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INTRODUCTION

Operational Research, or simply OR, originated in the context of military operations,
but today it is widely accepted as a powerful tool for planning and decision-making,
especially in business and industry. The OR approach has provided a new tool for
managing conventional management problems. In fact, operational research
techniques do constitute a scientific methodology of analysing the problems of the
business world. They provide an improved basis for taking management decisions.
The practice of OR helps in tackling intricate and complex problems, such as that
of resource allocation, product mix, inventory management, sequencing and
scheduling, replacement and a host of similar problems of modern business and
industry.

Operations research is an interdisciplinary branch of applied mathematics
and formal science that uses mathematical methods, such as mathematical modelling,
statistics and algorithms to arrive at optimal or near optimal solutions to complex
problems. Basically, it is concerned with optimizing the maxima (profit, assembly
line performance, bandwidth, etc.) or minima (loss, risk, etc.) of some objective
function. It also helps management achieve its goals using scientific methods. The
field of operations research is closely related to the Industrial Engineering and
hence the Industrial Engineers consider operations research techniques as their
major toolset. Some of the primary tools used by operations researchers are
statistics, optimization, probability theory, queuing theory, game theory, graph theory,
decision analysis and simulation. Because of the computational nature of these
fields, OR is linked to computer science and OR professionals use specific custom-
written software for computation of data and decision-making. The uniqueness of
OR prompted industries to use its formal tools, such as operations analysis, system
analysis, management science, decision science, etc. Commercial industries, such
as airlines, automobiles, communications, electronics, transportation, chemicals
and mining use OR techniques to optimally utilize their limited resources and thereby
maximize profits. Hence, OR is the application of the methods of science to complex
problems arising in the direction and management of large systems of men, machines,
materials and money in industry, business, government and defence. The distinctive
approach is to develop a scientific model of the system, incorporating measurement
of factors, such as chance and risk, with which to predict and compare the outcomes
of alternative decision strategies and controls.

Operations research provides top-level administrators a quantitative basis
for taking decisions which will help organizations to carry out their functions, such
as planning, controlling and organizing, effectively. Decision-making is the key
responsibility of managers and OR provides a scientific approach to them for
solving problems. Decisions in an organization should be such that they can compete
in the market. We can say that the OR and decision-making processes are
interlinked. There are intangible factors also, such as human behaviour, which OR
has to take into account when calculating for a solution.
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This book, Operations Research is divided into five units that follow the
self-instruction mode with each unit beginning with an Introduction to the unit,
followed by an outline of the Objectives. The detailed content is then presented in
a simple but structured manner interspersed with Check Your Progress Questions
to test the student’s understanding of the topic. A Summary along with a list of
Key Terms and a set of Self-Assessment Questions and Exercises is also provided
at the end of each unit for recapitulation.

.
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UNIT 1 OPERATIONS RESEARCH
AND ITS SCOPE

Structure

1.0 Introduction
1.1 Objectives
1.2 Basics of Operations Research

1.2.1 Scope of Operations Research
1.3 Linear Programming
1.4 Simplex Method
1.5 Duality and Sensitivity Analysis

1.5.1 Sensitivity Analysis
1.5.2 Shadow Price
1.5.3 Economic Interpretation

1.6 Dual Simplex Method
1.7 Parametric Linear Programming
1.8 Upper Bound Technique
1.9 Interior Point Algorithm

1.10 Linear Goal Programming
1.11 Answers to ‘Check Your Progress’
1.12 Summary
1.13 Key Terms
1.14 Self-Assessment Questions and Exercises
1.15 Further Reading

1.0 INTRODUCTION

Operations Research (OR) was coined by J.F. McCloskey and F.N. Trefethen in
1940 in Bawdsey in the United Kingdom. This innovative science was discovered
during World War II for a specific military situation, when military management
sought decisions based on the optimal consumption of limited military resources with
the help of an organized and systematized scientific approach. This was termed as
Operations Research (OR) or operation research. Thus, OR was known as an
ability to win a war without really going into a battlefield or fighting it. It is a new
field of scientific and managerial application and an exact definition that is acceptable
uniformly is not possible and different experts have given different definitions for it.

Linear Programming (LP, also known as linear optimization) is a technique
for achieving the optimal result (such as, highest profit or lowest cost) in a
mathematical model with linear criteria. Mathematical programming is a subset of
linear programming (also known as mathematical optimization). In more formal
terms, linear programming is a method for optimizing a linear objective function
that is constrained by linear equality and inequality constraints. It has a convex
polytope as its feasible region, which is a set defined as the intersection of a finite
number of half spaces, each of which is specified by a linear inequality. This
polyhedron’s objective function is a real-valued affine (linear) function. If there is a
location in the polytope where this function has the smallest (or greatest) value, a
linear programming approach identifies it.
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Simplex algorithm (or simplex method) is a widely used linear programming
algorithm in mathematics. Simplex method is an iterative procedure for solving
LPP (Linear Programming Problem) in a finite number of steps. This method
provides an algorithm which consists of moving from one vertex of the region of
feasible solution to another in such a manner that the value of the objective function
at the succeeding vertex is less or more as the case may be that at the previous
vertex. This procedure is repeated and since the number of vertices is finite, the
method leads to an optimal vertex in a finite number of steps or indicates the
existence of unbounded solution.

The principle of duality, often known as the duality principle, states that
optimization issues can be seen from two perspectives: the primal problem or the
dual problem. The dual problem’s answer gives a lower constraint on the primal
(minimization) problem’s solution. However, the optimal values of the primal and
dual issues do not have to be equivalent in most cases. The dualism gap is the
name given to their disparity. Under a constraint qualifying condition, the duality
gap for convex optimization problems is zero. The term sensitivity analysis, often
known as post-optimality refers to the optimal solution of a linear programming
problem, formulated using various method.

Parametric linear programming is a type of mathematical optimization, where
the optimization problem is solved as a function of one or multiple parameters.
Developed in parallel to sensitivity analysis, its earliest mention can be found in a
thesis from 1952. Since then, there have been considerable developments for the
cases of multiple parameters, presence of integer variables as well as nonlinearities.
A Linear Programming Problem (LPP) may have, in addition to the regular
constraints, lower or upper bounds on some or all the variables. Interior Point
Methods (also referred to as barrier methods or IPMs) are a certain class of
algorithms that solve linear and nonlinear convex optimization problems.

In this unit, you will learn about the basics of operations research, linear
programming, simplex method, duality and sensitivity analysis, dual simplex method,
parametric linear programming, upper bound techniques, interior point algorithm
and linear goal programming.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the definition and scope of Operations Research (OR)

 Know about the applications of OR

 Understand the significance of linear programming problem

 Elaborate on the concept of linear programming

 Define the meaning of simplex method

 Explain the concept of duality and sensitivity analysis

 Apply principles of IPP in real life situations

 Know about the parametric linear programming

 Define upper bound techniques
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 Discuss about the interior point algorithm

 Explain the linear goal programming

1.2 BASICS OF OPERATIONS RESEARCH

The term, operations research was first coined in 1940 by J.F. McCloskey and
F.N. Trefethen in a small town Bowdsey, the United Kingdom. This new science
came into existence in a military context. During World War II, military management
called on scientists from various disciplines and organized them into teams to assist
in solving strategic and tactical problems, relating to air and land defence. Their
mission was to formulate specific proposals and plans for aiding the Military
commands to arrive at decisions on optimal utilization of scarce military resources
and attempts to implement these decisions effectively. This new approach to the
systematic and scientific study of the operations of the system was called Operations
Research (OR) or operational research. Hence, OR can be associated with ‘An
art of winning the war without actually fighting it.’

Definitions

Operations Research (OR) has been defined so far in various ways and it is perhaps
still too young to be defined in some authoritative way. It is not possible to give
uniformly acceptable definitions of OR. A few opinions about the definition of OR
are given below. These have been changed according to the development of the
subject.

OR is a scientific method of providing executive departments with a
quantitative basis for decisions regarding the operations under their control.

Morse and Kimball (1946)

OR is the scientific method of providing executive with an analytical and
objective basis for decisions.
P.M.S. Blackett (1948)

OR is a systematic method-oriented study of the basic structures,
characteristics, functions and relationships of an organization to provide the
executive with a sound, scientific and quantitative basis for decision-making.

E.L. Arnoff and M.J Netzorg

OR is a scientific approach to problem solving for executive management.

H.M. Wagner

OR is an aid for the executive in making his decisions by providing him with
the quantitative information based on the scientific method of analysis.

C.Kittee

OR is the scientific knowledge through interdisciplinary team effort for the
purpose of determining the best utilization of limited resources.

H.A. Taha
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The various definitions given here bring out the following essential
characteristics of operations research:

(i) System Orientation
(ii) Use of Interdisciplinary Terms
(iii) Application of Scientific Methods
(iv) Uncovering New Problems
(v) Quantitative Solutions
(vi) Human Factors

1.2.1 Scope of Operations Research

There is a great scope for economists, statisticians, administrators and the technicians
working as a team to solve problems of defence by using the OR approach.
Besides this, OR is useful in various other important fields like:

(i) Agriculture

(ii) Finance

(iii) Industry

(iv) Marketing

(v) Personnel Management

(vi) Production Management

(vii) Research and Development

Phases of Operations Research

The procedure to be followed in the study of OR generally involves the following
major phases:

(i) Formulating the Problem

(ii) Constructing a Mathematical Model

(iii) Deriving the Solution from the Model

(iv) Testing the Model and its Solution (updating the model)

(v) Controlling the Solution

(vi) Implementation

1.3 LINEAR PROGRAMMING

Decision-making has always been very important in the business and industrial
world, particularly with regard to the problems concerning production of
commodities. Which commodity/commodities to produce, in what quantities
and by which process or processes, are the main questions before a production
manager. English economist Alfred Marshall pointed out that the businessman
always studies his production function and his input prices and substitutes one
input for another till his costs become the minimum possible. All this sort of
substitution, in the opinion of Marshall, is being done by businessman’s trained
instinct rather than with formal calculations. But now there does exist a method
of formal calculations often termed as Linear Programming. This method was
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first formulated by a Russian mathematician L.V. Kantorovich, but it was
developed later in 1947 by George  B. Dantzig ‘for the purpose of scheduling
the complicated procurement activities of the United States Air Force’. Today,
this method is being used in solving a wide range of practical business problems.
The advent of electronic computers has further increased its applications to solve
many other problems in industry. It is being considered as one of the most versatile
management tools.

Meaning of Linear Programming

Linear Programming (LP) is a major innovation since World War II in the field
of business decision-making, particularly under conditions of certainty. The
word ‘Linear’ means that the relationships are represented by straight lines,
i.e., the relationships are of the form y = a + bx and the word ‘Programming’
means taking decisions systematically. Thus, LP is a decision-making technique
under given constraints on the assumption that the relationships amongst the
variables representing different phenomena happen to be linear. In fact, Dantzig
originally called it ‘Programming of interdependent activities in a linear structure’
but later shortened it to ‘Linear Programming’. LP is generally used in solving
maximization (sales or profit maximization) or minimization (cost minimization)
problems subject to certain assumptions. Putting in a formal way, ‘Linear
Programming is the maximization (or minimization) of a linear function of
variables subject to a constraint of linear inequalities.’ Hence, LP is a
mathematical technique designed to assist the organization in optimally allocating
its available resources under conditions of certainty in problems of scheduling,
product-mix and so on.

Fields Where Linear Programming can be Used

The problem for which LP provides a solution may be stated to maximize or
minimize for some dependent variable which is a function of several independent
variables when the independent variables are subject to various restrictions. The
dependent variable is usually some economic objectives, such as profits, production,
costs, work weeks, tonnage to be shipped, etc. More profits are generally preferred
to less profits and lower costs are preferred to higher costs. Hence, it is appropriate
to represent either maximization or minimization of the dependent variable as one
of the firm’s objective. LP is usually concerned with such objectives under given
constraints with linearity assumptions. In fact, it is powerful to take in its stride a
wide range of business applications. The applications of LP are numerous and are
increasing every day. LP is extensively used in solving resource allocation problems.
Production planning and scheduling, transportation, sales and advertising, financial
planning, portfolio analysis, corporate planning, etc., are some of its most fertile
application areas. More specifically, LP has been successfully applied in the
following fields:

(i) Agricultural Applications: LP can be applied in farm management
problems as it relates to the allocation of resources such as acreage, labour,
water supply or working capital in such a way that is maximizes net revenue.

(ii) Contract Awards: Evaluation of tenders by recourse to LP guarantees that
the awards are made in the cheapest way.
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(iii) Industrial Applications: Applications of LP in business and industry are of
most diverse kind. Transportation problems concerning cost minimization
can be solved by this technique. The technique can also be adopted in
solving the problems of production (product-mix) and inventory control.

Thus, LP is the most widely used technique of decision-making in business and

industry in modern times in various fields as stated above.

1.4 SIMPLEX METHOD

Simplex method is an iterative procedure for solving LPP in a finite number of
steps. This method provides an algorithm which consists of moving from one vertex
of the region of feasible solution to another in such a manner that the value of the
objective function at the succeeding vertex is less or more as the case may be that
at the previous vertex. This procedure is repeated and since the number of vertices
is finite, the method leads to an optimal vertex in a finite number of steps or indicates
the existence of unbounded solution.

Definition

(i) Let X
B
 be a basic feasible solution to the LPP.

Max Z = C
X

Subject to A
X
 = b and X  0, such that it satisfies X

B
 = B–1b,

Where B is the basic matrix formed by the column of basic variables.

The vector C
B
 = (C

B1
, C

B2
 … C

Bm
), where C

Bj
 are components of C

associated with the basic variables is called the cost vector associated with the
basic feasible solution X

B
.

(ii) Let X
B
 be a basic feasible solution to the LPP.

Max Z = C
X
, where A

X
 = b and X  0.

Let C
B
 be the cost vector corresponding to X

B
. For each column vector a

ij

in A
1
, which is not a column vector of B, let

1

m

j ij j
i

a a b




Then the number 
1

m

j Bi ij
i

Z C a


  is called the evaluation corresponding to

a
ij
 and the number (Z

j
 – C

j
) is called the net evaluation corresponding to j.

Simplex Algorithm

For the solution of any LPP by simplex algorithm, the existence of an initial basic
feasible solution is always assumed. The steps for the computation of an optimum
solution are as follows:

Step 1: Check whether the objective function of the given LPP is to be
maximized or minimized. If it is to be minimized then we convert it into a problem
of maximization by,
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Min Z = –Max (–Z)

Step 2: Check whether all b
i
 (i = 1, 2, …, m) are positive. If any one of b

i

is negative, then multiply the inequation of the constraint by –1 so as to get all b
i
 to

be positive.

Step 3: Express the problem in the standard form by introducing slack/
surplus variables to convert the inequality constraints into equations.

Step 4: Obtain an initial basic feasible solution to the problem in the form
X

B 
= B–1b and put it in the first column of the simplex table. Form the initial simplex

table shown as follows:

n

n

Step 5: Compute the net evaluations Z
j
 – C

j
 by using the relation:

Z
j
 – C

j
 = C

B
 (a

j
 – C

j
)

Examine the sign of Z
j
 – C

j
:

(i) If all Z
j
 – C

j
  0, then the initial basic feasible solution X

B
 is an optimum

basic feasible solution.
(ii) If at least one Z

j
 – C

j 
> 0, then proceed to the next step as the solution

is not optimal.

Step 6: To find the entering variable, i.e., key column.

If there are more than one negative Z
j
 – C

j
 choose the most negative of

them. Let it be Z
r
 – C

r
 for some j = r. This gives the entering variable X

r
 and is

indicated by an arrow at the bottom of the rth column. If there are more than one
variable having the same most negative Z

j
 – C

j
, then any one of the variable can be

selected arbitrarily as the entering variable.
(i) If all X

ir 
 0 (i = 1, 2, …, m) then there is an unbounded solution to the

given problem.
(ii) If at least one X

ir 
> 0 (i = 1, 2, …, m), then the corresponding vector

X
r
 enters the basis.

Step 7: To find the leaving variable or key row:

Compute the ratio (X
Bi 

/X
kr
, X

ir
>0)

If the minimum of these ratios be X
Bi 

/X
kr
,
 
then choose the variable X

k
 to

leave the basis called the key row and the element at the intersection of the key
row and the key column is called the key element.

Step 8: Form a new basis by dropping the leaving variable and introducing
the entering variable along with the associated value under C

B
 column. The leaving

element is converted to unity by dividing the key equation by the key element and
all other elements in its column to zero by using the formula:
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New element = Old element

Product of  elements in key row and key column
–

Key element

 
 
 

Step 9: Repeat the procedure of Step (5) until either an optimum solution
is obtained or there is an indication of unbounded solution.

Example 1.1: Use simplex method to solve the following LPP.

Maximize, Z = 3X
1
 + 2X

2

Subject to, 1 2

1 2

1 2

4

2

, 0

X X

X X

X X

 
 



Solution: By introducing the slack variables S
1 
and S

2
 convert the problem into

standard form.
Max, Z = 3X

1
 + 2X

2
 + 0S

1
 + 0S

2

Subject to, 1 2 1

1 2 2

1 2 1 2

4

2

, , , 0

X X S

X X S

X X S S

  
  



1
1 2 1 2

2

1

2

4
1 1 1 0

2
1 1 0 1

X
X X S S

X

S

S

 
                       

An initial basic feasible solution is given by,

X
B 
= B–1b,

Where, B = I
2
, X

B 
= (S

1
, S

2
)

i.e., (S
1
, S

2
) = I

2
 = (4, 2)

Initial Simplex Table

Z
j
 = C

B
 a

j

 

 

 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0
1 1 3 3

0

0
1 1 2 2

0

0
1 0 0 0

0

0
0 1 0 0

0

B

B

B

B

Z C C a C

Z C C a C

Z C C a C

Z C C a C

 
       

 
 

       
 
 

       
 
 

       
 
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  Cj 3 2 0 0  

CB B XB X1 X2 S1 S2 Min
1

BX

X
 

    0 S1 4 1 1 1 0 4/1 = 4 

0 S2 2 1 –1 0 1 2/1 = 2 

 Zj 0 0 0 0 0  

 Zj – Cj  –3 –2 0 0  

Since, there are some Z
j
 – C

j
 = 0, the current basic feasible solution is not

optimum.

Since, Z
1
 – C

1
= –3 is the most negative, the corresponding non-basic variable

X
1
 enters the basis.

The column corresponding to this X
1
 is called the key column.

Ratio = Min , 0Bi
ir

ir

X
X

X

 
 

 

= Min 
4 2

,
1 1

 
 
 

, which corresponds to S
2

 The leaving variable is the basic variable S
2
. This row is called the key

row. Convert the leading element X
21

 to units and all other elements in its column
n, i.e., (X

1
) to zero by using the formula:

New element = Old element –

Product of  elements in key row and key column

Key element

 
 
 

To apply this formula, first we find the ratio, namely

The element to be zero 1
1

Key element 1
 

Apply this ratio for the number of elements that are converted in the key
row. Multiply this ratio by key row element shown as follows:

1 × 2

1 × 1

1 × –1

1 × 0

1 × 1

Now, subtract this element from the old element. The element to be converted
into zero is called the old element row. Finally, we have

 4 – 1 × 2 = 2

 1 – 1 × 1 = 0

1 – 1 × –1 = 2



Operations Research
and its Scope

NOTES

Self - Learning
12 Material

 1 – 1 × 0 = 1

 0 – 1 × 1 = –1

 The improved basic feasible solution is given in the following simplex
table.

First Iteration
  Cj 3 2 0 0  

CB B XB X1 X2 S1 S2 Min
2

BX

X
 

0 S1 2 0 2 1 –1 2/2 = 1 

3 X1 2 1 –1 0 1 – 

 Zj 6 3 –3 0 0  

 Zj – Cj  0 –5 0 0  

Since, Z
2
 – C

2
 is the most negative, X

2
 enters the basis.

To find Min 2
2

, 0B
i

i

X
X

X

 
 

 

Min 
2 2

, 1
2 1
    

( Negative or zero values are not considered)

This gives the outgoing variables. Convert the leaving element into one. This
is done by dividing all the elements in the key row by 2. The remaining elements
are converted to zero by using the following formula.

Here, – 1
2  is the common ratio. Put this ratio 5 times and multiply each

ratio by the key row element.

1
2

2
1

0
2
1

2
2

 

 

 

–1/2 × 1

–1/2 × –1

Subtract this from the old element. All the row elements which are converted
into zero are called the old elements.

1
2 2 3

2
     
 

1 – (–1/2 × 0) = 1

–1 – (–1/2 × 2) = 0

0 – (–1/2 × 1) = 1/2

1 – (–1/2 × –1) = 1/2
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Second Iteration

1/2–

1/2

1/2

1/2 1/2

1/2

Since all Z
j
 – C

j
  0, the solution is optimum. The optimal solution is Max

Z = 11, X
1
 = 3, and X

2
 = 1.

Example 1.2: Solve the LPP

Max Z = 3x1 + 2x2

Subject to, 4x1 + 3x2  12

4x1 + x2  8

4x1 – x2  8

x1, x2  0

Solution: Convert the inequality of the constraint into an equation by adding slack
variables S1, S2, S3.

Max Z = 3x1 + 2x2 + 0S1 + 0S2 + 0S3

Subject to, 4x1 + 3x2 + S1 = 12

4x1 + x2 + S2 = 8

4x1 – x2 + S3 = 8

x1, x2, S1, S2, S3  0

1
1 2 1 2 3

2

1

2

3

12
4 3 1 0 0

8
4 1 0 1 0

8
4 1 0 0 1

x
x x S S S

x

S

S

S

 
                              

Initial Table
Cj 3 2 0 0 0

CB Basis xB x1 x2 S1 S2 S3
1

Bx
Min

x

0 S1 12 4 3 1 0 0 12/4 = 3

0 S2 8 4 1 0 1 0 8/4 = 2

0 S3 8 4 –1 0 0 1 8/4 = 2

Z j 0 0 0 0 0 0

Zj – Cj –3 –2 0 0 0



Z1 – C1 is most negative, x1 enters the basis. And the min , 0B
il

il

x
x

x

 
 

 
 = min

(3, 2, 2)  =  2 gives S3 as the leaving variable.
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Convert the leading element into 1, by dividing key row element by 4 and
the remaining elements into 0.

Initial Simplex Table

Cj 3 2 0 0 0

CB Basis xB x1 x2 S1 S2 S3
2

Bx
Min

x

0 S1 4 0 4 1 0 –1 4/4 = 1

0 S2 0 0 2 0 1 –1 0/2 = 0

3 x1 2 1 –1/4 0 0 ¼ —

Z j 6 3 –3/4 0 0 ¾

Zj – Cj 0 –11/4 0 0 ¾



4
8 8

4
     = 0

4
12 8

4
     = 4

4
4 4

4
     = 0

4
4 4

4
     = 0

4
1 1

4
      = 2

4
3 1

4
      = 4

4
0 0

4
     = 0

4
1 0

4
     = 1

4
1 0

4
     = 1

4
0 0

4
     = 0

4
0 1

4
     = –1

4
0 1

4
     = –1

Since, Z2 – C2 = – 11

4
 is the most negative, x2 enters the basis.

To find the outgoing variable, find 2
2

Min , 0
 

 
 

B
i

i

x
x

x

4 0
Min , ,

4 2
  
 

 = 0

First Iteration
Therefore, S2 leaves the basis. Convert the leading element into 1 by dividing the
key row elements by 2 and make the remaining elements in that column as zero using
the formula.

New element = Old element

Product of elements in key row and key column

Key element

 
  
 
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Cj 3 2 0 0 0

CB Basis xB x1 x2 S1 S2 S3
3

Bx
Min

S

0 S1 4 0 0 1 –2 1 4/1 = 4

2 x2 0 0 1 0 1/2 –1/2 —

3 x1 2 1 0 0 1/8 1/8
2

1/8
 = 16

Z j 6 3 2 0 11/8 –5/8

Zj – Cj 0 0 0 11/8 –5/8



Second Iteration
Since Z5 – C5 = –5/8 is most negative, S3 enters the basis and

3
13

Min ,B
i

x
S

S

 
  

 = 
4

Min , 16
1

 
  

 = 4.

Therefore, S1 leaves the basis. Convert the leading element into one and remaining
elements as zero.

Third Iteration

Cj 3 2 0 0 0

CB Basis xB x1 x2 S1 S2 S3

0 S3 4 0 0 1 –2 1

2 x2 2 0 1 1/2 –1/2 0

3 x1 3/2 1 0 –1/8 3/8 0

Z j 17/2 3 2 5/8 1/8 0

Zj – Cj 0 0 5/8 1/8 0

Since all Zj – Cj  0, the solution is optimum and it is given by x1 = 3/2, x2 = 2
and Max Z = 17/2.

Example 1.3: Using simplex method solve the LPP.

Max Z = x1 + x2 + 3x3
Subject to, 3x1 + 2x2 + x3  3

2x1 + x2 + 2x3  2

x1, x2, x3  0

Solution: Rewrite the inequality of the constraints into an equation by adding
slack variables.

Max Z= x1 + x2 + 3x3 + 0S1 + 0S2

Subject to, 3x1 + 2x2 + x3 + S1  3

2x1 + x2 + 2x3 + S2  2

Initial basic feasible solution is,
x1 = x2 = x3 = 0

S1 = 3, S2 = 2 and Z = 0
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1 2 3 1 2

3 2 1 1 0

2 1 2 0 1

1 1 3 0 0

x x x S S 
 
 
 
 
  

Cj 1 1 3 0 0

CB Basis xB x1 x2 x3 S1 S2
3

Bx
Min

x

0 S1 3 3 2 1 1 0 3/1 = 3

0 S2 2 2 1 2 0 1 2/2 = 1

Z j 0 0 0 0 0 0

Zj – Cj –1 –1 –3 0 0



Since Z3 – C3 = –3 is the most negative, the variable x3 enters the basis. The
column corresponding to x3 is called the key column.

3
3

3 2
To determine the key row or leaving variable, find Min , 0 Min , = 1

1 2
B

i
i

x
x

x

         

Therefore, the leaving variable is the basic variable S2, the row is called the key
row and the intersection element 2 is called the key element.

Convert this element into one by dividing each element in the key row by 2
and the remaining elements in that key column as zero using the formula

New element = Old element Product of elements in key row and key column

Key element

 
  
 

First Iteration
Cj 1 1 3 0 0

CB Basis xB x1 x2 x3 S1 S2

0 S1 2 2 3/2 0 1 –1/2

3 x3 1 1 1/2 1 0 1/2

Z j 3 3 3/2 3 0 3/2

Zj – Cj 2 1/2 0 0 3/2

Since all Zj – Cj0, the solution is optimum and it is given by x1 = 0, x2 = 0,
x3 = 1, Max Z = 3.

Example 1.4: Use simplex method to solve the LPP.

Min Z = x2 – 3x3 + 2x5

Subject to, 3x2 – x3 + 2x5  7

– 2x2 + 4x3  12

– 4x2 + 3x3 + 8x5  10

x2, x3, x5  0
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Solution: Since the given objective function is of minimization, we shall convert
it into maximization using Min Z = –Max(–Z) = –Max Z*

Max Z* = – x2 + 3x3 – 2x5

Subject to, 3x2 – x3 + 2x5  7

– 2x2 + 4x3  12

– 4x2 + 3x3 + 8x5  10

We rewrite the inequality of the constraints into an equation by adding slack
variables S1, S2, S3 and the standard form of LPP becomes.

Max Z = – x2 + 3x3 – 2x5 + 0S1 + 0S2 + 0S3

Subject to, 3x2 – x3 + 2x5 + S1  7

– 2x2 + 4x3 + S2  12

– 4x2 + 3x3 + 8x5 + S3  10

x2, x3, x5, S1, S2, S3  0

 The initial basic feasible solution is given by S1 = 7, S2 = 12, S3 = 10. (x2 =
x3 = x5 = 0)

Initial Table
Cj –1 3 –2 0 0 0

CB Basis xB x2 x3 x5 S1 S2 S3
3

Bx
Min

x

0 S1 7 3 –1 2 1 0 0 —

0 S2 12 –2 4 0 0 1 0 12/4 = 3

0 S3 10 –4 3 8 0 0 1 10/3 = 3.33

Zj 0 0 0 0 0 0

Zj – Cj 1 –3 2 0 0 0



Since Z2 – C2 = –3 < 0, the solution is not optimum.
The incoming variable is x3 (key column) and the outgoing variable (key row)

is given by,

3
3

Min 0B
i

i

x
x

x

 
  

 = 12 10
Min , ,

4 3
  
 

 = 3.

Hence, S2 leaves the basis.
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First Iteration
Cj –1 3 –2 0 0 0

CB B xB x2 x3 x5 S1 S2 S3
2

Bx
Min

x

0 S1 10 5/2 0 2 1 1/4 0
10

5 / 2
 = 4

3 x3 3 –1/2 1 0 0 1/4 0 —

0 S3 1 5/2 0 8 0 –3/4 1 2/5

Zj 9 –3/2 3 0 0 3/4 0

Zj – Cj –1/2 0 2 0 3/4 0



Since Z1 – C1 < 0, the solution is not optimum. Improve the solution by allowing
the variable x2 to enter into the basis and the variable S1 to leave the basis.

Second Iteration
Cj – 1 3 – 2 0 0 0

CB B xB x2 x3 x5 S1 S2 S3

–1 x2 4 1 0 4/5 2/5 1/10 0

 x3 5 0 1 2/5 1/5 3/10 0

0 S3 11 0 0 10 1 – 1/2 1

Zj 11 – 1 3 2/5 1/5 8/10 0

Zj – Cj 0 0 12/5 1/5 8/10 0

Since all Zj – Cj0, the solution is optimum.
 The optimal solution is given by Max Z* = 11

x2 = 4, x3 = 5, x5 = 0
 Min Z = – Max (–Z) = – 11
 Min Z = –11, x2 = 4, x3 = 5, x5 = 0.

Example 1.5: Solve the following LPP using simplex method.

Max Z = 15x1 + 6x2 + 9x3 + 2x4

Subject to, 2x1 + x2 + 5x3 + 6x4  20

3x1 + x2 + 3x3 + 25x4  24

7x1 + x4  70

x1, x2, x3, x4  0
Solution: Rewriting the inequality of the constraint into an equation by adding
slack variables S1, S2 and S3, the standard form of LPP becomes.

Max Z = 15x1 + 6x2 + 9x3 + 2x4 + 0S1 + 0S2 + 0S3
Subject to, 2x1 + x2 + 5x3 + 6x4 + S1  20

3x1 + x2 + 3x3 + 25x4 + S2  24

7x1 + x4 + S3  70

x1, x2, x3, x4, S1, S2, S3  0



Operations Research
and its Scope

NOTES

Self - Learning
Material 19

The initial basic feasible solution is S1 = 20, S2 = 24, S3 = 70 (x1 = x2 = x3 =
x4 = 0 non-basic)

The initial simplex table is given by:

Cj 15 6 9 2 0 0 0

CB Basis xB x1 x2 x3 x4 S1 S2 S3
1

Bx
Min

x

0 S1 20 2 1 5 6 1 0 0 20/2 = 10

0 S2 24 3 1 3 25 0 1 0 24/3 = 8

0 S3 70 7 0 0 1 0 0 1 70/7 = 10

Z j 0 0 0 0 0 0 0 0

Zj – Cj –15 –6 –9 –2 0 0 0


 s some of Zj – Cj  0 the current basic feasible solution is not optimum.
Z1 – C1 = –15 is the most negative value and hence x1 enters the basis and the
variable S2 leaves the basis.

First Iteration
Cj 15 6 9 2 0 0 0

CB Basis xB x1 x2 x3 x4 S1 S2 S3
2

Bx
Min

x

0 S1 4 0 1/3 3 – 32/3 1 – 2/3 0
4

1/ 3
 = 12

15 x1 8 1 1/3 1 25/3 0 1/3 0
8

1/ 3
 = 24

0 S3 14 0 – 7/3 – 7 – 172/3 0 – 7/3 1 —

Z j 120 15 5 15 125 0 5 0

Zj – Cj 0 – 1 6 123 0 5 0



Since Z2 – C2 = –1 < 0 the solution is not optimal therefore, x2 enters the basis and the
basic variable S1 leaves the basis.

Second Iteration
Cj –5 6 9 –2 0 0 0

CB B xB x1 x2 x3 x4 S1 S2 S3

 x2 12 0 1 9 –32 3 –2 0

15 x1 4 1 0 –2 57/3 –1 1 0

0 S3 42 0 0 14 –132 7 –7 1

Z j 132 15 6 24 93 3 3 0

Zj – Cj 0 0 15 91 3 3 0

Since all Zj – Cj  0, the solution is optimal and is given by,

Max Z =132, x1 = 4, x2 = 12, x3 = 0, x4 = 0.
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Check Your Progress

1. How was the concept of operations research started?

2. State one definition of OR.

3. What is linear programming problem?

4. Define the linear programming.

5. What are the fields where linear programing can be used?

6. Define simplex method.

1.5 DUALITY AND SENSITIVITY ANALYSIS

For every given linear programming problem, there is another intimately related
linear programming problem referred to as its dual. The duality theorem states that
‘For every maximization (or minimization) problem in linear programming, there is
a unique similar problem of minimization (or maximization) involving the same date
which describes the original problem’. The original problem is referred to as the
‘Primal’. The ‘Dual’ of a dual problem is the primal. Thus the primal and dual
problems are replicas of each other. Further, the maximum feasible value of the
primal objective function equals to the minimum feasible value of the dual objective
function. This means that the solutions of the primal and the dual problems are
related which infact yields several advantages.

The transformation of a given primal problem into a dual problem involves the
following considerations:

(1) If the objective of the primal is maximization, the objective of the dual is
minimization.

(2) The primal has m-constraints while its dual has m-unknowns.

(3) The primal has n-unknowns while its dual has n-constraints.

(4) The n-coefficients of the objective function of primal (C
j
) become the n-

constant terms (b
i
) of its dual.

(5) The m-constant terms of the primal (b
i
) become the m-constant terms of

the objective function (C
j
) of its dual.

(6) The coefficients of the variables of the primal are transformed in their position
in the dual. This means that the first column of the coefficients in the primal
becomes the first row in the dual, the second column becomes the second
row and so on.

(7) The n-variables (X
n
) of the primal are replaced by the m new variables (Y

m
)

of its dual. This change affects the system of restrictions as well as the
objective function.

(8) The sign of the inequalities in the set of restrictions of the primal (<) is
reversed in the set of restrictions in its dual (>). In other words, if the
inequalities in the primal are of the type <, then, they are of > type in the
dual.
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(9) The sign of the inequalities restricting the variable (X
j
) to non-negative

values in the primal is equal to the inequality sign of the new variable
( Y

j
)of its dual.

(10) For writing the dual of the given maximization problem, we should first
ensure that all the constraint inequalities are of the < type and for writing the
dual of the given minimization problem, the constraint inequalities should be
of the > type. We can see the application of these considerations with the
help of given examples.

Duality in Linear Programming

Every LPP (called the primal) is associated with another LPP (called its dual).
Either of the problem can be considered as primal with the other as dual.

The importance of the duality concept is due to two main reasons:

(i) If the primal contains a large number of constraints and a smaller number of
variables, the labour of computation can be considerably reduced by converting it
in to the dual problem and then solving it. (ii) The interpretation of the dual variables
from the cost or economic point of view, proves extremely useful in making future
decisions in the activities being programmed.

Formulation of Dual Problems

For formulating a dual problem, we first write the problem in the canonical form.
The following changes are used in formulating the dual problem:

(1)  Change the objective function of maximization in the primal into
minimization in the dual, and vice versa.

(2)  The variables in the primal should be equal to the constraints in the dual
and vice versa.

(3)  The cost coefficients C
1
, C

2
 ... C

n
 in the objective function of the primal

should be the RHS constant of the constraints in the dual and vice versa.

(4)  In forming the constraints for the dual, we consider the transpose of the
body matrix of the primal problem.

(5)  The variables in both the problems are non-negative.

(6)  If the variable in the primal is unrestricted in sign, then the corresponding
constraint in the dual will be an equation, and vice versa.

Definition of the Dual Problem

A dual problem refers to a linear program in which the objective function is a linear
combination of m values that are the limits in the m constraints of the primal problem.

Let the primal problem be:

Max Z = C
1
x

1
 + C

2
x

2
 + ... + C

n
x

n

Subject to, 11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

1 2, 0

n n

n n

m m mn n m

n

a x a x a x b

a x a x a x b

a x a x a x b

x x x

   
   

   









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Dual: The dual problem is defined as,

Min Z = b
1
w

1
 + b

2
w

2
 + ... + b

m
w

m

Subject to, 11 1 21 2 1 1

12 1 22 2 2 2

1 1 2 2

1 2, 0

m m

m m

n n mn n n

m

a w a w a w C

a w a w a w C

a w a w a w C

w w w

   
   

   










where w
1
, w

2
, w

3
 ... w

m
 are called dual variables.

Example 1.6: Write the dual of the primal LP problem given as follows:

Max Z = x
1
+ 2x

2
 + x

3

Subject to,
1 2 3

1 2 3

2 2

2 5 6

  
    

x x x

x x x

1 2 3

1 2 3

4 6

, , 0

  


x x x

x x x

Solution: Since the problem is not in the canonical form, we interchange the
inequality of the second constraint.

Max Z = x
1
+ 2x

2
 + x

3

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

2 2

2 5 6

4 6

and , , 0

x x x

x x x

x x x

x x x

  
  
  



Dual: Let w
1
, w

2
, w

3
 be the dual variables.

Min Z  = 2w
1
+ 6w

2
 + 6w

3

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

2 2 4 1

2

5 1

, , 0

w w w

w w w

w w w

w w w

  
   
   



Example 1.7: Write the dual of the following LPP.

Min Z = 2x
2
 + 5x

3

Subject to, 1 2

1 2 3

1 2 3

1 2 3

2

2 6 6

3 4

, , 0

x x

x x x

x x x

x x x

 
  
  



Solution: Since the given primal problem is not in the canonical form, we interchange
the inequality of the constraint. Also, the third constraint is an equation. This equation
can be converted into two inequations.
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Min Z = 0x
1
 + 2x

2
 + 5x

3

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0 2

2 6 6

3 4

3 4

, , 0

x x x

x x x

x x x

x x x

x x x

  
   

  
  



Again, on rearranging the constraint, we have,

Min Z = 0x
1
 + 2x

2
 + 5x

3

Subject to,
1 2 3

1 2 3

0 2

2 6 6

  
    

x x x

x x x

1 2 3

1 2 3

1 2 3

3 4

3 4

, , 0

  
    



x x x

x x x

x x x

Dual: Since there are four constraints in the primal, we have four dual
variables, namely w

1
, w

2
, w

3
, w

3


Max Z = 2w
1
 – 6w

2
 + 4w

3
 – 4w

3


Subject to, 1 2 3 3

1 2 3 3

1 2 3 3

1 2 3 3

2 0

2

0 6 3 3 5

, , , 0

w w w w

w w w w

w w w w

w w w w

    
    

    
 

Let 3 3 3w w w  

Max 1 2 3 32 6 4( )Z w w w w     

Subject to, 1 2 3 3

1 2 3 3

2 ( ) 0

( ) 2

w w w w

w w w w

    
    

Finally, we have, 1 2 3 30 6 3( ) 5w w w w    

Max 1 2 32 6 4Z w w w  

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

2 0

2

0 6 3 5

, 0, is unrestricted.

w w w

w w w

w w w

w w w

  
  

  


Example 1.8: Find the dual of the LPP given as follows:

Max Z = 3x
1
– x

2
 + x

3
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Subject to 1 2

1 2 3

1 3

1 2 3

4 8

8 3 12

5 6 13

, , 0

x x

x x x

x x

x x x

 
  

 


Solution: Since the problem is not in the canonical form, we interchange the
inequality of the second constraint.

Max Z = 3x
1
– x

2
 + x

3

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

4 0 8

8 3 12

5 0 6 13

, , 0

x x x

x x x

x x x

x x x

  
    

  


Max Z = Cx

Subject to,

0

Ax B

x




1

2

3

8

(3 11) 12

13

x

C x b

x

   
       
   

  

4 1 0

8 1 3

5 0 6

A

 
    
 

 

Dual: Let w
1
, w

2
, w

3
 be the dual variables. The dual problem is:

Min Z = bTW

Subject to, ATW  CT and W  0

i.e., Min Z = 
1

2

3

(8 12 13)

w

w

w

 
 
 
 

Subject to, 
1

2

3

4 8 5 3

1 1 0 1

0 3 6 1

w

w

w

     
       
    

    

Min Z
1
 = 8w

1
 – 12w

2
 + 13w

3

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

4 8 5 3

0 1

0 3 6 1

, , 0

w w w

w w w

w w w

w w w

  
    

  

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Example 1.9: Give the dual of the problem given as follows:

Max Z = x + 2y

Subject to, 2 3 4

3 4 5

0 and  unrestricted.

x y

x y

x y

 
 



Solution: Since the variable y is unrestricted, it can be expressed as ,y y y  

, 0y y   . On reformulating the given problem, we have,

Max 2( )Z x y y   

Subject to, 2 3 ( ) 4

3 4 ( ) 5

     
   

x y y

x y y

3 4 ( ) 5

, , 0

   
  

x y y

x y y

Since the problem is not in the canonical form, we rearrange the constraints.

Max Z = x + 2y – 2y

Subject to, 2 3 3 4

3 4 4 5

3 4 4 5

x y y

x y y

x y y

     
   

     

Dual: Since there are three variables and three constraints, in the dual we
have three variables namely, w

1
, w

2
, w

2
.

Min 1 2 24 5 5Z w w w     

Subject to, 1 2 2

1 2 2

1 2 2

1 2 2

2 3 3 1

3 4 4 2

3 4 4 2

, , 0

w w w

w w w

w w w

w w w

    
    

    
 

Let w
2
 = w

2
 – w

2
, so that the dual variable w

2
 is unrestricted in sign.

Hence, the dual is:

Min 1 2 24 5 ( )Z w w w     

Subject to, 1 2 2

1 2

1 2

2 3 ( ) 1

3 4 ( ) 2

3 4 ( ) 2

w w w

w w w

w w w

    
    

    

i.e., Min Z = –4w
1
 + 5w

2

Subject to, 1 2

1 2

1 2

2 3 1

3 4 2

3 4 2

w w

w w

w w

  
  

  
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w
1
  0 and w

2
 is unrestricted.

i.e., Min Z = –4w
1
 + 5w

2

Subject to, 1 2

1 2

1 2

2 3 1

3 4 2

3 4 2

w w

w w

w w

  
  
  

i.e., Min Z = –4w
1
 + 5w

2

Subject to, –2w
1
 + 3w

2
  1

–3w
1
 + 4w

2
  2, w

1
  0 and w

2
 is unrestricted.

Example 1.10: Write the dual of the following primal LPP.

Min Z = 4x
1
 + 5x

2
 – 3x

3

Subject to, 1 2 3

1 2 3

1 2 3

22

3 5 2 65

7 4 120

x x x

x x x

x x x

  
  
  

x
1
 + x

2
  0 and x

3
 is unrestricted.

Solution: Since the variable x
3
 is unrestricted, 3 3 3x x x   . Also, bring the

problem into canonical form by rearranging the constraints.

Min Z = 4x
1
 + 5x

2
 – 3 3 3( )x x 

Subject to, 1 2 3 3

1 2 3 3

1 2 3 3

1 2 3 3

1 2 3 3

( ) 22

22

3 5 2 ( ) 65

7 4 ( ) 120

, , 0

x x x x

x x x x

x x x x

x x x x

x x x x

    
    

      
    

  

Min Z = 4x
1
 + 5x

2
 – 3 33 3x x 

Subject to, 1 2 3 3

1 2 3 3

1 2 3 3

1 2 3 3

1 2 3 3

22

22

3 5 2 2 65

7 4 4 120

, , 0

x x x x

x x x x

x x x x

x x x x

x x x x

    
      

      
    

  

Dual: Since there are four constraints in the primal problem, in the dual

there are four variables, namely 1 1 2 3, , ,w w w w   so that the dual is given by:

Max 1 1 2 322( ) 65 120Z w w w w     
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Subject to
1 1 2 3

1 1 2 3

1 1 2 3

1 1 2 3

1 1 2 3

3 4

5 7 5

2 4 3

2 4 3

, , , 0

w w w w

w w w w

w w w w

w w w w

w w w w

    
    
     

     
 

Let 1 1 11w w w   , i.e., the variable w
1
 is unrestricted.

i.e., Max 1 1 2 322( ) 65 120Z w w w w     

Subject to, 1 1 2 3

1 1 2 3

1 1 2 3

1 1 2 3

3 4

5 7 5

( ) 2 4 3

( ) 2 4 3

w w w w

w w w w

w w w w

w w w w

    
    

     
     

i.e.,                            Max 1 2 322 65 120Z w w w  

Subject to, 1 2 3

1 2 3

1 2 3

1 2 3

3 4

5 7 5

2 4 3

2 4 3

w w w

w w w

w w w

w w w

  
  

   
   

Thus, we have,

Min 1 2 322 65 120Z w w w  

Subject to, 1 2 3

1 2 2

1 2 3

3 4 4

5 7 5

2 4 3

w w w

w w w

w w w

  
  

   

w
2
, w

3
  0 and w

1
 is unrestricted.

Important Results in Duality

1. The dual of the dual is primal.

2. If one is a maximization problem, then the other is a minimization one.

3. The necessary and sufficient condition for any LPP and its dual to have an
optimal solution is that both must have a feasible solution.

4. The fundamental duality theorem states that if either the primal or the dual
problem has a definite optimal solution, then the other problem also has a
definite optimal solution and the maximum values of the objective function
in both the problems are the same, i.e., Max Z = Min Z. The solution of the
other problem can be read from the Z

j
 – C

j
 row below the columns of slack

and surplus variables.

5. The existence theorem states that if either problem has an unbounded solution,
then the other problem has no feasible solution.
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6. Complementary slackness theorem: According to this,
(i) If a primal variable is positive, then the corresponding dual constraint

is an equation at the optimum, and vice versa.
(ii) If a primal constraint is a strict inequality, then the corresponding dual

variable is zero at the optimum, and vice versa.

Economic Interpretation of Dual Variables

If we interpret our primal LP problem as a classical ‘Resource Allocation’ problem,
then its dual can be interpreted as a ‘Resource Valuation’ problem. Thus the values
of the optimal dual variables have fascinating economic interpretation. The primal
problem is used to describe a production problem in which the objective function
represents the gain obtained from the production of goods, while the constraints
characterize bounds on the production amounts due to the presence of limited
resources. The available quantity of each resource is then measured.

Economic Interpretation: Consider the following primal problem:

Maximize C
1
x

1
 + …+ C

n
x

n

Subject to, All x
i
  0

a
11

x
1
 + …+ a

1n
x

n
  b

1

a
m1

x
1
 + …+ a

mn
x

n
  b

m

Where,

n = Economic Activities

m = Resources

C
j
 = Revenue Per Unit of Activity j

b
i
 = Maximum Availability of Resource i

a
ij
 = Consumption of Resource i Per Unit of Activity j

If (x
1
, …, x

n
) is optimal for the primal and (y

1
, …, y

m
) is optimal for the dual, then

we can state that:

C
1
x

1
 + …+ C

n
x

n
 = b

1
y

1
 + …+ b

n
y

m

Here,

Left Hand Side = Maximal Revenue

Right Hand Side = Resource i (Availability of Resource i) × Revenue Per Unit of
Resource i.

In other words we can say that the value of y
i
 at optimal is dual price of

resource i.

1.5.1 Sensitivity Analysis

The term sensitivity analysis, often known as post-optimality analysis refers to the
optimal solution of a linear programming problem, formulated using various methods.
You will learn how sensitivity analysis helps to solve repeatedly the real problem in a
little different form. Generally, these scenarios crop up as an end result of parameter
changes due to the involvement of new advanced technologies and the accessibility of
well-organized latest information for key (input) parameters or the ‘ What-If ’ questions.
Thus, sensitivity analysis helps to produce optimal solution of simple perturbations for
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the key parameters. For optimal solutions, consider the simplex algorithm as in a ‘Back
Box’, which accepts the input key parameters to solve LPP as shown in Figure 1.1.

Fig. 1.1 Black Box to Solve LPP

Example 1.11: Illustrate sensitivity analysis using simplex method to solve the
following LPP:

Maximize Z = 20x
1
 + 10x

2

Subject to, 1 2

1 2

3

3 7

x x

x x

 
 

And x
1
, x

2
  0

Solution: Sensitivity analysis is done after making the initial and final tableau using
the simplex method. Add slack variables to convert it into equation form.

Maximize Z = 20x
1
 + 10x

2
 + 0S

1
 + 0S

2

Subject to, 1 2 1 2

1 2 1 2

0 3

3 0 7

x x S S

x x S S

    
   

Where x
1
, x

2
  0

To find basic feasible solution, we put x
1
 = 0 and x

2
 = 0. This gives Z = 0, S

1
 = 3

and S
2
 = 7. The initial table will be as follows:

Initial Table
  Cj 20 10 0 0  

CB B xB x1 x2 S1 S2 Min B

i

x

x
 

0 S1 3 1 1 1 0 3/1 = 3 

0 S2 7 3 1 0 1 7/3 = 2.33 

 Zj 0 0 0 0 0  

 Zj – Cj  –20 –10 0 0  

Find B

i

x

x
 for each row and also find minimum for the second row. Here,

Z
j
 – C

j
 is maximum negative (–20). Hence, x

1
 enters the basis and S

2
 leaves the

basis. It is shown with the help of arrows.

Key element is 3, key row is second row and key column is x
1
. Now,

convert the key element into entering key by dividing each element of the key row
by key element using the following formula:
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New element = Old element –
Product of  elements in the key row and key column

Key element

 
 
 

The following is the first iteration table:

  Cj 20 10 0 0  

CB B xB x1 x2 S1 S2 
 

0 S1 2/3 0 2/3 1 –1/3 2
3

/ 2
3

 = 1 

20 x1 7/3 1 1/3 0 1 7
3

/
1
3

 = 7 

 Zj 140/3 20 20/3 0 20  

 Zj – Cj – 0 –10/3 0 20  

Since Z
j
 – C

j
 has one value less than zero, i.e., negative value, hence, this is

not yet the optima solution. Value –10/3 is negative hence x
2
 enters the basis and

S
1
 leaves the basis. Key row is upper row.

  Cj 20 10 0 0 

CB B xB x1 X2 S1 S2 

 x2 1 0 1 3/2 –1/2 

20 x1 4/3 1 0 0 4/3 

 Zj 110/3 20 10 0 25 

 Zj – Cj  0 0 0 25 

Z
j
 – C

j
  0 for all, hence optimal solution is reached, where 1

4

3
x  , x

2
 = 1,

80

3
Z   + 10 = 

110

3
.

1.5.2 Shadow Price

The price or value of any item is its exchange ratio, which is relative to some
standard item. Thus, we may say that shadow price, also known as marginal
value, of a constraint i is the change it induces in the optimal value of the objective
function due to the result of any change in the value, of on the right-hand side of
the constraint i.

This can be formulated assuming,

z = Objective Function

b
i
 = Right-Handed Side of Constraint i

* = Standard Price of Constraint i;

At optimal solution,

z* = v* = bT * (Non-degenerate solution)
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Under this situation, the change in the value of z per change of b
i
 for small

changes in b
i
 is obtained by partially differentiating with objective function z, with

respect to the right-handed side b
i
, which is further illustrated as:

*
i

i

z

b


 



where,

*
i
  = price associated with the right-handed side.

It is this price which was interpreted by Paul Sammelson as shadow price.

1.5.3 Economic Interpretation

We have often seen that shadow prices are being frequently used in the economic
interpretation of the data in linear programming.

Example 1.12: To find the economic interpretation of shadow price under non-
degeneracy, you will need to consider the linear programming to find out minimum
of objective function z, x  0, which is as follows:

–x
1
 – 2x

2
 – 3x

3
 + x

4
 = z

x
1
 + 2x

4
  = 6

x
2
 + 3x

4
 = 2

x
3
 – x

4
 = 1

Now, to get an optimal basic solution, we can calculate the numericals:

x
1
 = 6,  x

2
 = 2,  x

3
 = 1,  x

4
 = 0,  z = –13.

The optimal solution for the shadow price is:

°
1
 = –1,  °

2
 = –2,  °

3
 = –3,

as, z = b
1
 

1
 + b

2
 

2
 + b

3
 

3
,  where  b = (6, 2, 1);

it denotes,

1

z

b




 = 
1
 = –1,  

2

z

b




 = 
2
 = –2,   

3

z

b




 = 
3
 = –3.

As these shadow prices and the changes take place in a non-degenerate
situation, they do not impact the small changes of b

i
. Now, if this same situation is

repeated in a degenerate situation, we will have to replace b
3
 = 1 by b

3
 = 0;

thereby 3/ = 3z b    only if the change in b
3
 is positive. However, we need to

keep in mind that if, b
3
 is negative, then x

3
 will drop out of the basis and x

4

transcends as the basic and the shadow price may be illustrated as:

°
1
 = –1,  °

2
 = –2, °

3
 = 3/ = 9z b  

Here, we see that the interpretation of the dual variables , and dual objective
function  corresponds to column j of the primal problem. So, the goal of linear
programming (Simplex method) is to determine whether there is a basic feasibility
for optimal solution, in the most cost-effective manner. Thus, at iteration t is the
total cost of the objective function and this can be illustrated as:
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 = Tb = 
1

m

i i
i

b



here, 

i
 = simplex multipliers which is associated with the basis B.

So, we may say that the prices of the problem of the dual variables are
selected in such a manner, that there is maximization of the implicit indirect costs of
the resources that are consumed by all the activities. Whenever any basic activity
is conducted, it is done at a positive level and all non-basic activities are kept at a
zero level.

Hence, if the primal—dual variable system-is utilized, then the slack variable
is maintained at a positive level in an optimal solution and the corresponding dual
variable is equal to zero.

1.6 DUAL SIMPLEX METHOD

The dual simplex method is very similar to the regular simplex method, the only
difference lies in the criterion used for selecting a variable to enter the basis and to
leave the basis. In the dual simplex method, we first select the variable to leave the
basis and then the variable to enter the basis. This method yields an optimal solution
to the given LPP in a finite number of steps, provided no basis is repeated.

The dual simplex method is used to solve problems that start as dual feasible
(i.e., whose primal is optimal but infeasible). In this method, the solution starts as
optimum, but infeasible, and remains infeasible until the true optimum is reached,
at which point the solution becomes feasible. The advantage of this method is that
it avoids the artificial variables introduced in the constraints along with the surplus
variables, as all ‘’ constraints are converted into the ‘’ type.

Dual Simplex Algorithm
The iterative procedure for the dual simplex method is listed as follows:

Step 1: Convert the problem into the maximization form if it is initially in the
minimization form.

Step 2: Convert the ‘’ type constraints, if any, to ‘’ types by multiplying both
sides by –1.

Step 3: Express the problem in the standard form by introducing slack variables.
Obtain the initial basic solution and display this solution in the simplex table.

Step 4: Test the nature of Z
j
 – C

j
 (optimal condition).

Case i: If all Z
j
 – C

j
 0 and all x

Bi
 0, then the current solution is an

optimum feasible solution.

Case ii: If all Z
j
 – C

j
  0 and at least one x

Bi
 < 0, then the current solution

is not the optimum basic feasible solution. In this case, go to the next step.

Case iii: If any Z
j
 – C

j
 < 0, then the method fails.

Step 5: In this step, we find the leaving variable, which is the basic variable
corresponding to the most negative value of x

Bi
. Let x

k
 be the leaving variable, i.e.,

x
BK

 = min{x
Bi

,x  = 0}.
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To find out the variable entering the basis, we compute the ratio between the
Z

j
 – C

j
 row and the key row, i.e., we compute Max {Z

j
 – C

j 
/c

ik
, a

ik 
< 0}. (Consider

the ratios with negative denominators alone). The entering variable is the one having
the maximum ratio. If there is no such ratio with a negative denominator, then the
problem does not have a feasible solution.

Step 6 Convert the leading element into unity and all the other elements of the key
column into zero to get an improved solution.

Step 7 Repeat Steps 4 and 5 until either an optimum basic feasible solution is
attained or till an indication of no feasible solution is obtained.

Example 1.13: Use the dual simplex method to solve the following LPP.

Max Z = –3x
1
 – x

2

Subject to, x
1
 + x

2
 1

2x
1
 + 3x

2
 2

x
1
, x

2
 0

Solution: Convert the given constraints into < type.

Max Z = –3x
1
 – x

2

Subject to, –x
1 
– x

2
 –1

–2x
1
 – 3x

2
 –2

x
1
, x

2
 0

Introducing slack variables S
1
 and S

2 
 0, we get:

Max Z = –3x
1
 – x

2
 + 0S

1
, + 0S

2

Subject to, –x
1 
– x

2
+ S

1
–1

–2x
1
 –3x

2
 + S

2
–2

x
1
, x

2
, S

1
, S

2
 0

An initial basic (infeasible) solution of the modified LPP is S
1
 = – 1, S

2
= – 2.

C
j

–3 –1 0 0

C
B

B X
B

W
1

W
2

S
1

S
2

0 S
1

–1 –1 –1 1 0

0 S
2

–2 –2 –3 0 1

Z
j

0 0 0 0 0

Z
j
–C

j
3 1 0 0

Since all Z
j
 – C

j
  0 and all x

Bi
 < 0, the current solution is not an optimum basic

feasible solution.

Since x
B2

 = – 2 is the most negative, the corresponding basic variable S
2
 leaves

the basis. Also, since max {Z
j
 – C

j 
/a

ik
, a

ik
< 0}, where x

k
 is the leaving variable

max {3/ – 2, 1/– 3} = – 1/3 = Z
2
 – C

2 
/a

22
, the non-basic variable x

2
 enters the

basis.
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Drop S
2
 and introduce x

2
.

First Iteration

C
j

–3 –1 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

0 S
1

–1/3 –1/3 0 1 –1/3
– 1 X

2
2/3 2/3 1 0 –1/3

Z
j

– 2/3 – 2/3 –1 0 1/3

Z
j
–C

j
7/3 0 0 1/3

Since all Z
j
 – C

j
  0 and x

B1
 = –1/3 < 0, the current solution is not an

optimum basic feasible solution.

 x
B1

 = – 1/3, the basic variable S  leaves the basis. Also, since max {Z
j
 –

C
j
/a

i1
, a

i1
< 0} =  max {(1/3)/( – l/3)...(l/3)/( – 1/3)} =  – 1, it corresponds to the

non-basic variable S
2

 Drop S
1
 and introduce S

2
.

Second Iteration

C
j

–3 –1 0 0

C
B

B x
B

x
1

x
2

S
1

S
2

0 S
2

1 1 0 – 3 1

– 1 x
2

1 1 1 – 1 0

Z
j

– 1 – 1 – 1 1 0

Z
j
–C

j
2 0 1 0

Since all Z
j
 – C

j
  0 and also x

Bi
  0, an optimum basic feasible solution has

been reached. The optimal solution to the given LPP is x
1
 = 0; x

2
 = 1, Maximum

Z = – 1.

Example 1.14: Solve by the dual simplex method the following LPP.

Min Z = 5x
1
 + 6x

2

Subject to, x
1
 + x

2
 2

4x
1
 + x

2
 4

x
1
, x

2
 0

Solution: The given LPP is Max Z = 5x
1
 – 6x

2

Subject to, – x
1
 – x

2
 –2

– 4x
1
 – x

2
 –4 and

x
1
, x

2
 0

By introducing slack variables S
1
 and S

2
, the standard form of LPP becomes,

Max Z = –5x
1
 – 6x

2
 + 0S

1
 + 0S

2
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Subject to, – x
1 
– x

2 
+ S

1
= –2

– 4x
1
 – x

2
 + S

2
= –4

Initial Table

C
j

–5 –6 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

    0 S
1

– 2 – 1 – 1 1 0

0 S
2

– 4 – 4 – 1 0 1

Z
j

0 0 0 0 0

Z
j
–C

j
5 6 0 0

Since all Z
j
 – C

j
  0 and x

Bi
  0, the current solution is not an optimum basic

feasible solution.

Since x
B2

 = – 4 is the most negative, the corresponding basic variable S
2

leaves the basis.

Also, Max Z
j
 – C

j
/a

i2
a 

i2
 < 0 = Max {– 5/4, 6/ –1,...} = –5/4 gives the

non-basic variable, and x
1
 enters into the basis.

First Iteration

C
j

–5 –6 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

0 S
1

– 1 – 1 – 3/4 1 – 1/4

–5 X
1

1 – 4  1/4 0 – 1/4

Z
j

– 5 – 5 – 5/4 0 5/4

Z
j
–C

j
0 19/4 0 5/4

Since all Z
j
 – C

j
  0 and also x

B1
= – 1<0, the current basic feasible solution

is not optimum. As x
B1

 = – 1 < 0, the basic variable S
1 
leaves the basis.

Also, since Max 1
1

, 0j j
i

i

Z C
a

a

 
 

 
 = Max 

19 5
4 4

3 1
4 4

,
 

 
 
 

 = 5
4 , it corresponds

to the non-basic variable S
2
.

