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INTRODUCTION

Classical electrodynamics or classical electromagnetism is a branch of theoretical
physics that studies the interactions between electric charges and currents using an
extension of the classical Newtonian model. The theory provides a description of
electromagnetic phenomena whenever the relevant length scales and field strengths
are large enough that quantum mechanical effects are negligible. For small distances
and low field strengths, such interactions are better described by quantum
electrodynamics.

Electromagnetism is a branch of physics involving the study of the
electromagnetic force, a type of physical interaction that occurs between electrically
charged particles. The electromagnetic force is carried by electromagnetic fields
composed of electric fields and magnetic fields, is responsible for electromagnetic
radiation, such as light, and is one of the four fundamental interactions, commonly
termed as the forces in nature. The other three fundamental interactions are the
strong interaction, the weak interaction, and gravitation. At high energy the weak
force and electromagnetic force are unified as a single electroweak force.
Electromagnetic phenomena are defined in terms of the electromagnetic force,
sometimes called the Lorentz force, which includes both electricity and magnetism
as different manifestations of the same phenomenon. The electromagnetic force
plays a major role in determining the internal properties of most objects encountered
in daily life and are responsible for the chemical bonds between atoms which
create molecules, and intermolecular forces.

There are numerous mathematical descriptions of the electromagnetic field.
In classical electrodynamics, electric fields are described as electric potential and
electric current. In Faraday’s law, magnetic fields are associated with
electromagnetic induction and magnetism, and Maxwell’s equations describe how
electric and magnetic fields are generated and altered by each other and by charges
and currents.

This book, Classical Electrodynamics, is divided into five units which will
help to understand the basic concepts of classical thermodynamics, electrostatics
and electromagnetic, such as electrostatics, laws of magnetostatics, magnetic
circuits, electric circuits, electromagnetics, polarisation, scattering (Rayleigh and
Thomson), electromagnetic radiation, Lorentz formula, Bremsstrahlung, plasma
physics, and relativistic formulations. The book follows the Self-Instruction Mode
or the SIM format wherein each unit begins with an ‘Introduction’ to the topic
followed by an outline of the ‘Objectives’. The content is presented in a simple
and structured form interspersed with Answers to ‘Check Your Progress’ for better
understanding. A list of ‘Summary’ along with a ‘Key Terms’ and a set of “Self-
Assessment Questions and Exercises’ is provided at the end of each unit for effective
recapitulation.
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UNIT 1 ELECTROSTATICS AND
MAGNETOSTATICS

Structure

1.0 Introduction
1.1 Objectives
1.2 Electrostatics
1.3 Uniqueness Theorem
1.4 Poisson’s Equation and Laplace’s equation
14.1 Solution of Laplace and Poisson Equation in Rectangular, Cartesian and
Spherical Polar Coordinates
1.5 Methods of Electric Images
1.6 Greens Function for Potential Problem
1.7 Solutions of Conducting Dielectric Sphere in Uniform Electric Field
1.8 Laws of Magnetostatics
1.9 Magnetic Scalar and Vector Potential
1.10 Magnetisation
1.10.1 Magnetic Circuits
1.10.2 Vector Magnetic Susceptibility and Permeability
1.10.3 Magneto-Static Energy
1.104 Uniformly Magnetised Sphere in Magnetic Field
1.11 Classical Theories of Para, Dia and Ferro Magnetism
1.11.1 Properties of Magnetic Materials: Salient Features
1.11.2 Classical Theories of Magnetism
1.12 Magnetic Circuits and Their Comparison with Electric Circuits
1.13 Answers to ‘Check Your Progress’
1.14 Summary
1.15 Key Terms
1.16 Self-Assessment Questions and Exercises
1.17 Further Reading

1.0 INTRODUCTION

Electrostatics is a branch of physics that studies electric charges at rest (static
electricity). The term static means a situation where the field does not vary with time.
Static electric field also referred as electrostatics is created by the fixed charges in
space. Electrostatic phenomena arise from the forces that electric charges exert on
each other. Such forces are described by Coulomb’s law. Even though electrostatically
induced forces seem to be rather weak, some electrostatic forces, such as the one
between an electron and a proton, that together make up a hydrogen atom, is about
36 orders of magnitude stronger than the gravitational force acting between them.

Coulomb’s law states that, ‘The magnitude of the electrostatic force of
attraction or repulsion between two point charges is directly proportional to the
product of the magnitudes of charges and inversely proportional to the square of
the distance between them.’

The force is along the straight line joining them. If the two charges have the
same sign, the electrostatic force between them is repulsive; if they have different
signs, the force between them is attractive.
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Magnetostatics is the study of magnetic fields in systems where the currents
are steady (not changing with time). It is the magnetic analogue of electrostatics,
where the charges are stationary. The magnetization need not be static; the equations
of magnetostatics can be used to predict fast magnetic switching events that occur
on time scales of nanoseconds or less. Magnetostatics is even a good approximation
when the currents are not static — as long as the currents do not alternate rapidly.
Magnetostatic focussing can be achieved either by a permanent magnet or by
passing current through a coil of wire whose axis coincides with the beam axis.

In this unit, you will study about the electrostatics, uniqueness theorem,
solution of Laplace and Poisson equation in rectangular, Cartesian and spherical
polar coordinates, methods of electric images, Greens function for potential problem,
solutions of conducting and dielectric sphere in uniform electric field, laws of
magnetostatics, magnetisation, uniformly magnetised sphere in magnetic field,
classical theories of para, dia and ferro magnetism, magnetic circuits and their
comparison with electric circuits.

1.1 OBJECTIVES

After going through this unit, you will be able to:
e Discuss the basic concept of electrostatics
e Understand the importance of uniqueness theorem

¢ Solve Laplace and Poisson equation in rectangular, Cartesian and spherical
polar coordinates

Explain the methods of electric images

Discuss Greens function for potential problem

Solve conducting and dielectric sphere in uniform electric field

State the laws of magnetostatics and magnetisation

Describe uniformly magnetised sphere in magnetic field
¢ Elaborate on the classical theories of para, dia and ferro magnetism

¢ Understand magnetic circuits and compare it with electric circuits

1.2 ELECTROSTATICS

The term static means a situation where the field does not vary with time. Static
electric field also referred as electrostatics is created by the fixed charges in space.

There are many examples of electrostatic phenomena such as the attraction
of the plastic wrap to your hand after you remove it from a package, and the
attraction of paper to a charged scale, to the apparently spontaneous explosion of
grain silos, the damage of electronic components during manufacturing,
and photocopier and laser printer operation. Electrostatics involves the build-up
of charge on the surface of objects due to contact with other surfaces. Although
charge exchange happens whenever any two surfaces contact and separate, the
effects of charge exchange are usually only noticed when at least one of the surfaces



has a high resistance to electrical flow. This is because the charges that transfer
are trapped there for a time long enough for their effects to be observed. These
charges remains on the object until they either bleed off to ground or are quickly
neutralized by a discharge: for example, the familiar phenomenon of a static ‘Shock’
is caused by the neutralization of charge built up in the body from contact with
insulated surfaces.

Determination of the electrostatic field components, such as electric field,
electric force, and electric flux density are explained by two important laws namely,
Coulomb’s law and Gauss law.

Coulomb’s Law

Coulomb’s law provides the relation between forces experienced by the charges
when they are separated by a distance. This theory was first proposed by Coulomb
in 1785. This law states that,

Force, F exerted between two point charges @, and @, as shown in Figure
(1.1) s,
=  Directly proportional to the product of the two charges and

= Inversely proportional to the square of the distance between the two
charges.

=  Thedirection of the force will be in the same direction along the line
joining the two charges.

Mathematically, Coulomb’s law may be expressed as,

) quz —

F o R? g

Line of direction
of force F

Q Q
Fig. 1.1 Coulomb’s Force
Removing the proportionality,

ar J ., k Ql@z H—3 QlQE —

£ RZ "7 4meR? F

Where,

a_é = Unit vector in the line of direction of force, F’
Q, @, = Charges

R = Distance seprating the charges (m*)

k_

= =9 X 10°m/F
dire,
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_ el e _ —17 _ 107%
Where, g, =Permittivity in free space =8.854 x 107 = — F/m.

Now, assume two charges @, and @, ata distance of r; and r,,, respectively,

from an observing point as shown in Figure (1.2). The force exerted by charge on
is given by,

— e,
Fiz = 5 Qg
dmwe Ry, T
Where
N Ry

ag,, = —=:
R12 |-§2-’|

And
P
Rpy=mr—n
Therefore,
T = T2—1
R — ’
|y — 1l

— Q102 Rp
Fio =0——5 73

Q1Q2 | (xz —xpay + (v, —ya,

Force, F= 2 3
€0 [\/(xz —x1)2+ (2 — Y1)2]
y
1 Qi(xy, y1)
AT,
\‘\1\2\ Qy(%y, ¥2)
)l >

T, S 8ri2
A

X
Fig. 1.2 Coulomb's Force on Charges at a Distance

Similarly, for force exerted by charge Q, on Q, is given by,
Fpy = —Fp [ @, = —a,,]

For Many Charges: Generalising, the above expression when many charges are
present,




Electric Field Intensity ()

Electric field intensity is defined as the strength of electric field at any point. It is
equal to force per unit charge as experienced by test charge kept at that point.
Therefore, it is expressed as,

. F
F=—
)
Also,
PP | o s,
F— _[ ¢1¢: a3
Q l4me, R?

Assumingthat@ = @, = Q,,

= el
dme, R

In general,
Yol
" ame L | iF—TP
Charge Distribution

The presence of charge O ensures the existence of electric field E .The charges
may be distributed on a line conductor, on a surface or inside a volume. Hence,
based on the charge distribution,

Along aline, charge, Q = -f PL .di
L
On a surface, charge, Q = f pS.Eg
S

Inside a volume, charge, Q = f py-dv
4

Where, p; = line charge density (C/m)
ps = surface charge density (C/m?)

py = volume charge density (C/m?)

Based on the above distribution of the charges on line, surface and volume,

the electric field intensity, £ can be given as,

Along a line, E= RZ f prL - di. ag
= 1 —_— __
On a surface, E = pr— Jps-ds . ag

. = 1 .
Inside a volume, E = —— .dv.a
side a volume, yr—E S, pv R
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Electric Field Intensity Due to a Line Charge

In this section, let us derive the electric field intensity, £ due to a line charge.
Cartesian coordinate system is considered for the analysis. Consider a uniformly
charged line of length 'L' with line charge density, p; (C/m). An incremental
elemental length 'd/" is considred for the analysis from an observing point 'P' at a
distance '7'. The arrangement is depicted in Figure (1.3).

The electric field along the line is given as,

- 1 —
E=—— Jdl.a;
4meyr? prL o

Fig. 1.3 Charge Distribution Due to Line Charge

Electric field intensity due to a small elemental length 'dl' is given as,

— 1

dE

- Amreqr? pu-dl.a

The electric field at point 'P'will be at an angle 6 with respect to the normal
axis. Hence, can be resolved in to x-component and y-component.

Therefore, dE_=dEsin 0
And, dEy =dFE cos 0
Substituting the magnitude of dE in the above expressions,
pr-dl
(1.1
dE, PP sin @ (1.1)

To obtain E , then the above expression needs to be integrated over length
'L'and hence 7' must be determined.

From Figure (1.3), sin 0= h/r?
L h 0
Therefore, r= sing cosec

Also, from Figure (1.3),

tang = ——
x—1



- h
x " tan®
x—1=hcotf

—dl = —h cosec?8 d6
Substituting d/ and r in the Equation (1.1),

—p; .Sin @
dE PL

- 29 4
*  4mey(h? cosec?) (h cosec0 do)

—p, -Sin @
dE, = —— df
x 47T60h

Integrating from o, to t— ., for the entire length of the wire,

T—ay __ 3
_ pL -sin @
Ex N f 47'[60]?, df

a1

= cosaq +cosa

Similarly from a’Ey,

P, -cos B
dE, = ————— d6
Y Amenh

mT—ay

pL, -cos B
~FE = _—

y f 4megh a9

ai

T—a
PL f cos@ db
a

= sina, —sina

There are two conditions associated with o.. They are,

Case (i) [faa=0,thenE =0and £, = E = 27feL h
0

Case (ii) If a = o= ., then Ey =0and E, = E = cosa

megh
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Electric Field Intensity Due to a Ring of Charge

Consider a ring as shown in Figure (1.4), filled with charge Q. The x-axis is
perpendicular to the ring and is at the center of the ring. The objective is to find the
electric field at P due to the ring of radius 'R'.

Fig. 1.4 Ring of Charge

Consider a small elemental charge, dQ on the ring. The electric field dE at

point Pis given as,

dQ _ _ dQ
P s

The x-component of dE is dE_and is given as,

dE =k

dQ
dE, = dE cos@ = k———<cos @

(R?+a?)
But, from Figure (1.4),
a
oS0 = ——
VRT+ a2
dQ a
dE; = k——; > 1
(R:+a )(Rz +a?)?
dQ (a
a5, - 0@

(RZ + a2)3/2
Referring to the Figure (1.4), neither &, R or a changes. Hence,

Ex — dex — kaa)g
(R? + a?)2
E, = kLdeQ
(R%2 + a?)2
Q(a)

Ey = (RZ + a2)3/2



When R — 0, ring represents a point charge, therefore,

kQ@) kQ

a? a

~
~

Where k=

4me

Electric Field Intensity Due to a Circularly Charged Disc

Unlike the previous structure of a ring, consider a disc of radius, R. The disc
consists of a uniformly charged surface charge density of p. C/m?*. Consider an
elemental ring of radius dr at a distance ' from the center. The electric field at a
point P is given as,

ps.ds
h2

The horizontal and vertical components of dE are dE_and dE,. The horizontal
component dE _is zero and the vertical component is given as,

dE =k

dEy =dFE cos O
Ps. ds
dE, = k % cos 8
We know that for the differential surface element ds,
ds =2mnr dr
ps. 2mr dr)
dEy =k TCOS 7]
dr
h
r p
) a >
v dE
R dE

Fig. 1.5 Electric Field Due to a Circularly Charged Disc
From Figure (1.5),
r
tanf = —
a

r=atanb

dr = asec? 6 do
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r

~ sin@

Therefore,

1 ps.(2nr) (asec? 8 dO)

y = 41e, ( r )2 0s 0
sin 6
ps(2mr) (asec 6 sin® @ d6)
Y 2eptand [ tan r/al
Ps . ,
dE, = -—sin6 df [tan 8 = sec O sin 6]
260

Total electric field is given as,

a p a
E:~f dE, === | sin6 db
€
6=0 0J6=0

E=§—Z(1—cosa)

Electric Flux Density

Electric flux density is an imaginary field lines that do not exist unlike magnetic
field lines. Electric flux density do not exist practically and generally considered
for theoretical reasoning only. Electric flux density is related to electric field by the
following reason,

B= Eoﬁ

Electric flux density D is independent of the medium and may also be defined
in terms of electric flux 1 as,

Y =[D.ds
All the electric field expressions derived earlier can be substituted in the

electric flux density expressions. Therefore, electric flux density due to a long
conductor of charges is given as,

B = € OE
Electric flux density due to a ring of charges is given by,
- aQ

D =
4 (R? + a?)3/2
Electric flux density due to a circularly charged disc is given by,

2 Va? + R?



Gauss's Law and Applications

Gauss' law is a powerful tool for the calculation of electric fields. The applications
of Gauss law includes determination of electric field due to a point charge, sheet of
charge, line charge on surface of conductor and sphere of charges.

Gauss law states that total flux through a closed surface is equal to the charge
enclosed by that surface. Mathematically, it is given as,

Electric flux, = Q (Charge enclosed).

Maxwell's Equation - I

From Gauss law, we know that, v = Q. Also, from the basic definition for electric
flux y and charge Q on a volume,

¢=§d¢=fﬁﬁ§ L(12)
and
Q= j py-dv
o .(1.3)
Therefore, equating Equation (1.2) and Equation (1.3),
D.ds = f .dv
ﬁ i (1.4)

Applying divergence theorem on the LHS of the above expression in Equation
(1.4),

f?.ﬁdv = fpv.dv

v v
Therefore,
V.D = p, ..(1.5)

Relating the units of the above expression in Equation (1.5),
p,(C/m3) = V.{D(C/m?)} = {V.D} (C/m3)

Equation (1.5) is called as Maxwell's first equation expressed in
differential form and Equations (1.4) is called Maxwell's first equation
expressed in integral form.

Gaussian Surfaces - Gauss's Law Application

A mathematically closed surface is called as a Gaussian surface. These surfaces
are assumed to have a uniform symmetric charge distribution which are ideal for
determining the electric field vector, E by applying Gauss law. Also, the electric
flux density vector, D is assumed to act tangentially or normally on the Gaussian
surface. Therefore, accordingly, when D is normal, then

D.dsS = DdS
And when D is acting tangential,
D.dS =0
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(a) Determining D Due to a Point Charge

Consider a point charge, O located at point P as shown in Figure (1.6).

ZA

ol

Gaussian r
surface

b 4

Fig. 1.6 Electric Flux Density 5 Due to a Point Charge

According to Gauss law,

v =0
And,
szgﬁ.d—s’

Assuming that D is normal to the Gaussian surface,
szgD.dSszgdS

2 T
Q=Dj j r?sin 6 dé d¢
$=0J9=0

Q = D(4mr?)
Q
D =
472
g Q [—y
b= 4mrz O

(b) Determining D Due to Infinite Line Charge

The infinite line conductor is a cylindrical surface and hence, D needs to be operated

in cylindrical coordinate system, and hence assuming D to be normal to the Gaussian
surface as shown in Figure (1.7),

D =D,a,
Also, we know that,
Q= pp.dl

Since the length of the conductor is assumed to be infinite with length '/',

0= put=§3.T= {0, 5T



= Q= p,.l=D,(2mp).la, [ %a_f = 2mpl ]
Therefore,
- PL —,
D=——
2mp %
Or
_ P
2mp
AZ
B
P
y
Gaussian
surface

X

Fig. 1.7 Electric Flux Density 5 Due to Infinite Line Charge

(c) Determining D due to Charged Sphere

ZA

<V

X

Fig. 1.8 Electric Flux Density B Due to Charged Sphere

Consider a sphere of radius, . Electric flux density, D may either be inside
the sphere (R < r) or outside the sphere (R > r). Hence accordingly, we have
two cases to analysis as follows:

Case (i) When R < a

We know that,

v =20
RHS:
R T 2T
szpv.dV=pVJdV=pVJ J J p%sinfdp do do
4 4 p=076=0'¢=0
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— 4 3
Q= py [§”R ] (1.6)
LHS:
N T 2m
VES fD.dS:DpjgdszupJ f p?sinfdo do
S S 0=0J¢=0
¥ = D, [4mR?] (1.7
Equating Equation (1.6) and Equation (1.7),
4
o (37R)
P~ 4AmR2
R
D, = py(R)
3
- R _
D= §pv.ap
Case (ii) When R > a
RHS:
4
Q= fﬂv-dV == py [—”Rg]
V 3
LHS:
Y =D, [4nR?]
r3 o 3
Dpzﬁpv or Dzﬁpvap
R _,
. Epvap 0<r<a
D == 3
r —_—
vaap r>a
Electric Potential (V)

Electric field, E can be obtained by the following three ways.
(1) Byusing Coulomb's Law

—E=F/Q
(2) Byusing Gauss's Law
. D
—F =—
€o

(3) ByaScalar Potential Function, V/

It is always simpler to determine the electric field, E by using the vector

fields F and D . Hence it is imperative to determine V.



The scalar potential Vis defined as the amount of work done in moving a
charge Q. Hence Vis expressed as,

V=wQ

When the work done is to move the charge from A4 to B, then the potential
is renamed as ‘Potential Difference’. Consider moving a charge Q from

A to B subjected to an electric field E. From Coulomb's law, the force
experienced by the charge, Q is given as,

F =QEF

Therefore, small work done in moving the charge over a small distance di
is given as,

dW = —F.dl= —QE.dl

The negative sign indicates that the work done will be opposite to the force

developed. Integrating dw to obtain w in moving the longer distance from
Ato B,

B
szw fQ—)l
A

We know that,
= Q _
E =

amerz

B
— Q
W= — — dl
QL amer? "

Potential difference, Vi

Vas = Q Qf 47'L'ET' dl

Va = = 4ie (r_) A

If 4 is ata distance of , from origin and B is at a distance of 7, from origin,
then,

B
Vigp = —
AB 47TE [ ]

Q 1]
Vpp=——|———
AB 4rte lrg 1y
@ 0
AB 4mer, Amery
Vap = V4 — Vp
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If 7, is moved to infinity, then J/, — 0, then
Vap =V = 0=V,
In general, the potential in moving a charge from infinity to zero,

V= 1t:
Amrer Vo

Maxwell’s Second Equation

We know that potential difference between two points 4 and B is negative if the
potential difference between B and A4 is also negative. In other words, creating a
loop between 4 and B must satisfy Kirchhoff's voltage law and hence,

VAB

B« A
_VBA

Fig. 1.9 Voltage Around a Loop

Vap = —Vpa
Or VAB+VBA=O
= V=j£§.gl)

L

Therefore, applying Stokes's theorem to above closed line integral expression,
fm: 0= wxﬁm

L S
Hence,

VXE =0
The above equation is called Maxwell's second equation in differential
form. The equation can be briefed as ‘Differential circulation of an electric field

vector E is always zero or electric field vector, E vanishes when curled’. Such
types of fields are Conservative Fields.

Relation between E and V
From the previous section on electric potential (7), we know that, work done is

given as,

— B - —
Wz—fQE.l
A

w B, _,
V=—=—J E.dl
Q A



Differentiating the above expression, E’eAC/[’mSmtﬁcf ﬁl‘_”d
agnelostalics
dV = —E.dl
In the Cartesian coordinate system,
AV = —[E,a; + E, @ + E,@.[dx @, + dy @ + dz @] NOTES
dV = —[E.dx + E,dy + E,dz]
But, LHS can be equated as,
dV =d aV+d aV+al v
e T oy %9z
Therefore,
av av av
dx.o—+ dy.E +dz.—— = —|E,dx + E,dy + E,dz]
Comparing LHS and RHS of the above expression, we get,
£ = av £ = av p £ = av
T T ox’ y T Ty an 2= T
In general,
E= -V
Relating the above expression with Maxwell's second equation, i.e.,
E= -V and VXE =0
Substituting for E in Maxwell’s second equations,
Vx(-V)=0
The above is true from the property of curl which defines that curl of gradient
is zero. The negative sign in E = —VV represents that electric potential 'V is
always opposite to the one created it, i.e., F according to Lenz's Law.
Electric Dipole
Similar to the poles of the magnet, when equal and opposite electric charges are
separated by a short distance, they form an electric dipole as shown in Figure
(1.10).
+Q
d A dipole
-Q
Fig. 1.10 Electric Dipole
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The objective of this section is to determine the scalar electric potential '}/’
due to the dipole. When two equal and opposite charges are separated by a
distance 'd' an electric dipole moment is formed equivalent to,

m = Qd

Consider the Figure (1.11) to determine the scalar potential '/ at a point

'P' due to dipole.

ZA

N
\V

=

X

Fig. 1.11 Potential Due to an Electric Dipole
Scalar potential due to + Q is,

Q

1 ==
4megmy

Scalar potential due to —Q is,
—Q

1 =
4megr,

Total potential is,

V= V1 + V2
00
47'[607"1 47'[607'2
Q11
C4meglr, 1

For a far-field analysis, i.e., assuming that point P is at a far away distance,

then,

r =~r——cos0
1 2

=1+ —cos0
2 2

Therefore,



Electrostatics and
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_Q 1 1
" 4me,

_r—%cos@ r+%cos€

Q -(r +%cos 9) - (r —%cos 9)
- 4me

NOTES

2
r2 — chosz 6

Q d cos @

~ 4meg re — decosz 2]

For a far field analysis and in general, d <<r,

V= Q [dcose]

dmtey | 12

_Qdcosf mecost

Amegr?  4meyr?

mcos 6@

41reyT?

The scalar potential is inversely proportional to the square of the distance
between the observing point and the electric dipole.

1.3 UNIQUENESS THEOREM

The ‘Cauchy Problem’ is exactly the Initial Value Problem or IVP and is used to
solve x'(£)= (¢, x) with the condition x(¢ )= x,. Picard’s theorem is explained for
given any point in the plane, (x,, ,) and a function f{x, y), continuous on some
neighborhood of (X V) and Lipschitz in y on that neighborhood, then there exist
aunique function y(x) satisfying y'=f(x, y) and y (x,) = y,. A ‘Neighborhood’ of
a point is an open set containing that point. A function, f(x), is ‘Lipschitz’ on a set
if and only if there exist a positive number C such that for any x, y in that set,
- )l< Cle—yl.

If f(x) is Lipschitz on a set then it is continuous at every point of that set. The
mean value theorem can be used to show that if a function is differentiable at every
point of a set, then it is Lipschitz on the set while ‘Continuous’ and ‘Differentiable’
are defined at points. If f(x, y) is continuous but not Lipschitz on a set, then there
may be many functions satisfying the differential equation and ‘Initial Condition’.
The Picard's method for solving an initial value problem is considered as the basis
for his proof.
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Uniqueness

The system is equivalent to the integral equation. If we have a Lipschitz condition,
then we can use the Picard iterates method on the integral equation to get a unique
solution. We define,

yo(z) = yo

yﬂ—l-l{z:] =%Yn+ .f“1yﬂl:t)}dt'

To

As we commented above, this converges to a unique solution if fis Lipschitz
mny.
Alternately, we could use Gronwall's Inequality, as defined below.

Gronwall's Inequality

Let u,v be nonnegative continuous functions [a, b] such that,

i

u(t)C +/ v(s)u(s)ds,a<t<b,

Then

ft) € Celaula)ds

In particular, if & = (0,then v = (.
Proof. Let h(t) :=C + f: v (s)u(s)ds Therefore,
F(t) =v(t)u(t) < R{t)u(t)

This reduces to the differential inequality,
B —uh <0

Multiplying the LHS by,

g~ Ja wla)ds,

We get

(h{t)e—f:umda)' <0

And integrate from 0 to x to get,
h{z)e™ J #(9)4 _ pla) < 0

h(z) < h(a)el =4



Finally,
v(z) € hiz) < Cell u(a)d
This allows us to state a new uniqueness theorem.

Theorem: Uniqueness of Solutions to IVPs
Assumethat f ; R* — IR is continuous on,
@ ={{z,y): |z — zo| < a,|ly —w| £ a}
and satisfies,

|f(z,91) — flz,92)| < Ky — v

Then the solution to the VP existson [£g — &, g + &), where @ 1= A >

and the solution is unique.

Proof. Existence follows.

If there exists two solutions 1 (t)and ¢2(t) then define,
w(t) = @1(t) — ¢a(t)

Then, «/ (t) = ¢} (t) — ¢5(t),and

/f w' (t)dt = wlz) —wlzg) = /z[ﬂts ¢1(t)) — flt, @2(t))]dt

o

w(zo) = @1(To) — ¢2(z0) =0

So, we get the following for ,;:

w(z)= [ [Ftsos(t)— Fit, dalt)t

‘To

Therefore,

w(z)| <

[ "y f{t,m)dt‘
5/2 If{t,eﬁl)—f{t,eﬁﬂltitifi’f|¢1{t)—¢z{t}|fﬂ

= ()] dt
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Thus, from Gronwell's Inequality with u(t) := K, ¥(t) := |w(t}|, and

€ = 0,weget |w(t)| = 0.Consequently, #1 = ¢z,and theuniqueness is shown.

1.4 POISSON’S EQUATION AND LAPLACE’S
EQUATION

We know that if ¢ is the scalar potential associated with the electric field

E, E = — V¢. Again from the differential form of Gauss' law, we can write V.E =
P Ifwe couple these two equations, we get
So

p P

V.(-V) = o ie., V.(Vd) =_§

v = -2 (1.8)

So
This Eqation (1.8) is known as Poisson’s equation in electrostatics.
If we consider a particular region where there is no free charge, i.e.,
p =0, then from Equation (1.8), we get
Vip =0 ...(1.8(a))
Equation (1.8(a)) is known as Laplace’s equation in electrostatics and is of
much importance for evaluating electrostatic potential in charge-free regions.

1.4.1 Solution of Laplace and Poisson Equation in
Rectangular, Cartesian and Spherical Polar
Coordinates

Laplace’s equation can be used to evaluate potentials for charge-free regions. But
for that purpose we have to solve that equation in an appropriate coordinate system.
Then we have to impose boundary conditions on that solution to obtain the
electrostatic potential. Here, we will discuss the various forms of Laplace’s equation
in different coordinate systems and their solutions. We shall not go through the details
of solving Laplace’s equation because all the techniques are beyond the scope of
this book.

Cartesian System
Laplace’s equation in Cartesian coordinate system takes the form,

o o o
£+ay—f+87j’ ~0 (1.8(b))

The solution of Equation 1.8(b) can be written as,
d(x, y, z) = (4 cos Kx + B sin Kx) x (cos my + D sin my)
x (ENK+m)z 4 pp oK ™)z (1.9)

Where, A, B, C, D, E, F, K and m all are constants.



Cylindrical System
Laplace’s equation in cylindrical coordinate system takes the form,

2 2 2
06 106 106 0¢ _
or*  ror oot ozt
The solution of Equation (1.10) is of the form,
o(r, 0, z) =[4J,(Kr) + BY,(Kr)] x [C cos mO + D sin m0]
x [EeX® + Fe X7
Where 4, B, C, D, E, F, K and m all are constants and J,,(K7) and Y,(Kr) are
Bessel’s functions of order 7.

..(1.10)

Spherical System
Laplace’s equation in spherical polar coordinate system can be written as,

o’ 200 1 0°D  coth oD 1 o’
+ + + +
o ror r00* P 90 r’sin’0 99

The solution of the above equation is of the form,

D(r, 0, ¢p) = i i [Ar" + Br "] x [C cos m + D sin md)]
n=0m=0
X [EPR"(cos0) + FQ," (cos 0)]
Where, 4, B, C, D, E and F all are constants and P (cos6), O, (cos0) are
associated Legendre polynomials.

1.5 METHODS OF ELECTRIC IMAGES

At this stage, a question may arise that, “How does a static charged particle present
in an electrostatic field interact with the field?”” The answer can be realised by simply
considering the idea of electric lines of force. We already know that electric lines
of force are imaginary lines that generate from a positive charge and terminate on
anegative charge. Let us consider an electrostatic field produced by a single, static
positive charge +Q. The lines of force associated with +( are shown in the Figure
1.12. In the Figure 1.12 we can see that the density of lines is greater at the very
surrounding of the charge, and this density decreases as we go farther from +Q.
Density of field lines gives the measure for the strength of the electric field. Thus,
the force of repulsion between +Q and a positive test charge +¢ placed at a large
distance from +Q is weaker in comparison to that when +¢ is placed at the very
surrounding of +Q. This can be verified from the expression of the electric field
also, because electric field decreases inversely with the square of the separating
distance. As discussed above, the density of lines of force is a measure for the
strength of the electric field, electric flux also gives the measure for the density of
lines of force. Electric flux is generally defined as the number of lines of force
passing through a unit area held normal to the direction of the lines of force.
If the electric flux is greater, the electric field is greater and vice versa.
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If ¢ is the electric flux corresponding to the electric field E, ¢ = [[ £.ds, where
S

ds 1s an elementary portion of the surface S.

NV
A

N

Fig. 1.12 Lines of Force Associated with +Q
Now consider a closed spherical surface S with radius 7 and centre at O. If we
place a positive charge +¢ at O, the lines of force over the surface S will be identical
as shown in the Figure 1.13. Since, we have placed the charge at the centre, the
electric field at the outer surface of S is uniform throughout and

is E= %f . So, the electric flux at the outer surface of S'is given by,
TE ¥

o = S[fEf ﬁ%eo Rds

Fig. 1.13 Electric Flux
Here, ds is nothing but (+*sin® d6 d¢ 7). The direction of ds is along a unit
outward normal, drawn over s, which is identical to 7, because radius to a surface

point of a sphere is always perpendicular to the tangent of the sphere at that point.
Hence,

A . A q
0 = [ [ —L—#(?sin0 a0 dpr) = - ~(L11)
e'[o ¢J;0 4n S r S
Evidently if the charge was placed outside the surface S, the total flux over S
would be zero. This result is valid for any shape of the closed surface S.

Electrostatic Potential
The electrostatic field is of the form,

1

4n g,

— q A
E = .F
(r) 2

Where, g is the source charge and r is the separation between the source and test
charges. Now take the curl operation on the above equation.



- q - 7 q = r
VxE —4neo(er—2j—4neo(er—3j =0 ..(1.12)
This establishes that the electric field E is a conservative one. From the idea
of conservative field, we know that such a field is always associated with a scalar
potential ¢ by the relation £ = — V¢ (the negative sign comes to obey the principle
of conservation of energy). Here, the scalar potential ¢ is known as the
electrostatic potential associated with the electrostatic field £.

Potentials are always the consequences of various interactions. Electrostatic
potential ¢ is itself the result of the interaction between a charge and the electric
field E. We can define ¢(7) as the work done in bringing a unit positive charge

from infinity to the point 7. Using this definition, let us develop an expression for
the potential.

oF) =— .V[ E.di = Work done by E to bring a

positive unit charge from infinity to 7

o0

= [—L—iar
LAn ey r
_ g fdr g
dne it Ame
. - q
ie., o) = pr .(1.13)

which is the required expression for the electrostatic potential ¢(7) .

1.6 GREENS FUNCTION FOR POTENTIAL
PROBLEM

In the field of electrostatics, the Green’s function is precisely defined as
the impulse or signal response of an inhomogeneous or nonuniform linear
differential operator which is characteristically defined on a domain including the
certain specific initial conditions or the boundary conditions. The term signal or
impulse is uniquely used in context with the signal processing defining the input
signal or impulse response or precisely the Impulse Response Function (IRF).

In mathematics, the notion Green’s functions are precisely named after the
British mathematician George Green, who initially or originally developed and
established this concept in the year 1820s. In the contemporary analysis and
evaluation of linear partial differential equations, the Green’s functions are analysed
principally on the basis of fundamental solutions.

The Green’s function implies or indicates that if L is considered as the
linear differential operator, then:

e Essentially, the Green’s function G is precisely defined as the solution
of the equation of the form LG = 8, where 0 is referred as the Dirac’s
delta function.
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e Fundamentally, the solution of the Initial Value Problem (IVP) Ly =f1is
referred as the convolution (G * f), where G is referred as the Green’s
function.

The principle of superposition is used for a given linear Ordinary Differential
Equation (ODE) to solve considering that,

L (Solution) = Source
L (Green) = &, for each s

Because the source is a sum of delta functions, and the solution is a sum
of Green’s functions through the linearity of L.

Characteristically, the Green’s function, G(x,s), precisely of a
linear differential operator L=L(x) distinctively acting on distributions over a subset
of'the Euclidean space R?, at a specific point s, is any solution of,

LG s)=38(—x)

Where 6 is referred as the Dirac delta function. This specific property of
a Green’s function can be manipulated or exploited for solving the differential
equations of the form,

L u(x) = fix)

Considering that the kernel of ‘L’ is non-trivial, then precisely the Green’s
function is not considered as unique. Consequently, in fact, certain specific
combinations of symmetry, boundary conditions and/or other superficially or
externally imposed and required criteria may provide the notion of a unique
Green’s function. Subsequently, the Green’s functions may possibly be categorized
or classified by means of the kind of boundary conditions that are precisely
satisfied through a Green’s function number. Additionally, the Green’s functions
are generally considered as the distributions and not essentially as the functions of
a real variable.

Fundamentally, the Green’s functions are referred as exceptionally effective
and efficient methods for solving the wave equations and the diffusion equations.
In the field of quantum mechanics, the Green’s function of the Hamiltonian form
is considered as a key model with significant concepts of density of states.

In physics, the Green’s function is generally defined with the opposite
sign, i.e.,

LG(x,5)=0(x—5)

This definition of the Green’s function does not substantially or considerably

change or modify any of the properties of the Green’s function because of the
uniformity and consistency of the Dirac delta function.

If the operator is translation invariant, i.e., when L holds constant
coefficients with respect to x, then the Green’s function is typically considered
as a convolution kernel, that is,

Gx 8)=G (x—5)

In this instance, the Green’s function is considered equivalent with the
impulse or signal response of linear time-invariant system theory.



1.7 SOLUTIONS OF CONDUCTING
DIELECTRIC SPHERE IN UNIFORM
ELECTRIC FIELD

The term dielectric sphere in a uniform electric field can be uniquely defined with
the help of the condition that define a conducting sphere in an electric field. At far
distances from the sphere, the field is considered uniform and is equal or equivalent

to F = E,kwhich corresponds to a potential of ¢ = —E,r cos 6.
The potential can be extended inside and outside with reference to Legendre

polynomials. Since the distant potential only has Legendre polynomial of Order 1,
therefore, outside the sphere, the field is given by the potential,

B
Pout = Aqrcosf + T—;cos o

Inside the sphere, the origin is included. Consequently, inside the sphere,
the potential cannot have a singularity at the origin and is therefore given by,

Pin(r,0) = A,rcosé

Comparing with the asymptotic limit at long distances, 4, = —Ej.

The potential itself is continuous at 7= R,

B,
—EDR + F - AzR

Since there are no free charges on the surface, therefore, the normal
component of the displacement vector is continuous across the surface. The normal
component being the radial direction, we have,

—c a(Pin — a(pout
or =R e or =R
2B,
_EAZ = EoEﬂ + Eo?

Solving, we get,

B —E R0 "€ _ppak—l
! 0 €+ 2¢, 7 k+2

3E,
K+ 2

A2=—

So that,

3E,
K+2

Pin = — r cos 6
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And the electric field inside the dielectric is,

It is specified by the analysis that because of the presence of dielectric, the
electric field inside is reduced by,

- e s

Ifa dipole is placed at the origin of a sphere of radius R, then the radius of
the sphere can be considered extremely large in comparison to the dimensions of
the dipole, and the field is precisely given by,

-

P
4”5(]5’ 3

Therefore, the effect of dielectric is considered equivalent as that of replacing
the dielectric with a dipole of moment,

+2
The polarization of the sphere is then obtained by dividing this by the volume

4mR3

Egk

K
p = 4meyR3
p Ll

of the sphere, i.e., by

—

P=3Eﬂ.

Eqk
K+ 2 o’

Consequently, the field due to the dielectric can be written as,

£ ol P
dielectric — K+ 2 0

350

The polarization in the medium is considered as uniform and is precisely
directed along the direction of the external field. The field lines approach the sphere
from the left (negative z-direction) and leave from the right, making the left face of
the sphere negatively charged (Refer Figure 1.14).

\_/

R
;::::;:f::ji:::::::::

Fig. 1.14 Polarization




Microscopic Theory

The term dielectric is precisely considered as a collection of molecules. If the
molecules are properly or appropriately separated, as in the case of a gas, then
each molecule may experience or encounter an average macroscopic field
represented as E at its position. This comprises of any external field and an
average field because of all other existing molecules. The polarization induced
is precisely written in terms of electric susceptibility,

p’ = Xto E

In the instance of gases, the electric field is primarily due to the external
field.

Specifically, in a dense medium, a particular distinct molecule will be
subject to a local field, which in addition to the external field, is because of

interactions with the dipoles in its immediate neighbourhood in addition to the
polarization of the other molecules in the medium. This local field induces a

dipole moment fJ' on the molecule and is precisely defined as the ‘Atomic

Polarizability o’ by means of the relation,
ﬁ = aEjpcar

If there are n atoms per unit volume, then the polarization is precisely
given by,

P =anEeq

However, according to the theory of gases, because an atom cannot exert
a force on itself, therefore in the computation of the local field we must subtract
the contribution or influence on the polarization by means of the atom under
consideration. The dielectric has two parts, a spherical volume of radius r
assigned to the atom in question which contains other atoms in the immediate
neighbourhood of the atom and the rest of the dielectric outside this volume.
The ‘Rest of the Dielectric’ will be considered in a macroscopic approach

which gives rise to an average field E,, taken along the z direction. To this field,

during the computation the field must be added or included which occurs because
of the spherical volume discussed above.

Check Your Progress

. Define electric field intensity.

. What s electric flux density?

. State Gauss' law.

. When is a function f{x) Lipschitz on a set?

. Give the equation for Laplace in the cylindrical coordinate system.
. What s electric flux?

. Define the term Green's function.

. What does Green's function imply?

. What is dielectric sphere in a uniform electric field?
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1.8 LAWS OF MAGNETOSTATICS

Magnetic Flux ()

Magnetic flux lines are imaginary lines that flow from the north to south poles.
Magnetic flux lines constitutes the magnetic field. Magnetic field is denoted by 7.
The unit of magnetic flux is Weber and Denoted as ¢.

The unit Weber is named after the German Physicist Wilhelm Eduard Weber
and the symbol used ins Wh.

Magnetic Flux Density (5

Magnetic flux density is defined as the magnetic flux lines passing through a unit

surface area. It is denoted as  and the unit is weber/metre? or Tesla.

Magnetic flux density, gis given as,

B =g¢/A (1.14)
Also in terms of magnetic field intensity. 7 ,

B = uH (1.15)
Where

u = p, 1. =Permeability

p, = 4mw=10"7 H/m=Free Space Permeability

.= Relative Permeability = 1 (for Air).

In electrostatics, it is possible to have an isolated charge and the isolated
charge has electric field. Whereas there is nothing known as magnetic charge and
magnetic field exists only if there are two equal and opposite poles.

The magnetic flux, ¢xis given as,

6=$5.3 (1.16)

In electrostatics, from Gauss’s law,
Q= % D.ds=4
=

The above electrostatic equation states that electric flux ¥ is created due to
the source ‘Q’. But, in magnetostatics, there is no magnetic source to create a
magnetic flux, ¢, hence Equation (1.16) is given as,

—

§ B.ds=0 (1.17)



Applying divergence theorem to Equation (1.17), we obtain ,
$B.T=[ 7. F.av=0

Therefore,

V.E=0 (1.18)

Equation (1.18) is Maxwell’s third equation in differential form and reveals
that, divergence of magnetic field is zero. Equation (1.17) is called the integral
form of Maxwell’s Equation.

Steady Electric Currents and Current Density

The electric currents are produced either by conduction or convection. Current is
defined as the rate of movement of charge across a plane in a given time. They are
expressed as,

dQ
I=—
dt
Current Density

Current density is defined as the amount of current flowing through a given area of
amaterial. It is a vector component with magnitude equivalent to the electric current

per cross sectional area. Current [ is related to current densityf as,

1=J}’.E

Different current density are produced based on the nature of movement of
charges. They are classified as,

(a) Convection Current Density
(b) Conduction Current Density
(c¢) Displacement Current Density

Based on the above classification, currents are classified as Conduction Currents
and Convection Currents.

(a) Convection Current

The flow of charges through convection constitutes convection current. Beam of
electrons inside Cathode Ray Tube (CRT) or in vacuum tubes are due to convection
currents. Convection currents neither they obey Ohm’s law nor they involve any

conductor for the flow of current. Convection current density, } is given as,

= pyi
Where 1 is the directional vector indicating the flow of charges. Convection
currents are depicted in Figure (1.15).
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=l

Fig. 1.15 Convection Current

(b) Conduction Current

Conduction current requires conductor to flow. The flow of charges from one end
of conductor to the other is facilitated by application of electric field between the
conductors. When an electric field is applied, the electrons experience a force
given as,

F=—¢E

The force on the electrons make them move constituting the flow of current.
conduction current density also depends on the conductivity of the conducting
medium. Hence the conduction current density is given as,

]=oE

Where ¢ is the conductivity of the conductor and E is the applied electric
field in (V7 /m). Unlike convection current, conduction current obeys Ohm’s law
and depends on the medium or the conductor.

Conductivity of the conductor in turn depends on the resistivity of the
medium and given as,

RA ) .

Where @ = —. Resistance of the conductor is R, the length of the conductor
is 'I"in () and the area is 4 in m?*.
Ohm’s Law

Ohm’s law states that electric current is proportional to voltage and inversely
proportional to resistance.

I1="VIR

The term Ohm's law is also used to refer to various generalizations of the
law originally formulated by Ohm. The current density and the electric field are

related as: | = g E

The above expression will be useful in the electric circuit analysis when the
above expression is expressed in terms of potential and current rather than in
terms of electric field and current density. The above expression may be expressed
as,

—_ 1—0- -
I =—f'=pl
o



We know that, in a closed conductor, the scalar electric potential is given
as,

E—o —
AV = —j Fall

A
Hence,
V=El;

Where 1,5 is the length of the conductor with terminals as 4 5. Therefore,

The current density [ is defined as the current passing through a unit area

cross section and is given as,
I
I==
L
Where @ is the area of cross section of the conductor. Substituting for J and

E in the expression E = g J, we get,

vV I
i
|- a
V=pl :
' _pAEa
V=IR

1

Where, R = % = Resistance of the conductar.

Boundary Conditions of Current Density

From the properties of conductor, it is well known for conductors that the electric
field inside a conductor must be zero. If it were not, it would cause current to flow,
and propagation of current involves the dissipation of energy, and this cannot occur
without any external sources of energy. Hence, it follows that any charges in the
conductor must be located on its surface.
Since the mean magnetic field is assumed to be zero, therefore the derivative,
—
dH
at
And since the electric field inside the vacuum is satisfied as,

V-E=0endV xE=0

0

The boundary conditions on the field E at the surface of the conductor follow
from the equation ¥ x E = (0, and is both valid outside and inside the body.
Take the z-axis in the direction of the normal 71 to the surface at some point in
the conductor. If the surface is homogeneous, the derivatives, dEz/dx and

dEz/dy along the surface remain finite even though E_may be quite large.
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Hence, since Vx % E = dEz/dy — dEy/dz = 0, we find that dEy /dz is
finite. This means that E is continuous at the surface since a discontinuity

in Ey would mean an infinity of the derivative dEy/dz. The same applies
to £_and since £ = 0 inside the conductor, this implies that the tangential
components of the electric field at the surface must be zero,

Et=0

For the case of two conductors under static field conditions
(i.e., E /0t = 0 and 9B /0t = 0,) there can be no charge build up at the
interface and hence,

f'nl =;ni

e The normal components must be equal, Jin = J2r, because otherwise
there would be an accumulation of charge into the surface, which cannot be
sustained in the steady state. This is because, for a normal from 1 into 2, the
flow of charge that exits Medium 1 in a small area dA is ], dA4 and the

charge entering Medium 2is J, dA.

e The tangential components on the other hand, can be different, because
charge is just flowing past the boundary at different speeds. On the other
hand, the electric field’s tangential components must be continuous across
the boundary, because otherwise there would be a nonzero circulation in
the loop. In a metal where Ohm’s law holds, the current density is
proportional to electric field,

] =0oF
And therefore the current density’s tangential components will not in general
be constant across the boundary.

Equation of Continuity and Kirchhoff’s Law

Continuity equation on the basis of law of conservation of charge states thatin a
given volume, the total current coming out of the volume is equal to the rate of
decrease of charge inside the volume. It is expressed as,

_ % (1.19)

out - E
We know that,

I= ff}’.E
And Q= [, py.dV
Substituting f and ¢ in Equations (1.19), we have,
%fﬁ* d dv
.as = —— | Py.
de )y, (1.20)

Equation (1.20) is called the integral from of continuity equation. Also,
invoking divergence theorem on LHS of Equation (1.20), we have,



@5 = [V av
pras =9 (1.21)
Now RHS of Equations (1.20) is given as,
d dpy
—— AV = —J ——dV
at ), SRNFT: (1.22)

Equating Equations (1.21) and (1.22), we have,
—_ = a
f?.,r dv = —J. T
L.l'

o BE
Therefore,
—_ > apV
V)= ——2¢ (1.23)
When steady current flows out of the volume, i.e., % =0,
Vj=0

Equation (1.23) is known as the continuity equation which states that there
is no accumulation of charges at any position.

Kirchhoff’s Law

In general, Kirchhoff Law relates the potential in a closed circuit or current in the

nodes of a circuit. Hence Kirchhoff’s Voltage Law, states that the sum of voltage

drop and voltage rises in a closed loop of an electric circuit is zero and is given as,
N

Sec

i=1

Where i indicates the number of circuit elements in the loop. V. is positive
for voltage rise across an element or negative if voltage drops across an element.

Similarly, at any node of an electric circuit, Kirchhoft’s current law states that,
J"lr

Z IL=0

=2t

Where i indicates the number of circuit branches connected to a node.
1. is positive, if the current enters the node and negative if the current leaves the
node.

Postulates of Magnetostatics: Biot—Savart’s Law

Similar to the postulates of electrostatics governed by Coulombs law and Gauss
law, Magnetostatics postulates are governed by the Biot-Savart law and Ampere
circuital law. These laws typically relates the magnetic field with the current flowing
in the circuit.

Biot—Savart’s Law

Assume a current carrying conductor with current magnitude, / amperes. The
objective is to find the effect of magnetic field intensity at an observing point, p due
to a small length of the conductor carrying current.
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dl-_/

ge

Fig. 1.16 Biot-Savart’s Law

Biot—Savart’s law states that, the magnetic field intensity at a point p away
by a distance of  from a current carrying conductor due to a differential element
‘dl’ is proportional to the product of current flowing through the differential

element and sine of angle, & between the current carrying conductor and the line

joining the current element with p, and inversely proportional to the square of
the distance between them. Mathematically,

df o L sing (1.24)
s
Removing the proportionality constant,

né (1.25)

1 ()

dH =——

44w o
We know that,
A xEB= |4

§| sin @

A xa, = |4|(1)sine

Similarly,
— 1 [idlxz,)
di =1 [— ] (1.26)

Where, dl x @, = |di|(1)sin 6

|

Buta, =

BT

Idl

4y

= =

dH = %

dH = —_(dl xa,) (1.27)

&yt

To obtain magnetic field intensity, integrate Equation (1.26),

- —, -
H=J.dH=J. (dl xa)

dqryl

For line current, H = ﬁ [1(dl xa,)

—3 1 —
For surface current, H = — [ I'(ds X a,)

For volume current, H = — [1"(dvxa))

4t

Where I = g = Surface current density and I" =} = Volume current density.



Magnetic Field Intensity 7 and Magnetic Field 5 Due to Line
Current: On an Infinite Conductor

Consider an infinite long conductor carrying a line current /. The objective of this

section is to determine f and 5 at an observing point P(x, y, z) due to a differential

current element / dl. The observing point P is located at a distance ‘7’. The
arrangement is depicted in Figure (1.17).

<& d Y|
< »|

P(x,y,2)

Fig. 1.17 Infinte Current Carrying Conductor

From Equation (1.25), we have,

fd.H=H= ffr:ﬂsinﬁ'

Aqrye

B=uH=-" [Idlsing (1.28)

i

From Figure (1.17). in A ABC,

sinf =2 — BC= ABsinf
B4

BC = dlsin@
From APEC.
BC = rdf
rdf = dlsin@

dlein 8

df =
Substituting Equation (1.29) in Equation (1.28),
B=-" [dp (1.30)

4mr

From Figure (1.17),

e
sinf =—
r

(1.29)

X gin &

= (1.31)

r d

Substituting Equation (1.31) in Equation (1.30), we get,
= LA
B = 4m_ru sin 8 df

Electrostatics and
Magnetostatics

NOTES

Self - Learning
Material 39



Electrostatics and
Magnetostatics

NOTES

Self - Learning
40 Material

pl
=E[E]
E=% wbh /m?
B I
i~ e Afm
H=-— A/m

B and & Due to Finite Conductor

Consider a finite conductor carrying a current / with a small differential current
element /d/ at a distance of » from the observing point p(x, y, z) at which the

magnetic field, 5 and magnetic field intensity 7 is to be determined.

A

di &

»i
L
I
I
I
I
I
1
1
1
I
1
1
1
1
1
1
I
I
I
I
I
I
I
I
I
I

P(x,y,2)
Fig. 1.18 Finite Length Conductor

The procedure is similar to the infinite conductor case discussed in the

previous section till Equation (1.31). Hence, repeat the derivation.

According to Biot-Savart’s law,

1
de=H= Jl'dlsinﬁ
At

el
B=puH= — | dlsin#
4mr-

Also,
dl sinfl = rdf@
| gl gin &

T

I
B = F'_ dg
4mr

From Figure (1.18),
d

ginf = —
r

df




G | gin 8 Electrostatics and
- Magnetostatics

T d
Therefore,
I
| [0 5 NOTES
4wd
Integrating from limits 8, to = — 4,
.F” t—1,
= E [_ CcoSs E]g: =

L
== [cosB, + cosf,]

When the conductors are infinitely long, i.e., 8, = &, = 0

I
B = % [cos0 + cos0]

ol pl
gl ¢ (2 i
47‘.rd{' ) 2md
The magnetic field intensity H is given as,
B
H=r
I_,[.

o L
Bt [cosB,; + cosB,]

B and H Due to a Circular Loop

Consider a circular loop as shown in Figure (1.19). The observing point is ata
height, /4 on the z-axis. Since the structure under consideration is a circular loop,
let us solve this analysis using cylindrical coordinate system with coordinates

(6. ¢,2).

