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INTRODUCTION

The indication that all matter is fundamentally composed of elementary
particles dates from at least the 6th century BC. The early 20th century
explorations of nuclear physics and quantum physics led to proofs of nuclear
fission in 1939 by Lise Meitner (based on experiments by Otto Hahn), and
nuclear fusion by Hans Bethe in that same year.

Particle physics, also known as high energy physics, is a branch of
physics that studies the nature of the particles that constitute matter and
radiation. Although the word particle can refer to various types of very small
objects, such as the protons, gas particles, or even household dust, particle
physics usually investigates the irreducibly smallest detectable particles and
the fundamental interactions necessary to explain their behaviour. These
elementary particles are excitations of the quantum fields that also govern
their interactions.

Modern particle physics research is focused on subatomic particles,
including atomic constituents, such as electrons, protons, and neutrons
(protons and neutrons are composite particles called baryons, made of
quarks), produced by radioactive and scattering processes, such as photons,
neutrinos, and muons, as well as a wide range of exotic particles. Dynamics
of particles is also governed through the quantum mechanics since they
exhibit wave—particle duality, displaying particle-like behaviour under certain
experimental conditions and wave-like behaviour in others. In more technical
terms, they are described by quantum state vectors in a Hilbert space, which
is also treated in quantum field theory.

This book, Nuclear Physics and Particle Physics is divided into five
units that follow the self-instruction mode with each unit beginning with an
Introduction to the unit, followed by an outline of the Objectives. The detailed
content is then presented in a simple but structured manner interspersed
with Check Your Progress Questions to test the student’s understanding
of the topic. A Summary along with a list of Key Terms and a set of Self-
Assessment Questions and Exercises is also provided at the end of each unit
for recapitulation.

Introduction
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UNIT1 BASIC PROPERTIES OF
NUCLEI

Structure

1.0 Introduction
1.1 Objectives
1.2 Methods for Determination of Nuclear Size and their Interpretations
1.3 Binding Energy Curve for Nuclei and Its Consequences
1.4 Nuclear Spin
1.5 Magnetic and Quadrupole Moments of Nuclei
1.5.1 Quadrupole Moments of Nuclei
1.6 Schmidt Lines
1.7 Semi-Empirical Mass Formula and Its Application to Mass Parabolas
1.8 Mirror Nuclei and Isotopic Spin Formalism
1.8.1 Basic Properties of Nuclei
1.9 Answers to ‘Check Your Progress’
1.10 Summary
1.11 Key Terms
1.12 Self Assessment Questions and Exercises
1.13 Further Reading

1.0 INTRODUCTION

The nucleus of an atom, like the atom itself, is a bound quantum system and
hence can exist in different quantum states characterized by their energies,
angular momenta etc. The lowest energy state is known as the ground state
and the nuclei normally exist in this state. The properties of the nuclei which
will be discussed in this chapter correspond to their ground states and are
usually called their static properties in contrast to the dynamic characteristics
of the nuclei which are exhibited in the processes of nuclear reactions, nuclear
excitation and nuclear decay. The important static properties of the nuclei
include their electric charge, mass, binding energy, size, shape, angular
momentum, magnetic dipole moment, electric quadrupole moment, statistics,
parity and iso-spin.

The magnetic moment of an atomic nucleus is derived from the spin
of protons and neutrons and is known as the nuclear magnetic moment. The
quadrupole moment causes some modest modifications in the hyperfine
structure, although it is mostly a magnetic dipole moment. Although the
relationship between the two values is not obvious or easy to calculate, all
nuclei with nonzero spin also have a nonzero magnetic moment.

The nuclear magnetic moment of an element changes from isotope to
isotope. The nuclear spin and magnetic moment are always 0 for a nucleus
in which the number of protons and neutrons are both even in its ground
state (lowest energy state). The nucleus often possesses nonzero spin and
magnetic moment when there are odd numbers of protons and neutrons. The

Basic Properties of Nuclei
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nuclear magnetic moment is not the sum of nucleon magnetic moments, and
this quality is attributed to the tensorial character of the nuclear force, as in
the case of the most basic nucleus, deuterium, which contains both proton
and neutron.

In this unit, you will learn about the methods for determination of
nuclear size and their interpretations, binding energy curve for nuclei and
its consequences, nuclear spin, magnetic and quadrupole moments of nuclei,
Schmidt lines, semi-empirical mass formula and its applications to mass
parabolas and mirror nuclei and isotopic spin formulation.

1.1 OBJECTIVES

After going through this unit, you will be able to:

e Discuss the methods for determination of nuclear size and their
interpretations

 Explain about the binding energy curve for nuclei and its consequences
* Define nuclear spin

* Analysis magnetic and quadrupole moments of nuclei

* Describe the Schmidt lines

* Understand the basic concept of semi-empirical mass formula and its
applications to mass parabolas

* Learn about the mirror nuclei and isotopic spin formulation

1.2 METHODS FOR DETERMINATION
OF NUCLEAR SIZE AND THEIR
INTERPRETATIONS

Rutherford’s theory of a-particle scattering gives us an idea about the
smallness of the nuclear size. Later, Rutherford and his collaborators
performed scattering experiments with relatively higher energy a-particles
and observed departure from Rutherford scattering formula at large angles;
i.e., for small impact parameters . When b becomes comparable to the
nuclear radius R, the a-particle begins to feel the effect of the nuclear force.

Rutherford’s formula (o) will be different from unity, we get
0,  4ne,MV’R
cot—<% = —
2 zz'¢
where Z' =2. For6<0,c/c, = 1.

By noting the limiting angle 6 above which anomalous scattering
takes place (o/c,# 1), Rutherford estimated the values of the nuclear radius
R for a few light elements e.g., magnesium. These were of the order of a few
times 107" m.



These estimates of Rutherford were not very accurate. In later years
more accurate methods for the measurement of the nuclear radius have been
developed. It should be noted that when we talk of the nuclear radius, we
assume that the nucleus has a spherical shape. This is expected because of
the short range character of the nuclear force. However, small departures
from the sphericity of certain nuclei have been observed. This is inferred
from the existence of electric quadrupole moment of these nuclei which is
zero for the spherical nuclei. The departure from sphericity is however small.

In the above discussion, it has been assumed that the nuclear charge is
uniformly distributed. Experiments show that this is very nearly so and the
nuclear charge density p_is approximately constant. Experimental evidences
also show that the distribution of nuclear matter (i.e., protons and neutrons)
is nearly uniform, so that the nuclear matter density p  is also approximately
constant. Since nuclear mass is almost linearly proportional to the mass
number A, this means that

p, ~A/V = constant

i.e., the nuclear volume ¥ o« 4. Assuming a spherical shape of the nucleus
with a radius R, we then get

V= Rea
3
or, R oc A7
so that R =r A" ~(1.1)

where 7, is a constant, known as the nuclear radius parameter.

It should be noted that the nuclear radius, as discussed above,
is the radius of nuclear mass distribution. We may also talk about the
radius or nuclear charge distribution. Since the nuclear charge parameter
(i.e., the atomic number) Z is almost linearly proportional to the mass
number 4 and the nuclear charge density p_ is approximately the same
throughout the nuclear volume, the distribution of the nuclear charge +Ze
should follow the pattern of nuclear mass distribution. Hence the charge
radius and the mass radius of the nucleus may be expected to be very nearly
the same. This is due to the strong attractive forces within the nucleus. There
are strong evidences to show that this is very nearly the same for both types
of nucleons, viz., the protons and the neutrons and hence their distributions
within the nuclear volume follow the same pattern.

We now consider the potential energy diagram shown in Fig. 1.1, for
a charged particle like a proton or an a-particle, which is acted upon by the
electrostatic repulsive force of the nuclear charge +Ze when it is outside the
nucleus (» > R), while inside the nucleus (» < R) a negative potential due to
the short range of the specifically nuclear force acts upon it. Here 7 is the
distance from the nuclear centre. We assume arbitrarily that electrostatic
force is not effective inside the nucleus, while the nuclear force becomes
zero at the nuclear surface » = R.

Basic Properties of Nuclei
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-,

Fig. 1.1 Potential energy diagram for a nucleus.

Figure 1.1, shows that the nucleus is surrounded by a Coulomb potential
barrier V= ZZ'e’/ 4ne r for an incident particle of charge Z'e for » > R. At
the nuclear surface the barrier height is given by

A
R — m

(1.2)

For the uranium nucleus with Z=92and R=8 x 10" m, V', ~ 16.5
MeV for a proton, while V, ~ 33.1 MeV for an a-particle taking r, = 1.3 X
10 m.

Classically, a charged particle of energy E less that V, cannot
escape from the nucleus, nor can enter it from outside. However quantum
mechanically, because of the uncertainty principle, the position of the particle
within the nucleus is not so well-defined, so that there is a finite probability of
the particle penetrating through the barrier if £, V,. If somehow the particle
with an initial energy +E outside the nucleus reaches the point » = b where
V =E, then it will be repelled by the electrostatic force of the positive charge
of the residual nucleus and will fly away from the latter. We have seen, can
account for the a-disintegration of the heavy nuclei.

The radius R, as defined above is usually known as the potential radius,
as distinct from the charge of mass radius discussed previously and is slightly
larger than the latter.

The charge radius is the most directly measurable one. It can be
determined by several methods of which the method based on the scattering of
high energy electrons (> 100 MeV) is the most accurate (see below). Besides,
there are several other methods. The potential radius must be separately
determined, since neither the nature of the specifically nuclear force nor its
range is known precisely.

The nuclear radius is usually expressed in units of 10> m which by
international convention is known as the femtometer, abbreviated as fm
though the unofficial name fermi is more often used.



The mean squared radius of nuclear charge distribution can be defined  Basic Properties of Nuclei
as follows:

Jr2.4nr2p (r)dr
Py= (1.3) NOTES
J47rr2p (r)dr

0

where p (7) is the nuclear charge density. For a uniformly charged sphere
(p = constant) of radius R, this gives (since p = 0 for » > R)

R
J.r4dr
2 0 3.
r) =4 =§R
J.rzdr
0
so that R* = §<r2>

(1.4)

Measurement of the Charge Radius

(i) Electron Scattering Experiment:

Scattering of high energy electrons by nuclei constitutes the most direct
method of measuring the charge radius of the nucleus and the nature of the
nuclear charge distribution. This is because there is no specifically nuclear
force acting on the electrons. Only the Coulomb attractive force due to the
nuclear charge acts on them. If the de Broglie wavelength of the electrons is
small compared to the nuclear radius, then the electron scattering experiment
can reveal many details of the nuclear charge distribution.

Now according to de Broglie’s theory of wave-corpuscular dualism,
the wavelength of a relativistic electron of rest mass m,, having the total
energy E > mc* is given by

ch

1/2
e{V(V + 2m002/e)}
where eV = E_ is the kinetic energy of the electron, e being its charge.

Substituting the values of ¢, 4, e and m, we get

12.4%10°
A= A

vy +1.02x100)}"

where V'is in volts. For electrons of kinetic energy £ _= 200 MeV, V= 200
x 10° volts, which gives
L =619x105A
A

and A =—=10"m=1fm
21

This is considerably smaller than the radius of most nuclei.

This shows that the use of electrons of a few hundred MeV energy can
reveal considerable details regarding nuclear charge distribution.

Self - Learning
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The pioneering experiments on the elastic scattering of electrons by
nuclei were carried out by R. Hofstadter and his group at Stanford University
in the U.S.A. using the linear accelerator (SLAC), providing electron beam
with energy upto 550 MeV. Their experimental arrangement is shown in
Fig. 1.2

Beam stopper

p— | . 7
A M, _

Fig. 1.2 High energy electron scattering experiment. A-Accelerator; B-Beam
stopper; M,, M -Deflecting magnets; S-Collimating slits; T-Scattering chamber;
P-Spectrometer; C-Concrete shielding.

The high energy electron beam from the linear accelerator A4 is deflected
by means of the magnet M, and collimated by the slit system S. The deflecting
magnet M, then directs the beam on to the target inside the scattering chamber
T. The elastically scattered beam of electrons is then analysed by the large
magnetic spectrometer P.

The quantum mechanical expression for the differential scattering
cross-section of a relativistic electron from a spin-less target at the centre of
mass angle 0 is given by

o(0) =0, (0) {F(9)}* ~(1.5)

where o(0) is the scattering cross section and ¢, (0) is the Mott cross section
of elastic scattering from a point charge +Ze and is given by

(1.6

2
Ze? cos’ 6/2
E ) sin*0/2

E is the energy of the electrons in the C.M. system. Eq. (1.6) is valid for
low Z elements only. F(g) is called the form factor which gives the ratio by
which the scattering cross-section is reduced when the charge +Ze is spread
out over finite volume. Because of the destructive interference between the
electron waves scattered from different parts of the target nucleus, F(q) < 1.
Using the Born approximation method of quantum mechanics, it can be
shown that

1
Flg) = [ptr) exp (igr)de (1.7

= ;—;Jp(r)(sin qgr)yrdr



1
where q =k—k'=£(p—p') ..(1.8)

is a measure of the momentum transfer p — p’ in elastic scattering.
| ¢ | depends on the angle of scattering and is given by
2p . 6
= —sin— (1.9
q| =Lsin (1.9)

p(7) is the charge density within the nucleus and the exponential is a phase
factor over the volume. The form factor F(g) is obviously equal to the
Fourier transform of the charge density. It can be determined directly by
scattering experiment from the ratio 5(0)/c, (0). Then by using the inverse
Fourier transformation, it is possible to determine p(r). This is possible if
measurements are made at a sufficiently large number of angles 6. When this
is not possible, a form of the density distribution, has to be assumed and best
fit with the experimental data obtained by suitably adjusting the parameters
in the expression. A particularly suitable form for p(7) is given by

_ Po
P = 1+exp{(r—Rl/2)/a} ~(1.10)

This is known as the Fermi distribution. The parameters R, and a
are adjusted to get the best fit with the experimental data. The above density
distribution has the form shown in Fig. 1.3.

Nuclear
charge
density

b~ 44q —=1
1

5Po Ry,

Nuclear radius

Fig. 1.3 Fermi distribution for the nuclear charge density.

Obviously for r =R, ,, p = p,/2 where p, is the charge density at the
centre (r = 0). Thus R, is the half-value radius. The parameter a determines
the skin-thickness of the nucleus, which is the thickness in which p(r) falls
from 0.9 p, to 0.1 p at the nuclear surface. This comes out to be 1= 4.4 a.

If we approximate the above distribution by a uniform charge
distribution, then the corresponding equivalent radius can be written as
R =r AV
0

where 7, =1.32 x 10" m for 4 <50 and 7, = 1.21 x 10° m for 4 > 50. This
confirms that nuclear matter is distributed almost uniformly within the nuclear
volume, if we assume that the mass and charge radii are equal.

The value of a is taken to be the same for all nuclei:
a=05x10"m=0.5fm.

Basic Properties of Nuclei
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Basic Properties of Nuclei The mass of experimental data so far collected shows that for the
spherical nuclei with 4 > 15, the charge distribution has a core of uniform
density, surrounded by a skin of thickness 2.3 fm. The radius of half the
maximum density R , = 1.07 A" fm. For 4 < 4 < 15, there is no uniform
core and the density decreases steadily with increasing r. There is some
indication that for all nuclei there is slight diminution in the density near the
centre. Further, the charge density in the core region decreases somewhat
as Z increases.

NOTES

As stated before, the distribution of nuclear matter is very similar to
that of nuclear charge. In Figs. 1.4 (a) and (b) we compare the nuclear charge
and nuclear mass distributions for the three nuclei '?0, '?Ag and *°Pb. In
Table 1.1 are shown the different parameters for nuclear matter distribution.

Table 1.1
Nucleus R, (fin) a (fin) R/A'A (fm)
10 2.61 0.513 1.04
1¥Ag 5.33 0.523 1.12
208Pp 6.65 0.526 1.12

Assuming a uniform mass distribution, if we write 4 = an R’p,, then the
experimental data gives the radius of uniform mass distribution R = 1.14'?
fmand p, =0.17 nucleon per fm’. The nuclear mass density is approximately
the same at the centre for all nuclei. It increases slightly with 4 and tends to
the limiting value of 0.17 nucleon/fm?>.

0.06

0.04

Pch () (fm)

0.02

0.15

P () (fm)”

0.05

(<ol s s B B R R R

r(fm)

10 i;ge-ijlarning Fig. 1.4 Experimentally determined (a) nuclear charge and (b) nucleon distributions.



(il) Muonic X-ray Method: Basic Properties of Nuclei

There are some alternative methods of determining the mean squared
radius of the nuclear charge distribution. One of these is based on the study
of the so called mesonic x-rays. NOTES

There is a large number of unstable fundamental particles, both charged
and neutral, which are observed in nature (usually in the cosmic rays) or
can be produced in the laboratory in high energy interactions. One of these
is the muon (previously called the p-meson). The muons carry one unit of
electronic charge. Both positive and negative muons p" and p are known.
They are heavier than the electrons, having rest-mass about 207 m, where
m, is the electronic mass. They are subjected to the same type of interaction
with the nuclei as the electrons, so that only the electrostatic Coulomb force
due to the nuclear charge acts on them. Specifically nuclear force (strong
interaction) does not act on them.

When a beam of p is passed through matter, some of them are readily
captured in electron-like orbits round the nuclei of the capturing atoms
forming a muonic atom. The radii of the muonic orbits are however much
smaller than the electronic orbits, being smaller by the factor me/mH ~1/207.

We know from Bohr’s theory of the spectra of hydrogen-like atom that
the radius of the n™ electronic orbit is
_ 4me, n’h’

2
¢ m,Ze

where Ze is the nuclear charge. So the radius of the muonic orbit should be

4 2h2
po= 0 L L(L11)
M my Ze
Here it is assumed that the nuclear charge e is concentrated at the
centre. For a heavy element like gold (Z=79), the radius of muonic K-orbit
(n=1) will then be

o= 05298 =323%10°A=323%10" m

m“Z

This is much smaller than the radius of the gold nucleus which is
R(Au) =r A" =12x10"x(197)"*=7x10"m

Thus the muonic K-orbit may be expected to lie wholly inside the
nucleus in the case of heavy atoms.

When the muon is captured by an atom, it passes from the loosely bound
outer orbits into the more tightly bound inner orbits. During the process,
electromagnetic radiation is emitted. However the energy of such radiation
i1s much higher than in the case of electronic transitions. The energy of the
u in the nth orbit will be on point nucleus assumption

muZ et

E=-—2"" (1.12)

©32n%el
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Basic Properties of Nuclei Thus in the K-orbit of the gold atom, the orbital energy of p will be

m
E(Au) =-13.6x—.Z* = -17.6 MeV

me

NOTES This shows that the radiation emitted in the transitions in a muonic atom
will lie in the extremely short wavelength x-ray region. From a measurement
of these x-ray energies it is possible to estimate the binding energies of the
muon in different orbits. However the binding energy in a particular orbit will
be greatly reduced if the nuclear charge is spread over a finite region, so that
a part of the captured muonic wave function lies within the nucleus. As we
have seen above, this is expected for the heavier nuclei. The above mentioned
reduction in energy from that expected for a point nuclear charge can be
theoretically correlated to the mean squared radius of the nuclear charge
distribution. As an example, for Pb atom, the transition 2P, , — ls, , results
in the emission of e.m. radiation of energy 6.02 MeV while that expected on
point nucleus hypothesis is 16.4 MeV. The calculations are usually made on
the assumption of a specific nuclear charge distribution.

The nuclear radius parameter estimated from muonic x-ray
measurements are in reasonable agreement with the electron scattering
experiments:

¥, =(1.15+0.03) x 10" m = 1.15 £ 0.03 fm

(iii) Mirror Nucleus Method:

The third method of estimating the charge radius of a nucleus is based
on the study of the energetics in the 3* transformation of the mirror nuclei.

Pairs of isobaric nuclei, such as |}C and '\B, ’N and '’C etc. are known
as mirror nuclei. The proton number (Z) and the neutron number (N) in them
are interchanged and differ by one unit, so that their mass number is 4 = 2,
Z — 1 where Z is the atomic number of the first member of the pair, the other
having the atomic number (Z — 1). The first member of the pair is usually *
active and undergoes 3 transformation into the second.

All nuclear masses can be fairly well represented by a semi-empirical
formula, known as the Bethe-Weizsicker mass formula, which contains a
term depending on the Coulomb repulsion between the protons. If the 3*
transformation energy (Q[;) is calculated using this formula, then QB+ is
found to vary linearly with 4%, the constant of proportionality depending
on the value 7, the nuclear radius parameter.

r, estimated from these studies is found to agree fairly well with those
estimated by the other methods discussed earlier.

r, =(1.28+£0.05) x 10 m = 1.28 £ 0.05 fm

The different methods of measurement of the charge radius give a mean
value of the radius parameter 7, = (1.19 + 0.1 A'?) fm. As can be seen, this
is slightly dependent on A.

Measurement of Potential Radius
Self - Learning . . .
12 Material The specifically nuclear force is a strong short-range force. The potential from



which this force is derived is thus of short range and has a steep slope at the ~ Basic Properties of Nuclei
edge of the nucleus. It owes its origin to the strong short range internucleon
interaction. There are evidences to indicate that this is independent of the
nature (i.e., charge state) of the nucleons, so that the p — p and n —n forces are
equal (charge symmetry). In addition, the p — n force is also the same in the
same quantum state ('S): Obviously for a complex nucleus, the specifically
nuclear interaction will extend upto a distance of the same order of magnitude
as the range of the internucleon interaction beyond the radius R of nuclear
charge distribution. This is the radius shown in the potential energy diagram
(Fig. 1.1) and is known as the potential radius, which is thus slightly larger
than R . We discuss below two different methods of estimating the potential
radius.

(i) Life Time of Alpha Emitters:

NOTES

Historically the earliest method of estimating the potential radius was based
on the study of alpha-disintegration of heavy nuclei like **U, ***Ra etc.
Alpha-disintegration of heavy nuclei takes place due to the penetration of
the Coulomb potential barrier surrounding the nucleus. According to this,
the barrier penetration probability (transmission co-efficient) is given by

T =exp (- G) .(1.13)
2( Mze*b R R’
where G = h[ ] { \/j 3 b—z} ..(1.14)

where R is the nuclear radius (potential radius) and b is the distance from
the centre to the point where the energy E of the a-particle is equal to the
Coulomb potential energy V=2 Ze*/4ne r. Here Z is the atomic number of
the residual nucleus. M and 2e are the mass and the charge of the a-particle;
r is measured from the centre of the nucleus.

If n be frequency of collision of the a-particle against the nuclear wall
inside the nucleus, then the probability of penetration through the barrier per
second is p = nT. The reciprocal of this is the mean life of a-decay which
can be measured:

(1.15)

Thus by measuring the mean life it is possible to estimate the potential
radius R. Writing R = r, . A'® as before, the potential radius parameter is
found to be 7, = 1.48 x 10" m

It should be noted that though the above theoretical formula does not
reproduce the a-decay life times accurately and may deviate by several orders
of magnitude from the experimental value, it gives a much more precise
estimate of the nuclear radius R, even from a rough knowledge of 7 .

r, estimated by this method is somewhat higher than that for the charge
or mass radius parameter. A correction due to the finite radius of the a-particle
(R, — 1.2 x 10" m) gives the radius of the residual nucleus R, such that! ,

o elf - Learning
R =R, +R_ where R, can be expressed’by the formula Material 13




Basic Properties of Nuclei RA = VO AV
A

The new parameterr,, = 1.4 x 10" m ...(1.16)

(i) Neutron Scattering Experiments:

NOTES In these experiments, mono-energetic beams of fast neutrons are
allowed to be scattered by nuclei. Since neutrons interact mainly by the
strong specifically nuclear interaction with the nucleus, this method actually
detects the edge of the nuclear potential well. It can be shown that the total
cross-section for fast neutrons is given by

c,=2n(R+ 1)y ~2nR .(1.17)

where the de Broglie wavelength A << R, which happens at high energies,
% being equal to A/2w. Also at such high energies, the neutron absorption

cross section is given by
G, =nR

assuming a perfectly black nucleus which absorbs all the neutrons falling on it.

The measurements of the above cross-sections give a radius parameter
r,=1.25 10" m.

Neutron measurements are usually difficult. So measurements using
charged particles which interact strongly with the nuclei at close range, such
as a-particles or protons upto a few hundred MeV have also been made. In
the a-particle experiments, the critical angle of scattering at which deviations
are observed from the Rutherford scattering is measured. 0 can be correlated
with the critical distance at which the effect of the specifically nuclear force
begins to be felt .

In proton elastic scattering experiments (5 to 200 MeV), diffraction
patterns are observed due to the extension of the potential beyond the nuclear
edge. A specific form of the nuclear potential is assumed to fit the experimental
data. The following potential form due to Woods and Saxon (optical potential)
is usually employed to analyse the data (see Ch. XI):

) = o

(118
1+ exp{(r - R, )/a} ( )

This has a radial dependence similar to the Fermi charge distribution
discussed in this book. R, , and a have the same meanings as before.

A value r, = 1.33 x 10" m is derived from the experimental data.

The potential radius is about 0.7 fm greater than the charge radius which
may be taken to be the measure of the range of nuclear force.

We can summarize the results of the different types of measurements
as below:

(a) Mass distribution: 7, = 1.1 x 10" m.

(b) Equivalent square well for charge distribution: 7, =(1.2t0 1.3) x 10°"
m.

Self - Learning (c) Optical potential: , = 1.25 x 10°° m.
14 Material



Check Your Progress

1. What important work did Rutherford do?
2. State the electron scattering experiment.
3. What do you understand by the p—meson?

4. Define mirror nucleus method.

5. What do you mean by life time of alpha emitters?

1.3 BINDING ENERGY CURVE FOR
NUCLEI AND ITS CONSEQUENCES

Accurate determination of the atomic masses shows that these are very close
to whole numbers, which are actually the mass numbers of the atoms, when
the masses are expressed in the units of atomic masses in the C scale. The
same is also true if the atomic masses are expressed in '°O scale.

Considering the '*C scale, the atomic mass of '“C is exactly 12 u. The
masses of all other atoms, though close to the corresponding mass numbers
(integral), differ slightly from the latter.

The masses of a few atoms listed in Table 1.2 below will bear this out.

Table 1.2

Atom Atomic Mass (u) Mass Defect (u) Packing Fraction (u)
'n 1.008665 +0.008665 -

'H 1.007825 +0.007825 -

’H 2.014102 +0.014102 +0.007051
‘He 4.002603 +0.002603 +0.00006507
2c 12 0 0

RO 15.994915 —0.005085 —0.0003178
P 30.973764 —0.026236 —0.0008463
¥Co 58.933189 —0.066811 —0.0011324
As 74.921597 —0.078403 —0.0010454
127 126.90447 —0.09553 —0.0007522
7Au 196.96654 —0.03346 —0.0001698
226Ra 226.02543 +0.02543 +0.0001125
o) 238.05082 +0.05082 +0.0002135

The table shows that for very light atoms with 4 < 20 and for very
heavy atoms with 4 > 180, the atomic masses are slightly greater than the
corresponding mass numbers. In between the above values of 4, the atomic
masses are slightly less than the corresponding mass numbers.

The departure of the measured atomic mass M (4, Z) from the mass
numbers (A) is quite significant. The difference between M and 4 is known
as the mass defect AM :

AM =M (4, Z) - A .(1.19)

Basic Properties of Nuclei

NOTES
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Basic Properties of Nuclei For example since the atomic mass of “‘He (4.002603 u) is slightly
greater than the mass number 4, its mass defect is + 0.002603 u. On
the other hand As has the atomic mass 74.9215967 u, which is
slightly less than the mass number 75. Its mass defect is — 0.078403 wu.
Thus the mass defect can be both positive and negative. For very light and
very heavy atoms, the mass defect is positive, while in the intermediate region
it is negative (Refer Table 1.2).

NOTES

The mass defect of an atom divided by its mass number is known as
the packing fraction (f), a term introduced by F.W. Aston. Thus

AM
S

_M(42) .(1.20)

A
In the last column of Table 1.2, the packing fractions of the different
atoms are listed. /" has the same sign as AM and is positive for very light and

very heavy atoms. It is negative for the atoms in the intermediate region.
From Eq. (1.20), we have
M(4,2) =4 (1+f)
It is found that the packing fraction f varies in a systematic manner

with the mass number 4. The nature of this variation is shown graphically
in Fig. 1.5.

+
—_ N
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Fig. 1.5 Packing fraction curve.

From the figure it is seen that for very light nuclei the packing fraction
is positive and decreases rapidly with increasing A. It becomes negative for
A greater than about 20, attains a minimum (negative) at 4 ~ 60. It then rises
slowly for higher 4 and becomes positive again for 4 greater than about 180.

This systematic variation of fwith 4 can be understood from nuclear
binding energy considerations.

If the binding energy E, of a nucleus /X defined by equation discuss
in this book is divided by the mass number A, we get the binding energy per
nucleon in the nucleus, which is known as the binding fraction (f,) and is
given by

Self - Learning
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Here we have assumed that the masses are expressed in energy unit so
that ¢* on the r.h.s. of Eq. (1.21) has been omitted.
We can estimate the values of /, for a few typical cases, using the mass
values given in Table 1.2.
For deuteron (°H), since Z=1, N=1,
E,(CH) =M, +M - M,
= (1.007825 + 1.008665 — 2.014102) x 931.5

=2.224 MeV

2.224
f, CH) = — = 1.112 MeV per nucleon

For the a-particle (*He), since Z=2, N= 2,
E, (*He) = (2 x 1.007825 + 2 x 1.008665 — 4.002603) x 931.5
=28.3 MeV

28.
f, (‘He) = % =7.075 MeV per nucleon

For (*°O) nucleus, since N=8, Z= 8,
E, ("0) = (8 x 1.007825 + 8 x 1.008665 — 15.994915) x 931.5
=127. 62 MeV

127.62
f, (°0) = T 7.98 MeV/nucleon

The binding fractions of the different nuclei represent the relative
strengths of their binding. Thus ?H is very weakly bound, compared to “He
or '°O. The nature of variation of £, for the different nuclei with 4 is shown

graphically in Fig. 1.6.
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Fig. 1.6 Binding fraction curve.

The following points about the variation of /, against 4 are noteworthy:
(a) 1, for the very light nuclei is very small and rises rapidly with 4 attaining a
value of ~ 8 MeV/nucleon for 4 ~ 20. It then rises slowly with 4 and attains a
maximum of 8.7 MeV per nucleon at 4 ~ 56. For higher 4, it decreases slowly.
(b) For 20 <A <180, the variation of f, is very slight, so that it may be taken
to be approximately constant in this region having a mean value of

~ 8.5 MeV per nucleon. (¢) For very heavy nuclei (4 > 180), f, decreases
monotonically with the increase of 4. For the heaviest nuclei, f, is about

Basic Properties of Nuclei
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Basic Properties of Nuclei 7.5 MeV/nucleon. (d) For very light nuclei, there are rapid fluctuations in
the values of f,. In particular, peaks are observed in the f, vs. 4 graph for
the even-even nuclei “He, *Be, '*C, '°O etc., for which 4 = 4n where n is an
integer. Similar, but less prominent peaks are observed at the values of Z or

NOTES N equal to 20, 28, 50, 82 and 126. These are known as magic numbers.

The appearance of the peaks shows greater stability of the corresponding
nuclei relative to the nuclei in their immediate neighbourhood.

The nature of the binding fraction curve is complementary to the nature
of the packing fraction curve (Fig. 2.1). The reason for this can be understood
as follows. If we write M, =1+ f, and M =1 + f where f, = 0.007825 u
and f = 0.008665 u are constant, then we have

E,=Z(+f)+NA+f)-M(4,Z)

=(Z+N)+ 2, +Nf, -4 +f)
=A+Zf,+Nf —A-AM

where A = A ’ Hence we get

E, =7f,+ Nf — AM (1.22)
f _Ey _Zfy N, AM
B4 A A

:ZfH—ZNf"—f (1.23)

The first term on the r.h.s. of Eq. (1.23) is almost a constant specially
for lower A when Z~ N = A/2.

Thus £, increases or decreases as f'decreases or increases respectively.
Hence the graphs of variation of f and f, with 4 have complementary
appearances. Corresponding to the minimum in the graph of f vs. A4, there is
a maximum in the graph of /, vs. 4. Also the region of negative slope for low
A 1in the first case, corresponds to the region of positive slope in the second
case. For higher 4 on the other hand, the region of positive slope in the first
case corresponds to the region of negative slope in the second.

With the help of the binding fraction curve it is possible to explain in
a qualitative manner the reasons for the a-disintegration of heavy nuclei as
also of the energy release in nuclear fission and fusion processes. These will
be discussed at appropriate places.

1.4 NUCLEAR SPIN

As stated before, a complex nucleus is made up of protons and neutrons,
collectively known as nucleons. The protons and neutrons have intrinsic spin
angular momentum 1/2(in unit of %) each, just like the electrons. In addition,
the nucleons also possess quantized orbital angular momenta about the centre
of mass of the nucleus, like the electrons in the atom. The resultant angular
momentum I of the nucleus is thus the vector sum of the orbital angular
momentum L and spin angular momentum S of the nucleus:

Self- Learni I=L+S
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Quantum mechanical considerations show that the total orbital and  Basic Properties of Nuclei
spin angular momenta of the nucleus are given by
py=1U+1)h?
p,=LL+1)h?
py=8SES+1)h

NOTES

During measurement, it is the largest component of the angular
momentum along the direction of the applied electric or magnetic field
which is determined. For the three cases mentioned above, these have the
magnitudes /, L and S respectively in units of 7.

The resultant spin angular momentum of the nucleus is obtained by the
vector addition of the spins of the individual nucleons : § = 2. s.. Similarly,
the resultant orbital angular momentum is given by L = 2. /.. Since s, = 1/2,
S can be either integral or half-integral, depending on whether the number
of nucleons 4 in the nucleus is even or odd. On the other hand, since /, is
integral (0, 1, 2, etc.), L is integral or zero. Thus the total angular momentum
1 of the nucleus can be either integral (for 4 even) or half odd integral (for
A odd). This is in agreement with observations.

The total nuclear angular momentum / is usually referred to as the
nuclear spin. Measurements of the ground state spin of nuclei show that for
even Z even N nuclei, the nuclear spin is invariably zero (/ = 0). This shows
that there is a tendency of the nucleons inside the nucleus to form pairs with
equal and oppositely aligned angular momenta, which cancel out in pairs
for like nucleons.

Another important point to note is that the measured values of the
ground state spins of the nuclei are small integers or half odd integers, the
highest measured value being 9/2 which is small compared to the sum of
the absolute values of /, and s, of all the individual nucleons contained in the
nucleus. This is in conformity with what was stated above regarding pair
formation within the nuclei. Majority of the nucleons of either type seems
to form a core in which even numbers of protons and neutrons are grouped
in pairs of zero spin and orbital angular momenta so that the core itself has
zero total angular momentum. The few remaining nucleons outside the core
determine the nuclear spin which is thus a small number, integral or half
odd integral.

Methods of measurement of the ground state spins of nuclei will be
discussed in this book. Spins of excited states of nuclei are deduced from
nuclear disintegration and nuclear reaction data.

Pauli’s Spin Formalism

It may be mentioned here that the spin of'a spin 1/2 particle like the nucleons
moving non-relativistically is treated in terms of Pauli’s theory. Pauli
introduced the spin operator ¢ related to the spin vector s through the relation

h . .
s = (Ej o; ¢ has the three components ¢ , o, and 6_which are 2 x 2 matrices

Self - Learning
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Basic Properties of Nuclei (Pauli matrices) as given below

01 0 —i 10
= = = o 1.2
Gx (1 Oj’cy [Z 0)’62 [0 _1) ( 5)

NOTES Then o> = ci =2 =1 which is a 2 x 2 unit matrix (1). The two states
of the particle (spin up and spin down) are the two component Pauli spinors
1 0
- = (1.2
@ -(yJr8=( ]t (1.26)

Operation of a and 3 by the Pauli matrices gives the following results,
as can be easily verified by direct matrix multiplication:

o= c.B=a

c,0=if o,B=-ia

c.0=0 o, B=-P .(1.27)
We also have

o’ o =30 o’ B=3P

which gives

2
szaz%az%(%+1jh2a=s(s+l)h2u
..(1.28)

2
s*B= %B = %(%+ljhzﬁ =s(s + DA’ P
Also s.a = goc 5 B= —%B (1.29)

Thus o and B are the simultaneous eigen-vectors of s> and s_belonging
to the eigen-values 3/%%/4 and =+ //2 respectively, the plus sign corresponding
to the spin up state and the minus sign corresponds to the spin down state.

The components of ¢ anti-commute, which means
o6 +c006=0,60+c0c=0,00+0c 6 =0 ..(1.30)
x oy y X y oz z "y z X X oz
We further have
006 -060=2i6, 66.-0606=2i6,06006-0606=2i0C
x "y y X z y oz z "y X z X z z y
..(1.31)
These give

6 G =i0, ©00=i0,60=IiGC, ..(1.32)
x "y z y z X z X y

1.5 MAGNETIC AND QUADRUPOLE
MOMENTS OF NUCLEI

Like the electron, the proton and the neutron possess intrinsic magnetic dipole
moments. The measured values of the magnetic moments of the proton and
the neutron are

n, = 2.7927 n,,

Self - Learning un - 19131 HN
20 Material where MN = eh/2]\4p (1 33)




is called the nuclear magneton. e and M are the charge and mass of the  Basic Properties of Nuclei
proton. u, is analogous to the Bohr magneton p, = e/i/2m, which is the unit
of atomic magnetic moment. p, is much smaller than p,, being only 1/1836
part of the latter. Since p, = 9.2849 x 10* J/T, we get
w, =5.0571 x 1027 J/T NOTES

The above numerical values show that the proton and neutron magnetic
moments are of the order of 107 times the electronic magnetic moment,
which is equal to the Bohr magneton (i, = p,). Since the nuclei are made up
of protons and neutrons, the magnetic moments of the nuclei are also much
smaller than the atomic magnetic moments, the latter being of the order of
electronic magnetic moments.

Except for a minor correction, the electronic magnetic moment is
correctly predicted by the relativistic quantum mechanical theory of the
electron propounded by P.A.M. Dirac. If the motion of the proton is described
by the same theory, then the proton should have a magnetic moment M, =
u,. However this is not so and M, is greater than u . Further the neutron
being an uncharged particle, is not normally expected to have a magnetic
moment. Again this is not true and p has a magnitude greater than p,.
These anamalous values of the magnetic moments of the proton and the
neutron can be understood, at least qualitatively, on the basis of the meson
theory.

It should be noted that the magnetic moments of the proton and the
neutron are intimately related to their intrinsic spin angular momenta, which
are given by

p, =sph, P =sh

with s, =s,= 1/2. The ratio of the magnetic moment p, to the spin angular
momentum p, of the electron is given by

L (1.34)
P, 2m,
where p, =s_h = h/2, g being the Lande factor. It has the value g =-2. The
quantity of the r.h.s. of the above equation is the gyromagnetic ratio for the
spin motion of tile electron. The factor g = —2 was at first introduced by S.
Goudsmit and G.E. Uhlenbeck on ad hoc basis but later found justification
from the Dirac electron theory.

In the case of the proton and the neutron, we can write, in analogy
with Eq. (1.34)

I'Lp e

— =g, — ..(1.35
Py 8e 2Mp ( )
s .(1.36)

Substituting the values of P, and p , we get

g
Wo=g, s, = Tt ..(1.37a)

2Mp Self - Learning
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- ¢ _&
n =g, 0 S, = o B ..(1.37D)

Comparison with Egs. (1.33) gives

g, =2x27927,g,=-2x19131 ..(1.38)

Egs. (1.37) can be written in vector forms (in nuclear magnetons) as
W= 1.39

Llp —Egp()'p ( . a)

o= % 2.0, .(1.39b)

o, and o, are the Pauli spin operators.

The quantity g, appearing in Eq. (1.34) is negative because of the
negative sign of the electronic charge. Classically, the rotation of the electron
constitutes a current opposite to the direction of its rotation. This current
loop gives rise to a magnetic moment perpendicular to the plane of the loop
directed opposite to the angular momentum associated with the rotation, i.e.,
K, is opposite to p, so that g is negative.

For the proton, because of its positive charge, the directions of M, is
the same as that of P, and hence g, is positive.

The negative sign of g then obviously indicates that p_is directed
opposite to p .

For a complex nucleus, the intrinsic magnetic moments of all the
protons are to be vectorially added to give the resultant pri. Similarly the
intrinsic magnetic moments of all the neutrons are to be vectorially added
to give the vector 2. In addition, the orbital rotations of the protons will
also contribute to the net magnetic moment of the nucleus equal to Z(@)i.
This last can be defined in the same way as in the case of the orbital motion
of the electron. If p, be the resultant orbital angular momentum due to the
orbital motion of the protons, then we can write

LL_L _ e
p Stom,
Writing p, = L 1 we then get
eh
ML :gL'WL:gLLuN (140)

p

L is the orbital angular momentum quantum number. For orbital motion of
the proton g, = 1 as in the case of the electron, so that

W =Ly, ..(1.41)
L can have only integral values or can be zero.

No contribution to the magnetic moment of the nucleus comes from
the orbital motion of the neutrons (g, = 0 for neutrons).

Hence the resultant magnetic moment of the nucleus is obtained by
the vector addition of the three vector quantities X w,;, Xp,;, and X (i)

i



The protons and the neutrons tend to form pairs with oppositely aligned =~ Basic Properties of Nuclei
spins, giving a resultant spin 0. Obviously such pairs will also have zero
magnetic moments. Hence the net magnetic moment of the nucleus will be
determined by the nucleons outside the even Z—even N core for which the
net magnetic moment is zero. As in the case of the nuclear spin, this makes
the value of the magnetic moment of the nucleus comparable to the proton
or neutron magnetic moments.

NOTES

1.5.1 Quadrupole Moments of Nuclei

Nuclear electric quadrupole moments can be estimated from observations
on the departures from the interval rule, according to which the energy
difference between two states ' and F — 1 for given J (electronic
angular momentum quantum number) and / is linearly proportional
to " where FF = J + I. The departures can occur due to two reasons :
(a) Magnetic perturbations of the nearby levels; (b) Effect of the nuclear
electric quadrupole moment.

In the second case, the interaction of the nuclear electric quadrupole
moment with the electric field of the electrons gives rise to the appearance
of additional hyperfine structure lines, which do not obey the interval rule
due to magnetic interaction between / and J. The existence of the electric
quadrupole moment of the deuteron was discovered by this method. It has
the value 0, =2.82 x 10" m’.

The electric quadrupole moment of the nuclei can also be estimated
from the hyperfine structure of the microwave spectra of the molecules
containing the nuclei in several cases.

The electrostatic interaction energy between the nucleus of an atom
in the molecule and the remaining charges (electronic and nuclear) depends
on the electric quadrupole coupling coefficient given by

82 e
q =eQ( anz J (1.42)
0

where V¢ is the potential due to all charges external to the nucleus under
consideration.

The second derivative is determined at the position of the nucleus along
the symmetry axis of the molecule.

We can obtain an estimate of the interaction energy of a nuclear
electric quadrupole in the electric fieid due to all the charges external to the
nucleus from the following classical considerations. Assuming the field E
to be cylindrically symmetric with the symmetry axis along z and taking
into account the variation of the field over the nuclear volume we can write

E =(E), +(aﬁj e (1.43)
z aZ 0
where we have assumed the field at the nucleus to be zero and have put
K :(BEZ) (1.44)
aZ 0
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Basic Properties of Nuclei Since the source producing the field £ is away from the nucleus, V . E = 0.
This is possible if we write
E =-Kx/2 andEy=—Ky/2 ..(1.45)

NOTES for a cylindrically symmetric field.

