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INTRODUCTION

In mathematical analysis, the term ‘Real Analysis’ refers to the specific branch of
mathematical evaluations and unique analysis that examines the typical behaviour
of real numbers, sequences and series of real numbers, and the real functions.
Some specific and distinctive properties of real valued sequences and functions
used in the context of real analysis includes convergence, divergence, limits,
continuity, smoothness, differentiability, integrability and measurability.

In real analysis, the theorems typically depend on the properties of the real
number system, which should be determined, recognised and established.
Characteristically, the real number system comprises of an uncountable set ( ),
in addition to two binary operations denoted by ‘+’ and ‘’, and an order which is
denoted by ‘<’. The operations and analysis on the real numbers produce a field
while with the order it produces an ordered field. Principally, the real number
system is referred as the unique complete ordered field for the reason that any
other complete ordered field is isomorphic to it. Instinctively, completeness implies
that there are no ‘Gaps’ in the real numbers. This is the unique property of real
numbers which distinguishes the real numbers from other ordered fields. Additionally,
the properties of real numbers are critical and essentially significant for proving
numerous key and basic properties of the functions that are analysed using the real
numbers. The completeness property of the reals is often appropriately and
conveniently stated and typically expressed as the Least Upper Bound (LUB)
property. Furthermore, in real analysis, the order-theoretic properties produce a
number of fundamental results or solutions typically based on the monotone
convergence theorem, the intermediate value theorem, the mean value theorem,
etc. Many of the theorems of real analysis are consequences of the topological
properties of the real number line.

A sequence is defined as a function whose domain is considered as a
countable and totally ordered set. Generally, the domain is defined to be the natural
numbers, even though it is also occasionally appropriate to consider the bidirectional
sequences indexed by means of the set of all integers, including negative indices.
Generally, a limit is the value that a function or a sequence ‘Approaches’ as the
input. This value can include the symbols ‘’ while addressing the behaviour of
a function or sequence as the variable increases or decreases without bound. The
concept of a limit is fundamental to calculus and its conventional standard definition
is specifically used in order to define notions like continuity, derivatives and integrals.
For limits, the concept was introduced specifically for functions by Sir Isaac Newton
and Gottfried Wilhelm (von) Leibniz, at the end of the 17th century, for developing
the infinitesimal calculus. For sequences, the concept was introduced by Baron
Augustin-Louis Cauchy and was later made rigorous and established at the end of
the 19th century by Bernard Bolzano and Karl Theodor Wilhelm Weierstrass,
who gave the modern  definition, which follows.

The term series validates and formalizes the imprecise notion of finding the
sum of an endless sequence of numbers. In modern terminology, any ordered
infinite sequence (a

1
, a

2
, a

3
, …….) of terms, i.e., numbers, functions or anything
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that can be added, defines a series which refers to the operation of adding the a
i

one after the other. To emphasize that there are an infinite number of terms, a
series may be called an ‘Infinite Series’. Series are classified not only by whether
they converge or diverge, but also by the properties of the terms an absolute or
conditional convergence; type of convergence of the series – pointwise or uniform;
the class of the term a

n
, i.e., whether it is a real number, arithmetic progression,

trigonometric function, etc.

This book, Real Analysis, is divided into five units. The topics discussed
include definition and existence of Riemann-Stieltjes integral, the fundamental
theorem of calculus, integration of vector valued functions, rectifiable curves,
rearrangements of terms of a series, Riemann’s theorem, sequence and series of
functions, pointwise and uniform convergence, Cauchy criterion for uniform
convergence, Weierstrass’s M test, Abel’s and Dirichlet’s tests for uniform
convergence, uniform convergence and continuity, functions of several variables,
derivatives in an open subset of Rn, partial derivatives, higher order differentials,
Taylor’s theorem, explicit and implicit functions, implicit function theorem and inverse
function theorem, change of variables, extreme values of explicit and stationary
values of implicit functions, Lagrange’s multipliers method, Jacobian and its
properties, Lebesgue outer measure, measurable sets, measurable functions, Borel
and Lebesgue measurability, non-measurable sets, integration of non-negative
functions, Reimann and Lebesgue integrals, functions of bounded variation,
measures and outer measures, uniqueness of extension, the Lp-spaces,  Jensen’s
inequality, Holder and Minkowski inequalities, completeness of Lp, and the almost
uniform convergence.

The book follows the Self-Instructional Mode (SIM) format wherein each
unit begins with an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined
before going on to the presentation of the detailed content in a simple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding of the subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of ‘Key Terms’, and a set of ‘Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective
recapitulation.
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UNIT 1 RIEMANN-STIELTJES
INTEGRAL

Structure

1.0 Introduction
1.1 Objectives
1.2 Definition and Existence of Riemann-Stieltjes Integral
1.3 Properties of the Integral
1.4 Integration and Differentiation
1.5 The Fundamental Theorem of Calculus
1.6 Integration of Vector Valued Functions
1.7 Rectifiable Curves
1.8 Rearrangements of Terms of a Series
1.9 Riemann’s Theorem

1.10 Answers to ‘Check Your Progress’
1.11 Summary
1.12 Key Terms
1.13 Self Assessment Questions and Exercises
1.14 Further Reading

1.0 INTRODUCTION

In real analysis, the Riemann–Stieltjes integral is a generalization of the Riemann
integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The
definition of this integral was first published in 1894 by Stieltjes. It serves as an
instructive and useful precursor of the Lebesgue integral, and an invaluable tool in
unifying equivalent forms of statistical theorems that apply to discrete and continuous
probability.

The Riemann–Stieltjes integral appears in the original formulation of F. Riesz’s
theorem which represents the dual space of the Banach space C[a, b] of continuous
functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of
bounded variation. Later, the theorem was reformulated in terms of measures.
The Riemann–Stieltjes integral also appears in the formulation of the spectral theorem
for non-compact self-adjoint or more commonly as the normal operators in a
Hilbert space. In this theorem, the integral is considered with respect to a spectral
family of projections.

The best simple existence theorem states that, If f is continuous and g is of
bounded variation on [a, b], then the integral exists. A function g is of bounded
variation if and only if it is the difference between two (bounded) monotone
functions. If g is not of bounded variation, then there will be continuous functions
which cannot be integrated with respect to g. Basically, the integral is not properly
defined if f and g share any points of discontinuity, but there are other conditions
also.

An important generalization is the Lebesgue–Stieltjes integral, which
generalizes the Riemann–Stieltjes integral in a method analogous to how the
Lebesgue integral generalizes the Riemann integral. If improper Riemann–Stieltjes
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integrals are allowed, then the Lebesgue integral is not strictly more general than
the Riemann–Stieltjes integral.

In this unit, you will study about the definition and existence of Riemann-
Stieltjes integral, properties of the integral, integration and differentiation, the
fundamental theorem of calculus, integration of vector valued functions, rectifiable
curves, rearrangements of terms of a series, and Riemann’s theorem.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the definition and existence of Riemann-Stieltjes integral

 Define the properties of the integral

 Elaborate on the integration and differentiation

 Analyse the fundamental theorem of calculus

 Explain the integration of vector valued functions and rectifiable curves

 Comprehend on the rearrangements of terms of a series

 Discuss the Riemann’s theorem

1.2 DEFINITION AND EXISTENCE OF
RIEMANN-STIELTJES INTEGRAL

Definition 1: Let [a, b] be a given interval. A partition P of [a, b] is a finite set of
points x

0
, x

1
, x

2
,..., x

n
 such that,

a = x
0
  x

1
  x

2
  .......... x

n
 = b.

Definition 2: Let  be a  monotonically increasing function on [a, b].

Corresponding to any partition P of [a, b],


i
= (x

i
) – (x

i–1
), i = 1, 2,..., n.

Then 
i
  0.

Let f  be a bounded real valued function on [a, b].

Let U(P, f,) = 
1


n

i i
i

M

L(P, f,) = 
1


n

i i
i

M

Where M
i
 = sup{ f(x) / x[x

i–1
, x

i
]}

And    m
i
 =  inf{ f(x) / x[x

i–1
, x

i
]}

We define the upper Riemann-Stieltjes integral of f as,

inf ( , , )  
b

a
fd U P f  
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And the lower Riemann-Stieltjes integral of f as,

sup ( , , ) 
b

a
fd L P  f  ,

Where the infimum and supremum are taken over all partitions P of [a, b].

If 
b b

a a
fd fd   

Their common value is denoted by 
b

a
fd  or ( ) ( )

b

a
f x d x .

This is called the Riemann-Stieltjes integral of f with respect to  on [a, b].

If 
b

a
fd  exists, then f is said to be integrable with respect to  on [a, b].

It is written as f  R() on [a, b].

Definition 3: A partition P* is said to be a refinement of P, if P*  P.

Note: Given two partitions P
1
 and P

2
 of [a, b], their common refinement is given

by the notation P*=P
1
 P

2
.

Theorem 1.1: If P* is a refinement of P, then

U(P*, f,)  U(P, f,)

And U(P*, f,)  U(P, f,).

Proof: Assume that P* contains just one point more than P.

Let this be c and x
i–1

< c < x
i

Let       M
i
= sup{ f(x) / x [x

i–1
, c]}

And    M
i
= sup{ f(x) / x [c, x

i
]}.

Then M
i
  M

i
 and M

i
  M

i
.

Consider U(p*, f
1
1

n

k k
i
k

M



 + M
i
[(c) – (x

i–1
)] + M

i
[(x

i
) – (c)]

 
1
1

n

k k
i
k

M



 + M
i
[(c) – (x

i–1
)] + M

i
[(x

i
) – (c)]

 
1
1

n

k k
i
k

M



 + M
i
[(x

i
) – (x

i –1
)]

 U(P, f,).

Similarly we can prove that,

L(P*, f,)  L(P, f,).

Hence the theorem is proved.



Riemann-Stieltjes Integral

NOTES

Self - Learning
6 Material

1.3 PROPERTIES OF THE INTEGRAL

The significant properties of the integrals are discussed in this section.

Theorem 1.2: Consider the following statement:

b b

a a
fd fd    .

Proof: Following is the proof of Theorem 1.2.

Let P
1
 and P

2
 be any partitions of [a, b].

Let P*=P
1
P

2
.

Then P* is the common refinement of P
1
 as well as P

2
.

Therefore by Theorem 1.1,

U(P*, f,)  U(P
1
, f,) ....(1.1)

And L(P*, f,)  L(P
2
, f,) ....(1.2)

Also we know that,

L(P*, f,)  U(P*, f,) ....(1.3)

From Equations (1.1), (1.2) and (1.3), we get

L(P
2
, f,)  L(P*, f,)  U(P*, f,)  U(P

1
, f,)

Therefore for any two partitions P
1
 and P

2
 of [a, b], we have

L(P
2
, f,)  U(P

1
, f,).

Keeping P
2
 fixed and varying P

1 
over all partitions of [a, b],

L(P
2
, f,)  inf U(P, f,)

Now this is true for all partitions P
2
 of [a, b].

Therefore,

sup L(P, f, a)  inf U(P, f,).

Consequently,

b b

a a
fd fd    .

Hence the theorem is proved.

Theorem 1.3: Show that f  R() on [a, b] if and only if there exists a partition
P of [a, b] such that,

U(P, f,) – L(P, f,) <.
Proof:

Let f  R() on [a, b].

Then
b b

a a
fd fd    , ...(1.4)

Where inf ( , , )  
b

a
fd U P f
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And    sup ( , , ),
b

a
fd L P f  

Therefore, by definition of infimum and supremum, for given > 0, there exists a
partition P

1
 of [a, b] such that,

U(P
1
, f,) < / 2

b

a
fd   ...(1.5)

And a partition P
2
 of [a, b] such that,

L(P
2
, f,) > – / 2

b

a
fd  ...(1.6)

Let P = P
1 P

2
.

Then by Theorem 1.1,

U(P, f,) U(P
1
, f,) ...(1.7)

And L(P, f,) L(P
2
, f,) ...(1.8)

Therefore, from Equations (1.4), (1.5), (1.6), (1.7) and (1.8), we get

U(P, f,)  U(P
1
, f,)

< / 2
b

a
fd  

< / 2
b

a
fd  

< L(P
2
, f,) +  /2 + /2

< L(P, f,) + 

Consequently, there exists a partition P of [a, b] such that,

U(P, f,) – L(P, f,) < .
Conversely, assume that there exists a partition P of [a, b] such that,

U(P, f,) – L(P, f,) < . ...(1.9)

For every partition P of [a, b], we have

L(P, f,) 
b b

a a
fd fd      U(P, f,) ...(1.10)

From Equations (1.9) and (1.10), we know that

0  –
b b

a a
fd fd    U(P, f,) – L(P, f,) <.

This is true for every  > 0.

Hence, –
b b

a a
fd fd    = 0.

Therefore,

b b

a a
fd fd    .
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Subsequently,  f  R() on [a, b].

Hence the theorem is proved.

Theorem 1.4: If f is continuous on [a, b], then f R() on [a, b].

Proof: Let  > 0

Consider that  > 0 such that [(b) – (a)] < .

Since f  is continuous on [a, b] and [a, b] is compact, then f is uniformly continuous
on [a, b].

Therefore, for this  > 0, there exists a  > 0 such that,

|f(x) – f(t)| <  whenever x, t [a, b] with |x – t| < . ...(1.11)

If P is any partition of [a, b] such that x
i 
<,

Then M
i
– m

i
 = sup {|f(x)–f(t)| / x, t [x

i–1
, x

i
]}  ,

i = 1, 2,..., n.

Therefore, U(P, f,) – L (P, f,) = 1
1


n

i
i

M  – 1
1


n

i
i

M

= 1
1

– )



n

i i
i

(M m

 
1


n

i
i

 [(b) – (a)]

< .

Therefore,  fR() on [a, b].

Hence the theorem is proved.

Theorem 1.5: If f is monotonic on [a, b] and if  is continuous on [a, b], then
f R() on [a, b].

Proof: Let  be increasing on [a, b]. Let > 0 be given.

Consider that n is large enough such that,

Assume that there is a partition P such that  
i
 =[(b) – (a)]/n.

Let f be increasing on [a, b].

Hence  f(x
i–1

)  f(x)  f(x
i
) whenever x

i–1
  x  x

i
.

Consequently,  M
i
 = f(x

i
) and m

i
 = f(x

i–1
), i = 1, 2,..., n.

Therefore, U(P, f,) – L(P, f,) =
1


n

i i
i

M –
1


n

i i
i

M

=
1

( )


 
n

i i i
i

M m

= –1
1

( ( ) – ( ))[ ( ) – ( ))/ ]


 
n

i i
i

f x f x b a n
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= [((b) – (a))/n][f(b)–f(a)]

< 
Therefore, f  R() on [a, b]. Hence the theorem is proved.

Theorem 1.6: If f
1
  R() and f

2
  R() on [a, b], then f

1
 + f

2
  R() and

1 2( + ) 
b

a
f f d = 1 

b

a
f d + 2 

b

a
f d .

Proof: Let f = f
1 
+ f

2
 and P be any partition of [a, b].

Consider,

U(P, f,) = 
1


n

k k
i

M

Where   M
k
 = sup{f(x)/ x[x

k–1
, x

k
]}

     = sup{f
1
(x) + f

2
(x) / x[x

k–1
, x

k
]}

   sup{f
1
(x)/x[x

k–1
, x

k
]} + sup{f

2
(x)/ x[x

k–1
, x

k
]}

M
k
 + M

k


Hence,

1


n

k k
k

M 
1


n

k k
k

M +
1


n

k k
k

M

Therefore,

U(P, f,)  U(P, f
1
,) + U(P, f

2
,) ...(1.12)

Similarly, L(P, f,)  L(P, f
1
,) + L(P, f

2
,) ...(1.13)

Since   f
1
R() on [a, b] and f

2
R() on [a, b],

for given  > 0, there exists partitions P
1
 and P

2
 such that,

U(P
1
,f

1
,) – L(P

1
, f

1
,) < /2 ...(1.14)

And U(P
2
, f

2
,) – L(P

2
,f

2
,) < /2 ...(1.15)

Let P = P
1
P

2

This implies that,

U(P, f
1
,)  U(P

1
, f

1
,)

And U(P, f
2
,)  U(P

2
, f

z
,)

And L(P, f
1
,)  L(P

1
, f

1
,)

And L(P, f
2
,)  L(P

2
, f

2
,).

Therefore,

U(P,f
1
,) –L(P, f

1
,)  U(P

1
, f

1
,) – L(P

1
, f

1
,)

< /2 ...(1.16)

And U(P, f
2
,) – L(P, f

2
,)  U(P

2
, f

2
,) – L(P

2
, f

2
,)

< /2 ...(1.17)
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From Equations (1.12), (1.13), (1.16) and (1.17), we get

U(P, f,) –L(P, f,)  [U(P, f
1
,) + U(P, f

2
,)] – [L(P, f

1
,) + L(P, f

2
,)]

 [U(P, f
1
,) – L(P, f

1
,)] + [U(P

2
, f

2
,) – L(P,

2 
f
2
,)]

</2 + /2

   < .

Hence, f = f
1
+ f

2
 R() on[a, b].

For the same partition P of [a, b],

U(P, f
1
,)  L(P, f

1
,) + /2

< sup {L(P, f
1
, a)} +/2

< 1 / 2  
b

a
f d

< 1 / 2  
b

a
f d

[Since f
1
  R() on [a, b], 1 

b

a
f d = 1 

b

a
f d  = 1 .]

b

a
f d

Similarly, U(P, f
2
,)  2 / 2

b

a
f d 

Therefore,


b

a
fd = inf {U(P, f,)}

< U(P, f,)
< U(P, f

1
,) + U(P, f

2
,)

< 1 / 2  
b

a
f d + 2 / 2  

b

a
f d

< 1 
b

a
f d  + 2   

b

a
f d

Hence, 
b

a
fd  1 

b

a
f d  + 2 

b

a
f d ....(1.18)

Replacing f
1
 by  –f

1
 and f

2
 by  –f

2
, we get

– 
b

a
fd  – 1 

b

a
f d  – 2 

b

a
f d

Multiplying both sides by (–1), we get


b

a
fd  1 

b

a
f d 2 

b

a
f d ....(1.19)

From Equations (1.18) and (1.19), we know that


b

a
fd = 1 

b

a
f d  + 2 

b

a
f d

Hence the theorem is proved.

Theorem 1.7: If f  R() on [a, b] then cf  R() on [a, b], for any constant c
and

 = 
b

a

cfd .
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Proof: If c = 0, then the result is true.

Assume that c > 0.

Since  f  R() on [a, b],

for given  > 0, then there exists a partition P of [a, b] such that,

U(P, f,) – L(P, f,) < /c.

Consider,

U(cP, f,) – L(cP, f,) =
1 1

–
 

    
n n

k k k k
k k

M m

Where  M
k
 = sup{f(x) / x[x

k–1
, x

k
]}

 = c sup{(cf)(x) / x[x
k–1

, x
k
]}

 = cM
k

Similarly,       m
k
 = cm

k

Therefore,

U(cP, f,) = c
1


n

k k
k

M = cU(P, f,)

And, L(cP, f,) = c
1


n

k k
k

m = cL(P, f,)

Consequently,  U(cp,f,) – L(cP,f,) = c[U(P,f,) – L(P,f,)]<.
Hence cf  R(a) on[a, b].

Therefore for the same P,

U(cp,f,) < L(cP, f,) +

 sup L(cP, f,)] +
 c sup L(P, f,)] +

 c 
b

a
fd  + 

Subsequently,

inf U(cP,f,)  U(cP,f,)

 c 
b

a
fd +

Therefore,


b

a
cfd  c 

b

a
fd ...(1.20)

Replacing f by –f, we get

– 
b

a
cfd  c[– 

b

a
fd ]
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Multiplying both sides by (–1), we get


b

a
cfd  c 

b

a
fd

...(1.21)

From Equations (1.20) and (1.21), we have


b

a
cfd  c 

b

a
fd .

Hence the theorem is proved.

Theorem 1.8 If f
1
 R() on [a, b], f

2
  R() on [a, b] and f

1
(x) f

2
(x)

on [a, b], then  1 
b

a
f d   2 

b

a
f d

Proof: Let P be any partition of [a, b].

Since  f
1
(x)   f

2
(x),

sup{f
1
(x) / x[x

k–1
, x

k
]}  sup{ f

2
(x) / x[x

k–1
, x

k
]}

Therefore,

U(P,f
1
,)  U(P,f

2
,)

Consequently,

inf U(P,f
1
,)  U(P,f

2
,)

Hence,

1 
b

a
f d  2 

b

a
f d

Consequently,

 1 
b

a
f d  2 

b

a
f d

Since f
1
  R() on [a, b], and  f

2
 R() on [a, b]

1 
b

a
f d = 1 

b

a
f d  and 2 

b

a
f d = 2 

b

a
f d ].

Hence the theorem is proved.

Theorem 1.9: If f  R() on [a, b] and if a < c < b, then f  R() on [a, c] and

f  R() on [c, b], and 
b

a
fd  + 

b

a
fd  = 

b

a
fd .

Proof: Since f  R() on [a, b], for given > 0, there exists a partition P of
[a, b] such that,

U(P,f,) – L(P,f,) < .

Let P
1
 = P[a, c]     and P

2
 = P[c, b].

The P
1
 is a partition of [a, c] and P

2
 is a partition of [c, b].

Also on [a, b],

U(P
1
,f,) – L(P

1
,f,) < U(P,f,) – L(P,f,)] <.
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And on [c, b],

U(P
2
,f,) – L(P

2
,f,) < U(P,f,) – L(P,f,)] <.

Therefore,

f R() on [a, c] and [c, b].

For any partition P of [a, b],

Since    P = P
1
P

2
,

U(P,f,) = U(P
1
,f,) + U(P

2
,f,)]

 inf U(P
1
,f,) + inf U(P

2
,f,)

= 
c

a
fd  + 

b

c
fd

Therefore,

inf U(P,f,)  
c

a
fd  + 

b

c
fd

Consequently,


b

a
fd  

c

a
fd  + 

b

c
fd

Subsequently,


b

a
fd  

c

a
fd  + 

b

c
fd ...(1.22)

Similarly,  using lower sums,

L(P,f,) = L(P
1
,f,) + L(P

2
,f,)]

 sup L(P
1
,f,) + sup L(P

2
,f,)

 
c

a
fd  + 

b

c
fd

Therefore,

sup L(P,f,)  
c

a
fd  + 

b

c
fd

Subsequently,

 
b

a
fd  

c

a
fd  + 

b

c
fd

Hence,

 
b

a
fd  

c

a
fd  + 

b

c
fd ...(1.23)

From Equations (1.22) and (1.23), we get

 
b

a
fd = 

c

a
fd  + 

b

c
fd

Hence the theorem is proved.
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Theorem 1.10: If f  R() on [a, b] and if | f(x)|  M on [a, b], then | 
b

a
fd |

 M [(b) –(a)].

Proof: Let P be any partition of [a, b],

Since |f(x)|  M on [a, b],

M
k
 = sup{(x)/ x[x

k–1
, x

k
]}

 M,  for all k = 1,2,....,n.

Because f  R() on [a, b],

 
b

a
fd = 

b

a
fd  = inf U(P,f,)

 U(P,f,)

=
1


n

k k
k

M

 M
1


n

k
k

= M[(b) – (a)] ....(1.24)

Replacing f by –f, we get

– 
b

a
fd  M[(b) – (a)] ....(1.25)

From Equations (1.24) and (1.25), we have

| 
b

a
fd |  M[(b) – (a)]

Hence the theorem is proved.

Theorem 1.11: If f  R(
1
) on [a, b] and f R(

2
) on [a, b],

then f R(
1
 + 

2
) on [a, b] and

1 2( ) 
b

a
fd = 1

b

a
fd + 2

b

a
fd

Proof: Let P be any partition of [a, b].

Let  = 
1
 + 

2
.

Then,
k
  = (

1
 + 

2
)(x

k
) – (

1
 + 

2
)(x

k–1
)

  = 
1
(x

k
) + 

2
(x

k
) – [

1
(x

k–1
) + 

2
(x

k–1
)]

        =
1
(x

k
) – 

1
(x

k–1
) + 

2
(x

k
) – 

2
(x

k–1
)

=(
1
)

k
 + (

2
)

k

Consider,  U(P,f,) = 
1


n

k k
k

M

= 
1


n

k
k

M [(
1
)

k
 + (

2
)

k
]
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= 
1


n

k
k

M (
1
)

k
 +

1


n

k
k

M (
2
)

k

  = U(P,f,
1
) + U(P,f,

2
)

 inf U(P,f,
1
) + inf U(P,f,

2
)

  = 1
b

a
fd  + 2

b

a
fd

Therefore,

inf U(P,f,)  1
b

a
fd  + 2

b

a
fd

Consequently,


b

a
fd  1

b

a
fd  + 2

b

a
fd

Hence,


b

a
fd  1

b

a
fd  + 2

b

a
fd ....(1.26)

Similarly considering the lower sums, we can prove that,


b

a
fd  1

b

a
fd  + 2

b

a
fd ....(1.27)

From Equations (1.26) and (1.27), we have,


b

a
fd = 1

b

a
fd  + 2

b

a
fd .

Therefore,

1 2( ) 
b

a
fd = 1

b

a
fd  + 2

b

a
fd .

Hence the theorem is proved.

Theorem 1.12: If  f  R(} on [a, b] and c is a positive constant,

then f R(c)} on [a, b] and ( )   
b b

a a
fd c c fd .

Proof: The proof follows from theorem 1.11.

Theorem 1.13: If  fR() on [a, b] and gR() on [a, b], then

(a) f 2 R() on [a, b].

(b) fg R() on [a, b].

(c) | f |R() on [a, b] and | 
b

a
fd |  

b

a
| f |d

Proof: Theorem 1.13 can be proved as follows:

(a) Let P be any partition of [a, b].

And also, M
k
(f) denotes sup{ f(x)/ x[x

k–1
, x

k
]}
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And m
k
(f) denotes   inf{ f(x)/ x[x

k–1
, x

k
]}

Then M
k
(f2) = sup {f2(x)/ x[x

k–1
, x

k
]}

= [M
k
(| f |)]2

 m
k
(f2) = [m

k
(| f |)]2

Since f  R () on [a, b],

Then f is bounded on [a, b].

Therefore there exists M > 0 such that,

| f(x) |  M.

Then M
k
(f)  M

And M
k
(f)  M, for all k = 1, 2, ...., n.

Also for given  > 0, there exists a partion P of [a, b] such that,

U(P,f, ) – L(P,f, ) < 

Therefore,

M
k
(f2) – m

k
(f2) = [M

k
(| f |)]2 – [m

k
(| f |)]2

= [M
k
(| f |) + m

k
(| f |)][M

k
(| f |) – m

k
(| f |)]

< 2M[M
k
(| f |) – m

k
(| f |)]

Consequently,

U(P, f 2, ) – L(P, f 2, )=
2 2

1

[ ( ) ( )]


  
n

k k k
k

M f m f

< 2M 
1

[ ( ) ( )]


 
n

k k k
k

M f m f

 2M[U(P, f, ) – L(P, f, )]

< 2M( / 2M)

< 
Therefore, f 2  R() on [a, b].

Hence Part (a) of Theorem 1.13 is proved.

(b) Since f  R() on [a, b] and g  R() on [a, b], then

by Theorems 1.6 and 1.7,

f + g  R() on [a, b], and f – g  R() on [a, b].
Therefore by Part (a) of Theorem 1.13 proved above,

(f + g)2 R() on [a, b]

And (f – g)2 R() on [a, b]

Therefore again by Theorems 1.6 and 1.7,

(1/4)[(f + g)2 – (f – g)2]  R() on [a, b]

i.e., fg R() on [a, b].

Hence Part (b) of Theorem 1.13 is proved.
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(c) Since f  R() on [a, b], for given  > 0, there exists a partition P of [a, b],
such that

U(P, f, ) – L(P, f, ) < 

Let P be any partition of [a, b].

Since || f(x) | – | f(y) ||  | f(x) – f(y) |,

M
k
 (| f |) – m

k
(| f |) = sup{ || f(x) | – |f(y) || / x,y  [x

k–1
, x

k
]}

 sup{ | f(x) – f(y) | / x, y  [x
k–1

, x
k
]}

 M
k
(f) –m

k
(f)

Therefore,

U(P, | f |, ) – L(P, | f |, )  U(P, f, ) – L(P, f, )

Hence, | f |  R() on [a,b] < 

Now for all x, f(x)  | f(x) |

And –f(x)  | f(x).

Therefore by applying Theorem 1.8, we get

 | |   
b b

a a
fd f d  and

| |   
b b

a a
fd f d

Consequently, | | | |   
b b

a a
fd f d

Therefore, Part (c) of Theorem 1.13 is proved.

Hence the theorem is proved.

Theorem 1.14: Suppose is a strictly increasing continuous function that maps
an interval [A, B] onto [a, b]. Suppose  is monotonically increasing on [a, b] and
f  R() on [a, b].

Define  and g on [A, B] by,

(y) = ((y)), g(y) = f((y)).

Show that g  R() and .   
B b

A a
gd fd

Proof: To each paritition P = {x0, x1, .....xn} of [a, b], there exists a partition
Q ={y0, y1, ....,yn} of [A, B] such that,

xi = (yi).

All partitions of [A, B] can be obtained in this way.

Since g(y) = f((y)) on [A, B]
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The values taken by g on [yi–1, yi] are the same as those taken by f on [xi–1, xi].

Therefore,

U(Q, g, ) = U(P, f, )

And L(Q, g, ) = L(P, f, ). ..(1.28)

Since  f R() on [a, b],

for given  > 0, there exists a partition P of [a, b] such that,

U(P, f, ) – L(P, f, ) < 

Consequently,

U(Q, g, ) – L(Q, g, ) = U(P, f, ) – L(P, f, ) < 

Hence, g R() on [A, B].

Moreover from Equation (1.28), we have

inf U(Q, g, ) = inf U(P, f, )

Subsequently,

.   
B b

B b
gd fd

Since f  R() on [a, b] and g R() on [A, B],

   
B b

A b
gd gd

And b b

a b
fd fd    .

Therefore,

B b

A a
gd fd    .

Hence the theorem is proved.

1.4 INTEGRATION AND DIFFERENTIATION

Theorem 1.15: Let f  R on [a, b](i.e., f is Riemann-integrable on [a, b]).

For a  x  b, define F(x) = ( ) .
x

a
f t dt

Then F is continuous on [a, b].

Furthermore, if f is continuous at a point x
0
 of [a, b], then F is differentiable at x

0

and

F(x
0
) = f(x

0
).

Proof: Since f  R on [a, b],  f is bounded.

Therefore, there exists M > 0 such that,

| f(t) |  M for a  t  b



Riemann-Stieltjes Integral

NOTES

Self - Learning
Material 19

Subsequently, if a  x  y  b, then

| F(y) – F(x) | = | ( ) ( ) |
y x

a a
f t dt f t dt 

= | ( ) |
y

x
f t dt

 | ( ) |
y

x
f t dt

  y

x
dt y – x)

i.e., | F(y) – F(x) |  y – x)

Therefore,

| F(y) – F(x) | < provided that | y – x) < /M.

Hence F is continuous on [a, b].

Suppose if f is continuous at x
0
. Then for given  > 0, there exists a  > 0 such

that,

| f(t) – f(x
0
) | <  whenever | t–x

0
 | < .

Hence, if x
0
 –  < s  x

0
  t < x

0
 +  and a  s < t  b,

0

( ) ( )
| ( )|

F t F s
f x

t s





= 0

1
| ( ) ( ) |

t

s
f t dt f x

t s


 

= 0

1
| [ ( ) ( )] |

t

s
f t f x dt

t s


 

 0

1
| ( ) ( ) |

t

s
f t f x dt

t s


 

<
t

s
dt

t s


 

<  ε
–

–
t s

t s

< 

Consequently,

0

( ) ( )
| ( ) |

F t F s
f x

t s


  

      whenever x
0
 –  < s  x

0
  t < x

0
 +

Therefore, F(x
0
) = f(x

0
)

Hence the theorem is proved.
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1.5 THE FUNDAMENTAL THEOREM OF
CALCULUS

The fundamental theorem of calculus states that this theorem is specifically used to
link or connect the concept or theory of differentiating a function or calculating the
gradient with the theory of integrating a function or calculating the area under the
curve.

Basically, the integration and the differentiation are the closely related
operations, and each is essentially considered as the inverse of the other.

Theorem 1.16:  If f is bounded and integrable on [a, b] and there exists a function
F such that F  = f on [a, b], then

( ) – ( ).
b

a
f dx F b F a

Proof: Let p be any partition of [a, b] then by Mean Value Theorem (MVT) on

every 
r    

r
(x

r–1
, x

r
) such that,

F(x
r
) – F(x

r–1
) = f(

r
)

r
.

On summing for r = 1, 2, ..., n this gives,

F(b) – F(a) =  
1

n

r
r

f r


  .

Since f is bounded and integrable on [a, b], therefore, when 0P  , then we get

F(b) – F(a) = 
b

a
fdx ,   i.e., 

b

a
fdx  = F(b) – F(a).

Note that F  may differ from f at a set of points whose set of limit points is finite.

Theorem 1.17: If f is continuous on (a, b) and c (a, b), then function F defined

by  F(x) = ( ) ,
x

c
f t dt  which is derivable and F(x) = f(x) on (a, b).

Proof: If x (a, b), let (x + h) (a, b). Then,

F(x + h) – F(x) = ( )
x h

x
f t dt




 = hf(x + h), for some   (0, 1).

By continuity of f at x, 
0

lim
h

 f(x) + Qh) = f(x). Therefore,

 
0

lim
h

   –F x h F x

h


 = f(x), i.e., F (x) = f(x)   x  (a, b).

Corollary:  If f is continuous on [a, b] and c [a, b] then the function F can be
defined by,
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F(x) = ( ) [ , ],
x

c
f t dt x a b   is derivable and F (x) = f(x) on [a, b].

It should be noted that the condition of continuity in the above theorem and in its
corollary cannot be totally removed.

Example 1.1:  If f is defined on [–1, 1] by

f(x) = 1 when 1  x  0,

= 0 when –1  x < 0,

Then F(x) = ( )
x

c
f t dt = x when 1  x  0.

    = 0 when –1  x < 0.

The function F is not derivable at 0, and so the conclusions of the theorem and the
corollary on (–1, 1) and [–1, 1] respectively, do not hold.

Example 1.2: For sin–1 x, which denotes the inverse of the function sin x in
[0, /2], note that

(sin–1x) = 2

1

1– x

Hence, 20 1–

x dt

t
 = sin–1x,  x  [0, 1]

This gives another way of introducing the trigonometrical functions, through sin x
defined as the inverse function of sin–1 x and sin–1 1 = /2.

Besides continuity and derivability of the functions defined by means of integrals
we can examine various other properties, such as uniform convergence of functional
sequences defined by means of integrals.

Example 1.3: The sequence given below converges uniformly to 0 on [0, a],
where a > 0.

20 1

x t

n t dt

Solution:  Since   x  [0, a], a > 0,

0  20 1

x t

n t dt  20

1


x

n
dt < 2

a

n
 0 as n ,

Therefore, for  > 0  m  N such that,

20 1

x t a
dt n m

n t

 
        and   x [0, a].

Hence, 20 1

x t
dt

n t  converges uniformly to 0, on [0, a] where a > 0.
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1.6 INTEGRATION OF VECTOR VALUED
FUNCTIONS

Definition: Let f
1
, f

2
, ........, f

k
 be real valued functions on [a, b].

Let f = (f
1
, f

2
, ......, f

k
) be the corresponding mapping of [a, b] onto Rk.

If  increases monotonically on [a, b] and if f
j
 R() for j = 1, 2, ..., k, then we

say that f R() on [a, b] and  define 
b

a
fd  as,

1 2( , ,........, )       
b b b b

ka a a a
fd f d f d f d

i.e.,  
b

a
fd  is the point in Rk whose jth coordinate is .

b

ja
f d

Let f = (f
1
, f

2
,.........., f

k
) and g = (g

1
, g

2
,............, g

k
) be vector valued functions

on [a, b].

Then by the method in which we have defined  
b

a
fd , we get the following

results.

Theorem 1.18: If f  R() and g  R() on [a, b], then f + g  R() and

( )
b b b

a a a
f g d fd gd        ,

Proof: Since f  R() and g  R() on [a, b]

f
j
, g

j
R() on [a, b], for j = 1, 2, ...., k.

Hence, f
j
 + g

j
R() on [a, b], for j = 1, 2, ......, k.

Therefore,

(f + g) R() on [a, b]

And ( )
b

a
f g d  = 1 1 2 2( ( ) , ( ) ,..., ( ) )       

b b b

k ka a a
f g d f g d f g d

= 1 1 2 2( , ,....., )             
b b b b b b

k ka a a a a a
f d g d f d g d f d g d

= 1 2 1 2( , ,.... , ,..., )           
b b b b b b

k ka a a a a a
f d f d f d g d g d g d

= b b

a a
fd gd   

Hence the theorem is proved.

In the similar way we can prove the following results.

Theorem 1.19: If f  R() on [a, b], then c f  R() on [a, b], for any constant
c and

b b

a a
cfd c fd    .

Theorem 1.20: If f  R() on [a, b] and if a < c < b, then f  R() on [a, c] and
on [c, b], and
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c b b

a c a
fd fd fd       .

Theorem 1.21: If f  R(
1
) on [a, b] and f  R(

2
) on [a, b], then f  R(

1
 +


2
)} on [a, b] and

1 2 1 2
( )

b b b

a a a
fd fd fd         .

Theorem 1.22: If f  R() on [a, b] and c is positive constant, then

f  R(c) on [a, b] and ( )
b b

a a
fd c c fd    .

Theorem 1.23: Let f  R on [a, b](i.e., f is Riemann-integrable on [a,b]).

For a  x  b, define F(x) = ( )
b

a
f t dt .

Then F is continuous on [a, b].

Furthermore, if f is continuous at a point x
0
 of [a, b], then F is differentiable at x

0

and F(x
0
) = f(x

0
).

Theorem 1.24: If f and F maps [a, b] onto Rk, if f  R on [a, b] and if F = f,
then

( ) ( ) ( ).
b

a
f t dt F b F a 

Theorem 1.25: If f maps [a,b] onto Rk, and if f  R() for some monotonically
increasing function  on [a, b],

Then | f |  R() on [a, b]

And | | | | .
b b

a a
fd f d   

Proof: If f
1
, f

2
,......, f

k
 are the components of f, then

| f | = (f
1

2 + f
2

2 + ...+f
k
2)1/2

Since f R() on [a, b],

By definition,

each fj R(} for j = 1, 2, ..., k and

By Theorem 1.13,

f
j
2 R() for j = 1, 2, ..., k.

Consequently, by Theorem 1.6,

f
1

2 + f
2

2 + f
k
2 R().

Hence,

| f | = (f
1

2 + f
2

2 + ...+f
k
2)1/2R().

Since square root of a continuous function is continuous on [0, M], for every
real M.

To prove that | | | | .
b b

a a
fd f d   
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Let y = (y1, y2, ..., yk), where yj =
b

ja
f d

Then, y =
b

a
fd

And |y|2 =
2

1

k

j
j

y



= 1

k b

j ja
j

y f d


 

= 1

( )
nb

j ja
j

y f d




From Schwarz inequality,

1

| || ( ) |
k

j j
j

y f y f t

 (a  b)

Consequently,

| y |2  | y | | |
b

a
f d

Therefore, if y  0,  dividing this inequality by | y |, we get

| y |  | |
b

a
f d

Subsequently,

| | | |
b b

a a
fd f d   

Hence the theorem is proved.

1.7 RECTIFIABLE CURVES

Definition 1: A continuous mapping  of an interval [a, b] into Rk is called a curve
in Rk or  is a curve on [a, b].

If  is one-to-one, then  is called an arc.

If (a) = (b), then  is called a closed curve.

Definition 2: To each partition P = {x
0
, x

1
, x

2
, ....., x

n
} of [a, b] and to each

curve  on [a, b], we associate a number (P, ) = 1
1

| ( ) ( ) |
n

i i
i

x x 

   .

Where | (x
i
) – (x

i–1
) | = Distance between the points (x

i–1
) and (x

i
)

(P, ) = Length of a polygonal path with vertices at (x
0
), (x

1
),

..., (x
n
).

As the partition P becomes finer and finer, the polygon approaches  more and
more closely.
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The lenght of  is defined as,
() = sup  (P, ),

Where the supremum is taken over all partitions of [a, b].
If  () < , then  is said to be rectifiable.

Theorem 1.26: If  is continuous on [a, b], then  is rectifiable and

()= | ) |
b

a
t dt .

Proof:

If a  xi–1< xi  b, then

|(xi) –(xi–1) | = |
1

) |
i

i

x

x
t dt






1

)
i

i

x

x
t dt





Hence, (P, ) = 1
1

| ( ) – ( ) |
n

i i
i

x x 


 


11

| ) |



i

i

n x

x
i

t dt

 | ( ) |
b

a
t dt

for every partition P of [a, b].
Therefore,

()  | ( ) |
b

a
t dt ....(1.29)

To prove the opposite inequality, let  > 0 be given.

Since  is uniformly continuous on [a, b],  there exists a  > 0 such that,

| (s) – (t) |   whenever | s – t | < .
Let P = {x0, x1, ......, xn} be a partition of [a b], with xi <  for all i.
Therefore, if xi –1  t  xi,

| (t) – (xi) | < 
Consequently,

| (t) | – |(xi) |  | (t) – (xi) | < 
Subsequently,

| (t) |  (xi) | + 

Hence,
1

| ) |
i

i

x

x
t dt



 
1

(| ) | )
i

i

x

ix
x dt



  
 | (t) | xi + xi


1

) |
i

i

x

i ix
x dt x



   


1

| [ ) ) ]
i

i

x

i ix
t x t dt x
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1 1

| [ ) | | [ ) )] |
i i

i i

x x

i ix x
t dt x t dt x

 

        
 1| ( ) ( ) |        i i i ix x x x

 1| ( ) ( ) | 2i i ix x x     
Therefore,

| ) |
b

a
t dt =

11

| ( ) |



i

i

n x

x
i

t dt

 1
1 1

| ( ) ( ) | 2
n n

i i i
i i

x x x
 

      

 (P, ) + 2(b – a)

 () + 2(b – a).
Since  > 0 was arbitrary, therefore we have,

| ( ) | ( )
b

a
t dt    ...(1.30)

From Equations (1.29) and (1.30), we get

 () = | ( ) |
b

a
t dt

Hence the theorem is proved.

1.8 REARRANGEMENTS OF TERMS OF A
SERIES

Riemann rearrangement theorem, named after 19th-century German mathematician
Bernhard Riemann, says that if an infinite series of real numbers is conditionally
convergent, then its terms can be arranged in a permutation so that the new series
converges to an arbitrary real number or diverges.

As an example, the series 1 – 1 + 1/2 – 1/2 + 1/3 – 1/3 + ... converges to
0 for a sufficiently large number of terms, the partial sum gets arbitrarily near to 0;
but replacing all terms with their absolute values gives 1 + 1 + 1/2 + 1/2 + 1/3 +
1/3 + ... , which sums to infinity. Thus the original series is conditionally convergent,
and can be rearranged by taking the first two positive terms followed by the first
negative term, followed by the next two positive terms and then the next negative
term, etc. to give a series that converges to a different sum: 1 + 1/2 – 1 + 1/3 + 1/
4 – 1/2 + ... = ln 2. More generally, using this procedure with p positives followed
by q negatives gives the sum ln(p/q). Other rearrangements give other finite sums
or do not converge to any sum.

Existence of a Rearrangement that Sums to Any Positive Real M
For simplicity, this proof assumes first that a

n
  0 for every n. The general case

requires a simple modification, given below. Recall that a conditionally convergent
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series of real terms has both infinitely many negative terms and infinitely many positive

terms. First, define two quantities  and  by,,

That is, the series  includes all a
n 
positive, with all negative terms

replaced by zeroes, and the series  includes all an negative, with all positive

terms replaced by zeroes. Since  is conditionally convergent, then both

the positive and the negative series diverge. Let M be a positive real number. Taking
now sufficient positive terms  so that their sum exceeds M. Suppose p terms, are
required, then the following statement is considered true:

This is possible for any M > 0 because the partial sums of a+n tend to  + 
Discarding the zero terms one may write,

Now adding the sufficient negative terms a–n say q of them, so that the
resulting sum is less than M. This is always possible because the partial sums of
a–n tend to – Now we have,

Again, one can write,

With,



The map σ is injective, and 1 belongs to the range of σ, either as image of 1
(if a

1
 > 0) or as image of m

1
 + 1 (if a

1
 < 0). Now repeat the process of adding
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sufficient positive terms to exceed M, starting with n = p + 1, and then adding
sufficient negative terms to be less than M, starting with n = q + 1. Extend σ in an
injective manner so that all terms selected so far must be covered, and observe
that a

2
 must have been selected previously or now thus 2 belongs to the range of

this extension. The process infinitely includes various such “Changes of Direction”.

Existence of a Rearrangement that Diverges to Infinity

Let  be a conditionally convergent series. The following is a proof that

there exists a rearrangement of this series that tends to  a similar argument can
be used to show that – can also be attained.

Let  be the sequence of indexes such that each 
is positive, and define  to be the indexes such that each

 is negative (assuming that   is never 0). Each natural number will appear in

exactly one of the sequences  and 

Let  be the smallest natural number such that,

                                  

Such a specific value must exist since , the subsequence of positive

terms of which diverges. Similarly, let  be the smallest natural number such
that,

                                 

And so on. This leads to the following permutation:

And the obtained rearranged series,  then diverges to 

Existence of a Rearrangement that Fails to Approach Any Limit, Finite
or Infinite

In fact, if  is conditionally convergent, then there is such a rearrangement

of it that the partial sums of the rearranged series form a dense subset of .

1.9   RIEMANN’S THEOREM

Definition: A series  converges if there exists a value  such that the

sequence of the partial sums,
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Converges to . That is, for any ε > 0, there exists an integer N such that if
n  N, then

                                      

Theorem 1.27: A series converges conditionally if the series  converges

but the series  diverges.

A permutation is simply a bijection from the set of positive integers to itself.
This specifies that if  is a permutation, then for any positive integer b there exists
exactly one positive integer a such that (a) = b. In particular, if  then
(x)  (y).

Suppose that  is a sequence of real numbers and that

 is conditionally convergent. Let  be a real number, then there exists a

permutation  such that,

                                         

The sum can also be rearranged to diverge to   or to fail to approach
any limit, finite or infinite.

In Riemann’s theorem, the permutation used for rearranging a conditionally

convergent series to obtain a given value in  may have arbitrarily

many non-fixed points, i.e., all the indexes of the terms of the series may be
rearranged. It is possible to rearrange only the indexes in a smaller set so that a
conditionally convergent series converges to an arbitrarily chosen real number or
diverges to (positive or negative) infinity. The answer of this question is positive,
Sierpiński proved that is sufficient to rearrange only some strictly positive terms or
only some strictly negative terms.

Check Your Progress

1. Define the Riemann-Stieltjes integral.

2. State the integration and differentiation theorems.

3. What is the fundamental theorem of calculus?

4. Define on the integration of vector valued functions.

5. What do you understand by the rectifiable curves?

6. Define the rearrangements of terms of a series.

7. Give the definition of Riemann's theorem.
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1.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let [a, b] be a given interval. A partition P of [a, b] is a finite set of points
x

0
, x

1
, x

2
,..., x

n
 such that,

a = x
0
  x

1
  x

2
  .......... x

n
 = b.

2. Let f  R on [a, b](i.e., f is Riemann-integrable on [a, b]).

For a  x  b, define F(x) = ( ) .
x

a
f t dt

Then F is continuous on [a, b].

3. If f is bounded and integrable on [a, b] and there exists a function F such
that F  = f on [a, b], then

( ) – ( ).
b

a
f dx F b F a

4. Let f
1
, f

2
, ........, f

k
 be real valued functions on [a, b].

Let f = (f
1
, f

2
, ......, f

k
) be the corresponding mapping of [a, b] onto Rk.

If  increases monotonically on [a, b] and if f
j
 R() for j = 1, 2, ..., k,

then we say that f R() on [a, b] and  define 
b

a
fd  as

1 2( , ,........, )       
b b b b

ka a a a
fd f d f d f d

i.e.,  
b

a
fd  is the point in Rk whose jth coordinate is .

b

ja
f d

5. A continuous mapping  of an interval [a, b] into Rk is called a curve in Rk or
 is a curve on [a, b].

If  is one-to-one, then  is called an arc.

If (a) = (b), then  is called a closed curve.

6. Riemann rearrangement theorem, named after 19th-century German
mathematician Bernhard Riemann, says that if an infinite series of real numbers
is conditionally convergent, then its terms can be arranged in a permutation
so that the new series converges to an arbitrary real number or diverges.

7. A series  converges if there exists a value  such that the sequence

of the partial sums,

Converges to . That is, for any ε > 0, there exists an integer N such that
if n  N, then
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1.11 SUMMARY

 Let [a, b] be a given interval. A partition P of [a, b] is a finite set of points
x

0
, x

1
, x

2
,..., x

n
 such that,

a = x
0
  x

1
  x

2
  .......... x

n
 = b.

 Let  be a  monotonically increasing function on [a, b].

Corresponding to any partition P of [a, b],


i

= (x
i
) – (x

i–1
), i = 1, 2,..., n.

Then
i
  0.

 A partition P* is said to be a refinement of P, if P*  P.
Given two partitions P

1
 and P

2
 of [a, b], their common refinement is P*=P

1


P
2
.

 Let f  R on [a, b](i.e., f is Riemann-integrable on [a, b]).

For a  x  b, define F(x) = ( ) .
x

a
f t dt

Then F is continuous on [a, b].
n  Furthermore, if f is continuous at a point x

0
 of [a, b], then F is differentiable

at x
0
 and

F(x
0
) = f(x

0
).

 If f is bounded and integrable on [a, b] and there exists a function F such
that F  = f on [a, b], then

( ) – ( ).
b

a
f dx F b F a

 If f is continuous on [a, b] and c [a, b] then the function F defined by

F(x) = ( ) [ , ],
x

c
f t dt x a b   is derivable and F (x) = f(x) on [a, b].

 Let f
1
, f

2
, ........, f

k
 be real valued functions on [a, b].

Let f = (f
1
, f

2
, ......, f

k
) be the corresponding mapping of [a, b] onto Rk.

If  increases monotonically on [a, b] and if f
j
 R() for j = 1, 2, ..., k,

then we say that f R() on [a, b] and  define 
b

a
fd  as,

1 2( , ,........, )       
b b b b

ka a a a
fd f d f d f d

i.e.,  
b

a
fd  is the point in Rk whose jth coordinate is .

b

ja
f d

 A continuous mapping  of an interval [a, b] into Rk is called a curve in Rk or
 is a curve on [a, b].

If  is one-to-one, then  is called an arc.