:. Drop S
1
 and introduce S

2
.

Second Iteration
C

j
–5 –6 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

0 S
2

4 0  3 – 4 1
–5 X

1
1 – 4  1 – 1 0

Z
j

– 10 – 5 – 5 5 0
Z

j
–C

j
0 1 5 0



Operations Research
and its Scope

NOTES

Self - Learning
36 Material

Since all Z
j
 – C

j
  0 and also all x

Bi
  0, the current basic feasible solution

is optimum. The optimal solution is given by x
1
 = 2, x

2
 = 0, Max Z =  – 10

i.e., Min Z = 10.

Example 1.15: Use the dual simplex method to solve the following LPP.

Max Z = –3x
1
 – 2x

2

Subject to, x
1 
+ x

2
 1

x
1
 + x

2
 1

x
1
+ 2x

2
 10

x
2
 3

x
1
, x

2
 0

Solution: Interchanging the > inequality of the constraints into <, the given LPP
becomes,

Max Z = – 3x
1
 – 2x

2

Subject to, – x
1
 – x

2
 –1

x
1
 + x

2
 7

–x
1
 – 2x

2
 –10

0x
1
 + x

2
 3

By introducing the non-negative slack variables S
1
, S

2
, S

3
 and S

4
, the standard

form of the LPP becomes,

Max Z =  – 3x
1
 – 2x

2
 + 0S

1
 + 0S

2
 + 0S

3
 + 0S

4

Subject to, – x
1 
– x

2 
+ S

1
= –1

x
1 
+ x

2 
+ S

2
= 1

–x
1
 – 2x

2
 + S

3
= –10

0x
1
 + x

2
 + S

4
= 3

The initial solution is given by:

S
1
= –1, S

2
 = 7, S

3 
= –10, S

4
 = 3

Initial Table
C

j
–3 –2 0 0 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

S
3

S
4

 0 S
1

– 1 1 1 1 0 0 0

0 S
2

7 1 1 0 1 0 0

0 S
3

– 10 – 1 – 2 0 0 1 0

0 S
4

3 0 1 0 0 0 1

Z
j

0 0 0 0 0 0 0

Z
j 
– C

j
3 2 0 0 0 0
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Since all Z
j
 – C

j
  0 and some x

Bi
  0, the current solution is not the main

workable solution. = x
B3

 = – 10 being the most negative, the basic variable S
3

leaves the basis.

Also, since Max {Z
j 
– C

j 
/a

i2
, a

i2 
< 0} = Max {3/–1, 2/–2} = –1, the non-

basic variable x
2
 enters the basis.

First Iteration
C

j
–3 –2 0 0 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

S
3

S
4

 0 S
1

4 – 1/2 0 1 0 – 1/2 0

0 S
2

2 1/2 0 0 1 1/2 0

– 2 X
2

5 1/2 1 0 0 – 1/2 0

0 S
4

– 2 –1/2 0 0 0 1/2 1

Z
j

– 10 – 1 – 2 0 0 1 0

Z
j 
– C

j
2 0 0 0 1 0

Second Iteration

Drop S
4
 and introduce x

1
.

 x
B4

 = –2 < 0, S
4
 leaves the basis.

Max 1
1

0j j
i

i

Z C
a

a

 
 

 
 = Max

2

1/ 2
    
 

 = – 4

Hence, x
1
 enters the basis.

C
j

3 2 0 0 0 0

C
B

B X
B

X
1

X
2

S
1

S
2

S
3

S
4

 0 S
1

2 0 0 1 0 – 1 – 1
0 S

2
0 0 0 0 1 1 1

– 2 X
2

3 0 1 0 0 0 1
– 3 S

4
4 1 0 0 0 – 1 – 2

Z
j

– 18 – 3 – 2 0 0 3 4

Z
j 
– C

j
0 0 0 0 3 4

Since all Z
j
 – C

j
  0 and all x

Bi
  0, the current solution is an optimum basic

feasible solution.

 The optimum solution is Max Z= – 18, x
1
 = 4, x

2
 = 3.

Example 1.16: Use dual simplex method to solve the following LPP.

Max Z = – 2x
1
 – x

3

Subject to, x
1
 + x

2
 – x

3
 5

x
1
 – 2x

2
 + 4x

3
 8

x
1
, x

2
, x

3
 0
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Solution: The given problem can be written as:

Max Z = – 2x
1
 – 0x

2
 – x

3

Subject to, – x
1
 – x

2
 + x

3
–5

–x
1
 +2x

2
 – 4x

3
 –8

x
1
, x

2
, x

3
 0

Adding the slack variables S
1
 and S

2
, we get the constraints,

–x
1
 – x

2
 + x

3
+ S

1
= –5

–x
1
 + 2x

2
 – 4x

3
 + S

2
= –8
C

j
–2 0 –1 0 0

C
B

B X
B

X
1

X
2

X
3

S
1

S
2

 0 S
1

– 5 – 1 – 1 1 1 0

0 S
2

– 8 – 1 2 – 4 0 1

Z
j

0 0 0 0 0 0

Z
j 
– C

j
2 0 1 0 0

Since all Z
j
 – C

j
  0 and also some x

Bi
  0, the solution is not optimum.

 x
B2

 = – 8 is the most negative, the basic variable S
2
 leaves the basis. Also,

since

Max , 0j j
ik

iK

Z C
a

a

 
 

 
 gives

Max
2 1

, , ,
1 4

    
  

 = 
1

4


x
3
 enters the basis. Drop S

2
 and introduce x

3
.

First Interation
C

j
–2 0 –1 0 0

C
B

B X
B

X
1

X
2

X
3

S
1

S
2

 0 S
1

– 7 – 5/4 – 1/2 1 1 1/4
– 1 X

3
2  1/4 – 1/2 0 0 – 1/4

Z
j

– 2 – 1/4 1/2 – 1 0 1/4

Z
j 
– C

j
7/4 1/2 0 0 1/4

Drop S
1
 and introduce x

2
.

Since x
B1

 = – 7 < 0, S
1
 the basic variable leaves the basis.

Therefore, the non-basic variable x
2
 enters the basis.

Max , 0j j
ik

iK

Z C
a

a

 
 

 
 gives
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Max 
7 / 4 1/ 2

, ,
5 / 4 1/ 2

   
  

 = – 1

Second Iteration
C

j
–2 0 –1 0 0

C
B

B X
B

X
1

X
2

X
3

S
1

S
2

   0 S
2

14 5/2 1 0 – 2 – 1/2

– 1 X
3

9 3/2 0 1 – 1 – 1/1

Z
j

– 9 – 3/2 0 – 1 1 1/2

Z
j 
– C

j
1/2 0 0 1 1

Since all Z
j
 – C

j
  0 and all x

Bi
  0, the current feasible solution is optimum.

The optimal solution is given by x
1
 = 0, x

2
 = 14, x

3
 = 9.

Max Z = – 9.

1.7 PARAMETRIC LINEAR PROGRAMMING

Sensitivity analysis discussed the effect of discrete changes in the input coefficients
of the linear programming problem on its optimal solution. Further, these input
coefficients (c

j
 or b

i
 or a

ij
) were changed one at a time. However, if there is

continuous change in the values of the coefficients or if simultaneous variations
(changes in all components of c

j
 or b

i
 or a

ij
) occur in their values.

Parametric linear programming investigates the effect of predetermined
continuous variations of these coefficients on the optimal solution. It is simply an
extension of sensitivity analysis and aims at finding the various basic solutions that
become optimal, one after the other, as the coefficients of the problem change
continuously. The coefficients change as a linear function of a single parameter, hence
the name parametric linear programming for this computational technique. As in
sensitivity analysis, the purpose of this technique is to reduce the additional
computations required to obtain the changes in the optimal solution. The various
types of parametric problems that one may come across are:

1. Parametric Cost Problem: In which the cost coefficients c
j
 vary linearly

as a function of parameter λ.

2. Parametric Right-Hand Side Problem: In which the resources availability
coefficients b

i
 vary linearly as a function of parameter λ.

3. Parametric problem involving linear variations in the non-basic vector
P

j
 of A.

4. Parametric problem involving simultaneous linear variations in c
j
, b

i
 and

P
j
.

The parametric right-hand side linear programming (parametric RHS LP) problem
as follows:

(P) min{cT x|Ax = b + b , x  0|},
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where A is an m x n matrix and b, b , and c are vectors of dimensions m,
m, and n, respectively. The parametric RHS LP problem (P

λ
), λ  R, consists

of solving each Linear Programming (LP) problem (P
λ
) for all values of λ  R (or

for λ in a certain required nterval). If (P
λ
) denotes the optimal value of (P

λ
) it is well

known that the function λ R    (λ) is a convex piecewise linear continuous
function. In view of this property, only a finite amount of information is necessary
to solve the parametric RHS LP problem. Basically, it consists of finding the
‘Breakpoints’ of φ(λ) and an optimal solution of (P

λ
) for all breakpoints A.

We present a way of approaching this problem which differs from the usual
method based on the simplex method. Our main motivation to look back into
this problem was the introduction of new methods for solving LP problems like
the ellipsoid method introduced by Khachiyan and the new interior point algorithm
presented by Karmarkar.

The existing method to solve this problem is the parametric RHS LP simplex
method which was first discussed by Gass and Saaty a few years after the simplex
method was developed by Dantzig. The theory of sensitivity and parametric analysis
both in discrete and continuous linear (and nonlinear) optimization has been the
subject of intensive research.

Both the existing theory of sensitivity and parametric analysis depends crucially
on the concept of the optimality (or characteristic) interval associated with an
optimal basis, that is, the set of values of λ. for which this basis is optimal for the LP
problem (P

λ
)

Definition of optimality intervals and derive an algorithm for solving the
parametric RHS LP problem which can be implemented with the aid of any LP
solver. As a first step we have to get rid of the concept of basis and introduce another
invariant associated with the problem in order to define our optimality intervals.
This is done by considering those partitions (B, N), which we call optimal partitions,
such that, B  N = {1, .. ., n}, B   N =  and (x

j
  0, j  N) and

( , )T
j jA y c j B  are, respectively,, the set of always-active constraints with

respect to the primal optimal face and the dual optimal face of some problem (P
λ
).

We then show that an optimality interval is either an open interval between two
consecutive breakpoints of φ (λ) or consists of a breakpoint itself. This shows that
the real line is covered in a unique way using these optimality intervals. This is in
contrast with the basis optimality intervals where even the closed interval determined
by two consecutive breakpoints of φ (λ) can be covered in many ways with possibly
an exponential number of these intervals.

The second step is to provide an algorithm for the parametric RHS LP
problem, based on any LP solver, that computes a sequence of optimal partitions
and their associated optimality intervals so that at the end we have covered the
required interval by these optimality intervals. The approach is the same as in the
existing pivot method which successively finds adjacent optimality intervals either
going to the left or to the right of the real line. However, our approach solves an
LP problem to find the adjacent partition and the corresponding optimality interval.
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It is well known that the parametric RHS LP problem cannot be solved in
polynomial time due the existence of instances of the problem whose correspond-
ing function φ(λ) exhibits an exponential number of breakpoints. One of the main
consequences of our algorithm is an affirmative answer to the following related
computational complexity issue: Can the parametric RHS LP problem be solved
in time polynomially bounded by the size of the input and the number of breakpoints
of φ(λ)? For nondegenerate problems, the answer to this issue is rather trivial and
is provided by the parametric RHS simplex method discussed above. The
parametric RHS LP problem can be solved in O(kZ) where k is the number of
breakpoints and Z is the complexity of solving a single LP problem of the same
dimension.

Problem Description and Some Theoretical Background

In this section we introduce the class of problems with which this paper is
concerned. We also review some results pertinent to the present work.

1. Basic Notations: Rn, Rn
+
, Rn

++
 denotes the sets of n-vectors with reals

components, nonnegative reals components, and (strictly) positive reals
components, respectively. Let A be an m x n matrix. Given a subset B of
the index set {1,...,n}, we denote by An the submatrix of A associated
with the index set B. Also, the subspace generated by the columns of A is
denoted by range( A). The ith row and jth column of A is denoted by A

i

and A
j
 respectively. A closed interval in R with extreme points  and  is

denoted by [,] even when either  = – or   = . The closure of a
set X   Rn is denoted by cl X. R  denotes the set of extended reals,
that is, R  = R   {– , }.

2. True Inequalities: Consider a polyhedron Q  Rn, that is, Q = {x  Rn|
Ax b; Cx = d }.  The system of linear  constraints  Ax  b, Cx = d  is
then  said to be a representation of Q. A subset F of Q is a face of Q if
either F =  or F is the set of optimal solutions for min{cT x|x Q} for
some c Rn. We say that an inequality ax   of the system Ax  b is a
true inequality for the face  F if ax <  for  some x  F. When the face
F is the whole polyhedron {x I Ax b, Cx = d}, the set  of  true inequalities
for  the  face  F  is referred  to  simply  as the  set  of  true inequalities for
the system  Ax  b, Cx = d. Let Ax  b  be the true inequalities for the
face F and Ax  b be the other inequalities from Ax  b.

...(2.1)

The following results can be obtained from Equation (1.1) and as per the
definition of true inequalities.

Note 1: Let F and F  be two faces of the polyhedron Q. Then F  F  if
and only if every true inequality for F is also a true inequality for F .

The following result can be easily proved.

Result 1:    Let the face F and the matrices A’, A”, and C be as above
and let f Rn be given. Then the linear function x f Tx is constant on
F if and only if f  range[( A” )T, CT].
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3. Optimal Partitions:  Consider the LP problem in standard form

(P) = min{cTx l Ax = b; x  0} and its dual

(D) = 

where A is an m × n matrix, c is an n-vector, and b is an m-vector. Let
X* and Y* denote the set of optimal solutions of problems (P) and (D),
respectively. Assume that X* (and consequently Y*) is nonempty. Clearly,
X* (respectively. Y*) is a face of the polyhedron of feasible solutions for
problem (P) (respectively. (D)). Let the inequalities. x

j
  0  with  jB 

{1, ..., n}  and  the  inequalities  AT
j
 y  ci  with j  N  {1, ..., n} be the

set of true inequalities for the faces X* and Y*, respectively. This is equivalent
to saying that,

...(1.2)

...(1.3)

We then have the following well-known result.

Result 2:  Assume   that X*  is  nonempty   and   let   B  {1, . . . , n}
and N  {1, ..., n} be as in (1.2) and (1.3). Then B  N =  and
B  N = {1,..., n}.

The  pair  of  index  sets  (B, N)  then  determines  a  partition  of  the  index
set {1,..., n}. We refer to (B, N) as the optimal partition associated with
problem (P). In terms of the partition (B, N), the optimal faces X* and Y*
can be written as,

X* = { x |A
B 
x

B
 = b; x

B
 2 0; x

N
 = 0},

Y* = { y| AT
B
 y = c

B
; Ai y c

N
}·  ...(1.4)

Description of the Parametric RHS LP Problem and Related
Preliminary Results. In this subsection we introduce the problem which
is the object of our analysis in this paper.

Consider the parametrized family of LP problems in standard form

(P
λ
) , and the corresponding parametrized

family of dual problems

(D) = 

where  b, b  are  m-vectors,  c is an  n-vector,  A   is an  m x n matrix,  and
λ  R.

Solving (P
λ
) for all λ  R is known as the parametric RHS LP problem. We

denote the optimal value of (P
λ
) by) φ(λ) with the convention that φ(λ)  = 

if (P
λ
) is infeasible and φ(λ) = -  if (P

λ
) is feasible and unbounded. With

this convention, we then obtain an extended convex function φ: R  R ,
that is, a function taking values on R  and whose epigraph

epi  is a convex set (Refer Result 3 below).

The next proposition characterizes the ‘Shape’ of the function φ.
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Result 3: There exists a closed interval [, ] (possibly empty) such that:

(a) φ(λ) =  for all  λ  [, ].

(b) Either φ(λ) = – for all λ [, ] or φ [, ]  R and in this case
φ [, ] is a continuous convex piecewise linear function.

The cases in which either [, ] is empty or φ (λ) = – for all λ[, ]
present no difficulty to our analysis. Henceforth, we make the following
assumption.

Theory 1.1. [, ] is nonempty and φ(λ)R  for all λ [, ].

Proof: There exists  a finite set of points   = λ
0

< λ
1 < ···< λ

k
 =  and real constants g

i 
, h

i
, i  {1, .. . , k}, such that, φ(λ) =

g
i
 λ + hi for all  The convexity of φ implies that g

1
 < g

2
 < ···

< g
k
 . Obviously, φ has left and right derivatives for all  λ  [ , ]  Indeed,

for all i {1, ..., k},  = g
i
 if 

By convention, if  (respectively,) is finite, we let

Throughout this paper we let X(λ) and Y(λ), where λ  [, ], denote the
primal and dual optimal faces for problems (P

λ
) and (D

λ
), respectively. Also

(B(λ), N(λ)) denotes the optimal partition associated with problem (P
λ
)

where λ [, ].

The next proposition expresses the left and right derivatives of the
function φ in terms of certain LP problems.

Result 4. For any  [, ], the left and right derivatives  and
 aree given by

Characterization of Optimality Sets of Optimal Partitions

The existing theory of sensitivity and parametric analysis depends crucially on the
concept of the optimality (or characteristic) interval associated with an optimal
basis, that is, a basis which is primal and dual feasible for some problem (P

λ
) where

λ  [,] In this case, the optimality set of an optimal basis is defined to be the
set of all λ  [,] for which such basis is optimal for the LP problem (P 

λ
).

Hence, this theory studies the invariance of the optimality of a basis with respect
to change on the parameter λ. Instead, our analysis is based on the optimality set
of an optimal partition. In this section we introduce and characterize the optimality
set of an optimal partition. We also present some results relating ‘Adjacent’ optimal
partitions.

We start by defining the optimality set of an optimal partition.  Let
(B, N)   (B(λ*), N(λ*)) be an optimal partition associated with (P

λ*
) where )

λ* [, ] The optimality set of (B, N) is the set defined as
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We also consider the set associated with the optimal partition (B, N) as
follows:

Note that  Note also that there are a finite number of
optimality sets, one for each distinct optimal partition that appears in [,].
Moreover, these optimality sets form a partition of [,]. Using Note 1, we can
easily present equivalent definitions of the sets  in terms of the
dual optimal faces Y (λ)as follows:

where we recall that λ* is such that, (B, N) = (B( λ*), N(λ*)).

Our main result, the characterization of the optimality sets, is given in the
following theorem.

Theorem   1.2: Let (B, N ) = (B( λ*), N( λ*)) for λ*  [,]. Then:

(a) If λ* = λ
i
 for  some i  {0, 1, ..., k}, that is, λ* is a breakpoint  of φ(λ),

then 

(b) If   for some i  {1,..., k}, then  and

Consider an optimal partition (B, N) = (B(λ), N(λ)) for some λ  [,] First,
we show that the optimality sets  can be expressed as linear
projections of certain polyhedral sets (Lemma 1.1). This fact immediately implies
that  are intervals which, in Lemma 1.2, are characterized by

a certain algebraic condition on A
B
 and b . In view of this result, from now on we

refer to the optimality sets  as optimality intervals.

We   now   introduce   new   sets   as   follows.   For   B  {1, . . . , n}  and
N = {1, ..., n} - B, let

An equivalent definition of the sets  which we use later is as
follows. Let  denote the projection  and
consider the sets  as follows:
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Then the sets  are the projection sets 
respectively. The following lemma relates the projection sets  to the
sets  and  when (B, N ) is an optimal partition.

Lemma 1:  Let (B, N) = (B( λ*), N( λ*)) for some λ*  [, ]. Then:

Proof: Note first that Result 2 easily implies that (B, N ) = (B(λ), N(λ)) if and only
if X 

B
(λ)    and YB   . Clearly, YB    since ( B, N ) = (B( λ*),

N( λ*)) by assumption. These two observations imply (a). We next show (b) and
(c). By complementary slackness condition,  implies Y

B
  Y(λ) which

implies that  This shows (c). Clearly,, (c) implies that B( λ) B for all

Hence, . The inclusion  is immediate since

B(λ)implies  Hence (b) follows.

Lemma 2: Let B  {1, ..., n} be given. Assume that 
Then:

Proof: Consider the sets Q
B
 and  and the projection ( λ,, x) = x mentioned

before the statement of Lemma 1. We know that 
Since both Q

B
 and  are convex sets and  is linear,, it follows that both 

and  are convex sets and hence intervals. Wee first show (c). Clearly, since

QB  , we have  = cl Q
B
. Since  is continuous, this implies that

 Next, observe that  is closed since  is

a poly- hedron and  Since  it follows that cl
 Hence (c) follows. Wee next show (a) and (b). Assume first that

 range(A
B
). Wee will show that  Indeed, since  we have

 range( A
B
).  Since  range(A

B
), we can easily see that 

range(A
B
) for any ).λ λ Therefore, X

B
(λ) =  for  any λ λwhich  implies

that   Assume next  that  range(A
B
)· Wee will show that  is

open and hence an open interval. Indeed, let    Then  we  have

  for  some    Also, since  range(A
B
), we have 

for some uR|B|. Since  for all sufficiently small real number  and

 it follows that  for all sufficiently small .
We have thus shown that any  has a neighborhood contained in 

Hence,  is an open interval. This completes the proof of (a) and (b).

An Algorithm for the Parametric RHS LP Problem

In this section we present an algorithm for the parametric RHS LP problem. During
the run of the algorithm, a sequence of LP problems is generated in such a way
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that the solution of one problem determines the next one to be solved. By solving
this sequence of LP problems, we also obtain the solution to the given parametric
RHS LP problem. As in the parametric RHS LP pivot algorithm, given a parameter
λ*[,] (Refer Result 3), the algorithm looks for the breakpoints of φ( λ) first
in one side of λ* and then in the other side of λ*.

By solving the parametric RHS LP problem, we mean:

(1) Find  and  satisfying the conditions of Result 3.

(2) Determine whether φ( [, ] ) = {- }. If so, the solution to the
parametric

RHS LP problem is completely specified and we stop. Otherwise, we have
φ( [, ] ) = R and we continue to find the following additional information:

(a) The breakpoints  = λ
0 
 λ

1 
 . . .  λ

k 
 =  of thew function φ(λ);

(b) The slopes g
i
 such that, g

i
 = φ’(λ) for λ ( λ

i-1
, λ

i
), i {l, ..., k};

(c) The optimal partitions (B
i
, N

i
) such that, (B

i
 , N

i
) = (B( λ), N(λ)) for

λ  (λ
i-1
, λ

i
), i  {1, ..., k};

(d) The optimal partitions (B(λ
i
), N(λ

i
)) for i  {0, 1, . . . , k};

(e) xi  X(λ
i
) for i  {0, 1, ..., k};

(f) yi  Y
i
 for i  {1, ..., k}.

To find the values φ(λ) for all λ [, ], all we need is (a) and (b) together
with the value φ(λ*) for some λ*[, ]. Points in the sets X( λ) and Y(λ) for all
λ  [, ] can be obtained from information (e) and (f).

1.8 UPPER BOUND TECHNIQUE

An upper bound or majorant of a subset S of some preordered set (K, ) is an
element of K which is greater than or equal to every element of S. Dually, a lower
bound or minorant of S is defined to be an element of K which is less than or equal
to every element of S. A set with an upper (respectively, lower) bound is said to be
bounded from above or majorized (respectively bounded from below or minorized)
by that bound. The terms bounded above (bounded below) are also used in the
mathematical literature for sets that have upper (respectively lower) bounds.

                       Fig1.2 A Set with its Upper Bounds and its Least Upper Bound

Examples

For example, 5 is a lower bound for the set S = {5, 8, 42, 34, 13934} (as a subset
of the integers or of the real numbers, etc.), and so is 4. On the other hand, 6 is not
a lower bound for S since it is not smaller than every element in S.
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The set S = {42} has 42 as both an upper bound and a lower bound; all
other numbers are either an upper bound or a lower bound for that S.

Every subset of the natural numbers has a lower bound since the natural
numbers have a least element (0 or 1, depending on convention). An infinite subset
of the natural numbers cannot be bounded from above. An infinite subset of the
integers may be bounded from below or bounded from above, but not both. An
infinite subset of the rational numbers may or may not be bounded from below,
and may or may not be bounded from above.

Every finite subset of a non-empty totally ordered set has both upper and
lower bounds.

Bounds of Functions
The definitions can be generalized to functions and even to sets of functions.

Given a function f with domain D and a preordered set (K, ) as codomain,
an element y of K is an upper bound of f if y  f(x) for each x in D. The upper
bound is called sharp if equality holds for at least one value of x. It indicates that
the constraint is optimal, and thus cannot be further reduced without invalidating
the inequality.

Similarly, function g defined on domain D and having the same codomain
(K, ) is an upper bound of f, if g(x)  f(x) for each x in D. Function g is further
said to be an upper bound of a set of functions, if it is an upper bound of each
function in that set.

The notion of lower bound for (sets of) functions is defined analogously, by
replacing  with .

Tight Bounds

An upper bound is said to be a tight upper bound, a least upper bound, or a
supremum, if no smaller value is an upper bound. Similarly, a lower bound is said
to be a tight lower bound, a greatest lower bound, or an infimum, if no greater
value is a lower bound.

Exact Upper Bounds
An upper bound u of a subset S of a preordered set (K, ) is said to be an exact
upper bound for S if every element of K which is strictly majorized by u is also
majorized by some element of S. Exact upper bounds of reduced products of linear
orders play an important role in PCF theory.

1.9 INTERIOR POINT ALGORITHM

Interior Point Methods (also referred to as barrier methods or IPMs) are a certain
class of algorithms that solve linear and nonlinear convex optimization problems.

An interior point method was discovered by Soviet mathematician I. I. Dikin
in 1967 and reinvented in the U.S. in the mid-1980s. In 1984, Narendra
Karmarkar developed a method for linear programming called Karmarkar’s
algorithm, which runs in provably polynomial time and is also very efficient in practice.
It enabled solutions of linear programming problems that were beyond the
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capabilities of the simplex method. Contrary to the simplex method, it reaches a
best solution by traversing the interior of the feasible region. The method can be
generalized to convex programming based on a self-concordant barrier function
used to encode the convex set.

Any convex optimization problem can be transformed into minimizing
(or maximizing) a linear function over a convex set by converting to the epigraph
form. The idea of encoding the feasible set using a barrier and designing barrier
algorithm was studied by Anthony V. Yurii Nesterov, and Arkadi Nemirovski came
up with a special class of such barriers that can be used to encode any convex set.
They guarantee that the number of iterations of the algorithm is bounded by a
polynomial in the dimension and accuracy of the solution.

Karmarkar’s breakthrough revitalized the study of interior point methods
and barrier problems, showing that it was possible to create an algorithm for linear
programming characterized by polynomial complexity and, moreover, that was
competitive with the simplex method. Already Khachiyan’s ellipsoid method was
a polynomial-time algorithm; however, it was too slow to be of practical interest.

The class of primal-dual path-following interior-point methods is considered
the most successful. Mehrotra’s predictor–corrector algorithm provides the basis
for most implementations of this class of methods.

Primal-Dual Interior Point Methods for Nonlinear Optimization

The primal-dual method’s idea is easy to demonstrate for constrained nonlinear
optimization. For simplicity, consider the all-inequality version of a nonlinear
optimization problem:

Minimize f(x) subject to c
i
 (x)  0 for i = 1,…,m, x  n, where

f : n , c
i
: n      (1.5)

This inequality-constrained optimization problem is then solved by converting
it into an unconstrained objective function whose minimum we hope to find efficiently.
Specifically, the logarithmic barrier function associated with Equation (1.5) is

 (1.6)

Here,  is a small positive scalar, sometimes called the ‘Barrier Parameter’.
As  converges to zero the minimum of B(x, ) should converge to a solution of
Equation (1.5).

The barrier function gradient is,

(1.7)

where g(x): =  f(x) is the gradient of the original function f(x) and  c
i  is

the gradient of  c
i
.

In addition to the original ‘Primal’ variable x we introduce a Lagrange
multiplier-inspired dual variable  n
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(1.8)

Equation (1.8) is sometimes called the ‘Perturbed Complementarity’
condition, for its resemblance to ‘Complementary Slackness’ in KKT conditions.
(x, )  for which the gradient of the barrier function is zero.

Applying Equation (1.8) to Equation (1.7), we get an equation for the
gradient:

(1.9)

where the matrix A is the Jacobian of the constraints c(x).

The intuition behind Equation (1.9) is that the gradient of f (x) should lie in
the subspace spanned by the constraints’ gradients. The ‘Perturbed
Complementarity’ with small  Equation (1.9) can be understood as the condition
that the solution should either lie near the boundary c

i
 (x) = 0, or that the projection

of the gradient g on the constraint component c
i
 (x) normal should be almost zero.

Applying Newton’s method to Equation (1.8) and Equation (1.9), we get
an equation for (x, ) update (p

x
, p):

Where W is the Hessian matrix of B(x, ),  is a diagonal matrix of and
C  is a diagonal matrix with C

ii
 = C

i
(x).

Because of Equations (1.5) and (1.8) the condition


should be enforced at each step. This can be done by choosing appropriate :

(x, )  (x + p
x
,p)

Fig.1.3 Trajectory of the Iterates of x by using the Interior Point Algorithm

1.10 LINEAR GOAL PROGRAMMING

Goal programming, as a concept, was first used by Charnes, Cooper and Ferguson
in 1955. However, it was only in 1961 that the actual name appeared in a text
introduced by Charnes and Cooper. In this text, they suggested the usage of a
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method that could be used for solving the multi-criteria dilemma faced due to the
constraints of linear programming. Critical works on goal programming by Lee
(1972) and Ignizio (1976) followed. This led to wide-scale usage of goal
programming in planning, resource allocation, policy analysis and functional
management issues. The first application of goal programming was done on an
engineering application for design and placement of the antennas. This was during
the second stage of Saturn V, which was used to launch the Apollo space capsule
(this had landed the first men on the moon).

One of the landmark books on goal programming was written by Ijiri (1965)
where he developed the concept of pre-emptive priority factors, assigning different
priority levels to disproportionate goals and variant weights for the goals at the
identical priority level. In goal programming, there is an achievement function that
minimizes the deviations from the entrenched goal targets within a set of constraints.
These are also known as slack variables (in the simplex algorithm of linear
programming), and are used as dummy variables.

Terms: Objectives, Goals and Constraints

Objectives are referred to the optimization of the measure of performance of a
decision, such as profit maximization or cost minimization.

Goals state a target value, i.e., the minimum acceptable level of performance of
any decision taken by the decision-maker.

Constraints are similar to goals, in terms of their mathematical formulation.
However, while goals are implied as the right-hand side value to achieve a certain
target value, it is desirable for the constraints to achieve the right-hand side value.

Goal Programming Model Formulation

Single Goal with Multiple Subgoals

An objective is the desired level of result by a decision-maker. This desired level
of result (goal) may be underachieved, completely achieved, or overachieved within
the given decision-making environment. The target level of any goal is determined
by the relative managerial effort that is applied to an activity. In mathematical
terms, one unit of applied effort towards activity xj might contribute the amount aij
towards the ith goal. If this applied effort achieves its target value, the ith constraint
would be denoted as:

1

=
n

ij j i
j

a x b



However, one of the key features of goal programming is its flexibility and non-
binding implications to mathematical interpretation. Thus, to allow underachievement
or overachievement in the goal, we may denote:

di
–= Negative deviation from ith goal, i.e., below the target value.

di
+= Positive deviation from ith goal, i.e., above the target value.

In the light of these notations, the ith goal can be further written as:
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1

=
n

ij j i i i
j

a x d d b 


 

Value of the
objective

 
 
 

 + 
Amount

below the

goal

 
 
 
  

 + 
Amount

above the

goal

 
 
 
  

 = Goal

Here, i is equal to 1, 2,..., m.

It is important to note that it is not possible to achieve amount below the goal or
above the goal simultaneously. In such a case, deviational variables of both the

target values or goals  ori id d   may be zero in the solution  = 0i id d  . Taking

this at its optimal value, one may assume it to be of a positive value in the solution
or must be kept at zero. The only significant point to be taken care of is that the
goal deviational variables must be non-negative.

Note: Slack and surplus variables in the linear programming model are equivalent
to the deviational variables in goal programming.

The surplus variable in linear programming and the deviational variable in goal
programming, that is denoted as di

+, is done away from the objective function
when there is a situation of overachievement. Similarly, in case of underachievement,
di

– (known as slack variable or deviational variable) is removed from the objective
function of goal programming. But, there is an exceptional situation in which both
di

– and di
+ are included in the objective function. This happens only when there is

an exact attainment of the goal and it is ranked as per the pre-emptive priority
factor.

Example 1.17: A packaged food manufacture produces two kinds of products,
chips and soda. The unit profit from a packet of chips is ̀  80, and of a bottle of
soda is ̀  40. The goal of the plant manager is to earn a total profit of exactly ̀  640
in the next week.

Model Formulation

We may interpret the profit goal in terms of subgoals, which are sales volume of
chips and soda. Thereby, a goal programming model may be formulated as:

Minimize,  z = di
– + di

+,

subject to 80x1 + 40x2 + di
– – di

+  = 640

x1, x2, di
–, di

+ 0

where,

x1 = Number of Packet of Chips Sold

x2 = Number of Bottles of Soda Sold

di
– = Underachievement of the Profit Goal of  640

di
+ = Overachievement of the Profit Goal of  640

If the profit goal is not fully achieved, the slack in the profit goal will be expressed
by di

– (negative deviational variable). Contrary to this situation, if the solution
shows a profit in excess of ̀  640, then both di

+ and di
– will be zero. Here it must
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be noted that di
– and di

+ are complementary to each other. So, if the profit goal of
` 640 is exactly achieved, both di

– and di
+ will be zero.

In the above example 1.17, there are an infinite number of combinations of x1
and x2 that would achieve the goal. The solution would be of any linear combination
of x1 and x2 between the two points (x1 = 8, x2 = 0) or (x1 = 0, x2 = 16). This
straight line is exactly the iso-profit function line when the total profit is ̀  640.

Equally Ranked Multiple Goals

This model given below can be extended to handle cases of multiple goals. Let us
suppose that there are no model constraints.

Taking the same example as example 1.17:

Example 1.18: Let us consider that the package food manufacturer now desires
to achieve a weekly profit as close as to ̀  640 as possible. He wants to achieve
sales volume for chips and soda close to six and four respectively. We can formulate
this effort as a goal programming model.

Model Formulation

Minimize, z = d1
– + d2

+ + d3
– + di

+

Subject to, 80x1 + 40x2 + di
– – di

+=  640

x1 + d2
– = 6

x2 + d3
– = 4

x1, x2 , d1
–, d1

+ d2
– , d3

– 0

The above equation expresses the profit goal and the sales goals.

Here, d2
– and d3

– represent the underachievements of sales volume for chips
and soda. It should be noted that d2

+ and d3
+ are not included in the second and

third constraints, since the sales goal are given as the maximum sales volume. The
solution to this problem can be formulated by a simple examination of the problem:
if x2 = 6 and x2 = 4, then all targets will be completely achieved.

Therefore, d1
– = d2

– = d3
– = d1

+ = 0

Ranking and Weighting of Unequal Multiple Goals

In general terms, goal programming model is a linear representation in which the
optimum attainment of objectives is sought within the given decision environment.
It is this decision environment which determines the basic component of the model,
like constraints, decision variables and the objective function. Since multiple and
conflicting goals are usually not of equal importance, negative or positive deviations
are not added. To achieve the goals as per the pre-emptive priority factor, p1,
p2... and so on are assigned to deviational variables in the formulation of the
objective function to be minimized. The ps does not assume any numerical value,
so they are simply a convenient way of indicating that one goal is comparatively
more important than another. The relationship between various priority factors is
based on priority ranking, such as p1 >> p2 >> ... pk >> pk+1 ..., where >>
‘Denotes more important than’.

This further means, pj >> pj + 1 (j = 1, 2, ... , k) where n is a large number. The
priority ranking of any target value or goal cannot be improved by multiplying by
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n. Thus, it is important to note that the deviational variables at a similar priority
level must have the same unit of measurability. This can be well illustrated in the
following example:

Example 1.19: An office furniture manufacturer produces two types of products:
desks and chairs. For manufacturing a chair or a desk, the manufacturer requires
one hour of production capacity in the plant (maximum production capacity is 50
hours per week). However, due to limited sales capacity, the maximum number of
desks and chairs which could be sold are six and eight per week, respectively.
The gross margin from the sale of a desk is ̀  90 and ̀  60 for a chair.

The manufacturer desires to determine the number of units of each desk and
chair, which should be produced per week in consideration of the following set of
goals:

Goal 1: Available production capacity should be utilized as much as possible but
should not exceed 50 hours per week.

Goal 2: Sales of both the products (desks and chairs) produced per week should
be as much as possible.

Goal 3: Overtime should not exceed 20 per cent of the available time.

Model Formulation

We can formulate this problem according to a goal programming model so that
the manufacturer may achieve his goals.

Suppose x1 and x2 = number of units of desk and chair produced. The first
goal pertains to production capacity attainment with a target set at 50 hours per
week. This constraint can be expressed as:

x1 + x2 + d1
– + d1

+ = 50

here, d1
– = Underutilization of Production Capacity

d1
+ = Overutilization of Production Capacity.

If this goal is not achieved, then d1
– would take on a positive value and d1

+

would be zero.

The second goal pertains to maximization of sales volume with a target of 6
units of desks and 8 units of chairs per week. The sales constraints can be expressed
as:

x1 + d2
– = 6 x2 + d3

– = 8

Thus, it is important to note that the sales goals are the maximum possible sales
volume, d2

+ and d3
+ will not appear as these constraints. So, here the

overachievement of sales goals is ruled out.

The third goal looks for the minimization of overtime hours as minimum as possible.
The constraint is denoted as:

d1
+ + d4

– – d4
+ = 0.2 (50) = 10

Here,

d4
– = Overtime less than 20 per cent of goal constraint

d4
+ = Overtime more than 20 per cent of goal constraint

d1
+ = Overtime beyond 50 hours
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Now, we an formulate a model to express the above given problem as a goal
programming model.

Minimize (total deviation) Z = d1
+ + d2

– + d3
– + d4

+ subject to the above
mentioned constraints,

(i) Production Capacity Constraint

x1 + x2 + d1
– – d1

+ = 50

(ii) Sales Constraints

x1 + d2
– = 6

x2 + d3
– = 8

(iii) Overtime Constraint

d1
+ + d4

– –  d4
+ = 10, and

x1, x2, d1
–, d2

–, d3
–, d4

–, d4
+  0.

Check Your Progress

7. Explain the duality in linear programming.

8. Describe the formulation of dual problem.

9. Write first four steps of dual simplex algorithm.

10. What is parametric linear programming?

11. Define upper bound techniques.

12. Sate interior point algorithm.

13. What are the objectives, goals and constraints of linear goal
programming?

1.11 ANSWERS CHECK YOUR PROGRESS

1. The concept of operations research came into existence in a military context
during World War II, when military management wanted to arrive at
decisions on optimal utilization of scarce military resources with a new
approach to the systematic and scientific study of the operations of the
system.

2. Operation Research (OR) is the scientific knowledge through interdisciplinary
team effort for the purpose of determining the best utilization of limited
resources.

3. Decision-making has always been very important in the business and
industrial world, particularly with regard to the problems concerning
production of commodities. Which commodity/commodities to produce, in
what quantities and by which process or processes, are the main questions
before a production manager. English economist Alfred Marshall pointed
out that the businessman always studies his production function and his
input prices and substitutes one input for another till his costs become the
minimum possible. All this sort of substitution, in the opinion of Marshall, is
being done by businessman’s trained instinct rather than with formal
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calculations. But now there does exist a method of formal calculations often
termed as Linear Programming (LP).

4. The word ‘Linear’ means that the relationships are represented by straight
lines, i.e., the relationships are of the form y = a + bx and the word
‘Programming’ means taking decisions systematically.

5. The applications of LP are numerous and are increasing every day. LP is
extensively used in solving resource allocation problems. Production planning
and scheduling, transportation, sales and advertising, financial planning,
portfolio analysis, corporate planning, etc., are some of its most fertile
application areas. More specifically, LP has been successfully applied in the
following fields:

(i) Agricultural applications: LP can be applied in farm management
problems as it relates to the allocation of resources such as acreage,
labour, water supply or working capital in such a way that is maximizes
net revenue.

(ii) Contract awards: Evaluation of tenders by recourse to LP guarantees
that the awards are made in the cheapest way.

(iii) Industrial applications: Applications of LP in business and industry are
of most diverse kind. Transportation problems concerning cost
minimization can be solved by this technique. The technique can also
be adopted in solving the problems of production (product-mix) and
inventory control.

6. Simplex method is an iterative procedure for solving LPP in a finite number
of steps. This method provides an algorithm which consists of moving from
one vertex of the region of feasible solution to another in such a manner that
the value of the objective function at the succeeding vertex is less or more
as the case may be that at the previous vertex.

7. For every given linear programming problem, there is another intimately
related linear programming problem referred to as its dual. The duality
theorem states that ‘For every maximization (or minimization) problem in
linear programming, there is a unique similar problem of minimization (or
maximization) involving the same date which describes the original problem’.

8. The following changes are used in formulating the dual problem:
(i) Change the objective function of maximization in the primal into

minimization in the dual, and vice versa.
(ii) The variables in the primal should be equal to the constraints in the

dual and vice versa.
(iii) The cost coefficients C

1
, C

2
 ... C

n
 in the objective function of the

primal should be the RHS constant of the constraints in the dual and
vice versa.

(iv) In forming the constraints for the dual, we consider the transpose of
the body matrix of the primal problem.

(v) The variables in both the problems are non-negative.
(vi) If the variable in the primal is unrestricted in sign, then the corresponding

constraint in the dual will be an equation, and vice versa.
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9. The dual simplex method is very similar to the regular simplex method, the
only difference lies in the criterion used for selecting a variable to enter the
basis and to leave the basis. In the dual simplex method, we first select the
variable to leave the basis and then the variable to enter the basis. This
method yields an optimal solution to the given LPP in a finite number of
steps, provided no basis is repeated.

The dual simplex method is used to solve problems that start as dual feasible
(i.e., whose primal is optimal but infeasible). In this method, the solution
starts as optimum, but infeasible, and remains infeasible until the true optimum
is reached, at which point the solution becomes feasible.

10 Parametric linear programming investigates the effect of predetermined
continuous variations of these coefficients on the optimal solution. It is simply
an extension of sensitivity analysis and aims at finding the various basic
solutions that become optimal, one after the other, as the coefficients of the
problem change continuously.

11. An upper bound or majorant of a subset S of some preordered set (K, )
is an element of K which is greater than or equal to every element of S. Dually,
a lower bound or minorant of S is defined to be an element of K which is
less than or equal to every element of S. A set with an upper (respectively,
lower) bound is said to be bounded from above or majorized (respectively
bounded from below or minorized) by that bound.

12. Interior Point Methods (also referred to as barrier methods or IPMs) are a
certain class of algorithms that solve linear and nonlinear convex optimization
problems.

An interior point method was discovered by Soviet mathematician I. I. Dikin
in 1967 and reinvented in the U.S. in the mid-1980s.

13. Objectives: The measure of performance of a decision, such as profit
maximization or cost minimization.

Goals: The minimum acceptable level of performance of any decision taken
by the decision-maker.

Constraints: In terms of their mathematical formulation. However, while
goals are implied as the right-hand side value to achieve a certain target
value, it is desirable for the constraints to achieve the right-hand side value.

1.12 SUMMARY

 Operations research was first coined in 1940 by J.F. McCloskey and F.N.
Trefethen in a small town Bowdsey, the United Kingdom.

 This new science came into existence in a military context. During World
War II, military management called on scientists from various disciplines
and organized them into teams to assist in solving strategic and tactical
problems, relating to air and land defence.

 OR is a scientific method of providing executive departments with a
quantitative basis for decisions regarding the operations under their control.
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 OR is a systematic method-oriented study of the basic structures,
characteristics, functions and relationships of an organization to provide the
executive with a sound, scientific and quantitative basis for decision-making.

 OR is a scientific approach to problem solving for executive management.

 Decision-making has always been very important in the business and
industrial world, particularly with regard to the problems concerning
production of commodities. Which commodity/commodities to produce, in
what quantities and by which process or processes, are the main questions
before a production manager.

 The word ‘Linear’ means that the relationships are represented by straight
lines, i.e., the relationships are of the form y = a + bx and the word
‘Programming’ means taking decisions systematically.

 The problem for which LP provides a solution may be stated to maximize
or minimize for some dependent variable which is a function of several
independent variables when the independent variables are subject to various
restrictions.

 Agricultural applications: LP can be applied in farm management problems
as it relates to the allocation of resources such as acreage, labour, water
supply or working capital in such a way that is maximizes net revenue.

 Industrial applications: Applications of LP in business and industry are of
most diverse kind. Transportation problems concerning cost minimization
can be solved by this technique. The technique can also be adopted in
solving the problems of production (product-mix) and inventory control.

 Simplex method is an iterative procedure for solving LPP in a finite number
of steps. This method provides an algorithm which consists of moving from
one vertex of the region of feasible solution to another in such a manner that
the value of the objective function at the succeeding vertex is less or more
as the case may be that at the previous vertex.

 For every given linear programming problem, there is another intimately
related linear programming problem referred to as its dual. The duality
theorem states that ‘for every maximization (or minimization) problem in
linear programming, there is a unique similar problem of minimization (or
maximization) involving the same date which describes the original problem’.

 Every LPP (called the primal) is associated with another LPP (called its
dual). Either of the problem can be considered as primal with the other as
dual.

 If the variable in the primal is unrestricted in sign, then the corresponding
constraint in the dual will be an equation, and vice versa.

 The dual simplex method is very similar to the regular simplex method, the
only difference lies in the criterion used for selecting a variable to enter the
basis and to leave the basis. In the dual simplex method, we first select the
variable to leave the basis and then the variable to enter the basis. This
method yields an optimal solution to the given LPP in a finite number of
steps, provided no basis is repeated.
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 The dual simplex method is used to solve problems that start as dual feasible
(i.e., whose primal is optimal but infeasible). In this method, the solution
starts as optimum, but infeasible, and remains infeasible until the true optimum
is reached, at which point the solution becomes feasible.

 Parametric linear programming investigates the effect of predetermined
continuous variations of these coefficients on the optimal solution. It is simply
an extension of sensitivity analysis and aims at finding the various basic
solutions that become optimal, one after the other, as the coefficients of the
problem change continuously.

 Interior Point Methods (also referred to as barrier methods or IPMs) are a
certain class of algorithms that solve linear and nonlinear convex optimization
problems.

 An interior point method was discovered by Soviet mathematician I. I. Dikin
in 1967 and reinvented in the U.S. in the mid-1980s.

 Goal programming, as a concept, was first used by Charnes, Cooper and
Ferguson in 1955. However, it was only in 1961 that the actual name
appeared in a text introduced by Charnes and Cooper.

1.13 KEY TERMS

 Operations research: The application of scientific knowledge through
interdisciplinary team effort for the purpose of determining the best utilization
of limited resources.

 Linear programming: the word ‘Linear’ means that the relationships are
represented by straight lines, i.e., the relationships are of the form y = bx
and the word ‘Programming’ means taking decisions systematically.

 Simplex method: Simplex method is an iterative procedure for solving
LPP in a finite number of steps. This method provides an algorithm which
consists of moving from one vertex of the region of feasible solution to
another in such a manner that the value of the objective function at the
succeeding vertex is less or more as the case may be that at the previous
vertex.

 Duality in LPP: Every LPP (called the primal) is associated with another
LPP (called dual). Either of the problem can be considered as primal with
the other as dual.

 Interior Point Algorithm: Interior Point Methods (also referred to as
barrier methods or IPMs) are a certain class of algorithms that solve linear
and nonlinear convex optimization problems.

1.14 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Where did the concept of operations research originate?
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2. What is meant by proportionality in linear programming?

3. Mention two areas where linear programming finds application.

4. Write the simplex algorithm.

5. State the formulation of dual problem.

6. Define dual simplex method.

7. What do you mean by parametric linear programming?

8. What is upper bound techniques?

9. Write the properties of interior point algorithm.

10. What are the objectives, goals and constraints of linear goal programming?

Long-Answer Questions

1. What are the scope of operations research? Explain.

2. Describe the areas where linear programming can be used?

3. Analyse the basic concepts and notations in linear programming.

4. Explain the applications of linear programming.

5. Illustrate the simplex method with appropriate examples.

6. Elaborate on the simplex algorithm giving examples.

7. Discuss the duality in linear programming with help of examples.

8. Solve the following mixed integer programing problems using Gomory’s
cutting plane method.

Min Z = 10x
1
 + 9x

2

Subject to constraints, x
1
 8

x
2
 10

5x
1
 + 3x

2
 45

x
1
, x

2
 0 and x

1
 is an integer.

9. Describe the parametric linear programming.

10. Discuss the upper bound techniques that are used in LPP.

11. Analyse the interior point algorithm. Give appropriate examples.

12. What do you understand by linear goal programming? Explain.
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UNIT 2 TRANSPORTATION AND
ASSIGNMENT PROBLEMS

Structure

2.0 Introduction
2.1 Objectives
2.2 Transportation Problem

2.2.1 Solutions of Transportation Problem
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2.3.1 Job Sequence Problem
2.4 Network Analysis

2.4.1 Basic Terms
2.4.2 Common Errors
2.4.3 Rules of Network Construction
2.4.4 Construction of Network
2.4.5 Time Analysis

2.5 Shortest Path Problem and Maximum Flow Problem
2.5.1 Shortest-Route Problem: Dijkstra’s Algorithm
2.5.2 Maximum Flow Problem and Spanning Tree

2.6 Minimum Cost Flow Problem
2.7 Project Planning and Control with Pert-cpm

2.7.1 Project Scheduling
2.7.2 Pert Procedure

2.8 Answers to ‘Check Your Progress’
2.9 Summary

2.10 Key Terms
2.11 Self-Assessment Questions and Exercises
2.12 Further Reading

2.0 INTRODUCTION

In mathematics, transportation problems deal with the objective of transporting
various quantities of a single homogeneous commodity initially stored at various
origins to different destinations in a way that keeps transportation cost at a minimum.
You will learn about applications of the transportation problem and solution and
rules to solve such problems. The solution of any transportation problem is obtained
in two stages, initial solution and optimal solution. There are three methods of
obtaining an initial solution which include North West Corner Rule, Least Cost
Method and Vogel’s Approximation Method (VAM). VAM is preferred since the
solution obtained this way is very close to the optimal solution. The optimal solution
of any transportation problem is a feasible solution that minimizes the total cost.
An optimal solution is the second stage of a solution obtained by improving the
initial solution.

An assignment problem presented in the form of n × n cost matrix of real
numbers. For solving an assignment problem, the Hungarian method is used.
A network is a graphic representation of logically and sequentially connected
arrows and nodes, representing the activities and events, respectively of a project.
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An event is the beginning and end points of an activity and is represented by a
node. Also learn how to construct a network after going through the rules for
network construction and a set of tools that has proven to be consistently valuable
to project managers. The tools are collectively known as the Project Evaluation
and Review Technique (PERT) and the Critical Path Method (CPM). PERT was
developed by the U.S. Navy and its consultants for the Polaris Missile Project,
while the Critical Path Method was created by DuPont and the Remington Rand
Corporation for the management of large chemical plants. The maximization in
assignment problems and the job sequence problem. To solve a job sequence
problem, the assignment problem has to be balanced. An assignment problem is
balanced if the cost matrix is a square matrix, otherwise it is termed as unbalanced.
To make an unbalanced assignment problem balanced, dummy rows or dummy
columns are added with all entries as zeroes.

In this unit, you will learn about the transportation problem, assignment
problem, network analysis, shortest path problem and maximum flow problem,
minimum cost flow problem, network simplex method and project planning and
control with PERT-CPM.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Analyse the transportation problem and assigment problem

 Explain the three methods of finding an initial solution

 State the method of doing network analysis for large projects

 Understand PERT and CPM for handling projects

 Explain shorter route and maximal flow problem

 Perform critical path and PERT calculations

 Understand project scheduling

 Solve an assignment problem using the Hungarian method

2.2 TRANSPORTATION PROBLEM

The Transportation Problem (TP) is one of the subclasses of LPP (Linear
Programming Problem) in which the objective is to transport various quantities of
a single homogeneous commodity that are initially stored at various origins to
different destinations in such a way that the transportation cost is minimum. To
achieve this objective we must know the amount and location of available supplies
and the quantities demanded. In addition we must know the costs that result from
transporting one unit of commodity from various origins to various destinations.

Elementary Transportation Problem

Consider a transportation problem with m origins (rows) and n destinations
(columns). Let C

ij
 be the cost of transporting one unit of the product from the ith

origin to jth destination, a
i
 the quantity of commodity available at origin i, b

j
 the

quantity of commodity needed at destination j. X
ij
 is the quantity transported from
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ith origin to jth destination. This transportation problem can be stated in the
following tabular form.

X X X X

X X X X

X X X

X X X X

i = 1 j = 1

The linear programming model representing the transportation problem is
given by,

1 1

Minimize
m n

ij ij
i j

Z C X
 


Subject to the constraints,

1

1, 2, ...,
n

ij i
j

X a i n


   (Row sum)

1

m

ij j
i

X b


  1, 2, ...,j n  (Column sum)

0ijX  For all i and j

The given transportation problem is said to be balanced if,

i.e., the total supply is equal to the total demand.

Definitions

Feasible Solution: Any set of non-negative allocations (X
ij
>0) which

satisfies the row and column sum is called a feasible solution.

Basic Feasible Solution: A feasible solution is called a basic feasible
solution if the number of non-negative allocations is equal to m + n – 1, where m
is the number of rows and n the number of columns in a transportation table.

Non-Degenerate Basic Feasible Solution: Any feasible solution to a
transportation problem containing m origins and n destinations is said to be non-
degenerate, if it contains m + n – 1 occupied cells and each allocation is in
independent positions.

The allocations are said to be in independent positions if it is impossible to
form a closed path. Closed path means by allowing horizontal and vertical lines
and when all the corner cells are occupied.
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The allocations in the following tables are not in independent positions.

The allocations in the following tables are in independent positions.

Degenerate Basic Feasible Solution: If a basic feasible solution contains
less than m + n – 1 non-negative allocations it is said to be degenerate.

Transportation Algorithm

This algorithm can be used for minimizing the transportation cost for goods from
O origins to D destinations and there may be O*D number of direct routes from O
origins to D destinations.  Problem is balanced when sum of supplies at O sources
is equal to sum of demands at D destinations. If it is not so, then this problem is not
balanced. There may be two such situations. Supply may be lesser than demand
and in that case it is balanced by adding dummy supply node. If demand is lesser
than supply then dummy demand node is added to make it a balanced problem.
Thus, before starting to use this algorithm, problem should be made balanced, if it
is not balanced.

Data is presented in tabular form. As a convention, origins are put on left
side of the table with quantity to be supplied listed towards right side and demands
are put on top with quantity of demand towards the bottom side. Unit cost of
transportation is put at the top of every cell within a small box. Zero unit cost
shows unshipped unit column in case supply is in excess of the demand. Similarly,
a unit cost either penalty or zero shows shortage row in supplies that are lesser
that demand.

The algorithm has two phases.  In phase I this makes allocation for supplies
on demands by making utilizing an approach of minimum unit cost for generating a
feasible solution. This feasible solution may not be optimal.  Optimization is done
in second phase and in this phase checking is done for optimality conditions and
improvement is done for reducing the cost if optimality conditions are not satisfied. 
This second phase adopts iterative steps and stops only when optimality conditions
are satisfied. Once done, no further steps are required.
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Basic and Non-Basic Cells

Basic cells are those that indicate positive values and non-basic cells have zero
value for flow. According to transportation problem number of basic cells will be
exactly m + n – 1.

Algorithm follows as below:

Step 0

Initialization: Before starting to solve the problem, it should be balanced. If not
then make it balanced by ‘Unshipped Supply’ column in case demand is less than
supply or by adding ‘Shortage’ row in case supply is less than the supply. Put zero
for unit costs in the column for unshipped supply. Put either penalty costs or zero
in a row that shows shortage.

Phase I:  To Find Initial ‘Feasible Solution’

Step 1: Locate cell with minimum cost having positive supply as well as demand,
then make allocation in that cell having residuals as minimum.

Step 2: Reduce residual supply/demand as per allocations made above (Step 1).
Do this till all demands are met and then proceed to Phase II.  If all demands are
not met go to Step 1.

Phase II:  Optimal Solution

Carry out check for Optimality.

Step 3: For rows and columns find dual values, u
i
 for rows and v

j
 for columns.

For this, set u
1 
(first dual value) to 0 followed by solution of triangular dual equations

one by one.  These dual equations are to be applied for basic cells only as below
as,

C
ij
 = u

i
 + v

j

Where, C
ij
 denotes unit cost, as given for that cell and either v

j
 or u

i
 is

already known. Here, v
j
 denotes dual value of column j and u

i 
denotes that for

row i. These are taken as already known.  Other dual value is computed from
equation,

C
ij
 = u

i
 + v

j

Thus, dual values of every cell can be computed by setting the first to zero
and appropriate order is used for dual equations for basic cells.

Step 4: Optimality conditions are expressed as reduced costs in case of all non-
basic cells as given below:


ij
 = C

ij
 - (u

i
 + v

j
)

Reduced cost (
ij
) in case of non-basic cells represent net change in unit

cost resulting due to movement of cell ij to solve  and adjusting around a cycle that
has been created in this way for basic cells to find current solution. This is shown
in Step 5.  Hence if one 

ij
 is positive, then by use of this cell total transportation

will increase, but when 
ij
 is negative for a cell, this will cause reduction in total

transportation. If all reduced costs (
ij
) are positive, i.e., 

ij
 > 0, optimality

conditions are satisfied and no further improvement is possible and algorithm
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terminates at this point.  But if at least one 
ij
 is negative, optimality conditions are

not satisfied and there is possibility of reduction in costs.  If optimality conditions
are not satisfied algorithm continues as given in Step 5.

Adjustment for Reducing Cost

Step 5: Select a cell ‘ij’ that is most negative for 
ij
. This becomes entering variable.

Put (+) sign for identifying it. To maintain constraints of balance in supply and
demand, locate basic cells for ith row as well as jth column that compensates for
increase in value in cell ‘ij’.  Put negative (–) sign in these cells. This process
should be continued to get one cycle in which (+) and (–) are marked.  Such a
cycle will unique and if ‘Dead Ends’ are encountered in such a process, make a
back track and one amongst other alternatives are tried. A cycle has rows/column
having non-basic cells for holding compensating (+) or (–) sign. This may require
trial and error for to finding it.

Step 6: After determining every basic cell within this cycle, adjustment is obtained
as minimum value in basic cells that are negative. This is known as adjustment
amount and let it be called ‘aa’. Add this to every cell value that is positive and
marked with (+) sign, and subsequently deduct this from cells having negative (–)
sign and then drop those from the basis that becomes zero. In case two or more
cells become zero from such adjustment, drop only one of these that have greatest
C

ij
 value. This is necessary for maintaining basic cells having m +n – 1 number for

computing dual values.  Reduction in cost that is associated with such a change is
found as product of reduced cost 

ij
 for incoming cell multiplied by cell value

previously held by outgoing cell. 

After finding this new solution, move to the third Step 3 for checking
conditions of optimality. If optimality condition is satisfied, algorithm terminates.

Applications of Transportation Problem

The Travelling Salesman Problem

Assume that a salesman has to visit n cities. He wishes to start from a particular
city, visits each city once and then returns to his starting point. His objective is to
select the sequence in which the cities are visited in such a way that his total
travelling time is minimized.

To visit 2 cities A and B, there is no choice. To visit 3 cities we have 2!
possible routes. For 4 cities we have 3! possible routes. In general to visit n cities
there are (n – 1)! possible routes.

Mathematical Formulation

Let C
ij
 be the distance or time or cost of going from city i to city j. The decision

variable X
ij
 be 1 if the salesman travels from city i to city j and otherwise 0.

The objective is to minimize the travelling time.

Z = 
1 1

n n

ij ij
i j

C X
 


Subject to the constraints,
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1

n

ij
j

X

  = 1, i = 2, ..., n

1

n

ij
i

X

  = 1, j = 2, ..., n

Subject to the additional constraint that X
ij
 is so chosen that no city is visited twice

before all the cities are completely visited.

In particular, going directly from i to i is not permitted. Which means
C

ij
 = , when i = j.

In travelling salesman problem we cannot choose the element along the
diagonal and this can be avoided by filling the diagonal with infinitely large elements.

The travelling salesman problem is very similar to the assignment problem
except that in the former case, there is an additional restriction that X

ij
 is so chosen

that no city is visited twice before the tour of all the cities is completed.

Treat the problem as an assignment problem and solve it using the same
procedures. If the optimal solution of the assignment problem satisfies the additional
constraint, then it is also an optimal solution of the given travelling salesman problem.
If the solution to the assignment problem does not satisfy the additional restriction
then after solving the problem by assignment technique we use the method of
enumeration.