It is shown that the interaction energy of an electric quadrupole in an
external electric field is given by

, --103. 50,
i

where i, j can take up the values 1, 2, 3 each corresponding to the three
rectangular coordinates x = x,, y = x,, z = x,. The quadrupole moment tensor

0, is given by

0E.
9 x;

/ j ..(1.46)

Q!./. = jp(r)(3xl.xj - rzél:].)dr ..(1.47)

where p(r) is the density of the charge distribution. Since 0, is a symmetric
tensor, only the diagonal components Q= 0O, ,, ny =Q0,and Q_= 0., are
non vanishing. Also the sum of the diagonal elements is zero:

0,70,1t0,=0 ..(1.48)
So, for an axially symmetric charge distribution (as for an ellipsoid

of revolution)
0,=0,,=-0,,=—0(say) ..(1.49)

where QO = Q.. is called the quadrupole moment of the charge distribution.
We then have (‘.‘Qij =0 for i #))

1 JE, JE, OE,
U2 __g|:Qxx( dx jo +ny[ a_)/ ]0 +sz( Jdz jo:l

6
__ L1 (9E) __ofar
_ 4Q(azjo_ 4[822 JO .(1.50)

It should be noted that since O is measured in the unit of an area (m?) in nuclear
physics, the above expression should be multiplied by the unit of charge e.

The quadrupole coupling coefficient ¢ can be determined from
observations on the hyperfine splitting in the microwave spectra. However,
for the determination of the nuclear electric quadrupole moment Q from the
values of ¢, one must know the value of (0*V%/6z%). Various methods have been
developed for estimating this quantity. However, there are uncertainties in
such estimates which introduce considerable error in the determination of Q.

Linear triatomic molecules, such as CICN, BrCN, OCS, etc., and
symmetric top molecules like CH,Cl and CH,Br have been studied by this
method.
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1.6 SCHMIDT LINES

The plot of j p with J is shown in the Figure 1.7, the lines are known as
Schmidt lines. The agreement between the experimental and theoretical NOTES
values may be due to the error in the measurement of magnetic moment
or due to the assumption that the nucleons move in a spherical symmetric
potential which is not true.

N/

Fig.1.7 Schmidt Lines

1.7 SEMI-EMPIRICAL MASS FORMULA
AND ITS APPLICATION TO MASS
PARABOLAS

Typically, the binding energy is expressed as B/A or binding energy per
nucleon. This demonstrates that the binding energy is proportional to A in
general, because B/A is largely constant. However, there are reversals to
this pattern. The semi-empirical mass formula captures the dependence of
B/A on A (and Z). This formula is based on fundamental principles (a model
for the nuclear force) and experimental evidence to determine the precise
parameters that define it. In this model, dubbed the liquid-drop model, all
nucleons are equally distributed within a nucleus and are held together by
the nuclear force, whereas protons are repelled by the Coulomb contact. The
nuclear force’s (short range) and Coulomb interaction properties explain a
portion of the semi-empirical mass formula. Nonetheless, additional (smaller)
modifications have been made to account for changes in the binding energy
that arise as a result of its quantum-mechanical origin (and that give rise to
the nuclear shell model).

There is a formula called the Semi-Empirical Mass Formula (SEMF).
It says:

M (Z,A) =Z ('H) + Nm_- B (Z, A)/c*

where B(A, Z) denotes the binding energy, which may be calculated
. . Self - Learning
using the following formula: Material 25
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B(A, Z) = a,A —f_-;s_fl?/-“—ar.Z(z-1);1—1/"‘—0_,,;,,1( N

+ 6:‘:p A4

/ T ) T N
volume  surface Coulomb symmetry pairing
The following are the terms covered by the SEMF, in order of
importance:

1. Volume Term:

The first term is the volume term a A, which represents the fact that the
binding energy is largely related to A. Why is this the case?

If you think about it, nucleon interactions are measured by the binding
energy of the nucleons. Weak nuclear forces and dense nuclear packing limit
the nucleon’s ability to interact with more than a few nearby neighbours. This
shows that no matter how many nucleons there are, each one contributes
the same amount. To put it another way, the force is not A(4 - 1)/2 ~ 4% but
rather A4 (the total number of nucleons with which one nucleon can interact).
According to experimental results, the a, = 15.5 MeV proportionality constant
is the fitting parameter.

When it comes to nuclear (strong) interactions, however, this number
is smaller than what the nucleons can bind to one other. When one nucleon
is bound to another, its binding energy is around 50 MeV. No, a nucleon’s
binding energy isn’t equal to the sum of its interactions with other nucleons
and its own motion. Although there are no nucleons in an atom with zero
kinetic energy, Pauli’s exclusion rule dictates that they will fill all of the
kinetic energy levels in an atom. This model provides an accurate estimate of
a , which includes nuclear binding energy and the kinetic energy generated

by filling shells.

2. Surface Term:

The surface term, -a 4”7, is a correction to the volume term, as it is also
based on the strong force. As previously explained by the volume term, a
constant number of nucleons interact with each nucleon. While this holds
true for nucleons located deep within the nucleus, nucleons located on the
nucleus’s surface have fewer nearest neighbours. This word is synonymous
with surface forces, which occur in droplets of liquids and are the mechanism
through which liquids develop surface tension. Given that the volume force
is proportional to B, < 4, the surface force should be ~ (B,)*” (as the surface
S ~ 17?3). Additionally, the term must be deducted from the volume term,
and the coefficient a_should have a magnitude similar to that of a . Indeed,
as equals 13—18 MeV'.

3. Coulomb term:

The term -a Z(Z -1)A"? is the third term, arises as a result of the Coulomb
interaction between protons and is, of course, proportional to Z. This term
is removed from the volume term because the Coulomb attraction makes a
nucleus with a large number of protons less desirable (more energetic).



The nucleus is simulated as a uniformly charged sphere to justify the
form of the term and estimate the coefficient ac. Such a charge distribution’s
potential energy equals
1 3Q2
‘= 47 €0 F]?

Since we get the charge q(r) = 4/3zr’p = Q ( from the uniform
distribution inside the sphere, the potential energy is as follows:

1 ¢ 1 / g _ 1 /R 2 a(r)
= dg(7¥) —=- = Brp—= = drdmr?
—l??f'{]f a(7) |71 e p |71 dmey J, Py

1 B30 . \3 1 1 B 3024 1 30Q?
— - -l?l'/ dr Q r‘ZQ (r_) Z | = / dr Q .I = :Q_
4y 0 AnR3 R r dmep Jo RS dmeg b R

Using the empirical radius formula R = R A’ and the total charge
formula Q° = ¢? Z(Z-1) (indicating the fact that this term appears only when

E

Z > 1, i.e., when there are at least two protons), we obtain:

Q? _ e2Z(Z-1)
‘R~ RyA/3
It defines the Coulomb term’s form. Then, using a_ =~ with R =1.25
Jfm, the constant a, can be predicted to be 0.691 MeV, which is close to the
experimental result.

Volume

15

Volume + Surface

10 /—fvolume_i Surface+Coulomb
M s cvtasracan

Volume + Surface+Coulomb+Asymmetry

50 100 150 200

Fig. 1.8 SEMF for stable nuclides

We plot B (Z, A)/A vs. A. The various term contributions are added
one by one to arrive at the final formula.

4. Symmetry term:

The Coulomb expression appears to imply that a nucleus with fewer protons
and more neutrons would be desirable. This is not the case, therefore an
alternative to the liquid-drop model must be utilized to account for the fact
that stable nuclei have roughly equal numbers of neutrons and protons.
Thus, the SEMF has a correction term that seeks to account for protons and
neutrons’ symmetry. This (and subsequent) correction can be described only
by a more sophisticated model of the nucleus, the shell model, in conjunction
with the quantum-mechanical exclusion principle, which will be discussed
later. If more neutrons are added, they must be more energetic, increasing

NOTES
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Basic Properties of Nuclei the overall energy of the nucleus. This gain more than compensates for the
Coulomb repulsion, making it more favourable to have protons and neutrons
in about equal amounts.

NOTES The symmetry term has a form of. Considering the fact that this term
goes to zero for A = 2Z and has a reduced influence for bigger A makes it
easier to comprehend (while for smaller nuclei the symmetry effect is more
important). The a, =23MeV coefficient is given.

5. Pairing Term:

The final word refers to physical evidence indicating that similar nucleons
tend to pair off. Then the binding energy is larger (6 > 0) if the nucleus is
even-even, with all neutrons and protons paired-off. If a nucleus contains
an odd number of neutrons and protons, it is advantageous to convert one
of the protons to a neutron or vice versa (of course, taking into account the
other constraints above). Thus, for odd-odd configurations, we must subtract
(60 <0) a term from the binding energy. Finally, for even-odd arrangements,
this pairing energy (6 = 0) should have no effect. The term for pairing is then

+a,A3/4 even-even
+6rrp;l_‘” 4= 0 even-odd

—a,A~3/* odd-odd

with a = 34MeV. [Sometimes the form o A7 is also found].
Isobaric Mass Parabola:

Some of the most essential aspects of nuclei’s stability, such as the o-activity
and stability properties of isobars, are explained by the binding energy
formula. It is possible to derive semi-empirical formula for mass as

2 Ve (4 -22)?
M(Z, A) = Zm, + Am, - Zm, -{ayA — asA3 — ac——a, — +8(A,2)}
A3
(1.51)
This equation can be expressed as follows:
M(Z,A)=ad+ BZ +yZ> + S5(A4,Z) (1.52)

Where, ¢ =m, —a, +a +ag /A7, p=—4a,—(m, —m,)and y:%-

Equation (1.52) is quadratic in the Z” axis. So the graph of M(Z, A) vs
Z would seem like a parabola in shape.
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M (Z, A)

Fig. 1.9 M(Z, A) vs Z parabolic curve.

The nucleus at the bottom of the curve is the most stable in the series
and has the highest binding energy. All isobars having a lower binding energy
than the most stable one (at the bottom) will be found at the curve’s arms.
They will decay through electron or positron a-emission of electron (e°) or
positron (e”) or K-capture. We have the minimum of the curve at Z = Z .

.. .. . oM
The condition for minimum is =z =

A=constant
oM
From equation (1.52), 7 B +2yZ we have

AtZ="7o; %:0
oz

So, Z,=—p/2y or f=-Z,2y (1.53)

Therefore, at Z ; ar(z. 4) = ced — 32,” — {£5(A4. 2)} (1.54)

We can have a variety of nuclear configurations depending on the

number of protons and neutrons inside the nucleus, as shown in Table 1.3.

Table 1.3 Different configurations of nuclei

L N A Pairing energy
(A, Z)
Odd Even Odd 0
Even Odd Odd 0
Odd Odd Even -,
Even Even Even &,

During o-decay, the nucleus emits either an electron () or a positron
(). The overall number of nucleons (A4) remains constant, but the proton is
converted to a neutron and vice versa, resulting in changes to Z and N. The
reactions to the processes can be expressed as follows

P X Yy + B +VHE, (1.55)

;X‘\!M)ZSY\’_I +ﬁ_ +v+ Eﬁ_ (156)

Basic Properties of Nuclei
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Basic Properties of Nuclei As a result of the decay, the neutrino (v) and antineutrino (o) and are
produced. The released energy, and , should be positive. M(X) should be
bigger than M(X) as a result (Y).

NOTES Odd A Isobars:

It is impossible to have an odd Z and an odd N in the same odd 4 isobar at
the same time. The pairing energy, 3(A, Z), is zero in these alloys. As a result
of solving equation (1.52), we arrive at

M(Z,A)=aA~+ pZ +yZ*
By substituting value of o from equation (1.53), we get
M(Z,A)=aA—2yZ,7Z + yZ’ M
M(Z,A)=y(Z—-Z,)’ +ad—yZ;
On Changing Z to Z+1 or Z to Z-1, we get
M(Z+1LA)=p(Z+1-Z,) +ad—)Z,
M(Z-1,A)=p(Z-1-Z,) +ad—yZ,

N

(1.57)

During o decay energy released is;

E, =M(Z,4)-M(Z~1,4)

Therefore, using equation (1.57) we have

E, =2y(Z-Z,-1/2)

For o decay energy released given by;
Eﬁ_ =M(Z,A)-M(Z+1,A4)
E;:r =2y(Z,—Z—-1/2)

As binding energy is plotted against Z for a number of nuclei, it can
be seen that the odd A is constant while the Z is variable.

According to Figure 1.10, this causes the formation of a parabola-like
curve. (A). Using odd A series, the pairing energy is zero, and hence just
one parabola is generated. The most stable isobar is located at the bottom.
Electron emission is the process by which the isobars to the left of the most
stable one deteriorates.

Te—f— 15— 5 Xe— L= sCs—2— 3 Ba

Excess protons decay in isobars on the right side of the stable isobar
via positron emission, K-capture, or a combination of the two.

Ce—L~ s TLa—2* 5 Ba
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Fig. 1.10 Isobaric mass parabola (a) odd A nuclei; (b) even A nuclei.

Even A4 Isobars:

According to the odd-even effect, the result obtained for even A nuclei is
different from the result obtained for odd A nuclei. In even A, the energy of
pairing is not zero. Due to the fact that both odd-odd and even-even nuclei
have an even A, they have two distinct pairing energies as indicated in the
table above. As a result, it has two parabolas in its binding energy curve that
are displaced by a factor of 29,

For even-even nuclei

M(Z,A)=y(Z-2Z,)* +ad—)Z," -5, (1.58)
For odd-odd nuclei
M(Z,A)=y(Z-Z,)* +ad—¥Z,” +6, (1.59)

You may get M(Z-1, A) and M(Z+1, A) relations by altering Z to Z-1
and Z+ 1, respectively. Even-even nuclei are more stable than odd-odd nuclei,

as can be seen from equations 8 and 9. For a - decay of odd-odd nuclei

Er Gz v

odd-odd even-even

We have obtained using equations (1.58) and (1.59);
E, =2){(Z,—2)—1/2]+25,

For o" decay of odd-odd nuclei
Eﬁ_ =2y[(Z,—Z)—1/2]-26,
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Figure 1.10(b) depicts the isobaric mass parabola for even A nuclei. On
the upper curve, odd-odd nuclei are unstable compared to even-odd nuclei,
hence they must undergo o-decay to stabilize. The term ‘Double a-decay’
refers to nuclear processes in which two protons simultaneously become two
neutrons or vice versa. For even-even nuclei, two or more stable nuclei are
required. There are three stable nuclei in the 4 = 136 isobaric family.

MIRROR NUCLEI AND ISOTOPIC SPIN
FORMALISM

1.8

We discovered that there can be several stable nuclei for a given A for even-A
nuclei by minimizing the semi-empirical mass formula as a function of proton
number (as illustrated in Figure 1.11 below).

\ Even-A r‘

M(A,Z)

-2 I-1 Z Z+1 Z+2

Fig. 1.11 Mirror Nuclei and Isotopic Spin Formulation

Mirror Nuclei:

The mirror nucleus is an atomic nucleus in which the protons and neutrons
of one nucleus are swapped for those of the other. There are seven protons
and eight neutrons in the nucleus of nitrogen-15 and eight protons and seven
neutrons in the nucleus of oxygen-15. When a neutron is replaced by a proton
in a nucleus, the isotopic nuclear force binding protons and neutrons remains
approximately the same. In other words, or ‘ Mirror nuclei’ are pairs of nuclei
whose proton number equals the neutron number in the other. Odd-A nuclei
with one odd nucleon are the simplest instances. Charge Z = (4 + 1)/2 and
neutron number N are both (4 + 1)/2 in one of the mirror nuclei; however,
Z=(4-1)/2and N = (4 + 1)/2 in the other. Examples are and or and.A
proton is swapped for a neutron in each of these pairings of nuclei, which is
the sole difference. Assuming that the binding energy of two mirror nuclei has
the same “nuclear component,” it is likely that the force between nucleons
does not differentiate between neutrons and protons. Thus, the difference in
mass between two mirror nuclei can only be explained by the difference in



proton and neutron masses and the varied Coulomb energies of the two. Here,  Basic Properties of Nuclei
the radius of the two nuclei may be determined (assumed to be the same).

Isotopic Spin Formulation

C TE
To distinguish between protons and neutrons, Werner Karl Heisenberg NOTES

created isospin in 1932, a German theoretical physics pioneer and one of
the fundamental pioneers of quantum mechanics. To be clear, the isospin
notion was first proposed in the 1950s, long before the quark model was
developed in the 1960s.

A quantum number known as Isospin, / or /,, is used to describe the
strength of the nuclear force. To conserve isospin, substantial interactions
degradation is required, according to a conservation law. isotopic spin
was originally formed from this word, although the term “isobaric spin” is
preferred by physicists because it is more exact.

As a result of these studies, it is clear that the strong interaction does
not differentiate between these nucleons. The strong interaction between
any two nucleons is identical regardless of whether they are neutrons or
protons. Rather than treating protons and neutrons as distinct species, they
are treated as various isospin states of the same fundamental nucleon particle
in terms of strong interactions. The nucleon is the name given to this particle.
Similarly, when only a strong nuclear force interacts with the three pions, 7°,
n*, and 7, they appear to be three distinct states of the same particle. Isospin
1s comparable to spin mathematically, but has nothing to do with angular
momentum. The spin word is included because isospins are added using the
same rules as spin.

The concept ‘Isospin’ can now be introduced using an analogy. Because
electrons have two spin values with regard to the z-direction, it is clear that
this is the case. A non-uniform magnetic field in the z-direction can thus be
used to identify S =+, i.e. As a result, in the absence of an external field,
these two states of the same particle cannot be separated. Consequently, it is
necessary to use superposition in order to describe the electronic spin state.

Electromagnetic interactions, on the other hand, allow us to distinguish
between protons and neutrons. The strong interactions are also charge-
independent. In nuclear physics, protons and neutrons cannot be distinguished
as charged and neutral particles. As a result, these are simply two different
states of the same particle (a nucleon). So, how will you be able to tell
them apart? Isospin is the answer. The nucleon has this feature, which is
theoretically equivalent to spin but has nothing to do with angular momentum,
in an imagined space. Different values of the third component of this isospin,
known as 7, or I, have been assigned to the proton and neutron. In order
to conserve isospin, this isospin has been linked to a conservation law that
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Basic Properties of Nuclei demands strong interaction decays. isotopic spin was originally formed
from this word, although the term “isobaric spin” is preferred by physicists
because it is more exact.

NOTES Due to the fact that this third component can take on any value, we
1 1
set I, =5 for the proton and I, = 5 for the neutron. Thus, the nucleon has
: | .
isospin I = 7 in the same way as the electron has spin s = 7, with the third

component having two conceivable values.

Electric charge, Q, is related to the third component of the atom’s
1sospin by

1
Q:[3+E

The explanation to why the proton is positively charged and the neutron
1s chargeless can be found by plugging in the values for the third component
of isospin. Isospin multiplets can be found in a variety of different particles.
As an example, three pions, ©', n° and 7, are all almost identical in mass
and spin, but they all have slightly different properties. Despite the fact that
they have various charges, they all respond in the same way when powerful
interactions occur. So, the three states of pions are just three different ways
of saying the same thing: pions. Their charges, on the other hand, cannot be
described using the formula shown above. Because of this, the formula must
be changed. It is now time to make a direct comparison between electrical
and nucleonic properties.

1.8.1 Basic Properties of Nuclei
Terminology:

A given atom is specified by the number of neutrons: N, protons: Z, electrons:
there are Z electron in neutral atoms.

All atoms of any element have the same atomic number, Z. Although
not all of them are the same there is a difference in the number of neutrons
N between isotopes of the same element.

Isotopes are denoted by or more often by or X where:

Chemical symbol

for the element.
Mass number =
A=7+N v
Atomic number= :>: Z : i

number of protons

N = neutron number
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where X is the chemical symbol and A = Z + N is the mass number.  Basic Properties of Nuclei
For example: 12¢, 3¢, 14c.

NOTES
P
Carbon-12 Carbon-13 Carbon-14
& 6 Protons # 6 Protons # 6 Protons
# 6 Neutrons » 7TMNeutrons » 5 Neutrons

Fig. 1.12 Isotopes of Carbon

When talking of different nuclei, one can refer to them as:
e Nuclide: atom/nucleus with a specific N and Z.
e [sobar: nuclides with same mass A (but # Z, N).
e [sotone: nuclides with same N, but # Z.

e [somer: same nuclide (but different energy state).
Nuclear Radius

Since a nucleus cannot be described as a hard sphere with a specified radius,
it is difficult to determine its radius. A practical specification of the range
of nucleon densities that approximates our simple spherical model is still
possible for many experimental situations (e.g., in scattering experiments).
In order to calculate the radius of a nucleus, one must know the number of
nucleons in the nucleus:

R=R A"
Binding energy

It is one of the most significant experimental numbers in nuclear physics
to measure the binding energy per nucleon (also written as BEN or B/A).
which can be defined as;

m, = Zmp +Nm,

The ionization energy of an electron in an atom is the average energy
required to remove a single nucleon from a nucleus. When the BEN is
really large, the nucleus is fairly stable. Nuclear scattering experiments are
used to obtain an estimate of BEN. As the atomic number A increases, the
binding energy per nucleon increases proportionately, as illustrated in Figure
1.13. According to many physicists, this graph is one of the most significant
in all of physics. Two notes are required. BEN readings typically range
between 6 and 10 MeV, with an average of around 8 MeV. To put it another
way, while millions of electron volts are required to separate a nucleon from
its normal nucleus, only 13.6 eV are required to ionize a single electron in the
ground state of hydrogen. This is precisely why nuclear force is V ’Strong.’
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Basic Properties of Nuclei The graph begins to fall at high A after ascending to a peak near iron
(4 =56). According to their highest value, iron nuclei are the most stable in
nature (it is also why nuclear fusion in the cores of stars ends with Fe). In
the nucleus, two opposing forces are at work, which explains why the graph
rises and then flattens. At low A values, the atomic forces between nucleons
dominate the repulsive electrostatic forces between protons. On the other
hand, high 4 values favour electrostatic forces, which prefer to separate the
nucleus rather than maintain it together.

NOTES

9 | 3g 5Fe Bdyr

8- 12¢ 2057 235,
Most stable nucleus
y 1 8 238
Fission
6 — s — C—
i

Region of very
stable nuclides

IHe

Binding energy per nucleon (MeV)

T T I T T I T T
0 20 40 60 80 100 120 140 160 180 200 220 240

Mass number (A)

Fig. 1.13 The BEN is largest for nuclei with a mass approaching *°Fe

As shown in this graph of binding energy per nucleon for stable
nuclei. Thus, fusion of nuclei with masses less than or equal to those of
Fe and fission of nuclei with masses larger than or equal to those of Fe are
exothermic reactions.

The m, = Zm + Nm, formula can be used to calculate the masses
of all nuclides. But this has been shown empirically to be incorrect. From
the special theory of relativity, it is known that each mass corresponds some
energy i.e., E = mc’. Then, if you add up the masses of all the nuclei’s parts,
you’ll get the total amount of energy they contain. There is a correlation
between the mass of a nucleus and the energy it contains. There must be
some additional energy needed to bind nuclei together, thus it seems sense
that this isn’t just the sum of its constituent energies. Having bound nuclei
would be undesirable if the energy were equal, because all nuclei would be
unstable, continually changing from their bound state to a mixture of protons
and neutrons.

The binding energy of the nucleus is calculated using the difference
in mass energy between the nucleus and its constituents. The binding energy
B for the nucleus is calculated as follows:

B=[Zm,+Nm, —m, 'X)|c?
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that can be measured empirically. As a result, nuclear mass is expressed in ~ Basic Properties of Nuclei
terms of atomic mass, which is quantifiable m, (“X)c* = [m  (*X)-Zm Jc’ + B,
where m (“X) is the atomic mass of the nucleus. Further neglect the electronic
binding energy B by setting m, (“X)c? = [m, ()-Zm ]c°.
g energy B, by gmy(“X)c* =[m, ()-Zm ] NOTES
For the nuclear binding energy expression, use the following:
B={Zm +Nm, —[m, ('X) —Zm J}c’

The neutron and proton separation energies are also qualities that are
of interest:

S =B -B()
S =B-B(

In atomic physics, these are the valence nucleon energies, which are
analogous to the ionization energies. These energies show the hallmarks of
the nuclei’s shell structure.

Check Your Progress

6. What do you mean by nuclear fission and fusion process?
7. Define the term nucleons.

8. What are the two types of departure in quadrupole moments of
nuclei?

9. Write the semi-empirical mass formula.

10. What is mirror nuclei?

1.9 ANSWERS TO ‘CHECK YOUR
PROGRESS’

1. Rutherford and his collaborators performed scattering experiments
with relatively higher energy o-particles and observed departure from
Rutherford scattering formula at large angles.

2. Scattering of high energy electrons by nuclei constitutes the most direct
method of measuring the charge radius of the nucleus and the nature
of the nuclear charge distribution.

3. A large number of unstable fundamental particles, both charged and
neutral, which are observed in nature (usually in the cosmic rays) or
can be produced in the laboratory in high energy interactions. One of
these is the (-meson (previously called the p-meson).

4. The mirror nucleus method is estimating the charge radius of a nucleus
is based on the study of the energetics in the B* transformation of the
mirror nuclei.

Self - Learning
Material 37



Basic Properties of Nuclei 5. The earliest method of estimating the potential radius was based on
the study of alpha-disintegration of heavy nuclei like #*U, **°Ra, etc.

6. With the help of the binding fraction curve it is possible to explain in a
NOTES qualitative manner the reasons for the o-disintegration of heavy nuclei
as also of the energy release in nuclear fission and fusion processes.

7. A complex nucleus is made up of protons and neutrons, collectively
known as nucleons.

8. The departures can occur due to two reasons :

(a) Magnetic perturbations of the nearby levels;

(b) Effect of the nuclear electric quadrupole moment.
9. The Semi-Empirical Mass Formula (SEMF) is,

M (Z,A)=Zm('H) + Nm_- B (Z, A)/c

10. The mirror nucleus is an atomic nucleus in which the protons and
neutrons of one nucleus are swapped for those of the other. There are
seven protons and eight neutrons in the nucleus of nitrogen-15 and
eight protons and seven neutrons in the nucleus of oxygen-15. When a
neutron is replaced by a proton in a nucleus, the isotopic nuclear force
binding protons and neutrons remains approximately the same.

1.10 SUMMARY

e Rutherford’s theory of a-particle scattering gives us an idea about the
smallness of the nuclear size.

e Rutherford and his collaborators performed scattering experiments
with relatively higher energy a-particles and observed departure from
Rutherford scattering formula at large angles.

¢ Scattering of high energy electrons by nuclei constitutes the most direct
method of measuring the charge radius of the nucleus and the nature
of the nuclear charge distribution.

e A large number of unstable fundamental particles, both charged and
neutral, which are observed in nature (usually in the cosmic rays) or
can be produced in the laboratory in high energy interactions. One of
these is the L-meson (previously called the pl-meson).

e The mirror nucleus method is estimating the charge radius of a nucleus
is based on the study of the energetics in the B* transformation of the
mirror nuclei.

e A complex nucleus is made up of protons and neutrons, collectively
known as nucleons.

e The mirror nucleus is an atomic nucleus in which the protons and
neutrons of one nucleus are swapped for those of the other.
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1.11 KEY TERMS

e Electron scattering experimental: It refers to the scattering of high
energy electrons by nuclei. It is the most direct method of measuring
the charge radius of the nucleus and the nature of the nuclear charge
distribution.

NOTES

e Mirror nucleus method: Mirror nucleus method estimates the charge
radius of a nuclelus which is based on the study of the energetics in
the B* transformation of the mirror nuclei.

e Nucleons: A complex nucleus is made up of protons and neutrons
collectively known as nucleons.

e Mirror nucleus: The mirror nucleus is an atomic nucleus in which
the protons and neutrons of one nucleus are swapped for those of the
other.

1.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What do you mean by electron scattering?
. State the muonic x- ray method.

. Define binding energy curve.

2
3
4. What is nuclear spin?
5. How will you define magnetic and quadrupole moments of nuclei?
6. What are Schmidt lines?
7. Write semi-empirical mass formula.
8. Define mirror nuclei and isotopic spin formalism.
Long-Answer Questions

1. Explain the methods for determination of nuclear size and their
interpretations.

2. Discuss binding energy curve for nuclei and its consequences with the
help of examples.

3. What do you understand by the nuclear spin? Explain.

4. Explain the magnetic and quadrupole moments of nuclei with the help
of examples.

5. Illustrate the semi-empirical mass formula and its application to mass
parabolas.

6. Discuss the mirror nuclei and isotopic spin formalism.
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BODY PROBLEM

Structure

2.0 Introduction
2.1 Objectives
2.2 Deuteron: Basic Properties
2.3 Existence of Excited States of Deuteron
2.4 n-p Scattering at Low Energies with Specific Square Well and Potential
Results
2.5 Qualitative Discussion of the Effective Range Theory
2.6 Theory of p-p Scattering, Spin Dependence and Scattering Length
2.6.1 Spin Dependence of n-p Interaction
2.6.2 Scattering Length
2.6.3 p-p Scattering at High Energy
2.7 Various Types of Two Body Nuclear Forces
2.8 Elementary Idea of Yukawa Theory of Nuclear Forces
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2.0 INTRODUCTION

The nuclear forces are almost charge independent. If we assume they are,
we can introduce a new quantum number which is conserved. For nucleons
only, that is a proton and neutron, we can limit ourselves to two possible
values which allow us to distinguish between the two particles. If we assign
an isospin value of t=1/2 for protons and neutrons (they belong to an isospin
doublet, in the same way as we discuss the spin 1/2 multiplet), we can define
the neutron to have isospin projection T =+1/2 and a proton to have t =—1/2.
These assignments are the standard choices in low-energy nuclear physics.
In particle physics, the opposite is the norm. This leads to the introduction of
an additional quantum number called isospin. We can define a single-nucleon
state function in terms of the quantum numbers n, j, m,, 1, s, T and tz. In this
unit, we will study in detail about the properties of deuteron, n-p and p-p
scattering at low and high energies, spin interaction, scattering length and
the elementary idea of Yukawa theory of nuclear forces.

2.1 OBJECTIVES

After going through this unit, you will be able to:

* Explain the properties of deuteron

* Describe n-p and p-p scattering at low and high energies

* Discuss the spin interaction and scattering length

* Describe the elementary idea of Yukawa theory of nuclear forces
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2.2 DEUTERON: BASIC PROPERTIES,
BINDING ENERGY, SIZE, SPIN,
MAGNETIC AND QUADRUPOLE
MOMENTS

Deuteron is the only two-nucleon bound system made up of a proton and a
neutron. The two other possible two-nucleon systems, the diproton (*He) and
the dineutron, do not exist as bound systems.

The following are the main experimentally determined properties of
the deuteron:

1. The binding energy is
E,, =2.2245+0.0002 MeV

The binding energy per nucleon in the deuteron is thus £, = 1.1122
MeV. This is much smaller than the mean value of the binding fraction
(f, = B/A) for the nuclei with mass numbers of 4 or more. Even for the
a-particle with 4 =4, f, = 7.07 MeV. Thus it is clear that the deuteron
is a rather weakly bound structure, compared to most other nuclei.

2. The spin of the deuteron (total angular momentum) in the ground state
in the unit of 72is 1, = 1.

3. The measured magnetic moment of the deuteron in nuclear magneton
(u,) unitis p,= 0.857414 £ 0.000019.

4. The deuteron also possesses a small but finite electric quadrupole
moment which has the value O, = +0.282 fm*> = 2.82 x 10! m’.

5. The parity of the deuteron ground state is even.

The observed values of the ground state spin and magnetic moment
of the deuteron yield important information about the nature of this state.

The deuteron is made up of a proton and a neutron, both of which are
spin 1/2 particles having the intrinsic magnetic moments p,=+2.7927 and
p =-1.9131 nuclear magnetons. Their sum is thus n,+p,=0.8796p,.

This value differs only slightly from p, given above. The difference is
I 0.0222p,,

If we ignore this difference to a first approximation, then we may expect
the proton and neutron magnetic moments to be antiparallel in the deuteron.
Since p is negative, the neutron magnetic moment is aligned antiparallel
to its intrinsic spin s . Hence the proton and neutron spins s and s, must be
aligned parallel to each other in the deuteron, as shown in Fig. 2.1 giving the
total intrinsic spin of the deuteron s, = s, ts,= 1. This must be vectorially
compounded with the relative orbital angular momentum L of the neutron-
proton system to yield the correct value of the total angular momentum /,
of the deuteron which is its observed spin (/,= 1). This can be done for the
values of L =0, 1 and 2 as shown in the vector diagrams in Fig. 2.2.
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Fig. 2.1 (i) and (ii) Relative orientations of the spins and magnetic moments of
the neutron and the proton, (iii) Orientations of M, and W _in deuteron, (iv) Orientations
of s, and s in deuteron.

(a) (b) (©)
Fig. 2.2 Vector addition of L and S to yield a value [, = 1 for different values of L

To the approximation in which the difference p,tp, —p, can be
neglected, only the value L = 0 is admissible. The other two values L =
1 and 2 will contribute significantly to the magnetic moment due to the
orbital rotation of the proton, which would introduce considerable difference
between ntm, and u .

The quantum mechanical theory of a system acted upon by a central
force shows that the orbital angular momentum L is a constant of motion.

This means that each energy eigenstate of the system is characterized
by a definite value of L. In particular, the ground state is an L = 0 state.

In what follows, we shall assume this to be true for the deuteron so
that the potential of the interaction between the neutron and the proton is a
function of r, the scalar distance between the two nucleons: V' =V (7).

As already stated, this is a very strong short-range interaction having
the general appearance shown in Fig. 2.3.

")

Fig. 2.3 General form of the internucleon potential (central)

Though the exact mathematical form of the interaction potential is not
known, we can approximate such a strong short range, spherically symmetric
potential by one of the following mathematical expressions:
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1. Rectangular potential well:
V=-V forr<b (2.1)
=0forr>b

where V> 0 and b is the radius of the well [see Fig. 2.4 (a)].
2. Exponential well [see Fig. 2.4 (b)]:

=V, exp (-/b) ..(2.2)
3. Yukawa well [see Fig. 17.4 (¢)]:
V =—{V/(rb)} exp (—1/b) ..(2.3)
4. Woods-Saxon potential [Fig. 2.4 (d)]:
V==V /{1 +exp[-(r—b)cl} ..(2.4)

where c is a constant representing the skin depth.

1~ SF 9

Fig. 2.4 Two nucleon potentials. (a) Rectangular potential well; (b) Exponential
well (c) Yukawa well; (d) Woods-Saxon potential well.

Experimental evidences from proton-proton scattering shows that there
is a repulsive core of the two-body potential at very short distances between
the particles. Such a repulsive core potential may be either of finite height
(soft core) or may be infinite (impenetrable or hard core). We shall consider
these potentials in greater detail later.

2.3 EXISTENCE OF EXCITED STATES OF
DEUTERON

We shall next investigate the possibility of the existence of an excited bound
state of the deuteron. We shall consider two possibilities, viz., the existence
of a state with a higher value of » and that with a higher value of /.

Let us take the case of the » = 1 state for which a just bound state
(E,=0), kb =3n/2 or for b =2 fm
_on’n’

0 =gy = Yo = 225 MeV

This value of the potential depth disagrees violently from the n — p potential
depth calculated from the, deuteron ground state energy. For higher values
of n, the disagreement would be still more violent.

So we conclude that no excited bound state of the deuteron exists with
values of n > 0.



We now consider the higher / values. For /> 0, the repulsive centrifugal
potential tends to diminish the strength of binding of the deuteron. The effect
increases with increasing value of / and is the least for /= 1. The magnitude
of the centrifugal potential in this case at the boundary » = b comes out to be
about 21 MeV, which reduces the depth of the attractive potential to only 17
MeV which is much lower than that required to produce a just bound n — p
system (V=25 MeV). The depth of the potential is reduced even more
in the interior regions of the well (» < b). This qualitative reasoning shows
that there cannot be any excited bound state of the deuteron for /= 1. These
conclusions are confirmed by the solution of the radial wave equation with
/=1 which gives as solution the spherical Bessel function J, , (k») of order
3/2. Matching of the internal and external solutions at the boundary again
leads to a contradiction with the theory for the bound state with 1 = 0.

24 N-P SCATTERING AT LOW ENERGIES
WITH SPECIFIC SQUARE WELL AND
POTENTIAL RESULTS

The relative motion of two particles of masses M, and M, can be described
by the wave equation

2
—z—uV2W+V(r)I|I:E\|I =Evy ..(2.5)

where p is the reduced mass. E'= E, — E .is the internal energy of the system.
E, is the energy in the L-system and E|. is the kinetic energy of the centre

of mass given by
Ml

E_ = E ..(2.6
oM +M, " (2.6)
For n — p scattering M, = M, = M (say) so that
E.=E]J2 (2.7)

So only half the laboratory energy is available for scattering in the
C-system:
E=E -E.=E/2 ..(2.8)
The angle of scattering 0, in the L-systern is related to that in the
C-system (0) for n — p scattering.
0. =20, ..(2.9)
Also the angle between the neutron and the proton after scattering in
the L-system is always 90°.
Since the reduced mass of the n-p system is p = M/2, the wave
Eq. (2.5) can be written as

v2w+h%2{g_vm} ) .(2.10)

Here v =y (7, 0, ¢); 6 and ¢ are the centre of mass angles, r is the
distance between the neutron and the proton. For scattering £ > 0.
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Method of Partial Waves

The theoretical treatment of the neutron-proton scattering is based on the
method of partial waves.

An incident plane wave can be expanded in terms of a series of spherical
outgoing and spherical incoming waves in the limit of large r, as follows:

yo=—— 2(21 +1)i [exp {i (kr — IT/2)}
1=0

—exp {~i (kr — [ w/2)} P,(cos 0) ..(2.11)
P, (cos 0) is the Legendre polynomial of order /; k* = 2ME/i.

When a scatterer is present, the spherical outgoing waves in the above
expression are affected, either in phase or in amplitude or in both. If only
elastic scattering takes place (no reaction), then only the phase is affected.
Since the scattered wave is a spherical outgoing wave with amplitude
dependent on the angle of scattering we can write y = {f(0)/r} exp (ikr).
The total wave function in the presence of the scatterer is then

() =y, +V. =V, + f( ) exp (ikr) .(2.12)

In analogy with Eq. (2.11), we can also write the total wave function as

y(r) = %Z(ZI-FI)Z [, exp {i (ikr — IT/2)}

—exp {—i (kr —Im/2)}] B, (cos 0) ..(2.13)

where 1, = exp (2i6)) with §, real since only the phases and not the amplitudes
of the outgoing waves arc affected. Obviously | n, |> = 1.

In the scattering experiment, an incident beam of monoenergetic
particles is scattered by an infinitely heavy scattering centre (in the C-system)
at an angle 0. The differential scattering cross-section o (0) is then given by

c(0) =11(0) ..(2.14)
Comparing Egs. (2.11) and (2.13), we get, using Eq. (2.12)

f(0) = —k 2(21+1) (M, =1) P, (cos®)

=0

= Lk io (21+1) {exp(2i8;) —1} B, (cos 6)
s i@l +1) exp (i8)) sin 8, . B, (cos0)  ...(2.15)
=0

We then get from Eq. (2.14)

2

c(0) =|f (9)|2 = ki i(21+1) exp (i5,) sin 8, P (cos 0)

2 |1=0

.(2.16)

The total scattering cross-section is obtained by integrating ¢ (0) over



the entire 4 solid angle:
Gy = [0 ®)dQ=[|f®).2nsin0d0
0

- 2

2 T
:k_’;j 3 (21 +1) exp (i5,) sin §;. P (cos B)| sin 6 d6
0 /=0

Because of the orthogonality of the Legendre polynomials, we get
finally

, 2
(21 +1)*sin*§, - ——

c
tot 2l +1

2T —
=5 %
= Z—f Y (@ +1)sin* §, ..(2.17)
=0

Equation (2.15) shows that the scattering amplitude f(0) can be
expressed as a sum over the amplitudes f, (0) of scattering of the different
partial waves

f©) =3/, ..(2.18)
1=0
where £0) = % {exp(2id,) -1} B, (cosB)
i
= 2H_lexp (18,)sin §,. B (cos B) ..(2.19)

For calculating the cross-sections, the phase shifts o,
must be known for different partial waves (see later). It may, at
first sight, appear that the calculation of the cross-sections, using
Egs. (2.16) and (2.17) would be difficult, because of the large number of
partial waves of different / involved. In practice, only a few / values are
involved in these calculations; depending upon the energy (see below).

Limits of Energy for the Scattering of Different Partial Waves

Consider a neutron of energy E (in the C-system) and linear momentum p
incident with an impact parameter ¢. Scattering will take place only if g <b. For
q > b, the incident neutrons will not feel the interaction potential, which has a
range b. Thus the largest impact parameter g, for which scattering occursis g, =
b. For the neutrons having this impact parameter, the angular momentum will be
p % g, =p *xb. According to quantum theory this can only be an integral
multiple of 7.

Suppose for a given momentum, the product pb has a value such that
[h <pb<(I+1)h ..(2.20)

/1s an integer. This means that the angular momentum of these particles will
be /. The maximum value p__of the momentum for which this condition
1s satisfied is
P b=U+1)h

_(+Dnh

max b

which gives
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P (DR

and
max M sz

.(2.21)

So for S-wave n-p scattering (/ = 0), the maximum energy in the
C-system is
hZ
max = — =10 MeV
Mb
We have seen before that for n-p scattering the energy in the C-system is
half that in the L-system [Eq. (2.8)]. Hence the maximum energy for S-wave
n-p scattering in the L-system is 20 MeV. To be on the safe side, the limiting
values, are taken to be half those given above: £ =5 MeV in C-system
and (E)) =10 MeV for S-wave scattering.

We can divide the whole space surrounding the scattering centre into
coaxial cylindrical zones with the axis parallel to the direction of the incident
beam having radii A, 2, 3\ etc. where & = /i/p, L = 21K being the de Broglie
wavelength.

Phase Shift

The above analysis is qualitative in nature and cannot be expected to give a
correct quantitative picture. It is possible to determine the nature of variation
of the phase shift with energy, under suitable approximations from the
solutions of the radial equations with and without the scatter.

Making a separation of variables in the wave Eq. (2.10), we can get
the radial equation in the presence of the scattering potential V' (r) as below
(in the region » < b)

+{k2—qu—la+D}m =0

1’2

where u (r) is the radial function for the /" partial wave and we have written

H:%EUM:%WA

When no scatterer is present, the radial equation becomes
[(I+1
v’ +{k2 —%}vl =0

r

The asymptotic solutions for the above equations are of the forms
U ~ sin(kr—%n+ 5,) (222)

. I
v, ~sin (kr—?) ..(2.23)

The sign of , determines whether the wave function u () is ahead or
lagging in phase with respect to the function v (r).

For a negative (attractive) potential, U(r) < 0 and hence »has a larger
negative value than v'/so that the wave function #, ( shown by the solid curve)
has a greater curvature in the interior region (r < b) than v, (shown by the
dashed curve ). This is illustrated in Fig. 2.5 (a) which shows that 8, > 0 for
an attractive potential.



Conversely for a repulsive potential. 3, < 0 as shown in Fig. 2.5 (b). Nuclear Force and Two

o ) . . Body Problem
Quantitative estimate shows that for low energy scattering by a potential
V(r) oc 1/r". 5, can be written as
12+ .
S, ~ k! for2l<n-3 NOTES

Attractive potential
-V, (@)

NN

Repulsive potential

®)

T
> ;
A
(=

Fig. 2.5 Nature of the radial solution for a given [ for (a) attractive potential (3,
> ) and (b) repulsive potential (5, < 0)).