If (a) = (b), then  is called a closed curve.
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 Riemann rearrangement theorem, named after 19th-century German
mathematician Bernhard Riemann, says that if an infinite series of real numbers
is conditionally convergent, then its terms can be arranged in a permutation
so that the new series converges to an arbitrary real number or diverges.

 Let  be a conditionally convergent series. If there exists a

rearrangement of this series that tends to – then a similar argument can be
used to show that – can also be attained.

 Let  be the sequence of indexes such that each 
is positive, and define  to be the indexes such that

each  is negative (assuming that   is never 0). Each natural number

will appear in exactly one of the sequences  and 

 In fact, if  is conditionally convergent, then there is such a

rearrangement of it that the partial sums of the rearranged series form a dense
subset of .

 A series  converges if there exists a value  such that the sequence

of the partial sums

Converges to . That is, for any ε > 0, there exists an integer N such that
if n  N, then

1.12 KEY TERMS

 Riemann-Stieltjes integral: Let [a, b] be a given interval. A partition P of
[a, b] is a finite set of points x

0
, x

1
, x

2
,..., x

n
 such that,

a = x
0
  x

1
  x

2
  .......... x

n
 = b.

 Integration and differentiation theorem: Let f  R on [a, b](i.e., f is
Riemann-integrable on [a, b]).

For a  x  b, define F(x) = ( ) .
x

a
f t dt

Then F is continuous on [a, b].

 Fundamental theorem of calculus: If f is bounded and integrable on
[a, b] and there exists a function F such that F = f on [a, b], then

( ) – ( ).
b

a
f dx F b F a
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 Integration of vector valued functions: Let f
1
, f

2
, ........, f

k
 be real valued

functions on [a, b].

Let f = (f
1
, f

2
, ......, f

k
) be the corresponding mapping of [a, b] onto Rk.

 Rectifiable curves: A continuous mapping g of an interval [a, b] into Rk is
called a curve in Rk or g is a curve on [a, b].

If  is one-to-one, then  is called an arc.

If (a) = (b), then  is called a closed curve.

 Riemann’s theorem: Riemann rearrangement theorem, named after 19th-
century German mathematician Bernhard Riemann, says that if an infinite
series of real numbers is conditionally convergent, then its terms can be
arranged in a permutation so that the new series converges to an arbitrary
real number or diverges.

1.13 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Why is the Riemann-Stieltjes integral used?

2. Define the integration and differentiation theorems.

3. State the fundamental theorem of calculus.

4. Define the integration of vector valued functions.

5. What are on the rectifiable curves?

6. Define the rearrangements of terms of a series.

7. State the Riemann’s theorem.

Long-Answer Questions

1. Briefly discuss the Riemann-Stieltjes integral giving appropriate examples.

2. Discuss the significance of the integration and differentiation theorems in
real analysis.

3. Explain in detail about the fundamental theorem of calculus with the help of
theorems and proofs.

4. Discuss the integration of vector valued functions with the help of theorems
and proofs.

5. Explain the rectifiable curves with the help of theorems and examples.

6. Briefly explain the concept of rearrangements of terms of a series giving
relevant theorems, proofs and exampels.

7. State and prove the Riemann’s theorem.

8. Evaluate the following using the fundamental theorem of culculus:

 2 2

2
4t dt
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UNIT 2 SEQUENCES AND
SERIES OF FUNCTIONS

Structure

2.0 Introduction
2.1 Objectives
2.2 Sequence
2.3 Series
2.4 Pointwise and Uniform Convergence
2.5 Cauchy Criterion for Uniform Convergence
2.6 Weierstrass’s M-Test
2.7 Abel’s Test for Uniform Convergence
2.8 Dirichlet’s Test for Uniform Convergence
2.9 Uniform Convergence and Continuity

2.10 Uniform Convergence and Riemann-Stieltjes Integration
2.11 Uniform Convergence and Differentiation
2.12 Weierstrass Approximation Theorem
2.13 Power Series
2.14 Uniqueness Theorem for Power Series
2.15 Abel’s Theorem
2.16 Tauber’s Theorem
2.17 Answers to ‘Check Your Progress’
2.18 Summary
2.19 Key Terms
2.20 Self Assessment Questions and Exercises
2.21 Further Reading

2.0 INTRODUCTION

In real analysis, a sequence is an enumerated collection of objects in which
repetitions are allowed and order matters. Like a set, it contains members, also
called elements, or terms. The number of elements (possibly infinite) is called the
length of the sequence. Unlike a set, the same elements can appear multiple times
at different positions in a sequence, and unlike a set, the order does matter. Formally,
a sequence can be defined as a function from natural numbers, the positions of
elements in the sequence, to the elements at each position. The notion of a sequence
can be generalized to an indexed family typically defined as a function from an
index set that may not be numbers to another set of elements.

A sequence can be thought of as a list of elements with a particular order.
Sequences are considered significant in a number of mathematical disciplines for
studying functions, spaces, and other mathematical structures using the convergence
properties of sequences. In particular, sequences are the basis for series, which
are important in differential equations and analysis. Multiple sequences can be
considered simultaneously using different variables. sometimes the elements of the
sequence are naturally related to a sequence are naturally related to a sequence of
integers whose pattern can be inferred easily.
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In real analysis, a series is, roughly speaking, a description of the operation
of adding infinitely many quantities, one after the other, to a given starting quantity.
The study of series is a key part of calculus and its generalization for mathematical
analysis. Series are used in most areas of mathematics, even for studying finite
structures (such as, in combinatorics) through generating functions. In addition to
their ubiquity in mathematics, infinite series are also widely used in other quantitative
disciplines, such as physics, computer science, statistics and finance.

As for sequences of functions, and unlike for series of numbers, there exist
many types of convergence for a function series, such as uniform convergence,
point wise convergence, almost everywhere convergence, etc. The Weierstrass
M-test is a useful result in studying convergence of function series.

In this unit, you will study about the sequence and series of functions, point-
wise and uniform convergence, Cauchy criterion for uniform convergence,
Weierstrass’s M test, Abel’s and Dirichlet’s tests for uniform convergence, uniform
convergence and continuity, uniform convergence and Riemann-Stieltjes
Integration, uniform convergence and differentiation, Weierstrass approximation
theorem, power series, uniqueness theorem for power series, Abel’s and Tauber’s
theorems.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Define sequence and series

 Understand pointwise and uniform convergence

 Explain Cauchy criterion for uniform convergence

 Analyse the Weierstrass’s M-test

 Discuss about the Abel’s test and Dirichlet’s test for uniform convergence

 Explain uniform convergence in context with continuity

 Know the significance of Riemann-Stieltjes integration and differentiation

 State Weierstrass approximation theorem

 Define power series

 Discuss uniqueness theorem for power series

 Explain Abel’s theorem and Tauber’s theorem

2.2 SEQUENCE

A sequence is a function whose domain is the set of natural numbers. If the
codomain is the set  of real numbers, it is called a real sequence; if it is the set 
of complex numbers, it is called a complex sequence and likewise if it is a set of
polynomials, it is a sequence of polynomials.

The image of the numbers 1, 2, 3, ... are called the first, second, third terms
of the sequence, respectively.
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Thus a real sequence can be conceived as a collection of numbers so that to
every natural number there is a unique member of that collection. If the natural
number is n, the corresponding number is denoted by xn or yn or zn or un etc., and
is called the nth term of the sequence. The sequence is denoted by {xn}.

Thus xn = 1

n
 is a sequence whose 1st, 2nd, 3rd terms are respectively 1,

1

2
, 1

3
. This sequence is called the harmonic sequence.

Another example of a sequence is yn = (– 1)n. The first few terms of the
sequence are {– 1, 1, – 1, 1, ...}.

The sequence Zn = 5 is also a sequence, each of its term being 5. Such a
sequence is called a constant sequence.

Bounded and Unbounded Sequences

A sequence {xn} is said to be bounded above if all its terms are less than or equal
to a real number, i.e., there exists K   such that xn  K for all n  .

As for example, the sequence 
1

n
 
 
 

 is bounded above since 1

n
 1for all

n  , the sequence 
5 1

2 2

n

n

 
 

 
 is bounded above since 

5 1

3 2

n

n




  3 for all n, but

the sequence  {n2} is not bounded above since there exists no such real number
K so that n2  K for all n. In fact it is easy to observe that for every real number K
there is an n such that n2 > K. Such a sequence as above is called an unbounded
sequence.

A sequence {xn} is said to be bounded below if all its terms are greater
than or equal to a real number, i.e., there exists K   such that xn  k for all

n  . The sequence 
1

n
 
 
 

 is bounded below since 1
0

n
  for all n. The sequence

5 1

3 2

n

n

 
 

 
 is also bounded below since 

5 1
0

3 2

n

n





 for all n. The sequence

{(–1)n5} is bounded below since (–1)n5  – 5 for all n  , but the sequence
{(– 2)n}is not bounded below since there is no such real number k for which
k  (– 2)n. Indeed, if K is a negative real number, there always exists, an (odd)
integer n such that (– 2)n < k.

A sequence is said to be bounded if it is bounded both above and below,
i.e., if there exist K, k   such that k  xn  K for all n  N.

The numbers K and k are called, respectively, an upper bound and a lower
bound of the sequence {xn}. Note that if a sequence {xn} has an upper bound, it
has many upper bounds; similarly if a sequence {xn} has a lower bound, it has

many lower bounds. For example, for the sequence 
1

1
n

n

        
, just as 3 is an

upper bound, any real number greater than 3 is also an upper bound.



Sequences and Series
of Functions

NOTES

Self - Learning
38 Material

Monotone Sequence

A sequence {xn} is said to be monotone increasing if xn  xn + 1 for every n  ;
the sequence is called strictly increasing if xn < xn + 1 for every n  .  Clearly
the sequence {n2} is monotone (strictly) increasing since n2  (n + 1)2 always.
The sequence {(– 2)n} is not monotone increasing since (– 2)2   (– 2)3.

A sequence {xn} is said to be monotone decreasing if xn + 1  xn for every
n  ; the sequence is called strictly decreasing if xn + 1 < xn for every n  .

The sequence 
2

1

1n

  
 

  
 is monotone (strictly) decreasing as 

2 2

1 1

( 1) 1 1n n


  
for every n. The sequence {– n3} is strictly decreasing as

–(n + 1)3 < – n3 but the sequence 
1

2

n
   

 is not monotone or strictly decreasing

as 
4 31 1

2 2
           

.

Convergent Sequence

A very natural inquiry about a sequence {xn} is whether the terms xn come close
to any real number when n is very very large. This is what is known as the
convergence of a sequence.

Definition: A sequence {xn} is said to converge to a real number l if for every
 > 0, there exists n0   such that,

| xn – l | <  for every n  n0

The number l is called limit of the sequence {xn}.

The fact that {xn} converges to l is expressed symbolically by lim n
n

x


 = l.

A sequence {xn} is called convergent if it converges to a limit l.

A sequence which converges to zero is called a null sequence.

The following facts follow readily from the definition:

Fact 1 : A sequence may or may not converge.

Fact 2 : If a sequence is convergent, it converges to a unique limit, i.e., it
cannot converge to two different limits.

Fact 3 : Every convergent sequence is always bounded, but not conversely.

Proof: Let {xn} be a convergent sequence with limit l. Then for a given
 (> 0) = l, say, there exists a positive integer n0 such that,

| xn – l| < l  for all    n  n0

i.e., l – 1 < xn < l + 1 for all    n  n0

Fact 4 : A monotone increasing sequence bounded above is always
convergent and converges to its Least Upper Bound (LUB).

Fact 5 : A monotone decreasing sequence bounded below is always
convergent and converges to its Greatest Lower Bound (GLB).
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Fact 6 : Every constant sequence is convergent.

Let L = min {x1, x2, ..., xn0
, | l | – 1}  

And U = max {x1, x2, ..., xn0
, | l | +  1}   

Then L < xn < U for all n.

Hence, {xn} is a bounded sequence.

But the converse of this theorem is not true.

For example, the sequence {1 + (–1)n} is bounded but it does not converges
to any finite limit. If the sequence is {0, 2, 0, 2,....} then its lower bound is 0 and
upper bound is 2.

Cauchy's Criterion of Convergence

Since proof of convergence of a sequence requires determination of the limit,
proving convergence is not always easy. Cauchy therefore provided an alternative
way to prove convergence of a sequence, called Cauchy's criterion which avoids
the determination of the limit. This may be stated as follows:

A sequence {xn} is convergent iff, for every  > 0, there exists n0  ,
usually depending on , such that

| xm – xn | <  for all m, n  n0.

Or equivalently, | xn + p – xn | <  for all n  n0, p = 0, 1, 2, 3, ...

The sequence 
1

n
 
 
 

 is convergent since,

1 1

n p n
  



If
( )

p

n n p
 



i.e., if 1

n
  , i.e., if n > 1


, i.e., if n  n0 = 

1
1

    
 

Examine and prove that, n  
1 
  

 + 1  n > 1


  1

n
    

( )

p

n n p
 <  

1 1

n p n
  



Example 2.1: Show that the sequence {xn} is convergent when,

xn = 1 1 1
1 ...

2! 3! !n
   

Solution: Examine and prove that,

1

!n
= 1 1

1.2.3. . 2.2. .2n


 
 = 1

1

2n

For m > n

| |m nx x = 
1 1

1 1 1 1 1 1
... ...

( 1)! ( 2)! ! 2 2 2n n mn n m        
 

= 1 1 1
1 ...

22 2n m n
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= 

11
1

1 12
. . 2

12 21
2

m n

n n

 
    




 = 1

1

2n   

 0 as n  
Hence {xn} is convergent.

Algebra of Limits

The followng result is of immense importance in evaluation of limits.

Theorem 2.1: If lim n
n

x


 = l and lim n
n

y


 = m, then

(i) lim{ }n n
n

x y


  = lim limn n
n n

x y
 

  = l + m.

(ii) lim{ }n n
n

x y


  = lim limn n
n n

x y
 

  = l – m.

(iii) lim{ }n n
n

x y


 = lim limn n
n n

x y
 

 = l . m

(iv) lim n

n n

x

y
 = 

lim

lim

n
n

n
n

x

y




 = l

m
if m  0, provided the above limits exist.

Another result plays a dominant role in many situations. This is the so called
sandwich theorem stated as follows:

Theorem 2.2: (a) If xn < yn for all n  , then lim limn n
x x

x y
 

 .

(b) If xn < yn < zn and lim n
n

x


 = lim n
n

z


 = l, then lim n
n

y


 = l.

The proofs of the above theorems are outside the scope of this text.

Example 2.2: Show that the sequence 
2 3

3 2

n

n

 
 

 
 is convergent.

Solution: Since – 4 < 9, 6n – 4 < 6n + 9.

Or 2(3n – 2) < 3(2n + 3)

Or
2 3 2

3 2 3

n

n






Hence, the sequence 
2 3

3 2

n

n

 
 

 
 is bounded below..

Further taking, xn= 
2 3

3 2

n

n




, we observe

xn – xn + 1 = 
2 3 2( 1) 3

3 2 3( 1) 2

n n

n n

  


  

= 
(2 3) (3 1) (2 5) (3 2)

(3 2) (3 1)

n n n n

n n

    
 

= 
2 26 11 3 6 11 10

(3 2) (3 1)

n n n n

n n

    
 

 = 
13

0
(3 2) (3 1)n n


 

for all n
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i.e., xn + 1  xn for all n.

Thus, 
2 3

3 2

n

n

 
 

 
 being monotone decreasing and bounded below is

convergent.

Divergent and Oscillatory Sequences

A sequence may be such that its terms become successively larger and larger,
ultimately exceeding any big number. Such a sequence is said to diverge to
+ . On the other hand, a sequence may have decreasing terms so that ultimately
it becomes smaller than any negative but numerically large real number. Such a
sequence is said to diverge to – . Such sequences are also possible the terms of
which do not approach any definite real number nor do exceed any large positive
real number or recede any arbitrary negative number. These are nothing but
oscillatory sequences. The formal definitions go as follows:

Definition: A sequence {xn} is said to diverge to +  if for every large G > 0,
there exists n0   such that,

xn  G for all n  n0.

The fact {xn} diverges to  is expressed symbolically by lim n
n

x


 = 

A sequence {xn} is said to diverge to –  if for every large G > 0, there
exists n0   such that,

xn  – G for all n  n0.

This is expressed symbolically by lim n
n

x


 = – .

A non-constant sequence which is bounded and not convergent is a finitely
oscillatory sequence and a non-constant sequence which is unbounded and not
convergent is an infinitely oscillatory sequence.

For example, the sequence xn = 5 – (– 1)n 2 is a finitely oscillatory sequence
but the sequence yn = (– 2)n is an infinitely oscillatory sequence.

Theorem 2.3: If {xn} be a sequence such that 1lim n

n n

x
l

x



  where 0  l < 1, then

the sequence {xn}is a null sequence, i.e., lim n
n

x


 = 0.

Proof: Beyond the scope of this book.

Example 2.3: Prove that lim
n

n

x

n
 = 0 for every real value of x.

Solution: Here, xn = 
1

1
( )

and
1

n n

n
x x

x
n n



 



1

1

1 1

n
n

n
n

x x n x

x n nx


   

 
 = 

| |
0

1

x

n
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As n  for all real value of x.

 1lim 0n

n n

x

x





Hence, lim 0
n

n

x

n
 .

Example 2.4: Prove that lim 0
n

n

x
n
 if | x | < 1.

Solution: Here, xn = 
nx

n
  and  xn+1 = 

1

1

nx
n





    
1

1 | |
1 1 1

n
n

n
n

x x n nx n
x

x n n nx


    

  

= 
1

| | | | as
1

1
x x n

n

 


 lim 0
n

n

x
n
 if |x| < 1.

When x = 1, the given sequence is a harmonic sequence which converges to zero

as n  and when x = – 1, the given sequence is ( 1)n

n
  which converges to zero

as n .

Hence, lim 0
n

n

x
n
  for |x| < 1.

2.3 SERIES

An expression of the form,

u
1
 + u

2
 + u

3
 + ... + u

n
 + ...

in which every term is followed by another according to some definite rule is
called a series. If it contains finite number of terms, then it is called a finite series.
If the number of terms is not finite, it is called an infinite series. Such a series is
conveniently denoted by,

1
n

n

u



  or simply by nu .

The sum of the first n terms of this series is denoted by S
n
 where S

n 
= u

1
 +

u
2
 + ... + u

n
) and is called the nth partial sum of the series. Now, we consider the

following cases:

(i) If S
n
  S (a finite value) as n  , then the series u

n
 is said to be

convergent and S is called its sum.

(ii) If S
n
  ±  as n  , then the series u

n
 is called a divergent series.
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(iii) If S
n
 oscillates (finitely or infinitely) as n  , the series u

n
 is said to be

oscillatory.

A divergent or oscillatory series is called non-convergent.

The infinite series u
n
 is said to converge to S, if  for every arbitrary small

positive number , there exists a positive integer m depending on  such that,

| S
n
 – S | <  for all n  m.

(i) The series 
1 1 1 1

... ...
1.2 2.3 3.4 ( 1)n n

    


 is convergent.

Since S
n

=
1 1 1 1

...
1.2 2.3 3.4 ( 1)n n

   


= 1 1 1 1 1
1

2 2 3 3 4
              
     

 1 1
...

1n n

 
    

= 1
1

1n

 
  

  1 as n  

Hence S = 1.

(ii) The series 1 + 2 + 3 + 4 + ... + n + ... diverges to + 
(iii) The series 1 – 1 + 1 – 1 + 1 – 1 + ... , oscillates finitely and the series

1 – 2 + 3 – 4 + ... oscillates infinitely.

Note that the nature of a series is determined by the nature of the sequence
of its nth partial sum.

Two Important Series

1. The Geometric Series: The infinite geometric series,

a + ax + ax2 + ax3 + ... + axn–1 + ... (a > 0) is

(i) Convergent if the common ratio x lies between – 1 and 1 (i.e., –1 < x < 1),

and the sum of the series is 
1

a

x
.

(ii) Divergent (to + ) if x  1.

(iii) Oscillates finitely if x = –1 and oscillates infinitely if x < –1.

Proof: The nth partial sum of the given series is,

S
n
 = a + ax + ax2 + ... + axn–1

=
1

1

nx
a

x




 (x  1)

(i) If | x | < 1, then xn  0 as n 

 S
n
  

(1 )

a

x
 as n .

(ii) If x > 1, then xn   as n  and then S
n
  as n . Hence, the

geometric series diverges to +  if x > 1.

When x = 1, the series becomes a + a + a + a +...

And S
n
 = a + a + ... + a = na as n  

 The series diverges to + .



Sequences and Series
of Functions

NOTES

Self - Learning
44 Material

(iii) If x < –1, xn oscillates infinitely between  –  and + 

If x = –1, then the series becomes a – a + a – a + a – a ...

And S
n

=
if is odd

if is even

a n

o n





 The series oscillates finitely.

2. The p-Series: The infinite series,

1

1
p

n n




  = 

1 1 1 1
... ...

1 2 3p p p pn
    

(i) Converges if p > 1.

(ii) Diverges if p  1.

Proof: (i) p > 1. We consider the partial sum of order 2n – 1 where n is a positive
integer.

2 1nS
 = 1 1 1 1 1 1 1 1 1

1 ...
2 3 4 5 6 7 8 9 15p p p p p p p p p

                        

1 1

1 1 1
... ...

(2 ) (2 1) (2 1)n p n p n p 

       
   

 1

1 1 1 1 1 1 1 1 1
...

2 2 4 4 4 4 8 8 8p p p p p p p p p

                       

+ ... 1 1 1

1 1 1
...

(2 ) (2 ) (2 )n p n p n p  

      
  

= 1
1

2 1 1 1
1 4. 8. ... 2

2 4 8 (2 )
n

p p p n p



    

= 1 1 2 1 3 1 1

1 1 1 1
1 ...

2 (2 ) (2 ) (2 )p p p p n    
    

= 
1

1 1

1
1

12
1 1

1 1
2 2

n

p

p p



 

    


 
 < k (Constant) for all n (say)

Now for any positive integer m, there exists a positive integer n such that
2n – 1 > m.

 {S
m
} is clearly monotonically increasing ( All Terms are Positive)

 S
m
 < 2 1nS

  < k  m

 {S
m
} is monotonically increasing and bounded above.

Hence the series 
1

1
p

m m




  is convergent.

(ii) p  1. Here, we prove that 
1

1
p

m m




  diverges.

Now when p  1, np  n where n is positive integer.
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We consider the partial sum of order 2n.

 2nS = 1 1 1 1 1 1 1
1 ...

2 3 4 5 6 7 8p p p p p p p

                

1 1

1 1 1 1
... 1

2(2 1) (2 2) (2 )n p n p n p 

                

1 1 1 1 1 1
...

3 4 5 6 7 8
                

1 1

1 1 1
...

2 1 2 2 2n n n 

 
   

  

1 1
p nn

  
 


1 1 1 1 1 1 1
1 ...

2 4 4 8 8 8 8
                  
     

1 1 1
...

2 2 2n n n

     
 

= 11 1 1 1
1 2. 4. ... 2 .

2 4 8 2
n

n
    

= 1 1 1 1
1 ...

2 2 2 2
      = 1

2

n



2

1
2

n
n

S  

 Thus, for an arbitrary G > 0, 2nS G  whenever 1
2

n
G 

i.e.,  n > 2 G – 2.

Thus, the partial sums  are monotonically increasing.

If m > 2n, then S
m
 > 2nS G for all m > 22 G – 2

 The sequence of partial sums {S
m
} is monotonically increasing and

unbounded above and hence converges to +  as n .

Hence, the series 
1

pm
  diverges to +  when p  1.

Cauchy's General Principle of Convergence
Statement: A necessary and sufficient condition for the convergence of an infinite

series 
1

n
n

u



  is that for every positive number , however small, there exists a

positive integer n
0
, which depends on , such that,

| u
n+1

 + u
n+2

 + ... + u
m

| <  for all m  n  n
0

Note: If 
1

n
n

u



  converges then lim

n
 u

n
 = 0.

Applications of Cauchy's Principle

Example 2.5: Prove, by using Cauchy's criterion that the series,

1

1

!n n




  =

1 1 1 1 1
1 ... ...

1 2 3 4 n
        converges.
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Solution:Here 
1

1n p

k n k



 
  = 

1 1 1 1
...

1 2 3n n n n p
   

   
for p  1.

< 1 1

1 1 1
...

2 2 2n n n p    

1 1 1

( 1) ( ) ( 1)...4.3.2.1 2.2... : 2.2 2nn n n

 
    



=
2 1

1 1 1 1
1 ...

22 2 2n p
     
 

=

1
1

1 2
12 1
2

p

n

   
 


 < 

1
1

2 1
2

n   
 

 for all p  1


1

1n p

k n k



 
  < 2 . 

1

2n for all p  1.

 1

2

n
 
 
 

  0 as n ,

Then for each  > 0, there exists a positive integer n
0
 which depends on  for

which 1
2

2

n
 
 
 

 <  if n > n
0 
.

 
1

1n p

k n k



 
  <  for n > n

0
 and p  1

Hence, by the Cauchy's principle, the given series is convergent.

Tests of Convergence and Divergence

Result (1): If u
n
 be a convergent series of positive terms, then it necessarily

follows that lim
n

 u
n
 = 0.

Result (2): If u
n
 is a convergent series of positive and decreasing terms, then it

necessarily follows that lim
n  nu

n
 = 0.

1.  Comparison Test

Let u
n
 and v

n
 be two infinite series of positive terms. If lim

n
 n

n

u

v
 = k, a non

zero finite quantity, then the series are both convergent or both divergent. If lim n

n n

u

v

= non zero finite quantity, then if v
n
 is convergent, u

n
 is convergent and if v

n
 is

divergent, u
n
 is divergent.

Example 2.6: Test the convergence of the series whose nth term is 2 1n n  .

Solution: Here, u
n
 = 2 1n   – n and we take v

n
 = 

1

n
.
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 n

n

u

v
 =  2 1n n n   = 

 2 2

2

1

1

n n n

n n

 

 
 = 

2

1

1
1 1

n

 
   

 1

2
 as n  

Since, lim
n

 n

n

u

v
 = 1

2
 and v

n
 = 

1

n  is divergent, thus by the comparison

test u
n
 is divergent.

2.  Cauchy's Root Test

Let u
n
 be a series of positive terms and,

1

lim ( )n
n

n
u


 = l

(i) If l < 1, then u
n
 is convergent.

(ii) If l > 1, then u
n
 is divergent.

(iii) If l = 1, then the test fails.

Example 2.7: Test the convergence of the series,

2 3
1 2 3

... ...
3 5 7 2 1

n
n

n

                  

Solution: Here,    u
n
= 

2 1

n
n

n

 
  


1

( )n
nu = 

2 1

n

n 


1

lim ( )n
n

n
u


= lim

2 1n

n

n 
 = 1

lim
1

2n

n
 

 = 1
1

2


Hence, by the Cauchy's root test the given series is convergent.

3. D’Alembert's Ratio Test

Let u
n
 be a series of positive terms and 1lim n

n n

u

u



 = l

(i) If l < 1, then u
n
 is convergent.

(ii) If l > 1, then u
n
 is divergent.

(iii) If l = 1, then the test fails.

Example 2.8: Prove  that the series  
2 3 4

... ( 0)
2 3 4

x x x
x x      is convergent if

0  x < 1 and divergent if x > 1.

Solution: Here,  u
n

= 
nx

n
 and u

n+1
 = 

1

1

nx

n





 1n

n

u

u
 = 

1

1

n

n

x n

n x





 = 

1
1

x

n
  
 

  x as n 
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If 0 < x < 1, then 
1lim n

n n

u

u


  < 1, and the series is convergent.

If x > 1, then 
1lim n

n n

u

u


  > 1, and the series is divergent.

And if x = 1, then the D’Alembert’s ratio test does not give any definite
conclusion.

But when x = 1, the given series becomes a divergent harmonic series,

1 1 1 1
1 ... ...

2 3 4 n
     

 The series is convergent if 0  x < 1 and divergent if x  1.

4. Raabe's Test

Let u
n
 be a series of positive terms and,

 
1

lim 1n

n n

u
n

u 

     
   

 = l or lim
n

 R
n
 = l where R

n
 = 

1
1n

n

u
n

u 

 
 

 

If l < 1, then u
n
 is divergent.

If l > 1, then u
n
 is convergent.

If l = 1, then the test fails.

Remember that when D’Alembert’s ratio test fails, we normally apply
Raabe's test.

Example 2.9: Prove that the series,
1 1 1. 3 1 1. 3 . 5 1

1 . . . ...
2 3 2 . 4 5 2 . 4 . 6 7

     to , converges.

Solution: Here, u
n

=
1. 3 . 5 ... (2 1)

2 . 4 . 6 ... 2

n

n


 

1

2 1n 

u
n+1

=
1. 3 . 5 ... (2 1) (2 1)

2 . 4 . 6 ... (2 ) (2 2)

n n

n n

 


 
1

2 3n 

Now,   1n

n

u

u
 = 

(2 1) (2 1)

2( 1) (2 3)

n n

n n

 
 

 = 

1 1
1 1

2 2
1 3

1 1
2

n n

n n

          
          

  1 as n 

Hence, D’Alembert’s ratio test fails. So we consider the Raabe's sequence {R
n
},

where

R
n

= 
1

1n

n

u
n

u 

 
 

 
 = 

2( 1) (2 3)
1

(2 1) (2 1)

n n
n

n n

  
 

  

=
2 2

2

4 10 6 4 4 1

(2 1)

n n n n
n

n

     
   

 = n 
2

6 5

(2 1)

n

n





= 2

5
6

1
2

n

n



  
 



Sequences and Series
of Functions

NOTES

Self - Learning
Material 49

 lim
n

 R
n

= lim
n

 2

5
6

1
2

n

n



  
 

 = 6

4
 = 3

2
 > 1

Hence, by the Raabe's test the given series is convergent.

5. Logarithmic Test

Let u
n
 be a series of positive terms and,

lim
n

 
1

log n

n

u
n

u 

   
  
   

 = l.

If l < 1, then u
n
 is divergent.

If l > 1, then u
n
 is convergent.

If l = 1, then the test fails.

Example 2.10: Test the convergence of the series,

2 2 3 3 4 42 3 4
...

2 3 4

x x x
x    

Solution: Here, u
n
 = 

n nn x

n
 and u

n+1
 = 

1 1( 1)

1

n nn x

n

 


 1n

n

u

u
 =

1 1( 1)

1

n n

n n

n x n

n n x

 



 = 

1( 1)

( 1)

n

n

n n

n n n





 x

= 1
1

n

x
n

  
 

 1
lim 1

n

n
x

n

  
 

= ex

Hence, by the D’Alembert’s ratio test, the series is convergent if

ex < 1, i.e., x < 
1

e
 and divergent if ex > 1, i.e., x > 

1

e
 and the test fails when

x = 
1

e
. We apply the logarithmic test for x = 

1

e
.


1

log n

n

u

u 

 
 
 

= 1
log log 1

n

e
n

   
 

= 1
log log 1e n

n
   
 

= 2 3

1 1 1
1 ...

2 3
n

n n n

     
 

= 2

1 1
...

2 3n n

   
 


1

log n

n

u
n

u 

 
 
 

= 
1 1

...
2 3n
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 lim
n

 
1

log n

n

u
n

u 

 
 
 

 = 1
1

2


Thus, the series is divergent when x = 
1

e
.

Hence, the series is convergent if x < 
1

e
 and divergent if x  

1

e
.

6.  Gauss’ Test

Let u
n
 be a series of positive terms and we can express 

1

n

n

u

u 
 in the form

1 ( 1)n
p

a
p

n n


   ,

i.e., 
1

n

n

u

u 
 = 1 ( 1)n

p

a
p

n n


  

Where {
n
) is a bounded sequence. It will be sufficient if {

n
} is a convergent

sequence because it will be necessarily bounded. Then,

(i) u
n
 converges if a > 1.

(ii) u
n
 diverges if a  1.

Note: When D’Alembert's ratio test fails, one may try Gauss’ test, without going
through other tests.

Example 2.11: Test the convergence of the series 
2

2 . 4 . 6 .8 ... 2

3 . 5 . 7 . 9 ... (2 1)

 
 

 
 n

n
.

Solution: Here, u
n
 = 

2
2 . 4 . 6 . 8 ... 2

3 . 5 . 7 . 9 ... (2 1)

n

n

 
 

 

And u
n+1

= 
2

2 . 4 . 6 . 8 ... 2 (2 2)

3 . 5 . 7 . 9 ... (2 1) (2 3)

n n

n n

 
 

  


1

n

n

u

u 
= 

2
2 3

2 2

n

n

 
  

 = 
2

1
1

2 2n

 
  

= 2

1
1 n

n n


   where 

n
 = 2

2

1 2 1

2 2(2 2)
n

n nn

 
  

  

Now, 
n

= 2
2

1 1 1

14( 1)
n

n nn

 
  

  

= 2
2

1 1

( 1)4( 1)
n

n nn

 
 

  

= 2
2

4( 1)

4( 1)

n n
n

n n

  
 

  
 = 2

2

3 4

4( 1)

n
n

n n

  
 

  

= 2

4
3

1
4 1

n

n

 

  
 

  
3

4
  as n 
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 Hence, {
n
} converges and hence is bounded.

 By the Gauss’ test, the given series is divergent because a = 1.

7.  De Morgan's and Bertrand's Test

Let u
n
 be a series of positive terms and lim

n
 

n
 = l, where 

n
 = (R

n
 – 1)

log n and R
n
 = 

1

1n

n

u

u 
 .

If l < 1, then u
n
 is divergent.

If l > 1, then u
n
 is convergent.

If l = 1, then the test fails.

Example 2.12: Test the convergence of the series

2 2 2 2 2 2 2 2 2 2
2 1

2 2 2 2 2 2 2 2 2 2

1 1 . 3 1 . 3 . 5 1 . 3 . 5 ... (2 1)
... ... to

2 2 . 4 2 . 4 . 6 2 . 4 . 6 ... (2 )
nx n

x x
n


      .

Solution: Here, u
n
 = 

2 2 2 2
1

2 2 2 2

1 . 3 . 5 ... (2 1)

2 . 4 . 6 ... (2 )
nn

x
n



And u
n+1

= 
2 2 2 2 2

2 2 2 2 2

1 . 3 . 5 ... (2 1) (2 1)

2 . 4 . 6 ... (2 ) (2 2)
nn n

x
n n

 



 1n

n

u

u
 = 

2

2

(2 1)

(2 2)

n
x

n




 = 

2

2

1
1

2

2
1

2

n

n

   

   

 x  x as n 

Hence, by the D’Alembert's ratio test, u
n
 converges if 0 < x < 1 and

diverges if x > 1. If x = 1, then the test fails.

When x = 1, we consider Raabe's sequence {R
n
} where R

n
 = 

1

1n

n

u
n

u 

 
 

 
.

 R
n
 = 

2

2

(2 2)
1

(2 1)

n
n

n

 
   

 = 
2 2

2

4 8 4 4 4 1

(2 1)

n n n n
n

n

      
 

  

=
2

(4 3)

(2 1)

n n

n




 = 

2

2
2

3
4 1

4

1
4 1

2

n
n

n
n

  
 

  
 

 = 2

3
1

4

1
1

2

n

n

  
 

  
 

  1 as n 

 Raabe's test also does not gives any conclusion if x = 1.

We next try, D’Morgan’s and Bertrand's test.

Now, B
n

= log n (R
n
 – 1)

=
2

2

4 3
1 log

(2 1)

n n
n

n

 
   

=
2 2

2

4 3 4 4 1
log

(2 1)

n n n n
n

n
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=
2

1
log

(2 1)

n
n

n

 


 = 

log n

n
  2

1
1

1
2

n

n

  
 

  
 

 0 as n  
log

lim 0
n

n

n

  
 


Since B
n
  0 as n  for x = 1, hence u

n
 is divergent for x = 1

( B
n
 = 0 < 1).

 The given series is convergent for 0 < x < 1 and divergent for x  1.

8.  Alternative Bertrand's Test

Let u
n
 be a series of positive terms and 

1

lim log 1n

n n

u
n

u 

 
 

 
 log n = l, then the

given series u
n
 is convergent if l > 1 and u

n
 is divergent if l < 1.

Example 2.13: Test the convergence or divergence of the series,

1 1. 3 1. 3 . 5
1 ...

2 2 . 4 2 . 4 . 6

p pp
p            

     

Solution: Here, u
n

= 1. 3 . 5 ... (2 1)

2 . 4 . 6 ... 2

p
n

n

 
 
 

u
n+1

= 1. 3 . 5 ... (2 1) (2 1)

2 . 4 . 6 ... (2 ) (2 2)

p
n n

n n

  
 

 

 1n

n

u

u
 = 2 1

2 2

p
n

n

 
  

 = 

1
1

2
1

1

p

n

n

      
 
      

  1 as n 

So D’Alembert's ratio test does not give any conclusion.

Now n log 
1

n

n

u

u 
= 2 2

log
2 1

p
n

n
n

   
     

=

1
1

log
1

1
2

p

n
n

n

      
 
      

= 1 1
log 1 log 1

2
pn

n n

              

=
2 3

1 1 1 1 1
. . ...

2 3
n p

n n n

    
 

2 3

1 1 1 1 1
. . ...

2 2 34 8n n n

      
 

= 2 3

1 3 7
...

2 8 24
np

n n n
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= 2

1 3 7
...

2 8 24
p

n n

     

 lim
n

 
1

log n

n

u
n

u 
= 

2

p .

Hence, by the logarithmic test, the series u
n
 converges if 

2

p  > 1 and

diverges if 
2

p  < 1.

When 
2

p  = 1, i.e., when p = 2, the logarithmic test does not give any

conclusion.

Now we try the alternative Bertrand's test:

1

log 1 logn

n

u
n n

u 

 
 

 

= 
2

1 3 7
2 ... 1 log

2 8 24
n

n n

  
       

=
2

3 7
1 ... 1 log

4 12
n

n n

       
  

= 2

3 7 log
...

4 12

n
n

n nn

     

= 3 7 log
...

4 12

n
n

n n
     

 0  as n  log
lim 0

n

n

n

 
  



 lim
n

 
1

log 1n

n

u
n

u 

 
 

 
 log n = 0 < 1.

Hence, by the alternative form of Bertrand's test, the series u
n
 is divergent for

p = 2.

 The given series is convergent if p > 2 and divergent if p  2.

Alternating Series: A series in which the terms are alternately positive and
negative or negative and positive is called an alternating series.

Thus, 1

1

( 1)n
n

n

u






  = u
1
 – u

2
 + u

3
 – u

4
 + ...  is an alternating series.

if u
n

> 0  n.
Or if u

n
< 0  n.

Leibnitz's Test

Let the alternating series be,

1

1

( 1)n
n

n

u






  = u
1
 – u

2
 + u

3
 – u

4
 + ...
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This series converges if

(i) The sequence {u
n
} is Monotone Decreasing (M.D.).

(ii) u
n
  0 as n   i.e., lim

n
 u

n
 = 0.

Example 2.14: Test the convergence of the series,

(i) 1 1 1 1
1 ...

2 3 4 5
     (ii)

1 1 1 1
...

1 2 3 4p p p p
    , for p > 0

Solution: (i) The terms of the given series are alternately positive and negative,
so the given series is alternating series.

Here, u
n

= 
1

n
 and u

n+1
 = 

1

1n 

Now, u
n+1

 – u
n

= 
1 1

1n n



 = 

1

( 1)

n n

n n

 


 = 
1

( 1)n n



 < 0

 u
n+1

 < u
n

Hence, the sequence {u
n
} is M.D.

And lim
n

 u
n

= lim
n

 
1

n
 = 0.

 By the Leibnitz’s test the given alternating series is convergent.

(ii) The terms of the given series are alternately positive and negative. So the
given series is an alternating series.

Here, u
n

=
1
pn

 and u
n+1

 = 1

( 1) pn 

 u
n+1 

– un   = 1 1

( 1) p pn n



 = (1 )

{ ( 1)}

p p

p

n n

n n

 



=

2( 1)
1 ...

{ ( 1)}

p p

p

p p
n pn n n

n

n n

 
     
 



=

2 1( 1)
1 ...

2

{ ( 1)}

p

p

p p
pn n pn

n n

 
      


  0 for p > 0

 u
n+1

  u
n
.

So the sequence {u
n
} is monotone decreasing and lim

n
 

1
pn

 = 0 for

p > 0.

Hence, by the Leibnitz's test, the given series is convergent.

Theorem 2.4: Every absolutely convergent series is convergent.

Proof: Let the series u
n
 be absolutely convergent. Then  | u

n
| is convergent.

 By the Cauchy's general principle of convergence, for any given
 > 0, there exists a positive integer n

0
 such that

| | u
n+1

| + | u
n+2

| + ... + | u
n+p

| | <  for all n  n
0
 and for all p = 1, 2, 3 ...

i.e., | u
n+1

| + | u
n+2

| + ... + | u
n+p

| <  for all n  n
0
 and p  1
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Now, for n  n
0
 and all p = 1, 2, 3...,

| u
n+1

 + u
n+2

 + ... + u
n+p

|  | u
n+1

| + | u
n+2

| + ... + | u
n+p

| < 
Hence, by the Cauchy's general principle of convergence, the series u

n
 is

convergent.

2.4 POINTWISE AND UNIFORM
CONVERGENCE

Definition: Suppose f
n
n = 1, 2, 3, …. is a sequence of functions defined on

a set S and suppose that the sequence of numbers f
n
xconverges for every

x  S. We can then define a function  f  by Sxxfxf n
n




),(lim)( .

Under these circumstances we say that f
n
converges to f pointwise on S

and that f is the limit or the limit function of f
n


Note: A sequence f
n
of functions is said to converge pointwise on a set S to a

limit function f, if for each x  S and for each  0 there exists an N depending
on x and  such that,

f
n
(x)  f(x) for all n N.

Uniform Convergence

A sequence of real valued functions f
n
 defined on a set S is said to converge

uniformly to a real valued function f on S if for > 0 m N such that,

| f
n
 (x) – f(x)| < n m and x S

If f
n
is not uniformly convergent on S but it is convergent for each x S

then f
n
is said to be pointwise convergent on S. Evidently, uniform convergence

of f
n
 to f on a set S implies that f

n
also converges pointwise to f on S. But the

converse is not true.

Note that if f
n
(x) converges pointwise to f(x) on a set S then, if f

n
(x) is

convergent uniformly on S, it converges uniformly to f(x) on S.

Also note that if on S, |f
n
(x) – f(x)| < M

n
, where M

n
 is independent of x and

if M
n
 0, then f

n
(x) f(x) uniformly on S.

In the sense of usual convergence the natural number m involved in the
definition depends upon the number  and on x. In uniform convergence m
essentially depends on only. Keeping in view this fact, various developments
regarding convergence provide theory for uniform convergence.

Note that the pointwise convergence is a local property whereas the uniform
convergence is a global property.

Example 2.15: The sqeuence xn converges uniformly to 0 on [0, a], where
0 < a < 1, but not on [0, 1).

Solution: For > 0, let m > log  / log a, where 0 < a < 1. So that x [0, a] and
n  m implies that,

|xn – 0| an am < a log / log a = 
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Hence xnconverges uniformly to 0 on [0, a], where 0 < a < 1.

On [0, 1) xn 

If possible, suppose xn converges uniformly to 0 on [0, 1). Then for 
1

8
 m N, such that

   |xn – 0| < 
1

8
 n m and  x [0, 1)

 
1 1

1
8

n

n m
n

     
 

 taking 
1

1 0,1),  x
n

as n 

 e–1  
1

8
, a Contradiction.

Thus, xndoes not converge uniformly on [0, 1).

Example 2.16: If P
0
(x) = 0 and P

n
(x) be the sequence of polynomials defined

by,

2

1

( )
( ) ( )

2

r
n

n n

x P x
P x P x


 

For n = 0, 1, 2, ... then P
n
(x) converges uniformly to | x | on [–1, 1].

Solution: Here,

1

| | ( )
– ( ) {| | ( )} 1 ,

2

    
 

n
n n

x P x
| x | P x x P x

This implies that 0  P
n
(x)  P

n + 1
(x)  1, for n = 0, 1, 2, ..... and for

 > 0  m N such that  | x |  1.

| |
0 ( ) | 1 ,  for 0, 1, 2, ...

2
        
 

n

n

x
x P x x n

2

1 1

n
n

n n
     

 by Maximum

2 2
ε 1

1 ε
        

n m
n

Hence, the sequence of polynomials P
n
(x) defined as above, converges

uniformly to | x | on [–1, 1].

2.5 CAUCHY CRITERION FOR UNIFORM
CONVERGENCE

Cauchy’s General Principle of Uniform Convergence

Theorem 2.5: A sequence of real valued functions <  f
n  

> defined on a set S
converges uniformly on S iff to each given  > 0  m  N such that,
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( )( ) , 0     n p n xf x f n m p  and x  S.

Proof: Let  nf  converges uniformly to f on S. Then for  > 0  m  N such that,

1
( ) ( )

2
    nf x f x n m  and x  S. So that,

( ) ( ) ( ) ( ) ( ) ( )     n p n n p nf x f x f x f x f x f x

( ) ( ) ( ) ( )   n p nf x f x f x f x

1
, 0 and .

2


         


n m p x S

Hence, the condition in the theorem is necessary.

To prove sufficiency, in view of the Theorem 2.5, let nf  converge to f on

S, then for  > 0  m  N such that,

1
( ) ( ) , 0

2     n p nf x f x n m p  and x  S. Thus,

1 1
( ) ( ) ( ) , 0

2 2       m m p mf x f x f x p and x  S.

When p  , then we get

1 1
( ) lim ( ) ( ) ( ) ,

2 2
        m m p m

p
f x f x f x f x x S

i.e.,
1

( ) ( ) , .
2

    mf x f x x S

Therefore, ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
, and .

2

    

   


        



n n m m

n m m

f x f x f x f x f x f x

f x f x f x f x

n m x S

Hence, nf  converges uniformly to f on S, i.e., the condition in the theorem

is sufficient.

Theorem 2.6: f
n
(x) converges uniformly to f(x) as S iff

max
x S  ( ) ( ) 0 nf x f x as n  .

Proof: max
x S  | ( ) ( ) | 0 nf x f x  as n  .

 For  > 0  m  N such that max
x S | ( ) ( ) |    nf x f x n m
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 | ( ) ( ) | and     nf x f x n m x S

 ( )nf x  converges uniformly to f(x) on S.

Conversely, if  f
n
(x) converges uniformly to f(x) on S, then for

 > 0  m  N such that,

|f
n
(x)  – f(x)| < /2   n  m and  x  S

 max
x S | f

n
(x) – f(x)|  /2 <   n  m.

 max
x S | f

n
(x) – f(x)|  asn  .

Example 2.17: The sequence nx converges on [0, 1] to the function f defined
by f(x) = 0 when x  1 and f(1) = 1. The convergence is not uniform on [0, 1].

For  = 
1

8
  and any m  N, let x = 2–1/m, then xm = 

1

2
 and x2m = 

1

4
 gives

 |xm –x2m|  = 
1 1

2 4
 > 

1

8
, i.e., the above theorem is not satisfied.

It can be easily seen that the concept of uniform convergence is compatible
with addition and subtraction. But the situation in respect of the multiplication is
different. The uniform convergence may or may not remain. For example, the

sequences 
1

( 1)

n x

n x

 
 , 

2

2 2

( 1)

1

n x

n x


  are uniformly convergent on (0, 1).

For,

1 1
–

( 1)

n x

n x x

 
  = 

1

1n 
 0  Given  > 0  m  N :

1 1
–

( 1)

n x

n x x

 
  <   n m and x  (0, 1).

And,

2

2 2 2 2 2

( 1) 1 1

1 1/

n x n n

n x x n n

  
 

 
  0  Given  > 0  m  N :

2

2 2

( 1)
– 0

1

n x

n x


  <   n m and x  (0, 1).

Now note that though 
1

( 1)

n x

n x

 
 , 

2

2 2

( 1)

1

n x

n x


  converge uniformly on
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(0, 1) but their product sequence 
2

2 21

nx x x

n x

 
  is not uniformly convergent on

(0, 1).

The uniform convergence of the product sequence is preserved under
additional condition of uniform boundedness.

A sequence f
n
(x) defined on a set S is said to be uniformly bounded on

S if there exists k > 0 such that,

|f
n
(x)| < k   x  S, and n.

Under the above additional concept of uniform boundedness we can define
that if f

n
(x), g

n
(x) are uniformly convergent and uniformly bounded on a set S then

f
n
(x)g

n
(x) converges uniformly and is uniformly bounded on S.

Cauchy’s General Principle of Convergence for Series

The sequence of partial sums s
n
 of a series  u

n
 converges iff for given

 > 0  m  N such that,

1 2

| | ε and 0

i.e., | .... | ε and



  

    

       
n p n

n n n p

s s n m p

u u u n m p

This condition does not involve a separate evaluation of s
n
 or R

n
.

Therefore, as for sequences, Cauchy’s general principle of convergence for
series is given by the following theorems.

Theorem 2.7: A series u
n
 converges iff to each > 0  m  N such that,

1 2| .... | ε and .         n n n pu u u n m p

Corollary 1: The series u
n
 converges iff R

n
  0.

Proof:  Let u
n
 s, then s

n
  s. So that s = s

n
 + R

n
 implies that R

n
  0. On the

other hand, if R
n
  0 then for  > 0  m N such that | R

n
| < 

1

2
 n  m. Thus,

|u
n + 1

 + u
n + 2

 + ... + u 
n + p

 |  = |R
n
 – R

n + p
|

|R
n
| + |R

n + p
|

1 1
ε ε ε and

2 2
      n m p

Hence,  u
n
 converges.

Example 2.18: The series 
1 1 1

1 ... ....
3 5 2 1n

    


 diverges to + .

Solution: For = 
1

8
, if the series converges by the above Theorem 2.7

  m  N such that,
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1 1 1 1
... and

2 1 2 3 2 2 1 8
      

   
n m p

n n n p

In particular, for n = p = m,

1 1 1 1
... 1

4 1 2 1 2 3 2 2 1 8

m

m m m m m
        

       a Contradiction.

1 1 1 1
... 1

4 1 2 1 2 3 2 2 1 8
m        

Therefore, the given series is non-convergent, and s
n
 being monotonically

increasing and non-convergent, diverges to +, , i.e., the given series diverges to
.

A Necessary Condition for Convergent Series

Theorem 2.8: If u
n
 is convergent then lim u

n
 = 0.

Proof:  u
n
 is convergent iff its sequence of partial sums s

n
 converges.

Let lim s
n
 = l. So that s 

n – 1
 = l.

It gives lim (s
n
 – s

n – 1
) =  l – l = 0, i.e., lim u

n
 = 0.

1/n  +  but lim u
n
 = lim 1/n = 0. Therefore, the condition in the above

Theorem 2.8 is only necessary.

