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INTRODUCTION

The indication that all matter is fundamentally composed of elementary 
particles dates from at least the 6th century BC. The early 20th century 
explorations of nuclear physics and quantum physics led to proofs of nuclear 

physics that studies the nature of the particles that constitute matter and 

their interactions. 

Nuclear Physics and Particle Physics

for recapitulation.
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UNIT 1 BASIC PROPERTIES OF 
NUCLEI
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 1.0 Introduction
 1.1 Objectives
 1.2 Methods for Determination of Nuclear Size and their Interpretations
 1.3 Binding Energy Curve for Nuclei and Its Consequences
 1.4 Nuclear Spin
 1.5 Magnetic and Quadrupole Moments of Nuclei

 1.5.1 Quadrupole Moments of Nuclei
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 1.13 Further Reading

1.0 INTRODUCTION
The nucleus of an atom, like the atom itself, is a bound quantum system and 
hence can exist in different quantum states characterized by their energies, 
angular momenta etc. The lowest energy state is known as the ground state 
and the nuclei normally exist in this state. The properties of the nuclei which 
will be discussed in this chapter correspond to their ground states and are 
usually called their static properties in contrast to the dynamic characteristics 
of the nuclei which are exhibited in the processes of nuclear reactions, nuclear 
excitation and nuclear decay. The important static properties of the nuclei 
include their electric charge, mass, binding energy, size, shape, angular 
momentum, magnetic dipole moment, electric quadrupole moment, statistics, 
parity and iso-spin. 

The magnetic moment of an atomic nucleus is derived from the spin 
of protons and neutrons and is known as the nuclear magnetic moment. The 

structure, although it is mostly a magnetic dipole moment. Although the 
relationship between the two values is not obvious or easy to calculate, all 
nuclei with nonzero spin also have a nonzero magnetic moment.

The nuclear magnetic moment of an element changes from isotope to 
isotope. The nuclear spin and magnetic moment are always 0 for a nucleus 
in which the number of protons and neutrons are both even in its ground 
state (lowest energy state). The nucleus often possesses nonzero spin and 
magnetic moment when there are odd numbers of protons and neutrons. The 
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nuclear magnetic moment is not the sum of nucleon magnetic moments, and 
this quality is attributed to the tensorial character of the nuclear force, as in 
the case of the most basic nucleus, deuterium, which contains both proton 
and neutron.

In this unit, you will learn about the methods for determination of 
nuclear size and their interpretations, binding energy curve for nuclei and 
its consequences, nuclear spin, magnetic and quadrupole moments of nuclei, 
Schmidt lines, semi-empirical mass formula and its applications to mass 
parabolas and mirror nuclei and isotopic spin formulation. 

1.1 OBJECTIVES
After going through this unit, you will be able to:

 • Discuss the methods for determination of nuclear size and their 
interpretations

 • Explain about the binding energy curve for nuclei and its consequences

 • Analysis magnetic and quadrupole moments of nuclei

 • Describe the Schmidt lines

 • Understand the basic concept of semi-empirical mass formula and its 
applications to mass parabolas

 • Learn about the mirror nuclei and isotopic spin formulation

1.2 METHODS FOR DETERMINATION 
OF NUCLEAR SIZE AND THEIR 
INTERPRETATIONS

Rutherford’s theory of -particle scattering gives us an idea about the 
smallness of the nuclear size. Later, Rutherford and his collaborators 
performed scattering experiments with relatively higher energy -particles 
and observed departure from Rutherford scattering formula at large angles; 
i.e., for small impact parameters b. When b becomes comparable to the 
nuclear radius R, the -particle begins to feel the effect of the nuclear force. 

Rutherford’s formula ( R) will be different from unity, we get

  cot
θc

2
 =

′
4 0

2

2

πε Mv R
ZZ e

 

where Z  = 2. For  < c, / R = 1.

By noting the limiting angle c above which anomalous scattering 
takes place ( / R  1), Rutherford estimated the values of the nuclear radius 
R for a few light elements e.g., magnesium. These were of the order of a few 
times 10–15 m.
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These estimates of Rutherford were not very accurate. In later years 
more accurate methods for the measurement of the nuclear radius have been 
developed. It should be noted that when we talk of the nuclear radius, we 
assume that the nucleus has a spherical shape. This is expected because of 
the short range character of the nuclear force. However, small departures 
from the sphericity of certain nuclei have been observed. This is inferred 
from the existence of electric quadrupole moment of these nuclei which is 
zero for the spherical nuclei. The departure from sphericity is however small. 

In the above discussion, it has been assumed that the nuclear charge is 
uniformly distributed. Experiments show that this is very nearly so and the 
nuclear charge density c is approximately constant. Experimental evidences 
also show that the distribution of nuclear matter (i.e., protons and neutrons) 
is nearly uniform, so that the nuclear matter density m is also approximately 
constant. Since nuclear mass is almost linearly proportional to the mass 
number A, this means that
  m ~ A/V = constant

i.e., the nuclear volume V  A. Assuming a spherical shape of the nucleus 
with a radius R, we then get

  V = ∝
4

3
3π R A

or,  R  A1/3

so that R = r
0
 A1/3 ...(1.1)

where r
0
 is a constant, known as the nuclear radius parameter.

It should be noted that the nuclear radius, as discussed above, 
is the radius of nuclear mass distribution. We may also talk about the 
radius or nuclear charge distribution. Since the nuclear charge parameter 
(i.e., the atomic number) Z is almost linearly proportional to the mass  
number A and the nuclear charge density c is approximately the same 
throughout the nuclear volume, the distribution of the nuclear charge +Ze 
should follow the pattern of nuclear mass distribution. Hence the charge 
radius and the mass radius of the nucleus may be expected to be very nearly 
the same. This is due to the strong attractive forces within the nucleus. There 
are strong evidences to show that this is very nearly the same for both types 
of nucleons, viz., the protons and the neutrons and hence their distributions 
within the nuclear volume follow the same pattern.

We now consider the potential energy diagram shown in Fig. 1.1, for 
a charged particle like a proton or an -particle, which is acted upon by the 
electrostatic repulsive force of the nuclear charge +Ze when it is outside the 
nucleus (r > R), while inside the nucleus (r < R) a negative potential due to 

r is the 
distance from the nuclear centre. We assume arbitrarily that electrostatic 
force is not effective inside the nucleus, while the nuclear force becomes 
zero at the nuclear surface r = R.
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Fig. 1.1 Potential energy diagram for a nucleus.

Figure 1.1, shows that the nucleus is surrounded by a Coulomb potential 
barrier Vc = ZZ e2/ 4

0
 r for an incident particle of charge Z e for r > R. At 

the nuclear surface the barrier height is given by

  VR =
′ZZ e

R

2

04πε
 

 ...(1.2)

For the uranium nucleus with Z = 92 and R = 8 × 10–15 m , VR  16.5 
MeV for a proton, while VR  33.1 MeV for an -particle taking r

0
 = 1.3 × 

10–15 m.

Classically, a charged particle of energy E less that VR cannot 
escape from the nucleus, nor can enter it from outside. However quantum 
mechanically, because of the uncertainty principle, the position of the particle 

the particle penetrating through the barrier if E, VR. If somehow the particle 
with an initial energy +E outside the nucleus reaches the point r = b where 
Vc = E, then it will be repelled by the electrostatic force of the positive charge 

account for the -disintegration of the heavy nuclei. 

The radius R
as distinct from the charge of mass radius discussed previously and is slightly 
larger than the latter.

The charge radius is the most directly measurable one. It can be 
determined by several methods of which the method based on the scattering of 
high energy electrons (> 100 MeV) is the most accurate (see below). Besides, 
there are several other methods. The potential radius must be separately 

range is known precisely.

The nuclear radius is usually expressed in units of 10–15 m which by 
international convention is known as the femtometer, abbreviated as fm 

fermi is more often used.
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as follows:

  r2  =

( )

( )

∞

∞

∫

∫

r r r dr

r r dr

2 2

0

2

0

4

4

. π ρ

π ρ

 ...(1.3)

where  (r) is the nuclear charge density. For a uniformly charged sphere 
(  = constant) of radius R, this gives (since  = 0 for r > R)

  r2  = =
∫

∫

r dr

r dr

R

R

R

4

0

2

0

23

5

 so that R2 =
5

3
2r  

 ...(1.4)

Measurement of the Charge Radius
(i) Electron Scattering Experiment:

Scattering of high energy electrons by nuclei constitutes the most direct 
method of measuring the charge radius of the nucleus and the nature of the 

force acting on the electrons. Only the Coulomb attractive force due to the 
nuclear charge acts on them. If the de Broglie wavelength of the electrons is 
small compared to the nuclear radius, then the electron scattering experiment 
can reveal many details of the nuclear charge distribution.

Now according to de Broglie’s theory of wave-corpuscular dualism, 
the wavelength of a relativistic electron of rest mass m

0
, having the total 

energy E > m
0
c2 is given by

   =
+( ){ }

c h

e V V m c e2 0
2

1 2
/

/

where eV = Ek is the kinetic energy of the electron, e being its charge. 
Substituting the values of c, h, e and m

0
, we get

   =
×

+ ×( ){ }
12 4 10

1 02 10

3

6
1 2

.

.
/

V V
Å

where V is in volts. For electrons of kinetic energy Ek = 200 MeV, V = 200 
× 106 volts, which gives
   = 6.19 × 10–5 Å

 and   =
2

≈ =−λ
π

10 115 m  fm

This is considerably smaller than the radius of most nuclei.

This shows that the use of electrons of a few hundred MeV energy can 
reveal considerable details regarding nuclear charge distribution.
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The pioneering experiments on the elastic scattering of electrons by 
nuclei were carried out by R. Hofstadter and his group at Stanford University 
in the U.S.A. using the linear accelerator (SLAC), providing electron beam 
with energy upto 550 MeV. Their experimental arrangement is shown in 
Fig. 1.2.

 Fig. 1.2 High energy electron scattering experiment. A-Accelerator; B-Beam 
stopper; M1, M2

The high energy electron beam from the linear accelerator A
by means of the magnet M

1
 and collimated by the slit system S

magnet M
2
 then directs the beam on to the target inside the scattering chamber 

. The elastically scattered beam of electrons is then analysed by the large 
magnetic spectrometer P.

The quantum mechanical expression for the differential scattering 
cross-section of a relativistic electron from a spin-less target at the centre of 
mass angle  is given by
  ( ) = M ( ) {F(q)}2 ...(1.5)

where ( ) is the scattering cross section and M ( ) is the Mott cross section 
of elastic scattering from a point charge +Ze and is given by

  M ( ) =
⎛

⎝⎜
⎞

⎠⎟
/2
/2

Ze
E

2

0

2 2

48πε
θ
θ

cos

sin
 ...(1.6)

E is the energy of the electrons in the C.M. system. Eq. (1.6) is valid for 
low Z elements only. F(q) is called the form factor which gives the ratio by 
which the scattering cross-section is reduced when the charge +Ze is spread 

electron waves scattered from different parts of the target nucleus, F(q) < 1. 
Using the Born approximation method of quantum mechanics, it can be 
shown that

  F(q) = ∫1

Ze
r i q r dρ τ( ) . . exp ( )  ...(1.7)

   = ∫4π
ρ

Zeq
r q r r dr( )(sin )
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where q = − ′ = − ′( )k k p p
1

 ...(1.8)

is a measure of the momentum transfer p – p  in elastic scattering.

| q | depends on the angle of scattering and is given by

  | q | =
2

2 p
sin

θ
 ...(1.9)

(r) is the charge density within the nucleus and the exponential is a phase 
factor over the volume. The form factor F(q) is obviously equal to the 
Fourier transform of the charge density. It can be determined directly by 
scattering experiment from the ratio ( )/ M( ). Then by using the inverse 
Fourier transformation, it is possible to determine (r). This is possible if 

. When this 
is not possible, a form of the density distribution, has to be assumed and best 

in the expression. A particularly suitable form for (r) is given by

  (r) =
+ −( ){ }

0ρ
1 1 2exp r R a/ /

 ...(1.10)

This is known as the Fermi distribution. The parameters R
1/2

 and a 

distribution has the form shown in Fig. 1.3.

Fig. 1.3 Fermi distribution for the nuclear charge density.

Obviously for r = R
1/2

,  = 
0
/2 where 

0
 is the charge density at the 

centre (r = 0). Thus R
1/2

 is the half-value radius. The parameter a determines 
the skin-thickness of the nucleus, which is the thickness in which (r) falls 
from 0.9 

0
 to 0.1 

0
 at the nuclear surface. This comes out to be t = 4.4 a.

If we approximate the above distribution by a uniform charge 
distribution, then the corresponding equivalent radius can be written as
  R = r

0 
A1/3

where r
0
 = 1.32 × 10–15 m for A < 50 and r

0
 = 1.21 × 10–15 m for A > 50. This 

volume, if we assume that the mass and charge radii are equal.

The value of a is taken to be the same for all nuclei:
  a  0.5 × 10–15 m = 0.5 fm.
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The mass of experimental data so far collected shows that for the 
spherical nuclei with A > 15, the charge distribution has a core of uniform 
density, surrounded by a skin of thickness 2.3 fm. The radius of half the 
maximum density R

1/2
 = 1.07 A1/3 fm. For 4  A  15, there is no uniform 

core and the density decreases steadily with increasing r. There is some 
indication that for all nuclei there is slight diminution in the density near the 
centre. Further, the charge density in the core region decreases somewhat 
as Z increases.

As stated before, the distribution of nuclear matter is very similar to 
that of nuclear charge. In Figs. 1.4 (a) and (b) we compare the nuclear charge 
and nuclear mass distributions for the three nuclei 16

8
O, 109

47
Ag and 208

82
Pb. In 

Table 1.1 are shown the different parameters for nuclear matter distribution.

Table 1.1

Nucleus R1/2 (fm) a (fm) R/A1/3 (fm)
16O 2.61 0.513 1.04
109Ag 5.33 0.523 1.12
208Pb 6.65 0.526 1.12

Assuming a uniform mass distribution, if we write A =
3

4 3π
ρR m then the 

experimental data gives the radius of uniform mass distribution R = 1.1A1/3 
fm and m = 0.17 nucleon per fm3. The nuclear mass density is approximately 
the same at the centre for all nuclei. It increases slightly with A and tends to 
the limiting value of 0.17 nucleon/fm3.

Fig. 1.4 Experimentally determined (a) nuclear charge and (b) nucleon distributions.
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(ii) Muonic x-ray Method:
There are some alternative methods of determining the mean squared 

radius of the nuclear charge distribution. One of these is based on the study 
of the so called mesonic x-rays.

There is a large number of unstable fundamental particles, both charged 
and neutral, which are observed in nature (usually in the cosmic rays) or 
can be produced in the laboratory in high energy interactions. One of these 
is the muon (previously called the -meson). The muons carry one unit of 
electronic charge. Both positive and negative muons + and – are known. 
They are heavier than the electrons, having rest-mass about 207 me where 
me is the electronic mass. They are subjected to the same type of interaction 
with the nuclei as the electrons, so that only the electrostatic Coulomb force 

interaction) does not act on them.

When a beam of – is passed through matter, some of them are readily 
captured in electron-like orbits round the nuclei of the capturing atoms 
forming a muonic atom. The radii of the muonic orbits are however much 
smaller than the electronic orbits, being smaller by the factor me/m  ~ 1/207.

We know from Bohr’s theory of the spectra of hydrogen-like atom that 
the radius of the nth electronic orbit is

  re =
4 0

2 2

2

πε n
m Zee

where Ze is the nuclear charge. So the radius of the muonic orbit should be

  r  =
4 0

2 2

2

πε

μ

n
m Ze

 ...(1.11)

Here it is assumed that the nuclear charge e is concentrated at the 
centre. For a heavy element like gold (Z = 79), the radius of muonic K-orbit 
(n = 1) will then be

  r = × = × = ×− −m
m Z

e

μ
0 529 3 23 10 3 23 105 15. . .Å Å  m

This is much smaller than the radius of the gold nucleus which is
  R(Au) = r

0
A1/3 = 1.2 × 10–15 × (197)1/3 = 7 × 10–15 m

Thus the muonic K-orbit may be expected to lie wholly inside the 
nucleus in the case of heavy atoms.

When the muon is captured by an atom, it passes from the loosely bound 
outer orbits into the more tightly bound inner orbits. During the process, 
electromagnetic radiation is emitted. However the energy of such radiation 
is much higher than in the case of electronic transitions. The energy of the 

– in the nth orbit will be on point nucleus assumption

  E = −
m Z e

n
μ

π ε

2 4

2
0
2 2 232

 ...(1.12)
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Thus in the K-orbit of the gold atom, the orbital energy of – will be

  E(Au) = − × = −13 6 17 62. . .
m
m

Z
e

μ
 MeV

This shows that the radiation emitted in the transitions in a muonic atom 
will lie in the extremely short wavelength x-ray region. From a measurement 
of these x-ray energies it is possible to estimate the binding energies of the 
muon in different orbits. However the binding energy in a particular orbit will 

a part of the captured muonic wave function lies within the nucleus. As we 
have seen above, this is expected for the heavier nuclei. The above mentioned 
reduction in energy from that expected for a point nuclear charge can be 
theoretically correlated to the mean squared radius of the nuclear charge 
distribution. As an example, for Pb atom, the transition 2P

3/2
  1s

1/2
 results 

in the emission of e.m. radiation of energy 6.02 MeV while that expected on 
point nucleus hypothesis is 16.4 MeV. The calculations are usually made on 

The nuclear radius parameter estimated from muonic x-ray 
measurements are in reasonable agreement with the electron scattering 
experiments:
  r

0
 = (1.15 ± 0.03) × 10–15 m = 1.15 ± 0.03 fm

(iii) Mirror Nucleus Method:

The third method of estimating the charge radius of a nucleus is based 
on the study of the energetics in the + transformation of the mirror nuclei.

Pairs of isobaric nuclei, such as 11
6
C and 11

5
B, 13

7
N and 13

6
C etc. are known 

as mirror nuclei. The proton number (Z) and the neutron number (N) in them 
are interchanged and differ by one unit, so that their mass number is A = 2, 
Z – 1 where Z
having the atomic number (Z + 
active and undergoes + transformation into the second.

All nuclear masses can be fairly well represented by a semi-empirical 
formula, known as the Bethe-Weizsäcker mass formula, which contains a 
term depending on the Coulomb repulsion between the protons. If the + 
transformation energy (Q +) is calculated using this formula, then Q + is 
found to vary linearly with A2/3, the constant of proportionality depending 
on the value r

0
, the nuclear radius parameter.

r
0
 estimated from these studies is found to agree fairly well with those 

estimated by the other methods discussed earlier.

  r
0
 = (1.28 ± 0.05) × 10–15 m = 1.28 ± 0.05 fm

The different methods of measurement of the charge radius give a mean 
value of the radius parameter r

0
 = (1.19 + 0.1 A–1/2) fm. As can be seen, this 

is slightly dependent on A.

Measurement of Potential Radius
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which this force is derived is thus of short range and has a steep slope at the 
edge of the nucleus. It owes its origin to the strong short range internucleon 
interaction. There are evidences to indicate that this is independent of the 
nature (i.e., charge state) of the nucleons, so that the p – p and n – n forces are 
equal (charge symmetry). In addition, the p – n force is also the same in the 
same quantum state ( S
nuclear interaction will extend upto a distance of the same order of magnitude 
as the range of the internucleon interaction beyond the radius R

0
 of nuclear 

charge distribution. This is the radius shown in the potential energy diagram 
(Fig. 1.1) and is known as the potential radius, which is thus slightly larger 
than R

0
. We discuss below two different methods of estimating the potential 

radius.

(i) Life Time of Alpha Emitters:

Historically the earliest method of estimating the potential radius was based 
on the study of alpha-disintegration of heavy nuclei like 238U, 226Ra etc. 
Alpha-disintegration of heavy nuclei takes place due to the penetration of 
the Coulomb potential barrier surrounding the nucleus. According to this, 

   = exp (– G) ...(1.13)

where G =
⎛

⎝⎜
⎞

⎠⎟
− −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−2 2

0

1 2

1
2

2

MZe b R
b

R
b

R
bπε

/

cos  ...(1.14)

where R is the nuclear radius (potential radius) and b is the distance from 
the centre to the point where the energy E of the -particle is equal to the 
Coulomb potential energy Vc = 2 Ze2/4

0 
r. Here Z is the atomic number of 

the residual nucleus. M and 2e are the mass and the charge of the -particle; 
r is measured from the centre of the nucleus.

If n be frequency of collision of the -particle against the nuclear wall 
inside the nucleus, then the probability of penetration through the barrier per 
second is p = . The reciprocal of this is the mean life of -decay which 
can be measured:

  m = =
1 1

p nT
 

 ...(1.15)

Thus by measuring the mean life it is possible to estimate the potential 
radius R. Writing R = r

0
 . A1/3 as before, the potential radius parameter is 

found to be r
0
 = 1.48 × 10–15 m.

It should be noted that though the above theoretical formula does not 
reproduce the -decay life times accurately and may deviate by several orders 
of magnitude from the experimental value, it gives a much more precise 
estimate of the nuclear radius R, even from a rough knowledge of m.

r
0
 estimated by this method is somewhat higher than that for the charge 

-particle 
(R  – 1.2 × 10–15 m) gives the radius of the residual nucleus RA such that 
R = RA + R  where RA can be expressed’by the formula
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  RA = r
0A A1/3

 The new parameter r
0A = 1.4 × 10–15 m ...(1.16)

(ii) Neutron Scattering Experiments:
In these experiments, mono-energetic beams of fast neutrons are 

allowed to be scattered by nuclei. Since neutrons interact mainly by the 

detects the edge of the nuclear potential well. It can be shown that the total 
cross-section for fast neutrons is given by
   = 2  (R + )2 2 R2 ...(1.17)

where the de Broglie wavelength  << R, which happens at high energies, 
being equal to /2 . Also at such high energies, the neutron absorption 

cross section is given by
  a =  R2

assuming a perfectly black nucleus which absorbs all the neutrons falling on it.

The measurements of the above cross-sections give a radius parameter 
r

0
 = 1.25 × 10–15 m.

charged particles which interact strongly with the nuclei at close range, such 
as -particles or protons upto a few hundred MeV have also been made. In 
the -particle experiments, the critical angle of scattering at which deviations 
are observed from the Rutherford scattering is measured. c can be correlated 

begins to be felt .

In proton elastic scattering experiments (5 to 200 MeV), diffraction 
patterns are observed due to the extension of the potential beyond the nuclear 

data. The following potential form due to Woods and Saxon (optical potential) 
is usually employed to analyse the data (see Ch. XI):

  V(r) =
+ −( ){ }

V
r R a

0

1 21  exp / /
 ...(1.18)

This has a radial dependence similar to the Fermi charge distribution 
discussed in this book. R

1/2
 and a have the same meanings as before.

A value r
0
 = 1.33 × 10–15 m is derived from the experimental data.

The potential radius is about 0.7 fm greater than the charge radius which 
may be taken to be the measure of the range of nuclear force.

We can summarize the results of the different types of measurements 
as below:

 (a) Mass distribution: r
0m = 1.1 × 10–15 m.

 (b) Equivalent square well for charge distribution: r
0c = (1.2 to 1.3) × 10–15 

m.

 (c) Optical potential: r
0v = 1.25 × 10–15 m.
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Check Your Progress

 1. What important work did Rutherford do?

 2. State the electron scattering experiment.

 3. What do you understand by the meson?

 5. What do you mean by life time of alpha emitters?

1.3 BINDING ENERGY CURVE FOR 
NUCLEI AND ITS CONSEQUENCES

Accurate determination of the atomic masses shows that these are very close 
to whole numbers, which are actually the mass numbers of the atoms, when 
the masses are expressed in the units of atomic masses in the 12C scale. The 
same is also true if the atomic masses are expressed in 16O scale.

Considering the 12C scale, the atomic mass of 12C is exactly 12 u. The 
masses of all other atoms, though close to the corresponding mass numbers 
(integral), differ slightly from the latter.

The masses of a few atoms listed in Table 1.2 below will bear this out.

Table 1.2

Atom Atomic Mass (u) Mass Defect (u) Packing Fraction (u)
1n 1.008665 + 0.008665 –
1H 1.007825 + 0.007825 –
2H 2.014102 + 0.014102 + 0.007051
4He 4.002603 + 0.002603 + 0.00006507
12C 12 0 0
16O 15.994915 – 0.005085 – 0.0003178
31P 30.973764 – 0.026236 – 0.0008463
59Co 58.933189 – 0.066811 – 0.0011324
75As 74.921597 – 0.078403 – 0.0010454
127I 126.90447 – 0.09553 – 0.0007522
197Au 196.96654 – 0.03346 – 0.0001698
226Ra 226.02543 + 0.02543 + 0.0001125
238U 238.05082 + 0.05082 + 0.0002135

The table shows that for very light atoms with A < 20 and for very 
heavy atoms with A > 180, the atomic masses are slightly greater than the 
corresponding mass numbers. In between the above values of A, the atomic 
masses are slightly less than the corresponding mass numbers.

The departure of the measured atomic mass M (A, Z) from the mass 
numbers (A M and A is known 
as the mass defect M :
  M = M (A, Z) – A ...(1.19)
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For example since the atomic mass of 4He (4.002603 u) is slightly 
greater than the mass number 4, its mass defect is + 0.002603 u. On 
the other hand 75As has the atomic mass 74.9215967 u, which is 
slightly less than the mass number 75. Its mass defect is – 0.078403 u.  
Thus the mass defect can be both positive and negative. For very light and 
very heavy atoms, the mass defect is positive, while in the intermediate region 
it is negative (Refer Table 1.2).