Example 2.1: A travelling salesman has to visit 5 cities. He wishes to start from a
particular city, visit each city once and then return to his starting point. Cost of
going from one city to another is shown below.  You are required to find the least
cost route.

To City

From City  

Solution: First we solve this problem as an assignment problem.

Subtract the minimum element in each row from all the elements in its row.

Subtract the minimum element in each column from all the elements in its
column.
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We have the first modified matrix. Draw minimum number of lines to cover
all zeros.

Here N = 4 < n = 5. Subtract the smallest uncovered element from all the
uncovered elements and add to the element which is in the point of intersection of
lines. Hence, we get the second modified matrix.

N = 5 = n = 5 = Order of matrix. We make assignment.

Assignment

As the salesman should go from A to E and then come back to A without
covering B, C, D which is contradicting the fact that no city is visited twice before
all the cities are visitied.

Hence, we obtain the next best solution by bringing the next minimum non-
zero element namely 4.

A  B, B  C, C  D, D  E, E  A

Since all the cities have been visited and no city is visited twice before
completing the tour of all the cities, we have an optimal solution to the travelling
salesman.
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The least cost route is A  B  C  D  E  A.

Total Cost = 4 + 6 + 8 + 10 + 2 =  30.

Example 2.2: A machine operator processes five types of items on his machine
each week and must choose a sequence for them. The set-up cost per change
depends on the items presently on the machine and the set-up to be made according
to the following table.

     To Item

From Item 

If he processes each type of item once and only once in each week, how
should he sequence the items on his machine in order to minimize the total set-up
cost?

Solution: Reduce the cost matrix and make assignments in rows and columns
having single row.

Modify the matrix by subtracting the least element from all the elements in
its row and also in its column.

Here, N = 4 < n = 5, i.e., N < n.

Subtract the smallest uncovered element from all the uncovered elements
and add to the element which is at the point of intersection of lines and get the
reduced second modified matrix.

Here, N= 5 = n = 5 = Order of matrix. We make the assignment.
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Assignment

We make a solution by considering the next smallest non-zero element by
considering 1.

A  E, E  C, C  B, B  D, D  A

We get the solution A  E  C  B  D  A.

This schedule provides the required solution in which each item is not
processed once in a week.

i.e., A  E  C  B  D  A.

The total set-up cost comes to  21.

2.2.1 Solutions of Transportation Problem

Optimal solution is a feasible solution (not necessarily basic) which minimizes the
total cost.

The solution of a Transportation Problem (TP) can be obtained in two stages,
namely initial solution and optimum solution.

Initial solution can be obtained by using any one of the three methods, viz.
(i) North West Corner Rule (NWCR)
(ii) Least Cost Method or Matrix Minima Method
(iii) Vogel’s Approximation Method (VAM)

VAM is preferred over the other two methods, since the initial basic feasible
solution obtained by this method is either optimal or very close to the optimal
solution.

The cells in the transportation table can be classified as occupied cells and
unoccupied cells. The allocated cells in the transportation table is called occupied
cells and empty cells in a transportation table is called unoccupied cells.

The improved solution of the initial basic feasible solution is called optimal
solution which is the second stage of solution, that can be obtained by MODI
(MOdified DIstribution Method).

North West Corner Rule

Step 1:  Starting with the cell at the upper left corner (North West) of the
transportation matrix we allocate as much as possible so that either the capacity of
the first row is exhausted or the destination requirement of the first column is
satisfied, i.e., X

11
 = Min (a

1
, b

1
).

Step 2: If b
1
>a

1
, we move down vertically to the second row and make the

second allocation of magnitude X
22 

= Min(a
2
 b

1 
– X

11
) in the cell (2, 1).
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If b
1
< a

1
, move right horizontally to the second column and make the second

allocation of magnitude X
12

 = Min (a
1
, X

11 
– b

1
) in the cell (1, 2).

If b
1
 = a

1
, there is a tie for the second allocation. We make the second

allocations of magnitude,

or, 
12 1 1 1

21 2 1 1

Min ( , ) 0 in the cell (1,2)

Min ( , ) 0 in the cell (2,1)

X a a b

X a b b

  
  

Step 3: Repeat Steps 1 and 2 moving down towards the lower right corner of the
transportation table until all the rim requirements are satisfied.

Example 2.3: Obtain the initial basic feasible solution of a transportation problem
whose cost and rim requirement table is as follows:

Solution: Since a
i
 = 34 = b

j
, there exists a feasible solution to the transportation

problem. We obtain initial feasible solution as follows.

The first allocation is made in the cell (1, 1) the magnitude being,

X
11

 = Min (5, 7) = 5.

The second allocation is made in the cell (2, 1) and the magnitude of the
allocation is given by X

21
 = Min (8, 7 – 5) = 2.

The third allocation is made in the cell (2, 2) the magnitude X
22

 = Min (8 – 2, 9) = 6.

The magnitude of the fourth allocation is made in the cell (3, 2) given by
X

32
 = Min (7, 9 – 6) = 3.

The fifth allocation is made in the cell (3, 3) with magnitude X
33 

= Min (7 – 3, 14) = 4.

The final allocation is made in the cell (4, 3) with magnitude X
43

 = Min
(14, 18 – 4) = 14.

Hence, we get the initial basic feasible solution to the given TP and is given by,

X
11

 = 5; X
21

 = 2; X
22

 = 6; X
32

 = 3; X
33

 = 4; X
43

 = 14

Total Cost  = 2 × 5 + 3 × 2 + 3 × 6 + 3 × 4 + 4 × 7 + 2 × 14

    =10 + 6 + 18 + 12 + 28 + 28 =  102
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Least Cost or Matrix Minima Method

Step 1: Determine the smallest cost in the cost matrix of the transportation table.
Let it be C

ij
. Allocate X

ij
 = Min (a

i
, b

j
) in the cell (i, j).

Step 2: If X
ij
 = a

i
 cross off the ith row of the transportation table and decrease

b
j
 by a

i
. Then go to Step 3.

If X
ij
 = b

j
 cross off the jth column of the transportation table and decrease

a
i
 by b

j
. Go to Step 3.

If X
ij
 = a

i
 = b

j
 cross off either the ith row or the jth column but not both.

Step 3: Repeat Steps 1 and 2 for the resulting reduced transportation table until
all the rim requirements are satisfied. Whenever the minimum cost is not unique
make an arbitrary choice among the minima.

Example 2.4: Obtain an initial feasible solution to the following TP using matrix
minima method.

Solution:  Since a
i
 = b

j
 = 24, there exists a feasible solution to the TP using the

steps in the least cost method, the first allocation is made in the cell (3, 1) the
magnitude being X

31
 = 4. This satisfies the demand at the destination D

1
 and we

delete this column from the table as it is exhausted.

The second allocation is made in the cell (2, 4) with magnitude X
24

 = Min
(6, 8) = 6. Since it satisfies the demand at the destination D

4
, it is deleted from the

table. From the reduced table, the third allocation is made in the cell (3, 3) with
magnitude X

33
 = Min (8, 6) = 6. The next allocation is made in the cell (2, 3) with

magnitude X
23

 of Min (2, 2) = 2. Finally, the allocation is made in the cell (1, 2)
with magnitude X

12
 = Min (6, 6) = 6. Now, all the requirements have been satisfied

and hence, the initial feasible solution is obtained.

The solution is given by,

X
12

 = 6; X
23

 = 2; X
24

 = 6; X
31

 = 4; X
33

 = 6

Since the total number of occupied cells = 5 < m + n – 1

We get a degenerate solution.

Total Cost×××××
 = 12 + 4 + 12 =  28.
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Vogel’s Approximation Method (VAM)

Vogel Approximation Method (VAM) is used to find the feasible solution for
transportation of goods where the solution is either optimal or near to the optimal
solution. Typically, this method is used to reduce the transportation costs by
interpreting using a mathematical table the transportation costs from one place to
another. In the table, the column represents the demand centres while the row
represents the supply points. The following are the general steps used in VAM:

Step 1: Identify the minimum and next minimum numbers in a column and repeat
the same for the row.

Step 2: The above step is repeated for all other columns and rows.

Step 3: Now, subtract the two numbers identified for each column and each row
such that the difference is positive.

Step 4: Identify the maximum difference among all the rows and also among all the
columns.

Step 5: Assign all the demand units for that minimum number in that column which
has got the maximum difference (repeat the same for the row).

Step 6: Remove that column and row completely and repeat the above process
until all the demand units are filled up completely.

Vogel’s Approximation Method (VAM) also takes costs into account in allocation.

The steps involved in VAM method for finding the initial solution are as follows.

Step 1: Find the penalty cost, namely the difference between the smallest and next
smallest costs in each row and column.

Step 2: Among the penalties as found in Step (1) choose the maximum penalty. If
this maximum penalty is more than one (i.e., if there is a tie) choose any one
arbitrarily.

Step 3: In the selected row or column as by Step (2) find out the cell having the least
cost. Allocate to this cell as much as possible depending on the capacity and
requirements.

Step 4: Delete the row or column which is fully exhausted. Again, compute the
column and row penalties for the reduced transportation table and then go to
Step (2). Repeat the procedure until all the rim requirements are satisfied.

Note: If the column is exhausted, then there is a change in row penalty and vice
versa.

Example 2.5: Find the initial basic feasible solution for the following transportation
problem using VAM.

Solution:  Since a
i
 = b

j
 = 950,  the problem is balanced and there exists a

feasible solution to the problem.
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First, we find the row and column penalty P
I
 as the difference between the

least and the next least cost. The maximum penalty is 5. Choose the first column
arbitrarily. In this column, choose the cell having the least cost name (1, 1). Allocate
to this cell with minimum magnitude (i.e., Min (250, 200) = 200.) This exhausts
the first column. Delete this column. Since a column is deleted, then there is a
change in row penalty P

II
 and column penalty P

II
 remains the same. Continuing in

this manner, we get the remaining allocations as given in the following table below.

II AllocationI Allocation

1
1

1

III Allocation IV Allocation

V Allocation VI Allocation

Finally, we arrive at the initial basic feasible solution which is shown in the
following table.

There are 6 positive independent allocations which equals to m + n –1 =
3 + 4 – 1. This ensures that the solution is a non-degenerate basic feasible solution.

Transportation Cost,

11 × 200 + 13 × 50 + 18 × 175 + 10 × 125 + 13 × 275 + 10 × 125

 =  12,075.



Transportation and
Assignment Problems

NOTES

Self - Learning
Material 75

Examples to Find Solution of Transportation Problem Using Vogel’s
Approximation Method or VAM 

Example 2.6: An organization has four destinations (D
1
, D

2
, D

3
 and D

4
) and

three sources (S
1
, S

2
 and S

3
) for supply of goods. The transportation cost per unit

is given below. The total availability is 700 units which exceeds the cumulative
demand of 600 units. Find the optimal transportation scheme for this condition
using the Vogel’s Approximation Method or VAM.

Solution: The solution is obtained as follows.

Step 1: First check for balance of supply and demand

                        Supply = 250 + 200 + 250 = 700 units

                        Demand = 100 + 150 + 250 + 100 = 600 units

Decision Rule

(i) If Supply = Demand then go to next step.

(ii) If Supply > Demand then add a ‘Dummy Destination’ with zero transportation
cost.

(iii) If Supply < Demand then add a ‘Dummy Source’ with zero transportation
cost.

In the given problem, Supply > Demand.

Hence, we add a ‘Dummy Destination’ say D
5
 with zero transportation cost and

balance demand which is difference in supply and demand (= 100 units). The
initial transportation matrix is now formulated with transportation cost in each route.
Each cell of the transportation matrix represents a possible route. In the following
table, dummy column is introduced for balancing the supply and demand.
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Step 2: (i) Decide the nature of problem, i.e., minimization of transportation cost.

(ii) Make initial assignment using the Vogel’s approximation method.

(i) Select the lowest transportation cost route in the initial matrix. For example, it
is route S

1
D

5
, S

2
D

5
 and S

3
D

5
 in the given problem with zero transportation cost.

Allocate the minimum of remaining balance of supply (in last column) and demand
(in last row).

In this method, we calculate the difference between the two least-cost routes
for each row and column. The difference is called as penalty cost for not using the
least-cost route. Following table shows the first calculation of ‘Penalty’ cost in
VAM.

Highest of all calculated penalty costs is for S
3
 and S

2
. Therefore, allocation

is to be made in row of source S
3
. The route or cell which should be selected

should be the lowest cost of this row, i.e., the route S
3
D

5
. Hence, first allocation in

Vogel’s method is as follows.

With the first allocation, destination D
5
 is used. Leave out this column and

develop the remaining matrix for calculating the penalty cost. We obtain the
following matrix.
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Now for this, source S
1
 has highest penalty cost. For this row, the least cost

route is S
1
D

1
. Hence, next assignment is due in this route:

Second Calculation of Penalty Cost in VAM

Second allocation in Vogel’s method is obtained as follows:

After second allocation, since destination D
1
 is used, leave this column and

proceed for calculation of next penalty cost. Allocation is done in route S
1
D

2
.

Since there is tie between all routes, break the tie by arbitrarily selecting any route,
for example S

1
D

2
 in this case. 

Third Calculation of Penalty Cost in VAM
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Third Allocation in VAM

Fourth Calculation of Penalty Cost in VAM

Fourth Allocation in VAM

With the fourth allocation, column D
4
 is used. In the only left column D

3
, the

allocations of 100 units and 150 units are done in route S
2
D

3
 and S

4
D

3
, respectively.

Thus, we obtain the following allocations using the Vogel’s Approximation Method
or VAM.
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Final Allocation Through Vogel’s Method

The initial cost for this allocation is:

(13 × 100 + 16 × 150 + 16 × 100 + 15 × 100 + 17 × 150 + 0 × 100) or equal
to  9350

Step 3: Verify for degeneracy, (m + n – 1) = 7.

Number of filled cell = 6, which is one less than (m + n + 1). Hence, go to Step 4
for removing the degeneracy. 

Step 4: Now we allocate in the least cost unfilled cell. This cell is route S
1
D

5
 or

S
2
D

5
. Select route S

1
D

5
. We obtain the following matrix after removing degeneracy.

Final Allocation After Removing Degeneracy in Vogel’s Method

Optimization of Initial Assignment

The initial feasible assignment done by using Vogel’s approximation method does
not guarantee optimal solution. Hence, next step is to check the optimality of the
initial solution.

Step 5: Check the optimality of the initial solution. For this, calculate the opportunity
cost of un-occupied routes.
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First, we start with any row (or column). Select row 1, i.e., source S
1
. For this

row define row value, u
1
 = 0. Now consider all filled routes of this row. For these

routes, calculate column values v using following equation:

u
1
 + v

1
 = C

ij
 (For any filled route)

Where             u
1
 = Row Value

 v
j 
= Column Value

 C
ij
 = Unit Cost of Assigned Route

Once first set of column values is known, say in this case v
j
 is known, locate other

routes of filled cells in these columns. Calculate next of u
i
 or v

j
 values using the

above equation. In this method, for all rows and columns, u
i
 and v

j
 values are

determined for a non-degenerate initial solution.

Step 6: Check the optimality.

Calculate the opportunity of non-allocated or unfilled routes. For this, use the
following equation:

                         Opportunity Unassigned Route = u
i
 + v

j
 – C

ij

Where, u
i
 = Row Value

 v
j
 = Column Value

 C
ij 
= Unit Cost of Unassigned Route

If the opportunity cost is negative for all unassigned routes, the initial solution is
optimal. If in case any of the opportunity costs is positive, then go to next step.

Step 7: Make a loop of horizontal and vertical lines which joins some filled routes
with the unfilled route, which has a positive opportunity cost. Note that all the
corner points of the loop are either filled cells or positive opportunity cost unassigned
cells.

For this, we start with row, S
1 
and take u

1
 = 0. Now S

1
D

1
,
 
S

1
D

2
, and S

1
D

5 
are

filled cells. Hence, for filled cells (v
j
 = C

ij
 – u

i
).

v
1
 = 13 – 0 = 13

 v
2
 = 16 – 0 = 16

 v
5
 = 0 – 0 = 0

The optimality of Vogel’s method’s initial solution is as follows.
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Calculation of u
i
 and v

j
 for Vogel Approximation Method’s Initial Solutions

Opportunity cost of above assignment using VAM is as follows:

Unassigned Route Opportunity Cost (ui + vj – Cij) 

S1D3 

S1D4 

S2D1 

S2D2 

S2D5 

S3D1 

S3D2 

S3D4 

0 + 17 – 19 = –2 

0 + 16 – 17 = –1 

–1 + 13 – 17 = –5 

–1 + 16 – 19 = –4 

–1 + 0 – 0 = –1 

0 + 13 – 15 = –2 

0 + 16 – 17 = –1 

0 + 16 – 16 = 0 

 
Since all opportunity costs are negative or zero, the initial assignment of Vogel’s
solution is optimal with total cost of  9350.

Example 2.7: Distances between factory and its warehouses and demand at
each warehouse are given in the following table. Calculate the values of penalty to
all the rows and columns for the reduced transportation problem and repeat the
same procedure till the entire requirement has been met. Solve this problem using
Vogel’s Approximation Method or VAM.

Transportation Table

Factory/Warehouse                  W1 W2 W3 Supply 

F1 16 22 14 200 

F2 18 14 18 150 

F3 8 14 16 100 

Demand 175 125 150  
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Solution: The solution is obtained as follows.

Step 1: Compute the penalty for each row and column of the transportation
problems.  The penalty for the first row is, (16 - 14) = 2. Similarly the values of
penalty for the second and the third row are 4 and 6.

  W1  W2  W3  Supply   Penalty 

F1  16 22 14 200   2 

F2  18 14 18 150   4 

F3  8 14 16 100   6 

Demand 175 125 150 

  8 0 2 

  

Similarly, the values of penalty for the first, second and the third columns are 8, 0
and 2, respectively.

Step 2: Identify the row or column with the largest penalty value. In this case, the
first column with a penalty value is 8.

Step 3: The cell with the least cost is chosen and the possible number of goods is
assigned to that cell. Therefore, assign 100 to the cell (F

3
, W

1
).

Step 4: If the remaining row supply or column demand is zero, remove that
row/column.

Now, the transportation problem can be reduced as illustrated in the following
table:

  W1  W2  W3  Supply Penalty 
F1  16 22 14 200        2 
F2  18 14 18 150        4 
Demand 75 125 150 
Penalty 2 8 4 

  

 
Step 5: The process is repeated for the reduced transportation problem till the
entire supply at the factories is assigned to satisfy the demand at different
warehouses.

Now, the W
2
 column has the highest penalty, i.e., 8. Therefore, assign 125 units to

the cell (F
2
, W

2
) since the cell has the least cost in the W

2
 column.

Then the transportation problem can further be reduced as illustrated in the following
table:

  W1  W3  Supply Penalty 

F1  16 14 200 2 

F2  18 18 25 0 

Demand 75 150 

Penalty 2 4 
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Now, the W
3
 column has the highest penalty, i.e., 4. Next assign 150 units

to the cell (F
1
, W

3
) since the cell has the least cost. Then remove the W

3
 column

and the remaining units are assigned to the cells (F
1
, W

1
) and (F

2
, W

1
). Thus, 50

units are assigned to the cell (F
1
, W

1
) and 25 units to the cell (F

2
, W

1
).

Since the number of cells occupied is 5, i.e., (3+31), the solution obtained
is a feasible solution. Thus, the cost obtained using VAM is:

(50 × 16) + (25 × 18) + (100 × 8) + (125 × 14) + (150 × 14) = 5,900.

2.3 ASSIGNMENT PROBLEM

The assignment problem is used to find the best possible assignment for the given
situations.

Basics of Assignment Problem

The assignment problem is one of the fundamental combinatorial optimization
problems. It helps to find a maximum weight identical in nature in a weighted
bipartite graph. The assignment problem is also termed as a special case of
transportation problem.

Suppose there are n jobs to be performed and n persons are available for
doing these jobs. Assume that each person can do each job at a time, though with
varying degrees of efficiency. Let C

ij
 be the cost if the ith person is assigned to the

jth job. The solution to the problem is to find an assignment (which job should be
assigned to which person on one-one basis) so that the total cost of performing all
jobs is minimum. Problems of this kind are known as assignment problems.

The assignment problem can be stated in the form of n × n cost matrix [C
ij
]

of real numbers as given in the following table:

Jobs

Persons 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 2 3

1 2 3

1 2 3... ...

... ...1

... ...2

... ...3

... ...

... ...

j n

j n

j n

i i i ij in

n n n nj nn

j n

C C C C C

C C C C C

C C C C C

C C C C Ci

C C C C Cn

 
 
 
 
 
 
 
 
 
   



Mathematical Formulation of the Assignment Problem

Mathematically, the assignment problem can be stated as follows:

Minimize, Z = 
1 1

1,2, ,

1,2, ,

n n

ij ij
i j

C x i n

j n

 





 


Subject to the restrictions:
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1 if the th person is assigned th job

0 if notij

i j
x


 


1

1
n

ij
j

x


  (one job is done by the ith person)

and 
1

1
n

ij
i

x


  (only one person should be assigned the jth job)

Where x
ij
 denotes that the jth job is to be assigned to the ith person.

2.3.1 Job Sequence Problem

Job sequencing is basically the planning of the jobs in sequential manner and is an
essential part of any work. Without proper planning and scheduling one can not
achieve the desired output and profit. For sequencing a job, generally the two
techniques are used termed as Priority Rules and Johnson’s Rules. Priority rules
give the guidelines for properly sequencing the job, where as Johnson’s rule is
used to minimize the completion time for a set of jobs to be done on two different
machines. Using these rules one can assign jobs and maximize product and profit.

Basic Characteristics of Job Sequencing

1. Only one single job should be scheduled for a machine at a time.

2. Do not stop the process in between before completion.

3. New processing can be started after the completion of the previous
processing.

4. Any job is scheduled for processing as per the order and due date
requirements.

5. If the jobs are transferred from one machine to another due to some reason,
then the time involved in transferring the jobs is considered negligible.

Priority Rules: These rules are used to get specific guidelines for job sequencing.
The rules do not consider job setup cost and time while analysing processing
times. In it job processing time and due dates are given importance because the
due dates are fixed to give delivery in time to the customers. The rules are very
useful for process-focussed amenities, for example health clinics, print shops and
manufacturing industries. Hence, priority rules minimize the time for completing a
job, sequences the jobs in the organization, checks if any job is late and maximizes
resource utilization. The most popular priority rules are as follows:

 First Come First Serve (FCFS): The job to be processed first is the job
that turned up first in the organization.

 Earliest Due Date (EDD): The job to be processed first is the job that
has earliest due date.

 Shortest Processing Time (SPT): The job to be processed first and
completed is the job that is shortest in nature; in other words the job can be
processed in short time.

 Longest Processing Time (LPT): The job to be processed first is the
job that is very important or of high priority though it can take longer
processing time.
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 Critical Ratio (CR): The job to be processed first is analysed on the basis
of critical ratio, which is an index number calculated from time remaining
until due date divided by the remaining work time.

Johnson’s Rule: This rule is applied to minimize the completion time for a set of
jobs that are to be processed on two different machines or at two consecutive
work stations. The main objectives of the rules are,

 To minimize the processing time while sequencing a set of jobs on two
different machines or work stations.

 To minimize the complete idle time on the processing machines.

 To minimize the flow time of the job, i.e., from the start of the first job until
the completion of the last job.     

Necessary Conditions for Johnson’s Rules: The necessary conditions to
efficiently complete the processing of the jobs are as follows:

 Knowledge about job time for each job at the specific work station.

 Job time must not depend on sequencing of jobs.

 All the jobs to follow the predefined work sequence.

 Avoid job priority.

Four Steps Johnson’s Rule: The following are the important Four Steps in
Johnson’s rule:

Step 1: List all the jobs and the processing time of each machine to which
these jobs are scheduled.

Step 2: Choose the job which has the shortest processing time. If the shortest
time has been scheduled on the first machine or work station then the job is selected
first for processing. In case the shortest time is scheduled on the second machine
or work station then the job is processed at the end.

Step 3: After scheduling the job for processing go to Step 4.

Step 4: Repeat Step 2 again to schedule the processing of remaining jobs
and fill the sequence columns towards the centre till all the jobs are scheduled.

The following example will help you to understand how the sequences are
scheduled.

For example, there are five jobs to be done at a factory and each job must
be processed through two work stations at two different machines, drill machine
and lathe machine. Using Johnson’s rule we can schedule the sequence of jobs.

The time (in hours) for processing each job is given in the following table:

Jobs 
Work Station 1 

(Drill) 
Work Station 2 

(Lathe) 
A 5 2 
B 3 6 
C 9 4 
D 12 8 
E 8 14 

 
Using the Steps of Johnson’s rule, the job processing sequences are scheduled as
follows:
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Step 1: In the given table, the job with the shortest processing time is job A, in
work station 2 (with a time of 2 hours). Because it is at the second work station,
schedule A last.

    A 
 

Step 2: Next shortest time is of job B (with a time of 3 hours). Because it is at the
first work station, schedule it at first priority and eliminate it from the list.

B    A 
 

Step 3: The next shortest time is of job C (with a time of 4 hours), but it is at the
second work station. Therefore, place it at last before A.

B   C A 
 

Step 4: There is a tie between job D (with a time of 8 hours at work station 2) and
job E (with a time of 8 hours at work station 1) for the shortest remaining job.
Because job E is at the first work station, so place it first after job B. Then place
job D in the last sequencing position. You will get the job sequence schedule as
follows:

B E D C A 
 

The final sequential times at both the work stations will be:

Jobs B E D C A 
Work Station 1 (Drill) 3 8 12 9 5 
Work Station 2 (Lathe) 6 14 8 4 2 
 

Check Your Progress

1. What is a transportation problem?

2. How are transportation problems presented?

3. Give the mathematical presentation of a transportation problem.

4. What is an assignment problem?

5. How is an assignment problem presented to find the minimum cost?

2.4 NETWORK ANALYSIS

Network scheduling is a technique used for planning, and scheduling large projects
in the field of construction, maintenance, fabrication, purchasing computer system,
etc. The technique is a method of minimizing the trouble spots such as production,
delays and interruptions, by determining critical factors and coordinating various
parts of the overall job.

There are two basic planning and control technique that utilize a network to
complete a predetermined project or schedule. These are Programme Evaluation
Review Technique (PERT) and Critical Path Method (CPM).
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A project is defined as a combination of interrelated activities all of which
must be executed in a certain order for its completion.

The work involved in a project can be divided into three phases
corresponding to the management functions of planning, scheduling and control.

Planning: This phase involves setting the objectives of the project and the
assumptions to be made. Also it involves the listing of tasks or jobs that must be
performed to complete a project under consideration. In this phase, men, machines
and materials required for the project, in addition to the estimates of costs and
duration of the various activities of the project, are also determined.

Scheduling: This consists of laying the activities according to the precedence
order and determining,

  (i) The start and finish times for each activity.

 (ii) The critical path on which the activities require special attention.

(iii) The slack and float for the non-critical paths.

Controlling: This phase is exercised after the planning and scheduling, which
involves the following:

(i) Making periodical progress reports.

(ii) Reviewing the progress.

(iii) Analysing the status of the project.

(iv) Management decisions regarding updating, crashing and resource allocation.

2.4.1 Basic Terms

To understand the network techniques one should be familiar  with few basic
terms of which both CPM and PERT are special applications.

Network: It is the graphic representation of logically and sequentially connected
arrows and nodes representing activities and events of a project. Networks are
also called arrow diagram.

Activity: An activity represents some action and is a time consuming effort
necessary to complete a particular part of the overall project. Thus, each and
every activity has a point of time where it begins and a point where it ends.

It is represented in the network by an arrow,

i jA

Here, A is called the activity.

Event: The beginning and end points of an activity are called events or nodes.
Event is a point in the time and does not consume any resource. It is represented
by a numbered circle. The head event called the jth event has always a number
higher than the tail event called the ith event.

i jActivity

Tail Head
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Merge and Burst Events: It is not necessary for an event to be the ending event
of only one activity but can be the ending  event of two or more activities. Such
event is defined as a merge event.

If the event happens to be the beginning event of two or more activities it is
defined as a burst event.

Preceding, Succeeding and Concurrent Activities: Activities, which must be
accomplished before a given event can occur are termed as preceding activities.

Activities, which cannot be accomplished until an event has occurred are
termed as succeeding activities.

Activities, which can be accomplished concurrently are known as concurrent
activities.

This classification is relative, which means that one activity can be preceding
to a certain event, and the same activity can be succeeding to some other event or
it may be a concurrent activity with one or more activities.

Dummy Activity: Certain activities, which neither consumes time nor resources
but are used simply to represent a connection or a link between the events are
known as dummies. It is shown in the network by a dotted line. The purpose of
introducing dummy activity is as follows:

(i) To maintain uniqueness in the numbering system as every activity may have
distinct set of events by which the activity can be identified.

(ii) To maintain a proper logic in the network.

2.4.2 Common Errors

Following are the three common errors in a network construction:

Looping (Cycling): In a network diagram looping error is also known as cycling
error. Drawing an endless loop in a network is known as error of looping. A loop
can be formed if an activity were represented as going back in time.
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Dangling: To disconnect an activity before the completion of all the activities in a
network diagram is known as dangling.

Redundancy: If a dummy activity is the only activity emanating from an event and
which can be eliminated is known as redundancy.

2.4.3 Rules of Network Construction

There are a number of rules in connection with the handling of events and activities
of a project network that should be followed.

(i) Try to avoid arrows which cross each other.

(ii) Use straight arrows.

(iii) No event can occur until every activity preceding it has been completed.

(iv) An event cannot occur twice, i.e., there must be no loops.

(v) An activity succeeding an event cannot be started until that event has
occurred.

(vi) Use arrows from left to right. Avoid mixing two directions. Vertical and
standing arrows may be used if necessary.

(vii) Dummies should be introduced if it is extremely necessary.

(viii) The network has only one entry point called the start event and one point of
emergence called the end or terminal event.

Numbering the Events (Fulkerson’s Rule)

After the network is drawn in a logical sequence every event is assigned a number.
The number sequence must reflect the flow of the network. In numbering the
events the following rules should be observed:
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(i) Event numbers should be unique.

(ii) Event numbering should be carried out on a sequential basis from left to
right.

(iii) The initial event which has all outgoing arrows with no incoming arrow is
numbered as 1.

(iv) Delete all arrows emerging from all the numbered events. This will create at
least one new start event out of the preceding events.

(v) Number all new start events 2, 3 and so on. Repeat this process until all the
terminal event without any successor activity is reached. Number the terminal
node suitably.

Note: The head of an arrow should always bear a number higher than the one assigned to the
tail of the arrow.

2.4.4 Construction of Network

Example 2.8: Construct a network for the project whose activities and their
precedence relationships are as given below:

– A A – D B,C,E F D G,H

Activities A B C D E F G H I

Immediate Predecessor

Solution: From the given constraints, it is clear that A, D are the starting activity
and I the terminal activity. B, C are starting with the same event and are both the
predecessors of the activity F. Also E has to be the predecessor of both F and H.
Hence, we have to introduce a dummy activity.
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D
1
 is the dummy activity.

Finally we have the following network.

Example 2.9: Construct a network for each of the projects whose activities and
their precedence relationships are given below.

– – – A B B C D E H,I F,G

Activity A B C D E F G H I J K

Predecessor

Solution: A, B, C are the concurrent activities as they start simultaneously. B
becomes the predecessor of activity E and F. Since the activities J, K have two
preceding activities, dummy may be introduced (if possible).
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Finally we have,

2

1

3

4

5

6

7

8 9A
D H J

K

G

E
FC

B I

Example 2.10: Construct a network of the project whose activities are given as
below.

A<C, D, I; B<G, F; D<G, F; F<H, K; G, H<J; I, J, K<E

Solution: Given A<C which means that C cannot be started until A is completed,
i.e., A is the preceding activity to C. The above constraints can be given in the
following table:

– – A A I,J,K B,D B,D F A G,H F

Activity A B C D E F G H I J K

Predecessor

A, B are the starting activity, and E is the terminal activity.
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Finally we have,

Example 2.11: Construct the network for the project whose activities and
precedence relationship is given below. Show also the dummy activity.

– – A,B B B A,B F,D F,D C,G

Activities A B C D E F G H I

Immediate Predecessor

Solution: A, B are concurrent activities as they start simultaneously. I is the terminal
activity. Since the activities C and F are coming from both the activities A, B we
need to introduce a dummy activity.
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Example 2.12: Make a network of the project having activities and precedence
relationship as given below:

A, B, C can start simultaneously,

A<D, I; B<G, F; D<G, F; C<E; E<H, K; F<H, K; G, H<J

Solution: The above constraints can be formatted into a table.

– – – A C B,D B,D E,F A G,H E,F

Activity A B C D E F G H I J K

Predecessor Activity
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J

2.4.5 Time Analysis

Once the network of a project is constructed the time analysis of the network
becomes essential for planning various activities of the project. An activity time is
a forecast of the time an activity is expected to take from its starting point to its
completion (under normal conditions).

We shall use the following notation for basic scheduling computations.

(i, j) =  Activity (i, j) with Tail Event i and Head Event j

T
ij

=  Estimated Completion Time of Activity (i, j)

(ES)
ij

=  Earliest Starting Time of Activity (i, j)

(EF)
ij

=  Earliest Finishing Time of Activity (i, j)
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(LS)
ij

=  Latest Starting Time of Activity (i, j)

(LF)
ij

=  Latest Finishing Time of Activity (i, j)

The basic scheduling computation can be put under the following three groups.

Forward Pass Computations (for Earliest Event Time)

Before starting computations, the occurrence time of the initial network event is
fixed. The forward pass computation yields the earliest start and the earliest finish
time for each activity (i, j) and indirectly the earliest occurrence time for each
event namely E

i
. This consists of the following three steps:

Step 1: The computations begin from the start node and move towards the end
node. Let zero be the starting time for the project.

Step 2: Earliest starting time (ES)
ij
 = E

i
 is the earliest possible time when an

activity can begin assuming that all of the predecessors are also started at their
earliest starting time. Earliest finish time of activity (i, j) is the, Earliest starting time
+  Activity time

(EF )
ij

= (ES)
ij
 + t

ij

Step 3: Earliest event time for event j is the maximum of the earliest finish time of
all the activities ending at that event.

E
j
=  j ij

i
Max E t

The computed ‘E’ values are put over the respective  rectangle  representing
each event.

Backward Pass Computations (for Latest Allowable Time)

The latest event time (L) indicates the time by which all activities entering into that
event must be completed without delaying the completion of the project. These
can be calculated by reversing the method of calculations used for the earliest
event time. This is done in the following steps:

Step 1: For ending event assume E = L.

Step 2: Latest finish time for activity (i, j) is the target time for completing the
project

(LF)
ij

= L
j

Step 3: Latest starting time of the activity (i,j) = Latest completion time of (i,
,
j),

the activity time.
(LS)

ij
= (LF)

ij 
– t

ij

= L
j
 – t

ij

Step 4: Latest event time for event i is the minimum of the latest start time of all
activities originating from the event.

 –i j ij
j

L Min L t

The computed ‘L’ values are put over the respective triangle  representing
each event.
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Determination of Floats and Slack Times

Float is defined as the difference between the latest and the earliest activity time.

Slack is defined as the difference between the latest and the earliest event
time.

Hence, the basic difference between the slack and the float is that slack is
used for events only whereas float is used for activities.

There are mainly three kinds of floats as given below:

(i) Total Float: It refers to the amount of time by which the completion of an
activity could be delayed beyond the earliest expected completion time without
affecting the overall project duration time.

Mathematically, the total float of an activity (i, j) is the difference between
the latest start time and the earliest start time of that activity.

Hence, the total float for an activity (i, j) denoted by (TF)
ij
 is calculated by

the formula,

(TF)
ij
= (Latest start – Earliest start) for activity (i, j)

   

   
i.e.,( ) –

or, – –

ij ij ij

j i ijij

TF LS ES

TF L E t





Where E
i
, L

j
 are the earliest time and latest time for the tail event i and head

event j and t
ij
 is the normal time for the activity (i, j). This is the most important

type of float as it concerns with the overall project duration.

(ii) Free Float: The time by which the completion of an activity can be delayed
beyond the earliest finish time without affecting the earliest start of a subsequent
succeeding activity.

Mathematically, the free float for activity (i, j) denoted by (FF)
ij
 can be

calculated by the formula,

 
Total float – Head event slack

– –ij j i ij

ij

FF E E t

FF





Head Event Slack = L
j 
– E

j

This float is concerned with the commencement of subsequent activity.

The free float can take values from zero up to total float, but it cannot
exceed total float. This float is very useful for rescheduling the activities with minimum
disruption of earlier plans.

(iii) Independent Float: The amount of time by which the start of an activity can
be delayed without affecting the earliest start time of any immediately following
activities assuming that the preceding activity has finished at its latest finish time.

Mathematically, independent float of an activity (i, j) denoted by (IF)
ij
 can

be calculated by the formula,
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 ( ) – –

or

( ) Free float –Tail event slack

ij j i ij

ji

IF E L t

IF





Where tail event slack is given by,

Tail Event Slack = L
i
 – E

i

The negative independent float is always taken as zero. This float is concerned
with prior and subsequent activities.

(IF)
ij
 (FF)

ij
  (TF)

ij

Notes: 1. If the total float TF
ij
 for any activity (i, j) is zero, then those activities are called

critical activity.

2. The float can be used to reduce project duration. While doing this, the float of not only
that activity but that of other activities would also change.

Critical Activity: An activity is said to be critical if a delay in its start will cause a
further delay in the completion of the entire project.

Critical Path: The sequence of critical activities in a network is called the critical
path. It is the longest path in the network from the starting event to the ending
event and defines the minimum time required to complete the project. In the network,
it is denoted by double line. This path identifies all the critical activities of the
project. Hence, for the activity (i, j) to lie on the critical path, following conditions
must be satisfied.

(i) ES
i
= LF

i

(ii) ES
j 
= LF

j

(iii) ES
j 
– ES

i 
= LF

j 
– LF

i 
 = t

ij

ES
i
, ES

j
, are the earliest start and finish time of the event i and j.

LF
i
, LF

j
 are the latest start, finish time of the event i and j.

2.5 SHORTEST PATH PROBLEM AND
MAXIMUM FLOW PROBLEM

The shortest path problem can be defined for graphs whether undirected, directed,
or mixed. It is defined here for undirected graphs; for directed graphs the definition
of path requires that consecutive vertices be connected by an appropriate directed
edge.

Network Diagram
Start Finish

1 2

3

4

5

6

7
8

9

7
4

5

3 2

A

B

C 

D

F

G

H
IE
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In the above diagram, each arrow represents an activity and each circle an event.
Circle 1 represents the starting event and circle 7 represents the ending event. The
names of the activities are generally stated just above the corresponding arrows.
Thus A in the above diagram is the name of the activity represented by the arrow
just drawn below it.

 Merge and Burst Events: It may be pointed out that it is not necessary for
an event to be the ending event of only one activity but an event can be the
ending event of two or more activities in which case the said event is
technically described as merge event. Similarly, if the event happens to be
the beginning event of two or more activities it is technically called as the
‘Burst Event’.

 Preceding, Succeeding and Concurrent Activities: The activities can be
classified as preceding activities; succeeding activities and the concurrent
activities. Activities which most be accomplished before a given event can
occur are termed as preceding activities; activities which cannot be
accomplished until an event has occurred are termed as succeeding
activities and activities which can be accomplished concurrently are known
as concurrent activities. This classification is relative which means that
one activity can be preceding to a certain event and the same activity can be
succeeding to some other event or it may be a concurrent activity with one
or more of the activities.

 Dummy Activities: Some times we use dummy activities in the preparation
of network diagram. Such activities are to designate a precedence
relationship and in the network diagram are shown as broken lines. They
are characterized by their use of zero time and zero resource. Their main
function is to help in assuring that the activities and events in a network
diagram are in proper sequence.

 Path and Critical Path: A path is continuous chain of activities through a
network which connects the first event to the last event. Critical path consists
of the sequence of those events and connected activities that require the
maximum time in the completion of the project. It is that path which takes
the longest time. It is known as critical because it controls the completion
date of the project. The length of this path determines the minimum time in
which the project may be completed.

 Critical Activities or Bottleneck Activities: All the activities associated
with the critical path are called as critical or bottleneck activities. Any
delay in the completion of one or more of these activities will cause delay in
the completion date of the project. Hence such activities require special
attention of the project incharge.

 Earlier Start Time or Est: Est for an activity is the earliest possible time an
activity can begin on the assumption that all activities preceding to it started
at the earliest possible times.

 Earliest Finish Time or Eft: Eft is the sum of the earliest start time and the
estimated time to perform the concerning activity.
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 Latest Finish Time or Lft: Lft for an activity is the latest possible time an
activity can finish without delaying the project beyond its dead line on the
assumption that all the subsequent activities are performed as planned.

 Latest Start Time (or Lst): Lst for an activity is the difference between the
latest finish time and the estimated time for the activity to be performed.

 Float (Total, Interfering Independent and Free Floats): Quite often the
term float (in CPM terminology) is used in context of network analysis.
Float may be understood as total float, interfering float, free float and
independent float. Total float is the duration by which an activity can be
delayed without delaying the project and can be worked out as either (Lst-
Est) or (Lft-Eft). Interfering float is that part of the total float which
causes a reduction in the float of the successor activity or activities. In other
words, it is that portion of the activity float which cannot be consumed
without affecting adversely the float of the succeeding activity or activities.
It is worked out as a difference between the Lft of the activity and the Est
of the following activity or zero whichever is larger. Interfering float is also
known as the head event slack of an activity. Free float is that portion of
the total float within which an activity can be manipulated without affecting
the float of subsequent activities. It is worked out by subtracting the head
event slack from the total float. The head event slack is its latest event time
minus earliest event time or (L

T
 – E

T
). Independent float is that portion of

the total float within which an activity can be delayed for started without
affecting float of the preceding activities. It is worked out by subtracting the
tall event slack from the free float. If it obtains a negative value then it is
taken as equal to zero. Tail event refers to the event where an activity say
begins and Head event is the event where an activity comes to an end. If
we have events (1) and (2) then (1) is the tail event and (2) is the head event
of an activity A.

Float may be positive or negative. Positive float indicates that the activities
concerned have certain amount of spare time and can be delayed without
effecting the project duration. On the other hand, negative float highlights
the situation in which the activities concerned are short of time and unless
their duration (to the extent of negative float) is reduced, completion of the
project by the target time cannot be assured. Thus, negative float indicates
the extent of criticality of the activities.

 Slack: The term slack is normally associated with events. It indicates the
amount of latitude that is available for an event to occur. It is worked out as
under:

Slack of an event = (Latest occurence time of the event) – (Earlier
occurence time of the event) or simply slack of event = (L

T
 – E

T
). Slack can be

positive or negative depending upon whether the targetted date of completion is
later or earlier than the earliest finish time of the task respectively.

When used for activities, the term slack should be used for activity slack
(activity slack is synonymous to float). Since slack is associated with the events,
each activity will have two slacks which includes the slack of its head event or the
head slack and the slack of its tail event or the tail slack.
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Preparation of the Network Arrow Diagram

We require the following information for each activity in the project for the
preparation of the network diagram:

(i) The sequencing requirements for an activity must be known, i.e., the set of
activities which must be completed prior to the beginning of each specific
activity should be known.

(ii) An estimate of the time each activity will take should also be known.

Keeping all what has been stated above in view, the network diagram can
easily be prepared. But the following rules of constructing network diagrams
will have to be invariably adhered:

(i) Each activity is shown by an arrow only once in the network.

(ii) Network has to be developed on the basis of logical dependencies between
various activities.

(iii) The length of arrows representing various activities have no significance;
they only indicate the logical precedence.

(iv) Arrow direction shows the general progression in time.

(v) Events in the network are shown by numbers.

(vi) Activities are identified by the numbers of their starting and the ending events.

(vii) Parallel activities between two events without intervening events are not
permitted. In such a situation dummy activities may have to be introduced.

(viii) Looping is not permitted in a network. This means that if activity A precedes
B and B precedes C, then C cannot precede A.

Now construct the network diagrams using the above stated rules.

Examples 2.13:  Prepare a network arrow diagram for the following information.

Activity Name of the Pre-requisite Estimated Time
Activity Activity (Weeks)

Event Event

1 2 A None 3
1 3 B None 5
1 4 C None 4
2 5 D None 2
3 5 E A 3
4 6 F B 9
5 7 G C 8
3 6 H D 7
6 7 I E 9

Solution: Draw the following network arrow diagram to solve the problem:

Start

Finish

1

2

3

4

5

6

78

9

9

A

B

C

D

E

F

G

H
I

4

5

2

3
3
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The above is the required network digram for the given problem. Activity A must
be completed before activity D can begin the arrow activities. The immediate
preceding activity of activity D is activity A which means that activity A must be
completed before activity D can begin. The arrow from circle 1 to circle 2 indicate
that activity a must be completed before activity D can begin. Similarly activity B
must be completed before activities E and/or H; C must be completed before F
can begin; activities H and F must be completed before I can begin and activities
D and E must be completed before activity G can begin. The estimated time for
each activity has been placed just below the arrow representing that activity.

Example 2.14: Draw a network arrow diagram for the following information
concerning some project:

Activity Predecessor Activity or Activities

A None
B A
C A
D B,C
E C
F D
G E
H F,G.

Solution: Draw the following network arrow diagram to solve the problem:

1 2

3

4
5

6

7 8
A

B

C

D

E

F

G

H

In this diagram, activity 3-4 is the dummy activity shown as a broken line. It
is required because activities B and C both precede activity D but activity C alone
precedes activity E.

2.5.1 Shortest-Route Problem: Dijkstra’s Algorithm

Graphs are used to represent network of communication. A graph is depicted in
diagrammatic form as a set of dots for the vertices, joined by lines or curves for
the edges. If arrows are placed on one or both endpoints of the edges of a graph
to indicate directedness, the graph is said to be directed. A graph structure can be
extended by assigning a weight to each edge of the graph. Graphs with weights or
weighted graphs are used to represent structures in which pairwise connections
have some numerical values. For example if a graph represents a road network,
the weights could represent the length of each road. A graph or directed graph
together with a function which assigns a positive real number to each edge is
known as a network.

Shortest route problem deals with ways of finding the minimum path distance
form a selected node, say s which is source to a destination node d. Such problems
arise in our real life and also in the field of computer science. For example, vertices
of a weighted graph may represent cities and weights on edges represent costs of
driving distances between pairs of cities connected by a direct road or rail link.
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Edsger Dijkstra, a Dutch computer scientist, devised an algorithm to solve
this problem and is known as Dijkstra’s algorithm, on his name. It is an algorithm
for graph search solving the single-source shortest path problem for a weighted
graph having non-negative edge path costs, producing a tree that gives the shortest
path. This algorithm is of great use in routing. The concept of ‘shortest path first’
finds extensive use in network routing protocols, like IS-IS and OSPF (Open
Shortest Path First).

The Algorithm

We take a node as initial node or starting node. We select a destination X and find
it’s the distance from the initial node. This algorithm will assign some initial distance
values and then will go step-by-step. These are as below:

1. Assigning every node, a distance value. For initial node, it is zero and for all
other nodes, it is infinity.

2. Initially all unvisited nodes are marked. Initial node is set as current.

3. For current node, distance from the initial node to every unvisited neighbour
is calculated. For example, if current node (A) has distance of 7, and an
edge connecting it with another node (B) is 3, the distance to B through A
will be 7 + 3 = 10. If it is less than the previously recorded distance which
is infinity in the beginning as in step 1. The distance is overwritten.

4. When all neighbours of the current node are done with, it is marked as
visited so that it is not visited node again and the distance recorded is final
and minimal.

In the figure below problem of shortest path is presented. There are 10
nodes and starting node is node 1.
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It is required to find the set of paths which is minimum from the source node
to another node in the network. This problem of shortest path is a tree which is
solved as below:

This has m number of nodes, starting with the source node alone, this
procedure makes the number of iterations one less than the number of vertices,
i.e., m – 1 for finding shortest path and construct a shortest path tree. In the above
example, there are 10 number of nodes and will require 9 iterations.

Let S be the the set of nodes already visited. Nodes that are not solved are
not in S. In each iteration, a number is assigned to each node. A node d

i 
denotes

the length of minimum distance or shortest path from source node to i
th
 node.
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After finishing the traversal d
i
 shows the shortest path to that node. algorithm

assigns numbers di to each node in the network, where di is the length of the
shortest path to node i from the source node. At the end of the algorithm i is the
length of the shortest path to node i. Let M be the set of all edges which is also
called arcs.

In the beginning, at source node S = {s} and d
s
 = 0.

Repeat until all nodes are in set S.

Find the edge, p(i, j), where i is the solved node and j is the unsolved node
and arc moves from a node already solved to those not yet solved.

p(i, j) = arcmin{di’ + cp’ : p’(i’, j’) M, i’ S, j’ Sc}

Add node j and arc p to the tree. Add node j to the solved set S.

Let dj = di + cp.

In each iteration this algorithm computes the length of path, (which is path-
length) from solved node to unsolved nodes. Node having the shortest length is
included in the set of solved nodes. After the spanning tree is created, the process
terminates.

The spanning tree obtained is shown below:
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The numbers in bold, put under brackets indicate the value of length which
is associated with nodes . For example shortest path of node 6 is 10. The numbers
in the bracket for the nodes in S

c
 indicates the shortest path length to unsolved

nodes passing through the solved nodes in the set S. After this the arc is selected
with the smallest dj value forSc. Hence, choice is made from minimum of 18,
22, 14, 13 and is expressed as min{18, 22, 14, 13}. So, node 9 and arc 14 are
included in the spanning tree.

Tabular Presentation of this Algorithm

The algorithm creates a table of seven columns as shown in Table 2.1. Column 1
shows the value of h which shows the number of nodes in the set S. Second
column lists the members of the set S which contains solved nodes having minimum
one arc connected to a node which is not yet traversed and called unsolved node.
Third column shows the closest unsolved node for each node listed in column 2.
Column 4 contain every i, which is the index of nodes listed in second column,
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third column lists j as the index of the node which is listed in third column. We set
d as the index of the path or arc oining nodes i and j and carrying out computation
for each case dj’ = di + pk.

Fifth Column selects the least number from fourth column. Second column
has nodes denoted by i and j is that for node in third column from where, this
number was calculated. Fifth column contains node j and sixth column lists the
length of the shortest path to the node which is added. This is the minimum and is
obtained from fourth column. Seventh column 7 has the arc p(i, j) Shortest path
tree is formed by adding the node j and arc p and j is added to the set S.

Table 2.1 Tabular Presentation of Dijkstra’s Algorithm

h Solved 
Nodes 

Unsolved 
Node, Closest 

to Solved 
Node 

Path 
Length to 
Unsolved 

Node 

Node Added 
to the Set of 
Solved Node 

Shortest 
Path 

Arc 
Added 
to Tree 

1 1 3 8 3 8 2 
2 1 4 10 
 3 6 10 4 10 3 

3 1 2 40 
 3 6 10 
 4 6 11 6 10 6 

4 1 2 40 
 3 2 12 
 6 9 13 2 12 7 

5 2 5 18 
 6 9 13 9 13 14 

6 2 5 18 
 6 8 14 
 9 10 15 8 14 13 

7 2 5 18 
 8 5 14 
 9 10 15 5 14 17 

8 2 7 22 
 5 7 18 
 8 10 34 
 9 10 15 10 15 20 

9 2 7 22 
 5 7 18 7 18 11 

 
2.5.2 Maximum Flow Problem and Spanning Tree

Flow is a network. The network may be a transportation network through which
commodities flow or a pipeline network through which oil flows or any number of
other possibilities. In each case, the problem is to determine a maximal flow.
Maximizing the flow in a network is a problem that belongs to graph theory and
operations research.

Network Models

A transport network is a simple, weighted, directed graph G satisfying the following:

1. There are two distinguished vertices s and t of G, called the source and sink
of G respectively, i.e., in G, only one vertex with no incoming edge is called
as source, s and only one vertex with no outgoing edge is called as sink, t.
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2. The weight C
ij
 of the directed edge (i,j) is a non-negative number, i.e,

every edge is associated with non-negative real numbers called as capacity
of that edge.

3. The underlying (undirected) graph is connected.
Notes:

1. If G is a network, we will denote the source by a and the sink by z.

2. Let G be a network, a and z be the source and sink of G, respectively. The other vertices
are called as intermediate vertices.

3. In general, source has in-degree ‘0’ and sink has out-degree ‘0’.

4. A flow in a network assigns a flow in each directed edge which does not exceed the
capacity of the edge.

5. It is assumed that the flow into an intermediate vertex u is equal to the flow out of u.

Flow
Let G be a transport network. Let Cij denote the capacity of the directed edge
(i,j). A flow F in G assigns each directed edge (i,j) a non-negative number Fij
such that

i. Fij < Cij
ii. For each intermediate vertex j,


i

ji
i

ij FF

(Here
i

ijF  is the flow into j and
i

jiF is the flow out of j)

Value of the Flow: Let F be the flow in a network G. The value 
i

iz
i

ai FF is

called the value of the flow F.

Note: Whenever the flow along an edge is equal to the capacity of that edge, then that edge
is said to be saturated. Otherwise it is unsaturated.

Example 2.15: Find the flow of the following network:

Solution: Here, the first quantity represents the capacity and the second quantity
represents the flow.

The flow of the above network is 5.
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Example 2.16: Find the flow for the following networks.
(i)

         

Solution: The flow out of source a is  Fab + Fad + Faf = 3 + 1 + 2 = 6.
The flow into the sink z is  Fgz + Fez + Fcz = 2 + 2 + 2 = 6.
All other intermediate vertices are given by,  

i
ji

i
ij FF

 Flow of the network is 6.

(ii)

On similar grounds the flow is found to be 5.

Maximal Flow: A flow F in a network G is called a maximal flow if |||| FF 

for every flow F   in G.

Improve the Value of Flow F in a Network: Start with some initial flow and
iteratively increase the value of flow until no improvement is possible in the given
network.

We can take the initial flow to be the flow, when the flow in each edge is zero.
To increase the value of a given flow, we have to determine a path from the source
a to the sink z and increase the flow along this path. Let P be a path from a to z in
the underlying graph of the network G. If an edge e in P is directed from vi to vi+1,
we say e is properly oriented; otherwise e is improperly oriented.

If we can find a path P from a to z in which every edge in P is properly
oriented and the flow in each edge is less than the capacity of the edge, then it is
possible to increase the value of the flow.

Note: It is also possible to increase the flow in certain paths from a to z in which properly and
improperly oriented edges are present.

Proof: Let P be a path from a to z and let V be a vertex in P different from a and
z. Since V is an intermediate vertex in the network N (also in P), two edges e1 and
e2 are incident on this vertex V. There are now four cases for the orientations of
the edges e1 and e2. They are as follows:

(i) When flow is increased in each edge by  the flow into V will be equal to
the flow out of V.

(ii) When we increase the flow in e2 by ,we must decrease the flow in e1 by
  so that the flow into V will still equal the flow out of V.
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(iii)When we increase the flow in e1 by , we must decrease the flow in e2 by
  to achieve equal flow in and out of V.

(iv)When flow is decreased in both edges by   we achieve equal flow in and
out of V.

All the above cases are possible since Fij < Cij for a properly oriented edge
(i,j) and 0 < Fij for an improperly oriented edge (i, j)

Result: Let P be a path from a to z in a network G.

(i) For a properly oriented edge (i,j) in P, Fij < Cij

(ii) For an improperly oriented edge (i,j) in P, 0 < Fij

Let   = mini x

Where x consists of the numbers Cij – Fij for properly oriented edges (i, j) in
P and Fij for improperly oriented edge (i, j) in P.

Define F*
ij =

if ( , ) is not in 

if ( , ) is properly oriented in 

if ( , ) is improperly oriented in 

ij

ij

ij

F i j P

F i j P

F i j P





 

Then F* is a flow whose value is greater by   than the value of F.
In every case, the resulting edge assignments give a flow F*. Clearly the value

of F* = F +  

Labelling Procedure
Now we present an algorithm called as labelling procedure to find the maximal
flow in a network.

We have a network G in which a is the source, z is the sink and C is the
capacity. The capacity of each edge is a non-negative integer. The vertices of G
are ordered  = v0,v1,...,vn = z.

(1) Set Fij = 0 for each edge (i, j). [initialization]

(2) Label vertex a by (–, ). [labelling the source]

(3) If the sink z is labelled, go to Step 6.

(4) Choose the not yet examined, labelled vertex vi with smallest index i.
Stop if there is no such vertex;otherwise set v = vi.[ Go to adjacent vertices
of the source]

(5) Let ( , ) be the label of v. Examine each edge of the form (v,w), (w,v)
where w is unlabelled.

If Fvw < Cvw, label vertex w by (v ),(mini, vwvw FCV  )

if Fvw = Cvw, do not label w.
For an edge of the form (w,v)
if Fwv > 0, label vertex w by (v, mini (  ,Fwv))
if Fwv = 0, do not label w. Go to Step (3)

(6) Let ( γ, ) be the label of z.
Let w0 = z, w1 =
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If the label of wi =
1 1(γ , )  put wi + 1 = 1 . Continue wk = a. Now the path

P: a = wk,wk–1,...,w1,w0 = z. is the required path from a to z.

To change the flow of the edges in P find, if the edge e is properly oriented,
then increase the flow in e by  Otherwise decrease the flow in e by 
Remove all labels from vertices and go to Step 2.

2.6 MINIMUM COST FLOW PROBLEM

Step 1 Determine the smallest cost in the cost matrix of the transportation table.
Let it be Cij. Allocate xij = min (ai, bj) in the cell (i, j)

Step 2 If xij = ai, cross off the ith row of the transportation table and decrease
bj by ai. Then go to step 3.

If xij = bj, cross off the jth column of the transportation table and decrease
ai by bj. Go to step 3.

If xij = ai = bj, cross off either the ith row or the jth column but not both.

Step 3 Repeat steps 1 and 2 for the resulting reduced transportation table until all
the rim requirements are satisfied. Whenever the minimum cost is not unique,
make an arbitrary choice among the minima.

Example 2.17: Obtain an initial feasible solution to the following TP using the
matrix minima method.

Solution: Since Sa
i 
= Sb

j 
= 24, there exists a feasible solution to the TP. Using the

steps in the least cost method, the first allocation is made in the cell (3, 1) the
magnitude being x

31 
= 4. It satisfies the demand at the destination D

1
 and we

delete this column from the table as it is exhausted.
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The second allocation is made in the cell (2, 4) with magnitude x24 = min
(6, 8) = 6. Since it satisfies the demand at the destination D4, it is deleted from
the table. From the reduced table the third allocation is made in the cell (3, 3)
with magnitude x33 = min (8, 6) = 6. The next allocation is made in the cell
(2, 3) with magnitude x23 of min (2, 2) = 2. Finally the allocation is made in the
cell (1, 2) with magnitude x12 = min (6, 6) = 6. Now all the rim requirements
have been satisfied and hence, initial feasible solution is obtained.

The solution is given by,

x12 = 6, x23 = 2, x24 = 6, x31 = 4, x33 = 6

Since the total number of occupied cells = 5 < m + n + 1.

We get a degenerate solution.

Total cost = (6  2) + (2  2) + (6  0) + (4  0) + (6  2)

= 12 + 4 + 12 =  28.

Example 2.18: Determine an initial basic feasible solution for the following TP,
using least cost method.

Solution: Since ai = bj, there exists a basic feasible solution. Using the steps
in least cost method, we make the first allocation to the cell (1, 3) with magnitude
x13 = min (14, 15) = 14 (as it is the cell having the least cost).

This allocation exhausts the first row supply. Hence, the first row is deleted.
From the reduced table, the next allocation is made in the next least cost cell
(2, 3) which is chosen arbitrarily with magnitude x23 = min (1, 16) = 1, which
exhausts the 3rd column destination.

From the reduced table, the next least cost cell is (3, 4) to which allocation is
made with magnitude min (4, 5) = 4. This exhausts the destination D4 requirement,
deleting the fourth column from the table. The next allocation is made in the cell
(3, 2) with magnitude x32 = Min (1, 10) = 1, which exhausts the 3rd origin capacity.
Hence, the 3rd row is exhausted. From the reduced table the next allocation is
given to the cell (2,1) with magnitude x21 = min (6, 15) = 6. This exhausts the
first column requirement. Hence, it is deleted from the table.

Finally the allocation is made to the cell (2, 2) with magnitude x22 = min
(9, 9) = 9, which satisfies the rim requirement. These allocations are shown in the
transportation table as follows:
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The following table gives the initial basic feasible solution.

Solution is given by,

x13 =14; x21 = 6; x22 = 9; x23 = 1; x32 = 1; x34 = 4

Transportation cost

=(14  1) + (6  8) + (9  9) + (1  2) + (1  3) + (4  2)

=  156.
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Network Simplex Method

The network simplex algorithm is used to solve minimum cost network flow

problems. When some of the edges have capacities then a variable can be non-

basic at either its lower bound or its upper bound.