ZA
2 ¢P(0,0,h)
b |\
v >
-3 y
dl

Fig. 1.19 Circular Loop
From Biot-Savart’s law, given in Equation (1.27),
I

dqryd

dH = (dl x7)

dl in cylindrical coordinate system is given as, d] = pdg» and

7= (0,0,k) — (x,v,0)

3 —3 —3 —3 Self - Learning
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Ir] =+/p? +h?
a, ay a,
I Xx7=|0 pd¢ 0|= phdpa,+p’doa,
—p ] h
g I - ’
dH = s [phdea, + pPdea_]
. ; . .
dH = = [phdoa, + p?dea ] (1.32)

At a point p, a_p; = 0rand only a_ component exists. Therefore,

T m Ip%d ==
dH:H:J ’5’;"3%
o 4x[p? + k22

[ —
=— P T [zn-0]

4m[p? + H2]2

— -
B =uH
— z —
5= ppo i,
Z[F?' +h3]5
Magnetic Potential

(a) Scalar Magnetic Potential

Similar to electrostatics, scalar potential V, the scalar potential is denoted as 17,
In electrostatics, E = —y
In magnetostatics, applying the equivalence,
i =, (1.33)
From Maxwell’s fourth equation,
VxH=]
vx(—vv,)=7 (1.34)
But, from a vector identity, curl of gradient is zero, given by,
Vx (W) =0
Equation (1.34) becomes,
Vx(—vv,)=0
From the above, the equation is valid only if,

i=0



From Maxwell’s third equation,

V-B=0

V- ,r.d;’} =0
From Equation (1.33),

E ) ﬂ(_ﬁvm) =0

WF (-] = o

Vi =0

The above equation is the Laplace’s equation. Hence scalar magnetic potential
v, satisfies Laplace’s equation.

(b) Vector Magnetic Potential

Vector magnetic potential is denoted as 4. When j == g, vector magnetic potential
exists.
From Maxwell’s third equation,

—_ —

V-BE=0

From a vector identity, divergence of a curl of a zero is given as,
— =

vV-(Vx4d)=o0

Comparing the above two equations,
B=VxA

Where 4 is the magnetic vector potential. In electrostatics, scalar potential
v is given as,

1
= d
4?:507"_’. ¢

Similarly 4 can be defined as,

A=te [ F.dl For line current
dme R L
A=_to [ 7 .gds
= f For surface current
meEgR ‘S
= o, Hp LI Ifi
A=—"o_[ v For volume current
dmEg R Y

We may also define,
I'=K and I" = i
The magnetic flux in terms of magnetic flux density is defined as,

w=§§x$

w=£ (Vx 4)-ds
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Applying Stoke’s Theorem,

w:f @xg).z;# i-dl
2 L

Therefore,

w=¢ A-dl

From vector triple product identity,

VxVxA=V(V-4)—v4 (1.35)

Adding Equation ¥ % 4 = B in Equation (1.35)

VxB=V(V:4)-V*4 (1.36)

For a static magnetic field, there will be no current and in turn the current
density, i.e., J = o

VXA=0 (1.37)
We know that,

|

VxH=

|

V X

= |

VxE=yf (1.38)
Substituting Equations (1.37) and (1.38) in Equation (1.36), we get,
—y24= jt,}
PoA = —_u,_:f'
Which means,
VA e +Aye; +A o] = pllal +)ay +) e
VA, = —pj,
V24, = —u),
VEA = —p),
Forces Due to Magnetostatics

For the force to be developed, there must be at least two fields with a phase
difference. Hence force due to magnetic field can be experienced by either of the
following,

(a) Aunitcharge, O travelling in a magnetic field experiences a force.
(b) A current element placed in a magnetic field experiences a force.

(¢) Two current carrying conductor when placed close to each other experience
force between them.

(a) Force Due to a Unit Charge, Q or Lorentz Force

In electrostatics, recall the force on a charge, given as,



F=QB=F

The suffix ‘e’ represents the electrostatics. Similarly, force is experienced in
magnetic field only when charge is moving. Hence force in magnetic field is given
as,

F,=Q[Vx5]
Where 77 is the velocity at which charge O is moving in a magnetic field 5.

The total force exerted on a charge when influenced by electromagnetic fields
is given as,

F=F, +F,

F=QE+ [@[Vx5]]
F=Q[E+V x5]

This is called as Lorentz-Force Equation.

(b) Force Due to a Current Element

Let the current element be J 4] for which the force is to be determined. The
differential current element g induces a differential force, dF, hence,
dF =Idix B (1.39)
Total force, F is obtained by integrating Equation (1.39) on both sides,

fﬁ=pax§

F=[1dl xB  (For line current)

=IBlsin® = B[flsinf
Similarly,

F=[Kds xB (Forsurface current density)
F=[]jdv xB (Forvolume current density)
(¢) Force between Two Current Elements (Wires)
Consider two current elements 41, and d1, with currents I, and I, respectively,

current element 1, fid_gl' produced a magnetic field 4 B, that links with current

element 2, f:d_.jz and similarly vice versa. Therefore force on element / due to field
from element 2 is given as,

dp, = Ldl, X dB, (1.40)
And force on element 2 due to field from element 1 is given as,
dp,, =Ldl, X dB, (1.41)

It is dB, and dB, in Equations (1.41) and (1.40), respectively, as only
differential field links and other fields fringes away.
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But, from Biot—Savart’s law (Equation 1.27), we get,
i = L @ x)

And we know that,
B = u,H
dB = .uu,dH = (1.42)
Substituting Equatlons (1.42) in (1.40) and Equation (1.41), we get,
ol vEd
de,, = Ldly X j‘wz (dl, x 7) (1.43)
Integrating Equation (1.43), We obtain,
..rdFln =Fa = 4;”: Jr .r fﬂ x('ﬂ“ X 7)
Similarly,

L TR
Fy = mnr_;__: .r;: dly X (dly X 1)

I, element(1)

dl,
T

dl,

I, element@

Fig. 1.20 Force Due to Two Current Elements.

Ampere’s Circuit Law

Ampere’s circuit law states that the closed line integral of magnetic field intensity is
equal to the current circulating in the closed path.

Mathematically,
$H -dl=1 (1.44)

Similar to Gauss law, from which we applied Stoke’s theorem to arrive at
Maxwell’s second equation.

From Equation (1.44), applying Stoke’s theorem,

I=¢ H-di=[ VxH-ds (1.45)
We also know that,
=f J-ds (1.46)

Equating Equations (1.45) and (1.46), we get
[ ]-ds=] VxH-ds



This is Maxwell’s fourth equation which states that curl of magnetic field
intensity is equal to the current density.

Check Your Progress

10. What are magnetic flux lines?

11. Define the terms steady electric currents and current density.
12. What are convection currents?

13. State Ohm’s Law.

14. Define Kirchhoff Law.

1.9 MAGNETIC SCALAR AND VECTOR
POTENTIAL

The magnetic Scalar and Vector potential can be explained using the precise
equations on the scalar electic potential and Vector magnetic potential.

In this section, the general form of wave equations despite medium properties
will be covered. During the process of deriving we will observe the conditions for
relations between the scalar electric potential, ‘V” and vector magnetic potential ' 4".
This condition is called Lorentz condition. The procedure to obtain the wave equations
include, starting from Maxwell’s equation and applying the vector identities and simple
manipulations of the obtained equations will result in the wave equations.

From Maxwell’s Second Equation,

VXE=——
dt

We know that,

B=VxA
Therefore,

-

V X =0 (1.47)

; 94
+_
ot

We know that the vector identity and the curl of a gradient is zero.
Therefore,

Vx(-V)=0 (1.48)
Comparing Equations (1.47) and (1.48), we get,
PR~ S

E+—=—TV
at
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F-—wr-2
- at
[ i
= o (1.49)

Taking divergence of Equation (1.49), we get,

VE=V. |- |VW+—
at

V.5 = - [vev + 2(5.4)

L= 3tV (1.50)
But from Maxwell’s First Equation,

vE=2

3
Therefore, equating the above equation with Equation (1.50), we have,

L A 2 ) *]'
: [vv+atﬁ.ﬂ)

Or

a — > pV
VIV +—(V.A) = - = 151
Jt ( ) € (151)
So far, we have used Maxwell’s equation for electric field and now let us
use Maxwell’s equation for magnetic field to couple the two fields to define the

electromagnetic waves. Considering, Maxwell’s Fourth Equation,

Fxit =7+
T
But, 5 = p#. Therefore,
_F.XE_quaD
p:_f dt
Pad=if il
=W te—
Also,p = eF
v) E— - aE
XB =y +ue——- (1.52)

Substituting for g, from Equation (1.49), we get,

ViV ——

3 al . ada
at




S T A uet 924
XVXA =W —uev—o —ue o (1.53)

Applying vector identity to the LHS of Equation (1.53), we get,
FxTxd=T(T.4)- v

v | A L

V(V.A4) -V Azu]—uevd—t—uew (1.54)
Observing Equation (1.54), we find that scalar potential i and vector

potential A can be separated and decoupled. Therefore for vector potential, 4,
Equation (1.54) becomes,

VA =] 0*A
W TR e
Or
- 24 .
ViA—pe—7 =4 (1.55)

1.10 MAGNETISATION

In 1831, Michael Faraday reported on a series of ground-breaking experiments
which showed that,

(1) Whenever there is any change in the magnetic flux over the surface ofa closed
circuit, there is an ElectroMotive Force (EMF) induced in the same.

(if) The induced EMF in the closed circuit is directly proportional to the time
rate of change of magnetic flux over the surface of the circuit.

Lenz noticed that this induced EMF opposes the very cause (rate of change of
magnetic flux) of itscreation. Thus, if ¢ is assumed to be the magnetic flux linked
with a closed circuit, the induced EMF acting in the circuit must be

__o0
& = ...(1.56)
Also we know that,
¢ = [[Bas ..(1.57)
N

Where B is the magnetic induction vector associated with the changing magnetic
flux.

Thus, g = —aﬁﬂ B.ds .(1.58)
4 S

S

C

Fig. 1.21 Mognetic Flux

Electrostatics and
Magnetostatics

NOTES

Self - Learning
Material 49



Electrostatics and
Magnetostatics

NOTES

Self - Learning
50 Material

Here, S'is an open surface such that the closed circuit acts as its boundary (C)
[Refer Figure 1.21].If E is the electric field generated within the circuit due to the
time varying magnetic flux, then the emfacting in the circuit is,

e = §Edl ..(1.59)
C
Thus, combining Equations (1.58) and (1.59), we get
g a — —
Edl = —-—||BdS (1.
f &g (1.60)

Equation (1.60) is known as the integral form of Faraday’s law.
If we use Stokes' theorem on the left hand side of Equation (1.60), we get,

9§E.d7 = [[(V x E).dS ..(1.61)
C S
So, from Equations (1.60) and (1.61), we can write,

O rp = =
_EISIB'dS

[[(V x E)ds
S

- - OB -
Or, ISI(VXEJFEMS 0

As S'is an arbitrary open surface, the above equation is true when the integrand
vanishes, i.e.,

0B
ot

VxE = - ..(1.62)

Equation (1.62) represents the differential form of Faraday’s law.

Thus, from the Faraday's law of electromagnetism, it is evident that a changing
magnetic field induces an electric field. This fact may somehow seems to violate
the principle of conservation of energy. But, according to Lenz's idea, the induced
emf always opposes the rate of change of magnetic flux, i.e., the work done by the
magnetomotive force compensates in inducing the electromotive force on the closed
circuit. So, the principle of conservation of energy also holds good in this case.

In the context of electromagnetic induction, we get an idea of motional EMF.
Ifa conducting rod (or wire) moves in a magnetic field, an EMF is induced between
the ends of the rod. Such an emfinduced due to the motion of a conducting elements
is known as motional EMF. From the Faraday's law, this phenomenon can be easily
explained. When the conducting rod moves in the magnetic field, the magnetic flux
linked with the rod changes in time. As a result, EMF develops within the rod.
Now, let us try to explain this phenomenon of electromagnetic induction from the
basic electronic theory.

Suppose, AB is a conducting rod of length L parallel to X-axis. If it moves with
avelocity ¥ along Y-axis in the presence of a magnetic induction B along Z-axis,
the magnetic Lorentz force acting on each electron within the conductor is,

F = —e(V x B) .(1.63)

This force acts along negative X-axis. Due to the action of this force some

electrons will be drawn towards 4 end resulting B end as positively charged. This
fact, in turn, produces an electric field £ and hence an electrostatic force,



F = —eE (1.64)

e

acting on each electron. At equilibrium, the two forces F, and F, balance one
another giving a steady condition. Thus, in steady state,

F, =L,
ie., —e(v x B) = —¢E
ie., E = (¥ x B) ..(1.65)

Hence, the emf induced between the two ends of the rod under steady state is,

L
e = [Edl = [(¥x B)dl =vBL ...(1.66)
0

O it~

This is a direct consequence of electromagnetic induction.

1.10.1 Magnetic Circuits

The source of magnetic flux is either a permanent magnet or a current carrying
coil. The lines of the magnetic flux always form a closed path. The closed path
followed by the lines of magnetic flux is called a magnetic circuit. Thus, a magnetic
circuit provides a closed path for the magnetic flux and is similar to an electric
circuit which provides a closed path for the flow of electric current. In this section,
definitions about the various magnetic quantities and simple analysis of magnetic
circuits are explained.

First Law of Magnetics: Like poles of magnets repel each other whereas unlike
poles attract each other.

Second/Coulomb’s Law: Second law of magnetics known as Coulomb’s law
accounts for the force exerted between two magnetic poles.

Coulomb’s magnetic law states that the force F'between two magnetic poles
P, and P, is directly proportional to the product of pole strengths and inversely
proportional to square of their disance apart d.
Ab

72

The constant of proportionality depends on the relative premeability of the

medium through which the lines of magnetic field passes.
pototy BD
dr  d*

F —Force between the poles in N (Newton)

P, P,—Pole strength in A/m

d — Distance between poles in m

u, — Permeability of free spaces (47 x 107 H/m)

1 — Relative permeability of the medium

F o

w = 1 for air

From the above equation for force, an unit magnetic pole is defined as one
which when situated 1 m distance in vacuum from an equal pole experiences a
force of pu_/4n Newton.

Electrostatics and

Magnetostatics

NOTES

Self - Learning
Material

51



Electrostatics and
Magnetostatics

52

NOTES

Self - Learning
Material

1.10.2 Vector Magnetic Susceptibility and Permeability

Magneto Motive Force (MMF)
MMF or Magneto Motive Force is the source of producing flux in a magnetic
circuit. For a current / flowing through a coil of 7 turns, the magnetic flux is ob-
tained as a product of /and 7. Its variable symbol is /| and its unit is Ampere-
Turn (AT).

F =IT AT (1.67)

m

Magnetising Force

The Magnetising Force MF, otherwise called as Magnetic Field Intensity (MFI),

is defined as the magneto motive force per unit length of the magnetic flux path.
Magnetising force is a measure of the ability of a magnetised body to produce

magnetic induction in other magnetic substances. H is the variable symbol to

denote magnetising force and Ampere-Turns/metre (AT/m) is the unit.

nggazl;. AT/m (1.68)

Magnetic Flux

The magnetic lines of force or the amount of lines of a magnetic field provided by
amagnet is called the magnetic flux. It is represented by the variable symbol gand
its unit is Weber (Wb).

1 Wb = 10® Magnetic Lines = 108 Maxwells (1.69)

Magnetic Flux Density

Magnetic flux density or Magnetic Induction (MT) is defined as the magnetic flux
per unit area at right angles to the direction of the flux. B is the variable symbol
used to denote the magnetic flux density and its unit is Weber per square meter
(Wb/m?) or Tesla (T).

B=Lrt (1.70)

Permeability

This is the ability of the medium to set up a magnetic flux density (B) by the
magnetising force (H).

Permeability of Free Space

The flux density established in a vacuum changes linearly with respect to the
magnetising force and the proportionality constant is called the permeability of
free space. It is denoted by i and has the unit of Wb/AT-m or Henry per metre
(H/m).

%zgzMMW7}M1 (1.71)

Relative Permeability

In ferromagnetic materials, like steel, by virtue of their inherent property, a given
magnetising force sets up much more magnetic flux density compared with that in
avacuum.



The ratio of flux density produced in a medium or material to the flux density
produced in a vacuum by the same magnetising force is called as the relative
permeability, denoted by 2.

_ Flux density in the medium

Hr = Flux density in the vacuum (1.72)
Flux density in the medium (B)
Hy =
HoH
or B=u.uH (1.73)

For many magnetic materials, the value of p_itself changes with different values
ofthe magnetising force. The value of relative permeability in different media are
w.= 1000 — 10000 for magnetic materials
= 1 for non-magnetic materials.

Absolute Permeability
The product of relative permeability and permeability of free space is called the
absolute permeability and is denoted by 1

B=H L, (1.74)
And B =uH (1.75)

Reluctance and Permeance

The reluctance and permeance properties of the magnetic plux and circuits are
explained in this section.

Reluctance
The opposition offered by a magnetic circuit to the establishment of a magnetic
flux is called as reluctance of the magnetic circuit. R is the variable symbol used to
denote the reluctance of the magnetic circuit and its unit is Ampere-Turn/Weber
(AT/WD).

The reluctance in a magnetic circuit is directly proportional to the length of the
field path /, and inversely proportional to the area of a cross-section A4, of the
magnetic field path.

R, L
A
[
R,=— AT/Wb 1
i (1.76)
Further from Equations (1.68), (1.70) and (1.75),
F, = Hi
= EZ =B Xﬁi
u A p
= ¢Rm
F
Thus R, =—"
p (1.77)
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Permeance

The reciprocal of reluctance is called permeance. Therefore, the permeance of
the magnetic circuitis the readiness with which a magnetic flux is developed. P is
the variable symbol and its unit is either Weber/Ampere-Turn (Wb/AT) or Henry

P = ! Wb/AT (1.78)

Example
The flux produced in the air-gap between two electromagnetic pole faces is 6 x
102 Wb. Length of air-gap is 1.4 cm and cross-sectional area of the gap is 0.3
m?. Find (i) The flux density (ii) Magnetic field intensity, (iii) Reluctance,
(iv) Permeance and (v) MMF dropped.

Data =6 x 102 Wb, Zg= 14x10°m; 4=03m* p =1

Aim B?,H? R ? P ? MMF?

Solution:
-2
(i) Fluxdensity B= ﬁ = 6x10
0.3
B=02T
(i) Magnetic field intensity H = 2-( 4, =1 for air
g y f
Ho
02
(4rx1077)

H =159.155x10° AT/m

/
(iii) Reluctance R,, = _8
HoA
_ 14x107?
(47 x1077)x0.3

R, =37.136x10° AT/Wb

(iv) Permeance P, :L:%
R 37.136x10

m
P, =26.928x10"° Wb/AT

(v) MMF for Air-Gap F, =¢R |
=(6x107)x(37.136x10°)
F =2228.16 AT

1.10.3 Magneto-Static Energy

The analysis of electric and magnetic fields are generally facilitated by the use of
auxiliary functions those are termed as electromagnetic potentials.



(7) Electromagnetic Vector Potential
From Maxwell’s second equation, we have

Electrostatics and
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V.B =0 ..(1.79)
But, we know that div curl of a vector is always zero, i.e., NOTES
V.(VxA4) =0 ...(1.80)
Thus, from Equations (1.79) and (1.80), we can write,
Vxd=0 (1.81)
So, B isthecurl ofavector 4 and 4 is defined by,
A= Z(x,y,z;t)
The vector A4 is called electromagnetic ““Vector Potential .
(if) Electromagnetic Scalar Potential
From Maxwell’ third equation, we have,
oxi = &
ot
= —% (6 x ;1) (Putting the value of B interms of
electromagnetic vector potential from Equation (1.81)
— g A
ot
- [~ o4
- VX[E+8—] =0 (1.82)
ot
. 04
From the above Equation (1.82) we can say that the term [E + 5] is a
irrotational vector and should be the negative sign of gradient of a scalar function.
. 04 - : :
Therefore, £ + Pk V¢, where ¢ is a scalar function and often called
electromagnetic “Scalar Potential .
E.M. Wave in a Charge Free Conducting Media
For a charge free conducting media p =0. Thus, the Maxwell’s equations are,
V-E=0 (1.83)
V-H=0 .(1.84) [ B=pH]
VxE =— u%—’j (1.85) [+ B=pd]
VxH = 51?+e‘2—f .(1.86) [+ B=pH]
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Taking curl on both sides of Equation (1.85), we get,

- e = = oH 0 = =
VXx(VXE) = Vx| —-u— _|=—u—(VxH
(VxE) ( H arj no (VxH)
- wvg>_vzg=_uﬁ(55+e@£]
ot ot

[Putting the value of Vx H from Equations (1.86)]

) O’E
VZE-pub—-pe— =0 ..(1.87
= Mo TH a2 (1.87)
[Putting the value of V- E from Equations (1.88)]

Similarly, taking curl on both sides of Equations (1.86), we can get,

-~ OH 0°H
V?H —pd—- =0 .(1.87
Mo~ —he (1.87(a))
Let us consider the solution of eqn. (1.87) is of the form
E = EK7-on ..(1.88)
2z OE O°E :
Thus, we can get the value of V°E, = and e from Equations (1.88)
t
V’E=-K’E
E .7
El (1.89)
TE__ g
ot*

. .
Now, putting the value of VZE“,aa—]fandi—f from Equations (1.89) to
t

Equations (1.87), we get,

(-K* +ipdo + pew?) E =0

~K*+ipdo+pew’ =0 [+ E#0]
- K= e’ [1+%) ..(1.89(a))

The above equation is known as “Dispersion Equation” in E.M. Theory. The
first term of the equation corresponds to the displacement current and the second
to the conduction current contribution.

Let us consider K = a. + if3. So,

K% =02 - p* + 2iap ..(1.90)

Now, comparing Equations (1.89(a)) and (1.90), we have,

o? — B2 = pew?
And 20 =pdo
Thus,



r 5 12 172
o= o= 1+{1+[ij} }
2 =0)

) - ..(1.91)
And B= o= —1+{1+[ij2} }
2 | =0
Now, putting the value of K in Equations (1.88), we have,
E = Eje el oD ..(1.92)
Following the same procedure, solution of Equations (1.87(a)) will be,
H = HyePelr oD ..(1.93)

Let us consider the field vectors are propagated in the conducting media with

speed v(zﬂj, thus,
K

5
%JL? {H(ez@j }H .(1.94)

Now, we will consider the different conductor types.

Vv =

Case 1: For a poor conductor, 3 << 1; thus, the values of o and 3 reduces to,

[SXO)
o = o/ue and [3=§ -
2\ e
_ - 0 u
So, K=a+if = oJue +15\/: ..(1.95)
S
Case 2: For a good conductor, 3 >>1; thus the values of a and 3 reduces to,
[SXO)
_ g [wo
oa=p3 5
So, K=a+ip=(1+i &2‘” ..(1.96)

1.10.4 Uniformly Magnetised Sphere in Magnetic Field

To explain the magnetised sphere in a magnetic field, consider that there is a
uniformly magnetised sphere having the radius » = a. The sphere holds a uniform
permanent magnetisation which is denoted as M = M, e , which is precisely in
the direction ‘z’ and is typically surrounded or enveloped by vacuum. This

problem can be solved using the scalar magnetic potential, denoted as @,..

The magnetic scalar potential satisfies the Laplace equation of the form:

Ved= e, =0 ....(1.97)
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Fundamentally, this is due to the reason that there is precisely a zero net
current in the sphere and also the magnetic volume charge density in a uniformly
magnetized magnetic medium or vacuum is zero.

Even though, considering that there is a net magnetic surface charge
density on the surface of the sphere, we can write the equation as:

0, =M.7 =M, cos0

In the above equation, the terms 7 and 0 are referred as the spherical
polar coordinates. Consequently, the boundary conditions determine and establish
the notion that the tangential component of the magnetic field ‘H’> must be
continuous on the surface of the sphere. Additionally, it can also be stated that
the scalar magnetic potential should also be continuous at » = a, because,

V.B=,V.(H+M) =0

Therefore, we can write,

¢ (r = a+,0) = ¢p(r = a—,0)

Furthermore, we know that,
e, =—-VM eeee (1.98)

Applying the Equations (1.97) and (1.98) and integrating the Equation
(1.98) over a Gaussian pill-box typically spanning or overlapping the surface of
the sphere gives us the equation of the form:

[a¢m] r=a+t

- = —0,, = —M;,cos B ...(1.99)
r dy=ng—

This implies that the magnetic charge sheet on the surface of the sphere
eventually causes a discontinuity in the magnetic scalar potential, which is radially
at the surface, » = a.

The extremely common axisymmetric solution to Equation (1.99) given
above is that it uniquely satisfies the given boundary conditions at » = @ and r
= oo and also involve the Legendre polynomials. The equation can then be
written as:

Gm(r,0) = T A’ Py(cos ), for™ < @ (Inside the Sphere)
And for outside the sphere, we have (* = Q).
Pm(r,0) = T, Bir Y Py(cos 6)

Applying the boundary condition given in Equation (1.99) for all values of £
we can state taht,
Bi' =4 a 21

Substituting the expression for the given boundary condition and solving we
get:



I+1)B
—%— 1Aia' ™! =— My
e
Now, Pi(cos 8) = cos 6 we get (for] = 1)

ﬂ,‘ == Bil =0
And (forj =1),

M.;}aa

Ar — MTJ and B; =
Therefore, we can write, (for r < a):

2

Mpa™ r
P (r8) = %cos e
a
And for >, we have:
P, (r,8) = MiL:!-cos g

Since it is obvious and evident from the uniqueness theorem of the Poisson’s
equation that this extremely common axisymmetric potential is the only solution
that uniquely satisfies the given boundary conditions at ‘Origin’ and at ‘c0’.

Consequently, because outside the sphere there is vacuum, therefore we
can write the following equation:

B = poH = 1o Vop,,,
In addition, we have,

B(r > a) :!’—9[—%+

L
i

S{m.r}r]

2

4
Where, M = Enag M

Basically, this is considered as the essential magnetic field of a magnetic
dipole having the moment ‘m’. Consequently, we have the net dipole moment of
the sphere which is considered as equal to the integral of the magnetisation ‘M’
and essentially which too is exactly considered as the dipole moment per unit
volume.

Inside the sphere, we can write the equation of the form:
H= Vo,
B = p,(H+ M)

Solving the above given two equations, we have:
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From the above evaluations it is obvious that both the ‘H’ and ‘B’ fields
are uniform inside the sphere, even though the magnetic intensity of the field is
considered as opposite with respect to the magnetisation of the sphere. This
implies and signifies that the external field uniquely acts in a manner to demagnetise
the sphere.

1.11 CLASSICAL THEORIES OF PARA, DIA
AND FERRO MAGNETISM

Magnetism is a phenomenon by which a material exerts either a positive or a
repulsive force on another material. The source of ‘Magnetism’ of any material
can be traced back to its electrical behaviour, which in turn is dictated by the
structure of its constituents, i.e., atoms and molecules.

All magnetic fields, including the ones inside a material, are due to tiny
currents or electric charges in motion. If we examine a small piece of any
magnetic material we will find electrons orbiting around the nuclei or electron
spinning on its axis, each of which contributes towards generating the magnetic
field inside a material. We, generally, treat these tiny current loops as magnetic
dipoles for macroscopic purposes. In general, these dipoles cancel each other
on an average because of the random orientation of atoms in a material. However,
when an external magnetic field is applied, these tiny current loops which form
magnetic moments act as tiny magnets and reorient themselves thereby making
the material ‘Magnetically Polarised’ or ‘Magnetised’. This orientation of these
magnetic dipoles in a material can be either be parallel or opposite to the
external magnetic field, depending on its magnetic nature.

All materials, whether they are solid, liquid or gaseous, can be divided
broadly into three categories of magnetism, depending on how they respond to
an external magnetic field. This is measured quantitatively by a material’s magnetic
susceptibility, its magnitude as well as its sign.

Here are some important relations involving magnetic quantities, such as:
B, M, H, X and u (u, and u) that must be understood and remembered.

1. H: Strength of the External Magnetic Field.

2. M: Magnetisation of the material in an external magnetic: It is
defined as the total magnetic moments per unit volume. M =N * pm;
where pm is the dipole magnetic moment and N is the number of
dipoles of per unit volume.

3. Magnetic Susceptibility y_: Magnetic susceptibility of a material is
a measure of how weakly or strongly it is affected by the presence
of an external magnetic field. It measures the ratio of M by B. Magnetic
susceptibility is a dimensionless quantity.

X, = M/H
Thus, M=y H
4. B = Total Magnetic Field Intensity in the Material
B=uy H+tu M=u uM



Where u, is the magnetic permeability of the material in vacuum and
u_ is the relative magnetic permeability.

5. Magnetic Permeability: It is a measure of the degree of penetration
of magnetic field in a substance. It is defined as the ratio of total
magnetic flux density and external magnetic field intensity.

We can thus write:
B =uH, where u is the magnetic permeability in the material.
B=uy H+tuy M=u uM
Where u, is the magnetic permeability of the material in vacuum and
u_is the relative magnetic permeability.
B=uH+uX H=(1+X_)uH
And,
X =u -1
u=u, (1+X )

1.11.1 Properties of Magnetic Materials: Salient

Features

Paramagnetism

1.

Paramagnetic materials are those which are weakly attracted in an external
magnetic field. When exposed to external magnetic field, they acquire
feeble magnetisation in the same direction as the external field.

. In the absence of an external field, the orientations of atomic magnetic

moments are random, leading to no net magnetisation of the material.

. If placed in a random orientation in an external field, a paramagnetic

material will rotate and its magnetic dipoles will line up with the field until
their longest axis becomes parallel to the external field. This results in
positive magnetisation in the material. However, because the dipoles do
not interact, extremely large magnetic fields are required to align all dipoles.
Further, as soon as the external field is removed, the magnetisation in the
material becomes zero.

. The magnetisation in a material under the influence of an external field

decreases with increase in temperature because the thermal agitation
randomises the orientation direction of magnetic dipoles.

. Platinum, aluminium and manganese are some examples of elements which

are paramagnetic in nature. Other examples of such substances include
alloys of copper, solutions of salts of iron, nickel and copper sulphate.

. The relative permeability of a paramagnetic substance is slightly greater

than 1, for example platinum has a relative permeability of 1.00036.
manganese, which is the most known paramagnetic material, has a relative
permeability of 1.00013.

. The magnetic susceptibility of a paramagnetic substance is small

(~107 to 10%) and does not change with increase in external magnetic
field.
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8. The magnetic susceptibility of a paramagnetic substance decreases with

increase in temperature, i.¢., it varies inversely with absolute temperature.
As a result, above a certain temperature a paramagnetic material acquires
negative susceptibility and becomes diamagnetic.

9. Thus, in paramagnetic substances, the magnetism is weak and exists only

in the presence of an external magnetic field.

Diamagnetism

1.

These are the materials which are weaky repelled by an external magnetic
field as opposed to paramagnets. When placed in an external magnetic
field they acquire a feeble magnetisation in the direction opposite to that
of external field.

. If placed in a random orientation in an external field, a diamagnetic

material will rotate until their longest axis becomes antiparallel to the
external field. The magnetic dipoles in atoms act so as to oppose the
applied field. The effect produces small negative magnetisation.

. Gold, bismuth and copper are some examples of elements which are

diamagnetic at room temperature. Other examples of such substances
include alumina, alcohol, water and hydrogen gas.

The relative permeability of diamagnetic materials is slightly less than

unity.

. The magnetic susceptibility of a diamagnetic material is small and negative

(~ -107). It does not vary with change in external field or temperature
unlike that of paramagnetic material.

. Just like in paramagnetics, in diamagnetic material the magnetism is weak

and exists only in the presence of an external magnetic field, though the
sense of direction is opposite to that in paramagnetic material.

Ferromagnetism

1.

Both paramagnetic and diamagnetic materials are considered as non-
magnetic materials as they exhibit magnetism only in the presence of an
external magnetic field.

. There are certain materials which are ‘Magnetic’ even in the absence of

an external field. They possess permanent magnetic moments due to
unpaired dipoles formed as a result of unpaired energy levels. Further,
these materials are strongly magnetised even in the presence of a weak
magnetic field. Such materials are called ferromagnetic materials.

. The ferromagnets retain a substantial magnetisation even after the external

field has been removed, hence for these materials the magnetisation is not
just determined by the present field but by the complete magnetic history
of the object.

. Iron is unarguably the most well-known ferromagnetic material, in fact the

term ‘Ferromagnetism’ can be traced to have its origin in the Latin name
of Iron, the ‘Ferrum’. Other ferromagnetic materials include nickel, cobalt
and steel.



4. In their behaviour in an external field, the ferromagnetic materials resemble
paramagnetic materials and bear some more properties.

5. Their magnetic susceptibility is positive and very large (~10° in value).
Their relative permeability is also very large ~100s or 1000s in value.

6. The intensity of magnetisation in a ferromagnetic material increases with
increase of external magnetic field. It is directly proportional for low
values of H, but increases very rapidly at high value of external magnetic
field, H. For very high H, the magnetisation of a ferromagnetic material
approaches a constant value M.

7. The magnetic susceptibility remains nearly constant for low H, but increases
rapidly for high H, and then decreases for H values.

8. The magnetic induction of the material, B essentially traces the behaviour
of M vs H. However, its value remains lower than that of M at high H.

9. The magnetic permeability also follows the behaviour of susceptibility
except at very high H, where permeability varies slowly as compared to
susceptibility.

10. Magnetic susceptibility of a ferromagnetic material decreases with an
increase in temperature; and above a certain temperature the material
becomes paramagnetic. This temperature is known as ‘CURIE
TEMPERATURE’ of a material. T_is 1000° for Iron, 360° for Nickel
and 1150° for Cobalt.

1.11.2 Classical Theories of Magnetism

Although for a better knowledge of magnetic materials we may have to use
quantum theory, but for basic understanding the classical picture which assumes
that materials are made up of atoms wherein there is a central positive nucleus
surrounded by electrons in various circular orbits will be sufficient.

Classical Theory of Diamagnetism

A diamagnet is a substance that exhibits negative magnetism under the influence
of an external field. The origin of diamagnetism can be explained using the
simple model of orbital motion of electron around a nucleus, which can be
thought of as a small current and hence a tiny magnetic dipole with net magnetic
moment. Even though it is composed of atoms which have no net magnetic
moment over the whole material, it reacts in a particular way to an applied field.

The classical (non-quantum-mechanical) theory of this effect was first
given by the French physicist Paul Langevin (1872— 1946) in his famous paper
published in 1905. He had further refined and made quantitative some ideas
which had been earlier advanced by Ampére and by the German physicist
Wilhelm Weber (1804 — 1891).

According to this theory, the effect of an applied external magnetic field
on a single electron orbit is to reduce the effective current of the orbit. In the
process, it produces a magnetic moment opposing the applied field. This effect
is then summed over all the electrons in the atom, and each atom is regarded
as acting independently of the others. The values of diamagnetic susceptibility
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calculated in this way generally agrees with experimental values to an accuracy
better than a factor of 10, which suggests that the model is at least qualitatively
correct. The model also does not point to strong temperature dependence of
susceptibility, which is also shown by the experiments.

Electrons which constitute a closed shell in an atom usually have their spin
and orbital moments oriented so that the atom as a whole has no net moment.
Thus, the monoatomic rare gases He, Ne, A, etc., which have closed-shell
electronic structures, are all diamagnetic. So are most polyatomic gases, such
as H,, N, etc., because the process of molecule formation usually leads to filled
electron shells and no net magnetic moment per molecule. The same argument
can be used to explain the diamagnetism of ionic solids like NaCl. The process
of bonding in this substance involves the transfer of an electron from each Na
atom to each CI atom; the resulting ions of sodium and chlorine, then have
closed shells and are both diamagnetic. Covalent bonding by the sharing of
electrons also leads to closed shells, and elements like C (diamond), Si, and Ge
are diamagnetic. Most organic compounds are diamagnetic, and magnetic
measurements have furnished much useful information about the size and shape
of organic molecules.

But not all gases are diamagnetic and nor are all ionic or covalent solids.
An interesting class of materials in this field is ‘Superconductor’ which under
some conditions behave as perfect diamagnets.

Classical Theory of Paramagnetism

The classical theory of paramagnetism is quite similar to that of alignment of
polar molecules placed in an electric field that we study in electrostatics. Langevin
gave the theory of magnetic susceptibility for paramagnetic materials. It is
characterised by a positive but small value of magnetic susceptibility. Langevin’s
theory describes the behaviour fairly accurately only for gaseous substances
where there is negligible interaction between molecules. The molecules of such
a substance have a permanent dipole magnetic moment and they are free to
orient themselves in an external magnetic field. This dipole moment has
contributions from both spin and orbital magnetic moment. Only the partially
filled shells in an atom or molecule contribute towards its moment. However,
due to small interaction, these dipoles are randomly oriented and net magnetic
moment of material cancels out. When an external magnetic field is applied, it
exerts torque on the individual dipoles and tends to align them along the field
direction. This alignment is however resisted by collisions among molecules due
to their thermal motion. Over a period of time an equilibrium is reached and the
material gets weakly magnetised depending on the strength of external magnetic
field as well as temperature.

The first systematic measurements of the susceptibility of a large number
of substances over an extended range of temperature were made by Pierre
Curie 1 and reported by him in 1895. He found that the mass susceptibility was
independent of temperature for diamagnetics, but that it varied inversely with the
absolute temperature for paramagnetics. This relation is called the Curie law,
and C is the Curie constant per gram. It was later shown that the Curie law is
only a special case of a more general law, called the Curie-Weiss law.



Curie’s measurements on paramagnetics went without theoretical
explanation for 10 years, until Langevin in 1905 took up the problem in the
same paper in which he presented his theory of diamagnetism. Qualitatively, his
theory of paramagnetism is simple. He assumed a paramagnetic to consist of
atoms, or molecules, each of which has the same net magnetic moment m,
because all the spin and orbital moments of the electrons do not cancel out. In
the absence of an applied field, these atomic moments point at random and
cancel one another, so that the magnetization of the specimen is zero. When a
field is applied, there is a tendency for each atomic moment to turn toward the
direction of the field; if no opposing force acts, complete alignment of the atomic
moments would be produced and the specimen as a whole would acquire a
very large moment in the direction of the field. But thermal agitation of the atoms
opposes this tendency and tends to keep the atomic moments pointed at random.
The result is only partial alignment in the field direction, and therefore a small
positive susceptibility. The effect of an increase in temperature is to increase the
randomizing effect of thermal agitation and therefore to decrease the susceptibility.

Diamagnetism vs Paramagnetism

The magnetic susceptibility of paramagnetic materials is small and positive as
opposed to small but negative susceptibility of diamagnetic materials. The
Diamagnetic material is not much affected by temperature unlike a paramagnetic
substance. Though a small amount of diamagnetism is present in all substances,
its effect is masked in substances where paramagnetic behaviour dominates.
diamagnetism is prominent in materials with closed electron shells wherein magnetic
moment due to unpaired electron is not present and the remaining paramagnetic
moments cancel out. Whether a substance will behave as paramagnet or
diamagnet depends on external conditions, such as temperature. Since the
susceptibility of a paramagnetic substance decreases with an increase of
temperature, at high enough temperature a paramagnet becomes a diamagnet.

Theory of Ferromagnetism

In paramagnetic and diamagnetic materials, which require an external magnetic
field to exhibit ‘magnetism’, the alignment of atomic dipoles is maintained by that
field. Being non-linear in nature, unlike paramagnets and diamagnets, ferromagnetic
materials do not need external fields to sustain magnetisation. In the
paramagnetism, the ‘Alignment’ is ‘Frozen In’. The ferromagnetic phenomenon
involves the magnetic dipoles associated with the spins of unpaired electrons,
like paramagnetism. Besides that, ferromagnets have one additional feature which
makes them so different than paramagnets. This is the interaction between
neighbouring dipoles. In a ferromagnet, each dipole likes to point in the same
direction as its neighbour. This correlation is so strong that nearly all unpaired
electron spins are aligned in same direction.

This alignment, however, occurs in small batches known as domains.
Further, these domains are randomly oriented in a material. This makes the net
magnetisation in the material zero and as a result not all ferromagnets are
‘Magnets’ in the broad sense of terms.
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In certain materials, there is a preference for antiparallel alignment between
neighbouring dipoles. Such materials exhibit ‘ Anti-ferromagnetic’ behaviour.

Example 1.1: Let magnetization for a ferromagnet is M(r) is given and its free
current density is denoted as jg=0.

(a) Write down the Maxwell equations for the magnetic induction B and the
magnetic field H in the absence of any time-varying electric field for this
case.

(b) Give the relation between B, H and M, for this ferromagnet.

(c) Define the magnetic scalar potential @y .

(d) Show that V2<I)M can be expressed in terms of M by a Poisson equation
and give its formal solution in the absence of boundaries by comparing with
the solution of the electrostatic Poisson equation.

Solution:

(a) VB = 0, VXB = pyj,
Here, |j= jf+ im
And, j,, = VXM.

H = B/uy-M,
VX H =g
Now, since j = 0

We have Maxwell’s equations as:

VB = 0,
V x H=0.
(b) H = B/ug-M.

(c) The curl of H is zero everywhere, Hence, we can write H = -V®y.

(d) VH = VB/ug-VM.
Thus we have, V2<I)M = VM.

In electrostatics, the solution to the Poisson equation V20 = —p/gg in
free space is given as,

o(r) = [1/(dneg)] [p(r') dV'/r — 1]
Consequently, we can write the equation:

Op(r) = [-1/(4m)] [M(r) dV'/jr 1.

1.12 MAGNETIC CIRCUITS AND THEIR
COMPARISON WITH ELECTRIC CIRCUITS

The analysis of magnetic circuits is somewhat similar to the analysis of DC electric
circuits. This is due to the existence of a close analogy between the magnetic
circuits and DC electric circuit.



MMF (Magneto Motive Force), F, is analogous to EMF (Electro Motive
Force), E; Flux ¢ is analogous to current /; Reluctance R is analogous to resis-
tance R, etc.

The circuit laws, Ohm’s law and Kirchhoff’s laws discussed in relation to
electric circuits hold good for magnetic circuits also.

Ohm’s Law for magnetic circuit is,

MMF
Flux= ——M—
Reluctance
F
=" (1.100)

Equation (1.100) is just a simple rearrangement.
Kirchhoft’s Voltage Law (KVL) for magnetic circuit is,
MMEF set up in a loop = MMF expended in various parts of the loop.

Kirchhoft’s Current Law (KCL) is applied to parallel magnetic circuits in which
the total flux set up by a MMF divides between the different parallel paths as,

P=+h+P3+...0,
Further, in series magnetic circuits, the equivalent reluctance of a number of
reluctances in series is given as,

Reos =R, +Rypp +R3+..R

meqs mn ]

In parallel magnetic circuits, the equivalent reluctance can be calculated as

1 { 1 1 1 1 }
= + + +..
R le Rm2 Rm3 R

meqp mn

Series Circuits
The series circuits can be easily understood with the help of following example.

Example 1.2:
A magnetic core in the form of a closed ring has a mean length of 30 cm and a
cross-sectional area of 1.2 cm?. The relative permeability of iron is 2500. What
current will be required to pass on through a coil of 2000 turns uniformly wound
around the ring to create a flux of 0.5 mWb in the iron?

Data [=30cm=03m; 4=12cm?>=1.2x10*m?

=0.5x 107 Wb; u_=2500; 7= 2000; ¢ = 0.5 mWb

Aim I?

Solution:

Refer Figure (1.22) given below:

Reluctance
[ [

" ,U/l N /ur/uOA
~ 0.3
2500 (47 x1077)x1.2x107*

=7.96x10° AT/Wb

R
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Fig. 1.22 Diagram for Example 1.2

MMF required,
= (0.5x107°)x(7.96x10°) = 398 AT
But
F, =IT
F, _ 398
T 2000
=199x10°A =199 mA.
Example 1.3:

Anironrod of 1.8 cm diameter is bent to form a ring of mean diameter 25 cm and
wound with 250 turns of wire. A gap of 1 mm exists in between the end faces.
Calculate the current required to produce a flux of 0.6 mWb. Take relative per-
meability of iron as 1200.
Datad=18cm=18x%x10?m; D=25cm=0.25 cm; 7'=250
[=1 mm =1 x 10° m=0.001 m; $=0.6 mWb=0.6 x 10°*Wb
Aim I?

Solution:
Refer Figure given below.

Fig. 1.23 Diagram for Example 1.3
Reluctance for iron path,

l;

:ur/uOA

mi

Total circumferencial length of the ring,

[=2D=7r%x025=0.785m



Length of iron,
l;=1-1, =0.785-0.001
=0.784 m
o ax(1.8x1072)?
4 4
=2.54x107* m?
B 0.784
1200x (47 x1077)x (2.54x107)
=2.047x10°AT/Wb

Reluctance for air-gap,

A

mi

R ly, 0.001

mg - -7 —4
HoxA (47 x1077)(2.54x107%)
=3.133x10° AT/Wb

Total reluctance of the magnetic circuit,

le = Rmi +ng
= (2.047x10%)+(3.133x10%)
=5.18x10° AT/Wb

MMF required,

Fm =¢Rmt
=(0.6x107%)x (5.18x10%)
=3108 AT

Current required,
7= fn
T
= w =12.432 A
250

Parallel Circuits

Example 1.4:
The magnetic circuit shown in Figure. 1.24 (a) has a cast steel core of relative
permeability 1300. The dimensions are as marked in the figure. The centre limb

has 200 turns of wire closely wound around. Find the current required to produce
a flux of 1.2 mWhb in the middle limb.
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(b) Equivalent circuits
Fig. 1.24 Diagram for Example 1.4

Data Dimensions as marked in Figure. (1.24 (a))
T=200;¢=12mWb; u = 1300

Aim I?
Solution:
For the centre limb,
— lC
e /urIUOAC
[,.=20 cm=0.2 m
A, =24x15 cm?
=3.6x107* m?
~ 0.2
" 1300x (47 x1077)x (3.6 x107%)
=340.075x10° AT/Wb
For each outer limb,
ZO
mo =
My oAy

lp=50 cm=05m

Ay=12x15=18 cm* =1.8x10™* m?
0.5

1300 (47 %107 ) x (1.8x107)

=1.7x10° AT/Wb

m0




Total reluctance,

6
—340.075x10% 4 210"

=1.19x10° AT/Wb

F, =¢R, . =(12x107)*(1.19x10%)
=1428 AT

F, 1428

m

T 200
I=7.14 A

Example 1.5:
An inductor has a magnetic core built up of stampings of the shape as shown in
Figure. 1.25. A coil of 600 turns being provided in the centre limb. Thereis a 1
mm air-gap in the centre limb which has a cross-sectional area of 3 cm?. All the
other paths in the core have a cross-sectional area of 2 cm?®. The mean magnetic
path lengths in each portion of the core are as shown in the Figure 1.25. If the
relative permeability of the steel core is 1100, find the current needed in the coil to
produce a flux of 1 mWb in the centre limb.

Data T = 600; Zg= Imm=1x10"m; 4 =3 cm*=3 x 10*m?

A,=2cm*=2 x 10*m?* u=1100; ¢ =1 mWb = 1.1 x 10° Wb
Aim I?

Solution:
For each outer limb,
I
BT TAY N
~ 160x107°
1100x (47 x1077)(2x107%)
=578.75x10° AT/Wb
160 mm | %:::7: 160 mm
I(;,iu mm T
|
Z) % R (? ::} ;é R"i'ﬂ ; 2

Fig. 1.25 Diagram for Example 1.5
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For the centre limb,

Rmc = lC
/urﬂOAc

~ 50x1073
1100x (47 x107")(3x107%)

=120.572x10° AT/Wb

For the air-gap,

~ 1107
(4rx1077) 3x107%)
= 2652.582x10° AT/Wb

Total Reluctance,

RmO
Rmt = Rmc +ng +T

578.75

= [120.572 +2652.582 + ]103 =3.063x10° AT/Wb

F,=¢xR,, (1.1x107)x(3.063x10°)
=3369.3 AT

Fp _ 3369.3
T 600

Comparison between Magnetic and Electric Circuits

Table 1.1 Comparison between Magnetic and Electric Circuits

Magnetic Circuit Electric Circuit

J
¢ >

-_—— = — — — -

.

|

[ [:
[ W —
la Ve Yar Von)

|
— — AAANNNN

Magnetic Circuit

1. Closed path for magnetic flux fis
known as a magnetic circuit.

2. Magneto Motive Force, MMF in AT
MMF F,

3. FI =—="1
ux 4 Reluctance R

L
/'IrﬂOA

m

4. Reluctance R, =

Electric Circuit

Closed path for electric current / is
known as electric circuit.

Electro Motive Force, EMF in V

EMF E
Current [ =———=—
Resistance R
Resistance R = ﬂ
a



Electrostatics and

5. Reluctivity = Resistivity = p Magnetostatics
HrHo
1
6. Permeance £, = R Conductance G = R
" NOTES
F, _— . V
7. Magnetic Field Intensity H = T’” Electric Field Intensity £ = 7
. 1) . 1
8. Flux Density B =— Current Density J = —
A a
9. Thereluctance of a magnetic circuit The resistance of an electric
is not constant and it depends upon circuit is constant at constant
flux density in the material. temperature.
10. There is no magnetic insulator. There are many electric insulators.
Check Your Progress

15. Define the magnetic flux as stated by Michael Faraday and Lenz.

16. What does the Coulomb's magnetic law state?

17. State about the uniformly magnetised sphere in a magnetic field.

18. What is magnetism?

19. Define the terms paramagnetic, diamagnetic and ferromagnetic materials.

1.13 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Electric field intensity is defined as the strength of electric field at any
point. It is equal to force per unit charge as experienced by test charge
kept at that point.

Therefore, it is expressed as,

E=

| e

2. Electric flux density is an imaginary field lines that do not exist unlike
magnetic field lines. Electric flux density do not exist practically and generally
considered for theoretical reasoning only.

Electric flux density is related to electric field by the following reason,

5 = € OE

Electric flux density D is independent of the medium and may also be
defined in terms of electric flux i as,

W =[D.ds
All the electric field expressions can be substituted in the electric flux density

expressions. Therefore, electric flux density due to a long conductor of
charges is given as,

BZ Eoﬁ
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Electric flux density due to a ring of charges is given by,
- a
D= ¢
41 (R? + a?)3/2
Electric flux density due to a circularly charged disc is given by,

=%

a
2 Va? + RZ]

. Gauss’ law is a powerful tool for the calculation of electric fields. The

applications of Gauss law include determination of electric field due to a
point charge, sheet of charge, line charge on surface of conductor and
sphere of charges. Gauss law states that total flux through a closed
surface is equal to the charge enclosed by that surface.
Mathematically, it is given as,

Electric flux, i = Q (Charge enclosed).

. A function, f(x), is ‘Lipschitz’ on a set if and only if there exist a positive

number C such that for any x, y in that set, [f{x)—f(y)|< Clx—y|.

. Laplace’s equation in cylindrical coordinate system takes the form,

2 2 2
o9 10 106 09 _
o? ror F2o0* oz

. Electric flux is generally defined as the number of lines of force passing

through a unit area held normal to the direction of the lines of force. If
the electric flux is greater, the electric field is greater and vice versa.

. The Green’s function is precisely defined as the impulse or signal

response of an inhomogeneous or nonuniform linear differential operator
which is characteristically defined on a domain including the certain specific
initial conditions or the boundary conditions. The term signal or impulse
is uniquely used in context with the signal processing defining the input
signal or impulse response or precisely the Impulse Response Function
(IRF).

In mathematics, the notion Green’s functions are precisely named after
the British mathematician George Green, who initially or originally
developed and established this concept in the year 1820s. In the
contemporary analysis and evaluation of linear partial differential equations,
the Green’s functions are analysed principally on the basis of fundamental
solutions.

. The Green’s function implies or indicates that if L is considered as the

linear differential operator, then:

o Essentially, the Green’s function G is precisely defined as the solution
of the equation of the form LG = 5, where 0 is referred as the Dirac’s
delta function.

¢ Fundamentally, the solution of the Initial Value Problem (IVP) Ly = fis
referred as the convolution (G N f), where G is referred as the Green’s
function.



10.
I1.

12.

13.

14.

15.

The principle of superposition is used for a given linear Ordinary Differential
Equation (ODE) to solve considering that,

L (Solution) = Source
L (Green) =9, for each s

Because the source is a sum of delta functions, and the solution is a sum
of Green’s functions through the linearity of L.

. The term dielectric sphere in a uniform electric field can be uniquely defined

with the help of the condition that define a conducting sphere in an electric
field. At far distances from the sphere, the field is considered uniform and is

equal or equivalent to F = g,kwhich corresponds to a potential of
@ = —Eyrcosb.

Magnetic flux lines are imaginary lines that flow from the north to south poles.

Steady electric currents and current density can be defined based on the
electric currents that are produced either by conduction or convection.
Current is defined as the rate of movement of charge across a plane in
a given time.

Current density is defined as the amount of current flowing through a
given area of a material. It is a vector component with magnitude equivalent
to the electric current per cross sectional area.

The flow of charges through convection constitutes convection current.
Beam of electrons inside Cathode Ray Tube (CRT) or in vacuum tubes
are due to convection currents. Convection currents neither they obey
Ohm’s law nor they involve any conductor for the flow of current.

Ohm’s law states that electric current is proportional to voltage and inversely
proportional to resistance.

I="VIR

The term Ohm s law is also used to refer to various generalizations of the
law originally formulated by Ohm. The current density and the electric field

are related as: | = gE

Kirchhoff Law relates the potential in a closed circuit or current in the
nodes of a circuit. Hence Kirchhoff’s Voltage Law, states that the sum of
voltage drop and voltage rises in a closed loop of an electric circuit is
Zero.
In 1831, Michael Faraday reported on a series of ground-breaking
experiments which showed that,
() Whenever there is any change in the magnetic flux over the surface of
a closed circuit, there is an ElectroMotive Force (EMF) induced in
the same.
(i1) The induced EMF in the closed circuit is directly proportional to the
time rate of change of magnetic flux over the surface of the circuit.
Lenz noticed that this induced EMF opposes the very cause (rate of change
of magnetic flux) of'its creation. Thus, if ¢ is assumed to be the magnetic
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16.

17.

