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INTRODUCTION

In mathematical analysis, the term ‘Real Analysis’ refers to the specific branch of
mathematical evaluations and unique analysis that examines the typical behaviour
of real numbers, sequences and series of real numbers, and the real functions.
Some specific and distinctive properties of real valued sequences and functions
used in the context of real analysis includes convergence, divergence, limits,
continuity, smoothness, differentiability, integrability and measurability.

In real analysis, the theorems typically depend on the properties of the real
number system, which should be determined, recognised and established.
Characteristically, the real number system comprises of an uncountable set (R ),
in addition to two binary operations denoted by ‘+’ and ‘e’, and an order which is
denoted by ‘<’. The operations and analysis on the real numbers produce a field
while with the order it produces an ordered field. Principally, the real number
system is referred as the unique complete ordered field for the reason that any
other complete ordered field is isomorphic to it. Instinctively, completeness implies
that there are no ‘Gaps’ in the real numbers. This is the unique property of real
numbers which distinguishes the real numbers from other ordered fields. Additionally,
the properties of real numbers are critical and essentially significant for proving
numerous key and basic properties of the functions that are analysed using the real
numbers. The completeness property of the reals is often appropriately and
conveniently stated and typically expressed as the Least Upper Bound (LUB)
property. Furthermore, in real analysis, the order-theoretic properties produce a
number of fundamental results or solutions typically based on the monotone
convergence theorem, the intermediate value theorem, the mean value theorem,
etc. Many of the theorems of real analysis are consequences of the topological
properties of the real number line.

A sequence is defined as a function whose domain is considered as a
countable and totally ordered set. Generally, the domain is defined to be the natural
numbers, even though it is also occasionally appropriate to consider the bidirectional
sequences indexed by means of the set of all integers, including negative indices.
Generally, a limit is the value that a function or a sequence ‘ Approaches’ as the
input. This value can include the symbols ‘+ oo’ while addressing the behaviour of
a function or sequence as the variable increases or decreases without bound. The
concept of a limit is fundamental to calculus and its conventional standard definition
is specificallyused in order to define notions like continuity, derivatives and integrals.
For limits, the concept was introduced specifically for functions by Sir Isaac Newton
and Gottfried Wilhelm (von) Leibniz, at the end of the 17th century, for developing
the infinitesimal calculus. For sequences, the concept was introduced by Baron
Augustin-Louis Cauchy and was later made rigorous and established at the end of
the 19th century by Bernard Bolzano and Karl Theodor Wilhelm Weierstrass,
who gave the modern -6 definition, which follows.

The term series validates and formalizes the imprecise notion of finding the
sum of an endless sequence of numbers. In modern terminology, any ordered
infinite sequence (@, a,, a,, ....... ) of terms, i.e., numbers, functions or anything
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that can be added, defines a series which refers to the operation of adding the g,
one after the other. To emphasize that there are an infinite number of terms, a
series may be called an ‘Infinite Series’. Series are classified not only by whether
they converge or diverge, but also by the properties of the terms an absolute or
conditional convergence; type of convergence of the series —pointwise or uniform;
the class of the term a , 1.e., whether it is a real number, arithmetic progression,
trigonometric function, etc.

This book, Real Analysis, is divided into five units. The topics discussed
include definition and existence of Riemann-Stieltjes integral, the fundamental
theorem of calculus, integration of vector valued functions, rectifiable curves,
rearrangements of terms of a series, Riemann’s theorem, sequence and series of
functions, pointwise and uniform convergence, Cauchy criterion for uniform
convergence, Weierstrass’s M test, Abel’s and Dirichlet’s tests for uniform
convergence, uniform convergence and continuity, functions of several variables,
derivatives in an open subset of R”, partial derivatives, higher order differentials,
Taylor’s theorem, explicit and implicit functions, implicit function theorem and inverse
function theorem, change of variables, extreme values of explicit and stationary
values of implicit functions, Lagrange’s multipliers method, Jacobian and its
properties, Lebesgue outer measure, measurable sets, measurable functions, Borel
and Lebesgue measurability, non-measurable sets, integration of non-negative
functions, Reimann and Lebesgue integrals, functions of bounded variation,
measures and outer measures, uniqueness of extension, the L”-spaces, Jensen’s
inequality, Holder and Minkowski inequalities, completeness of 2/ and the almost
uniform convergence.

The book follows the Self-Instructional Mode (SIM) format wherein each
unit begins with an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined
before going on to the presentation of the detailed content in a simple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding of the subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of ‘Key Terms’, and a set of ‘Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective

recapitulation.



UNIT1 RIEMANN-STIELTJES
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1.0 INTRODUCTION

In real analysis, the Riemann—Stieltjes integral is a generalization of the Riemann
integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The
definition of this integral was first published in 1894 by Stieltjes. It serves as an
instructive and useful precursor of the Lebesgue integral, and an invaluable tool in
unifying equivalent forms of statistical theorems that apply to discrete and continuous
probability.

The Riemann—Stieltjes integral appears in the original formulation of F. Riesz’s
theorem which represents the dual space of the Banach space C[a, b] of continuous
functions in an interval [a,b] as Riemann—Stieltjes integrals against functions of
bounded variation. Later, the theorem was reformulated in terms of measures.
The Riemann—Stieltjes integral also appears in the formulation of the spectral theorem
for non-compact self-adjoint or more commonly as the normal operators in a
Hilbert space. In this theorem, the integral is considered with respect to a spectral
family of projections.

The best simple existence theorem states that, If /is continuous and g is of
bounded variation on [a, b], then the integral exists. A function g is of bounded
variation if and only if it is the difference between two (bounded) monotone
functions. If g is not of bounded variation, then there will be continuous functions
which cannot be integrated with respect to g. Basically, the integral is not properly
defined if fand g share any points of discontinuity, but there are other conditions
also.

An important generalization is the Lebesgue—Stieltjes integral, which
generalizes the Riemann—Stieltjes integral in a method analogous to how the
Lebesgue integral generalizes the Riemann integral. If improper Riemann—Stieltjes
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integrals are allowed, then the Lebesgue integral is not strictly more general than
the Riemann—Stieltjes integral.

In this unit, you will study about the definition and existence of Riemann-
Stieltjes integral, properties of the integral, integration and differentiation, the
fundamental theorem of calculus, integration of vector valued functions, rectifiable
curves, rearrangements of terms of a series, and Riemann’s theorem.

1.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand the definition and existence of Riemann-Stieltjes integral
¢ Define the properties of the integral
¢ Elaborate on the integration and differentiation
¢ Analyse the fundamental theorem of calculus
o Explain the integration of vector valued functions and rectifiable curves
e Comprehend on the rearrangements of terms of a series

e Discuss the Riemann’s theorem

1.2 DEFINITION AND EXISTENCE OF
RIEMANN-STIELTJES INTEGRAL

Definition 1: Let [a, b] be a given interval. A partition P of [a, b] is a finite set of
points x, X, X,,..., X, such that,

a=x,<x, <X, <, <x =b.
Definition 2: Let o be a monotonically increasing function on [a, b].
Corresponding to any partition P of [a, b],
o, =ox) — ox, ), i=1,2,..,n.
Then o = 0.

Let / be a bounded real valued function on [a, b].

Let UPP,f, o) = 2 MAa,
i=1

L(P,f, o) = M Aa,
i=1

Where M, = sup{ f{x) / xe[x,_, x ]}
And  m = inf{ fix)/xe[x_,x]}
We define the upper Riemann-Stieltjes integral of fas,

[ fdo=infU(P. 1. o)



And the lower Riemann-Stieltjes integral of fas,

Jj fdo=sup L(P, f, o),

Where the infimum and supremum are taken over all partitions P of [a, b].

if [ fdoc= | fdo

Their common value is denoted by j ’ fdo or j ’ f(x)do(x).

This is called the Riemann-Stieltjes integral of fwith respect to a.on [a, b].

b
If I fdo exists, then fis said to be integrable with respect to o.on [a, b].

It is written as /'€ R(a) on [a, b].
Definition 3: A partition P* is said to be a refinement of P, if P* 2 P.

Note: Given two partitions P and P, of [a, b], their common refinement is given
by the notation P*=P U P,.

Theorem 1.1: If P* is a refinement of P, then
U(P*, f, o) < U(P, f,o0)
And U(P*, f, o) < U(P, f, o).
Proof: Assume that P* contains just one point more than P.
Let thisbe cand x, <c<x,
Let M =sup{ fix)/x e [x_,c]}
And M/ = sup{ fix)/ x € [c, x]}.
Then M <M. and M" <M.

Consider U(p*, f, o) :Zn:MkAock+ MTa(c) — alx, )] + M Tafx) — olc)]

i=1
k+#1

< 3 M Ao, + Mo(o) - alx, )] + Mfa(x) - a(o)]

< ZMkAock+ M]Jo(x) — olx, )]
i=1
k#1

< UP, f, o).
Similarly we can prove that,
L(P*, f, a) = L(P, f, o).

Hence the theorem is proved.
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1.3 PROPERTIES OF THE INTEGRAL

The significant properties of the integrals are discussed in this section.
NOTES Theorem 1.2: Consider the following statement:

[" o< fia.

Proof: Following is the proof of Theorem 1.2.

Let P, and P, be any partitions of [a, b].

Let P*=P U P,.

Then P* is the common refinement of P as well as P,.

Therefore by Theorem 1.1,

UP*, f, a) <UP,, 1, a) (1.1
And L(P*, f, o) 2 L(P,, f, &) .(1.2)
Also we know that,

L(P*, 1, o) < UP, f, o) .(1.3)

From Equations (1.1), (1.2) and (1.3), we get
L(P, f, o) < L(P*, f, o) < UP*, f, a) < UP,, f, @)
Therefore for any two partitions P, and P, of [a, b], we have
L(P, f, o) <UL, f, o).
Keeping P, fixed and varying P over all partitions of [, b],
L(P, f, o) <inf U(P, f, o)
Now this is true for all partitions P, of [a, b].
Therefore,
sup L(P, f, a) <inf U(P, f, o).

Consequently,

[ o< fia.

Hence the theorem is proved.

Theorem 1.3: Show that '€ R(a) on [a, b] if and only if there exists a partition
P of [a, b] such that,

UP, f, o) — L(P, f, o) <&.
Proof:
Let f'€ R(a) on [a, b].

Then [ o= fia, (1.4)

Where [" fdo=infUP. f, )

Self - Learning
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b

And L fda=supL(P, f,a),
Therefore, by definition of infimum and supremum, for given € > 0, there exists a
partition P, of [a, b] such that, NOTES

UP,.foo)< [ flo+el2 (1.5
And a partition P, of [a, b] such that,

b

L, f,0)>] fdo—g/2 (1.6)

LetP=P UP,
Then by Theorem 1.1,

UP,f,) <UP, [, ) (L.7)
And L(P,f,a) 2 L(P, f, o) ..(L.8)

Therefore, from Equations (1.4), (1.5), (1.6), (1.7) and (1.8), we get
ue, f,o) < U, f, o)

b
< I fda+¢g/2

b
< I fda+¢g/2

<LP,f,a)te/2+¢e2
<L(P,f, o)+ e.
Consequently, there exists a partition P of [, b] such that,
UPP, f,a) — L(P, f, a) <ke.
Conversely, assume that there exists a partition P of [a, b] such that,
UP, f,a) — L(P, f, o) <e. ..(1.9)
For every partition P of [a, b], we have

b b

LP.f,o) <] fdo<[ fla <UP.f o) ..(1.10)

From Equations (1.9) and (1.10), we know that
b b

0< [ fda—| fdoa<UP,fa)-LP.f o) <e.

This is true for every € > 0.
b b

Hence, [ fda—[ fda =o.

Therefore,

Self - Learning
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Riemann-Stielijes Integral  Subsequently, /'€ R(o) on [a, b].
Hence the theorem is proved.
Theorem 1.4: If fis continuous on [a, b], then f € R(a) on [a, b].
NOTES Proof: Lete>0
Consider that n > 0 such that [ou(b) — al(a)] n<e.

Since fis continuous on [a, b] and [a, b] is compact, then fis uniformly continuous
on [a, b].

Therefore, for this >0, there exists a & >0 such that,

[flx) — f(1)] <m whenever x, t € [a, b] with [x — ] <0. .(1.11)
If P is any partition of [a, b] such that Ax <35,
Then M—~m_ = sup {|fix)-f0)|/x, t €[x, ,x]} <m,

i=1,2,..,n.

Therefore, U(P,f,a)—L (P,f,a)= ZMiAal — ZMiA(X1
i=l i=1

$ 01, -mysa
i=1

nY A,
i=1

nfa(b) — a(a)]
< E.

IA

IA

Therefore, feR(a) on [a, b].
Hence the theorem is proved.

Theorem 1.5: If fis monotonic on [a, b] and if a is continuous on [a, b], then
feR(a)on [a, b].

Proof: Let a be increasing on [a, b]. Let £ >0 be given.
Consider that n is large enough such that,

Assume that there is a partition P such that A a. =[ou(b) — a@)]/n.
Let fbe increasing on [a, b].

Hence fix, ) < flx) <Aflx)wheneverx  <x<x.

Consequently, M. =f(x)and m = fix_),i=1,2,.., n.

Zn:M[Aoci _Zn:MiAoci
i=1 i=1

Therefore, U(P, f, o) — L(P, f, o)

i (Mi o mi)Aai
i=1

S0~ £ Db - afa))in]
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= [(a(b) — a(@))/n][iD)-Ala)]

<e

Therefore, /'€ R(a) on [a, b]. Hence the theorem is proved.
Theorem 1.6: If /, € R(a) and f, € R(a) on [a, b], thenf, + f, € R(a) and

b b b
[ (hrydo= [ fdo+[ fdo.
Proof: Let f=/ + /] and P be any partition of [a, b].

Consider,
UP.f, o) = 2 M Aoy
i=1

Where M, = sup{fix)/ xe[x,_, x,]}
= sup{f,(x) +f,(x) / xe[x_, x ]}
<supi{f (x)/xelx,_, x]} +sup{f,(x)/ xe[x,_, x,]}
< M'+M"

Hence,
ZMkAock SZM,LA(X,( +ZM,L’AOL,€
k=1 k=1 k=1

Therefore,

UP, f, o) < UP, f,,a) + UP, f,, o) ..(1.12)
Similarly, L(P,f,o) 2 L(P, f,,a) + L(P, f,, @) ..(1.13)
Since f eR(a)on [a, b] andf,eR(a) on [a, b],

for given € >0, there exists partitions P and P, such that,

URP,.f,a) = L(P, f,0) < €/2 ..(1.14)
And U, f,,a) — L(P,f,,a) < &/2 ..(1.15)
Let P=P UP,
This implies that,
UP,f,a)<UP, f,, o)
And UP, f,0) <UP, f, o)
And L(P,f,0) 2 L(P, [, o)
And L(P, f,,a) = L(P,, f,, ).
Therefore,
UPf,0) =L(P, f,0) < UP,, f,, &) = L(P, f,, &)
<g/2 ..(1.16)
And U(P,f,a)—L(P, [, ) < UP, f,, o) = L(P,, f,, o)
<¢g/2 .(1.17)
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From Equations (1.12), (1.13), (1.16) and (1.17), we get
UP, f, a) =L(P, f,o) < [U(P, f,, o) + U(P, f,, 0)] — [L(P, f,, o) + L(P, f,, )]
<[UP, f,,0) — L(P, f,, )] + [UP,, f,,a) = L(P,,f,, W]
<g2+¢el2
<e.
Hence, f=/1+1,€ R(a) on[a, b].
For the same partition P of [a, b],
UP, f,a)<L(P,f, o)+ &2
<sup {L(P,f,a)} +¢&/2

b
<[ fda+e/2

< j:ﬁda+8/2
[Since f; € R(@) on[a, 8], [ fida= [’ fido = [ fdo)

Similarly, UP,fya) < | fda+el2
Therefore,

[ o = inf {U(P.f; )}

<U(P, f, )
<UP,f,, o)+ UP,f, a)

b b
<.[ fldoc+e/2+j fdoa+el/2

< I:ﬁda + J.abfzdowrs

b b b
Hence, [ fda < [ fido + [ fda (1.18)
Replacing /, by —f, and /) by —f,, we get
b b b
—Lfdoc S—L fidoa — szdoc
Multiplying both sides by (—1), we get

b b b
jfdaz j fldajfzda .(1.19)
From Equations (1.18) and (1.19), we know that

b b b
[ fda = fido + [ fido
Hence the theorem is proved.

Theorem 1.7: If f € R(a) on [a, b] then ¢f € R(a) on [a, b], for any constant ¢
and

Zj.cfd(x.



Proof: If c =0, then the result is true. Riemann-Stieltjes Integral
Assume that ¢ > 0.
Since f'€ R(a) on [a, b],
for given € > 0, then there exists a partition P of [a, b] such that, NOTES
UP, f, o) — L(P, f, o) < glc.

Consider,

U(cP, f, o) — L(cP, f, o) = 2 M Doy, =D m; Ao,
k=1 k=1

Where M =sup{fix)/ xe/[x,_, x,]}

=csup{(chH(x)/ xe[x,_,x,]}
=cM

k
1 1 [ —
Similarly, m/=cm,

Therefore,
U(cP, fio) = ¢ ), M, Ao, = cU(P, fo)
k=1
And, L(cP,f,a) = c Y m, Ao, = cL(P, f, o)
k=1

Consequently, U(cp,f,a) — L(cP.f,0) = c[U(P,f,a) — L(P.f,o)]< €.
Hence ¢f € R(a) on[a, b].
Therefore for the same P,
Ulepf,o) < L(cP, f, o) + €
<sup L(cP, f,a)] + ¢
<csup L(P,f,0)] +¢
<c f fdo +¢

Subsequently,
inf U(cP.f,a) < U(cP.f,a)

b
< CJ. fdo +e
Therefore,
b b
j cfda. < c j fda .(1.20)
Replacing fby —f, we get

—Lb cfda < c[—ffdoc]

Self - Learning
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Multiplying both sides by (—1), we get

b b
j cfda > c j fdo
..(1.21)
From Equations (1.20) and (1.21), we have

b b
I cfda ScJ‘ fdao.
Hence the theorem is proved.
Theorem 1.8 If £, R() on [a, b], f, € R(e) on [a, b] and J,(¥)= /,(¥)
on [a, b], then J.bfldcx < J.bfzdoc

Proof: Let P be any partition of [a, b].

Since f,(x) < f(x),
sup{f,(x) / xe[x_,, x ]} <sup{f(x)/xe[x_,x]}
Therefore,

U(Pf,a) < UPf,0)

Consequently,
inf UPf,,a) < U(Pf,,a0)
Hence,
[ fdo < [ fdo
Consequently,

J.:fldoc < J.:fzdoc
Since f, € R(a) on [a, b], and f, € R(a) on [a, b]
ijlda=fjflda and J.:]gda=jj]§da].

Hence the theorem is proved.
Theorem 1.9: If '€ R(a) on [a, b] and if a <c < b, then f € R(a) on [a, c] and

f € R(a)on [c, b], and ijdoc + .[;fda =ffda.

Proof: Since f € R(a) on [a, b], for given € > 0, there exists a partition P of
[a, b] such that,

U(Pf,a) — L(Pf,a) <.
Let P, = Pa,c] and P,=PN[c, b].
The P, is a partition of [, c] and P, is a partition of [c, b].
Alsoon [a, b],
UP f,a) — L(P, .f;,0) < U(Pf,0) — L(Pf,0)] < e.



Andon [c, b],

UP,f,a) — L(P,.f,0) < U(Pf,0) — L(Pf,0)] < e.
Therefore,

feR(a)on [a, c] and [c, b].
For any partition P of [a, b],
Since P=PUP,

UP fio) = UP, fi0) + UP,f0)]
> inf U(P .f,a) +inf U(P,.f,0)

- [ o+ [

Therefore,
. 4 b
inf UPfa) > [ fdo + [ fdo
Consequently,
b c b
[ fda > [ do + [ fda
Subsequently,

b c b
Ifdoczj.fda+jfda
Similarly, using lower sums,
L(Pfo) = L(P,f,o) + L(P,.f,0)]

(1.22)

< sup L(P,.f,a) + sup L(P,.f,a)

< [ fdo + [ fia

Therefore,
c b
sup L(P.f,a) < L Jfdo + L Jda.
Subsequently,
b c b
[ fdo < [ fda + [ fda
Hence,

[ < [ fdo+ [ o

From Equations (1.22) and (1.23), we get

[ da = [ ao + [ o

Hence the theorem is proved.

(1.23)
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Theorem 1.10: If /'€ R(o) on [a, b] and if |{x)| < M on [a, b], then |J.:fd0‘ |
<M [a(b) — ola)].
Proof: Let P be any partition of [a, b],
Since [fix)|<Mon [a, b],
M, = sup{(x)/ xe[x,_,, x ]}
<M, forallk=1,2,....,n.
Because '€ R(a) on [a, b],

[ e = [ fda =inf UP fia)
< UPfa)

= Zn:Mk Ao,
k=1

< MZn: Ao,
= M[a(b) — a(a)] (1.24)
Replacing /by, we get
[ fda < Mla(®) - a(@)] .(1.25)
From Equations (1.24) and (1.25), we have
||| fdo| < Mla(®) - a(@)]

Hence the theorem is proved.
Theorem 1.11: If f € R(a,) on [a, b] and f € R(a,) on [a, b],
then /' eR(a, + o) on [a, b] and
[ (o, + ) = [ fda,+ | fdo,

Proof: Let P be any partition of [a, b].
Leta=a, + a,.
Then, Aoy, = (o, + @ )(x) — (o, + @ )(x, )

- al(xk) + az(xk) o [al(xk—l) + az(xk—l)]

- U"l(xk) - U“l('xk—l) + 0Lz(xk) B OLZ(X’H)
= A(a’l)k + A(U'Z)k

Consider, UPfa)= Y M, Aa,
k=1

= ZM ¢ [A0), + Aoy ]



- ZMk Aoy, +2Mk Aa,),
k=1 k=1

= U(Pf,) + UPfa)
<inf U(Pf,a,) +inf U(Pf,0.,)

- Tan + T

Therefore,
. b b
inf UPf0) < [ fdo, + | fdo,
Consequently,
b b b
[ fda < [ fda, + [ fda,
Hence,

b b b
[ o < [ fda, + | fda, ..(1.26)
Similarly considering the lower sums, we can prove that,
b b b
[ o> [ fda, + | fda, (1.27)
From Equations (1.26) and (1.27), we have,

[ fda = [ fdo, + [ fia,

Therefore,

[ (o, +o) = [ o, + [ fidor,

Hence the theorem is proved.

Theorem 1.12: If /'€ R(a} on [a, b] and c is a positive constant,

then /' eR(ca)} on [a, b] and J.: fd(ca) = CI: fda.

Proof: The proof follows from theorem 1.11.

Theorem 1.13: If feR(a) on [a, b] and geR(a) on [a, b], then
(a) f* € R(a) on [a, b].
(b) fg eR(a) on [a, b].

() |f|eR(@) on [a, bl and || fda| <[ | flda

Proof: Theorem 1.13 can be proved as follows:
(a) Let P be any partition of [a, b].
Andalso,  M,(f) denotes sup{ f{x)/ xe[x, ,,x,]}

=12 7k
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And m,(f) denotes inf{ f{x)/ xe[x,_, x ]}
Then M () = sup {f(x)/ xe[x,_,, x,]}
=[M/DF
m,(f*) = [m(| /D]
Since f' € R () on [a, b],
Then fisboundedon [a,b].
Therefore there exists M > 0 such that,

| fix) | < M.
Then M) <M
And M(f) <M, forallk=1,2, ..., n.

Also for given £ > 0, there exists a partion P of [a, b] such that,
UPf, o) — L(Pf, o) <¢
Therefore,
M) = m(f) = M /D - [m(fDP
“ M)+ m (DM SD —m (/D]
<2MM (| /) —m(| /D]

Consequently,

UP, f2, o) — L(P, f2, o= Z[Mk(f H-m,(fH]Aa,

<M Z[Mk (f) = m(f)Aa,

< 2MIUP, f, 0) — L(P, f; )]
<2M(e/2M)
<eE.
Therefore, /2 € R(a) on [a, b].
Hence Part (a) of Theorem 1.13 is proved.
(b) Since f € R(a) on [a, b] and g € R(a) on [a, b], then
by Theorems 1.6 and 1.7,
f+geR(a)on[a, b],and f— g € R(a) on [a, b].
Therefore by Part (a) of Theorem 1.13 proved above,
(f+ g € R(o) on [a, b]
And (f— g)* € R(a) on [a, b]
Therefore again by Theorems 1.6 and 1.7,
(/4)[(f+ g7 - (f—g)'] € R(o) on [a, b]
1.e.,fg € R(a) on [a, b].
Hence Part (b) of Theorem 1.13 is proved.



(¢) Since f'e R(a) on [a, b], for given £ > 0, there exists a partition P of [a, b],  Riemann-Stieltjes Integral
such that

UP,f,0)—L(P, f,a)<eg
Let P be any partition of [a, b]. NOTES
Since || fx) [ | /) | < [Ax) =) |,
M, (/D =m(f]D) = sup{ [ Ax) [ ) |/ %y € [x,, %]}
< supi |fx) =) [/ x, y € [x,,, x,]}
< M(f)-m ()
Therefore,
UP, [ fl, ) = L(P, | f], ) < U(P,f, o) = L(P, f, &)
Hence, | f| € R(a) on [a,b] < ¢
Now forallx, flx) <|Ax) |
And —f(x) < | fx).
Therefore by applying Theorem 1.8, we get

[/ fda<[’| f|do and

[ fda<['| f|do

Consequently, |j: fdo|< J':| flda

Therefore, Part (¢) of Theorem 1.13 is proved.
Hence the theorem is proved.

Theorem 1.14: Suppose ¢ is a strictly increasing continuous function that maps

an interval [4, B] onto [a, b]. Suppose o is monotonically increasing on [a, b] and
f € R(a) on [a, b].

Define 3 and g on [4, B] by,
PO = alo(), g8 =Ao()).

Show that g € R(B) and [’ gap<|’ fdo.

Proof: To each paritition P = {x,, x,, .....x,} of [a, b], there exists a partition
O ={yp, Vi .-Vt 0f [4, B] such that,

x; = o).
All partitions of [4, B] can be obtained in this way.

Since g =Ae(y)) on[4, B]

Self - Learning
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The values taken by g on [y, ;, y;] are the same as those taken by fon [x, ;, x,].

Therefore,

UQ, g B)=UPL,f, o)
And L(O, g, B)=L(P, f, o). .(1.28)
Since fe R(a)on [a, b],

for given £ > 0, there exists a partition P of [a, b] such that,

UP, f,a)—L(P,f,a)< e
Consequently,

UQ, g B)—L(Q, g P)=UP,f,o)-L(P, f,a) <&
Hence, g eR(B) on [4, B].
Moreover from Equation (1.28), we have

inf U(Q, g, B) =inf U(P, 1, a1)
Subsequently,

s - [ o
Since f' € R(a) on [a, b] and g € R(B) on [4, B],

[ gdB=; gdp

And [\ fda=[ fdo..
Therefore,

[Pgap=|’ fda.

Hence the theorem is proved.

1.4 INTEGRATION AND DIFFERENTIATION

Theorem 1.15: Let f € R on [a, b](i.e., fis Riemann-integrable on [a, b]).
For a <x < b, define F(x) = j:f(t)dt.

Then F'is continuous on [a, b].

Furthermore, if /1s continuous at a point x, of [a, b], then F'is differentiable at x;
and

F'(x,) = fix,).
Proof: Since '€ Ron [a, b], fis bounded.
Therefore, there exists M > 0 such that,
|[f(t) | < M fora<t<h
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Subsequently, ifa <x <y < b, then

| FO) - F) | = [[] f(0)dt = f(t)dt|
NOTES
= | [ f(0)dr]
< [1f(@))de
< M[’dt =My — x)
ie., | F(y) — F(x) | < My — x)
Therefore,

| F(y) — F(x) | <& provided that |y —x) <e/M.
Hence F is continuous on [a, b].

Suppose if fis continuous at x,. Then for given & > 0, there exists a 6> 0 such
that,

| (1) — fix,) | < € whenever | t—x, | <3d.

Hence, if x, -6 <s<x,<t<x,+0and a<s<t<b,

FOZFS ey = 1= ] e - £(x)]
t—s t—s
1
= |:L L () — f(xp))dt |
1
< :L|f(t)—f(xo)|dt
S t
< Z_Ldl
g
< E[Z—S]
<eg
Consequently,
Fit)-F
|%—f(xo)|<s whenever x, — 8 <s <x, <t <x,+3

Therefore, F(x,) = fix,)

Hence the theorem is proved.
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1.5 THE FUNDAMENTAL THEOREM OF
CALCULUS

NOTES The fundamental theorem of calculus states that this theorem is specifically used to
link or connect the concept or theory of differentiating a function or calculating the
gradient with the theory of integrating a function or calculating the area under the
curve.

Basically, the integration and the differentiation are the closely related
operations, and each is essentially considered as the inverse of the other.

Theorem 1.16: If/is bounded and integrable on [a, b] and there exists a function
Fsuchthat F'' = fon [a, b], then

j” fdx=F(b)—F(a).

Proof: Let p be any partition of [a, b] then by Mean Value Theorem (MVT) on
everyd 3 & e(x_,,x ) such that,

Flx) - Flx,_) = f5)3,.

On summing forr=1, 2, ..., n this gives,
F(b)—Fa)= 2/ (&)8,.
r=1
Since fis bounded and integrable on [a, b], therefore, when ||P|| — 0, then we get

Fb) - Fla)= [ fix, ie. | fix =F(b) - Fa).

Note that /"' may differ from fat a set of points whose set of limit points is finite.
Theorem 1.17: If fis continuous on (a, b) and ¢ €(a, b), then function F defined

by F(x)= j f(t)dt, which is derivable and F'(x) = f{x) on (a, b).
Proof: If x €(a, b), let (x + h) €(a, b). Then,
Fae+hy-Fo = [ f@yar
= hfix + 0h), for some 0 € (0, 1).

By continuity of fat x, lim f{x)+ Oh) = f(x). Therefore,

> h—0

i F(x+h)-F(x) :
lim . =fx),i.e., F'(x) =fx) v x € (a, b).

Corollary: Iffis continuous on [a, b] and ¢ €[a, b] then the function F can be
defined by,

Self - Learning
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F(x)= [ f(t)dtV x€[a, b], is derivable and F'(x) = f(x) on [, b].
It should be noted that the condition of continuity in the above theorem and in its
corollary cannot be totally removed.
Example 1.1: If fis definedon [-1, 1] by
fix)y=1when12>x2>0,

=0 when-1<x<0,

Then F(x)= [ f(t)dt=xwhen12x>0.

= (0 when -1 <x<0.

The function F'is not derivable at 0, and so the conclusions of the theorem and the
corollaryon (-1, 1) and [-1, 1] respectively, do not hold.

Example 1.2: For sin™' x, which denotes the inverse of the function sin x in
[0, /2], note that

1
(sin"'x)" = >
l1-x
J‘x dt ‘
Hence, N sin'x, vx € [0, 1]

This gives another way of introducing the trigonometrical functions, through sin x
defined as the inverse function of sin! x and sin™! 1 = /2.

Besides continuity and derivability of the functions defined by means of integrals
we can examine various other properties, such as uniform convergence of functional
sequences defined by means of integrals.

Example 1.3: The sequence given below converges uniformly to 0 on [0, a],
where a > 0.

ot
J.O 1+n’t di
Solution: Since v x € [0,a],a>0,

x 1

x f a
—dt < n—2—>0asn—>00,
n

0 1+ n’t

di< |

0

0<

Therefore, for ¢ >0 3 m € N such that,

x t d Vn> ( a\
I01+n2t f<e ”—mL> ;J and v x €[0, a.
’ dt i
Hence, _[O Loy 2 converges uniformly to 0, on [0, a] where a > 0.
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1.6 INTEGRATION OF VECTOR VALUED
FUNCTIONS

Definition: Letf,f, ........ ./, be real valued functions on [a, b].
Letf=(f,,f,......./,) be the corresponding mapping of [a, b] onto R,

If o increases monotonically on [a, b] and if fj € R(a) forj=1,2, ..., k, then we

say that f eR(a) on [a, b] and define Jf fdo as,

[P fda=(" fda, [" fidow s [ frdar)

ie., jj fdo. is the point in R* whose jth coordinate is jf fido.

Letf=(f s fpereeeeene- Jy)and g = (g, & peeereennn , g,) be vector valued functions
on [a, b].

Then by the method in which we have defined jj fda, we get the following
results.
Theorem 1.18: If f € R(a) and g € R(a) on [a, b], then f+ g € R(a) and

[(f+g)da=| fdo+[ gda,
Proof: Since f € R(a) and g € R(a) on [a, b]
fj, g € R(a) on [a, b], forj=1,2, ..., k.
Hence, f] tg e R(a) on [a, b], forj=1,2, ...... k.
Therefore,
(f+g) € R(a)on [a, b]
And["(f + g)da=(["(f; + g)do, [ (f, + €)d0t,..., [ (f; + g)d)

_(["fda+[ gda, [ fda+[ gda,.| fdo+ | gda)

=([" fido, [ fudat,.... [ frdo+ [ gda, [ gda,..., [ g da)

=" fdo.+ [ gdot
Hence the theorem is proved.
In the similar way we can prove the following results.

Theorem 1.19: If f € R(a) on [a, b], then ¢ f € R(a) on [a, b], for any constant
cand

[Pefda=c[’ fda.

Theorem 1.20: If f € R(a) on [a, b] and if a < c < b, then f € R(a) on [a, c] and
on|[c, b],and
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[ fdo+ [ fda=] fdo.
Theorem 1.21: If f € R(a,) on [a, b] and /' € R(a,) on [a, b], then f € R(a, +

a,)} on [a, b] and NOTES

[ fd(o, +a,)=] fdo +] fdo.,.
Theorem 1.22: If f € R(a) on [a, b] and c¢ is positive constant, then
f € R(ca) on [a, b] and j: fd(ca) = cj: fdo.
Theorem 1.23: Let /'€ R on [a, b](i.e., fis Riemann-integrable on [a,b]).

For a <x<b, define F(x) =[" f (t)dt .

Then F'is continuous on [a, b].
Furthermore, if /is continuous at a point x, of [a, b], then F'is differentiable at x,
and F'(x,) = fx,).

Theorem 1.24: If fand F' maps [a, b] onto R, if f € Ron [a, b] and if F'=,
then

[” f(H)dt = F(b) - F(a).
Theorem 1.25: If fmaps [a,b] onto R*, and if f € R(a) for some monotonically
increasing function o on [a, b],
Then | f| € R(a) on [a, b]

And ! fdo | <[') f |da

Proof: Iff,, f.,....... f, are the components of /, then
|f| — (f12 +f22 + .“_|_sz)1/2
Since feR(a)on [a, b],
By definition,
each f; € R(a} forj=1,2, ..., kand
By Theorem 1.13,
j;? e R(a) forj=1,2, ..,k
Consequently, by Theorem 1.6,
SR+ 7 € R(o.
Hence,
| f1=(2+ 17+ 4" R(o.

Since square root of a continuous function is continuous on [0, M], for every
real M.

To prove that |ijd(1|£ﬁ|f|d0t.
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Lety = (v1, y2, ..., i), Where y; =J'j fdo

Then, y = J.ab Jfda
NOTES i
2
And P = jZl Vi
k b
Z}y L
=
b n
_ (ZI y,J;)da
=
From Schwarz inequality,

k
Zly,-fj YISO (@<b)
J=

Consequently,

P <|y|[|f]do

Therefore, if y — 0, dividing this inequality by |y |, we get
b
yI<[,| f|da

Subsequently,
b b
], fda| <[ fldo

Hence the theorem is proved.

1.7 RECTIFIABLE CURVES

Definition 1: A continuous mapping y of an interval [a, b] into R is called a curve
in RForyisacurveon [a, b].
If'y is one-to-one, then v is called an arc.

Ify(a) =7y(b), then y is called a closed curve.

Definition 2: To each partition P = {x, x, X,, ....., X } of [a, b] and to each

curve y on [a, b], we associate a number A(P, y) = 217G = (x|,
i=1

Where | y(x)) — v(x, ) | = Distance between the points y(x, ) and y(x,)
A(P,y) =Length ofa polygonal path with vertices at y(x,), y(x,),
e Y(X).
As the partition P becomes finer and finer, the polygon approaches y more and
more closely.
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The lenght of A is defined as,

A(y) =sup A(P,Y),
Where the supremum is taken over all partitions of [a, b].
If A (y) <oo, theny is said to be rectifiable. NOTES

Theorem 1.26: If y' is continuous on [a, b], then y is rectifiable and

A= [ 1Y@ dr.

Proof:

Ifa <x, ,<x;<b,then

100) =) | = I[] v(0de]

IN

J'x] v'(¢)dt

Hence, A(P,7) anl v(x) —v(x) |

>[Iy ar
=1

b
[NREGIEE
for every partition P of [a, b].

IN

IN

Therefore,

A < [ 1Y@ (1,29
To prove the opposite inequality, let€> 0 be given.
Since y' is uniformly continuous on [a, b], there exists a 6 >0 such that,
[Y(s)—7'(H)| < & whenever|s—1t|<d.
Let P = {x,, X1, ...... ,X,} be apartition of [a b], with Ax; <9 for all i.
Therefore, if x; | <t<x,
YO —v'(x) [ <e

Consequently,
YO =1YC) [V O -y [ <e
Subsequently,
YOy () [+e.
Hence, [ IY(@)ldt < [ (1¥(x)|+e)dr
< 1Y) | Ax; + & Ax
<

jx' Y(x)dt |+ Ax,

IN

[ v +v(x) -7t + 5 Ax, Self - Learning
Xict Material 25
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IA

[ e 41 1)~ 0+ 5.,

IN

| Y(xi) - Y(xi—l) | t+e Axi +& Axi

IN

|v(x,) —v(x,) [+ 2¢ Ax,

Therefore,

v ﬁlﬁﬂmm

IN

Z’V(xi) —y(x_ )|+ 2¢ ZAXI‘
i=1 i=1

< A(P,y)+2¢e(b-a)
< A(y)+2¢e(b - a).
Since € > () was arbitrary, therefore we have,

b
vaanA@) ..(1.30)
From Equations (1.29) and (1.30), we get

A= [17o | d

Hence the theorem is proved.

1.8 REARRANGEMENTS OF TERMS OF A
SERIES

Riemann rearrangement theorem, named after 19th-century German mathematician
Bernhard Riemann, says that if an infinite series of real numbers is conditionally
convergent, then its terms can be arranged in a permutation so that the new series
converges to an arbitrary real number or diverges.

As an example, the series 1 — 1+ 1/2—1/2+1/3—1/3 + ... converges to
0 for a sufficiently large number of terms, the partial sum gets arbitrarily near to 0;
but replacing all terms with their absolute values gives 1 +1+1/2+1/2+1/3 +
1/3 + ..., which sums to infinity. Thus the original series is conditionally convergent,
and can be rearranged by taking the first two positive terms followed by the first
negative term, followed by the next two positive terms and then the next negative
term, etc. to give a series that converges to a different sum: 1 +1/2—-1+1/3+ 1/
4—1/2+...=In 2. More generally, using this procedure with p positives followed
by ¢ negatives gives the sum In(p/q). Other rearrangements give other finite sums
or do not converge to any sum.

Existence of a Rearrangement that Sums to Any Positive Real M
For simplicity, this proof assumes first that a_# 0 for every n. The general case
requires a simple modification, given below. Recall that a conditionally convergent



series of real terms has both infinitely many negative terms and infinitely many positive
terms. First, define two quantities ;- and g, by,

s 4 Iu'u| ty — |a':n-|
Oy = — 9 Oy = — a2

oG

That is, the series E : u includes all ¢ positive, with all negative terms
n=1

oG

replaced by zeroes, and the series Z @n includes all an negative, with all positive

fi=1
()

terms replaced by zeroes. Since Z @ is conditionally convergent, then both
=1

the positive and the negative series diverge. Let M be a positive real number. Taking
now sufficient positive terms so that their sum exceeds M. Suppose p terms, are
required, then the following statement is considered true:

p—1 P
Yaf <M< af.

n=1 n=1
This is possible for any M > 0 because the partial sums of a'n tend to + oo

Discarding the zero terms one may write,

P
aall— = d5{1) i = Qi) L 1) =0, Uf.]'] <l = a{ml:] Y
1

n=

Now adding the sufficient negative terms a 7 say ¢ of them, so that the
resulting sum is less than M. This is always possible because the partial sums of
a n tend to —oo Now we have,

F q r g1
ot +Y e <M<Y al+ D e
n=1 n=1 n=1

n=1

Again, one can write,

P g
+ e
DGk ) an = gqa) o o Gtmy) + oy 1) 7+ + Gy
=1

n=1
With,
0(m1 + 1] RS (I[:ﬂ[} =q.

The map o is injective, and 1 belongs to the range of 6, either as image of 1
(ifa,> 0) or as image of m, + 1 (if a, < 0). Now repeat the process of adding
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sufficient positive terms to exceed M, starting with n=p + 1, and then adding
sufficient negative terms to be less than M, starting with n=¢ + 1. Extend 6 in an
injective manner so that all terms selected so far must be covered, and observe
that a, must have been selected previously or now thus 2 belongs to the range of
this extension. The process infinitely includes various such “Changes of Direction”.

Existence of a Rearrangement that Diverges to Infinity

Let Ef‘:l a; be aconditionally convergent series. The following is a proof that

there exists a rearrangement of this series that tends to co a similar argument can
be used to show that —o can also be attained.

Letpy < pa < py < - -+ be the sequence of indexes such that each ay,
is positive, and define n; < ns < ng < --- tobe the indexes such that each
fin; is negative (assuming that a; is never 0). Each natural number will appear in

exactly one of the sequences (p; ) and (n; ).

Let by be the smallest natural number such that,

Iy

Zﬂ!‘i = |ﬂ'*=1 1.
i=]

Such a specific value must exist since (ay, ) , the subsequence of positive

terms of ( @; ) which diverges. Similarly, let b be the smallest natural number such
that,

by
E My = iﬂ'ngl + ]'.-

i=by+1

And so on. This leads to the following permutation:

(@(1),0(2),0(3)s+.) = (P1:D2s - 2 Dby s L Dby 415 Dby 25+« « s Py s 25« - )-
And the obtained rearranged series, 3 .- @g(;} then diverges to oo.

Existence of a Rearrangement that Fails to Approach Any Limit, Finite
or Infinite

o

In fact, if Z %n is conditionally convergent, then there is such a rearrangement
fie=1

of it that the partial sums of the rearranged series form a dense subset of .

1.9 RIEMANN’S THEOREM

oo

Definition: A series Z @n converges if there exists a value ¢ such that the
a=1

sequence of the partial sums,



n
{3153275:11”']1 -Sn = ZHL‘\
k=1

Converges to . That is, for any € > 0, there exists an integer N such that if
n >N, then

|5, — €] < e
o

Theorem 1.27: A series converges conditionally if the series Z @n converges
n=1

o
but the series E e, | diverges.

=1

A permutation is simply a bijection from the set of positive integers to itself.
This specifies that if o is a permutation, then for any positive integer b there exists
exactly one positive integer a such that o(a) = b. In particular, if & # . then

o(x) = o(p).

Suppose that (@, as,as,...) is a sequence of real numbers and that

Z:__ 1 @x 1s conditionally convergent. Let M be a real number, then there exists a

permutation ¢ such that,

)
Z Ayfn) = OQ.

n=1

The sum can also be rearranged to diverge to —ng or to fail to approach
any limit, finite or infinite.

In Riemann’s theorem, the permutation used for rearranging a conditionally
convergent series to obtain a given value in R L { oo, —oo } may have arbitrarily

many non-fixed points, i.e., all the indexes of the terms of the series may be
rearranged. It is possible to rearrange only the indexes in a smaller set so thata
conditionally convergent series converges to an arbitrarily chosen real number or
diverges to (positive or negative) infinity. The answer of this question is positive,
Sierpinski proved that is sufficient to rearrange only some strictly positive terms or
only some strictly negative terms.

Check Your Progress

Define the Riemann-Stieltjes integral.

State the integration and differentiation theorems.
What is the fundamental theorem of calculus?
Define on the integration of vector valued functions.
What do you understand by the rectifiable curves?

Define the rearrangements of terms of a series.

Ao

Give the definition of Riemann's theorem.
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1.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1. Let[a, b] be a given interval. A partition P of [, b] is a finite set of points
NOTES Xy X5 X,..., X, Such that,

a=x,<x, <x,< . <x =b.
2. Letf'e Ron[a, b](i.e., fis Riemann-integrable on [a, b]).
For a <x < b, define F(x) = j:f(t)dt.

Then F'is continuous on [a, b].

3. If fis bounded and integrable on [a, b] and there exists a function F such
that F'' = fon [a, b], then

j” fdx=F(b)—F(a).

4. Letf, [, cooneen ./, be real valued functions on [a, b].
Letf=(f,,f, ......./,) be the corresponding mapping of [a, b] onto R,

If a increases monotonically on [a, b] and if ]j e R(a) forj=1,2, ...k,

then we say that f eR(a) on [a, b] and define jj fdo as

[’ fdo=(" fida, [ fdo s | frdar)

ie., jj fdo. is the point in R* whose jth coordinate is jf fido.
5. A continuous mapping y of an interval [, b] into R* is called a curve in R or
yisacurveon [a, b].
If'y is one-to-one, then y is called an arc.
Ify(a) =7y(b), then y is called a closed curve.

6. Riemann rearrangement theorem, named after 19th-century German
mathematician Bernhard Riemann, says that if an infinite series of real numbers
is conditionally convergent, then its terms can be arranged in a permutation
so that the new series converges to an arbitrary real number or diverges.

oo

7. Aseries Z @n converges if there exists a value £ such that the sequence
n=1

of the partial sums,
{511327 S3,.. -]1 Sy = ZH-J;-?
k=1

Converges to ¢ . Thatis, for any € >0, there exists an integer N such that
ifn >N, then

|Sﬂ. = F' E £.
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1.11 SUMMARY

e Let[a, b] beagiven interval. A partition P of [a, b] is a finite set of points
X X|» Xp-.., X, such that, NOTES

a=x,<x, <x,< s <x =b.
e Leta bea monotonically increasing function on [a, b].
Corresponding to any partition P of [a, b],
a, = ox)—ox, )i=1,2,.,n
Then o, > 0.

e Apartition P* is said to be a refinement of P, if P* > P.
Given two partitions P, and P, of [a, b], their common refinement is P*=P U
P

.
e Letf'e Ron[a, b](i.e., fis Riemann-integrable on [a, b]).
Fora <x <b, define F(x) = [ f(¢)dt.

Then F'is continuous on [a, b].

e Furthermore, if fis continuous at a point x, of [a, b], then F is differentiable
at x, and

F'(x,) = fix,).

e Iffis bounded and integrable on [a, b] and there exists a function F such
that /' = fon [a, b], then
[\ fdx=F@)-Fa.

e I[ffis continuous on [a, b] and ¢ €[a, b] then the function F' defined by

Fx)= Jj f(®)dtV x €la, b], is derivable and F'(x) = f(x) on [a, b].

o Letf,f, ..o ./, be real valued functions on [a, b].
Letf=(f,,f, .......f,) be the corresponding mapping of [a, b] onto R".

If o increases monotonically on [a, b] and if f] e R(a) forj=1,2, ..,k

then we say that f eR(a) on [a, b] and define J': fdo. as,

[P fda=(" fida, [' fidow s | frdar)

ie., j: fdo is the point in R* whose jth coordinate is j: fido.

¢ A continuous mapping y of an interval [, b] into R¥is called a curve in R* or
yisacurve on [a, b].

If'y is one-to-one, then y is called an arc.

Ify(a) =7y(b), then y is called a closed curve.
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e Riemann rearrangement theorem, named after 19th-century German
mathematician Bernhard Riemann, says that if an infinite series of real numbers
is conditionally convergent, then its terms can be arranged in a permutation
so that the new series converges to an arbitrary real number or diverges.

o Let 377, a; be a conditionally convergent series. If there exists a
rearrangement of this series that tends to —oo then a similar argument can be
used to show that —o can also be attained.

e Letp; < pa << py < --- bethe sequence of indexes such that each a,,
is positive, and define 7; < ng < ng < .- - tobe the indexes such that

each @iy, is negative (assuming that &; is never 0). Each natural number
will appear in exactly one of the sequences (p; ) and (n; ).

o

e In fact, if Z “n is conditionally convergent, then there is such a
fi=1

rearrangement of it that the partial sums of the rearranged series form a dense
subset of .

o

e A series Z %n converges if there exists a value £ such that the sequence
n=1

of'the partial sums
b
{SI:SE; o TR -]1 Sy = Zﬂ-k,
k=1

Converges to £ . Thatis, for any € > 0, there exists an integer N such that
if n>N, then

|5, — €] < e

1.12 KEY TERMS

¢ Riemann-Stieltjes integral: Let [a, b] be a given interval. A partition P of
[a, b] is a finite set of points x, x , x,,..., X, such that,

a=x,<x, <x,< . <x =b.
¢ Integration and differentiation theorem: Let /'€ R on [a, b](i.e., fis
Riemann-integrable on [a, b]).

For a <x <b, define F(x) = [" f(t)dt.