The measured phases 8, ,completely determine the potential V(7).
However, the problem of determining the phases from the cross-sections is
very complicated and has not been solved in practice for any case. For those
cases in which only a small number of partial wave (/) are involved, fairly
reliable information can some times be obtained about the phases.

Scattering Cross-section in the L-system

If we denote the differential scattering cross-sections in the C and L systems
aso,.(0,) and 5, (0)), then it is possible to find a relationship between the
two. Referring to Fig. 2.6, we note that since the number scattered into a
given solid angle must be independent of the coordinate system chosen, we
should write

o,

Fig. 2.6 Solid angles in C and L systems.
c.(0,)dQ.=0c,(0)d?, ..(2.24)
Since 0, = 20,, we have
dQ.=2nsin0.do,
=8nsin 0, cos 0, do,
Also dQ, =2msin 0, do,

Hence we have
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L

It may be noted that the cross-section calculated above is in the
NOTES C-system. However, the measurement of the cross-section is made in the
L-system. The measured cross-sections 6, (0,) must be transformed into
c.(0,) with the help of Eq. (2.25) for comparison with theory.

Check Your Progress
1. What is deuteron?

2. How is an incident beam of monoenergetic particles scattered in the
scattering experiment?

2.5 QUALITATIVE DISCUSSION OF THE
EFFECTIVE RANGE THEORY

The low energy n-p scattering cross-section can be written as
4n

2 2
k™ +1/a;

O =

where a_ is the scattering length for the energy £ and k> = (ME/R?). If we are
able to express a, as a function of k, then the energy dependence of the low
energy scattering cross-section can be found.

Consider two energies £, and E, for which the wave equations are

u +{k U@} u, =0 .(2.26a)
u) +{k5-U@)}u, =0 ...(2.26b)
where kt = ME /1¢; k; = ME /1%, U (r) = MV (r)/Ii". (2.27)
Multiplying the first of the Eqs. (2.26) by u." and the second by u’,

we get
wy uy + kS u u, = U(r)uu, .(2.284)
wy w) kS uy uy = U(r) uu, ..(2.28b)

Subtracting, we get
r 144 d ’ ’
u,u' tu u) = ;(uzul —u) = (k3 — ki) uyu, ..(2.29)

Integrating we get

J‘ i(uzul' —ul)dr = (ki — k) juluzdr ..(2.30)
o 9 0

Since u, (0) = u, (0) =0, we get

(uyr] —u3), = (ky — k) J.uluzdt .(2.31)
0

Let us now consider the asymptotic solutions of the wave Eq. (2.26).
Since U(r) = 0 for large r, the solutions are of the form:
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_sin(kr+9))
C sing,

sin (k,r +9,)
sin 9,

v, (r) (2.32)

) V2 (7") =
v, and v, are normalized to unity at » = 0 so that v, (0) =1 and v, (0) = 1.
We then get as before
d
v =y = o vV =) = (k3 = ki) v, ..(2.33)

Integration gives

(v =vv3), = (W =), = (k22 - klz) jvlvzdr -(2.34)
0

From Eq. (2.32), we have
Vo ky cos (k;r +9,) - k, cos (kyr +9,)

] s inb, ..(2.35)
Then Vi (0) =k cotd,, v;(0) =k, cotd, ...(2.35a)
We then get
vV =vv3), — (k cot 8, —k, cotd,) = (k5 — k}') jvlvzdr ..(2.36)
0

If now we push up the upper limits of integration in Eqgs. (2.31) and
(2.36) to r = oc, we get

(o] —u})., = (ky — k) j uyu,dr ...(2.37a)
0

(v = wh).. = (ky cotd) — ky cotd,) = (k5 — k) [ vyvydr ..(2.37b)
0
At large r, u, (r) and u, () reduce to the asymptotic forms v, (r) and
v, (r) respectively. So we get on subtraction of Eq. (2.37a) from Eq. (2.37b)
~(ky cot 8, — kycotd,y) = (k3 — k) [ (vv, — wuy) dr ..(2.38)
0

Let us now choose the energy £, = 0 so that k, = 0. Also let £, = E
and k, = k. Then

1
lim (k; cotd,) =-——
k—0 a
where a is the Fermi scattering length. Further

1
k2 cot 82 =kcotd=——

.
We then get
1 1 I
——— =k j(vov—uou)dr
a a 0
or, L =l—k2J-w(VOV—u0u)dr (239)
a, a 0
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Now both u(7) and v(r) depend on E and hence on k. So the r.h.s. of
Eq. (2.39) is in general energy dependent. Let us write

'[ (Vv —ugu)dr = %p (0,E) ...(2.40)
0

where p (0, £) depends on the energies £, (= 0) and E, (= E). So we get
L Lok (2.41)
a, a 2
Since for small r, V' (r) > E, the wave functions #, and v, for zero energy
will differ very little from u and v respectively for the energy E so that for
small » we can write u(r) = u,(r) and v(r) = v, (r). On the other hand, for
large r (beyond the range of the n-p interaction potential), u(r) — v(r) and
u,(r) = v, (7). So for some arbitrarily chosen range a of the potential we have

J(vov —ugu)dr = I(vé —uy)dr ..(2.42a)
0 0
and J(Vo" —uqu)dr =0 ...(2.420)
So we get finally
J(vov—uou)dr = J(vg —ug)dr = %p(O, 0) = %’”0 ..(2.43)
a 0

where 7, is a constant known as the effective range of the interaction which
gives an average range of the interaction between the neutron and the proton.
Thus from Eq. (2.42) we get
LI lrokz ..(2.44)
a, a 2
Equation (2.44) is deduced under shape independent approximation.
It may be noted that the equations upto (2.41) are exact. The approximations
are introduced in Eqgs. (2.42) and (2.43). Actually these approximations are
based on the assumptions of a strong short range interaction, the exact shape
of which is not taken into account.

Equation (2.44) shows that if 1/a, determined from low energy
scattering data is plotted as a function of &> we get a straight line of slope
equal to the effective range /2. The intercept of this straight line with the
ordinate gives the reciprocal of the Fermi scattering length (1/a).

The effective range r, depends on the range and depth of the interaction
potential since u, in Eq. (2.43) obeys the wave Eq. (2.26) for £= 0. However,
it does not depend on the shape of the potential.

Using Eq. (2.44), we can write the expression for low energy n-p

scattering cross-section for triplet and singlet scattering as

4m
c = ..(2.450)

2

‘ 11
k* +(—r0tk2j

a 2
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a, 2
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wherer andr,_ are the effective ranges for the triplet and singlet interactions.
The total cross-section for low energy n-p scattering is then
3 1
c =T 5>+ 5 .(2.46)
K +L1—1r kzl K +(l—;r 2)

This formula has %een pplied to aflalyze the scattering data upto the
neutron energy of 10 MeV. The four parameters a, a_r and r,_required for
the analysis of low energy data have been determined accurately in various
experiments.

Effective Range Theory for the Bound Case
The effective range theory can be applied, even if one of the states is a bound
state, as for the deuteron ground state. In this case
M M
P2 = h_zE = h—z(_gd) =—a? ...(2.4761)
Hence k =io =i\ Me,/n? ...(2.47b)
The wave equation for the outside region then becomes
Uy, + k2 =gy — azuout =0
With n, =3,
S B{exp [i (kr + 8)] — exp[—i (kr + 6)]}
out 21
= 2£ {exp (id) exp (—or) — exp (—=id) exp (ar)} ...(2.48)
1

The coefficient of exp (or) must be zero for the bound state. So exp
(=i8) = 0 which means that (i5) must be a large real positive number. This
would make B exp (id) to be large, unless B is made small, so that the product
B exp (id) remains finite. We get in this case cot & =i and

kcotd =ik=-a (2.49)

Eq. (2.38) with k&, = 0 and k, = k = ia. then gives

l+ Footd =l—(x= —Otzj(vov—uou)dr ...(2.50)
. a 0
In the shape independent approximation, this reduces to
a =1l (251
a

To a first approximation, if we neglect - roa inEq. (2.51)and — rok2 in
Eq. (2.44), we can write o =~ L1 Wthh glves the total (triplet) scatterlng
cross-section as U
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2.6 THEORY OF P-P SCATTERING

The stability of nuclei containing protons and neutrons shows that strong
short range attractive nuclear force must be present between protons at close
distance, just like the neutron-proton force. This force is in addition to the long
range Coulomb repulsive force between the protons and actually dominates
over the latter within the nucleus.

Since no stable bound state of two protons (diproton or ?He) is observed,
the only means of investigating the p-p force is through experiments on
proton-proton scattering. The p-p scattering experiments are easier to perform
and interpret due to the following reasons:

(a) Monoenergetic proton beams at different energies are readily available
from different kinds of accelerators. They are also more easily
collimated.

(b) Protons are easier to detect and their energies can be measured more
easily.

(c) Protons undergo both Coulomb and nuclear scattering. Interference
between the waves scattered by the two types of force permits the
determination of the sign of the phase shift for p-p scattering due to
nuclear force more easily.

From the theoretical stand point the p-p scattering calculations are
more complicated for the following reasons:

(a) The presence of Coulomb scattering in addition to nuclear scattering
introduces interference effect. The Coulomb scattering calculations
require special wave mechanical treatment because of the slow variation
of the potential with distance.

(b) Effect of indistinguishability of the particles.

Partial wave method for the calculation of scattering cross-
section is applicable only when the potential of the interaction is
of the form V () ~ 1/r" with n > 1. Since the Coulomb potential
V oc 1/r is not possible to apply the method of partial waves in this case.

Coulomb scattering calculations are made using parabolic coordinates.
The asymptotic wave function in the presence of Coulomb interaction is
y(r) = exp{ikz +mlnk(r— z)}

RAC) exp{i(kr —mIn2kr +2n) +m}  ...(2.52)
r

2
e NME My
, k=" =" q, = j (253
dmeghv 5 2h,n0 argI' (1 +in) ( )

Here n =

The first term in Eq. (2.52) represents the incident wave which is an

almost plane wave slightly distorted due to the long range Coulomb potential.

The second term is an almost spherical outgoing wave, slightly distorted due
to the Coulomb potential.

n . .
£(0) = Srenton P {—inInsin’ 6/2} ..(2.54)



c,(0) =|/.©f .(2.55)

/. (0) is the Coulomb scattering amplitude. o, (0) is the differential
cross-section for Coulomb scattering in C-system. Using Egs. (2.53) and
(2.54) we get

c(e)=[ ¢ J ! .(2.56)

4me,Mv* | sin® 0/2

This is nothing but Rutherford scattering formula applied in the case of
proton-proton scattering. Rutherford obtained it from classical considerations.

Since the two protons are identical (if we neglect spin) it is not possible
for the detector D to distinguish between the incident proton scattered at 6
and the recoil proton when the incident proton is scattered at (n — 0).

This is illustrated in Fig. 2.6.

P, P,

Recoil proton Scattered proton
P, c P, P, -0 p,
) C
Scattered proton Recoil proton
P, P,
D

(@) (b)
Fig. 2.6 Detection of scattered and recoil protons by the same detector in p-p scattering.

For the proton scattered at (t — 0) we write
2

o(n—e):[ ¢ J ! .(2.560)

dme,Mv* | cos® 0/2

So the cross-section is

e

2 2
1 1
0) = ( ) (257
°.©) [47580Mv2] Sin® 02 cos® 012 (@57)

0 is the angle of scattering in the C-system. To get the cross-section
in the L-system we have to use the relation 6 = 20, and multiply the above
equation by 4 cos 0,.

Equation (2.57) is essentially classical. For wave mechanical treatment
of the problem we have to take into account the exchange effect associated
with the indistinguishability of the two protons and add up the amplitudes
of the scattered waves at 6 and ( — 0) and not the modulus squared of the
amplitudes as was done above. The linear combination of f(0) and f(r — 0)
has to be properly symmetrized, remembering that the protons obey F-D
statistics.

The space part of the wave function is f(0) + f(n — 0) which is
symmetric or f(0) — f(m — 0) which is antisymmetric. The former has to be
combined with the anti symmetric spin function, which is a singlet with S =
0 and a statistical weight 25 + 1 = 1. The latter has to be combined with the
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symmetric spin function, which is a triplet with S = 1 and has a statistical
weight 25 + 1 = 3. Using Eq. (2.54) we write

0) = —— exp(—inlnsin® 6/2
1.©) 2ksinZ02 T .l )
n . 2
n—0) = —exp(-inlncos” 6/2
A ) 2k cos® 6/2 p(=m )

The scattering cross-section then becomes
1 3
0,(0) = |/.O) + f.m~O)f +2[£.0) - £.(x - O

1.0+ £, = 0)] —Re £.(0) £ (- 6)

( e Jz{ 1 1 B cos{nln tan® 6/2}}

+
4me, My sin*0/2  cos*@/2  sin®0/2cos’ 0/2

(2.58)
This is the Mott scattering formula.

For proton energies of 1 MeV and higher, n = e’/4rne /v is small so
that the cosine in the last term in the above expression is almost unity unless
0 =0 or . So we get

) 2
e 1 1 1
o (0) = 3 Ay Gy w2 2
4me, My sin® ©/2  cos” 0/2  sin” B/2cos” 6/2
.(2.59)

Equation (2.59) shows that the Mott formula gives a cross-section
at the angle 0 = 90° in the C-system (45° scattering angle in the L-system)
which is half of what would be obtained if the effect of quantum mechanical
indistinguishability is not taken into account (Eq. 2.57). This is in good
agreement with observations at low energies.

Effect of Nuclear Force

When the results of p-p scattering experiments are compared with those
calculated from the Mott formula given above, there is agreement only very
low energies (E < 0.1 MeV). As the energy is increased, the experimental
cross-sections are found to differ markedly from the theoretical values. For £
upto about 0.6 MeV, the experimental values are lower, while for £> 0.6 MeV,
they are higher than the theoretical values. Such disagreement indicates that
nuclear potential between the two protons must be taken into consideration
at higher energies, when the protons approach very close together.

It is reasonable to expect that the nuclear force between two protons
has the same characteristics as that between a neutron and a proton, i.e., it
1s a short range attractive force with a range of the same order of magnitude
as the n-p force. So at low energies only / = 0 or S-scattering is expected to
take place under the action of the nuclear potential.

If we write the wave function in terms of partial waves of different
orders, then we have:

For pure Coulomb force



| =
Y (r) ==Y, v,(r)F(cos)
T =0

2% IS () P eost) .(2.60)
7=

r

For Coulomb plus nuclear forces

L=
% () ==Y u,(r) B(cos6)
Ly

r

= LS ) B (cosd) .(2.61)
T =

Since for /> 0, the nuclear force has no effect, we must put u,(r) =
v,(r) for these higher / values. Hence we get
() =% () (2.62)

r

x(r) =y +

Assuming that for / = 0, the radial function  (r) for the combined
Coulomb plus nuclear force differs from v (r) by a phase factor 5, it is
possible to normalize the functions u,(r) and v, (r). It is then found that

¥ (r) =explikz+inlnk(r — z)}

+ 8O bt —min2kr + 2n, + 1)) ..(2.63)

r

¢*  exp(—imlnsin?0/2) i

where 0) = + — 2.8,)—1
g(®) 4me, My sin 0/2 2k (X (2:%0) =

.(2.64)

As in the case of pure Coulomb scattering we have to make symmetric
and antisymmetric combinations of the space functions g(0) and g(m — 0)
and multiply them by the appropriate statistical weights for spin orientations.
We get
8,(0)=g(0) +g(n-06)
3 e { exp (—inInsin® 6/2) N exp (—inIn cos? 6/2)
| 4ney M sin” 6/2 cos’ 0/2

+£[exp (2i8,) - l]} -.(2.65)

8,(0)=¢g(0)-g(n-06)
B & exp (—inln sin? 0/2) _exp (—=inln cos” /2
4me, My sin” /2 cos” 0/2

..(2.66)

Notice that the nuclear force does not contribute to the antisymmetric
function for which the minimum /is 1.

We get finally

1 3
dm=j&wﬁ+j&@ﬁ
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) 2
e 1 1 1
= 2 4 T T 2
4me, My sin” 0/2  cos”" ©/2 sin” 6/2cos” 6/2
N sin” §,, e sind, cos 9,

K2 4me,Mv? ksin® 6/2cos’ 0/2

(2.67)

The first term in Eq. (2.67) is the Mott scattering formula for Coulomb
force only. The second is the nuclear scattering term. The last represents the
interference between the Coulomb and nuclear scattering. The sign of the
last term depends on the sign of 8 and hence on the Fermi scattering length.
So it is possible to determine the sign of 3, from the observed variation of
C, (6) with 0 and to decide whether there is a bound state of the p-p system
or not. The results show that the p-p scattering length is negative so, that
there cannot be any bound state of the p-p system. Further, the positive sign
of 8, also shows that the p-p nuclear potential is attractive.

If arectangular well is assumed for the nuclear part of the p-p potential,
the following values of the depth and range are found: (Vo)pp =13.3 MeV, b,,,,
= 2.58 fm. These values are in fair agreement with the corresponding values
of the singlet n-p potential depth and range. It may be noted, that the spins
of the protons must be antiparallel in the S-state to satisfy Pauli principle
which results in 'S state for the p-p system.

An effective range theory for proton-proton scattering can be developed
to describe the variation of the p-p phase shift as a function of energy. In the
shape-independent approximation, the formula corresponding to Eq. (2.44)
is replaced by

h 1 1

Cheots, + W _ 1 1, 4 (2.68)
R a 27
2 2
where L B .(2.69)
exp(2nn) — 1 4me hy

2

R =2 5 gsx10 m (2.70)
Me

h (m) is a slowly varying function of energy, behaving logarithmically
at high energies.

The first term in Eq. (2.68) is the value of k£ cot & which appears in the
n-p scattering theory multiplied by the Coulomb penetration factor C;. In the
case of n-p scattering, the S-wave phase shift is derived from the observed
scattering cross-section. But for p-p scattering, § is obtained from the angular
distribution at a number of different energies. Equation (2.68) then yields the
values of the p-p scattering parameters a_and r . The p-p scattering length
a_is found to be negative, showing that the diproton has no bound state, as
in the case of the n-p singlet ('S)) state.

Coulomb correction changes the value of a_from —7.82 fm to about
—17 fm which is comparable to the value —17.4 fm for n-n scattering, both of
which are considerably less than the value of a =—23.7 fm for n-p scattering.
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Fig. 2.7 Angular distribution of p-p scattering in C-system at 2.5 MeV.

Figure 2.7 shows the angular distribution of p-p scattering in C-system
at the energy of 2.5 MeV which shows the effect of nuclear scattering as
also the interference between Coulomb and nuclear scattering. As in the
case of n-p scattering, low energy p-p scattering upto about 10 MeV can be
accounted for by an S-wave (/ = 0) interaction between the protons. Except
in the forward and backward directions, the scattering is almost spherically
symmetric. The interference between the Coulomb and the nuclear functions
produce a minimum which moves to smaller angles (for 6 < n/2 ) at higher
energies. The flat portion is mostly due to the nuclear forces. The effect of
Coulomb scattering is confined to small angles.

2.6.1 Spin Dependence of n-p Interaction

In the previous section, we calculated the zero energy n-p cross-section o,
assuming a rectangular potential well, which was found to be about 3 barns.
This is widely different from the experimental value of zero energy incoherent
scattering cross-section 6, = 20.38 barns. To explain this wide discrepancy,
E.P. Wigner assumed that the n-p interaction potential is dependent on the
relative spin orientations of the neutron and the proton.

For parallel spins of the neutron and the proton (each of spin 1/2) as
in the deuteron, the resultant spin angular momentum is S = 1, which, has a
statistical weight 2§ + 1 = 3. For antiparallel spin orientations, the resultant
spin angular momentum of the n-p system is S = 0 which has a statistical
weight 2S5+ 1= 1.

If an unpolarized beam of neutrons is incident on a target containing
protons with random orientations of spin, then some of the neutrons will be
scattered by protons with parallel spins (triplet scattering) while the others
will be scattered by protons with antiparallel spin orientations (singlet
scattering). According to Wigner, the potentials of interaction in the two
cases are different. Let us call them V and V. Both are strong, short-range
attractive potentials and may be assumed to be rectangular potentials with
the depths V and Vand ranges b, and b_respectively.

In scattering experiment, the relative probabilities of the occurrence of
the triplet and singlet states are 3/4 and 1/4 respectively. Hence, the resultant
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cross-section of scattering of an unpolarized beam of neutrons from protons

can be written as

o :%c, +%GS (2.71)

For zero energy neutrons, the triplet scattering cross-section can be

written as o, = 4na; where a, = +4.8 fm is the triplet scattering length [see
Egs. (2.82) and (2.94)]. The plus sign in a, is due to the fact that the n-p
interaction potential in the triplet case can produce a bound state of the n-p
system (the deuteron ground state).

Substituting the calculated value of o, =3» for zero energy, we get
from Eq. (2.71)
20 =(3/4)x3+(1/4) o,
or, o, =71 barns
In analogy with the triplet case, we write
c, = 4na’ .(2.72)

where a_is the singlet Fermi scattering length. We can easily calculate a,
using the relation

asz o, 1
5 =2=—-=237
a o,
so that ala =4.86 ..(2.73)
This gives a, =23.3 fm ..(2.74)

The sign of the singlet scattering length can not be determined from
the above considerations. If a_> 0, then a singlet bound state of the neutron-
proton system (i.e., of the deuteron) may be expected to exist. However, its
energy will be quite small, as is evident for the relatively large value of a..
However, if a <0, then the singlet state will not be a bound state.

2.6.2 Scattering Length

We have seen that at low energies (£, < 10 MeV), S-wave scattering takes
place, for which only /= 0 term has to be taken in the expression for f(0).

£(0) = %(’Bo)sm 5, (2.75)
The differential scattering cross-section is
c(0) =|/©F =—S“;€2 0 .(2.76)

Thus o (0) is independent of 0 so that the scattering is spherically
symmetric in the C-system at low energies. The total cross-section is

.2
dmsin’ 3y (2.77)

6, =|c(®)dQ= =
Equation (2.77) can be transformed as follows:

4t 4
o =10(0)dQ = =
tot J ) k2c0560280 K +k* cot? 9, (2.78)




As the energy decreases, k also decreases, which means that both ¢ (0) Nuclear Force and Two

and o increases. Equations (2.76) and (2.77) would make o.(0) and 5, go Body Probiem
to infinity in the limit of zero energy (k — 0). However, that would make the
number of scattered particles infinitely large, which is impossible. Hence we NOTES

stipulate that the limiting value of & cot 5, in the denominator of Eq. (2.78)
should remain finite as £ — 0. If we write
L= kcotd, (2.79)

a

then we get from Eq. (2.78)

__am .(2.80)

(e)
K+ a}

a, is known as the scattering length for the energy E.

In order that 6, may remain finite as k — 0 we stipulate that

limkcotd, =lim (—Lj:—l ..(2.81)

k—0 k—0 a a

where a is finite and is known as the Fermi Scattering length. We then get
for zero energy neutrons

I{in’(l) keotd, =4m a*= o, (say) ...(2.82)

Equation (2.75) shows that the scattered amplitude /(0) remains finite
as k — 0if 3 also goes to zero in this limit; i.e., zlcmé 8, =0. Since sin §, =9,
as 8, — 0 we get in this case -

. 8
ll{lil(l) () = ll{lil(l) —~ ="a (say) ..(2.83)

The amplitude of the scattered wave in the limit of zero energy neutrons
is thus equal to the negative of the Fermi scattering length.

We can give a simple geometrical interpretation of the Fermi scattering
length a. If we draw a sphere of radius 2a, then the area presented by this
sphere to a parallel beam of neutrons incident on it is 7t (2a)? or 4na* as shown
in Fig. 2.8. So we interpret the Fermi scattering length as being equal to half
the radius of an impenetrable sphere, such that all neutrons of zero energy
intercepted by it are elastically scattered.

Fig. 2.8 Geometrical inter-pretation of Fermi scattering length.

Solution of the Radial Equation at Low Energy

The wave equation (2.10) in the presence of a scatterer can be split up into a
radial part and an angular part by the usual method of separation of variables.

The resulting radial equation for / = 0 becomes Self - Learning
Material 61
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du M
—at BV =0 .(2.84)
Here E > 0. If we assume a rectangular potential well [Eq. (2.1)], the
above equation reduces to
' +ku =0 ...(2.85a)

W'+ Ku, =0 ..(2.85b)

out

Here we have written u, (r) and u_ (r) to be the radial functions inside and
outside the well. We have also written

M M
K =h—2(E+V0), k* =h—2E ...(2.86)
The solutions are
u =Asink, r ...(2.87a)
u,, =Bsin(kr+mn) ...(2.87h)

where n is the phase of the external function.

We can also find the nature of the radial function u(») at large r
(asymptotic form) both with and without the scatterer from the expansions
(2.22) and (2.23) respectively for / = 0 partial waves. These are as follows:

Without scatterer:v,(r) ~ SH;{kr ...(2.88a)

sin (kr +8,)
k

With scatterer: v (r) ~ ...(2.88D)

Comparing the Egs. (2.87b) and (2.88b), we then find the phase of the
external wave to be n, =3,

Applying the boundary conditions at » = b, we get
k,cotk, b =k cot (kb +3) ...(2.89)

We then get after some simplification
sin kb (k cot kb — k, cot k,b)

sind, = ...(2.90)
’ J k* + k5 cot® kb
This gives 8, as a function of £, ¥, and b.
Solutions for Neutrons of Zero Energy
In this case £ = 0 so that k= 0 and
MYV,
k22 — k02 — hzO
The radial equations are
u!! +kju, =0forr<b .(291a)
ul? =0forr>>b ..(2.91b)
The solutions are
u =Asink r ...(2.92a)



u, =B(r—d) .(2.92b)

But from Eq. (2.87b), we have in the zero energy limit (for which both
kand 8 go to zero)

lim = lim Bsin (kr + &
k—0 Hout k—0 ( " 0)

=lim B (kr +39
it (kr+0)

= ]l{irr(l) Bk (r +8,/k) = B’ (r — a) ..(2.92¢)

where we have substituted llcin})(%o):—a from Eq. (2.83). Comparing
Egs. (2-92b) and (2.92¢) weﬁget a' = a = Fermi scattering length.
Thus the external solution for zero energy neutrons reduces to

u,, =B(r-a) ...(2.92d)
Here we have put B=5B'".
Nature of the Wave Functions

At low neutron energies £ <<V so that &> << k? which means that k7 in Eq.

(2.85) is only slightly greater than k; : k; > k;. We also have k; > k. This
follows from the fact that the deuteron binding energy £, , << V. From the

nature of the solution in the deuteron ground-state we know that ;b > /2.
Hence from what has been stated above, we have k, b > n/2. This means
that as in the case of the deuteron, the portion of the sin &, r graph for the
internal solution (2.87a) contained in the range 0 <r < b is slightly greater
than half a loop of the sine curve as shown in Fig. 2.9. Hence the graph has a
negative slope at » = b so that the external solution (2.87b) must also have a
negative slope at this point. Also since k <<k, the wavelength of the external
solution A >> 2, the wavelength of the internal solution. These features of
the solutions for low energy n-p scattering are shown in Fig. 2.9.

Assi .
st sz sin kr (no scatterer)

/B sin (kr + §,)
&

Fig. 2.9 Wave functions of the scattered wave for 0 <r < b and for r > b

If now we consider the case of zero energy of neutrons (k= 0) for which
k; = k;, the portion of the graph of the internal solution sin k, 7 between 0
<r < b is again slightly larger than half a loop of the sine curve as shown
in Fig. 2.10. This also has a negative slope at » = b and hence the external
solution which is the straight line given by Eq. (2.92d) has a negative slope
which intersects the r-axis at » = a > 0. So the Fermi scattering length a is
positive in this case.
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It is possible to calculate a from the boundary conditions applied to
the solutions (2.92a) and (2.92d) at r = b:

(ui/n/uin )b = (u(;ut/uout )b

IA sin kg

=

B(r—a)

|

I

I

|

|

|

kyb > /2 a>0 A
o = o
I

I

1

I

I

I

1

Fig. 2.10 Nature of wave functions for zero energy neutrons. The outside function is a
straight line with negative slope.

1
b—a

This gives k cotk b = ..(2.93)

of, a=»b ..(2.94)
For V=38 MeV and b = 2 fm, we get k, = 0.963 fm™' so that k b
= 1.93 radians and tan k, b = -2.69. Hence we get a = 4.8 fm which gives

= 4na® = 2.88 barns.

Sign of the Fermi Scattering Length

The discussions given above show that for an attractive n-p potential
giving rise to bound state of the deuteron (£ = £, < 0) the Fermi scattering
length @ must be positive. This happens because the internal wave
functions (u, ) both for the deuteron and for low energy (£ < V) scattering
including £ = 0 have negative slopes at the boundary r = b; i.e., both k b
and kb are slightly greater than n/2. So the external linear function for
Zero energy neutron-proton scattering must intersect the r-axis at a point
r=a>0.

Letus now suppose that V is gradually reduced so that k  is also reduced
till kb becomes just equal to /2. The slope of the internal function is then
zero (cot k b = cot /2 = 0) at r = b. The outside function for zero energy
neutrons in this case is a straight line with zero slope, i.e., it is parallel to
the r-axis extending to infinity. This corresponds to the just bound case for
which a =c.

If V, is reduced still further, k, b becomes smaller than 7/2 so that
the slope of the internal function is now positive (cot k, b > 0) at » = b. The
outside linear function for zero energy neutrons has thus a positive slope at
r = b and hence can intersect the r-axis only if it is produced backward. In
this case » = a <0 at the point of intersection i.e., the Fermi scattering length
for this unbound case is negative.

We thus conclude that fm a negative (attractive) n-p potential

1. For scattering of zero energy neutrons from a potential giving rise to
a bound state of the n-p system, a > 0;



2. For scattering of zero energy neutrons from a potential giving rise to
a just bound n-p system, a = ;

3. For scattering of zero energy neutrons from a weak attractive potential
for which no bound state of the n-p system is possible, a < 0.

Thus from a knowledge of the sign of the scattering length it is possible
to get an idea about the nature of a particular state of the »n-p system, i.e.,
whether it is bound or unbound.

2.6.3 p-p Scattering at High Energy

The experimental results on proton-proton scattering at high energies shown
in Fig. 2.11 are very puzzling. For energies upto about 500 MeV, the angular
distribution is flat except at small angles, showing that there is very little
dependence of the differential cross-section on 6. Such spherically symmetric
angular distribution is possible only for S-wave (/ = 0) scattering which is
clearly impossible at these high energies.

100 Energy MeV
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Fig. 2.11 Variation of o, 0) with O at high energies (experimental values).

Estimates of the total cross-section also show puzzling
features. While the n-p total cross-section shows 1/E variation the
p-p total cross-section is almost constant between 150 MeV to
600 MeV, having a value of about 23 millibarns.

The hypothesis of no p-p force for values of /. 6 is not tenable since the
total calculated S-wave cross-section comes out to be 11 millibarns which is
only about half the experimental value of 23 mb. The balance must be due
to higher / values.

If it is assumed that only S, P and D waves are present then in the
expression for ¢ (0) there should be the following terms:

(i) A term proportional to sin? & due to 'S scattering;
(if) aterm in sin® §, [P, (cos 0)]* due to 'D scattering;

(iii) a term in sin & sin 6, P, (cos 0) due to interference between S and D
scattering;

(iv) terms due to *P wave scattering with different phase shifts 5, , 5, and

10°
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o, for °P P and P, substates due to tensor force;

(v) other interference terms proportional to products of first and third order
spherical harmonics.

The nearly isotropic angular distribution of p-p scattering can then be
explained on the basis of the following two hypotheses: (a) a force exists
which makes the coefficients of the S and D interference terms negative; (b)
there exists a tensor force in the triplet states which builds-up the angular
distribution in the middle region. Such mixture of forces to produce a flat
distribution might be possible at one particular energy. But it is difficult to
see how it is possible at all energies.

For this to happen, the D-scattering should become more important
as the energy rises while the S-D interference term must change by the right
amount to compensate this. Actually the coefficient of this interference term
involving sin §, sin &, should be negative at high energy and should decrease
as the energy rises (see Fig. 2.12).

1.0
0.8
0.6
0.4
0.2

0
-o2r \
-0.41
~0.5 1 1 1 1

1
0 15 30 45 60 75 90
0 cm, degrees

Fig. 2.12 Contributions of S and D waves to p-p scattering.

R. Jastrow has shown that a p-p force with a repulsive core would
produce exactly these effects.

The whole space surrounding the scattering centre can be divided into a
series of coaxial cylindrical zones of radii &, 2%, 3% etc. where A=2n % isthe
de Broglie wavelength given by A = #/+/ 2ME. If the range of interaction is R and

the maximum energy £, has a value which makes %, = R, then only S-wave
(I = 0) scattering takes place. On the other hand if the maximum energy is
such that A= R/2, then both S and P wave scatterings will take place.

Similarly if £ 1is such that A = R/3, then §, P and D wave scatterings
will take place.

If the repulsive core range ¢ ~ 0.5 fm, then the maximum energy for
S-wave scattering is around 100 MeV. On the other hand the P and D wave
scattering at this energy will take place due to the longer range attractive
potential. Since repulsive potential gives negative phase shifts while attractive
potential gives positive phase shifts, it is obvious that §, is negative, while
9, 1s positive. So sin §, sin 6, will be negative which is required to make the
angular distribution flat even at high energies.



The energies at which the phase shift for a given / changes sign depends
on the details of the potential shape. Using potential shape which agrees with
experiment, the 'S phase shift (5,) is found to become maximum between 10
to 20 MeV while it becomes negative at around 150 MeV. Thus the observed
flat angular distribution between 150 to 500 MeV can be explained in terms
of a uniformly changing phase shift in a properly chosen potential with a
repulsive core.

It should be emphasized that the repulsive core is postulated for the
proton-proton system only which is a singlet state.

2.7 VARIOUS TYPES OF TWO BODY
NUCLEAR FORCES

The primary characteristics of the internucleon force can be inferred
from a study of the ground state properties of the simplest bound state of
the two nucleon system, which is the deuteron. In addition, internucleon
scattering experiments at different energies also throw considerable light on
the nature of the internucleon interaction.

Wave Equation for the Deuteron and its Solution

The Schrodinger wave equation for the deuteron in the C-system can be
written as

v2w+;—§{E_V(z)}w -0 ..(2.95)

where y = (7, 0, §). We have taken the interaction potential to be spherically
symmetrical, depending only on the separation » between the neutron and
the proton and independent of the angles 0 and ¢.

u is the reduced mass of the system of the two particles. If M, and M
denote the proton and neutron masses, then

M M
=—2 " ...(2.96
VRS (2.96)
Since M ~ M =M (say), we get
n=M:? ..(2.97)

where M is usually taken to be equal to the proton mass M. Separating the
variables (r, 0 ¢) and writing

V(0 ) =ZR (N 6.0)
==y 0,4)
! r

where Y,’s are the normalized spherical harmonics, we get the radial equation

as
d*u, 2u I+ |
drzl +h_2 E_V(r)_ﬁ r? u =0 -(2.98)

The term containing /(/ + 1)/7* is known as the centrifugal potential
which is added to the assumed neutron proton-potential V(7).
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The above Eq. (2.98) has been solved with the different types of
potential given in the previous section. The results are found not to depend
much on the shape of the potential assumed. So we shall consider the solution
for the rectangular potential well (Eq. 2.1) which is the simplest that can be
handled mathematically. Equation (2.98) then becomes for / = 0 (ground
state):

2
For r < b, dd:‘;n +;—§(E+ Voyu. =0 .(2.994)
2
For r> b, %ﬁ:—f% -0 .(2.99b)

Here we have written »._and u_ for the radial functions in the inside
(r < b) and outside (» > b) regions of the potential well.

Since the deuteron ground state is a bound state, its energy is negative
(E=-E).

So we get, using Eq. (2.97) and putting £ = — E, (where E,> 0)

du, M
ﬁ+h—2(V0_Ed)um =0 ...(2.100a)
olzuou M _
TZt_h_ZEdMOUt - (2100b)
Wit , M
riting k —h_z(Vo‘Ed> ...(2.101a)
and o :hﬂzgd (2.101b)
we get kB =k —o
where R :%VO (2.102)
The wave equations then become
u! +ku =0 ...(2.103a)
u' —otu =0 ...(2.103b)
Here " has been written for (&? u/dr?).
The solutions of Egs. (2.103) are of the forms:
u =Asinkr+A4' coskr ...(2.1044a)
u,, = Bexp (—oar)+ B exp (ar) ...(2.104b)

Since the radial function R(r) = u(r)/r, we must put A’ = 0 in Eq.
(2.104a) which would otherwise make u, — oo as ¥ — 0. Similarly we must
put B’ = 0 in Eq. (2.104b) which would otherwise make u_,— oo as r — oo,
Hence we get finally
...(2.105a)

(2.105b)

The two solutions given above must be matched at the boundary » =
b which requires that

’ ’
Uin b Uout b

u = A sin klr

1

u, =Bexp(—ar)

.(2.106)



where we have written ' for (du/dr). This condition requires that

k cotkb =—a ..(2.107)
Substituting for £, and o we then get the transcendental equation
cotk b =—alk =— |4 .(2.108)
VO - Ed

This equation cannot be solved analytically but must be solved
graphically. However, we can get an idea about the minimum depth V__ of
the potential which will give a just bound »n — p system for which we must

put E,= 0. We then get a. = 0 and k, = k, = MV,,,/h”> so that the condition
(2.108) reduces to
cotkb =0 ...(2.109)

. MV, e
This gives kb =‘/h—2.b:5 ..(2.110)

’h? 1.026x107%%
or Vom “aam? = 2

MeV L(2.111)

Since b is constant, Eq. (2.111) shows that the product V. b is a
constant. The minimum depth V_of the rectangular potential well, which
would make the n — p system just bound, can be calculated from Eq. (2.111),
provided we make a suitable guess about the range b of the internucleon
potential. For » = 2 fm = 2 x 10"* m, which is the mean internucleon
separation in the nuclei, we get V=25 MeV.

In the actual case £, = 2.226 MeV. The value of the minimum potential
depth V__ given above shows that the deuteron binding energy E,, << V.
Putting ¢, = E, in Egs. (2.101), we have

g = YMo8a) g o YME (2.112)

: 7 h
The transcendental Eq. (2.107) can be written as
ob
cotkb = “%b (2.113)

Writing x = kb we then have the two equations

y =cotx ...(2.114a)
y =-ablx ..(2.114b)
Putting in the numerical values, we have
Me
2 = hzd =1.67x10727 x2.226 x1.6 x 10713/(1.054 x 107>*)?
or, o =(2.44/1.054) . 10 =2.314 x 10
=0.2314 fm™!
Taking b =2 fm, we then have from Eq. (2.114b), since ab = 0.463
y=-0.463/x (2.114¢)

Equations (2.114a) and (2.114c) have to be solved graphically.

In Fig. 2.13, we have plotted the two graphs the points of intersection
of which give the possible solutions.
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Fig. 2.13 Graphical solution of the transcendental equation cot x = —ob/x where
x =kb.

As the figure shows the points of intersection of Eq. (2.114¢) with
the set of graphs y = cot x [Eq. (2.114a)] have small negative values. The
successive values of k b must then be slightly greater (=) than /2, 37/2,
5m/2 etc., or in general

kbz@2n+1)n/2 ..(2.115)

where n =0, 1, 2, 3, etc. The smallest of these values (» = 0) corresponds to
the ground state for which kb > m/2.

If we write kb = g +e, ...(2.116)
where g is a small number, we get
cotk b =cot(g+eoj=—taneo ~ ¢, ..(2.117)
Hence from Eq. (2.113), we have
kbcotkb =—(m2+eye, = —ob = -0.463 ..(2.118)
Neglecting &7 we then get
= 20b _2X0463 5o (2.119)
Y s
Hence kb = g te, =187 .(2.120)

Putting b =2 fm =2 x 105 m, we then get, using Eq. (2.112)
V,—¢g, =36 MeV
of, V, =38 MeV ..(2.121)
The relative magnitudes of the depth ¥ of the rectangular potential

and the binding energy E,, = ¢, of the deuteron in the ground state for the
case b =2 fm are shown in Fig. 2.14.
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Fig. 2.14 Deuteron ground state (¢ ) in the rectangular well of death 38 MeV.

Check Your Progress
3. How are Coulomb scattering calculations made?

4. How can the primary characteristics of the internucleon force be
inferred?

2.8 ELEMENTARY IDEA OF YUKAWA
THEORY OF NUCLEAR FORCES

The electromagnetic interaction between two charged particles can be
explained in terms of the interaction of these particles with the electromagnetic
field. The electromagnetic field equations are

1 9%
V- a_;j) - ple, (2.122)
1 9%4 )

where p and j are the charge and current densities. ¢ and A are the electric
potential (scalar) and the magnetic vector potential respectively. The above
equations actually constitute four scalar equations (one for ¢ and three for
the three components of 4) which can be combined to give a relativistically
covariant from.

The static form of the equations is
Vih =—ple, ..(2.124)

which has a solution

0@) =—— [ PUD 4 (2.125)

4re, lr = 7’|

For a point charge g located at ' = r, this gives

q (80" -n)
r) = d
o0 dme, 7 |r =7l !

L g .(2.126)

- 4me, |r—r1|
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Here & (#' — r,) is the Dirac delta function.
If we take two point charges ¢ at r, and r,, the potential energy of g at
r, in the field of g at r is
1 2
V = qo(n)=— —1— .(2.127)

4rme, |r2 - r]|

Moving charges produce a radiation field that can be described in terms
of photons which are the quanta of the e.m. field. The field energy is the sum
of the energies of the quanta. In quantum electrodynamics, the e.m. field is
considered jointly with the photons and the charges (sources). The photons
are created and annihilated during emission and absorption respectively.

The interaction between two charges is described in terms of the
emission of a photons by one charge and its absorption by the other.

The basic ideas underlying the quantum field theory can be extended
to the case of nuclear interaction as was first done by the Japanese scientist
H. Yukawa in 1935.

According to Yukawa the quantum of the nuclear field is a particle
(charged or uncharged) of finite rest mass to account for the short range
character of the nuclear interaction. As we shall see the particle should have
a rest mass of about 300 72, Such a particle known as a t-meson was later
discovered in the cosmic rays.

The mechanism of the internucleon interaction, in analogy with the
e.m. interaction, may be visualized as follows. When two nucleons are within
the range of internucleon interaction, they continually exchange a virtual
meson, which can exist only for a very short time A7~ #/AE determined by the
uncertainty relation. Taking the velocity of the particle to be almost ¢ we get
At~ b/c where b is the range of the interaction. The mass of the virtual meson
is given by

AE_h (2.128)

2 c2At  be

Assuming the range b ~ 2 fm, we then get m ~ 200 m for the mass of
the virtual meson.

The meson does not normally exist in the real state unless sufficient
energy is available for its creation. The amount of energy required for this
purpose is of the order of 100 MeV or more.

As stated above during the exchange between the two nucleons, the
meson exists in the virtual state for a time A¢ = b/c = 10 s. During this
time there is a temporary failure of the law of conservation of energy by an
amount AE determined by the uncertainty relation which is of the order of
100 MeV. However, because of the very rapid exchange of the virtual meson,
the violation of energy conservation may be regarded as compensated within
the time At is conformity with the uncertainty relation.

For the creation of the meson in the real state it is necessary to supply
sufficient energy (~ 100 MeV or more) which usually comes from the kinetic
energy of the colliding nucleons.



C.F. Powell and G.P.S. Occhialini in England in 1947 discovered a particle
with a mass intermediate between that of an electron and a proton which has
since been named a m-meson or a pion. It has been definitely established as the
quantum of the internucleon force. Its rest mass is 273 m..

