H–field for real or hyper
real space.

By the Tychonoff Theorem,  I  is compact. Because X is completely

regular, the collection {f)}J
 separates points from closed sets in X. Therefore

the map h is on imbedding. Let y be the compactification of X induced by the
imbedding h. Then there is an imbedding.

H : Y   I  that equals h when restricted to the subspace X of Y. given a

bounded continuous real valued function f on X, we show it extends to Y.

The function f belongs to the collection {f} J 
So it equal f

B
 for some index

B.

Let 
B
: 

I  I be the projection mapping. Then the continuous map,

 OH: Y  I is the desired extension of f.

For if x X , we have


B
((x)) = 

B
(H (x)) = 

B
((f(x)) J 

) = f
B
 (x)

Theorem 3.35: Let A X, let f : A  Z be a continuous map of A into the
Hausdorff space Z. There is at the most on extension of f to a continous function

g A Z .

Proof: Suppose that 1
1 :g g A X  are two different extensions of f; choose x

so that g (x) ± g1(x)

g (x) ± g1 (x)

Let U and U1 be disjoint neighbourhoods of g(x) and g1(x), respectively.
Choose a neighbourhood V of x so that g (V)   and g1(V) 
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Now V intersects A in some point Y
1
, then g(y)    and g1(y) 1 

But since yA, we have g (y) = f (y) and g1(y) = f (y).

This contradicts the fact that U and U1 are disjoint.

Theorem 3.36: Let X be a completely regular space; let Y be a compactification
of X satisfying the extension property of Theorem 3.34. Given any continuous
map f : X  C of X into a compact Hausdorff space C the map f extends unequely
to a untinuous map g : y  C.

Proof: Note that C is completely regular, so that it can be imbedded in [0, 1]J for
some J. So we may as well assume that C  [0, 1]J.

Then each component function f of the map f is a bounded continous real
valued function on X; by hypothesis, f can be extended to a continuous map g of
Y into R define,

g : y  RJ by setting

g (y) = (g(y)J 
 ;

Then g is continous because RJ has the product topology. Now in fact g
maps Y into the subspace C of RJ. For continuity of g implies that

( ) ( ) ( ) ( )g y g X g X f x C     

Thus, g is the desired extension of f.

Definition: For each completely regular space X, let us choose, once and
for all, a compactification of X satisfying the extension condition of Theorem 3.33.
We will denote this compactification of X by B (X) and call it the Stone-Čech
compactification of X.

3.11 COMPACTNESS IN METRIC SPACES

By an open cover of a subset A of a metric space X, we mean a collection
C = {G: 1} of open subsets of X such that A {G: A}. We then
say that C covers A.

In particular, C is said to be an open cover of the metric space X if
X = {G: A}.

By a subcover of an open cover C of A, we mean a sub-collection C of C
such that C covers A.

An open cover of A is said to be finite if it consists of finite number of open
sets.

Another definition is, A subset of a metric space X is said to be compact if
every open cover of A has a finite subcover, that is, if for every collection
{G: A} of open sets for which,

A {G: A},

there exist finitely many sets G
,...,Gn

 among the G’s such that

1
...

n
A G G   
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In particular, the metric space X is said to be compact if for every collection

{ : ;G A   of open sets for which,

{ : },X G A  

there exist finitely many sets 
1
,...,

n
G G   among the G’ such that

1
...

n
X G G   

Theorem 3.37:  Let Y be a subspace of a metric space X and let A Y. Then A
is compact relative to X if and only if A is compact relative Y.

Proof: Let A be compact relative to X and let {V, A} be a collection of sets,

open relative to Y, which covers A so that { : }.A V A   Then there exists G

open relative to X, such that V Y G    for every A. It then follows that,

{ : },A G A  

that is, { : }G A  is an open cover of A relative to X. Since A is compact

relative to X, there exist finitely many indices 
1
,...,

n
 such that

1
... .

n
A G G   

Since A Y, we have A = Y A.

Hence 
1 1

{ ... } ( ) ... ( )
n n

A Y G G Y G Y G           

[By Distributive Law]

Since { 1,2,..., },
i i

Y G A i n    we obtain

1
... .

n
A A A    .....(3.5)

This shows that A is compact relative to Y.

Conversely, let a be compact relative to Y and let {G : } be a
collection of open subsets of X which cover a so that,

A  {G : } .....(3.6)

Since A  Y, Equation (3.6) implies that

A  Y  {G : } = {Y  G : }

[By Distributive Law]

Since Y  G : is open relative to Y, the collection

{Y  G : }

is an open cover of A relative to Y. Since a is compact relative to Y, we must
have,

A  (Y G) ..... (Y  Gn
)                                         .....(3.7)

for some choice of finitely many indices 
1
,...,

n
. But (Equation 3.7) implies

that

A  G ..... Gn
.

It follows that A is compact relative to X.

Theorem 3.38: Every compact subset of a metric space is closed.
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Proof: Let A be a compact subset of a metric space X. We shall prove that X – A
is an open subset of X. Let p  X – A.

For each q  A, let N
q
 (p) and M(q) be neighbourhoods of p and q,

respectively, of radius less than 1

2
d  (p, q) so that,

N
q
 (p)  M (q) = 

Then the collection,

{M (q) : q  A}

is an open cover of A. (Recall that neighbourhoods are open sets. Since a is
compact, there are finitely many points q

1
,...,q

n
 in a such that,

A  M (q
1
)  ... N(q

n
)                                                     .....(3.8)

If N =    
1

.....
nq qN p N p  then N is a neighbourhood of p. Now,,

N   
1qN p  and M(q

i
)  N

qi
(p) =  for i = 1,...n

 M(q
i
)  N

 
= for i = 1,...n

  {M(q
i
)  N

 
: i = 1,...,n = 

  {M(q
i
) : i = 1,...,n}]  N = 

[By Distributive Law]

   N =  by 1

  X – Y.

Thus we have shown that to each p  X – Y, there exists a neighbourhood
N of p such that N  X – Y and consequently X – Y is open. It follows that Y is
closed.

Theorem 3.39: Closed subsets of compact sets are compact.

Proof: Let Y be a compact subset of a metric space X and let F be a subset of Y,
closed relative to X. To show that f is compact. Let,

C = {G : }

be an open cover of F. Then the collection,

D = {G : }  {X – F}

forms an open cover of Y. Since Y is compact, there is a finite subcollection
D of D which covers Y, and hence F. If X – F is a member of D we may remove
it from D and still retain an open finite cover of F. We have thus shown that a finite
subcollection of C covers F. Hence, F is compact.

Corollary 1: If f is closed and Y is compact then F  Y is compact.

3.11.1 Equivalence

If X is a topological space then the following are equivalent:

1. X is compact.

2. Every open cover of X has a finite subcover.
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3. X has a subbase such that every cover of the space, by members of the
subbase, has a finite sub cover (Alexander’s subbase theorem).

4. X is Lindelöf and countably compact.
5. Any collection of closed subsets of X with the finite intersection property

has non-empty intersection.
6. Every net on X has a convergent subnet.
7. Every filter on X has a convergent refinement.
8. Every net on X has a cluster point.
9. Every filter on X has a cluster point.

10. Every ultrafilter on X converges to at least one point.
11. Every infinite subset of X has a complete accumulation point.

Euclidean Space: For any given precise subset A of the Euclidean space, A is
considered compact if and only if the Euclidean space is closed and bounded; this
notion is termed as the Heine–Borel Theorem. Consequently, because a Euclidean
space is considered as a metric space, therefore the conditions given below in the
next subsection will also be typically applied to all of its subsets. For all of the
required equivalent conditions, it can be verified that typically a subset is closed
and bounded, for example uniquely for a closed interval or closed n-ball.

Metric Spaces: For any metric space (X, d), the following properties are
considered equivalent, assuming the ‘Countable of Choice’:

1. (X, d) is defined as compact space.

2. (X, d) is defined as complete and totally bounded, i.e., it is also equivalent
to the unique compactness property for uniform spaces.

3. (X, d) is defined as sequentially compact, i.e., every single sequence in X
has a convergent subsequence whose limit is in X, i.e., it is also equivalent
to the compactness specifically for the first countable uniform spaces.

4. (X, d) is defined as the limit point compact, also sometimes called weakly
countably compact, i.e., every single infinite subset of X typically has at
least one limit point in X.

5. (X, d) is defined as countably compact, i.e., every single countable open
cover of X typically has a finite subcover.

6. (X, d) is defined as an image of a continuous function from the Cantor set.

Additionally, a compact metric space (X, d) also uniquely satisfies the
following three relevant properties:

1. Lebesgue’s Number Lemma: Specifically for every open cover of X, there
typically exists a number  > 0 such that every single subset of X having diameter
<  is uniquely contained in certain member of the cover.

2. (X, d) is Second Countable, Separable and Lindelöf: These three conditions
are considered equivalent for the metric spaces. However, the converse is not
true, for example a countable precise discrete space can satisfy these three
conditions, but it is not compact.

3. X is Closed and Bounded: Consider that there is a subset of any metric space
whose restricted metric is (d). The converse may not be true for a non-Euclidean
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space, for example the precise real line which is equipped together with the discrete
metric is typically considered as closed and bounded but not compact, while the
collection of typically all singletons of the space is defined as an open cover which
acknowledges no finite subcover. It is defined as complete but not totally bounded.

3.11.2 Equivalence of Compactness

Compactness: A space X is said to be compact if every open cover of X admits
of a finite subcover.

Limit Point Compactness: A space X is said to be limit point compact if every
infinite subset of X has a limit point.

Sequentially Compactness: A space X is said to be sequentially compact if
every sequence in X has a convergent subsequence.

Theorem 3.40: (Equivalance of Compactness): Let X be a metrizable space.
Then the following are equivalent.

(i) X is compact.

(ii) X is limit point compact.

(iii) X is sequentially compact.

Proof: (i)  (ii)

Let X be a compact space then we will show it is limit point compact. Let A be an
infinite subset of X then we will show it has a limit point.

Let if possible A has no limit point in X. Corresponding to each xA, there
exists on open sphere S(x

1
, r

x
) containing no point of A, other than possibly, the

point X.

Now the collection {S(x
1
, r

x
): xA} (X–A) is an open cover of X and

this cover can not reduced to a finite subcover of X and so X is not compact. This
contradict the hypothesis of compactness of X. This contradiction arises by assuming
that an infinite subset A has no limit point.

Hence every infinite subset A of X has a limit point therefore X is limit point
compact.

(ii)  (iii)

Let us assume that X is limit point compact then we will show it is sequentially
compact. Let <x

n
> be an arbitrary sequence in X  such that B ={x

n
: nN}. We

not have the following two possibilities.

Case (I) When B is Finite: Then there exist some xX such x
n
 = x for infinitely

many values of n. Hence, <x
n
> has a constant subsequence and therefore

convergent.

Case (II) When B is Infinite: Then B has a limit point, say b. Since b is limit
point of B. So open sphere S(b, 1) contains infinitely many points of B. Hence,
there exists n

1
N such that,

d(x
n1

, b) < 1

As before, 1

1

2
S b  also contains infinitely many point of B.
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Hence we have n
2
N such that,

d(x
n2

, b) < 
1

2
 for n

2
 > n

1
.

Proceeding likewise we construct a sequence 
Knx  such that

1
( , )

Knd x b
K

 for all KN.

Now 
Knx is a subsequence of <x

n
> that converges to b. Hence <x

n
>

has a convergent subsequence and so X is sequentially compact.

(iii)  (i)

Let X is sequentially compact then we will show it is compact.
Let C = {G 

: } be an arbitrary. Open cover of X. Since X is sequentially
compact, by Lebesgue covering lemma C has a Lebesgue number, say l > 0.

We take = l/3 so that > 0. ...(3.9)
Since (X, d) is sequentially compact, it is totally bounded and hence it has

E-net, say {x
1
, x

2
,...x

n
}

Then
X = {S(x

k
,) : K = 1, 2, ... n} ...(3.10)

Now, 
1

2
( ) 2 ,

3k

l
S r l  K = 1, 2, ...., n using Equation (3.9)

Thus for each K = 1, 2, ..., n, ( )
ikS x l  and hence by definition of

Lebesgue number there exist at least one 
k

G such that,

1
( ) ,

kkS r G K = 1, 2, ...., n.


1

{ ( ) : 1, 2,..., } { : 1, 2,..., }
kkS r K n G K n

 { : 1,2,..., }
k

XC G K n . using Equation (3.10)

[ : 1, 2,..., ]
k

G K n  is a finite subcover of C.

Hence X is compact.
Countability and Product Spaces

Theorem 3.41: Countable product of first countable spaces is first countable.

Proof: Suppose X
i
 are first countable space.

Let, X = 
1

i
i

X

Then we will prove X is first countable.
Let xX, we will show that X, has a local countable basis at x.

Assume that x = 
1

i
i

X , where x
i
X

i
.
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Since x
i
 first countable space, then there is a local countable basis at x

i
says,

Bx
i
 = { ( ) | }iBx j j N

Define,

W
n
 = 

1

( ) :i
i

Bx j j N

     = 1 1 2 2( ) ( ) ... ( ) :n nBx j XBx j X Bx j i N

Clearly 
n
 is countable.

Let  be the set of all subsets of the product space X of the following form:

1

,J
J

V  where there is some nN such that,

1

n

J n
J

V w  and for all J > n, V
J
 = X

J
.

We shall show that w is a local countable basis at X.

Clearly w is countable.

Let G be an open set containing x.

So we can assume that G = 
1

n

i
i

G , there exist some nN such that G
i
 is

open in x
i
 ( )n  and G

i
 = X

i
, for all i > 1.

Since Bx
i
 is a local countable basis at x

i
. So for x

i
G

i
 n , there is

some Bx
i
 (J

i
) such that x

i
Bx

i
(J

i
) G

i
 i n .

Let = 
1

i
i

V V  such that,

1 1

( )
n n

i i i
i i

V V Bx j  and V
i
 = x

i
 i > n.

Thus V
n
 and V G, thus X is first countable.

Theorem 3.42: Product of two second countable spaces is a second countable
space.

Proof: Let (X
1
T

1
) and (Y

1
T

2
) be two second countable spaced. Let (X×Y,T) be

the product topological space.

Our assumption implies that  countable bases,

B
1
 = {B

i
:iN} and B

2
 = {C

i
:iN}

for X and Y respectively.

Recall that

B = {G
1
 × G

2
, G

1
T

1
, G

2
T

2
} is a base for the topology T on X × Y.

Write C = {B
i
×C

J
, i, JN} = B

1
×B

2
.
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B
1
 and B

2
 are countable  B

1
×B

2
 is countable.

C is countable.

By definition of base B,

Any (x, y)NT G×HB + (x, y) G×H N

xGT
1
 and yHT

2

B
1
B

1
, C

J
B

2
 + xB

i
CG

1
, YC

J
 H

(x, y)B
i
C

J
CG×HCN

Thus any (x, y)NT B
i
×C

J
C + (x, y)B

i
C

J
 N.

By definition this proves that C is a base for the topology T on X×Y. Also C
has been shown to be countable.

Hence (X×Y, T) is second countable.

3.12 SOLVED EXAMPLES

Example 1: Give an example of a bounded function, which is continuous
but not uniformly continuous?

Solution: Define f:(0,1) by f(x)= cos
 
 
 x

We will take for granted the fact that f is continuous assume (for contradiction)
that f is uniformly continous.

Then there is,  > 0

Such that, x, y(0, 1) and |x-y|<
Imply | f (x) - f( y)| < 1

Let x = 
1

n
 and y = 

1

1n   
where n >

1


 then,

1 1 1 1

1 ( 1)
      

 
x y

n n n n n

But | f (x) – f (y)|=| cos (n) – cos(n + 1)|=2 > 1

Example 2: Let A and B be disjoint subsets of , and f: AAB   a
continuous function Assume f is uniformly continous on A and B. Must it
be true that f is uniformly continuous on AB? Prove it or provide a
counter example.

Solution: No, Let A = (0, 1) and B = (1, 2) and define f: A B  by,,

0,
( )

1,

x A
F x

x B

We first show f is continuous let xA  B and > 0.

If xA, Pick >0 such that,

(x –, x +) A, if xB pick  > 0 such that (x –, x +)B
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Let YAB be such that |x-y|<

Then either x and y are both in A, or they are both in B. In either case
| f(x) – f (y)|=0<, providing f is continous.

Now we show f is uniformly continous on A (The proof that f is uniformly
continous on B is analogous).

Let  > 0 and pick any  > 0. Then x, yA and |x-y|< imply

| f (x) – f (y)|=|0 – 0| = 0 <

To see that f is not uniformly continuous on AB,

Let  =1 and take any  > 0

Let x =1–min 
1

,
2 4

 and y = 1 + min 
1

,
2 4

Then x, y AB and |x – y|<  but

| f (x) – f ( y)| = |0 – 1| = 1 

Example 3: Consider Q is a metric space with the usual distance function
d(x, y) = |x – y|, and define S={xQ: 2 < x2 < 3}. Show that S is closed and
bounded in Q but that S is not compact.

Solution: Note that d c = {XQ x2 < 2 or x2 > 3}

Since,

Let xSc Then x2 > 3 or x2 < 2 if x2 > 3 and x > 0 choose d2 > 0 such that.

(x –d)2 > 3

If x2 > 3 and x  0 choose d  > 0 such that

(x +d)2 < 3

If x2 < 2 and x > 0 choose d  > 0 such that,

(x +d)2 < 2

If x2 < 2 and x  0 choose d  > 0 such that (x –d)2 < 2

Then (x – d , x + d) Sc showing is open.

We conclude S is closed. Now d is bounded since S B, (2), for example
to see that S is not compact for each n choose q

n
Q S such that,

1
3 3nq

n
Then it is easily to see that {q

n
 : n} is an infinite subset of d with no limit

point in S.

Example 4: A subset A  n is compact if and and only if it is closed and
bounded.

Solution:  Every compact subset n is obviously closed and bounded so we
need only prove the converse. Moreover every bounded subset of n is contained
in a cube [–M, M]n  For some M < , so we need only prove that [–M, M]n is
compact.

But this follows from the Heine-Borel Theorem for  combined with the
fact that any finite Cartesian product of compact spaces is compact.
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Example 5: The direct image of a compact metric space by a continous
function is compact.

Soution: This can be formulated precisely in several slightly different, but equivalent
ways:

1. Let X and Y be metric spaces, with X compact and Let f: x y be a
continous map that is surjective then Y is compact.

2. Let X and Y be metric space with X compact and let f: x y be a continous
map then f [X ] is a compact subset of Y.

3. Let X and Y be metric space and let f:x y be a continous map. If A is a
compact subset of X, then f [A] is a compact subset of Y.

First Proof: Let (U)I 
be an open covering of Y then the sets f-1[U] are open

and form an open covering of X. Since X is compact, there exists a finite subset
JI such that ( f-1[U)J

 still forms a covering of X. Then (U)J
 forms a

covering of Y.

Second Proof: Consider a sequence (Y
n
) of element of Y because f is surjective,

we can choose a sequence (x
n
) of points in X such that f(x

n
)=Y

n
 since X is compact,

there exists a subsequence (xnk
) that converges to some point aX But since f is

continue at a, the sequence (Ynk
) covers to f(a). This proves that Y is sequentially

compact, hence compact.

Example 6: Let f be a continous mapping of a compact metric space X into
a metric space Y these f is uniformly continous.

Soution: Suppose that f is not uniformly continous then there exists a number
> 0 and two sequences (x

n
) and (y

n
) of points X such that,

dx(X
n
, Y

n
) < 

1

n
And dy( f(X

n
), f (Y

n
) >.

By compactness we can find a consequence (xnk
) covering to a point a, and

since dx(xnk
, ynk

) < 
1

n
, it follows from the triangle inequality that the sequence (ynk

)
also converges to a but since f is continous at a there exists   > 0 such that

dy( f(x), f (a)<
n

, where dx(x, a) < .

Now take k such that

dx(xnk
, a)<  and dx(ynk

, a)<  it follows that dy( f(xnk
) f(ynk

)) <

Contrary to the definition of the sequence (x
n
) and (y

n
).

Example7: Let X be a compact metric space, and let f: X be continous

f[X] is bounded and there exist points a,b,X such that f(a) = inf
x X

f(x)  xx

and f(b) = SUP
x X

 f(x).

Solution:  f [X] is a compact subset of , hence closed and bounded. Now, any
bounded set. A, has a least upper bound sup A and a greatest lower bound inf

A and these two points belongs to the closure A .
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But applying this A=f [X], which is closed, we conclude that sup f [X] and
inf f [X] belong to f [X] itself, which is exactly what is being claimed.

Example 8: A topological space X is compact iff it satisfies the finite
interaction property.

Solution: If {C
i
} is collection of closed subsets of X such that every finite

intersection 1 2i i inC C C  then .i iC

Solution: Suppose X is compact. Then given a collection {C
i
} of closed subsets

of X with empty intersection, we have 
i 
(X – C

i
)=X-

i
, C

i
=X so the open cover

{X – C
i
} has a finite subcover. This gives a finite collection of C

i
 with empty

intersection.

The converse is just an easy. If finite intersection property holds and {U
i
}is

an open cover of X. Then

U
i
U

i
 = X   (X – U

i
) = 

By Finite Intersection Property (FIP) there is finite collection,

(X – U
i1
)  ...  (X – U

in
) =  so U

n 
U

in
 = x is a finite subcover.

Example 9: If xC
0
 then x is a compact subset of C

0
 (and hence also

of  )

Solution: Since   x is a closed subset of C
0
, and C

0
 is complete it follows that x

is complete.

Hence we need only prove that x is totally bounded so consider any>0
because lim

n
 x

n 
= 0. There exists an integer N such that,

| |
2nx  for all n > N.

Now consider the subset x(N) x defined by,

x(N)={yx :y
n
=0 for all n > N}.

The set x(N) is isomeric to a closed founded subset of the space N and is
thus compact. In particular it is totally bounded, so we can choose a finite,

2
– net A  (N)

x

But A is also an -net for x.

Example 10: Let X,Y be topological spaces and let f:XY be a continuous
map of A  X is compact then F(A)Y is also compact.

Solution: Take an open cover {: iI}of F(A) By definition of the subspace
topology, There exist open sets V

i 
< Y, iI, such that 

i
 = V

i
 f(A). Since f is

continous, f -1(V
i
) are open sets in X finally, {A  f–1(V

i
): iI} is an open cover of

A. Since A is compact, there is a finite subset J I such that A = 
i J
  AA  f –1(V

i
).

Now, f (A) = 
i J
 ,i

i J
U

So we get a finite subcover {U
i 
: iJ} of the cover we started.
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Check Your Progress

15. What do you understand by Stone–Čech compactification?
16. State the Stone–Čech one point compactification.
17. When open cover of A is said to be finite?

3.13 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The separation axioms T
i
 specify the degree to which distinct points or

closed sets may be separated by open sets. These axioms are statements
about the richness of topology.

Definition T
i
 axioms:Let X, )be a topological space.

T
0
 Axiom: If a, b are two distinct and elements in X, then there exists an

open set U such that either a U and b U, or b U and a U i.e.,
U contains exactly one of these points

T
1
 Axiom: If a, b X and a b, then there exists open sets U

a
, U

b
 

containing a, b respectively, such that b U
a
, and a U

b
.

T
2
 Axiom: If a, b X, a b, there exists disjoint open sets U

a
, U

b
 

containing a, b, respectively.

T
3
 Axiom: If A is a closed set and b is a point in X such that b A, then

there exist to separate or disjoint open sets U
A
, U

b
  containing A and b

respectively.

T
4
 Axiom: If A and B are disjoint closed sets in X, there exist disjoint open

sets U
A
, U

B
  containing A and B, respectively.

T
5
 Axiom: If A and B are separated sets in X, then there exist to disjoint

open sets U
A
 , U

B
  containing A and B, respectively.

If X,  satisfies a T
i
 axiom, then X is called a T

i
 space. A T

0
 space is

sometimes called a Kolmogorov space and a T
1
 space is called a Frechet

space. A T
2
 space is called a Hausdorff space.

2. Let f, g be two continuous mappings of a topological space X into a
Hausdorff space Y. If ( ) ( )f x g x  at all points of a dense subset of X, then
f g.

In other words, a continuous map of X into Y (Hausdorff) is uniquely
determined by its values at all points of a dense subset of X.

3. In topological analysis and evaluation, the Urysohn’s lemma is defined as a
lemma which states that a topological space is considered as normal if and
only if any two disjoint or separate closed subsets can be precisely separated
through a continuous function. The Urysohn’s lemma is named after the
mathematician Pavel Samuilovich Urysohn who has defined its concept.



Separation Axioms:
Characterizations and
Basic Properties

NOTES

Self - Learning
144 Material

Urysohn’s Lemma: Let X be a topological space and let any two disjoint
closed sets A, B in X can be separated by open neighbourhoods then there
is a continuous function f X 0, 1such thatf | Aand f | B 

4. In the field of topological analysis, the Tietze extension theorem, also
acknowledged as the Tietze–Urysohn–Brouwer extension theorem, defines
that the explicit and specific continuous functions considered on a closed
subset of a unique normal topological space can be precisely extended to
the entire or complete space by preserving the boundedness if essential.

5. An open cover of a subset A of a metric space X, we mean a collection C
= {G: 1} of open subsets of X such that A {G: A}. We
then say that C covers A.

6. An open cover of A is said to be finite if it consists of finite number of open
sets.

7. D  R is connected if and only if  and D are the only subsets of D which
are both open in D and closed in D.

In other words, if D = A  B and A, B are disjoint D-open subsets of D,
then either A =  or B = 

8. Let D  R and f : D  R a function. Then the following propositions are
equivalent:

   f is continuous (on D).

  G R   open, f–1(G) is open in D.

  F R   closed, f–1(F) is closed in D.

9. The Finite Intersection Property (FIP) is a property of a collection of subsets
of a set X. A collection has this property if the intersection over any finite
subcollection of the collection is non-empty.

A centered system of sets is defined as a collection of sets with the specific
finite intersection property.

Let X be a set with A = {A
i
}

iI
, a family of subsets of X. Then the collection

A has the Finite Intersection Property (FIP), if any Finite subcollection J 

I has non-empty intersection i
i J

A

 .

10. A topological space X is compact if and only if for every collection

C =   J
C  of closed subsets of X having the finite intersection property

has non-empty intersection.

11. K is compact if every open cover of K contains a finite subcover. K is
sequentially compact if every infinite subset of K has a limit point in K.

12. We say that x is a cluster point for a sequence (x
n
) if for any N > 0 and any

open neighbourhood U
x
 of x, there is an n > N such that x

n
  U

x
.
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13. A topological space X satisfies the Bolzano-Weierstrass (B-W) property if
every sequence (x

n
) from X has at least one cluster point.

 If X is compact, then X satisfies B-W property.

 Suppose X is compact, but there is sequence (x
n
) with no cluster point.

Then for every z  X, there is an open neighbourhood U
z
 of z and N

z
 > 0

such that x
n
  U

z
 for n  N

z
. Then since X  

zX
U

z
 and X is compact,

there is a finite set   1

m
i i

z


 such that X    1

m
i i

z


U
z1
. But this contradicts

x
n
  1 ,m

i zU  for all n  max  
1i

m

z i
N


.

14. A topological space (X, T) is locally compact if each point has a relatively
compact neighbourhood.

15. In the mathematical discipline of general topology, Stone–Čech
compactification is a technique for constructing a universal map from
a topological space X to a compact Hausdorff space X. The Stone–Č ech
compactification X of a topological space X is the largest compact
Hausdorff space (Generated) by X, in the sense that any map from X to a
compact Hausdorff space factors through X (in a unique way). If X is
a Tychonoff space then the map from X to its image in X is a
homeomorphism, so X can be thought of as a (dense) subspace of X. For
general topological spaces X, the map from X to X need not be injective.

16. One point compactification on a topological space X is the minimal
compactification of X. The Stone-Čech compactification on X is the maximal
compactification of X. It was constructed by Marshall Stone and Eduard
Čech in 1937.