Then F'is continuous on [a, b].

¢ Fundamental theorem of calculus: If /is bounded and integrable on
[a, b] and there exists a function F'such that F' =fon [a, b], then

jb fdx=F(b)—F(a).



e Integration of vector valued functions: Let/,f, ........ ./, bereal valued

functions on [a, b].
Letf=(f,,f, .......,) be the corresponding mapping of [a, b] onto R".

Rectifiable curves: A continuous mapping g of an interval [a, b] into R¥is
called a curve in R¥or gis a curve on [a, b].

If'y is one-to-one, then v is called an arc.
If y(a) =y(b), then y is called a closed curve.

Riemann’s theorem: Riemann rearrangement theorem, named after 19th-
century German mathematician Bernhard Riemann, says that if an infinite
series of real numbers is conditionally convergent, then its terms can be
arranged in a permutation so that the new series converges to an arbitrary
real number or diverges.

1.13 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

AN

Why is the Riemann-Stieltjes integral used?
Define the integration and differentiation theorems.
State the fundamental theorem of calculus.

Define the integration of vector valued functions.
What are on the rectifiable curves?

Define the rearrangements of terms of a series.

State the Riemann’s theorem.

Long-Answer Questions

I.
2.

Briefly discuss the Riemann-Stieltjes integral giving appropriate examples.

Discuss the significance of the integration and differentiation theorems in
real analysis.

. Explain in detail about the fundamental theorem of calculus with the help of

theorems and proofs.

. Discuss the integration of vector valued functions with the help of theorems

and proofs.

5. Explain the rectifiable curves with the help of theorems and examples.

6. Briefly explain the concept of rearrangements of terms of a series giving

relevant theorems, proofs and exampels.

. State and prove the Riemann’s theorem.

8. Evaluate the following using the fundamental theorem of culculus:

G
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2.5 Cauchy Criterion for Uniform Convergence
2.6 Weierstrass’s M-Test
2.7 Abel’s Test for Uniform Convergence
2.8 Dirichlet’s Test for Uniform Convergence
2.9 Uniform Convergence and Continuity
2.10 Uniform Convergence and Riemann-Stieltjes Integration
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2.15 Abel’s Theorem
2.16 Tauber’s Theorem
2.17 Answers to ‘Check Your Progress’
2.18 Summary
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2.20 Self Assessment Questions and Exercises
2.21 Further Reading

2.0  INTRODUCTION

In real analysis, a sequence is an enumerated collection of objects in which
repetitions are allowed and order matters. Like a set, it contains members, also
called elements, or terms. The number of elements (possibly infinite) is called the
length of the sequence. Unlike a set, the same elements can appear multiple times
at different positions in a sequence, and unlike a set, the order does matter. Formally,
a sequence can be defined as a function from natural numbers, the positions of
elements in the sequence, to the elements at each position. The notion of a sequence
can be generalized to an indexed family typically defined as a function from an
index set that may not be numbers to another set of elements.

A sequence can be thought of as a list of elements with a particular order.
Sequences are considered significant in a number of mathematical disciplines for
studying functions, spaces, and other mathematical structures using the convergence
properties of sequences. In particular, sequences are the basis for series, which
are important in differential equations and analysis. Multiple sequences can be
considered simultaneously using different variables. sometimes the elements of the
sequence are naturally related to a sequence are naturally related to a sequence of
integers whose pattern can be inferred easily.
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In real analysis, a series is, roughly speaking, a description of the operation
of adding infinitely many quantities, one after the other, to a given starting quantity.
The study of series is a key part of calculus and its generalization for mathematical
analysis. Series are used in most areas of mathematics, even for studying finite
structures (such as, in combinatorics) through generating functions. In addition to
their ubiquity in mathematics, infinite series are also widely used in other quantitative
disciplines, such as physics, computer science, statistics and finance.

As for sequences of functions, and unlike for series of numbers, there exist
many types of convergence for a function series, such as uniform convergence,
point wise convergence, almost everywhere convergence, etc. The Weierstrass
M-test is a useful result in studying convergence of function series.

In this unit, you will study about the sequence and series of functions, point-
wise and uniform convergence, Cauchy criterion for uniform convergence,
Weierstrass’s M test, Abel’s and Dirichlet’s tests for uniform convergence, uniform
convergence and continuity, uniform convergence and Riemann-Stieltjes
Integration, uniform convergence and differentiation, Weierstrass approximation
theorem, power series, uniqueness theorem for power series, Abel’s and Tauber’s
theorems.

2.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Define sequence and series
¢ Understand pointwise and uniform convergence
¢ Explain Cauchy criterion for uniform convergence
o Analyse the Weierstrass’s M-test
¢ Discuss about the Abel’s test and Dirichlet’s test for uniform convergence
¢ Explain uniform convergence in context with continuity

¢ Know the significance of Riemann-Stieltjes integration and differentiation

State Weierstrass approximation theorem

Define power series

Discuss uniqueness theorem for power series

Explain Abel’s theorem and Tauber’s theorem

2.2 SEQUENCE

A sequence is a function whose domain is the set of natural numbers. If the
codomain is the set R of real numbers, it is called a real sequence; if it is the set C
of complex numbers, it is called a complex sequence and likewise if it is a set of
polynomials, it is a sequence of polynomials.

The image of the numbers 1, 2, 3, ... are called the first, second, third terms
of the sequence, respectively.



Thus areal sequence can be conceived as a collection of numbers so that to
every natural number there is a unique member of that collection. If the natural
number is 7, the corresponding number is denoted by x, or y, orz, oru, etc., and
is called the nth term of the sequence. The sequence is denoted by {x,,}.

Thus x, = 1isa sequence whose 1Ist, 2nd, 3rd terms are respectively 1,
n

1 . . .
3 This sequence is called the harmonic sequence.

9

N | —

Another example of a sequence is y, = (— 1)". The first few terms of the
sequenceare {— 1, 1,— 1, 1,...}.

The sequence Z, = 5 is also a sequence, each of its term being 5. Such a
sequence is called a constant sequence.

Bounded and Unbounded Sequences

A sequence {x,} is said to be bounded above if all its terms are less than or equal
to areal number, i.e., there exists K € R such thatx, <K foralln € N.

As for example, the sequence {l} is bounded above since - < 1forall
n n

. . Sn+1
! is bounded above since —
2 3n+2

<3 forall n, but

5
n € N, the sequence { nr
2n +

the sequence < {n?} is not bounded above since there exists no such real number
K so that n* <K for all n. In fact it is easy to observe that for every real number K
there is an  such that n*> > K. Such a sequence as above is called an unbounded
sequence.

A sequence {x,} is said to be bounded below if all its terms are greater
than or equal to a real number, i.¢., there exists K € R such that x, > k for all

n € N. The sequence {l} is bounded below since > 0 forall 7. The sequence
n n

. . Sn+1
Sn+1 is also bounded below since —
3n+2 3n+2

>0 for all n. The sequence

{(-=1)"5} is bounded below since (—1)"5 > -5 for all n € N, but the sequence
{(-2)"}is not bounded below since there is no such real number & for which
k<(-2)".Indeed, if K is a negative real number, there always exists, an (odd)
integer n such that (— 2)" <k.

A sequence is said to be bounded if it is bounded both above and below,
i.e., if there exist K, k € Rsuch thatk<x <Kforalln € N.

The numbers K and k are called, respectively, an upper bound and a lower
bound of the sequence {x,}. Note that if a sequence {x,} has an upper bound, it
has many upper bounds; similarly if a sequence {x,} has a lower bound, it has

many lower bounds. For example, for the sequence {(l + ;] } ,justas 3 is an

upper bound, any real number greater than 3 is also an upper bound.
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Monotone Sequence

A sequence {x, } is said to be monotone increasing ifx, <x, , | foreveryn € N;
the sequence is (Z:aued strictly incre'asing‘if X, <)‘cn 41 'for evzery ne N.Z Clearly
the sequence {n“} is monotone (strictly) increasing since n” < (n + 1)~ always.
The sequence {(— 2)"} is not monotone increasing since (— 2)* £ (- 2)°.

A sequence {x,} is said to be monotone decreasing if x, , | <x, for every
n € N; the sequence is called strictly decreasing ifx, , | <x, foreveryn € N.

1
n? +1 (n+1)2+1_n2+1

The sequence {
for every n. The sequence {—n°} is strictly decreasing as

} is monotone (strictly) decreasing as

—(n+ 1)’ <— »’ but the sequence [— %j is not monotone or strictly decreasing

o (3] 4[4

Convergent Sequence

A very natural inquiry about a sequence {x, } is whether the terms x, come close
to any real number when # is very very large. This is what is known as the
convergence of a sequence.

Definition: Asequence {x,} is said to converge to a real number /if for every
&> 0, there exists n, € N such that,

|x,—1l|<e foreveryn=n,
The number /is called /imit of the sequence {x}.

The fact that {x, } converges to /is expressed symbolically by lim x, =1.
Nn—»0

Asequence {x,} is called convergent if it converges to a limit /.

A sequence which converges to zero is called a null sequence.
The following facts follow readily from the definition:

Fact1 : A sequence may or may not converge.

Fact2 : Ifasequenceis convergent, it converges to a unique limit, i.e., it
cannot converge to two different limits.

Fact3 : Everyconvergent sequence is always bounded, but not conversely.

Proof:  Let {x,} be a convergent sequence with limit /. Then for a given
& (> 0) =1, say, there exists a positive integer n,, such that,

|x,— 1| <! forall n=n,
ie., [-1<x,<l+1 forall n>n,

Fact4 : A monotone increasing sequence bounded above is always
convergent and converges to its Least Upper Bound (LUB).

Fact5 : A monotone decreasing sequence bounded below is always
convergent and converges to its Greatest Lower Bound (GLB).



Fact 6 : Everyconstant sequence is convergent.
Let L =min {x, x,, ...,xn0,|l|—1} e R
And  U=max {x, x,, ...,xn0,|l|+ 1} e R
Then L<x,<U foralln.

Hence, {x,} is a bounded sequence.

But the converse of this theorem is not true.

For example, the sequence {1 +(—1)"} is bounded but it does not converges
to any finite limit. If the sequence is {0, 2, 0, 2,....} then its lower bound is 0 and
upper bound is 2.

Cauchy's Criterion of Convergence

Since proof of convergence of a sequence requires determination of the limit,
proving convergence is not always easy. Cauchy therefore provided an alternative
way to prove convergence of a sequence, called Cauchy's criterion which avoids
the determination of the limit. This may be stated as follows:

A sequence {x,} is convergent iff, for every € > 0, there exists n;, € N,
usually depending on g, such that

|x,—x,|<e forallm,n=n,.

Or equivalently, | x x,|<e foralln=ny,p=0,1,2,3,..

n+p

1] . .
The sequence <— is convergent since,
n

. o 1 . . 1 . . 1
re.,if —<eg,ie.,ifn>—i1e.,ifu>n,=|—-|+1eN
n S 0 e

. 1 1 1
Examlneandprovethat,nz[—}+1:>n>—:>—<a:> P ¢

€ € n n(n+ p)

1 1

<g

n+p n
Example 2.1: Show that the sequence {x,} is convergent when,

1 1 1

X, = l+—+—+.+—

2! 3l n!

Solution: Examine and prove that,
11 1
= <

nl 123.m 222 2l
Form>n

1 1 1
+ +...+ <
(n+)! (n+2)! m!

1( 1 1 )
—|l+=+..+
2}’1 2 2m—n

‘xm_xn| - m—1

[\8}
3

N
3
s

N
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Hence {x,} is convergent.

Algebra of Limits
The followng result is of immense importance in evaluation of limits.

Theorem 2.1: If lim x, =/and lim y, =m, then

Hn—>00 Nn—»0
(@) lim{x, +y,} = limx, + lim y, =/+ m.
n—>o n—»0 n—o
(@) lim{x, - y,} = limx, - limy, =/—m.
n—> n—»0 n—
(#ii) lim{x,y,} = limx, limy, =/.m
n—>00 n—w  p—®

lim x
(iv) lim L A T 0, provided the above limits exist.

Another result plays a dominant role in many situations. This is the so called
sandwich theorem stated as follows:

Theorem 2.2: (a)Ifx, <y, foralln € N, then lim x, < lim y, .

X—>00 X—>0

(b)Ifx,<y,<z, and lim x, = lim z, =/, then lim y, =/.
n—»0 n—»0 n—»0

The proofs of the above theorems are outside the scope of this text.

2n+3| .
5 1S convergent.

Example 2.2: Show that the sequence {

3n—
Solution: Since -4<9, 6n—-4<6n+09.
Or 2(3n—-2)<3(2n+3)

2m+3 2

r >
0 3n-2 3

Hence, the sequence {;n * ;} is bounded below.
n_

. 2n+3
Further taking, x, = 3,0 Ve observe

_2n+3 2(n+1)+3
Yn T 1T 3,22 3t -2

 n+3)Bn+D)-(2n+5(Bn-2)
B Gn-2)(3n+1)

_6n? +1ln+3-6n" —1ln+10 _ 13 o
(Bn—-2)(3n+1) Gn-2)@n+1) "~

foralln



Le,x,,  <x, foralln.

Thus, {?—+§} being monotone decreasing and bounded below is
convergent.
Divergent and Oscillatory Sequences

A sequence may be such that its terms become successively larger and larger,
ultimately exceeding any big number. Such a sequence is said to diverge to
+ 00. On the other hand, a sequence may have decreasing terms so that ultimately
it becomes smaller than any negative but numerically large real number. Such a
sequence is said to diverge to — co. Such sequences are also possible the terms of
which do not approach any definite real number nor do exceed any large positive
real number or recede any arbitrary negative number. These are nothing but
oscillatory sequences. The formal definitions go as follows:

Definition: A sequence {x,} is said to diverge to + oo if for every large G> 0,
there exists n, € N such that,
x,2G forallnzn,

The fact {x, } diverges to oo is expressed symbolically by lim x, = o.
Hn—>0

A sequence {x,} is said to diverge to — oo if for every large G > 0, there
exists i, € N such that,

an—G foralannO.

This is expressed symbolically by lim x, =— 0.
Nn—»0

A non-constant sequence which is bounded and not convergent is a finitely
oscillatory sequence and a non-constant sequence which is unbounded and not
convergent is an infinitely oscillatory sequence.

For example, the sequence x, =5 —(— 1)" 2 is a finitely oscillatory sequence
but the sequence y, = (- 2)" is an infinitely oscillatory sequence.

Xntl

Theorem 2.3: If {x, } be asequence such that lim
xn

n—0

=1 where 0 < /<1, then

the sequence {x, }is a null sequence, i.e., lim x, =0.
n—o0

Proof: Beyond the scope of this book.

n

Example 2.3: Prove that lim X =0 for every real value of x.

n—w |n
n n+l
. X X
Solution: Here,xn = E and x,, :()_1
n n+
+1
Tt | (X" A | x| Ix]
Xn ntl x"| |n+l]  n+l
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As n— oo forall real value of x.

Xn+1

xn

lim =0

n—>0

Hence, lim—=0,

Example 2.4: Prove that lim ——=0if|x|<1.

n—oo N
X" xn+1
Solution: Here, x, = — and x,,, = e
n+l
Xnat | _|X _lzn)c:n‘x|
X, n+l | |n+1 n+l

”ﬂeu|mnem
I+
n

lim>—=0 if <.

n—oo N

When x = 1, the given sequence is a harmonic sequence which converges to zero

D"

as n — oo and when x=— 1, the given sequence is ——— which converges to zero
n

as n — oo.

Hence, lim x7= 0 for x| <I.
2.3 SERIES

An expression of the form,

%+%+%+W+%+w

in which every term is followed by another according to some definite rule is
called a series. If it contains finite number of terms, then it is called a finite series.
If the number of terms is not finite, it is called an infinite series. Such a series is
conveniently denoted by,

D u, orsimplyby > u,.

n=1

The sum of the first # terms of this series is denoted by S where § =u, +
u,+...+u )andis called the nth partial sum of the series. Now, we consider the
following cases:

() If § — S (a finite value) as n — oo, then the series Zu_is said to be
convergent and S'is called its sum.

(if) If § — +o0as n—> oo, then the series Zu_is called a divergent series.



(i) IS oscillates (finitely or infinitely) as n — oo, the series Zu is said to be
oscillatory.

A divergent or oscillatory series is called non-convergent.

The infinite series Xu is said to converge to S, if for every arbitrary small
positive number g, there exists a positive integer m depending on € such that,

|S —S|<eforalln>m.

1

. . 1 1
(7)) Theseries — +—=+—+

ot +... 1s convergent.
12 23 3. n(n 1) 1S CONVETEe
. R I
in = ——— .+
Since 5, = 1553734 n(n+1)
1y (1 1) (1 1 o
= |l-=|+|=—=|+|=—= +|=-
2 2 3 3 4 n n+l
|

1—
( n+1

Hence S=1.
(@) Theseries1 +2+3+4+...+n+... divergesto + .

(i) Theseries 1 —1+1—1+1—1+..., oscillates finitely and the series
1-2+3 -4+ ... oscillates infinitely.

Note that the nature of a series is determined by the nature of the sequence
of its nth partial sum.

Two Important Series
1. The Geometric Series: The infinite geometric series,
ataxtax®+ax*+ .. +ax"'+ .. (a>0) is

(1) Convergent ifthe common ratio x lies between— 1 and 1 (i.e.,—1 <x<1),

and the sum of'the series is N ‘.
— X

(it) Divergent (to +o0)ifx>1.
(iii) Oscillates finitely if x =—1 and oscillates infinitely if x <—1.
Proof: The nth partial sum of the given series is,

S=a+ax+a’+ .. +ax!

n

x" =

Lz

x-1

= a

@) If|x|<1,thenx"—>0asn—

Sn—> as n — oo.

a
(1-x)
(@) Ifx>1, then x" — oo as n — oo and then § — oo as n — oo. Hence, the

geometric series diverges to + oo ifx> 1.

When x = 1, the series becomesa +a+a+a +...
And S =a+ta+..+ta=na—>oasn—> o.

". The series diverges to + oo.
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(iii) Ifx<-1,x" oscillates infinitely between — oo and + .
If x=-1, then the series becomesa—a+a—-a+a—a...

aif nis odd

And S = { o
" o if nis even
.. The series oscillates finitely.

2. The p-Series: The infinite series,

(7)) Convergesifp>1.
(it) Divergesifp<1.

Proof: (i) p> 1. We consider the partial sum of order 2" — 1 where 7 is a positive
integer.

1 1 1 1 1 1 1 1 1
Sy, = 1+[_+_] +[—+—+—+—) +(—+—+...+—]
27 3P 47 5P 6P 7P gF 97 157

1 1 1
ot — +o.+— <1
Q"HP @ +p? 2" -p*
[1 1) (1 1 1 1) [1 1 1]
| —+— |+ —F—F—F— || —F—+ .+ —
2P QP 4P 4P 4P 4P 8P gP g?

1 1 1
+ + +.o.t—
{(znl)p (2n71)p (anl )p }

1+i+4.L+8.L+...+2”’1 !

27 47 87 "y

! + ! + ! +.ot !
2[7*1 (2p*1)2 (2[7*1)3 o (2p*l)i’l*l

n
(1)
27! 1

= : < : <k (Constant) foralln (say)
1—21)71 1—21)71

Now for any positive integer m, there exists a positive integer n such that
2"—1>m.

=1+

. {S } is clearly monotonically increasing (. All Terms are Positive)
8 <S8, <k vV m

. 1§, } is monotonically increasing and bounded above.

[e0]
. I .
Hence the series z _p 1S convergent.
m=1M

1 .
(i) p<1.Here, we prove that — diverges.
m=1M

Now when p <1, n” <n where n is positive integer.



We consider the partial sum of order 2". Sequences and Series
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P T T o111

Sy Tl —H| —+—|+| —+—+—+—| +
2P 3P 4P 5P 6f 7P 8P

1 1 1 [ 1) NOTES
+ + +..+ 2| 1+=
(P R ) (2"yF 2
[1 1] (1 11 1)
e B i e B s s sl el
34/ \5 6 7 8
(1 1 1) [ 1 1)
+ Fodt—| |v—2—
L2”’1+1 2142 Z"J n? n

[ 1) (1 1) (1 1 1 lj
21+ =+ =+=|+|=F+=F+=+=|+..
2 4 4 &8 8 8 8

1 1 1 1
l+=+2.—+4.—+..+2""1 —
2 4 2"
_ 1 1 _ n
S l4+=4+—+—+..+=— =1+
2 2 2
n
SZ” 21+E

. Thus, for an arbitrary G>0, S,, > G whenever 1+ % >G
e, n>2G-2.
Thus, the partial sums are monotonically increasing.
Ifm>2"thenS > S,>G forallm>2¢"2

. The sequence of partial sums {S } is monotonically increasing and
unbounded above and hence converges to + oo as n — .

. 1 .
Hence, the series Z_p divergesto+ocowhenp <1.
m

Cauchy's General Principle of Convergence
Statement: A necessary and sufficient condition for the convergence of an infinite

o0
series Z u, 1s that for every positive number &, however small, there exists a
n=1

positive integer n,, which depends on g, such that,

lu, +u +..+u |<e forallm=n2zn,

Note: If Zun converges then lim u =0.

=l n—»oo

Applications of Cauchy's Principle

Example 2.5: Prove, by using Cauchy's criterion that the series,

1 1 1 1 1 1

— =1+—+—+—+—+..4+—+... converges.

2T TR E s
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}’l+p
1 1 1 1 1
Solution:Here | 2. 1| = + + +..+——| forp>1.
k=n+1 [n+1 |n+2 |n+3 n+p
1 1 1
—+ ot
o 2n+l 2n+p—l
(. 1 SUNS S
i) ) (i-D).4321 2222 2"
1 1 1 1
= —ll+=—+—=+..+—
on 2 22 Zp—l
p
1 1_(;) 1
= — < forallp >1
2" 1
L [1_)
2 2
i forallp>1
|_ .2n p=>1.

0t p
( J — 0asn— oo,

Then for each £ > 0, there exists a positive integer n, which depends on ¢ for
which 2 Gj <eifn>n,.

n+ P 1

2%

k=n+1

<gforn>n,andp > 1

Hence, by the Cauchy's principle, the given series is convergent.

Tests of Convergence and Divergence

Result (1): IfZu be aconvergent series of positive terms, then it necessarily
follows that lim u =0.

n—>®

Result (2): IfZu isaconvergent series of positive and decreasing terms, then it

lim
n—> o0

necessarily follows that nu =0.

1. Comparison Test

Let Xu and Zv, be two infinite series of positive terms. If lim — =k, anon
n—o vV,

zero finite quantity, then the series are both convergent or both divergent. If lim n
n—o v,

=non zero finite quantity, thenif Zv _is convergent, Zu is convergentandifZv is
divergent, Zu is divergent.

Example 2.6: Test the convergence of the series whose nth term is y/n* +1—-n.
. 1
Solution: Here, u = \Jn* +1 —n and we take v,=



1
— Sasn—o
Since, lim & = % andZv = Z— is divergent, thus by the comparison
n—w vV,
test Zu is divergent.

2. Cauchy's Root Test

LetZu be a series of positive terms and,

1
lim (u,)" =1

(i) If1<1,thenZu isconvergent.
(@) If/>1,then Zu is divergent.
(iii) If/=1, then the test fails.

Example 2.7: Test the convergence of the series,

RORH Rl
—+[=| +| =]+t +
3 5 7 2n+1

Solution: Here, un=( " J

2n+1
1
(u ); = n
" 2n+1
L n 1 1
lim (u,)" = lim = lim — = — <1
n—o0 n—wo 2n +1 n—)oo2+7 2

n
Hence, by the Cauchy's root test the given series is convergent.

3. D’Alembert's Ratio Test

Let Zu_ be a series of positive terms and  lim Zntl =

n—>w u
(i) If1<1,thenXu isconvergent.
(@) IfI>1, then Zu is divergent.
(iii) If/=1, then the test fails.

2 3 4
Example 2.8: Prove thatthe series x + % Tyttt (x>0) is convergent if

0<x<1 anddivergentifx> 1.

n n+l1

. X X
Solution: Here, u = — andu
" n " n+1
U, xn+l n X
u n+l 1

X_n:— —>Xasn —»> ©
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n

: un . . .
NOTES Ifx>1, then nh_f)f})o u—H > 1, and the series is divergent.

And ifx =1, then the D’ Alembert’s ratio test does not give any definite
conclusion.

But when x =1, the given series becomes a divergent harmonic series,

1 1 1 1
I+—+—+—+..+—+..
2 3 n

. The series is convergent if 0 <x <1 and divergent ifx > 1.
4. Raabe's Test

LetZu be a series of positive terms and,

. u, , (u )
lim {n —1|; =/or lim Rn=lwhereRn=nL J —J
n—>o u

n+l n— o Upt1
If/<1, then Zu is divergent.

If/>1, then Zu_is convergent.

If /=1, then the test fails.

Remember that when D’ Alembert’s ratio test fails, we normally apply
Raabe's test.

Example 2.9: Prove that the series,

l_l 1‘3_l+1'3'5.l+...t000 converges.
23 2.4°5 2.4.67 ’
_1.3.5.2n-1) 1
2.4.6..2n 2n +1

C1.3.5..2n-DQ@n+1) 1

Yt T Ty 4 6. Q) (2n+2) 2043
2n+1) (2n+1 [Hzi][Hzl]
Now, =l =;n+1)(2n+3) = 1” 3n — lasn— .
Uy (n+1) 2n+3) b+4]O+ )
n 2n

Hence, D’ Alembert’s ratio test fails. So we consider the Raabe's sequence {R },

where
R =n o] =, 2(11-1—1)(2}1—&-3)_1
" U, 2n+1)(2n+1)

(4’ +10n+6-4n* —4n-1) _  6n+5

- 2 hn—
(2n+1) 2n+1)

6+é

— n

B
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n 2
n— n— 1
(2+)
n

Hence, by the Raabe's test the given series is convergent.
5. Logarithmic Test

Let Zu be a series of positive terms and,

lim {n log( n J} =/
n—> o Hn+1

If/<1, then Zu_is divergent.

If/>1, then Zu_is convergent.
If /=1, then the test fails.

Example 2.10: Test the convergence of the series,

2252 B o4t

x+ + +
2B 4
] n" x" n+l _n+l
Solution: Here, u_ = andu = (r” 27
! |n 8 n+1
Uy _ (}’l +1)n+1 xn+1 y Iﬂ _ (n+1)n+1 Xﬁ .
u, n+l1 n" x" (+Dln "

(1+1] X
n

1 n
lim (1+—j x =ex

n—w n

Hence, by the D’Alembert’s ratio test, the series is convergent if
. 1 . . . 1 .
ex <1,1i.e., x < - and divergent if ex > 1, i.e., x > — and the test fails when
e e

xX= é . We apply the logarithmic test for x = 1 .

e
u n

log( - j = loge—log(l+lj
Uy n

1
loge —n log(l +—J
n

(1 1 1 j
1—}’[ —__2+_3_...
n 2n 3n

u 1 1
onl n = ——— 4.
SR

n+l
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<1

N | —

“ lim n log( “n ] =
n— o Uyt
C e 1
Thus, the series is divergent when x = —.
e

Q | =

. . 1 . .
Hence, the series is convergent if x < — and divergent if x >
e

6. Gauss’ Test

Let Xu_be a series of positive terms and we can express —— in the form

Uyt
1+£+B—"(p>1),
n np
e, M =1L Pogyo
u n pP

n+l

Where {B ) is a bounded sequence. It will be sufficientif { } isa convergent
sequence because it will be necessarily bounded. Then,

() Zu, convergesifa> 1.
(it) Zu divergesifa<1.

Note: When D’ Alembert's ratio test fails, one may try Gauss’ test, without going
through other tests.

2.4.6.8.. }2

Example 2.11: Test the convergence of the series 2{3 579 0n+D
D .9 En+

2
Solution: Here, unZ{ 2.4.6.8..2n }

3.5.7.9...2n+1)

And L [ 2468 2042 ?
L 13.5.7.9..2n+1)(2n+3)

2 2

. =(2n+3) =(1+ 1 j
Uy 2n +2 2n+2
1 B,

1 2 1
= 1+—+-2 where = n’ =+ -—
non ! 2n+2)* 2n+2 n

Now, B, = I’l2|:;+ ! —l}

4m+1)> n+l n

o1 1
" _
{4(;1“)2 n(n+l)}

_ o|ln—-4Mn+D| _ | -3n-4

S A e d U VN ) Bt e S
4(n+1)*n 4(n+1>n
54

n 3
= ——5 > - asn—>wm

4
4(1+1j
n



.. Hence, {B } converges and hence is bounded. Sequences and Series
n of Functions

.. By the Gauss’ test, the given series is divergent because a = 1.
7. De Morgan's and Bertrand's Test
Let Zu_be a series of positive terms and lim B =/, where B =(R —1) NOTES

n—» 0
un

logn and R = ~1.

Upl

If/<1, then Zu_is divergent.
If/>1, then Zu_is convergent.
If /=1, then the test fails.
Example 2.12: Test the convergence of the series
£+ 12.32x+ 12.32.5° e 12.32.5%..2n—-1)? =
22 22,47 22 4% ¢ 22.4%.6%...(2n)°

12.32.5%..(2n -1 e

Solution: Here,u =
" 22 .47 6%, (2n)?

123252 2n—-1)? 2n+1)? o

And u =
22 42 6% (2n) (2n+2)?

2
1
2 (1 + —]
Uy _ (2n+1) .= 2n
u, (2n+2)? [1 N 2 )2

X—>Xasn —»> o

2n

Hence, by the D’ Alembert's ratio test, Xu converges if 0 <x <1 and
diverges if x> 1. If x = 1, then the test fails.

When x =1, we consider Raabe's sequence {R } where R = [ U _ IJ n.

Uyl
S R=» (2n+2)2_1 _ 4n* +8n+4—4n* —4n—1
S (2n+1) (2n +1)?

4(l+3jn2 (1+3j
_ n(4n+3) _ 4n _ 4n

2 2 2
@naD7 g (1 +1j (1 +1j
2n 2n

—>lasn— o

". Raabe's test also does not gives any conclusion ifx=1.
We next try, D’Morgan’s and Bertrand's test.
Now, B = logn(R —1)
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()
1+—
_ —n—ll logn n

ogn
2 n 2
(2n + 1) (2+1j

n—w© n

o
—>0asn—> o ( lim Ognzoj

Since B — 0 as n — oo for x = 1, hence Zu_is divergent forx =1
(B =0<1).

. The given series is convergent for 0 <x <1 and divergent forx > 1.

8. Alternative Bertrand's Test

n—>x0

Let Zu be a series of positive terms and  lim {n log

Upi1

given series Zu is convergentif/>1and Zu isdivergentif/<1.
Example 2.13: Test the convergence or divergence of the series,

» [1)” 1.3 (1.3.5)
W+ = +|—| +|——
2 2.4 2.4.6

P
Solution: Here, u = {M}
" 2.4.6...2n

n+l

_ [13.5..en-n@En+)”
2.4.6..2n) (2n +2)

—>lasn—>wx

p
1
p (l+j
U, :(2n+1j _ 2n
2n+2 (1 +1j
n
So D’ Alembert's ratio test does not give any conclusion.
P
Now n log nlog{(wj }
U, 2n+1
p
(2
n
()
2n
ool )15
N T L L
p PRI I B

(11
2n 2 4n2

n log

_ HP{L_L+L_ }
2n 8n® 24>

1 1

- 1} log n =1, then the

.

+-.
3 8n
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2 8n 24n

u, P
2

lim nlog
n— o U,

NOTES
Hence, by the logarithmic test, the series Zu converges if % > 1 and
diverges if g <l.
When g =1, 1.e., when p = 2, the logarithmic test does not give any

conclusion.

Now we try the alternative Bertrand's test:

(n log Un_ 1] logn

Up+

= 2[l—i+L—..)—l logn
2 8n 24n°

1—i+ 7 —...|—1]|logn
4n  12n?

i

4n 1212 n
= -3, 7 _ |logn
4 12n n

—>0mwasn— o [ lim loﬂzo)

n—owo N

lim (nlog n —1] logn=0<1.

n— o U,

Hence, by the alternative form of Bertrand's test, the series Zu is divergent for
p=2.

.. The given series is convergent if p > 2 and divergent if p < 2.
Alternating Series: A series in which the terms are alternately positive and
negative or negative and positive is called an alternating series.

0
Thus, (1", =u,—u,+u,—u,+... isan alternating series.

n=1

if u >0Vn.

Or if u <0Van.
Leibnitz's Test

Let the alternating series be,

o0

n—1 _
zl(—l) Uy =1, —u, tu;—u,+ ..
e
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This series converges if
() Thesequence {u } is Monotone Decreasing (M.D.).

(i) u,—~>0asn—oo, ie., lim u =0.

n—>w

Example 2.14: Test the convergence of the series,

1 1 1 1 1 1 1 1
D l——4———+——... i) ———+——-—+..,forp>0
@ 1=5+37375 ()11’2173!’41’ P
Solution: (i) Theterms of the given series are alternately positive and negative,

so the given series is alternating series.

1

1
Here, u = — andu =
n n n+1

n+1
1 1 n—-n—1 1
Now, u ., —u = -— = = - <0
> T p 1l on n(n+l) n(n+1)

. u 1<u
n

n+

Hence, the sequence {u } is M.D.

1
And lim ¥ = lim — =0.

n—ow N n—o N

. Bythe Leibnitz’s test the given alternating series is convergent.

ii) The terms of the given series are alternately positive and negative. So the
g yp g
given series 1s an alternatin g series.

1
Here,u = — andu = !
n? (n+1F
. P 1 1w’ -(1+n)?
. - n - -
il (n+1)?  n? {n(n+1)}?
n? —{l+pn+p(1|)__1)n2+...+np}
n
{n(n+1)}*

—(l+pn+p([r2_1)n2+...+pnp_
- <0forp>0
{n(n+1)}*

1

U < u.

So the sequence {u } is monotone decreasing and lim Lp = 0 for
p>0. e

Hence, by the Leibnitz's test, the given series is convergent.
Theorem 2.4: Every absolutely convergent series is convergent.
Proof: Letthe series Zu be absolutely convergent. Then X | u |is convergent.

By the Cauchy's general principle of convergence, for any given
&> 0, there exists a positive integer 7, such that
[u, |+ u |+...+|un+p| |<eforalln>n and forallp=1,2,3 ..

+|u

nt2

ie, |u, | o T T U, |<eforalln>n andp =1



Now, forn>n andallp=1,2,3..,

i+t + b, < [+, |+ o+, | <6

nt2
Hence, by the Cauchy's general principle of convergence, the series Zu is
convergent.

2.4 POINTWISE AND UNIFORM
CONVERGENCE

Definition: Suppose {/ },n=1,2, 3, .... is a sequence of functions defined on
a set S and suppose that the sequence of numbers {f (x)} converges for every

x € S. We can then define a function f by /f(x) = }g{clfn (x), xS,

Under these circumstances we say that {f } converges to fpointwise on §
and that fis the limit or the limit function of { }.

Note: A sequence {f } of functions is said to converge pointwise ona set Sto a

limit function £; if for each x € S and for each € > 0 there exists an N (depending
on x and €) such that,

£ @) —fix)| <e, forall n >N.
Uniform Convergence

A sequence of real valued functions {f ) defined on a set S'is said to converge
uniformly to a real valued function fon S'if for € >0 3 m € N such that,

I/ (x)—fx)|<eVn=mandx € §

If (/') is not uniformly convergent on S but it is convergent for eachx € §
then (/) is said to be pointwise convergent on S. Evidently, uniform convergence
of (f ) to fon a set S implies that (f ) also converges pointwise to fon S. But the
converse is not true.

Note that if £ (x) converges pointwise to f{x) on a set S then, if f (x) is
convergent uniformly on S, it converges uniformly to f{(x) on S.

Also note thatifon S, |f (x) - f{x)| <M , where M  is independent of x and
ifM — 0, then f (x) — f(x) uniformly on S.

In the sense of usual convergence the natural number m involved in the
definition depends upon the number € and on x. In uniform convergence m

essentially depends on € only. Keeping in view this fact, various developments
regarding convergence provide theory for uniform convergence.

Note that the pointwise convergence is a local property whereas the uniform
convergence is a global property.

Example 2.15: The sqeuence (x") converges uniformly to 0 on [0, a], where
0<a<1,butnoton [0, 1).

Solution: For >0, letm >loge/log a, where 0 <a < 1. So thatx € [0, a] and
n>m implies that,

|xn_0|Sangam<alogs/loga=8
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Hence (x") converges uniformly to 0 on [0, a], where 0 <a <1.
On [0, 1) x"— 0.

1
Ifpossible, suppose x" converges uniformly to 0 on [0, 1). Then for e = 3
I m e N, such that

1
|x”—0|<§Vanandee [0, 1)

" 1
:(l—lJ <%V n>m taking x=1—;€[0,1), as n — oo
n

1
=el< g2 Contradiction.

Thus, (x") does not converge uniformly on [0, 1).

Example 2.16: If P (x) =0 and P (x) be the sequence of polynomials defined
by,

P,(x)= Pn(xnw

Forn=0,1,2,...then P (x) converges uniformly to | x [ on [-1, 1].
Solution: Here,

x|~ B, (x)={|x|—f’,,(x)}(l—wj’

2

This implies that 0 < P (x) <P  (x)<1,forn=0,1,2, ... and for
€>03m e Nsuchthat v |x|<1.

0< |x|—E1(x)S|x|(l—|—)2C|j , forn=0,1,2,..

<2 (1Y by ma
T\ pg1) Y Axmum

2 8Vn2m(>2—1j
n+l €
Hence, the sequence of polynomials P (x) defined as above, converges
uniformlyto | x |on[-1, 1].

<

2.5 CAUCHY CRITERION FOR UNIFORM
CONVERGENCE

Cauchy’s General Principle of Uniform Convergence

Theorem 2.5: A sequence of real valued functions < f > defined on a set S
converges uniformly on Siff to each given € >0 3 m € N such that,



fnw(x)—fn(x)‘<8Van,pZO andx € S.

Proof: Let (f,) converges uniformly to fon S. Then for >03 m € N such that,

1
fn(x)—f(x)|<58Vn2m and x € S. So that,

ooy @)= f () + £(2) = £,(2)

oy @)= £,(0)] =

<

VACORNACY

ooy )= f )]+

< la+lg:S,Van,pZOandxeS.

Hence, the condition in the theorem is necessary.

To prove sufficiency, in view of the Theorem 2.5, let ( £, ) converge to fon
S, then for € > 0 3 m € N such that,

1
foop () = £, (0] <Z€ ¥ nZm,p>0 andx e 5. Thus,

1 1
Jn(X)=5E< Sy, (D) <y () + 78V p20 andx € S.

When p — oo, then we get

fm(x)—%aﬁ liil}o fmﬂ,(x)zf(x)Sfm(x)+%8,VxeS
ie., £, (%) = f(x)] < %g, Vxes.

£,(0) = £, () + £,(x) = f(x)]
[,(0) = £, (0] +]£,(0) = f(x)

£, ()= f()|=

<

Therefore,

1 1
<58+—8=8,Vl’12m and x e S.
Hence, < £, > converges uniformly to fon S, i.e., the condition in the theorem

is sufficient.

Theorem 2.6: f (x) converges uniformly to f(x) as Siff

max

xeS

f,,(X)—f(x)|—)Oasn—)oo.

Proof: MaX | £ (x)— f(x)|—>0 asn — oo.

=  Fore>03m e Nsuchthat MaX | £ (x) - f(x)|<eVn=m
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= |f,(x)-f(x)|<eVnzmandV xe§

= f,(x) converges uniformly to f{x) on S.

Conversely, if f (x) converges uniformly to f{x) on S, then for
€>0 3 m € N such that,

f(x) —fix)|<e2 v n>mand x € S

:maX|fn(x)_f(x)|§g/2<8v n=>m.

xeS§

= MaX| f(x) — fix)| > 0 as n — oo
Example 2.17: The sequence <x" > converges on [0, 1] to the function fdefined
by fix)=0whenx # 1 and f{1) = 1. The convergence is not uniform on [0, 1].

1

1
and any m € N, let x = 27" then x" = — and x*" = 1 gives

F =
or € )

]
1 . .
2 2 > Py 1.e., the above theorem is not satisfied.

It can be easily seen that the concept of uniform convergence is compatible
with addition and subtraction. But the situation in respect of the multiplication is
different. The uniform convergence may or may not remain. For example, the

n+x+1> <(n+1)x2

sequences < (n+Dx P > are uniformly convergent on (0, 1).

|xm _x2m| —

1+n°x
For,
n+x+1 1 1 )
(n+1)x—; =m—>0:>leens>03meN:
n+x+1 1
(n+Dx T TV n>mandx € (0, 1).
And,
(n+l)x2_ n+l n+l

—->0=Givene>03dm e N :

1+n°x*  1/x*+n? n’

(n+1)x?

-0
1+ n*x?

<gvy n=>mandx e (0, 1).

n+x+1> <(n+1)x2

Now note that though < (n+Dx 1+ a2 > converge uniformly on




nx+xt+x

(0, 1) but their product sequence <W> is not uniformly convergent on
(0, 1).

The uniform convergence of the product sequence is preserved under
additional condition of uniform boundedness.

A sequence f (x) defined on a set S'is said to be uniformly bounded on
S ifthere exists k> 0 such that,

()| <k vy xS, andn.

Under the above additional concept of uniform boundedness we can define
that iff (x), g (x) are uniformly convergent and uniformly bounded on a set S then
/,(x)g (x) converges uniformly and is uniformly bounded on S.

Cauchy’s General Principle of Convergence for Series

The sequence of partial sums (s ) of a series X u_converges iff for given
€>03 m € N such that,

|s,., —s |<eVn=mand p>0

n+p

re, |u,  +u ,+...4u _ |<eVn=mand p>0.

n+l n+2 n+p

This condition does not involve a separate evaluation of's or R .

Therefore, as for sequences, Cauchy’s general principle of convergence for
series is given by the following theorems.

Theorem 2.7: A series X u_converges iff to each € >0 3 m e N such that,

+u, ,+...tu

n+l n+2 n+p

| u <KeVn>mand p>0.

Corollary 1: The series Zu convergesiff R — 0.

Proof: LetXu — s,thens —s.Sothats=s +R impliesthat R — 0. Onthe

1
other hand,if R — O thenfore>03m € Nsuchthat|R | < 5 € v n=>m. Thus,

|un+l+un+2+'“+un+p| =|Rn_R

<IR|+IR,.)

n+p|

1 1
<—g+—e=gVn2mand p>0
2 2

Hence, X u converges.

1

+.... diverges to + 0.
2n—1

Example 2.18: The series 1 +§+l+ et

1
Solution: For € = 3 if the series converges by the above Theorem 2.7

3 m € N such that,
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| 1 + ! +..+ ! |<1Vn2mandp21
12n+1 2243 7 2n+2p-1| 8

In particular, forn=p=m,

a <| 1 + ! + +;<l ..
am—1 |2m+1 2m+3 7 2mtam-1| g @Contadiction.
=>4m<-1

Therefore, the given series is non-convergent, and (s ) being monotonically
increasing and non-convergent, diverges to +, o, i.¢., the given series diverges to
400,

A Necessary Condition for Convergent Series

Theorem 2.8: If X u_is convergent then limu = 0.
Proof: X u_is convergent iffits sequence of partial sums (s ) converges.
Letlims =/ Sothats =1/
Itgiveslim (s, —s )= [-[=0,ie,limu =0.
21/n— +oobutlimu =1lim 1/n=0. Therefore, the condition in the above

Theorem 2.8 is only necessary.

A Sufficient Condition for Divergent Series

Theorem 2.9: Ifu — [+ 0then X u diverges to + o or —oo according as
/>0, or <0 and is finite or infinite.

Proof: Let / be finite and /> 0.

Then, fore =//2>03m € Nsuchthat |u —1|<[/2,i.e.,l/2<u <32 v n>
m.

This implies thats >(n—m+1)I2+u +..+tu v nzm,ie.,s,
—> + o0,

Hence, Z u_diverges to +o0if /> 0.

If1<0,fore=-l/2>03m € Nsuch that|u —I|<-1/2,i.e.,3l2<u <
112 v n>m.

Thus,s <(n-m+1)12+u +..tu __ v nzmie.,s—>—oo.

Hence, Z u_diverges to—oo,if /<0.

Letu — + oo, then forany k>0 3 m € N such thatu >k v n>m. So
thats >(n—-m+1)k+u +..+u v n=m. Hences —> +oo,ie,Zu
diverges to + oo.

Similarly, if u, — — oo, then for any k> 03 m € N such thatu <k v
n>m.Sothats <(n-m+1)k+u +...+u v nxm Hence,s ——oo,
Le., X u divergesto —oo.



Since X 1/n -+ and X —1/n — — 0 and lim + 1/n = 0, therefore, the
condition in the above Theorem 2.9 is not a necessary condition for divergence of
a series.

X
Example 2.19: For any x € R, the series Z cos ” diverges to + .

) ) ) X ) )
Solution: Since limcos— =1 foranyx € R, then the series 3 cosf diverges
n—>0 n n

to + oo.

2.6 WEIERSTRASS’S M-TEST

Theorem 2.10: A series 2f (x) converges uniformly (and absolutely) ona set S'if
there exists a convergent series X M, of non-negative terms M such that,

F(X)<M v xeSandn e N.
Proof: IfX M is convergent then for £ >0 3 m € N such that,
M, +M,, ,+..+M _ |<eyn>mand p>1.
Therefore, v x € S, anﬂ(x) +f”+2 (x) + ... +];+p €3]

<V @0+ e I @)
<M, +M _+..+M

n+p

<gyn2m,p>1land x € S.
Hence, X f (x) converges uniformly on S.

From above given notation ([f . (x)| + [ (x)| + ... + m+p(x)|) <gvy n
m, p=1andx € S, implies that 2 / (x) also converges absolutely on S.

Example 2.20: The series Z 3" sin converges absolutely and uniformly on

4" x
(a, ©) where a > 0.

Solution: Forany 0 <x € (a,0)3m € Nsuchthat4"x>1 Vv n>m. Hence,
the series after a finite number of terms consists of positive terms. Since,

sin — 4
=lim-——24X =5,

| 3

S1

n

u

lim

+1 -
! n 4n+1 X

Therefore, the given series converges absolutely on (a, ), ifa > 0.

Also, for n > m, sin ! < ! < ! .
4’1x 4’1x 4’1—"1

< 4" (éj Yn=>m.
4

3" sinL
4" x

Thus,
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Since, 34" (ij converges, therefore, by Weierstrass’s M-test,
4

23" sin1/4"x converges uniformly on (a, ©), where a > 0.

s X
Example 2.21: The series
P Z:‘l+nzx2

where 1 >a> 0, butnot on [0, 1].

Solution: On [a, 1], where 1 >a >0,

converges uniformly on [a, 1],

X 1
u (x)|= <
[, ()] 1+n°x*  1+n%a®

And X 1/(1+n*a?) converges, therefore, by Weierstrass’s M-test, the given
series converges uniformly on [a, 1].

On the other hand, let the given series be uniformly convergent on [0, 1],

then for ¢ = é > 0 3 m e N such that (by Cauchy’s principle, for n=p=m)

1

| X X X
<-,
8

+ +.o
1+m’x®  1+(m+1)°x 1+(2m)’ x>

mx
1+(2m)* x>

<_
8

On putting x = 1/m it gives 1/5 < 1/8, a contradiction. Therefore, the series
given is not uniformly convergent on [0, 1].

Check Your Progress
Define the term sequence.
When is the sequence bounded above and bounded below?
State about the bounded sequence.
What do you understand by the term ‘Series’?
Define pointwise and uniform convergence.
State Cauchy’s general principle of uniform convergence.
What is the Weierstrass’s M-test?

Nk WD =

2.7 ABEL’S TEST FOR UNIFORM
CONVERGENCE

Theorem 2.11: If X f (x) converges uniformly on a set S and (g (x)) be monotonic
and uniformly bounded on S, then the series 2f (x) g (x) converges uniformly
onsS.

Proof: Let pRn(x) =/, L)+ +fn+p(x), v x € S, then
L) 8,0 + 1,00 &, ,(0) + .+ S (D g, ()

= R®g,., ®+LR®-RXIg,,x . .. +[RE&- RX)]
g, .,



= 1Rn(x) [gn+1(x) _gn+2(x) to.F p,an(x) [g,, +p- 1()C) - g,, +p (X)] + pR,,(x)
g, (%) ey

Since Zf (x) converges uniformly, for € >0 3 m € N such that,
|pRn(x)| <gyn>2mandp>1andx € S,

Therefore, Equation (2.1) gives

@) €@, @) €@ + oo T, €, )

< €lg, ()~ g0 () + g,,(0) — .~ g, )]+ [g,, ()]
=& 1g,,() g, 0| +elg,, (] <e. 2%k+e.

k=3ke, yn>2mand p>landx € S.

For, (g (x)) being uniformly bounded 3 &> 0 such that,
lg(x)|<kvy xeSandn e N.

Hence, 2f (x) g (x) converges uniformly on S.

Uniform convergence of functional series plays important role in term-by-
term integration and differentiation of the infinite series.

2.8 DIRICHLET’S TEST FOR UNIFORM
CONVERGENCE

Theorem 2.12 (Dirichlet’s Test): Let X be a metric space.
If the functions f: X — C, g : X - R, n € N satisfy the following:

1. F,(x)= Z S (%) is bounded uniformly in 7 and x.

m=l

2. g ., <g(x)forallxeXand neN.