The mass defect of an atom divided by its mass number is known as 
the packing fraction ( f  ), a term introduced by F.W. Aston. Thus

  f =
ΔM
M

   =
( )

−
M A Z

A
,

1   ...(1.20)

In the last column of Table 1.2, the packing fractions of the different 
atoms are listed. f  has the same sign as M and is positive for very light and 
very heavy atoms. It is negative for the atoms in the intermediate region.

From Eq. (1.20), we have
  M (A, Z) = A (1 + f  )

It is found that the packing fraction f varies in a systematic manner 
with the mass number A. The nature of this variation is shown graphically 
in Fig. 1.5.

Fig. 1.5 Packing fraction curve.

is positive and decreases rapidly with increasing A. It becomes negative for 
A greater than about 20, attains a minimum (negative) at A ~ 60. It then rises 
slowly for higher A and becomes positive again for A greater than about 180.

This systematic variation of f with A can be understood from nuclear 
binding energy considerations.

If the binding energy EB of a nucleus A
Z

in this book is divided by the mass number A, we get the binding energy per 
nucleon in the nucleus, which is known as the binding fraction ( fB) and is 
given by

  fB  = =
+ − ( )E

A
ZM NM M A Z

A
B H n ,

 ...(1.21)
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Here we have assumed that the masses are expressed in energy unit so 
that c2 on the r.h.s. of Eq. (1.21) has been omitted.

We can estimate the values of fB for a few typical cases, using the mass 
values given in Table 1.2.

For deuteron (2H), since Z = 1, N = 1,
  EB (2H) = MH + Mn – Md

   = (1.007825 + 1.008665 – 2.014102) × 931.5

   = 2.224 MeV

fB (2H) = =
2 224

2
1 112

.
.  MeV per nucleon

For the -particle (4He), since Z = 2, N = 2,
  EB (4He) = (2 × 1.007825 + 2 × 1.008665 – 4.002603) × 931.5

   = 28.3 MeV

fB (4He) = =
28 3

4
7 075

.
.  MeV per nucleon

For (16O) nucleus, since N = 8, Z = 8,
 EB (16O)  = (8 × 1.007825 + 8 × 1.008665 – 15.994915) × 931.5

   = 127. 62 MeV

fB (16O) = =
127 62

16
7 98

.
.  MeV/nucleon

The binding fractions of the different nuclei represent the relative 
strengths of their binding. Thus 2H is very weakly bound, compared to 4He 
or 16O. The nature of variation of fB for the different nuclei with A is shown 
graphically in Fig. 1.6.

Fig. 1.6 Binding fraction curve.

The following points about the variation of fB against A are noteworthy: 
(a) fB for the very light nuclei is very small and rises rapidly with A attaining a 
value of ~ 8 MeV/nucleon for A ~ 20. It then rises slowly with A and attains a 
maximum of 8.7 MeV per nucleon at A ~ 56. For higher A, it decreases slowly. 
(b) For 20 < A < 180, the variation of fB is very slight, so that it may be taken  
to be approximately constant in this region having a mean value of 
~ 8.5 MeV per nucleon. (c) For very heavy nuclei (A > l80), fB decreases 
monotonically with the increase of A. For the heaviest nuclei, fB is about 



Basic Properties of Nuclei

NOTES

 Self - Learning 
18 Material

7.5 MeV/nucleon. (d  
the values of fB. In particular, peaks are observed in the fB vs. A graph for 
the even-even nuclei 4He, 8Be, 12C, 16O etc., for which A = 4n where n is an 
integer. Similar, but less prominent peaks are observed at the values of Z or 
N equal to 20, 28, 50, 82 and 126. These are known as magic numbers.

The appearance of the peaks shows greater stability of the corresponding 
nuclei relative to the nuclei in their immediate neighbourhood.

The nature of the binding fraction curve is complementary to the nature 
of the packing fraction curve (Fig. 2.1). The reason for this can be understood 
as follows. If we write MH = 1 + fH and Mn = 1 + fn where fH = 0.007825 u 
and fn = 0.008665 u are constant, then we have
  EB = Z (1 + fH) + N (1 + fn) – M (A, Z)

   = (Z + N) + ZfH + Nfn – A (1 + f  )
   = A + ZfH + Nfn – A – M

where 
M

 = Af. Hence we get

  EB = ZfH + Nfn – M ...(1.22)

  fB = =
+

−
E
A

Zf Nf
A

M
A

B H n Δ

   =
+

−
Zf Nf

A
fH n  ...(1.23)

for lower A when Z  N  A/2.

Thus fB increases or decreases as f decreases or increases respectively. 
Hence the graphs of variation of f and fB with A have complementary 
appearances. Corresponding to the minimum in the graph of f vs. A, there is 
a maximum in the graph of fB vs. A. Also the region of negative slope for low 
A
case. For higher A
case corresponds to the region of negative slope in the second.

With the help of the binding fraction curve it is possible to explain in 
a qualitative manner the reasons for the -disintegration of heavy nuclei as 

be discussed at appropriate places.

1.4 NUCLEAR SPIN
As stated before, a complex nucleus is made up of protons and neutrons, 
collectively known as nucleons. The protons and neutrons have intrinsic spin 
angular momentum 1/2(in unit of  ) each, just like the electrons. In addition, 
the nucleons also possess quantized orbital angular momenta about the centre 
of mass of the nucleus, like the electrons in the atom. The resultant angular 
momentum I of the nucleus is thus the vector sum of the orbital angular 
momentum L and spin angular momentum S of the nucleus:
  I = L + S 
 ...(1.24)
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Quantum mechanical considerations show that the total orbital and 
spin angular momenta of the nucleus are given by
  p2

I = I (I + 1) 2

  p2
L = L (L + 1) 2

  p2
S = S (S + 1) 2

During measurement, it is the largest component of the angular 

which is determined. For the three cases mentioned above, these have the 
magnitudes I, L and S respectively in units of .

The resultant spin angular momentum of the nucleus is obtained by the 
vector addition of the spins of the individual nucleons : S =  si. Similarly, 
the resultant orbital angular momentum is given by L =  Ii. Since si = 1/2, 
S can be either integral or half-integral, depending on whether the number 
of nucleons A in the nucleus is even or odd. On the other hand, since li is 
integral (0, 1, 2, etc.), L is integral or zero. Thus the total angular momentum 
I of the nucleus can be either integral (for A even) or half odd integral (for 
A odd). This is in agreement with observations.

The total nuclear angular momentum I is usually referred to as the 
nuclear spin. Measurements of the ground state spin of nuclei show that for 
even Z even N nuclei, the nuclear spin is invariably zero (I = 0). This shows 
that there is a tendency of the nucleons inside the nucleus to form pairs with 
equal and oppositely aligned angular momenta, which cancel out in pairs 
for like nucleons.

Another important point to note is that the measured values of the 
ground state spins of the nuclei are small integers or half odd integers, the 
highest measured value being 9/2 which is small compared to the sum of 
the absolute values of li and si of all the individual nucleons contained in the 
nucleus. This is in conformity with what was stated above regarding pair 
formation within the nuclei. Majority of the nucleons of either type seems 
to form a core in which even numbers of protons and neutrons are grouped 
in pairs of zero spin and orbital angular momenta so that the core itself has 
zero total angular momentum. The few remaining nucleons outside the core 
determine the nuclear spin which is thus a small number, integral or half 
odd integral.

Methods of measurement of the ground state spins of nuclei will be 
discussed in this book. Spins of excited states of nuclei are deduced from 
nuclear disintegration and nuclear reaction data.

Pauli’s Spin Formalism

It may be mentioned here that the spin of a spin 1/2 particle like the nucleons 
moving non-relativistically is treated in terms of Pauli’s theory. Pauli 
introduced the spin operator  related to the spin vector s through the relation 

s = ⎛
⎝⎜

⎞
⎠⎟2

σ σ;  has the three components x, y and z which are 2 × 2 matrices 
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(Pauli matrices) as given below

  x =
⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

0 1

1 0

0

0

1 0

0 1
, ,σ σy z

i
i

 ...(1.25)

Then 2
x = 2

y = 2
z = 1 which is a 2 × 2 unit matrix (1). The two states 

of the particle (spin up and spin down) are the two component Pauli spinors

   =
⎛
⎝⎜

⎞
⎠⎟

↑ =
⎛
⎝⎜

⎞
⎠⎟

↓
1

0

0

1
, β  ...(1.26)

Operation of  and  by the Pauli matrices gives the following results, 

 

σ α β
σ α β

σ α α

σ α α

σ β α
σ β α

σ β β

x

y

z

x

y

z

i i
=
=

=

= 3

=
= −

= −

2

We also have      

σσ β β2 = 3

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 ...(1.27)

which gives

 
s s s

s

2
2

2 2

2
2

3

4

1

2
1 1

3

4

1

2
1

α α α α

β β

= =
1
2

+⎛
⎝⎜

⎞
⎠⎟ = +

= =
1
2

+⎛
⎝⎜

⎞
⎠⎟

( )

22 21β β= +

⎫

⎬
⎪⎪

⎭
⎪
⎪s s( )

 ...(1.28)

 Also sz  = = −
2 2

α β βsz  ...(1.29)

Thus  and  are the simultaneous eigen-vectors of s2 and sz belonging 
to the eigen-values 3 2/4 and ± /2 respectively, the plus sign corresponding 
to the spin up state and the minus sign corresponds to the spin down state.

The components of  anti-commute, which means
  x y + y x = 0, y z + z y = 0, z x + x z = 0 ...(1.30)

We further have
  x y – y x = 2 i z,  y z – z y = 2 i x, z x – z z = 2 i y 

 ...(1.31)

These give

x y = i z, y z = i x, z x = i y  ...(1.32) 

1.5 MAGNETIC AND QUADRUPOLE 
MOMENTS OF NUCLEI

Like the electron, the proton and the neutron possess intrinsic magnetic dipole 
moments. The measured values of the magnetic moments of the proton and 
the neutron are
  p = 2.7927 N

  n = –1.9131 N

where N = /2Mp ...(1.33)
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is called the nuclear magneton. e and M are the charge and mass of the 
proton. N is analogous to the Bohr magneton B =  /2me which is the unit 
of atomic magnetic moment. N is much smaller than B, being only 1/1836 
part of the latter. Since B = 9.2849 × 10–24 J/T, we get
  N = 5.0571 × 10–27 J/T

The above numerical values show that the proton and neutron magnetic 
moments are of the order of 10–3 times the electronic magnetic moment, 
which is equal to the Bohr magneton ( e = B). Since the nuclei are made up 
of protons and neutrons, the magnetic moments of the nuclei are also much 
smaller than the atomic magnetic moments, the latter being of the order of 
electronic magnetic moments.

Except for a minor correction, the electronic magnetic moment is 
correctly predicted by the relativistic quantum mechanical theory of the 
electron propounded by P.A.M. Dirac. If the motion of the proton is described 
by the same theory, then the proton should have a magnetic moment p = 

N. However this is not so and p is greater than N. Further the neutron 
being an uncharged particle, is not normally expected to have a magnetic 
moment. Again this is not true and n has a magnitude greater than N. 
These anamalous values of the magnetic moments of the proton and the 
neutron can be understood, at least qualitatively, on the basis of the meson 
theory. 

It should be noted that the magnetic moments of the proton and the 
neutron are intimately related to their intrinsic spin angular momenta, which 
are given by

  pp = sp   , Pn = sn  

with sp = sn = 1/2. The ratio of the magnetic moment e to the spin angular 
momentum pe of the electron is given by

  
μe

ep
 = g

e
me

e2
 ...(1.34)

where pe = se   = /2, ge being the Lande factor. It has the value ge = –2. The 
quantity of the r.h.s. of the above equation is the gyromagnetic ratio for the 
spin motion of tile electron. The factor ge

from the Dirac electron theory.

In the case of the proton and the neutron, we can write, in analogy 
with Eq. (1.34)

  
μ p

pp
 = g

e
Me

p2
 ...(1.35)

  
μn

np
 = g

e
Mn

p2
 ...(1.36)

Substituting the values of pp and pn, we get

  p = =g
e

M
s h

g
p

p
p

p
N2 2

. μ  ...(1.37a)
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  n = =g
e
M

s h
g

n
n

n
n

N2 2
. μ  ...(1.37b)

Comparison with Eqs. (1.33) gives
  gp = 2 × 2.7927, gn = –2 × 1.9131 ...(1.38)

Eqs. (1.37) can be written in vector forms (in nuclear magnetons) as

  μ p

� ���
 =

1

2
g p pσ  ...(1.39a)

  μn

� ��
 =

1

2
gn nσ  ...(1.39b)

p and n are the Pauli spin operators.

The quantity ge appearing in Eq. (1.34) is negative because of the 
negative sign of the electronic charge. Classically, the rotation of the electron 
constitutes a current opposite to the direction of its rotation. This current 
loop gives rise to a magnetic moment perpendicular to the plane of the loop 
directed opposite to the angular momentum associated with the rotation, i.e., 

e is opposite to pe so that ge is negative.

For the proton, because of its positive charge, the directions of p is 
the same as that of pp and hence gp is positive.

The negative sign of gn then obviously indicates that n is directed 
opposite to pn.

For a complex nucleus, the intrinsic magnetic moments of all the 
protons are to be vectorially added to give the resultant μ pi

� ���
. Similarly the 

intrinsic magnetic moments of all the neutrons are to be vectorially added 
to give the vector μni

� ���
.  In addition, the orbital rotations of the protons will 

also contribute to the net magnetic moment of the nucleus equal to μlp i

� ���( ) .  

of the electron. If pL be the resultant orbital angular momentum due to the 
orbital motion of the protons, then we can write

  
μL

Lp
 = g

e
ML

p2

Writing pL = L    we then get

  L = =g
e
M

L g LL
p

L N.
2

μ  ...(1.40)

L is the orbital angular momentum quantum number. For orbital motion of 
the proton gL = 1 as in the case of the electron, so that
  L = L N ...(1.41)

L can have only integral values or can be zero.

No contribution to the magnetic moment of the nucleus comes from 
the orbital motion of the neutrons (gL = 0 for neutrons).

Hence the resultant magnetic moment of the nucleus is obtained by 
the vector addition of the three vector quantities μ pi

� ���
,  μni

� ���
,  and μlp i

� ���( ) .
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The protons and the neutrons tend to form pairs with oppositely aligned 
spins, giving a resultant spin 0. Obviously such pairs will also have zero 
magnetic moments. Hence the net magnetic moment of the nucleus will be 
determined by the nucleons outside the even Z—even N core for which the 
net magnetic moment is zero. As in the case of the nuclear spin, this makes 
the value of the magnetic moment of the nucleus comparable to the proton 
or neutron magnetic moments.

1.5.1 Quadrupole Moments of Nuclei
Nuclear electric quadrupole moments can be estimated from observations 
on the departures from the interval rule, according to which the energy 
difference between two states F and F – 1 for given J (electronic 
angular momentum quantum number) and I is linearly proportional 
to F where F = J + I. The departures can occur due to two reasons : 
(a) Magnetic perturbations of the nearby levels; (b) Effect of the nuclear 
electric quadrupole moment.

In the second case, the interaction of the nuclear electric quadrupole 

due to magnetic interaction between I and J. The existence of the electric 
quadrupole moment of the deuteron was discovered by this method. It has 
the value Qd = 2.82 × 10–31 m2.

The electric quadrupole moment of the nuclei can also be estimated 

containing the nuclei in several cases.

The electrostatic interaction energy between the nucleus of an atom 
in the molecule and the remaining charges (electronic and nuclear) depends 
on the  given by

  q =
∂
∂

⎛

⎝⎜
⎞

⎠⎟
e Q

V
z

e2

2
0

 ...(1.42)

where V e is the potential due to all charges external to the nucleus under 
consideration.

The second derivative is determined at the position of the nucleus along 
the symmetry axis of the molecule. 

We can obtain an estimate of the interaction energy of a nuclear 

to be cylindrically symmetric with the symmetry axis along z and taking 

  Ez = +
∂
∂

⎛
⎝⎜

⎞
⎠⎟ =( )E

E
z

Kzz
Z

0
0

 ...(1.43)

  K =
∂
∂

⎛
⎝⎜

⎞
⎠⎟

E
z
Z

0

 ...(1.44)
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E is away from the nucleus,  . E = 0. 
This is possible if we write
  Ex = – K x/2 and Ey = – K y/2 ...(1.45)

It is shown that the interaction energy of an electric quadrupole in an 

  U
2
 = −

∂
∂

⎛
⎝⎜

⎞
⎠⎟∑∑1 6

0

/ Q
E
xij

j

iji
 ...(1.46)

where i, j can take up the values 1, 2, 3 each corresponding to the three 
rectangular coordinates x = x

1
, y = x

2
, z = x

3
. The quadrupole moment tensor 

Qij is given by

  Qij = ( ) −∫ ρ δ τr x x r di j ij( )3 2  ...(1.47)

where (r) is the density of the charge distribution. Since Qij is a symmetric 
tensor, only the diagonal components Qxx = Q

11
, Qyy = Q

22
 and Qzz = Q

33
 are 

non vanishing. Also the sum of the diagonal elements is zero:
  Q

11
 + Q

22
 + Q

33
 = 0 ...(1.48)

So, for an axially symmetric charge distribution (as for an ellipsoid 
of revolution)
  Q

11
 = Q

22
 = – Q

33
 = – Q (say) ...(1.49)

where Q = Q
33

 is called the quadrupole moment of the charge distribution.

We then have (...Qij = 0 for i  j)
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It should be noted that since Q is measured in the unit of an area (m2) in nuclear 
physics, the above expression should be multiplied by the unit of charge e.

The quadrupole coupling coefficient q can be determined from 

for the determination of the nuclear electric quadrupole moment Q from the 
values of q, one must know the value of ( 2V e/ z2). Various methods have been 
developed for estimating this quantity. However, there are uncertainties in 
such estimates which introduce considerable error in the determination of Q.

Linear triatomic molecules, such as ClCN, BrCN, OCS, etc., and 
symmetric top molecules like CH

3
Cl and CH

3
Br have been studied by this 

method.
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1.6 SCHMIDT LINES
J is shown in the Figure 1.7, the lines are known as 

Schmidt lines. The agreement between the experimental and theoretical 
values may be due to the error in the measurement of magnetic moment 
or due to the assumption that the nucleons move in a spherical symmetric 
potential which is not true.

Fig.1.7 Schmidt Lines

1.7  SEMI-EMPIRICAL MASS FORMULA 
AND ITS APPLICATION TO MASS 
PARABOLAS

Typically, the binding energy is expressed as B/A or binding energy per 
nucleon. This demonstrates that the binding energy is proportional to A in 
general, because B/A is largely constant. However, there are reversals to 
this pattern. The semi-empirical mass formula captures the dependence of 
B/A on A (and Z). This formula is based on fundamental principles (a model 
for the nuclear force) and experimental evidence to determine the precise 

liquid-drop model, all 
nucleons are equally distributed within a nucleus and are held together by 
the nuclear force, whereas protons are repelled by the Coulomb contact. The 
nuclear force’s (short range) and Coulomb interaction properties explain a 
portion of the semi-empirical mass formula. Nonetheless, additional (smaller) 

that arise as a result of its quantum-mechanical origin (and that give rise to 
the nuclear shell model).

There is a formula called the Semi-Empirical Mass Formula (SEMF). 

It says:

   M (Z, A) = Zm(1H) + Nmn - B (Z, A)/c2

where B(A, Z) denotes the binding energy, which may be calculated 

using the following formula:
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The following are the terms covered by the SEMF, in order of 
importance:

1. Volume Term: 

avA, which represents the fact that the 
binding energy is largely related to A. Why is this the case?

If you think about it, nucleon interactions are measured by the binding 
energy of the nucleons. Weak nuclear forces and dense nuclear packing limit 
the nucleon’s ability to interact with more than a few nearby neighbours. This 
shows that no matter how many nucleons there are, each one contributes 
the same amount. To put it another way, the force is not A(A - 1)/2  A2 but 
rather A (the total number of nucleons with which one nucleon can interact). 
According to experimental results, the av = 15.5 MeV proportionality constant 

When it comes to nuclear (strong) interactions, however, this number 
is smaller than what the nucleons can bind to one other. When one nucleon 
is bound to another, its binding energy is around 50 MeV. No, a nucleon’s 
binding energy isn’t equal to the sum of its interactions with other nucleons 
and its own motion. Although there are no nucleons in an atom with zero 

kinetic energy levels in an atom. This model provides an accurate estimate of 
av, which includes nuclear binding energy and the kinetic energy generated 

.

2. Surface Term:

The surface term, -asA
2/3, is a correction to the volume term, as it is also 

based on the strong force. As previously explained by the volume term, a 
constant number of nucleons interact with each nucleon. While this holds 
true for nucleons located deep within the nucleus, nucleons located on the 
nucleus’s surface have fewer nearest neighbours. This word is synonymous 
with surface forces, which occur in droplets of liquids and are the mechanism 
through which liquids develop surface tension. Given that the volume force 
is proportional to BV  A, the surface force should be  (BV)2/3 (as the surface 
S  V2/3). Additionally, the term must be deducted from the volume term, 

as should have a magnitude similar to that of av. Indeed, 
as equals 13–18 MeV.

3. Coulomb term: 

The term -acZ(Z -1)A-1/3 is the third term, arises as a result of the Coulomb 
interaction between protons and is, of course, proportional to Z. This term 
is removed from the volume term because the Coulomb attraction makes a 
nucleus with a large number of protons less desirable (more energetic).
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The nucleus is simulated as a uniformly charged sphere to justify the 

potential energy equals

Since we get the charge q(r) = 3  = Q (3 from the uniform 
distribution inside the sphere, the potential energy is as follows:

Using the empirical radius formula R = RoA
1/3 and the total charge 

formula Q2 = e2 Z(Z-1) (indicating the fact that this term appears only when 

Z > 1, i.e., when there are at least two protons), we obtain:

    

ac Ro = 1.25 
fm, the constant ac can be predicted to be 0.691 MeV, which is close to the 
experimental result.

Fig. 1.8 SEMF for stable nuclides

We plot B (Z, A)/A vs. A. The various term contributions are added 

4. Symmetry term: 

The Coulomb expression appears to imply that a nucleus with fewer protons 
and more neutrons would be desirable. This is not the case, therefore an 
alternative to the liquid-drop model must be utilized to account for the fact 
that stable nuclei have roughly equal numbers of neutrons and protons. 
Thus, the SEMF has a correction term that seeks to account for protons and 
neutrons’ symmetry. This (and subsequent) correction can be described only 
by a more sophisticated model of the nucleus, the shell model, in conjunction 
with the quantum-mechanical exclusion principle, which will be discussed 
later. If more neutrons are added, they must be more energetic, increasing 
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the overall energy of the nucleus. This gain more than compensates for the 
Coulomb repulsion, making it more favourable to have protons and neutrons 
in about equal amounts.

 The symmetry term has a form of. Considering the fact that this term 
goes to zero for A = 2Z
easier to comprehend (while for smaller nuclei the symmetry effect is more 
important). The asym

5. Pairing Term:

even-even, with all neutrons and protons paired-off. If a nucleus contains 
an odd number of neutrons and protons, it is advantageous to convert one 
of the protons to a neutron or vice versa (of course, taking into account the 

 

with ap  A-1/2 is also found].

Isobaric Mass Parabola:

Some of the most essential aspects of nuclei’s stability, such as the α-activity 
and stability properties of isobars, are explained by the binding energy 
formula. It is possible to derive semi-empirical formula for mass as

  
(1.51)

This equation can be expressed as follows:

   (1.52)

Equation (1.52) is quadratic in the ‘Z’ axis. So the graph of M(Z, A) vs 
Z would seem like a parabola in shape.
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Fig. 1.9 M(Z, A) vs Z parabolic curve.

 The nucleus at the bottom of the curve is the most stable in the series 
and has the highest binding energy. All isobars having a lower binding energy 
than the most stable one (at the bottom) will be found at the curve’s arms. 
They will decay through electron or positron -emission of electron (e-) or 
positron (e+) or K-capture. We have the minimum of the curve at Z = Z0.

The condition for minimum is 

From equation (1.52), we have 

     (1.53)

Therefore, at Z
o
;  (1.54)

number of protons and neutrons inside the nucleus, as shown in Table 1.3.

Table 1.3

During α-decay, the nucleus emits either an electron () or a positron 
(). The overall number of nucleons (A) remains constant, but the proton is 
converted to a neutron and vice versa, resulting in changes to Z and N. The 
reactions to the processes can be expressed as follows

  (1.55)

     (1.56)
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As a result of the decay, the neutrino ( ) and antineutrino ( ) and are 
produced. The released energy,  and , should be positive. M(X) should be 
bigger than M(X) as a result (Y).

Odd A Isobars:

It is impossible to have an odd Z and an odd N in the same odd A isobar at 
the same time. The pairing energy, A, Z), is zero in these alloys. As a result 
of solving equation (1.52), we arrive at

By substituting value of α from equation (1.53), we get

   (1.57)

During α+ decay energy released is;

Therefore, using equation (1.57) we have

For α− decay energy released given by;

   

As binding energy is plotted against Z for a number of nuclei, it can 
be seen that the odd A is constant while the Z is variable.

According to Figure 1.10, this causes the formation of a parabola-like 
curve. (A). Using odd A series, the pairing energy is zero, and hence just 
one parabola is generated. The most stable isobar is located at the bottom. 
Electron emission is the process by which the isobars to the left of the most 
stable one deteriorates.

Excess protons decay in isobars on the right side of the stable isobar 
via positron emission, K-capture, or a combination of the two.
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                                    (a)  (b)

Fig. 1.10 Isobaric mass parabola (a) odd A nuclei; (b) even A nuclei.