Let X be  completely regular space. These exists a compactification Y of X

having the property that every bounded continuous map :f X   extends

uniquelly to a continuous map of Y into . An  open cover of A is said to be
finite if it consists of finite humber of open self.

17. An open cover of A said to be finite if it consists of finite number of open sets.

3.14 SUMMARY

 The separation axioms T
i
 specify the degree to which the separate and

distinct points or closed sets may be separated by means of open sets.
These completeness are statements about the richness of topology.

 Specifically a space X is said to be regular if and only if it is both a T
0
 and a

T
3
 space, normal if and only if it is both a T

1
 and T

4
 space, completely

normal if and only if it is both a T
1
 and a T

5
 space.

 Let :f X Y  be a mapping of a set X into a Hausdorff space Y; then it

follows immediately from Theorem 3.1 that f has at the most one limit with
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respect to a filter  on X, and that if f has y as a limit with respect to , then
y is defined as the only cluster point of f with respect to .

 Let f, g be two continuous mappings of a topological space X into a

Hausdorff space Y. If ( ) ( )f x g x  at all points of a dense subset of X, then

f g.

 If every point of a topological space X has a closed neighbourhood, then X
is Hausdorff which is a Hausdorff subspace of X.

 In topological analysis and evaluation, the Urysohn’s lemma is defined as a
lemma which states that a topological space is considered as normal if and
only if any two disjoint or separate closed subsets can be precisely separated
through a continuous function. The Urysohn’s lemma is named after the
mathematician Pavel Samuilovich Urysohn who has defined its concept.

 The mathematicians L. E. J. Brouwer and Henri Lebesgue originally proved
a special instance of the theorem for X being a finite dimensional real vector
space. The mathematician Heinrich Tietze extended this concept and notion
for all metric spaces and hence this theorem is termed as Tietze extension
theorem. Pavel Urysohn then typically proved this theorem uniquely for
normal topological spaces.

 If X is a normal topological space and A is closed in X, then for any continuous
function f: A   R such that |f(x) < 1, there is a continuous function g:

X  R such that |g(x)| < 
1

3
for x  X, and |f(x) – g(x)|  

2

3
 for X  A.

 First suppose that for any continuous function on a closed subset there is a
continuous extension. Let C and d be disjoint and closed in X. Define f: C
 D  R by f(x) = 0 for x  C and f(x) = 1 for x  D. Now f is continuous
and we can extend it to a continuous function F: X  R. By Urysohn’s
lemma, x is normal because F is continuous function such that F(x) = 0 for
x  C and F(x) = 1 for x  D.

 An open cover of a subset A of a metric space X, we mean a collection C
= {G: 1} of open subsets of X such that A {G: A}. We
then say that C covers A.

 Another definition is, a subset of a metric space X is said to be compact if
every open cover of A has a finite subcover, that is, if for every collection
{G: A} of open sets for which

A {G: A},

there exist finitely many sets G1
,...,Gn

 among the G’s such that

1
...

n
A G G    .

 Let Y be a subspace of a metric space X and let A Y. Then A is compact
relative to X if and only if A is compact relative Y.
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 Let D be an arbitrary subset of R. Then A  D is open in D (or relative to D,
or D-open) if and only if there exists G open subset of R such that D = G 
D. Similarly we can define the notion of D-closed sets. Note that D is both
open and closed in D and so is .

 A continuous function maps connected sets into connected sets.

 A continuous function on a compact set is uniformly continuous.

 The only connected subsets of R are the intervals, bounded or unbounded,
open or closed or neither.

 Let D  R be compact and f : D  R be a continuous function. Then there

exists y
1
, y

2
  D such that f (y

1
)   f(x)  f(y

2
), x  D.

 The Finite Intersection Property or FIP is defined as a unique property of a
collection of subsets of a set X. A collection has this property if typically the
intersection over any finite subcollection of the collection is non-empty.

 A centered system of sets is defined as a collection of sets with the specific
finite intersection property.

 Let X be a precise compact Hausdorff space which typically satisfies the
property that every one point set is open. If X has more than one point, then
X is uncountable.

 The Hausdorff condition cannot be eliminated; since a countable set together
with the indiscrete topology is considered as compact and holds more than
one point satisfying the specific property that by no means one point sets
are considered as open, however it is not uncountable.

 The compactness condition cannot be eliminated which specifies that one
point sets cannot be considered open because a given finite space shows
the properties of discrete topology.

 A collection   I
A A   of subsets of a set X is said to have the Finite

Intersection Property, abbreviated FIP, if every finite subcollection {A
1
,

A
2
,..., A

n
} of A satisifes 

1

n

ii
A


  .

 An important special case of the preceding condition specifies that C is a
countable collection of non-empty nested sets, i.e., when we have C

1
  C

2

 C
3
 .... In this case, C automatically has the finite intersection property

and if each C
i
 is a closed subset of a compact topological space, then by

the proposition, 
1

n

ii
C


  .

 A topological space is considered as distinct compact space if and only if
any collection of the compact space is precisely the closed sets having the
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exceptional Finite Intersection Property (FIP) which has non-empty
intersection.

 A compact metric space is sequentially compact.

 In a compact metric space every bounded sequence has a convergent
subsequence.

 In other words, every open subset of X decomposes as a union of a
subcollection of the V’s — the V’s ‘Generate’ all open subsets. The family
{V} almost always contains infinitely many members. The only exception
is if X is finite.

 We say that x is a cluster point for a sequence (x
n
) if for any N > 0 and any

open neighbourhood U
x
 of x, there is an n > N such that x

n
  U

x
.

 A topological space X satisfies the Bolzano-Weierstrass (B-W) property if
every sequence (x

n
) from X has at least one cluster point.

 Many of important spaces occuring in analysis are not compact, but instead
have a local version of compactness. For example, Euclidean n-space is
not compact, but each point of En has a neighbourhood whose closure is
compact.

 A topological space (X, T) is locally compact if each point has a relatively
compact neighbourhood.

   }α:{ α Y is locally compact if and only if all the αY  are locally

compact Hausdroff spaces and at the most finitely many are not compact.

 In topological evaluations and specifically in the mathematical discipline
of general topology, the Stone–Čech compactification is a technique for
constructing a universal map from a topological space X to
a compact Hausdorff space X. The Stone–Čech compactification X of
a precisely defined topological space X is referred as the biggest compact
Hausdorff space typically generated by X, according to the perception that
any map from X to a precise compact Hausdorff space factors is specifically
done uniquely through X.

 Characteristically, the specific form of the ‘Axiom of Choice’ is essential
for proving that every single topological space holds a Stone–Čech
compactification. However, for relatively simple spaces X, an accessible
and simple specific description of X often continues to be ambiguous.
Particularly, the precise proof that X \ X is non-empty does not provide
an explicit and specific description of any particular point in X \ X.

 Let N be the set of all ultra filters on N. We will identify N as a subset of
N by identifying every integer n with the principal ultra filter 

n 
at n.
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 By an open cover of a subset A of a metric space X, we mean a collection
C = {G: 1} of open subsets of X such that A {G: A}. We
then say that C covers A.

 X is Closed and Bounded: Consider that there is a subset of any metric
space whose restricted metric is (d). The converse may not be true for a
non-Euclidean space, for example the precise real line which is equipped
together with the discrete metric is typically considered as closed and
bounded but not compact, while the collection of typically all singletons of
the space is defined as an open cover which acknowledges no finite subcover.
It is defined as complete but not totally bounded.

 A space X is said to be compact if every open cover of X admits of a finite
subcover.

 Product of two second countable spaces is a second countable space.

3.15 KEY TERMS

 Separation axioms: The separation axioms T
i
 specify the degree to which

distinct points or closed sets may be separated by open sets. These axioms
are statements about the richness of topology.

 Urysohn’s lemma: In topological analysis, the Urysohn’s lemma is defined
as a lemma which states that a topological space is considered as normal if
and only if any two disjoint or separate closed subsets can be precisely
separated through a continuous function. The Urysohn’s lemma is named
after the mathematician Pavel Samuilovich Urysohn who has defined its
concept.

 Tietze extension theorem: In the field of topological analysis, the Tietze
extension theorem, also acknowledged as the Tietze–Urysohn–Brouwer
extension theorem, defines that the explicit and specific continuous functions
considered on a closed subset of a unique normal topological space can be
precisely extended to the entire or complete space by preserving the
boundedness if essential.

 Finite Intersection Property (FIP): The Finite Intersection Property (FIP)
specifications are used for the characterization of compactness that is typically
used for proving a common typical outcome on the uncountability of certain
specific and unique compact Hausdorff spaces which is also precisely used
in a proof of Tychonoff’s Theorem.

 Lebesgue’s number lemma: Specifically for every open cover of X, there
typically exists a number  > 0 such that every single subset of X having
diameter <  is uniquely contained in certain member of the cover.

 Finite intersection property: The finite intersection property is a property
of a collection of subsets of a set X. A collection has this property if the
intersection over any finite subcollection of the collection is non-empty.
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 Compact: A topological space is compact if and only if any collection of its
closed sets having the finite intersection property has non-empty intersection.

 Stone-Čech compactification: In the mathematical discipline of general
topology, Stone–Čech compactification is a technique for constructing a
universal map from a topological space X to a compact Hausdorff
space X.

3.16 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What are separation axioms?

2. What do you understand by Hausdorff spaces?

3. State Urysohn’s lemma.

4. Define Tietze extension theorem.

5. Give definition of compactness.

6. State the basic properties of compactness.

7. Define the term continuous function.

8. What is compact set?

9. Why finite intersection property is used?

10. Define the term sequentially compactness.

11. What are the countably compact sets?

12. Define one point compactification.

13. State the Stone–Čech compactification.

14. What does the compactness in metric space specify?

Long-Answer Questions

1. Describe briefly the separation axioms with the help of examples.

2. State and prove Urysohn’s lemma.

3. Give the proof of Tietze extension theorem with appropriate examples.

4. Explain in detail about the compactness and their basic properties.

5. Elaborate on the continuous functions and compact sets giving relevant
examples.

6. Discuss about the compactness and finite intersection property giving relevant
examples.

7. What is sequentially compact? Describe the Bolzano-Weierstrass property
giving examples.

8. Briefly explain about the local compactness and one point compactification
giving appropriate examples.
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9. Discuss about the Stone– Čech compactification and prove that topological
space X is homomorphic.

10. Describe the compactness in metric spaces giving theorems and examples.

11. Explain in detail about the countable compactness and sequential
compactness in metric spaces.

3.17 FURTHER READING

Munkres, James R. 2011. Topology, 2nd Edition. New Delhi: PHI Learning Pvt.
Ltd.

Basener, William F. Topology and Its Applications. New Jersey: John Wiley &
Sons, Inc.

Bourbaki, Nicolas. 1966. General Topology: Elements of Mathematics, Volume
2. United States: Addison-Wesley.

Bourbaki, Nicolas. 1966. Elements of Mathematics: General Topology, Part
1. United States: Addison-Wesley.

Kelley, John L. 1975. General Topology. New York: Springer-Verlag.

Willard, Stephen. 2004. General Topology. United States: Dover Publications.

Shilov, Georgi E. 2012. Elementary Real and Complex Analysis. Chelmsford:
Courier Corporation.

Simmons. G. F. 2004. Introduction to Topology and Modern Analysis. New
York: Tata McGraw-Hill Education.





Connected Spaces

NOTES

Self - Learning
Material 153
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4.0 INTRODUCTION

In the mathematical analysis of topology, topological spaces and other
related or associated branches of mathematics, a connected space is defined
as a specific topological space which cannot be exemplified and characterized
as the union or association of two or more disjoint non-empty open subsets.
Connectedness is considered as the essential and principal topological
properties which are precisely and explicitly used for distinguishing the
topological spaces.

Fundamentally, we can state that a subset of a topological space X can
be defined as a connected set if and only if it appears as a connected space
when typically observed as a subspace of X. Several associated or related but
more effective conditions are defined as the path connected, simply connected,
and n-connected. Additional related notion includes the concept of locally
connected, which neither implies nor follows from connectedness.

A topological space X is considered as disconnected if it is defined as
the union of two disjoint or separate non-empty open sets. Alternatively, X is
considered to be connected. A subset of a precise topological space is defined
as connected if it is typically connected in its subspace topology. The maximal
connected subsets of a non-empty topological space are termed as the
connected components of the space.

In topological analysis, the term real line is considered as a complete
metric space which specifically states that any Cauchy sequence of points
converges. Fundamentally, the real line is referred as path connected and is
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precisely considered as the extremely simple examples about the geodesic
metric space. The real line Hausdorff dimension is equal to one. In
mathematical analysis, the Tychonoff’s theorem exceptionally specifies that
the product of any collection of the compact topological spaces is also compact
with regard to the product topology.

Metrizable spaces uniquely inherit the entire topological properties
specifically from the metric spaces, for example the Hausdorff paracompact
spaces, normal spaces, Tychonoff and first countable. The most widely used
and recognized metrization theorem is referred as Urysohn’s metrization
theorem which states that every Hausdorff second countable regular space is
metrizable.

In mathematical field of topology, a projection is typically defined as a
precise mapping of a set under consideration or other mathematical structures
into a particular subset or substructure, which is uniquely equal to its square
for mapping the required composition or otherwise which is idempotent. The
separation axioms are considered as the topological means specifically used
for distinguishing between the disjoint sets and the distinct points.

In topological specifications and other related areas of mathematics, a
product space is considered as the characteristic Cartesian product of a family
of topological spaces distinctively analysing the natural topology termed as
the product topology.

A connected space is defined as a specific topological space which
cannot be characterized or exemplified as the union of two or more disjoint
or separate non-empty open subsets. Connectedness is, therefore, one of the
most significant topological properties exceptionally used to discriminate and
uniquely categorise the topological spaces. In the mathematical field of
topological analysis, specifically the term compactness is defined as a property
of topological space that specifically generalises the notion and concept about
the subset of Euclidean space is closed, i.e., it contains all of its limit points,
and bounded, i.e., all of its points typically remain within certain fixed distance
to each other. In topology, a first countable space is referred as a topological
space which uniquely satisfies the ‘First Axiom of Countability’. The term
embedding or imbedding is an instance of certain mathematical structure
particularly contained within a different instance, for example as a group or
a subgroup. A metrizable space is typically a topological space which is
homeomorphic to a metric space.

In this unit, you will study about the connected spaces, connectedness
on the real line, components, locally connected spaces, Tychonoff product,
topology in terms of standard subbase and its characterizations, projection
maps, separation axioms and product spaces, connectedness and product
spaces, compactness and product spaces {Tychonoff’s Theorem}, countability
and product spaces, embedding and metrization, embedding lemma and
Tychonoff embedding, and the Urysohn’s metrization theorem.
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4.1 OBJECTIVES

After going through this unit, you will be able to:
 Understand about the connected spaces
 Analyse the locally connected space
 Explain the connectedness on real line
 Discuss about the Tychonoff’s product
 Comprehend on the projection map
 Interpret about the separation axioms and product spaces
 Analyse the connectedness and compactness of product spaces
 Elaborate on the countability
 Discuss about the embedding and metrization
 Know about the embedding lemma and Tychonoff embedding
 State the Urysohn’s metrization theorem

4.2 CONNECTED SPACES

In topology and the mathematical field of analysis, the topological spaces and other
related or associated branches of mathematics, a connected space is defined as a
specific topological space which cannot be exemplified and characterized as the
union or association of two or more disjoint non-empty open subsets.
Connectedness is considered as the essential and principal topological properties
which are precisely and explicitly used for distinguishing the topological spaces.
The unique and strong notion specifies the path connected space, which is a specific
space where any two points can be joined or connected by means of a path.

Fundamentally, we can state that a subset of a topological space X can be
defined as a connected set if and only if it appears as a connected space when
typically observed as a subspace of X.

Several associated or related but more effective conditions are defined as
the path connected, simply connected, and n-connected. Additional related notion
includes the concept of locally connected, which neither implies nor follows from
connectedness.

The example of a space that is not connected can be given as an infinite line
from the plane. Additional examples of disconnected spaces, i.e., the spaces that
are not connected, typically include the plane with a closed ring deleted including
the union of two disjoint or separate open disks specified in the two dimensional
Euclidean space.

Definition: A topological space X is considered as disconnected if it is
defined as the union of two disjoint or separate non-empty open sets.
Alternatively, X is considered to be connected. A subset of a precise topological
space is defined as connected if it is typically connected in its subspace
topology.
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For a topological space X the following conditions are considered as
equivalent:

1. X is considered as connected.

2. X cannot be further divided into two disjoint or separate non-empty closed
sets.

3. The only subset of X which specifically is both open and closed, termed as
‘Clopen Sets’ are X and the empty set.

4. The only subsets of X having the empty boundary are X and the empty set.

5. X cannot be written in the similar way as the union of two non-empty disjoint
or separated sets.

    6. The only continuous functions from X to {0, 1} are defined as constant.

Connected Components

In topology, the maximal connected subsets or the utmost and maximum connected
subsets of a non-empty topological space are precisely termed as the connected
components of the space. Characteristically, the components or elements of any
topological space X specifically from a partition of X, are uniquely defined as disjoint,
separate and non-empty, and their union is defined as the whole or entire space.
Because we are holding that the empty topological space is connected, therefore
we essentially use the following special convention,

“The empty space does not have connected components. Every single
component is defined as a precise closed subset defined on the original space.”

It typically follows that when their number is finite, then each
component or element is also defined as an open subset. Consequently, when
their number in infinite, though this condition may not be true; for example,
the connected components or elements of the set of the rational numbers are
specifically defined as the one point sets, which are not open.

Let 
x
 be a connected component of x in a topological space X, and 

x

be the intersection of all open-closed sets containing x (called quasi-
component of x.) Then 

x
 

x
 where the equality holds if X is compact

Hausdorff or locally connected.

Disconnected Spaces

In topology, a space is termed as totally disconnected when all of its components
are precisely one point sets. Associated to this property of space, it can be stated
that a space X is termed as totally separated if for any two components or elements
x and y of X, there exists disjoint or separate open neighbourhoods U of x and V
of y such that X is defined as the union of U and V. Evidently any totally or entirely
separated space is totally and perfectly disconnected, however the converse does
not hold. For example, consider the two copies of the rational numbers Q and then
typically identify the rational numbers Q at every point except ‘Zero’. The resultant
subsequent space, together with the quotient topology, is defined as totally and
perfectly disconnected. Consequently, when the two copies of zero are considered
then obviously that space is not considered as totally separated. Essentially, it is
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not even Hausdorff. Additionally, the condition of totally separated is precisely
stronger in comparison to the condition of being Hausdorff space.

In topology, a Hausdorff space is defined as a precise topological space
having a separation property that any two distinct points can be separated by
means of disjoint open sets.

The following are the examples:

 The closed interval   in the standard subspace topology is
connected; although it can, for example, be written as the union of
and   the second set is not open in the aforementioned
topology of 

 The union of and is disconnected; both of these intervals
are open in the standard topological space 

 is disconnected.

 A convex set is connected; it is actually simply connected.

 A Euclidean plane excluding the origin, is connected but is not
simply connected. The three-dimensional Euclidean space without the
origin is connected and even simply connected. In contrast, the one-
dimensional Euclidean space without the origin is not connected.

 A Euclidean plane with a straight line removed is not connected since
it consists of two half-planes.

 The space of real numbers with the usual topology is connected.

 Any topological vector space over a connected field is connected.

 Every discrete topological space with at least two elements is
disconnected, in fact such a space is totally disconnected. The simplest
example is the discrete two-point space.

 The Cantor set is totally disconnected; since the set contains
uncountably many points it has uncountably many components.

 If a space X is homotopy equivalent to a connected space, then X is
itself connected.

 The topologist’s sine curve is an example of a set that is connected but
is neither path connected nor locally connected.

 The general linear group GLnRthat is, the group of n-by-n real
matricesconsists of two connected components: the one with matrices
of positive determinant and the other of negative determinant. In
particular, it is not connected. In contrast, GLnCis connected. More
generally, the set of invertible bounded operators on a complexHilbert
space is connected.

 The spectrum of a commutative local ring is connected. More generally, the
spectrum of a commutative ring is connected if and only if it has no idempotent
if and only if the ring is not a product  of two rings in a non-trivial way.



Connected Spaces

NOTES

Self - Learning
158 Material

Path Connectedness

A path from a point x to a point y in a topological space X is a continuous function
f from the unit interval to X with f 0x and f 1y. A path-component
of X is an equivalence class of X under the equivalence relation which makes x
equivalent to y if there is a path from x to y. The space X is said to be path
connected or pathwise connected or 0-connectedif there is atmost one path
component, i.e., if there is a path joining any two points in X. Again, many others
exclude the empty spaces.

Every path component space is connected. The converse is not always
true: examples of connected spaces that are not path componen include the
extended long line L* and the topologist’s sine curve.

However, subsets of the real line R are connected if and only if they
are path connected; these subsets are the intervals of R. Also, open subsets
of Rn or Cn are connected if and only if they are path componen. Additionally,
connectedness and path componenness are the same for finite topological
spaces.

Arc Connectedness

In topology, a space X is referred as to be arc connected or arc wise connected
when any two distinct or separate points can be joined through an arc, i.e.,
consider a path f which is typically homeomorphism between the unit interval
and its image fIt can be demonstrated that any Housdorff space
which is explicitly path connected is arc connected also. An exclusive example
of a space which is typically path connected but it is not arc connected is
obtained when the second copy 0of 0 is added to the nonnegative real numbers
This specific set along with a partial order can be endowed by
specifying that 0  a for any positive number a, but 0 and 0 are left
incomparable. One then endows this set with the order topology, that is one
takes the open intervals a, bx|a x band the half-open intervals 
ax|0 x a0ax|0 x aas a base for the topology. The
resulting space is a T

1
 space but not a Hausdorff space. Clearly 0 and 0can

be connected by a path but not an arc in this space.

4.3 LOCALLY CONNECTED SPACE

In the field of topology and other disciplines of mathematics, a topological
space X is typically defined as locally connected if every single point
acknowledges or recognises a neighbourhood basis that uniquely consists of
entire or complete open connected sets.

The historical perspective of topology discusses about the two most significant
and most widely used topological properties, namely the connectedness and
compactness. Certainly, the analysis and study of these properties can be done as
the subsets of Euclidean space, and also their unique identification as being
independent from the certain specific form of the Euclidean metric helped to specify
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the notion of a topological property and consequently a topological space. However,
whereas the structure of compact subsets of Euclidean space was understood
quite early on via the Heine-Borel theorem, connected subsets of RnFor n 1
proved to be much more complicated. Indeed, while any compact Hausdorff space
is locally compact, a connected a space and even a connected subset of the
Euclidean plane need not be locally connected.

Even though the fundamental and essential point set of topological notions
and properties is somewhat comparatively simple and easy, but their precise
algebraic topology is typically complex. According to this contemporary perspective,
the unique and strong property that specifies the local path connectedness is
considered very significant, for example a particular space to acknowledge a
universal cover it should be connected and also locally path connected.

A space is considered as locally connected if and only if particularly for every
single open set U, the connected specific components of U should be open.
Characteristically, a continuous function specifically explained from a locally
connected space to a totally or completely disconnected space must also be locally
constant. Essentially, the openness or directness of components or elements is a
natural property and is generally not true, for example the Cantor space is
considered as totally or completely disconnected but not discrete.

The following example will make the concept clear:

Let X be a topological space, and let x be a point of X.

We say that X is locally connected at x if for every open set V containing x
there exists a connected, open set U with x U  V. The space X is said to be
locally connected if it is locally connected at x for all x in X.

By contrast, we say that X is weakly locally connected at x if for every open
set V containing x or connected im Kleinen at xthere exists a connected subset
N of V such that x lies in the interior of N. An equivalent definition is: each open set
V containing x contains an open neighborhood U of x such that any two points in
U lie in some connected subset of V. The space X is said to be weakly locally
connected if it is weakly locally connected at x for all x in X.

In other words, the only difference between the two definitions is that for
local connectedness at x we require a neighbourhood base of open connected
sets, whereas for weak local connectedness at x we require only a base of
neighbourhoods of x.

Evidently, a space which is locally connected at x is weakly locally connected
at x. The converse does not hold. On the other hand, it is equally clear that a
locally connected space is weakly locally connected and here it turns out that the
converse does hold. A space which is weakly locally connected at all of its points
is necessarily locally connected at all of its points.

We say that X is locally path connected at x if for every open set V containing
x there exists a path connected, open set U with x U V. The space X is said
to be locally path connected at x for all x in X.
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Since path connected spaces are connected, locally path connected spaces
are locally connected.

The following examples will make the concept clear:

1. For any positive integer n, the Euclidean space Rn is connected and locally
connected.

2. The subspace [0,1][2,3] of real line R1 is locally connected but not
connected.

3. The topologist’s sine curve is a subspace of the Euclidean plane which
is connected, but not locally connected.

4. The space Q of rational numbers endowed with the standard Euclidean
topology, is neither connected nor locally connected.

5. The comb space is path connected but not locally path connected.

6. Let X be a countably infinite set endowed with the cofinite topology.
Then X is locally connected (indeed hyperconnected) but not locally
path connected.

Properties

The following are the properties of connectedness:

1. Local connectedness is, by definition, a local property of topological
spaces, i.e., a topological property P such that a space X possesses
property P if and only if each point x in X admits a neighbourhood
base of sets which have property P. Accordingly, all the metaproperties
held by a local property hold for local connectedness.

2. A space is locally connected if and only if it admits a base of connected
subsets.

3. The disjoint union i
i

X  of a family X
i
of spaces is locally connected

if and only if each X
i
 is locally connected. In particular, since a single

point is certainly locally connected, it follows that any discrete space
is locally connected. On the other hand, a discrete space is totally
disconnected, so is connected only if it has at most one point.

4. Conversely, a totally disconnected space is locally connected if and only if
it is discrete. This can be used to explain the aforementioned fact that the
rational numbers are not locally connected.

4.4 CONNECTEDNESS ON THE REAL LINE

The notion of connectedness is of fundamental importance in analysis. Before
giving a formal definition of connectedness in a metric space, we introduce
the notion of subspace.
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 Let (X, d) be a metric space and let A be a subset of X. Let d* denote
restriction of d to A × A, that is,

d* (x, y) = d (x, y)

Here x, y are points of A. Then d* is a metric for A called the induced
metric and the set A with metric d* is called subspace of X.

Thus, a subset A of X equipped with the induced metric is a metric
space in its own right and neighbourhoods, open sets and closed sets are
defined as an any metric space. But an open set (closed set) of A need not be
open (closed) when regarded as a subset of X.

For example, if we regard the closed interval [0, 1] as a sub space of R,
then the semi-open interval [0, 1[ is open in [0, 1] but not in R. In fact, if A is
a subspace of X and B A, then

(i) B is open in if there exists a set G open in X such that,

B = G A.

(ii) B is closed in A if there exists a set H closed in X such that,

B = H A.

Note that the phrase ‘B is open in A’ means that B is open relative to the
induced metric on A. Also ‘B is open in X ’ means that B is open with respect
to the metric on X.

Notes: (i) If A X is open, then B A is open in A if it is open in X.

(ii) If A X is closed, then B A is closed in A if it is closed in X.

Another definition is subset A of a metric space X is said to be
disconnected if it is the union of two non-empty disjoint sets both open in
A such that,

C D = and C D = A.

It follows from the preceding definition that a subset of a metric space
X is disconnected if it is the union of two non-empty disjoint sets both closed
in A.

We call C D the separation (or disconnection) of A.

It follows at once from definition that every singleton set is a connected
set.

Theorem 4.1: R is connected.