We have a directed graph G = (V,E). We assume G is connected. Each arc

(i,j)  E has a cost per unit flow of c
ij
 and a capacity of u

ij
 (possibly infinite). Each

node i ” V has a net supply b
i
, so

The problem is formulated as

The dual problem is

If some x
ij
 is unbounded then the corresponding w

ij
 is set equal to zero. In

a basic feasible solution, the set of basic variables constitutes a spanning tree in G.

Let x be a basic feasible solution to (P). We use complementary slackness to

find a dual solution (y,z,w). We must have:

This underdetermined system can be solved easily: fix one component of y,

and then the remaining components are determined by a chain reaction. Note

that z
ij
 = w

ij
 = 0 for the basic x

ij
.

We need to check dual feasibility for the nonbasic edges. Break into cases

depending on which bound is active:

 If nonbasic x
ij
 = 0 then w

ij
 = 0 from complementary slackness,

so z
ij
 = c

ij
 -y

i
 + y

j
.

 If nonbasic x
ij
 = u

ij
 then z

ij
 = 0 from complementary slackness,

so w
ij
 = -c

ij
+y

i
-y

j
.

If w  0 and z  0 then x is optimal.

Else, perform a simplex iteration: choose a nonbasic arc with z
ij
 < 0

or w
ij
 < 0 to enter the basis, construct a cycle using the incoming arc and the basic

edges, adjust flow around the edges of the cycle, use the minimum ratio test to

determine a basic variable to leave the basis, and update the basis and x.
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2.7 PROJECT PLANNING AND CONTROL
WITH PERT-CPM

The network methods discussed so far may be termed as deterministic, since
estimated activity times are assumed to be known with certainty. However, in
research project or design of gear box of a new machine, various activities are
based on judgement. It is difficult to obtain a reliable time estimate due to the
changing technology. Time values are subject to chance variations. For such cases
where the activities are non-deterministic in nature, PERT was developed. Hence,
PERT is a probabilistic method where the activity times are represented by a
probability distribution. This probability distribution of activity times is based upon
three different time estimates made for each activity. These are as follows:

(i) Optimistic Time Estimate

(ii) Most Likely Time Estimate

(iii) Pessimistic Time Estimate

Optimistic Time Estimate: It is the smallest time taken to complete the activity
if everything goes on well. There is very little chance that activity can be done in
time less than the optimistic time. It is denoted by t

0
 or a.

Most Likely Time Estimate: It refers to the estimate of the normal time the
activity would take. This assumes normal delays. It is the mode of the probability
distribution. It is denoted by t

m
 or (m).

Pessimistic Time Estimate: It is  the longest time that an activity would take if
everything goes wrong. It is denoted by t

p
 or b. These three time values are shown

in the following figure.

F
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Time Distribution Curve

From these three time estimates, we have to calculate the expected time of
an activity. It is given by the weighted average of the three time estimates,

0 4

6
m p

e

t t t
t

 


 distribution with weights of 1, 4, 1, for t
o
, t

m
 and t

p
 estimates respectively.

Variance of the activity is given by,

2 = 
2

0–

6
pt t 

 
 

The expected length (duration), denoted by T
c
 of the entire project is the

length of the critical path, i.e., the sum of the t
c
’s of all the activities along the

critical path.
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The main objective in the analysis through PERT is to find the completion
for a particular event within specified date T

S
, given by P (Z  D) where,

D = 
Due date – Expected date of completion

Project variance

Where Z stands for standard normal variable.

2.7.1 Project Scheduling

In order to include the cost factors in project scheduling, we must first define the
cost duration relationships for various activities in the project. The total cost of
any project comprises of direct and indirect costs.

Direct Cost: This cost is directly dependent upon the amount of re-
sources available in the execution of individual activities, e.g., manpower
loading, materials consumed, etc. The direct cost increases if the activity
duration is to be reduced.

Indirect Cost: This cost is associated with overhead expenses such as
managerial services, indirect supplies, general administration, etc. The indirect
cost is computed on a per day, per week or per month basis. The indirect cost
decreases if the activity duration is to be reduced.

Network diagram can be used to identify the activities whose duration
should be shortened, so that the completion time of the project can be short-
ened in the most economic manner. The process of reducing the activity dura-
tion by putting on extra effort is called crashing the activity.

The crash time (T
C
) represents the minimum activity duration time that is

possible and any attempts to further crash would only raise the activity cost
without reducing the time. The activity cost corresponding to the crash time is
called the crash cost (C

C
), which is the minimum direct cost required to achieve

the crash performance time.
The normal cost (C

N
) is equal to the absolute minimum of the direct cost

required to perform an activity. The corresponding time duration taken by an
activity is known as the normal time (T

N
).

Cost Slope

The cost slope, indicating the increase in cost per unit reduction in time is defined
as,

Cost slope = 
Crash cost Normal cost

Normal time – Crash time


 = C N

N C

C C

T T




i.e., it represents the rate of increase in the cost of performing the activity per unit
reduction in time and is called cost/time trade off. It varies from activity to activity.
The total project cost is the sum total of the project’s direct and indirect costs.

Time-Cost Optimization Algorithm

Following are the steps involved in project crashing.
Step 1 Find the normal critical path and identify the critical activities.

Cost slope = 
Crash cost Normal cost

Normal time – Crash time


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Step 2 Calculate the cost slope for the different activities by using the formula.
Step 3 Rank the activities. The activity whose cost slope in minimum is to be

ranked 1,  the next minimum as rank 2 and so on, i.e., the ranking takes
place in ascending order of cost slope.

Step 4 By crashing the activities on the critical path, other paths also become
critical and are called parallel paths.
In such cases, the project duration can be reduced by crashing activities
simultaneously on the parallel critical path.

Step 5 Find the total cost of the project at each step.
Step 6 Continue the process until all the critical activities are fully crashed or no

further crashing is possible.
In the case of indirect cost, the process of crashing is repeated until the
total cost is minimum, beyond which it may increase.
This minimum cost is called the optimum project cost and the
corresponding time, the optimum project time.

Example 2.19: Determine the optimum project duration and cost for the following
data.

Activity Normal Crash

Time Cost Time Cost
(days) ( ) (days) ( )

1–2 8 100 6 200
1–3 4 150 2 350
2–4 2 50 1 90
2–5 10 100 5 400
3–4 5 100 1 200
4–5 3 80 1 100

Indirect cost is  70 per day.
Solution: Since the overhead of the project is given, the cost is indirect. Hence,
the project duration can be reduced with the total cost.

Making use of the normal time, we have the following network.

Critical path 1–2–5
Project normal duration = 18 days
Cost of the project = Normal cost of all the activities + Indirect cost

= 580 + (70 × 18) =  1,840.
We can reduce the project duration from 18 days, by crashing the activity on

the critical path.
The cost slope and the number of days to be crashed are given in Table (A).
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Table (A)

Activity Cost slope = C N

N C

C - C

T - T

200 100

8 6


  =

1–2

1–3 50(2) (IV)

2–4 40(1) (III)

2–5 60(5) (V)

3–4 25(4) (II)

4–5 10(2) (I)

From the network, the other paths are given by,

1 2 5 18  17 16 15 14 13 12 11

1 2 4 5 13   12 11

1 3 4 5 12   11

We form a table (B) to calculate the optimum project duration and its cost.

Table (B)

Normal Crash Crash cost Indirect cost Total cost
duration activity

18 – – 18 × 70 = 12601260 + 580 = 1840

17 1–2 (1) 1 × 50 = 50 17 × 70 = 1190 1820

16 1–2 (2) 50 + (1 × 50) = 100 16 × 70 = 1120 1800

15 2–5 (1) 100 + (60 × 1) = 160 15 × 70 = 1050 1790

14 2–5 (2) 160 + (1 × 60) = 220 14 × 70 = 980 1780

13 2–5 (3) 220 + (1 × 60) = 280 13 × 70 = 910 1770

12 2–5 (4) 280 + (1 × 60 ) = 340 12 × 70 = 840 1760

11 2–5 (1–2–5) 340 + (1 × 60) + 11 × 70 = 770 1760

4–5 (1–3–4–5) (1 × 10) = 410

We rank the activities in ascending order of cost slope as given in the above
table. First we crash the activity 1–2. It is the activity lying on the critical path and
with minimum cost slope. This crashing is shown in the other paths also. As the
activity 1–2 can be crashed for two days, next we have the activity 2–5 on the
critical path. After crashing to 12 days, we get the parallel path namely 1–2–5 and
1–3–4–5.

As there is no common activity between these 2 paths, we crash the activity
2–5 on the path 1–2–5 and 4–5 on the path 1–3–4–5 as it is the activity having
the minimum rank. No more crashing is possible as all the activities in the path
1–2–5 are in crash time, even though there are activities available in other parallel
paths.

Hence, the optimum project duration is 11 days with total cost of  1,760.

Example 2.20: The following table gives the activities of a construction project
along with other relevant information.
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(i) What is the normal project length and the minimum project length?
(ii) Determine the minimum crashing costs of schedule, ranging from normal

length down to and including the minimum length schedule.

Activity Normal duration Crash duration Cost of crashing
i–j (days) (days) (  per day)

1–2 9 6 20
1–3 8 5 25
1–4 15 10 30
2–4 5 3 10
3–4 10 6 15
4–5 2 1 40

(iii) What is the optimal length schedule duration of each job for your solution?
Overhead of the project is  60 per day.

Solution: Since the overhead cost is given, the cost is indirect. The project duration
can be reduced by reducing the total cost associated with it.

The critical path comprises the activities 1–3, 3–4 and 4–5 with the normal
duration as 20 days.

The total cost associated with the project is 20 × 60 =  1,200.

Activity Cost of crashing

1–2 20 (3) III
1–3 25 (3) IV
1–4 30 (5) V
2–4 10 (2) I
3–4 15 (4) II

4–5 40 (1) VI

The cost slope is given in the data. We reduce the project duration by crashing
the activities lying on the critical path.

The critical activity 3–4 has the minimum cost slope. It is ranked I, so this
activity is crashed first for 4 days.

The other paths of the network are:

1 3 4 5 20   19 18 17 16 15 14 13

1 4 5 17  16 15 14 13

1 2 4 5 16   15 14 13
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Normal Crash Crash cost Overhead cost Total cost
duration activity

20 – – 20 × 60 = 1200 1200

19 3–4 (1) 1 × 15 = 15 19 × 60 = 1140 1155

18 3–4 (2) 15 + (1 × 15) = 30 18 × 60 = 1080 1110

17 3–4 (3) 30 + (1 × 15) = 45 17 × 60 = 1020 1065

16 4–5 45 + (1 × 40) = 85 16 × 60 = 960 1045

(1–3–4–5–1–4–5)

15 3–4 (1–3–4–5) 85 + 15 + 30 + 10 = 140 15 × 60 = 900 1040

1–4 (1–4–5)

2–4 (1–2–4–5)

14 1–3 (1–3–4–5) 140 + 25 + 30+ 10 = 205 14 × 60 = 840 1045

1–4 (1–4–5)

2–4 (1–2–4–5)

13 1–3 (1–3–4–5) 205 + 25 + 30 + 20 = 280 13 × 60 = 780 1060

1–4 (1–4–5)

1–2 (1–2–4–5)

After 17 days, we get parallel paths namely, 1–3–4–5 and 1–4–5. We crash
the activity 4–5 for one day at the rate of  40 per day.

After 16 days, we get all the critical paths. As there is no common activity
between them, we crash the activity 3–4 for the path 1–3–4–5, 1–4 for the path
1–4–5 and 2–4 for the path 1–2–4–5.

As the activity 3–4 in the path 1–3–4–5 is in crash time, we crash the activity
1–3 for 1 day at the rate of  25 per day. The optimum duration is 15 days as it
gives the minimum cost of  1,040.

To find the minimum duration we crash further.

Normal Crash Crash Overhead
Total costduration activity cost cost

12 1–3 (1–3–4–5) 280 + 25 + 30 12 × 60 = 720 1075
1–4 (1–4–5) +20 = 355

1–2 (1–2–4–5)

The minimum duration is 12 days and no more crashing is possible as all the
activities in the path 1–3–4–5 are in crash time.

Optimum duration = 15 days with total cost associated as  1,040
Minimum duration = 12 days with total cost associated as  1,075.

Note: From the above problem, we observe that the optimum duration and minimum duration
are not the same.

Optimum duration refers to the duration that yields the minimum total cost, whereas
minimum duration is the one in which no more crashing is possible beyond that duration.
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Example 2.21: The table below provides costs and estimates for a seven-activity
project.

Time estimate Direct cost estimate
(weeks) (  1,000)

Activity
Normal Crash Normal Crash

A 1–2 2 1 10 15

B 1–3 8 5 15 21

C 2–4 4 3 20 24

D 3–4 1 1 7 7

E 3–5 2 1 8 15

F 4–6 5 3 10 16

G 5–6 6 2 12 36

(i) Draw the project network corresponding to normal time.
(ii) Determine the critical path, normal duration and cost of the project.
(iii) Crash the activities so that the project completion time reduces to 9 weeks.

Solution: As the problem involves direct cost, we expect that the project duration
can be reduced with an increase in total cost. First we draw the network.

Critical path 1–3–5–6; Normal duration = 16 weeks
Total cost =  82,000
The calculations for cost slope and crashing number of days are shown in the table
below:

Activity Slope (  1000)

1–2 5 (1) IV
1–3 2 (3) I
2–4 4 (1) III
3–4 0
3–5 7 (1) VI
4–6 3 (2) II
5–6 6 (4) V

The different paths of the network are,

1 3 5 6 16   13 11 9

1 3 4 6 14   11 9

1 2 4 6 11   9
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First Crashing: We crash the activity 1–3, as it is the critical activity with minimum
rank. We crash it for 3 weeks at the rate of  2 (1000) per day.

Project duration reduced to 16 – 3 = 13 weeks
Total cost = 82 + (3 × 2)  = 88 (  1,000)

Second Crashing: Next, we crash the activity 5–6 for 2 weeks at the rate of  6
(1000) per week, as this activity has the next minimum rank.

Project duration reduced to 13 – 2 = 11 weeks
Total cost = 88 + (2 × 6) = 100 (  1,000).

Third Crashing: After 11 days, we get all the paths that are critical. As there is
no activity in common, we crash the activity 5–6 for 2 weeks in the path
1–3–5–6 and crash the activity 4–6 for 2 weeks, which is common to the paths
1–3–4–6 and 1–2–4–6.

Project duration reduces to 11–2 = 9 weeks.
Total cost = 100 + 2 × 6 + 2 × 3 = 118 (  1,000).
The project duration cannot be reduced beyond 9 weeks as all the activities are

in crash time. Hence, the optimum duration is 9 weeks with the total cost associated
as  118 (1000).

Example 2.22: The following time-cost table (time in weeks and cost in rupees)
applies to a project. Use it to arrive at the network associated with completing the
project in minimum time with minimum cost.

Activity
Normal Crash

Time Cost Time Cost

1–2 2 800 1 1400
1–3 5 1000 2 2000
1–4 5 1000 3 1800
2–4 1 500 1 500
2–5 5 1500 3 2100
3–4 4 2000 3 3000
3–5 6 1200 4 1600
4–5 5 900 3 1600

Solution: As the direct cost is given, we reduce the project duration by an increase
in total cost. First we construct the network.

Critical path is given by, 1–3–4–5
Project duration = 14 weeks
Total cost associated =  8,900
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We calculate the cost slope for each activity as given in the following table:

Activity Cost slope = C N

N C

C - C

T - T

1–2 600 (1) VI

1–3 333.333 (3) III

1–4 400 (2) V

2–4 –

2–5 300 (2) II

3–4 1000 (1) VII

3–5 200 (2) I

4–5 350 (2) IV

The project duration is reduced by crashing the activities. First, the activity that
lies on the critical path and ranks the minimum is crashed.
First Crashing: We crash the activity 1–3 for 3 weeks at the rate of  333.33
per week. Project duration reduced to 14 – 3 = 11 weeks.

Total cost = 8900 + 3 (333.33)
=  9899.99
=  9,900

Second Crashing: Next, crash the activity 4–5 as this activity lies on the critical path
with next minimum rank. Crash 4–5 for 2 weeks at the rate of  350 per week.
Project duration is reduced to 11 – 2 = 9 weeks.

Total cost = 9900 + (2 × 350) =  10,600
Third Crashing: Next, we crash the activity 3–4 for one week, at the rate of
 1,000 per week. Project duration reduced to 9 – 1 = 8 weeks.

Total cost = 10600 + 1000 =  11,600
As all the activities on the path 1–3–4–5 are in crash time, no more crashing is

possible beyond this.
 Optimum and minimum project duration is given by 8 weeks with total

cost as  11,600.

2.7.2 PERT Procedure
Step 1: Draw the project network.
Step 2: Compute the expected duration of each activity using the formula.

0 4

6
m p

e

t t t
t

 


Also calculate the expected variance 2 of each activity.

i.e., 2 = 

2

6
p ot t 

 
 

Step 3:Compute the earliest start, earliest finish, latest start, latest finish and total
float of each activity.

Step 4:Find the critical path and identify the critical activities.
Step 5: Compute the project length variance 2 which is the sum of the variance of

all the critical activities and hence find the standard deviation of the project
length .
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Step 6:Calculate the standard normal variable Z = 
–s eT T

  where T
S
 is the

scheduled time to complete the project.
T

e
 = Normal expected project length duration.

 = Expected standard deviation of the project length.
Using the normal curve, we can estimate the probability of completing the

project within a specified time.

Example 2.23: The following table shows the jobs of a network alongwith their
time estimates.

( ) 1 2 2 2 7 5 5 3 8

( ) 7 5 14 5 10 5 8 3 17

13 14 26 8 19 17 29 9 32( )

a days

m days

b days

Job 1 - 2 1 - 6 2 - 3 2 - 4 3 - 5 4 - 5 6 -7 5 - 8 7 - 8

Here, a is optimistic time, m is most likely time and b is pessimistic time
estimate.

Draw the project network and find the probability that the project is
completed in 40 days.

Solution: First we calculate the expected time and standard deviation for each
activity.

Activity
4

6
o m p

e

t + t + t
t =

– 
 
 

2
2σ =

6
p ot t

1–2
1 4 7 13

7
6

  


2
13 1

4
6

   
 

1–6
2 4 5 14

6
6

  


2
14 2

4
6

   
 

2–3
2 4 14 26

14
6

  


2
26 2

16
6

   
 

2–4
2 5 4 8

5
6

  


2
8 2

1
6

   
 

3–5
7 4 10 19

11
6

  


2
19 7

4
6

   
 

4–5
5 5 4 17

7
6

  


2
17 5

4
6

   
 

6–7
5 8 4 29

11
6

  


2
29 5

16
6

   
 

5–8
3 3 4 9

4
6

  


2
9 3

1
6

   
 

7–8
8 4 17 32

18
6

  


2
32 8

16
6

   
 
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Expected project duration = 36 days.

Critical path 1  2  3  5  8

Project length variance = 2 = 4 +16 + 4 + 1

= 25

 = 5

Probability that the project will be completed in 40 days is given by,

P(Z  D)

D = 
– 40 36 4

0.8
5 5

s eT T 
  



Area under the normal curve for  = 0.8,

P(Z  0.8)

= 0.5 +  (0.8)   [(8) = 0.2881 (refer Z – table)]

= 0.5 + 0.2881 = 0.7881 = 78.81%

Conclusion: If the project is performed 100 times under the same conditions,
there will be 78.81 occasions for this job to be completed in 40 days.

Example 2.24: A small project is composed of seven activities whose time estimates
are listed in the table as follow.

Duration (Weeks)
Likely
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You are required to:

(a) Draw the project network.

(b) Find the expected duration and variance of each activity.

(c) Calculate the early and late occurrence for each event and the expected
project length.

(d) Calculate the variance and standard deviations of project length.

(e) What is the probability that the project will be completed:
(i) 4 weeks earlier than expected.

 (ii) Not more than 4 weeks later than expected.
(iii) If the project due date is 19 weeks, what is the probability of meeting

the due date.

Solution: The expected time and variance of each activity is computed as shown
in the table below:

Activity a m b 4

6
o m p

e

t + t + t
t = 2 =

6
p ot t

2

σ

The earliest and the latest occurrence time for each is calculated as below:

E
1

= 0; E
2
= 0 + 2 = 2

E
3

= 0 + 4 = 4

E
4

= 0 + 3 = 3

E
5

= Max (2 + 1, 4 + 6) = 10

E
6

= Max (10 + 7, 3 + 5) = 17

To determine the latest expected time we start from E
6
 being the last event

and move backwards subtracting t
e
 from each activity. Hence, we have

L
6

= E
6 
= 17

L
5

= L
6 
– 7 = 17 – 7 = 10

L
4

= 17 – 5 = 12

L
3

= 10 – 6 = 4

L
2

= 10 – 1 = 9

L
1

= Min (9 – 2, 4 – 4, 12 – 3) = 0

Using the above information, we get the following network, where the critical
path is shown by the double line arrow.
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We observe the critical path of the above network as 1  3  5  6.

The expected project duration is 17 weeks, i.e., T
e
 = 17 weeks.

The variance of the project length is given by,

2 = 1 + 4 + 4 = 9

Hence,  = 3

(i) The probability of completing the project within 4 weeks earlier than expected
is given by,

–
( ) where S eT T

P Z D   D 


Due date Expected date of  completion

Project variance

  
D




 

17 4 17 13 17 4

3 3 3
1.33

D
   

  

 

        

( 1.33) 0.5 (1.33)

0.5 0.4082 (from the table)

= 0.0918 = 9.18%

P Z

 

     
 

Conclusion: If the project is performed 100 times under the same conditions,
then there will be 9 occasions for this job to be completed in 4 weeks earlier than
expected.

(ii) The probability of completing the project not more than 4 weeks later than
expected is given by,

P (Z  D)

Where, s eT T
D






Here, T
s
 = 17  + 4 = 21
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21 17 4
1.33

3 3
D


  

P (Z  1.33)

= 0.5 + (1.33)

= 0.5 + 0.4082 (from the table)

= 0.9082 = 90.82%

Conclusion: If the project is performed 100 times under the same conditions,
then there will be 90.82 occasions when this job will be completed not more than
4 weeks later than expected.

(iii) The probability of completing the project within 19 weeks, is given by,

19 17 2
( ) where, Since 19

3 3
P Z D   D=  T


    19 17 2

( ) where, Since 19
3 3 SP Z D   D=  T  

= 0.666
P (Z  0.666) = 0.5 +  (0.666)
= 0.5 + 0.2514 (from the table)
= 0.7514 = 75.14%

Conclusion: If the project is performed 100 times under the same conditions,
then there will be 75.14 occasions for this job to be completed in 19 weeks.

Example 2.25: Consider the following project.

Activity Time Estimate in Weeks Predecessor

t
o

t
m

t
p

A 3 6 9 None
B 2 5 8 None
C 2 4 6 A
D 2 3 10 B
E 1 3 11 B
F 4 6 8 C,D
G 1 5 15 E
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Find the path and standard deviation. Also find the probability of completing
the project by 18 weeks.

Solution: First we calculate the expected time and variance of each activity as in
the following table:

Activity ot t
m

t
p

4

6
o m p

e

t + t + t
t =

– 
 
 

2

2σ =
6

p ot t

A 3 6 9
3 4 6 9

6
6

  
 [(9 – 3)/6]2 = 1

B 2 5 8
30

5
6
 [(8 – 2)/6]2 = 1

C 2 4 6 24/6 = 4 [(6 – 2)/6]2 = 0.444

D 2 3 10 4 1.777

E 1 3 11 4 2.777

F 4 6 8 6 0.444

G 1 5 15 6 5.444

We construct the network with the help of predecessor relation given in the
data.

Critical path is 1  2  4  6 or A  C  F

The project length = 16 weeks.

Project length variance 2 = 1 + 0.444 + 0.444 = 1.888

Standard deviation =  = 1.374

The probability of completing the project in 18 weeks is given by:

P(Z  D)

Where, D = 
–s eT T



T
s
 = 18; T

e
 = 16;  = 1.374

D = 
18 –16

1.374
 = 1.4556

P(Z  D) = P(Z  1.4556) = 0.5 + (1.4456)

= 0.5 + 0.4265 (from table)

= 0.9265 = 92.65%
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Conclusion: If the project is performed 100 times under the same conditions,
then there will be 92.65 occasions when this job will be completed by 18 weeks.

Example 2.26: Assuming that the expected times are normally distributed, find
the probability of meeting the schedule date as given for the network.

Activity Days
(i–j) Optimistic Most Likely Pessimistic

t
o

t
m

t
p

1–2 2 5 14
1–3 9 12 15
2–4 5 14 17
3–4 4 4 10
4–5 8 17 20
3–5 6 6 12

Scheduled project completion date is 30 days. Also, find the date on which
the project manager can complete the project with a probability of 0.90.

Solution: The expected time t
e
 and variance for each activity is calculated in the

following table:

Activity t
e
 = (t

o
 + 4t

m
 + t

p
)/6  2 = ((t

p
 – t

o
)/)2

1–2 6 4

1–3 12 1

2–4 13 4

3–4 5 1

3–5 16 4

4–5 7 1

To determine the critical path, the earliest expected time and the latest
allowable time. First we draw the project network as follows:
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The critical path is given by 1  3  5 and the project duration is given by 28
days. Project length variance = 2  = 1 + 4 = 5. Standard deviation
= 2 = 2.236.

The probability of completing the project within 30 days is given by,

P (Z  D), where D = 
30 28

0.8944
2.236

s eT T 
 



P (Z  0.8944) = 0.5 +  (0.8944)

= 0.8133 = 81.33%

Conclusion: If the project is performed 100 times under the same conditions,
then there will be 81.33 occasions when the project will be completed in 30 days.

If the probability for the completion of the project is 0.90 then the
corresponding value of Z = 1.29.

1.29s eT T
Z


 



28
i.e., 1.29

2.236
sT

 




 T
s
 = (1.29) (2.236) + 28

 T
s
 = 30.88 weeks

Check Your Progress

6. What are the management functions for the three phases of work
involved in a project?

7. Define the term planning.

8. What is an activity?

9. What information is required for the preparation of the network
diagram?

10. Write an application of Dijkstra's algorithm.

11. What is saturated edge?

12. Define crash time.

13. Name the three types of time estimates.

2.8 ANSWERS CHECK YOUR PROGRESS

1. Transportation problem deals with transportation of various quantities of a
single homogeneous commodity initially stored at various origins to different
destinations at the minimum cost.

2. Transportation problems are presented in tabular form with m rows (as
origins) and n columns (as destinations). Every cell of this table has cost as
C

ij
 of transporting one unit of product from ith origin to jth destination and

X
ij
 which is the quantity transported from ith origin to jth destination.
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3. If there are m origins and n destinations and C
ij
 be the cost of transporting

one unit of product from ith origin to jth destination and X
ij 
be the quantity

transported from ith origin to jth destination and Z is the cost given then it
can be mathematically represented as:

Z = 
1 1

n n

ij ij
i j

C X
 


4. It is a problem of finding an assignment of jobs among persons so that total
cost of performing all jobs is at minimum.

5. An assignment problem can be stated in form of n × n matrix [C
ij
] with i

rows and j columns of real numbers. Here, C
ij
 is the cost when ith person

is assigned jth job.

6. Management functions involved in three phases of work involved in a project
are, planning, scheduling and controlling.

7. Planning is setting of objectives of the project by listing of tasks to be
performed and resources available to complete the project.

8. An activity represents an action. It is an effort that consumes time that is
needed to complete a part of the overall project.

9. We require the following information for each activity in the project for the
preparation of the network diagram:

(i) The sequencing requirements for an activity must be known, i.e., the
set of activities which must be completed prior to the beginning of
each specific activity should be known.

(ii) An estimate of the time each activity will take should also be known.

10. Dijkstra’s algorithm is of great use in routing. The concept of shortest path
first finds extensive use in network routing protocols.

11. Whenever the flow along an edge is equal to the capacity of that edge, then
that edge is said to be saturated.

12. The crash time represents the minimum activity duration time that is possible
and any attempts to further crash would only raise the activity cost without
reducing the time.

13. The probability distribution of activity times in PERT is based upon three
different time estimates made for each activity, namely optimistic time estimate,
most likely time estimate and pessimistic time estimate.

2.9 SUMMARY

 The transportation problem is one of the subclasses of LPP (Linear
Programming Problem) in which the objective is to transport various quantities
of a single homogeneous commodity that are initially stored at various origins
to different destinations in such a way that the transportation cost is minimum.

 Any set of non-negative allocations (X
ij
 > 0) which satisfies the row and

column sum is called a feasible solution.
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 A feasible solution is called a basic feasible solution if the number of non-
negative allocations is equal to m + n – 1, where m is the number of rows
and n is the number of columns in a transportation table.

 Optimal solution is a feasible solution (not necessarily basic) which minimizes
the total cost.

 Initial solution can be obtained by using any one of the three methods, viz.
North West Corner Rule (NWCR), Least Cost Method or Matrix Minima
Method and Vogel’s Approximation Method (VAM).

 VAM is preferred over the other two methods since the initial basic feasible
solution obtained by this method is either optimal or very close to the optimal
solution.

 The assignment problem is one of the fundamental combinatorial optimization
problems. It helps to find a maximum weight identical in nature to a weighted
bipartite graph. The assignment problem is also termed as a special case of
transportation problem.

 Job sequencing is basically the planning of the jobs in sequential manner
and is an essential part of any work.

 Priority rules give the guidelines for properly sequencing the job whereas
Johnson’s rule is used to minimize the completion time for a set of jobs to be
done on two different machines. Using these rules one can assign jobs and
maximize product and profit.

 Any assignment problem is said to be unbalanced if the cost matrix is not a
square matrix, i.e., the number of rows and columns are not equal. To make
it balanced we add a dummy row or dummy column with all the entries as
zero.

 Network scheduling, planning and control and technique used for planning
and scheduling large projects in the field of construction, maintenance,
fabrication, etc.

 Program Evaluation Review Technique (PERT) and Critical Path Method
(CPM), which are two planning and control techniques for keeping a project
schedule on track to complete it within the scheduled time.

 An activity is said to be critical if a delay in its start will cause a further delay
in the completion of the entire project. The sequence of critical activities in
a network is called the critical path.

 Shortest route problem deals with ways of finding the minimum path distance
from a selected node which is source to a destination node.

 Flow is a network. The network may be a transportation network through
which commodities flow or a pipeline network through which oil flows or
any number of other possibilities.

 Critical path method involves the preparation of the network in the form of
arrow diagram and its analysis to indicate the critical path.

 Network diagram can be used to identify the activities whose duration should
be shortened, so that the completion time of the project can be shortened in
the most economic manner.
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 PERT is a probabilistic method where the activity times are represented by
a probability distribution. This probability distribution of activity times is
based upon three different time estimates made for each activity, namely
optimistic time estimate, most likely time estimate and pessimistic time
estimate.

2.10 KEY TERMS

 Transportation problem: A problem for transportation of various quantities
of a single homogeneous commodity, initially stored at various origins to
different destinations at the minimum cost.

 Feasible solution: A set of non-negative allocations where some quantity
is transferred from an origin i to a destination j, (X

ij 
> 0) and satisfies the

row and column sum is a feasible solution.

 Basic feasible solution: A feasible solution where number of non-negative
allocations is equal to m + n – 1, where m is the number of rows and n is
the number of columns in a transportation table.

 Assignment problem: A problem of finding an assignment of jobs among
persons so that total cost of performing all jobs is at minimum.

 Unbalanced assignment: An assignment is unbalanced if the cost matrix
is not a square matrix.

 Network: A graphic representation of logically connected activities and
events where activities are presented as arrows and events as nodes.

 Activity: An activity represents an action. It is an effort that consumes time
that is needed to complete a part of the overall project.

 Critical path: It is the path connecting all critical events of the project from
start to the completion of the project.

 PERT: It stands for Program Evaluation Review Technique (PERT). It is a
probabilistic method where activity times are represented by a probability
distribution.

 CPM: It stands for Critical Path Method (CPM) and is based on
determination of the critical path.

2.11 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is transportation problem?

2. How will you define the transportation algorithm?

3. List the merits and limitations of the North West Corner rule.

4. Vogel’s Approximation Method results in the most economical initial basic
feasible solution. How?



Transportation and
Assignment Problems

NOTES

Self - Learning
Material 133

5. What is an initial basic feasible solution?

6. Write the first three steps of the Hungarian procedure for solving an
assignment problem.

7. While solving a problem using the Hungarian method at what stage are you
able to make an assignment? Explain in brief.

8. What do you mean by maximization in an assignment problem?

9. What is understood by a project?

10. Define dangling in a network. How can it be avoided?

11. Write two basic differences between PERT and CPM.

12. How are time estimates used in PERT and CPM?

13. Differentiate between float and slack.

Long-Answer Questions

1. Give the mathematical formulation of a transportation problem.

2. Write an algorithm to solve a transportation problem.

3. Define the terms feasible solution, basic solution, non-degenerate solution
and optimal solution in a transportation problem.

4. Explain the following briefly with examples:
(i) North West Corner Rule
(ii) Least Cost Method
(iii) Vogel’s Approximation Method

5. Explain degeneracy in a transportation problem. Describe a method to resolve
it.

6. What do you mean by an unbalanced transportation problem? Explain the
process of converting an unbalanced transportation problem into a balanced
one.

7. What do you understand by transportation model?

8. Write the steps for finding a solution using the Hungarian method.

9. The following table gives the activities and duration of a construction
project.

20 25 10 12 6 10

Activity 1 - 2 1 - 3 2 - 3 2 - 4 3 - 4 4 - 5

Duration(days)

(i) Draw the network for the project.
(ii) Find the critical path.

[Ans. CPM: 1–2–3–4–5]

10. A small project consits of 11 activities A, B, C, ..., K. The precedence
relationship A, B can start simultaneously. Given A<C, D, I; B<G, F; D<G, F;
F<H, K; G, H<J; I, J, K<E. The duration of the activities are as follows.

5 3 10 2 8 4 5 6 12 8 9

Activity A B C D E F G H I J K

Duration(Days)
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Draw the network of the project. Summarise the CPM calculations in a tabular
form computing total, and free floats of activities and hence determine the
critical path.

[Ans. Critical path A–D–F–H–J–E
Project duration 33 days]

11. The following table gives the activities and duration of a construction project.

Activity 1–2 1–3 2–3 2–4 3–4 4–5
Duration (Days 20 25 10 12 6 10

(i) Draw the network for the project.
(ii) Find the critical path.

12. A small project consists of 11 activities A, B, C, ..., K. The precedence
relationship A, B can start simultaneously. Given A<C, D, I; B<G, F; D<G,
F; F<H, K; G, H<J; I, J, K<E. The duration of the activities are as follows.

Draw the network of the project. Summarize the CPM calculations in a
tabular form computing total, and free floats of activities and hence determine
the critical path.

13. Draw the network and determine the critical path for the given data. Also
calculate all the floats involved in CPM.

14. A small maintenance project consists of the following 12 jobs.

Draw the arrow network of the project. Summarize CPM calculations in a
tabular form calculating the three types of floats and hence determine the
critical path.

15. Consider the following data for activities in a given project.

Draw the arrow diagram for the project. Compute the earliest and the latest
event times. What is the minimum project completion time? List the activities
on the critical path.
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UNIT 3 DYNAMIC PROGRAMMING

Structure

3.0 Introduction
3.1 Objectives
3.2 Dynamic Programming

3.2.1 Deterministic and Probabilistic Dynamic Programming
3.2.2 Dynamic Programming and the Principle of Optimality
3.2.3 Problems in Dynamic Programming
3.2.4 Dynamic Programming Under Uncertainty

3.3 Game Theory
3.3.1 Two-Person Zero-Sum Games
3.3.2 Sum Games
3.3.3 Games With Mixed Strategies
3.3.4 Graphical Solution
3.3.5 Solution by Linear Programming

3.4 Answers to ‘Check Your Progress’
3.5 Summary
3.6 Key Terms
3.7 Self-Assessment Questions and Exercises
3.8 Further Reading

3.0 INTRODUCTION

Dynamic programming is mathematical optimization method. The method was
developed by Richard E. Bellman in the 1950s and has found applications in
numerous fields, from aerospace engineering to economics.

Dynamic programming are problems in which a series of interrelated decisions
are required. The objective in such problems happens to be to find a combination
of decisions that will optimize some appropriate measure of effectiveness. For
instance, it might be desirable to specify a series of production decisions that will
minimize total costs or a series of marketing decisions that will maximize total
revenues or a series of pricing decisions over a given time period with a view to   is
popularly described as the technique of dynamic programming.

Game theory is the study of mathematical models of strategic interaction
among rational decision-makers. It has applications in all fields of social science,
as well as in logic, systems science and computer science. Originally, it addressed
zero-sum games, in which each participant’s gains or losses are exactly balanced
by those of the other participants. In the 21st century, game theory applies to a
wide range of behavioural relations, and is now an umbrella term for the science of
logical decision making in humans, animals, and computers. Modern game theory
began with the idea of mixed-strategy equilibria in two-person zero-sum games
and its proof by John von Neumann. The von Neumann’s original proof used the
Brouwer fixed-point theorem on continuous mappings into compact convex sets,
which became a standard method in game theory and mathematical economics.
His paper was followed by the 1944 book Theory of Games and Economic
Behaviour, co-written with Oskar Morgenstern, which considered cooperative
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games of several players. The second edition of this book provided an axiomatic
theory of expected utility, which allowed mathematical statisticians and economists
to treat decision-making under uncertainty.

In this unit, you will learn about the dynamic programming, game theory,
two- person zero-sum games, games with mixed strategies and graphical solutions.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand dynamic problems

 Explain the concept and significance of game theory

 Describe the process of two-person zero-sum games

 Discuss the significance of mixed strategies

 Explain the graphic solution of 2 × n and m ×2 games

3.2 DYNAMIC PROGRAMMING

There are problems in which a series of interrelated decisions are required. The
objective in such problems happens to be to find a combination of decisions that
will optimize some appropriate measure of effectiveness. For instance, it might be
desirable to specify a series of production decisions that will minimize total costs
or a series of marketing decisions that will maximize total revenues or a series of
pricing decisions over a given time period with a view to maximize the present
value of profits or a series of sequential decisions pertaining to problems such as
allocation, replacement, scheduling, routing, inventory, etc. Such decision problems
are often solved through sequential decision theory or what is popularly described
as the technique of dynamic programming.

A multistage decision system in which each decision and state variables can
take only finite number of values which can be represented graphically by a decision
tree.

Fig 3.1

Circles represent nodes corresponding to stages, and lines between circles
denote arcs, corresponding to decisions. The dynamic programming technique
deals with such situations by dividing the given problem into sub-problems or
stages.



Dynamic Programming

NOTES

Self - Learning
Material 139

Bellman’s principle of optimality states that ‘An optimal policy (a set of
decisions) has the property that whatever the initial state and decisions are, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.’

The problem that does not satisfy the principle of optimality cannot be solved
by the dynamic programming method.

Dynamic Programming Algorithm

The solution of a multistage problem by dynamic programming involves the following
steps:

Step 1: Identify the decision variables and specify the objective function to be
optimized under certain limitations, if any.

Step 2: Decompose the given problem into a number of smaller subproblems.
Identify the state variable at each stage.

Step 3: Write down the general recursive relationship for computing the optimal
policy. Decide whether forward or backward method is to be followed to solve
the problem.

Step 4: Construct appropriate stages to show the required values of the return
function at each stage.

Step 5: Determine the overall optimal policy or decisions and its value at each
stage. There may be more than one such optimal policies.

Difference between Linear and Dynamic Programming

Table 3.2 shows the differences between Linear and Dynamic Programming.

Table 3.1 Difference between Linear and Dynamic Programming

3.2.1 Deterministic and Probabilistic Dynamic
Programming

This section elaborates upon the dynamic programming approach to deterministic
problems, where the state at the next stage is completely determined by the state
and policy decision at the current stage. The probabilistic case, where there is a
probability distribution for what the next state will be, is discussed in the next
section.
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Deterministic dynamic programming can be described diagrammatically as
shown in Fig. 3.2. Thus, at stage n the process will be in some state s

n
. Making

policy decision x
n
 then moves the process to some state s

n+1
 at stage n + 1. The

contribution thereafter to the objective function under an optimal policy has been
previously calculated to be f*n

1
(s

n+1
). The policy decision x

n
 also makes some

contribution to the objective function. Combining these two quantities in an
appropriate way provides f

n
(s

n
, x

n
), the contribution of stages n onward to the

objective function. Optimizing with respect to x
n
 then gives f 

n
*(s

n
)  f

n
(s

n
, x

n
*).

After x
n
* and f

n
*(s

n
) are found for each possible value of s

n
, the solution procedure

is ready to move back one stage.

One way of categorizing deterministic dynamic programming problems is
by the form of the objective function. For example, the objective might be to
minimize the sum of the contributions from the individual stages (as for the stagecoach
problem), or to maximize such a sum, or to minimize a product of such terms, and
so on. Another categorization is in terms of the nature of the set of states for the
respective stages. In particular, states s

n
 might be representable by a discrete state

variable (as for the stagecoach problem) or by a continuous state variable, or
perhaps a state vector (more than one variable) is required.

Several examples are presented to illustrate these various possibilities. More
importantly, they illustrate that these apparently major differences are actually quite
inconsequential (except in terms of computational difficulty) because the underlying
basic structure shown in Fig. 3.2 always remains the same.

Fig.3.2 The Basic Structure for Deterministic Dynamic Programming

Example 3.1: Distributing Medical Teams to Countries

The World Health Council is devoted to improving health care in the underdeveloped
countries of the world. It now has five medical teams available to allocate among
three such countries to improve their medical care, health education, and training
programs. Therefore, the council needs to determine how many teams (if any) to
allocate to each of these countries to maximize the total effectiveness of the five
teams. The teams must be kept intact, so the number allocated to each country
must be an integer.

The measure of performance being used is additional person-years of life.
(For a particular country, this measure equals the increased life expectancy in
years times the country’s population.) Table 3.2 gives the estimated additional
person-years of life (in multiples of 1,000) for each country for each possible
allocation of medical teams. Which allocation maximizes the measure of
performance?
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Table 3.2 Data for the World Health Council Problem

Formulation: This problem requires making three interrelated decisions, namely,
how many medical teams to allocate to each of the three countries. Therefore,
even though there is no fixed sequence, these three countries can be considered as
the three stages in a dynamic programming formulation. The decision variables x

n

(n = 1, 2, 3) are the number of teams to allocate to stage (country) n.

The identification of the states may not be readily apparent. To determine
the states, we ask questions such as the following. What is it that changes from
one stage to the next? Given that the decisions have been made at the previous
stages, how can the status of the situation at the current stage be described? What
information about the current state of affairs is necessary to determine the optimal
policy hereafter? On these bases, an appropriate choice for the “state of the system”
is

s
n
  number of medical teams still available for allocation to remaining countries

(n, . . . , 3).

Thus, at stage 1 (country 1), where all three countries remain under
consideration for allocations, s

1
 = 5. However, at stage 2 or 3 (country 2 or 3), s

n

is just 5 minus the number of teams allocated at preceding stages, so that the
sequence of states is

s
1
  5, s

2
  5  x

1
, s

3
  s

2
  x

2
.

With the dynamic programming procedure of solving backward stage by
stage, when we are solving at stage 2 or 3, we shall not yet have solved for the
allocations at the preceding stages. Therefore, we shall consider every possible
state we could be in at stage 2 or 3, namely, sn  0, 1, 2, 3, 4, or 5.

Figure 3.3 shows the states to be considered at each stage. The links (line
segments) show the possible transitions in states from one stage to the next from
making a feasible allocation of medical teams to the country involved. The numbers
shown next to the links are the corresponding contributions to the measure of
performance, where these numbers come from Table 3.2. From the perspective
of this figure, the overall problem is to find the path from the initial state 5 (beginning
stage 1) to the final state 0 (after stage 3) that maximizes the sum of the numbers
along the path.
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Fig. 3.3 Graphical Display of the World Health Council Problem, Showing the Possible
States at Each Stage, the Possible Transitions in States, and the Corresponding

Contributions to the Measure of Performance.

To state the overall problem mathematically, let p
i
(x

i
) be the measure of

performance from allocating xi medical teams to country i, as given in Table 3.2.
Thus, the objective is to choose x1, x

2
, x

3
 so as to

subject to

and
x

i
 are nonnegative integers.

where the maximum is taken over x
n+1

 . . . , x
3
 such that

and the x
i
 are nonnegative integers, for n = 1, 2, 3. In addition,
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Therefore,

(with f
4
* defined to be zero). These basic relationships are summarized in

Fig. 3.4.

Fig. 3.4 The Basic Structure for the World Health Council Problem.

Consequently, the recursive relationship relating functions f 
1
*, f 

2
*, and

 f
3
* for this problem is

For the last stage (n = 3),

The resulting dynamic programming calculations are given next.

Solution Procedure: Beginning with the last stage (n  =3), we note that the values
of p

3
(x

3
) are given in the last column of Table 3.2 and these values keep increasing

as we move down the column. Therefore, with s
3
 medical teams still available for

allocation to country 3, the maximum of p
3
(x

3
) is automatically achieved by

allocating all s
3
 teams; so x

3
*  s

3
 and f 

3
*(s

3
)  p

3
(s

3
), as shown in the following

table.

We now move backward to start from the next-to-last stage (n = 2). Here,
finding x

2
* requires calculating and comparing f

2
(s

2
, x

2
) for the alternative values

of x
2
, namely, x

2
 ..., 0, 1, . . . , s

2
. To illustrate, we depict this situation when

s
2
 = 2 graphically:
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This diagram corresponds to Fig. 3.4 except that all three possible states at
stage 3 are shown. Thus, if x

2
 = 0, the resulting state at stage 3 will be s

2
 – x

2
 = 2

– 0 = 2, whereas x
2
 = 1 leads to state 1 and x

2
 = 2 leads to state 0. The

corresponding values of p
2
(x

2
) from the country 2 column of Table 3.2 are shown

along the links, and the values of f
3
*(s

2
 – x

2
) from the n = 3 table are given next to

the stage 3 nodes. The required calculations for this case of s
2
 = 2 are summarized

below.

Formula: f
2
(2, x

2
) = p

2
(x

2
) + f 

3
*(2 – x

2
).

p
2
(x

2
) is given in the country 2 column of Table 3.2.

f
3
*(2 – x

2
) is given in the n = 3 table (bottom of preceding page).

Because the objective is maximization, x
2
* = 0 or 1 with f

2
*(2) = 70.

Proceeding in a similar way with the other possible values of s
2
 (try it) yields

the following table.

We now are ready to move backward to solve the original problem where
we are starting from stage 1 (n = 1). In this case, the only state to be considered
is the starting state of s

1
 = 5, as depicted below.

Since allocating x
1
 medical teams to country 1 leads to a state of 5 – x

1
 at

stage 2, a choice of x
1
 = 0 leads to the bottom node on the right, x = 1 leads to the

next node up, and so forth up to the top node with x
1
 = 5. The corresponding

p
1
(x

1
) values from Table 3.2 are shown next to the links. The numbers next to the

nodes are obtained from the f 
2
*(s

2
) column of the n = 2 table. As with n = 2, the

calculation needed for each alternative value of the decision variable involves adding
the corresponding link value and node value, as summarized below.

Formula: f
1
(5, x

1
) = p

1
(x

1
) + f 

2
*(5 – x

1
).

p
1
(x

1
) is given in the country 1 column of Table 3.2
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f 
2
*(5 – x

1
) is given in the n = 2 table.

The similar calculations for x
1
 = 2, 3, 4 (try it) verify that x

1
* = 1 with

f 
1
*(5) = 170, as shown in the following table.

Thus, the optimal solution has x
1
* = 1, which makes s

2 
= 5 – 1 = 4, so x

2
*

= 3, which makes s
3
 = 4 – 3 = 1, so x

3
* = 1. Since f

1
*(5) = 170, this (1, 3, 1)

allocation of medical teams to the three countries will yield an estimated total of
170,000 additional personyears of life, which is at least 5,000 more than for any
other allocation.

These results of the dynamic programming analysis also are summarized in
Fig. 3.5

Fig. 3.5 Graphical Display of the Dynamic Programming Solution of the World Health
Council Problem. An Arrow from State s

n
 to State s

n –1
 Indicates that an Optimal Policy

Decision from State s
n
 is to Allocate (s

n
 – s

n –1
) Medical Teams to Country n. Allocating

the Medical Teams in this way when following the Boldfaced Arrows from the Initial
State to the Final State gives the Optimal Solution.
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A Prevalent Problem Type—The Distribution of Effort Problem

The preceding example illustrates a particularly common type of dynamic
programming problem called the distribution of effort problem. For this type of
problem, there is just one kind of resource that is to be allocated to a number of
activities. The objective is to determine how to distribute the effort (the resource)
among the activities most effectively. For the World Health Council example, the
resource involved is the medical teams, and the three activities are the health care
work in the three countries.

Assumptions: There are some key differences between the distribution of effort
problem and linear programming that help illuminate the general distinctions between
dynamic programming and other areas of mathematical programming. One key
difference is that the distribution of effort problem involves only one resource (one
functional constraint), whereas linear programming can deal with thousands of
resources.

On the other hand, the distribution of effort problem is far more general
than linear programming in other ways. Consider the four assumptions of linear
programming proportionality, additivity, divisibility, and certainty. Proportionality
is routinely violated by nearly all dynamic programming problems, including
distribution of effort problems (e.g., Table 3.2 violates proportionality). Divisibility
also is often violated, as in Example 3.2, where the decision variables must be
integers. In fact, dynamic programming calculations become more complex when
divisibility does hold. Although we shall consider the distribution of effort problem
only under the assumption of certainty, this is not necessary, and many other dynamic
programming problems violate this assumption as well.

Of the four assumptions of linear programming, the only one needed by the
distribution of effort problem (or other dynamic programming problems) is
additivity (or its analog for functions involving a product of terms). This assumption
is needed to satisfy the principle of optimality for dynamic programming.

Formulation: Because they always involve allocating one kind of resource
to a number of activities, distribution of effort problems always have the following
dynamic programming formulation (where the ordering of the activities is arbitrary):

Stage n =  activity n (n = 1, 2, . . . , N).

x
n
 =  amount of resource allocated to activity n.

State s
n
 =  amount of resource still available for allocation to remaining

activities

(n, . . . , N).

The reason for defining state sn in this way is that the amount of the resource
still available for allocation is precisely the information about the current state of
affairs (entering stage n) that is needed for making the allocation decisions for the
remaining activities.

When the system starts at stage n in state s
n
, the choice of x

n
 results in the

next state at stage n + 1 being s
n+1

 = s
n
 – x

n
, as depicted below:
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Note how the structure of this diagram corresponds to the one shown in
Fig. 3.4 for the World Health Council example of a distribution of effort problem.
What will differ from one such example to the next is the rest of what is shown in
Fig. 3.4, namely, the relationship between f

n
(s

n
, xn) and f*

n +1
(s

n
 – x

n
), and then

the resulting recursive relationship between the f
n
* and f*

n +
 
1
 functions. These

relationships depend on the particular objective function for the overall problem.

The structure of the next example is similar to the one for the World Health
Council because it, too, is a distribution of effort problem. However, its recursive
relationship differs in that its objective is to minimize a product of terms for the
respective stages.

At first glance, this example may appear not to be a deterministic dynamic
programming problem because probabilities are involved. However, it does indeed
fit our definition because the state at the next stage is completely determined by
the state and policy decision at the current stage.

Example 3.2: Distributing Scientists to Research Teams

A government space project is conducting research on a certain engineering
problem that must be solved before people can fly safely to Mars. Three research
teams are currently trying three different approaches for solving this problem. The
estimate has been made that, under present circumstances, the probability that the
respective teams—call them 1, 2, and 3—will not succeed is 0.40, 0.60, and
0.80, respectively. Thus, the current probability that all three teams will fail is
(0.40)(0.60)(0.80)  0.192. Because the objective is to minimize the probability of
failure, two more top scientists have been assigned to the project.

Table 3.3 gives the estimated probability that the respective teams will fail
when 0, 1, or 2 additional scientists are added to that team. Only integer numbers
of scientists are considered because each new scientist will need to devote full
attention to one team. The problem is to determine how to allocate the two
additional scientists to minimize the probability that all three teams will fail.

Formulation: In this case, scientists replace medical teams as the kind of
resource involved, and research teams replace countries as the activities.

Therefore, instead of medical teams being allocated to countries, scientists
are being allocated to research teams. The only basic difference between the two
problems is in their objective functions.

With so few scientists and teams involved, this problem could be solved
very easily by a process of exhaustive enumeration. However, the dynamic
programming solution is presented for illustrative purposes.

In this case, stage n (n = 1, 2, 3) corresponds to research team n, and the
state sn is the number of new scientists still available for allocation to the remaining
teams. The decision variables xn (n  = 1, 2, 3) are the number of additional
scientists allocated to team n.
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Let p
i
(x

i
) denote the probability of failure for team i if it is assigned xi

additional scientists, as given by Table 3.2. If we let  denote multiplication, the
government’s objective is to choose x

1
, x

2
, x

3
 so as to

Minimize 

subject to

Table 3.3 Data for the Government Space Project Problem

and

x
i
 are nonnegative integers.

Consequently, f
n
(s

n
, x

n
) for this problem is

where the minimum is taken over  such that

and

x
i
 are nonnegative integers,

for n = 1, 2, 3. Thus,

where

(with f 4* defined to be 1). Figure 3.6 summarizes these basic relationships.

Thus, the recursive relationship relating the f
1
*, f 

2
*, and f

3
* functions in this

case is

and, when n = 3,



Dynamic Programming

NOTES

Self - Learning
Material 149

Solution Procedure: The resulting dynamic programming calculations are as
follows:

Fig. 3.6 The Basic Structure for the Government Space Project Problem

Therefore, the optimal solution must have x
1
* = 1, which makes s

2
 = 2 – 1

= 1, so that x
2
* = 0, which makes s

3
 = 1 – 0 = 1, so that x

3
* = 1. Thus, teams 1

and 3 should each receive one additional scientist. The new probability that all
three teams will fail would then be 0.060.

Probabilistic Dynamic Programming

Probabilistic dynamic programming differs from deterministic dynamic programming
in that the state at the next stage is not completely determined by the state and
policy decision at the current stage. Rather, there is a probability distribution for
what the next state will be. However, this probability distribution still is completely
determined by the state and policy decision at the current stage. The resulting
basic structure for probabilistic dynamic programming is described diagrammatically
in Fig. 3.7.

For the purposes of this diagram, we let S denote the number of possible
states at stage n + 1 and label these states on the right side as 1, 2, . . . , S. The
system goes to state i with probability p

i
 (i  1, 2, . . . , S) given state s

n
 and decision

x
n
 at stage n. If the system goes to state i, C

i
 is the contribution of stage n to the

objective function.

When Fig. 3.7 is expanded to include all the possible states and decisions
at all the stages, it is sometimes referred to as a decision tree. If the decision tree
is not too large, it provides a useful way of summarizing the various possibilities.
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Because of the probabilistic structure, the relationship between f
n
(s

n
, x

n
)

and the f*
n+1

(s
n+1

) necessarily is somewhat more complicated than that for
deterministic dynamic programming. The precise form of this relationship will
depend upon the form of the overall objective function.

To illustrate, suppose that the objective is to minimize the expected sum of
the contributions from the individual stages. In this case, f

n
(s

n
, x

n
) represents the

minimum ex-pected sum from stage n onward, given that the state and policy
decision at stage n are s

n
 and x

n
, respectively. consequently.

with

where this minimization is taken over the feasible values of x
n+1

.

Example 3.3 has this same form. Example 3.4 will illustrate another form.

Fig. 3.7 The Basic Structure for Probabilistic Dynamic Programming

Example 3.3: Determining Reject Allowances

The Standard Manufacturing Company has received an order to supply one item
of a particular type. However, the customer has specified such stringent quality
requirements that the manufacturer may have to produce more than one item to
obtain an item that is acceptable. The number of extra items produced in a
production run is called the reject allowance. Including a reject allowance is common
practice when producing for a custom order, and it seems advisable in this case.

The manufacturer estimates that each item of this type that is produced will
be acceptable with probability1/2 and defective (without possibility for rework)
with probability 1/2. Thus, the number of acceptable items produced in a lot of
size L will have a binomial distribution; i.e., the probability of producing no

acceptable items in such a lot is 
1

2

L
 
 
 

.
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Marginal production costs for this product are estimated to be 100 per
item (even if defective), and excess items are worthless. In addition, a setup cost
of 300 must be incurred whenever the production process is set up for this product,
and a completely new setup at this same cost is required for each subsequent
production run if a lengthy in spection procedure reveals that a completed lot has
not yielded an acceptable item. The manufacturer has time to make no more than
three production runs. If an acceptable item has not been obtained by the end of
the third production run, the cost to the manufacturer in lost sales income and
penalty costs will be 1,600.

The objective is to determine the policy regarding the lot size (1 + reject
allowance) for the required production run(s) that minimizes total expected cost
for the manufacturer.

Formulation: A dynamic programming formulation for this problem is

Stage n = production run n (n = 1, 2, 3),

x
n
 = lot size for stage n,

State sn = number of acceptable items still needed (1 or 0) at beginning
of stage n.

Thus, at stage 1, state s
1
 = 1. If at least one acceptable item is obtained

subsequently, the state changes to sn = 0, after which no additional costs need to
be incurred.

Because of the stated objective for the problem,

f
n
(s

n
, x

n
) = total expected cost for stages n, . . . , 3 if system starts in state

sn at stage n, immediate decision is xn, and optimal decisions are made thereafter,

f
n
*(s

n
) = min f

n
(s

n
, x

n
),

x
n
= 0, 1, . . .

where f
n
*(0) = 0. Using 100 as the unit of money, the contribution to cost

from stage n is [K(x
n
) + x

n
] regardless of the next state, where K(x

n
) is a function

of x
n
 such that

 Therefore, for sn  1,

[where f
4
*(1) is defined to be 16, the terminal cost if no acceptable items

have been obtained]. A summary of these basic relationships is given in Fig. 3.8.
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Fig. 3.8 The Basic Structure for the Hit-and-Miss Manufacturing Co. Problem

Consequently, the recursive relationship for the dynamic programming
calculations is

for n = 1, 2, 3.

Solution Procedure: The calculations using this recursive relationship are
summarized as follows.

Thus, the optimal policy is to produce two items on the first production run;
if none is acceptable, then produce either two or three items on the second
production run; if none is acceptable, then produce either three or four items on
the third production run. The total expected cost for this policy is 675.
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Example 3.4: Winning in Las Vegas

An enterprising young statistician believes that she has developed a system for
winning a popular Las Vegas game. Her colleagues do not believe that her system
works, so they have made a large bet with her that if she starts with three chips,
she will not have at least five chips after three plays of the game. Each play of the
game involves betting any desired number of available chips and then either winning
or losing this number of chips. The statistician believes that her system will give her

a probability of 
2

3
 of winning a given play of the game.

Assuming the statistician is correct, we now use dynamic programming to
determine her optimal policy regarding how many chips to bet (if any) at each of
the three plays of the game. The decision at each play should take into account the
results of earlier plays. The objective is to maximize the probability of winning her
bet with her colleagues.

Formulation: The dynamic programming formulation for this problem is

Stage n = nth play of game (n = 1, 2, 3),

x
n
 = number of chips to bet at stage n,

State s
n
 = number of chips in hand to begin stage n.

This definition of the state is chosen because it provides the needed
information about the current situation for making an optimal decision on how
many chips to bet next.

Because the objective is to maximize the probability that the statistician will
win her bet, the objective function to be maximized at each stage must be the
probability of finishing the three plays with at least five chips. (Note that the value
of ending with more than five chips is just the same as ending with exactly five,
since the bet is won either way.) Therefore,

f
n
(s

n
, x

n
) = probability of finishing three plays with at least five chips, given

that the statistician starts stage n in state s
n
, makes immediate decision x

n
, and

makes optimal decisions thereafter,

f
n
*(s

n
) = max f

n
(s

n
, x

n
).

x
n
0, 1, . . . , s

n

The expression for f
n
(s

n
, x

n
) must reflect the fact that it may still be possible

to accumulate five chips eventually even if the statistician should lose the next play.
If she loses, the state at the next stage will be s

n
 – x

n
, and the probability of

finishing with at least five chips will then be f*
n+1

(s
n
 – x

n
). If she wins the next play

instead, the state will become sn  xn, and the corresponding probability will be

f*
n+1

(s
n
 = x

n
). Because the assumed probability of winning a given play is 

2

3
, it

now follows that
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[where f 
4
*(s

4
) is defined to be 0 for s

4
 < 5 and 1 for s

4
  5]. Thus, there is

no direct contribution to the objective function from stage n other than the effect of
then being in the next state. These basic relationships are summarized in Fig. 3.9.
Therefore, the recursive relationship for this problem is

for n = 1, 2, 3, with f
4
*(s

4
) as just defined.

Fig. 3.9 The Basic Structure for the Las Vegas Problem

Solution Procedure: This recursive relationship leads to the following
computational results.
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Therefore, the optimal policy is

This policy gives the statistician a probability of 
20

27
 of winning her bet with

her colleagues.