Even A Isobars:

According to the odd-even effect, the result obtained for even A nuclei is 
different from the result obtained for odd A nuclei. In even A, the energy of 
pairing is not zero. Due to the fact that both odd-odd and even-even nuclei 
have an even A, they have two distinct pairing energies as indicated in the 
table above. As a result, it has two parabolas in its binding energy curve that 
are displaced by a factor of 0.

For even-even nuclei

   (1.58)

For odd-odd nuclei

    (1.59)

You may get M(Z-1, A) and M(Z+1, A) relations by altering Z to Z-1 
and Z+1, respectively. Even-even nuclei are more stable than odd-odd nuclei, 

as can be seen from equations 8 and 9. For  - decay of odd-odd nuclei

We have obtained using equations (1.58) and (1.59);

For α+ decay of odd-odd nuclei
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Figure 1.10(b) depicts the isobaric mass parabola for even A nuclei. On 
the upper curve, odd-odd nuclei are unstable compared to even-odd nuclei, 
hence they must undergo α-decay to stabilize. The term ‘Double α-decay’ 
refers to nuclear processes in which two protons simultaneously become two 
neutrons or vice versa. For even-even nuclei, two or more stable nuclei are 
required. There are three stable nuclei in the A = 136 isobaric family.

1.8  MIRROR NUCLEI AND ISOTOPIC SPIN 
FORMALISM

We discovered that there can be several stable nuclei for a given A for even-A 
nuclei by minimizing the semi-empirical mass formula as a function of proton 
number (as illustrated in Figure 1.11 below).

 

Fig. 1.11 Mirror Nuclei and Isotopic Spin Formulation

Mirror Nuclei: 

The mirror nucleus is an atomic nucleus in which the protons and neutrons 
of one nucleus are swapped for those of the other. There are seven protons 
and eight neutrons in the nucleus of nitrogen-15 and eight protons and seven 
neutrons in the nucleus of oxygen-15. When a neutron is replaced by a proton 
in a nucleus, the isotopic nuclear force binding protons and neutrons remains 
approximately the same. In other words, or ‘Mirror nuclei’ are pairs of nuclei 
whose proton number equals the neutron number in the other. Odd-A nuclei 
with one odd nucleon are the simplest instances. Charge Z = (A + 1)/2 and 
neutron number N are both (A + 1)/2 in one of the mirror nuclei; however, 
Z = (A - 1)/2 and N = (A + 1)/2 in the other. Examples are  and   or   and . A 
proton is swapped for a neutron in each of these pairings of nuclei, which is 
the sole difference. Assuming that the binding energy of two mirror nuclei has 
the same “nuclear component,” it is likely that the force between nucleons 
does not differentiate between neutrons and protons. Thus, the difference in 
mass between two mirror nuclei can only be explained by the difference in 
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proton and neutron masses and the varied Coulomb energies of the two. Here, 

the radius of the two nuclei may be determined (assumed to be the same).

Isotopic Spin Formulation

To distinguish between protons and neutrons, Werner Karl Heisenberg 

created isospin in 1932, a German theoretical physics pioneer and one of 

the fundamental pioneers of quantum mechanics. To be clear, the isospin 

developed in the 1960s.

A quantum number known as Isospin, I or I3, is used to describe the 

strength of the nuclear force. To conserve isospin, substantial interactions 

degradation is required, according to a conservation law. isotopic spin 

was originally formed from this word, although the term “isobaric spin” is 

preferred by physicists because it is more exact.

As a result of these studies, it is clear that the strong interaction does 

not differentiate between these nucleons. The strong interaction between 

any two nucleons is identical regardless of whether they are neutrons or 

protons. Rather than treating protons and neutrons as distinct species, they 

are treated as various isospin states of the same fundamental nucleon particle 

in terms of strong interactions. The nucleon is the name given to this particle. 
0, 

+ –, they appear to be three distinct states of the same particle. Isospin 

is comparable to spin mathematically, but has nothing to do with angular 

momentum. The spin word is included because isospins are added using the 

same rules as spin.

The concept ‘Isospin’ can now be introduced using an analogy. Because 

electrons have two spin values with regard to the z-direction, it is clear that 

used to identify Sz 
these two states of the same particle cannot be separated. Consequently, it is 

necessary to use superposition in order to describe the electronic spin state.

Electromagnetic interactions, on the other hand, allow us to distinguish 

between protons and neutrons. The strong interactions are also charge-

independent. In nuclear physics, protons and neutrons cannot be distinguished 

as charged and neutral particles. As a result, these are simply two different 

states of the same particle (a nucleon). So, how will you be able to tell 

them apart? Isospin is the answer. The nucleon has this feature, which is 

theoretically equivalent to spin but has nothing to do with angular momentum, 

in an imagined space. Different values of the third component of this isospin, 

known as I3 or Iz, have been assigned to the proton and neutron. In order 

to conserve isospin, this isospin has been linked to a conservation law that 
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demands strong interaction decays. isotopic spin was originally formed 

from this word, although the term “isobaric spin” is preferred by physicists 

because it is more exact.

Due to the fact that this third component can take on any value, we 

set I
3
 = 

1

2
 for the proton and I

3
 = 

1

2
 for the neutron. Thus, the nucleon has 

isospin I = 
1

2 in the same way as the electron has spin s = 
1

2 , with the third 

component having two conceivable values.

Electric charge, Q, is related to the third component of the atom’s 
isospin by

Q = I3 + 
1

2

The explanation to why the proton is positively charged and the neutron 
is chargeless can be found by plugging in the values for the third component 
of isospin. Isospin multiplets can be found in a variety of different particles. 

+ 0 -, are all almost identical in mass 
and spin, but they all have slightly different properties. Despite the fact that 
they have various charges, they all respond in the same way when powerful 
interactions occur. So, the three states of pions are just three different ways 
of saying the same thing: pions. Their charges, on the other hand, cannot be 
described using the formula shown above. Because of this, the formula must 
be changed. It is now time to make a direct comparison between electrical 
and nucleonic properties.

1.8.1 Basic Properties of Nuclei

Terminology:

neutrons: N, protons: Z, electrons: 
there are Z electron in neutral atoms.

All atoms of any element have the same atomic number, Z. Although 
not all of them are the same there is a difference in the number of neutrons 
N between isotopes of the same element.

Isotopes are denoted by or more often by  or AX where:
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where X is the chemical symbol and A = Z + N is the mass number. 
For example: 

Fig. 1.12 

When talking of different nuclei, one can refer to them as:

 

 

 

  Isomer: same nuclide (but different energy state).

Nuclear Radius

of nucleon densities that approximates our simple spherical model is still 
possible for many experimental situations (e.g., in scattering experiments). 
In order to calculate the radius of a nucleus, one must know the number of 
nucleons in the nucleus:

 R = RoA
1/3

Binding energy 

to measure the binding energy per nucleon (also written as BEN or B/A). 

mN = Zmp + Nmn

The ionization energy of an electron in an atom is the average energy 
required to remove a single nucleon from a nucleus. When the BEN is 
really large, the nucleus is fairly stable. Nuclear scattering experiments are 
used to obtain an estimate of BEN. As the atomic number A increases, the 
binding energy per nucleon increases proportionately, as illustrated in Figure 

in all of physics. Two notes are required. BEN readings typically range 
between 6 and 10 MeV, with an average of around 8 MeV. To put it another 
way, while millions of electron volts are required to separate a nucleon from 
its normal nucleus, only 13.6 eV are required to ionize a single electron in the 
ground state of hydrogen. This is precisely why nuclear force is ∀ ’Strong.’
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The graph begins to fall at high A after ascending to a peak near iron 
(A = 56). According to their highest value, iron nuclei are the most stable in 
nature (it is also why nuclear fusion in the cores of stars ends with Fe). In 
the nucleus, two opposing forces are at work, which explains why the graph 

dominate the repulsive electrostatic forces between protons. On the other 
hand, high A values favour electrostatic forces, which prefer to separate the 
nucleus rather than maintain it together.

Fig. 1.13 56Fe

As shown in this graph of binding energy per nucleon for stable 
nuclei. Thus, fusion of nuclei with masses less than or equal to those of 

exothermic reactions.

 The mN = Zmp + Nmn formula can be used to calculate the masses 
of all nuclides. But this has been shown empirically to be incorrect. From 
the special theory of relativity, it is known that each mass corresponds some 
energy i.e., E = mc2. Then, if you add up the masses of all the nuclei’s parts, 
you’ll get the total amount of energy they contain. There is a correlation 
between the mass of a nucleus and the energy it contains. There must be 
some additional energy needed to bind nuclei together, thus it seems sense 
that this isn’t just the sum of its constituent energies. Having bound nuclei 
would be undesirable if the energy were equal, because all nuclei would be 
unstable, continually changing from their bound state to a mixture of protons 
and neutrons.

 The binding energy of the nucleus is calculated using the difference 
in mass energy between the nucleus and its constituents. The binding energy 
B for the nucleus  is calculated as follows:

B = [Zmp + Nmn – mN (AX)]c2

 This amount, however, should be described in terms of quantities 
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that can be measured empirically. As a result, nuclear mass is expressed in 
mN (

AX)c2 mA (
AX)-Zme]c2 + Be 

where mA (
AX) is the atomic mass of the nucleus. Further neglect the electronic 

binding energy Be by setting mN (
AX)c2 mA ()-Zme]c2.

For the nuclear binding energy expression, use the following: 

B = {Zmp + Nmn – [mA (AX) – Zme]}c
2

The neutron and proton separation energies are also qualities that are 
of interest:

    Sn = B  – B ()

    Sp = B  – B ()

In atomic physics, these are the valence nucleon energies, which are 
analogous to the ionization energies. These energies show the hallmarks of 
the nuclei’s shell structure.

Check Your Progress

 8. What are the two types of departure in quadrupole moments of 
nuclei?

 9. Write the semi-empirical mass formula.

 10. What is mirror nuclei?

1.9 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

 1. Rutherford and his collaborators performed scattering experiments 
with relatively higher energy α-particles and observed departure from 
Rutherford scattering formula at large angles.

 2. Scattering of high energy electrons by nuclei constitutes the most direct 
method of measuring the charge radius of the nucleus and the nature 
of the nuclear charge distribution.

 3. A large number of unstable fundamental particles, both charged and 
neutral, which are observed in nature (usually in the cosmic rays) or 
can be produced in the laboratory in high energy interactions. One of 
these is the μ-meson (previously called the μ-meson).

 4. The mirror nucleus method is estimating the charge radius of a nucleus 
is based on the study of the energetics in the β+ transformation of the 
mirror nuclei.
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 5. The earliest method of estimating the potential radius was based on 
the study of alpha-disintegration of heavy nuclei like 238U, 226Ra, etc.

 6. With the help of the binding fraction curve it is possible to explain in a 
qualitative manner the reasons for the α-disintegration of heavy nuclei 

 7. A complex nucleus is made up of protons and neutrons, collectively 
known as nucleons.

 8. The departures can occur due to two reasons :

  (a) Magnetic perturbations of the nearby levels; 

  (b) Effect of the nuclear electric quadrupole moment.

 9. The Semi-Empirical Mass Formula (SEMF) is,

  M (Z, A) = Zm(1H) + Nm
n
 - B (Z, A)/c2

 10. The mirror nucleus is an atomic nucleus in which the protons and 
neutrons of one nucleus are swapped for those of the other. There are 
seven protons and eight neutrons in the nucleus of nitrogen-15 and 
eight protons and seven neutrons in the nucleus of oxygen-15. When a 
neutron is replaced by a proton in a nucleus, the isotopic nuclear force 
binding protons and neutrons remains approximately the same. 

1.10  SUMMARY 
  Rutherford’s theory of a-particle scattering gives us an idea about the 

smallness of the nuclear size.

  Rutherford and his collaborators performed scattering experiments 
with relatively higher energy a-particles and observed departure from 
Rutherford scattering formula at large angles.

  Scattering of high energy electrons by nuclei constitutes the most direct 
method of measuring the charge radius of the nucleus and the nature 
of the nuclear charge distribution.

  A large number of unstable fundamental particles, both charged and 
neutral, which are observed in nature (usually in the cosmic rays) or 
can be produced in the laboratory in high energy interactions. One of 
these is the μ-meson (previously called the μ-meson).

  The mirror nucleus method is estimating the charge radius of a nucleus 
is based on the study of the energetics in the β+ transformation of the 
mirror nuclei.

  A complex nucleus is made up of protons and neutrons, collectively 
known as nucleons.

  The mirror nucleus is an atomic nucleus in which the protons and 
neutrons of one nucleus are swapped for those of the other.
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1.11  KEY TERMS 
  Electron scattering experimental: It refers to the scattering of high 

energy electrons by nuclei. It is the most direct method of measuring 
the charge radius of the nucleus and the nature of the nuclear charge 
distribution.

  Mirror nucleus method: Mirror nucleus method estimates the charge 
radius of a nuclelus which is based on the study of the energetics in 
the β+ transformation of the mirror nuclei.

  Nucleons: A complex nucleus is made up of protons and neutrons 
collectively known as nucleons.

  Mirror nucleus: The mirror nucleus is an atomic nucleus in which 
the protons and neutrons of one nucleus are swapped for those of the 
other. 

1.9  SELF-ASSESSMENT QUESTIONS AND 
EXERCISES

Short-Answer Questions 

 1. What do you mean by electron scattering?

 2. State the muonic x- ray method. 

 4. What is nuclear spin?

 6. What are Schmidt lines?

 7. Write semi-empirical mass formula.

Long-Answer Questions 

 1. Explain the methods for determination of nuclear size and their 
interpretations.

 2. Discuss binding energy curve for nuclei and its consequences with the 
help of examples.

 3. What do you understand by the nuclear spin? Explain.

 4. Explain the magnetic and quadrupole moments of nuclei with the help 
of examples.

 5. Illustrate the semi-empirical mass formula and its application to mass 
parabolas.

 6. Discuss the mirror nuclei and isotopic spin formalism. 
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UNIT 2 NUCLEAR FORCE AND TWO 
BODY PROBLEM

Structure 
 2.0 Introduction
 2.1  Objectives
 2.2 Deuteron: Basic Properties
 2.3 Existence of Excited States of Deuteron

 2.6.1  Spin Dependence of n-p Interaction
 2.6.2  Scattering Length

2.0 INTRODUCTION

 
the neutron to have isospin projection 

z z

j
. In this 

2.1  OBJECTIVES
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2.2 DEUTERON: BASIC PROPERTIES, 
BINDING ENERGY, SIZE, SPIN, 
MAGNETIC AND QUADRUPOLE 
MOMENTS

2

the deuteron:

  EBd

fBd

fB B A Even for the 
A fB

 2. 
in the unit of  is Id

N d

Qd
2 –31 2.

p

n p n N.

d
  p n – d N

Since n
to its intrinsic spin sn. Hence the proton and neutron spins sp and sn

sd sp sn
L of the neutron-

Id 
Id

L
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 Fig. 2.1 (i) and (ii) Relative orientations of the spins and magnetic moments of 
the neutron and the proton; (iii) Orientations of p and n in deuteron; (iv) Orientations 

of sp and sn in deuteron.

Fig. 2.2 Vector addition of L and S to yield a value ld = 1 for different values of L

p n – d can be 
L L

between p n and d.

L

L L

function of r V V r

 Fig. 2.3 General form of the internucleon potential (central)
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  V V
0
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   r > b

  where V
0
 > 0 and b a

b
  V V

0
r b

c
  V V

0
r b r b

d
  V V

0
r – b c

  where c

 Fig. 2.4 Two nucleon potentials. (a) Rectangular potential well; (b) Exponential 
well (c) Yukawa well; (d) Woods-Saxon potential well.

2.3 EXISTENCE OF EXCITED STATES OF 
DEUTERON

viz.
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0
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l l

l l
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Method of Partial Waves
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l b

V r rn. l can be written as
  l ~ k2l  for 2l < n – 3

 Fig. 2.5 Nature of the radial solution for a given l for (a) attractive potential ( l 
> 0) and (b) repulsive potential ( l < 0).

l V r

l

Scattering Cross-section in the L-system

as C C L L

Fig. 2.6 Solid angles in C and L systems.
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2.6 THEORY OF P-P SCATTERING
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 Fig. 2.7 Angular distribution of p-p scattering in C-system at 2.5 MeV.
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2.6.1  Spin Dependence of n-p Interaction
n-p cross-section 

0

scattering cross-section 
0

n-p

S
S

n-p S
weight 2S

Vt and Vs

the depths Vot and Vos and ranges bt and bs



Nuclear Force and Two 
Body Problem

NOTES

 Self - Learning 
60 Material

can be written as

  
 

= +
3

4

1

4
σ σt s

 

written as σ πt ta= 4 2  where at ≈ +4 8.  fm

at is due to the fact that the n-p 
n-p 

σt b≈ 3

s

s

  s = 4 2πas  

where as as

  

a
a

s

t

2

2

 
= = =

σ
σ

s

t

71

3
23 7.

so that as at

as

the above considerations. If as -
i.e.

as. 
as

2.6.2  Scattering Length
EL S

l f 

  f 
 

=
exp ( )

sin
i

k
δ

δ0
0
 

  
 

= =f
k

( )
sin

θ
δ2

2
0

2
 

C

  
tot

 
= =∫ σ θ

π δ
( )

sin
d

k
Ω

4 2
0

2

  
tot

 
= = =

+∫ σ θ
π

δ
π

δ
( )

cot
d

k k k
Ω

4 4
2

0
2 2 2

0cosec2
 



NOTES

Nuclear Force and Two 
Body Problem

Self - Learning
Material  61

k
and 

tot tot
 go 

k 

k cot 
0

k  0. If we write

  

1

ak  
k cot 

0

  
tot

 
=

+
4

12 2

π
k ak/

ak E.

In order that 
tot

k 

  
lim cot
k

k
→0

0δ
 

= −⎛
⎝⎜

⎞
⎠⎟

= −
→

lim
k ka a0

1 1

 

where a Fermi Scattering length

  
lim cot
k

k
→0

0δ
 

a2
0

f 
as k  0 if 

0
i.e. lim .

k→
=

0
0 0δ  Since sin 

0 0
 

as 
0
  0 we get in this case

  
lim ( )
k

f
→0

θ
 

= = −
→

lim
k k

a
0

0δ
 (say)

 

a. If we draw a sphere of radius 2a
a 2 or 4 a2 as shown 

 Fig. 2.8 Geometrical inter-pretation of Fermi scattering length.

Solution of the Radial Equation at Low Energy

l
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a
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Fig. 2.10 Nature of wave functions for zero energy neutrons. The outside function is a 
straight line with negative slope.
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a just bound n-p a

for which no bound state of the n-p a < 0.

n-p i.e.
whether it is bound or unbound.

2.6.3  p-p Scattering at High Energy

S l

Fig. 2.11 Variation of pp ( ) with  at high energies (experimental values).
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Fig. 2.12 Contributions of S and D waves to p-p scattering.
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l changes sign depends 

1S
0

2.7 VARIOUS TYPES OF TWO BODY 
NUCLEAR FORCES

Wave Equation for the Deuteron and its Solution
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 Fig. 2.13 Graphical solution of the transcendental equation cot x = – b/x where 
x = k1b.
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 Fig. 2.14 Deuteron ground state ( d) in the rectangular well of death 38 MeV.

Check Your Progress

2.8 ELEMENTARY IDEA OF YUKAWA 
THEORY OF NUCLEAR FORCES
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Symmetric Theory
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2.9 ANSWERS TO ‘CHECK YOUR 
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2.10 SUMMARY
  

2



NOTES

Nuclear Force and Two 
Body Problem

Self - Learning
Material  77

 

 

 

C θ.

 

 
S S 

n-p S S 

 n-p E EBd < 
a 

u
in

E < V
0

E r b i.e. k
1
b and k

0
b are 

 
n-p i.e.

unbound.

 

section on θ
S l 

 p-p 
a

of the S and D b

 

which is the deuteron.

 

 

 

interaction.

 



Nuclear Force and Two 
Body Problem

NOTES

 Self - Learning 
78 Material

2.11 KEY TERMS
  Meson:

  Pion:

2.12 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

Long Answer Questions

deuteron.

2.13 FURTHER READING
Introduction to Elementary Particle Physics nd 

Nuclear and Particle Physics

Modern Particle Physics
Press.

Nuclear and Particle Physics: An Introduction nd 

Introductory Nuclear Physics
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UNIT 3 NUCLEAR MODELS AND 
NUCLEAR REACTIONS

Structure 
 3.0 Introduction
 3.1 Objectives
 3.2 Liquid Drop Model and Fission
 3.3 Bohr and Wheeler’s Theory

 3.3.1 Asymmetric Fission
 3.3.2 Spontaneous Fission

 3.4 Nuclear Shell Model
 3.5   Spin Orbit Coupling
 3.6  Magnetic and Quadrupole Moments

 3.6.1  Quadrupole Moments

 3.7 Nuclear Shell Structure
 3.7.1  Elementary Idea of Collective Model of the Nucleus

 3.8 Conservation Laws of Nuclear Reactions and Q Value
 3.9 Threshold Energy of a Nuclear Reaction
 3.10 Nuclear Reaction

 3.10.1  Cross Section and Level Width

 3.11 Bohr Compound Nucleus Theory of Nuclear Reaction
 3.11.1 Deuteron Stripping Reaction

 3.12 Breit-Wigner Single Level Formula
 3.13 Answers to ‘Check Your Progress’
 3.14 Summary
 3.15 Key Terms
 3.16 Self Assessment Questions and Exercises
 3.17 Further Reading

3.0 INTRODUCTION
In nuclear physics, the Semi-Empirical Mass Formula (SEMF) (sometimes 
also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–
Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker 
process) is used to approximate the mass and various other properties of 
an atomic nucleus from its number of protons and neutrons. As the name 
suggests, it is based partly on theory and partly on empirical measurements. 
The formula represents the liquid drop model proposed by George Gamow, 
which can account for most of the terms in the formula and gives rough 

remains the same today. 

The magnetic moment is the magnetic strength and orientation of 

objects that have magnetic moments include: loops of electric current (such 
as electromagnets), permanent magnets, elementary particles (such as, 
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electrons), various molecules, and many astronomical objects (such as, many 
planets, some moons, stars,.etc). The formula gives a good approximation 
for atomic masses and thereby other effects. However, it fails to explain the 
existence of lines of greater binding energy at certain numbers of protons and 
neutrons. These numbers, known as magic numbers, are the foundation of 
the nuclear shell model. A quadrupole or quadrapole is one of a sequence of 

that can exist in ideal form, but it is usually just part of a multipole expansion 

A stripping reaction is a nuclear reaction in which part of the incident 
nucleus combines with the target nucleus, and the remainder proceeds with 
most of its original momentum in almost its original direction. This reaction 

reactions have been extensively used to study nuclear reactions and structure, 
this occurs where the incident nucleus is a deuteron and only a proton emerges 
from the target nucleus.  

Bohr and Wheeler’s theory, nuclear shell method, magnetic and quadrupole 
moments, nuclear shell structure, conservation laws of nuclear reactions and 
Q values, threshold energy of a nuclear reaction, nuclear reactions, cross 
section and level width, Bohr compound nucleus theory of nuclear reactions 
and Breit-Wigner single level formula.

3.1 OBJECTIVES
After going through this unit, you will be able to:

 • Explain the Bohr and Wheeler’s theory 

 • State the nuclear shell method and structure.

 • Elaborate on the magnetic and quadrupole moments 

 • Discuss the basic concept of conservation laws of nuclear reactions 
and Q values 

 • Analyze threshold energy of a nuclear reaction 

 • Discuss the Bohr compound nucleus theory of nuclear reactions 

 • Illustrate Breit-Wigner single level formula 

3.2 LIQUID DROP MODEL AND FISSION

The macroscopic properties of the nucleus, e.g., the constant density of the 
nuclear matter and the constant binding energy per nucleon are very similar to 
those found in a liquid drop. The very strong short range interaction between 
the nucleons permits us to consider their collective behaviour in determining 
the properties of the nucleus. As an example; if some extra energy is supplied 
to the nucleus, then instead of considering how the motions of the individual 
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collective behaviour of the nucleons in the nucleus as a whole.

in 1937 and was later applied by C.F. von Weizsäcker and H.A. Bethe to 
develop a semi-empirical formula for the binding energy of the nucleus.

There are reasons to believe that each individual molecule within 
a liquid drop exerts an attractive force upon a group of molecules in its 
immediate neighbourhood. The force of interaction does not extend to all the 
molecules within the drop. This is known as the saturation of the force. In 
order to calculate the potential of the interaction, it is necessary to know the 
number of interacting pairs of molecules within the drop. If each molecule 
interacts with all the molecules in the drop, the number of interacting pairs 
should be N(N–1)/2 where N is the total number of molecules. For N large, 
the number of pairs would thus be N2/2 so that the potential energy should be 
proportional to N2. On the other hand, if each molecule interacts with a limited 
number of molecules in its immediate vicinity, the number of interacting pairs 
would be linearly proportional to N so that the interaction potential should 
be proportional to N. This latter conclusion is supported by experimental 
evidence. The total amount of heat required for evaporating a drop of liquid 
(latent heat) is linearly proportional to the number of molecules within the 
liquid, as is evident from the fact that the heat required to evaporate 2 g of 
a liquid is twice that required to evaporate 1 g.