Proof: Suppose, if possible, R is disconnected. Then there exist two non-
empty, disjoint, closed sets A and B such that R = A B. Since A, B are non-
empty, we can find a

1
 A and b

1
 B. Since A B = a

1
 b

1
, and so either

a
1
 > b

1
 or a

1
 < b

1
. Suppose a

1
, < b

1
. Let I

1
 = ]a

1
, b

1
] so that I

1
 is a closed

interval. Bisect I
1
 and observe that its mid-point 1 1

2

a b
must belong either to A or

to B but not both since A and B are disjoint. It follows that one of the two halves
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must have its left end point in A and its right end point in B. We denote this interval
by I

2
 = [a

2
, b

2
]. We bisect I

2
 and proceed as before. We continue this process ad

infinitum. Evidently I
1
 I

2
 I

3
 ... Thus we obtain a nested sequence <I

n
> of

closed intervals such that their length |I
n
|  0 as

n . Hence, by the nested interval theorem, there exists a unique point c
which belongs to every I

n
, that is,

c {In : n N}.

It is easy to state that c is a limit point of both A and B.

For if V (c, ) = ] c – , c +[ is any -nhd of c, we can find a positive
integer m

0
 so large that I

n
 N (c, ) for all n > m

0
 and consequently N (c, )

contains infinite number of points of both A and B. Since A and B are closed,
c A and c B which is a contradiction since A B = 

Hence, R must be connected.

Theorem 4.2: A sebset A of R is connected if and only if it is an interval.

Proof: The ‘only if’ part. Let A be connected and suppose if possible, A is not
an interval. Then there exist real numbers a, p, b with a < p < b such that a,
b A but p A. Let, G = ] – , p[ and H = ]p, x[.

Then G, H are disjoint, non-empty open sets in R. They are non-empty
since a G and b H. Let

 C = A G and D = A H.

Then, C and D are open in A. Further a C and b and D so that they
are non-empty. Also

C G, D H and G H = C D = 

And C D = (A G) (B H)

= A (G H) = A (R – {p}

p A  A R – {p}]

Hence, C D is a separation of A and consequently A is disconnected
which is contradiction. Hence, A must be an interval.

The ‘If’ part. The proof of this part is exactly on the same lines and is
left as an exercise.

4.5 TYCHONOFF PRODUCT TOPOLOGY:
STANDARD SUBBASE AND ITS
CHARACTERIZATIONS

In topology, a subbase for a topological space X with topology T is a
subcollection B of T which generates T, such that T is the smallest topology
containing B. Following are some useful equivalent formulations of the definition:
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Let X be a topological space with topology T. A subbase of this topology
T is defined as a subcollection B of T satisfying one of the two following equivalent
conditions:

1. The subcollection B generates the topology T. This implies that T is the
smallest topology containing B and so any topology U
on X containing B must also contain T.

2. The collection of open sets consisting of all finite intersections of
elements of B, together with the set X and the empty set, forms
a basis for T. This means that every non-empty proper open set in T can
be written as a union of finite intersections of elements of B. Clearly,
given a point x in a proper open set U, there are finitely many sets
S

1
, …, S

n
 of B, such that the intersection of these sets contains x and is

contained in U.

The topological space precisely for any subcollection S typically of the
power set P(X), there uniquely exists a distinctive topology with S as a subbase.
Specifically, the intersection of precisely all the topologies on X that contains
S uniquely satisfies this particular condition. However, there is generally no
unique subbases for a given specific topology. Consequently, a fixed topology
is considered for finding the subbases for the specific topology. Subsequently,
an arbitrary or random subcollection of the power set P(X) also can be formed
by using the properties of topology specifically generated by means of that
subcollection.

Even though, in most of the conditions either of the above mentioned
two equivalent definitions are generally used, while one of the two specified
conditions is more efficient than the other.

Sporadically, at times a slightly different definition of the term subbase
is also used which involves the notion that the subbase B cover X. In this
specific condition, X is considered as an open set in the topology that is
specifically generated, for the reason that it is defined as the union of all the
{Bi} where Bi ranges over B. This implies that the nullary intersections can
be used in the definition. Even though, if this definition is used then the
above defined two definitions do not remain equivalent.

 In other words, there exist spaces X with topology T, such that there exists
a subcollection B of T such that T is the smallest topology containing B, yet B does
not cover X. In practice, this is a rare occurrence. For example, a subbase of a
space satisfying the T

1
 separation axiom must be a cover of that space.

Let us consider the following example.

Example 4.1: Consider the topology T X, ab, con X  ab, cand

the topology T* Y, uon Y u, vDetermine the defining subbase *B  of

the product topology on X Y.
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Solution:

X Y a, ua, vb, ub, vc, uc, vis the product set on

which the product topology is defined. The defining subbase *B  is the class

of inverse sets  Gx
1π  and  Hy

1π  where G is an open subset of X and H is

an open subset of Y. Computing, we have

 Xx
1π  Yy

1π  X Y,

 φπ 1
x    φπ 1

x  

 ax
1π  a, ua, v

 cbx ,π 1  b, ub, vc, uc, v

 uy
1π  a, ub, uc, u

Hence, the defining subbase *B  consists of the subsets of X Y above.

The defining base B consists of finite intersections of members of the defining
subbase, that is,

B X Y, a, ub, uc, u

a, ua, vb, ub, vc, uc, v

a, ub, uc, u

Theorem 4.3: Let XTbe an arbitrary collection of topological spaces and let

X  λ
λ
π X Let T be a topology for X. If T is the product topology for X, then T

is the smallest topology for X for which projections are continuous and conversely
also.

Proof: Let be the -th projection map and let G
i
 be any T-open subset of X

Then since T is the product topology for X,  λ
1

 λπ G  is a member of the subbase

for T and hence  λ
1

 λπ G  must be T-open. It follows that is T- Tcontinuous.

Now let V be any topology on X such that is V- Tcontinuous for each 

Then  λ
1

 λπ G  is V-open for every λG TSince V is a topology for X, V

contains all the unions of finite intersections of members of the collection   λ
1

 λπ G 

and λG T

V contains T that is T is coarser than V. Thus T is the smallest topology
for X such that is T– Tcontinuous for each 

Conversely, let *B  be the collection of all sets of the form  λ
1

 λπ G  where

λG  is an open subset of Xfor Then by definition, a topology V for X will

make all the projections continuous if and only if *B  V. Thus the smallest
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topology for X which makes all the projections continuous, is the topology

determined by *B  as a subbase.

Theorem 4.4: A function f Y X from a topological space Y into a product

space X  λ
λ
π X is continuous if and only if for every projection X Xthe

composition mapping f Y Xis continuous.

Proof: By the definition of product space, all projections are continuous. So if f is
continuous, then f being the composition of two continuous functions, is also
continuous.

On the other hand, suppose every composition function f Y Xis
continuous. Let G be an open subset of XThen by the continuity of f, f
Gf-–1

Gis an open set in Y. But the class of sets of the form 
G

where G is an open subset of Xis the defining subbase for the product topology
on X. Since their inverse under f are open subsets of Y, f is a continuous function.

Note: The projection 
x
 and 

y
 of the product of two sets X and Y are the mappings of X Y

onto X and Y respectively defined by setting 
x
 x, yx and 

y 
x, yy.

Theorem 4.5:  If X and Y are topological spaces, the family of all sets of the form
V W with V open in X and W open in Y is a base for a topology for
X Y.

Proof: Since the set X Y is itself of the required form, X Y is the union of all the
members of the family. Now let x, yV

1 
W

1
V

2 
W

2
with V

1
 and V

2

open in X and W
1
 and W

2
 open in Y. Then x, yV

1  
V

2
W

1 
W

2
V

1

W
1
V

2 
W

2
with V

1  
V

2
 open in X and W

1 
W

2 
 open in Y. Then the family

is a base for topology for X Y.

Theorem 4.6: Let C
i
 be a closed subset of a space X

i
 for i I. Then i

Ii
C


π is a

closed subset of i
Ii
X


π  with respect to the product topology..

Proof: Let X  i
Ii
X


π  and C  i

Ii
C


π . We claim X – C is an open set in the product

topology on X. Let x X – C. Then C   ii
Ii

C1


 and so x C implies that there

exists j I such that 
j
xC

j
. Let V

j
 X

j
 – C

j
 and let V   jj V1

 
π 

. Then V
j
 is

an open subset of X
j
 and so V is an open subset in fact a member of the standard

subbasein the product topology on X. Evidently 
j
xV

j
 and so x V. Moreover,

C Vsince 
j
C

j
VSo V X – C. Thus, X – C is a neighbourhood

of each of its point. Therefore, X – C is open and C is closed in X.

4.6 PROJECTION MAPS

In mathematics, in general, a projection is a mapping of a set or of a mathematical
structure which is idempotent, i.e., a projection is equal to its composition with
itself. A projection may also refer to a mapping which has a left inverse. Both
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these ideas are related. Let p be an idempotent map from a set E into itself (thus
p°p = Id

E
) and F = p(E) be the image of p. If we denote the map p viewed as a

map from E onto F by  and the injection of F into E by i, then we get i° = Id
F
.

On the other hand, i° = Id
F
 implies that °i is idempotent.

Initially, the notion of projection was introduced in Euclidean geometry to
denote the projection of the three-imensional Euclidean space onto a plane. The
two main projections of this kind are of following types:

 Central Projection: It is the projection from a point onto a plane. If C is
the center of projection, then the projection of a point P distinct from C is
the intersection with the plane of the line CP. The point C and the points P
such that the line Central Projection (CP) is parallel to the plane do not
have any image by the projection.

 The Projection Onto a Plane Parallel to a Direction D: The image of a
point P is the intersection with the plane of the line parallel to D passing
through P.

Definition 1: For each the mapping  βλ
λ
π XX  assigning to each

element <x> of λ
λ
π X its th coordinate,   βλ

β
π xx   is known as the

projection mapping associated with the index 

Consider the set  β
1

β
π G

 where Gis an open subset ofXIt consists of

all points p ain X
λ
π such that   β

β
π Gp  . In other words,  β

1

β
π G

 λ
λ
πY where YGand Y Xwhenever that is 

GX1
  X

2
  

XGX

Definition 2:  For each in an arbitrary index set let XTbe a topological

space and let X  λ
λ
π X Then the topology T for X, which has a subbase the

collection   λλλ
1

β* andλ;π TGGB    is called the product topology or

Tichonov topology for X and XTis called the product space of the given
spaces.

The collection *B  is called the defining subbase for T. The collection B of all

finite intersection of elements of *B  would then form the base for T.

Note: The projection mappings are continuous for G in Topen in

X  β
1

β
π G

  *B  which is a subbase for T and therefore  β
1

β
π G

 is T-open

in X  λ
λ
π X 
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Theorem 4.7: Let A be a member of the defining base for a product space

X  λ
λ
π X Then the projection of A into any coordinate space is open.

Proof: Since A belongs to the defining base for X.

A   
m

GGX m αα,.....21λ
λ

...αα,αλ;π
1

 where 
i

Gα is an open subset

of 
i

X α . So for any projection X X

A
 
 









m

m

iG

X





,...,,βf

,...,,βif

21β

21β

In either case Ais an open set.

Theorem 4.8: Every projection  βXX  on a product space X  λ
λ
π X

is open.

Let G be an open subset of X. For every point pG, there is a member
A of the defining base of the product topology such that p A G. Thus for

any projection  βXX  pG PAG

But Ais an open set. Therefore, every point Pin Gbelongs
to an open set Awhich is contained in Gis an open set.

Note: As each projection is continuous and open, but projections are not closed maps, e.g.,
consider the space R R with product topology.

Let H x, yx, y R and xy 

Here H is closed in R R but HR 

This is not closed with respect to the usual topology for R where is
the projection in the first coordinate space R.

Check Your Progress

1. What is connected space?

2. When a subset of a topological space X is connected?

3. Define connected components.

4. When topological space termed as totally disconnected?

5. What do you understand by locally connected space?

6. When d* is called subspace of X?

7. Give the definition of a subbase.

8. Define the term projection map.

9. What is central projection?
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4.7 SEPARATION AXIOMS AND PRODUCT
SPACES

In topology and related fields of mathematics, there are many limitations that we
often make on the kinds of topological spaces that we wish to consider. Some of
these restrictions are given by the separation axioms. These separation axioms
are often termed as Tychonoff separation axioms, after Andrey Tychonoff. The
separation axioms are axioms only in the sense that, when defining the notion of
topological space, one could add these conditions as extra axioms to get a more
restricted notion of what a topological space is. The separation axioms are denoted
with the letter ‘T’ after the German Trennungsaxiom, meaning separation axiom.

The separation axioms are used to distinguish disjoint sets and distinct points.
It is not enough for elements of a topological space to be distinct. They have to
be topologically distinguishable. In the same way, it is not enough for subsets of
a topological space to be disjoint. They have to be separated in some way.
Suppose X is a topological space. Consequently, the two specific
points x and y in X are typically defined as topologically distinguishable or distinct
if they do not precisely possess the similar neighbourhoods or alternatively, we
can specify that at least one of the points has a neighbourhood which is precisely
not a neighbourhood of the other. Therefore, when x and y are topologically
distinguishable or distinct points, then the singleton sets {x} and {y} must also be
disjoint or separate.

Therefore, two points x and y are considered as separated if each of them
holds a specific neighbourhood that is not at all the neighbourhood of the other.
Additionally, the two subsets A and B of X are considered as separated if each
of them is disjoint or separate from the closure of other; typically, the closures
themselves are not disjoint or separate. Evidently, the points x and y are considered
as separated if and only if their singleton sets {x} and {y} are also separated.
Characteristically, remaining all conditions for sets can precisely be applied to the
points or to a specific point and also a set by using the singleton sets.

Additionally, subsets A and B of X are separated by neighbourhoods if they
have disjoint neighbourhoods. They are separated by closed neighbourhoods if
they have disjoint closed neighbourhoods. They are separated by a function if
there exists a continuous function f from the space X to the real line R such that
the image f(A) equals {0} and f(B) equals {1}. Lastly, they are precisely separated
by a function if there exists a continuous function f from X to R such that
the preimage f–1({0}) equals A and f –1({1}) equals B. Any two topologically
distinguishable points must be distinct and any two separated points must be
topologically distinguishable. Moreover, any two separated sets must be disjoint
and any two sets separated by neighbourhoods must be separated, and so on.

Theorem 4.9: A topological space X is Hausdorff if and only if the diagonal is
closed in X  X with the product topology.
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Proof: Let D denote the diagonal {( , ) | }x x x X  in X  X.

Suppose D is closed. Then the complement of D is open. We want to show

that X is Hausdorff. Let x y . The point ( , )x y  lies in an open set disjoint from D.

In particular, there is a basis open set about ( , )x y  that does not intersect D. Let U

× V be such a basis open set so U and V are both open in XClearly, if y U V  

then ( , )y y U V  . But U × V does not intersect D, and hence U and V are

disjoint open sets.

Conversely, suppose X is Hausdorff. Then, we want to show that D is
closed.

We know that given x y , there are disjoint open sets U and V

containing x and y respectively. Thus, any ( , )x y  lies inside an open set
U × V. Further, as U V  is empty, the set U × V does not intersect D.
Consequently, for every single point outside D, there is precisely a
neighbourhood of the point outside D. The union of all these neighbourhoods
are taken for concluding that the complement of D is open and therefore D is
closed.

Even though, precisely the two directions of proof appear to be
practically identical to one another, and hence there is a subtle or slight
difference. To prove that precisely the diagonal is closed from Hausdorffness,
then basically it can be said that products of open sets are open. Consequently,
the identical or similar proof will be considered that more open sets can be
added. Alternatively, the proof of Hausdorffness from the specified diagonal
being closed significantly defines that the so called open rectangles form a
basis, i.e., the products of open sets.

Theorem 4.10: The product of Hausdorff spaces is Hausdorff in the product
topology.

Proof: Let X and Y be the two Hausdorff spaces. Then, the product space is X 
Y.

Select the points 1 1( , )x y  and 2 2( , )x y . Now either 1 2x x  or 1 2y y .

If 1 2x x , first separate x
1
 and x

2
 in X. That is, choose disjoint open sets in

1:X U  containing x
1
 and U

2
 containing x

2
. Clearly U

1
 × Y and U

2
 × Y are disjoint

open sets containing 1 1( , )x y  and 2 2( , )x y  respectively..

If 1 2y y , then separate y
1
 and y

2
 in Y, say, by V

1
 and V

2
. Then X × V

1
 and

X × V
2
 are disjoint open sets containing 1 1( , )x y  and 2 2( , )x y .

Theorem 4.11: Every subspace of a regular space is regular.

Proof: Let X be the regular topological space and A be a subset. Choose x A
and C closed in A. For x  X, choose D, a closed subset of X such that D A C  .
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Such a D exists from the way the subspace topology is defined. Clearly, whatever
D is picked up for the purpose, x  D because the only points in D A  are in a
set not containing x.

Since X is regular, we can find open sets U and V in X such that x U ,

C V , and U and V are disjoint. Now, U A  and V A  are disjoint open

subsets of A, with x U A   and C V A  .

The two important facts that we chose are that x being a point in the
subspace, remained a point in the whole space and every closed set in the
subspace was an intersection with the subspace of a closed set in the whole
space.

4.8 CONNECTEDNESS AND COMPACTNESS
OF PRODUCT SPACES

In topological analysis, the terms ‘Connectedness’ and ‘Compactness’
are the two most widely studied and used topological properties. Definitely,
these properties are studied for analysing the subsets of the Euclidean space
and the identification and acknowledgement of their individuality from the
specific and unique form of the Euclidean metric notion of a topological
property and consequently a topological space. However, the basic structure
and unique notion of compact subsets of Euclidean space was recognized by
the Heine-Borel theorem, who specified that connected subsets of Rn (for n >
1) proved to be very complicated and complex. Certainly, while any precise
and compact Hausdorff space is considered locally compact, therefore a
connected space – and even a connected subset of the Euclidean plane –
essentially should not be locally connected.

A connected space is defined as a specific topological space which cannot
be characterized or exemplified as the union of two or more disjoint or separate
non-empty open subsets. Connectedness is, therefore, one of the most significant
topological properties exceptionally used to discriminate and uniquely categorise
the topological spaces. In the mathematical field of topological analysis, specifically
the term compactness is defined as a property of topological space that specifically
generalises the notion and concept about the subset of Euclidean space is closed,
i.e., it contains all of its limit points, and bounded, i.e., all of its points typically remain
within certain fixed distance to each other. In topology, a first countable space is
referred as a topological space which uniquely satisfies the ‘First Axiom of
Countability’. The term embedding or imbedding is an instance of certain
mathematical structure particularly contained within a different instance, for example
as a group or a subgroup. A metrizable space is typically a topological space which
is homeomorphic to a metric space.

In the end of the twentieth century, the locally homeomorphic properties to
Euclidean space were considered more complicated and complex. This implies
that even though the basic point set topology is relatively simple because
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essential metrizable spaces were studied and according to most of the definitions
the concept of the algebraic topology is extremely complex. From this contemporary
perspective, the strong property of local path connectedness is considered more
significant, for example for a space to acknowledge a universal cover it must be
connected and also locally path connected. Characteristically, a space is termed
to be locally connected iff for every open set U, the connected components of U in
the subspace topology are open. A continuous function from a locally connected
space to a totally disconnected space must be locally constant.

Theorem 4.12: 
λ

λX is locally connected if and only if each space Xis locally

connected and all but a finite number are connected.

Proof: Suppose 
λ

λX is locally connected, and let x Xbe contained in

some open set YChoose some point z zwith zXand we have z

belonging to the open set  β
1

βπ Y . By local connectedness, there must exist a

connected open set G containing z and contained in  β
1

βπ Y .Taking the -th

projection, we see that z xis contained in the connected open set Gwhich
is itself contained in Yand so Xis locally connected. Further, if z is any point of
the product space, it must be contained in some connected open set G. By definition,

z  λ
λ
πY G where Yis open in Xfor all and YXfor all but a certain finite

number of values of . But then the projections of G are connected and are equal
to Xexcept for that finite number of values of

 


Now suppose that Xis locally connected for old and connected for 

n
. Let X  xbe an arbitrary point of λ

λ
πY where Yis open in X

for all and YXfor k
*. Since xYfor all and Yis

locally connected, there is a connected open set Gin Xsuch that xGY.

Consider the subset λ
λ
π Z where ZGif n

, k
* and

ZXotherwise. But by the result, 
λ

λX is connected if and only if each Xis

connected. This set is connected. Hence we have formed a connected open set

containing X and contained in 
λ

λY 

4.9 COUNTABILITY

Following are the axioms of countability specifically used for topological spaces.

First Axiom of Countability

A topological space X is said to satisfy the First Axiom of Countability if, for
every x  X there exists a countable collection 𝒰  of neighbourhoods of x, such
that if N is any neighbourhood of x, then there exists U  𝒰  with U  N.
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A topological space that satisfies the first axiom of countability is said
to be First Countable.

All metric spaces satisfy the first axiom of countability because for any
neighbourhood N of a point x, there is an open ball within N, and the countable
collection of neighbourhoods of x that are where , has the

neighbourhood where .

Theorem 4.13. If a topological space satisfies the first axiom of countability, then
for any point x of closure of a set S, there is a sequence {a

i
} of points within S

which converges to x.

Proof: Let {A
i
} be a countable collection of neighbourhoods of x such that for

any neighbourhood N of x, there is an A
i
 such that A

i
  N. Define,

Then form a sequence {a
i
} such that A

i
  B

i
. Consequently, {a

i
} converges

to x.

Theorem 4.14. Let X be a topological space satisfying the first axiom of countability.
Then, a subset A of X is closed if and only if all convergent sequences {x

n
} A

which converge to an element of X converge to an element of A.

Proof: Suppose that {x
n
} converges to x within X. The point x is a limit point of

{x
n
} and thus is a limit point of A, and since A is closed, it is contained within A.

Conversely, suppose that all convergent sequences within A converge to an element
within A, and let x be any point of contact for A. Then by the theorem above,
there is a sequence {x

n
} which converges to x, and so x is within A. Thus, A is

closed.

Second Axiom of Countability

A topological space is said to satisfy the Second Axiom of Countability if it
has a countable base. Consequently, the topological space that satisfies the second
axiom of countability is said to be Second Countable.

Fundamentally, the topological space that satisfies the second axiom of
countable is first countable, since the countable collection of neighbourhoods of a
point can be all neighbourhoods of the point within the countable base, so that any
neighbourhood N of that point must contain at least one neighbourhood A  within
the collection, and A must be a subset of N.

Theorem 4.15. If a topological space X satisfies the second axiom of countability,
then all open covers of X have a countable subcover.

Proof: Let  be an open cover of X, and let B be a countable base for X. B
covers X. For all points x, select an element of , C

x
 which contains x, and an

element of the base B
x
, which contains x and is a subset of  C

x
 (which is

possible because  B is a base). { B
x
} forms a countable open cover for X. For

each B
x
, select an element of   which contains B

x
, and this is a countable

subcover of  .
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Check Your Progress

10. What do you understand by separation axioms?

11. What are the uses of separation axioms?

12. Define connectedness and compactness?

13. When does a topological space satisfy the first axiom of countability?

14. What do you mean by a first axiom countability in topological space?

4.10 EMBEDDING AND METRIZATION

Determining if two given spaces are homeomorphic is one of the fundamental
problems in topology.

Definition 1: A one-one and onto (bijection) continuous map f : X Y is a
homeomorphism if its inverse is continuous.

A bijection f : X Y induces a bijection between subsets of X and
subsets of Y and it is a homeomorphism iff this bijection restricts to a bijection,

1

( )
{Open (or closed) subsets of } {Open (or closed) subsets of }

( )

U f U
X Y

f V V




between open (or closed) subsets of X and open (or closed) subsets of Y.

Definition 2: Suppose X is a set, Y a topological space and f : X Y an
injective map. The embedding topology on X (for the map f) is the collection,

f –1(
Y
) = { f –1(V)|VY  open} of subsets of X.

The subspace topology for A X is the embedding topology for the
inclusion map A X.

Theorem 4.16. (Characterization of the Embedding Topology): Let X
has the embedding topology for the map f : X Y. Then,

1. X Y is continuous.

2. For any map A X into X,

A X is continuous iff A X 
f

 Y is continuous.

The embedding topology is the only topology on X with these two
properties. The embedding topology is the most common topology on X such that
f : X Y is continuous.

Proof: The reason is that  A 
g

X is continuous.

g–1(
X
) 

A 
g–1(f –1

Y
) 

A
 (fg)–1 (

Y
) 

A
  A

g

X
f

Y
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is continuous by definition of the embedding topology. The identity map of X is a
homeomorphism whenever X is equipped with a topology with these two properties.

Definition: An injective continuous map f : X Y is an embedding if the topology
on X is the embedding topology for  f, i.e., 

X
 = f –1

Y
.

Any injective map f : X Y induces a bijection between subsets of X and
subsets of f (X) and it is an embedding iff this bijection restricts to a bijection,

1

( )
{Open (or closed) subsets of } {Open (or closed) subsets of ( )}

( )

U f U
X f X

f V V




between open (or closed) subsets of X and open (or closed) subsets of f (X).

Alternatively, the injective map f : X Y is an embedding iff the bijective
corestriction f (X)| f : X f (X) is a homeomorphism. An embedding is a
homeomorphism followed by an inclusion. The inclusion A X of a subspace is
an embedding. Any open (or closed) continuous injective map is an embedding.

For example, the map f (x) = 3x + 1 is a homeomorphism from R R.

Lemma 1: If f : X Y is a homeomorphism (embedding) then the corestriction of
the restriction f (A)| f \ A: A f (A) (B| f \ A: A B) is a homeomorphism
(embedding) for any subset A of X (and any subset B of Y containing f (A)). If the
maps f

j 
: X

j
 Y

j
 are homeomorphisms (embeddings) then the product map

   jjj YXf : is a homeomorphism (embedding).

Proof: In case of homeomorphisms employ that there is a continuous inverse in
both cases. In case of embeddings, employ that an embedding is a homeomorphism
followed by an inclusion map.

Lemma 2: (Composition of Embeddings): Let X 
f

 Y 
g

 Z be continuous
maps. Then  f  and g are embeddings implies that g  f is an embedding
which in turn implies thatf  is an embedding.

Proof: For proving the second implication, first note that f  is an injective
continuous map. Let U X be open. Since g  f is an embedding,
U = (g f )–1 W for some open W Z. But (g f )–1 = f –1g–1W where g–1W is
open in Y since g is contimuous. This shows that f  is an embedding.

Theorem 4.17: (Characterization of the Product Topology): Given the

product topology jY . Then,

1. The projections   jjj YY:π are continuous, and

2. For any map f : X
Jj

jY into the product space we have,

X 
f


Jj

jY is continuous  j J: X 
f


Jj

jY jπ

 Y
j
 is continuous.
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The product topology is the only topology on the product set with these
two properties.

Proof: Let T
X
 be the topology on X and T

j
 the topology on Y

j
. Then

 Jj jjS



  )(π 1  is a subbasis for the product topology on 

Jj
jY . Therefore,

f : X 
Jj

jY is continuous f –1( Jj jj
 )(π 1  ) 

X

( ))((π 11 Jj jjf


  ) T
X

 jJ: Xjj f   )()οπ( 1

 jJ: fjοπ  is continuous by definition of continuity

Now, we have to show that the product topology is the unique topology

with these properties. Take two copies of the product set 
Jj

jX . Provide

one copy with the product topology and the other copy with some topology
that has the two properties of the above theorem. Then the identity map between
these two copies is a homeomorphism.

Theorem 4.18: Let (X
j
)

jJ 
be an indexed family of topological spaces with

subspaces A
j
 X

j
. Then 

Jj
jA is a subspace of 

Jj
jX .

1.   jj AA

2.    jj AA )( and equality holds if A
j
 = X

j
 for all but finitely many

j J.