3. {g (x)} ,y converges uniformly to zero on X.

Then, z J.(%)g,(x) converges uniformly on_X.
n=l

Proof: We will prove this by using summation by parts formula,
5,(0) = Zf (g, ()
- F(x)g(0+ gm (0= Fy(9)]g, (%)
- F(mg )+ ZF (0(g)(x) —Z F (x)g,(x)
-3 e - Z Fu()g,u ()

= F (02, ()~ g4 (0] + g, (D, (x)
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So if m > n, the difference between the mth and nth partial sums is,

5,005, = > F 02, ()~ g (]+ 2,0 ()F, () — g, (), (x)

k=n+1

If M= sup{|F (x)| x e X,n e N},

15,0 =5, <] 3 [ ()~ g, )]+ Mg, (6) + Mg, , ()

k=1+1

= M[gnﬂ (x) - gm+1 (x)] + M gm+l (S) + M gn+l (x) e (2'2)
= ZM gn+1(x)

Sinceg . (x)=0,g  (x)=0andeveryg(x)—g, (x)=0

For each fixed x, 11_{2 8,.(¥)=0_So Equation (2.2) guarantees that {s (0}

is a Cauchy sequence and hence converges. Call the limit s(x). Taking the limit of
Equation (2.2) as m — o gives,

|s(x)=s,(x)[<2Mg,, (x)

. Since g . (x) converges uniformly to zero as n — oo, s (x) converges
uniformly to s(x) as n — .

Example 2.22: We shall consider the following three different power series:

3 zY 3 1z and ). SN for some fixed R > 0. For all three
n=0 R ’ n:On R ”:Onz R .

series, the radius of convergence is exactly R since, for /€ {0, 1,2}

1
lim su ",’iL —l]imSu r{/z —l
n—® P n[ R" R n—ow p n R

So all three series converge for all complex numbers z with |z| < R and
diverge for all complex numbers with |z| > R.

z

For |z| =R, start with the series Z :10 (Ej . Then we can compute exactly

the partial sum,

n+l

&)

n z m _\ny f R

E(Z)ZZ(EJ = oz if z#
m=0 _E

n+1 if z=R

(2.3)

1
Now, if |z| <R, this converges to | _ Z as n—> oo. Also, this diverges for

n+l
i I i 2
(&) ]

n+l

lz| > R, because 0,




Claim that this also diverges whenever |z| = R. For z =R, it is obvious
because n +1— .

n+l
. z
Also for |z| = R withz # R, (Ej cannot converge, because

n+l

Z-1
R

3_1‘2
R

: ‘

z

I ) , which has

This is independent of #. So the geometric series ZT_O[

radius of convergence R, converges if and only if |z| < R.

w 1(zY
The third series, Zn—oy(ﬁj , converges for all |z| < R, by comparison

. o 1 . . . .
with Z”:On_2 . As the series has radius of convergence R, it converges if and only

if|z| <R.

z

» 1(zY
The middle series ZnO;(Ej has a more interesting domain of

convergence. Of course the radius of convergence is exactly R, so the series
converges for all complex numbers z with |z| < R and diverges for all complex
numbers with |z| > R.

. . w 1z " o 1 . .
For z = R, the series is z"*’;(}j = z":(’; , which diverges. So, that

leaves |z| = R but withz #R.
This is where the Dirichlet’s test comes in handy. Fix any € > 0 and set,

X={zeC|z|FR,|z—R|2¢}
f,,(z){%j

F(2)= Zn: (%) as in Equation (2.3)

1

gn =

n
DY
1 ‘Rkju
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So that the hypotheses of the Dirichlet’s test are satisfied and the series

o 1(zY
converges uniformly on X. We conclude that z"‘();(}j converges for |z| <R

and for |z| = R, z# R, and diverges for,
|zl > R and for z =R.

2.9 UNIFORM CONVERGENCE AND
CONTINUITY

Theorem 2.13: Assume thatf, — funiformly on S. If each f is continuous at a
point ¢ of S, then the limit function fis also continuous at c.

Proof: Given thatf —funiformly on S.
= For every € > 0 there is an M such that,

| f,(x0) = f(x) |<§ forall n>m and for eachx € S, f, is continuous at c.
= For above € > 0, we can find a > 0 such that,
|fm(x)—fm(0)|<§ whenx e (c—8,c+8) NS

Ifx € (¢ -5, c+0) N Sthen,

[ f()=f () =[f(0)=1,()+ £, ()= [, () + £, ()= f(O)]
= [f) = £, ) [+ 1, () = 1, ([ +] £, ()= f(e)]

€ € &
= —+—+-

3 3 3
=g

Or fis continuous at c.

Note: The converse of the theorem is not true, i.e., a sequence of continuous
functions may converge to a continuous function, although the convergence is not
uniform.
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2.10 UNIFORM CONVERGENCE AND
RIEMANN- STIELTJES INTEGRATION

Theorem 2.14: Let o be of bounded variation on [a, b]. Assume that each term
of the sequence f, is areal valued function such that/ € R(a) on [a, b] for each n
=1, 2,... . Assume that f — f uniformly on [a, b] and define,

g,0= [ £,(0da() ifx e [a,b],n=1,2,..., then we have:
(a) f € R(a) on [a, b].

(b) g, —guniformly on [a, b], where g(x) = j; f(®da(r).
Proof: It is sufficient to prove the case when o is increasing.

(a) To Prove Part (a)

To prove f'€ R(a) on [a, b], it is enough to prove that f'satisfies Riemann condition
with respect to a..

Jf, —funiformly on [a, b]. This implies that given & > 0, there exists N such
that,

| f(x) = fy (D)< forall x € [a, b]

&
Aoa(b) - ala)]
Then for any partition P of [a, b] we have,
U= fso)| = [ X1, M,(f = Ao,
Do M (f = £ A,

&€ n
NECOETT R,

€
) —a(@)] [ou(b) — a(a)]

€

3

Similarly we get, [u(P,f = fy, o) |<§ for each f € R(o) on [a, b]. In

particular f, € R(a) on [a, b]. So, for the above € > 0 we can find a partition P,
such that,

U(P, f,, o)—L(P, f,, oc)<§ for all P> P

Then for such P we have,
U(P,f,(l)_L(P,f,(X):U(P,h‘i‘fN,(X)_L(P,h'FfN,(X), where h:f_fN

= U(P,h,o)+U(P, f,,0)— L(P,h,a)— L(P, f,,)
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= U(P,h,0) = L(P,h,a)+U(P, f,a)—L(P, f,, )

= U(P,f—fN,OL)—L(P,f—fN,OL)+U(P,fN,OL)—L(P,fN,OL)

< U(P,f—fN,OL)—L(P,f—fN,OL)+U(P,fN,OL)—L(P,fN,OL)

< |U(P,f—fN,OL)|+|L(P,f—fN,OL)|+U(P,fN,OL)—L(P,fN,OL)
< —4—+=

= €

= fe R(a) on [a, b]

To Prove Part (b)

J,—funiformly on [a, ]

= For any € > 0 there exists an N such that,

| £, (x)=f(x)|< for all n> N and every ¢ €[a,b]

€
2a(b) —a(a)]
Ifx € [a, b] then,

5, 0-g@| = |[ £ 0da0-] roda)
= [ £~ rOdaw)
< [1f0-f®da)

g x
< o) @ [ daob)-a(a)]

&
~ 2a(b) - a(a)]

€
<3

<eg
= g — guniformly on[a, b]

Theorem 2.15: Let o be of bounded variation on [a, b] and assume that

> f,(x)=fx) (uniformly on [a, b]), where eachf’ is areal valued function such
thatf € R(a) on [a, b]. Then we have,

(a) f€ R(a) on [a, b].
®) [">7 £, 0dony=3" [ f,t)da() (uniformlyon [a, b]).

Proof: Define s, =)' f,(x). Thens e R(a), since each f, € R(ar) on [a, b].

Also, Y f,(x) converges to funiformly on [a, b]. So, s_converges to funiformly

on [a, b]. Then, f € R(a) on [a, b]. To Prove Part (b), g,(x) = Lx s, ()do(t).



Then by Weierstrass M-test, g — g uniformly on [a, b] where
2(x) = j f(0da(r), or limg, (x)=g(x).

= lim["s,()da() =[ f(Oda(0)

= lim[" > fOda® =] 3" fOda)

= 1imY" [ f(0da® =] Y f(Odal)

= Y[ Arwde =" f.(Oda)

= Yo [ fodany =] f@ndae)

2.11 UNIFORM CONVERGENCE AND
DIFFERENTIATION

Theorem 2.16: Assume that each term of {f } is a real valued function having a
finite derivative at each point of an open interval (a, b). Assume that for at least
one point x, in (a, b), the sequence {f (x )} converges. Assume further that there
exists a function g such that f'— g uniformly on (, b). Then,

(a) There exists a function f'such that f — funiformly on (a, b).
(b) For each xin (a, b) the derivative f'(x) exists and equals g(x).
Proof:

(a) Assume thatc € (a, b) and define {g } as,

L= 1,(0)

if x#c
g,(x)= x-c .. (24)
f'.(c) if x=c
Now,
limg, ()= /", (¢)
=g,(c)
Therefore, g _is continuous for each n.
Also,
limg, () = lim/"(c)
= g(c)

Thatis, {g (c)} is convergent and so is Cauchy. To prove that {g } converges
uniformly on (a, b), let € > 0 be given. Since, f'— g uniformly on (a, b) and
{g (o)} is a Cauchy sequence,
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= There exists a k£ € N such that,

10— f' (%) |<§ for all x € (a,b),n,m>k and

|8,(0)= g, ()< for all n.m 2k ..(2.9)

Now, if xe (a, b), x # ¢ and n, m > k, then we have,

RESACIACSIAC
(g, = [ ﬁccl

S ()= 1, () =1, ()~ 1, (C)]I

xX—c

= lg,(x)— g, (%)

~ ‘h(x)—h(c)

X—cC

...(2.6)

Clearly, 4 is differentiable on (a, b).
Therefore, by mean value theorem, there exists a pointx, in between x and
c such that,

h(x) — h(c) = h'(x )(x —¢)
Now from Equation (2.6) we get,

Al x=c|
18,0 =8, = T g

= [A'(x))|
= 1) = ()]

S .
<5,forn,m2kand x € (a,b) with x#c¢

= lg,(x)—g,(x)|<e - (27)
From Equations (2.5) and (2.7) we get,
lg,(x)—g,(x)|<e forn,m>kand xe(a,b) ...(2.8)

which implies that {g } is uniformly convergent.
To prove thatf — funiformly on (a, b), form the particular sequence {g }

corresponding to the special point ¢ = x, for which {f (x,)} is assumed to converge.

Now from Equation (2.4) we get,
S (x) =/ (x,)+(x—x,)g (x) for all x € (a, b)
Hence we have,

1) = 1,00 =1,0x) = £, (%) T (¢ — x) [g,(x) — g, (x)]



Let € >0 be given.

g, converges uniformly on (@, b) and {f (x,)} is a Cauchy sequence. This
implies that there exists a k € Nsuch that,

|&,(x) g, (x) |<ﬁ and,

[ £,5) = £,(x)|< forall n,m > kand xe (a, b)
Hence if n, m > k and xe (a, b) we get,
| £, = [ S 1 f,G0) = (o) [+ x = x| g, (x) - g, (%) |

€
2(b—a)

e
L ib-a
<3 (b-a)

=g
Thatis, {f, } satisfies Cauchy’s condition on (a, b) and so {f } converges
uniformly on (a, b) say to f.
(b) Assume ¢ € (a, b) then,

lim f(X) B f(C) — lim lirnn—><>o ﬁz (X) - limn—>oo f;q (C)
xX—>c xX—C X—>C xX—C
~ limlim 22~/
X—>C n—>© XxX—C

= limlimg, (x)

X—>C n—x0

= limlimg, (x)

= limg,(c)
= limf'” (C)
= g(c), which exists.
= fis differentiable at c and f'(c) = g(c) = lim,__ f' (c)

=1, =>1(c)
But, since c is arbitrary, f '(x) — f'(x).

Theorem 2.17: Assume that each {f } is areal valued function defined on (a, b),
such that the derivative exists for each x € (a, b). Assume that, for at least one

pointx, in (a, b), the series Z /. (x,) converges. Assume further that there exists
a function g such that Z S, (x)=g(x) (uniformly on (a, b)). Then,

(a) There exists a function f'such that f (x) = f(x) (uniformly on (a, b)).

(b) Ifx € (a, b), the derivative f'(x) exists and equals z [ (x).
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2.12 WEIERSTRASS APPROXIMATION
THEOREM

Theorem 2.18 (Weierstrass Approximation Theorem): Let / be a closed
and bounded interval. Suppose f: I — R is a continuous function. Then for each
&> 0, there exists a polynomial function p_:/— R such that,

| £(x)- p,(x)|<e forallxinZ or equivalently,

sup {| f(x)= p,(x)| :xelj<e.
We will prove this as follows:
1. The polynomial functions form a subalgebra that separates points of /.

2. The closure of this subalgebra is a lattice in C(/, R), the space of all continuous
function on / with the sup norm.

3. Using the compactness of /, and (1) and (2), one can find a point on this
lattice which is arbitrarily near /. This relies on compactness and argument
involving finite subcover of an open cover.

We shall prove a special case of Theorem 2.18 when /=[O0, 1] first. We
now describe the Bernstein polynomials.

Letf:[0,1] — R be a function. Then for each integer n > 0, we define the
Bernstein polynomial of degree » associated with fto be,

B,(/)() =if(§j(2)xka—x)”

Theorem 2.19: Suppose f: [0, 1] — R is a continuous function. Then for each
€ >0, there exists a polynomial function p: / — R such that,

sup{| f(x) = p(x)|:xelj<e

More specially, the sequence of Bernstein polynomial, (B, (f)), as defined
above converges uniformly to f-

Before we proceed with the proof, we shall derive a series of identities,
which are needed for the proof. The binomial theorem states that for integer » >0,

n n .
(x+y) =2 Ky .. (2.9)
k=0 k
Hence, from Equation (2.9), for integern > 1,
n-1 «(n-1 k| n—k-1
(x+p) =3 y ... (2.10)
o\ k
Multiplying Equation (2.10) by nx, we obtain

n—1 n _1
nx(x+y)'™ = Zn( i Jx"“y”“ .. (2.11)
k=0



n—lJ (a1
ki(n—1-k)!

n!
(k+D)!(n-1-k)!

= (k+1

n
= (k+l)(k+l] and so

From Equation (2.11), we have

< n _1 k+1_ n—k—
nx(x +y)”*1 = kz_(;n[ k }V ly :
_ S(k + 1) n k+1yn7k71
o~ k+1
n n
_ k kynfk
< n
— k kyn—k

Evidently, the above equality is true when n =0 and so we have that for any
integern >0,

nx(x+ ) = ;k(ij"y’”‘ .. (2.12)

From Equation (2.12) forintegern > 1,

< -1 k n—k-1
(n-Dx(x+y)? = ;/{nk jx y .. (2.13)

Multiplying Equation (2.13) by nx, similarly, we obtain

o (n-1
n(n— Dx*(x +yy 2= an{ i jxkﬂy"“
k=0

I
DML

C k(k+1) n jkarlynkl
k=0

=~

= N (k=1)k ”jxky"’f
py k

4 n
= ) (k—-Dk jxky”k
2K,
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The above equality also holds when n =0 and so we have for any integer
n=0,

n(n— 1x(x +y)y -2 = an‘,(k—l)k[Z]x"y”" .. (2.14)

Note that the identities in Equations (2.9), (2.12) and (2.14) contain the

n k _ n—k
same factor k Xy

n k  .n—k
Let r (x) = [k}c Yoo,

Now taking y to be 1—x, so that x + y =1, we have

n k | n—k
n(x) = (ka y

n k(1 nek
= kx(—x)

We obtain from Equation (2.9),

=@+ = 240

Or, for any integer n >0

WA ...15)

Similarly, from Equation (2.12) we obtain for any integer n > 0,

nx = Yk () . (2.16)

And from Equation (2.14) we obtain for any integer 7 > 0,
n(n — D2 = 2 (k=Dkr,(x) . (2.17)

k=0

Then for any integer n > 0,

Z(k —nx)’r,(x) = anxzrk (x)— 2nxz kr (x)+ Zkzrk (%)
k=0 k=0 k=0 k=0

= n'x’ irk (x)— anikrk (x)+ Zn:[k Dk +k]r, (x)

=n’x?—2nx . nx + nx + n(n — 1)x?
=nx(1 — x)
By Equations (2.15), (2.16) and (2.17).



Therefore, for any integer n >0,

i(k—nX)zn(x) = nx(1 - x) -~ (2.18)

We now proceed to the proof of Theorem 2.19.
Proof of Theorem 2.19: Since fis continuous and [0,1] is compact, the image
£([0,1]) is compact and so by the Heine-Borel theorem, £([0, 1]) is closed and
bounded. Therefore, there exists a real number M > 0 such that |f{x)| <M for all
xin[0, 1].

Given g > 0, since fis continuous on [0, 1] there exists 6 > 0 such that for
allx,yin[O0, 1],

=y < & = [fix) — V) < &/2 .. (2.19)

We now estimate how close the Bernstein polynomial B (f) is to ffor integer
nx1.

| /()= B,(/)(x)]

. (k
f(x)—Zf(n][Z]x"(l—x)”

_ f(x)—if(fjrk @)

_ f(x)ia(x)—if(fjrk(x)

. i[f(x)—f[%}jrkm

k=0

(Using Equation (2.15))

...(2.20)

We next examine the sum on the right of Equation (2.20) according to

k k
whether | x - |<d or |x - |28, where 8 is given in Equation (2.19).

k
If | x - |<d, then by Equation (2.19),

‘f(x)—f[ﬁj
n

k
Suppose now Ix—;|25.

e
<3 .. (2.21)

Then, |nx—k|>nd.

Hence,
f(x)—f[ﬁj‘
n

|f(x>|+|f(§j|gzM

(nx—k)*

2M NErS
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|nx—k|

nd

Because >1

.. (2.22)

Therefore, for any x in [0, 1] and for 0 <k <n,

K e 2Mm kY
=13+ 5 (x-3)

.. (2.23)

We add the sum €/2 so that we can combine Equations (2.21) and (2.22) in

one inequality for simplicity.

Using Equation (2.20) and the fact that 7, (x) > 0 for all x in [0, 1] and

0<k<n,weget

|/ ()= B,(/Hx)] =

2M

IN

n

e
25“

§+ ;Mz nx(1—x)

e 2M
:—+—x1 X
2 &n ( )

e 2M
< —+=
2 &n
Because x (1-x) <1 forxin [0,1].

Hence, foranyxin[0,1] andanyn>1,

2M
f@=B,(N0] < +5

Z[fm f(i Dr (x)
<Y (f(x)—f@j

& 2M
5;’}(@“‘5—22

k=0

1, (%)

€ kY )
RIS - . (x) By Equation (2.23)

[x_ﬁj 1 (%)
n

Z(nx k)'r,(x)  Byldentity (2.15)

By Identity (2.18)

.. (2.24)

2M
n>N= —<g¢g/4
o' n



It then follows from Equation (2.24) that,

n=N= | )-8, (NI
= 37:9 forallxin [0, 1].

3
Hence, n 2 N = sup{| f(x)-B,(f)(x)|:x€[0,1]} < Xg<8 for all x in

[0,1]. This shows that B (f) — funiformly on [0,1]. We may take the polynomial
function p to be B, (f) and sup{| f(x) - p(x)|: x €[0,1]} <& . This completes the

proof of Theorem 2.19.

Proof of Theorem 2.18: Suppose /=[a, b] is a closed and bounded interval and
f:I— Risacontinuous function. Let g: [0, 1] — [a, b] be the bijective linear map
defined by g(¥) =a + #(b—a) for tin [0,1]. Then g is continuous, g(0) =a and g(1)
= b. Since fis continuous, the composite fo g: [0,1] — R is also continuous.
Hence, by Theorem 2.19, for any € > 0, there exists a positive integer N such that
for any integer n > N, the Bernstein polynomial B, (0 g) satisfies,

|fogx)—B (fog)x)| <eforall xin [0, 1]. ... (2.25)

Now g is continuous injective map and so g has a continuous inverse function.
Indeed the inverse function g': [a, b] — [0,1] is given by,

g0 =t—q/b—afortin [a, b]
Thus by Equation (2.25), for all ¢in [a, b],

| f()=By(fog)g  ()I<e

Hence, <& foralltin|a, b].

f(t)—BN(ng)(Z%ZJ

t—a
Since B (f0 g) is a polynomial function, P (1)=By(fo g)(b ~ a} isa

polynomial in #and [ (?) — p ()| < ¢ forall xin I

t—a
Ifwelet 4, (1) = B, (fo g)(m} , then

2 se (SJ[ZJ[Z:ZMI—(;Z D
S G
> (o +5(b_)j(k](2: oY (2]

It follows from Equation (2.25) that g converges uniformly on [a, b].

q,,(t)=B,,(fog)( ;:Zj
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Check Your Progress
8. Define the Abel’s test for uniform convergence.
Write Dirichlet’s test for uniform convergence.
10. Canasequence of continuous functions converge to a continuous function?

11. State a necessary condition for a sequence to converge uniformly in an
open interval.

12. What does the Weierstrass approximation theorem state?

13. Define Bernstein polynomial.

2.13 POWER SERIES

An infinite series, in the ascending integral powers of a real variable x, of the form
2
ataxta,x+.+tax"+ .,

where the coefficients a, a , a,,... are constant, independent of x, is called
areal power series. We shall simply call it a Power Series (P.S.).

The primary characteristics regarding convergence of the power series are
given below in Theorems 2.20, and 2.21.

Hadamard’s Formula
Theorem 2.20: The power series a,+a x + a,x*+ ... converges absolutely only
atx =0, on (—r, r), or on every bounded interval according as,

PY 1/n 1
lim|a,| ~ =o0,—, or 0.
r

According to these three cases the power series is said to have the radius of
convergence zero, 7, or infinity.

Proof: lim|a,|" =0 = lim|a,|"" |x|= 0 iff x=0

—> The power series converges absolutely only at

x=0
— qwn 1 — X .
limlg,| " =— — 11m|an o x|=u<11ff|x|<r
r r
—> The power series converges absolutely on (7, 7)
I 1/n Y 1/n .
limja,|] =0 = 11m|a”| |x| = (0 <1 forevery finite x

— The power series converges absolutely on
every bounded interval

Corollary 1: The power series a,+ a x +a,x*+ ... and its derived power series
a, +2ax +3ax*+ ... have alike radius of convergence. Thus, it follows by
induction, that the successive derived power series have the same radius of
convergence.



Proof: lim 7' = 1 implies that lim |na,|"" = lim|a,|'", therefore, both of the
given power series have alike radius of convergence. The rest of the statement of
the corollary readily follows by induction.

Similar to the above Corollary, we have the following Corollary.

Corollary 2: The power series a,+ a x + a,x*+ ... and its integrated power

2

3
ax” ax

series ¢+ ay x + + +... (where c is a Constant)
have alike radius of convergence. And, it follows by induction that the successive

integrated power series have the same radius of convergence.

As an example, note that the power series,

2

2
x (x X
() 1+2x+3x*+... (ii)l+7+(;j + ... (iii)l+x=;+...,have

radius of convergence 0, » and oo, respectively.

The power series,
2 3 2 3
X X X X X X
N1——+ ——+... i) 1+ —+ +—+...
@ roo2rt 37 (i) roo2rt 37
2 3 2 3
TPND R (L) I ) (')1+£+ Bl A
(i) r r r e roo 207 31T

readily illustrate that if 7 (> 0) be the radius of converges of a power series, then
the power series may or may not be convergent for x = + » (four cases).

In case lim |an |l/” exists and is evaluated, it outrightly provides the radius of

convergence as per the preceding theorem.

an+1
a

n

For practical purpose, when lim is more convenient to evaluate than

. 1/n . 1/n .
11m|a”| , then 11m|a”| exists and,

an+1 1/n

a

n

lim =lim|a,

Consequently, the radius of convergence of the power series Z a,x" is given by,

a

n

a

n+l

lim

Theorem 2.21: If » (> 0) be the radius of convergence of the power series
a,*ax+ax+..,in (-, 7). Then prove that it converges uniformly and absolutely
on every close interval contained in (-7, 7).
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Proof: For 0 <o <r, we have

‘anx” < |an|a” Vx €[-a,a]

And since X|a,| " is convergent as |a,|@" <|a,|r" and X

n s
a, a, a,|r" 1s convergent,

n o 2, ..
Therefore, Zanx » 1.8, dy +aX+a,X" +... jguniformly convergent (by M-test
n=0

and absolutely by comparison test). And, if [a, b] < (- 7, r) and let o = max
{|a b } ,sothat[a, bl c[-a, o] c[-7,7].

Thus, the given power series converges uniformly and absolutely on every
closed interval contained in (-, 7).

2

Note that with slight modification the analysis done in this section can be
conveniently applied to the power series of the form,
2
a,ta(x—a)ta(x—oa)y+.

Regarding the domain of convergence it may also be observed that if a
series is pointwise convergent on every [a, b] contained in an interval / then it is
pointwise convergent on / but this may or may not hold for uniform convergence.

Certain infinite power series are of basic importance and represent familiar
functions such as,

2 3

() log (1+x) Ex—%Jr%—...Vxe (-1, 1).
(1) e El+x+z—2!+...Vx.

(iii) sinx Ex—);—3!+);—5!—...Vx.

(iv) COS X El—;—z!+:—4!—...Vx.

Each of the above power series converges for the values of x as given. These
enable to establish many useful results.

Example 2.23: Show that,
1 1 5
O<|x|<==>—x*<x—-log(l-x)<=x".
<=7 gl-x) <

Solution: For 0 <x <1, we have

x—log(l+x)_l‘_x‘l x x

X2 2l 713 4 s

<l
{<3 (1)

0<x<l:>éx2 <x—log(1+x)<%x2.



1
And for — ) <x <0, we have

_1og(l+x) 1‘_| |{ Il | |2+._}

x? 5

l M 2 1 |X| 1
<|x|(3+4(1+|x|+|x| +...)] |x|( T |x|}
1(1 1] 1
<—|—+—|<=,

2\3 4 3

1 1 5
——<x<0=>——x*<x—log(1+x)<=x".
> 5 g(l+x) 6 .2

Combining Equations (1) and (2), we get that,

1 1 5
O<lx|l<==—=x*<x—-log(1+x)<=x%
|| 2 6 g ) 6

2.14 UNIQUENESS THEOREM FOR POWER
SERIES

Theorem 2.22 (Uniqueness): Let Q2 — Cbe aregion and consider two analytic
functions,

f,g: Q- C.

Let S'be a subset of Q that has a limit point p€Q which need not lie in S.
Suppose that f=g on S. Then f= g. For example, the unique analytic function on
Cthatvanishesat 1, 1/2, 1/4,1/8, 1/16,...., is the zero function. Also, the extensions
by power series of e, sin x, cos x and log x from their domains in R to analytic
functions on C or on C' minus the negative real axis for log, are the unique possible
such extensions.

Proof: We may assume that g = 0. That is, we may assume that =0 on S.
Let B=B(p, r) be the largest ball about p in Q2.

Possibly =+ oo, but in any case > 0. The power series representation of
fatpis,

f(2)=a,+a,(z—p)+a,(z—p)’ +...,z € B.

Because p is a limit point of S, some sequence {z } in § satisfies the
conditions,

’111_{130{2,1} =p,z, 7P foralln
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a,=fip) = lim f() = m{ (z,)} = lim{0} =0

NOTES Define anew function,

JIER
f:Q-c, hE=yzmp
f'(p) if z=p.

Then, f, =0 onS— {p}, so that in particular f (z ) = 0 for all n. Also, f, is
clearly analytic at all z# p and f, is analytic atz= p as well, because it has a power
series representation at p,

Z# D,

fi(2)=a,+a,(z-p)+a,(z—p)° +..,Z€B

In fact, this power series agrees with f,(z) both for z # p and for z=p. The
previous argument that a; = 0 now applies to f, to show that a, =0 as well, and
the whole process repeats to show that @ = 0 for all 2> 0. Therefore, fis identically
zero on the ball B. However, we want fto be identically zero on all of Q2. So let
g be any point of Q2. Since Q is connected and open in C, a little topology shows
that it is path-connected and the connecting paths can be taken to be rectifiable.
The general topological principle here is that connected and locally path-oriented
implies path-connected, and in our context, the connecting paths can be taken to
be rectifiable by metric properties of C.

Thus, some rectifiable path y in the region ) connects p to g. Since y is
compact, some ribbon about it lies in the region as well,

R=JB(z.p)cO
zey

Form a chain of finitely many discs of radius p, with their centers spaced
atmost distance p apart along vy, starting at p and ending at g. Each consecutive
pair of discs overlaps on a set S having the center of the second disc as a limit
point. Since fis identically zero on the first disc, the argument just given shows that
it is identically zero on the second disc as well, and so on up to last disc. In
particular f{g) = 0. Hence, the theorem is proved.

Corollary: An analytic function f: Q2 — C that is not identically zero has isolated
zeros in any compact subset K of Q and hence, only finitely many zeros in any
such K. More generally, if fis not constant then on any compact subset K of 2
and for any value a €C, fhas only finite many a-points, i.e., points where ftakes
the value a.

The corollary holds because any infinite subset S of a compact subset K has
a limit point in K by the Bolzano-Weierstrass theorem. So, if /= a everywhere on
S'then f=a identically on Q.

Theorem 2.23: Let f: Q — C be an analytic function. Then either |f] assumes no
maximum on Q or /s constant.
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Proof: Let |f] assumes a maximum at some pointc € Q, or
f@)|<Lflc) forallz e Q

Let B = B(c, r) where > 0 lies in Q. For any p satisfying 0 < p < r, let
Y, be the circle about ¢ of radius p.

Now,

f(z)dz

» Z—C

|l 1 [ f@ldz]_ 1
If(c)l—‘szy' <—| o

T2 = 2np Sily{)ﬂf(z) [}2mp = f(c)]

This implies that all of the terms are equal. So, [f|=[f(c)| on Y,

Since pe(0, ) is arbitrary, [f{=|f(c)| on B. thus, by the uniqueness theorem,
f1s constant on €2.

Corollary: If f: Q—C is analytic and K is a compact subset of 2 then
max__, {| f(z)|} 1s assumed on the boundary of K.

Theorem 2.24 (Liouville’s): Let /: C — C be analytic and bounded. Then fis
Constant.

Proof: The power series representation of fat 0 is valid for all of C,

f(Z)ZzanZn ,ze C
n=0

Let M bound |f. Cauchy’s inequality says that for any » > 0 and any
n e N,

la,[<

n

Since 7 can be arbitrarily large, this proves thata =0 forn >1.
ie.,flz)=a,forallz.

Theorem 2.25 (Fundamental Theorem of Algebra): Let p(z) be a non-constant
polynomial with complete coefficients. Then p has a complete root.

Proof: Consider,
n—1 )
p@)=2"+3 a7 p>
j=0
Note that for all z such that|z| > 1,
n—1 )
Z a, z/
j=0

It follows that for all z such that |z[> C+1,

n—1

-1
<Clz"" where C=2 |4,
720

| p(2) 2] 2" = C| 2" >[z|"'21.
Now suppose that p(z) has no complex root. Then the function f(z) = 1/p(z)

is entire. The function f(z) is bounded on the compact set B(0,C + 1), and it satisfies
f(z)|<1 for all z such that |[z> C+1.
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Therefore, f(z) is entire and bounded, making it constant by Liouville’s
theorem, and this makes the original polynomial p(z) constant as well. The proof'is
complete by contraposition.

2.15 ABEL’S THEOREM

Theorem 2.26 (Abel) Theorem: Suppose g(x) = z x" be apower series

n=0 C”

which converges for [x|<1.1f )| _ ¢, converges then, lim g(x) = 26 .

n20 " n=0

Or, if a power series converges at x =1 then its value at x =1 is the limit of
its values at x— 17, so a power series has built-in continuity in its behaviour.

n—1

Example 2.24: Let g(x) = Z;(_l) X1 for x<1.

Then for |x|<1, g(x) =log(1+x).

The series g(1) converges since it is alternating. Hence, by Abel’s theorem,

gD

lirlrl g(x)

lir{l log(1+x)

log2
Since the logarithm is a continuous function.

=D"'en)!
Example 2.25: Let £V =2 ~5— @n_n* forki<l. Hence, g()= I+ x.
n=0 .

The series g(1) is absolutely convergent. So, by the continuity of /1 + x
and Abel’s theorem,

g(D) =lim g(x) = im~/1+x =+/2
x—>1" x—>1"

We know that the series converges at x = 1. Abel’s theorem states that ifa
power series converges on (—1, 1) and also at x = 1, then its value at
x =1 is determined by continuity from the left of 1.

Proof of Abel’s Theorem: We have that ano c,x" converges for |x|<1 and at
x=1. We need to prove that,

lim z c,x" =Z c,

o n>0 n>0

For —1 <x < 1 we work with the truncated sums Zf:o c,x" and Zlo c,.
Put, s =c+c +....+c forn>0.

Note that, s —s

Then,

=c forn>1.
n



N
n n
E c,x" = ¢y + E x"(s,—s,,)
n=l1

N
¢+ 2 u,(s,—5,,), where u =x"

n=1

N1
= Cy tUySy —US, — z s, (W, —u,) by Summation by Parts

n=1

N-1
N n+l n
Cot+ X cN—xco—an(x -x")

n=1

N-1
(I=x)co+x"ey + s, (x" =x")

n=1

N-1
(1-x)c, +x"ey + ZSn 1=x)x"

n=1

N N-1
Or D = xley +(1-x)Y 5, x" .(2.26)
n=0

n=0
By hypothesis, the left hand side of Equation (2.26) converges as N — 0.
Also, x"c,,— 0 as N — oo, since x'—> 0 and ¢, —> 0, because the series znzoc,,

converges, so its general term must tend to 0.

Therefore, the other term in Equation (2.26) converges as N—oo and we
get,

e = (1-x)) 52" ..(227)

n>0 n=0

Suppose s =) _ c,.Wehave to show that D, _c,x" —>s asx—>1".

nz0 "

Substract s from both sides of Equation (2.27) and write,

dex'—s — (1-x)) (s, —$)x" ... (2.28)

n=0 n=0

using the formula (1- x)znzox” =1.Now, we have to show that the right hand
side of Equation (2.28) tends to 0 asx—1".

By assumption, s —s as n — oo. Choose a positive number €. For all large n, say

n=M, |s, — s| <&. Now, break up the right hand side of Equation (2.28) into two
sums,
M-1
ZCnx" -s=(1-x) Z(sn —s)x"+(1-x) z (s, —s)x"
n=0 n=0 n>M
And estimate as below:

n

n
ZCnx —-s

n=0

DY

=M

X

s, —S| X

M-1
< |1—x| Z(;|sn —s|
p
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s, — S| |x|n +|1 —x| Z 8|x|"

n=M

M-1
< |1—x| Z(;
-

I Ayl " [+
- —x|;sn—s| x +|1—x|81_|x|
= n 1
< =a{ Xfs, -l +|1_x|81__|x|
Taking 0 <x < 1, |I—x| = 1—x, this upper bound becomes
Y s <[t=x| Ys, o] +¢ .. (229)
70 =0

When x— 17, the first term on the right hand side of Equation (2.29) tends
to 0 on account of the 1 —x there. When x is close enough to 1, we can make the
first term on the right side at most €, so

n
ZCnx -5

n=0

< e+e=2¢ ... (2.30)

as x— 1. Since ¢ is an arbitrary positive number, the left side of Equation
(2.30) must go to zero as x—>1".

Corollary: Let a power series zmcnx” converges for |x| < r. If the series

converges at 7 or — then there is the limit of the values of the series as x tends to
the endpoint from inside the interval or,

(a) If Y,  cr" convergesthen,
lim chx” = chr”
o n=0 n=0

(b) If Z:; ¢(=7)" converges then,

Proof: (a) Leta = c " and g(x)=) a,x"=) ¢, ()" for [x| <. This
series converges atx = 1. So, by Abel’s theorem,

Zan = lim Zanx" = lim chr”x" = lim chx"
x—=>1- x—1- >0

n=0 nzo nz0 o
Where the limit changed from x—1~ to x — 7 in the last Equation (by
replacing x with x/r). Since a = c 1", the left hand side is znz o = Z c,r"

n=0 "

(b) The argument is similar, usinga =c (-r)".



2.16 TAUBER’S THEOREM

Theorem 2.27: The converse of Abel’s theorem is false in general. If fis given by,

fM=Xax" r<x<r

n=0
Then the limit f{7-) may exist but the series Y a, " may fail to converge.
Forexample, if a =(-1)", then

1
f(xX)=—,-1<x<1
1+x

And fix) >1/2 asx — 1. However, z (-=1)" is not convergent. Tauber

showed that the converse of Abel’s theorem can be obtained by imposing additional
condition on the coefficients a .

Theorem 2.28 (Tauber): Let /(*)=>.a,x" for —1< x < 1 and suppose that

n=0

limna, =0 Iffix) > Sasx—> 1, then zan converges and has the sum S.
n=0

Hn—>0

Proof: Let ©, = Zk |ak| . Then G, — Oasn—> oo,

h=0
Also, lim f(x,)=S ifx =1-1/n.

Therefore to each € > 0, we can choose an integer N such that n > N implies,

|(fx,)

— :;| < Ei
3

=
W | m

&

<_

3

Let S, =zak . Then for—-1< x < 1, we have
h=0

S, —S=f(x)—S+iak(1—xk)— i a, x*

h=n+1

Letx € (0, 1). Then,
(1-x")=1-x)A+x+—-+x"")<k(r-x), foreach k.
Therefore, if n > Nand 0 < x < 1, we have

€
3n(l1-x)

1S, - S| < f(x) = 5|+ (1-x) ik|ak| ;
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Putting x =x = 1-1/n, we find that

€ €
— + —
3 3
Which completes the proof.

= &

S, - S|<Z+
3

14.
15.
16.
17.

Check Your Progress
What is power series?
State the uniqueness theorem of power series.
Define the Abel’s theorem.

Give the statement of Tauber’s theorem.

2.17 ANSWERS TO ‘CHECK YOUR PROGRESS’

. A sequence is a function whose domain is the set of natural numbers.

. A sequence {x, | is said to be bounded above if all its terms are less than or

equal to a real number, i.¢., there exists K € R such that x, < K for all
n e N,

A sequence {x,} is said to be bounded below if all its terms are greater
than or equal to a real number, i.e., there exists K € R such that x, > k for
alln e N.

. Asequence is said to be bounded if it is bounded both above and below,

Le., if there exist K, k € Rsuchthatk<x, <Kforalln e N.

. An expression of the form,

u1+u2+u3+...+un+...

in which every term is followed by another according to some definite rule
is called a series.

. A sequence {f, } of functions is said to converge pointwise on a set Sto a

limit function f; if for each x € S and for each ¢ > 0 there exists an N
(depending on x and €) such that,

f(x) = fx) | < g, for all n >N.

A sequence of real valued functions {f ) defined on a set S'is said to converge
uniformly to a real valued function fon S'if for >0 3 m € N such that,

I/ (x)—fix)|[<eVn=mandx € §

. A sequence of real valued functions < f > defined on a set S converges

uniformly on S iff to each given € >0 3 m € N such that,

pr(x)—fn(x)‘<8Vn2m,pZO andx € S.

. A series Xf (x) converges uniformly (and absolutely) on a set Sif there

exists a convergent series X M of non-negative terms M such that,
f(x)| <M, v xeSandn e N.



8.

10.

11.

12.

13.

14.

If 2 f (x) converges uniformly on a set S and (g (x)) be monotonic and
uniformly bounded on S, then the series 2f (x) g (x) converges uniformly
on S.

. Let Xbe a metric space. If the functions /: X — C, g : X —R, n € N satisfy

the following;

(@) £,(x)= Z S (%) is bounded uniformly in 7 and x.
m=1

(b) g..,<g (x) forall xeXand neN.

(c) {1g,(x)} oy converges uniformly to zero on X.

Then Z /. (%)g, (%) converges uniformly on X.

n=l1

A sequence of continuous functions may converge to a continuous function,
although the convergence is not uniform.

Assume that each term of {f } is a real valued function having a finite
derivative at each point of an open interval (a, b). Assume that for at least
one pointx, in (a, b), the sequence {f (x,)} converges. Assume further that
there exists a function g such that/ '— g uniformly on (a, b).

Let /be a closed and bounded interval. Suppose f: I — R is a continuous
function. Then for each & > 0, there exists a polynomial functionp_:/— R
such that,

| f(x)—- p,(x)|<e forallxin/, or equivalently,

sup {| /(x) - p,(x)| xel}<e.

Letf: [0,1] — R be a function. Then for each integer n > 0, we define the
Bernstein polynomial of degree n associated with fto be,

B,(/)() =Zf(§j@x (12

An infinite series, in the ascending integral powers of a real variable x, of
the form,

a+ax+ta x*+..+ax"+ ..
0 1 2 n >

Where the coefficients a, a , a,.... are constant, independent of x, is called
areal power series.

15 Let Q < C be a region and consider two analytic functions

16.

fg: Q- C.

Let S'be a subset of Q2 that has a limit point p Q) which need not lie in S.
Suppose that f=gon S. Then f=g.

Suppose g(x) = znzocnx” be a power series which converges for |x|<1.

IS e, converges then, I = e,

n>0
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Or, if a power series converges at x =1 then its value at x =1 is the limit of
its values at x—1-, so a power series has built-in continuity in its behaviour.

17. Let S(x)=2_a,x" for —1< x < 1 and suppose that limna, =0

n=0

Iff{x) > Sasx— 17, then 2.4, converges and has the sum S.
n=0

2.18 SUMMARY

e A sequence is a function whose domain is the set of natural numbers.
o Ifthe codomain is the set R of real numbers, it is called a real sequence.

e Ifthe codomain is the set C of complex numbers then it is called a complex
sequence.

o Ifitisasetof polynomials then it is a sequence of polynomials.

e A sequence { X, } is called convergent if it converges to a limit /.

¢ A sequence, which converges to zero, is called a null sequence.
¢ A sequence may or may not converge.

e [fasequence is convergent, it converges to a unique limit.

e Every convergent sequence is always bounded.

¢ A monotone increasing sequence bounded above is always convergent and
converges to its Least Upper Bound (LUB).

¢ A monotone decreasing sequence bounded below is always convergent
and converges to its Greatest Lower Bound (GLB).

o Every constant sequence is convergent.

e A sequence {xn } is said to diverge to + oo if for every large G > 0, there
exists n,e N suchthatx > G foralln=n,.

e Anexpression of the formu +u,+u +...+u +... in which every termis
followed by another according to some definite rule is called a series.

o Ifthe number of terms is not finite, it is called an infinite series.

o The nature of a series is determined by the nature of the sequence of'its nth
partial sum.

e A sequence {f } of functions is said to converge pointwise on a set Sto a
limit function £, if for each x € § and for each ¢ > 0 there exists an N
(depending on x and ¢) such that, | f (x) — f(x) ‘ <g, foralln>N.

e A sequence of real valued functions <f > defined on a set S'is said to converge
uniformly to a real valued function fon S'if for € > 0 I3m € N such that,
f(x)— fix))<e yn=2mandx € S.




e A sequence of real valued functions <f > defined on a set § converges Sequence‘vf t;fd Sf_ries
uniformly on S'iff to each given € > 0 3m € N such that, of Functions

mﬁ)(x)—fn(x)|<8 vrn>m,p>0andx € S.

This is Cauchy’s general principle of uniform convergence. NOTES
e A series z £, (x) converges uniformly on a set S if there exists a convergent

series ZM , of non-negative terms M suchthat |f (x)| < M v xe Sand
neN.

e If ) £, (x)converges uniformly on aset > and <g (x)>be monotonic and

uniformly bounded on S, then the series Z £ (x) g (x) converges uniformly

on S. This is Abel’s test for uniform convergence.
e Let X'be ametric space. Ifthe functionsf : X — C, g : X —R, n € Nsatisfy
the following;

(@) F.(x)=21,(x) is bounded uniformly in  and x.

m=1

(b) g ., <g(x)forallx e Xand n e N.
(c) {g,(®)},_, converges uniformly to zero on X.

Then 2 /,(x)2, (¥) converges uniformly on X. This is Dirichlet’s test for

n=1
uniform convergence.
¢ A sequence of continuous functions may converge to a continuous function,
although the convergence is not uniform.

°* g(x)= _[:fn(t)doc(t) ifx € [a, b],n=1,2,..., then we have
(a) f€ R(a) on [a, b].
(b) g, —guniformly on [a, b], where g(x) = Lx f()da(t).

e Letf: [0, 1] > Rbea function. Then for each integer n > 0, we define the
Bernstein polynomial of degree n associated with f to be,

B,(f)(x) = Zf(%j(%] (-

¢ Aninfinite series, in the ascending integral powers of a real variable x, of
the forma +ax+ax*+ ... +a x"+..., where the coefficients ¢, a,, a,,
... are constant and independent of x, is called a real power series.

¢ Any infinite subset S of a compact subset K has a limit point in K by the
Bolzano-Weierstrass theorem.

e Abel’s theorem states that if a power series converges on (-1, 1) and also
atx =1, then its value at x = lis determined by continuity from the left of 1.
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e Let /(x)=2 a,x" for —1< x < | and suppose that limna, =0 1f

n=0

fix) > Sasx— 17, then D ax" converges and has the sum S.
n=0

2.19 KEY TERMS

e Sequence: A function whose domain is the set of natural numbers.

e Series: An expression of the formu +u, +u +...+u +...in which every
term is followed by another according to some definite rule.

¢ Pointwise convergence: A sequence {/, } of functions is said to converge
pointwise on a set S to a limit function f, if for each x € S and for each
€ > 0 there exists an N (depending on x and €) such that, | f(x)—fx) ‘ <
g, foralln > N.

e Uniform convergence: A sequence of real valued functions <f > defined
on aset Sis said to converge uniformly to a real valued function fon Sif for
€>03dm € Nsuch that|[f (x) - fix)|]<e yn=mandx € S.

2.20 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short-Answer Questions

1. What is sequence?

2. Define the term monotone sequence.
3. What is convergent sequence?
4

. Name the two important series.

2 2 "

5. Test the convergence of the series %+ (%] + (%j + +( 2nn+ lj +
using Cauchy’s root test.

6. Which convergence is a local property and which one is a global property?

7. Define uniformly bounded set.

8. What is the use of Weierstrass’s M-test?

9. Write an application of Abel’s test for uniform convergence.

10. What are the drawbacks of Dirichlet’s test for uniform convergence?
11. Whatis the relation between uniform convergence and continuity?
12. State the significance uniform convergence.

13. What is the use of uniform convergence and differentiation?

14. Write the three cases of Weierstrass approximation theorem.



15. Give an example of power series.
16. What is the significance of uniqueness theorem for power series?

17. State the difference between Abel’s theorem and Tauber’s theorem.

Long-Answer Questions

1. Explain the concept of sequence with reference to bounded and unbounded
sequences, monotone sequence and convergent sequence giving theorems,
proofs and relevant examples.

2. Discuss about the Cauchy’s criterion of convergence, divergent sequences
and oscillatory sequences giving theorems, proofs and significant examples.

3. Show that the sequence {x;,} is convergent when,

_ 1 1
X =L+ —4+—4+ . 4+—
” 2t 3! n!

4. Briefly discuss about the series in detail with the help of appropriate
examples.

5. Whatare the necessary and sufficient conditions for the convergence of an
infinite series? Explain giving relevant examples.

6. Explain in detail the tests used for convergence series and divergence series
giving definitions and appropriate examples of each test.

7. Prove that the following given series,

LY 1.3.5 1
§+2-4-g+2‘46-§+"- to oo converges.

1
1+—.
2
8. Test the convergence of the following given series,
2
z 2.4.6.8..2n
3.5.7.9..2n+1)
9. Testthe convergence or divergence of the following given series,
2 £ re
1p+[l] +[£} +[1'3'5} +
2 2.4 2.4.6

10. Briefly explain the pointwise and uniform convergence giving definitions and
significant examples.

11. Prove that the pointwise convergence is a local property whereas the uniform
convergence is a global property.

12. State and prove the Cauchy’s criterion for uniform convergence giving
definitions and related significant examples.

13. Prove that the sequence { x" ) converges on [0, 1] to the function fdefined
by fix) =0 when x # 1 and f{(1) = 1. The convergence is not uniform on
[0, 1].
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14. Discuss the Cauchy’s general principle of convergence for series giving
relevant examples.

15. Briefly explain the necessary conditions for convergent series and the
sufficient conditions for divergent series giving appropriate examples.

16. Explain the Weierstrass’s M-test giving the theorem, proof and appropriate
examples.

17. Discuss in detail the Abel’s test and the Dirichlet’s test for uniform
convergence with the help of theorems, proofs and relevant examples.

18. Describe the significance of uniform convergence and continuity giving the
theorem and examples.

19. Briefly explain the uniform convergence and Riemann-Stieltjes integration
with the help of theorems, proofs and appropriate examples.