A Sufficient Condition for Divergent Series

Theorem 2.9: If u
n
 l 0 then  u

n
 diverges to +  or –  according as

l 0, or < 0 and is finite or infinite.

Proof: Let l be finite and l > 0.

Then, for = l/2 > 0 m  N such that |u
n
– l| < l/2, i.e., l/2 < u

n
 < 3l/2  n 

m.

This implies that s
n
 > (n – m + 1) l/2 + u

1
 + ... + u

m – 1
   n m, i.e., s

n

 + .

Hence,  u
n
 diverges to + if l 0.

If l < 0, for –l/2 > 0 m N such that |u
n
 – l| < –l/2, i.e., 3l/2 < u

n
 <

l/2   n m.

Thus, s
n
 < (n – m + 1) l/2 + u

1
 + ... + u 

m – 1
   n m, i.e., s

n
– .

Hence, u
n
 diverges to – , if l < 0.

Let u
n
 + then for any k > 0 m N such that u

n
 > k   n m. So

that s
n
 > (n – m + 1) k + u

1
 + ... + u 

m – 1
   n m. Hence s

n
 + i.e., u

n

diverges to + 

Similarly, if u
n
  – then for any k > 0 m N such that u

n
 < k 

n m. So that s
n
 < (n – m + 1) k + u

1
 + .... + u 

m –1
   n m. Hence, s

n
  – ,

i.e.,  u
n
 diverges to .
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Since  1/n  + and n  – and lim 1/n = 0, therefore, the
condition in the above Theorem 2.9 is not a necessary condition for divergence of
a series.

Example 2.19: For any x R, the series cos 
x

n
 diverges to + .

Solution:  Since lim cos 1
n

x

n
  for any x  R, then the series cos

x

n
  diverges

to + .

2.6 WEIERSTRASS’S M-TEST

Theorem 2.10: A series f
n
(x) converges uniformly (and absolutely) on a set S if

there exists a convergent series  M
n
 of non-negative terms M

n
 such that,

|f
n
(x)| M

n
   x S and n N.

Proof:  If  M
n
 is convergent then for m N such that,

|M
n + 1

 + M
n + 2

 + ... + M
n + p

| <  n m andp 1.

Therefore,   x S, |f
n + 1

(x) + f
n+ 2

 (x) + ... + f
n + p

 (x)|

|f
n + 1

(x)| + |f
n + 2

(x)|  + ..... + |f
n + p

 (x)|

M
n + 1

 + M
n + 2

 + .... + M
n + p

<  n m, p 1 andx S.

Hence, f
n
(x) converges uniformly on S.

From above given notation (|f
n+1

(x)| + |f
n+2

(x)| + ... + |f
n+p

(x)|) <    n 
m, p 1 andx S, implies that f

n
(x) also converges absolutely on S.

Example 2.20: The series n sin 
1

4n x
 converges absolutely and uniformly on

(a, ) where a > 0.

Solution:  For any 0 < x (a,  m N such that 4n x 1   n m. Hence,
the series after a finite number of terms consists of positive terms. Since,

1
1

1
sin1 44lim lim 1,

13 3sin
4

n
n

n
n

u x
u

x




  

Therefore, the given series converges absolutely on (a, ), if a > 0.

Also, for n  m, 
1 1 1

sin
4 4 4n n n mx x   .

Thus,
1 3

3 sin 4 .
4 4

n
n m

n
n m

x
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Since, 3
4

4

n
m    
 

 converges, therefore, by Weierstrass’s M-test,

3n sin1/4nx converges uniformly on (a, ), where a > 0.

Example 2.21: The series 2 2
1 1n

x

n x



   converges uniformly on [a, 1],

where 1 > a > 0, but not on [0, 1].

Solution: On [a, 1], where 1 > a > 0,

2 2 2 2

1
| ( ) |

1 1n

x
u x

n x n a
 

 

And 1/(1+n2a2) converges, therefore, by Weierstrass’s  M-test, the given
series converges uniformly on [a, 1].

On the other hand, let the given series be uniformly convergent on [0, 1],

then for 1
ε 0

8
   Nm  such that (by Cauchy’s principle, for n = p = m)

2 2 2 2 2 2 2 2

1 1
.... ,

1 1 ( 1) 1 (2 ) 8 1 (2 ) 8

x x x mx

m x m x m x m x
     

    

On putting x = 1/m it gives 1/5 < 1/8, a contradiction. Therefore, the series
given is not uniformly convergent on [0, 1].

Check Your Progress

1. Define the term sequence.

2. When is the sequence bounded above and bounded below?

3. State about the bounded sequence.

4. What do you understand by the term ‘Series’?

5. Define pointwise and uniform convergence.

6. State Cauchy’s general principle of uniform convergence.

7. What is the Weierstrass’s M-test?

2.7 ABEL’S TEST FOR UNIFORM
CONVERGENCE

Theorem 2.11: If  f
n
(x) converges uniformly on a set S and g

n
(x) be monotonic

and uniformly bounded on S, then the series f
n
(x) g

n
(x) converges uniformly

on S.

Proof: Let 
p
R

n
(x) = f

n+1
(x)+f

n+2
(x) + ... + f

n+p
(x),   x S, then

f
n+1

(x) g
n+1

(x) + f
n+2

(x) g 
n+2

(x) + ... + f
n +p

(x) g
n + p

(x)

= 
1
R

n
(x) g

n+1
 (x) + [

2
R

n
(x) – 

1
R

n
(x)] g

n+2
 (x) + .... + [

p
R

n
(x) – 

p – 1
R

n
(x)]

 g
n + p

 (x)
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= 
1
R

n
(x) [g

n+1
(x) – g

n+2
(x) + ... + 

p–1
R

n
(x) [g

n + p – 1
(x) – g

n + p
 (x)] + 

p
R

n
(x)

 g
n+p

(x) ...(2.1)

Since f
n
(x) converges uniformly, for > 0  m  N such that,

|
p
R

n
(x)| <    n  m and p  1 and x  S,

Therefore, Equation (2.1) gives

|f
n+1

(x) g
n+1

(x)+f
n+2

(x) g
n+2

(x) + .... + f
n + p

(x) g
n + p

(x)|

< |g
n+1

(x) – g
n+2

 (x) + g
n+2

(x) – ... – g
n+p

(x)| + |g
n+p

(x)|

=  |g
n+1

(x) – g
n+p

(x)| +  |g
n + p

(x)| <  . 2k +  .

 k = 3 k ,    n  m and  p  1 and x  S.

For, g
n
(x) being uniformly bounded  k > 0 such that,

|g
n
(x) | < k   x  S and n  N.

Hence, f
n
(x) g

n
(x) converges uniformly on S.

Uniform convergence of functional series plays important role in term-by-
term integration and differentiation of the infinite series.

2.8 DIRICHLET’S TEST FOR UNIFORM
CONVERGENCE

Theorem 2.12 Dirichlet’s TestLet X be a metric space.

If the functions f
n
: X  C, g

n
: X R, n N satisfy the following:

1. 



n

m
mn xfxF

1

)()(  is bounded uniformly in n and x.

2. g
n+1 
g

n
xfor all xX and nN.

 g
n
(x) Nn  converges uniformly to zero on X.

Then, 


1

)()(
n

nn xgxf converges uniformly on X.

Proof: We will prove this by using summation by parts formula.

1

( ) ( ) ( )
n

n k k
k

s x f x g x




1 1 1
2

( ) ( ) [ ( ) ( )] ( )
n

k k k
k

F x g x F x F x g x


  

1 1 1
2 2

( ) ( ) ( )( )( ) ( ) ( )
 

   
n n

k k k k
k k

F x g x F x g x F x g x

1

1
1 1

( ) ( ) ( ) ( )



 

  
n n

k k k k
k k

F x g x F x g x

1 1
1

( )[ ( ) ( )] ( ) ( )
n

k k k n n
k

F x g x g x g x F x 
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So if m nthe difference between the mth and nth partial sums is,

1 1 1
1

( ) ( ) ( )[ ( ) ( )] ( ) ( ) ( ) ( )
m

m n k k k m m n n
k n

s x s x F x g x g x g x F x g x F x  
 

    

If M = supF
n
xx X, n N

1 1 1
1 1

| ( ) ( ) | | [ ( ) ( )] ( ) ( )  
 

    
m

m n k k m n
k

s x s x m g x g x M g x M g x

1 1 1 1[ ( ) ( )] ( ) ( )n m m nM g x g x M g s M g x       … (2.2)

12 ( )nM g x

Since g
m+1

(x)g
n+1

(x)  0 and every g
k
(x) – g

k+1
(x)  0

For each fixed x, 1lim ( ) 0n
n

g x
 . So Equation (2.2) guarantees that s

n
(x)

is a Cauchy sequence and hence converges. Call the limit s(x). Taking the limit of
Equation (2.2) as m   gives,

1| ( ) ( ) | 2 ( )n ns x s x Mg x 

Since g
n+1

(x) converges uniformly to zero as n  s
n
(x) converges

uniformly to s(x) as n  
Example 2.22: We shall consider the following three different power series:

0 0

1
,

n n

n n

z z

R n R

 

 

   
   
   

   and 20

1
n

n

z

n R





 
 
 

  for some fixed R For all three

series, the radius of convergence is exactly R since, for l0, 1, 2

1 1 1 1 1
limsup limsup
 

 
   

 

l

n n
l nn nn R R n R

So all three series converge for all complex numbers z with z R and
diverge for all complex numbers with z  R.

For zR,  start with the series 0

n

n

z

R





 
 
 

 . Then we can compute exactly

the partial sum,

1

0

1
if( )

1

1 if

n

mn

n
m

z
Rz z RF z z

R
R

n z R





    
         


 


...(2.3)

Now, if z R, this converges to 

1

1
z
R

  as n  Also, this diverges for

z  R, because 

1 1n n
z z

R R

 
    
  .
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Claim that this also diverges whenever zR. For z = R, it is obvious
because n +1 

Also for zR with z R, 
1n

z

R


 
 
 

 cannot converge, because

2 1 1

1 1
n n n

z z z z z

R R R R R

  
          
   

This is independent of n. So the geometric series 0

n

n

z

R





 
 
 

 , which has

radius of convergence R, converges if and only if  z R.

The third series, 20

1
n

n

z

n R





 
 
 

 , converges for all z  R, by comparison

with 20

1
n n



 . As the series has radius of convergence R, it converges if and only

if z  R.

The middle series 0

1
n

n

z

n R





 
 
 

 has a more interesting domain of

convergence. Of course the radius of convergence is exactly R, so the series
converges for all complex numbers z with z R and diverges for all complex
numbers with z  R.

For zR, the series is 0 0

1 1
n

n n

z

n R n

 

 

   
 

  , which diverges. So, that

leaves zR but with z R.

This is where the Dirichlet’s test comes in handy. Fix any  and set,

{ || | , | | }X z z R z R     

( )
n

n

z
f z

R
   
 

0

( )


   
 


mn

n
m

z
F z

R
 as in Equation (2.3)

1
ng

n


X

|z| = R
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For z X,

1 1

1 1
2

| ( ) |
1

1 | |

n n

n

z z
RR R

F z
z

R z
R R

 
   
   

 

So that the hypotheses of the Dirichlet’s test are satisfied and the series

converges uniformly on X. We conclude that 0

1
n

n

z

n R





 
 
 

  converges for z R
and for zR, z R, and diverges for,

z  R and for z = R.

2.9 UNIFORM CONVERGENCE AND
CONTINUITY

Theorem 2.13: Assume that f
n
 f uniformly on S. If each f

n
 is continuous at a

point c of S, then the limit function f is also continuous at c.

Proof: Given that f
n
 f uniformly on S.

For every  there is an M such that,

| ( ) ( ) |
3nf x f x


   for all n m and for each x S, f
m
 is continuous at c.

For above we can find a such that,

| ( ) ( ) |
3m mf x f c


   when x cc  S

If x cc  S then,

| ( ) ( ) | ( ) ( ) ( ) ( ) ( ) ( ) |

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |

3 3 3

m m m m

m m m m

f x f c f x f x f x f c f c f c

f x f x f x f c f c f c

      

     

  
  

 

Or f is continuous at c.

Note: The converse of the theorem is not true, i.e., a sequence of continuous
functions may converge to a continuous function, although the convergence is not
uniform.
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2.10 UNIFORM CONVERGENCE AND
RIEMANN- STIELTJES INTEGRATION

Theorem 2.14: Let  be of bounded variation on a, bAssume that each term
of the sequence f

n
 is a real valued function such that f

n 
Ron a, bfor each n

= 1, 2,… . Assume that f
n
  f uniformly on a, b and define,

g
n
(x) = ( ) ( )

x

na
f t d t  if x a, bn = 1, 2,…, then we have:

(a) f Ron a, b

(b) g
n 
g uniformly on a, bwhere g(x) = ( ) ( )

x
f t d t


 .

Proof: It is sufficient to prove the case when  is increasing.

(a) To Prove Part (a)

To prove f Ron a, bit is enough to prove that f satisfies Riemann condition
with respect to 

f
n
 f uniformly on a, bThis implies that given , there exists N such

that,

| ( ) ( ) |
3[ ( ) ( )]Nf x f x

b a


 

    for all x a, b

Then for any partition P of a, b we have,

1

1

1

| ( , , ) | ( )

| ( ) |

3[ ( ) ( )]

[ ( ) ( )]
3[ ( ) ( )]

3

n

N k N kk

n

k N kk

n

kk

U P f f M f f

M f f

b a

b a
b a







    

  


 

 


  
 









Similarly we get, | ( , , ) |
3


  Nu P f f  for each f

n 
Ron a, bIn

particular f
N 
Ron a, bSo, for the above 0 we can find a partition P

such that,

( , , ) ( , , ) for all
3N NU P f L P f P P


    

Then for such P we have,

( , , ) ( , , ) ( , , ) ( , , ), whereN N NU P f L P f U P h f L P h f h f f          

=   ( , , ) ( , , ) ( , , ) ( , , )N NU P h U P f L P h L P f       
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( , , ) ( , , ) ( , , ) ( , , )N NU P h L P h U P f L P f       

( , , ) ( , , ) ( , , ) ( , , )N N N NU P f f L P f f U P f L P f         

( , , ) ( , , ) ( , , ) ( , , )N N N NU P f f L P f f U P f L P f         

| ( , , ) | | ( , , ) | ( , , ) ( , , )N N N NU P f f L P f f U P f L P f         

3 3 3

  
  

 

f Ron a, b

To Prove Part (b)

f
n 
f uniformly on a, b

For any 0 there exists an N such that,

| ( ) ( ) | for all and every [ , ]
2[ ( ) ( )]nf x f x n N t a b

b a


   

 

If x a, bthen,

| ( ) ( ) |ng x g x = ( ) ( ) ( ) ( )   
x x

na a
f t d t f t d t

= [ ( ) ( )] ( ) 
x

na
f t f t d t

 | ( ) ( ) | ( ) 
x

na
f t f t d t

< ( )[ ( ) ( )]
2[ ( ) ( )]


  

  
x

a
d t b a

b a

= 2[ ( ) ( )]


 b a

 2



< 
g

n 
g uniformly on a, b

Theorem 2.15:  Let  be of bounded variation on a, band assume that

( ) nf x = f(x) uniformly on a, bwhere each f
n
 is a real valued function such

that f
n
 Ron a, bThen we have,

(a) f Ron a, b

(b)
1 1

( ) ( ) ( ) ( )
 

 
    

x x

n nn na a
f t d t f t d t  (uniformly on a, b

Proof: Define 
1

( )
n

n kk
s f x


 . Then s

n
Rsince each f

k
 Ron a, b

Also, ( )nf x  converges to f uniformly on a, bSo, s
n
 converges to f uniformly

on a, bThen, f R() on [a, b]. To Prove Part (b), ( ) ( ) ( ). 
x

n na
g x s t d t
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Then by Weierstrass M-test, g
n 
g uniformly on a, bwhere

( ) ( ) ( ) 
x

a
g x f t d t , or lim ( ) ( )n

n
g x g x


 .

 lim ( ) ( ) ( ) ( )


   
x x

na an
s t d t f t d t


1 1

lim ( ) ( ) ( ) ( )


 
    

x xn

k nk na an
f t d t f t d t


1 1

lim ( ) ( ) ( ) ( )


 
    

x xn

k nk na an
f t d t f t d t


1 1

( ) ( ) ( ) ( )
 

 
    

x x

k nk na a
f t d t f t d t


1 1

( ) ( ) ( ) ( )
 

 
    

x x

n nn na a
f t d t f t d t

2.11 UNIFORM CONVERGENCE AND
DIFFERENTIATION

Theorem 2.16: Assume that each term of f
n
is a real valuedfunction having a

finite derivative at each point of an open interval a, bAssume that for at least
one point x

0
 in a, bthe sequencef

n
x

0
converges. Assume further that there

exists a function g such that f
n
g uniformly on a, bThen,

(a) There exists a function f such that f
n
 f uniformly onab

(b) For each x in abthe derivative fxexists and equals g(x).

Proof:

(a) Assume that c  (a, b) and define g
n
 as,

( ) ( )
if

( )
' ( ) if

n n

n

n

f x f c
x c

g x x c
f c x c

  
 

 … (2.4)

Now,

 lim ( ) ' ( )n n
x c

g x f c




= g
n
(c)

Therefore, g
n
 is continuous for each n.

Also,

lim ( ) lim ' ( )

( )

n nn n
g c f c

g c
 





That is, g
n
(c)is convergent and so is Cauchy. Toprove that g

n
converges

uniformly on ablet be given. Since, f
n
g uniformly on (a, b) and

g
n
cis a Cauchy sequence,



Sequences and Series
of Functions

NOTES

Self - Learning
70 Material

 There exists a k N such that,

| ' ( ) ' ( ) | for all ( , ), , and
2


   n mf x f x x a b n m k

| ( ) ( ) | for all ,
2


  n mg c g c n m k …(2.5)

Now, if x(a, b), x c and n, m k, then we have,

| ( ) ( ) |n mg x g x =
( ) ( ) ( ) ( )

–

 



n n m mf x f c f x f c

x c x c

=
( ) ( ) [ ( ) ( )]  


n m n mf x f x f c f c

x c

 | ( ) ( ) |n mg x g x

=
( ) ( )h x h c

x c


 …(2.6)

Clearly, h is differentiable on (a, b).

Therefore, by mean value theorem, there exists a point x
1
 in between x and

c such that,

h(x) – h(c) = h(x
1
)(x – c)

Now from Equation (2.6) we get,

| ( ) ( ) |n mg x g x =
1| '( ) || |

| |

h x x c

x c




= |h(x
1
)|

= 1 1| ' ( ) ' ( ) |n mf x f x

2


 , for n, m  k and ( , )x a b  with x c

 | ( ) ( ) |  n mg x g x … (2.7)

From Equations (2.5) and (2.7) we get,

| ( ) ( ) |  n mg x g x  for n, m  k and ( , )x a b … (2.8)

which implies that g
n
is uniformly convergent.

To prove that f
n
  f uniformly on (a, b), form the particular sequence g

n


corresponding to thespecial point c = x
0
 for which f

n
x

0
is assumed to converge

Now from Equation we get,

f
n
(x) = f

n
(x

0
) + (x – x

0
)g

n
(x) for all x  (a, b)

Hence we have,

f
n
(x) – f

m
(x) = f

n
(x

0
) – f

m
(x

0
) + (x – x

0
) [g

n
(x) – g

m
(x)]
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Let 0 be given.

g
n
 converges uniformly on (a, b) and f

n
x

0
 is a Cauchy sequence. This

implies that there exists a k N such that,

| ( ) ( ) |
2( )


 

n mg x g x
b a  and,

0 0| ( ) ( ) |
2


 n mf x f x  for all n, m k and x (a, b)

Hence if n, m k and x (a, b) we get,

| ( ) ( )n mf x f x | 0 0 0| ( ) ( ) | | || ( ) ( ) |n m n mf x f x x x g x g x   

< ( )
2 2( )

 
 


b a

b a

= 
That is, f

n
satisfies Cauchy’s condition on (a, b) and so f

n
converges

uniformly on (a, b) say to f.

(b) Assume c  (a, b) then,

( ) ( )
lim
x c

f x f c

x c




=
lim ( ) lim ( )

lim n n n n

x c

f x f c

x c
 






=
( ) ( )

lim lim n n

x c n

f x f c

x c 




= limlim ( )
  n

x c n
g x

= lim lim ( )n
n x c

g x
 

= lim ( )n
n

g c


= lim ' ( )n
n

f c


= g(c), which exists.

 f is differentiable at c and fc= g(c) = lim ' ( )n nf c

 f
n
cfc

But, since c is arbitrary, f
n
xfx

Theorem 2.17: Assume that each f
n
is a real valued function defined on (a, b),

such that the derivative exists for each x  (a, b). Assume that, for at least one

point x
0
 in (a, b), the series 0( )nf x  converges. Assume further that there exists

a function g such that ' ( ) ( )nf x g x  (uniformly on (a, b)). Then,

(a) There exists a function f such that f
n
(x) = f(x) (uniformly on (a, b)).

(b) If x  (a, b), the derivative fxexists and equals ' ( )nf x .
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2.12 WEIERSTRASS APPROXIMATION
THEOREM

Theorem 2.18 (Weierstrass Approximation Theorem):  Let I be a closed
and bounded interval. Suppose f: I R is a continuous function. Then for each
, there exists a polynomial function pR such that,

| ( ) ( ) |  f x p x  for all x in I, or equivalently,,

sup {| ( ) ( ) |f x p x  : }x I   .

We will prove this as follows:

1. The polynomial functions form a subalgebra that separates points of I.

2. The closure of this subalgebra is a lattice in C(I, R), the space of all continuous
function on I with the sup norm.

3. Using the compactness of I, and (1) and (2), one can find a point on this
lattice which is arbitrarily near f. This relies on compactness and argument
involving finite subcover of an open cover.

We shall prove a special case of Theorem 2.18 when I = [0, 1] first. We
now describe the Bernstein polynomials.

Let f: [0,1]R be a function. Then for each integer nwe define the
Bernstein polynomial of degree n associated with f to be,

0

( )( ) (1 )
n

k n k
n

k

nk
B f x f x x

kn




     
  



Theorem 2.19: Suppose f: [0, 1]R is a continuous function. Then for each
0, there exists a polynomial function p: I R such that,

sup{| ( ) ( ) |: }f x p x x I   

More specially, the sequence of Bernstein polynomial, B
n
fas defined

above converges uniformly to f.

Before we proceed with the proof, we shall derive a series of identities,
which are needed for the proof. The binomial theorem states that for integer n 0,

0

( )
n

n k n k

k

n
x y x y

k




 
   

 
 … (2.9)

Hence, from Equation (2.9), for integer n  1,

1
1 1

0

1
( )

n
n k n k

k

n
x y x y

k


  



 
   

 
 … (2.10)

Multiplying Equation (2.10) by nx, we obtain

1
1 1 1

0

1
( )

n
n k n k

k

n
nx x y n x y

k


   



 
   

 
 … (2.11)
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Now, 
1n

n
k

 
 
 

=
( 1)!

.
!( 1 )!

n
n

k n k


 

=
!

( 1)
( 1)!( 1 )!

n
k

k n k


  

= ( 1)
1

n
k

k

 
   

 and so

From Equation (2.11), we have

nx(x + y)n – 1 =
1

1 1

0

1n
k n k

k

n
n x y

k


  



 
 
 



=
1

1 1

0

( 1)
1

n
k n k

k

n
k x y

k


  



 
   



=
1

n
k n k

k

n
k x y

k




 
 
 



=
0

n
k n k

k

n
k x y

k




 
 
 



Evidently, the above equality is true when n = 0 and so we have that for any
integer n 0,

1( )nnx x y  =
0

n
k n k

k

n
k x y

k




 
 
 

 … (2.12)

From Equation (2.12) for integer n 1,

2( 1) ( )nn x x y   =
1

1

0

1n
k n k

k

n
k x y

k


 



 
 
 

 … (2.13)

Multiplying Equation (2.13) by nx, similarly, we obtain

n(n – 1)x2(x + y)n – 2 =
1

1 1

0

1n
k n k

k

n
kn x y

k


  



 
 
 



=
1

1 1

0

( 1)
1

n
k n k

k

n
k k x y

k


  



 
   



=
1

( 1)
n

k n k

k

n
k k x y

k




 
  

 


=
0

( 1)
n

k n k

k

n
k k x y

k
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The above equality also holds when n = 0 and so we have for any integer
n 0,

n(n – 1)x2(x + y)n – 2 =
0

( 1)
n

k n k

k

n
k k x y

k




 
  

 
          … (2.14)

Note that the identities in Equations (2.9), (2.12) and (2.14) contain the

same factor 
k n kn

x y
k

 
 
 

.

Let r
k
(x) = 

k n kn
x y

k
 

 
 

.

Now taking y to be 1 x, so that x + y =1, we have

( )kr x =
k n kn

x y
k

 
 
 

= (1 )k n kn
x x

k
 

 
 

We obtain from Equation (2.9),

1 = (x + y)n =
0

( )
n

k
k

r x



Or, for any integer n 0

1 =
0

( )
n

k
k

r x

 … (2.15)

Similarly, from Equation (2.12) we obtain for any integer n0,

nx =
0

( )
n

k
k

kr x

  … (2.16)

And from Equation (2.14) we obtain for any integer n0,

n(n – 1)x2 =
0

( 1) ( )
n

k
k

k kr x


 2.17

Then for any integer n0,

2

0

( ) ( )
n

k
k

k nx r x


 =
2 2 2

0 0 0

( ) 2 ( ) ( )
k

n n n

k k
k k k

n x r x nx kr x k r x
  

   

=
2 2

0 0 0

( ) 2 ( ) [ 1) ] ( )
k

n n n

k k
k k k

n x r x nx kr x k k k r x
  

     

= n2x2 – 2nx . nx + nx + n(n – 1)x2

= nx(1 – x)

By Equations (2.15), (2.16) and (2.17).
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Therefore, for any integer n

2

0

( ) ( )
n

k
k

k nx r x


 = nx(1 – x) 2.18

We now proceed to the proof of Theorem 2.19.
Proof of Theorem 2.19: Since f is continuous and [0,1] is compact, the image
f([0,1]) is compact and so by the Heine-Borel theorem, f ([0, 1]) is closed and
bounded. Therefore, there exists a real number M  0 such that |f(x)| for all
x in

Given since f is continuous on [0, 1] there exists such that for
allx, y in [0, 1],

|x – y| f(x) – f(y)| 

We now estimate how close the Bernstein polynomial B
n
(f) is to f for integer

n 

| ( ) ( )( ) |nf x B f x =
0

( ) (1 ) 



  
   

  


n
k n k

k

k n
f x f x x

n k

=
0

( ) ( )


   
 


n

k
k

k
f x f r x

n

=
0 0

( ) ( ) ( )
n n

k k
k k

k
f x r x f r x

n 

   
 

  (Using Equation (2.15))

=
0

( ) ( )
n

k
k

k
f x f r x

n

    
  

 …(2.20)

We next examine the sum on the right of Equation (2.20) according to

whether | |
k

x
n

   or | |
k

x
n

  , where  is given in Equation2.19

If | |
k

x
n

  , then by Equation (2.19),

( )
k

f x f
n

   
 

<
2


… (2.21)

Suppose now | |
k

x
n

   .

Then, | |nx k n   .
Hence,

( )
k

f x f
n

   
 

= | ( ) | | |
k

f x f
n

   
 

  2M


2

2 2

( )
2

nx k
M

n
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Because
| |nx k

n




 1 … (2.22)

Therefore, for any x in [0, 1] and for 0  k n,
2

2

2
( )

2

            

k M k
f x f x

n n
… (2.23)

We add the sum /2 so that we can combine Equations (2.21) and (2.22) in
one inequality for simplicity.

Using Equation (2.20) and the fact that r
k 
(x) for all x inand

k  n, we get

| ( ) ( )( ) |nf x B f x =
0

( ) ( )
n

k
k

k
f x f r x

n

    
  




0

( ) ( )
n

k
k

k
f x f r x

n

    
  




2

2
0

2
( )

2

          


n

k
k

M k
x r x

n  By Equation (2.23)

=
2

2
0 0

2
( ) ( )

2

n n

k k
k k

M k
r x x r x

n 

      
 

=
2

2 2
0

2
( ) ( )

2

n

k
k

M
nx k r x

n 


 
  By Identity (2.15)

= 2 2

2
(1 )

2

M
nx x

n


 


By Identity (2.18)

= 2

2
(1 )

2

M
x x

n


 


< 2

2

2

M

n





Because x (1 x) < 1 for x in [0,1].

Hence, for any x in [0,1] and any n 1,

| ( ) ( )( ) |nf x B f x < 2

2

2

M

n





… (2.24)

Since 2

2
0

M

n



, there exists a positive integer N such that,

n N 2

2M

n
< .
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It then follows from Equation (2.24) that,

n N | ( ) ( )( ) |
2 4nf x B f x
 

  

=
3

4


for all x in [0, 1].

Hence, n  sup{| ( ) ( )( ) |: [0,1]}nf x B f x x  
3

4


   for all x in

[0,1]. This shows that B
n
(f) f uniformly on [0,1]. We may take the polynomial

function p to be B
N
(f) and sup{| ( ) ( ) |: [0,1]}f x p x x    . This completes the

proof of Theorem 2.19.
Proof of Theorem 2.18: Suppose I = [a, b] is a closed and bounded interval and
f : I R is a continuous function. Let  g: [0, 1]a, b] be the bijective linear map
defined by g(t) = a + t(b a) for t in [0,1]. Then g is continuous, g(0) = a and g(1)
= b. Since f is continuous,  the composite f gR is also continuous.
Hence, by Theorem 2.19, for any 0, there exists a positive integer N such that
for any integer n Nthe Bernstein polynomial B

n 
(f g) satisfies,

| f g(x) – B
n 
(f g)(x)|for all x in [0, 1]. … (2.25)

Now g is continuous injective map and so g has a continuous inverse function.
Indeed the inverse function g–1: [a, b] [0,1] is given by,

g–1(t)  = t–a/b–a for t in [a, b]

Thus by Equation (2.25), for all t in [a, b],

1| ( ) ( )( ( )) |Nf t B f g g t   

Hence, ( ) ( )N

t a
f t B f g

b a

      
, for all t in [a, b].

Since B
n
(f g) is a polynomial function,  












ab

at
gfBtp N )()(ε  is a

polynomial in t and | f(t) – p(t)| <  for all  x in I.

If we let 











ab

at
gfBtq nn )()(  , then

( ) ( )n n

t a
q t B f g

b a

     
=

0

1
n kkn

k

nk t a t a
f g

kn b a b a





                          


=
0

k n kn

k

nk t a b t
f g

kn b a b a





                      


=
0

( )
k n kn

k

nk t a b t
f a b a

kn b a b a





                       


 It follows from Equation (2.25) that q
n
 converges uniformly on [a, b].
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Check Your Progress

8. Define the Abel’s test for uniform convergence.

9. Write Dirichlet’s test for uniform convergence.

10. Can a sequence of continuous functions converge to a continuous function?

11. State a necessary condition for a sequence to converge uniformly in an
open interval.

12. What does the Weierstrass approximation theorem state?

13. Define Bernstein polynomial.

2.13 POWER SERIES

An infinite series, in the ascending integral powers of a real variable x, of the form

a
0
 + a

1
 x + a

2
 x2 + ... + a

n
xn + ...,

where the coefficients a
0
, a

1
, a

2
,... are constant, independent of x, is called

a real power series. We shall simply call it a Power Series (P.S.).

The primary characteristics regarding convergence of the power series are
given below in Theorems 2.20, and 2.21.

Hadamard’s Formula

Theorem 2.20: The power series a
0 
+ a

1
x + a

2
x2

 
+ ... converges absolutely only

at x = 0, on (– r, r), or on every bounded interval according as,

1/ 1
lim , , or 0. n

na
r

According to these three cases the power series is said to have the radius of
convergence zero, r, or infinity.

Proof:
1/

lim  n

na 
1/

lim 0 iff 0 n

na x x

 The power series converges absolutely only at
x = 0

1/ 1
lim n

na
r


1/

lim 1 iff
n

n

x
a x x r

r
  

 The power series converges absolutely on (– r, r)

1/
lim 0

n

na  
1/

lim 0 1
n

na x    for every finite x

 The power series converges absolutely on
every bounded interval

Corollary 1: The power series a
0 
+ a

1
x + a

2 
x2

 
+ ... and its derived power series

a
1
 + 2a

2
x + 3a

3
x2 + ... have alike radius of convergence. Thus, it follows by

induction, that the successive derived power series have the same radius of
convergence.
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Proof: lim n1/n = 1 implies that 
1/ 1/

lim lim ,
n n

n nna a  therefore, both of the
given power series have alike radius of convergence. The rest of the statement of
the corollary readily follows by induction.

Similar to the above Corollary, we have the following Corollary.

Corollary 2: The power series a
0 
+ a

1
x + a

2 
x2

 
+ ... and its integrated power

series 
2 3

1 1
0 2 3

a x a x
c a x    +... (where c is a Constant)

have alike radius of convergence. And, it follows by induction that the successive
integrated power series have the same radius of convergence.

As an example, note that the power series,

(i) 1 + 2x + 3x2 + ... (ii) 1 + 
2

x x

r r
     + ... (iii) 1 + x = 

2

2!

x
+..., have

radius of convergence 0, r and  , respectively..

The power series,

(i) 
2 3

2 3
1 ...

2 3
   

x x x

r r r
(ii) 

2 3

2 3
1 ...

2 3
   

x x x

r r r

(iii) 
2 3

1 ...
         
   

x x x

r r r
(iv) 

2 3

2 3
1 ...

2! 3!
   

x x x

r r r

readily illustrate that if r (> 0) be the radius of converges of a power series, then
the power series may or may not be convergent for x = + r (four cases).

In case 
1/

lim
n

na  exists and is evaluated, it outrightly provides the radius of

convergence as per the preceding theorem.

For practical purpose, when 1lim n

n

a

a
  is more convenient to evaluate than

1/
lim

n

na , then 
1/

lim
n

na  exists and,

1lim n

n

a

a
 =

1/
lim

n

na

Consequently, the radius of convergence of the power series n
na x  is given by,,

1

lim n

n

a

a 

Theorem 2.21: If r (> 0) be the radius of convergence of the power series
a

0 
+ a

1
x + a

2
x2

 
+ ..., in (–r, r). Then prove that it converges uniformly and absolutely

on every close interval contained in (–r, r).
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Proof: For 0 <  < r, we have

[ , ]n n
n na x a x     

And since n
na  is convergent as andn n n

n n na a r a r    is convergent,

Therefore, 
2

0 1 2
0

, i.e., ...




   n
n

n

a x a a x a x  is uniformly convergent (by M-test

and absolutely by comparison test). And, if [a, b]  (– r, r) and let  = max

 , ,a b so that [a, b]  [– , ]  [– r, r].

Thus, the given power series converges uniformly and absolutely on every
closed interval contained in (– r, r).

Note that with slight modification the analysis done in this section can be
conveniently applied to the power series of the form,

a
0 
+ a

1
(x – ) + a

2 
(x – )2 +...

Regarding the domain of convergence it may also be observed that if a
series is pointwise convergent on every [a, b] contained in an interval I then it is
pointwise convergent on I but this may or may not hold for uniform convergence.

Certain infinite power series are of basic importance and represent familiar
functions such as,

(i) log (1 + x) 
2 3

... ( 1, 1).
2 3

      
x x

x x

(ii) ex

2

1 ... .
2 !

    
x

x x

(iii) sin x
3 5

... .
3! 5!

    
x x

x x

(iv) cos x
2 4

1 ... .
2! 4!

    
x x

x

Each of the above power series converges for the values of x as given. These
enable to establish many useful results.

Example 2.23: Show that,

2 21 1 5
0 log (1 ) .

2 6 6
x x x x x      

Solution: For 0 < x < 1, we have

2

2

log(1 ) 1 1 1
... ,

2 3 4 5 3

 
     

x x x x
x

x ...(1)

 2 21 5
0 1 log (1 ) .

6 6
x x x x x      
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And for – 
1

2
 < x < 0, we have

2

2

log(1 ) 1 1
...

2 3 4 5

  
      

 
 

x xx x
x

x

21 1 1
(1 ...) .

3 4 3 4 1

  
             

x x
x x x x

x

1 1 1 1
,

2 3 4 3
     

 2 21 1 5
0 log (1 ) .

2 6 6
x x x x x         ...(2)

Combining Equations (1) and (2), we get that,

2 21 1 5
0 log (1 ) .

2 6 6
x x x x x      

2.14 UNIQUENESS THEOREM FOR POWER
SERIES

Theorem 2.22 (Uniqueness): Let  C be a region and consider two analytic
functions,

f, g :  C.

Let S be a subset of that has a limit point p which need not lie in S.
Suppose that f = g on S. Then f = g. For example, the unique analytic function on
C that vanishes at 1, 1/2, 1/4, 1/8, 1/16,…., is the zero function. Also, the extensions
by power series of ex, sin x, cos x and log x from their domains in R to analytic
functions on C or on C minus the negative real axis for log, are the unique possible
such extensions.

Proof: We may assume that g = 0. That is, we may assume that f = 0 on S.
Let B = B(p, r) be the largest ball about p in 

Possibly r = + but in any case r The power series representation of
f at p is,

2
0 1 2( ) ( ) ( ) ...f z a a z p a z p      , z  B.

Because p is a limit point of S, some sequence z
n
in S satisfies the

conditions,

lim{ } ,n n
n

z p z p


   for all n



Sequences and Series
of Functions

NOTES

Self - Learning
82 Material

Thus, since f is continuous at p and since f = 0 on S,

a
0
 = f(p) = lim ( ) lim{ ( )} lim{0} 0n

z p n n
f z f z

  
  

Define a new function,

f
1
: C, 1

( )
if ,

( )

'( ) if .

f z
z p

z pf z

f p z p

   
 

Then, f
1
 = 0 on S – {p}, so that in particular  f

1
(z

n
) = 0 for all n. Also, f

1
 is

clearly analytic at all z p and f
1
 is analytic at z = p as well, because it has a power

series representation at p,

2
1 1 2 3( ) ( ) ( ) ...f z a a z p a z p      , z B

In fact, this power series agrees with f
1
(z) both for z p and for z = p. The

previous argument that a
0
 = 0 now applies to f

1
 to show that a

1
 = 0 as well, and

the whole process repeats to show that a
n
 = 0 for all n  0. Therefore, f is identically

zero on the ball B. However, we want f to be identically zero on all of . So let
q be any point of Sinceis connected and open in C, a little topology shows
that it is path-connected and the connecting paths can be taken to be rectifiable.
The general topological principle here is that connected and locally path-oriented
implies path-connected, and in our context, the connecting paths can be taken to
be rectifiable by metric properties of C.

Thus, some rectifiable path in the regionconnects p to qSince is
compact, some ribbon about it lies in the region as well,

( , )
z

R B z


   .

Form a chain of finitely many discs of radius with their centers spaced
atmost distance apart along starting at p and ending at q. Each consecutive
pair of discs overlaps on a set S having the center of the second disc as a limit
point. Since f is identically zero on the first disc, the argument just given shows that
it is identically zero on the second disc as well, and so on up to last disc. In
particular f(q) = 0. Hence, the theorem is proved.

Corollary: An analytic function f:C that is not identically zero has isolated
zeros in any compact subset K of  and hence, only finitely many zeros in any
such K. More generally, if f is not constant then on any compact subset K of 
and for any value a C, f has only finite many a-points, i.e., points where f takes
the value a.

The corollary holds because any infinite subset S of a compact subset K has
a limit point in K by the Bolzano-Weierstrass theorem. So, if f = a everywhere on
S then f = a identically on 

Theorem 2.23:Letf:C be an analytic function. Then either |f| assumes no
maximum on or f is constant
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Proof: Let |f| assumes a maximum at some point c , or

|f (z)|  |f(c)| for all z 
Let B = B(c, r) where r > 0 lies in . For any  satisfying 0 r, let

be the circle about c of radius 

Now,

1 ( ) 1 | ( ) || | 1
| ( ) | sup{| ( ) |}2 | ( ) |

2 2 2 


  
    

     
z

f z dz f z dz
f c f z f c

i z c

This implies that all of the terms are equal. So, |f| = |f(c)| on 

Since r) is arbitrary, |f| = |f(c)| on B. thus, by the uniqueness theorem,
f is constant on 
Corollary: If f: C is analytic and K is a compact subset of  then

max {| ( ) |}z K f z  is assumed on the boundary of K.

Theorem 2.24 (Liouville’s): Let f: C C be analytic and bounded. Then f is
Constant.

Proof: The power series representation of f at 0 is valid for all of C,

0

( ) n
n

n

f z a z




 , z C

Let M bound |f|. Cauchy’s inequality says that for any r and any
n  N,

| |n n

M
a

r


Since r can be arbitrarily large, this proves that a
n
 = 0 for n 1.

i.e., f(z) = a
0
 for all z.

Theorem 2.25 (Fundamental Theorem of Algebra): Let p(z) be a non-constant
polynomial with complete coefficients. Then p has a complete root.

Proof: Consider,

1

0

( )




 
n

n j
j

j

p z z a z , n 1

Note that for all z such that |z| ,

1
1

0

| |
n

j n
j

j

a z C z






  where 
1

0

| |
n

j
j

C a






It follows that for all z such that |z|> C+1,

1 1| ( ) | | | | | | | 1    n n np z z C z z .

Now suppose that p(z) has no complex root. Then the function f(z) = 1/p(z)

is entire. The function f(z) is bounded on the compact set (0, 1)B C  , and it satisfies

|f(z)|< 1 for all z such that |z|> C+1.
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Therefore, f(z) is entire and bounded, making it constant by Liouville’s
theorem, and this makes the original polynomial p(z) constant as well. The proof is
complete by contraposition.

2.15 ABEL’S THEOREM

Theorem 2.26 (Abel) Theorem: Suppose gx
0

n
nn

c x
 be a power series

which converges for x. If 
0 nn
c

  converges then, 1
0

lim ( )




 n
x

n

g x c .

Or, if a power series converges at x 1 then its value at x 1 is the limit of
its values at xso a power series has built-in continuity in its behaviour.

Example 2.24: Let gx
1

1

( 1) /n n

n

x n



 for x

Then for xgxlogx

The series g converges since it is alternating. Hence, by Abel’s theorem,

g(1) =
1

lim ( )
x
g x

=
1

lim log(1 )



x

x

= log 2

Since the logarithm is a continuous function.

Example 2.25: Let 
1

2 2
0

( 1) (2 )!
( )

2 ! (2 1)

n
n

n
n

n
g x x

n n








  for xHence, gx x1 .

The series g1is absolutely convergent. So by the continuity of x1
and Abel’s theorem,

1 1
(1) lim ( ) lim 1 2

x x
g g x x

  
   

We know that the series converges at x = 1. Abel’s theorem states that if a
power series converges on 1, 1 and also at x = 1, then its value at
x = 1 is determined by continuity from the left of 1.

Proof of Abel’s Theorem: We have that 
0

n
nn

c x
  converges for xand at

xWe need to prove that,

1 0 0

lim n
n n

x n n

c x c
  

 

For 1 x we work with the truncated sums 
0

N n
nn

c x
  and 

0

N

nn
c

 .

Put, s
n
=c

0
+c

1
+….+c

n
 for n 0.

Note that, s
n 
– s

n-1 
= c

n
 for n 

Then,
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0

N
n

n
n

c x

 = 0 1

1

( )
N

n
n n

n

c x s s 


 

= 0 1
1

( )
N

n n n
n

c u s s 


  , where u
n
 = xn

=
1

0 1 0 1
1

( )
N

N N n n n
n
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   ...(2.26)

By hypothesis, the left hand side of Equation (2.26) converges as N 

Also, xNc
N  
as N ,sincexN and c

N 
because the series 

0 nn
c

converges, so its general term must tend to 0.

Therefore, the other term in Equation (2.26) converges as Nand we
get,

0

n
n

n

c x

 =

0

(1 ) n
n

n

x s x


  

Suppose 
0 nn

s c


 . We have to show that 
0

n
nn

c x s


  as x

Substract s from both sides of Equation (2.27) and write,

0

n
n

n

c x s
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0

(1 ) ( ) n
n

n

x s s x


  … (2.28)

using the formula  
0

(1 ) 1.


  n

n
x x Now, we have to show that the right hand

side of Equation (2.28) tends to 0 as x

By assumption, s
n 
s as n . Choose a positive number  For all large n, say

n M, .  ns s  Now, break up the right hand side of Equation (2.28) into two

sums,

1

0 0

(1 ) ( ) (1 ) ( )
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c x s x s s x x s s x

And estimate as below:
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Taking 0 xxx, this upper bound becomes
1

0 0

1


 

      
M

n
n n

n n

c x s x s s … (2.29)

When xthe first term on the right hand side of Equation (2.29) tends
to 0 on account of the 1 x there. When x is close enough to 1, we can make the
first term on the right side at most so

0

2


       n
n

n

c x s … (2.30)

as xSince is an arbitrary positive number, the left side of Equation
(2.30) must go to zero as x

Corollary: Let a power series
0 n

nn
c x converges for x r. If the series

converges at r or –r then there is the limit of the values of the series as x tends to
the endpoint from inside the interval or,

(a) If 
0 n

nn
c r converges then,

0 0

lim
 

 

 n n
n n

x r
n n

c x c r

(b) If 
0

( )


 n
n

n

c r converges then,

0 0

lim ( )
  

 

  n n
n nx r

n n

c x c r

Proof: (a) Let a
n
 = c

n
rn and 

0 0
( ) ( )

 
  n n

n nn n
g x a x c rx  for |x| < 1. This

series converges at x = 1. So, by Abel’s theorem,

1 1
0 0 0

lim lim lim
     

   

     n n n n
n n n nx x x r

n n o n n

a a x c r x c x

Where the limit changed from xto x r– in the last Equation (by

replacing x with x/r). Since a
n 
= c

n
rn, the left hand side is 

0 0 
  n

n nn n
a c r

(b) The argument is similar, using a
n
 = c

n
(–r)n.
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2.16 TAUBER’S THEOREM

Theorem 2.27: The converse of Abel’s theorem is false in general. If f is given by,

0

( )




 n
n

n

f x a x , –r x r

Then the limit f(r–) may exist but the series  n
na r  may fail to converge.

For example, i f a
n
 = (1)n, then

1
( )

1



f x

x
, –1x 1

And f(x) 1/2 as x  1–. However, (–1) n  is not convergent. Tauber

showed that the converse of Abel’s theorem can be obtained by imposing additional
condition on the coefficients a

n
.

Theorem 2.28 (Tauber): Let 
0

( )




 n
n

n

f x a x  for –1x 1 and suppose that

lim 0


n
n

n a . If f(x) S as x 1–, then 
0




 n
n

a  converges and has the sum S.

Proof: Let 
0

 
n

n k
h

k a . Then 
n 
 as n .

Also, lim ( )


n
n

f x S  if x
n
 = 11/n.

Therefore to each 0, we can choose an integer N such that n N implies,
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Let 
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S a . Then for –1x 1, we have
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Let x (0, 1). Then,

1(1 ) (1 ) (1 – ) ( )       k kx x x x k r x , for each k.

Therefore, if n N and 0 x 1, we have
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Putting x = x
n
 = 11/n, we find that

  
     

  nS S

Which completes the proof.

Check Your Progress

14. What is power series?

15. State the uniqueness theorem of power series.

16. Define the Abel’s theorem.

17. Give the statement of Tauber’s theorem.

2.17 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. A sequence is a function whose domain is the set of natural numbers.

2. A sequence {xn} is said to be bounded above if all its terms are less than or
equal to a real number, i.e., there exists K   such that xn  K for all
n  .

A sequence {xn} is said to be bounded below if all its terms are greater
than or equal to a real number, i.e., there exists K   such that xn  k for
all n  .

3. A sequence is said to be bounded if it is bounded both above and below,
i.e., if there exist K, k   such that k  xn  K for all n  N.

4. An expression of the form,

u
1
 + u

2
 + u

3
 + ... + u

n
 + ...

in which every term is followed by another according to some definite rule
is called a series.

5. A sequence f
n
of functions is said to converge pointwise on a set S to a

limit function f, if for each x  S and for each  0 there exists an N
depending on x and  such that,

f
n
(x)  f(x) for all n N.

A sequence of real valued functions f
n
 defined on a set S is said to converge

uniformly to a real valued function f on S if for > 0 m N such that,

| f
n
 (x) – f(x)| < n m and x S

6. A sequence of real valued functions <  f
n  

> defined on a set S converges
uniformly on S iff to each given  > 0  m  N such that,

( )( ) , 0     n p n xf x f n m p  and x  S.

7. A series f
n
(x) converges uniformly (and absolutely) on a set S if  there

exists a convergent series  M
n
 of non-negative terms M

n
 such that,

|f
n
(x)| M

n
   x S and n N.
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8. If  f
n
(x) converges uniformly on a set S and g

n
(x) be monotonic and

uniformly bounded on S, then the series f
n
(x) g

n
(x) converges uniformly

on S.

9. Let X be a metric space. If the functions f
n
: X  C, g

n
: X R, n N satisfy

the following:

(a) 



n

m
mn xfxF

1

)()(  is bounded uniformly in n and x.

(b) g
n+1 
g

n
xfor all xX and nN.

(c) g
n
(x) Nn  converges uniformly to zero on X.

Then 


1

)()(
n

nn xgxf converges uniformly on X.

10. A sequence of continuous functions may converge to a continuous function,
although the convergence is not uniform.

11. Assume that each term of f
n
is a real valuedfunction having a finite

derivative at each point of an open interval a, bAssume that for at least
one point x

0
 in a, bthe sequencef

n
x

0
converges. Assume further that

there exists a function g such that f
n
g uniformly on a, b

 Let I be a closed and bounded interval. Suppose f: I R is a continuous
function. Then for each , there exists a polynomial function pR
such that,

| ( ) ( ) |  f x p x  for all x in I, or equivalently,,

sup {| ( ) ( ) |f x p x  : }x I   .

13. Let f: [0,1]R be a function. Then for each integer nwe define the
Bernstein polynomial of degree n associated with f to be,

0

( )( ) (1 )
n

k n k
n

k

nk
B f x f x x

kn




     
  



14. An infinite series, in the ascending integral powers of a real variable x, of
the form,

a
0
 + a

1
 x + a

2
 x2 + ... + a

n
xn + ...,

Where the coefficients a
0
, a

1
, a

2
,... are constant, independent of x, is called

a real power series.

15 Let  C be a region and consider two analytic functions
f, g :  C.

Let S be a subset of that has a limit point p which need not lie in S.
Suppose that f = g on S. Then f = g.

16. Suppose gx
0

n
nn

c x
 be a power series which converges for x.

If 
0 nn
c

  converges then, 1
0

lim ( ) nx
n

g x c




 .
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Or, if a power series converges at x 1 then its value at x 1 is the limit of
its values at xso a power series has built-in continuity in its behaviour.