3.2.2 Dynamic Programming and the Principle of Optimality

Dynamic programming is the mathematical technique whose development is largely
due to Richard E. Bellman. It is applicable to many types of problems where in a
series of interrelated decisions (i.e., sequential decisions) are required. There is no
single algorithm that can be used to solve all such problems, i.e., a separate algorithm
is needed for each type of problem. Thus, dynamic programming is an approach
involving the optimisation of multistage decision processes. Essentially, the technique
of dynamic programming divides a given problem into stages or subproblems and
then solves the subproblems sequentially (usually working backward from the
natural end of the problem) until the initial problem is finally solved. The principle
behind the operation of this technique is known as the principle of optimality. This
principle, set forth by Bellman, states that ‘An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision.’9

The principle of optimality is an important concept in context of subsequential
decision theory.

Some Important Terms

We may mention the meaning of a few terms which are used when the dynamic
programming technique is formalized. These terms are as follows:

(i) Stage: It refers to the particular decision we are facing. If we are to take 5
sequential decisions then we have 5 stages. Alternatively a stage can be
understood as a subproblem. Thus, in case of five stages we have five
subproblems of a given problem.

(ii) State Variable: It is a variable defining the current situation at any stage.
Suppose we have a pricing problem, then the state variable would be the
current price level at a given stage.

(ii) Optimal Decision Rule: This rule specifies which decision to make, as a
function of state variable and the stage number.

(iv) Optimal Policy: An optimal policy is a set of optimal decision rules which
guides one’s decisions through all stages of the given problem. In fact, this
constitutes the solution of the given problem optimizing the desired measure
of effectiveness.
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Salient Features of Dynamic Progamming Approach

In applying the dynamic programming technique, it is necessary to divide the
problem into a number of subproblems or decision stages. It is also necessary to
describe the stage of the system by a state variable. Then each subproblem, working
backward from the natural end of the problem, as stated earlier, should be solved
in turn, i.e., a decision must be made at an earlier stage. The decision made at each
stage influences the next. In fact the decision made at each stage must take into
account its effect not only on the next stage, but also on the entire following sequence
of stages. After each subproblem has been solved, the answer is recorded and the
payoff (profit, cost, etc., as the case may be) from that stage on to the end of the
problem is also recorded. Finally, the optimum overall payoff is ticked and the
related decisions at several stages are noted. Such decisions constitute the optimal
solution for a given problem. This technique of solving a given problem is often
termed as recursive approach. Thus, dynamic programming provides a systematic
procedure, whereby, starting with the last stage of the problem and working
backward, one makes an optimal decision for each stage. When effectiveness of
each stage is optimised in this fashion, the resulting sequence of decisions will
given an optimal solution to the problem.

3.2.3 Problems in Dynamic Programming

The basic ideas used in dynamic programming approach or the sequential decision
theory can be well understood through the application of this technique to different
situations. The same is being done here for general understanding of the fundamentals
involved concerning dynamic programming. In particular, we shall study about the
following application of dynamic programming.

1. Travelling Salesman’s Problem

2. Pricing Problem

3. Production Scheduling Inventory Problem

4. Allocation Problem

Through the following illustrations we explain dynamic programming approach
applicable in different situations.

1. Travelling Salesman’s Problem

Example 3.5: A manager of a certain company, based in city 12, is in city 1 to
attend a series of business seminars. On his return he wants to reach city 12
adopting the least-cost route between city 1 and city 12. The cost from moving
between cities is given below. (Only certain cities can be reached directly from a
given city. For instance only cities 2, 3, 4 can be reached directly from city 1, cities
5, 6, 7, 8 can be reached directly from city 2, and so on.)
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From city To city (figures are in hundred )
2 3 4 5 6 7 8 9 10 11 12

1 5 3 6

2 4 3 7 7

3 5 5 3 4

4 7 4 6 3

5 7 6 9

6 6 7 6

7 8 9 6

8 8 10 8

9 9

10 12

11 8

What route should be taken by the manager from city 1 to city 12, so that
the cost is the least possible?

Solution: The given problem can be represented in the form of a network as
follows:

1

2

3

4

5

6

7

8

9

10

11

12

3 

4 

5 

6 

7 

8 
9 

7 

7 

7 

4 

6 

5 5 

3 

6 

3 

7 

6 
4

12

10

8 

8 

8 

3 

9 
6

6

9 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

(Figures in squares represent the names of cities 1 to 12 and arrows indicate
the route from one city to the other. The cost of the concerning route between the
two cities is just written below the corresponding arrow).

The problem is to determine the least cost route from city 1 to city 12. The
problem can be split into five stages (although decision-making stages are only
1 to 4) as has been shown in the network. We now solve it applying the dynamic
programming approach, working it backward from the natural end of the problem.



Dynamic Programming

NOTES

Self - Learning
158 Material

Suppose the manager has arrived at stage 4 and further suppose for a
moment that he is in city 9. What is the least cost route to city 12? Since there is
only one route possible, the minimum cost route is from city 9 to city 12 at a cost
of  900. However, suppose the manager finds himself in city 10 in stage 4, then
the minimum cost route is from city 10 to city 12 at a cost of  1200. In case the
manager is in city 11 in stage 4 then the minimum cost route is from city 11 to city
12 at a cost of  800. So, if the manager arrives at city 9 or 10 or 11 in stage 4 the
best policy is to go to city 12 from any one of those destinations, since it is the only
route for him then to reach city 12. As such he is in fact not to make any decision
when he is in stage 4, i.e., all this is trivial, but a mention of it is necessary in order
to establish the full dynamic programming algorithm for the given example. All this
can be put in tabular form as follows:

Solution to Stage 4 (or Decision Stage 1, i.e., First Decision)

Leaving Going to Total accumulated cost

City 9 City 12  900

City 10 City 12  1200

City 11 City 12  800

Suppose at stage 3, the manager is in city 5. He can reach city 12 via any of
the three cities stated above, viz., 9 or 10 or 11. If he decides to visit city 9, 10 or
11 his total cost will be . 1600, 1700, 1800 respectively. Accordingly, his choice
would be to go to city 9 and then to city 12. Similarly, if he is in city 6 in stage 3 he
should next stop in city 11 and then to city 12 for a minimum total cost of  1400.
If he is in city 7 then he should stop in city 11 and then should go to city 12 for a
minimum total cost of  1400. However, if he happens to be in city 8 then he
should next go to city 11 and then to city 12 for a minimum total cost of  1600.
All this can be put in tabular form as shown in the following table.

Solution to Stage 3 (or Decision Stage 2, i.e., 2nd Decision)

Leaving Going to Total accumulated cost

5 9  1600

6 11  1400

7 11  1400

8 11  1600

Now suppose at stage 2, the manager is in city 2 from where he can go to
city 5 or 6 or 7 or 8 and then to city 12. If he goes to city 12 via city 5 his total
costs would be  20,000 (utilizing the solution reached at stage three as shown in
the following table) but if he goes via city 6 his costs would be  17,000 and these
will be respectively  21,000 and  23,000 if he decides to go via city 7 and city
8. Accordingly he must go via city 6. Instead the manager may be in city 3 in stage
2 then the total costs would be  2100 and  1900 and  2000 if he decides to go
via city 5, 6, 7, and 8, respectively. Obviously he must decided to go via city 7. If
he is in city 4 in stage 2 then the total costs would be  2300,  1800,  20,000
and  1900 if he decides to go via city 5, 6, 7 and 8 respectively. These results can
be stated in tabular from as follows:
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Solution to Stage 2 (or Decision Stage 3, i.e., 3rd Decision)
Leaving Going to Total accumulated cost

2 6  1700

3 7  1700

4 6  1800

On the basis of the above analysis we can now easily write the solution to
stage 1 in tabular form as follows:

Solution to Stage 1 (or Decision Stage 4, i.e., 4th Decision)
Leaving Going to Total accumulated cost

1 2  2200

1 3  2000

1 4  2400

The above analysis shows that the manager should adopt the following route
to reach city 12:

City 1      Cify 3      City 7      City 11    City 12

This will be the cheapest possible route with a minimum overall cost of
 20,000. In other words, this is the least cost route from city 1 to city 12.

2. Pricing Problem

Example 3.6: A manager is interested in deciding a price policy for a new product
to be adopted over the next 4 years. He is considering five different price levels,
viz.  12,  14,  16,  18 and, 20 per unit. After evaluating potential price moves
by his competitors, he has worked out the following payoff table which relates his
price in a given year to the present value of the profit expected that year:

Payoff Table

Price level Year
(per unit) 1 2 3 4

 12 3 9 3 7

 14 2 1 2 2

 16 7 4 8 1

 18 9 2 6 4

 20 5 5 3 1

Further suppose that the manager wishes to avoid making price changes of more
than  2 from one year to the next, i.e., if the price in any given year is say  5 per
unit then the manager can fix the price in the following year at most at  7 per unit
in the upward direction or at  3 in the downward direction. Find the optimal price
policy the manager should adopt over the next 4 years and compute the maximum
expected profitability as well using the given information.

Solution: First of all, we divide the given problem into four subproblems or stages
and these subproblems or stages represent the four decisions on which way to
move the price level. The following table represents the same.
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Payoff Table

Year

Price 1 2 3 4
level
(per unit)
 12 3 9  3  7
 14 2 1 2 2
 16 7 4 8 1
 18 9 2 6 4
 20 5 5 3 1

   
Decision Decision Decision Decision

1 2 3 4
or or or or

Stage Stage Stage Stage
1 2 3 4

Now applying backward induction, i.e., working backward, we first solve
the last subproblem. For instance, the last subproblem is which way to move
when you are at one of the price level in the 3rd year. This subproblem may be
solved by evaluating each allowable move from each price level in this stage and
choosing the move with the highest payoff. This can be done as follows:

Price level Given Possible price Related
(per unit) pay offs moves in year Total

Year 3 Year 4 3 and 4 payoffs

 12 3  7  12  12 3 + 7 = 10*
 12  14 3 + 2 = 5

 14  12 2 + 7 = 9*
 14 2    2  14  14 2 + 2 = 4

 14  16 2 + 1 = 3

 16  14 8 + 2 = 10
 16 8 1  16  16 8 + 1 = 9

 16  18 8 + 4 = 12*

 18  16 6 + 1 = 7
 18 6 4  18  18 6 + 4 = 10*

 18  20 6 + 1 = 7

 20  18 3 + 4 = 7*
 20 3 1  20  20 3 + 1 = 4

Similarly, we must solve the subproblem when we are at one of the price
levels in year 2 and the same has been done as follows:
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Price level Given Possible price Related
(per unit) payoffs moves in year Total

Year 2 Year 3 2, 3 and 4 payoffs

 12 9 3  12  12  12 9 + 3 + 7 = 19**
 12  14  12 9 + 2 + 7 = 18

 14  12  12 1 + 3 + 7 = 11
 14 1 2  14  14  12 1 + 2 + 7 = 10

 14  16  18 1 + 8 + 4 = 13**

 16  14  12 4 + 2 + 7 = 13
 16 4 8  16  16  18 4 + 8 + 4 = 16**

 16  18  18 4 + 6 + 4 = 14

 18  16  18 2 + 8 + 4 = 14**
 18 2 6  18  18  18 2 + 6 + 4 = 12

 18  20  18 2 + 3 + 4 = 9
 20  18  18 5 + 6 + 4 = 15**

 20 5 3  20  20  18 5 + 3 + 4 = 12

Similarly, we must solve the subproblem when we are at one of the price
levels in year 1 and the same has been done as follows:

Price Given Possible price
level payoffs moves in year Related total

(per unit) year payoffs

1 2 1 2 3 4

 12  12  12  12 3 + 9 + 3 + 7 = 22*

 12 3 9  12  14  16  18 3 + 1 + 8 + 4 = 16

 14  12  12  12 2 + 9 + 3 + 7 = 21*

 14 2 1  14  14  16  18 2 + 1 + 8 + 4 = 15

 14  16  16  18 2 + 4 + 8 + 4 = 18

 16  14  16  18 7 + 1 + 8 + 4 = 20

 16 7 4  16  16  16  18 7 + 4 + 8 + 4 = 23*

 16  18  16  18 7 + 2 + 8 + 4 = 21

 18  16  16  18 9 + 4 + 8 + 4 = 25*

 18 9 2  18  18  16  18 9 + 2 + 8 + 4 = 23

 18  20  18  18 9 + 5 + 6 + 4 = 24

 20  18  16  18 5 + 2 + 8 + 4 = 19

 20 5 5  20  20  l8  18 5 + 5 + 6 + 4 = 20*

The analysis indicates that the highest possible total payoff is 25 and can be
attained by adopting the following price policy by the manager.
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Year Price per unit Payoff

to be charged

1  18 9

2  16 4

3  16 8

4  18 4

Total 25 (Maximum possible payoff)

The recently stated optimum results can as well be summarised for the sake
of convenience in the form of a payoff (given payoffs as well as accumulated
optimum possible payoffs at each stage of decision-making) matrix as follows:

Arrows in the following table represent the sequence of decisions at various
stages.

Year
Price
level per unit

Rs 12

Rs 14

Rs 16

Rs 18

Rs 20

1 2 3 4 

22 

3 

19 

9 

10 
3 

7

7

21 
2 2 

2 
2

13 
1 

9 

23 

7 

16 
4 

12 
8 

1 

1

25 
9 

14 
2 

10 6 

4 

4

20 

5 

15 

5 
7 

3 
1 

1

Figures in the left hand
corner of boxes represent

Pay offs Represents given pay off

Stage 1 Stage 2 Stage 3 Stage 4

Decision Decision Decision Decision

Optimal pricing policy corresponds to sequence of decisions for which the
accumulated payoff happens to be maximum possible. In the given case it is 25,
corresponding to which pricing decision should be to charge  18 per unit in year
1,  16 in year 3 and  18 in year 4. The various arrows represent this fact in the
matrix provided.

3. Production Scheduling—Inventory Problem

Example 3.7: A certain manufacturing plant is to provide 5 units of a certain item
in period one and 8 units in period 2. It has no inventory at the beginning of period
1 and should not have any inventory at the end of period 2. The production costs
for any period are rupees X2, where X is the number of units produced during the
period. The inventory carrying costs are rupees 5I, where I is the number of units
carried in inventory from one period to the next. What production schedule should
be followed to minimize total costs? Also work out the minimum possible total
costs for solution to the given problem.
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Solution: To find the solution to the problem we start with period 2. Since the
plant wishes to have no inventory at the end of this period, the production amounts
can easily be determined as shown in the following table.

Table for period 2 solution

Beginning Optimal Production Inventory Total
Inventory Production cost + costs = costs

(Units) (Units) ( ) ( ) ( )

0 8 64 + 0 64

1 7 49 + 5 = 54

2 6 36 + 10 = 46

3 5 25 + 15 = 40

4 4 16 + 20 = 36

5 3 9 + 25 = 34

6 2 4 + 30 = 34

7 1 1 + 35 = 36

8 0 0 + 40 = 40

(Note: Since demand in period 2 is of 8 units and as such only enough is produced to meet
this need depending on the level of beginning inventory which can be assumed to be
anything from 0 to 8 units. Values of beginning inventory larger than 8 need not be considered
in view of the fact that we need only 8 units in period two and want no inventory at the end
of it.)

We now turn to period 1. Beginning inventory in period 1 is zero and we require 5
units of the item in period one and 8 units in period two (accordingly our requirement
for both the periods is of 5 + 8 = 13 units) which can be produced in period 1 and
the corresponding solution would be as follows:

Table for period 1 solution

Beginning Possible Cost in period Ending Subse- Total
Inventory Production one Inventory quent
costs
(Units) (Units) Production Inventory Total (units) costs

costs costs costs
( ) ( ) ( ) ( ) ( )

0 5 25 + 0 = 25 0 64 89
6 36 + 0 = 36 1 54 90
7 49 + 0 = 49 2 46 95
8 64 + 0 = 64 3 40 104
9 81 + 0 = 81 4 36 117
10 100 + 0 = 100 5 34 134
11 121 + 0 = 121 6 34 155
12 144 + 0 = 144 7 36 180
13 169 + 0 = 169 8 40 209

The above analysis indicates that the minimum possible total costs is  89
corresponding to which we have the following solution:

Produce 5 units in period 1
Produce 8 units in period 2
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There will be zero inventory at the end of period 1 or at the beginning of
period 2.

Alternatively, the given problem can be solved as under:

Total costs (TC) = 2
1X  + 2

2X  + 5I

where 2
1X = Number of units produced in period one
2
2X = Number of units produced in period two
I = Number of units carried in inventory from one pe

riod to the next

Thus, 2
1X  is the production costs of period one
2

1X  is the production costs of period two

and   5I is the inventory carrying cost incurred during period two

I = (X
1
 – 5) Since inventory to be carried from one period

to the next = (production in period one) –

(requirement in period one)

 
 
 
 
 

and,

:. X
2

= (8 – I)
= [8 – (X

1
 – 5)]

= (13 – X
1
)

Putting these values in TC equation, we can rewrite it as follows:

TC =    22
1 1 113 – 5 – 5X X X 

or TC = 2
1 12 – 21 144X X 

Since we want to find that value of X
1
 for which TC is minimum possible we

can work out 
1

. .T C

X




 and then equating 
1

. .
0,

T C

X





 we can find the desired value

of X
1
 The same has been done as follows:

 T.C = 2
1 12 – 21 144X X 

1

. .T C

X




=  4X
1
 – 21

and taking 4X
1
 – 21 = 0

we have X
1

= 5.25
= 5 units approximately

Thus, we should produce 5 units of the item in period 1 and accordingly we
should produce 8 units in period 2. There will thus be no inventory to be carried
from one period to the other. Total cost for this solution would be:

TC = 2(5)2 – 21(5) +144 = 50 – 105 + 144 =  89.

Alternatively TC can be worked out as follows:
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TC = X
1

2 + X
2

2 + 5I
= (5)2 + (8)2 + 5(0)
= 25 + 64 =  89.

4. Allocation Problem

Example 3.8: A sales manager of a big commercial organization has secured
eight tickets for an all-star cricket match. He will keep one for himself and give the
remaining seven away to various people four four different companies.

Number of Companies
Tickets A B C D

0 0 0 0 0
1 5 4 7 2
2 9 7 10 6
3 11 9 12 8
4 13 11 14 10
5 15 14 16 11
6 16 16 18 12
7 17 16 18 12

Suppose the above numbers represent the additional truckloads of orders
he would receive over the coming year from a particular allocation of tickets. How
many tickets should he distribute within each company so as to maximize his total
additional orders? (Solve the problem applying dynamic programming approach.)

Solution: For applying dynamic programming approach to the given problem, let
us assume that the four companies are just the four stages of this problem. Let us
name company A as stage 1, B as stage 2, C as stage 3 and D as stage 4. The
state of the problem at any given point is given by the number of tickets still to be
allocated to a company.

We shall start with stage 4. The stage 4 solution is just a trivial one. It
consists of the allocation of tickets in company D and will be stated as tabulated in
the Table for Solution to Stage 4.

Table for Solution to Stage 4

Numbers of tickets Optimal numbers Aggregate
to be allocated of tickets to be additional
at stage i = Ti allocated to truckloads

T
4

company of orders:
D represented represented

asT
n

asAA
0

0 0 0
1 1 2
2 2 6
3 3 8
4 4 io
5 5 11
6 6 12
7 6,7 12

It may be noted that there is a tie for T
D
 when T

4
 = 7 since increasing the

number of tickets at company D from 6 to 7 has no effect on the aggregate additional
orders.
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Now we move to stage 3 wherein Company C enters the solution. The
objective now is to obtain an optimal allocation of tickets between companies
C and D. The solution to stage 3 will be as shown in the following table.

Table for Solution to Stage 3

No. of tickets to be Optimal numbers of Aggregate additional
allocated at stage 3 tickets to be allocated truckloads

to company of orders
T

3
T

D
T

C
AA

0

0 0 0 0
1 0 1 7
2 0 2 10
3 2 1 13
4 2 2 16
5 2,3 3,2 18
6 3 3 20
7 3,4 4,3 22

The solution to stage 3 indicates that if there is only one ticket to be allocated,
it should be allocated to company C; if there are four tickets to be allocated, then
they should be allocated like this: 2 to company D and 2 to company C for then
only the aggregate additional truckloads of orders would be the maximum possible.
One can read all other allocations in the table in similar manner. If there are five
tickets, then either, 2 to D and 3 to C or 3 to D and 2 to C may be allocated and
the aggregate additional truckloads of orders, viz., 18 will be the same in both
these cases, which will be maximum possible in case only 5 tickets are there for
allocation. A similar type of situation can be noticed when 7 tickets are to be
allocated.

We now turn to stage 2 wherein we shall think of allocating the tickets to
company B on the one hand and companies C and D taken together on the other
hand in accordance with their respective payoffs. (The payoff in case of company
B is given in the question itself corresponding to different numbers of tickets to be
allocated and the payoff for companies C and D will be those as worked out in the
preceding table giving the solution to stage 3). If we want to optimize the allocation
at this stage, the solution will be as follows:

Table for Solution to Stage 2

No. of tickets to be Optimal numbers of Aggregate additional
allocated at stage 2 tickets to be allocated truckloads

to company of orders
T

2
T

D 
 + T

C
T

M
AA

0

0 0 0 0
1 1 0 7
2 1 1 11
3 1,2 2,1 14
4 2 2 17
5 3 2 20
6 4 2 23
7 4,5 3,2 25

The above solution can be read in the same way as has been explained in
case of solution to Stage 3. Finally, we can turn to stage 1 where in we shall have
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to decide the allocation of tickets between company A on the one hand and
companies B, C and D taken together on the other in accordance with their
respective payoffs for B, C, D as worked out in the preceding table and for A as
given in the question itself. The solution will be as follows:

Table for Solution to Stage 1

No. of tickets to be Optimal numbers of Aggregate additional
allocated at stage 1 tickets to be allocated truckloads

to company of orders
T

1
T

D 
+ T

C
 + T

B
T

A
AA

0

0 0 0 0
1 1 0 7
2 1 1 12
3 1,2 2,1 16
4 2 2 20
5 3 2 23
6 4 2 26
7 5 2 29

The above analysis states that out of 7 tickets to be allocated 2 should be
allocated to company A as per table giving solution to stage 1. Of the remaining 5
tickets 2 should be allocated to company B as per table giving solution to stage 2.
Of the remaining three tickets, 1 should be allocated to company C and 2 should
be allocated to company D as per table giving solution to stage 3. Thus, the optimal
policy will be to allocate 2 tickets to company A, 2 to company B, 1 to company
C and 2 to company D corresponding to which aggregate additional truckloads of
orders would be 9 + 7 + 7 + 6 = 29 which will be the maximum possible number
of additional orders that the manager can obtain by adopting the said policy in
respect of allocation of tickets among the four companies.

3.2.4 Dynamic Programming Under Uncertainty

All the illustrations presented so far are related to apply dynamic programming
technique under certainty situations. It is also possible to bring problems where
uncertainty exists, under the net of this technique. Example 3.5 will illustrate the
use of dynamic programming under uncertainty situation.

Example 3.9: A manufacturing concern must purchase the raw material it requires
within five weeks. If it purchases the raw material at the end of a week, then
whatever price prevails in that week has to be paid for it. If it chooses to wait, then
it must purchase the raw material in some future week, at whatever price prevails
when it decides to purchase the raw material. If it has not purchased before week
5 then it will be forced to purchase the same at the end of week five, since the raw
material is needed for production. The price of the raw material varies each week
according to the probabilities in the following table.

Price Probability

 400 0.4

 500 0.3

 600 0.3
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Work out a purchasing policy which will minimize the expected cost of the
said raw material.

Solution: This problem may be solved by applying dynamic programming
approach as follows:

Let n = Week number (or the stage number), n = 1, 2 ... 5 in the given
case

X
n

= Price observed in week n (or the state variable)

f
n 
(X,) = Minimum expected cost if price observed in week n is X

n
 and

an optimal policy is adopted from week n to the natural end of
the problem (or the return function)

Working backward, we consider that last week, viz., week 5 first of all for
which

f
5
 (X

5
) = X

5

Since the manufacturing concern must purchase the raw material in week, 5 if it
has not purchased the same earlier.

Turning to week 4 we may state the following:
  Act    Wait

f
4 

X
4

= Min[X
4
; (400) (0.4) + (500)(0.3) + (600)(0.3)]

That is, the manufacturing concern may either act and obtain the price X
4 
or

wait and obtain the expected value of the price in the last week. Let us rewrite the
above equation concerning f

4
(X

4
) in terms of (X

5
), where

f
5
(X

5
) = X

5

 Act Wait
f

4
(X

4
) = Min [X

4
;  f

5
(400) (0.4) + f

5
(500)(0.3) + f

5
(600)(0.3)]

Similarly, the situation in week 3 can be stated as follows:

 Act Wait
f

3
(X) = Min [X

3
;  f

4
(400) (0.4) + f

4
(500)(0.3) + f

4
(600)(0.3)]

Similarly, the situation for any other week can be stated in a general form as follows:

 Act       Wait
f(X) = Min [X

n
; f

n+1
(400) (0.4) + f

n+l
(500)(0.3) +

f
n + l

(600)(0.3)]
n = 1, 2, ... 4

These equations may be solved recursively starting with equation f(X
5
) = X

5

and working backwards. At week 5 the material must be purchased if the same
has not been purchased earlier. At week 4, equation concerning f

4
(X

4
) stated

above holds and to perform the minimisation involved in it we set the values of the
two alternatives viz ‘Act’ or ‘Wait’ equal to each other and solve for the break-
even value of X

4
, represented as X

4b
 and it works out to:

X
4b

= (400)(0.4) + (500) (0.3) + (600) (0.3)
= 160 + 150 + 80 = 490

If the price in week 4 is below  490, the purchase should be made immediately
otherwise the purchase should be delayed. It is necessary to record the minimum
expected cost at week 4:
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4
4 4

400if 400
( )

490otherwise

X
f X


 


This states that the minimum expected cost as of week 4 is  400 if price is  400
or  490 if the price is either  500 or  600. The value of  490 represents the
expected price in week 5.

Now turning to week 3 we may say that

     Act                Wait
f

3
(X

3
) = Min [X

3
;  f

4
(400) (0.4) + f

4
(500)(0.3) + f

4
(600)(0.3)]

Substituting the result of  
4

4 4

400if 400
( )

490otherwise

X
f X


 


worked out above in it we have,

     Act Wait
f

3
(X

3
) = Min [X

3
 (400) (0.4) + (490)(0.3) + (490) (0.3)]

Again we find the break even value for X represented as X   as follows:
X

3t
= (400) (0.4) + (490) (0.3) + (490) (0.3)
= 160 + 147 + 147 = 454

If the price in week 3 is below  454 the purchase should immediately be
made, but if the price is above  454, the purchase should be delayed. The minimum
expected cost at week three is recorded as follows:

3
3 3

400if 400
( )

490otherwise

X
f X


 


Act Wait

f
2
(X

2
) = Min [X

2
; (400) (0.4) + (454)(0.3) + (454) (0.3)]

Thus, X
u

= (400) (0.4) + (454)(0.3) + (454)(0.3)

= 160 + 1362 + 136.2

= 43240

and accordingly we have,

2
2 2

400if 400
( )

432.40otherwise

X
f X


 


[432.40 otherwise turning to week 1 we may say that

Act Wait

f
2
(X

2
) = Min [X

2
; (400) (0.4) + (432.40)(0.3) + (432.40) (0.3)]

Thus, X
2

= (400) (0.4) + (432.40)(0.3) + (432.40)(0.3)

= 160 + 129.72 + 129.72

= 419.44

and accordingly, we have,
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1
1 1

400if 400
( )

419.54otherwise

X
f X


 


The optimal policy for the manufacturing concern may be summarized as
follows:

If the price in weeks, 1, 2, 3 or 4 is  400 then the firm must make the
purchase immediately otherwise it must wait. If no purchase has been made by
week 5, the purchase must be made at the price prevailing in week 5. If this policy
is adopted the minimum expected cost is  400 if X equals  400; and  419.54
if X is greater than  400. Prior to knowing X, the minimum expected cost is:

= 400 (0.4) + (419.54)(0.6)
= 160 + 251.724 =  411.72

Check Your Progress

1. Define the principle of optimality.

2. What are the dynamic programming techniques?

3. Name the problems in dynamic programming.

3.3 GAME THEORY

Competition is a watchword of modern life. We say that a competitive situation
exists if two or more individuals are making decisions in situation that involves
conflicting interests and in which the outcome is controlled by the decisions of all
parties concerned. We assme that in a competitive situation, each participant acts
in a rational manner and tries to resolve the conflict of interests in his favour. It is in
this context that game theory has developed. Professor John von Neumann and
Oscar Morgenstern published their book entitled ‘The Theory of Games and
Economic Behaviour’ wherein they provided a new approach to many problems
involving conflict situations—an approach now widely used in Economics, Business
Administration, Sociology, Psychology and Political Science as well as in Military
Training. Fundamentally, the theory of games attempts to provide an answer to the
question: What may be considered a rational course of action for an individual
confronted with a situation whose outcome depends not only upon his own actions
but also upon the actions of others, Who in turn, are faced with a similar problem
of choosing a rational course of action? In fact, the theory of games is simply the
logic of rational decisions.

The term ‘Game’ represents a conflict between two or more parties. Game
theory is really the ‘Science of Conflict’. It is not concerned with finding an optimum
or winning strategy for a particular conflict situation but it provides general rules
concerning the logic that underlies strategic behaviour of all types.

Game theory applies to those competitive situations that are technically
known as ‘Competitive Games’ or simply ‘Games’. Situations, in order to be
termed games, must possess the following properties:

(i) The number of competitors is finite.
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(ii) There is a conflict of interests between the participants.
(iii) Each of the participants has available to him a finite list of possible

courses of action, i.e., several choices of appropriate actions; this list
being not necessarily the same for each competitor.

(iv) The rules governing these choices are specified and known to all the
players; a play of the game results when each of the players chooses
a single course of action from the list of courses available to him.

(v) The outcome of the game is affected by the choices made by all the
players; the choices are made simultaneously so that no competitor
knows his opponent’s choice until he is already committed to his own.

(vi) The outcome for all the specific sets of choices by all the players is
known in advance and numerically defined. The outcome of a play
consists of the particular set of courses of action undertaken by the
competitors. Each outcome determines a set of payments (+ve, –ve
or zero), one to each competitor.

Illustration of a Game

When a competitive situation meets all the above stated criteria, we can call it
a game. This can be made clear by an example of a simple game. Suppose
there are two opponents X and Y. We can think of them as sitting across a
table from each other and each with two buttons in front of him. We shall
denote player X’s buttons , m and n and player Y’s buttons as r and t; thus
each player has two choices open to him. We also presume a partition between
them so that neither can see in advance which button his opponent is going to
press. At a signal from a third party, each player presses one of his buttons.
The results of each of the possible four combinations is known in advance to
both of the players; the uncertainty inherent in the game arises from the fact
that neither player knows what button his opponent will press next. Every
time the third party signals, each player presses one of his buttons and the
game thus continues. At the end of, say, a hundred ‘Plays’, the game is over
and the points won by each of the players are totalled and the winner is
determined. It is assumed that both players are of equal intelligence and that
each actively attempts to win the game.

This sort of simple game can be illustrated in tabular form as follows:

A Simple Game in Tabular Form
Player Y

Button r Button t

Button X wins X wins
m 2 points 3 points

Player X              
Button Y wins Y wins

n 3 points 1 point

In the above table, the plays open to each of the opponents and the resulting
gains or losses (called payoffs) have been shown. This game is biased against
Player Y because if Player X presses button m for each play of the game, Player Y
cannot win; in fact, Player Y faces a choice between losing 2 points on each play
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if he responds by pressing Button r or losing 3 points on each play if he responds
by pressing Button t. Player Y will respond each time by pressing Button r since
this represents his least loss alternative. Thus, Player X will win 2 points on each
play of the game. We can similarly present a game biased against Player X wherein
X has no chances winning and at best an minimize his losses like Player Y in the
above stated case.

But all simple games cannot be said to have such simple solutions. This can
be illustrated by the following example of a game:

A Simple Game in Tabular Form
Player Y

Button r Button t

Button Y wins X wins
m 4 points 3 points

Player X              
Button X wins Y wins

n 1 point 2 points

In the above case, it is not as simple as it was in the earlier example to
determine the individual player’s strategies. We can see from the game that Player
X would not press his button m, hoping to win 3 points on each play simply
because Player Y could counter with button r and win 4 points himself. Similarly,
Player Y would not press button  hoping to win 4 points on every play because
Player X could counter with his button n and win 1 point himself. In such a situation,
therefore, it is advantageous for the players to play each of their choices (buttons)
a part of the time only. How to calculate the proportion of time to allot to each
choice shall be discussed a little later.

Standard Conventions in Game Theory

In order to eliminate the necessity for written descriptions of the ‘Payoffs’ (as we
have shown in the above two examples), a standard set of conventions has been
established in game theory. It is the usual practice to omit a description like ‘Player
X wins two points’ and replace it with integer 2. The positive algebraic sign which
is assumed to accompany this number indicates that it is Player X who benefits
from this payoff. Similarly, instead of saying ‘Player Y wins three points’ one simply
indicates this with the value –3, the minus sign indicating that it is Player Y who
benefits from this particular payoff.

Another standard convention that is usually followed is that Player X has
choices between the rows and Player Y has choices between the columns.

Keeping these two conventions in view we can write the above stated two
illustrations of games as follows:

Illustration 1 Illustration 2

Player Y Player Y

2 3 –4 3
Player X     Player X   

–3 –1 1 –2
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A further convention in game theory is known as matrix notation. In this
case, games are represented in the form of a matrix (a rectangular array of numbers
deriving from matrix algebra). When games are expressed in this fashion, the resulting
matrix is commonly known as a payoff matrix. The above stated two illustrations
can be put in the form of payoff matrices as follows:

Illustration 1 Illustration 2

Player Y Player Y

Player X 
2 3

3 1

 
   

Player X 
4 3

1 2

 
  

The term strategy is often talked about in game theory. It refers to the
total pattern of choices employed by any player. It may be defined as a complete
set of plans of action specifying precisely what the player will do under every
possible future contingency that might occur during the play of the game. For
example, if Player X chooses to play his first row half of the time and his second
row half of the time, his strategy for the game is 1/2, 1/2. Thus, the strategy of a
player is the decision rule he uses for making the choice from his list of courses
of action. The strategy could be a pure or mixed one. When a player plays one
row all the time (or one column all the time) he is said to be adopting a pure
strategy. In a mixed strategy, Player X will play each of his rows a certain part of
the time and Player Y will play each of his columns a certain part of the time. In
business, a close analogy is when, for example, a manager follows a certain
course of action A until an alternate course of action B appears to be more
profitable. Later on, should Action A appear more attractive again, the manager
switches back to it.

3.3.1 Two-Person Zero-Sum Games

In game theory, a zero-sum game is a mathematical representation of a situation in
which each participant’s gain or loss of utility is exactly balanced by the losses or
gains of the utility of the other participants. Alternatively, we can say that the zero-
sum games are the games in which one player’s win is the other player’s loss. If
the total gains of the participants are added up and the total losses are subtracted,
then they will sum to zero. Thus, for example, cutting a cake, where taking a larger
piece reduces the amount of cake available for others as much as it increases the
amount available for that taker, is a zero-sum game if all participants value each
unit of cake equally.

In contrast, non-zero-sum describes a situation in which the interacting
parties’ aggregate gains and losses can be less than or more than zero. A zero-sum
game is also called a strictly competitive game while non-zero-sum games can be
either competitive or non-competitive. Zero-sum games are most often solved
with the ‘Minimax Theorem’ which is closely related to linear programming duality
or with Nash equilibrium. Many mathematicians have a reasoning prejudice
towards seeing situations as zero-sum, known as zero-sum bias.

Definition: A two player game is called a zero-sum game if the sum of the
payoffs to each player is constant for all possible outcomes of the game. More
specifically, the terms or coordinates in each payoff vector must add up to the
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same value for each payoff vector. Such games are sometimes called constant-
sum games as an alternative.

The zero-sum property (if one gains, another loses) means that any result of
a zero-sum situation is Pareto optimal. Generally, any game where all strategies
are Pareto optimal is called a conflict game. Following is the example of generic
zero-sum game:

 Choice 1 Choice 2 

Choice 1 −A, A B, −B 

Choice 2 C, −C −D, D 

Zero-sum games are a specific example of constant-sum games where the
sum of each outcome is always zero. Such games are distributive, not integrative;
the pie cannot be enlarged by good negotiation.

Situations where participants can all gain or suffer together are referred to
as non-zero-sum. Other non-zero-sum games are games in which the sum of
gains and losses by the players are sometimes more or less than what they began
with.

The idea of Pareto optimal payoff in a zero-sum game gives rise to a
generalized relative selfish rationality standard, the punishing-the-opponent
standard, where both players always seek to minimize the opponent’s payoff at a
favourable cost to himself rather to prefer more than less. The punishing-the-
opponent standard can be used in both zero-sum games, for example warfare
game and chess, and non-zero-sum games, for example pooling selection games.

Basic Concepts of Two-Person Zero-Sum Games

Following are the basic and significant concepts of simple two-person zero-sum
games:

 A two-person game is characterized by the strategies of each player and
the payoff matrix.

 The payoff matrix shows the gain (positive or negative) for player 1 that
would result from each combination of strategies for the two players.
Remember that the matrix for player 2 is the negative of the matrix for
player 1 in a zero-sum game.

 The entries in the payoff matrix can be in any units as long as they represent
the utility (or value) to the player.

 There are two key assumptions about the behaviour of the players. The
first is that both players are rational. The second is that both players are
materialistic meaning that they choose their strategies in their own interest.

3.3.2 Sum Games

In game theory, the concept ‘Value of a Game’ is considered very important. It
refers to the average payoff per play of the game over an extended period of time.
This can be explained by an example. Suppose the two games are as follows:
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Player Y Player Y

Player X 
3 4

6 2

 
  

Player X  
7 2

3 1

 
   

Game One Game Two

(With a Positive Value) (With a Negative Value)

In game one, Player X would play his first row on each play of the game and
Y would respond by playing his first column each time in order to minimize his
losses. Since Player X wins three points on each play of the game, his average
winnings per play will also be three as long as the game is played. The value of the
game is thus three with an implicit positive algebraic sign which denotes that Player
X wins the game. But in game two, Player Y plays his first column on each play of
the game and Player X responds by playing his second row on each play of the
game in order to minimize losses. As a result, Y wins 3 points on each play of the
game. Since the average payoff per play is –3, the value of this game is –3, the
minus sign indicating that Y is  the winner.

But determining the value of the game is not always as simple as in the case
of these two examples. In case the players determine that their best alternative is
to play each row or each column a certain part of the time, calculating the value of
the game becomes a bit more complex. We shall take them up a little later in this
unit.

Now we shall see the process of determination of optimum strategies and
the value of a game with the help of some illustrations.

Example 3.10: Determine the optimum strategies for the two players X and Y
and find the value of the game from the following payoff matrix:

Player Y

Player X  

3 1 4 2

1 3 7 0

4 6 2 9

 
    
   

Solution: For determining the optimum strategies, the cautious approach is to
assume the worst and act accordingly. If Player X plays with first row strategy,
then Player Y will play with second column the win one point, otherwise he will
lose 3, 4 and 2 if he plays with column, 13 and 4 respectively. If Player X plays
with second row strategy, then the worst would happen to him only when Player Y
plays with the third column because in that case Y would win 7 points. If Player X
plays with third row strategy, then the worst he can expect is losing 9 points when
Y plays with the fourth column. In this problem then, Player X should adopt first
row strategy because only then his loss will be minimum. Thus, Player X can make
the best of the situation by aiming at the highest of these minimal payoffs. This
decision rule is known as ‘Maximin Strategy’.
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Looking from the perspective of Player Y, we can say that if Y plays with
column first strategy the maximum he can lose is 4 points if Player X adopts the
strategy of row three. If Player Y plays with column two strategy, there is no
question of any loss whatever may be the strategy of Player X. In such a case
player X will adopt the strategy of row one, for only then his loss will be minimum.
If Player Y plays with column third strategy, the maximum he can lose is 4 points if
X adopts the strategy of row one. If Y adopts the strategy of column four, he can
lose at the most 2 points if X adopts the strategy of row one. In this problem then,
Y should adopt the second column strategy and thereby ensure a victory of 1 point
which is the maximum in the given case. Thus, Player Y can make the best of the
situation by aiming at the lowest of these maximum payoffs (viz., 4, –1, 4, 2).
Thus, he should seek the minimum among the maximum payoffs. This decision
rule is known as ‘Minimax Strategy’.

Thus, Player Y will play his second column on each play and Player X will
respond by playing his first row on each play. In this way, Y will win 1 point and X
will lose 1 point in each play. Hence, this is a two-person zero-sum game with a
pure strategy. Since Y will win 1 point and X will lose 1 point in each play, the
value of the game is –1. This payoff –1 is then a saddle point in the given game and
can be marked (encircled) as under:

            Player Y       

Player X  

3 1 4 2

1 3 7 0

4 6 2 9

 
    
   

3.3.3 Games With Mixed Strategies

In game theory, the strategy of a player in a game is a complete plan of action for
any situation that may occur. This determines the complete behaviour of player
and the player’s strategy determines the action that the player will take at any stage
of the game.

A strategy profile is also sometimes termed as strategy combination. It is a
set of strategies for each player that specifies all actions in a game. It must include
one and only one strategy for every player. Sometimes the strategy concept is by
mistake confused with that of a move. A move is an action taken by a player at
some point during the play of a game whereas a strategy is a complete algorithm
for playing the game because it guides a player what to do for every possible
situation throughout the game. A player’s strategy set describes what strategies
are available for playing the game. Strategies are of two types, pure and mixed. A
pure strategy provides a complete definition of how a player will play a game. A
mixed strategy is an assignment of a probability to each pure strategy. This allows
for a player to randomly select a pure strategy. Since probabilities are continuous,
there are infinitely many mixed strategies available to a player, even if their strategy
set is finite. Certainly, a pure strategy can be considered as a degenerate case of a
mixed strategy in which that specific pure strategy is selected with probability 1
and every other strategy with probability 0.
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A totally mixed strategy is a mixed strategy in which the player assigns a
strictly positive probability to every pure strategy. The totally mixed strategies are
important for equilibrium refinement.

Consider the payoff matrix table of pure coordination game (Refer
Table 3.4). Here one player chooses the row and the other chooses a column.
The row player receives the first payoff, the column player the second. If row opts
to play A with probability 1, i.e., play A for sure then the player is said to be
playing a pure strategy. If column opts to flip a coin and play A if the coin lands
heads and B if the coin lands tails then the player is said to be playing a mixed
strategy and not a pure strategy.

Table 3.4 Pure Coordination Game

 A  B  

A  1 ,1  0 ,0  

B  0 ,0  1 ,1  

Example 3.11: Find the optimum strategies and the value of the game from the
following payoff matrix concerning two-person game:

Player Y

Player X
1 4

5 3

 
 
 

Solution: In the given game, there is no saddle point because there is no one value
which is smallest value in its row and largest in its column. Therefore the players
will resort to what is known as mixed strategy, i.e., player X will play each of his
rows a certain portion of time and player Y will play each of his columns a certain
part of the time. The question then is to determine what proportion of the time a
player should spend on his respective rows and columns. This can be done by the
use of algebraic method stated as follows.

Let Q equal the proportion of time player X spends playing the first row,
then 1–Q must equal the time he spends playing his second row (because one
equals the time available for play). Similarly, suppose player Y spends time R in
playing first column and 1–R proportion of time he spends playing the second
column. All this can be stated as under:

Player Y
R     1–R

1 4
Player 

1 – 5 3

Q
X

Q

 
 
 

Now, we must find out the values of Q and R. Let us analyse the situation
from X’s view point. He would like to devise a strategy that will maximize his
winning (or minimize his losses) irrespective of what his opponent Y does. For this
X would like to divide his play between his rows in such a manner that his expected
winnings or losses when Y plays the first column will equal his expected winnings
or losses when Y plays the second column. Expected winnings indicate the sum,
overtime, of the payoffs multiplied by the probabilities that these payoffs will obtain.
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This can be calculated as shown below:

X’s EXPECTED WINNINGS

When Y Plays When Y Plays
Column One Column Two

X Plays Row One: (1) (Q) (4) (Q)
Q of the Time
X Plays Row Two: 5(1 – Q) 3(1 – Q)
1–Q of the Time.

X’s Total Expected Q + 5(1 – Q) 4Q + 3(1 – Q)
Winnings

Equating the expected winnings of X when Y plays column one with when Y plays
column two we can find the value of Q as follows:

Q + 5(1 – Q) = 4Q + 3(1 – Q)
or Q + 5 – 5Q = 4Q + 3 – 3Q
or –5Q = –2
or Q = 2/5
 1 – Q = 3/5

This means that player X should play his first row 2/5 of the time and his second
row 3/5 of the time if he wants to maximize his expected winnings from the game.

On the similar basis expected losses of Y can be worked out as under:

Y’s EXPECTED LOSSES

Y Plays Column One Y Plays Column Two Y’s Total Expected
R of the Time 1—R of the Time Losses

When X Plays 1(R) 4(1 – R) R + 4(l – R)
Row One

When X Plays 5(R) 3(1 – R) 5R + 3(1 – R)
Row Two

Equating the expected losses of Y when X plays row one with when X plays
row two, we can find the value of R as follows:

R + 4(1 – R) = 5R + 3(l – R)
R + 4 – 4 R = 5R + 3 – 3R

or –5R = –1
or R = l/5
 1 – R = 4/5

This means that player Y should play his first column 1/5 of the time and his second
column 4/5 of the time if he wants to minimize his expected losses in the game.

Now we can illustrate the original game with the appropriate strategies for
each of the player as follows:

Player Y
               1/5  4/5

          Player X        
2/5 1 4

5 33/5

 
 
 
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Alternative Method or Short Cut Method  for Finding the Above Strategies

Original game
    Y
1 4

5 3
X
 
 
 

Step 1: Subtract the smaller payoff in each row from the larger one and the smaller
payoff in each column from the larger one.

Y
31 4 (i.e., 4 – 1 = 3)

5 3 (i.e., 5 – 3 = 2 )2
4 1

X
 
 
 

    (i.e. 5 – 1 =  4) (i.e. 4 – 3=1)

Step 2: Interchange each of these pairs of subtracted numbers found in Step 1
above.

Y

1 4 2

5 3 3
1 4

X
 
 
 

Step 3: Put each of the interchanged numbers over the sum of the pair of numbers.

Y

           

2/(2 3)1 4

5 3 3/(2 3)
X

 
 
  

  1/(1 + 4) 4/(1 + 4)
Step 4: Simplify the fraction to obtain the proper proportions or the required
strategies.

Y

  
2 /51 4

5 3 3/5
X
 
 
 
1/5 4/5

Now we determine the value of the game. Looking at the game from X’s point of
view we can argue as follows:

(i) During the 1/5 of the time Y plays column one, X wins 1 point 2/5 of the
time (when X plays row one) and 5 points 3/5 of the time (when X plays
row second).

(ii) During the 4/5 of the time Y plays column two, X wins 4 points 2/5 of the
time (when X plays row one) and 3 points 3/5 of the time (when X plays
row second).
Thus total expected winnings of player X are the sum of the above two

statements as under:

       1 2 3 4 2 3
1 5 4 3

5 5 5 5 5 5
  

          
                   
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= 
1 17 4 17

5 5 5 5
     

     
     

= 
17 68

25 25


= 
85

25

= 
17

5
Thus the value of the game is 17/5 which means that player X can expect to

win an average payoff of 17/5 points for each play of the game if he adopts the
strategy we have determined as stated above. If the value of the game determined
above had a negative sign, it would simply signify that Y was the winner. The same
result we can also get by looking at the game from Y’s point of view doing similar
calculations.

Pure and Mixed Strategies with Saddle Point

The saddle point in a payoff matrix is the one which is the smallest value in its row
and the largest value in its column. The saddle point is also known as the equilibrium
point in the theory of games. An element of a matrix that is simultaneously the
minimum of the row in which it occurs and the maximum of the column in which it
occurs is a saddle point of the matrix game. In a game having a saddle point, the
optimum strategy for Player X is always to play the row containing a saddle point
and for Player Y to play the column that contains a saddle point. The saddle point
also gives the value of such a game. The saddle point in the payoff matrix of a
game may or may not exist. If there is a saddle point, we can easily find out the
optimum strategies and the value of the game by what is known as solution by
saddle point without having to do too many calculations. But when the saddle
point is not there, then we have to use algebraic methods for working out the
solutions of the game problems.

Game Problems of Mixed Strategy

Example 3.12: Find the optimum strategies and the value of the game from the
following payoff matrix concerning a two-person game:

Player Y

Player X  
1 4

5 3

 
 
 

Solution: In the given game, there is no saddle point because there is no one
value which is smallest in its row and largest in its column. Therefore, the players
have to resort to mixed strategy, i.e., Player X will play each of his rows a certain
part of time and Player Y will play each of his columns a certain part of the time.
The question then is to determine the proportion of time a player should spend on
his respective rows and columns. This can be done by the use of the following
algebraic method:
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Let Q equal the proportion of time Player X spends playing the first row,
then 1 – Q must equal the time he spends playing his second row (because one
equals the time available for play). Similarly, suppose Player Y spends time R in
playing the first column and 1 – R be the time he spends on playing the second
column. All this can be stated as follows:

Player Y

Player X  
1 4

1 5 3

Q

Q

 
   

Now, we must find the values of Q and R. Let us analyse the situation from
X’s view point. He would like to devise a strategy that would maximize his winning
(or minimize his losses) irrespective of what his opponent Y does. For this, X
would like to divide his play between his rows in such a manner that his expected
winnings or losses, when Y plays the first column equal to his expected winnings or
losses when Y plays the second column. (Expected winnings indicate the sum,
overtime, of the payoffs that will be obtained multiplied by the probabilities that
these payoffs will obtain). In our case, we can calculate the same as follows:

X’s Expected Winnings

When Y plays When Y plays

Column one Column two

X plays row one: (1) (Q) (4) (Q)

Q of the time

X plays row two: 5(1– Q) 3(1 – Q)

1 – Q of the time

X’s total expected winnings Q + 5(1 – Q) 4Q + 3 (1 – Q)

Equating the expected winnings of X when Y plays column one with when Y
plays column two, we can find the value of Q as follows:

Q + 5(1 – Q) = 4Q + 3(1 – Q)

Q + 5 – 5Q = 4Q + 3 – 3Q

–5Q = –2

Or Q = – 2/5

1 – Q = 3/5

This means that Player X should play his first row 2/5 of the time and his
second row 3/5 of the time if he wants to maximize his expected winnings from the
game.

Similarly, the losses of Y can be worked out as follows:

Y’s Expected Losses

Equating the expected losses of Y when X plays row one with when X plays
row two, we can find the value of R as follows:

R + 4(l – R) = 5R + 3(1 – R)

R + 4 – 4R = 5R + 3 – 3R
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Or –5R = –1

Or R = 1/5

1 – R = 4/5

This means that Player Y should play his first column 1/5 of the time and his
second column 4/5 of the time if he wants to minimize his expected losses in the
game.

Now we can illustrate the original game with the appropriate strategies for
each of the player as follows:

Player Y

2 / 5

3/ 5

1 4
Player

5 3
X

 
 
 

An Alternative Method (or the Short-Cut Method) for finding the above
strategies is as follows:

Original game

Y

1 4

5 3
X
 
 
 

Step 1 Subtract the smaller payoff in each row from the larger one and the
smaller payoff in each column from the larger one.

Y

1 4 3

5 3 2
X
 
 
 

(i.e., 4 – 1 = 3)

(i.e., 5 – 3 = 2)

(i.e., 5 – 1 = 4) (i.e., 4 – 3 = 1)

Step 2 Interchange each of these pairs of subtracted numbers found in
Step 1 above.

Y

1 4 2

5 3 3

1 4

X
 
 
 

Step 3 Put each of the interchanged numbers over the sum of the pair of the
numbers.

Y

1 4 2 /(2 3)

5 3 3/(2 3)

1/(1 4) 4 /(1 4)

X
 

   
 

Step 4 Simplify the fraction to obtain the proper proportions or the required
strategies.
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Y
1 4 2 /5

5 3 3/5

1/5 4/ 5

X
 
 
 

Now we determine the value of the game. Looking at the game from X’s
point of view we can argue that:

(i) During the 1/5 of the time that Y plays column one, X wins 1 point
2/5 of the time (when X plays row one) and 5 points 3/5 of the time
(when X plays row second).

(ii) During the 4/5 of the time that Y plays column two, X wins 4 points
2/5 of the time (when X plays row one) and 3 points 3/5 of the time
(when X plays row second).

Thus, the total expected winnings of player X are the sum of the above two
statements, that is,

1 2 3 4 2 3
(1) (5) (4) (3)

5 5 5 5 5 5

                               

1 17 4 17

5 5 5 5

17 8

25 25
85

25
17

5

                      


 





Thus, the value of the game is 17/5 which means that Player X can expect to
win an average payoff of 17/5 points for each play of the game if he adopts the
strategy we have determined above. If the value of the game determined above
had a negative sign, it would simply signify that Y was the winner. The same result
can also be achieved by looking at the game from Y’s point of view and carrying
out similar calculations.

First Alternative Method (or Short-cut Method) for Determining the Value
of a Game

Under this, we calculate:

X’s expectations when Y plays column one,

X’s expectations when Y plays column two,

Y’s expectations when X plays row one

Y’s expectations when X plays row 2

In all these four cases the answer remains the same. Hence, any one of
these calculations is sufficient to determine the value of the game. The logic
behind this approach is the same as that of determining the optimum strategies.
(In the case of Player X, we determined a strategy that guaranteed X the same
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winnings, irrespective of his opponent’s choice of columns). This can be illustrated
as follows:

(1×   ) + (5×   ) =2
5

3
5

Player X

17
5

2
5

3

1

5

1
5

4
5

2
5

Player
1
5

4
5

17
5

17
5

17
5

Fig. 3.10 Diagrammatic Form of Determining the Value of a Game

Second Alternative Method for Determining the Value of a Game Using
the Probabilities of Each Payoff

In a simple 2 × 2 game without a saddle point, each player’s strategy consists of
two probabilities denoting the portion of the time he spends on each of his rows or
columns. Since each player plays a random pattern, we can list the probabilities of
each payoff (in our given question) as follows:

Payoff Strategies which Produce Probability of this
this Payoff Payoff

1 Row 1 column 1
2 1 2

5 5 25
 

4 Row 1 column 2
2 4 8

5 5 25
 

5 Row 2 column 1
3 1 3

5 5 25
 

3 Row 2 column 2
3 4 12

5 5 25
 

Sum = 1.0

The value of the game can be found out by taking the sum of the products of
each of these payoffs and their respective probabilities.

For the given problem, this can be worked out as follows:
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Payoff Probability of the Product of the first two
Payoff Columns

1
2

25

2

25

4
8

25

32

25

5
3

25

15

25

3
12

25

36

25

Total = 
85

25

 = 
17

5
 (Value of the Game)

Mixed Strategy Problems by Arithmetic Method

By mixed strategy is meant a situation in which the course of action is selected
with some fixed probability. As such, there is a probabilistic situation. In such a
strategy, the objective of the players is to maximize the expected gain or minimize
the expected loss by choosing among various pure strategies with fixed
probabilities.

In mathematical terms, a mixed strategy for a player having two or more
courses of action can be thought as a set S of n probabilities (whose sum is unity).
Here, n is the number of pure strategies by the player. Let p

j
 be the probability of

selecting strategy j, where j = 1, 2, 3, ……, n.

Then, S = {p
1, 

p
2, 

……., p
n
}; p

1 
+

 
 p

2 
+ …….+ p

n
 = 1 and j p

j 
 0.

There are cases when a pure strategy for a game may not exist. Hence, no
saddle point exists. In such cases, both the players choose an optimal mixture of
strategies to find an equilibrium point. The optimal mixed strategy may be determined
for each player in this case by assigning the probability of it being chosen to each
strategy. This is known as mixed strategy since this is a probabilistic combination
of the available choices of strategy.

Value of the Game

When the mixed strategy is obtained, it has the least payoff that Player A can
expect to gain and Player B can expect to lose. The expected payoff with
arbitrary payoff matrix [a

ij
] of order m × n is given by E(p, q) =  p

i
 a

ij 
q

j 
 =

PT A Q, where i = 1, 2, …., m and j = 1, 2, ….,n;  P = (p
1, 

p
2, ……., 

p
m
) and Q

= (p
1, 

p
2, ……., 

p
n
)

Arithmetic Method of Solving Mixed Strategy Problems

This method is also known as the short-cut method. This is a simple method in
which the optimal strategy is found for each player in a payoff matrix of order
2 × 2 with no saddle point. The followings are steps to be adopted in this method:
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1. Calculate the difference between the two values of the first row, neglecting
the negative sign, and put it against the second row.

2. Calculate the difference between the two values of the second row, neglecting
the negative sign, and put it against the first row.

3. Repeat the above two steps for the two columns also.

The values obtained by swapping the differences, as stated above, are the optimal
relative frequencies for play for the strategies of both the players. These are then
converted into probabilities by dividing each by their sum.

Note: This method cannot be used to solve a 2 × 2 game having a saddle point.

Example 3.13: The following is the payoff matrix of two competitor companies
in terms of their advertising plan.

  
Company B  

Company A  

Normal
Advertisement A
Special
Advertisement A

1

2

 12 15 

14 10 
 

Normal
Advertisement
B1

Special
Advertisement
B2

Suggest the optimal strategies for the two companies and the net outcome.

Solution: The payoff matrix has no saddle point and so mixed strategies and
arithmetic methods can be used.

The solution reveals that Company A should adopt strategy A
1
, 57% of the

time and A
2
, 43% of the time. In the same way, Company B should adopt strategy

B
1
, for 71% of the time and B

2
, 29% of the time.

We can now calculate the expected gain for Company A as follows:

(i) 12 × 4/7 + 14 × 3/7 = 90/7 and Company B adopts B
1

(ii) 15 × 4/7 + 10 × 3/7 = 90/7 and Company B adopts B
2

We proceed as follows:
Company 

A
Company 

B

B1 B2

A1

A2

12

14

15 – 10 = 5

p(B ) = 5/(5 + 2) = 5/71

15

10

14 – 12 = 2

p(B ) = 2/(5 + 2) = 2/72

14 – 10 = 4

15 – 12 = 3

p(A ) = 4/(4 + 3) = 4/71

p(A ) = 3/(4 + 3) = 3/72

The expected loss for Company B is,

(i) 12 × 5/7 + 15 × 2/7 = 90/7 and Company A adopts A
1

(ii) 14 × 5/7 + 10 × 2/7 = 90/7 and Company A adopts A
2
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3.3.4 Graphical Solution

The graphic method can only be used in games with no saddle point and having
payoff m × n matrices where either m or n is two. The graphic method enables us
to substitute a much simpler 2 × 2 matrix for the original m × 2 or 2 × n matrix.

We will apply the graphic short-cut by plotting on 2 different vertical axis,
the 2 payoffs corresponding to each of the 5 columns. The payoff numbers in the
first row are plotted on axis 1 and those in the second row on axis 2, which should
be drawn at some distance away from the first axis but should be parallel to the
first axis as shown in the following figure:

A   —

6

5

4

3

2

1

0

–1

   —

   —

   —

   —

   —

   —

   —

   —

–2   —

–3K   —

–4   —

–5   —

–6   —

—    

—    

—    

—       

—    

—    

—    

—  

—  –2

—  –3

—  –4

—  –5

—  –6

6

5

4

3

2

1

0

–1

Axis 1 Axis 2

B

T

L

Fig. 3.11 Graphic Method

Thus, the 2 payoff numbers 6 and 3 in the first column are denoted
respectively by point A on axis 1 and point B on axis 2. Line AB then denotes Y’s
move of the first column. By plotting the payoff numbers of each of the remaining
4 columns on the 2 axes, we obtain five lines like the line AB, which correspond to
the given 5 moves of Y.

If using a thick line we draw the segments which bound the figure from the
bottom, namely, the segments AT and LT and mark the highest point (7) on this
boundary, the two lines passing through it identify the two critical moves of Y,
which combined with the two of X, yield the following 2×2 matrix:

1 3

4 1
X

  
   

The optimal strategies now can be determined in the way explained above.

Example 3.14: Determine the optimum strategies and the value of the game from
the following payoff matrix concerning a 2 person 4×2 game.
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6 2

3 4

2 9

7 1

Y

X

  
   
 
   

Solution: There is no saddle point in the given game. This game also cannot be
reduced by dominance because there is no row which is always preferred by X
irrespective of what Y might do.

Player X can actually think of this 4 × 2 game as six sub-games, each of size
2 × 2 (because he can choose not to play any two of his rows if he so desires).
These six sub-games can be listed as follows:

32
5 5

1
5

4
5

6 2
. ( )

3 4

Y

X Sub game No i
  

   

Strategies have been noted in this matrix payoff.

The value of the game is 
6 12

5 5

        
 = 

18

5
  = –3.60

7 8
15 15

11
15

4
15

6 2
. ( )

2 9

Y

X Sub game No ii
  

  

Strategies have been noted in this matrix payoff.