The binding energy EB of a nucleus is proportional linearly to the 
number of nucleous within it, so that the binding fraction fB (i.e., binding 
energy per nucleon) is nearly constant (~8, MeV) for most nuclei. This fact 
shows a close resemblance of the nucleus with a liquid drop. Thus we come 
to the conclusion that the internucleon force within the nucleus attains a 
saturation value, so that each nucleon can interact only with a limited number 
of nucleons in its close vicinity. Apart from this, there are certain other points 
of resemblance between the nucleus of an atom and a liquid drop:

 (i) The attractive force near the nuclear surface is similar to the force of 
surface tension on the surface of the liquid drop (see later);

 (ii) As in the case of a liquid drop, the density of the nuclear matter is 
independent of its volume. The nuclear radius is R  A1/3 where A is 
the mass number. Hence the nuclear volume V  A. Since the nuclear 
mass M ~ A, the density of the nuclear matter m = M/V is independent 
of A. This also suggests saturation of the nuclear force;

 (iii) Different types of particles, e.g., neutrons, protons, deuterons, 
-particles, etc., are emitted during nuclear reactions. These processes 

are analogous to the emission of the molecules from the liquid drop 
during evaporation;

 (iv) The internal energy of the nucleus is analogous to the heat energy 
within the liquid drop;
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 (v) The formation of a short lived compound nucleus by the absorption of 
a nuclear particle in a nucleus during a nuclear reaction is analogous 
to the process of condensation from the vapour to the liquid phase in 
the case of the liquid drop.

The liquid drop model is not very successful in describing the low 
lying excited states of the nucleus. Because of the collective motions of the 
large number of nucleons involved, the model gives rise to closely spaced 
energy levels. Actually however, these are found to be quite widely spaced 
at low excitation energies.

3.3 BOHR AND WHEELER’S THEORY
The drop’s potential energy at each stage can be estimated as a function of 
its degree of deformation. The potential energy is displayed versus r, the 

exist on the curve.

In area I, the fragments are entirely separated, and their potential energy 
E is just the electrostatic Coulomb energy produced by the two positively 
charged nuclear fragments’ mutual repulsion. When the drops are in close 
proximity to one another and the distance r=2R, the energy E at the position 
is less than the corresponding Coulomb potential by an amount CD. This 
amount is equal to the potential for surface forces to become active at this 
stage. We approach the critical distance rc, where the potential energy curve 
has a maximum value Eb, as we travel through region II. This relates to the 

circumstances where Ef > 0. The nuclear system requires an additional amount 
of energy Ea=Eb-Ef called the activation energy before the potential barrier 

region, and short-range nuclear forces have taken precedence.

  

Fig. 3.1
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process. They used a straightforward analytical technique (Legendre 
polynomial expansion) to describe the radius r that forms an angle with the 
axis of maximal deformation.

                    
…..(3.1)

2 3
 denote the 

deformation parameters.

0 1
=0, in this case, as the drop’s centre of mass is supposed 

to remain constant.

A spherical drop’s surface energy Es=4 R2T=4 [R0A
1/3]2T, where 

A is the mass number and T is the surface tension. As a result, in terms of 
deformation parameters, the surface energy of the deformed drop is given by

The drop’s surface energy changes as a result of deformation:

                                                                            …..(3.2)

The Coulomb energy of a spherical drop Ec =  , hence that of the 
deformed drop

                                                  (3.3)

Keeping simply the  term in mind, the entire difference in energy is as 

follows:

The drop is stable to tiny distortions if it is positive, i.e., 2Es > Ec. If 
 is negative or Es <  Ec

The critical parameter, denoted by , is the ratio . When 1, the 

=13MeV, it is possible to estimate the degree of distortion of a nucleus in 
the critical state by equating the critical or threshold energy Eth to the overall 
energy variation .
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The energy that must be transferred to the nucleus in order to reach 
this crucial shape when the deformed drop is about to split into two equal 
drops is known as threshold energy or critical energy. The threshold energy 
is calculated as follows:

         …(3.4)

This energy can be computed by ignoring the second-order energy shift 
caused by the neck connecting the two fragments.

There are no electrostatic forces for an uncharged droplet =0 and f (0) 
=0.260, therefore the critical energy is just the work done against surface 
tension in separating into two droplets. A minor deformation from the 
spherical shape leads the drop to reach the critical shape and separate at   =1.

When the critical energy is compared to the excitation energy, the 
Ee, which is 

contributed to the subsequent compound nucleus by a neutron’s capture, is 
equal to the binding energy of the neutron in the compound nucleus and may 
be computed using the relationship.

The calculated values of the excitation energy for a number of heavy 
nuclei are listed in the table and compared to the matching critical energy 
values. When looking at the results, it’s clear that 238U requires a critical 
deformation energy of 6.5 MeV MeV when it 
takes up a neutron with zero K.E. As a result, thermal neutrons with an energy 
of 0.03 eV
K.E. of 0.6 MeV. Experiments show that neutrons with an energy of roughly 
1 MeV
grows rapidly. With 235U, the situation is somewhat different. The excitation 
energy, or the energy available by capturing a slow neutron, is higher than 
the threshold energy in this case. Thermal neutrons should clearly be capable 
of generating 235U
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Table 3.1 Excitation Energy and Critical energy for some Nuclides.

3.3.1 Asymmetric Fission
Eb)f as a function of the deformation 

parameter shows that the minimum value of Eb corresponds to symmetric 

this is not so can be understood as follows. The initial deformation prior to 

immediately, but takes place only after the nucleon shells in the would-be 
fragments have been formed. The numbers of nucleons in these shells happen 

in the two processes can be estimated as follows.

f = /v where 
fragments (~ 10–13 m) and v their velocity (~ 107 m/s) so that f ~ 10–20 s. 
The shell formation time, on the other hand is s ~ / Es, where Es ~ 1 
MeV is the mean separation between the one-particle levels. This gives 

s ~ 10–34/10–13 = 10–21
f.

3.3.2 Spontaneous Fission

two fragment nuclei of comparable masses, whether or not induced by an 
external agent. Fission may also occur spontaneously. In the latter case 
we have Spontaneous Fission (S.F.) which was discovered by the Russian 

A
ZX undergoes the 

spontaneous transformation

  A
ZX → +Z

A
Z
A

1

1

2

2
1 2X X  ...(3.5)

where the two product nuclei have mass numbers and atomic numbers 
of comparable values. Here A

1
 + A

2
 = A and Z

1
 + Z

2
 = Z. In the case when 

A
1
 = A

2
 = A/2 and Z

1
 = Z

2
 = Z/2 we have symmetric S.F. Here we have not 

included the prompt neutrons, which are not really the primary products of 
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The above processes can occur if the Q value of the transformation is 
positive i.e.,
  Qf = M(A, Z) – M(A

1
, Z

1
) – M(A

2
, Z

2
) > 0

where the M’s are the atomic masses expressed in energy units. For the 
symmetric case, we have

  Qf = M(A, Z) – 2 × M(A/2, Z/2) > 0

Written in terms of the binding energies (B) we have

  Qf = 2 × B(A/2, Z/2) – B(A, Z)

   = 2 × (A/2)f  B – Afb = A(  f  B – fB+) = A . fB

where f  B s are the binding fractions.

For Qf to be positive, fB must be positive which happens if f  B > fB, i.e., 
the binding fraction of the product nuclei is greater than that of the parent 
nucleus. 

Writing the atomic masses in terms of the semi-empirical mass formula 
derived in this book, we have, neglecting the pairing energy term

  M(A, Z) = + − + + +
−ZM NH a A a A a Z

A
a A Z

AH n 1 2
2 3

3

2

1 3 4

22/
/

( )

  M A Z
2 2

,
⎛
⎝⎜

⎞
⎠⎟  = + − + ⎛

⎝⎜
⎞
⎠⎟ + +

−Z M N M a A a A a Z
A

a A Z
AH n2 2 2 2

2

2

2

21 2

2 3

3

2

1 3 4

2/

/

( / )

( / )

( )

Hence Qf = M(A, Z) – 2M(A/2, Z/2)

   = −⎛
⎝⎜

⎞
⎠⎟ + −

⎛
⎝⎜

⎞
⎠⎟a A

a Z
A2

2 3
2 3

3
2

1 3

1 3

1
2

2
1

2

2
/

/ /

/

   = – 0.26 a
2
 A2/3 + 0.37 a

3
 Z2/A1/3 ...(3.6)

Thus the symmetric S.F. will be energetically possible (Qf > 0) if

  
Z
A

2

 >
0 26

0 37
2

3

.

.

a
a

Substituting the values a
2
 = 0.019114 u and a

3
 = 0.0007626 u, we get

  
Z
A

2

 > 17.6

A > 90 and Z > 40. (For 
A = 90, Z = 40, Z2/A = 17.8). Thus for nuclei for which A > 90, S.F. should 
be energetically possible. In reality however, it is a very uncommon 
phenomenon. Even amongst the nuclei of the heaviest atoms in the periodic 
table, e.g., uranium, it is very rarely observed. For instance there is only about 
one S.F. per hour in 1 g of 235U corresponding to a half-life of 2 × 1017 yr.

The reason for this lies in the quantum mechanical barrier penetration 
problem, which we discussed in connection with the -disintegration of 
nuclei. The problem is much more acute in the present case, since the nuclei 

-particles.
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nuclei of mass number A/2 and carrying positive charge Ze/2 each are brought 
A and Z are the mass number and atomic 

at a distancer between their centres, the electrostatic potential energy rises to

  Vc =
1

4

2

0

2

π ε
( / )Ze

r
 ...(3.7)

This potential energy is positive since the force is repulsive. As r 
decreases Vc increases as shown in Fig. 3.2(a). It should be maximum at 
B when the two fragments just touch each other which happens when their 
centres are separated by 2 R  where R  = r

0
 (A/2)1/3 is the radius of each 

fragment. However, actually the maximum is reached when the fragments 
begin to coalesce to produce the original nucleus under the action of strong 
short range attractive interaction (nuclear force). The highest point on the 
actual potential energy curve Q is below B. From this point where the 
potential is Eb, the course of the potential energy curve towards r = 0 is not 
known exactly.

The point P giving the energy at r = 0 corresponds to the mass energy of 
the parent nucleus. In order that the parent nucleus may undergo spontaneous 

point Q.

The heights of the points P, P , P  etc., in Fig. 3.2(b) for different 
A
fragments) correspond to the Qf values calculated above (Eq. 3.6). As 

energetically possible. This is the case for nuclei with A > 90. However, 
because of the barrier penetration problem, there is very little probability of 

 Fig. 3.2 
curves for different mass numbers.

In Fig. 3.3, the barrier height Eb calculated from Bohr-Wheeler theory 
(a) and the values of Qf (b) are plotted as functions of A for comparison. It 
will be seen that Eb > Qf for the nuclei with A upto ~ 250. Ef = Eb – Qf is called 
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positive. S.F. is possible in this case through barrier penetration only. This is 
the reason why S.F. is so rare a phenomenon. In the potential energy diagrams 
of Fig. 3.2(b) these correspond to the cases where the humps of the potential 
energy curves are above the rest energies of the parent nuclei.

 Fig. 3.3 b) with the energy Qf .

Fission can be induced in these nuclei if energy is supplied to them by 
particle (neutron) or radiation ( -ray) absoption. If the neutron separation 
energy from the target nucleus is Sn and the neutron kinetic energy is En, then 
the energy of excitation of the latter is
  Ec = En + Sn ...(3.8)

Qf 
below Eb, i.e.,
  Ec Eb – Qf ...(3.9)

  (Ec) min = Eb – Qf = Ef ...(3.10)

Bohr and Wheeler, on the basis of the liquid drop model of the nucleus, 
developed the theory for the calculation of the activation energy Ef  .

3.4 NUCLEAR SHELL MODEL
It is thought that protons and neutrons in a nucleus are constantly colliding 
with each other. With such a strong force acting between them and so 
many nucleons to collide with, nucleons cannot conceivably complete 
entire orbits without interacting. No two electrons may occupy the same 
quantum state, according to Pauli’s exclusion principle. The evidence 
for a shell structure and a limited number of permissible energy states 
suggests that a nucleon moves in some form of effective potential well 
created by all the other nucleons’ forces. This leads to energy quantization 
in the same way that the square well Potential does. The designations 
for the levels differ slightly from the corresponding symbols for atomic 
energy levels. The energy levels grow as the orbital angular momentum 
quantum number l increases, and the s, p, d, f... symbols are used for 
 l =0,1,2,3..., same as in the atomic case. However, because there is no 
physical equivalent to the primary quantum number n, the numbers associated 
with the level begin at n=1 for the lowest level associated with a given orbital 
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quantum number. In addition to the dependency on potential well details 

separates the levels by an amount that grows with orbital quantum number. 

 The subscript denotes the total angular momentum j, and the state 
has a multiplicity of 2j + 1. Due to Coulomb repulsion, the contribution of 
a proton to energy is slightly different than that of a neutron, although this 
difference has no effect on the appearance of the set of energy levels. The 
nuclei with an even number of protons and neutrons are discovered to be 
more stable than those with an odd number. There are many ‘Magic Numbers’ 
of neutrons and protons that appear to be particularly favorable for nuclear 
stability: 2, 8, 20, 28, 50, 82, and 126. Nuclei whose neutron and proton 
counts are both equal to one of the magic numbers are referred to as ‘Doubly 
Magical,’ and are found to be exceptionally stable.

 

 Fig. 3.4 A schematic representation of the shell structure in nuclei.

Predictions of the Shell Model: 

 1. Stability of closed shell nuclei: This system reproduces all the magic 
numbers, 2,8,20, 28,50,82,126, unambiguously. 

 2. Spins and Parities of Nuclear Ground States: The shell model 
has demonstrated remarkable success in forecasting the ground state 

independently in this scenario. There are the following rules for angular 
momenta and ground state parities.

(i) Even-even nuclei have an angular momentum in their ground state 
of J=0+. This rule has no known exceptions.

(ii) With an odd number of nucleons, such as an odd Z or odd N nucleus, 
the nucleons pair off as far as possible such that the resulting orbital angular 
momentum and spin direction are identical to those of the single odd particle.
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(iii) The total angular momentum of an odd-odd nucleus is equal to 
the vector sum of the odd neutron and odd proton j-values. The parity will 
be equal to the sum of the proton and neutron parities, i.e., parity = (-1) ln + lp.

is the case for , , , , and all other even-even nuclei. We now provide some 
actual cases of odd even nuclei. Take the nucleus  as an example. In the 

odd neutron is designated . The ground state angular momentum is denoted 
by the subscript  i.e., , a value that is experimentally measured. The unpaired 
particle in nucleus is a proton with spin . Consider the following examples:  
and . The shells are stuffed in accordance with

  

If the nucleon is 17

of 5/2; if the nucleon is 17

Thus, the model predicts 5/2, which is also the measured number for each 
of these nuclei’s ground state spin.

3. Magnetic Moments of Nuclei: The overall angular momentum J of 
the nucleus is equal to the angular momentum j
in an odd nucleus. Thus, we observe that the odd nucleon alone generates the 
nucleus’s magnetic moment. The orbital angular momentum (l) of numerical 
value  and the spin s of numerical value  combine to produce a total angular 
momentum J s=gss denotes the magnetic 
moment associated with spin angular momentum s.

 Similarly, the magnetic moment associated with orbital angular 
momentum l is denoted by the equation l=gl l.

 

 Fig. 3.5 Schmidt lines plotting magnetic dipole moments against 
angular momentum (above) for odd Z-even N nuclei and (below) for even 

Z-odd N nuclei.
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Hence  = sum of the vectors gll and gss along j. The above relationship 
may be represented as by applying the cosine rule to the triangle created by 
the l, s, and j.

Since for a single particle, the spin s = ½ and there are two possible 
cases.

l parallel to s (Stretch case); J = l + s = l + ½.

l antiparallel to s (Jacknife case); J = l – s = l – ½.

Hence,

                                    ….()

                                …..(3.12)

versus J with J = l ± ½, for 
each class of odd even nuclei. Schmidt values are the values of and Schmidt 
lines are the curves. When the preceding equations (3.10) and (3.12) are 
substituted, the g factors corresponding to single nucleons are 

gl = l and gs = 5.58 for protons and gl = 0 and gs = -3.82 for neutrons.

3.5   SPIN ORBIT COUPLING
In order to explain the disagreement at the higher magic numbers, Mayer and 
independently Haxel, Jensen and Suess suggested that a spin-orbit interaction 
term should be added to the central potential V(r). The spin-orbit potential, 
which is non-central, can be written as
  Vls = –  (r) l.s

where  (r) =
∂
∂

⎛
⎝⎜

⎞
⎠⎟b

r
f
r

1
 ...(3.13)

Here  and  are the azimuthal and spin angular momenta of the nucleon 
under consideration. f (r) is a spherically symmetric function giving the 

V(r) is a constant. We assume strong 
coupling between the spin and orbital angular momenta of each individual 
nucleon giving rise to a total angular momentum j for each so that we can 
write.
  j = l + s ...(3.14)

Since s = 1/2 for each nucleon, the two possible values of j are 
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j = + −l l
1

2

1

2
 and .  These two levels now have different energies because of 

the strong spin-orbit coupling. The splitting of the two levels can be calculated 
by computing the expectation values of the spin-orbit potential (3.13) in the 
two states of different j. It can be easily seen that
  2l . s = j(  j+ 1) – l(l + 1) – s(s + l) ...(3.15)

which gives the following two values of l . s :
  j = l + 1/2 :  l . s = l/2 ...(3.16)

  j = l – 1/2 :  l . s = – (l + 1)/2 ...(3.17)

The expectation values of the spin-orbit interaction potential is :

Vls> = = −
∞

∫ε ψ ϕ ψls nl nll s r r r dr( . ) ( ) ( ) ( )*

0

   = –(l . s)  (r)  ...(3.18)

where  (r)  is the expectation value of (r) appearing in Eq. (3.13). We 
then have for the two states
  j = l + 1/2 :  ls = –l/2   (r)  ...(3.19)

  j = l – 1/2 :  ls =
+l

r
1

2
φ( )  ...(3.20)

The spin-orbit splitting of the two levels is then
  ls = ls (l – 1/2) – ls (l + 1/2)

   = (l + 1/2)  (r)  ...(3.21)

The observed level-spacing is given by the following empirical formula:
  ls = 10(2l + 1) A–2/3 MeV ...(3.21a)

Since the r.h.s. of Eq. (3.21) is positive, it is obvious that the state with 

j = +l
1

2
 lies below the state j = −l

1

2
.  The splitting which is of the order of 

a few MeV increases with increasing value of l. For the s-state (l = 0), only 

one value of j ( = 1/2) is possible.

The spin-orbit potential assumed above resembles that which would 
arise due to a simple magnetic effect. However, the spin-crbit splitting is in 
this case much greater than the rather weak magnetic coupling between l and 
s. So it must be more intimately related to the central potential V(r) giving 
rise to the shell structure. In analogy with the atomic case, it can be written as

  (r) =
∂
∂

⎛
⎝⎜

⎞
⎠⎟

β
r

V
r

 ...(3.22)

where  is the spin orbit constant.

There is evidence for the existence of a strong spin-orbit force between 
nucleons from high energy polarization experiments (see Ch. XVII), which 

The sequence of the energy levels, taking spin-orbit interaction into 
account, is shown in Fig. 3.6. Since we have to consider now the three 
quantum numbers n, l and j, the levels are designated as follows :

1s
1/2

 ; 1p
3/2

, 1p
1/2

 ; 1d
5/2

, 1d
3/2

 ; ... 2s
1/2

 ; 2p
3/2

, 2p
1/2

 ; ... 2f
7/2

, 2f
5/2

 ; etc.
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 Fig. 3.6 Sequence for nuclear levels according to shell model taking into 
account spin orbit interaction.

In accordance with Pauli’s exclusion principle, each sublevel of a 
given j can accommodate a maximum of (2j + 1) nucleons of either kind for 
which the magnetic quantum numbers mj are different. The possible values 
are mj = j, j – 1, ... –j. When a sublevel of given j  
(2j + 1) nucleons of a particular kind, the extra nucleons of the same kind 
must go to the next higher state of different j.

The group of sublevels (n, l, j) having energy values close to one 

the shell is the sum of the nucleon numbers (2j + 1). The total number of 

lowest upwards constitute shell closure. These are shown in Fig. 3.6 on the 
extreme right which can be seen to agree with the observed magic numbers.

The lowest level, according to the new scheme is 1s
1/2

 with j = 1/2 
which contains (2 × 1/2 + 1) or 2 nucleons. The next higher level with  = 
1 is now a combination of the two sublevels 1p

3/2
 and 1p

1/2
, the latter being 

above the former. The maximum number of nucleons which can occupy these 
sublevels are 4 and 2 respectively, so that the total number of nucleons in 
this group of sublevels is (4 + 2) or 6. So the shell closure takes place in this 
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case with (2 + 6) or 8 nucleons as before.

The next group with  = 2 are 2s and 1d which split up into the sublevels 

2s
1/2

, 1d
5/2

 1d
3/2

, the last one with j = − =l l
1

2
2( )  lying above the 1d

5/2
 with 

j = +l
1

2
.

The sequence of the sublevels is shown in Fig. 3.6. The numbers of 
nucleons in the different sublevels are 2, 6 and 4 respectively, the total being 
12. The shell closure takes place with (2 + 8 + 12) or 20 nucleons which is 
the same as before.

Departures from the simple theory without the spin-orbit coupling 
term being taken into account begin to appear from the next group of 
sublevels 2p and 1f with  = 3. These now split up into 2p

3/2
, 2p

1/2
, 1f

7/2
 and 

1f
5/2

. Because of the relatively larger value of l (= 3) for 1f, the 1f
7/2

 sublevel 

j l= + = + =⎛
⎝⎜

⎞
⎠⎟

1

2
3

1

2

7

2
 is pushed down in energy considerably below the 

other three sublevels and lies as a separate level in between the two groups 

of  = 2 and 2
7

2
1× +⎛

⎝⎜
⎞
⎠⎟

 
or 8 nucleons and a shell closure takes place at this point with (20 + 8) or 28 
nucleons, as shown in Fig. 3.6.

The remaining sublevels 2p
3/2

, 2p
1/2

 and 1f
5/2

 can contain a maximum 
of 12 nucleons which when added to the number 28 given above give rise to 
the semi-magic number 40 which is in agreement with observations.

To explain the magic number at 50 we have to consider the next group of 
levels 3s, 2d and 1g with  = 4. These split up into the sublevels 3s

1/2
, 2d

5/2
, 2d

3/2
, 

1g
9/2

, 1g
7/2

. Because of the large value of 1 (= 4), the 1g
9/2

 sublevel is pushed 
way down to the vicinity of the previous group of sublevels (2p

3/2
, 2p

1/2
, 1f

5/2
) 

and these four together constitute the shell which can contain a maximum of  

1g
9/2

 sublevel being 10. Thus the shell closure takes place at (28 + 22) or 50 
nucleons in agreement with observed magic number.

Similarly because of the large spin-orbit splitting of the 1h level 
belonging to  = 5, the sublevel 1h

11/2
 is pushed way down to the vicinity 

of the remaining sublevels at s
1/2

, 2d
5/2

, 
2d

3/2
, 1g

7/2
 and 1h

11/2
 can then accommodate a maximum of (2 + 6 + 4 + 8 

+ 12) or 32 nucleons which when added to the 50 nucleons at the previous 
shell closure can account for a new shell closure at (50 + 32) or 82 nucleons 
in agreement with observations.

Finally the large spliting of the 1i level at  = 6 into 1i
13/2

 and 1i
11/2

 pushes 
down the former to the vicinity of the  = 5 group of remaining sublevels. 
The new group of six sublevels 1h

9/2
, 2f

7/2
, 2f

5/2
, 3p

3/2
, 3p

1/2
 and 1i

13/2
 can 

accommodate a maximum of (10 + 8 + 6 + 4 + 2 + 14) or 44 nucleons which 
when added to the number 82 accounts for occurence of the magic number 
126 (Refer Fig. 3.6).
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3.6  MAGNETIC AND QUADRUPOLE 
MOMENTS

It was seen that the magnetic moment of a nucleus is the vector sum of the 
spin magnetic moment μs

� ��
 and orbital magnetic moment μL

� ��
:

  μ
��

 = +μ μs L

� �� � ��
 ...(3.23)

μs

� ��
is the vector sum of the intrinsic magnetic moments of the individual 

nucleons in the nucleus. For protons and neutrons, the intrinsic moments are
  p = gp N/2

 and n = gn N/2
 ...(3.24)

where N = /2 Mp is the nuclear magneton, Mp being the proton mass, gp 
and gn are the gyromagnetic ratios for the proton and the neutron respectively 
and have the numerical values
  gp = 2 × 2.7927 and gn = –2 × 1.9131 ...(3.25)

The magnetic moment of an odd A nucleus can be calculated using 
the extreme single particle shell model. The magnetic moment of a nucleus 
of spin I (total angular momentum) can be written as
  I = +g I II N( )1 μ  ...(3.26)

and it is the component of I z which is determined. 
Using the rule of space quantization, this becomes

  z = =
+

μ
μ

I
I II B
m

I I
cos( . )

( )1

where mI is the magnetic quantum number which can take up the values 
mI = I, I – 1 ... –I. B
corresponding to mI = I usually gives the measured magnetic moment.

  z =
+

=
μ

μI
I N

I
I I

g I
( )1

 ...(3.27)

 We have seen above that in extreme single particle model, an even 
number of nucleons of anyone kind always gives the resultant spin (I = 0). 
Hence the magnetic moment of an even-even nucleus will be 0:
  ( I)ee = 0

Thus in an odd A nucleus, it is the last odd nucleon (proton or neutron) 
which determines the magnetic moment. For such a nucleus, I = j where j is 
the total angular momentum of the last unpaired nucleon. Both the intrinsic 
magnetic moment ( s) and the magnetic moment due to its orbital motion 
( l) have to be added up vectorially to get the total magnetic moment:

  μ j

� ��
 = +μ μl s

��� � ��

where s = p for the proton and s = n for the neutron.