17. Let 
0

( )




 n
n

n

f x a x  for –1 x  1 and suppose that lim 0


n
n

n a .

If f(x) S as x 1–, then 
0




 n
n

a  converges and has the sum S.

2.18 SUMMARY

 A sequence is a function whose domain is the set of natural numbers.

 If the codomain is the set R of real numbers, it is called a real sequence.

 If the codomain is the set C of complex numbers then it is called a complex
sequence.

 If it is a set of polynomials then it is a sequence of polynomials.

 A sequence  nx  is called convergent if it converges to a limit l.

 A sequence, which converges to zero, is called a null sequence.

 A sequence may or may not converge.

 If a sequence is convergent, it converges to a unique limit.

 Every convergent sequence is always bounded.

 A monotone increasing sequence bounded above is always convergent and
converges to its Least Upper Bound (LUB).

 A monotone decreasing sequence bounded below is always convergent
and converges to its Greatest Lower Bound (GLB).

 Every constant sequence is convergent.

 A sequence  nx  is said to diverge to  if for every large G0, there

exists n
0
 N such that x

n
G for all nn

0
.

 An expression of the form u
1 
+ u

2 
+ u

3 
+…+ u

n 
+… in which every term is

followed by another according to some definite rule is called a series.

 If the number of terms is not finite, it is called an infinite series.

 The nature of a series is determined by the nature of the sequence of its nth
partial sum.

 A sequence f
n
of functions is said to converge pointwise on a set S to a

limit function f, if for each x  S and for each  0 there exists an N
depending on x and  such that,f

n
(x)  f(x)for all n N.

 A sequence of real valued functions <f
n
> defined on a set S is said to converge

uniformly to a real valued function f on S if for m N such that,
|f

n
x fx n m and x S.
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 A sequence of real valued functions <f
n
> defined on a set S converges

uniformly on S iff to each given m N such that,

|f
n+p
x f

n
x n m, p and x S.

This is Cauchy’s general principle of uniform convergence.

 A series  xfn  converges uniformly on a set S if there exists a convergent

series  nM of non-negative terms M
n
 such that |f

n
x M

n   x S and

n N.

 If   nf x converges uniformly on a set and <g
n
 .x be monotonic and

uniformly bounded on S, then the series   nf x  g
n
 .x converges uniformly

on SThis is Abel’s test for uniform convergence.
 Let X be a metric space. If the functions f

n
: X  C, g

n
: X R, n N satisfy

the following:

(a)
1

( ) ( )



n

n m
m

F x f x  is bounded uniformly in n and x.

(b) g
n+1 
g

n
xfor all x X and n 

(c) g
n
(x)

n N
 converges uniformly to zero on X.

Then
1

( ) ( )



 n n
n

f x g x converges uniformly on X. This is Dirichlet’s test for

uniform convergence.
 A sequence of continuous functions may converge to a continuous function,

although the convergence is not uniform.

 g
n
(x) = ( ) ( )

x

na
f t d t  if x a, bn = 1, 2,…, then we have

(a) f Ron a, b

(b) g
n 
g uniformly on a, bwhere g(x) = ( ) ( ).

x

a
f t d t

 Let f: [0, 1] R be a function. Then for each integer nwe define the
Bernstein polynomial of degree n associated with f to be,

0

( )( ) (1 ) 



     
  


n

k n k
n

k

k n
B f x f x x

n k
.

 An infinite series, in the ascending integral powers of a real variable x, of
the form a

0
 + a

1
x + a

2
x2 + … +a

n
xn+…, where the coefficients a

0,
 a

1
, a

2
,

… are constant and independent of x, is called a real power series.
 Any infinite subset S of a compact subset K has a limit point in K by the

Bolzano-Weierstrass theorem.

 Abel’s theorem states that if a power series converges on 1, 1and also
at x = 1, then its value at x = 1is determined by continuity from the left of 1.
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 Let  
0

( )




 n
n

n

f x a x for –1x 1 and suppose that lim 0


n
n

n a . If

 f(x) S as x 1–, then 
0




 n

n
n

a x converges and has the sum S.

2.19 KEY TERMS

 Sequence: A function whose domain is the set of natural numbers.

 Series: An expression of the form u
1 
+ u

2 
+ u

3 
+…+ u

n 
+… in which every

term is followed by another according to some definite rule.

 Pointwise convergence: A sequence f
n
of functions is said to converge

pointwise on a set S to a limit function f, if for each x  S and for each
 0 there exists an N depending on x and  such that, f

n
(x)  f(x)

for all n N.

 Uniform convergence: A sequence of real valued functions <f
n
> defined

on a set S is said to converge uniformly to a real valued function  f on S if for
m N such that |f

n
x fx n m and x S.

2.20 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short-Answer Questions

1. What is sequence?

2. Define the term monotone sequence.

3. What is convergent sequence?

4. Name the two important series.

5. Test the convergence of the series 
2 2

1 2 3
... ...

3 5 7 2 1
                   

n
n

n

using Cauchy’s root test.

6. Which convergence is a local property and which one is a global property?

7. Define uniformly bounded set.

8. What is the use of Weierstrass’s M-test?

9. Write an application of Abel’s test for uniform convergence.

10. What are the drawbacks of Dirichlet’s test for uniform convergence?

11. What is the relation between uniform convergence and continuity?

12. State the significance uniform convergence.

13. What is the use of uniform convergence and differentiation?

14. Write the three cases of Weierstrass approximation theorem.



Sequences and Series
of Functions

NOTES

Self - Learning
Material 93

15. Give an example of power series.

16. What is the significance of uniqueness theorem for power series?

17. State the difference between Abel’s theorem and Tauber’s theorem.

Long-Answer Questions

1. Explain the concept of sequence with reference to bounded and unbounded
sequences, monotone sequence and convergent sequence giving theorems,
proofs and relevant examples.

2. Discuss about the Cauchy’s criterion of convergence, divergent sequences
and oscillatory sequences giving theorems, proofs and significant examples.

3. Show that the sequence {xn} is convergent when,

          

4. Briefly discuss about the series in detail with the help of appropriate
examples.

5. What are the necessary and sufficient conditions for the convergence of an
infinite series? Explain giving relevant examples.

6. Explain in detail the tests used for convergence series and divergence series
giving definitions and appropriate examples of each test.

7. Prove that the following given series,

           to  converges.

8. Test the convergence of the following given series,

            

9. Test the convergence or divergence of the following given series,

       

10. Briefly explain the pointwise and uniform convergence giving definitions and
significant examples.

11. Prove that the pointwise convergence is a local property whereas the uniform
convergence is a global property.

12. State and prove the Cauchy’s criterion for uniform convergence giving
definitions and related significant examples.

13. Prove that the sequence xnconverges on [0, 1] to the function f defined
by f(x) = 0 when x  1 and f(1) = 1. The convergence is not uniform on
[0, 1].
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14. Discuss the Cauchy’s general principle of convergence for series giving
relevant examples.

15. Briefly explain the necessary conditions for convergent series and the
sufficient conditions for divergent series giving appropriate examples.

16. Explain the Weierstrass’s M-test giving the theorem, proof and appropriate
examples.

17. Discuss in detail the Abel’s test and the Dirichlet’s test for uniform
convergence with the help of theorems, proofs and relevant examples.

18. Describe the significance of uniform convergence and continuity giving the
theorem and examples.

19. Briefly explain the uniform convergence and Riemann-Stieltjes integration
with the help of theorems, proofs and appropriate examples.

20. Brief a note on uniform convergence and differentiation giving theorems and
relevant examples.

21. Explain in detail the Weierstrass approximation theorems giving their proofs.

22. Discuss the concept of the power series and prove the uniqueness theorem
for the power series.

23. If r (> 0) be the radius of convergence of the power series a
0
 + a

1
x + a

2
x2

+ ..., in (–r, r). Then prove that it converges uniformly and absolutely on
every close interval contained in (–r, r).

24. Consider that f:C be an analytic function. Prove that either | f | assumes
no maximum on or f is a constant

25. State and prove Abel’s theorem and Tauber’s theorem giving appropriate
examples.
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UNIT 3 FUNCTIONS OF SEVERAL
VARIABLES AND HIGHER
ORDER DIFFERENTIALS

Structure

3.0 Introduction
3.1 Objectives
3.2 Functions of Several Variables
3.3 Linear Transformations
3.4 Derivatives in an Open Subset of Rn

3.5 Partial Derivatives
3.6 Higher Order Differentials
3.7 Taylor’s Theorem
3.8 Explicit and Implicit Functions
3.9 Inverse Function Theorem and Implicit Function Theorem

3.10 Change of Variables
3.11 Extreme Values of Explicit Functions and Stationary Values of

Implicit Functions
3.12 Lagrange’s Multipliers Method
3.13 Differential Forms and Stokes’ Theorem

3.13.1 Stokes’ Theorem
3.14 Jacobian and Its Properties
3.15 Answers to ‘Check Your Progress’
3.16 Summary
3.17 Key Terms
3.18 Self Assessment Questions and Exercises
3.19 Further Reading

3.0 INTRODUCTION

In real analysis, a function of several variables or multivariate function is a function
with more than one argument, with all arguments being real variables. This concept
extends the idea of a function of a real variable to several variables. The “Input”
variables take real values, while the “Output”, also called the “Value of the Function”,
may be real or complex. However, the complex valued functions may be easily
reduced to the simple real valued functions on further analysis, by considering the
real and imaginary parts of the complex function.

The domain of a function of n variables is the subset of  for which the
function is defined. As usual, the domain of a function of several real variables is
supposed to contain an open subset of . Some functions are defined for all real
values of the variables such that they are everywhere defined, but some other
functions are defined only if the value of the variable are taken in a subset X of ,
the domain of the function, which is always supposed to contain an open subset
of .
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The function f (x, y) is a function of a single variable x when y is constant.
Then the derivative of f (x, y) (when exists) is called the partial derivative of

f (x, y) with respect to x. It is denoted by f
x
(x, y) or 

f

x




.

A homogeneous function is one with multiplicative scaling behaviour. If all
its arguments are multiplied by a factor, then its value is multiplied by some power
of this factor. For example, a homogeneous real valued function of two variables x

and y is a real valued function that satisfies the condition 

for some constant  and all real numbers r he constant k is called the degree of
homogeneity.

The Jacobian determinant is used when making a change of variables when
evaluating a multiple integral of a function over a region within its domain. To
accommodate for the change of coordinates the magnitude of the Jacobian
determinant arises as a multiplicative factor within the integral. This is because the
n-dimensional dV element is in general a parallelepiped in the new coordinate
system, and the n-volume of a parallelepiped is the determinant of its edge vectors.

In this unit, you will study about the functions of several variables, linear
transformations, derivatives in an open subset of Rn, partial derivatives, higher
order differentials, Taylor’s theorem, explicit and implicit functions, implicit function
theorem and inverse function theorem, change of variables, extreme values of
explicit and stationary values of implicit functions, Lagrange’s multipliers method,
differential forms, Stoke’s theorem and Jacobian and its properties.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Describe the functions of several variables

 Define what linear transformations are

 Find the derivatives in open subset of Rn

 Evaluate the partial derivatives

 Explain the higher order differentials

 State about the Taylor’s theorem

 Distinguish between explicit and implicit functions

 Define the concept of change of variables

 Describe Lagrange’s multipliers method

 Discuss about the differential forms and Stoke’s theorem

 Explain Jacobian and its properties
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3.2 FUNCTIONS OF SEVERAL VARIABLES

A variable z is said to be a function of two variables x and y if for each pair
(x, y) corresponds a value of  z. This is expressed by z = f (x, y). For example,
if z = x2 + y2, then z is a function of x and y.

If z = f (x, y), then z is a dependent variable and x, y are independent
variables. The function z = f (x, y) is called a single-valued function if only
one value of z is corresponded by each pair (x, y) for which the function is
defined. If there is more than one value of z, the function is called a multi-valued
function.

The set of values (points) (x, y) for which a function is defined, is called
the domain of definition or simply domain of the function.

For example, if z = 2 24 ( )x y  , the domain for which z is real consists

of the set of points (x, y) such that x2 + y2  4, i.e., the set of points inside and
on a circle in the xy-plane having its centre at (0, 0) and radius 2.

Note: If z is a function of n independent variables x1, x2, ..., xn, then we
write z = f (x1, x2, ..., xn). For example, if u = x2 + y2 + z2, then u is a
function of three variables x, y and z, i.e., u = f (x, y, z).

Limit and Continuity of a Function  of Two Variables

Definition: Let f (x, y) be a function of two variables defined in the region R
and (a, b) be a point in R. The function f (x, y) is said to have a limit l as (x, y)
tends to (a, b) if for every small positive number , there exists a positive number
 such that,

| f (x, y) – l | <  for 0 < | x – a | <  and 0 < | y – b | < 

Or | f (x, y) – l | <  for 0 < (x – a)2 + (y – b)2 < 2

In this case, we write
( , ) ( , )

lim
x y a b

f (x, y) = l or lim
x a
y b



f (x, y) = l.

This is also called the double limit or the simultaneous limit of f (x, y) as
(x, y) tends to (a, b).

Repeated Limit: Let f (x, y) be a function of two variables defined in the region

R and (a, b) be a point in R. Let lim
x a

f (x, y) exist and it is a function of y, say

g(y). If lim
y b

g(y) exists is equal to l, then l is called the repeated or iterated limit

of f (x, y) as x  a and then y  b and we express this by,

lim lim
y b x a 

 f (x, y) = l
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By changing the order of limits, we similarly define

lim lim
x a y b 

f (x, y) = l

Note: If the two repeated limits exist and are equal, then the double limit may
or may not exist. Conversely the double limit may exist but the repeated limits
may not exist but however if the repeated limits exist, they must be equal.

Continuity: Let f (x, y) be a function of two variables defined in the region R
and (a, b) be a point in R. The function f (x, y) is said to be continuous at

(a, b) if 
( , ) ( , )

lim
x y a b

 f (x, y) = f (a, b).

If f (x, y) is continuous for every point (a, b) in R, then we say f (x, y) is
continuous in R.

Analytical Definition: Let f (x, y) be a function of two variables defined in
the region R and (a, b) be a point in R. The function f (x, y) is said to be
continuous at (a, b) if for every small positive number , there exists a positive
number  depending on  such that,

| f (x, y) – f (a, b) | <  for | x – a | < , | y – b | <  (for Square Region)

or | f (x, y) – f (a, b) | <  for (x – a)2 + (y – b)2 < 2 (for Circular Region)

Region: If any two points of a set S can be joined by a path consisting of a
finite number of broken line segments all of whose points belong to S, then S is
called a connected set. A region is a connected open set. The following regions
are generally used.

(i) Rectangular Region: A rectangular region R is a set of points (x, y)
which satisfy the inequalities of the form a  x  b, c  y  d

y

x
x a = x b = 

y d = 

y c = 

(ii) Square Region: A square region R is a set of points (x, y) which satisfy
the inequalities of the form a – h  x  a + h, b – h  x < b + h

y

x

b – 

b + 

o a + a – 
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(iii) Circular Region: A circular region R is a set of points (x, y) which satisfy
the inequalities of the form (x – a)2 + (y – b)2  r2

xo

y

Note: A region is said to be closed or open according as the boundary points
do or do not belong to the region. For example, the region {(x, y)  2;
(x – a)2 + (y – b)2 < r2}is an open region, but {(x, y)  2, (x – a2)2 +
(y – b)2  r2} is closed.

Geometrical Representation of Functions of Two Variables

The function of one variable represents a curve in the two dimensional plane. A
function of two variables z = f (x, y) represents a surface in the three dimensional
space.

z

A

o

x

B y

N( )x, y, o

Let (x, y, z) be the coordinate of the point P. So, each point (x, y) in R
corresponds to another point (x, y, z) in space which describes a surface. Hence,
P(x, y, z) is a point on the surface z = f (x, y). This surface is the geometrical
representation of the function.

Theorems on Limit and Continuity

Theorem 3.1: Let f (x, y) and g(x, y) be two functions defined in the same
region R such that 

( , ) ( , )
lim

x y a b
 f (x, y) = l and 

( , ) ( , )
lim

x y a b
 g(x, y) = m then,

(i)
( , ) ( , )

lim
x y a b

{A f (x, y) ± B g(x, y)} = Al ± Bm where A and B are

constants.

(ii)
( , ) ( , )

lim
x y a b

 {f (x, y) · g(x, y)} = l · m

(iii)
( , ) ( , )

( , )
lim

( , )x y a b

f x y

g x y
=

l

m
provided m  0.
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Theorem 3.2: If f (x, y) and g(x, y) are continuous at (a, b), then

(i) f (x, y) ± g(x, y) is continuous at (a, b).

(ii) f (x, y) · g(x, y) is continuous at (a, b).

(iii)
( , )

( , )

f x y

g x y
is also continuous at (a, b) provided g(a, b)  0.

Example 3.1: Prove that 
( , ) (0,0)

lim
x y 

 xy 
2 2

2 2

x y

x y




= 0.

Solution: Let f (x, y) = xy 
2 2

2 2

x y

x y




.

We shall show that for any given small positive number , then we can
f ind  > 0 such that | f (x, y) – 0| <  for 0 < x2 + y2 < 2.

Now,  | f (x, y) – 0 | = 
2 2

2 2
0

x y
xy

x y





 = | x | | y | 

2 2

2 2

x y

x y




< | x | | y |

( | x2 – y2 | < | x2 + y2|)

 | f (x, y) – 0| <  whenever | x | | y | < , i.e., whenever,

x2 + y2 < ,

Since, | x | < 2 2x y and | y | < 2 2x y .

Thus, if we take  =  , then | f (x, y) – 0| <  whenever 0 < x2 + y2 < 2.

Hence, the given double limit exists, i.e.,
( , ) (0,0)

lim
x y 

xy 
2 2

2 2

x y

x y




= 0.

Note: Let (a, b) be an interior point of the region R and (x, y) be any point of
R. The point (x, y) varies over the region R and approaches the point (a, b)
along any specified curve in R but for the existence of the double limit, the limiting
value must be unique along whatever path (x, y) approaches (a, b). If the limiting
values are different for different approaches to the point (a, b) along different
curves in R, then the limit does not exist.

y

·( , )x y

x

·( , )a b

R

o

Example 3.2: Show that the repeated limits exist and

2 20 0
lim lim
y x

xy

x y  
= 

2 20 0
lim lim
x y

xy

x y  
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But the double limit 
2 2( , ) (0,0)

lim
x y

xy

x y 
 does not exist.

Solution: Here, 
2 20 0

lim lim
y x

xy

x y  
 = 

20

0·
lim

0y

y

y 
 = 0

And   
2 20 0

lim lim
x y

xy

x y  
= 20

0·
lim

0x

x

x 
 = 0


2 20 0

lim lim
y x

xy

x y  
= 

2 20 0
lim lim
x y

xy

x y  

2nd Part: Let y = mx, then x  0 implies (x, y)  (0, 0).


2 2( , ) (0,0)

lim
x y

xy

x y 
 =

2 2 2( 0)
lim
x

x mx

x m x 
= 20

lim
1x

m

m 
= 21

m

m

Which depends on m and varies as m varies.

Thus for different values of m, we get different limits. Hence the double
limit does not exist.

3.3 LINEAR TRANSFORMATIONS

Let V and U be two vector spaces over the same field F, then a mapping
T : V  U is called a homomorphism or a linear transformation if,

T(x + y) = T(x) + T(y) for all x, y  V

T(x) = T(x),  F

One can combine the two conditions to get a single condition,

T(x + y) = T(x) + T(y) where x, y  V; ,  F

It is easy to see that both are equivalent. If a homomorphism happens to
be one-one onto also, we call it an isomorphism, and say that the two spaces
are isomorphic. (Notation: V  U).

Example 3.3: Identity map I : V  V, such that,

I(v) = v

And, the zero map O : V  V, such that,

O(v) = 0

are clearly linear transformations.

Example 3.4: For a field F, consider the vector spaces F2 and F3. Define a map
T : F3  F2, by

T(, , ) = (, )

Then T is a linear transformation as,

for any x, y  F3, if x = (1, 1, 1)

y = (2, 2, 2)
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Then, T(x + y) = T(1 + 2, 1 + 2, 1 + 2) = (1 + 2, 1 + 2)

= (1, 1) + (2, 2) = T(x) + T(y)

And T(x) = T( (1, 1, 1)) = T(1, 1, 1)

= (1, 1) = (1, 1) = T(x)

Example 3.5: Let V be the vector space of all polynomials in x over a field F.
Define,

T : V  V, such that,

T(f (x)) = d

dx
f (x)

Then T(f + g) = d

dx
(f + g) = d d

f
dx dx

 g = T( f ) + T(g)

T(f ) = d

dx
(f ) =  d

dx
f = T(f )

Shows that T is a linear transformation.

In fact, if  : V  V be defined such that

( f ) = 
0

( )
x

f t  dt

Then  will also be a linear transformation.

Example 3.6: Consider the mapping,

T : R3  R, such that,

T(x1, x2, x3) = 2 2 2
1 2 3x x x 

Then T is not a linear transformation.

Consider, for instance,

T((1, 0, 0) + (1, 0, 0)) = T(2, 0, 0) = 4

T(1, 0, 0) + T(1, 0, 0) = 1 + 1 = 2.

3.4 DERIVATIVES IN AN OPEN SUBSET OF Rn

For arriving at a definition of the derivative of a function whose domain is Rn or an
open subset of Rnlet us consider the case n1. Let f be a real function with
domain a, bR and ca, b then fcis defined to be the real number,

0

( ) ( )
lim


 
h

f c h f c

h
, provided that the limit exists.

Let 
( ) ( )

( ) '( ), if 0
 

  c

f c h f c
E h f c h

h
…(3.1)

And E
c
(h) = 0, if h = 0. Then we have,

( ) ( ) ( ) '( )   chE h f c h f c hf c
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Or the equation which holds also for h = 0,

          ( ) ( ) '( ) ( )    cf c h f c hf c hE h  … (3.2)

The Equation (3.2) is called first order Taylor formula for approximating
f(c+h)–f(c) by f (c)h. The error committed is hE

c
(h). Also from Equation (3.1)

we get E
c
(h)0 as h0. Following are the two properties of Equation (3.2):

1. The quantity fch is a linear function, i.e., if we write T
c
(h) = fch,

then,

T
c
(ah

1
 + bh

2
) aT

c
(h

1
) + bT

c
(h

2
)

2. The error term hE
c
(h) is of smaller order than h as h0.

Now the total derivative of a function f from Rn to Rm will be defined in
such a way that it preserves the above two properties.

Definition: Let f:S  Rm be a function defined on a set S in Rn with values in Rm.
Let c be an interior point of S and let Bc;rbe an n-balllying in S. Let V be a point
in Rn with ||v||  r, so that c+v Bc;r Then the function f is said to be differentiable
at c if there exists a linear function T

c
: Rn Rm such that,

( ) ( ) ( ) || || ( ), where ( ) 0 as 0     c c cf c v f c T v v E v E v v … (3.3)

Note: Equation (3.3) is called a first order Taylor formula. The linear function T
c
 is

called the total derivative of f at c. We also write Equation (3.3) as,

( ) ( ) ( ) 0(|| ||) as 0    cf c v f c T v v v

Theorem 3.3: Let f is differentiable at c with total derivative T
c
. Then the directional

derivative fc;vexists for every u in Rn  and we have,

( ) '( ; )cT u f c v

Proof: Let f is differentiable at c. Then we have,

( ) ( ) ( ) || || ( )c cf c v f c T v v E v    , where T
c
 is linear and ( ) 0cE v  as 0v

            …(3.4)

If v = 0, then fc;00 
c
uNow assume that v  0.

Then taking v hu in Equation (3.4) we get,

( ) ( ) ( ) || || ( )   c cf c hu f c T hu hu E hu

( ) ( ) ( ) | | || || ( )c cf c hu f c hT u h u E hu    

( ) | |
( ) ( ) || || ( )


   c c

f c hu h
f c hT u u E hu

h h

Taking 
0

lim
h

 on both sides we get,

( ) | |
( ) ( ) || || ( )


   c c

f c hu h
f c hT u u E hu

h h
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That is, fc;0T
c
(u)

Theorem 3.4: If f is differentiable at c, then f is continuous at c.

Proof: f is differentiable at c then we have,

( ) ( ) ( ) || || ( )   c cf c v f c T v v E v           … (3.5)

Where T
c
 is linear and E

c
(v) 0 as v0.

As v0 in Equation (3.5) we get,

0
lim ( )



v

f c v   
0 0

( ) lim ( ) lim || || ( )
 

 c c
v v

f c T v v E v

                          ( ) (0) 0 cf c T

Or 
0

lim ( ) ( )


 
v

f c v f c , since T
c
 is linear, T

c
(v)

  
=0

That is, f is continuous at c.

For example, total derivative of linear function is the function itself. Let f be

a linear function differentiable at c. Then ( ) ( ) ( ) || || ( )   c cf c v f c T v v E v  where
E

c
(v) 0 as v0.

 ( ) ( ) ( ) ( ) || || ( )   c cf c f v f c T v v E v

 ( ) ( ) || || ( ) c cf v T v v E v

Theorem 3.5: Let f: SRm be differentiable at an interior point c of S, where

S Rn. If 1 1 2 2 ...    n nv v u v u v u , where U
1
,…, U

n
 are the unit coordinate

vectors in Rn, then 
1

( )( ) ( )



n

k k
k

f c v v D f c . If f is real valued (i.e., m=1) we have

'( )( ) ( ) . ( ) f c v f c v  which is the dot product of v with the vector

1( ) ( ( ),..., ( ( ))  nf c D f c D f c .

Proof:  Given v = v
1
u

1
+v

2
u

2
+….+v

n
u

n
, where u

1
,…, u

n
 are the unit coordinate

vectors and v
i
, i = 1,…, n are reals. Since f cis linear, so

 fcv  1 1 2 2'( )( ... )   n nf c v u v u v u

 1 1 2 2'( )( ) '( )( ) ... '( )( )   n nv f c u v f c u v f c u

 1 1 2 2'( ; ) '( ; ) ... '( : )   n nv f c u v f c u v f c u

 1 1 2 2( ) ( ) ... ( )   n nv D f c v D f c v D f c


1

( )



n

k k
k

v D f c

In particular for mwe get

'( )( )f c v 
1

( )



n

k k
k

v D f c
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 1 2 1 2( ( ), ( ),..., ( )).( , ,..., )n nD f c D f c D f c v v v

 1( ).( ), where ( ) ( ( ),..., ( ))   nf c v f c D f c D f c

Note: The vector ( )f c  is known as the gradient vector of f at c.

Check Your Progress

1. Distinguish between single-valued and multi-valued functions.

2. Define linear transformation.

3. Give a necessary condition for a function to be continuous at a point.

3.5 PARTIAL DERIVATIVES

Let f (x, y) be a function of two independent variables x and y, defined in the
region R.

The function f (x, y) is a function of a single variable x when y is constant.
Then the derivative of f (x, y) (when exists) is called the partial derivative of

f (x, y) with respect to x. It is denoted by fx(x, y) or 
f

x




.

 f

x




= 
0

( , ) ( , )
lim
h

f x h y f x y

h

 
... (3.6)

The function f (x, y) is a function of a single variable y when x is constant.
Then the derivative of f (x, y) (when exists) is called the partial derivative of

f (x, y) with respect to y. It is denoted by fy(x, y) or 
f

y




 f

y




= 
0

( , ) ( , )
lim
k

f x y k f x y

k

 
... (3.7)

Notes:

1. When Equations (3.6) and (3.7) exist at (a, b) in R, then they are denoted
by fx(a, b) and fy(a, b).

2. fx(x, y) and fy(x, y) are also functions of x and y.

3. The function f (x, y) is derivable means that both the partial derivatives fx(x,
y) and fy(x, y) exist.

4. Let f (x, y, z) be a function of three independent variables x, y and z defined

in R. Then f (x, y, z) has three partial derivatives ,
 
 
f f

x y
 and .



f

z

 fx(x, y, z) = 
0

( , , ) ( , , )
lim
h

f x h y z f x y z

h

 

fy(x, y, z)= 
0

( , , ) ( , , )
lim
k

f x y k z f x y z

k
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And fz(x, y, z) = 
0

( , , ) ( , , )
lim .
w

f x y z w f x y z

w

 

Example 3.7: Find from the definition of partial derivative  fx(1, 1) and

fy(1, 1) where f (x, y) = 
1

x y

x y


 

.

Solution: Here,

fx(1, 1) =
0

(1 , 1) (1,1)
lim
h

f h f

h

   = 
0

1 1 2 1
lim

1 1 1 3h

h

h h

      

= 
0

2 2 1
lim

3 3h

h

h h

   
 = 

0

3 6 2 6 1
lim ·

3( 3)h

h h

h h

  


= 
0

1
lim ·

3( 3)h

h

h h 
 = 

0

1
lim

3( 3)h h 
 = 

1

9

And fy (1, 1) = 
0

(1, 1 ) (1, 1)
lim
k

f k f

k

   = 
0

1 1 2 1
lim

1 1 1 3k

k

k k

      

= 
0

2 2 1
lim

3 3k

k

k k

   
 = 

0

3 6 2 6 1
lim

3( 3)k

k k

k k

   
  

= 
0

1
lim ·

3( 3)k

k

k k   = 
0

1
lim

3( 3)k k 
 = 

1

9
.

Example 3.8: Let f (x, y) = 2 2
for ( , ) (0,0)

0 for ( , ) (0,0)

xy
x y

x y

x y

 


 

.

Find fx(0, 0) and fy (0, 0).

Solution: Here fx(0, 0) = 
0

(0 ,0) (0,0)
lim
h

f h f

h

 
 = 

0

0 0
lim
h h


 = 0

And fy(0, 0) = 
0

(0,0 ) (0,0)
lim
k

f k f

k

 
 = 

2

0

0
0

lim
k

k
k


 = 

0

0 0
lim
k k


 = 0.

Example 3.9: Find from definition given that 
f

x




 and 
f

y




 at (x, y) where f (x, y)

= x2 + 2xy + y2.
Solution: Here,

fx (x, y) = 
f

x




 = 
0

( , ) ( , )
lim
h

f x h y f x y

h

 

= 
2 2 2 2

0

( ) 2( ) ( 2 )
lim
h

x h x h y y x xy y

h

      

= 
2 2 2 2 2

0

2 2 2 2
lim
h

x hx h xy hy y x xy y

h

       

= 
2

0

2 2
lim
h

h hx hy

h

 
 = 

0
lim
h

 h + 2x + 2y = 2x + 2y
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Similarly, fy(x, y) = 
f

y




 = 2x + 2y.

Example 3.10: If  f (x, y) = 
x y

x y




, then find 
f

x




 and 
f

y




 at (2, – 1) from the

given definition.
Solution: Now,

fx(2, – 1) = 
(2, 1)

f

x 

 
  

 = 
0

(2 , 1) (2, 1)
lim
h

f h f

h

   

= 
0

2 1 3

2 1 2 1lim
h

h

h
h

 


    = 
0

3 1
lim 3

1h

h

h h

   

= 
0

3 3 3
lim

( 1)h

h h

h h

  


 = 
0

2
lim

( 1)h

h

h h




 = 
0

2
lim

1h h




 = – 2

And fy(2, – 1) = 
(2, 1)

f

y 

 
  

 = 
0

(2, 1 ) (2, 1)
lim
k

f k f

k

   

=  
0

2 1 1
lim 3

2 1k

k

k k

     
= 

0

3 1
lim

1k

k

k k

 
  

= 
0

3 3 3
lim

( 1)k

k k

k k

  


= 
0

4
lim

( 1)k

k

k k




= 
0

4
lim

1k k




 = – 4.

Partial Derivative of Higher Order

Let z = f (x, y) be a function of two independent variables x and y. Then the partial
derivatives fx(x, y) and fy(x, y) are also functions of x and y. The partial derivatives
of fx(x, y) and fy(x, y) are called second order partial derivatives of f (x, y). The
partial derivatives of fx(x, y) with respect to x and y are given by,

( ( , ))xf x y
x




= f

x x

  
   

= 
2

2

f

x




 = fxx = 

0

( , ) ( , )
lim x x

h

f x h y f x y

h

 

And  [ ( , )]xf x y
y




= 
f

y x

  
   

 = 
2 f

y x


 

 = fyx = 
0

( , ) ( , )
lim x x

k

f x y k f x y

k

 

The partial derivatives of fy(x, y) with respect to x and y are given by,

x




[ fy(x, y)] = f

x y

  
   

 = 
2 f

x y


 

 = fxy = 
0

( , ) ( , )
lim

y y

h

f x h y f x y

h

 

And
y




 [ fy(x, y)]= f

y y

  
   

 = 
2

2

f

y




 = fyy = 

0

( , ) ( , )
lim

y y

k

f x y k f x y

k

 

The four second order partial derivatives of f (x, y) are fxx,  fyy,  fxy and  fyx.



108   Self-Instructional Material

Functions of Several
Variables and Higher
Order Differentials

NOTES

The third order partial derivatives of f (x, y) are given by,
fxxx,  fyxx,  fxyx,  fyyx,  fxxy,  fyxy,  fxyy and fyyy where,

fyyx = f

y y x

    
      

first with respect to x,

Then with respect to y and then again with respect to y.

In general,
n

n

f

x




= 

1

1

n

n

f

x x





  
    

 = 
2 2

2 2

n

n

f

x x





  
    

And
1

1

n

n

f

x y





  
   

= 
1

n

n

f

x y 


 
.

In general  fxy  fyx but if fx and fy exist in some neighbourhood of (a, b) and
if they are differentiable at (a, b), then fxy = fyx at (a, b) which is known as Young’s
theorem. Another set of sufficient conditions for the above equality has been given
by Schwarz as follows:

Theorem 3.6 (Schwarz’s): Let f (x, y) be a function defined in the region R of the
xy-plane and (a, b) be any point in R such that:

(i) 
f

x




 exists in some neighbourhood of (a, b)

(ii) 
2 f

x y


 

 is continuous at (a, b),

Then 
2 f

y y


 

 exists at (a, b) and fxy(a, b) = fyx(a, b).

Example 3.11: The function f (x, y) is defined by

f (x, y) = 

2 2

2 2
for ( , ) (0,0)

0 for ( , ) (0,0)

x y
xy x y

x y

x y

 


 
 

Prove that fxy(0, 0)   fyx(0, 0).

Solution: Here,

fxy(0, 0) = 
0

(0 ,0) (0,0)
lim

y y

h

f h f

h

 

= 
0

( ,0) (0,0)
lim

y y

h

f h f

h


... (1)

And, fyx(0, 0) = 
0

(0,0 ) (0,0)
lim x x

k

f k f

k

 

= 
0

(0, ) (0,0)
lim x x

k

f k f

k


... (2)

Also, fy(h, 0) = 
0

( ,0 ) ( ,0)
lim
k

f h k f h

k

   = 
0

( , ) ( ,0)
lim
k

f h k f h

k
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= 
2 2 2 2

2 2 20

0 1
lim ·0

0k

h k h
hk h

kh k h

  
 

   

= 
2 2

2 20

( )
lim
k

h h k

h k




 = 

3

2

h

h
 = h ...(3)

And, fy(0, 0) = 
0

(0, ) (0,0)
lim
k

f k f

k


 = 

0

0 0
lim
k k


 = 0 ... (4)

Hence, from Equations (1), (3) and (4), we get

fxy(0, 0) = 
0

( ,0) (0,0)
lim

y y

h

f h f

h


 = 

0

0
lim
h

h

h


 = 1

Again, fx (0, k) = 
0

(0 , ) (0, )
lim
h

f h k f k

h

   = 
0

( , ) (0, )
lim
h

f h k f k

h



= 
2 2 2 2

2 2 2 20

0 1
lim 0 . .

0h

h k k
hk k

hh k k

  
 

   

= 
2 2

2 20

( )
lim
h

k h k

h k




 = 

2

2

( )k k

k


 = – k ... (5)

And,  fx(0, 0) = 
0

(0 ,0) (0,0)
lim
h

f h f

h

 
 = 

0

( , 0) (0,0)
lim
h

f h f

h



= 
0

0 0
lim
h h


 = 0 ... (6)

Hence, from Equations (2), (5) and (6), we get

fyx(0, 0) = 
0

(0, ) (0,0)
lim x x

k

f k f

k


 = 

0

0
lim
k

k

k

 
 = – 1

Since, fxy(0, 0) = 1 and fyx(0, 0) = – 1, hence fxy(0, 0)  fyx(0, 0).

Example 3.12: Show that for the function,

f (x, y) = 

2 2

2 2
for ( , ) (0,0)

0 for ( , ) (0,0)

x y
x y

x y

x y




 
 

the equality fxy(0, 0) = fyx(0, 0) holds.

Solution: Here,  fxy(0, 0)

= 
0 0

(0 ,0) (0,0) ( ,0) (0,0)
lim lim

y y y y

h h

f h f f h f

h h 

  


Also, fy(h, 0) = 
0

( ,0 ) ( ,0)
lim
k

f h k f h

k

 
 = 

0

( , ) ( ,0)
lim
k

f h k f h

k



= 
2 2 2

2 2 2 20

. 0 1
lim

0k

h k h

kh k h

 
 

   
 = 

2

2 2 20

0
lim
k

h k

h k h



 = 0

And, fy(0, 0) = 
0

(0,0 ) (0,0)
lim
k

f k f

k

 
 = 

2

20

0 . 1
lim 0

0h

k

kk
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= 
0

0 0
lim
k k


 = 0

Hence, fxy(0, 0) = 
0

( ,0) (0,0)
lim

y y

h

f h f

h


 = 

0

0 0
lim
h h

  = 0

Again, fyx(0, 0) = 
0

(0,0 ) (0,0)
lim x x

k

f k f

k

 
 = 

0

(0, ) (0,0)
lim x x

k

f k f

k



Also, fx(0, k) = 
0

( , ) (0, )
lim
h

f h k f k

h

  = 
2 2 2

2 2 2 20

0. 1
lim

0h

h k k

hh k k

 
 

   

= 
2

2 20
lim
h

hk

h k 
 = 

2

2 2

0.

0

k

k
 = 0

And, fx(0, 0) = 
0

( , 0) (0,0)
lim
h

f h f

h


 = 

2

2 20

. 0
lim 0

0h

h

h

 
 

  

= 
0

0 0
lim
h h


 = 0

Hence, fyx(0, 0) = 
0

(0, ) (0,0)
lim x x

k

f k f

k


 = 

0

0 0
lim
k k


 = 0

 fxy (0, 0) = 0 = fyx(0, 0)

Homogeneous Functions

A function f (x, y) is said to be homogeneous of degree n in the variables x and y
if it can be expressed in the form xn (y/x) or in the form yn (x/y).

Alternatively, a function f (x, y) is said to be homogeneous of degree n in
the variables x and y if f (tx, ty) = tn f (x, y) for all values of t independent of x
and y.
Generalized Definition: A function f (x, y, z, ...) is said to be homogeneous
function of degree n in the variables x, y, z ..., if f (tx, ty, tz, ...) = tn f (x, y, z, ...)
for all values of t independent of x, y, z, ... .
Illustrations: (i) The function f (x, y) = x2 + y2 is homogeneous of degree two

because f (x, y) can be written in the form f (x, y) = x2
2

2
1

y

x

 
  

 
 = x2 (y/x) where

(y/x) = 1 + y2/x2.

(ii) The function f (x, y) = 
4 4

xy

x y
 is a homogeneous function of degree

(– 2) because f (tx, ty) = 
2

4 2 2( )

t xy

t x y
 = t–2

2 4

xy

x y
= t–2 f (x, y).

(iii) The function f (x, y, z) = 2 2 2x y z   is a homogeneous function

of degree 1 because f (tx, ty, tz) = 2 2 2 2 2 2t x t y t z   = 2 2 2t x y z   = t1 f
(x, y, z).
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(iv) The function f (x, y, z) = x y z

x y z

 
 

 is a homogeneous function

of degree 1/2 because f (tx, ty, tz) = tx ty tz

tx ty tz

 
 

 = 1/ 2

t

t

x y z

x y z

 
 

= 1/ 2t f

(x, y, z).

Euler’s Theorem on Homogeneous Functions

Theorem 3.7 (For Two Variables): Let f (x, y) be a homogeneous function of
two variables x and y of degree n having continuous partial derivative, then

f f
x y

x y

 


 
 = n f (x, y).

Proof: Since f (x, y) is a homogeneous function of degree n, then we write f (x, y)
= xn(y/x).

 f

x




= n xn–1 (y/x) + xn (y/x) (– y/x2)

= nxn–1 (y/x) – xn–2 y (y/x)

And
f

y




= xn  (y/x) 
1

x
 
  

 = xn–1  (y/x)


f f

x y
x y

 


 
= n xn (y/x) – xn–1 (y/x) + xn–1  (y/x)

= n xn(y/x) = n f (x, y)

Euler’s Theorem on Homogeneous Functions of More than
Two Independent Variables

Let u = f (x1, x2, ..., xn) be a homogeneous function of n independent variables
x1, x2, ..., xn of degree k having continuous partial derivatives, then

1 2
1 2

... n
n

f f f
x x x

x x x

  
  

  
 = k f (x1, x2, ..., xn).

Example 3.13: Verify Euler’s theorem for f (x, y) = x3+ y3.

Solution: Here, the function f (x, y) is a homogeneous function of degree three.

  fx = 3x2 and fy = 3y2

 f f
x y

x y

 


 
= x · 3x2 + y · 3y2 = 3(x3 + y3) = 3 f (x, y)

Hence, Euler’s theorem is verified.

Example 3.14: Verify the Euler’s theorem for,

f (x, y, z) = 3x2yz + 5xy2z + 5z4.

Solution: Here, f (tx, ty, tz)= 3t2x2 ty tz + 5 tx t2y2 tz + 5 t4z4

= t4 (3x2yz + 5xy2z + 5z4)

= t4 f (x, y, z)
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 f (x, y, z) is a homogeneous function of Degree 4.

Now 
f

x




 = 6xyz + 5y2z
f

y




 = 3x2z + 10xyz

f

z




 = 3x2y + 5xy2 + 20z3

 
f f f

x y z
x y z

  
 

  

= x(6xyz + 5y2z) + y(3x2z + 10xyz) + z(3x2y + 5xy2 + 20z3)

= 6x2yz + 5xy2z + 3x2yz + 10xy2z + 3x2yz + 5xy2z + 20z4

= 12x2yz + 20xy2z + 20z4

= 4(3x2yz + 5xy2z + 5z4)

= 4f (x, y, z)

Hence, Euler’s theorem is verified.

Harmonic Function

A function f (x, y) is said to be a harmonic function if 2 f = 
2 2

2 2

f f

x y

 


 
= 0 (which

is known as Laplace Equation).

Similarly, a function  f (x, y, z) is harmonic if,

2 f = 0, i.e., if 
2 2 2

2 2 2

f f f

x y z

  
 

  
 = 0.

Example 3.15: Show that the function f (x, y, z) = 
2 2 2

1

x y z 
 is a harmonic

function.
Solution: Now

f

x




= 
2 2 2 3 / 2( )

x

x y z


 

And
2

2

f

x




= 

2 2 2 3 / 2 2 2 2 1/ 2

2 2 2 3

3
( ) ( ) 2

2
( )

x y z x x y z x

x y z

    


 

= 
2 2 2 1/ 2 2 2 2 2

2 2 2 3

( ) [ 3 ]

( )

x y z x y z x

x y z

    


 

= 
2 2 2

2 2 2 5 / 2

2

( )

x y z

x y z

 

 

Similarly, 
2

2

f

y




 = 

2 2 2

2 2 2 5 / 2

2

( )

y x z

x y z

 

 
 and 

2

2

f

z




 = 

2 2 2

2 2 2 5 / 2

2

( )

z x y

x y z

 

 


2 2 2

2 2 2

f f f

x y z
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= 
2 2 2 2 2 2 2 2 2

2 2 2 5 / 2 2 2 2 5 / 2 2 2 2 5 / 2

2 2 2

( ) ( ) ( )

x y z y x z z x y

x y z x y z x y z

     
 

     

= 
2 2 2 2 2 2 2 2 2

2 2 2 5 / 2

2 2 2

( )

x y z y x z z x y

x y z

       

 
 = 0.

Hence, f (x, y, z) is a harmonic function in x, y, z.

Total Differential

Let z = f (x, y) be a function of two independent variables x and y and fx, fy exist

at (x, y), then dz = 
f f

dx dy
x y

 


 
is called the total differential of z.

Example 3.16: Find the total differential of z = x2 + xy + y2.

Solution: Now, 
z

x




 = 2x + y and 
z

y




 = x + 2y.

Then the total differential of z is given by,

dz = 
z z

dx dy
x y

 


 

= (2x + y)dx + (x + 2y)dy.

Chain Rules for Functions of Two or More Variables

(i) Let z = f (x, y) be a function of two variables x and y where x = (t), y
= (t) (assume that f,  and  are differentiable functions) then z is a function of
t only and

dz

dt
= 

z dx z dy

x dt y dt

 


 
.

(ii) Let z = f (x, y) be a function of two variables x and y where x = (u, v)
and y = (u, v) (assume that f,  and  are differentiable functions), then z is a
function of u and v and

z

u




= · ·
z x z y

x u y u

   


   
· ·

z z x z y

v x v y v

    
 

    

(iii) Let z = f (u1,u2, ..., un) be a function of n variables u1, u2, ..., un where
u1 = 1(x1, x2, ..., xp), u2 = 2(x1, x2, ..., xp), ..., un = n (x1, x2, ..., xp) (assume
that f, 1, 2, ... , n are differentiable functions), then z is a function of x1, x2, ...,
xp and

i

z

x




= 1 2

1 2
... n

i i n i

uu uz z z

u x u x u x

   
  

     
 (i = 1, 2, ..., p)

= 
1

n
r

r ir

uz

u x


   where i = 1, 2, ..., p.

The above results are known as chain rules.
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3.6 HIGHER ORDER DIFFERENTIALS

Let  f (x) be a derivable function of x in a given interval. Then its derivative f (x)
is also a function of x. This function f (x) may have a derivative in a certain interval.
This derivative is called the second order derivative of f (x) and it is denoted by
f (x). Similarly, the derivative of the 2nd order derivative is called the third
derivative and so on.

The nth order derivative of f (x) with respect to x is denoted by yn or

f (n) (x) or 
n

n

d y

dx
or y(n) or 

n

n

d

dx
{f (x)} or Dn f (x) whre D  d

dx
 and y = f (x).

The nth Derivative of Some Functions

 1. y = eax where a is a constant.

Now y1 = aeax

y2 = aaeax = a2eax

y3 = a2aeax = a3eax

.............................

.............................

yn = aneax

Note: If y = eax+b, yn = aneax+b

2. y = 1

x

Here y1 = 2

1
–

x
= (– 1)1 1 1

1

x 

y2 = (– 1) 
3

–2

x

 
 
 

= (– 1)2 2 1

2

x 

y3 = 2
4

2 . ( 3)
(–1) ·

x


 = 

3

3 1

(–1) 3

x 

............................................

............................................

yn = 1

(–1)

( )

n

n

n

x 

Corollary: For y = 1

1 (–1)
,

( )

n

n n

n
y

x a x a 


 
.

3. y = log x

Here, y1 = 1

x
, y2 = 2

1
–

x
= 1 1

(–1)1

x 

y3 = (– 1) 3

(–2)

x
= (– 1)2 2 1

2

x 
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y4 = (– 1)2 . 4

2 . (–3)

x
 = (– 1)3 3 1

3

x 

.............................................

.............................................

yn = 
–1(–1) –1n

n

n

x

Corollary: For y = log (x ± a), yn = 
–1(–1) –1

.
( )

n

n

n

x a

4. y = 2 2

1

–x a

Now    y = 2 2

1

–x a
= 

1

( ) ( – )x a x a
= 1 1

–
–x a x a

 
  

 1

2a

   yn = 
1 1

1 (–1) (–1)
–

2 ( – ) ( )

n n

n n

n n

a x a x a 

 
 

  
[by corollary of 2]

= 1 1

1 1 1
(–1) –

2 ( – ) ( )
n

n n
n

a x a x a 

 
 

  
Let x = r cosh  and a = r sinh , then r2 = x2 – a2

And  = sinh–1 (a/r)
 x – a = r (cosh  – sinh )

= 
–

2 2

e e e e
r

        
            

= ree– 

And x + a = r (cosh  + sinh )

= 
–

2 2

e e e e
r

        
            

= ree

 yn = 1

2a
 (– 1)n n  

1 ( 1) 1 ( 1)

1 1
–

n n n nr e r e     

 
 
  

     = 1

(–1)

2

n

n

n

a r 
( 1) ( 1)n ne e        = 1

( 1)n

n

n

a r 


sinh (n + 1)

Where  = 1sinh
a

r
  
  

5. y = 2 2

1

x a

Now,    y = 2 2

1

x a
= 2 2 2

1

x i a
= 

1

( ) ( )x ia x ia 

= 1 1 1

2ai x ia x ia
    

 yn = 1

2ai
(– 1)n n  1 1

1 1

( – ) ( )n nx ia x ia 

 
 

  

Let x = rcos , a = r sin , then r2 = x2 + a2 and  = tan–1 
a

x
 
  

x – ia= r(cos  – i sin ) = re–i  and x + ia = r(cos  + i sin ) = rei 
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 yn = 1

2ai
(– 1)n n  

1 ( 1) 1 ( 1)

1 1
–

n n i n n ir e r e     

 
 
  

= 1

2ai
 

1

(–1)n

n

n

r   ( 1) ( 1)–n i n ie e    
 

= 
1

(–1)n

n

n

a r 
 sin (n + 1)  where  = tan–1 a

x
 
  

6. y = (ax + b)m where m is any positive integer.

Now, y1 = (ax + b)m–1 (m)a = ma (ax + b)m – 1

y2 = (ma) (m – 1)a (ax + b)m – 2

y3 = (ma) (m – 1)a (m – 2)a (ax + b)m–3

= m(m – 1) (m – 2) a3 (ax + b)m – 3

........................................

........................................

yn = m (m – 1) (m – 2) ... (m – n + 1) an (ax + b)m –n

If m be a positive integer greater than n, then

yn = m (m – 1) (m – 2) ... (m – n + 1) an (ax + b)m –n

If m be a positive integer less than n, then

yn  = 0

If m = n, then yn = n(n – 1) (n – 2) ... 3 · 2 · 1 an (ax + b)0

= n  an.

7. y = sin(ax + b)

 y1 = a cos (ax + b) = a sin 
2

ax b
   

 

y2 = – a2 sin (ax + b) = a2 sin 2 .
2

ax b
    

y3 = – a3 cos (ax + b) = a3 sin 3 ·
2

ax b
    

.....................................