The value of the game is
11 4

6 2
15 15
             =

66 8 58
3.87

15 15 15
           
   

           

6 2
. ( )

7 1

Y

X Sub game No iii
  

   
There is a saddle point here. Hence, the value of this sub-game is –6.

    

3 4
. ( )

2 9

Y

Sub game No iv
  

  
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There is saddle point here. Hence value to this sub-game is –4.

             Y
3 4

7 7

6
7

1
7

3 4
. ( )

7 1
X Sub game No v

  
   

Strategies have been noted in the matrix payoff.

The value of the game is 
18 7

7 7
           

= 
25

7
  = –3.57

             Y
8 9

7 7

6
17

11
17

2 9
. ( )

7 1
X Sub game No vi

 
   

Strategies have been noted in the matrix payoff.

The value of the game is,

12 77 65
3.82

17 17 17
              

If we look at the values of all these sub-games, we find that the values being
negative, Y will win and X will lose in all the cases. Player X, who is making the
choice, will naturally prefer the sub-game with the smallest negative value and this
is sub-game No. (v) in our example. Thus, X will play a two-row mixed strategy
between the second and fourth rows of the original game and he will expect to
lose an average of 357 points per play of the game, which will be his minimum
possible loss. Player Y will also adopt a strategy consisting of the same number of
columns. In brief, sub-game No.(v)’s strategies will be adopted by players X and
Y with a game value equal to –3.57 in the case of the given example.

Solution through Graphic Method

The above example can also be easily worked out with the help of the graphic
method as follows.

The case of payoff matrices having only two columns but more than two
rows is similar, except that in the diagram, we thicken the line segments which
bound the figure from the top and take the lowest point on this boundary. The
following diagram shows the payoff numbers from each row represented as points
on two vertical axes, 1 and 2.
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Axis 1 Axis 2

5

K
0

–5

–10

–5

–10

0
K

L

5

P

MB1

Thus, line B joins the first payoff number –6 and –2 of the first row. Similarly,
other lines have been drawn representing payoff numbers in the 2nd, 3rd and 4th

rows. The segments KP, PM and ML drawn in thick lines bound the figure from
the top and their lowest intersection M, through which two lines pass, defining the
following 2 × 2 matrix relevant for our purpose:

3 4

1 1

Y

X
  
   

The optimal strategies can now be determined as usual.

3.3.5 Solution by Linear Programming

Consider the general LPP.

Max Z = C1 x1 + C2 + x2 +...+ Cn xn
Subject to the constraints,

ai1 x1 + ai2 x2 +...+ ain xn  bi where, i = 1, 2 ... m

and, xj  0 where j = 1, 2 ... n

The problem can be formulated as a dynamic programming problem as follows.

Let the general LPP be considered as a multistage problem with each activity j
(j = 1, 2 ... m) as an individual stage. Then this is an n stage problem and the decision
variables are the level of activities xj at stage j. As xj is continuous, each
activity has an infinite number of alternatives within the feasible region.

We know that allocation problems are a particular type of LPP. These problems
require the allocation of available resources to the activities. Each constraint
represents the limitation of different resources and b1, b2 ... bm are the amounts
of available resources. Since there are m resources, states must be represented
by an m-dimensional vector, given by (1, 2 ... m).

Let fn (1, 2...m) be the maximum value of the general LPP defined for stages
x1, x2 ... xn for states

(b1, b2 ... bm) using forward recursive equation, that is,
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fj (1 2 ... m) = max (Cj xj + fj–1(1 – a1j x2, 2 – a2j xj ... m
– amj xj)

0  xj 

The maximum value of  that xj can assume is, = 1 2

1 2

Min , ...
  
 
  

m

j j mj

bb b

a a a  because the

minimum value satisfies the set of constraints simultaneously.

Example 3.15: Use dynamic programming to solve the following LPP,

Max Z = 3x1 + 5x2
Subject to the constraints, x1  4

x2  6,

3x1 + 2x2  18

x1, x2  0

Solution: The problem consists of three resources and two decision variables.
Hence the problem has two stages and three state variables.

Let B1j, B2j, B3j be the state of the system at stage j and fj  (B1j, B2j, B3j) be
the optimal (maximum) value of the objective function for state j = 1, 2 given the
state (B1j, B2j, B3j). Using backward computation procedure, we have

f2 (B12, B22, B23) = Max [5x2]

0  x2  P22
0 x2  P32

= 5 Max (x2)

0  x2 22

          0 x2 
32

2



Since Max x2, which satisfies 0  x2 22,

0  x2 
32

2


 is the minimum of 32

22 ,
2


 
  

i.e., Max (x2) = x2* = Min 32
22 ,

2

 
 
 


 (1)

 f2 (12, 22, 32) = 5 Min 32
22 ,

2
 
 
 


 (2)

Also,

f1 (11, 21, 31) = Max [3x1 + f2 (11 – x1, 21 – 0,
31 – 3x1)]

0  x1 11
0  3x1 31

From f2 (11 – x1, 21 – 0, 31 – 3x1) = 5 Min 31 1
21

3
,

2

x 
 
 






Dynamic Programming

NOTES

Self - Learning
192 Material

 f1 (11, 21, 31) = Max 31 1
1 21

3
3 5 Min ,

2

x
x




        

0  x1 11
0  3x1 

Since it is a two-stage problem, at the first stage

11 = 4, 21 = 6, 31 = 18

 f1 (11, 21, 31) = Max 1
1

18 3
3 5Min 6,

2

x
x

       

0  x1  4

0  x1  6

= Max 1
1

18 3
3 5Min 6,

2

x
x

       

0  x1  4

Now,   Min 118 3
6,

2

x 
    = 

1

1
1

6 if 0 2

18 3
if 2 4

2

x

x
x

  
 

 
   

(3)

0  x1  4

From (3)

f1(11, 21, 31) = Max 
1 1

1
1 1

3 5(6) if 0 2

18 3
3 5 if 2 4

2

x x

x
x x

   
 

        

Since, Max of 3x1 + 30, 0  x1  2occurs at x1 = 2 and

Max of 190 9
,

2

x   2  x1  4 also occurs at x1 = 2

 f1 (11, 21, 31) = 3 × 2 + 30 = 36

Now, x2 = Min 31 1
21

3
,

2

x 
 
 




= Min 118 3
6,

2

x 
 
 

 = Min (6, 6) = 6

The optimal solution is, Max Z = 36, x1 = 2, x2 = 6.

Example 3.16:  Use dynamic programming to solve the LPP

Max Z = x1 + 9x2
Subject to the constraints, 2x1 + x2  25

x2  11

  x1, x2  0

Solution: The problem has two resources and two decision variables. The states
of the equivalent dynamic programming are 1j, 2j,  j = 1, 2.
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f2 (12, 22) = Max (9x2)

0 < x2  25

0  x2  11

i.e.,  f2 (12, 22) = 9 Max (x2)

= 9 Max (25, 11)

Since the Max of x2 satisfying the conditions of x2  25, x2  11, is the Min of
(25, 11)

 x2* = 11

Now, f1 (11, 21) = Max [x1 + f2 (11 – 2x1, 21 – 0)]

0  x1 
25

2

At this last stage, substitute 11 = 25, 21 = 11

f1 (25, 11) = Max [x1 + 9 Min (25 – 2x1, 11)]

Min (25 – 2x1, 11) = {11, 0 x1  7}

25 – 2x1, 7  x1  25

2

 x1 + 9 Min (25 – 2x1, 11) = x1 + 99, 0  x1  7

225 – 17x1, 7  x1  25

2

Since the maximum of both (x1 + 99, 225 – 17x1) occurs at x1 = 7

f1 (25, 11) = 7 + 9 Min (11, 11)

= 106 at x1* = 7

x1* = Min (25–2x1*, 11) = Min
    (11, 11) = 11

Hence the optimum solution is,

x1*  x2* = 11 and Max Z = 106

Check Your Progress

4. What do you understand by the game theory?

5. How can we illustrate a game?

6. State the standard conventions in game theory.

7. What do you mean by the two-person zero-sum games?

8. What are the basic concepts of two-person zero-sum games?

9. What do you mean by the value of a game?

10. Mention the strategy used in game theory.

11. Define the term strategy combination.

12. What do you mean by the term mixed strategies?

13. What do you understand by the totally mixed strategy?
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3.4 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The technique of dynamic programming divides a given problem into stages
or subproblems and then solves the subproblems sequentially (usually
working backwards from the natural end of the problem) until the initial
problem is finally solved.

2. Stage: It refers to the particular decision we are facing. If we are to take 5
sequential decisions then we have 5 stages. Alternatively a stage can be
understood as a subproblem. Thus, in case of five stages we have five
subproblems of a given problem.

State Variable: It is a variable defining the current situation at any stage.
Suppose we have a pricing problem, then the state variable would be the
current price level at a given stage.

Optimal Decision Rule: This rule specifies which decision to make, as a
function of state variable and the stage number.

Optimal Policy: An optimal policy is a set of optimal decision rules which
guides one’s decisions through all stages of the given problem. In fact, this
constitutes the solution of the given problem optimizing the desired measure
of effectiveness.

3. (i) Travelling Salesman’s Problem

(ii) Pricing Problem

(iii) Production Scheduling Inventory Problem

(iv) Allocation Problem

4. The term ‘Game’ represents a conflict between two or more parties. Game
theory is really the ‘Science of Conflict’. It is not concerned with finding an
optimum or winning strategy for a particular conflict situation but it provides
general rules concerning the logic that underlies strategic behaviour of all
types.

Game theory applies to those competitive situations that are technically
known as ‘Competitive Games’ or simply ‘Games’.

5. Suppose there are two opponents X and Y. We can think of them as sitting
across a table from each other and each with two buttons in front of him.
We shall denote player X’s buttons, m and n and player Y’s buttons as r
and t; thus each player has two choices open to him. We also presume a
partition between them so that neither can see in advance which button his
opponent is going to press. At a signal from a third party, each player presses
one of his buttons.

6. In order to eliminate the necessity for written descriptions of the ‘Payoffs’
(as we have shown in the above two examples), a standard set of conventions
has been established in game theory. It is the usual practice to omit a
description like ‘Player X wins two points’ and replace it with integer 2.
The positive algebraic sign which is assumed to accompany this number
indicates that it is Player X who benefits from this payoff. Similarly, instead
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of saying ‘Player Y wins three points’ one simply indicates this with the
value 3, the minus sign indicating that it is Player Y who benefits from this
particular payoff. Another standard convention that is usually followed is
that Player X has choices between the rows and Player Y has choices
between the columns.

7. In game theory, a zero-sum game is a mathematical representation of a
Game Theory situation in which each participant’s gain or loss of utility is
exactly balanced by the losses or gains of the utility of the other participants.
Alternatively, we can say that the zero-sum games are the games in which
one player’s win is the other player’s loss.

8. Following are the basic and significant concepts of simple two-person zero-
sum games:

 A two-person game is characterized by the strategies of each player
and the payoff matrix.

 The payoff matrix shows the gain (positive or negative) for player 1 that
would result from each combination of strategies for the two players.
Remember that the matrix for player 2 is the negative of the matrix for
player 1 in a zero-sum game.

 The entries in the payoff matrix can be in any units as long as they represent
the utility (or value) to the player.

 There are two key assumptions about the behaviour of the players. The
first is that both players are rational. The second is that both players are
materialistic meaning that they choose their strategies in their own interest.

9. In game theory, the concept ‘Value of a Game’ is considered very important.
It refers to the average payoff per play of the game over an extended period
of time. But determining the value of the game is not always as simple as in
the case of these two examples. In case the players determine that their
best alternative is to play each row or each column a certain part of the
time, calculating the value of the game becomes a bit more complex.

10. In game theory, the strategy of a player in a game is a complete plan of
action for any situation that may occur. This determines the complete
behaviour of player and the player’s strategy determines the action that the
player will take at any stage of the game.

11. A strategy profile is also sometimes termed as strategy combination. It is a
set of strategies for each player that specifies all actions in a game. It must
include one and only one strategy for every player. Sometimes the strategy
concept is by mistake confused with that of a move. A move is an action
taken by a player at some point during the play of a game whereas a strategy
is a complete algorithm for playing the game because it guides a player
what to do for every possible situation throughout the game. A player’s
strategy set describes what strategies are available for playing the game.
Strategies are of two types, pure and mixed.

12. Mixed strategy is an assignment of a probability to each pure strategy. This
allows for a player to randomly select a pure strategy. Since probabilities
are continuous, there are infinitely many mixed strategies available to a player,
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even if their strategy set is finite. Certainly, a pure strategy can be considered
as a degenerate case of a mixed strategy in which that specific pure strategy
is selected with probability 1 and every other strategy with probability 0.

13. A totally mixed strategy is a mixed strategy in which the player assigns a
strictly positive probability to every pure strategy. The totally mixed strategies
are important for equilibrium refinement.

3.5 SUMMARY

 Dynamic programming is the mathematical technique whose development
is largely due to Richard E. Bellman.

 In applying the dynamic programming technique, it is necessary to divide
the problem into a number of subproblems or decision stages. It is also
necessary to describe the stage of the system by a state variable.

 The basic ideas used in dynamic programming approach or the sequential
decision theory can be well understood through the application of this
technique to different situations.

 The term ‘Game’ represents a conflict between two or more parties. Game
theory is really the ‘Science of Conflict’. It is not concerned with finding an
optimum or winning strategy for a particular conflict situation but it provides
general rules concerning the logic that underlies strategic behaviour of all
types.

Game theory applies to those competitive situations that are technically
known as ‘Competitive Games’ or simply ‘Games’.

 Suppose there are two opponents X and Y. We can think of them as sitting
across a table from each other and each with two buttons in front of him.
We shall denote player X’s buttons, m and n and player Y’s buttons as r
and t; thus, each player has two choices open to him. We also presume a
partition between them so that neither can see in advance which button his
opponent is going to press. At a signal from a third party, each player presses
one of his buttons.

 In two-person games, the players may have many possible choices open to
them for each play of the game but the number of player’s remains only
two. But games can also involve many people as active participants, each
with his own set of choices for each play of the game. A game of three
players can be named as three-person game. Thus, in case of more than
two persons, the game is generally named an n person game.

 Zero-sum and non-zero-sum games. A zero-sum game is one in which the
sum of the payments to all the competitors is zero for every possible outcome
of the game. In other words, in such a game the sum of the points won
equals the sum of the points lost, i.e., one player wins at the expense of the
other (others).

 Games of perfect information and games of imperfect information. Whatever
strategy is adopted by either player, if the same can also be discovered by
his competitor, then such games are known as games of perfect information.
In games of imperfect information, neither player knows the entire situation
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and must be guided in part by guess work as to what the real situation is.

 Games with finite, i.e., limited number of moves (or plays) and games with
unlimited number of moves. Games with finite number of moves are those
where the number of moves is limited to a fixed magnitude before play
begins. If the game could continue over an extended period of time and no
limit is put on the number of moves, it is referred to as a game with an
unlimited number of moves.

 2 × 2 two-person games and 2 × m and m × 2 games. Two-person zero-
sum games with only two choices open to each player are denoted as 2 × 2
two person games but games in which one of the players has more than two
choices of rows or columns and in which the other player has exactly two
choices are referred to as m × 2 or 2 × m games respectively.

 In game theory, a zero-sum game is a mathematical representation of a
situation in which each participant’s gain or loss of utility is exactly balanced
by the losses or gains of the utility of the other participants. Alternatively, we
can say that the zero-sum games are the games in which one player’s win is
the other player’s loss.

 A two-player game is called a zero-sum game if the sum of the payoffs to
each player is constant for all possible outcomes of the game. More
specifically, the terms or coordinates in each payoff vector must add up to
the same value for each payoff vector. Such games are sometimes called
constant-sum games as an alternative.

 A strategy profile is also sometimes termed as strategy combination. It is a
set of strategies for each player that specifies all actions in a game. It must
include one and only one strategy for every player. Sometimes the strategy
concept is by mistake confused with that of a move.

 Mixed strategy is an assignment of a probability to each pure strategy. This
allows for a player to randomly select a pure strategy. Since probabilities
are continuous, there are infinitely many mixed strategies available to a player,
even if their strategy set is finite. Certainly, a pure strategy can be considered
as a degenerate case of a mixed strategy in which that specific pure strategy
is selected with probability 1 and every other strategy with probability 0.

 A totally mixed strategy is a mixed strategy in which the player assigns a
strictly positive probability to every pure strategy. The totally mixed strategies
are important for equilibrium refinement.

3.6 KEY TERMS

 Dynamic programming: A mathematical technique which is applicable to
many types of problems where a series of interrelated decisions are required.

 Game theory: Game theory is the ‘Science of Conflicts’.

 Game: A conflict between two or more parties.

 Zero-sum and non-zero games: A zero-sum game is one in which the
sum of the payments to all the competitors is zero for every possible outcome
of the game.
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 Mixed strategies: Mixed strategy is an assignment of a probability to
each pure strategy.

 Totally mixed strategy: A totally mixed strategy is a mixed strategy in
which the player assigns a strictly positive probability to every pure strategy.

 Graphic method: The graphic method can only be used in games with no
saddle point and having payoff m x n matrices where either m or n is two.

3.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. State the differences between linear and dynamic programming.

2. What different terms are often talked about in context of dynamic
programming?

3. What do you understand by dynamic programming and principle of optimality
developed by Richard E. Bellman?

4. Write a short note on recursive approach method to solve dynamic
programming problems.

5. What is game theory?

6. Define the illustration of a game.

7. State the standard conventions that are used in game theory.

8. What are the basic concepts of two-person zero-sum games?

9. Define about the value of game.

10. What are mixed strategies?

11. Define the meaning of the term ‘Game’.

12. Write the properties of game.

13. State about the constant-sum games.

Long-Answer Questions

1. What do you mean by deterministic and probabilistic dynamic programming?
Explain.

2. Use the dynamic programming approach to find (i) The maximum path
(ii) The minimum path through network:

1

2

3

4

5

6

7

8

9

Begin End9

6 6

6

5

5

7

7

10

10
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3. Seven units of capital can be invested in four activities with the return from
each activity given in the following table. Find the allocation of capital to
each activity that will maximize the total return.

What will be the total return if the available capital is reduced by 1 unit?

Q g1(Q) g3(Q) f(Q) gA(Q)

0 0 0 0 0
1 2 3 2 1
2 4 5 3 3
3 6 7 4 5
4 7 9 5 6
5 8 10 5 7
6 9 11 5 8
7 9 12 5 8

4. An investor has  1,00,000 to invest some time in the next five months.
Each month a new investment opportunity arises, the return each investment
promises is a random variable distributed according to the probabilities
given in following table:

Return on investment Probability
20 per cent 0.5
60 per cent 0.3
75 per cent 0.2

At the beginning of each month an investment opportunity is presented with
some actual return based on the probabilities in the table provided. The
investor must either take that opportunity or reject it. Once rejected, the
opportunity is withdrawn. If the investor has not invested his money by the
fifth month, he must invest it at the return available in the fifth month. What
his expected return would be if he wants to make an optimal decision?

5. Given are the following transition matrices:

To
From 2 3 4

 2 4 41

To

From 5 6 7

2  7  4  6

3  3  2  4

4  4  1  5

To To
From 8 9

From 10
        5  1  4

8  3
6  6  3

9  4
7  3  3

(a) Determine the least-cost route from 1 to 10.
(b) Determine the highest-cost route from 1 to 10.

6. Analyse the maximin-minimax principal. Give appropriate examples.

7. Discuss briefly about the standard conventions that are used in game theory.

8. Explain the terms used in game and its types along with examples.
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9. Use graphic methods in solving the following games:

B

(a)
3 3 4

1 1 3
A

 
   

Y

(b)
2 5

4 1
X
 
 
 

10. The following matrix represents the payoff to P
1
 in a rectangular game

between two persons P
1
 and P

2
.

2

1

8 15 4 –2

19 15 17 16

0 20 15 5

P

P

 
 
 
  

By the notion of dominance, reduce the game to a 2 × 4 game and solve it
graphically.

11. Solve the following game:

Player B

3 2 4 0

3 4 2 4

4 2 4 0

0 4 0 8

I II III IV
I

II

III

IV

 
 
 
 
 
 
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UNIT 4 INTEGER PROGRAMMING

Structure

4.0 Introduction
4.1 Objectives
4.2 Integer Programming and Cutting Plan Techniques

4.2.1 Methods of Integer Programming Problem
4.2.2 Branch and Bound Method

4.3 Simulation Problems
4.4 Replacement Problems
4.5 Sequencing
4.6 Answers to ‘Check Your Progress’
4.7 Summary
4.8 Key Terms
4.9 Self-Assessment Questions and Exercises

4.10 Further Reading

4.0 INTRODUCTION

An Integer Programming Problem (IPP) is a mathematical optimization or feasibility
program in which some or all of the variables are restricted to be integers. In many
settings the term refers to Integer Linear Programming (ILP), in which the objective
function and the constraints (other than the integer constraints) are linear. Integer
programming is NP-complete. In particular, the special case of 0-1 integer linear
programming, in which unknowns are binary, and only the restrictions must be
satisfied, is one of Karp’s 21 NP-complete problems. If some decision variables
are not discrete the problem is known as a mixed-integer programming problem.
This is a type of linear programming in which all or some variables are constrained
to assume non-negative integer values. Problems related to such programming are
known as integer programming problems. If all variables assume integer values,
then it is called Pure Integer Programming Problem (Pure IPP). But in the optimal
solution, if this restriction of integer is not on all and only few can assume non-
integer solution, then it is a case of mixed integer programming problem. If these
integers are limited to either of the two values 0 or 1, then these are known as
‘0 – 1 Programming Problems’ or ‘Standard Discrete Programming Problem’.
Nature of problems where there is decision making, depends on either to do or
not to do. The choice is between two outcomes, in which one outcome has to be
selected. Integer programming problem is applied in business and industries.
Problems like traveling salesman problem, assignment problem and transportation
problems are part of integer programming where the decision variables are either
0 or 1. If x

ij
 represents an activity from i to j, then x

ij
 = 1, which specifies that the

activity is performed, and when x
ij
 = 0 then activity is not performed.

Replacement theory is concerned with the prediction of replacement costs
and determination of the most economic replacement policy. The problems of
replacement are encountered in case of both men and machines. The replacement
theory is an equally important aspect of OR. In case of items whose efficiency go
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on decreasing according to their age, we have to spend more money on account
of increased operating cost, increased repair cost, etc. In such cases, the
replacement of an old item with a new one is the only alternative to prevent such
increased expenses. Thus, it becomes necessary to determine the age at which
replacement is more economical rather than to continue the operations at increased
cost. Replacement theory is equally important in context of those equipment’s
which fail completely and instantaneously. As such, the study of replacement theory
is the study of the technique of formulating the appropriate replacement policy in
situations that arise when some items need replacement for one reason or the
other. Sequencing models determine an appropriate order (sequence) for a series
of jobs to be done on a finite number of service facilities in some pre-assigned
order, so as to optimize the total cost (time) involved. The algorithm, which is used
to optimize the total elapsed time for processing n jobs through two machines is
called ‘Johnson’s Algorithm’.

In this unit, you will learn about the integer programming and cutting plan
techniques, simulation problem, replacement problems and sequencing.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the significance of Integer Programming

 Analyse principles of Integer Programming Problem (IPP) in real life
situations

 Solve problems on IPP using the cutting plane method branch and bound
or search methods

 Explain the simulation and problems of implementation

 State the reasons for replacement

 Explain the maintenance and reliability problems

 Describe the basic concept of sequencing models

4.2 INTEGER PROGRAMMING AND CUTTING
PLAN TECHNIQUES

A linear programming problem in which all or some of the decision variables are
constrained to assume non-negative integer values is called an Integer
Programming Problem (IPP).

In a Linear Programming Problem (LPP) if all variables are required to
take integer values then it is called the Pure (all) Integer Programming Problem
(Pure IPP).

If only some of the variables in the optimal solution of a LPP are restricted
to assume non-negative integer values, while the remaining variables are free to
take any non-negative values, then it is called a Mixed Integer Programming
Problem (Mixed IPP).
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Further, if all the variables in the optimal solution are allowed to take values
0 or 1, then the problem is called the 0–1 Programming Problem or Standard
Discrete Programming Problem.

The general integer programming problem is given by,

Max Z = CX

Subject to constraints,

A X  B

X  0 Where some or all variables are integers.

Importance of Integer Programming Problems

In IPP, all the decision variables are allowed to take any non-negative real values
as it is quite possible and appropriate to have fractional values in many situations.
There are several frequently occurring circumstances in business and industries
that lead to planning models involving integer-valued variables. For example, in
production, manufacturing is frequently scheduled in terms of batches, lots or runs.
In allocation of goods, a shipment must involve a discrete number of trucks or
aircrafts. In such cases the fractional values of variables like 13/3 may be meaningless
in the context of the actual decision problem.

This is the main reason why integer programming is so important for marginal
decisions.

Applications of Integer Programming

Integer programming is applied in business and industries. All assignment and
transportation problems are integer programming problems, because in the
assignment and travelling salesmen problem all the decision variables are either
zero or one.

i.e., x
ij
 = 0 or 1

Other examples include capital budgeting and production scheduling
problems. In fact, any situation involving decisions of the type ‘Either to do a job
or not’ can be viewed as an IPP. In all such situations,

x
ij
 = 1, if the jth activity is performed.

x
ij
 = 0, if the jth activity is not performed.

In addition, allocation problems involving the allocation of men or machines
give rise to IPP, since such commodities can be assigned only in integers and not in
fractions.

Note: If the non-integer variable is rounded off, then it violates the feasibility and there is no
guarantee that the rounded off solution will be optimal. Due to these difficulties, there is a
need for developing a systematic and efficient procedure for obtaining the exact optimal
integer solution to such problems.

4.2.1 Methods of Integer Programming Problem

Two methods are used to solve IPP:

 (i) Gomory’s Cutting Plane Method

(ii) Branch and Bound Method or Search Method
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Gomory’s Cutting Plane Method

A systematic procedure for solving pure IPP was first developed by R.E. Gomory
in 1956, which he later used to deal with the more complicated cases of mixed
integer programming problems. This method consists of first solving the IPP as an
ordinary LPP by ignoring the restriction of integer values and then introducing a
new constraint to the problem such that the new set of feasible solution includes all
the original feasible integer solutions, but does not include the optimum non-integer
solution initially found. This new constraint is called ‘Fractional Cut’ or ‘Gomorian
Constraint’. Then the revised problem is solved using the simplex method, till an
optimum integer solution is obtained.

Branch and Bound Method or Search Method

This is an enumeration method in which all feasible integer points are enumerated.
This is the widely used search method based on Branch and Bound technique.
It was developed in 1960 by A.H. Land and A.G. Doig. This method is applicable
to both pure and mixed IPP. It first divides the feasible region into smaller subsets
that eliminate parts containing no feasible integer solution.

Gomory’s Fractional Cut Algorithm or Cutting Plane Method for Pure
(All) IPP

Step 1: Convert the minimization IPP into an equivalent maximization LPP. Ignore
the integrality condition.

Step 2: Introduce slack and/or surplus variables if necessary to convert the given
LPP in its standard form and obtain the optimum solution of the given LPP by
using simplex method.

Step 3: Test the integrality of the optimum solution.

(i) If all x
Bi
  0 and are integers, then an optimum integer solution is obtained.

(ii) If all x
Bi
  0 and at least one x

Bi
 is not an integer, then go to the next step.

Step 4: Rewrite each x
Bi

 as x
Bi

 = [x
Bi

] + f
i
, where x

Bi
 is the integral part of x

Bi
 and

f
i
 is the positive fractional part of x

Bi
, 0 < f

i
 < 1.

Choose the largest fraction of x
Bi
, i.e., choose Max ( f

i
). If there is a tie,

then select arbitrarily. Let Max ( f
i
) = f

k
, corresponding to x

Bk
 (the kth row is

called the ‘Source Row’).

Step 5: Express each negative fraction, if any, in the source row of the optimum
simplex table as the sum of a negative integer and a non-negative fraction.

Step 6: Find the fractional cut constraint or Gomorian constraint.

From the source row,
1

n

kj j
j

a x

 = xBi

i.e.,
1

([ ] )
n

kj kj j
j

a f x


 = [xBk] + fk

The equation is in the form,
1

n

kj j
j

f x

  fK  

1

n

kj j
j

f x


   – fk
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Or, 1
1

n

kj j
j

f x G


  = –fk

Where, G
1
 is the Gomorian slack.

Step 7: Add the fractional cut constraint obtained in Step (6) at the bottom of the
simplex table obtained in Step (2). Find the new feasible optimum solution using
dual simplex method.

Step 8: Go to Step (3) and repeat the procedure until an optimum integer solution
is obtained.

Example 4.1: Find the optimum integer solution to the following IPP.

Max Z = x
1 
+ x

2

Subject to constraints, 3x1 + 2x2  5

x2  2

x1, x2  0 and are integers.

Solution: After introducing the non-negative slack variables S1, S2  0, the
standard form of the IPP becomes,

Max Z = x1 + x2 + 0S1 + 0S2

Subject to constrains, 3x1 + 2x2 + S1 = 5

0x1 + x2 + S2  2

x1, x2, S1, S2  0

Ignoring the integrality condition, solve the problem by simplex method. The
initial basic feasible solution is given by putting x1 = 0 and x2 = 0.

Hence,

S1 = 5 and S2 = 2

Cj 1 1 0 0

CB B xB x1 x2 S1 S2
i

Bx
Min

x

 0 S1 5 3 2 1 0 5/3

0 S2 2 0 1 0 1 —

Z j 0 0 0 0 0
Zj – Cj –1 –1 0 0

1 x1 5/3 1 2/3 1/3 0 5/2 = 2.5

 0 S2 2 0 1 0 1 2/1 = 2

Z j 5/3 1 2/3 1/3 0

Zj – Cj 0 –1/3 1/3 0

1 x1 1/3 1 0 1/3 –2/3

1 x2 2 0 1 0 1

Z j 7/3 1 1 1/3 1/3

Zj – Cj 0 0 1/3 1/3

Since all Zj – Cj  0, an optimum solution is obtained, which is given by:
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Max Z = 7/3, x1 = 1/3, x2 = 2

To obtain an optimum integer solution, we have to add a fractional cut constraint
in the optimum simplex table.

Since xB = 1/3, the source row is the first row.

Expressing the negative fraction –2/3 as a sum of negative integer and positive
fraction, we get –2/3 = –1 + 1/3

Since x1 is the source row, we have,

1/3 = x1 + 1/3 S1 – 2/3 S2

i.e., 1/3 = x1 + 1/3S1 + ( –1 + 1/3) S2

The fractional cut Gomorian constraint is given by,

1/3S1 + 1/3S2  1/3

 – 1/3S1 – 1/3S2   –1/3

 – 1/3S1 – 1/3 S2 + G1 = –1/3

Where, G1 is the Gomorian slack. Add this fractional cut constraint at the bottom
of the above optimal simplex table.

We apply dual simplex method. Since G
1
 = –1/3, hence G

1
 leaves the

basis. To find the entering variable we find,

Max , 0
j j

ij
ij

Z C
a

a

   
  

 = 1/ 3 1/ 3
Max ,

1/ 3 1/ 3
 
   

Max {–1, –1} = –1

We choose S
1
 as the entering variable arbitrarily.

Cj 1 1 0 0 0

CB B xB x1 x2 S1 S2 G1

1 x1 1/3 1 0 1/3 –2/3 0

1 x2 2 0 1 0 1 0

 0 G1 –1/3 0 0 –1/3 –1/3 1

Z j 7/3 1 1 1/3 1/3 0

Zj – Cj 0 0 1/3 1/3 0

1 x1 0 1 0 0 –1 1

1 x2 2 0 1 0 1 1

0 S1 1 0 0 1 1 –3

Z j 2 1 1 0 0 1

Zj – Cj 0 0 0 0 1

Since all Zj – Cj  0 and all xBi  0, we obtain an optimal feasible integer solution.

 The optimum integer solution is,

Max Z = 2, x1 = 0, x2 = 2.
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Example 4.2: Find an optimum integer solution to the following IPP.

Max Z = x1 + 2x2

Subject to contraints, 2x2  7

x1 + x2  7

2x1  11

x1, x2  0 and are integers.

Solution: Introducing slack variables S1, S2, S3  0, we get,

Max Z = x1 + 2x2 + 0S1 + 0S2 + 0S3

Subject to constraints, 2x2 + S1 = 7

x1 + x2 + S2 = 7

2x1 + S3 = 11

Ignoring the integrality condition, we get the optimum solution of the given IPP
with initial basic feasible solution obtained by putting x1 = 0 and x2 = 0 as
S1 = 7, S2 = 7 and S3 = 11.

Cj 1 2 0 0 0

CB B xB x1 x2 S1 S2 S3
i

Bx
Min

x

0 S1 7 0 2 1 0 0 7/2 = 3.5

0 S2 7 1 1 0 1 0 7/1 = 7

0 S3 11 2 0 0 0 1 —

Z j 0 0 0 0 0 0

Zj – Cj –1 –2 0 0 0

2 x2 7/2 0 1 1/2 0 0 —

0 S2 7/2 1 0 –1/2 1 0 7/2 = 3.5

0 S3 11 2 0 0 0 1 11/2 = 5.5

Z j 7 0 2 1 0 0

Zj – Cj –1 0 1 0 0

2 x2 7/2 0 1 1/2 0 0

1 x1 7/2 1 0 –1/2 1 0

0 S3 4 0 0 1 –2 1

Z j 21/2 1 2 1/2 1 0

Zj – Cj 0 0 1/2 1 0

Since all Zj – Cj  0, an optimum solution is obtained which is given by,

Max Z = 21

2 , x1 = 7

2
, x2 = 7

2

Since the optimum solution obtained above is not an integer, we now select
a constraint corresponding to,
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Max ( fi) = Max ( f1,  f2,  f3)

x1 = 7/2 = 3 + 1/2

x2 = 7/2 = 3 + 1/2

S3 = 4 = 4 + 0

 Max ( fi) = Max 1 1
, , 0

2 2
 
 
 

 = 1/2

Since the Max fraction is same for both x
1
 and x

2
 rows, we choose x

1
 row

as the source row arbitrarily. From this row we have,

7/2 = x1 + 0x2 – 1/2 S1 + 1S2 + 0S3

On expressing the negative fraction as a sum of negative integer and a positive
fraction, we have,

3 + 1/2 = x1 + 0x2 + (–1 + 1/2) S1 + 1S2 + 0S3

 The Gomorian constraint is given by,

1/2 S1  1/2

i.e., –1/2 S1  –1/2  –1/2 S1 + G1 = –1/2

Here, G1 is the Gomorian slack. Adding this new constraint at the bottom of the
above optimal simplex table, we get a new table.

We apply dual simplex method. Since G
1
 = –1/2, G

1
 leaves the basis.

Entering variable is given by,

Max , 0
j j

ij
ij

Z C
a

a

   
  

 = 
1/ 2

Max
1/ 2

 
 
 

This gives the non-basic variable S
1
 to enter into the basis. Drop G

1
 and introduce S

1
.

Cj 1 2 0 0 0 0

CB B xB x1 x2 S1 S2 S3 G1

2 x2 7/2 0 1 1/2 0 0 0

1 x1 7/2 1 0 –1/2 1 0 0

0 S3 4 0 0 1 –2 1 0

0 G1 –1/2 0 0 –1/2 0 0 1

Z j 21/2 1 2 1/2 1 0 0

Zj – Cj 0 0              1/2  1 0 0

2 x2 3 0 1 0 0 0 1

1 x1 4 1 0 0 1 0 –1

0 S3 3 0 0 0 –2 1 2

0 S1 1 0 0 1 0 0 –2

Z j 10 1 2 0 1 0 1

Zj – Cj 0 0 0 1 0 1
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Since all Zj – Cj  0, an optimum solution has been obtained in integers. Hence,
the integer optimum solution is given by,

Max Z = 10, x1 = 4, x2 = 3

Example 4.3: Solve the following integer programming problem.

Max Z = 2x1 + 20x2 – 10x3

Subject to constraints, 2x1 + 20x2 + 4x3  15

6x1 + 20x2 + 4x3 = 20

x1, x2, x3  0 and are integers.

Solution: Introducing slack variable S1  0 and an artificial variable A1  0, the
initial basic feasible solution becomes S1 = 15, A1 = 20 by putting x1 = x2
= x5 = 0 Ignoring the integer condition, solve the problem using simplex method.

Max Z = 2x1 + 20x2 – 10x3 + 0S1 – MA1

Subject to constraints,        2x1 + 20x2 + 4x3 + S1 = 15

                                    6x1 + 20x2 + 4x3 + A1 = 20

                                           x1, x2, x3, S1, A1  0

Cj 2 20 –10 0 –M

CB B xB x1 x2 x3 S1 A1
B

i

x
Min

x

0 S1 15 2 20 4 1 0 15/20 = 3/4 

–M A1 20 6 20 4 0 1 20/20 = 1

Z j –20M –6M –20M –4M 0 –M

Zj – Cj –6M – 2 –20M – 20 –4M + 10 0 0



20 x2 3/4 1/10 1
1

5
1/20 0

3
10

4
  = 7.5

 –M A1 5 4 0 0 –1 1
5

4
 = 1.25

Z j 15 – 5M 2 – 4M 20 4 1 + M –M

Zj – Cj –4 M 0 14 M  + 1 0



20 x2 5/8 0 1 1/5 3/40 —
2 x1 5/4 1 0 0 –1/4 —

Z j 15 2 20 4 1 —

Zj – Cj 0 0 14 1

Since all Zj – Cj  0, an optimum solution is obtained which is given by,

Max Z = 15, x1 = 5/4, x2 = 5/8, x3 = 0
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Since the optimum solution obtained above is not an integer hence select a
constraint corresponding to,

     Max ( fi) =  Max ( f1, f2)

    x1 = 2
5 5

and  =
4 8

x

    Max (fi) =  Max 
5 5 5

,
4 8 8

    

                     Max ( f1, f2) = Max (5/4, 5/8) = 5/8

 The source row is the first row, namely x2 row. From this source row
we have,

5/8 = 0x1 + 1x2 + (1/5)x3 + (3/40)S1

The fractional cut constraint is given by,

(1/5)x3 + (3/40)S1  5/8

(–1/5)x3 – (3/40)S1  –5/8  – (1/5)x3 – (3/40)S1 + G1 = –5/8

Here, G1 is the Gomorian slack.

Adding this additional constraint in the optimum simplex table, we obtain the
new table as given below.

We apply dual simplex method. Since G
1
 = –5/8, hence G

1
 leaves the

basis.

Also, Max , 0
j j

ij
ij

Z C
a

a

   
  

 = 14 1
Max

1/5 3/40
 
   

 = 40
Max

3


This gives the non-basic variable S
1
, which enters the basis.

Cj 2 20 –10 0 0

CB B xB x1 x2 x3 S1 G1

20 x2

5

8
0 1 1/5 3/40 0

2 x1

5

4
1 0 0 –1/4 0

0 G1

5

8


0 0 –1/5 –3/40 1

Z j 15 2 20 4 1 0
Zj – Cj 0 0 14 1 0



20 x2 0 0 1 0 0 1

2 x1 10/3 1 0 2/3 0 –10/3

0 S1 25/3 0 0 8/3 1 –40/3

Z j 20/3 2 20 4/3 0 40/3

Zj – Cj 0 0 34/3 0 40/3
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Again, since the solution is non-integer, we add one more fractional cut
constraint.

 1 2
10 1

3 , 0 and
3 3

x x     1
25 1

8
3 3

S   

    Max{fi} = Max (
1

3
, 0, 1/3)

Since, the Max fraction is same for both the rows x1 and S1, we choose S1
arbitrarily.

 From the source row we have,

25/3 = 0x1 + 0x2 + (8/3)x3 + 1S1 – (40/3)G1

Expressing the negative fraction as the sum of negative integer and positive
fraction we have,

(8 + 1/3) = 0x1 + 0x2 + (2 + 2/3)x3 + 1S1 + (–14 + 2/3)G1

The corresponding fractional cut is given by,

–2/3x3 – 2/3 G1 + G2 = –1/3.

Add this second Gomorian constraint at the bottom of the above simplex table
and apply dual simplex method.

Since G2 = –1/3, hence G2 leaves the basis. Also,

Max , 0
j j

ij
ij

Z C
a

a

 
  

 
= 34 / 3 40 / 3

Max ,
2 / 3 2 / 3

    
 = – 17

This gives the non-basic variable x3 which enters the basis. Using dual simplex
method, introduce x3 and drop G2.

Cj 2 20 –10 0 0 0

CB B xB x1 x2 x3 S1 G1 G2

20 x2 0 0 1 0 0 1 0

2 x1 10/3 1 0 2/3 0 –10/3 0

0 S1 25/3 0 0 8/3 1 –40/3 0

0 G2 –1/3 0 0 –2/3 0 –2/3 1

Z j 20/3 2 20 4/3 0 40/3 0

Zj – Cj 0 0 34/3 0 40/3 0

20 x2 0 0 1 0 0 1 0

2 x1 3 1 0 0 0 – 4 1

0 S1 7 0 0 0 1 – 16 4

–10 x3 1/2 0 0 1 0 1 –3/2

Z j 1 2 20 –10 0 2 17

Zj – Cj 0 0 0 0 2 17

Since the solution is still a non-integer, a third fractional cut is required. It is
given from the source row (x

3
 row) as,
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 2
1 1

–2
2 2

G   
 

Or, 2
1 1

– –
2 2

G

Or, – 1/2 = –1/2 G
2
 + G

3

Insert this additional constraint at the bottom of the table. The modified
simplex table is shown below.

Using dual simplex method, we drop G
3
 and introduce G

2
.

Cj 2 20 –10 0 0 0 0

CB B xB x1 x2 x3 S1 G1 G2 G3

20 x2 0 0 1 0 0 1 0 0

2 x1 3 1 0 0 0 –4 1 0

0 S1 7 0 0 0 1 –16 4 0

–10 x3 1/2 0 0 1 0 1 –3/2 0

0 G3 –1/2 0 0 0 0 0 –1/2 1
Z j 1 2 20 –10 0 2 17 0

Zj – Cj 0 0 0 0 2 17 0

20 x2 0 0 1 0 0 1 0 0

2 x1 2 1 0 0 0 –4 0 2

0 S1 3 0 0 0 1 –16 0 8

–10 x3 2 0 0 1 0 1 0 –3

0 G2 1 0 0 0 0 0 1 –2

Z j –16 2 20 –10 0 2 0 34

Zj – Cj 0 0 0 0 2 0 34

Since all Zj – Cj  0 and also the variables are integers, the optimum integer
solution is obtained and given by x1 = 2, x2 = 0, x3 = 2 and Max Z = –16.

Example 4.4: Solve the integer programming problem.

Max Z = 7x1 + 9x2
Subject to constraints, – x1 + 3x2  6

  7x1 + x2  35
   x1, x2  0 are integers.

Solution: Now ignoring the integer conditions, and introducing slack variables
S1, S2  0, we get the standard form of IPP as,

Max Z = 7x1 + 9x2 + 0S1 + 0S2

Subject to constraints,  – x1 + 3x2 + S1 = 6

                              7x1 + x2 + S2 = 35

                              x1, x2, S1, S2  0
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The given IPP is solved using simplex method.

Cj 7 9 0 0

CB B xB x1 x2 S1 S2
B

i

x
Min

x

0 S1 6 –1 3 1 0 6/3 = 2

0 S2 35 7 1 0 1 35/1 = 35

Z j 0 0 0 0 0

Zj – Cj –7 – 9 0 0

9 x2 2 –1/3 1 1/3 0 –

0 S2 33 22/3 0 –1/3 1
3

33
22

 

Z j 18 –3 9 3 0

Zj – Cj –10 0 3 0

9 x2 7/2 0 1 7/22 1/22

7 x1 9/2 1 0 –1/22 3/22

Z j 63 7 9 28/11 15/11

Zj – Cj 0 0 28/11 15/11

Since all Zj – Cj  0, an optimum solution is obtained as,

x1 = 
9

2
x2 = 7

2
and Max Z = 63.

Since the optimum solution obtained above is not an integer solution, we select a
constraint corresponding to,

   1 2
7 1 9 1

3 , 4
2 2 2 2B Bx x     

Max ( fi ) = Max ( f1, f2)

= 1 1 7 1 9 1
Max , [3] , [4]

2 2 2 2 2 2
   
 
   

Since both the equations have the same value of fi, either one of the two
equations can be used. Let us consider the x2 row as source row.

From x2 row we have,

1
3

2
  1 2 1 2

7 1
0

22 22
x x S S  

There is no negative fraction.

The Gomorian constraint is given by,

1 2
7 1

22 22
S S  

1

2

i.e., – 1 2
7 1

22 22
S S  1

2


 1 2 1
7 1

22 22
S S G   = 1

2

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Here, G1 is the Gomorian slack. Adding this new constraint at the bottom of the
above optimal simplex table, we have the new table.

We apply dual simplex method. Since G1 = – 1/2, hence G1 leaves the basis.
Also,

Max , 0
j j

ij
ij

Z C
a

a

   
  

= 

28 15

11 11Max ,
7 1

22 22

 
 
 
  
 

= Max (–8, – 30) = – 8

This gives the non-basic variable S1 to enter into the basis.

Applying dual simplex method drop G1 and introduce S1.

Cj 7 9 0 0 0

CB B xB x1 x2 S1 S2 G1

9 x2 7/2 0 1 7/22 1/22 0

7 x1 9/2 1 0 –1/22 3/22 0

0 G1 –1/2 0 0 –7/22 –1/22  1

Z j 63 7 9 28/11 15/11 0

Zj – Cj 0 0 28/11 15/11 0

9 x2 3 0 1 0 0 1

7 x1 32/7 1 0 0 1/7 –1/7

0 S1 11/7 0 0 1 +1/7 –22/7

Z j 59 7 9 0 1 8

Zj – Cj 0 0 0 1 8

The optimal solution obtained by dual simplex method as above is still a non-
integer. Thus a new Gomory’s constraint is to be reconsidered.

Here, x2 = 3, x1 = 1
32 4 11 4

4 and 1
7 7 7 7

S    

 Max ( fi) = 4 4
Max , ,

7 7
  
 

 = 
4

7

Choose the x1 row as source row arbitrarily as both the fraction values are
the same. From the source row we have,

  
4

7
= 1 2 1 2 1

1 6
1 0 0

7 7
x x S S G   

There is no negative fraction in the source row.

The Gomory’s constraint is given by,

2 1
1 6

7 7
S G  4

7
 i.e., – 2 1 2

1 6

7 7
S G G   = 

4

7


Here, G2 is the Gomorian slack. Adding this constraint in the above simplex table,
we get a modified table.

We again apply the dual simplex method.

Since G2 = 
4

7
 , hence G2 leaves the basis. Also,



Integer Programming

NOTES

Self - Learning
Material 217

Max , 0
j j

ij
ij

Z C
a

a

   
  

= 1 8
Max ,

1 6

7 7

 
 
 
  
 

= Max 
28

–7, – 7
3

   
 

This gives the non-basic variable S2 to enter into the basis.

Cj 7 9 0 0 0 0

CB B xB x1 x2 S1 S2 G1 G2

9 x2 3 0 1 0 0 1 0

7 x1 32/7 1 0 0 1/7 –1/7 0

0 S1 11/7 0 0 1 1/7 –22/7 0

0 G2 –4/7 0 0 0 –1/7 –6/7 1

Z j 59 7 9 0 1 8 0

Zj – Cj 0 0 0 1 8 0

9 x2 3 0 1 0 0 1 0

7 x1 4 1 0 0 0 –1 1

0 S1 1 0 0 1 0 –4 1

0 S2 4 0 0 0 1 6 –7

Z j 55 7 9 0 0 2 7

Zj – Cj 0 0 0 0 2 7

Since all Z
j
 – C

j
  0 and also the solution is an integer, we obtain an optimum

integer solution given by x
1
 = 4, x

2
 = 3 and Max Z = 55.

Mixed Integer Programming Problem

In mixed IPP only some of the variables are restricted to integer values, while the
other variables may take integer or other real values.

Mixed Integer Cutting Plane Procedure: The iterative procedure for the solution
of mixed integer programming problem is as follows.

Step 1: Reformulate the given IPP into a standard maximization LPP form and
then determine an optimum solution using simplex method.

Step 2: Test the integrality of the optimum solution.
 (i) If all xBi  0 (i = 1, 2,... m) and are integers, then the current solution

is an optimum one.

(ii) If all xBi  0 (i = 1, 2,... m) but the integer restricted variables are
not integers, then go to the next step.

Step 3: Choose the largest fraction among those x
Bi
, which are restricted to integers.

Let it be x
Bk

 = f
k
 (assume),

Step 4: Find the fractional cut constraints from the source row, namely kth row.

From the source row,

1

n

kj j
j

a k

 = xBk
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i.e.,  
1

n

kj ki j
j

a f r


    = [xBk] + fk

In the form
1

n

ki j
j

f x

  fk

i.e.,
1

k
kj j kj j

kj j j j

f
f x f x

f  

 
   
 

   fk

1

k
kj j kj j

kj j j j

f
f x f x

f  

 
    

 
   – fk

1

k
kj j kj j k

kj j j j

f
f x f x G

f  

 
    

 
  = – fk

Here, Gk is Gomorian slack.

[ / 0 ]kjj fj 

[ / 0 ]kjj fj 

Step 5: Add this cutting plane generated in Step (4) at the bottom of the optimum
simplex table obtained in Step (1). Find the new optimum solution using dual
simplex method.

Step 6: Go to Step (2) and repeat the procedure until all xBi  0 (i = 1, 2,... m)
and all restricted variables are integers.

Example 4.5: Find the optimum integer solution of the following IPP.

Max Z = x1 + x2

Subject to constraints, 3x1 + 2x2  5

                     x2  2

x1 + x2  0 and x1 is an integer.

Solution: Introducing slack variables S1, S2  0 the standard form of IPP
becames,

Max Z = x1 + x2 + 0S1 + 0S2

Subject to constraints, 3x1 + 2x2 + S1 = 5

x2 + S2 = 2

x1, x2, S1, S2  0

Initial basic feasible solution,

S1 = 5, S2 = 2

Ignore the integer condition and solve the problem using simplex method to
obtain optimum solution.

Cj 1 1 0 0

CB B xB x1 x2 S1 S2
B

i

x
Min

x

0 S1 5 3 2 1 0 5/3
0 S2 2 0 1 0 1 —
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Z j 0 0 0 0 0

Zj – Cj –1 –1 0 0

1 x1 5/3 1 2/3 1/3 0 5/2

0 S2 2 0 1 0 1 5/2

Z j 5/3 1 2/3 1/3 0

Zj – Cj 0 –1/3 1/3 0

1 x1 1/3 1 0 1/3 –2/3

1 x2 2 0 1 0 1

Z j 7/3 1 1 1/3 1/3

Zj – Cj 0 0 1/3 1/3

Since all Zj – Cj  0, the current basic feasible solution is optimum.  But x1 is
non-integer. From the source row (first row) we have,

1/3 = x1 + 0 x2 + 1/3 S1 – 2/3 S2

The Gomorian constraint is given by,

1 2

1
1 23

13 31
3

S S

 
       

   
 

 
1

3

1 2
1 1

3 3
S S  

1

3
 1 2

1 1

3 3
S S    

1

3


1 2 1
1 1

3 3
S S G


  = 

1

3


Hence, G1 is the Gomorian slack.

Adding this Gomorian constraint at the bottom of the above simplex table,
we have the following equation unsing the dual simplex method. Since hence
G1 = –1/3 < 0, G1 leaves the basis. Also,

Max , 0
j j

ij
ij

Z C
a

a

   
  

1 1

3 3Max ,
1 1

3 3

 
 
   
 

 = Max (–1, –1) = –1

As this corresponds to both S1 and S2, we choose S1 arbitrarily as the entering
variable.

Drop G1 and introduce S1.

Cj 1 1 0 0 0

CB B xB x1 x2 S1 S2 G1

1 x1 1/3 1 0 1/3 –2/3 0

1 x2 2 0 1 0 1 0

0 G1 –1/3 0 0 –1/3 –1/3 1

Z j 7/3 1 1 1/3 1/3 0

Zj – Cj 0 0 1/3 1/3 0
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1 x1 0 1 0 0 – 1 1

1 x2 2 0 1 0 1 0

0 S2 1 0 0 1 1 – 3

Z j 2 1 1 0 0 1

Zj – Cj 0 0 0 0 1

Since all Zj – Cj  0 and all xBi  0, the current solution is feasible and optimal.

The required optimal integer solution is given by,

x1 = 0, x2 = 2 and Max Z = 2.

Example 4.6: Find the optimum integer solution of the given IPP.

Max Z = 4x1 + 6x2 + 2x3

Subject to constraints, 4x1– 4x2  5

 –x1 + 6x2  

x1 + x2 + x3  

x1, x2, x3  and x1, x3 are integers.

Solution: Introducing slack variables S1, S2, S3  0 the standard form of IPP
becomes,

Max Z = 4x1 + 6x2 + 2x3 + 0S1 + 0S2 + 0S3

Subject to constraints, 4x1 – 4x2 + S1 = 5

– x1 + 6x2 + S2 = 5

– x1 + x2 + x3 + S3 = 5

The initial basic feasible solution is given by S1 = 5, S2 = 5 and S3 = 5. Ignoring
the integer condition, the optimum solution of given IPP is obtained by the simplex
method.

Cj 4 6 2 0 0 0

CB B xB x1 x2 x3 S1 S2 S3 Min xB/xi

0 S1 5 4 –4 0 1 0 0 —
0 S2 5 –1 6 0 0 1 0 5/6
0 S3 5 –1 1 1 0 0 1 5/1

Z j 0 0 0 0 0 0 0
Zj – Cj –4 –6 –2 0 0 0

0 S1 25/3 10/3 0 0 1 2/3 0 25/10
6 x2 5/6 –1/6 1 0 0 1/6 0 —
0 S3 25/6 –5/6 0 1 0 –1/6 1 —

Z j 5 –1 6 0 0 1 0
Zj – Cj –5 0 –2 0 1 0

4 x1 5/2 1 0 0 3/10 1/5 0 —

6 x2 5/4 0 1 0 1/20 1/5 0

0 S3 25/4 0 0 1 1/4 0 1
25

4/1

Z j 35/2 4 6 0 3/2 2 0

Zj – Cj 0 0 –2 3/2 2 0
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4 x1 5/2 1 0 0 3/10 1/5 0
6 x2 5/4 0 1 0 1/20 1/5 0
2 x3 25/4 0 0 1 1/4 0 1

Z j 30 4 6 2 2 2 0

Zj – Cj 0 0 0 2 2 0

Since all Zj – Cj  the solution is optimum. But the integer constrained
variables x1 and x3 are non-integer.

 x1 = 5/2 = 2 + 1/2, x2 = 
5 1

1
4 4
   and

x3 = 25/4 = 6 + 1/4
Max (f1, f2, f3) = Max (1/2, 1/4, 1/4) = 1/2
From the first row we have,

(2 + 1/2 ) = x1 + 0x2 + 0x3 + (3/10) S1 + (1/5) S2

The Gomorian constraint is given by,

   3/10 S1 + 1/5 S2  1/2

–3/10S1 – 1/5 S2  –1/2

i.e., –3/10 S1 – 1/5 S2 + G1 = – 1/2, where G1 is the Gomorian slack. Introduce
this new constraint at the bottom of the above simplex table using dual simplex
method since G1 = – 1/2 < 0, G1 leaves the basis. Also,

Max , 0
j j

ij
ij

Z C
a

a

   
  

 = 2 2
Max ,

3 1

10 5

 
 
   
 

 = 20
Max , 10

3

  
 

 = 
20

3



This Gives the non-basic variable S1, to enter into the basis.

Cj 4 6 2 0 0 0 0

CB B xB x1 x2 x3 S1 S2 S3 G1

4 x1 5/2 1 0 0 3/10 1/5 0 0

6 x2 5/4 0 1 0 1/20 1/5 0 0

2 x3 25/4 0 0 1 1/4 0 1 0

0 G1 –1/2 0 0 0 –3/10 –1/5 0 1

Z j 30 4 6 2 2 2 2 0

Zj – Cj 0 0 0 2 2 2 0

4 x1 2 1 0 0 0 0 0 1

6 x2 7/6 0 1 0 0 1/6 0 1/6

2 x3 35/6 0 0 1 0 –1/6 1 5/6

0 S1 5/3 0 0 0 1 2/3 0 –10/3

Z j 80/3 4 6 2 0 2/3 2 20/3

Zj – Cj 0 0 0 0 2/3 2 20/3
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Since all Zj – Cj  0, the solution is optimum and also the integer restricted
variable x2 = 7/6, x3 = 35/6, and S1 = 5/3 is not an integer, therefore, we add
another Gomorian constraint,

 x
2
 = 7/6 = 1 + 1/6, x

3
 = 35/6 = 5 + 5/6, and S

1
 = 5/3 = 1+1/3

Max (f1, f2, f3) = Max 
1 5 1

, ,
6 6 3

 
 
 

 = 5/6

Therefore, the source row is the third row.
From this row we have,

5
5

6
  = 1 2 3 1 2 3 1

1 5
0 0 0

6 6
x x x S S S G     

The Gomorian constraint is given by,

2 1

5
1 56

5 6 61
6

S G

 
       

   
 

 
5

6

 2 1
5 5

6 6
S G  

6



 2 1 2
5 5

6 6
S G G


   

5

6



Here, G2 is the Gomorian slack.
Add this second cutting plane constraint at the bottom of the above optimum

simplex table.

Use dual simplex method. Because G2 = – 5/6 < 0, hence G2 leaves the basis.

Also, Max 0
j j

ij
ij

Z C
a

a

   
  

 = 

2 20

3 3Max ,
5 5

6 6

 
 
   
 

 = 4
Max , 8

5

  
 

 = 
4

5
 ,

Here, corresponds to S2.

Drop G2 and introduce S2.

Cj 4 6 2 0 0 0 0 0

CB B xB x1 x2 x3 S1 S2 S3 G1 G2

4 x1 2 1 0 0 0 0 0 1 0
6 x2 7/6 0 1 0 0 1/6 0 1/6 0
2 x3 35/6 0 0 1 0 –1/6 1 5/6 0
0 S1 5/3 0 0 0 1 2/3 0 –10/3 0

 0 G2 –5/6 0 0 0 0 –5/6 0 –5/6 1

Z j 80/3 4 6 2 2/3 2/3 2 20/3 0

Zj – Cj 0 0 0 2/3 2/3 2 20/3 0

4 x1 2 1 0 0 0 0 0 1 0

6 x2 1 0 1 0 0 0 0 0 1/5

2 x3 6 0 0 1 0 0 1 1 –1/5

0 S1 1 0 0 0 1 0 0 –4 4/5

0 S2 1 0 0 0 0 1 0 1 –6/5

Z j 26 4 6 2 0 0 2 6 4/5

Zj – Cj 0 0 0 0 0 2 6 4/5
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Since all Zj – Cj  and also all the restricted variables x1, x2 and x3 are
integers, an optimum integer solution is obtained.

The optimum integer solution is,

x1 = 2, x2 = 1, x3 = 6 and Max Z = 26.

4.2.2 Branch and Bound Method

This method is applicable to both, pure as well as mixed IPP. Some times a few or
all the variables of an IPP are constrained by their upper or lower bounds. The
most general method for the solution of such constrained optimization problems is
called ‘Branch and Bound Method’.

This method first divides the feasible region into smaller subsets and then
examines each of them successively until a feasible solution that gives an optimal
value of objective function is obtained.

Let the given IPP be,

Max Z = CX

Subject to constraints,  AX  b

X  0 and are integers.

In this method, we first solve the problem by ignoring the integrality condition.

 (i) If the solution is in integers, the current solution is optimum for the given
IPP.

(ii) If the solution is not in integers, say one of the variable Xr is not an integer,
then xr

*  <  xr < x*
r +1 where x*r , x*r +1 are  consecutive non-negative

integers.

Hence, any feasible integer value of xr must satisfy one of the two conditions.

xr  xr
* or xr  x*

r + 1

These two conditions are mutually exclusive (both cannot be true
simultaneously). By adding these two conditions separately to the given IPP, we
form different sub-problems.

Sub-problem 1 Sub-problem 2

Max Z = CX Max Z = CX

Subject to constraints, AX  b Subject to constraints, AX  b

xr  x*r xr  x*r + 1

x  0. x  0.

Thus, we have branched or partitioned the original problem into two sub-problems.
Each of these sub-problems is then solved separately as IPP.

If any sub-problem yields an optimum integer solution, it is not further branched.
But if any sub-problem yields a non-integer solution, it is further branched into
two sub-problems. This branching process is continued until each problem terminates
with either an integer optimal solution or there is an evidence that it cannot yield
a better solution. The integer-valued solution among all the sub-problems, which
gives the most optimal value of the objective function is then selected as the
optimum solution.
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Note: For minimization problem, the procedure is the same except that upper bounds are
used. The sub-problem is said to be fathomed and is dropped from further consideration
if it yields a value of the objective function lower than that of the best available integer
solution and it is useless to explore the problem any further.