The orbital motion of a nucleon having azimuthal angular momentum 
l h-  produces a magnetic moment
  l = +g l ll Nμ ( )1  ...(3.28)
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Since the neutron is an uncharged particle its orbital motion does not 
produce any magnetic moment (gl = 0) so that
   ( l)n = 0  ...(3.29)

In the case of the proton we can write gl = 1 so that the orbital 
contribution is
  ( lp) = +μN l l( )1  ...(3.30)

Since the nucleons are spin 1/2 particles we can write the quantum 
mechanical values of the intrinsic magnetic moment as
  s = +g s ss Nμ ( )1  ...(3.31)

where gs = gp for the proton and gs = gn for the neutron. s = 1/2 is the spin 
quantum number.

The total magnetic moment component in the direction of j is
  I = j = l cos (l, j) + s cos (s, j)
   = + + +{ }μN l sg l l l j g s s s j( ) cos ( , ) ( ) cos ( , )1 1  ...(3.32)

Using Eq. (3.26) we can also write
  j = +g j jj N( )1 μ  ...(3.33)

From the cosine law we have

  cos (l, j) =
+ + + − +

+ +
j j l l s s

j j l l
( ) ( ) ( )

( ) ( )

1 1 1

2 1 1
 

  cos (s, j) =
+ + + − +

+ +
j j s s l l

j j s s
( ) ( ) ( )

( ) ( )

1 1 1

2 1 1

We then have

  j =
+ + + − +

+
g

j j l l s s
j jl Nμ

( ) ( ) ( )

( )

1 1 1

2 1

    +
+ + + − +

+
g

j j s s l l
j js Nμ

( ) ( ) ( )

( )

1 1 1

2 1
  ...(3.34)

For a spin 1/2 particle, j can have two values, j = ±l
1

2
.  So for a given 

j, l can have the following two values:

For j = l + 1/2, l = j – 1/2; for j = l – 1/2, l = j + 1/2.

For these two cases we get two different values of j from Eq. (3.34).

Using Eq. (3.33) we get

  gj =
+ + + − +

+
g

j j l l s s
j jl

( ) ( ) ( )

( )

1 1 1

2 1

    +
+ + + − +

+
g

j j s s l l
j js

( ) ( ) ( )

( )

1 1 1

2 1
  ... (3.35)

As stated before, the measured magnetic moment z is the largest 
possible component of j  
Eq. (3.27). Replacing I by j we then get
  z = gj j N

   =
+ + + − +

+
⎧
⎨
⎩

g
j j l l s s

j jl
( ) ( ) ( )

( )

1 1 1

2 1
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   +
+ + + − +

+
⎫
⎬
⎭

g
j j s s l l

js N
( ) ( ) ( )

( )

1 1 1

2 1
μ   ...(3.36) 

In the two cases stated above, we then get

 For l = − =
−

+⎛
⎝⎜

⎞
⎠⎟

j g
j

j
g

j
jz l

s
N

1

2

1 2

2
,

/
μ μ  ...(3.37)

  l = + =
−

+
−

+
⎛
⎝⎜

⎞
⎠⎟

l g
j

j
g
j

jz l
s

N
1

2

3 2

1 2 1
,

/

( )
μ μ  

...(3.38)

In the case of odd A, either the proton number is odd (in the o–e 
nucleus) or the neutron number is odd (in the e–o nucleus). So we have the 
following possibilities.

 Odd proton (gl = 1, gs = gp):

  l = − = − −
⎛
⎝⎜

⎞
⎠⎟j j

g
z

p
N

1

2

1

2 2
: μ μ  ...(3.39a)

  l = + =
+

+ −
⎛
⎝⎜

⎞
⎠⎟j

j
j

j
g

z
p

N
1

2 1

3

2 2
: μ μ

...(3.39b)

 Odd neutron (gl = 0, gs = gn):

  l = − =j
g

z
n N1

2 2
: μ

μ
 ...(3.40a)

  l = + = −
+

j
j

j
g

z
n N1

2 1 2
: μ

μ
 ...(3.40b)

The numerical values of gp and gn are given in Eq. (3.25). Eqs. (3.39) 
and (3.40) give the magnetic moments of odd A nuclei as functions of the 
nuclear spin I which is taken to be equal to the j value of the last odd nucleon. 
The above values of the nuclear magnetic moments are known as Schmidt 
values. In Fig. 3.7 these Schmidt values are plotted as functions of I = j for 
the four cases given above. The graphs are known as Schmidt diagrams. 
Figure 3.7(a) shows the Schmidt plots for the odd proton case for j = l ± 
1/2 giving the two lines as shown. In the same diagram, the experimental 
values of the magnetic moments for some nuclei are also shown. Similarly,  
Fig. 3.7(b) shows the two Schmidt lines for the odd neutron case for j = l ± 
1/2. The experimental values are also shown.

The experimental values do not in general agree with the Schmidt 
values. However, almost invariably, the experimental values lie between 
the two limiting Schmidt lines, both for odd Z and odd N nuclei. The few 
exceptions are 3H, 3He, 13C and 15N for which the experimental values fall 
slightly above or below the limiting lines. For these and a few other nuclei, 
the experimental values lie close to one or the other Schmidt line. In all these 
nuclei, the last odd nucleons are in a p

1/2
 level. Most of the experimentally 
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measured magnetic moments lie nearer to one of the two Schmidt lines than 
the other which has the 1 value expected from the extreme single particle 
shell model.

by shell model in these cases. For example 7Li with Z = 3 and N = 4 has a 
measured spin I = 3/2. The shell model prediction for the odd proton case 

gives z = 3.7927 for l = − =j
1

2
1  which is a p

3/2
 state while z = 0.1244 N 

for l = + =j
1

2
2  which is a d

3/2
 state. The experimental value is z = 3.26 N 

p
3/2

 for the ground state of this nucleus. 
When the experimental values lie midway between the two limiting Schmidt 
lines no such unambiguous assignment is possible.

Fig. 3.7 Schmidt lines (a) odd proton case, (b) odd netron case.

It is also observed that when a shell is crossed, there is the expected 
sharp change in the magnetic moment from the value corresponding to 
j = l – 1/2 to that corresponding to j = l + 1/2. Some examples are given below:

Nuclide I Shell model state obs calc

39
19

K 3/2 1d
3/2

 (j = l – 1/2) 0.22 0.12

45
21

Si 7/2 1f
7/2 

(j = l + 1/2) 4.76 5.79
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The magnetic moments are in nuclear magneton units.

The departures from the Schmidt values are probably due to the (i) 
error in the expression for z given above; (ii) error in the extreme single 
particle wave function used in the calculations. Rough calculations have been 
made with corrections due to (a) meson exchange currents, (b) departure of 

p and n values from their free state values and (c
functions due to the presence of the spin-orbit potential.

It may be noted that in the quantum mechanical theory, it is the 
expectation value 

z j, j of the quantum mechanical operator ˆ zμ of the magnetic 

moment in the state j and mj = j which is expected value of the magnetic 
moment. The result is the same as given above, using the vector model 
approach. 

3.6.1  Quadrupole Moments
The electric quadrupole moment Q of a nucleus is the average of the quantity 
(3z2 – r2) for the charge distribution in the nucleus. For a spherically symmetric 
charge distribution this average is 0 and hence Q = 0 for even-even nuclei 
which have ground state spin I = 0. In the case of a single odd proton nucleus 
in the state j this averaging gives the quadrupole moment as

  Qsp = −
−
+

2 1

2 2
2j

j
r  ...(3.41)

where  r2  is the mean square radius of the charge distribution which in 
the present case is equal to the mean square distance of the proton from the 
nuclear centre.

The negative sign on the r.h.s of Eq. (3.41) shows that orbital motion 
of the proton in the equatorial plane makes the charge distribution an oblate 
spheroid. On the other hand an odd hole in the state j would make the charge 
distribution a prolate spheroid for which Q > 0. Thus both positive and 
negative values of Q are expected.

In the case of a single odd neutron nucleus, one would not normally 
expect any quadrupole moment. However, the orbital motion of the neutron 
gives rise to the recoil motion of the rest of the nucleus which may be taken 
to be a charge Z at a distance rn/A (rn = radius of the odd neutron orbit) from 
the centre of mass. Hence a small quadrupole moment Qsn may be expected, 
given by

  Qsn =
Z
A

Qsp2
 ...(3.42)

This is much smaIler than Qsp.

The value of  r2  should be somewhat smaller than the square of 
the nuclear radius R2. So Qsp should be of the order of 10–28 to 10–29 m2 and 
should increase with A, in proportion of A2/3. For single neutron nuclei, Qsn 
should be about one hundredth of the above value or less and should decrease 
roughly as A–1/3.
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The measured values of Q for odd A nuclei are in many cases much 
higher than the estimates given above. Further when Q is large, Qsp and Qsn 
are of the same order of magnitude.

The above facts indicate that the single particle shell model cannot 
explain the very large values of Q in many nuclei. These nuclei seem to 
acquire a permanent deformation. 

Check Your Progress

 1. When was liquid drop model proposed?

 2. What do you mean by the saturation of the force?

 3. What are demerits of liquid drop model?

 5. What is spin orbit coupling?

3.7 NUCLEAR SHELL STRUCTURE

The different nuclear models which have been proposed from time to time can 
explain some limited features of the nucleus. Thus the liquid drop model can 
explain the observed variation of the nuclear binding energy with the mass 

very closely spaced energy levels in nuclei which is contrary to observation 
at low energies. The low lying excited states in nuclei are actually quite 
widely spaced, which cannot be explained by the liquid drop model. This 
and certain other properties of the nucleus would require us to consider the 
motion of the individual nucleons in a potential well which would give rise 
to the existence of a nuclear shell structure, similar to the electronic shells 
in the atoms.

We know that the extranuclear electrons in the atoms are arranged in a 
number of shells e.g., K, L, M, N etc. with the respective principal quantum 
number n = 1, 2, 3, 4 etc.

Each of these shells has a number of subshells characterized by different 
values of the azimuthal quantum number l = 0, 1, 2, 3, ... (n – 1). A subshell 
of given l can contain a maximum of 2(2l + 1) electrons, which means that 
the s, p, d, f etc. subshells with l = 0, 1, 2, 3 etc. can accommodate upto 2, 6, 
10,14 etc. electrons respectively.

In the inert gases Ne (Z = 10), Ar (Z = 18), Kr (Z = 36), Xe (Z = 54) and 
Rn (Z = 86), the outremost p
lightest inert gas He (Z = 2), the 1s

potentials being relatively quite high.

In the alkali elements, which follow immediately the inert gases in 
the periodic table, there is one electron in s subshell just outside the inert 
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gas core. This electron is very weakly bound in all of these elements [Refer 
Fig. 3.8(a

Fig. 3.8 (a) First ionization potentials of the atoms in the periodic table. Notice the 
discontinuities at shell closures. (b) Discontinuity in neutron separation energy at N = 82.

There are strong reasons to believe that as in the case of binding of 
the electrons in the atoms, the nucleons in the nuclei are arranged in certain 
discrete shells.

Gopert Meyer (1948) and independently O. Haxel, J.H.D. Jensen and H.E. 
Suess (1949) showed that the nuclei containing the following numbers of 
protons and neutrons exhibited very high stability:

Protons 2 8 20 28 50 82

Neutrons 2 8 20 28 50 82 126

The above numbers are popularly known as magic numbers and are 
analogous to the atomic numbers of the inert gases. In addition to the above, 
there is a semi-magic number at N and Z = 40.

Some nuclei contain magic numbers of protons and neutrons both. 
Examples 4He (Z = 2, N = 2), 16O (Z = 8, N = 8), 40Ca (Z = 20, N = 20), 48Ca 
(Z = 20, N = 28), 208Pb (Z = 82, N = 126). They are doubly magic and show 
exceptionally high stability.

Following are the maio evidences to show the existence of shell 
structure within the nuclei.

 (a) Nuclei containing magic numbers of protons of neutrons show very 
high stability, compared to the nuclei containing one more nucleon of 
the same kind. Measurement shows that the separation energy Sn of a 
neutron from a nucleus containing a magic number of neutrons is large 
compared to that for a nucleus containing one more neutron. Similarly 
the separation energy Sp of a proton from a nucleus containing a magic 
number of protons is large compared to that for a nucleus containing 
one more proton. (By separation energy is meant the minimum energy 
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needed for separating one neutron or proton from a nucleus).

  The sudden discontinuity in the value of Sn at the magic neutron number 
is shown in Fig. 3.8(b).

 (b) The naturally occurring isotopes, whose nuclei contain magic 
numbers of neutrons or protons, have generally greater relative 
abundances ( > 60%). For example, the isotopes 88Sr (N = 50), 138Ba  
(N = 82) and 140Ce (N = 82) have relative abundances of 82.56%, 71.66% 
and 88.48% respectively.

 (c) The number of stable isotopes of an element containing a magic number 
of protons is usually large compared to those for other elements. For 
example, calcium with Z = 20 has 6 stable isotopes compared to 3 and 
5 for argon (Z = 18) and titanium (Z = 22) respectively. Again tin with 
Z = 50 has the largest number of stable isotopes. This number is 10 
compared to 8 for cadmium (Z = 48) and tellurium (Z = 52).

 (d) The number of naturally occurring isotones with magic numbers of neutrons 
is usually large compared to those in the immediate neighbourhood. As an 
example, the number of stable isotones at N = 82, is 7 compared to 3 and 
2 at N = 80 and N = 84 respectively. Similar is the situation at N = 20, 28 
and 50 which have respectively 5, 5 and 6 isotones. These numbers are 
greater than in the cases of the neighbouring iotones.

 (e) The stable end products of all the three natural radioactive series described in  
Ch. II are the three isotopes of lead (206Pb, 207Pb and 208Pb) which all 
have the magic number Z = 82 of protons in their nuclei.

 ( f 
excited states at higher energies than in the cases of the neighbouring 
nuclei.

 (g) The neutron capture cross-sections of the nuclei with magic numbers of 

nuclei, the probabilities of their capturing an additional neutron is small  
(Refer Fig. 3.9). Similarly nuclei with magic proton numbers have low 
proton capture cross-sections.

 Fig. 3.9 Variation of neutron capture cross section with N  showing 
discontinuities at the magic numbers
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 (h) If the -disintegration energies of the heavy nuclei are plotted as 
functions of the mass number A for a given Z, then usually a regular 
variation is observed till the magic neutron number N = 126 is reached 

the magic character of the neutron number 126.

Fig. 3.10 Discontinuities in the a-disintegration energies at N = 126 for heavy nuclides.

(i) Similar discontinuities are observed amongst the -emitters at the 
magic neutron or proton numbers.

The experimental results summarized above lend strong support to the 
proposition of shell structure for the nucleus.

To develop a theory of the nuclear shell structure, it is necessary to 
assume the existence of a potential well within the nucleus. It is known from 
quantum mechanics that a bound physical system in an attractive potential 
well can exist in a number of discrete quantum states. This is the case for 

nucleus. If the interactions between the electrons are neglected, then we can 

levels for different sets of quantum numbers which determine the electronic 
shells in the atoms.

3.7.1  Elementary Idea of Collective Model of the 
Nucleus

Both the single particle shell model and the individual particle shell model 
are based on the assumption of the existence of a spherically symmetric 
potential in the nucleus, plus a spin-orbit coupling term. The different types 
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of coupling of the angular momenta assumed for the loose nucleons outside 

the core gives rise to the different forms of the shell model.

The shell model, with some refinements, has been successfully 

applied to explain many features of the nucleus in the ground state and in 

some of the excited states. However, it fails conspicuously in explaining the 

observed large electric quadrupole moments (Q) of the nuclei in many cases  

and the quadrupole transition rates B (E2). In such cases where Q is n times the 

single particle value (see Fig. ), we must assume that 2n particles are involved 

in producing the observed Q since the neutrons cannot directly contribute 

to Q. It is the collective motion of a fairly large number of nucleons which 

determines the large values of Q for nuclei far from closed shells.

the shell model by introducing the idea of deformation in the shape of the 

nuclear core due to the motion of the loose odd nucleon outside the core in 

odd A nuclei. According to him such motion leads to a polarization of the 

even-even core, which thus assumes a spheroidal shape. Such deformation 

would cause the quadrupole moment to be higher than the single particle 

value. E2 transition rate is also increased. Aage Bohr (son of famous Niels 

Bohr) and B. Mottleson (1953) further elaborated the model, combining the 

single particle and collective motions into a  which gave a more 

complete description of the deformed nuclei.

In nearly spherical nuclei, the coupling between the collective 

motion of the nucleons in the core and the motion of the loose nucleons 

outside the core is weak. On the other hand, for strong coupling, the 

surface is distorted and the potential felt by the loose particles is not 

spherically symmetric. These particles, moving in a non-spherically 

symmetric shell model potential, maintains the deformed nuclear 

shape. The situation is similar to that in a linear molecule. We can then  

write the total energy as the sum of the rotational, vibrational and nucleonic 

energies of the nucleus, as in the case of the molecule. In the present case, 

the nucleonic energy replaces the electronic energy of the molecules:

  E
tot

 = E
rot

 + E
vib

 + E
nuc

 ...(3.43)

The collective motion of the nuclear core gives rise to the rotational 

and vibrational term, while nucleonic energy term is due to the motion of 

the loose nucleons.
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Fig.3.11 Nuclear quadrupole moments of e–o nuclei. The arrows indicate the  
closed shells.

The coupling of the external nucleonic motion and collective motion 
gives rise to shape-oscillations at the nuclear surface. The rotational motion is 
rather complicated in that it is not a rotation of the whole nucleus, considered 
as a rigid body. Rather, it is the rotation of the deformed portion of the nuclear 
surface. In other words, a rotation of the shape occurs with the deformation 
being maintained. The moment of inertia is lower for such rotation than in 
the case of rigid body rotation.

We consider below the vibrational and rotational motions of even-
even nuclei. Experimental evidence shows that far from the dosed shells, 
the motion of the loose nucleons produces large permanent deformations, 
characterized by rotatiunal spectra. The nuclei are found in the middle of 1d, 
2s A A > 226. The energy, difference 
between the 0+ ground state and the 2+

keV in them. Far from the deformed regians and nearer the closed shells, the 
equilibrium shape is spherical. Low energy excitations produce characteristic 
vibrational spectra. At the closed shells, excited states can be producea by 

the break up of the core, giving rise to new particle states.
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3.8 CONSERVATION LAWS OF NUCLEAR 
REACTIONS AND Q VALUE

The occurrence of a nuclear reaction is usually governed by certain 
conservation laws.

 (a) Conservation of mass number: The total number of neutrons and protons 
in the nuclei taking part in a nuclear reaction remains unchanged after 
the reaction. Thus in the reaction X (x, y) the sum of mass numbers of 
X and x must be equal to the sum of the mass numbers of Y and y:

  A + a = A  + a  ...(3.44)

  In the general case of reactions involving elementary particles the 
law can be expressed by requiring the total number of heavy particles 
(baryons) remains unchanged in a reaction.

 (b) Conservation of atomic number: The total number of protons of the 
nuclei taking part in a nuclear reaction remains unchanged after the 
reaction. This means that the sum of atomic numbers of X and x is 
equal to the sum of atomic numbers of Y and y:

  Z + z = Z  + z  ...(3.45)

  In view of the conservation law (a) and (b) above it is easily seen that 
the mass number and the atomic number of the product nucleus in 
Rutherford’s experiment should be A  = A + a – a = 14 + 4 – 1 = 17 
and Z  = Z + z – z  = 7 + 2 – 1 = 8, so that the product nucleus must be 
the isotope 17O of oxygen.

  Further, in view of (a) and (b) the neutron number N remains unchanged 
in the reaction.

 (c) Conservation of energy; Q value of a nuclear reaction: In order to apply 
the law of conservation of energy in the case of a nuclear reaction, it is 
necessary to take into account the mass-energy equivalance predicted 
by the special theory of relativity. Conservation of energy requires that 
the total energy, including the rest–mass energies of all the nuclei taking 
part in a reaction and their kinetic energies, must be equal to the sum 
of the rest–mass energies and the kinetic energies of the products.

  Writing MX, MxMY and My as the rest–masses of the different atoms in 
Eq. given in this book, their rest mass energies are MXc2, Mxc

2, MYc
2 

and Myc
2 respectively, Denoting the kinetic energy by E we then get 

MXc2 + Mxc
2 + EX + Ex = MYc

2 + Myc
2 + EY + Ey.

  During the nuclear reaction, the target nucleus is usually at rest, so that 
EX = 0. The above equation then becomes

  MXc2 + Mxc
2 + Ex = MYc

2 + Myc
2 + EY + Ey ...(3.46)

  The above energy balance equation is often written without the factor c2 
in the mass–energy terms, which means that the masses are expressed 
in energy units.
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  It may be noted that though the nuclear masses are involved in a nuclear 
reaction, it is possible to write the energy–balance equation in terms 
of the atomic masses, since the electronic masses cancel out on the 
two sides of the equation and the electronic binding energies can be 
neglected.

  It may be noted that at relatively lower energies, the kinetic energy is 
given by the non-relativistic expresions: E = Mv2/2. When the energies 
of the particles involved in the reaction are very high, as in the case of 
many elementary particle reaction, the relativistic expression for the 

kinetic energy must be used: E = + −p c M c M c2 2
0
2 4

0
2.  Here M

0
 is the 

rest mass of the particle and p = −M v0
21/ β  is its linear momentum.

 (d) Conservation of linear momentum: If pX, px, pY and py represent the 
momentum vectors of the different nuclei taking part in a reaction, then 
the law of conservation of linear momentum gives

  pX + px = pY + py ...(3.47)

  Equation (3.47) holds in an arbitary frame of reference. In the laboratory 
frame of reference (L-system) in which the target nucleus is at rest pX 
= 0 and the above equation becomes

  px = pY + py ...(3.48)

  In the frame of reference in which the centre of mass of the two particles 
before collision is at rest (C-system), we have to write pX + px = 0, 
which gives pY + py = 0 i.e., the centre of mass of the product particles 
is also at rest in this system.

 (e) Conservation of angular momentum: In a nuclear reaction of the type 
X + x  Y + y, the total angular momentum of the nuclei taking part 
in the reaction remains the same before and after the reaction.

  Let IX, Ix, IY, Iy denote the nuclear spins (total angular momentum) of 
the nuclei X, x, Y and y respectively. Let lX represent the relative orbital 
angular momentum of X and x (i.e., in the initial state). Similarly lY 
denotes the relative orbital angular momentum of Y and y (i.e., in 

momentum, we must have.
  IX + Ix + lX = IY + Iy + lY

  Application of the law of conservation of the angular momentum taking 
into account the well-known quantum mechanical properties of the 
former leads to certain selection rules.

 (  f  ) Conservation of parity: Since the nuclear reactions take place due to 
the strong interaction in which parity is conserved, the parity i before 
the reaction must be equal to the parity f after the reaction.

  Denoting the intrinsic parities of the nuclei taking part in the reaction by 

X, x, Y and y
  i = X x (–1)lx

  f = Y y (–1)ly
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The conservation of parity requires that
  X x (–1)lx = Y y (–1)ly

  Except in the cases of elementary particle reactions, the intrinsic parity 
need not be taken into account. Hence we get

  (–1)lx = (–1)ly

  Parity conservation results in certain selection rules which limit the 
possible nuclear reactions that may occur starting from a given initial 
state i. For example, in the case of elastic scattering l can change only 
by an even integer.

 (g) Conservation of isotopic spin: Denoting the isotopic spin vectors for the 
Ti and Tf, we have from the law of conservation 

of isotopic spin applicable in the case of strong interaction
  Ti = Tf

Since for the reaction X + x  Y + y, Ti = TX + Tx and Tf = TY + Ty,
 we have TX + Tx = TY + Ty

  Isotopic spin is a characteristic of the nuclear level. Hence the above 
conservation law can be used to identify the levels of the nuclei 
produced in the reaction. In particular if Tx = Ty = 0 (as for the deuteron 
or the -particle), we must have TX = TY.

  This rule must be obeyed in reactions of the type (d, ) (d, d) ( , d), 
( , 6Li, 10B and 14N for 
T = 0 in the ground states.

3.9 THRESHOLD ENERGY OF A NUCLEAR 
REACTION

The Q value of a reaction can be expressed in terms of the kinetic energies 
of the projectile (Ex) and of ithe product nuclei Ey and EY.