.....................................

yn = an sin ·
2

n ax b
   

 

Note: If b = 0, then yn = Dn sin (ax) = an sin
2

  
 

n
ax

8. y = cos (ax + b)

 y1 = – a sin (ax + b) = a cos 
2

ax b
   

 

y2 = – a2 cos (ax + b) = a2 cos 2 ·
2

ax b
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y3 = a3 sin (ax + b) = a3 cos 3 ·
2

ax b
   

 
.........................................
.........................................

yn = an cos 
2

n
ax b

   
 

Note: If b = 0,  then yn = Dn cos ax = an cos 
2

  
 

n
ax

9. y = 
1

ax b
where a and b are constants.

Now, y1 = 2
–

( )

a

ax b
 = (– 1)1 1 1( )

a

ax b 

y2 = ( – a) 3

(–2 )

( )

a

ax b
 = (– 1)2 

2

2 1

2

( )

a

ax b 

y3 = (– 1)2 a2 4

2 (–3 )

( )

a

ax b
= 

3 3

3 1

(–1) 3

( )

a

ax b 

......................................

......................................

yn = 1

(–1)

( )

n n

n

a n

ax b 

10. y = eax sin bx where a and b are constants.

Now, y1 = aeax sin bx + eax b cos bx = eax (a sin bx + b cos bx)

Let a = r cos  and b = r sin , then a2 + b2 = r2 and tan  = b

a
or

 = tan–1 b

a
 
 
 

 y1 = eax [r cos  sin bx + r sin  cos bx] = reax sin (bx + )

...................................

...................................

yn = rneax sin (bx + n)

= 2 2 2( )
n

a b eax sin –1tan
b

bx n
a

   

Note: Similarly for y = eax cos bx, yn = 2 2 2( )
n

a b eax cos –1tan
  
 

b
bx n

a
.

We now show some applications of the above.

Example 3.17: Find yn in the following cases:

(i) y = 
–

log
a x

a x
 
  

(ii) y = –a x

a x

(iii) y = 
1

nx

x 
(iv) y = 

2

( –1) ( – 2) ( 3)

x

x x x 
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Solution: (i) Now y = 
–

log
a x

a x
 
  

 = log (a – x) – log (a + x)

 y1 = –1 1

–a x a x




y2 = 
 

2 2

11
( )

( – ) ( )a x a x


 



y3 = 
2

3 3

2 (–1) 2
( )

( – ) ( )a x a x
 



y4 = 
3

4 4

3 (–1) 3
( )

( – ) ( )a x a x
 


.....................................
.....................................

yn = 
–11 (–1) 1

( )
( – ) ( )

n

n n

n n

a x a x

 
 



= 1 (–1)
–1 –

( – ) ( )

n

n n
n

a x a x

 
 

  

(ii) y = 
–a x

a x
= 2 – ( )a x a

a x




= 2a

a x
–1

 y1 = 2a 
1

2

(–1)

( )a x

y2 = 2a 
2

3

(–1) 2

( )a x

y3 = 2a 
3

4

(–1) 3

( )a x
.....................................
.....................................

yn = 2a 1

(–1)

( )

n

n

n

a x 

(iii) y = 
1

nx

x 
= 

1 1

1

nx

x

 


=
–1

1

nx

x 
+ 1

1x 

   = 
–1 –2( –1)( ... 1) 1

1 1

n nx x x x

x x

   


 

   = xn–1 + xn–2 + ... + x + 1 + 1

1x 
Since, the nth order derivative of xn–1, xn–2, ..., x are zero and

1

1
nD

x
 
  

= 1

( 1)

( 1)

n

n

n

x 



,

yn = 1

( 1)

( 1)

n

n

n

x 




(iv) y = 
2

( 1)( 2)( 3)

x

x x x  
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Let y = 
2

( 1)( 2)( 3)

x

x x x  
= 

( 1) ( 2) ( 3)

A B C

x x x
 

  

or x2 = A(x – 2) (x – 3) + B(x – 1) (x – 3) + C(x – 1) (x – 2)
Now putting x = 1, 2 and 3, we get

1 = A(– 1) (– 2)  A = 1

2
4 = B(– 1) (– 1)  B = – 4

And  9 = C(–2) (1)  C = 9

2

 y = 1 1

2 –1x
+ (–4)

2x 
+ 9 1

·
2 – 3x

We know that Dn 1

x a
 
  

 = 1

( 1)

( – )

n

n

n

x a 


 yn = 1

1 (–1)

2 ( 1)

n

n

n

x 
 – (4) 1

(–1)

( 2)

n

n

n

x 
 + 1

9 (–1)

2 ( 3)

n

n

n

x 

Leibnitz’s Theorem for the nth Order Derivative of the Product of Two
Functions
Theorem 3.8: Let u and v be two functions of x, both derivable at least upto n
times, then the nth derivative of their product is given by,

(uv)n = 
0

n
n

r n r r
r

c u v



= nco unv + nc
1
 un–1 v1 + ... + nc

n
 u vn

= un v + n un–1 v1 + 
( 1)

2

n n 
 un – 2 v2 + ... + u vn

Where the suffixes of u and v denote the orders of differentiation of u and
v with respect to x.
Example 3.18: Find yn when y = x3 log x.

Solution: Let u = log x and v = x3, then uk = 
1( 1) 1k

k

k

x

 
and vk = 0 for k  4.

Then by the Leibnitz’s theorem, we get
yn  = (x3 log x)n = (uv)n

= un v + n un –1 v1 + 
( 1)

2

n n 
un–2 v2 + 

( 1)( 2)

3

n n n 
 un –3 v3

(Other terms are Zero,  vk = 0 for k  4)

= 
1 2 3

3 2
1 2

( 1) 1 ( 1) 2 ( 1)( 1) 3
3 6

2

n n n

n n n

n n n n n
x n x x

x x x

  

 
      

 

+ 
4

3

( 1)( 2) ( 1) 4
6

3

n

n

n n n x

x




   

=  3 3

( 1) ( 1) 4
2 1 3

n

n n

n n n
n n n

x x 
  

      (– 1)n [(– n + 3) 3 + n – 2]

= 3 3

( 1) 2 ( 1) 4
(2 1)

n

n n

n n n n
n

x x 
   

  (– 1)n (– 2n + 7)
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 = 3

( 1) 4n

n

n

x 
 

 [(n – 2) (n – 3) (2n + 1) + n(n – 1) (– 2n + 7)]

= 3

( 1) 4n

n

n

x 
 

 [(n2 – 5n + 6) (2n + 1) + (n2 – n) (– 2n + 7)]

= 3

( 1) 4n

n

n

x 
 

 [2n3 – 10n2 + 12n + n2 – 5n + 6 – 2n3 + 2n2 + 7n2 – 7n]

= 3

( 1) 6 4n

n

n

x 
 

.

Example 3.19: If x + y = 1, then prove that 
n

n

d

dx
(xnyn) = n {yn – (nC1)2 yn–1 x

+ (nC2)2 yn–2 x2– (nC3)2 yn–3x3 + ... + (– 1)n xn }.

Solution: Since x + y = 1, then y = 1 – x.

Let   u = xn and v = (1 – x)n, then ur = n(n – 1)(n – 2) ... (n – r + 1)xn–r

    = 
( 1)( 2)...( 1)n n n n r n r

n r

    


 xn–r =
n

n r
xn–r

Differentiating n times by Leibnitz’s theorem, we get

n

n

d

dx
(xnyn) = 

n

n

d

dx
(xn (1 – x)n) = (uv)n

= 
0

n
n

r
r

C

  un–r vr = nC0 un v + nC1 un–1 v1 + nC2 un–2

 v2 + ...

+ nCn uvn

= n (1 – x)n + nC1 
1

n

n n 
 x (1 – x)n–1 (–1)n + nC2 2

n

n n 
 x2

n(n – 1) (–1)2 (1 – x)n–2 + ... + nCn x
n n (–1)n [ vn = (–1)n n ]

= n     1
1 1(1 ) (1 )n n n nx C x x C    



2 2
2

( 1)
(1 ) ... ( )( 1)

2
n n n n n

n
n n

C x x C x 
    



= n  [yn – (nC1)2 xyn–1 + (nC2)2 x2yn–2 + ... + (–1)n xn]

Check Your Progress

4. Define partial derivative of a function of two variables.

5. What is a homogeneous function?

6. Define a harmonic function.

7. State Leibnitz’s theorem for the nth order derivative of the product of two
functions.
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3.7 TAYLOR’S THEOREM

Theorem 3.9: Let  f (x + h) be expandable into a power series in the variable h.
Again the flat assumption is that this series can be differentiated term-by-term.

Taylor’s theorem states that,

f (a + h) = f (a) + h f (a) + 
2

2!

h  f (a) + ... 

Proof: Let f (a + h) = 0 + 1h + 2h2 + 3h3 + ... 

Put h = 0 to get 0 = f (a).

Differentiating each side with respect to h, we obtain

[ ( )]
d

f a h
dh

 = 1 + 22h + 33h2 + ... 

But [ ( )]
d

f a h
dh

  = 
[ ( )] ( )

.
( ) ( )

d f a h d a h

d a h d h

 


= f (a + h) . 1 = f (a + h)

This in turn yields that,

1 = f (a)

[Observe that f (a + h) is first derivative of f (a + h) with respect to
a + h.]

Again, differentiate both sides with respect to h.

Thus, f (a + h) = 22 + (3.2) 3 h + ... 

 22 = f  (a) or 2 = ( )

2!

f a

Proceeding in this manner, we get

r = ( )1
( )

!
rf a

r

Hence,  f (a + h) = ( )

0
( )

!

r
r

r

h
f a

r




 .

Example 3.20: Show that,

log (n + 1) = log n + 2 3 4

1 1 1 1
...

2 3 4n n n n

     
 

.

Solution: We expand log (n + h) in terms of h and then put h = 1.

f (n + h) = log (n + h)  f (n) = log n

Also, f (n + h) = 
1

[log ( )]
( )

d
n h

d n h n h
 

 

 f (n) = 1

n
.
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Further, f (n + h) = – 2

1

( )n h
  f (n) = – 2

1

n
 ans so on.

In general, f(r)(n + h) = 
1( 1) ( 1)

( )

r r

r

r

n h

 


 f (r)(n) = 
1( 1) ( 1)r

r

r

n

 
.

Consequently by Taylor’s expansion,

log (n + h)= f (n) + h f (n) + 
2

( ) ...
2!

h
f n  ( ) ( ) ...

!

r
rh

f n
r

 

= log n + 
2 3

2 3

2!
...

3!2

h h h

n n n
  

+ 
1( 1) ( 1)!

( !)

r hr r

r nr

 
 + ...

Put h = 1, to obtain

log (n + 1) = log n + 
2 3 4

1 1 1 1
...

2 3 4n n n n

      
.

Example 3.21: Prove that,

tan–1(x + 2) = tan–1 x + 2 sin z 
2

2sin (2 sin )
sin

1 2

z z
z  + 

3(2 sin ) sin 3
...

3

z z


Where, cot z = x.

Solution: We expand tan–1(x + h) by Taylor’s expansion and then put h = 2.

Here, f (x + h) = tan–1(x + h)  f (x) = tan–1 x.

In this case, f (r) (x + h) = (–1)r–1 (r – 1)! sinn  sin n

Where,     cos  = x + h

Thus, f (r)
(x) = (–1)r – 1 (r – 1)! sinn z sin nz

Since by definition the value of cot  at h = 0 is cot z, i.e.,  = z

Hence, tan–1 (x + h) = tan–1 x + h sin z sin z + 
2

2!

h  (–sin2 z sin 2z)

+ 
3

3!

h  (2! sin3 z sin 3z) ...

          = tan–1 x + h sin z 
2 2sin sin

sin 2
1 2

z h z
z

+ 
3

3sin sin3 ...
3

h
z z

Put h = 2, to get the required result.
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Example 3.22: Show that if x is numerically less than 1,

2

1

(1 )x
 = 1 + 2x + 3x2 + 4x3 +

Solution. Here, f (a + h) = 2

1

( )a h

 f (a) = 
2

1

a

f (a + h) = –
3

2

( )a h

 f (a) = – 3

2

a

Again, f (a + h) = 4

6

( )a h

 f (a) = 4

6

a

and so on.

By Taylor’s, expansion

2

1

( )a h
= 2

2 3 4

1 2 6 1
...

2!
h h

a a a
 

Put a = –1, h = x to get

2

1

( 1 )x 
= 1 + 2x + 3x2 + ...

Or
2

1

(1 )x
= 1 + 2x + 3x2 + ...

Notes: 1. Series on RHS is convergent only when x is numerically less than 1.

2. One might think that in the proof of 
2

1d

dx x

 
 
 

(by definition), we use the

series (1 – x)–2 = 1 + 2x + 3x2 + ... . We could avoid this circular
argument by finding out derivative of x–n, n is any integer by following
technique

1
n

d

dx x

 
 
 

= 
  1

2

1 1.n n

n

d
x nx

dx
x



= 
1

2

0. n n

n

x nx

x



= 
1

2

n

n

nx

x


 = – 1

1
n

n

n
nx

x
 

  

Now, put n = 1, 2, 3, ..., to get derivative of reciprocal of any integral
power of x.
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3.8 EXPLICIT AND IMPLICIT FUNCTIONS

If the dependent variable y is expressed in terms of the independent variable x, we
call y an explicit function of x and denote such a function by y = f (x). One can
similarly define an explicit function x = f (y) where y is the independent variable
and x depends on y. Thus y = x sin x + 5 log x – 2x is an explicit function. But often
it may not be possible to relate a dependent variable to the independent variable in
such an explicit form, yet it may be possible to get y as a function of x or x as a
function of y under some stringent conditions. These conditions are given by the
well-known implicit function theorem. It is to be clearly understood that the
conditions of this theorem assert the existence of a function but do not provide the
function itself.

Derivatives of Implicit Functions

Theorem 3.10: If F (x, y) = 0 defines y as an implicit function of x, then

dy

dx
= x

y

F

F
  provided Fy  0.

Proof: Since F (x, y) = 0, then 
dF

dx
 = 0. ... (3.8)

By the chain rule, we get

d

dx
{F (x, y)} = 

F dx F dy

x dx y dx

 


 
  = 

F F dy

x y dx

 


 

or y
dy

F
dx

 + Fx = 0 (By  Equation (3.8)) or 
dy

dx
 = .x

y

F

F


Notes:

1. If F (x, y, z) = 0 defines z as an implicit function of x and y

then z

x




 = x

z

F

F
  and z

y




 = y

z

F

F
  provided Fz  0.

2. If F (x, y) = 0 defines y as an implicit function of x, then
2

2

d y

dx
= 

2 2

3

( ) 2 ( )y xx x y xy x yy

y

F F F F F F F

F

 
  provided Fy  0.

Example 3.23: Find 
dy

dx
 if a2x3 + b2y3 – 3abxy = 0.

Solution: Let F (x, y) = a2x3 + b2y3 – 3abxy;

Fx = 3a2x2 – 3aby and Fy = 3b2y2 – 3abx.

 dy

dx
 = x

y

F

F
  = 

2 2

2 2

3 ( ) ( )

3 ( ) ( )

a ax by a ax by

bb by ax by ax

 
  

 
.
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3.9 INVERSE FUNCTION THEOREM AND IMPLICIT
FUNCTION THEOREM

The Inverse Function Theorem

Theorem 3.11: Let f f
1
, f

2
,…, f

n
C on an open set S in Rn, and let Tfs.

If the Jacobian determinant J
f
afor some point a in S, then there are two

open sets XS and YT and a uniquely determined function g such that,

(a) aX and faY.

(b) Y  fX.

(c) F is one to one on X.

(d) G is defined on Y, gY X, and gfX for every x X.

(e) g C

Proof: f f
1
,f

2
,…, f

n
Con S. So f is continuous on S.

J
f
 is continuous on S.

J
f
a

There is an n-ball B
1
a such that J

f
Xfor all X in B

1
a

There is an n-ball Baa on which f is one to one.

Let B be an n-ball with center at a and radius smaller than that of Ba

Then fB contains an n-ball with center at fa. Denote this by Y and suppose
Xf–1YB.

f Con S.

 f is differentiable on S.

 f is continuous on S.

Therefore, f–1Y is open being an n-ball Y is open
  f–1Y B is open.

 X is open.

(a) We have,

aB and faY
 aB and af–1Y

 aB  f–1Y

 aX

(b) X = f–1Y B

f(X) = ff–1Y B

ff–1Y fB

=Y fB
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 fX Y …(3.9)

       Let yY  y fB
 y = fb for some b B

That is,
fb = yY

So,
b f–1Y

Thus,
yY  b B and bf–1Y

 bB  f–1Y
 bX

That is,
y Y y=fb for some bX

That is,

Y  fX …(3.10)

From Equations 3.9 and 3.10

Y = fX

(c) We have f is one to one on B and XTherefore f is one to one on X.

(d) The set B is compact and f is one to one and continuous on B.

Let f: Sbe a functionfrom one metric space to another metric space.
Assume that f is one to one on S, so that the inverse function f–1 exists. If S is
compact and if f is continuous on S, then  f–1 is continuous on fS There exists a

function g defined on B  such that,

gfX = X for all xB

Also,

g is continuous on fB 
Since,

Y fB g is defined on Y.

We have,

 fXY

So from the definition of g, we get gYX and g fXX for all xX.

To prove g is unique, let there exists h on fB satisfying d

Then,

hfXX for all xX

Also, we have
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gfXX for all xX

Let  yY.

Then there exists a unique xX such that,

y fX Because f is one-to-one

Therefore,

hY  hfX
 x

 gfX

 gY

That is,

hY  gY) for all yY

 h  g

(e) Define a real valued function h by,

1 2( ) det[ ( )] where , ,...,j i i nh Z D f z z z z S 

And z
1
, z

2
,…, z

n
is the corresponding element in 

2nR . h is continuous at

the point Z in 
2nR where hZ is defined. Let Z be the special point in 

2nR  obtained
by putting z

1
=z

2
=… = z

n
=a.

Then,

hZ det D
j
f
i
z

i


        J
r
a



Hence, by continuity of h, there is some n-ball B
2
asuch that hZ for

all z
1
, z

2
,…, z

n
 B

2
a

We can now assume that, the n-ball Bawas chosen so thatBa B
2
a

Then,  B  B
2
aand hence h(Z) for each z

i
 B .

In order to prove that g = (g
1
, g

2
,…, g

n
)Con Y, it is enough to show that

g
k
 Con Y.

For proving that D
r
g

k 
exists on Y, let yY. Since, Y is open, y+tu

r
Y for

sufficiently small t, where u
r
 is the rth unit coordinate vector in Rn.

Consider 
( ) ( )rgk y tu gk y

t

 

And let xgy and xgy+tu
r
Then both x and xare in X and  f(x–

f(xy+tu
r
–y tu

r
.



128   Self-Instructional Material

Functions of Several
Variables

NOTES

Hence,

  f
i
(x– f

i
(xt if i = r

                     if i  r

By the mean value theorem we have,

( ') ( ) '
( ) . for 1, 2,..., ,i i

i i

f x f x x x
f z i n

t t

    
 

Where iz lies in the line segment joining x and xand hence iz B.

Therefore,

'
( ). 0, if

1, for 1, 2,...,

i i

x x
f z i r

t

if i r i n

    
 

  

That is,

1

'
( ) . 0, if

1, if for 1, 2,...,

n

j i i
j

x x
D f z i r

t

i r i n



    
 

  



This is a system of n linear equations in n unknowns 
' j jx x

t
 and has a

unique solution, since det D
j
f
i
z

i
  hZnsolving thekth unknown by

Cramer’s rule we get,

( ) ( )

,

k k k r k

k

x x g y tu g y

t t
D

D

   




Where, D
k
 is the determinant of the matrix obtained by replacing the kth

column by u
r
 and D detD

j
f
i
z

i


Now,

tz
i
 X, since z

i
 is on the line segment joining x and x

Also,
0

lim
t

D = 
0

limdet[ ( )]
 j i i

t
D f z

= det[ ( )]j iD f x

= J
f
(x)

 0, since x X

Therefore,

  
0

( ) ( )
lim


 k r k

t

g y tu g y

t
 exists.
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Or,

 D
r
g

k
(y) exists for r = 1, 2,…, n.

Furthermore, D
r
g

k
(y) is a quotient of two determinants involving the

derivatives D
j
f
i
(X). But each D

j
f
i
(X) is continuous. Therefore, D

r
g

k
(y) is continuous.

That is, g
k
C1 on Y.  Hence, g  C1 on Y.

Implicit Function Theorem

Notation: Points in the (n+k) dimensional space Rn+k will be written in the form
(x;t) where x = (x

1
,…, x

n
)  Rn and t = (t

1
,…, t

k
)  Rk.

Theorem 3.12: Let f  f
1
,…, f

n
be a vector valued function defined on an open

set S in Rn+k with values in Rn. Suppose f C1 on S. Let x
0
;t

0
 be a point in S for

which the n  n determinant detD
j
f
i
x

0
;t

0
  Then  there exists a k dimensional

open set T
0
 containing t

0
 and, one and only one, vector valued function g, defined

on T
0
 and having values in Rn, such that

(a)  g C1 on T
0

(b)  gt
0
x

0

(c)  fgttfor every t in T
0

Proof: Define a vector valued function F F
1
,F

2
,…, F

n
;F

n+1
on S having values

in Rn+k and apply inverse function theorem to F. The function F is defined as
follows:

Let F
m
x;tf

m
x;tfor  1m n and let F

n+m
x;t t

m
 for 1m k.

Thus,  Ff;Iwhere f f
1
,f

2
….f

n
and I is the identity function defined

by Itt for each t Rk.

Now,

 FC1 on S, since f C1 and I C1 on S.

Also,

1 1 1 1 1 1

1 2 2 1 2 2

1 1

1 1 1 1 1 1

1 2

( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )
( ; ) det

( ; ) ( ; ) ( ; ) ( ; )

(

 

 

 

     





 
 

     
 
 

n n n k

n n n k

n n n n n n k n
F

n n n n n n k n

n

D F x t D F x t D F x t D F x t

D F x t D F x t D F x t D F x t

D F x t D F x t D F x t D F x t
J x t

D F x t D F x t D F x t D F x t

D F 2 1 2 2

1 1

; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )

    

     

 
 
 
 
 
 
 
 
 
 
 
 
 

 
     

 

n n n n n k n

n k n n k n n k n k n k

x t D F x t D F x t D F x t

D F x t D F x t D F x t D F x t
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1 1 1 1 1 1

1 2 2 1 2 2

1 1

1 1 1 1 1 1

1 2

( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )
det

( ; ) ( ; ) ( ; ) ( ; )

( ; )

 

 

 

     





 
 

     
 
 


n n n k

n n n k

n n n n n n k n

n n n n n n k n

n n

D f x t D f x t D f x t D f x t

D f x t D f x t D f x t D f x t

D f x t D f x t D f x t D f x t

D f x t D f x t D f x t D f x t

D f x t D 2 1 2 2

1 1

( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )

    

     

 
 
 
 
 
 
 
 
 
 
 
 
 


     

 

n n n n k n

n k n n k n n k n k n k

f x t D f x t D f x t

D f x t D f x t D f x t D f x t

     

1 1 1

1 2 2

1

( ; ) ( ; )

( ; ) ( ; )
det , where det

0

( ; ) ( ; )

 
 

           
 




 


n

n

n n n

D f x t D f x t

D f x t D f x tM N
M

I

D f x t D f x t

And

1 1 1

1 2 2

1

( ; ) ( ; )

( ; ) ( ; )
and det

( ; ) ( ; )

 

 

 

 
 
   
  
 




 


n n k

n n k

n n n k n

D f x t D f x t

D f x t D f x t
N

D f x t D f x t

= det M

= det [D
j
  f

i
 (x; t)]

So J
F
 (x

0
; t

0
) = det [D

j 
f
i
 (x

0
; t

0
)]



Also,

 F x
0
;t

0
fx

0
;t

0
t

   0,t
0


Now, by inverse function theorem, there exist open sets X and Y and a
unique function,

G: Y X which satisfy the following properties:
 x

0
;t

0
X and Fx

0
;t

0
0,t

0
Y.

2. Y FX
3. F is one to one on X.
4. GYX and G Fx;tfor every x;tX.
5. G C1 on Y.
Now, G can be reduced to components as follows:
G v;wwhere v v

1
,…., v

n
is a vector valued function definedon Y

with values in Rn and
w w

1
,…., w

k
is also defined on Y but has values in Rk.

To determine v and w explicitly, F is one to one on X and F–1Y) contains
X. Hence, for every x;tin Y can be written uniquely as x;t Fxtfor some
xtin X. From the way in which F was defined, we must have tt.
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Hence,

 GFxtGxt
xtvxtwxt

 vxtxand wxtt

Additionally,

      FxtFvxttfor every xtY.

Now define the set T
0
 and the function g as,

T
0
 t/t Rk,0;tY

and for every t in T
0
 define gtvt

Then, T
0
 is open, since Y is open.

G C1 on Y.

Therefore, g C1 on Y, since the components of g are taken from the
components of G.

Also, gt
0
vt

0


                  x
0

      fgttfv0tt

                 fx
0
;t

                 for every t  T
0

Now, we will prove the uniqueness of g. If there were another function h
which satisfies c then,

     fgttfhttfor all t T
0

gtthtt since f is one-to-one

gtht

gh

Check Your Progress

8. Give the statement of Taylor’s theorem.

9. Define an explicit function.

10. State the inverse function theorem.

3.10 CHANGE OF VARIABLES

Theorem 3.13: If (i) f   [a, b], (ii)  is derivable, strictly monotonic on []
and maps it onto [a, b], and (iii)  [], then

( ) ( ( ) ( ) .
b

a
f x dx f t t dt




   



132   Self-Instructional Material

Functions of Several
Variables

NOTES

Proof: Let  be strictly monotonically increasing on [], and Q = { =t
0
, t

1
, t

2
,

...., t
n
 = } be a partition of [], then P = {a = x

0
, x

1
, x

2
, ......, x

n
 = b} be the

corresponding partition of [a, b], for x
i
 = (t

i
), i = 0, 1, 2, ...., n.

By Lagrange’s mean value theorem,

x
r
 = x

r
 – x

r–1
 =  (t

r
) (t

r – 1
) =  (

r
) t

r
, where 

r
 t

r
 and 

r
 = (

r
),

r = 1, 2, ....., n.

so that

f(
r
) 

r
 = f( (

r
)) (

r
) t

r
. ...(3.11)

and being derivable is uniformly continuous on [], and consequently
||Q||  0 as || P ||  0. Thus, letting || P ||  0 as

( ) ( ) ,
b

r r a
f x f x dx      and ( ( )) ( ) ( ( )) ( ) ,r r rf t f t t dt




         

Equation (3.11) gives that

( ) ( ( ) ( ) .
b

a
f x dx f t t dt




   

With some adjustments in the above proof, the theorem also holds for strictly
monotonically decreasing .

Notes: 1. If   0 on [] then  is strictly monotonic on []. Hence in the
theorem the condition of strictly monotonic of  can be replaced by
 0 on [].

2. The theorem still holds even if  = 0 for a finite number of times on
[]. In that case  can be divided into a finite number of
subintervals in each of which  is strictly monotonic and the change of
variable being valid in each of the subintervals, the result follows.

Conclusively, to evaluate ( )f x dx


 , if we put x = g(t), where g(a) = ,

g(b) =  and g is continuous on [a, b] vanishing at the most a finite number of
times, then

( ) ( ( )) ( )
b

a
f x dx f g t g t dt




 

The auxiliary function g mapping [a, b] onto [, ] is chosen in such a way
so that the last integral is easily known.

Hence, f


  can be evaluated in many cases.

Example 3.24: To evaluate 
1

1
3

0

(1 )x dx .

 Let 
1

3(1 )x  = t, then x = (t3 – 1)3 = t9 – 3t6 + 3t3 –1 gives

1
1

3

0

(1 )x dx =

1
32

8 5 2

1

(9 18 9 )t t t t dt 
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=
1210 7 4 3

1

9 18 9
|

10 7 4
t t t 

=
1

3
90 81

2
70 140



3.11 EXTREME VALUES OF EXPLICIT FUNCTIONS
AND STATIONARY VALUES OF IMPLICIT
FUNCTIONS

Extrema of Functions of One Variable

A function y = f (x) has a maximum value at a point x0 if for | h | sufficiently small,
f (x0 + h) < f (x0)

Similarly, a function y = f (x) has a minimum value at a point x0 if
f (x0 + h) > f (x0)

Let y = f (x) be a continuous function defined on the interval (a, b). The
points x1, x2, x3, x4 and x6 (not x5) represent all the points of maxima and minima
in [a, b] (called the stationary or critical points). These include x1, x3 and x6 as the
points of maxima, and x2 and x4 as the points of minima.

Max

Max

Max

A

O a x1 x2 x3 x4 x5 x6 b

f x( ) Point of Inflection

x

Global Maxima: Since f (x6) > f (x) for all x  x6, f (x6) is called the global
maxima whereas f (x1), f (x2) are called local or relative maxima. Observe
f (x6) = max {f (x1),  f (x3),  f (x6)}.

Global Minima: Since f (x2) < f (x) for all x  x2,

f (x2) is called global minima whereas f (x4) is called a local minima.

The point A corresponding to f (x5) is a point of inflection.

Notes:

1. A function may have more than one maximum values.

2. A function may have more than one minimum values.

3. A function may have no maximum or minimum values.

Necessary Conditions for Maximum and Minimum: If f (x) be a maximum
or a minimum at x = c and if f (c) exists, then f (c) = 0.
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At the points of maximum and minimum, if the function y = f (x) has a
derivative, the tangent line to the curve y = f (x) at each of these points is parallel
to the x-axis.

From the above necessary condition, it follows immediately that if for all
considered values of x, the function f (x) has a derivative, then it can have an
extremum (maximum or minimum) only at those values for which the derivative
vanishes. The converse does not hold: it cannot be said that there definitely exists a
maximum or minimum for every value at which the derivative vanish. The function y
= x3 at x = 0 has a derivative equal to zero (y  = 3x2, (y ) x = 0 = 0) but at  this point
the function has neither a maximum nor a minimum.

x

y

y x = 3

O

The function y = | x | has no derivative at the point x = 0 but the function has
a minimum value 0 at x = 0.

y
y x = | |

x
O

The function y = (1 – x2/3)3/2 has no derivative at x = 0.

 1/22/3 1/33 2
Note that 1

2 3
y x x

        
=  1/21/3 2/3– 1x x 

becomes infinite at 0x


 


But the function has maximum value y = 1 at x = 0.

x

y
y x = (1 – )2/3 3/2

– 1 O 1

The function y = 3 x  has no derivative at x = 0 (Note that y   as x  0).

At this point the function has neither a maximum nor a minimum.
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x

y

O

3 x

So, a function can have an extremum only in two cases:

(i) At the points where the derivative exists and is zero.

(ii) At the points where the derivative does not exist.

Determination of Maxima and Minima

(a) If c be an interior point in the interval in which the function f (x) is
defined, f (c) = 0 and f (c)  0, then f (c) is

(i) a maximum at x = c if f (c) < 0.

(ii) a minimum at x = c if f (c) > 0.

(b) If c be an interior point of the interval of definition of the function f (x)
and if f (c) = f (c) = ... = f n–1(c) = 0 and f n(c)  0, then

(i) if n be even, f (c) is a maximum or minimum, according as f n(c) is
negative or positive.

(ii) if n be odd, f (c) is neither maximum nor minimum.

Example 3.25: Show that the maximum value of 1
x

x
 
 
 

 is e1/e.

Solution: Let f (x) = 
1 x

x
 
 
 

, then log f (x) = x log
1

x
 
 
 

 = –x log x

 ( )

( )

f x

f x


= – (1 + log x) [1 + log x] ...(1)

or f (x) = – f(x) (1 + log x)

From the necessary condition of extrema, we get f (x) = 0

1 + log x = 0 ( f (x)  0)

 x = 
1

e
.

Differentiating Equation (1) with respect to x, we get

2

2

( ) [ ( )]

( ) [ ( ) ]

f x f x

f x f x

 
 = – 1/x

 f (x) = 
2

2

1 [ ( )]
( )

[ ( )]

f x
f x

x f x
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For x = 
1

e
, f  1

e
 
 
 

= [– e + 0] f 1

e
 
 
 

= – e1/e < 0

Hence f (x) = (x)1/x has a maximum value at x = 1/e and the maximum value
is e1/e.

Example 3.26: Show that the maximum value of 
1

x
x

  
 

 is less than its minimum

value.

Solution: Let f (x) = 
1

x
x

 , then f (x) = 2

1
1

x
  and f (x) = 3

2

x

f (x) = 0 gives 2

1
1

x
  = 0  x = ±1

For x = 1, f (1) = 2 > 0. Hence at x = 1, f (x) has a minimum value and the
minimum value is 2.

For x = –1, f (–1) = –2 < 0, Hence at x = –1, f (x) has a maximum value

and the maximum value is 0. This shows that the maximum value (0) of 1
x

x
  
 

 is

less than its minimum value (2).

Extrema for Functions of Two Variables

A function f (x, y) is said to have a maximum or a minimum value at the point (a, b)
of the domain of f (x, y), provided we can find a positive number  such that for all
values of x, y in a –  < x < a +  and b –  < y < b + , (x  a, y  b)

f (x, y) <>  f (a, b)

i.e., if f (a + h, b + k) – f (a, b) <>   0 for | h | <  and | k | < , f (a, b) is
called an extreme value of f (x, y) if it is either a maximum or a minimum.

Necessary Conditions for Maxima and Minima: If a function f (x, y)
has an extreme value (maximum or minimum) at (a, b) and if the first partial
derivatives fx and fy exist at (a, b), then fx (a, b) = 0 and fy (a, b) = 0.

Sufficient Condition for the Extremum of a Function f (x, y) at
(a, b): If  fx (a, b) = 0, f y (a, b) = 0 and fxx (a, b) = A,  fxy (a, b)
= B, fyy (a, b) = C, then

1. f (a, b) is a maximum value of f (x, y) at (a, b) if AC – B2 > 0 and A
< 0.

2. f (a, b) is a minimum value of f (x, y) at (a, b) if AC – B2 > 0 and
A > 0.

3. f (a, b) is neither a maximum nor a minimum value of f (x, y) at (a, b)
if AC – B2 < 0.

4. The case is doubtful and needs further investigation if AC – B2 = 0.

Saddle Point: A point (a, b) is said to be saddle point of a function f (x, y) if
f (x, y) has neither a maximum nor a minimum at (a, b) though fx (a, b) = 0 and
fy (a, b) = 0.
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Critical Point: A point (a, b) is said to be a critical point of a function f (x, y) if
fx (a, b) = 0 and fy (a, b) = 0.

Example 3.27: Find the extreme values of,

f (x, y) = x2 + xy + y2 + ax + by

and determine whether the value you get is maximum or minimum.

Solution: Here, f (x, y) = x2 + xy + y2 + ax + by

 fx = 2x + y + a, fy = x + 2y + b

For maxima or minima of f (x, y),

fx = 0 and fy = 0

i.e., 2x + y + a = 0 and x + 2y + b = 0

Solving these two equations, we get

x = 
1

3
 (b – 2a) and y = 

1

3
 (a – 2b)

Now, fxx = 2 = A, fyy = 2 = C and fxy = B = 1

 At the point [
1

3
 (b – 2a), 

1

3
 (a – 2b)],

AC – B2 = 4 – 1 = 3

And A = 2

Since AC – B2 > 0 and A > 0, f (x, y) is minimum at [
1

3
 (b – 2a),

1

3
 (a – 2b)] and the minimum value of f (x, y)

= 2 21 1 1
( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 )

9 9 9 3 3

a b
b a b a a b a b b a a b         

=
1

9
 (–3b2 – 3a2 + 3ab) = 

1

3
 (ab – a2 – b2).

Example 3.28: Find all the maxima and minima of the function,

f (x, y) = x3 + y3 – 63 (x + y) + 12xy

Solution: Here, f (x, y) = x3 + y3 – 63 (x + y) + 12xy

 fx = 3x2 – 63 + 12y and fy = 3y2 – 63 + 12x

For the extreme of f (x, y), fx = 0 and fy = 0

i.e., 3x2 + 12y – 63 = 0 and 3y2 + 12x – 63 = 0

i.e., x2 + 4y – 21 = 0 and y2 + 4x – 21 = 0

Subtracting 2nd from the 1st, we get

(x2 – y2) + 4(y – x)= 0

Or (x – y) (x + y – 4) = 0

 x – y = 0or x + y – 4 = 0
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So we get two sets of equations

x2 + 4y – 21 = 0, x – y = 0

And x2 + 4y – 21 = 0, x + y – 4 = 0

Solving these two sets of equations we get the following sets of points as
root of fx = 0 and fy = 0

(3, 3), (–7, –7), (5, –1), (–1, 5)

Now, A = fxx = 6x, C = fyy = 6y and B = fxy = 12

At (3, 3), we have A = 18, B = 12 and C = 18.

So that AC – B2 = 182 – 122 > 0 and A > 0

 f (x, y) is minimum at (3, 3)

At (–7, –7), we have A = –42, B = 12, C = – 42

So that AC – B2 = 422 – 122 > 0 and A < 0

 f (x, y) is maximum at (–7, –7)

At (5, –1), we have A = 30, B = 12 and C = – 6

So that AC – B2 = –180 – 122 < 0

 f (x, y) is not extremum at (5, –1)

At (–1, 5), we have A = –6, B = 12 and C = 30

So that AC – B2 = –180 – 122 < 0

 f (x, y) is not extremum at (–1, 5).

3.12 LAGRANGE’S MULTIPLIERS METHOD

If we have to find the stationary value of a function of several variables which are
not independent but interconnected by some relations then we try to convert the
given function to one having least number of variables using the given conditions.

When such a procedure fails we use the method of Lagrange’s multipliers which
is described below.

Let u = f (x, y, z) be the function whose maximum or minimum values are to be
determined. Let the variables x, y, z be connected by the relation v (x, y, z) = 0.

For u to be a maximum or minimum it is necessary that

                  0,
u

x





                    0,

u

y




                    0
u

z






 0
u u u

dx dy dz
x y z

  
  

   …(3.12)

From v (x, y, z) = 0 we get

0
v v v

dx dy dz
x y z

  
  

  
…(3.13)
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Multiplying Equation (3.13) by the Lagrange multiplier  and adding it to Equation
(3.12) we get,

              0
u v u v u v

dx dy dz
x x y y z z

                              
…(3.14)

This equation will be satisfied if we use the conditions,

      0
u v

x x

       
         0

u v

y y

  
     

          0
u v

z z

       

Using the above conditions and v (x, y, z) = 0 we can find the value of  and the
values for the variables x, y and z which will give the extreme value of the function
u (x, y, z).

Note: If n constraints are given in the problem we have to use n multipliers namely
1, 2, …, n. The drawback of this method is that we cannot decide the nature
of the stationary value. Sometimes physical considerations help us to decide whether
u has attained a maximum or minimum value.

Example 3.29: Using Lagrange’s multipliers method, find the extreme value of
x2 + y2 + z2 subject to the condition ax + by + cz = p.

Solution: Let  u = x2 + y2 + z2;  –v ax by cz p  

du = 0, dv = 0 give
2x dx + 2y dy + 2z dz = 0 …(1)

 a dx + b dy + c dz = 0 …(2)
Equation (1) +  Equation (2) = 0 gives,

                    (2 ) (2 ) (2 ) 0x a dx y b dy z c dz        

For an extreme value of u we must have,

             2 0;x a               2 0;y b                2 0z c  

  =
2 2 2

– – –
x y z

a b c
 

Or
x

a
=

y z

b c


                   2 2 2 2 2 2 2 2 2

ax by cz ax by cz p

a b c a b c a b c

 
   

   

Hence,     
2 2 2

;
ap

x
a b c


 

      
2 2 2

;
bp

y
a b c


 

      
2 2 2

cp
z

a b c


 
Using these we get the extreme value of u as,

u =
2

2 2 2

p

a b c 
.
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Example 3.30: Find the maxima or minima of xmynzp subject to the condition

ax + by + cz = p + q + r.

Solution: Let    u = xmynzp;    v = ax + by + cz – p – q – r

log u = m log x + n log y + p log z

1
du

u
=

m n p
dx dy dz

x y z
 

du = 0 gives                  0
m n p

dx dy dz
x y z

   …(1)

dv = 0 gives                      a dx + b dy + c dz = 0 …(2)
Equation (1) +  Equation (2) = 0 gives,

                    0
m n p

a dx b dy c dz
x y z

                
    

For an extreme value of u, we have,

           0;
m

a
x
                  0;

n
b

y
                   0

p
c

z
  

 = – – –
m n p

ax by cz
 

(or)
m

ax
=

n p m n p m n p

by cz ax by cz p q r

   
  

   

         
( )

;
( )

m p q r
x

a m n p

 


           
( )

;
( )

n p q r
y

b m n p

 


          
( )

( )

p p q r
z

c m n p

 


 

Using these values in u, we get the extreme value of u as,

u =
m n pm n p

m n p

m n p p q r

m n pa b c

 
  
   

.

3.13 DIFFERENTIAL FORMS AND STOKES’
THEOREM

In the analysis of different mathematical fields, differential forms are defined as the
specific method for multivariable calculus that is independent of coordinates.
Differential forms use an integrated methodology for defining the integrands over
curves, surfaces, solids and higher dimensional manifolds. The contemporary notion
of differential forms was established and pioneered by Élie Cartan.

Fundamentally, considering the one variable calculus the expression f(x) dx
is an example of a l-form and can be integrated over an oriented interval [a, b] in
the domain of f and can be represented as,
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Consider the following expression,

f(x, y, z) dx ^ dy + g(x, y, z) dz ^ dx + h(x, y, z) dy ^ dz 

This expression is referred as a 2-form which has a surface integral over
an oriented surface S and is represented as,

The symbol ‘^’ denotes the exterior product and is occasionally termed as
the wedge product of two differential forms.

Similarly, a 3-form f(x, y, z) dx ^ dy ^ dz represents a volume
element which can be integrated over an oriented region of space. Generally, a k-
form is considered as an object that may be integrated over a k-dimensional oriented
manifold and is homogeneous of degree k in the coordinate differentials.

On an n-dimensional manifold, the top dimensional form or the ‘n-form’ is
termed as a volume form.

A differential k-form can be integrated over an oriented manifold of
dimension k. Additionally, a differential l-form is described as measuring an
infinitesimal oriented length or l-dimensional oriented density; a differential 2-form
is described as measuring an infinitesimal oriented area or 2-dimensional oriented
density, and so on.

Integration of differential forms is distinctly defined only
on oriented manifolds, for example of a l-dimensional manifold is an interval [a, b]
and intervals can be given an orientation as they are positively oriented if a < b
and negatively oriented otherwise.

If a < b then the integral of the differential l-form f(x) dx over the interval
[a, b] in conjunction with its natural or normal positive orientation is given as,

           

Which is, considered as the negative of the integral of the similar differential
form over the same interval when provided with the opposite orientation.

Specifically,
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A standard explanation in one variable integration theory states that when
the limits of integration are in the opposite order (b < a), then the increment dx is
negative in the direction of integration.

3.13.1 Stokes’ Theorem

Stokes’ theorem, also known as Kelvin–Stokes theorem is named after the Lord
Kelvin and George Stokes. The Stokes’ theorem is considered as the fundamental
theorem for curls or simply the curl theorem and is a theorem in vector calculus on

 3.

For a given vector field, the theorem relates the integral of the curl of the
vector field over some surface to the line integral of the vector field around the
boundary of the surface.

The classical definition of Stokes’ theorem states that, “The line integral of a
vector field over a loop is equal to the flux of its curl through the enclosed surface”.

Stokes’ theorem is considered as a unique and specific instance of the
generalized Stokes’ theorem. Specifically, a vector field on  3 can be considered
as a l-form in which instance its curl is its exterior derivative defined as a 2-form.

Theorem 3.14 Stokes’ Theorem: Let  be a smooth oriented surface in R3

with boundary .

If a vector field A is defined as,

           A = (P(x, y, z), Q(x, y, z), R(x, y, z))

This typically has continuous first order partial derivatives in a region
containing , then,

  

More explicitly, the equality states that,

  

The key challenge in a precise and accurate statement of Stokes’ theorem
is in defining the notion of a boundary.

Proofs

1. Parametrization of Integral

We first reduce the dimension by using the natural parametrization of the surface.

Let  and  be in the section and consider by change of variables,
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Here J stands for the Jacobian matrix of .

Now consider that {e
u
, e

v
} be an orthonormal basis in the coordinate

directions of R
2
. Distinguishing that the columns of J

y
 are precisely the partial

derivatives of  at y, we can expand the previous equation in coordinates as,

2. Green’s Theorem through the Product Rule

We first calculate the partial derivatives that appear in Green’s theorem through
the product rule:

  

Appropriately, the second term vanishes in the difference and by equality of
mixed partials. Therefore,

  

3. Proof through Differential Forms

The functions R  R3 can be identified with the differential l-forms on R3 through
the map as follows,

Now we write the differential l-form that is associated or connected to a
function F as 

F
. Then it can be calculated as,

        

Where * is referred as the Hodge star and  {d} is the exterior derivative.
Thus, by generalized Stokes’ theorem,
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3.14 JACOBIAN AND ITS PROPERTIES

If u (x, y) and v (x, y) are two functions of x and y then the determinant 

u u

x y

v v

x y

 
 
 
 

is called the Jacobian of u and v with respect to x and y and is denoted as 
( , )

( , )

u v

x y




or | |.J

In general if u1, u2, …, un are functions of x1, x2, …, xn then,

1 2

1 2

( , , )

( , , )
n

n

u u u

x x x

 
 

=

1 1 1

1 2

2 2 2

1 2

21

.

n

n

nnn

n

u u u

x x x

u u u

x x x

uuu

xxx

  


  
  


  

 




Properties of Jacobians
1. If u and v are functions of x and y then if,

    
( , )

( , )

u v
J

x y





       and       ( , )

( , )

x y
J

u v

 


       then       1J J  

J =
( , )

( , )

u u

x yu v

v vx y

x y

 
 


 
 

J  =
( , )

( , )

x x
x y u v

y yu v

u v

 
  

 
 

J J  =

u u

x y

v v

x y

 
 
 
 

x x

u v
y y

u v
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=

u x u y u x u y

x u y u x v y v

v x v y v x v y

x u y u x v y v

       
     

       
       

     
       

=
1 0

1.
0 1

u u

u v
v v

u v

 
   
 
 

2. If u and v are functions of r and s where r and s are functions of x and y,
prove that

( , )

( , )

u v

x y




=
( , ) ( , )

.
( , ) ( , )

u v r s

r s x y

 


 

( , ) ( , )

( , ) ( , )

u v r s

r s x y

 


 
=

r ru u
x yr s

v v s s

r s x y

  
  

   
   

=

u r u s u r u s

r x s x r y s y

v r v s v r v s

r x s x r y s y

       
     

       
       

     
       

=
( , )

.
( , )

u u

x y u v

v v x y

x y

 
  


  
 

Example 3.31: If 
2

,
x

u
y

  
2y

v
x

  find 
( , )

.
( , )

x y

u v




Solution: Since it is easy to find , , ,
u u v v

x y x y

   
   

 let us find 
( , )

( , )

u v

x y




.

( , )

( , )

u v

x y


 =

2

2

2

2

2
–

2
–

x xu u

yx y y
v v y y
x y xx

 
 


 
 

= 4 – 1 = 3.


( , )

( , )

x y

u v




=
1 1

.
( , ) 3
( , )
u v
x y
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Example 3.32: If u = x (1 – y), v = xy (1 – z), w = xyz, prove that,

( , , )

( , , )

x y z

u v w




= 2

1

x y
.

Solution:
, )( ,

( , , )

v wu

x y z




=

1 – – 0

(1– ) (1– ) –

u u u

x y z
y x

v v v
y z x z xy

x y z
yz xz xy

w w w

x y z

  
  
  


  
  
  

= x2y.


( , , )

( , , )

x y z

u v w




= 2

1

x y
.

Check Your Progress

11. State the theorem of change of variables.

12. Give the necessary and sufficient conditions for maximum and minimum.

13. How many multipliers are used in the Lagrange’s multipliers method if there
are n constraints?

14. State Stoke’s theorem.

15. Define the term Jacobian.

3.15 ANSWERS TO 'CHECK YOUR PROGRESS'

1. If z = f (x, y), then z is a dependent variable and x, y are independent
variables. The function z = f (x, y) is called a single-valued function if only
one value of z is corresponded by each pair (x, y) for which the function
is defined. If there is more than one value of z, the function is called a
multi-valued function.

2. Let V and U be two vector spaces over the same field F, then a mapping
T : V  U is called a homomorphism or a linear transformation if,

T(x + y) = T(x) + T(y) for all x, y  V

T(x) = T(x),  F

3. If f is differentiable at c, then f is continuous at c.

4. Let f (x, y) be a function of two independent variables x and y, defined in
the region R. The function f (x, y) is a function of a single variable x when
y is constant. Then the derivative of f (x, y) (when exists) is called the
partial derivative of f (x, y) with respect to x.
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5. A function f (x, y) is said to be homogeneous of degree n in the variables x
and y if it can be expressed in the form xn (y/x) or in the form yn (x/y).

6. A function f (x, y) is said to be a harmonic function if 2 f = 
2 2

2 2

f f

x y

 


 
= 0.

7. Let u and v be two functions of x, both derivable at least upto n times, then
the nth derivative of their product is given by,

(uv)n = 
0

n
n

r n r r
r

c u v



= nco unv + nc
1
 un–1 v1 + ... + nc

n
 u vn

= un v + n un–1 v1 + 
( 1)

2

n n 
 un – 2 v2 + ... + u vn

Where the suffixes of u and v denote the orders of differentiation of u and
v with respect to x.

8. Let  f (x + h) be expandable into a power series in the variable h. Again the
flat assumption is that this series can be differentiated term by term. Taylor’s
theorem states that,

f (a + h) = f (a) + h f (a) + 
2

2!

h  f (a) + ... 

 If the dependent variable y is expressed in terms of the independent vari-
able x, we call y an explicit function of x and denote such a function by
y = f (x).

10. Let f f
1
, f

2
,…, f

n
C on an open set S in Rn, and let Tfs. If the

Jacobian determinant J
f
afor some point a in S, then there are two

open sets XS and YT and a uniquely determined function g such that,

(a) aX and faY.

(b) Y  fX.
(c) F is one to one on X.

(d) G is defined on Y, gY X, and gfX for every x X.

(e) g C

11. If (i) f   [a, b], (ii)  is derivable, strictly monotonic on [] and maps

it onto [a, b], and (iii)  [], then ( ) ( ( ) ( ) .
b

a
f x dx f t t dt




   

12. If f (x) be a maximum or a minimum at x = c and if f (c) exists, then
f (c) = 0.

13. If n constraints are given in the problem we have to use n multipliers namely
1, 2, …, n.
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14. Stokes’ theorem, also known as Kelvin–Stokes theorem is named after the
Lord Kelvin and George Stokes. The Stokes’ theorem is considered as the
fundamental theorem for curls or simply the curl theorem and is a theorem
in vector calculus on  3. For a given vector field, the theorem relates the
integral of the curl of the vector field over some surface to the line integral of
the vector field around the boundary of the surface.