4.3 SIMULATION PROBLEMS

Monte Carlo simulation is often used by modern management when it cannot use
other techniques. There are many industrial problems which defy mathematical
solutions. The reason is that either they are too complicated or that the data cannot
be expressed in mathematical terms. In such cases, it is still possible to reach valid
conclusions by using the Monte Carlo technique. A considerable help is thus
obtained at practically no cost in taking decisions concerning the functioning of a
businesssystem. The data and conclusions can be obtained through simulation of
an actual operation on the basis of its own past working. It paves the way for
predicting the changes in its behaviour and the result is evaluated from innovations
that we want to introduce.

By using a fresh series of random numbers at the appropriate junctures we
can also examine the reactions of the simulated model just as if the same alterations
had actually been made in the system itself. Monte Carlo simulation, therefore,
provides a tool of knowing in advance whether or not the expense to be incurred
or the investment to be made in making the changes envisaged. Through this
technique, you can introduce the innovations on a piece of paper, examine their
effects and then may decide to adopt or not to adopt such innovations in the
functioning of real system. The usefulness of simulation lies in the fact that it allows
us to experiment with a model of the system rather than the actual system; in case
we are convinced about the results of our experiments we can put the same into
practice. Thus the effect of the actual decisions are tested in advance through the
technique of simulation by resorting to the study of the model representing the real
life situation or the system.

The main purpose of simulation in management is to provide feedback,
which is vital for the learning process. It creates an atmosphere in which managers
play a dynamic role by enriching their experience through involvement in reckoning
with actual conditions through experimentation on paper. The technique permits
trying out several alternatives as the entire production for service process can be
worked out on paper, without dislocating the system in any way. Thus, Monte
Carlo technique transforms the manager from a blind-folded driver of an automobile,
reacting to instructions of a fellow passenger to one who can see fairly, clearly,
where he is going.

Introduction to Simulation

Simulation is a representation of reality through the use of a model or other device
which will react in the same manner as reality under a given set of conditions.

Simulation is also defined as the use of a system model that has the designed
characteristics of reality in order to produce the essence of actual operation.
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Types of Simulation
Simulation is mainly of the following two types:

(i) Analog (Environmental) Simulation

(ii) Computer (System) Simulation or Digital Simulation

Some examples of simulation models are given as follows:

(i) Testing an aircraft model in a wind tunnel
(ii) Children cycling park with various signals and crossing—to model a traffic

system
(iii) Planetorium

To determine the behaviour of a real system in true environments a number of
experiments are performed on simulated models either in the laboratories or in the
computer itself.

Table 4.1 is an example of simulation worksheet.

Table 4.1 Simulation Worksheet for Simulating Sizes to Locate the Number of Misfits

Shafts Rings
Random1 Random2 Random Random
Numbers Normal Simulating3 Numbers Normal Simulating

Assembly (from Deviate Size (from Deviate Size
S.N. Tippett tables) (z) X =+z() Tippett tables) (z) X =+z()

1 2952 0.82 0.980 + 0.82(0.01) 3992 1.28 1.0 + 1.28(0.02)

= 0.9882 = 1.0256

2 3170 0.91 0.980 + 0.91(0.01) 4167 1.38 1.0 + 1.38(0.02)

= 0.9891 = 1.0276

3 7203  – 0.59  0.980 – 0.59(0.01) 1300 0.33 1.0 + 0.33(0.02)

= 0.9741 = 1.0066

4 3408 1.00 0.980 + 1.0(0.01) 3563 1.06 1.0 + 1.06(0.02)

= 0.9900 = 1.0212

5 0560 0.14  0.980 + 0.14(0.01) 1112 0.28 1.0 + 0.28(0.02)

= 0.981.4 = 1.0056

6 6641  – 0.42  0.980 – 0.42(0.01) 9792  – 2.04 1.0 – 2.04(0.02)

= 0.9758 = 0.9592

7 5624  – 0.16  0.980 – 0.16(0.01) 9525  – 1.67 1.0 – 1.67(0.02)

= 0.9784 = 0.9666

8 5356  – 0.09  0.980 – 0.09(0.01) 2693 0.74 1.0 + 0.74(0.02)

= 0.9791 = 1.0148

9 2769 0.76 0.980 + 0.76(0.01)  6107  – 0.28 1.0 – 28(0.02)

= 0.9876 = 0.9944

10 5246  – 0.06  0.980 – 0.06(0.01) 9025  – 1.29 1.0 – 1.29(0.02)

= 0.9794 = 0.9742

Random Variable

The random variable is a real valued function defined over a sample space associated
with the outcome of a conceptual chance experiment. Random variables are
classified according to their probability density function.
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(i) Random Number: It refers to a uniform random variable or a numerical
value assigned to a random variable following uniform probability density
function. In other words, it is a number in a sequence of numbers whose
probability of occurence is the same as that of any other number in that
sequence.

(ii) Pseudorandom Numbers: Random numbers are called Pseudorandom
numbers when they are generated by some deterministic process but have
already qualified the predetermined statistical test for randomness.

Areas of Application of Monte Carlo Simulation

Monte Carlo simulation has been applied to a wide diversity of problems ranging
from queuing process, inventory problem, risk analysis concerning a major capital
investment such as the introduction of a new product, expansion of the capacity,
and many other problems. Budgeting is another area where simulation can be very
useful. In fact, the system of flexible budgeting is an exercise in simulation. Simulation
can as well be used for preparing the master budget through functional budgets.

Over and above, the greatest contribution of simulation is in the analysis of
complex systems. Many real-world problems involve systems made up of many
components parts that are interrelated. The system may be dynamic and changing
over time and may involve probabilistic or uncertain events. Simulation is the only
technique for quantitative analysis of such problems.

Monte Carlo Method

Monte Carlo methods are basically the algorithms used in the computation of
result to be calculated from repeated random sampling. These methods help in
computerized calculations because these can perform repeated computation using
random or pseudo-random numbers. It is also used when it is not feasible to
compute correct result with a deterministic algorithm. Monte Carlo simulation
methods are used to study systems having degrees of freedom and in the situations
when there is significant ambiguity in inputs for example, calculating risk factor in a
business.

Various simulation models, based on the principle of similitude (such as
model of aeroplanes initiating flight conditions in a wind tunnel) have been in use
for a long time. However, Monte Carlo simulation is a recent operations research
innovation. The novelty lies in making use of pure chance to contact a simulated
version of the process under analysis, in exactly the same way as pure chance
operates the original system under working conditions. Only models under
uncertainty can be evaluated using Monte Carlo technique.

‘Monte Carlo’ is the code name given by John von Neumann and S.M.
Ulam to the technique of solving problems though it is too expensive for experimental
solutions and too complicated for analytical treatment.

Monte Carlo method is not one single method. It involves various widely-
used classes of approaches to follow a specific model. Using it the following can
be done:

 Define a domain with feasible inputs.
 Randomly generate inputs from the domain.
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 Perform deterministic computation with the inputs.
 Combine the results of the personal computations into the final result.

Monte Carlo methods are used to solve various mathematical problems
based on sampling experiments in statistics using the sequences of random numbers
for simulation and are termed as statistical simulation methods. Thus, Monte Carlo
method is not one single method, but it is a collection of various methods and is
basically used to perform similar procedure. Some of these methods are discussed
here with the help of solved examples.

The Monte Carlo simulation technique can as well be used to solve
probabilistic problems. Suppose, we are to evaluate the probability P that a tank
will be knocked out by either a first or second shot from an antitank gun assumed
to posses a constant kill probability of 1/2. The probability analysis will say that
the chance of tank being knocked out by either a first or second shot from an
antitank gun is 1/2+1/2 (1–1/2) =3/4. However, we can also work out this
probability by simulating each round of the antitank gun by the flip of a coin through
Monte Carlo simulation technique.

Since the probability of a ‘Head’ is the same as that of a kill, we may call it
a hit when the coin turns up a head and otherwise a miss. If we flip the coin a large
number of times, the value of P may be calculated by merely counting the number
of times a head turns up at least in two successive throws and then dividing this
number by the total pairs of throws of the coin. Monte Carlo method in this simple
case is indeed a poor substitute for the theoretical probability analysis. However,
many real-life systems are so complicated that even the well defined probability
analysis very often fails but such situations can be handled by Monte Carlo
simulation, particularly the Monte Carlo technique that provides the simplest possible
solutions for queuing problems. Problems of corporate planning, inventory control,
capital investment, consumer behaviour and quality control can also be handled
through simulation.

Monte Carlo simulation uses random number tables to reproduce on paper
the operation of any given system under its own working conditions. This technique
is used to solve problems that depend upon probability where formulation of
mathematical model is not possible. It involves first, the determining of the probability
distribution of the concerned variables and then sampling from this distribution by
means of random numbers to obtain data. It may, however, be emphasized here
that the probability distributions to be used should closely resemble the real world
situation.

One should always remember that simulation is not a perfect substitute but
rather an alternative procedure for evaluating a model. Analytical solution produces
the optimal answer to a given problem, while Monte Carlo simulation yields a
solution which should be very close to the optimal but not necessarily the exact
correct solution. Monte Carlo Simulation solution converges to the optimal solution
as the number of simulated trials goes to infinity.
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Check Your Progress

1. Define integer programming.

2. State the importance of integer programming problems.

3. State the applications of integer programming.

4. What is Gomory's cutting method

5. What is branch and bound method?

6. Define the mixed integer programming problem.

7. Explain random number.

8. What is pseudorandom number?

9. Define simulation. Why is it used?

10. State the Monte Carlo technique.

4.4 REPLACEMENT PROBLEMS

 The replacement of certain items is to be done usually for one of the following
four reasons:

(i) Due to new developments, the current equipment has become technologically
obsolete.

(ii) The current equipment has become unusable, i.e., it has failed and does not
work at all. For instance, the electric light bulb has failed and as such must
be replaced. This is a case of sudden failure, but the complete failure of an
item like a machine may be a gradual one.

(iii) The current equipment has deteriorated on account of its long use over time
and as such does not function efficiently. In other words, it requires expensive
maintenance.

(iv) The current equipment is expected to fail shortly, the probability of which
increases over time. As such it is considered economically advantageous to
replace equipment in anticipation of costly failure. Such replacement is later
known as ‘Preventive Replacement’.

The above stated reasons indicate that the need for replacement arises in
different situations and hence, different replacement strategies have to be evolved
to suit the concerning situations. At times we may wait to replace an item till it fails,
but in some other situations we may replace an item in anticipation of costly failure.
Then we may as well decide to replace an item by the same item or by a different
type of item. In case of deteriorating item, the problem is to determine at which
time it is profitable to replace the item. Whatever the case may be, the ultimate
objective is to decide the best replacement strategy to enable the concerned
business unit to maximize its profit.
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Replacement Models

Replacement models generally fall into two categories depending upon the life
pattern of the equipment under study. There are models which deal in replacing
equipments that deteriorate with age or usage. Choice between an existing asset
and its potential replacement is based on analysis directed to reduce the differences
in future receipts and disbursements, to an equivalent basis for comparing. Then
there are models which help in establishing replacement policy or strategy for
those equipment which break down or fail completely or are expected to fail
shortly. Such models require the use of probabilistic concepts and the failure data.
In addition to these two categories, one can as well conceive of models of
replacement concerning those items that become out of date due to new
technological developments, but such models are usually complicated models and
as such beyond our scope. We only describe in the pages that follow the
replacement models in respect of items (i) That deteriorate with time and (ii) That
breakdown completely or are expected to breakdown shortly.

Replacement of a Deteriorating Item

Most of the items particularly machines, equipments, etc., deteriorate with time
resulting in the following:

(i) Increased expenditures for operating costs, i.e., costs involved in running
the equipment along with repairs and other maintenance costs concerning
the said equipment.

(ii) Decreases in the productivity of the equipment which can as well be treated
as a cost. For instance, a certain machine produces 24,000 items per year
when new, but only 20,000 items in its second year of use. If the item sells
for  2 and the material and sales costs amount to  1.50, then the cost of
productivity loss is 4000 ×  0.50 =  2000. Such costs tend to increase
over time at an increasing rate.

(iii) Decreases in the value of the equipment, i.e., the resale or salvage value
decreases (or what is altenatively known as increases in the real capital cost
of the equipment, viz., depreciation overtime).

Thus, we have three types of relevant costs, viz., the operating costs, cost
of productivity loss and the cost of capital in terms of depreciation. The first two
types of costs can be grouped together since they possess the same functional
characteristic, i.e., they tend to increase over time at an increasing rate, but the
third type of cost in the form of average depreciation gradually diminishes over
time. As a result, the average cost curve of the concerning equipment initially moves
downward with time, reaching its lowest point, beyond which it moves upwards at
an increasing speed. The time with reference to the lowest point in the average
cost curve happens to be the optimal replacement time of the concerning equipment.
All this can be shown graphically, illustrated in Figure 4.1.
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Fig. 4.1 Optimal Replacement of Equipment that Deteriorates with Time

The concerning replacement model can be developed as follows:
If, C = Capital cost of an equipment when new

S(t) = The resale (or the salvage) value of the equipment af-
ter t years hence;

f(t) = Operating or maintenance cost (including cost of pro-
ductivity loss, if any) of the equipment at time t.

Hence, the total maintenance cost incurred on the equipment during n years

 
0

n

f t dt

Then the total cost (T) incurred on the equipment during n years can be worked
out as follows:

T = C – S(t) +  
0

n

f t dt

and the average annual cost (T
A
) incurred on the machine per year during n years

is equal to:

T
A

= 
0

1
– ( ) ( )

n

C t f t dt
n

 
 

 


Hence to determine the optimal period for replacing the equipment, we would find
that value of n in the above equation which minimizes the value of T

t
. For this

purpose we must differentiate the expression for T
A
 with respect to n, i.e.; we

should work out 
n

TA
   and then taking 

n

TA
 = 0 we can find out the minimum

possible value of T
A
 and then accordingly can state the value of n—the optimal

period for replacing the equipment. The model stated above presumes the following:
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(i) The capital equipment is needed for an indefinite period.

(ii) At the time of purchase the depreciation and maintenance costs can be
accurately estimated.

(iii) The value of money remains the same during the period. It should as well be
remembered that if changes take place in the repurchase cost of the
equipment, then this fact can alter the optimal replacement period. For
instance, an incentive such as the investment tax credit for new capital
equipment has the effect of decreasing depreciation and thus reducing the
replacement period whilst an increase in the price of the new equipment
would have the reverse effect.

Let us take some concept examples to evolve optimal strategy of replacement
of an item that deteriorates with age or usage.

Example 4.7: Suppose a certain manufacturing company uses a machine that
costs  3000 when new. The following table gives the estimates of the expected
operating costs per year and the salvage value of the machine.

Year 1 2 3 4 5 6 7 8

Operating

costs ( ) 600 700 800 900 1000 1200 1500  2000

Salvage

value ( ) 2000 1333 1000 750 500 300 300 200

It is presumed that the machine is needed over an indefinite period in the
future. Using the given information, determine the best age at which to replace the
machine. If the optimum replacement policy is followed by the company, then
what will be the average yearly cost of owning and operating the machine?

Solution: To solve this question, let us work out the average cost per year

Age at t or replacement (in Yrs)    1        2      3     4     5              6       7  8

0

( )or Total operating
n

f t
Cost ( ) 600 1300 2100 3000 4000 5200 6700 8700

C – S (t) or Depreciation

( ) 1000 1667 2000 2250 2500 2700 2700 2800

 
0

– ( ) ( ) or
n

T C S t f t dt  

Total cost ( ) 1600 2967 4100 5250 6500 7900 9400 11503

T
A
 or average cost ( )     1600 1483 1367 1312 1300 1317 1343 1438

The table shows that the lowest average cost per year is achieved by replacing the
machine at the end of five years. As such the best age for the replacement of
machine is at the end of every fifth year. If this optimum replacement policy is
adopted by the company then the average yearly cost of owning and operating for
this period is  1300.
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The above model (Example 4.7) assumes that we have use of the equipment
indefinitely, the but if we requite the same only for definite time period, then we will
have to make certain adjustments in our model. Particularly in working out the
average cost, we will calculate, it over the total fixed (or definite) time period and
then we will select the replacement period which minimizes the average cost over
the time period the equipment is required. This is illustrated in Example 4.8.

Example 4.8: We again take the data as given in Example 4.7 and further presume
that we shall need the machine only for the next 8 years. If we presently have a
one-year old machine, then what should out replacement policy be?

Solution: First of all, we prepare the following table in which all costs are from
age one on.

Age at replacement (in year) 2 3 4 5 6 7 8

Total operating costs    ( ) 700 1500 2400 3400 4600 6100 8100

Depreciation ( ) 667 1000 1250 1500 1700 1700 1800

Total cost ( ) 1367 2500 3650 4900 6300 7800 9900

In addition to the costs during the remaining life of our present machine, we
shall as well have the cost of a new machine for the balance of the next 8 years.
For instance, if we replace the present machine at age 5, we shall have to buy a
new machine for the last 4 years at a cost of  5250 (refer the table). Thus over
the 8 years the total cost would be  5250 + . 4900 =  10150. If we examine
and look into all other possible replacement ages of the present machine we obtain
the following table.

Age of replacing present

machine (in years) 2 3 4 5 6 7 8

Cost per present machine

( ) 1367 2500 3650 4900 6300 7800 9900

Cost per new machine

( ) 9400 7900 6500 5250 4100 2967 1600

Total cost  ( ) 10767 10400 10150 10150 10400 10767 11500

Thus we may replace our present machine either at age 4 or at age 5 because
the total cost for either of these ages is the same and happens to be minimum
possible and buy a new machine for the last 5 years (if present machine is replaced
at age 4) or for the last 4 years (if present machine is replaced at age 5).

Discounting Costs Considerations

The analysis presented so far assumes that the value of money remains the same
overtime. However, this may not always be the case. In real life situation, the value
of money generally changes with time. If we presume that money does carry a rate
of interest, say r per year, then a rupee invested now will be worth (1+ r) a year
hence, (1+ r)2 two years hence, and ( l + r)n in n years, time. This, in other words,
means that if one has to make a payment of one rupee in n years’ time, it is
equivalent to a payment of (l + r)–n rupee today.
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We now explain the determination of an optimal replacement policy assuming
that the value of money does change overtime. For obtaining such a policy we
shall assume first of all that the machine is replaced after every n years, taking
n = 1, 2, ...... accordingly and we shall calculate the present worth of each period
as follows:

Assume that the new machine costs C and that the salvage value at the end
of year n is S

n
 and let the running cost in year n be R

B
 assumed to be payable at the

start of the year and if we replaced the machine at the end of year n then the
present value of all the costs (or total discounted costs including purchase price) is

 – – 1

1

– ( )(1 ) ( )(1 )
n

n n
n n

n

C S r R r






   

and then dividing this by corresponding weight W
n
 (where – 1

1

(1 )
n

n
n

n

W r






 
weget wX , the weighted average cost for year n and then looking at wX ’s for

each of several n years beginning from year 1, 2.........  we select the lowest
possible wX  and corresponding to it the year n is considered the optimal year
when the machine should be replaced. Consider Example 4.3 to understand this
better.

Example 4.9: A truck is priced at  60,000 and running costs are estimated
 6,000 for each of the first four year, increasing by  2,000 per year in the 5th

and subsequent years. It may be assumed that the running costs are payable at the
start of the year. If money is worth 10 per cent per year, when should the truck be
replaced? (Assume that the truck once purchased will be sold for scrap at a
negligible price.)

Solution: Since the money is worth 10 per cent per year, the discount rate is
given by (1+10%)–1 = 1/1+0.10 = 0.9091. Using the table giving PWF values
(given in Appendix at the end of the book) we tabulate figures say for 12 years m
to workout the optimal replacement period for the given problem. The computation

Table 4.1 clearly shows that the lowest possible wX  is attained at  17,99,823 in

9 years time. Accordingly, it is better to replace the truck after 9th year. We can
alternatively arive at the same conclusion as under

In Table 4.2 we see that 16,000 < 17,998.23 < 18,000.

Now, since the running cost of 9th year is  16,000 and that of 10th year is
 18,000 and since 17,998.23 < 18,000 (or 18,000 > 17,998.23) it is better to

replace the truck after the 9th year.

 Replacement of an Item that Break Down Completely or is Expected
to Break Down Shortly

Sometimes the item that deteriorates with age or usage does not result in increased
operating costs or in decreased productivity. This fact applies, For instance, in
case of an electric light bulb which either shines or does not shine. The effect of
continued usage is simply to increase the probability that it will burn out. An
appropriate policy for such items may be to replace them when they break down
completely. Technically we can call it Individual Replacement policy under which
an item is replaced immediately after its failure. However, in many cases the failure
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of the item may result in complete break down of the system resulting in substantial
cost involved in loss in production idle labour, wastage and other damages apart
from the actual cost of replacing the item. Take the case of an electrical equipment
fitted in an aeroplane. The equipment may just cost a few hundred rupees to
replace, but if it fails when the plane is in the air, then it may involve substantial
costs, even many lives at times. Similarly, in industrial equipment, failures may
cause loss of production and may result in damaged or faulty products. In some
cases, failures may involve safety risks to workers. To avoid the costs of sudden
failures, we try to estimate when such failures are likely to occur and try to replace
the item before it actually fails. This sort of replacement is often described as
Preventive Replacement, or replacement in anticipation of failure. Preventive
replacement is based on the premiss that the probability of failing increases with
age or usage and when such probability becomes high, it makes sense to replace
the item during non-production hours before it fails to avoid the cost of failure.

The general model for an optimal preventive replacement policy can be
developed as under: Let us take

C
R
   = Cost of replacement

C
F
   = Cost of failure (inclusive of the cost of replacement)

p
t
    = Probability that an item will fail in time period t, if it has not

          failed earlier

P
t
    = Probability that an item will not fail during or before time period t.

It is worked out as:

P
t
    = (P

t–1
) (1– p

t
)

The optimal replacement policy is to replace the item every T time period if
it has not failed earlier, so that expected cost per time period is minimized. As such
we must find such replacement period. For this purpose we must first work out
the expected cost for any selected replacement time period. If T  happens to be
our replacement period, then the maximum life of any item is T because it will be
replaced in the said period irrespective of the fact that it has failed (in which case
it will have to be replaced earlier) or not failed. Thus, the expected or average lift
of the item, U

T
 would be worked out as under:

–1

1

1
T

T t
t

U P


 

If the expected life of the item is U
T 
under replacement period T, in any

given fixed period of time, say k, we would use 
r

k

U units of the said item.

(Remember 
T

k

U  represents the numbers of the concerning item to be used in the

overall given period in the long run.) Then we would, considering the required
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probability, expect    –1( )T
T

k
P

U

  
    

units out of 
T

k

U units of an item to be replaced

before failure and the remaining –1(1– )T
T

k
P

U

  
    

 units to fail prior to replacement.

Taking into consideration the C
R
 and C

F
 costs, the total expected cost for the

period k would be as follows:

Total expected cost for the period k will be:

–1 –1( ) ( ) 1– ( )T R T F
T T

k k
P C P C

U U

                 

Dividing the above by the number of periods, we obtain the average expected
cost per period for replacement policy T

t

 –1 –1( ) ( ) 1– ( )
( ) T R T F

T

P C P C
AC T

U




Hence that value of T which minimizes the average cost as per the above
equation is the optimal replacement policy.

The above equation gives us the expected average cost for a preventive
replacement policy of time T. In order to find out the optimal replacement period
T, we must calculate, with the help of the said equation, the average cost for each
possible T and must select that T corresponding to which the expected average
cost stands minimized.

To illustrate the stated procedure let us have a look at a few examples.

Example 4.10: A certain small engineering firm has made an intensive study
concerning lathe bits. A bit costs  6 to replace but if it breaks down on a job, the
production loss, is estimated to be  29. The data concerning the life of a bit in the
past are given.

Jobs 1 2 3 4 5 6 7

Probability of bits

breaking on job .01 .03        .09 .13        .25 35 .95

Using the given information state, after how many jobs should the engineering
firm replace a bit that has not broken?

Solution: In the question we have been given the following:
(i) The cost of replacement of the item, C

R 
=  6

(ii) The cost of failure of an item, C
P
 =  35

(i.e., Production loss on failure plus replacement cost)
(iii) The probability that an item will fail in time period t or what we denote

symbolically as p
t
.

As we have to find the optimal preventive replacement policy, we develop
the following table for the calculation of average expected cost for each possible
replacement period T on the basis of the given information:
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Jobs 1 2 3 4 5 6 7

P
t

0.01 0.03 0.09 0.13 0.25 0.55 0.95

P
7

0.990 0.960 0.874 0.760 0.570 0.257 0.013

U
T

1 1.990 2.950 3.824 4.584 5.154 5.411

{(P
t – 1

) (C
R
)+

(1 – P
T
 
–1

) (C
F
)} 6 6.29 7.16 9.65 12.96 18.47 27.55

AC (T) 6 3.16 2.43 2.52 2.83 3.58 5.09

Note: In the above table p
t
 has been taken as given in the question for different jobs:

P
t
 has been worked out as:   P

t
 = [(P

t
 
–
 
1
) (1 – p

t
)]

U
T
 has been worked out as:  

–1

1

1
T

T t
t

U P


 
AC (T) has been worked out as:

 –1 –1( ) ( ) 1– ( )
( ) T R T F

T

P C P C
AC T

U




In the table we find that the minimum average expected cost is reached in
time period (i.e, job) 3. Thus, the optimal replacement policy is to replace the
lathe bit that has been in use for three jobs. In other words, the firm should replace
a bit that has not broken after every three jobs.

Group Replacemests

Group replacement is often talked about in context of a system that contains a
large number of identical low-cost items that are increasingly liable to failure with
age. Under a group replacement policy, all the items in the system are replaced at
worked out regular intervals irrespective of the fact that items have failed or have
not failed, subject to the provision that if any item fails before the optimal replacement
period, it may be individually replaced. If the failed items are replaced say at the
end of the week of failure and all items are replaced say every tenth week, then
such replacement constitutes an example of ‘Group Replacement’. Thus, in group
replacement all items are replaced, including some which (being replacement) may
be almost new. Such a policy is considered advantageous when the item (which is
one of the many identical items of a system) value is so small that the cost of
maintaining records of individual ages cannot be justified economically. We can
easily see the application of such a policy in replacing street light bulbs; it is certainly
a costly affair to bring a truck and crew to the burnt-out bulb for replacing it, but
once the crew is on the street for replacing all the bulbs at the fixed interval, the
replacement cost per bulb is reduced significantly.

Example 4.11: The following mortality rates have been observed for a certain
type of light bulbs.

Week 1 2 3 4 5

Per cent failing by

end of week 10 25* 50 80 100

There are 1000 bulbs in use and it costs  2 to replace an individual bulb
which has burnt out. If all bulbs were replaced simultaneously it would cost 50
paise per bulb. It is proposed to replace all bulbs at fixed intervals, whether or not
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they have burnt out and to continue replacing burnt out bulbs as they fail. At what
intervals should all the bulbs be replaced? At what group replacement price per
bulb would a policy of strictly individual replacement become preferable to the
adopted policy?

Solution: Denoting p
i
 as the probability that a light bulb fails during the ith week

of its life when put to use, we have

Week 1 2 3 4

p
t

0.10 0.15 0.25 0.30 0.20

(=1,2,3,4,5 (p
1
) (p

2
) (p

3
) (p

4
) (p

5
)

and denoting N
i
 as the number of replacements made at the end of the ith week,

we have

N
0

= Number of light bulbs in the beginning = 1000
N

1
= Number of light bulbs being replaced by the end of the first week
= N

0 
. p

1

= (1000) (.10) = 100
N

2
= Number of light bulbs being replaced by the end of the second week
= N

0 
. p

2 
+ N

1 
. p

1

= (1000) (.15) + (100) (.10)
= 160

and similarly we can work out N
v
 N

A
 and N

5
 as follows:

N
3

= N
0 
. p

3 
+N

1 
. p

2
 = N

2 
. p

1

= (1000) (25) + (100) (.15) + (160) (.10)
= 281

N
4

= N
0 
. p

4
 + N

1 
.p

3 
+ N

2 
. p

2
 + N

3 
 p

1

= (1000) (.30) + (100) (.25) + (160) (.15) + (281) (.10)
= 377

N
5

= N
0 
. p

5
 + N

1 
. p

4 
+ N

2 
.
 
p

3
+N

3 
p

2 
+ N

4 
. p

1

= (1000) (.20) + (100) (.30) + (160) (.25) + (281) (.15) + (377)
(.10) = 350.

 Since the replacement of all the bulbs simultaneously costs 50 paise per
bulb and the replacement of an individual bulb on failure costs  2, the average
cost of replacement of all the bulbs simultaneously can be worked out as shown.

End of week I 2 3 4 5

Total Cost of Group
Replacement* ( ) 700 1020 1582 2336      3036
Average cost of group
replacement per week ( ) 700 510 527        584        607

The table indicates that the average cost of group replacement is minimum
in the 2nd week and as such all the bulbs should be replaced after every two
weeks. In other words, it is optimal to have a group replacement after every 2nd
week in the given case.

For different weeks the total cost of group replacement has been calculated
as follows:
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At the end of 1st week, the total cost =

(1000 × .50) + (100 X 2) =  700

At the end of 2nd week, the total cost =

(1000 × .50) + (100 + 160)(2) =  1020

At the end of 3rd week, the total cost =

(1000 × .50) + [100 +160 + 281)(2)]=  1582

At the end of 4th week, the total cost =

(100 × .50) + [(100 + 160 + 281 + 377)(2)] =  2336

At the end of the 5th week, the total cost =

(100 × .50) + [(100 + 160 + 281 + 377 + 350) (2)] =  3036

To answer the other part of the question, we must first work out the cost of
individual replacement, i.e, the cost of an item immediately when it fails and the
same has been worked out as follows:

The expected life of each light bulb in the given case = 
5

1
i

i

ip



=  (1) (.10) + (2) (.15)+(3)(.25) + (4) (.30) +5) (.20)

Hence, average number of failures per week = 0
5

1
i

i

N

ip



       = 
1000

3.35

and the cost of individual replacement per week

= (Average number of failures per week) X

  (Cost of replacing an individual bulb)

=  
1000

2 597
3.35

 

Now we know from the above calculations that the group replacement
after one week costs  700 whereas the individual replacement after a week costs
 597 only, and hence the individual replacement is preferable in comparison to

group replacement if the latter is to take place after every one week.

4.5 SEQUENCING

Sequencing models determine an appropriate order (sequence) for a series of
jobs to be done on a finite number of service facilities in some pre-assigned order,
so as to optimize the total cost (time) involved.
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Definition
Suppose there are n jobs (1, 2, ..., n), each of which has to be processed one at
a time at m machines (A, B, C, ...). The order of processing each job through each
machine is given. The problem is to find a sequence among (n!)m number of all
possible sequences for processing the jobs so that the total elapsed time for all the
jobs will be minimum.

Terminology and Notations

The following terminologies are to be used.

Number of Machines: It means the service facilities through which a job must
pass before it is completed.

Processing Order: It refers to the order in which various machines are required
for completing the job.

Processing Time: It means the time required by each job on each machine.

Idle Time on a Machine: This is the time for which a machine remains idle
during the total elapsed time. The notation x

ij
 is used to denote the idle time of a

machine j between the end of the (i – 1)th job and the start of the ith job.

Total Elapsed Time: This is the time between starting the first job and completing
the last job, which also includes the idle time, if present.

No Passing Rule: It means, passing is not allowed, i.e., maintaining the same
order of jobs over each machine. If each of N-jobs is to be processed through 2
machines M

1
 and M

2
 in the order M

1
 M

2
, then this rule will mean that each job will

go to machine M
1
 first and then to M

2
. If a job is finished  on M

1
, it goes directly to

machine M
2
 if it is free, otherwise it starts a waiting line or joins the end of the

waiting line, if one already exists. Jobs that form a waiting line are processed on
machine M

2
 when it becomes free.

Principal Assumptions

(i) No machine can process more than one operation at a time.
(ii) Each operation once started must be performed till completion.
(iii) Each operation must be completed before starting any other operation.
(iv) Time intervals for processing are independent of the order in which operations

are performed.
(v) There is only one machine of each type.
(vi) A job is processed as soon as possible, subject to the ordering requirements.
(vii) All jobs are known and are ready for processing, before the period under

consideration begins.
(viii) The time required to transfer jobs between machines is negligible.

Job Sequence Problems

Job sequencing is basically the planning of the jobs in sequential manner and is an
essential part of any work. Without proper planning and scheduling one can not
achieve the desired output and profit. For sequencing a job, generally the two
techniques are used termed as Priority Rules and Johnson’s Rules. Priority rules
give the guidelines for properly sequencing the job, where as Johnson’s rule is
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used to minimize the completion time for a set of jobs to be done on two different
machines. Using these rules one can assign jobs and maximize product and profit.

Basic Characteristics of Job Sequencing

1. Only one single job should be scheduled for a machine at a time.

2. Do not stop the process in between before completion.

3. New processing can be started after the completion of the previous
processing.

4. Any job is scheduled for processing as per the order and due date
requirements.

5. If the jobs are transferred from one machine to another due to some reason,
then the time involved in transferring the jobs is considered negligible.

Priority Rules: These rules are used to get specific guidelines for job sequencing.
The rules do not consider job setup cost and time while analysing processing
times. In it job processing time and due dates are given importance because the
due dates are fixed to give delivery in time to the customers. The rules are very
useful for process-focussed amenities, for example health clinics, print shops and
manufacturing industries. Hence, priority rules minimize the time for completing a
job, sequences the jobs in the organization, checks if any job is late and maximizes
resource utilization. The most popular priority rules are as follows:

 First Come First Serve (FCFS): The job to be processed first is the job
that turned up first in the organization.

 Earliest Due Date (EDD): The job to be processed first is the job that
has earliest due date.

 Shortest Processing Time (SPT): The job to be processed first and
completed is the job that is shortest in nature; in other words the job can be
processed in short time.

 Longest Processing Time (LPT): The job to be processed first is the
job that is very important or of high priority though it can take longer
processing time.

 Critical Ratio (CR): The job to be processed first is analysed on the
basis of critical ratio, which is an index number calculated from time remaining
until due date divided by the remaining work time.

Johnson’s Rule: This rule is applied to minimize the completion time for a set of
jobs that are to be processed on two different machines or at two consecutive
work stations. The main objectives of the rules are,

 To minimize the processing time while sequencing a set of jobs on two
different machines or work stations.

 To minimize the complete idle time on the processing machines.

 To minimize the flow time of the job, i.e., from the start of the first job until
the completion of the last job.     

Necessary Conditions for Johnson’s Rules: The necessary conditions to
efficiently complete the processing of the jobs are as follows:
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 Knowledge about job time for each job at the specific work station.

 Job time must not depend on sequencing of jobs.

 All the jobs to follow the predefined work sequence.

 Avoid job priority.

Four Steps Johnson’s Rule: The following are the important four steps in
Johnson’s rule:

Step 1: List all the jobs and the processing time of each machine to which these
jobs are scheduled.

Step 2: Choose the job which has the shortest processing time. If the shortest
time has been scheduled on the first machine or work station then the job is selected
first for processing. In case the shortest time is scheduled on the second machine
or work station then the job is processed at the end.

Step 3: After scheduling the job for processing go to Step 4.

Step 4: Repeat Step 2 again to schedule the processing of remaining jobs and fill
the sequence columns towards the centre till all the jobs are scheduled.

The following example will help you to understand how the sequences are
scheduled.

For example, there are five jobs to be done at a factory and each job must
be processed through two work stations at two different machines, drill machine
and lathe machine. Using Johnson’s rule we can schedule the sequence of jobs.

The time (in hours) for processing each job is given in the following table:

Jobs 
Work Station 1 

(Drill) 
Work Station 2 

(Lathe) 
A 5 2 
B 3 6 
C 9 4 
D 12 8 
E 8 14 

 
Using the Steps of Johnson’s Rule, the job processing sequences are scheduled
as follows:

Step 1: In the given table, the job with the shortest processing time is job A, in
work station 2 (with a time of 2 hours). Because it is at the second work station,
schedule A last.

    A 
 

Step 2: Next shortest time is of job B (with a time of 3 hours). Because it is at the
first work station, schedule it at first priority and eliminate it from the list.

B    A 
 

Step 3: The next shortest time is of job C (with a time of 4 hours), but it is at the
second work station. Therefore, place it at last before A.

B   C A 
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Step 4: There is a tie between job D (with a time of 8 hours at work station 2) and
job E (with a time of 8 hours at work station 1) for the shortest remaining job.
Because job E is at the first work station, so place it first after job B. Then place
job D in the last sequencing position. You will get the job sequence schedule as
follows:

B E D C A 
 

The final sequential times at both the work stations will be:

Jobs B E D C A 
Work Station 1 (Drill) 3 8 12 9 5 
Work Station 2 (Lathe) 6 14 8 4 2 
 

Check Your Progress

11. What are the two categories of replacement models?

12. What are the three types of relevant costs?

13. What is the basis of preventive replacement?

14. Define group replacement.

15. What is basic concept of sequencing models?

16. Give the definition of sequencing models.

17. State the principal assumptions of sequencing.

18. Define the job sequence problem.

19. What are basic characteristics of job sequencing?

4.6 ANSWERS CHECK YOUR PROGRESS

1. A linear programming problem in which all or some of the decision variables
are constrained to assume non-negative integer values is called an Integer
Programming Problem (IPP). In a Linear Programming Problem (LPP) if
all variables are required to take integer values, then it is called the Pure
(all) Integer Programming Problem (Pure IPP).

2. In IPP, all the decision variables are allowed to take any non-negative real
values as it is quite possible and appropriate to have fractional values in
many situations. There are several frequently occurring circumstances in
business and industries that lead to planning models involving integer-valued
variables. For example, in production, manufacturing is frequently scheduled
in terms of batches, lots or runs. In allocation of goods, a shipment must
involve a discrete number of trucks or aircrafts. In such cases the fractional
values of variables like 13/3 may be meaningless in the context of the actual
decision problem.

3. Integer programming is applied in business and industries. All assignment
and transportation problems are integer programming problems, because
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in the assignment and travelling salesmen problem all the decision variables
are either zero or one.

i.e., x
ij 
= 0 or other examples include capital budgeting and production

scheduling problems. In fact, any situation involving decisions of the type
‘Either to do a job or not’ can be viewed as an IPP. In all such situations,

x
ij
 = 1, if the jth activity is performed.

x
ij
 = 0, if the jth activity is not performed.

In addition, allocation problems involving the allocation of men or machines
give rise to IPP, since such commodities can be assigned only in integers
and not in fractions.

4. A systematic procedure for solving pure IPP was first developed by R.E.
Gomory in 1956, which he later used to deal with the more complicated
cases of mixed integer programming problems. This method consists of first
solving the IPP as an ordinary LPP by ignoring the restriction of integer
values and then introducing a new constraint to the problem such that the
new set of feasible solution includes all the original feasible integer solutions,
but does not include the optimum non-integer solution initially found. This
new constraint is called ‘Fractional Cut’ or ‘Gomorian Constraint’. Then
the revised problem is solved using the simplex method, till an optimum
integer solution is obtained.

5. This is an enumeration method in which all feasible integer points are
enumerated. This is the widely used search method based on branch and
bound technique. It was developed in 1960 by A.H. Land and A.G. Doig.
This method is applicable to both pure and mixed IPP. It first divides the
feasible region into smaller subsets that eliminate parts containing no feasible
integer solution.

6. In mixed IPP only some of the variables are restricted to integer values,
while the other variables may take integer or other real values.

Mixed integer cutting plane procedure: The iterative procedure for the
solution of mixed integer programming problem is as follows.

7. Random number is a number whose probability of occurrence is the same
as that of any other number in the collection.

8. Random numbers are called pseudorandom numbers when they are
generated by some deterministic process and they qualify the predetermined
statistical test for randomness.

9. The representation of reality in some physical form or in some form of
mathematical equations may be called as simulation, i.e., simulation is
imitation of reality. This is used because one is satisfied with suboptimal
results for decision-making and also when representation by a mathematical
model is beyond the capabilities of the analyst.

10. It is a simulation technique in which statistical distribution functions are
created by using a series of random numbers. This is generally used to solve
problems which cannot be adequately represented by the mathematical
models.
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11. The two categories are:
(i) Models that deteriorate with time and (ii) Models that break down
completely or are expected to breakdown shortly.

12. We have three types of relevant costs, viz., the operating costs, cost of
productivity loss and the cost of capital in terms of depreciation.

13. Preventive replacement is based on the premise that the probability of failing
increases with age or usage and when such probability becomes high, it
makes sense to replace the item, during non-production hours before it fails
to avoid the cost of failure.

14. In group replacement all items are replaced including some which (being
replacement) may be almost new.

15. Sequencing models determine an appropriate order (sequence) for a series
of jobs to be done on a finite number of service facilities in some pre-
assigned order, so as to optimize the total cost (time) involved.

16. Suppose there are n jobs (1, 2, ..., n), each of which has to be processed
one at a time at m machines (A, B, C, ...). The order of processing each job
through each machine is given. The problem is to find a sequence among
(n!)m number of all possible sequences for processing the jobs so that the
total elapsed time for all the jobs will be minimum.

17.    (i) No machine can process more than one operation at a time.
(ii) Each operation once started must be performed till completion.
(iii) Each operation once started must be performed till completion.
(iv) Time intervals for processing are independent of the order in which

operations are performed.
(v) There is only one machine of each type.
(vi) There is only one machine of each type.
(vii) All jobs are known and are ready for processing, before the period

under consideration begins.
(viii) The time required to transfer jobs between machines is negligible.

18. Job sequencing is basically the planning of the jobs in sequential manner
and is an essential part of any work. Without proper planning and scheduling,
one cannot achieve the desired output and profit. For sequencing a job,
generally the two techniques are used termed as Priority Rules and Johnson’s
Rules. Priority rules give the guidelines for properly sequencing the job,
whereas Johnson’s rule is used to minimize the completion time for a set of
jobs to be done on two different machines. Using these rules one can assign
jobs and maximize product and profit.

19. (i) Only one single job should be scheduled for a machine at a time.
(ii) Only one single job should be scheduled for a machine at a time.
(iii) New processing can be started after the completion of the previous

processing.
(iv) Any job is scheduled for processing as per the order and due date

requirements.
(v) If the jobs are transferred from one machine to another due to some

reason, then the time involved in transferring the jobs is considered
negligible.
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4.7 SUMMARY

 A linear programming problem in which all or some of the decision variables
are constrained to assume non-negative integer values is called an Integer
Programming Problem (IPP).

 In a Linear Programming Problem (LPP) if all variables are required to
take integer values, then it is called the Pure (all) Integer Programming
Problem (Pure IPP).

 In a Linear Programming Problem (LPP) if all variables are required to take
integer values, then it is called the Pure (all) Integer Programming Problem
(Pure IPP).

 A systematic procedure for solving pure IPP was first developed by R.E.
Gomory in 1956, which he later used to deal with the more complicated
cases of mixed integer programming problems.

 This is an enumeration method in which all feasible integer points are
enumerated. This is the widely used search method based on Branch and
Bound technique. It was developed in 1960 by A.H. Land and A.G. Doig.

 Monte Carlo simulation is often used by modern management when it cannot
use other techniques.

 By using a fresh series of random numbers at the appropriate junctures we
can also examine the reactions of the simulated model just as if the same
alterations had actually been made in the system itself.

 The main purpose of simulation in management is to provide feedback,
which is vital for the learning process.

 Simulation is a representation of reality through the use of a model or other
device which will react in the same manner as reality under a given set of
conditions.

 Simulation is also defined as the use of a system model that has the designed
characteristics of reality in order to produce the essence of actual operation.

 Replacement models generally fall into two categories depending upon the
life pattern of the equipment under study. There are models which deal in
replacing equipment that deteriorate with age or usage.

 The optimal replacement policy is to replace the item every T time period if
it has not failed earlier, so that expected cost per time period is minimized.

 Sequencing models determine an appropriate order (sequence) for a series
of jobs to be done on a finite number of service facilities in some pre-
assigned order, so as to optimize the total cost (time) involved.

 Suppose there are n jobs (1, 2, ..., n), each of which has to be processed
one at a time at m machines (A, B, C, ...). The order of processing each job
through each machine is given. The problem is to find a sequence among
(n!)m number of all possible sequences for processing the jobs so that the
total elapsed time for all the jobs will be minimum.
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 Number of Machines: It means the service facilities through which a job
must pass before it is completed.

 Processing Order: It refers to the order in which various machines are
required for completing the job.

 Idle Time on a Machine: This is the time for which a machine remains idle
during the total elapsed time. The notation x

ij
 is used to denote the idle time

of a machine j between the end of the (i – 1)th job and the start of the ith
job.

 Job sequencing is basically the planning of the jobs in sequential manner
and is an essential part of any work. Without proper planning and scheduling
one cannot achieve the desired output and profit. For sequencing a job,
generally the two techniques are used termed as Priority Rules and Johnson’s
Rules.

4.8 KEY TERMS

 Integer Programming Problem (IPP): A problem in which all or some
variables are constrained to assume non-negative integer values.

 Pure IPP: In an Pure IPP (Integer programming problem) when all variables
are constraint to non-negative integer values.

 Mixed IPP: In this type of IPP, some variables are allowed to assume
nonnegative non-integer values.

 Branch and bound method: An enumeration method in which a feasible
region is divided into smaller subsets and each of these is examined
successively to find a feasible solution. Initially, it is solved ignoring integer
constraints. Then, solution so obtained is divided into two disjoint subsets
of two consecutive non-negative integers. This method is used both for
pure and mixed integer programming problems.

 Simulation: A representation of reality using a model or other device that
reacts in the same manner as reality under a given set of conditions. It is an
imitation of a reality.

 Random number: It refers to a number assigned to a random variable
following uniform probability density function.

 Preventive replacement: Replacement of equipment to avoid the cost of
sudden failures by estimating when such failures may occur. It can also be
called as replacement in anticipation of failure.

 Sequencing models: Sequencing models determine an appropriate order
(sequence) for a series of jobs to be done on a finite number of services
facilities in some pre-assigned order, so as to optimize the total cost (time)
involved.

 Number of machines: It means the service facilities through which a job
Sequencing Problem must pass before it is completed.
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4.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. How an IPP is different from a linear programming problem?

2. When is simulation used? What is done in a simulation?

3. Differentiate between a random number and a pseudorandom number.

4. Who gave the code name Monte Carlo?

5. What is replacement? What factors cause a replacement policy to be adopted
by a modern business unit? Give suitable examples.

6. Write a short note on replacement models.

7. What is no passing rule in a sequencing algorithm?

8. State the principal assumptions made while dealing with a sequencing
problem.

9. What is sequencing problem?

Long-Answer Questions

1. Find the optimum integer solution of the following pure integer programming
problems.
Max Z = 4x1 + 3x2
Subject to constraints, x1 + 2x2  4

2x1 + x2  6

x1, x2  0 and are integers.

2. Find the optimum integer solution of the following pure integer programming
problems.
Max Z = 3x1 + 4x2
Subject to constraints, 3x1 + 2x2  8

x1 + 4x2  10

x1, x2  0 and are integers.

3. Explain simulation and its types.

4. What is a random variable? Explain why it is used.

5. Explain the methodology of the Monte Carlo simulation techniques.

6. Describe the role of simulation in management process.

7. Discuss Monte Carlo simulation with reference to queuing theory, inventory
control and production line.

8. Explain the importance of preventive replacement in the context of
replacement strategies.

9. Illustrate the graphical method to solve two jobs on machines with given
technological ordering for each job. What are the limitations of the method?
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5.0 INTRODUCTION

In mathematics optimization, the numerical optimization of nonlinear multivariable
objective functions in general requires effective and reliable techniques. Because
these issues necessitate an iterative solution technique, trial and error becomes
impracticable when there are more than three or four variables. Because a generic
nonlinear function’s behaviour is unpredictable, robustness (the capacity to obtain
a solution) is required. There may be relative maxima or minima, saddle points,
regions of convexity or concavity, and so on. In some areas, the optimization
method may advance very slowly toward the optimal solution, necessitating a
significant amount of computer time. Fortunately, we have a lot of experience
evaluating nonlinear programming techniques for unconstrained functions, so we
can assess many ways for optimizing these functions. The Fibonacci sequence has
the property that a number is the sum of its two predecessors. Therefore the
sequence can be computed by repeated addition. The ratio of two consecutive
numbers approaches the Golden ratio, 1.618...,. Binary search works by dividing
the seek area in equal parts (1:1). Fibonacci search can divide it into parts
approaching 1:1.618 while using the simpler operations.

The Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–
Tucker conditions, are first derivative tests (sometimes called first-order necessary
conditions) for a solution in nonlinear programming to be optimal, provided that
some regularity conditions are satisfied. Quadratic Programming (QP) is the process
of solving certain mathematical optimization problems involving quadratic functions.
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Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic
function subject to linear constraints on the variables. Quadratic programming is a
type of nonlinear programming.

The Nonlinear Programming (NLP) is the process of solving an optimization
problem where some of the constraints or the objective function are nonlinear. An
optimization problem is one of calculation of the extrema (maxima, minima or
stationary points) of an objective function over a set of unknown real variables
and conditional to the satisfaction of a system of equalities and inequalities,
collectively termed constraints. It is the sub-field of mathematical optimization that
deals with problems that are not linear.

In this unit, you will learn about the one and multivariable unconstrained
optimization, Kuhn-Tucker conditions for constrained optimization, quadratic
programming and types of nonlinear programming problems.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the one and multivariable unconstrained optimization

 Explain the Kuhn-Tucker conditions for constrained optimization

 State quadratic programming

 Describe the separable programming

 Discuss the convex and non-convex programming

5.2 ONE AND MULTIVARIABLE
UNCONSTRAINED OPTIMIZATION

The methods used to find the maximum/minimum of function f(x) depending on
whether f(x) is a single variable of f(x), x = (x

1
, x

2 
…x

n
)  has several variables are

one dimensional

1. Search Method (1-D).

2. Direct Search Methods (Interal halving)

3. Fibonacci Sequence Method

4. Golden Section Search Method

The 1-D search method is also known as univariate search method,
where variables in x are varied one at a time and the iterations are stopped, if
successive values of f(x) yield the same value. It is also called the step method.

In Fibonacci sequence method, we specify the limit of accuracy and
calculate the end points of the intervals using the Fibonacci sequence.

A slightly modified form of Fibonacci sequence method is the Golden
section search method, where the distance of the points of uncertainty intervals
are determined using a standard formula.
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5.2.1 Fibonacci Search

Fibonacci search is a univariate search technique that can be used to find the
maximum (or minimum) of an arbitrary unimodal, univariate objective function.
This method is a sequential search technique that successfully reduces the interval
in which the maximum (or minimum) of an arbitrary nonlinear function must lie.
To apply this technique, the assumption of unimodality must be invoked or the
technique may locate a stationary point or completely fail. This method gives an
optimal solution in the minimax case in a sequence of N functional evaluations.

Definition: The interval of uncertainty is defined as the interval in which the
optimum solution is known to exist.

Consider the following successive relationship which generates an infinite series
of numbers

x
n
 = x

n–1 
+ x

n–1
,     n = 2, 3...

Define x
0 

= 0 and x
1
 = 1

The above equation generates a series of numbers that are known as Fibonacci
numbers given in Table 5.1. The Fibonacci sequence is defined as

Table 5.1 Fibonacci Numbers

F
N

= F
N–1 

+ F
N–2

, N > 1

Identifier Sequence Fibonacci Number 

F0 0 1 

F1 1 1 

F2 2 2 

F3 3 3 

F4 4 5 

F5 5 8 

F6 6 13 

F7 7 21 

F8 8 34 

F9 9 55 

F10 10 89 

F11 11 144 

Interval Length of Fibonacci Method

Define the initial interval of search to be of Length L
0
. This interval is critical interval

of uncertainty. This interval must lie between points A and B. To reduce the initial
interval of uncertainty to some finite length L

N
 using exactly N functional

evaluations.

L
0
 = Length of the interval of uncertainty after n functional evaluation.

X
n 
= Value  of the variable X after N functional evaluations.

f
n 
=  Value of the objective function using X

n
, n = 1, 2,…,N

 = The Minimum separation allowed between any points over the
     interval L

0
.
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It represents the resolution that can be obtained between the points X
n
 and

X
n–1

. The calculation of this parameter  is essential as the optimum solution is
based on the elimination of the regions in which the optimum solution can’t lie.

Steps Involved in Fibonacci Sequence Method

Step 1: Define the end points of the search A and B.

Step 2: Define the number of functional evaluations N, that are to be used in
the search.

Step 3: Define the minimum resolution parameter .

Step 4: Define the initial interval and first interval of uncertainty as (B – A).

Step 5: Define the second interval of uncertainty as follows:

 2 0 1

1
( 1)n

N
n

L L F
F    

where F
N
 and F

N–1 
are Fibonacci numbers.

Step 6: Locate  the first two functional evaluations as the two symmetric points
x

1
 and x

2
 defined as follows: x

1
 = A + L

2
,
  

  x
2
  = B – L

1
.

L1

B

L2

A

f x( )

x2

x1

x

Step 7: Calculate f(x
1
) and f(x

2
) and eliminate the interval in which the optimum

cannot lie.

Step 8: Use the relationship L
n
 = L

n–2 
– L

n–1
 to locate subsequent points of

evaluation within the remaining interval of uncertainty.

Repeat steps 7 and  8 until N fractional evaluations have been
executed. The final solution can be either an average of the two points evaluations
(x

N
 and x

N–1
) or the best (max/min) functional evaluation.

Example 5.1: Find the minimum of f(x) = x2 – 2x by Fibonacci method. Take
interval 0 < x < 1.5 and  = 0.25.

Solution: Fibonacci sequence is defined as

F
2
 = F

0 
+ F

1
, F

3 
= F

1 
+ F

2
 and so on.

{F
0
, F

1
, F

2
, F

3
, F

4
, F

5
} = {1, 1, 2, 3, 5, 8}

Step 1: Find Fibonacci number F
n
 using

N

1
= 0.25 N 4. 

F
   

Take N = 4
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Step 2: End points of the interval are (0, 1.5)

 A = 0, B = 1.5;  L
0
 = B – A = 1.5 – 0 = 1.5

Step 3: Calculate x
1 

= A + L
2
, x

2
 = B – L

2

 

 

 

2 0 1

4
3

1
( 1)

1
1.5 ( 1)

1
1.5(3) 0.25

5
0.95

N
N

N

N

L L F
F

F
F

   

   

 



 x
1
 = 0 + 0.95 = 0.95

 x
2
 = 1.5 – 0.95 = 0.55

Step 4: Plot point x
2
 in the figure at a distance 0.55 from (0) and x

4
 at a distance

0.95 from the end points.

f(x
1
) = f(0.95) = –0.9975

f(x
2
) = f(0.55) = –0.7975

0 1.5

0.55 0.95
x2 x1

Step 5: Since f(x
2
) > f(x

1
) i.e. f(0.55)> f(0.95)

  Optimum lies in the interval (0.55, 1.5)

Step 6: Take A = 0.55, B = 1.5

Redetermine a new point x
3

= A + L
3

x
4

= B – L
3

L
3

= L
2 

– L
1
 = 1.5 – 0.95 = 0.55

x
3

= 0.55 + 0.55 = 1.1

x
4

= 1.5 – 0.55 = 0.95

0.55

0.95 1.1

1.5x4
x3

x2

Step 7: Find f(0.95) = – 0.9975  since f(1.1) > f(0.95)

f(1.1) = –0.99

Also f(0.55) > f(0.95)

Reject the interval (1.1, 1.5).

The new interval of uncertainty is (0.55, 1.1)

A = 0.55,  B = 1.1

L
4

= L
2
 – L

3
  = 0.95 – 0.55 = 0.4
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x
5

= 0.55 + 0.4 = 0.95

x
6

= 1.1 – 0.4 = 0.7

0.55 0.7 1.10.95
x3

x5x6
x2

f(0.95) = – 0.9975

f(0.7) = – 0.91

f(0.7) > f(0.95)

f(1.1) > f(0.95)

f(0.7)> f (0.95)

New interval of uncertainty is (0.95, 1.1.)

L
5

= L
3 
– L

4

= 0.55 – 0.4 = 0.15 < 0.25 ()

The following table shows the progression through three functional evaluations.

Functional 

Evaluations(n) 

Interval of uncertainty xn - 1 F(xn-1) xn F(xn) 

1 0.95 ≥ x ≥ 0 0.55 0.7975 0.95 0.9975 

2 0.55 ≥ x ≥ 0.95 0.95 0.9975 1.1 0.99 

3 0.7 ≥ x ≥ 0.95 0.7 0.91 0.95 0.9975 

 

At the 3rd functional evaluation, the interval of uncertainty is established as
I
3
 = 0.95.

The best optimal solution is 
1.1 0.95

1.025
2




f(1.025) = –0.999375  = –1.0

Example 5.2: Maximize the function f(x) = –3x2 + 21.6x + 1.0 with a minimum
resolution of 0.50 over six functional evaluations. The optimal value of f(x) is
assumed to be in the range 25 > x > 0.

Solution

Given  = 0.50

End points A = 0

N = 6

B = 25

L
10

= L
1
  = B – A = 25

  
  

 

2 1 1

6

2 1 5
6

1
1

1
1

1
25(8) 0.5 15.4231

13

N

N
N

L L F
F

L L F
F

   

   

  
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L
2

= 15.4231

x
1

= A + L
2
 = 15.4231

x
2

= B – L
2
 = 9.5769

f(x
1
) = f(15.4231)

=    2
–3 15.4231 + 21.6 15.4231 + 1.0 = – 379.477

f(x
2
) = f(9.5769)

=    2
–3 9.5769 21.6 9.5769 1.0   – 67.233

Since f(x
2
) > f(x

1
), the region of uncertainty is 0 to 15.4321, i.e., region to the

right of x
1
 = 15.42 is eliminated.

0 25x2 = 9.58 x1 = 15.42

L
0

= 25

L
1

= 25

L
2

= 15.4231

Here end points are A = 0,  B = 15.42

L
3

= L
1 
– L

2
 = 25 – 15.4231 = 9.5769

x
3

= A + L
3
 = 0 + 9.5769  = 9.5769

x
4

= B – L
3
 = 15.42 – 9.5769 = 5.8462

f(x
3
) = f(9.5769) = – 67.233

f(x
4
) = f(5.8462) = 24.744

f(x
4
) > f(x

3
) i.e., f(5.8462) > f(9.5769)

the region of uncertainty is 0 to 9.5769.

i.e., region to the right of x
3
 = 9.5769 is eliminated.

The following table shows the progression through the six functional evaluations.

Fibonacci Search

Functional 

Evaluations 

Interval of uncertainty xn-1 F(xn-1) xn F(xn) 

1 0 ≤ x ≤ 2.5 0 1 25 1938.8 

2 0 ≤ x ≤ 15.4231 9.5769 –67.233 15.4231 379.477 

3 0 ≤ x ≤ 9.5769 5.8462 24.744 9.5769 67.233 

4 0 ≤ x ≤ 5.8462 3.731 39.83 5.8962 24.744 

5 2.115≤ x ≤ 5.8462 2.115 32.26 3.731 39.83 

6 2.115≤ x ≤ 4.2304 3.731 39.83 4.2304 38.688 

 
At the sixth functional evaluation, the interval of uncertainty is established as
I
6
 = 2.115.
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The optimal solution is x
5
 = 3.731.

f(x
5
) = 39.83

 = 4.2304 – 3.731 = 0.4994 < 0.5

Exercise: Find the minimum of f(x) = x 3 – 3x – 5, 0 < x < 1.2 and level of
uncertainty is x = 0.35.

5.2.2 Golden Section Search

In performing a Fibonacci search, a prior specification of the resolution factor
() and the number of experiments to be performed (N) are required. In search
methods to have a proper functioning, the successive experiments will gradually
reduce the interval of uncertainty, i.e., the final interval of uncertainty will converge
to zero as the number of functional evaluation increases to infinity provided that
 is small.

    2 0 1

0 0

1
0

1
lim lim 1

N

N
N N

N

N

N

L L F
F

F
L

F

 
 



 
    

 

 
  

 

In the above limit, the ratio of 1N

N

F

F
 goes to 0.618 which is known as golden

ratio or golden section. The modified version of Fibonacci method with this
golden ratio is known as golden section search. In comparison to the Fibonacci
method, the golden section search is less efficient as it is derived from Fibonacci
method. In golden section search method, the minimax principle is lost for early
searches as the solution in each search is neither dependent upon resolution
considerations nor on the number of functional evaluations. In practice, the golden
section search is often used because it requires less information to implement
each search and is by construction self-starting.

The general procedure for this method is given below:

Step 1: Define the initial interval of uncertainty as L
0 

= B – A, and A and B
are the end points of the search.

Step 2: Determine the first two functional evaluations at points x
1 
and x

2
 defined

by

x
1
= A  +  0.618 (B – A)

x
2
 = B – 0.618 (B – A)

Step 3: Eliminate the appropriate region in which the optimum cannot lie.

Step 4:  Determine the region of uncertainty defined by

L
j + 1

= L
j –1

 – L
j
    j = 2, 3…….