18.

flux linked with a closed circuit, the induced EMF acting in the circuit must
be

__%
& T T
Also we know that,
¢ = [[BdS
S

Where B is the magnetic induction vector associated with the changing
magnetic flux.
Coulomb’s magnetic law states that the force F'between two magnetic poles
P, and P, is directly proportional to the product of pole strengths and
inversely proportional to square of their disance apart d.
Ab
oC d—2
The constant of proportionality depends on the relative premeability of the
medium through which the lines of magnetic field passes.
p_ ot RP,
dr  d?
F —Force between the poles in N (Newton)
P, P,—Pole strength in A/m
d — Distance between poles in m
u, —Permeability of free spaces (4n x 10”7 H/m)
1 —Relative permeability of the medium

F

w, = 1 for air

From the above equation for force, an unit magnetic pole is defined as one
which when situated 1 m distance in vacuum from an equal pole experi-
ences a force of u_/4n Newton.

To explain the magnetised sphere in a magnetic field, consider that there
is a uniformly magnetised sphere having the radius » = a. The sphere
holds a uniform permanent magnetisation which is denoted as M =M,
e , which is precisely in the direction ‘z’ and is typically surrounded or
enveloped by vacuum. This problem can be solved using the scalar

magnetic potential, denoted as @...

The magnetic scalar potential satisfies the Laplace equation of the form:
Va = e=0

Fundamentally, this is due to the reason that there is precisely a zero net
current in the sphere and also the magnetic volume charge density in a
uniformly magnetized magnetic medium or vacuum is zero.

Magnetism is a phenomenon by which a material exerts either a positive
or a repulsive force on another material. The source of ‘Magnetism’ of
any material can be traced back to its electrical behaviour, which in turn
is dictated by the structure of its constituents, i.e., atoms and molecules.



19. Paramagnetic materials are those which are weakly attracted in an external Electrostatics and
. . . Magnetostatics
magnetic field. When exposed to external magnetic field, they acquire
feeble magnetisation in the same direction as the external field.

Diamagnetic materials are the materials which are weaky repelled by an
external magnetic field as opposed to paramagnets. When placed in an
external magnetic field they acquire a feeble magnetisation in the direction
opposite to that of external field.

NOTES

Both paramagnetic and diamagnetic materials are considered as non-
magnetic materials as they exhibit magnetism only in the presence of an
external magnetic field.

There are certain materials which are ‘Magnetic’ even in the absence of
an external field. They possess permanent magnetic moments due to
unpaired dipoles formed as a result of unpaired energy levels. Further,
these materials are strongly magnetised even in the presence of a weak
magnetic field. Such materials are called ferromagnetic materials.

1.14 SUMMARY

e The term static means a situation where the field does not vary with time.
Static electric field also referred as electrostatics is created by the fixed
charges in space.

e Determination of'the electrostatic field components, such as electric field,
electric force, and electric flux density are explained by two important laws
namely, Coulomb’s law and Gauss law.

e Coulomb’s law provides the relation between forces experienced by the
charges when they are separated by a distance. This theory was first
proposed by Coulomb in 1785. This law states that,

Force, F' exerted between two point charges @, and @,

=  Directly proportional to the product of the two charges and

= Inversely proportional to the square of the distance between the two
charges.

= The direction of the force will be in the same direction along the line
joining the two charges.

Mathematically, Coulomb’s law may be expressed as,

.LE' oc Q1?2 E?'

=

e Electric field intensity is defined as the strength of electric field at any point.
It is equal to force per unit charge as experienced by test charge kept at that
point. Therefore, it is expressed as,

E=

3| e
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e The presence of charge Q ensures the existence of electric field E . The

charges may be distributed on a line conductor, on a surface or inside a
volume. Hence, based on the charge distribution,

Along aline, charge, Q = f py.dl
L

On asurface, charge, Q = -f ps.ds
s

Inside a volume, charge, Q = f py.dv
%4

Where, p;, = line charge density (C/m)
ps = surface charge density (C/m?)

py = volume charge density (C/m3)

The electric field along the line is given as,

L

ATreT?
Electric field intensity due to a small elemental length 'd/' is given as,

—

dE dl.a@

- A€ T2 Pr
Electric flux density is an imaginary field lines that do not exist unlike
magnetic field lines. Electric flux density do not exist practically and generally
considered for theoretical reasoning only. Electric flux density is related to
electric field by the following reason,

B = Eoﬁ
Electric flux density D is independent of the medium and may also be
defined in terms of electric flux 1 as,

W =[D.ds
Electric flux density due to a ring of charges is given by,
- aQ

D =
4 (R? + a?)3/2
Electric flux density due to a circularly charged disc is given by,

521 =]

2 Va2 + R2
Gauss' law is a powerful tool for the calculation of electric fields. The
applications of Gauss law includes determination of electric field due to
a point charge, sheet of charge, line charge on surface of conductor and
sphere of charges.
Gauss law states that total flux through a closed surface is equal to the
charge enclosed by that surface. Mathematically, it is given as,

Electric flux, i = Q (Charge enclosed).



¢ A mathematically closed surface is called as a Gaussian surface. These

surfaces are assumed to have a uniform symmetric charge distribution which
are ideal for determining the electric field vector, E by applying Gauss
law. Also, the electric flux density vector, D is assumed to act tangentially

or normally on the Gaussian surface. Therefore, accordingly, when D is
normal, then

D.dS = DdS
And when D is acting tangential,
D.dS =0

Electric field, E can be obtained by the following three ways.
(1) Byusing Coulomb's Law

—E=F/Q
(2) Byusing Gauss's Law

_F=

Q| ol

(3) ByaScalar Potential Function, V'

It is always simpler to determine the electric field, E by using the vector
fields F and D . Hence it is imperative to determine V.

The scalar potential V'is defined as the amount of work done in moving a
charge Q. Hence Vis expressed as,

V=m0

Potential difference between two points 4 and B is negative if the potential
difference between B and 4 is also negative. In other words, creating a
loop between 4 and B must satisfy Kirchhoff's voltage law and hence,

Vap = —Vpa

Similar to the poles of the magnet, when equal and opposite electric charges
are separated by a short distance, they form an electric dipole

When two equal and opposite charges are separated by a distance 'd' an
electric dipole moment is formed equivalent to,

m = Qd

A function, f{x), is ‘Lipschitz’ on a set if and only if there exist a positive
number C such that for any x, y 1in that set,
f)~fy)l< Cle—yl.

If f(x) is Lipschitz on a set then it is continuous at every point of that set. The
mean value theorem can be used to show that if a function is differentiable

atevery point of a set, then it is Lipschitz on the set while ‘Continuous’ and
‘Differentiable’ are defined at points.

Laplace’s equation in Cartesian coordinate system takes the form,

2 2 2
o

ox? 6y2 ot
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e Laplace’s equation in cylindrical coordinate system takes the form,

2 2 2
0% 106 109 09 _
o’ ror o0 o
Laplace’s equation in spherical polar coordinate system can be written as,

o’ 200 1 0°D  coth oD 1 o’
+ + + +
o?  ror r00* P 90 r’sin’0 99

Electric flux is generally defined as the number of lines of force passing through
a unit area held normal to the direction of the lines of force. If the electric
flux is greater, the electric field is greater and vice versa.

If ¢ is the electric flux corresponding to the electric field E, ¢ = [[ E.ds,
S

where ds is an elementary portion of the surface S.

Potentials are always the consequences of various interactions. Electrostatic
potential ¢ is itself the result of the interaction between a charge and the
electric field E. We can define ¢(7) as the work done in bringing a unit
positive charge from infinity to the point 7.

In the field of electrostatics, the Green’s function is precisely defined as
the impulse or signal response of an inhomogeneous or nonuniform linear
differential operator which is characteristically defined on a domain including
the certain specific initial conditions or the boundary conditions.

The term signal or impulse is uniquely used in context with the signal processing
defining the input signal or impulse response or precisely the Impulse

Response Function (IRF).

In mathematics, the notion Green’s functions are precisely named after the
British mathematician George Green, who initially or originally developed
and established this concept in the year 1820s.

Essentially, the Green’s function G is precisely defined as the solution of the
equation of the form LG = 8, where 0 is referred as the Dirac’s delta
function.

Fundamentally, the solution of the Initial Value Problem (IVP) Ly = fis
referred as the convolution (G N f), where G is referred as the Green’s
function.

Characteristically, the Green’s function, G(x,s), precisely of a
linear differential operator L = L(x) distinctively acting on distributions over
asubset of the Euclidean space R “, ata specific point s, is any solution of,

LG(x,5)=0(s—x)

Where 6 is referred as the Dirac delta function.

o This specific property of a Green’s function can be manipulated or exploited

for solving the differential equations of the form,

L u(x) = fix)



e Inphysics, the Green’s function is generally defined with the opposite sign,

1e.,
LG (x,5)=03(x—5)
Ifthe operator is translation invariant, i.e., when L holds constant coefficients

with respect to x, then the Green’s function is typically considered as a
convolution kernel, that is,

Gx,s)=G(x—9)
In this instance, the Green’s function is considered equivalent with the impulse
or signal response of linear time-invariant system theory.

The term dielectric sphere in auniform electric field can be uniquely defined
with the help of the condition that define a conducting sphere in an electric
field. At far distances from the sphere, the field is considered uniform and is

equal or equivalent to F = g,k which corresponds to a potential of
@ = —Eyrcosb.

The potential itselfis continuous at =R,

B,
==
Magnetic flux lines are imaginary lines that flow from the north to south
poles. Magnetic flux lies constitutes the magnetic field. Magnetic field is

—E,R + AR

denoted by g. The unit of magnetic flux is Weber and Denoted as gh.

The unit Weber is named after the German Physicist Wilhelm Eduard Weber
and the symbol used in Wb.

Magnetic flux density is defined as the magnetic flux lines passing through a

unit surface area. It is denoted as 5 and the unit is weber/metre? or Tesla.
Magnetic flux density, gis given as,

B=¢/A

The electric currents are produced either by conduction or convection.
Current is defined as the rate of movement of charge across a plane in a
given time. They are expressed as,

_ad
dt
Current density is defined as the amount of current flowing through a given
area of a material. It is a vector component with magnitude equivalent to the

1

electric current per cross sectional area. Current [ is related to current

density J as,

1=J}’.E
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¢ The flow of charges through convection constitutes convection current. Beam

of electrons inside Cathode Ray Tube (CRT) or in vacuum tubes are due to
convection currents.

Ohm’s law states that electric current is proportional to voltage and inversely
proportional to resistance.

I="VIR

The term Ohm's law is also used to refer to various generalizations of the
law originally formulated by Ohm. The current density and the electric field

are related as: | = gE

Continuity equation on the basis of law of conservation of charge states
that in a given volume, the total current coming out of the volume is equal
to the rate of decrease of charge inside the volume. It is expressed as,
I i

out — d t
In general, Kirchhoff Law relates the potential in a closed circuit or current
in the nodes of a circuit. Hence Kirchhoff’s Voltage Law, states that the
sum of voltage drop and voltage rises in a closed loop of an electric circuit
is zero and is given as,

N
S-c
=t
Where i indicates the number of circuit elements in the loop. V2. is positive
for voltage rise across an element or negative if voltage drops across an
element.
Similarly, at any node of an electric circuit, Kirchhoft’s current law states

that,
N

ZF:D

i=1

Where i indicates the number of circuit branches connected to a node.
. is positive, if the current enters the node and negative if the current leaves
the node.

For the force to be developed, there must be at least two fields with a

phase difference. Hence force due to magnetic field can be experienced
by either of the following,

(a) Aunit charge, Q travelling in a magnetic field experiences a force.
(b) A current element placed in a magnetic field experiences a force.

(c) Two current carrying conductor when placed close to each other
experience force between them.

Ampere’s circuit law states that the closed line integral of magnetic field
intensity is equal to the current circulating in the closed path.
Mathematically,

$H -di=1



In 1831, Michael Faraday reported on a series of ground-breaking
experiments which showed that,
() Whenever there is any change in the magnetic flux over the surface of
a closed circuit, there is an ElectroMotive Force (EMF) induced in
the same.
(i1) The induced EMF in the closed circuit is directly proportional to the
time rate of change of magnetic flux over the surface of the circuit.
Lenz noticed that this induced EMF opposes the very cause (rate of change
of magnetic flux) of'its creation. Thus, if ¢ is assumed to be the magnetic
flux linked with a closed circuit, the induced EMF acting in the circuit must
be
o9
o
The source of magnetic flux is either a permanent magnet or a current carrying
coil. The lines of the magnetic flux always form a closed path. The closed
path followed by the lines of magnetic flux is called a magnetic circuit. Thus,
amagnetic circuit provides a closed path for the magnetic flux and is similar
to an electric circuit which provides a closed path for the flow of electric
current.
First Law of Magnetics: Like poles of magnets repel each other whereas
unlike poles attract each other.
Second/Coulomb’s Law: Second law of magnetics known as Coulomb’s
law accounts for the force exerted between two magnetic poles.

&=

MMF or Magneto Motive Force is the source of producing flux in a mag-
netic circuit. For a current / flowing through a coil of 7'turns, the magnetic
flux is obtained as a product of /and 7. Its variable symbol is / and its unit
is Ampere-Turn (AT).

F =IT AT  (1.67)

The Magnetising Force MF, otherwise called as Magnetic Field Intensity
(MFI), is defined as the magneto motive force per unit length of the magnetic
flux path.

Magnetising force is a measure of the ability of a magnetised body to
produce magnetic induction in other magnetic substances. H is the variable
symbol to denote magnetising force and Ampere-Turns/metre (AT/m) is
the unit.

peTeo T xtm

To explain the magnetised sphere in a magnetic field, consider that there is
auniformly magnetised sphere having the radius »=a.

The sphere holds a uniform permanent magnetisation which is denoted as
M=M, e, whichis precisely in the direction ‘2’ and is typically surrounded
or enveloped by vacuum. This problem can be solved using the scalar

magnetic potential, denoted as @, .

The magnetic scalar potential satisfies the Laplace equation of the form:

V2 = € =0
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e Magnetism is a phenomenon by which a material exerts either a positive or

arepulsive force on another material. The source of ‘Magnetism’ of any
material can be traced back to its electrical behaviour, which in turn is
dictated by the structure of its constituents, i.e., atoms and molecules.

Magnetic susceptibility of a material is a measure of how weakly or strongly
it is affected by the presence of an external magnetic field.

Magnetic permeability is a measure of the degree of penetration of magnetic
field in a substance. Itis defined as the ratio of total magnetic flux density
and external magnetic field intensity.

Paramagnetic materials are those which are weakly attracted in an external
magnetic field. When exposed to external magnetic field, they acquire feeble
magnetisation in the same direction as the external field.

Diamagnets are the materials which are weaky repelled by an external
magnetic field as opposed to paramagnets. When placed in an external
magnetic field they acquire a feeble magnetisation in the direction opposite
to that of external field.

A diamagnet is a substance that exhibits negative magnetism under the
influence of an external field. The origin of diamagnetism can be explained
using the simple model of orbital motion of electron around a nucleus, which
can be thought of as a small current and hence a tiny magnetic dipole with
net magnetic moment.

Both paramagnetic and diamagnetic materials are considered as non-
magnetic materials as they exhibit magnetism only in the presence of an
external magnetic field.

There are certain materials which are ‘Magnetic’ even in the absence of an
external field. They possess permanent magnetic moments due to unpaired
dipoles formed as a result of unpaired energy levels. Further, these materials
are strongly magnetised even in the presence of a weak magnetic field.
Such materials are called ferromagnetic materials.

Closed path for magnetic flux fis known as a magnetic circuit.
Closed path for electric current / is known as electric circuit.

In paramagnetic and diamagnetic materials, which require an external
magnetic field to exhibit ‘Magnetism’, the alignment of atomic dipoles is
maintained by that field.

Being non-linear in nature, unlike paramagnets and diamagnets,
ferromagnetic materials do not need external fields to sustain magnetisation.
In the paramagnetic materials, the ‘Alignment’ is ‘Frozen In’.

The ferromagnetic phenomenon involves the magnetic dipoles associated
with the spins of unpaired electrons, like paramagnetism.

The ferromagnets have one additional feature which is the interaction between
neighbouring dipoles.

In a ferromagnet, each dipole likes to point in the same direction as its
neighbour. This correlation is so strong that nearly all unpaired electron
spins are aligned in same direction.
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e Coulomb’s law: Coulomb’s law provides the relation between forces
experienced by the charges when they are separated by a distance. This NOTES
theory was first proposed by Coulomb in 1785.

¢ Electric field intensity: Electric field intensity is defined as the strength
of electric field at any point. It is equal to force per unit charge as
experienced by test charge kept at that point.

e Gaussian surface: A mathematically closed surface is called as a
Gaussian surface. These surfaces are assumed to have a uniform symmetric
charge distribution which are ideal for determining the electric field vector,
by applying Gauss law.

e Electric flux: Electric flux is generally defined as the number of lines of
force passing through a unit area held normal to the direction of the lines
of force. If the electric flux is greater, the electric field is greater and vice
versa.

e Green’s function: A Green’s function is defined as the impulse response
of an inhomogeneous linear differential operator typically defined on a
domain with particular initial conditions or boundary conditions. Green’s
functions are named after the British mathematician George Green, who
first developed this concept in the year 1820s.

e Current: Current is defined as the rate of movement of charge across
a plane in a given time.

e Current density: Current density is defined as the amount of current
flowing through a given area of a material. It is a vector component with
magnitude equivalent to the electric current per cross sectional area.

e Conduction current: Conduction current requires conductor to flow.
The flow of charges from one end of conductor to the other is facilitated
by application of electric field between the conductors.

¢ First law of magnetics: First law of magnetics states that like poles of
magnets repel each other whereas unlike poles attract each other.

e Second/Coulomb’s law of magnetics: Second/Coulomb’s law of
magnetics known as Coulomb’s law accounts for the force exerted between
two magnetic poles.

1.16 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the term electrostatics.

2. State Coulomb’s law.

3. Define electric flux density. Self - Learning
Material 85
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. What does Gauss law state?

. What is Gaussian surface?

. State about Green’s function.

. Define steady electric currents and current density.

. What is current density?

. Differentiate between convection currents and conduction currents.
10.
11.
12.
13.

What is Kirchhoff Law?
State the first law of magnetics.
Define magnetism.

Differentiate between paramagnetic, diamagnetic and ferromagnetic
materials.

Long-Answer Questions

1.

Briefly discuss the concept of electrostatics and magnetostatics giving
appropriate examples.

. Explain uniqueness theorem with the help of examples.

3. Discuss how the solution of Laplace and Poisson equation in rectangular,

Cartesian and spherical polar coordinates are obtained.

. Explain the methods of electric images giving examples.

. Discuss the concept of Greens function for potential problems giving

appropriate examples.

. Briefly explain about the dielectric sphere in uniform electric field giving

examples.

. Discuss the laws of magnetostatics.

8. Explain the basic theory and types of magnetisations giving appropriate

10.

I1.

12.

13.

examples.

. Analyse the characteristic features of uniformly magnetised sphere in magnetic

field giving examples.

Discuss the significant features of magnetism phenomenon with the help of
examples.

Discuss the properties of paramagnetic, diamagnetic and ferromagnetic
materials giving relevant examples.

Explain the classical theories of paramagnetic, diamagnetic and ferromagnetic
magnetisation.

Explain magnetic circuits and differentiate it from electric circuits.
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UNIT 2 ELECTROMAGNETICS

Structure
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2.2 Time Varying Fields
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2.4 Electromagnetic Scalar Wave Equations and Their Solution
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2.5 Plane Wave Propagation in Conducting and lonised Media
2.6 Radiation Pressure and Momentum
2.7 Reflection and Refraction
2.8 Polarisation
2.9 Total Internal Reflection
2.10 Scattering: Rayleigh and Dispersion of Plane E. M. Waves
2.11 Scattering: Thomson and Dispersion of Plane E. M. Waves
2.12 Elements of Wave Guides
2.13 Answers to ‘Check Your Progress’
2.14 Summary
2.15 Key Terms
2.16 Self-Assessment Questions and Exercises
2.17 Further Reading

2.0 INTRODUCTION

Electromagnetism is a branch of physics involving the study of the electromagnetic
force, a type of physical interaction that occurs between electrically charged
particles. The electromagnetic force is carried by electromagnetic fields composed
of electric fields and magnetic fields, and it is responsible for electromagnetic
radiation, such as light. It is one of the four fundamental interactions (commonly
called forces) in nature, together with the strong interaction, the weak interaction,
and gravitation. At high energy, the weak force and electromagnetic force are
unified as a single electroweak force.

Electromagnetic phenomena are defined in terms of the electromagnetic
force, sometimes called the Lorentz force, which includes both electricity and
magnetism as different manifestations of the similar phenomenon. The
electromagnetic attraction between atomic nuclei and their orbital electrons holds
atoms together. Electromagnetic forces are responsible for the chemical bonds
between atoms which create molecules, and intermolecular forces.

The theoretical implications of electromagnetism, particularly the
establishment of the speed of light based on properties of the ‘Medium’ of
propagation (permeability and permittivity), led to the development of special
relativity by Albert Einstein in 1905.

In this unit, you will study about the time varying fields, Maxwell’s
electromagnetic field equations in stationary and moving media, electromagnetic
scalar wave equations and their solution, Hertz vector, plane wave propagation in
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conducting and ionised media, radiation pressure and momentum, reflection,
refraction, total internal reflection, polarisation, scattering (Rayleigh and Thomson)
and dispersion of plane E. M. waves, and elements of wave guides.

2.1 OBJECTIVES

After going through this unit, you will be able to:
e Discuss about the time varying fields

¢ Understand Maxwell’s electromagnetic field equations in stationary and
moving media

Explain the electromagnetic scalar wave equations and their solution

State the concept of Hertz vector

Describe plane wave propagation in conducting and ionised media

Elaborate on radiation pressure and momentum
e Understand reflection and refraction

e Discuss the significance of polarisation

¢ Explain the importance of'total internal reflection

o Know about the scattering (Rayleigh and Thomson) and dispersion of plane
E. M. waves

o Define the elements of wave guides

2.2 TIME VARYING FIELDS

Static electric fields are constant fields, which do not change in intensity or
direction over time, in contrast to low and high frequency alternating fields. The
strength of a static electric field is expressed in Volts per meter (V/m).

Time varying is a system in which certain quantities governing the system’s
behaviour change with time, so that the system will respond differently to the same
input at different times.

When an electrically conducting structure is exposed to a time varying
magnetic field, then an electrical potential difference is induced across the
structure. The generation of electric potential by a time varying magnetic flux is
very well described by Faraday’s Law. This is a form of electromagnetic induction.
According to Faradays law, when magnetic flux changes in the region
surrounded by conductor, it produces electric field (induced Electro Magnetic
Force EMF) in conductor.

It is known that a time varying electric field is produced by a time varying
magnetic field and a time varying magnetic field is produced by a time
varying electric field. The first concept was experimentally introduced by Michael
Faraday and the second was theoretically introduced by James Clerk Maxwell
difference between static fields and time varying fields.

Electrostatic fields are usually produced by static electric charges whereas
magnetostatic fields are produced due to motion of electric charges with uniform



velocity (direct current) or static magnetic charges (magnetic poles); time varying
fields or waves are usually due to accelerated charges or time varying current.

A time varying electric field is typically produced through a time varying magnetic
field and the concept was experimentally introduced by Michael Faraday while a
time varying magnetic field is specifically produced by means of a time varying electric
field and the concept was theoretically introduced by James Clerk Maxwell.

Maxwell’s equations are defined as a set of coupled partial differential
equations that, together with the Lorentz force law, form the foundation of classical
electromagnetism. The term “Maxwell’s Equations” is often also used for equivalent
alternative formulations. Versions of Maxwell’s equations based on the electric
and magnetic scalar potentials are preferred for explicitly solving the equations as
aboundary value problem, analytical mechanics, or for use in quantum mechanics.

Faraday’s Law

The Maxwell-Faraday version of Faraday’s law of induction describes how a
time varying magnetic field creates or induces an electric field. In integral form, it
states that the work per unit charge required to move a charge around a closed
loop equals the rate of change of the magnetic flux through the enclosed surface.

The electromagnetic induction is the operating principle behind many electric
generators, for example, a rotating bar magnet creates a changing magnetic field,
which in turn generates an electric field in a nearby wire.

Maxwell’s equations are a set of the following four complex equations that
describe electromagnetics. These equations describe how electric and magnetic
fields propagate, interact, and how they are influenced by objects.

1. V:D=p,

2. V:B=0

3. VxE =—§
ot

4., VxH=Q+J
ot

Maxwell was the first to determine the speed of propagation of Electro
Magnetic (EM) waves and found that it was the same as the speed of light, hence
he concluded that EM waves and visible light can be studied on the same basis.
Maxwell’s equations are critical in understanding Antennas and Electromagnetics.

2.3 MAXWELDL’S ELECTROMAGNETIC FIELD
EQUATIONS IN STATIONARY AND
MOVING MEDIA

Maxwell’s equations state the fundamentals of electricity and magnetism. The
working relationships in the field of electricity and magnetism can be derived using
these equations. As a consequence of their brief statement, they symbolize a high
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level of mathematical sophistication, and hence are typically defined as unifying
equations for studying of electrical and magnetic phenomena.

Principally, the Maxwell’s equations are a set of partial differential equations
that, together with the ‘Lorentz Force Law’, form the foundation of classical
electromagnetism, classical optics, and electric circuits. The equations provide a
mathematical model for electric, optical, and radio technologies, such as power
generation, electric motors, wireless communication, lenses, radar, etc. Maxwell’s
equations specifically describe how electric and magnetic fields are generated by
charges, currents, and changes of the fields. One significant consequence of the
Maxwell’s equations is that they demonstrate how fluctuating electric and magnetic
fields propagate at the speed of light. Acknowledged as electromagnetic radiation,
the Maxwell’s waves may occur at various wavelengths to produce a spectrum
from radio waves to y-rays. The equations are named after the physicist and
mathematician James Clerk Maxwell, who between 1861 and 1862 published an
early or initial form of the equations that included the Lorentz force law. Maxwell
also was the first to use the equations to recommend that light is an electromagnetic
phenomenon.

The Maxwell equations have two major variations/variants. Though the
microscopic Maxwell equations have universal applicability, but these are
cumbersome for common calculations. They relate the electric and magnetic fields
to total charge and total current, including the complicated charges and currents in
materials at the atomic scale.

In addition, the term ‘Maxwell’s Equations’ is also frequently used for
equivalent alternative formulations. Versions of Maxwell’s equations that are based
on the electric and magnetic potentials are ideal for explicitly solving the equations,
such as aboundary value problem, analytical mechanics, and in quantum mechanics.
In the spacetime formulations, i.e., on spacetime rather than space and time
separately, the Maxwell’s equations are commonly used in high energy and
gravitational physics because they make the compatibility of the equations with
special and general dependence evident. Essentially, Einstein developed special
and general relativity/ dependence to accommodate the invariant speed of light
that drops out of the Maxwell equations with the principle that only relative
movement has physical consequences. Principally, the Maxwell’s equations are
not exact, but a classical limit of the fundamental theory of quantum electrodynamics.
Maxwell’s four equations describe the electric and magnetic fields arising from
distributions of electric charges and currents, and how those fields change in time.
The second Maxwell equation is the analogous one for the magnetic field, which
has no sources or sinks, i.e., no magnetic monopoles, the field lines just flow
around in closed curves.

Maxwell’s Equation for Static Fields and Magnetic Dipole

Summarizing all the Maxwell’s equation from electrostatics and magnetostatics,
we get the following four Maxwell’s equation for static fields.



Sl. No Differential form Integral form
1 V-D= o
V-D=dv fD-ds=f 6v-dv
N 14
2 V-E=0 5 —
jg E -dl=0
L
3 V-B= .
v-E=0 f B -ds=0
N
4 V=] (s —
ng-dl=f] ds
L s

Magnetic Dipole

The “Magnetic Dipole Moment’, is equal to the product of the current flowing
through the loop and area of the loop with the moment acting normal to the loop
(Refer Figure 2.1). Mathematically,

m=1I1Aa, (2.1)

Where, /is the current in the loop with area 4(m*)

—_
an

A=mr2

Fig. 2.1 Magnetic Moment

Magnetic dipole naturally exists on permanent magnets as ‘North’ and ‘South’
poles or in current carrying coils.

Unlike electrostatics, in magnetostatics monopole does not exist. When a
magnet is broken into two pieces, North and South poles exists within the broken
pieces (Refer Figure 2.2).

Nifs:ngNs:,»NséNs‘ §NS<§NS§

Fig. 2.2 Magnetic Dipoles

Recalling the F and V for electric dipoles, and comparing for magnetic

dipoles, there exists an equivalence.
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Electrostatics Magnetostatics
re 1 . —
V = Q cos o A=_— (uo)mssinfay
4me,r?
Rewritten as, 1
1 /1 B=—— m[2 cosBas + sinfay
V= . (_) 0 cos 6 473 (to)ml[ 5 6l
4mre \e,
o 1 /1 .
E = pp— <g) Q412 cosBag
+ sin fay]

Magnetization

The equivalence of magnetization in electrostatics is polarisation, p. Consider a
single magnetic moment shown in Figure 2.3. When a magnetic material is non
magnetised, i.e., when § = (, the magnetisation 3§ = . Also ina non-magnetised
materials, the different dipole moments that exists within the atoms of the material

are not polarized, or in other words, their unit vectors of the moment, s points in
random direction as shown in Figure 2.3(a).

(%
T

%
£0, M#0,

T

N
B

Fig. 2.3 () B=0 M=0 (b) Magnetization

When a magnetic field is applied to the magnetic material, then the magnetic
moments align in a particular direction. Hence, magnetisation is defined as the net
magnetic dipole moment in a given volume. For a single magnetic moment,

—

m
Magnetisation M = —
Volume

For N magnetic moments,

M=|m;+m,+mg+

e eee e et My fU0lUME

=]

= YN, m, /volume



Magnetic Susceptibility(x, )
According to Maxwell’s fourth equation, in free space, with magnetisation, pf =
— — § -

VxH=] B V== [+ B = uyH]
Hg

But for a magnet, with magnetisation, M = 0,

§=,{LB[E+J&TI]

M
1+
H

But 5 = y#. Therefore,

s 3 M
uH = pH [1-1—;]
H

H= F’D[-l + xm]

B =,

B = pou,
Therefore, y_ = 1+ x_.Also

Ko =

T =l

Hence, magnetic susceptibility is defined as the ratio of magnetisation to
magnetic field intensity.

Therefore,

B= uH = pou H

Ll

He x i

m

Maxwell’s Equations in Time Varying Fields

Maxwell’s equations in time varying fields are the final form of equations that
interlinks the electric and magnetic fields. This section summarizes the interlinked
electric and magnetic fields for time varying fields with modified form.

1. Maxwell’s First Equation

We know from electrostatics,
V.D =5

AS’E = EE)
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2. Maxwell's Second Equation

From electrostatics and from Faraday's law for electromagnetic fields,

Fug= 22
T

AS).E:F.ITI"
= ¥ uH
v><£=—[“)
dt

FxE o lH
XE=—-pu—0
e

3. Maxwell’s Third Equation

From Gauss’s law,

V.E=0
As, B = uH,
V.(uH) =0
V.H=0

4. Maxwell’s Fourth Equation

Applying Ampere’s law, the modified Maxwell’s equation is given as,
8D

XH=]+—
J dt

=1

Also,] = gE and D = ¢E. Therefore,

D= sy BB
dt
o . OF
VXH= oF + e—
dt
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Maxwell’s Equation in Final Form
Table 2.1 Maxwell’s Equation in Differential and Integral Form

Electromagnetics

SI. N Differential F Int 1F
(6] 11Terential form ntegral rorm NOTES
! V.D = p, fﬁ.%—fp,, dv
N v
or
VE=2
€
2 o 9B 3€_, — d f_, —
VXE =—— E.dl= —— | B.dS
dt L at Js
or or
T2 R I L
BT fl TR ) e
3 V.B=0 f§d5=o
S
or
VH=0
! Y L faa- [ (7+2)as
=/t f g ik
or
- - o OE
VXH= oE+e—
dt
Maxwell’s Equation in Free Space
In free space, g, = @and g = J}' = (.therefore, the Maxwell’s equation in free
space are written in the Table 2.2 given below:
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Table 2.2 Maxwell’s Equation in Free Space

S1. No Differential Form Integral Form
1 V.D=0 %5§=0
s
or
V.E=0
2 oL 0B qu — a fﬁ —
VXE=—— E.dl= —— | B.dS
dt L at Jg
3 V.E=0 fﬁﬁgzo
s
or
V.H=0
! Fxii=22 fra- (2
XH=— = [ —.
dt fi o dt

2.4 ELECTROMAGNETIC SCALAR WAVE
EQUATIONS AND THEIR SOLUTION

The wave equation is a second-order linear partial differential equation for the
description of waves—as they occur in classical physics, such as mechanical waves
(e.g., water waves, sound waves and seismic waves) or light waves. It arises in
fields like acoustics, electromagnetics, and fluid dynamics. Due to the fact that the
second order wave equation describes the superposition of an incoming wave
and an outgoing wave (i.e., rather a standing wave field) it is also called ‘Two-
Way Wave Equation’, in contrast, the ‘First Order One-Way Wave Equation’
describes a single wave with predefined wave propagation direction and is much
easier to solve due to the first order derivatives.

The (two-way) wave equation is a second order partial differential equation
explaining waves. The scalar wave equation describe waves in scalars by scalar
functions u = u (x, x,, ..., x ; 7) of atime variable 7 (a variable representing time)
and one or more spatial variables x , x,, ..., x_(variables representing a position
in aspace) while there are vector wave equations describing waves in vectors, such
as waves for electrical field, magnetic field, and magnetic vector potential and elastic
waves. By comparison with vector wave equations, the scalar wave equation can
be seen as a special case of the vector wave equations; in the Cartesian coordinate
system, the scalar wave equation is the equation to be satisfied by each component
(for each coordinate axis, such as the x-component for the x-axis) of a vector
wave without sources of waves in the considered domain (i.e., a space and time).



The scalar wave equation is,

u , [ O%u . %u o] Pu
—_— = — — BRI, e
ot? dx? = Ozl D2
Where c is a fixed non-negative real coefficient.

The electromagnetic wave equation is a second-order partial differential
equation that describes the propagation of electromagnetic waves through
a medium or in a vacuum. It is a three-dimensional form of the wave equation.
The homogeneous form of the equation, written in terms of either the electric
field E or the magnetic field B, takes the form:

This is referred as the speed of light (i.e., phase velocity) in a medium
with permeability %4, and permittivity p, and V? is the Laplace operator. In a vacuum,
V=€, =299792458 m/s, a fundamental physical constant. The electromagnetic
wave equation is derived from Maxwell’s equations. Basically, B is termed as the
magnetic flux density or magnetic induction.

2.4.1 Hertz Vector

Hertz vector is also known as polarization potentials, which are useful auxiliary
fields that permit the calculation of the fundamental electromagnetic fields in many
cases of practical importance. This provides a new light on the physical meaning
of a Hertz potential.

The Hertz vector potentials are an alternative formulation of the
electromagnetic potentials.

Magnetic vector potential, A, is the vector quantity in classical
electromagnetism defined so that its curl is equal to the magnetic field.

Hertz vectors can be advantageous when solving for the electric and magnetic
fields in certain scenarios, as they provide an alternative way to define the scalar
potential ¢ and the vector potential A which are used to find the fields.

0A
E=-V¢— —
YT o
B=VxA
Considering cases of electric and magnetic polarization separately for
simplicity, each can be defined in terms of the scalar and vector potentials which

then allows for the electric and magnetic fields to be found. For cases of just
electric polarization the following relations are used.
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And for cases of solely magnetic polarization they are defined as:

¢=0
A=VxII,

Together with the electric potential /£, the magnetic vector potential can be
used to specify the electric field E as well. Therefore, many equations of
electromagnetism can be written either in terms of the fields E and B, or equivalently
in terms of the potentials ¢ and A. In more advanced theories, such as quantum
mechanics, most equations use potentials rather than fields.

2.5 PLANE WAVE PROPAGATION IN
CONDUCTING AND IONISED MEDIA

In physics, a plane wave is a special case of wave or field - a physical quantity
whose value, at any moment, is constant over any plane that is perpendicular to a
fixed direction in space. Principally, the electromagnetic wave equation is a second
order partial differential equation that describes the propagation of electromagnetic
waves through a medium or in a vacuum. It is a three dimensional form of the
wave equation.

Electromagnetic waves are created by the vibration of an electric charge.
This vibration creates a wave which has both an electric and a magnetic component.
An electromagnetic wave transports its energy through a vacuum at a speed of
3.00 x 10® m/s. The propagation of an electromagnetic wave through a material
medium occurs at a net speed which is less than 3.00 x 10® m/s. An electromagnetic
wave consists of an electric field, typically defined in terms of the force per charge
on a stationary charge, and a magnetic field, defined in terms of the force per
charge on amoving charge.

As already discussed in the previous section, the mechanical waves travel
through a medium, such as a string, water or air. Possibly the most significant
prediction of Maxwell’s equations is the existence of electromagnetic fields, i.e.,
combined electric and magnetic fields that propagate through space as
electromagnetic waves. Because Maxwell’s equations hold in free space, therefore
the predicted electromagnetic waves, unlike mechanical waves, do not require a
medium for their propagation.

Electromagnetic Waves in One Direction

An electromagnetic wave consists of an electric field, typically defined in terms of
the force per charge on a stationary charge, and a magnetic field defined in terms
of'the force per charge on a moving charge.

The one-dimensional scalar equation is given below,
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For a wave traveling in free space, 4 = pg, and € = &;. Therefore,
generalizing equation for all three coordinates is given as,

9°%F 92F

9x7 = Moo g @2

The general solution of the above second order equation is given by,
E= fi(z —ut) + f,(z + ut)
For wave traveling in z-direction,
E=fi(z—ut) + f,(z + ut) (2.3)
Some examples of the above function include e /=4 gin (z + ut) ...

In the above general solution given in Equation (2.3), £, (z — ut) represents
the wave traveling in positive z — direction and function £, (z + ut) represents
wave traveling in the negative z — direction.

Wave Propagation in a Lossy Dielectric

Conduction based on the conductivity property of the material can be classified as
lossy dielectric with 6 # 0, lossless dielectric with o =0 and good conductors

with ¢ = ca. Considering a lossy, charge free medium, Maxwell’s equation

becomes,
V.E=0 (2.4a)
VH=0 (2.4a)
VXE =—jouH (2.4¢)
VxH= (o +ja)6)§ (2.4d)
Taking a curl of Equation (2.4c¢),
VxVxE=—jou(VxH)
VXVXE = —jou(o +ja)e)§ (2.5)
Applying vector identity to LHS of Equation (2.5),
VxVxA=V(V.A) - V4
Equation (2.5) implies,
V(V.E) — V’E = —jwu(c + jwe)E 2.6)

From Equation (2.4a), V.E = 0. Therefore Equation (2.6) becomes,
—V2E = —jou(o + jwe)E
V2E + jou(o + jwe)E = 0

V2E + V2E = 0 2.7)
Where,
v2 = jou(o + jwe) = —w?ue + jouo (2.8)

Similar to Equation (2.7), for magnetic field,
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VZH +Vv2H =0 2.9)
Equation (2.8) implies,

V2 = —wlue + jopo = a + jp

Re(v¥) = a = —w?ue (2.10(a))
Where,

Im(v*) = B = wuo (2.10(b))

In Equation (2.10) o is called as attenuation constant and J3 is called the
propagation constant.

V2| = a? + B? = /(—w?pe)? + (wpo)?

a’ + B? = wp/ (we)? + (0)? 2.11)
vi = (a+jB)? = a®—B%+ 2jap

From Equation (2.10(a)),

Re(v¥) = a? — B? = —w?ue (2.12)
Adding Equation (2.11) and Equation (2.12)

a? — %= —w?ue

a? + B% = wp/ (we)? + (0)?

20° = —w?ue + wp/ (we)? + (0)2

2
wlue o
a? = — ZH +7” (we)? + (0)?

2

< oo G

2

w?ne  w?ue o \2
-T2 T [H(&)]

a’ = w? [HZ—E 1+(é)2—§]

wz[g () ke

a=o || [1+(=) -1 (2.13)




Subtracting Equations (2.11) and (2.12):
a? + B? = wpq/ (we)? + (0)2

—a? + % = w?ue

2% = wlpe + wp/(We)? + (0)?

w?ue

Br=—

+ 2 @ + ()2

- oo+ (2]

- (G

2
32=w21% ’1+(é)2+%‘
B = wZI% /1+(&)2+%
ﬁ:mfglb+cif+1

Intrinsic Impedance

(2.14)

Intrinsic impedance is also called as the wave impedance in free space. It is denoted
as 7, - Intrinsic impedance relates the electric and magnetic field. Intrinsic impedance
is the ratio of electric to magnetic field given as,

E
M = %=

H
Proof
Let the electric field, F is given as,
E=E,a,+Ea, +Ea,
Ifthe electric field component has only x—direction component, then
E =E,a, = E, 2.15)

Therefore, ifthe wave is assumed to propagate in the positive z—direction,
with only x—component,

[V2E; — y?E] = 0
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Expanding the above equation with the coordinate components,
92 92 92
+—+
ox? = 0y? c')zzl

[Exa;)] - yz[Exa_x)] =0

R R N P

Since the wave with x—component alone is travelling in the +z direction,

2 2 2
_>{a E, 0%, 0 E"—yzEx}=o

8%k, 8°E,

R .EI;.-; = 0. Hence,
0%E,
2 —
5,2 " VEx = 0 (2.16)

The solution of the Equation (2.16) is similar to the solution of Equation
(2.3). Therefore,

E, = E. e +E, eV (2.17)

Since we assume the wave to travel in the +z direction, Equation (2.17)
becomes,

E,=E, e

From Equation (2.15),

E= E, e a,

= Re[E, e ./ . @]

= Re[E, e (@HF)z eiot g2]

= Re[E, e e/ @t~ q |

E = E, e % cos(wt — fz) ay

Similarly,
H= H, e % cos(wt — fz)a,
E
H,, = Tl (2.18)

Where, n = Intrinsic Impedance (€2)

From Maxwell’s third equation,

VXE = —jwyﬁ

E. e e/ (—y) = —jou(H, e 7. e/t)
= Ey (-v) = —jouH,,

= Hy, = —E,,

Jjou (2.19)



Comparing Equation (2.18) and Equation (2.19),

_jon

Y

_ jop jou
Ca+jB _\/ja),u(a+jwe)

_ | Jon
: o+ jwe

s
_ fionto o0

02+ w?e?

. 2
,  Jjouo w?ue
02 + w?e? 0?2 + w?e?

, w? e WUO
0%+ w?e? 0%+ w?e?

+J

n

2] = (@R @uo)? (@w?(e? + (e))
T T o+ o~ | [0+ ol
2|= Wl

0-2
(we)?
B w B wp
- 1
ool ) foe (i)
_ Vou
1
e ]
3
€
Inl = —2%
1+ (G |
Let,
6, = tan~! (%)

(2.20)

(2.21)
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tan@,7 =
1+ (%)2 +1
1+(2) -1

tan? 9, = ( 6)2 (2.22)
1+ (&) +1

2 2
We know that, tan 26 = m"! B oy (i)
tan” 8-1

o o
tan 2977 = — [ —>1

we L' we (2.23)
Therefore,
H= H, e cos(wt — Bz) @, = ie‘“z cos(wt — Bz) a,

! Y Inle, g
H=-"le cos(wt — Bz — 6,) @,

ul

Wave Equation for Conducting Medium

Wave propagation parameters gets altered when they travel across different
medium like free space, dielectric and conductors. In the below section, wave
parameters for different medium will be discussed.

(a) Plane Waves Traveling in Lossless Dielectric

In lossless dielectric, the material has the following properties.

o=0
€ = €p€,
U= Holy

Recalling a.and  from Equation (2.13) and Equation (2.14),

a=w % /1+(&)2—1] =0
o=0




Substituting the material properties, we get a=0. Similarly,

=0 |7 1+(—) +1|=w/ue (2.24)

@

o
Also, tan26, = — =0
we

a=0

l’l‘ o
~n= [—20
f

Forlossless dielectric, electromagnetic waves does not undergo phase change
as@, =0

(b) Plane Waves in Free Space

When plane waves travel in free space with the properties, ¢ = 0,6 = g, and

u = p,.Substituting in the o and § expressions,
a =0
p = w\pue = w,/ugeg = w/c (2.25)

Where, ¢ = Velocity of light.

n=ﬁ= F=120n=3779
€ ()

n=mng=377Q

(¢) Plane Waves in Good Conductors

Good conductors have the following material properties with regard to conductivity,

g =
€ = €p€,
U= Holr
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From the expressions for ¢ and f.

o D) P

_ pe roN  [wpo
B= “’\/7 (@) =7 (2.26)
sa=p
E
€ € wu
Inl = T~ = |— (2.27)
o \2]4 9 g
[1 + (E) ] we
o
tan 219,7 = = 0
6, =45
Therefore,

w 0
ap= /7“ 245 (2.28)

The electric field leads magnetic field by an angle of 457 in good conductors.

Therefore F and i may be rewritten as,

E= E, e * cos(wt —fz)a,
7 —az B — 45VE
H il e” ™ cos(wt— fz— 45 )a,

Depth of Penetration or Skin Depth ()

When an electromagnetic wave travels, they tend to attenuate. This attenuation
depends on the frequency of the wave travelling. Attenuation is larger, when the
frequency is larger. This implies that wave die out faster for larger frequencies and
travel a very short distance. This distance of travel for a wave till they are attenuated
to a value of 36.8% of the original value is called as depth of penetration or

skin depth (Refer Figure 2.4). They are represented as &.

& oc—
o
We know that,
o 1
e =
=
If is the distance travelled as shown in Figure (2.4).
—ad = —1
ad =1
_1 2.29
o= (2.29)



Where a.is the attenuation factor. Therefore,

For good conductors, & # ca. Hence, from Equation (2.26), we have,

s_l__1 _ |2
"= o (2.30)
\/ 2

From Equation (2.30), it is observed that, as the frequency, o increases, o
increases and 0 decreases.

)

EorH
A

Emax_ < t
36.5% Eypay —\— ————————————— /ﬂ\

A
(7]
Y

Fig. 2.4 Skin Depth

2.6 RADIATION PRESSURE AND MOMENTUM

The mechanical pressure exerted upon any surface due to the exchange of
momentum between the object and the electromagnetic field is the ‘Radiation
Pressure’. The associated force is called the radiation pressure force, or sometimes
just the force of light.

Radiation pressure is the mechanical pressure exerted upon any surface due
to the exchange of momentum between the object and the electromagnetic field.
This includes the momentum of light or electromagnetic radiation of
any wavelength that is absorbed, reflected, or otherwise emitted by the matter on
any scale (ranging from macroscopic objects to dust particles to gas molecules) is
also known as black-body radiation. The associated force is called the radiation
pressure force, or sometimes also referred as just the force of light.

The forces generated by radiation pressure are generally too small to be
noticed under everyday circumstances; however, they are important in some physical
processes and technologies. This particularly includes objects in outer space, where
it is usually the main force acting on objects besides gravity, and where the net
effect of a tiny force may have a large cumulative effect over long periods of time.
For example, if the effects of the Sun’s radiation pressure on the spacecraft of

Electromagnetics

NOTES

Self - Learning
Material

109



Electromagnetics

110

NOTES

Self - Learning
Material

the Viking program had been ignored, the spacecraft would have missed Mars’
orbit by about 15,000 km (9,300 mi). The significance of radiation pressure
increases rapidly at extremely high temperatures and can sometimes dwarf the
usual gas pressure, for instance, in stellar interiors and thermonuclear weapons.

Radiation pressure can equally well be accounted for by considering the
momentum of a classical electromagnetic field or in terms of the momenta of photons,
particles of light. The interaction of electromagnetic waves or photons with matter
may involve an exchange of momentum. Due to the law of conservation of
momentum, any change in the total momentum of the waves or photons must
involve an equal and opposite change in the momentum of the matter it interacted
with (Newton’s third law of motion), as is illustrated in the following Figure for the
case of light being perfectly reflected by a surface. This transfer of momentum is
the general explanation for what we term radiation pressure.

Reaction
Force

Ferfect

Flat R eflector Feflected

Momenturm

[ncident

Mormenturm
Mormenturnr

Change

Fig. 2.5 Force on a Reflector Results from Reflecting the Photon Flux Johannes Kepler
put forward the concept of radiation pressure in 1619 to explain the observation that a
tail of a comet always points away from the Sun.

The assertion that light, as electromagnetic radiation, has the property of
momentum and thus exerts a pressure upon any surface that is exposed to it was
published by James Clerk Maxwell in 1862, and proven experimentally by Russian
physicist Pyotr Lebedev in 1900 and by Ernest Fox Nichols and Gordon Ferrie
Hull in 1901. The pressure is very small, but can be detected by allowing the
radiation to fall upon a delicately poised vane of reflective metal in a Nichols
radiometer.

Theory

Radiation pressure can be viewed as a consequence of the conservation of
momentum given the momentum attributed to electromagnetic radiation. That
momentum can be equally well calculated based on electromagnetic theory or
from the combined momenta of a stream of photons, giving identical results.

Radiation Pressure from Momentum of An Electromagnetic Wave

According to Maxwell’s theory of electromagnetism, an electromagnetic wave
carries momentum, which will be transferred to an opaque surface it strikes.



The energy flux (irradiance) of a plane wave is calculated using the Poynting
vector,

S =E x H, whose magnitude is denoted by S. Characteristically S divided
by the speed of light is the density of the linear momentum per unit area (pressure)
of'the electromagnetic field. So, dimensionally, the Poynting vector is,

: &—Fﬂ.x
Szpowerzrate of doing work= Af
area area area’

Which is the speed of light, c=Ax/At, times pressure, AF/area. That pressure
is experienced as radiation pressure on the surface:
(5) I

Pincident — — =
C C

Where Pis pressure (usually in Pascals), / is the incident irradiance (usually
in W/m?) and c is the speed of light in vacuum.

2.7 REFLECTION AND REFRACTION

Reflection basically occurs when a wave is incident on a boundary between two
media in which the wave speed is different, and then remains in the original medium
rather than passing into the second medium. While reflection occurs at any boundary,
often only a small proportion of the wave is reflected. Refraction is the change of
the direction of propagation of waves when they pass into a medium where they
have a different speed. It is observed whenever the waves are incident to the
surface at an angle different to the normal to the surface.

When an electromagnetic field faces an abrupt change in the permittivity
and permeability, then certain conditions on electric and magnetic fields on the
interface are to be respected for the continuity. These conditions of continuity are
termed as the boundary conditions for the electromagnetic field.

Similar to electrostatics boundary conditions, magnetostatics boundary

conditions are formulated using the two parameters § gqnd H. The magnetic field,

5 is defined using Gauss’s law and given as,
In integral form, ¢ 5. ds = 0 (2.31)
The magnetic field intensity, 7 is defined as Ampere’s circuit law,
In integral form, § 7. dl = I (2.32)

(a) Magnetic Material Boundary

Consider two magnetic materials as shown in Figure (2.6) to identify the magnetic

boundary conditions using B and H.
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Fig. 2.6 (a) Line Integral for g (b) Surface Integral for §
Using Equation (2.31) for the boundary condition as shown in Figure (2.6),
and then integrating the pill box from Medium 1 to Medium 2,

—- —

§ Bds=¢ B.ds—¢_ B,,.ds=0

e

—_— —
—B,,.ds—B,_.ds=10

ey (2.33)
Since § = yH, Equation (2.33) becomes,
Hyp, fy, = Hoy (2.34)

From Equations (2.33) and (2.34), the normal component of g is continuous
and the normal component of 7 is discontinuous as undergoes a change by across
the boundary.

Similarly applying the line integral Equation (2.32) along the boundary path
abb’cda’a in Figure (2.6),



= [PHy,di+ [ Hy, dit[Hy, dit[*(—Hy) dl + [£(~H,,) I
+.r:(_§1n) dl=13i

H, dw + Hl?,? + H,, % — H,dw — H,, = Hmd— = I.dw

As dh/2=0,

Hltdw - Eztdw =I.dw

=H e E 2 =1
If1=0 at the boundary, the,

i = (2.35)
AsF = uH,
kS |
My,  Hrs (2.36)

From Equations (2.35) and (2.36), the tangential component of magnetic

field intensity, £ is continuous across boundary and tangential component of flux
density, F is a discontinuous by a factor of u.. across the boundary.

Additional relation can be obtained by considering the detailed representation
of Figure (2.6(a)) in Figure (2.7).

A_>
B 2n

Fig. 2.7 Boundary Condition
From Figure (2.7),
B, = Bycosf,

and B, = B,cosf,.
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But from Equation (2.33),

B, =B,,

= B, cosf8, = B, cosf, (2.37)
Also, from Equation (2.36), we have

By _ By

I"[’r'j-_ L

= ., B = ptr By (238)
But from Figure (2.7),
B,, = B,sinf,;
B,, =B,sinf,
Equation (2.38) implies,
Hy,(Bysinf;) = u, (B, sind,) (2.39)
Dividing Equation (2.39) by Equation (2.37),
(B, siné,) (B,siné,)
25 B, cosf, ey B,cosé,

B tanfy = p,  tanf,

Theref: tanf, _ My, _ Mol 4y
crerore - - — =

>tan &, Frg HoMry  Ha
tan#, u,

tan #y 1o

(b) Magnetic Materials

A material is considered to be magnetic based on the magnetic susceptibility x_ .
Ifx_ = 1,the material is a magnet.

If x_ = 0,the material is a non-magnet.

The magnetic materials are generally classified depending on the relative
permeability, g . Hence there are mainly three different types of magnetic materials.
They are:

(1) Diamagnets
(1) Paramagnets
(i) Ferromagnets

(i) Diamagnets

Diamagnets are weakly affected by magnetic field. They have yp <1 andx <O.
The magnetic moment of each atom in diamagnet is m=0.