The e.m. field is described by a 4-vector, because the photons have
polarization and hence must have non-zero spin / = 1 which can have three
orientations in space. Actually because the transverse character of e.m.
radiation they have only two possible polarizations.

The pions on the other hand have spin / = 0. Hence the meson field
is a scalar or more probably a pseudoscalar (see later). We first assume it to
be a scalar.

We write the relativistic equation for the total energy E of a particle
of rest mass m.
E* =p*c*+m? ..(2.129)

The quantum mechanical operators for £ and p are
E — ihi, p — —ihV
ot

Substitution in Eq. (2.8) gives

82
—n* — = 1V + miet
ot
1 9 mic?
or, Ve ——— =0 ...(2.130
c* or’ n? ( )
Using the wave function ¢ (), we then get introducing a source term
Nn(») on the r.h.s.
vig- L 20 gy 2.131
—c—za7—B¢ —47511(”) "'(' )
where we have written P = % .(2.132)

N (7) is the source strength, analogous to the charge density for the e.m. field.

B has the dimensions of the reciprocal of length and is related to the
range b of the internucleon interaction (see Eq. 2.128). Putting m = 273m..
we get

b=1/p=141fm

Equation (2.131) can be written in a relativistically covariant form as
in the case of e.m. wave equations. The static equation is
Vi - B2 = 4mn(r) ...(2.133)

Its solutionis ¢ (r) =] W')w ..(2.134)

r—r
For a point source of strength g at 7 = r, we can write n(r') = gd(r'

—r,) which gives
exp (=B - 1)

¢(r) =-¢ i (2.135)
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The potential energy of another point nucleon of strength g at = r, is
then given by (see Eq. 2.127)
» oxp (B, - i)

|”2_”1|

V =g0(rn)=-g ...(2.136)

Comparing with Eq. (2.3)
VO

V =- b exp (—7/b)

We then have g* = V, b; g* can be estimated from a knowledge of the
values of ¥, and b for the singlet p-p potential: V=43 MeV, b = 1.18 fm.
We get g2 ~ 8 x 10?7 and g*/hc = 0.3.

This should be compared with the value of the fine structure constant
o =~ 1/137 which is the coupling constant for the electromagnetic interaction.

In the perturbation method used in quantum electrodynamics the
successive terms decreases in the ratio of o.. Hence the higher order terms are
usually neglected in calculations. However, the method is not so successful
in the case of the meson field theory because of the relatively large value of
the coupling constant g?/%c. One of the consequences of this large coupling
constant is that the exchange of two or more mesons may have appreciable
probability.

Exchange of pions to provide internucleon interaction between two
nucleons 1 and 2 can be expressed as follows:

Charged Pion Exchange

n, T;)pz (m =>p+n;p,+1T —n,) (2137)

P, omp omAnim e > py)  .(2.138)

In the first case the first nucleon which is a neutron () emits a ©- that
is absorbed by the second nucleon (proton p,). In the process n, becomes the
proton p, while p, becomes the neutron n,. The process then goes in the opposite
direction. Similarly for the other case involving exchange of ©*.

Neutral Pion Exchange

Ttl)

n, <ny(n S +1%n +1° =) ..(2.139)

0

T
’ 0 0 ’
Py o p,(p— pl+1°% p,+71° = ph)

..(2.140)

To take into account exchange interaction, we have to introduce

exchange operators which are constructed by using the isospin operators
1

T,, T,, T, identical with the Pauli spin operators ¢ , G, 0. Ify = [ 0) and o

0 . . .
= [J represent the two possible isospin states (the proton and the
neutron

respectively, we have
Ty =9, 10=y
T,y =00, 1,0 = —iy



Ty =7, 1,0 =-0 ..(2.141)
We then get the exchange operators t, and 1 :

Ty = %(r1 +i1,)7=0,1,86 =2y ...(2.142a)

Ty - %(rl i) y=v28,18=0  ..(2.142b)

Thus t, transforms a neutron () into a proton (y) while t_transforms
a proton (y) into a neutron (8). On the other hand 7, operating on the proton
(neutron) wave function gives the same wave function, though with the sign
changed in the case of the neutron (0). In this respect, it is different from the
“neutral field” of Yukawa’s theory.

The source term in the wave function (2.131) has now to be written
asn(r) T, where T =1, in ‘charged theory’ t =1, 7, in ‘symmetric theory’
and t =1 in ‘neutral theory’ of Yukawa. In this symmetric theory both *
and n° are exchanged.

The static wave equation is then

V2o - B0 =4nt,n(r) ..(2.143)
This gives the solution for a point nucleon at r,
O(r) =g, =Bl — i) (2.144)

| =il
The potential energy of a second nucleon of strength g’ t’ at r, is thus

V=g gt P2 (=Bl ~ i) .(2.145)

n-n |r2_r1|

7 and 1/ act on the wave functions of the emitting and absorbing nucleons
respectively.

The meson field can either be scalar or pseudoscalar. A scalar field does
not change sign on inversion while a pseudoscalar changes sign on inversion.

If T and 1@ are the isospin operators for the two nucleons, then it can
be easily seen that

B A A S A kA
= 101® 4 10D 4 7DD ...(2.146)
Then we get the following results for the different cases.

Charged Theory
exp(—Blrz - ”1|)

V=-g*(t"1® 4+ 1W1?®)
|V2 - Vl|

..(2.147)

where it is assumed that g, = g = g. This gives exchange force between two
unlike nucleons only through the exchange of charged mesons (7*).
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Symmetric Theory
exp(—ﬁ|r] - r2|)

V=-g?th.1®
[ =l

..(2.148)

This gives exchange force between like nucleons (p-p and n-n)
as also between unlike nucleons (p-n). The interaction energy V is
a scalar both in ordinary space and isospin space in the symmetric
theory. It maintains charge independence. This follows from the
fact that t@.t® = +1 for the charge triplet state which can be p-p,
n-n and p-n with 7, = +1, -1 and 0 respectively in the spin singlet
('S,) state. For the charge singlet state 1. 1® = -3 which is a spin triplet
(deuteron ground state). Thus the interaction energy changes sign as we go
from the charge triplet (spin singlet 'S ) state to the charge singlet (spin triplet
’S) state. Since V" becomes positive in the latter it is repulsive in the charge
singlet state (deuteron ground state), which is obviously wrong.

Thus the symmetric theory does not give correct result if the meson
field is assumed to be scalar.

Check Your Progress

5. How is the interaction between two charges described?

6. What is quantum of the nuclear field according to Yukawa?

2.9 ANSWERS TO ‘CHECK YOUR
PROGRESS’

1. Deuteron is the only two-nucleon bound system made up of a proton
and a neutron.

2. In the scattering experiment, an incident beam of monoenergetic
particles is scattered by an infinitely heavy scattering centre (in the
C-system) at an angle 0.

3. Coulomb scattering calculations are made using parabolic coordinates.

4. The primary characteristics of the internucleon force can be inferred
from a study of the ground state properties of the simplest bound state
of the two nucleon system, which is the deuteron.

5. The interaction between two charges is described in terms of the
emission of a photons by one charge and its absorption by the other.

6. According to Yukawa the quantum of the nuclear field is a particle
(charged or uncharged) of finite rest mass to account for the short range

character of the nuclear interaction.

2.10 SUMMARY

® Deuteron is the only two-nucleon bound system made up of a proton and a neutron.
The two other possible two-nucleon systems, the diproton (2He) and the dineutron,
do not exist as bound systems.



Experimental evidences from proton-proton scattering shows that there is a repulsive
core of the two-body potential at very short distances between the particles. Such a
repulsive core potential may be either of finite height (soft core) or may be infinite
(impenetrable or hard core).

The theoretical treatment of the neutron-proton scattering is based on the method of
partial waves.

In the scattering experiment, an incident beam of monoenergetic particles is scattered

by an infinitely heavy scattering centre (in the C-system) at an angle 0.

The stability of nuclei containing protons and neutrons shows that strong short range
attractive nuclear force must be present between protons at close distance, just like the
neutron-proton force. This force is in addition to the long range Coulomb repulsive
force between the protons and actually dominates over the latter within the nucleus.

For parallel spins of the neutron and the proton (each of spin 1/2) as in the deuteron,
the resultant spin angular momentum is S'= 1, which, has a statistical weight 25 + 1
= 3. For antiparallel spin orientations, the resultant spin angular momentum of the
n-p system is S = 0 which has a statistical weight 2S5+ 1 = 1.

For an attractive n-p potential giving rise to bound state of the deuteron (£ = E,, <
0) the Fermi scattering length a must be positive. This happens because the internal
wave functions (u,) both for the deuteron and for low energy (E < V) scattering
including £ = 0 have negative slopes at the boundary r = b; i.e., both kb and k,b are
slightly greater than m/2.

From a knowledge of the sign of the scattering length it is possible to get an idea
about the nature of a particular state of the n-p system, i.e., whether it is bound or
unbound.

The experimental results on proton-proton scattering at high energies are very
puzzling. For energies upto about 500 MeV, the angular distribution is flat except at
small angles, showing that there is very little dependence of the differential cross-

section on 0. Such spherically symmetric angular distribution is possible only for
S-wave (I = 0) scattering which is clearly impossible at these high energies.

The nearly isotropic angular distribution of p-p scattering can be explained on the
basis of the following two hypotheses: (a) a force exists which makes the coefficients
ofthe S and D interference terms negative; (b) there exists a tensor force in the triplet
states which builds-up the angular distribution in the middle region.

The primary characteristics of the internucleon force can be inferred from a study of
the ground state properties of the simplest bound state of the two nucleon system,
which is the deuteron.

The electromagnetic interaction between two charged particles can be explained in
terms of the interaction of these particles with the electromagnetic field.

Moving charges produce a radiation field that can be described in terms of photons
which are the quanta of the e.m. field.

According to Yukawa the quantum of the nuclear field is a particle (charged or
uncharged) of finite rest mass to account for the short range character of the nuclear
interaction.

The meson field can either be scalar or pseudoscalar. A scalar field does not change
sign on inversion while a pseudoscalar changes sign on inversion.
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2.11 KEY TERMS

e Meson: In particle physics, mesons are hadronic subatomic particles composed
of an equal number of quarks and antiquarks, usually one of each, bound together
by strong interactions.

e Pion: In particle physics, a pion is any of three subatomic particles: n[l, ¥,
and n”. Each pion consists of a quark and an antiquark and is therefore a meson.
Pions are the lightest mesons and, more generally, the lightest hadrons.

2.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions
1. Write in brief about the excited state of the deuterons.
State the effective range theory for bound case.
What is Mott scattering formula?
What do you mean by spin dependence?
What is scattering length?

A O

Write briefly about p-p scattering at high energy.

7. How can the mechanism of internucleon interaction be represented?

Long Answer Questions

1. Describe the main experimentally determined properties of the
deuteron.

Explain the low energy neutron-proton scattering.
Discuss the effective range theory.
Describe the p-p scattering at low energies.

[Nustrate the wave equation for the deuteron along with its solution.

A O

Explain Yukawa theory of nuclear forces.
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3.0 INTRODUCTION

In nuclear physics, the Semi-Empirical Mass Formula (SEMF) (sometimes
also called the Weizsdcker formula, Bethe—Weizsiacker formula, or Bethe—
Weizsédcker mass formula to distinguish it from the Bethe—Weizsédcker
process) is used to approximate the mass and various other properties of
an atomic nucleus from its number of protons and neutrons. As the name
suggests, it is based partly on theory and partly on empirical measurements.
The formula represents the liquid drop model proposed by George Gamow,
which can account for most of the terms in the formula and gives rough
estimates for the values of the coefficients. It was first formulated in 1935 by
German physicist Carl Friedrich von Weizsicker and although refinements
have been made to the coefficients over the years, the structure of the formula
remains the same today.

The magnetic moment is the magnetic strength and orientation of
a magnet or other object that produces a magnetic field. Examples of
objects that have magnetic moments include: loops of electric current (such
as electromagnets), permanent magnets, elementary particles (such as,
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electrons), various molecules, and many astronomical objects (such as, many
planets, some moons, stars,.etc). The formula gives a good approximation
for atomic masses and thereby other effects. However, it fails to explain the
existence of lines of greater binding energy at certain numbers of protons and
neutrons. These numbers, known as magic numbers, are the foundation of
the nuclear shell model. A quadrupole or quadrapole is one of a sequence of
configurations of things like electric charge or current, or gravitational mass
that can exist in ideal form, but it is usually just part of a multipole expansion
of'a more complex structure reflecting various orders of complexity.

A stripping reaction is a nuclear reaction in which part of the incident
nucleus combines with the target nucleus, and the remainder proceeds with
most of its original momentum in almost its original direction. This reaction
was first described by Stuart Thomas Butler in 1950. Deuteron stripping
reactions have been extensively used to study nuclear reactions and structure,
this occurs where the incident nucleus is a deuteron and only a proton emerges
from the target nucleus.

In this unit, you will learn about the liquid drop model and fission,
Bohr and Wheeler’s theory, nuclear shell method, magnetic and quadrupole
moments, nuclear shell structure, conservation laws of nuclear reactions and
Q values, threshold energy of a nuclear reaction, nuclear reactions, cross
section and level width, Bohr compound nucleus theory of nuclear reactions
and Breit-Wigner single level formula.

3.1 OBJECTIVES

After going through this unit, you will be able to:
* Describe the liquid drop model and fission
» Explain the Bohr and Wheeler’s theory
« State the nuclear shell method and structure.
* Elaborate on the magnetic and quadrupole moments

* Discuss the basic concept of conservation laws of nuclear reactions
and Q values

* Analyze threshold energy of a nuclear reaction
* Discuss the Bohr compound nucleus theory of nuclear reactions

» [llustrate Breit-Wigner single level formula

3.2 LIQUID DROP MODEL AND FISSION

The macroscopic properties of the nucleus, e.g., the constant density of the
nuclear matter and the constant binding energy per nucleon are very similar to
those found in a liquid drop. The very strong short range interaction between
the nucleons permits us to consider their collective behaviour in determining
the properties of the nucleus. As an example; if some extra energy is supplied
to the nucleus, then instead of considering how the motions of the individual



nucleons are affected by it, it is sufficient to consider its influence on the
collective behaviour of the nucleons in the nucleus as a whole.

The liquid drop model was first proposed by N. Bohr and F. Kalckar
in 1937 and was later applied by C.F. von Weizsidcker and H.A. Bethe to
develop a semi-empirical formula for the binding energy of the nucleus.

There are reasons to believe that each individual molecule within
a liquid drop exerts an attractive force upon a group of molecules in its
immediate neighbourhood. The force of interaction does not extend to all the
molecules within the drop. This is known as the saturation of the force. In
order to calculate the potential of the interaction, it is necessary to know the
number of interacting pairs of molecules within the drop. If each molecule
interacts with all the molecules in the drop, the number of interacting pairs
should be N(N-1)/2 where N is the total number of molecules. For N large,
the number of pairs would thus be N?/2 so that the potential energy should be
proportional to N?. On the other hand, if each molecule interacts with a limited
number of molecules in its immediate vicinity, the number of interacting pairs
would be linearly proportional to N so that the interaction potential should
be proportional to N. This latter conclusion is supported by experimental
evidence. The total amount of heat required for evaporating a drop of liquid
(latent heat) is linearly proportional to the number of molecules within the
liquid, as is evident from the fact that the heat required to evaporate 2 g of
a liquid is twice that required to evaporate 1 g.

The binding energy £, of a nucleus is proportional linearly to the
number of nucleous within it, so that the binding fraction f, (i.e., binding
energy per nucleon) is nearly constant (~8, MeV) for most nuclei. This fact
shows a close resemblance of the nucleus with a liquid drop. Thus we come
to the conclusion that the internucleon force within the nucleus attains a
saturation value, so that each nucleon can interact only with a limited number
of nucleons in its close vicinity. Apart from this, there are certain other points
of resemblance between the nucleus of an atom and a liquid drop:

(i) The attractive force near the nuclear surface is similar to the force of
surface tension on the surface of the liquid drop (see later);

(ii) As in the case of a liquid drop, the density of the nuclear matter is
independent of its volume. The nuclear radius is R oc 4" where 4 is
the mass number. Hence the nuclear volume V' oc 4. Since the nuclear
mass M~ 4, the density of the nuclear matter p = M/ is independent
of 4. This also suggests saturation of the nuclear force;

(iii) Different types of particles, e.g., neutrons, protons, deuterons,
a-particles, etc., are emitted during nuclear reactions. These processes
are analogous to the emission of the molecules from the liquid drop
during evaporation;

(iv) The internal energy of the nucleus is analogous to the heat energy
within the liquid drop;
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(v) The formation of a short lived compound nucleus by the absorption of
a nuclear particle in a nucleus during a nuclear reaction is analogous
to the process of condensation from the vapour to the liquid phase in
the case of the liquid drop.

The liquid drop model is not very successful in describing the low
lying excited states of the nucleus. Because of the collective motions of the
large number of nucleons involved, the model gives rise to closely spaced
energy levels. Actually however, these are found to be quite widely spaced
at low excitation energies.

3.3 BOHR AND WHEELER’S THEORY

The drop’s potential energy at each stage can be estimated as a function of
its degree of deformation. The potential energy is displayed versus r, the
distance between two fission fragments’ centers. Three regions are meant to
exist on the curve.

In area I, the fragments are entirely separated, and their potential energy
E is just the electrostatic Coulomb energy produced by the two positively
charged nuclear fragments’ mutual repulsion. When the drops are in close
proximity to one another and the distance »=2R, the energy E at the position
is less than the corresponding Coulomb potential by an amount CD. This
amount is equal to the potential for surface forces to become active at this
stage. We approach the critical distance r, where the potential energy curve
has a maximum value E,, as we travel through region II. This relates to the
barrier height and explains why spontaneous fission does not occur in all
circumstances where £,> 0. The nuclear system requires an additional amount
of energy £ =E v E, called the activation energy before the potential barrier
can be overcome and fission can occur. The shards have collected in the III
region, and short-range nuclear forces have taken precedence.

C
b @

m
o

Potential energy (MeV) —>

I

|
|

Fig. 3.1 Potential energy curve of nuclear fission



Bohr and Wheeler provided the first theoretical treatment of this
process. They used a straightforward analytical technique (Legendre
polynomial expansion) to describe the radius r that forms an angle with the
axis of maximal deformation.

r = R[l + ZMIPJ.{CDSH)} = R[1 +a,P,(cos8) +a,P,(cosd)+...]
=0

ER)

where R denotes the spherical nucleus’s radius and a., o, denote the
deformation parameters.

Here a, = a,=0, in this case, as the drop’s centre of mass is supposed
to remain constant.

A spherical drop’s surface energy £ =4 © R°'T=4 1 [R A"J’T, where
A is the mass number and 7 is the surface tension. As a result, in terms of
deformation parameters, the surface energy of the deformed drop is given by

Es= 4;rR5’AmT[1 +a, (%.Cos ‘60— % e ]

Es = 47{R§A2'3TJ:1+§af +§a§ +]

The drop’s surface energy changes as a result of deformation:

2 4.5 ,
AE, = E;[jrx_i +—ay +:|
> 7 (32

The Coulomb energy of a spherical drop £, = , hence that of the
deformed drop

3 3 -
3 £e

3 ., 1
=1 'ru_.| cos J
S5 dme R, A" | \ 2 2

(3.3)
Keeping simply the term in mind, the entire difference in energy is as
follows: AE=AE, +AE = L 2R E,~ E]

The drop is stable to tiny distortions if it is positive, i.e., 2E > E . If
AE is negative or E < E , fissions may occur spontaneously.

4aR; A*°T <37°e” / 40me, AR, or Z°1 A>45

The critical parameter, denoted by 7y, is the ratio . When y <1, the
nucleus is safe from spontaneous fission. From semi-empirical data 4nT
=13MeYV, it is possible to estimate the degree of distortion of a nucleus in
the critical state by equating the critical or threshold energy £, to the overall
energy variation AE.
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»*U; Es=520MeV  and E. =830MeV thus o =1/7.

The energy that must be transferred to the nucleus in order to reach
this crucial shape when the deformed drop is about to split into two equal
drops is known as threshold energy or critical energy. The threshold energy
is calculated as follows:

Ey, = 4nR’Tf (x) = 4aR; 4*"Tf (x)
...34)
This energy can be computed by ignoring the second-order energy shift
caused by the neck connecting the two fragments.

1/3

2/3 2
E, =2(4zR; )T(%AJ —4ER;A2”T+2x%xGZe] / 47r£0R0[%A)

2

1Y 1 )7 3
+(52e] /SMDRO(EA) —E(Ze)zélareaRoA”j.

E, /4nRITA* = f(x)=0.260-0.215y.

There are no electrostatic forces for an uncharged droplet =0 and /(0)
=0.260, therefore the critical energy is just the work done against surface
tension in separating into two droplets. A minor deformation from the
spherical shape leads the drop to reach the critical shape and separate at y =1.

When the critical energy is compared to the excitation energy, the
likelihood of fission can be predicted. The excitation energy £, which is
contributed to the subsequent compound nucleus by a neutron’s capture, is
equal to the binding energy of the neutron in the compound nucleus and may
be computed using the relationship.

Ee=B(4+1,Z)-B(4,ZF;M+M,—*]M.

The calculated values of the excitation energy for a number of heavy
nuclei are listed in the table and compared to the matching critical energy
values. When looking at the results, it’s clear that **U requires a critical
deformation energy of 6.5 MeV for fission, but it only gets 5.9 MelV when it
takes up a neutron with zero K.E. As a result, thermal neutrons with an energy
0f 0.03 eV are incapable of fission. Fission is feasible if the neutrons have a
K.E. of 0.6 MeV. Experiments show that neutrons with an energy of roughly
1 MeV are required. With increasing neutron energy, the fission cross section
grows rapidly. With #’U, the situation is somewhat different. The excitation
energy, or the energy available by capturing a slow neutron, is higher than
the threshold energy in this case. Thermal neutrons should clearly be capable
of generating “*U nucleus fission in this instance.



Table 3.1 Excitation Enerev and Critical enerev for some Nuclides.

Compound Nucleus E.(MeVl) L (MeV) E,-E,; (MeV)
#’pa 5.4 5.0 0.4

*3Th 5.1 6.5 -1.4

By 6.6 55 1.1

“*Np 6.0 42 1.8

2y 5.9 6.5 -0.6

#0py 6.4 4.0 2.4

3.3.1 Asymmetric Fission

Calculation of the fission barrier height (£,) ) as a function of the deformation
parameter shows that the minimum value of E, corresponds to symmetric
fission and hence symmetric fission should be more probable than asymmetric
fission, from the point of view of the liquid drop model. The reason why
this is not so can be understood as follows. The initial deformation prior to
fission is symmetric, as required by the liquid drop model. After the saddle
point is attained, the disintegration into the fission fragments do not follow
immediately, but takes place only after the nucleon shells in the would-be
fragments have been formed. The numbers of nucleons in these shells happen
fo be different and hence asymmetric fission occurs. The time scales involved
in the two processes can be estimated as follows.

The fission time is t,= /v where & is the distance between the flying
fragments (~ 107"* m) and v their velocity (~ 107 m/s) so that t o~ 1020 s.
The shell formation time, on the other hand is t ~ #/AE, where AE ~ 1
MeV is the mean separation between the one-particle levels. This gives
T~ 107107 =10""s < T,

3.3.2 Spontaneous Fission

The nuclear fission represents the process of breaking up of a nucleus into
two fragment nuclei of comparable masses, whether or not induced by an
external agent. Fission may also occur spontaneously. In the latter case
we have Spontaneous Fission (S.F) which was discovered by the Russian
scientist G.N. Flerov. In spontaneous fission a nucleus 42X undergoes the
spontaneous transformation

X > IX+ 72X, (3.5

where the two product nuclei have mass numbers and atomic numbers
of comparable values. Here 4, + 4, = A and Z + Z, = Z. In the case when
A =A,=A/2and Z = Z, = 7Z/2 we have symmetric S.F. Here we have not
included the prompt neutrons, which are not really the primary products of
fission.
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The above processes can occur if the O value of the transformation is
positive i.e.,

Qf = M(Aa Z) - M(Alv Zl) - M(Aza Zz) >0
where the M’s are the atomic masses expressed in energy units. For the
symmetric case, we have

Q,=M4A,7Z)-2 % MA/2,7Z/2)> 0
Written in terms of the binding energies (B) we have
Q,=2xB(4/2,7/2) - B4, 2)
=2x(A2)f ,—Af,=A(f},—f) = A .Af,
where /7, s are the binding fractions.

For Q) to be positive, Af, must be positive which happens if ;> 1, i.e.,
the binding fraction of the product nuclei is greater than that of the parent
nucleus.

Writing the atomic masses in terms of the semi-empirical mass formula
derived in this book, we have, neglecting the pairing energy term

z? (4-27)°

73 T

A A

. (Z/2)* . (4-27)*
Y

M(A, Z) = ZM,; + NH, — a, A+ a, 4> + a

M(é,zj =£MH +EM,, —al£+a2 (ﬁj
2°2 2 2 2 2
Hence 0,= M(4, 2)— 2M(4/2, ZI2)

) ZZ 21/3
:a2A2/3(1——)+a3—(1——
22/3 A1/3 2

=026 a, 4°+0.37 a, Z2/4" .(3.6)

Thus the symmetric S.F will be energetically possible (Q > 0) if

z 0264,
A 0.37a4
Substituting the values a, = 0.019114 u and a, = 0.0007626 u, we get

2
Z 2176
A

This condition is found to be fulfilled for 4 > 90 and Z > 40. (For
A =90, Z=40, 7?/A = 17.8). Thus for nuclei for which 4 > 90, S.F. should
be energetically possible. In reality however, it is a very uncommon
phenomenon. Even amongst the nuclei of the heaviest atoms in the periodic
table, e.g., uranium, it is very rarely observed. For instance there is only about
one S.F per hour in 1 g of °U corresponding to a half-life of 2 x 107 yr.

The reason for this lies in the quantum mechanical barrier penetration
problem, which we discussed in connection with the a-disintegration of
nuclei. The problem is much more acute in the present case, since the nuclei
of the fission fragments carry much higher charges than the a-particles.

Let us consider the reverse case in which two spherical fission fragment



nuclei of mass number 4/2 and carrying positive charge Ze/2 each are brought
towards each other from infinity. 4 and Z are the mass number and atomic
number of the parent nucleus the symmetric spontaneous fission of which
produces the above two. At infinity, their mutual potential energy is zero while
at a distancer between their centres, the electrostatic potential energy rises to

__L @y (3.7
4me, ¥

This potential energy is positive since the force is repulsive. As r
decreases V' increases as shown in Fig. 3.2(a). It should be maximum at
B when the two fragments just touch each other which happens when their
centres are separated by 2 R" where R’ = r, (4/2)'" is the radius of each
fragment. However, actually the maximum is reached when the fragments
begin to coalesce to produce the original nucleus under the action of strong
short range attractive interaction (nuclear force). The highest point on the
actual potential energy curve Q is below B. From this point where the
potential is £, the course of the potential energy curve towards » = 0 is not
known exactly.

c

The point P giving the energy at » = 0 corresponds to the mass energy of
the parent nucleus. In order that the parent nucleus may undergo spontaneous
fission, the two fragments must cross the potential barrier at the highest

point Q.

The heights of the points P, P, P”, etc., in Fig. 3.2() for different
A values above the zero energy line (complete separation of the fission
fragments) correspond to the 0, values calculated above (Eq. 3.6). As
long as these points are above the zero energy line, spontaneous fission is
energetically possible. This is the case for nuclei with 4 > 90. However,
because of the barrier penetration problem, there is very little probability of
the fission to take place.

)

o

N

Fig. 3.2 (a) Potential energy variation in nuclear fission. (b) Potential energy
curves for different mass numbers.

In Fig. 3.3, the barrier height £, calculated from Bohr-Wheeler theory
(a) and the values of 0, (b) are plotted as functions of A4 for comparison. It
will be seen that £, > Qj',. for the nuclei with 4 upto ~250. £ =E,-0Q,is called
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the activation energy for fission. So for these nuclei, the activation energy is
positive. S.F. is possible in this case through barrier penetration only. This is
the reason why S.F! is so rare a phenomenon. In the potential energy diagrams
of Fig. 3.2(b) these correspond to the cases where the humps of the potential
energy curves are above the rest energies of the parent nuclei.
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Fig. 3.3 Comparison of the fission barrier (E,) with the energy Qj.

Fission can be induced in these nuclei if energy is supplied to them by
particle (neutron) or radiation (y-ray) absoption. If the neutron separation
energy from the target nucleus is S and the neutron kinetic energy is £ , then
the energy of excitation of the latter is

E =E +S ..(3.8)

For fission to occur, this must be greater than the deficiency of 0,
below £, i.e.,

E >E -0, ..(3.9)
The minimum energy required for the fission to occur is thus
(E)min =E,—-Q =E, ..(3.10)

Bohr and Wheeler, on the basis of the liquid drop model of the nucleus,
developed the theory for the calculation of the activation energy £ -

34 NUCLEAR SHELL MODEL

It is thought that protons and neutrons in a nucleus are constantly colliding
with each other. With such a strong force acting between them and so
many nucleons to collide with, nucleons cannot conceivably complete
entire orbits without interacting. No two electrons may occupy the same
quantum state, according to Pauli’s exclusion principle. The evidence
for a shell structure and a limited number of permissible energy states
suggests that a nucleon moves in some form of effective potential well
created by all the other nucleons’ forces. This leads to energy quantization
in the same way that the square well Potential does. The designations
for the levels differ slightly from the corresponding symbols for atomic
energy levels. The energy levels grow as the orbital angular momentum
quantum number / increases, and the s, p, d, f... symbols are used for
[/ =0,1,2,3..., same as in the atomic case. However, because there is no
physical equivalent to the primary quantum number », the numbers associated
with the level begin at n=1 for the lowest level associated with a given orbital



quantum number. In addition to the dependency on potential well details
and orbital quantum number, there is a significant spin-orbit interaction that
separates the levels by an amount that grows with orbital quantum number.
This results in the overlapping layers depicted in the figure.

The subscript denotes the total angular momentum j, and the state
has a multiplicity of 2 + /. Due to Coulomb repulsion, the contribution of
a proton to energy is slightly different than that of a neutron, although this
difference has no effect on the appearance of the set of energy levels. The
nuclei with an even number of protons and neutrons are discovered to be
more stable than those with an odd number. There are many ‘Magic Numbers’
of neutrons and protons that appear to be particularly favorable for nuclear
stability: 2, 8, 20, 28, 50, 82, and 126. Nuclei whose neutron and proton
counts are both equal to one of the magic numbers are referred to as ‘Doubly
Magical,” and are found to be exceptionally stable.
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Fig. 3.4 A schematic representation of the shell structure in nuclei.

Predictions of the Shell Model:

1. Stability of closed shell nuclei: This system reproduces all the magic
numbers, 2,8,20, 28,50,82,126, unambiguously.

2. Spins and Parities of Nuclear Ground States: The shell model
has demonstrated remarkable success in forecasting the ground state
spin of a large number of nuclei. The neutron and proton levels fill
independently in this scenario. There are the following rules for angular
momenta and ground state parities.

(i) Even-even nuclei have an angular momentum in their ground state
of J=0". This rule has no known exceptions.

(ii) With an odd number of nucleons, such as an odd Z or odd N nucleus,
the nucleons pair off as far as possible such that the resulting orbital angular
momentum and spin direction are identical to those of the single odd particle.
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(iii) The total angular momentum of an odd-odd nucleus is equal to
the vector sum of the odd neutron and odd proton j-values. The parity will
be equal to the sum of the proton and neutron parities, i.e., parity = (-1)" .

According to the first rule, the angular momentum of and is zero, as
is the case for, , , , and all other even-even nuclei. We now provide some
actual cases of odd even nuclei. Take the nucleus as an example. In the
configuration, , the six protons and six of the seven neutrons are coupled. The
odd neutron is designated . The ground state angular momentum is denoted
by the subscript i.e.,, a value that is experimentally measured. The unpaired
particle in nucleus is a proton with spin . Consider the following examples:
and . The shells are stuffed in accordance with

15§15, 1p(7) 1d8),

Ifthe nucleon is 7O, the final unpaired nucleon is a neutron with a spin
of 5/2; if the nucleon is '"F, the final particle is a proton with a spin of 5/2.
Thus, the model predicts 5/2, which is also the measured number for each
of these nuclei’s ground state spin.

3. Magnetic Moments of Nuclei: The overall angular momentum J of
the nucleus is equal to the angular momentum j of the final unpaired nucleon
in an odd nucleus. Thus, we observe that the odd nucleon alone generates the
nucleus’s magnetic moment. The orbital angular momentum (/) of numerical
value and the spin s of numerical value combine to produce a total angular
momentum J of numerical value , in units of h. u =g s denotes the magnetic
moment associated with spin angular momentum s.

Similarly, the magnetic moment associated with orbital angular
momentum / is denoted by the equation =g, /.

0
ﬂmm) % oQ S ]
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Fig. 3.5 Schmidt lines plotting magnetic dipole moments against
angular momentum (above) for odd Z-even N nuclei and (below) for even
Z-o0dd N nuclei.



Hence p = sum of the vectors g/and g s along . The above relationship
may be represented as by applying the cosine rule to the triangle created by
the /, s, and ;.

T 1; (j+1)+1(1+1)-s (s+1)+g: ﬂs(sﬂ)‘j(jH)H(SH)_J(HU

e 210+ 1)1 +1) " 2[5+ )i +1)]

GG+ +1)-s(s +1) +]'(j+1)+s(,s +1)=1(1 +1)
L YT R
Since for a single particle, the spin s = 2 and there are two possible
cases.
[ parallel to s (Stretch case); J =/ +s =1/+ .
[ antiparallel to s (Jacknife case); ] =/—s =1- .

Hence,
1 |
p=fS =2 e T, for stretch case
J 3 1]
K= *‘F+IUJ - E}Er _EF;J for Jackknife case-
..(3.12)

These relationships define two curves for pversus J with J= [+ %, for
each class of odd even nuclei. Schmidt values are the values of pand Schmidt
lines are the curves. When the preceding equations (3.10) and (3.12) are
substituted, the g factors corresponding to single nucleons are

g, =land g = 5.58 for protons and g, = 0 and g, = -3.82 for neutrons.

3.5 SPIN ORBIT COUPLING

In order to explain the disagreement at the higher magic numbers, Mayer and
independently Haxel, Jensen and Suess suggested that a spin-orbit interaction
term should be added to the central potential V(). The spin-orbit potential,
which is non-central, can be written as

V.==0@)Ls
where b () = (af:) .(3.13)

Here /A and s# are the azimuthal and spin angular momenta of the nucleon
under consideration. f(r) is a spherically symmetric function giving the
profile of the potential. It is weaker than V(r) is a constant. We assume strong
coupling between the spin and orbital angular momenta of each individual
nucleon giving rise to a total angular momentum j for each so that we can
write.

j=1l+s ..(3.14)

Since s = 1/2 for each nucleon, the two possible values of j are
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j=1+ ! and / — —. These two levels now have different energies because of
the strong spin- orblt coupling. The splitting of the two levels can be calculated
by computing the expectation values of the spin-orbit potential (3.13) in the
two states of different j. It can be easily seen that

2l.s =j(j+ D) —=Ill+1)—s(s+)) ..(3.1%5)

which gives the following two values of /. s :
j=1+12: 1.5s=12 ...(3.16)
j=1-12: [l.s=—(+1)2 ..(3.17)

The expectation values of the spin-orbit interaction potential is :

<V =g == V00 v, ) dr

= (1.5 () .(3.18)

where ( ¢(r) ) is the expectation value of ¢(r) appearing in Eq. (3.13). We
then have for the two states

J=l+12: g =—12($ () .(3.19)

R ) .(3.20)

The spin-orbit splitting of the two levels is then
Ag, =g, (I-172)—¢, (I+1/2)

=+ 1/2){d(r) ) ..(3.21)
The observed level-spacing is given by the following empirical formula:
Ag, =102/ + 1) A" MeV ...(3.21a)

Since the r.h.s. of Eq. (3.21) is positive, it is obvious that the state with
.. . C g
j=1+ 5 lies below the state j =7 - % The splitting which is of the order of

a few MeV increases with increasing value of /. For the s-state (/ = 0), only
one value of j (= 1/2) is possible.

The spin-orbit potential assumed above resembles that which would
arise due to a simple magnetic effect. However, the spin-crbit splitting is in
this case much greater than the rather weak magnetic coupling between / and
s. So it must be more intimately related to the central potential V(r) giving
rise to the shell structure. In analogy with the atomic case, it can be written as

o) =2(2) G2)

where 3 is the spin orbit constant.

There is evidence for the existence of a strong spin-orbit force between
nucleons from high energy polarization experiments (see Ch. XVII), which
justifies the above assumption.

The sequence of the energy levels, taking spin-orbit interaction into
account, is shown in Fig. 3.6. Since we have to consider now the three
quantum numbers 7, / and j, the levels are designated as follows :

Ls 1/2 ’ 1p3/2’ 1pl/2 2 1a15/2’ 1d3/2 > e 2S1/2 ’ 2p3/2’ 2191/2 > e 2f7/2’ 2f5/2 , ete
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., ===t 3324 n
—}d—<\>/, 3g 72
6ho 2g NG 1i 1172
y e 2g 92 3d 52
! -
li 132——126
3 3p 12
e ’ p 3/2
2f P — . Y/)
L L 21 712
5ho jp— )}
1h et
— 1k 112 -
3 35 12 8
2wz 2R s
4ho - 1g 72
lg ,//
2 o 1 1892 ——50
P T 1f 52
3ho I 2 32
1 R
/ =~ 1172 —28
1d e —
2ho § BRI W32 1n 20
2s 1d 5/2
lp - 1p 1/2 —38
lheo ——————— 1 _ 1p 312
1
0ho T Is 172 —2
Harmonic Splitting due

oscillator
levels (approximate)

to spin-orbit
force

Fig. 3.6 Sequence for nuclear levels according to shell model taking into
account spin orbit interaction.

In accordance with Pauli’s exclusion principle, each sublevel of a
given j can accommodate a maximum of (2/ + 1) nucleons of either kind for
which the magnetic quantum numbers 7z, are different. The possible values
arem.=j,j—1,... When a sublevel of given j is completely filled up with
(2j + 1) nucleons of a particular kind, the extra nucleons of the same kind
must go to the next higher state of different ;.

The group of sublevels (n, /, j) having energy values close to one
another now constitute a shell. The number of nucleons required to fill up
the shell is the sum of the nucleon numbers (2j + 1). The total number of
all the nucleons filling up the different sublevels upto a given shell from the
lowest upwards constitute shell closure. These are shown in Fig. 3.6 on the
extreme right which can be seen to agree with the observed magic numbers.

The lowest level, according to the new scheme is 1s,, with j = 1/2
which contains (2 x 1/2 + 1) or 2 nucleons. The next higher level with A =
1 is now a combination of the two sublevels 1p, , and 1p, ,, the latter being
above the former. The maximum number of nucleons which can occupy these
sublevels are 4 and 2 respectively, so that the total number of nucleons in
this group of sublevels is (4 + 2) or 6. So the shell closure takes place in this
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case with (2 + 6) or 8 nucleons as before.
The next group with A =2 are 2s and 1d which split up into the sublevels
2s,,,1d,, 1d
1

> the last one with j =17 - %(1 =2) lying above the 1d,, with

J =10+ 5

The sequence of the sublevels is shown in Fig. 3.6. The numbers of
nucleons in the different sublevels are 2, 6 and 4 respectively, the total being
12. The shell closure takes place with (2 + 8 + 12) or 20 nucleons which is

the same as before.

Departures from the simple theory without the spin-orbit coupling
term being taken into account begin to appear from the next group of
sublevels 2p and 1f'with A = 3. These now split up into 2p, ,, 2p, ., 1/, and
1/, .- Because of the relatively larger value of / (= 3) for 1f; the 1 , sublevel

( j=1+ o 7 s pushed down in energy considerably below the
other thize subldvels’and lies as a separate level in between the two groups

of A =2 and A = 3 shells. This can be filled up completely with (\i Wl 1l
or 8 nucleons and a shell closure takes place at this point with (20 8)20r 2
nucleons, as shown in Fig. 3.6.

The remaining sublevels 2p, ., 2p, , and 1, , can contain a maximum
of 12 nucleons which when added to the number 28 given above give rise to
the semi-magic number 40 which is in agreement with observations.

To explain the magic number at 50 we have to consider the next group of
levels 3s, 2d and 1g with A = 4. These split up into the sublevels 3s, , 2d, , 2d, ,
lg,,, 1g,,- Because of the large value of 1 (= 4), the 1g,, sublevel is pushed
way down to the vicinity of the previous group of sublevels (2p,,, 2p, ., 1f;,)
and these four together constitute the shell which can contain a maximum of
(12 + 10) = 22 nucleons, the number of nucleons required for filling up the
lg,, sublevel being 10. Thus the shell closure takes place at (28 + 22) or 50

nucleons in agreement with observed magic number.

Similarly because of the large spin-orbit splitting of the 1/ level
belonging to A = 5, the sublevel 14, is pushed way down to the vicinity
of the remaining sublevels at A = 4. This group of five sublevels 3s, ., 2d, ,
2d,,, 1g,, and 14, , can then accommodate a maximum of (2 + 6 + 4 + 8
+ 12) or 32 nucleons which when added to the 50 nucleons at the previous
shell closure can account for a new shell closure at (50 + 32) or 82 nucleons

in agreement with observations.

Finally the large spliting of the 1ilevel at A=6into 1i,,,, and 17 , , pushes
down the former to the vicinity of the A = 5 group of remaining sublevels.
The new group of six sublevels 14, 2f. ., 2f. ,, 3p, ., 3p,, and 1i, can
accommodate a maximum of (10 + 8 + 6 + 4 + 2 + 14) or 44 nucleons which
when added to the number 82 accounts for occurence of the magic number
126 (Refer Fig. 3.6).



3.6 MAGNETIC AND QUADRUPOLE
MOMENTS

It was seen that the magnetic moment of a nucleus is the vector sum of the
spin magnetic moment p, and orbital magnetic momenty; :

do=p 4, .(3.23)

u, is the vector sum of the intrinsic magnetic moments of the individual
nucleons in the nucleus. For protons and neutrons, the intrinsic moments are

HP - gP HN/Z and Mn = g}/[ HN/Z (324)

where p, = eh/2 M, is the nuclear magneton, M, being the proton mass, g,
and g are the gyromagnetic ratios for the proton and the neutron respectively
and have the numerical values

g, =2x27927and g, =-2 x 19131 ..(3.25)

The magnetic moment of an odd 4 nucleus can be calculated using
the extreme single particle shell model. The magnetic moment of a nucleus
of spin / (total angular momentum) can be written as

W o=g NI +Duy ...(3.26)
While measuring the magnetic moments, a magnetic field is applied
and it is the component of p, in the field direction z which is determined.
Using the rule of space quantization, this becomes
W =u,cos(/.B)= L
JIT +1)
where m, is the magnetic quantum number which can take up the values
m,=1,1—1 ...-I. B is the magnetic induction field. The largest component
corresponding to m, = [ usually gives the measured magnetic moment.
!z
=L — ] ..(3.27
l"lz m g[ HN ( )
We have seen above that in extreme single particle model, an even
number of nucleons of anyone kind always gives the resultant spin (/ = 0).
Hence the magnetic moment of an even-even nucleus will be 0:

(w), =0

Thus in an odd 4 nucleus, it is the last odd nucleon (proton or neutron)
which determines the magnetic moment. For such a nucleus, / =; where j is
the total angular momentum of the last unpaired nucleon. Both the intrinsic
magnetic moment () and the magnetic moment due to its orbital motion
(u,) have to be added up vectorially to get the total magnetic moment:

M=
where u_ = M, for the proton and p_= p,_for the neutron.