Where, L
0

= B – A

L
1

= B – A

L
2

= x
1 
– A  or L

2 
= B – x

2

depending upon the region eliminated in step 3.
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Step 5:  Establish a new functional evaluation using the result of step 4. Evaluate
f(x) at this point, and then go to step 3. Repeat this procedure until a specified
convergence criteria is satisfied.

Example 5.3: Minimize f(x) = x4 – 15x3 + 72x2 – 1135x.

Terminate the search when |f(x
n
) – f(x

n–1
)| < 0.50.

The initial range of x is 1 < x < 15.

Solution

Given A = 1,   B = 15

L
0

= B – A = 14

x
1

= 1 + 0.618(14) = 9.652

x
2

= 15 – 0.618(14) = 6.348

6.348

15

x
9.652

1

f(x
1
) = 595.70,    f(x

2
) = –168.82

Since f(x
1
) > f(x

2
) the region to the right of x = 9.652 can be eliminated and

the interval of uncertainty after two functional evaluations is given by 1 < x <
9.652.

The following table shows the progression of the golden section search method.

Finctional 
Evaluations 

(n) 

Xn–1 

(right) 
f(xn–1) Xn (left) f(xn) Interval of 

uncertainty 
Length 

2 9.652 595.70 6.348 –168.82 1  x  9.652 8.652 
3 6.346 –168.80 4.304 –100.06 4.304  x  9.652 5.348 
4 7.609 –114.64 6.346 –168.80 4.304  x  7.609 3.305 
5 6.346 –168.80 5.566 –147.61 5.566  x  7.609 2.043 
6 6.828 –166.42 6.346 –168.80 5.566  x  6.828 1.262 
7 6.346 –168.80 6.048 –163.25 6.048  x  6.828 0.780 
8 6.530 –169.83 6.346 –168.80 6.346  x  6.828 0.482 
9 6.643 –169.34 6.530 –169.83 6.346  x  6.643 0.297 

|f(x
9
) – f(x

8
)| = –169.34 – (–169.83)

= 0.49

Since termination criterion are satisfied, the golden section search will stop at
this point.

The optimum solution is given by x = 6.643, f(x) = –169.34

Exercise: Find the minimum of x2 – 2x in (1, 2) within an interval of uncertainty
0.13 < 0 where L

0
 is the original interval of uncertainty. Solve by Golden section

search method.

Check Your Progress

1. What is one multivariable unconstrained optimization search method?

2. Define Fibonacci search method.

3. What do you mean by the golden section search method?
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5.3 KUHN-TUCKER CONDITIONS FOR
CONSTRAINED OPTIMIZATION

The necessary and sufficient conditions for a local optimum of the general Nonlinear
programming problem, with both equality and inequality constraints is called Kuhn-
Tucker conditions.

Consider the following general form of NLP in which the objective
function is to be maximized with all the constraints of  type.

Maximize Z = f(x
1
, x

2
,…x

n
)

Subject to, G(x
1
, x

2
,…x

j
….x

n
)  b

i
, i = 1, 2,…, m

j =1, 2,…n

x
j
  0

The modified form of the above problem is

Max  Z  =  f(x
1
, x

2
…x

n
)

Subject to, g
i
(x

1
, x

2
…x

n
)  0, i = 1, 2…n

x
j
   0,  j  = 1, 2, … n

Where g
i
(x

1
, x

2
…x

n
)  = G(x

1
, x

2
…x

n
) – b

i
.

By adding slack variable to the constraints, the above problem can be
modified as

Maximize Z = f(x
1
, x

2
,…x

n
)

Subject to   2
1 2,   0, 1,2,... 0, 1,2,i n i jg x x x s i m x j n      

where 2
is  are slack variables added to the constraint.

This problem consists of n + m variables and m constraints. Let L be the
Lagrangian function and 

i
 be the Lagrangian multiplies of the ith constraints.

Then the Lagrangian function is given as

( , , )L x s  = 2

1

( ) – ( )
m

i i i
i

f x g x s


  

where 1 2( , ,... )m     is the vector of the Lagrangian multiplier..

The necessary conditions for an extreme point to be local optimum (maxima
or minima) can be obtained by solving the frequency equations.

j

L

x


 =

1

( )( )
0 1, 2,...

M
i

i
ij j

g xf x
j n

x x





  

 

i

L
 =  2( ) 0 1, 2,...i ig x s i m   

i

L

s


 = 2 0 1, 2,...i ix i m  
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The equation 0
i

L





  gives back the original set of constraints

  2 s 0.i ig x  

The equation 0
i

L

s




  provides the set of rules 2 0i ix   or 0i is   for

finding the unconstrained optimum. The condition 0i is   implies that either 0i  or

0is  .

If  0is  and  0i   then the equation 0
i

L


  gives g
i
(x) = 0.

This means either 
i
 = 0 or g

i
(x) = 0 which in turn can be written as


i 
g

i
(x) = 0

Since 2 0 ( ) 0,i is g x   the equation ( ) 0i ig x 

 when  ( ) 0, 0i ig x   and when ( ) 0, 0i ig x   . Also, if  20, 0i is 

then the ith constraint is inactive. This constraint will not change the optimum value
of Zn because

j

z

b






= 0 and hence can be discarded.

To maintain the relation of 
i
, Kuhn-Tucker has established the following

necessary conditions.

i. 0i i = 1,2,...m

ii.
j

L

x


 = 0 ( 1,2,... )j n

iii. 1 2( , , , )i i ng x x x = 0 1,2,i m 

iv. 1 2( , , , )i ng x x x = 0 1,2,i m 

Note:

For a minimization problem, with concave objective function and with all  type
constraints (concave type constraints), the value of 

i
 should be   0. If L is

concave, in the case of maximization problem and convex in the case of minimization
problem. The different possibilities of 

i
 are given below.

(i) For maximization objective function  type constraints 0 1,2i i m  

(ii) For maximization objective function, with   type constraints
0 1,2i i m  

(iii) For maximization objective function with = type constraints 
i
 is unrestricted

in sign,

    i = 1, 2, … m
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(iv) For minimization objective function with   type of constraints
0 1,2,...i i m 

(v) For minimization objective function and with   type constraints
0 1,2,...i i m 

(vi) For minimization objective function and with = constraints, 
i
 is unrestricted

in sign, i = 1, 2…m.

Table 5.2 Summary of Kuhn-Tucker Conditions

 F(x) g(x) i 

Maximum Concave Convex 

Concave 

Linear 

 0 

 0 

No restriction 

Minimum Convex Convex 

Concave 

Linear 

 0 

 0 

No restriction 

 If f(x) and g(x) are indefinite then K.T. conditions are necessary but not
sufficient for stationary points.

Example 5.4: Solve the following NLP using Kuhn-Tucker conditions.

Maximize Z = 2 2
1 1 2 22x x x x 

Subject to, 1 24 2 24x x 

1 25 10 20x x 

1 2, 0x x 

Solution: The Lagrangian function
2 2
1 1 2 2( ,  ) 2x x x x x    1 1 2 2 1 2(4 2 24) (5 10 20)x x x x      

The Kuhn-Tucker conditions are

1 20, 0   (5.1)

1

L

x


 = 1 2 1 22 4 5 0x x     (5.2)

2

L

x


 = 1 2 1 24 2 10 0x x      (5.3)

1 1 2(4 2 24)x x  = 0 (5.4)

2 1 2(5 10 30)x x  = 0 (5.5)

1 24 2 24 0x x   (5.6)
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1 25 10 30 0x x   (5.7)

From Equation (5.4) if 
1
 = 0, x

1
 and x

2
 must be equal too which is not true.

1 24 2 24x x  = 0 (5.8)

Similarly from Equation (5.5) if 
2
 = 0, x

1
 and x

2
 must be equal too which

is not true.

1 25 10 30x x  = 0 (5.9)

Solving Equations (5.8) and (5.9) Equations, (5.2) and (5.3), we get the
optimum solution

1x = 2 1 2 max6, 0, 0, 0, 36x Z    

Example 5.5: Determine x
1
 and x

2
 so as to

Maximize Z = 2 2
2 1 1 2 1 212 21 2 2 2x x x x x x   

Subject to the constraints

(i) 2 8,x   (ii) 1 2 1 210, , 0x x x x  

Solution

1 2( , )f x x = 2 2
1 2 1 2 1 212 21 2 2 2x x x x x x   

1 1 2( , )g x x = 2 8 0x  

2 1 2( , )g x x = 1 2 10 0x x  

Define Lagrangian function as

( , , )x s  = 2 2
1 1 1 2 2 2( ) ( ( ) ) ( ( ) )f x g x s g x s    

The Kuhn-Tucker necessary conditions can be stated as:

(i)
2

1

,i
i

ij i

gf

x x




  = 0 1,2j 

 2 1 212 2 4x x   = 0

1 2 1 221 2 4x x     = 0

(ii) ( )i ig x = 0 1,2j 

1 2( 8)x  = 0

2 1 2( 10)x x  = 0

(iii) ( ) 0ig x 

 2 1 28 0, 10 0x x x    

(iv) 0i i = 1, 2

There are 4 cases.

Case I

If, 
1

= 0, l = 0, then from condition (i)
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2 112 2 4x x  = 0

1 221 2 4x x  = 0

Solving these equations, we get 1 2
15 , 92x x  . This solution violates

condition (iii) and therefore it should be discarded.

Case II

1 0 ,  2 0 , then from condition (ii)

we have 2 8 0x    or 2 8x 

1 2 10x x  = 0  or 1 2x 

Substituting these values in conditions (i) we get

 1 27  and 2 20 . However this solution violates the condition (iv) and
therefore may be discarded.

Case III

1 0 , 2 0 , then from conditions (ii) and (i) we have

1 2x x = 10

1 22 4x x = 112  

Solving these equations we get 1 2 12, 8 and 16x x     .

This solution violates the condition (iv) and therefore may be discarded.

Case IV

1 = 2 0 ,  then from conditions (i) and (ii)

1 22 4x x = 212  

1 22 4x x = 221  

1 2x x = 0.

Solving these equations, we get 1 2 2
17 23 13, ,4 4 4x x   . This solution is

the optimum solution as it does not violate any of the Kuhn-Tucker conditions.

1x = 2 1 2
17 23 13, , 0,4 4 4x    

Max Z  = 1894/16.

Example 5.6: Determine x
1
, x

2
, x

3
 so as to

Maximize Z = 2 2 2
1 2 3 1 24 6x x x x x    

Subject to the constraints,

1 2 2x x 

1 22 3 12x x 

1 2, 0x x 
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Solution: Given, f(x) = 2 2 2
1 2 3 1 24 6x x x x x    

1( )g x = 1 2 2x x 

2 ( )g x = 1 22 3 12x x 

Define Lagrangian function L(x, , S)

=    2 2
1 1 1 2 2 2( ) ( ) ( )f x g x s g x s    

Where s
1
, s

2
 are slack variables and 

1
, 

2
 are Lagrangian multipliers.

The Kuhn-Tucker conditions are given by:

(1)
2

1

i
i

ij j

gf

x x







   = 0 j = 1,2,3

(i) 12 4x   = 1 22 

(ii) 22 6x   = 1 23 

(iii) 22x  = 0

(2) 
i
g

i
(x) = 0

 gives

(i)  1 1 2 2x x  = 0

(ii)  2 1 22 3 12x x  = 0

(3) ( ) 0ig x 

(i) 1 2 2 0x x  

(ii) 1 22 3 12 0x x  

(4) 1 20 0  

We have four different cases.

Case I: 
1
 = 0, 

 2
 = 0 (i), (ii), (iii) of (1) yield x

1
 = 2, x

2
 = 3, x

3
 = 0. This solution

violates the inequalities of (3).

Case II: 
 1
 = 0, 

2
  0. In this case (ii) of (2) will give 1 22 3 12x x   and (i) and (ii)

of (1) gives

 1 22 4 2x    , 2 22 6 3x     . The solution to these simultaneous equation
gives

1 2 2
32 24, , 013 13 13x x     also (iii) of (1) gives x

3
 = 0. However this

solution violates (i) of (3). So this solution is discarded.

Case III: . 1 20, 0   . In this case (2) (i) and (ii) gives 1 2 2x x   and

1 22 3 12x x  . These equations give x
1
 = –6, x

2
 = 8. Then (1) (i), (ii) and (iii) yield

x
3
 = 0, 

1
 = 68, 

2
 = –26.

Since 
2
 = –26 violates the condition (4) so this solution is also discarded.
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Case IV: 1 20, 0   . In this case (2) (i) gives 1 2 0x x   . Along with (1) (i) and

(ii) 1 1 22 4 2x     2 1 22 6 3x      give 1 2 1
31 , and 3 02 2x x    .

Further from (3) (iii) x
3 
= 0. This solution does not violate any of the Kuhn-Tucker

conditions.

Hence the optimum solution is 1 2 3 1 2

1 3
, , 0, 3, 0

2 2
x x x      . Max

17

2
Z  .

Exercise

1. Solve the following Nonlinear programming problem using Kuhn-Tucker
conditions.

Maximize Z = 2 2
1 1 2 22x x x x 

Subject to, 1 24 2 24x x 

1 2, 0x x 

(Ans: 1 2 16, 0, 3, 36x x Z     )

2. Solve the following Nonlinear programming problem using Kuhn-Tucker
conditions.

Maximize  Z = 2 2
1 2 1 28 10x x x x  

Subject to, 1 23 2 6x x 

1 2, 0x x 

(Ans: 1 2

4 33
, Max 21.3

3 13
x x Z   )

5.3.1 Quadratic Programming

Quadratic Programming (QP) is a Nonlinear Programming (NLP). It is an optimization
problem of special type in which a quadratic function of many variables is optimized
(maximized or minimized), subject to constraints of linear nature on these variables,
using mathematical approach. In this type of programming problem objective function
is Nonlinear but constraints are linear. Mathematical representation of QP is given
as below:

Optimize (Max or Min) Z =
1 1 1

1

2

n n n

j j j jk k
j j k

c x x d x
  

 

Subject to constraints,

,
1

n

ij j i
j

a x b


 i = 1, 2, ..., n …(5.10)

  and x
j
  0, j = 1, 2, ..., n …(5.11)



Nonlinear
Programming

NOTES

Self - Learning
Material 267

Using matrix notations, same can be written as,

Optimize (Max or Min) Z = CX + 
1

2
XTDX

Subject to constraints,

AX  b …(5.12)

and x  0 …(5.13)

Where, XT shows transpose of matrix X. Constraint AX  b shows that each
entry of the vector AX is less than or equal to the corresponding entry of the vector
b.

X = (x
1
, x

2
, ..., x

n
)T; C = (c

1
, c

2
, ..., c

n
); b = (b

1
, b

2
, ..., b

m
)T

D = [d
jk
] is an n × n symmetric matrix, i.e., d

jk
 = d

kj
; A = [a

ij
] is an m × n

matrix

The matrix D is symmetric as well as  positive-definite (i.e., the quadratic term
XT DX in x is positive for all values of x but x  0 in case it is minimization type and
it is negative-definite (i.e., xT Dx < 0 for all values of x but x  0  in case the problem
is of the maximization type. Objective function of the quadratic programming problem
is strictly convex in x for minimization and concave for maximization. If D is null
matrix, then QP problem reduces to the standard LP problem.

5.3.2 Karush–Kuhn–Tucker Conditions

Karush–Kuhn–Tucker conditions are also known as KKT conditions or as Kuhn-
Tucker conditions. As a mathematical approach to such problems, conditions that
are necessary for finding solution to a NLP that is optimal, if some conditions of
regularity are satisfied. This method is a generalization of Lagrange’s multipliers
applied to inequality constraints. These conditions have been named on its
contributors W. Karush, H.W. Kuhn, and A.W. Tucker. Necessary and sufficient
KKT conditions for finding optimal solution for maximizing quadratic function with
linear constraints are derived as below:

Step 1: Introducing slack variables 2
is  and 2

jr to constraints Equations (5.12) and

(5.13), the problem becomes

Max f(x) = 
1 1 1

1

2

n n n

j j j jk k
j j k

c x x d x
  

 

Subject to constraints

2

1

2

; 1, 2,...,

0; 1,2,...,

n

ij j i i
j

j j

a x s b i m

x r j n



  

   



Step 2: Forming the Lagrange function as follows:

L (x, S, r, , ) = f(x) –    2 2

1 1

n n

i ij j i i j j j
j j

a x S b x r
 

       



Nonlinear
Programming

NOTES

Self - Learning
268 Material

Step 3: Differentiate L (x, S, r, , ) partially with respect to x, S, r,  and . Then
equating these derivatives to zero we get the required necessary KKT conditions.
That is,

(i)
1

(2 ) 0
2

TC X D A   

or,
1 1

0; 1, 2,...,
n m

j k jk i ij j
k i

c x d a j n
 

      

(ii) –2S = 0 or 
i

2
iS  = 0

or,
1

0; 1,2,...,
n

i ij j i
j

a x b i m


      
  


(iii) –2r = 0 or 
j
 r

j
 = 0; j = 1, 2, ..., n


j
x

j
 = 0, j = 1, 2, ..., n

(iv) AX + S2 – b = 0; i.e., AX  b

or,
1

, 1,2,...,
n

ij j i
j

a x b i m


 

(v) x + r2 = 0, i.e., x  0
or, x

j
  0, j = 1, 2, ..., n

(vi) 
i
, 

j
, x

j
, S

i
, r

j
  0

Conditions (i) and (iv) are linear constraints involving 2(n + m) variables.
The condition 

j
x

j
 = 

i
S

i
 = 0 implies that both x

j
 and 

j
 as well as S

i
 and 

i
 cannot

be basic variables at a time in a non-degenerate basic feasible solution. The conditions


j
x

j
 = 0 and 

i
S

i
 = 0 are also known as complementary slackness conditions.

5.3.3 Wolfe’s Modified Simplex Method

This method for solution of a Quadratic Programming Problem (QPP) is Summarized
below:

Step 1: Introducing artificial variables A
j
 (j = 1, 2, ..., n) in condition (i) we get,

1 1

0
n m

j k jk i ij j j
k i

c x d a A
 

      
To get initial basic feasible solution, we shall have x

j
 = 0, 

j
 = 0, A

j
 = –c

j

and 2
iS = b

i
. However, for any real problem, this solution would be desirable if

and only if A
j
 = 0 for all j.

Step 2: Use Phase I of the simplex method for checking for feasibility of the
constraints AX  b. In case feasible solution does not exist, terminate. Else, get an
initial basic feasible solution for Phase II. To get desired feasible solution solve the
following problem:

Minimize Z = 
1

n

j
j

A


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Subject to constraints,

1 1

– ; 1, 2,...,
n m

k jk i ij j j j
k i

x d a A c j n
 

      

2

1

; 1,2,...,
n

ij j i i
j

a x S b i m


  

and 
i
, x

j
, 

j
, S

i
, A

j
  0 for all i and j

0
Complementary slackness conditions

0
i i

j j

S

x

  
  

Thus, to find a variable that enters the basis at each iteration, the
complementary slackness conditions have to be satisfied.

There are 2(m + n) variables in this problem with (m + n) linear constraints
and (m + n) complementary slackness conditions.

Step 3: Next, use Phase II of the simplex method to find optimal solution of this
problem of Step 2. The solution obtained this way will also be an optimal solution
of QPP

Example 5.7: Use Wolfe’s method to solve the given QPP:

Maximize Z = 4x
1
 + 6x

2
 – 2 2

1x  – 2x
1
x

2
 – 2 2

2x

Subject to constraints,

x
1
 + 2x

2
  2

and     x
1
, x

2
 0

Solution: Consider non-negativity conditions x
1
, x

2
  0 as inequality constraints.

Add slack variables to all inequality constraints to convert them into equations.
The standard form of QP problem changes to,

Maximize Z = 4x
1
 + 6x

2
 – 2

12x  – 2x
1
x

2
 – 2

22x

Subject to constraints,

x
1
 + 2x

2
 + 2

1S = 2

–x
1
 + 2

1r = 0

–x
2
 + 2

2r = 0

and x
1
, x

2
, S

1
, r

1
, r

2
 0

To get necessary conditions, we construct the Lagrange function as follows:

L(x
1
, x

2
, S

1
, 

1
, 

1
, 

2
, r

1
, r

2
) = (4x

1
 + 6x

2
 – 2

12x  – 2x
1
x

2
 – 2

22x ) – 
1
 (x

1
+ 2x

2

+ 2
1S  – 2)

 –
1
 (–x

1
 + 2

1r ) – 
2
 (–x

2
 + 2

2r )
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The necessary and sufficient conditions for maximum value of L and hence
of Z are found from:

1 2 1 1
1

4 4 2 0
L

x x
x


       

 ; 1 2 1 2
2

6 2 4 2 0
L

x x
x


      



2
1 2 1

1
2 2 0

L
x x S


    

 ; 1 1
1

2 0
L

S
s


  



2
1 1

1
0

L
x r


   

 ;
2

2 2
2

0
L

x r


   


1 1
1

2 0
L

r
r


  

 ; 2 2
2

2 0
L

r
r


  



After simplification, we get

4x
1
 + 2x

2
 + 

1
 – 

1
 = 4; 2x

1
 + 4x

2
 + 2

1
 – 

2
 = 6

x
1
 + 2x

2
 + 2

1S  = 2

1 1

1 1 2 2

0
(Complementary conditions)

0

S

x x

  
    

and x
1
, x

2
, 

1
, 

1
, 

2
, S

1
  0

Introduce artificial variables A
1
 and A

2
 in the first two constraints respectively.

Modified LP problem changes to,

Minimize Z* = A
1
 + A

2

Subject to constraints,

4x
1
 + 2x

2
 + 

1
 – 

1
 + A

1
= 4

2x
1
 + 4x

2
 + 2

1
 – 

1 
+ A

2
= 6

x
1
 + 2x

2
 + 2

1S = 2

and x
1
, x

2
, 

1
, 

1
, 

2
, A

1
, A

2
 0

The initial basic feasible solution to this LP problem is shown below:

Cj 0 0 0 0 0 0 –M –M

CB B xB x1 x2 1  1  2 s1 A1 A2 Min xB/xi

–M A1 4 4 2 1 –1 0 0 1 0 4/4 = 1

–M A2 6 2 4 2 0 –1 0 0 1 6/2 = 3

0 s1 2 1 2 0 0 0 1 0 0 2/1 = 2

Z*
j –10M –6M –6M –3M M –M –M M 0

Z*
j – Cj –6M –6M –3M M M 0 0 0
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0 x1 1 1 1/2 1/4 –1/4 0 0 – 0 1/1/2 = 2

–M A2 4 0 3 3/2 1/2 –1 0 – 1 4/3

0 s1 1 0 3/2 –1/4 1/4 0 1 – 0 1/3/2 = 2/3

Z*
j –4M 0 –3M –3/2M –1/2M M 0 –M

Z*
j – Cj  –3M –3/2M –1/2M M 0 –M

0 x1 2/3 1 0 1/3 –1/3 0 –1/3 – 0

–M A2 2 0 0 2 0 –1 –2 – 1

0 x2 2/3 0 1 –1/46 1/6 0 2/3 – 0

Z*
j –2M 0 0 –2M 0 M 2M – –M

Z*
j – Cj 0 0 –2M  M 2M – 0

0 x1 1/3 1 0 0 –1/3 1/6 0 – –

0 1 1 0 0 1 0 –1/2 –1 – –

0 x2 5/6 0 1 0 1/6 –1/12 1/2 – –

Zj – Cj Z*
j 0 0 0 0 0 0 0 – –

Z*
j – Cj 0 0 0 0 0 0 0 – –

Since all Z*
j
 – C

j
 = 0, hence an optimal solution for Phase I is reached. The optimal

solution is:

x
1
 = 1/3, x

2
 = 5/6, 

1
 = 1, 

2
 = 0, 

1
 = 

2
 = 0, S

1
 = 0

This solution also satisfies the complementary conditions: 
1
S

1
 = 0; 

1
x

1

= 
2
x

2
 = 0 and the restriction on the signs of Lagrange multipliers, 

1
, 

1
 and 

2
.

Further, as Z* = 0, implies that the current solution is also feasible. Thus, the
maximum value of objective function is,

Max Z = 4x
1
 + 6x

2
 – 2 2

1x  – 2x
1
x

2
 – 2 2

2x

       = 4(1/3) + 6(5/6) – 2(1/3)2 – 2(1/3) (5/6) – 2(5/6)2 = 25/6

Example 5.8: Use Wolfe’s method to solve the QPP, given below:

Maximize Z = 2x
1
 + x

2
 – 2

1x

Subject to constraints,

2x
1
 + 3x

2
 6

2x
1
 + x

2
 4

and x
1
, x

2
 0

Solution: Considering non-negativity conditions x
1
, x

2
  0 as inequality constraints.

With the addition of slack variables to all inequalities to convert these to equations.
After adding slack variables it take the form,

Maximize Z = 2x
1
 + x

2
 – 2

1x

Subject to constraints,

2x
1
 + 3x

2 
+ 2

1S = 6
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2x
1
 + x

2 
+ 2

2S = 4

–x
1
 + 2

1r = 0

–x
2
 + 2

2r = 0

Forming the Lagrange function as follows:

L (x
1
, x

2
, S

1
, S

2
, 

1
, 

2
, 

1
, 

2
, r

1
, r

2
)

 
=

 
(2x

1
 + x

2
 – 2

1x ) – 
1
 (2x

1
 + 3x

2
 + 2

1S – 6)

– 
2
 (2x

1
 + x

2
 – 2

2S – 4) – 
1
 (–x

1
 + 2

1r ) –
2
 (– x

2
 + 2

2r )

The necessary and sufficient conditions for maximum of L and hence of Z
are

1 1 2 1
1

2 2 2 2 0
L

x
x


       

 ; 1 2 2
2

1 3 0
L

x


       



1 1
1

2 0
L

S
s


   

 ; 2 2
2

2 0
L

S
s


   



1 1
1

2 0
L

r
r


   

 ; 2 2
2

2 0
L

r
r


   



2
1 2 1

1
2 3 6 0

L
x x S


    

 ;
2

1 2 2
2

2 4 0
L

x x S


    


2
1 1

1
0

L
x r


   

 ;
2

2 2
2

0
L

x r


   


After simplifying these conditions, we get

2x
1
 + 2

1
 + 2

2
 – 

1
= 2; 3

1
 + 

2
 – 

2
 = 1

2x
1
 + 3x

2
 + 2

1S = 6;         2x
1
 + x

2
 + 2

2S  = 4


1
S

1
 = 

2
S

2
= 0; 

1
x

1
 = 

2
x

2
 = 0

andx
1
, x

2
, 

1
, 

2
, 

1
, 

2
, S

1
, S

2
 0

Introduce the artificial variables A
1
 and A

2
 in the first two constraints

respectively. Then the modified QP problem becomes,

Minimize Z* = A
1
 + A

2

Subject to constraints,

2x
1
 + 2

1
 + 2

2
 – 

1 
+ A

1
= 2; 3

1
 + 

2
 – 

2
 + A

2
 = 1

2x
1
 + 3x

2
 + 2

1s = 6;         2x
1
 + x

2
 + 2

2s  = 4

and x
1
, x

2
, s

1
, s

2
, A

1
, A

2
, 

1
, 

2
 0
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
1
s

1
 = 

2
s

2
= 0;


1
x

1
 = 

2
x

2
= 0

The initial basic feasible solution to this QP (Quadractic Programming)
problem is shown as follows.

Cj 0 0 0 0 0 0 0 0 –M –M     Min xB/xi

CB B xB x1 x2 1 2 1 2 S1 S2 A1 A2

–M A1 2 2 0 2 2 –1 0 0 0 1 0 2/2=1

–M A2 1 0 0 3 1 0 –1 0 0 0 1 —

0 s1 6 2 3 0 0 0 0 1 0 0 0 6/2=3

0 s2 4 2 1 0 0 0 0 0 1 0 0 4/2=2

Z*j –3M –2M 0 –5M –3M M M 0 0 0 0 –M/–M

Z*j – Cj –2M 0 –5M –3M M M 0 0 0 0

0 x1 1 1 0 1 1 –1/2 0 0 0 0 1x2 1/1 = 1

–M A2 1 0 0 3 1 0 –1 0 0 1 1/3 1/3

0 s1 4 0 3 –2 –2 1 0 1 0 0 — —

0 s2 2 0 1 –2 –2 1 0 0 1 0 — —

Z*j –M 0 0 –3M –M 0 M 0 0 –M

Z*j – Cj 0 0 –3M –M 0 M 0 0 0

0 x1 2/3 1 0 0 2/3 –1/2 1/3 0 0 – –

0 1 1/3 0 0 1 1/3 0 –1/3 0 0 – –

0 s1 14/3 0 3 0 –4/3 1 –2/3 1 0 – –

0 s2 8/3 0 1 0 –4/3 1 –2/3 0 1 – –

Z*j 0 0 0 0 0 0 0 0 0 – – —

Z*j – Cj0 0 0 0 0 0 0 0 0 – – —

Sinc Z*
j
 – C

j
 = 0, therefore an optimal solution for Phase I is reached. The optimal

solution is:

x
1
 = 2/3, x

2
 = 0, 

1
 = 1/3, 

2
 = 0, 

1
, = 

2
 = 0, S

1
 = 14/3 and S

2
 = 8/3

This solution also satisfies complementary slackness conditions:


1
S

1
 = 

2
S

2
 = 0; 

1
x

1
 = 

2
x

2
 = 0 and the restriction on the signs of Lagrange

multipliers: 
1
, 

2
, 

1 
and 

2
. Since, Z* = 0, the current solution is also feasible.

The maximum value of the objective function of the given quadratic problem is:

Max Z = 2x
1
 + x

2
 – 2

1x  = 
2

2 2 4 4 12 4 8
2 0

3 3 3 9 9 9

        
 

5.3.4 Beale’s Method

This method uses results to solve based on calculus quadratic programming problem
instead of Kuhn-Tucker conditions. General QPP is of the form,

Minimize Z = CX + 1/2ST DX …(5.14)

Subject to constraints, …(5.15)

AX =b

and x 0 …(5.16)
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Where xEn, b  Em, c  En, D is a symmetric n × n matrix and A is an
m × n matrix.

Beale’s method starts by making partitions of n variables in QP problem
into basic and non-basic variables at every iteration of the solution process, and
expressing basic variables and objective function in terms of non-basic variables.
Let b be any m × m non-singular matrix containing columns of A corresponding to
the basic variables x

B
  Em and let N be an m × (n – m) matrix which containing

of A corresponding to non-basic variables x
N
  En– m. Then, Equation (5.15) may

be written as:

[ , ] B

N

X
B N

X

 
 
 

= b

BX
B
 + NX

N
= b or XB = B–1 b – B–1 NX

N

or, iBx = 0
1

; 1,2,...,
j

n m

i ij N
j

y y x i m




 

…(5.17)

Where, –1 –1
0 10 20 0( , ,..., ) andT

i m ijy y y y B b y B N  

For the current basic feasible solution 
jNx  = 0 ( j = 1, 2, ..., n – m), we

have 
jNx  = y

i0
, (i = 1, 2, ..., m). Assuming that y

i0
  0.

The objective function Equation (5.14) in terms of X
B
 and X

N
 can be written

as,

Z =
11 12

21 22

1
[ , ] ,

2
B BT T

B N B N
N N

X Xd d
C C X X

X Xd d

               

Expressing Z in terms of the remaining (n – m) non-basic variables X
N
 only

and carrying out, we get,

Z = Z
0
 + X

N 
+ T

NX GX
N

…(5.18)

Where, Z
0

= Value of objective function Z when X
N
 = 0 and

iBx  = y
i0

G = Symmetric matrix of order (n – m) × (n – m)

 = 
1
, 

2
, ..., 

n–m
 (constant)

Step 1: Evaluate the partial derivatives of Z with respect to non-basic variables
X

N
 = 0. Thus from Equation (5.18) we get,

jN

Z

x


  =

1

2 ; 1,2,...,
n m

j jk Nk
k

g x j n m




    …(5.19)

Step 2: See the nature of 

0
j

N
N

x

Z

x





 = 
j
; k = 1, 2, ..., n – m
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(i) If 
j
 < 0, for all j, then the current solution is also an optimal solution

(ii) But if at least one 
j
 > 0, then one of the non-basic variables which is

currently at zero level corresponding to largest positive value of 
j
, will be

selected to enter into the basis.

Step 3: 
0N

N x

Z

x





 = 
r 
(maximum), then choose non-basic variable x

r
 for entering

into the basis. For this it will be profitable to go on increasing its value from zero to
a points, till either

(i) Any one of the present basic variables becomes negative.

(ii) /
jNZ x   reduces to zero and is about to become negative.

Step 4: To maintain feasibility of the solution we have to consider only that value
of non-basic variable x

r
, say 

1
, which has positive coefficient. In this case, the

first basic variable for leaving the basis has to satisfy the usual minimum ratio rule
used in simplex method. This is given by,


1 
=

0Min ; 0

; 0, 1,2,...,

i
ij

ij

ij

y
y

y

y j n m

     
   
   

…(5.20)

Where, y
i0
 = lBx

Since it is not desirable to increase the value of the non-basic variable x
r

beyond the point where /
jNZ x  becomes zero, the critical value of x

r
 say 

2
,

where /
jNZ x   is zero is given as,


2

=
; 0

2

; 0

j
jj

jj

jj

g
g

g

 
 

  

Where, g
jj
 is the element of matrix G.

Value of non-basic variable x
r
 is found by taking either 

1
 or 

2
, whichever

is minimum.

Thus, x
r

= Min {
1
, 

2
}

If 
1
 = 

2
 = , the value of x

r
 may be increased indefinitely without violating either

of the conditions (i) and (ii) of Step (3) and the QP problem must have an
unbounded solution. Further,

(i) If entering variable x
r
 is increased up to 

1
 only and at least one basic

variable is reduced to zero, then a new basic feasible solution may be obtained
using simplex method. But if by entering x

r
 into the basis two or more basic
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variables are reduced to zero, then the new solution so obtained will be
degenerate and thus cycling may occur.

(ii) If entering variable increases to 
2
 (< ), then we may get more than m

variables at positive level at any iteration. This stage comes when the new

(non-basic) feasible solution occur at /
jNZ x   = 0. At this stage we define

a new unrestricted variable u
j
 given as,

u
j

=
1

2
n m

j jk Nk
r k

Z
g x

x






  

 
The variable u

j
 is also known as free variable. Clearly, now there are m + 1 non-

zero variables and m + 1 constraints. These variables form a basic feasible solution
for the new set of constraints:

AX = b

u
j

=
1

–2
n m

jk Nk j
k

g x




 
The variable u

j
 is introduced in the set of constraints only for the purpose of

computations having zero value at the next basic feasible solution. Now variables
X

B
 and u

j
 are treated as basic variables. The new set of constraints is again

expressed in terms of non-basic variables to get the new basic feasible solution.

Step 5: Go to Step (1) and repeat the entire procedure to get a new basic feasible
solution until no further improvement in the objective function obtained by making
any permitted changes in one of the non-basic variables. The permitted changes
here include increase in every variable and decrease in free variables. The procedure
terminates when

0, if is a restricted (non-negative) variable

0, if is a free variable

j

jj

N

NN

xZ

xx

 
  

…(5.21)

Necessary conditions Equation (5.21) for terminating the procedure are
also sufficient for a global minimum if D is positive semi-definite or positive definite.

Notes: 1. While evaluating / jZ u  , both increase and decrease showed be checked,

as u
j
 is unrestricted in sign.

2. If at any iteration a free variable becomes a basic variable and is non-zero, then
drop the new constraint that contains it. This should be done because it is a
free variable and therefore, is neither chosen to leave the basis nor appears in
the selection of leaving variable.

Example 5.9: Use Beale’s method to solve the given QPP:

Maximize Z = 2
1 2 22 3 – 2x x x

Subject to constraints,

x
1
 + 4x

2
 4

x
1
 + x

2
 2

and x
1
, x

2
 0
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Solution: After introducing slack variables s
1
 and s

2
, the given constraints can be

written as:

x
1
 + 4x

2 
+ s

1
= 4

x
1
 + x

2 
+ s

2
= 2

x
1
, x

2
, s

1
, s

2
 0

Making S
1
 and S

2
 basic variables in initial solution and expressing these in

terms of non-basic variables x
1
 and x

2
 as follows:

S
1

= 4 + 1 (–x
1
) + 4 (–x

2
)

S
2

= 2 + 1 (–x
1
) + 1 (–x

2
)

We choose the initial basic feasible solution: x
1
 = x

2
 = 0; S

1
 = 4 and S

2
 = 2.

This solution is shown in Table 5.3.

Table 5.3 Initial Solution

B x
B

x
1

x
2

S
1

S
2

s
1

4 1 4 1 0

s
2

2 1 1 0 1

The initial value of the objective function at this solution Z = 0.

Also X
B
 = (s

1
, s

2
) = (4, 2) and X

N
 = (x

1
, x

2
) = (0, 0). Expressing Z in terms of

non-basic variables x
1
 and x

2
, we get,

Z = 2
1 2 22 3 – 2x x x

1

Z

x


 = 2,

2

Z

x


  = 3 – 4x

2

At the curent basic feasible solution evaluate these partial derivatives of Z
with  respect to X

N
 = 0, i.e., x

1
 = x

2
 = 0

01
02

1 x
x

Z

x 





= 2 and 
01
02

2
3

x

x

Z

x 








Here 
1
 = 2 and 

2
 = 3. Both of these are positive; therefore we choose x

2

(due to most positive value of 
2
) to enter into the basis to improve the value of

the objective function. Using Table 5.3 the critical value 
1
 of x

2
 is given by:

Case 1: Largest value of x
2
 without deriving any basic variable S

1
 and S

2
 to zero.

Since,

S
1
 = 4 – x

1
 – 4x

2

S
2
 = 2 – x

1
 – x

2

Therefore, 
1
 = Min (4/4, 2/1) = 1, (corresponding to y

22
)

Case 2: The partial derivative 2/Z x   becomes zero at x
2
 = 3/4 (x

1
 = 0).

Therefore, 
2
 = 

2

22

3 3

2 2(2) 4g


 
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The new value of the entering variable x
2
 is given by,

x
2
 = Min (

1
, 

2
) = (1, 3/4) = 3/4

This value of x
2
 corresponds to 

2
; therefore Case (2) applies and neither

of the current basic variables becomes zero. Consequently, we introduce a free
variable u

1
 and the new constraint,

u
1
 = 2 2 1

2
3 4 or 4 3

Z
x x u

x


   



This is shown in Table 5.2.

It may be noted from Table 5.4 that  X
B
 = (s

1
, s

2
, u

1
) and X

N
 = (x

1
, x

2
)

Table 5.4 Introducing a Free Variable u
1

B x
B

x
1

x
2

S
1

S
2

u
1

S
1

4 1 4 1 0 0

S
2

2 1 1 0 1 0

u
1

3 0 4 0 0 1

Now introduce x
2
 into the basis and remove u

1
 from the basis in Table 5.4.

The new solution is shown in Table 5.5.

Table 5.5 Introducing x
2
 in the Basis

B x
B

x
1

x
2

S
1

S
2

u
1

S
1

1 1 0 1 0 1

S
2

5/4 1 0 0 1 1/4

x
2

3/4 0 1 0 0 –1/4

Now we have, X
B

= (s
1
, s

2
, x

2
) = (1, 5/4, 3/4)

X
N

= (x
1
, u

1
) = (0, 0)

Expressing basic variables x
2
, s

1
 and s

2
 in terms of non-basic variables x

1

and u
1
 as follows:

x
2
 = 1

3 1
;

4 4
u S

1
= 1 – x

1
 + u

1
; S

2
 = 1 1

5 1

4 4
x u 

Also eliminating the basic variable x
2
 from the objective function and

expressing it in terms of non-basic variables x
1
 and u

1
, we get,

Z = 2x
1
 + 3

2 2
1 1 1

1
3 3 9

2 2
4 4 4 4 8 8

u u u
x           

   

Computing the partial derivatives of Z with respect to x
1
 and u

1
, we have,

1

Z

x




= 2;
1

1
–

4

Z u

u





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At the current solution, we get,

1

1

01
0

2
u

x

Z

x 





 and 1

1

01
0

0
u

x

Z

u 







Here 
1
 = 2 and 

2
 = 0. Choosing x

1
 to enter with the basis. Using

Table 5.5, the critical value 
1
 of x

1
 is given by,

Case 1: Largest value of x
1
 without deriving any basic variable S

1
, S

2
 and

x
2
 to zero. Since

2 1 1 1 1 2 1 1
3 1 5 1

; 1 ;
4 4 4 4

x u S x u S x u       

Therefore,   
1
 = 

1 (5/ 4)
Min , 1

1 1
   
 

Case 2: Since partial derivative 1/Z x   is non-zero, therefore 
2
 = 2

Thus, the new value of the entering variable x
1
 is: x

1
 = Min {

1
, 

2
} = 1.

This value of x
1
 corresponds to 

1
, therefore Case (1) applies and the new optimal

solution is shown in Table 5.6.

Table 5.6 The New Optimal Solution

B x
B

x
1

x
2

S
1

S
2

u
1

x
1

1 1 0 1 0 –1

S
2

1/4 0 0 –1 1 –3/4

x
2

3/4 0 1 0 0 –1/4

Now we have X
B
 = (x

1
, S

2
, x

2
) = (1, 1/4, 3/4) and X

N
 = (S

1
, u

1
) = (0, 0)

Expressing basic variables x
1
, x

2
 and s

2
 in terms of non-basic variables S

1

and u
1
 as follows:

1 1 1 2 1 1 2 1
1 3 3 1

1 ; ;
4 4 4 4

x S u S S u x u       

Also expressing objective function Z in terms of non-basic variables s
1
 and

u
1
, we get,

2
1 1 1

25 1
2 2

8 8
Z u s u   

Computing partial derivatives of Z with respect to s
1
 and u

1
, we have

1
1 1

1
–2; 2

4

Z Z
u

s u

 
   

 
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But at the current solution, we have

1

1

01
0

–2
s

x

Z

s 





 and 1

1

01
0

–2
s

u

Z

u 







Since both 
j
 < ( j = 1, 2), the optimal solution is: x

1
 = 1, x

2
 = 3/4 and

Max Z = 25/8

5.4 TYPES OF NONLINEAR PROGRAMMING
PROBLEMS

There is a wide variety of Nonlinear Programming Problems (NLPP). Some of
the most important types are briefly introduced here. Unlike the linear programming,
no standard algorithm like the simplex method can be employed to solve the
Nonlinear programming problems. Many different algorithms have been developed
to solve the different class of problems. It is beyond the scope of this book to
cover all the types of N.L.P.P. and their solutions.

Unconstrained Optimization

In case of unconstrained optimization problems, there are no constraints, but only
the objective function. The problem is simply to

Maximize / minimize f (X)

over all values of X = (x
1
, x

2
,...,xn). The necessary condition for a particular

solution to be optimal is

where f (X) is differentiable. This condition is also sufficient condition for
maximization when f (X) is a concave function and for minimization when f (X) is
a convex function. Thus the solution can be obtained by solving n equations obtained
by setting the n partial derivatives equal to zero. For a Nonlinear function, these
equations are often Nonlinear, and it becomes impossible to solve these equations
analytically. Some search procedures have been developed by researchers to
solve such problems.

Linearly Constrained Optimization

As the name indicates, in this type of NLPP, all the constraints gi(X) are of linear
type, while the objective function f (X) is Nonlinear. Since only one Nonlinear
function is to be handled, the problem becomes comparatively simple to solve. A
number of special algorithms have been developed, by extending the simplex
method, to handle the Nonlinear objective function.

5.4.1 Separable Programming
Nonlinear programming  (NLP) is an extension of Linear Programming (LP). The
principal differences between NLP and LP is that in NLP, the variables which are
either in objective function and/or in the constraints occur in higher powers such
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as (x2) or in the multiplication form such as (x
1
, x

2
 …) with a greater number of

variables, i.e., Nonlinear.

Generally, if the objective function f(x) is a function of a single variable say x,
the problem of finding maximum/minimum of f(x) is elementary. If x is a function of
two variables (x

1
, x

2
), we can find maximum/minimum for f(x). However, if x =

(x
1
, x

2
, … x

n
) then for finding maximum/minimum NLP techniques such as Wolfe’s

method, Beale’s method, and Separable programming are used.

If the objective function f(x) is not continuous or differentiable, then search
methods, whose only requirement is f(x) should be compatible are used to find the
extreme. Each of these problems requires different solution procedure.

In this chapter a set of NLP like the following are explained:

 Nonlinear Programming Problem of General Nature

 Quadratic Programming Problem

 Separable Programming Problem

Separable Programming Problem

Separable programming is a special case of convex programming. One additional
assumption made here is that all the f (X) and gi(X) are separable functions.

A function is called separable, when it can be expressed as a sum of
subfunctions where each subfunction is a function of one variable only. For example,
if f (X) is a separable function, it can be expressed as

where each f
i
 (x

i
) is a function comprising of terms involving only x

i
. Consider the

two-variable objective function
2 2

1 2 1 1 2( , ) 4 9 ,f x x x x x  
which can be expressed as

2 2
1 2 1 1 2 2( , ) (4 ) (9 )f x x x x x x   

      = 1 2( ) ( ),f x f x
where      2

1 1 1( ) 4 ,f x x x 
and     2

2 2 2( ) 9f x x x 

The separable programming problems are solved by methods which are
extensions of the simplex method. They are applicable only if the objective function
as well as all the constraints are separable.

5.4.2 Convex and Non-Convex Programming

Convex Programming

Convex programming covers special cases of various types of NLPP, where the
objective function f (X) is a concave function and each of the constraints gi(X) is
a convex function. These assumptions ensure that a local maximum is also a global
maximum.
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Non-Convex Programming

All NLPP that do not satisfy the assumptions of convex programming, fall in this
category of non-convex programming. There is no algorithm that can result into
global optimal solution of such problems. Some algorithms attempt to find the
local minima in case the problem does not deviate much from the assumptions of
convex programming.

Some specific types of non-convex programming problems can be solved
by employing specific methods. Two important types of NLPP under this category
are Geometric programming and Fractional Programming.

Lagrange Multiplier Method
This method is used to optimize a continuous and differentiable function subject to
equality constraints.

Consider the Nonlinear programming problem
Optimize  Z  =  f(x)

Subject to,G
i
 (x

1
, x

2
, … x

n
) =  b

i
, i = 1, 2, … m.

A modified form of the above model is shown below

Optimize  Z =  f(x
1
, x

2
, … x

n
)

Subject to, g
i
 (x

1
, x

2
, … x

n
) =  0, i = 1, 2, … m.

x
j
  0,  j =  1, 2, … n.

Where, g
i
 (x

1
, x

2
, … x

n
)  =  G

i
 (x

1
, x

2
, … x

n
) – b

i
, i = 1, 2, … m.

This problem consists of n variables with m constraints. Multiply each constraint
with an unknown  variable  

i
 (i = 1, 2, … m) and subtract each from the objective

function f(x) to be optimized. The new objective function is

L (x, ) =    
1

m

i i
i

f x g x


 , x = (x
1
, x

2
, … x

n
)T

Where m < n. The function L (x,  ) is called the Lagrange function.

Steps of Lagrange Method
Step 1: Form the Lagrange function as

     1 2 1 2
1

, , , , ,
n

n i i n
i

L x f x x x g x x x 


    .

Step 2: Find the partial derivatives of L with respect to x
j
 and   of L (x,  ) and

equal to zero given by

j

L

x


 = 0,  j = 1, 2, …n

i

L
 = 0, i = 1, 2, …m

So, the system consists of n + m unknown variables with n + m simultaneous
equations of the first order partial derivatives.
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Step 3: Find the solution of the system of equation (n + m) obtained from step 2.

Step 4: Form the Bordered Hessian matrix [HB] of size n + m.

Table 5.7 General form of the Bordered Hessian Matrix

 1 2    .. I    .. m 

1 0 0  0 

2 0 0 0 0 

: : 

i 0 0 0 0 

: : 

m 0 0 0 0 

1 2    .. j     .. n 

Coefficients of 0, 1, 2, ...
i

L
i m




 


  

Written row wise 

1 

 

2 

: 

j 

: 

n 

Coefficients of 

0, 1, 2, ...
i

L
i m




 


  

written columnwise 

 

i j

L L

x x

 
 

 

for i = 1, 2, … m 

j = 1, 2, … n 

Step 5: In this step using the sufficient conditions for maxima and minima, the
testing for the stationary point (x

1
, x

2
, … x

n
) to be optimal solution is

given as:

(i) Find the last (n – 1) principal minors of the Bordered Hessian matrix.

(ii) The stationary point will give the maximum objective function value, if the
sign of each of the last (n – m) principal minor determinants of the Bordered
Hessian matrix is same as that of (–1)m + 1, ending with the (2m + 1)th

principal minor determinant.

(iii) The stationary point will give the minimum objective function value, if the
sign of each of the last (n – m) principal minor determinants of the bordered
Hessian matrix is same as that of (–1)m ending with the (2m + 1)th principal
minor determinant.

Example 5.10: Solve the Nonlinear programming problem.

Optimize  Z = 4x
1

2 + 2x
2

2 + x
3

2 – 4x
1
x

2

Subject to, x
1
 + x

2
 + x

3
= 15, 2x

1
 – x

2
 + 2x

3
 = 20; x

1
, x

2
, 3x    0

Solution

f(x) = 4x
1

2 + 2x
2

2 + x
3

2 – 4x
1
x

2

g
1
(x) =  x

1
 + x

2
 + x

3
 – 15

g
2
(x) = 2x

1
 – x

2
 + 2x

3
 – 20
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Construct the Lagrangian function

L(x, )  = f(x) – 1 g
1
(x) – 2 g

2
(x) = (4x

1
2 + 2x

2
2 + x

3
2 –

4x
1
x

2
) – 

1
(x

1
 + x

2
 + x

3
 – 15)

 – 
2
 (2x

1
 – x

2
 + 2x

3
 – 20)

Using necessary conditions

1

L

x


 = 1 2 1 20 8 4 2 0x x     

2

L

x


 = 2 1 1 20 4 4 0x x     

3

L

x


 = 3 1 30 2 2 0 x    

1

L
 =  1 2 30 15 0x x x     

2

L
 =  1 2 30 2 2 20 0x x x     

Solving these simultaneous equations, we get

 1 2 3 1 2

33 10 40 52
, , , , 8 and ,

9 3 9 9
x x x      

 
.

The bordered Hessian matrix at this solution is given by

BH   =

0 0 1 1 1

0 0 2 1 2

1 2 8 4 0

1 1 4 4 0

1 2 0 0 2

 
  
 
 

  
  

n = 3, m = 2

 n – m  = 1, 2m + 1 = 5

|HB|  =  72 > 0.

The sign of this value |HB| is same as that of (–1)1 + 1. Hence the solution (x
1
, x

2
,

x
3
) corresponds to the maximum point.

 The optimal results are presented as  1 2 3

33 10
, , , , 8

9 3
x x x

    

Z
Max

 =
7380

91.1
81



Example 5.11: Solve the following problem by using the method of Lagrangian
multiplier.

Minimize  Z  = x
1

2 + x
2

2 + x
3

2

Subject to the constraints

(i)  x
1
 + x

2
 + 3 x

3
 = 2

(ii)  5x
1
 + 2x

2
 + x

3
 = 5 and x

1
, x

2
  0.
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Solution

f(x) =  x
1

2 + x
2

2 + x
3

2

g
1
(x) = x

1
 + x

2
 + 3x

3
 – 2

g
2
(x) = 5x

1
 + 2x

2
 + x

3
 – 5

Construct the Lagrangian function

L(x, T) =  f(x) – 
1
g

1
(x) – 

2
g

2
(x)

= x
1

2 + x
2

2 + x
3

2 – 
1
 (x

1
 + x

2
 + 3 x

3
 – 2) –


2
(5 x

1
 + 2 x

2
 + x

3
 – 5)

Using the necessary condition

1

L

x


 = 1 1 20 2 5 0x    

2

L

x


 = 2 1 20 2 2 0x    

3

L

x


 = 3 1 20 2 3 0x    

1

L
 =  1 2 30 3 2 0x x x     

2

L
 =  1 2 30 5 2 5 0x x x     

Solving these simultaneous equations, we get the solution

 1 2 3x x x =  1 2

37 16 13 3 7
, , and ,

46 46 46 23 23
      
   

 

Min Z =
897

1058

Apply sufficient condition to check for the minimum of Z for which form the
bordered Hessian matrix

 BH =

0 0 1 1 3

0 0 5 2 1

1 5 2 0 0

2 2 0 2 0

3 1 0 0 2

 
 
 
 
 
 
  

Since m  = 2, n = 3, n – m = 1, 2m + 1 = 5.

One minor of HB of order 5 is HB | HB| = 460 > 0.

The sign of this value |HB| is same as that of (–1)m = (–1)2 = 1.

 The extreme point (x
1
, x

2
, x

3
) corresponds to minimum of Z.

Optimum solution in Min  Z =
897

1058
.
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Exercise 5.12: Obtain the solution of the following problems by using the method
of Lagrangian multipliers.

1. Min Z = 2 2
1 1 2 2 22 5 4 18x x x x x   

Subject to, 1 2x x = 1 27,   , 0x x 

Solution: x
1

= 4.95

x
2

= 2.045

Min Z = 10.5

2. Maximize 2 2 2
1 2 32Z x x x  

Subject to, 1 2 32 2x x x  = 30

1 2 3, ,x x x  0

Solution:
120 30 120

, ,
17 17 17

 
  

Max Z = 105.88

3. Minimize Z = 2 2 2
1 2 3 1 24 2 4x x x x x  

Subject to,

1 2 3x x x  = 15

1 2 32 2x x x  = 20

1 2 3, , 0x x x 

Solution:  1 2 3

11 10
, , 8

3 3
x x x
     

Max Z =  91.111.

Check Your Progress

4. Give the Kuhn-Tucker conditions for constrained optimization.

5. What is quadratic programming?

6. State Karush-Kuhn-Tucker condition.

7. What do you understand by the convex programming?

5.5 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. The methods used to find the maximum/minimum of function f(x) depending
on whether f(x) is a single variable of f(x), x = (x

1
, x

2 
…x

n
)  has several

variables are one dimensional
(i) Search Method (1-D).
(ii) Direct Search Methods (Interal halving)
(iii) Fibonacci Sequence Method
(iv) Golden Section Search Method
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2. Fibonacci search is a univariate search technique that can be used to find
the maximum (or minimum) of an arbitrary unimodal, univariate objective
function. This method is a sequential search technique that successfully
reduces the interval in which the maximum (or minimum) of an arbitrary
nonlinear function must lie.

3. A prior specification of the resolution factor () and the number of
experiments to be performed (N) are required. In search methods to have
a proper functioning, the successive experiments will gradually reduce the
interval of uncertainty, i.e., the final interval of uncertainty will converge to
zero as the number of functional evaluation increases to infinity provided
that  is small.

    2 0 1

0 0

1
0

1
lim lim 1

N

N
N N

N

N

N

L L F
F

F
L

F

 
 



 
    

 

 
  

 

In the above limit, the ratio of 1N

N

F

F
 goes to 0.618 which is known as golden

ratio or golden section.

4. The necessary and sufficient conditions for a local optimum of the general
Nonlinear programming problem, with both equality and inequality constraints
is called Kuhn-Tucker conditions.

5. Quadratic Programming (QP) is a Nonlinear Programming (NLP). It is an
optimization problem of special type in which a quadratic function of many
variables is optimized (maximized or minimized), subject to constraints of
linear nature on these variables, using mathematical approach. In this type
of programming problem objective function is Nonlinear but constraints are
linear.

6. Karush–Kuhn–Tucker conditions are also known as KKT conditions or as
Kuhn-Tucker conditions. As a mathematical approach to such problems,
conditions that are necessary for finding solution to a NLP that is optimal, if
some conditions of regularity are satisfied. This method is a generalization
of Lagrange’s multipliers applied to inequality constraints. These conditions
have been named on its contributors W. Karush, H.W. Kuhn, and A.W.
Tucker.

7. Convex programming covers special cases of various types of NLPP, where
the objective function f (X) is a concave function and each of the constraints
gi(X) is a convex function. These assumptions ensure that a local maximum
is also a global maximum.

5.6 SUMMARY

 One and multivariable unconstrained optimization methods is used to find
the maximum/minimum of function f(x) depending on whether f(x) is a single
variable of f(x), x = (x

1
, x

2 
…x

n
)  has several variables are one dimensional
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(i) Search Method (1-D).
(ii) Direct Search Methods (Interal Halving)
(iii) Fibonacci Sequence Method
(iv) Golden Section Search Method

 Fibonacci search is a univariate search technique that can be used to find
the maximum (or minimum) of an arbitrary unimodal, univariate objective
function. This method is a sequential search technique that successfully
reduces the interval in which the maximum (or minimum) of an arbitrary
nonlinear function must lie.

 A Fibonacci search, a prior specification of the resolution factor () and
the number of experiments to be performed (N) are required. In search
methods to have a proper functioning, the successive experiments will
gradually reduce the interval of uncertainty, i.e., the final interval of uncertainty
will converge to zero as the number of functional evaluation increases to
infinity provided that  is small.

 The necessary and sufficient conditions for a local optimum of the general
Nonlinear programming problem, with both equality and inequality constraints
is called Kuhn-Tucker conditions.

 In quadratic programming type of programming problem objective function
is Nonlinear but constraints are linear.

 Karush–Kuhn–Tucker conditions are also known as KKT conditions or as
Kuhn-Tucker conditions. As a mathematical approach to such problems,
conditions that are necessary for finding solution to a NLP that is optimal, if
some conditions of regularity are satisfied. This method is a generalization
of Lagrange’s multipliers applied to inequality constraints. These conditions
have been named on its contributors W. Karush, H.W. Kuhn, and A.W.
Tucker.

 Introducing artificial variables A
j
 (j = 1, 2, ..., n) in condition (i) we get,

1 1

0
n m

j k jk i ij j j
k i

c x d a A
 

      
 Beal’s method uses results to solve based on calculus quadratic programming

problem instead of Kuhn-Tucker conditions.

 Beale’s method starts by making partitions of n variables in QP problem
into basic and non-basic variables at every iteration of the solution process,
and expressing basic variables and objective function in terms of non-basic
variables.

 If at any iteration a free variable becomes a basic variable and is non-zero,
then drop the new constraint that contains it. This should be done because
it is a free variable and therefore, is neither chosen to leave the basis nor
appears in the selection of leaving variable.

 The linear programming, no standard algorithm like the simplex method can
be employed to solve the Nonlinear programming problems.
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 Convex programming covers special cases of various types of NLPP, where
the objective function f (X) is a concave function and each of the constraints
gi(X) is a convex function. These assumptions ensure that a local maximum
is also a global maximum.

 Separable programming is a special case of convex programming. One
additional assumption made here is that all the f (X) and gi(X) are separable
functions.

 A function is called separable, when it can be expressed as a sum of
subfunctions where each subfunction is a function of one variable only. For
example, if f (X) is a separable function, it can be expressed as

 All NLPP that do not satisfy the assumptions of convex programming, fall
in this category of non-convex programming. There is no algorithm that can
result into global optimal solution of such problems. Some algorithms attempt
to find the local minima in case the problem does not deviate much from the
assumptions of convex programming.

5.7 KEY TERMS

 Fibonacci search: Fibonacci search is a univariate search technique that
can be used to find the maximum (or minimum) of an arbitrary unimodal,
univariate objective function. This method is a sequential search technique
that successfully reduces the interval in which the maximum (or minimum)
of an arbitrary nonlinear function must lie.

 Kuhn-Tucker conditions: The necessary and sufficient conditions for a
local optimum of the general Nonlinear programming problem, with both
equality and inequality constraints is called Kuhn-Tucker conditions.

 Quadratic programming: Quadratic Programming (QP) is a Nonlinear
Programming (NLP). It is an optimization problem of special type in which
a quadratic function of many variables is optimized (maximized or minimized),
subject to constraints of linear nature on these variables, using mathematical
approach. In this type of programming problem objective function is
Nonlinear but constraints are linear.

 Beale’s method: Beale’s method starts by making partitions of n variables
in QP problem into basic and non-basic variables at every iteration of the
solution process, and expressing basic variables and objective function in
terms of non-basic variables.

 Convex programming: Convex programming covers special cases of
various types of NLPP, where the objective function f (X) is a concave
function and each of the constraints gi(X) is a convex function. These
assumptions ensure that a local maximum is also a global maximum.
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 Separable programming: Separable programming is a special case of
convex programming. One additional assumption made here is that all the
f (X) and gi(X) are separable functions.

5.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What do you mean by the one and multivariable unconstrained
optimization?

2. Write the short note on Kuhn-Tucker condition.

3. What is quadratic programming?

4. Mention the Beale’s method.

5. What is the separable programming?

6. Differentiate between convex programming and non-convex programming.

Long-Answer Questions

2. Describe the Kuhn-Tucker condition for constrained optimization.

3. Explain the quadratic programming by giving an example.

4. Analyse the Karush-Kuhn-Tucker conditions. Give appropriate examples.

5. What is a Beale’s method? Explain why it is used.

6. Discuss the types of Nonlinear programming problems.
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