Examples: Diamond, Silicon, Copper, etc.,



(ii) Paramagnets
Paramagnets are temperature dependent with a positive magnetic moment, m.
Theyhavey =1 andx,, > 0.
Examples: Tungsten, Potassium and Platinum.
(iii) Ferromagnets
Ferromagnets are largely affected by magnetic field with a strong magnetic moment

m.Theyhavey > 1 and x, > 0.Ferromagnets loose their magnetic property
when temperature is raised above a certain level.

Ferromagnets exhibit a non-linear characteristics between the magnetic field,

B and magnetic field intensity g, That s,

B+ FfDFf-rE

Hence g is nonlinear. The nonlinear relationship between B and H are
well understood by a “Magnetisation Curve’ or a ‘Hysterisis Curve’.
Examples: Iron, Cobalt, etc.

These ferromagnets act as a short circuit path for the magnetic field. Hence they
are used in magnetic screening applications. For example, they are used in
transformers that links or act as short circuit path for the magnetic field produced
by the primary winding,

Table 2.3 illustrates the properties of different magnetic materials.

Table 2.3 Summary of Magnetic Materials

Sl. No | Magnetic Uy Xm m
Material
1 Diamagnets s1 -107° 0
2 Paramagnets =1 107> >0
3 Ferromagnets > 1 >0 >0

(c) Hysteresis Curve

Hysteresis curve provides the nonlinear relationship between B and &.To obtain
a hysterisis curve or a magnetisation curve, assume a Ferromagnet, initially
magnetised. This initial magnetisation is represented in the hysteresis curve from O
to A as shown in Figure (2.8).
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Fig. 2.8. -B-H Curve or Hysteresis Curve

Once the Ferromagnet is saturated with me at ﬁmx, itis demagnetised.

When demagnetised, reducing the f reduces g, but not on the same path of
magnetisation OA. It follows AB while demagnetisation in Figure (2.8) on further
reducing the 7 to negative, g reaches zero only at C. On further reducing , achieves
negative saturation, following the path CD. When magnetised again with increase
in, increases to attain saturation of through the path DEFA. The magnetisation
and demagnetisation of the ferromagnetic material creates a Hysteresis Loop.
This area of the closed loop indicates the energy loss of the material during
magnetisation and demagnetisation. The larger the area of the hysteresis, the higher
will be the losses and hence choice of the ferromagnetic material will be towards
anarrower ‘Hysteresis Curve’.

Reflection and Refraction of Electromagnetic Waves at the Interface
of Non-Conducting Media
In physics, the term reflection refers to the change in direction of a wavefront at an
interface between two different media so that the wavefront returns into the medium
from which it originated. Common examples include the reflection of light, sound
and water waves. The law of reflection says that for specular reflection the angle
at which the wave is incident on the surface equals the angle at which it is reflected.
Mirrors exhibit specular reflection.
When a plane wave travels across a medium they may be reflected at the boundary
ofthe medium and refracted after they cross the boundary. The amount of reflection
and refraction depends on the following factors:

1. The type of medium in which the wave travels.

2. The angle of incidence of the wave.
Based on the angle of incidence, the incidence may be classified as:

1. Normal Incidence
2. Oblique Incidence

Reflection and Refraction of Plane Waves with Normal Incidence

When a plane wave is incident normally on a plane, or in other words, ifa wave is
incident on a plane perpendicular to the traveling wave, then they are said to
represent normal incidence as shown in Figure (2.9).



e

Wave normal Klae

to a plane

Fig. 2.9 Normal Incidence

Let the wave travel from Medium 1 to Medium 2. Medium 1 has the
following properties g, e, andy,, and the Medium 2 has the properties
g5, €, andyu,. The wave that is travelling has three stages and needs ti be
represented uniquely. Hence the following subscripts will be used.

Wave Subscript
Incident wave i
Reflected wave r
Refracted or transmitted wave t

The EM or Electro Magnetic wave is assumed to travel in the +a_ direction.

Since the TEM (Transverse Electric and Magnetic) waves are considered electric
field, the magnetic field and direction of travel are mutually orthogonal. Following
vectors identities should be recalled:

ExH=k [ELHLK]
Hxk=E
kxE=H

(a) Incident Wave

LetE and F: travel in -1-EE' direction

E:[:E] == EDI:E‘_]'"‘-S a’_x:. = EGI_E_I:_EL_J.E-_}S a’_x

E/(2) = Ege/P" @, [let ay = 0] (2.40a)
Hi(2) = Hye7F1* @, (2.40b)

In Equations (2.40a) and (2.40b), the time harmonic term /«*is removed
for the sake of convenience and will be reinstated at the end of the derivation.

(b) Reflected Wave

The reflected wave consisting of E_and F_ get reflected and travel in the —a_

direction.
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E.(2) = B, e/P1* @
Hy(2) = Ho, P 1*(- @)

H;(2) = —Ho, /1" @

—kxE=-H
[ ]

(2.41a)

(2.41b)

(c) Transmitted Wave
The transmitted wave, of Er' and Fr travel in the same direction as that of the
incident wave, i.e., in the +a_ direction.
E((2) = Epe/F2* @ (2:42)
H/(z) = Ho,e P2 @}
The incident, reflected and transmitted waves are shown in Figure (2.10).

Medium 1 Medium 2
G € Wy Gy, € My
=

- -
a, E, a

—
E, 1
Transmitted
Wave
=

H, Ao ';7 H,

Reflected Wave
G(i

Incident Wave
m@<
2

“— z=0
i {

) l

Fig. 2.10 Reflection of Plane Waves at Normal Incidence

The total field in Medium 1 includes the incident field and the reflected field.
Similarly, total field in Medium 2 includes the transmitted field. Therefore,

In Medium 1,
Ff = ﬁ + E; (2.43a)
H, = H;+H, (2.43b)
In Medium 2,
E, = E, (2.44a)
Hy = H, (2.44b)

Substituting Equations (2.40) and (2.41) in Equation (2.43), we have,

—

= —iBiz g~ 1Bz o~
Ei=Epe ™ a ,+Eye a,

And

e

= —JB.E g7 iBiz o~
Hy= Hye a, —H, e’™* a,



Atthe boundary, i.e.,atz = @,

E; = Ey +Eq, (2.45a)

H = Hy, — Hy,

=——— 2.45b
n m ( )

Similarly, substituting Equation (2.42) in Equation (2.49), we have,
E?; — Eur e _}.EZE ﬂ-_x
F; — HDrE_}.E:E ﬂ-_}.

Atthe boundary at z = 0,

E = Ey, (2.46a)
H, = Hy, (2.46b)
_ b
N2

Across the boundary, the fields are continuous and hence,

El' = o E‘; and E i H_';

* Eo, + B, = Eo, (2.47a)
And

Fo, _Eo _ o,

m m M2 (2.47b)

Multiplying Equation (2.47a) by ﬂi and adding with eqn. Equation (2.47b),

we have {i Equation (2.47a)+ Equation (2.47b)}

n,

[ Bl e Tol] gl
By B Foy Bo Fop, B

M e U e U Ha

i [1 + 1]
M ! s T T2

LR ]

E, = i

O D“’h 1+ 1,

2m,

Ey, = Ey, [771 n 7]2] (2.48)
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1 . ) o
Similarly, [— Equation (2.47a)— Equation (2.47b)} implies,

n,

[ - [ -2 -2

M U i m M Ha
2 ol [1 1]
T I ’ M1 M
o, = Eo, |75 (249)

Substituting Equation (2.48) in Equation (2.49),

21, R
- 2 P

' fmy 21,

M2—Mm
EOT = EOi ]
m+n
Check Your Progress
. Define the term time varying.

. What are Maxwell’s equations?

. What does electromagnetic scalar wave equations describe?
. Give the equation for scalar wave.

. State about the Hertz vector.

. What are electromagnetic waves?

. What is radiation pressure?

0 N N L AW N~

. Define the term reflection

2.8 POLARISATION

Polarization or Polarisation is a property applied to transverse waves that specifies
the geometrical orientation of the oscillations. In a transverse wave, the direction
of the oscillation is perpendicular to the direction of motion of the wave. A simple
example of a polarized transverse wave is vibrations traveling along a taut string,
for example, in a musical instrument like a guitar string. Depending on how the
string is plucked, the vibrations can be in a vertical direction, horizontal direction,
or at any angle perpendicular to the string. In contrast, in longitudinal waves, such
as sound waves in a liquid or gas, the displacement of the particles in the oscillation
is always in the direction of propagation, so these waves do not exhibit polarization.
Transverse waves that exhibit polarization include electromagnetic waves, such as
light and radio waves, gravitational waves, and transverse sound waves (shear
waves) in solids. In some types of transverse waves, the wave displacement is



limited to a single direction, so these also do not exhibit polarization; for example,
in surface waves in liquids (gravity waves), the wave displacement of the particles
is always in a vertical plane.

An electromagnetic wave, such as light consists of a coupled oscillating electric
field and magnetic field which are always perpendicular; by convention, the
‘Polarization’ of electromagnetic waves refers to the direction of the electric field. In
linear polarization, the fields oscillate in a single direction. In circular or elliptical
polarization, the fields rotate at a constant rate in a plane as the wave travels. The
rotation can have two possible directions; if the fields rotate in a right hand sense
with respect to the direction of wave travel, it is called right circular polarization, or,
if the fields rotate in a left hand sense, it is called left circular polarization.

Light or other electromagnetic radiation from many sources, such as the
sun, flames, and incandescent lamps, consists of short wave trains with an equal
mixture of polarizations; this is called unpolarized light. Polarized light can be
produced by passing unpolarized light through a polarizer, which allows waves of
only one polarization to pass through. The most common optical materials (such
as, glass) are isotropic and do not affect the polarization of light passing through
them; however, some materials—those that exhibit birefringence, dichroism, or
optical activity—can change the polarization of light. Some of these are used to
make polarizing filters. Light is also partially polarized when it reflects from a surface.

Basically, the electric and magnetic vibrations of an electromagnetic wave
occur in numerous planes. A light wave that is vibrating in more than one plane is
referred to as unpolarized light. It is possible to transform unpolarized light into
polarized light. Polarized light waves are light waves in which the vibrations occur
in a single plane. The process of transforming unpolarized light into polarized light
is known as polarization.

Wave Polarization

Electromagnetic waves travel through any medium. These wave are produced by
the vibration of the electron charges. These wave are traverse waves that has both
the electric and magnetic components.

Polarization, also called wave polarization, is an expression of the orientation
of the lines of electric flux in an ElectroMagnetic field (EM field). Polarization can
be constant — that is, existing in a particular orientation at all times, or it can
rotate with each wave cycle.

Polarization is important in wireless communications systems. The physical
orientation of a wireless antenna corresponds to the polarization of the radio waves
received or transmitted by that antenna. Thus, a vertical antenna receives and
emits vertically polarized waves, and a horizontal antenna receives or emits
horizontally polarized waves. The best short-range communications is obtained
when the transmitting and receiving (source and destination) antennas have the
same polarization. The least efficient short-range communications usually takes
place when the two antennas are at right angles (for example, one horizontal and
one vertical). Over long distances, the atmosphere can cause the polarization of
a radio wave to fluctuate, so the distinction between horizontal and vertical
becomes less significant.
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Some wireless antennas transmit and receive EM waves whose polarization
rotates 360 degrees with each complete wave cycle. This type of polarization,
called elliptical or circular polarization, can be either clockwise (right handed)
or counter clockwise (left handed). The best communications results are obtained
when the transmitting and receiving antennas have the same sense of polarization
(both clockwise or both counter clockwise). The worst communications usually
takes place when the two antennas radiate and receive in the opposite sense (one
clockwise and the other counter clockwise).

Polarisation may be defined as the orientation of the field in a particular
direction. Considering a uniform plane wave when traveling in +z direction,

assuming the y component of the electric field to be zero, i.e., E,. = 0, then only
E,, component exists pointing towards x-direction. Then the electric field is said
to be oriented towards x-direction or in other words, the wave is said to be
polarised in x-direction. Similarly when E_ = 0, wave is polarised to be in y-
direction.
Polarisation of waves may be:

(1) Linear Polarisation

(2) Circular Polarisation

(3) Elliptical Polarisation

1. Linear Polarisation

Ifthe electric field components £, and E, are in phase with each other, the resultant

electric field, F given as,

E =E.a. +Ea,

|E| = /E,% +E2

E
0=t -1 (—y>
an Ex

| E| is said to be linear. The resultant vector is said to be linear, if the magnitude

and the phase of the vector is constant with time, then the wave is said to be
linearly polarized.

> > E
|E|
Fig. 2.11 Linear Polarisation

2. Circular Polarisation

When the field components E,_and E,, are out of phase by 90~ with each other.

The variation of these field components makes the resultant vector rotate in a
circular path. Such polarisation is called circular polarisation.
We know that,

E=E.a,+Ea,



Since the fields vary sinusoidally, each component of electric field is Electromagnetics
represented with an instantaneous value with magnitude E,,,.

E.=FE,sinwt
And E, = E_sin(90 — wt) NOTES
. E = E,, sin wta, + E,,sin{90 — mt}a:f

=E,sinwta, + E, coswta,

|§| =/ (Ep sinwt)?+ (E, coswt)? = |EZ+EZ

=F,

orEs =B+ K]

The above expression is a locus of a circle and hence said to be circularly
polarised.

Fig. 2.12 Circularly Polarized
3. Elliptical Polarisation

When the field components E,_ and E.. have different magnitude but have 90~
phase difference, the resultant field envelopes results in elliptical polarisation.
We know that,

E = Eyay+ Eya,

Let the magnitudes of E_ and E,, be E,,, and , respectively. Therefore,

E,=E, snwt (2.50)
E, = E, sin(90 —wt) =E, coswt (2.51)
Therefore,

E==E,_ sinwta,+ E,, coswta,

|E| = ‘J[Em: sin mt)z + (Em: cos mt)g

=EZ+E;

From Equations (2.50) and (2.51), we have
E. E,

—— =sin wt erd —— = coswt
LS Emz

" E2 P i
sin® wt + cos*wt =1 = + =

=

2
My Em;
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The locus of the above expression is ellipse and hence said to be elliptically
polarised.

Circular (Right Hand) Elliptical {Right Hand)
Polarization ] Polarization

Linear

Polarization X

Fig. 2.13 Elliptical Polarisation

The following are four different methods of polarisation:
e Polarisation by Transmission
e Polarization by Reflection
e Polarization by Refraction

¢ Polarization by Scattering

Perpendicular Polarization

In perpendicular polarization, electric field is perpendicular to the plane of incidence,
across the boundary, electric field must be continuous and hence,

E,=E, +E,
Rttt

E; E
We how that,
E: 19— EZcos@, e,
E; E? cosb, /e

E\? cos8, 4
=1— (1 + _") i V€2
E./ cosf, +[e;
Following the similar procedure as that of parallel polarization

(1 Er) (1 . E,,) B (1 " E,)z cos b, /e,
E. Ed E./ cosB, \[e;

1_E:(1LE)CDSHf\'!E_3
' E.J cosB, \[e,

E
('1 E,) cosf, \/e; N E. cos 8, /e,

E cosB, \Je;, E, cosB, \Je;

E.|,  cosb, e 4 cosB, /e,
E, cosf, & | cosf, /e,
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_cosb.qe

cosf, vE;

: cos B, &2

L 1 + 3 '_:

cos8; \fe NOTES

E. /€1 cosB; — €, cosb,

" E; /€[ cosB; ++/e; cosb,
Similarly;

B 2 \/€, cos B;
E ™ & cos8; ++/e; cosb,

V€ cosB; — /€, cos O,

1+Ap=1+
E \€1 cos B; + /e, cosb;
2+/€1 cos6;
= =T
\€1 cos B; ++/e; cos B, E
1+ AE =Tg

2.9 TOTAL INTERNAL REFLECTION

According to electromagnetic theory of light, electric field, magnetic field and the
propagation vector of light travel along three mutually perpendicular directions. It
is the electric field of light that creates optical sensation in our eyes, in photographic
cameras and in all other optical instruments. That is why electric field is known as
light vector.

N

Fig. 2.14 Direction of Propagation

In case of propagation of light, electric field, being always perpendicular to the
direction of propagation, vibrates in its own plane with all possible orientations. If
we consider a circular cross-section perpendicular to the direction of propagation,
the oscillating profile of the electric field in all possible directions will be similar to
that in Figure (2.14). Here the propagation vector of light is perpendicular to the
plane of the paper. If, by some means, all the oscillating directions except a single
one of the electric field are cut off, the resultant light will be said to be polarised
light and this phenomenon of eliminating all directions of electric field and retaining
asingle preferred direction of light vector perpendicular to the propagation vector ' g,/ 7 ouming
is known as polarisation. Material 125
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Production of Polarised Light

Suppose, Sis some source of unpolarised light (natural light). If we place a tourmaline
crystal in the path of the unpolarised light in such a way that the optic axis of the
crystal is perpendicular to the direction of propagation of the unpolarised light, then
those vibrations of the electric field of unpolarised light which are parallel to the
optic axis of the crystal, will pass through the crystal and the resultant light is polarised
(containing only one preferred direction of electric field). If a second tourmaline
crystal is placed in the path of polarised light in such a manner that both the crystals
have their optic axes parallel, then polarised light will be visible beyond the second
crystal also.

Py Optic axis Py

e i,
NI RRAEND RN

I
1
I
I
T

1

Unpolarised Tourmaline polarised Tourmaline
light crystal light crystal
(polariser) (analyser)

Fig. 2.15 Propagation of Polarized Light

Now, if the optic axis of the second crystal is rotated around the direction of
propagation of polarised light coming from the first crystal, then the intensity of
palarised light beyond the second crystal goes on decreasing and ultimately becomes
zero when the optic axis of the 2nd crystal is perpendicular to that of the first crystal.
The first tourmaline crystal is called polariser and the 2nd one is called analyser.

Fig. 2.16 Unpolarised Fig. 2.17 Polarised Light Fig. 2.18 Polarised Light
Light (Vibrations are Perpendicular Vibrations are in
to the Plane of Paper) the Plane of Paper)

Planes of Vibration and Polarisation
The imaginary plane which contains the vibrations of electric field of a polarised

light is called plane of vibration. An imaginary plane perpendicular to the plane of
vibration is called plane of polarisation.

<— Plane of
vibration

‘ ““““ ~
\
\
\
Plane of

polarisation

e

Fig. 2.19 Plane of Vibration and Polarization



Qualitative Discussion on Types of Polarised Light
In general, there are three types of polarised light. These are:

Plane Polarised Light: The direction of electric field remains fixed, but its

magnitude changes during vibration.

Circularly Polarised Light: The magnitude of electric field remains fixe
direction changes during vibration.

Elliptically Polarised Light: Both the magnitude and direction
continuously during vibration.
Let us consider two mutually orthogonal light vectors given by,
E,.=E, sin ot
E, = E, sin (ot + ¢)

d, but its

change

.(2.52)
.(2.53)

[ — Phase Difference between them]|

E. . y
= 5 sin ®
Ey . .
= L.~ sinotcos ¢ + cos o sin ¢

2

Using Equations (2.54) in (2.55), we get

E, E E. .
£ — Xcosp+,[1-—=sind
E, K Ef
2 2
E, E E
X Zxoos| = | 1-=%|sin*¢
or, (Ez E, ¢ £
2 2 2
E E E E EZ .
y X 2 y X _|1-=
r — | +|—=| cos”"p—2——.—cos¢= sin” ¢
? (Ezj [EIJ ’ E, E ¢ [ EIZ]

2 2
E E E E .
or, 2 2| =2l 2| = fcosd=sin%d
E, E, E, | E,

(2.54)

.(2.55)

.(2.56)

This represents the general equation for an ellipse. If Equation (2.56) is held,
the associated state of polarisation is called Elliptical polarisation in general.

For ¢=nn,n=0,1,2, ...

Equation (2.56) = 22| +[Z] =2 Z2)(E)=g
quation (2.56) = E_2 +E E )

[ sin(nm) =0, cos(nm) = 1]

Equation (2.57) represents a straight line with slope (%

1
is held, the associated state of polarisation is called plane polarisation.

For ¢=(2n+1)§, n=0,1,2, ..

(2.57)

) .IfEquation (2.57)
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Ex 2 Ey 2
lj +(E—2J ~1 .(2.58)

E
= This represents Elliptical state of polarisation.

Equation (2.56) = [

ForE, = E, = E, and ¢=(2n+1)§, n=0,1,2, ..

(E)*+(E) =E ..(2.59)
= Thisrepresents Circular state of polarisation.

T Py D

Plane polarisation Elliptical polarisation Circular polarisation

Fig. 2.20 State of Polarisation

Thus, it is clear that elliptical polarisation is the most general type of polarisation.
Other types of polarisation are merely special cases of elliptical polarisation.

Polarisation through Reflection and Brewster’s Law

Brewster’s law states that the relationship for light waves as the maximum
polarization (vibration in one plane only) of a ray of light may be achieved by
letting the ray fall on a surface of a transparent medium in such a way that the
refracted ray makes an angle of 90° with the reflected ray. The law is named after
a Scottish physicist, Sir David Brewster, who first proposed itin 1811. Brewster’s
angle, also known as the polarization angle, is an angle of incidence at which light
with a particular polarization is perfectly transmitted through a transparent dielectric
surface, with no reflection. When unpolarized light is incident at this angle, the light
that is reflected from the surface is therefore perfectly polarized.

Suppose 4B is the interface between two dielectric media having refractive
indices p; and p,, respectively. It is found that if an ordinary (unpolarised) ray of
light is incident on the interface at a particular angle 65 such that the reflected and
refracted rays are mutually perpendicular, then the reflected ray will be plane
polarised with plane of vibration perpendicular to the plane of incidence.

A

B

Fig. 2.21 Polarisation through Reflection



Here the angle of incidence is called Brewster’s angle after the name of physicist
Sir David Brewster who first studied this phenomenon.
From the Figure (2.21), it is clear that

W sinBp =p, sinr (Snell’s Law)
“_2 _ sin 0 B _
or, W sinr M (say)

Again, 0z+90°—r =180° = r=90°-0;

sinB o sin0,

sin (90°—0,) H cosOy

= tan 0z =p ...(2.60)
This is Brewster’s Law.

=tan 93

Brewster’s Law

When unpolarised light is incident on the interface between two dielectric media at
the Brewster’s angle 0 (= tan™! 1), the reflected light is plane polarised with the
plane of vibration perpendicular to the plane of incidence and the angle between
reflected and refracted rays is 90°.

Malus’s Law

When light (unpolarised) is incident on a polariser, the transmitted light is plane
polarised with its plane of polarisation perpendicular to the optic axis of the polariser.
If this transmitted plane polarised light is allowed to pass through an analyser, the
intensity of the transmitted ray through the analyser varies with the angle between
the plane of polariser and that of the analyser. Malus studied this problem and
stated that the variation of intensity in terms of a law known as Malus’s law.

It states that the intensity of the polarised light transmitted through the analyser
varies as the square of cosine of the angle between the plane of transmission of the
analyser and the plane of polariser.

Mathematically, intensity of the polarised light transmitted through the analyser

I = A%cos’0

or, I =1,c0s°0 ...(2.61)

A — Amplitude of the light vector of plane polarised light

0 — Angle between the transmission plane of analyser and the plane of

polariser

If 0 1=0

= E 5
This shows that when the two planes are at right angle to each other, the intensity
of'the transmitted light is zero.

Double Refraction

If a beam of unpolarised light is allowed to pass through an anisotropic crystal
(Calcite or Quartz), it splits up into two refracted beams instead of one. This
phenomenon is called Double Refraction or Birefringence. If a ray of light S4
from a point source is incident on a calcite crystal making an angle of incidence 7,
it is refracted along two paths 4B and AC making angles of refraction »; and r,,
respectively. These rays emerge out as BO and CE parallel to each other as shown
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in Figure (2.22). If the calcite crystal is rotated about the incident beam as axis, O-
ray remains fixed but E-ray rotates round O-ray. Here the O-ray obeys ordinary
laws of refraction and hence it is called Ordinary ray. The E-ray does not obey
the ordinary laws of refraction. It is called Extra-ordinary ray. It is noteworthy
that both O-ray and E-ray are plane polarised with the vibrations of O-ray are
perpendicular and those of the E-ray are parallel to the principal section of the
sini

sinr,

calcite crystal. For O-ray, [ S,mi

siny

J = Constant, for E-ray [ j = Function

of 7’.

Fig. 2.22 Principal Section of Calcite (CaCO,)

If we place a calcite crystal in front of a point marked on a paper, we will, in
general, see two images of the point. The appearence of the two images is due to
the phenomenon of double refraction. When a light ray entering such a crystal
will split up into two rays and for a crystal like calcite, one of the rays will follow
the Snell’s law of refraction and the other will not. The former is termed as ordinary
ray (O-ray) and the latter as extra-ordinary ray (£-ray). The velocity of the O-
ray is same in all directions whereas the velocity of E-ray is different in different
directions. But, along a particular direction the velocity of O-ray and E-ray is same;
this direction is known as the optic axis of the crystal.

Indeed, the wavefront due to the ordinary ray is spherical whereas the wavefront
due to the extra-ordinary ray is an ellipsoid in nature. Ifthe ellipsoid of revolution
lies outside the sphere (i.e., the velocity of E-ray is greater than the velocity of O-
ray everywhere except optic axis), then the crystal is known as a negative crystal
(For example: Calcite).

On the other hand, if the ellipsoid of revolution lies inside the sphere (i.¢., the
velocity of E-ray is less than the O-ray except optic axis), then the crystal is known
as a positive crystal (For example: Quartz).

The images formed by the O-ray and E-ray are given in Figure (2.23(a)) and
Figure (2.23(b)) for negative and positive crystal, respectively.

g >Z | ‘ ie | —>Z
Optic axis \ % Optic axis

(a) Negative crystal (Calcite) (b) Positive crystal (Quartz)
Fig. 2.23 Images by O-Ray and E-Ray




Nicol Prism
It is an optical device made from a calcite crystal and is used to produce and analyse
the plane polarised light of extra-ordinary nature.

When unpolarised light is incident on a Nicol prism, two plane polarised lights
are produced by double refraction, the O-ray, thus produced, is eliminated by total
internal reflection and the E-ray is transmitted through the crystal.

Construction: The Nicol prism is constructed from a calcite crystal whose length
is nearly three times its width. The crystal is cut through 4C and the cut faces are
joined together by some adhesive material canadabalsam. The angles of principal
section are 112° and 68°. In calcite medium, the refractive indices for O-ray and
E-rayare p,=1.66, u.=1.49, respectively. The refractive index of canadabalsam
s g =1.55.

Polarising Action: Nicol prism can be used as a polariser to produced plane
polarised (E-ray) light from unpolarised light. The unpolarised light after entering
at principal section of a Nicol prism is split up into £-ray and O-ray by the technique
of double refraction. Since p, > n.q, the O-ray suffers total internal reflection at
Calcite-Canadabalsam Interface and thus it is eliminated. For p, < 4, the extra-
ordinary E-ray is transmitted through the end face CD of the Nicol prism. Thus by
using a Nicol prism we can get plane polarised E-rays from unpolarised light.

A D

(9
1 _% /
$ v v %E—ray

68° Canadabalsam

O-ray

Fig. 2.24 Polarising Action
Analysing Action: Nicol prism can be used to analyse a polarised light. If two
Nicol prisms are placed one-by-one such that their principal sections are parallel
to one another, then the first prism is used as polariser and second one as analyser.

Polariser Analyser

O-ray

Fig. 2.25 Analysing Action

If we rotate the principal section of the analysing Nicol prism with respect to
that of the polariser, the intensity of the £-ray emitted from the analyser decreases
and it becomes zero when the principal planes of the two Nicol prisms are
perpendicular to one another.
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Polaroids

Due to the non-availability of larger sizes of polarising crystals (Tourmaline, Nicol
prisms, etc.) it is not possible to obtain larger cross-section of plane polarised light.
To obtain plane polarised light with larger cross-sections, polaroids are used.

Optic
axes

I I > Plane-polarised

light

AN
O

Unpolarised

light Polaroid

Fig. 2.26 Polarids

The materials used to produce polaroids is basically lodoquinine Sulphate which
is also known as Herapathite. These look like tiny needles. This is mixed in
Nitrocellulose solution. The solution is placed between two glass plates to produce
polaroids. If a polaroid is placed in the path of unpolarised light, plane polarised
light is produced. In this case, the tiny needles behave as parallel optic axes.

Polaroids are two types: (i) H-Polaroid and (if) K-Polaroid.

H-Polaroid: It is prepared by using PolyVinyl Alcohol (PVA) with Iodine dopant.

K-Polaroid: It is prepared by using the same material PVA heated in the presence
of dehydrating agent, such as HCI.

Applications of Polaroid

Polaroids are used in Liquid Crystal Display (LCD), sunglasses, optical
microscopes, etc., but the major use of these is in production of polarised light of
large cross-section.

Polarisation by Absorption

Anumber of crystalline materials absorb more light in one incident plane than another,
so that light progressing through the material become more and more polarised as
they proceed. This anisotropy in absorption is called dichroism. There are several
naturally occurring dichroic materials, and the commercial material polaroid also
polarises by selective absorption.

Polaroid Material

Fig. 2.27 Absorption
Polariod is the trade name for the most commonly used dichroic material. It
selectively absorbs light from one plane, typically transmitting less than 1% through
a sheet of polariod. It may transmit more than 80% of light in the perpendicular



plane. The word “polaroid’ usually refers to polaroid H-sheet, which is a sheet of
iodine-impregnated polyvinyl alcohol. A sheet of polyvinyl alcohol is heated and
stretched in one direction while softened, which has the effect of aligning the long
polymeric molecules in the direction of stretch. When dipped in iodine, the iodine
atoms attach themselves to the aligned chains. The iodine atoms provide electrons
which can move easily along the aligned chains, but not perpendicular to them. Light
waves with electric fields parallel to these chains are strongly absorbed because of
the dissipative effects of the electron motion in the chains. The direction perpendicular
to the polyvinyl alcohol chains is the ‘pass’ direction since the electrons cannot move
freely to absorb energy.

Polaroid Sunglasses
The polaroid material used in sunglasses makes use of dichroism, or selective
absorption, to achieve polarisation.

unpolarised

olare greatl
light £ S v

reduced

Glasses transmit
only vertically
polarised light

Direct light
not reduced
as much
as glare

light partially polarised
in the horizontal plane
by reflection

Fig. 2.28 Polaroid Sunglasses

Retardation Plates (Half and Quarter Wave Plates)

A double refracting crystalline plate cut parallel to its optic axis with the refracting
faces of particular phase and path difference between ordinary ray (O-ray) and
extraordinary ray (E-ray) is termed as retardation plate. If ‘d’ be the thickness
of the crystalline plate, p, and . be the refractive indices of the O-ray and E-ray
respectively, then the path difference by the plate is given by,

(uo_ “e).d (262)
And the corresponding phase difference is given by,

b= 2 (- nJed (2.63)

A
If the value of thickness ‘d’ of the plate is such that the path difference is 7 or

a phase difference is g , then the plate is called Quarter Wave Plate. Thus the

thickness of a quarter wave plate is given by,
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A
(“0_ ue).d = Z

A

=— ..(2.64
4(“0 - ud) ( )

A
Ifthe value of thickness ‘d” of the plate is such that the path difference is 5 or

aphase difference is 7, then the plate is called Half Wave Plate. Thus the thickness
of'ahalf wave plate is given by,

(Hr%)'d = %

A

= ..(2.65
2(Hy — 1) (2.65)

Production of Elliptically and Circularly Polarised Light

For Elliptical Polarisation

An elliptically polarised light can be produced by the superimposing of two
perpendicular coherent linear vibrations of light ray having different amplitudes with

phase difference % . Letus consider two mutually perpendicular light rays given
by (atz=0),

E, =E| sin ot ...(2.66)

And E, = E, sin [w + 9 .(2.67)

Hence, an elliptical vibration is given by,

2

@_] {%} -1 (by Equation 2.58) ...(2.68)

Such two linear vibrations [given in Equations (2.66) and (2.67)] can be
produced by allowing a light ray of plane polarised beam to be incident
perpendicularly on a quarter-wave plate with the direction of vibration making an
T
6
incident ray of amplitude ‘£’ can be resolved into two components having amplitude
E,=FE cos 0 along the optic axis formed E-ray and another having amplitude £,
= FE sin 6 normal to the optic axis formed O-ray. Thus, these two vibrations (at z
= () can be represented by,

angle o except % radian (about — radian) with the optic axis of the plate. The

E,=FEcos0sinot+..

And E, =Esin 0 cos ot + ...
A
On passing through the quarter wave plate having path difference 1 relative

: T . o o
phase difference 3 will be maintained between the two vibrations. Thus, as a result

an elliptically polarised emergent light will be produced as we discussed above.



Circular Polarisation

A circularly polarised light can be produced by the superimposing of two
perpendicular coherent linear vibrations of light ray having same amplitudes with

phase difference g . Let us consider two mutually perpendicular light rays given
by (atz=0),

E, =FE sin ot ...(2.69)

And E,=E sin[mz + g] ..(2.70)

Hence, a circular vibration is given by
2 2 _ 2 -
ES+ES=E (By Equation 2.59) ..(2.71)
Such two linear vibrations [given in Equations (2.70) and (2.71)] can be

produced by allowing a light ray of plane polarised beam to be incident
perpendicularly on a quarter wave plate with the direction of vibration making an

angle % radian with the optic axis of the plate. The incident ray of amplitude ‘£’

can be resolved into two components having amplitude E cos % = % along the
T E
-5 normal to
the optic axis formed O-ray. Thus, these two light vibrations (at z=0) can be

represented by,

optic axis formed E-ray and another having amplitude £ sin

E, = —sin ot

COS !

SRS L

And E, =

A
On passing through the quarter wave plate having path difference 1 relative

: T . . .
phase difference 3 will be maintained between the two vibrations. Thus, as a result

a circularly polarised emergent light will be produced as we discussed above.

Degree of Polarization

Principally, the Degree Of Polarization (DOP) is a quantity used to describe the
portion of an electromagnetic wave which is polarized. A perfectly polarized wave
has a DOP of 100%, whereas an unpolarized wave has a DOP of 0%. A wave
which is partially polarized, and therefore can be represented by a superposition
ofapolarized and unpolarized component, will have a DOP somewhere in between
0 and 100%. DOP is calculated as the fraction of the total power that is carried by
the polarized component of the wave.

DOP can be used to map the strain field in materials when considering the
DOP of the photoluminescence. The polarization of the photoluminescence is related
to the strain in a material by way of the given material’s photo-elasticity tensor.

DOP is also visualized using the Poincaré sphere representation of a polarized
beam. In this representation, DOP is equal to the length of the vector measured
from the center of the sphere.
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2.10 SCATTERING: RAYLEIGH AND
DISPERSION OF PLANE E. M. WAVES

Electromagnetic waves are one of the best known and most commonly
encountered forms of radiation that undergo scattering. Scattering of light and
radio waves (especially in radar) is particularly important. Major forms of elastic
light scattering including the negligible energy transfer are Rayleigh scattering
and Mie scattering. Light scattering is one of the two major physical processes
that contribute to the visible appearance of most objects, the other being
absorption. Surfaces described as white owe their appearance to multiple
scattering of light by internal or surface inhomogeneities in the object, for example
by the boundaries of transparent microscopic crystals that make up a stone or
by the microscopic fibers in a sheet of paper. More generally, the gloss of the
surface is determined by scattering. Highly scattering surfaces are described as
being dull or having a matte finish, while the absence of surface scattering leads
to a glossy appearance, as with polished metal or stone.

Spectral absorption, the selective absorption of certain colours, determines
the colour of most objects with some modification by elastic scattering. The
apparent blue colour of veins in skin is a common example where both spectral
absorption and scattering play important and complex roles in the colouration.
Light scattering can also create colour without absorption, often shades of blue,
as with the sky (Rayleigh scattering), the human blue iris, etc.

Models of light scattering can be divided into three domains based on a
dimensionless size parameter, o which is defined as:

a = wD, /A,

Where nD, is the circumference of a particle and 4 is the wavelength of
incident radiation. Based on the value of «, these domains are defined as:

o. << 1: Rayleigh scattering, small particle compared to wavelength of
light.

o.~ 1: Mie scattering, particle about the same size as wavelength of light,
valid only for spheres.

o. >> 1: Geometric scattering, particle much larger than wavelength of
light.

Rayleigh scattering is a process in which electromagnetic radiation
(including light) is scattered by a small spherical volume of variant refractive
indexes, such as a particle, bubble, droplet, or even a density fluctuation. This
effect was first modeled successfully by Lord Rayleigh, from whom it gets its
name. In order for Rayleigh’s model to apply, the sphere must be much smaller
in diameter than the wavelength () of the scattered wave; typically the upper
limit is taken to be about 1/10 the wavelength. In this size regime, the exact
shape of the scattering center is usually not very significant and can often be
treated as a sphere of equivalent volume. The inherent scattering that radiation
undergoes passing through a pure gas is due to microscopic density fluctuations
as the gas molecules move around, which are normally small enough in scale for



Rayleigh’s model to apply. This scattering mechanism is the primary cause of the
blue colour of the Earth’s sky on a clear day, as the shorter blue wavelengths
of sunlight passing overhead are more strongly scattered than the longer red
wavelengths according to Rayleigh’s famous 1/A* relation. Along with absorption,
such scattering is a major cause of the attenuation of radiation by the atmosphere.
The degree of scattering varies as a function of the ratio of the particle diameter
to the wavelength of the radiation, along with many other factors including
polarization, angle, and coherence.

For larger diameters, the problem of electromagnetic scattering by spheres
was first solved by Gustav Mie, and scattering by spheres larger than the
Rayleigh range is therefore usually known as Mie scattering. In the Mie regime,
the shape of the scattering center becomes much more significant and the theory
only applies well to spheres and, with some modification, spheroids and ellipsoids.
Closed-form solutions for scattering by certain other simple shapes exist, but no
general closed-form solution is known for arbitrary shapes.

Both Mie and Rayleigh scattering are considered elastic scattering
processes, in which the energy (and thus wavelength and frequency) of the light
is not substantially changed. However, electromagnetic radiation scattered by
moving scattering centers does undergo a Doppler shift, which can be detected
and used to measure the velocity of the scattering center/s in forms of techniques,
such as lidar and radar. This shift involves a slight change in energy.

At values of the ratio of particle diameter to wavelength more than about
10, the laws of geometric optics are mostly sufficient to describe the interaction
of light with the particle, and at this point, the interaction is not usually described
as scattering.

For modeling of scattering in cases where the Rayleigh and Mie models
do not apply, such as irregularly shaped particles, there are many numerical
methods that can be used. The most common are finite-element methods which
solve Maxwell’s equations to find the distribution of the scattered electromagnetic
field.

Scattering of Electromagnetic Waves by Particles

Interaction between electromagnetic waves and particles produce unique scattering
patterns that are wavelength and particle size dependent. As electromagnetic
waves propagate through matter they interact with particles and locally perturb
the local electron distribution. This variation produces periodic charge separation
within the particle causing oscillation of the induced local dipole moment, this
periodic acceleration acts as a source of electromagnetic radiation thus causing
scattering. The majority of the scattered wave oscillates at the same frequency
as the incident wave and is termed elastic scattering. Interaction with the incident
beam may also lead to absorption in the form of thermal energy. The combination
of scattering and absorption attenuate the incident beam leading to extinction.

Scattering of electromagnetic waves by particles can be explained using
the following two theoretical frameworks:

1. Rayleigh scattering that is applicable to small, dielectric, non-absorbing
spherical particles.
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2. Mie scattering that provides a general solution to scattering independent
of particle size. Mie scattering theory provide a generalized approach,
has no particle size limitations and converges to the limit of geometric
optics at large particle sizes.

Consequently Mie scattering theory can be used to describe most scattering
by spherical particles, including Rayleigh scattering, but due to the complexity
of implementation, Rayleigh scattering theory is often preferred.

Rayleigh scattering is strongly dependent upon the size of the particle and
the wavelength of the illuminating radiation. The intensity of the Rayleigh scattered
radiation increases rapidly as the ratio of particle size to wavelength increases
and is identical in the forward and reverse directions. The Rayleigh scattering
model breaks down when the particle size becomes larger than approximately
10% of the wavelength of the incident radiation at which point Mie theory must
be applied. The Mie solution is obtained through an analytical solution of
Maxwell’s equations for the scattering of electromagnetic radiation by spherical
particles in terms of infinite series rather than a simple mathematical expression.

Mie scattering differs from Rayleigh scattering in several respects. It is
roughly independent of wavelength and it is larger in the forward direction than
in the reverse direction, as shown in Figure (2.29). The greater the particle size,
the more of the light is scattered in the forward direction. In addition to explaining
many atmospheric effects of light scattering, applications of Mie scattering include
environmental areas, such as dust particles in the atmosphere and oil droplet in
water, etc. Figure (2.29) illustrates the electric field due to Mie scattering of
incident wave in x direction showing enhanced scattering in forward direction.

*.-'L" -
Fig. 2.29 Electric Field due to Mie Scattering

Analysis of Mie Scattering

It is a complex process to explain the Mie scattering by a particle or object and
requires solution of Maxwell’s equations to represent the incident, scattered and
internal fields. These are not simple mathematical expressions and take the form
of infinite series expansion of vector spherical harmonics that permits the cross
sections, efficiency factors and distributions of intensity to be predicted.
Additionally, the influence of particle geometry, incident of the incident wave
and the particle’s material properties can be examined.



In electromagnetic wave scattering problems, the total wave decomposes
into the incident and scattered wave components:

E= E:’m‘ +'E.m:1
H= Hirsa-l_Hma

Maxwell’s wave equation can be solved with respect to scattered electric
field as:

1 :
vx[_?xE:m)_kg[gr_ji .:m:'i::|

K, @E
The scattered magnetic field is typically calculated from Faraday’s law as:
1
H.':ca R Vx E.':m
JoU

The time-average Poynting vector for time-harmonic fields gives the energy
flux as:

P %RE[E X H'], [ﬂ"f m ‘1’]

For an incident plane wave, the magnetic field is related to the electric
field and is represented by:

3

1

H kxE,

Where K is direction of the incident wave propagation, n = (We)'? is the
characteristic impedance, € is permittivity and p is permeability of ambient
medium. Hence, incident energy flux is calculated as,

5 'k

-—JE..
in

Significant physical quantities can be obtained from the scattered fields.
One of these is the cross section, which can be defined as the net rate at which
electromagnetic energy (/) crosses the surface of an imaginary sphere centered

at the particle divided by the incident irradiation (£,_) . To quantify the rate of

the electromagnetic energy that is absorbed (W, ) and scattered (W ) by the
particle, the absorption (6, ), scattering (o) and extinction cross sections are
defined as:

oy ” abs g ” Sea a
O ape __?:' U = P s O T Oy 0
iy e

The total absorbed energy is derived by integrating the energy loss over
the volume of the particle:
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W, =% [[[Rel(cE + jeD)E" + joB-®H|av, [7]
L

The scattered energy is derived by integrating the Poynting vector over
an imaginary sphere around the particle:

7o = [ s = ffRelE. B | nds, (7]

Where n is unit vector is considered normal to the imaginary surface S.

Due to the particulate nature of electromagnetic waves they also carry

momentum /. and exert a force on the particle, termed as the radiation

pressure which can be obtained by integrating the Maxwell stress tensor over
the surface of the sphere:

O =0 — (cns&}crm: [m:]

Where o, is the pressure cross-section, and <cos 0> is the asymmetry
parameter.

The radiation pressure cross section can be used to calculate force which
the particle experiences in the incident direction:

1
- [ri] .
F__E-_,'.‘H'JU‘I\'.'i [J.ﬁ"i"]
[
The total time-averaged force F acting on a particle illuminated with light
can also be calculated using surface integral of the time-averaged Maxwell’s
stress tensor T:

F={T nds,, [¥]

Where S, is surface enclosing particle volume v, and n is unit normal vector
to surface Sp.

Scattering Parameters

Scattering parameters or S-parameters are the elements of a scattering matrix
or S-matrix which define the electrical behaviour of linear electrical networks
when undergoing various steady state stimuli by electrical signals. The parameters
are used in different branches of electrical engineering, including electronics,
communication systems design, and especially for microwave engineering.

The S-parameters are members of a family of similar parameters, other
examples include Y-parameters, Z-parameters, H-parameters, T-parameters or
ABCD-parameters. They differ from these, in the sense that S-parameters do
not use open or short circuit conditions to characterize a linear electrical network;
instead, matched loads are used. These terminations are easily used at high
signal frequencies as compared to the open-circuit and short-circuit terminations.
Moreover, the quantities are measured in terms of power.



Many electrical properties of networks of components (inductors,
capacitors, resistors) may be expressed using S-parameters, such as gain, return
loss, Voltage Standing Wave Ratio (VSWR), reflection coefficient and amplifier
stability. The term ‘Scattering’ refers to the effect observed when a plane
electromagnetic wave is incident on an obstruction or passes across dissimilar
dielectric media. In the context of S-parameters, scattering refers to the way in
which the traveling currents and voltages in a transmission line are affected when
they meet a discontinuity caused by the insertion of a network into the
transmission line. This is equivalent to the wave meeting an impedance differing
from the line’s characteristic impedance.

Although applicable at any frequency, S-parameters are mostly used for
networks operating at Radio Frequency (RF) and microwave frequencies where
signal power and energy considerations are more easily quantified than currents
and voltages. S-parameters change with the measurement frequency, so frequency
must be specified for any S-parameter measurements stated, in addition to the
characteristic impedance or system impedance. S-parameters are readily
represented in matrix form and obey the rules of matrix algebra.

Types of S-Parameters
The S-parameters are of following types.

Small Signal S-Parameters: By small signal, we mean that the signals have
only linear effects on the network, small enough so that gain compression or
other non-linear effects do not take place. For passive networks, the small
signal act linearly at any power level.

Large Signal S-Parameters: In this case, the S-matrix may vary depending
upon the input signal strength.

Mixed-Mode S-Parameters: It refers to a special case of analysing balanced
circuits.

Pulsed S-Parameters: These are measured on power devices so that an
accurate representation is captured before the device heats up.

Cold S-Parameters: By cold, we refer to active devices that are not powered
up. This can be an individual device, or an amplifier, or module, or anything
active that is operated passively.

How S-Parameters Function

The scattering matrix is a mathematical construct that quantifies how Radio
Frequency (RF) energy propagates through a multi-port network. The S-matrix
is what allows us to accurately describe the properties of incredibly complicated
networks as simple ‘Black Boxes’. For an RF signal incident on one port, some
fraction of that signal gets reflected back out of the incident port, some of it
enters into the incident port and then exits at or scatters to some or all of the
other ports, perhaps being amplified or attenuated. What is left of that incident
power disappears as heat or even electromagnetic radiation. The S-matrix for
an N-port contains N? coefficients (S-parameters), each one representing a
possible input-output path.
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S-parameters are complex numbers, having real and imaginary parts or
magnitude and phase parts, because both the magnitude and phase of the
incident signal are changed by the network. S-parameters are defined for a
given frequency and system impedance, and vary as a function of frequency for
any non-ideal network.

Additionally, the S-parameters are usually displayed in a matrix format
with the number of rows and columns equal to the number of ports. For the S-
parameter, S, the j” subscript stands for the port that is the input port and the
‘1 subscript is for the output port. Thus S refers to the ratio of the amplitude
of the signal that reflects from port one to the amplitude of the signal incident
on port one. Parameters along the diagonal of the S-matrix are referred to as
reflection coefficients because they only refer to what happens at a single port,
while off-diagonal S-parameters are referred to as transmission coefficients,
because they refer to what happens at one port when it is excited by a signal
incident at another port. Following are the examples of S-matrices for one, two
and three-port networks:

(S”) (one — port)

(Sy Sy
xSn Sy
I’.SII SIZ Sﬂ

S,, 8, 8, | (three— port)
Sn S Sy
Ete.

Remember that each S-parameter is a complex number, so if actual data
has to be presented in matrix format, then a magnitude and phase angle has to
be presented for each S;: The input and output reflection coefficients of networks,
suchas S, and S, can be plotted on the Smith chart while the transmission
coefficients (S,, and S,) are generally not plotted on the Smith chart.

] (two — port)

S-Parameters for Network Ports

S-parameters describe the response of an N-port network to signal(s) incident
to any or all of the ports. The first number in the subscript refers to the
responding port, while the second number refers to the incident port. Thus
S,, means the response at port 2 due to a signal at port 1. The most common
‘N-port” networks in microwaves are one-port and two-port networks.

Consider a two-port network. The signal at a port, say port 1, can be
thought of as the superposition to two waves traveling in opposite directions.
By convention each port is represented as two nodes so as to give a name and
value to these opposite direction waves. The variable a, represents a wave
incident to port i and the variable bj represent a wave reflected from port j. The
magnitude of the a and b, variables can be thought of as voltage-like variables,
normalized using a specified reference impedance. This is very convenient since



the square of these magnitudes are then equal to the power level of the waves.
Remember, S-parameters can be used if the value of the reference impedance
(frequently called Z) is known (Refer Figure (2.30)).

Generalized two-port
network, characteristic
impedance Z0

f= O— ) a2
) SII SII )

Fig. 2.30 S-Parameters for Two-Port Network

If we assume that each port is terminated in the reference impedance Z,,
we can define the four S-parameters of the 2-port as follows:

Su =bjaf

S =20
Sz: = b%

I
S =272

The above equations for S  and S, are derived from network analysis
or measurements by setting the value of the incident signal a,= 0 and solving
for the above S-parameter ratios as a function of a,. Similarly, S , and S, are
derived by setting the value of a, = 0 and solving for the other ratios.

The subscript precisely follows the parameters in the ratio, S, =b /a,, etc.
The matrix algebraic representation of 2-port S-parameters is:

b, Sy S, “ a
b, Sy Sy a,

In order to measure S, a signal at port one is inserted to measure its
reflected signal. In this case, no signal is injected into Port 2, so a2 = 0; for
almost all laboratory S-parameter measurements, only one signal is inserted at
a time. To measure S, , a signal at Port 1 is inserted to measure the resulting
signal power exiting Port 2. For S | a signal is inserted into Port 2 to measure
the signal power leaving Port 1, and for S_, a signal is inserted at Port 2 to
measure its reflected signal.

All the ‘a’ and ‘b’ measurements can be complex numbers, hence for
complex S-parameters these complex numbers are sometimes called vectors,
therefore termed as the Vector Network Analyzers (VNA).
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Polarization of Scattered Light

Polarization also occurs when light is scattered while traveling through a medium.
When light strikes the atoms of a material, it will often set the electrons of those
atoms into vibration. The vibrating electrons then produce their own
electromagnetic wave that is radiated outward in all directions. This newly
generated wave strikes neighboring atoms, forcing their electrons into vibrations
at the same original frequency. These vibrating electrons produce another
electromagnetic wave that is once more radiated outward in all directions. This
absorption and reemission of light waves causes the light to be scattered about
the medium. This scattered light is partially polarized. Polarization by scattering
is observed as light passes through our atmosphere. The scattered light often
produces a glare in the skies. Photographers know that this partial polarization
of scattered light leads to photographs characterized by a washed-out sky. The
problem can easily be corrected by the use of a Polaroid filter. As the filter is
rotated, the partially polarized light is blocked and the glare is reduced.

How it Works

For example, when the unpolarized white light from a slide projector enters a
fish tank of very slightly milky water. Some of the electromagnetic waves impinge
on the colloidal particles and molecules in the water, are absorbed and re-
radiated. The horizontal component of the polarization decreases as cos?0,
where 0 is the scattering angle (Refer Figure (2.31)) The maximum scattered
intensity is perpendicular to the plane of oscillation of the molecule, where it is
also totally plane polarized, 6 = 90°. At other angles the light is partially plane
polarized.

Unpolarized sunlight linearly

linearly : partially
polarized ' polarized

Fig. 2.31 Polarization by Scattering

This can be observed on the tank at right angles to the initial direction of
propagation of the light. A mirror angled over the tank allows to view the
phenomenon of scattered light emerging from two surfaces perpendicular to
each other (Refer Figure (2.32)). By placing a Polaroid sheet between the
projector and the tank with its polarizing axis horizontally, the scattered light
from the side of the fish tank is blocked, whereas that from the top of the tank
remains unaffected. Rotating the Polaroid 90° blocks the light from the top of



the tank, but now the scattered light from the side of the tank reappears.
Alternatively, let the scattering process polarize an unpolarized beam from the
slide projector and let the Polaroid sheet be the analyzer, as shown in
Figure (2.32).

Rayleigh scattering has a wavelength dependence of 1/(A*), so it affects
blue light much more strongly as compared to red. By adding milk to the tank,
the scattering can be increased because the milky water begins to develop a
bluish tint and the un-scattered beam reddish.

plane mirror

To audience - ﬂ I ‘I

Polaroid
analyzer

fish tank

Fig. 2.32 Fish Tank and Mirror Arrangement

2.11 SCATTERING: THOMSON AND
DISPERSION OF PLANE E. M. WAVES

Thomson scattering is the elastic scattering of electromagnetic radiation by a
free charged particle, as described by classical electromagnetism. It is the low-
energy limit of Compton scattering: the particle’s kinetic energy and photon
frequency do not change as a result of the scattering. This limit is valid as long as
the photon energy is much smaller than the mass energy of the particle:

v < mc? /h, or equivalently, if the wavelength of the light is much greater than
the Compton wavelength of the particle (e.g., for electrons, longer wavelengths
than hard x-rays).