Proof: (1) Let (x
j
) be a point of  jX . Since  Jj jjS




  )(π 1  is a subbasis

for the product topology on  jX , we have

(x
j
)  jA  k J:  )(π 1

kk U φ jA for all neighbourhoods

U
k
 of x

k
.

 k J: U
k
 A

k
 for all neighbourhoods U

k
 of x

k

 k J: x
k
 kA

x
j
 jA
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(2)    jj AA )(  because 
j
is an open map so that 

j
 (  )( jA ) 


jA  for all j  J. If A

j
 = X

j
 for all but finitely many j  J then  

jA 

 )( jA because  
jA is open and contained in  jA .

It follows that a product of closed sets is closed.

Note:  A product of open sets need not be open in the product topology.

4.10.1 Embedding Lemma and Tychonoff Embedding

Theorem 4.19 (Embedding Lemma): Let   be a family of mappings where
each member f  maps X Y

f
. Then,

1. The evaluation mapping e: X  f fY defined by 
f 
e(x) = f (x),

for all x X, is continuous.

2. The mapping e is an open mapping onto e(X) if  distinguishes points
and closed sets.

3. The mapping e is one-to-one if and only if  distinguishes points.

4. The mappping e is an embedding if  distinguished points and closed
sets.

Proof: (1) Let 
g
: f fY  Y

g 
be the projection map to the space Y

g
. Then


g
e = g so that 

g
e is continuous. Therefore e must be continuous as g is

continuous.

(2) Suppose that U is open in X and x  U. Choose f  such that f(x)

)\( UXf . The set B = {z  e(X)| 
f 
(z) )\( UXf } is a

neighbourhood of e(x) as the set is open (it is defined for components

not being in the closed set )\( UXf  and clearly e(x) B. Moreover


f 
(B) f(U) by construction. It is now claimed that f(U) 

f 
(B). This

follows trivially from the definition of a family of functions
distinguishing points and closed sets. Therefore f (U) = 

f 
(B) and

subsequently f (U) is an open subset of 
g
e(X). Therefore the evaluation

map is an open mapping.

(3) The definition of distinguishing points implies injectivity.

(4) Combining a, b and c, we see that X  e(X) as e is a continuous, open,
injective, surjective (as a continuous map is always surjective onto its image)
map.
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Definition: If X is a space and A, a set then by the power XA we mean the
product space X, where X 

=X, for each   A. Any power of [0, 1] is called
a cube. A map e: X Y is an embedding iff the map e: X  e(X) is a
homeomorphism. If there is an embedding e: X Y then we say that X can be
embedded in Y.

Theorem 4.20 (Tychonoff’s Embedding Theorem): A space is Tychonoff
iff it can be embedded in a cube.

Proof:  Let X be a Tychonoff space and let A = {f : X  [0, 1] / f is
continuous}. Define e: X  [0, 1]A by e(x)(f) = f (x).

(i) e is injective: If x, y X with  x y, then there is f A so that f(x) = 0
and f(y) = 1. Then e(x)(f) e(y)(f), so e(x) e(y).

(ii) e is continuous: This is immediate since 
f 
e = f.

(iii) e: X e(X) carries open sets of X to open subsets of e(X): For let U be
open in X and let x U. Then there is f A so that f(x) = 0 and f(X – U)

= 1. Let V = 1π
f ([0, 1)), an open subset of [0, 1]A. Then e(x) V and if

y X is such that e(y) V, then e(y)(f)   [0, 1), so f(y) < 1 and y U.
Thus e(x) V e(X) e(U).

(i), (ii) and (iii) together imply that e is an embedding.

: [0, 1] is clearly so [0, 1]A is Tychonoff for any A. Any subspace
of a Tychonoff space is Tychonoff. Thus if X can be embedded in a cube,
then X is homeomorphic to a Tychonoff space and so is itself Tychonoff.

Theorem 4.21: Let (T, ) be the 3-point topological space defined by
T = {0, 1, 2} and   = {, {0}, T}. Let (X, ) be any topogical space
and suppose that   X= Then there is an embedding e: X    X.

Proof: For each U  , define f
U
: X T by f

U
(y) = 0 if y U and

f
U
(y)=1 if y U. Then f

U
 is continuous. For each x X, define f

x
: X 

T by f
x
(y) = 2 if y = x and f

x
(y) = 1 if y x. Then f

x
 is also continuous.

Define e by e
i
(y)=f

i
(y) for each i    X. Then

(i) e is injective, for if x, y  X with x  y then e
x
(y) = 1 but e

x
(x) = 2,

so e
x
(x) e

x
(y) and hence e(x) e(y).

(ii) e is continuous because each f
i
 is continuous.

(iii) e is open into e(X), for if U   and x U then V = 1π
U (0) is open

in T  X. Furthermore, so 
U
e(x)=0, so e(x) V while if y X is

such that e(y) V then 
U
e(y)= 0 and hence y U. Thus V e(X) 

e().
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4.10.2 Urysohn’s Metrization Theorem

Theorem 4.22 (Urysohn’s Metrization Theorem): Suppose (X, ) is a
regular topological space with a countable basis , then X is metrizable.

Proof: Let (X, ) be a regular metrizable space with countable basis . For
this proof, we will first create a countable collection of functions {f

n
}

nN
,

where f
m
:X  R for all m  N, such that given any x X and any open

neighbourhood U of x there is an index N such that f
N
(x) > 0 and zero

outside of U. We will then use these functions to imbed X in Rw.

Let x X and let U be any open neighbourhood of x. There exists B
m

 such that x B
m
. Now, since X has a countable basis and is regular, we

know that X is normal. Next, as B
m
 is open, there exists some B

n
  such

that nB  B
m
. Thus we now have two closed sets nB and X \ B

m
, and so we

can apply Urysohn’s lemma to give us a continuous function g
n,m

: X R

such that g
n,m

( nB ) = {1} and g
n,m

(X \ B
m
) = {0}. Notice here that this function

satisfies requisite: g
n,m

(y) = 0 for y X \ B
m
 and g

n,m
(x) > 0. Here, g was

indexed purposely, as it shows us that {g
n,m

} is indexed by NN, which is
countable (since the cross product of two countable sets is countable).
Considering this, relable the functions {g

n,m
}

n,mN
 as {f

n
}

nN
.

We now imbed X in the metrizable space Rw. Let F: X  Rw where
F(x) = (f

1
(x), f

2
(x), f

3
(x), …), where f

n
 are the functions constructed above.

We claim that F is an imbedding of X into Rw.

For F to be an imbedding it is required of F to be homeomorphic
onto its image. First, this needs that F should be a continuous bijection
onto its image. We know that F is continuous as each of its component
functions f

N
 are continuous by construction. Now we show that F is an

injection.

Let x, y  X  be distinct. From the Hausdorff condition there exist
open sets U

x
 and U

y
 such that x  U

x
, y  U

y
 with U

x
 U

y
=. By the

construction of our maps f  there exists an index N  N such that f
N
(U

x
)

> 0 and F
N
(X \ U

x
) = 0. It follows that f

N
(x)  f

N
(y) and so F(x)  F(y).

Hence, F is injective.

Now, as it is clear that F is surjective onto its image F(X), all that is
left to show is that F is an embedding. We will show that for any open set U
X, F(U) is open in Rw. Let U X be open and let x U. Pick an index N
such that f

N
(x) > 0 and f

N 
(X \U) = 0.

Let F(x) = z F(U). Let V = 1π
N ((0, )), i.e., all elements of Rw with

a positive Nth coordinate. Now let W = F(X)  V. We claim that
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z W F(U) showing that F(U) can be written as a union of open sets,
hence making it open.

First we show that W is open in F(X). We know that V is an open set
in Rw. W = F(X)  V, and W is open by the definition of the subspace topology.

Thereafter, we will first show that f(x) = z  W and then W  F(U).

To prove our first claim,

F(x) = z  (F(x)) = f
N
(x) > 0  –

 N
(z) =

 N
(F(x)) = f

N
(x) > 0

 
 N

(z) > 0 which means that z  1π
N (V) and also z F(X)  z 

F(X)V = W. Now we show that W F(U). Let y W. This means y 
F(X) V = W.

Now we show that W F(U). Let y W. This means y F(X) V.
This means there exists some w X such that F(w) = y. But, since
y V we have that:


 N

(y) =
 N

(F(w)) = f
N
(w) > 0 since y  V, but f

N
(w) = 0 for all w  X \U

and so y  F(U).

In conclusion, as we have shown that F: X  Rw is a map that preserves
open sets in both directions and bijective onto its image, we have shown that
F is an embedding of the space X into the metrizable space Rw and X is
therefore metrizable, the metric being given by the induced metric from Rw.

Example 4.2: The topology generated by the dictionary ordering on R2 is
metrizable.

Proof: From previous Theorem 4.22, all we have to do for showing that R2

is metrizable in the dictionary ordering is to prove that this space is regular
with a countable basis.

Now, since the set {(a, b), (c, d)| a c, b < d; a, b, c, d R} is a
basis for the dictionary ordering on R2 and the set of intervals with rational
end-points are a basis for the usual topology on R, it follows that the set
{(a, b), (c, d)|a c, b < d; a, b, c, d Q } is a countable basis for the
dictionary ordering.

Now we will show that the dictionary ordering is regular. Let a R2

and B R2 such that B is closed in the dictionary ordering and a B. Let
= inf {d(a, b)| b B}. We know that is greater than 0, for otherwise a
would be an accumulation point of B, which is a contradiction. It follows that

the open sets ((a, a–/2), (a, a+/2)) and  Bb ((b, b–/2), (b, b+/2)) are

disjoint open sets containing a and B, respectively. Hence, the dictionary
ordering over R2 is metrizable, since it is regular and has a countable basis.

Note: In this proof we have shown that a sequence of functions {f
n
}

nN
 with the property

that for each x X and each neighbourhood U of x there is some n N such that f
n
(x) > 0 and

f
n
(y) > 0 for all y X \U, gives us an imbedding F: X Rw. Notice that we have the very

similar result if we have a sequence of functions {f
j
}

jJ
 with same properties as above: given

any x X and any neighbourhood U of x there exists jJ such that f
j
(x) > 0 and f

j
(y) = 0 for all

y X \U, then we have an imbedding from X  Rj given by F(x) = (f
j
(x))

jJ
. This is known as

the imbedding theorem and is a generalization of Urysohn’s metrization theorem.
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Check Your Progress

15. Define the term embedding.

16. State the Urysohn's metrization theorem.

4.11 SOLVED EXAMPLES

Example 1: The continuous image of a connected space is connected.

Solution: Let f:XY is a continuous surjection suppose Y has a proper
simultaneously open and closed subset then f-1() is a proper simultaneously
open and closed subset of X. Thus disconnectedness of Y implies
disconnectedness of X.

Example 2: Let p denote an analytic polynomial in the complex variables
X

1
,…..X

n
, and X(p) denote the zero set of p. Then n\X(p) is path

connected.

Solution: Let X,nX(p).

Consider the straight line path,

r(t)=(1-t)x+t(t)

Note that {t: r(t)  X(p) is precisely the zero set X(por):= X. Since
por is polynomial in one variable, X is a finite subset of  thus r maps the
path connected set \X continuously into n\X(p). In particular, X and  belong
to the path-connected subset r(\X) of n\X(P).

Example 3: A metric space (X, d) is second countable if any only if the
following holds true:

(1) X has a countable dense subset.

(2) X is compact.

Solution:

1. Let {x
n
} be a countable dense subset of X we see that the countable

collection 
1

{ ( ; ) : 1, 1}d nB x n m
m

 forms a basics:

(i) Let xX then there exists an integer n  1 such that X
n
B

d
(x,

1

2
),

then xB
d
(x

n
,
1

2
)

(ii) If 
1 2

1 1
: ( , ) ( , )d n dx B x B x

m m2n  then

There exists integer r1 such that 
1

( , )dB x U
r

By density of {x
n
}, there exists x

l
 

1
B ( , )

4d x
r

Then 
1 1

( , ) ( , ) .
2d l dx B x B x U

r r
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2. Suppose X is compact for each integer n1 consider the open cover
1

{ ( , )}x
n

  of X. Since X is compact, X has a finite subcover

1
{ ( , )}: 1,..... }n nx i k

n
 of X.

1

1
{ ( , ) : 1,......n n

n

x i k
n 

 
Forms a countable basis for X.

Example 4: Every compact Hausdorff space is normal.

Solution: Let A and B be two closed subset of a compact Hausdorff space X. It
is already known that any closed set and a point in X can be separated by open
sets. For each aA, there exists disjoint open sets for a and W

a
 such that aa

and BWaa

Clearly, A  U aA Ua. Since A is compact there exist a
1
……..a

K
A such

that

1
: ......

ka aU U U  is an open set containing A.

Then W : W ...... W
k ka a is an open set containing B and U W .

Example 5: Prove that there exists a maximal family FC with the finite
intersection property.

Solution: F C, here consider the collection  of families FC of subsets
of X with the finite intersection property with strictly partial order given by

1 2f f  iff 1 2f f

Let 
0
 be a simply ordered subcollection of , i.e, f

1 


 
f
2
 

0
 then either

1 2 2 1orf f f f  has the upper bound 
0fU U   in .

To see this, we must check that U belongs to F that in U has finite intersection
property. If A,….A

n
u Then A

i
f

i
 for some i, and hence A,….. A

n
 F

j
 for some

J.

Since F
j
 has finite intersection property A

1 
…A

n
 in non-empty. Thus

Zorn’s Lamma can be applied which ensures existance of maximal family
F C with the finite intersection property.

Example 6: Let X be a connected normal space, which is also Hausdorff
and which contains at least two points then there exists a continous
surjection f:X[0,1]. In particular, X is uncountable.

Solution: By Urysohn’s Lemma, There exists a continous function f:X[0,1]
such that f(a)=0 and f(b)=1.

Where a,b are fixed distinct point in X suppose there is r[0,1] such that r
has no preimage. Then is 0 f (X)  [0, r] is open and closed subset of f(X) which
close not contain 1.

This is not possible since f(X) is a connected set containing 1, so that f is
surjective.
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Example 7: Prove that no pair of the following subspaces of  are
homeomorphic: [0,1], [0,1], [0,1]

Solution: The distinguishing property is the minimal number of connected
components when we take out two point such a procedure will always separate
(0,1) into 3 components. If we choose one of them to be a boundry point it is
2 for [0,1] but not less if we take of two boundary points from [0,1] it will remain
connected, hence this number is 1 for it.

Example 8: Given a space X, we define an equivalence relation on the
element of X as follows for all x,yX. x~y there is a connected subset
AX with x,yA compute the connected components of Q.

Solution: Let  A Q  be connected of A contains more than one elements
say x<yQ, then for a given irrational at r between x and y (– ,r) and (r, )
separate A into two disjoint, non-empty open subset. Thus it cannot be
connected, so it should contain at most one element, so the connected
components are {x}, for xQ

Example 9: Suppose X admits a family {U
r
}rQ of nested

neighbourhoods. Then f:X[0, 1], given by f(x) = inf  Q(x) is continous.

Solution: Let (c,d) be an open interval containing f (x
0
) where x

0
X. Choose

rational number p and q such that,

c<p<f(x
0
)<q<d,

x
0
 belongs to U

q
 since f(x

0
)<q and x

0 U p
 since f(x

0
)>p.

Thus x
0
u:= \ \q p q pU U U U . We check that f(U)[p,q](c,d)

In fact, if xU then xU q
, so that f(x)  q and x  U

p
, so that f(x)  p.

Example 10: A space X is locally path-connected if and only if the path
components of open subsets of X are open.

Solution: Suppose that X is locally path connected and let W X be open and P
a path component of W if xP, then there exists a path connected neighbourhood
V of x with V<W. As xP V.

P  W is path connected and contained in W. Since P is a maximal path
connected subset of W we have PV=P.

Which implies that V P,

Thus P is a neighbourhood of X and P is open conversely let W be an
open set in X let xW and let V be the path component of x in W. By hypothesis
V is open therefore X is locally path connected.

4.12 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In topology and the mathematical field of analysis, the topological
spaces and other related or associated branches of mathematics, a
connected space is defined as a specific topological space which cannot
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be exemplified and characterized as the union or association of two or more
disjoint non-empty open subsets. Connectedness is considered as the
essential and principal topological properties which are precisely and explicitly
used for distinguishing the topological spaces. The unique and strong notion
specifies the path connected space, which is a specific space where any two
points can be joined or connected by means of a path.

2. A topological space X is considered as disconnected if it is defined as the
union of two disjoint or separate non-empty open sets. Alternatively, X is
considered to be connected. A subset of a precise topological space is
defined as connected if it is typically connected in its subspace topology.

3. In topology, the maximal connected subsets or the utmost and maximum
connected subsets of a non-empty topological space are precisely
termed as the connected components of the space. Characteristically,
the components or elements of any topological space X specifically from
a partition of X, are uniquely defined as disjoint, separate and non-
empty, and their union is defined as the whole or entire space.

4. In topology, a space is termed as totally disconnected when all of its
components are precisely one point sets. Associated to this property of
space, it can be stated that a space X is termed as totally separated if
for any two components or elements x and y of X, there exists disjoint
or separate open neighbourhoods U of x and V of y such that X is defined
as the union of U and V. Evidently any totally or entirely separated space
is totally and perfectly disconnected, however the converse does not
hold.

5. A space is considered as locally connected if and only if particularly for every
single open set U, the connected specific components of U should be open.
Characteristically, a continuous function specifically explained from a locally
connected space to a totally or completely disconnected space must also
be locally constant. Essentially, the openness or directness of components
or elements is a natural property and is generally not true, for example the
Cantor space is considered as totally or completely disconnected but not
discrete.

6.  Let (X, d) be a metric space and let A be a subset of X. Let d* denote
restriction of d to A × A, that is,

d* (x, y) = d (x, y)

Here x, y are points of A. Then d* is a metric for A called the induced
metric and the set A with metric d* is called subspace of X.

7. Let X be a topological space with topology T. A subbase of this topology
T is defined as a subcollection B of T satisfying one of the two
following equivalent conditions:

 The subcollection B generates the topology T. This implies that T is the
smallest topology containing B and so any topology U
on X containing B must also contain T.
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 The collection of open sets consisting of all finite intersections of elements
of B, together with the set X and the empty set, forms a basis for T. This
means that every non-empty proper open set in T can be written as
a union of finite intersections of elements of B. Clearly, given a point x in a
proper open set U, there are finitely many sets S

1
, …, S

n
 of B, such that

the intersection of these sets contains x and is contained in U.

8. In mathematics, in general, a projection is a mapping of a set or of a
mathematical structure which is idempotent, i.e., a projection is equal
to its composition with itself. A projection may also refer to a mapping
which has a left inverse. Both these ideas are related. Let p be an
idempotent map from a set E into itself (thus p°p = Id

E
) and F = p(E)

be the image of p. If we denote the map p viewed as a map from E onto
F by  and the injection of F into E by i, then we get i° = Id

F
. On the

other hand, i° = Id
F
 implies that °i is idempotent.

9. Central Projection: It is the projection from a point onto a plane. If C is
the center of projection, then the projection of a point P distinct from
C is the intersection with the plane of the line CP. The point C and the
points P such that the line Central Projection (CP) is parallel to the
plane do not have any image by the projection.

10. In topology and related fields of mathematics, there are many
limitations that we often make on the kinds of topological spaces that
we wish to consider. Some of these restrictions are given by the separation
axioms. These separation axioms are often termed as Tychonoff separation
axioms, after Andrey Tychonoff. The separation axioms are axioms only in
the sense that, when defining the notion of topological space, one could
add these conditions as extra axioms to get a more restricted notion of
what a topological space is. The separation axioms are denoted with the
letter ‘T’ after the German Trennungsaxiom, meaning separation axiom.

11. The separation axioms are used to distinguish disjoint sets and distinct points.
It is not enough for elements of a topological space to be distinct. They
have to be topologically distinguishable. In the same way, it is not enough
for subsets of a topological space to be disjoint. They have to be separated
in some way.

12. Connectedness is, therefore, one of the most significant topological properties
exceptionally used to discriminate and uniquely categorise the topological
spaces. In the mathematical field of topological analysis, specifically the term
compactness is defined as a property of topological space that specifically
generalises the notion and concept about the subset of Euclidean space is
closed, i.e., it contains all of its limit points, and bounded, i.e., all of its points
typically remain within certain fixed distance to each other.

13. In topology, a first countable space is referred as a topological space which
uniquely satisfies the ‘First Axiom of Countability’. The term embedding or
imbedding is an instance of certain mathematical structure particularly



Connected Spaces

NOTES

Self - Learning
Material 185

contained within a different instance, for example as a group or a subgroup.
A metrizable space is typically a topological space which is homeomorphic
to a metric space.

14. A topological space X is said to satisfy the First Axiom of Countability if, for
every x  X there exists a countable collection 𝒰  of neighbourhoods of x,
such that if N is any neighbourhood of x, then there exists U  𝒰  with U 
N.

A topological space that satisfies the first axiom of countability is said to be
First Countable.

15. Suppose X is a set, Y a topological space and f : X Y an injective map.
The embedding topology on X (for the map f) is the collection,

f –1(
Y
) = { f –1(V)|VY  open} of subsets of X.

The subspace topology for A X is the embedding topology for the inclusion
map A X.

16. Urysohn’s Metrization Theorem: Suppose (X, ) is a regular topological
space with a countable basis , then X is metrizable.

4.13 SUMMARY

 Fundamentally, we can state that a subset of a topological space X can be
defined as a connected set if and only if it appears as a connected space
when typically observed as a subspace of X.

 In topology, the maximal connected subsets or the utmost and maximum
connected subsets of a non-empty topological space are precisely
termed as the connected components of the space. Characteristically, the
components or elements of any topological space X specifically from a
partition of X, are uniquely defined as disjoint, separate and non-empty, and
their union is defined as the whole or entire space.

 “The empty space does not have connected components. Every single
component is defined as a precise closed subset defined on the original
space.”

Let 
x
 be a connected component of x in a topological space X, and 

x

be the intersection of all open-closed sets containing x (called quasi-
component of x.) Then 

x
 

x
 where the equality holds if X is compact

Hausdorff or locally connected.

 In topology, a Hausdorff space is defined as a precise topological space
having a separation property that any two distinct points can be
separated by means of disjoint open sets.

 A Euclidean plane excluding the origin, is connected but is not simply
connected. The three-dimensional Euclidean space without the origin is
connected and even simply connected. In contrast, the one-dimensional
Euclidean space without the origin is not connected.
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 Every discrete topological space with at least two elements is disconnected,
in fact such a space is totally disconnected. The simplest example is the
discrete two-point space.

 The topologist’s sine curve is an example of a set that is connected but is
neither path connected nor locally connected.

 The spectrum of a commutative local ring is connected. More generally, the
spectrum of a commutative ring is connected if and only if it has no idempotent
if and only if the ring is not a product  of two rings in a non-trivial way.

 A path from a point x to a point y in a topological space X is a continuous
function f from the unit interval to X with f 0x and f 1y. A
path-component of X is an equivalence class of X under the equivalence
relation which makes x equivalent to y if there is a path from x to y.

 However, subsets of the real line R are connected if and only if they
are path connected; these subsets are the intervals of R. Also, open
subsets of Rn or Cn are connected if and only if they are path componen.
Additionally, connectedness and path componenness are the same for
finite topological spaces.

 In topology, a space X is referred as to be arc connected or arc wise
connected when any two distinct or separate points can be joined
through an arc, i.e., consider a path f which is typically homeomorphism
between the unit interval and its image f

 The historical perspective of topology discusses about the two most significant
and most widely used topological properties, namely the connectedness
and compactness. Certainly, the analysis and study of these properties can
be done as the subsets of Euclidean space, and also their unique identification
as being independent from the certain specific form of the Euclidean metric
helped to specify the notion of a topological property and consequently a
topological space.

 In other words, the only difference between the two definitions is that for
local connectedness at x we require a neighbourhood base of open
connected sets, whereas for weak local connectedness at x we require
only a base of neighbourhoods of x.

 Evidently, a space which is locally connected at x is weakly locally
connected at x. The converse does not hold. On the other hand, it is
equally clear that a locally connected space is weakly locally connected
and here it turns out that the converse does hold. A space which is
weakly locally connected at all of its points is necessarily locally
connected at all of its points.

 Local connectedness is, by definition, a local property of topological spaces,
i.e., a topological property P such that a space X possesses property P if
and only if each point x in X admits a neighbourhood base of sets which
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have property P. Accordingly, all the metaproperties held by a local property
hold for local connectedness.

 A space is locally connected if and only if it admits a base of connected
subsets.

 Thus, a subset A of X equipped with the induced metric is a metric space in
its own right and neighbourhoods, open sets and closed sets are defined as
an any metric space. But an open set (closed set) of A need not be open
(closed) when regarded as a subset of X.

 Note that the phrase ‘B is open in A’ means that B is open relative to the
induced metric on A. Also ‘B is open in X ’ means that B is open with
respect to the metric on X.

 A sebset A of R is connected if and only if it is an interval.

 The topological space precisely for any subcollection S typically of the power
set P(X), there uniquely exists a distinctive topology with S as a subbase.
Specifically, the intersection of precisely all the topologies on X that contains
S uniquely satisfies this particular condition. However, there is generally no
unique subbases for a given specific topology. Consequently, a fixed topology
is considered for finding the subbases for the specific topology. Subsequently,
an arbitrary or random subcollection of the power set P(X) also can be
formed by using the properties of topology specifically generated by means
of that subcollection.

 Let XTbe an arbitrary collection of topological spaces and let X 

λ
λ
π X Let T be a topology for X. If T is the product topology for X, then

T is the smallest topology for X for which projections are continuous and
conversely also.

 Let C
i
 be a closed subset of a space X

i
 for i I. Then i

Ii
C


π is a closed

subset of i
Ii
X


π  with respect to the product topology..

 Initially, the notion of projection was introduced in Euclidean geometry
to denote the projection of the three-imensional Euclidean space onto
a plane.

 The image of a point P is the intersection with the plane of the line
parallel to D passing through P.

 Let A be a member of the defining base for a product space

X  λ
λ
π X Then the projection of A into any coordinate space is open.

 Consequently, the two specific points x and y in X are typically defined as
topologically distinguishable or distinct if they do not precisely possess the
similar neighbourhoods or alternatively, we can specify that at least one of
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the points has a neighbourhood which is precisely not a neighbourhood of
the other. Therefore, when x and y are topologically distinguishable or distinct
points, then the singleton sets {x} and {y} must also be disjoint or separate.

 Therefore, two points x and y are considered as separated if each of them
holds a specific neighbourhood that is not at all the neighbourhood of the
other. Additionally, the two subsets A and B of X are considered as
separated if each of them is disjoint or separate from the closure of other;
typically, the closures themselves are not disjoint or separate.

 A topological space X is Hausdorff if and only if the diagonal is closed in X
 X with the product topology.

 The two important facts that we chose are that x being a point in the
subspace, remained a point in the whole space and every closed set in
the subspace was an intersection with the subspace of a closed set in
the whole space.

 In topological analysis, the terms ‘Connectedness’ and ‘Compactness’
are the two most widely studied and used topological properties.
Definitely, these properties are studied for analysing the subsets of the
Euclidean space and the identification and acknowledgement of their
individuality from the specific and unique form of the Euclidean metric
notion of a topological property and consequently a topological space.

 In the end of the twentieth century, the locally homeomorphic properties
to Euclidean space were considered more complicated and complex.
This implies that even though the basic point set topology is relatively simple
because essential metrizable spaces were studied and according to most of
the definitions the concept of the algebraic topology is extremely complex.

 
λ

λX is locally connected if and only if each space Xis locally connected

and all but a finite number are connected.

 Fundamentally, the topological space that satisfies the second axiom of
countable is first countable, since the countable collection of neighbourhoods
of a point can be all neighbourhoods of the point within the countable base,
so that any neighbourhood N of that point must contain at least one
neighbourhood A  within the collection, and A must be a subset of N.

 A one-one and onto (bijection) continuous map f : X Y is a
homeomorphism if its inverse is continuous.

 Alternatively, the injective map f : X Y is an embedding iff the
bijective corestriction f (X)| f : X  f (X) is a homeomorphism. An
embedding is a homeomorphism followed by an inclusion. The
inclusion A X of a subspace is an embedding. Any open (or closed)
continuous injective map is an embedding.