The classical definition of Stokes’ theorem states that, “The line integral of a
vector field over a loop is equal to the flux of its curl through the enclosed
surface”.

Stokes’ theorem is considered as a unique and specific instance of the
generalized Stokes’ theorem. Specifically, a vector field on  3 can be
considered as a l-form in which instance its curl is its exterior derivative
defined as a 2-form.

15. If u (x, y) and v (x, y) are two functions of x and y then the determinant

u u

x y

v v

x y

 
 
 
 

 is called the Jacobian of u and v with respect to x and y and is

denoted as 
( , )

( , )

u v

x y




 or | |.J

3.16 SUMMARY

 If z = f (x, y), then z is a dependent variable and x, y are independent
variables. The function z = f (x, y) is called a single-valued function if only
one value of z is corresponded by each pair (x, y) for which the function
is defined. If there is more than one value of z, the function is called a
multi-valued function.

 Let V and U be two vector spaces over the same field F, then a mapping
T : V  U is called a homomorphism or a linear transformation if,

T(x + y) = T(x) + T(y) for all x, y  V

T(x) = T(x),  F

 Let f:S  Rm be a function defined on a set S in Rn with values in Rm. Let
c be an interior point of S and let Bc;rbe an n-balllying in S. Let V be
a point in Rn with ||v||  r, so that c+v Bc;r Then the function f is said
to be differentiable at c if there exists a linear function T

c
: Rn Rm such

that, ( ) ( ) ( ) || || ( ), where ( ) 0 as 0     c c cf c v f c T v v E v E v v

 Let f (x, y) be a function of two independent variables x and y, defined in
the region R.  The function f (x, y) is a function of a single variable x when
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y is constant. Then the derivative of f (x, y) (when exists) is called the
partial derivative of f (x, y) with respect to x.

 A function f (x, y) is said to be homogeneous of degree n in the variables
x and y if it can be expressed in the form xn (y/x) or in the form
yn (x/y).

 A function f (x, y) is said to be a harmonic function if,

2 f = 
2 2

2 2

f f

x y

 


 
= 0.

 Let z = f (x, y) be a function of two independent variables x and y and fx,

fy exist at (x, y), then dz = 
f f

dx dy
x y

 


 
is called the total differential of z.

 The nth order derivative of f (x) with respect to x is denoted by yn or

f (n) (x) or 
n

n

d y

dx
or y(n) or 

n

n

d

dx
{f (x)} or Dn f (x) whre D  d

dx
 and

y = f (x).

 Let u and v be two functions of x, both derivable at least upto n times, then
the nth derivative of their product is given by,

(uv)n = 
0

n
n

r n r r
r

c u v



= nco unv + nc
1
 un–1 v1 + ... + nc

n
 u vn

= un v + n un–1 v1 + 
( 1)

2

n n 
 un – 2 v2 + ... + u vn

Where the suffixes of u and v denote the orders of differentiation of u and
v with respect to x.

 Let  f (x + h) be expandable into a power series in the variable h. Again the
flat assumption is that this series can be differentiated term by term. Taylor’s

theorem states that,  f (a + h) = f (a) + h f (a) + 
2

2!

h  f (a) + ... 

 If the dependent variable y is expressed in terms of the independent variable
x, we call y an explicit function of x and denote such a function by y = f (x).

  Let f f
1
, f

2
,…, f

n
C on an open set S in Rn, and let Tfs. If the

Jacobian determinant J
f
afor some point a in S, then there are two

open sets XS and YT and a uniquely determined function g such that,

(a) aX and faY.

(b) Y  fX.
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(c) F is one to one on X.

(d) G is defined on Y, gY X, and gfX for every x X.

(e) g C

  Let f  f
1
,…, f

n
be a vector valued function defined on an open set S in

Rn+k with values in Rn. Suppose f C1 on S. Let x
0
;t

0
 be a point in S for

which the n  n determinant detD
j
f
i
x

0
;t

0
  Then  there exists a k

dimensional open set T
0
 containing t

0
 and, one and only one, vector valued

function g, defined on T
0
 and having values in Rn, such that

(a)  g C1 on T
0

(b)  gt
0
x

0

(c)  fgttfor every t in T
0

 If (i) f   [a, b], (ii)  is derivable, strictly monotonic on [] and maps
it onto [a, b], and (iii)  [], then

( ) ( ( ) ( ) .
b

a
f x dx f t t dt




   

 A function y = f (x) has a maximum value at a point x0 if for | h | sufficiently
small, f (x0 + h) < f (x0).

Similarly, a function y = f (x) has a minimum value at a point x0 if,

f (x0 + h) > f (x0)

 If we have to find the stationary value of a function of several variables
which are not independent but interconnected by some relations then we
try to convert the given function to one having least number of variables
using the given conditions. When such a procedure fails we use the method
of Lagrange’s multipliers.

 Differential forms use an integrated methodology for defining the integrands
over curves, surfaces, solids and higher dimensional manifolds. The
contemporary notion of differential forms was established and pioneered
by Élie Cartan.

 Fundamentally, considering the one variable calculus the expression f(x) dx
is an example of a l-form and can be integrated over an oriented
interval [a, b] in the domain of f and can be represented as,

          

 Integration of differential forms is distinctly defined only on oriented manifolds,
for example of a l-dimensional manifold is an interval [a, b] and intervals
can be given an orientation as they are positively oriented if a < b and
negatively oriented otherwise.
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 If a < b then the integral of the differential l-form f(x) dx over the interval
[a, b] in conjunction with its natural or normal positive orientation is given
as,

           

Which is considered as the negative of the integral of the similar differential
form over the same interval when provided with the opposite orientation.

 Stokes’ theorem, also known as Kelvin–Stokes theorem is named after the
Lord Kelvin and George Stokes. The Stokes’ theorem is considered as the
fundamental theorem for curls or simply the curl theorem and is a theorem
in vector calculus on ”!3.

 For a given vector field, the theorem relates the integral of the curl of the
vector field over some surface to the line integral of the vector field around
the boundary of the surface.

 The classical definition of Stokes’ theorem states that, “The line integral of a
vector field over a loop is equal to the flux of its curl through the enclosed
surface”.

 Stokes’ theorem is considered as a unique and specific instance of the
generalized Stokes’ theorem. Specifically, a vector field on ”!3 can be
considered as a l-form in which instance its curl is its exterior derivative
defined as a 2-form.

 Stokes’ Theorem: Let  be a smooth oriented surface in R3 with boundary
.

 If u (x, y) and v (x, y) are two functions of x and y then the determinant
u u

x y

v v

x y

 
 
 
 

 is called the Jacobian of u and v with respect to x and y and is

denoted as 
( , )

( , )

u v

x y




 or | |.J

 In general if u1, u2, …, un are functions of x1, x2, …, xn then,

1 2

1 2

( , , )

( , , )
n

n

u u u

x x x

 
 

=

1 1 1

1 2

2 2 2

1 2
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3.17 KEY TERMS

 Domain of the function: The set of values (x, y) for which a function is
defined.

 Region: A connected open set.

 Homogeneous function: A function f (x, y, z, …) of degree n in the
variables x, y, z, … if f (tx, ty, tz, …) = tn(x, y, z, …) for all values of t
independent of x, y, z, …

 Explicit function: The dependent variable y which can be expressed in

terms of the independent variable x.

3.18 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define rectangular region and circular region.

2. What is the use of linear transformations?

3. Give the first order Taylor formula.

4. Define the second order partial derivative of a function of two variables.

5. State the Euler’s theorem on homogeneous functions.

6. Find the nth derivative of e–ax.

7. Write the significance of Taylor’s theorem.

8. State the implicit function theorem.

9. What is the use of change of variables technique?

10. Define global maxima and global minima.

11. Give a drawback of Lagrange’s multipliers method.

12. What is Jacobian used for?

Long-Answer Questions

1. Show that 220,0

2
lim

yx

xy
yx  does not exist.

2. Show that the function 

2 2

2 2
if ( , ) (0,0)

( , )
if ( , ) (0,0)

0

x y
xy x y

f x y x y
x y

 
  


is continuous at (0, 0).

3. Show that any linear transformation T: R R is of the form T(x) = x for
some R.
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4. Explain the derivatives in an open subset of Rn.

5. If xyu  , prove that )(
4

1 2/12/32/12/3
2

2

2

2

xyyx
y

u

x

u  







.

6. Find y
n
 when y = ex log x.

7. If y = 2 cos x (sin x cos x), show that (y
10

)
0
 = 210.

8. State and prove Taylor’s theorem.

9. If f(x, y) = 0 and (y, z) = 0, show that yx

f

dx

dz

zy

f












 φφ

.

10. State and prove implicit function theorem.

11. Evaluate 
2/π

0

2sin dxx  using change of variables technique.

12. Show that the function f(x, y) = 4x2y y2 8x4 is a maximum at (0, 0).
13. By Lagrange method, find the minimum distance of origin from the plane 3x

+ 2y + z = 12.
14. If ax2 + by2 = ab, show that the extrema values of u = x2 + y2 + xy are the

roots of 4(u a)(u b) = ab.
15. If x = eu cos v, y = eu sin v, verify the rule JJ = 1.
16. State and prove Stoke’s theorem.

17. Briefly discuss about the jacobians giving appropriate examples.
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NON-NEGATIVE FUNCTIONS

Structure

4.0 Introduction
4.1 Objectives
4.2 Lebesgue Outer Measure

4.2.1 Measurable Sets
4.2.2 Regularity and Measurable Functions
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Functions
4.9 Lebesgue Differentiation Theorem
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4.13 Self Assessment Questions and Exercises
4.14 Further Reading

4.0 INTRODUCTION

In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. Fundamentally, the Lebesgue measure is defined
as the standard method used to assign a measure to subsets of n-dimensional
Euclidean space. Additionally, for n = 1, 2 or 3, the Lebesgue measure coincides
with the standard universal measure of length, area or volume. Generally, in the
mathematical analysis the measure is also termed as the n-dimensional volume, n-
volume or merely only the volume. In real analysis, the Lebesgue measure is
specifically used to define the Lebesgue integration.

In mathematical analysis, the ‘Real Analysis’ only considers and evaluates
the functions of a real variable and numbers, while the ‘Measure Theory’ exclusively
considers and evaluates the concept of a measure, which is the method for
‘Measuring’ that how big a given set is. Sets to which the Lebesgue measure can
be assigned are termed as the ‘Lebesgue Measurable’; characteristically the
measure of the Lebesgue measurable set A can be denoted by (A). A measurable
set is specifically defined as a set to which the extension or expansion can possibly
be accomplished, this extension or expansion is assumed to be the measure.
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Consequently, the Jordan measure, the Borel measure and the Lebesgue measure
can be defined using the sets which are characteristically measurable according to
the Jordan, Borel and Lebesgue, respectively. In mathematical analysis, a non-
measurable set is defined as a set to which a significant meaningful ‘Volume’ cannot
be assigned. Mathematically, in formal set theory the existence of these sets is
interpreted for providing evidence about the notions of length, area and volume.

The integral of a non-negative function of a single variable is specifically
defined as the area between the graph of that function and the X-axis.
Fundamentally, the Lebesgue integral can be used for extending the integral to a
bigger class or group of functions. Additionally, it can also extend or broaden the
domains for defining and approximating these functions. Many years before the
20th century, the mathematicians were already aware of the theory that when the
non-negative functions have a smooth adequate graph, basically the continuous
functions on the closed bounded intervals, then the specific area under the curve
can be defined as the integral and can be then uniquely computed with the help of
the approximation techniques specifically on the region through polygons.

The Lebesgue integral is named after Henri Lebesgue (1875–1941), typically
Lebesgue defined and established the integral in the year 1904. Principally, the
Lebesgue integral functions have a significant role in the theory and derivation of
probability, real analysis, and numerous other fields in mathematics. Mathematically,
as per the Lebesgue explanation the term Lebesgue integration specifies either the
general theory of integration of a function with respect to a general measure or the
specific instance of integration of a function typically defined on a sub-domain of
the real line with respect to the Lebesgue measure. The Riemann integral specifies
that by partitioning the domain of an assigned function, one can approximate or
estimate the assigned function by means of piecewise constant functions in each
sub-interval. On the contrary, the Lebesgue integral are specifically used to partition
the range of that function.

The Lebesgue differentiation theorem states that, “For almost every point,
the value of an integrable function is the limit of infinitesimal averages taken about
the point”. The theorem is explicitly used in the approximation of real analysis.

In the mathematical analysis, a function of Bounded Variation (BV) also
termed as BV function, is considered as a real valued function whose total variation
is bounded or finite. Considering a continuous function of a single variable, which
has bounded variation signifies that the distance along the direction of the Y-axis
ignoring the contribution of motion along X-axis, travelled by a point moving along
the graph has a finite value. Similarly, consider a continuous function of several
variables, the connotation and implication of the definition is equivalent, except
that the considered continuous path cannot be the whole graph of the given function,
but can be every intersection of the graph itself with a hyperplane (for several
variables) and plane (for functions of two variables) parallel to a fixed X-axis and
to the Y-axis.

The key objective of the Lebesgue integral is to provide an integral notion in
which the limits of integrals hold moderate assumptions. Basically, there is no
assurance that every function is the Lebesgue integrable, but it is possible that
improper integrals exist for functions that are not Lebesgue integrable.
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In this unit, you will study about the Lebesgue outer measure, measurable
sets, regularity, measurable functions, Borel and Lebesgue measurability, non-
measurable sets, integration of non-negative functions, the general integral,
integration of series, Riemann and Lebesgue integrals, the four derivatives, functions
of bounded variation, Lebesgue differentiation theorem, and differentiation and
integration.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Define the Lebesgue outer measure

 Know about the measurable sets, regularity, and measurable functions

 Understand the Borel and Lebesgue measurability and non-measurable sets

 Define the integration of non-negative functions

 Elaborate on the general integral

 Explain about the integration of series

 Analyse the Reimann and Lebesgue integrals

 Comprehend on the four derivatives

 Interpret the functions of bounded variation

 Discuss the Lebesgue differentiation theorem

 Understand the differentiation and integration

4.2 LEBESGUE OUTER MEASURE

In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. This measure was described by Henri Lebesgue
in the year 1901, and in the year 1902 by the description Lebesgue integral.
Both the Lebesgue measure and the Lebesgue integral were published in his
dissertation thesis in the year 1902.

Fundamentally, the Lebesgue measure is defined as the standard method
used to assign a measure to subsets of n-dimensional Euclidean space. Additionally,
for n = 1, 2 or 3, the Lebesgue measure coincides with the standard universal
measure of length, area or volume. Generally, in the mathematical analysis the
measure is also termed as the n-dimensional volume, n-volume or merely only the
volume. In real analysis, the Lebesgue measure is specifically used to define the
Lebesgue integration.

In mathematical analysis, the ‘Real Analysis’ only considers and evaluates
the functions of a real variable and numbers, while the ‘Measure Theory’ exclusively
considers and evaluates the concept of a measure, which is the method for
‘Measuring’ that how big a given set is. Sets to which the Lebesgue measure can
be assigned are termed as the ‘Lebesgue Measurable’; characteristically, the
measure of the Lebesgue measurable set A can be denoted by (A).
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Lebesgue Outer Measure

Assume that there is an outer measure  on a set X which is a measure then it
will be considered as additive. Specifically, for given any two sets A, B  X we
can state that both A  B and A  Bc are disjoint in conjunction with (A  B) 
(A  Bc) = A and accordingly we can state that,

          (A) =  (A  B) +  (A  Bc)

This notation essentially may not hold for all A and B but it is very significant
as it specifies the following definition.

Definition 1: Let  be an outer measure on a set X. Then E  X is said to be
measurable with respect to  or -measurable if,

         (A) =  (A  E) +  (A  Ec) for all A  X

This specifies that taking each and every feasible ‘Test Set’ as ‘A’, the
measures of the parts of A that uniquely fall within and without E can be checked
that whether these defined measures feasibly add up to A or not.

Because  is subadditive, hence we can specify that,

 (A)     (A  E) + (A  Ec)

Consequently, to check measurability we need only verify that,

 (A)   (A  E) +  (A  Ec) for all A  X                       …(4.1)

 Let  =  () denote the collection of-measurable sets.

Theorem 4.1: Show that  is a field.

Proof: Trivially, we can state that  and X are in .

Now consider any E
1
, E

2
   and also any test set as A  X.

Then,

        (A) = (A  E
1
) + (A  E

1
c)

On applying the measurability definition for E
2
 with the test set as A  E

1
c

we obtain,

 (A  E
1

c) =  ((A  E
1

c)  E
2
) +  ((A  E

1
c)  E

2
c)

=  (A  E
1

c  E
2
) +  (A  (E

1
  E

2
)c)

When the above equations are combined then we have,

    (A) =  (A  E
1
) +  (A  E

1
c  E

2
) +  (A  (E

1
  E

2
)c)   …(4.2)

On the Right Hand Side (RHS) to the first two terms of Equation (4.2), we
use the subadditive property of . Now for the sets we obtain,

  (A  E
1
)  (A  E

1
c  E

2
) = A  (E

1
  (E

1
c  E

2
))

= A  ((E
1
  E

1
c)  (E

1
  E

2
))

= A  (X  (E
1
  E

2
))

= A  (E
1
  E

2
)

Subsequently,

  (A  E
1
) +  (A  E

1
c  E

2
)   (A  (E

1
  E

2
))

We substitute this in Equation (4.2) to obtain,
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  (A)  (A  (E
1
  E

2
)) +  (A  (E

1
  E

2
)c)

Consequently, the Equation (4.1) has been authenticated and verified for
the notation E

1
  E

2
,
 
i.e.,

 
E

1
  E

2 
 .

Note that the given definition of -measurable sets exhibits symmetric because
E

 
  if and only if Ec

 
 .

Therefore, E
1
 \ E

2
 = E

1
  E

2
c = (E

1
c  E

2
)c  

Hence proved that  is a field.

Definition 2: Let E be a subset of   and also assume that {I
k
} is a sequence of

open intervals. Then we can define the Lebesgue outer measure of E as follows,



Remember that 0  (E)  .

Theorem 4.2: The Lebesgue outer measure holds the following properties:

(1) If E
1
  E

2
, then  (E

1
)   (E

2
).

(2) The Lebesgue outer measure of any countable set is zero.

(3) The Lebesgue outer measure of the empty set is zero.

(4) Lebesgue outer measure is invariant under translation, that is,

            (E + x
0
) =  (E)

(5) Lebesgue outer measure is countably subadditive, i.e.,

         

Proof

For (1) – Property (1) is trivial.

For (2) and (3) – To prove Property (2) and Property (3) consider the following:

Assume that E = {x
k
 : k  Z+} is a countably infinite set.

Let  > 0 and also assume that 
k
 is a sequence of positive numbers such that,

            

Because,

            

This specifies that (E)  .

Consequently, (E) = 0. Because if   E, then () = 0.

For (4) – To prove Property (4) consider the following:
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Assume that if each covering of E through open intervals is capable of
generating a cover of E + x

0
 by means of open intervals through the same length,

then  (E + x
0
)   (E). Also,  (E + x

0
)   (E) because E is considered

a translation of E + x
0
. Consequently,  (E + x

0
) =  (E).

For (5) – To prove Property (5) consider the following:

Assume that,

   

Then the given statement is insignificant or trivial.

Assume that the sum is finite and also let  > 0.

Then for each i, there exists a sequence of the form {I
k
i}of open intervals

such that there is,

       and      

Consider that {I
k
i} is a double indexed sequence of open intervals such that,

           

And,

     

Consequently,

   

The result follows because  > 0 was random or arbitrary.

Example 4.1: Calculate the outer measure of the set of irrational numbers in the
interval [0,1].

Solution: Assume that A be the set of irrational numbers in [0, 1].

Because A  [0, 1], then  (A)  1.

Let Q be the set of rational numbers in [0, 1]. Note that [0, 1] = A  Q.

By Theorem 4.2 Property (5) and solving, we obtain

1   (A) +  (Q)

However, if Q is countable, then by Theorem 4.2 Property (2),  (Q) = 0.

Therefore,  (A) = 1.

4.2.1 Measurable Sets

In mathematics, the term measure can be defined as a simplification and
generalization of typical conventional notions, such as mass, distance/length, area,
volume, probability of events, etc.
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The modern measure theory was characteristically given by Émile Borel, Henri
Lebesgue, Nikolai Luzin, Johann Radon, Constantin Carathéodory, and Maurice
Fréchet.

In mathematical analysis, the ‘Real Analysis’ only considers and evaluates
the functions of a real variable and numbers, while the ‘Measure Theory’ exclusively
considers and evaluates the concept of a measure, which is the method for
‘Measuring’ that how big a given set is. Sets to which the Lebesgue measure can
be assigned are termed as the ‘Lebesgue Measurable’; characteristically the
measure of the Lebesgue measurable set A can be denoted by (A). A measurable
set is specifically defined as a set to which the extension or expansion can possibly
be accomplished, this extension or expansion is assumed to be the measure.
Consequently, the Jordan measure, the Borel measure and the Lebesgue measure
can be defined using the sets which are characteristically measurable according to
the Jordan, Borel and Lebesgue, respectively.

Definition 1: Let X be a set and  a -algebra over X. A function  from  to the
extended real number line is called a measure if it satisfies the following properties:

Non-Negativity: For all E in , we have  (E)  0.

Null Empty Set:  ( ) = 0.

Countable Additivity or -Additivity: For all countable collections 

of pairwise disjoint sets in ,

         

If at least one set E has finite measure, then the constraint that  ( ) = 0 is
realized spontaneously. Certainly, through countable additivity,

           (E) =  (E  ) =  (E) +  ( )

And consequently,   ( ) = 0.

Considering that the condition of non-negativity is ignored but the second
and third of these conditions are fulfilled and  takes the values , then  is termed
as a signed measure.

The pair (X, ) is termed as a measurable space, the members of  are
termed as the measurable sets.

A measurable set X is known as a null set if  (X) = 0. A subset of a null set
is described as a negligible set. A negligible set must not be measurable, but every
measurable negligible set is certainly and inevitably a null set. A measure is termed
complete if every negligible set is measurable.

A measure can be extended to a complete or perfect by means of considering
the -algebra of subsets Y which vary through a negligible set from a measurable
set X, i.e., the symmetric difference of X and Y is contained in a null set, such that
 (Y) can be defined to equal  (X).

If the -measurable function f takes values on [0, ] then,

                 {x : f(x)  t} = {x : f(x)  t}
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For almost all t    with respect to the Lebesgue measure. This property
is typically used with Lebesgue integral.

Both {x : f(x)  t} and {x : f(x)  t} are defined as the monotonically
non-increasing functions of t therefore both of them are continuous almost
everywhere, with relation to the Lebesgue measure.

If {x : f(x)  t} =  for all t, then by the additivity and non-negativity,

    {x : f(x)  t} = {x : f(x)  t} + {x : f(x)  t} = 

being as essential.

Definition 2: A set E    is Lebesgue measurable if for each set A   , the
equality  (A) =  (A  E) +  (A  ) is satisfied. If E is a Lebesgue
measurable set, then the Lebesgue measure of E is its Lebesgue outer measure
and will be written as (E).

Because the Lebesgue outer measure satisfies the subadditivity property,
therefore we continually have  (A)   (A  E) + (A  ) and can confirm
the reverse inequality.

Note: There is a set E that divides A into two mutually exclusive sets, A  E and

A  , if and only if 
2

*
xu  (A) = 

2

*
xu  (A  E) +  (A  ) holds, then the set E

is termed as the Lebesgue measurable.

Example 4.2: Assume that E has measure zero where E   . Prove that the set
E2 = {x2 : x  E} has measure zero.

Solution: Let E
n
 = E  (–n, n)  E.

Then, E
n

2 = E2  (0, n2)  E2

And,  
2 2

1

.n
n

E E





Because E has measure zero, then E

n
 has measure zero. Let  > 0. Assume

there exists a sequence of intervals (a
k
, b

k
) such that,

  

For simplicity, consider only the situation that 0 < a
k
 < b

k
.

Since,

Then,

It implies that the measure of E
n
2 is zero, which indicates that the measure

of E2 is also zero.

Hence proved.
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4.2.2 Regularity and Measurable Functions

Specifically, in the measure theory, a measurable function is a function between
the underlying sets of two measurable spaces that preserves the structure of the
spaces, the preimage of any measurable set is measurable. In real analysis,
measurable functions are used in the definition of the Lebesgue integral. In probability
theory, a measurable function on a probability space is termed as a random variable.

In real analysis and measure theory, the regularity theorem for Lebesgue
measure is defined as an acquired result which states that Lebesgue measure on
the real line is a regular measure. Usually, this indicates about the real line and
states that every Lebesgue measurable subset is ‘Approximately Open’ and
‘Approximately Closed’.

Statement of the Theorem

Lebesgue measure on the real line R is referred as a regular measure, i.e., for
all Lebesgue measurable subsets A of R, and > 0, there exist subsets C and U
of R such that,

C is Closed

U is Open

C  A  U

The Lebesgue Measure of U \ C is strictly Less Than .

Additionally, when A has finite Lebesgue measure, then C is considered to
be compact, i.e., by the Heine–Borel theorem it is closed and bounded.

Corollary: The Structure of Lebesgue Measurable Sets

If A is a ‘Lebesgue Measurable Subset of R’, then there exists a ‘Borel Set B’ and
a ‘Null Set N’ such that A is the ‘Symmetric Difference of B and N’ and is given as,

A = B  N = (B \ N)    (N \ B)

Definition: Assume that (X, ) and (Y, T) be measurable spaces, signifying or
implying that X and Y are the sets with respective -algebras  and T. A function
f : X  Y is said to be measurable if for every E T the pre-image of E under f is
in ; that is, for all E T.

       fx  X | f (x)  E

That is,  (f)  ,where  (f) is the -algebra typically generated by f.

If f : X  Y is considered as a measurable function, then we have the equation
of the form,

               f : (X, )  (Y, T)

For emphasizing the dependency on the -algebras  and T.

Distinguished Classes of the Measurable Functions

Following are the three significant and distinguished classes of the measurable
functions in real analysis:

Class 1: By definition the ‘Random Variables’ are the measurable functions
specifically defined on probability spaces.
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Class 2: When (X, ) and (Y, T) are the Borel spaces, then a measurable
function f : (X, )  (Y, T) is also termed as a Borel function. Continuous functions
are Borel functions but not all Borel functions are continuous. However, a
measurable function is almost a continuous function as per the Luzin’s theorem. If
a Borel function occurs as a section of a map Y  X then it is known as a Borel
section.

Class 3: A Lebesgue measurable function is a measurable function
  where ‘ ’ is defined as the -algebra of Lebesgue

measurable sets and  is the Borel algebra on the complex numbers  . Typically,,
the Lebesgue measurable functions are considered useful in mathematical analysis
since they can be integrated. For the condition, f : X  , f is considered as the
Lebesgue measurable iff and only iff {f  > } = {x  X : f (x) > } is uniquely
measurable for all  .

Additionally, this condition is also considered as equivalent for any of the
specified {f }, {f }, {f } being measurable either for all ‘’ or the
preimage of any open set being measurable.

Continuous functions, monotone functions, step functions, semicontinuous
functions, Riemann integrable functions and functions of bounded variation all are
considered as the Lebesgue measurable. A function f : X   is measurable ifff
and only iff the real and imaginary parts are measurable.

4.2.3 Borel and Lebesgue Measurability

In mathematical analysis and in particular in the measure theory, a Borel measure
on a topological space is defined as a measure for all open sets and consequently
on all Borel sets.

Definition: Consider that X be a locally compact Hausdorff space and also consider

that  be the smallest -algebra which contains or includes the open sets of
X; then this is established as the ‘-Algebra of Borel Sets’. Further, the ‘Borel
Measure’ is specified as any measure  defined precisely on the -algebra of
Borel sets. Some of the mathematicians define that  is locally finite which implies
that  (C) < for every compact set C. When a Borel measure  is both inner
regular and outer regular, then it is termed as a ‘Regular Borel Measure’. If
 is both inner regular and outer regular, and is also locally finite, then in this condition
it is known as a Radon measure.

On the Real Line

Characteristically, the real line   with its normal topology is defined as a locally
compact Hausdorff space, therefore a Borel measure can be defined on it. In this

instance,  is referred as the smallest -algebra that comprises of the open

intervals of  . Though there can be several Borel measures , we define the
preferred option of Borel measure which assigns  ((a, b]) = b a for every half-
open interval (a, b] and is therefore occasionally termed as the Borel measure on

 . This specific measure is considered as the restriction to the Borel -algebra
of the Lebesgue measure , which is characterized and explained as a complete
measure and is defined on the Lebesgue -algebra.
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Principally, the Lebesgue -algebra is essentially stated as the completion
of the Borel -algebra, which implies that it is the smallest -algebra that comprises
of all the Borel sets and has a complete measure on it. Additionally, the Borel
measure and the Lebesgue measure overlap or coincide on the Borel sets, i.e.,
 (E) = (E) for every Borel measurable set, where  is the Borel measure as
already discussed.

Borel Function

Definition: The map f : X  Y between two topological spaces is termed as the
‘Borel or Borel Measurable’ if f –1(A) is a Borel set for any open set A as per
the -algebra of Borel sets of X is the smallest -algebra containing the open sets.
When the target Y is taken as the real line, then it is sufficiently assumed that

 f –1(]a,[) is Borel for any a   . Considering the two topological spaces X
and Y and also the corresponding Borel -algebras  and  we can define
that the Borel measurability of the function f : X  Y is then equivalent to the
measurability of the map f realized as map between the measurable spaces
(X, ) and (Y, ).

Lebesgue Measure

Consider that  = (0, 1].

Assume that 
0
 contains the empty set and all sets which have finite unions of the

intervals of the form (a, b]. A conventional and characteristic element of this set is
given as the form,

F = (a
1
, b

1
]  (a

2
, b

2
]  . . . . .  (a

n
, b

n
]

Where, 0  a
1
 < b

1
  a

2
 < b

2
  . . .  a

n
 < b

n
 and n   .

Lemma: The following three lemmas can be considered.

(1)  
0
 is an algebra.

(2)  
0
 is not a -algebra.

(3)  

Proof: Following proofs are derived for the above mentioned three lemmas.
(1) By definition it can be stated that   

0
. Also, C = (0, 1]  

0
. Consider

the complement of (a
1
, b

1
]  (a

2
, b

2
] is (0, a

1
]  (b

1
, a

2
]  (b

2
, 1], which

also belongs to 
0
. Additionally, it can be defined that the union of several

finite sets each of which are also the finite unions of the intervals of the form
(a, b], is too also a set which can be taken as the union of finite number of
intervals and therefore belongs to 

0
.

(2) Remember that 0,
1

n

n
 
  

 
0
 for every n, but there is also

(3) Initially, the null set is evidently referred to as a Borel set. Following, we
have previously observed that every interval of the form (a, b] is termed as
a Borel set. Consequently, every element of 

0
 (except the null set) is

considered as a finite union of such intervals and is also considered as a Borel
set. Therefore, 

0
  . This specifies or implies that (

0
)  .
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For every F  
0
 of the form,

F = (a
1
, b

1
]  (a

2
, b

2
]  . . . . .  (a

n
, b

n
]

The function 
0
 : 

0
  [0, 1] can be specifically defined such that,

  
0
 () = 0

And,   
0
 (F) = 

Remember that 
0
 () = 

0
 ((0, 1]) = 1.

Additionally, if (a
1
, b

1
], (a

2
, b

2
], . . . . . (a

n
, b

n
] are disjoint sets, then by

implying the finite additivity of 
0
 we have the equations of the form,

This specifies and implies that 
0
 is also countably additive on 

0
 too.

Subsequently, it can be stated that there exists a unique probability measure
 on ((0, 1] , ) which is also equivalent as 

0
 on 

0
. This unique and

distinctive probability measure on (0, 1] is termed as the Lebesgue measure
or uniform measure.

4.2.4 Non-Measurable Sets

In mathematical analysis, a non-measurable set is considered as a set, which is
not assigned any significant ‘Volume’. The mathematical existence of such unique
sets is interpreted for providing information and evidences about the notions and
basic concepts of length, area and volume in the conventional set theory. According
to the Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable
subsets of   exist.

In mathematical analysis, a non-measurable set is defined as a set to which
a significant meaningful ‘Volume’ cannot be assigned. Mathematically, in formal set
theory the existence of these sets is interpreted for providing evidence about the
notions of length, area and volume.

The notion and concept of a non-measurable set has been historically led
by the Félix Édouard Justin Émile Borel and the Andrey Nikolaevich Kolmogorov
for formulating probability theory on sets which are significantly constrained or
restrictrd to be measurable. Characteristically, the measurable sets on the line are
considered as the iterated countable unions and intersections of intervals, termed
as the Borel sets, are referred as the plus-minus null sets. These sets are sufficiently
adequate to involve every conceivable or feasible definition of a set that are used
in standard mathematical analysis and solutions, but it needs exceptionally unique
formulations to prove that the sets are measurable.
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The measure of the union of two disjoint sets to be the sum of the measure
of the two sets. A measure with this natural property is termed as the finitely
additive. Though a finitely additive measure is adequate and appropriate for most
perception of area and is also analogous or equivalent to Riemann integration but
it is not appropriate for solving probability problems, because the predictable and
conventional contemporary behaviours of sequences of events or random variables
claim for countable additivity.

Theorem 4.3: Any measurable subset A    with  (A) > 0 contains a non-
measurable subset.

Proof: The simple method to prove the given theorem is used as a standard result
in measure theory, considering that  denotes the Lebesgue measure on  .

It is appropriate to assume that A  (0, 1).

Consider that if A    takes the positive measure, then there is some 

n   such that A  (n, n+1) also holds positive measure and consequently by
means of translation invariance it accordingly solves for,

A = A  (n, n + 1) – n  (0, 1)

Therefore, if N A is considered as a non-measurable set, then N + n A
 (n, n+1)  is the required non-measurable set.

Check Your Progress

1. Define Lebesgue measure.

2. What is Lebesgue outer measure?

3. State about the measurable space.

4. When be a measure can extended as complete?

5. What is a measurable function?

6. Define the term Borel measurable.

4.3 INTEGRATION OF NON-NEGATIVE
FUNCTIONS

The integral of a non-negative common measurable function can be defined as
an appropriate supremum of approximations by means of simple functions and the
integral of a measurable function (not necessarily positive) is defined as the difference
of two integrals of non-negative measurable functions.

The integral of a non-negative function of a single variable is specifically
defined as the area between the graph of that function and the X-axis.
Fundamentally, the Lebesgue integral can be used for extending the integral to a
bigger class or group of functions. Additionally, it can also extend or broaden the
domains for defining and approximating these functions. Many years before the
20th century, the mathematicians were already aware of the theory that when the
non-negative functions have a smooth adequate graph, basically the continuous
functions on the closed bounded intervals, then the specific area under the curve
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can be defined as the integral and can be then uniquely computed with the help of
the approximation techniques specifically on the region through polygons.

Indicator Functions

For assigning a value to the integral of the indicator function 1
S
 of a measurable set

S which is consistent with the given measure , the only satisfactory option is to
set:

 1
S
 d = (S)

Note that the result may possibly be equal to +, unless  is a finite measure.

Let f be a non-negative measurable function on E, which helps in attaining

the value +, alternatively f takes non-negative values in the extended real number

line. Subsequently, we obtain the equation of the form,

  

This integral coincides or overlaps with the previous one normally defined

on the set of simple functions, when E is considered as a segment [a, b].

We have defined the integral of f for any non-negative extended real-valued

measurable function on E.

For some specific functions, the integral 
E
 f dis considered as infinite.

For a non-negative measurable function f, assume that s
n
 (x) be the simple

function whose value is k / 2n whenever  k / 2n  f (x) < (k + 1) / 2n  , for k being

a non-negative integer less than 4n. This can be directly proved that,

        

If the limit on the right hand side exists as an extended real number.

In this section we will use the measure space X, F, 

Definition: Let s be a non-negative F measurable function such that, 
1

i

N

i A
i

s a X




with disjoint F measurable sets A
i
, XAi

N
i 1  and a

i 
 For any E F define

the integral of f over E to be, 
1

( ) ( )
N

E i i
i

I s a A E


    with the convention that if

a
i 
and A

i 
Ethen 0  Therefore, the area under s 0 in

R is zero.

Example 4.3: Consider that ([0, 1], , ) . Define,

1 if Rational
( )

0 if Irrational

x
f x

x
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This is a simple function with A
1 
Q L and A

0
 the set of irrationals

in which is in L as the complement of. Thus, f is measurable and is given
as,

[0, 1] ( )I f  = 1 ( [0, 1]) 0 ( [0, 1])C     

= 0
Since, the Lebesgue measure of a countable set is zero.

Lemma 1: If E
1 
E

2 
E

3 
… are in F and E  

1n E
n
 then,

lim ( ) ( )n
n

E E


   .

and we say that we have an increasing sequence of sets.

Proof: If there exists an n such that E
n
then E

n 
Eimplies E

and the result follows.

So assume that E
n
for all n Then, E  E

1
  1

2
\ 




nn

n
EE is a

disjoint union. Note that E
n1
E

n
 implies that E

n 
E

n
\E

n1
E

n1
, which is a

disjoint union. So E
n
E

n
\E

n1
E

n1
Because the measures are finite,

this can be rearranged as follows:

E
n
\E

n1
 E

n
E

n1
So,

µ(E) = µ(E
1
) + 1

2

( \ )n n
n

E E







= 1 1
1

( ) lim ( ( ) ( ))
N

n nN
n

E E E 


    
By the Definition of Infinite Sum

 lim ( )N
N

E




Theorem 4.4: Let s and t be two simple non-negative F measurable functions on
X, F, and E, F F. Then,

1. I
E
cscI

E
sfor all c R.

2. I
E
s + tI

E
s+ I

E
t

3. If st on E then I
E
s I

E
t

4. If F E then I
F
sI

E
s

5. If E
1 
 E

2 
 E

3 
and E  kk E

1 then    sIsI EEk k
lim .

Proof: As per the Lemma given above we can state that,

1
i

M

i A
i

s a X


 = 
1 1

M N

i i j
i j

a XC
 


And

1

N

j j
j

t b XB


 = 
1 1

M N

j ij
i j

b XC
 


With C
i,j 
A

i
B

j 
F
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1. Note that 
1

M

i ii
cs ca XA


  and so,

I
E
 (cs) = 

1

( )
M

i i
i

ca A




= 
1

( ) ( )
M

i i E
i

c a A cI s


 

2. Then 
1 1

( )
M N

i j iji j
s t a b XC

 
    . Therefore,

I
E
(s + t) = 

1 1

( ) ( )
M N

i j ij
i j

a b C E
 

  

= 
1 1 1 1

( ) ( )
M N M N

i ij i ij
i j i j

a C E b C E
   

     

= 
1 11 1

( ) ( )
N MM N

i ij i ij
i jj i

a C E b C E
  

   
       

  
  

= 
1 1

( ) ( )
M N

i i j j
i j

a A E b B E
 

     

= I
E
(s) + I

E
(t)

3. Given any 1iM, 1jN for which C
ij
E we obtain for any

x C
ij
E such that,

a
i
sx tx b

j
. So,

I
E
(s) = 

1 1

( )
M N

i ij
i j

a C E
 

 

 
1 1

( )
M N

j ij
i j

b C E
 

 

= I
E
(t)

4. By monotonicity of  we have,

I
F
(s) = 

1

( )
M

i i
i

a A F


 

 
1

( )
M

i i
i

a A E


 

= I
E
(s)

5. If E
1 
 E

2 
 E

3 
and E  kk E

1 then we have lim ( ) ( )k
n

E E


   .

Thus,

lim ( )
kE

k
I s


= 

1

lim ( )
M

i i kk
i

a A E
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= 
1

lim ( )
M

i i kk
i

a A E




 

= 
1

( )
M

i i
i

a A E


 

= I
E
(s)

Definition: If f X R+ is a non-negative F measurable function and E F, then
the integral of f over E is given as,

 sup{ ( ) : is a simple -measurable function, 0 }EE
fd I s s F s f   

But, if E X then only f is defined on some domain containing E.

Let If, Edenote the set,

{I
E
(s) : s is a simple F-measurable function, 0  s  f}

So the integral equals sup If, E
Note: The integral exists for all non-negative F measurable functions, even though
it may be infinite.

If  μfdE then the integral is defined.

If  μfdE  then f is -integrable or summable on E.

Theorem 4.5: For a non-negative F measurable simple function t, we have

 tItd EE  μ .

Proof: Given any simple F measurable function, 0 s t we have I
E
stby

Theorem 4.4.

Let I
E
t is an upper bound for I(t, E) for which μtdE is the least of all

upper bounds.

Hence,

 tItd EE  μ

Also,  sItd EE  μ  for all simple F measurable functions, 0 s t and

therefore is greater than I
E
s for any particular s, namely s  t. Hence,

 tItd EE  μ .

Example 4.4: If f k, i.e., a constant, then    EkfIfd EE μμ  .

Theorem 4.6: Consider that all sets are in F and all functions are non-negative
and F measurable.

1. For all c 

μμ fdccfd EE                                                                                         …(4.3)
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2. If 0gh on E then,

μμ hdgd EE  

3. If E
1
E

2
 and f then,

μμ
21

fdfd EE  

Proof:

1. If c then both the right hand side and left hand side of Equation (4.3) are
0. Assume c 

If 0 s cf  is a simple F measurable function then also is 0  s
c

1
f.

Thus,

 sI
c

s
c

Ifd EEE

11
μ 








By Theorem 4.4 (1).

Hence, c μfdE  is an upper bound for I(cf, E) for which μcfdE is the

least upper bound. Thus, c μfdE  μcfdE .

Considering the observation that if 0 s f is a simple F measurable
function then also is 0 cs cf  and we obtain,

 csIcfd EE  μ By the definition of  E

              cI
E
s By Theorem 4.4(1).

Hence,   μ
1

dcf
c E  is an upper bound for I(f, E) for which  μfdE is the

least upper bound. Therefore,   μ
1

dcf
c E    μfdE , or, ,   μdcfE  

 μfdc E .

On combining both inequalities, we obtain the result.

2. Let 0 s g be a simple F measurable function. Then, since g h we

trivially have 0 s h in which the I
E
s  μhdE by the definition of

integral  E .

Thus,  μhdE is an upper bound for I(g, E). As in (1) we get

 μhdE   μgdE .

3. Let 0 s f be a simple, F measurable function. Then,

I
E1
sI

E2
s By Theorem 4.4(3)



Lebesgue Measurability
and Integration of

Non-Negative Functions

NOTES

Self - Learning
Material 173

  μ
2

fdE By the definition of 
2E

So  μ
2

fdE  is an upper bound for I(f, E
1
) and hence is greater than the

least of all upper bounds. consequently,  μ
2

fdE   μ1 fdE .

Lemma 1: Let E F, f 0 is F measurable and  μfdE . Set, A  x E 

fxThen, AF and A0.

Proof: Since f is F measurable, therefore  f 1F and also A E f1

F. Define,

if
( )

0 ifn

n x A
s x

x A


  

Since AF, we infer that s
n
 is an F measurable simple function. Also, s

n 
f

and so,

nµ(A) = I
E
(s

n
) by definition of I

E

 
E fdµ by definition of 

E
<  by assumption

Which is true for all n specifying that A0.

Lemma 2: If f is F measurable and non-negative on E F and E0, then

 μfdE  

Proof: Let 0  s  f  be a simple F measurable function. Therefore,

s
nA

N

n n Xa 1
 for some a

n 
A

n 
F. Then I

E
s  EAa n

N

n n  
μ

1
But 

is monotone which specifies that A
n
EE0 for all n and hence I

E
s

for all such simple functions. Consequently, I(f, E) = {0} and so 
E

fd =

sup ( , ) 0I f E  .

Lemma 3: If g and  μgdE then { : ( ) 0} 0x E g x    .

Proof: Let A x E gxandA
n 
x E gx1/n

Then, the sets A
n 
x gx1/nFb satisfy A

1 
 A

2 
 A

3 
with

 nn A
1 

By Lemma 1,A  nn Aμlim  Using,

1
if

( )
0 otherwise

n
n

x A
s x n

  


.

Therefore, s
n 
g on A

n
 we have,



Lebesgue Measurability
and Integration of
Non-Negative Functions

NOTES

Self - Learning
174 Material

1
( ) ( )

nn A nA I s
n
 

by the definition of
n nA A
gd  

nE
gd  By Theorem 4.6(3)

= 0 By assumption

So A
n
0 for all n and hence A0.

Definition: If a property P holds on all points in E \ A for some set A with
A0 then P is said to hold almost everywhere on E. It is possible that P
holds on some of the points of A or that the set of points on which P does not hold
is non-measurable. But, if is a complete measure, such as the Lebesgue-Stieltjes
measure 

F
, then the condition is simple. Assume that a property P holds almost

everywhere on E. The definition says that the set of points, say D, on which P
does not hold, can be covered by a set of measure zero, i.e., there exists
A D A and A0.

However, if is complete then D will be defined as measurable of measure
zero.

Lemma 4: If g and  μgdE then g almost everywhere on E.

Theorem 4.7: If g, hX R+ are F measurable functions and g h almost

everywhere then,  μgdE   μhdE .

Proof: By assumption there exists a set D E, of measure zero, such that for all
x /D we have gxhx Let 0 s g be a simple F measurable function
written as,

1
i

N

i A
i

s a X


 , with 
1

N

i
i

A E



A simple F measurable function can be defined as,

s*(x) = 
( ) if

0 if

s x x D

x D


 

= 
1

i

N
C

i A
i

a X D




Then, for x/D we have s*xsxgxhxwhile for xD we
have s*xhxThus, s*xhxfor all x E.

Remember that, A
i 
A

i
DcA

i
Da disjoint union in which

A
i
A

i
DcA

i
DA

i
But A

i
D D and so A

i
D

D Thus, A
i
A

i
Dc Consequently,

I
E
(s*) = 

1

( )
N

C
i i

i

a A D
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= 
1

( )
N

i i
i

a A




= I
E
(s)

Therefore, ( ) ( *)E E E
I s I s hd    by the Definition of Integral  E .

Thus,  μhdE  is an upper bound for ( , )I g E  while  μgdE  is the least of

all upper bounds for ( , )I g E . Hence,  μhdE   μgdE .

Corollary: If g, hX R+ are F measurable with g h almost everywhere 
on E then,

 μgdE   μhdE .

Proof: By assumption there exists a set D E of measure zero such that for all
x/D we have gxhxIn particular, for these x we have gxhxand
hx gxTherefore, g h almost everywhere on E and h g almost
everywhere on E. Hence, the result follows from two applications of Theorem
4.7.

Therefore, a function may have its values changed on a set of measure zero
without changing the value of its integral. Particularly, we may assume that a non-
negative integrable function has finite value.

4.4 THE GENERAL INTEGRAL

A general integral can be defined as a relation between the variables in the equation
including one arbitrary function such that the equation is satisfied when the relation
is substituted in it, for every alternative of the arbitrary function.

An integral can be defined as the distributional integral of functions of one
real variable, i.e., more general as compared to the Lebesgue integral which permits
the integration of functions with distributional values everywhere or nearly
everywhere.

Define the positive part f + and negative part f – of a function as,

f + max f , 0
f – max f, 0

Also,

f  f + f –

| f |  f +  f –

Definition: A measurable function  f  is said to be integrable over E if f + and f –

are both integrable over E. Therefore, we can define,

E E E

f f f   
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Theorem 4.8: Let f and g be integrable over E. Then,

(i) The function f + g is integrable over E and ( )
E E E

f g f g     .

(ii) If fg almost everywhere then, 
E E

f g  .

(iii) If A and B are disjoint measurable sets contained in E, then

A B A B

f f f


    .

Proof: From the definition, it follows that the functions f +, f –, g+, g – are all
integrable. If hf g, then h  f +  f – g +  g –and hence h  f + 
g + f –   g –Since, f +  g + and   f –g – are integrable therefore we then
have, the following equation:

E

h = [( ) ( )]
E

f g f g   

= ( ) ( )]
E E

f g f g    

= 
E E E E

f g f g      

= ( ) ( )
E E E E

f f g g      
That is,

( )
E

f g = 
E E

f g 

Proof of (ii) follows from Part (i) and the fact that the integral of a non-
negative integrable function is non-negative.

For the Proof of (iii) we have,

A B

f

 = A Bf 

= A Bf f   

= 
A B

f f 

Now,  f g is not defined at points where f  and g and where
f and g However, the set of such points must have measure equal to 0,
since f and g are integrable. Consequently, the integrability and the value of

( )f g  is independent of the choice of values in these ambiguous conditions.

Theorem 4.9: Let  f  be a measurable function over E. Then  f  in integrable over
E iff | f | is integrable over E. Furthermore, if  f  is integrable, then

| | |
E E

f f  .
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Proof: If f is integrable then both f + and f – are also integrable. But | f |  f +  f –.
Hence, integrability of  f + and f – implies the integrability of | f |.

Moreover, if  f  is integrable, then since fx fx fxthe property of

measurable function states that if f g almost everywhere then,   gf implies

that,

  || ff  …(4.4)

On the other hand, since – fx | fxwe have

  || ff ….(4.5)

From Equations (4.4) and (4.5) we have,

  |||| ff

Conversely, suppose f is measurable and suppose |  f  | is integrable. Since,
0 f +x f xit follows that f + is integrable. Similarly, f – is also integrable
then  f  is also integrable.

Lemma: Let  f  be integrable. Then given there exists such that

ε|| 
A

f whenever A is a measurable subset of E with mA 

Proof: When  f  is non-negative, the lemma is proved. Now for arbitrary measurable
function  f we have f  f + f –. Therefore, given there existssuch that,

2A

f  


When mA Similarly there exists such that,

2A

f  


When mA Thus, when mA minwe have the following
equation:

| | |
2 2A A A A

f f f f  
         

Hence, the lemma is proved.

4.5 INTEGRATION OF SERIES

A series formalizes the inaccurate notion of taking the sum of an endless sequence
of numbers. The contemporary notion that to assign a value to a series can be
avoided by considering the inaccurate notion of adding an ‘Infinite’ number of
terms. As an alternative, the finite sum of the first n terms of the sequence, known
as a partial sum, is considered and the concept of a limit is used to the sequence of
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partial sums as n increases or expands without bound. The series is assigned the
value of this limit if it exists.

Consider an integer N and a function f defined on the unbounded interval
[N, ), on which it is monotonic decreasing. Then the infinite series,

Converges to a real number if and only if the improper integral

is finite. In particular, if the integral diverges, then the series diverges as well.

Proof: The proof basically uses the comparison test, comparing the term f(n) with
the integral of f over the intervals [n – 1, n) and [n, n + 1), respectively. The
monotonous function  is continuous almost everywhere. To evaluate this, let

 is discontinuous at 

For every  exists by the density of  so that

.