The orbital motion of a nucleon having azimuthal angular momentum
[ h produces a magnetic moment

B, =g uyJI0+D) ..(3.28)
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Since the neutron is an uncharged particle its orbital motion does not
produce any magnetic moment (g, = 0) so that

(1), =0 ..(3.29)

In the case of the proton we can write g, = 1 so that the orbital
contribution is

() =My I+ ..(3.30)

Since the nucleons are spin 1/2 particles we can write the quantum
mechanical values of the intrinsic magnetic moment as

W, =gty s(s+1) ..(3.31)

where g = g, for the proton and g = g for the neutron. s = 1/2 is the spin
quantum number.

The total magnetic moment component in the direction of  is
M, =u,=p,cos (£,/) + p cos (s, /)
=y {g I+ D cost, j)+ g, s(s + D cos(s, )} ..(3.32)
Using Eq. (3.26) we can also write

W= g, TG+ Dk (3.33)

From the cosine law we have
JG+D+II+1) —s(s+1)

cos (l,)) =
7 2 G+ DI+
. JG+D+s(s+D)—-I(I+1)
cos (s,7) =
(-7 2/ G+ D s(s+1)
We then have
H,=g1HNj(j+l)+l(l+l)_S(s+l)

2/jG+1
JG+D+s(s+ D) =1+

247G +D

1
For a spin 1/2 particle, j can have two values, j =7+ 5> So for a given
J, [ can have the following two values:
Forj=[1+1/2,1=j—-1/2;forj=1-1/2,1=j+ 1/2.
For these two cases we get two different values of B, from Eq. (3.34).
Using Eq. (3.33) we get
JG+D)+I(+1)—s(s+1)
2j(j+1D
‘g, ](]+l)+s.(s.+l)—l(l+l) .. (3.35)
2jG+D
As stated before, the measured magnetic moment p_ is the largest
possible component of B, in the magnetic field direction and is given by
Eq. (3.27). Replacing / by j we then get
H=8J 1y
_{ JGHD+II+1) —s(s+1)
. 2/ +1)

.(3.34)

+g, Uy

s

g =g




.. Nuclear Models and
g ](] + 1) + S(S + 1) — Z(Z + 1)} (3 36) Nuclear Reactions
S . N ces .
2(j+1)
In the two cases stated above, we then get
o1 —-1/2 g, . NOTES
For R =(g,’ | +g—.jJuN (3.37)
J 2j
1 j—3/2 g .
= l — = — S
b=l+g K [g’ S 2(j+1)]]“N
...(3.38)

In the case of odd A, either the proton number is odd (in the o—e
nucleus) or the neutron number is odd (in the e—o nucleus). So we have the
following possibilities.

Odd proton (g =1g~= gp):
/ - -—%: uz=(j—%—g7pju]v .(3.39)
e
.(3.390)
Odd neutron (g =0,g=g):
/ :j—%: = Sk ..(3.400)
I = j+%: L, = -ﬁ% ..(3.400)

The numerical values of g, and g are given in Eq. (3.25). Egs. (3.39)
and (3.40) give the magnetic moments of odd A4 nuclei as functions of the
nuclear spin / which is taken to be equal to the j value of the last odd nucleon.
The above values of the nuclear magnetic moments are known as Schmidlt
values. In Fig. 3.7 these Schmidt values are plotted as functions of / = for
the four cases given above. The graphs are known as Schmidt diagrams.
Figure 3.7(a) shows the Schmidt plots for the odd proton case for j = +
1/2 giving the two lines as shown. In the same diagram, the experimental
values of the magnetic moments for some nuclei are also shown. Similarly,
Fig. 3.7(b) shows the two Schmidt lines for the odd neutron case forj =/+
1/2. The experimental values are also shown.

The experimental values do not in general agree with the Schmidt
values. However, almost invariably, the experimental values lie between
the two limiting Schmidt lines, both for odd Z and odd N nuclei. The few
exceptions are *H, *He, "*C and "N for which the experimental values fall
slightly above or below the limiting lines. For these and a few other nuclei,
the experimental values lie close to one or the other Schmidt line. In all these

nuclei, the last odd nucleons are in a p, , level. Most of the experimentally i;lf- Lelarning o
ateria
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measured magnetic moments lie nearer to one of the two Schmidt lines than
the other which has the 1 value expected from the extreme single particle
shell model.

This fact enables us to confirm the nuclear ground state predicted
by shell model in these cases. For example 'Li with Z=3 and N =4 has a
measured spin / = 3/2. The shell model prediction for the odd proton case

gives u_=3.7927 for I = j - % =1 which is a p, , state while p_=0.1244 p

for/ =j+ 1 2 which is a d, , state. The experimental value is p_=3.26
which confirms the assignment of 1p, , for the ground state of this nucleus.
When the experimental values lie midway between the two limiting Schmidt

lines no such unambiguous assignment is possible.
7_

Odd Proton Nuclei

(=)
T

Nuclear magnetic moment (11,)

I=j=1-1/2

12 32 52 70 92

(a) Nuclear spin 7 (in units of /)
Odd N
15k I=j=1-12
£ 13
: 1O e /n
g
g 0.5f
2 L]
2ot
cosk ¥ . . 8
2 20 i P
57 ] *’Be : ¢ °
S 15t *
5 n .
720 Sy I=j=1+172
2.5

2 32 52 72 92
(b) Nuclear spin 7 (in units of /)

Fig. 3.7 Schmidlt lines (a) odd proton case, (b) odd netron case.

It is also observed that when a shell is crossed, there is the expected
sharp change in the magnetic moment from the value corresponding to
j=1[—1/2to that corresponding to j = /+ 1/2. Some examples are given below:

Nuclide 1 Shell model state U Mo
¥K 32 1d,, (j=1-1/2) 0.22 0.12
#*8i 7/2 1f,G=1+1/2) 4.76 5.79




The magnetic moments are in nuclear magneton units.

The departures from the Schmidt values are probably due to the (7)
error in the expression for p_given above; (ii) error in the extreme single
particle wave function used in the calculations. Rough calculations have been
made with corrections due to (@) meson exchange currents, (b) departure of
p,and p values from their free state values and () modification of the wave
functions due to the presence of the spin-orbit potential.

It may be noted that in the quantum mechanical theory, it is the
expectation value ( u, >jj of the quantum mechanical operator [i. of the magnetic

moment in the state j and m = j which is expected value of the magnetic
moment. The result is the same as given above, using the vector model
approach.

3.6.1 Quadrupole Moments

The electric quadrupole moment Q of a nucleus is the average of the quantity
(322 — r?) for the charge distribution in the nucleus. For a spherically symmetric
charge distribution this average is 0 and hence Q = 0 for even-even nuclei
which have ground state spin /= 0. In the case of a single odd proton nucleus
in the state j this averaging gives the quadrupole moment as
__ 2=l 3.41

0, = 2ir2” ..(3.41)
where ( 7? ) is the mean square radius of the charge distribution which in
the present case is equal to the mean square distance of the proton from the
nuclear centre.

The negative sign on the r.h.s of Eq. (3.41) shows that orbital motion
of the proton in the equatorial plane makes the charge distribution an oblate
spheroid. On the other hand an odd hole in the state j would make the charge
distribution a prolate spheroid for which Q > 0. Thus both positive and
negative values of Q are expected.

In the case of a single odd neutron nucleus, one would not normally
expect any quadrupole moment. However, the orbital motion of the neutron
gives rise to the recoil motion of the rest of the nucleus which may be taken
to be a charge Z at a distance r /4 (r, = radius of the odd neutron orbit) from
the centre of mass. Hence a small quadrupole moment O may be expected,
given by

4
- %o, .(3.42)

Q,

This is much smaller than Qsp.

The value of { 7> ) should be somewhat smaller than the square of
the nuclear radius R%. So Q,, should be of the order of 1028 to 10 m? and
should increase with 4, in proportion of 4*°. For single neutron nuclei, O
should be about one hundredth of the above value or less and should decrease
roughly as 4.
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The measured values of Q for odd A4 nuclei are in many cases much
higher than the estimates given above. Further when Q is large, Qsp and O
are of the same order of magnitude.

The above facts indicate that the single particle shell model cannot
explain the very large values of Q in many nuclei. These nuclei seem to
acquire a permanent deformation.

Check Your Progress

1. When was liquid drop model proposed?

2. What do you mean by the saturation of the force?
3. What are demerits of liquid drop model?

4. State Bohr and Wheeler’s theory of nuclear fission.

5. What is spin orbit coupling?

3.7 NUCLEAR SHELL STRUCTURE

The different nuclear models which have been proposed from time to time can
explain some limited features of the nucleus. Thus the liquid drop model can
explain the observed variation of the nuclear binding energy with the mass
number and the fission of the heavy nuclei. However, this model predicts
very closely spaced energy levels in nuclei which is contrary to observation
at low energies. The low lying excited states in nuclei are actually quite
widely spaced, which cannot be explained by the liquid drop model. This
and certain other properties of the nucleus would require us to consider the
motion of the individual nucleons in a potential well which would give rise
to the existence of a nuclear shell structure, similar to the electronic shells
in the atoms.

We know that the extranuclear electrons in the atoms are arranged in a
number of shells e.g., K, L, M, N etc. with the respective principal quantum
number n =1, 2, 3, 4 etc.

Each of these shells has a number of subshells characterized by different
values of the azimuthal quantum number /=0, 1, 2, 3, ... (n— 1). A subshell
of given / can contain a maximum of 2(2/ + 1) electrons, which means that
the s, p, d, fetc. subshells with /=0, 1, 2, 3 etc. can accommodate upto 2, 6,
10,14 etc. electrons respectively.

In the inert gases Ne (Z=10), Ar (Z=18),Kr (Z=36), Xe (Z=54) and
Rn (Z = 86), the outremost p subshells are completely filled up while in the
lightest inert gas He (Z = 2), the s subshell is filled up with 2 electrons. In
all these elements, the electrons are very tightly bound, their first ionization
potentials being relatively quite high.

In the alkali elements, which follow immediately the inert gases in
the periodic table, there is one electron in s subshell just outside the inert



gas core. This electron is very weakly bound in all of these elements [Refer tht\flﬂ;’" M;dels and
Fig. 3.8(a)]. The sudden drop in the first ionization potentials after the inert uclear Reactions
gases is evident from the figure.
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Fig. 3.8 (a) First ionization potentials of the atoms in the periodic table. Notice the
discontinuities at shell closures. (b) Discontinuity in neutron separation energy at N = 82.

There are strong reasons to believe that as in the case of binding of
the electrons in the atoms, the nucleons in the nuclei are arranged in certain
discrete shells.

W.M. Elasser, in 1933, was the first to point this out. Later, Maria
Gopert Meyer (1948) and independently O. Haxel, J.H.D. Jensen and H.E.
Suess (1949) showed that the nuclei containing the following numbers of
protons and neutrons exhibited very high stability:

Protons 2 8 20 28 50 82
Neutrons 2 8 20 28 50 82 126

The above numbers are popularly known as magic numbers and are
analogous to the atomic numbers of the inert gases. In addition to the above,
there is a semi-magic number at N and Z = 40.

Some nuclei contain magic numbers of protons and neutrons both.
Examples “He (Z=2, N=2), %0 (Z=8, N=28), *’Ca (Z=20, N=20), #*Ca
(Z=20, N=28), 2%Pb (Z =82, N=126). They are doubly magic and show
exceptionally high stability.

Following are the maio evidences to show the existence of shell
structure within the nuclei.

(a) Nuclei containing magic numbers of protons of neutrons show very
high stability, compared to the nuclei containing one more nucleon of
the same kind. Measurement shows that the separation energy S, of a
neutron from a nucleus containing a magic number of neutrons is large
compared to that for a nucleus containing one more neutron. Similarly
the separation energy Sp of'a proton from a nucleus containing a magic
number of protons is large compared to that for a nucleus containing

one more proton. (By separation energy is meant the minimum energy = Self- Learning
Material 101
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needed for separating one neutron or proton from a nucleus).

The sudden discontinuity in the value of S at the magic neutron number
is shown in Fig. 3.8(b).

(b) The naturally occurring isotopes, whose nuclei contain magic
numbers of neutrons or protons, have generally greater relative
abundances ( > 60%). For example, the isotopes %Sr (N = 50), **Ba
(N =182) and '*°Ce (N = 82) have relative abundances of 82.56%, 71.66%
and 88.48% respectively.

(¢) The number of stable isotopes of an element containing a magic number
of protons is usually large compared to those for other elements. For
example, calcium with Z = 20 has 6 stable isotopes compared to 3 and
5 for argon (Z = 18) and titanium (Z = 22) respectively. Again tin with
Z =50 has the largest number of stable isotopes. This number is 10
compared to 8 for cadmium (Z = 48) and tellurium (Z = 52).

(d) The number of naturally occurring isotones with magic numbers of neutrons
is usually large compared to those in the immediate neighbourhood. As an
example, the number of stable isotones at N =82, is 7 compared to 3 and
2 at N =80 and N = 84 respectively. Similar is the situation at N = 20, 28
and 50 which have respectively 5, 5 and 6 isotones. These numbers are
greater than in the cases of the neighbouring iotones.

(e) Thestableend products ofall the three natural radioactive series described in
Ch. II are the three isotopes of lead (**°Pb, ’Pb and ***Pb) which all
have the magic number Z = 82 of protons in their nuclei.

(/) Nuclei with magic numbers of neutrons or protons have their first
excited states at higher energies than in the cases of the neighbouring
nuclei.

(2) The neutron capture cross-sections of the nuclei with magic numbers of
neutrons are usually low. Since the neutron shells are filled up in these
nuclei, the probabilities of their capturing an additional neutron is small
(Refer Fig. 3.9). Similarly nuclei with magic proton numbers have low

proton capture cross-sections.
1000

100

Capture cross-section (mb)

| I128I 1 | If82I T126

1
0 20 40 60 80 100 120 140
Neutron number of target V

Fig. 3.9 Variation of neutron capture cross section with N showing
discontinuities at the magic numbers



(h) If the a-disintegration energies of the heavy nuclei are plotted as
functions of the mass number A for a given Z, then usually a regular
variation is observed till the magic neutron number N = 126 is reached
when there is a sudden discontinuity (Refer Figure 3.10). This confirms
the magic character of the neutron number 126.

9.0F %Po

Alpha-decay energy (MeV)

N

Am
Pu

4.0 I I I 1 I I
200 210 220 230 240 250

Mass number 4
Fig. 3.10 Discontinuities in the a-disintegration energies at N = 126 for heavy nuclides.

(7) Similar discontinuities are observed amongst the B-emitters at the
magic neutron or proton numbers.

The experimental results summarized above lend strong support to the
proposition of shell structure for the nucleus.

To develop a theory of the nuclear shell structure, it is necessary to
assume the existence of a potential well within the nucleus. It is known from
quantum mechanics that a bound physical system in an attractive potential
well can exist in a number of discrete quantum states. This is the case for
the electrons in an atom which are acted upon by the Coulomb field of the
nucleus. If the interactions between the electrons are neglected, then we can
regard the field as spherically symmetric. Solving the Schrédinger equation
with a potential giving rise to such a field it is possible to find the energy
levels for different sets of quantum numbers which determine the electronic
shells in the atoms.

3.7.1 Elementary Idea of Collective Model of the
Nucleus

Both the single particle shell model and the individual particle shell model
are based on the assumption of the existence of a spherically symmetric
potential in the nucleus, plus a spin-orbit coupling term. The different types
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of coupling of the angular momenta assumed for the loose nucleons outside
the core gives rise to the different forms of the shell model.

The shell model, with some refinements, has been successfully
applied to explain many features of the nucleus in the ground state and in
some of the excited states. However, it fails conspicuously in explaining the
observed large electric quadrupole moments (Q) of the nuclei in many cases
and the quadrupole transition rates B (E2). In such cases where Q is n times the
single particle value (see Fig. ), we must assume that 27 particles are involved
in producing the observed Q since the neutrons cannot directly contribute
to Q. It is the collective motion of a fairly large number of nucleons which
determines the large values of Q for nuclei far from closed shells.

J. Rainwater (1950) was the first who tried to explain these failures of
the shell model by introducing the idea of deformation in the shape of the
nuclear core due to the motion of the loose odd nucleon outside the core in
odd A4 nuclei. According to him such motion leads to a polarization of the
even-even core, which thus assumes a spheroidal shape. Such deformation
would cause the quadrupole moment to be higher than the single particle
value. E2 transition rate is also increased. Aage Bohr (son of famous Niels
Bohr) and B. Mottleson (1953) further elaborated the model, combining the
single particle and collective motions into a unified model which gave a more
complete description of the deformed nuclei.

In nearly spherical nuclei, the coupling between the collective
motion of the nucleons in the core and the motion of the loose nucleons
outside the core is weak. On the other hand, for strong coupling, the
surface is distorted and the potential felt by the loose particles is not
spherically symmetric. These particles, moving in a non-spherically
symmetric shell model potential, maintains the deformed nuclear
shape. The situation is similar to that in a linear molecule. We can then
write the total energy as the sum of the rotational, vibrational and nucleonic
energies of the nucleus, as in the case of the molecule. In the present case,
the nucleonic energy replaces the electronic energy of the molecules:

Etot - Erot + Evib + Enuc (343)

The collective motion of the nuclear core gives rise to the rotational
and vibrational term, while nucleonic energy term is due to the motion of
the loose nucleons.
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Fig.3.11 Nuclear quadrupole moments of e—o nuclei. The arrows indicate the
closed shells.

The coupling of the external nucleonic motion and collective motion
gives rise to shape-oscillations at the nuclear surface. The rotational motion is
rather complicated in that it is not a rotation of the whole nucleus, considered
as arigid body. Rather, it is the rotation of the deformed portion of the nuclear
surface. In other words, a rotation of the shape occurs with the deformation
being maintained. The moment of inertia is lower for such rotation than in
the case of rigid body rotation.

We consider below the vibrational and rotational motions of even-
even nuclei. Experimental evidence shows that far from the dosed shells,
the motion of the loose nucleons produces large permanent deformations,
characterized by rotatiunal spectra. The nuclei are found in the middle of 14,
2s shells in the range 145 <4 < 185 and for 4 > 226. The energy, difference
between the 0" ground state and the 2* first excited state is of the order of 100
keV in them. Far from the deformed regians and nearer the closed shells, the
equilibrium shape is spherical. Low energy excitations produce characteristic
vibrational spectra. At the closed shells, excited states can be producea by

the break up of the core, giving rise to new particle states.
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3.8 CONSERVATION LAWS OF NUCLEAR
REACTIONS AND Q VALUE

The occurrence of a nuclear reaction is usually governed by certain
conservation laws.

(a) Conservation of mass number: The total number of neutrons and protons
in the nuclei taking part in a nuclear reaction remains unchanged after
the reaction. Thus in the reaction X (x, y) the sum of mass numbers of
X and x must be equal to the sum of the mass numbers of Y and y:

A+ta=A"+d ..(3.44)

In the general case of reactions involving elementary particles the
law can be expressed by requiring the total number of heavy particles
(baryons) remains unchanged in a reaction.

(b) Conservation of atomic number: The total number of protons of the
nuclei taking part in a nuclear reaction remains unchanged after the
reaction. This means that the sum of atomic numbers of X and x is
equal to the sum of atomic numbers of Y and y:

Z+z=27'+7 ..(3.45)

In view of the conservation law (a) and (b) above it is easily seen that
the mass number and the atomic number of the product nucleus in
Rutherford’s experiment shouldbe 4'=4 +a—-ad' =14+4-1=17
andZ'=Z+z-Z7 =7+2—-1=28, so that the product nucleus must be
the isotope '’O of oxygen.

Further, in view of (a) and (b) the neutron number N remains unchanged
in the reaction.

(c) Conservation of energy, Q value of a nuclear reaction: In order to apply
the law of conservation of energy in the case of a nuclear reaction, it is
necessary to take into account the mass-energy equivalance predicted
by the special theory of relativity. Conservation of energy requires that
the total energy, including the rest-mass energies of all the nuclei taking
part in a reaction and their kinetic energies, must be equal to the sum
of the rest—mass energies and the kinetic energies of the products.

Writing M,, M M, and M as the rest-masses of the different atoms in
Eq. glven in this book their rest mass energies are M, c*, M c*, M c?
and M, ¢? respectively, Denoting the kinetic energy by £ we ‘then get
MXc2+Mc2+E +tE =M+ ME+E +E,

During the nuclear reaction, the target nucleus is usually at rest, so that
E, = 0. The above equation then becomes
Mc+ME+E =M+ ]\/chz-i-EY-f—Ey ...(3.46)

The above energy balance equation is often written without the factor ¢?
in the mass—energy terms, which means that the masses are expressed
in energy units.



It may be noted that though the nuclear masses are involved in a nuclear Nuclear Models and
: . . . . . Nuclear Reactions

reaction, it is possible to write the energy—balance equation in terms

of the atomic masses, since the electronic masses cancel out on the

two sides of the equation and the electronic binding energies can be

neglected. NOTES

It may be noted that at relatively lower energies, the kinetic energy is
given by the non-relativistic expresions: £ = Mv?/2. When the energies
of the particles involved in the reaction are very high, as in the case of
many elementary particle reaction, the relativistic expression for the

kinetic energy must be used: £ = |/ p*c* + Myc* — M,c*. Here M, is the
rest mass of the particle and p = Myv/{/1-B* is its linear momentum.

(d) Conservation of linear momentum: 1f p , p , p, and p, represent the
momentum vectors of the different nuclei taking part in a reaction, then
the law of conservation of linear momentum gives

PxtP, =Py TR, ..(3.47)
Equation (3.47) holds in an arbitary frame of reference. In the laboratory

frame of reference (L-system) in which the target nucleus is at rest p,,
= 0 and the above equation becomes

P, =p,tp, ...(3.48)

In the frame of reference in which the centre of mass of the two particles
before collision is at rest (C-system), we have to write p, +p_= 0,
which givesp,+p =0ie., the centre of mass of the product particles
is also at rest in this system.

(e) Conservation of angular momentum: In a nuclear reaction of the type
X +x — Y +y, the total angular momentum of the nuclei taking part
in the reaction remains the same before and after the reaction.

Let/,1,1,1 denote the nuclear spins (total angular momentum) of
the nuclei X, x, Y and y respectively. Let /, represent the relative orbital
angular momentum of X and x (i.e., in the initial state). Similarly /,
denotes the relative orbital angular momentum of Y and y (i.e., in
the final state). Then according to the law of conservation of angular
momentum, we must have.

L+l +l, =1+ +I,

Application of the law of conservation of the angular momentum taking
into account the well-known quantum mechanical properties of the
former leads to certain selection rules.

(f) Conservation of parity: Since the nuclear reactions take place due to
the strong interaction in which parity is conserved, the parity I before
the reaction must be equal to the parity IT after the reaction.

Denoting the intrinsic parities of the nuclei taking part in the reaction by
IT, IT, IT,and 1, we get for the initial and final states of the reaction
I, =TI, IT (-1)*
— I,
I =TI, IT (-1)
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The conservation of parity requires that
T, TT (—1)x =TI, TT (~1)>
X y

Except in the cases of elementary particle reactions, the intrinsic parity
need not be taken into account. Hence we get

(1) = (1)
Parity conservation results in certain selection rules which limit the
possible nuclear reactions that may occur starting from a given initial

state i. For example, in the case of elastic scattering / can change only
by an even integer.

(g) Conservation of isotopic spin: Denoting the isotopic spin vectors for the
initial and final states by T and T »we have from the law of conservation
of isotopic spin applicable in the case of strong interaction

1=1,
Since for the reaction X +x — Y+, I'=T, + T _and Tf= T,+ Ty,
we have T, +T, =T,+T, ‘

Isotopic spin is a characteristic of the nuclear level. Hence the above
conservation law can be used to identify the levels of the nuclei
produced in the reaction. In particular if 7= I = 0 (as for the deuteron
or the a-particle), we must have 7, = T,.

This rule must be obeyed in reactions of the type (d, o) (d, d) (a, d),
(a, o) ete. The rule has been verified for the nuclei °Li, '°B and '*N for
T =0 in the ground states.

3.9 THRESHOLD ENERGY OF A NUCLEAR
REACTION

The Q value of a reaction can be expressed in terms of the kinetic energies
of the projectile (£ ) and of ithe product nuclei Ey and £

In view of the energy and momentum conservation laws, £, can be
expressed in terms of £ and E . Refering to Fig. 3.12, we get from the law
of conservation of momentum along and perpendicular to the direction of
motion of the projectile (- p = v 2ME)

J2M E, = [2ME, cos8+ [2M,E, cos@ ...(3.49)
0 = /2ME, sin®— | 2M,Ey sing ...(3.50)

(@) (b)

Fig. 3.12 (a) Motion of the projectile (x) and product particles (v and Y) taking
part in a nuclear reaction. (b) Momentum diagram.



The following equation gives the law of conservation of energy:
Q=E+E-E,
Squaring and adding Egs. (3.49) and (3.50), we get
2ME, =2M E, +2ME, -4 [M M EE, cos®

X Yy 2
or E, =—*E +—2E - [MMEE, cos6
"M, M, M, vy

(3.51)

Then from above Eq. and (3.51) we get

M
O=E, (1+M—yJ—EX (1— ]\A:I[x]_Mi | M M EE, cos® ...(3.52)
Y

Y Y

Equation (3.52) is quadratic in z = | £, so that we can write

azZ+bztc=0 ...(3.53)
M

where a =1+ V; b =—(2/My)| M .M E, cos6

and c=—E (1-M/M)-Q

Eq. (3.53) has the solution

2
_ThE VY —dac .(3.54)

2a

z

Written explicitly we then get
V E)’
1

_ 1/2 2
T {(M M E )" cos0} + [ M M,E, cos’ 6+

(My + M) [OM, + E.(My - M)} ] ..(3.55)

If we write Q' =— Q then for endoergic reactions, Q' > 0 since O <0. In this
case if E_= 0, we have

b=0andc=-0=0">0
The solution for z in this case becomes

z = [E =+« Y44 _ | ["077a

2a

Since both a and Q' are positive z = \/?y is imaginary in this case.
This means that the reaction is not possible with £ = 0. A minimum energy
E =E_, isneeded to initiate endoergic reaction. In this case the term under
the square root sign in Eq. (3.54) must be zero so that we get
b*—4ac =0

Substituting for a, b and ¢, we get

4 5 M M
— (MM E_)cos’® =4|1+—2L|I-0-E_. |1-—=
M)% ( X y mm) ( MY J{ Q min [ My J}

which gives
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M, +M
E_-- S o — .(3.56)
M, + My, -M, —(MxMy/MY)Sln 0

Since 0 <0, E__ >0, we get
B ~(M,, + My)Q
"t M, - O~ (M M,/ M,)sin® 6

.(3.57)

E . depends on the angle at which the particle y is emitted. When 6 =0, i.e.,
y is emitted in the forward direction, £ . has the lowest value and is known
as the threshold energy for the endoergic reaction and is usually written as
E, . From Eq. (3.57) we get

(M, + My)Q

TR ..(3.58)

Since O << M, we can neglect it in the denominator of Eq. (3.58). Also we
can replace M + M, in the numerator by M_+ M,. So we get finally

M M M
E, :_Q.MEQ( ij ..(3.59)

My

So by measuring the minimum energy E,, at which an exoergic reaction is
initiated it is possible to determine the Q value of the reaction.

An inspection of Eq. (3.55) shows that under certain circumstances £
will be a double-valued function of the projectile energy E. i.e., for a given
E , there may be two values of E, the energy of the emitted particle. This
happens only for endoergic reactions. The double valued nature of E is
revealed in Fig. 3.13 for the *H(p, n) *He endoergic reaction which has Q =
—0.7638 MeV. Eq. (3.55) also shows that Ey is single valued if the following
condition is satisfied:

OM,+E (M,-M) =20

-OM
or, . Z—Q Y
MY _Mx
400
§300r
> L
D
= L
é L
5 200
= -
@
= L
S L
E L
Z. 100 0 =090°
B 0 =150° 6 = 1807
C =120°
L1l |

0991 1.047 1.103 1.159 1215 1.271 1.327
E", E,
Proton energy (MeV)

Fig. 3.13 En versus Ep graph in 3H(p, n) 3He reaction. Double valued nature of
neutron energy should be noted.



Thus there is a limiting energy of the projectile above which the emitted
particle energy will be single valued. This is given by
- M .(3.60)
* MY - Mx
For the case cited above E' = 1.145 MeV. For projectile energy greater than £,
the product particle y can be emitted at all angles between 0° and a maximum
angle 6, which can be found with the help of Eq. (3.55).

3.10 NUCLEAR REACTION

From the beginning of civilization, people in different parts of the world had
an intense desire to know whether baser metals like iron, copper etc., could
be transformed into the noble metals like gold or silver. There were many
who thought that such transformation was possible. In the middle ages, a
pseudo-science known as alchemy, had flourished in Europe. Alchemists
claimed that they could transform baser metals into noble metals, though
there was little scientific basis for their claim. In fact many of them had to
pay dearly for their fraudulent activities.

The discovery of radioactivity at the beginning of the present
century led to the realisation that the radioactive elements spontaneously
transformed into other elements. Following this discovery, the ancient dream
of the alchemists was again revived in the minds of scientists regarding the
possibility of transforming one element into another.

From our knowledge about the structure of the atomic nuclei it is clear
that if we can change the number of protons or neutrons or both inside the
nucleus, then it would be possible to bring about a transformation of the
nucleus. If the proton number Z is changed, then it is possible to transform
one element into another. On the other hand, if the neutron number N is
changed, then one isotope of an element will be transformed into another
isotope of the same element.

The main difficulty in producing the transformation of a nucleus
artificially is the very tight binding of the nucleons inside the nucleus. To
remove a nucleon from a nucleus, we must supply it a quantity of energy at
least equal to the energy of its binding within the nucleus, which is usually
of the order of a few MeV. This energy can be supplied by introducing a
nuclear particle (e.g., a proton, neutron, deuteron or an a-particle) into the
nucleus from outside. Except neutrons, all the others are positively charged
and hence are strongly repelled by the positive charge of the nucleus. So
they must be highly energetic to be able to enter the nucleus to bring about
a nuclear transformation.

Lord Rutherford was the first to produce artificial transformation
(transmutation) of a nucleus in 1919, using the highly energetic a-particles
from naturally radioactive substances like radium as projectiles.

Note: It may be mentioned that as early as 1916, the Indian physicist D.M. Bose working in
the laboratory of Regener in Germany found in a cloud chamber photograph, the evidence for

the emission of a charged particle from the end of an a—track with a range much longer than
the range of the a—particle in the gas fillingthe chamber. Another shorter track which was much
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thicker also came out from the same point. It was clearly the case of an a—induced nuclear
transformation which, however, could not be recognised as such by Bose.

The apparatus used by Rutherford is shown in Fig. 3.14.
To pumps

D RaC/C' s F Microscope

e
Absorber foils L M

| Zns screen

Fig. 3.14 Rutherford’s apparatus for producing artificial disintegration of nuclei.

An air-tight glass chamber A which could be evacuated with the help
of a vacuum pump and then filled with any desired gas, contained a small
sample D of a naturally radioactive substance.

a-particles from the source D travelled through the gas in the chamber
towards a thin window covering a port at the other end on the chamber wall.
Outside the window, there was a fluorescent screen F on which scintillations
were produced by the energetic charged particles falling on it. Thin metallic
absorber foils S could be interposed between the window and F. The
scintillations could be observed with the help of a microscope M.

The distance from D to the window was kept greater than the range of
the a-particles from the source in the gas within the chamber. No scintillation
could be observed when the chamber was filled with CO, or oxygen. However,
when the chamber was filled with dry air or nitrogen, scintillations could be
observed, even when the distance between the source and the screen F was
40 cm or more air-equivalent.

Rutherford identified the particles producing the scintillations as
protons by deflecting them by a magnetic field. Their much longer range
compared to that expected for the elastically scattered protons from hydrogen
gas (28 cm) excluded the possibility of their origin from any hydrogen gas
which might be mixed with nitrogen as impurity.

Rutherford explained his observations in the following way. When
the very high velocity a-particles made head-on collisions with the nitrogen
nuclei “N some of them were captured by the latter. The composite system,
which was formed as a result of such capture, almost immediately (within ~
10"° s) disintegrated by the emission of a proton of very high velocity. This
was the process of nuclear transmutation brought about artificially with the
help of a-particles from a radioactive substance, leaving a residual nucleus
of the isotope '"O of oxygen. The process can be represented by means of
an equation analogous to the equation for a chemical reaction as follows:

JHe + N — F' - O + H ...(3.61)



The intermediate step '*F is known as a compound nucleus. It breaks
up almost immediately after its formation. In writing such a nuclear reaction
equation, we often omit this intermediate step and write only the initial and
final steps in the process.

A nuclear reaction refers to a process which occurs when a nuclear
particle (e.g., a nucleon, a nucleus or an elementary particle) comes into close
contact with another during which energy and momentum exchanges take
place. The final products of the reaction are again some nuclear particle or
particles which leave the point of contact (reaction site) in different directions.
The changes produced in a nuclear reaction usually involve strong nuclear
force. Purely electromagnetic effects (e.g., Coulomb scattering) or proceses
involving weak interactions (e.g., B-decay) are usually excluded from the
category of nuclear reaction. However, changes of nuclear states under the
influence of electromagnetic interactions are included.

In general, a nuclear reaction can be represented by an equation in the
following form:
CX+Xx >4Y +y ..(3.62)

or simply as *X (x, ) *'Y.

Here X is the target nucleus which is bombarded by the projectile x.
The resulting compound nucleus breaks up almost immediately by ejecting
a particle y, leaving a residual nucleus Y. Since the chemical symbol of the
atoms indicates their atomic numbers (Z), these are often omitted in writing
the nuclear reaction equation. The projectile x and the emitted particle y are
in many cases light nuclei such as protons (p), neutrons (»), deuterons (d),
a-particles (o), y-rays (y) etc. and in the nuclear reaction equations, these
symbols are generally used.

Types of Nuclear Reactions

The artificial transmutation of a nucleus produced in the pioneering experiment
of Rutherford is a type of nuclear reaction. Various types of nuclear reactions
have since been produced. These can be conveniently classified as below:

(a) Elastic scattering: In this case the ejected particle y is the same as the
projectile x. It comes out with the same energy and angular momentum
as x, so that the residual nucleus Y is the same as the target X and is
left in the same state (ground state) as the latter. We can represent the
process as X (x, x) X.

(b) Inelastic scattering: In this case y is the same as x. But it has different
energy and angular momentum, so that the residual nucleus y ( = X)
is left in an excited state. The process can be written as X (x, y) X*,
where the asterisk on X indicates an excited state of X.

(¢) Radiative capture: In this case the projectile x is absorbed by the
target nucleus X to form the excited compound nucleus (C*) which
subsequently goes down to the ground state by the emission of one or
more y-ray quanta. We can write the process as X (x, y) Y*, (Y =C).
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(d) Disintegration process: We can represent the process as X (x, y) Y
where X, x, Y and y are all different either in Z or in 4 or in both. The
first nuclear transmutation observed by Rutherford is an example of
this process: “N (a, p) 0.

(e) Many body reaction: When the kinetic energy of the incident
particle is high, two or more particles can come out of the compound
nucleus. If y, y,, y,, etc. represent these different particles, we can
write the reaction equation as X (x, y, ¥,, y, ...) Y. Examples are '°O
(p, 2p) ®N; 'O (p, pn) 0, 'O (p, 3p) "“C etc. When the energy of x
is very high, a very large number of reaction products usually result
(3 to 20 for example). Such reactions are known as spallation reactions.

(/) Photo-disintegration: In this case the target nucleus is bombarded with
very high energy y-rays, so that it is raised to an excited state by the
absorption of the latter. The compound nucleus C* = X*. The reaction
can be written as X (y, y) Y.

(g) Nuclear fission: When X is a heavy nucleus and y, Y have comparable
masses, the reaction is known as nuclear fission. An example is >*U
(n, 1)

(h) Elementary particle reactions: These involve either the production of
elementary particles other than nucleons or nuclei as a result of the
reaction or their use as projectiles or both of these. Examples are:

ptp »>ptntny
T +p o> n'+n
p+m’ - K+ Aletc.

These reactions are usually produced at extremely high energies which
may be several hundred MeV or more.

(i) Heavy ion reactions: In these reactions the target nucleus is bombarded
by projectiles heavier than a-particles. Various types of products may
be produced. The reactions usually take place at fairly high energies
(several hundred MeV) of the projectile. Examples are:

1B (160, “He) 2Na,
4N (4N, 15N) BN etc.

3.10.1 Cross Section and Level Width

The probability of the occurance of a nuclear reaction is measured by the
reaction cross section. It is usually designated by the symbol c. The cross
section of a nuclear reaction X(x, )Y can be written as o(x, y). If a parallel
beam of N projectiles is incident in a given interval of time upon a target foil
T of thickness Ax and surface area S normally, then the number of nucleiin T
undergoing transformation due to the reaction of the type under consideration,
is proportional to the intensity of the incident beam of projectiles and to the
total number of target nuclei present in the foil [Refer Figure 3.15a). The
incident particle intensity is (N/S) and the number of nuclei present in the
foil is (n S A x). So the number of nuclei transformed is

AN o (N/IS) (nS A x)

of, AN =oNn Ax=6Nn, ...(3.63)
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Fig. 3.15 (a) Bombardment of target foil (T) by a beam of particles. (b)
Geometrical significance of reaction cross section.

Here n, = n A x is the number of target nuclei per unit area of the foil, » being
the number of nuclei per unit volume. Eq. (3.63) shows that since both A N
and N are pure numbers and n, = n A x has the dimension of the reciprocal of
an area, ¢ has the dimension of an area. Hence it is called the cross section
and measures the probability of the occurrence of the reaction when a single
particle (N = 1) falls on a single target nucleus present per unit area (n, = 1).
Since the nuclear radii are of the order of 107" to 107> m, the cross section
of the nuclear reaction is of the order of 102* m?. The commonly used unit
of the nuclear reaction cross section is a barn:
1 barn = 102 m?

Though the cross sections for most nuclear reactions are of the order of a
few barns or even less, they may be very high (several thousand barns) for
some special types of reactions, such as the (n, y) reaction induced by thermal
neutrons or the neutron-induced reasonance reactions.

The geometrical significance of the reaction cross section can be
understood in the following manner. Referring to Fig. 3.15(b) we see that if
R is the effective radius of the target nucleus for a given reaction, then the
projection of its surface area on a plane perpendicular to the direction of
motion of the projectile, shown shaded in the figure is TR?. So the number
of projectiles encountering each target nucleus is TR*N_ where N = N/S is
the number of projectiles incident per unit area of the target. The projectiles
are assumed to be mass—points. Since there are n, nuclei per unit area of the
target, the number of projectiles intercepted by the target nuclei in the foil is

nSx nR’N = nR*Nn, ...(3.64)

where N = N_x § is the total number of projectiles incident on the target.
Hence the probability of encounter between a single projectile (N = 1) with
one nucleus per unit area (7, = 1) in the target foil is
2
TRENM - — RN = nR? .(3.65)

m

Actually the probability ¢ of encounter between a single projectile and
a single target nucleus per unit area is not determined by nR? alone. This
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probability depends on the nature of the interaction between the projectile and
the target nucleus, the energy of the projectile and other factors. Besides, the
incident particle is not a mass—point as assumed above. So the reaction cross
section depends on its size also. For very low energy projectiles, the de Broglie
wavelength A = //p is much longer than their geometrical extension, so that
the region over which they interact is much larger than their geometrical
cross section. This is the reason for the cross section of the (7, y) reaction
with thermal neutrons to be usually very large as stated aboye.

In the case of charged particles, the cross section is considerably
reduced because of the strong electrostatic repulsion of the target nucleus.

In the above discussions, it has been assumed that the total projected
area of all the nuclei in the foil which is (nR*z, S) is small compared to the
area S of the foil. This is true only if the foil thickness is small.

3.1 BOHR COMPOUND NUCLEUS THEORY
OF NUCLEAR REACTION

We have talked about the formation of a compound nucleus as an intermediate
step when a nuclear reaction takes place. The primary evidences on which
this compound nucleus idea was developed came after the discovery of the
neutron and its use as a projectile in producing nuclear reactions, from 1935
onwards. It was observed that for high energy neutrons, the total cross section
for neutron absorption and scattering was of the order of TR? where R is the
nuclear radius. For very low energies however, the cross section is higher
and approaches the limiting value of n&?, X being the reduced de Broglie
wavelength of the neutrons.

These results were sought to be explained by assuming that the incident
neutron moved in an average potential well due to all the nucleons in the
nucleus (Refer Fig. 3.16) for an interval of time which is of the order of
Nuclear diameter ~ 1071

~ : —=10""s

Neutron velocity 10
EVI

no—— =@ _é

BIY
o " Ground

state

filled levels

Fig. 3.16 Motion of an incident neutron in an average single particle potential
well. Bn is the neutron binding energy.

In this case the incident neutron would have a large probability of
escaping from the nucleus without absorption. So the elastic scattering
cross section 6 should be large while capture or reaction cross section ¢
would be quite low in this picture. At very low energies, the capture cross



section should however be relatively large, since the neutron would spend
a longer time near the target nucleus. ¢ should depend on 1/v in this case.
So at thermal energies 6 and 6 should be comparable since both of these
approach the limiting value of A2

The energy levels in this single particle potential well should be well
separated from one another, the separation being of the order of 5 to 10
MeV. There would also be some levels above the neutron separation energy
S (virtual levels). The width of the level which measures the probability of
its decay would be

' =ht=n102"~1 MeV

showing the levels to be quite broad. When the energy of the incident neutron
corresponds to the excitation energy of one of the nuclear levels, resonances
would be expected to be observed in the cross section vs. energy graph (see
Fig. 3.16). These resonances should be widely spaced (several MeV) having
large widths (~MeV). Obviously at very low energies (near thermal energies)
no such resonances would be expected, since neutrons of a few electron volts
energy cannot be expected to produce resonances corresponding to levels
with gaps of several million electron volts.

However such a picture does not agree at all with the observed
results on neutron induced reactions. In many cases, the neutron absorption
cross sections are found to be very large at thermal neutron energies while
the elastic scattering cross sections are much lower. It may be noted that
at these very low energies, the absorption cross section is due to the radiative
capture, i.e., (n, y) type of reaction. Resonances are observed in most nuclei
for both elastic scattering cross section (c_) and radiative capture cross
section (n, 7). These resonances mostly appear at neutron energies between
0.1to 10eV, i.e., they are very closely spaced. They are also found to be very
sharp, having widths of the order of 0.1 eV or lower. These observations led
Niels Bohr to propose the following mechanism for nuclear reactions (1936)
which is known as the compound nucleus hypothesis.

When a nuclear projectile x enters into a target nucleus X to produce
a nuclear reaction, an intermediate stage is formed before the production of
the final product nuclei Y and y (Refer Equation 3.62):

X+x >C*>Y+y

The incoming projectile x quickly dissipates its energy as it enters into
the nucleus X and merges with the closely packed nucleons in it. As a result,
the general random motion of all the nucleons in the nucleus is disturbed,
each nucleon gaining some additional energy. But no single one of them will
generally gain enough energy to enable it to come out of the nucleus which
is of the order of a few million electron volts. However, after a relatively
long time when a very large number of collisions among the nucleons have
taken place (which may be of the order of 10 million), enough energy may
be concentrated on one of the nucleons enabling it to escape from the nucleus
which then deexcites (cools off) to the ground state. It may also be deexcited
by the alternative process of emission of y-rays. The whole process is similar
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to the heating of a drop of liquid containing large number of molecules. When
enough energy is concentrated on some of the molecules, evaporation takes
place to cool off the drop. The process of emission of a nucleon (or a group
of nucleons) from the excited nucleus as mentioned above is thus similar to
the phenomenon of evaporation. The analogy between the two systems was
one of the points which led to the formulation of the liquid drop model of
the nucleus.