20. Briefanote on uniform convergence and differentiation giving theorems and
relevant examples.

21. Explainin detail the Weierstrass approximation theorems giving their proofs.

22. Discuss the concept of the power series and prove the uniqueness theorem
for the power series.

23. If r (> 0) be the radius of convergence of the power series a, + a x +a,x’
+...,in (-7, ). Then prove that it converges uniformly and absolutely on
every close interval contained in (-7, 7).

24. Consider that f: Q2 — Cbe an analytic function. Prove that either | /| assumes
no maximum on  or fis a constant.

25. State and prove Abel’s theorem and Tauber’s theorem giving appropriate
examples.
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3.0 INTRODUCTION

In real analysis, a function of several variables or multivariate function is a function
with more than one argument, with all arguments being real variables. This concept
extends the idea of a function of a real variable to several variables. The “Input”
variables take real values, while the “Output”, also called the “Value of the Function”,
may be real or complex. However, the complex valued functions may be easily
reduced to the simple real valued functions on further analysis, by considering the
real and imaginary parts of the complex function.

The domain of a function of n variables is the subset of R” for which the
function is defined. As usual, the domain of a function of several real variables is
supposed to contain an open subset of R*. Some functions are defined for all real
values of the variables such that they are everywhere defined, but some other
functions are defined only if the value of the variable are taken in a subset X of R*,
the domain of the function, which is always supposed to contain an open subset
of R".

Functions of Several
Variables and Higher
Order Differentials

NOTES

Self-Instructional Material 95



Functions of Several
Variables and Higher
Order Differentials

NOTES

96  Self-Instructional Material

The function f (x, y) is a function of a single variable x when y is constant.
Then the derivative of /' (x, y) (when exists) is called the partial derivative of

S (x,y) with respect to x. It is denoted by f (x, y) or % .

Ahomogeneous function is one with multiplicative scaling behaviour. If all
its arguments are multiplied by a factor, then its value is multiplied by some power
of this factor. For example, a homogeneous real valued function of two variables x

and y is areal valued function that satisfies the condition f(rax, ry} = r* f (x,y)

for some constant and all real numbers 7 he constant £ is called the degree of
homogeneity.

The Jacobian determinant is used when making a change of variables when
evaluating a multiple integral of a function over a region within its domain. To
accommodate for the change of coordinates the magnitude of the Jacobian
determinant arises as a multiplicative factor within the integral. This is because the
n-dimensional dV element is in general a parallelepiped in the new coordinate
system, and the n-volume of a parallelepiped is the determinant of its edge vectors.

In this unit, you will study about the functions of several variables, linear
transformations, derivatives in an open subset of R", partial derivatives, higher
order differentials, Taylor’s theorem, explicit and implicit functions, implicit function
theorem and inverse function theorem, change of variables, extreme values of
explicit and stationary values of implicit functions, Lagrange’s multipliers method,
differential forms, Stoke’s theorem and Jacobian and its properties.

3.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Describe the functions of several variables
¢ Define what linear transformations are
¢ Find the derivatives in open subset of R”
¢ Evaluate the partial derivatives
¢ Explain the higher order differentials
e State about the Taylor’s theorem
¢ Distinguish between explicit and implicit functions
¢ Define the concept of change of variables
e Describe Lagrange’s multipliers method
¢ Discuss about the differential forms and Stoke’s theorem

¢ Explain Jacobian and its properties



3.2 FUNCTIONS OF SEVERAL VARIABLES

A variable z is said to be a function of two variables x and y if for each pair
(x, y) corresponds a value of z. This is expressed by z = f (x, ). For example,
if z=x?+)?, then z is a function of x and y.

If z= f(x, y), then z is a dependent variable and x, y are independent
variables. The function z = f'(x, y) is called a single-valued function if only
one value of z is corresponded by each pair (x, y) for which the function is
defined. If there is more than one value of z, the function is called a multi-valued
function.

The set of values (points) (x, y) for which a function is defined, is called
the domain of definition or simply domain of the function.

For example, ifz= \/4—(x? + y?), the domain for which z is real consists

of the set of points (x, ) such that x> + )7 > 4, i.e., the set of points inside and
on a circle in the xy-plane having its centre at (0, 0) and radius 2.

Note: If z is a function of » independent variables x,, x,, ..., x,, then we
write z = f(x}, X,, ..., X,). For example, if u = x* +)? + 2%, then u is a
function of three variables x, y and z, i.e., u = f (x, y, z).

Limit and Continuity of a Function of Two Variables

Definition: Let f'(x, y) be a function of two variables defined in the region R
and (a, b) be a point in R. The function f'(x, y) is said to have a limit / as (x, )
tends to (a, b) if for every small positive number ¢, there exists a positive number
0 such that,

| f(,y)—1|<eforO0<|x—a|<dand 0<|y—b|<3
Or | f(x,y)— 1] <egfor0<(x—a)+ (- by <8

In this case, we write  lim  f(x,y)=1[or lim f(x,y)=L.
(x, y)—>(a, b) x—)[;)
y—>

This is also called the double limit or the simultaneous limit of / (x, y) as
(x, y) tends to (a, b).

Repeated Limit: Let f(x, ) be a function of two variables defined in the region
R and (a, b) be a point in R. Let lim f(x, y) exist and it is a function of y, say
x—a
gy). If lirr;j g(y) exists is equal to /, then / is called the repeated or iterated limit
y—

of f(x, y) as x > a and then y — b and we express this by,

lim lim f(x, y) =1

y—b x—>a
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By changing the order of limits, we similarly define

lim lim f'(x, y) =
x—a y—b

Note: Ifthe two repeated limits exist and are equal, then the double limit may
or may not exist. Conversely the double limit may exist but the repeated limits

may not exist but however if the repeated limits exist, they must be equal.

Continuity: Let f(x, y) be a function of two variables defined in the region R
and (a, b) be a point in R. The function f'(x, y) is said to be continuous at

(a,b)if —lim f(x,y)=f(a, b).
(x,y)—>(a,b)
If f(x, y) 1s continuous for every point (a, b) in R, then we say f (x, y) is
continuous in R.

Analytical Definition: Let f(x, y) be a function of two variables defined in
the region R and (a, b) be a point in R. The function f'(x, y) is said to be
continuous at (a, b) if for every small positive number &, there exists a positive
number 6 depending on ¢ such that,

| f(x,y)—f(a,b)|<efor|x—al|<9,|y—b|<3 (for Square Region)
or | £ (x,y) — f(a, b) | < € for (x — a)*> + (v — b)> < & (for Circular Region)

Region: If any two points of a set S can be joined by a path consisting of a
finite number of broken line segments all of whose points belong to S, then S'is
called a connected set. A region is a connected open set. The following regions
are generally used.

(i) Rectangular Region: A rectangular region R is a set of points (x, y)
which satisfy the inequalities of the forma <x<b,c<y<d

(7i) Square Region: A square region R is a set of points (x, y) which satisfy
the inequalities of the forma—-—h<x<a+h b—h<x<b+h




(iii) Circular Region: A circular region R is a set of points (x, y) which satisfy
the inequalities of the form (x — a)* + (y — b)> < 12

Note: A region is said to be closed or open according as the boundary points
do or do not belong to the region. For example, the region {(x, y) € R>;
(x — a)> + (v — b)* < F*}is an open region, but {(x, y) € R?, (x — a®)* +
(v — b)? <%} is closed.

Geometrical Representation of Functions of Two Variables

The function of one variable represents a curve in the two dimensional plane. A
function of two variables z = f'(x, y) represents a surface in the three dimensional
space.

Let (x, y, z) be the coordinate of the point P. So, each point (x, y) in R
corresponds to another point (x, y, z) in space which describes a surface. Hence,
P(x, y, z) is a point on the surface z = f'(x, y). This surface is the geometrical
representation of the function.

Theorems on Limit and Continuity

Theorem 3.1: Let f(x, y) and g(x, y) be two functions defined in the same

region R such that 1im f(x,y)=/and 1lim  g(x, y) = m then,
(x, y)—>(a,b) (x,y)—>(a,b)

@ lim {4 f(x,y) £ B g(x, v)} = Al £ Bm where 4 and B are

(x,y)—>(a,b)
constants.

@ dim {f(x,y) - gl =1-m

(x,y)—>(a,b)

(@)  lim J7) =Lprovided m # 0.
(x)>(ab) g(x,y) m
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Theorem 3.2: If f(x, y) and g(x, y) are continuous at (a, b), then
(@) f(x, y) = g(x, y) is continuous at (a, b).
@) f(x,y) - g(x, y) is continuous at (a, b).

S,

(iii) Ty) is also continuous at (a, b) provided g(a, b) # 0.
2o)?
Example 3.1: Prove that lim xy =0.
®0)->0,0 7 x4 y?
. X2 - y2
Solution: Let f(x,y) =xy —5—.

X +Yy

We shall show that for any given small positive number &, then we can
find & > 0 such that | /(x, y) — 0| <€ for 0 < x? + )7 < &°.

Now, [f(x,y)-0]= <|x[ly]

=lx [yl

2 2
PP e
y2+y2 2

2
Y

X"+
(o |2 =2 <[ xF+)7)

o1 f(x, ) — 0] <& whenever | x | | y | <g, 1.e., whenever,

X

2+ <e,

Since, | x | < {x*+y? and |y | < {/x2+)2.
Thus, if we take 8 = /e , then | £ (x, y) — 0| < & whenever 0 < x* +17 < %

2

2
Hence, the given double limit exists, i.e., lim * 7Y =,
(©0)=>(00) 7 x2 42

Note: Let (a, b) be an interior point of the region R and (x, ) be any point of
R. The point (x, y) varies over the region R and approaches the point (a, b)
along any specified curve in R but for the existence of the double limit, the limiting
value must be unique along whatever path (x, ) approaches (a, b). If the limiting
values are different for different approaches to the point (a, b) along different
curves in R, then the limit does not exist.

y

o X

Example 3.2: Show that the repeated limits exist and

.. Xy oo Xy
lim lim 3 5 lim lim 5 5

y—0 x>0 x +y x—0 y—0 x +y




But the double limit  lim 2xy 5 does not exist.
(x.)(0,0) x* + y
. . . . 0-
Solution: Here, lim lim zxy > = lim y2 =0
y—>0 x>0 x +y y—0 O+y
. . Xy . 0-x
And lim lim 5= lim — 0
x>0 y=0 x* + y =0 x“ +0
clim lim 22— = lim lim —>—

y—=0x—0 x +y

2nd Part: Let y = mx, then x — 0 implies (x, y) — (0, 0).

x—=0 y—>0 x +y

. Xy . X mx . m m
c im 3 5 = lim 3 22=llm =
(2.)=>(0,0) x* +y (x=>0) x* +m“x*  >01+m

1+m

Which depends on m and varies as m varies.

Thus for different values of m, we get different limits. Hence the double
limit does not exist.

3.3 LINEAR TRANSFORMATIONS

Let V and U be two vector spaces over the same field F, then a mapping
T:V— Uiscalled a homomorphism or a linear transformation if,

Tx+y)=Tx)+ T(y) forallx,y eV
T(ox) = allx), o € F
One can combine the two conditions to get a single condition,
T(ox + By) = al(x) + BT(y) where x, y € V; o, B € F

It is easy to see that both are equivalent. If a homomorphism happens to
be one-one onto also, we call it an isomorphism, and say that the two spaces
are isomorphic. (Notation: V'= U).

Example 3.3: Identity map /: V' — V, such that,
Iv)=v
And, the zero map O : V' — V, such that,
Oov)=20
are clearly linear transformations.
Example 3.4: For a field F, consider the vector spaces FZ and F°. Define a map
T:F — F?, by
I(a, B, v) = (o, B)
Then 7'is a linear transformation as,
foranyx,y € F°,if x= (o, Bys 7))
Y= (0, By v,)
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Then, Tx+y) = T(OH +a,, B1 + Bza Y1 +Y2) = (OH +a,, B] + Bz)
= (ap B1) + (OLZ, Bz) = T(x) + T()
And T(oax) = T(a (04, By, vy) = T((ao,, aBy, oy,)

= (oo, ap) = ofa;, By) = al(x)
Example 3.5: Let V' be the vector space of all polynomials in x over a field F.

Define,
T:V — V, such that,

T () = /()
Then  T(f+g) = %(ﬁg): %f+%g= () + I(g)

d d
T(of) = d—(Otf) = o—f = oT(f)
x dx
Shows that 7'is a linear transformation.
In fact, if @: V' — V be defined such that

o) = [ ro dr
Then 6 will also be a linear transformation.
Example 3.6: Consider the mapping,
T:R?® > R, such that,
T(x), x5 X3) = X+ x5 + X3
Then T'is not a linear transformation.
Consider, for instance,
7((1,0,0)+ (1,0, 0) = 7(2,0,0) = 4
71,0,0)+ 7(1,0,0) =1+ 1 = 2.

3.4 DERIVATIVES IN AN OPEN SUBSET OF R”

For arriving at a definition of the derivative of a function whose domain is R” or an
open subset of R, let us consider the case n=1. Let f'be a real function with
domain (a, b)cR and ce(a, b) then f'(c) is defined to be the real number,

g e +D=/©

lim , provided that the limit exists.

Let EL,(h)zw—f'(c), if h#0 LG

And E (h) =0, if h=0. Then we have,
hE (h)= f(c+h)— f(c)=hf"(c)



Or the equation which holds also for =0,
f(c+h)=f(c)+hf'(c)+hE,(h) ...(32)

The Equation (3.2) is called first order Taylor formula for approximating
Sleth)-A(c) by f (c)h. The error committed is ~E (h). Also from Equation (3.1)
we get £ (h)—0 as h~—0. Following are the two properties of Equation (3.2):

1. The quantity /'(c)h is a linear function, i.e., if we write 7' (h) =f'(c)h,
then,

T (ah,+ bh,)=aT (h))+bT (h,)
2. The error term hE (/) is of smaller order than /2 as 7—0.

Now the total derivative of a function ffrom R"to R” will be defined in
such a way that it preserves the above two properties.

Definition: Let /:S — R” be a function defined on a set S in R” with values in R™.
Let ¢ be an interior point of S and let B(c;r) be an n-ball lying in S. Let /"be a point
in R"with ||| <t, so that c+v € B (c;r). Then the function fis said to be differentiable
at cif there exists a linear function 7 : R” — R” such that,

fle+v)=f(e)+T.(v)+||v| E.(v), where E.(v)—>0asv—0 ...(3.3)

Note: Equation (3.3) is called a first order Taylor formula. The linear function T is
called the total derivative of fat c. We also write Equation (3.3) as,

fletv)=f()+T.m+0([v])asv—0

Theorem 3.3: Let/is differentiable at ¢ with total derivative 7 . Then the directional
derivative f'(c;v) exists for every u in R" and we have,

T.(u)= f'(c;v)
Proof: Let fis differentiable at ¢. Then we have,
flc+v)=f(e)+T.(W+||v| E.(v), where T islinearand E (v) >0 as v -0
...(3.4)
Ifv=0, then f'(c;0) = 0 = 7 («). Now assume that v # 0.
Then taking v = hu in Equation (3.4) we get,
fle+hu)y= f(c)+T,(hu)+| hu || E, (hu)
= fle+hu)= f(c)=hT,(u)+|h|||ull E (hu)
= L ey =+ 2 .
Taking 1im on both sides we get,

:>f(c+hu)
h

—f(c)=h1;<u)+%||u||EC<hu>
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Thatis, f'(c;0)=T (u)
Theorem 3.4: If fis differentiable at c, then fis continuous at c.

Proof: fis differentiable at c then we have,

fle+v)=f)+T.(M+[vI E.(v) .. (3.5)
Where T is linear and £ (v) — 0 as v—0.
Asv— 0in Equation (3.5) we get,

lirrolf(c+v) = f(c)+lir101TC(v)+lirr01||v||Ec(v)
= f(e)+T.(0)+0

Or 1v1£r01f (c+v)=f(c),since T is linear, T (v) =0

That is, fis continuous at c.

For example, total derivative of linear function is the function itself. Let fbe
alinear function differentiable at c. Then f(c +v) = f(c)+T.(v)+||v|| E.(v) where
E (v) > 0asv—> 0.

= f@O+ )=+ T+ VI E.(v)
= S =TW+|VIIE.(v)

Theorem 3.5: Let f: S—R" be differentiable at an interior point ¢ of S, where
Sc R.If v=vu, +vu, +...+v,u,, where U ,..., U are the unit coordinate

vectors in R”, then /(©)(V) =X v, D, f(¢) 1ffis real valued (i.e., m=1) we have
k=1

f'()(»)=Vf(c).(v) which is the dot product of v with the vector
Vf(e)=(D, f(c),...(D,f(c)).

Proof: Givenv=vu+vu+...+vu whereu,...,u aretheunitcoordinate
vectorsand v, i=1,..., narereals. Since /'(c) is linear, so

L) = f'O)u, +vyu, +..+vu,)

v/ (©)w) +v, [ uy) +.. 4, [ (e)(u,)
vf'(cu)+v,f'(cu)+..+v, f(c:iu,)
vD, f(e)+v,D,f(c)+...+v,D, f(c)

= YuDf©

In particular form =1, we get

AGOE ikakf (c)



= (D, f(c), D, f(C)sers D, f())-(Vs ;505 V,)
= Vf(¢c).(v), where Vf(c)=(D,f(c),..., D, f(c))
Note: The vector Vf(c) is known as the gradient vector of fat c.

Check Your Progress

1. Distinguish between single-valued and multi-valued functions.
2. Define linear transformation.

3. Give anecessary condition for a function to be continuous at a point.

3.5 PARTIAL DERIVATIVES

Let f'(x, y) be a function of two independent variables x and y, defined in the
region R.

The function f(x, y) is a function of a single variable x when y is constant.
Then the derivative of ' (x, y) (when exists) is called the partial derivative of

S (x, y) with respect to x. It is denoted by f, (x, y) or % .

R ACRALR) b (SR . (3.6)

Ox h—0 h

The function £ (x, y) is a function of a single variable y when x is constant.
Then the derivative of ' (x, y) (When exists) is called the partial derivative of

f(x,y) with respect to y. It is denoted by fy(x, y)or %

% = lim Sy+hb)-f(xp) (3 7)
dy k>0 k T

Notes:
1. When Equations (3.6) and (3.7) exist at (a, b) in R, then they are denoted
by f.(a, b) and ];(a, b).
2. f(x,y)and fy(x, y) are also functions of x and y.
3. The functionf (x, y) is derivable means that both the partial derivatives f (x,
y) and fy(x, y) exist.
4. Letf (x,y,z) be a function of three independent variables x, y and z defined

F

in R. Then f (x, y, z) has three partial derivatives g,% and -
X 'z

(x+h’ysz)_f(xsy’z)
h

f(xsy+ksz)_f(xsyaz)
k

. —m L
"fx(xayaz)_ }%I_I:’(l)

£y, 2)= lim
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— 1: f(x,y,z+w)—f(x,y,z)
And f(x, y, z) vlvl_t)l’%) :

w

Example 3.7: Find from the definition of partial derivative f (1, 1) and

fy(l, 1) where f (x, y) =

xty
x+y+1°

Solution: Here,

£ 1) = i JOSEDIOD [l 2]]

h—0 h h—0 1+h+1+1_§ h

h

. h+2 211 3h+6-2h—-6 1
= lim| —-= |- = lim ———— - —
>0 h+3 3|h  h>0  3(h+3) h

. h 1 1 1
=lim——— — = lim—— = —
h—03(h+3) h  h—>03(h+3) 9
Andf (1 1)= lim fA1+R) - QLD _ hm{ 1+1+k _E}l
y k—0 k 0| 1+1+k+1 3k
L {k+2 2}1 o {3k+6—2k—6}1
=lim|———=|— = lim| ———M |~
k=0 k+3 31k k>0 3(k+3) k
. 1 1 1
= lim — = lim — = =~
P03(k+3) kiM% 9
Xy
fi ,¥)# (0,0
Example 3.8: Letf(x,y)= {x*>+)? oren#( ).
0 for (x,y)=(0,0)
Find f,(0, 0) andfy (0, 0).
. _ o SO+R0)-£(0,0) _ . 0-0 _
Solution: Here (0, 0) ]11133) P 11113(1) . 0
o
_ o SO,0+k)—- £(0,0) _ . g2 _ i 0-0
And £(0,0) = fim X e Tame =0

Example 3.9: Find from definition given that % and % at (x, y) where f (x, y)

=x*+ 2xy +y2_
Solution: Here,
9 : x+h,y)- f(x,
fx(xay):‘—fzhmf( »N-f(xy)

Ox h—0 h

lim ()H-h)2 +2(x+h)y+y2 —(x2 +2xy+y2)

h—0 h

~ lim x2+2hx+h2+2xy+2hy+y2—x2—2xy—y2
h—0 h
. h*+2hx+2h

= lim —— = — iy h+2x+2y=2x+2y

h—0 h h—0



Similarly, f (x,y)= f =2x+ 2y.

lkmmm1w:Hﬂxwzfigmmﬁmggmd%auz—nmmmm

given definition.
Solution: Now,

. fQ+h-D-f(2,-D

2+h+1_ 3
— lim 2+h-1 2-1 _ lim 3+h _3 l
h—0 h 0| h+1 h
. 3+h-3h-3 . —2h =2
= lim — = = lim = lim =_2
h—0  h(h+1) h—0 h(h+1) h—0 h+1
2,-1+k)- f(2,-1
mmg@—wﬂi} =mﬂ’+;f“)
ay 1) k—0
k-0 | 2-1+k k k—0 k+1 k

3-k-3k-3
m-——,—-
k=0 k(k+1)

k—0 k(k+1) /HO k+

Partial Derivative of Higher Order

Letz=/(x, y) be a function of two independent variables x and y. Then the partial
derivatives f (x,y) and fy(x, y) are also functions of x and y. The partial derivatives
of f (x,y) and fy(x, y) are called second order partial derivatives of f (x, y). The
partial derivatives of f,(x, y) with respect to x and y are given by,

gmmm=iﬁj
X X

Ox\ Ox
:éiz _ St hy) = fi(x,y)
ol e = lim 2
(o _f _ . Syt - fo(xy)
And [fx( M= oy ( ax) 0yOx J;x llclg(l) k

The partial derivatives of f (x, y) with respect to x and y are given by,

af :62_f —f = limfy(x+h’y)_fy(x’y)
oxdy Y h0 h

—[f( W=

o A Ly +k) = (6 )
And [f(x) y(ayj oy’ T k

The four second order partial derivatives of /' (x, y) are £, fyy, ];y and fyx.
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The third order partial derivatives of f (x, ) are given by,
];xx’ ];/xx’ ];yx’ ];/yx’ fxx ? fyx ? fxyy and];yy Where,

-0 ﬂ(%j first with respect to x,
wx oyl oy ox

Then with respect to y and then again with respect to y.

n—1 2 n-2
Ingeneral,8 . E[MJ = a—(a fJ

ox" Ox| gx"! ox? | ox" 2

n—1 n
O e
ox\ oy"” ox oy

‘ In geperal fxy =/, butiff and ]; exist in some neighbqurhood of (a, b) and
ifthey are dlfferentlabfé at (a, b), then fxy = fyx at (a, b) which is known as Young’s
theorem. Another set of sufficient conditions for the above equality has been given
by Schwarz as follows:

Theorem 3.6 (Schwarz’s): Let /(x, ) be a function defined in the region R of the
xy-plane and (a, b) be any point in R such that:

f

@) Z—X exists in some neighbourhood of (a, b)

(")az—f is continuous at (a, b)
ii oxdy uous at (a, b),

&’ f
Then oy iy
Example 3.11: The function f(x, y) is defined by

2

exists at (a, b) and fxy(a, b)= fyx(a, b).

X N
fy)=1"724
0 for (x,y) =(0,0)

Prove that £, (0, 0) # £,,(0, 0).

Solution: Here,

for (x,y) # (0,0)

£,(0+h,0)~ £,(0,0)

J(0,0)= Jimy p
. J,(h,0)= £,(0,0)
= lim = p : (1)

13 <fx(0’0+k)_fx(0:0)

And, (0,0 = lim 2O
k—0 k

_ i J(O+k) = f(h,0) _ . f(K) = f(R,0)

Al 01,0 g TEOAIED) —  JOD 00



222 2 o2
= tim | a0 20 L
k—0| R+ k? W +0 |k
242 3
T ke 5 W
k=0 h? 4 k2 W

And fy(o’ 0)= %ﬂw = lim 0-0 _ 0

k-0 k
Hence, from Equations (1), (3) and (4), we get

T fy(hao)_fy(oﬂo) . h-0 _
(0, 0) = lim h = Jim = =1
. _ . JO+hKk)=f0.k) _ .  f(hk)-f(0,k)
Again, f,(0, ) = lim p e S —
. -k 0% —k2 |1
T e e e

k(h® —k?) _ k(=K%)

B ’1113(1) W+ k? - k—2 =k
And, £,(0,0)= lim f(0+h,02—f(0,0) _ }g}éw
Hence, from Equations (2), (5) and (6), we get
fyx(0= 0) = g% fx(O,k);fx(O,O) _ 11(13(1) —kk—o _

Since, ];y(O, 0)=1and fyx(O, 0)=-1, hence ];y(O, 0) = fyx(O, 0).
Example 3.12: Show that for the function,
2.2

Fy) = % for (x, ) # (0,0)
s X y

0 for (x,y) =(0,0)
the equality fxy(O, 0)= fyx(O, 0) holds.
Solution: Here, ];y(O, 0)
lim /y(0+h,0)- £,(0,0) — lim /y(h,0)=- £,(0,0)

h—0 h h—0 h
Also, fy(h, 0)= 11(13(1) f(h,0+k]z—f(h,0) _ ,{%M

L Rk Ko |1 k% 0
= lim = lim

0| W2+ k2 2407 |k 0K k2 AP

And,  /,(0,0)= lim

—0

£(0,0+k)- £(0,0) _ . [o.kz }1
= lim 0|—
k k

10| 04 k2

(3

()

.. (5)

.. (6)
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0-0

e 7Y
Hence, fxy(o’ 0)= ]lg% fy(hao)}—lfy(o,o) _ %i?)% ~0
Agiin, £,(0,0)~ lim fx<0,0+kz—f;(o,0> - tim fx<o,k>l:fx<0,0)
Ao, f(0.1)= i PRS0
~tim = 0.k =0

>0 p2 k2 0% + k2

. 2
And,  £(0,0)= lim LEO-SO0 lim{ﬂ_g}

h—0 h h—0 h2+02
0-0
= 1. —_—
hl—% h 0
. 0,k)— £.(0,0 . 0-0
Hence, £,,(0,0) = lim S ( )kfx( ) _ /ICI_IR)T -0

£,(0.0)=0=£,(0,0)

Homogeneous Functions
A function f'(x, y) is said to be homogeneous of degree 7 in the variables x and y
if it can be expressed in the form x” ¢(y/x) or in the form y" ¢(x/y).

Alternatively, a function f'(x, y) is said to be homogeneous of degree 7 in
the variables x and y if f (¢x, ty) =" f(x, y) for all values of ¢ independent of x
and y.

Generalized Definition: A function f'(x, y, z, ...) is said to be homogeneous
function of degree n in the variables x, y, z ..., if f (tx, ty, tz, ..) =" f (x, ¥, 2, ...)
for all values of # independent of x, y, z, ... .

Ilustrations: (i) The function f (x, y) = x>+ is homogeneous of degree two

2
because / (x, ) can be written in the form f (x, y) = x> [1 +y—2J = x> ¢(y/x) where
X
d(y/x) =1+ y*/x°.

(if) The function f (x, y) = 4xy - Isahomogeneous function of degree
X +y

2
~2)b oty)= 1 2 W 200y,
(= 2) because f (i, ty) ) pE: Sx, )

(7i7) The function f'(x, y, z) = {/x* + y* +z* 1s a homogeneous function

of degree 1 because f'(#x, ty, tz) = \/ﬂxz 221222 =ttt =t f
(x, ¥, 2)-




(iv) The function f'(x, y, z) = _XEVTE isa homogeneous function

Vx+fy++z

Ix+ty+iz — X+y+z =t1/2f

t
of degree 1/2 because f'(tx, ty, tz) = ———=—= = =75

g f( ty ) \/§+\/;+\/E Zl/2 \/;_'_\/;_’_\/;
(x, y, 2).
Euler’s Theorem on Homogeneous Functions

Theorem 3.7 (For Two Variables): Let /' (x, y) be ahomogeneous function of
two variables x and y of degree n having continuous partial derivative, then

o o _
Proof: Since f'(x, y) is a homogeneous function of degree n, then we write f (x, y)
= x"(y/x).
of

==Xl + X" ¢ ) (- i)
= ! o(v/x) — X2 ¥y o' (v/x)
and L= (L) =0 g o)

1
oy X

of @ - 1 g
.-.xa_J;*ya_Jy( =n X" (x) =" o' (vhx) + X1 (i)

=nx"(vlx) =nf(x, y)
Euler’s Theorem on Homogeneous Functions of More than
Two Independent Variables

Letu=f(x,x,, ..., x,) be a homogeneous function of n independent variables
X, X5, ..., X, of degree k having continuous partial derivatives, then

0 0 0
xl‘—f+x2 i+...+x,,% =k f(x), Xy ooy X,).

n

Example 3.13: Verify Euler’s theorem for f (x, y) = x>+ 7.

Solution: Here, the function f'(x, y) is a homogeneous function of degree three.
f,=3x* and f, =3

Py 324y 12 =303 + %) =
Yox Ty TX ATy T34y =3/ )

Hence, Euler’s theorem is verified.
Example 3.14: Verify the Euler’s theorem for,
7 (x, v, 2) =3x%yz + 5x%z + 524,
Solution: Here, f(tx, 1y, t2)= 3% ty tz + 5 tx 2% tz + 5 t*z*
= * 3x%yz + Sxy*z + 52%)

=1 f(x,,2)
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- f(x,y,z)1s ahomogeneous function of Degree 4.

f

of _ 20 I _ 52
= = + < = +
Now ™ 6xyz + 5y°z o 3x°z+ 10xyz

% = 3x2y + 5)cy2 +202°
0 0 0
JoXx a—£ +y % + za—J;
= x(6xyz + 5)°2) + y(3x%z + 10xyz) + z(3x%y + 5x)7 + 202°)
= 6x°yz + 5xy%z + 3x%yz + 10xy°z + 3x%yz + 5x%z + 20z
= 12x%yz + 20x)%z + 20z*
= 4(3x%yz + 5x0°z + 52%)
=4f(x,y,2)
Hence, Euler’s theorem is verified.

Harmonic Function
. . . e OOf Of .
A function f(x, y) is said to be a harmonic function if V- f= 2 + P 0 (which
X Y
is known as Laplace Equation).

Similarly, a function f(x, y, z) is harmonic if,

2 2 2
V2f=0,ie, it 2L 9L O

+
ox* 0y* 9z°

Example 3.15: Show that the function f'(x, y, z) = is a harmonic

N
[ 2 2 2
. X"+ +z
function. Y

Solution: Now

a _ X
ox (2112 +22)2
2 (x2+y2+22)3/2—x%(x2+y2+22)1/22x
And 8x2__ (x2+2 2.3
yo+zo)
_ _(x2+y2+22)1/2[x2+y2+22_3x2]
(& +y? 422y
_ 22—y =22
(2 112 +22)?
2 2_ 2_ 2 82 2_ 2_ 2
Similarly, 0 { = iy 2x 225/2 a {:_iz 2x 2y5/2
Oy (x“+y +z7) oz (x"+y"+z7)
2 2 2
L0
ox~ oy° Oz



2 22322

2\5/2
)

2x2—y2—22 N 2y2—x2—z +
2)5/2 2)5/2

(x2+y2+z (x2+y2+z (x2+y2+z

_ 2x2—y2—22+2)/2—)c2—22+222—)c2—y2 -0

(X2 +y2 +22)5/2

Hence, f (x, y, z) is a harmonic function inx, y, z.

Total Differential

Letz=1(x, y) be a function of two independent variables x and y and f, fy exist
of o

oy
Example 3.16: Find the total differential of z=x?+ xy + 2.

at(x,y), thendz= dx +——dy is called the total differential of z.

Solution: Now, % 2x +yand % - x+2y.
Ox oy

Then the total differential of z is given by,

dz= %d +%dy
Ox Oy

=(2x +y)dx + (x + 2p)dy.
Chain Rules for Functions of Two or More Variables

(/) Letz=f(x,y)be afunction of two variables x and y where x = ¢(¢), y
=y(¢) (assume that £, ¢ and \ are differentiable functions) then z is a function of
tonly and

dzza_zdx Oz dy
dt ox dt oydt’

(if) Letz=f'(x, y) be a function of two variables x and y where x = ¢(u, v)
and y = y(u, v) (assume that £, ¢ and  are differentiable functions), thenzis a
function of # and v and

0z _ 0z ox 0z oy &z _0z ox oz Oy

ou Ox du Oy Ou dv ox ov dy Ov
(iit) Letz=f (u,u,, ...,u,) be a function of n variables u , u,, ..., u, where
u; = ¢ (x;, xy, .. xp) Uy = ¢2(x1, Xy vees xp), ey Uy = 4)”‘ (x5 X5, e xp) (assume
that ﬁb’ ¢, 0y, ... , 9, are differentiable functions), then z is a function of x,, x,, ...,

n
xpad

Oz _ 020w 0z 0w, o, 0z 0u

=1,2,.
Ox;  Ouy Ox; Ouy Ox; Ou < +P)

n l

:zaza wherei=1,2,...,p.
Ou,. Ox

Xi

The above results are known as chain rules.
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3.6 HIGHER ORDER DIFFERENTIALS

Let f(x) be aderivable function of x in a given interval. Then its derivative /' (x)
is also a function of x. This function f’(x) may have a derivative in a certain interval.
This derivative is called the second order derivative of f(x) and it is denoted by
f"'(x). Similarly, the derivative of the 2nd order derivative is called the third
derivative and so on.

The nth order derivative of f(x) with respect to x is denoted by y, or

7™ (x) or % or ) or d—n {f(x)} or D" f(x) whre D = 4 and y =1 (x).
X dx dx

The n™ Derivative of Some Functions
1. y =" where a is a constant.
— ax
Now y, =ae

y, = aae™ = a*e™

Vi = aZaeax — a3eax

Note: If y = e™*0, p = g"e™*?
2. y= 1
X

1
x1+1

1
Here y, = ’x_z: D!
12

+1

y=(1) (;—§j=(— 0%

x2

2.2.(3) _ )3
x4

x3 +1

y3 = (_ 1)

D" n
yn (x)n+l
. B SN o VA I
Corollary: For y ia (xta)y™
3. y=logx
1 1 (11
H - = ———
ere, , L’ ) 2
(2) 2

=1 36—3:(—1)2 21



1 n—1 1
¥, = D nl"_
X
n—1
Corollary: For y=log(x+a),y, = (_1)—]"—_1
(xxa)"
1
4 =
y xz—az
Now y= ¥ —a*? (x+a)(x—a) [xa x+a} 2a
D N G Yl L G Vi I
Y, = Z{(x—a)”” _(x+a)"+1:| [by corollary of 2]
1 1 1
= —(=1])" _
2a ( ) |£|:(xa)n+l (x+a)n+l:|
Let x =rcosh6 and a=rsinh 6, then 12 = x? — a?

And 0 =sinh! (afr)
s x —a =r(cosh 6—sinh 0)

. e - __ )
=r - =re
2 2

And xX+ta =r(_cosh9+sinh 0) _

_ ¥ +e® - _ 9
=r - =re
2 2

1 " 1 1
24 D" n I:rnJrl S(n+Do - it e(n+l)6:|

Yn =

-1)" -1)"
= ( )nl+_’11 |:e(n+1)9 _e*(n+l)e:| — D" |n sinh (1 + 1)0

2ar a "

Where 0 = sinh™! [ﬁj

1 1 1
Now, y = = =

P ra® X -itd? a (x—ia) (x+ia)
A ]
2ai | x—ia x+ia

1 n 1 1
yn:_-(_l) Iﬂ |:(x nl n+l:|

2ai ia) (x+ia)

Let x =rcos 0, a = r sin 0, then P =x>+a*and 0 =tan"! (ﬁ)
X

x—ia=r(cos O —isin0)=re"'® and x+ia=r(cos O +isin 0)=re'®
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1 1
= nn
yn - E (_ 1) |:rn+1 E(n+1)i6 N rn+1 e(n+1)i6:|

1 =)' s [e(nﬂ)ei_g(nﬂ)ei]

P
— ) sin (n+ 1) @ where 6 = tan ™! [9

6. y=(ax + b)" where m is any positive integer.
Now, ¥y = (ax + bY" ! (m)a = ma (ax + by" !
Y, = (ma) (m — 1)a (ax + )
y3= (ma) (m — Da (m — 2)a (ax + by
=m(m—1) (m—2) a® (ax + b)" 3
y,=m(@m—-1)(m-2)..(m—n+1)a" (ax+by"™
If m be a positive integer greater than n, then
y,=m(@m—-1)(m-2)..(m—n+1)a" (ax+by" ™
If m be a positive integer less than 7, then
Y, =0
Ifm=n,theny =n(n—1)(n—-2)..3-2-1a" (ax+b)0
=|n a".
7. y=sin(ax + b)

¥, = acos (ax + b) = asin (g+ax+bj
y2=—a2 sin (ax + b) =4’ sin [2.g+ax+bj

V3 =—a’ cos (ax + b) = &> sin (3 'g+ax+b]

y,=a"sin (n ~§+ax+b)

Note: If b=0, theny, =D"sin (ax)=a" sin(%+ax]

8. y=cos (ax + b)

¥, =—asin (ax + b) = a cos (g+ax+bj

Vs =—a” cos (ax + b) = a* cos (2 -g+ax+bJ



y3=a3 sin (ax + b) = a> cos (3 ~§+ax+bj

y,=a" cos (%+ax+b)

Note: If 5=0, theny, = D" cos ax=a" cos (%mxj

9. - where a and b are constants.
ax+b
Now, - = —=
ow N e b) =D (ax+b)"!
(-2a) _ 2 a2
— =(-1)y —=_
=( ) X+ b) D (ax+b)**!

, 2630 )’
= 1) A" (ax+b)* (ax+b)3Jrl

Y™ (ax+b)"!
10. y=¢e™ sin bx where a and b are constants.

Now, y, = ae™ sin bx + e b cos bx = ™ (a sin bx + b cos bx)

Leta=rcos6andb=rsin9,thena2+b2=r2andtan9= éor

a
0 =tan! [éj
a

vy =e* [r cos 0 sin bx+r sin 0 cos bx] =re™ sin (bx + 0)

v, =1"e™ sin (bx + n0)

= (@®+b%)2 e sin [bx+ ntan”! 2}
a

Note: Similarly fory=e® cos bx,y, = (a*+5%)2 €™ cos (ber ntan”! 9) .
a
We now show some applications of the above.
Example 3.17: Findy, inthe following cases:

N a-—x N op= X
() y = g [“) i) y= 7
" 2
_ X ] = al
@) y=-—— () y = (x—1) (x=2) (x-3)
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Solution: (i) Now y= log [—x) =log (a—x)—log(a+x)

(iii)

(v)

-1

a—
a+x
_ -1 1
M1 a-x a+x
PN S
yz_( )(afx)z (a+)c)2
o2 e
3 ()(afx)3 (a+)c)3
PN < I e
Y4 ()(a—x)4 (a+)c)4
N T R e |
n ()(afx)" (a+x)"
_ 1 D"
=|n_1|-
l_{ (a—x)"+(a+x)"}
o a—Xx_2a—(x+a)_ 2a
(”)y a+x a+x a+x
_, e
Y1 2a (a+x)2
%2
=2
2 “ (a+)c)3
D’
3 2a (a+x)4
2 (_1)nlﬂ
n (a+x)n+l
I S e 0 B s WD O
Y x—1 x—1 x-1 x

Since, the nth order derivative of x

. (x—l)(x"_l+x”_2+...+x+1)+ 1

x—1

=" 24 A x+ 1+

Dn( 1 )_ﬂ

; - (x_l)n+1 9
D'
yn (x_l)n+1
x2
y

T —D(x-2)(x—3)

x—1

1

x—1

n—1 , xn—2

, ..., x are zero and



x? _ A N B N C
(x-D(x-2)(x-3) (x-1) (x-2) (x-3)
orx?=A(x-2)(x—3)+Bx-1)(x-=3)+Clx—1) (x—2)
Nowputting x=1,2 and 3, we get
1=4A1)(-2)= 4=
4=B(-1)(-1)=B=
And 9=cem(n:>c=§

Lety=

1
2
4

1L e,
2x-1 x-2 2 x-3

We know that D" (Lj _ D |n
X—a

y:

(X*Cl)nﬂ
. _ 1 &Y' D' 9 ED'n
: yl’l 2 (x_l)n+1 (4) (x_z)n+l + 2 (x_3)n+l

Leibnitz’s Theorem for the nth Order Derivative of the Product of Two
Functions

Theorem 3.8: Letu and v be two functions of x, both derivable at least upto n
times, then the nth derivative of their product is given by,

n
(uv)n = Z ncr Uy Vr
r=0

="c uy+ ”cl u, (v t..+ ”cn uv,
n(n—-1)
2 Uy 2"
Where the suffixes of # and v denote the orders of differentiation of # and
v with respect to x.
Example 3.18: Findy, wheny =x>logx.

Zunv+nu v1+ +...+uvn

n—1

k-1
Solution: Letu =Ilogx andv=x3,thenuk— %andv =0 fork>4.

x

Then by the Leibnitz’s theorem, we get
= (x’ log x), = (uv),
n(n—-1) n(n—1)(n-2)
z 2%’ 3 U, 33
(Other terms are Zero, *. v, = 0 for k > 4)
GVl U S "2m_32nm1xn"ﬂ_gw
X" X 1 X" 2 I_
L an=Dn=2) -)""x-4
|§ X" 3

n=2 (o1 3m) e OIS 334, )

Zunv+nun_1 v+

(1) I_(Z +1)+n(n l)l_( l)n( 2n+7)
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_ 1) I_ [(n-2)(n—3)2Qn+1)+n(n—1)(=2n+7)]
G l_ [(n%=5n+6) 2n+ 1)+ (> —n) (- 2n+7)]

) '— (27 = 1072 + 1271+ 1 — 5n + 6 — 21 + 202 + Tr — 7Tn]
x

_ (D" 6ln—4

xn—3

d}’l

Example 3.19: Ifx+y=1, then prove that (x "VNY=|n {y”—(”Cl)zy”_lx
TG Y2 (" 3)2yn W+ (1) xn v
Solution: Sincex+y=1,theny=1-x.

Let u=x"andv=(1-x)",thenu. =n(n—-1)(n—-2)..(n—r+1px""

_ n(n-)n-2)..(n—r+Dn-r = an,,

n—r n—r

Differentiating n times by Leibnitz’s theorem, we get

d}’l
nony —
) dx"

"1 -0 =),

= i "C,ou, v, ="Cyu,v+"Ciu, vi+"Cyu, ,v,+ ..
+"C uv,

— A\ I_ Ry n I_ 2
[ln(1-x)"+"C P— x(l x)" (=Dn+"C,
n(n—l)(—1)2(1 x)”_2+...+"Cnx ln (=1)" [ vn—( 1)"|_]

—|n [(1—x)"—(”Cl)x(1—x)”‘1(”q)+

n(n—1) 2

2
:lﬂ [yn _ (nCI)Z xynfl + (nCZ)Z x2yn72 + + (_l)n xn]

"Cy = x(1-x)"2 4+ ("C))(- 1)%”}

Check Your Progress

4. Define partial derivative of a function of two variables.
5. Whatis a homogeneous function?
6. Define a harmonic function.

7. State Leibnitz’s theorem for the nth order derivative of the product of two

functions.




3.7 TAYLOR’S THEOREM

Theorem 3.9: Let f(x+ /) be expandable into a power series in the variable /.

Again the flat assumption is that this series can be differentiated term-by-term.

Taylor’s theorem states that,

2
fla+th)=f(a)+hf'(a)+ %f”(a)+ - 0
Proof: Letf(a+h)=a,+oh+ a2h2 + 0L3h3 + .0
Put2=0to get a,=/(a).

Differentiating each side with respect to 4, we obtain

%[f(am)] = o, + 20,/ + 3ok + . 0
d[f(a+h)] dla+h)
da+h) ~ dh)
=f'la+h).1=f"(a+th)
This in turn yields that,
oy =f"(a)

[Observe that /' (a + h) is first derivative of f'(a + h) with respect to

ath.]

Again, differentiate both sides with respect to 4.
Thus,f"(a +h) =20, +(3.2) ay h +..©

d _
But%[f (a+h)] =

= 2a,=f"(a) or a,= _f”z('a)

Proceeding in this manner, we get
=10
%= S(a)

Hence, f(a+h)= 5 h—:f(’) (a).
r=07r:

Example 3.20: Show that,

1 1 1 1
10g(l’l+]) =10gn+ (;_W+§—m+..j.
Solution: We expand log (n + /) in terms of 4 and then put 2 =1.

f(mth)y=log(n+h)=f(n)=logn

Also, f'(n + k)= [log (1 + )] = ——

din+h) n+h

= f=-
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Further, f"(n+h)=- ! 5> =>f"(n)= —Lz ans so on.
(n+h) n

r—1 r
In general, f(n+ h) = M
(n+h)
. FO(n) = ¢
n

Consequently by Taylor’s expansion

log(n+h)=f(n)+hf’(n)+ f"()+ + f(’)(n)+

h? 2!h3
=logn+ ——-———+=
& m? 3
_1y -1 _1
n D" hr(r-1! "

(rynr

Put 4= 1, to obtain

1 1 1 1
log(n+1)=logn+|———+——-—+...|.
g( ) g {n 2?3 ant }

Example 3.21: Prove that,

N
tan!(x+2)=tan | x+2sinz sinz % 2z + 3
Where, cot z=x.

Solution: We expand tan™! (x + /) by Taylor’s expansion and then put 4 =2.

Here, /' (x + h) =tan ' (x + h) = f(x) = tan"' x.

In this case, /) (x + k) =(=1)"! (r— 1)! sin” 6 sin 0,

Where, cos®=x+h

Thus, /), =(1)""! (r=1)! sin"z sin nz

Since by definition the value of cot0at2=01iscotz,i.e.,0=z

2
Hence, tan"! (x+/4)=tan ' x+Asinzsinz+ % (—sin® z sin 2z)

3

sinz  h’sin’z

1

=tan x+hsinz sin2z

3
+ ?sin3zsin3z...

Put 2 =2, to get the required result.

(2sin z)3 sin3z

+ % (2! sin’ z sin 32) ...



Example 3.22: Show that if x is numerically less than 1,

L 4 +3 43+

(1~ x)?
. 1
. +h)=
Solution. Here, f(a+h) @iy
1
= fl@=—
a
2
at+h)y=-
A ) (a+h)’
, 2
= fa)=—=
a
Again fa+hy=—2
£, (a+h)?*
" — 6
= S(a)=—
a
and so on.
By Taylor’s, expansion
1 1 2 ii

—h+ h...

(a+h)? P Y
Puta=-1, h=xto get
1

R, =142x+3x%+ ...
—1+x

1
(1-x)?

Notes: 1. Series on RHS is convergent only when x is numerically less than 1.

Or =1+2x+3x%+ ...

2. One might think that in the proofof (Lj (by definition), we use the

series (1 —x)2=1+2x+3x> + ... . We could avoid this circular
argument by finding out derivative of x ”, n is any integer by following

technique
d n n-—1
d (1 —(1)x" -1.nx
X\ X x2n
B 0.x" —nx"!
x2n
n—1
—nx n —n—1
= T
X X

Now, putn =1, 2, 3, ..., to get derivative of reciprocal of any integral
power of x.

Functions of Several
Variables

NOTES

Self-Instructional Material 123



Functions of Several
Variables

NOTES

124 Self-Instructional Material

3.8 EXPLICIT AND IMPLICIT FUNCTIONS

Ifthe dependent variable y is expressed in terms of the independent variable x, we
call y an explicit function of x and denote such a function by y =f(x). One can
similarly define an explicit function x =f'(y) where y is the independent variable
and x depends on y. Thus y=x sinx + 5 log x — 2* is an explicit function. But often
it may not be possible to relate a dependent variable to the independent variable in
such an explicit form, yet it may be possible to get y as a function of x or x as a
function of y under some stringent conditions. These conditions are given by the
well-known implicit function theorem. It is to be clearly understood that the
conditions of this theorem assert the existence of a function but do not provide the
function itself.

Derivatives of Implicit Functions

Theorem 3.10: If F' (x, y) =0 defines y as an implicit function of x, then

b _ B
o 7, provided F' V7 0.
. dF
Proof: Since F' (x,y)=0, then o 0. ... (3.8)

By the chain rule, we get

_OFdx oOFdy _ OF OFdy

d
- F = 4 7 = 4 2
dx 2} Ox dx 0Oy dx Ox Oy dx

dy . dy
F, = +F = = =_x
or Fy, —- F.=0 (By Equation (3.8)) or o .

Notes:
1. If F (x,y,z) =0 defines z as an implicit function of x and y

F, .
then & =_Land&=_0 provided F_# 0.
Ox F, oy F, Z

2. If F (x, y) =0 defines y as an implicit function of x, then

d? F)F. —2F.F,F. +(F)F,, )
£ = G e G Y provided F # 0.
dx Fy3 Yy

Example 3.23: Find % if a®x® + b?y* — 3abxy =0.