 If f : X Y is a homeomorphism (embedding) then the corestriction of the
restriction f (A)| f \ A: A f (A) (B| f \ A: A B) is a homeomorphism
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(embedding) for any subset A of X (and any subset B of Y containing f (A)).
If the maps f

j 
: X

j
 Y

j
 are homeomorphisms (embeddings) then the product

map    jjj YXf : is a homeomorphism (embedding).

 The mappping e is an embedding if  distinguished points and closed sets.

 If X is a space and A, a set then by the power XA we mean the product
space X, where X 

=X, for each   A. Any power of [0, 1] is called
a cube. A map e: X Y is an embedding iff the map e: X e(X) is a
homeomorphism. If there is an embedding e: X Y then we say that X
can be embedded in Y.

 A space is Tychonoff iff it can be embedded in a cube.

4.14 KEY TERMS

 Connected Components: The empty space does not have connected
components. Every single component is defined as a precise closed subset
defined on the original space.

 Path connectedness: A path from a point x to a point y in a topological
space X is a continuous function f from the unit interval to X with
f 0x and f 1y. A path-component of X is an equivalence class of
X under the equivalence relation which makes x equivalent to y if there
is a path from x to y.

 Locally connected: In the field of topology and other disciplines of
mathematics, a topological space X is typically defined as locally
connected if every single point acknowledges or recognises a
neighbourhood basis that uniquely consists of entire or complete open
connected sets.

 Subbase: In topology, a subbase for a topological space X with topology
T is a subcollection B of T which generates T, such that T is the smallest
topology containing B.

 Central projection: It is the projection from a point onto a plane. If C is
the center of projection, then the projection of a point P distinct from C is
the intersection with the plane of the line CP. The point C and the points P
such that the line Central Projection (CP) is parallel to the plane do not
have any image by the projection.

 Second axiom of countability: All metric spaces satisfy the first axiom of
countability because for any neighbourhood N of a point x, there is an open
ball within N, and the countable collection of neighbourhoods of x
that are where , has the neighbourhood where

.
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4.15 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is connected space?

2. Define the term disconnected spaces.

3. What do you mean by arc connectedness?

4. Define the term connectedness.

5. What is connectedness on the real line?

6. Define the term subspace.

7. State Tychonoff’s theorem.

8. What do you understand by projection map?

9. Give the types of projection map.

10. When projections is continuous?

11. State the Tychonoff’s separation axioms.

12. Why connectedness is used?

13. State the compactness of product space.

14. When does a metric space satisfy the first axiom of countability?

15. What do you mean by second axioms of countability?

16. Define the term embedding.

17. State the Tychonoff’s embedding theorem.

Long-Answer Questions

1. Explain in detail about the connected spaces giving appropriate
properties and examples.

2. Describe the term connectedness on the real line with the help of
theorems and examples.

3. State and prove the Tychonoff product topology in terms of standard
subbase with the help of theorem and examples

4. Describe the projection mappings with respect to topology giving
examples.

5. Describe briefly about separation axioms and product space giving
relevant examples.

6. Explain in detail about the connectedness and compactness of
product space with the help of theorems and examples.

7. Analyse the first and second countable spaces giving appropriate
examples.
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8. State and prove embedding lemma and Urysohn’s metrization theorem
with the help of relevant examples.
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5.0 INTRODUCTION

In mathematical analysis and more precisely in the context of general topology and
other concerned fields the concept of ‘Net’ also known as ‘Moore–Smith
Sequence’ is defined as the simplification or generality which specifies the notion
of a sequence. The expression ‘Net’ is termed as ‘Moore–Smith Sequence’ because
the unique concept of net was originally introduced by E. H. Moore and Herman
L. Smith in the year 1922, while the term or name ‘Net’ was first coined by John
L. Kelley. Basically, a sequence is described as a specific function whose domain
holds the natural numbers. Generally, the codomain of this specific function mostly
includes certain topological spaces.

Nets are referred as the specialized tools in topology and are typically used
for generalizing specific and particular concepts, notations and theories that are
usually sufficient within the context or perspective of metric spaces.

The term ‘Filter’, an associated notion was developed and established by
Henri Cartan in the year 1937. In mathematical analysis, the term ‘Filter’ or ‘Order
Filter’ is defined as a unique and particular subset of a partially ordered set. In the
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field of topology, filters are defined as a subfield of mathematics which are used
for studying and analysing the topological spaces, identifying and describing all the
basic topological concepts and notions, for instance compactness, convergence,
continuity, limits, etc. The term ‘Ultrafilters’ are typically used for defining specific
types of filters which possess numerous effective technical and mathematical
properties due to which they are frequently used and preferred in place of arbitrary
filters.

Characteristically, topology when used in mathematical analysis then it
specifically studies the properties of a geometric object which are uniquely defined
in continuous deformations, for instance crumpling, stretching, bending and twisting,
i.e., without closing holes, opening holes, tearing, gluing, or passing through itself.

In topology and their related branches of mathematical analysis, a Hausdorff
space, separated space or T

2
 space specifically defined as a topological space in

which for any two distinct points there exists neighbourhoods of each that are disjoint
from each other.

Characteristically, in the field of general topology, the compactness is defined
as a property that generalises and simplifies the concept, theory and notations of a
subset of Euclidean space being ‘Closed’, i.e., it contains all its limit points and
‘Bounded’, i.e., it has all its points lying within certain fixed or static distance of
each other.

Fundamentally, every single net induces or generates a canonical filter and
then dually every filter induces or generates a canonical net, wherein this induced
net or induced filter converges to a point if and only if the same is true of the original
filter. An ultrafilter is a powerful tool both in set theory and in topology.

The term local finiteness, as per the mathematical field of topology, is defined
as a specific property of collections or groups of subsets of a topological space. It
is essential and significant, especially for analysing the paracompactness and
topological dimensions. A paracompact space is referred as a topological space
where every single open cover holds an open refinement which is locally finite.
Consequently, every compact space is considered as paracompact.

The Nagata–Smirnov metrization theorem is distinctively named after Junichi
Nagata and Yuri­ Mikha­lovich Smirnov, who independently published their proofs
in 1950 and 1951, respectively. In topology, the Nagata–Smirnov metrization
theorem distinguishes and exemplifies when can a topological space is metrizable.
The Nagata–Smirnov metrization theorem states that, “A topological space X is
metrizable iff and only iff it is regular, Hausdorff and holds a countably locally finite,
i.e., ­locally finite basis”.

The algebraic topology includes a specific branch termed as homotopy theory
which exceptionally and distinctively studies the ‘Paths’ and ‘Loops’ considered
as the essential subjects in topology. The homotopy of paths considers the precise
and accurate notions about the continuously/constantly deforming a path while its
endpoints are kept fixed. Additionally, as per the mathematical field of algebraic
topology, the term fundamental group of a topological space specifically defines
the characteristic group of the equivalence classes typically considered under the
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field of homotopy of the loops that are contained or enclosed in the space. It
documents the specific information and evidence about the basic or fundamental
essential shapes or holes of the concerned or related topological spaces. Covering
spaces has significant key role in the homotopy theory, differential topology,
harmonic analysis and Riemannian geometry.

In this unit, you will study about the nets and filters, topology and convergence
of nets, Hausdorffness and nets, compactness and nets, filters and their
convergence, canonical way of converting nets to filters and vice­versa, ultrafilters
and compactness, metrization theorem and paracompactness, local finiteness, the
Nagata­Smirnov metrization theorem, paracompactness, the Smirnov metrization
theorem, the fundamental group and covering spaces, homotopy of paths, the
fundamental group, covering spaces, the fundamental group of the circle and the
fundamental theorem of algebra.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the significance of nets and filters

 Explain about the topology related to convergence of nets

 Discuss about the Hausdorffness and nets

 Comprehend on the compactness and nets

 Interpret about the filters and their convergence

 Understand the canonical way of converting nets to filters and vice versa

 Comprehend on the ultrafilters and compactness

 Elaborate on the local finiteness

 State the Nagata­Smirnov metrization theorem

 Define the term paracompactness

 Analyse the homotopy of paths

 Discuss about on the fundamental group

 Explain about the covering spaces

 Describe the fundamental group of the circle and the fundamental theorem
of algebra.

5.2 NETS AND FILTERS

In general topology and the related branches, a net or Moore­Smith sequence is
a generalization or simplification of the concept and notion of a sequence. A
sequence is defined as a specific function with domain of the defined set of natural
numbers and also the range which is normally defined for any topological space.
Even though, as per the perspective of topology, the sequences cannot completely
encode the entire information regarding a function that is defined between the said
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topological spaces. In particular, for a specific definite map f between topological
spaces X and Y, the two conditions that are given below are not equivalent:

1. The map f is stated as continuous.

2. Given any point x X and any sequence in X which converges to x, then
specifically the composition of f with this unique sequence converges to f
(x).

The Condition 1 stated above implies Condition 2, in the context of all
spaces. However in general, Condition 2 does not implies Condition 1 as topological
spaces are, generally, not first­countable. On imposing the first­countability axiom
to the topological spaces to be analysed, it can be stated that the above mentioned
two conditions can be equivalent. Specifically, these two given conditions are then
considered as equivalent for the metric spaces being studied.

The principle and key concept of the term ‘Net’ was originally proposed
by E. H. Moore and H. L. Smith in the year 1922. The term net was specifically
used for generalizing the notion of any sequence in order to validate the equivalence
of the specified conditions through the sequence that are replaced/changed by
means of net in the specified Condition 2. Particularly, instead of defining the net
on a countable linearly ordered set, the net can be typically defined on an
arbitrary and subjective directed form of set. Consequently, this permits to use
theorems that are analogous to the type in order to assert the equivalence of both
the specified Condition 1 and Condition 2 for holding the framework of topological
spaces which essentially do not have either a countable or a linearly ordered
neighbourhood origin about a point. Subsequently, because the sequences cannot
encode the sufficient and essential information about the functions between the
topological spaces, therefore the nets are typically used for this analysis since the
collections of open sets in the specified topological spaces are similar to directed
sets.

John L. Kelley finally coined term ‘Net’ and stated that nets are the distinctive
tools that are exceptionally used in topology for generalizing specific concepts,
notations, and theories that are sufficiently adequate in the perspective of metric
spaces. Similarly, the concept of the filter was defined and established by Henri
Cartan in the year 1937.

Since every single non­empty totally ordered set can be directed, therefore,
it can be stated that every single function that is precisely defined on such a set is
uniquely a ‘Net’. Specifically, the natural numbers having the standard and common
order typically forms or generates precise set and sequence which can be identified
and designated as a function on the natural numbers such that every single sequence
can be considered as a net.

Another significant example is given below.

Given a point x in a topological space, let N
x
 denote the set of all

neighbourhoods containing x. Then N
x
 is defined as a directed set, where the

direction is specified through reverse inclusion, such that the form S  T iff S is
contained in T. For S in N

x
, let x

S
 be a point in S. Then (x

S
) is uniquely a net.
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When the S increases or expands with respect to , then the points x
S
 defined in

context of the net are precisely constrained or restricted to be in decreasing or
reducing neighbourhoods of x, consequently this gives the notion that x

S
 must

precisely tend towards x in certain perception.

Nets: In mathematics, more specifically in general topology and related branches,
a net or Moore­Smith sequence is a generalization of the notion of a sequence.
Given any point x in X, and any sequence in X converging to x, the composition of
f with this sequence converges to f (x).

Definition 1:A directed set is defined as a set  with a relation on it satisfying
the following:

 is Reflexive

 is Transitive

 is Directedfor all a, b  there exists c   such that a c and b  c.

Definition 2:A net in defined a set X which is a map X. If X is a
topological space, then we state that the net converges to x X and write 
X if and only if for every neighbourhood U of x certain specific tail,


d  
cd c  U.

Now let X be a net in X with directed set .

Definition 3:Eventually a net is in A X if and only if A contains certain tail of
We state that a net is frequently in A if and only if for every d   there exists
c  d, such that cA.

Definition 4: Ifx is a cluster point or an accumulation point of a net in X if and
only if is continuously in every neighbourhood of x.

Definition 5:A net is termed as maximal iff and only iff for every A X, it is
ultimately defined in either A or X A. Maximal form of nets are precisely termed
as ultra nets.

Nets are not as completely straightforward a generalization of sequences as
one might wish. Consider the obvious naïve definition of a subnet of a net
X as the restriction of  a subset of .

Definition 6:A subset of a directed set  is called co final in  if and only if
for every d   there exists dwith d d. Given such a co final subset, we
may refer to the co final subnet of any net X.

Sequence in a Topological Space

A sequence (a
1
, a

2
, ...) in a topological space V can be considered a net in V defined

on N. The net is eventually in a subset Y of V if there exists an N in N such that for
every n  N, the point a

n
 is in Y.

We have lim
x c

 a
n
 = L if and only if for every neighbourhood Y of L, the

net is eventually in Y. The net is frequently in a subset Y of V iff for every N in N there
exists some n  N such that a

n
 is in Y, i.e., iff infinitely many elements of the
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sequence are in Y. Thus a point y in V is a cluster point of the net iff every
neighbourhood Y of y contains infinitely many elements of the sequence.

Function from a Metric Space to a Topological Space

Consider a function from a metric space M to a topological space V and a
point c of M. We direct the set M \{c} reversely according to distance from c,
with the relation ‘has at least the same distance to c as’, such that ‘large enough’
with respect to the relation means ‘close enough to c’. The function ƒ is a net
in V defined on M \{c}. The net ƒ is eventually in a subset Y of V if there exists a
M \{c} such that for every x  M\{c} with d(x,c)  d(a,c), the point f(x)  Y.
We have lim

x c
 ƒ(x) = L iff for every neighbourhood Y of L, ƒ is eventually in Y.

The net ƒ is frequently in a subset Y of V iff for every a  M\{c} there exists
some x  M\{c} with d(x, c)  d(a, c) such that f(x)  Y. A point y  V is a
cluster point of the net ƒ iff for every neighbourhood Y of y, the net is frequently
in Y.

Function from a Well-Ordered Set to a Topological Space

Consider a well­ordered set [0, c] with limit point c and a function ƒ from [0, c)
to a topological space V. This function is a net on [0, c). It lies finally in a
subset Y of V if there exists a  [0, c) such that for every x  a, the point f(x)
 Y. We have lim

x c
 ƒ(x) = L iff for every neighbourhood Y of L, ƒ is eventually

in Y. The net ƒ is frequently present in a subset Y of V iff for every a  [0, c) there
exists some x  [a, c) such that f(x)  Y. A point y  V is a cluster point of the
net ƒ iff for every neighbourhood Y of y, the net is frequently in Y.

Filters: Filter is a subfield of mathematics and can be used to study topological
spaces and define all basic topological notion such a convergence, continuity,
compactness, etc.

Definition 1:A filter is non­empty collection  of subsets of a topological space
X such that

  .

2. If A   and B A, then B  .

3. If A   and B  , then A  B  .

A maximal filter is also called an ultra filter.

Definition 2: A filter  is said to converge to x X, denoted by  x, if and
only if every neighbourhood of x belongs to .


x
 is a sub filter of .

Definition 3: If x  F  for every F  , we call x a cluster point or an

accumulation point of .

Theorem 5.1:Any collection of sets satisfying the finite intersection property
is contained in an ultra filter .
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Proof:Partially order, by inclusion, the set of all collections satisfying finite
intersection property, which contain . Then each chain has its union as an upper
bound, so there exists a maximal element . We claim that  is a filter; hence, an
ultra filter as it is maximal. Indeed, the first and third properties of a filter are true
by definition, so we need to consider only the second. But this follows from
maximality.

Theorem 5.2:A filter  is maximal if and only if every set A that intersects every
member of  non emptilybelongs to .

Theorem 5.3:If  x, then x is a cluster point of . Conversely, if x is a cluster
point of an ultra filter , then  x.

Proof:If  x, then 
x
 . If A  , then A N for every N 

x
. Thus

x  A 

Conversely, if x is a cluster point of an ultra filter , then it follows from
definition that each neighbourhood N of x intersects non­emptilyevery member
of  . By the previous Theorem 5.2, N . Therefore 

x 
 and

 x.

Definition 1:A filter base of a filter  is a sub collection  such that for every
F there exists B    with B F.

Definition 2:A filter base  in X is said to converge to x X iff for every
neighbourhood N 

x
, there exists B  with B N and we write B x.

In mathematics, a filter is defined to be a special subset of a partially ordered
set. A frequently used special case is the situation that the ordered set under
consideration is just the power set of some set and ordered by set inclusion. Filters
emerge in order and lattice theory, but can also be found in topology from where
they originate. The dual notion of a filter is an ideal.

A non­empty subset F of a partially ordered set (P, ) is a filter if the
following conditions hold:

1. For every x, y in F, there is some element z in F, such that z  x and z  y.
(F is a filter base).

2. For every x in F and y in P, x  y implies that y is in F (F is an upper set).

3. A filter is proper if it is not equal to the whole set P. This condition is
sometimes absent from the definition of a filter.

Even though the definition given above is considered as the most common
and conventional method for defining a filter for arbitrary or random posets, but
originally it was precisely defined only for lattices. In this case, the above described
definition can be characterized and distinguished by means of the equivalent
statement given below:

The lattice (P, ) having a non­empty subset F is defined as a filter iff and
only iff it is an upper set which is typically closed under finite meets termed as
infima, i.e., for all x, y in F, we can state that x  y is also in F. Additionally, the
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smallest filter which comprises of a given element p is termed as the principal
filter and also p is defined as the principal element in this state. The principal filter
for p is simply given by the set {x  P | p  x} and is precisely denoted by
prefixing p with an upward arrows denoted as p. The dual notion of a filter, i.e.,
the concept and notation obtained by reversing all  and then exchanging  with
 is considered as ideal.

Consequently, in topological analysis the term filters are precisely used for
defining the convergence in a precise manner analogous to the function and
specifications of sequences on the basis of a metric space. Furthermore, in topology
and other concerned fields of mathematical analysis, a filter is uniquely defined as
a generalization or interpretation of a net. Additionally, both nets and filters provide
extremely general perspectives and framework for unifying the different notions
of limit precisely for the topological spaces that are arbitrary in type.

Subsequently, the term sequence is typically indexed by means of the natural
numbers which are precisely referred as a totally ordered set. Therefore, in the
first­countable spaces the limits can be specifically described by means of
sequences. Although, if the said space does not have properties of first­countable,
then in this case specifically the nets or filters should be used. Nets characteristically
generalize the notion and concept of a sequence simply involving the index set to
be a directed set. Filters can be further considered as the specific types of sets
precisely developed from the multiple nets. Therefore, the notion of limit of a filter
and also the notion of limit of a net both are conceptually and theoretically defined
same as the notion limit of a sequence.

5.3 TOPOLOGY AND CONVERGENCE OF NETS

Let  be a filter and let  be a set that is bijective with . We shall call  an index
set for  and denote the bijective correspondence by subscript labeling F

d


d  
Definition 1:Let  be an indexed filter in X with index set . Any net X
with d F

d
 is called a derived net of .

Definition 2:Let be a net in X with directed set . Then  F X is
eventually in Fand is called the derived filter of 

Theorem 5.4:A filter   in X converges to x X if and only if every derived net
does.

Proof:Assume  X and index  with an index set . If N is any neighbourhood
of x, then N F

d
  . Now, if c  d then F

c
 F

d
, so cF

c 
N and is

eventually in N. Thus, x.

Conversely, if   x then there exists some neighbourhood N of x such
that F

d
 N for every F

d
  . Choose any net with dF

d  
N for each d 

. Then is a derived net of  and does not converge to x.

Theorem 5.5:A net X converges to x X iff and only iff the derived
filter  exists.
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Proof:If X, then ultimately exist in each neighbourhood N of x. Consequently,
each N belongs to the derived filter , therefore 

x
  and F X.

Conversely, if the derived filter  X then each neighbourhood N of x
belongs to , so is ultimately in N. Therefore, X.

Finally, we show that closure in any topological space is completely
determined by convergence of nets or filters.

Theorem 5.6:Given a topological space X and a subset A of X, a point x is in

A if and only if there is a net equivalently, a filterin A converging to x.

Proof:According to the two preceding results, sufficiently and essentially the nets
are considered. Considering V X A , it will be sufficient to prove that V is
open iff and only iff there is no limit of a convergent net in X V A  that lies in
V.

When V is open, then typically V is defined as a neighbourhood of each
x V. Therefore, no tail of is contained in V, and hence cannot converge to
any x V.

Conversely, consider that for every neighbourhood U of certain x V
there typically exists a point of the net which is precisely denoted by 

U 
U V.

Then X but was assumed to be a net in X V, a contradiction. Therefore,
there exists some neighbourhood U of x with U V , whence U V so V is
a neighbourhood of x for every x V and V is open.

5.4 HAUSDORFFNESS AND NETS

Theorem 5.7: Let X be a Hausdorff topological space. Then no net in X can have
two different limits.

Proof: Let X be a Hausdorff topological space and ( )x   be a net in X. Suppose

a, b X and we have both x a   and x b  . We claim a b must hold.

If not, by the Hausdorff property of X, there are U, V X open, disjoint

with a U and b V. By the definition of nx a , there is Λa   so that

ax U     . By the definition of x b  , there is Λb   so that bx B     .

Since is directed, there is Λ  with a    and b   . Then both x U   and

x V   hold. But this leads to the contradiction x U V     .

Theorem 5.8: Let X be a topological space in which there is no net with two
different limits. Then X is Hausdorff.

Proof: Take ,a b X  with a b . Our claim is that there exist U and V open with

a U , b V  and U V   . If not, we have U V    for any open ,U V X
where a U , b V .
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Now find a net with two limits which will be a and bWe take for the

index set Λ {( , ) : , open, , }U V U V X a U b V     where we define the order

1 1 2 2( , ) ( , )U V U V  to mean that both 1 2U U  and 1 2V V  hold. It is straightforward

to check that is then a directed set. The least trivial part is to show that

1 1 2 2( , ),( , ) ΛU V U V   implies there is 3 3( , ) ΛU V   with 1 1 3 3( , ) ( , )U V U V  and

2 2 3 3( , ) ( , )U V U V . We just take 3 1 2U U U   and 3 1 2V V V   and check U
3
 and

V
3
 open,  3a U , 3b V  and the four containments we need

For each ( , ) ΛU V    choose one U V  x . Then  x   is a net in
X and we claim both x a   and x b  .

To verify x a  , take a neighbourhood a aN  . Then 0 (( ) , )aN X    .
If ( , )U V    satisfies 0   , then ( )a ax U V U N N       . To verify
x b   we argue in a similar way but take 0 ( , ( ) )bX N   .

5.5 COMPACTNESS AND NETS

Definition: We say that a net { }x  has x X  as a cluster point if and only if for
each neighbourhood U of x and for each 0 Λ   there exist some 0    such
that x U  . In this case we say that { }x  is cofinally (or frequently) in each
neighbourhood of x.

Theorem 5.9: A net { }x  has y X  as a cluster point if and only if it has a sub

net, which converges to y.

Proof: Let y be a cluster point of { }x . Define : {( , ) : ,M U U    a
neighbourhood of y such that }x U   and order M as follows: 1 1 2 2( , ) ( , )U U  
if and only if 1 2    and 2 1U U . This is easily verified to be a direction on M.
Define : M   by ( , )U    . Then is increasing and cofinal in so 
defines a subnet of { }x . Let U

0
 be any neighbourhood of y and find 0 Λ   such

that 0 0x U  . Then 0 0( , )U M  , and moreover, , 0 0( , ) ( , )U U    implies

0U U , so that 0x U U   . It follows that the subnet defined by converges to
y.

Suppose : M   defines a subnet of { }x  which converges to y. Then
for each neighbourhood U of y, there is some u

U
 in M such that Uu u   implies

( )ux U  . Suppose a neighbourhood  U of y and a point 0   are given. Since
( )M  is cofinal in there is some 0u M  such that 0 0( )u   . But there is also

some Uu M  such that Uu u  implies ( )ux U  . Pick  0*u u  and * Uu u .
Then 0( *) *u     , since 0( *) ( )u u   , and  * ( *)x x u U   , since * Uu u .
Thus for any neighbourhood U of y and any 0  , there is some *    with

*x U  . It follows that y is a cluster point of { }x .

Theorem 5.10: A topological space X is compact if and only if every net on X has
a convergent subnet on X.
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Proof: Assume that X is compact and suppose that we have a net { }x  that does

not has any convergent subnet. Hence, using the previous Theorem 5.9, the net

{ }x  does not has cluster points. This means that for each x X we can find a

neighbourhood U
x
 of x and an index 

x
 such that xU

x
 for every 

x
. Since

X is compact then there exist x
1
, x

2
, …, x

n
 X such that 

1
xi

i

X U


 . Take any

1 2, ,...,x x xn     . Then x X   which is contradiction.

Assume that every net on X has a convergent subnet on X. We will show

that X is compact. To this end take a family { : }iF i  I  of closed subnets of X

with the finite intersection property, that is 1 2 ...i i inF F F      for every

1 2{ , ,..., }ni i i  I . We will prove that i
i I

F


  . Define a net as follows: Let

1 2 1 2{{ , ,..., } : , ,..., and }n ni i i i i i n   I N .

And order as follows 1 1 2 2 1 2{ , ,..., } { , ,..., }k ni i i j j j    if and only if

1 2 1 2{ , ,..., } { , ,..., }k ni i i j j j . This is easily verified to be a direction on Since the
family F has the finite intersection property then for every 1 2{ , ,..., }ni i i    we
can find 1 2 ,...,    

ni i ix F F F . Using our hypothesis, the net { }x  has a convergent
subnet, let say { }mx . That is, there exists x X  such that mx x  . We will show
prove ix F  for all iI . Fix some F

i
. Hence, there exists m

0
 such that

0 { }m i  . Thus, for every 1 2 0{ , ,..., , } { }m n mi i i i i     we have that

1 2 ...m i i in i ix F F F F F      . Since mx x   and F
i
 is closed then ix F .

This completes the proof of the theorem.

Check Your Progress
1. What is net?
2. Define topological space.
3. Define the term ultra net.
4. What do you understand by filter?
5. What are the uses of filter?
6. What is drive filter of ?
7. When X  is Hausdorff space?
8. When a net can have a cluster point?

5.6 FILTERS AND THEIR CONVERGENCE

Let X be a topological space and consider a point x X. Recall that we define a
set V to be a neighbourhood of x if there is an open set U such that x U V.

Let N
x
 be the set of all neighbourhoods of point x. It is trivial to verify the following

properties

1. X N
x

2. If V N
x
 and V W then W N

x
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3. If U, V N
x
 then U  VN

x

  N
x

If F is a collection of subsets of X which precisely satisfy the properties defined
above, then we consider it a filter. In addition, N

x
 is called the neighbourhood filter

of x. Remember that filters are closed under finite intersection as well as pairwise
by induction

The significant example of a filter is the cofinite filter. Let X be an infinite set;
then F U XX\U is finite

Now, we will consider the methods for generating filters. It can be easily

checked that if C is a collection of filters on X then  C is also a filter on X.

Therefore, if there is a filter which continues a collection of subsets of X, G then
there exists atleast such filter F. We will then state that filter F is generated by G.

Clearly if there exist U
1
,. …., U

n
 G with  i

n
i U1  then G cannot

generate a filter, as the U
i
 would be in any filter containing G, so the empty set

would be in that filter, which is a contradiction.

Theorem 5.11:Let G be a collection of subsets of X such that for all n N and

U
1
,…, U

n 
G we have  i

n
i U1 . Then F U X U

1
,…, U

n
G

UU i
n
i 1  F is a filter containing GIndeed F is the filter generated by G.

Thus, a set G generates a filter iff it satisfies this condition. Such a G is
called a subbase for F. If G is closed under finite  pair wiseintersection then it is
called a base for F and F takes the simpler form F U X V G, V U

Definition: Let F be a filter on X. F is said to be an ultra filter if for all
A X either A F or Ac  F.