Since, f is a monotonic decreasing function, we know that

                     

And

                     

Hence, for every integer 

(4.6)

And, for every integer 

(4.7)

By summation over all n from N to some larger integer M, we get the
following Equation from Equation (4.6)

And from Equation (4.7)
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Combining these two estimates we obtain the following yields:

Remark: If the improper integral is finite, then the proof also gives the lower
and upper bounds.

for the infinite series.

4.6 REIMANN AND LEBESGUE INTEGRALS

The Lebesgue integral is named after Henri Lebesgue (1875–1941), typically
Lebesgue defined and established the integral in the year 1904. Principally, the
Lebesgue integral functions have a significant role in the theory and derivation of
probability, real analysis, and numerous other fields in mathematics. Mathematically,
as per the Lebesgue explanation the term Lebesgue integration specifies either the
general theory of integration of a function with respect to a general measure or the
specific instance of integration of a function typically defined on a sub-domain of
the real line with respect to the Lebesgue measure. The Riemann integral specifies
that by partitioning the domain of an assigned function, one can approximate or
estimate the assigned function by means of piecewise constant functions in each
sub-interval. On the contrary, the Lebesgue integral are specifically used to partition
the range of that function.

The key objective of the Lebesgue integral is to provide an integral notion in
which the limits of integrals hold moderate assumptions. Basically, there is no
assurance that every function is the Lebesgue integrable, but it is possible that
improper integrals exist for functions that are not Lebesgue integrable.

Any function which is Riemann integrable is also Lebesgue integrable
and positively with the same values for the two integrals. This can be easily proved.
First, we recall one definition of Riemann integrability. This definition is different
from other, but is considered to be equivalent. Let f A R be a bounded
function on a bounded rectangle A Rm. Consider R-valued functions that are
simple with respect to a rectangular partition of A, also known as step functions.
Step functions are obviously both Riemann and Lebesgue integrable with the same
values for the integral. The lower and upper Riemann integrals for f are given as,

L (f) = sup :Step Function 
A

l d l f 

U (f) = inf  :Step Function 
A

u d u f 
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If we have L (f)  U (f); then we state that f is Riemann integrable if

L (f) = U (f), and the Riemann integral of f is defined as  ( ) =  ( )f fL U

Equivalently, f is Riemann integrable when there exists sequence of lower
simple functions l

n 
 f and upper simple functions u

n 
f such that,

lim ( ) ( ) lim
 

   n n
n n

A A

l f f uL U
.

Theorem 4.10: Riemann Integrability Implies Lebesgue Integrability:
Let A Rm be a bounded rectangle. If f : A R is properly Riemann integrable,
then it is also Lebesgue integrable with respect to Lebesgue measurewith the
same value for the integral.

Proof: Take a sequence l
n
 and u

n
. Let L sup

n
 ln and U inf

n
 u

n
 Clearly, these

are measurable functions, and we have,

l
n 
L f U u

n

Taking Lebesgue integral and defining, limits we can write,

lim lim
 

     n n
n n

l L U u

Here, the limits on the two sides are the same, because the Riemann and

Lebesgue integrals for l
n
 and u

n
 coincide. Therefore, ( ) 0  U L . Then U L

almost everywhere and U or Lequals f almost everywhere. Since Lebesgue
measure is complete hence f is a Lebesgue measurable function.

Finally, the Lebesgue integral  f , now exists and is squeezed in between

the two limits on the left and on the right defining that both equal the Riemann

integral of f.

4.7 THE FOUR DERIVATIVES

In real analysis, the derivative of a function of a real variable measures the sensitivity
for changing the function value (output value) with respect to a change in its argument
(input value). Derivatives are a fundamental tool of calculus. For example, the
derivative of the position of a moving object with respect to time is the object’s
velocity and this measures how quickly the position of the object changes when
time advances.

The derivative of a function of a single variable at a selected input value,
when it exists, is the slope of the tangent line to the graph of the function at that
point. The tangent line is the best linear approximation of the function near that
input value. For this reason, the derivative is often described as the “Instantaneous
Rate of Change”, the ratio of the instantaneous change in the dependent variable
to that of the independent variable.

Derivatives can be generalized to functions of several real variables. In this
generalization, the derivative is reinterpreted as a linear transformation whose graph
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is (after an appropriate translation) the best linear approximation to the graph of
the original function. The Jacobian matrix is the matrix that represents this linear
transformation with respect to the basis given by the choice of independent and
dependent variables. It can be calculated in terms of the partial derivatives with
respect to the independent variables. For a real valued function of several variables,
the Jacobian matrix reduces to the gradient vector.

Differentiation and Integration

The process of finding a derivative is called differentiation. The reverse process
is called antidifferentiation. The fundamental theorem of calculus relates
antidifferentiation with integration. Differentiation and integration constitute the
two fundamental operations in single variable calculus.

A function of a real variable y = f(x) is differentiable at a point a of its
domain, if its domain contains an open interval I containing a and the limit exists.

This defines that for every positive real number  (even very small), there

exists a positive real number  such that, for every h there is  and 

then  is defined, and

If the function f is differentiable at a, that is, if the limit L exists, then this limit

is called the derivative of f at a, and denoted by  (read as “f prime of a”) or

  (read as “The derivative of f with respect to x at a”, “dy by dx at a”, or “dy

over dx at a”).

Let f be a function that has a derivative at every point in its domain. We can
then define a function that maps every point x to the value of the derivative of f at
x. This function is written f  and is called the derivative function or the derivative
of f. Let f be a differentiable function and let f  be its derivative. The derivative of
f  (if it has one) is written f  and is called the second derivative of f. Similarly, the
derivative of the second derivative, if it exists, is written f  and is called the third
derivative of f. Continuing this process, one can define, if it exists, the nth derivative
as the derivative of the (n –1)th derivative. These repeated derivatives are called
higher order derivatives. The nth derivative is also called the derivative of order n.

A function f need not have a derivative for example if it is not continuous.
Similarly, even if f does have a derivative, then it may not have a second derivative.
For example, let
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Calculation shows that f is a differentiable function whose derivative at  is
given by,

f’(x) is twice the absolute value function at x  and it does not have a derivative
at zero. A function can have a kth derivative for each non-negative integer k but
not for (k + 1)th derivative. A function that has k successive derivatives is called k
times differentiable. If in addition the kth derivative is continuous, then the function
is said to be of differentiability class Ck. This is a stronger condition than having k
derivatives. A function that has infinitely many derivatives is called infinitely
differentiable or smooth.

4.8 FUNCTIONS OF BOUNDED VARIATION

In the mathematical analysis, a function of Bounded Variation (BV) also termed as
BV function, is considered as a real valued function whose total variation is bounded
or finite. Considering a continuous function of a single variable, which has bounded
variation signifies that the distance along the direction of the Y-axis ignoring the
contribution of motion along X-axis, travelled by a point moving along the graph
has a finite value. Similarly, consider a continuous function of several variables, the
connotation and implication of the definition is equivalent, except that the considered
continuous path cannot be the whole graph of the given function, but can be every
intersection of the graph itself with a hyperplane (for several variables) and plane
(for functions of two variables) parallel to a fixed X-axis and to the Y-axis.

Definition 1: Let S be a non-empty set of real numbers. Then,

1. The set S is bounded above if there is a number M such that M x  for all
x S . The number M is called an upper bound of S.

2. The set S is bounded below if there exists a number m such that m x for
all x S .

3. The set S is bounded if it is bounded above and below. Equivalently S is
bounded if there exists a number r such that | |x r  for all x S . The number
r is called a bound for S.

Definition 2: Let, S be a non-empty set of real numbers.

1. Suppose that S is bounded above. The number  is the supremum of S if 
is an upper bound of S and there is no number less than that is an upper
bound of S. We write,

 = sup S

2. Suppose that S is bounded below. A number is the infimum of S if is a
lower bound of S and there is no number greater than that is a lower
bound of S. We write,

 = inf S
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Theorem 4.11: Let S be a non-empty set of real numbers that is bounded above,
and let b be an upper bound of S. Then the following are equivalent:

1. b = sup S.

2. For all > 0 there exists an x S such that | b  x | < 

3. For all > 0 there exists an x S such that x (b  b].

We often refer to sup S as the Least Upper Bound (LUB) of S and to inf S as the
Greatest Lower Bound (GLB) of S.

Axiom: Every non-empty set of real numbers that is bounded above has a least
upper bound.

Definition 3: A partition of an interval [a, b] is a set of points {x
0
, x

1
, ..., x

n
} such

that a = x
0
 < x

1
 < x

2
 ... < x

n
 = b.

Definition 4: Let : ,f a b      be a function and let [c, d] be any closed

subinterval of [a, b]. If the set,

1
1

| ( ) ( ) |:{ :1 } is a partition of [ , ]
n

i i i
i

s f x f x x i n c d


     
 


is bounded then the variation of f on [c, d] is defined to be ( , , ) supV f c d S   . If

S is bounded then the variation of f is said to be . A function f is of bounded
variation on [c, d] if V (f, [c, d]) is finite.

Example 4.5: If f is constant on [a, b], then f is of bounded variation on [a, b].
Consider the constant function f (x) = c on [a, b]. Let,

1
1

| ( ) ( ) |
n

i i
i

f x f x 




is zero for every partition of [a, b]. Thus, ( ,[ , ])V f a b  is zero.

Theorem 4.12: If f is increasing on [a, b], then f is of bounded variation on
[a, b] and ( ,[ , ])V f a b  = f (b) – f (a).

Proof: Let { :1 }ix i n   be a partition of [a, b]. Consider,,

1 1
1 1

| ( ) ( ) | ( ( ) ( )) ( ) ( )
n n

i i i i
i i

f x f x f x f x f b f a 
 

     

This sum is the same for every partition of [a, b]. Therefore, we have
( ,[ , ])V f a b  = f(b) – f(a) < . Thus, f is of bounded variation on [a, b].

Similarly, if f is decreasing on [a, b] then ( ,[ , ])V f a b  = f(a) – f(b).

Theorem 4.13: Between any two distinct real numbers there is a rational number
and an irrational number.

Example 4.6: Show that, the function f defined by,

0 if is Irrational
( )

1 if is Rational

x
f x

x


 


is not of bounded variation on any interval.
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Solution: Let n  and n > 0. Let [a, b] be a closed interval in . We construct
a partition P = {x

0
, x

1
, …, x

n+2
} of [a, b] such that ( ,[ , ])V f a b  

2

11
| ( ) ( ) |

n

i ii
f x f x




 n as follows. Recall that by definition x
0
 = a. We know

that between any two real numbers there is a rational number and an irrational
number. Take x

1
 to be an irrational number between a and b. Then take x

2
 to be

an irrational number between x
1
 and b. Continuing in this manner and taking x

2i+1

to be an irrational number between x
2i
 and b, and x

2i
 to be a rational number

between x
2i1

 and b, then finally x
n+2

 = b. Thus, a partition is created that begins
with a and then alternates between rational and irrational numbers until it finally

ends with b. Now consider the sum 
2

11
| ( ) ( ) |

n

i ii
f x f x




 , which is the variation

of f on [a, b]. Thus,

( ,[ , ])V f a b  
2

1
1

| ( ) ( ) |
n

i i
i

f x f x







 
2

1
2

| ( ) ( ) |
n

i i
i

f x f x







= 2 1 1| ( ) ( ) | ... | ( ) ( ) |n nf x f x f x f x   

= |1 0 | | 0 1| ... |1 0 |     

= 1+ 1+ 1+…+ 1

= n

Consequently, ( ,[ , ])V f a b  is arbitrarily large and hence ( ,[ , ])V f a b =.

4.8.1 Algebraic Properties of Functions of Bounded
Variations

Theorem 4.14: Let f and g be functions of bounded variation on [a, b] and let k
be a constant. Then,

1. f is bounded on [a, b].

2. f is of bounded variation on every closed subinterval of [a, b].

3. kf is of bounded variation on [a, b].

4. f + g and f g are of bounded variation on [a, b].

5. fg is of bounded variation on [a, b].

6. If 1/g is bounded on [a, b], then f/g is of bounded variation on [a, b].

Lemma: Let :[ , ]f a b   be a function. Let { : 0 }ix i n   be a partition of

[a, b] and let { : 0 }iy i m   be a partition of [a, b] such that { : 0 }ix i n  

{ : 0 }iy i m  Then,

1 1
1 1

| ( ) ( ) | | ( ) ( ) |
n m

i i i i
i i

f x f x f y f y 
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Proof: Start the calculation by adding one point to the partition { : 0 }ix i n  which
gives the desired result.

Let { : 0 }ix i n   and { : 0 }iy i m   be partitions as in the statement of

the lemma. Suppose { : 0 }iy y i m   . If y = x
j
 for some j then the sum does not

change. Thus we assume that jy x  for all j. In this condition y falls between two

points x
k 

and x
k
 in { : 0 }ix i n   for some k. We take the sum

11
| ( ) ( ) |

n

i ii
f x f x 

  and write it as follows:

1

1 1 1
1 1

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
k n

i i k k i i
i i k

f x f x f x f x f x f x


  
  

     

Take 1| ( ) ( ) |k kf x f x  . We know that,

1 1

1

| ( ) ( ) | | ( ) ( ) ( ) ( ) |

| ( ) ( ) | | ( ) ( ) |
k k k k

k i i k

f x f x f x f x f y f y

f x f y f y f x
 



    

   

by the triangle inequality. We relabel the partition with the extra point as

{ : 0 1}ix i n   . Thus, since all the addends are positive, we can write,

1

1 1
1 1

| ( ) ( ) | | ( ) ( ) |
n n

i i i i
i i

f x f x f x f x


 
 

   

Because there are atmost a finite number of the y
i
, the desired result follows

by induction.

Proof of Theorem 4.14: To prove (2) we begin by assuming that f is of bounded

variation on [a, b]. Thus 11
( ,[ , ]) sup{ | ( ) ( ) |}

n

i ii
V f a b f x f x 

   = r where r is a

real number. Let [c, d] be a closed interval of [a, b] and { :1 }ix i n   be a partition
of [c, d]. Then extend this partition to [a, b] by adding the point a and b and

relabeling. Subsequently, { : 0 2}ix i n    is a partition of [a, b] such that 1x c ,

1nx d  . Then,

1 1

1 1 1
2 2

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
n n

i i i i n
i i

f x f x f x f a f x f x f b f x r
 

 
 

        

Because the original partition of [c, d] was arbitrary, we can conclude that
r  ( ,[ , ])V f c d 

prove (3), we assume that { :1 }ix i n  be a partition of [a, b].
Consider,

1 1
1 1

| ( ) ( ) | | | | ( ) ( ) |
n n

i i i i
i i

kf x kf x k f x f x 
 

   

| | ( ,[ , ])k V f a b
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Because the partition was arbitrary, kf is of bounded variation. Further we
can observe that ( ,[ , ]) | | ( ,[ , ])V kf a b k V f a b .

To prove (4) we assume that { :1 }ix i n   be a partition of [a, b]. By
repeated use of the triangle inequality, we obtain the equations of the form.

1 1
1

| ( ) ( ) ( ) ( ) |
n

i i i i
i

f x g x f x g x 


  

1 1
1 1

| ( ) ( ) | | ( ) ( ) |
n n

i i i i
i i

f x f x g x g x 
 

    

( ,[ , ]) ( ,[ , ])V f a b V g a b 

Notice that, ( ,[ , ]) ( ,[ , ])V f a b V g a b  is finite and the partition taken was
arbitrary. Thus by the least upper bound axiom, f + g is of bounded variation.

To prove that f g is of bounded variation on [a, b], we simply consider
that f g = f + (g. Since (g is of bounded variation on [a, b], f g is of
bounded variation on [a, b].

To prove (6) we assume that f and g are of bounded variation on [a, b] and
that 1/g is bounded on [a, b]. Thus we know that there exists number M such that
for all [ , ]x a b , |1 / ( ) |g x M . Now we have to show that 1/g is of bounded

variation on [a, b]. We begin by taking { : 0 }ix i n   as an arbitrary partition of
[a, b] and consider the usual sum,

1

1 11 1

( ) ( )1 1

( ) ( ) ( ) ( )

n n
i i

i ii i i i

g x g x

g x g x g x g x


  


  

2
1

1

| ( ) ( ) |
n

i i
i

M g x g x 


 

2 . ( ,[ , ])M V g a b

Because the partition was arbitrary, we can state that the sum is bounded

above by 2 . ( ,[ , ])M V g a b  and therefore by the least upper bound axiom, 1/g is of

bounded variation.

Theorem 4.15: Let : ,f a b      be a function and let ( , )c a b . If f is of

bounded variation on [a, c] and [c, b] then f is of bounded variation on [a, b] and
( ,[ , ]) ( ,[ , ]) ( ,[ , ])V f a b V f a c V f c b  .

4.8.2 Functions of Bounded Variation as a Difference
of Two Increasing Functions

Theorem 4.16: If : ,f a b      is a function of bounded variation then there

exist two increasing functions, f
1
 and f

2
 such that f = f

1
 f

2
.

We define an increasing function f such that if x
1
 < x

2
 then f (x

1
) f (x

2
).
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Lemma 1: For a function f, ( ,[ , ])V f a b  = 0 if and only if f is constant on
[a, b].

Proof: Suppose that f is constant. Then f is monotone function. Also,
( ,[ , ]) ( ) ( )V f a b f b f a  .

However, f (b) = f (a) and so ( ,[ , ])V f a b  = 0.

We will prove the reverse by contraposition. Suppose that f is not constant
on [a, b]. We can prove that ( ,[ , ]) 0V f a b  . Since f is not constant on [a, b]
there exist an x

1
 and an x

2
 such that both x

1
 and x

2 
are between a and b such that

1 2( ) ( )f x f x . If we take these two points as a partition of [a, b] we have,

1 2 1 2( ,[ , ]) | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |V f a b f x f a f x f x f b f x     

However, we know that | f(x
1
) f(x

2
) | > 0. Since each other addend is at

least 0, we state that the sum must be greater than 0 and thus ( ,[ , ]) 0V f a b   and

hence ( , , 0V f a b    .

Lemma 2: If f is a function of bounded variation on [a, b] and [ , ]x a b  then the

function ( ) ( ,[ , ])g x V f a x  is an increasing function.

Proof: We introduce x
1
 and x

2
 such that x

1 
< x

2
. We can show that

 1 2( ) ( )g x g x .
Because f is of bounded variation on [a, b],

V(f, [a, x
2
]) = V(f, [a, x

1
]) + V(f, [x

1
, x

2
])

V(f, [a, x
2
]) – V(f, [a, x

1
]) = V(f, [x

1
, x

2
])

g(x
2
) – g(x

1
) = V(f, [x

1
, x

2
])

Since V(f, [x
1
, x

2
])  0 we define that g(x

2
)  g(x

1
). Furthermore, by the

above lemma, we have equality only if f is constant on [x
1
, x

2
].

Proof of Theorem 4.16: We define f
1 
= V(f, [a, x]) for x  (a, b) and f

1
(a) = 0.

This function can be increased by Lemma 2. Define f
2
 as f

2
(x) = f

1
(x) f(x). Then

f = f
1
f

2
. Now, show that f

2
 is increasing.

Suppose that a < x < y < b. Using Theorem 4.14, we can write

f
1 
(y) – f

1
(x) = V(f, [x, y])

 |f(y) – f(x)|

 f(y) – f(x)

From this we see that

f
1 
(y) – f

1
(x)  f(y) – f(x)

f
1 
(y) – f(y)  f

1
(x) – f(x)

f
2 
(y)  f

2
(x)

This shows that f
2
 is increasing on [a, b] and hence completes the proof.

Corollary: If : ,f a b      is of bounded variation on [a, b] then f is the

difference of two strictly increasing functions.
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Proof: We know from Theorem 4.16 that f can be written as the difference of
two increasing functions. We call these functions f

1
 and f

2
 and write f = f

1 
– f

2

where f
1
 and f

2 
are increasing.

Create two new functions, g
1
(x) = f

1
(x) + x and g

2
(x) = f

2
(x) + x. Because

both f
i
 and x are increasing functions, hence their sum is also increasing. However,

since x is a strictly increasing function, the result of this addition is also a strictly
increasing function. Thus we write,

f(x) = f
1
(x) – f

2
(x) = (f

1
(x) + x) – (f

2
(x) + x) = g

1
(x) – g

2
(x)

where g
1
 and g

2
 are strictly increasing functions.

4.9 LEBESGUE DIFFERENTIATION THEOREM

In real analysis, the Lebesgue differentiation theorem is a theorem of real analysis,
which states that for almost every point, the value of an integrable function is the
limit of infinitesimal averages taken about the point. The theorem is named After
Henri Lebesgue.

For a Lebesgue integrable real or complex valued function f on  the
indefinite integral is a set function which maps a measurable set A to the Lebesgue

integral of where  denotes the characteristic function of the set A. It is

usually written as,

with λ the n–dimensional Lebesgue measure. The derivative of this integral
at x is defined to be,

Where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B
centered at x, and B  x means that the diameter of B tends to 0.

Proof: The theorem in its stronger form, that almost every point is a Lebesgue
point of a locally integrable function f, can be proved as a consequence of the weak–
L1 estimates for the Hardy–Littlewood maximal function. The proof given below
follows the standard derivation that can be found in Benedetto & Czaja (2009),
Stein & Shakarchi (2005), Wheeden & Zygmund (1977) and Rudin (1987).

Since the statement is local in character, f can be assumed to be zero outside
some ball of finite radius and hence integrable. It is then sufficient to prove that the
set,

has measure 0 for all α > 0.
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Let ε > 0 be given. Using the density of continuous functions of compact
support in L1(Rn), one can find such a function g satisfying,

It is then helpful to rewrite the main difference as,

The first term can be bounded by the value at x of the maximal function for

f – g, denoted here by 

The second term disappears in the limit since g is a continuous function, and
the third term is bounded by |f(x) – g(x)|. For the absolute value of the original
difference to be greater than 2α in the limit, at least one of the first or third terms
must be greater than α in absolute value. However, the estimate on the Hardy–
Littlewood function says that,

for some constant A
n
 depending only upon the dimension n. The Markov

inequality (also called Tchebyshev’s inequality) says that,

Where,

Since ε was arbitrary, it can be taken to be arbitrarily small and the theorem
follows.

A special case of the Lebesgue differentiation theorem is the Lebesgue density
theorem, which is equivalent to the differentiation theorem for characteristic functions
of measurable sets. The density theorem is usually proved using a simpler method.
The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving
the estimate for the Hardy–Littlewood maximal function. The theorem also holds
if balls are replaced, in the definition of the derivative, by families of sets with
diameter tending to zero satisfying the Lebesgue’s regularity condition, defined as
family of sets with bounded eccentricity. This follows since the same substitution
can be made in the statement of the Vitali covering lemma.
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Check Your Progress

7. Define the integration of non-negative functions.

8. State the general integral.

9. What do you understand by the integration of series?

10. Define the Reimann and Lebesgue integrals.

11. What are the derivatives?

12. Define the functions of bounded variation.

13. State the Lebesgue differentiation theorem.

4.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. Fundamentally, the Lebesgue measure is
defined as the standard method used to assign a measure to subsets of
n-dimensional Euclidean space. In real analysis, the Lebesgue measure is
specifically used to define the Lebesgue integration. Sets to which the
Lebesgue measure can be assigned are termed as the ‘Lebesgue
Measurable’; characteristically the measure of the Lebesgue measurable set
A can be denoted by (A).

2. The Lebesgue outer measure can be defined assuming that there is an outer
measure  on a set X which is a measure then it will be considered as additive.
Specifically, for given any two sets A, B  X it can be stated that both A 
B and A  Bc are disjoint in conjunction with (A  B)  (A  Bc) = A and
accordingly we can state that,

          (A) =  (A  B) +  (A  Bc)

3. The pair (X, ) is termed as a measurable space, the members of  are
termed as the measurable sets. A measurable set X is known as a null set if
 (X) = 0. A subset of a null set is described as a negligible set. A negligible
set must not be measurable, but every measurable negligible set is certainly
and inevitably a null set. A measure is termed complete if every negligible
set is measurable.

4. A measure can be extended to a complete or perfect by means of considering
the -algebra of subsets Y which vary through a negligible set from a
measurable set X, i.e., the symmetric difference of X and Y is contained in a
null set, such that  (Y) can be defined to equal  (X).

5. Specifically, in the measure theory, a measurable function is a function between
the underlying sets of two measurable spaces that preserves the structure
of the spaces, the preimage of any measurable set is measurable. In real
analysis, measurable functions are used in the definition of the Lebesgue
integral. In probability theory, a measurable function on a probability space
is termed as a random variable.
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6. The map f : X  Y between two topological spaces is termed as the ‘Borel
or Borel Measurable’ if f –1(A) is a Borel set for any open set A as per the
-algebra of Borel sets of X is the smallest -algebra containing the open
sets.

7. Let s be a non-negative F measurable simple function so that, 
1

i

N

i A
i

s a X




with disjoint F measurable sets A
i
, XAi

N
i 1  and a

i 
 For any E F

define the integral of f over E to be, 
1

( ) ( )
N

E i i
i

I s a A E


    with the

convention that if a
i 
and A

i 
Ethen 0  Therefore,

the area under s 0 in R is zero.

8. A measurable function  f  is said to be integrable over E if f + and f – are both

integrable over E. In this condition we define, 
E E E

f f f   

9. Consider an integer N and a function f defined on the unbounded interval
[N, ), on which it is monotonic decreasing. Then the infinite series,

Converges to a real number if and only if the improper integral,

is finite. In particular, if the integral diverges, then the series diverges as well.

10. The Lebesgue integral is named after Henri Lebesgue (1875–1941), typically
Lebesgue defined and established the integral in the year 1904. Principally,
the Lebesgue integral functions have a significant role in the theory and
derivation of probability, real analysis, and numerous other fields in
mathematics. The Riemann integral specifies that by partitioning the domain
of an assigned function, one can approximate or estimate the assigned
function by means of piecewise constant functions in each sub-interval. On
the contrary, the Lebesgue integral are specifically used to partition the range
of that function. The key objective of the Lebesgue integral is to provide an
integral notion in which the limits of integrals hold moderate assumptions.

11. In real analysis, the derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with respect to a
change in its argument (input value). Derivatives are a fundamental tool of
calculus. For example, the derivative of the position of a moving object
with respect to time is the object’s velocity, this measures how quickly the
position of the object changes when time advances.
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12. Let, S be a non-empty set of real numbers.

(a) Suppose that S is bounded above. The number  is the supremum of
S if is an upper bound of S and there is no number less than that
is an upper bound of S. We write,  = sup S.

(b) Suppose that S is bounded below. A number is the infimum of S if 
is a lower bound of S and there is no number greater than that is a
lower bound of S. We write,  = inf S.

13. In real analysis, the Lebesgue differentiation theorem is a theorem of real
analysis, which states that for almost every point, the value of an integrable
function is the limit of infinitesimal averages taken about the point. The theorem
is named after Henri Lebesgue.

4.11 SUMMARY

 In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. This measure was described by Henri
Lebesgue in the year 1901, and in the year 1902 by the description Lebesgue
integral.

 Both the Lebesgue measure and the Lebesgue integral were published in
his dissertation thesis in the year 1902.

 Fundamentally, the Lebesgue measure is defined as the standard method
used to assign a measure to subsets of n-dimensional Euclidean space.
Additionally, for n = 1, 2 or 3, the Lebesgue measure coincides with the
standard universal measure of length, area or volume.

 Generally, in the mathematical analysis the measure is also termed as the n-
dimensional volume, n-volume or merely only the volume. In real analysis,
the Lebesgue measure is specifically used to define the Lebesgue integration.

 Sets to which the Lebesgue measure can be assigned are termed as the
‘Lebesgue Measurable’; characteristically the measure of the Lebesgue
measurable set A can be denoted by (A).

 Lebesgue outer measure: Assume that there is an outer measure  on a set
X which is a measure then it will be considered as additive. Specifically, for
given any two sets A, B  X we can state that both A  B and A  Bc are
disjoint in conjunction with (A  B)  (A  Bc) = A and accordingly we can
state that,

                       (A) =  (A  B) +  (A  Bc)

 Sets to which the Lebesgue measure can be assigned are termed as the
‘Lebesgue Measurable’; characteristically, the measure of the Lebesgue
measurable set A can be denoted by  (A).

 The pair (X, ) is termed as a measurable space, the members of  are
termed as the measurable sets.

 A measurable set X is known as a null set if  (X) = 0. A subset of a null set
is described as a negligible set. A negligible set must not be measurable, but
every measurable negligible set is certainly and inevitably a null set.
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 A measure is termed complete if every negligible set is measurable.

 A measure can be extended to a complete or perfect by means of considering
the -algebra of subsets Y which vary through a negligible set from a
measurable set X, i.e., the symmetric difference of X and Y is contained in a
null set, such that  (Y) can be defined to equal  (X).

 In real analysis, measurable functions are used in the definition of the
Lebesgue integral.

 In real analysis and measure theory, the regularity theorem for Lebesgue
measure is defined as an acquired result which states that Lebesgue measure
on the real line is a regular measure. Usually, this indicates about the real line
and states that every Lebesgue measurable subset is ‘Approximately Open’
and ‘Approximately Closed’.

 In mathematical analysis and in particular in the measure theory, a Borel
measure on a topological space is defined as a measure for all open sets
and consequently on all Borel sets.

 Consider that X be a locally compact Hausdorff space and also consider
that (X) be the smallest -algebra which contains or includes the open sets
of X; then this is established as the ‘-Algebra of Borel Sets’.

 The ‘Borel Measure’ is specified as any measure  defined precisely on the
-algebra of Borel sets. Some of the mathematicians define that  is locally
finite which implies that  (C) < for every compact set C.

 When a Borel measure  is both inner regular and outer regular, then it is
termed as a ‘Regular Borel Measure’. If  is both inner regular and outer
regular, and is also locally finite, then in this condition it is known as a Radon
measure.

 Characteristically, the real line   with its normal topology is defined as a
locally compact Hausdorff space, therefore a Borel measure can be defined
on it. In this instance, ( ) is referred as the smallest -algebra that
comprises of the open intervals of  .

 Principally, the Lebesgue -algebra is essentially stated as the completion
of the Borel -algebra, which implies that it is the smallest -algebra that
comprises of all the Borel sets and has a complete measure on it.

 Characteristically, the measurable sets on the line are considered as the
iterated countable unions and intersections of intervals, termed as the Borel
sets, are referred as the plus-minus null sets.

 The measure of the union of two disjoint sets to be the sum of the measure
of the two sets. A measure with this natural property is termed as the finitely
additive.

 Let s be a non-negative F measurable simple function so that, 
1

i

N

i A
i

s a X




with disjoint F measurable sets A
i
, XAi

N
i 1  and a

i 
 For any E F

define the integral of f over E to be, 
1

( ) ( )
N

E i i
i

I s a A E


    with the
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convention that if a
i 
and A

i 
Ethen 0  Therefore,

the area under s 0 in R is zero.

 If f X R+ is a non-negative F measurable function, E F, then the
integral of f over E is,

sup{ ( ) : is a simple -measurable function, 0 }EE
fd I s s F s f   

But, if E X we need only that f is defined on some domain containing E.

 If a property P holds on all points in E \ A for some set A with A0 then
P is said to hold almost everywhere on E. It is possible that P holds on
some of the points of A or that the set of points on which P does not hold is
non-measurable. But, if is a complete measure, such as the Lebesgue-
Stieltjes measure 

F
, then the situation is simpler. Assume that a property P

holds almost everywhere on E. The definition says that the set of points,
D say, on which P does not hold, can be covered by a set of measure zero,
i.e., there exists A D A and A0.

 A measurable function  f  is said to be integrable over E if f + and f – are both

integrable over E. In this condition we define, 
E E E

f f f   

 Any function which is Riemann integrable is Lebesgue integrable as well
and positively with the same values for the two integrals. First, we recall
one definition of Riemann integrability.

 Consider an integer N and a function f defined on the unbounded interval
[N, ), on which it is monotonic decreasing. Then the infinite series

Converges to a real number if and only if the improper integral

 is finite. In particular, if the integral diverges, then the series

diverges as well.

 In real analysis, the derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with respect to a
change in its argument (input value). Derivatives are a fundamental tool of
calculus. For example, the derivative of the position of a moving object with
respect to time is the object’s velocity, this measures how quickly the position
of the object changes when time advances.

 The derivative of a function of a single variable at a is taken as input value,
when it exists, is the slope of the tangent line to the graph of the function at
that point. The tangent line is the best linear approximation of the function
near that input value. For this reason, the derivative is often described as
the “Instantaneous Rate of Change”, the ratio of the instantaneous change
in the dependent variable to that of the independent variable.
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 The process of finding a derivative is called differentiation. The reverse
process is called antidifferentiation. The fundamental theorem of calculus
relates antidifferentiation with integration. Differentiation and integration
constitute the two fundamental operations in single variable calculus.

 Let, S be a non-empty set of real numbers.

(a) Suppose that S is bounded above. The number  is the supremum of
S if is an upper bound of S and there is no number less than that
is an upper bound of S. We write,  = sup S.

(b) Suppose that S is bounded below. A number is the infimum of S if 
is a lower bound of S and there is no number greater than that is a
lower bound of S. We write,  = inf S.

 In real analysis, the Lebesgue differentiation theorem is a theorem of real
analysis, which states that for almost every point, the value of an integrable
function is the limit of infinitesimal averages taken about the point. The theorem
is named after Henri Lebesgue.

 A special case of the Lebesgue differentiation theorem is the Lebesgue
density theorem, which is equivalent to the differentiation theorem for
characteristic functions of measurable sets. The density theorem is usually
proved using a simpler method. The Vitali covering lemma is vital to the proof
of this theorem; its role lies in proving the estimate for the Hardy–Littlewood
maximal function.

4.12 KEY TERMS

 Lebesgue outer measure: Assume that there is an outer measure  on a
set X which is a measure then it will be considered as additive. Specifically,
for given any two sets A, B  X we can state that both A  B and A  Bc are
disjoint in conjunction with (A  B)  (A  Bc) = A and accordingly we can
state that,

 (A) =  (A  B) +  (A  Bc)

 Borel measure: The ‘Borel Measure’ is specified as any measure  defined
precisely on the -algebra of Borel sets.

 Regular Borel measure: When a Borel measure  is both inner regular
and outer regular, then it is termed as a ‘Regular Borel Measure’.

 Integration of non-negative functions: Let s be a non-negative F

measurable simple function so that, 
1

i

N

i A
i

s a X


  with disjoint F measurable

sets A
i
, XAi

N
i 1  and a

i 
 0.

 General integral: A measurable function  f  is said to be integrable over E
if f + and f – are both integrable over E. In this condition we define,

E E E

f f f   
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 Integration of series: Consider an integer N and a function f defined on
the unbounded interval [N, ¥), on which it is monotonic decreasing. Then

the infinite series 

 Reimann and Lebesgue integrals: Any function which is Riemann
integrable is Lebesgue integrable as well and positively with the same values
for the two integrals.

 Derivatives: The derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with respect to a
change in its argument (input value). Derivatives are a fundamental tool of
calculus.

 Lebesgue differentiation theorem: The Lebesgue differentiation theorem
is a theorem of real analysis, which states that for almost every point, the
value of an integrable function is the limit of infinitesimal averages taken
about the point. The theorem is named after Henri Lebesgue.

4.13 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Why is Lebesgue outer measure used?

2. What are the measurable sets?

3. Define the terms regularity and measurable functions.

4. State about the Borel and Lebesgue measurability.

5. Why are non-measurable sets used?

6. Define integration of non-negative functions.

7. What is the general integral?

8. What is the significance of the integration of series?

9. State about the Riemann and Lebesgue integrals.

10. What are the derivatives?

11. Define the term functions of bounded variation.

12. State the Lebesgue differentiation theorem.

Long-Answer Questions

1. Explain the Lebesgue measure and Lebesgue outer measure giving
examples.

2. Briefly discuss the measurable sets giving appropriate examples.

3. Describe regularity and measurable functions with the help of examples.

4. Explain the three significant and distinguished classes of the measurable
functions in real analysis.
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5. Discuss in detail the Borel and Lebesgue measurability giving relevant
examples.

6. Elaborate on the non-measurable sets.

7. Briefly explain the integration of non-negative functions giving theorems and
proofs.

8. What is general integral? Explain giving examples.

9. Briefly discuss about the integration of series in real analysis.

10. Discuss the significance of Riemann and Lebesgue integrals giving appropriate
examples.

11. Describe the derivatives on the basis of differentiation and integration.

12. Elaborate on the functions of bounded variation giving examples.

13. State and prove the Lebesgue differentiation theorem.

14. Calculate the outer measure of the set of irrational numbers in the interval
[0,1].

15. Assume that E has measure zero where E   . Prove that the set
E2 = {x2 : x  E} also has measure zero.

16. Prove that any measurable subset A    with  (A) > 0 contains a non-
measurable subset.
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5.0 INTRODUCTION

In the measure theory, the concept of a measure is a generalization of common
notions, such as mass, distance/length, area, volume, etc. The perception behind
this concept dates back to Ancient Greece when Archimedes tried to calculate the
area of a circle. The foundations of modern measure theory were the significant
theories and notations of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann
Radon, Constantin Carathéodory and Maurice Fréchet.

Although, measures can be defined on arbitrary collections of sets, the most
natural domain of a measure is a -ring. It generalizes the intuitive notions of
length, area, and volume. The earliest and most important examples are Jordan
measure and Lebesgue measure, but other examples are Borel measure, probability
measure, complex measure, and Haar measure.

An outer measure or exterior measure is a function defined on all subsets of
a given set with values in the extended real numbers satisfying some additional
technical conditions. The theory of outer measures was first introduced by
Constantin Carathéodory to provide an abstract basis for the theory of measurable
sets and countably additive measures. Carathéodory’s work on outer measures
found many applications in measure basically in theoretic set theory because the
outer measures are used in the proof of the fundamental Carathéodory’s extension
theorem, and was used in an essential method by Hausdorff to define a dimension,
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such as metric invariant now called Hausdorff dimension. Outer measures are
commonly used in the field of geometric measure theory.

A measure space is a fundamental object of measure theory that typically
studies generalized notions of volumes. It contains an underlying set, the subsets
of this set that are feasible for measuring the ‘-Algebra’ and the method that is
used for measuring the ‘Measure’. A measurable space consists of the first two
components without a specific measure.

In mathematics, Jensen’s inequality is named after the Danish mathematician
Johan Jensen which relates the value of a convex function of an integral to the integral
of the convex function. Principally, the Jensen’s inequality was proved by Jensen
in 1906. Given its generality, the inequality appears in many forms depending on
the context. In its simplest form the inequality states that the convex transformation
of a mean is less than or equal to the mean applied after convex transformation; it
is a simple corollary that the opposite is true of concave transformations. The
classical form of Jensen’s inequality involves several numbers and weights. The
inequality can be stated quite generally using either the language of measure theory
or equivalently the probability.

In mathematical analysis, Hölder’s inequality, named after Otto Hölder, is a
fundamental inequality between integrals and an indispensable tool to study and
analyse the Lp spaces. Hölder’s inequality is used to prove the Minkowski inequality
which is the triangle inequality in the space Lp (). The Minkowski inequality
establishes that the Lp spaces are normed vector spaces. The Minkowski inequality
is named after the German mathematician Hermann Minkowski.

Convergence in measure is either of two distinct mathematical concepts both
of which generalize the concept of convergence in probability. On a finite measure
space, both the notions are equivalent. Otherwise, convergence in measure can
refer to either global convergence in measure or local convergence in measure. In
the mathematical field of analysis, the uniform convergence is a mode of
convergence of functions which are stronger than pointwise convergence.

In this unit, you will study about the measures and outer measures, extension
of a measure, uniqueness of extension, completion of a measure, measure spaces,
integration with respect to a measure, the LP-spaces, convex functions, Jensen’s
inequality, Hölder and Minkowski inequalities, completeness of LP, convergence
in measure, and almost uniform convergence.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the measures and outer measures

 Define the extension of a measure

 Understand the uniqueness of extension

 Explain the completion of a measure

 Elaborate on the measure spaces

 Comprehend on the integration with respect to a measure
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 Define the LP-spaces, completeness of LP and convex functions

 State the Jensen’s inequality

 Analyse the Hölder and Minkowski inequalities

 Define the convergence in measure

 Explain the almost uniform convergence

5.2 MEASURES AND OUTER MEASURES

In the measure theory, the concept of a measure is a generalization of common
notions, such as mass, distance/length, area, volume, etc. The perception behind
this concept dates back to Ancient Greece when Archimedes tried to calculate the
area of a circle. The foundations of modern measure theory were the significant
theories and notations of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann
Radon, Constantin Carathéodory and Maurice Fréchet.

An outer measure or exterior measure is a function defined on all subsets of
a given set with values in the extended real numbers satisfying some additional
technical conditions. The theory of outer measures was first introduced by
Constantin Carathéodory to provide an abstract basis for the theory of measurable
sets and countably additive measures.

Definition: An outer measure is an extended real valued set function defined
on all subsets of a space X having the following properties:

(a) 

(b) Monotonicity

(c) E  









11

*μ*μ
i

i
i

i EEE Subadditivity

The outer measure is said to be finite if X 

As per the Lebesgue measure we can state that a set E is measurable with
respect to if for every set A we have,

* *( ) *( )CA A E A E     

Because is subadditive therefore in order to explain that E is measurable,
we just have to prove that,

* *( ) *( )CA A E A E      , for every A.

When A then this inequality holds trivially. Consequently, this can
be proved for sets A with A finite.

Theorem 5.1: The class of -measurable sets are -algebra. If μ  is restricted

to then μ  is a complete measure on 

Proof: It is obvious that the empty set is measurable. Using the definition of
measurability in E and Ec, we have that Ec is measurable whenever E is measurable.
Now, consider that E

1
 and E

2
 be measurable sets, then by the measurability of E

2
,

we can state that,
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2 2* *( ) * ( )CA A E A E     

And by the measurability of E
1
,

2 2 1 1 2* *( ) *( ) *( )C C CA A E A E E A E E         

Now, since

1 2 2 1 2[ ] [ ] [ ]CA E E A E A E E      

We have,

1 2 2 2 1*( [ ]) *( ) *( )CA E E A E A E E        

By using the subadditivity properly, we can state that,

1 2 1 2* *( [ ]) *( )C CA A E E A E E       

This implies that E
1 
 E

2
 is measurable. Therefore, we can state that the

union of two measurable sets is measurable. But by induction, the union of any
finite number of measurable sets is measurable. Hence,  is an algebra of sets.
Suppose, E E

i
, where <E

i
> is a disjoint sequence of measurable sets and

hence,

G
n 
 i

n

i
E

1


Then G
n
 is measurable, and

* *( ) *( )C
n nA A G A G       *( ) *( )C

nA G A E    

Because Ec G
n

c.

Now, G
n 
 E

n 
 E

n
 and G

n
 E

n
c G

n1
, and by the measurability of E

n
 we

have,

1* ( ) * ( ) * ( )n n nA G A E A G        

By induction we have, 1 1 2*( ) * ( ) * ( )n n nA G A E A E          .

Also, we can state that,

1

*( ) *( )
n

n i
i

A G A E


    

And so,

1

* *( ) *( )C
i

i

A A E A E




        *( ) *( )CA E A E    

Since,  i
i

EAEA 


1


Thus, E is measurable.

Since, the union of any sequence of sets in an algebra which can be replaced
by a disjoint union of sets in an algebra, it follows that  is a -algebra.
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Let us now prove that μ  is finitely additive. Let E
1
 and E

2
 be disjoint

measurable sets.

Then, the measurability of E
2
 implies that,

1 2 1 2( ) *( )E E E E    

 
1 2 2 1 2 2*([ ] *([ ] )CE E E E E E       

2 1* *E E   

Consequently, finite additivity follows by the induction.

If E is the disjoint union of the measurable sets E
i
, then

i

n

i
i

n

i
i EEE 











11
μμμ 

And so,

1
i

i

E E




  

But,

1
i

i

E E




    by the subadditivity of Hence,μ  is countably additive.

So μ is a measure since it is non-negative and μ 

Example 5.1: If E
1
 and E

2
 are measurable then prove that E

1
E

2
.

Solution: As per the definition of measurability, we can stat that,

A subset E of X is called measurable whenever,

      (A) = (A E) +  (A  Ec) holds for all A subset of X.

To be a measure it satisfies the following properties:

 () = 0

 (A)   (B) if A  B, i.e.,  is monotone.

3. holds for every sequence of subsets E
i
 of

X, i.e.,  is subadditive.

5.3 EXTENSION OF A MEASURE

A measure on an algebra is defined as a non-negative extended real valued set
function which is typically defined on an algebra A of sets such that,

(a) 

(b) If <A
i
> is a disjoint sequence of sets in A whose union is also in A, then

i
i

i
i

AA 
















11
μμ 
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Therefore, a measure on an algebra A is a measure iffA is a -algebra.

We can construct an outer measure and prove that the measure μ is an

extension of measure defined on an algebra

The extension measure E  i
i

A


1

μinf where <A
i
> ranges over all

sequence from A such that,

E i
i

A





1


Lemma 1: If A A and if <A
i
> is any sequence of sets in A, such that A i

i
A






1
 ,

then show that A i
i

A





1

μ .

Proof: Consider that 1 ...C C
n n n iB A A A A     . Then B

n 
A and B

n 
A

n
.

But since A is the disjoint union of the sequence <B
n
>, by countable additivity we

have,

1 1
n n

n n

A B A
 

 

     

Corollary: If A A, then prove that A A.

Consequently, we have

1

*n
n

A A A




      

Or,

*A A    

Subsequently, because is arbitrary, therefore, we have

*A A  

Also, by definition

* A A  

Therefore,

A A. Hence proved.

Lemma 2: The set function is an outer measure.

Proof: From the given definition, is a monotone non-negative set function
defined for all sets and 0. Now we have to prove that it is countably

subadditive. Let E  i
i

E


1
 If E

i 
for any i, then we have,

E E
i 
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If E
i 
, then given andthere exists for each i a sequence 1ij jA 

   of

sets in A such that E
i ij

j
A






1
 and

1

*
2ij i i

j

A E





   

Then,

, 1

* *ij i
i j i

E A E




       

Since is an arbitrary positive number, therefore we have,

1

* * i
i

E E




  

Hence it proves that is subadditive.

Lemma 3: If A A, then A is measurable with respect to 

Proof: Consider that E be an arbitrary set of finite outer measure and be a
positive number, then there is a sequence <A

i
> from A, such that E A

i
, and

*iA E    .

By the additivity of on A, we have

( ) ( ) ( )C
i i iA A A A A     

Hence,

1 1

* ( ) ( )i i
i i

E A A A A
 

 

        

1 1

* ( ) ( )C
i i

i i

E A A A A
 

 

         *( ) *( )CE A E A    

Because,

( )iE A A A   

And

( )C C
iE A A A  

Since is an arbitrary positive number, therefore we have

* *( ) *( )CE A E A     

Hence proved that A is -measurable.

Note: The outer measure which we have defined above is known as the outer
measure induced by 

Notation: For a given algebra A of sets we use Ato denote those sets which are
countable unions of sets of A and use Ato denote those sets which are countable
intersection of sets in A
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Theorem 5.2: Let be a measure on an algebra A, be the outer measure
induced by and E be any set. Then for there exists a set A  Awith
E A and * *A E     .

There is also a set B  Awith E B and E B.

Proof: From the definition of there is a sequence <A
i
> from A such that

E A
i
 and,

1

*i
i

A E




     … (5.1)

Take, A A
i

Then, * * iA A  

iA   …(5.2)

Because andagree on members of A by the above mentioned corollary.

hence, Equations (5.1) and (5.2) imply that

* *A E    

which proves the first part of the Theorem 5.2.

To prove the second statement of the Theorem 5.2, consider that for each
positive integer n there is a set A

n
 in A, such that, E A

n
 and

1
* *nA E

n
     (From First Part Proved Above)

Let B A
n
. Then, B  Aand E B. Since B A

n
, therefore

1
* * *nB A E

n
     

Since n is arbitrary, then by monotonicity,B E.

Hence proved that B E.

5.4 UNIQUENESS OF EXTENSION

In the measure theory of real analysis, the Carathéodory’s extension theorem states
that, “Any premeasure defined on a given ring R of subsets of a given set  can be
extended to a measure on the -algebra generated by R, and this extension is
unique if the premeasure is -finite”. The Carathéodory’s extension theorem is
named after the Greek mathematician Constantin Carathéodory. Accordingly, any
premeasure on a ring that contains all intervals of real numbers can be typically
extended to the Borel algebra of the set of real numbers, and this exceptionally
effective conclusion of measure theory indicates to the Lebesgue measure.

The Carathéodory’s extension theorem is also occasionally termed as the
Carathéodory-Fréchet extension theorem, the Carathéodory–Hopf extension
theorem, the Hopf extension theorem and the Hahn–Kolmogorov extension
theorem.
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Fundamentally, the most simple statement of the Carathéodory’s
extension theorem is often termed as the Hahn–Kolmogorov theorem.

Consider that  be an algebra of subsets of a set , and also consider
that there is a function,

This is finitely additive, and specifies that,

This is for any positive integer N and for  disjoint sets in

We assueme that this function satisfies the Sigma () additivity assumption
of the form,

This is for any disjoint family  of elements of  such that

.

The function 
0
 which conforms or obeys these two properties are termed

as the premeasures.

Subsequently, we can state that the 
0
 extends to a specific measure, which

is defined on the -algebra  generated by ; i.e., there exists a measure of the
form,

     :    [0, ]

such that its constraint or limitation to coincides with 
0
.

When 
0
 is -finite, then the extension is defined as unique.

The Carathéodory’s extension theorem considered very significant as it helps
in constructing a measure by defining it on a small algebra of sets, so that its sigma
additivity can be verified. Additionally, this theorem also ensures its extension to a
-algebra.

Theorem 5.3 Unique Extension Theorem: Any set function P defined on a field

0
 of sets and satisfying the properties of a probability measure on 

0 
extends

uniquely to a probability measure on the -field 
 
generated by 

0
.

Proof: Suppose that there is a field 
0 
of sets on a space , such as the finite

unions of open sets.

Let P be a measure on 
0
.

Where 
 
be the -field typically generated by 

0
.
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We have to define that there exists a unique extension of P from 
 
to 

0
.

To prove the existence of unique extension, we will initially define the outer
measure as an extension of P, as follows:

Assume that there is a given measure P on 
0
, then we will define its outer

measure P on all subsets of by,

Specifically, the lowest sum of measures of a collection of 
0 
sets which

contain A.

Additionally, the inner measure can also be defined as one minus the largest
sum of measures of a collection of 

0 
sets which are contained in Ac, and defined

as,

But this is equivalent to the following definition of inner measure:

              

The measure P can be extended on 
0 
to a collection 

 
of feasibly as many

sets as possible.

Consequently, we can define that  be the collection of sets A   having
the same inner measure and outer measure, and then subsequently we can define
that P (A).