The composite system that is formed as a result of the absorption of
the incident particle x by the nucleus X is known as the compound nucleus.
Though it ultimately breaks up by the emission of a particle y or of a y-ray, it
lives long enough compared to time taken by a nucleon of a few MeV energy
to travel through the mean free path of collision between the nucleons in the
nucleus (which is somewhat less than the nuclear radius, but is of the same
order of magnitude). The mean time between collisions is about (2 x 10-15/5
x 107) or ~ 10722 s. So the life of the compound nucleus is of the order of

t~107x 102 =10"s

It may be noted that the mean time for radiative transitions within the
nuclei (~107"* s) is much longer than the time for decay of the compound
nucleus by particle emission.

The particle y emitted in the decay of the compound nucleus is generally
different from the particle x which enters X to produce the compound nucleus.
In the event of y being identical with x, we have inelastic scattering. The
residual nucleus Y = X* in this case is the same as the target nucleus produced
in a different energy state. In the rare case in which the residual nucleus is
identical with the target nucleus and is produced exactly in the same state
as the latter, we get what is known as the compound elastic or resonance
scattering. As stated before, elastic scattering may alternatively take place by
the action of the nuclear potential on the incident particle without the entry
of x into X to form the compound nucleus. This is known as the potential
scattering and has a much greater probability than the other.

Since the compound nucleus is a relatively longer lived entity, the
nuclear reaction actually proceeds in two steps: (i) the formation of the
compound nucleus by the absorption of the incident particle by the target
nucleus. (i) the disintegration of the compound nucleus in a manner which
is independent of the method of its formation into the reaction products y
and Y in definite quantum states. Sometime, the residual nucleus Y may be
left in a highly excited state which may then “boil off”, another particle )’
to leave the nucleus Y’ leading to a two particle emission process: X (x, y")
Y'. The process may continue and another particle y” may be emitted from
the excited Y’ leaving the residual nucleus Y” in the third stage. Thus a series
of particles (usually neutrons) may be boiled off successively from a highly
excited nucleus.

The two stages by which a nuclear reaction proceeds may be written
symbolically as



X+x—>C* >Y+y
—-C+y

According to Bohr, the two stages, viz., the formation of the compound
nucleus and its break up are independent. This is known as the independence
hypothesis. The decay of C* depends only on the properties of C* and not
upon how it was formed. In other words since C* is a relatively long lived
entity, by the time it is ready to break up, it forgets as to how it had been
formed.

The probability of decay is equal to the reciprocal of the mean-life
T of the compound nucleus. If I" is the width of the level, we can use the
uncertainty relation to write

'xt~h
which gives ' =hn/t

Thus the width of the level is a measure of the probability of its decay.
Actually the compound nucleus may decay by the emission of different types
of particles of y, y', y" etc., leaving a different residual nucleus in each case.
Each of these has a different probability of occurrence.

IfT is the partial width of the level for decay by the emission of y,
then considering the various possible types of decay, we get the total width
of the level as

r = ZFy +T, =, +T, +T, +.)+T,
y

..(3.66)

The relative probabilities of the different types of decay are then
n, = Fy/F, n, = Fy,/F, M, = Fy/F ...(3.67)

Because of the independence hypothesis, we can write the cross section
for the process X(x, )Y as the product of the cross section ¢_for the formation
of the compound nucleus and the probability of its decay:

o(x,y) = on,=o, Fy/F ...(3.68)

The above way of writing the cross section implies that only one
particular energy state of C* is being considered (i.e., only one resonance).
This is possible if the levels are well separated and are so sharp that they
do not interfere with one another. In other words, the mean level spacing
D>>T". We shall first consider such isolated levels. The case of overlapping
levels will be considered later.

3.11.1 Deuteron Stripping Reaction

In nuclear physics, a stripping reaction is a nuclear reaction in which part
of the incident nucleus combines with the target nucleus, and the remainder
proceeds with most of its original momentum in almost its original direction.
This reaction was first described by Stuart Thomas Butler in 1950. Deuteron
stripping reactions have been extensively used to study nuclear reactions and
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structure, this occurs where the incident nucleus is a deuteron and only a
proton emerges from the target nucleus. A simple one-step stripping reaction
can be represented as

A+a —B+b

A+ (DHx)—(A+X),+D

where A represents the target core, b represents the projectile core,
and x is the transferred mass which may represent any number of particles

3.12 BREIT-WIGNER SINGLE LEVEL
FORMULA

To investigate nuclear reactions, a quantitative assessment of the likelihood
of a given nuclear reaction is required. This number must be experimentally
quantifiable and calculated in such a way that theoretical and experimental
values can be easily compared. The quantity most frequently used for this
purpose is the nucleus cross section for a given reaction, which is commonly
represented by o with the appropriate subscript. Nuclear cross section is easily
viewed as the cross-sectional area or target area that the nucleus presents to
an incident particle.

Reaction cross section —>
-3
- ]

&—p —>
Incident channel energy —

Fig. 3.17 Reaction cross section as a function of incident channel energy.

A nuclear reaction caused by the absorption of a projectile x by a
target nucleus X (both in their ground state) that results in the formation of a
compound nucleus C* in an excited state close to one of the latter’s isolated
levels that is far removed from any of its other levels. The presence of such
an isolated level means that the separation between them is D >> I'; where
I" is the level’s width. The reaction is begun by a distinct entrance channel
(X + x) defined by a distinct kinetic energy of relative motion Ex between X
and x and a distinct relative angular momentum.

The energy required to excite the compound nucleus in this state is given by

Ec _E:t_'_ S‘x—Er (369)

Where Er denotes the energy of the isolated level during the formation



of the compound nucleus. Sx is the separation energy of x from the ground
state of the compound nucleus, denoted by

Sx = Bc-Bx-B; ..(3.70)

The binding energies of the corresponding nuclei are denoted by the B.
Bx = 0 when x i1s a nucleon. With the relative kinetic energy Ey, the complex
nucleus is broken up into Y+y. Obviously, Ec = Ey + Sy can also be written,
where Sy is the separation energy of y from the compound nucleus in the
ground state, which is given by.

By = 0, if y is a nucleon. Both Y and y are assumed to be produced in
their ground states. However, this is not always the case, as ¥ may be left in
various excited states, resulting in a variety of exit channels.

A damped harmonic wave can be used to indicate the condition of the
compound nucleus formed as described above;

P(t)=w exp(—iE, t/h)exp (— I't/2h)

—v e {-f[a -%}fﬁ} (3.71)

Here I'/2 denotes the half width of the level, which is essentially a
decaying condition with a life — time of n =#%/1.

The above wave function does not represent a stationary state, but may
be constructed using the Fourier integral approach from the superposition of
stationary states of various energies.

it

w(t)= [4; exp (—iEt /h)dE
S (3.72)

By doing the Fourier transform of equation (4), we can determine the
amplitude AF of the state at energy E.

A, —i}[w(tl Yexp (iEt /n)dt

_ 2Lfapoexp WE—E, +il'/2)f /nldf
o

_ Y, | exp {i(E—E},+iF,f2)t'fh} -
" 2x| WE-E, +il'/2)/h

Only positive values of time are used here, as the composite nucleus
can decay only after it is formed.

Y L
£ 2n (E-Er+il'/2)
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Due to the damping term exp(— [ #’/2#), the upper limit of the preceding
integral vanishes. Thus, we obtain

2:|T,Vo|j A’
Az (E—E )V +T2/4

|-

The cross section for forming the state £ is proportional to the
amplitude squared by the process X + x. As a result, we can write.
C
O-\' = 2 2
* (E-E)+T%/4

In this case, C is a constant value. To determine C, we note that the
incident channel’s total number of possible states is,

_4np ’Qdp.

dn =
! (27n)’

where Q is the volume of the enclosure within which the reaction take
place. If ¢_is the cross section for the absorption of x by X, then the volume
swept out by the effective collision area in one second is o v_ where v_is the
relative velocity of the incident particle. So, the probability of finding the
nucleus X in this volume is o v_/€Q and the probability of formation of the
compound nucleus in the given entrance channel per second is

ov, 4np;Qdp, o plvdp, o plvdE,

Q  (2zny 2n°h’ 27’k

We obtain the entire probability by integrating across all potential
energies;

p=_1 | % dE,
2r°h Y R-

—a0

We may ignore the variation & and write (dE = dE ) since the integrand
has finite values only for the energies within the width I of the level, which
are extremely narrow.

.
T 2x’hR’ ;[U"dE
__cC T dE
27’hR* (E—E,) +I7°/4

__ ¢ 2= C
272hR® I mhl R

The chance of the compound nucleus forming above must be the same
as the likelihood of C* decaying along the same channel. The reciprocity
theorem leads to this conclusion. We get if we represent this decay probability
through the entrance channel as T" / 7.

C I

—_— C=ark’Il. I
Thii’  h Or




As a result, the cross section for the production of the compound
nucleus is as follows:

_ a’r.r
(E-EY+r?/4

x

Fy/ I" represents the relative likelihood of C* decaying through the exit
channel Y + y. The cross section for the reaction X(x,))Y is then calculated as
r, ) r.r,
olxy)=o, —=ak* S
r (E-E)+r?/4

For spinless nuclei at very low energies, this is the Breit Wigner one-
level formula, where the relative angular momentum of the particles in the
entrance channel is /=0. If / is not zero, as it is when the energy is larger, we
must account for the statistical factor of the compound state created, which
is given by g = 2 / +1 for spinless nuclei x and X.

Each of the (2 1 +1) sub states have an equal chance of decaying. As a
result, I must be multiplied by this factor, which yields.
r.r

D=k (21+1 x
7. =k )(E—E,_)-+f-’/4

o) (x,y)=ak* (21 +1) LA
' (E-E)+I?/4

Check Your Progress

6. Name the conservation laws of nuclear reactions.

7. To what is the discovery of radioactivity at the beginning of the
present century lead?

8. State the Bohr compound nucleus theory of nuclear reaction.

9. What is stripping reaction?

3.13 ANSWERS TO ‘CHECK YOUR
PROGRESS’

1. The liquid drop model was first proposed by N. Bohr and F. Kalckar
in 1937 and was later applied by C.F. von Weizsiacker and H.A. Bethe
to develop a semi-empirical formula for the binding energy of the
nucleus.

2. Each individual molecule within a liquid drop exerts an attractive force
upon a group of molecules in its immediate neighbourhood. The force
of interaction does not extend to all the molecules within the drop. This
is known as the saturation of the force.
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3. The liquid drop model is not very successful in describing the low lying

excited states of the nucleus. Because of the collective motions of the
large number of nucleons involved, the model gives rise to closely
spaced energy levels. Actually however, these are found to be quite
widely spaced at low excitation energies.

. The drop’s potential energy at each stage can be estimated as a function

of its degree of deformation. The potential energy is displayed versus
r, the distance between two fission fragments’ centers.

. In order to explain the disagreement at the higher magic numbers,

Mayer and independently Haxel, Jensen and Suess suggested that a
spin-orbit interaction term should be added to the central potential V(r)

0, =22
J

where ( 72 ) is the mean square radius of the charge distribution which
in the present case is equal to the mean square distance of the proton
from the nuclear centre.

. The conservation laws of nuclear reactions are:

e Conservation of mass number

e Conservation of atomic number

e Conservation of energy

e Conservation of linear momentum

e Conservation of angular momentum
e Conservation of parity

e Conservation of isotopic spin

. The discovery of radioactivity at the beginning of the present century

led to the realisation that the radioactive elements spontaneously
transformed into other elements. Following this discovery, the ancient
dream of the alchemists was again revived in the minds of scientists
regarding the possibility of transforming one element into another.

. The primary evidences on which this compound nucleus idea was

developed came after the discovery of the neutron and its use as a
projectile in producing nuclear reactions, from 1935 onwards. It was
observed that for high energy neutrons, the total cross section for
neutron absorption and scattering was of the order of pR: where R is
the nuclear radius. For very low energies however, the cross section is
higher and approaches the limiting value of pD:, & being the reduced
de Broglie wavelength of the neutrons.

. In nuclear physics, a stripping reaction is a nuclear reaction in which

part of the incident nucleus combines with the target nucleus, and the
remainder proceeds with most of its original momentum in almost its
original direction. This reaction was first described by Stuart Thomas
Butler in 1950.
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e The macroscopic properties of the nucleus e.g., the constant density
of the nuclear matter and the constant binding energy per nucleon NOTES
are very similar to those found in a liquid drop.

The very strong short range interaction between the nucleons permits
us to consider their collective behaviour in determining the properties
of the nucleus.

e The liquid drop model was first proposed by N. Bohr and F. Kalckar
in 1937 and was later applied by C.F. von Weizsicker and H.A. Bethe
to develop a semi-empirical formula for the binding energy of the
nucleus.

e The attractive force near the nuclear surface is similar to the force of
surface tension on the surface of the liquid drop.

e Different types of particles, e.g., neutrons, protons, deuterons,
a-particles etc. are emitted during nuclear reactions. These processes
are analogous to the emission of the molecules from the liquid drop
during evaporation.

e The internal energy of the nucleus is analogous to the heat energy
within the liquid drop.

e The formation of a short lived compound nucleus by the absorption of
a nuclear particle in a nucleus during a nuclear reaction is analogous
to the process of condensation from the vapour to the liquid phase in
the case of the liquid drop.

e The drop’s potential energy at each stage can be estimated as a function
of its degree of deformation. The potential energy is displayed versus
r, the distance between two fission fragments’ centers.

e Nuclear shell model is thought that protons and neutrons in a nucleus
are constantly colliding with each other. With such a strong force acting
between them and so many nucleons to collide with, nucleons cannot
conceivably complete entire orbits without interacting.

e In order to explain the disagreement at the higher magic numbers,
Mayer and independently Haxel, Jensen and Suess suggested that a
spin-orbit interaction term should be added to the central potential
")

e The nucleus would require us to consider the motion of the individual
nucleons in a potential well which would give rise to the existence of
a nuclear shell structure, similar to the electronic shells in the atoms.

e In conservation of mass number the total number of neutrons and
protons in the nuclei taking part in a nuclear reaction remains
unchanged after the reaction.

¢ In conservation of atomic number the total number of protons of the
nuclei taking part in a nuclear reaction remains unchanged after the ! 5,- /g
reaction. Material 125
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e The discovery of radioactivity at the beginning of the present century
led to the realisation that the radioactive elements spontaneously
transformed into other elements. Following this discovery, the ancient
dream of the alchemists was again revived in the minds of scientists
regarding the possibility of transforming one element into another.

e The primary evidences on which this compound nucleus idea was
developed came after the discovery of the neutron and its use as a
projectile in producing nuclear reactions, from 1935 onwards. It was
observed that for high energy neutrons, the total cross section for
neutron absorption and scattering was of the order of pR:where R is
the nuclear radius. For very low energies however, the cross section is
higher and approaches the limiting value of pD-, A being the reduced
de Broglie wavelength of the neutrons.

¢ In nuclear physics, a stripping reaction is a nuclear reaction in which
part of the incident nucleus combines with the target nucleus, and the
remainder proceeds with most of its original momentum in almost its
original direction. This reaction was first described by Stuart Thomas
Butler in 1950.

¢ A quantitative assessment of the likelihood of a given nuclear reaction
is required. This number must be experimentally quantifiable and
calculated in such a way that theoretical and experimental values can
be easily compared. The quantity most frequently used for this purpose
is the nucleus cross section for a given reaction, which is commonly
represented by o with the appropriate subscript. Nuclear cross section is
easily viewed as the cross-sectional area or target area that the nucleus
presents to an incident particle.

3.15 KEY TERMS

¢ Fission: When a neutron collides with a larger atom, it causes it to excite
and split into two smaller atoms, which are known as fission products.
There are also more neutrons released, which can start a chain reaction.
A great quantity of energy is produced when each atom divides.

e Nuclear shell model: Accordint to Nuclear shell model protons and
neutrons in a nucleus are constantly colliding with each other. With such
a strong force acting between them and so many nucleons to collide
with, nucleons cannot conceivably complete entire orbits without
interacting.

e Conservation of mass number: It means that the total number of
neutrons and protons in the nuclei taking part in a nuclear reaction
remains unchanged after the reaction.

e Conservation of atomic number: It states that the total number
of protons of the nuclei taking part in a nuclear reaction remains
unchanged after the reaction.



¢ Stripping reaction: A stripping reaction is a nuclear reaction in which

part of the incident nucleus combines with the target nucleus, and the
remainder proceeds with most of its original momentum in almost its
original direction. This reaction was first described by Stuart Thomas
Butler in 1950.

3.16 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

A S B

10.

What is liquid drop model and fission?

2. What do you understand by the spin orbit coupling?
3.
4
5

What is quadrupole moments?

. Define nuclear shell structure.

. What do you mean by the conservation of mass number and atomic

number?

How will you define the threshold energy of a nuclear reaction?
Define nuclear reaction, cross section and level width.

State the Bohr compound nucleus theory of nuclear reaction.
What is deuteron stripping reaction?

Write the Breit-Wigner single level formula.

Long-Answer Questions

1.

Discuss about the liquid drop model and fission with the help of
examples.

. Explain the Bohr and wheeler’s theory.

. Describe the spin orbit coupling.

4. Explain the magnetic and quadrupole moments with the help of relevant

examples.

. Explain the nuclear shell structure and elementary idea of collective

model of the nucleus.

6. Discuss about the conservation laws of nuclear reactions and Q value.

7. What do you understand by the threshold energy of a nuclear reaction?

Explain.

. Explain the nuclear reactions, cross section and level width with the

help of giving examples.

. Describe the deuteron stripping reactions.
10.

[lustrate the Breit-Wigner single level formula with the help of giving
examples.
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UNIT4 NUCLEAR DECAY
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Violations in Beta Decay
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4.10 Summary
4.11 Key Terms
4.12 Self Assessment Questions and Exercises
4.13 Further Reading

4.0 INTRODUCTION

Nuclear decay or radioactive decay is the emission of energy in the form
of ionizing radiation. The ionizing radiation that is emitted can include alpha
particles, beta particles and/or gamma rays. Radioactive decay occurs in
unbalanced atoms called radionuclides. Nuclear decay occurs when the
nucleus of an atom is unstable and spontaneously emits energy in the form
of radiation. The result is that the nucleus changes into the nucleus of one or
more other elements. These daughter nuclei have a lower mass and are more
stable (lower in energy) than the parent nucleus. Elements in the periodic table
can take on several forms. Some of these forms are stable; other forms are
unstable. Typically, the most stable form of an element is the most common
in nature. However, all elements have an unstable form. Unstable forms
emit ionizing radiation and are radioactive. There are some elements with
no stable form that are always radioactive, such as uranium. Elements that
emit ionizing radiation are called radionuclides. In this unit, we will study
in detail about beta ray spectrum along with its decay and nature, hypothesis
of neutrino creation, meaning of helicity, multipole transition and selection
rules for the decay internal conversion and conversion coefficients of isomeric
nuclei and the angular correlation of successive decay.

4.1 OBJECTIVES

After going through this unit, you will be able to:
e Explain beta ray spectrum along with its decay and nature
e Describe the hypothesis of neutrino creation

e State the meaning of helicity
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¢ Discuss the multipole transition and selection rules for the decay
¢ Explain the internal conversion and conversion coefficients of isomeric nuclei

e Describe the angular correlation of successive decay

42 BETARAY SPECTRUM: DECAY AND NATURE

A radioactive nucleus’s atomic number changes by one when it
undergoes beta decay, resulting in a daughter nucleus with the same number
of nucleons as the parent nucleus.

ax—— , Ay +e- (incomplete expression) ...(4.1)
72X —— AV +e* + (incomplete expression) ...(4.2)

A beta particle can be either a positron (e) or an electron (e°), with the
latter being the more widespread name. These formulations do not adequately
represent beta decay. We’ll explain why this is the case in a moment.

As with alpha decay, beta decays preserve both the nucleon number
and total charge. Due to the fact that A does not change but Z does, we
conclude that beta decay occurs when either a neutron transforms into a
proton (Eq. 4.1) or a proton transforms into a neutron (Eq. 4.2). Take note that
the electron or positron emitted in these decays is not present in the nucleus
prior to the decay; it is formed during the decay process from the decaying
nucleus’s rest energy. There are two distinct beta-decay processes.

¢ ———> UN+e (incomplete expression) ...(4.3)

YN T Yc+e" (incomplete expression) ...(44)

Let’s take a look at the energy of the system experiencing beta decay
before and after the decay is complete. The energy of the isolated system
must be conserved in the same way as alpha decay. While alpha decay
occurs at discrete energy, it is observed that beta particles from a single type
of nucleus are emitted over a continuous range of energies (Fig. 4.1a) (Fig.
4.1b). A drop in rest energy results in a decrease in kinetic energy, which is
equal to the Q value. The Q value must be the same for each decay since all
nuclei in the sample have the same beginning mass. The variety of kinetic
energies of the released particles is displayed in Figure la, so what is the
reason for this? The law of conservation of energy and the isolated system
model appears to have been broken. A closer look at Equations 4.1 and 4.2
shows that the rules of conservation of angular momentum (spin) and linear
momentum are also violated.

The observed energies of beta
particles are continuous, having
all values up to a maximum value

Number of -particles
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The observed energies of
alpha particles are discrete,
having only a few values.
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Fig 4.1: (a) Beta-particle energies in a typical beta decay (b) Alpha-particle energies in
a typical alpha decay

Pauli postulated in 1930, following much experimental and theoretical
research, that a third particle must be present in the decay products to
transport away the “missing” energy and momentum. Fermi eventually
dubbed this particle the neutrino (small neutral one) due to the particle’s
requirement to be electrically neutral and possess little or no mass. Although
it escaped discovery for many years, the neutrino (symbol v, Greek nu)
was experimentally discovered in 1956 by Frederick Reines (1918-1998),
for which he was awarded the 1995 Nobel Prize in Physics. The neutrino
possesses the following characteristics:

Properties of the Neutrino

e It contains no electrical charge.

e [ts mass is either zero (in which case it travels at the speed of light)
or extremely less; compelling experimental evidence reveals that the
neutrino’s mass is not zero. Current experiments set the top limit on
the neutrino’s mass at about 7 eV/c*.

e It has a spin of , which enables beta decay to satisfy the rule of
conservation of angular momentum.

e It interacts with matter very weakly and is thus extremely difficult to
detect.

Beta decay processes: Now we can express the beta-decay processes (Egs.
4.1 and 4.2) correctly and completely:

iIX —— Y+ B =e)+o+[y] (complete expression) ...(4.5)
72X ——— Y+ Bkt +v+ vl (complete expression) ...(4.6)
As well as those for carbon-14 and nitrogen-12 (Egs. 4.3 and 4.4):

Uc— 5 YN+ B (=e)+0+[y] (complete expression) ...(4.7)
UN ——— 'Zc+pre) +v+ Il (complete expression) ...(4.8)

where the symbol v denotes the antineutrino, the neutrino’s antiparticle.
For the time being, suffice it to say that positron decay produces a neutrino
and electron decay produces an antineutrino. The decays indicated above are
evaluated using conservation laws, just as alpha decay, although relativistic
equations must be employed for beta particles because their kinetic energy is ' sejr- Learning
large (usually 1 MeV) compared to their rest energy of 0.511 MeV. The decays =~ Material 131
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indicated by Equations 4.7 and 4.8 are depicted graphically in Figure 4.2.

Before decay Before decay

i Ko =0 7 Ky =0
‘ﬁc Pc=0 @ Px=0
After decay After decay
- K, s
P A“J’/‘;PE" K ‘L«"jl-".-*
N = « “
Electron ok Positron
Frs 140 >3 +’g
P - - Pc 3 T
Antineutrino Neutrino
. s =
WP NFr
K; K,

The final products of the beta The final products of the beta
decay of the carbon-14 nucleus decay of the nitrogen-12 nucleus
are a nitrogen-14 nucleus, an are a carbon-12 nucleus, a positron,
electron, and an antineutrino. and a neutrino.

Fig 4.2 (a) The beta decay of carbon-14 (b) The beta decay of nitrogen-12

The number of protons in Equation 4.5 has grown by one while the
number of neutrons has dropped by one. The fundamental process of decay
can be expressed in terms of a neutron converting into a proton as follows:

n > p++90. ...(4.9)

The electron and antineutrino are ejected from the nucleus, resulting in
an increase in the number of protons and a decrease in the number of neutrons,
commensurate with the changes in Zand 4 - Z. In decay, a proton undergoes a
similar transformation, transforming into a neutron, a positron, and a neutrino.
This latter process can occur only within the nucleus, resulting in a decrease
in nuclear mass. It is impossible for a solitary proton to experience this since
its mass is less than that of a neutron.

The electron and the antineutrino are ejected from the nucleus, with
the net result that there is one more proton and one fewer neutron, consistent
with the changes in Z and 4 - Z. A similar process occurs in decay, with
a proton changing into a neutron, a positron, and a neutrino. This latter
process can only occur within the nucleus, with the result that the nuclear
mass decreases. It cannot occur for an isolated proton because its mass is
less than that of the neutron.

Electron Capture: It occurs when a parent nucleus catches one of its own
orbital electrons and produces a neutrino, is a process that competes with
decay. After decay, the end result is a nucleus with a charge of Z - 1:

72X+ je ——— iV +v ...(4.10)
In the majority of situations, a K-shell electron is captured, and so the

process is referred to as K capture. A simple illustration is the capture of an
electron by :

7 0 ur
4Be+ _j&¢ —m 3Ll+vD

In order to witness electron capture, the x-rays emitted by electrons
cascading from higher-shell electrons to fill the void produced in the K shell
are often used.

Furthermore, we define the Q values of beta-decay processes.



0= (M,-M)c

where M, and M, are the neutral atom masses. The expression given
above gives the QO values for decay and electron capture. The parent nucleus
increases in atomic number during decay, and one electron must be absorbed
by the atom in order for it to become neutral. The system contains a free
electron both before and after the decay if the starting system is the neutral
parent atom and an electron (which will eventually combine with the daughter
to produce a neutral atom) and the final system is the neutral daughter atom
and the beta-ejected electron. As a result, when the starting and end masses
of the system are subtracted, the electron mass cancels.

Regarding decay, the Q values are given by,

O=(M,-M,—2m)c*

The atomic number of the parent lowers by one when the daughter is
produced, necessitating the addition of -2m ¢’. After the decay, the daughter

atom loses an electron to become a neutral atom. As a result, the daughter
atom, the ejected positron, and the shed electron are the end products.

In order to determine whether or not a procedure is feasible, these
relationships can be used. It is possible that Q value for decay of a parent
nucleus could be negative, as in the case of this parent nucleus. It does not
happen in this scenario. In this case, the Q value for electron capture may be
a positive number, therefore electron capture can occur even though decay
is not conceivable. For example, the decay of illustrated above falls into this
category.

Beta Spectrum

The energy released in a beta decay is released by three particles; the
recoil nucleus, the beta electron, and its antineutrino. The nucleus, which
is extremely heavy in comparison to the other two, consumes a minuscule
fraction of the available energy, which is effectively split between the electron
and antineutrino. On average, the electron carries little less than half (i.e.,
50%) of this energy, while the antineutrino carries slightly more than half
(i.e., 50%).

As in the case of electrons and antineutrinos, the electron and the
neutrino share the electron’s role in a beta-plus decay (which is extremely rare).

Beta energy spectrum of Bismuth-210

Maximum energy
(1,16 MeV)

antincutring part

electron part

Decay frequency

0 02 04 06 08 10 1.2
Electron kinetic energy (MeV)

Fig 4.3 An exchange of energy
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The decay energy is shared among the nucleus, an electron, and an
antineutrino in a beta decay like that of a bismuth-210 nucleus. Because the
nucleus is so much more massive than the other two (its mass is 320 000
times that of the electron), it absorbs very little kinetic energy. As a result, the
electron and the antineutrino share the energy. With the antineutrino eluding
detection, only the beta electron with a fluctuating energy is visible. The
picture depicts the bismuth-decay beta spectrum, which shows the distinctive
energy distribution of beta electrons.

The beta electron energy distribution, often known as the beta spectrum,
is distinctive because kinetic energy of the emitting nucleus is low, the
electron and antineutrino share the decay energy in varying quantities. When
an electron carries all of the decay energy, its energy is maximum. When it
is the antineutrino, it becomes null.

Low-energy electrons dominate the beta spectrum’s asymmetrical
structure. In spite of its great lightness, the antineutrino carries more kinetic
energy than the electron, which is heavier in comparison. Few beta electrons
reach the maximum energy permitted, whereas most of them have low
energies. This is in accordance with the rule.
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Fig 4.4 Samples of Average Beta Energies

Because no two radionuclides produce beta electrons with the same
energy, the average beta energy is used to compare radionuclides. For example
beta emitted by tritium has a hundred times less energy on average than beta
emitted by phosphorus-32. Much lower than alpha particles, beta average
energy are less than 1 MeV. (Usually above 4 MeV).

Since low-energy electrons are easier to stop, it is a good thing
that beta electron have so much energy. When it comes to radiation safety,
electrons’ average energy is more important than their maximum energy.
When compared to phosphorus-32, a powerful beta emitter with an energy
of 695 keV, tritium, for example, has an average energy of 5.69 keV.

Beta electrons have lower energy than alpha particles, which always
have energies above 4000 keV, whereas beta electrons have energies below
1 MeV in most situations (4 MeV). With the exception of potassium-40, the
half-lives (or lifetimes) are substantially shorter.



A beta decay is frequently associated with the emission of a gamma Nuclear Decay
ray as a result of the nucleus being deexcited. This emission reduces the
energy that the electron and antineutrino must share. For example, the
available energy in the beta decay of caesium-137 is 1176 keV, but in 95%
of cases, it is accompanied by the emission of a distinctive 662 keV gamma,
lowering the available energy to 514 keV. The observed spectrum beta is the
sum of the two spectra corresponding to the modes without or with gamma
in proportions of 5% and 95%.

NOTES

Additionally, it is possible for gamma to convey their energy to an
atom’s electron - this is known as internal conversion. These electrons are
not exactly beta electrons and have their own distinct energy characteristics.

Check Your Progress

1. What happens when a radioactive nucleus undergoes beta decay?

2. When does electron capture occur?

4.3 NEUTRINO HYPOTHESIS

The secondary electrons giving rise to the discrete peaks are not emitted from the
B-disintegrating nuclei. Only the electrons in the continuous part of the B-spectrum are
emitted during B-disintegration of the nuclei.

Usually the areas under the discrete peaks are small compared to the
area under the continuous distribution graph (not more than a few percent),
which shows that the number of secondary electrons forming the peaks is
only a few per cent of the total number of B-particles emitted.

Careful measurements have shown that the total number of electrons,
including those in the peaks as well as in the continuous spectrum, is slightly
greater than the number of nuclei undergoing 3-decay. The latter is found to
be equal to the number of electrons in the continuous spectrum, which shows
that the electrons emitted during 3-decay form the continuous spectrum only,
excluding the peaks.

Both for B~ and B* decays, the emitted B-particles are found to have
continuous distribution of energies or velocities ranging from 0 upto a
maximum. In the case of electron capture, no observable particle is emitted
from the nucleus. Only x-ray photons or Auger electrons, characteristic of
the product atom, are observed.

We have seen before that during B-disintegration, the mass number 4
remains unchanged while the atomic number Z changes by one unit. This
means that either a neutron is changed into a proton (as in 3~ decay) or a proton
is changed into a neutron (as in B* decay or in electron capture process) so
that the total number of protons and neutrons (Z+ N = A4) remains unchanged.

Experimental study of a-disintegration shows that the o-particle spectra
are discrete in nature, which points to the fact that the nuclei exist in discrete
energy states, as expected from quantum mechanics for a closed micro-
system. Transitions between these discrete levels in the parent and product

nuclei give rise to the emission of mono-energetic groups of a-particles. i;’ft - 4ef’”i”g s
ateria
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The same conclusion is drawn from the study of the y ray spectra. It
may therefore be expected that due to the transitions between such discrete
energy levels in the parent and product nuclei in the B-decay process, the
B-particles will also be emitted with one or more definite energies, given
by the energy difference between the initial and final states, less the mass
energy of the B-particle. However, the observed continuous distribution of
the B-energy is contrary to this expectation. Thus there is an apparent break
down of the principle of conservation of energy in the case of B-decay. It
may, however, be noted that the B-disintegration energy Q,: agrees with the
mass-energy difference between the parent and the product nuclei less the
electron rest-energy for both - and B* disintegrations which also equals the
maximum energy £ of the emitted B-particles.

(Contmuous
Ly B-energy
d1str1but10n)

7+ lY

Fig. 4.5 Beta transition between two discrete energy states of the parent (X) and
product (Y) nuclei showing apparent breakdown of the conservation of energy.

Another puzzling feature about the B-decay is the apparent failure
of the principle of conservation of angular momentum. We know that the
protons and the neutrons, constituting the nucleus of an atom, have intrinsic
spin angular momentum s = 1/2 (in unit of #) each. If the total number 4 of
nucleons is even, then the total spin angular momentum of the nucleus S =
s, is either O or integral. On the other hand, if 4 is odd, then § will be half
odd integral. In addition, the nucleons may have orbital angular momentum L
which can only be integral multiples of £ Since the total angular momentum
of the nucleus (nuclear spin) is / = L + S, the value of / is integral or half odd
integral in units of #depending on whether the number of nucleons A4 in the
nucleus is even or odd respectively. For example, if 4 is even, [ is integral
or 0. So in the B-disintegration process, since A remains unchanged, / will
remain integral or 0 i.e., either / does not change or changes by an integral
multiple of A Similar is the case when 4 is odd.

Now the electron has an intrinsic spin 1/2. So during its emission from
the nucleus, it can carry away a half odd integral unit of angular momentum,
since the orbital angular momentum change, if any, can take place by an
integral multiple of 2 This means that the emission of an electron from
a nucleus should change the angular momentum by a half odd integral
multiple of #which however contradicts the statement made above that in
the B-disintegration process / should change by an integral multiple of 7.

To explain these apparent inconsistencies, Wolfgang Pauli, in 1930
proposed that at the time of B-decay of a nucleus, a hitherto unobserved



second particle, in addition to the electron, is emitted, which carries away the
balance of energy £, = E, — E, so that the total energy of the two particles is
equal to the maximum B-energy £ . When the electron is emitted with zero
kinetic energy, the second particle is emitted with the maximum energy £
= E . On the other hand, when the electron is emitted with the energy £ ,
the other particle has energy £ = 0.

Here we have neglected the energy of the recoil nucleus undergoing
B-decay, since it is much heavier than the particles emitted.

This new particle proposed by Pauli has been named the neutrino. It
must have such physical properties that it would be very difficult to detect
it. In fact it eluded observation for more than twenty five years after Pauli
had proposed the neutrino hypothesis.

We can guess about some of the properties of the neutrino:

(i) The neutrino (v) must be electrically neutral, so that the only change
in the charge of the nucleus during B-decay is due to the emission of
the electron or positron or due to the capture of an orbital electron.
This is in agreement with observations.

(i) The mass of the neutrino should be zero or very nearly so. This follows
from the fact that the maximum energy E of the emitted electron is
equal to the mass energy difference between the parent and the product
nuclei less the rest energy of the electron. If the neutrino had a finite
mass then its rest energy must also be subtracted to get £ .

(7ii) Intrinsic spin of the neutrino should be 1/2. Since the electron spin is
also 1/2, two spin 1/2 particles are emitted during 3-decay. Hence the
two together will take away an integral unit of angular momentum,
which is in agreement with the statement made above regarding the
change of angular momentum in B-decay.

(iv) The neutrino must obey Fermi-Dirac statistics like the electron since
its spin is 1/2.
Enrico Fermi, the famous Italian physicist, was the first to work out
a successful theory of B-decay, based on the neutrino hypothesis (1934).
According to Fermi, B-decay occurs due to the transformation of a neutron
into a proton inside the nucleus with the emission of an electron and an anti-
neutrino ( v ) which is the anti-particle of the neutrino, just as the positron
is an anti-particle of the electron:
n—->ptetv .(4.11)

Such decay is actually observed in the case of a free neutron which
has a half-life of 10.6 min, when it is outside the nucleus.

The reverse transformation of a proton into a neutron by the emission
of positron and a neutrino also occurs inside the nucleus in * decay:
p—o>nte+v ..(4.12)

However, this transformation cannot occur in the case of a free proton,
because energy-conservation cannot be satisfied in this case, the proton being
lighter than a neutron.
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It may be noted that electrons, positrons, neutrinos and anti-neutrinos
escaping from the nucleus in -decay do not exist initially inside the nucleus.
They are born at the time of B-decay, just as the photon is born at the time
of radiative transition in an atom (or in a nucleus). This is unlike the case of
a-decay of a nucleus, since the two protons and two neutrons forming the
a-particle already exist inside the disintegrating nucleus.

Unlike a-decay, which takes place only in the heaviest nuclei, B-decay
can occur in a wide range of nuclei, starting from the lightest at A = 1 (in
neutron) up to some of the heaviest nuclei known in nature or artificially
produced.

The energy liberated in B-decay process also varies over very wide
range. For example, in the decay *H — *He + 3, the decay energy is only
0.02 MeV while in the decay "B — "2C + - it is 13.4 MeV.

A brief sketch of Fermi’s theory of allowed B-decay It gives a
mathematical expression for the energy (or momentum), distribution of the
B-particles.

The physical properties of the neutrinos are such that they are very
difficult to detect. Since they carry no charge, they cannot produce ionization
in matter. So the usual methods of detection of charged particles cannot be
applied for their detection. Since they are practically massless, they cannot
transfer energy to any other particle by elastic collision. Hence the method
applicable in the case of detection of an electrically neutral particle like the
neutron cannot be used in their case. There are reasons to believe that the sun
emits a huge flux of neutrinos. For this reason, the earth is being incessantly
bombarded by neutrinos. It has been estimated that about 10'* neutrinos pass
through the human body every second. However, the probability of their
interaction with the atoms in the human body is so small that not even one
such collision takes place in a whole year. As stated before, there was no
direct evidence for the detection of the neutrino for a long time. Finally in
1956, two American scientists, F. Reines and C.L. Cowan Jr., were successful
in detecting the neutrino directly.

As stated before, the neutrino (v) has an anti-particle, known as the
anti-neutrino ( v ). The former is emitted at the time of B decay and electron
capture process, while the latter is emitted at the time of B~ decay. We can
represent these processes symbolically as follows:

B~ decay: OX = S Y+BT+Y ..(4.13)
(1=0 0 1 b

B* decay: OX = 5 Y+B +yV ..(4.14)
(1=0 0 -1 D

Electron capture: 2X + e - oY+ v ..(4.15)

(1=0

The neutrino and anti-neutrino are both mass-less and charge-less
particles with the same intrinsic spin (1/2). It is believed that the difference
between them lies in the fact that the spin vector S of the neutrino is anti



parallel to its linear momentum p, while for the anti-neutrino the two vectors Nuclear Decay

are parallel, as shown in Fig. 4.6.
P __ S P s
/ N

(a) ®) NOTES

Fig. 4.6 Neutrino and anti-neutrino.

The weakly interacting particles like the electron, positron, neutrino and
antineutrino belong to a class of elementary particles called lepfons. It is usual
to associate a lepton number [ with them. For the electron and the neutrino
we put / =+1, for the antiparticles positron and anti neutrino, we put / =—1.
At the time of B-decay, there is conservation of the lepton number, which
means that / remains the same before and after the decay. As an example, in
B~ decay /=0 on the left side of Eq. (4.13). On the right side, the total lepton
number is 1 — 1 =0. So the lepton number is conserved. Similarly for the 3*
decay. In the case of electron capture decay, / = +1 both on the left and right
sides of Eq. (4.15). So lepton number conservation is satisfied.

4.4 FERMI THEORY OF BETA DECAY:
ALLOWED AND FORBIDDEN
TRANSITIONS PARITY VIOLATIONS IN
BETA DECAY

Using Pauli’s neutrino hypothesis in 1934, Fermi developed a
successful theory of beta decay. Using Fermi theory, we may calculate the
probability (or rate) of beta decay.

The theory is predicated on the following premises:

1. First and foremost, since the electron and neutrino don’t exist before
decay, the theory must explain how these particles are generated.

2. There must be a relativistic treatment of the electron and neutrino, as
well.

3. The calculation must produce a uniform distribution of electron
energies.

4. The interaction that generates the quasi-stationary states is weaker
than the interaction that causes beta decay. Beta decay is caused
by a relatively small amount of (time-dependent) nuclear potential,
while stationary states are created by a much larger amount of (time-
independent) nuclear potential. Since we can treat the interaction that
causes beta decay as a weak disturbance in time-dependent perturbation
theory, we can apply it to the process.

Suppose that the system’s total Hamiltonian is

H=Hyx+ H" (1)

HP(t) is smaller than nuclear potential H and is thought to be Self- Learning
Material 139
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responsible for beta decay. In beta decay, we now know:

| Wi> > >
Initial state represents Final state represents the
the state vector/ wave combined state vector/wave
function of parent nucleus function of duaghter nucleus

and decay particles (beta
particles and neutrinos)

The transition rate from beginning to final state, or decay probability,
can then be calculated using the Fermi Golden rule:

2 ~ 2
A== (w 7w, o (E)

YL TR
A%IH; p(E] ...(4.16)

where the matrix elements
p_ *7rp
Hif_‘[ Y, Hyde
with HP representing the interaction potential responsible for beta decay.
Also, note that here we use 4 instead of W,f as both are same.

While p (£) is the density of final states, which can also be written as
_dn

p(Ef)—d—Ef ...(4.17)

dn is the number of final states contained inside the energy interval

dE, As previously stated, if there are a high number of accessible end states,
a particular transition is more likely to occur.

As previously stated, beta decay

o = Y, (wave function of parent nucleus)

Yy = Us We U, (combined wave function of duaghter nucleus,
beta-particle and anti-neutrino/neutrino)

The wave functions of electrons and neutrinos are referred to as y_and
v, respectively. The wave function of a daughter nucleus is given by ¥ ;

That’s why matrix elements transform as follows:
Hi=[ v, v, v Hpdv ..(4.18)

Beta particles and neutrinos are now free to move around as they were
before their formation. The related wave functions therefore have the standard
free particle’s wave function shape adjusted within the volume V. (which is
nuclear volume for beta decay case).

1 ik,r
p,=——e'"
AY

Because the wave vector =, where is the electron’s momentum, the

electron wave function becomes;



1 per Nuclear Decay
y,=—e " ...(4.19)
In the same way, the wave function for neutrinos is:
_1 NOTES
W= ..(4.20)

Typically, the kinetic energy of beta particle is 1 MeV. Then, the
momentum is = 1.4 MeV/c.

With the momentum = 1.4 MeV/c, if we calculate

P._14x 1.6x10 2y 1

A 3x10°m/s  1.054x10 *J—s

P._ 0.708

A10 %m

P._ 0.007

=0.007 fm*
io10"m fm

For a typical nuclear radius r =1 fm,

=~ 0.007
Therefore,

<<1 ...(4.21)
Now, from equation (4.19), the electron wave function can be expanded as:

1

i
Y=7=¢e
V
1 P T ...(4.22
pe (145 ) 422
W

Using the condition <<I, we can keep only first term and all the
higher order terms can be neglected. As a result,

1
Y~ .(423)
This approximation is known as the allowed approximation.

Neutrino’s wave function can be approximated by ignoring higher
order terms in its exponential. A new wavefunction for neutrinos is written
as follows:

|
W L (4.24)

The matrix element can now be calculated using the modified
wavefunction of electron and neutrino stated in equations (4.23) and (4.24):

p_ Xk korrp
HA=[ "y, 0, Hry,de
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fxpd* . prdr

|-
Hf;:vfxpd H"y,dt

1
P_
Hy= My .(425)

where,

_ * 77D
sz—f vy H yd
is referred to as nuclear matrix elements since it expresses just the

waves of the parent and daughter nuclei.