In view of the energy and momentum conservation laws, EY can be 
expressed in terms of Ex and Ey. Refering to Fig. 3.12, we get from the law 
of conservation of momentum along and perpendicular to the direction of 
motion of the projectile ( )p ME= 2

  2M Ex x  = +2 2M E M Ey y Y Ycos cosθ ϕ  ...(3.49)

  0 = −2 2M E M Ey y Y Ysin sinθ ϕ  ...(3.50)

 Fig. 3.12 (a) Motion of the projectile (x) and product particles (y and Y) taking 
part in a nuclear reaction. (b) Momentum diagram.
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The following equation gives the law of conservation of energy:
  Q = EY + Ey – Ex

Squaring and adding Eqs. (3.49) and (3.50), we get
  2MYEY = + −2 2 4M E M E M M E Ex x y y x y x y cos θ

or  EY = + −
M
M

E
M
M

E
M

M M E Ex

Y
x

y

Y
y

Y
x y x y

2
cos θ  

...(3.51)

Then from above Eq. and (3.51) we get

  Q = +
⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

−E
M
M

E
M
M M

M M E Ey
y

Y
x

x

Y Y
x y x y1 1

2
cos θ  ...(3.52) 

Equation (3.52) is quadratic in z = Ey so that we can write
  az2 + bz + c = 0 ...(3.53)

where a = +1
M
M

y

Y
,  b = −( / ) cos2 M M M EY x y x θ

and  c = – Ex (1 – Mx/MY) – Q

Eq. (3.53) has the solution 

  z =
− ± −b b ac

a

2 4

2
 ...(3.54)

Written explicitly we then get
  Ey  

=
+ { } ± +⎡⎣
1 1 2 2

M M
M M E M M E

Y y
x y x x y x( ) cos cos/ θ θ

                   ( ) ( )
/M M QM E M MY y Y x Y y+ + −{ }⎤⎦

1 2
  ...(3.55)

If we write Q  = – Q then for endoergic reactions, Q  > 0 since Q
case if Ex = 0, we have
  b = 0 and c = – Q = Q  > 0

The solution for z in this case becomes

  z = = ±
−

= ± − ′E
ac

a
Q ay

4

2
/

Since both a and Q  are positive z = Ey  is imaginary in this case. 
This means that the reaction is not possible with Ex = 0. A minimum energy 
Ex = E

min
 is needed to initiate endoergic reaction. In this case the term under 

the square root sign in Eq. (3.54) must be zero so that we get
  b2 – 4ac = 0

Substituting for a, b and c, we get

  
4

2
2

M
M M E

Y
x y( ) cosmin θ  = +

⎛
⎝⎜

⎞
⎠⎟

− − −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
4 1 1

M
M

Q E
M
M

y

Y

x

Y
min

which gives
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 E
min

 = −
+

+ − −

( )

( / ) sin

M M Q

M M M M M M
y Y

y Y x x y Y
2 θ

 ...(3.56)

Since Q E
min

 > 0, we get

  E
min

 =
− +

− −

( )

( / ) sin

M M Q

M Q M M M
y Y

y x y Y
2 θ

 ...(3.57)

E
min

 depends on the angle at which the particle y is emitted. When  = 0, i.e., 
y is emitted in the forward direction, E

min
 has the lowest value and is known 

as the threshold energy for the endoergic reaction and is usually written as 
E

th
. From Eq. (3.57) we get

  E
th
 =

+
−

( )M M Q
M Q
y Y

x
 ...(3.58)

Since Q Mx, we can neglect it in the denominator of Eq. (3.58). Also we 
can replace My + MY in the numerator by Mx + MX

   E
th
 ≈ −

+
= − +⎛

⎝⎜
⎞
⎠⎟

Q
M M

M
Q

M
M

x X

X

x

X
. 1  ...(3.59)

So by measuring the minimum energy E
th
 at which an exoergic reaction is 

initiated it is possible to determine the Q value of the reaction.

An inspection of Eq. (3.55) shows that under certain circumstances Ey 
will be a double-valued function of the projectile energy Ex i.e., for a given 
Ex, there may be two values of Ey, the energy of the emitted particle. This 
happens only for endoergic reactions. The double valued nature of Ey is 
revealed in Fig. 3.13 for the 3H(p, n) 3He endoergic reaction which has Q = 
–0.7638 MeV. Eq. (3.55) also shows that Ey is single valued if the following 

  QMY + Ex (MY – Mx)  0

or,  Ex ≥
−

−
QM

M M
Y

Y x

 Fig. 3.13 En versus Ep graph in 3H(p, n) 3He reaction. Double valued nature of 
neutron energy should be noted.
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Thus there is a limiting energy of the projectile above which the emitted 
particle energy will be single valued. This is given by

  Ex = −
−

QM
M M

Y

Y x
 ...(3.60)

For the case cited above Ex = 1.145 MeV. For projectile energy greater than Ex, 
the product particle y can be emitted at all angles between 0° and a maximum 
angle 

max
, which can be found with the help of Eq. (3.55).

3.10 NUCLEAR REACTION
From the beginning of civilization, people in different parts of the world had 
an intense desire to know whether baser metals like iron, copper etc., could 
be transformed into the noble metals like gold or silver. There were many 
who thought that such transformation was possible. In the middle ages, a 
pseudo-science known as alchemy
claimed that they could transform baser metals into noble metals, though 

pay dearly for their fraudulent activities.

The discovery of radioactivity at the beginning of the present 
century led to the realisation that the radioactive elements spontaneously 
transformed into other elements. Following this discovery, the ancient dream 
of the alchemists was again revived in the minds of scientists regarding the 
possibility of transforming one element into another.

From our knowledge about the structure of the atomic nuclei it is clear 
that if we can change the number of protons or neutrons or both inside the 
nucleus, then it would be possible to bring about a transformation of the 
nucleus. If the proton number Z is changed, then it is possible to transform 
one element into another. On the other hand, if the neutron number N is 
changed, then one isotope of an element will be transformed into another 
isotope of the same element.

remove a nucleon from a nucleus, we must supply it a quantity of energy at 
least equal to the energy of its binding within the nucleus, which is usually 
of the order of a few MeV. This energy can be supplied by introducing a 
nuclear particle (e.g., a proton, neutron, deuteron or an -particle) into the 
nucleus from outside. Except neutrons, all the others are positively charged 
and hence are strongly repelled by the positive charge of the nucleus. So 
they must be highly energetic to be able to enter the nucleus to bring about 
a nuclear transformation.

(transmutation) of a nucleus in 1919, using the highly energetic -particles 
from naturally radioactive substances like radium as projectiles.

Note: It may be mentioned that as early as 1916, the Indian physicist D.M. Bose working in 
the laboratory of Regener in Germany found in a cloud chamber photograph, the evidence for 
the emission of a charged particle from the end of an –track with a range much longer than 
the range of the 
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thicker also came out from the same point. It was clearly the case of an –induced nuclear 

transformation which, however, could not be recognised as such by Bose.

The apparatus used by Rutherford is shown in Fig. 3.14.

Fig. 3.14

An air-tight glass chamber A which could be evacuated with the help 

sample D of a naturally radioactive substance.

-particles from the source D travelled through the gas in the chamber 
towards a thin window covering a port at the other end on the chamber wall. 

were produced by the energetic charged particles falling on it. Thin metallic 
absorber foils S could be interposed between the window and F. The 
scintillations could be observed with the help of a microscope M.

The distance from D to the window was kept greater than the range of 
the -particles from the source in the gas within the chamber. No scintillation 

2
 or oxygen. However, 

observed, even when the distance between the source and the screen F was 
40 cm or more air-equivalent.

compared to that expected for the elastically scattered protons from hydrogen 
gas (28 cm) excluded the possibility of their origin from any hydrogen gas 
which might be mixed with nitrogen as impurity.

Rutherford explained his observations in the following way. When 
the very high velocity -particles made head-on collisions with the nitrogen 
nuclei 14N some of them were captured by the latter. The composite system, 
which was formed as a result of such capture, almost immediately (within ~ 
10–15 s) disintegrated by the emission of a proton of very high velocity. This 
was the process of nuclear transmutation
help of -particles from a radioactive substance, leaving a residual nucleus 
of the isotope 17O of oxygen. The process can be represented by means of 
an equation analogous to the equation for a chemical reaction as follows:
  4

2
He + 14

7
N  18

9
F*  17

8
O + 1

1
H ...(3.61)
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The intermediate step 18F is known as a compound nucleus. It breaks 
up almost immediately after its formation. In writing such a nuclear reaction 
equation, we often omit this intermediate step and write only the initial and 

A nuclear reaction refers to a process which occurs when a nuclear 
particle (e.g., a nucleon, a nucleus or an elementary particle) comes into close 
contact with another during which energy and momentum exchanges take 

particles which leave the point of contact (reaction site) in different directions. 
The changes produced in a nuclear reaction usually involve strong nuclear 
force. Purely electromagnetic effects (e.g., Coulomb scattering) or proceses 
involving weak interactions (e.g., -decay) are usually excluded from the 
category of nuclear reaction. However, changes of nuclear states under the 

In general, a nuclear reaction can be represented by an equation in the 
following form:
  A

Z
X + x A

Z
Y + y ...(3.62)

or simply as AX (x, y) A Y.

Here X is the target nucleus which is bombarded by the projectile x. 
The resulting compound nucleus breaks up almost immediately by ejecting 
a particle y, leaving a residual nucleus Y. Since the chemical symbol of the 
atoms indicates their atomic numbers (Z), these are often omitted in writing 
the nuclear reaction equation. The projectile x and the emitted particle y are 
in many cases light nuclei such as protons (p), neutrons (n), deuterons (d), 

-particles ( ), -rays ( ) etc. and in the nuclear reaction equations, these 
symbols are generally used.

Types of Nuclear Reactions

of Rutherford is a type of nuclear reaction. Various types of nuclear reactions 

 (a) Elastic scattering: In this case the ejected particle y is the same as the 
projectile x. It comes out with the same energy and angular momentum 
as x, so that the residual nucleus Y is the same as the target X and is 
left in the same state (ground state) as the latter. We can represent the 
process as X (x, x) X.

 (b) Inelastic scattering: In this case y is the same as x. But it has different 
energy and angular momentum, so that the residual nucleus y ( = X) 
is left in an excited state. The process can be written as X (x, y) X*, 
where the asterisk on X indicates an excited state of X.

 (c) Radiative capture: In this case the projectile x is absorbed by the 
target nucleus X to form the excited compound nucleus (C*) which 
subsequently goes down to the ground state by the emission of one or 
more -ray quanta. We can write the process as X (x, y) Y*, (Y = C).
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 (d) Disintegration process: We can represent the process as X (x, y) Y 
where X, x, Y and y are all different either in Z or in A or in both. The 

this process: 14N ( , p) 17O.

 (e) Many body reaction: When the kinetic energy of the incident 
particle is high, two or more particles can come out of the compound 
nucleus. If y

1
, y

2
, y

3
, etc. represent these different particles, we can 

write the reaction equation as X (x, y
1
, y

2
, y

3
 ...) Y. Examples are 16O  

(p, 2p) 15N; 16O (p, pn) 15O, 16O (p, 3p) 14C etc. When the energy of x 
is very high, a very large number of reaction products usually result 
(3 to 20 for example). Such reactions are known as spallation reactions.

 (  f  ) Photo-disintegration: In this case the target nucleus is bombarded with 
very high energy -rays, so that it is raised to an excited state by the 
absorption of the latter. The compound nucleus C* = X*. The reaction 
can be written as X ( , y) Y.

 (g) : When X is a heavy nucleus and y, Y have comparable 
238U 

(n, f  ). 
 (h) Elementary particle reactions: These involve either the production of 

elementary particles other than nucleons or nuclei as a result of the 
reaction or their use as projectiles or both of these. Examples are:

  p + p  p + n + +;

  – + p  0 + n;

  p + 0  K0 + 0 etc.

  These reactions are usually produced at extremely high energies which 
may be several hundred MeV or more.

 (i) Heavy ion reactions: In these reactions the target nucleus is bombarded 
by projectiles heavier than -particles. Various types of products may 
be produced. The reactions usually take place at fairly high energies 
(several hundred MeV) of the projectile. Examples are:

  10B (16O, 4He) 22Na,

  14N (14N, 15N) 13N etc.

3.10.1  Cross Section and Level Width
The probability of the occurance of a nuclear reaction is measured by the 
reaction cross section. It is usually designated by the symbol . The cross 
section of a nuclear reaction X(x, y)Y can be written as (x, y). If a parallel 
beam of N projectiles is incident in a given interval of time upon a target foil 
T of thickness x and surface area S normally, then the number of nuclei in T 
undergoing transformation due to the reaction of the type under consideration, 
is proportional to the intensity of the incident beam of projectiles and to the 
total number of target nuclei present in the foil [Refer Figure 3.15a). The 
incident particle intensity is (N/S) and the number of nuclei present in the 
foil is (n S  x). So the number of nuclei transformed is
  N  (N/S) (nS  x)

or,  N = Nn x = Nn
1
 ...(3.63)
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 Fig. 3.15 (a) Bombardment of target foil (T) by a beam of particles. (b) 

Here n
1
 = n  x is the number of target nuclei per unit area of the foil, n being 

the number of nuclei per unit volume. Eq. (3.63) shows that since both  N 
and N are pure numbers and n

1
 = n  x has the dimension of the reciprocal of 

an area,  has the dimension of an area. Hence it is called the cross section 
and measures the probability of the occurrence of the reaction when a single 
particle (N = 1) falls on a single target nucleus present per unit area (n

1
 = 1). 

Since the nuclear radii are of the order of 10–14 to 10–15 m, the cross section 
of the nuclear reaction is of the order of 10–28 m2. The commonly used unit 
of the nuclear reaction cross section is a barn:
  1 barn = 10–28 m2

Though the cross sections for most nuclear reactions are of the order of a 
few barns or even less, they may be very high (several thousand barns) for 
some special types of reactions, such as the (n, ) reaction induced by thermal 
neutrons or the neutron-induced reasonance reactions.

understood in the following manner. Referring to Fig. 3.15(b) we see that if 
R is the effective radius of the target nucleus for a given reaction, then the 
projection of its surface area on a plane perpendicular to the direction of 

R2. So the number 
of projectiles encountering each target nucleus is R2Ns where Ns = N/S is 
the number of projectiles incident per unit area of the target. The projectiles 
are assumed to be mass–points. Since there are n

1
 nuclei per unit area of the 

target, the number of projectiles intercepted by the target nuclei in the foil is
  n

1
S × R2Ns = R2Nn

1
 ...(3.64)

where N = Ns × S is the total number of projectiles incident on the target. 
Hence the probability of encounter between a single projectile (N = 1) with 
one nucleus per unit area (n

1
 = 1) in the target foil is

  
πR Nn

n

2
1

1

 = R2N = R2 ...(3.65)

Actually the probability  of encounter between a single projectile and 
a single target nucleus per unit area is not determined by R2 alone. This 
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probability depends on the nature of the interaction between the projectile and 
the target nucleus, the energy of the projectile and other factors. Besides, the 
incident particle is not a mass–point as assumed above. So the reaction cross 
section depends on its size also. For very low energy projectiles, the de Broglie 
wavelength  = h/p is much longer than their geometrical extension, so that 
the region over which they interact is much larger than their geometrical 
cross section. This is the reason for the cross section of the (n, ) reaction 
with thermal neutrons to be usually very large as stated aboye.

In the case of charged particles, the cross section is considerably 
reduced because of the strong electrostatic repulsion of the target nucleus.

In the above discussions, it has been assumed that the total projected 
area of all the nuclei in the foil which is ( R2n

1
 S) is small compared to the 

area S of the foil. This is true only if the foil thickness is small.

3.11 BOHR COMPOUND NUCLEUS THEORY 
OF NUCLEAR REACTION

We have talked about the formation of a compound nucleus as an intermediate 
step when a nuclear reaction takes place. The primary evidences on which 
this compound nucleus idea was developed came after the discovery of the 
neutron and its use as a projectile in producing nuclear reactions, from 1935 
onwards. It was observed that for high energy neutrons, the total cross section 
for neutron absorption and scattering was of the order of R2 where R is the 
nuclear radius. For very low energies however, the cross section is higher 
and approaches the limiting value of 2,  being the reduced de Broglie 
wavelength of the neutrons.

These results were sought to be explained by assuming that the incident 
neutron moved in an average potential well due to all the nucleons in the 
nucleus (Refer Fig. 3.16) for an interval of time which is of the order of

  t ~ ~
Nuclear diameter

Neutron velocity
s

10

10
10

14

7
21

−
−=

 Fig. 3.16 Motion of an incident neutron in an average single particle potential 
well. Bn is the neutron binding energy.

In this case the incident neutron would have a large probability of 
escaping from the nucleus without absorption. So the elastic scattering 
cross section 

sc
 should be large while capture or reaction cross section 

re
 

would be quite low in this picture. At very low energies, the capture cross 
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section should however be relatively large, since the neutron would spend 
a longer time near the target nucleus. 

re
 should depend on 1/v in this case. 

So at thermal energies 
sc
 and 

re
 should be comparable since both of these 

approach the limiting value of 2.

The energy levels in this single particle potential well should be well 
separated from one another, the separation being of the order of 5 to 10 
MeV. There would also be some levels above the neutron separation energy 
Sn (virtual levels). The width of the level which measures the probability of 
its decay would be

   = / = /10–21  1 MeV

showing the levels to be quite broad. When the energy of the incident neutron 
corresponds to the excitation energy of one of the nuclear levels, resonances 
would be expected to be observed in the cross section vs. energy graph (see 
Fig. 3.16). These resonances should be widely spaced (several MeV) having 
large widths ( ~ MeV). Obviously at very low energies (near thermal energies) 
no such resonances would be expected, since neutrons of a few electron volts 
energy cannot be expected to produce resonances corresponding to levels 
with gaps of several million electron volts.

However such a picture does not agree at all with the observed 
results on neutron induced reactions. In many cases, the neutron absorption 
cross sections are found to be very large at thermal neutron energies while 
the elastic scattering cross sections are much lower. It may be noted that  
at these very low energies, the absorption cross section is due to the radiative 
capture, i.e., (n, ) type of reaction. Resonances are observed in most nuclei 
for both elastic scattering cross section (

sc
) and radiative capture cross 

section (n, ). These resonances mostly appear at neutron energies between 
0.1 to 10 eV, i.e., they are very closely spaced. They are also found to be very 
sharp, having widths of the order of 0.1 eV or lower. These observations led 
Niels Bohr to propose the following mechanism for nuclear reactions (1936) 
which is known as the compound nucleus hypothesis.

When a nuclear projectile x enters into a target nucleus X to produce 
a nuclear reaction, an intermediate stage is formed before the production of 

y (Refer  Equation 3.62):

  X + x   C*  Y + y

The incoming projectile x quickly dissipates its energy as it enters into 
the nucleus X and merges with the closely packed nucleons in it. As a result, 
the general random motion of all the nucleons in the nucleus is disturbed, 
each nucleon gaining some additional energy. But no single one of them will 
generally gain enough energy to enable it to come out of the nucleus which 
is of the order of a few million electron volts. However, after a relatively 
long time when a very large number of collisions among the nucleons have 
taken place (which may be of the order of 10 million), enough energy may 
be concentrated on one of the nucleons enabling it to escape from the nucleus 
which then deexcites (cools off) to the ground state. It may also be deexcited 
by the alternative process of emission of -rays. The whole process is similar 
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to the heating of a drop of liquid containing large number of molecules. When 
enough energy is concentrated on some of the molecules, evaporation takes 
place to cool off the drop. The process of emission of a nucleon (or a group 
of nucleons) from the excited nucleus as mentioned above is thus similar to 
the phenomenon of evaporation. The analogy between the two systems was 
one of the points which led to the formulation of the liquid drop model of 
the nucleus.

The composite system that is formed as a result of the absorption of 
the incident particle x by the nucleus X is known as the compound nucleus. 
Though it ultimately breaks up by the emission of a particle y or of a -ray, it 
lives long enough compared to time taken by a nucleon of a few MeV energy 
to travel through the mean free path of collision between the nucleons in the 
nucleus (which is somewhat less than the nuclear radius, but is of the same 
order of magnitude). The mean time between collisions is about (2 × 10–15/5 
× 107) or ~ 10–22 s. So the life of the compound nucleus is of the order of

  t ~ 107 × 10–22 = 10–15 s

It may be noted that the mean time for radiative transitions within the 
nuclei (~10–13 s) is much longer than the time for decay of the compound 
nucleus by particle emission.

The particle y emitted in the decay of the compound nucleus is generally 
different from the particle x which enters X to produce the compound nucleus. 
In the event of y being identical with x, we have inelastic scattering. The 
residual nucleus Y = X* in this case is the same as the target nucleus produced 
in a different energy state. In the rare case in which the residual nucleus is 
identical with the target nucleus and is produced exactly in the same state 
as the latter, we get what is known as the compound elastic or resonance 
scattering. As stated before, elastic scattering may alternatively take place by 
the action of the nuclear potential on the incident particle without the entry 
of x into X to form the compound nucleus. This is known as the potential 
scattering and has a much greater probability than the other.

Since the compound nucleus is a relatively longer lived entity, the 
nuclear reaction actually proceeds in two steps: (i) the formation of the 
compound nucleus by the absorption of the incident particle by the target 
nucleus. (ii) the disintegration of the compound nucleus in a manner which 
is independent of the method of its formation into the reaction products y 

left in a highly excited state which may then “boil off”, another particle y  
to leave the nucleus Y  leading to a two particle emission process: X (x, yy ) 
Y . The process may continue and another particle y  may be emitted from 
the excited Y  leaving the residual nucleus Y  in the third stage. Thus a series 
of particles (usually neutrons) may be boiled off successively from a highly 
excited nucleus.

The two stages by which a nuclear reaction proceeds may be written 
symbolically as
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  X + x  C*  Y + y
    C + y

According to Bohr, the two stages, viz., the formation of the compound 
nucleus and its break up are independent. This is known as the independence 
hypothesis. The decay of C* depends only on the properties of C* and not 
upon how it was formed. In other words since C* is a relatively long lived 
entity, by the time it is ready to break up, it forgets as to how it had been 
formed.

The probability of decay is equal to the reciprocal of the mean-life 
 of the compound nucleus. If  is the width of the level, we can use the 

uncertainty relation to write

   ×  ~ 

which gives  = /

Thus the width of the level is a measure of the probability of its decay. 
Actually the compound nucleus may decay by the emission of different types 
of particles of y, y , y  etc., leaving a different residual nucleus in each case. 
Each of these has a different probability of occurrence.

If y is the partial width of the level for decay by the emission of y, 
then considering the various possible types of decay, we get the total width 
of the level as

   = + = + + + +′ ′′∑ Γ Γ Γ Γ Γ Γy y y y
y

γ γ( ...)  

...(3.66)

The relative probabilities of the different types of decay are then

  y = y/ , y  = y / , ...  = /  ...(3.67)

Because of the independence hypothesis, we can write the cross section 
for the process X(x, y)Y as the product of the cross section x for the formation 
of the compound nucleus and the probability of its decay:

  (x, y) = x y = x y /  ...(3.68)

The above way of writing the cross section implies that only one 
particular energy state of C* is being considered (i.e., only one resonance). 
This is possible if the levels are well separated and are so sharp that they 
do not interfere with one another. In other words, the mean level spacing 
D >> 
levels will be considered later.

3.11.1 Deuteron Stripping Reaction
In nuclear physics, a stripping reaction is a nuclear reaction in which part 
of the incident nucleus combines with the target nucleus, and the remainder 
proceeds with most of its original momentum in almost its original direction. 

stripping reactions have been extensively used to study nuclear reactions and 
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structure, this occurs where the incident nucleus is a deuteron and only a 
proton emerges from the target nucleus. A simple one-step stripping reaction 
can be represented as

where A represents the target core, b represents the projectile core, 
and x is the transferred mass which may represent any number of particles

3.12 BREIT-WIGNER SINGLE LEVEL 
FORMULA

To investigate nuclear reactions, a quantitative assessment of the likelihood 
of a given nuclear reaction is required. This number must be experimentally 

values can be easily compared. The quantity most frequently used for this 
purpose is the nucleus cross section for a given reaction, which is commonly 
represented by  with the appropriate subscript. Nuclear cross section is easily 
viewed as the cross-sectional area or target area that the nucleus presents to 
an incident particle.

Fig. 3.17 Reaction cross section as a function of incident channel energy.

A nuclear reaction caused by the absorption of a projectile x by a 
target nucleus X (both in their ground state) that results in the formation of a 
compound nucleus C* in an excited state close to one of the latter’s isolated 
levels that is far removed from any of its other levels. The presence of such 

(X + x Ex between X
and x and a distinct relative angular momentum. 
The energy required to excite the compound nucleus in this state is given by

                                                        …..(3.69)

Where Er denotes the energy of the isolated level during the formation 
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of the compound nucleus. Sx is the separation energy of x from the ground 
state of the compound nucleus, denoted by

                                                      …..(3.70)

The binding energies of the corresponding nuclei are denoted by the B. 
Bx = 0 when x is a nucleon. With the relative kinetic energy Ey, the complex 
nucleus is broken up into Y+y. Obviously, Ec = Ey + Sy can also be written, 
where Sy is the separation energy of y from the compound nucleus in the 
ground state, which is given by.

 

By = 0; if y is a nucleon. Both Y and y are assumed to be produced in 
their ground states. However, this is not always the case, as Y may be left in 
various excited states, resulting in a variety of exit channels.

A damped harmonic wave can be used to indicate the condition of the 
compound nucleus formed as described above;

           ……(3.71)

Here Γ/2 denotes the half width of the level, which is essentially a 
decaying condition with a life – time of  =  / .

The above wave function does not represent a stationary state, but may 
be constructed using the Fourier integral approach from the superposition of 
stationary states of various energies.

 ……(3.72)

By doing the Fourier transform of equation (4), we can determine the 
amplitude AE of the state at energy E.

Only positive values of time are used here, as the composite nucleus 
can decay only after it is formed.
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Due to the damping term exp(− ’/2 ), the upper limit of the preceding 
integral vanishes. Thus, we obtain

The cross section for forming the state Ec is proportional to the 
amplitude squared by the process X + x. As a result, we can write.

 

In this case, C is a constant value. To determine C, we note that the 
incident channel’s total number of possible states is,

where Ω is the volume of the enclosure within which the reaction take 
place. If x is the cross section for the absorption of x by X, then the volume 
swept out by the effective collision area in one second is xvx where vx is the 

nucleus X in this volume is xvx /Ω and the probability of formation of the 
compound nucleus in the given entrance channel per second is

 
We obtain the entire probability by integrating across all potential 

energies;

 
We may ignore the variation  and write (dE = dEx) since the integrand 

Γ of the level, which 
are extremely narrow.