In the low-energy limit, the electric field of the incident wave (photon)
accelerates the charged particle, causing it, in turn, to emit radiation at the same
frequency as the incident wave, and thus the wave is scattered. Thomson scattering
is an important phenomenon in plasma physics and was first explained by the
physicist J. J. Thomson. So long as, the motion of the particle is non-relativistic
(i.e., its speed is much less than the speed of light), the main cause of the acceleration
of the particle will be due to the electric field component of the incident wave. In a
first approximation, the influence of the magnetic field can be neglected. The
particle will move in the direction of the oscillating electric field, resulting in
electromagnetic dipole radiation. The moving particle radiates most strongly in a
direction perpendicular to its acceleration and that radiation will be polarized along
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the direction of its motion. Therefore, depending on where an observer is located,
the light scattered from a small volume element may appear to be more or less
polarized.

The electric fields of the incoming and observed wave (i.e., the outgoing
wave) can be divided up into those components lying in the plane of observation
(formed by the incoming and observed waves) and those components perpendicular
to that plane. Those components lying in the plane are referred to as ‘Radial’ and
those perpendicular to the plane are ‘Tangential’.

The scattering is best described by an emission coefficient which is defined
as ¢ where € dt dV dQ dA is the energy scattered by a volume element dV in time
dt into solid angle dQ between wavelengths A and A + dA.. From the point of view
of'an observer, there are two emission coefficients, u_corresponding to radially
polarized lightand p, corresponding to tangentially polarized light. For unpolarized
incident light, these are given by:

3

Ey = EO}IH
3
Ep = ﬁortfn cos? X

Where 7 is the density of charged particles at the scattering point, / is incident
flux (i.e., energy/time/area/wavelength) and o, is the Thomson cross section for
the charged particle, defined below. The total energy radiated by a volume element
dV in time dt between wavelengths A and A-+d€2 is found by integrating the sum of
the emission coefficients over all directions (solid angle):

2m T
3
/sdQ:f dcpf dx(at+Er)sinx:1in27r(2+2/3) =aln
0 0 167

The Thomson differential cross section, related to the sum of the emissivity
coefficients, is given by

do; _( 7 )21—1—(:052)(
4dmegme? 2

dQl

expressed in ST units; g is the charge per particle, m the mass of particle, and pi) a
constant, the permittivity of free space. To obtain an expression in cgs units, drop
the factor of 4 z¢,. Integrating over the solid angle, we obtain the Thomson cross
section

G_S_W( ¢ )2 o STy
t T Y— m Slunits.
The important feature is that the cross section is independent of photon
frequency. The cross section is proportional by a simple numerical factor to the
square of the classical radius of a point particle of mass m and charge ¢, namely
8
gy = ~r§

3

Alternatively, this can be expressed in terms of A , the Compton wavelength,
and the fine structure constant:



87 (aX \?
or = —
¢ 3 \ 2rm
For an electron, the Thomson cross-section is numerically given by:

8w [ akic\®
oy = ?” ( = ‘;) = 6.6524587158 ... x 1072 m? = 66.524587158 ... (fm)’
mc

2.12 ELEMENTS OF WAVE GUIDES

Depending upon the purpose for which waveguide is to be used and the frequency
of the wave to be transmitted, there are many different structures of waveguide
that include parallel plate waveguide, rectangular waveguide, circular
waveguide, optical fiber waveguide, and dielectric slab waveguide. These
waveguide structures are shown in Figure (2.33) and discussed in next sections.
The wave propagates through these guided structures whose propagating medium

is not a free space and they are no more uniform plane waves.

— » — i
y a

(a) Parallel plate waveguide (b) Rectangular waveguide

(c) Circular waveguide (d) Optical fiber waveguide

(e) Dielectric slab waveguide

Fig. 2.33 Different Forms of Waveguide
Rectangular Waveguides

For the parallel plate waveguides the fields vary only in one transverse or orthogonal
direction. Thus, the concept of parallel plate waveguide is simple, however, it is

not of practical use due to infinite dimensions.
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Here, we will discuss about a rectangular waveguide which is the most
commonly used among various waveguide structures. Consider a rectangular
waveguide that is a hollow metallic device with its inner dimensions as @ and b
meters as shown in Figure (2.34). The walls of the waveguide are perfectly
conducting having conductivity ¢ e and it is filled with a charge free lossless
dielectric material having conductivity ¢ 0. The direction of wave propagation is

assumed to be along z-direction.

YA
/ z
| b
X 4
a (@]

Fig. 2.34 A Rectangular Waveguide

The Maxwell’s equation can be expressed in phasor form as:

Expanding the above equation, we get:

a, 4, a,
o o o| (oH, OH,\, (oH, oH,), (0H, oH,),
o A = L L
\% s —|O0x 0y oz oy 0z 0z ox ox oy
H, H, H,

= joek a, +joanysay + joek a,

Equating the coefficients, we obtain:

OH OH
zs A :j('OSExy
oy oz ‘
OoH OH
xs 2 — iwsk
Oz ox s
aH)’S aI_IJrs .
O - Gy = ]wSEzs (272)

Similarly, using Maxwell’s equation given as:

Vx E =—jcou]-75

And expanding and equating the coefficients, we get:




(2.73)

Now, at z =0, the field components may be written as:
H, =H,e""
HXS = HXOeiyrZ

E =E e~

ys yo
E =E_ e~ ..(2.74)

Here, subscript 7 is used to denote the propagation inside rectangular
waveguide.

Substituting Equation (2.74) into Equations (2.72) and (2.73), we get:

oH
= + YVHVS' = ]ngXV
o 1 :
0
- ——= = joeE
YA s ox J s
aHyS aHxs ioeE
- = joek
ox o JOEL ..(2.75)
And,
0L, +v,E,=—jouH
o 1B = e,
’Y}"Exs = = _jwtuS
OE, OE
s _ XS — _ .0) H
ox EY JORLT ...(2.76)

Rearranging and solving Equations (2.75) and (2.76) to get the field
components as:

Y, 0H, joedE
H.="5%" 0 o
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Ho="0"a "0 & ~(2.77)
Y aEZ.\' jml’l aHZS
E =7 2
xs h. Ox h. Oy
_Yr aEzs + i aI{zs
Eys n oy JOH ox
Where hr2 = yf + (Dzug (278)

From Equation (2.77), we can say that the - and y-components of electric
and magnetic fields depend upon their respective z component. Thus, if £_ and
H_ become zero, all the field components get vanished which implies that in a
rectangular waveguide Transverse ElectroMagnetic (TEM) wave does not exist,
it only supports transverse electric and transverse magnetic waves. To obtain the
solutions for these two fields, let us consider the wave equations and substituting
conductivity c 0, we get:

2E, = jop (o + joe) E,
2E, + ofue E,=0
And, ZI:IS =jou (o +j(,08)]:IS
2H, + o?uc H, =0
Expanding these equations in Cartesian coordinates we get:

O’E, O°E, OE,

—
+ + =-0"uek
o’ oy? oz* HERs

O*H, &*H, O0O°H, -
82‘ + 82‘ + 62‘ =—o"peH|
x y z

Here, the electric and magnetic fields can be split in their respective
components. Thus, to obtain the E, and H, fields, we have to solve six equations.

For example, for z-coordinate the above equations can be written as:

O’E., O°E, K.
2 + 2 + 2
ox oy 0z

= _O)ZHSEZS

aszs aszs aszs 2
axz + ayz + 622 =-0 MSHZS .(2.79)

These equations are partial differential equations solved by using the method

of product solution (or separation of variables). Let £_ be written as:



E, (x,y,2)=X(x) Y() Z(2)
Where X(x), Y(y), and Z(z) are the functions of x, y, and z, respectively.
Substituting this in Equation (2.79), we get:
d’X d’Y d’Z

2
dx2 +XZW+XY?=—(D },I.SXYZ

YZ

Dividing the above equation by XYZ, we get:

1d*x 1d* 1d°z

2
— +— + =—m0"ue
X a* Y diP ZdP? : -(2.80)

Here, each term on the left hand side is independent of each other, also
their sum is a constant which implies that each of these terms must be a constant.

Let, , and be the separation constants, then Equation (2.80) can be written as:
2 2 22
—k, -k, -k =0 ue

Thus, using these separation constants, Equation (2.80) can be written as:

dz_X:_sz
dx? ’

d*y 5

o
2

d ZZ:—ZkZZ
dz

The respective solutions of the above equations can be given by the relations:
X(x) =4 sin (k x) + B cos (k x)
Y(y)=Csin (kyy) + D cos (kyy)
Z(z) = E sin (kz) + F cos (kz)
Where 4, B, C, D, E, and F are constants.
Now, using the above solution to find E, field component in general can
be computed as:
E_(x,y,z)=[A4sin (kx)+ B cos (kx)] [Csin (k yy) + D cos (k yy)]
[E sin (kz) + F cos (kz2)]
Here, it is to be noted that 2 can be represented in terms of k_and ky as:

h? =k, +k, ..(2.81)

In the similar way, the general solution for magnetic field component H_

can be written as:
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H_,(x, y,z)=[A'sin(k,x) + B’ cos(k,x)] [ C"sin(k, ) + D' cos(k, y)|

[E'sin(k,z) + F' cos(k.z)]
Now, since the wave is propagating in positive z-direction, the solution of

wave equation for z-axis can be written in terms of propagation constant as:

E_ (x, y, z) =[4sin(k,x) + Beos(k,x)][Csin(k,y) + Dcos(k, y)]le " ...(2.82)

H_(x, y, z) =[A'sin(k x) + B’ cos(k,x)][C'sin(k,y) + D' cos(k, y)le"* ...(2.83)

Since we have derived these general solutions, let us derive the field
expressions for two different waves, that is, Transverse Magnetic (TM) wave and
Transverse Electric (TE) wave. It should be noted that rectangular waveguides
does not support TEM waves as we have studied earlier.

Transverse Magnetic Waves

To determine the field expressions, let us apply the boundary conditions on the
walls of the waveguide which are perfectly conducting. Since we know that for
TM waves, H_ =0 and the tangential components of electric field ~/ >/ E/ must

be continuous, which implies:
E_=0atx=0andy=0 [Refer to Figure (2.33)] ...(2.84)
Also,
E =0atx=aandy=5 ...(2.85)

Substituting the boundary condition described in Equation (2.84) in
Equation (2.82), we get:

B=0and D=0
Thus, Equation (2.82) becomes:
E_ = ACsin(k,x)sin(k,y)e
Or, it can be written as:
E_= E,sin(k.x)sin(k,y)e """ ...(2.86)
Where, E = AC is constant.

Now, applying boundary condition given in Equation (2.85), Equation
(2.86) becomes:

sinka=0
And, sinkb=0
This implies that;

K a=mn,wherem=1,2,3, ...



And, Kyb=nn, where,n=1,2, 3, ...

Here m and n denotes the number of half cycle
variations in x- and y-directions, respectively. Hence, Equation (2.86) becomes:

E = E sin (m_nx) sin (ﬂy] e’
zs a b

Now, substituting the value of £_, from Equation (2.76) the other field

components can easily be obtained. Here, H_ =0, as it is a transverse magnetic
wave. Thus, we get:

— _y_,(_n]E cos[ﬂxj sin(ﬂ ]e‘y"z

B, = WwW\a/ "’ a b Y
y,(nnj . (mn ] (nn ) 2
— ———| —|E sin| —x|cos| —y|e "

Eys B2\ p ) P b y
Jog (E) E sin [ﬂxj cOS [ﬂ ] e

H =" )50, P
__Jee (M]E cos[ﬂxj sin(ﬂ ]e‘”z

ny N 2 \al’ a b Y

2
Where h; = (an) + (%} [Refer to Equation (2.81)]

Here, it is to be noted that the lowest mode that can be transmitted using
arectangular waveguide is TM,, mode as neither m nor n can be zero for TM

wave. Since on substituting m or n zero, all the field components vanish. The field
patterns of TM | are shown in Figure 2.35.

———— MU

Top End
-
E Field

-
—===HField

Fig. 2.36 TM , Wave inside a Rectangular Waveguide
Transverse Electric Waves

Since in TE waves, £ =0, and the tangential components of electric field E at
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E =0aty=0andy=Db
Also,
Eys=0atx=0andx=a

Substituting these conditions in Equation (2.77), we get:

OH_
o =0 aty=0andy=>» ..(2.87)
Also,
OH
ZS :O = =
. atx=0andx=a ...(2.88)

Now, using Equations (2.83), (2.87), and (2.88) and proceeding in similar
way as we did for transverse magnetic waves, we get:

H =H, cos[ﬂx) cos [ﬂy] e’
zs a b
Where H =B'D'andm=0,1,2,3,...and n =0,1,2,3,...

Substituting the value of H_, from Equation (2.77), the other field
components becomes:

— JOu [ﬂjH cos[mx) sin(ﬂ )e‘y"z
Exx_ hr2 b ° a b Y
_ _jmu(@jH sin(mx) cos(ﬂ ]ey"z
Eys— hrz P o P b y
y,(mnj . (mrc ) [nn ] 2
— —| —|H sin| —x|cos| —y|e '
Hxs hf P o P b y

- Y—’[ﬂ)H cos[m jsin(ﬂ j Y
H, =520 ) e U ) )¢

Notice that unlike TM waves, the TE waves can exist for zero value of m

and n. However, if both are simultaneously zero it will result in zero field
components. Thus, the lowest mode that can be transmitted by rectangular
waveguide is TE, mode or TE mode depending upon the dimensions of
waveguide. The field variations for TE,  mode are shown in Figure (2.36).

e e,y

......
R e
i stning N iy nlni Prrng
17 N ! v I!I||
|+f—"‘\||||(‘4'—\+| =
1 : l'||'| ,I 1 a LN I |
11 '—e=/ 1 Nt LI
V N 7 N 7 g
/N 11
N o e L E—4 4_|_|_
11,
Top End

— -
=== H Field E Field

Fig. 2.35 TE,, Wave inside a Rectangular Waveguide



Propagation Characteristics of TE and TM Waves in Rectangular
Waveguides

Here we will discuss about various propagation characteristics of the rectangular
waveguides. As we studied in the previous section that:

mT 2 nTm ?
() (2
a b
Also, it can be expressed as:
B =y +o’ue
Or, it can be written as:

Y =h'-—o’ue

v, = B} —o’ue

Thus, we get:
2 2
SCRCE
¥ a b

Now, depending upon the value of 2_and w’pe, there are three cases.

mr)®  (nm)’ 2 )
Casel:1f |~ ~) *(7 ) |7 @ M&,then the value of propagation constant

a

v becomes purely real. Thus, we obtain only the attenuation constant o._as:
2 2
yr OLr a b

mr)’  (nm)’ 2 ) )
Case2:If || 7 7] T\ ) |=@ M&,then the propagation constanty will

be purely imaginary, that is, the real part o._is equal to zero.

Thus, the imaginary part of propagation constant, that is, the phase constant

B, is obtained as:
v, =JB,

It is expressed as:

B = \/wzus—[%jz —[%]2 .(2.89)
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Case 3: There exists one more case for rectangular waveguides where

2
mmn nmw ) )
l:(jj + (7] } = © H& then the value of propagation constanty, comes out to

be zero which implies, both attenuation constant o_and phase constant p_are
equal to zero. In addition, there will be no propagation of wave and this is considered
as the critical condition for cut-off propagation. The value of w in this case is

known as angular cut-off frequency, denoted by o , expressed as:

o= ﬁ (%)2 +(%]2 (2.90)

Thus, the cut-off frequency f_ is expressed as:

e e I e R et

From Equations (2.89) and (2.91), the phase constant _can be written

(Y
B = B,/I—L% (2.92)

Where B is the free space phase constant.

Now, the cut-off wavelength A can be obtained as:

u
o=
c fe

Where u is the velocity of the wave in lossless dielectric medium given as:

1

u=ﬁ

Thus, the cut-off wavelength A _is obtained as:

2
2 2
5, = [m) +(ﬂ) .(2.93)
a b
Now, the guide wavelength 2 is obtained as:
2n
B,

Substituting the value of B_ from Equation (2.89), we get:



Or, it can be written as:

2n
A = COZHS——‘DEMS [Refer to Equation (2.90)]

27

T o a(l—wi\
U o)

The guide wavelength A in terms of cut-off wavelength . _is expressed as:

_ >

52
()
SRl

The phase velocity U, and group velocity u, for rectangular waveguides
can be obtained by substituting the value of B in the respectively following equations:

We get
)
u,= E
on
u, op
u
2
e |7
2
ol

From above two expressions it is obtained that:

JUpplly =U

Now the dominant mode for a rectangular waveguide is TE, mode as it
has the lowest cut-off frequency among all the modes. All the propagation
characteristics expressed above are same for both transverse electric and transverse
magnetic waves. However, as the field expressions for magnetic and electric fields
are different for TE and TM waves the expressions for intrinsic impedance also
differ. Let us now derive the expression of intrinsic impedance for both TE and
TM waves in rectangular waveguides. The intrinsic impedance n is expressed as:
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For TM wave, intrinsic impedance n_,, is obtained by substituting the

values of £_and H , we get:

anM_ j(,)g

Now, for a propagating wave, we have:

v, =JB,
Thus, we obtain:
_ B,
Nomm— OE

Substituting the value of B_ from Equation (2.89), we get:

2
_ JE (L)
nr TMm s L fJ
Or, it can be written as:

_ (LY
M, 1 n,/l F) .(2.94)

Wheren= \/% is the intrinsic impedance of lossless dielectric material.

In the similar way, the intrinsic impedance for TE waven . is obtained by

substituting the values of £, and H we get:

_ou
No1e— B,
Or,
\/E 1
e 2
Noe ™ 1—[?]
_n
2
= 1_(fc] .(2.95)
f

From Equations (294) and (2.95), it can be observed thatn_, andn .

vary with frequency and are purely resistive in nature. Also, we have:

u
NyrmMre =N = \/;



Power Transmission and Losses in Rectangular Waveguides

The power transmitted in a waveguide can be calculated using Poynting theorem.
We know that the average Poynting vector is given as:

S, = %Re(ES x H)
Here, the wave is propagating along z-direction and hence, the Poynting

vector is also along z-direction. Thus, we have:

- 1 * A
Sa = Re(Estys - E}’SHXS )Clz

==
Or, it can be written as:

- 1
Sav :_|ES |2 dz
2n

r

where andn =n ., for TM waveandn =n__, for TE wave. Thus, the
above equation becomes:

b

Sav =
2n

[ Ey [ +|E, [*a. .(2.96)

Now, the total time-average power transmitted is given by the relation:

S, = I S...ds

Sav - ﬁ.‘j—oﬂ—& E, |2 drdy

1 a b
Or, 8§, = gy Sy Jy 1B P+ BT iy (2.97)

Thus, the power transmitted for TM mode is given as:

! joa job| E, P dxdy

2
S = 2,1 - []}] [Refer to Equation (2.94)]
For TE mode is given as:
2
-[4)
S, = v N J’ ¢ J’ b| E.P dxdy [Refer to Equation (2.95)]
2n 0odo °

Power Losses

So far for a waveguide, we have assumed that its walls to be perfectly conducting
and the dielectric between them to be lossless. However practically, if the waveguide
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walls are not perfectly conducting and the dielectric medium is lossy, consequently,
there incurs some power loss along the wave propagation. These losses can be
classified into two types as:

* Losses in the dielectric
* Losses in the walls of the guide

The power flow in the waveguide is expressed as:

S =8 2%

av o

Where a = a +a . Here, a  denotes the losses occurring in the walls of
the waveguide and o, represents the losses due to dielectric. Let us determine the
losses due to dielectric and then we will determine the losses due to guide walls.
For lossy dielectrics, we know that y = jB ( thus, only the value of propagation
constant needs to be modified to obtain the results for propagation in lossy
dielectrics and it is done by replacing e with ¢ in Equation (2.78), where &_denotes
the complex permittivity. Thus, Equation (2.78) becomes:

2_ 2 2
hi =y, +o e,

Or, it can be written as:

2 2
o ot
where & = 8(1—;—8];9'—]8

Substituting this relation in Equation (2.98), it becomes:

mr\®  (nm)’ 2 . .
v =l +7 -0 ue + jouc =o,; + jB,

a

Squaring both sides, we get:

2 2
72 =[] (5] e+ jowo =ad B3 + 208,

Equating real and imaginary parts on both sides, we get:

2 2
aﬁ—lﬁ:(ﬂ] +[ﬂj ~o’ue .(23.99)
a b
And, 2ap, = opc .(2.100)

Assuming , thus Equation (2.99) becomes:

2 2
mmn nm

;=03 =("2) o[ 7] o
a b



Or,

e ()

(£
Bd: +/1E 1—L7J

Now, from Equation (2.100), o, can be written as:

ouc
%= 2B,

Substituting the value of B, as obtained above, we get:

UG on

o= 20)@\/1_[?}2 2\/1_[1;;)2 (2.101)

Where n= \/%

Now let us determine the losses due to waveguide walls, that is, o, . We

will determine the value of o for TE, mode, as it is comparatively easy and less
time consuming. Substituting the expressions of £_ and E, for TE  mode in
Equation (2.97) where £_= 0 for m =1 and n =0 mode, we get:

l a b 2 2 l a b Q)2H202H2 . Z(TCX]
= E |"+|E,| ddy =— 0+——= — | dxd
S zn,jojol w [+ By [ dxdy 2n,jojo 5 sin | dudy

av

Or, it can be written as:
2.2 2942
o‘uwaH) rart . z[nxj
= — — | dxd
Sav 2n2nr Io Io sin p Ixdy
Integrating the above equation, we get:

o’Wla’H2b
S = W ..(2.102)

Now, the total power loss per unit length of the walls is given by the
relation:

Sl: [Si]ico + 18 ]ce +[S:]20 + 8112
=2 {18 ]i=0 T[S/ 150} ..(2.103)

As the same power is dissipated in the walls x=0 and x = a then [S ]
=[S] _, ory=0andy=bthen [S],_,=[S],_, Fory=0,we have:

x=0
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[S],-0= %Re[”mf (Hy [+ H, |2>dxl

Here, subscript w denotes the intrinsic impedance for conducting walls.
Let R be the real part of intrinsic impedance, given as:

PO N 7

L
s 0,0 c,

Thus, we obtain:

1 « Ba® . a
l_.= —R| U b czl H? sin’ (E) dx + J‘ H? cos’ (E] dx}
Hy=0 2 x=0 7T a x=0 a

RaH?(  pB*a®)
=3 ) .(2.104)

Now for x =0, we have:

(5], = gRe[m 1P av]

X=

=——" ...(2.105)

Thus, using Equations (2.104) and (2.105), Equation (2.103) becomes:

( Bzaz\
_ RHXb+E1
S =1 0|:b+2k + " J ...(2.106)

As per the law of conservation of energy, it must be conserved which
implies that the power loss per unit length is equal to the rate of decrease of
average power, that is,

das
T
5 dz «
Sl
*7 s

Substituting the values from Equations (2.102) and (2.106), we get:

2
I

22
2R H’r, b+a[1+ﬁ a }
o = 2

o’Wa’Hb



In terms of frequency, it can be written as: Electromagnetics

28, {Lé(&ﬂ
0= b 1[{,] s

This is the required expression of attenuation constant of walls of waveguide

NOTES

for TE, mode. For TE modes, it can be derived using the same procedure, and
is given as:

[
e == ) e )

And, forTM, modes, itis given as:
2R, (b/a)’ m* + n*
aW,TM = (f\z (b/a)ZmZ +I’l2 (2 108)
b 1 _| Lc .
”\/ Lr)

Thus, the total loss in the rectangular waveguide can be obtained using
Equations (2.101), (2.107), and (2.108) as:

For TM wave:

a=0o +ao
W d

2R, (b/a)’m* +n? s on
B A% (b/a)Ym* +n* A%
@= 1_[ ] ) 1_[;)

f

For TE wave:

Cylndrical or Circular Waveguides

A circular tubular conductor is considered as a circular waveguide, used to transmit
EM waves from source to destination. However, they are different from that of
rectangular waveguides as they do not have unique orientation due to its
symmetricity around the axis as shown in Figure (2.37). Also, circular waveguides
are easy to manufacture. Both TE and TM modes can propagate through a circular
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waveguide. The field expressions for circular waveguides are obtained using Bessel
functions and are derived below.

Fig. 2.37 A Circular Waveguide

Consider a circular waveguide with dimension of radius 7 as shown in Figure
(2.37). Proceeding in similar way as we did for rectangular waveguides, the general
solution of electric and magnetic field can be written in terms of Bessel functions as:

E.(p, ¢, 2)=[4,J,(k, p)+ B,N, (k. p)](C, cosnd + D, sin ngp)e”P+* ...(2.109)

H.,(p,,2)=[A4,J, (k. p) + BN, (k,p)|(C} cosnd + D, sin np)e*/P* ..(2.110)

Where J (k p) is the Bessel function of firstkind and NV (k p) is the Bessel
function of second kind. Also,

Bcir= im

Here, subscript cir is used to denote the propagation inside circular
waveguide. Now, at p = 0 the field must be finite which implies B = 0, thus
Equations (2.109) and (2.110) becomes:

E..(p,d,z)= A,J, (k. p)(C, cosnd + D, sin np)e*/Per* .(2.111)

H.,(p, §.2) = 4, (k, p)(C; cosnd + D, sin e -(2.112)
Also, using trigonometric manipulations, we have:
. T (D)
C,cosnd + D, sinnd =+/C; + D; cos| nd + tan L J

C

n

=K cos (n)
Where K is another constant.
Thus, Equations (2.111) and (2.112) becomes:
E..(p, 0, z) = E, J, (k, p)cos(nd)e P .(2.113)
H_(p, b, z)=H,J, (k,p)cos(nd)e P .(2.114)
Where £ =4 K and H = H, = 4K

n n



Now, the solution of TE and TM waves can be obtained using Maxwell’s
equation given as:

Vx H, = josk,

Expanding above equation, we get:

a, pa, a,
_ OH OH
Vst:li o0 o|_|loH, L P ps _ OH a,
plop o0 oz| |p 0 oz | P 0z op
Hps pH(])s st
tloleH) an, |
Pl Op o |~
= joeE,a, + joeEya, + joek a,
Equating the coefficients, we obtain:
10H,, OH,
s _ _¢‘ — J(DSE <
p b oz P
) OH,, .
_]Bciers - a—p = ]m8E¢s
10(pHy) 10H,
P e, (2.115)
p Op p 0
Similarly using Maxwell’s equation given as:
V x Es =- jo‘)l’dj]s
And expanding and equating the coefficients, we get:
1 aszs aE(I)b .
—_———=—j® ,
P TR JOUH
OE, OF
= == _J(DMH s
oz op ‘
1 0(pEy) 1 0E, :
P o o, -(2.116)

P pap
Transverse Magnetic Waves

To determine the field expressions, let us apply the boundary conditions. We know
that the tangential components of electric field £ must be continuous, which
implies:

E =0atp=r

Using this boundary condition, we get:
J (k,r)=0 -(2.117)
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Also, the field equations by substituting //_ =0 and , Equations (2.115)

and (2.116) becomes:

_ch[r aEvzs
_chir last
Es="% o o

EZS = Ea‘]n (kc p) COS(I’I(I))e_jBU’rZ

jwsl&EZS
Ho= k0 a0

JO\)S aE‘ZS
E¢s - kc2 op

H =0

zs

where kf = (02},[8 — B2

cir

(2.118)

(2.119)

Now, from Equations (2.117), (2.118), and (2.119) we get the field

components of TM wave as:

E = E()JI;[anp
ps

N

} COS(nd))eijBf”?

7

anp
7

E = EOJ,,[ ]sin(nq))e‘fﬂmz

X .
E =EJ, [%p] cos(nd)e Per

H = HOJ”L prJ sin(ng)e” P
=H,J, wP) cos(nd)e Per*
H =4, nk )

X}’l . . .
Where—% =k, . Here, X ,» are the roots of the Bessel function in which
r

subscript n denotes the number of full cycles of field variation in one revolution

and subscript p denotes the number of zeroes of £ » however, zero on the axis is

excluded. The values of n and p are given as:

n=0,1,2,3,4,....

’ (X"Pp\ . . . . (anp\
Also, /» |, ) indicates the derivative of J )



Propagation Characteristics of Transverse Magnetic Wave
The phase constantis B, given as:
By = Nous -k =k ~ &

Or, the phase constant can be written as:

2 Y2
(X))
B, = {k ) }

Also, the cut-off frequency is given by the relation:
f= uX p
¢ 2nr
where u is the velocity of the wave given as:
1

U= Jue

Now, the cut-off wavelength for circular waveguide can be given as:

2
hTEx

np

And the guide wavelength A __is given as:
A

kcir - - (J‘;jz
f

The intrinsic impedance of the circular waveguide is similar to that of
rectangular waveguide and thus, given by the relation:

Neirtm = Twl - (%}

As the tangential components of electric field £ must be continuous, we have:

Transverse Electric Waves

E b = Oatp=r
Substituting this condition in Equation (2.117), we get:
oM., _,
op

Using the above equation, we get:

ik, r)=0 (2.120)

_ 0 o
Also, the field components on substituting £, = 0 and P — /B in

Equations (2.115) and (2.116), we get:
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_]('0” 1 a[{zs
ps T 2 A
k: p 0
_ Jou ot
“ = o (2.121)
Ezs =0
_ _chir aI—Izs
ps kf ap
_ _chir last‘
BTk p a0 (2.122)

H =H,J, (k.p) Cos(nq))e—jﬁc,,.z
Now, from Equations (2.120), (2.121), and (2.122), we get the field

components of TE wave as:

E=E.J, (Xip pj sin(nd)e P
Ey = E,J, (@J cos(nd)e P
H, =-HJ, [X ipp} cos(n)e P
Hy, = H,J, [X ipp} sin(ng)e -
H,=HJ, [X ipp} cos(n)e P

’

X,
Where — =k,
r

Propagation Characteristics of Transverse Electric Wave

Letus now discuss the propagation parameters of transverse electric wave. Some
of the characteristics are same to those of TM wave while some are different.

However, we will represent them all here in summarized way.

5 1/2
, (X))
Bcir _[k _LT) ]

P
< 2ar
1
u:
e
7»0_2TEr
an
A= A




And,

n

(1Y
=)

Now, the dominant mode of a circular waveguide is TE .

ncir TE =

Note: The major drawback of circular waveguide is that they occupy more space

as compared to rectangular waveguide. Hence, to carry the same signal, their

cross section is much larger.

9.
10.
I1.
12.
13.
14.

Check Your Progress

Define the term polarisation.

What is light vector?

Define the term double refraction or birefringence.
What is Degree Of Polarization (DOP)?

State about the scattering of light and radio waves.
What are the elements of waveguides?

2.13 ANSWERS TO ‘CHECK YOUR PROGRESS’

1.

Time varying is a system in which certain quantities governing the system’s
behaviour change with time, so that the system will respond differently to
the same input at different times.

When an electrically conducting structure is exposed to a time varying
magnetic field, an electrical potential difference is induced across the structure.

The generation of electric potential by a time varying magnetic flux is very
well described by ‘Faraday’s Law’. This is a form of electromagnetic
induction. According to Faradays law, when magnetic flux changes in the
region surrounded by conductor, it produces electric field (induced Electo
Motive Force or EMF) in conductor.

. Maxwell’s equations state the fundamentals of electricity and magnetism. The

working relationships in the field of electricity and magnetism can be derived
using these equations. As a consequence of their brief statement, they symbolize
ahigh level of mathematical sophistication, and hence are typically defined as
unifying equations for studying of electrical and magnetic phenomena.

Principally, the Maxwell’s equations are a set of partial differential equations
that, together with the ‘Lorentz Force Law’, form the foundation of classical
electromagnetism, classical optics, and electric circuits.

. The (two-way) wave equation is a second order partial differential equation

explaining waves. The scalar wave equation describes waves in scalars by
scalar functions u = u (x, x,, ..., x ; ) of a time variable ¢ (a variable
representing time) and one or more spatial variables x , x, ..., x (variables
representing a position in a space) while there are vector wave equations
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10.

describing waves in vectors, such as waves for electrical field, magnetic
field, and magnetic vector potential and elastic waves.

The scalar wave equation is,

Pu _ o (Fu Fu P
ot? dx? = Ox? dx?

Where c is a fixed non-negative real coefficient.

. Hertz vector is also known as polarization potentials, which are useful

auxiliary fields that permit the calculation of the fundamental electromagnetic
fields. The Hertz vector potentials are an alternative formulation of the
electromagnetic potentials.

. Principally, the electromagnetic wave equation is a second order partial

differential equation that describes the propagation of electromagnetic waves
through a medium or in a vacuum. It is a three-dimensional form of the
wave equation. Electromagnetic waves are created by the vibration of an
electric charge. This vibration creates a wave which has both an electric
and a magnetic component.

An electromagnetic wave transports its energy through a vacuum at a speed
0f3.00 x 10® m/s. The propagation of an electromagnetic wave through a
material medium occurs at a net speed which is less than 3.00 x 10® m/s.
An electromagnetic wave consists of an electric field, typically defined in
terms of the force per charge on a stationary charge, and a magnetic field,
defined in terms of the force per charge on a moving charge.

. The mechanical pressure exerted upon any surface due to the exchange of

momentum between the object and the electromagnetic field is the radiation
pressure. The associated force is called the radiation pressure force, or
sometimes just the force of light. Radiation pressure is the mechanical
pressure exerted upon any surface due to the exchange of momentum
between the object and the electromagnetic field.

. Reflection basically occurs when a wave is incident on a boundary between

two media in which the wave speed is different, and then remains in the
original medium rather than passing into the second medium. While reflection
occurs at any boundary, often only a small proportion of the wave is reflected.
Refraction is the change of the direction of propagation of waves when they
pass into a medium where they have a different speed. It is observed
whenever the waves are incident to the surface at an angle different to the
normal to the surface. When an electromagnetic field faces an abrupt change
in the permittivity and permeability, then certain conditions on electric and
magnetic fields on the interface are to be respected for the continuity.

. Polarization or polarisation is a property applied to transverse waves that

specifies the geometrical orientation of the oscillations. In a transverse wave,
the direction of the oscillation is perpendicular to the direction of motion of
the wave.

According to electromagnetic theory of light, electric field, magnetic field
and the propagation vector of light travel along three mutually perpendicular



directions. It is the electric field of light that creates optical sensation in our Electromagnetics
eyes, in photographic cameras and in all other optical instruments. That is
why electric field is known as light vector.

11. If abeam of unpolarised light is allowed to pass through an anisotropic
crystal (Calcite or Quartz), then it splits up into two refracted beams instead
of'one. This phenomenon is called ‘Double Refraction’ or ‘Birefringence’.

NOTES

12. Principally, the Degree Of Polarization (DOP) is a quantity used to describe
the portion of an electromagnetic wave which is polarized.

13. Electromagnetic waves are one of the best known and most commonly
encountered forms of radiation that undergo scattering. Scattering of light
and radio waves (especially in radar) is particularly important. Major forms
of elastic light scattering including the negligible energy transfer are Rayleigh
scattering and Mie scattering. Light scattering is one of the two major physical
processes that contribute to the visible appearance of most objects, the
other being absorption.

14. Depending upon the purpose for which waveguide is to be used and the
frequency of the wave to be transmitted, there are many different structures
of waveguide that include parallel plate waveguide, rectangular
waveguide, circular waveguide, optical fiber waveguide, and dielectric
slab waveguide. For the parallel plate waveguides the fields vary only in one
transverse or orthogonal direction. Thus, the concept of parallel plate waveguide
is simple, however, it is not of practical use due to infinite dimensions.

A circular tubular conductor is considered as a circular waveguide, used to
transmit EM waves from source to destination. However, they are different
from that of rectangular waveguides as they do not have unique orientation
due to its symmetricity around the axis. Also, circular waveguides are easy
to manufacture. Both TE and TM modes can propagate through a circular
waveguide.

2.14 SUMMARY

¢ Time varying is a system in which certain quantities governing the system’s
behaviour change with time, so that the system will respond differently to
the same input at different times.

e When an electrically conducting structure is exposed to a time varying
magnetic field, an electrical potential difference is induced across the structure.

¢ The generation of electric potential by a time varying magnetic flux is very
well described by ‘Faraday’s Law’. This is a form of electromagnetic
induction. According to Faradays law, when magnetic flux changes in the
region surrounded by conductor, it produces electric field (induced Electro
Motive Force or EMF) in conductor.

e Maxwell’s equations are defined as a set of coupled partial differential
equations that, together with the Lorentz force law, form the foundation of
classical electromagnetism.
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e The Maxwell-Faraday version of Faraday’s law of induction describes how

a time varying magnetic field creates induces, an electric field. In integral
form, it states that the work per unit charge required to move a charge
around a closed loop equals the rate of change of the magnetic flux through
the enclosed surface.

Maxwell’s equations state the fundamentals of electricity and magnetism.
The working relationships in the field of electricity and magnetism can be
derived using these equations. As a consequence of their brief statement,
they symbolize a high level of mathematical sophistication, and hence are
typically defined as unifying equations for studying of electrical and magnetic
phenomena.

Principally, the Maxwell’s equations are a set of partial differential equations
that, together with the ‘Lorentz Force Law’, form the foundation of classical
electromagnetism, classical optics, and electric circuits.

The magnetic dipole moment is equal to the product of the current flowing
through the loop and area of the loop with the moment acting normal to the
loop.

Magnetic dipole naturally exists on permanent magnets as North and South
poles or in current carrying coils.

When a magnetic field is applied to the magnetic material, then the magnetic
moments align in a particular direction. Hence, magnetisation is defined as
the net magnetic dipole moment in a given volume.

Hence, magnetic susceptibility is defined as the ratio of magnetisation to
magnetic field intensity.

Maxwell’s equations in time varying fields are the final form of equations
that interlinks the electric and magnetic fields.

The (two-way) wave equation is a second order partial differential equation
explaining waves.

The scalar wave equation describes waves in scalars by scalar
functions u = u (x,, x,, ..., x ; f) of a time variable ¢ (a variable representing
time) and one or more spatial variables x , x,, ..., x_(variables representing
a position in a space) while there are vector wave equations describing
waves in vectors, such as waves for electrical field, magnetic field, and

magnetic vector potential and elastic waves.

The scalar wave equation is,

8%u o [ O*u  B%u &y

—— F—{ e e E— . _|_
ot? dx? Oz Ox?

Where c is a fixed non-negative real coefficient.

Hertz vector is also known as polarization potentials, which are useful
auxiliary fields that permit the calculation of the fundamental electromagnetic
fields in many cases of practical importance. This provides a new light on
the physical meaning of a Hertz potential.



e The Hertz vector potentials are an alternative formulation of the

electromagnetic potentials.

A plane wave is a special case of wave or field - a physical quantity whose
value, at any moment, is constant over any plane that is perpendicular to a
fixed direction in space.

Principally, the electromagnetic wave equation is a second order partial
differential equation that describes the propagation of electromagnetic waves
through a medium or in a vacuum. It is a three-dimensional form of the
wave equation.

Intrinsic impedance is also called as the wave impedance in free space. It is
denoted as n,. Intrinsic impedance relates the electric and magnetic field.

Wave propagation parameters gets altered when they travel across different
medium like free space, dielectric and conductors.

When an electromagnetic wave travels, they tend to attenuate. This
attenuation depends on the frequency of the wave travelling. Attenuation is
larger, when the frequency is larger. This implies that wave die out faster for
larger frequencies and travel a very short distance.

The mechanical pressure exerted upon any surface due to the exchange of
momentum between the object and the electromagnetic field is the radiation
pressure. The associated force is called the radiation pressure force, or
sometimes just the force of light.

Radiation pressure is the mechanical pressure exerted upon any surface
due to the exchange of momentum between the object and the
electromagnetic field.

Reflection basically occurs when a wave is incident on a boundary between
two media in which the wave speed is different, and then remains in the
original medium rather than passing into the second medium. While reflection
occurs at any boundary, often only a small proportion of the wave is reflected.

Refraction is the change of the direction of propagation of waves when they
pass into a medium where they have a different speed. It is observed
whenever the waves are incident to the surface at an angle different to the
normal to the surface.

When an electromagnetic field faces an abrupt change in the permittivity
and permeability, then certain conditions on electric and magnetic fields on
the interface are to be respected for the continuity.

The law of reflection says that for specular reflection the angle at which the
wave is incident on the surface equals the angle at which it is reflected.
Mirrors exhibit specular reflection.

Polarization or Polarisation is a property applied to transverse waves that
specifies the geometrical orientation of the oscillations. In a transverse wave,
the direction of the oscillation is perpendicular to the direction of motion of
the wave.
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¢ An electromagnetic wave, such as light consists of a coupled oscillating

electric field and magnetic field which are always perpendicular; by
convention, the ‘Polarization’ of electromagnetic waves refers to the direction
of'the electric field.

In linear polarization, the fields oscillate in a single direction. In circular or
elliptical polarization, the fields rotate at a constant rate in a plane as the
wave travels.

The rotation can have two possible directions; if the fields rotate in a right
hand sense with respect to the direction of wave travel, it is called right
circular polarization, or, if the fields rotate in a left hand sense, it is called left
circular polarization.

According to electromagnetic theory of light, electric field, magnetic field
and the propagation vector of light travel along three mutually perpendicular
directions. It is the electric field of light that creates optical sensation in our
eyes, in photographic cameras and in all other optical instruments. That is
why electric field is known as light vector.

The imaginary plane which contains the vibrations of electric field of a
polarised light is called plane of vibration. An imaginary plane perpendicular
to the plane of vibration is called plane of polarisation.

If abeam of unpolarised light is allowed to pass through an anisotropic
crystal (Calcite or Quartz), it splits up into two refracted beams instead of
one. This phenomenon is called ‘Double Refraction’ or ‘Birefringence’.

A number of crystalline materials absorb more light in one incident plane
than another, so that light progressing through the material become more
and more polarised as they proceed. This anisotropy in absorption is called
dichroism. There are several naturally occurring dichroic materials, and the
commercial material polaroid also polarises by selective absorption.

Principally, the Degree Of Polarization (DOP) is a quantity used to describe
the portion of an electromagnetic wave which is polarized.

Electromagnetic waves are one of the best known and most commonly
encountered forms of radiation that undergo scattering.

Scattering of light and radio waves (especially in radar) is particularly
important. Major forms of elastic light scattering including the negligible
energy transfer are Rayleigh scattering and Mie scattering.

Light scattering is one of the two major physical processes that contribute
to the visible appearance of most objects, the other being absorption.

Thomson scattering is the elastic scattering of electromagnetic radiation by
a free charged particle, as described by classical electromagnetism. It is the
low-energy limit of Compton scattering: the particle’s kinetic energy and
photon frequency do not change as a result of the scattering. This limit is
valid as long as the photon energy is much smaller than the mass energy of

the particle: 3y <« mc? /hor equivalently, if the wavelength of the light is

much greater than the Compton wavelength of the particle (e.g., for electrons,
longer wavelengths than hard x-rays).



Depending upon the purpose for which waveguide is to be used and the
frequency of the wave to be transmitted, there are many different structures
of waveguide that include parallel plate waveguide, rectangular
waveguide, circular waveguide, optical fiber waveguide, and dielectric
slab waveguide.

For the parallel plate waveguides the fields vary only in one transverse or
orthogonal direction. Thus, the concept of parallel plate waveguide is simple,
however, it is not of practical use due to infinite dimensions.

A circular tubular conductor is considered as a circular waveguide, used to
transmit EM waves from source to destination. However, they are different
from that of rectangular waveguides as they do not have unique orientation
due to its symmetricity around the axis. Also, circular waveguides are easy
to manufacture. Both TE and TM modes can propagate through a circular
waveguide.

2.15 KEY TERMS

Time varying: Time varying is a system in which certain quantities governing
the system’s behaviour change with time, so that the system will respond
differently to the same input at different times. When an electrically conducting
structure is exposed to a time varying magnetic field, an electrical potential
difference is induced across the structure.

Magnetic dipole moment: The magnetic dipole moment is equal to the
product of the current flowing through the loop and area of the loop with
the moment acting normal to the loop.

Magnetic susceptibility: Magnetic susceptibility is defined as the ratio of
magnetisation to magnetic field intensity.

Intrinsic impedance: Intrinsic impedance is also called as the wave
impedance in free space. It is denoted as 1. Intrinsic impedance relates the
electric and magnetic field.

Polarization: Polarization or polarisation is a property applied to transverse
waves that specifies the geometrical orientation of the oscillations.

Plane of polarisation: The imaginary plane which contains the vibrations
of electric field of a polarised light is called plane of vibration. An imaginary
plane perpendicular to the plane of vibration is called plane of polarisation.

2.16 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.
2.
3.

Define time varying fields.
What is Maxwell’s electromagnetic field equations?

State about the electromagnetic scalar wave equations.
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Define Hertz vector.

What is plane wave propagation?

Define radiation pressure.

Differentiate between reflection, refraction and total internal reflection.

What is polarisation?

A S RS O

Define scattering of plane E. M. waves.

10. What are the elements of wave guides?

Long-Answer Questions

1. Briefly discuss time varying fields with the help of examples.

2. Discuss the Maxwell’s electromagnetic field equations in stationary and
moving media giving appropriate examples.

3. Explain the characteristic features of electromagnetic scalar wave equations
with the help of examples.

4. What is the importance of Hertz vector? Explain giving examples.

5. Describe the significant features of plane wave propagation in ionised media
giving appropriate examples.
6. Interpret about radiation pressure and momentum giving examples.

7. Briefly discuss the concept of reflection, refraction, and total internal reflection
with the help of general reaction mechanism and examples.

8. Briefanote on polarisation giving examples.

9. Discuss in detail the characteristic equations for scattering (Rayleigh and
Thomson) and dispersion of plane E. M. waves with the help of relevant
examples.

10. Explain the elements of wave guides giving examples.
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3.0 INTRODUCTION

ElectroMagnetic Radiation (EMR) typically consists of waves of the
ElectroMagnetic (EM) field, that are propagating through the space, carrying
electromagnetic radiant energy. All of the waves, such as radio waves, microwaves,
InfraRed (IR) waves, white (visible) light, UltraViolet (UV) waves, X-rays,
and gamma rays form the significant part of the electromagnetic spectrum. All these
wave types are considered as the synchronized oscillations of electric field and
magnetic field.

Electromagnetic radiation or electromagnetic waves are typically created
as aresult of periodic change of the electric field or the magnetic field. Depending
on how this periodic change happens and the power is generated, different
wavelengths of electromagnetic spectrum are produced. In a vacuum,
electromagnetic waves travel at the speed of light.

The position of an electromagnetic wave within the electromagnetic spectrum,
such as radio waves, microwaves, InfraRed (IR ) radiation, visible light, UltraViolet
(UV) radiation, X-rays and gamma rays. can be ascertained by either
its frequency of oscillation or its wavelength. Electromagnetic waves of different
frequency are called by different names since they have different sources and
effects on matter. Characteristically, they are categorized in order of increasing
frequency and decreasing wavelength.
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Electromagnetic waves are emitted by electrically charged
particles undergoing acceleration, and these waves can subsequently interact with
other charged particles, exerting force on them. EM waves carry energy, momentum
and angular momentum away from their source particle and can impart those
quantities to matter with which they interact. Electromagnetic radiation is associated
with those EM waves that are free to propagate or radiate themselves without the
continuing influence of the moving charges that produced them, because they have
achieved sufficient distance from those charges. Consequently, ElectroMagnetic
Radiation (EMR) is sometimes referred to as the far field.

In physics, the ‘Retarded Electromagnetic Potentials’ are typically derived from
the Maxwell’s equations and the Lorenz condition. The Maxwell’s equations are
given by the physicist James Clerk Maxwell. The key difference observed between
these retarded electromagnetic potentials and the conventional Liénard—Wiechert
potentials is precisely explained by ignoring the dependency of motion of the effective
charge density. In addition, the subsequent retarded fields for a point-like charge
specifically in the arbitrary or random motion are precisely compared and evaluated
with the notions, formulae and equations given by the Oliver Heaviside, Richard
Phillips Feynman, Oleg Dmitrovich Jefimenko and other authors. Electromagnetic
radiation in the form of waves can be obtained from these potentials. The
expressions for the Liénard—Wiechert potentials are named after the physicists
Alfred-Marie Liénard who developed in part in the year 1898 and then by Emil
Wiechert who independently developed in the year 1900.

Bremsstrahlung is also termed as the braking radiation. This radiation is
typically produced because of the deacceleration or the negative acceleration of a
charged particle, which contains the synchrotron radiation process in which the
emission of photon takes place through a relativistic particle and the cyclotron
radiation in which emission of photon takes place through a non-relativistic particle,
in addition it also explains the electrons and positrons emission during the beta
decay.

Bremsstrahlung radiation is specifically defined as the radiation that is released
by means of a charged particle the ‘Electron’ owing to its acceleration that is
caused by means of an electric field of another charged particle the ‘Proton’ or an
atomic nucleus. The word “Bremsstrahlung” is a German word which means
“Braking Radiation”, and specifically refers to the approach in which
the electrons are “Braked” when they typically hit a metal target. The incident
electrons are considered as free, i.e., they are not bound to an atom or ion, both
either before or after the braking.

In this unit, you will study bout the retarded potential, Liénard -Wiechert
potentials due to uniformly moving and accelerated charges, Lorentz formula,
Bremsstrahlung, radiation from on accelerated charged at low velocity (Larmor’s
formula), radiation from an oscillating electric dipole, linear antenna, radiation from
a charged particle moving in a circular orbit, electric quadrupole radiation, and
radiation damping.



3.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand what retarded potential is

e Explain the Liénard-Wiechert potentials due to uniformly moving and
accelerated charges

¢ Analyse the Lorentz formula

e Interpret the Bremsstrahlung concept

¢ Define radiation due to accelerated charge at low velocity (Larmor’s formula)
¢ Explain radiation due to an oscillating electric dipole

¢ Describe the significance of linear antenna

¢ Discuss about the radiation from a charged particle moving in a circular
orbit

¢ Elucidate on electric quadrupole radiation

e Know what radiation damping is

3.2 RETARDED POTENTIAL

In physics, the ‘Retarded Electromagnetic Potentials’ are typically derived from
the Maxwell’s equations and the Lorenz condition. The Maxwell’s equations are
given by the physicist James Clerk Maxwell. Characteristically, the Liénard—
Wiechert potentials precisely explain and evaluate the classical electromagnetic
effect or consequence of a moving electric point charge with reference to a vector
potential and a scalar potential in the Lorenz gauge. Reducing or decreasing directly
from the Maxwell’s equations, the Liénard—Wiechert potentials uniquely explain
the comprehensive, relativistically appropriate, time-varying electromagnetic field
for a point charge in arbitrary or random motion, but the Liénard—Wiechert potentials
are not modified or amended for explaining the quantum mechanical effects.

Electromagnetic radiation in the form of waves can be obtained from these
potentials. The expressions for the Liénard—Wiechert potentials are named after
the physicists Alfred-Marie Liénard who developed in part in the year 1898 and
then by Emil Wiechert who independently developed in the year 1900.

The key difference observed between these retarded electromagnetic
potentials and the conventional Liénard—Wiechert potentials is precisely explained
by ignoring the dependency of motion of the effective charge density. In addition,
the subsequent retarded fields for a point-like charge specifically in the arbitrary
or random motion are precisely compared and evaluated with the notions, formulae
and equations given by the Oliver Heaviside, Richard Phillips Feynman, Oleg
Dmitrovich Jefimenko and other authors. Consequently, the explanation and
derivations given by Feynman about the fields of an accelerated charge are similar
and identical to the explanation and derivations that are precisely derived from the
Liénard—Wiechert potentials, although it is not similar to the explanations and
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derivations that are given and specified in the Jefimenko formulae. In the derivations
and explanations given in the Jefimenko equations were not correct since a
mathematical error or inaccuracy pertaining to partial space and time derivatives
were observed and pointed out in the derivations.

Derivation of Retarded Electromagnetic Potentials from
Inhomogeneous d’Alembert Equations

The retarded electromagnetic potentials may be derived from the Maxwell
equations as follows:

V-E = 4rl,, 3.1)
- - 1 E -
F2d - 2 uj (3-2)
c ot
And the Lorenz condition,
- ]. {-)fx[]
A+ =)
~ Y (3.3)

Where the current density J is a 4-vector:

J(Es(t),t) = (Jo; J) = (Wup”: YubBup”) =

The system of source charges is assumed to be at rest in the frame S”,

(3.4)

where the charge density is p*, and to move with velocity i = (;ﬁu relative

to the frame S in which the potential is defined. The 4-vector velocity of the
charge system in this last frame is:

U= (( fus CYuf :gu) (3.5
Where,
{ 1
fu==, W=——.
c - 32

The first step of the calculation uses the Lorenz condition in Equation

(3.3) to eliminate either J or J, from Equations (3.1) and (3.2) to obtain the
following inhomogeneous d’Alembert equations:

() A
2 0 e
VA — = 9 —4mJo. (3.6)
g 1 BEA -
VEA ——— = =47l 3.7
c? Ot2 ' 3.7
The solutions give the retarded 4-vector potential of the form:
o J (U |--: —ff(f”
ret [ 3 H l | Kol SR U0 Y A I
Aret(E,. 1) /df fd: (r)i S ( |o(r - £).
(3.8)

In the special case of a single point-like source charge the current density
in Equation (3.8) is given by the expression:



. Qu _ .
JZ5(t), ) = T‘}(J'J“I) — To(t')) (3.9)
Where -"EQ (i-’ ) is the position of the charge at time 7 . Inserting Equations

(3.9) in (3.8), and integrating over I 7., gives,

ret ¢ =+ ¢ Uy E(S('H _ :’.))
A (@ 1) = £ f dt ——& (3.10)
Where,
Ty — Tolt r!
?°’E|fq_f€2(f-r)|7 bel‘— | q Q( Q]l :f—L
C c Pyt
@
(3.11)
The retarded 4-vector potential is therefore:
(Are.t_ ‘Kret) . Q'}ﬂ i QTU.BU
g vl (3.12)
t'=t,

3.3 LIENARD-WIECHERT POTENTIALS DUE
TO UNIFORMLY MOVING AND
ACCELERATED CHARGES

In physics, the theory and derivations of classical electrodynamics was initiated
and structured by the physicist Albert Einstein’s during the development of the
‘Relativity Theory’. The significant analysis of the motion theory and propagation
of electromagnetic waves formed the basis of the special and distinctive relativity
description and derivations of space and time equations. The Liénard—Wiechert
formulation is considered as an essential and substantial launchpad for the in depth
analysis of relativistic moving particles. Typically, the Liénard—Wiechert potentials
are used for describing the classical electromagnetic effect of a moving electric
point charge precisely with regards to a vector potential and a scalar potential in
the Lorenz gauge.