The revised formulation of transition rate is obtained by substituting
the expression of from equation (4.25) into equation (4.16).

27
}\:?|H§2p(Ef)
2m 1 ) dn
V ...(426)

For the time being, we can treat the nuclear matrix element M, as a
constant quantity while computing the density of states p(E ) = dn/dE in
order to determine the transition probability/rate. To put it another way, the
final state density dictates the probability of a transition. Because of this, the
beta energy spectrum is determined by the density of states.

A final quantum state can be assigned to the daughter nucleus,
therefore it is important to keep this in mind. As free particles, the decay
products (electron and neutrino) might have continuum energy states in
contrast to this. For this reason, we need to know how many final states are
accessible to the decay products before we can calculate the density of states.

Let us assume that an electron (or positron) is emitted with a momentum
p, in order to obtain the number of electron quantum states. We have no
interest in the current momentum. Using this method, one can approximate
the states for the range from p to p+dp by using the following:

Due to the fact that the electron is supposed to be free, its position
and momentum can be described with uncertainty dx, dy, dz, dp , dpy, dp..

dx dpx~h
dy dpy~h
dz dp,~h

Then, in quantum physics, the smallest volume in phase that can be
measured is:



Nuclear Decay
dx dpx dy dpydz dp,~ h?
Nevertheless, we may say that this volume corresponds to the particle’s
single quantum state, as we cannot know the particle’s position or momentum
within the volume. NOTES

Since the total number of quantum states in a given volume V" and
momentum range p to p+dp can only be calculated by integration, we must
now do it for the corresponding phase space volume.

p+dp
Vphase:f dxdydz _r dpxdpydpz
p
P;
+dp
P
p
Py
Figd7 v, .=Vaxp'dp

The number of quantum states corresponding to a J" phase space volume
is equal to the 4’ phase volume of one quantum state.
2
dn, = 4Tt p de \'4
h
Essentially, dn, is the number of quantum states possible to an electron

contained in a spatial volume " with a velocity ranging from p to p+dp.

Analogously, we can determine the number of quantum states possible
to a neutrino confined in a spatial volume ' with a momentum ranging from
q to g+dq and denoted by:

_4mq’dqV
=5

Then the total number of final states which have simultaneously an
electron and a neutrino (confined in spatial volume /) with momenta p to
p+dp and g to g+dp are:

dn

v

dn=dn,dn,

i 4TV P dpg'dg
; (427

If we use this expression of dn in equation (4.26), the expression for
the transition probability modifies as:
_ 2w 1 2 dn

A="2—|M,
7 V2| i dE,

_2m 0 pi, p R dpg’ dg
}\‘_ h |Mif| (475) hG dEf
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4.5 CONCEPT OF HELICITY

Electron and anti neutrino are longitudinally polarized which means
that their spins are aligned parallel (for V) or antiparallel (for ) to their
respective linear momenta for backward emission of the 3~ particle.

Though the polarization of the B-particles observed in B-decay is not
a general characteristic of the electrons, it is regarded as a basic property of
the antineutrino (and of the neutrino) and is known as helicity (H).
We define helicity as
c.p
ol 17 ...(4.28)
where o is the spin of the neutrino and p is its momentum. The Pakistani
physicist Abdus Salam and L. Landau of Russia were the first to point out,
on the basis of the two component theory of the neutrino (assuming the
neutrino mass m = 0), that helicity should be, a fundamental property of the
neutrino. To understand this we note that for a particle with a finite mass, the
velocity can be different in different frames of reference. If, for instance, the
particle spin is parallel to its momentum in some frame of reference, then
to an observer moving faster than it in the previous frame, it will appear
to be moving in the opposite direction and hence has momentum opposite
to its spin. So it will have different polarizations in the different frames of
reference. However, this is not the case for a massless particle (fermion)
which must always move with the velocity of light ¢. Hence there can be no
frame of reference which will move faster than it.

From the expression given above, the helicity is H = +1 depending on
whether the relative orientation of the spin and momentum of the particle is
parallel or antiparallel. According to the two component theory mentioned
above, the neutrino has H=—1 (anti parallel orientation of spin relative to the
momentum) while the antineutrino has / = +1 (parallel orientation of spin
relative to momentum). This is the only distinction between the two particles.

If spin is regarded as a rotation, then the motion of the neutrino is
analogous to that of a /eft handed screw while the motion of the antineutrino
is similar to the motion of a right handed screw.

The existence of a definite helicity of the neutrino is directly related
to the violation of parity conservation in weak interaction. If a particle has
right-left symmetry, then upon mirror reflection, the wave-function either
remains the same or simply changes sign, while the particle is transformed
to itself. However, a particle with a definite helicity does not possess right-
left symmetry. So upon mirror reflection, a right handed screw-like particle
transforms into a left handed screw-like particle. Thus the particle is not

transformed to itself, which means violation of parity conservation.
Measurement of neutrino helicity:

The helicity of neutrino was measured directly in an experiment
performed by M. Goldhaber, L. Grodzins and A.W. Sunyar (1958). They
used as source the K-capturing '“Eu (t = 9.3 h) isomer which has the decay
scheme.



The product nucleus 'Sm goes to the ground state by y-emission (E,= Nuclear Decay
961 keV) which is an EI transition. In the experiment, resonance fluorescence
produced by the y-rays were studied. Because of the recoil of the emitting
nucleus '**Sm, the y-energy was reduced by about £ = 3.26 eV from the
transition energy. Because of the very short half-life of the excited state,
its width I is relatively large, being about 0.02 eV. Even so, it is not wide
enough to compensate for the recoil energy-loss (I' << E ). However, the
compensation is provided by Doppler shift due to the recoil velocity of the
source, which is a product in the K-capture decay of the parent nucleus *?Eu
emitting a neutrino of energy £ = 900 keV. This recoil energy is about 2.86
eV. Notice that there are two different types of recoil of the '*Sm nucleus
due to two different reasons: the first due to neutrino emission in the electron
capture by the parent nucleus and the second due to y-emission from the
excited product nucleus 'Sm”.

NOTES

Since the compensation due to Doppler shift is slightly less than the recoil
energy change of the y-rays, the y-rays were allowed to proceed at an angle
slightly less than 180° w.r.t. the direction of emission of the neutrino in K-capture
decay of '*?Eu, as can be seen from Fig. 4.8(a), showing the experimental
arrangement of Goldhaber et al. The theme of the experiment is illustrated in
Fig. 4.9.

We can write down the law of conservation of angular momentum in
the two successive transitions involved as below:
2R+ e — PSm'+ v
oM O

Vield with Sm,0,
scatterer

N\

839 keV
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777 \ |
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?
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1071 background
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v
Scatterer -m T [N S (T [ S N |
20 24 28 32 36
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Fig. 4.8 (a) Experiment of Goldhaber and others on the measurement of the
helicity of the neutrino. (b) Results of the neutrino helicity experiment.

In this case angular momentum will be conserved if the spins of the
neutrino and the ?Sm" nucleus are oriented oppositely. Since their momenta
are also in opposite directions, it follows that the longitudinal polarization of
the nucleus '*>Sm” must have the same sign as that of helicity of the neutrino.
In the second transition we have

152 * 152
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Fig. 4.9 Theme of the experiment on the measurement of neutrino helicity.

The magnetized iron used as a polarimeter [see Fig. 4.8 (a)] allows
only those y-rays to be transmitted which have circular polarization such that
their spins are up and hence the spin of the 1- state of '**Sm must also be up.
Thus the sign of the circular polarization must be the same as the sign of the
longitudinal ploarization of the emitting nucleus and hence it is the same as
the sign of the neutrino helicity.

So the experiment boils down to the measurement of the sign of the
circular polarization of the y-rays. This is measured from the change in the
number ot counts in the y-ray detector upon a reorientation of the magnetic
field in the magnetized iron. The results are shown in Fig. 4.8(b).

The helicity of the neutrino was found to be negative. Though there is
no direct experimental determination of the helicity of the anti-neutrino, all
other experimental data show that it must be positive.

It was seen above that the electrons emitted in 3-decay are longitudinally
polarized (see Wu’s experiment). The longitudinal polarization of the 3-rays
have been measured and is given by

P(B) = ig ..(4.29)

Each lepton has a lepton number (also called the leptonic charge).
For electrons and ve the leptonic charge is +1 while for positrons and v, it is
—1. We conclude that the sign of longitudinal polarization of the electronic
leptons is opposite to the sign of their leptonic charge.

4.6 MULTIPOLE TRANSITION AND
SELECTION RULES FOR THE DECAY
OF THE NUCLEI

Assuming an electric dipole interaction between a nucleus and e.m. field,
we found a transition rate that was above the rate at which an electric dipole
radiation is emitted. Because of this sort of radiation, only one quantum of
angular momentum may be carried out of the nucleus (i.e., 4/ =+1, between
excited and ground state). As a general rule, excited levels are more than
one | / apart, and so the radiation that is emitted must be higher multipole.

1. Electric Multipole: To return to the expansion of the radiation
interaction in multipoles, consider the following:
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where is interaction potential.

Then the transition rate becomes: NOTES

oy Sm(i+1) € (BN 3 \? .2
AED) = @+ 1) ke (E) (m) "<m>

Notice the strong dependence on the / quantum number. Setting again

| <i":"> | ~ I‘(}"'il‘,:i

we also have a strong dependence on the mass number.

Thus, we have the following estimates for the rates of different electric
multipoles:

- A(E1) = 1.0 x 104 42/3E3
- ME2) =17.3 x 107 A*/3E>
- ME3) = 34A%E7

- AME4) =1.1 x 1075A48/3E?

2. Magnetic Multipoles: The e.m. potential can also contain
magnetic interactions, leading to magnetic transitions. The
transition rates can be calculated from a similar formula:

sr(l+1) e2 EZ*t1/ 3 \? ,.\2-2[ h 1
MM = T I A e (f+::) ‘<m> mpye ”f’_f+1)

where M is the magnetic moment of the proton (and mp its mass).
Estimates for the transition rates can be found by setting :

- AM(M1) =5.6 x 102 E?

- AM(M2) = 3.5 x 107 A2/3E5
- AMM3) = 16A*3E7

- AM(M4) =45 x 10 A2E®

4.7 INTERNAL CONVERSION,
CONVERSION COEFFICIENTS OF
ISOMERIC NUCLEI

Internal conversion is a mechanism of nucleus deexcitation that competes
with gamma emission for energy. It occurs when the nucleus is in an excited
state as a result of beta or alpha radioactive decay. Internal emission can be
compared to gamma emission, in which the gamma fades when it interacts
with one of the atom’s atomic electrons. As a result, it is often referred to as
electronic conversion.
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Fig 4.10 A gamma ray is emitted by an excited nucleus (a). One of the electrons in the
innermost layer of the atom (b) is most likely to be hit by this gamma ray. The atom loses
an electron. The gamma gets absorbed by the electron and disappears. Because of this,
the electron is no longer present in that layer. Reorganization of the atom takes place,
with one electron from layer L filling up the vacuum (c). It generates an X-ray.

The gamma energy is passed on to the expelled electron, but it must
break free of the atom’s gravitational pull. It loses some of its atomic binding
energy once it is liberated. Remembering the atom’s shell structure, the
electron’s binding energy is the energy of the layer to which it belongs.
Energy from the gamma reduced electron’s unique binding energy on its
atomic layer is transmitted to its electrons. It is clear that both the gamma
and the binding energy have well-established values. Since the electron is
being expelled, it will have a range of energy levels (one for each layer). For
electrons in the innermost K layer, the internal conversion probability is the
highest, and declines rapidly with the outermost layers.

Conversion electrons have a fixed energy, in contrast to beta decay
electrons, whose energy varies between 0 and a maximum value, with a
portion of the decay energy carried by an invisible neutrino.

Following the electron expulsions, the electron atomic cloud undergoes re-
arrangement, resulting in the emission of X-rays.

Energy spectrum of beta electrons

e = Maximal
. energy
. (1,175 MeV)

Energy probability
/

002 04 05 03 o 12
Kinetic energy of beta electron (MeV)

Répartition of conversion electrons (Cs-137)
(K) 779 %
: i K layer: 624,2 keV
L layer : 655,7 keV
M layer : 6604 keV

(L) 1.42%
(M) 0,30 %
L

Conversion probabilities

ne
—

Fig 4.11 Beta electrons and conversion electrons; Caesium-137, a well-known beta-
ray emitter, is the example chosen. In 85.1 %, the beta electron is accompanied by
a 661.57 keV gamma ray, while in 9.6 %, an electron conversion occurs. While the
energy distribution of beta electrons is constant, the energy of conversion electrons
varies depending on which atomic layer they originate from. Layer K is where the most
conversions happen. Conversion electrons carry around 5% of the decay energy in the
case of caesium-137.



The weights of gamma emission and internal conversion are shown Nuclear Decay
in the example of cesium-137. 94.7 % of beta decays result in a nucleus
in an excited state, with 85.1 % returning to the ground state by emitting
an energetic 661.57 keV gamma and 9.6 % returning to stability through
internal conversion. The electron conversion energy is slightly smaller than
the gamma conversion energy.

NOTES

In general, the existence and energy of conversion electrons stay
related to the nucleus’s gamma rays. Their contribution to the decay energy,
which is added to the energy of beta electrons, is only a few percent at most.

Internal Conversion Coefficient (a)

The internal conversion coefficient is a term used in nuclear physics to
characterize the rate of internal conversion.

The internal conversion coefficient may be empirically determined
by the following formula:
number of de — excitations via electron emission
number of de — excitations viay — ray emission
For E (electric monopole) nuclear transitions, there is no appropriate
formulation for an equivalent concept.

Internal conversion coefficients can be determined theoretically. Their
correctness is largely accepted, however because the quantum mechanical
models on which they are based only consider electromagnetic interactions
between the nucleus and electrons, unexpected effects may occur, resulting
in a conversion coefficient that differs from the one measured empirically.

Internal conversion coefficients can be found in tables, although this
is tedious. Software solutions have been created to quickly and conveniently
display internal conversion coefficients.

4.8 ANGULAR CORRELATION OF
SUCCESSIVE DECAY

A directional connection exists between two successive gamma rays, which
is unique due to the multipolarity of the transitions involved in the cascade.
Experimental measurements of these correlations can provide information
on the spins of the nuclear states involved.

Each nuclear state with angular momentum J contains a set of m-states,
m]=_]!_]+1r_]+2!'"']_2!]_1!] (4.30)

They exhibit degenerate energies. The transition from one excited
nuclear state to another is essentially a transition between various pairs
of m-states, as seen in Fig. 4.12 for a dipole transition. There are three
conceivable m-state transitions for a dipole transition. Each of these emits
an angular distribution that is uniquely anisotropic. The observed angular

distribution of the radiation emitted by m, — m fis;

W)= Zmi p(m;) Wm,-—»mf(e)y (4 3 1)
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The specific angular distribution W, (0) for emitted radiation
between pairs of m-states in Fig. 4.12.

Table 4.1
m; — my ii-'ml._,mf{fa'}
-1 =0 %(1+{mzﬁ')
0=20 sin’#

1250  1(l+cos?d)

h=1

my=1 mj=1.-1

Sum of all
m-states.

Fig 4.12 A diagram illustrating how the decay J, — Jis actually caused by decays
between m-states. Each transition between pairs of m-states emits radiation with an
anisotropic angular distribution, but if all initial m-states are evenly populated, only an
isotropic radiation distribution is observed.

where, p(m.) denotes the starting state’s population. The specific angular
distributions W (9) for each transition between pairs of m-states are
reported in Table 4. 1 If each initial state () is equally occupied, and p(m_)

=p(m,) = p(m ) = 7, then the observed angular distribution is as follows.
W(8) o 1 + cos°6) )] + smzﬁ'j + —:[%(l + rrosilg}]. (4.32)

W is constant at all angles 0; as gamma rays are isotropically emitted,
no anisotropic angular distribution will be noticed.

To observe an anisotropic distribution of radiation, an unequal
population in the initial m-states must be created. This can be accomplished
by detecting the preceding radiation that populates those first m-states with
such rarity. Continuing with the dipole radiation scenario from Figure 4.12,
suppose that.J; was filled from another excited state with spin.J, =0, resulting
ina 0 — 1 — 0 cascade of gamma rays y, and y,. (as shown in Fig. 4.13).
If y, is observed in a detector at a given position, a z-axis can be defined
along its emission axis, so that y, is observed at an angle of 0, to that axis
(shown in Fig. 4.13). Between definition, the angle formed by y, (6,) and the
z-axis is 0. When W (6,) = sin’0, = 0, which indicates that m=0 cannot
be populated. Now, an unequal population of m-states has been established
that corresponds to J.. The measured anisotropic angular distribution has the
following shape:

1.1

W (6:) o 5[5

(1+ rmzb':»]] + 0(sin’fa) + [ 1+ f.‘f}.‘izt?g}] o 1 + cos’6s, (4.33)
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Fig 4.13 (Left) A measurement of the angular correlation of a 0 — 1 — 0 cascade of
successive gamma rays y, and y,. The z-axis is defined as the direction of emission of y,
and 0, is the direction of detection of y, with respect to the z-axis. (Right) A simplified
level diagram illustrating the various m-states involved in the decay of the 0 — 1 — 0
cascade.

which is not constant at all angles (plotted in Fig. 4.14).
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Fig 4.14 A plot of the angular correlation expected to be observed for a 0 — 1 — 0
gamma ray cascade.

In general, the angular correlation between two successive gamma
rays can be written as

W(0) =1+ Ay Py(cost) + Ay Py(cost), (4.34)

where P and P, are Legendre polynomials and 4, and A4, are spins of
the nuclear states involved in the cascade, as well as the angular momenta
and mixing ratios ¢ of each gamma ray. Each form of gamma ray cascade (0
—1—0,0—2 — 0, etc.) has a distinct angular correlation with distinctive
A, and 4, coefficients. Table 4.2 contains examples of selected cascades. Spin
assignments for the nuclear states participating in a specific cascade can be
determined by comparing theoretically predicted 4, and A4, coefficients to
fits to experimental data.
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Table 4.2 According to Eqn. 4.34, the theoretical A, and A, coefficients were employed to

define the angular correlation of each mentioned cascade.

Cascade Aa Ay
0=1=0 0.5 ]
0=2=0 036 1.14
1—=+2—=0 -025 0
25220 025 0
3—=2=0 -0.071 0
4=2=0 010 0.0091

3. Define helicity.

4. What is internal conversion?

Check Your Progress

4.9 ANSWERS TO ‘CHECK YOUR

PROGRESS’

1. A radioactive nucleus’s atomic number changes by one when it

undergoes beta decay, resulting in a daughter nucleus with the same
number of nucleons as the parent nucleus.

. Electron capture occurs when a parent nucleus catches one of its own

orbital electrons and produces a neutrino, is a process that competes
with decay.

. The polarization of the b-particles observed in b-decay is not a general characteristic

of the electrons, it is regarded as a basic property of the antineutrino (and of the
neutrino) and is known as helicity (H).

. Internal conversion is a mechanism of nucleus deexcitation that

competes with gamma emission for energy.

4.10 SUMMARY

e A radioactive nucleus’s atomic number changes by one when it

undergoes beta decay, resulting in a daughter nucleus with the same
number of nucleons as the parent nucleus.

A beta particle can be either a positron () or an electron (), with the
latter being the more widespread name.

As with alpha decay, beta decays preserve both the nucleon number
and total charge. Due to the fact that A does not change but Z does,
we conclude that beta decay occurs when either a neutron transforms
into a proton or a proton transforms into a neutron.

In order to witness electron capture, the x-rays emitted by electrons
cascading from higher-shell electrons to fill the void produced in the
K shell are often used.

The decay energy is shared among the nucleus, an electron, and an
antineutrino in a beta decay like that of a bismuth-210 nucleus.

e Low-energy electrons dominate the beta spectrum’s asymmetrical



structure. In spite of its great lightness, the antineutrino carries more Nuclear Decay
kinetic energy than the electron, which is heavier in comparison.

e Beta electrons have lower energy than alpha particles, which always
have energies above 4000 keV, whereas beta electrons have energies
below 1 MeV in most situations (4 MeV).

¢ The secondary electrons giving rise to the discrete peaks are not emitted
from the b-disintegrating nuclei. Only the electrons in the continuous
part of the b-spectrum are emitted during b-disintegration of the nuclei.

NOTES

e Both for b— and b+ decays, the emitted b-particles are found to have
continuous distribution of energies or velocities ranging from 0 upto
a maximum. In the case of electron capture, no observable particle is
emitted from the nucleus.

e Another puzzling feature about the b-decay is the apparent failure of
the principle of conservation of angular momentum.

e When the electron is emitted with zero kinetic energy, the second
particle is emitted with the maximum energy Ev = Em. On the other
hand, when the electron is emitted with the energy Em, the other particle
has energy Ev = 0.

¢ It may be noted that electrons, positrons, neutrinos and anti-neutrinos
escaping from the nucleus in b-decay do not exist initially inside the
nucleus. They are born at the time of b-decay, just as the photon is
born at the time of radiative transition in an atom (or in a nucleus).

e The physical properties of the neutrinos are such that they are very
difficult to detect. Since they carry no charge, they cannot produce
ionization in matter.

e The neutrino and anti-neutrino are both mass-less and charge-less
particles with the same intrinsic spin (1/2).

e Using Pauli’s neutrino hypothesis in 1934, Fermi developed a
successful theory of beta decay. Using Fermi theory, we may calculate
the probability (or rate) of beta decay.

e If spin is regarded as a rotation, then the motion of the neutrino is
analogous to that of a left handed screw while the motion of the
antineutrino is similar to the motion of a right handed screw.

e The helicity of neutrino was measured directly in an experiment
performed by M. Goldhaber, L. Grodzins and A.W. Sunyar (1958).
They used as source the K-capturing 152Eu (t = 9.3 h) isomer which
has the decay scheme.

e Since the compensation due to Doppler shift is slightly less than the
recoil energy change of the g-rays, the g-rays were allowed to proceed
at an angle slightly less than 180° w.r.t. the direction of emission of
the neutrino in K-capture decay of *?Eu.

e Internal conversion is a mechanism of nucleus deexcitation that
competes with gamma emission for energy. It occurs when the nucleus
is in an excited state as a result of beta or alpha radioactive decay.

e The internal conversion coefficient is a term used in nuclear physics Self- Learni
. . . elf - earmng
to characterize the rate of internal conversion. Material 153
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e A directional connection exists between two successive gamma rays,
which is unique due to the multipolarity of the transitions involved
in the cascade. Experimental measurements of these correlations can
provide information on the spins of the nuclear states involved.

4.11 KEY TERMS

e Nuclear decay: It is the process by which an unstable atomic nucleus
loses energy by radiation. A material containing unstable nuclei is
considered radioactive.

e Neutrino: A neutrino is a subatomic particle that is very similar to an
electron, but has no electrical charge and a very small mass, which
might even be zero.

e Doppler shift: The Doppler effect or Doppler shift (or simply Doppler,
when in context) is the change in frequency of a wave in relation to an
observer who is moving relative to the wave source.

e Helicity: In physics, helicity is the projection of the spin onto the
direction of momentum.

4.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions
1. State the properties of neutrino.
2. How is the measurement of neutrino helicity done?
3. What do you understand by multipole transition?
Long Answer Questions
1. What do you understand by beta spectrum? Explain.
2. Describe the Fermi theory of beta decay.

3. Discuss angular correlation of successive decay.
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5.0 INTRODUCTION
Particle physics (also known as high energy physics) is a branch of physics that
studies the nature of the particles that constitute matter and radiation. Particle
physics usually investigates the irreducibly smallest detectable particles and
the fundamental interactions necessary to explain their behaviour. Modern particle
physics research is focused on subatomic particles, including atomic constituents,
suchas electrons, protons, and neutrons (protons and neutrons are composite particles
called baryons, made of quarks), that are produced by radioactive and scattering
processes; such particles are photons, neutrinos, and muons, as well as a wide range
of exotic particles. In this unit, we will study in detail about the elementary particles,
their classification and interactions, quantum numbers, invariance, decay of charge
conjugation, elementary idea of SU(2) and SU(3), Gell-Mann-Okubo mas formula,
quark model and quantum chromodynamics.
5.1 OBJECTIVES
After going through this unit, you will be able to:
- Discuss the classification of elementary particles and their interactions Self - Learning
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- Describe the concept of quantum numbers

- Explain the concept of variation laws and selection rules inrelation to particle
production

- Discuss the decay of charge conjugation

- Analyse the elementary idea of SU(2) and SU(3)

- State the Gell-Mann-Okubo mas formula along with its application
- Explain the qualitative idea of quark lepton family

- Describe the meaning of quantum chromodynamics

5.2 CLASSIFICATION OF ELEMENTARY
PARTICLES AND THEIR INTERACTIONS

In the mid-1930s, physicists had a very straightforward understanding of the structure
of matter. The proton, the electron, and the neutron were the building blocks of the
universe. The photon, the neutrino, and the positron were three other particles that
were either known or hypothesised at the time of the discovery of the photon.
These six particles were regarded to be the primary elements of matter when taken
together. Everyone agreed that this simple picture was insufficient for answering
the following important question: because the protons in any nucleus should strongly
repel one another due to their charges of the same sign, what is it that holds the
nucleus together? No one was able to answer this question with this simple picture.
As aresult, scientists concluded that this unexplained force had to be much more
powerful than anything they had ever observed in nature.

Hideki Yukawa, a Japanese physicist, proposed the first theory explaining
the nature of the nuclear force in 1935, an accomplishment that earned him the
1949 Nobel Prize in Physics. To grasp Yukawa’s theory, recall the introduction of
the field particle, which indicated that each basic force is mediated by an exchange
offield particles between interacting particles. Yukawa used this concept to explain
the nuclear force, postulating the presence of a new particle whose interaction
with nucleons in the nucleus produces the nuclear force. He demonstrated that the
force’s range is inversely proportional to the mass of this particle and predicted
that it would have a mass around 200 times that of the electron. (Yukawa’s
anticipated particle is not the gluon, which is massless and is now regarded to be
the nuclear force’s field particle.) Because the new particle would have a mass
between the electron and the proton, it was given the name meson (from the
Greek meso, “middle”).

In efforts to substantiate Yukawa’s predictions, physicists began experimental
searches for the meson by studying cosmic rays entering the Earth’s atmosphere.
In 1937, Carl Anderson and his collaborators discovered a particle of mass 106
MeV/c 2, approximately 207 times the mass of the electron. This particle was
thought to be Yukawa’s meson. Subsequent experiments, however, showed that
the particle interacted very weakly with matter and hence could not be the field
particle for the nuclear force. That puzzling situation inspired several theoreticians
to propose two mesons having slightly different masses equal to approximately
200 times that ofthe electron, one having been discovered by Anderson and the



other, still undiscovered, predicted by Yukawa. This idea was confirmed in 1947  Elements of Particle Physics

with the discovery of the pi meson (0), or simply pion. The particle discovered
by Anderson in 1937, the one initially thought to be Yukawa’s meson, is not really
ameson. Instead, it takes part in the weak and electromagnetic interactions only
and is now called the muon (p).

(O Virtual &
photon

s
s 5 4

Fig 5.1 Feynman diagram representing a photon mediating the electromagnetic force
between two electrons.

The pion comes in three varieties, corresponding to three charge states: n”,
n and n°. The " and 7 particles (7 is the antiparticle of 7°) each have a mass of
139.6 MeV/c?, and the n° mass is 135.0 MeV/c?. The two muons which exist are
w and its antiparticle p*.

Pions and muons are very unstable particles. For example, the ', which has
a mean lifetime 0f2.6x10% s, decays to a muon and an antineutrino. The muon,
which has a mean lifetime of 2.2 ps, then decays to an electron, a neutrino, and an
antineutrino:

m = o
H —e Tuv+v
For chargeless particles (as well as some charged particles, such as the

proton), a bar over the symbol indicates an antiparticle, as for the neutrino in beta
decay. Other antiparticles, such as ¢"and p*, use a different notation.

The interaction of two particles can be described graphically using a Feynman
diagram, which was invented by American physicist Richard P. Feynman. The
electromagnetic interaction between two electrons can be seen in Figure 5.1. A
Feynman diagram is a qualitative representation of the relationship between time
on the vertical axis and space on the horizontal axis. It is qualitative in nature and
the exact time and space values are irrelevant; however, the overall appearance of
the graph provides a visual depiction of the process.

In the simplest case of the electron—electron interaction as given in Figure
5.1, the electromagnetic force between the electrons is mediated by a photon (the
field particle). Notice that the entire interaction is represented in the diagram as
occurring at a single point in time. Therefore, the paths of the electrons appear to
undergo a discontinuous change in direction at the moment ofinteraction. The
electron paths shown in Figure 5.1 are different from the actual paths, which would
be curved due to the continuous exchange of large numbers of field particles.

The photon that transfers energy and momentum from one electron to the
next is referred to as a virtual photon in the electron—electron interaction because
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it vanishes during the interaction without being observed. We established that the
energy of a photon equals £ = Af, where fis its frequency. As a result, for a
system of two electrons initially at rest, the system possesses energy 2m ¢’ prior
to the release ofa virtual photon and energy 2m ¢ + hf following the release of
the virtual photon (plus any kinetic energy of the electron resulting from the emission
ofthe photon). Is this a breach of the law of energy conservation in an isolated
system? No; this process does not contradict the law of conservation of energy
since the virtual photon has a very short lifetime t, which results in a bigger uncertainty
in the system’s energy AE H” Z/2At than the photon energy. Thus, under the
restrictions imposed by the uncertainty principle, the system’s energy is preserved.

P."u- n _
i Pion {_'.T“} 70

' _ [)
PA kN e -

Fig 5.2 (a) Feynman diagram representing a proton and a neutron interacting via the
nuclear force with a neutral pion mediating the force. (This model is not the current
model for nucleon interaction.) (b) Feynman diagram for an electron and a neutrino

interacting via the weak force, with a Z° boson mediating the force.

Now consider a pion exchange between a proton and a neutron according
to Yukawa’s model (Figure 5.2a). The energy AE needed to create a pion of
mass m_is given by Einstein’s equation AE, =m_c*. As with the photon in Figure
5.2a, the very existence of the pion would appear to violate the law of conservation
of energy if the particle existed for a time interval greater than A H”2/2 AE, (from
the uncertainty principle), where At is the time interval required for the pion to
transfer from one nucleon to the other. Therefore,

h h

- p—

2AE, 2m_c?

and the rest energy of the pion is

Due to the pion’s inability to travel faster than the speed of light, the
maximum distance d that it can cover in a time interval At is cA¢. As aresult of the

aforementioned equation and d = cAt, we find -
m ¢’ =—

2d
We know that the nuclear force’s range is in the order of 10 fin. Using this value

for d in above equation, we estimate the rest energy of the pion to be

, ., (1055 x 107%].5)(3.00 X 10° m/s)
et 2(1 x 10% m)




=1.6x 1011 ] # 100 MeV

which is equivalent to a mass of 100 MeV/c? (approximately 200 times
the mass of the electron). This number is quite consistent with the mass of the
detected pion.

The preceding thought is rather revolutionary. In effect, it states that a
system consisting of two nucleons can transform into two nucleons plus a pion as
long as it returns to its original state within a very brieftime interval. (Remember
that this description is the older historical model, which assumes the pion is the
field particle for the nuclear force; the gluon is the actual field particle in current
models.) Physicists often say that a nucleon undergoes fluctuations as it emits
and absorbs field particles. These fluctuations are a consequence ofa combination
of quantum mechanics (through the uncertainty principle) and special relativity
(through Einstein’s energy—mass relationship £, = mc?).

Classification of Elementary Particles

Elementary particles are described using two different forms of statistics, and they
are classed according to which statistics they obey.

» Fermi-Dirac statistics are applicable to particles constrained by the Pauli
Exclusion Principle; fermions are particles that follow the Fermi-Dirac
statistics. Fermions include leptons and quarks. Two fermions cannot exist
in the same quantum state. Fermions, in general, are the building blocks of
nuclear and atomic structure.

» Bose-Einstein statistics are applicable to all particles that are not excluded
by the exclusion principle; these particles are referred to as bosons. There
is no restriction on the number ofbosons in a given quantum state. In general,
bosons operate as a medium for the transmission of forces between fermions;
the photon, gluon, W, Z, and Higgs particles are all examples of bosons.
Additionally, fundamental particle types have been defined based on
additional particle behaviours. Mesons and baryons were previously
categorized as strongly interacting particles; it is now known that mesons
are composed of quark-antiquark pairs while baryons are composed of
quark triplets. Members of the meson class have more mass than that of
leptons but less than that of the proton and neutron, but some mesons are
heavier than these particles. The proton and neutron are the lightest members
ofthe baryon class, whereas hyperons are the heaviest. There are a handful
of particles in the meson and baryon classes that cannot be detected directly
because their lives are so briefthat they leave no trace in a cloud chamber
or bubble chamber. Due to an analogy between their formation and the
resonance ofan electrical circuit, these particles are referred to as resonances
or resonance states.

After researching the structure of'atoms, one can conclude that the electron,
proton, and neutron are the only three fundamental building blocks of matter.
Numerous new nuclear particles have been discovered as a result of studies
conducted in part on high-energy cosmic ray particles. They are referred to as
elementary particles or subatomic particles. These are elementary particles in the
sense that they lack structure. The classification of elementary particles is depicted
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in Figure 5.3. The elementary particles are classified into two broad categories
known as bosons and fermions. Bosons are particles whose intrinsic angular
momentum is a multiple of “. Fermions are all particles with a spin that is only half
mtegral.

Baryons

This category includes the proton and particles heavier than protons. Protons and
neutrons are referred to as nucleons, while the others are referred to as hyperons.
Each baryon has a corresponding antiparticle. Ifa number called the baryon number
is allocated to baryons and a number called the antibaryon number is assigned to
antibaryons, then the baryon number does not change during any closed system
interaction or decay. This is the conservation law for baryons. Hyperons are a
subclass of baryons with a time decay of 10-'° seconds and a mass value between
the neutron and deuteron. Their decay duration is significantly longer than their
formation time (10).

Leptons
The electron, photon, neutrino, and muon are all members of this category.
Mesons

These particles have a rest mass of approximately 250m_to 1000m,_. Mesons are
the agents of particle interaction within the nucleus. Pions, kaon, and n- mesons
are collectively referred to as mesons. Baryons and mesons are jointly called
hadrons and are the particles of strong interaction.

Elementary particles

) Bﬂ!ons Fcrjﬁu'nns
(integral spin) (half mligrul spin)
F’!ulmm.(iru\ itons Le pl‘nns B‘“"‘““ .
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Fig 5.3 Classification of Elementary Particles.



5.2.1 Fundamental Interaction

Fundamental interactions can be defined as the fundamental forces that act between
the primary particles that constitute all matter. The fundamental interactions are
classified as follows: (1) Strong interaction (ii) Electromagnetic interaction (ii1) Weak
interaction (iv) Gravitational interaction. All known natural processes (from subatomic
to extragalactic scales, i.e., microscopic to macroscopic) can be viewed as
manifestations of one or more of these interactions. The following table summarizes
the exchange of particles in each of these interactions.

Table 5.1 Particles exchanged in the interaction.

Interactions Particles Exchanged
Strong Mesons
Electro-magnetic Photons
Weak Intermediate bosons
Gravitational Gravitons

For elementary particles and nuclear physics, gravitational forces are
irrelevant. Compared to strong and electromagnetic forces, weak forces have a
very short range (<10 m).

1. Strong interaction

The strong interaction is the force that holds nucleons together in the atomic nucleus
(nuclear forces). The strong nuclear interaction is not affected by the presence of
an electric charge. These interactions have a range of roughly 10> m. The time
period between such interactions is approximately 10 s.

2. Electromagnetic interaction

It is applicable to all charged particles. Thus, electromagnetism is a charge-
dependent phenomenon. The range is limitless, and the interaction is mediated by
the photon. Electromagnetic interaction is demonstrated via the production ofan
electron-position pair from a gamma ray.

3. Weak interaction

Allinteractions occur within a time range of approximately 10 s. Their degradation
occurs over a period of around 10" s. Due to the length of time required for
particles to respond to such an interaction, the force involved must be very weak
in comparison to powerful nuclear forces. This interaction has a range of less than
10""m. This interaction has a characteristic duration of 10* s. The weak interaction
is responsible for the decay of'strange and ordinary particles, as well as for strange
particle non-leptonic decays.

Beta decay is an example of weak interaction:
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4. Gravitational interaction:

This interaction manifests as a strong attraction between all elementary particles
over a long distance. Gravity is the first force that all of us discovers. It connects
the moon to the earth, keeps the planets in their solar orbits, and connects the
stars in our galaxy. Newton defined F as F'= G m m /i’ ~2 x 10°* newton. And
gravitational attraction has a force of around 2 x 10 joule. As a result, we can
conclude that it has no effect on particle reactions. It is the least powerful of the
four interactions. It possesses a limitless range. Gravitation can be explained in
terms of “gravitons” interacting. Their mass must be zero, and their velocity
must consequently be equal to that of light. The gravitational force is not dependent
on the colour, size, charge, velocity, spin, or angular orientation ofan object, but
on its inertia magnitude. Due to the exceedingly faint gravitational field, gravitons
cannot be identified in the laboratory.

Check Your Progress

1. Name the primary elements of matter in the mid-30s.
2. What is a Feynman diagram?
3. What are bosons and fermions?

4. What do you mean by fundamental interaction?

5.3 CONCEPT OF QUANTUM NUMBERS:
ISOSPIN, HYPERCHARGE,
STRANGENESS, LEPTON AND BARYON
NUMBERS

A quantum number is one of numerous integral or half-integral variables that uniquely
identify the state of a physical system such as an atom, a nucleus, or a subatomic
particle. Quantum numbers broadly refer to discrete (quantized) and conserved
properties, such as energy, momentum, charge, baryon number, and lepton number.

It is possible to calculate the energy state and likelihood of finding an electron
in an atom by using its primary quantum number, for example. There is a direct
correlation between electron energy and distance from the nucleus and increases
with increasing main quantum number, which has integral values starting at one.
Each electron in an atom can be identified by its principal quantum number and
three additional numbers. The atomic nucleus is characterized by a different set of
quantum numbers.

Following is an in-depth discussion of quantum numbers and their
conservation laws.

Conservation laws of Elementary Particles

Numerous discrete quantum numbers are utilized to classify the numerous
fundamental particles. We are already familiar with two of these quantum numbers,
those that describe the charge and spin of a particle. Quantum numbers define
quantifiable physical qualities and are invariably conserved. We already know that



all elementary charges are either zero or one. Bosons are particles with integer spin ~ £lements of Particle Physics

that obey the Bose-FEinstein statistics. Fermions are particles with half odd integer
spins that obey the Fermi-Dirac statistics.

1. Baryon number

In the case of'a baryon, the baryon number B=1 is assigned, and in the case of an
anti-baryon, the baryon number B= -1 is assigned. B = 0 is assigned to all other
particles. Following a reaction or decay, the law of conservation of baryons dictates
that the total baryon number ofall particles must remain the same as it was before
the reaction or decay. This rule assures that a proton cannot be converted into an
electron, although a neutron can be converted into a protonunder certain conditions.
Baryon conservation protects the proton from decaying into a particle with a lesser
mass by preventing it from losing its stability. All normal baryons, such as p*, n’,
A%, 20, 20 2, B B, Q, have the baryon of +1. The baryon number -1 is shared
by all of the equivalent anti particles, which are referred to as anti-baryons.

All the mesons have baryon number 0.

ANy pttr ie,[1=1+0]
Another illustration of the conservation of baryon number is the following:
n————  pp te+d ie,[1=1+0+0]

Hence the baryon number is conserved.

2. Lepton number

The Leptons are said to have a trait known as the Lepton number (L). Given the
distinction between neutrinos associated with electrons and muons, we add two
lepton numbers, L_and L, which must be preserved separately in particle reactions
and decays. L =1 is ascribed to the electron and e-neutrino, while L = -1 is
assigned to their antiparticles. All other particles have L =0. Also, the number L,
= 1 isassigned to the muon and the p—neutrino and L =-Ito their antiparticles.

T +p —p A"+ K ie, [0+0=0+0]
3. Strangeness number

They were formed in high-energy reactions but always in pairs, i.e., when one
type ofparticle is produced, another type of particle is also emitted concurrently.
Production of kaons and hyperons, both of which are classified as odd particles.
Decays rapidly due to strong interactions, however this is not observed. Rather
than that, they steadily degrade. Due oftheir peculiar behaviour, they were dubbed
odd particles.

K—————p 1 +n ie,[t1=0+0]
Here the LHS is 1 and RHS is 0. So, the reaction is not conserved for strangeness.

In all processes mediated by strong and electromagnetic interactions, S is
observed to be conserved. The conservation principle results in the multiple

production of particles with S not equal to 0. An example is the proton-proton
collision.
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P++P+—>A()+K()+P++n+
strangeness number S; 0 + 0 —p (-1)+1+0+0.

A weak interaction, on the other hand, can cause S to alter in an event that
is ruled by it. It is through the weak contact that the decays ofkaons and hyperons
take place, and as a result, they are incredibly sluggish. The weak interaction, on
the other hand, is incapable of allowing S to change by more than +1 during a
decay.

> oA +et +v, [-1=-14+0+0 ] ; AS=0
Y- nte +v. [ -1=0+0+0] ; AS=-1
T +p > ALK [0+0 =-1+1] ; AS=0

4. Isospin and Isospin quantum number

In terms of strong interactions, the neutron and proton are two equal-mass states
ofa nucleon doublet. Multiplets of particles are discovered. For instance, 1)’ (eta-
meson), Q (omega hyperons), A’ (lamda hyperon). Doublet: p, n, triplet, ",
m, n’ (pions or Pi-mesons). It is easy to think of a multiplet’s members as
representing the various charge states ofa single fundamental entity. It has been
advantageous to classify each multiplet according to the number of charge states it
shows by a number / such that the state’s multiplicity is given by 2/+ /. Thus, /=
Y4 1s ascribed to the nucleon multiplet, and its 2 x 42+ 1 = 2 states are the neutron
and proton. / = / for the pion multiplet, and its 2 x 1 + 1 =3 states are ', 7, ’.

Isospin can be represented mathematically as a vector / in “isospin space”
whose component in any specified direction is defined by a quantum number
commonly designated /.. /, has the following potential values: £, [ -1, [-2,........,
0,.....—(I—1), - 1. Thus, if / is half integral, /, is halfintegral, and if /is integral,
1, is integral or zero.

1=/ for the nucleon, which indicates that /, can be either +1/2 or -1/2;

the former is assumed to represent the proton, while the latter is assumed to
represent the neutron.

Furthermore, for the pion triplet / = 7,1, = + I for+,/, = 0 for n°and —
1 for . The charge ofa meson or baryon is proportional to its baryon number B,
strangeness number S, and isospin component /, by the formula.

B+S ¥
q—e[l3 + 3 J—e[IB +E]




Class Name Symbol Spin B Le Lu S ¥ I
LEPTON e- neutrino Ve Y 0 +1. 0
[ —neutrino v, Y 0 0 +1
Electron e ¥ 0 +1 0
Muon no Yo 0 0 gl
Tt
MESON Pion 0 0 0 0 0 o0 1
T 0
K-
Kaon 0 0 0 0 +1 +1 12
K°
1l meson n° 0 0 0 0 0 0 0
BARYON Nucleon P ¥ +1 0 0o 0 +1  1/2
A hyperons A° Ya +1 0 0 -1 0 0
Z +
% hyperons  £° Vs +1 0 0 -1 0 1
5-
=0
= hyperons Ya +1 0 0o -2 -1 12
Q hyperons  Q° 3/2 1 0 o 3 -2 0

S. Hypercharge

In intense contact, a quantity called hypercharge (Y) is conserved. The
hypercharge of a particle is equal to the product of its strangeness and baryon
numbers, ¥ =8 + B. Because B=0 for mesons, hypercharge equals weirdness.