Specifically, for all sets A such that.

Subsequently, we can define such sets to be in  and define,

5.5 COMPLETION OF A MEASURE

The term complete measure or more specifically a complete measure space
is defined as a specific measure space wherein every single subset of every single
null set is measurable, i.e., having measure zero. More appropriately, we can state
that a measure space (X, , ) is termed as complete if and only if,

        S  N  and       (N) = 0    S  

The term completeness can be essentially illustrated by considering the
typical product space problems. Assume that given is previously constructed
Lebesgue measure on the real line, then in order to denote this measure space we
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use the notations ( , B, ). Further, some two-dimensional Lebesgue measure
2 can be constructed on the plane  2 as a product measure. Simply and certainly,,
this can be accomplished by taking the -algebra on  2 to be B  B, which is the
considered as the smallest -algebra that contains all the measurable ‘Rectangles’
A

1
 × A

2
 for A

1
, A

2
  B.

While this approach does define a measure space, it has a flaw. Since every
singleton set has one-dimensional Lebesgue measure zero,

   2 ({0}  A)     ({0}) = 0

This implies for ‘Any’ subset A of  . Even though, assume that A is a non-
measurable subset of the real line, for example the Vitali set. In mathematics, a Vitali
set was found by Giuseppe Vitali in 1905, basically, it is an elementary example of
a set of real numbers that is not Lebesgue measurable.

Then we can state that the 2-measure of {0} × A is not defined, however,

         {0} A {0} 
Remember that the given larger set also have 2-measure zero. Consequently,

as defined above this ‘Two-Dimensional Lebesgue Measure’ is not complete, hence
some completion procedure is essential.

Constructing a Complete Measure

Consider that a possibly incomplete measure space (X, , ) is given, then of this
measure space there is an extension (X, , 0

), which is complete. The smallest
of the extension, i.e., the smallest -algebra  is termed as the completion of the
measure space.

Using the following assumptions or statement the completion can be
constructed:

 Let Z be the set of all the subsets of the zero--measure subsets of X,
instinctively those elements of Z which are already not in  are specifically
the ones which prevent completeness from holding true.

 Let  be the -algebra created or produced by  and Z, i.e., the smallest
-algebra that contains every element of  and of Z.

 Let  has an extension 
0 
to , which is unique if  is -finite, then it is

called the outer measure of , given by the infimum.

                  
0
 (C) inf { (D)  C  D  }

Then (X, , 0
) is referred as a complete measure space and is termed as

the completion of (X, , ).

In the above given construction it can be explained that every member of 
is of the form A  B for some A   and some B  Z, and

              
0
 (A  B) =  (A)

Additionally, the Borel measure when defined on the Borel -algebra
specifically created or produced by the open intervals of the real line is not complete,
and therefore the above defined completion procedure has to be used for defining
the complete Lebesgue measure. This can be explained and exemplified through
the fact that the set of all Borel sets over the reals holds the equivalent cardinality
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as the reals. Even though the Cantor set is a Borel set, i.e., it has measure zero and
its power set holds cardinality which is strictly or precisely greater than that of the
reals. Consequently, we can state that there is a subset of the Cantor set which is
not contained in the Borel sets. Therefore, the Borel measure is not complete.

The n-dimensional Lebesgue measure is defined as the completion of the
n-fold product of the one-dimensional Lebesgue space with itself. It is similarly
referred as the completion of the Borel measure as in the one-dimensional condition.

5.6 MEASURE SPACES

In mathematics, the term measure space is defined as a fundamental and essential
object of measure theory which analyses the universal generalized and simplified
notions of volumes. Characteristically, it comprises of an underlying set, which is
referred as the subsets of this set that are feasible and sufficient for measuring the
‘-Algebra’ and the method that is used for measuring the ‘Measure’. One
significant example of a measure space can be given as a probability space.

Typically, a measurable space comprises of the first two components without
a specific measure.

Definition 1: A measure space is defined as a triple .

Where, X is a Set.

 is a -Algebra on the Set X

 is a Measure on (X, )

Significant Key Classes of Measure Spaces

Extremely significant key classes of measure spaces are specifically defined by
means of the following properties of their associated and corelated measures:

 Probability spaces, a measure space where the measure is a probability
measure.

 Finite measure spaces, where the measure is a finite measure.

 The -finite measure spaces, where the measure is a -finite measure.

Additional class of measure spaces are defined as the complete measure
spaces.

A measure space is characteristically defined as a measurable space that
possesses a non-negative measure. The typical examples of measure spaces include
n-dimensional Euclidean space with Lebesgue measure and the unit interval with
Lebesgue measure, i.e., probability.

The Lebesgue integral depends ultimately on the idea of measure. In
particular, the mathematical framework requires a set, a -algebra of subsets
alongwith a set function that assigns a non-negative number (called its measureto
each set in the -algebra

Definition 2: Suppose is a set and A a -algebra of subsets of A measure,
on A is a set function having domain A satisfying the following:
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(a) Afor all A A

(b) 
(c) If A

1
, A

2
, … are in A, with A

i
A

j 
for i j, then

  







n
n

n
n AA μ

Here, the pair  Ais termed as a measurable space and the triple
 A,or (X, , ) is called the measure space.

5.7 INTEGRATION WITH RESPECT TO A
MEASURE

For explaining integration with respect to a measure, we first define the integral of
a non-negative function with respect to a measure. Then we write a real valued
function particularly as the difference of two non-negative functions for defining
the integral of a real valued function with respect to a measure.

Consider the following definition to explain the integration with respect to a
measure.

Definition -Partition: Assume that  is a -algebra on a set X. Characteristically,,
an -partition of X is defined as a finite collection A

1
, . . . , A

m
 of disjoint sets in S

such that A
1
  · · ·  A

m
 = X.

Implementing the convention that 0 ·  and  · 0 should both be interpreted
to be 0.

Further, consider an arbitrary measure and therefore X must not be a subset
of R. More significantly, for the condition when X is a closed interval [a, b] in R
and  is Lebesgue measure on the Borel subsets of [a, b], then the sets A

1
, . . . ,

A
m
 do not need to be subintervals of [a, b] as they are in the lower Riemann sum,

they should only be Borel sets.

In mathematics, specifically in the real analysis, the integral of a non-negative
function of a single variable can be simply interpreted as the area between the graph
of that function and the X-axis. The Lebesgue integral extends the integral to a larger
class of functions. It also extends the domains on which these functions can be
defined. The Lebesgue integral is named after Henri Lebesgue (1875–1941), who
introduced the Lebesgue integral in the year 1904. It is also a pivotal part of the
axiomatic theory of probability.

The integral of a positive function f  between limits a and b can be interpreted
as the area under the graph of f. However, Riemann integration does not interact
accurately by taking limits of sequences of functions, because producing such limiting
processes are difficult for analyses. The Lebesgue integral perfectly explains how
and when it is possible to take limits under the integral sign through the monotone
convergence theorem and dominated convergence theorem.

Consider a measure space (E, X, μ) where E is a set, X is a σ-algebra of
subsets of E, and μ is a non-negative measure on E defined on the sets of X.
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For example, E can be Euclidean n-space n or some Lebesgue measurable
subset of it, X is the σ-algebra of all Lebesgue measurable subsets of E, and μ is
the Lebesgue measure. As per the mathematical theory of probability, a probability
measure μ, can be considered which satisfies μ(E) = 1.

Lebesgue’s theory defines integrals for a class of functions called measurable
functions. A real valued function f on E is measurable if the preimage of every interval
of the form (t, ), i.e., any Borel set is in X:

We can explain this to state that this can be quivalent to the preimage of any
Borel subset of  be in X. The set of measurable functions is closed under algebraic
operations, but more significantly it is closed under various kinds of pointwise
sequential limits:

These are measurable if the original sequence (f
k
)

k
, where k  , consists

of measurable functions.

There are several approaches for defining an integral:

This is for measurable real valued functions f defined on E.

Consider another important case of the measure space (R, B, λ), where λ
is the Lebesgue measure, or its subsets ([a, b], B, λ). The following are basic
examples of λ integrable functions and of functions which are not.

Example 5.2. To prove that a given measurable function f is integrable with respect
to the Lebesgue measure on a subset X  R or for a more general measure space,
then the most common technique is to find a “Simple” comparison function g which
is known to be integrable and for which it is known that,

Generally, more than one comparison function can be used, for instance we
can find the disjoint subsets X

1
, X

2
 such that X = X

1
  X

2
, and functions g

1
, g

2
 are

integrable on X
1
 and X

2
, respectively, therefore,

This can be applied with infinitely many subsets. For instance, consider,

Where ν > 0. Then f is λ-integrable on X if and only if ν > 1. Actually note
that,
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Consequently, using the monotone convergence theorem, we have

Characteristically, a measurable function which is bounded by an integrable
function is integrable. Every integrable function is measurable. If a sequence of
measurable functions converges almost everywhere, then its limit is measurable. If
a sequence of measurable functions converges asymptotically, then its limit is
measurable. Basically, the set of measurable functions is defined as a linear space.
Additionally, the intersection and union of two measurable functions are measurable.

Integration with respect to a measure is termed as Lebesgue integration.
The following definition illustrates that the Lebesgue integration functions as
anticipated on the simple functions represented as linear combinations of
characteristic functions of disjoint sets.

Integral of a Simple Function

Definition 2: Assume that (X, , ) is a measure space, E
1
, . . . , E

n
 are disjoint

sets in S, and c
1
, . . . , c

n
  [0, ]. Then,

Without loss of simplification, we can assume that E
1
, . . . , E

n
 is an -partition

of X by replacing n by n + 1 and setting E
n+1

 = X \ (E
1
  . . .  E

n
) and c

n+1
 = 0.

If P is the -partition E
1
, . . . , E

n
 of X, then,

        

Consequently,

         

Integration is Order Preserving

Definition 3: Assume that (X, , ) is a measure space and f, g : X  [0, ] are
-measurable functions such that f(x)  g(x) for all x  X. Then  f d   g d.

Suppose P is an -partition A
1
, . . . , A

m
 of X.

Then,

           

Where for each j = 1, . . . , m. Accordingly,  (f , P)   (g, P).

Hence,  f d   g d.
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5.8 THE LP-SPACES

Characteristically, in mathematics, the Lp spaces are function spaces defined using
a natural generalization of the p-norm for Finite Dimensional Vector Spaces
(FDVS). They are also sometimes called Lebesgue spaces, named after Henri
Lebesgue, although according to the Bourbaki group (Bourbaki 1987) they were
first introduced by Frigyes Riesz (Riesz 1910). Lp spaces form an significant class
of Banach spaces in functional analysis, and of topological vector spaces.

The set of Lp-functions where p 1 generalizes L2-space. As an alternative
of square integrable, the measurable function f must be p-integrable for f to be in
Lp.

On a measure space X, the Lp norm of a function f is,

     

The Lp-functions are the characteristic functions for which this integral
converges. For p 2, the space of Lp-functions is a Banach space which is not a
Hilbert space.

Suppose, p is a positive real number. Then a measurable function f defined

on 0, 1is said to belong to the space Lp if  pf || . Hence, L1 precisely

consists of Lebesgue integrable functions on 0, 1 Consequently,

| | 2 (| | | | )P P P Pf g f g   ,

We have,

| | 2 (| | 2 | | )P P P P Pf g f f   
And therefore, if f, g Lp, then f g Lp. Additionally, if is a scalar and f Lp,
then clearly f belongs to Lp. Hence, f g Lp whenever f, g Lp and 
are scalars.

5.9 CONVEX FUNCTIONS

Characteristically, a real valued function is called convex if the line segment between
any two points on the graph of the function does not lie below the graph between
the two points. Equivalently, a function is convex if its epigraph, i.e., the set of points
on or above the graph of the function is a convex set. A twice-differentiable function
of a single variable is convex if and only if its second derivative is non-negative on
its entire domain. Recognised examples of convex functions of a single variable
include the quadratic function x2 and the exponential function ex. In simple terms,
a convex function refers to a function whose graph is shaped like a cup , while a
concave function’s graph is shaped like a cap 
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Convex functions play a significant role in several areas of mathematics. Even
in infinite dimensional spaces, under suitable additional hypotheses, the convex
functions continue to satisfy such properties and as a result, they are the most
significant functionals in the calculus of variations. In probability theory, a convex
function applied to the expected value of a random variable is always bounded
above by the expected value of the convex function of the random variable. This
result, known as Jensen’s inequality, can be used to deduce inequalities such as
the arithmetic–geometric mean inequality and Hölder’s inequality.

Definition 1: A function defined an open interval a, bis known as a convex
function if for each x, y a, band such that andwe
have,

x yxy

The end points a, b can take the values , respectively

If we take 1 then 1 and so will be convex if,

x 1 yx1 y 
If we take a s t u b and


su

st





su

tu




u x, s  y,

Then,

 1







su

su

su

tust

Therefore, Equation (5.3) reduces to the form,

    s
su

tu
u

su

st
s

su

tu
u

su

st
φφ























Or,

t   



u
su

st
φ  u

su

tu
φ






Thus, the segment joining s, sand u, nis never below the graph of
A functionis sometimes said to be convex on a, bif for all x, ya, b

   yfxf
yx

f
2

1

2

1

2







 

Remember that, this definition is a consequence of major definition taking


If for all positive numbers satisfying 1, then we have

x yxy

Then,  is said to be strictly convex.
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Theorem 5.4: Let be convex on a, banda s t u b, then

( ) ( ) ( ) ( ) ( ( )t s u s u t

t s u s u t

        
 

  

If is strictly convex, equality will not occur.

Proof: Let a s t u b and suppose is convex on a, b

Since,

1
t s u t t s u t u s

u s u s u s u s

     
   

   

Then, from the convexity of 

( ) ( )
t s u t t s u t

u s u s
u s u s u s u s

              

 ( ) ( ) ( )
t s u t

t u s
u s u s

 
    

 
…. (5.5)

 ( ) ( ) ( ) ( ) ( ) ( )u s t t s u u t s       

 ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u s t s t s u u s t s u s s s              

 ( )( ( ) ( )) ( )( ( ) ( ))u s t s t s u s        

( ) ( ) ( ) ( )t s u s

t s u s

   


 
… (5.6)

Hence, the first inequality is proved. In the same way, the second inequality
can be proved. If is strictly converse, equality shall not be there in Equation
(5.5) and so it cannot be in Equation (5.6). This completes the proof.

Theorem 5.5: A differentiable function  is convex on a, b iff  is a
monotonically increasing function. If exists on a, bthen is convex iff 
on a, band strictly convex if on a, b

Proof: Consider a differentiable and convex function and also consider that
a s t u v b. Then applying Theorem 5.4 to a s t u, we obtain

( ) ( ) ( ) ( ) ( ) ( )t s u s u t

t s u s u t

        
 

  

And applying Theorem 5.4 to a t u v, we obtain

( ) ( ) ( ) ( ) ( ) ( )u t v t v v

u t v t v u

        
 

  

Hence,

( ) ( ) ( ) ( )t s v u

t s v u

     


 

For t  s, 
( ) ( )t s

t s

  


 decreases to sand for u v, 
( ) ( )v u

v u
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increases to vHence, vsfor all s v and so is monotonically
increasing function. Further, if exists, due to monotonicity of , it can never be
negative

Conversely, let We shall now prove that is convex. Suppose, on
the contrary that is not convex on a, bTherefore, there are points a s t 
u b, such that,

( ) ( ) ( ) ( )t s u t

t s u t

     


 

This means that the slope of chord over s, tis larger than the slope of the
chord over t, uBut slope of the chord over s, tis equal to for some
stand slope of the chord over t, uis t, u

But implies is not monotone increasing and so cannot
be greater than zero which is a contradiction. Hence, is convex.

If then is strictly convex, for otherwise there would exist collinear
points of the graph of and we would have for appropriate and
with But then at some point between andwhich is a
contradiction to 

This completes the proof.

Theorem 5.6: If is convex on a, bthen is absolutely continuous on each
closed subinterval of a, b

Proof: Assume that a, ba, bIf x, y c, dthen we have a c x y 
d b and so by Theorem 5.4, we have

( ) ( ) ( ) ( ) ( ) ( )c a y x b d

c a y x b d

        
 

  

Thus,

| ( ) ( ) | | |y x M x y     , x, y c, d

and so is absolutely continuous there.

Theorem 5.7: Every convex function on an open interval is continuous.

Proof: When a x
1 
x x

2 
b, the convexity of a function  implies,

2 1
1 2

2 1 2 1

( ) ( ) ( )
x x x x

x x x
x x x x

 
    

  … (5.7)

For x x
1
 in Equation (5.7), we obtain x

1 
x

1
and for x

2 
x

we obtain xx 

Hence, xx for all values of x in a, b

Similarly, x 0xfor all values of x. Therefore, x 0x 
xand so is continuous.

Definition 2: Let be a convex function on a, band x
0 
a, bThe line,

y  mx x
0
x

0
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Typically, x
0
, x

0
is called a supporting line at x

0
 if it always lies below

the graph of i.e., when

xmx x
0
x

0
 

The line given by Equation (5.8) is a supporting line iff its slope m lies
between the left and the right hand derivative at x

0
. Therefore, precisely, there is at

least one supporting line at each point.

5.10 JENSEN’S INEQUALITY

In mathematical analysis, the term Jensen’s inequality is named after the Danish
mathematician Johan Jensen, it was proved by Jensen in 1906. The Jensen’s
inequality relates the value of a convex function of an integral to the integral of the
convex function. Given its generality, the inequality appears in many forms depending
on the context. In its simplest form the inequality states that the convex
transformation of a mean is less than or equal to the mean applied after convex
transformation; it is a simple corollary that the opposite is true of concave
transformations.

Jensen’s inequality generalizes the statement that the secant line of a convex
function remains above the graph of the function, which is Jensen’s inequality for
two points: the secant line consists of weighted means of the convex function for
t  [0,1],

                  t f (x
1
) + (1  t) f (x

2
)

while the graph of the function is the convex function of the weighted means,

                  f (t x
1 
 +  (1  t) x

2
)

Consequently, the Jensen’s inequality is,

           f (t x
1 
 +  (1  t) x

2
)      t f (x

1
) + (1  t) f (x

2
)

The classical form of Jensen’s inequality includes several numbers and weights.
The inequality can be stated quite commonly using either the language of measure
theory or equivalently the probability.

Consider EX    Xx
xxp where E denotes expectation.

Theorem 5.8. (Jensen’s Inequality): If f is a convex function and X is a random
variable, then Ef Xf EXFurthermore, if f is strictly convex, then equality
implies that X  EX with probability 1, that is, X is constant.

Proof: To prove this Theorem 5.8, we will apply induction on the number of mass
points. From the definition of convex functions, for two points we have,

P
1 
f x

1
P

2 
f x

2
f P

1
x

1 
P

2
x

2


Suppose the theorem holds for k1 mass points. For 1 i k – 1, then
we can write,

p
i
p

i 
/1 – p

k


So, we obtain
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 i

k

i
i xfp

1
      i

k

i
ikkk xfppxfp 






1

1

'1

    







 





1

1

'1
k

i
iikkk xpfpxfp (From Induction Hypothesis)

  







 





1

1

'1
k

i
iikkk xppxpf (From the Definition of Convexity)

Hence, the theorem is proved.

Check Your Progress

1. Give the definition of outer measure   .

2. How is the measure on an algebra defined?

3. State the Carathéodory's extension theorem as per the measure theory.

4. Define the unique extension theorem.

5. What is complete measure?

6. How is the complete measure constructed?

7. What is measure space? Give the definition of the term measure space.

8. State the definition of -partition.

9. Define the term Lp spaces.

10.  Give the definition of convex function.

11.  State the Jensen's inequality theorem.

5.11 HÖLDER AND MINKOWSKI
INEQUALITIES

The Hölder’s and Minkowski’s inequalities are defined below for analysis.

Hölder’s Inequality
In real analysis, Hölder’s inequality, named after Otto Hölder, is a fundamental
inequality between integrals and an indispensable tool for the study of Lp spaces.

Theorem 5.9: Hölder’s Inequality: Let (S, Σ, μ) be a measure space and let p,
q  [1, ] with 1/p + 1/q = 1. Then for all measurable real valued function or
complex valued function f and g on S,

If, in addition, p, q  (1, ) and f  Lp(μ) and g  Lq(μ), then Hölder’s
inequality becomes an equality if and only if |f |p and |g|q are linearly dependent in
L1(μ), meaning that there exist real numbers α, β  0, not both of them zero, such
that α|f |p = β |g|q μ-almost everywhere.
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The numbers p and q above are said to be Hölder conjugates of each other.
The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. Hölder’s
inequality holds even if ||fg||

1
 is infinite, the right-hand side also being infinite in that

case. Conversely, if f is in Lp(μ) and g is in Lq(μ), then the pointwise product fg is
in L1(μ).

Hölder’s inequality is used to prove the Minkowski inequality, which is the
triangle inequality in the space Lp(μ), and also to establish that Lq(μ) is the dual
space of Lp(μ) for p  [1, ).

If S is a measurable subset of Rn with the Lebesgue measure, and f and g
are measurable real or complex valued function on S, then Hölder inequality is

Hölder’s inequality was first found by Leonard James Rogers (Rogers
(1888)), and discovered independently by Hölder (1889).

Minkowski Inequality
In real analysis, the Minkowski inequality establishes that the Lp spaces are normed
vector spaces. The inequality is named after the German mathematician Hermann
Minkowski.

Theorem 5.10: Minkowski Inequality: Let S be a measure space, let 1  p <
 and let f and g be elements of Lp(S). Then f + g is in Lp(S), and we have the
triangle inequality,

With equality for 1 < p <  if and only if f and g are positively linearly
dependent, i.e., f = λ

g
 for some λ  0 or g = 0. Here, the norm is given by:

If p < , or in the case p =  by the essential supremum,

The Minkowski inequality is the triangle inequality in Lp(S). In fact, it is a
special case of the more general fact,

It can be easily state that the right hand side satisfies the triangular inequality.

Like Hölder’s inequality, the Minkowski inequality can be specialized to
sequences and vectors by using the counting measure:
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for all real (or complex) numbers x
1
, ..., x

n
, y

1
, ..., y

n
 and where n is the

cardinality of S (the number of elements in S).

The Minkowski inequality can be generalized to other functions  beyond

the power function . The generalized inequality has the form,

Various sufficient conditions on  have been found by Mulholland and others.
For example, for  one set of sufficient conditions from Mulholland is,

1.  is continuous and strictly increasing with 

2.  is a convex function of x.

3.  log is a convex function of log (x).

5.12 COMPLETENESS OF LP

Characteristically, the Lp functions have certainly ambiguous pointwise values.
However, we usually consider Lp functions as complete functions. A simple example
of this construction, for a measure that has no sets of measure 0, consequently
requires no quotient is given by,

   

With standard norm,

   

The analogue of the following statement for  is more elementary..

Statement: The Space Lp (X) is a Complete Metric Space

Essentially, to prove a Cauchy sequence f
i
 in Lp (X) has a subsequence which

converges pointwise off a set of measure 0 in X.
The vector space of equivalence classes of measurable functions on (S, Σ,

μ) is denoted ad L0(S, Σ, μ). By definition, it contains all the Lp, and is equipped
with the topology of convergence in measure. When μ is a probability measure
(i.e., μ(S) = 1), this mode of convergence is named convergence in probability.

The description is easier when μ is finite. If μ is a finite measure on (S, Σ),
the 0 function admits for the convergence in measure the following fundamental
system of neighbourhoods,
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The topology can be defined by any metric d of the form,

Where φ is bounded continuous concave and non-decreasing on [0, ),
with φ(0) = 0 and φ(t) > 0 when t > 0 (for example, φ(t) = min(t, 1)). Such a
metric is called Lévy metric for L0. Under this metric the space L0 is complete (it
is again an F-space). The space L0 is in general not locally bounded and not locally
convex.

For the infinite Lebesgue measure λ on Rn, the definition of the fundamental
system of neighbourhoods could be modified as follows:

The resulting space L0(Rn, λ) coincides as topological vector space with
L0(Rn, g(x) dλ(x)), for any positive λ–integrable density g.

Theorem 5.11: The space Lp(X) is a complete metric space.

Proof: The triangle inequality here is Minkowski’s inequality. To prove
completeness, choose a subsequence f

ni
, such that,

And, put

And,

The infinite sum is not necessarily claimed to converge to a finite value for
every x. The triangle inequality shows that |g

n
|
p
  1. Fatou’s Lemma asserts that

for [0, ]-valued measurable functions h
i

Thus, |g|
p
  1, so is finite. Consequently,
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Converges for almost all x  X. Let f(x) be the sum at points x where the
series converges, and on the measure zero set where the series does not converge
put f(x) = 0. Certainly,

Now, prove that this almost everywhere pointwise limit is the Lp-limit of the
original sequence. For ε > 0 take N such that |f

m
 – f

n
|
p
 < ε for m, n  N. Fatou’s

lemma gives,

Thus f – f
n
 is in Lp and hence  f is in Lp. And |f – f

n
|
p
  0.

Theorem 5.12: Lp is complete, i.e., every Cauchy sequence converge.

Proof: If,  then  converges in Lp norm to an element

in Lp.

And observe that  by assumption. Monotone

convergence:  In particular , i.e.,  converges at

least pointwise.

We have,  hence, 

Moreover,

This specifies that  i.e.,  converges to F

in Lp.

Now, if F
n
 is a Cauchy sequence in Lp, consider a sequence n

k
 so that

 for Set  and

 for 
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Again,

To prove that the series converges in Lp consider that F
n
 is Cauchy and then

explain that F
n
 and F

nk
 have the same limit.

Consequence: All Lp spaces are normed complete vector spaces. These are
also called Banach spaces.

5.13 CONVERGENCE IN MEASURE

Convergence in measure is either of following two distinct mathematical concepts
both of which generalize the concept of convergence in probability.

Let f, f
n
 (n  ) : X    be the measurable functions defined on a

measure space (X, , ). The sequence f
n
 is said to converge globally in measure

to f if for every > 0,

      

And to converge locally in measure to f if for every > 0 and every F  
with  (F) < ,

   

On a finite measure space, both notions are equivalent. Otherwise,
convergence in measure can refer to either global convergence in measure or local
convergence in measure.

Definition 1: A sequence f
n
of measurable functions is said to converge to f in

measure if for given there is an N such that for all n N we have,

{ | ( ) – ( ) | }   nm x f x f x .

Theorem 4.13 (F. Riesz): Let f
n
be a sequence of measurable functions that

converges in measure to f. Then there is a subsequence f
nk
which converges to

f almost everywhere.

Proof: Since f
n
is a sequence of measurable functions which converges in

measure to f, for any positive integer k there is an integer n
k
 such that for n n

k
,

we have,

1 1
{ | ( ) ( ) | }

2 2
  n k k

m x f x f x

Let, 
1

{ | | ( ) ( ) | }
2

  k nk k
E x f x f x
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Then if x  k
ik
E




 we have

1
| ( ) ( ) |

2
nk k

f x f x  for k i

And so    xfxf
kn  .

Hence,    xfxf
kn   for any x A  k

iki
E










1

But,

mA m 



 


k

ik
E

 12

1






 k
ik

kmE

Hence, the measure of A is zero.

Example 5.3: A sequence f
n
which converges to zero in measure on 0,1but

such that f
n
xdoes not converge for any x in 0,1can be constructed as

follows:

Let n k v, 0 k 2v, and set f
n
xif x  k2–v, k2–vand

 f
n
xotherwise. Then, { | | ( ) |


  nm x f x

n
 and so, f

n 
inmeasure

although for any x 0, 1 the sequence f
n
xhas the value1 for arbitrarily

large values of n. So it does not converge.

Definition 2: A sequence f
n
of almost everywhere finite valued measurable

functions is said to be fundamental in measure, if for every 

({ : | ( ) ( ) | })    n mm x f x f x  as n and m 

Definition 3: A sequence f
n
 of real valued functions is called fundamental almost

everywhere if there exists a set E
0
 of measure zero such that, if x E

0
 and 

then an integer n
0 
 n

0 
 x,has the property that,

| ( ) ( ) |  n mf x f x  whenever n  n
0
 and m n

0
.

Definition 4: A sequence f
n
of almost everywhere finite valued measurable

functions is said to converge to the measurable function f almost uniformly if, for
every there exists a measurable set F such that mFand also the
sequence f

n
converges to f uniformly on Fc.

Theorem 5.14: If f
n
is a sequence of measurable functions which converges to

f almost uniformly, then f
n
converges to f almost everywhere.

Proof: Let F
n
 be a measurable set such that mF

n
1/n and such that the sequence

f
n
 converges to f uniformly on F

n
c, n  1, 2, … . If F  n

n
F



1
 

then
1

( ) ( )  nm F F
n

 so that mFand it is clear that, for x Fc, f
n
x

converges to fx
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5.14 ALMOST UNIFORM CONVERGENCE

In the mathematical analysis, the term uniform convergence is a specific mode of
convergence of functions which is stronger than pointwise convergence.

If the domain of the functions is a measure space E then the related notion
of ‘almost uniform convergence’ can be defined. We define that a sequence of
functions (f

n
) converges almost uniformly on E if for every > 0 there exists a

measurable set E with measure less than  such that the sequence of functions
(f

n
) converges uniformly on E \ E. In other words, almost uniform convergence

means there are sets of arbitrarily small measure for which the sequence of functions
converges uniformly on their complement.

The almost uniform convergence of a sequence does not mean that the
sequence converges uniformly almost everywhere as might be inferred from the
name. Almost uniform convergence implies almost everywhere convergence and
convergence in measure.

Theorem 5.15: Almost uniform convergence implies convergence in measure.

Proof: If f
n
converges to f almost uniformly, then for any two positive numbers

and there exists a measurable set F such that mFsuch that | f
n
xfx

whenever x belongs to Fc and n is sufficiently large.

Theorem 5.16: If f
n
converges in measure to f, then f

n
is fundamental in

measure. Also, if f
n
converges in measure to g, then f g almost everywhere.

Proof: The first claim of the Theorem 5.16 follows from the following  relation,

{ : | ( ) ( ) | } { : | ( ) ( ) | } { : | ( ) ( ) | }
 

        
 n m n mx f x f x x f x f x x f x f x

For proving the second claim, we have,

{ : | ( ) ( ) | } { : ( ) ( ) | } { : | ( ) ( ) | }
 

        
 n nx f x g x x f x f x x f x g x

Since by appropriate selection of n, the measure of both sets on the right

can be made arbitrarily small, we have

({ :| ( ) ( ) | }) 0   m x f x g x

for every which implies that f g almost everywhere.

Theorem 5.17: If f
n
 is a sequence of measurable functions which is fundamental

in measure, then some subsequence 
knf  is almost uniformly fundamental.

Proof: For any positive integer k we can find an integer  kn such that if n  kn

and  m ( )n k , then
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1 1

({ : | ( ) ( ) | })
22

  n m k
m x f x f x

k

We write,

1 2 1(1), ( 1) (2),   n n n n n  3 2( 1) (3)  n n n , ...; then n
1 
n

2

n
3 


So that the sequence { }nk
f is certainly a subsequence of { }nk . If,

1
1

{ :| ( ) ( ) | }
2

  k n n kk k
E x f x f x

And k  i  j, then for every x which does not belong to

1 2 .....,   k k kE E E  we have,

( ) 11

1 1
| ( ) ( ) | | ( ) |

2 2

 


 

     n n n n x m ii j m m
m i m i

f x f x f x f

So that, in other words, the sequence { }ni
f is uniformly fundamental on

1\ ( ....) k kE E E , since

1 1

1
( ...) ( )

2k k m k
m k

m E E m E


 


   

This completes the proof of the Theorem 5.17.

Theorem 5.18: If f
n
is a sequence of measurable functions which is fundamental

in measure then there exists a measurable function f such that f
n
converges in

measure to f.

Proof: By Theorem 5.18 we can find a subsequence  
knf  which is almost

uniformly fundamental and therefore fundamental almost everywhere. We write

fx lim


nkk
f (x) for every x for which the limits exists and observe that, for

every 

( ) ( ){ : | ( ) ( ) | ] { :| ( ) ( ) | } { :| | }
2n n n n x f xk k

x f x f x x f x f x x f 
 

       


Note here that, the measure of the first term on the right hand side is by
hypothesis arbitrarily small if n and n

k
 are sufficiently large. Also, the measure of

the second term also approaches 0 as ksince almost uniform convergence
implies convergence in measure. Hence, the theorem follows.

Note: Convergence in measure does not essentially imply pointwise convergence
at any point.
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Check Your Progress

12. What is Hölder's inequality? State the Hölder's inequality theorem.

13. What is Minkowski inequality? State the Minkowski inequality theorem.

14. Give an example to show that the Lp functions are complete functions.

15. What are the two distinct mathematical concepts of convergence as per
the measure?

16. Prove that if  {f
n
}  is a sequence of measurable functions which

converges to f almost uniformly, then {f
n
} converges to f almost

everywhere.

17. Define the term almost uniform convergence of a sequence.

18. Prove that almost uniform convergence implies convergence in measure.

5.15 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. An outer measure is an extended real valued set function defined on all
subsets of a space X having the following properties:

(a)

(b)Monotonicity

(c) E  









11

*μ*μ
i

i
i

i EEE Subadditivity

The outer measure is said to be finite if X 

 A measure on an algebra is defined as a non-negative extended real valued
set function which is typically defined on an algebra A of sets such that,

(a)

(b) If <A
i
> is a disjoint sequence of sets in A whose union is also in A, then

i
i

i
i

AA 
















11
μμ 

Therefore, a measure on an algebra A is a measure iffA is a -algebra.

3. In the measure theory of real analysis, the Carathéodory’s extension theorem
states that, “Any premeasure defined on a given ring R of subsets of a given
set  can be extended to a measure on the -algebra generated by R, and
this extension is unique if the premeasure is -finite”. The Carathéodory’s
extension theorem is named after the Greek mathematician Constantin
Carathéodory.

4. Any set function P defined on a field 
0
 of sets and satisfying the properties

of a probability measure on 
0 
extends uniquely to a probability measure

on the -field 
0 
generated by 

0
.
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5. The term complete measure or more specifically a complete measure space
is defined as a specific measure space wherein every single subset of every
single null set is measurable, i.e., having measure zero. More appropriately,
we can state that a measure space (X, , ) is termed as complete if and
only if,

S  N  and       (N) = 0    S  
 Consider that a possibly incomplete measure space (X, , ) is given, then

of this measure space there is an extension (X, , 0
), which is complete.

The smallest of the extension, i.e., the smallest -algebra  is termed as
the completion of the measure space.

Using the following assumptions or statement the completion can be
constructed:

 Let Z be the set of all the subsets of the zero--measure subsets of X,
instinctively those elements of Z which are already not in  are specifically
the ones which prevent completeness from holding true.

 Let  be the -algebra created or produced by  and Z, i.e., the smallest
-algebra that contains every element of  and of Z.

 Let  has an extension 
0 
to , which is unique if  is -finite, then it is

called the outer measure of , given by the infimum.

                  
0
 (C) inf { (D)  C  D  }

Then (X, , 0
) is referred as a complete measure space and is termed as

the completion of (X, , ).

7. In mathematics, the term measure space is defined as a fundamental and
essential object of measure theory which analyses the universal generalized
and simplified notions of volumes. Characteristically, it comprises of an
underlying set, which is referred as the subsets of this set that are feasible
and sufficient for measuring the ‘-Algebra’ and the method that is used for
measuring the ‘Measure’. One significant example of a measure space can
be given as a probability space.

A measure space is defined as a triple .

Where, X is a Set.

 is a -Algebra on the Set X

 is a Measure on (X, ).

8. Assume that  is a -algebra on a set X. Characteristically, an -partition
of X is defined as a finite collection A

1
, . . . , A

m
 of disjoint sets in S such that

A
1
  · · ·  A

m
 = X.

Implementing the convention that 0 ·  and  · 0 should both be interpreted
to be 0.

9. Characteristically, in mathematics, the Lp spaces are function spaces defined
using a natural generalization of the p-norm for Finite Dimensional Vector
Spaces (FDVS). They are also sometimes called Lebesgue spaces, named
after Henri Lebesgue.
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The set of Lp-functions where p 1 generalizes L2-space. As an alternative
of square integrable, the measurable function f must be p-integrable for f to
be in Lp.

10. A function defined an open interval a, bis known as a convex function
if for each x, y a, band such that andwe have,

x yxy

The end points a, b can take the values , respectively

 If f is a convex function and X is a random variable, then Ef (X) ³ f (EX).
Furthermore, if f is strictly convex, then equality implies that X = EX with
probability 1, that is, X is constant.

12. In real analysis, Hölder’s inequality, named after Otto Hölder, is a
fundamental inequality between integrals and an indispensable tool for the
study of Lp spaces.
Let (S, Σ, μ) be a measure space and let p, q  [1, ] with 1/p + 1/q = 1.
Then for all measurable real valued function or complex valued function f
and g on S,

13. In real analysis, the Minkowski inequality establishes that the Lp spaces are
normed vector spaces. The inequality is named after the German
mathematician Hermann Minkowski.

Let S be a measure space, let 1  p <  and let f and g be elements of
Lp(S). Then f + g is in Lp(S), and we have the triangle inequality,

With equality for 1 < p <  if and only if f and g are positively linearly
dependent, i.e., f = λ

g
 for some λ  0 or g = 0.

14. Characteristically, the Lp functions have certainly ambiguous pointwise values.
However, we usually consider Lp functions as complete functions. A simple
example of this construction, for a measure that has no sets of measure 0,
consequently requires no quotient is given by,

With standard norm,

15. Convergence in measure is either of following two distinct mathematical
concepts both of which generalize the concept of convergence in probability.

Let f, f
n
 (n  ) : X    be the measurable functions defined on a

measure space (X, , ). The sequence f
n
 is said to converge globally in

measure to f if for every > 0,
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And to converge locally in measure to f if for every > 0 and every F  
with  (F) < ,

   

On a finite measure space, both notions are equivalent. Otherwise,
convergence in measure can refer to either global convergence in measure
or local convergence in measure.

16. Let F
n
 be a measurable set such that mF

n
1/n and such that the sequence

f
n
converges to f uniformly on F

n
c, n 1, 2, … . If F  n

n
F



1
 

then
1

( ) ( )  nm F F
n

 so that mFand it is clear that, for x Fc,

f
n
xconverges to fx

 If the domain of the functions is a measure space E then the related notion
of ‘almost uniform convergence’ can be defined. We define that a sequence
of functions (f

n
) converges almost uniformly on E if for every > 0 there

exists a measurable set E with measure less than  such that the sequence
of functions (f

n
) converges uniformly on E \ E. In other words, almost

uniform convergence means there are sets of arbitrarily small measure for
which the sequence of functions converges uniformly on their complement.

 If f
n
converges to f almost uniformly, then for any two positive numbers 

and there exists a measurable set F such that mFsuch that | f
n
x

fxwhenever x belongs to Fc and n is sufficiently large.

5.16 SUMMARY

 In the measure theory, the concept of a measure is a generalization of
common notions, such as mass, distance/length, area, volume, etc.

 An outer measure or exterior measure is a function defined on all subsets of
a given set with values in the extended real numbers satisfying some additional
technical conditions. The theory of outer measures was first introduced by
Constantin Carathéodory to provide an abstract basis for the theory of
measurable sets and countably additive measures.

 The class of -measurable sets are -algebra. If μ  is restricted to 

then μ  is a complete measure on 

 The union of any sequence of sets in an algebra which can be replaced by a
disjoint union of sets in an algebra, it follows that  is a -algebra.
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  If A A and if <A
i
> is any sequence of sets in A, such that A i

i
A






1
 , then

show that A i
i

A





1

μ .

 The set function is an outer measure.

 If A A, then A is measurable with respect to 

 The outer measure which we have defined above is known as the outer
measure induced by 

 Algebra A of sets we use Ato denote those sets which are countable
unions of sets of A and use Ato denote those sets which are countable
intersection of sets in A

 Let be a measure on an algebra A, be the outer measure induced by
and E be any set. Then for there exists a set A  Awith E A and

* *A E     .

 In the measure theory of real analysis, the Carathéodory’s extension theorem
states that, “Any premeasure defined on a given ring R of subsets of a given
set  can be extended to a measure on the -algebra generated by R, and
this extension is unique if the premeasure is -finite”. The Carathéodory’s
extension theorem is named after the Greek mathematician Constantin
Carathéodory.

 The Carathéodory’s extension theorem is also occasionally termed as the
Carathéodory-Fréchet extension theorem, the Carathéodory–Hopf
extension theorem, the Hopf extension theorem and the Hahn–Kolmogorov
extension theorem.

 The Carathéodory’s extension theorem considered very significant as it helps
in constructing a measure by defining it on a small algebra of sets, so that its
sigma additivity can be verified. Additionally, this theorem also ensures its
extension to a -algebra.

 Any set function P defined on a field 
0
 of sets and satisfying the properties

of a probability measure on 
0 
extends uniquely to a probability measure

on the -field 
0 
generated by 

0
.

 Consequently, we can define that  be the collection of sets A   having
the same inner measure and outer measure, and then subsequently we can
define that P (A).

 The term complete measure or more specifically a complete measure space
is defined as a specific measure space wherein every single subset of every
single null set is measurable, i.e., having measure zero. More appropriately,
we can state that a measure space (X, , ) is termed as complete if and
only if,

S  N  and       (N) = 0    S  

 The term completeness can be essentially illustrated by considering the typical
product space problems.
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 While this approach does define a measure space, it has a flaw. Since every
singleton set has one-dimensional Lebesgue measure zero,

2 ({0}  A)     ({0}) = 0.

 The given larger set also have 2-measure zero. Consequently, as defined
above this ‘Two-Dimensional Lebesgue Measure’ is not complete, hence
some completion procedure is essential.

 Consider that a possibly incomplete measure space (X, , ) is given, then
of this measure space there is an extension (X, , 0

), which is complete.
The smallest of the extension, i.e., the smallest -algebra  is termed as
the completion of the measure space.

 The Borel measure when defined on the Borel -algebra specifically created
or produced by the open intervals of the real line is not complete, and
therefore the above defined completion procedure has to be used for defining
the complete Lebesgue measure.

 A measure space is characteristically defined as a measurable space that
possesses a non-negative measure. The typical examples of measure spaces
include n-dimensional Euclidean space with Lebesgue measure and the unit
interval with Lebesgue measure, i.e., probability.

 The Lebesgue integral depends ultimately on the idea of measure. In
particular, the mathematical framework requires a set, a -algebra of subsets
alongwith a set function that assigns a non-negative number (called its
measureto each set in the -algebra

 In mathematics, specifically in the real analysis, the integral of a non-negative
function of a single variable can be simply interpreted as the area between
the graph of that function and the X-axis. The Lebesgue integral extends the
integral to a larger class of functions. It also extends the domains on which
these functions can be defined.

 The integral of a positive function f  between limits a and b can be interpreted
as the area under the graph of f. However, Riemann integration does not
interact accurately by taking limits of sequences of functions, because
producing such limiting processes are difficult for analyses.

 Lebesgue’s theory defines integrals for a class of functions called measurable
functions. A real valued function f on E is measurable if the preimage of every
interval of the form (t, ), i.e., any Borel set is in X:

 Characteristically, a measurable function which is bounded by an integrable
function is integrable. Every integrable function is measurable. If a sequence
of measurable functions converges almost everywhere, then its limit is
measurable. If a sequence of measurable functions converges asymptotically,
then its limit is measurable. Basically, the set of measurable functions is defined
as a linear space. Additionally, the intersection and union of two measurable
functions are measurable.
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 Integration with respect to a measure is termed as Lebesgue integration.
The following definition illustrates that the Lebesgue integration functions as
anticipated on the simple functions represented as linear combinations of
characteristic functions of disjoint sets.

 The Lp-functions are the characteristic functions for which this integral
converges. For p 2, the space of Lp-functions is a Banach space which is
not a Hilbert space.

 Characteristically, a real valued function is called convex if the line segment
between any two points on the graph of the function does not lie below the
graph between the two points. Equivalently, a function is convex if its
epigraph, i.e., the set of points on or above the graph of the function is a
convex set.

 In simple terms, a convex function refers to a function whose graph is shaped
like a cup , while a concave function’s graph is shaped like a cap 

 Convex functions play a significant role in several areas of mathematics.
Even in infinite dimensional spaces, under suitable additional hypotheses,
the convex functions continue to satisfy such properties and as a result, they
are the most significant functionals in the calculus of variations.

 In probability theory, a convex function applied to the expected value of a
random variable is always bounded above by the expected value of the
convex function of the random variable.

 Let be convex on a, banda s t u b, then

( ) ( ) ( ) ( ) ( ( )t s u s u t

t s u s u t

        
 

  

If is strictly convex, equality will not occur.

 A differentiable function is convex on a, biff  is a monotonically
increasing function. If exists on a, bthen is convex iff on a, b
and strictly convex if on a, b

 If is convex on a, bthen is absolutely continuous on each closed
subinterval of a, b

 Every convex function on an open interval is continuous.

 In mathematical analysis, the term Jensen’s inequality is named after the
Danish mathematician Johan Jensen, it was proved by Jensen in 1906. The
Jensen’s inequality relates the value of a convex function of an integral to
the integral of the convex function.

 The classical form of Jensen’s inequality includes several numbers and weights.
The inequality can be stated quite commonly using either the language of
measure theory or equivalently the probability.

 If f is a convex function and X is a random variable, then Ef Xf EX
Furthermore, if f is strictly convex, then equality implies that X  EX with
probability 1, that is, X is constant.
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 In real analysis, Hölder’s inequality, named after Otto Hölder, is a fundamental
inequality between integrals and an indispensable tool for the study of Lp

spaces.

 Let (S, Σ, μ) be a measure space and let p, q  [1, ] with 1/p + 1/q = 1.
Then for all measurable real valued function or complex valued function f
and g on S,

 If, in addition, p, q  (1, ) and f  Lp(μ) and g  Lq(μ), then Hölder’s
inequality becomes an equality if and only if |f |p and |g|q are linearly dependent
in L1(μ), meaning that there exist real numbers α, β  0, not both of them
zero, such that α|f |p = β |g|q μ-almost everywhere.

 Hölder’s inequality is used to prove the Minkowski inequality, which is the
triangle inequality in the space Lp(μ), and also to establish that Lq(μ) is the
dual space of Lp(μ) for p  [1, ).

 In real analysis, the Minkowski inequality establishes that the Lp spaces are
normed vector spaces. The inequality is named after the German
mathematician Hermann Minkowski.

 Let S be a measure space, let 1  p <  and let f and g be elements of
Lp(S). Then f + g is in Lp(S), and we have the triangle inequality

 Characteristically, the Lp functions have certainly ambiguous pointwise values.
However, we usually consider Lp functions as complete functions.

 Essentially, to prove a Cauchy sequence f
i
 in Lp (X) has a subsequence which

converges pointwise off a set of measure 0 in X.

 The vector space of equivalence classes of measurable functions on (S, Σ,
μ) is denoted ad L0(S, Σ, μ). By definition, it contains all the Lp, and is
equipped with the topology of convergence in measure. When μ is a
probability measure (i.e., μ(S) = 1), this mode of convergence is named
convergence in probability.

 The space Lp(X) is a complete metric space.

 The infinite sum is not necessarily claimed to converge to a finite value for
every x.

 Converges for almost all x  X. Let f(x) be the sum at points x where the
series converges, and on the measure zero set where the series does not
converge put f(x) = 0.

 Lp is complete, i.e., every Cauchy sequence converge.

 Convergence in measure is either of following two distinct mathematical
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 If f
n
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 The Lp spaces: The Lp spaces are function spaces defined using a natural
generalization of the p-norm for Finite Dimensional Vector Spaces (FDVS).
They are also sometimes called Lebesgue spaces, named after Henri
Lebesgue.

 Convex function: A function defined an open interval a, bis known as
a convex function if for each x, y a, band such that and
we have, x yxyThe end points a, b can
take the values , respectively

 Jensen’s inequality: In mathematical analysis, the term Jensen’s inequality
is named after the Danish mathematician Johan Jensen, it was proved by
Jensen in 1906. The Jensen’s inequality relates the value of a convex
function of an integral to the integral of the convex function.

 Hölder’s inequality: In real analysis, Hölder’s inequality, named after
Otto Hölder, is a fundamental inequality between integrals and an
indispensable tool for the study of Lp spaces.

 Minkowski inequality: In real analysis, the Minkowski inequality
establishes that the Lp spaces are normed vector spaces. The inequality
is named after the German mathematician Hermann Minkowski.

 Almost uniform convergence: If the domain of the functions is a measure
space E then the related notion of ‘almost uniform convergence’ can be
defined by means of a sequence of functions (f

n
) that converges almost

uniformly on E if for every > 0 there exists a measurable set E with
measure less than  such that the sequence of functions (f

n
) converges

uniformly on E \ E.

5.18 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What are the outer measures?

2. Define the extension of a measure.

3. State about the uniqueness of extension.

4. What is the completeness of measure?

5. What do you understand by the measure space?

6. Define the integration with respect to a measure.

7. State the Lp spaces.

8. What are the convex functions.

9. State the Jensen’s inequality.

10. Define the Hölder’s inequality.

11. State the Minkowski’s inequality.

12. What is the completeness of Lp?

13. Why the convergence in measure is used?



Measures and
Outer Measures

NOTES

Self - Learning
Material 239

Long-Answer Questions

1. Briefly discuss the measures and outer measures giving theorems, proofs
and appropriate examples.

2. Explain the concept of extension of a measure and uniqueness of extension
with the help of theorems, proofs, and examples.

3. What is completion of a measure? Explain with the help of examples.

4. Briefly explain the measure spaces and show that the measure on A is a
set function having domain A satisfying the following:

(a) Afor all A A

(b) 
5. Discuss the concept of integration with respect to a measure giving relevant

examples.

6. Show that a measure space (E, X, ) where E is a set, X is a -algebra of
subsets of E, and  is a (non-negative) measure on E can be defined on the
sets of X.

7. What are Lp spaces? Explain the concept with the help of appropriate
examples.

8. Prove that the Lp spaces are function spaces defined using a natural
generalization of the p-norm for Finite-Dimensional Vector Spaces (FDVS).

9. Describe the convex functions giving definitions, theorems, proofs, and
examples.

10. Elaborate on the Jensen’s inequality with the help of theorems and examples.

11. Explain Hölder’s inequalities and Minkowski’s inequalities giving theorems
and proofs.

12. Differentiate between the Holder’s inequalities and Minkowski’s inequalities.

13. Briefly discuss about the completeness of Lp giving theorems and proofs.

14. How the convergence in measure is done? Explain giving appropriate
theorems and examples.

15. Discuss about the almost uniform convergence with the help of theorems,
proofs and examples.

16. Show that if fnis a sequence of measurable functions which converges to
f almost uniformly, then fnconverges to f almost everywhere.

17. Prove that if fnconverges in measure to f, then fnis fundamental in
measure. Also, if fnconverges in measure to g, then f g almost
everywhere.
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