For example, if x X and F U Xx Uthen F is an ultrafilter.

Theorem 5.12 The Ultrafilter Theorem:Let F be a filter on X. Then there is
an ultra filter U such that F U.

Proof: The proof is very easy. Consider that the set of all filters on X precisely
contains F together with the partial ordering 

Let C be a chain in this set. C is closed under pairwise intersection, and

therefore forms a base for a filter. This filter is then defined as an upper bound for
C. Hence, every chain has an upper bound, therefore the Zorn’s Lemma provides
us a maximal element of the set U. Consequently it can be easily checked that a
maximal filter must be an ultra filter. Therefore, U is an ultra filter which contains F.

This does not contradict our original assertion that ultra filters other than the
one generated by a single point cannot be described – the use of the axiom of
choice means that the ultra filter theorem is highly non-constructive. However, it
does prove the existence of such an ultra filter – let F be an ultra filter containing



Nets and Filters

NOTES

Self - Learning
Material 205

the cofinite filter. Then F cannot be generated by aas X\aF. Such an ultra
filter is called free. Note here that any ultra filter which is not free is generated by
a singleton, and if there exists an a with X\aF then aF. The complements
of singletons generate the cofinite filter, so if F is not generated by a singleton then
it contains the cofinite filter and is thus free.

Definition: Let F be a filter and x X. We say that F converges to x, or that x
is a limit of F if N

x
 F. We shall write F x to mean F converges to x.

Theorem 5.13: Let X be a topological space. X is Hausdorff iff every filter has at
most one limit.

Proof: Suppose, X is Hausdorff and let x  y. Then there are neighbourhood U
and V of x and y respectively with U V Thus no filter contains both U and
V, and so no filter can converge to both x and y. Hence, all filters have at most one
limit.

Conversely, suppose that x and y do not have disjoint neighbourhoods.
Then N

x
 N

y
 forms a subbase for a filter which converges to both x and y.

Therefore, if every filter has at most one limit then X is Hausdorff.

Therefore, considering X to be Hausdorff is equivalent to consider unique
limits, which is a natural condition to impose when we assume that filters are
an accurate method of describing limitsIn a Hausdorff space we will write lim
F x which means that x is unique limit of F. However remember that all the filters
do not have limits

Let X, Y be sets, F a filter on X and gX Y. In general the set gUU
Fwill not be a filter on Y. However because gU VgUgVit will
be a subbase generating some filter. We shall denote the filter it generates by gF
Clearly, V gFiff there exists U F such that gU  V.

Theorem 5.14: Let X, Y be topological spaces with x X and gX Y. g is
continuous at x iff whenever F is a filter such that F x we have gFgx

Proof:  Suppose g is continuous at x and let F x. Let V be a neighbourhood of
gxBy continuity there is a neighbourhood U of x such that gUV. But U F,
so gUgFThus, as gFis a filter, V gFHence gFgxThen
gN

x
gxby hypothesis. So for every V, a neighbourhood of gxwe have V

gFThus by our observation above there exists U N
x
 such that gUV. As

N
x
 is the set of neighbourhoods of x, g is continuous at x.

5.7 CANONICAL WAY OF CONVERTING NETS
TO FILTERS AND VICE VERSA

Theorem 5.15: Let P X be a net and H the filter associated with it. Let x
X. Then P converges to x as a net iff H converges to x as filter. Also x is a
cluster point of the net P iff x is a cluster point of the filter H.
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Proof: Suppose P converges to x. Let U be a neighbourhood of x in X. Then 

such that   0λ λλ;λ;λ
0

 PB But this means U H by the

definition of H. So every neighbourhood of x belongs to H. Hence, H converges
to x.

Conversely suppose that H converges to x. Let U be as open neighbourhood
of x. Then U H. Recalling how H was generated, there exists such that

0
B U where 

0
B is defined as above. This means that PU for all 

Thus P converges to x in X.

Suppose now that the net P clusters at x. Therefore for each neighbourhood
U of x and for each there is some such that PU. But the sets

  0λλ;λ;λ P  form a base for H. Let F  H. Then F 

  0λλ;λ;λ P , i.e., PF. Thus PF U.

Hence, every neighbourhood of x intersects every member of H. Hence x
is a cluster point of H. Conversely suppose that x is a cluster point of H, i.e.,
every neighbourhood U of x intersects every member F of H. Thus F  U 

But F    0λλ;λ;λ P  for some  Being a superset of

  0λλ;λ;λ P  let F belongs to H. Therefore PU for 

Theorem 5.16: Let H be filter on a space X and P be the associated net in X. Let
x X. Then H converges to x as a filter iff P converges to x as a net. Moreover,
x is a cluster point of the filter H iff it is a cluster point of the net P.

Proof: Suppose H x. If U is a neighbourhood of x, then UH. Pick p U.
Then p, U

H
 and if q, F p, U, then q F U. Thus for each

neighbourhood U of x, there exists p, U
H
 such that q, Fp, Uimplies

Pq, Fq U. Hence, the net P converges to x.

Conversely, suppose that the net based on H converges to x. Let U be a
neighbourhood of x. Then for some p

0
, F

0


H
 we have p, Fp

0
, F

0


implies Pp, Fp U. But then F
0
 U, otherwise there is some q F

0
 – U

and then q, F
0
p

0
, F

0
but q U. Hence U being a super set of the members

F
0
of H, belongs to H. Hence every neighbourhood U of x belongs to H. Hence

H x.

Now we come to the result concerning cluster points.

Suppose first H has x as a cluster point. Recall that the associated net P 
X is defined by taking y, FF H, y Fand putting P y, Fy. Let
an open neighbourhood U of x and an element y, Fof be given. Then F U
by definition of the cluster point of a filter. Let z F U. Then z, Fz,
Fy, Fand Pz, Fz U.

Thus to each neighbourhood U of x and y, Fthere is z, Fsuch
that z, Fy, Fimplies Pz, FU. Hence x is a cluster point of P. Let U be



Nets and Filters

NOTES

Self - Learning
Material 207

any open neighbourhood of x and let F H. We have to show that
F U Let z be any point of F. Then z, FSince x is a cluster point of
P, there exists y, Gsuch that y, Gz, Fand Py, GU. But then y 
G, G F and y U  Py, Gy showing that y F U and so
F U Hence every neighbourhood of x intersects every member of H, i.e.,
x is a cluster point of H.

Theorem 5.17: A topological space is Hausdorff iff no filter can converge to
more than one point in it.

Proof: Suppose X is a Hausdorff space and a filter H converges to x as well as y.
This means 

x
 H and 

y
 H. Now if x  y, then there exist U 

x
 and V 

y

such that U V which contradicts the fact that H has the finite intersection
property. So x y. Thus limits of convergent filters in X are unique.

Conversely, suppose that no filter in X has more than one limit in X. If X is
not Hausdorff, there exists x, y X, x y such that every neighbourhood of x
intersects every neighbourhood of y. From this it follows that the family 

x
 

y 
has

finite intersection property. Evidently H converges both to x and y contradicting
the hypothesis. So X is Hausdorff.

Theorem 5.18: For a topological space X, the following statements are equivalent:

iX is compact.

iiEvery filter on X has a cluster point in X.

iiiEvery filter on x has a convergent sub filter.

Proof: iiiiihas been shown in the definition of sub filter.

Moreover, if a filter H has a cluster point x in X, then the net based on H
also has cluster point x in X. Therefore iiifollows from the result already
proved for nets.

Theorem 5.19: A topological space is compact iff and only iff every ultrafilter in it
is of convergent type.

Proof: When a space is defined as compact, then every filter contained in it holds
a cluster point. Specifically, every ultrafilter holds a cluster point and consequently
it is termed convergent by a consequence or result, i.e., an ultrafilter typically
converges precisely to a point iff that point is exactly a cluster point of it.

Conversely, assume that X is a space having the property that every ultrafilter
on this space is precisely convergent. It can be appropriately shown that every
filter on X holds a cluster point because only then the result will follow as per the
above mentioned Theorem 5.19. Suppose H is a filter on X. Therefore an ultra
filter G containing H. By hypothesis, y converges to a point, say x on X. Then x is
a cluster point of G. So every neighbourhood of x meets every member of G and
in particular every member of H, therefore, since H G. Consequently, x is also
a cluster point of H. Thus every filter on X has a cluster point in X. Hence X is
compact.



Nets and Filters

NOTES

Self - Learning
208 Material

Now we are in a position to prove the following theorem which is typically
the characterization of compact sets.

Theorem 5.20: For a topological space X, the following are equivalent:

i X is compact.

ii Each family C of closed sets in X with the finite intersection property has
non­empty intersection.

iii Each filter in X has a cluster point.

iv Each net in X has a cluster point.

v Each ultra net in X converges.

vi Each ultra filter in X converges.

Proof: iiiLet X be compact. Suppose on the contrary that Fis a family

of closed sets in X having empty intersection, i.e., φλ
λ

F

 C
λ

λ
φ







C

F

 XF C λ
λ


Thus  CFλ
is a converging of X. Then by compactness of X, there must be

a finite sub covering of X, i.e.,

X   C
i

n

i
F

1


But the Xc  C
i

n

i
F

1
 C  i

n

i
F

1


so that the family cannot have the finite intersection property. This contradiction
proves that iiholds.

iiiiiIf H is a filter on X, then  HFF ;  is a family of closed sets

with the finite intersection property, so iiimplies that there is a point x in 

 HFF ; , i.e., each neighbourhood of x intersects every member of H. Hence,

x is a cluster point of the filter H.

iiiivSuppose that the filter H has x as a cluster point. We know that
net P X based on H is defined by taking y, FF H; y Fand
putting Py, Fy. Let an open neighbourhood U of x and an element y, Fof 
be given. Then F U because x is a cluster point iff every neighbourhood U
of x meets every member F of H.

Z F U. Then z, F

z, Fy, Fand Pz, Fz U.
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Thus to each neighbourhood U of x and y, Fthere is z, Fsuch
that z, Fy, Fimplies Pz, FU. Hence, x is a cluster point of the net P.

iviiiIf an ultra net has a cluster point then it converges to that point.

vviLet H be an ultra filter on X. Then the neighbourhood on H is an
ultra net which converges by vBut the limits are preserved in satiating over from
ultra nets to ultra filters. Hence H is convergent.

viiSuppose is an open cover of X with no finite sub cover. Then
X – U

1 
U

2 
…, U

n
for each finite collection  U

1
,…, 

 
U

n
from the

sets of the form X – U
1 
U

2 
…,U

n
Then form a filter base since the

intersection of two such sets has again the same formgenerating a filter H. Now
since each filter is contained in an ultra filter. It follows that H is contained in some
ultra filter H*. But H* converges to x by fNow x U for some U Since
U is a neighbourhood of x, by the definition of convergence ultra filter, we have
U H*. By the construction, X – U H H*. Since it is impossible for both U
and X – U to belong to an ultra filter, we have a contradiction. Thus, must have
a finite sub cover and hence X is compact.

5.8 ULTRAFILTERS AND COMPACTNESS

Definition 1:A filter on a set X is a collection  of subsets of X satisfying

1) X  , but .

2) If A   and A B X, then B  .

3) A finite intersection of sets in  is in if A
12

  , then A
1 
A

2 
 .

Definition 2:Let X be a topological space,  a filter on X, and x a point in X. We
say that  converges to x and write x if every neighbourhood of x is in . If
 converges to exactly one point x of X, then we will call that point the limit of 
and write x lim .

Theorem 5.21:A filter on a Hausdorff space X may converge to at most one
point in X.

Definition:Let X and Y be sets, f X Y be any function, and let  be a filter on
X. The collection f A Yf–1Ais a filter on Y, called the push
forward of the filter  via the map f

Theorem 5.22:Let X and Y be topological spaces. A function f X Y is continuous
iff whenever a filter  on X converges to a point x X, the filter f on Y converges
to fx

Definition:An ultra filter on a set X is a filter  on X which is maximal with
respect to inclusion, i.e., it is a filter  for which any other filter on X satisfying
 actually satisfies  .

Theorem 5.23:Every filter is contained in some ultra filter.
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Theorem 5.24:The following are equivalent for a filter  on a set X

1)  is an ultra filter.

2) For every set A X either A  or Ac X  A .

3) For every finite cover  A
n

i 1
 of a set A , A

i 
 for some i.

Theorem 5.25:A topological space X is compact iff every ultra filter on X is
convergent.

Theorem 5.26:If  is an ultra filter on a set X and f X Y is a function, then
f
*
  is also an ultra filter.

Theorem 5.27:There exists a functional ll R called a generalized limit
satisfying

1) l is defined on all bounded sequences.

2) If x
n
is a sequence whose limit exists in the usual sense, then lx

n


lim
n x

n
.

l is linear and multiplicative, whenever x
n
and y

n
are bounded sequences,

and a and b are real numbers, lax
n
 by

n
al  ax

n
bl y

n
and l 

x
n
y

n
lx

n
 ly

n


Theorem 5.28:Non­standard models of first order arithmetic models containing
infinite integer and like creaturesexist.

Theorem 5.29 Tychonoff’s Theorem:If Xis a compact topological space
for every in some arbitrary index set I, then I

 Xis compact in the product
topology.

Definition:Let X be a T
2
 topological space. A Stone­Čech compactification of

X is a compact T
2
 topological space X containing X so that:

1) The topology induced on X as a subset of X is the original topology of X.

2) Whenever f X Y is a continuous map of X into some compact T
2
 space

Y, there exists a unique continuous map 
~

f X Y whose restriction to X

is f.

Note: A rather non­trivial theorem says that if X is a Stone­Čech compactification of X,

then X is dense in X, namely, the closure of X in X is all of X.

Theorem 5.30:Any two Stone­Čech compactifications of the same topological
space X are homomorphic.

For simplicity, we will work below only with the space X N the natural
numbers with the discrete topology. The results in this section all have analogues
for an arbitrary completely regular topological space, and in particular, for an
arbitrary metric space.
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Definition:Let N be the set of all ultra filters on N. We will identify N as a
subset of N by identifying every integer n with the principal ultra filter 

n 
at n.

Theorem 5.31:There is a topology on N for which it is a Stone­Cech
compactification of N. A basis for that topology is given by  U

A
A N

where for any set A N, U
A 
N A 

Note: All the sets U
A
 are actually clopen in N.

Theorem 5.32:N is dense in N.

Check Your Progress

9. What is an ultrafilter?

10. State the ultrafilter theorem.

11. Give the equivalent statements for a topological space X.

12. Define the limit of a filter.

5.9 LOCAL FINITENESS

According to the mathematical analysis in the field of topology, the term local
finiteness can be defined as a unique property which satisfies the property of
collections of subsets precisely for a topological space. Fundamentally these
properties are used for studying the paracompactness and topological dimension.
A collection of subsets that are contained in a topological space X are precisely
defined as locally finite, if each point in the space uniquely has a neighbourhood
which only intersects finitely several sets in the collection. Consequently, for a
topological space a finite collection of subsets is termed as locally finite. Further,
the infinite collections of sets can also be locally finite. For example, the collection
of all subsets of R of the form (n, n + 2) with integer n is locally finite. A countable
collection of subsets need not be locally finite, as shown by the collection of all
subsets of R of the form (–n, n) with integer n. If a collection of sets is locally
finite, then the collection of all closures of these sets is also locally finite. The
converse of this, however, can fail if the closures of the sets are not distinct. For
example, in the finite complement topology on R, the collection of all open sets is
not locally finite, but the collection of all closures of these sets is locally finite as the
only closures are R and the empty set.

No infinite collection of a compact space can be locally finite. Consider {G
a
}

to be an infinite family of subsets of a space and suppose this collection is locally
finite. For each point x of this space, choose a neighbourhood U

x
 that intersects

the collection {G
a
} at only finitely many values of a. Clearly,  x for each x  X 

is an open covering in X and hence has a finite subcover, U
a1

  *, ......  *, U
an

.

Since each U
ai
 intersects {G

a
} for only finitely many values of a, the union of all

such U
ai
 intersects the collection {G

a
} for only finitely many values of a. It therefore
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follows that X intersects the collection {G
a
} at only finitely many values of a thus

contradicting the infinite cardinality of the collection {G
a
}.

A topological space in which every open cover admits a locally finite
open refinement is called paracompact. Every locally finite collection of subsets
of a topological space X is also point­finite. A topological space in which every
open cover admits a point­finite open refinement is termed as metacompact. A
collection in a space is countably locally finite (or ­locally finite) if it is the
union of a countable family of locally finite collections of subsets of X. Countable
local finiteness is a significant hypothesis in the Nagata­Smirnov metrization theorem,
which states that a topological space is metrizable iff it is regular Hausdorff and
has a countably locally finite basis.

Definition 1:A collection of subsets of X if called locally finite or neighbourhood
finiteif and only if for every x X has a neighbourhood meeting only finite  
We call point finite if and only if each x X belongs to only finitely many 
Clearly every locally finite collection is point finite.

Notes:

 Since every point­finite may not be locally finite, e.g., consider the covering of the set
R.  XX Rwhich is a covering of R. It is a defined as point finite covering of
R but it is not locally finite. Because in general topology of R, every point has
neighbourhood an open intervalwhich contains uncountable number of points of
R. Therefore, every point do not has neighbourhood which intersects finite number
of members of the covering. However when the discrete topology of R is considered,
then above covering is also locally finite. Thus for any space X,  Xx Xthere
is a pointfinite cover, which is locally finite only under stringent conditions on X.

 The covering of R by the sets n, nas n ranges through all integers is point finite.

Definition 2:A collection of subsets of X is discrete if and only if each
x X has a neighbourhood meeting on at most one element of Clearly every
discrete collection of sets is locally finite.

Lastly, for any property of collection of sets in X, there is a corresponding
­property which we illustrate with an example.

A collection v of subsets of X is called ­locally finite iff v n
n

V





1
  where

each V
n
 is a locally finite collection in X, i.e., iff v is the countable union of locally

finite collections family in X.

In the same way, a collection v of subsets of X is ­discrete iff v is the
countable union of discrete collection in X. If v is a ­locally finite cover of X, then
the sub collections V

n
, which are locally finite and make up v will not usually be

covers.

Theorem 5.33:  If Ais locally finite system of sets in X, then so is


λA 
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Proof: Since Ais a locally finite system of sets, given p  X, find an
open neighbourhood  of p such that Aexcept for finitely many 

 U 
λA except for some 

U 
λA for some 


λA is locally finite. Hence the theorem is proved.

Theorem 5.34:  If Ais a locally finite system of sets, then 
λA 

λA In particular, the union of a locally finite collection of closed sets is closed.

Proof: 
λA 

λA trivial

Conversely, suppose p 
λA Now some neighbourhood of p meets

only finitely many of the sets Asay
n

AA λλ ,...,
1

. Since every neighbourhood of p

meets  A, every neighbourhood of p must then meet
n

AA λλ ....,
1

 .

Hence p
n

AAA λλλ ....
21

 so that for some k, p 
kAλ Thus 

λA 

 
λA proving the lemma.

Theorem 5.35: For each 
λA is closed.

Proof: Let B  
λA We will show BB 

B is closed.

Suppose x B, we will show x cannot be a limit point of B.

x B x  
λA x  A 

If there is a neighbourhood   which is not disjoint for finite number of

λA ’s,

i.e., U
i

Aλ for i ,n, then X 
i

Aλ is open neighbourhood of x

and so 
n

1
  X 

λA is open neighbourhood of x.

Thus U 
n

1
  X 

i
Aλ is neighbourhood of x disjoint with each 

λA and

U 
n

1
 X 

i
Aλ is disjoint with 

λA B. Thus, x is not a limit point of B.
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5.10 THE NAGATA-SMIRNOV METRIZATION
THEOREM

The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable
topological spaces. In other words, the theorem describes the necessary and
sufficient conditions for a topology on a space to be defined using some metric. As
a motivational example, consider the discrete topology on some space every
subset of the space is open. Though it might not be apparent to the untrained
observer, this topology is actually defined by the following metric:

d x, y







yx

yx

when0

when1

The open balls of radius 1/2 under this metric each contain only a single
point the point around which the ball is centeredusing these open balls as a
basis, we define the discrete topology. Hidden in the discrete topology is the
underlying metric defined above. The Nagata-Smirnov Metrization Theorem lists
the exact condition that any topology must have in order for there to be such an
underlying metric. Before proving the full metrization theorem, we will start with a
more specific resultthe characterization of compact metric spaces.

Part 1: We will prove that a topological space X is a compact metric space if and
only if X is compact Hausdorff with a countable basis.

We will begin with some relatively simple preliminary results that occur often
in the lemmas and theorems to follow. When used, these results will not be cited
by name.

Result 1:In a topological space X, suppose A is a compact set and C A is
closed. Then C is compact.

Proof:Take any open cover of C. This cover and the open set X\C form an open
cover of A. Because A is compact, there is a finite sub cover, which must also
cover C, because C A. Thus, any open cover of C can be reduced to a finite
sub cover, so C is compact.

Result 2:Suppose fX Y is continuous, and A X is compact. Then fAis
compact.

Proof:Take an open cover C Uof  fATake x A. Then fxfAso
fxU for some U C, so x fUThus the pre­image of the sets in C,
which themselves are open because f is continuous, cover A. Because A is compact,
some finite sub cover fU

1
 , fU

n
covers A. Take fxfAThen x 

A, so x  fU
i
for some i, 1 i  n. Therefore fxU

i
, and the open sets

U
1
,…, U

n
 cover fAThus any open cover of fAcan bereduced to a finite sub

cover, so fAis compact.

Result 3:Suppose X is Hausdorff and A X is compact. Then A is closed.
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Proof:To prove that A is closed, we will prove that X\A is open. Take some point
x  X\A. For every point y we know that x  y because X\A is by definition
disjoint from A, so by Hausdorffness there exist disjoint open sets Ux, yand

Vx, ywith xUx, yand y Vx, yThen ( , )y AV x y  is an open cover of A,

so because A is compact there is a finite sub cover, V
1
xV

n
xEach V

i
xis

disjoint from an open set U
i
xcontaining x, so Ux is also disjoint from C, hence

UxX\C. Taking the union of all Uxfor all x X, must therefore also be
contained in X\C, but also cover X\Ctherefore X\C is the union of open sets and
hence is open.

Result 4:The function f X Y is continuous if and only if for each x X and
open set U Y containing fxthere exists an open set V X such that x V and
fVU.

Proof: Suppose first that f is continuous. Take x  X and an open set U containing
fxThen fUis open by continuity, x fUand f fUU  U.

Now we will prove the converse. Take an open set U Y, and x
fUSo fxU, therefore there is an open set VxX containing x with fV
U. Take y  Vxthen fy fVxU, so y  fUherefore, Vx

fUTherefore fU V(x)
(U)fx 1

 which is open because it is the union

of open sets. So when U  Y is open, then fUis open, proving that f is
continuous.

Part 2:

Now we will prove the Nagata­Smirnov metrization theoremif a topological space
X is a metric space if and only if X is regular with a countably locally finite basis.

Lemma:Suppose A is a locally finite collection of subsets of a topological space

X. Let AY A  A .Then 
AY A  A

.

Proof:First, we will show that 
A A Y  A

, which is generally true. For each A 

A , it is true that AYY A is the intersection of all closed sets containing  AA

and Y is a closed set containing A; thus if x A  then xY so AY thus

A A Y  A
 as desired.

Now we will prove that 
AY A  A

. Take x Y . By local finiteness, there

exists an open neighbourhood U containing x that intersects only a finite subset of
elements of  A ; Denote these elements as A

1
,…,A

k
. Suppose that x was not

contained in any of ,,....,1 kAA i.e., x j
k
j A1 which is a closed set. Then x 

U\  j
k
j A1 which is an open neighbourhood of x that is disjoint from every

element of A. Thus x itself must be disjoint from every element of A, contradicting
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the fact that x Y  Therefore x must be contained in some jA 1   j  k, and

AY A  A
, implying that 

AY A  A
.

Lemma: Suppose X is a regular space with a countably locally finite basis B.
Then X is normal.

Proof:We will prove this in two steps.

Step 1:Suppose W X is open. Then there is a countable collection of open sets

U
n
such that W  nNnnNn UU    .

Proof: Because B  is countably locally finite, B nNn B where each B
n
 is a

locally finite collection of subsets of X. For each nN, let C
n
 B B

n 
 WB  

Then C
n
 B

 n
, so C

n 
must also be locally finite. Let U

n
 B

nCB Because each

B is open, U
n
 is also open. Furthermore, by above lemma, BU

nCBn   , because

C
n 

is locally finite. Each WB  , so BU
nCBn   W; therefore,

WUU nNnnNn    

Now we need to show that W  nNn U . Take x W. Then xis

disjoint from X\W and both sets are closed xis closed by definition of regularity
so by regularity there exist disjoint open sets U and V such that xU and X\W
V. Then xxU X\W V. Then xxU   X\W  W. For some n N,
there exists a basis element B B

n 
such that x B U  X\V; because X\V is

closed, B  X\V   W. Therefore B  C
n
. This means that x B  nNn U .

Hence W  nNn U , as desired.

Step 2:X is normal.

Proof:Take disjoint closed subsets C, D  X. Then X\D is open, so by Step 1,
there exists a countable collection of open sets U

n
 such that X\D 

nNn U  nNn U . Of course, every nU  is disjoint from D, C  nNn U . By

the exact same reasoning, there exists a collection of open sets V
n
that cover D

such that each nV is disjoint from C.

nNn U  and nNn V are open covers of C and D, respectively. But we

cannot guarantee they are disjoint. For each n N, let U
n 
  j

n
jn VU 1\  and

let V
n 
  j

n
jn UV 1\  . These sets are open. Then let U nNn U '

 and let V

 nNn V '
 . U and V are clearly open, because they are the union of open sets.

Our claim is that they are disjoint covers of C and D.
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Take x  C. Then x U
n
 for some n, because C nNn U . Furthermore,

x  nV for all n. Therefore  x   j
n
jn VU 1\    U

n
 Uso C  USimilarly,,

D  V

Now suppose that U and Vare not disjoint. Then there exists some x X

such that x U nNn U '
 and x  V nNn V '

 This implies that for some

m, n, x U
m 
  j

m
jm VU 1\  and x  V

n 
  j

n
jn UV 1\  , i.e., x U

m
, V

n
,

but x  nm UUVV ,...,,,....., 11 . Suppose m  n. Then x  U
m
. But

x  ,,...,,....,1 nm UUU  which is a contradiction. Similarly, we get a contradiction if

n m. Therefore, Uand Vare disjoint open covers of C and D, proving that X
is normal.

Theorem 5.36:Suppose X is a regular space with a countably locally finite basis
B. Then X is metric space.

Proof: We will show that X can be embedded in the metric space 0,1Bwith the
following metric

Suppose p, q0,1B. Then let dp,qsup{| ( ) ( ) |}

B

p B q B

B






We will prove this is a metric

 Each term     0||  BqBp , so dp,qsup{| ( ) ( ) |}

B

p B q B

B




as well.

If dp,q sup{| ( ) ( ) |}

B

p B q B

B




then for every B B we have 0

    || BqBp     so    BqBp  , hence p  q. Conversely, if

p  q, then     || BqBp    for all B B, so dp, q


sup{| ( ) ( ) |}p B q B

B


 B  

2. ( , ) sup{| ( ) ( ) |} sup{| ( ) ( ) |} ( , )

B B

d p q p B q B q B p B d q p

B B
.

3. It is generally true that if W and Y are sets of real numbers, then supW
supYsupWYwhere WY  WYwW, y YIt is also true
that if K  L, then sup K  sup L Therefore,

( , ) sup{| ( ) ( ) |} sup{| ( ) ( ) |

B B

d p r p B r B p B q B

B B
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| ( ) ( ) |} sup{| ( ) ( ) |} sup{| ( ) ( ) |} ( , ) ( , )

B B

q B r B p B q B q B r B d p q d q r

B B

Now we can proceed.