5.4 INVARIANCE

Many ofnature’s most profound thoughts reveal themselves in the form of
symmetry. During a physical experiment, symmetry suggests that something is
conserved, or that something remains constant, throughout the experiment. As a
result, conservation rules and symmetries have a strong relationship.

Conservation Laws and Symmetry

A significant set of conservation laws is connected to parity (P), charge conjugation
(C), and time reversal symmetries (T).
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Charge Conjugation Symmetry

Charge conjugation is a symmetry operation that replaces each particle in a system
with its antiparticle. Charge parity (C) is conserved if the antisystem, or antimatter
counterpart, exhibits the same physical phenomena. For instance, if the proton in
a hydrogen atomis replaced by an antiproton and the electron by a positron, the
resulting antimatter atom behaves identically to an ordinary atom. Indeed, the
weak contact does not conserve C.

5.4.1 Concept of Variation Laws and Selection Rules
in Relation to Particle Production

Let us discuss the particles and anti-particles.

1. Electron and Positron

Antiparticles are defined as particles that are opposed to one another. They have
the same mass and spin as one other, but they have the opposite charge. When
they come into contact with one other, they annihilate each other by releasing
photons into the environment. Dirac was the first to anticipate the existence of an
antiparticle for the electron, and he was correct. Anderson made the discovery of
the positronin 1932.

2. Proton and Antiproton

It was Segre, Chamberlain, and their coworkers that first developed the antiproton
in 1955. Antiprotons were created by hitting protons in a target with protons with
energies of 6 GeV or higher, thereby encouraging the reaction to occur.

p+p+(energy)—>p+p+p+1ﬁ

Antiprotons have a strong interaction with matter and annihilate when they
come into contact with protons.

ptp — P vttt tne
3. Neutron and Antineutron

Cork, Lamberton, and Wenzel discovered the antineutron, the neutron’s antiparticle,
in 1956. The antineutron’s nature is unknown. Both the neutron and the antineutron
are neutral and have the same mass. However, because the neutron is meant to
have a specific internal charge distribution, it is believed that the antineutron will
have the opposite internal charge distribution. Antineutrons are rapidly annihilated,
either by a proton or a neutron, producing many pions in the process. If an antineutron
is not completely destroyed by a nucleon, it decays via the reaction.

ptp —» n +tn
4. Neutrino and Antineutrino

The neutrino has a finite energy and momentum in flight. It travels with the speed of
light c. It does not cause ionization on passing through matter. The antiparticle of
neutrino is antineutrino.

The contrast between neutrino (v) and antineutrino () is especially fascinating.
The neutrino’s spin is in the opposite direction of'its speed. The neutrino spins in
the anti-clockwise direction. However, the antineutrino’s spin is in the same direction



as its speed,; it spins clockwise. Thus, the neutrino travels across space like a left-
handed screw, but the antineutrino travels like a right-handed screw. Thus, the
neutrino has a “left-handed” helicity, whereas the antineutrino has a “right-handed”
helicity, i.e., the neutrino and antineutrino are identical except for their helicity.

It is conventional to refer to the particle associated with a positron as a neutrino,
while the particle associated with an electron is referred to as an antineutrino. A
neutrino has virtually minimal interaction with matter due to its lack of charge and
magnetic moment. This interaction is negligible.

n————ppte+t
p—P n+teto
Antimatter

It has long been useful in atomic physics to think of an atom as being constituted of
additional nuclear electrons and a nucleus. A positron and an antiproton can combine
to generate an anti-hydrogen atom. The spectrum of anti-hydrogen would be
comparable to that of regular hydrogen. Indeed, everything was constructed entirely
of antiparticles from a collection of anti-protons, anti-neutrons, and positrons. Particle-
antiparticle annihilation would result in a significant amount of energy being released.

Check Your Progress

5. What is a quantum number?

6. Why do the neutrino have a left-handed helicity and antineutrino a right-
handed helicity?

5.5 DECAY OF CHARGE CONJUGATION

In this section, we will discuss the decay of charge conjugation.

CP Violation: The weak force, which is responsible for events like the radioactive
disintegration of atomic nuclei, violates the combined conservation laws of charge
conjugation (C) and parity (P) in particle physics. Charge conjugation is a
mathematical process that turns a particle into an antiparticle by reversing the
electric charge sign, for example every charged particle has an oppositely charged
antimatter counterpart, or antiparticle, according to charge conjugation. An
electrically neutral particle’s antiparticle can be identical to the particle, as in the
stance ofthe neutral pi-meson, or it can be unique, as in the case of the antineutron.
Parity, or space inversion, is the reflection ofa particle’s or particle system’s space
coordinates via the origin; i.e., the three space dimensions x, y, and z become -x,
-y, and -z, respectively. In more concrete terms, parity conservation means that
up and down, left and right, are indistinguishable in the sense that an atomic nucleus
emits decay products up as well as down, and left as well as right.

According to this assumption, all interactions between particles were thought
to be perfectly symmetrical in terms of charge conjugation or parity—that is, these
two qualities were always conserved in particle interactions. This has now been
proven to be incorrect. Reversing time (T) was shown to have the same effect as
doing so, as was reversing motion (V). When a motion is permitted by the laws of
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physics, the reversed motion is likewise permitted. Invariance under time Discoveries
made in the mid-1950s have changed the way scientists think about invariance of
C, P,and T. Two or three pi-mesons decaying from two or three charged K-
mesons motivated theoretical physicists Chen Ning Yang and Tsung-Dao Lee to
investigate the experimental foundation for the conservation of parity. For the first
time, in 1956, they found no evidence of parity invariance in weak interactions.
Particle decays such as nuclear beta decay, which take place via the weak force,
do not preserve the conservation of parity. Charge conjugation symmetry was
also violated during these decay processes, as shown by these experiments.

A quantitative theory establishing coupled CP as a symmetry of nature was
developed after it was discovered that the weak force does not retain charge
conjugation or parity independently. Because CP is invariant, it was assumed that
time reversal T would be as well. The electrically neutral K-meson, which ordinarily
decays via the weak force to generate three pi-mesons, decayed a fraction ofa
time into only two of these particles in 1964, according to a team led by American
physicists James W. Cronin and Val Logsdon Fitch. Assuming that the long-held
CPT theorem s correct, then CP violation implies non-conservation of T. When
applied in any order, charge conjugation, parity, and time reversal should ensure
that all interactions remain stable. There exists a precise balance in all fundamental
interactions, and this is known as the CPT symmetry.

Quarks, the fundamental building blocks of K-mesons, exert a weak force
on one another that causes this phenomenon. The weak force appears to act ona
quantum mixture of two sorts of quarks, rather than on a pure quark state, as
identified by the “flavour” or type of quark. Theoretical physicists Makoto
Kobayashi and Toshihide Maskawa from Japan hypothesised in 1972 that the
Standard Model of particle physics would include an inherent prediction of CP
violation if there were six types of quarks. For their “finding of the origin of the
broken symmetry which predicts the existence of at least three family groups in
nature,” Kobayashi and Maskawa were awarded the Nobel Prize in Physics in
2008. Quark quantum mixing allowed them to discover uncommon decays that
would break CP symmetry. The bottom and top quarks, members of the third
generation of quarks, were discovered in 1977 and 1995, respectively, confirming
their predictions.

The Kobayashi-Maskawa theory appears to be supported by experiments
with neutral K-mesons, however the effects are negligible. For B-mesons, CP
violation is projected to be more significant than for K-mesons, because the B-
mesons have a lower-energy quark than the K-mesons. B-mesons, heavier than
K-mesons, are being tested in experiments at facilities that can create a significant
quantity of them. B-mesons decaying into muons rather than anti-muons was first
noticed in 2010 by researchers at the Fermi National Accelerator Laboratory in
Batavia, [llinois.

There are theoretical implications to CP violation. Physicists can distinguish
between matter and antimatter with certainty because of the violation of CP
symmetry. The study ofthe cosmos may be profoundly affected by the distinction
between matter and antimatter. In physics, one of the unanswered puzzles is why
the cosmos is composed primarily of matter. The observed imbalance or asymmetry
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violation in the initial seconds following the big bang—the catastrophic explosion
that is supposed to have resulted in the genesis of the universe.

Check Your Progress

7. What is charge conjugation?

8. How can the physicists distinguish between matter and antimatter with
certainty?

5.6 PARITY INVARIANCE AND TIME
REVERSAL WITH SIMPLE APPLICATION
IN PARTICLE PHYSICS

In this section, we will study about the parity invariance and time reversal along with
application in particle physics.

Conservation of parity

Parity is a term that refers to the symmetry of the wave function used to describe
the system. When the coordinates (x, y, z) are replaced by (-x, -y, -z), the system
has a parity of + 1. When the sign of the wave function is flipped, the system has
a parity of -1. If we write y (X, y, z) =P y (X, -y, -z), we can consider P to be a
quantum number describing y with values between +1 and - 1. The overall parity
number does not change during areaction in which parity is conserved.

By converting the coordinates (X, y, z) to (-X, -y, -z), a right-handed
coordinate system can be converted to a left-handed coordinate system. In terms
of symmetry, conservation of parity means that in every circumstance where parity
exists, the description of the reaction will remain unchanged if the term “left” is
substituted for “right”” and vice versa. This means that such replies cannot provide
a signal as to which direction is right or left. Until 1956, it was assumed that all
natural processes followed the law of conservation of parity. Yang and Lee showed
that parity was not conserved in reactions involving the weak contact, and that
studies might be designed to definitively discriminate between right and left. Indeed,
it is discovered that parity conservation holds true only in strong and electromagnetic
mteractions.

Time Reversal Symmetry

Parity in time 7 denotes how a wave function behaves when ¢ is replaced by —.
Time reversal is the symmetry operation that corresponds to the conservation of
time parity. Time reversal symmetry indicates that the direction oftime is irrelevant,
and hence that the inverse of any process that is capable of occurring is also
capable of occurring. In other words, if time reversal symmetry holds, it is difficult
to determine whether a motion picture of an event is being played forward or
backward when viewed. Prior to 1964, it was assumed that time parity 7' was
conserved in all interactions. In 1964, it was revealed that one of the K”’s forms,
kaon, can decay into n" and 1
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KN ——————p '+ ie,[+1=0+0]
It is in violation of parity in time’s (T) conservation. Thus, the symmetry of
events observed during time reversal does not appear to be universal.

CPT Theorem

The combined symmetry operation, which reverses the antimatter mirror image of
a system, enables the CPT invariance to be tested. The data is overwhelming in
favour of CPT conservation. Because CPT is conserved, each process has an
antimatter mirror-image counterpart that occurs in reverse. This particular symmetry
appears to hold true for all interactions, despite the fact that its component
symmetries occasionally fail on their own.

Check Your Progress

9. Define the term “parity’.
10. What is isospin?

5.7 ELEMENTARY IDEA OF SU(2) AND SU(3)
AND RESULTS OF GROUP THEORY

Let us discuss the elementary idea of SU(2) and SU(3) along with the results of
group theory.

Unitary Symmetry (SU(2) Symmetry)

As far as the nuclear force is concerned, we know that the proton and neutron are
identical, yet their electromagnetic interactions are distinct. Thus, in the absence of
an electromagnetic field, one can envision a group of symmetry operators capable
of transforming a neutron into a proton (or a proton into a neutron). The proton
and neutron would therefore serve as the group’s fundamental representations.
The presence of such symmetry implies that something is constant in the presence
ofa strong interaction. This is referred to as isospin, and it is 2 for both the proton
and neutron. The isospin component, 7', is + '2for the proton and - 72 for the
neutron. Thus, the operators ofthe symmetry group alter the coordinates ofisospin
in such a way that the sign of 7, is reversed. Additionally, it can be written as: the
strong interactions are expected to be invariant through isotopic spin space rotations.
Isospin conservation requires a special type of unitary symmetry knownas U(2),
which can be written as a set of 2 x 2 matrices. This group can be reduced to a
special unitary group denoted by the symbol SU(2), abbreviated as SU2. It is
unique in that a limitation reduces the number of operators in the group by unity. In
this situation, the two dimensions correspond to the two fundamental states that
comprise the fundamental representation. The constraint imposed by the restriction
of limiting the number of operators from 2 x 2 =4 to three. As aresult, the group
is considered to have three generators.

By employing the SU(2) group algebra, it is possible to demonstrate that
all irreducible representations of the symmetry group contain a multiplet of 2T + 1
states. The multiplet’s members all have the same isospin 7" and are otherwise
identical except for charge. If the symmetry were perfect, that is, if isospin was
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The electromagnetic interaction violates the SU(2) symmetry because conservation
ofisospin does not apply.

Eightfold Way [SU(3) Symmetry]

Due to the fact that the SU(2) group cannot fit the hypercharge quantum number,
the more general SU(3) theory was utilized, which incorporates SU(2). SU(3)
denotes a three-dimensional special unitary group. Three dimensions refers to the
three fundamental states that comprise the fundamental representation in this
instance. There are in general 3 x 3 =9 operators in a three-dimensional unitary
group, but the restriction of “special” decreases the number to eight. After then,
the group is claimed to have eight generators. Three of the generators are related
with isospin’s three components, as in SU(2), and a fourth with hypercharge. The
remaining four utilize hypercharge in a somewhat different manner.

The group algebra revealed that the SU(3) symmetry should result in the
formation of'six super multiplets with 1, 8, 8, 10, and 27 members. The multiplet
is equivalent to the 10, but with opposite-sign hypercharges. The parity and intrinsic
spin of members are same in each of these super multiplets, but the hypercharge
and isotopic spin are not identical. Among the aforementioned groups, those with
8 and 10 members are particularly noteworthy.

In the case for B=0 we may form particles anti particle statesina 3 x 3
array. The matrix may include up to 8 states and is referred to as anoctet, due to
the fact that mesons are produced from fermions particle-antiparticle pairs and
hence have an odd parity. These 8 particles with B=0 and J* = ( should be
arranged as follows and the schematic representation is given in the Figure 5.4.

Y=0, T=1 \ e S

One triplet with

One double with Y=1, T=% K, K
One double with Y=-1,T=% 8 members F K™
One single with Y=0, T=0 ) n?
5 F et .
K" (45) +] K™ {uF)
________ e
n” (40 "ol n* o)
=1 = ‘é '11'] i. +] P
K (s7) 97 === T (=)

Fig 5.4 Meson Octet in Eightfold-Way representation.
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Paradoxes of Quark Model

¢ Quarks have fractional charges while all observed particles have integer
charges. At least one of the quarks is stable. None has been found.

e Hadrons are exclusively made out ¢; ¢ g ¢ bound states. In other word, ¢
q; q q q g states are absent.

e The quark content of the baryon X*** is uu u. If we choose the spin states
ofthese three, this will lead to violation of Pauli Exclusion Principle.

5.8 GELL-MANN-OKUBO MASS FORMULA
AND APPLICATION TO MASS SPECTRA
OF PARTICLES

Since SU(3) is not an exact symmetry, we want to see whether we can understand
the pattern of the SU(3) breaking. Experimentally, SU(2) seems to be a good
symmetry, we will assume isospin symmetry to set m =m : Assume that we can
write the hadron masses as linear combinations of quark masses.

* For spin-0, odd parity mesons, (0" meson)

Assume that the meson masses are linear functions of quark masses:
m- = A(m, + 2m,,)
mz = A(me + mu + my)

2@
>

m, = Alm, + i{mu + 2m,)

where and m, and A are some constants with mass dimension. Eliminate the
quark masses we get

TN LI
dm, = m, + 3m,

Experimentally, we have 4 H” 0.98 (GeV)? while +3 H” 0.92 (GeV)? This
seems to show that this formula works quite well.

1 1
* For spin 5> even parity baryons, (E baryon)

Here we assume that the meson masses are linear functions of quark masses;

my = (m, + 3my,)
. = = 9 +
my = mpy = (m, + 2m, + my)

mz = (Ms + 2y + 21M,)
where m, is a constant with mass dimension. By eliminating the quark masses

we get the Gell-Mann Okubo mass formula for baryons with spin- 5 as



ms + Imy
———— =my+ms

My + 3 My

Expermentally. = 22GeV and my + m= = 225GV
I . N =

*
* For spin- % , even parity baryons, (37 baryon)
The mass relation here is quite simple. This sometimes is referred to as equal
spacing rule. In fact when this relation is derived the particle &! has not yet been
found and this relation is used to predicted the mass of and subsequent finding
provide compelling evidence for SU(3) symmetry. for baryons with spin-3/2, the
Gell-Mann Okubo mass formula as

mg — Mz =mz —msg = msg — my

5.9 QUALITATIVE IDEA OF QUARK LEPTON
FAMILY

In this section, we will discuss the qualitative idea of quark lepton family.
The Quark Model

The quark model was proposed in 1964 by Murray Gell-Mann and G. Zweig.
This theory is based on the notion that hadrons are constructed froma finite number
of fundamental components known as quarks. The first three quarks were
designated u (for “up”), d (for “down”), and s (for “strange”).

Quark  symbol charge spin B S | I

Up u +2/3 Y2 173 0 2 +1/2

down d -1/3 Y /3 0 Va2 -2

strange 5 1/3 ; ! 1 0 0
Fig 5.5 Quarks

u quark has electric charge + e and strangeness 0.

d quark has electric charge — e and strangeness 0.
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s quark has electric charge — e and strangeness — 1.u quark has electric

charge + ; e and strangeness 0.
_ 1
d quark has electric charge — 7 e and strangeness 0.
s quark has electric charge — e and strangeness — 1.

Each quark has a baryon number of B = %

&G & O

proton anliproton

uﬁ%ﬁ @ J&ﬂ; @

neutron antingutron

Fig 5.6 Constituents of proton and neutron in terms of quark

Each quark has an antiquark associated with it (). The magnitude ofeach of
the quantum numbers for antiquarks is the same as that of quarks, but the sign is
different.

Compositions of hadrons according to the quark model
Hadrons may be baryons or mesons. A baryon is made up of three quarks.

The proton, for example, is made up of two u quarks and one d quark (uud). The
electric charges ofthese quarks are +2/3, +2/3, and — 1/3, giving a total value of
+ 1. For a sum of + 1, the baryon numbers are + 1/3, + 1/3, and + 1/3. The
numbers for strangeness are 0, 0 and 0 for a total strangeness of 0. The quantum
numbers for the proton are all in agreement. Quark models ofthe proton, antiproton,
neutron and antineutron. Electric charges are measured in e units.

One quark and one antiquark make a meson. The n* meson, for example,
is made up of one quark, either u or d, and one antiquark, either . These quarks
have electric charges of +2/3 and + 1/3, for a total of +1 and a baryon number of
0. The numbers for weirdness are 0 and 0 for a total of 0. All of these are in
agreement with the pi-quantum meson’s numbers.

The half-integral spins of baryons and the 0 or 1 spins of mesons are entirely due
to quarks, which have spins of /2.

The various quarks and their antiquarks can be used to explain all known
hadrons. Five hadrons’ quark contents and how they account for their observed
charges, spins, and strangeness values are given in Table 5.2.



Table 5.2 Five hadrons’ quark contents and how they account for their observed
charges, spins, and strangeness values

Ouark

Hadron Baryon number Charge, e Spin Strangeness
content
" d __143 +2+l—+| t1=0 0+0=0
e u _." ;“ 3 3_
K+ 5 L2k R 11=0 0+1=+1
us 33 3737 b
d TR 1 LR 1 I 0+0+0=0
+ —4—t—=+ +—t— == =5 +0+0=
¥ "" 33 3 33 3 =2
Y. | g 1
n’ ddu ——t—=+] ———t+=0 =3 0+0+0=0
3 X 3 5 2
1.1-1 I 1 1 3
Q- : —t—t—=+1 = ——— ==l =5  -l-1-1=-3
= 33 3 33 3 =2

Coloured Quarks and Gluons

The quark model had flaws, one of which was the 2 hyperon. Three identical s
quarks were supposed to be contained within (sss). This is a violation ofthe Pauli
Exclusion Principle, which stipulates that no two or more fermions can occupy the
same quantum state. Protons, neutrons, and other elementary particles with two
identical quarks would likewise break this concept. This challenge can be overcome
by endowing quarks with a new attribute. This new feature can be thought ofas an
extra quantum number that can be used to designate the three otherwise identical
quarks in the €. If this additional quantum number has one of three potential
values, we can restore Pauli’s principle by assigning a different value to each quark
for this new quantum number, dubbed colour. The three colours are denoted by
the letters red (R), blue (B), and green (G). For instance, the € would thenbe S,
S, and S,.. Anti-red (R), anti-blue (B), and anti-green (G) are the antiquark colours
(6.

A necessary component of the quark model with colour is that all observable
meson and baryon states are “colourless”, that is, either colour or anti-color
combinations of mesons, or equal mixtures of R, B, and G for baryons.

Given that hadrons appear to be made of quarks, the strong interaction
between hadrons should eventually be traced to a quark-quark interaction. The
force between quarks can be described as an exchange force, mediated by the
interchange of massless spin —1 particles called gluons. There have been eight
gluons proposed. The field that holds the quarks together is a field of colour.
Colours are to quarks’ strong interaction what electric charge is to electrons’
electromagnetic interaction. It is the inherent strong “charge” that gluons carry.
Thus, gluons must be represented as mixtures of a primary colour and a possible
secondary anti-color. The gluons are massless and carry their colour and anti-
colour qualities in the same way that other particles do. For instance, the exchange
ofagluon RB by red and blue quarks. In effect, the red quark converts its redness
to a gluon and gains blueness through the simultaneous emission of anti-blueness.

NOTES

Self - Learning
Material

Elements of Particle Physics

175



Elements of Particle Physics

176

NOTES

Self - Learning
Material

On the other hand, the blue quark absorbs the R gluons, wiping out its blueness
and obtaining a red colour.

Charm, Bottom, and Top

The charmed quark was proposed as a possible explanation for the non-observed
inhibition of certain decay processes. The processes would have progressed at
detectable rates with only three quarks and should have been noticed. The charm
quark has a charge of e, a strangeness of 0, and a quantum number of charm of+
1. The charm of other quarks is zero.

Table 5.3 Charm, Bottom and Top

Generation Quark Symbol Charge, e Strangeness  Charm

1 Up u s 0 0
|

Down d =3 ] 0

2 Charm c Y 0 #1

Strange s -3 -1 0

3 Top t s 0 0
1

Bottom b -3 0 0

Quantum Numbers: The quarks have quantum numbers. The s-quark
has a quantum number called strangeness. In the strong and electromagnetic
interactions, the C, B, and T'quantum numbers are preserved, but in the weak
nteractions, they change by one unit. This indicates that in strong and electromagnetic
interactions, the amount of quarks minus antiquarks for each s, ¢, b, and  must be
constant, whereas in weak interactions, quark flavor changes with the preferred
sequence t — b — c—s. Because three quarks are required to create a baryon,
the baryon number for all quarks is 1/3. The quarks quantum numbers are
summarized in table.



Table 5.4 Quark Quantum Numbers and Properties.

Quantum

u d 5 c b t
Number
Charge 2/3 -1/3 -1/3 2/3 -1/3 2/3
Mass (GeV/c’) 0.39 0.39 0.51 1.55 ~35 ~ 30
Spin in ki 1/2 1/2 1/2 1/2 1/2 1/2
Isospin J 1/2 1/2 0 0 0 0
Isospin

1/2 ~1/2 0 0 0 0
Component I,
Baryon number B 1/3 1/3 1/3 1/3 1/3 1/3
Strangeness § 0 0 -1 0 0 0
Charm 0 0 0 1 0 0
Botton J&§ 0 0 0 0 -1 0
Top 77 0 0 0 0 0 1

T:=1/2 and -1/2 for the up and down quarks, respectively, because the
isospin quantum number 7'is 2. The strange quark’s and beauty quark’s quantum
number S are both -1. It’s a 1 because of the charm and the top quarks. The
isospin is a quantum number connected to the u-d quark difference, whereas the
hypercharge is a quantum number related to quark strangeness and baryon number.
The degeneracy is broken by the colour quantum number, which permits up to
three quarks of the same flavour to occupy a single quantum state.

Quark Masses: The « and d quarks, which have the identical mass of 0.39
GeV/c?, are the least massive of the six quarks. As a result, the lightest baryons,
nucleons, S particles, and lightest mesons, pions, must be formed entirely of these
two quarks. The s quark has a higher mass of 0.51 GeV/c?. It carries a strangeness
quantum number and is a required constituent of strange particles (with non-zero
strangeness), such as K-mesons and baryon 4. The c-quark, with a rest mass of
1.65 GeV/c?, is even more enormous. The rest mass of the h-quark is roughly 5
GeV/c’.

Mesons and Baryons

Hadrons are constructed entirely of six quarks and their antiquarks. The quarks’
properties are inferred from the mesons and baryons’ properties. To determine
the masses of quarks from known hadron masses, we must first determine the
strength of the interaction between quarks within the hadron. Hadrons are classified
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into two distinct classes: baryons and mesons. Because baryons are fermions,
quarks are also fermions. Due to the fact that the quark cannot exist as a free

particle, the hadron family’s lightest fermion must be composed ofthree quarks.
Thus

|p= =|und> and |n>=|udd>,

2

2 2 -1
QJJ:-—-P-- +(_]=]; Qﬂ: -
3 3 3 3

Y]
o |
il

Elementary Particle Symmetries

It has been demonstrated that the conservation law, in general, reflects an invariance
that corresponds to a suitable symmetry operation. The group from which the
theory gets its name is composed of the set of operators that represent the symmetry.
The irreducible representations of a group are a collection of states, quantities, or
objects that are subject to symmetry operations. Thus, using the appropriate group
operation, any of these states can be transformed into another in the same
representation. The fundamental representation is the one that contains the fewest
possible states for a given group.

Ifthe system is invariant with regard to movement in space, linear momentum
is conserved. Ifinvariance exists with respect to angular displacement, angular
momentum is conserved; if invariance exists with respect to time, energy is
conserved.

The simplest unitary group, U (1), contains transformations that modify
only particle wave functions by adding a phase factor. Charge Q, baryon number
B, lepton number L, and hypercharge Y are conserved as a result of invariance
under such changes.

Multicolored Quarks: Soon after the quark notion was proposed, scientists
realised that certain particles possessed quark compositions that violated the

exclusion principle. We used the principle of exclusion to electrons in atoms. The
principle is more general, however, and applies to all particles with half-integral

13
spin ( PRE) etc. ), which are collectively called fermions. Because all quarks are

fermions having spin, they are expected to follow the exclusion principle. The Q0
(sss) baryon, for example, appears to break the exclusion principle because it

3
includes three odd quarks with parallel spins, giving it a total spin of 5 In violation

of'the exclusion principle, all three quarks have the same spin quantum number.
Other examples of baryons made up ofidentical quarks having parallel spins are
the A™ (uuu) and the A" (ddd).

It was proposed that quarks have an additional attribute called colour charge
to alleviate this difficulty. This attribute is comparable to electric charge in many
ways, although it comes in six types rather than two. Quarks have the colours red,
green, and blue ascribed to them, while antiquarks have the colours anti-red, anti-
green, and antiblue. As a result, the colours red, green, and blue are used as
“quantum numbers” for the quark’s colour. To meet the exclusion principle, each



baryon’s three quarks must be of different colours. Look again at the quarks inthe ~ Elements of Particle Physics

baryons in Figure 6 and notice the colors. The three colours “neutralize” to white.

Mesons Barvons
p" p
@' d @ 4

{a
W
K n

@ q

Fig 5.7 Quark composition of two mesons and two baryons.

A quark and an antiquark in a meson must be of'a color and the corresponding
anti-color and will consequently neutralize to white, similar to the way electric
charges 1 and 2 neutralize to zero net charge. (See the mesons in Figure 5.7) The
apparent violation ofthe exclusion principle in the /? baryon is removed because
the three quarks in the particle have different colors.

Because each of'the six quarks comes in three colours, the new property of
colour boosts the number of quarks by a factor of three. Although the quark
model’s concept of colour was created to satisfy the exclusion principle, it also
provided a better explanation for certain experimental data. The updated theory,
for example, accurately predicts the lifespan ofthe p” meson.

5.9.1 Quantum Chromodynamics

Quantum chromodynamics, or QCD, is the name given to the theory ofhow quarks
interact with one another, similar to guantum electrodynamics (the theory ofthe
electrical interaction between light and matter). In quantum chromodynamics, each
quark is considered to have a colour charge, which is analogous to electric charge.
The colour force is the strong interaction that exists between quarks. As a result,
the terms “strong force” and “colour force” are frequently interchanged.

The nuclear contact between hadrons is mediated by massless field particles
known as gluons, as previously explained. The nuclear force is a side effect of the
strong force between quarks, as previously stated. The gluons are the strong force’s
mediators. The colour of a quark can vary when it emits or absorbs a gluon. A
blue quark emitting a gluon, for example, may become a red quark, while a red
quark absorbing this gluon may become a blue quark. The electric force between
charges and the colour force between quarks are analogous particles with the
same color repel, and those with opposite colors attract. Therefore, two green
quarks repel each other, but a green quark is attracted to an anti-green quark. The
attraction between quarks of opposite color to forma meson (g) is indicated in
Figure 5.8a. Differently coloured quarks also attract one another, although with
less intensity than the oppositely colored quark and antiquark. As seen in Figure
5.8b, acluster of red, blue, and green quarks all attract one another to create a
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colours.

Q.9

0 =g 0] Meson 'y Baryon

3 b

Fig 5.8 (a) A green quark is attracted to an anti-green quark. This forms a meson whose
quark structure is (q). (b) Three quarks of different colours attract one another to form
a baryon.

Although the nuclear force between two colourless hadrons is negligible at
large separations, the net strong force between their constituent quarks is not
exactly zero at small separations. This residual strong force is the nuclear force
that binds protons and neutrons to form nuclei. It is similar to the force between
two electric dipoles. Each dipole is electrically neutral. An electric field surrounds
the dipoles, however, because ofthe separation of the positive and negative charges.
As aresult, an electric interaction occurs between the dipoles that is weaker than
the force between single charges. We explored how this interaction results in the
Van der Waals force between neutral molecules.

According to QCD, a more basic explanation of the nuclear force can be
given in terms of quarks and gluons. Figure 5.9a shows the nuclear interaction
between a neutron and a proton by means of Yukawa’s pion, in this case a 7. This
drawing differs from the field particle is a n°; there is no transfer of charge from
one nucleon to the other. In Figure 5.9a, the charged pion carries charge from one
nucleon to the other, so the nucleons change identities, with the proton becoming
a neutron and the neutron becoming a proton.

n P
el uod - udwn
\ e

* annihilation
Because the pion /

. LR ddd
carries charge, the e /
proton and neutron 1 [
switch idennties. I f

- = I .4 d) L Y

/ un pai
b l|||'-|.‘|l||;1i.l:||| 4
% e uwou/f ddu
:- fi'fp p n

ik musiel
P4 W —
The exchanged e quark
pair makes up a 7 meson.
Yukiwa's pion model

a3 b

Fig 5.9 (a) A nuclear interaction between a proton and a neutron explained in terms of
Yukawa's pion-exchange model (b) The same interaction, explained in terms of quarks
and gluons



Although the nuclear force between two colourless hadrons is negligible at
great distances, the net strong force between their constituent quarks is not zero at
small distances. The nuclear force is the force that binds protons and neutrons
together to create nuclei. It’s similar to the force between two dipoles of electricity.
Electrically, each dipole is inert. Because the positive and negative charges are
separated, an electric field surrounds the dipoles. As a result, there is a lower
electric contact between the dipoles than between single charges. The Van der
Waals force between neutral molecules is the outcome ofthis interaction, as we’ve
already seen.

According to QCD, a more basic explanation of the nuclear force can be
given in terms of quarks and gluons. Figure 5.9a shows the nuclear interaction
between a neutron and a proton by means of Yukawa’s pion, in this case a . This
drawing differs from the field particle is a n’°; there is no transfer of charge from
one nucleon to the other. The charged pion carries charge from one nucleon to the
other, so the nucleons change identities, with the proton becoming a neutron and
the neutron becoming a proton.

Let’s look at the same interaction from the viewpoint of the quark model,
shown in Figure 5.9b. In this Feynman diagram, the proton and neutron are
represented by their quark constituents. Gluons are continuously emitted and
absorbed by each quark in the neutron and proton. A gluon’s energy can lead to
the formation of quark—antiquark couples. In pair manufacturing, this process is
identical to the generation of electron—positron pairs. When the neutron and proton
approach to within 1 fin of each other, these gluons and quarks can be exchanged
between the two nucleons, and such exchanges produce the nuclear force. Figure
8b depicts one possibility for the process shown in Figure 5.9a. Adown quark in
the neutron on the right emits a gluon. The energy of the gluon is then transformed
to create au pair. The u quark stays within the nucleon (which has now changed to
a proton), and the recoiling d quark and the u antiquark are transmitted to the
proton on the left side ofthe diagram. Here the u annihilates a u quark within the
proton and the d is captured. The net effect is to change a u quark to a d quark,
and the proton on the left has changed to a neutron.

As the d quark and antiquark in Figure 5.9b transfer between the nucleons,
the d and exchange gluons with each other and can be considered to be bound to
each other by means of the strong force. Looking at Table below, we see that this
combination is a -, or Yukawa’s field particle! Therefore, the quark model of
interactions between nucleons is consistent with the pion-exchange model.

Table 5.5 Quark Composition of Mesons

Antiguarks

h < . d u
b ¥ (bh) B~ (Eh) B (#h) B (elh) B (iih)
£ B (o g (e n,* (e b {de) ne {iic)
Quarks s B®  (bs) D- (=] my (5s) K" (ds) K- (i)
d n () D= () R (=) 7o (dd) w (e}
] B {bu) T {cu) K" (] w* (clu) 70 {1am)

Nede The top spuark does not form messmm becase it decays ioo quickly
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Check Your Progress

How many quarks is a baryon made up of?

What is quantum chromodynamics?

5.10 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS
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10.

11.
12.

. Inthe mid-1930s, proton, electron, neutron, photon, neutrino and positron

were considered to be the primary elements of matter.

. A Feynman diagram is a qualitative representation of the relationship

between time on the vertical axis and space on the horizontal axis.

. Bosons are particles whose intrinsic angular momentum is a multiple ofh.

Fermions are all particles with a spin that is only half integral.

. Fundamental interactions can be defined as the fundamental forces that act

between the primary particles that constitute all matter.

. A quantum number is one of numerous integral or half-integral variables

that uniquely identify the state of a physical system such as an atom, a
nucleus, or a subatomic particle. Quantum numbers broadly refer to discrete
(quantized) and conserved properties, such as energy, momentum, charge,
baryon number, and lepton number.

. The neutrino travels across space like a left-handed screw, but the

antineutrino travels like a right-handed screw. Thus, the neutrino has a left-
handed helicity, whereas the antineutrino has a right-handed helicity.

. Charge conjugation is a mathematical process that turns a particle into an

antiparticle by reversing the electric charge sign, for example every charged
particle has an oppositely charged antimatter counterpart, or antiparticle,
according to charge conjugation.

. Physicists can distinguish between matter and antimatter with certainty

because of the violation of CP symmetry.

. Parity is a term that refers to the symmetry of the wave function used to

describe the system.

In the absence of an electromagnetic field, one can envision a group of
symmetry operators capable of transforming a neutron into a proton (or a
proton into a neutron). The proton and neutron would therefore serve as
the group’s fundamental representations. The presence of such symmetry
implies that something is constant in the presence ofa strong interaction.
This is referred to as isospin, and it is /2 for both the proton and neutron.

A baryon is made up ofthree quarks.

Quantum chromodynamics, or QCD, is the name given to the theory of
how quarks interact with one another. In quantum chromodynamics, each
quark is considered to have a colour charge, which is analogous to electric
charge. The colour force is the strong interaction that exists between quarks.
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5.11 SUMMARY

e Hideki Yukawa, a Japanese physicist, proposed the first theory explaining
the nature of the nuclear force in 1935, an accomplishment that earned him NOTES
the 1949 Nobel Prize in Physics.

e The pion comes in three varieties, corresponding to three charge states: 7",
7 and 7°. The n* and 7 particles (7 is the antiparticle of ©) each have a
mass 0f 139.6 MeV/c?, and the n° mass is 135.0 MeV/c?. The two muons
which exist are p- and its antiparticle p*. Pions and muons are very unstable
particles.

e The interaction of two particles can be described graphically using a Feynman
diagram. A Feynman diagram is a qualitative representation of the relationship
between time on the vertical axis and space on the horizontal axis. It is
qualitative in that the exact time and space values are irrelevant; however,
the overall appearance of the graph provides a visual depiction of the process.

¢ The photon that transfers energy and momentum from one electron to the
next is referred to as a virtual photon in the electron—electron interaction
because it vanishes during the interaction without being observed.

e Fermi-Dirac statistics are applicable to particles constrained by the Pauli
Exclusion Principle; fermions are particles that follow the Fermi-Dirac
statistics. Fermions include leptons and quarks.

¢ In general, bosons operate as a medium for the transmission of forces
between fermions; the photon, gluon, W, Z, and Higgs particles are all
examples of bosons.

e The proton and neutron are the lightest members ofthe baryon class, whereas
hyperons are the heaviest.

¢ The elementary particles are classified into two broad categories known as
bosons and fermions. Bosons are particles whose intrinsic angular
momentum is a multiple of *. Fermions are all particles with a spin that is
only half integral.

e This category includes the proton and particles heavier than protons. Protons
and neutrons are referred to as nucleons, while the others are referred to as
hyperons. Each baryon has a corresponding antiparticle.

¢ Pions, kaon, and n- mesons are collectively referred to as mesons. Baryons
and mesons are jointly called hadrons and are the particles of strong
mteraction.

¢ Fundamental interactions can be defined as the fundamental forces that act
between the primary particles that constitute all matter. The fundamental
teractions are classified as follows: (i) Strong interaction (i) Electromagnetic
interaction (iii) Weak interaction (iv) Gravitational interaction.

e The strong interaction is the force that holds nucleons together in the atomic
nucleus (nuclear forces).
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Elements of Particle Physics e Allinteractions occur within a time range of approximately 102 s. Their
degradation occurs over a period of around 10-'° s. Due to the length of
time required for particles to respond to such an interaction, the force

involved must be very weak in comparison to powerful nuclear forces.

NOTES ¢ A quantum number is one of numerous integral or half-integral variables

that uniquely identify the state of a physical system such as an atom, a
nucleus, or a subatomic particle. Quantum numbers broadly refer to discrete
(quantized) and conserved properties, such as energy, momentum, charge,
baryon number, and lepton number.

e In intense contact, a quantity called hypercharge (Y) is conserved. The
hypercharge of a particle is equal to the product of its strangeness and
baryon numbers, ¥ =S + B. Because B=0 for mesons, hypercharge equals
weirdness.

¢ A significant set of conservation laws is connected to parity (P), charge
conjugation (C), and time reversal symmetries (T).

¢ Charge conjugation is a symmetry operation that replaces each particle in a
system with its antiparticle. Charge parity (C) is conserved if the antisystem,
or antimatter counterpart, exhibits the same physical phenomena.

¢ Antiparticles are defined as particles that are opposed to one another. They
have the same mass and spin as one other, but they have the opposite
charge. When they come into contact with one other, they annihilate each
other by releasing photons into the environment.

e Particle-antiparticle annihilation would result in a significant amount of energy
being released.

e Charge conjugation is a mathematical process that turns a particle into an
antiparticle by reversing the electric charge sign, for example every charged
particle has an oppositely charged antimatter counterpart, or antiparticle,
according to charge conjugation.

¢ Quarks, the fundamental building blocks of K-mesons, exert a weak force
on one another that causes this phenomenon. The weak force appears to
act on a quantum mixture of two sorts of quarks, rather than on a pure
quark state, as identified by the “flavour” or type of quark.

e Parity in time 7 denotes how a wave function behaves when #1is replaced
by —#. Time reversal is the symmetry operation that corresponds to the
conservation of time parity. Time reversal symmetry indicates that the
direction of time is irrelevant, and hence that the inverse of any process
that is capable of occurring is also capable of occurring.

e Inthe absence of an electromagnetic field, one can envision a group of
symmetry operators capable of transforming a neutron into a proton (or a
proton into a neutron). The proton and neutron would therefore serve as
the group’s fundamental representations. The presence of such symmetry
implies that something is constant in the presence of a strong interaction.
This is referred to as isospin, and it is /2 for both the proton and neutron.
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e The quark model was proposed in 1964 by Murray Gell-Mann and G. Elements of Particle Physics
Zweig. This theory is based on the notion that hadrons are constructed
from a finite number of “fundamental” components known as quarks.

e Hadrons may be baryons or mesons. A baryon is made up of three quarks. NOTES

¢ A necessary component of the quark model with colour is that all
observable meson and baryon states are “colourless”, that is, either
colour or anti-color combinations of mesons, or equal mixtures of R, B,
and G for baryons.

e Hadrons are constructed entirely of six quarks and their antiquarks. The
quarks’ properties are inferred from the mesons and baryons’ properties.
To determine the masses of quarks from known hadron masses, we must
first determine the strength of the interaction between quarks within the
hadron.

e The nuclear contact between hadrons is mediated by massless field
particles known as gluons, as previously explained. The nuclear force is a
side effect of the strong force between quarks, as previously stated. The
gluons are the strong force’s mediators. The colour of a quark can vary
when it emits or absorbs a gluon.

¢ Quantum chromodynamics, or QCD, is the name given to the theory of
how quarks interact with one another, similar to guantum
electrodynamics (the theory of the electrical interaction between light
and matter). In quantum chromodynamics, each quark is considered to

have a colour charge, which is analogous to electric charge.

5.12 KEY WORDS

¢ Pion: In particle physics, a pion is any of three subatomic particles: mtp,
nz, and . Each pion consists of a quark and an antiquark and is therefore
a meson. Pions are the lightest mesons and, more generally, the lightest
hadrons.

e Muon: The muon is an elementary particle similar to the electron, with an
electric charge of “1 e and a spin of 1/2, but with a much greater mass. It is
classified as a lepton.

¢ Quantum number: It refers to the set of numbers used to describe the
position and energy of the electron in an atom are called quantum numbers.
There are four quantum numbers, namely, principal, azimuthal, magnetic
and spin quantum numbers. The values of the conserved quantities of a
quantum system are given by quantum numbers.

e Antiparticle: In particle physics, every type of particle is associated with
an antiparticle with the same mass but with opposite physical charges.

e Quarks: A quark is a type of elementary particle and a fundamental
constituent of matter. Quarks combine to form composite particles called
hadrons, the most stable of which are protons and neutrons, the components

ofatomic nuclei. Self - Learning
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5.13 SELF ASSESSMENT QUESTIONS AND

EXERCISES

NOTES

6.

AN S

Short Answer Questions
1.

State the classification of elementary particles.

2. Write a short note on particles and anti-particles.
3.
4
5

What do you mean by conservation of parity?

. What is time reversal symmetry?

. Write in briefabout quark model.

What are multi-coloured quarks?

Long Answer Questions
1.
2.

Explain the types of fundamental interactions.

Describe the following:

(a) Baryon Number

(b) Lepton Number

(c) Strangeness Number

(d) Isospinand Isospin Number

Discuss the elementary idea of SU(2) and SU(3).

Explain Gell-Mann-Okubo mass formula.

[lustrate the compositions of hadrons according to the quark model.

Describe quantum chromodynamics.
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