Solution: Let F (x, y) = a’x> + b%° — 3abxy;
) _ 2.2
~.F,=3a’x" —3aby and Fy =3b“y* — 3abx.

Ldy . F _3a(ax2—by)__£(ax2—by)

Cdx F, 3y —ax) b (by* —ax)




3.9 INVERSE FUNCTION THEOREM AND IMPLICIT
FUNCTION THEOREM

The Inverse Function Theorem

Theorem 3.11: Let f=(f,, /..., /) €C’ onan openset S'in R”, and let 7= f{s).
If the Jacobian determinant Jf(a) # 0 for some point a in S, then there are two
open sets X&S and YT and a uniquely determined function g such that,

(a)
©)
(©
(@)
(@

aceXandf(a) €Y.
Y=£AX).

Fis one to one on X.
Gisdefinedon Y, g(Y) =X, and g[f(X)] forevery x € X.
ge (.

Proof: f=(f..f,.....f)) € C" on §. So fis continuous on S.
= ins continuous on S.
= J(a) # 0.
= There is an n-ball B,(a) such that J(X)#0 forall X'in B (a).

= There is an n-ball B(a) < B (a) on which fis one to one.

Let B be an n-ball with center at ¢ and radius smaller than that of B(a).

Then f(B) contains an n-ball with center at f{a). Denote this by Y and suppose
X=1(Y)nB.

=

=

fe C'"onS.
fis differentiable on S.

fis continuous on S.

Therefore, /() is open (being an n-ball Y'is open).

=
=

(@)

U

U

U

(b)

f1(Y)NBis open.
Xis open.

We have,
acBandfla)e Y
acBandaef'(Y)
aeBNfI(Y)
aeX
X=f1(Y)nB
SX)=fIf'(Y) NB]
c (V) NAB)
=YNA(B)
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XYy ...(3.9)
LetyeY = y €f(B)
= y=f(b) for some b €B
That s,
fib)=yeY
So,
b ef(Y)
Thus,
yeY = beBandbef'(Y)
= beBnfI(Y)
= beX
That s,
veY= y=f(b) forsome beX
That s,
Y fiX) ...(3.10)
From Equations (3.9) and (3.10),
Y=AX)

(c) Wehavefisonetooneon Band Xc B. Therefore fis oneto one on X.
(d) Theset B is compact and fis one to one and continuous on B.

Letf: S— T be a function from one metric space to another metric space.
Assume that f'is one to one on S, so that the inverse function /' exists. If S is
compact and if fis continuous on S, then fis continuous on f{S). There exists a

function g defined on g such that,
g(fiX))=XforallxeB

Also,

g s continuous on f{ B )
Since,

YA B),gisdefinedon Y.
We have,

fX)=Y
So from the definition of g, we get g(Y)=Xand g (f(X))=X for all xe X.
To prove g is unique, let there exists / on f{ B ) satisfying (d).
Then,

h(f(X))=X forall xeX

Also, we have



g(flX))=Xforall xeX
Let yeY.
Then there exists a unique x X such that,

y=f(X) [ Because fis one-to-one]

Therefore,
Y) = h(flX))
=X
= g(X)
= g1
That s,
nY) = g(Y)forallyeY
= h=g

(e) Define a real valued function / by,
WZ)=det[D, f,(z,)] where z,2,,...,2, €S

And (z,z,,...,z,)is the corresponding element in R" . his continuous at

thepoint Zin R " where h(Z)1s defined. Let Zbe the special pointin R " obtained

by puttingz =z,=... =z =a.
Then,
h(Z) = det [D fz)]
=J(a)
=0

Hence, by continuity of 4, there is some n-ball B, (@) such that /(Z) #0 for
allz,z,,...,z, € B,(a).

We can now assume that, the n-ball B(a) was chosen so that B(a)c B,(a).

Then, B B (a) and hence h(Z) # 0 foreachz, € .

In order to prove thatg=(g, g,....,g,) €C" on ¥, itis enough to show that
g, eConY.

For proving that D g, exists on Y, let ye Y. Since, Y is open, y+tu €Y for
sufficiently small 7, where u_is the 7th unit coordinate vector in R”.

gk(y+tu,)—gk(y)
t

And let x=g(y) and x'= g(y+fu ). Then both x and x" are in X and fix") —
SX)=yttu-y =t

Consider

Functions of Several
Variables

NOTES

Self-Instructional Material 127



Functions of Several
Variables

NOTES

128  Self-Instructional Material

Hence,
S —fx)=tifi=r
=0,ifi #r

By the mean value theorem we have,
szf"(z_") . (x—;xj fori=1,2,..n,

Where Z lies in the line segment joining x and x" and hence Z €B.

Therefore,
Vfi(zi).(x;xj =0, if i%r

=1, if i=rfori=L2,...,n
That s,

n xv_x . )
ZI:Djfl.(zl.).( ] 0, if i=r
=

t

=1, if i=rfori=1,2,..,n

.. . . . X, —X;
This is a system of n linear equations in » unknowns ———= and has a
t

unique solution, since det [D fl_(zl.) 1=h(Z) #0. On solving the kth unknown by
Cramer’s rule we get,

X —x _ & (rm,)-g ()
t t
Dk

b

D

Where, D, is the determinant of the matrix obtained by replacing the kth
columnbyu and D =det[D fl_(zl.)].

Now,

t—0 =z —X, since z, is on the line segment joining x and x'.

Also, 1mD = limdet[D;f,(z)]

= det[D, £,()]
= /()

#0,since xe X

Therefore,

lim Sk (y+m,)—g.(y)

t—0 t

exists.



Or,
D g (y)existsforr=1,2,...,n.
Furthermore, D g () is a quotient of two determinants involving the

derivatives D ]}f(X) Buteach D ].}?(X) is continuous. Therefore, D g () is continuous.
Thatis,g,eC'onY. Hence,g € C'onY.

Implicit Function Theorem

Notation: Points in the (n+k) dimensional space R"* will be written in the form
(x;t) where x = (x,...,x) € R"and t = (¢,..., t) € R~

Theorem 3.12: Let f=(f...., f)) be a vector valued function defined on an open
set Sin R**with values in R". Suppose f € C' on S. Let (x;¢,) be a point in S for
which the n x n determinant det[ D ]fl.(xo;to)] #0. Then there exists a k dimensional
open set T, containing #, and, one and only one, vector valued function g, defined
on 7, and having values in R", such that

(@ geC'onT,
(b)  g(t) =x,
() Ag(tn)=0foreverytinT,
Proof: Define a vector valued function F'=(F',F,,...,F ;F ) onShaving values

in R™* and apply inverse function theorem to F. The function F is defined as
follows:

Let F (x;t) =f (x;t) for 1ISm<mandletF (x;t)=t¢ for 1<m<k.

Thus, F=(f.1), where f=(f,.f,....f,) and I is the identity function defined
by I(f) =t for each ¢t € R*.

Now,

FeC'"on S, since feC'and/ eC'on S.

Also,
DF(x;t) -+ D/F(xt) D, F(xt) - D, F(x1)
DF,(x;t) -+ D,F(xt) D, F(xt) - D, F(x1)
DF, (x;t) -+ DF/(x;t) D, F(xt) - D, F(x0)

Jp(x;t)=det

DF, (x;t) -+ D, (x;t) D, F,, (xt) - D, F,, (x1)
DIF;HZ(x;t) DnF:Hz(x;t) Dn+lE1+2(x;t) Dn+kF:1+2(x;t)
DF,  (x;t) -+ D,F,  (x;t) D, F, (x;t) -+ D, F, (x0)

n+l1
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=det

M N
=det , where M =det
0o 7

And N

=detM
=det [D,

D, f,(x;1)
D, 1, (x;t)

D, f,(x;t)
Dy f,.(x30)

D, f,(x0) -

Difyi(50) -

Dwz+1ﬁ (’x’ t)
Dn+1‘]r2 (xbt)

=det

Dn+1f;1 (xﬂt)

f,(x:1)]

D”‘fl(x;t) Dn+1ﬂ(x;t)
D, f,(x;t) D, f,(x;1)

D”/["(x;t) Dn+1fn(x;t)

an;zﬂ (x7 t) Dn+1 n+l1 (‘xﬂ t) e
an;wz (x;t) Dn+1f;1+2 (x9 t) e

D’lf;‘l+k (x’ t) Dn+1f;1+k (xﬂt)

D, f,(x;1)
D, f;(x;1)

D, f,(x;1)
Dn+kfi(‘x’-;t)

Dn+k.f2('x;t)

Dn+k-](n (‘x7 t)

S0 J, (x; 1,) = det [D.f; (x;; 2,)]

=0
Also,
F (x,t,)

= (fx,t,)50)
(0,2,

Dn+kfi (xbt)
Dn+kf‘2 (‘x9 t)

D,ka;, ('x’ t)
Dn+k n+l (xﬂ t)
Dn+k]pn+2 (x;t)

Dn+k n+k (X; t)
D, fi(x;1)
an‘Z (x; t)

D, f,(x;1)

Now, by inverse function theorem, there exist open sets X and Y and a

unique function,

G: Y —>Xwhich satisfy the following properties:
1. (x,t,) € Xand F(x;t) = (0,¢) €Y.

A

Y=F(X).
F'is one to one on X.

G(Y)=Xand G( F(x;t)) for every (x;t) € X.
GeC'onY.

Now, G can be reduced to components as follows:

G=(v;w)wherev=(v,,...

with values in R” and

w=Ww,...

., w,) is also defined on Y but has values in R*.

.,V ) is a vector valued function defined on Y

To determine v and w explicitly, £ is one to one on X and F~'(Y)) contains
X. Hence, for every (x;f) in ¥ can be written uniquely as (x;¢) = F(x';¢") for some
(x";¢") in X. From the way in which F'was defined, we must have #'=t.



Hence,
G(F(xt) = G(x;0)

= (50) = (V(x;0);wxst))

= v(x;t) = x" and w(x;f) =t
Additionally,

F(x';t") = F(v(x;t);t) for every (x;t) € Y.
Now define the set 7} and the function g as,
T, = {t/t eR', (0;t)e Y}
and for every 7 in T, define g(¢) = v(0;?).
Then, T} is open, since Y is open.
GeC'onY.

Therefore, g € C' on ¥, since the components of g are taken from the
components of G

Also, g(z,) = v(0:t))
=X,
Agt:t) = f(v(0:0):1)
= flx ;1)
=0, foreveryt e T,

Now, we will prove the uniqueness of g. If there were another function 4
which satisfies (c) then,

Sg(0);t) = fh(0);r) for all £ €T
= (g(?);t) = (h(?);t), since fis one-to-one

= g(0) =h@)
=>g=h

Check Your Progress

8. Give the statement of Taylor’s theorem.
9. Define an explicit function.

10. State the inverse function theorem.

3.10 CHANGE OF VARIABLES

Theorem 3.13: If (i) f € R [a, b], (i) ¢ is derivable, strictly monotonic on [a, ]
and maps it onto [a, b], and (iii) ¢’ € R [a, B], then

Jb f(x)dx =IB OO (t)dt.
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Proof: Let ¢ be strictly monotonically increasing on [a., B], and Q= {a =, 7, £,
....,t =B} be apartition of [a,, B], then P= {a=x,x, x,, ...... ,x =b} be the

0> 7717 72
corresponding partition of [a, b], forx, = ¢ (¢),i=0,1,2, ..., n.

By Lagrange’s mean value theorem,

ox =x —x_ =¢@)d( _)=0¢"(n)ot,wheren € o6t and & = dp(n),
r=1,2,...,n.

so that
EAE) 85, = Zfid (M) ¢'(n,) o¢. ..(3.11)

and ¢ being derivable is uniformly continuous on [a., 3], and consequently
IOl > 0as||P| — 0. Thus, letting || P || > 0 as

5(&,)8x, = [ f(x)dx, and T (@ )¥), > [ £(00) ¢
Equation (3.11) gives that

b B ,
[ rax=]" 1@ ¢'@ydt.
With some adjustments in the above proof, the theorem also holds for strictly
monotonically decreasing ¢.

Notes: 1. If¢’ #0on [a, B] then ¢ is strictly monotonic on [a, B]. Hence in the

theorem the condition of strictly monotonic of ¢ can be replaced by
¢ # 0 on [a, B].

2. The theorem still holds even if ¢’ =0 for a finite number of times on
[a, B]. In that case [a, B] can be divided into a finite number of
subintervals in each of which ¢ is strictly monotonic and the change of
variable being valid in each of the subintervals, the result follows.

. p .
Conclusively, to evaluate I f(x)dx ,if we put x = g(¢), where g(a) = a,

g(b)=P and g’ is continuous on [a, b] vanishing at the most a finite number of
times, then

["reodx=[" r(g() g'(de

The auxiliary function g mapping [a, b] onto [a, ] is chosen in such a way
so that the last integral is easily known.

B .
Hence, I f canbe evaluated in many cases.
03

1
Example 3.24: To evaluate I(l + x% )dx .
0

Let (1+x%) =1, thenx = (F—1) =7£—36+ 371 gives
1 y 2%

fa+xPydx - It(9t8—18t5+9t2)dt

0

1
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3.11 EXTREME VALUES OF EXPLICIT FUNCTIONS
AND STATIONARY VALUES OF IMPLICIT
FUNCTIONS

Extrema of Functions of One Variable

A functiony =1 '(x) has a maximum value ata pointx, if for | /2 | sufficiently small,
S g+ h) <fx)
Similarly, a function y = f'(x) has a minimum value at a point x if
S xg+h)>fx)

Lety =f(x) be a continuous function defined on the interval (a, b). The
points x, x,, x5, x, and x, (not x;) represent all the points of maxima and minima
in [a, b] (called the stationary or critical points). These include x,, x; and x, as the
points of maxima, and x, and x,, as the points of minima.

S Max

Point of Inflection
\A

Max

i
1
1
!
O a X1 Xy X3 X4 X5 X6 b

Global Maxima: Since f'(x;) > f(x) for all x # x, f'(x,) is called the global
maxima whereas f'(x,), f(x,) are called local or relative maxima. Observe

Sxg) = max {f(x,), f(x3), fxg)}.
Global Minima: Since f (x,) <f(x) for all x # x,,
f (x,) s called global minima whereas f (x,) is called a local minima.
The point 4 corresponding to f'(x5) is a point of inflection.
Notes:
1. A function may have more than one maximum values.
2. A function may have more than one minimum values.
3. A function may have no maximum or minimum values.

Necessary Conditions for Maximum and Minimum: If /' (x) be a maximum
or aminimum atx = c and if /'(¢) exists, then '(c) =0.
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At the points of maximum and minimum, if the function y =f'(x) has a
derivative, the tangent line to the curve y=f(x) at each of these points is parallel
to the x-axis.

From the above necessary condition, it follows immediately that if for all
considered values of x, the function f'(x) has a derivative, then it can have an
extremum (maximum or minimum) only at those values for which the derivative
vanishes. The converse does not hold: it cannot be said that there definitely exists a
maximum or minimum for every value at which the derivative vanish. The function y
= x> atx=0has a derivative equal to zero (y' = 3x%, (v/") <=0~ 0)butat this point
the function has neither a maximum nor a minimum.

y

The function y=| x | has no derivative at the point x =0 but the function has
aminimum value 0 atx=0.

X

o
The function y = (1 —x 3)3/ ? has no derivative atx=0.

3 23\ (=2 i3 -13 232
Note that y'==(1- — __ _
{ ote that y 2( X ) 3 X X (1 x )

becomes infinite at x = O}

But the function has maximum value y=1atx=0.

y
y= (1 7x2/3)3/2

—1 0 1
The function y= 3/x hasno derivative atx=0 (Note thaty —coasx —0).

At this point the function has neither a maximum nor a minimum.



i

So, a function can have an extremum only in two cases:

(7) At the points where the derivative exists and is zero.

(if) At the points where the derivative does not exist.

Determination of Maxima and Minima

(a) If ¢ be an interior point in the interval in which the function f'(x) is
defined, f"(c)=0and f"(c) # 0, then f (c) is

(7) amaximum at x = c if f"'(¢) <0.
(fif) aminimum at x =c if f"'(c) > 0.

(b) If ¢ be an interior point of the interval of definition of the function f'(x)
and if f'(c) =1"(c)=...=f""'(¢) =0 and f"(c) # 0, then

(i) if nbe even, f(c) is a maximum or minimum, according as f"'(c) is
negative or positive.

(i) ifn be odd, f (¢) is neither maximum nor minimum.

Example 3.25: Show that the maximum value of [lj isee
X

X

Solution: Letf(x)= (ljx ,then log f(x) =x log Gj =-xlogx
S _
S(x)
or f'(x)=—flx) (1 +logx)
From the necessary condition of extrema, we get f'(x) =0
=1+logx=0(.f(x)=0)

—(1+logx)[1+logx] (1)

[

= x=
Differentiating Equation (1) with respect to x, we get

'@ @ _ ),
S S0P

| 1 [f’(x)]z}
5 ol [ EALC) i
/) {x yeor |
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For x=é,f”(éj=[—e+0] f(éj=—el/e<0

Hence f(x) = (x)"”* has a maximum value at x = 1/e and the maximum value
1/e

ise
1
Example 3.26: Show that the maximum value of (x + ;j is less than its minimum

value.

Solution: Letf(x)= x+ %, then f'(x)=1- Lz and f"(x) = %
X X

f'(x)=0 gives l—x% =0=>x=+I

Forx=1,f"(1)=2>0.Hence atx = 1, f (x) has a minimum value and the
minimum valueis 2.

Forx=-1,f"(-1)=-2<0, Hence atx =—1, f (x) has a maximum value
and the maximum value is 0. This shows that the maximum value (0) of (x + lj is
less than its minimum value (2). ’
Extrema for Functions of Two Variables

A function f (x, y) is said to have a maximum or a minimum value at the point (a, b)
ofthe domain of / (x, ), provided we can find a positive number 6 such that for all
valuesof x,yina—-0<x<a+dandb—-0<y<b+9,(x#a,y+b)
fx,y)s f(a, b)
ie,iff(a+h,b+k)—f(a,b)s Ofor|h|<dand|k|<3d,f(a,b)is
called an extreme value of f'(x, y) if it is either a maximum or a minimum.
Necessary Conditions for Maxima and Minima: Ifa functionf (x,y)

has an extreme value (maximum or minimum) at (@, b) and if the first partial
derivatives f_and fy exist at (a, b), then f, (a, b) =0 and ]; (a,b)=0.

Sufficient Condition for the Extremum of a Function f(x, y) at

(a, b): If f (a, b) = O,fy(a, b) =0 and f,, (a, b) = A, fxy (a, b)
=B,fyy (a, b) = C, then

1. f(a, b) is a maximum value of / (x, y) at (a, b) if AC— B>>0 and 4
<0.

2. f(a, b) is a minimum value of /(x, y) at (a, b) if AC — B> > 0 and
A>0.

3. f(a, b) is neither a maximum nor a minimum value of /' (x, y) at (a, b)
if AC - B <.

4. The case is doubtful and needs further investigation if 4C— B>=0.

Saddle Point: A point (a, b) is said to be saddle point of a function f (x, y) if
f(x,y) has neither a maximum nor a minimum at (a, b) though /. (a, b)) =0 and

£, (@, b)=0.



Critical Point: A point (a, b) is said to be a critical point of a function f (x, y) if
f (a, b)=0andfy(a, b)=0.
Example 3.27: Find the extreme values of,
f@,y)=x"+xy+)*+ax+by
and determine whether the value you get is maximum or minimum.
Solution: Here, f(x,y)=x>+xy+1?+ax+ by
fi=2x+y+a, fy=x+2y+b
For maxima or minima of f'(x, y),
f,=0 and fy =0
e, 2x+y+a=0andx+2y+bH=0

Solving these two equations, we get

1
3
Now, fxx=2=A,];y=2=C andfxy=B=l

X =

(b—2a)andy=§(a—2b)

" At the point [% (b—2a), % (a—2b)],

AC—-B*=4-1=3
And A=2

Since AC — B> > 0 and 4 > 0, f(x, y) is minimum at [% (b — 2a),
% (a—2b)] and the minimum value of /' (x, )

P INE D _ LY S b
(b—2a) +9(b 24) (a 2b)+9(a 2b) +3(b 2a)+3(a 2b)

O | =

— 5 (36> -3 +3ab)= 5 (ab—a*~ ).
Example 3.28: Find all the maxima and minima of the function,
) =x+y"—63 (x+y)+ 12xp
Solution: Here, /' (x, y)=x>+)° — 63 (x +y) + 12xy
o f,=3x" =63+ 12y and f,=3y" - 63 + 12x
For the extreme of /' (x, ), f. =0 and fy =0
ie, 3x2+12y-63=0 and 3?+12x—63=0
ie, x*+4y—-21=0 and > +4x—-21=0
Subtracting 2nd from the 1st, we get
@ =) +4@-x)=0
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So we get two sets of equations
X +4y-21=0, x—y=0
And x*+4y-21=0, x+y—-4=0

Solving these two sets of equations we get the following sets of points as
rootof];=0andfy=0

(3,3),=7,-7),(5,-1), (-1, 5)
Now, 4 =f = 6x, C=];y=6yandB=];y= 12
At (3,3), wehave 4 = 18, B=12 and C = 18.
Sothat AC—B>=18>-12>>0and 4> 0
2. f(x,y)is minimum at (3, 3)
At(-7,-7),wehave A=-42, B=12, C=—42
Sothat AC—-B*>=422-12>>0and 4<0
- f(x,y)is maximum at (—7,—7)
At(5,-1),wehave A=30,B=12and C=-6
So that AC—B>=-180—122<0
- f(x,y)1s not extremum at (5, —1)
At(-1,5), we have A=—6, B=12 and C=30
So that AC—B>=-180—122<0

- f(x,y)isnotextremum at (-1, 5).

3.12 LAGRANGE’S MULTIPLIERS METHOD

If we have to find the stationary value of a function of several variables which are
not independent but interconnected by some relations then we try to convert the
given function to one having least number of variables using the given conditions.

When such a procedure fails we use the method of Lagrange’s multipliers which
is described below.

Let u=f(x, y, z) be the function whose maximum or minimum values are to be
determined. Let the variables x, y, z be connected by the relation v (x, y, z) =0.

For u to be a maximum or minimum it is necessary that

a—u:()’ a_uzo, a_uzo
ox oy oz
ou ou ou
—dx+—dy+—dz=0
o X Y Yy o z ...(3.12)
From v (x, y,z) =0 we get
ov ov ov
—dx+—dy+—dz=0 ...(3.
x e (3.13)



Multiplying Equation (3.13) by the Lagrange multiplier A and adding it to Equation
(3.12) we get,
[a—u+k@)dx+ %+7\@ dy+(a—u+k@jdz =0...(3.14)
Ox Ox Oy oy z 0z
This equation will be satisfied if we use the conditions,

(a—u+k@j=0 6_u+k8_v =0 (a—u+ka‘}}=0
ox ox oy Oy

oz oz

Using the above conditions and v (x, y, z) = 0 we can find the value of A and the
values for the variables x, y and z which will give the extreme value of the function
u(x,y,z).
Note: If n constraints are given in the problem we have to use » multipliers namely
ANy, ..., A, The drawback of this method is that we cannot decide the nature
of the stationary value. Sometimes physical considerations help us to decide whether
u has attained a maximum or minimum value.

Example 3.29: Using Lagrange’s multipliers method, find the extreme value of
x> +y? + 2% subject to the condition ax + by + ¢z = p.
2,

Solution: Let u=x2+y2+z v=ax+by+cz—p

du=0,dv=0give
2xdx +2ydy +2zdz=0 ..(1)
adx+bdy+cdz=0 ...(2)
Equation (1) + A Equation (2) =0 gives,
2x+ra)dx+ 2y +ib)dy+(2z+Ac)dz=0

For an extreme value of ¥ we must have,

2x+Ara=0; 2y+Ab=0; 2z+ic=0
2x 2 2z
o= o2V 22
a b c
X y z
Or - = ===
a b ¢
ax by ¢z _ax+by+cz _ p
a? b A abr+t A +br
Hence, x=— % . __ b o ww
’ a>+b*+ 2 @+ b2+ a? +b% +c?

Using these we get the extreme value of u as,

2
p

a’+b*+c?
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Example 3.30: Find the maxima or minima of X"y’ subject to the condition
ax tby+cz=p+gq-+r
Solution: Let u =x")"2’; v=ax+by+cz—p—qg-r
logu = mlogx+mnlogy+plogz

1
—du = Zaxilay+ Laz
u X y z
du =0 gives ﬂdx+£dy+£dz=0 ...(1)
x y z
dv =10 gives adx+bdy+cdz=0 ...(2)

Equation (1) + A Equation (2) =0 gives,

(ﬁ+akjdx+[£+kbjdy+(£+kcjdz=0
X y z

For an extreme value of u, we have,

ﬂJra?»:O; ﬁJrM?:O; £+7»c=0
X y z
m n
L= Mm_ n_ P
ax by cz
(or) m _n_p_mintp min+p
ax by ¢z ax+by+cz p+q+r
comptgtr). _n(ptq+r) ,_Pptq+r)
a(m+n+p) b(m+n+p) c(m+n+p)

Using these values in u, we get the extreme value of u as,

m+n+p

m"n"p? ( p+q+r

u = .
a"b’c? \m+n+p

3.13 DIFFERENTIAL FORMS AND STOKES’
THEOREM

In the analysis of different mathematical fields, differential forms are defined as the
specific method for multivariable calculus that is independent of coordinates.
Differential forms use an integrated methodology for defining the integrands over
curves, surfaces, solids and higher dimensional manifolds. The contemporary notion
of differential forms was established and pioneered by Elie Cartan.

Fundamentally, considering the one variable calculus the expression f{x) dx
is an example of a /-form and can be integrated over an oriented interval [a, b] in
the domain of f'and can be represented as,



/: f(z) dx.

Consider the following expression,
Sx,y,z) dx ~dy +g(x, , z) dz ~ dx + h(x, y, z) dy ~ dz

This expression is referred as a 2-form which has a surface integral over
an oriented surface Sand is represented as,

f(f(:r:?y, z)dz A dy + g(z,y, z) dz A dx + h(z,y, 2) dy A dz)
i

The symbol ‘A’ denotes the exterior product and is occasionally termed as
the wedge product of two differential forms.

Similarly, a 3-form f{(x, y, z) dx A dy A dz represents a volume
element which can be integrated over an oriented region of space. Generally, a -
form is considered as an object that may be integrated over a A&-dimensional oriented
manifold and is homogeneous of degree £ in the coordinate differentials.

On an n-dimensional manifold, the top dimensional form or the ‘n-form’ is
termed as a volume form.

A differential k-form can be integrated over an oriented manifold of
dimension k. Additionally, a differential /-form is described as measuring an
infinitesimal oriented length or /-dimensional oriented density; a differential 2-form
is described as measuring an infinitesimal oriented area or 2-dimensional oriented
density, and so on.

Integration of differential forms is distinctly defined only
on oriented manifolds, for example of a /-dimensional manifold is an interval [a, b]
and intervals can be given an orientation as they are positively oriented if a < b
and negatively oriented otherwise.

If a < b then the integral of the differential /-form f{x) dx over the interval
[a, b] in conjunction with its natural or normal positive orientation is given as,

fa ' f(z) da

Which is, considered as the negative of the integral of the similar differential
form over the same interval when provided with the opposite orientation.

Specifically,

/b‘af(:c)da:: f:f(:v)d;c
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A standard explanation in one variable integration theory states that when
the limits of integration are in the opposite order (b < @), then the increment dx is
negative in the direction of integration.

3.13.1 Stokes’ Theorem

Stokes’ theorem, also known as Kelvin—Stokes theorem is named after the Lord
Kelvin and George Stokes. The Stokes’ theorem is considered as the fundamental
theorem for curls or simply the curl theorem and is a theorem in vector calculus on

R
For a given vector field, the theorem relates the integral of the curl of the

vector field over some surface to the line integral of the vector field around the
boundary of the surface.

The classical definition of Stokes’ theorem states that, “The line integral of a
vector field over a loop is equal to the flux of'its curl through the enclosed surface”.

Stokes’ theorem is considered as a unique and specific instance of the
generalized Stokes’ theorem. Specifically, a vector field on R * can be considered
as a /-form in which instance its curl is its exterior derivative defined as a 2-form.

Theorem 3.14 Stokes’ Theorem: Let D be a smooth oriented surface in R3
with boundary 0.

If a vector field A is defined as,
A = (P(x’ y’ Z)’ Q(‘x’ y’ Z)’ R(x’ y’ Z))

This typically has continuous first order partial derivatives in a region
containing Y., then,

(VxA)-da=¢ A-dlL
JiA .

More explicitly, the equality states that,

R oQ OP OR (0Q oP
ffg ((a_y e E) dydz + (E _E) dzdz + (E - 5) d:ﬂdy)
:}C (Pd:r+Qdy+Rdz).
%

The key challenge in a precise and accurate statement of Stokes’ theorem
is in defining the notion of a boundary.

Proofs
1. Parametrization of Integral
We first reduce the dimension by using the natural parametrization of the surface.

Let y and y be in the section and consider by change of variables,

f F(x) - dl = f F(4(y)) - dip(y) = f P((y))Jy () dy
a% g ’



Here Jy stands for the Jacobian matrix of .

Now consider that {e , e } be an orthonormal basis in the coordinate
directionsof R.. Distinguishing that the columns of Jy are precisely the partial
derivatives of y at y, we can expand the previous equation in coordinates as,

y{m F(x)- dl = j{ F(¢(¥))Jy (¢)eu (e, - dy) + F(¥(y))Jy (¥)e, (e, - dy)
s j{ ((F(ﬂ')()’)) : %(Y)) ey + (F(qp(y)) : %(Y)) ev) - dy

2. Green’s Theorem through the Product Rule

We first calculate the partial derivatives that appear in Green’s theorem through
the product rule:

0P, O(Foy) 0y o
O v .ajL(FO"b).BvBu
0P, O(Fod) oy 6%
ow - 0w v TEF¥) 55

Appropriately, the second term vanishes in the difference and by equality of
mixed partials. Therefore,

or, 9P, O(Foy) 8y O(Fetp) 9y

v ou v ou Ou Ov
_ 0y oy o _
= T (TypunF) B 61;( w(uu) F) 5 (chain rule)
_ N o

=B (Jﬁ,(u’v]F = (Jt,b{u,v)F)T) o

3. Proof through Differential Forms

The functions R — R* can be identified with the differential /-forms on R? through
the map as follows,

Fie| + Fyeqy + Fyes — F dz + s dy + ngz

Now we write the differential /-form that is associated or connected to a
function F as w_. Then it can be calculated as,

* G F — dwF

Where * is referred as the Hodge star and {d} is the exterior derivative.
Thus, by generalized Stokes’ theorem,

F-dl:}f wF:fdwF:f*wWF:fvaF-dzs
o [ X b ¥
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3.14 JACOBIAN AND ITS PROPERTIES

o ou
. . ox Oy
Ifu (x,y) and v (x, y) are two functions of x and y then the determinant o o
ox oy
. . . . o(u,v)
is called the Jacobian of u and v with respect to x and y and is denoted as ﬁ
X,y
or|J]|.
In general ifu, u,, ..., u, are functions of x, x,, ..., x, then,
Ow  Ow o Ow
o ox, | ox,
5u2 8142 6“2
Oy, thy) |50 an, 7 ax, |.
0(X], Xp,...X,) .
Ou, Ou, ou,,
ox;  0x, ox,

Properties of Jacobians
1. Ifu and vare functions of x and y then if,

AL Y Y CON:1 C0) R N O
o(x,y) o(u,v)
o o
_ 6(u,v)_ax oy
J = o(x,y) |ov ov
o oy
Ox Ox
o) _|ou ov
JSo= a(u,v)_ay oy
ou ov
ou  Ou||Ox Ox
o ox Oy a 5
JJ' = o ovl|oy oy
ox ovllou v




Ou Ox Ou Oy Ou
Ox Ou Oy Ou Ox
v ox vy W
Ox Ou Oy Ou Ox

ou Ou
55:‘1 0‘:1
o | ot
ou Ov

L oYy
ov 0oy Ov
Y
ov 0Oy Ov

2. Ifu and v are functions of  and s where » and s are functions of x and y,

prove that
o(u,v)

_ O(u,v) O(r,s)

o(x, )

O(u,v) o(r,s) _
o(r,s) o(x,y)

o(r,s) 0(x,y)

du oul|Or or
or os||Ox Oy
v ol o
or Os||ox Oy

Ou Or Ou Os ou O Ou 05
Oor 0x Os Ox Or Oy 0Os Oy
T |vor v s v or v os
or Ox 0Os Ox Or Oy Os Oy
o
_ | y|_o@,v)
v v| xy)
ox Oy
2 2
Example 3.31: If u - v=2 find M
y x O(u, v)
o Ou Ou Ov Ov
Solution: Since it is easy to find S Jetus find O, v) .
Ox Oy Ox Oy o(x,y)
o ol |2 2
o(u,v) ox oy| |y
oy " |av av|T| 2 gy
ox Oy 2 ¥
=4-1=3
oy _ 1 1
o(u,v) o(u,v) 3
o(x, )
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Example 3.32: If u =x (1 —y), v=xy (1 —z), w=xyz, prove that,

o(x,y,2) _ 1
a(u,V,W) xzy.
o au ou
IR
Solution: Swrw) _ |\ & ¥ =ly(1-2) x(-z) —xy
a(x,y,z) ox ay 0z
yz Xz xy
ow ow ow
ox oy oz
= x%y.
o(x,y,z) _ 1
a(u,V,W) xzy.
Check Your Progress

I1.
12.
13.

14.
15.

State the theorem of change of variables.
Give the necessary and sufficient conditions for maximum and minimum.

How many multipliers are used in the Lagrange’s multipliers method if there
are n constraints?

State Stoke’s theorem.

Define the term Jacobian.

3.15 ANSWERS TO 'CHECK YOUR PROGRESS'

I.

If z=f(x, y), then z is a dependent variable and x, y are independent
variables. The function z = £ (x, y) is called a single-valued function if only
one value of z is corresponded by each pair (x, y) for which the function
1s defined. If there is more than one value of z, the function is called a
multi-valued function.

. Let Vand U be two vector spaces over the same field F, then a mapping

T:V — Uis called a homomorphism or a linear transformation if,
Tx+y)=Tx)+ T(y) forallx,yeV
T(ox) = al(x), o € F

3. Iffis differentiable at ¢, then fis continuous at c.

4. Let f'(x, y) be a function of two independent variables x and y, defined in

the region R. The function f'(x, y) is a function of a single variable x when
y is constant. Then the derivative of f/(x, y) (When exists) is called the
partial derivative of £ (x, y) with respect to x.



5.

10.

11.

12.

13.

A function f(x, y) is said to be homogeneous of degree 7 in the variables x
and y if it can be expressed in the form x” ¢(y/x) or in the form y" ¢p(x/y).

, . : . OOf f _
. A function f'(x, ) is said to be a harmonic function if V- f= —-+ —- =0.

ox? 8y2

. Let u and v be two functions of x, both derivable at least upto » times, then

the nth derivative of their product is given by,

n
(MV)n = Z ncr Up—r Vr
r=0

="c uy+ ”cl u, |V, t..+ ”cn uv,
n(n—1)

2
Where the suffixes of # and v denote the orders of differentiation of # and
v with respect to x.

=u,vtnu, v+ U, Vo t..tuv,

. Let f(x+ h)be expandable into a power series in the variable 4. Again the

flat assumption is that this series can be differentiated term by term. Taylor’s
theorem states that,

fla+h)=f(a)+hf'(a)+ };—jf”(a)ﬂL e 0O

. If the dependent variable y is expressed in terms of the independent vari-

able x, we call y an explicit function of x and denote such a function by
y=fX).

Let f=(f,/,-..,f) €C" on an open set S in R", and let 7= f(s). If the
Jacobian determinant J /(a) # 0 for some point a in S, then there are two
open sets XcS and Y 7'and a uniquely determined function g such that,

(a) aeXandfla) €Y.
(b) Y=1X).
(c) FisonetooneonX.
(d) Gisdefined on Y, g(¥Y) =X, and g[f(X)] for everyx € X.
(e) ge (.
If (i) f € R [a, b], (i) ¢ is derivable, strictly monotonic on [a., B] and maps

itonto [a, b], and (iii) ¢’ € R [a, B], then Jj f(x)dx 2_[5 L@@ (t)dt.

If /' (x) be a maximum or a minimum at x = ¢ and if f’(c) exists, then

f'(e)=0.

If n constraints are given in the problem we have to use # multipliers namely

Ay Agy ey A
10 7¥2» s

n
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14. Stokes’ theorem, also known as Kelvin—Stokes theorem is named after the
Lord Kelvin and George Stokes. The Stokes’ theorem is considered as the
fundamental theorem for curls or simply the curl theorem and is a theorem
in vector calculus on R 3. For a given vector field, the theorem relates the
integral of the curl of the vector field over some surface to the line integral of
the vector field around the boundary of the surface.

The classical definition of Stokes’ theorem states that, “The line integral of a
vector field over a loop is equal to the flux of'its curl through the enclosed
surface”.

Stokes’ theorem is considered as a unique and specific instance of the
generalized Stokes’ theorem. Specifically, a vector field on [ * can be
considered as a /-form in which instance its curl is its exterior derivative
defined as a 2-form.

15. If u (x, y) and v (x, y) are two functions of x and y then the determinant

au ou
ox Oyl . . . .
- called the Jacobian of  and v with respect to x and y and is
o ay
0 (u,
denoted as V) or | J|.
o(x, )

3.16 SUMMARY

e Ifz=f(x, »), then z is a dependent variable and x, y are independent
variables. The function z = f(x, y) is called a single-valued function if only
one value of z is corresponded by each pair (x, y) for which the function
1s defined. If there is more than one value of z, the function is called a
multi-valued function.

e Let Vand U be two vector spaces over the same field F, then a mapping
T:V— Uis called a homomorphism or a linear transformation fif,
Tx+y)=Tx)+ T(y) forallx,y eV
T(ox) = al(x), o € F

e Let £iS — R" be a function defined on a set S in R” with values in R™. Let
¢ be an interior point of S and let B(c;r) be an n-ball lying in S. Let V'be

a point in R” with ||[v|| <, so that c+v €B (c;r). Then the function fis said
to be differentiable at c if there exists a linear function 7 : R” — R” such

that, f(c+v) = f(c)+T.(v)+||v| E.(v), where E,(v)—>0asv—0

e Let f(x, y) be a function of two independent variables x and y, defined in
the region R. The function f(x, y) is a function of a single variable x when



y is constant. Then the derivative of f(x, y) (when exists) is called the
partial derivative of 1 (x, y) with respect to x.

e A function f'(x, y) is said to be homogeneous of degree » in the variables
x and y if it can be expressed in the form x” ¢(y/x) or in the form

Yo (xy).

e A function f'(x, ) is said to be a harmonic function if,

*f *f
vif=2L.20 =,
/ ox? 6y2

e Letz=/(x, y) be a function of two independent variables x and y and f,,

£, exist at (x, ), then dz = Z—fdx ; Z—fdy is called the total differential of z.
X Y

e The nth order derivative of f(x) with respect to x is denoted by y, or

7 (x) or d—nyor ¥ or
dx

y=f.

e Letuand vbe two functions of x, both derivable at least upto n times, then
the nth derivative of their product is given by,

() or D' f(x) whre D = - and
dx" dx

n
(uv)n = Z ncr Up_y Vy
r=0

—n n n
="c,u,y+ c1 u, 1 vit.+ cnuvn

n(n-1)

:”nV+””n—1V1+T U, »v,t..tuv,

Where the suffixes of u# and v denote the orders of differentiation of u and
v with respect to x.

e Let /(x+h)beexpandable into a power series in the variable 4. Again the
flat assumption is that this series can be differentiated term by term. Taylor’s

2
theorem states that, f(a +h)=f(a) + hf'(a)+ % f"(@)+...©

e Ifthe dependent variable y is expressed in terms of the independent variable
x, we call y an explicit function of x and denote such a function by y=f£'(x).

o Letf=(f,f,..../,) €C" onan open set S in R, and let 7= f{s). If the
Jacobian determinant J /(a) # 0 for some point a in S, then there are two
open sets X=S and Y7 and a uniquely determined function g such that,

(a) aeXandfla) €Y.
(B) Y=AX).
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(c) Fis one to one on X.
(d) Gisdefinedon Y, g(Y) =X, and g[f(X)] for everyx € X.
(e) ge C.

e Letf=(f,...,/) beavector valued function defined on an open set S'in

R+*with values in R”. Suppose f € C' on S. Let (x;,) be a point in S for
which the n x n determinant det[D jfi(xo;to)] # 0. Then there exists a &
dimensional open set 7} containing # and, one and only one, vector valued
function g, defined on 7} and having values in R, such that

(@) geC'onT,
(b) &) =x,
(c) flg(t,r))=0foreverytinT,

If (i) f € R [a, b], (i) ¢ is derivable, strictly monotonic on [a., B] and maps
it onto [a, b], and (iii) ¢' € R [a, B], then

Ib f(x)dx =IB @O (t)dt.

A functiony =/'(x) has a maximum value ata pointx,, if for | /2 | sufficiently
small, /' (x, + /) <f(x).
Similarly, a function y = f(x) has a minimum value at a point x,, if,

S xg+h)>[fx)
If we have to find the stationary value of a function of several variables
which are not independent but interconnected by some relations then we
try to convert the given function to one having least number of variables

using the given conditions. When such a procedure fails we use the method
of Lagrange’s multipliers.

Differential forms use an integrated methodology for defining the integrands
over curves, surfaces, solids and higher dimensional manifolds. The
contemporary notion of differential forms was established and pioneered
by Elie Cartan.

Fundamentally, considering the one variable calculus the expression f{x) dx
is an example of a /-form and can be integrated over an oriented
interval [a, b] in the domain of fand can be represented as,

/: f(z) dz.

Integration of differential forms is distinctly defined only on oriented manifolds,
for example of a /-dimensional manifold is an interval [a, b] and intervals
can be given an orientation as they are positively oriented if @ < b and
negatively oriented otherwise.



o [f a < b then the integral of the differential /-form f(x) dx over the interval

[a, b] in conjunction with its natural or normal positive orientation is given
as,

fa  f(2) de

Which is considered as the negative of the integral of the similar differential
form over the same interval when provided with the opposite orientation.

Stokes’ theorem, also known as Kelvin—Stokes theorem is named after the
Lord Kelvin and George Stokes. The Stokes’ theorem is considered as the
fundamental theorem for curls or simply the curl theorem and is a theorem
in vector calculus on ”!3,

For a given vector field, the theorem relates the integral of the curl of the
vector field over some surface to the line integral of the vector field around
the boundary of the surface.

The classical definition of Stokes’ theorem states that, “The line integral of a
vector field over a loop is equal to the flux of'its curl through the enclosed
surface”.

Stokes’ theorem is considered as a unique and specific instance of the
generalized Stokes’ theorem. Specifically, a vector field on ”!° can be
considered as a /-form in which instance its curl is its exterior derivative
defined as a 2-form.

Stokes’ Theorem: Let 2. be a smooth oriented surface in R* with boundary

0.

Ifu (x, y) and v (x, y) are two functions of x and y then the determinant
ou Ou

ox 0y, . : :
o vl 1S called the Jacobian of  and v with respect to x and y and is
o oy
o(u,v
denoted as 82 ; or | J|.
O Y .
In general ifu, u,, ..., u, are functions of x, x,, ..., x, then,
Ow ow O
o, ox, | ox,
6u2 auz ale
O, Uy, . tty) o on, x|,
5(x1,x2,...xn)
Ouy Oy Oy
ox; Ox, ox,,
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3.17 KEY TERMS

e Domain of the function: The set of values (x, y) for which a function is
defined.

e Region: A connected open set.

e Homogeneous function: A function f'(x, y, z, ...) of degree n in the
variables x, y, z, ... if f(tx, ty, tz, ...) = t"(x, y, z, ...) for all values of ¢
independent of x, y, z, ...

o Explicit function: The dependent variable y which can be expressed in

terms of the independent variable x.

3.18 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions
1. Define rectangular region and circular region.
. What is the use of linear transformations?
. Give the first order Taylor formula.
. Define the second order partial derivative of a function of two variables.
. State the Euler’s theorem on homogeneous functions.
. Find the nth derivative of e .
. Write the significance of Taylor’s theorem.

. State the implicit function theorem.

O 00 9 N W b~ W

. What is the use of change of variables technique?

._
e

Define global maxima and global minima.

[S—
—

. Give a drawback of Lagrange’s multipliers method.
12. What is Jacobian used for?

Long-Answer Questions

lim —2% :
1. Show that 00 2 1 yz does not exist.

2 2

X =y )

f (x,y)#(0,0
2. Show that the function f(x,y)= * x*+ )7 %f Ex y; E() ();
if (x, ) =(0,

0

is continuous at (0, 0).
3. Show that any linear transformation 7: R — R is of the form 7{(x) = o for
some o € R.



4. Explain the derivatives in an open subset of R".

2 2
1
. If u =[xy, prove that ZC—L;Jrgy—Z = —Z(fmyl/2 +y 7).
. Findy wheny = e*logx.
. If y=2 cos x (sin x — cos x), show that (y, ), = 2"°.
. State and prove Taylor’s theorem.

e BN I o) 9]

9 d9dz _of 09
9. If f{x, y) = 0 and ¢(y, z) = 0, show that Oy 0z dx Ox oy’

10. State and prove implicit function theorem.
/2
11. Evaluate Isin 2xdx using change of variables technique.
0
12. Show that the function f{x, y) = 4x*y — y* — 8x* is a maximum at (0, 0).
13. By Lagrange method, find the minimum distance of origin from the plane 3x
+2y+z=12.
14. If ax*+ by* = ab, show that the extrema values of u =x*+ )? + xy are the
roots of 4(u — a)(u — b) = ab.
15. Ifx = e*cos v, y = e" sin v, verify the rule JJ' = 1.
16. State and prove Stoke’s theorem.

17. Briefly discuss about the jacobians giving appropriate examples.
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4.0 INTRODUCTION

In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. Fundamentally, the Lebesgue measure is defined
as the standard method used to assign a measure to subsets of n-dimensional
Euclidean space. Additionally, for n =1, 2 or 3, the Lebesgue measure coincides
with the standard universal measure of length, area or volume. Generally, in the
mathematical analysis the measure is also termed as the n-dimensional volume, #-
volume or merely only the volume. In real analysis, the Lebesgue measure is
specifically used to define the Lebesgue integration.

In mathematical analysis, the ‘Real Analysis’ only considers and evaluates
the functions of a real variable and numbers, while the ‘Measure Theory’ exclusively
considers and evaluates the concept of a measure, which is the method for
‘Measuring’ that how big a given set is. Sets to which the Lebesgue measure can
be assigned are termed as the ‘Lebesgue Measurable’; characteristically the
measure of the Lebesgue measurable set A can be denoted by A(A). A measurable
set is specifically defined as a set to which the extension or expansion can possibly
be accomplished, this extension or expansion is assumed to be the measure.
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Consequently, the Jordan measure, the Borel measure and the Lebesgue measure
can be defined using the sets which are characteristically measurable according to
the Jordan, Borel and Lebesgue, respectively. In mathematical analysis, a non-
measurable set is defined as a set to which a significant meaningful “Volume’ cannot
be assigned. Mathematically, in formal set theory the existence of these sets is
interpreted for providing evidence about the notions of length, area and volume.

The integral of a non-negative function of a single variable is specifically
defined as the area between the graph of that function and the X-axis.
Fundamentally, the Lebesgue integral can be used for extending the integral to a
bigger class or group of functions. Additionally, it can also extend or broaden the
domains for defining and approximating these functions. Many years before the
20th century, the mathematicians were already aware of the theory that when the
non-negative functions have a smooth adequate graph, basically the continuous
functions on the closed bounded intervals, then the specific area under the curve
can be defined as the integral and can be then uniquely computed with the help of
the approximation techniques specifically on the region through polygons.

The Lebesgue integral is named after Henri Lebesgue (1875—-1941), typically
Lebesgue defined and established the integral in the year 1904. Principally, the
Lebesgue integral functions have a significant role in the theory and derivation of
probability, real analysis, and numerous other fields in mathematics. Mathematically,
as per the Lebesgue explanation the term Lebesgue integration specifies either the
general theory of integration of a function with respect to a general measure or the
specific instance of integration of a function typically defined on a sub-domain of
the real line with respect to the Lebesgue measure. The Riemann integral specifies
that by partitioning the domain of an assigned function, one can approximate or
estimate the assigned function by means of piecewise constant functions in each
sub-interval. On the contrary, the Lebesgue integral are specifically used to partition
the range of that function.

The Lebesgue differentiation theorem states that, “For almost every point,
the value of an integrable function is the limit of infinitesimal averages taken about
the point”. The theorem is explicitly used in the approximation of real analysis.

In the mathematical analysis, a function of Bounded Variation (BV) also
termed as BV function, is considered as a real valued function whose total variation
is bounded or finite. Considering a continuous function of a single variable, which
has bounded variation signifies that the distance along the direction of the Y-axis
ignoring the contribution of motion along X-axis, travelled by a point moving along
the graph has a finite value. Similarly, consider a continuous function of several
variables, the connotation and implication of the definition is equivalent, except
that the considered continuous path cannot be the whole graph of the given function,
but can be every intersection of the graph itself with a hyperplane (for several
variables) and plane (for functions of two variables) parallel to a fixed X-axis and
to the Y-axis.