As already discussed, the Liénard—Wiechert potentials are directly
constructed from the Maxwell’s equations, therefore the Liénard—Wiechert
potentials precisely explain the wide-ranging, relativistically precise, time-varying
electromagnetic field for a point charge in arbitrary or random motion.

Characteristically, the Liénard—Wiechert description and derivation is
considered accurate and exact for a substantial and significant independently moving
particle, i.e., the analysis and derivation is ‘Classical’ and consequently the
acceleration of the charge is because of a force that is precisely independent of
the ElectroMagnetic Field or EMF.
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Principally, the Liénard—Wiechert formulation gives the following two sets
of solutions:

1. Advanced Fields are Absorbed by the Charges.
2. Retarded Fields are Emitted.

Fundamentally, the Liénard—Wiechert potential formulation represents explicit
and specific expressions for time-varying electromagnetic fields that are uniquely
caused by means of charge in arbitrary or random motion. However, the Liénard—
Wiechert potentials were distinctively derived from the retarded potentials, which
in sequence are derived and explained from the Maxwell equations.

Equations of Liénard—Wiechert Potentials
The Liénard—Wiechert potentials 4 (scalar potential field) and A (vector

potential field) are for a source point charge ¢ at position I's traveling with

velocity ¥y :
1 q
r.t} =
Pt = ((1 “n-B)r—r,| )L..
And,
e aB, ~ B,(tr)
At =5 (), = e el
Where,
v
o A.(t)= is the velocity of the source expressed as a fraction
of the speed of light.
e |r — r,| is the distance from the source.
r—r;
o 0 Ir —r,| is the unit vector pointing in the direction from the
source.

Corresponding Values of Electric and Magnetic Fields

We can calculate the electric and magnetic fields directly from the potentials
using the following equations:

E=—?p—%andﬂ=?xﬁ

The calculation is nontrivial and requires a number of steps. The electric
and magnetic fields are (in non-covariant form):

1 ( gn— B) +i}ﬂ>‘¢((ﬂ—ﬁ]‘>‘ﬁ])
’}‘2( tr

dmsg 1-n-8Pr—r,* el-n-8pr—r,

E(r,t) =

And,

B(r, )

m ge(8 x n) aux (nx ((a—p) x ) n(t,)
T 4r 2 : 7 T —n-8¥r— =g 8 E(r,t)
(1l —n- BB r —r (1-mn-B)r—r, £



Where,

v, (t) n(t) = r—r(t)

Blt) =

(the Lorentz factor).

i —— and y(t) = ————
e MO T T s

y1- 18"

Note that the m — 8 part of the first term updates the direction of the
field towards the instantaneous position of the charge, if it continues to move

with constant velocity ¢f.. This term is connected with the ‘Static’ part of the
electromagnetic field of the charge.

The second term, which is connected with electromagnetic radiation by
the moving charge, requires charge acceleration @ and if this is zero, then the

value of this term is zero, and the charge does not radiate, i.e., emit
electromagnetic radiation. This term requires additionally that a component of
the charge acceleration be in a direction transverse to the line which connects

the charge ¢ and the observer of the field E(r,t).. The direction of the field

associated with this radiative term uniquely specifies the time-retarded position
of the charge, i.e., where the charge was when it was accelerated.

3.4 LORENTZ FORMULA

In physics, principally in the field of electromagnetism the term Lorentz force also
sometimes referred as the electromagnetic force is defined as the combination of
electric force and magnetic force on a point charge that exclusively occurs as a
result of electromagnetic fields. The Lorentz formula refers to the Lorentz force
which was formulated by Hendrik Lorentz who precisely derived the contemporary
or present form of the formula and its derivation typically for the electromagnetic
force which includes the analysis and formulation of the total force obtained from
both the electric fields and the magnetic fields.

The Lorentz force is defined as a force that is exerted by means of the
electromagnetic field on the charged particle, i.e., it is precisely specified as the
rate at which the linear momentum is transferred from the electromagnetic field to
the particle. From a contemporary perspective it is possible that the Maxwell’s
1865 formulation and equations can be identified as the unique form of the Lorentz
force equation with respect to electric currents.

In this equation, the general form of wave equations despite medium
properties will be covered. During the process of deriving we will observe the
conditions for relations between the scalar electric potential, 7’ and vector magnetic

potential “4’. This condition is called Lorentz condition. The procedure to obtain
the wave equations include, starting from Maxwell’s equation and applying the
vector identities and simple manipulations of the obtained equations will result in
the wave equations.
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From Maxwell’s second equation,
0B

dt

We know that,

VXE=—

E=VxA

Therefore,

=0 (3.13)

We know the vector identity that curl of a gradient is zero. Therefore,

Vx(=V)=0 (3.14)
Comparing Equations (3.13) and (3.14), we get,

Fip=i=l i
at
B -7y
B at
E = VV+M
= o (8.3)

V5= — v+ 2 (5.4)
L= e\ (3.16)
But from Maxwell’s first equation,
nE =&
=



Therefore, equating the above equation with Equation (3.16), Electromagnetic Radiation

L A () *]'
: [?V+arﬁ.ﬂ)

Or NOTES

a — > pV
ViV + —(V.4) = —— 3.17
+5 (V.4) . 3.17)
So far, we have used Maxwell’s equation for electric field and now let us
use Maxwell’s equation for magnetic field to couple the two fields to arrive at the

electromagnetic waves. Considering, Maxwell’s fourth equation,

s =742
g
But, 5 = . Therefore,
. B , 8D
VX—=]+—
I3 dt
Sl i
—HJJerr
AlSO,E:Eg
ﬁ E— - aE
XB=u +pe—- (3.18)

Substituting for g, from Equation (3.15) , we get,

FxE = uf 4 ue |7y 2
T at
PaBe it
DRV T i PY
Butg = ¥ % 4, Hence,
SN S L1 924
XVXA =y —puevo— e (3.19)

Applying vector identity to the LHS of Equation (3.19), we get,
TxTxA=V(V.4) -V
V(V.A) - V24 = uf - ,ueV)a—V — ,ueaz—A

dt ot2 (3.20)
Observing Equation (3.20), we find that scalar potential | and vector

potential Acanbe separated and decoupled. Therefore for vector potential, A
Equation (3.20) becomes,
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VA = uf 024
By
Or
- 924
v A—MEW=H] (3.21)

Similarly, it is good to separate for scalar potential § in terms of Abecause

we obtain a relation relating 4 and ¥known as Lorentz condition for potentials.

VF.4) = —uev 2

)= TR

- ()

B Hedt

o

A= THET (3.22)

The above relation is known as Lorentz condition for potentials.

Recalling Equation (3.17),

Py

Q-
2 _ - _
VV+at(V'A) .

Substituting for 7.4 from Equation (3.22) in Equation (3.17) above,

0 ov Py
2 el Y
e 6t( He dt) ¢
0%V Pv
2 _ e — _HV
ViV —ue—s - (3.23)
Recalling Equation (3.21) as below,
2 %A .
HES7 W

The above two equations are called as wave equations. Equations (3.21)
and (3.22) are decoupled equations of 4 and 17, whereas Equation (3.17) and
(3.20) are coupled equations, in which and are interlinked.

Free Space Wave Equations

In free space, p,, = dand | = pand hence, the wave equations simplify to,

vV —pell= -2 (3.24(2))

de®



And

27 R .
ViA—pe—z =1 (3.24(b))
From electrostatics and magnetostatics,
V=—§Eﬂ

L

And
VxuH =4

Eqnation (3.24) can be rewritten as,

" 8°E
VE—pue—= 10 (3.25(a))
dt?
And
V24 A _
—peo g =1 (3.25(b))

Uniform Plane Waves

Plane waves are waves with same phase at all points of existence. Uniform plane
waves are plane waves with constant amplitude.

Consider an electric field wave equation from Equation (3.25(a))

,=  O0%E
\Y E—MEﬁz 0
V2E = F
REPTY
62 62 62

and

2_
We know that, V<= 32 + 3y + 572

E=Ea + E,a, + E,a, . Therefore,

2
a 0k, a, +
ox2 ¥ o9y? YV 0z2

0%E, 0%E, _, 0%E, _, 0%E,__, 0%E,_,
a, = Ue 3¢2 a, + 32 +

T

E,
y2
unequal variables. Splitting the above three dimensional vector equation to a one-
dimensional scalar equation,

0°E,  0°E,
axz Mo

= 0 and likewise for

0
In the above equation, it should be noted that 5

(3.26(a))
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0%E 0%E

ayzy = ue atzy (3.26(b))
0°E, 0%E,

572~ Me5 (3.26(c))

Also, in free space, where the electromagnetic waves travel, (they can also
travel through different medium), 5,, = @rand } = (. Therefore, from Maxwell’s
first equation,

V.D=0
V.eE=10
V.E=0

Ho o ol g o B g s g o
= (a @t 5-ay +Eaz). (E.a, + E,a, +E.a;) =0
G

d d
_Ex +—yEy +&EZ == 0

. ) .. ... BE, aE.
Since, E_ is travelling in the x —direction, ?‘— — E;ﬁ = . Then, a—:’
b =

represents that no variation of £_in x-direction and also Eis independent of y and
z. Differentiating with respect to x,

0°E,
d0x?

The solution of the above second order differential equation exists only if,

=0

E, =0 or E,=K(constant)
Ifg_= K, then E_isnotawave, buta constant d¢ line. Hence, a uniform

plane wave travelling in x —direction do not have an component of E. Similarly
for the other two directions y and z.

For the magnetic field vector, following the similar approach, from Maxwell's
third equation,

d_, 0 _, 0 _, . — —
:>(aax+@a},+Eaz>.(Hxax+Hyay+HZaz)=0




g H, + g H, + g H,=0
ox * oy Y 9z %
Since, H_ istravelling in the x —direction,"%‘qL = E’E‘ﬁ = . §isindependent
¥ =
of y and z. Therefore,
oH, 0%H,
=0=> =0
ox 0x?

Since H,, cannot be constant, to satisfy the above second order differential

equation, H, = 0 for uniform plane wave.

Properties of Electromagnetic Waves

Electromagnetic waves transport energy or information from one point to the other.
Few examples of electromagnetic waves include the waves in the electromagnetic
spectrum as shown in Figure (3.1). Few electromagnetic waves include X-rays,
Gamma rays, microwave, TV signals, radar signals, light rays, etc. The
electromagnetic waves are also called as Hertzian waves.

THE ELECTROMAGNETIC SPECTRUM

RADIO MICROWAVE INFRARED VISIBLE ULTRAVIOLET X-RAY GAMMA RAY
[ 10° 10% 10° 10° 10" 10"

0.5 x10°

Wavelength

(in Meters) P .
i ] B/
L &1 &

Buildings

) l | ] | | l |
(in Hz) I 1 1 1 1 I 1

Fig. 3.1 Electromagnetic Spectrum

Characteristics of EM Waves
Following are the characteristics of EM waves.
1. They travel at a speed of light in vacuum.
2. They travel similar to the waves with the same their same property.
3. They radiate away from the source
4. They can travel across any medium
5

. EM waves are generated by vibration of electrons resulting in energy emission
called as electromagnetic radiation.

6. Electromagnetic waves have both electric and magnetic components.

7. Electric and magnetic components are orthogonal (perpendicular) to each
other.

8. The direction of wave propagation will be orthogonal to the electric and
magnetic waves. Such waves are called Transverse ElectroMagnetic waves
(TEM waves).
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Parameters of Wave

A simple wave is a sinusoidal signal as represented as in Figure (3.2).

A

A___ _______

) z—»>

[N}
—
/
-+ Vv

Fig. 3.2 EM Wave

Let A = wavelength (m)
T = Time period (5)
u = speed (m/s)
A
u=r=fL  [f=1/]
Let w = angular frequency (rad/s)
B = phase constant or wave number (rad/m)

w = 2nf (rad/s)

_o_zf
/3_;_ u
_ 2nf
P
_277.'
=7

3.5 BREMSSTRAHLUNG

Bremsstrahlung is also termed as the braking radiation. This radiation is typically
produced because of the deacceleration or the negative acceleration of a charged
particle, which contains the synchrotron radiation process in which the emission
of photon takes place through a relativistic particle and the cyclotron radiation in
which emission of photon takes place through a non-relativistic particle, in addition
italso explains the electrons and positrons emission during beta decay.

Though, this term is commonly used in the perception of radiation from
electrons and the Bremsstrahlung that is emitted from plasma is also occasionally
described as free—free radiation. This implies that the radiation is created in this
instance by the electrons which were free before and stay free after also when
there is the emission of a photon. In the similar parlance, the bound—bound radiation



describes the discrete spectral lines, An electron typically ‘Jumps’ between two
bound states, even though the free-bound one to the radiative
combination method, wherein a free electron recombines or reunites with an ion
from whatsoever source decelerating in matter.

The ‘Bremsstrahlung’ or ‘Braking Radiation’ is specifically identified as the
radiation that is typically given oft by means of the free electrons which are deflected,
1.e., the electrons are accelerated in the electric fields of charged particles and the
nuclei of atoms. Thermal bremsstrahlung refers to the emission typically given off
by means of an ionized gas of plasma in thermal equilibrium at a specific or particular
distinct temperature, wherein the unique distribution of electron velocities typically
goes along with the recognised Maxwellian distribution. Additionally, the Relativistic
electrons whose energy distribution frequently follows a power-law shape
specifically in the astrophysical settings, which further produce relativistic
Bremsstrahlung radiation which in turn is also of power-law shape having the
equivalent spectral index as the emitting electrons.

Ifthe quantum effects are considered negligible, then an accelerating charged
particle radiates the power based on the theory as explained by the Larmor formula
and its relativistic generalization.

Total Radiated Power

The total radiated power is given by the equation,

.\ 2
| 2 (ﬂ'ﬁ)
= bmege 4t 1-—p2

Where,

= -:i is defined as the Velocity of the Particle divided by the Speed of
Light

is defined as the Lorentz Factor

1-3°

B Denotes a Unique Time Derivative of ‘{']:

q is defined as the Charge of the Particle.

Bremsstrahlung Radiation

Bremsstrahlung radiation is specifically defined as the radiation that is released
by means of a charged particle the ‘Electron’ owing to its acceleration that is
caused by means of an electric field of another charged particle the ‘Proton’ or an
atomic nucleus. The word “Bremsstrahlung” is a German word which means
“Braking Radiation”, and specifically refers to the approach in which
the electrons are “Braked” when they typically hit a metal target. The incident
electrons are considered as free, i.e., they are not bound to an atom or ion, both
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either before or after the braking. Consequently, this type of the radiation spectrum
is considered continuous, dissimilar atomic spectra which comprises of
sharp spectral lines, and occasionally referred to as “Free-Free” radiation. If the
energy of the incident electrons is adequately high, then they specifically emit X-
rays once they have been braked.

One of the greatest universally recognized and identified examples of
Bremsstrahlung radiation in the universe is the one which comes from the hot
intracultural gas of the galaxy clusters. In this specific situation, the electrons do
not deflect or bounce off a metal target although they are deflected or bounced off
by means of the electric field of protons. The gas holds X-ray luminosities of
10%¢ to 10*® W (roughly 10 billion to 1 trillion times the luminosity of the sun)
and temperatures on the order of 10 million K. X-ray telescopes can detect this
radiation as diffuse light, as witnessed in the Coma cluster.

Bremsstrahlung is electromagnetic radiation which is characteristically similar
to x-radiation. It is emitted by means of a charged particle because it decelerates
in a series of collisions with atomic particles. Due to this deflection a deceleration
of the beta particle is obtained and consequently a reduction in its kinetic energy
with the emission of energy as a photon of bremsstrahlung or ‘Braking Radiation’.
The phenomenon is explained and illustrated through Bremsstrahlung radiation
imaging.

Bremsstrahlung is, therefore, a physical phenomenon typically used in the
radiology apparatus. When an electron or a beta (3) particle passes through matter
then it decelerates or slows down, and a fraction of its energy is directly converted
into X-rays. The spectrum of X-ray emission is continuous, and its maximum
energy is the initial energy of the electron. For example, a beta (B) emitter, such
as '“C can emit X-rays of up to 156 keV in any given sample. The similar
phenomenon can be used to produce X-rays. The Bremsstrahlung yield is in fact
‘Actually’ proportional to the atomic number of the media and ‘Roughly’
proportional to the square of the energy. In the biological tissue, the atomic number
is low (between 7 and 8), and the yield stays very low. For Y (E_ = 2.2 MeV),
only 1% of'the energy is converted into X-rays, i.e., 20 keV per beta (B) particle,
spread over a spectrum, the maximum energy of which is 2.2 MeV. In probability
terms, less than 20% of beta () particles provide an X-ray that can contribute to
form an image. Characteristically, the collimators used for scintigraphy have an
efficiency of 100 cps/MBq, even for high-energy beta-emitting isotopes, the total
efficiency of Bremsstrahlung imaging is certainly not more than 20 cps/MBq. For
a lower-energy tracer, such as “C, the yield is at least 100-fold weaker and
therefore not suitable. Bremsstrahlung radiation imaging is therefore mainly used
in clinical imaging, where it is combined with high-energy tracers requiring
visualization that could not be seen otherwise. A good example is *°Y, a tracer
widely used for radiotherapy. Bremsstrahlung scintigraphy allows imaging of the
specific localization of the tracer to target tumor sites.

Thermal Bremsstrahlung: Emission and Absorption

Internal bremsstrahlung evolves in the process of radioactive disintegration of beta
decay, which typically consists of the production and emission of electrons (or



positrons, positive electrons) by means of unstable atomic nuclei or the capture by
nuclei of one of their individual orbiting electrons. These electrons, deflected in the
vicinity of their specific individual associated nuclei, emit internal bremsstrahlung.

In Figure 3.3, the dashed line represents bremsstrahlung emission coefficients
included only ion-ion correlation effects, the solid-dashed line represents ion-ion
correlation and free electron shielding effects, and solid line represents ion-ion
correlation and total electron shielding effects. Bound electron shielding effects are
dominant for reduction in bremsstrahlung emission.

1.0

R{w)

05t

0.0

Fig. 3.3 Bremsstrahlung Emission - lon-lon Correlation Effects

The simulation in a fictitious plasma is performed, Z=3.97, I'=0.553,
T=1keV, for investigating the effective ionization state for Bremsstrahlung
emission. Figure 3.4 shows the reduction factor in the fictitious plasma. The three
types of lines characterize the identical as per the Bremsstrahlung emission.
Therefore, if the plasma is free ionized, then the effective ionization state for

Bremsstrahlung emission can be approximated by the plasma withT"  and Z_, for
two component plasma.

Fig. 3.4 lonization State for Bremsstrahlung Emission
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Bremsstrahlung radiation is, therefore, the standard radiation that is given
off through a charged particle, typically an electron, due to its acceleration that is
caused by means of an electric field of another charged particle, specifically a
proton or an atomic nucleus.

3.6 RADIATION FROM AN ACCELERATED
CHARGE AT LOW VELOCITY
(LARMOR’S FORMULA)

Accelerating charges produce EM radiation, because the changing electric fields
yield magnetic fields (Ampere-Maxwell law) and the resulting changing magnetic
fields yield electric fields (Faraday’s Law). Consequently, these are the
electromagnetic radiation, where the changing fields propagate.

Additionally, it can be stated as, “An accelerated point charge emits energy
and impulses in the form of radiation”. With regard to the conservation of energy,
itis said that, “The radiated energy is directly extracted from the mechanical kinetic
energy of the charged particle and not from the potential energy of the
electromagnetic system”.

The phenomenon in nuclear magnetic resonance is termed as the
Larmor precession.

In electrodynamics, the Larmor formula is specifically used for calculating the
total power radiated through a nonrelativistic point charge as it accelerates. It was
originally derived by J. J. Larmor in 1897, in the perspective of the wave theory
of light. When any charged particle, such as an electron, a proton or an ion
accelerates, then it typically radiates away energy in the form of electromagnetic
waves. For those velocities which are small comparative to the speed of light, the
total power radiated is given by the Larmor formula:

9 & ‘2 9 fa 2.2
p. = & IRy S T P o
3 dwege \ ¢ 3 dmege®  bmepcd
2 2(12
P2 (cgs units)
3 ¢

As it is known that charge particle is at rest emits electric field. Charge
particle is in motion or moving with constant velocity emits Electric Field +
Magnetic Field. Charge particle is in accelerated motion emits electric field,
magnetic field as well electromagnetic radiation or EM wave.

From the Maxwell’s electromagnetic field equations, it is evident that both
the electric field and magnetic field are function of velocity.

E (Electric Field)- Function of Velocity.
B (Magnetic Field)- Function of Velocity.



When v is constant means particle moving with constant velocity, then it has
both the electric field and the magnetic field. While the velocity of the particle
changes the means particle is in accelerated motion and both it’s electric field and
magnetic field will change. According to Faraday’s law of ElectroMagnetic
Induction (EMI), “Changing electric field can produce magnetic field and changing
magnetic field can generate electric field”.

Consequently, the changing of electric field is basically producing magnetic
field and vice-versa. Therefore, electric field and magnetic field is being oscillated
upon each other. Thus, the wave producing is the oscillation of the Electric Field
and Magnetic Field is characteristically termed as EM wave or radiation which
is capable of travelling even though the vacuum with the speed of 3x10%m/s.

Therefore, EM wave is a wave of the oscillation of changing electricity and
magnetism, and it will be produced when the particle is in acceleration.

The behaviour of an accelerated electric charge, regardless of the accelerating
force, is a limit problem in classical physics. The radiation of a system of charges
is typically described through Poynting’s theorem, which is a logical consequence
of Maxwell’s equations. The key point is that the Poynting vector, which is defined
in this theorem, is interpreted as a flow of radiant energy using the principle of the
conservation of energy in an electromagnetic system. From this perspective, it
seems that radiation, similar to potential energy, is a behaviour that is associated
with a system of charges and not with individual charges. In this sense, the literature
discusses dipole radiation, quadrupole radiation, etc. However, in classical theory,
itis immediately clear that the radiation of a system of charges can be calculated if
the motion of the charges is known because that is sufficient to determine the fields
that define the Poynting vector. There is a direct relationship between the motion
of a system of charges and the resulting radiation. H.A. Lorentz went further and
extended the result for an isolated charge that is accelerated by any force (a magnetic
field, gravity, etc., independently of the existence of electromagnetic potential energy.
This author demonstrated that the field in the proximity of a charge with spherical
symmetry becomes distorted by the combined effects of the acceleration of the
charge and the finite propagation velocity of changes in the field. This distortion
generates a net “Self-Force” of the field on the particle on its own source; the
displacement of this force can represent, at least in specific situations, the radiated
electromagnetic energy. Consequently, Lorentz did not ascribe radiation to the
relative accelerations between the charges in the system as was expected if there
was a relationship with the potential energy, but to the acceleration of a charge
with respect to any inertial coordinate system. An accelerated point charge emits
energy and impulses in the form of radiation. The reason for this attribution is the
presence of emitted energy in the form of oscillations of the particle’s electromagnetic
field in regions relatively far from the particle; these make up the radiation field. An
observer in the radiation field can relate this energy to an event that occurred at a
point occupied by the charge at an earlier time. This delay time corresponds to the
propagation velocity of an electromagnetic signal from the particle, and the event
referred to is a change in the velocity of the charged particle. In regard to the
conservation of energy, the radiated energy is directly extracted from the mechanical
kinetic energy of the charged particle, not from the potential energy of the
electromagnetic system.
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3.7 RADIATION FROM AN OSCILLATING
ELECTRIC DIPOLE

In physics, a dipole is referred as a quantity which involves some form of polarity.
The most significant resource of electromagnetic radiation is possibly the
oscillating electric dipole. When the current density in a localized source oscillates
harmonically with angular frequency, then it has an electric dipole moment of the
form where there is the complex amplitude.

An electric dipole is concerned with the separation of the positive and
negative charges observed in any electromagnetic system. A simple example of
this system is a pair of electric charges of equal magnitude, although opposite sign
separated by means of certain typically small distance. A permanent electric dipole
is occasionally termed as an electret.

The electric dipole moment is defined as a measure of the separation of
positive and negative electrical charges within a system, i.e., it is ameasure of the
system’s overall polarity. The SI unit for electric dipole moment is the Coulomb
meter (C-m). The Debye (D) is another unit of measurement used in atomic physics
and chemistry.

Theoretically, an electric dipole is defined by the first-order term of the
multipole expansion; it consists of two equal and opposite charges that are
infinitesimally close together, although real dipoles have separated charge.

An object with an electric dipole moment is subject to a torque 7 when
placed in an external electric field. The torque tends to align the dipole with the
field. Adipole aligned parallel to an electric field has lower potential energy than a
dipole making some angle with it. For a spatially uniform electric field E, the
energy U and the torque T are given by,

U=-p-E, r=px E.

where p is the dipole moment, and the symbol ‘x’ refers to the vector cross
product. The field vector and the dipole vector define a plane, and the torque is
directed normal to that plane with the direction given by the right-hand rule.

A dipole oriented co- or anti-parallel to the direction in which a non-uniform
electric field is increasing (gradient of the field) will experience a torque, as well as
a force in the direction of its dipole moment. It can be shown that this force will
always be parallel to the dipole moment regardless of co- or anti-parallel orientation
of'the dipole.

Magnetic dipole is the closed circulation of an electric current system. A
simple example is a single loop of wire with constant current through it. A bar
magnet is an example of a magnet with a permanent magnetic dipole moment.

Dipoles, whether electric or magnetic, can be characterized by their dipole
moment, a vector quantity. For the simple electric dipole, the electric dipole
moment points from the negative charge towards the positive charge and has a
magnitude equal to the strength of each charge times the separation between the
charges. To be specific, for the definition of the dipole moment, one should always



consider the ‘Dipole Limit’, where, for example, the distance of the generating
charges should converge to 0 while simultaneously, the charge strength
should diverge to infinity in such a way that the product remains a positive constant.

Electric Dipole Radiation in Free Space

The most significant source of electromagnetic radiation is possibly the oscillating
electric dipole. When the current density in a localized source oscillates harmonically
with angular frequency, it has an electric dipole moment of the form where is the
complex amplitude.

Dipole Radiation

Instead of heading straight to dipole radiation, it would be beneficial to first define
certain preliminary terms and understand the notion of radiation as a general
phenomenon. In general, radiation can be thought of as an irreversible transport of
energy, out to infinity, by fields, due to the acceleration of charges. In other words,
accelerated charges create electromagnetic radiation fields, that carry energy from
one point in space, to another, in an irreversible fashion. Irreversible simply means
that there is no definable way to extract the energy back from the wave, i.e., the
energy radiated outwards, does not come back in. The term “To Infinity’ in the
definition of radiation, implies that it is important that the observer is at a very
distant location from the source, or that the source is a point source.

It is known to us, that even static charges and steady currents produce
electromagnetic fields. However, accelerated charges and changing currents
produce a slightly difierent kind of electromagnetic fields, called electromagnetic
radiation fields.

Calculating the potentials due to an electric dipole is possible about the
radiation mathematically.

3.8 RADIATION FROM A CHARGED PARTICLE
MOVING IN A CIRCULAR ORBIT

Itis established that a moving charge produces ElectroMagnetic Waves (EMWs) as
such charge moving in a circular orbit experiences centripetal acceleration will also
produces electromagnetic wave.

An accelerated charge is referred as the source of ElectroMagnetic Waves
(EMWs). When the charge is in acircularmotion, the direction of its velocity continuously
changes and thus it is in accelerated motion and produces EMWs. A charge falling in
an electric field is accelerated by the electric force and thus produces ElectroMagnetic
Waves (EMWs).

Radiation Energy produced by a charged particle circulating in a magnetic
field does radiate energy, which it is called synchrotron radiation. All circular
particle accelerators have energy losses due to this radiation. Similarly when a
charged particle is projected in the plane perpendicular to a uniform magnetic field
it executes uniform circular motion with radius r=mv/qBr=mv/qB.
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Synchrotron radiation is the electromagnetic radiation also known
as magneto bremsstrahlung radiation is emitted when charged particles are
accelerated radially, e.g., when they are subject to an acceleration perpendicular
to their velocity (a L v). Itis produced, for example, in synchrotrons using bending
magnets, undulators and/or wigglers. If the particle is non-relativistic, the emission
is called cyclotron emission- If the particles are relativistic, sometimes referred to
as ultra-relativistic then the emission is called synchrotron emission.

Synchrotron radiation may be achieved artificially in synchrotrons or storage
rings, or naturally by fast electrons moving through magnetic fields. The radiation
produced by this manner has a characteristic polarization and the frequencies
generated can range over the entire electromagnetic spectrum, which is also
called continuum radiation.

In astrophysics it is stated that, synchrotron emission occurs, due to ultra-
relativistic motion of a source around a black hole. When the source performs a
circular geodesic around the black hole, the synchrotron radiation occurs for orbits
close to the photosphere where the motion is in the ultra-relativistic regime.

Synchrotron radiation was named after it was discovered in Schenectady,
New York from a General Electric synchrotron accelerator built in 1946 and
announced in May 1947 by Frank Elder, Anatole Gurewitsch, Robert Langmuir
and Herb Pollock in a letter entitled “Radiation from Electrons in a Synchrotron”.

Emission Mechanism

Synchrotron radiation is produced when moving particles accelerate, e.g.
when electrons move freely in a magnetic field. This is similar to a radio antenna,
but with the difference that, in theory, the relativistic speed will change the observed
frequency due to the Doppler effect by the Lorentz factor y. Relativistic length
contraction then bumps the frequency observed by another factor of y, thus
multiplying the Giga Hertz (GHz) frequency of the resonant cavity that accelerates
the electrons into the X-ray range. The radiated power is given by the relativistic
Larmor formula, while the force on the emitting electron is given by the Abraham—
Lorentz—Dirac force.

The radiation pattern can be distorted from an isotropic dipole pattern into
an extremely forward-pointing cone of radiation. Synchrotron radiation is the
brightest artificial source of X-rays.

The planar acceleration geometry appears to make the radiation linearly
polarized when observed in the orbital plane, and circularly polarized when observed
at a small angle to that plane. Amplitude and frequency are, however, focused to
the polar ecliptic.

Synchrotron radiation is also generated by astronomical objects, typically
where relativistic electrons spiral (and hence change velocity) through magnetic
fields. Two of'its characteristics include non-thermal power-law spectra, and
polarization. It is considered to be one of the most powerful tools in the study of
extra-solar magnetic fields wherever relativistic charged particles are present. Most
known cosmic radio sources emit synchrotron radiation. It is often used to estimate
the strength of large cosmic magnetic fields as well as analyse the contents of the
interstellar and intergalactic media.



Some of the characteristic properties of synchrotron radiation are stated
below:

1. Having a Broad Spectrum (from Microwaves to Hard X-Rays): The
users can select the wavelength required for their experiment.

2. High Flux: High-intensity photon beam allows rapid experiments or
use of weakly scattering crystals.

3. High Brilliance: Highly collimated photon beam generated by a small
divergence and small-size source (spatial coherence).

4. High Stability: Sub micrometre source stability.
5. Polarization: Both linear and circular.

6. Pulsed Time Structure: Pulsed duration down to tens of picoseconds
allows the resolution of process on the same time scale.

3.8.1 Linear Antenna

As per the radio engineering, an antenna also known as aerial is the interface
between radio waves propagating through space and electric currents moving in
metal conductors, used with a transmitter or receiver.

In the process of transmission, a radio transmitter supplies an electric current
to the antenna’s terminals, and the antenna radiates the energy from the current
as electromagnetic waves (radio waves). In reception, an antenna intercepts some
of the power of a radio wave in order to produce an electric current at its terminals,
that is applied to a receiver to be amplified. Antennas are essential components of
all radio equipment.

An antenna is an array of conductors (elements), electrically connected to
the receiver or transmitter. Antennas can be designed to transmit and receive radio
waves in all horizontal directions equally (omnidirectional antennas), or preferentially
in aparticular direction (directional, or high-gain, or “beam” antennas). An antenna
may include components not connected to the transmitter, parabolic
reflectors, horns, or parasitic elements, which serve to direct the radio waves into
a beam or other desired radiation pattern.

Antennas were first time built by German physicist Heinrich Hertz in 1888
during his experiments to prove the existence of waves predicted by the
electromagnetic theory of James Clerk Maxwell. Hertz placed dipole antennas at
the focal point of parabolic reflectors for both transmitting and receiving. Starting
in 1895, Guglielmo Marconi began development of antennas practical for long-
distance, wireless telegraphy, for which he received a Nobel Prize.

Any radio receiver or transmitter needs the antenna to couple its electrical
connection to the electromagnetic field. Radio waves are electromagnetic
waves which carry signals through the air (or through space) at the speed of light with
almost no transmission loss.

There are numerous distinct types of antennas which can be broadly
categorized into three broad types, namely Omni-Directional, Directional, and
Semi-Directional. Further antennas can be classified by operating principles or
by their application, some of which are listed below:

Electromagnetic Radiation

NOTES

Self - Learning
Material

199



Electromagnetic Radiation

200

NOTES

Self - Learning
Material

e Radio Frequency Antenna Types

e Radio Frequency Propagation

Cellular Repeater

Dxing

Electromagnetism

Mobile Broadband Modem
Numerical Electromagnetics Code
¢ Radial (Radio)

e Radio Masts and Towers

e RF Connector

e Smart Antenna

e TETRA

Shortwave Broadband Antenna
Personal RF Safety Monitor

Linear antennas are considered to be those antennas that imply the use of
electrically thin conductors (wavelength conductor diameter). Electric current flows
over the conductor surface in order to calculate radiated fields in these antennas.
Conductors are modelled as if they were current lines with no diameter.

3.8.2 Electric Quadrupole Radiation

A distribution of charge or magnetization which produces an electric or magnetic
field equivalent to that produced by two electric or magnetic dipoles whose
dipole moments have the same magnitude but point in opposite directions, and
which are separated from each other by a small distance.

Electric quadrupole is referred as a charge distribution that produces an
electric field equivalent to that produced by two electric dipoles whose dipole
moments have the same magnitude but point in opposite directions and which are
separated from each other by a small distance.

A general distribution of electric charge may be characterized by its net
charge, by its dipole moment, its quadrupole moment and higher order moments.
An elementary quadrupole can be represented as two dipoles oriented antiparallel.
Quadrupole and higher order multipoles are not important for the characterization
of dielectric materials. Dipole fields are much smaller than the fields of isolated
charges, but in dielectrics where there are no free charges, the dipole effects are
dominant. There is no such circumstance favouring the quadrupole effects, since
they must arise from the same number of molecules as the dipole effects.

The simplest example of an electric quadrupole consists of alternating positive
and negative charges, arranged on the corners of a square. The monopole moment
(just the total charge) of this arrangement is zero. Similarly, the dipole moment is
zero, regardless of the coordinate origin that has been chosen. But the quadrupole
moment of the arrangement in the diagram cannot be reduced to zero, regardless
of where we place the coordinate origin.



The electric potential of an electric charge quadrupole is given by,

1 1. 1 A a
Vo(R) = —32—%; R; R,

where g, is the electric permittivity, and O, follows the definition above.
3.8.3 Radiation Damping

Radiation damping in accelerator physics is a way of reducing the beam
emittance of a high-velocity charged particle beam by synchrotron radiation.

The two main ways of using radiation damping to reduce the emittance of a particle
beam are the use of undulators and damping rings (often containing undulators),
both relying on the same principle of inducing synchrotron radiation to reduce the
particles’ momentum, then replacing the momentum only in the desired direction
of motion.

Damping Rings

As particles are moving in a closed orbit, the lateral acceleration causes them to
emit synchrotron radiation, thereby reducing the size of their momentum vectors
(relative to the design orbit) without changing their orientation (ignoring quantum
effects for the moment). In longitudinal direction, the loss of particle impulse due
to radiation is replaced by accelerating sections (RF cavities) that are installed in
the beam path so that an equilibrium is reached at the design energy of the accelerator.
Since this is not happening in transverse direction, where the emittance of the
beam is only increased by the quantization of radiation losses (quantum effects),
the transverse equilibrium emittance of the particle beam will be smaller with large
radiation losses, compared to small radiation losses.

Because high orbit curvatures (low curvature radii) increase the emission of
synchrotron radiation, damping rings are often small. If long beams with many
particle bunches are needed to fill a larger storage ring, the damping ring may be
extended with long straight sections.

Undulators and Wigglers

When faster damping is required than can be provided by the turns inherent in a
damping ring, it is common to add undulator or wiggler magnets to induce more
synchrotron radiation. These are devices with periodic magnetic fields that cause
the particles to oscillate transversely, equivalent to many small tight turns. These
operate using the same principle as damping rings and this oscillation causes the
charged particles to emit synchrotron radiation.

The many small turns in an undulator have the advantage that the cone of
synchrotron radiation is all in one direction, forward. This is easier to shield than
the broad fan produced by a large turn.

The process of radiation damping is important in many areas of electron
accelerator operation:

1. Itcan giverise to a stable (Gaussian) distribution of transverse and longitudinal
beam dimensions due to an equilibrium between the competing forces of
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radiation damping and “Quantum Excitation” — the growth of oscillation
amplitudes due to the discrete emission of radiation quanta;

. It permits an efficient multi-cycle injection scheme to be employed in storage

rings, by allowing the beam dimensions to damp in size between injection
pulses;

. Itallows large beam dimensions, produced in a LINAC, for example, to be

reduced in specially designed ‘Damping Rings’;

It helps to counteract beam growth due to various processes such as intra-
beam scattering and collective instabilities.

Sl N

Check Your Progress

From what are retarded electromagnetic potentials derived?
Who structured the relativity theory?

What does Liénard-Wiechert potentials describe?

Define the term Lorentz force.

Give the characteristics of EM waves.

State Bremsstrahlung radiation.

Why is Larmor formula used?

Define the term electric quadrupole.

3.9

ANSWERS TO ‘CHECK YOUR PROGRESS’

. Inphysics, the ‘Retarded Electromagnetic Potentials’ are typically derived

from the Maxwell’s equations and the Lorenz condition. The Maxwell’s
equations are given by the physicist James Clerk Maxwell.

. The theory and derivations of classical electrodynamics was initiated and

structured by the physicist Albert Einstein’s during the development of the
‘Relativity Theory’. The significant analysis of the motion theory and
propagation of electromagnetic waves formed the basis of the special and
distinctive relativity description and derivations of space and time equations.

The Liénard—Wiechert formulation is considered as an essential and
substantial launchpad for the in depth analysis of relativistic moving particles.
Typically, the Liénard—Wiechert potentials are used for describing the
classical electromagnetic effect of a moving electric point charge precisely
with regards to a vector potential and a scalar potential in the Lorenz gauge.
The Liénard—Wiechert potentials are directly constructed from the Maxwell’s
equations, therefore the Liénard—Wiechert potentials precisely explain the
wide-ranging, relativistically precise, time-varying electromagnetic field for
a point charge in arbitrary or random motion.

. Inthe field of electromagnetism, the term Lorentz force also sometimes

referred as the electromagnetic force is defined as the combination of electric
force and magnetic force on a point charge that exclusively occurs as a



result of electromagnetic fields. The Lorentz formula refers to the Lorentz
force which was formulated by Hendrik Lorentz who precisely derived the
contemporary or present form of the formula and its derivation typically for
the electromagnetic force which includes the analysis and formulation of the
total force obtained from both the electric fields and the magnetic fields.

. Following are the characteristics of EM waves.

e They travel at a speed of light in vacuum.

e They travel similar to the waves with the same their same property.
¢ Theyradiate away from the source

¢ They can travel across any medium

e EM waves are generated by vibration of electrons resulting in energy
emission called as electromagnetic radiation.

¢ Electromagnetic waves have both electric and magnetic components.

e Electric and magnetic components are orthogonal (perpendicular) to
each other.

The direction of wave propagation will be orthogonal to the electric and
magnetic waves. Such waves are called Transverse ElectroMagnetic
waves (TEM waves).

. Bremsstrahlung radiation is also termed as the braking radiation. This

radiation is typically produced because of the deacceleration or the negative
acceleration of a charged particle, which contains the synchrotron
radiation process in which the emission of photon takes place through a
relativistic particle and the cyclotron radiation in which emission of photon
takes place through a non-relativistic particle, in addition it also explains the
electrons and positrons emission during beta decay.

. In electrodynamics, the Larmor formula is specifically used for calculating

the total power radiated through a nonrelativistic point charge as it
accelerates. It was originally derived by J. J. Larmor in 1897, in the
perspective of the wave theory of light. When any charged particle, such as
an electron, a proton or an ion accelerates, then it typically radiates away
energy in the form of electromagnetic waves. For those velocities which are
small comparative to the speed of light, the total power radiated is given by
the Larmor formula:

9 o \2 92 o2a2 9.8
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2 2(12

P= 5 4 (cgs units)

. Electric quadrupole is referred as a charge distribution that produces an

electric field equivalent to that produced by two electric dipoles whose
dipole moments have the same magnitude but point in opposite directions and
which are separated from each other by a small distance.
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3.10 SUMMARY

¢ Inphysics, the ‘Retarded Electromagnetic Potentials’ are typically derived

from the Maxwell’s equations and the Lorenz condition. The Maxwell’s
equations are given by the physicist James Clerk Maxwell.

Characteristically, the Liénard—Wiechert potentials precisely explain and
evaluate the classical electromagnetic effect or consequence of a moving
electric point charge with reference to a vector potential and a scalar potential
inthe Lorenz gauge.

Reducing or decreasing directly from the Maxwell’s equations, the Liénard—
Wiechert potentials uniquely explain the comprehensive, relativistically
appropriate, time-varying electromagnetic field for a point charge in arbitrary
or random motion, but the Liénard—Wiechert potentials are not modified or
amended for explaining the quantum mechanical effects.

Electromagnetic radiation in the form of waves can be obtained from these
potentials. The expressions for the Liénard—Wiechert potentials are named
after the physicists Alfred-Marie Liénard who developed in part in the year
1898 and then by Emil Wiechert who independently developed in the year
1900.

In physics, the theory and derivations of classical electrodynamics was
initiated and structured by the physicist Albert Einstein’s during the
development of the ‘Relativity Theory’. The significant analysis of the motion
theory and propagation of electromagnetic waves formed the basis of the
special and distinctive relativity description and derivations of space and
time equations.

The Liénard—Wiechert formulation is considered as an essential and
substantial launchpad for the in depth analysis of relativistic moving particles.

Typically, the Liénard—Wiechert potentials are used for describing the
classical electromagnetic effect of a moving electric point charge precisely
with regards to a vector potential and a scalar potential in the Lorenz gauge.

Characteristically, the Liénard—Wiechert description and derivation is
considered accurate and exact for a substantial and significant independently
moving particle, i.e., the analysis and derivation is ‘Classical’ and
consequently the acceleration of the charge is because of a force that is
precisely independent of the ElectroMagnetic Field or EMF.

Principally, the Liénard—Wiechert formulation gives the following two sets
of solutions:

1. Advanced Fields are Absorbed by the Charges.
2. Retarded Fields are Emitted.

Fundamentally, the Liénard—Wiechert potential formulation represents explicit
and specific expressions for time-varying electromagnetic fields that are
uniquely caused by means of charge in arbitrary or random motion. However,



the Liénard—Wiechert potentials were distinctively derived from the retarded
potentials, which in sequence are derived and explained from the Maxwell
equations.

In physics, principally in the field of electromagnetism the term Lorentz
force also sometimes referred as the electromagnetic force is defined as the
combination of electric force and magnetic force on a point charge that
exclusively occurs as a result of electromagnetic fields.

The Lorentz formula refers to the Lorentz force which was formulated by
Hendrik Lorentz who precisely derived the contemporary or present form
of the formula and its derivation typically for the electromagnetic force which
includes the analysis and formulation of the total force obtained from both
the electric fields and the magnetic fields.

The Lorentz force is defined as a force that is exerted by means of the
electromagnetic field on the charged particle, i.e., it is precisely specified as
the rate at which the linear momentum is transferred from the electromagnetic
field to the particle.

Electromagnetic waves transport energy or information from one point to
the other. Few examples of electromagnetic waves include the waves in the
electromagnetic spectrum. Few electromagnetic waves include X-rays,
Gamma rays, microwave, TV signals, radar signals, light rays, etc. The
electromagnetic waves are also called as Hertzian waves.

Bremsstrahlung is also termed as the braking radiation. This radiation is
typically produced because of the deacceleration or the negative acceleration
of a charged particle, which contains the synchrotron radiation process in
which the emission of photon takes place through a relativistic particle and
the cyclotron radiation in which emission of photon takes place through a
non-relativistic particle, in addition it also explains the electrons and positrons
emission during beta decay.

The ‘Bremsstrahlung’ or ‘Braking Radiation’ is specifically identified as the
radiation that is typically given off by means of the free electrons which are
deflected, i.e., the electrons are accelerated in the electric fields of charged
particles and the nuclei of atoms.

Thermal bremsstrahlung refers to the emission typically given off by means
ofan ionized gas of plasma in thermal equilibrium at a specific or particular
distinct temperature, wherein the unique distribution of electron
velocities typically goes along with the recognised Maxwellian distribution.

If the quantum effects are considered negligible, then an accelerating charged
particle radiates the power based on the theory as explained by the Larmor
formula and its relativistic generalization.

Bremsstrahlung radiation is specifically defined as the radiation that is released
by means of a charged particle the ‘Electron’ owing to its acceleration that
is caused by means of an electric field of another charged particle the ‘Proton’
or an atomic nucleus.
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e The word “Bremsstrahlung” is a German word which means “Braking

Radiation”, and specifically refers to the approach in which the electrons are
“Braked” when they typically hit a metal target.

The incident electrons are considered as free, i.e., they are not bound to
an atom or ion, both either before or after the braking. Consequently, this
type of the radiation spectrum is considered continuous, dissimilar atomic
spectra which comprises of sharp spectral lines, and occasionally referred
to as “Free-Free” radiation.

One of the greatest universally recognized and identified examples of
Bremsstrahlung radiation in the universe is the one which comes from the
hot intracultural gas of the galaxy clusters.

Bremsstrahlung is, therefore, a physical phenomenon typically used in the
radiology apparatus. When an electron or a beta () particle passes through
matter then it decelerates or slows down, and a fraction of its energy is
directly converted into X-rays.

Internal Bremsstrahlung evolves in the process of radioactive disintegration
of’beta decay, which typically consists of the production and emission of
electrons (or positrons, positive electrons) by means of unstable atomic
nuclei or the capture by nuclei of one of their individual orbiting electrons.
These electrons, deflected in the vicinity of their specific individual associated
nuclei, emit internal Bremsstrahlung.

Bremsstrahlung radiation is, therefore, the standard radiation that is given
off through a charged particle, typically an electron, due to its acceleration
that is caused by means of an electric field of another charged particle,
specifically a proton or an atomic nucleus.

Accelerating charges produce EM radiation, because the changing electric
fields yield magnetic fields (Ampere-Maxwell law) and the resulting changing
magnetic fields yield electric fields (Faraday’s Law). Consequently, these
are the electromagnetic radiation, where the changing fields propagate.

Additionally, it can be stated as, ““An accelerated point charge emits energy
and impulses in the form of radiation”. With regard to the conservation of
energy, it is said that, “The radiated energy is directly extracted from the
mechanical kinetic energy of the charged particle and not from the potential
energy of the electromagnetic system”.

The phenomenon in nuclear magnetic resonance is termed as the Larmor
precession.

In electrodynamics, the Larmor formula is specifically used for calculating
the total power radiated through a nonrelativistic point charge as it
accelerates. It was originally derived by J. J. Larmor in 1897, in the
perspective of the wave theory of light.

When any charged particle, such as an electron, a proton or an ion
accelerates, then it typically radiates away energy in the form
of electromagnetic waves. For those velocities which are small comparative
to the speed of light, the total power radiated is given by the Larmor formula:



o The charge particle is at rest emits electric field. Charge particle is in motion

or moving with constant velocity emits Electric Field + Magnetic Field.
Charge particle is in accelerated motion emits electric field, magnetic field
as well electromagnetic radiation or EM wave.

EM wave is a wave of the oscillation of changing electricity and magnetism,
and it will be produced when the particle is in acceleration.

In physics, a dipole is referred as a quantity which involves some form of
polarity. The most significant resource of electromagnetic radiation is possibly
the oscillating electric dipole. When the current density in a localized source
oscillates harmonically with angular frequency, then it has an electric dipole
moment of the form where there is the complex amplitude.

An electric dipole is concerned with the separation of the positive and
negative charges observed in any electromagnetic system. A permanent
electric dipole is occasionally termed as an electret.

The electric dipole moment is defined as a measure of the separation of
positive and negative electrical charges within a system, i.e., it is a measure
of the system’s overall polarity. The ST unit for electric dipole moment is the
Coulomb meter (C-m). The Debye (D) is another unit of measurement used
in atomic physics and chemistry.

Theoretically, an electric dipole is defined by the first-order term of the
multipole expansion; it consists of two equal and opposite charges that are
infinitesimally close together, although real dipoles have separated charge.

The most significant source of electromagnetic radiation is possibly the
oscillating electric dipole. When the current density in a localized source
oscillates harmonically with angular frequency, it has an electric dipole moment
of the form where is the complex amplitude.

A moving charge produces ElectroMagnetic Waves (EMWs) as such charge
moving in a circular orbit experiences centripetal acceleration will also
produces electromagnetic wave.

An accelerated charge is referred as the source of ElectroMagnetic Waves
(EMWs). When the charge is in a circular motion, the direction ofits velocity
continuously changes and thus it is in accelerated motion and produces
EMWs. A charge falling in an electric field is accelerated by the electric
force and thus produces ElectroMagnetic Waves (EMWs).

Radiation Energy produced by a charged particle circulating in a magnetic
field does radiate energy, which it is called synchrotron radiation.

As per the radio engineering, an antenna also known as aerial is the interface
between radio waves propagating through space and electric currents moving
in metal conductors, used with a transmitter or receiver.

In the process of transmission, a radio transmitter supplies an electric current
to the antenna’s terminals, and the antenna radiates the energy from the
current as electromagnetic waves (radio waves).

In reception, an antenna intercepts some of the power of a radio wave in
order to produce an electric current at its terminals, that is applied to a
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receiver to be amplified. Antennas are essential components of
all radio equipment.

e Linear antennas are considered to be those antennas that imply the use of
electrically thin conductors (wavelength conductor diameter). Electric current
flows over the conductor surface in order to calculate radiated fields in
these antennas. Conductors are modelled as if they were current lines with
no diameter.

¢ A distribution of charge or magnetization which produces an electric or
magnetic field equivalent to that produced by two electric or magnetic dipoles
whose dipole moments have the same magnitude but point in opposite
directions, and which are separated from each other by a small distance.

e Electric quadrupole is referred as a charge distribution that produces an
electric field equivalent to that produced by two electric dipoles whose
dipole moments have the same magnitude but point in opposite directions and
which are separated from each other by a small distance.

¢ Radiation damping in accelerator physics is a way of reducing the beam
emittance of a high-velocity charged particle beam by synchrotron radiation.

e The two main ways of using radiation damping to reduce the emittance of a
particle beam are the use of undulators and damping rings (often containing
undulators), both relying on the same principle of inducing synchrotron
radiation to reduce the particles’ momentum, then replacing the momentum
only in the desired direction of motion.

3.11 KEY TERMS

e Retarded electromagnetic potentials: In physics, the ‘Retarded
Electromagnetic Potentials’ are typically derived from the Maxwell’s
equations and the Lorenz condition. The Maxwell’s equations are given by
the physicist James Clerk Maxwell.

o Liénard—Wiechert potentials: Characteristically, the Liénard—Wiechert
potentials precisely explain and evaluate the classical electromagnetic effect
or consequence of a moving electric point charge with reference to a vector
potential and a scalar potential in the Lorenz gauge.

¢ Lorentz force: The term Lorentz force also sometimes referred as the
electromagnetic force is defined as a force that is exerted by means of the
electromagnetic field on the charged particle, i.e., it is precisely specified as
the rate at which the linear momentum is transferred from the electromagnetic
field to the particle. The Lorentz force formula was formulated by Hendrik
Lorentz.

¢ Bremsstrahlung radiation: The Bremsstrahlung radiation is also termed
as the braking radiation. This radiation is typically produced because of the
deacceleration or the negative acceleration of a charged particle, which
contains the synchrotron radiation process in which the emission of photon
takes place through a relativistic particle and the cyclotron radiation in which



emission of photon takes place through a non-relativistic particle, in addition
italso explains the electrons and positrons emission during beta decay.

Larmor precession: The phenomenon in nuclear magnetic resonance is
termed as the Larmor precession.

Dipole: In physics, a dipole is referred as a quantity which involves some
form of polarity.

Electric dipole: An electric dipole is concerned with the separation of the
positive and negative charges observed in any electromagnetic system.

Electric quadrupole: Electric quadrupole is referred as a charge distribution
that produces an electric field equivalent to that produced by two electric
dipoles whose dipole moments have the same magnitude but point in
opposite directions and which are separated from each other by a small
distance.