Fact 1:If W X is open, then there exists a continuous function fsuch that
f |W and f|X\W

Proof:By Step 1 of Lemma 2, W  nNn A where each A
n
 is closed. Each A

n

is disjoint from the closed set X\W. By Lemma 2, X is normal, so we may apply
Urysohn’s lemmafor each A

n
, there exists a continuous function f

n
X 0, 1

such that f
n
|A

n 
and f

n
|X\WFor x X, let fx   n

n n xf 2/
1


This is

well defined, because 0 f
n
xso 0 f

n
xn n

1
2/1

n

n converges,

so by the comparison test   n

n n xf 2/
1


also converges. In fact, by the

Weierstrass M­test it converges uniformly. Therefore, because each term f
n
/2n is

a continuous function f
n 
is continuous and 2n is just a constantf is also continuous.

Each f
n
 is uniformly zero on X\W, hence f|X\Wand for x W, we know that

x A
n
 for some n. Therefore f

n
xso at least one term in the infinite sum

  n

n n xf 2/
1


is greater than zero. Because all the other terms cannot be less

than zero, this guarantees that fxso f |W as desired.

Now we are ready to define the embedding gX 0,1B. First, it should
be briefly noted that while Fact 1 proved the existence of a continuous function
from any open set to the closed interval 0,1we could just as easily have replaced
0,1by any closed interval a,ba, b R, by defining a continuous function
between 0, 1and a, band considering the composition of the function we did
define and this new function, using the fact that the composition of continuous
functions is continuous.

Because  is countably locally finite, it is true that B Bn N n  , where each

B
n
 is locally finite. We might as well assume that for each m, n N, 

m
 

n 


because if there were some basis element B 
m
, 

n
, we could define 

m
 that

contained all the same element as 
m
 except for B. 

m
 would still be locally finite

and  would still be a basis, because B is still contained in 
n
.

If we take any basis element B, we therefore know that B 
n
 for exactly

one n. Because B is open, we can, by Fact 1, define a continuous function f
B
X

0,1/nsuch that f
B
|X\BNow we will define the embedding g as follows

let gx  B, f
B
xB  We must prove that this is an embedding by showing

three thingsg is injectivegis continuous and g–1 is continuous.

Fact 2: g is injective.
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Proof:Suppose x  y. By definition of regularity, the single point sets xandy
are closed, and they are obviously disjoint. By Lemma 2, X is normal. Therefore,
there are disjoint open sets U, V such that x xU and yyV. There must
then exist a basis element B such that x B U. Then f

B
xbut f

B
y

because y B. Therefore, the function gxcontains the ordered pair B,where
ut the function gycontains the ordered pair B,Therefore, gx gy

Fact 3:g is continuous.

Proof:To prove that g is continuous, we must show that for any open set V
around a point gxthere is an open set U  X such that x  U and gUV. In
particular, if we can find an open set U containing x such that
gU B gxV, then we will be done.

We know that n N n B B , where each 
n
 is locally finite. Take some


n
 and find an open neighbourhood U

n
 of x that intersects only finitely many basis

elements in 
n
. Suppose that B  

n
 does not intersect U. Then it certainly does

not contain x, so f
B
xFurthermore, f

B
yfor all y U

n
. Therefore, |f

B
x

 f
B
y

Now suppose B φnU . We know that f
B
X0, 1/nis continuous, so

given the open set  f
B
xf

B
x    nn /1,0/1,0  there will be an

open set W
n 
X containing x such that f

B
 W

n
  f

B
x    f

B
x 

  n/1,0 Let V
n 
 W

n
 U

n
, which is open because it is the finite intersection

of open sets, and is not empty because both W
n
 and U

n
 contain x. Then for  Y V

n

 W
n
, f

B
y f

B
xf

B
x  n/1,0 so |f

B
x f

B
ySo for y

V
n
, |f

B
x f

B
yfor all B 

n
.

Take N large enough so that 1/NLet V V
1 NV ... , which is open

as it is the finite intersection of open sets. If y V, then y V
1
,…,V

N
, so for n 

and B 
n
, |f

B
x f

B
yFurthermore, for n  N and B B

n
, we know

that |f
B
x f

B
y/n because the maximum value of f

B
 is 1/n and

the minimum value is 0. So the maximum difference between any two values is 1/
n. So for y V, |f

B
x f

B
yfor all B . Therefore, dgx gy

sup{| ( ) ( ) |}B Bf x f y

B

 
 B

implying that gy B gx 

proving that g is continuous.

Fact 4:g–1 is continuous.

Proof:To prove that g–1 is continuous, we need to show that if U X is open,
then gU g–1–1Uis open in gxIt suffices to show that for any z gUand
g is injective by Fact 2, there exists a unique x U such that gx z. Because U
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is open, there exists a basis element such that x  U. Therefore fx
and fX\

Let V h 0,1h0,1B, for chosen above. Our claim
is that V is open. To show this, we must show that any function in V has an
open neighbourhood contained entirely within V. Take some function h V
and consider the open ball B h hFor any function h Bh h

sup{| ( ) '( ) |} ( , ') ( )h B h B d h h h

B

   
 B

so |h h  hfor all B . In

particular, |h h  hso hhus, hV and B h hV, so
V is open.

Let W V   gxThen W is open in gxBy our choice offx 
So gxcontains the ordered pair for   fx. Thus gxV. It is also

true that gx gXTherefore, gxV   gx W. Now we need to show

that W  gU. Take any function p W. Then p  gyfor some y X. Because

p W  V  gxp V, so fy pThis means that y  U, so p 
gy gUTherefore W  gUimplying that gUis open. This shows that g–

1–1Uis open whenever U is open. Hence g–1 is continuous.

5.11 PARACOMPACTNESS

Let X be a space and Y a subspace of X. A subspace Y is said to be normal
respectively, strongly normalin X if for each disjoint closed subsets F

0
, F

1
 of X

respectively, of Ythere exist disjoint open subsets G
0
, G

1
 of X such that F

i
 Y

G
i
 for i 0, 1. A subspace Y is said to be 1­ respectively, 2­paracompact in

X if for every open cover  of X, there exists a collection  of open subsets of X

with X  respectively, Y such that  is a partial refinement of  and

 is locally finite at each point of Y. Here,  is said to be a partial refinement of 
if for each V , there exists a U  containing V. The term 2­ paracompactis
often shortened to paracompact.

Theorem 5.37: Every paracompact space is normal.

Proof: We shall show first that a paracompact space is regular. Suppose A is
closed set in a paracompact space X and x  A. For each y A, open set V

y

containing y such that x  yV Then the sets V
y
; y A together with the set X A,

form an open cover of X. Let w be a locally finite refinement and V UW w
WA 

Then V is open and contains A, and V  UW  WA 

But each set W is contained in some V
y
 since W is refinement and hence, W

is contained in yV Hence x W since x  yV Thus x V But V A. Thus
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x and A are separated by open sets in X, i.e., the space is regular. Now we will
prove that the space is normal. Suppose A and B are disjoint closed sets in X.

Since the space is regular, to each y A, an open set V
y 
containing y and yV 

B Then the sets V
y 
together with X  A from an open cover of X. Let w be an

open locally finite refinement and V W w WA Then V is open and

contains A and V UW  WA But each such W is contained in some V
y

since w is refinementand hence each W is contained in yV Thus there is an

open set V such that A V and V B Thus X is normal.

Note: Every normal space need not be paracompact, e.g., space of ordinals which are less
than the first uncountable rationals with respect to order topology is a normal space but not

paracompact.

Theorem 5.38: Consider Fset in a paracompact space X, where each F
n
 is

closed in X. Let UAbe an open covering of F and each UF V

where Vis open in X. For
 
each fixed n, X F

n
VAis an open

covering of X and so has an open locally finite refinement W
n
. Let 

n
  WF

WW
n


Then each 
n
 is locally finite collection of open subsets of F and n

n




1


refines UAThus UAhas an open  locally finite refinement.
Thus by Michael theorem, F is paracompact.

5.12 HOMOTOPY OF PATHS

In mathematics, a path in a topological space X is a continuous map f from the
unit interval I = [0, 1] to X given as,

f : I  X

The initial point of the path is f(0) and the terminal point is f(1). In a path
from x to y, the points x and y are respectively, the initial point and terminal point
of the path. Remember that a path is not simply a subset of X resembles a curve,
but it also includes a parameterization. For example, the maps f(x) = x and g(x)
= x2 precisely represent two different paths from 0 to 1 on the real line.

A loop in a space X based at x  X is a path from x to x. A loop may be
appropriately defined as a map f : I  X with f(0) = f(1) or as a continuous map
from the unit circle S1 to X, given as,

f : S1  X

This is because S1 may be regarded as a quotient of I under the identification
0 ~ 1. The set of all loops in X forms a space called the loop space of X. A
topological space for which there exists a path connecting any two points is termed
as path­connected. Any space may be broken up into a set of path­connected
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components. The set of path­connected components of a space X is denoted by


0
(X).

We can also define paths and loops in pointed spaces that are important
in homotopy theory. If X is a topological space with basepoint x

0
, then a path

in X is one whose initial point is x
0
. In the same way, a loop in X is one that is

based at x
0
. Paths and loops are central subjects of study in the branch of algebraic

topology known as homotopy theory. Specifically, a homotopy of paths or path­
homotopy, in X is a family of paths f

t
 : I  X indexed by I such that

 f
t
(0) = x

0
 and f

t
(1) = x

1
 are fixed.

 The map F : I × I  X given by F(s, t) = f
t
(s) is continuous.

The paths f
0
 and f

1
 connected by a homotopy are said to homotopic.

Similarly, a homotopy of loops can be defined keeping the base point fixed. The
relation of being homotopic is an equivalence relation on paths in a topological
space. The equivalence class of a path f under this relation is called the homotopy
class of f and is precisely denoted by [ f ]. Assume that f is a path
from x to y and g is a path from y to z. Than the path fg is defined as the path
obtained by first traversing f and then traversing g:

1
(2 ) 0

2( )
1

(2 1) 1.
2

   
   


f s s
fg s

g s s

Evidently, path composition is only defined when the terminal point of f and
the initial point of g coincide. If we consider all loops based at a point x

0
, then

path composition is termed as a binary operation. Path composition, when precisely
defined, is not associative in general due to the difference in parametrization.
However, it is associative up to path­homotopy, i.e., [(fg)h] = [f(gh)]. Path
composition defines a group structure on the set of homotopy classes of loops
based at a point x

0
 in X. The resultant group is termed as the fundamental

group of X based at x
0
 and is typically denoted by 

1
(X, x

0
).

In the case of associativity of path composition, a path f in X can be defined
as a continuous map from an interval [0, a] to X for any real a  0. This path f  has
a length |f| defined as a. Path composition can be defined using the following
modification:

( ) 0 | |
( )

( | |) | | | | | |

f s s f
fg s

g s f f s f g

 
     

Wherein, with the previous definition, f, g and fg all have length 1, this
definition makes |fg| = |f| + |g|. The previous definition do not follow or support
associativity properly because although (fg)h and f(gh) have the same length 1,
and the midpoint of (fg)h occurred between g and h, whereas the midpoint of f(gh)
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occurred between f and g. In this modified definition (fg)h and f(gh) holds the
same length, namely |f|+|g|+|h|, and the same midpoint found at (|f|+|g|+|h|)/2 in
both (fg)h and f(gh). Hence (fg)h and f(gh) have the same parametrization
throughout.

Definition: Let X and Y be topological spaces. Let X X and f
0
, f

1
 X  Y be

continuous and agree on Xf
0
 is homotopic to f

1
 relative to Xif there exists a

continuous map F XI  Y such that Fxf
0
xFx f

1
xfor x X,

and Fxt f
0
xfor x X and t I.

If f
0
 and f

1
 are homotopic relative to X,we write f

0
f

1
 rel XIf Xwe

omit writing rel X

Theorem 5.39: Homotopy relative to Xis an equivalence relation in the set of
continuous maps X  Y.

Proof: Reflexivity: f   f because let Fx, tfx

Symmetry: Let F be the homotopy for f
0
f

1
 rel XThen the homotopy F

for f
1
f

0
 rel Xis

Fx, t Fx, 1–t

TransitivityLet F
1
 be the homotopy for f

0
f

1
 rel Xand F

2
 be the homotopy

for f
1
f

2
 rel XThen, F

3
 defined as

F
3
x, t

 
 







12/112,

2/102,

2

1

ttxF

ttxF

is the homotopy for f
0
f

2
 rel XF

3
 is continuous because both its restrictions are

continuous and equal for t i.e., F
1
x, 1f

1
x F

2
x, 0

Theorem 5.40: Composites of homotopic maps are homotopic.

Definition 1:A topological space X is said to be pointed if X is non empty and it
has a base point x

0 
X. We denote such a space by  X, x

0


Definition 2: A topological space X is said to be contractible if its identity map is
homotopic to some constant map of X to itself, i.e., fx x and f c.

Theorem 5.41: Any two maps of an arbitrary space to a contractible space are
homotopic.

Proof: Let Y be a contractible space and let its identity map be homotopic to the
map c constant in YLet f

0
, f

1
 X  Y be arbitrary. By Theorem 5.2, f

0 
cf

0
 and

f
1 
cf

1
. Because cf

0 
cf

1
 therefore by Theorem 5.1, we have f

0 
 f

1
.

Let X, band Y, cbe pointed topological spaces. A map f Y, c  X,
bis a continuous function f that satisfies fcb. Then the map f

*
Y, c 

X, bis defined by making the path in Y correspond to the path f in X.
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5.13 THE FUNDAMENTAL GROUP

According to the mathematical analysis in the field of topology, the notion and
concept of fundamental group is defined by Henri Poincaré. The fundamental group
is referred as a group which is typically associated with any given pointed
topological space which provides methodology to determine that when the two
paths, namely starting path and ending path at a fixed base point, can be continuously
or constantly deformed into each other. Characteristically, it documents the
information which significantly defines the basic shapes or holes of the topological
space. The concept of fundamental group is the initial and simplest form of
the homotopy groups. Basically, the fundamental groups can be studied on the basis
of the theory of covering spaces, because a fundamental group precisely coincides
with the group of surface transformations of the related or associated universal
covering space. The abelianization of the fundamental groups can be identified and
defined with the help of first homology group of the space. The concept and notion
of fundamental group was first defined in the theory of Riemann surfaces, which
precisely was based on the work of Bernhard Riemann, Henri Poincaré and Felix
Klein, who typically described the monodromy properties of complex functions
and also provided the comprehensive topological classification for the closed
surfaces.

First consider a space, for example a surface and certain point in it, and also
all the starting and ending loops of this point. When the two loops are combined
together in a transparent manner then they move along the first loop and then along
the second loop. Any two loops can only be considered similar or equivalent if
one loop can be precisely deformed into the other loop without breaking. Eventually,
with the help of this method the set of all such loops can be combined and this
typical equivalence between them is termed as the fundamental group.

Definition: Suppose and are two paths in X with the same end points 0
0x

0
 and 11x

1
We say that and are homotopic relative to

the end points relif there exists a map F I I X such that Ft,
0tFt, 1 tF, t x

1
t, t I.

We can see that the above definition is the general definition of homotopy
applied to paths and the set  I. Therefore the homotopy of paths will be an
equivalence relation in the set of paths I X for a given space x.

We define the multiplication of two paths as,

t
 
 







12/112τ

2/102σ

tt

tt

Because homotopy is an equivalence relation, we can speak of multiply the
equivalence class of one path with the equivalence class of another path presuming
that their ends are the same

Theorem 5.42: Let X, x
0
be the set of classes of homotopy of loops in X at

the point x
0
. From the above definition of multiplication, X, x

0
is a group. The
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identity element being the constant loop in x
0
 and the inverse of being 

defined tt0  t 

Theorem 5.43: If X is path connected space then for all points x
0 
X the groups

X, x
0
are isomorphic.

In the above case X is path connectedwe call X, x
0
the fundamental

groups of X and write it as X

We can now look at contractible spaces as being a special case of a more
general class of spaces.

Definition: A topological space X, Ais defined as just a connected space if it is
typically path connected and the fundamental group of X is trivial.

Therefore, a simply connected space is referred as a path connected space
in which all paths between two points can be continuously transformed into each
other. Examples of simply connected spaces are R2 and Sn n 

Theorem 5.44: A contractible space is a simply connected space.

Check Your Progress

13. State about local finiteness.

14. Give the definition of local finiteness?

15. State the Nagata­Smirnov metrization theorem.

16. Give the proof that every paracompact space is regular.

17. What is path composition?

18. Define fundamental group.

5.14 COVERING SPACES

In algebraic topology, a covering map is a continuous surjective function p from
a topological space, C, to a topological space, X, such that each point in X has a
neighbourhood which is evenly covered by p. This implies that for each point x 
X, there is associated an ordered pair, (K, U), where U is a neighbourhood
of x and where K is a collection of disjoint open sets in C, each of which gets
mapped homeomorphically, via p to U. Particularly, this means that every covering
map is necessarily a local homeomorphism. Under this definition, C is called
a covering space of X.

Covering spaces are considered significant in the analysis and evaluation of
homotopy theory, harmonic analysis, Riemannian geometry, and differential
topology. In the Riemannian geometry, the ramification is defined as a generalization
of the concept of covering maps. Covering spaces are also considered
interconnected which was proved by the study of homotopy groups and specifically
the fundamental group. The most significant application is obtained from the result
which specifies that if X is a sufficiently appropriate topological space, then there
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is typically a bijection from the collection of all the isomorphism forms of connected
coverings of X and the subgroups of the fundamental group of X.

Let X be a topological space. A covering space of X is a space C together
with a continuous surjective map,

p: C  X

such that for every x  X, there exists an open neighbourhood U of x, such
that the inverse image of U under p, p–1(U), is a disjoint union of open sets in C,
each of which is mapped homeomorphically onto U by p. Fundamentally, the
map p is termed as the covering map. The space X is generally characterized as
the base space of the covering while the space C is characterized as the total
space of the covering. Consider any point x in the base, then the inverse image
of x in C is essentially and certainly a discrete space termed as the fiber over x.

The special and unique open neighbourhoods U of x as specified in the given
definition are termed as evenly­covered neighbourhoods. These evenly­covered
neighbourhoods form an open cover of the space X. The homeomorphic versions
in C of an evenly­covered neighbourhood U are typically termed as
the sheets over U. In particular, the covering maps are referred as the locally trivial
which specifies that locally each and every covering map is isomorphic to a
projection such that there is a unique homeomorphism from the pre­image of an
evenly covered neighbourhood U to U  F, where F is termed as the fiber which
essentially satisfies the local trivialization condition. Consequently, if this
homeomorphism is projected onto U, then the derived structure or resultant
composition is equal to p.

Consider the unit circle S1 R2. The map p: R  S1 with
p(t) = (cos t,sin t) is a cover where each point of S1 is covered infinitely often.
For example, take the complex plane with the origin removed (denoted by C*)
and choose a non­zero integer n. Then q

n
: C* C* given by, q

n
(z) = zn is a cover.

Here, every fiber has n elements. The map q
n
 leaves the unit circle S1 invariant

and the restriction of this map to S1 is an n­fold cover of the circle by itself.

In fact, S1 and R are the only connected covering spaces of the circle. For
proving this, first note that the fundamental group of the circle is isomorphic to the
additive group of integers Z. As follows from the correspondence between
equivalence classes of connected coverings and conjugacy classes of subgroups
of the fundamental group of the base space discussed below, a connected
covering f: C S1 is determined by a subgroup f

#
 (

1
(C)) of 

1
(S1) = Z,

where f
#
 is the induced homomorphism. The group Z is abelian and it only has

two kinds of subgroups, namely the trivial subgroup that has infinite
subgroup index in Z and the subgroups H

n
 = {kn| kZ for n = 1, 2, 3, …,

where H
n
 has index n in Z. Each of the subgroups H

n
 of Z is realized by the

covering q
n
: S1  S1 since one can check that ( q

n
)

# 
: Z  Z  maps an

integer k to kn and hence, ( q
n
)

#
(Z) = H

n
. The trivial subgroup of Z is realized by

the covering p: R  S1 , since R is simply connected and has trivial fundamental
group and hence p

#
(

1
(R)) = {0}, the trivial subgroup of Z. Since the total space
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of the coverings q
n
 is S1 and the total space of the covering p is R, this shows that

every connected cover of S1 is either S1or R.

Suppose X and E are topological spaces and p  E  X is a continuous map.

Definition 1: An open subset U of X is said to be evenly covered by p if the
inverse image p–1Uis a union of disjoint open subsets of E, each of which is
mapped homeomorphically by p onto U.

Definition 2: The map p is said to be a covering map if p continuously maps E
onto X such that each x X has an open neighbourhood, which is evenly covered
by p.

In the above case, E is called a covering space over X. A covering map is
also known as a cover. The open cover elementary topology, is a special case of
a covering space, when E is a disjoint union of a collection of open sets X

i
 with

union X.

If x X, then the set p–1xis called the fiber over x. From the definition of
a covering map it follows that it is a discrete subspace of E and each
x X has an open neighbourhood U such that p–1Uis homeomorphic to
p–1x U. The subsets of p–1Umapped homeomorphically onto U are called
the sheets of p–1UOf course, if U is connected, then the sheets of p–1U
coincide with the connected components of p–1Uas connectedness is preserved
by homeomorphismEvery cover p E  X is a local homeomorphism which
implies that X and its covering space E always share the same local topological
properties. However, if X is simply connected, topological properties of X and E
are held globally as well, with p being a homeomorphism of these two spaces.

Theorem 5.45: Product of covering spaces is covering space.

Example 5.1: Rn is the covering space over the n­dimensional torus
Tn   S1 S1 with the covering map, p Rnn given by:

px
1
, …, x

2
 nixix ee π2π2 ,.....,1 

Suppose that E, X and Y are topological spaces and p E  X is a covering
map. Let f Y  X be a map. We need to determine whether there exists a map g
Y E such that pg f. In this case, g is called a lift of f as shown in Figure.

X

p
g

Y

f

E

Fig. 1 A Diagram of the Lift g
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When pg  f, then the Figure commutes. The following lemma explains
about the uniqueness of lifts.

Lemma: Let p E X be a covering map and let Y be a connected topological
space. Let f Y  X be a map and let g, h Y  E be two lifts of f. If gy hy
for some point y  Y, then g  h.

5.15 THE FUNDAMENTAL GROUP OF THE
CIRCLE AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Theorem 5.46:The map Z S
1sending an integer n to the homotopy

class of the loop 
n
scos2ns, sin2nsbased at is an isomorphism.

Proof:The idea is to compare paths in S1 with paths in R via the map
p R  S1 given by pscos2s, sin2sThis map can be visualized
geometrically by embedding R in R3 as the helix parametrized by s  cos2s,
sin2s, sand then p is the restriction to the helix of the projection of R3 onto R2,
x, y, z x, yas shown in the Figure 5.1.

p

Fig. 5.1 Helix

Observe that the loop 
n
 is the composition  p

~

ωn
 where 

~

ωn
I R is the

path 
~

ωn
s ns, starting at 0 and ending at n, winding around the helix |n| times,

upward if n  0 and downward if n  0. The relation s p
~

ωn
 is expressed by

saying that 
~

ωn
is a lift of 

n
.

The definition of can be reformulated by setting nequal to the homotopy

class of the loop p
~

f  for 
~

f  any path in R from 0 to n. Such an 
~

f  is homotopic

to 
~

ωn
via the linear homotopy 1–t

~

f t
~

ωn
, hence p

~

f  is homotopic to p
~

ωn



n
 and the new definition of nagrees with the old one.

To verify that is a homomorphism, let 
m
 R R be the translation 

m
x

x m. Then 
~

ωm
.

m
~

ωn
is a path in R from mn, so mnis the homotopy
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class of the loop in S1 that is the image of this path under p. This image is just 
m

.
n
, so mnmn

To show that is an isomorphism we will use following two facts

(a) For each path fI S1 starting at a point x
0 
 S1 and each 

~

0x p–1x

there is a unique lift 
~

f I R starting at 
~

0x .

(b) For each homotopy f
t
  I  S1 of paths starting at x

0
 and each

~

0x p–1xthere is a unique lifted homotopy 
tf

~
 I R of paths starting

at 
~

0x .

To show that is surjective, let f I S1 be a loop at the base point 1, 0

representing a given element of S
1By athere is a lift 

~

f starting at 0. This

path 
~

f  ends at some integer n since p
~

f 1  f1  1, 0 and

p–11, 0Z R. By the extended definition of we then have np
~

f 

fHence, is surjective. To show that is injective, suppose mn
which means 

m n
. Let f

t
 be a homotopy from 

m 
 f

0
 to 

n 
 f

1
. By bthis

homotopy lifts to a homotopy 
~

tf of paths starting at 0. The uniqueness part of a

implies that 
~

0f 
~

ωm
 and 

1

~

f 
~

ωn
. Since 

~

tf  is a homotopy of paths, the endpoints

~

tf 1are independent of t. For t this endpoint is m and for t it is n, so m

n.

It remains to prove aandbBoth statements can be deduced from the
following assertion

c Given a map FY I S1 and a map YF :
~ R lifting F| Y 

there is a unique map YF :
~  I R lifting F and restricting to the given ~

F
on Y Statement ais the special case that Y is a point and bis
obtained by applying cwith Y in the following way: The homotopy f

t

in b gives a map F I  I  S1 by setting
Fs, t f

t
sas usual. A unique lift ~

F  I R is obtained by an

application of aThen cgives a unique lift ~

F  I I R. The restrictions
~

F |I and ~

F |I are paths lifting constant paths, hence they must

also be constant by the uniqueness part of aSo  sf t

~
 ~

F s, tis a

homotopy of paths and 
~

tf  lifts f
t  
since p ~

F F.

We shall prove cusing just one special property of the projection
p R S1, namely
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  There is an open cover Uof S1 such that for each p–1 Ucan be
(*) decomposed as a disjoint union of open sets each of which is
mapped homeomorphically onto Uby p.

For example, we could take the cover Uto consist of any two open
arcs in S1 whose union is S1.

There is an open cover Uof S1 such that for each p–1 Ucan be
decomposed as a disjoint union of open sets each of which is mapped
homeomorphically onto Uby p.

For example, we could take the cover Uto consist of any two open
arcs in S1 whose union is S1.

To prove cwe will first construct a lift 
~

F  N I R for N some
neighbourhood in Y of a given point y

0
Y. Since F is continuous, every point

y
0
, tY I has a product neighbourhood N

t  
a

t
, b

t
such that F N

t 
a

t
, b

t


 Ufor some By compactness of y
0
I, finitely many such products

N
t 
a

t
, b

t
cover y

0
I. This implies that we can choose a single neighbourhood

N of Y
0
 and a partition 0  t

0 
  t

1 
  t

m 
of I so that for each i,

FN t
i
, t

iis contained in some Uwhich we denote by U
i
. Assume

inductively that 
~

F  has been constructed on N 0, t
i
starting with the given 

~

F
on N 0We have F N t

i
, t

i  U
i
, so by statement *there is an open

set RiU
~

projecting homeomorphically onto U
i
 by p and containing the point

~

F y
0
, t

i
After replacing N by a smaller neighbourhood  of y

0
 we may assume

that ~

F N t
i
is contained in 

iU
~ , namely, replace N  t

i
by its intersection

with  ~

F Nt
i


iU
~ Now we can define ~

F  on N t
i
, t

i to be the

composition of F with the homeomorphism p U
i 


iU
~ . After a finite number of

steps we eventually get a lift ~

F  N I R for some neighbourhood N of y
0
.

Next, we show the uniqueness part of cin the special case that Y is a point.