The key objective of the Lebesgue integral is to provide an integral notion in
which the limits of integrals hold moderate assumptions. Basically, there is no
assurance that every function is the Lebesgue integrable, but it is possible that
improper integrals exist for functions that are not Lebesgue integrable.



In this unit, you will study about the Lebesgue outer measure, measurable
sets, regularity, measurable functions, Borel and Lebesgue measurability, non-
measurable sets, integration of non-negative functions, the general integral,
integration of series, Riemann and Lebesgue integrals, the four derivatives, functions
of' bounded variation, Lebesgue differentiation theorem, and differentiation and
integration.

4.1 OBJECTIVES

After going through this unit, you will be able to:
¢ Define the Lebesgue outer measure
¢ Know about the measurable sets, regularity, and measurable functions
e Understand the Borel and Lebesgue measurability and non-measurable sets
¢ Define the integration of non-negative functions
e Elaborate on the general integral
e Explain about the integration of series
¢ Analyse the Reimann and Lebesgue integrals
e Comprehend on the four derivatives
e Interpret the functions of bounded variation
¢ Discuss the Lebesgue differentiation theorem

e Understand the differentiation and integration

4.2 LEBESGUE OUTER MEASURE

In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. This measure was described by Henri Lebesgue
in the year 1901, and in the year 1902 by the description Lebesgue integral.
Both the Lebesgue measure and the Lebesgue integral were published in his
dissertation thesis in the year 1902.

Fundamentally, the Lebesgue measure is defined as the standard method
used to assign a measure to subsets of n-dimensional Euclidean space. Additionally,
forn=1, 2 or 3, the Lebesgue measure coincides with the standard universal
measure of length, area or volume. Generally, in the mathematical analysis the
measure is also termed as the #n-dimensional volume, 7-volume or merely only the
volume. In real analysis, the Lebesgue measure is specifically used to define the
Lebesgue integration.

In mathematical analysis, the ‘Real Analysis’ only considers and evaluates
the functions of areal variable and numbers, while the ‘Measure Theory’ exclusively
considers and evaluates the concept of a measure, which is the method for
‘Measuring’ that how big a given set is. Sets to which the Lebesgue measure can
be assigned are termed as the ‘Lebesgue Measurable’; characteristically, the
measure of the Lebesgue measurable set 4 can be denoted by A(A4).
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Lebesgue Outer Measure

Assume that there is an outer measure A on a set X which is a measure then it
will be considered as additive. Specifically, for given any two sets 4, B Xwe
can state that both 4 ™ B and 4 N B¢ are disjoint in conjunction with (4 N B) U
(4 N B°) = A4 and accordingly we can state that,

AA) =X (ANB)+A (AN B)

This notation essentially may not hold for all 4 and B but it is very significant
as it specifies the following definition.

Definition 1: Let A be an outer measure on a set X. Then £ < X is said to be
measurable with respect to A or A-measurable if,

AA) =A(ANE)+h(AdNE)forall Ac X

This specifies that taking each and every feasible ‘Test Set’ as ‘4’, the
measures of the parts of 4 that uniquely fall within and without £ can be checked
that whether these defined measures feasibly add up to 4 or not.

Because A is subadditive, hence we can specify that,
AA S AMANE)+A(ANE)
Consequently, to check measurability we need only verify that,
AMAZAANE)+A(ANE)forallAcX ...(4.1)
Let M = M (A) denote the collection of A-measurable sets.
Theorem 4.1: Show that M is a field.
Proof: Trivially, we can state that ¢ and X are in M.
Now considerany £, E, € M and also any test setas 4 c X.
Then,
MA=MANE)+MANE))

On applying the measurability definition for £, with the test setas 4 N E ¢
we obtain,

AMANEY) =AMANE)YNE)+A(ANE)NE))
=AMANENE)+A(AN(E VE))
When the above equations are combined then we have,
AMA=AANE)TAANE NE)+A(AN(E,VE)) ...(42)

On the Right Hand Side (RHS) to the first two terms of Equation (4.2), we
use the subadditive property of A. Now for the sets we obtain,

ANE)VANENE)=AN(E V(EfNE))
=AN((E,VE)N(E VE))
=AN XN (E VE))
=AN(E,VE)

Subsequently,

AMANE)TAANENE)ZA(AN(E VE))

We substitute this in Equation (4.2) to obtain,



M(A)=A (AN (E, UE))+L(AN(E UE))

Consequently, the Equation (4.1) has been authenticated and verified for
the notation £, U E,,i.e.,E UE, € M.

Note that the given definition of A-measurable sets exhibits symmetric because
Ee Mmifandonlyif £ e M.

Therefore, EN\NE,=ENE‘=(E‘VE) eM
Hence proved that M is a field.
Definition 2: Let £'be a subset of R and also assume that {/,} is a sequence of

open intervals. Then we can define the Lebesgue outer measure of £ as follows,

oC

w# (E) = inf{z Ix): E C U Ik}
k=1

k=1
Remember that 0 < pu*(E) < oo,
Theorem 4.2: The Lebesgue outer measure holds the following properties:
(1) IfE, c E,, then px* (E)) < u* (E)).
(2) The Lebesgue outer measure of any countable set is zero.
(3) The Lebesgue outer measure of the empty set is zero.
(4) Lebesgue outer measure is invariant under translation, that is,
px (£ +x)) = px (E)
(5) Lebesgue outer measure is countably subadditive, i.e.,

,U*(U E;) < Z W (E;)

Proof

For (1) — Property (1) is trivial.

For (2) and (3) — To prove Property (2) and Property (3) consider the following:
Assume that £'= {x, : k € Z"} is a countably infinite set.

Let&> 0 and also assume that €_is a sequence of positive numbers such that,
oo
>, & =3
k=1
Because,
o0
EC U(fﬁk —Eky % ek
k=1
This specifies that pu*(E) < €.

Consequently, pu(E) = 0. Because if & < E, then pu() =0.
For (4) —To prove Property (4) consider the following:
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Assume that if each covering of £ through open intervals is capable of
generating a cover of £ +x, by means of open intervals through the same length,
then p* (E +x,) < p* (E). Also, pu* (E +x,) > pu* (E) because E is considered
a translation of £+ x . Consequently, u* (£ +x,) = w* (E).

For (5) —To prove Property (5) consider the following:

Assume that,
X ut(B) = oo (I}

Then the given statement is insignificant or trivial.
Assume that the sum is finite and also let £ > 0.

Then for each 7, there exists a sequence of the form {/,'} of open intervals
such that there is,

F; € kUlff; and kZ H(Ilic) < W (E;) + 2L
— =]

Consider that {/} is a double indexed sequence of open intervals such that,

UBcU UL

=1 =1 k=1
And,
DON I <D (W (B + 5) = Y it (Bi) +e
i=1 k=1 =1 1=1
Consequently,

(U B < 3 ut(Bi) +e

The result follows because € > 0 was random or arbitrary.

Example 4.1: Calculate the outer measure of the set of irrational numbers in the
interval [0,1].

Solution: Assume that A4 be the set of irrational numbers in [0, 1].
Because 4 — [0, 1], then p* (4) < 1.
Let O be the set of rational numbers in [0, 1]. Note that [0, 1]=4 U Q.
By Theorem 4.2 Property (5) and solving, we obtain
1 <px(4) + px (Q)
However, if Q is countable, then by Theorem 4.2 Property (2), u* (Q)=0.
Therefore, u* (4)=1.

4.2.1 Measurable Sets

In mathematics, the term measure can be defined as a simplification and
generalization of typical conventional notions, such as mass, distance/length, area,
volume, probability of events, etc.



The moderm measure theory was characteristically given by Emile Borel, Henri
Lebesgue, Nikolai Luzin, Johann Radon, Constantin Carathéodory, and Maurice
Fréchet.

In mathematical analysis, the ‘Real Analysis’ only considers and evaluates
the functions of areal variable and numbers, while the ‘Measure Theory’ exclusively
considers and evaluates the concept of a measure, which is the method for
‘Measuring’ that how big a given set is. Sets to which the Lebesgue measure can
be assigned are termed as the ‘Lebesgue Measurable’; characteristically the
measure of the Lebesgue measurable set A can be denoted by A(4). A measurable
set is specifically defined as a set to which the extension or expansion can possibly
be accomplished, this extension or expansion is assumed to be the measure.
Consequently, the Jordan measure, the Borel measure and the Lebesgue measure
can be defined using the sets which are characteristically measurable according to
the Jordan, Borel and Lebesgue, respectively.

Definition 1: Let X'be a set and 2. a 5-algebra over X. A function p from X to the
extended real number line is called a measure if it satisfies the following properties:

Non-Negativity: For all £ in 2., we have pu (E) > 0.
Null Empty Set: p (@) =0.

Countable Additivity or o-Additivity: For all countable collections { E; };O— ]

of pairwise disjoint sets in 2.,

I (lj Ek) = i#(Ek)
k=1 k=1

Ifat least one set £ has finite measure, then the constraint that u (@) =01s
realized spontaneously. Certainly, through countable additivity,

HE)=pE V) =n(E)+u(2)
And consequently, p(@)=0.

Considering that the condition of non-negativity is ignored but the second
and third of these conditions are fulfilled and p takes the values +oo, then puis termed
as a signed measure.

The pair (X, X)) is termed as a measurable space, the members of X are
termed as the measurable sets.

A measurable set Xis known as a null set if i (X) = 0. A subset of a null set
is described as a negligible set. A negligible set must not be measurable, but every
measurable negligible set is certainly and inevitably a null set. Ameasure is termed
complete if every negligible set is measurable.

A measure can be extended to acomplete or perfect by means of considering
the o-algebra of subsets ¥ which vary through a negligible set from a measurable
set X, 1.e., the symmetric difference of X'and Y is contained in a null set, such that
1 (Y) can be defined to equal p (X).

If the p-measurable function ftakes values on [0, oo] then,

pix:fx) 2t =p{x: flx) > 1
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Lebesgue Measurability For almostall z € R withrespect to the Lebesgue measure. This property
and Integration of . icall dwith Leb . 1
Non-Negative Functions 18 typlca yuse with Le csguc 1ntegr al.

Both p {x: fix) >t} and p {x: f{x) > ¢} are defined as the monotonically
non-increasing functions of ¢ therefore both of them are continuous almost

NOTES 5 .
everywhere, with relation to the Lebesgue measure.

If p {x : fix) >t} = oo for all ¢, then by the additivity and non-negativity,
pix: )z =p{x: x> +p{x:fx)=t =
being as essential.
Definition 2: Aset £ — R is Lebesgue measurable if for each set 4 — R, the
equality pux (4) = ux (4 N E) + ux (A N E) is satisfied. If E is a Lebesgue
measurable set, then the Lebesgue measure of E is its Lebesgue outer measure
and will be written as pW(E).

Because the Lebesgue outer measure satisfies the subadditivity property,

therefore we continually have p* (4) < p* (4 N E) + px (4 N E) and can confirm
the reverse inequality.

Note: There is a set £ that divides 4 into two mutually exclusive sets, 4 N E and
AN E,ifand only if u; (A4)= u; (AN E)+p* (4N E)holds, then the set £
is termed as the Lebesgue measurable.

Example 4.2: Assume that £ has measure zero where £ — R . Prove that the set
E?*= {x*: x € E} has measure zero.

Solution: Let £ = E N (—n,n) C E.
Then, E*=E> N (0, n*) C E?

And, E’= OEj

n=1

Because £ has measure zero, then £/ has measure zero. Let > 0. Assume
there exists a sequence of intervals (a,, b,) such that,

Cs

oC
E, (_Z (ag.br) and Zlb* —ag| < )L”

k=1

For simplicity, consider only the situation that0 <a, <b,.

Since,

p(az, by) = |bp — ax| = |bx + ax| - |bx — ax| < 2n|bx — ay

Then,

) = &
n(E2) < Z 1) < ZZMH}k —ai| =€
k=1 k=1

It implies that the measure of £ * is zero, which indicates that the measure
of £7 is also zero.
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4.2.2 Regularity and Measurable Functions

Specifically, in the measure theory, a measurable function is a function between
the underlying sets of two measurable spaces that preserves the structure of the
spaces, the preimage of any measurable set is measurable. In real analysis,
measurable functions are used in the definition of the Lebesgue integral. In probability
theory, a measurable function on a probability space is termed as a random variable.

In real analysis and measure theory, the regularity theorem for Lebesgue
measure is defined as an acquired result which states that Lebesgue measure on
the real line is a regular measure. Usually, this indicates about the real line and
states that every Lebesgue measurable subset is ‘Approximately Open’ and
‘Approximately Closed’.

Statement of the Theorem

Lebesgue measure on the real line R is referred as a regular measure, i.e., for
all Lebesgue measurable subsets 4 of R, and € > 0, there exist subsets Cand U
of R such that,

e Cis Closed

e Uis Open

oCcAcCU

e The Lebesgue Measure of U\ C'is strictly Less Than ¢.

Additionally, when A4 has finite Lebesgue measure, then C'is considered to
be compact, i.e., by the Heine—Borel theorem it is closed and bounded.

Corollary: The Structure of Lebesgue Measurable Sets

If 4 is a ‘Lebesgue Measurable Subset of R’, then there exists a ‘Borel Set B’ and
a ‘Null Set NV’ such that 4 is the ‘Symmetric Difference of Band N’ and is given as,

A=BAN=(B\N) U (N\B)

Definition: Assume that (X, X)) and (Y, T) be measurable spaces, signifying or
implying that Xand Y are the sets with respective c-algebras > and T A function
[+ X— Yis said to be measurable if for every E € T the pre-image of £ under fis
in > ; thatis, forall E e T.

B ={xeX|f(x)eE} e X
That s, o (f) < 2., where & (f) is the c-algebra typically generated by /.

If: X— Yis considered as a measurable function, then we have the equation
ofthe form,

[ XY -> @D
For emphasizing the dependency on the 6-algebras > and 7.
Distinguished Classes of the Measurable Functions

Following are the three significant and distinguished classes of the measurable
functions in real analysis:

Class 1: By definition the ‘Random Variables’ are the measurable functions
specifically defined on probability spaces.
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Class 2: When (X, ) and (Y, T) are the Borel spaces, then a measurable
function /- (X, ) — (¥, T) is also termed as a Borel function. Continuous functions
are Borel functions but not all Borel functions are continuous. However, a
measurable function is almost a continuous function as per the Luzin’s theorem. If
a Borel function occurs as a section of amap ¥ — Xthen it is known as a Borel
section.

Class 3: A Lebesgue measurable function is a measurable function
(R, £) = (C, Bc) > where ‘L’ is defined as the c-algebra of Lebesgue
measurable sets and Bc is the Borel algebra on the complex numbers ( . Typically,
the Lebesgue measurable functions are considered useful in mathematical analysis
since they can be integrated. For the condition, /: X — R, fis considered as the
Lebesgue measurable iff and only iff {f > a} = {x € X: f(x) > a} is uniquely
measurable foralla e R .

Additionally, this condition is also considered as equivalent for any of the
specified {f> a}, {f< a}, {f< a} being measurable either for all ‘a’ or the
preimage of any open set being measurable.

Continuous functions, monotone functions, step functions, semicontinuous
functions, Riemann integrable functions and functions of bounded variation all are
considered as the Lebesgue measurable. A functionf: X— ¢ is measurable iff
and only iff the real and imaginary parts are measurable.

4.2.3 Borel and Lebesgue Measurability

In mathematical analysis and in particular in the measure theory, a Borel measure
on a topological space is defined as a measure for all open sets and consequently
on all Borel sets.

Definition: Consider that X be a locally compact Hausdorff space and also consider
that B(X) be the smallest c-algebra which contains or includes the open sets of
X; then this is established as the ‘c-Algebra of Borel Sets’. Further, the ‘Borel
Measure’ is specified as any measure p defined precisely on the c-algebra of
Borel sets. Some of the mathematicians define that 1 is locally finite which implies
that p (C) < oo for every compact set C. When a Borel measure p is both inner
regular and outer regular, then it is termed as a ‘Regular Borel Measure’. If
pis both inner regular and outer regular, and is also locally finite, then in this condition
it is known as a Radon measure.

On the Real Line

Characteristically, the real line R with its normal topology is defined as a locally
compact Hausdorff space, therefore a Borel measure can be defined on it. In this
instance, B(IR) is referred as the smallest c-algebra that comprises of the open
intervals of R . Though there can be several Borel measures 1, we define the
preferred option of Borel measure which assigns p ((a, b]) =b — a for every half-
open interval (a, b] and is therefore occasionally termed as the Borel measure on
R - This specific measure is considered as the restriction to the Borel G-algebra
of the Lebesgue measure A, which is characterized and explained as a complete
measure and is defined on the Lebesgue o-algebra.



Principally, the Lebesgue c-algebra is essentially stated as the completion
of'the Borel g-algebra, which implies that it is the smallest c-algebra that comprises
of all the Borel sets and has a complete measure on it. Additionally, the Borel
measure and the Lebesgue measure overlap or coincide on the Borel sets, i.¢.,
A (E) = wu(£) for every Borel measurable set, where p is the Borel measure as
already discussed.

Borel Function

Definition: The map /: X — Y between two topological spaces is termed as the
‘Borel or Borel Measurable’ if /!(A) is a Borel set for any open set 4 as per
the c-algebra of Borel sets of X is the smallest o-algebra containing the open sets.
When the target Y is taken as the real line, then it is sufficiently assumed that
f7'(Ja, «[) is Borel for any a € R . Considering the two topological spaces X
and Y and also the corresponding Borel 5-algebras B(x) and B(y) we can define
that the Borel measurability of the function f: X — Yis then equivalent to the
measurability of the map frealized as map between the measurable spaces

(X, B(X)) and (Y, B(D)).
Lebesgue Measure

Consider that Q= (0, 1].

Assume that F, contains the empty set and all sets which have finite unions of the
intervals of the form (a, b]. A conventional and characteristic element of this set is
given as the form,

F=(a,blu(a,blu..... Ula,b]
Where,0<a <b <a,<b,<...<a <b andn € N.
Lemma: The following three lemmas can be considered.

(1) F,isanalgebra.

(2) F,isnota c-algebra.

(3) o (Fo=B.

Proof: Following proofs are derived for the above mentioned three lemmas.

(1) By definition it can be stated that @ e F,. Also, ®°=(0, 1] € F,. Consider
the complement of (a, b,] U (a,, b,]1s(0,a,] W (b, a,] U (b,, 1], which
also belongs to F,. Additionally, it can be defined that the union of several
finite sets each of which are also the finite unions of the intervals of the form

(a, b], 1s too also a set which can be taken as the union of finite number of
intervals and therefore belongs to 7.

n
(2) Remember that (Oam}e F, for every n, but there is also

oc

U (0.:%] = 0.1 ¢ .

n=1

(3) Initially, the null set is evidently referred to as a Borel set. Following, we
have previously observed that every interval of the form (a, b] is termed as
a Borel set. Consequently, every element of F, (except the null set) is
considered as a finite union of such intervals and is also considered as a Borel
set. Therefore, F, < B. This specifies or implies that ¢ () = B.
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Forevery F' € F of the form,

F=(,b]lu(a,blu..... Ul(a,b ]
The function [, : F,— [0, 1] can be specifically defined such that,
[F, (®)=0

n

Anda ]FO(F)= Z [:br —(I,).

i=1
Remember that [B, () = [E, (0, 1]) = 1.

Additionally, if (@, b ], (a,, b.], . . . .. (a, b ]are disjoint sets, then by
implying the finite additivity of [, we have the equations of the form,

Py (U ((ai, bi])) = Z Po ((ai,bi])
=1

i=1

= i: (b; —a;)
i=1

This specifies and implies that [ is also countably additive on F, too.

Subsequently, it can be stated that there exists a unique probability measure
[Eon ((0, 1], B) which is also equivalent as [, on F,. This unique and
distinctive probability measure on (0, 1] is termed as the Lebesgue measure
or uniform measure.

4.2.4 Non-Measurable Sets

In mathematical analysis, a non-measurable set is considered as a set, which is
not assigned any significant ‘Volume’. The mathematical existence of such unique
sets is interpreted for providing information and evidences about the notions and
basic concepts of length, area and volume in the conventional set theory. According
to the Zermelo—Fraenkel set theory, the axiom of choice entails that non-measurable
subsets of R exist.

In mathematical analysis, a non-measurable set is defined as a set to which
asignificant meaningful ‘Volume’ cannot be assigned. Mathematically, in formal set
theory the existence of these sets is interpreted for providing evidence about the
notions of length, area and volume.

The notion and concept of a non-measurable set has been historically led
by the Félix Edouard Justin Emile Borel and the Andrey Nikolaevich Kolmogorov
for formulating probability theory on sets which are significantly constrained or
restrictrd to be measurable. Characteristically, the measurable sets on the line are
considered as the iterated countable unions and intersections of intervals, termed
as the Borel sets, are referred as the plus-minus null sets. These sets are sufficiently
adequate to involve every conceivable or feasible definition of a set that are used
in standard mathematical analysis and solutions, but it needs exceptionally unique
formulations to prove that the sets are measurable.



The measure of the union of two disjoint sets to be the sum of the measure
of the two sets. A measure with this natural property is termed as the finitely
additive. Though a finitely additive measure is adequate and appropriate for most
perception of area and is also analogous or equivalent to Riemann integration but
it is not appropriate for solving probability problems, because the predictable and
conventional contemporary behaviours of sequences of events or random variables
claim for countable additivity.

Theorem 4.3: Any measurable subset A — R with A (4) >0 contains a non-
measurable subset.

Proof: The simple method to prove the given theorem is used as a standard result
in measure theory, considering that A denotes the Lebesgue measure on R .

It is appropriate to assume that 4 < (0, 1).
Consider thatif 4 — R takes the positive measure, then there is some

n € Z suchthat A " (n, n+1) also holds positive measure and consequently by
means of translation invariance it accordingly solves for,
A=Anm,n+1)-nc(0,1)
Therefore, if N — A’ is considered as a non-measurable set, then N+n c A
N (n, n+1) c Ais the required non-measurable set.

Check Your Progress

. Define Lebesgue measure.

. What is Lebesgue outer measure?

. State about the measurable space.

. When be a measure can extended as complete?

. What is a measurable function?

AN N BN W N -

. Define the term Borel measurable.

4.3 INTEGRATION OF NON-NEGATIVE
FUNCTIONS

The integral of a non-negative common measurable function can be defined as
an appropriate supremum of approximations by means of simple functions and the
integral ofa measurable function (not necessarily positive) is defined as the difference
of two integrals of non-negative measurable functions.

The integral of a non-negative function of a single variable is specifically
defined as the area between the graph of that function and the X-axis.
Fundamentally, the Lebesgue integral can be used for extending the integral to a
bigger class or group of functions. Additionally, it can also extend or broaden the
domains for defining and approximating these functions. Many years before the
20th century, the mathematicians were already aware of the theory that when the
non-negative functions have a smooth adequate graph, basically the continuous
functions on the closed bounded intervals, then the specific area under the curve
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can be defined as the integral and can be then uniquely computed with the help of
the approximation techniques specifically on the region through polygons.

Indicator Functions

For assigning a value to the integral of the indicator function 1, of a measurable set
S which is consistent with the given measure L, the only satisfactory option is to
set:

Il du=p(S)
Note that the result may possibly be equal to +oo, unless 1 is a finite measure.
Let fbe a non-negative measurable function on £, which helps in attaining

the value +oo, alternatively f takes non-negative values in the extended real number
line. Subsequently, we obtain the equation of the form,

/‘fdp:sup{/sdﬁ:ﬂgsgf,ssimple}
E E

This integral coincides or overlaps with the previous one normally defined
on the set of simple functions, when E is considered as a segment [a, b].

We have defined the integral of ffor any non-negative extended real-valued
measurable function on E.

For some specific functions, the integral | ./ duis considered as infinite.

For a non-negative measurable function f; assume that s (x) be the simple
function whose value is k/ 2" whenever k/2"< f(x)<(k+1)/2" , for kbeing

anon-negative integer less than 4”. This can be directly proved that,

ffduzggggofsndu

Ifthe limit on the right hand side exists as an extended real number.

In this section we will use the measure space (X, F, [).

N
Definition: Let s be a non-negative F'measurable function such that, § = z aX,

i=1

with disjoint F measurable sets 4, U, 4, = X anda,>0. Forany E € F define

N
the integral of fover E to be, 1,(s)= z a,u(4, N E) with the convention that if

i=1
a,=0and W(4,N E) =+oo then 0 x (+00) = 0. Therefore, the area under s =0 in
Ris zero.

Example 4.3: Consider that ([0, 1], £, p) . Define,

1 if x Rational
0 if x Irrational

f(X)={



This is a simple function with 4, = O " [0,1] € L and 4, the set of irrationals Lebesgue Measurability

. C e . . .. and Integration of
in[0,1] whichis in L as the complement of A . Thus, /is measurable and is given Non-Negative Functions
as,

Loy (f) = 1w(@N[0, 1)+ 0p(Q“ N[0, 1) NOTES
=0
Since, the Lebesgue measure of a countable set is zero.

Lemma 1: IfE CcE,.CE,...arcin Fand E = UleEn then,

lim(E,) = u(E)

and we say that we have an increasing sequence of sets.

Proof: If there exists an n such that (£ ) = +oo then £,  E'implies w(E) =+
and the result follows.

So assume that p(E ) <+oo foralln > 1. Then, E=E U Uz(E” \E,,)isa
disjoint union. Note that E._ — £ impliesthat £ = (E \E ) O E ,whichisa
disjoint union. So w(E) )= Ww(E \E )+ u(E ). Because the measures are finite,
this can be rearranged as follows:

WENE, ) =(E) - WE, ). So,

WE) =nE)+ iM(En \E, )

M(E) + lim > (W(E,) - W(E, )

n=1

(By the Definition of Infinite Sum)
= limp(E,)

Theorem 4.4: Let s and ¢ be two simple non-negative F'measurable functions on
(X, F,u)and E, F € F. Then,

1. I.(cs)=cl (s)forallc € R.

2. I(s+1)=1(s)+1(0).

3. If s<ton Ethen I (s) <I(?).

4. If F < Ethen I,(s) <1 ,(s).

5. fEcCcECEc..andE=,, E then lim,_ I, (s)=1,(s).

Proof: As per the Lemma given above we can state that,

M M N
s =ZaiXA’_ = ZZaiXCU
i=1

i=1 j=I

And

N M N
t=Y"bXB, =Y > bXC,

Jj=1 i=l j=1

. Self - L i
With C, =4NB e F. o Leaming
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1. Note that cs = ZZI ca. X4, and so,

IE (CS) = aniH(Ai)

= ci a(4)=cl(s)

. Then s+¢= ZZIZL (a, +b,)XC; . Therefore,

1 (S +Z = ZZ(“; +bj)u(cy NE)

j=

I
Ms<
Mz

alu(Cy NE) +22b WC, NE)

i=1 j=1

Il
—_

-

Il
—_

_ f (U(C. mE)J+ﬁ;bip(Q(Cy mE)]

i=1

M N
— Y a4, NE)+Y b B, NE)
i=1 Jj=1

= 1)+ 1,(0)

. Givenany 1 <i< M, 1 <j <N for which CNE# ¢ we obtain for any

xe Cl.ij such that,
a, =s(x) <tx)= b.. So,

I(s) = ZZ an(C;, NE)

. By monotonicity of p we have,

IF(S) = Z%H(Ai ﬁF)

M
< D au(4,NE)

i=1

=1(s)

.IfE cE,cE,c..and E=U7 E, then wehave hm M(Ek)=H(E).

Thus,

M
lim 7, (s) = lim ;al.p(Ai NE,)



M
=.q, limp(4, N E,)
ol —0

M
= ZaiH(Ai NE)
i1

=1,(s)
E
Definition: If /: X — R" is anon-negative /' measurable function and £ € F), then
the integral of fover E is given as,

IE fdpn=sup{l,(s):sisa simple F-measurable function, 0 <s< 1}

But, if £ # X then only fis defined on some domain containing E.
Let I(f, E) denote the set,

{1,(s) : s is a simple F-measurable function, 0 <s <f}

So the integral equals sup /(f, E).

Note: The integral exists for all non-negative F' measurable functions, even though
it may be infinite.

If J. . Jdp = oo then the integral is defined.

If _[ £ fdu < oo then fis p-integrable or summable on E.
Theorem 4.5: For a non-negative F' measurable simple function ¢, we have
I pldp = IE(I)'

Proof: Given any simple F'measurable function, 0 <s <zwe have [, (s) < /(f) by
Theorem 4.4.

Let 7 (¢) is an upper bound for /(z, E) for which I ctd is the least of all
upper bounds.

Hence,
J. pldp <1 (t)

Also, I sap =1, (S) for all simple ' measurable functions, 0 <s<tand

therefore is greater than /,(s) for any particular s, namely s = ¢. Hence,

IEtdu > 1,(t).

Example 4.4: If f=£, i.e., a constant, then I cSan=1.(f)= k, (E).

Theorem 4.6: Consider that all sets are in /' and all functions are non-negative
and F'measurable.

1. Forallc>0,

jchdM = cj L fdu ...(43)
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2. If0< g < hon E then,

I £&dp < I ghdp
3. IfEl CE, and > 0 then,

[ s fdu<|, fdu
Proof:

1. If ¢=0 then both the right hand side and left hand side of Equation (4.3) are
0. Assume ¢ > 0.

1
If 0 <s < c¢f is a simple F measurable function then also is 0 SZS <f.

Thus,

1 1
[ pfdn= IE[—S) =—1,(s)
c c
By Theorem 4.4 (1).
Hence, cJ. £ Jdp is an upper bound for I(cf, E) for which I scfduis the

least upper bound. Thus, cI g fdn zj scfdu .

Considering the observation that if 0 < s < f'is a simple ' measurable
function then also is 0 < ¢s < ¢f and we obtain,

[ sefdu>1,(cs) By the definition of [
= cl(s) By Theorem 4.4(1).

1
Hence, ;I E (Cf )du is an upper bound for /(f, E) for which I » fduisthe

1
least upper bound. Therefore, ;I E(Cf)du > _[Efdu, or, IE(cf)du >

c j L fdu.
On combining both inequalities, we obtain the result.

2. Let 0 <5 < g be a simple F measurable function. Then, since g </ we

trivially have 0 <s < 4 in which the 7 (s) S_[ »hdp by the definition of
integral J- P
Thus, I »hdp is an upper bound for I(g, E). Asin (1) we get

IEhdqu £&dp.
3. Let 0 <5 <fbe asimple, F measurable function. Then,
I.(s)<I_(s) ByTheorem4.4(3)



SJ. 5, Jdu By the definition of _[ L,
So J. £, Jdu is an upper bound for /(f, E,) and hence is greater than the

least of all upper bounds. consequently, J. £ fduzj s fan.

Lemma 1: Let £ € F, /> 0 is F measurable and I g fdp<oo. Set, A={x e E:
fix) =+4}. Then, AeF and w(A4) =0.

Proof: Since f'is F' measurable, therefore f~'({o}) € F and also 4 = EN f!
({o}) € F.Define,

n if xeAd
s, (%)= .
{0 if x¢Ad
Since A€ F, we infer that s is an F'measurable simple function. Also, s <f’
and so,
nu(A) =1(s,) by definition of 7,
< JE fdu  bydefinition of IE
< oo by assumption
Which is true for all n > 1 specifying that u(4) =0.
Lemma 2: If fis /' measurable and non-negative on £ € F and pu(E) =0, then
I £ fdu =0.
Proof: Let 0 < s < f be a simple F measurable function. Therefore,
§= Zivzl a,X , forsomea >0,4 e F.Thenl(s) :Z:v:l anu(An N E) Butp
is monotone which specifies that (4 NE) < u(£) = 0 for all n and hence [ (s) =
0 for all such simple functions. Consequently, /(f, £) = {0} and so JE Jdu=
sup/(f, E)=0,

Lemma 3: If g >0 and IEgdu:O, then p{xe E:g(x)>0}=0.

Proof: Let A={x e E: g(x)>0}and 4 = {x € E': g(x) > 1/n}.
Then, thesets 4 = EN{x:g(x)>1/n} € Fbsatisfyd cA,c A,c ...with
A=U7 4,.

ByLemma 1, w(4)=1lim,_, u(An ) .Using,

1 if xed,
5,(X)=yn
0

otherwise

Therefore,s <gonA we have,
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1

_H(An) = IAn (Sn)

n

< L,, gdp by the definition of J‘An

<], edn By Theorem 4.6(3)

=0 By assumption
So w(4,) = 0 for all n and hence p(4) = 0.

Definition: If a property P holds on all points in £\ 4 for some set 4 with
t(A4) =0 then P is said to hold almost everywhere (i) on E. It is possible that P
holds on some of the points of 4 or that the set of points on which P does not hold
is non-measurable. But, if L is a complete measure, such as the Lebesgue-Stieltjes
measure L, then the condition is simple. Assume that a property P holds almost
everywhere () on £. The definition says that the set of points, say D, on which P
does not hold, can be covered by a set of measure zero, i.e., there exists
A:Dc Aand wA)=0.

However, if 1 is complete then D will be defined as measurable of measure
Zero.

Lemma 4: If g>0 and _[ »8&dn=0then g =0 almost everywhere (1) on E.
Theorem 4.7: If g, h: X — R" are F measurable functions and g < / almost
everywhere (p) then, J. s gdp SJ. hdp

Proof: By assumption there exists a set D < E, of measure zero, such that for all
x € F/ID we have g(x) < h(x). Let 0 < s < g be a simple F' measurable function
written as,

N N
S :zaiXA, ,With UA;' =E
i-1

i=1

A simple F'measurable function can be defined as,

. s(x) if xe¢D
S* =10 if xeD

N
=Y aX, nD"
i=1
Then, for xe £/D we have s*(x) = s(x) < g(x) < h(x), while for xeD we
have s*(x) = 0 < A(x). Thus, s*(x) < i(x) forall x € E.
Remember that, 4. = (4, N D) U (4, N D), a disjoint union in which
wWA) =4, N"D) U A ND)=uA). But4 D c D and so (4, N D)
<w(D)=0.Thus, W) = uA, N D). Consequently,

N
IE(S*) = ;%H(Ai mDC)



= Zal.p(Ai)

=1,(s)

Therefore, 1,(s)=1,(s*) < JE hdu by the Definition of Integral _[ 5 -

Thus, J. zhdup isanupperbound for /(g, E) while I - gdp is the least of

all upper bounds for /(g,E). Hence, I »hdp ZJ. sgdp.

Corollary: If g, hi: X — R* are F measurable with g = 4 almost everywhere (1)
on E then,

ngdu=IEhdu.

Proof: By assumption there exists a set D — E of measure zero such that for all
xe E/D we have g(x) = h(x). In particular, for these x we have g(x) < h(x) and
h(x) < g(x). Therefore, g < h almost everywhere (i) on £ and 4 < g almost
everywhere (1) on £. Hence, the result follows from two applications of Theorem
4.7.

Therefore, a function may have its values changed on a set of measure zero
without changing the value of its integral. Particularly, we may assume that a non-
negative integrable function has finite value.

4.4 THE GENERAL INTEGRAL

A general integral can be defined as a relation between the variables in the equation
including one arbitrary function such that the equation is satisfied when the relation
is substituted in it, for every alternative of the arbitrary function.

An integral can be defined as the distributional integral of functions of one
real variable, 1.e., more general as compared to the Lebesgue integral which permits
the integration of functions with distributional values everywhere or nearly
everywhere.

Define the positive part /* and negative part /~ of a function as,

ff=max (f, 0)

/~=max (-, 0)

Also,

f=r=r

fl=f"+/

Definition: A measurable function f is said to be integrable over E'if /" and /=
are both integrable over E. Therefore, we can define,

fr-fr
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Theorem 4.8: Let fand g be integrable over E. Then,

(i) The function f+ g is integrable over E and i (f+g)= l I+ £ g,

(ii) If /< g almost everywhere then, JE. f= .l‘ g,
(iii) If A and B are disjoint measurable sets contained in £, then

Jr=lrr.

AUB A

Proof: From the definition, it follows that the functions /™, /-, g%, g ~are all
integrable. If h =f+ g, then h=(f"-f )+ (g "—g )andhence h = (f"+
g")—-(f + g).Since,f*+ g"and [+ g areintegrable therefore we then
have, the following equation:

[r _ i +g)-(f+2)]
_ o +eH-[(+21
_|r+fe-[r-[e
_(r-In+(e-|o
Thatis,
[(r+e) _ [r+]e

Proof of (ii) follows from Part (i) and the fact that the integral of a non-
negative integrable function is non-negative.

For the Proof of (iii) we have,

J. f = .[fXAuB

AUB

= [ +] Fos
_[r+fr

Now, f+ g isnot defined at points where f = o and g = —o0, and where
f=-wand g =oco0. However, the set of such points must have measure equal to 0,
since f'and g are integrable. Consequently, the integrability and the value of

I( f +g) isindependent of the choice of values in these ambiguous conditions.

Theorem 4.9: Let f be a measurable function over £. Then f in integrable over
Eiff|f]is integrable over E. Furthermore, if f is integrable, then

|£f|s£f|,



Proof: If fis integrable then both /* and /™ are also integrable. But |f|=/"+ /.
Hence, integrability of /" and /~ implies the integrability of | f].

Moreover, if f is integrable, then since f(x) < | f(x)| = f{x), the property of
measurable function states that if /< g almost everywhere then, I f< I g implies
that,

[r<]ir .(4.)
On the other hand, since — f(x) < | f{x) |, we have

-[r<fis ..(4.5)
From Equations (4.4) and (4.5) we have,

[ rifis

Conversely, suppose fis measurable and suppose | f | is integrable. Since,
0< f(x)<|f(x)], it follows that /™ is integrable. Similarly, /~is also integrable
then £ is also integrable.

Lemma: Let / be integrable. Then given € > 0, there exists 6 > 0 such that

| J.f |< € whenever 4 is a measurable subset of E with m4 < 8.
A

Proof: When £ is non-negative, the lemma is proved. Now for arbitrary measurable
function fwe have f=/"—f". Therefore, given € > 0 there exists 6, > 0 such that,

€
/<=
[r<

When mA < §,. Similarly there exists 6,> 0 such that,
_ €
s

When mA <3,. Thus, when m4 <8 =min(5 , 3,), we have the following
equation:

[refirisfre]F<3+5=s

Hence, the lemma is proved.

4.5 INTEGRATION OF SERIES

A series formalizes the inaccurate notion of taking the sum of an endless sequence
of numbers. The contemporary notion that to assign a value to a series can be
avoided by considering the inaccurate notion of adding an ‘Infinite’ number of
terms. As an alternative, the finite sum of the first # terms of the sequence, known

as a partial sum, is considered and the concept of a limit is used to the sequence of
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partial sums as 7 increases or expands without bound. The series is assigned the
value of this limit if it exists.

Consider an integer N and a function f defined on the unbounded interval
[V, ), on which it is monotonic decreasing. Then the infinite series,

3" f(n)

=M

Converges to a real number if and only if the improper integral

.Lxﬂﬂdm

is finite. In particular, if the integral diverges, then the series diverges as well.

Proof: The proof basically uses the comparison test, comparing the term f{n) with
the integral of fover the intervals [n — 1, n) and [n, n + 1), respectively. The

monotonous function f is continuous almost everywhere. To evaluate this, let
D = {z € [N,) | f isdiscontinuous at z }

For every y £ D exists by the density of Qac(z) e ¢ so that

clz) &

lim f(y), s f(y)] :

Since, f1s a monotonic decreasing function, we know that
f(z) < f(n) forall z & n, 00)

And

fin) < f(z) forallz € [N,n]

Hence, for every integer 1 = V.

n+l n+l
] flz) de f_-i_/ fln)dz = f(n) (4.6)

And, forevery integern = N+ 1,

tn)= [ smyds< [ fayda @7)

By summation over all » from N to some larger integer M, we get the
following Equation from Equation (4.6)

M+l lf_\ n+l Ef_‘
ﬁ, f(z) dz = )_‘f flz)dz < Y f(n)

=N Y% n=N
e P

< f(n)

And from Equation (4.7)



M M n

M
Sam<sm+ S [ f@de= gm0+ [ fa)de.

n=N n=Nt1vn-1
> fin)
Combining these two estimates we obtain the following yields:

M+1 M M
[ ey s < s+ [ fo)de

n=N

Remark: If the improper integral is finite, then the proof also gives the lower
and upper bounds.

ﬁ S < Y fn) < S + fv f() de

for the infinite series.

4.6 REIMANN AND LEBESGUE INTEGRALS

The Lebesgue integral is named after Henri Lebesgue (1875-1941), typically
Lebesgue defined and established the integral in the year 1904. Principally, the
Lebesgue integral functions have a significant role in the theory and derivation of
probability, real analysis, and numerous other fields in mathematics. Mathematically,
as per the Lebesgue explanation the term Lebesgue integration specifies either the
general theory of integration of a function with respect to a general measure or the
specific instance of integration of a function typically defined on a sub-domain of
the real line with respect to the Lebesgue measure. The Riemann integral specifies
that by partitioning the domain of an assigned function, one can approximate or
estimate the assigned function by means of piecewise constant functions in each
sub-interval. On the contrary, the Lebesgue integral are specifically used to partition
the range of that function.

The key objective of the Lebesgue integral is to provide an integral notion in
which the limits of integrals hold moderate assumptions. Basically, there is no
assurance that every function is the Lebesgue integrable, but it is possible that
improper integrals exist for functions that are not Lebesgue integrable.

Any function which is Riemann integrable is also Lebesgue integrable
and positively with the same values for the two integrals. This can be easily proved.
First, we recall one definition of Riemann integrability. This definition is different
from other, but is considered to be equivalent. Let f: 4 — R be a bounded
function on a bounded rectangle 4 — R”. Consider R-valued functions that are
simple with respect to a rectangular partition of 4, also known as step functions.
Step functions are obviously both Riemann and Lebesgue integrable with the same
values for the integral. The lower and upper Riemann integrals for fare given as,

Af) = sup{IAl d\ : Step Function / Sf}

Af) = inf {IAu d :Step Function u > f}
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If we have &(f) < &((f); then we state that f/'is Riemann integrable if
Af) = A), and the Riemann integral of fis definedas & () =/ (f)

Equivalently, fis Riemann integrable when there exists sequence of lower
simple functions / < fand upper simple functions # > fsuch that,

lim jznzg(f)zgz(fp lim jun
) n—ows

n—0

Theorem 4.10: (Riemann Integrability Implies Lebesgue Integrability):
Let 4 — R be abounded rectangle. If f: A — R is properly Riemann integrable,
then it is also Lebesgue integrable with respect to Lebesgue measure with the
same value for the integral.

Proof: Take asequence / andu . Let L=sup [nand U=inf u .Clearly, these
are measurable functions, and we have,

| <L<f<U<u

Taking Lebesgue integral and defining, limits we can write,
lim [/, <|LL|U<L lim |u

Jim [l < [L=[Us Jim fro

Here, the limits on the two sides are the same, because the Riemann and

Lebesgue integrals for / and u coincide. Therefore, I(U —L)=0.ThenU=L

almost everywhere and U or L equals f'almost everywhere. Since Lebesgue
measure is complete hence fis a Lebesgue measurable function.

Finally, the Lebesgue integral I / , now exists and is squeezed in between
the two limits on the left and on the right defining that both equal the Riemann
integral of 1.

4.7 THE FOUR DERIVATIVES

Inreal analysis, the derivative of a function of a real variable measures the sensitivity
for changing the function value (output value) with respect to a change in its argument
(input value). Derivatives are a fundamental tool of calculus. For example, the
derivative of the position of a moving object with respect to time is the object’s
velocity and this measures how quickly the position of the object changes when
time advances.

The derivative of a function of a single variable at a selected input value,
when it exists, is the slope of the tangent line to the graph of the function at that
point. The tangent line is the best linear approximation of the function near that
input value. For this reason, the derivative is often described as the “Instantaneous
Rate of Change”, the ratio of the instantaneous change in the dependent variable
to that of the independent variable.

Derivatives can be generalized to functions of several real variables. In this
generalization, the derivative is reinterpreted as a linear transformation whose graph



is (after an appropriate translation) the best linear approximation to the graph of Lebesgue Measurability

.. . . .. . - and Integration of
the original function. The Jacobian matrix is the matrix that represents this linear Non-Negative Functions
transformation with respect to the basis given by the choice of independent and
dependent variables. It can be calculated in terms of the partial derivatives with
respect to the independent variables. For a real valued function of several variables,

the Jacobian matrix reduces to the gradient vector.

NOTES

Differentiation and Integration

The process of finding a derivative is called differentiation. The reverse process
is called antidifferentiation. The fundamental theorem of calculus relates
antidifferentiation with integration. Differentiation and integration constitute the
two fundamental operations in single variable calculus.

A function of a real variable y = f{x) is differentiable at a point a of its
domain, if its domain contains an open interval / containing a and the limit exists.

. _ . flath)— fa)
h—l h

This defines that for every positive real number £ (even very small), there

exists a positive real number 6 such that, for every A thereis |h| < d andf, £ 0
then f(a + h) is defined, and

g, Rl

Ifthe function f1s differentiable at @, that is, if the limit L exists, then this limit
is called the derivative of fat @, and denoted by ' (a ) (read as “/prime of @”) or

% (a} (read as “The derivative of f with respect tox at a”, “dy by dx at a”, or “dy

over dx ata”).

Let fbe a function that has a derivative at every point in its domain. We can
then define a function that maps every point x to the value of the derivative of fat
x. This function is written /” and is called the derivative function or the derivative
of /. Let fbe a differentiable function and let /” be its derivative. The derivative of
/7 (if ithas one) is written /”” and is called the second derivative of /. Similarly, the
derivative of the second derivative, if it exists, is written /”” and is called the third
derivative of /. Continuing this process, one can define, if it exists, the nth derivative
as the derivative of the (n—1)th derivative. These repeated derivatives are called
higher order derivatives. The nth derivative is also called the derivative of order .

A function fneed not have a derivative for example if'it is not continuous.
Similarly, even if fdoes have a derivative, then it may not have a second derivative.
For example, let

o J4=2?, ifz>0
flf.r}—{_ﬁ‘ ifz < 0.
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NOTES —22, ifz <0.

/f(x)1s twice the absolute value function at x and it does not have a derivative
at zero. A function can have a kth derivative for each non-negative integer & but
not for (k+ 1)th derivative. A function that has & successive derivatives is called &
times differentiable. If in addition the kth derivative is continuous, then the function
is said to be of differentiability class C*. This is a stronger condition than having &
derivatives. A function that has infinitely many derivatives is called infinitely
differentiable or smooth.

4.8 FUNCTIONS OF BOUNDED VARIATION

In the mathematical analysis, a function of Bounded Variation (BV) also termed as
BV function, is considered as a real valued function whose total variation is bounded
or finite. Considering a continuous function of a single variable, which has bounded
variation signifies that the distance along the direction of the Y-axis ignoring the
contribution of motion along X-axis, travelled by a point moving along the graph
has a finite value. Similarly, consider a continuous function of several variables, the
connotation and implication of the definition is equivalent, except that the considered
continuous path cannot be the whole graph of the given function, but can be every
intersection of the graph itself with a hyperplane (for several variables) and plane
(for functions of two variables) parallel to a fixed X-axis and to the Y-axis.

Definition 1: Let S be a non-empty set of real numbers. Then,
1. The set Sis bounded above if there is a number M such that A7 > x for all
x € S. The number M is called an upper bound of'S.

2. The set S'is bounded below if there exists a number m such that m < x for
all xes.
3. The setSis bounded ifit is bounded above and below. Equivalently S'is
bounded if there exists a number rsuch that| x | < forall x € § . The number
ris called a bound for S.
Definition 2: Let, S be a non-empty set of real numbers.

1. Suppose that §S'is bounded above. The number {3 is the supremum of Sif 3
is an upper bound of S and there is no number less than f3 that is an upper
bound of S. We write,

B=supS

2. Suppose that S'is bounded below. A number a is the infimum of Sif ot is a
lower bound of S and there is no number greater than o that is a lower
bound of S. We write,

a=1inf S
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Theorem 4.11: Let S be a non-empty set of real numbers that is bounded above,
and let b be an upper bound of S. Then the following are equivalent:

1. b=supS.
2. For all € > 0 there exists anx € Ssuch that | —x |<e.
3. For all £ > 0 there exists an x € S such thatx € (b —¢, b].

We often refer to sup S as the Least Upper Bound (LUB) of S and to inf 'S as the
Greatest Lower Bound (GLB) of S.

Axiom: Every non-empty set of real numbers that is bounded above has a least
upper bound.

Definition 3: A partition of an interval [a, b] is a set of points {x,x , ..., x } such
thata =x, <x <x,..<x =0b.

Definition 4: Let /:[a,b]|—>R be a function and let [c, d] be any closed
subinterval of [a, b]. If the set,

s ={i|f(xl.)—f(xil)|: {x,:1<i<n} is a partition of [c, d]}

i=1

is bounded then the variation of fon [c, d] is defined tobe V' (f,[ ¢, d |) =sup S . If

S'is bounded then the variation of fis said to be «. A function fis of bounded
variation on [c, d] if V (f, [c, d]) is finite.