Radiation damping: Radiation damping in accelerator physics is a way of
reducing the beam emittance of a high-velocity charged particle beam by
means of synchrotron radiation.

3.12 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

Sl o

What is retarded potential?

Define Liénard-Wiechert potentials for moving and accelerated charges.
State the Lorentz formula.

What is Bremsstrahlung radiation?

Give the Larmor’s formula.

What is an oscillating electric dipole?

Define the term linear antenna.

Write short notes on electric quadrupole radiation and radiation damping.

Long-Answer Questions

1.

Briefly discuss the concept and significance of retarded potential giving
appropriate examples.

Explain the connotation, notions, explanations, and derivations of Lienard-
Wiechert potentials for uniformly moving and accelerated charges with
the help of relevant examples.

State and prove Lorentz formula giving the derivations and explanations.

Explain the concept of Bremsstrahlung radiation typically arising from an
accelerated and charged particle at low velocity giving proper examples.

Briefly discuss about the radiation typically occurring from an accelerated
charged particle at low velocity with reference to the Larmor’s formula.
Give explanation and derivation to support your answer.
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6. Discuss in detail the notions and derivations of radiation occurring precisely
from an oscillating electric dipole.

7. Whatis the linear antenna? Explain the significance of linear antenna in the
field of electromagnetic radiation.

8. Explain the concept of radiation from a charged particle moving in a circular
orbit.

9. Discuss about electric quadrupole radiation and radiation damping giving
relevant examples.
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4.0 INTRODUCTION

Plasma, in physics, is an electrically conducting medium in which there are roughly
equal numbers of positively and negatively charged particles, produced when the
atoms in a gas become ionized. Principally, the plasma is a state of matter. The
three other common states of matter are solids, liquids and gases, so plasma is
sometimes also called the fourth state of matter.

Plasma oscillations are rapid oscillations of the electron density in conducting
media, such as plasmas or metals in the UltraViolet or UV region. These oscillations
are also known as Langmuir waves (named after the Irving Langmuir), and precisely
the oscillations are described as an instability in the dielectric function of a free
electron gas. The frequency depends weakly on the wavelength of the oscillation.
The quasiparticle resulting from the quantization of these oscillations is the plasmon.

American physicists Irving Langmuir and Lewi Tonks discovered ‘Langmuir
Waves’ in 1920s. These waves are parallel in form to Jean’s instability waves,
which are caused by gravitational instabilities in a static medium. In plasma physics
and electrolytes, the Debye length A, is also termed as the Debye radius; this is
considered as a measure of a charge carrier’s net electrostatic effect in a solution and
that how much its electrostatic effect continues. With each of the Debye length the
charges increase and electrically examined while the electric potential decreases
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in magnitude by 1/e. A Debye sphere is defined as a volume whose radius is the
Debye length. Debye length is a significant and essential parameter in plasma
physics, electrolytes, and colloids (DLVO theory). Plasma parameters are the
various characteristics of a plasma, an electrically conductive collection of charged
particles that responds collectively to electromagnetic forces. Plasma s the typically
in the form of neutral gas-like clouds or charged beams of ions, but unlike gas it
may also include dust and grains.

As per plasma physics, plasma confinement refers to the act of containment
of a plasma by various forces at the extreme conditions in a discrete volume
necessary for thermonuclear fusion reactions. Confinement of plasma is required
in order to achieve fusion power. There are two major approaches to confinement:
magnetic confinement and inertial confinement. Magnetic confinement fusion is an
approach for generating thermonuclear fusion power using magnetic fields to confine
fusion fuel in the form of a plasma. Magnetic confinement is one of two major
branches of fusion energy research, along with inertial confinement fusion.

The advancement and expansion of Magnetic Fusion Energy (MFE) was
defined in three distinct and significant phases. In the 1950s, it was assumed that
Magnetic Fusion Energy (MFE) can be relatively simple to accomplish by just
setting and building an appropriate machine. By the late 1950s, it was evident that
plasma turbulence and instabilities were challenging and during the 1960s, ‘The
Doldrums’, effort was considered as the best theoretical explanation to study and
understand the concept of plasma physics.

The MagnetoHydroDynamic (MHD) waves lose their defining nature and
get mixed properties in case of an inhomogeneous plasma, i.e., a plasma where at
least one of the background quantities is not constant. Whereas in some cases,
such as the axisymmetric waves in a straight cylinder with a circular basis which is
one of the simplest models for a coronal loop, the three MagnetoHydroDynamic
(MHD) waves can still be clearly distinguished. But generally, the pure Alfvén, fast
and slow magnetosonic waves do not exist and the waves in the plasma are coupled
to each other in intricate ways.

Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic
wave where in ions oscillate in response to a restoring force provided by an effective
tension on the magnetic field lines. An Alfvén wave in a plasma is considered as
low frequency in comparison to the ion cyclotron frequency naturally travelling
oscillation of the ions and the magnetic field. The ion mass density gives the inertia,
and the magnetic field line tension provided that the restoring force exists. The
wave propagates in the direction of the magnetic field, on the contrary of it, waves
exist at oblique incidence and smoothly change into the magnetosonic wave where
the propagation is perpendicular to the magnetic field. If the motion of the ions and
the perturbation of the magnetic field are in the same direction and transverse to
the direction of propagation, then the wave is dispersionless.

In this unit, you will study about the concept of plasma, plasma oscillation,
Debye shielding, plasma parameters, magnetoplasma, plasma confinement,
hydrodynamical desorption of plasma, fundamental equations, hydromagnetic
waves, magnetosonic wave and Alfvén wave, wave phenomenon in
magnetoplasma, phase and group velocity cut offs, resonance for electromagnetic



wave propagating parallel and perpendicular to the magnetic field, Appleton—Hartree
formula, propagation through ionosphere and magnetosphere helicon, whistles,
and Faraday rotation.

4.1 OBJECTIVES

After going through this unit, you will be able to:
e Describe the basic concept of plasma
¢ Explain the conditions for the plasma existence
¢ Define plasma oscillations
¢ Understand the Debye shielding and plasma parameters
o State the various theories for plasma confinement
¢ Elaborate on the fundamental equations and hydromagnetic waves
¢ Discuss about the magnetosonic wave and Alfvén wave
e State the wave phenomenon in magnetoplasma
¢ Conceptualize the laws and equations explaining plasma
¢ Explain the hydrodynamical desorption of plasma
e Describe the various parameters of plasma
o State the Appleton—Hartree formula

¢ Understand the propagation through ionosphere and magnetosphere helicon,
whistles, and the Faraday rotation

4.2 CONCEPT OF PLASMA

In physics, the term ‘Plasma’ is referred as an electrically conducting medium in
which there are approximately equal numbers of positively charged particles and
negatively charged particles, typically produced when the atoms in a gas become
ionized. Principally, the plasma is a state of matter. The three other common states
of matter are the solids, the liquids, and the gases, and consequently plasma is
sometimes also called the fourth state of matter.

In the plasma, the negative charge is generally carried by the electrons, each
of which has precisely one unit of negative charge. Characteristically, the positive
charge is carried by atoms or molecules that are specifically missing those identical
electrons. In some rare but interesting cases, electrons missing from one type of
atom or molecule become attached to another component, resulting in a plasma
containing both positive and negative ions. The most extreme case of this type
occurs when small but macroscopic dust particles become charged in a state referred
to as a dusty plasma. The uniqueness of the plasma state is due to the significance
of electric and magnetic forces that precisely act on a plasma in addition to such
forces as gravity that affect all forms of matter. Since these electromagnetic forces
can act at large distances, therefore a plasma will also act collectively much like a
fluid even when the particles seldom collide with one another.
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Approximately all the visible matter in the universe exists in the plasma state,
uniquely occurring predominantly in this form specifically in the Sun and stars, and
also in interplanetary space and interstellar space. Auroras, lightning, and welding
arcs are also termed as plasmas; basically, the plasmas exist in neon and fluorescent
tubes, in the crystal structure of metallic solids, and in many other phenomena and
objects. The Earth itself is immersed in a tenuous plasma called the solar wind and
is distinctively surrounded by a dense plasma called the ionosphere.

A plasma may be produced in the laboratory by heating a gas to an extremely
high temperature, which causes such vigorous collisions between its atoms and
molecules that electrons are ripped free, yielding the requisite electrons and ions.
A similar process occurs inside stars. In space the dominant plasma formation
process is photoionization, wherein photons from sunlight or starlight are absorbed
by an existing gas, causing electrons to be emitted. Since the Sun and stars shine
continuously, virtually all the matter becomes ionized in such cases, and the plasma
is said to be fully ionized. A completely ionized hydrogen plasma, consisting solely
of electrons and protons (hydrogen nuclei), is the most elementary plasma.

Definition

Plasma is a state of matter in which an ionized gaseous substance becomes highly
electrically conductive to the point that long-range electric and magnetic fields
dominate the behaviour of the matter. The plasma state can be contrasted with the
other states: solid, liquid, and gas.

Plasma is an electrically neutral medium of unbound positive and negative
particles (i.e., the overall charge of a plasma is roughly zero). Although these
particles are unbound, they are not ‘Free’ in the sense of not experiencing forces.
Moving charged particles generate an electric current within a magnetic field, and
any movement of a charged plasma particle affects and is affected by the fields
created by the other charges. In turn this governs collective behaviour with many
degrees of variation. The following three factors define a plasma:

1. Plasma Approximation: The plasma approximation applies when the
plasma parameter, A, representing the number of charge carriers within a
sphere (called the Debye sphere whose radius is the Debye screening length)
surrounding a given charged particle, is sufficiently high as to shield the
electrostatic influence of the particle outside of the sphere.

2. Bulk Interactions: The Debye screening length is compared to the physical
size of the plasma. This criterion means that interactions in the bulk of the
plasma are more important than those at its edges, where boundary effects
may take place. When this criterion is satisfied, the plasma is quasi-neutral.

3. Plasma Frequency: The electron plasma frequency (measuring plasma
oscillations of the electrons) is large compared to the electron-neutral collision
frequency, i.e., the measuring frequency of collisions between electrons and
neutral particles. When this condition is valid, electrostatic interactions
dominate over the processes of ordinary gas kinetics.



Conditions for Plasma Existence

Plasma temperature is commonly measured in Kelvin or electron volts and is,
informally, a measure of the thermal kinetic energy per particle. High temperatures
are usually needed to sustain ionisation, which is a defining feature of a plasma.
The degree of plasma ionisation is determined by the electron temperature relative
to the ionisation energy and more weakly by the density. At low temperatures,
ions and electrons tend to recombine into bound states—atoms—and the plasma
will eventually become a gas.

In most cases the electrons are close enough to thermal equilibrium that
their temperature is relatively well-defined; this is true even when there is a significant
deviation from a Maxwellian energy distribution function, for example, due to
UltraVoilet or UV radiation, energetic particles, or strong electric fields. Because
of the large difference in mass, the electrons come to thermodynamic equilibrium
amongst themselves much faster than they come into equilibrium with the ions or
neutral atoms. For this reason, the ion temperature may be very different from
(usually lower than) the electron temperature. This is especially common in weakly
ionized technological plasmas, where the ions are often near the ambient
temperature.

Therefore, for plasma to exist, ionisation is necessary. The term ‘Plasma
Density’ by itselfusually refers to the ‘Electron Density’, that is, the number of free
electrons per unit volume. The degree of ionisation of a plasma is the proportion
of atoms that have lost or gained electrons, and is controlled by the electron and
ion temperatures and electron-ion vs. electron-neutral collision frequencies. The

L
degree of ionisation, o, is defined as @ = o
1 Tl

, where n_is the number
density of ions and 7 is the number density of neutral atoms. The electron density is
related to this by the average charge state { £} ofthe ions through 1, = (Z)n;

where 1, is the number density of electrons.

In a plasma, the electron-ion collision frequency #4; is much greater than
the electron-neutral collision frequency 4., . Therefore, with a weak degree of
ionization, a the electron-ion collision frequency can equal the electron-neutral
collision frequency: 14; = I/, is the limit separating a plasma from being partially
or fully ionized.

e Theterm fully ionised gas introduced by Lyman Spitzer does not mean
the degree of ionisation is unity, but only that the plasma is in a Coulomb-
collision dominated regime, i.e., when pr.; = 4., , which can
correspond to a degree of ionisation as low as 0.01%.

o A partially or weakly ionised gas means the plasma is not dominated
by Coulomb collisions, i.e., when t4.; < 14,.

Most of technological engineered plasmas are weakly ionised gases.
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Occurrence of Plasma

Plasma is created by adding energy to a gas so that some of its electrons leave its
atoms. This is called ionization. It results in negatively charged electrons, and
positively charged ions. Unlike the other states of matter, the charged particles in
a plasma will react strongly to electric and magnetic fields (i.e., electromagnetic
fields). If a plasma loses heat, the ions will reform into a gas, emitting the energy
which had caused them to ionize.

Over 99% of the matter in the visible universe is believed to be plasma.
When the atoms in a gas are broken up, the pieces are called electrons and ions.
Because they have an electric charge, they are pulled together or pushed apart by
electric fields and magnetic fields. This makes a plasma act differently than a gas.
For example, magnetic fields can be used to hold a plasma, but not to hold a gas.
Plasma is a better conductor of electricity than copper.

Plasma is usually very hot, because it takes very high temperatures to break
the bonds between electrons and the nuclei of the atoms. Sometimes plasmas can
have very high pressure, like in stars. Stars (including the Sun) are mostly made of
plasma. Plasmas can also have very low pressure, like in outer space.

On Earth, lightning makes plasma. Artificial (man-made) uses of plasma
include fluorescent light bulbs, neon signs, and plasma displays used for television
or computer screens, as well as plasma lamps and globes which are a popular

children’s toy and room decoration.

Motion of Charged Particles in a Uniform Electric Field

When a particle of charge ‘q” and mass ‘m’ is placed in an electric field ‘E”, then
the electric force exerted on the charge is ‘gE’. If this is the only force exerted on
the particle, it must be the net force and so must cause the particle to accelerate.
In this case, Newton’s second law applied to the particle gives electric force on
the charged particles in uniform electric field.

F.= ¢E = ma

The acceleration of the particle is therefore electric force on the charge
particles,

q = -2
m
If £ is uniform (that is, constant in magnitude and direction), then the
acceleration is constant. If the particle has a positive charge, then its acceleration
is in the direction of the electric field. If the particle has a negative charge, then its
acceleration is in the direction opposite the electric field.

4.2.1 Plasma Oscillation

Plasma oscillations are rapid oscillations of the electron density in conducting media,
such as plasmas or metals in the UltraViolet or UV region. These oscillations are
also known as Langmuir waves (named after the Irving Langmuir), and precisely
the oscillations are described as an instability in the dielectric function of a free



electron gas. The frequency depends weakly on the wavelength of the oscillation.
The quasiparticle resulting from the quantization of these oscillations is the plasmon.

American physicists Irving Langmuir and Lewi Tonks discovered ‘Langmuir
Waves’ in 1920s. These waves are parallel in form to Jean’s instability waves,
which are caused by gravitational instabilities in a static medium.

4.2.2 Debye Shielding

The quasi--neutrality leads are considered as the significant quantity termed as the
Debye Length A . Assume that we place a plane grid into a plasma, which is
kept at a specific potential, ..

In plasmas physics and electrolytes, the Debye length A is also termed
as the Debye radius; this is considered as a measure of a charge carrier’s net
electrostatic effect in a solution and that how much its electrostatic effect continues.

With each of the Debye length the charges increase and electrically
examined while the electric potential decreases in magnitude by 1/e. A Debye
sphere is defined as a volume whose radius is the Debye length. Debye length is
a significant and essential parameter in plasma physics, electrolytes,
and colloids (DLVO theory).

The corresponding Debye screening wave vector kp = 1/Ap for particles

of density n, charge ¢ at a temperature 7 is given by k% = 4nng? /(ksT)
in the Gaussian units.

The analogous quantities at very low temperatures (I' — 0) are termed as
the Thomas—Fermi length and the Thomas—Fermi wave vector. These are
considered as the significant notation to describe the behaviour of electrons in
metals at room temperature.

4.2.3 Plasma Parameters

Plasma parameters are the various characteristics of a plasma, an electrically
conductive collection of charged particles that responds collectively to
electromagnetic forces. Plasma is the typically in the form of neutral gas-like clouds
or charged beams of ions, but unlike gas it may also include dust and grains.

Fundamental Plasma Parameters

All the quantities of plasma parameters are defined in Gaussian (cgs) units
except energy and temperature which are typically expressed in €V and ion mass
expressed in units of the proton mass, p=m./ miZ [h=m; / My ; Z isthe

ion charge in units of the elementary charge ‘e’ for the state of fully charged ion
and Z is the respective atomic number; & is Boltzmann’s constant; c is the speed
of light; InA is the Coulomb logarithm.
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Check Your Progress

. What do you mean by plasma?

. Define the term plasma physics.

. What do you understand by ionization?
. Define plasma oscillations.

. What is the Debye length?

WD AN W N =

4.3 MAGNETOPLASMA

Magnetic fields are used to contain high-density, high-temperature plasmas because
such fields exert pressures and tensile forces on the plasma. An equilibrium
configuration is reached only when at all points in the plasma these pressures and
tensions exactly balance the pressure from the motion of the particles. A well-
known example of this is the pinch effect observed in specially designed equipment.
If an external electric current is imposed on a cylindrically shaped plasma and
flows parallel to the plasma axis, the magnetic forces act inward and cause the
plasma to constrict, or pinch. An equilibrium condition is reached in which the
temperature is proportional to the square of the electric current. This result suggests
that any temperature may be achieved by making the electric current sufficiently
large, the heating resulting from currents and compression.

The plasma can be defined by a magnetic field by measuring containment
time (t,), or the average time for a charged particle to diffuse out of the plasma;
this time is different for each type of configuration. Various types of instabilities
can occur in plasma. These lead to a loss of plasma and a catastrophic decrease
in containment time. The most important of these is called magnetohydrodynamic
instability. Although an equilibrium state may exist, it may not correspond to the
lowest possible energy. The plasma, therefore, seeks a state of lower potential
energy, just as a ball at rest on top of a hill (representing an equilibrium state) rolls
down to the bottom if perturbed; the lower energy state of the plasma corresponds
to a ball at the bottom of a valley. In seeking the lower energy state, turbulence
develops, leading to enhanced diffusion, increased electrical resistivity, and large
heat losses. In toroidal geometry, circular plasma currents must be kept below a
critical value called the Kruskal-Shafranov limit, otherwise a particularly violent
instability consisting of a series of kinks may occur. Although a completely stable
system appears to be virtually impossible, considerable progress has been made
in devising systems that eliminate the major instabilities. Temperatures on the order
0f 10,000,000 K at densities of 10! particles per cubic metre and containment
times as high as 1/50 of a second have been achieved.

4.4 PLASMA CONFINEMENT

As per plasma physics, plasma confinement refers to the act of containment of a
plasma by various forces at the extreme conditions in a discrete volume necessary
for thermonuclear fusion reactions. Confinement of plasma is required in order to



achieve fusion power. There are two major approaches to confinement: magnetic
confinement and inertial confinement.

Magnetic confinement fusion is an approach for generating thermonuclear
fusion power using magnetic fields to confine fusion fuel in the form of a plasma.
Magnetic confinement is one of two major branches of fusion energy research,
along with inertial confinement fusion. This magnetic approach was initiated in the
1940s and absorbed the majority of subsequent development.

Fusion reactions combine light atomic nuclei such as hydrogen to form heavier
ones such as helium gas, producing energy. In order to overcome the electrostatic
repulsion between the nuclei, they require a temperature in the range of tens of
millions of degrees, creating a plasma. In addition, the plasma is required to be
contained at a sufficient density for a sufficient time, as specified by the Lawson
criterion (triple product).

Magnetic confinement fusion attempts to use the electrical conductivity of
the plasma to contain it through interaction with magnetic fields. The magnetic
pressure offsets the plasma pressure. Developing a suitable arrangement of fields
that contain the fuel without excessive turbulence or leaking is the primary challenge
of this technology.

The advancement and expansion of Magnetic Fusion Energy (MFE) was
defined in three distinct and significant phases. In the 1950s, it was assumed that
Magnetic Fusion Energy (MFE) can be relatively simple to accomplish by just
setting and building an appropriate machine. By the late 1950s, it was evident that
plasma turbulence and instabilities were challenging and during the 1960s, ‘The
Doldrums’, effort was considered as the best theoretical explanation to study and
understand the concept of plasma physics.

4.5 HYDRODYNAMICAL DESORPTION OF
PLASMA

Ions are produced in a given sample through Plasma desorption mass spectrometry
This technique is similar to those of MALDI-MS. Adequately large ion extraction
voltage is required in particular to accelerate ions through the time of-flight analyzer
and allow detection of slow (large) as well as fast (small) ions from an unfractionated
sample or one of relatively wide polydispersity. Plasma desorption mass
spectrometry has been used to analyze heavy distillation residues from direct coal
liquefaction processes. The average molecular masses derived from plasma
desorption were compared with those from gel permeation chromatography.

4.6 MAGNETOSONIC WAVE AND ALFVEN
WAVE

A linear MagnetoHydroDynamic (MHD) wave that is driven by thermal pressure,
magnetic pressure, and magnetic tension is known as magnetosonic wave which is
also called a magnetoacoustic wave. The magnetosonic waves have two types,
the one is known as fast magnetosonic wave and the other is slow magnetosonic
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wave. Both fast and slow magnetosonic waves are present in the solar corona
providing an observational foundation for the technique for coronal plasma
diagnostics, coronal seismology.

In the homogeneous plasma of infinite extent, and in the absence of gravity,
the magnetosonic waves form, together with the Alfvén wave, the three basics
linear MagnetoHydroDynamic (MHD) waves.

Underneath the assumption of normal modes, specifically that the linear
perturbations of the physical quantities are of the form

,fl — flei(kwm+kyy+kzz—wt)

with £b, being the constant amplitude, a dispersion relation of the
magnetosonic waves is typically derived using specifically the system of ideal
MagnetoHydroDynamic (MHD) equations:

wh — B (v +3) o + Ky kvl =0,

where v, is the Alfvén speed, v, is the sound speed, £ is the magnitude of
the wave vector and k. is the component of the wave vector along the background
magnetic field which is straight and constant, because the plasma is assumed
homogeneous.

Inhomogeneous Plasma

The MagnetoHydroDynamic (MHD) waves lose their defining nature and get
mixed properties in case of an inhomogeneous plasma, i.e., a plasma where at
least one of the background quantities is not constant. Whereas in some cases,
such as the axisymmetric waves in a straight cylinder with a circular basis which is
one of the simplest models for a coronal loop, the three MagnetoHydroDynamic
(MHD) waves can still be clearly distinguished. But generally, the pure Alfvén,
fast and slow magnetosonic waves do not exist and the waves in the plasma are
coupled to each other in intricate ways.

Alfvén Wave

Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic wave
where in ions oscillate in response to a restoring force provided by an effective
tension on the magnetic field lines.

An Alfvén wave in a plasma is considered as a low frequency in comparison
to the ion cyclotron frequency naturally travelling oscillation of the ions and the
magnetic field. The ion mass density gives the inertia, and the magnetic field line
tension provided that the restoring force exists.

As per Physics the wave propagates in the direction of the magnetic field,
on the contrary of it, waves exist at oblique incidence and smoothly change into
the magnetosonic wave where the propagation is perpendicular to the magnetic
field.

Ifthe motion of the ions and the perturbation of the magnetic field are in the
same direction and transverse to the direction of propagation then the wave is
dispersionless.



4.7 WAVE PHENOMENON IN
MAGNETOPLASMA

As per plasma physics, the waves in plasmas are an interconnected set of particles
and fields which propagate in a periodically repeating fashion. It is also known that
plasma is a quasi-neutral, electrically conductive fluid. Hence in the simplest case,
itis composed of electrons and a single species of positive ions, but it may also
contain multiple ion species including negative ions as well as neutral particles.
Due to its electrical conductivity, a plasma couples to electric and magnetic fields.
This complex of particles and fields supports a wide variety of wave phenomena.

In a plasma, the electromagnetic fields are presumed to have two parts, the
first is static/equilibrium part and the second is oscillating/perturbation part. Waves
in plasmas are characteristically classified as electromagnetic or electrostatic
according to whether or not there exists an oscillating magnetic field. When the

Faraday’s law of induction to plane waves is applied, then we find k x E = wB.
implying that an electrostatic wave must be purely longitudinal. On the contrary, an
electromagnetic wave must possess a transverse component, however it may also
be partially longitudinal.

Waves can further be classified by the oscillating species. In most plasmas
of interest, the electron temperature is comparable to or larger than the ion
temperature. Consequently the fact that when coupled with the much smaller mass
of the electron it indicates that the electrons move much faster than the ions. Mode
of'an electron depends on the mass of the electrons, but the ions may be assumed
to be infinitely massive, i.e., stationary. Mode of an ion depends on the ion mass,
but the electrons are assumed to be massless and to redistribute themselves
instantaneously according to the Boltzmann relation. It is rarely, that in the lower
hybrid oscillation, will a mode depend on both the electron and the ion mass.

The various modes can also be classified depending upon that whether their
propagation is in an unmagnetized plasma or parallel, perpendicular, or oblique to
the stationary magnetic field. Finally, for perpendicular electromagnetic electron
waves, the perturbed electric field can be parallel or perpendicular to the stationary
magnetic field.

Check Your Progress

6. What do you understand by plasma confinement?

7. Define magnetic confinement fusion.

8. What is a magnetostatic wave?

9. What do you understand by inhomogenous plasma?
10. Define Alfvén wave.

4.8 PHASE AND GROUP VELOCITY CUT OFFS

If the thermal motion of the electrons is ignored, it is possible to show that the
charge density oscillates at the plasma frequency
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m*

Where, n, is the number density of electrons, e is the effective mass of the
electron, and m* is the permittivity of free space. Remember that the above formula
is specifically derived using the approximation that the mass of an ion is infinite.
Generally, this is considered as a good approximation because the electrons are
significantly lighter as compared to ions.

Proof using Maxwell Equations. Assume that the charge density oscillations is

givenas P(w) = poe ™" the continuity equation:
dp

V-j=—2 =iuplw)

the Gauss law
V- E(w) = 4mp(w)
and the conductivity
j(w) = o(w)E(w)
itremains:
iwp(w) = dmo(w)p(w)
which is always true only if
A

mio(w) _

w

This expression must be modified in the case of electron-positron plasmas,
often encountered in astrophysics. Since the frequency is independent of the
wavelength, these oscillations have an infinite phase velocity and zero group velocity.

4.9 RESONANCE FOR ELECTROMAGNETIC
WAVE PROPAGATING PARALLEL AND
PERPENDICULAR TO THE MAGNETIC
FIELD

In the process by adding a weak magnetic undulator the propagation of
electromagnetic waves in magnetized plasma near the electron cyclotron frequency
can be modified. Such as, both right- and left-hand circularly polarized waves can



propagate along the magnetic field without experiencing resonant absorption. This
phenomenon of ‘Eliminating Electron Cyclotron Heating’ is referred to as the
‘Undulator-Induced Transparency (UIT)’ of the plasma and is the classical
equivalent of the well-known quantum mechanical effect
of electromagnetically induced transparency. As such UIT can dramatically slow
down the waves group velocity, resulting in the extreme compression of
the wave energy in the plasma.

Compressed waves are polarized along the propagation direction and can
be used for synchronous electron or ion acceleration. Strong coupling between
the two wave helicities is explored to impart the waves with high group velocities for
vanishing wave numbers £.

For treating the propagation of electromagnetic waves in uniform, weakly
interacting plasmas near equilibrium in the absence of external magnetic fields,
“Green’s Function Techniques” are used. The frequency and the damping of
electromagnetic waves in a medium are related to the local complex conductivity
tensor, which is calculated by the diagrammatic techniques of modern field theory.
Physical quantities are calculated in terms of a consistent many-particle perturbation
expansion in powers of a (weak) coupling parameter. To simplify the calculation
of absorptive parts an ‘Open-Diagram Technique’ is introduced. For long-
wavelength longitudinal waves such as electron plasma oscillations, it is found that
the main absorption mechanism in the electron-ion plasma is the two-particle collision
process appropriately corrected for collective effects and not the one-particle (or
Landau) damping process. Electron-ion collisions produce a damping effect which
remains finite for long wavelengths.

4.9.1 Appleton—Hartree Formula

The Appleton—Hartree equation, also sometimes referred to as the Appleton—
Lassen equation is a specific mathematical expression used to explain the refractive
index for electromagnetic wave propagation in a cold magnetized plasma. The
Appleton—Hartree equation was independently developed by numerous different
scientists, including Edward Victor Appleton, Douglas Hartree and German radio
physicist H. K. Lassen. Lassen’s work, completed two years prior to Appleton
and five years prior to Hartree, included an additional comprehensive treatment of
collisional plasma; but was only published in German, and hence it has not been
commonly read and used in the English speaking world of radio physics. Further,
regarding the derivation by Appleton, it was noted in the historical study by Gilmore
that Wilhelm Altar (while working with Appleton) first calculated the dispersion
relation in 1926.

The dispersion relation can be written as an expression for the frequency
(squared), but it is also common to write it as an expression for the index of
refraction:

k 2
- (3
w
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The Appleton-Hartree Equation
The equation is typically given as follows,
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g, = Permittivity of Free Space

u, = Permeability of Free Space

B, =Ambient Magnetic Field Strength
e =Electron Charge

m = Electron Mass
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= Electron Plasma Frequency

= Electron Gyro Frequency

0 = Angle Between the Ambient Magnetic Field Vector and the Wave Vector

Modes of Propagation: The presence or existence of the £ sign in the Appleton—
Hartree equation provides two separate solutions for the refractive index. For

propagation perpendicular to the magnetic field, i.e., the ‘“+’ sign represents the

‘Ordinary Mode’, and the ‘-’ sign represents the ‘Extraordinary Mode’. For

propagation parallel to the magnetic field, 1.e., k | By, the ‘+’ signrepresents a

left-hand circularly polarized mode, and the ‘-’ sign represents a right-hand circularly

polarized mode.

k is the vector of the propagation plane.



4.10 PROPAGATION THROUGH IONOSPHERE
AND MAGNETO-SPHERE HELICON

Ionosphere and magnetosphere, regions of Earth’s atmosphere in which the number
of electrically charged particles—ions and electrons—are large enough to affect
the propagation of radio waves. The charged particles are created by the action of
extra-terrestrial radiation (mainly from the Sun) on neutral atoms and molecules of
air. The ionosphere begins at a height of about 50 km (30 miles) above the surface,
but it is most distinct and important above 80 km (50 miles). In the upper regions
of the ionosphere, beginning several hundred kilometres above Earth’s surface
and extending tens of thousands of kilometres into space, is the magnetosphere, a
region where the behaviour of charged particles is strongly affected by the magnetic
fields of Earth and the Sun.

It is in the lower part of the magnetosphere that overlaps with the ionosphere
that the spectacular displays of the aurora borealis and aurora australis take place.
The magnetosphere also contains the Van Allen radiation belts, where highly
energized protons and electrons travel back and forth between the poles of Earth’s
magnetic field.

4.10.1 Whistler

Whistler is Very Low Frequency or VLF electromagnetic (radio) wave which is
generated during lightning discharges or thunderstorms and lightning flash. This
wave propagates through the ionosphere, the portion of the atmosphere where
the number of ions is large enough; it begins at a height of about 50 km above the
Earth’s surface, which is guided by ducts or region along the earth magnetic field.
Frequencies of whistlers are usually much smaller than the electron cyclotron
frequency (0<<o_) in the earth ionosphere and is 100 Hz to 10 kHz, with a
maximum amplitude usually at 3 kHz to 5 kHz. These waves are electromagnetic
waves but they comprise audio frequencies hence can be detected by a sensitive
audio amplifier or loudspeaker. Because these waves produce sound thus also
called as whistling atmospheric radio wave. This wave generates gliding sound or
descending pitch whistle from high-to-low-frequency. This is due to that these
waves get dispersed in course of time in such a way that the higher frequencies
wave moves faster than the lower ones. Thus, at point of detection, higher frequency
wave arrives sooner than the lower ones. When the whistlers are detected at
magnetic conjugate points, itis called asshort whistlers. However, electromagnetic
signal may be reflected at the earth surface and get back along the earth magnetic
field to a point close to where it is originated. If whistler is detected at this point, it
is called as long whistler. Initially, whistlers last about halfa second, and they may
be repeated at regular intervals of several seconds, growing progressively longer
and faints with time.

The phenomenon of atmospheric whistler propagation can be explained in
terms of very low frequency region of propagation of right circularly polarized
wave.
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4.10.2 Faraday Rotation

The polarization rotator based on the Faraday effect, also known as ‘Faraday
rotator is a magneto-optic effect involving transmission of light through a material
wherein a longitudinal static magnetic field is present. The state of polarization
such as, the axis of linear polarization or the orientation of elliptical polarization is
rotated as the wave traverses the device, which is explained by a slight difference
in the phase velocity between the left and right circular polarizations. It can be
considered as an example of circular birefringence, as is optical activity, but involves
a material which has this property in the presence of a magnetic field. Circular
birefringence, involving a difference in propagation between opposite circular
polarizations, is distinct from linear birefringence which also transforms a wave’s
polarization but not through a simple rotation.

The polarization state is rotated in proportion to the applied longitudinal
magnetic field according to:

B=VBd

where B is the angle of rotation (in radians), B is the magnetic flux density in
the direction of propagation (in teslas), d is the length of the path (in metres) where
the light and magnetic field interact, and V is the Verdet constant for the material.
This empirical proportionality constant (in units of radians per tesla per metre, rad/
(T-m)) varies with wavelength and temperature and is tabulated for various materials.

Faraday rotation is a rare example of non-reciprocal optical propagation.
Although reciprocity is a basic tenet of electromagnetics, the apparent non-
reciprocity in this case is a result of not considering the static magnetic field but
only the resulting device. Unlike the rotation in an optically active medium such as
a sugar solution, reflecting a polarized beam back through the same Faraday rotator
does not undo the polarization change the beam underwent in its forward pass
through the medium, but actually doubles it. Then by implementing a Faraday
rotator with a rotation of 45°, inadvertent downstream reflections from a linearly
polarized source will return with the polarization rotated by 90° and can be simply
blocked by a polarizer; this is the basis of optical isolators used to prevent undesired
reflections from disrupting an upstream optical system (particularly a laser).

Difference between Faraday rotation and other polarization rotation
mechanisms can be stated as. The polarization direction in an optically active
medium twists or rotates in the same sense such as like a right-handed screw for
either direction, thus in the case of a plane reflection the original rotation is reversed,
returning the incident beam to its original polarization. Whereas, in case of Faraday
rotator, passage of light in opposite directions experience a magnetic field in opposite
directions relative to the propagation direction, and since the rotation, relative to
the direction of propagation is determined by the magnetic field, therefore the
rotation is opposite between the two propagating directions.
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11. Define Appleton-Hartree formula.
12. What do you mean by whistler? NOTES
13. Define short whistlers.
14. Define long whistlers.

15. What do you understand by Faraday's rotation?

4.11 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Inphysics, the term ‘Plasma’ is referred as an electrically conducting medium
in which there are approximately equal numbers of positively charged particles
and negatively charged particles, typically produced when the atoms in a
gas become ionized. Principally, the plasma is a state of matter. The three
other common states of matter are the solids, the liquids, and the gases, and
consequently plasma is sometimes also called the fourth state of matter. In
the plasma, the negative charge is generally carried by the electrons, each
of which has precisely one unit of negative charge.

2. Plasma physics is referred as the study of the state of matter of charged
particles in which an ionized gaseous substance becomes highly electrically
conductive to the point that long-range electric and magnetic fields dominate
the behaviour of the matter. The plasma state can be contrasted with the
other states: solid, liquid, and gas.

3. The degree of plasma ionisation is determined by the electron temperature
relative to the ionisation energy and precisely more weakly by the density.
At low temperatures, ions and electrons tend to recombine into bound
states—atoms—and the plasma will eventually become a gas. Plasma is
created by adding energy to a gas so that some of its electrons leave its
atoms. This is called ionization. It results in negatively charged electrons,
and positively charged ions. Unlike the other states of matter, the charged
particles in a plasma will react strongly to electric and magnetic fields (i.e.,
electromagnetic fields). If a plasma loses heat, the ions will reform into a
gas, emitting the energy which had caused them to ionize.

4. Plasma oscillations are rapid oscillations of the electron density in conducting
media, such as plasmas or metals in the UltraViolet or UV region. These
oscillations are also known as Langmuir waves (named after the Irving
Langmuir), and precisely the oscillations are described as an instability in
the dielectric function of a free electron gas. The frequency depends weakly
on the wavelength of the oscillation. The quasiparticle resulting from the
quantization of these oscillations is the plasmon.

American physicists Irving Langmuir and Lewi Tonks discovered ‘Langmuir
Waves’ in 1920s. These waves are parallel in form to Jean’s instability
waves, which are caused by gravitational instabilities in a static medium.
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5.

10.

The quasi--neutrality leads are considered as the significant quantity termed
as the Debye Length A . Assume that we place a plane grid into a plasma,
which is kept at a specific potential, ?,

In plasmas physics and electrolytes, the Debye length A is also termed as
the Debye radius; this is considered as a measure of a charge carrier’s net
electrostatic effect in a solution and that how much its electrostatic effect
continues.

With each of the Debye length the charges increase and electrically
examined while the electric potential decreases in magnitude by 1/e. A Debye
sphere is defined as a volume whose radius is the Debye length. Debye
length is a significant and essential parameter in plasma physics, electrolytes,
and colloids (DLVO theory).

. Asper plasma physics, plasma confinement refers to the act of containment

of a plasma by various forces at the extreme conditions in a discrete volume
necessary for thermonuclear fusion reactions. Confinement of plasma is
required in order to achieve fusion power. There are two major approaches
to confinement: magnetic confinement and inertial confinement.

. Fusion reactions combine light atomic nuclei, such as hydrogen to form

heavier ones, such as helium gas, producing energy. Magnetic confinement
fusion attempts to use the electrical conductivity of the plasma to contain it
through interaction with magnetic fields. The magnetic pressure offsets the
plasma pressure. Developing a suitable arrangement of fields that contain
the fuel without excessive turbulence or leaking is the primary challenge of
this technology.

. A linear MagnetoHydroDynamic (MHD) wave that is driven by thermal

pressure, magnetic pressure, and magnetic tension is known as magnetosonic
wave which is also called a magnetoacoustic wave. The magnetosonic waves
have two types, the one is known as fast magnetosonic wave and the other
is slow magnetosonic wave. Both fast and slow magnetosonic waves are
present in the solar corona providing an observational foundation for the
technique for coronal plasma diagnostics, coronal seismology. In the
homogeneous plasma of infinite extent, and in the absence of gravity, the
magnetosonic waves form, together with the Alfvén wave, the three basics
linear MagnetoHydroDynamic (MHD) waves.

. The MagnetoHydroDynamic (MHD) waves lose their defining nature and

get mixed properties in case of an inhomogeneous plasma, i.e., a plasma
where at least one of the background quantities is not constant. Whereas in
some cases, such as the axisymmetric waves in a straight cylinder with a
circular basis which is one of the simplest models for a coronal loop, the
three MagnetoHydroDynamic (MHD) waves can still be clearly
distinguished.

Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic
wave where in ions oscillate in response to a restoring force provided by an
effective tension on the magnetic field lines. An Alfvén wave ina plasma is



11.

12.

13.

14.

15.

considered as a low frequency in comparison to the ion cyclotron frequency
naturally travelling oscillation of the ions and the magnetic field. The ion
mass density gives the inertia, and the magnetic field line tension provided
that the restoring force exists.

The Appleton—Hartree equation, also sometimes referred to as the Appleton—
Lassen equation is a specific mathematical expression used to explain the
refractive index for electromagnetic wave propagation in a cold magnetized
plasma. The Appleton—Hartree equation was independently developed by
numerous different scientists, including Edward Victor Appleton, Douglas
Hartree and German radio physicist H. K. Lassen. Further, regarding the
derivation by Appleton, it was noted in the historical study by Gilmore that
Wilhelm Altar (while working with Appleton) first calculated the dispersion
relationin 1926.

The Appleton-Hartree Equation: The equation is typically given as follows,
X
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Whistler is Very Low Frequency or VLF electromagnetic (radio) wave
which is generated during lightning discharges or thunderstorms and lightning
flash. This wave propagates through the ionosphere, the portion of the
atmosphere where the number of ions is large enough; it begins at a height
of about 50 km above the Earth’s surface, which is guided by ducts or
region along the earth magnetic field. Frequencies of whistlers are usually
much smaller than the electron cyclotron frequency (0<<w_ ) in the earth
ionosphere and is 100 Hz to 10 kHz, with a maximum amplitude usually at
3 kHz to 5 kHz. These waves are electromagnetic waves but they comprise
audio frequencies hence can be detected by a sensitive audio amplifier or
loudspeaker.

At point of detection, higher frequency wave arrives sooner than the lower
ones. When the whistlers are detected at magnetic conjugate points, it is
called as short whistlers.

If whistler is detected at this point, it is called as long whistler. Initially,
whistlers last about half a second, and they may be repeated at regular
intervals of several seconds, growing progressively longer and faints with
time.

The polarization rotator based on the Faraday effect, also known as ‘Faraday
rotator is a magneto-optic effect involving transmission of light through a
material wherein a longitudinal static magnetic field is present. The state of
polarization such as, the axis of linear polarization or the orientation of elliptical
polarization is rotated as the wave traverses the device, which is explained
by a slight difference in the phase velocity between the left and right circular
polarizations. Faraday rotation is a rare example of non-reciprocal optical
propagation.
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4.12 SUMMARY

o Inphysics, the term ‘Plasma’ is referred as an electrically conducting medium

in which there are approximately equal numbers of positively charged particles
and negatively charged particles, typically produced when the atoms in a
gas become ionized.

Principally, the plasma is a state of matter. The three other common states
of' matter are the solids, the liquids, and the gases, and consequently plasma
is sometimes also called the fourth state of matter.

In the plasma, the negative charge is generally carried by the electrons,
each of which has precisely one unit of negative charge.

Characteristically, the positive charge is carried by atoms or molecules that
are specifically missing those identical electrons. In some rare but interesting
cases, electrons missing from one type of atom or molecule become attached
to another component, resulting in a plasma containing both positive and
negative ions.

The uniqueness of the plasma state is due to the significance of electric and
magnetic forces that precisely act on a plasma in addition to such forces as
gravity that affect all forms of matter. Since these electromagnetic forces
can act at large distances, therefore a plasma will also act collectively much
like a fluid even when the particles seldom collide with one another.

Approximately all the visible matter in the universe exists in the plasma
state, uniquely occurring predominantly in this form specifically in the Sun
and stars, and also in interplanetary space and interstellar space. Auroras,
lightning, and welding arcs are also termed as plasmas; basically, the plasmas
exist in neon and fluorescent tubes, in the crystal structure of metallic solids,
and in many other phenomena and objects.

The Earth itselfis immersed in a tenuous plasma called the solar wind and is
distinctively surrounded by a dense plasma called the ionosphere.

Plasma is a state of matter in which an ionized gaseous substance becomes
highly electrically conductive to the point that long-range electric and magnetic
fields dominate the behaviour of the matter. The plasma state can be
contrasted with the other states: solid, liquid, and gas.

Plasma is an electrically neutral medium of unbound positive and negative
particles (i.e., the overall charge of a plasma is roughly zero). Although
these particles are unbound, they are not ‘Free’ in the sense of not
experiencing forces.

Moving charged particles generate an electric current within a magnetic
field, and any movement of a charged plasma particle affects and is affected
by the fields created by the other charges. In turn this governs collective
behaviour with many degrees of variation.

The electron plasma frequency (measuring plasma oscillations of the
electrons) is large compared to the electron-neutral collision frequency
(measuring frequency of collisions between electrons and neutral particles).



When this condition is valid, electrostatic interactions dominate over the
processes of ordinary gas kinetics.

Plasma temperature is commonly measured in Kelvin or electron volts and
is, informally, a measure of the thermal kinetic energy per particle. High
temperatures are usually needed to sustain ionisation, which is a defining
feature of a plasma.

The degree of plasma ionisation is determined by the electron temperature
relative to the ionisation energy and more weakly by the density. At low
temperatures, ions and electrons tend to recombine into bound states—
atoms—and the plasma will eventually become a gas.

Plasma is created by adding energy to a gas so that some of'its electrons
leave its atoms. This is called ionization. It results in negatively charged
electrons, and positively charged ions.

Unlike the other states of matter, the charged particles in a plasma will react
strongly to electric and magnetic fields (i.e., electromagnetic fields). Ifa
plasma loses heat, the ions will reform into a gas, emitting the energy which
had caused them to ionize.

When a particle of charge ‘g’ and mass ‘m’ is placed in an electric field ‘£,
then the electric force exerted on the charge is ‘gE”. If this is the only force
exerted on the particle, it must be the net force and so must cause the
particle to accelerate.

Plasma oscillations are rapid oscillations of the electron density in conducting
media, such as plasmas or metals in the UltraViolet or UV region. These
oscillations are also known as Langmuir waves (named after the Irving
Langmuir), and precisely the oscillations are described as an instability in
the dielectric function of a free electron gas.

The frequency depends weakly on the wavelength of the oscillation. The
quasiparticle resulting from the quantization of these oscillations is the plasmon.

American physicists Irving Langmuir and Lewi Tonks discovered ‘Langmuir
Waves’in 1920s. These waves are parallel in form to Jean’s instability waves,
which are caused by gravitational instabilities in a static medium.

The quasi--neutrality leads are considered as the significant quantity termed
as the Debye Length A . Assume that we place a plane grid into a plasma,
which is kept at a specific potential, ?,

In plasmas physics and electrolytes, the Debye length A, is also termed as
the Debye radius; this is considered as a measure of a charge carrier’s net
electrostatic effect in a solution and that how much its electrostatic effect
continues.

With each of the Debye length the charges increase and electrically
examined while the electric potential decreases in magnitude by 1/e. A Debye
sphere is defined as a volume whose radius is the Debye length. Debye
length is a significant and essential parameter in plasma physics, electrolytes,
and colloids (DLVO theory).
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o Plasma parameters are the various characteristics of a plasma, an electrically

conductive collection of charged particles that responds collectively to
electromagnetic forces. Plasma is the typically in the form of neutral gas-
like clouds or charged beams of ions, but unlike gas it may also include dust
and grains.

All the quantities of plasma parameters are defined in Gaussian (cgs) units
except energy and temperature which are typically expressed in eV and ion
mass expressed in units of the proton mass, u=m./ m;Z is the ion charge
in units of the elementary charge ‘e’ for the state of fully charged ion and Z
is the respective atomic number; & is Boltzmann’s constant; ¢ is the speed
of light; InA is the Coulomb logarithm.

Magnetic fields are used to contain high-density, high-temperature plasmas
because such fields exert pressures and tensile forces on the plasma. An
equilibrium configuration is reached only when at all points in the plasma
these pressures and tensions exactly balance the pressure from the motion
of'the particles.

As per plasma physics, plasma confinement refers to the act of containment
of'aplasma by various forces at the extreme conditions in a discrete volume
necessary for thermonuclear fusion reactions. Confinement of plasma is
required in order to achieve fusion power. There are two major approaches
to confinement: magnetic confinement and inertial confinement.

Magnetic confinement fusion is an approach for generating thermonuclear
fusion power using magnetic fields to confine fusion fuel in the form of a
plasma. Magnetic confinement is one of two major branches of fusion energy
research, along with inertial confinement fusion. This magnetic approach
was initiated in the 1940s and absorbed the majority of subsequent
development.

Fusion reactions combine light atomic nuclei such as hydrogen to form
heavier ones such as helium gas, producing energy. In order to overcome
the electrostatic repulsion between the nuclei, they require a temperature in
the range of tens of millions of degrees, creating a plasma. In addition, the
plasma is required to be contained at a sufficient density for a sufficient
time, as specified by the Lawson criterion (triple product).

Magnetic confinement fusion attempts to use the electrical conductivity of
the plasma to contain it through interaction with magnetic fields. The magnetic
pressure offsets the plasma pressure. Developing a suitable arrangement of
fields that contain the fuel without excessive turbulence or leaking is the
primary challenge of this technology.

A linear MagnetoHydroDynamic (MHD) wave that is driven by thermal
pressure, magnetic pressure, and magnetic tension is known as magnetosonic
wave which is also called a magnetoacoustic wave.

The magnetosonic waves have two types, the one is known as fast
magnetosonic wave and the other is slow magnetosonic wave. Both fast
and slow magnetosonic waves are present in the solar corona providing an
observational foundation for the technique for coronal plasma diagnostics,
coronal seismology.



¢ Inthe homogeneous plasma of infinite extent, and in the absence of gravity,

the magnetosonic waves form, together with the Alfvén wave, the three
basics linear MagnetoHydroDynamic (MHD) waves.

Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic
wave where in ions oscillate in response to a restoring force provided by an
effective tension on the magnetic field lines.

An Alfvén wave in a plasma is considered as a low frequency in comparison
to the ion cyclotron frequency naturally travelling oscillation of the ions and
the magnetic field. The ion mass density gives the inertia, and the magnetic
field line tension provided that the restoring force exists.

As per Physics the wave propagates in the direction of the magnetic field,
on the contrary of it, waves exist at oblique incidence and smoothly change
into the magnetosonic wave where the propagation is perpendicular to the
magnetic field.

The MagnetoHydroDynamic (MHD) waves lose their defining nature and
get mixed properties in case of an inhomogeneous plasma, i.e., a plasma
where at least one of the background quantities is not constant. Whereas in
some cases, such as the axisymmetric waves in a straight cylinder with a
circular basis which is one of the simplest models for a coronal loop, the
three MagnetoHydroDynamic (MHD) waves can still be clearly
distinguished.

As per plasma physics, the waves in plasmas are an interconnected set of
particles and fields which propagate in a periodically repeating fashion. It is
also known that plasma is a quasi-neutral, electrically conductive fluid. Hence
in the simplest case, it is composed of electrons and a single species of
positive ions, but it may also contain multiple ion species including negative
ions as well as neutral particles.

Due to its electrical conductivity, a plasma couples to electric and magnetic
fields. This complex of particles and fields supports a wide variety of wave
phenomena.

If the thermal motion of the electrons is ignored, it is possible to show that
the charge density oscillates at the plasma frequency
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Where, n_ is the number density of electrons, e is the effective mass of the
electron, and m* is the permittivity of free space. Remember that the above

formula is specifically derived using the approximation that the mass of an
ion is infinite.
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¢ In the process by adding a weak magnetic undulator the propagation of

electromagnetic waves in magnetized plasma near the electron cyclotron
frequency can be modified.

The phenomenon of ‘Eliminating Electron Cyclotron Heating’ is referred to
as the ‘Undulator-Induced Transparency (UIT)’ of the plasma and is the
classical equivalent of the well-known quantum mechanical effect
of electromagnetically induced transparency. As such UIT can dramatically
slow down the waves group velocity, resulting in the extreme compression
ofthe wave energy in the plasma.

Compressed waves are polarized along the propagation direction and can
be used for synchronous electron or ion acceleration. Strong coupling
between the two wave helicities is explored to impart the waves with high
group velocities for vanishing wave numbers k.

The Appleton—Hartree equation, also sometimes referred to as the Appleton—
Lassen equation is a specific mathematical expression used to explain the
refractive index for electromagnetic wave propagation in a cold magnetized
plasma.

The Appleton—Hartree equation was independently developed by numerous
different scientists, including Edward Victor Appleton, Douglas Hartree and
German radio physicist H. K. Lassen.

Further, regarding the derivation by Appleton, it was noted in the historical
study by Gilmore that Wilhelm Altar (while working with Appleton) first
calculated the dispersion relation in 1926.

The dispersion relation can be written as an expression for the frequency
(squared), but it is also common to write it as an expression for the index of
refraction:

k 2
- (2)
w

The Appleton-Hartree Equation: The equation is typically given as follows,
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The presence or existence of the + sign in the Appleton—Hartree equation
provides two separate solutions for the refractive index. For propagation
perpendicular to the magnetic field, i.e., the “+’ sign represents the ‘Ordinary
Mode’, and the ‘—* sign represents the ‘Extraordinary Mode’.

Whistler is Very Low Frequency or VLF electromagnetic (radio) wave
which is generated during lightning discharges or thunderstorms and lightning
flash.

This wave propagates through the ionosphere, the portion of the atmosphere
where the number of ions is large enough; it begins at a height of about 50
km above the Earth’s surface, which is guided by ducts or region along the
earth magnetic field.



¢ Frequencies of whistlers are usually much smaller than the electron cyclotron Plasma Physics
frequency (0<<w_ ) in the earth ionosphere and is 100 Hz to 10 kHz, with
a maximum amplitude usually at 3 kHz to 5 kHz. These waves are
electromagnetic waves but they comprise audio frequencies hence can be

detected by a sensitive audio amplifier or loudspeaker. NOTES

e Because these waves produce sound thus also called as whistling atmospheric
radio wave. This wave generates gliding sound or descending pitch whistle
from high-to-low-frequency. This is due to that these waves get dispersed
in course of time in such a way that the higher frequencies wave moves
faster than the lower ones.

¢ Atpoint of detection, higher frequency wave arrives sooner than the lower
ones. When the whistlers are detected at magnetic conjugate points, it is
called as short whistlers.

e However, electromagnetic signal may be reflected at the earth surface and
get back along the earth magnetic field to a point close to where it is originated.
If whistler is detected at this point, it is called as long whistler.

e Initially, whistlers last about half a second, and they may be repeated at
regular intervals of several seconds, growing progressively longer and faints
with time.

e The polarization rotator based on the Faraday effect, also known as ‘Faraday
rotator is a magneto-optic effect involving transmission of light through a
material wherein a longitudinal static magnetic field is present.

e The state of polarization such as, the axis of linear polarization or the
orientation of elliptical polarization is rotated as the wave traverses the device,
which is explained by a slight difference in the phase velocity between the
left and right circular polarizations.

e Circular birefringence, involving a difference in propagation between opposite
circular polarizations, is distinct from linear birefringence which also
transforms a wave’s polarization but not through a simple rotation.

e Faraday rotation is a rare example of non-reciprocal optical propagation.