In this case we can omit Y from the notation. So suppose  ~

F  and ~

F are two lifts of

F I S1 such that ~

F 0 ~

F 0As before, choose a partition 0 t
0 
  t

1 


t
m 
of I so that for each I, Ft

i
, t

iis contained in some U
i
. Assume inductively

that ~

F  ~

F on 0, t
i
 Since t

i
, t

iis connected, so is ~

F t
i
, t

iwhich must

therefore lie in a single one of the disjoint open sets 
iU

~
 projecting homeomorphically

to U
i
 as in the statement *By the same token, ~

F t
i
, t

ilies in a single 
iU

~ ,
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in fact in the same one that contains ~

F t
i
, t

isince ~

F t
i
 ~

F t
i
Because p

is injective on 
iU

~  and p ~

F  p ~

F it follows that ~

F  ~

F on t
i
,t

iand the

induction step is finished.

The last step in the proof of cis to observe that since the ~

F ’s constructed

above on sets of the form N I are unique when restricted to each segment y
I, they must agree whenever two such sets N I overlap. So we obtain a well­

defined lift ~

F  on all of Y I. This ~

F  is continuous since it is continuous on each

N I, and ~

F  is unique since it is unique on each segment yI.

Theorem 5.47: Every nonconstant polynomial with coefficients in C has a root in
C.

Proof: We may assume the polynomial is of the form pzzn a
1
 zn  a

n
.

If pzhas no roots in C, then for each real number rthe formula,

f
r
s

   
    |/|

/
π2

π2

rprep

rprep
is

is

defines a loop in the unit circle S1 C based at 1. As r varies, f
r
 is a homotopy of

loops based at 1. Since f
0
 is the trivial loop, we deduce that the class f

r
 S

1
is zero for all r. Now fix a large value of r, bigger than |a

1
|  a

n
| and bigger

than 1. Then for |z|   r we have |zn|   rn  r. r n  |a
1
|   

 a
n
||zn| |a

1
 zna

n
|.

From the inequality |zn| |a
1
 zna

n
| it follows that the polynomial

p
t
z zn ta

1
 zna

n
has no roots on the circle |z| r when 0 t

 1. Replacing p by p
t
 in the formula for f

r
 above and letting t go from 1 to 0, we

obtain a homotopy from the loop f
r
 to the loop 

n
se2ins. By Theorem 5.46,


n
 represents n times a generator of the infinite cyclic group S

1Since we
have shown that 

n
f

r
we conclude that n Thus the only polynomials

without roots in C are consonants.

According to the fundamental theorem of algebra, every non­constant single­
variable polynomial with complex coefficients has at least one complex root.
Equivalently, the field of complex numbers is algebraically closed. This theorem is
also stated as: every non­zero single­variable polynomial with complex coefficients
has exactly as many complex roots as its degree, if each root is counted up to
its multiplicity. In spite of its name, there is no purely algebraic proof of the theorem,
since any proof must either use the completeness of the reals or some other
equivalent formulation of completeness, which is not an algebraic concept.
Moreover, it is not even fundamental for modern algebra; its name was given during
the time when the study of algebra was mainly concerned with the solutions of
polynomial equations with real or complex coefficients.
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Theorem 5.48 Fundamental Theorem of Algebra: Every continuous map h
D2  D2 has a fixed point, that is, a point x with hxx.

Here we are using the standard notation Dn for the closed unit disk in Rn, all
vectors x of length |x| Thus the boundary of Dn is the unit sphere SnShown
in Figure 5.2.

Proof:

x
h x( )

r x( )

Fig. 5.2 Closed Unit D

Suppose on the contrary that hx x for all x D2. Then we can define a
map r D2  S1 by letting rxbe the points of S1 where the ray in R2 starting at
hxand passing through x leaves D2. Continuity of r is clear since small
perturbations of x produce small perturbations of hxhence also small
perturbations of the ray through these two points. The crucial property of r, besides
continuity, is that rxxif x S1. Thus, r is a retraction of D2 onto S1. We will
show that no such retraction can exist.

Let f
0
 be any loop in S1. In D2 there is a homotopy of f

0
 to a constant loop,

for example the linear homotopy f
t
s1t f

0
s tx

0
where x

0
 is the base

point of f
0
. Since the retraction r is the identity on S1, the composition rf

t
 is then a

homotopy in S1 from rf
0 
f

0
 to the constant loop at x

0
. However, this contradicts

the fact that S
1is nonzero.

Check Your Progress

19. What is a covering space?

20. When map p is said to be a covering map?

21. Define fundamental theorem of algebra.

5.16 SOLVED EXAMPLES

Example 1: Let (X,T) be a topological space and let AX. Then xĀ iff
there is a net w:DA such that wx.

Solution: Suppose w:DA is a net such that w x we want to show that xĀ
so fix an open set P containing x. By definition of net convergence, there is a dD
such that w(e) P for all e>d.

Since w(e)A for all eD in particular PA is non­empty..

ConverseSuppose xĀ. We need to show that there is a net w that
converges to x.
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Let D
x
 = {PT, xP}, this is a directed set Pv iff PV.

By definition of Ā, for every PD
x
 we can fix a point x

p
 PA. Define

w:D
x
A by w(P)=x

p
 then w is a net and we claim that w x indeed, fix an open

set P containing x. Then PD
x
 and so for all V  P in Dx (for VP) we have,

( ) vV x V P Aw A P

This shows that the tail T
p
={VD

x
 : PV}={VD

x
: VP} of the net is

contained in P.

Example 2: A subset A of a topological space (X,T) is closed if and only if
the limit points of all convergent nets in A is again in A.

Solution: We know that the closure Ā of a set A is precisely the set of all limit points
of nets in A.

The result then follows from the fact that A is closed if and only if A=Ā.

Example 3: Let (X,T) be a topological space if F is a filter on X and F
x, then x is an accumulation point of F. Conversely if x is an accumulation
point of an ultra filter U on X, then Ux.

Solution: First, suppose F is a filter and Fx then F
x
  F, and so in particular

for any open set f
x
 and any  F,   since F is closed under finite

intersection and F .

Second suppose x is an accumulation point of an ultrafilter U on X.

We want to show that F
x
U, so fix F

x
. Since x is an accumulation point

of U and F contains an open set containing x, we have that U   for every
U But then the collection U  {} has the finite intersection property and so
it must be contained in some filter that filter must be U itself since U is not properly
contained in any other filter on X.

Example 3a: Assume that X   and FF(X), I then ( )F F X  is

the finest filter on X, which is converse than each FI

Solution: Note i)  FI implies that 
I

F and also X belongs to each

FI Thus 
I

X F and it follows that 
I

F .

(ii) Now let A,B
I

F ; then A and B belongs to each F. Therefore AB

belongs to each FI and thus 
I

A B F .

(iii) Let 
I

A F then A each F, I. Let BA thus B belongs to each F

since B is an over set of A. It follows that 
I

B F since (i), (ii) and (iii) are

satisfied, 
I

F is a filter clearly 
I

F F  for each I.

Now let GF for each I and let us prove that G 
I

F Let AG,

Thus A belongs to to each FI, and then x
I

A F . It follows that 
I

G F



Nets and Filters

NOTES

Self - Learning
234 Material

Example 4: Let f: (X)(Y,) be a continuous function and onto. If (X, )
is compact then (Y,) is compact.

Solution: Let U be an ultrafilter on Y, F=f-1(U) and there exists an ultrafilter on X.

GF. Then rG x , for some xX since (X, ) is compact.

The contunuity assumption of f implies that f(G)f(x) according to theorem.

Since GF then f(G) f(F)=f(f-1(U  U. Also f is onto then f (f-1(U))= U.

Hence, f(G)U and since V is an ultrafilter f(G)=U Consequently,
f(G)f(x) implies that Uf(x) therefore (Y,) is compact.

Example 5:  Let X,Y be topological spaces with xX and g: XY then g is
continuous at x if and only if whenever F is filter such that Fx,
g(F)g(x).

Solution: Suppose g is continuous at x and F x. Let V be a neighborhood of
g(x). By continuity there is a neighborhood U of x such that g (U)V.

Since UF, g(U)g(F).

And thus Vg(F) Hence g(F)g(x).

Conversely, suppose that whenever Fx, g(F)g(x).

Then g(U(x)) g(x) by hypothesis

Then for each neighborhood V of g(x), Vg(U(x)). Then there exists a
VU(x) such that g(U)V and thus g is a continous at x.

Example 6: Let A be a subset of a topological space X then for xX, xĀ
if and only if there exists a filter on X which contains A and converse to x.

Solution: Assume that xĀ then any neighborhood of x has a non­empty
intersection with A.

Now all the sets AU, where U is a neighborhood of x form a filter base
and the corresponding filter converges to x.

Conversely, assume that F is a filter containing A and converging to x. Choose
any neighborhood U of x then UF. And thus UAsince AF This prove
that xĀ.

Example 7: Let (X, ) be a topological space. Then the following
statements are equivalent:

(a)  (X, ) is compact.

(b) Each ultrafilter on X converges.

(c) {Ā: AF} For each filter on X.

Solution: Suppose (X,) is compact and that there exist an ultrafilter F that does

not converge. Then for each xX There exists xV F and thus C= {V
x
: x   X}is

an open cover of X
n
.

Hence 
1

i

n

x
i

V X  Since F is an ultrafilter, implies that c
xV F  for xX

and therefore 
1

i

n
c c

x
i

X V F , which is a contradiction.
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Thus, each ultrafilter on X converges Hence (a)(b)

(b)(c): Given any filter F on X; Let G be an ultrafilter containing F then
G converges to x in (X,) for some xX given any neighborhood V of x and AF,
then AG and VG.

Hence AVG and thus AV  . Therefore, xĀ

Suppose (X, ) is not compact Let C={QJ} be on open cover of X
with no finite subcover.

Then 
1

i

n

i

Q  X, for each n. Let F be the filter on X whose base

1

: ,
i

n
c

i

Q n I Q C  However { (: } )c c

J

Q QĀ A F X
which is a contradiction. Hence (c) (a).

Example 8: (X, ) is T
2
 if and only if each filter converges to at most one

point, F 
r

 x,y implies x = y.

Solution: Suppose that (X, )is Hausdorff and space suppose F
r

x, y where
x  y.

Then there exist Q
x
,Q

y
 such that xQ

x
, yQ

y
 and Q

x
Q

y
= 

However F
r

x, y implies that Q
x
F, Q

y
F and Q

x
Q

y
=  = F, which is

a contradiction therefore each filter converges to at most one point conversely,
suppose that xy and assume Q

x
Q

y
=  for each Q

x
, Q

y
 , xQ

x
, yQ

y

We claim that { : , , , }x y x y x yr Q Q Q Q x Q y Q  is a base

for some filter F observe that (Q
x
Q

y
) (G

x
G

y
)=(Q

x
G

x
)(Q

y
G

y
)r

Since (Q
x
G

x
) is an open set containing x and (Q

y
G

y
) is an open set

containing y. Thus r is a base for some filter F since Q
x
(Q

x
Q

y
) implies that each

Q
x
F

F converges to x likewise Q
y
 (Q

x
Q

y
) implies that Q

y
F, and thus F

converges to y, a contradiction therefore, there does not exist an Q
x
 and Q

y
 such

that Q
x
Q

y


 
where xQ

x
 and yQ

y
 hence,(X, ) is Hausdorff.

Example 9: Let f: XY be a function and U is an ultrafilter on X then f(U)
is an ultrafilter on Y.

Solution: Assume that Af (U) then for each U

( )cA f U

Hence 1( )cf A U  for each Uu and 1( )cf A U

Therefore f( 1( ) ( )cf A f U  and thus  Ac  f(U) since 1( ( )c cf f A A
Hence f (U) is an ultrafilter on Y.
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Example 10: Give some examples of simple directed sets.

Solution:

 1. D = with its usual ordinary relation .
2. Let (X,T) be a topological space and let xX then the set D

x
:={U: xU}

is a directed set when equipped with the either the subset relation , or more
usually the subset relation .

3. D={{n, n+1, n+2,….} }, with the subset relation or the super set
relation .

4. If (D
1


1
) and (D

1 
 

2
) are directed sets then (D

1
× D

2
, ) is a directed set

where  is defined by (a,b)  (x,y) if and only if a 
1
x and b 

2 
y.

5.17 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In general topology and the related branches, a net or Moore­Smith
sequence is a generalization or simplification of the concept and notion of
a sequence. A sequence is defined as a specific function with domain of the
defined set of natural numbers and also the range which is normally defined
for any topological space. Even though, as per the perspective of topology,
the sequences cannot completely encode the entire information regarding a
function that is defined between the said topological spaces.

2. In particular, for a specific definite map f between topological spaces
X and Y, the two conditions that are given below are not equivalent:

(i) The map f is stated as continuous.

(ii) Given any point x X and any sequence in X which converges to x,
then specifically the composition of f with this unique sequence
converges to f(x).

3. A net is termed as maximal iff and only iff for every A X, it is ultimately
defined in either A or X A. Maximal nets are precisely termed as ultra
nets.

4. In mathematics, a filter is defined to be a special subset of a partially ordered
set. Filters are used to study topological spaces and define all basic
topological notion, such a convergence, continuity, compactness, etc. A
frequently used special case is the situation that the ordered set under
consideration is just the power set of some set and ordered by set inclusion.
Filters emerge in order and lattice theory but can also be found
in topology from where they originate. The dual notion of a filter is an ideal.

5. Consequently, in topological analysis the term filters are precisely used for
defining the convergence in a precise manner analogous to the function and
specifications of sequences on the basis of a metric space. Furthermore, in
topology and other concerned fields of mathematical analysis, a filter is
uniquely defined as a generalization or interpretation of a net. Additionally,
both nets and filters provide extremely general perspectives and framework
for unifying the different notions of limit precisely for the topological spaces
that are arbitrary in type.
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6. Let be a net in X with directed set . Then  F X is eventually
in Fand is called the derived filter of 

7. Let X be a topological space in which there is no net with two different
limits. Then X is Hausdorff.

8. A net { }x  has y X  as a cluster point if and only if it has a sub net, which
converges to y.

9. Let F be a filter on X. F is said to be an ultrafilter if for all A X either A F
or Ac  F.

10. The Ultrafilter Theorem:Let F be a filter on X. Then there is an ultra filter U
such that F U.

11. For a topological space X, the following are equivalent:

i X is compact.

ii Each family C of closed sets in X with the finite intersection property
has non­empty intersection.

iii Each filter in X has a cluster point.

iv Each net in X has a cluster point.

v Each ultra net in X converges.

vi Each ultra filter in X converges.

12. Let X be a topological space,  a filter on X, and x a point in X. We say
that  converges to x and write x if every neighbourhood of x is in .
If  converges to exactly one point x of X, then we will call that point the
limit of  and write x lim .

13. According to the mathematical analysis in the field of topology, the term local
finiteness can be defined as a unique property which satisfies the property
of collections of subsets precisely for a topological space. Fundamentally
these properties are used for studying the paracompactness and topological
dimension. A collection of subsets that are contained in a topological space
X are precisely defined as locally finite, if each point in the space uniquely
has a neighbourhood which only intersects finitely several sets in the collection.
Consequently, for a topological space a finite collection of subsets is termed
as locally finite. Further, the infinite collections of sets can also be locally
finite.

14. A collection of subsets of X if called locally finite or neighbourhood
finiteif and only if for every x X has a neighbourhood meeting only finite
 We call point­finite if and only if each x X belongs to only
finitely many  Clearly every locally finite collection is point­finite.

15. The Nagata-Smirnov Metrization theorem gives a full characterization of
metrizable topological spaces. In other words, the theorem describes the
necessary and sufficient conditions for a topology on a space to be defined
using some metric. As a motivational example, consider the discrete topology
on some space every subset of the space is open.
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This topology is actually defined by the following metric:

d x, y







yx

yx

when0

when1

The Nagata-Smirnov Metrization Theorem lists the exact condition that
any topology must have in order for there to be such an underlying metric.

16. We shall show first that a paracompact space is regular. Suppose A is closed
set in a paracompact space X and x  A. For each y A, open set V

y

containing y such that x  yV Then the sets V
y
; y A together with the set

X A, form an open cover of X. Let w be a locally finite refinement and V
UW w WA 

Then V is open and contains A, and V  UW  WA 

But each set W is contained in some V
y
 since W is refinement and hence, W

is contained in yV Hence x W since x  yV Thus x V But V A.
Thus x and A are separated by open sets in X, i.e., the space is regular.

17. Path composition is only defined when the terminal point of f and the initial
point of g coincide. If we consider all loops based at a point x

0
, then path

composition is termed as a binary operation. Path composition, when
precisely defined, is not associative in general due to the difference in
parametrization.

18. According to the mathematical analysis in the field of topology, the notion
and concept of fundamental group is defined by Henri Poincaré. The
fundamental group is referred as a group which is typically associated with
any given pointed topological space which provides methodology to
determine that when the two paths, namely starting path and ending path at
a fixed base point, can be continuously or constantly deformed into each
other. Characteristically, it documents the information which significantly
defines the basic shapes or holes of the topological space. The concept of
fundamental group is the initial and simplest form of the homotopy groups.

19. Covering spaces are considered significant in the analysis and evaluation
of homotopy theory, harmonic analysis, Riemannian geometry, and
differential topology. In the Riemannian geometry, the ramification is defined
as a generalization of the concept of covering maps. Covering spaces are
also considered interconnected which was proved by the study of homotopy
groups and specifically the fundamental group.

20. The map p is said to be a covering map if p continuously maps E onto X
such that each x X has an open neighbourhood, which is evenly covered
by p.

21. According to the fundamental theorem of algebra, every non­constant single­
variable polynomial with complex coefficients has at least one complex root.
Equivalently, the field of complex numbers is algebraically closed. This
theorem is also stated as every non­zero single­variable polynomial with
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complex coefficients has exactly as many complex roots as its degree, if
each root is counted up to its multiplicity.

Fundamental Theorem of Algebra: Every continuous map h D2  D2 has
a fixed point, that is, a point x with hxx.

5.18 SUMMARY

 In general topology and the related branches, a net or Moore­Smith
sequence is a generalization or simplification of the concept and notion
of a sequence.

 A sequence is defined as a specific function with domain of the defined
set of natural numbers and also the range which is normally defined for
any topological space. Even though, as per the perspective of topology,
the sequences cannot completely encode the entire information regarding
a function that is defined between the said topological spaces.

 The principle and key concept of the term ‘Net’ was originally proposed
by E. H. Moore and H. L. Smith in the year 1922. The term net was
specifically used for generalizing the notion of any sequence in order to
validate the equivalence of the specified conditions through the sequence
that are replaced/changed by means of net.

 Particularly, instead of defining the net on a countable linearly ordered set,
the net can be typically defined on an arbitrary and subjective directed
form of set.

 Because the sequences cannot encode the sufficient and essential
information about the functions between the topological spaces, therefore
the nets are typically used for this analysis since the collections of open
sets in the specified topological spaces are similar to directed sets.

 John L. Kelley finally coined term ‘Net’ and stated that nets are the
distinctive tools that are exceptionally used in topology for generalizing
specific concepts, notations, and theories that are sufficiently adequate
in the perspective of metric spaces. Similarly, the concept of the filter
was defined and established by Henri Cartan in the year 1937.

 Since every single non­empty totally ordered set can be directed,
therefore, it can be stated that every single function that is precisely
defined on such a set is uniquely a ‘Net’.

 Specifically, the natural numbers having the standard and common order
typically forms or generates precise set and sequence which can be
identified and designated as a function on the natural numbers such that
every single sequence can be considered as a net.

 When the S increases or expands with respect to , then the
points x

S
 defined in context of the net are precisely constrained or

restricted to be in decreasing or reducing neighbourhoods of x,
consequently this gives the notion that x

S
 must precisely tend towards x in

certain perception.
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 Eventually a net is in A  X if and only if A contains certain tail of 
We state that a net is frequently in A if and only if for every d  
there exists c  d, such that cA.

 The net is frequently in a subset Y of V iff for every N in N there exists
some n  N such that a

n
 is in Y, i.e., iff infinitely many elements of the

sequence are in Y. Thus a point y in V is a cluster point of the net iff
every neighbourhood Y of y contains infinitely many elements of the
sequence.

 A filter  is said to converge to x X, denoted by  x, if and only
if every neighbourhood of x belongs to .


x
 is a sub filter of .

 Filter is a subfield of mathematics and can be used to study topological
spaces and define all basic topological notion such a convergence,
continuity, compactness, etc.

 The lattice (P, ) having a non­empty subset F is defined as a filter iff
and only iff it is an upper set which is typically closed under finite meets
termed as infima, i.e., for all x, y in F, we can state that x  y is also
in F. Additionally, the smallest filter which comprises of a given
element p is termed as the principal filter and also p is defined as the
principal element in this state.

 Consequently, in topological analysis the term filters are precisely used
for defining the convergence in a precise manner analogous to the function
and specifications of sequences on the basis of a metric space.

 In topology and other concerned fields of mathematical analysis, a filter
is uniquely defined as a generalization or interpretation of a net.
Additionally, both nets and filters provide extremely general perspectives
and framework for unifying the different notions of limit precisely for the
topological spaces that are arbitrary in type.

 The term sequence is typically indexed by means of the natural numbers
which are precisely referred as a totally ordered set. Therefore, in the
first­countable spaces the limits can be specifically described by means
of sequences. Although, if the said space does not have properties of
first­countable, then in this case specifically the nets or filters should be
used.

 Nets characteristically generalize the notion and concept of a sequence
simply involving the index set to be a directed set. Filters can be further
considered as the specific types of sets precisely developed from the
multiple nets. Therefore, the notion of limit of a filter and also the notion
of limit of a net both are conceptually and theoretically defined same as
the notion limit of a sequence.

 Conversely, consider that for every neighbourhood U of certain x V
there typically exists a point of the net which is precisely denoted by 

U
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U V. Then X but was assumed to be a net in X V, a
contradiction. Therefore, there exists some neighbourhood U of x with
U V , whence U V so V is a neighbourhood of x for every x 
V and V is open.

 Let X be a Hausdorff topological space. Then no net in X can have two
different limits.

 If F is a collection of subsets of X which precisely satisfy the properties
defined above, then we consider it a filter. In addition, N

x
 is called the

neighbourhood filter of x. Remember that filters are closed under finite
intersection as well as pairwise by induction

 The complements of singletons generate the cofinite filter, so if F is not
generated by a singleton then it contains the cofinite filter and is thus
free.

 Let F be a filter and x X. We say that F converges to x, or that x is a
limit of F if N

x
 F. We shall write F x to mean F converges to x.

Let X be a topological space. X is Hausdorff iff every filter has at most
one limit.

 An ultra filter on a set X is a filter  on X which is maximal with respect
to inclusion, i.e., it is a filter  for which any other filter on X satisfying
 actually satisfies  .

 According to the mathematical analysis in the field of topology, the
term local finiteness can be defined as a unique property which satisfies
the property of collections of subsets precisely for a topological space.
Fundamentally these properties are used for studying the
paracompactness and topological dimension.

 A collection of subsets that are contained in a topological space X are
precisely defined as locally finite, if each point in the space uniquely has
a neighbourhood which only intersects finitely several sets in the
collection. Consequently, for a topological space a finite collection of
subsets is termed as locally finite. Further, the infinite collections of sets
can also be locally finite.

 A topological space in which every open cover admits a locally finite
open refinement is called paracompact. Every locally finite collection of
subsets of a topological space X is also point­finite.

 A topological space in which every open cover admits a point­finite
open refinement is termed as metacompact.

 A collection in a space is countably locally finite (or ­locally finite) if it
is the union of a countable family of locally finite collections of subsets
of X.

 Countable local finiteness is a significant hypothesis in the Nagata­
Smirnov metrization theorem, which states that a topological space
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is metrizable iff it is regular Hausdorff and has a countably locally
finite basis.

 The paths f
0
 and f

1
 connected by a homotopy are said to homotopic.

Similarly, a homotopy of loops can be defined keeping the base point
fixed. The relation of being homotopic is an equivalence relation on paths
in a topological space.

 According to the mathematical analysis in the field of topology, the notion
and concept of fundamental group is defined by Henri Poincaré.

 The fundamental group is referred as a group which is typically associated
with any given pointed topological space which provides methodology
to determine that when the two paths, namely starting path and ending
path at a fixed base point, can be continuously or constantly deformed
into each other. Characteristically, it documents the information which
significantly defines the basic shapes or holes of the topological space.

 The concept of fundamental group is the initial and simplest form of
the homotopy groups. Basically, the fundamental groups can be studied
on the basis of the theory of covering spaces, because a fundamental
group precisely coincides with the group of surface transformations of
the related or associated universal covering space.

 The abelianization of the fundamental groups can be identified and
defined with the help of first homology group of the space.

 Covering spaces are considered significant in the analysis and evaluation
of homotopy theory, harmonic analysis, Riemannian geometry, and
differential topology.

  In the Riemannian geometry, the ramification is defined as a generalization
of the concept of covering maps.

 Covering spaces are also considered interconnected which was proved
by the study of homotopy groups and specifically the fundamental group.

 In particular, the covering maps are referred as the locally trivial which
specifies that locally each and every covering map is isomorphic to a
projection such that there is a unique homeomorphism from the pre­
image of an evenly covered neighbourhood U to U  F, where F is
termed as the fiber which essentially satisfies the local trivialization
condition. Consequently, if this homeomorphism is projected onto U,
then the derived structure or resultant composition is equal to p.

 According to the fundamental theorem of algebra, every non­constant
single­variable polynomial with complex coefficients has at least one
complex root. Equivalently, the field of complex numbers is algebraically
closed. This theorem is also stated as: every non­zero single­variable
polynomial with complex coefficients has exactly as many complex roots
as its degree, if each root is counted up to its multiplicity.
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5.19 KEY TERMS

 Moore-Smith sequence: In general topology and the related branches,
a net or Moore­Smith sequence is a generalization or simplification of
the concept and notion of a sequence.

 Sequence: A sequence is defined as a specific function with domain of
the defined set of natural numbers and also the range which is normally
defined for any topological space.

 Filter: In mathematics, a filter is defined to be a special subset of
a partially ordered set.

 Local finiteness: According to the mathematical analysis in the field
of topology, the term local finiteness can be defined as a unique property
which satisfies the property of collections of subsets precisely for
a topological space. Fundamentally these properties are used for studying
the paracompactness and topological dimension.

 Nagata-Smirnov metrization theorem: The Nagata­Smirnov
metrization theorem gives a full characterization of metrizable topological
spaces.

 Fundamental group: According to the mathematical analysis in the
field of topology, the notion and concept of fundamental group is defined
by Henri Poincaré. The fundamental group is referred as a group which
is typically associated with any given pointed topological space which
provides methodology to determine that when the two paths, namely
starting path and ending path at a fixed base point, can be continuously
or constantly deformed into each other.

5.20 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is net?

2. Define subbase for a topology.

3. Give the uses of filter in topology.

4. Define convergence of net.

5. State the necessary and sufficient condition for a topological space to be
Hausdorff.

6. Define the term compactness.

7. State about the filter and their convergence.

8. What is collection of subset?

9. Define the canonical way of converting nets to filters.

10. What do you understand by ultrafilter?



Nets and Filters

NOTES

Self - Learning
244 Material

11. Define local finiteness.

12. State the Nagata­Smirnov metrization theorem.

13. Define the term paracompactness.

14. Define the homotopy of paths.

15. What is the fundamental group?

16. What do you understand by covering space?

17. State the fundamental theorem of algebra.

Long-Answer Questions

1. Describe briefly about net and filter with the help of appropriate examples.

2. Discuss about the convergence of net and filter with reference to topology.

3. Describe Hausdorffness and compactness with reference to nets.

4. Explain in detail about the canonical way of converting nets to filters and
vice versa giving relevant examples.

5. Elaborate on the ultrafilter and local finiteness giving appropriate examples.

6. State and prove Nagata­Smirnov metrization theorem.

7. Describe the paracompactness and homotopy of paths in topology with the
help of relevant examples.

8. Explain in detail about the fundamental group giving examples.

9. Prove that the product of a covering space is a also covering space giving
relevant examples.

10. State and prove the fundamental theorem of algebra giving examples.
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