Example 4.5: If fis constant on [a, b], then fis of bounded variation on [a, b].
Consider the constant function f(x) = c on [a, b]. Let,

1)~ 5

is zero for every partition of [a, b]. Thus, V' (f,[a, b]) is zero.
Theorem 4.12: If f'is increasing on [a, b], then fis of bounded variation on

[a, b] and V' (f'[a, b]) =f (D) —f ().

Proof: Let {x, :1<i<n} beapartition of [a, b]. Consider,

X~ ) = X)) = B) - (@)

This sum is the same for every partition of [a, b]. Therefore, we have
V(f,la, b]) =f(b)—fla) <. Thus, fis of bounded variation on [a, b].
Similarly, if fis decreasing on [a, b] then V (f,[a, b]) =fla)—f(D).
Theorem 4.13: Between any two distinct real numbers there is a rational number
and an irrational number.
Example 4.6: Show that, the function fdefined by,

if x is Irrational

1) = {f

if x is Rational

is not of bounded variation on any interval.
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Solution: Let n € Z and n> 0. Let [a, b] be a closed interval in R. We construct
a partition P = {x,, x,, ..., x .} of [a, b] such that V(f.[a,b]) >
Z;:z| f(x,)= f(x_,)| >nas follows. Recall that by definition x, = a. We know

that between any two real numbers there is a rational number and an irrational
number. Take x, to be an irrational number between a and b. Then take x, to be

an irrational number between x, and b. Continuing in this manner and taking x, |

to be an irrational number between x, and b, and x,, to be a rational number
betweenx,,  and b, then finally x = b. Thus, a partition is created that begins
with a and then alternates between rational and irrational numbers until it finally

ends with 5. Now consider the sum Z;:z| f(x.)- f(x.,)|, whichis the variation
of fon|[a, b]. Thus,
n+2

V(f.[a, b]) > Zlf(x,-)—f(xi_l)\

n+2

> Zlf(xi)—f(xi_l)\

=) =S [+t [ f(x,) = f(x,) ]
=|1-0]+]|0-1]+..+]1-0]
=1+1+1+...+1

=n

Consequently, V' (f,[a, b]) is arbitrarily large and hence V' ( f,[a, b]) =c0.

4.8.1 Algebraic Properties of Functions of Bounded
Variations

Theorem 4.14: Let fand g be functions of bounded variation on [a, b] and let &
be a constant. Then,

1. fisbounded on [a, b].

2. fis of bounded variation on every closed subinterval of [a, b].

3. kfis of bounded variation on [a, b].

4. f+ gand f— g are of bounded variation on [a, b].

5. fgis of bounded variation on [a, b].

6. If 1/gis bounded on [a, b], then f/g is of bounded variation on [a, b].
Lemma: Let f:[a, b] > R be a function. Let {x,:0<i<n} be a partition of
[a, b] and let {y,:0<i<m} be apartition of [a, b] such that {x,:0<i<n}
{y,:0<i<m}.Then,

i| F@) - fx)] Si' o) -]



Proof: Start the calculation by adding one point to the partition {x, : 0 <i < n} which
gives the desired result.

Let {x.:0<i<n} and {y,:0<i<m} be partitions as in the statement of
the lemma. Suppose y e {y,:0<i<m}.Ify =X, for some j then the sum does not
change. Thus we assume that y # x; forall;. In this condition y falls between two

points x,_ and x_in {x,:0<i<n} for some k. We take the sum

D1 f(x) - f(x,,)| and write it as follows:

Y17 = )+ )= £ ) 1+ X 17 = £ (5|

i=k+1

Take | f(x,)— f(x,_,) |- We know that,

[ f(x) =) = [f(x) = fe )+ ) =F )]
< NS =FODHIS ) =S (%) |
by the triangle inequality. We relabel the partition with the extra point as

{x,:0<i<n+1}. Thus, since all the addends are positive, we can write,

n+l

DS = FDIE NS ()= [ (%)

i=1 i=1

Because there are atmost a finite number of the y, the desired result follows
by induction.
Proof of Theorem 4.14: To prove (2) we begin by assuming that /is of bounded
variation on [a, b]. Thus V( f,[a, b]) = sup {ZLJ f(x)—=f(x_)|} =rwhererisa

real number. Let [c, d] be a closed interval of [a, b] and {x, :1<i < n} bea partition
of [c, d]. Then extend this partition to [a, b] by adding the point a and b and
relabeling. Subsequently, {x, :0 <i <n + 2} isapartition of [a, b] such that x, =c,
x,,, =d . Then,

n+l n+l

Zlf(xi)—f(x,-fl)l < If(xl)—f(a)|+Z|f(x,-)—f(x,-71)| +fO) = f(x,)[<r

Because the original partition of [ ¢, d] was arbitrary, we can conclude that
rzV(f.led].

To prove (3), we assume that {x,:1<i<n} be a partition of [a, b].
Consider,

YUK ) =K G| = TS ()= )]

<|k|V(f.[a, b])
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Lebesgue Measurability Because the partition was arbitrary, kfis of bounded variation. Further we
and Integration of

Non-Negative Functions can observe that V(kf,[a,b])=|k|V(f,la,b]).

To prove (4) we assume that {x,:1<i<n} be a partition of [a, b]. By
NOTES repeated use of the triangle inequality, we obtain the equations of the form.

i|f(x,-)+g(x,-)—f(xl-_l)—g(x,-_1>|

: z' f("f)‘f(xf—1>l+il g(x) - g(x.,)|

<V (f.[a, b)) +V(gla, b))

Notice that, V' (f,[a, b])+V (g,[a, b]) is finite and the partition taken was
arbitrary. Thus by the least upper bound axiom, /+ g is of bounded variation.

To prove that f— g is of bounded variation on [a, b], we simply consider
that f— g=f+(—1) g. Since (—1)g is of bounded variation on [a, b], f— g is of
bounded variation on [a, b].

To prove (6) we assume that fand g are of bounded variation on [a, b] and
that 1/g is bounded on [a, b]. Thus we know that there exists number M such that
forall xe[a, b], |1/ g(x)| < M . Now we have to show that 1/g is of bounded
variation on [a, b]. We begin by taking {x, :0 </ <n} asanarbitrary partition of
[a, b] and consider the usual sum,

n

3! I Izilg(xl_l)—g(xi)l

Sletx) gty S| ggx) |

SM2i|g(xi)—g<xi,l)|

<M’V (g.a, b))
Because the partition was arbitrary, we can state that the sum is bounded

aboveby M*V(g,[a, b]) and therefore by the least upper bound axiom, 1/gis of
bounded variation.

Theorem 4.15: Let f:[a,b|—>R be a function and let ce(a, b). If fis of
bounded variation on [a, c] and [c, b] then fis of bounded variation on [a, b] and

V(f.la,b) =V (f.la,cD)+V(f.[c,b]).

4.8.2 Functions of Bounded Variation as a Difference
of Two Increasing Functions

Theorem 4.16: If f:[a, b|— R is a function of bounded variation then there
exist two increasing functions, f, and f, such that /=, — 1.

' We define an increasing function f'such thatif x, <x, then f(x ) < f(x,).
Self - Learning
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Lemma 1: For a function f, V(f,[a, b]) = 0 if and only if f'is constant on
[a, b].
Proof: Suppose that f is constant. Then f is monotone function. Also,
V(f.la,b])=f(b) - f(a).

However, f(b) =f(a) and so V(f,[a, b]) =0.

We will prove the reverse by contraposition. Suppose that fis not constant
on [a, b]. We can prove that V' (f,[a, b]) # 0. Since f'is not constant on [a, b]
there exist anx, and an x, such that both x, and x, are between a and b such that
f(x)# f(x,).If we take these two points as a partition of [a, b] we have,

V(f.la, b 2] f(x) = (@) [+] f(x) = fx) [+] f(B) = f(x,)]
However, we know that | f{x ) — f(x,) | > 0. Since each other addend is at
least 0, we state that the sum must be greater than 0 and thus V' (f,[«, b]) > 0 and

hence V(f,[a,b]#0.

Lemma 2: If fis a function of bounded variation on [a, b] and x €[a, b] then the

function g(x) =V (f,[a, x]) is an increasing function.

Proof: We introduce x, and x, such that x, <x,. We can show that g(x,) < g(x,).
Because fis of bounded variation on [a, b],

W la, x,)) =W, [a, x,]) + VU, [x,, x,])
V. La, x,1) =V, [a, x 1) = VU, [x,, x,))
gx,) —glx) =V, [x,, x,])

Since V(f, [x,, x,]) = 0 we define that g(x,) > g(x,). Furthermore, by the
above lemma, we have equality only if /is constant on [x , x, ].

Proof of Theorem 4.16: We define /= V(f, [a, x]) for x € (a, b) and f,(a) = 0.
This function can be increased by Lemma 2. Define £, as f (x) = f,(x) — f(x). Then
S=1,—/f,-Now, show that f, is increasing.

Suppose that a <x <y <b. Using Theorem 4.14, we can write
L) =f(x) =V [x, y])
2 [fly) = fx)
2 f(y) — fix)
From this we see that
L) =[x 2Ay) - Ax)
L0) =) 2f,(x) - fx)
L 2 fix)
This shows that f, is increasing on [a, b] and hence completes the proof.

Corollary: If f:[a,b|—> R is of bounded variation on [a, b] then f'is the
difference of two strictly increasing functions.
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Proof: We know from Theorem 4.16 that f'can be written as the difference of
two increasing functions. We call these functions f, and f, and write /= f, — f,
where f, and f, are increasing.

Create two new functions, g (x) =f,(x) + x and g,(x) = f,(x) +x. Because
both f’and x are increasing functions, hence their sum is also increasing. However,
since x is a strictly increasing function, the result of this addition is also a strictly
increasing function. Thus we write,

J) =/£,(0) = £,(0) = (f,(x) T %) = (£,(x) + x) = g,(x) — g,(x)

where g, and g, are strictly increasing functions.

4.9 LEBESGUE DIFFERENTIATION THEOREM

Inreal analysis, the Lebesgue differentiation theorem is a theorem of real analysis,
which states that for almost every point, the value of an integrable function is the
limit of infinitesimal averages taken about the point. The theorem is named After
Henri Lebesgue.

For a Lebesgue integrable real or complex valued function fon R”, the
indefinite integral is a set function which maps a measurable set 4 to the Lebesgue

integral of f - 1 4. where 1 4 denotes the characteristic function of the set A. It is

usually written as,

A f fdA,
A

with A the n—dimensional Lebesgue measure. The derivative of this integral
at x is defined to be,

Where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B
centered at x, and B — x means that the diameter of B tends to 0.

Proof: The theorem in its stronger form, that almost every point is a Lebesgue
point of a locally integrable function £, can be proved as a consequence of the weak—
L' estimates for the Hardy—Littlewood maximal function. The proof given below
follows the standard derivation that can be found in Benedetto & Czaja (2009),
Stein & Shakarchi (2005), Wheeden & Zygmund (1977) and Rudin (1987).

Since the statement is local in character, f can be assumed to be zero outside
some ball of finite radius and hence integrable. It is then sufficient to prove that the
set,

E.= {.T, ¢ R" : limsup i|j;f(y] flz)dy

|B|l—0, z=8 | B

= 2o }

has measure O for all o.> 0.



Let £ >0 be given. Using the density of continuous functions of compact
support in L/(R"), one can find such a function g satisfying,

Nf—gllp = /1;” |f(z) — g(z)|dz < &.

It is then helpful to rewrite the main difference as,

1

éﬁf(y) dy— f(z) = (élfﬂ(f(:u) —g(-y))d'y) + (ﬁ/ﬂﬂw}dy—g(‘”)) + (9(@) = f(=))-

The first term can be bounded by the value at x of the maximal function for
f—g, denoted here by (f — g)* (z):

l-;; fB |#(5) — 9(0)| dy < sup 1£6) — @)l dy = (f — )" (=).

>0 |Brlz)| JBo(m)

The second term disappears in the limit since g is a continuous function, and
the third term is bounded by [f(x) — g(x)|. For the absolute value of the original
difference to be greater than 2o in the limit, at least one of the first or third terms
must be greater than a in absolute value. However, the estimate on the Hardy—
Littlewood function says that,

* A, A,
{22 (f-9)" (@) > a}| < 22 1f — gl < e,

for some constant 4 depending only upon the dimension #. The Markov
inequality (also called Tchebyshev’s inequality) says that,

1 1
[{: |f(z) — g(@)| > a}| < —lIf ~ gl < e
Where,

A, +1
|EL'L| {

£.

Since & was arbitrary, it can be taken to be arbitrarily small and the theorem
follows.

A special case of the Lebesgue differentiation theorem is the Lebesgue density
theorem, which is equivalent to the differentiation theorem for characteristic functions
of measurable sets. The density theorem is usually proved using a simpler method.
The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving
the estimate for the Hardy—Littlewood maximal function. The theorem also holds
if balls are replaced, in the definition of the derivative, by families of sets with
diameter tending to zero satisfying the Lebesgue’s regularity condition, defined as
family of sets with bounded eccentricity. This follows since the same substitution
can be made in the statement of the Vitali covering lemma.
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7. Define the integration of non-negative functions.

8. State the general integral.

9. What do you understand by the integration of series?
10.
11.
12.
13.

Check Your Progress

Define the Reimann and Lebesgue integrals.
What are the derivatives?
Define the functions of bounded variation.

State the Lebesgue differentiation theorem.

4.10 ANSWERS TO ‘CHECK YOUR PROGRESS’

1.

3.

In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. Fundamentally, the Lebesgue measure is
defined as the standard method used to assign a measure to subsets of
n-dimensional Euclidean space. In real analysis, the Lebesgue measure is
specifically used to define the Lebesgue integration. Sets to which the
Lebesgue measure can be assigned are termed as the ‘Lebesgue
Measurable’; characteristically the measure of the Lebesgue measurable set
A can be denoted by A(A).

. The Lebesgue outer measure can be defined assuming that there is an outer

measure A on aset X which is a measure then it will be considered as additive.
Specifically, for given any two sets 4, B < X it can be stated that both 4
B and 4 N B¢ are disjoint in conjunction with (4 N B) N (4 N B)=A and
accordingly we can state that,

AA)=AANB)+A(4nNB)

The pair (X, X)) is termed as a measurable space, the members of . are
termed as the measurable sets. A measurable set X is known as a null set if
1 (X)=0. Asubset of anull set is described as a negligible set. Anegligible
set must not be measurable, but every measurable negligible set is certainly
and inevitably a null set. A measure is termed complete if every negligible
set is measurable.

. A measure can be extended to a complete or perfect by means of considering

the c-algebra of subsets Y which vary through a negligible set from a
measurable set X; i.e., the symmetric difference of X'and Y'is contained in a
null set, such that p (Y) can be defined to equal p (X).

. Specifically, in the measure theory, ameasurable function is a function between

the underlying sets of two measurable spaces that preserves the structure
of the spaces, the preimage of any measurable set is measurable. In real
analysis, measurable functions are used in the definition of the Lebesgue
integral. In probability theory, a measurable function on a probability space
is termed as a random variable.



6. Themap f: X— Y between two topological spaces is termed as the ‘Borel
or Borel Measurable’ if /~'(A4) is a Borel set for any open set 4 as per the
c-algebra of Borel sets of X is the smallest G-algebra containing the open
sets.

N
7. Lets be anon-negative /' measurable simple function so that, 5 = D aX 4,

i=1

with disjoint F'measurable sets 4, UY, 4, = X and a=>0.ForanyE e F

N
define the integral of f over E to be, /,(s)=)_au(4, NE) with the

i=1
convention thatif a =0 and p(4, M E) = +oo then 0 x (+o0) = 0. Therefore,
the areaunder s =0 in R is zero.

8. A measurable function f is said to be integrable over Eif /* and /™ are both
integrable over E. In this condition we define, .[ f= .[ I- I f
E E E

9. Consider an integer N and a function f defined on the unbounded interval
[V, ©0), on which it is monotonic decreasing. Then the infinite series,

3 f(n)

n=N

Converges to a real number if and only if the improper integral,

LE f(z) dz

is finite. In particular, if the integral diverges, then the series diverges as well.

10. The Lebesgue integral is named after Henri Lebesgue (1875-1941), typically
Lebesgue defined and established the integral in the year 1904. Principally,
the Lebesgue integral functions have a significant role in the theory and
derivation of probability, real analysis, and numerous other fields in
mathematics. The Riemann integral specifies that by partitioning the domain
of an assigned function, one can approximate or estimate the assigned
function by means of piecewise constant functions in each sub-interval. On
the contrary, the Lebesgue integral are specifically used to partition the range
of'that function. The key objective of the Lebesgue integral is to provide an
integral notion in which the limits of integrals hold moderate assumptions.

11. Inreal analysis, the derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with respect to a
change in its argument (input value). Derivatives are a fundamental tool of
calculus. For example, the derivative of the position of a moving object
with respect to time is the object’s velocity, this measures how quickly the
position of the object changes when time advances.
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12. Let, Sbe a non-empty set of real numbers.

(a) Suppose that Sis bounded above. The number 3 is the supremum of
Sif B is an upper bound of S and there is no number less than f3 that
is an upper bound of S. We write,  =sup S.

(b) Suppose that S is bounded below. A number a. is the infimum of Sif o
is alower bound of S and there is no number greater than o that is a
lower bound of S. We write, o =inf'S.

13. Inreal analysis, the Lebesgue differentiation theorem is a theorem of real
analysis, which states that for almost every point, the value of an integrable
function is the limit of infinitesimal averages taken about the point. The theorem
is named after Henri Lebesgue.

4.11 SUMMARY

¢ In the measure theory, the term Lebesgue measure is named after French
mathematician Henri Lebesgue. This measure was described by Henri
Lebesgue in the year 1901, and in the year 1902 by the description Lebesgue
integral.

¢ Both the Lebesgue measure and the Lebesgue integral were published in
his dissertation thesis in the year 1902.

¢ Fundamentally, the Lebesgue measure is defined as the standard method
used to assign a measure to subsets of #n-dimensional Euclidean space.
Additionally, forn =1, 2 or 3, the Lebesgue measure coincides with the
standard universal measure of length, area or volume.

e Generally, in the mathematical analysis the measure is also termed as the #-
dimensional volume, n-volume or merely only the volume. In real analysis,
the Lebesgue measure is specifically used to define the Lebesgue integration.

e Sets to which the Lebesgue measure can be assigned are termed as the
‘Lebesgue Measurable’; characteristically the measure of the Lebesgue
measurable set 4 can be denoted by A(4).

e [ebesgue outer measure: Assume that there is an outer measure A on a set
X which is ameasure then it will be considered as additive. Specifically, for
given any two sets 4, B < X we can state that both 4 N B and A N B are
disjoint in conjunction with (4 N B) U (4 N B°) = A4 and accordingly we can
state that,

AA) = (ANB)+A (AN B)

o Sets to which the Lebesgue measure can be assigned are termed as the
‘Lebesgue Measurable’; characteristically, the measure of the Lebesgue
measurable set 4 can be denoted by A (4).

e The pair (X, Y) is termed as a measurable space, the members of X are
termed as the measurable sets.

o Ameasurable set X'is known as a null set if . (X) =0. A subset of a null set
is described as a negligible set. A negligible set must not be measurable, but
every measurable negligible set is certainly and inevitably a null set.



¢ A measure is termed complete if every negligible set is measurable.

¢ A measure can be extended to a complete or perfect by means of considering

the c-algebra of subsets Y which vary through a negligible set from a
measurable set X; i.e., the symmetric difference of X'and Y'is contained in a
null set, such that p (Y) can be defined to equal p (X).

In real analysis, measurable functions are used in the definition of the
Lebesgue integral.

In real analysis and measure theory, the regularity theorem for Lebesgue
measure is defined as an acquired result which states that Lebesgue measure
on the real line is a regular measure. Usually, this indicates about the real line
and states that every Lebesgue measurable subset is ‘Approximately Open’
and ‘Approximately Closed’.

In mathematical analysis and in particular in the measure theory, a Borel
measure on a topological space is defined as a measure for all open sets
and consequently on all Borel sets.

Consider that X be a locally compact Hausdorff space and also consider
that B(X) be the smallest 5-algebra which contains or includes the open sets
of X; then this is established as the ‘c-Algebra of Borel Sets’.

The ‘Borel Measure’ is specified as any measure p defined precisely on the
c-algebra of Borel sets. Some of the mathematicians define that puis locally
finite which implies that p (C) <o for every compact set C.

When a Borel measure  is both inner regular and outer regular, then it is
termed as a ‘Regular Borel Measure’. If p is both inner regular and outer
regular, and is also locally finite, then in this condition it is known as a Radon
measure.

Characteristically, the real line R with its normal topology is defined as a
locally compact Hausdorff space, therefore a Borel measure can be defined
on it. In this instance, B(R ) is referred as the smallest c-algebra that
comprises of the open intervals of R .

Principally, the Lebesgue c-algebra is essentially stated as the completion
of the Borel c-algebra, which implies that it is the smallest c-algebra that
comprises of all the Borel sets and has a complete measure on it.

Characteristically, the measurable sets on the line are considered as the
iterated countable unions and intersections of intervals, termed as the Borel
sets, are referred as the plus-minus null sets.

The measure of the union of two disjoint sets to be the sum of the measure
of'the two sets. A measure with this natural property is termed as the finitely
additive.

N
Let s be a non-negative F' measurable simple function so that, § = Z%X 4,

i=1

with disjoint F measurablesets 4, UY, 4, = X anda.>0.Forany E € F

N
define the integral of f over E to be, I,(s)=> au(4, NE) with the
i=1
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convention thatif @ = 0 and w4, M E) = +oo then 0 x (+o0) = 0. Therefore,
the areaunder s =0 in R is zero.

If f: X — R is a non-negative F' measurable function, £ € F, then the
integral of fover E'is,

JE Sfdpn=sup{l,.(s):sis a simple F'-measurable function, 0 <s < 1}

But, if £ # X we need only that fis defined on some domain containing £.

If a property P holds on all points in £\ 4 for some set 4 with p(4) =0 then
P is said to hold almost everywhere (1) on E. It is possible that P holds on
some of the points of 4 or that the set of points on which P does not hold is
non-measurable. But, if 1 is a complete measure, such as the Lebesgue-
Stieltjes measure i, then the situation is simpler. Assume that a property P
holds almost everywhere () on £. The definition says that the set of points,
D say, on which P does not hold, can be covered by a set of measure zero,
i.e., there exists 4 : D < A and u(4) =0.

A measurable function fis said to be integrable over E'if /" and f~ are both
integrable over E. In this condition we define, .}[ /= }[ I JE. f

Any function which is Riemann integrable is Lebesgue integrable as well
and positively with the same values for the two integrals. First, we recall
one definition of Riemann integrability.

Consider an integer N and a function f defined on the unbounded interval
[N, ), on which it is monotonic decreasing. Then the infinite series

" £(n)
n=N

Converges to a real number if and only if the improper integral

/; . f(2)de s finite. n particular, if the integral diverges, then the series

diverges as well.

In real analysis, the derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with respect to a
change in its argument (input value). Derivatives are a fundamental tool of
calculus. For example, the derivative of the position of a moving object with
respect to time is the object’s velocity, this measures how quickly the position
of the object changes when time advances.

The derivative of a function of a single variable at a is taken as input value,
when it exists, is the slope of the tangent line to the graph of the function at
that point. The tangent line is the best linear approximation of the function
near that input value. For this reason, the derivative is often described as
the “Instantaneous Rate of Change”, the ratio of the instantaneous change
in the dependent variable to that of the independent variable.



e The process of finding a derivative is called differentiation. The reverse
process is called antidifferentiation. The fundamental theorem of calculus
relates antidifferentiation with integration. Differentiation and integration
constitute the two fundamental operations in single variable calculus.

e Let, S be a non-empty set of real numbers.

(a) Suppose that S'is bounded above. The number f3 is the supremum of
S'if B is an upper bound of S and there is no number less than [3 that
is an upper bound of S. We write, f =sup S.

(b) Suppose that S'is bounded below. A number a is the infimum of S'if a
is a lower bound of § and there is no number greater than o that is a
lower bound of S. We write, oo =inf'S.

e Inreal analysis, the Lebesgue differentiation theorem is a theorem of real
analysis, which states that for almost every point, the value of an integrable
function is the limit of infinitesimal averages taken about the point. The theorem
is named after Henri Lebesgue.

¢ A special case of the Lebesgue differentiation theorem is the Lebesgue
density theorem, which is equivalent to the differentiation theorem for
characteristic functions of measurable sets. The density theorem is usually
proved using a simpler method. The Vitali covering lemma is vital to the proof
of this theorem; its role lies in proving the estimate for the Hardy—Littlewood
maximal function.

4.12 KEY TERMS

¢ Lebesgue outer measure: Assume that there is an outer measure A on a
set X which is a measure then it will be considered as additive. Specifically,
for given any two sets 4, B < X we can state that both 4 " Band 4 n B° are
disjoint in conjunction with (4 N B) U (4 N B°) = A4 and accordingly we can
state that,

AA) =LA AB)+L (AN B)

¢ Borel measure: The ‘Borel Measure’ is specified as any measure p defined
precisely on the c-algebra of Borel sets.

¢ Regular Borel measure: When a Borel measure p is both inner regular
and outer regular, then it is termed as a ‘Regular Borel Measure’.

¢ Integration of non-negative functions: Let s be a non-negative F’

N
measurable simple function so that, S = zaiX 4, with disjoint ' measurable
i=1

sets 4, U, 4, =X and a.>0.

¢ General integral: A measurable function f is said to be integrable over £
if f* and f~ are both integrable over E. In this condition we define,

fr-fr
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o Integration of series: Consider an integer N and a function fdefined on

the unbounded interval [V, ¥), on which it is monotonic decreasing. Then

o
the infinite series Z fin)

n=N

Reimann and Lebesgue integrals: Any function which is Riemann
integrable is Lebesgue integrable as well and positively with the same values
for the two integrals.

Derivatives: The derivative of a function of a real variable measures the
sensitivity to change of the function value (output value) with respect to a
change in its argument (input value). Derivatives are a fundamental tool of
calculus.

Lebesgue differentiation theorem: The Lebesgue differentiation theorem
is a theorem of real analysis, which states that for almost every point, the
value of an integrable function is the limit of infinitesimal averages taken
about the point. The theorem is named after Henri Lebesgue.

4.13 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

A A RN i

—_— =
—_ O

Why is Lebesgue outer measure used?

What are the measurable sets?

Define the terms regularity and measurable functions.
State about the Borel and Lebesgue measurability.
Why are non-measurable sets used?

Define integration of non-negative functions.

What is the general integral?

What is the significance of the integration of series?
State about the Riemann and Lebesgue integrals.

What are the derivatives?

. Define the term functions of bounded variation.
12.

State the Lebesgue differentiation theorem.

Long-Answer Questions

l.

2.
3.
4.

Explain the Lebesgue measure and Lebesgue outer measure giving
examples.

Briefly discuss the measurable sets giving appropriate examples.
Describe regularity and measurable functions with the help of examples.

Explain the three significant and distinguished classes of the measurable
functions in real analysis.



5. Discuss in detail the Borel and Lebesgue measurability giving relevant
examples.

6. Elaborate on the non-measurable sets.

7. Briefly explain the integration of non-negative functions giving theorems and
proofs.

8. Whatis general integral? Explain giving examples.
9. Briefly discuss about the integration of series in real analysis.

10. Discuss the significance of Riemann and Lebesgue integrals giving appropriate
examples.

11. Describe the derivatives on the basis of differentiation and integration.
12. Elaborate on the functions of bounded variation giving examples.
13. State and prove the Lebesgue differentiation theorem.

14. Calculate the outer measure of the set of irrational numbers in the interval
[0,1].

15. Assume that £ has measure zero where £ — R . Prove that the set
E?= {x?: x € E} also has measure zero.

16. Prove that any measurable subset A — R with A (4) > 0 contains a non-
measurable subset.
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5.0 INTRODUCTION

In the measure theory, the concept of a measure is a generalization of common
notions, such as mass, distance/length, area, volume, etc. The perception behind
this concept dates back to Ancient Greece when Archimedes tried to calculate the
area of a circle. The foundations of modern measure theory were the significant
theories and notations of Emile Borel, Henri Lebesgue, Nikolai Luzin, Johann
Radon, Constantin Carathéodory and Maurice Fréchet.

Although, measures can be defined on arbitrary collections of sets, the most
natural domain of a measure is a o-ring. It generalizes the intuitive notions of
length, area, and volume. The earliest and most important examples are Jordan
measure and Lebesgue measure, but other examples are Borel measure, probability
measure, complex measure, and Haar measure.

An outer measure or exterior measure is a function defined on all subsets of
a given set with values in the extended real numbers satisfying some additional
technical conditions. The theory of outer measures was first introduced by
Constantin Carathéodory to provide an abstract basis for the theory of measurable
sets and countably additive measures. Carathéodory’s work on outer measures
found many applications in measure basically in theoretic set theory because the
outer measures are used in the proof of the fundamental Carathéodory’s extension
theorem, and was used in an essential method by Hausdorff to define a dimension,
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such as metric invariant now called Hausdorff dimension. OQuter measures are
commonly used in the field of geometric measure theory.

A measure space is a fundamental object of measure theory that typically
studies generalized notions of volumes. It contains an underlying set, the subsets
of'this set that are feasible for measuring the ‘c-Algebra’ and the method that is
used for measuring the ‘Measure’. A measurable space consists of the first two
components without a specific measure.

In mathematics, Jensen’s inequality is named after the Danish mathematician
Johan Jensen which relates the value of a convex function of an integral to the integral
of the convex function. Principally, the Jensen’s inequality was proved by Jensen
in 1906. Given its generality, the inequality appears in many forms depending on
the context. In its simplest form the inequality states that the convex transformation
of amean is less than or equal to the mean applied after convex transformation; it
is a simple corollary that the opposite is true of concave transformations. The
classical form of Jensen’s inequality involves several numbers and weights. The
inequality can be stated quite generally using either the language of measure theory
or equivalently the probability.

In mathematical analysis, Holder’s inequality, named after Otto Holder, is a
fundamental inequality between integrals and an indispensable tool to study and
analyse the 17 spaces. Holder’s inequality is used to prove the Minkowski inequality
which is the triangle inequality in the space L” (i). The Minkowski inequality
establishes that the L spaces are normed vector spaces. The Minkowski inequality
is named after the German mathematician Hermann Minkowski.

Convergence in measure is either of two distinct mathematical concepts both
of which generalize the concept of convergence in probability. On a finite measure
space, both the notions are equivalent. Otherwise, convergence in measure can
refer to either global convergence in measure or local convergence in measure. In
the mathematical field of analysis, the uniform convergence is a mode of
convergence of functions which are stronger than pointwise convergence.

In this unit, you will study about the measures and outer measures, extension
of a measure, uniqueness of extension, completion of a measure, measure spaces,
integration with respect to a measure, the L”-spaces, convex functions, Jensen’s
inequality, Holder and Minkowski inequalities, completeness of L”, convergence
in measure, and almost uniform convergence.

5.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand the measures and outer measures
e Define the extension of a measure
e Understand the uniqueness of extension
e Explain the completion of a measure
¢ Elaborate on the measure spaces

e Comprehend on the integration with respect to a measure



e Define the L”-spaces, completeness of L” and convex functions
o State the Jensen’s inequality

¢ Analyse the Holder and Minkowski inequalities

¢ Define the convergence in measure

¢ Explain the almost uniform convergence

5.2 MEASURES AND OUTER MEASURES

In the measure theory, the concept of a measure is a generalization of common
notions, such as mass, distance/length, area, volume, etc. The perception behind
this concept dates back to Ancient Greece when Archimedes tried to calculate the
area of a circle. The foundations of modern measure theory were the significant
theories and notations of Emile Borel, Henri Lebesgue, Nikolai Luzin, Johann
Radon, Constantin Carathéodory and Maurice Fréchet.

An outer measure or exterior measure is a function defined on all subsets of
a given set with values in the extended real numbers satisfying some additional
technical conditions. The theory of outer measures was first introduced by
Constantin Carathéodory to provide an abstract basis for the theory of measurable
sets and countably additive measures.

Definition: An outer measure p* is an extended real valued set function defined
on all subsets of a space X having the following properties:

(@) o =0
(b) Ac B= pxA < pxB(Monotonicity)

(©) Ec Y E = n*E<) u*E, (Subadditivity)
i=1 i=1

The outer measure p* is said to be finite if p*X < co.

As per the Lebesgue measure we can state that a set £ is measurable with
respect to wk if for every set 4 we have,

p*A=p*(ANE)+p*(ANE°)

Because p* is subadditive therefore in order to explain that £ is measurable,
we just have to prove that,

n*A>p*(ANE)+p*(AnE®), forevery A.
When p+4 = oo, then this inequality holds trivially. Consequently, this can
be proved for sets 4 with p*4 finite.

Theorem 5.1: The class  of p*-measurable sets are c-algebra. If ﬁ is restricted

to 3, then ﬁ is a complete measure on 3.

Proof: It is obvious that the empty set is measurable. Using the definition of
measurability in £ and £¢, we have that £* is measurable whenever E is measurable.
Now, consider that £ and £, be measurable sets, then by the measurability of £,
we can state that,
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u*A=p*(ANE)+u*(ANE")

And by the measurability of £,
W*A=pu*(ANE)+u*(ANE, " NE)+u*(ANES NE))
Now, since

AN[E, VE,]=[ANE,JU[ANE, NE,]

We have,

W*(AN[E, VE)<u*(ANE)+u*(ANE“ NE)

By using the subadditivity properly, we can state that,
W*A>u*(AN[E, VE,D)+u*(ANES NE))

This implies that £, U E is measurable. Therefore, we can state that the

union of two measurable sets is measurable. But by induction, the union of any
finite number of measurable sets is measurable. Hence, 3 is an algebra of sets.
Suppose, £E'=U E, where <E> is a disjoint sequence of measurable sets and
hence,

have,

G =UE,

i=1
Then G is measurable, and
R*A=p*(ANG)+p*(ANG, ) 2p*(ANG,) +p*(ANEY)
Because E°c G ©.
Now,G NE =F and G NE ‘=G, _,and by the measurability of £ we

w*ANG)=p*(ANE)+pn*(4NnG, )
Byinduction we have, p* (4N G, )=p*(ANE, )+u*(ANE, ).

Also, we can state that,
i=1

And so,

WFAZPH(ANE) =D W (ANE) >\ %(ANE)+p*(ANE)

i=1
Since, ANE c U(ANE,)
i=1
Thus, £ is measurable.

Since, the union of any sequence of sets in an algebra which can be replaced

by a disjoint union of sets in an algebra, it follows that 3 is a c-algebra.



Let us now prove that ﬁ is finitely additive. Let £, and E, be disjoint
measurable sets.

Then, the measurability of £, implies that,
W(E, U E,)=p*(E UE,)

—u*([E, UE,|NE, +u*([E, UE,]NE°)
=UFE, +u*E,

Consequently, finite additivity follows by the induction.

If E'is the disjoint union of the measurable sets { £}, then

wezi{UE -2,

And so,

But,
LESY NE, by the subadditivity of p*. Hence, 1 is countably additive.
i=1

So ﬁis ameasure since it is non-negative and ﬁ(l) =uxp=0.
Example 5.1: If £, and £, are measurable then prove that E N E'.
Solution: As per the definition of measurability, we can stat that,
Asubset E of X is called measurable whenever,
n(A)=p (4N E)+pu(4n E)holds for all 4 subset of X.
To be a measure it satisfies the following properties:
L.u(@)=0
2.u(4)<u(B)if A c B, i.e., u is monotone.
3. 1 (U2, Bs) < 3077, 1(Ei)holds for every sequence of subsets E of
X, i.e., pis subadditive.

5.3 EXTENSION OF A MEASURE

A measure on an algebra is defined as a non-negative extended real valued set
function p which is typically defined on an algebra A4 of sets such that,

(@ no=0

(b) If <4 > is adisjoint sequence of sets in 4 whose union is also in 4, then

H(q Ai) = i A,
= i=1
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Therefore, a measure on an algebra 4 is a measure iff 4 is a G-algebra.

We can construct an outer measure p* and prove that the measure i isan

extension of measure p defined on an algebra.

The extension measure p*E = ianHA; , Where <4 > ranges over all
i=1

sequence from A4 such that,

E CGA[

i=1

Lemma 1: If 4 € 4 and if <4 > is any sequence of sets in 4, such that 4 U4,
i=1

then show that p4 < z nA;
i=1

Proof: Considerthat B, =44, nA°,_ n..nA . ThenB e AandB c A4 .

But since 4 is the disjoint union of the sequence <B >, by countable additivity we
have,

pA=) uB, <> ud,
n=1 n=1

Corollary: If 4 € A, then prove that p*4 = u4.

Consequently, we have

MASZ].LAn<M*A+8

n=l1

Or,

pA<p*A+e

Subsequently, because ¢ is arbitrary, therefore, we have

pA<u*A4

Also, by definition

p*A<puAd

Therefore,

x4 = uAd. Hence proved.
Lemma 2: The set function pu is an outer measure.
Proof: From the given definition, p* is a monotone non-negative set function
defined for all sets and p*¢ = 0. Now we have to prove that it is countably

subadditive. Let £ < HE i - If u+E = oo for any i, then we have,

pxE < 2k = oo,



. . . - Measures and
If p*E # o, then given € > 0, and there exists for each i a sequence < 4; >7_; of Outer Measures

sets in 4 such that £, — G 4; and
j=1

NOTES
= €

uA., *FE +—
jZ:l: y < “‘ 1 21

Then,
P*E<Y pd, <iu*E,. +e
i pan
Since € is an arbitrary positive number, therefore we have,
p*E< i n*E,
pr
Hence it proves that p is subadditive.

Lemma 3: If 4 € A, then 4 is measurable with respect to pu*.

Proof: Consider that £ be an arbitrary set of finite outer measure and € be a
positive number, then there is a sequence <4 > from A4, such that £’ U4, and
Zpd <p*E+e.

By the additivity of pLon 4, we have
w(4) = (4, N A) +p(4, N A°)
Hence,

u*E+8>ZM(AiﬁA)

P

iu(A,. NAY) >u*(ENA)+p*(EnA°)

=)

Because,

Endcu(d4,nA)

And

ENA° cu(4 nA9)

Since ¢ is an arbitrary positive number, therefore we have
L¥E>p*(enA)+p*(ENA)
Hence proved that 4 is p-measurable.

Note: The outer measure p* which we have defined above is known as the outer
measure induced by L.

Notation: For a given algebra 4 of sets we use 4 _to denote those sets which are

countable unions of sets of 4 and use Acs to denote those sets which are countable
intersection of sets in AG.
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Theorem 5.2: Let pu be a measure on an algebra 4, pu* be the outer measure
induced by p and E be any set. Then for € > 0, there exists a set 4 € 4_with

EcAand p*A<pu*E+c¢.
There is also aset B € A_ with E' B and u*E = u*B.

Proof: From the definition of p* there is a sequence <4 > from A such that
E c U4, and,

0

D4 <p*E+e ...(5.1)

p
Take, 4 =LA,

Then, p* A<Sp* A

=Zud, ...(5.2)
Because p+and p agree on members of A by the above mentioned corollary.
hence, Equations (5.1) and (5.2) imply that

pr*A<u*E+eg

which proves the first part of the Theorem 5.2.

To prove the second statement of the Theorem 5.2, consider that for each
positive integer n thereisaset 4 inA_, such that, Ec 4, and

W*A <pu*E+ 1 (From First Part Proved Above)
n
Let B=nA, . Then, B € A_jand E c B. Since B < 4 , therefore
1
p*B<pu*4 <p*E+—
n

Since 7 is arbitrary, then by monotonicity, p*B < u*E.
Hence proved that p*B = p*E.

5.4 UNIQUENESS OF EXTENSION

In the measure theory of real analysis, the Carathéodory’s extension theorem states
that, “Any premeasure defined on a given ring R of subsets of a given set {2 can be
extended to a measure on the g-algebra generated by R, and this extension is
unique if the premeasure is o-finite”. The Carathéodory’s extension theorem is
named after the Greek mathematician Constantin Carathéodory. Accordingly, any
premeasure on a ring that contains all intervals of real numbers can be typically
extended to the Borel algebra of the set of real numbers, and this exceptionally
effective conclusion of measure theory indicates to the Lebesgue measure.

The Carathéodory’s extension theorem is also occasionally termed as the
Carathéodory-Fréchet extension theorem, the Carathéodory—Hopf extension
theorem, the Hopf extension theorem and the Hahn—Kolmogorov extension
theorem.



Fundamentally, the most simple statement of the Carathéodory’s
extension theorem is often termed as the Hahn—Kolmogorov theorem.

Consider that ¥, be an algebra of subsets of a set §, and also consider
that there is a function,

to: g — [0, 00]
This is finitely additive, and specifies that,

N N
Loy A n =
1

n=

a0 [:-'qn :]
1

n=

This is for any positive integer Nand for 4, , A,, . .., A disjointsets in
¥g-

We assueme that this function satisfies the Sigma (o) additivity assumption
ofthe form,

B oo
iy U A, | = Z po(Ay)

n=1 n=1

This is for any disjoint family { A,, : n & I} of elements of ¥, _such that
I-.l:;'=-| Aﬂl = E.u. .
The function p, which conforms or obeys these two properties are termed

as the premeasures.

Subsequently, we can state that the p, extends to a specific measure, which
is defined on the G-algebra X generated by 2. ; i.e., there exists a measure of the
form,

p:2— [0, 0]
such that its constraint or limitation to 2 coincides with p,.
When y, is o-finite, then the extension is defined as unique.

The Carathéodory’s extension theorem considered very significant as it helps
in constructing a measure by defining it on a small algebra of sets, so that its sigma
additivity can be verified. Additionally, this theorem also ensures its extension to a
c-algebra.

Theorem 5.3 Unique Extension Theorem: Any set function P defined on a field
F, of sets and satisfying the properties of a probability measure on F  extends
uniquely to a probability measure on the o-field F generated by F,.

Proof: Suppose that there is a field  of sets on a space €, such as the finite
unions of open sets.

Let P be ameasure on F .

Where F be the o-field typically generated by F,,.
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We have to define that there exists a unique extension of P from F to F .

To prove the existence of unique extension, we will initially define the outer
measure as an extension of P, as follows:

Assume that there is a given measure P on F , then we will define its outer
measure P* on all subsets of Q2 by,

P*(4) = inr{ipt.ﬁm Ac UA; AieFo }
i=1 =

Specifically, the lowest sum of measures of a collection of F sets which
contain 4.

Additionally, the inner measure can also be defined as one minus the largest
sum of measures of a collection of F  sets which are contained in 4¢, and defined
as,

P,(A) = sup {1 — ;P(Ai)\ Af C ’g]Ag; A, eF }
But this is equivalent to the following definition of inner measure:
P,(A)=1- P*(A°)

The measure P can be extended on i to a collection F of feasibly as many
sets as possible.

Consequently, we can define that  be the collection of sets A — (2 having
the same inner measure and outer measure, and then subsequently we can define
that P (A4).

Specifically, for all sets 4 such that.

P*(A) = P.(4)

P*(A)+ P*(A%) =1

Subsequently, we can define such sets to be in = and define,

P(A) = P*(A) = P.(A)

5.5 COMPLETION OF A MEASURE

The term complete measure or more specifically a complete measure space
is defined as a specific measure space wherein every single subset of every single
null set is measurable, i.e., having measure zero. More appropriately, we can state
that a measure space (X, 2., u) is termed as complete if and only if,

ScNe)2 and pVM)=0= SeX
The term completeness can be essentially illustrated by considering the

typical product space problems. Assume that given is previously constructed
Lebesgue measure on the real line, then in order to denote this measure space we



use the notations (R , B, A). Further, some two-dimensional Lebesgue measure
A? can be constructed on the plane R 2 as a product measure. Simply and certainly,
this can be accomplished by taking the c-algebra on R ?to be B ® B, which is the

considered as the smallest c-algebra that contains all the measurable ‘Rectangles’
A xA, ford,A, €B.

While this approach does define a measure space, it has a flaw. Since every
singleton set has one-dimensional Lebesgue measure zero,

A2 (L0} x A) < A ({0}))=0

This implies for ‘Any’ subset 4 of R . Even though, assume that 4 is a non-
measurable subset of the real line, for example the Vitali set. In mathematics, a Vitali
set was found by Giuseppe Vitali in 1905, basically, it is an elementary example of
a set of real numbers that is not Lebesgue measurable.

Then we can state that the A>-measure of {0} x A4 is not defined, however,
{0} xAc {0} x R

Remember that the given larger set also have A*-measure zero. Consequently,
as defined above this “Two-Dimensional Lebesgue Measure’ is not complete, hence
some completion procedure is essential.

Constructing a Complete Measure

Consider that a possibly incomplete measure space (X, 2., 1) is given, then of this
measure space there is an extension (X, 2. , i, ), which is complete. The smallest
of the extension, i.e., the smallest G-algebra 2 is termed as the completion of the
measure space.

Using the following assumptions or statement the completion can be
constructed:

e Let Zbe the set of all the subsets of the zero-p-measure subsets of X,
instinctively those elements of Z which are already not in 2_ are specifically
the ones which prevent completeness from holding true.

e Let2 bethe c-algebra created or produced by 2. and Z, i.e., the smallest
c-algebra that contains every element of X and of Z.

e Letphasan extension p to 2., which is unique if  is o-finite, then it is
called the outer measure of 1, given by the infimum.

u, (O):=inf {p(D)|CcD e}

Then (X, 2, ) is referred as a complete measure space and is termed as
the completion of (X, X, p).

In the above given construction it can be explained that every member of 2.
is of the form 4 U B for some 4 € 2. and some B € Z, and

My (AU B)=u(4)

Additionally, the Borel measure when defined on the Borel c-algebra
specifically created or produced by the open intervals of the real line is not complete,
and therefore the above defined completion procedure has to be used for defining
the complete Lebesgue measure. This can be explained and exemplified through
the fact that the set of all Borel sets over the reals holds the equivalent cardinality
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as thereals. Even though the Cantor set is a Borel set, i.¢., it has measure zero and
its power set holds cardinality which is strictly or precisely greater than that of the
reals. Consequently, we can state that there is a subset of the Cantor set which is
not contained in the Borel sets. Therefore, the Borel measure is not complete.

The n-dimensional Lebesgue measure is defined as the completion of the
n-fold product of the one-dimensional Lebesgue space with itself. It is similarly
referred as the completion of the Borel measure as in the one-dimensional condition.

5.6 MEASURE SPACES

In mathematics, the term measure space is defined as a fundamental and essential
object of measure theory which analyses the universal generalized and simplified
notions of volumes. Characteristically, it comprises of an underlying set, which is
referred as the subsets of this set that are feasible and sufficient for measuring the
‘c-Algebra’ and the method that is used for measuring the ‘Measure’. One
significant example of a measure space can be given as a probability space.

Typically, a measurable space comprises of the first two components without
a specific measure.

Definition 1: A measure space is defined as a triple (X. A. p).

Where, Xisa Set.
A 1s a 6-Algebra on the Set X
uis a Measure on (X, .4)
Significant Key Classes of Measure Spaces

Extremely significant key classes of measure spaces are specifically defined by
means of the following properties of their associated and corelated measures:

e Probability spaces, a measure space where the measure is a probability
measure.

¢ Finite measure spaces, where the measure is a finite measure.
¢ The o-finite measure spaces, where the measure is a 6-finite measure.

Additional class of measure spaces are defined as the complete measure
spaces.

A measure space is characteristically defined as a measurable space that
possesses a non-negative measure. The typical examples of measure spaces include
n-dimensional Euclidean space with Lebesgue measure and the unit interval with
Lebesgue measure, i.¢., probability.

The Lebesgue integral depends ultimately on the idea of measure. In
particular, the mathematical framework requires a set, a -algebra of subsets
alongwith a set function that assigns a non-negative number (called its measure) to
each set in the c-algebra.

Definition 2: Suppose Q2 is a set and A a g-algebra of subsets of Q. A measure,
pon Ais aset function having domain A satisfying the following:



(a) WA)=0forall 4 € A.

(®) (¢ =0.
(c)If4,4,, ... arein A, with AlmAjz ¢ for i #, then

H(Ufnj=2n:u(z4n)

Here, the pair (Q2, 4) is termed as a measurable space and the triple
(Q, 4,p) or (X, .4, ) is called the measure space.

5.7 INTEGRATION WITH RESPECT TO A
MEASURE

For explaining integration with respect to a measure, we first define the integral of
anon-negative function with respect to a measure. Then we write a real valued
function particularly as the difference of two non-negative functions for defining
the integral of a real valued function with respect to a measure.

Consider the following definition to explain the integration with respect to a
measure.

Definition $-Partition: Assume that § is a G-algebra on a set X. Characteristically,
an §-partition of X'is defined as a finite collection 4 , ..., 4 of disjoint sets in.S
suchthat4 U - U4 =X

Implementing the convention that 0 - coand oo - 0 should both be interpreted
to be 0.

Further, consider an arbitrary measure and therefore X must not be a subset
of R. More significantly, for the condition when X'is a closed interval [a, b] in R
and p is Lebesgue measure on the Borel subsets of [a, b], thenthe sets 4 , .. .,
A donotneed to be subintervals of [a, b] as they are in the lower Riemann sum,
they should only be Borel sets.