 

The chance of the compound nucleus forming above must be the same 
as the likelihood of C* decaying along the same channel. The reciprocity 
theorem leads to this conclusion. We get if we represent this decay probability 
through the entrance channel as Γx/ .
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As a result, the cross section for the production of the compound 
nucleus is as follows:

Γy/ Γ represents the relative likelihood of C* decaying through the exit 
channel Y + y. The cross section for the reaction X(x,y)Y is then calculated as

For spinless nuclei at very low energies, this is the Breit Wigner one-
level formula, where the relative angular momentum of the particles in the 
entrance channel is l =0. If l is not zero, as it is when the energy is larger, we 
must account for the statistical factor of the compound state created, which 
is given by g = 2 l +1 for spinless nuclei x and X.

Each of the (2 l +1) sub states have an equal chance of decaying. As a 
result, Γ

x
 must be multiplied by this factor, which yields.

Check Your Progress

 6. Name the conservation laws of nuclear reactions.

 7. To what is the discovery of radioactivity at the beginning of the 
present century lead?

 8. State the Bohr compound nucleus theory of nuclear reaction.

 9. What is stripping reaction?

3.13 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

in 1937 and was later applied by C.F. von Weizsäcker and H.A. Bethe 
to develop a semi-empirical formula for the binding energy of the 
nucleus.

 2. Each individual molecule within a liquid drop exerts an attractive force 
upon a group of molecules in its immediate neighbourhood. The force 
of interaction does not extend to all the molecules within the drop. This 
is known as the of the force.
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 3. The liquid drop model is not very successful in describing the low lying 
excited states of the nucleus. Because of the collective motions of the 
large number of nucleons involved, the model gives rise to closely 
spaced energy levels. Actually however, these are found to be quite 
widely spaced at low excitation energies.

 4. The drop’s potential energy at each stage can be estimated as a function 
of its degree of deformation. The potential energy is displayed versus 
r

 5. In order to explain the disagreement at the higher magic numbers, 
Mayer and independently Haxel, Jensen and Suess suggested that a 

term should be added to the central potential V(r)
  Qsp = −

−
+

2 1

2 2
2j

j
r  

   where  r2  is the mean square radius of the charge distribution which 
in the present case is equal to the mean square distance of the proton 
from the nuclear centre. 

 6. The conservation laws of nuclear reactions are:

    Conservation of mass number 

    Conservation of atomic number

    Conservation of energy 

    Conservation of linear momentum

    Conservation of angular momentum 

    Conservation of parity 

    Conservation of isotopic spin

 7. The discovery of radioactivity at the beginning of the present century 
led to the realisation that the radioactive elements spontaneously 
transformed into other elements. Following this discovery, the ancient 
dream of the alchemists was again revived in the minds of scientists 
regarding the possibility of transforming one element into another.

 8. The primary evidences on which this compound nucleus idea was 
developed came after the discovery of the neutron and its use as a 
projectile in producing nuclear reactions, from 1935 onwards. It was 
observed that for high energy neutrons, the total cross section for 
neutron absorption and scattering was of the order of pR2 where is 
the nuclear radius. For very low energies however, the cross section is 
higher and approaches the limiting value of pD2,  being the reduced 
de Broglie wavelength of the neutrons.

 9. In nuclear physics, a stripping reaction is a nuclear reaction in which 
part of the incident nucleus combines with the target nucleus, and the 
remainder proceeds with most of its original momentum in almost its 

Butler in 1950.
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3.14 SUMMARY
  The macroscopic properties of the nucleus e.g., the constant density 
of the nuclear matter and the constant binding energy per nucleon 
are very similar to those found in a liquid drop. 

  The very strong short range interaction between the nucleons permits 
us to consider their collective behaviour in determining the properties 
of the nucleus.

  
in 1937 and was later applied by C.F. von Weizsäcker and H.A. Bethe 
to develop a semi-empirical formula for the binding energy of the 
nucleus.

  The attractive force near the nuclear surface is similar to the force of 
surface tension on the surface of the liquid drop.

  Different types of particles, e.g., neutrons, protons, deuterons, 
a-particles etc. are emitted during nuclear reactions. These processes 
are analogous to the emission of the molecules from the liquid drop 
during evaporation.

  The internal energy of the nucleus is analogous to the heat energy 
within the liquid drop.

  The formation of a short lived compound nucleus by the absorption of 
a nuclear particle in a nucleus during a nuclear reaction is analogous 
to the process of condensation from the vapour to the liquid phase in 
the case of the liquid drop.

  The drop’s potential energy at each stage can be estimated as a function 
of its degree of deformation. The potential energy is displayed versus 
r

  Nuclear shell model is thought that protons and neutrons in a nucleus 
are constantly colliding with each other. With such a strong force acting 
between them and so many nucleons to collide with, nucleons cannot 
conceivably complete entire orbits without interacting.

  In order to explain the disagreement at the higher magic numbers, 
Mayer and independently Haxel, Jensen and Suess suggested that a 
spin-orbit interaction term should be added to the central potential 
V(r)

  The nucleus would require us to consider the motion of the individual 
nucleons in a potential well which would give rise to the existence of 
a nuclear shell structure, similar to the electronic shells in the atoms.

  In conservation of mass number the total number of neutrons and 
protons in the nuclei taking part in a nuclear reaction remains 
unchanged after the reaction.

  In conservation of atomic number the total number of protons of the 
nuclei taking part in a nuclear reaction remains unchanged after the 
reaction.
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  The discovery of radioactivity at the beginning of the present century 
led to the realisation that the radioactive elements spontaneously 
transformed into other elements. Following this discovery, the ancient 
dream of the alchemists was again revived in the minds of scientists 
regarding the possibility of transforming one element into another.

  The primary evidences on which this compound nucleus idea was 
developed came after the discovery of the neutron and its use as a 
projectile in producing nuclear reactions, from 1935 onwards. It was 
observed that for high energy neutrons, the total cross section for 
neutron absorption and scattering was of the order of pR2 where is 
the nuclear radius. For very low energies however, the cross section is 
higher and approaches the limiting value of pD2,  being the reduced 
de Broglie wavelength of the neutrons.

  In nuclear physics, a stripping reaction is a nuclear reaction in which 
part of the incident nucleus combines with the target nucleus, and the 
remainder proceeds with most of its original momentum in almost its 

Butler in 1950.

  A quantitative assessment of the likelihood of a given nuclear reaction 

calculated in such a way that theoretical and experimental values can 
be easily compared. The quantity most frequently used for this purpose 
is the nucleus cross section for a given reaction, which is commonly 
represented by  with the appropriate subscript. Nuclear cross section is 
easily viewed as the cross-sectional area or target area that the nucleus 
presents to an incident particle.

3.15 KEY TERMS
  Fission: When a neutron collides with a larger atom, it causes it to excite 

There are also more neutrons released, which can start a chain reaction. 
A great quantity of energy is produced when each atom divides.

  Nuclear shell model: Accordint to Nuclear shell model protons and 
neutrons in a nucleus are constantly colliding with each other. With such 
a strong force acting between them and so many nucleons to collide 
with, nucleons cannot conceivably complete entire orbits without 
interacting. 

  Conservation of mass number: It means that the total number of 
neutrons and protons in the nuclei taking part in a nuclear reaction 
remains unchanged after the reaction.

  Conservation of atomic number: It states that the total number 
of protons of the nuclei taking part in a nuclear reaction remains 
unchanged after the reaction.
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  Stripping reaction: A stripping reaction is a nuclear reaction in which 
part of the incident nucleus combines with the target nucleus, and the 
remainder proceeds with most of its original momentum in almost its 

Butler in 1950. 

3.16 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short-Answer Questions

 2. What do you understand by the spin orbit coupling?

 3. What is quadrupole moments?

 5. What do you mean by the conservation of mass number and atomic 
number?

 8. State the Bohr compound nucleus theory of nuclear reaction.

 9. What is deuteron stripping reaction?

 10. Write the Breit-Wigner single level formula.

Long-Answer Questions 

examples.

 2. Explain the Bohr and wheeler’s theory. 

 3. Describe the spin orbit coupling.

 4. Explain the magnetic and quadrupole moments with the help of relevant 
examples.

 5. Explain the nuclear shell structure and elementary idea of collective 
model of the nucleus.

 6. Discuss about the conservation laws of nuclear reactions and Q value.

 7. What do you understand by the threshold energy of a nuclear reaction? 
Explain.

 8. Explain the nuclear reactions, cross section and level width with the 
help of giving examples.

 9. Describe the deuteron stripping reactions. 

 10. Illustrate the Breit-Wigner single level formula with the help of giving 
examples.
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UNIT 4 NUCLEAR DECAY
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 4.4 Fermi Theory of Beta Decay: Allowed and Forbidden Transitions Parity 

Violations in Beta Decay
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Selection Rules
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 4.9 Answers to ‘Check Your Progress’
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 4.12 Self Assessment Questions and Exercises 
 4.13 Further Reading

4.0 INTRODUCTION
Nuclear decay or radioactive decay is the emission of energy in the form 
of ionizing radiation. The ionizing radiation that is emitted can include alpha 
particles, beta particles and/or gamma rays. Radioactive decay occurs in 
unbalanced atoms called radionuclides. Nuclear decay occurs when the 
nucleus of an atom is unstable and spontaneously emits energy in the form 
of radiation. The result is that the nucleus changes into the nucleus of one or 
more other elements. These daughter nuclei have a lower mass and are more 
stable (lower in energy) than the parent nucleus. Elements in the periodic table 
can take on several forms. Some of these forms are stable; other forms are 
unstable. Typically, the most stable form of an element is the most common 
in nature. However, all elements have an unstable form. Unstable forms 
emit ionizing radiation and are radioactive. There are some elements with 
no stable form that are always radioactive, such as uranium. Elements that 
emit ionizing radiation are called radionuclides. In this unit, we will study 
in detail about beta ray spectrum along with its decay and nature, hypothesis 
of neutrino creation, meaning of helicity, multipole transition and selection 

nuclei and the angular correlation of successive decay.

4.1 OBJECTIVES
After going through this unit, you will be able to:

  Explain beta ray spectrum along with its decay and nature

  Describe the hypothesis of neutrino creation

  State the meaning of helicity
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  Discuss the multipole transition and selection rules for the decay

 

  Describe the angular correlation of successive decay

4.2 BETA RAY SPECTRUM: DECAY AND NATURE 
A radioactive nucleus’s atomic number changes by one when it 

undergoes beta decay, resulting in a daughter nucleus with the same number 
of nucleons as the parent nucleus.

  (incomplete expression)    …(4.1)

 +  (incomplete expression)              …(4.2)

A beta particle can be either a positron (e+)  or an electron (e–), with the 
latter being the more widespread name. These formulations do not adequately 
represent beta decay. We’ll explain why this is the case in a moment.

 As with alpha decay, beta decays preserve both the nucleon number 
and total charge. Due to the fact that A does not change but Z does, we 
conclude that beta decay occurs when either a neutron transforms into a 
proton (Eq. 4.1) or a proton transforms into a neutron (Eq. 4.2). Take note that 
the electron or positron emitted in these decays is not present in the nucleus 
prior to the decay; it is formed during the decay process from the decaying 
nucleus’s rest energy. There are two distinct beta-decay processes.

  (incomplete expression)   …(4.3)

  (incomplete expression)    …(4.4)

Let’s take a look at the energy of the system experiencing beta decay 
before and after the decay is complete. The energy of the isolated system 
must be conserved in the same way as alpha decay. While alpha decay 
occurs at discrete energy, it is observed that beta particles from a single type 
of nucleus are emitted over a continuous range of energies (Fig. 4.1a) (Fig. 
4.1b). A drop in rest energy results in a decrease in kinetic energy, which is 
equal to the Q value. The Q value must be the same for each decay since all 
nuclei in the sample have the same beginning mass. The variety of kinetic 
energies of the released particles is displayed in Figure 1a, so what is the 
reason for this? The law of conservation of energy and the isolated system 
model appears to have been broken. A closer look at Equations 4.1 and 4.2 
shows that the rules of conservation of angular momentum (spin) and linear 
momentum are also violated.
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Fig 4.1: (a) Beta-particle energies in a typical beta decay (b) Alpha-particle energies in 
a typical alpha decay

Pauli postulated in 1930, following much experimental and theoretical 
research, that a third particle must be present in the decay products to 
transport away the “missing” energy and momentum. Fermi eventually 
dubbed this particle the neutrino (small neutral one) due to the particle’s 
requirement to be electrically neutral and possess little or no mass. Although 
it escaped discovery for many years, the neutrino (symbol , Greek nu) 
was experimentally discovered in 1956 by Frederick Reines (1918–1998), 
for which he was awarded the 1995 Nobel Prize in Physics. The neutrino 
possesses the following characteristics:

Properties of the Neutrino

  It contains no electrical charge.

  Its mass is either zero (in which case it travels at the speed of light) 
or extremely less; compelling experimental evidence reveals that the 
neutrino’s mass is not zero. Current experiments set the top limit on 
the neutrino’s mass at about 7 eV/c2.

  It has a spin of , which enables beta decay to satisfy the rule of 
conservation of angular momentum.

 
detect.

Beta decay processes: Now we can express the beta-decay processes (Eqs. 
4.1 and 4.2) correctly and completely:

 (complete expression)  …(4.5)

 (complete expression)  …(4.6)

As well as those for carbon-14 and nitrogen-12 (Eqs. 4.3 and 4.4):

 (complete expression)  …(4.7)

 (complete expression)  …(4.8)

where the symbol  denotes the antineutrino, the neutrino’s antiparticle. 

and electron decay produces an antineutrino. The decays indicated above are 
evaluated using conservation laws, just as alpha decay, although relativistic 
equations must be employed for beta particles because their kinetic energy is 
large (usually 1 MeV) compared to their rest energy of 0.511 MeV. The decays 
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indicated by Equations 4.7 and 4.8 are depicted graphically in Figure 4.2.  

 

 Fig 4.2 (a) The beta decay of carbon-14 (b) The beta decay of nitrogen-12

The number of protons in Equation 4.5 has grown by one while the 
number of neutrons has dropped by one. The fundamental process of  decay 
can be expressed in terms of a neutron converting into a proton as follows:

  n   p + .    …(4.9)

The electron and antineutrino are ejected from the nucleus, resulting in 
an increase in the number of protons and a decrease in the number of neutrons, 
commensurate with the changes in Z and A - Z. In  decay, a proton undergoes a 
similar transformation, transforming into a neutron, a positron, and a neutrino. 
This latter process can occur only within the nucleus, resulting in a decrease 
in nuclear mass. It is impossible for a solitary proton to experience this since 
its mass is less than that of a neutron.

The electron and the antineutrino are ejected from the nucleus, with 
the net result that there is one more proton and one fewer neutron, consistent 
with the changes in Z and A - Z. A similar process occurs in  decay, with 
a proton changing into a neutron, a positron, and a neutrino. This latter 
process can only occur within the nucleus, with the result that the nuclear 
mass decreases. It cannot occur for an isolated proton because its mass is 
less than that of the neutron.

Electron Capture: It occurs when a parent nucleus catches one of its own 
orbital electrons and produces a neutrino, is a process that competes with  
decay. After decay, the end result is a nucleus with a charge of Z - 1:

      …(4.10)

In the majority of situations, a K-shell electron is captured, and so the 
process is referred to as K capture. A simple illustration is the capture of an 
electron by :

                

In order to witness electron capture, the x-rays emitted by electrons 

are often used.

Q values of beta-decay processes.



NOTES

Nuclear Decay

Self - Learning
Material  133

Q = (MX - MY)c
2

where MX 
and MY are the neutral atom masses. The expression given 

above gives the Q values for  decay and electron capture. The parent nucleus 
increases in atomic number during  decay, and one electron must be absorbed 
by the atom in order for it to become neutral. The system contains a free 
electron both before and after the decay if the starting system is the neutral 
parent atom and an electron (which will eventually combine with the daughter 

and the beta-ejected electron. As a result, when the starting and end masses 
of the system are subtracted, the electron mass cancels. 

Regarding  decay, the Q values are given by,

Q = (MX - MY – 2me)c
2

The atomic number of the parent lowers by one when the daughter is 
produced, necessitating the addition of -2mec

2. After the decay, the daughter 
atom loses an electron to become a neutral atom. As a result, the daughter 
atom, the ejected positron, and the shed electron are the end products.

 In order to determine whether or not a procedure is feasible, these 
relationships can be used. It is possible that Q value for  decay of a parent 
nucleus could be negative, as in the case of this parent nucleus. It does not 
happen in this scenario. In this case, the Q value for electron capture may be 
a positive number, therefore electron capture can occur even though  decay 
is not conceivable. For example, the decay of  illustrated above falls into this 
category.

Beta Spectrum

The energy released in a beta decay is released by three particles; the 
recoil nucleus, the beta electron, and its antineutrino. The nucleus, which 
is extremely heavy in comparison to the other two, consumes a minuscule 
fraction of the available energy, which is effectively split between the electron 
and antineutrino. On average, the electron carries little less than half (i.e., 
50%) of this energy, while the antineutrino carries slightly more than half 
(i.e., 50%).

As in the case of electrons and antineutrinos, the electron and the 
neutrino share the electron’s role in a beta-plus decay (which is extremely rare).

Fig 4.3 An exchange of energy
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The decay energy is shared among the nucleus, an electron, and an 
antineutrino in a beta decay like that of a bismuth-210 nucleus. Because the 
nucleus is so much more massive than the other two (its mass is 320 000 
times that of the electron), it absorbs very little kinetic energy. As a result, the 
electron and the antineutrino share the energy. With the antineutrino eluding 

picture depicts the bismuth-decay beta spectrum, which shows the distinctive 
energy distribution of beta electrons.

The beta electron energy distribution, often known as the beta spectrum, 
is distinctive because kinetic energy of the emitting nucleus is low, the 
electron and antineutrino share the decay energy in varying quantities. When 
an electron carries all of the decay energy, its energy is maximum. When it 
is the antineutrino, it becomes null.

Low-energy electrons dominate the beta spectrum’s asymmetrical 
structure. In spite of its great lightness, the antineutrino carries more kinetic 
energy than the electron, which is heavier in comparison. Few beta electrons 
reach the maximum energy permitted, whereas most of them have low 
energies. This is in accordance with the rule.

Fig 4.4 Samples of Average Beta Energies

Because no two radionuclides produce beta electrons with the same 
energy, the average beta energy is used to compare radionuclides. For example 
beta emitted by tritium has a hundred times less energy on average than beta 
emitted by phosphorus-32. Much lower than alpha particles, beta average 
energy are less than 1 MeV. (Usually above 4 MeV).

 Since low-energy electrons are easier to stop, it is a good thing 
that beta electron have so much energy. When it comes to radiation safety, 
electrons’ average energy is more important than their maximum energy. 
When compared to phosphorus-32, a powerful beta emitter with an energy 
of 695 keV, tritium, for example, has an average energy of 5.69 keV.

 Beta electrons have lower energy than alpha particles, which always 
have energies above 4000 keV, whereas beta electrons have energies below 
1 MeV in most situations (4 MeV). With the exception of potassium-40, the 
half-lives (or lifetimes) are substantially shorter.
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 A beta decay is frequently associated with the emission of a gamma 
ray as a result of the nucleus being deexcited. This emission reduces the 
energy that the electron and antineutrino must share. For example, the 
available energy in the beta decay of caesium-137 is 1176 keV, but in 95% 
of cases, it is accompanied by the emission of a distinctive 662 keV gamma, 
lowering the available energy to 514 keV. The observed spectrum beta is the 
sum of the two spectra corresponding to the modes without or with gamma 
in proportions of 5% and 95%.

 Additionally, it is possible for gamma to convey their energy to an 
atom’s electron - this is known as internal conversion. These electrons are 
not exactly beta electrons and have their own distinct energy characteristics.

Check Your Progress

 1. What happens when a radioactive nucleus undergoes beta decay?

 2. When does electron capture occur?

4.3 NEUTRINO HYPOTHESIS
The secondary electrons giving rise to the discrete peaks are not emitted from the 

-disintegrating nuclei. Only the electrons in the continuous part of the -spectrum are 
emitted during -disintegration of the nuclei.

Usually the areas under the discrete peaks are small compared to the 
area under the continuous distribution graph (not more than a few percent), 
which shows that the number of secondary electrons forming the peaks is 
only a few per cent of the total number of -particles emitted.

Careful measurements have shown that the total number of electrons, 
including those in the peaks as well as in the continuous spectrum, is slightly 
greater than the number of nuclei undergoing -decay. The latter is found to 
be equal to the number of electrons in the continuous spectrum, which shows 
that the electrons emitted during -decay form the continuous spectrum only, 
excluding the peaks.

Both for – and + decays, the emitted -particles are found to have 
continuous distribution of energies or velocities ranging from 0 upto a 
maximum. In the case of electron capture, no observable particle is emitted 
from the nucleus. Only x-ray photons or Auger electrons, characteristic of 
the product atom, are observed.

We have seen before that during -disintegration, the mass number A 
remains unchanged while the atomic number Z changes by one unit. This 
means that either a neutron is changed into a proton (as in – decay) or a proton 
is changed into a neutron (as in + decay or in electron capture process) so 
that the total number of protons and neutrons (Z + N = A) remains unchanged.

Experimental study of -disintegration shows that the -particle spectra 
are discrete in nature, which points to the fact that the nuclei exist in discrete 
energy states, as expected from quantum mechanics for a closed micro-
system. Transitions between these discrete levels in the parent and product 
nuclei give rise to the emission of mono-energetic groups of -particles.
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The same conclusion is drawn from the study of the  ray spectra. It 
may therefore be expected that due to the transitions between such discrete 
energy levels in the parent and product nuclei in the -decay process, the 

energy of the -particle. However, the observed continuous distribution of 
the -energy is contrary to this expectation. Thus there is an apparent break 
down of the principle of conservation of energy in the case of -decay. It 
may, however, be noted that the -disintegration energy Q : agrees with the 
mass-energy difference between the parent and the product nuclei less the 
electron rest-energy for both – and + disintegrations which also equals the 
maximum energy E of the emitted -particles.

 Fig. 4.5 Beta transition between two discrete energy states of the parent (X) and 
product (Y) nuclei showing apparent breakdown of the conservation of energy.

Another puzzling feature about the -decay is the apparent failure 
of the principle of conservation of angular momentum. We know that the 
protons and the neutrons, constituting the nucleus of an atom, have intrinsic 
spin angular momentum s = 1/2 (in unit of  h-) each. If the total number A of 
nucleons is even, then the total spin angular momentum of the nucleus S = 

si is either 0 or integral. On the other hand, if A is odd, then S will be half 
odd integral. In addition, the nucleons may have orbital angular momentum L 
which can only be integral multiples of h-. Since the total angular momentum 
of the nucleus (nuclear spin) is I = L + S, the value of I is integral or half odd 
integral in units of h- depending on whether the number of nucleons A in the 
nucleus is even or odd respectively. For example, if A is even, I is integral 
or 0. So in the -disintegration process, since A remains unchanged, I will 
remain integral or 0 i.e., either I does not change or changes by an integral 
multiple of h-. Similar is the case when A is odd.

Now the electron has an intrinsic spin 1/2. So during its emission from 
the nucleus, it can carry away a half odd integral unit of angular momentum, 
since the orbital angular momentum change, if any, can take place by an 
integral multiple of  h-. This means that the emission of an electron from 
a nucleus should change the angular momentum by a half odd integral 
multiple of  h- which however contradicts the statement made above that in 
the -disintegration process I should change by an integral multiple of  h-.

To explain these apparent inconsistencies, Wolfgang Pauli, in 1930 
proposed that at the time of -decay of a nucleus, a hitherto unobserved 



NOTES

Nuclear Decay

Self - Learning
Material  137

second particle, in addition to the electron, is emitted, which carries away the 
balance of energy Ev = Em – E  so that the total energy of the two particles is 
equal to the maximum -energy Em. When the electron is emitted with zero 
kinetic energy, the second particle is emitted with the maximum energy Ev 
= Em. On the other hand, when the electron is emitted with the energy Em, 
the other particle has energy Ev = 0.

Here we have neglected the energy of the recoil nucleus undergoing 
-decay, since it is much heavier than the particles emitted.

This new particle proposed by Pauli has been named the neutrino. It 

had proposed the neutrino hypothesis.

We can guess about some of the properties of the neutrino:

 (i) The neutrino ( ) must be electrically neutral, so that the only change 
in the charge of the nucleus during -decay is due to the emission of 
the electron or positron or due to the capture of an orbital electron. 
This is in agreement with observations.

 (ii) The mass of the neutrino should be zero or very nearly so. This follows 
from the fact that the maximum energy Em of the emitted electron is 
equal to the mass energy difference between the parent and the product 

mass then its rest energy must also be subtracted to get Em.

 (iii) Intrinsic spin of the neutrino should be 1/2. Since the electron spin is 
also 1/2, two spin 1/2 particles are emitted during -decay. Hence the 
two together will take away an integral unit of angular momentum, 
which is in agreement with the statement made above regarding the 
change of angular momentum in -decay.

 (iv) The neutrino must obey Fermi-Dirac statistics like the electron since 
its spin is 1/2.

a successful theory of -decay, based on the neutrino hypothesis (1934). 
According to Fermi, -decay occurs due to the transformation of a neutron 
into a proton inside the nucleus with the emission of an electron and an anti-
neutrino (  – ) which is the anti-particle of the neutrino, just as the positron 
is an anti-particle of the electron:
  n  p + e– + – ...(4.11)

Such decay is actually observed in the case of a free neutron which 
has a half-life of 10.6 min, when it is outside the nucleus. 