4.13 KEY TERMS

¢ Plasma physics: Plasma physics is the study of a state of matter comprising
charged particles.

¢ Plasma: Plasma is an electrically conducting medium in which there are
roughly equal numbers of positively and negatively charged particles which
are produced when the atoms in a gas gets ionized.

¢ Plasma oscillation: Plasma oscillations, also known as Langmuir waves
(after Irving Langmuir), are rapid oscillations of the electron density in
conducting media such as plasmas or metals in the ultraviolet region.

¢ Debye shielding: A slightly different approach to discussing quasi--neutrality
leads to the important quantity called the Debye length.
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¢ Plasma parameters: Plasma parameters define various characteristics of

a plasma, an electrically conductive collection of charged particles that
responds collectively to electromagnetic forces.

Plasma confinement: Plasma confinement refers to the act of maintaining
aplasma in a discrete volume.

Magneto-sonic wave: A magnetosonic wave, also called a magneto-
acoustic wave, is a linear Magneto-HydroDynamic (MHD) wave that is
driven by thermal pressure, magnetic pressure, and magnetic tension.

Inhomogeneous plasma: Plasma where at least one of the background
quantities is not constant.

Alfvén wavr: An Alfvén wave in a plasma is a low-frequency (compared
to the ion cyclotron frequency) travelling oscillation of the ions and the
magnetic field.

Whistles: Whistler is Very Low Frequency or VLF electromagnetic (radio)
wave which is generated during lightning discharges or thunderstorms and
lightning flash.

Faraday rotation: A Faraday rotator is a polarization rotator based on the
Faraday effect, a magnetooptic effect involving transmission of light through
amaterial when a longitudinal static magnetic field is present.

4.14 SELF-ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

A S B

—_— = = e

Define the terms plasma and plasma oscillation.

What do you understand by plasma approximation?

State the motion of charged particles in a uniform electric field.
Define the term Debye shielding.

What are the fundamental plasma parameters?

What do you understand by magnetoplasma?

What is the importance of plasma confinement?

Give the fundamental equations of hydromagnetic waves.

State the definitions of magnetosonic wave and Alfvén wave.

What is phase and group velocity cut ofts?

. Define the hydrodynamical desorption of plasma.
. Give the Appleton—Hartree formula.
. How does the propagation take place through the ionosphere?

. Write notes on the magnetosphere helicon, whistles, and Faraday rotation.



Long-Answer Questions

1. What do you understand by plasma? Explain the conditions for plasma
existence giving appropriate examples.

2. Discuss the concept of plasma oscillation and plasma parameters giving
relevant examples.

3. Explain in detail the Debye shielding of plasma.
4. Describe the wave phenomenon of magnetoplasma giving relevant examples.

5. Discuss in detail about the plasma confinement and hydrodynamical
desorption of plasma.

6. Briefly explain the parameters and derivations of magnetosonic wave and
Alfvén wave.

7. What s the significance of phase and group velocity cut offs? Explain giving
examples.

8. Explain the resonance for electromagnetic wave propagating parallel and
perpendicular to the magnetic field in plasma.

9. Elaborate on the Appleton—Hartree formula.

10. Discuss the concept of propagation through ionosphere and magnetosphere
helicon giving examples.

11. Describe whistles and Faraday rotation with reference to plasma physics.
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5.0 INTRODUCTION

In the classical electromagnetism, the covariant formulation is well defined by laws
of classical electromagnetism, such as Maxwell’s equations and the Lorentz force
invariant under the Lorentz transformations typically applying the coordinate systems
for rectilinear inertial. These formulations, interpretations and transformations/
alterations prove that the classical electromagnetism laws take the similar form or
identical structure in any inertial coordinate system and facilitates in explaining the
fields and forces from one frame to another.

The continuity equation elaborates and specifies that the rate of mass
accumulation in the volume element equals the rate of mass in minus (—) the rate of
mass out. It can be stated as mass balance of fluid flowing through a stationary
volume element. Characteristically, this statement refers to the principle of mass
conservation for a steady or stable, one-dimensional flow together with one inlet
and one outlet, and consequently this equation is termed as the continuity equation
for the steady or stable one-dimensional flow.

The continuity equation, as per the electromagnetic theory is considered as
the specific empirical law which expresses the ‘Local’ charge conservation however
mathematically it is considered as the specific automatic consequence of Maxwell’s
equations, even though the charge conservation is characteristically more
fundamental in comparison to the Maxwell’s equations. It precisely states that,
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“The divergence of the current density J (in Amperes per square metre) is equal
to the negative rate of change of the charge density p (in Coulombs per cubic
metre)’.

Characteristically, both the form of ‘Motion and Continuity’ equations are
considered as the fundamental and essential equations from which the well-known
unique theory of filtration is derived. The accurately simplified and well abbreviated
explanations are given by R.B. Bird, W.E. Stewart, E.N. Lightfoot, in which they
have defined the two equations, namely the ‘Equation of Continuity’ and the
‘Equation of Motion’ for the isothermal systems involving the equation of mechanical
energy.

Electromagnetic field tensor is referred as the mathematical object which
describes the electromagnetic field in space-time and is also known as field strength
tensor/Faraday tensor/Maxwell bisector’s tensor. Additionally, it helps in precisely
writing the related physical laws which are extremely succinct or brief.

Lorentz force is defined as the force exerted on a charged particle  moving
with velocity ‘v’ through an electric field E and magnetic field B. The entire
electromagnetic force F on the charged particle is termed as the Lorentz force,
named after the Dutch physicist Hendrik A. Lorentz, and is given by the equation,
F=qE+qvxB.

The electric field of a point charge is considered as the highly essential and
basic concept in the field of electromagnetism. Traditionally, the force between
two charged points or objects was discovered for scaling together with the product
of the charges on points or objects and their precise inverse squared distance.
This unique force is now recognized as the Coulomb’s law and was precisely
discovered around the second half of the 18th century.

Lagrangian mechanics can be precisely defined as a reformulation of classical
mechanics. The key difference between the Lagrangian and Hamiltonian mechanics
is that Lagrangian mechanics uniquely explain the difference between the Kinetic
Energy (KE) and the Potential Energy (PE), whereas the Hamiltonian mechanics
evidently describe the sum of the Kinetic Energy (KE) and the Potential Energy
(PE).

In this unit, we will study about the covariant formulation of electrodynamics,
continuity equation, Lorentz Force, potentials, operators, electromagnetic field
tensor, transformation of fields, transformation of field due to a point charge in
uniform motion, Lagrangian and Hamiltonian formulations of the motion of a
charged particle in an electromagnetic field, radiation from relativistically moving
particles.

5.1 OBJECTIVES

After going through this unit, you will be able to:
e Discuss the covariant formulation of electrodynamics
o State the continuity equation as per electromagnetic theory

¢ Explain the concept of Lorentz force



¢ Describe the meaning of electromagnetic field tensor
¢ Analyse the transformation of fields due to a point charge in uniform motion

¢ Understand the Lagrangian and Hamiltonian formulations of the motion of a
charged particle in an electromagnetic field

o Specify the synchrotron radiation, i.e., radiation from relativistically moving
particles

5.2 COVARIANT FORMULATION OF
ELECTRODYNAMICS

In the classical electromagnetism, the covariant formulation is well defined by laws
of classical electromagnetism, specifically the Maxwell’s equations and the Lorentz
force invariant under the Lorentz transformations typically applying the coordinate
systems for rectilinear inertial.

These notions, derivations, explanations, specified formulations,
interpretations and transformations/alterations helps to prove that the classical
electromagnetism laws take the similar form or identical structure in any inertial
coordinate system and facilitates in explaining the fields and forces from one frame
to another. However, this cannot be considered as general or commonly used
equation as Maxwell’s equations in curved spacetime or non-rectilinear coordinate
systems.

In this section, we will use the classical analysis of tensor and the Einstein
summation convention to analyse the equations and the Makowski metric form
diag (+1,-1,—1,-1). Additionally, this also signifies the classical behaviour of
tensor and the Einstein summation convention in which the unique equations are
typically restricted as being holding in vacuum, may possibly instead be regarded
as the formulations of Maxwell’s equations with reference to ‘Total Charge’ and
‘Current’.

For an additional general overall outline of the relationships between classical
electromagnetism and special relativity, including various conceptual implications
the classical electromagnetism and special relativity theory is used.

Principally, the theory of special relativity has significant role in today’s
classical electromagnetism theory because it provides formulations and notations
about how electromagnetic objects, specifically the electric field and magnetic
field get transformed under a Lorentz transformation from one specific inertial
frame of reference to another specific inertial frame of reference.

Lorentz Covariant Objects

In physics, the following types of Lorentz tensors can be used for describing specific
bodies or particles.

Four Displacements

z% = (et, x) = (ct, 2,9, 2).
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Four Velocities
@ = '}’(Cr ll.)._

Here y(u) is termed as the Lorentz factor at the 3-velocity u.

Four Momentum

p* = (E/c,p) = mou®

Here p is the 3-momentum, £ is the total energy, and m, is the rest mass.

Four Gradients

0 10
o = =|-—=,-V
dz, (C ot )

The d’ Alembertian operator is symbolized by,

a? 62 - i 2 ﬂ . vZ
’ c? Ot Ot
In the following analysis of tensors, the signs typically depend on the
convention that was specifically used in the analysis of metric tensor. Here the
convention used can be denoted as (+———) in diagonal representation, which is
precisely equivalent or analogous to the Minkowski metric tensor:

P =

coc o+
o

|

—

=]

5.3 CONTINUITY EQUATION

The continuity equation elaborates and specifies that the rate of mass accumulation
in the volume element equals the rate of mass in minus (—) the rate of mass out. It
can be stated as mass balance of fluid flowing through a stationary volume element.
Characteristically, this statement refers to the principle of mass conservation for a
steady or stable, one-dimensional flow together with one inlet and one outlet, and
consequently this equation is termed as the continuity equation for the steady or
stable one-dimensional flow.

The continuity equation, as per the electromagnetic theory is considered as
the specific empirical law which expresses the ‘Local’ charge conservation
however mathematically it is considered as the specific automatic consequence
of Maxwell’s equations, even though the charge conservation is characteristically
more fundamental in comparison to the Maxwell’s equations. It precisely states
that, ‘The divergence of the current density J (in Amperes per square metre) is
equal to the negative rate of change of the charge density p (in Coulombs per
cubic metre)’.



While it is generally recognized and acknowledged that the ‘Current’ is the
‘Movement of Charge’, essentially and fundamentally the continuity equation states
that, ‘If the charge moves out of a differential volume typically where the divergence
of'the current density is positive then the amount of charge within that volume will
decrease, which evidences and confirms that the rate of change of charge density
will be negative. Therefore, the continuity equation amounts to a conservation of
charge’.

If the magnetic monopoles exist, then precisely there would be a continuity
equation for monopole currents as well.

Equations of Motion and Continuity

Characteristically, both the form of ‘Motion and Continuity’ equations are considered
as the fundamental and essential equations from which the well-known unique
theory of filtration is derived. The accurately simplified and well abbreviated
explanations are given by R.B. Bird, W.E. Stewart, E.N. Lightfoot, in which they
have defined the two equations, namely the ‘Equation of Continuity’ and the
‘Equation of Motion’ for the isothermal systems involving the equation of mechanical
energy.

The equation of continuity is simply a mass balance of a fluid flowing through
a stationary volume element wherein it states that the rate of mass accumulation in
this volume element equals the rate of ‘Mass In’ minus the rate of ‘Mass Out’. In
vector form, the balance is as follows:

Op _
% =—("m)

p = Density, kg/m?

Here,

t =Time Variable, s
v = Velocity Vector, m/s
(V pv) = Vector Operator signifying the Divergence of the Mass Flux pv
Note: The V uses the units of reciprocal length, m™'.

Somewhat similar to the equation of continuity, the equation of motion is
considered as amomentum which is balanced around a unit volume of fluid. Wherein
it defines that the rate of momentum which is accumulated equals the rate of
‘Momentum In’ minus the rate of ‘Momentum Out’ plus the sum of all the other
forces that act on the system. Its vector form is given as:

p2L = —Vp—[V-7] +pg ..(5.1)

Here,
p = Density, kg/m?

t =Time Variable, s
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Dv

P Dt Rate of Momentum, which is Accumulated Per Unit Volume, kg/

m?/s?
V= Pressure Force on the Element Per Unit Volume, Pa (Pa =kg/m/s'?)
[V t]= Viscous Force on the Element Per Unit Volume, kg/m?/s?
7= Shear Stress Tensor, kg/m/s?
pg = Gravitational Force on the Element Per Unit Volume, kg/m?/s?
g =Acceleration of Gravity (9.807 m/s?)

[V 1] can be revised in terms of the fluid viscosity |, assuming constant pt
and constant p.

[V ' T} = uV2v ..(5.2)
For the case of constant p and constant p, Equation (5.1) becomes:

poe = —Vp— [uV?-v] +pg ... (53)

Equation (5.3) is known as the Navier—Stokes equation.
For the case of [V 1] =0, Equation (5.3) reduces to:

pEL = —Vp+pg (54

Equation (5.4) is known as the Euler equation.

The continuity equation is referred as a mathematical expression which defines
that the ‘Total Mass’ of ‘Gas’ in any ‘Deformable Box’ should remain always
constant. This law of conservation of mass, enables to give an exceptional and
unique relation between the time rate of change of the velocities that are
incrementing at the surfaces of the box.

5.4 LORENTZ FORCE

Lorentz force is defined as the force exerted on a charged particle ¢ moving with
velocity ‘v’ through an electric field E and magnetic field B. The entire
electromagnetic force F on the charged particle is termed as the Lorentz force,
named after the Dutch physicist Hendrik A. Lorentz, and is given by the equation,

F=qE +qv xB.

The Lorentz force, also sometimes termed as the electromagnetic force,
is the combined electric force and the magnetic force on a point charge because
of the electromagnetic fields. When a particle having charge q moves with a
velocity ‘v’ inan electric field E and a magnetic field B, then it experiences a force
of the form and is expressed as, F'=qE + qv x B.



As per Sl units, the electromagnetic force on a charge ‘q’ isreferred as a
combined force in the direction of the electric field E which is proportional to the
magnitude of the field and the quantity of charge, whereas a force which is at right
angles to the magnetic field B and the velocity v of the charge, proportional to the
magnitude of the field, the charge, and the velocity. As such the variations or
differences can be defined on this basic and the formula explains the ‘Magnetic
Force’ on a current carrying wire which is also occasionally termed as the ‘Laplace
Force’. The ElectroMotive Force (EMF) in a wired loop that moves through a
magnetic field and the force that exist on a moving charged particle, is
characteristically termed as an expression of ‘Faraday’s Law of Induction’.

Historians recommend that the law is implicitly given by James Clerk Maxwell
in the scientific paper, published in the year 1865. Hendrik Lorentz arrived ata
complete derivation in 1895, identifying the contribution of the electric force a few
years after Oliver Heaviside correctly identified the contribution of the magnetic
force.

5.4.1 Lorentz Force Law as the Definition of E and B

The Lorentz force law is specifically used as the definition and explanation of the
electric field and magnetic field, E and B, respectively. Specifically, the Lorentz
force is recognized with the help of the following empirical statement:

The electromagnetic force F on a test charge at a given point and time
is a certain function of its charge q and velocity v, which can be parameterized
by exactly two vectors E and B, in the functional form F=q (E + v x B).

This is logically valid for those particles which are approaching or advancing
to the speed of light, i.e., with the magnitude of v, |v| ~ ¢. Consequently, the
two vector fields E and B can be by defined through space and time, and hence
are termed as the ‘Electric Field” and ‘“Magnetic Field’. These specific fields are
typically defined universally in space and time with respect to the condition that
what type of test charge a force would receive irrespective of the condition that
whether a charge is present to experience the force.

As per definition of electric field E and magnetic field B, principally the
Lorentz force is only considered as a definition or explanation because a real
physical particle (as contrasting to the hypothetical ‘Test Charge’ of infinitesimally
small mass and charge) may generate or produce its own finite E field and B field,
which can amend or modify the electromagnetic force experienced by it.

Additionally, if the acceleration is experienced by the charge when forced
into a curved trajectory, then the radiation emitted by it be the reason for losing the
Kinetic Energy (KE), such as the Bremsstrahlung and synchrotron light. These
unique effects happen through a direct effect termed as the radiation reaction force
and indirect effect which affects the motion of adjacent charges and currents.
Figure 5.1 illustrates the trajectory of a particle with either a positive charge or a
negative charge ‘q’ under the effect of a magnetic field B.
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Fig. 5.1 Charged Particles Experiencing the Lorentz Force

5.4.2 Significance of the Lorentz Force

Although the modern Maxwell’s equations explain that how the electrically charged
particles and currents or moving charged particles produce the electric field and
magnetic field, the law of Lorentz force concludes the definition by describing the
force that acts on a moving point charge q when the electromagnetic fields are
present. Furthermore, the Lorentz force law illustrates the effect of electric
field E and magnetic field B upon a point charge, however such electromagnetic
forces cannot give the complete explanation. Possibly, the ‘Charged Particles’ are
feasibly coupled to other forces, particularly gravity force and nuclear forces.
Consequently, the Maxwell’s equations do not remain distinct from other physical
laws, although they are coupled to them through the charge density and current
density. The answer of a point charge to the Lorentz law is defined as the generation
or creation of E and B by means of currents and charges.

Additionally, the Lorentz force is considered as inadequate or insufficient to
explain the collective actions of charged particles for real materials, both in principle
and as amatter of computation. In a medium, the charged particles not only respond
to the E and B fields, but the charged particles also generate these fields. Complex
transport equations are solved for determining the time and spatial response of
charges, such as the Boltzmann equation, the Fokker—Planck equation or
the Navier—Stokes equations.

Force on a Current Carrying Wire

When a wire carrying an electric current is placed in a magnetic field, then each of
the moving charges, which comprise the current, experiences the Lorentz force,
and together they can create a macroscopic force on the wire (sometimes called
the Laplace force). By combining the Lorentz force law above with the definition
of electric current, the following equation results, in the case of a straight, stationary
wire.

F=I-/xB
Where —/ is a vector, whose magnitude is the length of wire, and whose

direction is along the wire, aligned with the direction of conventional current charge
flow 1.



If the wire is curved and not straight, then the force on it can be calculated
by applying this formula to each infinitesimal segment of wire d— ¢, and then adding
up all these forces by means of integration. Formally, the net force on a stationary,
rigid wire carrying a steady current / is,

F:IfdfxB

This is the net force. Additionally, there will typically be torque along with
other effects if the wire is not perfectly rigid.

One significant application of this is defined as the Ampére’s force law,
which explains how two current-carrying wires attract or repel each other, because
each experiences a Lorentz force from the other’s magnetic field.

5.4.3 Lorentz Force in Space-Time Algebra (STA)

Because, the electric field E and magnetic field B depend on the velocity of an
viewer, therefore the relativistic form of the Lorentz force law is appropriately
exhibited beginning from a coordinate-independent expression for the
electromagnetic and magnetic fields F and an arbitrary time-direction, %¥g. This
can be established through Space-Time Algebra (or the geometric algebra of space-
time), akind of Clifford algebra typically defined on a pseudo-Euclidean space, as

E=(F-v)m
And

iB = (F Av)7

F. isaspace-time bivector, an oriented plane segment, similar to a vector
is an oriented line segment, which holds six degrees of freedom corresponding to
boosts, and rotations in space-time planes. As per the space algebra, the dot
product with the vector ¥ pulls a vector from the translational portion, while the
wedge-product creates a trivector which is considered dual to a vector specifically
the usual magnetic field vector. The relativistic velocity is given by the time-like

changes in a time-position vector 9 =

5.4.4 Lorentz Force in Terms of Potentials

The electric field E and the magnetic field B can be replaced by the magnetic vector
potential A and the scalar electrostatic potential ¢ by equation of the form,

HA
E=-V¢-—- —
¢ ot
B=VxA
Where,
Vv = Gradient

vV =Divergence

Vv x = Curl
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The force now given as,
qu[—Vé)—%Jrvx{VxA}]
ot
Using an identity for the triple product this can be rewritten as,

F=q[—V¢—%—?~V[V-A)—(v-V}A

Using the chain rule, the total derivative of A is:

d
Fg|-Va(o-%-A)+ Vald - A)
Where,

a 8 _d
Vi = e o+ e 4 B

“5 Vot %52
And,

V:

x

2

.00 0
"o Yoy To:

5.5 ELECTROMAGNETIC FIELD TENSOR

Electromagnetic field tensor is the mathematical object which describes the
electromagnetic field in space-time, also known as field strength tensor/Faraday
tensor/Maxwell bisector’s tensor, and additionally it helps to precisely write the
related physical laws which are extremely succinct or brief.

The electromagnetic tensor or electromagnetic field tensor (sometimes
termed as the field strength tensor, Faraday tensor or Maxwell bivector) as per
electromagnetism is a mathematical object which describes the electromagnetic
field in space-time. The field tensor was first used after the four-
dimensional tensor formulation of special relativity was introduced by Hermann
Minkowski. The tensor allows related physical laws to be written very concisely.

Lorentz boost established the transformation of electric and magnetic fields
even before Einstein developed the theory of relativity. It is known that E-fields
(Electric fields) can transform into B-fields (Magnetic fields) and vice versa. For
example, a point charge being at rest gives an ‘Electric Field or E-Field’. If we
boost to a frame in which the charge is moving, then there is an “Electric Field’ and
a ‘Magnetic Field’. This means that the E-field cannot be a Lorentz vector. Both
the electric and magnetic fields are required to be put together into one (tensor)
object to properly handle Lorentz transformations and to write our equations in a
covariant approach.



Fundamentally, the electromagnetic tensor, conventionally or traditionally
labelled or denoted as F, is typically defined as the exterior derivative of the
electromagnetic four-potential ‘4’ which is referred as a differential 1-form denoted
as,

F<d4A

Consequently, ‘F” is referred as a differential 2-form, i.e., precisely an
antisymmetric rank-2 tensor field on the Minkowski space. In the component
form, it is expressed as,

F, =04, -0,4,
Where ‘0’ is referred as the four-gradient and ‘A4’ is defined as the four-

potential.
The SI units for Maxwell’s equations and the physicist’s particle sign

convention for the representing the signature of Minkowski space (+———) is
used for explanation and evaluation.

The simplest approach and the correct method to do this is to make the
electric and magnetic fields components of a rank 2 (antisymmetric) tensor in matrix
form is shown below.

0 B. -B, —iE,
|-B. 0 B, —iE,
w=\ B, -B. 0 —iE,

iE, iE, iE. 0

The electric and magnetic fields can evidently be written in terms of the
vector potential 4, = ( A, i¢) , which s precisely a Lorentz vector, and is denoted

as,

04, A,

F, =
# oz, oz,

Remember that this formulation is inevitably considered as antisymmetric
with reference to the interchange of the indices properties. Consequently, the first
two Maxwell equations can be certainly and inevitably satisfied for the fields that
are precisely derived from a vector potential. Subsequently, the other two Maxwell

equations can be expressed or written in terms of the 4-vector j, = (7,icp)
specifically denoted as,

oz, c

Therefore, as per the theories of electricity and magnetism, it can be stated
that,

3 (8‘41, B 8.4#) _du

Oz \ OBy oz, | ¢
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Relativistic Formulations Now we will verify some of the terms that are specified in the given equations.
Obviously, in the field tensor all the diagonal terms must be zero by the antisymmetry
property. Consider the following examples on the oftf-diagonal conditions for the
field tensor with reference to the potential.

NOTES

B = VxA

” - 194

E = -Ve-To
0As 0A; o

Flo = —m—-———==(VxA),=B8,

12 ;e B (VxA), z
0As 04, o o

F- — —_— = - AQZ—B

13 By Bits (V x A)y y

F DA; 0Ay 104, 8(ip)
T bz, Oz; ic Ot oz,

[ 10A; 5 O
= —q | — —
c Ot or;

[ O¢ i 19A; B
= —1 — —
Ox; ¢ Ot !

Consequently, the Maxwell equation states for the last row in the given

tensor where,
OFy _ i
oz,
6}'15 . ic:p
ox; B C
0(iE;) .
O‘Lz — %P
OF; B
aﬂfi = R
BB = p

5.6 TRANSFORMATION OF FIELDS DUE TO A
POINT CHARGE

The electric field of a point charge is considered as the highly essential and basic
concept in the field of electromagnetism. Traditionally, the force between two
charged points or objects was discovered for scaling together with the product of
the charges on points or objects and their precise inverse squared distance. This
unique force is now recognized as the Coulomb’s law and was precisely discovered

Self - Learning around the second half of the 18th century.
250 Material




However, the concept of field is slightly different. If the charge is given, then
the force acting on an object under study with unit charge can be calculated. In the
standard terms this unit charge is termed as the electric field.

Since the components of the electric and magnetic fields are precisely
associated with the elements of a rank-2 tensor, hence the transformation law for
these fields precisely follows according to the general tensor transformation law
for the rank-2 tensors. Initially, we state the general rule in the standard notion and
then consider some specific examples. Under an increase by means of a three-

velocity ¥, both the electric and magnetic fields E and B precisely transform to
the forms E and 5.
Example 5.1 [llustrate a line of charge.

Fig. 5.2 (b): A Line of Charge

Figure 5.2 shows a line of charges. At a given nearby point, it creates an
electric field E that points outward, as measured by an observer ‘O’ who is at
rest relative to the charges. This field is represented in the Figure 5.2 (b) by means
of its design of field lines, which begin on the charges and radiate outward analogous
to the bristles of a bottle brush. Because the charges are at rest, therefore the
magnetic field is zero. To find the magnitude of the field at a specific distance is
referred as a simple and direct application of Gauss’s law.

Now consider an observer ‘O”’, Figure 5.2 (b), moving at velocity ‘v’ to
the right relative to ‘O’. Essentially, it is not required to specify that how the field
was created, but we can simply transform the fields, at the point in space into the
new frame.

The resultis E' =yE and B’ =yv x E
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In this frame, the electric field is more intense, and there is also a magnetic
field, whose design of white field lines forms circles lying in planes perpendicular
to the line. If it is obvious that the field was created by means of the line of charge,
which is moving according to ‘O"’, then we can easily explain these conclusions
which arise from two effects. First, the line of charge has been length-contracted.
This causes the density of charge per unit length to increase by a factor of y, with
a proportional increase in the electric field. In the field-line description, we simply
have more charges in the above given Figure (5.2), so there are more field lines
coming out of them. Second, the line of charge is moving to the left in this frame, so
it forms an electric current, and this current is the cause of the magnetic field B'.

Example 5.2 [llustrate a moving charge.

1 2

Fig. 5.3 A Moving Charge

The Figure 5.3 (1) shows the electric field lines of a charge, in the charge’s
rest frame K. In Figure 5.3 (2) we see the same electric field, in a frame K’ in
which the charge is moving along the X-axis, which points to the right, at 90% of c.
In this frame there is also a magnetic field, which is not shown. This electric field,
which is time varying is shown as a hyperplane of simultaneity #=0 of K'.
Remarkably, these field lines all point toward the charge’s present position in K'.

Disturbances in the electromagnetic field propagate at ¢, not instantaneously,
so one might have expected the field at a certain location P in the Figure (5.3) to
point toward a location at a distance r that the charge had occupied at an earlier
time ¢'=-r/c. This would have produced a set of curved field lines. To see that
this is not possible, consider the point (0, 0, 4, 0) in the Minkowski coordinates
of K, i.e., a point on the Y-axis. After a Lorentz transformation along X, the
coordinates of'this point in K’ are still (0, 0, %, 0), so in K" as well it lies on a line
that passes transversely through the present position of the charge. Since this
pointhas E =0 and B =0 in K, application of the transformation laws shows
that E’ = 0 as well, so that the field points toward the charge’s present position,
not its past position.

An analogous but more complicated calculation illustrates that the field at
intermediate angles is also in the instantaneously radial direction. More accurately,

the Poynting vector E x B then has no radial component, which is as expected
because energy should be transported forward but not radiated outward.



One might worry that this would indicate that the information about the
charge’s position was propagating instantaneously, contradicting relativity. But this
is a charge that has always been in its current state of motion and always will be. If
the charge’s motion had been disturbed by some external force at a time later
than ¢ =—r/c, the field lines in K would still be pointing toward the location that
the charge had previously occupied while at rest, and the field in K" would be
pointing toward its linearly extrapolated position.

5.7 LAGRANGIAG AND HAMILTONIAN
FORMULATION OF THE MOTION
OF A CHARGED PARTICLE IN AN
ELECTROMAGNETIC FIELD

Lagrangian mechanics can be precisely defined as a reformulation of classical
mechanics. The key difference between the Lagrangian and Hamiltonian mechanics
is that Lagrangian mechanics uniquely explain the difference between the Kinetic
Energy (KE) and the Potential Energy (PE), whereas the Hamiltonian mechanics
evidently describe the sum of the Kinetic Energy (KE) and the Potential Energy
(PE).

Motion of a charged particle simultaneously in the existence of both the
electric field and the magnetic field has several manifestations and expressions that
specifically range from straight line motion to the cycloid and other complex motion.
Both the electric field and the magnetic field typically impart acceleration to the
charged particles. But the magnetic field has a prerequisite as acceleration due to
magnetic field can be related only to the change of direction of motion. Magnetic
force is considered being normal always to the velocity of the particle which tends
to move the particle about a circular trajectory. Alternatively, the electric force is
precisely defined along the electric field and is competent to bring about change in
both direction and magnitude depending upon the initial direction of velocity of the
charged particle with respect to electric field. If velocity and electric vectors are at
an angle, then the particle follows a parabolic path.

One of the significant orientations and angles of the electric field and the
magnetic field is referred as ‘Crossed Fields’. The term ‘Crossed Fields’ is precisely
used to specify the simultaneous presence of both the electric field and the magnetic
field at the right angle. The conduct and action of charged particles, such as electrons
under crossed fields has significant importance and consequences in the study of
electromagnetic measurement and applications, for example the determination of
specific charge of electron, cyclotron, etc.

Evidently, the elementary charged particles have mass of the order
of approximately 10%* kg or less. Therefore, even the small electric force or the
magnetic force is capable of generating exceptionally high acceleration of the order
of 102 m/s? or even more. Using the appropriate set up of unit, these particles
achieve velocity comparable to speed of light.

Some of the important applications or phenomena associated with
simultaneous presence of two fields include:
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e Motion of a charged particle in the electric field and the magnetic field.

e Measurement of specific charge of an electron (J. J. Thomson
Experiment).

e Acceleration of charged particles (cyclotron).

Characteristically, the classical mechanics fundamentally includes two
significant formulations namely the Lagrangian formulation and the Hamiltonian
formulation.

Additionally, with respect to the classical mechanics, both the Lagrangian
formulation and the Hamiltonian formulation are considered equivalent to the form
of Newtonian formulations.

The Lagrangian and Hamiltonian Equations of Motion

In the Lagrangian formulations, the equations of motion are precisely obtained
by means of the Euler-Lagrange equation, which defines that how a particle or
object describes the trajectory, i.e., path in space, which the particle or object will
take during the motion.

Fundamentally, the Euler-Lagrange equation is essentially defined as a second
order differential equation, i.e., it involves the second derivatives and is represented
as,

0g; dt 9g; N

0L _ddL _.

In this equation, ‘q’ and ‘q’ are basically only the position of particle and its
time derivative, i.e., velocity, which is specifically denoted by simply putting a dot
above ‘q’. More precisely, these are referred as the generalized or simplified
position and velocity coordinates.

Additionally, the ‘L’ denotes or specifies the Lagrangian, which is basically
a function that essentially describes the motion through the difference of Kinetic
Energy (KE) and Potential Energy (PE).

In the Hamiltonian formulation, the following two different but identical
equations of motion are considered:

. 0H
5 — _OH
! g

Both of the above mentioned Hamiltonian equations are defined as the first
order differential equations with regard to time.

The notion ‘H’ in the above equation is defined as the Hamiltonian, which
uniquely represents or symbolizes the total energy and is generally represent in the
form,

H=) pigi—L



Characteristically, the Lagrangian mechanical formulations were developed
by the Italian mathematician Joseph-Louis Lagrange in the year 1788, while
Hamiltonian mechanical formulations were developed by William Rowan Hamilton
in the year 1833. Furthermore, the Lagrangian formulations uses the Cartesian
coordinates in the evaluations or calculations on equation of motion, whereas the
Hamiltonian formulations typically uses the canonical coordinates.

5.8 RADIATION FROM RELATIVISTICALLY
MOVING PARTICLES

‘Synchrotron Radiation’ which is also known as ‘Magneto Bremsstrahlung
Radiation’ is the electromagnetic radiation produced when relativistic charged
particles are subject to an acceleration uniquely perpendicular to their velocity,
denoted as(a L v).Itis produced artificially in some types of particle accelerators,
or naturally by fast electrons moving through magnetic fields. The radiation
produced in this process has a characteristic polarization and the frequencies are
generated, ranging over a large portion of the electromagnetic spectrum.

Synchrotron radiation or the Bremsstrahlung radiation is typically emitted
by means of a charged particle whenever the acceleration is precisely parallel to
the direction of motion. ‘Gyromagnetic Radiation’ is the general term for radiation
emitted by particles in a magnetic field, for which synchrotron radiation is the
ultra-relativistic special case. Radiation emitted by charged particles moving non-
relativistically in a magnetic field is called ‘Cyclotron Emission’. For particles in
the mildly relativistic range (~85% of the speed of light), the emission is
termed ‘Gyro-Synchrotron Radiation’. As per ‘Astrophysics’, ‘Synchrotron
Emission’ occurs, due to ultra-relativistic motion of a charged particle around the
black hole. Whereas If the source follows a circular geodesic around the black
hole, the ‘Synchrotron Radiation’ occurs for orbits close to the photosphere where
the motion is in the ultra-relativistic regime.

Synchrotron radiation was first observed by technician Floyd Haber, on
April 24th, 1947 at the 70 MeV electron synchrotron of the General
Electric research laboratory in Schenectady, New York. While this was not the
first synchrotron built, it was the first with a transparent vacuum tube, allowing the
radiation to be directly observed.

Adirect consequence of Maxwell’s equations is that the accelerated charged
particles will always emit electromagnetic radiation. Synchrotron radiation is the
special case of charged particles moving at relativistic speed undergoing acceleration
uniquely perpendicular to their direction of motion, typically in a magnetic field. In
such a field, the force due to the field is always perpendicular to both the direction
of motion and to the direction of field, as defined by the Lorentz force law.

Principally, the power that is typically carried by means of the radiation is

obtained precisely by the relativistic Larmor formula and is represented in ST units
as,

1 ¢ad® ,

P, =
T 6me, 3
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Where,

g, 1s the Vacuum Permittivity.

q is the Particle Charge.

a is the Magnitude of the Acceleration.
cis the Speed of Light.

Y is the Lorentz Factor.

The force on the emitting electron is uniquely given by the Abraham—Lorentz—
Dirac force.

In the field of physics and precisely of electromagnetism, the Abraham—
Lorentz force, also termed as the Lorentz—Abraham force, is defined as the recoil
force precisely on an accelerating charged particle uniquely caused by the particle
emitting electromagnetic radiation. It is also sometimes termed as the radiation
reaction force, radiation damping force or the self-force. The Abraham—Lorentz
force is named after the physicists Max Abraham and Hendrik Lorentz.

Fundamentally, when the radiation is precisely emitted by means of a particle
moving in a plane, then the radiation is linearly polarized when typically observed
in that precise plane, and circularly polarized when typically observed at a small
angle.

In the higher studies of particle formulations, the ‘Supermassive Black
Holes’ have been recommended for the production of the synchrotron radiation,
by means of ejection of jets typically produced through the gravitationally
accelerating ions precisely through the super contorted ‘Tubular’ polar areas of
the magnetic fields. Such specific jets, the nearest or closest being the Messier 87,
have been checked and validated by means of the Hubble telescope while
apparently being superluminal, travelling at 6 X ¢ (six times the speed of light) from
our planetary frame. This phenomenon is typically caused because the jets travel
extremely close to the speed of light and at an extremely small angle towards the
observer. Consequently, the high-velocity jets typically emit light at every point of
their path, subsequently the light emitted by the high-velocity jets does not approach
or reach the observer as quickly as the jet itself.

Check Your Progress

Define the covariant formulation of classical electromagnetism.

State the types of Lorentz tensors used for describing specific particles.
What does the equation of continuity state?

Give the equation of continuity in vector form.

What is Lorentz force?

Define the Lorentz force law.

What do you mean by electromagnetic field tensor?

State about the electric field of a point charge.

A S N

What is the key difference between Lagrangian and Hamiltonian
mechanics?

[a—
e

Define the term synchrotron radiation.




5.9 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. Inthe classical electromagnetism, the covariant formulation is defined by

laws of classical electromagnetism, specifically the Maxwell’s equations and
the Lorentz force invariant under the Lorentz transformations typically
applying the coordinate systems for rectilinear inertial.

. Inphysics, the following types of Lorentz tensors can be used for describing

specific bodies or particles.
Four Displacements

o

#™ =ilet, %)= (ctip. y, %) .
Four Velocities

u®* = 7v(c,u),
Here y(u) is termed as the Lorentz factor at the 3-velocity u.
Four Momentum

p* = (E/c,p) = mou®

Here p is the 3-momentum, £ is the total energy, and m, is the rest mass.

Four Gradients

0 10
¥ = B (zaﬂ‘v)

The d’ Alembertian operator is symbolized by,

2 2 1008
3’8_&"3&51: ¥

. The continuity equation, as per the electromagnetic theory is considered as

the specific empirical law which expresses the ‘Local’ charge conservation
however mathematically it is considered as the specific automatic
consequence of Maxwell’s equations, even though the charge conservation
is characteristically more fundamental in comparison to the Maxwell’s
equations. It precisely states that, ‘The divergence of the current
density J (in Amperes per square metre) is equal to the negative rate of
change of the charge density p (in Coulombs per cubic metre)’.

. The equation of continuity is simply a mass balance of a fluid flowing through

a stationary volume element wherein it states that the rate of mass
accumulation in this volume element equals the rate of ‘Mass In” minus the
rate of ‘Mass Out’. In vector form, the balance is as follows:

dp
2 —(r-0)
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10.

Here,
p =Density, kg/m?
t =Time Variable, s
v = Velocity Vector, m/s
(V pv) = Vector Operator signifying the Divergence of the Mass Flux pv

The V uses the units of reciprocal length, m™.

. The Lorentz force is defined as the force exerted on a charged particle q

moving with velocity ‘v’ through an electric field E and magnetic field B.
The entire electromagnetic force F on the charged particle is termed as the
Lorentz force, named after the Dutch physicist Hendrik A. Lorentz, and is
given by the equation,

F=qE +qv xB.
The Lorentz force, also sometimes termed as the electromagnetic force, is

the combined electric force and the magnetic force on a point
charge because of the electromagnetic fields.

. The Lorentz force law is specifically used as the definition and explanation

of'the electric field and magnetic field, E and B, respectively. Specifically,
the Lorentz force is recognized with the help of the following empirical
statement:

The electromagnetic force F on a test charge at a given point and time is a
certain function of its charge ¢ and velocity v, which can be parameterized
by exactly two vectors E and B, in the functional form F=q (E +v x B).

. The electromagnetic tensor or electromagnetic field tensor (sometimes called

as the field strength tensor, Faraday tensor or Maxwell bivector) as per
electromagnetism is a mathematical object which describes
the electromagnetic field in space-time. The field tensor was first used after
the four-dimensional tensor formulation of special relativity was introduced
by Hermann Minkowski.

. The electric field of a point charge is considered as the highly essential and

basic concept in the field of electromagnetism. Traditionally, the force
between two charged points or objects was discovered for scaling together
with the product of the charges on points or objects and their precise inverse
squared distance. This unique force is now recognized as the Coulomb’s
law and was precisely discovered around the second half of the 18th century.

. Lagrangian mechanics can be precisely defined as a reformulation of classical

mechanics. The key difference between the Lagrangian and Hamiltonian
mechanics is that Lagrangian mechanics uniquely explain the difference
between the Kinetic Energy (KE) and the Potential Energy (PE), whereas
the Hamiltonian mechanics evidently describe the sum of the Kinetic Energy
(KE) and the Potential Energy (PE).

The ‘Synchrotron Radiation’ which is also known as ‘Magneto
Bremsstrahlung Radiation’ is the electromagnetic radiation produced
when relativistic charged particles are subject to an acceleration uniquely
perpendicular to their velocity, denoted as (a L v). Itis produced artificially



in some types of particle accelerators, or naturally by fast electrons moving ~ Relativistic Formulations
through magnetic fields. The radiation produced in this process has a
characteristic polarization and the frequencies are generated, ranging over

a large portion of the electromagnetic spectrum.
NOTES

5.10 SUMMARY

¢ Inthe classical electromagnetism, the covariant formulation is well defined
by laws of classical electromagnetism, specifically the Maxwell’s equations
and the Lorentz force invariant under the Lorentz transformations typically
applying the coordinate systems for rectilinear inertial.

e These notions, derivations, explanations, specified formulations,
interpretations and transformations/alterations helps to prove that the classical
electromagnetism laws take the similar form or identical structure in any
inertial coordinate system and facilitates in explaining the fields and forces
from one frame to another.

e However, this cannot be considered as general or commonly used equation
as Maxwell’s equations in curved spacetime or non-rectilinear coordinate
systems.

e The classical analysis of tensor and the Einstein summation convention is
used to analyse the equations and the Makowski metric form diag (+1,—1,
—1,—1). Additionally, this also signifies the classical behaviour of tensor and
the Einstein summation convention in which the unique equations are typically
restricted as being holding in vacuum, may possibly instead be regarded as
the formulations of Maxwell’s equations with reference to ‘Total Charge’
and ‘Current’.

¢ Principally, the theory of special relativity has significant role in today’s
classical electromagnetism theory because it provides formulations and
notations about how electromagnetic objects, specifically the electric field
and magnetic field get transformed under a Lorentz transformation from
one specific inertial frame of reference to another specific inertial frame of
reference.

¢ In the analysis of tensors, the signs typically depend on the convention that
was specifically used in the analysis of metric tensor. Here the convention
used can be denoted as (+———) in diagonal representation, which is precisely
equivalent or analogous to the Minkowski metric tensor:

1 0 0 0

w |0 -1 0 o0
= 0 0 -1 0
0 0 0 -1

e The continuity equation elaborates and specifies that the rate of mass
accumulation in the volume element equals the rate of mass in minus (—) the
rate of mass out. It can be stated as mass balance of fluid flowing through a

stationary volume element. Self - Learning
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o Characteristically, this statement refers to the principle of mass conservation

for a steady or stable, one-dimensional flow together with one inlet and one
outlet, and consequently this equation is termed as the continuity equation
for the steady or stable one-dimensional flow.

The continuity equation, as per the electromagnetic theory is considered as
the specific empirical law which expresses the ‘Local’ charge conservation
however mathematically it is considered as the specific automatic
consequence of Maxwell’s equations, even though the charge conservation
is characteristically more fundamental in comparison to the Maxwell’s
equations.

It precisely states that, ‘The divergence of the current density J
(in Amperes per square metre) is equal to the negative rate of change of
the charge density p (in Coulombs per cubic metre)’.

While it is generally recognized and acknowledged that the ‘Current’ is the
‘Movement of Charge’, essentially and fundamentally the continuity equation
states that, ‘If the charge moves out of a differential volume typically where
the divergence of the current density is positive then the amount of charge
within that volume will decrease, which evidences and confirms that the
rate of change of charge density will be negative. Therefore, the continuity
equation amounts to a conservation of charge’.

Characteristically, both the form of ‘Motion and Continuity’ equations are
considered as the fundamental and essential equations from which the well-
known unique theory of filtration is derived.

The accurately simplified and well abbreviated explanations are given by
R.B. Bird, W.E. Stewart, E.N. Lightfoot, in which they have defined the
two equations, namely the ‘Equation of Continuity’ and the ‘Equation of
Motion’ for the isothermal systems involving the equation of mechanical
energy.

The equation of continuity is simply a mass balance of a fluid flowing through
a stationary volume element wherein it states that the rate of mass
accumulation in this volume element equals the rate of “Mass In” minus the
rate of “‘Mass Out’.

The Lorentz force is defined as the force exerted on a charged particle q
moving with velocity ‘v’ through an electric field E and magnetic field B.
The entire electromagnetic force F on the charged particle is termed as the
Lorentz force, named after the Dutch physicist Hendrik A. Lorentz, and is
given by the equation,

F=qE +qvxB.
The Lorentz force, also sometimes termed as the electromagnetic force, is

the combined electric force and the magnetic force on a point
charge because of the electromagnetic fields.

Fs per Sl units, the electromagnetic force on a charge ‘q’ is referred as a
combined force in the direction of the electric field E which is proportional
to the magnitude of the field and the quantity of charge, whereas a force



which is at right angles to the magnetic field B and the velocity v of the
charge, proportional to the magnitude of the field, the charge, and the velocity.

The Lorentz force law is specifically used as the definition and explanation
of'the electric field and magnetic field, E and B, respectively. Specifically,
the Lorentz force is recognized with the help of the following empirical
statement:

The electromagnetic force F on a test charge ata given point and time is a
certain function of'its charge ¢ and velocity v, which can be parameterized
by exactly two vectors E and B, in the functional form F=q (E + v x B).

As per definition of electric field E and magnetic field B, principally the
Lorentz force is only considered as a definition or explanation because a
real physical particle (as contrasting to the hypothetical ‘Test Charge’ of
infinitesimally small mass and charge) may generate or produce its own
finite E field and B field, which can amend or modify the electromagnetic
force experienced by it.

When a wire carrying an electric current is placed in a magnetic field, then
each of the moving charges, which comprise the current, experiences the
Lorentz force, and together they can create a macroscopic force on the
wire (sometimes called the Laplace force).

By combining the Lorentz force law above with the definition of electric
current, the following equation results, in the case of a straight, stationary
wire.

F=I-/¢xB
Where — ¢ is a vector, whose magnitude is the length of wire, and whose

direction is along the wire, aligned with the direction of conventional
current charge flow /.

Electromagnetic field tensor is the mathematical object which describes the
electromagnetic field in space-time, also known as field strength tensor/
Faraday tensor/Maxwell bisector’s tensor, and additionally it helps to

precisely write the related physical laws which are extremely succinct or
brief.

The electromagnetic tensor or electromagnetic field tensor (sometimes called
as the field strength tensor, Faraday tensor or Maxwell bivector) as per
electromagnetism is a mathematical object which describes
the electromagnetic field in space-time.

The field tensor was first used after the four-dimensional tensor formulation
of special relativity was introduced by Hermann Minkowski. The tensor
allows related physical laws to be written very concisely.

Lorentz boost established the transformation of electric and magnetic fields
even before Einstein developed the theory of relativity. It is known that
E-fields (Electric fields) can transform into B-fields (Magnetic fields) and
vice versa. For example, a point charge being at rest gives an ‘Electric Field
or E-Field’.
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e [f we boost to a frame in which the charge is moving, then there is an

‘Electric Field” and a ‘Magnetic Field’. This means that the E-field cannot
be a Lorentz vector. Both the electric and magnetic fields are required to be
put together into one (tensor) object to properly handle Lorentz
transformations and to write our equations in a covariant approach.

The electric field of a point charge is considered as the highly essential and
basic concept in the field of electromagnetism.

Traditionally, the force between two charged points or objects was
discovered for scaling together with the product of the charges on points or
objects and their precise inverse squared distance. This unique force is now
recognized as the Coulomb’s law and was precisely discovered around the
second half of the 18th century.

However, the concept of field is slightly different. If the charge is given, then
the force acting on an object under study with unit charge can be calculated.
In the standard terms this unit charge is termed as the electric field.

Lagrangian mechanics can be precisely defined as a reformulation of classical
mechanics. The key difference between the Lagrangian and Hamiltonian
mechanics is that Lagrangian mechanics uniquely explain the difference
between the Kinetic Energy (KE) and the Potential Energy (PE), whereas
the Hamiltonian mechanics evidently describe the sum of the Kinetic Energy
(KE) and the Potential Energy (PE).

Evidently, the elementary charged particles have mass of the order
of approximately 10" kg or less. Therefore, even the small electric force
or the magnetic force is capable of generating exceptionally high acceleration
of the order of 10'> m/s* or even more.

In the Lagrangian formulations, the equations of motion are precisely obtained
by means of the Euler-Lagrange equation, which defines that how a particle
or object describes the trajectory, i.e., path in space, which the particle or
object will take during the motion.

Characteristically, the Lagrangian mechanical formulations were developed
by the Italian mathematician Joseph-Louis Lagrange in the year 1788, while
Hamiltonian mechanical formulations were developed by William Rowan
Hamilton in the year 1833. Furthermore, the Lagrangian formulations uses
the Cartesian coordinates in the evaluations or calculations on equation of
motion, whereas the Hamiltonian formulations typically uses the canonical
coordinates.

The ‘Synchrotron Radiation’ which is also known as ‘Magneto
Bremsstrahlung Radiation’ is the electromagnetic radiation produced
when relativistic charged particles are subject to an acceleration uniquely
perpendicular to their velocity, denoted as (a L v). Itis produced artificially
in some types of particle accelerators, or naturally by fast electrons moving
through magnetic fields.

The radiation produced in this process has a characteristic polarization and
the frequencies are generated, ranging over a large portion of
the electromagnetic spectrum.



e Synchrotron radiation was first observed by technician Floyd Haber,on =~ Relativistic Formulations
April 24th, 1947 at the 70 MeV electron synchrotron of the General
Electric research laboratory in Schenectady, New York. While this was not
the first synchrotron built, it was the first with a transparent vacuum tube,

allowing the radiation to be directly observed. NOTES

o Adirect consequence of Maxwell’s equations is that the accelerated charged
particles will always emit electromagnetic radiation.

e Synchrotron radiation is the special case of charged particles moving at
relativistic speed undergoing acceleration uniquely perpendicular to their
direction of motion, typically in a magnetic field. In such a field, the force
due to the field is always perpendicular to both the direction of motion and
to the direction of field, as defined by the Lorentz force law.

5.11 KEY WORDS

¢ Covariant formulation: In the classical electromagnetism, the covariant
formulation is defined by laws of classical electromagnetism, specifically the
Maxwell’s equations and the Lorentz force invariant under the Lorentz
transformations typically applying the coordinate systems for rectilinear
inertial.

¢ Continuity equation: The continuity equation, as per the electromagnetic
theory is considered as the specific empirical law which precisely states
that, “The divergence of the current density J (in Amperes per square metre)
is equal to the negative rate of change of the charge density p
(in Coulombs per cubic metre)’.

e Lorentz force: The Lorentz force is defined as the force exerted on a
charged particle g moving with velocity v’ through an electric field E and
magnetic field B. The entire electromagnetic force F on the charged particle
is termed as the Lorentz force, named after the Dutch physicist Hendrik A.
Lorentz, and is given by the equation,

F=qE +qvxB.

¢ Lorentz forcelaw: The Lorentz force law is specifically used as the definition
and explanation of the electric field and magnetic field, E and B, respectively.
Specifically, the Lorentz force states that, ‘The electromagnetic force F on
a test charge ata given point and time is a certain function of its charge ¢ and
velocity v, which can be parameterized by exactly two vectors E and B, in
the functional form F=q (E +vx B)’.

¢ Electromagnetic tensor: The electromagnetic tensor or electromagnetic
field tensor (sometimes called as the field strength tensor, Faraday
tensor or Maxwell bivector) as per electromagnetism is a mathematical
object which describes the electromagnetic field in space-time.

e Electromagnetic field tensor: Electromagnetic field tensor is the
mathematical object which describes the electromagnetic field in space-
time, also known as field strength tensor/Faraday tensor/Maxwell bisector’s
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tensor, and additionally it helps to precisely write the related physical laws
which are extremely succinct or brief.

e Synchrotron radiation: Synchrotron radiation is the special case of

charged particles moving at relativistic speed undergoing acceleration
uniquely perpendicular to their direction of motion, typically in a magnetic
field, denoted as (a ¥” v). It is produced artificially in some types of particle
accelerators, or naturally by fast electrons moving through magnetic fields.

5.12 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.
2.

. How is the Lorentz force law used as the definition of electric and magnetic

S

9.
10.

What do you mean by covariant formulation?

Define the term continuity equation.

fields E and B?

State the Lorentz force in space-time algebra.

Write a note on Lorentz force in terms of potentials.

What is electromagnetic field tensor?

Define the transformation of field due to a point charge in uniform motion.

Differentiate between the Lagrangian and Hamiltonian formulations of the
motion.

How does the radiation from relativistically moving particles defined?

What creates synchrotron radiation?

Long-Answer Questions

1.

Briefly explain the significance of covariant formulation with reference to
electrodynamics giving appropriate examples.

2. Discuss in detail about the continuity equation giving relevant examples.

3. Explain the significance of Lorentz force.

Elaborate on the Lorentz force law giving the potentials and operators giving
examples.

. Briefly explain the electromagnetic field tensor giving derivations and

explanations.

6. Evaluate the transformation of fields due to a point charge.

7. Explain the transformation of field due to a point charge in uniform motion

giving examples.

. Discuss in detail the Lagrangian and Hamiltonian formulations of the motion

of acharged particle in an electromagnetic field.

. Briefly discuss about the radiation taking place from relativistically moving

particles.
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