In mathematics, specifically in the real analysis, the integral of a non-negative
function of a single variable can be simply interpreted as the area between the graph
of'that function and the X-axis. The Lebesgue integral extends the integral to a larger
class of functions. It also extends the domains on which these functions can be
defined. The Lebesgue integral is named after Henri Lebesgue (1875-1941), who
introduced the Lebesgue integral in the year 1904. It is also a pivotal part of the
axiomatic theory of probability.

The integral of a positive function / between limits @ and b can be interpreted
as the area under the graph of /. However, Riemann integration does not interact
accurately by taking limits of sequences of functions, because producing such limiting
processes are difficult for analyses. The Lebesgue integral perfectly explains how
and when it is possible to take limits under the integral sign through the monotone
convergence theorem and dominated convergence theorem.

Consider a measure space (E, X, n) where E is a set, X is a -algebra of
subsets of £, and p is a non-negative measure on £ defined on the sets of X.
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For example, £ can be Euclidean n-space [&" or some Lebesgue measurable
subset of it, X'is the c-algebra of all Lebesgue measurable subsets of £, and L is
the Lebesgue measure. As per the mathematical theory of probability, a probability
measure |1, can be considered which satisfies u(£)=1.

Lebesgue’s theory defines integrals for a class of functions called measurable
functions. A real valued function fon £ is measurable if the preimage of every interval
of the form (z, ), i.e., any Borel set is in X:

{z | flz) >t}e X vtel

We can explain this to state that this can be quivalent to the preimage of any
Borel subset of [ be in X. The set of measurable functions is closed under algebraic
operations, but more significantly it is closed under various kinds of pointwise
sequential limits:

é;ljgfm liﬂ__ipffs-, lim sup fi

These are measurable if the original sequence (f,),, where k € , consists
of measurable functions.

There are several approaches for defining an integral:

fﬁfdu=f£f(m] dy ()

This is for measurable real valued functions fdefined on E.

Consider another important case of the measure space (R, B, L), where A
is the Lebesgue measure, or its subsets ([a, b], B, A). The following are basic
examples of A integrable functions and of functions which are not.

Example 5.2. To prove that a given measurable function /is integrable with respect
to the Lebesgue measure on a subset X — R or for a more general measure space,
then the most common technique is to find a “Simple” comparison function g which
is known to be integrable and for which it is known that,

fix)| < glx), re X.

Generally, more than one comparison function can be used, for instance we
can find the disjoint subsets X, X, such that X=X, U X, and functions g, g, are
integrable on X, and X, respectively, therefore,

)| < qi(x) ifze X,
SR ey iz e X

m

This can be applied with infinitely many subsets. For instance, consider,

X =[Ltocl, fl&)=x"

Where v>0. Then fis A-integrable on X'if and only if v > 1. Actually note
that,



0 flz)€n™™, xEmn+1], n=l,

Consequently, using the monotone convergence theorem, we have

/ a Ydir) £ Z nY < +oc
Jx

n=l

Characteristically, a measurable function which is bounded by an integrable
function is integrable. Every integrable function is measurable. If a sequence of
measurable functions converges almost everywhere, then its limit is measurable. If
a sequence of measurable functions converges asymptotically, then its limit is
measurable. Basically, the set of measurable functions is defined as a linear space.
Additionally, the intersection and union of two measurable functions are measurable.

Integration with respect to a measure is termed as Lebesgue integration.
The following definition illustrates that the Lebesgue integration functions as
anticipated on the simple functions represented as linear combinations of
characteristic functions of disjoint sets.

Integral of a Simple Function

Definition 2: Assume that (X, 8, ) is a measure space, £, . . ., E are disjoint
setsin S,andc ,...,c € [0,00]. Then,
n n
/(E Ck/rgk) du =Y cip(Eg).
k=1 k=1
Without loss of simplification, we canassume that £, . . . , £, is an 6-partition

of Xbyreplacingnbyn+ 1 andsetting £ =X\(E, U...UE )andc  =0.
If P is the 6-partition £ , . . ., E_of X, then,

’C(Eg:l Ck)fa.fp) = Y1k (Eg)

Consequently,

n n
/(Z CkXp,) dpt > Y cip(Ex).
k=1 k=1

Integration is Order Preserving

Definition 3: Assume that (X, 5, ) is a measure space and f, g : X — [0, oo] are
§-measurable functions such that f{x) < g(x) forall x € X. Then | fdu <[ gdp.

Suppose P is an 6-partition 4 , ..., 4 of X.
Then,
inf f < inf
Aj f o A; 8
Where for eachj=1, ..., m. Accordingly, L (f, P) <L (g, P).
Hence, | fdu <] g dp.
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5.8 THE L"-SPACES

Characteristically, in mathematics, the L7 spaces are function spaces defined using
a natural generalization of the p-norm for Finite Dimensional Vector Spaces
(FDVS). They are also sometimes called Lebesgue spaces, named after Henri
Lebesgue, although according to the Bourbaki group (Bourbaki 1987) they were
first introduced by Frigyes Riesz (Riesz 1910). L spaces form an significant class
of Banach spaces in functional analysis, and of topological vector spaces.

The set of L -functions where p > 1 generalizes L>-space. As an alternative
of square integrable, the measurable function f must be p-integrable for fto be in
Lr.

On a measure space X, the L7 norm of a function fis,

fler = fX Ifi*”]”p

The L7-functions are the characteristic functions for which this integral
converges. For p # 2, the space of LP-functions is a Banach space which is not a
Hilbert space.

Suppose, p is a positive real number. Then a measurable function fdefined
on [0, 1] is said to belong to the space L? if _[I Jf|” <oo. Hence, L' precisely
consists of Lebesgue integrable functions on [0, 1]. Consequently,

[ f+el’<2"( 11" +1egl")s

We have,

flr+er<2"[arir+2"111

And therefore, iff, g € L?, then f+ g € 7. Additionally, if ais a scalar and f € 17,
then clearly afbelongs to L”. Hence, of + Bg € L” whenever f, g € L7 and o, B
are scalars.

5.9 CONVEX FUNCTIONS

Characteristically, areal valued function is called convex if the line segment between
any two points on the graph of the function does not lie below the graph between
the two points. Equivalently, a function is convex if its epigraph, i.e., the set of points
on or above the graph of the function is a convex set. A twice-differentiable function
of asingle variable is convex if and only if its second derivative is non-negative on
its entire domain. Recognised examples of convex functions of a single variable
include the quadratic function x? and the exponential function ¢*. In simple terms,
a convex function refers to a function whose graph is shaped like a cup U, while a
concave function’s graph is shaped like a cap M.



Convex functions play a significant role in several areas of mathematics. Even

in infinite dimensional spaces, under suitable additional hypotheses, the convex
functions continue to satisfy such properties and as a result, they are the most
significant functionals in the calculus of variations. In probability theory, a convex
function applied to the expected value of a random variable is always bounded
above by the expected value of the convex function of the random variable. This
result, known as Jensen’s inequality, can be used to deduce inequalities such as
the arithmetic—geometric mean inequality and Holder’s inequality.

Definition 1: A function ¢ defined an open interval (a, b) is known as a convex
function if for eachx, y € (@, b) and A, psuchthat A, u>0and AL+ p=1, we

have,

¢ (Ax + W) < Ap(x) + ud(y)
The end points a, b can take the values —oo, oo, respectively.
Ifwetakeu=1—-A, A >0, then A + u=1 and so ¢ will be convex if,
d(Ax + (1 —A)y) < Ad(x) + (1 — L)d() ..(5.3)
Ifwetakea<s<t<u<band

t—s u—t

A= U= L USX,S=y,

z‘—s+u—z‘_u—s_1

A+u=
H u-—=s u-—=-

Therefore, Equation (5.3) reduces to the form,

(I)(l—Su_'_u—lS)S t_S(p(u)+u_t(p(s)

u-—=s u-—=s —S u-—=s
Or,
00 <) + o) (5.4

Thus, the segment joining (s, ¢(s)) and («, ¢(r)) is never below the graph of

¢. A function ¢ is sometimes said to be convex on (a, b) if for all x, ye(a, b).

1232 )25 7043 10)

Remember that, this definition is a consequence of major definition taking,
A=u=1/2.
If for all positive numbers A, p satisfying A + p = 1, then we have

O(Ax + wy) < Ad(x) + pd(y)

Then, ¢ is said to be strictly convex.
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Theorem 5.4: Let ¢ be convex on (a, b) and a <s <t <u < b, then

OO =0(s) _ 900 =d(s) _ $lae = (1)

t—s u-—-=s u-—t

If ¢ is strictly convex, equality will not occur.
Proof: Let a <5 <t <u < b and suppose ¢ is convex on (a, b).

Since,

t—s u-—t t—s+u—-t u-s
—+ = = :1

u—s u-—=s u-—=s u-—=s

Then, from the convexity of ,

q{“s u+t u_tsjﬁ L28 say+ 2L o(s)
u-—=s u-—=s

u-—=s u-—=s

t—s u—

00 <= () + = 4() (5.5
(= $)0(0) < (1= $)0) + (e — ()

(1= $)0) = §(5) < (1 = $)(u) + () ~ 10(5) ~ u(s) + 565)

(1= $)0() ~ $()) < (1~ $)(O(w) ~ 4(s))

PO —9(s) _ o) —(s)

t—s u—=s

uu Ul

... (5.6)

Hence, the first inequality is proved. In the same way, the second inequality
can be proved. If ¢ is strictly converse, equality shall not be there in Equation
(5.5) and so it cannot be in Equation (5.6). This completes the proof.

Theorem 5.5: A differentiable function ¢ is convex on (a, b) iff ¢' is a
monotonically increasing function. If ¢’exists on (a, b), then ¢ is convex iff ¢" >0
on (a, b) and strictly convex if " > 0 on (a, b).

Proof: Consider a differentiable and convex function ¢ and also consider that
a<s<t<u<v<b. Then applying Theorem 5.4 to a < s <t < u, we obtain

O —9(s) _ o) —(s) _ 6(u) — ()

t—s u-—=s u-—t

And applying Theorem 5.4 to a < t < u < v, we obtain

O() — () _ 9(1) — (1) _ 6(v) —(v)

u—t v—t vou
Hence,
O() —(s) _ &(v) —(u)
t—s  v-u
Fort — s, w decreases to ¢'(s) and for u — v, w



increases to ¢'(v). Hence, ¢'(v) > ¢'(s) for all s < v and so ¢’ is monotonically
increasing function. Further, if ¢” exists, due to monotonicity of ¢/, it can never be
negative.

Conversely, let " > 0. We shall now prove that \y is convex. Suppose, on
the contrary that ¢ is not convex on (a, b). Therefore, there are points a <s <t <
u < b, such that,

PO —(s) _ ¢u)— (1)

t—s u-—t

This means that the slope of chord over (s, £) is larger than the slope of the
chord over (z, u). But slope of the chord over (s, £) is equal to ¢'(c), for some
a € (s, ?) and slope of the chord over (¢, u) is ¢'(B), B € (¢, u).

But ¢'(a) > ¢'(B) implies ¢’ is not monotone increasing and so y"” cannot
be greater than zero which is a contradiction. Hence, ¢ is convex.

If ¢" > 0, then ¢ is strictly convex, for otherwise there would exist collinear
points of the graph of ¢ and we would have ¢'(at) = ¢'() for appropriate o and
B with o < 3. But then ¢"” = 0 at some point between a and  which is a
contradiction to ¢" > 0.

This completes the proof.

Theorem 5.6: If ¢ is convex on (a, b), then ¢ is absolutely continuous on each
closed subinterval of (a, b).

Proof: Assume that [a, b] = (a, b). Ifx, y € [¢,d], thenwe havea < c <x <y <
d < b and so by Theorem 5.4, we have

d(0) = (@) _ 9(») =) _ 6(b) —d(d)
c-a  y-x  b-d

Thus,
[0 —d(x) | <M |x=y|,x,¥ € [c,d]

and so ¢ is absolutely continuous there.

Theorem 5.7: Every convex function on an open interval is continuous.

Proof: When a <x, <x <x,<b, the convexity of a function ¢ implies,

X, =X X=X

o(x) <

o(x,) +

Xy =X Xy =X

o(x,) ..(57)

For x — x, in Equation (5.7), we obtain ¢(x, + 0) < ¢(x,) and for x, — x
we obtain ¢(x) < d(x + 0).

Hence, ¢(x) = ¢(x + 0) for all values of x in (a, b).

Similarly, d(x — 0) = ¢(x) for all values of x. Therefore, dp(x — 0) = d(x + 0)
= ¢(x) and so ¢ is continuous.

Definition 2: Let ¢ be a convex function on (a, b) and x, € (a, b). The line,
y=mx—x,) + ¢(x,) .. (5.8)
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Typically, (x,, (x,)) is called a supporting line at x, if it always lies below
the graph of ¢, i.e., when

O(x) = m(x — x,) + ¢(x,) ..(5.9)

The line given by Equation (5.8) is a supporting line iff'its slope m lies
between the left and the right hand derivative at x,. Therefore, precisely, there is at
least one supporting line at each point.

5.10 JENSEN’S INEQUALITY

In mathematical analysis, the term Jensen’s inequality is named after the Danish
mathematician Johan Jensen, it was proved by Jensen in 1906. The Jensen’s
inequality relates the value of a convex function of an integral to the integral of the
convex function. Given its generality, the inequality appears in many forms depending
on the context. In its simplest form the inequality states that the convex
transformation of a mean is less than or equal to the mean applied after convex
transformation; it is a simple corollary that the opposite is true of concave
transformations.

Jensen’s inequality generalizes the statement that the secant line of'a convex
function remains above the graph of the function, which is Jensen’s inequality for
two points: the secant line consists of weighted means of the convex function for
t € [0,1],

tf(x)+(A=-0f(x)
while the graph of the function is the convex function of the weighted means,

Slx, + (1-0x)

Consequently, the Jensen’s inequality is,

flx, + (1-0x) < 1f(x)+(1-0f(x)
The classical form of Jensen’s inequality includes several numbers and weights.

The inequality can be stated quite commonly using either the language of measure
theory or equivalently the probability.

Consider EX= er XD (x), where E denotes expectation.

Theorem 5.8. (Jensen’s Inequality): If /is a convex function and X'is a random
variable, then Ef (X) > f (EX). Furthermore, if fis strictly convex, then equality
implies that X= EX with probability 1, that is, X'is constant.

Proof: To prove this Theorem 5.8, we will apply induction on the number of mass
points. From the definition of convex functions, for two points we have,

Pfx)+P,f(x)=f(Px +Px,)
Suppose the theorem holds for £ — 1 mass points. For 1 <i<k—1, then
we can write,

p,'=p,/(1-p,)
So, we obtain



k k-1

Y pif(x)=pf (e )+ (1= p )Y pif(x)

i=1 i=1

k-1
2pif (xk )"' (1 — P )f (z PiX j (From Induction Hypothesis)
i=1

k-1
2 f (kak +(1-py )z DX, j (From the Definition of Convexity)
i=1

Hence, the theorem is proved.

Check Your Progress

. Give the definition of outer measure .

. How is the measure on an algebra defined?

. State the Carathéodory's extension theorem as per the measure theory.
. Define the unique extension theorem.

. What is complete measure?

. How is the complete measure constructed?

. What is measure space? Give the definition of the term measure space.

. State the definition of d-partition.

O 00 3 O »n B~ W N —

. Define the term L spaces.

p—
=]

. Give the definition of convex function.

11. Statethe Jensen's inequality theorem.

5.11 HOLDER AND MINKOWSKI
INEQUALITIES

The Holder’s and Minkowski’s inequalities are defined below for analysis.

Holder’s Inequality
In real analysis, Holder’s inequality, named after Otto Holder, is a fundamental
inequality between integrals and an indispensable tool for the study of L# spaces.

Theorem 5.9: Holder’s Inequality: Let (S, Z, 1) be a measure space and let p,
q € [1, o] with 1/p + 1/g = 1. Then for all measurable real valued function or
complex valued function fand gon S,

I fally < N Flplgllg-

If, in addition, p, ¢ € (1, ©) and f € L”(n) and g € L%(p), then Holder’s
inequality becomes an equality if and only if [f P and |g]? are linearly dependent in
L'(1), meaning that there exist real numbers a, 3 > 0, not both of them zero, such
that ajf P = B |g|? u-almost everywhere.
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The numbers p and g above are said to be Holder conjugates of each other.
The special case p =g =2 gives a form of the Cauchy—Schwarz inequality. Holder’s
inequality holds evenif [[fg||, is infinite, the right-hand side also being infinite in that
case. Conversely, if fis in L7(n) and g is in L4(p), then the pointwise product fg is

inL/(p).
Holder’s inequality is used to prove the Minkowski inequality, which is the

triangle inequality in the space L”(1), and also to establish that L¢() is the dual
space of L*(p) for p € [1, ).

If S'is a measurable subset of R” with the Lebesgue measure, and fand g
are measurable real or complex valued function on S, then Holder inequality is

[ Ir(@)etz) az < ( / mmnﬂaxf ( [ lot@r dm)%,

Holder’s inequality was first found by Leonard James Rogers (Rogers
(1888)), and discovered independently by Holder (1889).

Minkowski Inequality

In real analysis, the Minkowski inequality establishes that the ¥ spaces are normed
vector spaces. The inequality is named after the German mathematician Hermann
Minkowski.

Theorem 5.10: Minkowski Inequality: Let S be a measure space, let | <p <
oo and let fand g be elements of L7(S). Then f+ g is in L*(S), and we have the
triangle inequality,

If+gllz < [1£]p + llglls

With equality for 1 <p <co if and only if f'and g are positively linearly
dependent, i.e., /=4 forsome 1 >0 or g=0. Here, the norm s given by:

i1 = (f Ifl“dﬁ)%

If p < oo, or in the case p =« by the essential supremum,

[flloc = ess sup, g |f(x)]-

The Minkowski inequality is the triangle inequality in L7(S). In fact, itis a
special case of the more general fact,

I£lp = sup [ foldu, L41-1

llgilg=1
It can be easily state that the right hand side satisfies the triangular inequality.

Like Holder’s inequality, the Minkowski inequality can be specialized to
sequences and vectors by using the counting measure:



ip

T 1/p fi il 1/p
(Z e mw) < (Z w) | (Z |yki1“)
k=1 k=1 k=1

for all real (or complex) numbers x , ..., x , ¥, ..., y, and where n is the
cardinality of S (the number of elements in S).

The Minkowski inequality can be generalized to other functions ¢(z) beyond
the power function ¥ . The generalized inequality has the form,

i3

6O dla +w)) <D dm))+o (O blwm))
i=1

i=1 i=1
Various sufficient conditions on ¢r have been found by Mulholland and others.
For example, for ¥ > (} one set of sufficient conditions from Mulholland is,

1. @(a) is continuous and strictly increasing with () = (0.
2. ¢(x)isaconvex function of x.

3. log ¢(x)is aconvex function of log (x).

5.12 COMPLETENESS OF L*

Characteristically, the L7 functions have certainly ambiguous pointwise values.
However, we usually consider 7 functions as complete functions. A simple example
of'this construction, for a measure that has no sets of measure 0, consequently
requires no quotient is given by,

# = {complex sequences {¢;} with Z |ci|? < oo}

T

With standard norm,

I-f
[(c1. €2, )|er = (D2; |eilP) &
The analogue of the following statement for £7 is more elementary.

Statement: The Space L? (X) is a Complete Metric Space

Essentially, to prove a Cauchy sequence f; in L7 (X) has a subsequence which
converges pointwise off a set of measure 0 in X.

The vector space of equivalence classes of measurable functions on (S, X,
) is denoted ad L’(S, Z, n). By definition, it contains all the L7, and is equipped
with the topology of convergence in measure. When 1 is a probability measure
(i.e., W(S) = 1), this mode of convergence is named convergence in probability.

The description is easier when p is finite. If pu is a finite measure on (S, X),
the 0 function admits for the convergence in measure the following fundamental
system of neighbourhoods,

Vo={fiul{z: @) >e}) <e},  e>0
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The topology can be defined by any metric d of the form,

i(f,g) = ﬁ o(If(z) — 9(z)) du(a)

Where ¢ is bounded continuous concave and non-decreasing on [0, ),
with @(0) =0 and ¢(¢) > 0 when t > 0 (for example, ¢(¢) = min(z, 1)). Such a
metric is called Lévy metric for L’. Under this metric the space L’ is complete (it
is again an F-space). The space L’ is in general not locally bounded and not locally
convex.

For the infinite Lebesgue measure A on R”, the definition of the fundamental
system of neighbourhoods could be modified as follows:

W, = {f:l ({: [f(@)] > & aad Ja] < é-}) -::E}

The resulting space L°(R", \) coincides as topological vector space with
L(R", g(x) dA\(x)), for any positive A—integrable density g.

Theorem 5.11: The space L”(X) is a complete metric space.

Proof: The triangle inequality here is Minkowski’s inequality. To prove
completeness, choose a subsequence f, , such that,

|fn. TE .fn..;lp < 27

And, put

.E.FITJ(J'..] = Z |.||r;'|. 1 (J:' = ..rln. [I;]"

1<i1<n

And,

glr) = Z |_.|r:r,.;(-f"] _Jrﬂ_.{~r}|

1< ino

The infinite sum is not necessarily claimed to converge to a finite value for
every x. The triangle inequality shows that g |p < 1. Fatou’s Lemma asserts that
for [0, oo]-valued measurable functions 7,

f (iimiufhr) < limiu['/- h;
X L] T JX

Thus, |g|p <1, sois finite. Consequently,

Jrrn {J} .= Z LJ"::..J:!-'J = fra,{-f”

11



Converges for almost all x € X. Let f{x) be the sum at points x where the
series converges, and on the measure zero set where the series does not converge
put f(x) =0. Certainly,

flz) = lim f, (x) (for almost all x)

Now, prove that this almost everywhere pointwise limit is the Z7-limit of the
original sequence. For € > 0 take N such that |f —f |p <egform,n>N. Fatou’s
lemma gives,

[ If — fulP < liminf [ o, = fulP < &
Thus f~ f is in L” and hence f1is in L. And ]f*fn|p — 0.

Theorem 5.12: [ is complete, i.e., every Cauchy sequence converge.

Proof:1f, 3. || fi-llp < oc, then > fi convergesinZ?norm to anelement

inlr.

Gn(z) = D |fi(=)]
j=1

0

G(z) =) _|f(2)]

=1
Andobservethat |Gy |[p < 3~ || fjl|p < oc byassumption. Monotone

convergence: (7 £ [P Inparticular G(x) < nc ,1e., S fi converges at
least pointwise.

We have, [ETE (i, hence, ' ¢ LP,

Moreover,

|F(z) =) filz)P < (2G(z))P € L.

j=1

This specifies that ||[F' — 32" f;[l, — 0, ie., > fj convergesto F
inlr.
Now, if F is a Cauchy sequence in L, consider a sequence 7, so that

|Fn — Fll < 277 for m,n > n;.Set f; =F, and

fi = Fny — Fy,_, forj > 1.
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Again,

j\.'
\n.,,_. = Z fn-

n=1
To prove that the series converges in 17 consider that /' is Cauchy and then
explain that / and F| have the same limit.

Consequence: All L spaces are normed complete vector spaces. These are
also called Banach spaces.

5.13 CONVERGENCE IN MEASURE

Convergence in measure is either of following two distinct mathematical concepts
both of which generalize the concept of convergence in probability.

Letf,f, (n € N):X— R be the measurable functions defined on a
measure space (X, 2., W). The sequence £, is said to converge globally in measure
to fif for every € > 0,

lim p({o € X |f(@) — fu(@)] = }) = 0

And to converge locally in measure to fif for every e >0 and every F € 2,
with p (F) <o,

lim p({z € F: [f(z) — fa(z)| 2 €}) = 0.

On a finite measure space, both notions are equivalent. Otherwise,
convergence in measure can refer to either global convergence in measure or local
convergence in measure.

Definition 1: A sequence <f > of measurable functions is said to converge to fin
measure if for given € > 0, there is an NV such that for all » > N we have,

mix| f(x) = f(x)[2e}<e.

Theorem 4.13 (F. Riesz): Let <f > be a sequence of measurable functions that
converges in measure to /. Then there is a subsequence <f' > which converges to
falmost everywhere.

Proof: Since <f > is a sequence of measurable functions which converges in
measure to f, for any positive integer k there is an integer n, such that forn>n,,
we have,

m{xrfn<x)—f(x>rzzik} <2ik

Let, Ex = ¥l £y, (00— f@)[2 2%}



Then ifx ¢ ]y'Ek,we have

1
’fnk (x)_f(x)lz_k fork>1i
Andso f, (x)—)f(x).

Hence, f,, (x) = f(x) foranyx ¢ A= ﬁ G E,

i=l k=i

But,

mA<m LL_{ Ek:l
= 1

= mE, = —
= k 2k 1

Hence, the measure of 4 is zero.

Example 5.3: A sequence <f >which converges to zero in measure on [0,1] but
such that <f (x)> does not converge for any x in [0,1] can be constructed as
follows:

Letn=k+2",0<k<2,andsetf(x)=1ifx € [ k27, (k+1)27] and

/,(x) =0 otherwise. Then, m{x|| f,(x)|>¢€} < 2 and so, f — 0 in measure,
n

although for any x € [0, 1], the sequence <f (x)> has the valuel for arbitrarily

large values of n. So it does not converge.

Definition 2: A sequence {f } of almost everywhere finite valued measurable
functions is said to be fundamental in measure, if for every € > 0,

m({x:| £, ()~ f, ()2 €}) >0 as nand m — .

Definition 3: Asequence {f } ofreal valued functions is called fundamental almost
everywhere if there exists a set £, of measure zero such that, if x ¢ £ and £ > 0,
then an integer n = n,= (x, €) has the property that,

| [, (x)= f,(x)| <&, whenevern>n and m>n,.

Definition 4: A sequence {f } of almost everywhere finite valued measurable
functions is said to converge to the measurable function falmost uniformly if, for
every € > 0, there exists a measurable set F' such that m(F) < € and also the
sequence {f } converges to funiformly on F*.

Theorem 5.14: If {f } is a sequence of measurable functions which converges to
Jalmost uniformly, then {/ } converges to falmost everywhere.

Proof: Let F/ be ameasurable set such that m(F ) < 1/n and such that the sequence
{/,} converges to f uniformly on F ¢, n =1, 2, ... . If F = NF,,
n=1

1
thenm(F) < p(F,) < S0 that m(F) =0, and it is clear that, for x € F*, {f (x)}

converges to f(x).
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5.14 ALMOST UNIFORM CONVERGENCE

In the mathematical analysis, the term uniform convergence is a specific mode of
convergence of functions which is stronger than pointwise convergence.

If the domain of the functions is a measure space E then the related notion
of ‘almost uniform convergence’ can be defined. We define that a sequence of
functions (f ) converges almost uniformly on £ if for every 6 > 0 there exists a
measurable set £, with measure less than & such that the sequence of functions
(f)) converges uniformly on £\ E. In other words, almost uniform convergence
means there are sets of arbitrarily small measure for which the sequence of functions
converges uniformly on their complement.

The almost uniform convergence of a sequence does not mean that the
sequence converges uniformly almost everywhere as might be inferred from the
name. Almost uniform convergence implies almost everywhere convergence and
convergence in measure.

Theorem 5.15: Almost uniform convergence implies convergence in measure.
Proof: If {/ } converges to falmost uniformly, then for any two positive numbers

¢ and d there exists a measurable set /" such that m(F) < & such that |/ (x) — f{x)

| < €, whenever x belongs to F* and » is sufficiently large.

Theorem 5.16: If {/ } converges in measure to f, then {f } is fundamental in

measure. Also, if {f } converges in measure to g, then f= g almost everywhere.

Proof: The first claim of the Theorem 5.16 follows from the following relation,

@) = (012 &) @ el £, - F@)12 23 U] £, - ()22
For proving the second claim, we have,

bl () g2 e} @ (e £y~ ()2 23 b (0~ g() 22

Since by appropriate selection of n, the measure of both sets on the right
can be made arbitrarily small, we have

m({x:[ f(x)-g(x)[2€e})=0

for every € > 0 which implies that /= g almost everywhere.
Theorem5.17: If {/ } is a sequence of measurable functions which is fundamental

in measure, then some subsequence { S } is almost uniformly fundamental.

Proof: For any positive integer k we can find an integer Z(k) such that ifn > Z(k)

and m>n(k),then



1 1
m({x:| £ (X) = [ (x) 22_1{})<§

We write,
n=n),n,=m+)un), n3 =(my+1)wn(3), ...;thenn <n,
<n.<..,

3

So that the sequence 1, n } is certainly a subsequence of {k,,} .If,

By =t £ (9= g (0912 )

And k£ < i £ j, then for every x which does not belong to
Ek UEk+1 UEk+2 U..... , WehaVe,

«© = 1 1
|fni (x)—fnj (x) |S Z|fnm (x)_fnm+1(x) |< Zz_m: 2,'_1

So that, in other words, the sequence {/,, } is uniformly fundamental on

EN(E, VE;, U...),since

m(E, OE,, U..)<Y m(E,)< =
m=k

This completes the proof of the Theorem 5.17.

Theorem 5.18: If {/ } is a sequence of measurable functions which is fundamental
in measure then there exists a measurable function f'such that {f } converges in
measure to f.

Proof: By Theorem 5.18 we can find a subsequence { S } which is almost
uniformly fundamental and therefore fundamental almost everywhere. We write

fix)= kll)rg / ny, (x) for every x for which the limits exists and observe that, for

every € >0,

bl 3@ = @2 el el £, = £ (D12 305 fg - B 53

Note here that, the measure of the first term on the right hand side is by
hypothesis arbitrarily small if » and n, are sufficiently large. Also, the measure of
the second term also approaches 0 (as k—o0), since almost uniform convergence
implies convergence in measure. Hence, the theorem follows.

Note: Convergence in measure does not essentially imply pointwise convergence
at any point.
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12.
13.
14.
15.

16.

17.
18.

Check Your Progress

What is Holder's inequality? State the Holder's inequality theorem.
What is Minkowski inequality? State the Minkowski inequality theorem.
Give an example to show that the 27 functions are complete functions.

What are the two distinct mathematical concepts of convergence as per
the measure?

Prove thatif {f } is a sequence of measurable functions which
converges to falmost uniformly, then {f } converges to f almost
everywhere.

Define the term almost uniform convergence of a sequence.

Prove that almost uniform convergence implies convergence in measure.

5.15 ANSWERS TO ‘CHECK YOUR PROGRESS’

1.

2.

4.

An outer measure pi* is an extended real valued set function defined on all
subsets of a space X having the following properties:

() px¢ =0
(b) Ac B= p*A < u*xB(Monotonicity)

() Ec ) E, = n*E <) n*E, (Subadditivity)
i=1 i=1

The outer measure pu* is said to be finite if p+X < co.

A measure on an algebra is defined as a non-negative extended real valued
set function p which is typically defined on an algebra A of sets such that,

(a) nop=0

(b) If <4 > is a disjoint sequence of sets in 4 whose union is also in 4, then

H(Q Aij = ZOO:“Ai
= i=1

Therefore, a measure on an algebra A4 is a measure iff 4 is a G-algebra.

. Inthe measure theory of real analysis, the Carathéodory’s extension theorem

states that, “Any premeasure defined on a given ring R of subsets of a given
set Q can be extended to a measure on the -algebra generated by R, and
this extension is unique if the premeasure is 6-finite”. The Carathéodory’s
extension theorem is named after the Greek mathematician Constantin
Carathéodory.

Any set function P defined on a field F jof sets and satisfying the properties
of a probability measure on F extends uniquely to a probability measure
on the o-field F  generated by F .



5. The term complete measure or more specifically a complete measure space

is defined as a specific measure space wherein every single subset of every
single null set is measurable, i.e., having measure zero. More appropriately,
we can state that a measure space (X, 2, i) is termed as complete if and
onlyif,

ScNe and pNN)=0= Se.

. Consider that a possibly incomplete measure space (X, 2., ) is given, then

of this measure space there is an extension (X, 2, ), which is complete.
The smallest of the extension, i.e., the smallest c-algebra 2. is termed as
the completion of the measure space.

Using the following assumptions or statement the completion can be
constructed:

o Let Zbe the set of all the subsets of the zero-p-measure subsets of X,
instinctively those elements of Z which are already not in >_ are specifically
the ones which prevent completeness from holding true.

o Let2 bethe c-algebra created or produced by 2. and Z, i.e., the smallest
o-algebra that contains every element of 2_ and of Z.
e Let phas an extension i, to 2., which is unique if j1 is o-finite, then it is
called the outer measure of u, given by the infimum.
By (C) =inf {u(D)|Cc D e X}
Then (X, 2., p,) is referred as a complete measure space and is termed as
the completion of (X, 2, W).

. In mathematics, the term measure space is defined as a fundamental and

essential object of measure theory which analyses the universal generalized
and simplified notions of volumes. Characteristically, it comprises of an
underlying set, which is referred as the subsets of this set that are feasible
and sufficient for measuring the ‘c-Algebra’ and the method that is used for
measuring the ‘Measure’. One significant example of a measure space can
be given as a probability space.

A measure space is defined as a triple (X. A, p).
Where, Xis a Set.

A 1s a 6-Algebra on the Set X

p is a Measure on (X, A4).

. Assume that §is a o-algebra on a set X. Characteristically, an §-partition

of Xis defined as a finite collection 4 , ..., 4 of disjoint sets in S such that
A v---ud =X

Implementing the convention that 0 - coand oo - 0 should both be interpreted
to be 0.

. Characteristically, in mathematics, the L7 spaces are function spaces defined

using a natural generalization of the p-norm for Finite Dimensional Vector
Spaces (FDVS). They are also sometimes called Lebesgue spaces, named
after Henri Lebesgue.
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10.

11.

12.

13.

14.

15.

The set of L -functions where p > 1 generalizes L-space. As an alternative
of square integrable, the measurable function f must be p-integrable for fto
bein 7.

A function ¢ defined an open interval (a, b) is known as a convex function
if foreachx, y € (a,b)and A, usuch that A, u>0and A+ p=1, we have,

¢ (Ax + py) < Ao(x) + po(y)
The end points a, b can take the values —oo, oo, respectively.
If fis a convex function and X is a random variable, then Ef (X) * f(EX).

Furthermore, if /s strictly convex, then equality implies that X= EX with
probability 1, that is, X'is constant.

In real analysis, Holder’s inequality, named after Otto Holder, is a
fundamental inequality between integrals and an indispensable tool for the
study of L” spaces.

Let (S, X, ) be ameasure space and letp, g € [1, 0] with 1/p+ 1/g=1.
Then for all measurable real valued function or complex valued function f
and gon S,

In real analysis, the Minkowski inequality establishes that the L” spaces are
normed vector spaces. The inequality is named after the German
mathematician Hermann Minkowski.

Let S be a measure space, let | <p < oo and let fand g be elements of
L7(S). Then f+ g is in L*(S), and we have the triangle inequality,

If+gllz < [1£]lz + llglls

With equality for 1 <p <ooif'and only if fand g are positively linearly
dependent, i.e., f= kg forsome A>0org=0.

Characteristically, the 17 functions have certainly ambiguous pointwise values.
However, we usually consider L functions as complete functions. A simple
example of this construction, for a measure that has no sets of measure 0,
consequently requires no quotient is given by,

? = {complex sequences {c;} with Z |eif? < oo}

T

With standard norm,

|(f:‘1.f:‘.2,...}|fp = {ZI |n'E|P}l;P_

Convergence in measure is either of following two distinct mathematical
concepts both of which generalize the concept of convergence in probability.

Letf,f, (n € N) : X — R be the measurable functions defined on a

measure space (X, 2., p). The sequence £, is said to converge globally in
measure to fif for every >0,



16.

17.

18.

Iim p({z € X : |f(z)  fulz) > }) =0

And to converge locally in measure to fif for every € >0 and every F € 2.
with p (F) <o,

ﬂhﬂou({m e F:

flz) — fu(z)| = €}) =0.

On a finite measure space, both notions are equivalent. Otherwise,
convergence in measure can refer to either global convergence in measure
or local convergence in measure.

Let F/ be ameasurable set such that m(F ) < 1/n and such that the sequence

f,} converges to funiformly on F ¢, n=1,2, ... . If F = ﬂl F .
1

thenm(F) < u(F,) < 50 that m(F) = 0, and it is clear that, for x € F¥,

{f (x)} converges to f(x).

If the domain of the functions is a measure space E then the related notion
of ‘almost uniform convergence’ can be defined. We define that a sequence
of functions (f ) converges almost uniformly on £'if for every 6 > 0 there
exists a measurable set £, with measure less than & such that the sequence
of functions (f ) converges uniformly on £\ £,. In other words, almost
uniform convergence means there are sets of arbitrarily small measure for
which the sequence of functions converges uniformly on their complement.

If {f } converges to falmost uniformly, then for any two positive numbers &
and 6 there exists a measurable set /" such that m(F') < 6 such that |/ (x) —

f(x) | < &, whenever x belongs to F* and # is sufficiently large.

5.16 SUMMARY

¢ In the measure theory, the concept of a measure is a generalization of

common notions, such as mass, distance/length, area, volume, etc.

e An outer measure or exterior measure is a function defined on all subsets of

a given set with values in the extended real numbers satisfying some additional
technical conditions. The theory of outer measures was first introduced by
Constantin Carathéodory to provide an abstract basis for the theory of
measurable sets and countably additive measures.

e The class B of p*-measurable sets are c-algebra. If H is restricted to 3,

then U is a complete measure on f3.

e The union of any sequence of sets in an algebra which can be replaced by a

disjoint union of sets in an algebra, it follows that 3 is a c-algebra.
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If 4 € A and if <4 > is any sequence of sets in 4, such that 4 < U 4, , then
i=1

show that u4 = Z nd;
i=1

The set function p* is an outer measure.
If 4 € A, then 4 is measurable with respect to pu*.

The outer measure p which we have defined above is known as the outer
measure induced by L.

Algebra A4 of sets we use A_ to denote those sets which are countable
unions of sets of 4 and use AG8 to denote those sets which are countable
intersection of sets in AG.

Let ube a measure on an algebra A4, p* be the outer measure induced by
pand £ be any set. Then for & > 0, there existsaset 4 € 4_with £'c 4 and

uW*¥ALpu*E +e.

In the measure theory of real analysis, the Carathéodory’s extension theorem
states that, “Any premeasure defined on a given ring R of subsets of a given
set Q can be extended to a measure on the -algebra generated by R, and
this extension is unique if the premeasure is 6-finite”. The Carathéodory’s
extension theorem is named after the Greek mathematician Constantin
Carathéodory.

The Carathéodory’s extension theorem is also occasionally termed as the
Carathéodory-Fréchet extension theorem, the Carathéodory—Hopf
extension theorem, the Hopf extension theorem and the Hahn—Kolmogorov
extension theorem.

The Carathéodory’s extension theorem considered very significant as it helps
in constructing a measure by defining it on a small algebra of sets, so that its
sigma additivity can be verified. Additionally, this theorem also ensures its
extension to a c-algebra.

Any set function P defined on a field 7, of sets and satisfying the properties
of a probability measure on F extends uniquely to a probability measure
on the o-field F generated by F .

Consequently, we can define that # be the collection of sets A — Q having

the same inner measure and outer measure, and then subsequently we can
define that P (A).

The term complete measure or more specifically a complete measure space
is defined as a specific measure space wherein every single subset of every
single null set is measurable, i.e., having measure zero. More appropriately,
we can state that a measure space (X, 2., i) is termed as complete if and
onlyif,

ScNeX and pN)=0= SeX

The term completeness can be essentially illustrated by considering the typical
product space problems.



e While this approach does define a measure space, it has a flaw. Since every

singleton set has one-dimensional Lebesgue measure zero,
A ({0} x A) < L ({0})=0.

The given larger set also have A*-measure zero. Consequently, as defined
above this ‘Two-Dimensional Lebesgue Measure’ is not complete, hence
some completion procedure is essential.

Consider that a possibly incomplete measure space (X, 2., W) is given, then
of this measure space there is an extension (X, 2., 1), which is complete.
The smallest of the extension, i.e., the smallest c-algebra 2. is termed as
the completion of the measure space.

The Borel measure when defined on the Borel -algebra specifically created
or produced by the open intervals of the real line is not complete, and
therefore the above defined completion procedure has to be used for defining
the complete Lebesgue measure.

A measure space is characteristically defined as a measurable space that
possesses a non-negative measure. The typical examples of measure spaces
include n-dimensional Euclidean space with Lebesgue measure and the unit
interval with Lebesgue measure, i.¢., probability.

The Lebesgue integral depends ultimately on the idea of measure. In
particular, the mathematical framework requires a set, a G-algebra of subsets
alongwith a set function that assigns a non-negative number (called its
measure) to each set in the c-algebra.

In mathematics, specifically in the real analysis, the integral of a non-negative
function of a single variable can be simply interpreted as the area between
the graph of that function and the X-axis. The Lebesgue integral extends the
integral to a larger class of functions. It also extends the domains on which
these functions can be defined.

The integral of a positive function /" between limits a and b can be interpreted
as the area under the graph of /. However, Riemann integration does not
interact accurately by taking limits of sequences of functions, because
producing such limiting processes are difficult for analyses.

Lebesgue’s theory defines integrals for a class of functions called measurable
functions. A real valued function fon £ is measurable if the preimage of every
interval of the form (¢, «), i.e., any Borel set is in X:

{z | flz) >t}e X ¥vtel.

Characteristically, a measurable function which is bounded by an integrable
function is integrable. Every integrable function is measurable. If a sequence
of measurable functions converges almost everywhere, then its limit is
measurable. Ifa sequence of measurable functions converges asymptotically,
then its limit is measurable. Basically, the set of measurable functions is defined
as a linear space. Additionally, the intersection and union of two measurable
functions are measurable.
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¢ Integration with respect to a measure is termed as Lebesgue integration.

The following definition illustrates that the Lebesgue integration functions as
anticipated on the simple functions represented as linear combinations of
characteristic functions of disjoint sets.

The L-functions are the characteristic functions for which this integral
converges. For p # 2, the space of L -functions is a Banach space which is
not a Hilbert space.

Characteristically, areal valued function is called convex if the line segment
between any two points on the graph of the function does not lie below the
graph between the two points. Equivalently, a function is convex if its
epigraph, i.e., the set of points on or above the graph of the function is a
convex set.

In simple terms, a convex function refers to a function whose graph is shaped
like a cup U, while a concave function’s graph is shaped like a cap M.

Convex functions play a significant role in several areas of mathematics.
Even in infinite dimensional spaces, under suitable additional hypotheses,
the convex functions continue to satisfy such properties and as a result, they
are the most significant functionals in the calculus of variations.

In probability theory, a convex function applied to the expected value of a
random variable is always bounded above by the expected value of the
convex function of the random variable.

Let ¢ be convex on (a, b) and a < s <t <u < b, then

PO —d(s) _ o) —(s) _ o — o)

t—s u—=s u-—t

If ¢ is strictly convex, equality will not occur.

A differentiable function ¢ is convex on (a, b) iff ¢’ is a monotonically
increasing function. If ¢'exists on (a, b), then ¢ is convex iff ¢” > 0 on (a, b)
and strictly convex if y” >0 on (a, b).

If ¢ is convex on (a, b), then ¢ is absolutely continuous on each closed
subinterval of (a, b).

Every convex function on an open interval is continuous.

In mathematical analysis, the term Jensen’s inequality is named after the
Danish mathematician Johan Jensen, it was proved by Jensen in 1906. The
Jensen’s inequality relates the value of'a convex function of an integral to
the integral of the convex function.

The classical form of Jensen’s inequality includes several numbers and weights.
The inequality can be stated quite commonly using either the language of
measure theory or equivalently the probability.

e [ffisaconvex function and X is a random variable, then Ef (X) > f(EX).

Furthermore, if fis strictly convex, then equality implies that X = EX with
probability 1, that is, X'is constant.



¢ Inreal analysis, Holder’s inequality, named after Otto Holder, is a fundamental Measures and
. . . .. Outer Measures
inequality between integrals and an indispensable tool for the study of ”
spaces.

e Let(S, X, u) beameasure spaceand letp, g € [1, o] with 1/p+1/g=1.
Then for all measurable real valued function or complex valued function f
and gon S,

I fallr < N Flpllglly-

e If, in addition, p, ¢ € (1, o) and f € L”(n) and g € L%(p), then Holder’s
inequality becomes an equality if and only if [P and |gf? are linearly dependent
in L/(1), meaning that there exist real numbers a, > 0, not both of them
zero, such that alf P = |g|? p-almost everywhere.

NOTES

e Holder’s inequality is used to prove the Minkowski inequality, which is the
triangle inequality in the space L7(j1), and also to establish that () is the
dual space of L7(p) forp € [1, ).

¢ Inreal analysis, the Minkowski inequality establishes that the 7 spaces are
normed vector spaces. The inequality is named after the German
mathematician Hermann Minkowski.

e Let S be a measure space, let 1 < p < oo and let fand g be elements of
L7(S). Then f+ g is in L(S), and we have the triangle inequality

o Characteristically, the L7 functions have certainly ambiguous pointwise values.
However, we usually consider L7 functions as complete functions.

e Essentially, to prove a Cauchy sequence f;in L7 (X) has a subsequence which
converges pointwise off a set of measure 0 in X.

e The vector space of equivalence classes of measurable functions on (S, X,
) is denoted ad L’(S, X, p). By definition, it contains all the /7, and is
equipped with the topology of convergence in measure. When p is a
probability measure (i.e., u(S) = 1), this mode of convergence is named
convergence in probability.

e The space L7(X) is a complete metric space.

¢ The infinite sum is not necessarily claimed to converge to a finite value for
every x.

e Converges for almost all x € X. Let f{x) be the sum at points x where the
series converges, and on the measure zero set where the series does not
converge put f(x) =0.

e [7iscomplete, i.e., every Cauchy sequence converge.

e Convergence in measure is either of following two distinct mathematical
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e The L7 spaces: The L spaces are function spaces defined using a natural
generalization of the p-norm for Finite Dimensional Vector Spaces (FDVS).
They are also sometimes called Lebesgue spaces, named after Henri
Lebesgue.

e Convex function: A function ¢ defined an open interval (a, b) is known as
a convex function if for each x, y € (a, b) and A, p such that A, u> 0 and
A+u=1,wehave, ¢ (Ax + W) <Ad(x) + ud(y). The end points a, b can
take the values —oo, oo, respectively.

e Jensen’s inequality: In mathematical analysis, the term Jensen’s inequality

is named after the Danish mathematician Johan Jensen, it was proved by
Jensen in 1906. The Jensen’s inequality relates the value of a convex
function of an integral to the integral of the convex function.

e Hoélder’s inequality: In real analysis, Holder’s inequality, named after

Otto Holder, is a fundamental inequality between integrals and an
indispensable tool for the study of LP spaces.

e Minkowski inequality: In real analysis, the Minkowski inequality

establishes that the LP spaces are normed vector spaces. The inequality
is named after the German mathematician Hermann Minkowski.

e Almost uniform convergence: If the domain of the functions is a measure

space E then the related notion of ‘almost uniform convergence’ can be
defined by means of a sequence of functions (f ) that converges almost
uniformly on £ if for every 6 > 0 there exists a measurable set £, with
measure less than 6 such that the sequence of functions (f) converges
uniformly on £\ Ej.

5.18 SELF ASSESSMENT QUESTIONS AND

EXERCISES

Short-Answer Questions

1.

—_— e e
W N = O

XX Nk

What are the outer measures?

Define the extension of a measure.

State about the uniqueness of extension.

What is the completeness of measure?

What do you understand by the measure space?
Define the integration with respect to a measure.
State the L7 spaces.

What are the convex functions.

State the Jensen’s inequality.

Define the Holder’s inequality.

. State the Minkowski’s inequality.

. What is the completeness of 1/?

. Why the convergence in measure is used?



Long-Answer Questions

1.

Briefly discuss the measures and outer measures giving theorems, proofs
and appropriate examples.

. Explain the concept of extension of a measure and uniqueness of extension

with the help of theorems, proofs, and examples.

3. What is completion of a measure? Explain with the help of examples.

4. Briefly explain the measure spaces and show that the measure pon Ais a

10.
11.

12.
13.
14.

15.

16.

17.

set function having domain A satisfying the following:
(a) w(4)=0forall 4 € A.

(b) u(¢) =0.

. Discuss the concept of integration with respect to a measure giving relevant

examples.

. Show that a measure space (E, X, i) where E is a set, Xis a c-algebra of

subsets of £, and L is a (non-negative) measure on £ can be defined on the
sets of X.

. What are L” spaces? Explain the concept with the help of appropriate

examples.

. Prove that the L” spaces are function spaces defined using a natural

generalization of the p-norm for Finite-Dimensional Vector Spaces (FDVS).

. Describe the convex functions giving definitions, theorems, proofs, and

examples.
Elaborate on the Jensen’s inequality with the help of theorems and examples.

Explain Halder’s inequalities and Minkowski’s inequalities giving theorems
and proofs.

Differentiate between the Holder’s inequalities and Minkowski’s inequalities.
Briefly discuss about the completeness of L# giving theorems and proofs.

How the convergence in measure is done? Explain giving appropriate
theorems and examples.

Discuss about the almost uniform convergence with the help of theorems,
proofs and examples.

Show that if {f,;} is a sequence of measurable functions which converges to
Jfalmost uniformly, then {f,,;} converges to falmost everywhere.

Prove thatif {f,;} converges in measure to f, then {f,;} is fundamental in
measure. Also, if {f;;} converges in measure to g, then f'= g almost
everywhere.
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