The reverse transformation of a proton into a neutron by the emission 
of positron and a neutrino also occurs inside the nucleus in + decay:
  p  n + e+ +  ...(4.12)

However, this transformation cannot occur in the case of a free proton, 

lighter than a neutron.
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It may be noted that electrons, positrons, neutrinos and anti-neutrinos 
escaping from the nucleus in -decay do not exist initially inside the nucleus. 
They are born at the time of -decay, just as the photon is born at the time 
of radiative transition in an atom (or in a nucleus). This is unlike the case of 

-decay of a nucleus, since the two protons and two neutrons forming the 
-particle already exist inside the disintegrating nucleus.

Unlike -decay, which takes place only in the heaviest nuclei, -decay 
can occur in a wide range of nuclei, starting from the lightest at A = 1 (in 

produced.

The energy liberated in -decay process also varies over very wide 
range. For example, in the decay 3H  3He + –, the decay energy is only 
0.02 MeV while in the decay 12B  12C + – it is 13.4 MeV.

A brief sketch of Fermi’s theory of allowed -decay It gives a 
mathematical expression for the energy (or momentum), distribution of the 

-particles.

The physical properties of the neutrinos are such that they are very 

in matter. So the usual methods of detection of charged particles cannot be 
applied for their detection. Since they are practically massless, they cannot 
transfer energy to any other particle by elastic collision. Hence the method 
applicable in the case of detection of an electrically neutral particle like the 
neutron cannot be used in their case. There are reasons to believe that the sun 

bombarded by neutrinos. It has been estimated that about 1014 neutrinos pass 
through the human body every second. However, the probability of their 
interaction with the atoms in the human body is so small that not even one 
such collision takes place in a whole year. As stated before, there was no 
direct evidence for the detection of the neutrino for a long time. Finally in 
1956, two American scientists, F. Reines and C.L. Cowan Jr., were successful 
in detecting the neutrino directly. 

As stated before, the neutrino ( ) has an anti-particle, known as the 
anti-neutrino (  –  ). The former is emitted at the time of + decay and electron 
capture process, while the latter is emitted at the time of – decay. We can 
represent these processes symbolically as follows:

– decay:  Z
A

( =0
Z 1
A

0 1 1)
X Y

l
→ + ++

−β ν  ...(4.13)

+ decay:  Z
A

( =0
Z 1
A

0 1 1)
X Y

l
→ + +−

−

−
β ν  ...(4.14)

 Electron capture:  Z
A

( =0 1 Z 1
A

1)
X Y

l
e+ → +−

− ν  ...(4.15)

The neutrino and anti-neutrino are both mass-less and charge-less 
particles with the same intrinsic spin (1/2). It is believed that the difference 
between them lies in the fact that the spin vector S of the neutrino is anti 
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parallel to its linear momentum p, while for the anti-neutrino the two vectors 
are parallel, as shown in Fig. 4.6. 

Fig. 4.6 Neutrino and anti-neutrino.

The weakly interacting particles like the electron, positron, neutrino and 
antineutrino belong to a class of elementary particles called leptons. It is usual 
to associate a lepton number l with them. For the electron and the neutrino 
we put l = +1, for the antiparticles positron and anti neutrino, we put l = –1. 
At the time of -decay, there is conservation of the lepton number, which 
means that l remains the same before and after the decay. As an example, in 

– decay l = 0 on the left side of Eq. (4.13). On the right side, the total lepton 
number is 1 – 1 = 0. So the lepton number is conserved. Similarly for the + 
decay. In the case of electron capture decay, l = +1 both on the left and right 

4.4 FERMI THEORY OF BETA DECAY: 
ALLOWED AND FORBIDDEN 
TRANSITIONS PARITY VIOLATIONS IN 
BETA DECAY

Using Pauli’s neutrino hypothesis in 1934, Fermi developed a 
successful theory of beta decay. Using Fermi theory, we may calculate the 
probability (or rate) of beta decay.

The theory is predicated on the following premises:

 1. First and foremost, since the electron and neutrino don’t exist before 
decay, the theory must explain how these particles are generated.

 2. There must be a relativistic treatment of the electron and neutrino, as 
well.

 3. The calculation must produce a uniform distribution of electron 
energies.

 4. The interaction that generates the quasi-stationary states is weaker 
than the interaction that causes beta decay. Beta decay is caused 
by a relatively small amount of (time-dependent) nuclear potential, 
while stationary states are created by a much larger amount of (time-
independent) nuclear potential. Since we can treat the interaction that 
causes beta decay as a weak disturbance in time-dependent perturbation 
theory, we can apply it to the process.

Suppose that the system’s total Hamiltonian is

    

HP(t) is smaller than nuclear potential H
N
 and is thought to be 
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responsible for beta decay. In beta decay, we now know:

 

can then be calculated using the Fermi Golden rule:

   

         …(4.16)

where the matrix elements

    

with Hp representing the interaction potential responsible for beta decay. 
Also, note that here we use instead of Wif as both are same.

Ef

      …(4.17)

dn  
dEf. As previously stated, if there are a high number of accessible end states, 
a particular transition is more likely to occur.

As previously stated, beta decay 

 

The wave functions of electrons and neutrinos are referred to as 
e
 and 

, respectively. The wave function of a daughter nucleus is given by 
d
;

That’s why matrix elements transform as follows:

     …(4.18)

Beta particles and neutrinos are now free to move around as they were 
before their formation. The related wave functions therefore have the standard 
free particle’s wave function shape adjusted within the volume V. (which is 
nuclear volume for beta decay case).

   

Because the wave vector = , where  is the electron’s momentum, the 
electron wave function becomes;
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      …(4.19)

In the same way, the wave function for neutrinos is:

       ...(4.20)

Typically, the kinetic energy of beta particle is 1 MeV. Then, the 
momentum is  = 1.4 MeV/c.

With the momentum  = 1.4 MeV/c, if we calculate

   

For a typical nuclear radius r = 1 fm,

    

Therefore,

      <<1     …(4.21)

Now, from equation (4.19), the electron wave function can be expanded as:

     

…(4.22)

Using the condition   <<
higher order terms can be neglected. As a result,

      …(4.23)

This approximation is known as the allowed approximation.

Neutrino’s wave function can be approximated by ignoring higher 
order terms in its exponential. A new wavefunction for neutrinos is written 
as follows:

       …(4.24)

The matrix element can now be calculated using the modified 
wavefunction of electron and neutrino stated in equations (4.23) and (4.24):
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…(4.25)

where, 

    

is referred to as nuclear matrix elements since it expresses just the 
waves of the parent and daughter nuclei.

The revised formulation of transition rate is obtained by substituting 
the expression of  from equation (4.25) into equation (4.16).

       …(4.26)

For the time being, we can treat the nuclear matrix element Mif as a 
constant quantity while computing the density of states (Ef) = dn/dEf in 
order to determine the transition probability/rate. To put it another way, the 

beta energy spectrum is determined by the density of states.

therefore it is important to keep this in mind. As free particles, the decay 
products (electron and neutrino) might have continuum energy states in 

accessible to the decay products before we can calculate the density of states.

Let us assume that an electron (or positron) is emitted with a momentum 
pe in order to obtain the number of electron quantum states. We have no 
interest in the current momentum. Using this method, one can approximate 
the states for the range from p to p+dp by using the following:

 Due to the fact that the electron is supposed to be free, its position 
and momentum can be described with uncertainty dx, dy, dz, dpx, dpy, dpz.

   

Then, in quantum physics, the smallest volume in phase that can be 
measured is:
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Nevertheless, we may say that this volume corresponds to the particle’s 
single quantum state, as we cannot know the particle’s position or momentum 
within the volume.

Since the total number of quantum states in a given volume V and 
momentum range p to p+dp can only be calculated by integration, we must 
now do it for the corresponding phase space volume.

Fig 4.7 

The number of quantum states corresponding to a V phase space volume 
is equal to the h3 phase volume of one quantum state.

    
Essentially, dne is the number of quantum states possible to an electron 

contained in a spatial volume V with a velocity ranging from p to p+dp.

Analogously, we can determine the number of quantum states possible 
V with a momentum ranging from 

q to q+dq and denoted by:

                           

V) with momenta p to 
p+dp and q to q+dp are:

       …(4.27)
If we use this expression of dn in equation (4.26), the expression for 

                            



Nuclear Decay

NOTES

 Self - Learning 
144 Material

4.5 CONCEPT OF HELICITY
Electron and anti neutrino are longitudinally polarized which means 
that their spins are aligned parallel (for – ) or antiparallel (for –) to their 
respective linear momenta for backward emission of the – particle.

Though the polarization of the -particles observed in -decay is not 
a general characteristic of the electrons, it is regarded as a basic property of 
the antineutrino (and of the neutrino) and is known as helicity (H).

  H =
σ
σ

.

| | | |

p
p

 ...(4.28)

where  is the spin of the neutrino and p is its momentum. The Pakistani 

on the basis of the two component theory of the neutrino (assuming the 
neutrino mass mv = 0), that helicity should be, a fundamental property of the 

velocity can be different in different frames of reference. If, for instance, the 
particle spin is parallel to its momentum in some frame of reference, then 
to an observer moving faster than it in the previous frame, it will appear 
to be moving in the opposite direction and hence has momentum opposite 
to its spin. So it will have different polarizations in the different frames of 
reference. However, this is not the case for a massless particle (fermion) 
which must always move with the velocity of light c. Hence there can be no 
frame of reference which will move faster than it.

From the expression given above, the helicity is H = ±1 depending on 
whether the relative orientation of the spin and momentum of the particle is 
parallel or antiparallel. According to the two component theory mentioned 
above, the neutrino has H = –1 (anti parallel orientation of spin relative to the 
momentum) while the antineutrino has H = +1 (parallel orientation of spin 
relative to momentum). This is the only distinction between the two particles.

If spin is regarded as a rotation, then the motion of the neutrino is 
analogous to that of a left handed screw while the motion of the antineutrino 
is similar to the motion of a right handed screw.

to the violation of parity conservation in weak interaction. If a particle has 

remains the same or simply changes sign, while the particle is transformed 

transforms into a left handed screw-like particle. Thus the particle is not 
transformed to itself, which means violation of parity conservation.
Measurement of neutrino helicity:

The helicity of neutrino was measured directly in an experiment 
performed by M. Goldhaber, L. Grodzins and A.W. Sunyar (1958). They 
used as source the K-capturing 152Eu (  = 9.3 h) isomer which has the decay 
scheme.
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The product nucleus 152Sm goes to the ground state by -emission (E  = 

produced by the -rays were studied. Because of the recoil of the emitting 
nucleus 152Sm, the -energy was reduced by about Er = 3.26 eV from the 
transition energy. Because of the very short half-life of the excited state, 
its width  is relatively large, being about 0.02 eV. Even so, it is not wide 
enough to compensate for the recoil energy-loss (  << Er). However, the 
compensation is provided by Doppler shift due to the recoil velocity of the 
source, which is a product in the K-capture decay of the parent nucleus 152Eu 
emitting a neutrino of energy Ev = 900 keV. This recoil energy is about 2.86 
eV. Notice that there are two different types of recoil of the 152Sm nucleus 

capture by the parent nucleus and the second due to -emission from the 
excited product nucleus 152Sm*.

Since the compensation due to Doppler shift is slightly less than the recoil 
energy change of the -rays, the -rays were allowed to proceed at an angle 
slightly less than 180° w.r.t. the direction of emission of the neutrino in K-capture 
decay of 152Eu, as can be seen from Fig. 4.8(a), showing the experimental 
arrangement of Goldhaber et al. The theme of the experiment is illustrated in  
Fig. 4.9.

We can write down the law of conservation of angular momentum in 
the two successive transitions involved as below:

152 m 152 *Eu Sm

0
1

2
1

1

2

+ → +−

↑ ↑ ↓
eK
( ) ( ) ( )

ν

 Fig. 4.8 (a) Experiment of Goldhaber and others on the measurement of the 
helicity of the neutrino. (b) Results of the neutrino helicity experiment.

In this case angular momentum will be conserved if the spins of the 
neutrino and the 152Sm* nucleus are oriented oppositely. Since their momenta 
are also in opposite directions, it follows that the longitudinal polarization of 
the nucleus 152Sm* must have the same sign as that of helicity of the neutrino. 
In the second transition we have

152 *

    1

152

     0 1
Sm Sm→ + γ
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Fig. 4.9 Theme of the experiment on the measurement of neutrino helicity.

The magnetized iron used as a polarimeter [see Fig. 4.8 (a)] allows 
only those -rays to be transmitted which have circular polarization such that 
their spins are up and hence the spin of the 1– state of 152Sm must also be up. 
Thus the sign of the circular polarization must be the same as the sign of the 
longitudinal ploarization of the emitting nucleus and hence it is the same as 
the sign of the neutrino helicity.

So the experiment boils down to the measurement of the sign of the 
circular polarization of the -rays. This is measured from the change in the 
number ot counts in the -ray detector upon a reorientation of the magnetic 

b).

The helicity of the neutrino was found to be negative. Though there is 
no direct experimental determination of the helicity of the anti-neutrino, all 
other experimental data show that it must be positive.

It was seen above that the electrons emitted in -decay are longitudinally 
polarized (see Wu’s experiment). The longitudinal polarization of the -rays 
have been measured and is given by

  P( ±) = ±
v
c

 ...(4.29)

Each lepton has a lepton number (also called the leptonic charge). 
For electrons and ve the leptonic charge is +1 while for positrons and –e it is 
–1. We conclude that the sign of longitudinal polarization of the electronic 
leptons is opposite to the sign of their leptonic charge.

4.6 MULTIPOLE TRANSITION AND 
SELECTION RULES FOR THE DECAY 
OF THE NUCLEI

we found a transition rate that was above the rate at which an electric dipole 
radiation is emitted. Because of this sort of radiation, only one quantum of 
angular momentum may be carried out of the nucleus (i.e.,  = ±1, between 
excited and ground state). As a general rule, excited levels are more than 
one l l apart, and so the radiation that is emitted must be higher multipole.

 1. Electric Multipole: To return to the expansion of the radiation 
interaction in multipoles, consider the following:
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where  is interaction potential.

Then the transition rate becomes:

  
Notice the strong dependence on the l quantum number. Setting again 

   

we also have a strong dependence on the mass number.

Thus, we have the following estimates for the rates of different electric 
multipoles:

 2. Magnetic Multipoles: The e.m. potential can also contain 
magnetic interactions, leading to magnetic transitions. The 
transition rates can be calculated from a similar formula:

where μ
p
 is the magnetic moment of the proton (and mp its mass). 

Estimates for the transition rates can be found by setting :

4.7 INTERNAL CONVERSION, 
CONVERSION COEFFICIENTS OF 
ISOMERIC NUCLEI

Internal conversion is a mechanism of nucleus deexcitation that competes 
with gamma emission for energy. It occurs when the nucleus is in an excited 
state as a result of beta or alpha radioactive decay. Internal emission can be 
compared to gamma emission, in which the gamma fades when it interacts 
with one of the atom’s atomic electrons. As a result, it is often referred to as 
electronic conversion.
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Fig 4.10 A gamma ray is emitted by an excited nucleus (a). One of the electrons in the 
innermost layer of the atom (b) is most likely to be hit by this gamma ray. The atom loses 
an electron. The gamma gets absorbed by the electron and disappears. Because of this, 
the electron is no longer present in that layer. Reorganization of the atom takes place, 

The gamma energy is passed on to the expelled electron, but it must 
break free of the atom’s gravitational pull. It loses some of its atomic binding 
energy once it is liberated. Remembering the atom’s shell structure, the 
electron’s binding energy is the energy of the layer to which it belongs. 
Energy from the gamma reduced electron’s unique binding energy on its 
atomic layer is transmitted to its electrons. It is clear that both the gamma 
and the binding energy have well-established values. Since the electron is 
being expelled, it will have a range of energy levels (one for each layer). For 
electrons in the innermost K layer, the internal conversion probability is the 
highest, and declines rapidly with the outermost layers.

electrons, whose energy varies between 0 and a maximum value, with a 
portion of the decay energy carried by an invisible neutrino.
Following the electron expulsions, the electron atomic cloud undergoes re-
arrangement, resulting in the emission of X-rays.

Fig 4.11 
ray emitter, is the example chosen. In 85.1 %, the beta electron is accompanied by 

energy distribution of beta electrons is constant, the energy of conversion electrons 
varies depending on which atomic layer they originate from. Layer K is where the most 
conversions happen. Conversion electrons carry around 5% of the decay energy in the 
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The weights of gamma emission and internal conversion are shown 
in the example of cesium-137. 94.7 % of beta decays result in a nucleus 
in an excited state, with 85.1 % returning to the ground state by emitting 
an energetic 661.57 keV gamma and 9.6 % returning to stability through 
internal conversion. The electron conversion energy is slightly smaller than 
the gamma conversion energy.

 In general, the existence and energy of conversion electrons stay 
related to the nucleus’s gamma rays. Their contribution to the decay energy, 
which is added to the energy of beta electrons, is only a few percent at most.

characterize the rate of internal conversion.

by the following formula:

For E  (electric monopole) nuclear transitions, there is no appropriate 
formulation for an equivalent concept.

correctness is largely accepted, however because the quantum mechanical 
models on which they are based only consider electromagnetic interactions 
between the nucleus and electrons, unexpected effects may occur, resulting 

is tedious. Software solutions have been created to quickly and conveniently 

4.8  ANGULAR CORRELATION OF 
SUCCESSIVE DECAY

A directional connection exists between two successive gamma rays, which 
is unique due to the multipolarity of the transitions involved in the cascade. 
Experimental measurements of these correlations can provide information 
on the spins of the nuclear states involved.

Each nuclear state with angular momentum J contains a set of m-states,

      (4.30)

They exhibit degenerate energies. The transition from one excited 
nuclear state to another is essentially a transition between various pairs 
of m-states, as seen in Fig. 4.12 for a dipole transition. There are three 
conceivable m-state transitions for a dipole transition. Each of these emits 
an angular distribution that is uniquely anisotropic. The observed angular 
distribution of the radiation emitted by mi f is;

      (4.31)
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W ( ) for emitted radiation 
between pairs of m-states in Fig. 4.12.

Table 4.1

Fig 4.12 A diagram illustrating how the decay Ji f is actually caused by decays 
between m-states. Each transition between pairs of m-states emits radiation with an 

anisotropic angular distribution, but if all initial m-states are evenly populated, only an 
isotropic radiation distribution is observed.

where, p(mi
distributions W ( ) for each transition between pairs of m-states are 
reported in Table 4.1. If each initial state (mi) is equally occupied, and p(m-1) 
= p(m ) = p(m1) = 

1

2
, then the observed angular distribution is as follows.

   (4.32)

W is constant at all angles ; as gamma rays are isotropically emitted, 
no anisotropic angular distribution will be noticed.

 To observe an anisotropic distribution of radiation, an unequal 
population in the initial m-states must be created. This can be accomplished 

m-states with 
such rarity. Continuing with the dipole radiation scenario from Figure 4.12, 
suppose that Ji J

0
 = 0, resulting 

in a 0 1 0 cascade of gamma rays 
1
 and 

2
. (as shown in Fig. 4.13). 

If 
1

along its emission axis, so that 
2
 is observed at an angle of 

2
 to that axis 

1
 (

1
) and the 

z-axis is 0. When Wm0 0
(

1
) = sin2

1
 = 0, which indicates that mj=0 cannot 

be populated. Now, an unequal population of m-states has been established 
that corresponds to Ji. The measured anisotropic angular distribution has the 
following shape: 

 (4.33)
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Fig 4.13
successive gamma rays 1 and 2 1, 
and 2 is the direction of detection of 2

cascade.

which is not constant at all angles (plotted in Fig. 4.14).

Fig 4.14
gamma ray cascade.

In general, the angular correlation between two successive gamma 
rays can be written as

  (4.34)

where P
2
 and P

4
 are Legendre polynomials and A

2
 and A

4
 are spins of 

the nuclear states involved in the cascade, as well as the angular momenta 
and mixing ratios  of each gamma ray. Each form of gamma ray cascade (0 

1 0, 0 2 0, etc.) has a distinct angular correlation with distinctive 
A

2
 and A

4

determined by comparing theoretically predicted A
2
 and A

4 
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Table 4.2 According to Eqn. 4.34, the theoretical A2 and A4

   

Check Your Progress

 4. What is internal conversion?

4.9 ANSWERS TO ‘CHECK YOUR 
PROGRESS’

 1. A radioactive nucleus’s atomic number changes by one when it 
undergoes beta decay, resulting in a daughter nucleus with the same 
number of nucleons as the parent nucleus.

 2. Electron capture occurs when a parent nucleus catches one of its own 
orbital electrons and produces a neutrino, is a process that competes 
with  decay.

 3. The polarization of the b-particles observed in b-decay is not a general characteristic 
of the electrons, it is regarded as a basic property of the antineutrino (and of the 
neutrino) and is known as helicity (H).

 4. Internal conversion is a mechanism of nucleus deexcitation that 
competes with gamma emission for energy.

4.10 SUMMARY
  A radioactive nucleus’s atomic number changes by one when it 

undergoes beta decay, resulting in a daughter nucleus with the same 
number of nucleons as the parent nucleus.

  A beta particle can be either a positron () or an electron (), with the 
latter being the more widespread name.

  As with alpha decay, beta decays preserve both the nucleon number 
and total charge. Due to the fact that A does not change but Z does, 
we conclude that beta decay occurs when either a neutron transforms 
into a proton or a proton transforms into a neutron.

  In order to witness electron capture, the x-rays emitted by electrons 

K shell are often used.

  The decay energy is shared among the nucleus, an electron, and an 
antineutrino in a beta decay like that of a bismuth-210 nucleus.

  Low-energy electrons dominate the beta spectrum’s asymmetrical 
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structure. In spite of its great lightness, the antineutrino carries more 
kinetic energy than the electron, which is heavier in comparison.

  Beta electrons have lower energy than alpha particles, which always 
have energies above 4000 keV, whereas beta electrons have energies 
below 1 MeV in most situations (4 MeV).

  The secondary electrons giving rise to the discrete peaks are not emitted 
from the b-disintegrating nuclei. Only the electrons in the continuous 
part of the b-spectrum are emitted during b-disintegration of the nuclei.

  Both for b– and b+ decays, the emitted b-particles are found to have 
continuous distribution of energies or velocities ranging from 0 upto 
a maximum. In the case of electron capture, no observable particle is 
emitted from the nucleus.

  Another puzzling feature about the b-decay is the apparent failure of 
the principle of conservation of angular momentum.

  When the electron is emitted with zero kinetic energy, the second 
particle is emitted with the maximum energy Ev = Em. On the other 
hand, when the electron is emitted with the energy Em, the other particle 
has energy Ev = 0.

  It may be noted that electrons, positrons, neutrinos and anti-neutrinos 
escaping from the nucleus in b-decay do not exist initially inside the 
nucleus. They are born at the time of b-decay, just as the photon is 
born at the time of radiative transition in an atom (or in a nucleus).

  The physical properties of the neutrinos are such that they are very 

ionization in matter.

  The neutrino and anti-neutrino are both mass-less and charge-less 
particles with the same intrinsic spin (1/2).

  Using Pauli’s neutrino hypothesis in 1934, Fermi developed a 
successful theory of beta decay. Using Fermi theory, we may calculate 
the probability (or rate) of beta decay.

  If spin is regarded as a rotation, then the motion of the neutrino is 
analogous to that of a left handed screw while the motion of the 
antineutrino is similar to the motion of a right handed screw.

  The helicity of neutrino was measured directly in an experiment 
performed by M. Goldhaber, L. Grodzins and A.W. Sunyar (1958). 
They used as source the K-capturing 152Eu (t = 9.3 h) isomer which 
has the decay scheme.

  Since the compensation due to Doppler shift is slightly less than the 
recoil energy change of the g-rays, the g-rays were allowed to proceed 
at an angle slightly less than 180° w.r.t. the direction of emission of 
the neutrino in K-capture decay of 152Eu.

  Internal conversion is a mechanism of nucleus deexcitation that 
competes with gamma emission for energy. It occurs when the nucleus 
is in an excited state as a result of beta or alpha radioactive decay.

 
to characterize the rate of internal conversion.
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  A directional connection exists between two successive gamma rays, 
which is unique due to the multipolarity of the transitions involved 
in the cascade. Experimental measurements of these correlations can 
provide information on the spins of the nuclear states involved.

4.11 KEY TERMS
  Nuclear decay:  It is the process by which an unstable atomic nucleus 

loses energy by radiation. A material containing unstable nuclei is 
considered radioactive. 

  Neutrino: A neutrino is a subatomic particle that is very similar to an 
electron, but has no electrical charge and a very small mass, which 
might even be zero. 

  Doppler shift: The Doppler effect or Doppler shift (or simply Doppler, 
when in context) is the change in frequency of a wave in relation to an 
observer who is moving relative to the wave source.

  Helicity: In physics, helicity is the projection of the spin onto the 
direction of momentum.

4.12 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

 1. State the properties of neutrino.

 2. How is the measurement of neutrino helicity done?

 3. What do you understand by multipole transition?

Long Answer Questions

 1. What do you understand by beta spectrum? Explain. 

 2. Describe the Fermi theory of beta decay.

 3. Discuss angular correlation of successive decay.

4.13 FURTHER READING
Bettini, Alessandro. 2014. Introduction to Elementary Particle Physics, 2nd 

Edition. UK: Cambridge University Press.
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Thomson, Mark. 2013. Modern Particle Physics. UK: Cambridge University 
Press.

Martin, Brian R. 2009. Nuclear and Particle Physics: An Introduction, 2nd 
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Wong, Samuel S. M. 2005. Introductory Nuclear Physics. New Delhi: Prentice 
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All the mesons have baryon number 0.
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